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Abstract

Trapped degenerate quantum gases in tailored environments allow for the investigation of oth-

erwise unaccessible microscopic phenomena as they appear e.g. for the electron gas inside a

solid. The field grew rapidly after the first Bose-Einstein condensate of dilute atomic gases was

created in 1995, providing a very illustrative example for the effect of quantum statistics leading

to a phase transition when the thermal wavelength of the constituent particles exceeds the mean

interparticle distance. Apart from material particles, quantum gases of light can be realized in

optical microresonators inside of which the photons interact with a medium. In the regime of

strong coupling between photons and the medium, quasi-particles known as polaritons form.

Those systems have allowed for the direct investigation of behavior such as superfluidity and

superconductivity due to the here established combination of quantum degeneracy and instan-

taneous contact-like interaction. In our system, the photon gas is created inside a high-finesse

optical microcavity that is filled with a liquid dye solution. The thermally related absorption and

emission spectra of the dye molecules combined with the strong decoherence due to frequent

molecular collisions of dye and solvent molecules allow for the creation of an ensemble that be-

haves closely to the ideal Bose gas. The short cavity length of several half wave lengths fixes the

longitudinal mode number, rendering the gas two-dimensional. Variable potential landscapes

for the photon gas can be established via mirror surface topographies, where spherically curved

mirrors result in a harmonic oscillator potential for the photon gas and surface-structured plane

mirrors can yield finite size box potentials.

In the present work, a quantum degenerate homogeneously trapped two-dimensional photon

gas is experimentally realized, providing a novel platform for the investigation of uniform photon

gases. Basic properties such as spatial, momentum and spectral distribution are successfully

probed and found to be consistent with predictions for the ideal Bose gas at room temperature.

Extraction of the specific heat for various photon numbers below and above criticality reveals

the absence of a second-order phase transition as expected from theory. Mechanical tilting of

one cavity mirror superimposes the trap with a linear potential gradient and allows from the

responding density profiles to extract the equation of state and the isothermal compressibility

of the gas. The latter is for the ideal Bose gas expected to diverge towards infinity when the

system forms into a Bose-Einstein condensate as the macroscopically occupied ground state does

not exert any pressure. Owing to the finite size of the sample, this behavior is validated in the

quantum degenerate regime but breaks down in the condensed regime due to the nonzero ground

state energy.

In other work carried out in this thesis, it is investigated if the apparatus can be employed

as a so-called solar light concentrator, as an initially prepared "hot" photon cloud in a harmonic

trap is expected to redistribute towards the trap center when cooled to ambient temperature

via coupling to the dye heat bath as could potentially be useful for photovoltaic applications.

Compared to observed light concentration in dye-doped thin glass-plates that capture a certain

fluorescence angle, the here investigated approach relies on systematic reabsorption of trapped

fluorescence. Despite observing a shrinking of the cloud, we find that optical losses in the system

presently prevent the system from experiencing a phase space density increase.



Publication List

Parts of the presented work have been published:

• E. Busley, L. Espert Miranda, A. Redmann, C. Kurtscheid, K. K. Umesh, F. Vewinger, M.

Weitz and J. Schmitt, Compressibility and the Equation of State of an Optical Quantum Gas
in a Box, Science 375, 1403–1406 (2022)

DOI: 10.1126/science.abm2543

Further publications related to this thesis:

• C. Kurtscheid, D. Dung, E. Busley, F. Vewinger, A. Rosch and M. Weitz, Thermally condens-
ing photons into a coherently split state of light, Science 366, 894–897 (2019)

DOI: 10.1126/science.aay1334

• C. Kurtscheid, D. Dung, A. Redmann, E. Busley, J. Klärs, F. Vewinger, J. Schmitt and M.

Weitz, Realizing arbitrary trapping potentials for light via direct laser writing of mirror sur-
face profiles, Europhysics Letters 130, 5 (2020)

DOI: 10.1209/0295-5075/130/54001

https://doi.org/10.1126/science.abm2543
https://doi.org/10.1126/science.aay1334
https://doi.org/10.1209/0295-5075/130/54001


Contents

1 Introduction 1
1.1 Photons in Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Phase Space Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Homogeneous Two-Dimensional Bose Gases . . . . . . . . . . . . . . . . . . . . 8

1.4 Experimental Environment: Dye-Filled Microcavity . . . . . . . . . . . . . . . . 11

1.5 Luminescent Solar Light Concentrators . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 A Lens as a Fourier Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Photons in a Dye-Filled Optical Microcavity 19
2.1 Dye: Rhodamine 6G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 High-Finesse Optical Microcavity . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Eigenmodes of a Custom Shaped Optical Microcavity . . . . . . . . . . . . . . . 24

2.4 Statistical Physics of the Photon Gas . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Grand Canonical Rate Equation Model . . . . . . . . . . . . . . . . . . . . . . . 32

3 Experiments on Paraxial Light Concentration 39
3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Light Concentration Measurement Scheme . . . . . . . . . . . . . . . . . . . . . 43

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Transverse Losses and High NA Imaging . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Sunlight Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Experiments on Homogeneously Trapped Photon Gases 55
4.1 Potential Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Emission Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Finite Trap Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Box Potential with Linear Gradient . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Equation of State Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion & Perspectives 87

A Appendix 89
A.1 Electric Field Distribution in the Cavity . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Transmission Profiles of Commonly Used Mirrors . . . . . . . . . . . . . . . . . 92

References 93





C H A P T E R 1

Introduction

Light is universally employed in fields ranging from energy transfer, information processing and

spectroscopy where a variety of technological advancements are based on decades of aforegoing

basic research. For a long time, the sun was the only source of visible electromagnetic radiation

accessible to humankind. With the taming of fire, the continuous process of an exothermic reac-

tion, several 100 000 years ago [1] a controllable source of light and heat entered the accessible

toolbox. Both light sources are related as they belong to the family of thermal emitters, where

their internally equilibrated oscillators cause the body (outer shell of the sun or hot reaction

products, respectively) to emit a radiation field that has the emitter temperature imprinted in its

spectrum. The temperature also determines the radiation intensity leading to a dissipative en-

ergy flow to the environment, as both emitters are typically much hotter than their surrounding.

The sun with its surface temperature of 5800 K provides a constant net energy flow towards the

earth, keeping it at roughly 300 K and even nowadays remains the only external harvestable light

– and thus energy – source.

Phase space compression of light via coupling to the environment could also be relevant in

fields ranging from metrology to solar light collection [2–4]. Currently, in the field of lumines-

cent solar light collectors, one aims for concentration of an initially undirected light field onto a

smaller area, as predominantly motivated to reduce photo voltaic cell material usage [5]. Spatial

light concentration has been observed in luminescent dye-doped transparent plates by capturing

the emission falling into a certain angular cone via total internal reflection [4].

Identifying the light field to be comprised of quanta, namely the photons, immediately leads

to the treatment of light as a quantum gas. In fact, recent technological advancements allowed

for experimental creation and control of atomic quantum gases, exciton-polaritons or even pure

photons in controlled environments; all of which provide a powerful platform for the studies of

many-body physics in- and out of equilibrium [6–8]. Around 70 years after its initial proposal by

Bose and Einstein [9–11], the first so-called Bose-Einstein condensate of trapped dilute gases was

experimentally achieved with ultracold alkali atoms like
87

Rb or
23

Na [12, 13]. In the following

years, further works focused on atomic quantum gases in harmonic or periodic lattice potentials

until recent technological advancements allowed for the creation of homogeneous trapping po-

tentials. Three-dimensional uniform quantum gases have been achieved with bosons [14] and

fermions [15, 16]. Further two-dimensional uniform gases were realized with massive parti-

cles [17–19] as well as in thermalized photonic systems [8] like exciton-polaritons [20] or even

pure photonic gases [21]. Contrary to an ensemble of exciton-polaritons – hybrid quasi-particles

of matter and light – where contact interaction between condensate particles is provided by the

material constituents, which allows for the observation of superfluidity and (second) sound prop-

agation, the ideal Bose gas resembles the counterpart due to the absence of reasonable contact

interaction, predominantly for the here covered pure photonic gas, allowing for mostly unbiased

thermodynamic and statistical physics investigations.



2 1 Introduction

The presented thesis deals with two-dimensional photon gases, which link the fields of pho-

tonics and material quantum gases. The photon gas is confined in a concave resonator imprinting

a non-vanishing ground state energy for the photons that lies in the visible wavelength regime,

in stark contrast to the omnipresent example of black body radiation. The latter has no low

frequency cutoff and the thermodynamic ground state corresponds to the absence of light. In

paraxial approximation, the dispersion relation of the cavity photons is equivalent to a massive

particle in two dimensions. The resonator is filled with a liquid dye-solution whose absorption

and emission spectra are related by a Boltzmann-like frequency scaling. Coupling to the photon

gas happens via absorption and subsequent fluorescence processes, causing the light spectrum to

ultimately acquire a temperature. In 2010, a research group in Bonn reported about experimen-

tal signatures of photon Bose-Einstein condensation in such a system [22] followed by groups in

London [23], Utrecht [24], Twente [25] and Kaiserslautern (no publications yet, contributions to

[26]). Photon gases in optical fibers are investigated in Haifa, Israel [27].

In the present thesis, first a novel approach for light concentration based on coupling of a

prepared high-temperature photon gas to the dye environment is probed that reduces the trans-

verse temperature of the gas, manifested as a decrease in spatial and momentum variance, which

are measured as a function of the dye concentration and hence the reabsorption time. Spatial

and momentum profiles of the photon gas are compared with respect to their initial configura-

tion in the absence of heat bath coupling to investigate if a phase space density increase occurs.

The second part of this thesis deals with two-dimensional photon gases in box potentials which

are created via local mirror surface structuring. The flat potential can be superimposed with

a linear gradient, realized via a mechanically tilted mirror. In such a system, thermodynamic

quantities can be extracted from density profiles [28–33], which are related via an equation of

state to parameters such as pressure, volume, chemical potential 𝜇 or temperature. The pre-

sented implementation has allowed for extracting the equation of state 𝑛 = 𝑛(𝜇, 𝑇 ) as well as

the isothermal compressibility 𝜅𝑇 = 𝑛−2(𝜕𝑛/𝜕𝜇)𝑇 of the photon gas directly from the density

response to the varied potential gradient, which are quantities not yet determined previously for

an optical quantum gas. A classical gas is harder to compress as its density increases whereas

upon emerging quantum degeneracy, the compressibility increases again and, in the limit of an

infinite gas, diverges towards infinity. Since we are dealing with a finite size system, however,

we observe that the nonzero ground state energy ultimately leads to a breakdown of the infinite

system theory upon condensation, making the ensemble less compressible again.

Thesis Outline: In the following introductory sections the general scheme of the investigated

two-dimensional photonic quantum gas and a phase space formalism is introduced, as well as

the dye-filled microcavity apparatus, which here serves as the experimental platform. We will

also discuss the basic thermodynamics of ideal two-dimensional Bose gases in a homogeneous

environment and how the dye-filled microcavity could serve as a platform for solar light con-

centration. Chapter 2 deals with the principles of the experiment, i.e. the used dye medium as a

thermalization mediator and the confining high-finesse cavity, with its photonic band gap char-

acteristics and electric field eigenmodes. The interaction of trapped photons (discrete occupation

of resonator modes) with the dye molecules can be well described by a grand canonical rate equa-

tion model that allows for straight forward Monte-Carlo simulations of the time evolution.

The experimental investigation of the feasibility of the presented apparatus as a solar light

concentrator is covered in chapter 3. First, the available parameter space is probed via numerical

calculations, which are later compared to experimental data. Chapter 4, which resembles the

main part of this thesis, deals with the implementation and characterization of the new platform

for homogeneously trapped photon gases. First, the gas is probed regarding its basic characteris-

tics, namely the distributions in real and momentum space as well as the spectrum. The equation

of state and the compressibility are extracted from the data obtained when superimposing the

flat potential with a linear gradient introduced by mechanical tilting of one cavity mirror.
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1.1 Photons in Equilibrium

Mechanical equilibrium is understood as a stationary state of an object where the net force acting

on it is zero and thus no motion occurs. In thermodynamics, equilibrium refers to the internal

state of a system with vanishing net macroscopic flow of matter or energy. To achieve thermal

equilibrium in complex systems, the subsystems must be in thermal contact to each other to

counteract gradients in e.g. temperature, pressure or chemical potential by exchanging energy

or particles. Quantitatively, one defines the thermalization process as the minimization or maxi-

mization process of certain quantities, such as entropy 𝑆 (microcanonical ensemble), Helmholtz

free energy 𝐹 (canonical) or the grand canonical potential [34, 35]. This thermodynamic formal-

ism can in particular be valid also for a gas of photons. In the following, it will be demonstrated

that although free photons hardly show any stationary characteristics or reasonable contact in-

teraction [36], equilibrium properties can be mediated by coupling to an internally thermalized

medium.

1.1.1 Ideal Bose Gas

When investigating thermodynamic properties of quantum gases, one distinguishes between two

particle classes, namely fermions (carry half integer spin) and bosons (integer spin) with the latter

also including photons as they carry a full spin quantum 𝑠 = 1. A multi particle fermionic wave

function experiences a sign flip under particle exchange. As a consequence, it will destructively

interfere with itself which ultimately prevents two or more fermions from occupying the same

quantum state (Pauli exclusion principle [37]). Bosons are not subject to this phenomenon and

can multiply occupy a state, a regime referred to as quantum degenerate. In a thermalized Bose

gas at temperature 𝑇 one finds on average

𝑛̄𝜇,𝑇 (𝐸) =
𝑔(𝐸)

exp (
𝐸−𝜇
𝑘B𝑇 ) − 1

(1.1)

particles in states with energy 𝐸 and degeneracy 𝑔(𝐸) – the Bose-Einstein distribution. Here, 𝑘B
is Boltzmann’s constant and 𝜇 the chemical potential, which for non-interacting particles, is the

energy required to add a particle to the system, 𝜇 = (𝜕𝐹/𝜕𝑁)𝑇 ,𝑉 . Only 𝑛̄ ≥ 0 is physically mean-

ingful, which implies 𝜇 ≤ 0; if not otherwise mentioned, throughout this manuscript excitable

energies will always be shifted such that min{𝐸} != 0. The (average) total particle number 𝑁̄ of

the system is obtained by summation over all single particle states

𝑁̄ = ∑
𝑖
𝑛̄𝜇,𝑇 (𝐸𝑖) = ∫

∞

0
𝑛𝜇,𝑇 (𝐸) d𝐸 (1.2)

= ∫
∞

0
𝑔̄(𝐸) [exp(

𝐸 − 𝜇
𝑘B𝑇 ) − 1]

−1

d𝐸 . (1.3)

Here, the degeneracy was replaced by the density of states 𝑔̄(𝐸), which is typically used for

systems with a mode continuum, but can still represent discrete energy levels using the delta

distribution function as 𝑔̄(𝐸) = ∑𝑖 𝛿(𝐸 − 𝐸𝑖). At fixed temperature, 𝑁̄ depends on 𝜇 only; In

particular, for a given 𝑁̄ , 𝜇 will adjust such that (1.2) is fulfilled. At high temperatures or low

particle numbers, i.e. −𝜇(𝑁̄ , 𝑇 ) ≫ 𝑘B𝑇 , the −1 term in (1.2) can be omitted and the Bose-Einstein

distribution merges into the Boltzmann relation

𝑛̄𝜇,𝑇 (𝐸𝑖)
−𝜇≫𝑘B𝑇≃ 𝑔(𝐸𝑖) ⋅ exp(−

𝐸𝑖
𝑘B𝑇 )

exp(
𝜇
𝑘B𝑇 )

(1.4)

∝ 𝑔(𝐸𝑖) ⋅ 𝑒−𝐸𝑖/𝑘B𝑇 (1.5)
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where the fugacity exp(𝜇/𝑘B𝑇 ) can be treated as a scaling factor that sets the total particle number

𝑁 if necessary. The validity of this approximation is connected to the consideration if a system

behaves classically or quantum mechanically, resulting from enhanced occupations of certain

energy states. Referring to (1.5) is sometimes sufficient when estimating thermodynamic scaling

laws as e.g. in sec. 4.6.

Spin Multiplicity and Polarization

The degeneracy of energy levels is not exclusively imprinted by the environment but with the

principal spin quantum number 𝑠 also includes an intrinsic property of the constituent particles.

Possible spin vector projections onto a quantization axis are {𝑠, 𝑠 − 1, ..., −𝑠} multiples of ℏ, where

the number of possible projections, 2𝑠+1, is called (spin) multiplicity. For photons with 𝑠 = 1 one

would expect a multiplicity of 2𝑠+1 = 3. However, for a particle moving at light speed, the exclu-

sively allowed configurations are parallel or anti-parallel arrangement of spin and momentum

vector [38], causing the lack of a transverse component. Thus, the actual degeneracy of photon

states only gains an additional factor of 2. Photon spin corresponds to circular polarization of

the electromagnetic field, hence a linearly polarized photon is a superposition of forward and

backward spin states. Their relative phase determines the polarization angle, e.g. horizontal or

vertical. Polarization degeneracy is thus an equivalent term for spin multiplicity.

In the context of light matter interaction, however, this type of degeneracy might be partially

lifted: For a photon to get absorbed by an atom via a dipole transition, the atomic dipole has

to align with the polarization vector of the incident photon. Analogously, photon emission can

prefer a polarization axis if the medium itself is polarized, as further discussed in sec. 4.3.2.

Low Temperature Behavior and Bose-Einstein Condensation

An outstanding property of quantum gases is their distinct behavior at low temperatures where

quantum effects start to dominate the statistical properties. When the chemical potential of a

Bose gas becomes comparable to thermal energy scales, |𝜇| ≲ 𝑘B𝑇 (e.g. via cooling down the

system at constant 𝑁̄ ), the occupation numbers of single particle states with energy 𝐸𝑖 ≲ 𝑘B𝑇
start to become overpronounced with respect to their Boltzmann counterpart value. Further, if |𝜇|
becomes smaller than the energy of the first excited mode, the ground state becomes macroscop-

ically occupied whereas all the excited modes saturate in their occupation, given by the finite

maximum value of 𝑛𝑖,max = (exp(𝐸𝑖/𝑘B𝑇 ) − 1)−1 for 𝜇 = 0. Upon reaching this regime, every

additional particle occupies the motional ground state – the gas undergoes a phase transition to

a Bose-Einstein condensate (BEC) [39]. This effect is reminiscent to liquefaction of water vapor

when the relative humidity saturates at 100 %, hence the term "condensation".

The onset point of the phase transition can be determined by computing the total particle

number 𝑁 , i.e. integrating over all excited mode occupations like in (1.3) for vanishing chemical

potential. At the transition point, the contribution of the ground state is negligible since 𝑁0 ≈ 1.

However, it turns out that the integral diverges in certain cases and condensation is not possible

for 𝑇 > 0. Let the density of states be given by 𝑔̄ = 𝐶𝛼𝐸𝛼−1 where 𝐶𝛼 is a constant. The particle

number in excited states at the transition temperature 𝑇𝑐 is then given by

𝑁exc(𝑇𝑐 , 𝜇 = 0) = 𝐶𝛼 ∫
∞

0

𝐸𝛼−1

exp(𝐸/𝑘B𝑇c) − 1
d𝐸 (1.6)

= 𝐶𝛼 (𝑘B𝑇c)𝛼 Γ(𝛼) 𝜁 (𝛼) (1.7)

where Γ(𝛼) is the gamma function and 𝜁 (𝛼) = ∑∞
𝑛=1 𝑛−𝛼 the Riemann zeta function. It follows

from the latter, that the integral is only finite for 𝛼 > 1. Experimental Bose-Einstein condensed

ensembles are most commonly three dimensional harmonically trapped atomic Bose gases [12,



1.1 Photons in Equilibrium 5

40], where the density of states scales like 𝑔̄ = 𝐶3𝐸2 and hence 𝛼 = 3. Homogeneous three-

dimensional gases (𝛼 = 3/2) [14] or even two-dimensional harmonically trapped gases (𝛼 = 2)

were achieved recently [18], also including photonic systems [22, 23, 41].

For an infinite two-dimensional Bose gas in the absence of a trapping potential, one finds the

density of states to be independent of the energy (𝛼 = 1, cf. sec. 2.4.2) and hence the system does

not condense for finite temperatures 𝑇 > 0, as any number of particles can be accommodated by

the excited states. However, experimentally one always deals with finite size (volume) systems,

as any apparatus is spatially limited in its dimensions and no real world sample can be truly

infinite. We show in sec. 2.4.2 that the finite spatial extent of the system allows for a quasi

saturation of 𝑁exc and correspondingly a macroscopically occupied ground state. It is debatable

to speak of a phase transition in the thermodynamic sense here as it would have to be robust

in the thermodynamic limit (𝑁 , 𝑉 → ∞) [42]. By probing the system response under external

manipulation (e.g. applied pressure) one can make estimates about the regime where the sample

behaves like a cropped infinite homogeneous system and where finite size effects dominate. For

the photon gas studied in this thesis work, corresponding measurements are presented in chapter

4.

1.1.2 Black Body Radiation

The probably most omnipresent ideal Bose gas is the thermal radiation field of a black body. The

latter refers to an idealized object that perfectly absorbs (and emits) incident radiation regardless

of e.g. frequency, polarization or angle of incidence. If such a body comprises a closed box with

side length 𝐿 and volume 𝑉 = 𝐿3, the spectral energy density 𝑢 between the walls reads

𝑢(𝜔, 𝑇 ) = ℏ𝜔
𝜔2

𝜋2𝑐3 [
exp(

ℏ𝜔
𝑘B𝑇 )

− 1]

−1

(1.8)

𝑁̄ (𝜔, 𝑇 )
𝑉

=
𝜔2

𝜋2𝑐3 [
exp(

ℏ𝜔
𝑘B𝑇 )

− 1]

−1

(1.9)

where in (1.9), the spectral energy density was converted into a spectral photon density. Note

that in contrast to (1.1) the chemical potential here vanishes because the photon number is not a

conserved quantity as photons can be created and annihilated inside the walls by thermal energy;

𝑁̄ is entirely dictated by the temperature of the system. By comparing (1.9) to (1.3) one identifies

the density of states per volume in free space as 𝑔̄
free

(𝜔) = 𝜔2/𝜋2𝑐3, which already includes a

factor of 2 to account for an additional polarization degree of freedom.

This law was empirically discovered in 1900 by Max Planck [43]; several years later, Albert

Einstein proposed the underlying mechanism of this light thermalization to be subsequent ab-

sorption and reemission of photons inside the walls of the enclosing medium, which microscop-

ically are a set of oscillators that can absorb and emit photons [44, 45]. The transition rates per

volume are given by the so-called Einstein coefficients 𝐴 for spontaneous emission and 𝐵 for

stimulated absorption and emission. The last mentioned processes scale with the spectral en-

ergy density 𝑢 = 𝑢(𝜔), hence one can write the transition rates between (un-)excited oscillators

𝑁1, 𝑁2 as

𝜕
𝜕𝑡
𝑁1 = −

𝜕
𝜕𝑡
𝑁2 = −𝑁1𝐵12𝑢 + 𝑁2𝐵21𝑢 + 𝑁2𝐴21 . (1.10)

In the steady state, absorption and emission compensate each other, hence 𝜕/𝜕𝑡𝑁1 = 𝜕/𝜕𝑡𝑁2
!= 0.

Requiring that the wall itself is in thermal equilibrium, we know that

𝑁2

𝑁1
= exp(−ℏ𝜔/𝑘B𝑇 ) (1.11)
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which yields the spectral energy density 𝑢(𝜔) as the above given expression (1.8) when the ratio

of 𝐴 and 𝐵 is identified with the density of states in free space.

We see that a thermalized medium can imprint its temperature onto the coupled radiation field.

The wall oscillators are here thermally excited, but we will see in sec. 2.5 that also an optically

induced excitation of dye molecules (cf. sec 2.1) can imprint their temperature onto a light field if

the sublevels in their respective ground and excited state are internally thermalized. Other than

in a black body, one finds that the fluorescence process can here only change the frequency of

the photon instead of removing it entirely. Therefore, the chemical potential does not vanish and

such a system can, other than a black body, show signatures of Bose-Einstein condensation.

1.2 Phase Space Formalism

The here investigated photon gas in the microcavity can in the regime of low particle numbers

be regarded as a classical collection of particles. Many of the extractable quantities such as local

density, momentum distribution or the thermal wavelength can be described in the context of

phase space density. Here, a brief introduction is given, first about the classical distribution

as widely used for the experiments presented in chapter 3 and the quantum description of the

thermal wavelength as it constantly appears in the context of homogeneously trapped photon

gases, mostly in chapter 4.

In the Hamiltonian formalism of classical mechanics a non-interacting particle in 𝑘 dimensions

is characterized by its position 𝒙 = (𝑥1, ... , 𝑥𝑘) and momentum 𝒑 = (𝑝1, ... , 𝑝𝑘) vector. The

corresponding equations of motion describe the time evolution of a system in the so-called phase

space whose constituents are 𝒙 and 𝒑 [46]. The associated phase space density (𝒙, 𝒑) yields

the number of particles that occupy a certain point in phase space or, in the limit of a state

continuum, the corresponding probability density distribution

d𝑁 = (𝒙, 𝒑) d𝑘𝑥 d𝑘𝑝 . (1.12)

In a thermalized system the phase space density scales with the Boltzmann factor (1.5) (or, de-

pending on the context, with the Bose-Einstein distribution (1.1), respectively) as

(𝒙, 𝒑) ∝ exp(−
(𝒙, 𝒑)
𝑘B𝑇 ) (1.13)

where the Hamiltonian (𝒙, 𝒑) = |𝒑|2/2𝑚 + 𝑉 (𝒙) consists of kinetic and potential energy 𝑉 (𝑥)
of a particle with mass 𝑚. The non-relativistic dispersion relation 𝐸 ∝ |𝒑|2 imprints a Gaussian

shape onto the distribution 𝜌 of each momentum component

𝜌(𝑝𝑥) =
1√

2𝜋𝜎𝑝𝑥
exp

(
−
𝑝𝑥2

2𝜎2𝑝𝑥 )
(1.14)

with 𝜎𝑝𝑥 =
√
𝑚𝑘B𝑇 , which is commonly known as the Maxwell-Boltzmann distribution [47]. This

relation holds true for a variety of potential landscapes as long as quantum effects are negligible;

in contrast, the spatial distribution 𝜌(𝑥) heavily depends on 𝑉 (𝑥). In a harmonic potential 𝑉 (𝑥) =
1/2𝑚Ω2𝑥2 with trapping frequency Ω the quadratic scaling with 𝑥 leads to a Gaussian shape also

for the spatial density distribution

𝜌(𝑥) =
1√
2𝜋𝜎𝑥

exp(−
𝑥2

2𝜎2𝑥)
(1.15)

with 𝜎𝑥 =
√
𝑘B𝑇/𝑚Ω2

. The final phase space density is the product of spatial and kinetic proba-

bility distribution along each dimension scaled with the total particle number 𝑁

(𝒙, 𝒑) = 𝑁
𝑘

∏
𝑖 = 1

𝜌(𝑥𝑖) 𝜌(𝑝𝑖) . (1.16)
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In the experiments described in chapter 3 we investigate a two-dimensional photon gas in a

radially symmetric harmonic trap, i.e. we reduce the Cartesian axes (𝑥, 𝑦) to a single radial

coordinate 𝑟 , i.e. 𝜎𝑟 ≡ 𝜎𝑥 = 𝜎𝑦 . On the optical axis (𝑥𝑖 = 0, 𝑝𝑖 = 0) the phase space density then

simplifies to

2D(𝟎, 𝟎) =
1

4𝜋2
𝑁

𝜎2𝑟 𝜎2𝑝𝑟
. (1.17)

Photon number 𝑁 and cloud widths 𝜎𝑟 ,𝑝𝑟 are directly experimentally accessible. While the real

space distribution of a trapped ensemble is obtained by imaging the emission onto a camera, the

momentum space distribution is accessible by imaging in the opposite Fourier plane (see sec.

1.6).

1.2.1 Thermal De-Broglie Wavelength

A quantum particle does neither carry a fixed momentum nor is it located at a certain position but

those two compose a set of conjugated variables, meaning that the product of their uncertainties

always obeys Δ𝑥Δ𝑝 ≥ ℏ/2 [48] which renders the above mentioned classical formalism inappli-

cable to a certain extent. In fact, particles behave as matter waves and based on their momentum

𝑝 can be assigned a de-Broglie wavelength 𝜆dB = 2𝜋ℏ/𝑝. Below this length a particle abandons

its point-like character and occupies a 𝑘-dimensional volume of 𝑉 ≈ 𝜆𝑘dB. Many length scales in

a thermal system such as particle density or the coherence length can be expressed based on the

thermal wavelength 𝜆th of an ensemble of particles with mass 𝑚 at temperature 𝑇 . Due to the

frequent occurrence, two distinct interpretations are explained in the following.

Statistical Physics A widely used definition of the thermal wavelength 𝜆th is base on statisti-

cal properties. Consider a 𝑘-dimensional box of side length 𝐿 and volume 𝑉 = 𝐿𝑘 . For a massive

particle the Hamilton operator solely contains kinetic energy terms with each dimension con-

tributing a portion of 𝑝2𝑖 /2𝑚. Assuming the energy levels of the box are separated by much less

than 𝑘B𝑇 , the canonical partition function C can be approximated by an integral, which for a

single particle (𝑁 = 1) in classical statistical mechanics reads

C =
1

(2𝜋ℏ)𝑘 ∬
exp(−

(𝒙, 𝒑)
𝑘B𝑇 ) d𝑘𝑥 d𝑘𝑝 (1.18a)

=
1

(2𝜋ℏ)𝑘 ∫
𝐿

0
d𝑘𝑥 ∫

∞

−∞
exp(−

𝑝2𝑖
2𝑚

1
𝑘B𝑇 )

d𝑘𝑝 (1.18b)

=
𝐿𝑘

(2𝜋ℏ)𝑘
√
2𝜋𝑚𝑘B𝑇

𝑘
(1.18c)

≡
𝑉
𝜆𝑘th

(1.18d)

with

𝜆th ≡
√

2𝜋ℏ2

𝑚𝑘B𝑇
. (1.19)

The factor (2𝜋ℏ)𝑘 denotes the phase space unit cell volume which sets the correct units and acts as

a normalization constant. Note that this expression of 𝜆th, which only depends on 𝑚 and 𝑇 , does

on first glance not explicitly represent a physical quantity and is only meaningful in a statistical

sense. However, when comparing it to spatial interpretations like the de-Broglie wavelength one

finds for a particle with thermal momentum 𝑝 =
√
2𝑚𝑘B𝑇 that 𝜆dB =

√
𝜋𝜆th or for the average

de-Broglie wavelength of an ensemble at temperature 𝑇 a value of 𝜆̄dB = 𝜋𝜆th in two dimensions
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or 𝜆̄dB = 2𝜆th in three dimensions, respectively. The (temperature) scaling of 𝜆th is exactly the

same for both the spatial and statistical interpretation with prefactor variations being of order

unity.

Spatial Autocorrelation Another characteristic length scale of a quantum gas is its spatial co-

herence length, which can be interpreted as overlapping single particle wave packets. To quantify

this aspect, one can calculate the range up to which a system interferes with itself, namely the

first-order autocorrelation function 𝑔(1)(𝑥, 𝑡). The Wiener-Khinchin-theorem [49, 50] relates the

autocorrelation function of an ensemble to its power spectrum and applies to conjugated vari-

able pairs, e.g. position and momentum [51, 52]. The theorem states that the autocorrelation

function 𝑔(1)(𝑥) can be obtained via the inverse Fourier transform of the power spectrum, here

represented by the thermal momentum distribution 𝑛(𝑝):

𝑔(1)(𝑥) ∝ (−1
𝑝 𝑛(𝑝))(𝑥) ∝ ∫

∞

−∞
𝑛(𝑝) 𝑒i𝑝𝑥/ℏ d𝑝 (1.20)

∝ ∫
∞

−∞
exp(−

𝑝2

2𝑚 𝑘B𝑇
+ i𝑝𝑥/ℏ)d𝑝 (1.21)

= exp(−𝜋
𝑥2

𝜆2th)
. (1.22)

In fact, the characteristic correlation length

√
𝜋𝜆th agrees with the above introduced value of 𝜆th.

A more rigorous way to calculate 𝑔(1)(𝑥) employs the Wigner quasi-probability function [53]

which leads to the same result as (1.22) [54, 55].

The statistically motivated expression of 𝜆th in (1.19) shows strong relations to spatial inter-

pretations of a particle volume since the obtained value scales correctly with the inverse average

momentum of an ensemble. Hence, for normally distributed momenta, 𝜆th is a good expression

for the variance of the distribution. Recalling phase space density as "particles per space per

momentum" the expression reduces to

(𝒙) = 𝑛(𝒙)𝜆𝑘th (1.23)

representing the number of particles per box-like volume 𝜆𝑘th, determined by the temperature

dependent momentum distribution or, similarly, the number of particles per phase space unit

cell (2𝜋ℏ)𝑘 .
A system is said to behave classically as long as the coherence length is comparable to the

width of a single particle wave packet, which can therefore be treated as point-like objects. For

increasing phase space densities in a Bose-Einstein condensate, the contribution of the low ener-

getic degenerate modes cause a drastic increase in the systems coherence length (see sec. 2.4.2)

due to the bimodal phase space distribution. Here, the usage of (1.23) renders partially invalid.

1.3 Homogeneous Two-Dimensional Bose Gases

The behavior of a particle ensemble is not an exclusive property of the particle type but also de-

pends on the confinement. For trapped quantum gases, different trapping potentials can imprint

disctinct behavior, i.e. the scaling of certain thermodynamic quantities or the occurrence of phase

transitions [39]. In the following we first discuss the density profile of homogeneously trapped

2D Bose gases and how any trap can be treated to be homogeneous on short length scales in the

local density approximation. Further discussion of thermodynamic quantities can be found in

sec. 2.4.2.
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We start with the density of states

𝑔̄ =
𝑚𝐿2

2𝜋ℏ2
=

1
𝑘B𝑇

𝑉
𝜆2th

= const. (1.24)

which in the homogeneous system is an energy-independent constant and hence resembles the

case of 𝛼 = 1, see sec. 1.1.1. As here, apart from the potential walls, the particles do not feel

any spatially varying potential, the entire energy is stored in the kinetic components with wave

vector (𝑘𝑥 , 𝑘𝑦), resulting in two degrees of freedom per particle. The here investigated photon gas

can exchange energy and particles with the environment (heat bath, see section 1.4), hence we

operate in the grand canonical regime of thermodynamics. The variables which determine the

state of the system are temperature 𝑇 and chemical potential 𝜇, whereas the volume 𝑉 is assumed

to be constant in the following. A reasonable starting point for the discussion of thermodynamic

properties is the derivation of the partition function. For independent bosons (in the absence

of contact interaction) the grand partition function can be worked out exactly with the single

particle eigenenergies 𝐸𝑖 as

𝐺 = ∏
𝑖

∞
∑
𝑛𝑖=0

exp(−𝑛𝑖
𝐸𝑖 − 𝜇
𝑘B𝑇 ) (1.25a)

= ∏
𝑖 [1 − exp(−

𝐸𝑖 − 𝜇
𝑘B𝑇 )]

−1

. (1.25b)

All thermodynamics parameters can be obtained from 𝐺 [34, 56]. Thermal equilibrium is es-

tablished when the grand potential

(𝑇 , 𝑉 , 𝜇) = −𝑘B𝑇 log(𝐺) (1.26)

= 𝑘B𝑇 ∑
𝑖
log (1 − 𝑒(𝜇−𝐸𝑖)/𝑘B𝑇 ) (1.27)

= −𝑘B𝑇
𝐿2

𝜆2th
Li2 (𝑒𝜇/𝑘B𝑇 ) + 𝑘B𝑇 log(1 − 𝑒𝜇/𝑘B𝑇 ) (1.28)

is minimized. Li𝑠(𝑧) = ∑∞
𝑘=1 𝑧𝑘 𝑘−𝑠 is the polylogarithm. For the computation, the sum was

converted to an integral over the density of states again which does not include the contribution

of the ground state at 𝐸𝑖 = 0 which hence has to be treated separately.  relates to macroscopic

thermodynamic quantities via

(𝑇 , 𝑉 , 𝜇) = 𝑈̄ − 𝑇 𝑆 − 𝜇𝑁̄ (1.29)

homog.

= −𝑝𝑉 (1.30)

where the last mentioned pressure-volume relation (𝑝𝑉 ) is only valid for homogeneous systems

in the absence of an external potential. Note that internal energy 𝑈 and particle number 𝑁 are

only given by their mean value. Intuitively, one would assume the state of minimal energy is

acquired when every particle occupies the ground state and hence 𝑈 = 0. However, at finite

temperature 𝑇 > 0 the system carries a certain amount of energy. Additionally, the fluctuating

particle number 𝑁 can continuously add or remove energy to the ensemble. Thermal occupation

of the single particles states (and hence increasing 𝑈 ) will then maximize the entropy 𝑆, where

balancing both quantities ultimately yields the Bose-Einstein factor. Due to the equivalence of

grand canonical and canonical ensemble for a well-defined mean particle number 𝑁̄ , the 𝜇𝑁̄ term

could physically as well be treated as an internal energy offset [34]. The exact differential of the

grand potential reads

d = −𝑆d𝑇 − 𝑃d𝑉 − 𝑁̄d𝜇 . (1.31)
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from where the mean particle number 𝑁̄ in the system can be calculated via

𝑁̄ = −
𝜕
𝜕𝜇

(1.32)

≡ 𝑁0(𝜇) + 𝑁exc(𝜇) (1.33)

= 𝑁0(𝜇) +
𝑚𝐿2

2𝜋ℏ2 ∫
∞

0

d𝐸
exp (

𝐸−𝜇
𝑘B𝑇 ) − 1

(1.34)

= 𝑁0(𝜇) −
𝐿2

𝜆2th
log(1 − exp(

𝜇
𝑘B𝑇 )) (1.35)

with the ground state occupation 𝑁0 = 1/(exp(−𝜇/𝑘B𝑇 ) − 1). Eq. (1.35) cannot be formally

solved for the chemical potential 𝜇. However, when omitting the contribution of the (potentially

macroscopically occupied) ground state 𝜇 is inferred from 𝑁exc via

𝜇 = 𝑘B𝑇 log (1 − 𝑒−𝑁exc𝜆2th/𝐿
2

) . (1.36)

Here we see that for every excited particle number 𝑁exc there exists a solution for the chemical

potential 𝜇 such that (1.36) is fulfilled, which confirms the absence of a saturation driven Bose-

Einstein condensate at finite temperature 𝑇 .

1.3.1 Equation of State and Density Profiles

The equation of state of a thermodynamic ensemble relates extensive and intensive state vari-

ables of a system, i.e. it describes the state of matter under given physical conditions like pressure

𝑝, volume 𝑉 , temperature 𝑇 , particle number𝑁 or internal energy 𝑈 [57, 58]. They are frequently

used to describe the equilibrium state of classical as well as quantum gases and fluids. The prob-

ably most common equation of state is the ideal gas law

𝑝𝑉 = 𝑁𝑘B𝑇 (1.37)

which is valid at low phase space densities  ≪ 1 in the classical regime.

Since the density of states in the infinite (∞) 2D homogeneous system is energy-independent

we get from (1.35) the density of the excited states 𝑛∞(𝜇) ≡ 𝑁exc(𝜇)/𝐿2 as

𝑛∞(𝜇) = −𝜆−2th log(1 − exp(
𝜇
𝑘B𝑇 )) (1.38)

∞(𝜇) = 𝑛(𝜇) 𝜆2th (1.39)

which is one form of an equation of state 𝑛 = 𝑛(𝜇, 𝑇 ) that can equivalently represent the phase

space density (1.23) by multiplication with the squared thermal wavelength. The density contri-

bution of the ground state has to be treated separately if necessary. The formalism can also be

transferred to inhomogeneous systems, when the chemical potential is assigned a spatial depen-

dence by including the potential energy term, 𝜇(𝑥) ≡ 𝜇0 − 𝑉 (𝑥). This substitution is the "local

density approximation" which is valid as long as 𝑉 (𝑥) can be treated as locally homogeneous on

lengths scales of 𝜆th. When the coherence length of the system exceeds 𝜆th e.g. by a macroscopic

occupation of the ground mode, (1.38) does not anymore correctly map the local potential onto

the corresponding particle density as we have only included the excited states for the calculation

of the density profile.

In the classical regime of |𝜇| ≫ 𝑘B𝑇 , 𝑛∞(𝜇) can be approximated by

𝑛∞(𝜇) ≃ 𝜆−2th exp(𝜇/𝑘B𝑇 ) (1.40)

𝑛∞(𝑥, 𝜇0) ≃ 𝑛0(𝜇0) exp(−𝑉 (𝑥)/𝑘B𝑇 ) (1.41)

with 𝑛0 = 𝜆−2th exp(𝜇0/𝑘B𝑇 ). The density in (1.41) formally is the classical occupation of the

potential energy degree of freedom.
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1.3.2 Compressibility

From the equation of state (1.38) one can directly obtain the compressibility of a medium which

is a measure of its relative volume change d𝑉/𝑉 as a response to a pressure change d𝑝. For an

isothermal process the coefficient of compressibility 𝜅𝑇 is defined as the inverse bulk modulus

𝜅𝑇 = −
1
𝑉 (

𝜕𝑉
𝜕𝑝)𝑇 ,𝑁

. (1.42)

In the context of quantum gases of light, it turns out handy to replace volume and pressure with

more accessible quantities such as the local density as it can be measured directly via real space

imaging. For this purpose we start from the Gibbs-Duhem relation [56]

d𝑝 = 𝑛d𝜇 + (𝑆/𝑉 )d𝑇 . (1.43)

For an isothermal process we have by definition d𝑇 = 0 and hence get d𝑝 = 𝑛d𝜇; from 𝑛 = 𝑁/𝑉
one finds d𝑉 = 𝑁/𝑛2d𝑛 for constant 𝑁 . Plugging into (1.42) yields the expression

𝜅𝑇 =
1
𝑛 (

𝜕𝑛
𝜕𝑝)𝑇 ,𝑁

(1.44)

=
1
𝑛2 (

𝜕𝑛
𝜕𝜇)𝑇 ,𝑁

(1.45)

which allows for determination of the isothermal compressibility using experimentally accessible

and controllable quantities, i.e. density and chemical potential.

Compressibility Measurement via Potential Gradients

Measuring the compressibility of light turns out to be a nontrivial task when following (1.42).

While the volume of a trapped light field can be inferred from its spatial extent, the mechanical

pressure of roughly 1000 photons is not measureable with the here available methods. Addi-

tionally, neither of those quantities can be changed during a running experiment, in contrast to

the related quantities used in (1.45). While the photon density can be directly measured from

calibrated spatial images, the chemical potential can be inferred via the local density approxima-

tion as an offset 𝜇0 from the particle number 𝑁 as in (1.3) combined with the spatially varying

part given by the prepared potential environment 𝑉 (𝑥), see sec. 4.6 for the experimental imple-

mentation. Here, an initially flat mirror is mechanically tilted which results in a shallow linear

potential gradient, resulting in a spatial dependence in the chemical potential 𝜇(𝑥).
Variation of the external parameters such as 𝜇0 and the potential gradient 𝜕𝑉/𝜕𝑥 allows to

infer the equation of state 𝑛(𝜇) and the compressibility 𝜅𝑇 of the photon gas over a large range

of densities as described in sections 4.7 and 4.8.

1.4 Experimental Environment: Dye-Filled Microcavity

The experimental setup used in this thesis is based on an high-finesse optical microcavity filled

with a liquid dye solution, predominantly rhodamine 6G dissolved in ethylene glycol, as shown in

Fig. 1.1a. The dye molecules are optically excited by a pump beam. Upon absorption of a photon,

the rotational and vibrational (rovibronic) occupation of the dye molecule is frequently altered by

internal conversion processes and collisions with the surrounding solvent molecules (timescales

10−12 s). Accordingly, the sublevels of the electronically excited state are Boltzmann-distributed.

The same processes also occur within the ground state substructure, which ultimately connects,
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Fig. 1.1: Dye-filled microcavity environment. a) A liquid dye solution is enclosed by two highly reflec-
tive mirrors, which are only a couple of half waves apart, causing a frequency spacing of neighboring
longitudinal modes larger than the dye bandwidth (panel b). The dye molecules are excited by a laser
beam. Inside the cavity, reabsorption of emitted photons ultimately imprints a thermal distribution to
the photon gas. The mirrors imprint a trapping potential onto the photons following their surface profile,
in this thesis both spherical and box-like. Low energy photons propagate close to the optical axis, while
photons in highly excited transverse modes leave the cavity with a large divergence angle. b) Only one
longitudinal mode manifold overlaps with the dye spectra. The occupation of the transverse substructure
(spacing determined by trapping geometry) contains thermal information of the gas.

within a certain spectral region, the absorption 𝛼(𝜔) and fluorescence 𝑓 (𝜔) strength of the dye

molecules with the Boltzmann-like frequency scaling (Kennard-Stepanov relation, sec. 2.1)

𝑓 (𝜔)
𝛼(𝜔)

∝ 𝜔3 exp(−ℏ𝜔/𝑘B𝑇 ) . (1.46)

Statistically, a light field that undergoes several absorption and re-emission cycles inside such

a dye medium, will acquire the temperature of the fluorescent molecules, which here act as a

heat bath that can absorb excess energy or fill up energy deficits. Due to the frequent dephasing

molecular collisions occurring well within the excited state lifetime of 𝜏spont ≈ 4 ns, no quasi-

particles known as exciton-polaritons are formed and the light field can well be considered as

purely photonic.

The enclosing cavity mirrors provide a photon storage time of several hundred picoseconds,

inferred from the (spectrally varying) mirror reflectance under normal incidence of around 𝑅 ≈
99.998 %. The dye solution is typically concentrated at 𝜌 = 1mmol/l and absorbs photons in the

spectral region around 580 nm in roughly 50 ps, see sec. 2.1. For the light funneling experiments

presented in chapter 3, the dye concentration is systematically varied to probe the effect of the

reabsorption processes and eventual spectral redistribution, since the concentration ultimately

relates the reabsorption time with respect to the resonator storage time.

On the optical axis, the mirrors impose a standing wave boundary condition onto the photons

which results in an integer number 𝑞 of wave nodes given by the mirror separation 𝐷0 = 𝑞𝜆c/2𝑛̃,

where 𝜆c is called the cutoff wavelength and 𝑛̃ is the refractive index of the dye medium. Typical

values are 𝑞 = 7 or 8 result in 𝐷0 ≈ 1.5 µm and cause the free spectral range of the microcavity

to be around ΔFSR = 𝑐/2𝐷0 ≈ 70 THz, comparable with the dye bandwidth shown in Fig. 1.1b;

𝑐 = 𝑐0/𝑛̃ denotes the speed of light in the medium. The mirror separation 𝐷0 and hence 𝜆c can

be adjusted such that only a single longitudinal mode with its transverse substructure overlaps

with the dye spectra, which causes the trapped photon gas to be mainly restricted to a single

longitudinal mode. This fixation to a certain half wave number reduces the dimensionality of

the system as only the two transverse degrees of freedom characterized by transverse quantum
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numbers (𝑛𝑥 , 𝑛𝑦) remain. Additionally, the photons obtain a non-trivial ground state energy

𝐸 = 2𝜋ℏ𝑐0/𝜆c, corresponding to the resonators TEM𝑞00 mode.

In order to trap photons in the transverse direction, the cavity mirrors have a concave geom-

etry. It can be shown that the surface topography of the mirrors imprints an effective poten-

tial landscape onto the photons which in the transverse plane behave equivalently to massive

quantum particles, see sec. 2.3. Thus, mirrors with radius of curvature 𝑅̃ will create a radi-

ally symmetric harmonic potential for the two-dimensional photon gas with trapping frequency

Ω = 𝑐(𝐷0𝑅̃/2)−1/2. On the other hand, recent advances in mirror surface structuring techniques

allow for the creation of almost arbitrary potential landscapes [59, 60]. Here, to investigate ho-

mogeneously trapped photon gases, the mirror surface is locally elevated following the outline

of a box potential, see sec. 4.1.

The thermodynamic information of the system is encoded in the occupation of the resonator

eigenmodes, each having a specific excitation energy above the low energy cutoff. After a cas-

cade of absorption and emission processes, one expects the occupation of the modes to follow a

Bose-Einstein distribution if the dye fulfills the Kennard-Stepanov relation, see sec. 2.5. As here

the occupation of the excited modes saturates, the gas shows the predicted characteristics for

the phase transition to a Bose-Einstein condensate, including calorimetry and spatio-temporal

coherence [22, 55, 61]. In the limit of low photon numbers, where stimulated emission processes

can be neglected, the Bose-Einstein distribution can be approximated by the classical Boltzmann-

distribution. Such information about the photon gas is obtained from the emission through the

cavity mirrors. Suited optical arrangements allow for a straight forward acquisition of the photon

distribution in real space, momentum space (𝑘-space) and spectrally resolved.

Excited molecules at position 𝑥 and photons in cavity mode 𝑖 realize the excitations in the

system. The interconversion rates of both species scale with the local squared amplitude of

the photonic resonator modes and the corresponding dye spectra. The interchange dynamics

between both can be modeled with rate equations as discussed in sec. 2.5 and one can show that

the system at long times acquires a thermal distribution even in the presence of large losses in the

molecular excitations. In chapter 3 the model is used to investigate light funneling of photons

by the dye reservoir (sec. 1.5) by probing the central phase space density in the resonator as

determined from the spatial and momentum distributions of the emission.

The central aspect of the present thesis focuses on 2D homogeneously trapped photon gases

which are investigated by constructing a microcavity from two plane mirrors, one of which is

surface structured with the outline of a box potential. Those experiments require superb mirror

quality; a residual surface roughness of Δ𝐷rms ≈ 0.5Å already perturbs the intensity profile

of low energetic transverse modes as the kinetic energy of respective photons falls below the

noise potential caused by the sub-atomic roughness. In boxes of well-chosen size, we probe in

a first stage general properties of the photon gas in terms of its spatial, momentum and spectral

distribution across the classical, degenerate and condensed regime. By controlled tilting of the

cavity mirror via piezo actuators we can extract the equation of state and the compressibility of

the trapped gas from the surface density response, see chapter 4.

1.5 Luminescent Solar Light Concentrators

The presented thermalization mechanism inside a dye-filled microcavity could conceptionally

be employed for solar light concentration [4, 5]. Liouville’s theorem of classical statistical me-

chanics dictates that the phase space volume of a particle ensemble in a closed system is constant

[62]. Consequently, for noninteracting particles, the phase space density (particles with the same

momentum at the same position) does not surpass its maximum value given by the initial con-

ditions. This constraint also applies to e.g. the transverse beam motion in particle accelerators

and to classical ray optics, analogous to the Fourier limit: Focusing a beam to a small diameter at
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Fig. 1.2: Diffuse light concentrators. a)Working Principle of a conventional luminescent solar light collec-
tor plate. Dye molecules are excited by incoming light. A part of the undirected spontaneous fluorescence
is trapped inside the structure due to total internal reflection and ultimately reaches a photovoltaic cell.
b) Isotropic excitation of the dye (green arrows) creates a "hot" photon cloud as high energy states in
the harmonic potential 𝑉 (𝑟) are populated. Relaxation towards the trap center corresponds to transverse
cooling of the cloud. The resonator mirrors are drawn to hint at the experimental implementation.

an interaction region goes in hand with an increase of the beam divergence in that certain spot.

The ability to capture diffuse light, funnel it, and reshape it to a well-formed beam could be of

great interest in e.g. future photovoltaic technologies.

A heat reservoir as provided by the dye environment can absorb the transverse kinetic en-

ergy and effectively reduce the beam temperature to room temperature. The reduction of the

average transverse momentum imprints a spectral red shift to the photon gas (see dispersion

relation in sec. 2.3.3), but their number count can in principle be conserved. The here used dye-

filled microcavity establishes thermal contact between photons and a heat bath provided by a

liquid fluorescent dye solution. Thermal coupling of the photon gas to the reservoir has been

thoroughly investigated in previous studies [63–65].

The sun as our most prominent light source emits light with a low phase space density, espe-

cially on cloudy days when the light randomly scatters in the atmosphere. Conventional lumi-

nescent solar light collectors are based on thin glass plates that act similar to a waveguide mostly

via total internal reflection, see Fig. 1.2a. Spontaneous fluorescence of excited dye molecules in-

side of the waveguide is partially captured when the emission falls within a certain solid angle.

While this method concentrates light to a small area at the edge of the plate, its momentum

distribution is still isotropic within the total internal reflection angle as the density of states is

not modified here. In recent approaches, see e.g. in ref. [66], the efficiency can be increased by

inducing permanent dipoles, which partially lift the isotropy of spontaneous emission. Those

systems, however, do not increase the phase space density of the absorbed light as the momen-

tum distribution is still mostly homogeneous within the capture angle of the glass plate and does

not allow for a systematic reduction of the transverse beam temperature.

1.5.1 Light Concentration via Cooling

Measurements in refs. [22] and [65] hint at the spatial relaxation of the photon gas towards

the trap center for increasing coupling to the dye. In the harmonic oscillator potential, where

space and position are conjugated such that centrally located photons also propagate closer to

the optical axis. A redistribution towards the cavity center can hence be seen as a reduction in

temperature, with the principle schematically shown in Fig. 1.2b. An isotropically illuminated

resonator corresponds to a hot beam temperature in the paraxial picture due to the large spread in

their respective variances 𝜎2𝑟 and 𝜎2𝑝𝑟 as described in sec. 1.2. For an ensemble of 𝑁 harmonically
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trapped classical particles, the Hamiltonian reads

̂(𝑟, 𝑝) = ∑
𝑖 (

𝑝2𝑟,𝑖
2𝑚

+
1
2
𝑚Ω2𝑟2𝑖 ) (1.47)

⟨̂(𝑟, 𝑝)⟩ = 2𝑁𝑘B𝑇 . (1.48)

One finds that each particle on average contributes an energy of 2 𝑘B𝑇 . A cooling process would

be evident if ⟨𝑟2⟩ = 2𝜎2𝑟 and ⟨𝑝2𝑟 ⟩ = 2𝜎2𝑝𝑟 are reduced. To quantify cooling one measures the

second moments of the central phase space density with its temperature dependence of

(𝟎, 𝟎) (1.17)=
1

4𝜋2
𝑁

𝜎2𝑟 𝜎2𝑝𝑟
(1.49)

∝ 𝑇−2 (1.50)

The squared temperature dependence implies a strong increase of the phase space density when

the ensemble is cooled down. Investigating measurements are presented in chapter 3.

1.6 A Lens as a Fourier Filter

Phase space density measurements require knowledge about the angular distribution (momen-

tum space) of the paraxial light field in 2D, which can be measured with a regular lens. The

working principle of the latter is often introduced via its deflection of straight propagating light

rays. Diffraction based phenomena nevertheless have to be described in the wave picture to

entirely understand the working principle.

Consider a wave propagating along the optical axis 𝑧. Following Huygens’ principle [67, 68],

every point of a wave front is the origin of a new spherical wavelet 𝐸(𝑟) = 𝐸0 exp(i𝑘𝑟)/𝑟 , where

𝐸0 is the local complex amplitude of the electric field and 𝑟 is the distance to the wavelet origin.

The amplitude in the plane (𝑥, 𝑦, 𝑧 = 0) is then connected to the field at (𝑥′, 𝑦′, 𝑧) via the Fresnel-

Kirchhoff diffraction integral

𝐸(𝑥′, 𝑦′, 𝑧) =
𝑘

2𝜋 i ∫
∞

−∞
𝐸(𝑥, 𝑦, 0)

exp(i𝑘𝑟)
𝑟

1
2
(1 + cos(𝜃)) d𝑥 d𝑦 (1.51)

where we integrate over all partial contributions modified by a directional factor (1 + cos(𝜃))/2,

see Fig. 1.3a. We consider beams traveling close the optical axis (paraxial approximation), such

that cos(𝜃) ≈ 1, (𝑥′ − 𝑥) ≪ 𝑧 and (𝑦′ − 𝑦) ≪ 𝑧; hence we can expand 𝑟 in the exponential as

𝑟 =
√
(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2 + 𝑧2 ≃ 𝑧 +

(𝑥′ − 𝑥)2

2𝑧
+
(𝑦′ − 𝑦)2

2𝑧
(1.52)

and 𝑧 ≈ 𝑟 in the denominator since the amplitude varies much slower than the phase. Evaluating

the simplified integral leads to

𝐸(𝑥′, 𝑦′, 𝑧) =
𝑘
2𝜋i

𝑒i𝑘𝑧

𝑧 ∬
∞

−∞
𝐸(𝑥, 𝑦, 0) 𝑒

i𝑘
2𝑧 ((𝑥

′−𝑥)2+(𝑦′−𝑦)2) d𝑥 d𝑦 (1.53)

= 𝐸(𝑥, 𝑦, 0) ∗ (
𝑘
2𝜋i

𝑒i𝑘𝑧

𝑧
𝑒

i𝑘
2𝑧 (𝑥

2+𝑦2)
) (1.54)

≡ 𝐸(𝑥, 𝑦, 0) ∗ ℎ𝑧(𝑥, 𝑦) (1.55)

=
𝑘
2𝜋i

𝑒i𝑘𝑧

𝑧
𝑒

i𝑘
2𝑧 (𝑥

′2+𝑦′2) 𝑥,𝑦(𝐸(𝑥, 𝑦, 0) 𝑒
i𝑘
2𝑧 (𝑥

2+𝑦2))(𝜈𝑥 , 𝜈𝑦) (1.56)
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Fig. 1.3: a) Spatial variables in the diffraction planes. b) A lens focuses incoming beams with the same
angle (or plane waves) onto a certain transverse position in the back focal plane. In the thin lens approx-
imation, the refraction happens only in the central plane, 𝑧 = 0.

where ∗ is the convolution operator and ℎ𝑧(𝑥, 𝑦) is the impulse response of free space. We find

that a free propagation along the axis by a distance 𝑧 is described by a convolution of the initial

field with ℎ𝑧(𝑥, 𝑦) and turns out to be a Fourier transform of the initial field multiplied with a

quadratic phase factor. The corresponding transformation variables here are the spatial frequen-

cies 𝜈𝑥 = 𝑘𝑥′/𝑧 and 𝜈𝑦 = 𝑘𝑦′/𝑧 in the detection plane.

We now discuss the effect of a plano-convex lens, i.e. a glass body with refractive index 𝑛L
in the beam path, see Fig. 1.3b. Its focal length 𝑓 is connected to its radius of curvature 𝑅
via lensmaker’s formula 𝑅 = 𝑓 (𝑛L − 1) [69]. A spherically curved surface on a substrate with

thickness 𝑑0 has the radially changing thickness

𝑑(𝑥, 𝑦) = 𝑑0 +
√
𝑅2 − (𝑥2 + 𝑦2)

𝑥,𝑦≪𝑓
≃ 𝑑′0 − (𝑥2 + 𝑦2)/2𝑓 (𝑛L − 1) (1.57)

where 𝑑′0 represents all constants. When traversing the lens, the wave acquires an additional

position dependent phase delay with respect to free propagation scaling quadratically with the

distance from the optical axis which can be written as a multiplicative transfer function

𝑇L(𝑥, 𝑦) = 𝑒−i𝑘𝑑
′
0 𝑒i𝑘𝑑(𝑥,𝑦)(𝑛L−1) = 𝑒−i𝑘(𝑥

2+𝑦2)/2𝑓 . (1.58)

Now consider the field to be located in the back focal plane of a lens, 𝑧 = −𝑓 . After propagating

a distance Δ𝑧 = 𝑓 it traverses the lens and propagates for another Δ𝑧 = 𝑓 until the back focal

plane of the lens where the electric field is then given by

𝐸(𝑥′, 𝑦′, 𝑓 ) = ((𝐸(𝑥, 𝑦, −𝑓 ) ∗ ℎ𝑓 (𝑥, 𝑦)) × 𝑇L(𝑥, 𝑦)) ∗ ℎ𝑓 (𝑥, 𝑦) (1.59)

=
𝑘
2𝜋i

𝑒2i𝑘𝑓

𝑓 (𝑥,𝑦𝐸(𝑥, 𝑦, −𝑓 ))(𝜈𝑥 , 𝜈𝑦) (1.60)

which, up to a propagation prefactor, is an exact spatial Fourier transform of the electric field

distribution in the opposite focal plane. An oblique plane wave traveling at angles (𝜃𝑥 , 𝜃𝑦) to the

optical axis thus transforms like

𝐸(𝑥, 𝑦) = 𝐸0 exp (i𝑘𝑥 sin(𝜃𝑥) + i𝑘𝑦 sin(𝜃𝑦)) ≃ 𝐸0 exp (i𝑘(𝜃𝑥𝑥 + 𝜃𝑦𝑦)) (1.61)

≡ 𝐸0 exp(i𝑘𝑥𝑥 + i𝑘𝑦𝑦) (1.62)

𝑥,𝑦(𝐸(𝑥, 𝑦))(𝜈𝑥 , 𝜈𝑦) = 𝐸0 𝛿(𝜈𝑥 − 𝑘𝑥) 𝛿(𝜈𝑦 − 𝑘𝑦) (1.63)
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where 𝛿 is the delta distribution. From the screen position 𝑥′ one can then infer the propagation

angle before the lens via the relation

𝑥′ ≃ 𝜃𝑥𝑓 . (1.64)

Every light field can be decomposed into a superposition of plane waves at different propaga-

tion angles via a Fourier analysis, hence one can from the signal in the detection plane infer the

occupation of transverse momentum states or, analogously, the angular photon distribution. Al-

though the dispersion relation in the employed microcavity results in a transverse wave vector

𝑘𝑥 ≈ 𝑘𝑧 tan(𝜃) (see sec. 2.3.3), both results are equivalent for small angles.

We find that with a lens we can obtain the Fourier transform of a transverse electric field

distribution 𝐸(𝑥, 𝑦) which simultaneously yields the transverse momentum distribution required

for the phase space density measurements in chapter 3.





C H A P T E R 2

Photons in a Dye-Filled Optical Microcavity

The experimental centerpiece used in the present thesis is a dye-filled optical microcavity which

hosts the two-dimensional photon gas. For paraxial beams, the high-finesse resonator transforms

the density of states from a continuum to a finite set of stationary wave functions. The occupation

of those modes with photons can be described statistically when photon reabsorption in the

enclosed dye medium occurs on a timescale shorter than the storage time.

The thermalization mediator, the fluorophore rhodamine 6G, is introduced regarding its elec-

tronic level structure and how this heat bath can imprint a temperature onto the photon gas.

The photon dispersion relation inside an optical resonator becomes equivalent to that of a mas-

sive particle; the eigenmodes are derived for various trap geometries and their implications for

the statistical physics are discussed. Finally, a rate equation model is presented where the light-

matter interaction is modelled via a cascade of discrete absorption, emission, pump and loss

processes.

2.1 Dye: Rhodamine 6G

As known from black bodies, repeated absorption and emission of photons in fluorescent walls

can lead to a thermal spectral distribution of the light field if the wall oscillators themselves are in

thermal equilibrium (cf. sec. 1.1.2), i.e. their internal state occupations scale with a Boltzmann-

factor (1.5). The medium then imprints its spectral temperature 𝑇spec, which in an ideal system

equals the thermodynamic temperature, onto the light field. A related procedure can occur via

fluorescent coupling of two electronic levels that have a thermally occupied substructure, which

allows for a freely tunable chemical potential. Here we will discuss relevant properties of the

fluorophore rhodamine 6G (in the following referred to as "dye"), which is employed in this

thesis work. Similar properties hold true for a large group of organic dyes [70].

2.1.1 Electronic Structure and Spectra

For experiments based on repeated absorption and emission of photons in a medium, the key

property is the relation of the corresponding transition rates. The molecular formula of rho-

damine 6G reads C29H31N2O3Cl which accounts for 65 atoms per molecule [71]. The complex in-

teraction of individual constituents causes the level structure and hence the absorption and emis-

sion spectra of such molecules to significantly differ from single atoms or even simple molecules

such as H2. Figure 2.1a shows the electronic states and the transition mechanisms between them

in a Jablonski diagram. In the here shown simplified picture, the electronic properties of a dye

molecule can be described as a spectrally broadened two-level system. The ground state is a spin

singlet state with angular momentum of 0 (𝑆0); excitation mainly happens via a dipole transition

of a single electron to the 𝑆1 level. The broadening of both states is a consequence of rotational
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Fig. 2.1: Rhodamine 6G. a) Simplified Jablonski diagram. Various processes lead to transitions of elec-
trons between the singlet (S) and triplet (T) state(s). Higher levels like S2 or T2 are not shown. Shaded
curves on the left indicate a Boltzmann-like distribution of the rovibrational sublevels. b) Absorption 𝛼(𝜆)
and fluorescence 𝑓 (𝜆) spectra of rhodamine 6G as a function of the optical wavelength 𝜆 in arbitrary lin-
ear units. Typical pump laser wavelength 𝜆p, cavity cutoff wavelength (e.g. 𝜆𝑐 = 587 nm) and zero phonon
line 𝜆ZPL are shown. The small subspectrum around 550 nm indicates a typical cavity emission spectrum
for comparison. c) Spectral temperature of rhodamine 6G calculated from spectra in b).

and vibrational ("rovibronic") degrees of freedom inside the molecule. Their excitation ener-

gies form a quasi continuous substructure in each electronic state, which are occupied following

Boltzmann statistics. Consequently, the transition energy is not a homogeneously broadened

narrow spectral line but instead one observes an absorption spectrum 𝛼(𝜆) ranging over about

100 nm as shown in Fig. 2.1b. Accordingly, when the electron spontaneously decays back to 𝑆0,
the emitted fluorescence shows a broad spectral distribution 𝑓 (𝜆) as attributed to the many de-

cay channels. Due to the symmetry of the internal density of states, 𝛼(𝜆) and 𝑓 (𝜆) are to good

approximation their corresponding mirror image around the wavelength 𝜆ZPL given by the zero-

phonon line, which denotes the transition wavelength between the lowest sublevel of 𝑆0 and 𝑆1
(black bars).

The Boltzmann-distributed occupation of the rovibronic substructure introduces thermody-

namics to the discussion. Upon excitation of the dye by a monochromatic source with a photon

energy differing from the zero-phonon line, the resulting sublevel occupation in the 𝑆1 strongly

differs from a thermal distribution. However, via internal conversion processes, excess energy

is dissipated and/or energy deficits are compensates for via the thermal energy of the medium

on the 1 ps timescale. This is much faster than spontaneous emission processes in this system,

which in the case of rhodamine 6G dissolved in methanol have a time constant of
1

[72–74]

𝜏spont,R6G = 4.0(1) ns ≈ 1/250MHz . (2.1)

The emission spectrum is hence independent of the initially exciting photon since the sublevels

equilibrate fast enough to prepare quasi constant fluorescence conditions prior to spontaneous

photon emission ("Kasha’s rule" [75]).

2.1.2 Spectral Temperature

The sublevel occupation of the angular momentum states is assumed to be Boltzmann-like af-

ter sufficiently many internal conversion processes. Absorbance 𝛼(𝜔) and spectral fluorescence

1
The given uncertainty is an estimated scattering of published values. The actual lifetime always depends on external

parameters such as solvent, molarity or temperature and is eventually biased by corresponding measurement

resolution. Measurements in ref. [72] suggest that the here used solvent ethylene glycol and placement of the dye

in a high-finesse resonator result in a slightly shorter spontaneous lifetime of around 3.70(3) ns. However, the

above given value is used in further studies for consistency reasons as the impact is rather minor.
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energy density 𝑓 (𝜔) in free space are then connected via the Boltzmann factor

𝑓 (𝜔)
𝛼(𝜔)

∝ 𝜔3 exp(−
ℏ(𝜔 − 𝜔ZPL)

𝑘B𝑇 ) (2.2)

which is the Kennard-Stepanov or McCumber relation [76–81]. The spectral properties of every

fluorophore deviate from this idealized assumption, similar to that no material has the properties

of an ideal black body. As a figure of merrit one defines a spectral temperature as

𝑇spec(𝜔) =
ℏ
𝑘B [

𝜕
𝜕𝜔

log(
𝛼(𝜔)
𝑓 (𝜔)

𝜔3
)]

−1

(2.3)

where 𝛼(𝜔) and 𝑓 (𝜔) are given in arbitrary dimensionless units as any prefactor will vanish by

the derivative of the logarithm [82, 83]. A photon gas coupled to the given medium will then

acquire a spectral distribution determined by 𝑇spec, see sec. 2.5. The spectral temperature of rho-

damine 6G, calculated from the spectra, is shown in Fig. 2.1c. In the experimentally relevant

range of 550 nm to 600 nm one finds a roughly uniform spectral temperature close to the ambi-

ent temperature 𝑇 ≈ 300 K. Therefore, if not stated otherwise, both are treated equally in the

following.

2.1.3 Quantum Yield and Photobleaching

So far, only a closed photon absorption and emission cycle has been discussed. However, experi-

mentally one finds that an electronically excited electron emits on average less than one photon

per decay back to 𝑆0. As shown in Fig. 2.1a there are additional energy levels and transition

processes inherent to most fluorophores which enable closed transition loops that do not only

include photon emission. For our experiment, where rhodamine 6G is solved in ethylene glycol

one finds for the quantum yield, which represents the average number of emitted photons per

absorbed photons, that

𝜂R6G ≈ 95% (2.4)

is close to unity [84, 85]. The radiationless 5 % are usually dissipated as heat into the dye solution

via various processes. A prominent example is the non-radiative decay from 𝑆1 to 𝑆0 as it can

happen by collisions with fluorescence quenchers (e.g. oxygen) diffusing in the solvent [86]. An-

other process is the transition to a spin triplet state (e.g. 𝑆1 to 𝑇1) which is dipole forbidden but

can nevertheless happen due to spin orbit coupling of the angular momenta of heavier nuclei in

the molecule to the excited electron with a typical probability of order 𝑃isc ≈ 10−6 per absorbed

photon. Since the transition back to 𝑆0 is also dipole forbidden the lifetime of this state is usually

in the millisecond regime. Although the final decay into the ground state would be accompa-

nied by red shifted photon emission, the decay is usually completely quenched by the above

mentioned processes due to the long lifetime and hence phosphorescence is suppressed. Due to

the vanishing probability of this process, its effect on the numeric value of the quantum yield

seems negligible, but is nevertheless highly relevant in a different matter: during the lifetime

of a triplet state, other molecules may undergo several absorption and fluorescence cycles and

ultimately also end up in the 𝑇1 state when permanently being exposed to incident light. Hence,

a significant fraction of dye molecules appear invisible which effectively reduces the number of

absorbing dye molecules. Another issue is that dye molecules can be permanently desactivated

via photochemical reactions while being electronically excited [87]. For instance they can form

irreversible covalent modifications induced by environmental components, also caused by e.g.

oxygen. The consequence is that during operation of the experiment, the dye solution bleaches

over time scaling with the number of absorbed photons.
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Formally, all non-radiative decay channels can be summarized to occur at a rate Γnr, which

competes with the fluorescence rate Γr. The quantum yield 𝜂 can then be expressed as the ratio

of the fluorescence rate over the total decay rate via

Γ21 = Γr + Γnr = 1/𝜏spont (2.5)

𝜂 =
Γr

Γr + Γnr

. (2.6)

For the studies presented in chapter 3 we will formally treat fluorescence of dye molecules into

modes not confined by the cavity as a quenching process.

2.2 High-Finesse Optical Microcavity

To realize sufficiently long interaction times of the photon gas with the dye medium, both are

confined inside a high finesse resonator. It consists of two opposing mirrors, usually separated

by a distance of around one micrometer (hence often referred to as "microcavity") as illustrated

in Fig. 1.1a. At least one of the mirror surfaces needs to be curved or show some other type

of concave topography to trap photons as known from the stability criterion of laser resonators

[88], see also sec. 2.3. With a maximum reflectance of order 𝑅 ≈ 99.998 % the cavity finesse

reaches values of up to  = 𝜋
√
𝑅/(1 − 𝑅) ≈ 150 000. To give a more intuitive quantity, a photon

will undergo on average up to 𝑁̄
round

= /2𝜋 ≈ 25 000 round trips before it leaves the resonator

via mirror transmission. Due to the short cavity length, the maximum storage time is of order

𝜏cav = 𝑁̄
round

2𝐷0

𝑐
(2.7)

=

2𝜋

7𝜆c
2𝑐

(2.8)

≈ 250 ps (2.9)

where 𝐷0 is the mirror separation distance, 𝑐 = 𝑐0/𝑛̃ the speed of light in a medium with

refractive index 𝑛̃ and 𝜆c ≈ 580 nm is a typical cutoff wavelength in the experiment. Those

short storage times are in competition with the usually even faster interactions with the present

dye molecules. In chapter 3 the dye concentration is systematically varied to probe the effect

of reabsorption time versus cavity storage time. The mirror spacing of 𝐷0 = 𝑞𝜆c/2𝑛̃ ≈ 1.5 µm
causes a free spectral range of

Δ𝜈FSR = 𝑐/2𝐷0 = 𝑐/7𝜆c (2.10)

≈ 70THz (2.11)

≫ 𝑘B𝑇/2𝜋ℏ ≈ 6THz (2.12)

Δ𝜆FSR(580 nm) ≈ 80 nm (2.13)

which is sufficient to push neighboring longitudinal modes out of the dye emission bandwidth

(see Fig. 2.1) and prevents thermal excitation, implicating two dimensional behavior as the lon-

gitudinal degree of freedom is frozen out.

2.2.1 Mirror Reflection Characteristics

Aside from the peak reflectance of the cavity mirrors, its wavelength and angular dependence

is of great significance for the photon gas trapping as highly excited resonator modes propagate

at steep angles along the optical axis, see sec. 2.3.3. High reflection values require the use of

dielectric mirrors instead of conventional metallic coatings such as silver or aluminum. Here,
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Fig. 2.2: Cavity mirror properties. a) Transmission profiles for various mirror types under normal in-
cidence in ethylene glycol (𝑛̃ ≈ 1.44), calculated with the formalism in sec. A.1. Gray dashed line at
a transmission of 10−5 roughly indicates the absorption/scattering limit of the coating. b) Calculated
mirror transmission profile for different incidence angles of the CRD550 mirror in ethylene glycol. Exper-
imentally relevant region is marked as shaded area. The white circle marks the experimental pump beam
parameters (𝜆p = 532 nm, 𝜃p ≈ 42◦). c) Penetration of the optical field into the layered mirror medium.
Squared field amplitude |𝐸(𝑧)|2 is mirrored around the zero line for better visibility. Alternating layers are
shown as white/gray.

alternating media are layered on top of each other such that constructive interference of many

partial Fresnel reflections results in a total reflection coefficient close to unity as compared to a

single strong Fresnel reflection on a metal surface, which usually does not significantly exceed

𝑅̃ ≈ 99 %. Bragg mirrors (layers with optical thickness 𝜆/4) with suited center wavelength can

often be ordered from stock supply whereas some applications require more complex coatings

that are typically designed in cooperation with a supplier. Despite the in principle arbitrary low

transmission of the dielectric coating (here going down to 𝑇 ≈ 10−6), the reflectance for visible

light is usually capped around 99.9985 % in air due to residual scattering and absorption losses

in the used materials. However, high reflection often goes along with strong dispersion as seen

in Fig. 2.2a where three calculated transmission profiles of the used mirror coatings are shown,

all for a surrounding ethylene glycol medium with refractive index 𝑛̃(𝜆 = 580 nm) ≈ 1.44. The

coating labels like "CRD550" usually contain the supplier name (here: Cavity Ringdown Optics)

and in this case the center wavelength of the stop band or in the case of "LO2019" it stands for

a coating run by the "Laseroptik GmbH" company ordered in 2019. An extensive description of

the involved calculations can be found in sec. A.1.1. The reflection bandwidth of the mirrors is

around 100 nm and comparable to the dye spectra. Fig. 2.2b shows the full angular dependence

of the transmission profile. The stop band shifts to shorter wavelengths with increasing angle

of incidence 𝜃. At 𝜃 > 20◦ the mirror reflectivity is already significantly lower than the 𝜃 = 0◦
regime and for 𝜃 > 45◦ they have almost completely lost their reflectivity in the experimentally

relevant spectral region indicated by a white circle in the figure. This behavior depends on the

involved materials and the polarization of the light. Conversely, this property makes it possible

to irradiate the dye medium inside the resonator ("pump") under high angles with only small

minor reflection losses also marked in the figure.

2.2.2 Field Distribution on the optical Axis

The reflection of light on a dielectric layer stack does not occur directly at the stack surface but

the electromagnetic field penetrates the medium. For the here used short cavity lengths of a

few wavelengths this effect turns out to be quite significant. The effective number of half waves

inside the dye medium was experimentally determined to be 𝑞 − 𝑞0 = 7 − 4.68(17) = 2.32(17)
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via a pump light absorption measurement [82], where 𝑞 = 7 is typically determined from the

free spectral range of the resonator. A comparable value was obtained for the "CRD550" mirrors,

i.e. not the ones used in the reference. The actual electric field distribution can be obtained by

a numerical simulation (explained in sec. A.1) where the mirror separation was set to three half

waves as shown in Fig. 2.2c. For wavelengths inside the stop band of the coating, the wave nodes

are still roughly located on the mechanical mirror surface. From the energy density  ∝ 𝑛̃|𝐸(𝑧)|2
one can compare the likelihood of finding a photon inside one mirror compared to that of a single

half wave in the dye medium

(∫
mirror

𝑛̃(𝑧) |𝐸(𝑧)|2d𝑧)/(∫
half wave

𝑛̃(𝑧) |𝐸(𝑧)|2d𝑧) ≈ 65% (2.14)

where the squared field amplitude has to be weighted by the local refractive index 𝑛̃. The results

suggest that the time spent inside the mirror material would correspond to only 1.3 half waves

inside the dye medium. For the presented thesis this is relevant as the calculated photon absorp-

tion rates inside the medium usually have to be scaled down by a reasonable factor with respect

to the raw absorption time as a photon spends only part of its time inside the dye medium. How-

ever, experimentally one nevertheless observes agreement of the resonator eigenmodes with 𝑞
inferred from the free spectral range (see sec. 4.4). This discrepancy can not be explained with

this calculation, which mainly serves the purpose of giving an exemplary intensity distribution

inside the cavity.

2.3 Eigenmodes of a Custom Shaped Optical Microcavity

In order to describe the time evolution of an electromagnetic field 𝒂(𝒓, 𝑡) in an optical resonator

knowledge about the cavity eigenmodes is critical as they in many cases allow for an entire

description of photon dynamics without the need of complicated wave mechanical computations.

If the basis states are chosen as energy eigenstates, they allow for straightforward calculations

of thermodynamic parameters. The solutions for a resonator with spherically curved mirrors are

well known from laser resonators, but a general formalism shall be introduced here as required

for the works with experimental box-like potentials, presented in chapter 4. For this purpose

we look for stationary solutions of a field in the employed optical resonator, hence we separate

the time dependence of a generic ansatz 𝒂(𝒓, 𝑡) = 𝒂(𝒓) 𝑒−i𝜔𝑡 from its spatial part. Furthermore,

we assume that our solution is a carrier wave traveling along the optical axis 𝑧 which is slightly

modulated by a complex envelope, hence we separate once more 𝒂(𝒓) = 𝑨(𝒓) 𝑒i|𝒌|𝑧 . In ray optics,

this is equivalent to a small angle 𝜃 between wave vector 𝒌 and the 𝑧-axis. By inserting 𝒂(𝒓) into

Maxwell’s equations one finds that 𝑨(𝒓) has to fulfill the paraxial Helmholtz equation

2i|𝒌| 𝜕𝑧𝑨(𝒓) = −𝛁2
𝑇𝑨(𝒓) (2.15)

where 𝛁2
𝑇 = 𝜕2𝑥 + 𝜕2𝑦 is the transverse part of the Laplacian [69]. One can now make the paraxial

transformation where time is given by the position on the optical axis, 𝑧 = 𝑐𝑡, restrict the spatial

coordinates to 𝒓 = (𝑥, 𝑦) and finally replace the photon energy with the relativistic rest mass

relation 𝐸 = ℏ𝜔 = 𝑐ℏ|𝒌| = 𝑚ph𝑐2. The substitutions reveal that the transverse part of the paraxial

Helmholtz equation is formally equivalent to the Schrödinger equation of a free massive particle

in two dimensions [89, 90] when the field vector 𝑨 is replaced by the wave function 𝜓:

iℏ 𝜕𝑡𝜓(𝒓, 𝑡) = −
ℏ2

2𝑚ph
𝛁2
𝑇𝜓(𝒓, 𝑡) . (2.16)

So far this equation describes the dispersion of a wave packet in the absence of a confining

potential, 𝑉 (𝒓) = 0. Confined modes are experimentally realized by concave-shaped resonator

mirrors which, as explained in the following, act as an attractive potential for paraxial rays.
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We introduce the cavity as depicted in Fig. 2.3 consisting of one flat mirror and an opposing

one with surface profile Δ𝐷(𝑥) at transverse position 𝑥 , hence the mirrors are separated by a

total distance of 𝐷0−Δ𝐷(𝑥). Without loss of generality the problem is reduced to one transverse

dimension 𝑥 . Consider a wave 𝜓(𝑥, 𝑧 = 0) propagating from the left side towards the right

mirror. It acquires a phase envelope during its free propagation that can be expressed by the

time evolution operator 𝑈̂ (𝑧) derived by formal integration of (2.15) or (2.16). On the mirror

surface the wave acquires an additional phase due to the slightly differing path lengths Δ𝜑 =
𝑘Δ𝐷(𝑥), represented by the operator Φ̂(𝑥). The process repeats on the return path where finally,

as required for a standing wave, the wave 𝜓(𝑥, 2𝐷0) has to reproduce its initial configuration.

After integration, the evolution operators look like

x

z

D0

ψ(0) Û ψ(D0)

ψ’(D0)ψ(2D0)

ΔD(x)

Φ

Fig. 2.3: Custom shaped cavity.

𝑈̂ (𝑧) = exp(−iℏ
𝑧

2𝑚ph𝑐
𝜕2𝑥) (2.17)

Φ̂(𝑥) = exp(i Δ𝜑(𝑥)) (2.18)

= exp(−i𝑘𝑧 Δ𝐷(𝑥)) (2.19)

𝜓(𝑥, 2𝐷0) = 𝑈̂ (𝐷0) Φ̂2(𝑥) 𝑈̂ (𝐷0) 𝜓(𝑥, 0) (2.20)

!= 𝜓(𝑥, 0) (2.21)

We see that the mirror surface has to compensate the free phase acquired during free propagation

in order to obtain a stationary wave pattern. By splitting of 𝑈̂ into exp(i𝑥) = cos(𝑥) + i sin(𝑥),
the imprinted phase of the final state with respect to the unperturbed one can be obtained via

Δ𝜑 = arg(𝜓) = arctan(Im(𝜓) /Re(𝜓)) as [91]

Δ𝜑(𝑥) = arctan(
sin(𝑑 𝜕2𝑥) 𝜓(𝑥, 0)
cos(𝑑 𝜕2𝑥) 𝜓(𝑥, 0))

with 𝑑 ≡
ℏ𝐷0

2𝑚ph𝑐
. (2.22)

For paraxial beams, the transverse phase changes much slower compared to longitudinal propa-

gation, hence one can expand the expression for small 𝑑𝜕2𝑥 in first order which yields

Δ𝜑(𝑥) ≃ 𝑑
𝜕2𝑥𝜓(𝑥, 𝐷0)
𝜓(𝑥, 𝐷0)

. (2.23)

From the stationary single particle Schrödinger equation (𝜕𝑡𝜓(𝑥, 𝐷0)
!= 0) we know that the effect

of a potential 𝑉 (𝑥) onto the wave function has the form

𝜕2𝑥𝜓(𝑥, 𝑧)
𝜓(𝑥, 𝑧)

=
2𝑚ph

ℏ2
𝑉 (𝑥) (2.24)

which we can plug into (2.23) and after a couple of already mentioned substitutions we arrive at

𝑉 (𝑥) = 𝑚ph𝑐2
Δ𝐷(𝑥)
𝐷0

. (2.25)

The full transverse equation of motion with 𝒓 = (𝑥, 𝑦) then reads

iℏ 𝜕𝑡𝜓(𝒓, 𝑡) = (−
ℏ2

2𝑚ph
𝛁2
𝑇 + 𝑚ph𝑐2

Δ𝐷(𝒓)
𝐷0 )𝜓(𝒓, 𝑡) . (2.26)

The eigenstates of an arbitrary resonator are the stationary solutions of (2.26). The formal equiv-

alence between the paraxial Helmholtz equation and the Schrödinger equation implies that the

transverse motion of photons inside a concave resonator is equivalent to the one of massive

particles in a potential, here determined by the mirror surface topography. In some cases a cor-

responding solution can be obtained analytically (sec. 2.3.1) while real world situations often

require numerical solutions.
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Fig. 2.4: Sketch of the two resonator geometries used in this thesis with exemplary spatial and momen-
tum eigenfunctions |𝜓|2 and |𝜙(𝑘)|2. a) Resonator consisting of two spherically curved mirrors separated
by a distance 𝐷0 on the optical axis. The probability densities are shown in arbitrary units. b) Resonator
consisting of a plane and a structured mirror. The surfaces are always parallel but the separation 𝐷(𝑥, 𝑦)
varies locally resulting in a box-shaped potential for the trapped light.

2.3.1 Analytic Examples: Harmonic and Box Potential

All measurements presented in this thesis work were carried out in either harmonic (spherically

curved mirrors) or box-like potentials (microstructured mirror surface, see sec. 4.1), as illustrated

in Fig. 2.4.

Harmonic Potential

If a resonator consists of two spherically curved mirrors with radii of curvature 𝑅̃1 and 𝑅̃2, they

can be reduced to an effective radius of curvature via 2/𝑅̃ = 1/𝑅̃1 + 1/𝑅̃2. The mirror separation

𝐷(𝑟) = 𝐷0 − (𝑅̃2 − 𝑟2)
1
2 is radially symmetric and close to the optical axis can be approximated

by a quadratic function. The potential thus has the form

𝑉 (𝑟) =
1
2
𝑚phΩ2𝑟2 where Ω =

𝑐√
𝐷0 𝑅̃/2

(2.27)

denotes the angular trapping frequency as in a harmonic oscillator potential. The solutions of

the Schrödinger equation then read

𝜓𝑛(𝑥) =
1√√

𝜋 𝑥0 2𝑛𝑛!
𝐻𝑛(

𝑥
𝑥0)

exp(−
1
2
𝑥2

𝑥20 )
with 𝑛 = 1, 2, 3, … (2.28)

𝜓𝑛𝑥 ,𝑛𝑦 (𝑥, 𝑦) = 𝜓𝑛𝑥 (𝑥) ⋅ 𝜓𝑛𝑦 (𝑦) (2.29)

where 𝐻𝑛(𝑥) are Hermite polynomials and 𝑥0 =
√
ℏ/𝑚phΩ is the harmonic oscillator length [92].

The two-dimensional wave functions 𝜓(𝑥, 𝑦) correspond to equally spaced energy eigenvalues

𝐸𝑛𝑥 ,𝑛𝑦 = 𝐸𝑛𝑥 + 𝐸𝑛𝑦 = ℏΩ(𝑛𝑥 + 𝑛𝑦 + 1) with 𝑛𝑥 , 𝑛𝑦 = 0, 1, 2, … (2.30)

The degeneracy (number of states with same Energy 𝐸) in the two dimensional case is 𝑔(𝐸) =
𝐸/ℏΩ + 1 due to the increasing possible combinations of 𝑛𝑥 and 𝑛𝑦 yielding the same energy.
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The Hamiltonian is a symmetric function of 𝑥 and 𝑝, hence the momentum space eigenfunc-

tions are of identical shape

𝜙𝑛(𝑘) =
(−i)𝑛√√
𝜋 𝑘0 2𝑛𝑛!

𝐻𝑛(
𝑘
𝑘0)

exp(−
1
2
𝑘2

𝑘20)
(2.31)

with 𝑘0 =
√
𝑚phΩ/ℏ = 1/𝑥0, see Fig. 2.4a.

Box Potential

Next we consider a rectangular 2D box potential with side lengths 𝐿𝑥,𝑦 , infinitely high sharp edge

walls with center at 𝑥 = 𝑦 = 0 where the wave factor 𝑘𝑥 , 𝑘𝑦 must obey the boundary condition

𝑘𝑥,𝑦 = 𝑛𝑥,𝑦 ⋅ 𝜋/𝐿𝑥,𝑦 . One finds

𝜓𝑛(𝑥) =
√

2
𝐿𝑥

sin (𝑘𝑥𝑥 +
𝑛𝜋
2 ) with 𝑛 = 1, 2, 3, … (2.32)

𝜓𝑛𝑥 ,𝑛𝑦 (𝑥, 𝑦) =
2√
𝐿𝑥𝐿𝑦

sin (𝑘𝑥𝑥 +
𝑛𝑥𝜋
2 ) sin (𝑘𝑦𝑦 +

𝑛𝑦𝜋
2 ) (2.33)

where the phase term 𝑛𝜋/2 shifts the wave nodes onto the end points of the box. Again, since 𝑥
and 𝑦 dimension are independent of each other, the two dimensional wave function is a simple

product of the 1D solutions. The eigenenergies

𝐸𝑛𝑥 ,𝑛𝑦 =
ℏ2|𝒌|2

2𝑚ph
=
ℏ2𝜋2

2𝑚ph (
𝑛2𝑥
𝐿2𝑥

+
𝑛2𝑦
𝐿2𝑦)

with 𝑛𝑥,𝑦 = 1, 2, 3, … (2.34)

scale quadratically with the mode numbers, which ultimately leads to an energy independent

density of states in two dimensions, see sec. 2.4.2. Although the wave vector 𝑘𝑥 in (2.32) has fixed

values 𝜓𝑛(𝑥) is not an eigenstate of the momentum operator 𝑝̂ = −iℏ𝜕𝑥 , hence the momentum

space wave functions are obtained via Fourier transform  and are expressed by

𝜙𝑛(𝑘𝑥) = (𝑥𝜓𝑛(𝑥))(𝑘𝑥) =
1√
2𝜋 ∫

∞

−∞
𝜓𝑛(𝑥) 𝑒−i𝑘𝑥𝑥d𝑥 (2.35)

= i𝑛+1
√
4𝑛2𝜋𝐿𝑥

sin ((𝑘𝑥𝐿𝑥 + 𝑛𝜋)/2)
𝑘2𝑥𝐿2𝑥 − 𝜋2𝑛2

(2.36)

which for 𝑛 > 1 resemble a broadened peak around 𝑘𝑥 = ±𝑛𝜋/𝐿 after taking the absolute square,

see Fig. 2.4b. The width is an artifact of the finite box size; the peaks becomes sharply defined

for 𝐿𝑥 → ∞.

2.3.2 Numerically Solving the Schrödinger Equation

In many potential landscapes, analytical solutions of the Schrödinger equation can not be ob-

tained. Those wave functions have to be computed numerically, see for example sec. 4.1.3 for an

application. In our case, the potential 𝑉 (𝑥, 𝑦) is typically known from mirror surface profiles. In

one dimension 𝑥 , 𝑉 (𝑥) is given by an 𝑁 -component vector

𝑉 (𝑥) = (𝑉 (𝑥1), 𝑉 (𝑥2), … , 𝑉 (𝑥𝑁 ))
T

(2.37)

due to the finite, here equidistant, sampling of computers or measurement devices e.g. image

pixels. As one is looking for a vector-like solution of 𝜓 = (𝜓𝑥1 , 𝜓𝑥2 , … , 𝜓𝑥𝑁 )T the Hamilton op-

erator ̂ = 𝑇̂ + 𝑉̂ is a 𝑁 × 𝑁 matrix. Since the potential is already given in the correct basis,
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it transforms to an operator as a diagonal matrix, 𝑉̂ = diag(𝑉 (𝑥)). The kinetic energy operator

𝑇̂ = 𝑝̂2/2𝑚 contains a second derivative in space from the momentum operator 𝑝̂ = −iℏ𝜕𝑥 which

translates into a numeric operation known as the Laplace filter [93], that is (in one dimension)

a convolution of the input vector with the kernel (1, −2, 1)T. The corresponding kinetic energy

operator then reads

𝑇̂𝑚𝑛 = −
ℏ2

2𝑚 (
𝑁

|𝑥N − 𝑥1|)

2

(𝛿𝑚+1,𝑛 − 2𝛿𝑚,𝑛 + 𝛿𝑚−1,𝑛) (2.38)

where 𝛿𝑚𝑛 is the Kronecker delta. The spatial sampling frequency 𝑁/|𝑥N−𝑥1| of 𝑉 (𝑥) determines

the maximum 𝑘-resolution of this method. The eigenfunctions inside the investigated potential

are then given by the eigenvectors of ̂, whereas the eigenvalues are the associated eigenener-

gies.

This algorithm is already implemented in a package for the Python programming language [94]

which is here used for numerical solving. The formalism can be upscaled to the here relevant

two dimensional problems, but the computation time scales quadratically with the sample count

𝑁 inefficient. The potential landscapes investigated in this thesis possess sufficient symmetry

to separate and solve the problem in each individual dimension, hence the full wave function is

then constructed via 𝜓(𝑥, 𝑦) = 𝜓(𝑥)𝜓(𝑦) with corresponding eigenenergy 𝐸𝑥𝑦 = 𝐸𝑥 + 𝐸𝑦 .

2.3.3 Dispersion Relation

Although the wave functions already hold the entire phase space information of a particle in

that mode, it is often useful to approach the propagation characteristics in a ray-like picture.

The photon wave vector of a paraxial light ray 𝒌 can be decomposed into a longitudinal 𝑘𝑧 and

a transverse component 𝑘2𝑟 = 𝑘2𝑥 + 𝑘2𝑦 with respect to the optical axis 𝑧 as illustrated in Fig. 2.4.

The corresponding dispersion relation in a medium with refractive index 𝑛̃ (and hence 𝑐 = 𝑐0/𝑛̃)

then reads

𝐸(𝒌) = 𝑐ℏ |𝒌| = ℏ𝑐
√
𝑘2𝑧 + 𝑘2𝑟 (2.39)

≃ 𝑐ℏ(𝑘𝑧 + 𝑘2𝑟 /2𝑘𝑧) . (2.40)

Regardless of the field penetration into the dielectric cavity mirror (see sec. 2.2.2), the 𝑧-dimension

behaves box-like. The boundary conditions imprinted onto the field by the cavity mirrors are

wave nodes located on the mirror surface, see Fig 2.2.

𝑘𝑧
!= 𝑞 ⋅

𝜋
𝐷0

with 𝑞 = 1, 2, 3, … (2.41)

Due to the short cavity length and the large wavelength spacing of neighboring modes of about

80 nm we consider a fixed longitudinal wave number 𝑞 and hence a fixed 𝑘𝑧 as only one longi-

tudinal mode with its transverse substructure reasonably overlaps with dye spectra and mirror

reflection band (Fig. 1.1). The resulting offset of 𝑐ℏ𝑘𝑧 = 𝑚ph𝑐2 serves as a low energy cutoff

inside a resonator leaving the excitation energy of the eigenmodes entirely to be stored inside

the transverse momentum components. Eigenstates with energy 𝐸𝑖 are not necessarily eigen-

functions of the momentum operator, hence the wave functions yield a probability distribution

of momenta. Nevertheless, the root mean square ∫ ∞
−∞ 𝑘

2
𝑟 |𝜙(𝑘𝑟)|2 d𝑘𝑟 reveals the average (squared)

transverse vector of the modes as 𝑘̄2𝑟,𝑖 = 2𝑚ph𝐸𝑖/ℏ2 = 2𝑚ph(𝑛𝑥 +𝑛𝑦)Ω/ℏ for the harmonic oscilla-

tor or ℏ𝑘2𝑟,𝑖 = (𝑛2𝑥 + 𝑛𝑦)2𝜋2/𝐿2 for a box potential, which fulfills the classical energy-momentum

relation. As shown in Fig. 2.4, the momentum wave function in a box strongly accumulates

around the ±ℏ(𝑘𝑥 , 𝑘𝑦) peaks, while there are still large contributions in the low-𝑘 part in the har-

monic oscillator. Physically this can be interpreted as such that a particle in a box propagates at

constant speed and bouncing against the walls flips its direction. In the harmonic case, potential



2.4 Statistical Physics of the Photon Gas 29

and kinetic energy is periodically interchanged and hence there are non-negligible contributions

for all momentum amplitudes ℏ𝑘𝑖 <
√
2𝑚ph𝐸𝑖.

The propagation angle 𝜃 of a light ray with respect to the optical axis is obtained via

𝜃 = arctan (𝑘𝑟/𝑘𝑧) . (2.42)

The (maximum) divergence angle of a mode is approximately given by the ratio of transverse

and longitudinal momentum at the potential minimum where the entire eigenenergy is stored in

its kinetic component

𝜃𝑖 = arctan
(

√
2𝑚ph𝐸𝑖
ℏ𝑘𝑧 )

= arctan
(

√
2𝐸𝑖
𝑚ph𝑐2)

(2.43)

which can be used to probe the setup for its capability to properly image high order modes,

see for example sec. 3.4. However, refraction occurs at the interface between the dye, mirror

glass substrate and the surrounding air, which bends the light away from the optical axis and the

effective propagation angle increases by another factor of the dye medium refractive index 𝑛̃

𝜃𝑖,air = arcsin(𝑛̃ sin(𝜃𝑖)) (2.44)

≃ 𝑛̃𝜃𝑖 (2.45)

where the last step is valid for small 𝜃. The refractive index of the substrate does indeed not matter

here. Common objective lenses in our setups have a numerical aperture of NA = 0.42 and are

thus capable to detect divergence angles of up to 𝜃𝑖,air < arcsin(NA) ≈ 25◦ which corresponds

to transverse energies of about 3.5 𝑘B𝑇 or a wavelength range of Δ𝜆 ≈ 25 nm in our spectral

working regime. A higher NA can be achieved as described in sec. 3.4.

2.4 Statistical Physics of the Photon Gas

The system eigenstates and -energies allow for a quantitative description of the low temperature

behavior of the photon gas, especially regarding Bose-Einstein condensation (see sec. 1.1.1). In

the following, all eigenenergies are given relative to the system ground state energy 𝐸0 = 𝑚ph𝑐2.
In other words, we solely consider the transverse energies 𝐸𝑛𝑥𝑛𝑦 .

2.4.1 Harmonic Potential

The excited state energies in the two dimensional harmonic oscillator are

𝐸𝑛𝑥 ,𝑛𝑦 = ℏΩ(𝑛𝑥 + 𝑛𝑦) (2.46)

if one also absorbs the zero point energy of ℏΩ in the global energy offset. One finds that every

energy level is associated with 𝑔̄(𝐸) = 𝐸/ℏΩ + 1 eigenfunctions, which we identify with a de-

generacy that scales linear with energy. This scaling (𝛼 = 2, see sec. 1.1.1) enables Bose-Einstein

condensation in such a system [39]. We can calculate the critical particle number via (1.6) since

the trapping frequency here usually fulfills the condition ℏΩ ≪ 𝑘B𝑇 . At threshold we assume the

ground state occupation still of order 1 and neglect it in the total particle number. For 𝜇 = 0 we

get the critical particle number

𝑁c = 2∫
∞

0

𝐸/ℏΩ + 1
exp(𝐸/𝑘B𝑇 ) − 1

d𝐸 (2.47)

≈
𝜋2

3 (
𝑘B𝑇
ℏΩ )

2

(2.48)
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where a factor of 2 accounts for the polarization degeneracy of the photon gas and the +1 term

in the numerator was omitted since on average 𝐸/ℏΩ ≫ 1. The result is equivalent to a critical

temperature of

𝑇c =
√
3
𝜋
ℏΩ
𝑘B

√
𝑁, (2.49)

an expression, which is more commonly used in ultracold quantum gas experiments. In our case,

the phase transition is reached via introducing more particles to the system, which then raises

the critical temperature to room temperature. Beyond 𝑁 > 𝑁c, the total particle number is the

sum over the occupation of the saturated excited states and the ground state, which absorbs every

additional particle. For our trapping frequency Ω ≈ 2𝜋 × 40GHz caused by the mirror curvature

radius 𝑅̃ = 1m, we obtain a critical particle number of 𝑁c ≈ 82 000. The described behavior is

commonly observed in our system, see [63].

2.4.2 Box Potential

Since the measurements presented in chapter 4 are exclusively performed with unity aspect ratio

box potentials (𝐿 ≡ 𝐿𝑥 = 𝐿𝑦 ), the excitable energies (2.34) are given by

𝐸𝑛𝑥𝑛𝑦 =
𝜋2ℏ2

2𝑚𝐿2
(𝑛2𝑥 + 𝑛2𝑦) with 𝑛𝑥,𝑦 = 1, 2, … . (2.50)

Assuming boxes of sufficient size such that 𝜋2ℏ2/2𝑚𝐿2 ≪ 𝑘B𝑇 , the density of states is obtained

as the number of allowed eigenstates 𝑁 in the infinitesimal interval 𝐸 +d𝐸. Every state occupies

a 𝑘-space area of 𝐴𝑘 = (Δ𝑘)2 = 𝜋2/𝐿2, following from the spacing Δ𝑘 = 𝜋/𝐿 implied by the box

boundary conditions. As we exclusively use positive 𝑛𝑥 , 𝑛𝑦 , we integrate over only one quadrant

with area 𝐴 = 𝜋𝑘2/4. One gets

𝑔̄(𝐸) =
𝜕𝑁
𝜕𝐸

=
𝜕
𝜕𝐸

𝐴
𝐴𝑘

=
𝜕
𝜕𝐸

𝜋𝑘2/4
𝜋2/𝐿2

(2.51)

=
𝑚𝐿2

2𝜋ℏ2
=

1
𝑘B𝑇

𝑉
𝜆2th

= const. (2.52)

where in the last step, the energy-momentum relation 𝑘2 = 2𝑚𝐸/ℏ2 was inserted. We find the

degeneracy to be independent of the energy (𝛼 = 1, cf. sec. 1.1.1). We know from (1.6) that

condensation in the infinite system 𝐿 → ∞ should be suppressed at finite temperatures as the

critical particle number diverges, which would be equivalent to a vanishing trapping frequency

Ω in the harmonic oscillator. A comparison of the thermodynamic behavior of a harmonically

trapped gas and a finite size homogeneously trapped gas is shown in Fig. 2.5a. The saturation

behavior of the excited modes𝑁exc in a harmonic oscillator (Ω = 2𝜋×40GHz) and a box potential

(𝐿 = 100 µm) is visible upon increasing the total particle number 𝑁 . In the harmonic oscillator,

where the condition of criticality is robust in the thermodynamic limit 𝑁 , 𝑉 → ∞, one sees a

sharp saturation of the excited modes at the onset of condensation. In the box, however, the

saturation happens slowly without a discontinuity. This behavior already hints at the absence of

a phase transition in the thermodynamic limit, also due to the fact, that for 𝑁 , 𝑉 → ∞ the critical

particle number diverges and 𝑁exc never saturates.

However, the ratio of ground state and excited state particles can take arbitrary large values.

While thermal fluctuations destroy long-range order in the infinite system [95] one finds that

condensation in the finite system is possible when the coherence length 𝜉 exceeds the system

size [51, 96]. The condition 𝐿 = 𝜉 allows for to find an analytic expression for the critical particle

number 𝑁c. In the quantum degenerate limit, the largest contributions to the density profile and
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the coherence of the system stem from the energetically low-lying states with wave number 𝑘,

therefore one can expand the Bose-Einstein distribution 𝑛(𝒌) to first order

𝑛(𝒌) = [exp(
ℏ2|𝒌|2/2𝑚 − 𝜇0

𝑘B𝑇 ) − 1]

−1

(2.53)

≃ [
1
𝑘B𝑇 (

𝜋2ℏ2

2𝑚𝐿2
(𝑛2𝑥 + 𝑛2𝑦 − 2) − 𝜇)]

−1

(2.54)

≡
4𝜋
𝜆2th

1
|𝒌|2 + 𝑘2

c

(2.55)

with 𝑘c ≡ −
2𝑚
ℏ2
𝜇 −

2𝜋
𝐿2

(2.56)

where the −2 term in (2.54) is manually introduced to set an appropriate zero point energy. From

arguments like in sec. 1.2.1 we find the coherence length in the Bose gas via a Fourier transform

of the Lorentzian shaped 𝑛(𝒌) which yields an exponential decay:

𝑔(1)(𝑟) ∝ exp(−𝑘c𝑟) (2.57)

≡ exp(−𝑟/𝜉c) (2.58)

We now require the coherence length at criticality 𝜉c = 𝑘−1
c

to reach the system size 𝐿, which

yields an expression for the corresponding chemical potential 𝜇𝑐

𝜉c

!= 𝐿 (2.59)

𝜇c = −𝑘B𝑇
𝜆2th
𝐿2

1 + 2𝜋2

4𝜋
. (2.60)

After insertion into (1.35) we get

𝑁
c,box

(𝐿) = −
𝐿2

𝜆2th
log(1 − exp(−

𝜆2th
𝐿2

1 + 2𝜋2

4𝜋 )) (2.61)

≃
𝐿2

𝜆2th
log(

𝐿2

𝜆2th

4𝜋
1 + 2𝜋2) (2.62)

which for 𝐿 ≫ 𝜆th simplifies to an 𝐿2 log(𝐿) scaling. We see that 𝑁c scales logarithmically faster

than the area 𝐿2, hinting at the absence of condensation in arbitrary large systems. From 𝜆2th ∝
𝑇−1 follows the relation

𝑁c

𝑁
=
𝑇
𝑇c

log(𝑇 )
log(𝑇c)

≃
𝑇
𝑇c

(2.63)

where the logarithmic correction is of order unity. As we work at a constant temperature 𝑇 ≈
300 K, we will resort to expression based on 𝑁 in further investigations such as the caloric prop-

erties of the gas along the critical point. The smooth onset of the saturation of the excited parti-

cle states suggests that we expect the caloric properties of the two dimensional homogeneously

trapped gas are also smooth across the phase transition. Following sec. 1.3 we extract the internal

energy 𝑈 from the grand potential  via

𝑈 =  − 𝑇
𝜕
𝜕𝑇

− 𝜇
𝜕
𝜕𝜇

(2.64)

= ∑
𝑖
𝐸𝑖 𝑛̄𝜇,𝑇 (𝐸𝑖) ≃ ∫

∞

0
𝐸 𝑛𝜇,𝑇 (𝐸) d𝐸 (2.65)

= 𝑘B𝑇
𝑉
𝜆2th

Li2 (𝑒𝜇/𝑘B𝑇 ) (2.66)
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Fig. 2.5: a) Saturation of excited modes in a harmonically trapped 2D Bose gas compared to the homo-
geneous case in a finite size box. While the harmonically trapped gas shows a sharply damped saturation
of excited modes corresponding to a well-defined phase transition, the photon gas in a box undergoes a
smooth continuous transition. b) Internal energy and specific heat for both cases. The smooth crossover
of 𝐶𝑉 and 𝑈 for a box potential hint at the absence of a second-order phase transition.

which corresponds to an energy weighted summation over the single particle occupations. As

we have chosen to set the ground state energy as the zero point, its contribution vanishes. From

the internal energy one can compute the isochoric (constant volume) heat capacity

𝐶𝑉 = (
𝜕𝑈
𝜕𝑇 )𝑉

(2.67)

𝐶𝑉
𝑁𝑘B

=
𝜕(𝑈 / (𝑁𝑘B𝑇c))

𝜕(𝑇 /𝑇c)
(2.68)

≃
𝜕(𝑈 𝑁c/(𝑁 2𝑘B𝑇 ))

𝜕(𝑁c/𝑁)
. (2.69)

As the expression 𝑁(𝜇), see (1.35), can not be solved for 𝜇 in all cases, the derivative has to be

taken numerically. In the classical limit |𝜇| ≫ 𝑘B𝑇 every photon contributes (𝑓 /2) 𝑘B = 1 𝑘B to

the heat capacity as understood from its 𝑓 = 2 degrees of freedom while the function approaches

zero for 𝜇 → 0 since the (macroscopically occupied) ground state does not contribute transverse

internal energy to the system.

Internal energy and specific heat for a harmonic trap as well as for a box trap are shown in

Fig. 2.5b. While the harmonically trapped gas experiences a cusp-like discontinuity (similar to

the lambda transition in superfluids [61, 97]) at threshold, the uniform gas does not show such a

discontinuity, hinting at the absence of a phase transition according to the Ehrenfest classification

[42]. Note that in Fig. 2.5, the quantities of the harmonically trapped gas have been divided by 2

for better comparison. According measurements for the box trap are presented in sec. 4.5.

2.5 Grand Canonical Rate Equation Model

We introduce a rate equation model aiming to describe the spatial and spectral photon distribu-

tion inside the resonator. In the dye-cavity, electronic excitations of the dye molecules are in-

terconverted to photonic excitations of resonator modes. The dye molecules in a liquid solution

exhibit frequent collisions with solvent molecules and rapid molecular dipole dephasing (much

faster than the Rabi frequency) that destroys any coherence between photons and molecules,

preventing the formation of exciton-polaritons [41]. This weak-coupling regime allows for a

great reduction of the problem complexity via the diagonal approximation, i.e. neglecting all

(off-diagonal) coherence terms in the density matrix. A rate equation model of this kind has
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proven itself as a simple yet powerful method for the modeling of spatial and temporal photon

distributions [64, 98–101]. Useful theoretical descriptions can be found in [102–105]. In this the-

sis, the existing models from the references was extended by explicitly taking a variable photon

loss into account as it plays a crucial role when quantitatively investigating the photon phase

space density inside the cavity under real world conditions.

Starting from Einstein’s rate equations we write the rates of absorption and emission per vol-

ume 𝑅12,21 dependent on excited and ground state molecule density 𝜌↑,↓, respectively, the spectral

energy density 𝑢𝑖(𝑥) of the cavity modes with index 𝑖 and the Einstein coefficients of stimu-

lated absorption and emission 𝐵12,21, respectively. We reduce 𝑢𝑖(𝑥, 𝜔) = ℏ𝜔𝑖|𝜓𝑖(𝑥)|2𝛿(𝜔 − 𝜔𝑖)
to 𝑢𝑖(𝑥) ≡ ∫ ∞

0 𝑢𝑖(𝑥, 𝜔) d𝜔 = ℏ𝜔𝑖|𝜓𝑖(𝑥)|2. From the Einstein model we write the absorption and

emission rates 𝑅12,21 per volume for each individual mode at position 𝑥 as

𝑅12,𝑖(𝑥) = 𝐵12(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↓(𝑥) 𝑛𝑖 (2.70a)

𝑅21,𝑖(𝑥) = 𝐵21(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↑(𝑥) (𝑛𝑖 + 1) . (2.70b)

The additional +1 term represents spontaneous emission, which equals the stimulated emission

rate caused by a single photon [106]. After integration of (2.70a) and (2.70b) we introduce external

pump and loss terms and arrives at expressions for individual cavity modes and local molecule

excitation numbers

𝜕𝑡 𝑛𝑖 = ∫
𝑉 [
𝐵21(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↑(𝑥) (𝑛𝑖 + 1) − 𝐵12(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↓(𝑥) 𝑛𝑖]d𝑥 − Γcav,𝑖𝑛𝑖 (2.71a)

𝜕𝑡 𝜌↑(𝑥) = ∑
𝑖
[𝐵12(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↓(𝑥) 𝑛𝑖 − 𝐵21(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↑(𝑥) (𝑛𝑖 + 1)]

− Γiso 𝜌↑(𝑥) + 𝑅p(𝑥) (2.71b)

𝜕𝑡 𝜌↓(𝑥)
!= − 𝜕𝑡 𝜌↑(𝑥) (2.71c)

where we integrate over the complete resonator volume 𝑉 and sum over all cavity modes 𝑖 as 𝑛𝑖
is a global and 𝜌↑ is a local value. The terms containing 𝐵12, 𝐵21 in (2.71a) and (2.71b) correspond

to the same physical process. The decay term Γcav,𝑖 accounts for transmission of trapped pho-

tons through the cavity mirrors while Γiso contains the (isotropic) spontaneous decay rates into

unconfined modes, see Fig. 2.6. Photons in those free space modes are not a part of the paraxial

light field and are treated as a loss channel. The effect of finite quantum yield 𝜂 < 1 is included

in Γiso due to its formal equivalence. 𝑅p(𝑥) is the local external pump excitation rate, which can

be tuned in the experiment.

The entire expressions for 𝑛𝑖 and 𝜌↑,↓ typically have to be solved numerically. Since the simu-

lation of the entire multimode system is computationally very costly, some approximations can

be made to give further physical understanding and numerical simplifications as explained in the

following.

2.5.1 Limit: Isolated Cavity

To discuss the steady state intracavity photon distributions 𝑛𝑖 in the absence of photonic and

molecular losses we for now assume Γiso = Γcav = 𝑅p = 0 and perfect quantum yield 𝜂 = 1.

The only remaining process is the photochemical reaction 𝛾+ ↓⇋↑, connecting an excitation (↑)

and a ground state molecule (↓) via a photon 𝛾 . The resulting conservation of the total excita-

tion number requires the chemical potentials before and after a conversion process to be equal,

𝜇𝛾 + 𝜇↓ = 𝜇↑. It it useful here to reformulate the Kennard-Stepanov relation (2.2) using Ein-

stein coefficients instead of their typical absorbance and spectral fluorescence strength in their

respective units. This way the unintuitive 𝜔3
factor vanishes and the relation becomes

𝐵21(𝜔)
𝐵12(𝜔)

=
𝑤↓

𝑤↑
exp(−

ℏ(𝜔 − 𝜔ZPL)
𝑘B𝑇 ) (2.72)
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Fig. 2.6: Excitation conversion processes in the cavity. 𝑅p is the external pump rate, 𝐵12,21 are photon
absorption and emission processes, Γcav is longitudinal mirror transmission and Γiso describes the chance
of a molecule not to transfer its excitation to a cavity mode but release the photon into free space as
understood from isotropic spontaneous emission.

where𝑤↑,↓ = ∫𝜖 𝑔̄↑,↓(𝜖) exp(−𝜖/𝑘B𝑇 )d𝜖 are the statistical weights of the rovibronic substructure of

the dye 𝑆0 and 𝑆1 states. Although one finds 𝑤↓/𝑤↑ ≈ 1 for most dye species the factor is carried

on in the following calculations steps for completeness [70]. Using statistical physics arguments

one can show (see supplementary material of [102]) that the individual chemical potentials are

linked to the dye excitation level and its zero phonon line 𝜔ZPL (see section 2.1),

exp(𝜇𝛾/𝑘B𝑇 ) = exp(𝜇↑/𝑘B𝑇 ) / exp(𝜇↓/𝑘B𝑇 ) (2.73)

exp(𝜇𝛾/𝑘B𝑇 ) =
𝑤↓

𝑤↑

𝜌↑
𝜌↓

exp(−
ℏ𝜔ZPL

𝑘B𝑇 ) . (2.74)

We see that the experimentally tunable ratio 𝜌↑/𝜌↓ sets the chemical potential. From here, the

steady state population of a cavity mode is obtained by looking for a solution of (2.71a) with

𝜕𝑡𝑛𝑖 = 0. The individual rates balance out and by inserting (2.72) and (2.74) one then gets for the

average occupation number 𝑛̄𝑖 of a cavity state with energy 𝐸𝑖 = ℏ𝜔𝑖:

𝑛̄𝑖 = (
𝐵12(𝜔𝑖)
𝐵21(𝜔𝑖)

𝜌↓
𝜌↑

− 1)

−1

(2.75)

=
1

exp((ℏ𝜔𝑖 − 𝜇𝛾)/𝑘B𝑇 ) − 1
=

1
exp((𝐸𝑖 − 𝜇)/𝑘B𝑇 ) − 1

. (2.76)

The expression is equivalent to the Bose-Einstein distribution. The resonator cutoff energy offset

𝑚ph𝑐2 was subtracted from both the mode energy ℏ𝜔𝑖 as well as the photon chemical potential,

𝜇 = 𝜇𝛾 − 𝑚ph𝑐2. The −1 term in the denominator arises due to the stimulated emission term

in the rate equations. For exclusive spontaneous emission, i.e. for 𝑛̄𝑖 ≪ 1, the cavity mode

occupations scale Boltzmann-like realizing the classical limit. In this system, equilibrium fulfills

detailed balance, as it is not realized by the absence of conversion processes but all processes

are in equilibrium with their reverse counterpart. In this idealized setting of a perfectly closed

system we see that the light spectrum is expected to acquire a thermal distribution by contact to

the internally thermalized dye molecules.

2.5.2 Limit: Low Photon Numbers

The solutions of the differential equations (2.71a) and (2.71b) become highly nonlinear in the

𝑛̄𝑖 > 1 regime due to the self-enhancement of stimulated emission processes. For the phase space

investigations explained in chapter 3 it is useful to simplify the model due to the experimentally

realized limit of small photon numbers by weak optical pumping. Hence we first assume that
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only a small fraction of molecules are in their excited state and we can assume a uniform ground

state molecule density inside the resonator

𝜌 ≡ 𝜌↓(𝑥) = const. (2.77)

which renders the absorption time of a photon independent of its position but only its frequency

𝜔𝑖. From now on, only the expression for 𝜌↑ is further considered in the calculations. We also

neglect stimulated emission processes as we later distribute only around ∑𝑖 𝑛𝑖 ≈ 100 photons

over more than 105 modes inside the resonator (see chapter 3) and thus 𝑛̄𝑖 ≪ 1. Removing the

affected terms yields

𝜕𝑡 𝑛𝑖 = ∫
𝑉 [
𝐵21(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↑(𝑥)]d𝑥 − ℏ𝜔𝑖 𝐵12(𝜔𝑖) 𝜌 𝑛𝑖 − Γcav,𝑖𝑛𝑖 (2.78a)

𝜕𝑡 𝜌↑(𝑥) = ∑
𝑖
[𝐵12(𝜔𝑖) 𝜌 𝑢𝑖(𝑥) 𝑛𝑖 − 𝐵21(𝜔𝑖) 𝑢𝑖(𝑥) 𝜌↑(𝑥)] − Γiso 𝜌↑(𝑥) + 𝑅p(𝑥) . (2.78b)

Since we use an alternative definition of the spectral energy density 𝑢𝑖 as we assume monochro-

matic light instead of a continuum of modes, the Einstein coefficients can be computed from

the experimentally accessible dye spectra. By comparing the photon absorption term in (2.78a)

to a generic exponential decay formula we get for the optical intensity 𝐼 as it travels through a

medium

𝐼 (𝑡)/𝐼0 ≡ exp(−Γ12𝑡) (2.79)

!= exp(−ℏ𝜔𝐵12(𝜔) 𝜌𝑡) (2.80)

= exp(− log(10) 𝜀𝜌𝑧) (2.81)

where in a last step, the Lambert-Beer law of molar absorptivity was used. It relates the molar

extinction coefficient 𝜀 of a medium (usually given in decadic base, hence the log(10) factor),

concentration 𝜌 and sample length 𝑧 to the attenuation coefficient. Using 𝑧 = 𝑐𝑡 one gets by

comparison

Γ12,𝑖 = log(10)𝜀(𝜔𝑖)𝑐𝜌 (2.82)

for the absorption rate of a photon in mode 𝑖. Typical values are in the range 1 ps to 1 ns. From

now on we make the substitution

𝐵̂12,21,𝑖(𝑥) ≡ 𝐵12,21(𝜔𝑖) 𝑢𝑖(𝑥) (2.83)

= 𝐵12,21(𝜔𝑖) ℏ𝜔𝑖 |𝜓(𝑥)|2 (2.84)

where the energy density of a mode 𝑢𝑖(𝑥) was replaced by the spatial probability density function

ℏ𝜔𝑖|𝜓𝑖(𝑥)|2. Rewriting (2.78a) and (2.78b) then yields

𝜕𝑡𝑛𝑖 = ∫
𝑉
𝐵̂21,𝑖(𝑥) 𝜌↑(𝑥) d𝑥 − (Γ12,𝑖 + Γcav,𝑖) 𝑛𝑖 (2.85a)

𝜕𝑡 𝜌↑(𝑥) = ∑
𝑖
(𝐵̂12,𝑖(𝑥) 𝜌(𝑥) 𝑛𝑖 − 𝐵̂21,𝑖(𝑥) 𝜌↑(𝑥)) − Γiso 𝜌↑(𝑥) + 𝑅p(𝑥) (2.85b)

There are several approaches to solve the model. Those include e.g. finding the steady state

in a set of coupled equations [105] or perform a physical time evolution with the Monte Carlo

method, see section 2.5.4.



36 2 Photons in a Dye-Filled Optical Microcavity

2.5.3 Limit: High Transverse Losses

Staying in the low photon number regime, we now investigate the cavity mode occupation in

the case where fluorescence into free space modes is much more likely than emission into a

cavity mode. The resonator mirrors offer high reflectance for paraxial beams but suffer from

drastic reflectance drops even up to full transmission under incidence angles above around 25◦
(see Fig. 2.2 for the relevant spectrum from 550 nm to 590 nm). The photonic bandgap is hence

only one dimensional, leaving the transverse emission channels presumably only moderately

altered with respect to free space. In this section we investigate the limit where, after initial

population of a mode, the following process is a photonic mirror transmission Γcav or, upon a

potential reabsorption by the dye medium, a certain non-detected isotropic emission into free

space perpendicular to the optical axis with rate Γiso. The number of molecule excitations caused

by reabsorbed photons is then small compared to externally pumped excitations. As both terms

containing 𝐵̂ in (2.85b) can in this scenario be dropped out, the model reduces to

𝜕𝑡𝑛𝑖 = ∫
𝑉
𝐵̂21,𝑖 𝜌↑(𝑥) d𝑥 − (Γ12,𝑖 + Γcav) 𝑛𝑖 (2.86)

𝜕𝑡 𝜌↑(𝑥) = −Γiso 𝜌↑(𝑥) + 𝑅p(𝑥) . (2.87)

By integration we find the steady state of this model to be

𝜌↑(𝑥) =
𝑅p(𝑥)
Γiso

(2.88)

𝑛𝑖 =
1

Γ12,𝑖 + Γcav,𝑖
∫
𝑉
𝐵̂21,𝑖 𝜌↑(𝑥) d𝑥 (2.89)

=
ℏ𝜔𝑖 𝐵21,𝑖

Γ12,𝑖 + Γcav,𝑖
∫
𝑉
|𝜓(𝑥)|2 𝜌↑(𝑥) d𝑥 (2.90)

=
ℏ𝜔𝑖 𝐵21,𝑖
Γiso

1
Γ12,𝑖 + Γcav,𝑖

∫
𝑉
|𝜓(𝑥)|2 𝑅p(𝑥) d𝑥 (2.91)

In the limit of dominating transverse losses Γiso, the molecular excitation 𝜌↑(𝑥) simply follows

the pump beam profile. The mode occupation 𝑛𝑖 follows a slightly more complex description, but

leads to an equivalent conclusion. Since every excited molecule couples to every cavity mode

(although in many cases with negligible amplitude) the resulting intensity distribution does not

copy the pump profile but is nevertheless entirely determined by the latter. A statistical approach

is not required as there is only negligible coupling between the modes. In the next paragraph we

discuss the experimentally observable quantities and how they scale with the competing rates.

One can again distinguish between two limiting cases given by the likelihood of at least one

reabsorption during the resonator storage time.

If, however, the reabsorption time is much shorter than the cavity storage time, Γ12,𝑖 ≫ Γcav,𝑖,

the mirror transmission term can be neglected. In the spectral regime of 𝜆 = 560...590 nm the

ratio of emission and absorption scales proportionally to the Boltzmann factor ℏ𝜔𝑖𝐵21,𝑖 /Γ12,𝑖 ∝
exp(−ℏ𝜔/𝑘B𝑇 ) as verified by the relatively constant spectral temperature (Kennard-Stepanov

relation, see Fig. 2.1) which then leads to

𝑛𝑖 ≃
ℏ𝜔𝑖
Γiso

𝐵21,𝑖
Γ12,𝑖 ∫𝑉

|𝜓(𝑥)|2 𝑅p(𝑥) d𝑥 (2.92)

≈ 𝑛𝑖,0 exp(−
ℏ𝜔𝑖
𝑘B𝑇 )

. (2.93)

Here, 𝑛𝑖,0 is a scaling factor for the external pump induced occupation of mode 𝑖. It is generally

not constant, however, the mode-pump overlap integral is, to a certain extent, an experimental
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Fig. 2.7: Monte Carlo Simulation of a one-dimensional isolated photon gas, prepared in a highly non-
equilibrium configuration. Curves or data points represent the system at different times. Simulations
parameters: 𝑞 = 7, 𝜆c = 587 nm, Ω ≈ 2𝜋 × 40GHz. a) Spectra converge towards a Boltzmann distribution
at 𝑇 = 300K. b) Spatial and momentum intensity distribution. Graph labels like in a). c) Temporal
evolution of the central phase space density, normalized to its initial value at 𝑡 = 0.

tuning parameter which allows for pumping each mode with equal strength. Within certain

limits, the photon spectrum inside the resonator can then still scale Boltzmann-like caused by

this inner filtering of the dye medium.

2.5.4 Monte Carlo Simulation

Due to the quantized photonic and molecular excitations in combination with known cavity

eigenstates, this rate equation model can be time-evolved with a Monte-Carlo method [107, 108].

It is a technical approach since, instead of solving a large set of coupled equations, the underlying

principle is that processes like pump excitation, photon absorption, photon emission and losses

occur with a certain rate, i.e. a probability per time interval. On every step, a process is randomly

drawn from all possible events, scaling with their occurring rate. After execution, all process rates

are recalculated and the procedure is repeated until an exiting criterion is fulfilled, e.g. the pump

source has excited 𝑁 molecules or a simulation time of 100 ps has passed. As the implementation

platform, the mathematically focused programming language "Julia" [109] was used.

As a benchmark, we simulate the time evolution of an isolated one-dimensional photon gas

(i.e. no losses, cf. sec. 2.5.1) that is prepared in a highly non-equilibrium ("hot") configuration,

i.e. a population of mainly high energetic states at time 𝑡 = 0. Spatial, momentum and spec-

tral distribution of the photon gas at different time stamps are shown in Fig. 2.7. In panel a)

one can see how the initial spectral distribution continuously converges towards a Boltzmann

distribution at 𝑇 = 300 K. The spectrum 𝑛𝑖(𝐸) is connected to the spatial and momentum dis-

tribution via 𝑛(𝑥, 𝑝) = ∑𝑖 𝑛𝑖|𝜓(𝑥, 𝑝)|2. In a harmonic oscillator potential, both (position and

momentum) are equivalent when normalized to their characteristic scale 𝑥0 or 𝑝0, respectively,

see sec. 2.3. The initial non-equilibrium spectra correspond to spatial and momentum distri-

butions with overpronounced wings as seen in panel b). The clouds eventually transform to a

Gaussian of width 𝜎 ≈ 90 µm as expected at thermal equilibrium. The concentration towards

low energetic states can be regarded as an effective cooling process. The mean central phase

space density (𝑥 = 0, 𝑝 = 0) is extracted from spatial and momentum distributions as in (1.17)

with numerical standard deviations. In panel c) one sees the that (0, 0) increases as the photon

accumulate in the trap center. The numerical simulation so far yields the expected results for

the ideal system. The platform is further employed in sec. 3.2 with real experimental parameters

including pump and loss rates.





C H A P T E R 3

Experiments on Paraxial Light Concentration

This chapter deals with investigations of the central phase space density of the two-dimensional

photon gas when its gradually enhancing its coupling to the dye environment. The approach

refers to the transverse cooling proposal discussed in sec. 1.5. The two competing time scales are

resonator lifetime 𝜏cav and photon reabsorption time 𝜏abs = 1/Γ12. The latter varies by two orders

of magnitude within the photon gas due to its broad spectral range. The resonator lifetime can be

changed by varying the mirror distance and hence the cutoff wavelength or longitudinal mode

number 𝑞. Those changes, however, are always accompanied by other experimental parameter

variations such as trapping frequency (2.31), mirror transmission or pump laser absorption. A

systematic way to conduct such an experiment is by varying the dye concentration in order to

have a well controlled scaling of the photon reabsorption time while keeping the cavity aligm-

ment itself unchanged.

3.1 Experimental Setup

The setup is schematically depicted in Fig. 3.1. It comprises three major parts, namely the mi-

crocavity apparatus, the pump light sources (here laser and sunlight) and a detection part, where

the cavity emission is analyzed by measuring its spatial, momentum and spectral distribution.

3.1.1 Dye-Filled Microcavity

The high-finesse cavity is the centerpiece of the experiment. It consists of two spherically curved

dielectric mirrors (model: CRD Optics 901-0010-0550) with a radius of curvature of 𝑅̃ = 1m. Their

theoretical transmission profile for a wide angular and wavelength range is shown in Fig. A.3.

Under normal incidence 𝜃 ≈ 0◦, the mirror reflectance is above 99.99 % in the experimentally

relevant range of 𝜆 = 550 nm to 590 nm, as confirmed experimentally via cavity ring-down mea-

surements [110]. The high reflectivity is reduced for beams travelling under a steep angle with

respect to the optical axis, as discussed in sec. 3.4 The maximum photon storage time at a half

wave number of 𝑞 = 7 is of order 250 ps.
The ordered mirrors have 1” diameter and roughly 6mm thickness. With these dimensions,

the required small mirror separations for two dimensional photon gases are unreachable as the

mirror edges collide, giving a minimum central separation of𝐷0 = 2(𝑅̃−
√
𝑅̃2 − (0.5”)2) ≈ 150 µm.

Separations below 1 µm can be reached only if the diameter of at least one mirror is reduced to

roughly 1mm. The mirrors are initially cut into square pieces of 5mm edge length. Afterwards,

the substrate gets fixed in a rotating mount and the top side is ground into a round conical shape

with grinding paper until the desired diameter is reached.

The pump light used to excite the dye solution is guided through one of the mirrors from the

substrate backside at an incidence angle of roughly 42◦, where the first transmission peak for
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Fig. 3.1: Schematic view of the setup used for phase space investigations. The cavity is pumped by the
green laser via a defocused pump spot. The cavity emission is in the analysis part of the setup guided
onto different detectors via flip mirrors. Various devices are controlled or read out digitally. A He-Ne-laser
beam is used for cavity stabilization. Instead of laser light one can also guide sunlight into the cavity via
fiber coupling.

𝜆 = 532 nm light is found (see Fig. 2.2). To guide the beam, the mirrors are glued on top of an

extra 1” glass substrate where four additional right angle prisms are added to enable a straight

optical path with minimal refraction from the outside towards the cavity center, see Fig. 3.2b.

For gluing, a UV-sensitive optical adhesive (type: Thorlabs NOA61) is used which gets initially

cured by a UV lamp and afterwards by long-term weak sunlight exposure. Mirror pieces that are

not used for backside-pumping are mounted into custom-made 1” aluminum adapters, shown in

Fig. 3.2a.

The final 1” optics are inserted into regular mirror/optics mounts and 2” holders are employed

with adapter plates for better optical access. The mounts are placed on top of micrometer posi-

tioning stages, so that each mirror is rotatable and translatable in 𝑥 and 𝑦 direction. One mirror

is placed on a 𝑧-translatable stage with manual translation via a fine-thread screw as well as an

integrated piezoelectric stack (model: Radiant Dyes RD-KRU-FGS-25-01 with piezodrive). The

latter allows for fine adjustment of the stage in 𝑧 direction and hence the mirror separation 𝐷0
with nanometer precision; the required voltage can be set both manually (potentiometer) as well

as with a computer-controlled voltage supply (variable offset voltage) within a range of 150V. For

this purpose, a computer-controlled multi-functional data acquisition and voltage output device

(DAQ, model: National Instruments USB-6003) is integrated into the setup.

Although the cavity mirror mounts are locked in place on a breadboard which is mechanically

stabilized via rubber feet, the cavity cutoff wavelength 𝜆𝑐 = 2𝑛̃𝐷0/𝑞 is subject to vibrations in

the 1Hz range and long term drifts due to e.g. temperature changes or air convection, which

is actively compensated for with the piezo element. The mirror separation is also monitored by

illuminating it with a helium-neon laser beam (𝜆HeNe = 632.8 nm) as it operates in a moderately

reflecting regime of the mirrors (𝑅 ≈ 1%) and shows negligible absorption by the dye medium.

Due to the spherical curvature of the mirrors, an interference pattern known as Newton rings

emerges whose radius changes with the mirror distance. The light is deflected from the main

beam path via a dichroic mirror and imaged on a CMOS camera, where the ring radius is extracted

via a computer software and the piezo voltage adjusted via a feedback loop. Due to the inertia

of the whole cavity setup, the control bandwidth is limited to frequencies below 1Hz which is

usually sufficient to stabilize the cutoff wavelength down to 1 nm precision over long times.
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Fig. 3.2: a) Front view of cavity mirrors glued onto glass substrates (top) or clamped into aluminum
mount (bottom). In the latter, residual gaps are sealed with epoxy resin. b) Side view of the cavity mirror
arrangement.

The rhodamine 6G dye (see sec. 2.1) is dissolved in ethylene glycol that gets dropped between

the two mirrors. The solvent has a sufficiently high viscosity to stick between the mirrors via

adhesion and evaporates slowly over several days. For the experiments, different concentrations

are systematically prepared by diluting an initial sample by adding well-defined proportions of

solvent (see sec. 3.3.1).

3.1.2 Laser and Sunlight as Pump Sources

In the initial phase of the experiment, the dye molecules inside the resonator are optically excited

with a beam derived from a diode pumped solid state laser (model: Coherent Verdi V8) operating

at a wavelength of 𝜆p = 532 nm, which is close to the dye absorption maximum. The laser pro-

vides a Gaussian TEM00 mode with a beam quality of 𝑀2 < 1.1 and a power stability of 1 % [111].

The pump beam powers are kept far below the condensation threshold power to mimic contin-

uous sunlight exposure. However, the pump beam is chopped to 100 µs pulses at a repetition

rate of 60Hz to increase the signal to noise ratio of the cavity emission detection while keeping

the average power constant at around 10 µW as the dye bleaches during operation (see sec. 2.1),

which has to be strictly avoided since the phase space measurements rely on absolute powers

normalized to the incoming pump beam power. For such low pump powers, molecule diffusion

is sufficiently fast to counteract the bleaching. The pump beam is temporally modulated by two

subsequent acousto optical modulators (AOM), whose driver electronics are gated by a digital

delay generator (model: Stanford Research Systems DG645) and an arbitrary function generator

(model: Tektronix AFG3252), which both provide the same gating signal. The second AOM serves

the purpose of better suppression of residual pump light during the dark times. The pump power

is monitored with a photodiode after branching off parts of the light by a 70:30 (T:R) beam split-

ter. The signal voltage is determined by an oscilloscope (model: Tektronix DPO2024B, 200MHz
bandwidth), which is read out by the computer software. If necessary, the control voltage of the

second AOM driver is adjusted via the DAQ device to maintain a constant pump power. Since

the laser does not reliably provide such low pump powers and the AOM electronics become too

noisy at low voltage levels, the laser head emits several hundred milliwatts of power, which are

attenuated by neutral density filters to keep the power more stable. Inside the cavity, the pump

spot is intentionally slightly defocused by displacement of lens L1 (see Fig. 3.1) and has a width

of 180(20) µm fwhm to induce the desired initial mode occupation (see also sec. 2.5).

In a second stage of the experiment, the laser pump source was replaced by sunlight to demon-

strate potential solar light concentration. For this porpose, a 2” broadband mirror was used in

combination with a 2” lens focusing the light into an optical multimode fiber of core diameter

200 µm. To counteract earth’s rotation, the mirror is mounted onto two motorized stages (angu-

lar resolution: 0.01◦), which are controlled via a computer controlled feedback loop. Part of the
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light is guided onto a camera to track the movement of the sun. Without readjustment, the sun

moves out of focus in roughly one minute. Light with wavelengths above 550 nm is filtered out

as it does not reasonably contribute to the absorbed power but disturbs the measurement. The

light path is after a certain position superimposed with the pump laser path and finally imaged

into the cavity. With a suited spherical aperture and working slightly out of focus, a comparable

pump beam spot size of 180 µm fwhm can be created, analogous to the laser light pump spot. Al-

though the fiber receives several milliwatts of sunlight power – three orders of magnitude above

the laser pump powers – the power absorbed by the dye compares to the laser beam absorp-

tion because the extinction coefficient of rhodamine 6G drops fast outside the central absorption

region of 520 nm to 540 nm and the cavity mirrors vary in their transmission.

3.1.3 Analysis Setup

Light detection Properties of the photon gas inside the resonator are extracted from its trans-

mitted part and are analyzed spatially, spectrally and in momentum space. After leaving the

resonator, the light is captured by a long working distance apochromatic microscope objective

(Mitutoyo 20X plane APO) with an effective focal length of 𝑓 = 1 cm (working distance: 2 cm)

and a numerical aperture of NA = 0.42. The maximum detectable divergence angle is 25◦. A

550 nm longpass filter (Thorlabs FELH0550) is placed directly after the objective lens to block

scattered pump light. The emission is then focused again where in the intermediate image plane

a spherical iris is placed for alignment and spatial filtering purposes, followed by another col-

limation. In-between, the helium-neon laser light is coupled out of the beam path and another

removable 600 nm cutoff shortpass filter (Thorlabs FESH600) is placed in the path which blocks

residual helium neon laser light and the red-wing rhodamine emission which is not significantly

altered by the cavity due to the high transmission in this spectral regime and hence is expected

to behave similar to isotropic spontaneous emission.

Real and Momentum Space The spatial distribution is obtained by real space imaging; the

optical path is a symmetric chain of confocally arranged lenses with focal lengths {1, 10, 15, 15, 10, 1} cm,

which creates a one-to-one image of the photon gas on the camera sensor. Unity magnification

was chosen as the signal for low dye concentrations tends to be very small with only ≈ 10 pho-

tons per pixel. The light can also be guided onto an ICCD camera, where the slightly different

lens configuration images the angular distribution (momentum space, see sec. 1.6) onto the cam-

era sensor; the lens arrangements is {1, 10, 15, 15, 20, 7.5} cm. Both cameras are single photon

sensitive and capable of single-pulse-resolved image acquisitions which are digitally averaged

(≈ 10 images) during the process, see also sec. 3.1.3.

Spectrum The spectral distribution is measured by guiding the light onto a diffraction grating

(Thorlabs GR50-0650) with 600 grooves/mm via a flip mirror. The grating in combination with

the following lens spectrally disperses the incoming light such that the spectral distribution can

be extracted via a vertical integration of the camera signal. The pixel to wavelength calibration

was performed using a commercial spectrometer. The self-build spectrometer has superior sen-

sitivity and does not contain an entrance slit. Due to the harmonic oscillator dispersion relation

of the photon gas the mode energy is strongly related to the propagation path in real and mo-

mentum space (see sec. 2.3.3); an entrance slit would cause overpronounced filtering of higher

order modes as they lie far outside in both phase space coordinates. A trade-off is that the reso-

lution is reduced since the spatial information of the modes is completely restored in the image

plane. Due to the small mode spacing of Ω ≈ 2𝜋 × 40GHz many neighboring modes overlap in

the spectral image; the effect enhances for higher mode orders since the mode diameter scales

square root like with energy. However, as the spectrum mainly serves the purpose of determining

the longitudinal mode number 𝑞 and the cutoff wavelength with 1 nm precision, the mentioned
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drawback is of minor significance. Due to the finite numerical aperture of the objective lens the

apparatus can only reliably detect energies up to 3.5 𝑘B𝑇 (see sec. 2.3.3). Since every harmonic

oscillator wave function has contributions inside the detectable range only parts get cut off, see

also sec. 2.3.1. All lenses in the analysis part are achromatic doublets (model family: Thorlabs
AC508-...-A-ML, 2” diameter except for lens after the cavity objective lens).

High Sensitivity Cameras

Since the observables in this experiment are purely photonic, state of the art detectors are used to

maximize data quality. We employ two types of cameras which are able to detect intensities down

to the single photon level, namely an EMCCD or an ICCD camera, both of which are explained

in the following.

EMCCD Electron multiplying CCD cameras (EMCCD) offer excellent performance for spa-

tially resolved light detection on a single photon level. The used model is iXon Ultra A-DU897-

UCS-BV from Andor Technologies, which offers a peak detection quantum efficiency of 97 % in

the relevant wavelength range. The (16 µm)2 sized pixels and are aligned on a 512 times 512 grid.

Although single impinging photons still only generate a single electron-hole pair in the pixel

well, the readout electronics include a low noise electron multiplication process with variable

gain settings [112]. During a shifting process in a semi-conductor register, the signal electrons

have chance to release further electrons from the bulk via so-called impact ionization (creating

additional electron-hole pairs in the conduction band) scaling with the kinetic energy gained by

the applied shifting voltage. Since this process happens prior to the analog to digital conversion,

even single photoelectrons produce a sufficient signal to noise ratio to allow for reliable photon

counting. The sensor is cooled (usually to around −40 ◦C) to reduce spontaneous excitation of

thermal electrons which are indistinguishable from regular photoelectrons. The sensor exposure

time can not go below several milliseconds due to the limited readout speed, hence the cavity

emission during a pump pulse of 500 ns length is always fully temporally integrated.

ICCD An intensified CCD camera is a detector with nanosecond time resolution, where the

incoming light releases electrons from a photocathode, which are accelerated towards a micro

channel plate where, similar to impact ionization, incoming electrons are multiplied depending

on the anode voltage. Afterwards, the amplified electron beam hits a phosphor screen whose

resulting light emission is imaged on a camera. The intensifier can be switched on an off in

nanoseconds. The detection quantum efficiency of order 60 % and limited spatial resolution due

to e.g. the diameter of a micro channel (≈ 10 µm on the camera sensor) result in a slightly

lower sensitivity and resolution compared to EMCCD cameras. The used model is a "C9546-02-

71, 2MCP, P43" image intensifier in combination with an "ORCA Flash 4.0" CMOS camera, both

manufactured by the company Hamamatsu.

3.2 Light Concentration Measurement Scheme

The phase space density of the photon gas inside the resonator is inferred from its spatial and

momentum distributions. We start by discussing the experimental parameter space and how to

interpret the data.

After excitation of the dye molecules inside the resonator volume by the pump laser beam,

spontaneous emission at position 𝑥 will populate a resonator mode 𝜓𝑖 with energy ℏ𝜔𝑖. The

corresponding rate for each mode scales with the spatial overlap | ⟨𝑥|𝜓𝑖⟩ |2 = |𝜓𝑖(𝑥)|2 and the dye

emission strength 𝐵̂21,𝑖(𝜔𝑖), cf. sec. 2.5. A molecule at position 𝑥 couples by photon absorption

and emission to all modes with energy 𝐸𝑖 > 𝑚Ω2𝑥2/2 as those have a reasonable amplitude in
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Fig. 3.3: Numeric exploration of the photon gas at different dye concentrations for given initial param-
eters. a) Radial intensity profiles for different dye concentrations and 𝜂eff = 95%. The dashed line
shows the pump excitation profile. b) Extracted cloud widths and total photon number normalized to
𝑁(𝜌 = 10−4mmol/l), calculated for different effective quantum yields 𝜂eff. c) Normalized central phase
space density increase for various 𝜂eff as a function of the dye concentration 𝜌.

their energetically allowed region (neglecting transverse wave nodes). In contrast, coupling to

lower energetic modes is negligible as |𝜓𝑖(𝑥)|2 ≈ 0. Therefore, the initial spontaneously emitted

photon cloud is broader than the pump excitation profile, see also the theory curves in Fig. 3.3a.

Moreover, the pump beam width can now be chosen such that the initial photon cloud is broader

than the thermal equilibrium width

𝜎𝑟(𝑇 ) =
√
𝑘B𝑇/𝑚Ω2

(3.1)

𝑇=300 K≈ 92 µm (3.2)

or correspondingly Δ𝑟
fwhm

= 2
√
2 log(2) 𝜎𝑟 ≈ 215 µm, where 𝑚 is the photon mass and Ω is the

trapping frequency. If the cavity is filled with a very dilute dye solution, e.g. 𝜌 = 10−2mmol/l, a

reabsorption of the cavity photons during the resonator lifetime is unlikely; the photon gas will

remain in its initial configuration until the light leaves the cavity via mirror transmission. When

the experiment is repeated using a higher dye concentration, the photons get reabsorbed during

the storage time; reabsorption of photons in higher energy modes is stronger as the absorption

rate roughly scales like Γ12(𝜔) ∝ exp(ℏ𝜔/𝑘B𝑇 ) in the spectral regime around 𝜆 ≈ 580 nm. For

strong reabsorption and reemission rates one expects the photon cloud, independent of its initial

configuration, to transition into the thermal equilibrium state, which in the harmonic trap is a

Gaussian of width 𝜎𝑟(300 K), see also sec. 2.5.4. During thermalization, the photons are expected

to accumulate around the transverse cavity center and equivalently, propagate closer to the opti-

cal axis at lower transverse momenta. The redistribution of photons towards the trap minimum

leads to an increase of the central phase space density as compared to the initial configuration.

Notably, each reabsorption process has a nonzero chance for photon losses. The major chan-

nels arise from the finite fluorescence quantum yield (𝜂R6G ≈ 95%) and unconfined spontaneous

emission under large angles with respect to the optical axis as the mirror reflection profile is

high only around normal incidence (see Fig. 2.2) and does not significantly alter the free photon

density within this solid angle. While the non-unity quantum yield in our context is an unavoid-

able loss channel, the ratio of transversally emitted (and hence for our purpose lost) photons

to the paraxial ones (captured by the resonator) is not known per se. The predominantly one-

dimensional band gap of the cavity still reduces the solid angle of unmodified free space emission

and a Purcell enhancement [113] of fluorescence into the centrally located resonator modes has
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not been thoroughly investigated for the present system [72]. Therefore, although its value is

unknown, we introduce an effective quantum yield 𝜂
eff

that includes both loss channels. The

emission rate of an excited molecule at position 𝑥 into any resonator mode is the sum over all

individual contributions with the Einstein coefficient for emission 𝐵̂21,𝑖(𝑥) = 𝐵21,𝑖 ℏ𝜔 |𝜓𝑖(𝑥)|2 that

already includes the mode function 𝜓𝑖(𝑥). As in the low photon number limit only the ratio of

emission into and out of the cavity is relevant, we calculate 𝜂
eff

as

𝑅cav(𝑥) = 𝛼∑
𝑖
𝐵̂21,𝑖(𝑥) (3.3)

𝜂
eff

=
𝑅cav(𝑥)

𝑅cav(𝑥) + Γiso

(3.4)

where the ratio can be scaled by a factor 𝛼 to account for its yet unknown value. The finite free

space fluorescence quantum yield 𝜂 ≈ 95% is also included in Γiso as it is also formally described

as a transition rate (sec. 2.1.3). It turns out that the spatial dependence of 𝑅cav(𝑥) can be omitted

in the central region of the cavity.

The impact of losses on the phase space evolution can be investigated with a Monte-Carlo

simulation, sec. 2.5.4. The pump spot width is set to 180 µm fwhm and the cutoff wavelength to

𝜆c = 587 nm. The system gets time evolved until a certain number of molecules were excited by

the pump beam and no photonic or molecular excitations remain inside the cavity. The central

phase space density is, similar to as planned in the experiment, calculated from the accumulated

photon cloud via (1.17)

(𝟎, 𝟎) =
1

4𝜋2
𝑁

𝜎2𝑟 𝜎2𝑝
. (3.5)

where 𝜎𝑟 ,𝑝𝑟 are the standard deviations of the respective distributions. Alternatively, if the density

profile in some cases does not compare well to a Gaussian function, 𝜎𝑟 ,𝑝𝑟 can be identified with

the root mean square of the distribution, 𝜎𝑟 =
√
⟨𝑟2⟩ − ⟨𝑟⟩2. The results of a simulation for

𝜂
eff

≈ 95% are depicted in Fig. 3.3. In panel a), several radial intensity profiles that form during

the resonator lifetime are shown for different dye concentrations. For 𝜌 = 10−3mmol/l, the cloud

basically remains in its initial configuration, which is broader than the pumping profile (dashed

line). As the dye concentration is increased one can observe the expected reshaping of the cloud

as it gets narrower and the intensity increases at 𝑟 = 0. When the width has converged to the

thermal equilibrium value of 𝜎𝑟(300 K), every additional reabsorption process does (on average)

not further compress the phase space distribution but only continues to induce photon loss,

hence there is an ideal amount of reabsorption processes to maximize the phase space density.

Next, the simulation is carried out for different 𝜂
eff

where 𝜎𝑟 and photon number 𝑁 are extracted

from the profiles; Two exemplary curves are shown in panel b) for 𝜂
eff

= {50, 95} %. In theory,

𝜎𝑟 and 𝜎𝑝𝑟 are identical up to a conversion factor, hence only 𝜎𝑟 is shown. The behavior of 𝜎𝑟
is very similar in both cases as it converges to the expected 𝜎𝑟 ≈ 90 µm for the high quantum

yield 𝜂
eff

= 95% whereas it drops slightly earlier for 𝜂
eff

= 50% and converges to a value slightly

below the thermal width; this is understood from faster photon loss of higher energetic modes,

which significantly reduces the cloud width. Similar behavior is visible for the photon number𝑁 ,

which is shown normalized to its initial value 𝑁(𝜌 = 10−4mmol/l). Even for rather high effective

quantum yield, 𝑁 decays to ≈ 25% for typical dye concentrations of 1mmol/l typically used in

the experiment. For 𝜂
eff

= 50%, the drop occurs already at one magnitude smaller concentrations

and is significantly steeper. One finds the behavior of 𝜎𝑟 and 𝑁 to not differ a lot for 𝜂
eff
< 50%

anymore (not shown). Finally, we calculate the relative phase space density in the trap center for

varying 𝜂
eff

shown in panel c). If the only loss channel was the finite fluorescence quantum yield

corresponding to 𝜂
eff

= 95%, the maximum phase space compression factor would be around 2

instead of around 6 in the ideal case 𝜂
eff

= 100% (curve not fully shown). If the effective quantum
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yield from undirected spontaneous decay rises above 𝜂
eff

= 50%, (𝟎, 𝟎) increases no more than

20 %, while for an almost certainly lossy reabsorption process 𝜂
eff

< 10%, it does naturally not

increase with 𝜌, but only exhibits a reduction. In this regime the curves look almost identical.

3.3 Experiment

3.3.1 Preparation

The goal of this part of the experimental work is to probe the spatial, momentum and qualita-

tively the spectral profile of the photon gas at different dye concentrations to examine the effect

of increased reabsorption on the photon gas, transferring it from its initial configuration (dictated

by the pump beam) into the thermal steady state (dictated by the Kennard-Stepanov law (2.2)).

Differently concentrated dye solution samples are prepared by repeated dilution of a highly con-

centrated initial sample (𝜌 = 3mmol/l) with additional solvent using a milligram sensitive scale.

Since the dye concentration can not be reliably changed during a running experiment, each data

point is obtained after reassembling the cavity. The total intensity values are normalized to the

absorbed pump power where a proportional scaling of the power with the dye concentration is

assumed as the absorbance is≲ 1% (short sample approximation). The actual amount of absorbed

pump light is inaccessible within the required precision, which is uncritical as the relevant quan-

tity is the relative absorbance of different solutions. The uncertainty of the concentration ratios

are estimated to be of order 1 %. The molar extinction of the 𝜌 = 0.01mmol/l solution in a cuvette

can be measured in situ using the 𝜆 = 532 nm pump laser and confirms the textbook value of

𝜀(532 nm) ≈ 114 000 cm−1 Lmol−1 within a 5 % uncertainty. The pump beam diameter inside the

resonator was prepared to 180(20) µm fwhm prior to operation by removing one cavity mirror

and coating the remaining mirror with a low-concentrated dye film. The occurring fluorescence

profile then resembles the pump excitation profile at the otherwise not directly accessible posi-

tion inside the cavity. The ellipticity of the Gaussian pump beam due to its incidence under an

angle of 42(1)◦ with respect to the optical axis can be partially compensated for by tilting a lens

in the beam path (not shown in figure).

A major difficulty during data acquisition is dye residue on the mirror substrate, which tends

to accumulate inside tiny gaps and produce background fluorescence from places outside the

resonator. Additionally, the dye residue can potentially contaminate the low dye concentration

samples as some molecules are dissolved again and diffuse into the resonator volume. To prevent

this, the mirror on the analysis side of the setup is mounted inside a custom made aluminum

mount (see Fig. 3.2) and the gaps are filled with two component glue (manufacturer: UHU) based

on epoxy resin. After curing, it resists the used solvents (ethylene glycol or acetone) and reliably

seals this part of the cavity.

Measurement Procedure Since the cavity is disassembled and set up again for every dye

concentration data point, it is challenging to reproduce the same experimental conditions in

every run, but there are methods expedite the process. Although the mirror surrounding is sealed

with epoxy resin, cleaning of the mirrors, especially removing the previously used dye solution

with acetone soaked lens tissues has to be done more rigorously than usual. When the mirrors are

inserted back into their mounts, only the smallest required amount of dye solution is dropped

between the mirrors to avoid residuals outside the mirror region. Moreover, the mirrors are

initially aligned with respect to the optical axis via backreflection of the helium neon laser beam.

Their separation is reduced, first with the manual translation stage and the final micrometers

with the integrated piezo actuator. Upon pumping the cavity, the same half wave number 𝑞 can

be set every time by comparing the cavity cutoff wavelength 𝜆c with the newton ring radius of

the helium neon laser interference. Since both wavelengths are distinct, the combination of the

two quantities allows to identify 𝑞. This is essentially crucial as a varying cavity length implies a
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Fig. 3.4: Cavity emission spectra for different dye concentrations 𝜌. The data is corrected for mirror
transmission and normalized to the absorbed power assuming proportional scaling with 𝜌.

different trapping frequency and changes the pump beam absorbance due to the different dye film

thickness. After alignment and feedback locking of the cutoff wavelength, real and momentum

space images of the photon gas along with spectra are recorded.

3.3.2 Resonator Emission Data

Spectral Distribution

We begin our discussion of the dye concentration-dependent resonator emission by examining

several photon gas spectra which are shown in Fig. 3.4. All curves are normalized to the absorbed

pump light, which is assumed to scale proportional with the dye concentration 𝜌. Additionally,

to convert the measured signal to mean intensities inside the resonator, the data is rescaled with

the wavelength dependent transmission of the mirrors, see Fig. 2.2. For low dye concentrations

like 𝜌 = 10 µmol/l, where photon reabsorption during the resonator lifetime is still unlikely due

to the long absorption times compared to the resonator storage time (Γ12 ≪ Γcav), the spectral

modes show an almost uniform occupation with higher energy modes (small wavelength) being

strongest – a distribution far from thermal equilibrium. Due to the low pump beam absorp-

tion, the signal-to-noise ratio is comparatively low. Upon increasing 𝜌 one observes a systematic

change in the slope of the spectral tail. This is expected as the dye absorption rate in this spec-

tral regime increases exponentially with decreasing wavelength. At the in other dye-microcavity

experiments typical concentration of 𝜌 = 1mmol the spectrum agrees with a Boltzmann distri-

bution, calculated for a temperature of 300 K. The regime of Γ12 ≫ Γcav is entered for even higher

concentrations where the slope of the distribution still changes slightly but is also accompanied

by a global decline in the signal. Note that the obtained spectral information is directly connected

to the spatial and momentum profiles as higher energetic modes contribute in the outer regions

of the trap.

Spatial and Momentum Distribution

The central phase space density (𝟎, 𝟎) of the photon ensemble is extracted from the spatial

and momentum space profiles, which are both inferred from the cavity emission. Exemplary

raw data (𝜌 = 1mmol/l) for a laser pumped cavity is shown in Fig. 3.5. In panel a) one sees

that both profiles are spherically symmetric and of roughly Gaussian shape as seen in the cut

profiles shown in the bottom half of the figure in arbitrary linear units, which where extracted

at the position of the dashed line. The emission angle refers to the quantity as entered into

the objective lens, after refraction at the outer face of the mirror substrate, see sec. 2.3.3. In
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Fig. 3.5: Spatial and momentum distribution. a) Cavity emission in real and momentum space with a cut
profile from the position of the dashed line (arbitrary units, 𝜌 = 1mmol/l). b) Absorption-normalized,
radially averaged real (right) and momentum space profiles (left) recorded at different dye concentrations.

the momentum space picture one can see that the finite aperture of the objective lens cuts off

emission angles above roughly 23◦ which is consistent with the maximum expected collected

emission angle resulting from the numerical aperture NA = 0.42.

Exemplary radially averaged profiles are shown in panel b) for three exemplary dye concen-

trations, here obtained from the laser-pumped cavity. Since the absorbed power scales propor-

tionally with the dye concentration and the experiment is operated with constant pump power

to avoid bleaching effects, the data is normalized to the dye concentration for a reasonable com-

parison. The concentration dependent shape qualitatively reproduces the behavior shown in Fig.

3.3a. Both, spatial and momentum component, show the same behavior as expected from their

equivalence in the harmonic oscillator. Agreements with Gaussian fit functions is given, from

which 𝜎𝑟 and 𝜎𝜃 (with 𝜃2 = 𝜃2𝑟 = 𝜃2𝑥 + 𝜃2𝑦 ) can be extracted. Slight variations in the intensity are

typical for these experiments, since at low dye concentrations the signals are very weak. For the

following analysis, the experiment was repeated several times. However, the reduction of the

cloud width does here not go along with an increase of the central intensity, indicating that the

system is subject to significant photon loss, cf. sec. 3.2.

3.3.3 Phase Space Density

From the obtained profiles the behavior of the central phase space density as a function of the

dye concentration is extracted. However, the momentum space cutoff introduced by the finite

microscope aperture requires a brief discussion of its implication for the measured spatial dis-

tribution. The finite aperture acts as a low pass filter of spatial frequencies; its effect on the

spatial wave function is illustrated in Fig. 3.6a. In the trap center, where the momentum of a

classical particle is maximized, the wave function oscillates the fastest. If outer, large momenta

are clipped, the spatial wave functions are filtered predominantly in their central high-frequency

region, which can be confirmed in the experiment by e.g. momentum clipping using an iris in the

Fourier plane. Therefore, the observed spatial cloud contains less photons and appears slightly

broader than its unfiltered counterpart. To accent for this, we introduce a correction factor for
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Fig. 3.6: a) Effect of finite aperture on the spatial intensity distribution. High frequency filtering in mo-
mentum space causes the central intensity to decline (inset: single mode density example, same axes).
b) Extracted data for real space width 𝜎𝑟 , momentum space width 𝜎𝜃 and normalized remaining cavity
photon number 𝑁 for various dye concentrations at 𝜆c = 587 nm. Solid lines are numerics for 𝜂eff ≈ 2%,
cf. sec. 3.2. Dashed lines are predictions for 𝑇 = 300 K. c) Extracted central phase space densities from
the data in b) with theory curves for different 𝜂eff taken from Fig. 3.3.

the photon number 𝑁 and spatial width 𝜎𝑟 as

𝑁 ≈ 𝑁exp (1 − exp(−
1
2
𝜃2

max

𝜎2𝜃 ))

−1

(3.6)

𝜎𝑟 ≈ 𝜎𝑟 ,fit (1 + exp(
𝜎𝜃 − 190 µm

20 µm ))

−1

(3.7)

where the correction for 𝑁 is analytic as the momentum space profile can be extrapolated as a

Gaussian while the correction for 𝜎𝑟 is empirically obtained from numerical simulations. Since

the intensity distribution here is an incoherent superposition of single mode densities one has

to apply the Fourier filter to each individual wave function prior to summation, which is cum-

bersome analytically. The correction factor for 𝑁 reaches values up to ≈ 20% whereas the 𝜎𝑟
correction is below 5 %.

Figure 3.6b shows exemplary measured cloud widths for a cutoff wavelength of 𝜆c = 587 nm
and absorption normalized output photon numbers 𝑁cav. The corresponding calculated cen-

tral phase space densities are shown in panel c) for three different cutoff wavelengths 𝜆c =
{572, 580, 587} nm. The shown values are averaged over three measurement series (5 data points

for the three lowest 𝜌 values); the statistical errors of the extracted 𝜎 values are smaller than the

data point size. After applying the correction factors to the data, the phase space density does not

significantly increase here and eventually drops at higher dye concentrations. Comparing with

estimations shown in Fig. 3.3, such behavior is expected for low effective quantum yields. For
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comparison, several theory curves with different 𝜂
eff

from Fig. 3.3c are shown for 𝜆c = 587 nm
(red). The predictions for 𝜂

eff
< 33% are all very similar, hence the data suggests within the

experimental uncertainty that we are operating in this low effective quantum yield regime. The

remaining theory curves for the other cutoff wavelengths are both for 𝜂
eff

= 2% but also here

several curves match within the experimental uncertainty (not shown). The dye concentration 𝜌
has to be slightly scaled to match the data (same factor for all curves, cf. sec. 2.2.2). The momen-

tum widths 𝜎𝜃 are reproduced by the theory curve, whereas the spatial widths 𝜎𝑟 systematically

lie below the expected values; a 5 % downscaled theory curve is shown for comparison. This is

unexpected as both should be fully correlated in a harmonic oscillator environment. Towards

smaller clouds spatial and momentum widths tend to agree better. This could be a consequence

of momentum space extrapolation, which includes infinitely large transverse momenta beyond

the resolvable region. Given the lower reflectivity of the mirrors for non-paraxial incidence an-

gles of 𝜃 ≳ 25◦, the mirrors might not provide a confinement anymore beyond the resolvable

angular range. Additionally, due to the mirror curvature, the mechanical mirror separation in

the outer parts of the cavity eventually drops below a single half wave node and a proper res-

onance condition (see sec. A.1) can not anymore be fulfilled. A further investigation has been

pursued by imaging the cavity emission with a higher numerical aperture as described in sec.

3.4.

Apart from varying the cavity cutoff wavelength and thus the spectral working regime of the

dye, several further tests were performed such as replacing the dye medium with perylene di-

imide solved in acetone, varying pump beam sizes from 50 µm to 300 µm or using different cavity

mirror coatings. In none of these cases, a significant phase space density increase could be ob-

served. For the mirrors, a dielectric coating was designed in cooperation with the LASEROPTIK

GmbH company, aiming for better suppression of isotropic fluorescence; the transmission profile

is shown in Fig. A.3. While the stop band of these mirrors covers the experimentally relevant

spectral region over a wide angular range, the high transmission of p-polarized light around the

Brewster angle [69] of here around 60◦ is unavoidable for Fresnel reflection based mirrors.

3.4 Transverse Losses and High NA Imaging

The observed absence of a phase space density increase motivates further investigation of the

actual loss probability of a photon per emission process, theoretically and experimentally. The

total emission rate into the resonator volume can be estimated by employing the Einstein co-

efficient, which quantify the coupling of a single molecule to a cavity mode via absorption and

emission of a photon. The absorption rate in (2.85b) measures per volume, hence integrating over

a unit volume yields a molecule number 𝑀 and a single photon absorption rate 𝑅
abs,𝑖 = 𝐵̂12,𝑖𝑀 .

The molar extinction coefficient 𝜀 in (2.82) measures per molecule density and can be converted

to a concentration independent cross section 𝜎 via Avogadro’s constant 𝑁A. By comparing their

respective absorption formulae we get 𝜀𝜌𝑐 = 𝜎𝑐𝑀/𝑉 . For the volume 𝑉 , we identify the (local)

effective mode volume 𝑉
eff
(𝑥) = 𝑞𝜆c/(2𝑛̃)|𝜓(𝑥)|−2 [114–116]. After changing the units of 𝜌 from

mol per liter to particles 𝑀 per m3
, one can compute the Einstein coefficients via

𝐵̂12,𝑖 =
𝜎(𝜔𝑖)𝑐
𝑉

eff,𝑖
= 103 log(10)

𝜀(𝜔𝑖)
𝑁A

𝑐
𝑉

eff,𝑖
and (3.8)

𝐵̂21,𝑖 = 𝐵̂12,𝑖 exp(−
ℏ(𝜔𝑖 − 𝜔ZPL)

𝑘B𝑇 ) (3.9)

where 𝐵̂21,𝑖 is obtained via the Kennard-Stepanov relation (2.72). As an example, one finds for

the emission rate of a molecule at the harmonic trap center (𝑟 = 0) into the TEM00 ground mode

𝐵̂21,00(𝑟 = 0) ≈ 12 kHz. To obtain the capture efficiency of the complete cavity one has to sum

over all bound states in the resonator. Given that the mirrors are only highly reflective up to an
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Fig. 3.7: High NA imaging of the resonator emission. a) Working principle of the hemisphere lens: Light
originating from the center of the sphere is not refracted since it crosses the surface under normal in-
cidence as compared to the left side. b) Cavity fluorescence in momentum space. Inner ring shows the
captured momentum range with medium NA optics. The outer ring denotes the maximum detectable
angle (𝜃max ≈ 48◦) of the setup shown in a). The cut profile from the vertical line position allows for a
better comparison of inner and outer part of the signal.

incidence angle of around 25◦, we sum over modes with energy 𝐸𝑖 < 1000ℏΩ according to (2.43).

Contributions of higher energetic modes decline in the cavity center due to their increasing

mode volume, however, the mode degeneracy 𝑔(𝐸) ∝ 𝐸/ℏΩ in combination with the increasing

fluorescence strength towards higher energies 𝐵̂21 roughly compensates for this; accordingly,

the emission rate into the cavity per energy level is approximately constant within the central

region of the resonator. A full numeric evaluation then yields for the total emission rate into the

resonator

∑
𝐸𝑖<1000ℏΩ

𝐵̂21,𝑖(𝑥 = 0) ≈ 7MHz . (3.10)

Comparing this value to the free spontaneous decay rate of rhodamine Γspont = 1/4 ns = 250MHz
one finds the emission rate into the cavity to be much smaller, corresponding to 𝜂

eff
≈ 3%; A

comparable result has been obtained in ref. [105]. For an intuitive comparison, one gets in

a geometrical picture for the solid angle of the reflection cone with apex angle 25◦ a fraction

Ω̃/4𝜋 = 2 sin2(𝜃/2) ≈ 10% [117], where the factor of 2 accounts for two-mirror symmetry of the

cavity.

To experimentally determine the transverse photon loss fraction changing the imaging setup

allows for the detection of larger emission angles. For this purpose, a solid immersion lens [118,

119] (SIL, supplier: Edmund Optics) is employed in combination with a microscope objective

(model: Mitutoyo 50x M plane APO) of numerical aperture NA = 0.75 and 5mmworking distance.

The working principle is shown in Fig. 3.7a. The SIL is a glass hemisphere, which is positioned

such that the photon gas lies within its spherical center. This arrangement suppresses refraction

of the outgoing light away from the optical axis at the substrate surface
1

and thus increases

the detectable angular range by a factor corresponding to the refractive index of the medium

𝑛̃. To deploy this configuration in the optical microcavity setup, a mirror substrate is ground

and polished down to 2mm thickness and the SIL is then glued onto its backside using optical

adhesive. Given the total thickness of 4mm, the microscope objective can be placed close enough

for proper imaging. The maximum detectable emission angle is 𝜃max = arcsin(0.75) ≈ 48◦. The

obtained momentum space distribution together with a vertical line cut using a dilute dye sample

(𝜌 = 0.01mmol/l) is shown in Fig. 3.7b, indicating that only a small fraction of fluorescence

1
The refractive index of the dye solvent (ethylene glycol, 1.44), mirror substrate (quarz, 1.46) and lens (N-BK7, 1.52)

still slightly differ, which is neglected for simplicity.
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Fig. 3.8: Semi-analytically obtained spectra for 𝜂eff → 0, calculated with (2.91) after precalculation of the
required coefficients.

photons couple to the cavity modes, the latter are visible as a dim cloud in the central region

of the image. The doughnut shaped signal is unconfined fluorescence that passes through the

mirrors. In this angular range 𝜃 ≳ 25◦ the mirror transmission for p-polarized light rises up to

≈ 100%. The photons accordingly spend several femtoseconds inside the dye medium, which

lies far below the dye absorption times of order picoseconds and nanoseconds regime causing

rapid photon losses in this solid angle. The bright spot on the right (with a weak reflection on

the left) arises from pump beam light, as it also propagates within the detectable angular range.

The capture efficiency of the cavity can be quantified by comparing the emitted photon number

from the cavity𝑁cav (see 3.7b) with the absorbed pump power (from a comparable measurement).

For this measurement a low dye concentration of 0.01mmol/l is chosen to avoid reabsorption by

the dye during the resonator storage time. From the molar extinction coefficient of rhodamine

6G the pump beam absorbance becomes

𝑃
abs

/𝑃0 = 10−𝜀𝜌𝐿dye
(3.11)

≈ 0.025 % (3.12)

where 𝐿
dye

= (𝑞 − 𝑞0)𝜆𝑐/2
√
2 is the dye film thickness between the mirrors. Here, 𝑞 − 𝑞0 is

an experimental correction for the mechanical mirror separation (see sec. 2.2.2) and the factor√
2 accounts for the diagonal crossing of the medium. The integrated signal emitted from one

resonator side can be compared to the pump beam signal itself when directing it onto the camera

sensor (using a neutral density filter). One then finds the fraction of detected photons with

respect to absorbed photons to be

𝑁cav

𝑁
abs

≈ 0.02(1) (3.13)

which already takes into account correction factors for the loss from finite quantum yield, partial

transmission of the pump beam towards the dye medium and that the photons leave the cavity

on both sides. The uncertainty of 𝑁
abs

in this measurement is very large, but even with a relative

error of several hundred percent the capture efficiency of the cavity would remain a single-digit

percentage.

The large loss probability would correspond to the regime in sec. 2.5.3. From (2.91) one can

analytically obtain spectra for different dye concentrations as shown in Fig. 3.8. Their appar-

ent similarity with the experimentally obtained spectra shown in Fig. 3.4 gives further evidence

that the dye-microcavity system in the limit of small photon numbers operates at large trans-

verse losses, predominantly caused by high mirror transmission under large incidence angles as

compared to e.g. isotropic scattering on the surface.
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Fig. 3.9: Pumping the cavity with sunlight. a) Spatial image of the thermalized photon cloud emitted
from the microcavity. b) Captured sunlight power, which decreases as the sun sets in the afternoon.
Short term variations arise due to changing atmosphere transmission caused by e.g. clouds. c) Fiber
coupling efficiency. It is stable within 1 % accuracy, realized by feedback controlled mirror adjustment to
counteract earth’s rotation.

3.5 Sunlight Pumping

To investigate the potential real world application of a solar light concentrator, the pump laser

was replaced by actual sunlight, see sec. 3.1.2 for the fiber coupling apparatus based on a mo-

torized mirror. The sunlight spectrum is filtered to 𝜆pump < 550 nm as the dye absorption is

negligible at longer wavelengths and to avoid spectral overlap of the pump light with dye fluo-

rescence. The sunlight pump spot was adjusted to reproduce the shape of the laser pump spot

with fwhm 180 µm. The observed spatial emission profile as seen in Fig. 3.9a is comparable to

the laser pumped case, which is a direct consequence of Kasha’s rule, cf. sec. 2.1.

The measurements start in the afternoon due to the orientation of the building. The power

of the captured sunlight fluctuates on a timescale of seconds and minutes due to e.g. passing

clouds, see Fig. 3.9b. The long term temporal decrease happens due to the continuous sun set,

where the optical path length through the atmosphere and correspondingly Rayleigh scattering

are gradually increased [120]. Spectral red shift of the pump light due to the cross section scaling

∝ 𝜔4
turns out to be negligible during the given time period. For a stationary setup, the fiber

coupled sunlight vanishes within one minute due to the changing incidence angle of the sun.

Automated readjustment of the mirror keeps the coupling efficiency (power before the fiber di-

vided by power after the fiber) on a constant level with a temporal jitter of order 1 %, see Fig. 3.9c.

With the tracking apparatus it was possible to operate the experiment comparable to the weakly

laser pumped system. To achieve a detectable cavity emission signal at low dye concentrations

like 𝜌 ≤ 0.1mmol/l, the experiment has to be carried out on a cloudless day, preferably during

the summer period.

3.6 Discussion

So far, a phase space compression inside the here presented dye-microcavity system based on

repeated absorption and emission could not be demonstrated. The theoretical and experimental

findings suggest that a spontaneous emission process, which follows upon a reabsorption process

and is required to redistribute the high energetic photons towards the trap center, is accompanied

by losses which ultimately prevents photons from accumulating in the low energy states.

Despite this circumstance, the rate equation model in sec. 2.5.3 suggests that under contin-

uous pumping, the observation of a thermal Boltzmann distribution in the photon spectrum at

otherwise typical concentrations around 𝜌 ≈ 1mmol/l does not contradict the previously re-

ported findings. For adequate experimental settings, mainly the combination with the spectral
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emission profile Γ12(𝜔) of fluorescence following pump irradiation with the reabsorption rate

Γ12 ∝ exp(ℏ𝜔/𝑘B𝑇 ) (and hence the induced losses) project the initial photon cloud on a 300 K
Boltzmann distribution. However, this does not go along with a redistribution of the mode ex-

citations but with a selection of modes. Moreover, the time-resolved measurements in [65] are

carried out in a stimulated emission dominated regime, which greatly enhances the cavity cap-

turing efficiency, re-establishing the possibilities for redistribution. Perspectives to increase the

confinement capabilities of the resonator in the spontaneous emission regime are discussed in

chapter 5.

Concerning the potential use as a solar light concentrator, the apparatus so far supports the

incoupling of sunlight. On sunny days, the absorbed power inside the resonator is of the same

order as compared to the laser power chosen to stay below the noticeable bleaching threshold.

As expected, the obtained density profiles look similar with respect to the laser pumped case.
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Experiments on Homogeneously Trapped
Photon Gases

This chapter deals with the experimental implementation of high quality flat-bottom potentials

for light and measurements on uniform photon gases, in particular its response to weak potential

gradients.

Trapping photons in a homogeneous potential introduces additional requirements to the ex-

perimental setup. While spherical mirrors for harmonic traps can be ordered from stock, the

rectangular outlines of a box structure have to be imprinted in a custom process. In this thesis

they are created by locally elevating the surface of a mirror, effectively creating repulsive poten-

tial walls and for a finite-size homogeneous confinement. The enclosed region where the photon

gas is stored remains untouched, which is an important advantage over other techniques such

as CO2 laser milling [21], because additionally induced surface roughness can render sensitive

measurements of the ground mode unfeasible. In earlier works, this circumstance was the main

obstacle that hindered investigations in this new direction.

In the beginning of this chapter, the basic properties of a photon gas in a box are investigated,

namely spatial, momentum and spectral distribution. Comparing its caloric properties such as

internal energy and the closely related specific heat, the behavior across the phase transition

confirms the absence of a discontinuity as expected for a two-dimensional uniform gas. By con-

trolled introduction of a linear potential gradient, experimentally realized by sensitive tilting of

one of the cavity mirrors, one can extract the equation of state (EoS) 𝑛 = 𝑛(𝜇, 𝑇 ) and the isother-

mal compressibility 𝜅𝑇 of the system. The theoretical predictions have to account for a finite trap

depth for our experimental box implementation.

4.1 Potential Creation

Nanometer precise structuring of a mirror surface has recently opened entirely new possibilities

for the investigation of two-dimensional photon gases [25, 59, 60, 121]. Since commercial mirror

substrates are only available with planar or spherically curved surfaces, the creation of tailored

local surface topographies is a powerful tool for investigating photon gases in highly non-trivial

potential landscapes [122]. The here used structuring method was developed in our research

group in previous works [123–126].

A dielectric mirror is a stack of thin layers (thickness of order 𝜆/4𝑛 ≈ 100 nm, 𝑛 is the re-

fractive index) made of alternating materials, where mechanical stress occurs at each material

interface due to the atomic crystal structure mismatch [127, 128]. The stress is enhanced by the

production process of the mirrors: The material is typically deposited via ion beam sputtering

[129] where ions (e.g. argon) are accelerated onto a solid material target consisting of the desired

coating material. On impact, surface atoms are sputtered off the bulk and condense on the mirror
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Fig. 4.1: a) Principle of mirror structuring by delamination. A laser beam (𝜆 = 532 nm) is irradiated from
the substrate side and focused onto the silicon layer (black) where part of it gets absorbed and the impact
region heats up (red glow). Upon release of the induced thermal stress the layer stack lifts up permanently.
To reach different lateral positions of the surface, the laser beam is steered by a two-dimensional galvo
scanner whose relative tilt angle (𝜃𝑥 , 𝜃𝑦) is translated to a position (𝑥, 𝑦) on the silicon layer via a lens. The
power 𝑃(𝑡) is controlled by an acousto-optic modulator. b) Exemplary height profile of a square structure,
created by steering the laser beam along the depicted path. The height axes are valid for b) and c). c)
Height profile cut through the left structure edge depicted in b) with a Gaussian fit.

substrate in a highly controlled way. The process is performed at temperatures of order 100 ◦C
[130]. Afterwards, the coating is tempered to ambient conditions which further increases the

stress between the layers due to their different thermal expansion coefficient, which can result

in slightly curved mirror surfaces with radii of curvature being of order 100m [130].

The above mentioned behavior can be systematically exploited to create permanent mirror

surface structures by locally inducing material stress in a well-controlled way [131]. Here we

use a focused laser beam (diameter ≈ 1 µm fwhm) to locally introduce heat, see Fig. 4.1a. Since

the dielectric layers of the cavity mirrors show negligible absorption in the visible or infrared

wavelength regime (where most high beam quality laser sources are available), they contain a

30 nm thick silicon layer between dielectric coating and glass substrate, which absorbs around

30 % of the incoming light. The locally increasing temperature causes a thermal expansion mis-

match between the dielectric layers, ultimately leading to a permanent elevation of the mirror

surface. Presently, this "delamination" mechanism is understood from the layers close to the

substrate detaching from one another and resulting in a lift of the surface during the process

[132].

4.1.1 Microstructuring Setup

The setup scheme used for performing controlled delamination is shown in Fig. 4.1a and is real-

ized in a different apparatus. As a light source, a continuous-wave solid state laser (Model: Verdi

G12, 𝜆 = 532 nm, Manufacturer: Coherent) is employed to benefit from its high quality 𝑀2 < 1.1
beam profile and power stability [111]. While the laser head runs at constant output power, the

writing beam power 𝑃
laser

(𝑡) is temporally modulated via an acousto-optic modulator. A set of

two orthogonally rotatable mirrors (galvo scanner, manufacturer: Thorlabs) is used to steer the

laser beam over the mirror sample. A convex lens transforms the resulting propagation angles

(𝜃𝑥(𝑡), 𝜃𝑦(𝑡)) into positions (𝑥(𝑡), 𝑦(𝑡)) on the sample plane while preserving the longitudinal fo-

cus position (Fourier transform, see sec. 1.6). The focus diameter roughly measures 1 µm. Galvo

scanner and acousto-optic modulator driver are controlled via custom computer software.

The light reaches the silicon layer from the backside. For the given Si layer thickness, one

observes a deformation of the mirror surface above a threshold power of around 25mW. The

resulting surface elevation increases with the deposited thermal energy, e.g. by increasing the

laser power or illumination time [59]. When the elevation exceeds heights around 60 nm, further



4.1 Potential Creation 57

energy deposition results in a threshold-like degradation of the reflective properties, verified by a

strong increase of the mirror transmission which renders tens of micrometers of the surrounding

surface unusable for our experiments [123]. Simple outlines are created by linearly steering

the laser beam over the surface in the desired pattern as illustrated for a square pattern in Fig.

4.1b. Other methods are decomposing every target topography in point-like patterns or iterative

writing [60].

The height profiles are measured via white-light interferometry using a so-called Mirau inter-

ferometer. It operates like a Michelson interferometer where the mirror sample is placed at the

end of one arm. By moving the sample in 𝑧 direction, the interference signal in the output path

can be employed to determine the position dependent phase shift between neighboring pixels

Δ𝜑(𝑥, 𝑦) = 𝑘Δ𝐷(𝑥, 𝑦) and hence straight forwardly compute the two-dimensional height profile

of a reflecting surface in a single scan, see ref. [59] for details of this setup.

4.1.2 Properties of Delaminated Regions

The delamination process is intrinsically limited in its transverse spatial resolution. The induced

surface deformation turns out to be of Gaussian shape as visible in Fig. 4.1b and c. Its intrinsic

width of 𝜎 = 2.2(1) µm (≈ 5 µm fwhm) significantly exceeds the heating beam diameter. It

corresponds to a 10 % to 90 % rise length of

𝓁rise =
√
2𝜎 (

√
− log(0.1) −

√
− log(0.9)) = 3.7(2) µm . (4.1)

The finite spatial resolution of the imaging apparatus with 𝜎res ≈ 0.3 µm merely alters the exper-

imental result by around 1 % as seen from 𝜎2
real

= 𝜎2
fit
− 𝜎2

res
for Gaussian distributions.

As a final note we discuss the consequence of the structuring treatment for the mirror reflec-

tivity. For this purpose, a cavity ring down measurement was carried out in [60, 126] with the

resonator mode being located on a large delaminated area of a certain height. The measurements

revealed that for Δ𝐷 ≲ 15 nm there was no observed impact on the reflectivity while a sample

with Δ𝐷 = 18 nm showed an increased loss 1 − 𝑅 of 200 % with respect to lower heights. Higher

structures have not been investigated in this context.

4.1.3 Box Potential Structures

Since the locally induced surface elevation Δ𝐷(𝑥, 𝑦) acts as a repulsive potential (see sec. 2.3), a

box potential is created by structuring the region of the potential border, leaving the actual box

region unstructured. We know from sec. 2.3 that the photon potential is connected to the height

profile in first order approximation via

𝑉 (𝑥, 𝑦) = 𝑚ph𝑐2
Δ𝐷(𝑥, 𝑦)

𝐷0
= 4𝜋ℏ

𝑐0𝑛̃
𝜆2𝑐

Δ𝐷(𝑥, 𝑦)
𝑞

(4.2)

where the last term solely depends on experimentally accessible variables. The final height pro-

files of different sized box potentials are shown in Fig. 4.2a. In all following measurements we

employ quadratic boxes (𝐿 ≡ 𝐿𝑥 = 𝐿𝑦 ). To suppress photon loss via tunneling through the po-

tential barrier [121, 124], a thick potential border is created by steering the laser beam over the

mirror surface in square shaped paths of different edge length, starting with the innermost loop.

The observed drop in elevation height towards the outer regions as seen in Fig. 4.2b is an in-

trinsic effect of the delamination process when the paths overlap and the heating beam power

is constant throughout the process. Although higher potential barriers are technically possible

(50 nm with the used mirrors, 200 nm (corresponding to ≈ 10𝑘B𝑇 ) were realized with a thicker Si

layer) we find that elevation heights above 25 nm do not allow for photon trapping anymore, see

sec. 4.4. Thus, the experimentally caused slight asymmetry in the shown boxes is of only minor
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lengths 𝐿. b) Horizontal cuts through the data in a). c) Surface roughness of the unstructured trapping
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significance. Since the surface quality (roughness and reflectivity) of the delaminated regions

tends to suffer from stronger buckling, the border height is raised slightly further above what

is still effective. Due to the intrinsic finite rise length of the delamination process, the potential

shape begins to adopt harmonic character for small box sizes with 𝐿 → 𝓁rise visible in the line cut

for the 𝐿 = 20 µm box in Fig. 4.2b. Due to 𝓁rise the effective box size in the bottom region tends

to be around 4 µm smaller than its design size (sec. 4.3.1).

Up to this point only the characteristics of the potential border have been discussed. Prior to

surface structuring, the availability of state-of-the-art superpolished mirror substrates and coat-

ing specifications also plays a crucial role. The photon gas mainly occupies this non-delaminated

region, where the surface roughness affects the reflectivity via scattering and the eigenenergies

similar to a weakly disordered potential when the noise features vary on smaller length scales

than the mode function. The surface topography of an untreated mirror surface is shown in Fig.

4.2c (different color scale). The roughness is defined as the rms of the local surface height profile

[133]

𝛿𝐷 =
√
⟨(Δ𝐷)2⟩ − ⟨Δ𝐷⟩2 = 0.05(1) nm = 0.5(1) Å (4.3)

which on the resolvable length scale of 1 µm is of the same order as the Bohr radius 𝑎𝑜 ≈ 0.53Å.

The height uncertainty of 0.1 Å is estimated by comparing subsequent recordings of the same re-

gion. When comparing the disorder potential generated by this surface roughness to the ground
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mode energy in a box one can estimate for experimental parameters 𝑞 = 7 and 𝜆𝑐 = 583 nm that

𝑉noise ≈ 2𝜋ℏ × 12.5 GHz !=
𝜋2ℏ2

𝑚ph𝐿2
= 𝐸11 (4.4)

which for 𝐿 ≳ 40 µm exceeds the ground state energy in the box; from here on a significant dis-

tortion of the spatial mode distribution is expected. A corresponding behavior is experimentally

confirmed, see sec. 4.3.2.

4.2 Experimental Setup

The experimental setup for the investigation of homogeneously trapped photon gases is schemat-

ically depicted in Fig. 4.3. Its basic operation principle is similar to the one presented in chapter

3 (Fig. 3.1), with modifications explained in the following.

4.2.1 Cavity Mirror Holders

Subnanometer precise alignment of the cavity mirrors plays a crucial role when working with flat

mirrors and homogeneous potentials. While for spherical mirrors the potential is insensitive to

the exact mirror alignment with just the potential minimum location being shifted, the situation

drastically changes for flat potential environments, where a tiny deviation from perfectly parallel

mirrors causes a beam walk-off. In a box with 40 µm side length the ground state energy is 𝐸11 ≈
2𝜋ℏ × 13GHz. Analogous to the surface noise potential, the state gets significantly perturbed if

the mirror distance varies by more than 50 pm on the given length scale. As manual alignment via

fine-thread screws is unfeasible during operation, both cavity mirrors are equipped with either

piezo actuator stacks or piezo driven screws allowing for sub-nanometer alignment capabilities as

depicted in Fig. 4.4a. The left mirror mount is a 2” high-stability (stainless steel, model: Thorlabs
Polaris K2S2P) mirror mount with integrated piezoelectric adjusters (continuous range: 17 µm or

280 µrad). The latter are operated with a voltage of 0V to 150V which are supplied by a manually

and externally controllable four channel voltage amplifier. The right mirror is a regular 2” mirror

mount (model: Radiant Dyes MXI-2-3030) where the provided fine-thread screws were replaced

by piezo driven screws ("piezo mikes", model: Physikinstrumente N-470.210 with E-870.4G driver),

which move forward in discrete steps of 𝑑
mike

= 20 nm length. After performing𝑁steps piezo mike
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steps, the resulting tilt angle 𝛼
tilt

of the mirror translates into a separation difference Δ𝐷
tilt

at the

box edges of

Δ𝐷
tilt

≃ 𝛼
tilt
𝐿 =

𝑁steps𝑑mike

𝐿mount

𝐿 (4.5)

where 𝐿mount is the separation of screw threading and mirror mount pivot point. For 𝐿 = 40 µm
boxes we get Δ𝐷

tilt
≈ 13 pm per step which lies below the previously mentioned upper limit. It

turns out that the discrete piezo actuators typically offer sufficient alignment precision.

In this series of measurements, the cavity cutoff wavelength can not be stabilized by helium

neon laser interference as the mirrors don’t have spherical geometry and thus no Newton ring

pattern forms. Instead, the cutoff wavelength lock is achieved by monitoring of the cavity emis-

sion spectrum (cutoff wavelength) and feedback adjustment of the piezo voltage.

Illumination of the cavity with an LED (𝜆center ≈ 620 nm) allows for alignment of the mirrors

such that the position of the desired delaminated structure can be moved onto the optical axis

into the field of view of the imaging path.

4.2.2 Pump Source and Pulse Pattern

The pump light source is a diode pumped solid state laser (model: Spectra Physics Millenia eV

15) at 𝜆p = 532 nm with a maximum output power of 15W, power stability of ±1% and <0.04 %
rms noise [134]. In the following measurements, the dye-photon system is driven above con-

densation threshold, where momentary pump beam powers of around 100mW are necessary. If

not otherwise mentioned, the pump spot size is slightly larger than the currently investigated

box size. Due to bleaching effects, the dye can not be pumped continuously at this power as it

would degrade in a matter of milliseconds. Therefore, two AOMs are employed to chop the con-

tinuous wave laser emission into 500 ns pulses, which is much longer than the maximum cavity

storage time of 250 ps and hence provide quasi continuous conditions. The radio frequency (RF)

electronics used for temporal pump beam modulation are schematically depicted in Fig. 4.4b.

The first AOM with dedicated driver electronics (model: Gooch Housego I-M110-2C10B6-3-GH26

with A35110-S-1/50-P4K7U driver) is directly gated by the pulse generator and chops out a 3 µs
window from the continuous wave pump laser beam. The second AOM is driven by separate RF

components. To begin with, a voltage controlled oscillator (VCO) creates a fundamental 110MHz
sine wave. A voltage variable attenuator (VVA) attenuates the signal according to an applied

voltage of 0V to 5V from the PC/DAQ. An arbitrary function generator (AFG, model: Tektronix
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AFG3252, 240MHz bandwidth) is simultaneously triggered by the pulse generator to output a

rising 500 ns long rectangular pulse to compensate for residual intra-pulse photobleaching ef-

fects. Both the attenuated continuous VCO wave and the AFG signal are fed into a frequency

mixer, which multiplies the continuous RF wave with the linear ramp envelope signal. After am-

plification, the signal is fed to the second AOM which cuts out the desired pump pulse pattern

from the initial 3 µs window. The repetition rate is 30Hz.
The pump spot diameter inside the cavity is adjusted via displacement of lens L1 to be slightly

larger than the currently investigated box potential whereas the position can be manually fine-

tuned using the adjuster screws on the final mirror mount with micrometer precision.

4.2.3 Analysis Part

The concept of the analysis part is almost identical to the one in chapter 3 (Fig. 3.1) with ma-

jor differences mostly in the optical paths. In the first image plane a rectangular slit with four

independently adjustable edges is used. It turns out that it is necessary to restrict the region of

interest to closely match the photon cloud as residual dye fluorescence from the surrounding

area, which does not originate from the investigated potential, scatters into the box region. Spa-

tial image and momentum space (𝑘-space) are both imaged onto the EMCCD. The detected space

is switched by flipping the corresponding lenses with focal lengths chosen such that both image

planes coincide at the camera sensor.

Due to the smaller observed spectral range, a grating with 1200 grooves / millimeter is used

for higher angular dispersion (model: Thorlabs GR50-1205). The ICCD camera serves as a suit-

able detector here. The grating can be replaced by an echelle grating (model: Thorlabs GE2550-

3263) which is optimized for high diffraction orders allowing for a resolution down to the GHz

regime despite their low groove density (316 grooves / mm). To block scattered pump light and

free fluorescence in the red wing of the dye emission spectrum, the spectral region is limited to

550 nm < 𝜆out < 600 nm with edge pass filters.

The experiment control for camera settings, pump beam power, piezo screws, cutoff wave-

length lock and data acquisition uses self-written software. Raw data is here typically present in

the form of camera images.

4.2.4 Photon Number Calibration

The following measurements rely on measurements of absolute intracavity photon densities,

hence it is necessary to calibrate the setup, including the cavity mirror and objective transmit-

tance and to deduce a camera-signal-to-photon conversion factor.

We employ the EMCCD camera, see sec. 3.1.3 for the working principle. The well reproducible

acquisition settings allow for a one-time calibration which can be used throughout the project.

Typical settings are pre-amp gain 3, horizontal shift speed 10MHz, EM gain 20. For the mea-

surement we directly illuminate the camera with a chopped 50ms pump laser pulse at constant

power, which contains a well-defined photon number. The laser beam path is merged with the

imaging path right before the 2D slit and the power (measured with photodiode) is corrected

for losses by optical elements in the path. The integrated camera signal count is divided by the

photon number in the laser pulse 𝑁
calib

= ∫ 𝜏
0 𝑃(𝑡)/ℏ𝜔 d𝑡, which for the given camera settings

yields a sensitivity of

𝜂̃cam = 4.41(31)
counts

photon

(4.6)

It is close to the value that can be obtained from the manufacturer calibration data using the prod-

uct of EM gain 𝐺 and sensor quantum efficiency 𝜂 divided by the electron to voltage conversion
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factor of the analog to digital converter 𝜂ADC [135]

𝜂̃
cam,datasheet

=
𝐺𝜂
𝜂ADC

=
20 × 0.97
4.84

= 4.01 . (4.7)

There is no information available regarding the uncertainty of the data sheet values.

Conversion from the pixel count 𝐶px to the actual photon density in the cavity 𝑛 requires

further quantitative values from the experiment. The cavity region which is imaged onto a single

pixel area𝐴px = (16 µm)2 is given by the magnification𝑀 of the imaging setup. Further, the ratio

between cavity round trip time 𝜏
round

= 2𝐷0/𝑐 = 𝑞𝜆𝑐/𝑐 and pump pulse length 𝜏
pulse

convert the

integrated signal into a momentary value. Finally, with the transmission 𝑇opt of the optical setup

(here cavity mirror, objective lens and longpass filter as other components are already included

in 𝜂̃cam) one can compute the intracavity photon density at the position of a certain pixel via

𝑛 =
𝑀
𝐴px

𝐶px

𝜂̃cam

20
𝐺
𝜏

round

𝜏
pulse

1
𝑇opt

(4.8)

𝑁 = ∫
ROI

𝑛(𝑥, 𝑦) d𝑥 d𝑦 = ∑
ROI

𝑛px 𝐴px (4.9)

where in the last step the total photon number 𝑁 in a certain region of interest (ROI) is obtained

by summation of the pixel values. Since 𝜂̃cam was measured for 𝐺 = 20, 𝜂̃cam can be scaled for

other gain settings.

The major contribution to 𝑇opt comes from the resonator mirror transmittance 𝑇 . In the regime

of 𝑇 ≲ 10−5 the actual transmission of a dielectric layer stack often shows deviations from their

theoretical value, typically towards lower transmission. This can be attributed to the accumu-

lation of scattering and absorption losses that occur on every material interface as typically 30

or more dielectric layers are required to realize such low transmission. This circumstance is dif-

ficult to quantify in calculations (and hence often ignored) as the material properties differ in

every coating run. The camera-facing mirror here is the "LO2019" custom mirror (see Fig. A.3),

which employs 74 layers. Experimentally we find for the transmission 𝑇LO2019(𝜆 = 583 nm) =
1.2(3) × 10−6.

4.3 Emission Characteristics

We start by probing the basic characteristics of the optical quantum gas trapped in a box po-

tential. This includes the mode structure and the stationary properties of the photon gas such

as spatial and momentum profiles as well as the corresponding spectral distributions for pump

beam powers below and above condensation threshold.

4.3.1 Energy Levels

First, we probe the eigenenergies of a 𝐿 = 40 µm box potential. By recalling

𝐸𝑛𝑥 ,𝑛𝑦 =
𝜋2ℏ2

2𝑚𝐿2
(𝑛2𝑥 + 𝑛2𝑦) with 𝑛𝑥,𝑦 = 1, 2, … (4.10)

we expect energies to be integer multiples of 𝜋2ℏ2/2𝑚𝐿2 ≈ 2𝜋ℏ × 6.5 GHz. Due to the quadratic

scaling with the mode number the first excited mode lies around 𝐸21,12−𝐸11 ≈ 2𝜋ℏ×20GHz above

the ground state energy 𝐸11, which gives an estimate of the required spectrometer resolution to

detect individual modes. To create a measurable signal, the pump beam size is reduced below the

box size and the intensity is cranked up such that multiple modes surpass the lasing threshold. By

steering the pump spot across the box, different transverse modes are excited due to the varying
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Fig. 4.5: High resolution spectrum of the transverse mode structure in a 𝐿 = 40 µm box potential. Each
thin graph shows an individual spectrum with different occupied modes. Black triangles mark identified
peaks. Red diamonds show resonance frequencies for different subsequent recordings (gray). They well
match theory values for a 𝐿eff = 36.4 µm box (gray hexagons). The image on the right shows an exemplary
single shot raw data. Spatial information is contained in the vertical dimension of the plot, which reveals
the increasing number of wave nodes. The extent in the horizontal region is attributed to the finite
resolution of the grating spectrometer.

spatial overlap of excited molecules and the mode functions allowing for a rough investigation of

the mode structure. To obtain a spectrum, an experimental difficulty has be overcome: The cavity

cutoff wavelength is varying from shot to shot, which leads to frequency jitter of the spectral

signal. Averaging (or long integration) of multiple subsequent images is hence not feasible as it

blurs the spectrum. Instead, a series of short-exposure spectra is recorded and each individual

spectrum is shifted along its frequency axis until it best matches the previous spectra, which

allows to calibrate the energy scale and overlay the signals.

The data along with identified resonances are shown in Fig. 4.5. We find a resolution of

𝛿𝜈 ≈ 16GHz from the peak half width, thus most neighboring modes can be resolved. Each

peak represents a certain mode which can be identified either manually or by a simple peak

finding algorithm. From multiple spectra with varying excited modes (shown as thin graphs in

the background), one can collect all found resonances which are depicted as red diamonds above

the spectral trace. Gray hexagons indicate theoretical positions for a box with a side length of

𝐿
eff

= 36.4 µm which reproduce the experimentally found values. The smaller effective box size

arises from the finite slope of the box walls, see sec. 4.1. In the raw data image one can see that

higher energy modes indeed exhibit an increasing number of wave nodes. All modes appear as a

vertical bar since the real space slit was closed tightly to increase resolution. Analogous results

have been obtained for an 𝐿 = 20 µm sized box [136].

We see that the eigenenergies of the structured potentials agree well with theoretical predic-

tions.

4.3.2 Spatial Profile

A homogeneous trapping potential is most clearly pronounced in the spatial distribution of a

uniform photon gas inside the cavity. In theory, the density profile 𝑛(𝑥) is a summation over

the individual contributions of the system eigenmodes 𝜓𝑖(𝑥, 𝑦) weighted by the Bose-Einstein

distribution function 𝑛̄𝜇,𝑇 (𝐸𝑖) as

𝑛(𝑥, 𝑦) = ∑
𝑖
|𝜓𝑖(𝑥, 𝑦)|2 𝑛̄𝜇,𝑇 (𝐸𝑖) . (4.11)
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Fig. 4.6: a) Spatial density profiles emitted from a box potential structure (𝐿 = 40 µm) at different intra-
cavity photon numbers with their partially averaged line profile (region indicated by red dashed lines)
cut shown below. A transition from uniform to inhomogeneous density profiles is visible as BEC sets in.
The profiles in the two rightmost line profiles are the 𝑁 = 3000 profile for visual comparison. b) Spatial
surface density profiles in a box with 𝐿 = 80 µm below and above threshold. The chaotic instead of the
sinusoidal shape of the ground mode is attributed to the mirror surface roughness. c) Theoretical density
cuts at different total particle numbers, computed for a box with 𝐿 = 40 µm with soft edges (see sec. 4.1)
and finite trap depth of 𝑉max = 1.4 𝑘B𝑇 (see sec. 4.4).

Theoretical profiles are shown in Fig. 4.6c for a box with side length 𝐿 = 40 µm for different

total photon numbers 𝑁 . Below threshold (𝑁 < 𝑁c), the density distribution is expected to be

uniform. However, upon emerging quantum degeneracy for 𝑁 ≳ 𝑁c, a central peak starts to

emerge because the low energetic modes, especially the sinusoidal ground mode, give dominant

contributions in the central region. To give realistic input to the computation (sec. 2.3.2), the

potentials have finite height like the experimental profiles (Fig. 4.2) and the edges are smoothened

via convolution with a Gaussian of width 𝜎 ≈ 1.3 µm, which quite well resembles the height

profiles measured by Mirau-interferometry.

Experimentally, we observe the spatial density profile of the dye-microcavity emission from

the box region (𝐿 = 40 µm) for different pump beam powers and hence varying intracavity photon

numbers; The false color images along with averaged horizontal cuts through the density profile

are shown in Fig. 4.6a. The profiles match the expectations of a thermalized photon gas in the

box. For low pumping powers, i.e. 𝑁 ≪ 𝑁c ≈ 3500 photons, the density profile is uniform as

verified in the line profile (bottom). Deviations from uniformity start to emerge if the photon
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number reaches 𝑁c. For comparison, the 𝑁 = 3000 line profile (red) is plotted next to the higher

𝑁 profiles as well for better direct visual comparison. In the condensed regime 𝑁 ≫ 𝑁c the

sinusoidal box ground mode dominates the density profile with the uniform background still

visible. Most measurements are here restricted to boxes with a maximum of 𝐿 = 40 µm design

side length since the potential bias of the surface roughness severely disturbs the ground state

wave function in larger systems, see Fig. 4.6b. Here, the gas is also uniform below threshold.

Above 𝑁c, however, it becomes random, owing to the perturbed shape of the lowest lying states.

Nevertheless, 80 µm sized boxes are still useful for the determination of the equation of state

(sec. 4.7), as the ground state energy of a tilted box lies energetically higher due to the stronger

confinement of a corresponding potential with the linear gradient.

Threshold Behavior

Contrary to a harmonically trapped quantum gas, the critical particle number 𝑁c is not well-

defined thermodynamically in the homogeneous environment. However, using coherence argu-

ments one may derive an analytic expression (see sec. 2.4.2)

𝑁
c,box

(𝐿) ≃
𝐿2

𝜆2th
log(

𝐿2

𝜆2th

4𝜋
1 + 2𝜋2) (4.12)

∝ 𝐿2 log(𝐿) . (4.13)

Exemplary numeric values for 𝐿 = {36, 40} µm and 𝜆th ≈ 1.47 µm are 𝑁
c,box

≈ {3500, 4500},
indicating that slight variations of the effective box size have immediate effect on the expected

critical photon number.

With the current experimental setup a measurement of the transverse coherence length is not

possible, hence we use as a figure of merrit the inhomogeneity of the spatial surface density pro-

file that arises from the sinusoidal shape of the ground mode. The degree of inhomogeneity can

be quantified by the ratio of central density 𝑛0 and total particle number 𝑁 . The data is obtained

from images as shown in Fig. 4.6 and plotted in Fig. 4.7a. As expected for 𝑁 < 𝑁c, where the

photon gas is spatially uniform, the ratio is constant since the density is approximately given

by 𝑛̄ ≈ 𝑁/𝐿2. Around the threshold region, the graph ratio increases and slowly approaches

the limit value of 4, as expected from the squared amplitude of the ground mode wave func-

tion |𝜓11(𝑥, 𝑦)|2 = 4𝐿−2 cos2(𝑘𝑥𝑥) cos2(𝑘𝑦𝑦) which dominates the spatial profile for 𝑁 ≫ 𝑁c as

compared to the uniform gas yielding a normalized density of 1. As indicated in the figure, the

threshold region around 𝑁c is obtained by determination of the rising point which here is around

𝑁 = 3100(300) in accordance with the value obtained from (2.62) for a box with effective size

𝐿 = 36 µm. As discussed in section 4.4 a slightly lower value is actually expected since the trap-

ping potential does not contain modes with arbitrary high momentum. An adjusted formula

(omitting states with 𝐸𝑖 > 𝑉max) typical yields a critical particle number roughly 10 % below.

The solid theory curve in the plot already contains the finite trap depth. Experimentally we are

limited to a certain maximum occupation of the ground mode as for even higher pump powers,

laser-like amplification of additional excited modes sets in ([105, 137]), which distorts the density

profile and causes the data points to drop again at large 𝑁 . Further measurements are always

operated below this onset point of around 𝑁 ≈ 10 000 photons.

As a sidenote, the here used theory does not take a polarization degeneracy factor of 2 into

account. As a first argument, the agreement of the data and fully polarized theory hints at this

behavior. In fact, our measurements confirm that for 𝑁 ≪ 𝑁c the photon cloud is unpolarized,

whereas the ground mode is always fully polarized as soon as the system condenses which sup-

ports the decision to here leave out the additional degeneracy factor. Earlier works did not report

about this behavior [22, 122], however, their employed cavity mirror transmission and hence the

intracavity photon number were typically not corrected for the influence of the dye medium
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Fig. 4.7: Threshold behavior. a) Central density 𝑛0 divided by total photon number 𝑁 , normalized to box
area 𝐿2. The critical photon number for condensation 𝑁c is determined from the onset region where the
ground mode starts to dominate the intensity profile. The solid line is a numerical prediction including
finite trap depth. b) Scaling of 𝑁c with the box size 𝐿. A fit function 𝑓 (𝐿) ∝ 𝐿2 log(𝐿) (solid line) agrees
with the expected scaling.

(𝑇
dye

≈ 𝑛̃𝑇air, see sec. A.1), which would then also yield 𝑁c values close to the predictions for non

polarization degenerate systems. The polarization axis of the mode was found to be horizontal

and aligned with the pump beam polarization (also observed in [138], see also [139]) which might

induce fluorescence polarization [70]. The latter occurs when the molecular dipoles diffuse on

time scales longer than the fluorescence time which is greatly reduced in a stimulated emission

dominated regime.

Scalingwith Box Size We now investigate𝑁c as a function of the box side length 𝐿. Following

the quantum prediction (2.62) one expects a scaling𝑁c ∝ 𝐿2 log(𝐿). A numeric approach based on

spatial profiles with theory curves as in Fig. 4.7 and consecutive determination of the threshold

region yields the same scaling.

Although the intensity profile above condensation threshold is strongly distorted in boxes with

𝐿 ≳ 50 µm (Fig. 4.6b) one can nevertheless try a similar method as the one used for smaller sized

boxes. Instead of the geometric center of the box one can either define 𝑛0 as the mean density in

an extended central region of the box or manually define the position of the first arising density

peak as the position of 𝑛0. It turns out both methods yield comparable results. For all boxes their

effective size is determined by probing the width of their flat density profile below threshold. The

critical photon numbers are determined for boxes of design size 𝐿 = {20, 30, … , 80} µm and are

shown in Fig. 4.7b. A function fit of 𝑓 (𝐿) = 𝐶 ⋅ 𝐿2 log(𝐿) to the data points (solid line) agrees with

the experimental data, when 𝐶 is chosen as a free parameter. Note, that due to the perturbation

of the lowest modes by the roughness induced disorder potential, the data has to be taken with

care.

4.3.3 Momentum Distribution

The transition from the classical to the condensed regime can also be observed in 𝑘-space. For

this purpose, the lenses before the detector can be rearranged (flippable optics) to projects the

momentum space onto the detector, see sec. 1.6. The acquired data for various photon numbers is

shown in Fig. 4.8a. Contrary to the spatial distribution, which follows the box potential outline,

the 𝑘-space distribution typically shows the same features which are only slightly modified by

the trapping potential as the motional degrees of freedom remain unchanged.
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Fig. 4.8: Momentum space. a) Images in 𝑘-space for 𝑁1,2,3,4 ≈ {0.5, 0.75, 1, 1.25} × 𝑁c around the threshold
particle number 𝑁c in a 𝐿 = 40 µm box. Each colormap is adjusted to the individual intensity. The tran-
sition from a purely Gaussian (see b)) to a bimodal distribution is visible. The inset shows a contrast en-
hanced image of the ground mode (sinc-function) with its first side wings. The limit 𝑘max = (2𝑚𝑉max)1/2/ℏ
(cf. sec. 4.4) indicates the finite trap depth and 𝑘NA the maximum detectable amplitude of |𝒌|. b) Radially
averaged 𝑘-distribution (red) with occupation like in panel 1 on a) with a Gaussian fit (black). The 𝑘-axis
is mirrored around 0 for better visibility. For comparison, a trace from panel 2 is shown (gray) where
degeneracy starts to emerge. Dashed lines mark the trap depth limit.

In the classical regime we expect a radially symmetric momentum distribution with Boltzmann

scaling

𝑛(𝒌) ∝ exp(−
ℏ2|𝒌|2

2𝑚 𝑘B𝑇 )
(4.14)

where the scaling is identical for the individual components due to 𝑘2𝑟 ≡ |𝒌|2 = 𝑘2𝑥+𝑘2𝑦 . Indeed, the

classical expectation is confirmed as seen in Fig. 4.8b, where the radially averaged 𝑘𝑟 -distribution

is shown. Function fits of (4.14) (solid black line) onto the wings of multiple traces like in the

shown data confirms the Gaussian character and yield

𝑇 = 306(19) K (4.15)

where the error is the standard deviations of multiple obtained fitting parameters. The increased

noise around 𝑘𝑟 = 0 arises from the low number of points in the radial averaging process. For

comparison, a distribution corresponding to panel 2 is shown (downscaled by factor 1.5) in gray

where quantum degeneracy in the low momentum states begins to emerge. For higher photon

numbers, a peak around 𝑘𝑥 , 𝑘𝑦 = 0 emerges, which corresponds to the sinc(𝑘) shaped resonator

ground mode, see (2.36).

Notably, the photon gas experiences a high momentum cutoff at |𝒌| > 𝑘max ≈ 2.9(2) µm−1
,

which is here attributed to an experimental limitation of the trap depth. The observed upper limit

lies within the resolvable angular range 𝑘NA, hence we assume the limitation to be an intrinsic

property of the structured mirrors; the circumstance is further discussed in sec. 4.4.

The data so far confirms the expected momentum space behavior across the phase transition.

Further spectral measurements regarding the caloric properties are presented in sec. 4.5.
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Ground Mode Uncertainty

The ground state intensity is a squared sine (𝑥-space) or sinc (𝑘-space) function, respectively,

which are similar to Gaussian functions until their first minima. The latter show minimal position-

momentum-uncertainty in the form 𝜎𝑥𝜎𝑘 = 1
2 where 𝜎𝑥,𝑝 are the corresponding standard devi-

ations. Using (2.32) and (2.36) one gets for the expected uncertainty of a given mode of order

𝑛

𝜎𝑥𝜎𝑘 =
1√
12

√
𝜋2𝑛2 − 6 (4.16)

𝑛=1≈ 0.57 (4.17)

which, for the ground state (𝑛 = 1), is slightly above the Heisenberg limit. From the acquired

traces for the respective highest photon number as seen in Fig. 4.6 and Fig. 4.8 we find that

Gaussian fits are nevertheless well-suited to determine the uncertainties in 𝑥 and 𝑘. We get

𝜎𝑥𝜎𝑘 = 0.7(1) (4.18)

which is slightly above the theoretical value. A deviation towards larger values is plausible due

to the finite resolution capabilities of the imaging apparatus and non-perfect subtraction of the

thermal floor when extracting the ground mode. Still, the finding continues to confirm the well-

defined mode structure in the box potential.

4.3.4 Spectral Distribution

We measure the energy distribution 𝑛(𝐸) in-situ in a 𝐿 = 40 µm box with a diffraction grating, as

obtaining the spectra from momentum space images raises signal-to-noise issues at low photon

numbers. The spectral resolution is of order 𝛿𝜆 ≈ 1 nm.

To record the data, the light is guided onto the diffraction grating which is placed in the mo-

mentum Fourier plane of a lens. The dispersed light is then imaged on a camera with another

lens, which then effectively measures in real space with every mode being shifted according to

its wavelength. It is here important to close the rectangular slit such that only the box emis-

sion passes through the aperture, as otherwise residual fluorescence of excited dye molecules

outside of the box region disturb the measurement. Exemplary cavity emission spectra recorded

at different total photon numbers 𝑁 are shown in Fig. 4.9. Below threshold, the occupation is

Boltzmann-like and follows an exponential behavior indicated by the black bar. As𝑁 approaches

𝑁c from below, quantum degeneracy emerges in the low energetic modes, as manifested in their

overpronounced occupation until above 𝑁c, a spectral peak from the macroscopically occupied

ground mode emerges accompanied by a small degeneracy of the low lying excited modes while

the thermal tail of the spectrum shows signs of saturation. The agreement of experimental and

theoretical spectra (inset, for same 𝑁/𝑁c) allows in further studies to assume Bose-Einstein like

occupation of modes.

As the spectra are integrated over a full pump pulse, the data has to be corrected for the

wavelength-dependent mirror transmission to obtain the circulating power inside the resonator.

In the finite size box potential landscape, the energy can be mapped onto a specific emission angle

through the mirror coating. Hence, following the calculations from sec. A.1, one can precompute

a suited transmission profile taking into account wavelength and emission angle. The measured

spectra are then corrected by this factor.

Due to the high-𝑘 cutoff in the trap as already hinted at in section 4.3.3, the spectra are only

shown until the trap depth limit. A more elaborated measurement to characterize 𝑉max is pre-

sented in the following section 4.4.
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Fig. 4.9: Spectral distribution of the photon gas for different circulating powers in the resonator, normal-
ized on the critical photon number 𝑁c. Black solid line section hints at the slope of a thermal exponential
decay for 𝑇 = 300 K. The inset shows theory spectra for the same 𝑁/𝑁c which are blurred to simulate
finite resolution.

4.4 Finite Trap Depth

The abrupt high-𝑘 cutoff around 𝑘𝑟 ≈ 2.9(2) µm−1
shown in Fig. 4.8 goes along with a drop in

the spectral distribution measured with the diffraction grating. This truncation effect has been

observed in all investigated structures during this work which should in principle, inferred from

their mechanical elevation height of the barrier, provide a deeper trap. With the here used 30 nm
thick silicon layer, delamination heights of up to 60 nm are possible [59, 124, 125]. The elevation

height translates into a maximum trap depth like

𝑉max = 4𝜋ℏ
𝑐0𝑛̃
𝜆2c

Δ𝐷max

𝑞
(4.19)

which for 𝑞 = 7, 𝜆c ≈ 580 nm predicts a theoretical maximum trap depth of 𝑉max ≈ 3.5 𝑘B𝑇 .

Next, we vary 𝑞 and determine the spectral width of the emission to systematically probe the

trap depth. Experimentally, the system is prepared at 𝑞 ≈ 7 or 8 and a spectrum is acquired. By

decreasing the applied voltage of the piezo crystal in the translation stage, the cavity mirrors

are moved apart until, after a translation of 𝜆𝑐/2𝑛̃, the same cavity cutoff wavelength is set with

𝑞 → 𝑞 + 1; from here, the process is repeated and a spectrum is recorded for each setting. In this

way, spectra can be recorded with different trap depth using the same microfabricated mirror

sample, yielding one mechanical box depth. The experimentally determined trap depth from

the spectra versus the longitudinal mode number 𝑞 are shown in Fig. 4.10 for three different

mechanical box depths Δ𝐷max. In the amplitude normalized spectra, a change of the spectral

width is apparent. The criterion for the high energy cutoff (not the cutoff wavelength 𝜆c, dashed

line) is chosen as the point where the amplitude drops below a certain percentage of its maximum

value (black dots). The spectra in panel a) were obtained in a 35 nm deep structure, which for

𝑞 ≤ 11 qualitatively look identical as all cutoffs coincide in the same region. In fact, as long as the

spectral width is below a certain value, one can confirm the expected 1/𝑞 behavior of the trap

depth (solid black lines). For the 15 nm deep potential, the spectral width follows the expected

behavior as it never reaches the otherwise observed maximum value. The transition is most

apparent for the 35 nm and 51 nm high structures. While the trap depth follows the 1/𝑞 scaling

at large 𝑞, they saturate at a value of 𝑉max = 1.4(2) 𝑘B𝑇 . The uncertainty is estimated from the

not well-defined definition of the trap depth, as there is no visible hard high energy cutoff in
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Fig. 4.10: Determination of the trap depth 𝑉max. a) Spectrum of the cavity emission from inside a 35 nm
high box structure. The trap depth is determined as the energy separation between the cutoff wavelength
(dashed line) and the threshold intensity of the spectrum (black dots) on the wavelength scale. b) Deter-
mined trap depths from the spectra in a) for different physical box structure heights. Horizontal dashed
line at 1.4 𝑘B𝑇 .

the spectra. Additionally, there seems to be a smooth transition of the light originating from the

box and residual fluorescence from the potential border (delaminated region, see Fig. 4.2). Most

of the straylight can be blocked with the rectangular aperture, but the blocking region can also

have a small impact of order 0.1 𝑘B𝑇 onto the measured trap depths. The 𝑉max value is chosen

to stay consistent with the already shown high-𝑘 cutoff in Fig. 4.8 and observations made in the

following sections. The here determined trap depth of 𝑉max = 1.4 𝑘B𝑇 has to be accounted for

in the theoretical expectations of all following measurements as it has direct consequences on

thermodynamic quantities and spatial profiles.

Contrary to experiments with ultracold atomic gases, where the cloud is cooled by controlled

lowering of the trap depth allowing the most energetic particle to escape ("evaporative cooling",

[140]), the truncated trap here has no visible effect on the remaining part of the spectrum as the

temperature is set by the dye molecular heat bath.

Possible Explanation The origin of the potential depth saturation despite rising structure

height is presently, as of this writing, not fully understood. As inferred from the correct 𝑞-scaling,

the structures appear to be physically intact up to their full height. The trap depth is found to be

independent of the cutoff wavelength 𝜆c, hence occurring local transmission maxima in a certain

spectral region can be ruled out as a cause. In previous works, the mirrors have been thoroughly

investigated with respect to their reflective and transmissive properties in their raw form as

well as in their delaminated regions [59, 110, 125, 126]. Below their physical desintegration

threshold, there is yet no evidence that a diminishment of their reflectance in this region could

explain a hard cutoff in the light trapping capabilities. A trapping potential comprised of two

opposing delaminated mirrors does also saturate at the same observed limit, which indicates

that the limiting cause is not to be found in the structures themselves. However, the delaminated

regions remain to be investigated at their edges (slope regions), which thus remain as a trap

depth quenching candidate. As in those regions the material stresses are probably the highest

and their impact on the optical properties (e.g. refractive index) could be severe. Recalling that

a momentum cutoff corresponds to a maximum allowed propagation angle inside the resonator,

light propagating at larger angles might be subject to an additional yet unidentified loss channel.

Further quantitative investigations have not been performed.
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Fig. 4.11: Calorimetry of the two-dimensional homogeneous photon gas in a finite depth trap. a) Nu-
merical predictions for the internal energy per particle versus normalized inverse particle number. The
finite trap depth significantly alters the temperature behavior. b) Derivative of the internal energy ex-
pression, resembling to the specific heat, which is similarly affected by the finite trap depth. Graph labels
from top to bottom as in a). The high-(𝑁c/𝑁 ) limits is shown in the right panel. c) The internal energy 𝑈
transitions from a quadratic scaling (𝑁 > 𝑁c) to a linear scaling (𝑁 ≪ 𝑁c) without a discontinuity. The
same also holds for the derivative in d). The specific heat approaches zero in the condensed regime and
saturates at a value of 0.55 𝑘B𝑇 (dashed line) in the classical phase due to the finite potential depth. The
solid lines are finite depth numeric predictions.

4.5 Calorimetry

The photon gas spectra given in sec. 4.3.4 enable the investigation of the caloric properties of

the homogeneously trapped photon gas across the phase transition. Similar measurements in

the dye-microcavity system have previously been carried out for harmonic traps [61]. We mea-

sure the internal energy and compute its derivative as a function of the (threshold normalized)

particle number, which yields a quantity closely related to the specific heat, see sec. 2.4.2. Other

than in the harmonic case we don’t expect any discontinuities in both quantities as the finite

two-dimensionally trapped Bose gas is not predicted undergo a second order phase transition

upon turning into a condensate. To be consistent with experimentally acquired values, we take

the normalized inverse particle number 𝑁c/𝑁 as an order parameter, which is related to the re-

duced temperature 𝑇/𝑇c typically used in quantum gas experiments apart from small logarithmic

corrections (see sec. 2.4.2). The two-dimensionally trapped homogeneous Bose gas with its ki-

netic components 𝑝𝑥,𝑦 only has 𝑓 = 2 degrees of freedom. In the classical regime, the internal

energy 𝑈 is hence given by 𝑈 = 𝑓
2𝑁𝑘B𝑇 = 𝑁𝑘B𝑇 , which scales linear with the particle number

𝑁 . As we cool down the system or, in our case, increase 𝑁 at constant 𝑇 , additional particles

eventually populate the ground state after surpassing BEC threshold, which does not contribute
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to the internal energy, which hence ultimately saturates – the energy per particle approaches

zero. The internal energy computes from the single particle state energies 𝐸𝑖 as

𝑈 = ∑
𝑖
𝑛̄𝜇,𝑇 (𝐸𝑖) 𝐸𝑖 (4.20)

where, due to the finite trap depth, 𝑛̄𝜇,𝑇 (𝐸𝑖 > 𝑉max) = 0. For better understanding of the exper-

imental results, numerically obtained values of energy per particle in units of 𝑘B𝑇c ≃ 𝑘B𝑇𝑁/𝑁c
are plotted against 𝑁c/𝑁 for different trap depths as shown in Fig. 4.11a/b together with the

corresponding derivative. A normalization of this kind gives the specific heat per particle. In the

classical regime (𝑁 ≪ 𝑁c or 𝑇 ≫ 𝑇c), the internal energy 𝑈 graph grows linearly with 𝑁c/𝑁 . In

the condensed regime, where the energy per particle approaches zero as the ground state does

not contribute to the internal energy, the curve shows quadratic behavior as only the residual

energy 𝑈sat of the now quasi-saturated excited modes remains, 𝑈𝑁c/𝑁 2 ≃ 𝑈sat(𝑁c/𝑁)2/𝑁c. The

influence of the finite trap depth is visible as it decreases the internal energy in the system, see

Fig. 4.11a. While a trap with 𝑉max = 4 𝑘B𝑇 can still be regarded as nearly equivalent to the in-

finitely deep potential, the here present 𝑉max = 1.4 𝑘B𝑇 decreases the internal energy per particle

in the classical regime 𝑁c/𝑁 ≲ 1 by a factor of ≈ 2.

Moreover, we investigate the derivative of 𝑈 (panel b), which is related to the specific heat per

particle

𝐶𝑉 =
𝜕𝑈
𝜕𝑇

(4.21)

𝐶𝑉
𝑁𝑘B

≃
𝜕(𝑈𝑁c/(𝑁 2𝑘B𝑇 ))

𝜕(𝑁c/𝑁)
. (4.22)

The saturated internal energy in the condensed region causes a linear slope. The curve then

flattens until it, without any discontinuities, approaches a plateau that represents the heat con-

tribution of a single particle in an ideal classical gas. The plateau value again strongly depends

on the trap depth: In the infinite 2D gas, a single particle would contribute one 𝑘B of heat as

expected for its two kinetic degrees of freedom. This value is reduced as high momenta are inac-

cessible by the gas particles. Its high-temperature limit is shown in the right panel of Fig. 4.11b

showing how the classical heat capacity changes with the trap depth.

Experimentally, the internal energy is obtained by evaluating spectra such as the ones shown

in Fig. 4.9. The Bose-Einstein distribution used in (4.20) is then replaced by the measured values

𝑛exp(𝐸) and the signal is integrated following

𝑈exp = ∫
𝐸c+𝑉max

𝐸c

𝑛exp(𝐸) × (𝐸 − 𝐸c) d𝐸 . (4.23)

The wavelength axis is accordingly converted into an energy axis that is shifted such that the

low-energy cutoff 𝐸c is set to zero, 𝐸(𝜆) − 𝐸c = 2𝜋ℏ𝑐0(𝜆−1 − 𝜆−1c ). The photon gas is prepared

in a 𝐿 = 40 µm box at a cutoff wavelength of 𝜆c = 583 nm. By varying the pump power and

continuous spectrum acquisition we record 250 spectra for photon numbers 𝑁 between 0.1 and

5𝑁c. The cavity is here intentionally not stabilized with the attached piezo crystal since it turned

out that during the data acquisition period (≈ 90 s) the cutoff wavelength is sufficiently stable

(with rare manual corrections) as the feedback loop tends to overshoot due to the changing

spectral profile at different photon numbers. After extracting 𝑈 , the photon number is fitted

by setting one trace to contain 𝑁 = 𝑁c photons like in Fig. 4.9. The derivation of the internal

energy is performed numerically and both data sets are binned. The obtained caloric quantities

are shown in Fig. 4.11c/d and in good agreement with finite-depth predictions. According to the

prediction, the specific heat does not show a discontinuity near 𝑁c and saturates at the expected

value of 0.55 𝑘B. We hence find the homogeneous photon gas to undergo the expected crossover

from a thermal to a condensed state.
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Fig. 4.12: Potential outline and wave functions for a tilted and untilted box. A tilted cavity mirror results
in a linear potential gradient 𝑈(𝑥) = 𝑈0/𝐿𝑥 that changes the local density of states, perturbing the steady
state photon density 𝑛(𝑥) to become spatially inhomogeneous.

4.6 Box Potential with Linear Gradient

To probe the density response of a photon gas to external, well-controlled perturbations, the ho-

mogeneous trapping potential can be by superimposed with a linear potential gradient, realizing

a weak constant force along e.g. 𝑥 . The experimental concept is shown in Fig. 4.12. One of the

cavity mirrors can be tilted in discrete steps with the piezo driven adjustment screws that tilt the

cavity by 0.3 µrad per step, which corresponds to a potential difference of Δ𝑈/𝑘B ≈ 0.2 K over a

𝐿 = 40 µm box. The difference Δ𝑈 scales linearly with 𝐿, see (4.5). The mechanical mirror tilt is

temporarily static compared the resonator storage time (≈ 200 ps) or pump pulse length (500 ns)
and is set prior to photon injection into the cavity. Response functions, such as 𝜅𝑇 are extracted

from the changing steady state conditions of the resonator.

We reduce the problem to a single dimension 𝑥 and transform the surface density to a line

density via

𝑛̄(𝑥) = ∫
∞

−∞
𝑛(𝑥, 𝑦) d𝑦 (4.24)

= 𝑛(𝑥, 𝑦) 𝐿 (4.25)

where we assume that for sufficiently low densities below condensation, 𝑛(𝑥, 𝑦) is nearly uniform

and the integral yields a factor 𝐿. We start with a substitution, where the 𝑥-axis will be trans-

formed into a local chemical potential 𝜇-axis with the local density approximation. We denote

𝑈0 as the total potential energy difference over the box side length 𝐿 and define

𝜇 ≡ 𝜇0 − 𝑈0
𝑥
𝐿

(4.26a)

d𝜇 = −
𝑈0
𝐿

d𝑥 (4.26b)

which is used in the following to describe 𝑛(𝑥), (cf. sec. 1.3.1).

4.6.1 Expected Density Profile in a Tilted Box

The tilted box potential provides a calibrated energy scale, because the mirror is plane and both

tilt and box size are well-measurable or known. Thermodynamic information is gained from

spatial density profiles, where the position-dependent photon density reveals its response to the

modified potential. In the infinite uniform system the surface density is expected to follow the
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relation

𝑁 =
𝑚𝐿2

2𝜋ℏ2 ∫
∞

0
𝑛̄𝜇,𝑇 (𝐸) d𝐸 (4.27)

𝑛∞(𝜇) = −𝜆−2th log(1 − exp(𝜇/𝑘B𝑇 )) (4.28)

which is constant for a flat potential but here, where the potential energy is substituted by a local

chemical potential 𝜇(𝑥), the equation describes the expected local surface density.

The before-mentioned finite trap depth in sec. 4.4 here has a more complex impact on the

density profile. Due to the cavity tilt, the photon energy at the left edge of the box where 𝑉 (𝑥) =
𝑈0 (see Fig. 4.12), the allowed energies have both a lower as well as an upper cutoff, rendering

(4.28) inapplicable here as the mapping of local chemical potential to the corresponding photon

density is biased. In analogy to (4.27) we make a new ansatz for the local surface density profile

like

𝑛(𝑥) =
𝑚ph

2𝜋ℏ2 ∫
𝑉max

𝑉 (𝑥)
𝑛̄𝜇,𝑇 (𝐸) d𝐸 (4.29)

which is a reasonable approach as wave functions with 𝐸𝑖 < 𝑉 (𝑥) have no significant contribution

to the local density, see Fig. 4.12. For 𝐸𝑖 > 𝑉 (𝑥), the wave functions start to behave similar to

plane waves and the formalism of homogeneous systems can be applied again. Alternatively,

one could also introduce a position dependency in the density of states 𝑔̄(𝑥), which vanishes

for energies 𝐸 < 𝑉 (𝑥) and keep the integral boundaries as before. From this circumstance we

conclude that the slope of the density is actually not significantly affected by the finite trap

depth, but rather an offset is subtracted from the unaffected density profile as seen in Fig. 4.14b

where numerically computed density profiles are shown for fixed 𝑈0/𝑘B = 50K, 𝜇0 = −3 𝑘B𝑇 ,

but varying trap depths. The uniform reduction has higher impact in regions of lower density,

i.e. the relative gradient 𝑛−1𝜕𝑛/𝜕𝑥 is affected. Aiming for an analytic correction, we compare the

densities at the box edges 𝑛(±𝐿/2) for each finite and infinite trap depth:

(𝑉max, 𝑈0, 𝜇) =
1 − 𝑛exp(−𝐿/2) / 𝑛exp(𝐿/2)
1 − 𝑛∞(−𝐿/2) / 𝑛∞(𝐿/2)

(4.30a)

=
1 − (∫

𝑉max
𝑈0 𝑛𝜇,𝑇 (𝐸) d𝐸)/(∫

𝑉max
0 𝑛𝜇,𝑇 (𝐸) d𝐸)

1 − (∫
∞
𝑈0 𝑛𝜇,𝑇 (𝐸) d𝐸)/( ∫ ∞

0 𝑛𝜇,𝑇 (𝐸) d𝐸)
. (4.30b)

Far in the classical regime, where the Boltzmann-distribution serves a good approximation of the

quantum statistics, the equation evaluates to

(𝑉max) = (1 − exp(−𝑉max/𝑘B𝑇 ))−1 (4.31)

≈ 1.33 (4.32)

where the numeric value is calculated for our experimental trap depth of 𝑉max = 1.4 𝑘B𝑇 . When

inserting a Bose-Einstein distribution to cover the quantum degenerate regime and above, the

expression of  still has an analytic (yet complicated) solution. One finds (𝑉max, 𝜇 = 0) = 1
and both expressions deviate by less than one percent around −𝜇 ≳ 4𝑘B𝑇 . When neglecting

boundary effects, (4.30b) is in principle valid for 𝐿 → 0 and we can carry on the varying slope as

a squeezed 𝜇-axis like

𝑛tilt(𝜇) ≃ −𝜆−2th log(1 − exp(𝜇/𝑘B𝑇 )) (4.33)

= 𝑛∞(𝜇) (4.34)
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which has the same form as the unperturbed function but with  as a scaling factor. For com-

parison, the density of an untilted box with a truncated trap becomes

𝑛trunc(𝜇) = −1𝑛∞(𝜇) (4.35)

in the classical regime due to the finite integral boundaries.

Linear Approximation In the classical regime of −𝜇 ≳ 𝑘B𝑇 , the exponential term in the EoS

(4.28) is much smaller than unity and we can thus make a first order Taylor expansion of the

logarithm as − log(1 − 𝑥) ≃ 𝑥 to obtain the classical equation for the local density

𝑛C(𝜇) ≃ 𝜆−2th exp(𝜇/𝑘B𝑇 ) . (4.36)

Given the coordinate transformation (4.26a), which transforms the chemical potential as 𝜇(𝑥) =
𝜇0 − 𝑉 (𝑥), (4.36) resembles a classical Boltzmann-distribution for the potential energy degree of

freedom. Here, the shape is still an exponential density curve along a linear potential gradient,

but for small box tilts 𝑈0 ≪ 𝑘B𝑇 the given expression can be further approximated by a linear

function since the observed region of 𝜇 is much smaller than the decay constant 𝑘B𝑇 . To properly

discuss experimental data, we make the generalized ansatz of a linear density gradient

𝑛exp(𝜇) ≡ 𝑛(𝜇0) + (𝜇 − 𝜇0)
𝜕𝑛
𝜕𝜇

||||𝜇0
. (4.37)

which can be applied to a density gradient of any slope. Applications are the experimental recon-

struction of the equation of state 𝑛(𝜇) from experimental data or determining the compressibility

of the photon gas, as discussed in the following sections.

4.6.2 Experimental Density Profiles

The density gradient is observed experimentally in mechanically tilted box potentials, see Fig.

4.13 for a box with side length 𝐿 = 80 µm and tilt energy 𝑈0/𝑘B = 43(5) K for different photon

numbers. The experimental profiles are shown in red with theoretical traces (calculated for Gaus-

sian convolved step functions superimposed by a linear function, similar to in sec. 4.3.2) below for

comparison. The latter were picked to match the average photon density. The two-dimensional

density distributions are also shown along with each profile where the density gradient is clearly

visible in the color variation. In the case of the two lowest intensity profiles (left) one finds the

density gradients of experimental and theoretical profiles 𝜕𝑛/𝜕𝜇 to match over a broad range.

Above threshold, one again finds a macroscopic occupation of the ground mode, which is now

located in the potential minimum at the box edge. The wave nodes in 𝑦-direction are attributed

to the mirror surface roughness as discussed in sec. 4.3.2. In panel 3, where the system is slightly

above condensation threshold, the experimental profile is a linear gradient superimposed by a

ground mode peak as compared to the theoretically expected steep exponential slope as low

energy states are roughly equally degenerate. Due to their spatial overlap, the modes partially

share the same dye reservoir which could here lead to mode competition [105, 137]. In the deeply

condensed regime (panel 4) this effect is less pronounced, hence the impact on the equation of

state measurement is minor, see sec. 4.7. The offset at the edges stems from residual fluorescence

of excited dye molecules outside of the box region.

Conclusively, the concept of inducing a potential gradient by tilting a cavity mirror so far

yields experimental density distributions that agree with theoretical expectations. This paves

the way for a measurement the equation of state (sec. 4.7) and the compressibility of the photon

gas (sec. 4.8), which will be discussed in the following.
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Fig. 4.13: Experimental (red) and theoretical (black, below) density profiles in a tilted box potential with
side length 𝐿 = 80 µm and 𝑈0/𝑘B = 43K for increased photon numbers from left to right. A density
gradient towards the potential minimum is visible. The insets show the 2D density profiles where the
color mapping is restricted to a certain range to increase visibility of the density gradient.

4.7 Equation of State Reconstruction

While it is straight forward to calculate the equation of state 𝑛(𝜇), its measurement is challenging

as the chemical potential 𝜇 is not in-situ accessible and has to be inferred from the experimentally

prepared potential. Since the equation of state (EoS) in the form 𝑛(𝜇) is a monotonous function,

one could in principle invert it to 𝜇(𝑛) and infer the chemical potential from the photon density

in the box. The caveat is, that this is exactly the relation to verify here. Experimentally, 𝜇 can

be controlled in two ways, either by variation of the pump beam power (and hence the photon

number) or by employing the potential gradient inferred from the mirror tilt angle. While the

photon number yields a chemical potential offset 𝜇0, the spatially varying density 𝑛(𝑥) can be

mapped onto the calibrated potential 𝑉 (𝑥) which yields the EoS in the limit of the local density

approximation 𝜇 = 𝜇0 − 𝑉 (𝑥), cf. sec. 1.3.1. Correct conversion of the discrete piezo screw steps

into tilt energy (4.5) has been confirmed within an estimated 20 % uncertainty by comparing the

position dependent mode energies inside the cavity at the box edges.

Since 𝑈0 is much smaller than the thermal energy scale 𝑘B𝑇 , a single density profile does not

cover a sufficiently large energy range to reconstruct a large range of the equation of state in

one take. Thus, the following method involves a density profile combination process ("stitching")

where the box is kept at a fixed tilt angle and the chemical potential offset 𝜇0 is varied by ramping

down the pump beam power. With an appropriate numerically verified overlapping criterion the

EoS can be reconstructed.

4.7.1 Measuring the EoS with a Stitching Method

The equation of state 𝑛(𝜇) = −𝜆−2th log(1 − 𝑒𝜇/𝑘B𝑇 ) of a photon gas in a tilted box derived in

sec. 4.6.1 can be measured by spatially combining several density profiles at a point of common

chemical potential, i.e. same density, effectively extending the investigated chemical potential

range. In a first step, the density response with respect to a changed chemical potential and

the validity of a stitching criterion is investigated numerically. If not otherwise mentioned, the

following references to the figure panels are all regarding Fig. 4.14.

As the tilted box potential is a tool to measure properties of the uniform finite-size photon gas,
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Fig. 4.14: Numerical investigation of the EoS reconstruction method. a) Density profiles as a function of
the chemical potential in the infinite system (𝑈0 = 0), a box with truncated trap depth (𝑉max = 1 𝑘B𝑇 ) and
a tilted box, also with finite trap depth. In the untilted case, the central density 𝑛0 inside the box is well
described by the analytic expressions (solid lines). In the condensed phase 𝜇 ≪ 𝑘B𝑇 , the EoS becomes
invalid (inset) since the spatial distribution of the dominating ground mode is Heisenberg limited and
does not carry thermodynamic information. The EoS in the tilted box is shown as an analytic expression
(dashed) along with stitched individual profiles like in c) for a larger range and a trap depth of 𝑉max =
1 𝑘B𝑇 . b) Density profiles at constant chemical potential 𝜇0 for different trap depths. While the slope is
mostly unaffected, a uniform reduction of the density is visible. The relative deviation is stronger in the
high-𝜇 region (left). c) Expected density profiles for different 𝜇 (red, green) in a finite-depth tilted box
compared to the infinite system EoS 𝑛∞(𝜇) (solid) and its modified analytic form for the tilted box 𝑛tilt(𝜇)
(dash dotted). The profiles indeed match the corresponding EoS 𝑛tilt(𝜇). A larger 𝜇-range can be covered
by stitching different profiles (𝑈0/𝑘B = 43K) at their points of overlapping density distribution. d) EoS
𝑛tilt(𝜇) for different trap depths (solid, black) along with the envelope of stitched profiles (red, dashed).
The latter reproduce the analytic counterpart within experimental accuracy. For trap depths 𝑉max ≳ 4 𝑘B𝑇
no reasonable difference to 𝑉max → ∞ is visible.
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we first probe if the analytic solutions hold in the present system. Several density profiles for a

non-tilted box (𝑈0 = 0, 𝑉max → ∞) are computed and the central density 𝑛0 is compared with the

infinite system EoS. The obtained values are plotted as red diamonds in panel a). In the classical

regime we see a perfect agreement with the theoretical prediction (solid). However, as soon as

the condensed phase is reached for |𝜇| ≲ 10−1 𝑘B𝑇 (logarithmic plot in inset panel) the validity

of this description ceases to be valid as it was derived for the infinite homogeneous system. The

discrepancy in this regime occurs since the integral over the density of states in (4.27) does not

account for a macroscopically occupied ground mode. In any case, its intensity distribution has

larger extent than 𝜆th ≈ 1.47 µm and hence does not carry thermodynamic information in the

sense of 𝑛(𝜇). Although the simulation looks fine in the linear plot, experimental results in that

region have to be interpreted with care.

A central issue in the reconstruction process is the modified density profile due to the finite

trap depth 𝑉max = 1.4 𝑘B𝑇 . For the non-tilted box, the green circles in panel a) lie on the analytic

expression (4.35). In panel b) several density cuts through a box of side length 80 µm and tilt

energy 𝑈0/𝑘B𝑇 = 50K are shown for different trap depths but constant chemical potential. Due

to the lower number of available modes, which energetically mostly lie above 𝑈0 and thus have an

approximately uniform contribution, the density drops uniformly when the trap depth is lowered.

For 𝑉max < 𝑈0, the density fully vanishes in the now forbidden regions. As already discussed in

sec. 4.6.1, this circumstance leads to a false mapping of chemical potential onto density which

can be corrected by scaling the chemical potential with a factor  = (1−exp(−𝑉max/𝑘B𝑇 ))−1. As

a verification of this thermodynamically derived factor, we take a box with fixed 𝑈0 and 𝑉max and

vary the chemical potential offset 𝜇0 which results in different mode occupations. The profiles

are then shifted along their 𝑥 or 𝜇-axis, respectively, up to the point where their densities match,

i.e. 𝑛1(𝜇1) = 𝑛2(𝜇1+Δ𝜇), see panel c). By repeating the process one can then from finite size boxes

iteratively extrapolate the density profile to larger systems. Comparison with 𝑛∞(𝜇) and 𝑛∞(𝜇)
actually confirms that the stitching process reliably recreates the density distribution of larger

systems as described by the modified EoS. This method works independent of the trap depths as

seen in panel d) where the envelope of the stitched profiles (red, dashed) and the modified EoS

lie close to each other. The small discrepancy lies within experimental error margins, hence no

refinement of the model is required. Trap depths 𝑉max ≳ 4 𝑘B𝑇 can to good accuracy here be

regarded as infinitely deep. The difference between the EoS 𝑛(𝜇) for a trap depth limited untilted

box and tilted box can be seen in panel a), where 𝑛tilt(𝜇) (dashed envelope) has a different slope

than 𝑛∞(𝜇) instead of a scaling factor.

4.7.2 Measurement Procedure

Experiment The experimental procedure is similar to the numeric approach: The box is tilted

with 110 piezo screw steps to a rather high angle of 35mrad, corresponding to a tilt energy of

𝑈0/𝑘B = 43(5) K. Higher tilt angles are not used since the initially parallel mirror pieces collide at

their edges and above some point prevent smaller mirror separations. Similar to the calorimetry

measurements (sec 4.5), the computer software saves around 10 images per second. Each time,

the pump power is ramped down by a small amount which physically causes a reduction of 𝜇
or 𝑁 , respectively. In the end, there are roughly 300 traces available with effective chemical

potentials between 𝜇/𝑘B ≈ 10−4 K and 600 K. As the light levels on the camera sensor tend to

become too low for a practical analysis at total photon numbers 𝑁 ≲ 1000, the pulse length is

extended to 1500 ns and the camera gain increased to 100. The obtained camera images are then

converted to intracavity photon surface densities via (4.8) and a cut profile is extracted from

the vertical central region of the box image to obtain a density cut, which is not modified by

boundary effects. The acquired traces are of a kind as in Fig. 4.13.
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Analysis The finite signal-to-noise ratio, especially at weakly occupations (𝜇 ≪ 𝑘B𝑇 ), profiles

makes it difficult to find a proper 𝜇-shifting criterion for the pending stitching process. To sim-

plify the problem, the density profiles are approximated by a linear fit function of the kind (4.37)

in the region where the density appears to be linear, i.e. excluding boundary effects. Starting

from the lowest occupation numbers, the next trace is shifted such that its leftmost (low 𝜇) point

crosses the previous linear fit function. To reduce stitching errors, the average 𝜇-difference be-

tween two traces is Δ𝜇/𝑘B ≲ 2K ≪ 𝑈0/𝑘B. The fitting and stitching processes are automated.

An initial global 𝜇 offset is chosen to shift the final stitched trace to the theoretical prediction of

the EoS as the method only connects relative changes in 𝜇.

Around the threshold region |𝜇|/𝑘B ≲ 50K, where the density profiles can not anymore be

substituted by a linear fit function over the whole trace, suited density profiles are directly em-

ployed to represent the EoS in that region as the density peak from the ground mode dictates

their position. Here, the left edge of the ground mode has to be aligned to 𝜇 = 0 as it corresponds

to the offset energy of the mode.

Results The final result of the stitching process is shown in Fig. 4.15. In fact, with the here

presented method we were able to recreate the modified equation of state (4.33) for a photon gas

in a tilted finite-depth box (dash-dotted). The ripples of the graph stem from the large amount of

overlapping density profiles, which naturally scatter in their amplitude although they are already

integrated over a certain region of the box. In principle, the determined EoS would already suffice

to infer the compressibility 𝜅𝑇 of the gas via a derivative 𝜕𝜇. However, as the analysis requires

manual input at several stages, a more robust method is presented in sec. 4.8. Moreover, for a

measurement of 𝜅𝑇 it is eligible to measure for multiple values of 𝑈0, which is here restricted to

large values, hence another method is presented in sec. 4.8.

4.8 Compressibility

The isothermal compressibility 𝜅𝑇 of the photon gas, like the equation of state, also can be in-

ferred from the density gradients in a tilted box. For the infinite ideal Bose gas one would expect

an infinite compressibility in the condensed phase as any particle in the ground state does not

exert any pressure to its environment. It turns out that this circumstance breaks down in finite

size systems since the residual kinetic energy of the ground state due to the spatial confinement
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("Heisenberg pressure", see sec. 4.3.3) acts against the system walls and above a certain density

overshadows its infinitely compressible character.

For the infinite ideal Bose gas one obtains an analytical expression for 𝜅𝑇 when inserting (1.38)

into (1.45) to get

𝜅𝑇 ,∞ =
1

𝑛2∞(𝜇) (
𝜕𝑛∞(𝜇)
𝜕𝜇 )𝑇 ,𝑁

(4.38)

=
1
𝑘B𝑇

𝑒𝑛̄𝜆2th − 1
𝑛̄2𝜆2th

(4.39)

which solely depends on the density of the gas. In the classical limit of low densities where

exp(𝑛̄𝜆2th) ≃ 1 + 𝑛̄𝜆2th the expression simplifies to

𝜅𝑇 ,C ≃
1
𝑘B𝑇

1
𝑛̄

(4.40)

=
1
𝑝

(4.41)

which, when integrated (reversing the 𝜅𝑇 definition), yields the ideal gas equation 𝑝𝑉 = 𝑁𝑘B𝑇
and one finds the compressibility to be the inverse pressure of the gas. In the quantum limit (high

phase space densities) we get an exponential growth with the phase space density as

𝜅𝑇 ,Q ≃
1
𝑘B𝑇

𝑒𝑛̄𝜆2th
𝑛̄2𝜆2th

. (4.42)

Similar to sec. 4.6.1, the analytic form is not applicable in all regimes as we here work with a

finite trap depth environment. The compressibility is obtained by inserting (4.35) into (1.45) and

one finds that the system is more compressible by a constant factor

𝜅𝑇 ,trunc = 2 𝜅𝑇 ,∞ . (4.43)

For a tilted box we get a slightly different analytical expression (4.33). Here we identify the

compressibility with a derivative as

𝜅𝑇 ,tilt =  𝜅𝑇 ,∞ . (4.44)

In all scenarios, the equation of state and compressibility are adjusted by powers of the prefactor

 within experimental accuracy.

Experimentally, one could in principle derive the obtained equation of state data from sec. 4.7.

However, since the analysis method intrinsically has several (also manual) degrees of freedom,

we aim for a more robust approach. For a start, we discuss the textbook definition of the com-

pressibility, namely the relative volume change under external pressure change. Since this is

experimentally unfeasible in the here used experiment a different method is presented, which in

principle extracts equivalent information from the system. It allows to determine the isothermal

compressibility of the finite-size homogeneously trapped photon gas.

4.8.1 Variation of the Box Size

The compressibility is defined as the relative volume change d𝑉 under external pressure change

d𝑝. Changing the physical volume of the delaminated box potential structures during operation

is not feasible with the current technical capabilities, especially during photon storage times

below one nanosecond. To nevertheless give an intuitive picture of a compressed ideal Bose gas

in a box, we start with a numerically computed 𝑝 − 𝑉 diagram. Let a thermalized ensemble
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Fig. 4.16: Numeric exploration of the compressibility. a) Experimentally for the present photon system
unfeasible concept of squeezing the box with a piston. b) Exemplary 𝑝-𝑉 diagram for 𝑁 = 2000 photons
during the compression process for finite and infinite potential depth 𝑉max. c) Compressibility inferred
from the 𝑝-𝑉 diagrams for different photon numbers and trap depths. For higher 𝑁 , condensation sets
in at box sizes closer to infinity, hence the graphs diverge from the analytic curve (solid black) at higher
densities. The dashed black line shows the analytically obtained expected compressibility (4.43) for the
truncated trap. Black 𝑁 labels belong to both trap depths.

of 𝑁 photons be initially trapped in a square box of side length 𝐿 and volume (area) 𝑉 = 𝐿2.
The relevant internal energy 𝑈 of the gas is encoded in its transverse momentum, hence the

photons exert a pressure onto the potential walls (force per length). Since there are only two

(kinetic) degrees of freedom in our system, the thermal and caloric equation of state coincide,

𝑝𝑉 = 𝑈 = 𝑁𝑘B𝑇 , hence the pressure is given by

𝑝 =
𝑈
𝑉

=
𝑈
𝐿2

(2d, homogeneous). (4.45)

Assuming that the box is now squeezed by decreasing its size 𝐿 → 𝐿−Δ𝐿, all single particle states

shift upwards in energy due to the 1/𝐿2 scaling, see Fig. 4.16a. The photons are then thermally

redistributed over the new set of eigenstates (isothermal compression). Since 𝑁 is constant, the

average energy per particle increases while the critical particle number for condensation 𝑁c de-

creases. Below a critical size 𝐿c, the photons begin to condense into the new ground state, which

eventually absorbs all motionally excited photons if the procedure is continued. Shifting the en-

ergy levels such that 𝐸11 = 0 is unphysical here as the compression is actually acting against

the zero point energy, which is not anymore negligible in the given scenario. Exemplary nu-

merical 𝑝-𝑉 diagrams and obtained compressibilities (including the finite trap depth) are shown

in Fig. 4.16b/c. In the initial compression phase (high 𝑉 , left), where the gas is expected to be-

have classically due to the low densities, the pressure fulfills the relation 𝑝 ∝ 1/𝑉 as verified by

the colinearity of the graph with respect to the behavior of an ideal classical gas (dashed). As

the critical particle number for condensation 𝑁c shrinks closely linear with the box volume (see

sec. 2.4.2) the photons ultimately condense at densities of order 𝑛 ≈ 1 µm−2
, visible as the curve

flattens. This sign of vanishing pressure response already hints at the infinite compressibility in

the condensed regime. However, after a plateau, the pressure rises again due to the increasing

ground state energy (Heisenberg uncertainty) which ultimately dominates for box sizes below

𝐿 ≲ 20 µm. The lower pressure for finite trap depth is well understood as higher energetic modes,

which contribute higher pressure are cut off and low lying modes are overrepresented.

The isothermal compressibility is directly obtained from the 𝑝-𝑉 diagrams via 𝜅𝑇 = −𝑉 −1𝜕𝑉/𝜕𝑃 .

For low densities, the infinitely deeply trapped gas well represents the classical ideal Bose gas

compressibility indicated by the dashed line in Fig. 4.16c. The transition to a quantum gas starts
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at particle densities above 𝑛̄ ≳ 0.1 µm−2
where classical and quantum value start to diverge. The

minimal value is reached at 𝑛̄min ≈ 1.59/𝜆2th ≈ 0.74 µm−2
. At higher densities, the compressibility

starts to increase again and theoretically diverges towards infinity as indicated by the solid black

line. Finite size effects are pronounced more strongly than in the 𝑝-𝑉 diagram as the emerging

Heisenberg pressure of the squeezed ground state ultimately renders the system incompressible,

i.e. 𝜅𝑇 → 0. For varying particle numbers, condensation sets in at different box sizes, where

the larger boxes much better represent the infinite system limit and thus the extracted com-

pressibilities show better agreement with the infinite system curve. We expect the system to be

more compressible as there is a smaller force counteracting against the pushing piston which is

revealed by the simulated curves; the behavior in the degenerate regime is analogous. For den-

sities below the ones in the breakdown region, the analytic expression (4.43) well matches with

the numerics (dashed black line).

4.8.2 Center of Mass Displacement

Changing the box volume is unfeasible during experimental operation, hence different observ-

ables have to be employed to extract the compressibility of the photon gas. A practical method

to extract the compressibility of the gas is from its density response to infinitesimal perturba-

tions as induced by a weak potential gradient, which can again be realized by a tilted cavity

mirror, already discussed in sec. 4.6. Experimental density profiles are too noisy to reliably

detect irregularities in the density profile at small tilts. A more suitable method is to pool the

spatial information into a single quantity, namely the center of mass ⟨𝑥⟩ of the photon cloud. For

symmetry reasons, the problem is reduced to a single dimension 𝑥 where the density profile is

averaged to

𝑛̄(𝑥) ≡ ∫
ROI

𝑛(𝑥, 𝑦) d𝑦 . (4.46)

For experimental data, the integration is performed over a suited region of interest (ROI) as

boundary effects disturb the reliability of the method. With the total photon number 𝑁 =
∫

ROI
𝑛̄(𝑥) d𝑥 the latter can be expressed via

⟨𝑥⟩ =
1
𝑁 ∫

ROI

𝑥 𝑛̄(𝑥) d𝑥 . (4.47)

Starting from the local density approximation and assuming small mirror tilts, we make a linear

ansatz as in sec. 4.7 for the density profile like 𝑥(𝜇) = (𝜇0 − 𝜇)𝐿/𝑈0. Inserting into (4.47) and

performing the variable substitution of position 𝑥 to chemical potential 𝜇 yields

⟨𝑥⟩ =
1
𝑁 ∫

𝐿/2

−𝐿/2
𝑥 𝑛(𝑥) d𝑥 (4.48)

=
1
𝑁 ∫

𝜇0

𝜇0+𝑈0
(𝜇 − 𝜇0)

𝐿
𝑈0

𝑛(𝜇)
𝐿
𝑈0

d𝜇 (4.49)

≃
𝐿2

𝑁𝑈 2
0
∫

𝜇0

𝜇0+𝑈0
(𝜇 − 𝜇0) [

𝑛(𝜇0) + (𝜇 − 𝜇0)
𝜕𝑛
𝜕𝜇

||||𝜇0]
d𝜇 . (4.50)

Using the relation 𝜅𝑇 = −𝑉 −1𝜕𝑉/𝜕𝑃 we finally arrive at

⟨𝑥⟩ = −
𝑈0𝐿2

12𝑁
𝜕𝑛
𝜕𝜇

||||𝜇0
(4.51)

= −𝜅𝑇
𝑛̄𝑈0𝐿
12

(4.52)
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where in the last step, the photon surface density was further reduced to an entirely averaged

density 𝑛̄ = 𝑁/𝐿2. From the center of mass response we can extract the isothermal compress-

ibility via the relation

𝜅𝑇 (𝑛̄) = −12
⟨𝑥⟩/𝐿
𝑈0

1
𝑛̄

(4.53)

where the factor ⟨𝑥⟩/𝐿 / 𝑈0 is the relative center of mass displacement versus tilt energy; nor-

malizing to the gas density yields the compressibility 𝜅𝑇 . The robustness of this method will be

discussed using another numeric approach.

4.8.3 Experimental Implementation and Numerical Predictions

As discussed in sec. 4.7, the experiment offers a reliable method to introduce a linear potential

gradient by tilting one of the cavity mirrors. Before performing the actual experiment, we carry

out a numerical simulation to confirm the center of mass method and probe its limits. For this

purpose, a set of density profiles is computed for 𝑈0/𝑘B = −25K to 25 K and photon numbers in

the range 𝑁 = 100 to 15 000. Exemplary density traces for different total photon numbers 𝑁 and

𝑈0 = {0, ±25} K are shown in Fig. 4.17a. For photon numbers 𝑁 ≪ 𝑁c, e.g. 𝑁 = 500, the density

profile has a linear gradient. The tilted box potentials as used in the simulation 𝑉 (𝑥) are shown;

the gradient is amplified by a factor of 2.5 for better visibility. At 𝑁 ≈ 1000 quantum degeneracy

is predicted to emerge at the box edges. Note that as the low lying modes are already confined

more tightly, degeneracy emerges at much lower photon numbers since the energy separation

of those modes is increased. For 𝑁 = 2200 the density profile is already highly nonlinear while

condensation is finally reached at 𝑁 ≈ 3200. Next, we look at the center of mass response ⟨𝑥⟩/𝐿,

see panel b). Below threshold, also including the nonlinear density profiles at 𝑁 = 2200, the

center of mass response is linear in the here shown 𝑈0 range. In the condensed phase, the S-

shaped response curves saturate which is physically understood as the ground mode is squeezed

into the potential minimum at the box edge and can not move any further outwards. From hereon,

the center of mass does not significantly change when the potential gradient 𝑈0 is enhanced or

more photons are added to the system. Nevertheless, the response is always approximately linear

in a varying region around 𝑈0 = 0, which will be the here employed validity criterion of the

center of mass method. The compressibility 𝜅𝑇 ,tilt is given by the slope of the response curves

normalized to the mean density as in (4.53). Saturation of the center of mass already hints at a

breakdown of the infinite compressibility (expected for 𝐿 → ∞), which is intrinsic for the given

finite size systems (see sec. 4.8.1). The numerically inferred compressibility is shown along with

experimental data in Fig. 4.18.

4.8.4 Experimental Procedure

Data Acquisition The here presented method partially relies on the density profile of the

box ground mode, hence we are limited to box sizes of 𝐿 = 40 µm as larger (non-tilted) boxes

do not reliably host a sinusoidal ground mode due to the residual mirror surface roughness.

The box is tilted to a maximum value of +110 piezo steps, corresponding to a tilt energy of

𝑈0/𝑘B = 22(3) K. Data sets for different densities are obtained by ramping down the pump

beam power and simultaneous image acquisition. The box is then tilted back towards a parallel

alignment 𝑈0 = in small steps and the procedure is repeated such that data is acquired in the form

𝑛(𝜇, 𝑈0) for many 𝜇 and 𝑈0. The used piezo screw steps are ±{0, 2, 4, 6, 8, 10, 15, 20, 25, ..., 110}.
Negative numbers here mean tilting in the opposite direction to improve data integrity. The

measurements were performed at 𝑞 = 8 and 𝜆c = 583 nm to avoid excessive mechanical stress

between the cavity mirrors.
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Fig. 4.17: a) Expected density profiles of the photon gas for different total photon numbers 𝑁 and for
𝑈0 = {0, ±25} K. For increasing 𝑁 , the density profile shows a transition from having a shallow linear
gradient to highly nonlinear shapes in the condensed regime. The shown exemplary potential outlines
𝑉 (𝑥) (arbitrary units) are enhanced in their gradient for better visibility. b) Center of mass response ⟨𝑥⟩/𝐿
of the photon cloud versus tilt energy 𝑈0 for various 𝑁 . Below threshold, the response is entirely linear
in the here shown 𝑈0 range while above, a saturation is observed owing to the finite size box, providing
an upper limit for the center of mass displacement.

Analysis The acquired images are cropped to regions of interest of roughly 𝐿ROI ≈ 30 µm (box

size is 𝐿 = 40 µm) to avoid the influence of the smeared out surface density at the box edges. The

following evaluation is then similar to the procedure to the numerical simulation in sec. 4.8.3.

The experimental density profiles have to be sorted by their occupation number. As the traces

typically do not have equal photon number, the respective closest matching profiles for a target

𝑁 are picked. The tilt energy 𝑈0 is inferred from the piezo screw steps where as a post-correction,

the zero point of the tilt angle can be inferred afterwards from the zero crossing of the center

of mass and turns out to be around 2 K. A linear function is fitted in a region around the zero

crossing. At low densities one can use the full data range as an input for the fit function due to

the fully linear response. Above the degenerate regime, the fitting region is successively reduced

down to |𝑈0|/𝑘B < 3K for the highest occupations. From the slope of the fit we get the ratio of

⟨𝑥⟩/𝑈0 for a certain value of 𝑛̄ = 𝑁/𝐿2 which resembles one data point.

Results Experimental density profiles at same 𝑁 but different 𝑈0 are shown in Fig. 4.18a. One

can qualitatively observe the expected behavior of photons accumulating in the new potential

minimum. Below threshold (top), the density profile in the inner regions can be well described

by a linear function whose slope changes along with 𝑈0. The extracted center of mass shift

versus the tilt energy is shown in panel b) for three exemplary photon numbers: below (𝑁 < 𝑁c),

around (𝑁 ≈ 𝑁c) and above threshold (𝑁 > 𝑁c). Below threshold, the response of the center of

mass is linear with respect to 𝑈0 as verified by the good agreement with the linear fit function.

For the S-shaped curve far above threshold, only the inner region around 𝑈0 ≈ 0 is employed

for fitting to isolate the linear response. The obtained compressibility 𝜅𝑇 is shown in panel c)

(red diamonds). At low densities we find the data points to significantly lie above the infinite

system theory 𝜅T,∞ (solid black). This is well understood to be a consequence of the finite trap

depth as already explained in sec. 4.8.1. In fact, the data points agree well with the numerical

prediction obtained using the center of mass displacement (solid red) explained in sec. 4.8.3

taking into account experimental parameters such as finite trap depth and smooth box walls.

Another numeric curve from Fig. 4.16 representing the squeezed box (solid gray) is shown for

comparison. Their difference at low densities is due to the fact that the photon gas in a tilted box
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Fig. 4.18: Experimental compressibility measurement. a)Density profiles above (top) and below (bottom)
threshold for various mirror tilts corresponding to 𝑈0/𝑘B ≈ ±{0, 5, 11} K. b) Center of mass response of
the photon gas with respect to the applied potential gradient 𝑈0. Below threshold (red), the response
is linear whereas it saturates in the condensed regime (dark blue). By restricting a linear fit to a region
around 𝑈0 = 0 one can extract the linear part of the response to determine the compressibility. c) Data
for the isothermal compressibility 𝜅𝑇 . Solid black line shows the infinite system theory. Also shown
are numerically obtained curves in a non-tilted box (gray) and a simulated center of mass method (red).
Gray shaded region indicates where the infinite system theory becomes inapplicable as the local density
approximation ceases to be valid in condensed finite size systems.

is described by a modified equation of state 𝑛tilt(𝜇), see sec. 4.6.1. The modified analytic curves

for a finite depth (4.43) and the tilted box (4.44) (also finite depth) are not shown as they overlay

with the instead shown numeric examples. The numeric curve for the untilted box (solid gray)

rises higher because it was computed for 8000 photons, which condense at a larger box size and

hence are more comparable to an infinite system. For 𝑁 ≈ 3000 it drops off in the same region, as

seen in Fig. 4.16c. The shaded area at densities 𝑛̄ ≳ 𝑁c/𝐿2 ≈ 2.7 µm−2
marks the invalid region of

the local density approximation, obtained when comparing the analytic expression for 𝑁c (2.62)

with the EoS (1.38). In this regime, the center of mass ⟨𝑥⟩ no longer is a good quantity to extract

the compressibility. The larger error bars in the low density regime arise from the here more

noisy profiles.

We conclude that the here presented experiment reproduces the theoretically expected re-

sponse of the density profile. The limits of the validity of the method are well understood and

are also confirmed with the experimental data.
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Conclusion & Perspectives

In this doctoral thesis, investigations about the classical application of the dye-filled microcavity

as a paraxial light concentrator as well as the quantum gas related experiments on homoge-

neously trapped photon gases have been carried out. The main results can be summarized as

follows:

• The feasibility of the dye-filled microcavity apparatus as a platform for paraxial light con-

centration was investigated. Although the photon gas transforms from an initially hot

to a room temperature cloud, a phase space build-up could not be observed. The results

were understood by experimental and theoretical determination of the loss probability of

spontaneously emitted photons from the microcavity providing an only one-dimensional

bandgap.

• A platform for homogeneously trapped photon gases was established. The delamination

technique in combination with the sufficiently low surface roughness of the employed

mirrors for the first time allowed for the observation of textbook-like mode structure of a

condensed photon cloud in a box-shaped potential. The spatial, momentum and spectral

distributions agree with a thermal gas at 𝑇 = 300K, when predictions are corrected for an

experimentally limited finite trap depth of 𝑉max = 2𝜋ℏ × 8.7(14) THz = 1.4(2)𝑘B𝑇 .

• From spectra the caloric properties, namely internal energy and specific heat for varying

particle numbers across the transition from a thermal photon to a Bose-Einstein conden-

sate could be determined. The findings revealed that in a two-dimensional finite box po-

tential, those quantities are continuous across the condensation threshold, as expected in

the absence of a second order phase transition.

• By superimposing a linear gradient to the box potential, the equation of state 𝑛 = 𝑛(𝜇)
could be measured over a chemical potential range of 2 𝑘B𝑇 by controlled stitching of mul-

tiple obtained traces. In a further measurement, the isothermal compressibility 𝜅𝑇 could

be determined for various photon densities across the condensation threshold. The ex-

perimental data well follows finite size box theory as it starts to diverge towards infinity

upon emerging quantum degeneracy but ultimately drops due to the nonzero ground state

energy.

In future works, the light concentration efficiency could be improved by isotropic resonator

confinement capabilities, e.g. via a three dimensional bandgap for the photon gas [141, 142],

allowing for a more efficient redirection of the captured fluorescence. Other than dielectric mir-

rors, photonic crystal structures could here serve as a platform for modifying the local density

of states and provide strong isotropic confinement [143, 144].

Concerning the measurements of the thermodynamics of photon gases in box potentials, it would
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for the future be important to reveal the origin of the experimentally observed limitations of the

potential depth. A possible approach to realize deeper wells is the use of shallow slopes as they

could reduce the material stress in the border regions, preserving their reflectance. Moreover,

current works aim for dielectric layer delamination without the employment of an Si layer by

using ultraviolet light as a heating source as sufficient short-wavelength radiation gets absorbed

directly by the Ta2O5 layers. To this day, the reflecting mirror surface structuring possibilities,

including the maximum achievable trap depth, of correspondingly created potentials have not

been investigated.

The critical photon number for condensation (2.62) was derived via coherence arguments, al-

though the behavior remains to be verified in the here used box environment. Current works

focus on the temporal and transverse coherence envelope function, which is here expected to

be Gaussian in the classical, exponential in the degenerate and algebraic in the quasi-condensed

regime [51]. Ongoing measurements carried out by Leon Espert Miranda following the proce-

dure in [55] already hint that in the classical regime, the transverse first order coherence length in

the order of the thermal wavelength and, upon macroscopic occupation of the 𝜓11 ground mode,

a system-spanning function. Such an ideal gas system could serve as a candidate for verification

of the universality of critical exponents as predicted by the Ginzburg-Landau theory [57, 145] by

precise correlation measurements close to the phase transition for (𝑇 − 𝑇c)/𝑇 → 0.

The here presented compressibility measurements were carried out during a mechanical steady

state of the cavity. A deeper investigation of the density response to potential gradients would be

to induce the latter during the photon storage time and observe time-resolved spatial redistribu-

tion. Such potential gradients can be realized by thermally introduced refractive index gradients

using e.g. picosecond laser pulses. Modifications of the potential landscape relying on thermally

induced refractive index changes have already been investigated in our system under steady state

conditions [26] and temporally changing on the nanosecond timescale [121, 124].

The two-dimensionality of our system can be further reduced to a one-dimensional system. Cur-

rent works in our group in collaboration with the Freyman group in Kaiserslautern investigate

photon gases in 3D-printed polymer structures on the mirror surface which imprint an attractive

potential as their refractive index lies above that of the dye solvent [26]. Although the smooth-

ness does not yet match the untreated mirror surface its diffraction limited transverse resolution

of tens of nanometers [146] enables the creation of one dimensional potentials, a regime that is

reached when one box side length falls below the thermal wavelength 𝜆th ≈ 1.5 µm or, equiva-

lently, the energy spacing in this dimension becomes larger than 𝑘B𝑇 [147]. Contrary to atomic

Bose gases, where thermalization is mediated via interparticle collisions which are unable to

drive a one dimensional system into thermal equilibrium [148], the photon gas can overcome

this limitation as the coupling to the dye heat bath is independent of the geometry.

Further possible interesting future studies include the observation of sound and vortices [17,

18, 20], the latter being enabled when introducing Kerr media [149] to the system. Previous

investigations showed that the largest feasible nonlinear medium inside the cavity is the dye

resonance itself [150], which would result in a dimensionless interaction parameter of 𝑔̃ ≈ 10−6,
which is too low to observe those effects. A more promising candidate could be the presence of a

nonlinear crystal inside the resonator volume which provides an effective instantaneous photon

self-interaction based on the phase shift of a virtual down- and upconversion inside the resonator

volume; the topic is subject of current research [151].



Appendix

A.1 Electric Field Distribution in the Cavity

The highly reflective cavity mirrors used in this experiment employ a stack of thin dielectric

material layers with thickness 𝑑𝑖 and refractive index 𝑛𝑖. This structure represents a photonic

crystal for which a simple yet powerful method to compute electromagnetic fields exists. At

each material boundary 𝑖𝑗 a portion of the incident light field 𝐸0 is reflected (𝐸𝑟 ) or transmitted

(𝐸𝑡 ) as described by the Fresnel equations (here for normal incidence and 𝑖, 𝑗 = 1, 2)

𝑟12 =
𝐸𝑟
𝐸0

=
𝑛1 − 𝑛2
𝑛1 + 𝑛2

, 𝑡12 =
𝐸𝑡
𝐸0

=
2𝑛1

𝑛1 + 𝑛2
. (A.1)

Hence, the resulting total electric field is the sum of many partial forward and backward prop-

agating waves. If the layer thicknesses are chosen appropriately (typically 𝑑𝑖 ≈ 𝜆0/4𝑛𝑖, 𝜆0 is

the design wavelength) the backward propagating waves interfere constructively and ultimately

cause a reflection of the incident beam (see sec. A.1.1 for more details). Contrary to metallic mir-

rors, this interference mechanism causes the wave nodes to not necessarily locate on the mirror

surface but rather to form a nontrivial standing wave pattern that penetrates the dielectric envi-

ronment. This distribution can be calculated with the so-called transfer matrix method [69] and

helps to understand the interaction of the trapped photon gas with the enclosed dye solution.

Let 𝐸1,2 be the electric field on left / right side of an arbitrary position in the medium and 𝐸+/−𝑖
be the right / left propagating component. An incident wave transforms into a transmitted and

reflected part which are connected via

(
𝐸+2
𝐸−1)

= 𝑆 (
𝐸+1
𝐸−2)

or (
𝐸+2
𝐸−2)

= 𝑀̂ (
𝐸+1
𝐸−1)

(A.2)

where 𝑆 and 𝑀̂ are called scattering matrix and transfer matrix. For a beam with wave vector

𝑘 propagating in 𝑧 direction one finds the following scattering matrices for propagation 𝑆p and

partial reflection at a dielectric boundary 𝑆
b

𝑆p = (
𝑒−i𝑘0𝑧𝑛 0
0 𝑒−i𝑘0𝑧𝑛) , 𝑆

b
= (

𝑡12 𝑟21
𝑟12 𝑡21)

(A.3)

The scattering matrix can be converted to the corresponding transfer matrix via the relation

𝑀̂ =
1
𝑆22 (

𝑆11𝑆22 − 𝑆21𝑆12 𝑆12
− 𝑆21 1 ) (A.4)

Only the transfer matrices can be reduced to a single operation by their reverse product

𝑀̂
total

=
𝑁−1
∏
𝑖=0

𝑀̂𝑁−𝑖 = 𝑀̂𝑁 ⋅ ... ⋅ 𝑀̂2 𝑀̂1 (A.5)
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Fig. A.1: a) Effect of a dielectric boundary on forward and backward propagating waves. An incoming
wave splits into a transmitted and a reflected part. b) Intensity of a resonant standing wave inside the
cavity, in linear (top) and log scale (bottom). Dielectric layers are hinted as bars with alternating color
in the background, with the darker colors corresponding to higher 𝑛. Dashed line is a fitted exponential
decay 𝐼 (𝑧) = 𝐼0 exp(−3.8 µm−1 ⋅ 𝑧).

which can then be back converted to a scattering matrix 𝑆
total

by the same relation as (A.4) but

swapping 𝑆 and 𝑀̂ . When choosing 𝐸+1 ∈ ℂ and 𝐸−2 = 0 one can calculate 𝐸−1 with (A.1). The field

distribution along the photonic structure is then obtained by recursive application of 𝑀̂𝑖 to the

starting vector. An exemplary standing wave inside the microcavity is shown in Fig. A.1b. One

sees how the light spends a certain amount of time inside the mirror material while the (squared)

amplitude decays exponentially.

The energy density  is calculated by additional weighting of the squared amplitude with the

local refractive index

(𝑧) ∝ ∫
𝑧2

𝑧1
𝑛(𝑧) |𝐸(𝑧)|2d𝑧 (A.6)

which is proportional to the time the light spends in a length element d𝑧.

A.1.1 Properties and Design of Dielectric Mirrors

All cavity mirrors used in the scope of this thesis are based on dielectric thin film coatings, hence

the name dielectric mirror. They are composed of several thin film layers with alternating high

and low refractive index. By stacking many of these layer pairs one can reach a reflectivity

of 𝑅 ≲ 99.999 % in the visible spectral regime, see Fig. A.2 for an illustration of the working

principle. Although the previously described matrix formalism already yields all necessary tools

to calculate the reflective properties of such a mirror, one can still make some simplifications

[69, 152]. The layers are coated on a substrate with refractive index 𝑛𝑠 where each boundary

contributes a partial wave with phase 𝛿𝑗 . Usually the property of interest is the total reflectivity

value 𝑅 = |𝑟|2 = |𝑣1/𝑣2|2 of the layer stack with

(
𝑣1
𝑣2)

= (
𝜂0 −1
𝜂0 1) [

𝑁
∏
𝑗=1 (

cos(𝛿𝑗 ) i
𝜂𝑗 sin(𝛿𝑗 )

i𝜂𝑗 sin(𝛿𝑗 ) cos(𝛿𝑗 ))](
1
𝜂𝑠)

(A.7)

𝛿𝑗 = 𝑘𝑗 𝑑𝑗 cos(𝜃𝑗 ) =
2𝜋
𝜆
𝜂𝑗 𝑑𝑗 cos(𝜃𝑗 ) (A.8)

where 𝜂 are the pseudo refractive indices, which are calculated from the normal refractive indices

via 𝜂𝑖 = 𝑛𝑖 cos 𝜃𝑖 for s-polarized light and 𝜂𝑖 = 𝑛𝑖/ cos 𝜃𝑖 for p-polarized light. In the case of
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Fig. A.2: Working principle of a dielectric mirror. a) Illustration of the path length difference caused
by a single layer. The propagation angle depends on the local refractive index, hence the path length
is non-trivial. b) Exemplary partial waves in a Bragg-Mirror for angle of incidence 𝜃 = 45 deg. The
highest reflectivity (at normal incidence 𝜃 = 0 deg) is achieved by choosing the thickness of each layer
as 𝑑𝑗 = 𝜆/4𝑛𝑗 for constructive interference of all reflected partial waves. Note that in reality, the incident
beam is regarded as a planar wave front instead of a single ray.

supermirrors with 𝑅 ≳ 99.99 % the absorption and scattering losses 𝐴 ≈ 5…20 ppm become

significant. Reflectance, transmittance 𝑇 and losses 𝐴 are connected via 𝑅 + 𝑇 + 𝐴 = 1. The

transmission can acquire arbitrary low values while the reflectivity value is limited by material

imperfections and depends on e.g. substrate quality and the coating process [130]. In the visible

regime (contrary to infrared), 𝑅 = 99.999 % is mostly unreached. Commonly used materials are

SiO2 in combination with Ta2O5 (𝑛 ≈ 2.15) or Nb2O5 (𝑛 ≈ 2.35) [130].

Empirically one finds that if light approaches the layer stack from a medium with refractive

index 𝑛̃, the transmission within the stop band is typically increased by this very factor 𝑛̃with re-

spect to vacuum/air due to the better index matching between the topmost layer and the medium.



92 A Appendix

A.2 Transmission Profiles of Commonly Used Mirrors

In Fig. A.3 are shown calculated transmission profiles of commonly used mirrors in our experi-

ments. Parameters are

Mirror Type Layer Structure

CRD550 13 alternating pairs of Nb2O5 and SiO2. One additional Nb2O5 layer on top.

LO550 19 alternating pairs of Ta2O5 and SiO2. One additional Ta2O5 layer on top.

LO2019 Custom coating, roughly speaking:

Two stacked Bragg mirrors made of Ta2O5 and SiO2:

18 layer pairs with 𝜆0 = 570 nm on top of 18 layer pairs with 𝜆0 = 700 nm.

Individual layer thicknesses were refined by the Laseroptik company.
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Fig. A.3: Calculated transmission profiles of various mirrors types in an environment with refractive in-
dex (𝑛̃ ≈ 1.44).
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