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Introduction

In a broad sense, regularisation by noise refers to the frequently observed phenomenon where
the qualitative properties of a system evolving in time significantly change (and possibly improve)
upon the insertion of an external noisy perturbations.

Phisycally, the presence of such perturbations is quite natural: every physical model arises from
a mathematical abstraction procedure, where the less relevant factors in the dynamics (which are
usually impossible to keep track of) are not taken into account; reinserting them in the system,
by means of a statistical description, should provide a more faithful description of the real process
one is trying to study.

Mathematically, the simplest yet most striking instance of this phenomenon is given by finite
dimensional ODEs of the form

x_ t= b(t; xt): (1)

It is well-known that, if b is not Lipschitz, existence and uniqueness of solutions to (1) might
not hold; a classical example, displaying the so called Peano paintbrush phenomenon, is given by
b(x)= 2 sgn(x)jxj1/2, which admits infinitely many solutions starting from x0=0 of the form

xt=�(t¡ t0)21t>t0 (2)

for any t0> 0. On the other hand, if we pass to consider the SDE

dXt
"= b(t;Xt

")dt+ "dWt (3)

where "> 0 and W is sampled as a Brownian motion, then existence and uniqueness of solutions
holds for (3), for any continuous drift b (thus including the above choice).

Examples like the one presented above are not the only type of regularisation by noise; among
others, it is worth mentioning a qualitative change of the long time behaviour of the system (e.g.
by stabilization by noise [12, 11] or synchronization by noise [121]), the prevention of finite time
blow-up [217], or the role played by the presence of random initial data (especially in dispersive
equations, see [264] and the references therein). However, �restoration of wellposedness by noise�,
in the style of a comparison between (1) and (3), is the most common acception of regularisation
by noise and the one we will stick with in the rest of this thesis.

Historically, first regularisation by noise results are usually attributed to Zvonkin [285] and
Veretennikov [269] (although existence and uniqueness in law for (3) was already well known,
by a simple application of Girsanov transform). It is quite hard to pinpoint when the modern
terminology was born, with the earliest work I could find with the exact expression regularisation
by noise in the title being [226]. Nowadays the literature on the topic is huge, to the point where
it recently gained its own spot in the Mathematics Subject Classification System MSC2020, as
subject 60H50.
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It is almost impossible to give a complete account on the existing theory (for some presentations,
we refer to the monograph [115], the review paper [155] and Section 1.6 from [218]), but let us
at least try to provide some main highlights on the existing techniques, their advantages and
shortcomings; from now on for simplicity we will take "=1 in (3).

In the case of multidimensional SDEs driven by Brownian motion, a landmark result was
obtained by Krylov and Ro�ckner in [191], who established strong well-posedness of (3) for b merely
satisfying some local integrability conditions, e.g. b2Lt

qLx
p with 2/q+d/p<1. The next pioneering

contribution was given by Flandoli, Gubinelli and Priola in [122], where they realized that in many
situations the SDE also admits a sufficiently regular flow of diffeomorphisms, which in turn allows
to solve the stochastic transport equation associated to (3), given by

du+ b � rudt+ �dW � ru=0: (4)

These papers led to a by now standard technique, referred to as either Zvonkin transform or
Itô�Tanaka trick ; by stochastic calculus and parabolic PDEs tools, it allows to construct a transfor-
mation of the phase space � such that the new variable Yt :=�t(Xt) solves another SDE with more
regular coefficients; see among others the works of Fedrizzi and Flandoli [105, 106] and Zhang [279,
280, 282] for the case of additive and multiplicative Brownian noise and Priola [242] for Lévy type
of noise. In all the afomentioned papers, strong existence and pathwise uniqueness is established;
moreover, similar results can be stablished for infinite dimensional SDEs, see [82, 83].

Other techniques, based on martingale problems, allow to even treat even distributional drifts,
see among others the works [25, 123, 190, 63, 283]; the price one has to pay in this case is that only
weaker statements (i.e. weak existence and uniqueness in law) can be obtained (with the notable
exception of d=1, where one recovers strong statements, see [25] and [15]).

Among works which do not fit exactly the dychotomy presented above, let us mention: compact-
ness arguments, first developed in [220] and recently revisited in [246] to construct strong solutions
in the critical case b 2 Lt

qLx
p with 2/ q + d/ p= 1; the Eulerian approach from [29], which first

establishes existence, uniqueness and regularity for (4), and subsequently construct a generalised
Lagrangian flow for the SDE in the style of [97]; finally, a class of Wiener uniqueness results (at
the level of transport equations (4)) developed in [216, 108, 223] (see also the discussion from [116]).

The case of stochastically perturbed PDEs is even more varied, for two main reasons: on one
hand, like in the analytical setting, each PDE requires the development of ad hoc techniques; on
the other, there is no canonical way to insert a noise in the equation, and the correct (physically
meaningful) choice should again depend on the specific structural properties of the system in
consideration. In any case, let us mention the works [53] and [14] for stochastic heat equations
with additive noise; [16], [107] and [125] for transport type equations with multiplicative gradient
noise (like the one appearing in (4)); [88], [89] for Schro�dinger equations with white noise disper-
sion; finally, [113] and [92] for results concerning interacting particle systems with environmental
background noise.

Given the above (very incomplete!) class of results, one might wonder whether there is still
something interesting left to say concerning regularisation by noise. Luckily for this thesis, the
answer is positive! There are two main reasons for this:

i. The use of heavily probabilistic tools, although partially necessary, introduces into the
picture considerations (e.g. the exact notion of existence and/or uniqueness we are working
with, which varies from result to result) which are not quite germane to the original problem.
Observe that, due to the additive nature of the noise, equations (1) and (3) can be perfectly
meaningful for any choice of a continuous path W , without any need for Itô calculus to be
involved.

ii. Similarly, although these techniques work very well for a large class of Markovian noises,
they break down for other choices. In particular, Brownian noise is very peculiar, for its
properties of martingality and absence of memory, while in real-life examples it is often
reasonable to expect the noise to be depend on the past history of the system (and possibly
exhibit so called long-range dependence).
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These problems are intimately related to the pathwise approach to regularisation by noise, which
justifies the title of this thesis; in a nutshell, it can be summarised as splitting the problem in two
distinct steps:

1. Find analytic properties of a continuous path w such that the perturbed ODE (written
directly in integral form)

xt=x0+

Z
0

t

b(s; xs) ds+wt (5)

admits exactly one solution.

2. Show that such properties are satisfied by typical realizations of the noise W (!) one is
interested in (which is the only step where probabilistic considerations enter the picture).

In the case of Brownian W , the question whether such a problem can be fullfilled (although not
stated exactly in this modern reformulation) is due to Krylov, see also Problem 7.1.7 from [41];
a successful answer was provided in a landmark paper by Davie [86], establishing the first path-
by-path uniqueness result in the literature (the terminology is due to Flandoli [115]). Since then,
similar results have been established for several classes of SDEs, see e.g. [254, 255, 243, 244].

Compared to the aforementioned fully probabilistic techniques, the pathwise program encoded
by Ponts 1. and 2. presents substantial additional difficulties, as it tries to exploit as least informa-
tion on the noise w itself as possible. At the same time, whenever it works, it has a huge payoff: it
gives us a better understanding of the mechanisms underlying the regularising effect and it provides
a stronger notion of uniqueness, involving all possible solutions to the pathwise equation (which
can be treated as a random ODE rather than an SDE), without any adaptability or probabilistic
requirement; once Point 1. is available, the verification at Point 2. can be accomplished for a larger
class of noises, which can be naturally non-martingale or non-Markovian.

Even further, one can start asking questions of a different flavour, like:

Do generic continuous perturbations w regularise the ODE (5)?

This last formulation is now completely detached from any specific probabilistic setting, although
it perfectly fits the regularisation by noise framework. One of the main goals of this thesis will
be to provide the following positive, quantitative answer to the previous question. For simplicity,
we formulate it here only in the case of time-independent drifts b.

Theorem 1. (cf. Theorem 3.59 from Chapter 3) Let b 2Cx�, � 2 (¡1; 1), � 2 (0; 1) and
consider the perturbed ODE ( 5). The following hold:

i. If � < (2¡ 2�)¡1, then for almost every w2Ct� the ODE has a meaningful analytical inter-
pretation; moreover, if x02Rd is fixed, then for almost every w 2Ct� there exists a unique
solution to ( 5).

ii. If � < (4¡ 2�)¡1, then for almost every w 2Ct� the ODE is wellposed for all x02Rd and
solutions form a flow of diffeomorphisms.

iii. More generally, if � < (2n+ 2¡ 2�)¡1 for some n> 1, then for almost every w 2Ct� the
associated flow is n-times differentiable.

iv. Finally, for almost every continuous w, the ODE (5) admits a smooth flow.

In the statement above, Cx� denote Besov�Ho�lder spaces (also usually denoted by B1;1� , see
Appendix A.2), while Ct� denotes the space of �-Ho�lder continuous paths w: [0; T ]!Rd, namely
such that jwt¡wsj6C jt¡ sj� for some constant C >0. Finally, the terminology �for almost every
w 2 Ct�� must be understood in the measure-theoretic sense of prevalence, which is recalled in
Appendix A.3.
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Let us make some comments on Theorem 1:

� The statement covers the regime of distributional drifts, i.e. the case of b2Cx� with �< 0;
here it is then unclear how to interpret the equation, as one cannot pointwise evaluate b(xs),
thus the integral appearing in (5) is undefined in the Lebesgue sense; nontheless, for suitable
values of � > 0, Theorem 1 guarantees that the ODE is well-defined and might even have a
regular flow of solutions.

� There is a nontrivial interplay between the irregularity of the perturbation w, as measured
by the smallness the parameter �, and its regularising effect on the ODE, as measured
either by the allowed range of values for the parameter � associated to the regularity of the
drift b, or by the number of derivatives n that the flow of solutions admits. In particular,
Theorem 1 is a mathematical formalization of the principle �the rougher the noise, the better
the regularisation�.

� In the limit case where � gets to 0, there are no conditions left on � nor n and we assist to
the infinitely regularising effect of continuous additive perturbations. Moreover, in all the
statements there are no conditions on the dimension d2N of the state space Rd, which can
be arbitrarily large (but finite).

The strategy we will employ in order to prove Theorem 1 builds on the philosophy initiated in [57],
which started the study of analytic properties of paths ensuring the regularisation of ODEs. In
particular, the authors therein identify the space-time regularity of the averaged field

Twb(t; y) :=

Z
0

t

b(r; y+wr) dr; Ts;t
w b(y) :=Twb(t; y)¡Twb(s; y) (6)

as a key property ensuring both the meaningfulness and the possibly the wellposedness of the
perturbed ODE (5). The reasoning behind this fact roughly goes through the following lines:

1. In order to see a regularising effect, we need the path w to be particularly �active�, so that
whenever the solution x gets close to a critical point of the drift b, it cannot spend too much
time there (this is usually believed to be the source of non-uniqueness, think of the Peano
phenomenon presented at the beginning). If this �activity� is understood as w presenting
very fast oscillations (think of Brownian trajectories), then it is reasonable to expect a lot
of cancellations whenever integrating a function f along the curve w. In particular, there
is some hope that the field Twb is actually spatially more regular than the original b.

2. Given the structure of the equation, we expect any solution x to be of the form w+�, where �
at least formally corresponds to the integral

R
s

t
b(r;xr)dr term; for measurable and bounded

b this is indeed the case, implying that � is Lipschitz, in particular more regular than w.
It is reasonable to expect this last property to be preserved even in the distributional case
and thus to impose the solution ansatz x=w+ � for � 2Ct

 for some value  > �.

3. Intuitively, any x admitting such a decomposition �locally looks like w� up to higher order
corrections, which suggest that for jt¡ sj� 1 it should be possible to approximate � by

�t¡ �s=
Z
s

t

b(r; �r+wr)dr�
Z
s

t

b(r; �s+wr)dr=T
wb(t; �s)¡Twb(s; �s)=Ts;tw b(�s):

The key intuition from [57] is that, for sufficiently regular Twb, the last step can be made fully
rigorous by means of so called nonlinear Young integrals.

The correct solution ansatz for distributional drifts b is x=w+ � with � 2Ct
1/2, which allows

to show that, if Twb2Ct
Cx

1 (see the definitions given in Chapters 1 and 3) for some  >1/2, thenR
s

t
b(r; xr)dr=

R
s

t
b(r; �r+ wr)dr is well-defined (but it is not an integral in the Lebesgue sense

anymore!) and characterized as the unique limit of suitable Riemann-Stjeltes sums:Z
0

t

b(r; �r+wr)dr=

Z
0

t

Twb(dr; �r)= lim
n!1

X
i

Ttin;ti+1n
w b(�tin)= lim

n!1

X
i

Z
ti
n

ti+1
n

b(r; �tin+wr)dr
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where the limit is taken along any sequence of partitions �n= f0 = t0
n< t1

n< : : : < tn
n= tg with

mesh j�nj: =supi jti+1n ¡ tinj converging to 0 as n!1. Moreover, the resulting �integral� inherits
the time regularity of Twb2Ct

Cx
1; in other terms, for any x as above, t 7!

R
0

t
b(r; xr)2Ct

 ,!Ct
1/2.

As a consequence, we can set up and solve a fixed point map on the path space Dw :=w+Ct
1/2=�

w+ � : � 2Ct
1/2	, given by

F (x)t=x0+

Z
0

t

b(r; xr)dr+wt=:x0+

Z
0

t

Twb(dr; �r)+wt:

In order to show contractivity of F on Dw (endowed with a suitable metric), it is enough to know
that Twb is regular enough (e.g. Twb2Ct

Cx
2 for some  > 1/2); in this case, there exists a unique

fixed point x 2 Dw for F , which we define to be the solution to the perturbed ODE (5) (this
definition is consistent with the classical one whenever b is regular). Equivalently, passing to the
variable �=x¡w, this amounts to establishing existence and uniqueness of solutions to

�t= �0+

Z
0

t

Twb(dr; �r) (7)

which is now a nonlinear Young differential equation.

One can draw a nice analogy between the arguments developed in [57] (and their revisitation in
[145]) and the general philosophy of rough paths (see the monographs [132, 134]). The main idea
in rough path theory is that, in order to analytically define and solve an equation of the form

dXt=�(Xt)dYt;

driven by an irregular signal Y (typically Y 2Ct� with �6 1/2), the information contained in Y
alone is not enough. Instead, one needs to enhance the imput data Y into (Y ;Y) by additionally
considering a sufficient amount of iterated integrals of Y against itself (or in general its signature);
once this is done, the resulting solution map Y 7!X will admit a so called Itô-Lyons decomposition,
namely it will consist of the composition of a measurable lift of Y into (Y ;Y) and a continuous
(actually, differentiable) map sending (Y ;Y) into the corresponding solution X .

The situation here is similar: in order to give meaning to the perturbed ODE (5), we postulate
the existence and regularity of Twb, which plays the role of the enhancement (Y ;Y); once this
is done and the correct solution ansatz x 2Dw is identified, we can solve the ODE in a purely
analytical manner and construct a continuous (in suitable topologies) solution map (b; Twb) 7! x,
which yields an analogue of the Itô-Lyons decomposition. Heuristically, the information given by b
is not enough to solve the equation, but we need to take into account the �activity� of w as encoded
by the regularity of Twb. Moreover, similarly to the rough paths setting, whenever successful,
this strategy immediately yields the construction of an associated flow of diffeomorphisms to the
equation (something usually more difficult to achieve in the SDE setting, due to the adaptability
requirements and thus the impossiblity to apply time reversal arguments in a naive way).

Among the interesting processesW to which these results apply (by being able to verify Point 2.
of the above programme, i.e. the P-a.s. regularity of TW (!)b), but are outside the scope of classical
SDE techniques (due to W not being Markovian nor a semimartingale), the most prominent
example is given by fractional Brownian motion (fBm) of Hurst parameter H =/ 1/2 (whose basic
properties are recalled in Appendix A.1). It is a fundamental class of Gaussian processes, first
introduced by Kolmogorov [189] in the study of turbulence and later rediscovered by Mandelbrot
and Van Ness [211]; we refer to [90] and the references therein for an overview on its modelling appli-
cations. FBm can be regarded as a generalization of standard Brownian motion (corresponding to
H=1/2) and it shares many similar properties, including self-similarity and stationary increments.
However for H =/ 1/2 its increments are not independent and can be either positively correlated
(for H > 1/2, corresponding to long range dependence of increments) or negatively correlated
(H < 1/2, short range dependence). More generally, this thesis unveils a large class of Gaussian
processes with regularising trajectories, whose fundamental feature is to satisfy a suitable form of
local nondeterminism (cf. Section 5.1.3).
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In this introductory discussion, we have indulged a lot on explaining (some of) the ideas
coming from [57], but they constitute only a part of the results contained here (mostly those
from Chapter 3). The reason is that they laid the ground for several subsequent developments
(see e.g. [65, 66]), going far beyond the initial applications from [57], revealing a general strategy:
in order develop pathwise regularisation by noise results for a given system, one should find a
correct reformulation of the initial problem (like the ansatz x 2w+Ct

) which allows an appli-
cation of the nonlinear Young formalism. Indeed, the starting point of our analysis will be exactly
to analyse in detail the latter class of equations, in an abstract setting, so to specialize them
afterwards to different classes of problems.

Structure of the thesis
I've tried as much as possible to present the topics included in this thesis in their most natural log-
ical order, with each chapter being a natural prosecution of the ones that preceeded it. Nontheless,
each chapter has its own brief introduction, explaining the main motivations as well the notations
and conventions adopted therein, and a closing section of bibliographical remarks, explaining more
in detail the main sources of all the results presented and how they fit in the existing literature.
For this reason, here I will only give a very short overview of the contents of the chapters.

Chapter 1 is based on the paper [141] and contains a preliminary study of abstract nonlinear
Young differential equations (YDEs) in Banach spaces, i.e. equations of the form

yt= y0+

Z
0

t

A(ds; ys):

Results concerning existence, uniqueness, differentiability of the associated flow, as well as conver-
gence of numerical schemes and topological properties of the set of solution are discussed.

Chapter 2 is again based on [141] and can be seen as a natural continuation of Chapter 1,
passing to the more complicated case of evolutionary nonlinear Young partial differential equations,
especially of transport and parabolic type.

Chapter 3 applies the abstract theory from the previous chapters to study the regularising effect
of continuous additive perturbations w on ODEs; the material is taken mostly from the paper [145],
made in collaboration with Massimiliano Gubinelli, and partially from the preprint [146], joint
with Fabian A. Harang and Avi Mayorcas.

Specifically, in order to study the perturbed ODE (5), we apply the change of variables �=x¡w
and pass to consider the nonlinear YDE (7), which is a special case of the ones from Chapter 1 for
the choice A=Twb.

The first part of the chapter deals with w=W (!) sampled as an fBm of parameter H 2 (0; 1),
presenting several techniques to estimate the P-a.s. regularity of the averaged field TW (!)b; this
information is properly combined with an application of Girsanov transform to recover path-by-
path uniqueness results à la Davie. It is then shown how, under suitable requirements on TWb (thus
on b and the value H), it is even possible to construct a flow of diffeomorphisms for the ODE and
solve the associated perturbed transport equation, by directly invoking the results from Chapters 1
and 2.

The last part of the chapter switches to the perspective of establishing results for generic
perturbations w, in the sense of the prevalence. Although this notion of genericity is purely ana-
lytical, it does allow for probabilistic tools in the proofs, and indeed our results (especially the
aforementioned Theorem 1) build on the theory designed for fBm in the first part.

Chapter 4 is based on the preprint [139] in collaboration with Fabian A. Harang. It extends
the results from Chapter 3 by considering the regularising effect of addivite perturbations w on
multiplicative SDEs of the (integral) form

xt=x0+

Z
0

t

b1(s; xs)ds+

Z
0

t

b2(s; xs)d�s+wt;
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here � is another fBm of parameter �2 (1/2;1), so that in principle the term
R
0

t
b2(s; xs)d�s would

be defined pathwise in the Young sense. Compared to the analysis developed in Chapter 3, the
main difficulty lies in rigorously defining and studying the multiplicative averaged field

¡wb(t; y)=

Z
0

t

b2(s; y+ws)d�s;

once this is done, the general theory from Chapter 1 can be again implemented successfully.

Chapter 5 takes a slightly different perspective from the previous chapters and is based on the
preprint [143], jointly with Massimiliano Gubinelli. So far, all our considerations were done at
the level of ODEs (or SDEs) with fixed prescribed drift b, which results in statements of the form
�if Twb is regular enough, then the perturbed ODE is wellposed�. One might look instead for an
intrinsic property of the path w, ensuring the regularity of Twb for all drifts b in a suitable class;
this idea was again first developed in [57], where the concept of �-irregularity was first introduced.
We say that a path w: [0; T ]!Rd is (; �)-irregular if there exists a constant C > 0 such that��������Z

s

t

ei��wr dr

��������6C j� j¡�jt¡ sj 8� 2Rd; s6 t: (8)

The results presented in this chapter can be considered as a spiritual continuation of [57], carrying
a detailed study of properties of �-irregular paths and their relation to instances of regularisation
by noise for ODEs and PDEs. In particular, several useful criteria for stochastic processes to be
�-irregular are presented and then applied to a large class of Gaussian processes, satisfying a suit-
able local nondeterminism condition. Moreover the relation between �-irregularity and analytical
properties, like �-Ho�lder roughness or the dimension of the image sets w([s; t]), are presented.
The final part of the chapter is the devoted to a detailed study of the perturbation problem, whose
simplest instance can be phrased as follows:

If w is �-irregular, under which conditions on ' the same holds for w~ =w+ '?

Chapter 6 follows the preprint [144], jointly with Massimiliano Gubinelli, and focuses on the
inviscid mixing and enhanced dissipation properties of shear flows u:T!R; here T denotes the
1-dimensional torus and the class of PDEs in study is given by

@tf(t; x; y) +u(y)@xf(t; x; y)= ��f(t; x; y); (9)

here � > 0, (t; x; y)2 [0;+1)�T2 and f has a prescribed initial condition f0=0. The goal is to
understand how the long-time behaviour of solutions to (9) are affected by the presence of u, in
terms of the polynomial (resp. exponential) decay of kf kH¡s (resp. kf kL2), as t!1, when �=0
(resp. � > 0).

Although at fist glance this topic might not seem connected to regularisation by noise, it
turns out it can be tackled by means of the same philosophy underlying our pathwise approach.
Specifically, we will show that a sufficient condition for w to be mixing (resp. diffusion enhancing)
is for it to be �-irregular (respectively satisfy Wei's irregularity condition) and that such notions of
irregularity are safisfied by generic Ho�lder paths. In this way, we obtain a variant of the principle
from Theorem 1 that can be summarised as �the rougher the shear flow, the faster the mixing�.

Finally, Appendix A contains several useful results that have been used throughout the thesis,
like fundamental properties of stochastic processes and function spaces, chaining lemmas, a recap
of stochastic integration in Banach spaces and more.

What is not included here

There are three topics, which will not appear in this thesis for different reasons, but are still worth
mentioning and discussing here shortly.
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The first one can be regarded as one of the long-standing objectives of the overall programme
of regularisation by noise and is usually called the zero noise limit . To explain what we mean,
let us go back to the Peano phenomenon represented by the family of solutions (2). If we assume
reality to be deterministic, we cannot expect any behaviour of this kind to be allowed in physical
systems; thus what should we do when such pathologies arise in the model in consideration? One
possibility is to regard some of these solutions as a mathematical artefact, which simply do not
exist in reality; we are then led to the problem of identifying physically meaningful solutions by
devising selection principles for them. Given that noise is present in any physical system, the only
solutions to the mathematical model one would expect to observe in reality are those which are
stable under arbitrarily small perturbations. In other terms, the physical solutions to (1) should
be (a subset of) those recovered as the limit of X" solving (3) as "! 0+.

When W is sampled as a Brownian motion, d=1 and the drift b has one singular point, the
problem was solved in the 80's by Bafico and Baldi [18] using martingale techniques and explicit
formulas solutions to elliptic PDEs; unfortunately, the theory hasn't made significant progresses
since then. Still in the one dimensional setting, the presence of singular large deviations has been
observed in [159, 171], while the result from [18] has been revisited using alternative techniques
in [91, 262]; the novelty of these works is the use of more intrinsic tools applied directly at the
level of the SDE, given respectively by the identification of the relevant dynamical time scales and
the use of local times. In general dimension d, it is worth mentioning the structural properties
of zero noise limits given by [51, 44], which are however not enough to fully characterize them;
in particular, [44] establishes an important link between the Feller transition kernel obtained in
this way and the viscosity solutions of the associated Kolmogorov equation (for which we refer to
the monograph [126]). Recent further works on the multidimensional case include [93, 237, 238].
Finally, let us mention [17], regarding the study of the behaviour of zero noise limits not at the
level of the SDE, but instead looking at the associated transport equation.

In the aforementioned works, Markov and martingale properties of the solutions enter crucially
in the analysis; the zero noise limit is examined at the level of the law (or more generally transition
kernel) of the solutions, i.e. by studying the limit of L(X") as "! 0+.

The pathwise setting poses even more challenges: for a given continuous regularising path w,
suppose we considered x"(w) solution to (5) with w replaced by "w. Is it be possible to characterize
the limit points of x"(w) as "! 0+? If so, do they depend on the choice of the perturbation w, or
are they universal objects? In particular, if we take w=WH(!) to be typical realisations of fBm,
does the limit depend on the value of H 2 (0; 1)? We are still completely lacking the right tools to
address these difficult questions; for this reason, they will be never further mentioned in the rest
of the thesis.

The second topic that will not be covered is related to the paper [147], made in collaboration
with Fabian A. Harang and Avi Mayorcas. Therein we studied the wellposedness properties of
distribution dependent SDEs (henceforth DDSDEs) of the form

dXt=Bt(Xt; �t)dt+dWt; �t=L(Xt); (10)

which are expected to be the mean-field limit as N!1 of the interacting particle systems

dXt
i;N=Bt(Xt

i;N ; �t
N)dt+dWt

i; �t
N =

1
N

X
j=1

N

�Xt
j; 8i=1; : : : ; N (11)

where fW igi2N are i.i.d. random variables sampled asW and �tN represents the empirical measure
of the system at time t. The literature on DDSDEs (also referred to as McKean-Vlasov SDEs) and
interacting particle systems, especially for W sampled as a Brownian motion, is enormous and we
will not attempt to cover it here; we refer instead to the introduction from [147].

The reason why [147] is not presented here (apart from reasons of length), is because the
philosophy adopted therein is exactly the opposite of the one presented here: our goal was to extract
as much information as possible on the solution theory for (10) and (11) without imposing any
assumption on W ; in particular, the noise in consideration can be very degenerate (one can even
take W � 0) and thus cannot provide any regularising effect.
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Our main techniques, based on the �pathwise McKean Vlasov theory� first developed by
Tanaka [259] and recently nicely revisited in [69], allow to automatically deduce mean-field con-
vergence of system (11) to (10) as soon as the DDSDE is wellposed and satisfies suitable stability
estimates. One of the main raisons d'etre for [147] is the attempt to establish a family of �base-
line results� for the DDSDE, true for any choice of the process W , to be compared with what
can be obtained in the (more interesting) case where W is truly nondegenerate and possibly
strongly regularising. We started examining the latter case in the work [146], whose results are
also partially contained here (cf. Theorem 3.27 from Chapter 3), by establishing the wellposed-
ness of the DDSDE (10) for suitable distributional drifts B and W sampled as fBm.

Last but not least, during my PhD I also focused on another line of research, jointly with Franco
Flandoli and Dejun Luo, which resulted in the papers [140, 119, 117, 118, 120, 148].

Roughly speaking, the main focus of this series of works is the effect of suitable multiplicative
transport noise on evolutionary SPDEs of the form

dut+ �dWt � rut= [F (ut)+��ut]dt: (12)

Here F is an abstract nonlinearity (possibly nonlocal and/or also depending on higher derivatives of
ut), �> 0, while W is a Gaussian field which is Brownian in time and coloured in space, i.e. it can
be written as W (t;x)=

P
k�k(x)�

k(t), where f�kgk is a family of independent standard Brownian
motions and �k are suitable vector field; the symbol �dW denotes Stratonovich integration, which
is physically justified by the Wong�Zakai principle. Although for the sake of this brief discussion
there is no need to specify all the details, in most works we considered the torus Td' [0; 2�]d with
periodic boundary conditions.

Starting with [140] it was observed that, for any fixed � > 0, one can construct a sequence of
divergence free noises Wn, undergoing a suitable scaling limit , such that the associated solutions
un to (12) converge weakly to the solution u to the deterministic PDE with enhanced viscosity

@tu=F (ut)+ (�+ �)�ut: (13)

The work [140] only covers the linear case F (ut)= bt �rut, but since then the theory has then been
considerably expanded. For instance [119] treats the case of 2D Euler equation in vorticity form,
corresponding to

F (ut)=r�¡1ut=K � ut; �=0

where K denotes the Biot�Savart kernel; in this case, the result can be stated as a scaling limit of
stochastic Euler equations to deterministic Navier�Stokes (thus inverting the classical paradigm
where solutions to Euler are recovered from the vanishing viscosity limit of Navier�Stokes).

The theory is still thriving, as we are starting to understand how to make the arguments
concerning the scaling limit more quantitative [118]; we also recently established the presence of
underlying large deviations and Gaussian fluctuations in [148]. The scaling limit of (12) to (13)
has important applications in regularisation by noise phenomena, specifically in showing that noise
prevents blow-up of solutions, see [124, 117].

However, the arguments in the aforementioned papers heavily rely on the availability of sto-
chastic calculus (the key point is the correct computation of the Itô-Stratonovich corrector arising
in (12)) and would immediately break down if the noise W were not Brownian in time; moreover
the SPDE (12) does not have in general a pathwise interpretation. Although extremely interesting,
this line of research does not fit the general philosophy presented in this thesis and is thus omitted.
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Chapter 1
Nonlinear Young Differential Equations
The aim of this chapter is to present a systematic treatment and a well-developed solution theory
for so called nonlinear Young differential equations (henceforth nonlinear YDEs), namely equations
of the form

xt=x0+

Z
0

t

A(ds; xs): (1.1)

Nonlinear YDEs can be regarded as the basic building block for many results presented in this
thesis, as their importance lies in their versatility:differential systems which a priori do not present
the structure (1.1), may be recast as nonlinear YDEs, after a suitable change of variables. This
approach is particularly convenient for two main reasons: i) it allows to give meaning to such
systems also in situations where classical theory breaks down; ii) after the change of variables
has been applied, wellposedness results for the original problem follow almost automatically by
an application of the abstract theory of nonlinear YDEs presented here. As we shall see, in the
stochastic setting this allows for an entirely pathwise treatment , making it possible in particular
to establish genericity results.

Let us shortly describe the setting for nonlinear Young equations. Given a Banach space V and
a time interval [0; T ], the unknown x: [0; T ]!V appearing in (1.1) is an �-Ho�lder continuous path,
while the vector field A: [0; T ]� V !V is given and enjoys suitable space-time Ho�lder regularity.
If A is sufficiently smooth in time, then A(ds; xs) can be interpreted as @tA(s; xs)ds, so that (1.1)
can be regarded as an ODE in integral form; here however we are interested in the case @tA does
not exist, so that (1.1) does not admit a classical interpretation.

In the case A(t; z)= f(z)yt, where y is an U -valued �-Ho�lder continuous path and f maps V
into the space of linear maps from U to V , equation (1.1) can be rewritten as

xt=x0+

Z
0

t

f(xs) dys (1.2)

which can be regarded as a rough differential equation driven by a signal y.
In the regime �>1/2, for sufficiently regular f , equation (1.2) can be rigorously interpreted by

means of Young integrals, introduced in [277]; wellposedness of Young differential equations (YDEs)
was first studied in [209]. After that, several alternative approaches to (1.2) have been developed,
either by means of fractional calculus [278] or numerical schemes [87]; see the review [199] for a
self-contained exposition of the main results for YDEs. YDEs have found several applications in
the study of SDEs driven by fractional Brownian motion (fBm) of parameter H > 1/2, see for
instance [224].

Although equation (1.1) may be seen as a natural generalization of (1.2), its development is
much more recent. Nonlinear Young integrals like the one appearing in (1.1) were first defined
in [57] in applications to additively perturbed ODEs, and subsequently rediscovered in [176], where
they were employed to give a pathwise interpretation to Feynman-Kac formulas and SPDEs with
random coefficients.

In this thesis we will consider exclusively the case of time regularity � > 1/2, also known as
the Young regime or level-1 rough path. However it is now well understood, since the pioneering
work of Lyons [210], that it is possible to give meaning to equation (1.2) even in the case �6 1/2
by means of the theory of rough paths, see the monographs [134], [132] for a detailed account on
the topic. An analogue extesion of (1.1) to the case of nonlinear rough paths has been recently
achieved in [70], [230]; so far however it hasn't found the same variety of applications, discussed
above, as the nonlinear Young case. For more bibliographic references and further extensions of
nonlinear Young integrals, we refer the reader to Section 1.5.
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Motivated by the above discussion, we collect here several results for abstract nonlinear YDEs,
providing general criteria for existence, uniqueness and stability of solutions to (1.1), as well as
convergence of numerical schemes and differentiability of the flow. The content of this chapter is
taken from the paper [141], which in turn is deeply inspired by the review [199]; all the theory is
developed in (possibly infinite dimensional) Banach spaces and relies systematically on the use of
the sewing lemma, a by now standard feature of the rough path framework.

The content given here will then set the stage for applications (especially to regularisation by
noise phenomena) which will be presented in Chapters 3, 4 and Section 5.2.2 from Chapter 5.

Structure of the chapter. Section 1.1 is entirely devoted to the definition of the nonlinear
Young integral and its basic properties; once they are established, we will pass to a detailed study of
nonlinear YDEs in Section 1.2 and of the associated flow in Section 1.3. Finally, Section 1.4 contains
several less canonical results, yet extremely relevant for our analysis, ranging from measurable
selections of solutions to conditional uniqueness statements.

Notations. Here are the most relevant notations and conventions adopted through this chapter:

� We write a. b if a6Cb for a suitable constant, a.� b to stress the dependence C =C(�);
a� b stands for a. b and b. a.

� We will always work on a finite time interval [0; T ]; the Banach spaces V , W appearing
might be infinite dimensional, but will be always assumed separable for simplicity.

� Given a Banach space (E; k�kE), we set Ct0E=C([0; T ];E) endowed with supremum norm

kf k1= sup
t2[0;T ]

kftkE 8f 2Ct0E

where ft: =f(t) and we adopt the incremental notation fs;t := ft¡ fs. Similarly, for any
�2 (0; 1) we set Ct�E=C�([0; T ];E), the space of �-Ho�lder continuous functions, with

JfK� := sup
06s<t6T

kfs;tkE
jt¡ sj� ; kf k� := kf k1+ JfK�:

The above notation will be applied to several choice of E; such as Ct�V , Ct�Rd, but also
Ct
�CV ;W

�;� or Ct�CV ;W ;loc
� , for which we refer to Definitions 1.2 and 1.4.

� We denote by L(V ;W ) the set of all linear bounded operators from V toW , L(V )=L(V ;V ).
� Whenever we will refer to differentiability, this must be understood in the sense of Frechét,

unless specified otherwise; given a map F :V !W we denote by DF its Frechét differential.
We will use indifferently DF (x; y)=DF (x)(y) for the differential at point x evaluated along
the direction y.

� As a rule of thumb, whenever J (¡) appears, it denotes the sewing of ¡:�2!E; we refer
to Section 1.1 for more details on the sewing map. Similarly, in proofs based on a Banach
fixed point argument, I will denote the map whose constractivity must be established.

� As a rule of thumb, we will use Ci, i2N for the constants appearing in the main statements
and �i for those only appearing inside the proofs; the numbering restarts at each statement
and is only meant to distinguish the dependence of the constants from relevant parameters.

1.1 The nonlinear Young integral

1.1.1 Preliminaries
This subsections contains an exposition of the sewing lemma and the definition of the joint space-
time Ho�lder continuous drifts A we will work with; the reader already acquainted with these
concepts may skip it.
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Given a finite interval [0; T ], consider the n-simplex �n: =f(t1; : : : ; tn): 06 t16 : : : 6 tn6 T g.
Let V be a Banach space, for any ¡:�2!V we define �¡:�3!V by

�¡s;u;t : =¡s;t¡¡s;u¡¡u;t:

We say that ¡2C2
�;�([0; T ];V ) =C2

�;�V if ¡t;t=0 for all t2 [0; T ] and k¡k�;�<1, where

k¡k� := sup
s<t

k¡s;tkV
jt¡ sj� ; k�¡k� := sup

s<u<t

k�¡s;u;tkV
jt¡ sj�

; k¡k�;� := k¡k�+ k�¡k�:

For a map f : [0; T ]! V , we still denote by fs;t the increment ft¡ fs. The next result, usually
refereed to as �sewing lemma�, gives a quantitative information on how well the 2-parameter map
¡ can be locally approximated by a difference fs;t. It is a fundamental tool in modern rough path
theory, dating back to [162], [112], allowing to define abstract Riemann�Stjeltes type of integrals.

Lemma 1.1. (Lemma 4.2 from [132]) Let �, � be such that 0<�< 1< �. For any ¡2C2
�;�V

there exists a unique map J (¡)2Ct�V such that J (¡)0=0 and

kJ (¡)s;t¡¡s;tkV 6C1k�¡k� jt¡ sj� (1.3)

where the constant C1 can be taken as C1=(1¡ 2�¡1)¡1. Thus the sewing map J :C2
�;�V !Ct

�V
is linear and bounded and there exists C2=C2(�; �; T ) such that

kJ (¡)k�6C2 k¡k�;�: (1.4)

For a given ¡, J (¡) is characterized as the unique limit of Riemann-Stjeltes sums: for any t > 0

J (¡)t= lim
j�j!0

X
i

¡ti;ti+1:

The notation above means that for any sequence of partitions �n=f0= t0<t1< :: : < tkn= tg with
mesh j�nj= supi=1; : : : ;kn jti¡ ti¡1j! 0 as n!1, it holds

J (¡)t= lim
n!1

X
i=0

kn¡1

¡ti;ti+1:

Next we need to introduce suitable classes of Ho�lder continuous maps on Banach spaces.

Definition 1.2. Let V ;W Banach spaces, f 2C(V ;W ), �2 (0;1). We say that f is locally �-Ho�lder
continuous and write f 2CV ;W ;loc

� if for any R> 0 the following quantities are finite:

JfK�;R := sup
x=/ y2V

kxkV ;kykV6R

kf(x)¡ f(y)kW
kx¡ ykV

�
; kf k�;R := JfK�;R+ sup

x2V
kxkV6R

kf(x)kV :

For �2 (0; 1], we define the space CV ;W
�;� as the collection of all f 2C(V ;W ) such that

JfK�;� := sup
R>1

R¡� JfK�;R; kf k�;� := JfK�;�+ kf(0)kV <1:

Finally, the classical Ho�lder space CV ;W
� is defined as the collection of all f 2C(V ;W ) such that

JfK� := sup
x=/ y2V

kf(x)¡ f(y)kW
kx¡ ykV

�
; kf k�= JfK�+ sup

x2V
kf(x)kV <1:

Remark 1.3. We ask the reader to keep in mind that although linked, JfK�;R and JfK�;� denote
two different quantities. CV ;W ;loc

� is a Fréchet space with the topology induced by the seminorms

fkf k�;RgR>0, while CV ;W
�;� and CV ;W

� are Banach spaces. Observe that if f 2CV ;W
�;� , we have an

upper bound on its growth at infinity, since for any x2V with kxkV > 1 it holds

kf(x)kV 6 kf(x)¡ f(0)kV + kf(0)kV 6 kxkV� JfK�;kxkV + kf(0)kV 6 kf k�;�(1+ kxkV�+�):

1.1 The nonlinear Young integral 21



In particular, if �+�6 1, then f has at most linear growth.

We can now introduce fields A: [0; T ]�V !W satisfying a joint space-time Ho�lder continuity.
We adopt the incremental notation As;t(x) :=A(t; x)¡A(s; x), as well as At(x) =A(t; x); from
now on, whenever A appears, it is implicitly assumed that A(0; x)= 0 for all x2V .

Definition 1.4. Given A as above, �; �2(0;1), we say that A2Ct�CV ;W ;loc
� if for any R>0 it holds

JAK�;�;R := sup
06s<t6T

JAs;tK�;R
jt¡ sj� ; kAk�;�;R := sup

06s<t6T

kAs;tk�;R
jt¡ sj� <1:

We say that A2Ct�CV ;W
�;� if

JAK�;�;� := sup
06s<t6T

JAs;tK�;�
jt¡ sj� ; kAk�;�;� := sup

06s<t6T

kAs;tk�;�
jt¡ sj� <1;

analogous definitions hold for Ct�CV ;W
� , J�K�;�, k�k�;�.

The definition can be extended to the cases �= 0 or � = 0 by interpreting the norm in the
supremum sense; for instance A2Ct0CV ;W

� if kAk0;�= supt2[0;T ] kAtk�<1.
Given a smooth map F : V !W , we regard its Frechét differential DkF of order k as a map

from V to Lk(V ;W ), the set of bounded k-linear forms from V k to W .

Definition 1.5. We say that A2Ct�CV ;W
n+� if A2Ct�CV ;W

� and it is k-times Frechét differentiable

in x, with DkA2Ct�CV ;Lk(V ;W )
� for all k6n. Ct�CV ;Wn+� is a Banach space with norm

kAk�;n+�=
X
k=0

n

kDkAk�;�:

Analogue definitions hold for Ct�CV ;W ;loc
n+� and Ct�CV ;W

n+�;�.

1.1.2 Construction and first properties
We are now ready to construct nonlinear Young integrals, following the line of proof from [176], [170];
other constructions are possible, see the discussion in Appendix A.2 from [141].

Theorem 1.6. Let �; �;  2 (0; 1) such that �+ � > 1, A2Ct�CV ;W ;loc
� and x2Ct

V. Then for
any [s; t]� [0; T ] and for any sequence of partitions of [s; t] with infinitesimal mesh, the following
limit exists and is independent of the chosen sequence of partitions:Z

s

t

A(du; xu) := lim
j�j!0

X
i

Ati;tt+1(xti):

The limit will be referred as a nonlinear Young integral. Furthermore:

1. For all (s; r; t)2�3 it holds
R
s

r
A(du; xu)+

R
r

t
A(du; xu) =

R
s

t
A(du; xu).

2. If @tA exists continuous, then
R
s

t
A(du; xu) =

R
s

t
@tA(u; xu) du.

3. There exists a constant C1=C1(�; �; ) such thatZ
s

t

A(du; xu)¡As;t(xs)

W

6C1jt¡ sj�+� JAK�;�;kxk1JxK�: (1.5)

4. The map (A;x) 7!
R
0

�
A(du;xu) is continuous as a function from Ct

�CV ;W ;loc
� �Ct

V !Ct
�W.

More precisely, it is a linear map in A and there exists C2=C2(�; �; ; T ) such thatZ
0

�
A1(du; xu)¡

Z
0

�
A2(du; xu)


�

6C2kA1¡A2k�;�;kxk1 (1+ JxK); (1.6)
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it is locally �-Ho�lder continuous in x for any � 2 (0; 1) such that � < (�+ � ¡ 1)/ and
there exists C3=C3(�; �; ; �; T ) such that, for any R> kxk1_kyk1, it holdsZ

0

�
A(du; xu)¡

Z
0

�
A(du; yu)


�

6C3kAk�;�;R (1+ kxk+ kyk) Jx¡ yK� : (1.7)

Proof. In order to show convergence of the Riemann sums, it is enough to apply the sewing lemma
to the choice ¡s;t :=As;t(xs)=A(t; xs)¡A(s; xs). Indeed we have

k¡k�= sup
s<t

kAs;t(xs)kW
jt¡ sj� 6 sup

s<t

kAs;tk0;kxk1
jt¡ sj� 6 kAk�;0;kxk1

and

k�¡s;u;tkW=kAu;t(xs)¡Au;t(xu)kW 6 JAu;tK�;kxk1 kxu;skV�

6jt¡uj� ju¡ sj� JAK�;�;kxk1 JxK�

which implies k�¡k�+�6 JAK�;�;kxk1 JxK�. In particular ¡2C2
�;�+�W with �+ �>1, therefore

by the sewing lemma we can setZ
0

t

A(ds; xs) :=J (¡)t= lim
j�j!0

X
i

¡ti;tt+1:

Property 1. then follows from J (¡)s;t=J (¡)s;r+J (¡)r;t and Property 3. from the above estimates
on k�¡k�+�. Similarly estimate (1.6) is obtained by the previous estimates applied to A=A1¡A2.
Property 2. follows from the fact that if @tA exists continuous, then necessarily

lim
j�j!0

X
i

Ati;tt+1(xti)=

Z
0

t

@tA(u; xu) du:

It remains to show estimate (1.7). To this end, for fixed x; y 2Ct
V and R as above, we need to

provide estimates for k�¡~k1+" for ¡~s;t: =As;t(xs)¡As;t(ys) and suitable "> 0. It holds

j�¡~s;u;tj6jAu;t(xu)¡Au;t(xs)j+ jAu;t(yu)¡Au;t(ys)j6 kAk�;�;R (JxK�+ JyK�) jt¡ sj�+� ;
j�¡~s;u;tj6jAu;t(xu)¡Au;t(yu)j+ jAu;t(xs)¡Au;t(ys)j. kAk�;�;R kx¡ yk0� jt¡ sj�;

which interpolated together give

k�¡k(1¡�)(�+�)+��.kAk�;�;R (1+ JxK+ JyK) kx¡ yk0��

for any � 2 (0; 1) such that (1¡ �)(�+ �) + ��=1+ "> 1, namely such that

�� <
�+ � ¡ 1


:

The sewing lemma then implies thatZ
s

t

A(dr; xr)¡
Z
s

t

A(dr; yr)


W

.�
Z

s

t

A(dr; xr)¡
Z
s

t

A(dr; yr)¡¡~s;t

W

+ k¡~s;tkW

.k�¡~k1+"jt¡ sj1+"+ kAk�;�;Rjt¡ sj�kx¡ yk0�

.�;T jt¡ sj� kAk�;�;R (1+ kxk+ kyk) kx¡ yk0��:

Dividing by jt¡ sj� and taking the supremum we obtain (1.7). �

Remark 1.7. Several other variants of the nonlinear Young integrals can be constructed, for
instance integrals of the form Z

0

�
ysA(ds; xs)

for y2Ct�R such that �+�>1 and A;x as above. This can be either interpreted as a more classical
Young integral of the form

R
0

�
ytd(

R
0

t
A(ds; xs))=J (¡) for ¡s;t= ys

R
s

t
A(dr; xr), or as the sewing of

¡~s;t= ysAs;t(xs), the two definitions being equivalent; see Remark 2.8 from [141].

Nonlinear Young integrals are a generalisation of classical ones, as the next example shows.
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Example 1.8. Let f 2 C�(Rd;Rd�m) and y 2 Ct�Rm, then A(t; x) := f(x)yt is an element of
Ct
�CRd

� , since

jAs;t(x)¡As;t(y)j= j[f(x)¡ f(y)]ys;tj6 jf(x)¡ f(y)j jys;tj6 JfK�JyK�jt¡ sj�jx¡ y j�:

In particular, for any x2Ct
Rd with �+ � > 1, we can consider

R
0

�
A(ds; xs); this corresponds to

the classical Young integral
R
0

�
f(xs)dys, since both are defined as sewings of

¡s;t=As;t(xs)= f(xs)yt¡ f(xs)ys= f(xs)ys;t;

the same reasoning holds for infinite sums of Young integrals of the form
P
n

R
0

�
fn(xs)dys

n.
On the other hand, if f is time-dependent and sufficiently regular, although it is possible to

define
R
0

�
f(s;xs)dys, this does not necessarily coincide with the nonlinear Young integral associated

to A(t; x)= f(t; x)yt; for the exact relations between them, see Remark 2.10 from [141].

1.1.3 Nonlinear Young calculus
Theorem 1.6 establishes continuity of the map (A; x) 7!

R
0

�
A(ds; xs); if A is sufficiently regular,

then we can even establish its differentiability.

Proposition 1.9. Let �; �;  2 (0; 1) such that �+ � > 1, A2Ct�CV ;W ;loc
1+� . Then the nonlinear

Young integral, seen as a map F :Ct
V !Ct

�W, F (x)=
R
0

�
A(ds; xs), is Frechét differentiable with

DF (x): y 7!
Z
0

�
DA(ds; xs)ys: (1.8)

Proof. For notational simplicity we will assume A2Ct�CV ;W
1+� . It is enough to show that, for any

x; y2Ct
V , the Gateaux derivative of F at x in the direction y is given by the expression above, i.e.

lim
"!0

F (x+ "y)¡F (x)
"

=

Z
0

�
DA(ds; xs)ys (1.9)

where the limit is in the Ct�W -topology. Indeed, once this is shown, it follows easily from reasoning
as in Theorem 1.6 that the map (x; y) 7!

R
DA(ds;xs)ys is jointly uniformly continuous in bounded

balls and linear in the second variable; Frechét differentiability then follows from existence and
continuity of the Gateaux differential.

In order to show (1.9), setting for any "> 0

¡s;t
" :=

As;t(xs+ "ys)¡As;t(xs)
"

¡DAs;t(xs)ys;

it suffices to show that J (¡")! 0 in Ct�W . In particular, by Lemma A.33 in Appendix A.6, we
only need to check that k¡"k�! 0 as "! 0, while k�¡"k�+� stays uniformly bounded. It holds

k¡s;t" kW=

Z
0

1

[DAs;t(xs+�"ys)¡DAs;t(xs)]ysd�

W

6"�kDAs;tk� kyskV�+16 "� jt¡ sj� kAk�;1+� kyk��+1

which implies that k¡"k�. "�! 0; similar calculations show that

k¡s;u;t" kW=
Z

0

1

[DAu;t(xs+�"ys)¡DAu;t(xs)]ysd�¡
Z
0

1

[DAu;t(xu+�"yu)¡DAu;t(xu)]yud�

W

=

¡Z
0

1

[DAu;t(xs+�"ys)¡DAu;t(xs)]ys;u d�

+

Z
0

1

[DAu;t(xs+�"ys)¡DAu;t(xs)¡DAu;t(xu+�"yu)+DAu;t(xu)]yu d�

W

.jt¡ sj�+kDAk�;� kyk1+�+ jt¡ sj�+� kDAk�;�kyk(JxK�+ JyK�)
which implies that k�¡k�+�. 1 uniformly in "> 0. The conclusion the follows. �

Proposition 1.9 provides an alternative proof of Lemma 4.5 from [145].
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Corollary 1.10. Let �; �;  2 (0; 1) such that �+ � > 1, A2Ct�CV ;W ;loc
1+� , x1; x22Ct

V. ThenZ
0

�
A(ds; xs

1)¡
Z
0

�
A(ds; xs

2) =

Z
0

�
vds(xs

1¡xs2) (1.10)

with v given by

vt :=

Z
0

tZ
0

1

DA(ds; xs
2+�(xs

1¡xs2)) d�; (1.11)

formula ( 1.11) meaningfully defines an element of Ct�L(V ;W ), which satisfies

JvK�6CkDAk�;�;R(1+ Jx1K+ Jx2K) (1.12)

where R> kxk1_kyk1 and C =C(�; �; ; T ).

Proof. It follows from the hypothesis on A that the map

y 2V 7!
Z
0

1
�Z

0

t

DA(ds; xs
2+�(xs

1¡xs2))y
�
d�2W (1.13)

is well defined (the outer integral being meaningful in the Bochner sense) and linear in y; moreover
estimate (1.5) combined with the trivial inequality 1+ Jx2+�(xs1¡xs2)K�.1+ Jx1K+ Jx2K, valid
for any �; � 2 [0; 1], yieldsZ

0

1
�Z

0

t

DA(ds; x2+�(xs
1¡xs2))y

�
d�


W

. kDAk�;�;R (1+ Jx1K+ Jx2K) kykV :

In particular, if we define vt as the linear map appearing (1.13), it is easy to check that similar
estimates yield v2Ct�L(V ;W ). The fact that this definition coincide with the one from (1.11), i.e.
that we can exchange integration in d� and in �ds�, follows from the Fubini theorem for the sewing
map, see Lemma A.32 in Appendix A.6. Inequality (1.12) then follows from estimates analogous
to the ones obtained above. Identity (1.10) is an application of the more abstract classical identity

F (x1)¡F (x2)=
�Z

0

1

DF (x2+�(x1¡x2))d�
�
(x1¡x2)

applied to F (x)=
R
0

�
A(ds;xs), for which the exact expression forDF is given by Proposition 1.9. �

The following Itô-type formula is taken from [176], Theorem 3.4.

Proposition 1.11. Let F 2Ct�CV ;W ;loc
� and x2Ct

V with �+ � > 1, then it holds

F (t; xt)¡F (0; x0)=
Z
0

t

F (ds; xs) +

Z
0

t

F (s; dxs); (1.14)

if in addition F 2Ct0CV ;W ;loc
1+� 0 with � 02 (0; 1) s.t. (1+ � 0)> 1, then

F (t; xt)¡F (0; x0)=
Z
0

t

F (ds; xs)+

Z
0

t

DF (s; xs)(dxs): (1.15)

In particular, if x=
R
0

�
A(ds; ys) for some A2Ct

CV
�, y 2Ct

�V with + �� > 1, then ( 1.15) becomes

F (t; xt)¡F (0; x0) =
Z
0

t

F (ds; xs)+

Z
0

t

DF (s; xs)(A(ds; ys)): (1.16)

Proof. Let 0= t0< t1< � � �< tn= t, then it holds

F (t; xt)¡F (0; x0) =
X
i

[Fti+1(xti+1)¡Fti(xti)]

=
X
i

Fti;ti+1(xti)+
X
i

[Fti(xti+1)¡Fti(xti)] +
X
i

Rti;ti+1=: I1
n+ I2

n+ I3
n

where Rti;ti+1=Fti;ti+1(xti+1)¡Fti;ti+1(xti) satisfies

kRti;ti+1k6 kF k�;�;kxk1 JxK� jti+1¡ tij�+� ;
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while I1n and I2n are Riemann-Stjeltes sums associated to ¡s;t1 =Fs;t(xs) and ¡s;t2 =Fs(xt)¡Fs(xs).
Taking a sequence of partitions �n with j�nj! 0, by the above estimate we have I3n! 0; on the
other hand, by the sewing lemma we obtain

F (t; xt)¡F (0; x0)=J (¡1)t+J (¡2)t;

which is exactly (1.14). If F 2Ct0CV ;W ;loc
1+� 0 , then setting ¡s;t3 :=DF (s; xs)(xs;t), it holds

k¡s;t2 ¡¡s;t3 kV=kF (s; xt)¡F (s; xs)¡DF (s; xs)(xs;t)kV

=

Z
0

1

[DF (s; xs+�xs;t)¡DF (s; xs)](xs;t)d�

V

.kDF (s; �)k� 0;kxk1 kxs;tk1+�
0. kF k0;1+� 0;kxk1JxK�

0
jt¡ sj(1+� 0)

which under the assumption (1 + � 0)> 1 implies by the sewing lemma that J (¡2) =J (¡3) and
thus (1.15). The proof of (1.16) is analogous, only this time consider ¡s;t4 :=DF (s; xs)(As;t(ys)),
then it's easy to check that k¡s;t3 ¡¡s;t4 kV . jt¡ sj+�� which implies that J (¡3)=J (¡4). �

The identities from Proposition 1.11 admit further variants, see Remark 2.14 from [141].

1.2 Existence, uniqueness, numerical schemes for YDEs

This section is devoted to the study of nonlinear Young differential equations (YDE for short),
defined below; it provides sufficient conditions for existence and uniqueness of solutions, as well as
convergence of numerical schemes. Before proceeding further, let us point out that by Example 1.8
any Young differential equation

xt=x0+

Z
f(xs)dys

can be reinterpreted as a nonlinear YDE associated to A := f 
 y. Nonlinear YDEs therefore are
a natural extension of the standard ones; most results regarding their existence and uniqueness
which will be presented are perfect analogues (in terms of regularity requirements) to the well
known classical ones (which can be found for instance in [199] or Section 8 of [132]).

Definition 1.12. Let A2Ct�CV ;loc
� , xs2V. We say that x is a solution to the YDE associated to

(xs;A) on an interval [s; t]� [0;T ] if x2C([s; t];V ) for some  such that �+ �>1 and it satisfies

xr=xs+

Z
s

r

A(du; xu) 8r 2 [s; t]: (1.17)

Throughout this section, for x: [0; T ]!V and I � [0; T ], we set

JxK;I := sup
s;t2I
s=/ t

kxs;tkV
jt¡ sj

as well as JxK;s;t in the case I=[s; t]; similarly for kxk1;I and kxk;I. For any �>0 we also define

JxK;�;V = JxK;� := sup
s;t2[0;T ]
js¡tj2(0;�]

kxs;tkV
jt¡ sj :

1.2.1 Existence
We provide here sufficient conditions for the existence of either local or global solutions to the YDE,
under suitable compactness assumptions on A. The proof is based on an Euler scheme in the style
of those from [87], [199]; its rate of convergence will be studied later on. Other proofs, based on
compactness techniques or Leray�Schauder fixed point theorem, are possible, see [57], [176].
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Theorem 1.13. Let A2Ct�CV ;W
� where W is compactly embedded in V and �(1 + �)> 1. Then

for any s> 0 and xs2V there exists a solution to the YDE

xt=xs+

Z
s

t

A(dr; xr) 8t2 [s; T ]: (1.18)

Proof. Up to rescaling and shifting, we can assume for simplicity T =1 and s=0.
Fix n2N, set tkn= k/n for k 2f0; : : : ; ng and define recursively (xkn)k=1n by x0n=x0 and

xk+1
n =xk

n+Atkn;tk+1n (xk
n):

We can embed (xkn)k=1n into Ct0V by setting

xt
n :=x0+

X
06k6bntc

Atkn;t^tk
n+1(xk

n);

note that by construction xn¡x0 is a path in Ct�W . Using the identity

As;t(xs
n)=

Z
s

t

A(dr; xr
n)+

Z
s

t

[A(dr; xs
n)¡A(dr; xrn)]

we deduce that xn satisfies a YDE of the form

xt
n=x0+

Z
0

t

A(ds; xs
n)+  t

n (1.19)

where

 t
n=

X
06k6n

 t
n;k=

X
06k6n

Z
tk
n

(t^tk+1n )_tkn

[A(dr; xtkn
n )¡A(dr; xrn)]:

By the properties of Young integrals,  n satisfies

k tkn;tk+1n
n kW =

Z
tk
n

tk+1
n

[A(dr; xtkn
n )¡A(dr; xrn)]


W

.n¡�(1+�)kAk�;� JxnK�;1/n;V
� : (1.20)

We first want to obtain a bound for J nK;�;W ; we can assume wlog �> 1/n, since we want
to take n!1. Estimates depend on whether s and t lie on the same interval [tkn; tk+1n ] or not;
assume first this is the case, then

k s;tn kW=
Z

s

t

[A(dr; xtkn
n )¡A(dr; xrn)]


W

.kAs;t(xtknn )¡As;t(xsn)kW + jt¡ sj�(1+�)kAk�;� JxnK�;�;V�

.n¡�� jt¡ sj�kAk�;� JxnK�;�;V� :

Next, given s<t such that jt¡ sj<� which are not in the same interval, there are around njt¡ sj
intervals separating them, i.e. there exist l <m such that m¡ l�njt¡ sj and s6 tln< � � �<tmn 6 t.
Therefore in this case we have

k s;tn kW6k s;tlnn kW +
X
k=l

m¡1

k tkn;tk+1n
n kW + k tmn ;t

n kW

.kAk�;�JxnK�;�;V� [jt¡ sj�n¡��+(m¡ l)n¡�(1+�)]

.kAk�;�JxnK�;�;V� [jt¡ sj�n¡��+ jt¡ sjn1¡�(1+�)]

.kAk�;�JxnK�;�;V� jt¡ sj�n1¡�(1+�)

where in the second line we used both (1.20) and the previous bound for  s;tln
n and  tmn ;t

n , while in
the last one the fact that ¡��6 1¡�(1+ �). Overall we conclude that

J nK�;�;W 6�1n1¡�(1+�)kAk�;� JxnK�;�;V� (1.21)

for a suitable constant �1=�1(�; �) independent of � and n.
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Our next goal is a uniform bound for JxnK�;�;W . Since xn solves (1.19), it holds

kxs;tn kW.kAs;t(xsn)kW + jt¡ sj�(1+�)kAk�;� JxnK�;�;W� + k s;tn kW
.jt¡ sj�kAk�;�+ jt¡ sj����kAk�;�JxnK�;�;W� + jt¡ sj�J nK�;�;W
.jt¡ sj�kAk�;�+ jt¡ sj�kAk�;�JxnK�;�;W� (���+n1¡�(1+�)):

Let us divide both sides by jt¡ sj, take the supremum over all jt¡ sj<� and choose � such that
��� kAk�;�6 1/4; then for all n large enough, so that n1¡�(1+�)kAk�;�6 1/4, it holds

JxnK�;�;W . kAk�;�+ 1
2
JxnK�;�;W� . kAk�;�+

1
2
+
1
2
JxnK�;�;W ;

we used the trivial bound a�6 1+ a, which holds for all � 2 [0; 1] and a> 0. Overall this implies
the uniform bound JxnK�;�;W . 1+ kAk�;� for all n big enough.

The subspace fy2C�([0;1];W ) : y0=0g is a Banach space endowed with the seminorm JyK�;�;W ,
which in this case is equivalent to the norm kyk�;W ; fxn¡x0gn2N is a uniformly bounded sequence
in this space. By Ascoli�Arzelà, since W compactly embeds in V , we can extract a subsequence
(not relabelled for simplicity) such that xn¡ x0! x¡ x0 in Ct

�¡"V for any " > 0, for some x 2
Ct
�V such that x(0) = x0. Observe that  n satisfy (1.21) and JxnK�;�;V� are uniformly bounded,

therefore  n! 0 in Ct
�W as n!1; choosing " small enough s.t. � + �(� ¡ ") > 1, by con-

tinuity of the nonlinear Young integral it holdsZ
0

�
A(ds; xs

n)!
Z
0

�
A(ds; xs) in Ct�W:

Passing to the limit in (1.19) we obtain the conclusion. �

Remark 1.14. If V is finite dimensional, the compactness condition is trivially satisfied by taking
V =W . The proof also works for non uniform partitions �n of [0; T ], under the condition that their
mesh j�nj! 0 and that there exists c>0 such that jti+1n ¡ tinj> cj�nj for all n2N, i2f0; : : : ;Nng.

Remark 1.15. The proof provides several estimates, some of which are true even without the
compactness assumption. For instance, by JxnK�;�. 1 + kAk�;� and Exercise 4.24 from [132],
choosing � satisfying ���kAk�;�� 1, we deduce that there exists C1=C1(�; �; T ) such that

JxnK�6C1
�
1+ kAk�;�

1+
1¡�
��

�
8n2N:

Estimate (1.21) is true for any choice of �> 0, in particular for �= T , which gives a global
bound; combining it with the above one, we deduce that

J nK�6C2n1¡�(1+�)
�
1+ kAk�;�

1+��
�

�
8n2N

for some C2=C2(�; �; T ). Also observe that from the assumptions on � and � it always holds

1+
1¡�
��

6 2; 1+��
�

6 3:

Under the compactness assumption, since xn!x in Ct0V , the solution x obtained also satisfies

JxK�6 liminf
n!1

JxnK�6C1
�
1+ kAk�;�

1+
1¡�
��

�
6 2C1(1+ kAk�;�2 ): (1.22)

Finally observe that by going through the same proof of (1.21), for any T > 0 and �; �;  such
that �+ � > 1, there exists C3=C3(�; �; ; T ) such that

J nK�;�;V 6C3n1¡�¡�kAk�;� JxnK;�;V� 8n2N: (1.23)

This estimate is rather useful when A enjoys different space-time regularity at different scales, like
in Section 1.4.3.
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Corollary 1.16. Let A2Ct�CV ;W ;loc
� where W is compactly embedded in V and �(1+ �)>1. Then

for any s2 [0; T ) and any xs2V, there exists ��2 (s; T ] and a solution to the YDE (1.18) defined
on [s; T �), with the property that either T �=T or

lim
t"T�

kxtkV =+1:

Proof. The full proof is based on classical localization arguments and iterations techniques and
can be found in [141]. Here we only present a simple a priori estimate on the maximal time T � of
existence; as before it is enough to treat the case s=0; T =1.

Fix R>0 and consider a localization of A, namely a drift AR2Ct�CV ;W
� s.t. AR(t; x)=A(t; x)

for any (t; x) with kxkV 6 2R and AR(t; x)� 0 for kxkV > 3R; let CR :=C(1+ kAk�;�;3R2 ), where
C is the constant appearing in (1.22). Then for any x02V with kx0k6R, by Theorem 1.13 there
exists a solution x to the YDE associated to (x0;AR) on the interval [0;1]; setting � := infft2 [0;1]:
kxtkV > 2Rg, by (1.22) it holds JxK�;[0;� ]6CR, and so

2R= kx�kV 6 kx0kV + ��JxK�;[0;� ]6R+ ��CR
which implies

� >
�
CR
R

�¡�
: (1.24)

In particular, since A=AR on [0; T ]�B2R, we conclude that x� is also a solution to the YDE
associated to (x0; A) on the interval [0; � ] and that T �> � . �

1.2.2 A priori estimates
A classical way to pass from local to global solutions is to establish suitable a priori estimates,
which are also of fundamental importance for compactness arguments. Throughout this section,
we assume that a solution x to the YDE is already given and focus exclusively on obtainig bounds
on it; for simplicity we work on [0; T ], but all the statements immediately generalise to [s; T ].

Proposition 1.17. Let �> 1/2, � 2 (0; 1) such that �(1+ �)> 1, A2Ct�CV
�, x02V and x2Ct�V

be a solution to the associated YDE. Then there exists C =C(�,�; T ) such that

JxK�6C(1+ kAk�;�2 ); kxk�6C (1+ kx0kV + kAk�;�2 ): (1.25)

We omit the proof of Proposition 1.17, for which we refer to [141], as it is very similar (actually
simpler) to the one of Proposition 1.18 below; observe that estimate (1.25) is in perfect agreement
with (1.22).

The assumption of a global bound on A of the form A 2Ct�CV
� is sometimes too strong for

practical applications. It can be relaxed to suitable growth conditions, as the next result shows; it
is based on Theorem 3.1 from [176], see also Theorem 2.9 from [57].

Proposition 1.18. Let A 2Ct�CV
�;� with �(1 + �)> 1, � + �6 1. Then there exists a constant

C =C(�; �; T ) such that any solution x on [0; T ] to the YDE associated to (x0; A) satisfies

kxk�6C exp

�
kAk�;�;�

1+
1¡�
��

�
(1+ kx0kV ): (1.26)

Proof. Fix an interval [s; t]� [0; T ], set R= kxk1;s;t. Since x is a solution, for any [u; r]� [s; t] it
holds

kxu;rkV . kAu;r(xu)kV + jr¡uj�(1+�)JAK�;�;RJxK�;s;t�

. kAu;r(xu)¡Au;r(xs)kV + jr¡uj�kAk�;�;�(1+ kxskV )
+jr¡uj�jt¡ sj��kAk�;�;� (1+ kxk1;s;t� )JxK�;s;t�

. jr¡uj�kAk�;�;�[1+ kxskV + jt¡ sj��(1+ kxk1;s;t� )JxK�;s;t� ]

which implies, dividing by jr¡uj� and taking the supremum, that

JxK�;s;t.kAk�;�;�(1+ kxskV ) + jt¡ sj��kAk�;�;� (1+ kxk1;s;t� )JxK�;s;t� :
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By Young's inequality, for any a; b> 0 it holds a�b�6 a�+�+ b�+�; moreover � + �6 1 so that
a�+�6 1+ a. Therefore we obtain

JxK�;s;t.kAk�;�;�(1+ kxskV ) + jt¡ sj��kAk�;�;�(1+ kxk1;s;t+ JxK�;s;t)
.kAk�;�;�(1+ kxskV ) + kAk�;�;�jt¡ sj��JxK�;s;t

where in the second passage we used the estimate kxk1;s;t.T kxskV + JxK�;s;t. Overall we deduce
the existence of a constant �1=�1(�; �; T ) such that

JxK�;s;t6 �1
2
kAk�;�;�(1+ kxskV )+

�1
2
kAk�;�;�jt¡ sj��JxK�;s;t:

Choosing [s; t] such that jt¡ sj=� satisfies �1kAk�;�;����6 1, we obtain

JxK�;s;t6�1kAk�;�;�(1+ kxskV ): (1.27)

If T satisfies �1kAk�;�;�T��61, then we can take s=0; t=T ;�=T , which gives a global estimate
and thus the conclusion. If this is not the case, we can choose �<T s.t. �1kAk�;�;����=1 and
then (1.27) implies that

JxK�;�6�1kAk�;�;�(1+ kxk1) (1.28)

as well as

JxK�.��¡1JxK�;�. kAk�;�;�
1¡�
�� kAk�;�;�(1+ kxk1):

Therefore

JxK�6�2kAk�;�;�
1+

1¡�
�� (1+ kxk1)

where again �2= �2(�; �; T ). In particular, in order to obtain the final estimate, we only need
to focus on kxk1. Let us consider, for � as above, the intervals In := [(n ¡ 1)�; n�] and set
Jn := 1+ kxk1;In, with the convention J0=1+ kx0kV . Then estimates analogue to (1.27) yield

Jn61+ kx(n¡1)�kV +��JxK�;In
6(1+�1��kAk�;�;�)(1+ kx(n¡1)�kV )
6(1+�1��kAk�;�;�)Jn¡1

which iteratively implies

Jn6 [1+�1��kAk�;�;�]nJ06 exp(�1n��kAk�;�;�) (1+ kx0kV );

where we used the basic inequality 1+x6 ex. Since [0; T ] is covered by N � T�¡1 intervals and
we chose �¡1�kAk1/��, up to relabelling �1 into a new constant �3 we obtain

1+ kxk1= sup
n6N

Jn6 exp
�
�3 kAk�;�;�

1+
1¡�
��

�
(1+ kx0kV ):

Finally, combining this with the estimate for JxK� above we obtain

JxK�6�2 kAk�;�;�
1+

1¡�
�� exp

�
�3 kAk�;�;�

1+
1¡�
��

�
(1+ kx0kV )

6�4 exp
�
�4kAk�;�;�

1+
1¡�
��

�
(1+ kx0kV )

where we used the inequality xe�x6�¡1e2�x. The conclusion follows. �

Remark 1.19. Since �(1+ �)> 1, it holds 1+ kAk�;�;�
1+(1¡�)/(��). 1+ kAk�;�;�2 and so

kxk�6C exp(CkAk�;�;�2 )(1+ kx0kV ) (1.29)

up to relabelling constant C = C(�; �; T ). As in several other estimates appearing later, the
dependence of C on T can be established by a rescaling argument, reducing the equation to an
equivalent one defined on [0; 1].
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In classical ODEs, a key role in establishing a priori estimates (as well as uniqueness) is played
by Gronwall's lemma; the following result can be regarded as a suitable replacement in the Young
setting. One of the main cases of applicability is for linear equations, i.e. A2Ct�L(V ).

In the next statement (and the rest of the chapter more in general), we will say that f 2LipV
if it is a globally Lipschitz map, with bounded seminorm

JfKLip := JfK1= sup
x=/ y2V

kf(x)¡ f(y)kV
kx¡ ykV

;

similarly we will write f 2Ct�LipV to denote time-dependent field f : [0; T ]�V !V such that

JfK�;1: = sup
s=/ t2[0;T ]

kft¡ fsk1
jt¡ sj� <1:

Theorem 1.20. Let �>1/2, A2Ct�LipV such that A(t;0)=0 for all t2 [0; T ] and h2Ct�V. Then
there exists a constant C =C(�) such that any solution x to the YDE

xt=x0+

Z
0

t

A(ds; xs)+ht (1.30)
satisfies the a priori bounds

JxK�6C(JAK�;1kxk1+ JhK�); (1.31)

kxk16C exp
¡
CT JAK�;1

1/� �
(kx0+h0kV +T�JhK�); (1.32)

kxk�6C exp(CT (1+ JAK�;12 ))[kx0+h0kV +(1+T�)JhK�]: (1.33)

Proof. We can assume without loss of generality that T = 1, as the general case follows by
rescaling. It is also clear that, up to changing constant C, inequality (1.33) follows from combining
together (1.31) and (1.32) and using the fact that JAK�;1

1/�.1+ JAK�;12 since �>1/2. Up to renaming
x0, we can also assume h0=0. The proof is similar to that of Proposition 1.18, but we provide it
for the sake of completeness.

Let �> 0 to be chosen later, s< t such that jt¡ sj6�, then by (1.30) it holds

kxs;tkV6
Z

s

t

A(du; xu)


V

+ khs;tkV

6kAs;t (xs)kV +�1jt¡ sj2�JAK�;1 JxK�;�+ jt¡ sj�JhK�
6jt¡ sj�(JAK�;1kxk1+ JhK�+�1��JAK�;1JxK�;�)

and so dividing both sides by jt¡ sj�, taking the supremum over s; t and choosing � such that
�1�

�JAK�;16 1/2 we obtain

JxK�;�6 2 (JAK�;1kxk1+ JhK�): (1.34)

As usual, if �1 JAK�;161/2, then the conclusion follows from (1.34) with the choice �= 1 and
the trivial estimate kxk16 kx0kV + JxK�. Suppose instead the opposite, choose �< 1 such that
�1�

�JAK�;1= 1/2; define In= [(n¡ 1)�; n�], Jn= kxk1;In, then estimates similar to the ones
done above show that

Jn+16kxn�kV +��JxK�;In
6kxn�kV (1+ 2��JAK�;1) +2JhK�
.Jn+ JhK�

which implies recursively that for a suitable constant �2 it holds Jn. e�2n(kx0kV + JhK�). Since
n��¡1� JAK�;1

1/� we deduce that

kxk1= sup
n

Jn. exp
¡
�3 JAK�;1

1/��
(kx0kV + JhK�)

which gives (1.32); combined with �¡�� JAK�;1, estimate (1.34) and the basic inequality

JxK�.�¡�kxk1+ JxK�;�
it also yields estimate (1.31). �
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Another way to establish that solutions don't blow-up in finite time is to the show that the YDE
admits (coercive) invariants. The next lemma gives simple conditions to establish their existence.

Lemma 1.21. Let A2Ct�CV
� with �(1 + �)> 1, x2Ct�V be a solution to the YDE associated to

(x0; A) and assume F 2C2(V ;R) is such that

DF (z)(As;t(z)) =0 8z 2V ; 06 s6 t6T :

Then F is constant along x, i.e. F (xt)=F (x0) for all t2 [0; T ].

Proof. It follows immediately from the Itô-type formula (1.16), since it holds

F (xt)¡F (x0)=
Z
0

t

DF (xs)(A(ds; xs)) =J (¡)

for the choice ¡s;t=DF (xs)(As;t(xs))� 0 by hypothesis. �

Remark 1.22. If V is an Hilbert space with kzkV2 = hz; ziV , then k�kV is constant along solutions
of the YDE under the condition hz;As;t(z)iV =0 for all z2V and s6 t. In this case, blow up cannot
occurr, thus under the hypothesis of Corollary 1.16, global existence of solutions holds. Similarly,
if in addition A2Ct�CV ;loc

1+� , then by Corollary 1.24 below, global existence and uniqueness holds.

1.2.3 Uniqueness
We now turn to sufficient conditions for uniqueness of solutions; some of the results below also
establish existence under different sets of assumptions than those from Section 1.2.1.

Theorem 1.23. Let A2Ct�CV
1+�, �(1+ �)> 1. Then for any x02V there exists a unique global

solution to the YDE associated to (x0; A).

Proof. The proof is based on an application of Banach fixed point theorem. Let M , � be positive
parameters to be fixed later and set

E: =fx2C�([0; � ];V ): x(0)=x0; JxK�6M g;

which is complete metric space with the metric d(x; y)= Jx¡ yK�; define the map I by

x 7! I(x)�=x0+
Z
0

�
A(ds; xs):

We want to show that I is a contraction from E to itself, for suitable choice of M and � . It holds

kI(x)s;tkV6kAs;t(xs)kV +�1JAK�;1JxK� jt¡ sj2�
6kAs;t(xs)¡As;t(x0)kV + kAs;t(x0)kV +�1JAK�;1JxK� jt¡ sj2�
6kAk�;1JxK� s�jt¡ sj�+ kAk�;1jt¡ sj�+�1JAK�;1JxK� jt¡ sj2�
6��(1+�1)kAk�;1JxK� jt¡ sj�+ kAk�;1jt¡ sj�:

Choosing � and M such that

��(1+�1)kAk�;16 1
2
; M > 2kAk�;1;

for any x2V it holds

JI(x)K�6 �� kAk�;1(1+�1)JxK�+ kAk�;16M /2+M /26M

which shows that I maps E into itself.
By the hypothesis and Corollary 1.10, for any x; y 2V it holds

kI(x)s;t¡I(y)s;tkV=
Z

s

t

vdu(xu¡ yu)

V

6kvs;t(xs¡ ys)kV +�1JvK�Jx¡ yK�jt¡ sj2�
6JvK�Jx¡ yK�(s�+�1jt¡ sj�)jt¡ sj�
6�2kAk�;1+� (1+ JxK�+ JyK�)Jx¡ yK���jt¡ sj�;
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which implies

JI(x)¡I(y)K�6�2kAk�;1+�(1+2M)��Jx¡ yK�< Jx¡ yK�
as soon as we choose � such that �2kAk�;1+�(1+2M)��<1. Therefore in this case I is a contrac-
tion from E to itself; for any x02V there exists a unique solution x2C�([0; � ];V ) starting from x0.
The same procedure allows to show existence and uniqueness of solutions x2C�([s;s+� ]\ [0;T ];V )
for any s2 [0; T ] and any xs2V , where � does not depend on (s; xs); by iteration, global existence
and uniqueness follows. �

By applying classical localization arguments, we immediately deduce the following local well-
posedness result (see [141] for a more detailed proof).

Corollary 1.24. Let A2Ct�CV ;loc
1+� , �(1+�)>1. Then for any x02V there exists a unique maximal

solution x to the YDE associated to (x0; A), defined on [0; T �)� [0; T ], such that either T �=T or

lim
t!T�

kxtkV =+1:

In particular if A 2 Ct�CV
�;� \ Ct�CV ;loc

1+� with �(1 + �)> 1, � + �6 1, then global existence and
uniqueness holds.

Once existence of solutions is established, their uniqueness can be alternatively shown by
obtaining more general stability estimates, i.e. comparing solutions to YDEs driven by different
drifts; such results were obtained in [57] and later revisited in [145].

Theorem 1.25. Let R;M >0 fixed. For i=1;2, let x0i 2V such that kx0ikV 6R, Ai2Ct�CV�;� with
�(1+ �)> 1, �+�6 1 and kAik�;�;�6M, as well as A12Ct�CV

1+�;� with kA1k�;1+�;�6M; let
xi be two given solutions associated respectively to (x0

i ; Ai). Then it holds

Jx1¡x2K�6C(kx01¡x02kV + kA1¡A2k�;�;�)

for a constant C =C(�; �; T ; R;M) increasing in the last two variables.

Proof. Let xi be the two given solutions and set et :=xt1¡xt2, then e satisfies

et=e0+

Z
0

t

A1(ds; xs
1)¡

Z
0

t

A2(ds; xs
2)

=e0+

Z
0

t

A1(ds; xs
1)¡

Z
0

t

A1(ds; xs
2)+

Z
0

t

(A1¡A2)(ds; xs2)

=e0+

Z
0

t

vds(es)+  t

for the choice

vt: =

Z
0

tZ
0

1

DA1(ds; xs
2+�(xs

1¡xs2))d�;  t :=

Z
0

t

(A1¡A2)(ds; xs2)

where we applied Corollary 1.10. By the same result, combined with estimate (1.29), it holds

JvK�;16�1kDA1k�;�;�(1+ kx1k�+ kx2k�)
6�2 exp(�2(kA1k�;1+�;�2 + kA2k�;�;�2 ))(1+R)

6�2 exp(2�2M2)(1+R);

similarly, by Point 4. of Theorem 1.6,

J K�6�3 kA1¡A2k�;�;�(1+ kx2k1� )(1+ Jx2K�)
6�4 kA1¡A2k�;�;� exp(�4(1+M2))(1+R):

Applying Theorem 1.20 to e, we have

Jx1¡x2K�6 �5 e
�5JvK�;12

(kx01¡x02kV + J K�)
which combined with the previous estimates implies the conclusion. �
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Remark 1.26. If A2Ct�CV
1+� and we consider solutions xi associated to (x0i ; A), going through

the same proof but applying instead estimate (1.25), we obtain

JvK�;1.kDAk�;�(1+ kx1k�+ kx2k�). 1+ kAk�;1+�3 ;

together with (1.33), this implies the existence of a constant C =C(�; �; T ) such that

Jx1¡x2K�6C exp(CkAk�;1+�6 )kx01¡x02kV : (1.35)

Namely, the solution map FA: x0 7!x associated to A, seen as a map from V to Ct�V , is globally
Lipschitz. Similar estimates show that, if fAngn is a sequence such that An!A in Ct�CV

1+�, then
FAn!FA uniformly on bounded sets.

As a corollary, we obtain convergence of the Euler scheme introduced in Section 1.2.1, with rate
2�¡ 1. For simplicity we state the result in the case A2Ct�CV

1+�, but the same results follow for
A2Ct�CV

1+�;� by the usual localization procedure.

Corollary 1.27. Given A2Ct�CV
1+� with �(1+ �)>1 and x02V, denote by xn the element of Ct�V

constructed by the n-step Euler approximation from Theorem 1.13, and by x the unique solution
associated to (x0; A). Then there exists a constant C =C(�; �; T ) such that

kx¡xnk�6C exp(C kAk�;1+�6 )n1¡2� as n!1:

Proof. Recall that by the proof of Theorem 1.13, xn satisfies the YDE

xt
n=x0+

Z
0

t

A(ds; xs
n)+  t

n;

where by Remark 1.15, for the choice �=1, it holds

J nK�.
¡
1+ kAk�;1

1+1/��n1¡2�:
Define en :=x¡xn, then by Corollary 1.10 it satisfies

et
n=

Z
0

t

A(ds; xs
n)¡A(ds; xs)+  t

n=

Z
0

t

vds
n (es

n) + t
n

where again by Remark 1.15 it holds

JvnK�;1. kAk�;1+� (1+ JxK�+ JxnK�). 1+ kAk�;1+�3 :

Applying Theorem 1.20, we deduce the existence of �1=�1(�; �; T ) such that

kenk�6�1 exp(�1kAk�;1+�6 ) J nK�;

which combined with the estimate for J nK� yields the conclusion. �

1.3 Flow

Having established sufficient conditions for the wellposedness of solutions associated to (x0; A),
the next natural step is the study of their dependence on the data of the problem. This section
is devoted to the study of the flow, seen as the ensemble of all possible solutions, and its Frechét
differentiability w.r.t. (x0; A).

In order to avoid technicalities we will only consider A2Ct�CV
1+�;� or even A2Ct�CV

1+�, but
everything extends easily by localisation arguments to A2Ct�CV

�;�\Ct�CV ;loc
1+� .

1.3.1 Flow of diffeomorphisms
We start by giving a proper definition of a flow for the YDE associated to A; recall here that �n

denotes the n-simplex on [0; T ].
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Definition 1.28. Given A2Ct�CV
�;� with �(1+ �)> 1, �+�6 1, we say that �:�2� V ! V is

a flow of homeomorphisms for the YDE associated to A if the following hold:

i. �(t; t; x)=x for all t2 [0; T ] and x2V;
ii. �(s; �; x)2C�([s; T ];V ) for all s2 [0; T ] and x2V;

iii. for all (s; t; x)2�2�Rd it holds

�(s; t; x) =x+

Z
s

t

A(dr;�(s; r; x));

iv. � satisfies the semigroup property, namely

�(u; t;�(s; u; x))=�(s; t; x) for all (s; u; t)2�3 and x2V ;

v. for any (s; t)2�2, the map �(s; t; �) is an homeomorphism of V, i.e. it is continuous with
continuous inverse.

From now on, whenever talking about a flow �, we will use the notation �s!t(x) =�(s; t; x);
we will denote by �s t(�) the inverse of �s!t(�) as a map from V to itself.

Definition 1.29. Given A as in Definition 1.28 and  2 (0; 1), we say that the YDE admits a
locally -Ho�lder continuous flow � (� is Cloc

 for short) if for any (s; t) 2�2 the maps �s!t,
�s t belong to Cloc

 (V ;V ); we say that � is a flow of diffeomorphisms if �s!t;�s t2Cloc
1 (V ;V ).

Similar definitions hold for a locally Lipschitz flow, or a Cloc
n+-flow with  2 [0; 1) and n2N.

When V =Rd, we say that � is a Lagrangian flow if there exists a constant C such that

C¡1�d(E)6�d(�s t(E))6C�d(E) 8E 2B(Rd); 8(s; t)2�2;

where �d denotes the Lebesgue measure on Rd and B(Rd) the collection of Borel sets.

It follows from Remark 1.26 that, if A 2Ct�CV
1+� with �(1 + �)> 1, then the solution map

(x0; t) 7! xt is Lipschitz in space, uniformly in time. However we cannot yet talk about a flow, as
we haven't shown the invertibility of the solution map, nor the flow property; this is accomplished
by the following lemma.

Lemma 1.30. Let A 2Ct�CV
� and x 2Ct�V such that �(1 + �)> 1, x be a solution of the YDE

associated to (x0;A). Then setting A~(t; z):=A(T ¡ t; z) and x~t :=xT¡t, x~ is a solution to the time-
reversed YDE

x~t=x~0+

Z
0

t

A~(ds; x~s):

Similarly, setting x~t= xt+s, A~(t; x) =A(t+ s; x) for t 2 [s; T ], then x~ is a solution to the time-
shifted YDE

x~t~=x~0+

Z
0

t~

A~(dr; x~r) 8t~2 [0; T ¡ s]:

The proof is elementary but a bit tedious, thus omitted; see Lemmas 4.26-4.27 from [145].
As a consequence of Lemma 1.30, Theorem 1.25 and Remark 1.26, we immediately deduce

sufficient conditions for the existence of a Lipschitz flow.

Corollary 1.31. Let A 2Ct�CV
1+� with �(1 + �)> 1, then the associated YDE admits a locally

Lipschitz flow �A. Moreover there exists C =C(�; �; T ; kAk�;1+�) such that

k�s!�A (x)¡�s!�A (y)k�;s;T 6Ckx¡ ykV ; J�s!�A (x)K�;s;T 6C 8s2 [0; T ]; x; y 2V (1.36)

together with a similar inequality for �� t(�). Analogous estimates also hold for A 2Ct�CV
1+�;�

with �(1+ �)>1, �+�61, in which case we need to restrict to kxkV ;kykV 6R and take C=CR.

By Theorem 1.25, we can also infer continuity of the flow with respect to the driver A.
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Corollary 1.32. Consider the map � given by A 7!�A where A2Ct�CV
1+�;�, �A is the flow given

by Corollary 1.31. Then � is continuous from Ct
�CV

1+�;� to C([0; T ]� V ; V ), the latter being
endowed with the topology of uniform convergence on bounded sets.

Actually, under the same hypothesis as in Corollary 1.31 it is possible to prove that the YDE
admits a flow of diffeomorphisms, which satisfies a variational equation. In the rest of this section,
for simplicity we will always assume A2Ct�CV

1+� with global bounds.

Theorem 1.33. Let A2Ct�CV
1+� with �(1+ �)>1, then the YDE associated to A admits a flow of

diffeomorphisms. For any x2V, Dx�s!t(x)=Js!t
x , where Js!�x 2Ct�L(V ;V ) is the unique solution

to the variational equation

Js!t
x = I +

Z
s

t

DA(dr;�s!r(x)) �Js!rx 8t2 [s; T ] (1.37)

where � denotes the composition of linear operators.

We postpone the proof of this result to Section 1.3.2, as the variation equation will follow from
a more general result on the differentiability of the Itô map. Following [176], we give an alternative
proof in the case of finite dimensional V , where more precise information on � is known.

Theorem 1.34. Let A satisfy the hypothesis of Theorem 1.33, V =Rd for some d2N; then the
associated YDE admits a flow of diffeomorphisms and the following hold:

i. For any x2Rd and s2 [0; T ], Dx�s!�(x) corresponds to Js!�x 2C�([s; T ];Rd�d) satisfying

Js!t
x = I +

Z
s

t

DA(dr;�s!r(x))Js!r
x : (1.38)

ii. The Jacobian |s!t(x): =det(Dx�s!t(x)) satisfies the identity

|s!t(x)= exp
�Z

s

t

divA(dr;�s!r(x))
�

(1.39)

and there exists a constant C =C(�; �; T ; kAk�;1+�)> 0 such that

C¡16 |s!t(x)6C 8(s; t; x)2�2�Rd:

In particular, � is a Lagrangian flow of diffeomorphisms.

Proof. For simplicity we will prove all the statements for s=0, the general case being similar. By
Corollary 1.31, the existence of a locally Lipschitz flow � is known; to show differentiability, it is
enough to establish existence and continuity of the Gateaux derivatives.

Fix x; v 2Rd and consider for any " > 0 the map �t
" := "¡1(�0!�(x+ "v)¡�0!�(x)); by esti-

mate (1.36), the family f�"g">0 is bounded in Ct
�Rd. Thus by Ascoli-Arzelà we can extract a

subsequence "n! 0 such that �"n! � in Ct
�¡�Rd for some � 2Ct�Rd and any � > 0. Choose � > 0

small enough such that (� ¡ �)(1 + �) > 1; by Proposition 1.9, the map F (y) =
R
0

�
A(ds; ys) is

differentiable from Ct
�¡�Rd to itself, with DF given by (1.8). Using this fact and the chain rule,

we deduce that

��= lim
"n!0

�0!�(x+ "nv)¡�0!�(x)
"n

=v+ lim
"n!0

F (�0!�(x+ "nv))¡F (�0!�(x))
"n

=v+DF (�0!�(x))(��);

namely, � satisfies the YDE

�t= v+

Z
0

t

DxA(dr;�0!r(x))�r (1.40)
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whose meaning was defined in Remark 1.7. Equation (1.40) is an affine YDE, which admits a
unique solution by Corollary 1.24; moreover it's easy to check that the unique solution must have
the form �t=J0!t

x v, where J0!�x 2Ct�Rd�d is the unique solution to the affine Rd�d-valued YDE

J0!t
x = I +

Z
0

t

DxA(dr;�0!r(x))J0!r
x ;

whose global existence and uniqueness follows from Corollary 1.24 and Theorem 1.20. As the
reasoning holds for any subsequence "n we can extract and any v 2Rd, we conclude that �0!t(�)
is Gateaux differentiable with D�0!t(x)= J0!tx satisfying (1.38). A similar argument shows that
J0!t
x depends continuously on x, from which Frechét differentiability follows.
Part ii. can be established for instance by means of an approximation procedure; indeed by

Lemma A.35 in Appendix A.6, given A2Ct�CRd
1+�, we can find An2Ct1CRd

1+� such that An!A in
Ct
�¡CRd

1+�¡ and by Theorem 1.25, the solutions y�n=�0!�
n (x) associated to (x; An) converge to

�0!�(x) associated to (x;A). Moreover for An the YDE is meaningful as the more classical ODE
associated to @tAn, so we can apply to it all the classical results from ODE theory; the Jacobian
associated to An is given by

det(Dx�0!t
n (x))= exp

�Z
0

t

div @tAn(r;�0!rn (x))dr

�
= exp

�Z
0

t

divAn(dr;�0!rn (x))

�
:

Passing to the limit as n!1, by the continuity of nonlinear Young integrals, we obtain (1.39).
Moreover by equation (1.36) we have the estimate

sup
t2[0;T ]

��������Z
0

t

divA(dr;�0!r(x))
��������. kdivAk�;�(1+ J�0!�(x)K�). kAk�;1+� ;

which gives Lagrangianity. �

It's possible to show that the flow inherits regularity from the drift, namely that to a spatially
more regular A corresponds a more regular �.

Theorem 1.35. Let n2N, �; � 2 (0;1) be such that �(1+ �)> 1 and assume A2Ct�CV
n+�. Then

the flow � associated to A is locally Cn-regular.

We omit the proof, which follows similar lines to those of Theorems 1.33 and 1.34 and is mostly
technical; we refer the interested reader to [145, 170] and the discussion at the end of Section 3
from [199]. Given Theorem 1.35, we may strenghten Corollary 1.32 as follows. We recall that
convergence in Ct0CV ;locn stands for uniform convergence in [0; T ]�BR of all derivatives up to order
n, for all R> 0.

Corollary 1.36. For any n> 1, the map A 7!�A is continuous from Ct
�CV

n+� to Ct0CV ;locn .

We omit the proof, as it follows from the very same steps from that of Theorem 1.35. Like in
Theorems 1.33-1.34, also in the case of Theorem 1.35 and Corollary 1.36 the assumptions on A can
be weakened to local regularity and growth conditions: it is enough to require A2Ct�CV

�;� together
with A2Ct�CV ;loc

n+� (and one still retains continuity of the map A 7!�A in suitable topologies).

1.3.2 Differentiability of the Itô map
Denote by �s!�A (x) the solution to the YDE associated to (x;A); the aim of this section is to study
the dependence of the flow �A as a function of A2Ct�CV

1+�, namely to identify DA�s!�A (x).
For simplicity we will restrict to the case s=0; we will actually fix A2Ct�CV

1+�, consider �A+"B

with B varying and set Xtx :=�0!t
A (x).

Theorem 1.37. Let �(1+ �)>1, x02V and consider the Itô map �0!�� (x):Ct
�CV

1+�!Ct
�V, A 7!

�0!�
A (x). Then �0!�

� (x) is Frechét differentiable and for any B 2Ct�CV
1+� the Gateaux derivative

DA�0!�
A (x)(B)= lim

"!0

1
"
(�0!�

A+"B(x)¡�0!�A (x))2Ct�V
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satisfies the affine YDE

Yt
x=

Z
0

t

DA(ds;Xs
x)(Ys

x) +

Z
0

t

B(ds;Xs
x) 8t2 [0; T ] (1.41)

and is given explicitly by

DA�0!t
A (x)(B)= J0!t

x

Z
0

t

(J0!s
x )¡1B(ds;Xs

x) 8t2 [0; T ] (1.42)

where J0!�x is the unique solution to ( 1.37) and (J0!s
x )¡1 denotes its inverse as an element of

L(V ).

The proof requires the following preliminary lemma.

Lemma 1.38. For any L2Ct�L(V ), there exists a unique solution M 2Ct�L(V ) to the YDE

Mt= IdV +
Z
0

t

Lds �Ms 8t2 [0; T ]; (1.43)

moreover Mt is invertible for any t2 [0; T ] and N� := (M�)¡12Ct�L(V ) is the unique solution to

Nt= IdV ¡
Z
0

t

Ns �Lds 8t2 [0; T ]: (1.44)

Finally, for any y02V and any  2Ct�V, the unique solution to the affine YDE

yt= y0+

Z
0

t

Ldsys+  t (1.45)

is given by

yt=Mt y0+Mt

Z
0

t

Ns d s: (1.46)

Proof. Setting A(t;M) :=Lt �M , it holds A2Ct�CL(V );loc2 and so existence and uniqueness of a
global solution to (1.43) follows from Corollary 1.24 and Theorem 1.20; similarly for (1.44) with
A~(t; N) =N �Lt. Let M�; N�2Ct�L(V ) be solutions respectively to (1.43), (1.44); we claim that
they are inverse of each other. Indeed, by the product rule for Young integrals, it holds

d(Nt �Mt)= (dNt) �Mt+Nt � (dMt)=¡Nt �Ldt �Mt+Nt �Ldt �Mt=0

which implies Nt �Mt=N0 �M0= IdV and thus Nt=(Mt)
¡1. Let y�2Ct�V be the unique solution

to (1.45), whose global existence and uniqueness follows as above, and set zt: =Nt yt; then again
by Young product rule, it holds dzt=Ntd t and thus

Nt yt= zt= z0+

Z
0

t

dzs= y0+

Z
0

t

Nsd s

which gives (1.46) by applying Mt on both sides. �

Proof. (of Theorem 1.37) Given A;B 2Ct�CV
1+�, it is enough to show that the limit

lim
"!0

�0!�
A+"B(x)¡�0!�A (x)

"
exists in Ct�V

and that it is a solution to (1.41). Once this is established, we can apply Lemma 1.38 for the
choice Lt=

R
0

t
DxA(ds; Xs

x), y0= 0 and  t=
R
0

t
B(ds; Xs

x) to deduce that the limit is given by
formula (1.42), which is meaningful since J0!�x is defined as the solution to (1.43) and is therefore
invertible (again by Lemma 1.38). The explicit formula (1.42) for the Gateaux derivatives readily
implies existence and continuity of the Gateux differential DA�0!�A (x) and thus also Frechét dif-
ferentiability.
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In order to prove the claim, let Y x2Ct�V be the solution to (1.41), which exists and is unique
by Lemma 1.38; then we need to show that

lim
"!0

�0!�A+"B(x)¡X�x
"

¡Y�x

�

=0:

Set X�
";x :=�0!�

A+"B(x); recall that by Theorem 1.25, we have

kX";x¡Xxk�. "kBk�;�: (1.47)

Setting e" := "¡1[X";x¡Xx]¡Y x, it holds

et
"=

1

"

�Z
0

t

(A+ "B)(ds;Xs
";x)¡A(ds;Xsx)

�
¡
Z
0

t

DA(ds;Xs
x)(Ys

x)¡
Z
0

t

B(ds;Xs
x)

=

Z
0

t
�
A(ds;Xs

";x)¡A(ds;Xsx)
"

¡DA(ds;Xsx)(Ys)
�
+

Z
0

t

[B(ds;Xs
";x)¡B(ds;Xsx)]

=

Z
0

t

DA(ds;Xs
x)(es

")+  t
"

where  " is given by

 t
"=

Z
0

tA(ds;Xs
";x)¡A(ds;Xsx)¡DA(ds;Xsx)(Xs

";x¡Xsx)
"

+

Z
0

t

B(ds;Xs
";x)¡B(ds;Xsx)

:= t
";1+  t

";2:

In order to conclude, it is enough to show that k "k�! 0 as "! 0, since then we can apply the
usual a priori estimates from Theorem 1.20 to e", which solves an affine YDE starting at 0. We
already know that X";x!Xx as "! 0, which combined with the continuity of nonlinear Young
integrals implies that  t

";2! 0 as "! 0. Observe that  ";1=J (¡") for

¡s;t
" = "¡1[As;t(Xs

";x)¡As;t(Xsx)¡DAs;t(Xsx)(Xs
";x¡Xsx)]

which by virtue of (1.47) satisfies

k¡s;t" kV . "¡1kAs;tkCV1+� kXs
";x¡XsxkV

1+�. "� jt¡ sj�kAk�;1+�

which implies that k¡"k�! 0 as "! 0. On the other hand we have

k�¡s;u;t" kV = "¡1
Z

0

1

[DAu;t(Xs
x+�(Xs

";x¡Xsx))¡DAu;t(Xsx)](Xs
";x¡Xsx)d�

¡
Z
0

1

[DAu;t(Xu
x+�(Xu

";x¡Xux))¡DAu;t(Xux)](Xu
";x¡Xux)d�kV

6 "¡1
Z

0

1

[DAu;t(Xs
x+�(Xs

";x¡Xsx))¡DAu;t(Xsx)](Xs;u
";x¡Xs;ux )d�


V

+"¡1
Z

0

1

[DAu;t(Xu
x+�(Xu

";x¡Xux))¡DAu;t(Xsx+�(Xs
";x¡Xs"))](Xu

";x¡Xux)d�

V

+"¡1
Z

0

1

[DAu;t(Xu
x)¡DAu;t(Xsx)](Xu

";x¡Xux)d�

V

. "¡1jt¡ sj�(1+�)kAk�;1+� JX";x¡XxK�(1+ JX";x¡XxK�+ JXxK�)

. jt¡ sj�(1+�)kAk�;1+� (1+ JXxK�)

which implies that k�¡"k�(1+�) are uniformly bounded in ". We can finally apply Lemma A.33
from Appendix A.6 to conclude. �

Remark 1.39. AlthoughA 7!�A is defined only on Ct�CV
1+�, observe that (A;B) 7!DA�0!�

A (x)(B)

as given by formula (1.42) is well defined and continuous for any (A;B)2Ct�CV
1+��Ct�CV

� .

We can use Theorem 1.37 to complete the proof of Theorem 1.33.
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Proof. (of Theorem 1.33) The existence of a Lipschitz flow � is granted by Corollary 1.31, so
it suffices to show its differentiability and the variational equation; for simplicity we take s= 0.
Existence of a unique solution J0!�x 2Ct�L(V ) to (1.37) follows from Lemma 1.38 applied to

Lt=

Z
0

t

DA(dr;�0!r(x));

by linearity, it's also easy to check that for any h2V , Yth := J0!tx (h) is the unique solution to

Yt
h=h+

Z
0

t

DA(dr;�0!r(x))(Yr
h): (1.48)

Therefore in order to conclude it suffices to show that the directional derivatives

Dx�0!�
A (x)(h)= lim

"!0

�0!�
A (x+ "h)¡�0!�A (x)

"

exist in Ct�V and are solutions to (1.48), as this implies that Dx�0!�
A (x)=J0!�

x . Now fix x; h2V
and let y"=�0!�A (x+ "h), then z" := y"¡ "h solves

zt
"=x+

Z
0

t

A"(ds; zs
")

with A"(t;v)=A(t;v+"h), i.e. z�"=�0!�A" (x). It's easy to see that, if the first limit below exists, then

lim
"!0

z"¡ z0
"

= lim
"!0

y"¡ y0
"

¡h; lim
"!0

A"¡A
"

=B for B(t; x): =DA(t; x)(h):

By the Frechét differentiability of A 7!�0!�
A (x) and the chain rule, it holds

lim
"!0

z"¡ z0
"

= lim
"!0

�0!�
A" (x)¡�0!�A (x)

"
=DA�0!�

A (x)(B)

which is characterized as the unique solution Zh to

Zt
h=

Z
0

t

DA(dr;�0!r
A (x))(Zr

h)+

Z
0

t

DA(dr;�0!r
A (x))(h):

This implies by linearity that

Y h: =Zt
h+h= lim

"!0

y"¡ y
"

=Dx�0!�
A (x)(h)

solves exactly (1.48). The conclusion follows. �

Example 1.40. Here are some examples of applications of Theorem 1.37.

i. Consider the simple case of an additive perturbation, i.e. for fixed (x0; A) we want to
understand how the solution x of

xt=x0+

Z
0

t

A(ds; xs)+  t

depends on  , where  2Ct�V with  0=0. Identifying  with the spatially constant drift
B (t; z):= t for all z2V , it holds x�=�0!�

A+B (x0) :=F ( ), which implies that F is Frechét
differentiable in 0 with

DF (0)( )�= J0!�
x

Z
0

�
(J0!s
x )¡1d s:

ii. Consider the classical Young case, namely V =Rd, with

A(t; z)=A!(t; z) =�(z)!t=
X
i=1

m

�i(z)!t
i; (t; z)2 [0; T ]�Rd
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for regular vector fields �i:Rd!Rd and ! 2Ct�Rm, �> 1/2; let �i be fixed and consider
the dependence on the drivers !, namely the map ! 7!�0!�

A! (x).
For fixed ! 2Ct�Rm and x2Rd, set Xtx(!):=�0!t

A! (x), J0!tx (!):=Dx�0!t
A! (x); then the

map ! 7!Xt
x(!) is Frechét differentiable at ! with directional derivatives

D!Xt
x( )= J0!t

x

Z
0

tX
i=1

m

(J0!r
x )¡1�i(Xr

x)d r
i: (1.49)

The above formula uniquely extends by continuity to the case  2Wt
1;1, in which case we

can write it in compact form as

D!Xt
x( )=

Z
0

T

K(t; r) _r dr; K(t; r)= 1[0;t](r) J0!t
x (J0!r

x )¡1�(Xr
x): (1.50)

Formulas (1.49) and (1.50) are well known by Malliavin calculus, mostly in the case ! is
sampled as an fBm of parameter H > 1/2, see Section 11.3 from [132]; formula (1.42) can
be regarded as a generalisation of them.

1.4 Further results
The theory presented so far, although satisfactory, requires quite a lot of spatial regularity on A: if
we allow for � arbitrarily close to 1/2, the conditions of Theorem 1.33 roughly become A2Ct�CV2 .
At the same time, we have already seen that, under the weaker requirement A2Ct�CV1 , the equation
is meaningful and existence of solutions holds (at least for V =Rd, cf. Theorem 1.13). It is then
natural to wonder whether we can obtain a better understanding of the structure of solutions, or
develop different criteria (possibly depending on terms different from A like @tA, or the solutions
themselves) to ensure uniqueness in this weaker regularity regime.

1.4.1 Topological properties of the set of solutions
We restrict in this subsection to the case V =Rd; we will adopt the shorter notations Ct�=Ct�Rd

and Ct�Cx
�;�=Ct

�CRd
�;�.

Inspired by a series of results by Stampacchia, Vidossich, Browder, Gupta and others (see [270]
and the references therein), we want to study the topological structure of the set

C(x0; A)=

�
x2Ct� such that xt=x0+

Z
0

t

A(ds; xs) for all t2 [0; T ]
�

where A2Ct�Cx
�;� with �(1+ �)> 1 and �+�6 1; namely, C(x0; A) is the set of solutions to the

Cauchy problem associated to (x0;A). Recall that by Corollary 1.16 and Proposition 1.18, existence
of global solutions is granted, but uniqueness is not unless A2Ct�Cloc

1+�; therefore C(x0; A) may
not consist of a singleton. The following result is an extension of Proposition 43 from [139], where
the structure of the set C(x0; A) was already partially addressed.

Theorem 1.41. Let A2Ct�Cx
�;� with �; �;� as above, x02Rd; then the set C(x0;A) is nonempty,

compact and simply connected. Moreover, for any fixed y 2Rd, the map

Rd�Ct�Cx
�;�3 (x0; A) 7! d(y; C(x0; A))2R

is lower semincontinuous.

Here we recall that for y 2Ct�, K �Ct�, the distance of an element from a set is defined by

d(y;K) = inf
z2K

ky¡ zk�:

A main tool in the proof of Theorem 1.41 is the use of the Browder�Gupta theorem from [49]; we
recite here a slight modification due to Gorniewicz. Recall that a map f is proper if it is continuous
and the preimage f¡1(K) is compact whenever K is so.
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Theorem 1.42. (Theorem 69.1, Chapter VI from [158]) Let X be a metric space, (E; k�k)
a Banach space and f :X!E a proper map. Assume further that for each "> 0 a proper map f":
X!E is given and the following two conditions are satisfied:

i. kf"(x)¡ f(x)k6 " for all x2X;

ii. for any "> 0 and u2E such that kuk6 ", the equation f"(x)=u has exactly one solution.

Then the set S= f¡1(0) is R� in the sense of Aronszajn.

Let us recall that an R�-set is the intersection of a decreasing sequence of compact absolute
retracts, see Definition 2.11 from [158]; here we will only need the basic fact that R�-sets are always
simply connected. In order to prove Theorem 1.41, we need the a preliminary lemma.

Lemma 1.43. For A as above and for any y 2Ct�, there exists at least one solution x2Ct� to

xt= yt+

Z
0

t

A(ds; xs) 8 t2 [0; T ]; (1.51)

moreover, there exists C =C(�; �; T ) such that any solution satisfies the a priori estimate

kxk�6C exp(CkAk�;�;�2 + kyk�2 )(1+ jy0j): (1.52)

If in addition A2Ct�Cloc
1+�, then the solution is unique.

Proof. Set A~(t; x)=A(t; x)+ yt, then x is a solution to (1.51) if and only if it solves

xt= y0+

Z
0

t

A~(ds; xs)

where A~2Ct�Cx
�;� with kA~k�;�;�6kAk�;�;�+kyk�. Existence and the estimate (1.52) then follow

from Corollary 1.16 and Proposition 1.18; A 2Ct�Cloc
1+� implies A~2Ct�Cloc

1+� and so uniqueness
follows from Corollary 1.24. �

Proof. (of Theorem 1.41) We divide the proof in several steps.
Step 1: C(x0; A) nonempty, compact. Nonemptiness follows immediately from Lemma 1.43

applied to y�x0; let xn be a sequence of elements of C(x0; A), then by (1.52) they are uniformly
bounded in Ct� and so by Ascoli�Arzelà we can extract a (not relabelled) subsequence xn! x in
Ct
�¡" for all "> 0, for some x2Ct�. Choosing " > 0 sufficiently small such that �+ �(�¡ ")> 1,

by Theorem 1.6 the map z� 7!
R
0

�
A(ds; zs) is continuous from Ct

�¡" to Ct�, therefore

x�
n=x0+

Z
0

�
A(ds; xs

n)!x0+

Z
0

�
A(ds; xs)=x� in Ct�;

which shows compactness.
Step 2: C(x0; A) connected. Given A2Ct�Cx

�;�, consider a sequence A"2Ct�Cx
1+�;� such that

kA"k�;�;�6 2kAk�;�;�; A"!A in Ct�Cloc
� as "! 0;

this is always possible, for instance by taking A"= �"�A, f�"g">0 being a family of standard spatial
mollifiers. For x02Rd fixed, take R> 0 big enough such that

C exp(CkA"k�;�;�2 + kx0+ yk�2 )(1+ jy0+x0j)6R 8"2 (0; 1); y 2Ct� s.t. kyk�6 1;

where C is the constant appearing in (1.52); this is always possible due to the uniform bound on
kA"k�;�;�. Define the metric space E to be

E= fz 2Ct� : kzk�6Rg; dE(z
1; z2)= kz1¡ z2k�;

also define the maps f ; f":E!Ct
� by

f(z)= z�¡x0¡
Z
0

�
A(ds; zs); f"(z)= z�¡x0¡

Z
0

�
A"(ds; zs):
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By Theorem 1.6, they are continuous from E to Ct�; reasoning exactly as in Step 1, it is easy to
check that they are proper. Observe that an element x2E satisfies f(x)= y if and only if it satisfies

x2Ct�; xt=x0+ yt+

Z
0

t

A(ds; xs) 8t2 [0; T ]; kxk�6R;

similarly for f"; moreover the bound kxk�6R is trivially satisfied for all y such that kyk�6 1, by
our choice of R and Lemma 1.43. It follows that, for any such y, f"(x)= y has exactly one solution
x 2E. In order to apply Theorem 1.42 and get the conclusion, it remains to show that f"! f
uniformly in E; but by Theorem 1.6 it holds

kf(z)¡ f"(z)k�=
Z

0

�
A(ds; zs)¡

Z
0

�
A"(ds; zs)


�

.kA¡A"k�;�;R (1+ kzk�)

.kA¡A"k�;�;R(1+R)! 0 as "! 0

and the can conclude that f¡1(0)=C(x0; A) is simply connected in E, thus also in Ct�.
Step 3: lower semicontinuity. Consider now a sequence (x0n; An)! (x0; A) in Rd�Ct�Cx

�;�, we
need to show that for any fixed y 2Ct� it holds

d(y; C(x0; A))6 liminf
n!1

d(y; C(x0
n; An)):

Since by Step 1 the set C(x0n;An) is compact, it is always possible to find xn2C(x0n; An) such that

ky¡x0nk=(y; C(x0
n; An));

we can assume wlog that lim d(y; C(x0
n; An)) exists, since otherwise we can extract a subsequence

realizing the liminf. Since (x0n;An) is convergent, it is also bounded in Rd�Ct�Cx
�;�, which implies

by estimate (1.52) that the sequence fxngn is bounded in Ct�. It is not difficult to see, invoking
Ascoli�Arzelà and going through the same reasoning as in Step 1, that we can extract a (not
relabelled) subsequence such that xn!x in Ct� where x2C(x0; A). As a consequence

d(y; C(x0; A))6 ky¡xk�= lim
n!1

ky¡xnk�= liminf
n!1

d(y; C(x0
n; An))

which gives the conclusion. �

Remark 1.44. For simplicity we have only treated the case V =Rd, but it's clear that The-
orem 1.41 admits several variants; for instance one can consider a general Banach space V and
A2Ct�CV ;W

�;� with W compactly embedded in V , which implies global existence by Corollary 1.16
and the usual a priori estimates. Other extensions of interest can be those to mixed or fractional
equation, which have been trated in Section 3.5 from [141].

Theorem 1.41 has relevant consequence when considering C(x0; A) as a multivalued map; here
we only recall some key concepts and refer the reader to [55] for a complete overview.

Given a complete metric space (E; d), the space

K(E) = fK �E :K is compactg

is itself a complete metric space with the Hausdorff metric

dH(K1;K2) =max
�

sup
a2K1

d(a;K2); sup
b2K2

d(b;K1)
�
;

moreover

dH(K1;K2)= sup
a2E

jd(a;K1)¡ d(a;K2)j= max
a2K1[K2

jd(a;K1)¡ d(a;K2)j:

If we endow the space (K(E); dH) with its Borel �-algebra, then it's possible to show that a map
F : (
;A)! (K(E); dH) is measurable if and only if, for all a2E, the map


3! 7! d(a; F (!))2R

is measurable.
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Corollary 1.45. The map from Rd�Ct�Cx
�;� to K(Ct�) given by (x0;A) 7!C(x0;A) is a measurable

multifunction.

Proof. It follows immediately from Theorem 1.41 and the fact that lower semicontinuous maps
are measurable. �

Since composition of measurable functions is still measurable, we readily obtain the following:

Corollary 1.46. Let (
; F) be a measurable space on which an Rd� Ct�Cx
�;�-valued random

variable (�0;�) is defined; then ! 7!C(�0(!);�(!)) defines a K(Ct�)-valued random variable (this
is usually referred to as a random set in Ct�).

We can also obtain the existence of measurable selections for C(x0;A). To this end, let us recall
the following classical result.

Theorem 1.47. (Theorem 12.1.10 from [258]) Let (G; �) be a measurable space, (E; d) a
separable metric space and y 7!Ky be a measurable map from G to K(E). Then there exists a
measurable selection of K, namely a measurable map k:G!E such that k(y)2Ky 8y 2G.

Corollary 1.48. There exists a measurable map X :Rd�Ct�Cx
�;�!Ct

� such that X(x0; A) is a
solution to the YDE associated to (x0;A) for all (x0;A)2Rd�Ct�Cx

�;�. In particular, in the setting
of Corollary 1.46, ! 7!X(�0(!);�(!)) defines a selection for the random set ! 7!C(�0(!);�(!)).

Proof. The statement immediately follows from Theorem 1.47 for G=Rd�Ct�Cx
�;�.1.1 �

Let us finally point out a trivial fact: if A is regular, then necessarily C(x0; A) = f�0!�A (x0)g,
where �A is the flow associated to A, and X(x0; A)=�0!�

A (x0).

1.4.2 Conditional uniqueness
This section provides several criteria for uniqueness of the YDE, under additional assumptions
on the associated solutions. Typically such properties can't be established directly, at least not
under mild regularity assumptions on A; yet the criteria are rather useful in application to SDEs,
where the analytic theory can be combined with more probabilistic techniques (see the forthcoming
Chapter 3 and the use of Girsanov transform).

We start with the following result, which states that the existence of a sufficiently regular flow
necessarily implies uniqueness of solutions. It is inspired by the analogue results for ODEs in the
style of van Kampen and Shaposhnikov, see [265], [254].

Theorem 1.49. Suppose A2Ct�CV
�;� with �(1 + �)> 1, � + �6 1 and that the associated YDE

admits a spatially locally -Ho�lder continuous flow. If

�(1+ �)> 1;

then for any x02V there exists a unique solution to the YDE in the class x2Ct�V.

Proof. Let x0 2 V and x be a given solution to the YDE starting at x0. By the a priori esti-
mate (1.26), we can always find R=R(x0) big enough such that

sup
s2[0;T ]

fkxk�+ k�(s; �; xs)k�;s;T g6R;

therefore in the following computations, up to a localisation argument, we can assume without loss
of generality that A2Ct�CV

� and that � is globally -Ho�lder.

1.1. Technically speaking, Ct� is not separable, so we couldn't apply Theorem 1.47 directly. However, we may
replace Ct� with C�t

�¡", where C�t� denotes the closure of Cc1 under the C�-norm; K(Ct�) naturally embeds into
K(C�t

�¡") and we may take E =C�t
�¡". As usual such a loss of regularity is harmless, since we may choose " > 0

small enough so that (�¡ ")(1+ �)> 1, so that the nonlinear YDE is still meaningful.
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It suffices to show that ft :=�(t; T ; xt)¡�(0; T ; x0) satisfies kfs;tkV . jt¡ sj1+" for some ">0;
if that is the case, then necessarily f �0, namely �(t; T ; xt)=�(0; T ; x0) for all t2 [0; T ]; inverting
the flow we find xt=�(0; t; x0), implying that �(0; �; x0) is the unique solution starting from x0.

By the flow property

kfs;tkV=k�(t; T ; xt)¡�(s; T ; xs)kV
=k�(t; T ; xt)¡�(t; T ;�(s; t; xs))kV
.kxt¡�(s; t; xs)kV :

Since both x and �(s; �; xs) are solutions to the YDE starting from xs, it holds

kxt¡�(s; t; xs)kV=
Z

s

t

A(dr; xr)¡
Z
s

t

A(dr;�(s; r; xs))


V

.kAs;t(xs)¡As;t(�(s; s; xs))kV + jt¡ sj�(1+�)kAk�;�(1+ JxK�+ J�(s; �; xs)K�)

.jt¡ sj�(1+�);

where we used the basic property �(s; s; x) = x; overall we obtain kfs;tkV . jt¡ sj�(1+�), which
implies the conclusion. �

Remark 1.50. The assumptions of Theorem 1.49 can be weakened in several ways. For instance,
the existence of a -Ho�lder regular semiflow is enough to establish that �(t; T ; xt) =�(0; T ; x0),
even when � is not invertible. Uniqueness only requires �(t;T ; �) to be invertible for t2D, D dense
subset of [0; T ]; indeed this implies xt=�(0; t; x0) on D and then by continuity the equality can
be extended to the whole [0; T ]. Similarly, it is enough to require

sup
t2D

k�(t; T ; �)k;R<1 for all R> 0

for D dense subset of [0; T ] as before.

The next conditional uniqueness statements are slightly more subtle and require more setup. We
start by introducing the concept of averaged translation, originally due to [57], cf. Definition 2.13;
we provide a different construction of it based on the sewing lemma (although with the same
underlying idea).

Definition 1.51. Let A2Ct�CV
�, y2Ct

V with �+ � >1. The averaged translation �xA is defined
as

�yA(t; x) =

Z
0

t

A(ds; z+ ys) 8t2 [0; T ]; z 2V :

Lemma 1.52. Let A2Ct�CV
n+�, y2Ct

V with �+ � >1, �2 (0;1) satisfying �<n+ �, �+ �>1.
The operator �y is continuous from Ct

�CV
n+� to Ct�CV

n+�¡� and there exists C=C(�; �; ; �;T ) s.t.

k�yAk�;n+�¡�6CkAk�;n+�(1+ JyK): (1.53)

Proof. Observe that �yA corresponds to the sewing of ¡:�2!CV
n+� given by

¡s;t: =As;t( � + ys):

It holds k¡s;tkn+�6 jt¡ sj� kAk�;n+�; moreover by Lemma A.34 in Appendix A.6 it holds

k�¡s;u;tkn+�¡�=kAu;t( � + ys)¡Au;t( � + yu)kn+�¡�
.kys¡ yukV� kAu;tkn+�
.jt¡ sj�+� JyK kAk�;n+�:

Since �+ � > 1, by the sewing lemma we deduce that J (¡) = �yA2Ct�CV
n+�¡�, together with

estimate (1.53). �

Young integrals themselves can indeed be regarded as averaged translations evaluated at z=0.
Iterating translations is a consistent procedure, as the following lemma shows.
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Lemma 1.53. Assume that �+ � > 1 and A2Ct�CV
�, x2Ct

V and �xA2Ct�CV
�. Then for any

y 2Ct
V it holds Z

0

t

(�xA)(ds; ys) =

Z
0

t

A(ds; xs+ ys) 8t2 [0; T ]:

Proof. The statement follows immediately from the observation that for any s6 t it holdsZ
s

t

(�xA)(dr; yr)¡
Z
s

t

A(dr; xr+ yr)

.k(�xA)s;t(ys)¡As;t(xs+ ys)k+ jt¡ sj�+�

.k(As;t(� +xs))(ys)¡As;t(xs+ ys)k+ jt¡ sj�+�

.jt¡ sj�+�

so that the two integrals must coincide. �

The main reason for introducing averaged translations is the following key result, which is a
generalization of Theorem 4.8 from [145].

Theorem 1.54. (Conditional Comparison Principle) Let A1; A22Ct�CV
� with �(1 + �)> 1

for some �; � 2 (0; 1) and let xi 2Ct�V be given solutions respectively to the YDE associated to
(x0
i ;Ai). Suppose in addition that x1 is such that �x1A12Ct�LipV. Then there exists C=C(�; �;T ),

increasing in the last variable, such that

kx1¡x2k�6C exp
¡
Ck�x1A1k�;1

1/��
(1+ kA2k�;�2 ) (kx01¡x02k+ kA1¡A2k�;�): (1.54)

In particular, uniqueness holds in the class Ct�V to the YDE associated to (x0
1; A1).

Proof. The final uniqueness claim immediately follows from inequality (1.54), since in that case we
can consider A1=A2, x01=x02. Now let xi be two solutions as above, then their difference e=x1¡x2
satisfies

et=e0+

Z
0

t

A1(ds; xs
1)¡

Z
0

t

A2(ds; xs
2)

=e0+

Z
0

t

A1(ds; xs
1)¡

Z
0

t

A1(ds; es+xs
1)+

Z
0

t

(A2¡A1)(ds; xs2)

=e0¡
Z
0

t

�x1A
1(ds; es) +

Z
0

t

�x1A
1(ds; 0)+

Z
0

t

(A2¡A1)(ds; xs2)

=e0+

Z
0

t

B(ds; es)+  t

where in the third line we applied Lemma 1.53 and we take

B(t; z)=¡�x1A1(t; z)+ �x1A1(t; 0);  �=

Z
0

�
(A2¡A1)(ds; xs2):

By the hypothesis, B 2Ct
LipV with B(t; 0) = 0 for all t2 [0; T ], while  2Ct�V . Therefore from

Theorem 1.20 applied to v we deduce the existence of a constant �1=�1(�; T ) such that

kx1¡x2k�6�1exp
¡
�1J�x1A1K1;�

1/��
(kx01¡x02kV + J K�):

On the other hand, estimates (1.6) and (1.25) imply that

J K�6�2 kA1¡A2k�;� (1+ kA2k�;�2 )

for some �2=�2(�; �; T ). Combining the above estimates, the conclusion follows. �

Remarkably, the hypothesis �xA2Ct�LipV allows not only to show that x is the unique solution
starting at x0, but also that any other solution will not get too close to it.

Lemma 1.55. Let A 2Ct�CV
� with �(1 + �)> 1, x; y 2Ct�V solutions respectively to the YDEs

associated to (x0; A), (y0; A) and assume that �xA2Ct�LipV. Then there exists C =C(�; T ) s.t.

C¡1exp
¡
¡Ck�xAk�;1

1/��6 inf
t2[0;T ]

kxt¡ ytkV
kx0¡ y0kV

6 sup
t2[0;T ]

kxt¡ ytkV
kx0¡ y0kV

6C exp
¡
Ck�xAk�;1

1/�� (1.55)
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Proof. The special case of an Hilbert space V was considered in [141], Lemma 5.7; here we give
an alternative, simpler proof, which covers general Banach V .

The first inequality is an immediate consequence of Theorem 1.54, so we only need to prove
the second one. For any fixed � 2 [0; T ], by applying the time reversal x~t= x�¡t, y~t= y�¡t (cf.
Lemma 1.30) and the first inequality, we then deduce that

kx0¡ y0kV = kx~� ¡ y~�kV6C�;� exp
¡
C�;�k�xAk�;1;[0;� ]

1/� �
kx~0¡ y~0kV

6C�;T exp
¡
C�;T k�xAk�;1

1/��kx� ¡ y�kV ;
where we used the fact that � 7!C�;� can be chosen in an increasing way. Taking the infimum over
� 2 [0; T ] readily yields the conclusion. �

Under the assumption of regularity of �xA, convergence of the Euler scheme to the unique
solution can be established, with the same rate 2�¡ 1 as in the more regular case of A2Ct�CV

1+�.
The following result is a direct analogue of Corollary 1.27.

Corollary 1.56. Let A 2 Ct�LipV with � > 1/2, x0 2 V and suppose there exists a solution x
associated to (x0; A) such that �xA2Ct�LipV (which is therefore the unique solution); denote by
xn the element of Ct�V constructed by the n-step Euler approximation from Theorem 1.13. Then
there exists C =C(�; T ) such that

kx¡xnk�6C exp
¡
Ck�xAk�;1

1/��(1+ kAk�;13 )n1¡2� as n!1:

Proof. As in the proof of Corollary 1.27, recall that xn satisfies the YDE

xn=x0+

Z
0

t

A(ds; xs
n)+  t

n; J nK�.�;T (1+ kAk�;13 )n1¡2�:

Therefore vn=xn¡x satisfies

vt
n=

Z
0

t

B(ds; vs
n)+ t

n; B(t; z)= �xA(t; z)¡ �xA(t; 0); JBK�;1= J�xAK�;1:

Applying Theorem 1.20 we obtain that, for suitable �=�(�; T ) it holds

kx¡xnk�6� exp
¡
�k�xAk�;1

1/�� J nK�
which combined with the above inequality for J nK� gives the conclusion. �

1.4.3 The case of continuous @tA
In this section we study how the wellposedness theory changes when, in addition to the regularity
condition A 2Ct�Ct

�, we impose @tA: [0; T ]� V ! V to exist continuous and uniformly bounded
(we assume boundedness for simplicity, but it could be replaced by a growth condition).

The key point is that, by Point 2. from Theorem 1.6, any solution to the YDE is also a solution
to the classical ODE associated to @tA; as such, it is Lipschitz continuous with constant k@tAk1.
We can exploit this additional time regularity, combined with nonlinear Young theory, to obtain
well-posedness under weaker conditions than those from Theorem 1.23, which are at the same time
not covered by the case of Lipschitz @tA.

While the existence of @tA is not a very meaningful requirement for classical YDEs, i.e. for
A(t; x) = f(x)yt, as it would imply that y 2Ct1, there are other situations in which it becomes a
natural assumption. One example is for perturbed ODEs x_ = b(x) +w_ , in which the associated A
is the averaged field

A(t; x)=

Z
0

t

bs(x+ws) ds

for which @tA exists continuous as soon as b is continuous field; this case will be studied more in
detail in Chapter 3.
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Theorem 1.57. Let A be such that A2Ct�CV
1+� and @tA2C0([0; T ]�V ;V ) with �+ � >1. Then

for any x02V there exists a unique global solution to the YDE associated to (x0; A).

Proof. Similarly to Theorem 1.23, the proof is by Banach fixed point theorem. For suitable values
of M; � > 0 to be fixed later, consider the space E := fx2Lip([0; � ];V ):x(0)=x0; JxKLip6M g; it
is a complete metric space with the metric d(x; y)= Jx¡ yK (the condition JxKLip6M is essential
for this to be true). Define the map I by

I(x)t=x0+
Z
0

t

@tA(s; xs)ds=x0+

Z
0

t

A(ds; xs);

observe that, under the condition k@tAk1 6M , I maps E into itself. By the hypothesis and
Corollary 1.10, for any x; y 2E it holds

kI(x)s;t¡I(y)s;tkV=
Z

s

t

vdu(xu¡ yu)

V

6kvs;t(xs¡ ys)kV +�1 JvK�Jx¡ yKLipjt¡ sj2�
6JvK�Jx¡ yK�(s�+�1jt¡ sj�)jt¡ sj�
6�2��kAk�;1+� (1+ JxKLip+ JyKLip)Jx¡ yK�jt¡ sj�

which implies

JI(x)¡I(y)K�6�2 ��kAk�;1+�(1+ 2M)Jx¡ yK�< Jx¡ yK�
as soon as we choose � small enough such that �2 ��kAk�;1+�(1 + 2M)< 1. Therefore I is a
contraction on E and for any x0 2 V there exists a unique associated solution x 2C([0; � ]; V ).
Global existence and uniqueness then follows from the usual iterative argument. �

We can also establish an analogue of Theorem 1.25 in this setting.

Theorem 1.58. Let M > 0 fixed. For i=1; 2, let Ai2Ct�CV
� such that @tAi2C0([0; T ]� V ; V ),

�+ � > 1 and kAik�;�+ k@tAik16M, as well as A12Ct�CV
1+� with kA1k�;1+�6M, and x0i 2V;

let xi be two given solutions associated respectively to (x0
i ; Ai). Then it holds

Jx1¡x2K�6C(kx01¡x02kV + kA1¡A2k�;�)

for a constant C =C(�; �; T ;M) increasing in the last variable. A more explicit formula for C is
given by ( 1.56).

Proof. The proof is analogous to that of Theorem 1.25, so we will mostly sketch it; it is based on
an application of Corollary 1.10 and Theorem 1.20.

Given two solutions as above, their difference e=x1¡x2 satisfies the affine YDE

et= e0+

Z
0

t

vds es+  t

with

vt=

Z
0

tZ
0

1

DA1(ds; xs
2+�es)d�;  t=

Z
0

t

(A1¡A2)(ds; xs2):

We have the estimates

kvk�;1 .�;�;T kA1k�;1+�(1+ Jx1KLip+ Jx2KLip). kA1k�;1+�(1+ k@tA1k1+ k@tA2k1);
k tk� .�;�;T kA1¡A2k�;�(1+ Jx2KLip). kA1¡A2k�;�(1+ k@tA2k1);

combined with Theorem 1.20, they yield

kek�6�1 e�1(1+kA
1k�;1+�2 )(1+k@tA1k12 +k@tA2k12 )(ke0kV + kA1¡A2k�;�(1+ k@tA2k1))

6�2 e�2(1+kA
1k�;1+�2 )(1+k@tA1k12 +k@tA2k12 )(ke0kV + kA1¡A2k�;�)

for some �2=�2(�; �; T ). In particular, C can be taken of the form

C(�; �; T ;M) =�3(�; �; T ) exp(�3(�; �; T )(1+M4)): (1.56) �
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Corollary 1.59. Given A as in Theorem 1.57, denote by xn the element of Ct�V constructed by
the n-step Euler approximation from Theorem 1.13 and by x the solution associated to (x0; A).
Then there exists a constant C =C(�; �; T ; kAk�;1+� ; k@tAk1) such that

kx¡xnk�6Cn¡� as n!1:

A more explicit formula for C is given by ( 1.57).

Proof. By Theorem 1.13, xn satisfies the YDE

xn=x0+

Z
0

t

A(ds; xs
n) +  t

n=x0+

Z
0

t

An(ds; xs
n)

where An(t; z):=A(t; z)+ t
n and that by estimate (1.23), for the choice �=T , �= =1, we have

J nK�.�;T kAk�;1JxnKLipn¡�. kAk�;1k@tAk1n¡�:

Defining en :=x¡xn, by the basic estimates kA¡Ank�;�.T J nK� and k@tAnk1.k@tAk1, going
through the same proof as in Theorem 1.58 we deduce that

kenk�6�1 exp(�2(1+ kAk�;12 )(1+ k@tAk12 )) kA¡Ank�;�

and so finally that, for a suitable constant �2=�2(�; T ), it holds

kenk�6�2 exp(�2(1+ kAk�;12 )(1+ k@tAk12 ))n¡�: (1.57) �

Finally, we can provide an analogue of Corollary 1.56 to this setting.

Corollary 1.60. Let A be such that A 2Ct�CV
� and @tA 2C0([0; T ]� V ; V ) with �(1 + �)> 1,

x02 V and suppose there exists a solution x associated to (x0; A) such that �xA2Ct�LipV (which
is therefore the unique solution); denote by xn the element of Ct�V constructed by the n-step Euler
approximation from Theorem 1.13. Then there exists C =C(�; T ) such that

kx¡xnk�6C exp
¡
Ck�xAk�;1

1/��kAk�;1k@tAk1n¡� as n!1:

Proof. As usual, xn satisfies the YDE

xn=x0+

Z
0

t

A(ds; xs
n)+  t

n; J nK�.�;T kAk�;1k@tAk1n¡�;

From here, the proof is mostly identical to that of Corollary 1.56. �

Remark 1.61. The results from Section 1.3 can be generalized to this setting as well. For instance
one can show that, under the assumptions of Theorem 1.58, there exist an associated flow of
diffeomorphisms �A and that the variational equation 1.37 still holds. Moreover, if A2Ct�CV

n+�

with @tA 2 C0([0; T ] � V ; V ) and � + � > 1, then �A is locally Cn (which is the analogue of
Theorem 1.35); again we refer to Theorem 4.33 from [145] for a proof. Finally, everything can be
further extended by only requiring local regularity: e.g. in order to have a locally Cn flow, it suffices
to know that @tA2C0([0; T ]�V ; V ) and A2Ct�CV ;loc

n+� ; in analogy with Corollary 1.36, one then
has a continuous driver-to-flow map A 7!�A from Ct

1CV
0 \Ct�CV ;loc

n+� to Ct0CV ;locn .

1.5 Bibliographical comments

As already mentioned, all the material presented here is taken from [141]. There are a few modifi-
cations: I1.2 have decided to omit some (not particularly interesting) proofs (e.g. Proposition 1.17,
Theorem 1.35) and slightly extended Section 1.4.1, with the new Corollary 1.48.

1.2. I have decided to drop the plurale maiestatis in these bibliographical, more colloquial, sections. This is in
order to emphasize that several of the statements appearing are not entirely of mathematical nature, but rather
reflect my personal opinion; the reader is of course free to disagree with them.
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I have also omitted Section 3.5 from [141], where two further variants of the ODEs considered
here were treated, namely mixed equations

dxt=F (t; xt)dt+A(dt; xt)

and fractional Young equations

(D0+
� x)t=A(dt; xt)

where D0+
� denotes the Riemann�Liouville fractional derivative of order � 2 (0; 1].

Young integrals first appeared in [277] and standard YDEs (i.e. for A(t; x) = f(x)yt) were
first studied by Lyons in [209]. Sharp results, including explicit counterexample to existence or
uniqueness, were given by Davie in [87], who also established convergence of numerical schemes
and provided growth criteria for absence of blow-up like those from Proposition 1.18.

In this sense, all the statements presented here are natural extensions of the standard case.
There is one (extremely sharp!) result which I didn't cover, again due to [87] and later revisited
in [134]: for A= f 
 y, uniqueness of solutions holds when f 2C1/� and y 2 C� (which would
correspond to the borderline case A2Ct�CV

1+� for �(1+�)=1). In this case however, the associated
flow needs not be Lipschitz nor differentiable (one should consider the analogy with standard ODE
theory, when passing from Lipschitz drifts to Log-Lipschitz ones).

In another direction, here I focused for simplicity only on time regularity measured in Ho�lder
scales; however Young integration theory has a natural formulation in the setting of paths of
bounded p-variation with the use of controls (again see the monography [134] and the review [199]).
Passing from Ho�lder continuity to p-variation can be often established rather simply by a time
reparametrization argument; but there are applications where the p-variation perspective can be
fundamental, see e.g. the discussion on �complementary Young regularity�, Section 11.1 from [132].
An extension of nonlinear Young integration with p-variation has been recently given in [10].

In connection to the above and Malliavin calculus, one could in fact in Example 1.40 consider
general  of bounded 1/2-variation, instead of just  2W 1;1. This fact is particularly important
in the case of SDEs driven by fractional Brownian motion, as it is known that the associated
Cameron-Martin space is made of elements of bounded 1/2-variation for any value of the Hurst
parameter H 2 (0; 1), see [137].

In relation to the a priori estimates like Proposition 1.18 and Theorem 1.20, let me mention the
existence of general Gronwall rough lemmas, see Lemma 3.2 from [175] and Lemma 2.12 from [94];
in the case of rough differential equations, finding sharp growth conditions to avoid finite time
blow-up of solutions is a topic of ongoing research, see Section 10.7 from [134], [87], [200] and [22]
for some results.

Like standard Young equations can be regarded as a particular case of rough differential
equations, nonlinear YDEs are a subclass of the rough flows developed by Bailleul in [20, 21];
alternatively, they can also be solved by means of the nonlinear sewing lemma developed in [45,
47, 46]. Still, there are many good reasons to develop a detailed theory for nonlinear YDEs,
as will become more clear by the applications presented in the next chapters; my impression
is that, deriving the same statements from these more general theories, often results in the need
for stronger assumptions (e.g. more regular coefficients). In a different direction, let me also men-
tion that nonlinear Young integrals are a subcase of the nonlinear paraproducts developed in [138].
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Chapter 2
Nonlinear Young PDEs
This chapter serves as a natural follow-up to Chapter 1. While therein we only focused at the
�particle� level, namely the trajectories xt satisfying suitable differential equations indexed on [0;T ],
here we pass to deal with maps indexed on [0; T ]�Rd which satisfy suitable PDE-type equations.
The common theme however is that the objects in consideration will not be differentiable in time,
even in a weak sense, making it necessary to employ Young integration techniques. We will only
consider two prototypical type of equations, given respectively by: i) linear first order PDEs, treated
in Section 2.1; ii) parabolic nonlinear equations, which are still however of semilinear type (thus
allowing for a mild formulation of the problem), cf. Section 2.2.

All the material given here is taken from Sections 6 and 7 from [141], with [145] also being a
precursor regarding Section 2.1. We will adopt the same notations and conventions as in Chapter 1.

2.1 Young transport equations
This section is devoted to the study of nonlinear Young transport equations of the form

udt+Adt � rut+ cdtut=0; (2.1)

which we will henceforth refer to as the YTE associated to (A; c). We realize the terminology can
be slightly misleading: equation (2.1) is linear in the unknown u and the term �nonlinear� rather
comes from the underlying nonlinear Young integral theory needed to solve it.

We restrict here to the case V =Rd; similarly to Section 1.4.1, we adopt the simpler notations
Ct
�Cx

� in place of Ct�CRd
� . Like in Section 1.3, for simplicity we assume some global bounds on the

driver A like A2Ct�Cx
1+�, but standard (a bit tedious) localisation arguments allow to relax them

to growth conditions and local regularity requirements.

Classical results on weak solutions to (2.1) in the case Adt= bt dt, cdt= c~t dt can be found
in [97], [4]. Our approach here mostly follows the one given in [145], although slightly less based
on the method of characteristics, and more on a duality approach. We refer to Section 2.3 for more
references in the literature.

Before explaining the meaning of (2.1), we need some preparations. Given any compactK�Rd,
we denote by CK

�=CK
�(Rd) the Banach space of f 2C�(Rd) with supp f �K and by Cc

�=Cc
�(Rd)

the set of all compactly supported �-Ho�lder continuous functions. Cc
� is a direct limit of Banach

spaces and thus it is locally convex; we denote its topological dual by (Cc
�)�. Given ; � 2 (0; 1),

we say that f 2Ct�Cc
� if there exists a compact K such that f 2Ct�CK

� ; similarly, a distribution
u2Ct

(Cc
�)� if u2Ct

(CK
�)� for all compact K �Rd. We will use the bracket h�; �i to denote both

the classical L2-pairing and the one between Cc
� and its dual. Finally, Mloc denotes the space of

Radon measures on Rd, MK the space of finite signed measure supported on K; observe that the
above notation is consistent with Mloc=(Cc

0)�.
We are now ready to give a notion of solution to the YTE.

Definition 2.1. Let �; � 2 (0; 1) such that �(1+ �)> 1.We say that u2Lt1Mloc\Ct
��(Cc

�)� is a
weak solution to the YTE associated to A2Ct�Cx

�, c2Ct�Cx
� with divA2Ct�Cx

� if

hut; 'i ¡ hu0; 'i=
Z
0

t

hAds � r'+(divAds¡ cds)'; usi 8'2Cc1; t2 [0; T ] (2.2)
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Observe that under the above assumptions, for any ' 2Cc1, A � r' and (divA¡c)' belong
to Ct�Cc

�; since u2Ct
��(Cc

�)� with �(1+ �)> 1, the integral appearing in (2.2) is meaningful as a
functional Young integral.2.1

Remark 2.2. For practical purposes, it is useful to consider the following equivalent characteri-
zation of solutions: under the above regularity assumptions, u is a solution if and only if for any
compact K �Rd and '2CK1 it holds

jhus;t; 'i¡ hAs;t � r'+(divAs;t¡ cs;t)'; usij .K k'kCK1+� jt¡ sj
�(1+�)JuKCt��(CK�)��

�(kAk�;�+ kdivA¡ ck�;�): (2.3)

Indeed, (2.2) implies (2.3) by definition; conversely, if (2.3) holds, then necessarily t 7!hut; 'i must
coincide with the sewing of ¡s;t= hAs;t � r'+(divAs;t¡ cs;t)'; usi, recovering (2.2).

Clearly, in the l.h.s. of (2.3) one can replace us with ut to get a similar estimate.

Remark 2.3. The presence of c in (2.1) also allows to consider nonlinear Young continuity
equations (YCE for short) of the form

vdt+r � (Adt vt)+ cdt vt=0;

weak solutions to the above equation must be understood as weak solutions to the YTE associated
to (A; c~) with c~= c+r�A.

Let us quickly recall some results from Section 1.3: given A2Ct�Cx
1+�, �(1+ �)> 1, the YDE

admits a flow of diffeomorphisms �s!t(x) and there exists C =C(�; �; T ; kAk�;1+�) such that

k�s!�(x)¡�s!�(y)k�;s;T 6 C jx¡ y j
j�s!t(x)¡xj 6 C jt¡ sj�

J�s!�(x)K�;s;T + jDx�s!t(x)j 6 C

for all x; y 2Rd, (s; t)2�2, together with similar estimates for �� t. Moreover

detDx�s!t(x)= exp
�Z

s

t

divA(dr;�s!r(x))
�

and similarly

detDx�s t(x)= (detDx�s!t(�s t(x)))
¡1= exp

�
¡
Z
s

t

divA(dr;�r t(x))
�
:

Proposition 2.4. Let A2Ct�Cx
1+�, c2Ct�Cx

�. Then for any �02Mloc, a solution to the YTE is
given by the formula

hut; 'i=
Z
'(�0!t(x)) exp

�Z
0

t

(divA¡ c)(ds;�0!s(x))
�
�0(dx) 8'2Cc1: (2.4)

If �0(dx) =u0(x)dx for u02Lloc
p , then ut corresponds to the measurable function

u(t; x)=u0(�0 t(x)) exp
�
¡
Z
0

t

c(ds;�s t(x))

�
(2.5)

which belongs to Lt1Lloc
p and satisfiesZ

K

ju(t; x)jpdx=
Z
�0 t(K)

ju0(x)jp exp
�Z

0

t

(divA¡ c)(ds;�0!s(x))
�
:

If in addition c2Ct�Cx
1+�, then for any u02Cloc

1 it holds u2Ct�Cloc
0 \Ct0Cloc

1 .

Proof. Since j�0!t(x) ¡ xj . T�, it is always possible to find R > 0 big enough such that
supp '(�0!t(�))� supp '+BR for all t2 [0; T ]; by estimates (1.6) and (1.25), it holds

sup
(t;x)2[0;T ]�Rd

��������Z
0

t

(divA¡ c)(ds;�0!s(x))
��������. kdivA¡ ck�;� sup

x2Rd
(1+ J�0!�(x)K�)<1:

2.1. What we mean here is that, given f 2Ct
E and g 2Ct

�E� with  + � > 1, one can define the Young-type
integral

R
0

thgs; dfsi, for instance as the sewing of ¡s;t := hgs; fs;ti.

52 Nonlinear Young PDEs



It is therefore clear that ut defined as in (2.4) belongs to Lt
1(Cc

0)�. Similarly, combining the
estimates

j'(�0!t(x))¡ '(�0!s(x))j6jt¡ sj��J'K�J�0!�(x)K��. jt¡ sj��J'K���������Z
s

t

(divA¡ c)(ds;�0!s(x))
��������.jt¡ sj� kdivA¡ ck�;�(1+ J�0!�(x)K�). jt¡ sj�;

it is easy to check that u2Ct
��(Cc

�)�.
Let us show that it is a solution to the YTE in the sense of Definition 2.1. Given '2CK1 and

x2Rd, define

zt(x) := '(�0!t(x)) exp
�Z

0

t

(divA¡ c)(ds;�0!s(x))
�
:

By the Itô-type formula for Young integrals (cf. Proposition 1.11), z satisfies

zs;t(x) =

Z
s

t

'(�0!r(x))exp
�Z

0

r

(divA¡ c)(ds;�0!s(x))
�
(divA¡ c)(dr;�0!r(x))

+

Z
s

t

exp
�Z

0

r

(divA¡ c)(ds;�0!s(x))
�
r'(�0!r(x)) �A(dr;�0!r(x)):

By the properties of Young integrals and the previous estimates, which are uniform in x, it holds

zs;t(x) � exp
�Z

0

s

(divA¡ c)(dr;�0!r(x))
�
�

�['(�0!s(x))(divA¡ c)s;t(�0!s(x)) +r'(�0!s(x)) �As;t(�0!s(x))]

in the sense that the two quantities differ by O(jt¡ sj�(1+�)), uniformly in x2Rd. Therefore

hus;t; 'i=
Z
K+BR

zs;t(x)�0(dx)

�
Z
K+BR

[As;t � r'+(divA¡ c)s;t'](�0!t(x)) exp
�Z

0

s

(divA¡ c)(dr;�0!r(x))
�
�0(dx)

�hus; As;t � r'+(divA¡ c)s;t'i

where the two quantities differ by O(k'kCK1+� jt¡ sj
�(1+�)). By Remark 2.2 we deduce that u is

indeed a solution.
The statements for u02Lloc

p are an easy application of formula (1.39); it remains to prove the
claims for u02Cloc

1 , under the additional assumption c2Ct�Cx
1+�. First of all observe that, for any

(s; t)2�2, by the aforementioned estimates for �� s, it holds

k�� t(x)¡�� s(x)k�= k�� s(�s t(x))¡�� s(x)k�. j�s t(x)¡xj. jt¡ sj�; (2.6)

as a consequence, the map (t; x) 7! u0(�0 t(x)) belongs to Ct�Cloc
0 . Consider now the map

g(t; x) :=

Z
0

t

c(dr;�r t(x)):

It holdsZ
0

t

c(dr;�r t(x))¡
Z
0

s

c(dr;�r s(x))=

Z
s

t

c(dr;�r t(x))+

Z
0

s

[c(dr;�r t(x))¡ c(dr;�r s(x))];

by Corollary 1.10 and estimate (2.6), we haveZ
0

�
[c(dr;�r t(x))¡ c(dr;�r s(x))]


�

. kck�;1+�(1+ J�� t(x)K�+ J�� s(x)K�)�

�k�� t(x)¡�� s(x)k�
. jt¡ sj�:

As a consequence, g 2Ct�Cloc
0 and so does u. The verification that u2Ct0Cloc

1 is similar and thus
omitted. �
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Remark 2.5. Analogous computations show that a solution to the YTE with terminal condition
u(T ; �)= �T(�) is given by

hut; 'i=
Z
'(�t T(x)) exp

�Z
t

T

(c¡divA)(ds;�s T(x))
�
�T(dx) 8'2Cc1:

In the case �T(dx)=uT(x)dx with uT 2Lloc
p , it corresponds to

ut(x) =uT(�t!T(x)) exp
�Z

t

T

c(ds;�t!s(x))

�
:

This solution satisfies the same space-time regularity as in Proposition 2.4. Moreover by the
properties of the flow, if �0 (resp. �T) has compact support, then it's possible to find K �Rd

compact such that supp ut�K uniformly in t 2 [0; T ]. In particular, if c 2Ct�Cx
1+� and u02Cc1

(resp. uT 2Cc1), then the associated solution belongs to Ct�Cc0\Ct0Cc1.

The next result is at the heart of the duality approach and our main tool to establish uniqueness.

Proposition 2.6. Let u2Ct�Cc0\Ct0Cc1 be a solution of the YTE

udt+Adt � rut+ cdtut=0 (2.7)

and let v 2Lt1(Cc0)�\Ct
��(Cc

�)� be a solution to the YCE

vdt+r � (Adt vt)¡ cdt vt=0: (2.8)

Then it holds hvt; uti= hvs; usi for all (s; t)2�2. A similar statement holds for u2Ct�Cloc
0 \Ct0Cloc

1

and v as above and compactly supported uniformly in time.

The proof requires some preparations. Let f�"g">0 be a family of standard spatial mollifiers (say
�1 supported on B1 for simplicity) and define R", for sufficiently regular g and h, as the following
bilinear operator:

R"(g; h) = (g � rh)"¡ g � rh"= �" � (g � rh)¡ g � r(�" �h); (2.9)

the following commutator lemma is a slight variation on Lemma 5.11 from [145], which in turn is
inspired by the general technique first introduced in the pioneering work [97].

Lemma 2.7. The operator R":Cloc
1+��Cloc

1 !Cloc
� defined by ( 2.9) satisfies the following.

i. There exists a constant C independent of " and R such that

kR"(g; h)k�;R6Ckgk1+�;R+1khk�;R+1:

ii. For any fixed g 2Cloc
1+� ; h2Cloc

� it holds R"(g; h)! 0 in Cloc
� 0 as "! 0, for any � 0< �.

Proof. It holds

R"(g; h)(x) =

Z
B1

h(x¡ "z) g(x¡ "z)¡ g(x)
"

� r�(z) dz¡ (h div g)"(x)

:=R~"(g; h)(x)¡ (h div g)"(x):

Thus claim i. follows from k(h div g)"k�;R6 khk1;R+1kgk1+�;R+1 and

jR~"(g; h)(x)¡R~"(g; h)(y)j 6
��������Z
B1

[h(x¡ "z)¡h(y¡ "z)] g(x¡ "z)¡ g(x)
"

� r�(z)dz
��������

+

��������Z
B1

h(x¡ "z)
�
g(x¡ "z)¡ g(x)

"
¡ g(y¡ "z)¡ g(y)

"

�
� r�(z)dz

��������
6 jx¡ y j�khk�;R+1kgk1;R+1kr�kL1

+khk0;R+1
Z
B1

��������Z
0

1

[rg(x¡ "�z)¡rg(y¡ "�z)]
��������jz jjr�(z)j dz

. jx¡ y j�khk�;R+1kgk1+�;R+1
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where the estimate is uniform in x; y 2BR and in "> 0. Claim ii. follows from the above uniform
estimate, the fact thatR"(g;h)!0 in Cloc

0 (cf. Lemma 5.11 from [145]) and a standard interpolation
argument. �

Remark 2.8. It is difficult to stress enough the tremendous importance that commutator esti-
mates have in modern PDE theory. In order to explain why Lemma 2.7 is so important and
nontrivial, let us point out the following fact: as "! 0, we know that (g � rh)" (resp. g � rh")
converges to g �rh, which is only known to belong to Cloc

0 since h2Cloc
1 , therefore we cannot expect

the family f(g � rh)"g">0 to be bounded in Cloc
� . The commutator lemma is telling us that, if

don't deal with the terms (g �rh)" and g �rh" separately, but rather take their difference, we can
transfer the higher regularity of g (in some kind of integration by parts fashion) to boundedness
of the family fR"(g; h)g in the better space Cloc

� .

Proof. (of Proposition 2.6) We only treat the case u2Ct�Cc0\Ct0Cc1, v 2Lt1(Cc0)�\Ct
��(Cc

�)�,
the other one being similar. Applying a mollifier �" on both sides of (2.7), it holds

udt
" +Adt � rut"+(cdtut)"+R"(Adt; ut)= 0

where we used the definition of R"; by Remark 2.2, the above expression can be equivalently
interpreted as

kus;t" +As;t � rus"+(cs;tus)
"+R"(As;t; us)kC0." jt¡ sj�(1+�) uniformly in (s; t)2�2:

Since v is a weak solution to (2.8), it holds

hut"; vti ¡ hus"; vsi=hus;t" ; vsi+ hut"; vs;ti
�" ¡hAs;t � rut"+(cs;tut)

"+R"(As;t; ut); vsi+ hAs;t � rut"+ cs;tut"; vsi
�hcs;tut"¡ (cs;tut)"¡R"(As;t; ut); vsi

where by a�" b we mean that ja¡ bj." jt¡ sj�(1+�). As a consequence, defining ft" := hut"; vti, we
deduce by the sewing lemma that ft"¡ f0"=J (¡s;t" ) for the choice

¡s;t
" := hcs;tut"¡ (cs;tut)"¡R"(As;t; ut); vsi:

Our aim is to show that J (¡s;t" )! 0 as "! 0; to this end, we start estimating k¡"k�;�(1+�).
It holds

�¡s;r;t
" = hcs;rur;t" ; vsi ¡ hcr;tut"; vs;ri

+hcr;tus;r; vt"i¡ hcs;rus; vr;t" i
+hR"(Ar;t; ut); vs;ri ¡ hR"(As;r; ur;t); vsi:

Therefore, up to choosing a suitable compact K �Rd, we have the estimates

j¡s;t" j6(kcs;tut"kCK0 + k(cs;tut
")kCK0 + kR

"(As;t; ut)kCK0 )kvsk(CK0 )�
.jt¡ sj�(kck�;�+ kAk�;1)kukCt0Cc0kvsk(CK0 )�

as well as

j�¡s;r;t" j 6 kcs;rur;t" kCK0 kvsk(CK0 )�+ kcr;tut
"kCK� kvs;rk(CK�)�

+kcr;tus;rkCK0 kvt
"k(CK0 )�+ kcs;ruskCK� kvr;t

" k(CK�)�
+kR"k kAr;tk1+� kutkCK1 kvs;rk(CK� )�+ kR

"k kAs;rk1+� kur;tkCK0 kvsk(CK0 )�
. jt¡ sj�(1+�)(kck�;�+ kR"kkAk�;1+�)�
�(kukCt0CK1 kvkCt��(CK�)�+ kukCt�CK0 kvkLt1(CK0 )�):

Overall we deduce that k¡"k� and k�¡"k�(1+�) are bounded uniformly in " > 0; moreover by
properties of convolutions and Lemma 2.7, it holds ¡s;t" ! 0 as "! 0 for any (s; t)2�2 fixed. By
Lemma 1.1 it holds

jfs;t" ¡¡s;t" j. jt¡ sj�(1+�)
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uniformly in "> 0, so passing to the limit as "! 0 we deduce that

jhut; vti ¡ hus; vsij. jt¡ sj�(1+�) 8(s; t)2�2:

This immediately implies that t 7! hut; vti is constant and thus the conclusion. �

We are now ready to establish uniqueness of solutions to the YTE and YCE under suitable
regularity conditions on (A; c).

Theorem 2.9. Let A2Ct�Cx
1+�, c2Ct�Cx

1+� with �(1+ �)>1. Then for any u02Cloc
1 there exists

a unique solution to the YTE (2.7) with initial condition u0 in the class Ct�Cloc
0 \Ct0Cloc

1 , which is
given by formula ( 2.5); similarly, for any �02Mloc there exists a unique solution to the YCE (2.8)
with initial condition �0 in the class Lt1(Cc0)�\Ct

��(Cc
�)�, which is given by formula ( 2.4).

Proof. Existence follows from Proposition 2.4, so we only need to establish uniqueness. By linearity
of YTE, it suffices to show that the only solution u to (2.7) in the class Ct�Cloc

0 \ Ct0Cloc
1 with

u0� 0 is given by u� 0. Let u be such a solution and fix � 2 [0; T ]; since (div A ¡ c) 2Ct�Cx
�,

by Proposition 2.4 and Remark 2.5, for any compactly supported � 2M there exists a solution
v 2Lt1MK \Ct

��(Cc
�)� to (2.8) with terminal condition v� = �, up to taking a suitable compact

set K. By Proposition 2.6 it follows that

hu� ; �i= hu� ; v� i= hu0; v0i=0;

as the reasoning holds for any compactly supported �2M, u�� 0 and thus u� 0.
Uniqueness of solutions to YCE (2.8) in the class Lt1(Cc0)�\Ct

��(Cc
�)� follows similarly. �

2.2 Parabolic Young PDEs

We present in this section a generalization to the nonlinear Young setting of some of the results
contained in [161]. Specifically, we are interested in studying a parabolic nonlinear evolutionary
problem of the form

dxt=¡Axtdt+B(dt; xt) (2.10)

where ¡A is the generator of an analytical semigroup.

In order not to create confusion, in this section the nonlinear Young term will be always denoted
by B. As we will use a one-parameter family of spaces fV�g�2R, the regularity of B will be denoted
by B2Ct

CW;U
� , withW and U being taken from that family; whenever it doesn't create confusion,

we will still denote the associated norm by kBk;�.

Let us first recall the functional setting from [161], Section 2.1. It is based on the theory of
analytical semigroups and infinitesimal generators, see [234] for a general reference, but the reader
not acquainted with the topic may think for simplicity of A= I¡�, V =L2(Rd) and V�=H2�(Rd)
fractional Sobolev spaces.

Let (V ; k�kV ) be a separable Banach space, (A;Dom(A)) be an unbounded linear operator on
V , rg(A) be its range; suppose its resolvent set is contained in �= fz 2C: jarg(z)j>�/2¡ �g[U
for some � >0 and some neighbourhood U of 0. Further assume that there exist positive constants
C; � such that its resolvent R� satisfies

kR�kL(V )6C(�+ j�j)¡1 8�2�:

Under these assumptions, ¡A is the infinitesimal generator of an analytical semigroup (S(t))t>0
and there exist positive constants M;� such that

kS(t)kL(V )6Me¡�t 8t> 0:
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Moreover, ¡A is one-to-one from Dom(A) to V and the fractional powers (A�;Dom(A�)) of A
can be defined for any �2R; if �<0, then Dom(A�)=V and A� is a bounded operator, while for
�> 0 (A�;Dom(A�)) is a closed operator with Dom(A�)= rg(A¡�) and A�=(A¡�)¡1.

For �> 0, let V� be the space Dom(A�) with norm kxkV�= kA�xkV ; for �=0 it holds A0= Id
and V0= V . For �< 0, let V� be the completion of V w.r.t. the norm kxkV�= kA�xkV , which is
thus a bigger space than V . The one-parameter family of spaces fV�g�2R defined in this way is
such that V� embeds continuously in V� whenever �>� and A�A�=A�+� on the common domain
of definition; moreover A¡� maps V� onto V�+� for all �2R and �> 0.

The operator S(t) can be extended to V� for all �<0 and t>0 and maps V� to V� for all �2R,
�> 0, t> 0; finally, it satisfies the following properties:

kA�S(t)kL(V )6M� t
¡� e¡�t for all �> 0, t > 0; (2.11)

kS(t)x¡xkV 6C� t�kA�xkV for all x2V�, �2 (0; 1]: (2.12)

Remark 2.10. It follows from the statements above and the semigroup property of S(t) that for
any �2R, � 2 (0; 1], �> 0 and any s6 t it holds

kS(t)x¡S(s)xkV�=k[S(t¡ s)¡ I]S(s)xkV�
.�;� jt¡ sj�kS(s)xkV�+�.�;�;� jt¡ sj�jsj¡�kxkV�+�¡�:

In particular, for �=0 we find kS(t)¡S(s)kL(V�+�;V�). jt¡sj�, equivalently S(�)2Ct�L(V�+�; V�).
It also follows that for any given x02V�+�, the map t 7!S(t)x0 belongs to Ct�V� with

JS(�)x0K�;V�.�;� kx0kV�+�: (2.13)

Before dealing with (2.10), it makes sense to consider the linear equation

dxt=¡Axtdt+dyt;

whose solution is formally given by the mild formulation

xt=S(t)x0+

Z
0

t

S(t¡ s)dys;

which is actually rigorous for y 2Ct1V¡�. The next result, which is taken from [161], states that
the solution map can be extended by continuity to suitable non differentiable functions y 2Ct0V .

Theorem 2.11. Let �2R and consider the map � defined for any y 2Ct1V¡� by

�(y)t=

Z
0

t

S(t¡ s)y_sds:

Then for any  >�, � extends uniquely to a map �2L(Ct
V¡�;Ct

�V�) for all �2 (0;  ¡�) and all
�2 (0;  ¡�¡ �). Moreover there exists a constant C =C(�; �; �; ) such that

J�(y)K�;V�6C JyK;V¡�; sup
t2[0;T ]

k�(y)tkV�6CT ¡�¡�JyK;V¡�: (2.14)

Proof. (Sketch) For the full proof, we refer to Theorem 1 from [161]. Here we will only show
one of the main steps, namely the estimate for supt2[0;T ] k�(y)tkV�; it is quite a nice proof, as it
presents the general �sewing procedure� which is also at the heart of Lemma 1.1. By time rescaling,
we can assume wlog T =1 and simplify the problem by only estimating k�(y)1kV�; we only need
to consider y 2Ct1V¡�, as the general case follows by a standard density argument.

For fixed n2N, consider the dyadic points tkn= k2¡n and define �n(y)1=�n by

�n=
X
k=0

2n¡1

S(1¡ tkn) ytkn;tk+1n :
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It is cleat that �n is a Riemann-Stjeltes sum converging to �1 :=�(y)1=
R
0

1
S(1¡ s)y_s as n!1.

In order to obtain an estimate on �1 in V�, by telescopic sums it suffices to control

k�1¡�0kV�6
X
n=0

1

k�n+1¡�nkV�:

For any n2N, it holds

�n+1¡�n=
X
k=0

2n¡1 �
S(1¡ t2kn+1)yt2kn+1;t2k+2n+1 ¡S(1¡ t2kn+1)yt2k;2k+1n+1 ¡S(1¡ t2k+1n+1 )yt2k+1;2k+2n+1

�
=
X
k=0

2n¡1

[S(1¡ t2kn+1)¡S(1¡ t2k+1n+1 )] yt2k+1;2k+2n+1 :

In view of Remark 2.10, choosing � > 1¡�¡ �, we can then estimate the term as follows:

k�n+1¡�nkV�6
X
k

(1¡ t2k+1n+1 )¡(�+�+�)jt2kn+1¡ t2k+1n+1 j� kyt2k+1;2k+2n+1 kV¡�

.
X
k

�
1¡ k

2n

�¡(�+�+�)
2¡n(�+)JyK;V¡�

.2¡n(¡�¡�) JyK;V¡�
X
k=0

1

jk j¡(�+�+�). 2¡n(¡�¡�) JyK;V¡�:

Since  ¡�¡ � > 0 by assumption, we can conclude that

k�1kV�6k�0kV�+
X
n=0

1

k�n+1¡�nkV�

.kS(1)y0;1kV�+ JyK;V¡�
X
n

2¡n(¡�¡�). JyK;V¡�

which yields the conclusion. �

Definition 2.12. Given A as above and B2Ct
CV�;V�

� , �6�, we say that x2Ct�V� is a mild solution
to equation ( 2.10) with initial data x02 V� if  + ��> 1, so that

R
0

�
B(ds; xs) is well defined as a

nonlinear Young integral, and moreover x satisfies

xt=S(t)x0+

Z
0

t

S(t¡ s)B(ds; xs) =S(t)x0+�

�Z
0

�
B(ds; xs)

�
t

8t2 [0; T ] (2.15)

where � is the map defined by Theorem 2.11 and the equality holds in V� for suitable �.

We are now ready to prove the main result of this section.

Theorem 2.13. Assume A as above, B2Ct
CV�;V�

1+� with �>�¡1 and suppose there exists �2 (0;1)
such that �

+ ��> 1
�< + �¡ � : (2.16)

Then for any x02V�+� there exists a unique solution with initial data x0 to ( 2.10), in the sense
of Definition 2.12, in the class Ct�V�\Ct0V�+�.

Moreover, the solution depends in a Lipschitz way on (x0; B), in the following sense: for any
R> 0 exists a constant C = C(�; ; �; �; �; T ; R) such that for any (x0

i ; Bi), i= 1; 2, satisfying
kx0ikV�+�_kBik;1+�6R, denoting by xi the associated solutions, it holds

Jx1¡x2K�;V�6C(kx01¡x02kV�+�+ kB1¡B2k;1+�):

Remark 2.14. If B 2Ct
CV�;V�

2 , then it is possible to find � satisfying (2.16) if and only if

2+ �¡ � > 1;

in the case �=� we recover the usual condition  >1/2. Instead the regime �<�¡1 would enforce
the requirement  > 1, making the statement vacuous.
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Proof. The basic idea is to apply a Banach fixed point argument to the map

x 7! I(x)t: =S(t)x0+�
�Z

0

�
B(ds; xs)

�
t

(2.17)

defined on a suitable domain.
By Remark 2.10, if x02V�+�, then S(�)x02Ct�V�; moreover B2Ct

CV�;V�
1 , so under the condition

+�>1 the nonlinear Young integral in (2.17) is well defined for x2Ct�V�, yt=
R
0

t
B(ds;xs)2Ct

V�
and then �(y)2Ct�V� under the condition �< + �¡ �. So under our assumptions I maps Ct�V�
into itself; our first aim is to find a closed bounded subset which is invariant under I.

For suitable � ;M to be chosen later, consider the set

E: =
�
x2C�([0; � ];V�) :x(0)=x0; JxK�;V�6M; sup

t2[0;� ]
kxtkV�+�6M

�
;

E is a complete metric space endowed with the distance dE(x1; x2)= Jx1¡x2K�;V�. It holds

JI(x)K�;V�6JS(�)x0K�;V�+
s
�

�Z
0

�
B(ds; xs)

�{
�;V�

. kx0kV�+�+
sZ

0

�
B(ds; xs)

{

;V�

;

for the nonlinear Young integral we have the estimateZ
s

t

B(dr; xr)


V�

.kBs;t(xs)kV�+ jt¡ sj+�JBK;1JxK�;V�

.kBs;t(xs)¡Bs;t(x0)kV�+ jt¡ sjkBk;0+ jt¡ sj ��JBK;1JxK�

.jt¡ sjkBk;1(1+ ��JxK�;V�)

and so sZ
0

�
B(dr; xr)

{

;V�

. kBk;1(1+ ��JxK�;V�):

Overall, we can find a constant �1 such that

JI(x)K�;V�6�1kx0kV�+�+�1kBk;1(1+ �� JxK�;V�):

Similar computations, together with estimate (2.14), show the existence of �2 such that

sup
t2[0;� ]

kI(x)tkV�+�6�2kx0kV�+�+�2kBk;1� ¡�+�(1+ ��JxK�;V�):

Therefore taking � 6 1, �3=�1_�2, in order for I to map E into itself it suffices

�3kx0kV�+�+�3kBk;1(1+ ��M)6M;

which is always possible, for instance by requiring

2�3kBk;1��6 1; 2�3kx0kV�+�+2�3kBk;16M:

Observe that � can be chosen independently of kx0kV�+�; moreover for the same choice of � ,
analogous computations show that any solution x to (2.10) defined on [0; �~] with �~6 � satisfies
the a priori estimate

JxK�;V�;0;�~+ sup
t2[0;�~]

kxtkV�+�6�4 (kx0kV�+�+ kBk;1) (2.18)

for another constant �4, independent of x0.
We now want to find �~2 [0; � ] such that I is a contraction on E~, E~ being defined as E in terms

of �~;M . Given x1; x22E~, it holds

dE(I(x1); I(x2))=
s
�

�Z
0

�
B(ds; xs

1)¡
Z
0

�
B(ds; xs

2)

�{
�;V�

.
s�Z

0

�
B(ds; xs

1)¡
Z
0

�
B(ds; xs

2)

�{
;V�
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and under the assumptions we can apply Corollary 1.10, so we haveZ
s

t

B(dr; xr
1)¡

Z
s

t

B(dr; xr
2)


V�

=

Z
s

t

vdr(xr
1¡xr2)


V�

.jt¡ sjJvK;Lkxs1¡xs2kV�+ jt¡ sj+�JvK;LJx1¡x2K�;V�

.jt¡ sjkBk;1+�(1+M)�~�Jx1¡x2K�;V�:
This implies sZ

0

�
B(dr; xr

1)¡B(dr; xr2)
{

;V�

. kBk;1+�(1+M)�~�Jx1¡x2K�;V�

and so overall, for a suitable constant �5,

dE(I(x1); I(x2))6�5kBk;1+�(1+M)�~� dE(x
1; x2):

Choosing �~ small enough such that �5kBk;1+�(1 +M)�~� < 1, we deduce that there exists a
unique solution to (2.10) defined on [0; �~]. Since we have the uniform estimate (2.18), we can
iterate the contraction argument to construct a unique solution on [0; � ]; but since the choice of �
does not depend on x0 and x� 2V�+�, we can iterate further to cover the whole interval [0; T ] with
subintervals of size � .

To check the Lipschitz dependence on (x0; B), one can reason using Theorem 1.25 as usual,
but let us give an alternative proof; we only check Lipschitz dependence on B, as the proof for x0
is similar.

Given Bi, i= 1; 2 as above, denote by IBi the map associated to Bi defined as in (2.17); we
can choose �~ and M such that they are both strict contractions of constant �6< 1 on E defined
as before. Observe that for any z 2E it holds

dE(IB1(z); IB2(z)) =
s
�

�Z
0

�
B1(ds; zs)¡

Z
0

�
B2(ds; zs)

�{
�;V�

.
sZ

0

�
B1(ds; zs)¡

Z
0

�
B2(ds; zs)

{

;V�

.(1+M)kB1¡B2k;�:

Denote by xi the unique solutions on E associated to Bi, then by the above computation we get

Jx1¡x2K�;V�=dE(IB1(x1); IB2(x2))
6dE(IB1(x1); IB1(x2))+ dE(IB1(x2); IB2(x2))
6�6 Jx1¡x2K�;V�+�7(1+M)kB1¡B2k;�

which implies that
Jx1¡x2K�;V�6

�7
1¡�6

(1+M)kB1¡B2k;�

which shows Lipschitz dependence on Bi on the interval [0; �~]. As before, a combination of a priori
estimates and iterative arguments allows to extend the local estimate to a global one. �

By the usual localization and blow-up alternative arguments, we obtain the following result.

Corollary 2.15. Assume A as in Theorem 2.13, B 2Ct
CV�;V�;loc

1+� with �>�¡1 and suppose there
exists �2 (0; 1) satisfying ( 2.16). Then for any x02V�+� there exists a unique maximal solution
x starting from x0, defined on an interval [0; T �)� [0; T ], such that either T �=T or

lim
t"T�

kxtkV�+�=+1:

Remark 2.16. For simplicity we have only treated here uniqueness results, but if the embedding
V� ,! V� for � > � is compact (as is often the case, at least on bounded domains) one can use
compactness arguments to deduce existence of solutions under weaker regularity conditions on B,
in analogy with Theorem 1.13. Once can also consider equations of the form

dxt=¡Axtdt+F (xt)dt+B(dt; xt);
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in which case uniqueness can be achieved under the same conditions on B as above and a Lipschitz
condition on F , see also Remark 1 from [161].

2.3 Bibliographical comments

As already mentioned, all the material presented here is taken from [141], with [145] as a precursor
for Section 2.1.

In the style of Section 1.4.3, one could have treated the special case of continuous @tA, obtaining
an exact analogue of Theorem 2.9 (now under the assumption that @tA; @tc are continuous and
bounded and A; c2Ct�Cx

1+� with �+ � >1). The proof in this case is much simpler, as it doesn't
require the use of commutator lemmas, see Section 5.1 from [145].

Transport equations of the form @tu+ b � ru= 0 can be solved classically by the method of
characteristics, whenever the coefficients are sufficiently smooth (e.g. b Lipschitz). There are now
much more advanced theories, dealing with only weakly differentiable coefficients, giving rise to
the concepts of renormalized solutions and generalized Lagrangian flows, see [97, 4].

Quite surprising, I haven't found in the literature any systematic study of transport equations
in the standard Young setting (i.e. with b �ru replaced by b �rudyt for some y2C�), even in the
regularity regime where the existence of a flow associated to the YDE is granted. There are some
recent works, all coming from the nonlinear Young setting, see [56], [176] and Chapter 9 from [218].
However [56] and [218] only deal with the (much simpler) case of continuous @tA, while the validity
of the results from [176] (which claim an analogue of Theorem 2.9, see Section 3.4 therein) is quite
debatable, see Remark 5.10 from [145]. In particular, the authors in [176] try to go through the
standard proof based on characteristic functions, but the validity of the chain rule breaks down
due to insufficient space-time regularity of the inverse flow t 7!�0 t(�) (such regularity is restored
under the stronger, non-optimal assumption A2Ct�Cx

2+�). It is interesting to observe how in the
Young setting, even when the flow is known to exist (which immediately suggest the validity of
the classical solution formula ut= u0 ��0 t), a complete proof still requires a weak definition of
solution (cf. Definition 2.1) and the use of advanced tools like commutators (Lemma 2.7).

I have the impression that the case of Young transport equation has been overlooked since
many authors have immediately passed to the study of the more advanced rough path case, see
for instance [23, 96, 35], as well as [94] and the references therein for more general equations.
Nontheless, I find it extremely interesting to understand whether many concepts from the theory of
generalized Lagrangian flows, carry to the Young regime, in particular if one can only impose weak
differentiability assumptions on A; for instance one could investigate the validity of Ambrosio's
superposition principle ([4, 5]), the uniqueness of renormalized solutions [97], or try to develop a
quantitative approach in the style of [81]. The only formidable (but incomplete) attempt I know in
this direction is [23]; I believe that studying the simpler Young setting first would provide a better
insight to the problem.

Finally, let me mention Chapter 4 from [27] for the study of a nonlinear, Burgers type equation,
in the nonlinear Young framework.

Section 2.2 is an extension to the nonlinear Young setting of the work [161], which was first able
to solve classical parabolic Young equations. The general strategy in the proof of Theorem 2.11
has then lead to the development of so called �mild sewing lemma�, which has allowed to tackle
the rough path case as well, see [164] and subsequently [153] and Exercises 4.16-4.17 from [132].
Recently, this mild version has been incorporated in the stochastic sewing, see [202].

In a similar direction, �Volterra sewing lemmas� have been developed in [169]. The recent
work [58] incorporates such sewing in the study of the parabolic problem

@tu=�u+ b(u)+ g(u)�+!_ t;

after a suitable change of variable, this equation is �translated� to the nonlinear Young setting,
where the authors develop a solution theory comparable to the one given here, cf. Section 4
from [58].
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Chapter 3

Regularising ODEs by additive perturbations

We are now ready to harvest the fruits of our preparations from Chapters 1-2 to present a well
developed theory for perturbed ODEs of the form

xt=x0+

Z
0

t

bs(xs)ds+wt (3.1)

where w is a continuous path in Rd and b: [0; T ]�Rd!Rd is a time-dependent drift; to convey
the main ideas, in this introduction we will restrict to autonomous drifts bs(xs) = b(xs), although
the general case will be treated throughout the chapter.

Let us shortly recall the main well-known results for (3.1) when w� 0, which transfer easily to
the case of any given continuous w (for the proofs, we refer to [115] and the references therein):

� If b is globally Lipschitz, then existence and uniqueness of solutions to (3.1) holds for any
x02Rd; they form a Lipschitz flow of homeomorphisms. If b is more regular, say Cloc

n , the
same regularity transfers to the flow.

� If b is merely continuous and enjoys some linear growth conditions, existence of solutions
holds by Peano's theorem; however, for any � 2 [0; 1), one can find examples of �-Ho�lder
continuous drifts and x02Rd such that there are infinitely many solutions to (3.1).

� There are examples of measurable and bounded b for which there exist no solutions to (3.1).

� Finally, if b is not even a measurable function but only a distribution, it's not even clear
how to give meaning to (3.1), since we cannot pointwise evaluate b(xs) and so we cannot
define the integral in the Lebesgue sense.

The question we want to address is whether a well-chosen additive perturbation w can cure the
above pathologies; in particular, the endgoal is to identify some intrinsic properties of w (hopefully,
but not necessarily, of analytic type) which imply such a regularising effect. Further, we would like
these properties to be satisfied by a large class of paths, either in the sense of sampling w from
suitable stochastic processes, or by showing that they hold for generic functions. This program
is carried out here and in the upcoming Chapter 5 (based respectively on [145] and [143]), which
constitute the main body of this thesis.

The fundamental intuitions in order to tackle (3.1), which we are now going to illustrate, are
due to [57]; the material presented here can be regarded as a follow-up and refinement of that work.
Firstly, in order to expect something different for (3.1) compared to its counterpart with w�0, we
need the path to be sufficiently �active�, in some sense to be formalized rigorously; then, given the
structure of the pertubed ODE, we expect any solution to be of the form x= �+w, where formally
� should solve

�t=x0+

Z
0

t

b(�s+ws)ds: (3.2)
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In particular, if there is any way to make sense of the integral appearing in (3.2), then � should
be fairly regular in time and so x should be �as active as w�. Put in other terms, w and � should
represent respectively the fast and slow components of the system; any oscillation of w should
happen at a time scale where � is almost constant and the solution x should behave like w. If we
accept this philosophy to be true for the moment, then it should be possible to approximate the
integral in (3.2) by finite sums of the formZ

0

t

b(�r+wr)dr�
X
i

Z
ti

ti+1

b(�ti+wr)dr

over finer and finer partitions of [0; T ]. Defining the averaged field Twb as

Tt
wb(z)=Twb(t; z) :=

Z
0

t

b(z+wr)dr; Ts;t
w b(z)=Twb(t; z)¡Twb(s; z) :=

Z
s

t

b(z+wr)dr;

we can rewrite the previous sums asX
i

Z
ti

ti+1

b(�ti+ws)ds=
X
i

Tti;ti+1
w b(�ti):

But now the last term is an old friend of ours, namely the Riemann-Lebesgue sums used to
approximate nonlinear Young integrals

R
0

t
A(ds; �s) from Chapter 1 for A=Twb!

Although the above reasoning is very heuristical, it can be at least shown that such an identi-
fication is in fact rigorous whenever b is at least continuous, see Lemma 3.31; yet, we do not know
how to treat the case of distributional b. But we can now apply a standard principle from rough
path theory, which amounts to postulating the existence and space-time regularity of Twb! If for
instance we assume Twb2Ct

Cx
1 for some  >1/2, then we can rigorously construct, for any �2Ct

,
the nonlinear Young integral Z

0

t

Twb(ds; �s)

which now defines the object
R
0

t
b(�s+ws)ds even when the intepretation in the Lebesgue sense

breaks down. It then makes sense to look for solutions x into the restricted subset of continuous
paths of the form Dw=w+Ct

= fw+ � : �2Ct
g, which rigorously and quantitatively encodes the

idea that � should be regular (or slowly varying) compared to w.

All in all, by applying the abstract theory of nonlinear Young integration from Chapter 1, the
problem of existence and uniqueness of solutions to (3.1) entirely reduces to that of establishing
regularity of Twb, without any reference to the ODE problem; for instance, it would be enough to
verify that Twb2Ct

Cx
2. This now provides a rigorous mathematical way of measuring how �active�

or �oscillatory� the path w is (but it is not the only possible one! See Chapter 5 for a deeper
discussion of this point). Furthermore, the nonlinear Young interpretation allows to construct
an associated flow of solutions (which gets more and more regular as Twb does so) and treat the
transport equation as well.

In order to find interesting examples of paths regularising the equation, we will first sample w
as a typical realization of fractional Brownian motion (fBm) W of Hurst parameter H 2 (0; 1); we
refer the reader to Appendix A.1 for its definitions and main properties.

This choice is relevant for the following main reasons:

� WhenH=/ 1/2,W is not a semimartingale nor a Markov process; in particular, all standards
tools employed to analyse the associated SDE (Itô calculus, martingale problem, Zvonkin
transform, Dirichlet forms, etc.) completely break down. Regularisation by noise results for
SDEs driven by fBm are in general difficult to obtain and of interest on their own.

� Working with a specified stochastic process provides us with a specific structure, which we
can exploited in order to get as sharp results as possible. This is embodied by Theorem 3.30,
whose derivation relies heavily on the so called Girsanov transform.
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� By varying H 2 (0;1), we get a better picture of how the regularity of the pathW interplays
with its regularising effect on the ODE. In particular, we will be able to rigorously prove
the (both natural and counterintuitive) principle that �the rougher the noise, the better the
regularisation�, cf. Theorem 3.54.

Another extremely nice feature of working with fBm is that it will naturally enlarge our perspective
by allowing to derive genericity results in the sense of prevalence, as will be shown in Section 3.3.
For more details on its exact mathematical definition and main properties, we refer the reader to
Appendix A.3. Here let us only mention that it is a natural generalization of the �for Lebesgue a.e.
x 2Rd� property to the infinite dimensional setting (where the Lebesgue measure is ill-defined)
and that it allows for probabilistic tools in the proof (which is why we can obtain it starting from
our analysis of fBm trajectories). In particular, all our main results will transfer to statements
involving �almost every Ho�lder continuous function�, see Theorem 3.59.

Structure of the chapter. We start by introducing rigorously averaged fields Twb in Sec-
tion 3.1, first by defining them analytically for any given path w and then passing to study
their space-time regularity when w is a typical realization of fBm. We then apply these results,
together with probabilistic arguments based on Girsanov transform, to prove strong existence and
path-by-path uniqueness for SDEs in Section 3.2; results concerning the regularity of the flow of
solutions and wellposedness of the associated transport equation are given as well. In Section 3.3,
we extend all our considerations to the case of generic (in the sense of prevalence) continuous
additive perturbations. Finally, in Section 3.4 we provide some additional bibliographic references
and outline some open problems for future research.

Notations and conventions. We will keep adopting all the same notations from Chapter 1,
with the only major difference that we will use  as a parameter denoting time regularity in
nonlinear Young considerations, as � will be used instead to measure the regularity of the drift b
appearing in the SDE. This means for instance that we will use the notation Ct

Cx
�;�=Ct

CRd;Rd
�;�

to denote the weighted Ho�lder spaces already given in Definition 1.4.
We will use the notation Bps=Bp;ps =Bp;p

s (Rd;Rm) for Besov spaces (see Appendix A.2 for their
definition and main properties), Lx

p=Lp(Rd;Rm) for standard Lebesgue spaces, Hx
s=Wx

s;2=B2
s

for fractional Sobolev spaces, S=S(Rd;Rm) for the space of Schwarz functions and S 0 for its dual.
Finally, Mx=M(Rd;Rm) denotes the space of (vector-valued) finite Radon measures, endowed
with the total variation norm.

We will always work on a finite fixed time interval [0; T ]. Given a Banach space E, we will
denote by Lt

qE = Lq(0; T ;E) the space of all strongly measurable functions f : [0; T ]!E (up to
equivalence class) such that

kf kLqE
q :=

Z
0

T

kftkE
q dt <1;

when q=1, the above norm is replaced by the essential supremum as usual. We might use the
longer expression kf kLq(0;� ;E) to stress that the integral is taken over [0; � ]� [0; T ]. We denote by
P(E) the space of (tight) probability measures on E.

We will keep using as in Chapter 1 the notation Ct
E=C([0; T ];E) for the space of E-valued,

-Ho�lder continuous functions; similarly for Ct0E, endowed with the supremum norm. When E=
Rd, we will drop it for simplicity and just write w 2 Lt

q or w 2Ct
; in the latter case, we might

sometime use the notation JwK;[0;� ] for some � <T to denote the Ho�lder seminorm restricted to
t2 [0; � ].

The above conventions are adopted in particular for the choices of E outlined above, thus giving
rise to spaces like Lt

qBp
�, Ct0Mx, Ct

Cx
�;� and so on, with norms denoted by k�kLqBp�, k�kC0M, etc.

With a slight abuse of notation, we will also use expression like Lt
qF , where F is a Frechét space

with distance induced by a family of seminorms k�kn;F , to mean that
R
0

T kftkn;F
q <1 for all n. This

applies in particular to the choice F =S, so that we might write f 2Lt1S to mean that f 2Lt1Hx
s

for all s2R; similarly for the locally Ho�lder spaces Cloc
� =Cloc

� (Rn;Rm) as in Definition 1.4.
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Given a space-time dependent drift b: [0; T ]�Rd!Rm, we will use the shortcut notation
b(t; x)= bt(x). The standard heat kernel will be denoted by Pt, so that Ptf = pt� f , where � stands
for convolution and pt(x):=(2�t)¡d/2e¡jxj

2/2t. We will use the notation BR=BR(0) for the closed
ball around 0 of radius R in Rd.

Even when not specified, whenever talking about a random variable X , we will assume it to
be defined on an underlying complete probability space (
;F ;P); we will use L!

pE =Lp(
;E) as
a shortcut for Lp(
;F ;P;E) and directly drop E whenever it coincides with Rm (in which case
we might directly write L!

p). Typical elements of 
 are denoted by !, so that X(!) stands for
the evaluation of the r.v. X, and E denotes expectation w.r.t. P. Whenever a filtration fFtgt>0
appears, it is implicitly assumed to satisfy the usual assumption (completeness, right-continuity);
we will use the shortcut notation Et to denote the conditional expectation E[ � jFt]. If Ft is not
specified, it is taken as the natural filtration of the stochastic process W in consideration.

3.1 Averaged fields: analytic definition, stochastic estimates

3.1.1 Analytic definition

We provide here the definition of the averaging operator Tw for measurable paths w: [0; T ]!Rd,
together with some basic properties which will be fundamental for later sections. Our definition is
rather abstract and works for a general class of Banach spaces E, but keep in mind that for our
purposes E will always be a Besov space Bp;qs with p2 [2;1). Also, we will consider for simplicity
the scalar-valued case, i.e. E�S 0(Rd)=S 0; everything immediately generalises to the vector-valued
case S 0(Rd;Rm) by reasoning componentwise.

Let us assume that E is a separable Banach space that continuously embeds into S 0 (so that
there is also a dual embedding S ,!E�) such that translation � v: f 7!� vf= f(�+v) act continuously
on it and leave the norm invariant: k� vf kE=kf kE for all v2Rd and f 2E. Assume moreover that
the map v 7! � v is continuous, in the sense that if vn! v, then � vnf! � vf for all f 2E.

Definition 3.1. Let w: [0; T ]!Rd be a measurable function, E as above. Then we define the
averaging operator Tw as the continuous linear map from Lt

1E to Ct0E given by

Tt
wb=(Twb)t=Twb(t) :=

Z
0

t

�wsbs ds 8t2 [0; T ]:

We will refer to Twb as an averaged field to stress that b is fixed, while w might be varying.

The definition is meaningful, since by the continuity properties of v 7! � v, the map s 7! �wsbs is
still measurable and, by the invariance of k�kE under translations, kb�kL1E=k�w�b�kL1E. Continuity
of Twb and the bound kTwbkC0E6 kbkL1E follow from standard properties of Bochner integral, as
well as the linearity of the map b 7!Twb. Similarly, it is easy to see that, in the case b enjoys higher
integrability, Tw can also be defined as a linear bounded operator from Lt

qE to Ct
1/q 0E, where q 0

is the conjugate exponent of q. Furthermore, if w and w~ are such that wt=w~t for Lebesgue-a.e.
t2 [0;T ], then Twb and Tw~b coincide for all b, so that Tw can be defined for w in an equivalence class.

Lemma 3.2. Let wn!w in Lt1 and b2Lt
qE, then Tw

n
b! Twb in Ct

1/q0E:

Proof. Up to an extracting subsequence argument, we can further assume wlog that wtn!wt for
Lebesgue-a.e. t. Since �wt

n

bt! �wtbt for a.e. t and k�wtnbt¡ �wtbtkq. kbtkq 2 Lt1, by dominated
convergence it holds

kTwnb¡TwbkC1¡1/qE.
Z
0

T

k�wtnbt¡ �wtbtkE
q dt! 0 as n!1;

which gives the conclusion. �
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The advantage of the above definition of Tw is that it is intrinsic and does not depend on any
approximation procedure by mollifiers. However, a possibly more intuitive description of Twb can
be given by duality. Recall that in the sense of distributions (� v)�= �¡v, so that for any '2S ,!E�

it holds

hTtwb; 'i=
Z
0

t

hbs; '(� ¡ws)ids

where the pairing is integrable since jhbs; '(� ¡ws)ij.' kbskE. The above relation holds for all '2S
and therefore uniquely identifies Ttwb as an element of S 0, for all t 2 [0; T ]. The advantage now
is that the map (t; x) 7! '(x¡wt) can be regarded as an element of Lt1S,3.1 to which standard
operations on S such as differentiation and convolution can be applied.

Lemma 3.3. Let w and b be as above. Then:

i. Averaging and spatial differentiation commute, i.e. for all i=1; : : : ; d, @iTwb=Tw@ib.

ii. Averaging and spatial convolution commute, i.e. for any K 2Cc1 it holds

K � (Twb) =Tw(K � b)= (TwK) � b:

Proof. The statements follow easily from the duality formulation. For any '2S, t2 [0; T ] it holds

h@iTtwb; 'i=¡hTtwb; @i'i=¡
Z
0

t

hbr; @i'(� ¡wr)idr

=

Z
0

t

h@ibr; '(� ¡wr)idr= hTtw@ib; 'i:

If K 2Cc1, then denoting by K~ its reflection, by duality it holds

hK �Ttwb; 'i=hTtwb;K~ � 'i=
Z
0

t

hbr; �¡wr(K~ � ')idr=
Z
0

t

hbr;K~ � (�¡wr')idr

=

Z
0

t

hK � br; �¡wr'idr= hTtw(K � b); 'i:

A similar computation shows the other part of the identity. �

Remark 3.4. Let us point out that if w 2Lt1, then the averaging operator has finite speed of
propagation and so behaves well under localisation. Indeed, if b2Lt1E is such that supp bt�BR
for all t2 [0; T ], then suppTtwb�BR+kwk1 for all t2 [0; T ]; similarly, if b and b~ are such that their
restrictions to BR coincide for all t, then Twb and Twb~ coincide on BR¡kwk1.

In view of the applications in Sections 3.2-3.3, our main goal is to establish conditions under
which Twb2Ct

F , where  >1/2 and F is another Banach space enjoying better regularity proper-
ties than E; typically F =C�;� for suitable values of �;�, so that the theory outlined in Chapter 1
can be applied.

For this reason, we are going to assume from now on that b 2Lt
qE for some q > 2. The idea

behind this restriction is that sometimes averaging allows to trade off time regularity for space
regularity (think of the analogy with parabolic regularity theory) and therefore in order to have
Twb2Ct

F , knowing a priori only that Twb2Ct
1/q 0E, we need to require at least3.2

1¡ 1
q
>  >

1
2
) q > 2:

3.1. Technically, this is only true if we impose w 2Lt1, which we will do in general in this chapter. In the case
of less abstract spaces like E=Bp;q

s , we can take ' to belong to the dual E�, which can be identified with Bp0;q 0
¡s ,

which is now a normed space with a translation invariant norm; in this case, the claim that (t; x) 7! '(x¡wt) can
be regarded as an element of Lt1Bp0;q 0

¡s is true for any choice of w, regardless of its integrability.

3.2. The situation could be slightly different if we allowed for the use of controls; indeed, the most general version
of Young's integration theory (and associated solvability of YDEs) only requires to work with paths of bounded
p-variation for p < 2. Setting p= 1/, this amounts to an estimate of the form jxs;tj6 !(s; t), where ! is a so
called control, see [134] for more details. The case we consider corresponds to !(s; t) = jt¡ sj,  > 1/2.
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Remark 3.5. Despite our use of the terminology �regularisation by averaging�, what we mean
is really that we fix a drift b and we want to establish that, for almost every path w (either in
a probabilistic or prevalent sense), the averaged field Twb has nice regularity properties. This is
different from trying to establish that the averaging operator Tw as a linear operator from Lt

qE
to Ct

F is bounded, which is false due to the time dependence of the drifts we consider. Indeed,
given any b 2E, defining b~t= �¡wtb, by definition of averaging we obtain Ts;t

w b~= (t¡ s)b, which
shows that Twb~ cannot have better spatial regularity than b~. The situation is more interesting if
one defines Tw for time independent drifts only; this situation will be analysed in Chapter 5.

In order to show prevalence of regularisation by averaging, we first need to show that such
a property indeed defines Borel sets in suitable spaces of paths. To this end, we require F to be
another Banach spaces which embeds into S 0 which enjoys the following Fatou type property : if
fxngn is a bounded sequence in F and xn converge to x in S 0, then x2F and kxkF 6 liminf kxnkF .

In the next lemma we allow any �2 (0; 1), but our primary focus will be �= 1/2.

Lemma 3.6. Let F be as above, b2Lt
qE for some q > 2. Then for any �2 (0; 1) the set

A�= fw: [0; T ]!Rd such that Twb2Ct
F for some  > �g

is Borel measurable w.r.t. the following topologies: Lt
p with p2 [1;1], Ct� with �> 0.

Proof. We can write A� as a countable union of sets as follows:

A�=
[

m;n2N
Am;n
� :=

[
m;n2N

fw: [0; T ]!Rd such that kTwbkC�+1/mF 6ng;

in order to show the statement, it suffices to show that for every m; n the set Am;n
� is closed in

the above topologies. We only need to deal with the L1-topology, since it is weaker than any of
the others considered. Let wk be a sequence in Am;n

� such that wk!w in Lt1, then by Lemma 3.2
we know that Tw

k
b!Twb in Ct0E and so that for any s< t, Ts;tw

k

b!Ts;t
w b in E and in S 0. On the

other hand, by definition of Am;n
� it holds

sup
k

kTs;tw
k

bkF 6n jt¡ sj�+1/m

which implies by the Fatou property of F that Ts;tw b2F and that kTs;tw bkF 6n jt¡sj�+1/m as well.
As the reasoning holds for any s< t, it follows that Twb2Am;n

� . �

Remark 3.7. Any weakly-� compact Banach space F which embeds in S 0 satisfies the Fatou
property. In the following we will always work with Lx

p-based function spaces with p2 [2;1], so
that this property holds automatically. Let us also point out that the proof actually works more
generally for conditions of the form Twb2Ct

�F , where � is a prescribed modulus of continuity.

We conclude this section with some lemmas on approximation by mollifications which will be
very useful in Sections 3.2-3.3.

Lemma 3.8. Let ' 2 Cx
�;� for some �; � > 0 and let f�"g">0 be a family of standard spatial

mollifiers; set '" := �" � '. Then '"! ' in Cx
�¡�;� for any � > 0 and it holds

k'"k�;�. k'k�;�; k'"¡ 'k�¡�;�.� "� 8"2 (0; 1]:

Proof. We can consider � 2 (0;1), as the general case follows by considering Dk' in place of '; we
will only prove the second inequality in (3.8), the first one being similar. By standard properties
of mollifiers, for any "2 (0; 1] and any x; y 2BR we have the estimates

j'"(x)¡ '"(y)j6jx¡ y j� J'K�;R+1. J'K�;�jx¡ y j�R�
j'"(x)¡ '(x)j6"� J'K�;R+1. "� J'K�;�R�;
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interpolated together, for any � 2 (0; 1) they provide

j'"(x)¡ '"(y)¡ '(x)+ '(y)j.� "(1¡�)� jx¡ y j��J'K�;�R� 8x; y 2BR:

Taking the supremum over x; y 2BR and choosing �=1¡ �/� yields J'"¡ 'K�¡�;�. "�; together
with a similar estimate for j'"(0)¡ '(0)j, we deduce (3.8). �

Lemma 3.9. Let b2Lt
qE such that Twb2Ct

Cx
�;� for some  2 (0; 1], �; �> 0 and set b" := �" � b

for some spatial mollifiers f�"g">0. Then for any � > 0, Twb"! Twb in Ct
Cx

�¡�;� as "! 0; a
similar statement holds with C� in place of C�;�.

Proof. The lemma is a slight improvement on Lemma 3.9 from [145] and Lemma 11 from [139];
for simplicity we only give the proof for Ct

Cx
�;�. In view of Lemmas 3.3 and 3.8, for any s< t it

holds �" �Ts;tw b=Ts;tw b" and we have the estimate

kTs;tw b"¡Ts;tw bk�¡�;�. "� jt¡ sjkTwbkCC�;�

which readily implies JTwb"¡TwbKCC�¡�;�. "� and thus the conclusion (recall that Twb(0; �)� 0
by definition and that we work on a finite interval [0; T ]). �

3.1.2 Itô�Tanaka formula for averaged fields
We are going to prove an Itô�Tanaka type formula for averaged functionals, in the same spirit of the
one considered in [80]. We first need to recall the Clark�Ocone formula, see [225]. Given a two-sided
standard Brownian motion B on a space (
;F ;P), Ft=�(Bs; s6 t), and a Malliavin differentiable
random variable A with Malliavin derivative D�A, the Clark�Ocone formula states that

A=E[A] +

Z
¡1

+1
Er[DrA]dBr (3.3)

where we recall the shortcut notation Er[�] =E[�jFr]. From (3.3) it follows immediately that, for
any s2R, we have the more general identity

A=EsA+

Z
s

+1
Er[DrA]dBr:

We do not provide here the general definition of Malliavin derivative of a Brownian variable, which
can be found in [225]. Let us only mention that in the specific case of our interest, for A:=f(X),
where f is a smooth function and X =

R
¡1
+1

KsdBs, the Malliavin derivative is given by

DtA=rf(X) �Kt : (3.4)

Lemma 3.10. Let b: [0; T ]�Rd!R be a smooth, compactly supported function, then for any fixed
06 s6 t6T, H 2 (0; 1) and x2Rd, there exist cH ; c~H> 0 s.t. the following identity holds P-a.s.:Z

s

t

br(x+Wr)dr =

Z
s

t

Pc~H jr¡sj2Hbr(x+EsWr)dr (3.5)

+cH

Z
s

tZ
u

t

Pc~H jr¡uj2Hrbr(x+EsWr)jr¡ujH¡1/2dr � dBu:

Proof. For H =1/2 the above formula is well known and coincides with a standard application
of the Itô�Tanaka trick, combined with the mild formulation of solutions to the heat equation, see
for instance the discussion in [80]; so we can assume H=/ 1/2. Let us fix x2Rd. Since b is smooth,
for fixed r we can apply Clark�Ocone formula to br(x+Wr

H) to obtain

br(x+Wr) =Es [br(x+Wr)] +

Z
s

r

Eu[rbr(x+Wr)]cH(r¡u)H¡1/2 � dBu

=Pc~H jr¡sj2Hbr(x+EsWr) + cH

Z
s

r

Pc~H jr¡uj2Hrbr(x+EuWr)jr¡ujH¡1/2 � dBu;
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in the above, we used both the representation of W in terms of a stochastic integral (cf. (A.1)), as
well as the decomposition Wr= (Wr¡EuWr) +EuWr with the first term independent of Fu (see
Appendix A.1). Integrating over [s; t] and applying stochastic Fubini's theorem (which is allowed,
since we are assuming b smooth and compactly supported) we obtainZ

s

t

br(x+Wr)dt=

Z
s

t

Pc~H jr¡sj2H br(x+EsWr)dr

+ cH

Z
s

tZ
s

r

Pc~H jr¡uj2Hrbr(x+EuWr)jr¡ujH¡1/2 � dBudr

=

Z
s

t

Pc~H jr¡sj2H br(x+EsWr)dr

+ cH

Z
s

tZ
u

t

Pc~H jr¡uj2Hrbr(x+EuWr)jr¡ujH¡1/2dr � dBu

which gives the conclusion. �

The previous result can be strengthened by considering for instance b2Cx1 instead of smooth, or
showing that we can find a set of full probability on which the identity holds for all 06 s6 t6T ;
we don't do it here since it is not needed for our purposes. Instead, we need to strengthen the
result to the following functional equality .

Theorem 3.11. Let b: [0; T ]�Rd!R be a smooth, compactly supported function, H 2 (0;1). Then
for any fixed 06 s6 t6T, P-a.s. it holds

Ts;t
W b=

Z
s

t

Pc~H jr¡sj2H br(� +EsWr)dr+ cH

Z
s

tZ
u

t

Pc~H jr¡uj2Hrbr(� +EuWr)jr¡ujH¡1/2dr � dBu

where the first integral must be interpreted in the Bochner sense, while the second one as a func-
tional stochastic integral.

We omit the proof, as it is quite technical and requires some knowledge of stochastic integration
in UMD spaces; up to technical details, it is mostly a rewriting of the statement already contained
in Lemma 3.10, without further insights. The interested reader can find the details in Appendix A.3
from [145].

3.1.3 Stochastic estimates in martingale type 2 Banach spaces
We provide here the regularity estimates for TWb when W is sampled as a fBm of parameter H;
besides being results of independent interest (for fixed x, TWb(x) is usually referred to as an additive
function of the process W ), they will pave the way for our development of a solution theory for
(possibly singular) SDEs associated to W , as well as prevalence statements.

The main ingredients in the proofs are the use of the functional Itô�Tanaka formula from
Theorem 3.11, Burkholder's inequality (Theorem A.24 from Appendix A.4), heat kernel and inter-
polation estimates (Lemma A.13 and Proposition A.9 from Appendix A.2).

We will restrict to the case of b2Lt
qBp

s, but the strategy is fairly general and works for other
classes of spaces (e.g. Lebesgue and Bessel spaces), up to the requirement that the aforementioned
tools are still available. However, in order to apply Burkholder's inequality, we will restrict to
scales of Lp-based spaces with p2 [2;1); see Appendix A.3 from [145] for a deeper discussion on
this point. We will see later in Section 3.1.4 how to treat other values of p.

Theorem 3.12. Let W be a fBm of parameter H and let b2Lt
qBp

s for some p; q 2 [2;1). Then
for any �> 0 satisfying

�<
1
H

�
1
2
¡ 1
q

�
; (3.6)

there exists  > 1/2 such that TWb 2 Ct
Bp

s+� with probability 1; moreover, there exist positive
constants �;K such that

E

24exp
0@� kTWbkCBps+�2

kbkLqBps
2

1A356K 8b2Lt
qBp

s n f0g: (3.7)
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Proof. To simplify the notation, we give the proof in the case s = 0 (s being the regularity
parameter in Bp

s), the other ones being identical; from now on, we will freely use s as a time
parameter instead.

First assume b to be a smooth function; by Theorem 3.11,
R
s

t
br(� +Wr)dr= Is;t

1 + Is;t
2 for

Is;t
1 =

Z
s

t

Pc~H jr¡sj2Hbr(�+EsWr)dr; Is;t
2 = cH

Z
s

tZ
u

t

Pc~H jr¡uj2Hrbr(� +EuWr)jr¡ujH¡1/2dr � dBu:

From now on for simplicity we will drop the constants cH, c~H, as they don't play any significant
role in the calculations. For the first term, we have the deterministic estimate

kIs;t1 kBp�=
Z

s

t

Pjr¡sj2Hbr(� +EsWr)dr


Bp
�
6
Z
s

t

kPjr¡sj2HbrkBp�dr

.
Z
s

t

jr¡ sj¡�HkbrkBp0dr

6kbkLqBp0
��������Z
s

t

jr¡ sj¡�H q0dr

��������1/q 0
.kbkLqBp0jt¡ sj

1¡1/q¡�H ;

where we used heat kernel estimates for Besov spaces (Lemma A.13) and the fact that the Bp
�-norm

of br is not affected by a translation by EsWr. By condition (3.6), �H q 0<1 and 1¡1/q¡ �H>1/2;
we deduce that there exists  > 1/2 such that, uniformly in ! 2
,

kI1kCBp�. kbkLqBp0: (3.8)

For the second term, we apply Burkholder's inequality (A.16) (which is allowed since Bp
� with p>2

is a martingale type 2 space, see Appendix A.4); we obtain

E
�
kIs;t2 kBp�

2k
�
6 (Ck)k E

" Z
s

t
Z

u

t

Pjr¡uj2Hrbr(� +EuWr)jr¡ujH¡1/2dr

Bp
�

2

du

!
k
#
: (3.9)

We can control the inner integral by deterministic estimates, similar to the ones above:Z
u

t

Pjr¡uj2Hrbr(� +Wu;r
2 )jr¡ujH¡1/2dr


Bp
�
6
Z
u

t

kPjr¡uj2HrbrkBp�jr¡uj
H¡1/2dr

.
Z
u

t

jr¡uj¡H(�+1)+H¡1/2kbrkBp0dr

6kbkLqBp0
�Z

u

t

jr¡uj¡(H�+1/2)q 0dr
�
1/q 0

.kbkLqBp0 jt¡uj
1/2¡1/q¡H�;

where again we used the fact that (H�+ 1/2)q 0< 1, thanks to (3.6). Set " := 1¡ 2/ q ¡ 2H�;
inserting the estimate inside (3.9) we find that, up to relabelling C, it holds

E
�
kIs;t2 kBp�

2k
�
6 (Ck)kkbkLqBp0

2k jt¡ sjk(1+"):
But then we have

E

"
exp

 
�

kIs;t2 kBp�
2

jt¡ sj1+"kbkLqBp0
2

!#
=
X
k

�k

k!
E

24 kIs;t2 kBp�
2k

jt¡ sjk(1+")kbkLqBp0
2k

35
6
X
k

(�C)k kk

k!
.
X
k

(�Ce)k<1

as soon as �< (Ce)¡1. It follows from Lemma A.27 that, for any "0<", I22Ct
1/2+"0Bp

� and that
there exists another �> 0 (not relabelled for simplicity) such that

E

24exp
0@� kI2kC1/2+"0Bp�2

kbkLqBp0
2

1A356K (3.10)
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for a constant K independent of b. Together with (3.8), this proves the claim for smooth b.
Now let b be a generic element of Lt

qBp
0; we can then find a sequence bn of smooth functions

such that kb¡ bnkLqBp0! 0 as n!1. We know that in this case kTW(bn¡ b)kC0Bp0! 0, uniformly
on ! 2
. On the other hand, it follows from (3.7), applied to bn¡ bm, that for any k it holds

E
�
kTW(bn¡ bm)kCBp�

2k
�
.k kbn¡ bmkLqBp0

2k ;

hence the sequence TWbn is Cauchy in L2k(
;; Ct
Bp

�) and it admits a limit, which must then
coincide with TWb2L2k(
;Ct

Bp
�). By Fatou's lemma, it holds

E

"
exp

 
�
kTWbkCBp�

2

kbkLqBp0
2

!#
6 liminf

n!1
E

"
exp

 
�
kTWbnkCBp�

2

kbnkLqBp0
2

!#
6K

which gives the conclusion. �

Remark 3.13. Theorem 3.12 formally does not cover q=1, since Lt1Bps is not separable. How-
ever, we can readily embed Lt1Bps ,!Lt

qBp
s with q arbitrarily large (recall that we are on a finite

[0; T ]) and apply the result therein to conclude that, if b2Lt1Bps, then P-a.s. TWb2Ct
1/2+

Bp
s+�

for any �< 1/(2H).

Remark 3.14. Theorem 3.12 immediately implies that, under assumption (3.6), the random
averaging operator TW : b 7!TWb is a linear bounded map from Lt

qBp
s into Lk(
;Ct

Bp
s+�), for any

k 2N. Observe the difference with Remark 3.5.

We can actually further improve the regularity result of Theorem 3.12, by allowing an arbitrarily
large constant � appearing in (3.7).

Corollary 3.15. Let b2Lt
qBp

s with p2 [2;1), � > 0 and assume ( 3.6) holds. Then there exists
 > 1/2 and a function K(�) independent of b such that

E

24exp
0@�kTWbkCBps+�2

kbkLqBps
2

1A356K(�)<1 8�2R:

Proof. As before, we can assume wlog s=0. If � satisfies (3.6), then there exists "> 0 such that
also �+ " satisfies (3.6); it then follows from Lemma A.9 that

kTWbkCBp�. kTWbkCBp0
1¡� kTWbk

CBp
�+"

� 6 kbkLqBp0
1¡� kTWbk

CBp
�+"

�

where �= "/(s+ ") and we used the fact that q > 2 due to condition (3.6). It follows that

kTWbkCBp�
2/�

kbkLqBp0
2/�

.
kTWbk

CBp
�+"

2

kbkLqBp0
2

where 1/� = (s+ ")/" :=�. Applying Theorem 3.12 to �+ ", we obtain that there exist ��, K�
independent of b such that

E

24exp
0@�� kTWbkCBp�2�

kbkLqBp0
2�

1A356E

24exp
0@C"�� kTWbkCBp�+"2

kbkLqBp0
2

1A356K� :
Since � > 1, the conclusion follows with K(�) given by the (�-dependent) optimal deterministic
constant such that exp(�x2)6K(�)exp(�� x2�)/K� for all x> 0. �

In the limiting case in which (3.6) becomes an equality, slightly more careful estimates still
allow to obtain a regularity result in space, at the cost of lower time regularity.
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Theorem 3.16. Let b2Lt
qBp

s with p2 [2;1), q 2 (2;1) and let �> 0 satisfy

�=
1
2H

�
1¡ 1

q

�
: (3.11)

Then P-a.s. TWb2Ct0Bp
s+� and there exist positive constant �, K such that

E

24exp
0@� kTWbkC0Bps+�2

kbkLqBps
2

1A35<K 8b2Lt
qBp

s n f0g:

Proof. As before, we can assume s= 0, b smooth; again we decompose TWb= I1+ I2. Going
through the same calculations for I1, we obtain

kIs;t1 kBp�. kbkLqBp0jt¡ sj
1¡1/q¡�H= kbkLqBp0jt¡ sj

1/2

where the estimate is uniform in ! 2
; it follows immediately that

E
�
exp
¡
�kI1kC0Bp�

2
��
<1

and so we only need to focus on I2. By Burkholder's inequality, we have

E
�
kI2kC0Bp�

2k
�
6 (Ck)kE

" Z
0

T
Z

u

T

Pjr¡uj2Hrbr(�+EuWr)jr¡ujH¡1/2dr

Bp
�

2

ds

!
k
#

and as before we want to estimate the integral inside in a deterministic manner. Going through
similar calculations we obtainZ

0

T
Z

u

T

Pjr¡uj2Hrb(�+EuWr)jr¡ujH¡1/2dr

Bp
�

2

du.
Z
0

T
�Z

u

T

jr¡uj¡H�¡1/2kbrkBp0dr
�
2

du:

Due to the assumption on the coefficients, we can now apply the Hardy-Littlewood-Sobolev
inequality to obtain �Z

0

T
�Z

u

T

jr¡uj¡H�¡1/2kbrkBp0dr
�
2

du

�
1/2

. kbkLtqBp0
so that

E
�
kI2kC0Bp�

2k
�
6 (C 0k)k kbkLtqBp�

2k :

The conclusion follows by expanding the exponential and choosing � small as before. �

We end this section with several remarks discussing various technical point and extensions, and
which can be skipped on a first reading.

Remark 3.17. Heuristically, condition (3.6) can be seen as a time-space weighted regularity
condition, where time counts as 1/H times space (which is in agreement with parabolic regularity
in the case H =1/2 of Brownian motion). Indeed, we know that the averaging operator Tw maps
Lt
qBp

s into Wt
1;qBp

s; if we assume that regularity can be distributed between time and space, it
should also map Lt

qBp
s intoWt

�;qBp
s+(1¡�)/H for any �2 (0;1). In order to achieve 1/2+" regularity

in time it is then required �¡1/q >1/2, which implies that the regularity gain in space is at most

1¡ �
H

<
1
H

�
1
2
¡ 1
q

�
which matches exactly condition (3.6) for �.

Remark 3.18. The restriction to work with Bp;qs with p= q, is not particularly relevant since by
Besov embedding if b2Lt

qBp;p~
s , then it also belongs to Lt

qBp
s if p~< p and to Lt

qBp
s¡" for any ">0 if

p~> p, so that we can first embed it and then apply the estimate there. Also the restriction p=/1
can be overcome, as will be shown in the upcoming Section 3.1.4. In the special case where b is
known to be compactly supported (e.g. b= �0), one can more directly embed B1

s into Bp
s¡" for

any "> 0 and p<1.
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Remark 3.19. The restriction to work with Lp-based spaces with p> 2 is more restrictive and
it would be of fundamental importance to weaken it, especially reaching the case p=1; this was
already pointed out in Conjecture 1.2 from [57]. The reason is that, by the properties of averaging,
we know that for any K 2Cc1 and time independent b it holds K �Twb=Tw(K � b)=(TwK)� b; if
we were able to show that TwK 2Ct

B1
� with an estimate that only depends on the L1-norm of K,

then we could automatically deduce regularity estimates of the form K �Twb2Ct
Bp

s+� with b2Bps

for any p2 [1;1]. We could then consider a family of mollifiers obtained by rescaling K (which all
have the same L1-norm, so the same estimate in Ct

B1
�) to get estimates for the map b 7!Twb in any

Lp based space with p2 [1;1] (as above, only time independent b considered). Unfortunately, it is
now understood that Conjecture 1.2 from [57] is at least partially false, see the upcoming discussion
at the beginning of Chapter 5 and Remark 3.7 from [170]; nontheless, a complete picture is still
missing. A partial contribution to the case p2 (1;2] will be presented in the upcoming Section 3.1.4.

Remark 3.20. A closer look at the proofs shows that both the Itô�Tanaka formula from The-
orem 3.11 and the regularity estimates from Theorems 3.12 can be generalised to Gaussian processes
X different from fBm, but still satisfying a strong form of local nondetermism. For instance
one can take X of the form

Xt=

Z
0

t

K(t; s)dBs;

for some deterministic matrix-valued function K, such that for some H 2 (0; 1) it holds

Var(XtjFs) =Var(Xt¡EsXt)& jt¡ sj2H 8s< t (3.12)

where Ft=�(Bs: s6 t). Condition (3.12) is a type of strong local nondeterminism (SLND); these
type of processes satisfy many interesting properties, which will be discussed in detail in Chapter 5.

Remark 3.21. It follows immediately from the above results and from Besov embeddings that if
b2Lt

qBp
s for some q > 2, p2 [2;1), then for any � such that

� <s+
1
H

�
1
2
¡ 1
q

�
¡ d
p

(3.13)

there exists  > 1/2 such that TWb2Ct
Cx

� with full probability. For instance in the case s=0,
i.e. b2Lt�Bp0, in order to require TWb2Ct

Cx
0 it is enough

1

q
+H

d

p
<
1

2
;

while in order to require TWb2Ct
Cx

1 it suffices

1
q
+H

d
p
<
1
2
¡H:

If b2Lt
qB1

s with spatially compact support, uniform in time, then TWb2Ct
Cx

n if

H <
1

n¡ s

�
1
2
¡ 1
q

�
:

3.1.4 Stochastic estimates in other Banach spaces
As already mentioned in Remark 3.19, the techniques employed in Section 3.1.3 come with the
fundamental restriction of using Lp-based spaces with p2 [2;1). Here we present some alternative
strategies, which cover the cases p2 (1; 2) and p=1, but come at a certain price.

We start by dealing with p2 (1;2); to this end, we first present a lemma of independent interest,
which is a generalization of Lemma 45 from [143] and Theorem 4.3 from [57]. We recall to the
reader that the notion of martingale p space and its properties may be found in Appendix A.4.

Lemma 3.22. Let E be a Banach space of martingale type p2 (1; 2], (Xt)t2[0;T ] be an E-valued
stochastic process. Assume that there exist deterministic constants C1; C2 such that, for any s< t,
P-a.s. it holds

kXs;tkE6C1jt¡ sj; kEsXs;t]kE6C2: (3.14)
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Then there exist constants �;K > 0, only depending on E, such that

E

"
exp

 
�

kXs;tkE
p

C1C2
p¡1 jt¡ sj

!#
6K 8s< t: (3.15)

Proof. By linearity, we may assume C1=1. Suppose first that jt¡sj6C2, then we have the trivial
estimate

kXs;tkE
p 6 jt¡ sjp6 jt¡ sjC2p¡1;

which immediately implies (3.15) in this case.
Suppose now that C2 < jt ¡ sj. Let n 2N to be fixed later; define tk = s + k(t ¡ s)/n for

k 2f0; : : : ; ng and

Zk=Etk+1Xs;t¡EtkXs;t:

Setting Sk=
P
j=0
k¡1

Zj, fSkgk is an E-valued martingale and it holds Xs;t=Sn+EsXs;t. We have a
trivial bound on EsXs;t by the assumption and the condition C2< jt¡sj; thus it suffices to estimate
kSnkE, which we plan to do by means of the Azuma�Hoeffding inequality, see Theorem A.25 in
Appendix A.4.

It holds Zk=Etk+1Xtk+1;t¡EtkXtk;t+Xtk;tk+1 and so by assumption 3.14 we have the estimate

kZkkE6 2C2+ jt¡ sj/n P-a.s.

Applying Theorem A.25, there exist constants �;K > 0 only depending on E such that

E[exp(�jSnjp/Cn)]6K
where the constant Cn is given by

Cn=
X
k=0

n¡1

(2Cf + jt¡ sj/n)p.nC2p+n1¡pjt¡ sjp:

Choosing n s.t. n� jt¡ sj/C2, we obtain Cn� jt¡ sjC2
p¡1, and so for � sufficiently small it holds

E[exp(�jSnjp/C2
p¡1jt¡ sj)]6K;

the estimate is uniform over s< t, which yields the conclusion. �

We can use Lemma 3.22 to get averaging estimates in Lp-based spaces with p2 (1; 2).

Corollary 3.23. Let f be a smooth function with f̂ supported on �A, where A�Rd is a fixed
annulus, let p 2 (1; 2] and p0 denote its conjugate exponent. Then there exist constants �, K,
depending on p;H;A, such that

E

24exp
0@�

0@ �
1
Hp0kTs;tWf kLp

jt¡ sj
1
p kf kLp

1Ap1A356K: (3.16)

Proof. We can assume kf kLp=1. Setting Xs;t=
R
s

t
f(�+Wr)dr, it holds kXs;tkLp6 jt¡sj; moreover

an application of Lemma A.4 from Appendix A.2 gives

kEsXs;t]kLp=
Z

s

t

PcH jr¡sj2Hf(�+EsWr) dr


Lp
.
Z
s

t

e¡�
2cH
2 jr¡sj2Hdr.�¡1/H:

Since Lp spaces with p2 (1; 2] have martingale type p, we can apply Lemma 3.22 to conclude. �

Proposition 3.24. Let s2R, p2 (1; 2], p0 its conjugate exponent. Then there exist constants �;
K, depending on p;H, such that

E

24exp
0@�

������������
kTs;tWf kBps+1/(p

0H)

jt¡ sj1/p kf kBps

������������
p1A356K 8f 2Bps n f0g (3.17)
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As a consequence, for any q 2 [1;1] and any �< 1/p,  < 1/(p0H), there exist �~;K~ depending on
the previous parameters such that

E

24exp
0@�

kTWf k
C�Bp;q

s+
p

kf kBp;qs
p

1A356K 8f 2Bp;qs n f0g: (3.18)

Proof. In the following we will apply the convention that 0/0=0. Let f 2Bps with kf kBps=1, then
Ts;t
Wf =

P
nXs;t

n for Xs;tn =
R
s

t
�nf(�+Wr)dr; since �nf is a smooth function supported on 2nA for

a given annulus A, we can apply Corollary 3.23 to it. Together with Jensen's inequality, this gives

E
h
exp
�
�jt¡ sj¡1kTs;tWf k

Bp
s+p0/H

p
�i
=E

"
exp

 
�jt¡ sj¡1

X
n

k�nf kLp
p 2

n
p¡1
H
kXs;tn kLp

p

k�nf kLp
p

�!#

6
X
n

k�nf kLp
p E

�
exp
�
�2

n
p¡1
H

kXs;tn kLp
p

jt¡ sjk�nf kLp
p

���
6K

6K
X
n

k�nf kLp
p =K

which proves (3.17). Next, observe that given any q 2 [1;1], we can always embed Bp;qs into Bp
s¡"

and apply (3.17) therein, which provides

E

24exp
0@�

������������
kTs;tWf kBps+1/(p

0H)¡"

jt¡ sj1/p kf kBp;qs

������������
p1A356K 8f 2Bp;qs n f0g;

estimate (3.18) then follows from an application of Lemma A.27. �

Remark 3.25. Let us comment on both the advantages and disadvantages of Proposition 3.24,
compared to results from the previous section like Theorems 3.12 and 3.16. On one hand, it becomes
clear that the expected regularity gain, for b2Lt1Bps, is morally TWb2Ct

Bp
s+� with

�=
1

(p0^ 2)H; (3.19)

where the expression is now expected to be true for all p2 (1;1). Also observe that, as p#1, �#0,
confirming that working with L1-based spaces is particularly difficult and might not even possible
for general H 2 (0;1). Proposition 3.24 reaches the critical regularity �=1/(p0H), while not giving
up on the time regularity �� 1/p (compare with Theorem 3.16!). However the proof is not very
robust: already treating f 2 Lt1Bps provides some technical challenges. Moreover, while Theo-
rems 3.12 and 3.16 generalize easily to Bp;p~s with p=/ p~ (heat kernel estimates are still available),
the proof of Proposition 3.24 crucially requires p= p~ as the explicit summability of the LP blocks
is needed when invoking Jensen's inequality (at least for proving (3.17)). On the upside, the proof
generalizes to the case p2 [2;1) as well, up to requiring this time f 2Bp;2s instead of Bps.

We now move to the case of Besov-Ho�lder spaces B1s ; here we can obtain very similar results
to those of Section 3.1.3, up to the price of dealing with TWb belonging to suitable weighted spaces
Cx
�;�, like the ones already considered in Chapter 1.

Proposition 3.26. Let b 2 Lt
qB1

s with s < 0, q 2 (2;1], W be a fBm of parameter H 2 (0; 1);
suppose (s; q) satisfy

 := 1¡ 1

q
+ sH >

1

2
: (3.20)

Then for any ~<  there exists an increasing function K (depending on d; T and the above para-
meters) such that

E

"
exp

 
�

kbkLqB1s
2

sZ
0

�
br(x+Wr)dr

{

~

2
!#
�K(�) 8 � > 0; x2Rd; b2Lt

qB1
s n f0g: (3.21)
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Proof. Arguing by density, we may assume b to be smooth and compactly supported; up to
reasoning componentwise, scaling and shifting, wlog x=0, b2Cc1([0; T ]�Rd) and kbkLqB1s =1.

Since B1s is not a martingale type 2 space, we cannot apply Theorem 3.11; yet, for fixed x=0,
Lemma 3.10 is still available, so we can decompose

R
�

t
br(Wr)dr= I� ;t

1 + I� ;t
2 = I� ;t

1 +
R
�

t
Ju;t �dBu for

I� ;t
1 : =

Z
�

t

Pc~H jr¡� j2H br(E�W
r)dr; Ju;t: =cH

Z
u

t

Pc~H jr¡uj2Hrbr(E�W
r)jr¡ujH¡1/2dr:

As before, in the following we will drop the constants cH ; c~H. The terms I� ;t and Ju;t can still
be estimated by means of heat kernel estimates in B1

s (Lemma A.13), similarly to the proof of
Theorem 3.12. For instance, one obtains

jJu;tj.
Z
u

t

kPjr¡uj2HrbrkLx1 jr¡uj
H¡1/2dr. jt¡uj¡1/2:

Applying Burkholder-Davis-Gundy inequality with optimal asymptotic constant, combining the
estimate for I� ;t2 with a similar one for I� ;t1 , we deduce the existence of ��; C > 0 such that

E

"
exp

 
�

����������
R
�

t
br(Wr)dr

jt¡ sj

����������
2
!#
6C 8 �6 ��; s < t:

Together with Lemma A.27, this implies that for any ~<  there exist (relabelled) ��; C > 0 s.t.

E

�
exp

�
�

sZ
0

�
br(Wr)dr

{

~

2
��
6C 8 �6 ��: (3.22)

In order to conclude, it remains to show that we can improve inequality (3.22) by allowing any
value � > 0; to do so, we will resort to an interpolation trick, similar in style to Corollary 3.15
(although slightly more involved).

First, observe that if s; q;H satisfy (3.20) and we fix ~< , then we can find "> 0 sufficiently
small so that ":=1¡ 1/q¡ (s¡ ")H > 1/2 and ~< "; then by estimate (3.22) (for s¡ " in place
of s) and linearity, there exist ��> 0 and C > 0 such that

E

24exp
0@ ��

kb~k
LqB1

s¡"
2

sZ
0

�
b~r(Wr)dr

{

~

2

1A356C 8 b~2Lt
qB1

s¡" n f0g: (3.23)

We may assume kbkLqB1s =1; fix "> 0 as above. For N 2N to be chosen later, we decompose b as

bt= bt
1+ bt

2; bt
1=

X
j6N

�jbt; bt
2=

X
j>N

�jbt;

where �j denote Littlewood-Paley blocks; there exists C > 0 such that

kb1kLqL16C 2¡Ns; kb2kLqB1s¡"6C 2¡N":

Now for a given � > 0, choose N =N(�)2N such that

�6C¡2 22N"¡1��
and decompose b as above; we may assume that b2;N =/ 0, otherwise the stated estimate is trivial.
Clearly, under (3.20) it holds ~6 1¡ 1/ q; therefore setting �=1¡ 1/q¡ ~, we have the P-a.s.

sZ
0

�
br
1(Wr)dr

{

~

6 (1+T )� kb1kLqC06C(1+T )�2¡Ns=:CN(�):

Combining this with (3.23) applied to b~= b2, we get

E

�
exp

�
�

sZ
0

�
br(Wr)dr

{

~

2
��
6E

�
exp

�
2�

sZ
0

�
br
1(Wr)dr

{

~

2

+2�

sZ
0

�
br
2(Wr)dr

{

~

2
��

6exp (2�CN(�)
2 )E

"
exp

 
��

kb2k
LqB1

s¡"
2

sZ
0

�
br
2(Wr) dr

{

~

2
!#

.exp (2�CN(�)
2 )
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where the estimate now holds for all � > 0. �

Corollary 3.27. Let b2Lt
qB1

s with s< 0, q 2 (2;1], W be a fBm of parameter H 2 (0; 1) and let
�2 (0; 1]; suppose (s; �; q) satisfy

 := 1¡ 1

q
+(s¡ �)H >

1

2
: (3.24)

Then for any ~<  there exists an increasing function K (depending on d; T and the above para-
meters) such that

E

"
exp

 
�

���������� J
R
0

�
br(x+Wr)dr¡

R
0

�
br(y+Wr)drK~

kbkLqB1s jx¡ y j�

����������
2
!#
6K(�) 8 � > 0; (3.25)

uniformly over x=/ y and b2Lt
qB1

s , b=/ 0; moreover, for any �;"i>0, P-a.s. TWb2Ct
¡"1Cx

�¡"2;�.
Suppose now that b2Lt

qB1
� for �2 (¡1; 1), q 2 (2;1] satisfying

�¡ 1
Hq

> 1¡ 1
2H

; (3.26)
then the following hold:

1. There exists ~> 1/2 such that, for any �> 0, P-a.s. TWb2Ct
~Cx

1;�.

2. There exists ~> 1/2 such that for any b1; b22Lt
qB1

� and any n2N

E

"sZ
0

�
b1(r;Wr)dr¡

Z
0

�
b2(r;Wr)dr

{

~;[0;� ]

n
#
1/n

.n
�Z

0

�

kbr1¡ br2kB1�¡1
q dr

�
1/q

8 � 2 [0; T ]:

3. If H < 1/2, �< 0, there exists ~>H +1/2 and an increasing function K such that

E

"
exp

 
�

kbkLqB1�
2

sZ
0

�
br(Wr)dr

{

~

2
!#
6K(�) 8 � > 0; b2Lt

qB1
� ; b=/ 0:

Proof. Given b as above, x=/ y fixed, define b~t(�)= jx¡ y j¡� [bt(x+ �)¡ bt(y+ �)]; by the behaviour
of Besov spaces under translations (Lemma A.7) it holds

kb~kLqB1s¡�. kbkLqB1s :

Inequality (3.25) then follows from (3.21) applied to b~, since by assumption (3.24) s~=s¡ � satisfies
condition (3.20); TWb belonging to Ct

¡"1Cx
�¡"2;� is a consequence of Garsia-Rodemich-Rumsay

lemma, as stated in the version of Corollary A.30.
We now assume (3.26) holds and prove Points 1-3.
If b 2Lt

qB1
� , then Dxb 2Lt

qB1
�¡1 with s= �¡ 1 satisfying (3.20), so we can find � > 0 small

enough such that (s; �) satisfy (3.24) as well. It follows that P-a.s. TWDxb=DxT
Wb2Ct

¡"Cx
0;�,

namely TWb2Ct
¡"Cx

1;�, for any "> 0, showing Point 1.
For � = T , the statement in part 2 is again a consequence of (3.21) (for x=0 and s= �¡ 1)

and linearity of b 7!TWb. For general � 2 [0; T ], define b~ti= bti 1[0;� ](t) and observe that
sZ

0

�
(b1¡ b2)(r;Wr)dr

{

;[0;� ]

=

sZ
0

�
(b~1¡ b~2)(r;Wr)dr

{

;[0;T ]

;

the estimate for general � thus follows applying the one for � =T to b~i.
Finally, in order to prove 3 it is enough to show that

=1¡ 1
q
+�H >H +1/2;

as in that case we can find ~2 (H +1/2; ) such that (3.21) holds. But the above condition on 
is exactly (3.26). �

Let us finally write more explicitly a specific consequence of Corollary 3.27, which will be of
fundamental importance in order to apply the theory from Chapter 1.
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Corollary 3.28. Let b2Lt
qB1

� for parameters (q;�) satisfying ( 3.26); then we can find parameters
; �; �2 (0; 1) such that  > 1/2, (1+ �)> 1, �+�6 1 and P-a.s. TWb2Ct

Cx
�;�\Ct

Cx
1;�.

3.2 Main results for SDEs perturbed by fBm

In the following, whenever referring to a distributional field , we will mean an object of the form
b2Lt

qCx
� for some q 2 [2;1] and � 2R (so that on one hand TWb is analytically well-defined by

Section 3.1.1, while on the other the results from Sections 3.1.3-3.1.4 are available, at least under
suitable conditions).

We are now ready to present the main class of drifts we will work with in this section.

Assumption 3.29. Given H 2 (0; 1), the distributional drift b satisfies the following:

� If H > 1/2, then b2Ct�HCx0\Ct0Cx� for some �> 1¡ 1

2H
> 0; this is equivalent to requiring

the existence of a constant C > 0 such that

jbt(x)j6C; jbt(x)¡ bs(y)j6C(jt¡ sj�H+ jx¡ y j�) 8s; t; x; y:

� If H61/2, then b2LtqB1� for some (�; q)2R� [2;1] satisfying condition ( 3.26), namely

�¡ 1
Hq

> 1¡ 1
2H

:

In both cases, we will use the notation kbkE for E =Ct
�HCx

0\Ct0Cx� when H > 1/2, respectively
E=Lt

qB1
� when H 6 1/2.

The main result of this section, which is a combination of the ones obtained in [145] and [146],
can then be summarized as follows.

Theorem 3.30. Let W be an fBm of parameter H 2 (0;1) and let b satisfy Assumption 3.29. Then
for any x02Rd strong existence, pathwise uniqueness, path-by-path uniqueness and uniqueness in
law hold for the SDE

Xt=x0+

Z
0

t

br(Xr) dr+Wt 8t2 [0; T ]:

Moreover we have strong stability estimates for SDEs driven by different drifts, in the following
sense. Given x0i 2Rd and bi satisfying Assumption 3.29, i=1; 2, denote by X i the solutions asso-
ciated to (x0i ; bi) and driven by the same noise W; let M >0 be a constant such that kbikE6M for
i=1;2. Finally, let (�; q~) be another pair satisfying ( 3.26), with the same � as in Assumption 3.29
and q~6 q (q~2 [2;1] if H > 1/2).

Then there exists  >1/2 such that, for any p2 [1;1), there exists a constant C>0 (depending
on ; p;M ; T ; d; q~ and the parameters appearing in Assumption 3.29) such that

E[kX1¡X2k;[0;� ]
p ]

1
p6C (jx01¡x02j+ kb1¡ b2kLq~(0;� ;B1�¡1)) 8 � 2 [0; T ]: (3.27)

The concepts of strong existence, pathwise uniqueness, path-by-path uniqueness and uniqueness
in law will be introduced in the upcoming Section 3.2.1, and are especially needed in the regime
H < 1/2 where �< 0 is allowed (namely, b can be a true distribution and not a function, think of
b= �0) so that the interpretation of the SDE is a priori unclear.

However, let us immediately spend a few words on the stability estimate (3.27), which was first
obtained in [146]. A first important consequence is that, given any sequence of smooth drifts bn

such that kbn¡ bkLq~B1�¡1, the associated solutions Xn will converge to X; this allows to compare
our notion of solution to others that might be given, especially in the case of a truly distributional
drift b, where there is no canonical definition. In particular, if we were given a completely different
concept of solution, which still shared the fundamental property of being the unique limit of smooth
approximations (a basic requirement that any reasonable notion of solution should satisfy), then
it will automatically coincide with ours.
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Additionally, observe that in equation (3.27), the difference of the two drifts is measured in
the weaker norm Lt

q~B1
�¡1, while in order to achieve wellposedness the drifts bi are required to

belong to at least Lt
q~B1

� (or even more when H > 1/2). This idea the �stability should come at
one regularity less than uniqueness� is ubiquitous in analysis, think of the basic results from ODE
and SDE theory (where tipycally b2W 1;1 is needed for uniquess but stability comes in C0) but
also the more advanced versions from DiPerna�Lions theory like in [81] (where uniqueness requires
b2W 1;p but stability comes in Lp). Finally, even when H > 1/2, since we are always considering
non-Lipschitz drifts (otherwise the wellposedness result is trivial), it holds �¡1<0; in other terms,
even if bi in this case must be continuous, convergence only needs to hold in a negative Besov norm.

The rest of the section is devoted to proving Theorem 3.30, which requires some preparations.

3.2.1 Solution concepts
We start by introducing the exact notions of solutions we will work with, so to make the statement
of Theorem 3.30 fully rigorous, and explain the relations between them. We begin with a simple
lemma, establishing that the interpretation of the perturbed ODE as a nonlinear Young equation
is in fact a natural generalization of the classical setting.

Lemma 3.31. Let b: [0; T ]�Rd!Rd, w: [0; T ]!Rd be continuous functions and assume that
Twb2Ct

Cloc
� for parameters  2 (1/2; 1], � 2 (0; 1] satisfying (1+ �)> 1. Then x is a solution to

the ODE 3.3

xt=x0+

Z
0

t

bs(xs)ds+wt 8t2 [0; T ]

if and only if x= �+w, where � 2Ct
 solves the nonlinear YDE

�t= �0+

Z
0

t

Twb(ds; �s) 8t2 [0; T ]:

Proof. The proof is a simple application of Theorem 1.6. Assume first that x is a solution to the
ODE, then � as defined above solves �t= �0+

R
0

t
bs(�s+ws)ds. By definition of Twb and continuity

of b, @tTtwb(z) = bt(z+wt), so that �t= �0+
R
0

t
@tTs

wb(�s)ds= �0+
R
0

t
Twb(ds; �s). It is also clear

that � 2Ct
 (in fact � is even Lipschitz continuous).

Conversely, assume that � 2Ct
 solves the YDE , then

R
0

t
Twb(ds; �s) corresponds to the limit

of the Riemann-type sumsZ
0

t

Twb(ds; �s)= lim
j� j!0

X
i

Tti;ti+1
w b(�ti) = lim

j�j!0

X
i

Z
ti

ti+1

bs(�ti+ws)ds:

Using the fact that the b and � are uniformly continuous on compact sets, it is easy to check that
the last expression must coincide with

R
0

t
bs(�s+ws)ds=

R
0

t
bs(xs)ds, which readily implies that x

solves the ODE. �

Lemma 3.31 motivates the following definition, which is taken from [139]. It covers a general
setting, which does not require W to be sampled as an fBm and also allows for the presence of
random initial data.

Definition 3.32. Let (
;F ;P) be a probability space, (�;W ) an Rd�Ct0-valued random variable
defined on it and let b be a distributional field. We say that another Ct0-valued random variable X
on (
;F ;P) is a pathwise solution to the SDE

Xt= �+

Z
0

t

bs(Xs)ds+Wt 8t2 [0; T ] (3.28)

3.3. In the following we are always implicitly assuming w0= 0 (which comes wlog since the term w0 can be
reabsorbed in x0 if needed). Otherwise, in the ODE (3.28) the term wt should be replaced by wt¡w0, since it is
formally obtained by integrating dws over [0; t]. A similar observation applies the processW and the SDE (3.28) in
Definition 3.32, as well as this thesis in general.
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associated to (b; � ;W ) if there exists 
0�
 with P(
0) =1 and deterministic ; �; � satisfying

 2
�
1
2
; 1

�
; � ; �2 [0; 1]; (1+ �)> 1; �+�6 1 (3.29)

such that for all ! 2
0 the following hold:

1. TW (!)b2Ct
Cx

�;�;

2. �(!) :=X(!)¡W (!)2Ct
;

3. �(!) satisfies the pathwise meaningful nonlinear Young equation

�t(!)= �(!) +

Z
0

t

TW (!)b(ds; �s(!)) 8 t2 [0; T ]: (3.30)

Remark 3.33. Let us comment on Definition 3.32, which is nonclassical and inspired by the
work [114] (which in turn builds on [4]). Under the above assumptions, ! 7! TW (!)b is a well-
defined Ct

Cx
�;�-valued random variable (adapted to W ); we can therefore invoke Corollary 1.46

to define the random compact set in Ct
 given by ! 7!C(�(!); W (!)): =C~(�(!); TW (!)b), where

the latter denotes the set of solutions to the YDE associated to (�(!); TW (!)b). Condition 3. in
Definition 3.32 can then be rephrased as

�(!)2C(�(!);W (!)) for P-a.e.!:

Alternatively, we can disintegrate the measure LP(X; �; W ) w.r.t. � = L(�; W ) (see e.g. The-
orem 5.3.1 from [5]3.4), i.e. write it has

LP(X; �;W )(dx; dy) = ky(dx) �(dy)

where fkygy2Rd�Ct0 is a probability kernel. In this sense, the definition of pathwise solution can
be purely rephrased at the level of the laws by imposing the following equivalent of Condition 3.:

supp (ky)�C(y) for �-a.e. y;

here we used with a slight abuse C(y)=C(y1; y2) whenever y=(y1; y2)2Rd�Ct0.
In a sense, X is a random solution to a random YDE , rather than a solution to an SDE; in

other terms, differently from classical SDEs driven by Brownian motion, all integrals appearing
are pathwise analytically defined, which is why we chose the terminology of pathwise solution.

Finally, let us mentioned that, depending on the context, other notions of solutions for SDEs
with distributional drifts are possible, see e.g. [15] and [123].

Definition 3.34. Let b be a distributional field, � 2P(Rd�Ct0). A tuple (
;F ;P;X; �;W ) given
by a probability space (
;F ;P) and a Ct0�Rd�Ct0-valued random variable is a weak solution to
the SDE (3.28), associated to the imput data (b; �), if LP(�;W )= � and X is a pathwise solution
associated to (b; � ;W ) in the sense of Definition 3.32. We say that X is a strong solution if it
is adapted to the filtration Ft=�f�;Ws j s6 tg.

Definition 3.35. Consider the SDE (3.28) associated to imput data (b; �) as in Definition 3.34.
Then we say that:

i. uniqueness in law holds if any pair of weak solutions (
i;F i;Pi;X i; �i; W i), i= 1; 2,
satisfies LP1(X

1)=LP2(X
2).

ii. pathwise uniqueness holds if any two given solutions (X i; �; W ) defined on the same
probability space, w.r.t. the same (b; � ;W ), satisfies X1=X2 P-a.s.

iii. strong existence holds if there exists a strong solution (
;F ;P;X; �;W ); similarly for
weak existence.

3.4. Technically speaking, in order to apply the disintegration theorem, we need to be on a Polish space, so
Ho�lder spaces are ill-suited. The issue can be resolved easily like in Section 1.4.2: for any " > 0, Ct� embeds into
Ct
�¡", the latter being the separable space obtained as the closure of Ct1 w.r.t. the Ct

�¡"-norm; similarly, Ct
Cx

�;�

embeds into Ct
¡"Cx

�¡";� (as partially already shown by Lemma 3.9). We can choose " small enouch so that
( ¡ ")(1+ � ¡ ")> 1, so that the YDE is still perfectly meaningful.
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As standard in the probabilistic literature, if strong existence holds, then (
; F ;P) can be
chosen to be the canonical space, namely with 
 =Rd � Ct

0, P = � and F the completion of
B(Rd�Ct0) under �. Consequently, one can construct a strong solution on any other probability
space (
~ ;F~;P~ ) where a random variable (�~;W~ ) with law � is defined.

Although we have given Definitions 3.32-3.35 in full generality, from now we will focus for sim-
plicity only one the case of deterministic initial data �=x02Rd (the other standard alternative is
to take � independent of W , which can be reduced to the deterministic setting by first conditioning
on �). We will need another (very strong!) notion of uniqueness, declined in two variants; the first
one comes from [86], for the terminology involving the second one we follow [139] (although the
notion already appeared before in the literature, at least outside of the nonlinear Young context).

Definition 3.36. Let b be a distributional field, W a Ct0-random variable defined on (
;F ;P)
such that P-a.s. TWb2Ct

Cx
�;� for some (; �; �) satisfying ( 3.29); we can therefore define the

random set C(x0;W ) as in Remark 3.33. We say that:

i. path-by-path uniqueness holds for the SDE ( 3.28) if

P(! 2
:C(x0;W (!)) is a singleton)= 1 8x02Rd;

ii. path-by-path wellposedness holds for the SDE (3.28) if

P(! 2
:C(x0;W (!)) is a singleton 8x02Rd)= 1:

Remark 3.37. It is clear that path-by-path wellposedness implies path-by-path uniqueness; the
opposite needs not to be true, since we are not allowed to exchange expectation and the uncountable
quantifier 8x02Rd.

Observe that, since C(x0;W (!)) only depends onW (!), both conditions depend exclusively on
the law of W and not the specific probability space in consideration. The condition �C(x0;W (!))
is a singleton� encodes the idea that, for the fixed realization W (!), existence and uniqueness of
solutions to the YDE holds (recall that under our assumption, by Theorem 1.41, C(x0;W (!)) is
always nonempty, so uniqueness is truly the important part here).

It follows that path-by-path implies pathwise uniqueness: if C(x0; W (!)) = fF (W (!))g for
P-a.e. !, where F (W (!))2Ct

, and X i are two solutions associated to (x0;W ; b), then P-a.s. it
must hold X1(!) = F (W (!)) =X2(!) Moreover, path-by-path implies uniqueness in law3.5: by
the disintegration argument from Remark 3.33, we have LP(X; x0; W )(dx; dy) = ky(dx) �(dy)
where now for �-a.e. y it holds supp ky�C(y) = fF (y)g, which implies ky= �F (y) for �-a.e. As a
consequence, LP(X;x0;W ) (and thus LP(X)) is entirely determined by �.

Remark 3.38. As we will shortly, in our setting path-by-path uniqueness will in fact imply
strong existence (and thus effectively give us everything we can desire from the SDE). We have
however cheated a little bit: in line of principle, the full condition TWb2Ct

Cx
�;� with parameters

satisfying (3.29) is not needed to give pathwise meaning to the equation, as it would suffice to ask
for TWb2Ct

Cloc
� and � 2Ct

 with (1+ �)> 1, or even more generally TWb2Ct
Cloc

� , �2Ct� with
+ �� > 1. A good reason for asking the stronger TWb2Ct

Cx
�;� (besides it being always satisfied

in our cases of interest) is that otherwise we cannot define associated the random compact set
C(x0;W ) (solutions might blow-up in finite time, we cannot guarantee their existence up to T ) and
thus compromise part of the arguments presented so far. Several facts can still be recovered, up
to the price of considering the lifetime of the solution as a stopping time � (so that the pathwise
relation (3.30) is satisfied for t2 [0; �) and potentially P(� <T )> 0); however this requires much
more technical work and makes it difficult to develop arguments at the level of the laws of solutions.

Proposition 3.39. Let b be a distributional field, W a Ct0-random variable defined on (
;F ;P)
such that P-a.s. TWb2Ct

Cx
�;� for some (; �; �) satisfying ( 3.29) and assume that path-by-path

uniqueness holds, in the sense of Definition 3.36. Then for any x0 2Rd there exists a (unique)
strong solution for the associated SDE, in the sense of Definition 3.35.

3.5. In fact, one could readapt Yamada-Watanabe's argument (Proposition 1 from [276]), based on disintegration
of measures, to show that pathwise uniqueness implies uniqueness in law also in the nonlinear Young framework,
but for the sake of simplicity we will not do it here.
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Proof. Fix any !2
 s.t. TW (!)b2Ct
Cx

�;� and C(x0;W (!)) is a singleton, C(x0;W (!))=f�(!)g.
Since b is distributional, setting b"= �" � b, it holds b"2Lt2Cx1 and therefore there exist a unique
solution X"(!) to

Xt
"(!)=x0+

Z
0

t

b"(s;Xs
")ds+Wt(!) 8t2 [0; T ]:

Moreover, by Lemma 3.31, Xt"(!) = �t
"(!) +Wt(!), where �t"(!) solves the YDE associated to

(x0; T
W (!)b"). By Lemma 3.9, TW (!)b"! TW (!)b in Ct

Cx
�¡�;� as "! 0; in particular, since

fTW (!)b"g">0 is also bounded therein, by Proposition 1.18, we have a uniform bound on J�"(!)KC.
We can therefore extract a (not relabelled) subsequence such that �"(!)! �~(!) in Ct

¡� for
some �~(!)2Ct

; combined with TW (!)b"! TW (!)b, up to choosing � small enough, we conclude
that �~(!)2C(x0; W (!)). But since C(x0; W (!)) = f�(!)g, it must hold �~(!) = �(!); as the rea-
soning holds for any possible subsequence we can extract, we conclude that the whole sequence
f�"(!)g">0 converges to �(!) and so that X"(!)!X(!) := �(!) +W (!) in Ct0.

As the argument works on a set of ! of full probability, we conclude that X"!X P-a.s.; on the
other hand, by classical SDE results, the solutions X" are adapted to the filtration FtW generated
by W , and so must be their P-a.s. limit X . In other terms, X is a strong solution to the SDE. �

Without the assumption of path-by-path uniqueness, we have a much weaker (but still of
interest) result, concerning existence of pathwise solutions.

Lemma 3.40. Let b be a distributional field, W a Ct0-random variable defined on (
;F ;P) such
that P-a.s. TWb 2 Ct

Cx
�;� for some (; �; �) satisfying ( 3.29). Then for any x0 2Rd, weak

existence holds for the associated SDE, in the sense of Definition 3.35.

Proof. The proof is actually an immediate consequence of Corollary 1.48. In fact, given the map
F as defined therein, it is enough to define X(!) := F (x0; T

W (!)b) +W (!); it is a well-defined
random variable since it is given by the composition of measurable maps and a pathwise solution
to the SDE by construction. �

Remark 3.41. As the solution X appearing in the proof of Lemma 3.40 can be expressed as
X(!)=G(W (!)) for some measurable map G, one might be tempted to conclude that it is a strong
solution. This needs not to be the case. Indeed, setting as before FtW=�(Wr :r6 t), it is true thatX
as a path is FTW -adapted, but this is not enough to guarantee thatXt is FtW -adapted for all t2 [0;T ].

3.2.2 Girsanov transform and path-by-path uniqueness
Thanks to Remark 3.37 and Proposition 3.39, in order to establish strong existence, path-by-path
uniqueness, pathwise uniqueness and uniqueness in law for the SDE (thus completing the proof of
the first part of Theorem 3.30), we are reduced to the verification of two facts:

1. under Assumption 3.29, P-a.s. TWb2Ct
Cx

�;� for some parameters satisfying (3.29);

2. path-by-path uniqueness holds for the SDE.

Point 1. will easily follows from the results from Sections 3.1.3-3.1.4 (in the case H > 1/2, under
Assumption 3.29, b is actually continuous and bounded, so we don't even need Point 1.).

Thus we are left with verifying path-by-path uniqueness; this is accomplished, as in [86] and [57],
by the use of Girsanov's theorem (which in the setting of fBm is recalled in Appendix A.1, see The-
orem A.1). The importance of Girsanov transform comes from the fact that, whenever Novikov's
condition can be checked successfully, not only it immediately yields existence and uniqueness in
law, but it also provides a huge deal of information on the behaviour of the solutionX. In particular,
it provides another measure Q, equivalent to P3.6, under which X is distributed as an fBm; this
implies that X has all the same pathwise properties as W ! We will see shortly how we can exploit
this information crucially.

3.6. Actually, the upcoming Proposition 3.44 does not even need Novikov to be verified, and in fact we will
exhibit a measure Q�P such that X under Q is distributed as a fBm (the notation is a bit misleading since in
the proof of Lemma 3.44 the roles of P and Q will be inverted). However, in our cases of interest (i.e. b satisfying
Assumption 3.29) Novikov condition will also always be satisfied, see the proof of the upcoming Proposition 3.49.
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Before proceeding further, let us present two short lemmas (still formulated at the pathwise
level) which will be needed in the following.

Lemma 3.42. Let b be a distributional fields and let w; � be continuous paths such that Twb,
Tw+�b2Ct

Cloc
� , where (1+ �)> 1 and � 2Ct

. Then for any �~2Ct
 it holdsZ

0

t

Tw+�b(ds; �~s)=

Z
0

t

Twb(ds; �s+ �~s) 8t2 [0; T ]:

Proof. Although the result follows easily from an application of Lemma 1.53, let us give a self-
contained proof. Since �; �~ are continuous, we can assume wlog that Twb; Tw+�b2Ct

Cx
�.

Assume first that b is continuous, then again by Theorem 1.6 it holdsZ
0

t

Tw+�b(ds; �~s)=

Z
0

t

bs(ws+ �s+ �~s)ds=

Z
0

t

Twb(ds; �s+ �~s):

For general b, we can consider the mollifications b" = �" � b; by Lemma 3.9, Twb"! Twb and
Tw+�b"! Tw+�b in Ct

Cx
�¡� for any � > 0; moreover by the previous step, identity (3.42) is true

for b replaced by b". Choosing � small enough so that (1+ �¡ �)>1 and taking the limit as "!0
we can conclude that (3.42) holds due to continuity of Young integrals (Point 4. of Theorem 1.6). �

Lemma 3.43. Let b be a distributional field, w a continuous path such that Twb2Ct
Cloc

1 for some
 > 1/2; assume there exists a solution � 2Ct

 to the nonlinear YDE

�t= �0+

Z
0

t

Twb(ds; �s) 8t2 [0; T ] (3.31)

such that Tw+�b2Ct
Cloc

1 as well. Then � is the unique element of Ct
 solving ( 3.31).

Proof. The proof follows from the general abstract framework of Theorem 1.54, but again we
give a self-contained argument. Assume we are given another solution �~2Ct

 to (3.31), defined on
[0; T ]; since f�t: t2 [0; T ]g[f�~t: t2 [0; T ]g is compact in Rd, we can localize everything and assume
wlog that Twb; Tw+�b2Ct

Cx
1. Setting e := �~¡ � 2Ct

, by Lemma 3.42 it holds

et=

Z
0

t

Twb(ds; �s+ es)¡
Z
0

t

Twb(ds; �s)

=

Z
0

t

Tw+�b(ds; es)¡
Z
0

t

Tw+�b(ds; 0)=

Z
0

t

A(ds; �s)

for the choice As;t(x):=Ts;t
w+�b(x)¡Ts;tw+�b(0). Observe that under our assumptions A2Ct

Cx
1 and

A(t; 0)= 0 for all t2 [0; T ], therefore by Theorem 1.20 we deduce that e� 0, namely �� �~. �

We are now ready to explain how Girsanov transform enters our framework with a general
abstract result.

Proposition 3.44. Let W be an Ft-fBm of parameter H on (
;F ; fFtgt>0;P) and let b be a
distributional drift. Suppose that:

1. There exist parameters ; �; � satisfying ( 3.29) s.t. P-a.s. TWb2Ct
Cx

�;�\Ct
Cloc

1 ;

2. for any x02Rd, Girsanov's theorem is applicable to the process W ¡h, where

ht: =

Z
0

t

bs(x0+Ws)ds=Tt
Wb(x0):

Then path-by-path uniqueness holds for the SDE (3.28), in the sense of Definition 3.36.

Proof. As already mentioned in Remark 3.37, the notion of path-by-path uniqueness does not
depend on the specific (
;F ; fFtgt>0;P) in consideration, so we can take it to be the canonical
space 
=Ct0 endowed with the fBm law P= �H. Let us define the set

A= f! 2
:TW (!)b2Ct
Cx

�;�\Ct
Cloc

1 g:
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By the usual decomposition X = � +W for pathwise solutions, we can rephase the content of
Lemma 3.43 in the following way: it holds

A\f! 2
:C(x0;W (!)) is a singletong�¡x0
for the choice

¡x0: =A\f! 2
: 9� 2C(x0;W (!)) such that TW (!)+�b2Ct
Cloc

1 g:

In light of the above, in order to conclude, it suffices to show that �H(¡x0) =1 for all x02Rd.
By hypothesis, �H(A)=1, so we only need to focus on the other set defining ¡x0. By definition

of h, the process X =x0+W satisfies

Xt=x0+

Z
0

t

TWb(ds; x0)+ [Wt¡ht] :=x0+

Z
0

t

TXb(ds; 0)+W~t; (3.32)

by hypothesis, Girsanov's theorem is applicable, so we can construct a new probability measure Q,
absolutely continuous w.r.t. to �H ; such that W~ is an Ft-fBm under Q. Observe that by the
assumptions, since TWb 2 Ct

Cx
�;�, the process h = TWb(x0) 2 Ct

 P-a.s. and thus by absolute
continuity also Q-a.s.; similarly, TXb= �x0TWb2Ct

Cloc
1 P-a.s. and Q-a.s. Applying Lemma 3.42,

we can then deduce from (3.32) that Q-a.s. X(!)=h(!) +W~ (!) with h(!)2Ct
 and

Xt(!)=x0+

Z
0

t

TW
~ (!)b(ds; hs(!)) +W~t(!);

namely, (
;F ;Q;X;x0;W~ ) is a weak solution to the SDE associated to b, in the sense of Defini-
tion 3.34. Since W~ has law �H under Q, we can finally obtain

�H(¡x0) =Q
¡
A\

�
! 2
: 9� 2C(x0;W~ (!)) such that TW~ (!)+�b2Ct

Cloc
1
	�

>Q
¡
A\

�
! 2
: h(!)2C(x0;W~ (!)) and TW

~ (!)+h(!)b2Ct
Cloc

1
	�

>Q
¡
! 2
: h(!)2C(x0;W~ (!)) and TW

~ (!)+h(!)b2Ct
Cloc

1
�
=1;

which gives the conclusion. �

With Proposition 3.44 at hand, we are only left with establishing sufficient conditions in order
for Girsanov's theorem (Theorem A.1 from Appendix A.1) to hold, which is the main goal of the rest
of this section. In particular, one needs to understand under which assumptions condition (A.10)
holds, which requires a good control of the quantity kKH¡1hkL2 in terms of h; we recall that the
operator KH

¡1 is defined by formula (A.7), in terms of fractional derivatives D� as defined in (A.4).
The following basic fact will be quite useful.

Lemma 3.45. Let f 2Ct
� such that f0=0, then D�f is well defined in Ct0 for any �<�; moreover

D�f 2C for any  < � ¡� and we have the estimate

kD�f kC.;� kf kC�: (3.33)

Proof. The statement follows from an application of Theorem 2.8 from [236]: on a finite interval
[0; T ], the space H�;0 considered therein corresponds to the functions f 2Ct

� such that f0=0. �

Lemma 3.46. Let �2 (0;1/2) and h2Ct
� for some � >�, h0=0. Then s�D�s¡�h2Lt2 and there

exists a constant C =C(�; �; T ) such that

ks�D�s¡�hkL26CkhkC�: (3.34)

In particular, for any H 2 (0;1), if h2Ct
� for some � >H+1/2, h0=0, then KH

¡1h2Lt2 and there
exists a constant C =C(H; �; T ) such that

kKH¡1hkL26CkhkC�: (3.35)
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Proof. We have

(s�D�s¡�h)(t)=¡(1¡�)¡1
�
ht+�t�

Z
0

tt¡�ht¡ s¡�hs
(t¡ s)�+1 ds

�
:

Since h2Ct
�, it clearly also belongs to Lt2, so we only need to control the term

t�
��������Z
0

t t¡�ht¡ s¡�hs
(t¡ s)�+1 ds

��������6t�Z
0

t t¡�jht¡hsj+(s¡�¡ t¡�)jhsj
(t¡ s)�+1 ds

6khkC� t�
Z
0

t t¡�(t¡ s)�+(s¡�¡ t¡�)
(t¡ s)�+1 ds

=khkC� t¡�
�
t�
Z
0

1 1

(1¡u)1+�¡�
du+

Z
0

1

u¡�
(1¡u�)
(1¡u)1+� du

�
.T khkC� t¡�:

Since � 2 (0; 1/2), t¡�2Lt2 and so we deduce that the overall expression belongs to Lt2, as well
as estimate (3.34). Regarding the second statement, the case H = 1/2 is straightforward since
KH
¡1h=h0. In the case H>1/2, combining formula (A.7) for KH

¡1 with estimates (3.33) and (3.34)
for the choice �=H ¡ 1/2, choosing "> 0 sufficiently small we have

kKH¡1hkL2. kh0kCH¡1/2+". kh0kC�;

the case H < 1/2 is analogous. �

Remark 3.47. We have given an explicit proof of Lemma 3.46, but a similar (stronger) type
of result can be achieved by a more abstract argument. Indeed, it follows from the proof of
Theorem 5.4 from [236] that ks�D�(s¡�h)kL2�kD�hkL2 and similarly kKH¡1hkL2�kDH+1/2hkL2;
we have already seen that if h2Ct

� with � >� and h0=0, then D�h is a continuous function, so
its L2-norm is trivially finite. The inclusion Ct

�� I�(Lt2) is strict and therefore the hypothesis of
Lemma 3.46 are non optimal, but they are rather useful when dealing with functions h which are
not of bounded variation.

We can now state a general result on the applicability of Girsanov transform together with a
good control on the density defining Q.

Theorem 3.48. Let (
;F ;fFtgt>0;P) be a filtered probability space,W be an Ft-fBm of parameter
H 2 (0; 1) and h be an Ft-adapted process with trajectories in Ct

�, � >H +1/2, s.t. h0=0 and

E[exp(�khkC�
2 )]<1 8� 2R: (3.36)

Then Girsanov transform for W~ =h+W is applicable, i.e. W~ is an Ft-fBm of parameter H under
the probability measure Q given by (A.9). Moreover the measures Q and P are equivalent and it
holds

EP

��
dQ

dP

�n
+

�
dP

dQ

�n�
<1 8n2N:

Proof. By hypothesis (3.36) and Lemma 3.46, it follows immediately that

E[exp(�kK¡1hkL22 )]<1 8� 2R;

therefore Novikov's criterion is satisfied and Theorem A.1 is applicable. The proof of the second
part of the statement follows from classical arguments, but we include it for the sake of complete-
ness. Let us prove integrability of the moments: for any �> 1, it holds

EP

��
dQ
dP

���
=EP

�
exp
�
�

Z
0

T

(KH
¡1h) � dB ¡�2kKH¡1hkL22 +

�
�2¡ �

2

�
kKH¡1hkL22

��
6EP

�
exp
�
2�

Z
0

T

(KH
¡1h) �dB¡2�2kKH¡1hkL22

��
1/2

EP[exp((2�2¡�)kKH¡1hkL22 )]1/2

=EP[exp((2�2¡�)kKH¡1hkL22 )]1/2<1;
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where in the second line we used the fact that the integrand in the first term is again a probability
density by Novikov's criterion, this time applied to the process h~ = 2�h. Now in order to show
that the measures Q and P are equivalent, we need to show that the inverse density dP/dQ is
integrable w.r.t. Q. Again by Girsanov, since we have W =W~ ¡h, the inverse density is given by

dP
dQ

= exp
�Z

0

T

(KH
¡1h)s � dB~s¡

1
2

Z
0

T

j(KH¡1h)sj2ds
�

where B~ now denotes the standard Bm associated to W~ , i.e. such that W~t=
R
0

t
KH(t; s) dB~s. Since

we have

EQ

�
exp
�
1
2

Z
0

T

j(KH¡1h)sj2ds
��

=EP

�
exp
�
1
2

Z
0

T

j(KH¡1h)sj2ds
�
dQ
dP

�
6EP

�
exp
�Z

0

T

j(KH¡1h)sj2ds
��

1/2

EP

��
dQ
dP

�
2
�
1/2

<1

we can conclude, again by applying Novikov, that dP/dQ is integrable w.r.t. Q. Reasoning
as before it can be shown that dP/dQ admits moments of any order w.r.t. Q, which gives the
conclusion. �

We are now finally ready to verify that Girsanov's theorem holds for the class of SDEs we are
interested in.

Proposition 3.49. Let H 2 (0;1) and b be a distributional drift satisfying Assumption 3.29. Then
for any x02Rd, Girsanov is applicable to the process W ¡h, for h as defined in Proposition 3.44.
In particular, h satisfies condition ( 3.36) and all the conclusion of Theorem 3.48 hold.

Proof. It suffices to check that the conditions of Theorem 3.48 are satisfied by h�=
R
0

�
bs(x0+Ws)ds;

up to shifting b, we can assume without loss of generality x0= 0. We treat separately the cases
H > 1/2 and H < 1/2 (the case H =1/2 being classical).

Let H>1/2; the process h belongs to Ct
H+1/2+" if and only if the map t 7!bt(Wt)2Ct

H¡1/2+".
Recall that for any "> 0, W 2CtH¡"; then by Assumption 3.29 it holds

jbt(Wt)¡ bs(Ws)j6 kbkE(jt¡ sj�H+ jWt¡Wsj�)6 kbkE(jt¡ sj�H+ JW KH¡"� jt¡ sj�(H¡")):

Since �> 1¡ 1

2H
, we can find "> 0 small enough and a constant C =C(T ; kbkE ; �; ") such that

Jb�(W�)KCH+1/2+"6C(1+ JW KCH¡"� ):

As the exponent �< 1, by Fernique's Theorem [111] we deduce that

E[exp(�khkCH+1/2¡"
2 )].E[exp(�C JW KCH¡"2� )]<1 8� 2R;

which by Theorem 3.48 implies the conclusion in this case.
The case H < 1/2 is actually even simpler, since we already have Proposition 3.26 at hand.

Indeed, observe that here Assumption 3.29 on b is exactly equivalent to requiring

 := 1¡ 1

q
+�H >H +

1

2
;

therefore, up to choosing "> 0 such that  ¡ ">H +1/2 as well, we can conclude that

E[exp(� JhKC¡"2 )]<1 8� 2R

which allows again to apply Theorem 3.48. �

We can summarize everything we have achieved so far in the next statement, which proves the
first part of Theorem 3.30.
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Theorem 3.50. Let W be an fBm of parameter H 2 (0;1) and let b satisfy Assumption 3.29. Then
for any x02Rd strong existence, pathwise uniqueness, path-by-path uniqueness and uniqueness in
law hold for the SDE ( 3.28). Moreover, given any sequence of smooth drifts bn converging to b in
E, the associated solutions Xn!X in Ct0 P-a.s.

Proof. By Corollary 3.28, if the drift b satisfies Assumption 3.29, then P-a.s. TWb 2Ct
Cx

�;�\
Ct
Cloc

1 for parameters satisfying (3.29); on the other hand, by Proposition 3.49, Girsanov is applic-
able, so by Proposition 3.44 path-by-path uniqueness holds. Pathwise uniqueness and uniqueness
in law then follow from Remark 3.37, while strong existence from Proposition 3.39.

The last claim can be obtained arguing as in Proposition 3.39. Indeed, by the linearity of the
operator b 7!TWb and the estimates coming from Corollaries 3.27-3.28, it is easy to check that if
kbn¡bkE!0, then TWbn!TWb in Ct

Cx
�;�\Ct

Cloc
1 . Then one can fix any !2
 s.t. C(x0;TW (!)b)

is a singleton (hence coinciding with f�(!)g, where X = �+W ) and, arguing by compactness as
usual starting from the Young a priori estimates (Proposition 1.18), deduce that the sequence
f�n(!)gn2N must converge in Ct

 to �(!), which implies Xn(!)!X(!) for every ! belonging to
a set of full probability. �

Assumption 3.29 is fairly general and can be applied to several classes of drifts b, especially
when we combine it with functional embeddings.

Corollary 3.51. Let H < 1/2 and b2Lt
qBp;1

� with q 2 [2;1], p2 [1;1] and �2R such that

1
q
+H

�
d
p
¡�

�
<
1
2
¡H: (3.37)

Then path-by-path uniqueness for the SDE (3.28), in the sense of Definition 3.36. Special cases
of the above result include b2Lt

qLx
p with

1
q
+H

d
p
<
1
2
¡H (3.38)

and b2Lt
qMx (here Mx denotes the space of finite signed Radon measure) with

1
q
+Hd<

1
2
¡H: (3.39)

Proof. Let �~ :=�¡d/p, then by Besov embeddings Lt
qBp;1

� ,!Lt
qB1

�~ and condition (3.37) becomes

1
q
¡�~H <

1
2
¡H () �~¡ 1

Hq
> 1¡ 1

2H
;

therefore Assumption 3.29 is satisfied and Theorem 3.50 applies. The cases (3.38) and (3.39) are
similar and based on the embeddings Lx

p ,!Bp;1
0 and Mx ,!B1;1

0 . �

Let us concluce this subsection by shortly comparing Theorem 3.50 and Corollary 3.51 to other
results existing in the literature.

In the regime H > 1/2, Assumption 3.29 coincides with the one from [226], although therein
pathwise uniqueness is shown only in the case d=1, while here we obtain path-by-path uniqueness
in any dimension. In the caseH=1/2, we can allow b2Lt1Cx� for any �>0; the result is comparable
to the one from [86], where sharper estimates allow to reach b2Lt;x1 , see also [254, 255] for further
extensions. Finally, in the regime H < 1/2 we can allow b to be truly distributional; in this case,
we recover the results from [57] and further extend them to time-dependent drifts, which might be
only integrable in time (in particular, our work [145] is to the best of our knowledge the first one to
consider the case b2Lt

qBp
� with �<0 and q <1). In the case b2Lt

qLx
p with (q; p) satisfying (3.38),

it was already shown in [194] that strnog existence and pathwise uniqueness holds3.7; here we
strengthen the result to path-by-path uniqueness.

3.7. Actually, although not stated, in the work [194] the restriction to q; p 2 [2;1] must be imposed. Indeed
the proof of Theorem 6.2 therein builds on the availability of Girsanov transform as checked in Theorem 6.1, whose
proof is based on the fact that jbj22 Lt

q/2
Lx
p/2 and Lemma 6.4, which requires q/2; p/2 2 [1;1]. Instead in our

result such a restriction is never needed (although q > 2 arises naturally from (3.38)).
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3.2.3 Stability estimates

We are now ready to complete the proof of our main result.

Proof. (of Theorem 3.30) It remains to prove the stability estimate (3.27); the argument is
taken from the proof of Theorem 3.13 from [146]. First observe that, thanks to Theorem 3.50, we
can assume without loss of generality b1 and b2 to be smooth functions, as the general case will
then follow from a standard approximation procedure. For simplicity, we will only prove (3.27) in
the case � =T , the general case being almost identical.

Recall that, by Proposition 3.49, to any solution X i we can associate a measure Qi, equivalent
to P, such that X i is distributed as x0i +W under Qi; moreover, as the proof of Proposition 3.49
shows, all the estimates involving EP[(dQ

i/dP)n] with n 2 Z only depend on kbikE and are
therefore uniform over kbikE 6M as in our assumptions. This also implies that both solutions
admit a decomposition X i=x0

i + �i+W , where there exists "> 0 such that

E[exp(�k�ikCH+1/2+"
2 )]6K(�;M)<1 8� 2R: (3.40)

Next, define Y =X1¡X2, y0=x01¡x02; for �2 [0; 1], set x0�=�x01+(1¡�)x02, ��=��1+(1¡�)�2.
Since bi are smooth, by the mean value theorem it holds

Yt=y0+

Z
0

t

[bs
1(Xs

1)¡ bs1(Xs2)]ds+
Z
0

t

(b1¡ b2)s(Xs2)ds

=y0+

Z
0

t
�Z

0

1

Dbs
1(�Xs

1+(1¡�)Xs2)d�
�
�Ysds+

Z
0

t

(b1¡ b2)s(Xs2)ds

=y0+

Z
0

t
�Z

0

1

Dbs
1(x0

�+ �s
�+Ws)d�

�
�Ys ds+

Z
0

t

(b1¡ b2)s(Xs2)ds:

Setting

At: =

Z
0

tZ
0

1

Dbs
1(x0

�+ �s
�+Ws)d�ds;  t: =

Z
0

t

(b1¡ b2)s(Xs2)ds;

we see that the above can be written compactly as an affine equation for Y of the form

Yt= y0+

Z
0

t

A_sYsds+  t= y0+

Z
0

t

AdsYs+  t

where we changed notation in the last passage to stress that the integral can be interpreted in the
Young sense, i.e.

R
0

t
Ads Ys corresponds to the sewing of ¡s;t :=As;tYs.

We claim that there exists  > 1/2 such that

E[exp(� JAKC2 )]6K(�;M) 8� 2R; E[k kC
p ]

1
p . kb1¡ b2kLq~B1�¡1: (3.41)

Let us first show how we can obtain the conclusion once we have accomplished (3.41). Since >1/2,
intepreting the affine equation for Y as a Young differential equation, we can apply Theorem 1.20
to deduce the existence of some C > 0 (also depending on T ) such that

kY kC.T eCJAKC
1/

(jy0j+ k kC).T eCJAKC
2
(jy0j+ k kC) P-a.s.

Next, taking the L

p norm on both sides and applying Minkowsky's inequality, we find

E[kY kC
p ]

1
p.E[eCpJAKC

2
]
1
p jy0j+E

�
eCpJAKC

2
k kC

p �1
p

.E[eCpJAKC
2
]
1
p jy0j+E[eC2pJAKC

2
]
1
2p E[k kC

2p ]
1
2p

.jy0j+ kb1¡ b2kLq~B1�¡1

where we used Cauchy's inequality and (3.41) several times; given the definition of Y and y0, the
final estimate is exactly (3.27) for � =T .
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It remains to prove the claim (3.41). The second inequality is realtively simple: since by asump-
tion (q~; �) satisfy (3.26) and X2 is distributed as an fBm under Q2, it holds

EP[k kC
p ]

1
p=EQ2

�Z
0

�
(b1¡ b2)s(Xs2)ds


C

p
dP

dQ2

�1
p

6EQ2

�Z
0

�
(b1¡ b2)s(Xs2)ds


C

2p
� 1
2p
EQ2

��
dP
dQ2

�
2
�1
2

=EP

�Z
0

�
(b1¡ b2)s(x02+Ws)ds


C

2p
� 1
2p
EQ2

��
dP
dQ2

�
2
�1
2

.Mkb1¡ b2kLq~B1�¡1;

where in the last passage we used the properties of Q2 and Point 2. of Corollary 3.27.
We pass to proving the first inequality in claim (3.41). Observe that, for any � 2 [0; 1], by

Jensen's inequality the process �� satisfies

E[exp(� k��kCH+1/2+"
2 )]6�E[exp(� k�1kCH+1/2+"

2 )] + (1¡�)E[exp(� k�2kCH+1/2+"
2 )]6K(�;M):

Therefore by Proposition 3.49, for any �2 [0;1] there exists Q�, equivalent to P, such thatW +��

is distributed as W under Q�; moreover we have controls on E[(dQ�/dP)n], for n 2 Z, which
are independent of �2 [0; 1]. As a consequence, applying again Jensen's inequality (and Fubini's
theorem), we have

E[exp(�JAKC2 )] =E

�
exp
�
�

sZ
0

1Z
0

�
Dbs

1(x0
�+ �s

�+Ws)dsd�

{

C

2
��

6
Z
0

1

E

�
exp
�
�

sZ
0

�
Dbs

1(x0
�+ �s

�+Ws)ds

{

C

2
��

d�=:

Z
0

1

I�d�

and now it suffices to control the quantity I� uniformly in �2 [0; 1]. But by the previous consid-
erations, we have

I�=EQ�

�
exp
�
�

sZ
0

�
Dbs

1(x0
�+ �s

�+Ws)ds
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�
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�
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��1
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EQ�

��
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dQ�

�
2
�1
2 6K(�;M)

where in the final passage we applied Proposition 3.26 (for the choice s=�¡ 1). This proves the
claim (3.41) and concludes the proof. �

3.2.4 Existence of the flow and application to transport equations

Theorem 3.30 provides very sharp conditions for the strong wellposedness of the SDE, among
the best known in the literature for H =/ 1/2 (see Section 3.4 for more details on other works and
what are expected to be the optimal results). On the other hand, we have seen that its proof
requires a sophisticated interplay of analytical (nonlinear Young integrals) and stochastic (Girsanov
transform) tools.

Here we take a step back and apply more directly the nonlinear Young theory presented in
Chapter 1, whenever Twb is sufficiently regular to allow so, thus keeping the analysis entirely at
the pathwise level. While this comes at the cost of requiring more generous assumptions on the
drift b (which is still non-Lipschitz and possibly distributional), it presents several advantages: it
immediately yields an associated random flow of diffeomorphisms for the SDE (something which
is typically quite difficult and technical to obtain working at the stochastic level) and allows to
solve the associated transport and continuity equations as well. As we will see in the Section 3.3,
this approach also works well in the context of generic additive perturbations.
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We start again by considering again the ODE driven by a drift b perturbed by a continuous
path w (which for the moment is not required to be a realization of fBm). In light of Lemma 3.31,
we will say that x solves the Cauchy problem

xt=x0+

Z
0

t

bs(xs)ds+wt 8t2 [0; T ] (3.42)

if Twb2Ct
Cloc

� for some ; � 2 (0; 1) with (1+ �)> 1, x= �+w for some � 2Ct
 and

�t=x0+

Z
0

t

Twb(ds; �s) 8t2 [0; T ]

where the integral is meaningful in the nonlinear Young sense. The next statement collects some
of the main results from Chapter 1 specialized to equation (3.42).

Theorem 3.52. Suppose that either one between the following holds:

a) there exist ; �; � satisfying ( 3.29) such that Twb2Ct
Cx

�;�\Ct
Cloc

2 , or

b) b2Lt;x1 and there exists  > 1/2 such that Twb2Ct
Cx

3/2.

Then for any x0 2 Rd there exists a unique global solution to ( 3.42); moreover the perturbed
ODE admits a flow of diffeomorphisms. If additionally Twb 2 Ct

Cx
n+1in point a), respectively

Twb2Ct
Cx

n+1/2 in point b), then the flow is locally Cn.

Proof. The statement is useful rewriting of the results from Sections 1.3 and 1.4.3, applied to
the choice A= Twb, keeping in mind as stressed several times throughout them that the global
regularity condition on A can be weakened by standard localization arguments, once growth con-
ditions are available. The claims under assumption a) follow from Theorems 1.34 and 1.35; instead
under b) they come from Remark 1.61. Here we are cheating a little bit, since Section 1.4.3 would
require @tA(t; x)=@tTtwb(x)= bt(x+wt) to be continuous, while here we only have @tA2Lt;x1 , but
we invite the reader to observe that that this doesn't create any real issue. In fact, the hypothesis
@tA2Ct;x0 is only needed in order to guarantee that any solution � to the nonlinear YDE is Lipschitz
continuous, something which is still true for b 2Lt;x1 . Alternatively, one could first replace b by
suitable mollifications b", construct the flow therein, and then pass to the limit as "! 0, which is
allowed since the estimate on kb"kC0= kb"kL16 kbkL1 is uniform. �

Remark 3.53. It also follows from the results of Chapter 1 that, under the assumptions of
Theorem 3.52, the map that sends Twb to the associated flow is continuous in suitable topologies.
For instance, in the setting a), it will be continuous from Ct

Cx
�;�\Ct

Cloc
n+1 to Ct0Cloc

n for any n>1.

At this point, we can go back to the study of the SDE (3.28) and understand whether TW (!)b
P-a.s. satisfies the assumptions of Theorem 3.52; since its conclusion at fixed ! involve the set of
all possible initial data, and not just a fixed x02Rd in consideration, we obtain a path-by-path
wellposedness result, in the sense of Definition 3.36.

Theorem 3.54. Let W be a fBm of Hurst parameter H 2 (0; 1) and let b2Lt1B1� with

�> 2¡ 1
2H

or �>max
�
3
2
¡ 1
2H

; 0

�
: (3.43)

Then path-by-path wellpossedness holds for the SDE ( 3.28), which moreover admits an associated
random flow of diffeomorphisms. If moreover

�>n+1¡ 1
2H

or �>max
�
n+

1
2
¡ 1
2H

; 0

�
(3.44)

for some n> 1, then the flow is locally Cn.

Proof. If �> 2¡ 1/(2H), we can apply Corollary 3.28 to both b and Db to deduce that P-a.s.
TWb 2Ct

Cx
�;�\Ct

Cx
2;�; we can then invoke the pathwise statement from Theorem 3.52 to any

! 2 
 such that TW (!)b satisfies the above regularity to get the conclusion. More generally, if
�>n+1¡ 1/(2H), the same argument shows that P-a.s TWb2Ct

Cx
�;�\Ct

Cx
n;�.
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The case � > 0, � > 3/2¡ 1/(2H) proceeds among similar lines, only this time we cannot
immediately invoke Corollary 3.28 to get the conclusion. However, since Db 2Lt1B1�¡1, by the
assumptions and Corollary 3.27 we can find �> 1/2 such that

=1+(�¡ 1¡ �)H > 1/2;

namely such that condition (3.24) is satisfied for s=�¡1, �>1/2 and q=1. It then follows that
(up to relabelling  > 1/2)

sup
x=/ y2Rd

E

"
exp

 
�
kDTWb(x)¡DTWb(y)k2

jx¡ y j�

!#
6K(�);

which combined with standard Garsia-Rodemich-Rumsay estimates yields DTWb2Ct
Cloc

�¡" P-a.s.;
overall TWb2Ct

Cloc
1+�¡" and we can then conclude by Theorem 3.52. The case of higher regularity

of the flow can be treated similarly. �

One can draw a nice analogy between the pathwise techniques developed here, which ultimately
lead to Theorem 3.54, and the general philosophy of rough paths theory (see e.g. the mono-
graphs [132, 134]). The idea in rough path theory is that, in order to analytically define and study
an equation of the form

dXt=�(Xt)dYt;

driven by an irregular map Y (typically Y 2Ct
 with  6 1/2), the information contained in Y

alone is not enough. Instead, one needs to enhance the imput data Y into (Y ;Y) by additionally
considering a sufficient amount of iterated integrals of Y against itself (or in general its signature); if
Y is a stochastic process, the resulting solution map will admit a so called Itô-Lyons decomposition,
namely it will consist of the composition of a measurable lift of Y into (Y ;Y) and a continuous
(actually, differentiable) map sending (Y ;Y) into the corresponding solution X .

The situation here is analogous: if b is a truly distributional drift, it is a priori unclear how to
give meaning to the perturbed ODE (3.42); in order to do so, one needs to enhance the data of the
problem by not only considering b and w singularly but also taking into account the regularity of
Twb. In the stochastic setting, this leads to a decomposition solution map decomposing into the
measurable mapW 7!TWb and the continuous maps TWb 7!�, where � is the flow of the associated
YDE.

There is however one major difference in the two settings: in rough path theory, there are
multiple (infinite) choices for the enhancement (Y ;Y), which lead to different solutions; instead
here, as we have seen in Section 3.1.1, TWb is always uniquely defined in the sense of distributions,
and the question is really just whether it is regular enough to carry out the analytical part of the
argument.

Remark 3.55. Let us shortly compare Theorems 3.30 and 3.54. The proof of Theorem 3.30 relies
crucially on Proposition 3.44, and thus the availability of Girsanov transform, in order to achieve
path-by-path uniqueness. In the regime H>1/2, this comes at the price of requiring the drift b to
be Ho�lder continuous in the variable t, as prescribed by Assumption 3.29. However, Theorem 3.54
covers nontrivial situations where Girsanov is not applicable, e.g. when H > 1/2, b 2Lt1Cx� for
�2 (0; 1) such that

�>
3
2
¡ 1
2H

;

observe that the above condition allows for nontrivial values �< 1 for every H 2 (1/2; 1).

Remark 3.56. A statement in the style of Theorem 3.54 could also be given for b2Lt
qB1

� ; going
through the same proof, applying Corollary 3.28, in order to have a locally Cn flow it would be
enough to impose the condition

�¡ 1
Hq

>n+1¡ 1
2H

:

Observe however how it gets more and more restrictive as q #2 and/or n"+1.
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Next, we pass to the study of transport and continuity equations associated to the perturbed
ODE; again, we start by considering the case of a given fixed continuous path w, where they are
formally given respectively by

@tu+ b � ru+
dw
dt
� ru=0; @t�+r� (b�)+

dw
dt
� r� =0: (3.45)

As the path w is not differentiable in general, there is no classical way to give meaning to the
above equations; however, we can reabsorb the term dw/dt �r by a simple Galilean transformation
(which is the equivalent at the Eulerian level of the change of variables �=x¡w at the Lagrangian
level). Indeed, if we set u~(t; x)=u(t; x+wt), �~(t; x)= �(t; x+wt) and b~(t; x)= b(t; x+wt), under
the assumption that w were differentiable and b smooth, equations (3.45) would be equivalent to

@tu~+ b~� ru~=0; @t�~+r� (b~�~)=0: (3.46)

Now, if b~ is a measurable function, equation (3.46) is perfectly meaningful (possibly in a weak sense)
without any regularity assumption on w, so we can define u (resp. �) to be a solution to (3.45) if
and only if u~ (resp. �~) solves (3.46)3.8. If b~ is not a function, observing that

R
0

t
b~s(x)ds=Tt

wb(x),
we can rewrite (3.46) as

u~dt+Tdt
wb � ru~t=0; �~dt+r� (Tdtwb�~t) =0 (3.47)

which can be finally given meaning as a Young transport (resp. continuity) equation like the ones
studied in Section 2.1, at least under the assumption that A=Twb is regular enough.

In conclusion, from now on, whenever referring to the transport and continuity equations
appearing in (3.45), we will systematically interpret them as (3.47). We can then restate the results
from Section 2.1 in our setting as follows.

Theorem 3.57. Let Twb, b satisfy one between assumptions a) and b) from Theorem 3.52. Then:

i. For any u0 2 Cloc
1 , there exists a unique solution to the transport equation in ( 3.45), in

the class u2Ct
Cloc

0 \Ct0Cloc
1 , which is given by ut(x) = u0(�0 t(x)), where � is the flow

associated to the perturbed ODE.

ii. For any �02Mx, there exists a unique solution to the transport equation in ( 3.45), in the
class � 2Lt1Mx\Ct

(Cc
1)�, which is given by duality by h'; �ti= h'(�0!t(�)); �0i, where

� is the flow associated to the perturbed ODE.

Proof. The statement is mostly an application of Theorem 2.9 to our setting. Although therein
global bounds Twb 2 Ct

Cx
1+�, the usual localization arguments allow to weaken them to local

bounds combined with growth conditions (in particular, �=1 would correspond to Twb satisfying
condition a) in Theorem 3.52). The case of b; Twb satisfying assumption b) instead does not follow
from Theorem 2.9 but, as explained at the beginning of Section 2.3, can be found in Section 5.1
from [145]. �

Next, we can specialize Theorem 3.57 to the case where w is sampled as an fBm.

Theorem 3.58. Let W be a fBm of Hurst parameter H 2 (0; 1) and b satisfy the assumptions of
Theorem 3.54. Then existence and uniqueness holds (in the suitable classes of solutions) for the
stochastic transport and continuity equations

@tu+ b � ru+
dW
dt
� ru=0; @t�+r� (b�)+

dW
dt
� r�=0

which are P-a.s. pathwise meaningful in the nonlinear Young sense.

Proof. Arguing as in the proof of Theorem 3.54, the assumptions therein guarantee that P-a.s.
b and TWb satisfy either condition a) or b) from Theorem 3.52; the conclusion then follows from
Theorem 3.57. �

3.8. There is a nontrivial aspect concerning this type of arguments, that will also appear in Section 5.2.2.
The idea that we can freely pass from (3.45) to (3.46) and viceversa is based on the assumption that the chain
rule holds; in the case of irregular w, this is usually achieved by assuming that we are working with a geometric
rough path. For instance, if w were sampled as a Brownian motion, to be rigorous we should be working with
du+ b �ru+ �dW � ru=0, where �dW denotes the Stratonovich differential.
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3.3 Prevalence statements
The advantage of the approach presented in Section 3.2.4 is that it solely relies on the pathwise
properties of the process W as encoded by the regulartiy of the averaged field TW (!)b. As such, it
allows to extend our considerations outside of the probabilistic framework, by addressing the more
sophisticated question:

�Do generic additive perturbations w regularise the ODE?�

Before moving further, we need to explain what we mean here by generic, as there are sev-
eral options in the literature, including topological ones like those based on Baire sets. Here
instead we will adopt the measure theoretic concept of prevalence, which is explained in detail
in Appendix A.3. Without going into too much detail here, let us only mention the following
facts: i) while being a purely analytical concept, prevalence allows for the use of probabilistic
tools in the proof; ii) in Rd, a set is prevalent if and only if it is of full Lebesgue measure.
In light of the second property, from now on whenever we say that a property holds for almost
every (a.e.) '2E, E being a suitable Banach space, it will be interpreted in the prevalence sense.

For simplicity, in the following we will often restrict to the case of time-independent drifts b3.9;
the main result of this section goes as follows (we will use the variable ' for generic continuous
paths, instead of w which will still sometimes be used for typical fBm realizations).

Theorem 3.59. Let b2B1� , �2 (¡1; 1), � 2 (0; 1) and consider the perturbed ODE

xt=x0+

Z
0

t

b(xs)ds+ 't¡ '0: (3.48)
Then the following hold:

i. If � < (2¡ 2�)¡1, then for a.e. ' 2Ct� it holds T 'b 2Ct
Cloc

1 and ODE has a meaningful
interpretation; moreover for any initial x02Rd there exists a solution to the ODE.

ii. If � < (2¡ 2�)¡1 and we fix x02Rd, then for a.e. '2Ct� there exists a unique solution to
the ODE with initial condition x0.

iii. If � < (4¡2�)¡1 then for a.e. '2Ct� the ODE is wellposed and it admits a locally C1 flow.

iv. If � < (2n+2¡ 2�)¡1 for some n> 1, then for a.e. '2Ct� the flow is locally Cn.

v. Finally, for a.e. '2Ct0 the ODE admits a smooth flow.

Let us shortly comment on Theorem 3.59. First of all, we see that, as � gets smaller (in other
terms, generic elements '2Ct� become more irregular), the solution properties of the SDE improve.
This is a rigorous formalization in the case of ODEs of the general principle �the rougher the noise,
the better the regularisation�, which is expected to hold also in many other contexts. Secondly, we
see that in the limit case of generic '2Ct0, there are no conditions on �; n anymore; this means
that we can take � 2R arbitrarily low and we will still obtain a smooth flow for the equation,
displaying the infinite regularising effect of continuous functions.

Finally, on a more technical side, as the concept of prevalence is of measure-theoretic type,
the order of quantifiers matters. This is why, in Point ii. above, we need to first fix x02Rd and
only then we can give a statement for a.e. '2Ct�; we not allowed to exchange quantifiers, namely
to provide a statement of the form �for a.e. ' 2Ct� there exists a unique solution to the ODE
with initial condition x0 for any x0 2Rd �, unless we impose more regularity on b (which yields
the stronger conclusion of Point iii.). The same argument applies for the quantifier associated
to b2B1� , which is why we fix b at the very beginning of Theorem 3.59; understanding whether
generic ' regularise the ODEs associated to all b2E, for a suitable class E, is in general a more
difficult question, which will be addressed in Chapter 5.

3.9. As will become evident from the proofs, many statement can be generalized to the time dependent frame-
work; however, like in Theorem 3.30, one then needs to take into account the time regularity of the drift b, which
makes the statements more technical and less uniform in � (with a fundamental distinction between � > 1/2 and
� < 1/2). In the regime � < 1/2, one could also consider b2Lt

qB1
� with q > 2, under the condition

� <

�
1

2
¡ 1

q

�
(n+1¡�)¡1

which leads to an associated Cloc
n flow.
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The rest of this section is devoted to the proof of Theorem 3.59; we start by an intermediate
result of interest on its own, concerning the regularity of T 'b for generic '.

Theorem 3.60. Let b2Lt
qBp

s for some q2 (2;1], s2R, p2 [2;1). Let �2 [0;1) and � 2R satisfy

� <
1
�

�
1
2
¡ 1
q

�
¡ d
p
; (3.49)

where d is the space dimension and we adopt the convention that ( 3.49) is satisfied for any � if
�=0. Then there exists  > 1/2 such that, for almost every '2Ct�, T 'b2Ct

Cx
s+� .

Similarly, if b2Lt
qB1

s and � 2 [0; 1), � 2R satisfy � < 1/(2�)

� <
1
�

�
1
2
¡ 1
q

�
; (3.50)

then there exists  > 1/2 such that, for almost every '2Ct�, T 'b2Ct
Cx

s+�;� for all �> 0.

Proof. Since this is the first example of a several prevalence results we will present throughout
this thesis, let us explain in detail the strategy. To show that a certain property P is satisfied by
almost every '2E, E being a suitable Banach space, it suffices to show that:

i. the set A: =fw2E :w satisfies Pg is Borel measurable in E;

ii. there exists a tight probability � measure on E such that �('+A)= 1 for all '2E.

This basic technique then allows for several variations, based on the properties of prevalence (for
which we refer again to Appendix A.3): for instance, instead of showing that A is Borel, it suffices
to check that it contains a prevalent Borel set; or we could write the set as a countable union
A=

S
n2NAn and show separately that each An is prevalent by using a different measure �n.

Back to the actual proof of Theorem 3.60. Arguing as in Lemma 3.6, for any  >1/2, the sets

A= fw 2Ct� :Twb2Ct
Cx

s+�g; A~= fw 2Ct� :Twb2Ct
Cx

s+�;� for all �> 0g

are Borel in Ct� (this is because F =Cx
s+� and F =Cx

s+�;� both satisfy the Fatou property, as can
be checked easily by means of Remark 3.7). In order to prove the first statement, for any given �
and � as above, it remains to find  > 1/2 and a tight probability distribution � on Ct� such that

�('+A) = �(w 2Ct� : T '+wb2Ct
Cx

s+� )= 1 8'2Ct�: (3.51)

Thanks to the translation invariance of the Bps-norm, we can reduce the problem to an easier one.
Indeed, setting b~t := �'tbt for all t 2 [0; T ], it holds b~2Lt

qBp
s and T '+wb= Twb~. In particular, in

order to show that (3.51) holds for fixed b 2 Lt
qE and for all ' 2Ct�, it actually suffices to find

 > 1/2 and a tight measure �= ��;�; on Ct� such that

�(w 2Ct� : Twb~2Ct
Cx

s+�)= 1 for all b~2Lt
qBp

s; (3.52)

observe that the dependence on the path ' has completely disappeared in (3.52). Using The-
orem 3.12 combined with Remark 3.21, we can choose �=��+" to be the law of a fBm of parameter
�+ ", up to choosing " small enough so that

� <
1

�+ "

�
1

2
¡ 1

q

�
¡ d

p
;

which is always possible thanks to the hypothesis (3.49); this yields the validity of (3.52) and thus
the conclusion for b2Bps and � 2 (0; 1).

The case b2Lt
qB1

s follows from an almost identical argument; again we take � to be the law
of a suitable fBm of parameter �+ " with " > 0 sufficiently small, ensuring that condition (3.24)
from Corollary 3.27 is satisfied by (s; �; q) with �= s+ � + "; the application of Corollary 3.27
then yields the conclusion. �
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Next, we need to identify an analytical property P ensuring that, for fixed x0, there exists a
unique solution to the ODE (3.48). In fact, this is already given us by Lemma 3.43: it suffices to
show that the ODE admits a solution x satisfying T xb2Ct

Cloc
1 , which implies it being the only

possible solution.

Proposition 3.61. Let b 2Lt1B1� , � 2 (¡1; 1), � 2 [0; 1) with � < (2¡ 2�)¡1 and fix x0 2Rd.
Then for a.e. '2Ct�, the ODE (3.48) with initial datum x0 has a unique solution.

Proof. By Theorem 3.60, under our assumptions, we can find ; �;� satisfying the usual conditions
such that the set

A~= fw 2Ct� :Twb2Ct
Cx

�;�g

is prevalent in Ct
�; therefore the ODE has a rigorous interpretation as a nonlinear YDE and we

only need to focus on establishing uniqueness. By the aforementioned Lemma 3.43, it suffices to
show the existence of another parameter �~> 0 such that the set

A: =A~\
n
w2Ct� : there exists a solution x2w+C such that T xb2Ct

Cx
1;�~
o
:

is prevalent. We start by showing that A is Borel measurable; to this end, we write it as

A=
[
N>1

AN :=
[
N>1

fw 2Ct� : kTwbkCC�;�6N; 9 a solution x such that kT xbk
CC1;�

~6N g:

It then suffices to show that each AN is closed in Ct0 (thus also in Ct�).
Let wn be a sequence of elements of AN such that wn!w, then by the proof of Lemma 3.6

we know that Twb 2 Ct
Cx

�;� with the bound kTwbkCC�;� 6 N ; since b 2 B1� , by Lemma 3.2
Tw

n
b!Twb in Ct

B1
� , which we can interpolated with the above bound to deduce that Tw

n
b!Twb

in Ct
Cx

�¡";� for any "> 0. For each n, denote by xn= �n+wn the unique solution associated to
(bn; x0) such that kT xnbk

CC1;�
~6N ; by Proposition 1.18, since kTwnbkCC�;�6N , we deduce that

supn k�nkC<1. By Ascoli-Arzelà, we can then find � 2Ct
 and extract a subsequence such that

�n! � in Ct
¡" for any "> 0; it follows that xn= �n+wn! �+w :=x in Ct0 and that

kT xbk
CC1;�

~6 liminf
n!1

kT xnbk
CC1;�

~6N:

Moreover, using the fact that Tw
n
b!Twb in Ct

Cx
�¡";� and �n! � in Ct

¡", choosing "> 0 small
enough so that +(�¡ ")( ¡ ")> 1, the continuity of the nonlinear Young integral ensures that
x is a solution to the ODE associated to (x0; b; w). Overall, this shows that w 2AN and so that
AN is closed and A is Borel measurable.

It remains to find a tight measure � on Ct� such that �('+A)=1 for all '2Ct�. As before, we
will take �= �H the law of fBm for suitable parameter H =H(�; �)>�; indeed, it will be enough
to choose H = �+ " for "> 0 small enough so that �+ "< (2¡ 2�)¡1.

Let us present the argument in the case H < 1/2 first. Observe that x 2 (w+ ') + Ct
 is a

solution to the SDE pertubed by w+' if and only if x~ :=x¡ '2w+Ct
 is a solution to the SDE

perturbed by w and associated to a new time dependent drift b~ given by b~t(�) = b(� + 't) and a
new initial datum; indeed, by definition of solution, �=x¡ (w+ ') =x~¡w must solve

�t=x0¡ '0+
Z
0

t

Tw+'b(ds; �s)=x~0+

Z
0

t

Twb~(ds; �s):

By the translation invariance of the B1� -norm, it holds b~2Cx�, kb~kL1B1� =kbkB1� . By construction,
our choice of H implies �> 1¡ (2H)¡1, so that Proposition 3.49 applies; going through the proof
of Proposition 3.44 we can then find  > 1/2 and �~> 0 (independent of '; b) such that

1=�H
�
w2C�: 9� 2C(x~0; Twb~) such that Tw+�b2Ct

Cx
1;�~
�

=�H
�
w2Ct� : Twb~2Ct

Cx
�;�; 9x~2w+Ct

 solution associated to x~0; b~ s.t. T x~b~2Ct
Cx

1;�~
�

=�H
�
w2Ct� : Tw+'b2Ct

Cx
�;�; 9x2 (w+ ')+Ct

 solution to ass. to x0; b s.t. T xb2Ct
Cx

1;�~
�
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which gives the conclusion in this case.
The case H > 1/2 is essentially identical, up to a small technical detail: since the new drift b~

is time dependent, it's not a priori clear if Proposition 3.49 applies, unless we verify the Assump-
tion 3.29 holds. But using the fact that here �> 0 and '2Ct�, it's easy to check that b~ as defined
above belongs to Ct��Cx0\Ct0Cx� and so conditions �> 1¡ 1/(2H), �� >H +1/2 are fullfilled as
soon as we take H = �+ " with "> 0 small enough. �

We are finally ready to give complete the proof of our main prevalence statement.

Proof. (of Theorem 3.59) The rigorous interpretation of the ODE mentioned in Point i . of
the statement follows from Theorem 3.60, as already explained at the beginning of the proof of
Proposition 3.61; the exstence of a solution for any x02Rd then follows from the general theory
of nonlinear Young equations, e.g. Theorem 1.41. Proposition 3.61 implies the validity of Point ii.

Points iii.-iv. follow from a combination of Theorems 3.60 and 3.52: if �< (2n+2¡2�)¡1, then
for a.e. '2Ct� it holds T 'b2Ct

Cloc
n (in addition to the usual bounds in Ct

Cx
�;�). Finally, Point v.

follows again from Theorem 3.52, only observing that for a.e. '2Ct0 it holds T 'b2Ct
Cloc

n for all
n2N (which is a consequence of countable intersection of prevalent sets being prevalent). �

3.4 Bibliographical comments and future directions

As already mentioned, the material presented in this chapter is taken from the work [145] and its
subsequent development [146]. However, compared to those works, the presentation has undergone
major modifications, for a number of reasons. On one hand, most of the material concerning
nonlinear YDEs and Young transport equations has already been exposed more abstractly in
Chapters 1-2, so that here it could be applied directly to the choice A=Twb. On the other, I have
stressed here the more probabilistic side of the results, leading to the comparison of various notions
of solutions from Section 3.2.1 (which contains some nice and elementary unpublished results like
Proposition 3.39) and stability estimates like those in Theorem 3.30 (which are applied in [146] to
prove wellposedness of distribution dependent SDEs; unfortunately, I didn't have enough time to
expose those results here, although I find them extremely interesting). Instead, in [145] the focus
is more on analytical prevalence statements like presented in Section 3.3.

On the technical side, I have implemented some improvements over the results from [145].
Therein, regularity estimates for TWb were only obtained for martingale type 2 spaces like in
Section 3.1.3, which led to the fundamental restriction of dealing with b 2 Lt

qB1
� with compact

support (so that B1� ,!Bp
� and results in the latter space could be invoked). Here this assumption

is no longer needed thanks to the results of Section 3.1.4, up to the price of working with the more
technical spaces Ct

Cx
�;� instead of having global bounds. The results for martingale type p spaces

with p< 2 (Proposition 3.24) presented here are new, although close in spirit to those obtained
in [195], where the author also observes a regularity improvement of order at most ((p0^ 2)H)¡1;
the basic Lemma 3.22 is a far reaching generalization of Lemma 45 from [143].

Let me now pass to contextualize the results here with the existing literature (which is advancing
very fast as I'm writing). First results on regularisation by noise for SDEs driven by additive
fBm were obtained by Nualart and Oukine in [226, 227], by means of Girsanov transform and
comparison principles for one-dimensional SDEs. The next major breakthrough was given by
Catellier and Gubinelli [57], who first developed the nonlinear Young integral and obtained sto-
chastic estimates for TWb for a large class of b; the work [57] was also the first one able to
provide path-by-path uniqueness results for SDEs driven by fBm and to show wellposedness for dis-
tributional drifts. The concept of path-by-path uniqueness, which stems from the work of Davie [86]
(although the terminology is due to Flandoli [115]), has been established successfully for sev-
eral classes of SDEs, although mostly in the Markovian case (i.e. Brownian or Lévy noise), see
e.g. [254, 255, 243, 244, 29]. The paper [57] is, to the best of my knowledge, also the first one
highlighting the fact that fBm trajectories with small H 2 (0; 1) have a higher regularising effect.
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An alternative approach to the study of SDEs with additive fBm has been developed by the
school of Frank Proske and collaborators, based on Malliavin calculus and a form of �local time
variational calculus�, see [6, 24, 9, 8, 7]. Among them, [24] is first one to study the higher regularity
of the flow associated to the SDE, at least in a weakly diffentiable sense, [6] is the first one to
provide examples of �infinitely regularising processes� (a feature present in the current thesis in
the behaviour of a.e. ' 2Ct0 in Theorem 3.59) and [9] presents some applications to transport
equations. However, I have the impression that this technique usually yields weaker results than
the one based on nonlinear Young integrals. In most of the aforentioned works, the drift b is taken
in the class L1;1

1;1 (a particular subcase of Lt;x1 ) and in order to obtain a locally W k;p flow, it is
usually required H <

1

2(d¡ 1+2k)
, cf. Theorem 5.2 from [24]; instead using Lt;x1 ,!Lt

1B1
0 , in our

setting we find a locally Ck flow under the less restrictive H <
1

2(k+1)
. Similarly, Theorem 3.6

from [9] shows solvability of the transport equation under H <
1

2(d+3)
, while here we only need

H < 1/4, regardless of the dimension d of the space (actually, since b2Lt;x1 gives better a priori
estimates on the time regularity of the flow, even H < 1/3 would suffice).

Finally, let me mention the work [170], which appeared around the same time I was writing the
manuscript for [145] with Max. [170] combines the approaches from [57] and [6] in a very elegant and
self-contained way; along the way, it highlights the importance of local nondeterminism properties
(cf. Remark 3.20) and yields new examples of infinitely regularising processes; it however suffers
the same �curse of dimensionality� presented above (and that will also appear in the upcoming
Chapter 5 in the context of �-irregularity): given a singular drift b 2B1� , in order to solve the
equation one must require H <C(d; �) for some function C such that C(d; �)! 0 as d!1, a
feature not present in [57] nor here.

Natural questions in view of the above are the following: a) are the results from [57] (possibly
up to the extension to time-dependent drifts presented here) close to optimal? b) can they can be
improved further by means of other approaches?

Question a) can be partially addressed by means of a scaling argument. Recall that if W is a
fBm of parameter H , then it is H-self-similar, in the sense that Wt

� :=�¡HW�t is still distributed
as W . Applying the same transformation to the SDE (let x0=0 for simplicity)

Xt=

Z
0

t

bs(Xs)ds+Wt

one obtaines that Xt
� :=�¡HX�t solves

Xt
�=

Z
0

t

bs
�(Xs

�)ds+Wt
�; bt

�(x) :=�1¡Hb�t(�
Hx):

One can now analyse how suitable norms k�kE behaves under the transformation b 7! b�, which
should allow to identify the (sub)critical spaces for the SDE. Intuitively, if kb�kE! 0 as �! 0,
the noise component of the equation should be stronger than the nonlinearity at very small times,
yielding uniqueness; conversely, if the nonlinear part is dominant for t� 1, no local wellposedness
theory is expected to hold for the SDE, unless it was true even without the noise (so that, in this
regime, the noise cannot bring any regularising effect either way). Applying the above to the choice
E=Lt

qB1
� yields

kb�kLqB1� =�
1¡H¡ 1

q
+�HkbkLqB1�

and thus suggests the subcritical regime to be

�¡ 1

Hq
> 1¡ 1

H
: (3.53)
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In particular, the results presented here are expected to be non-optimal; at the same time, for
q =1, equation (3.53) yields � > 1¡ 1/H, which is open even in the case of Brownian noise
(where it would become �>¡1). On the other hand, using the embedding Lx

p ,!B1
¡d/p, in the

case b2Lt
qLx

p and H =1/2, (3.53) reveals itself to be the classical Krylov�Ro�ckner condition

2
q
+
d
p
< 1

which was first treated in [191]. Therefore, condition (3.53) sets the benchmark for any subsequent
development, which leads me to question b).

In my opinion, the most promising tool to further advance in the above problem is the stochastic
sewing lemma (SSL) first developed by Lê in [194] (which by now admits several variants, see [154,
14, 195, 133]), which bypasses the purely pathwise approach presented here. For instance, it has
been successfully applied in the study of convergence of numerical schemes for singular SDEs in [52,
196] and can be used to provide alternative estimates for averaged fields, see [194, 195]. The case
of �threshold� regularity b2B1� with �=1¡ 1/(2H) has been treated succefully in [14, 10]3.10, at
least in the regime H < 1/2. Regarding the more established setting �> 1¡ 1/(2H), it is worth
mentioning the results obtained by Máté Gerensér in [154]; applying a shifted SSL, he extends the
results to the regime H 2 (1;1)nN3.11 without requiring any use of Girsanov theorem (which start
struggling as H increases, as already testified by Remark 3.55).

As a side problem, observe that there is a relevant gap between Theorem 3.30 (yielding existence
and uniquess of solutions) and Theorem 3.54 (where higher regularity is needed to induce a Cloc

1

stochastic flow). I'm currently working with Máté in [142] in order to improve the existing results
and we expect it to be possible to establish strong existence, path-by-path uniqueness and existence
of a Cloc

1 stochastic flow under the condition b2Lt2B1� for

�> 1¡ 1
2H

;

for all H 2 (0;1) nN. Observe that the above coincides with (3.53) for the choice q= 2, and is
thus probably close to optimal; on the other hand, we currently don't know how to extend our
techniques in order to allow smaller values of � when q gets larger. Thus we are not even close to
obtaining any answer concernig the regime �> 1¡ 1/H.

Finally, another natural question is whether one can apply similar techniques to establish
regularisation by noise for SPDEs or nonlinear SDEs with non-Lipschitz drifts. Examples of the
latter based on nonlinear Young integration, include [168] and Chapter 4 from [27]. Regarding
SPDEs (excluding the caseH=1/2 of space-time white noise, for which the literature is enormous),
early results are again due to Nualart and collaborators, see [103, 228]; more recent developments
include [43, 42] (where averaging estimates w.r.t. fractional Brownian sheet are also established).
Compared to the SDE case, this setting is however much less understood and there is no unifying
framework on how to treat these problems (assuming it's even possible to find one).

3.10. More precisely, the work [14] treats a singular SPDE driven by space-time white noise, whose regularity
theory is expected to be comparable to that of an SDE driven by fBm of parameter H =1/4. The tools developed
therein, including stochastic sewing with random controls and Davie-type SSL, have then been rigorously applied
to the SDE case in [10].

3.11. For H > 1, fBm of parameter H is defined iteratively by integrating an fBm of parameter H ¡ 1, see also
the upcoming Section 5.1.3.
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Chapter 4
Regularisation of multiplicative SDEs
Having established in Chapter 3 the strong regularising effect that additive perturbations w can
have on ODEs, one can pass to other classes of equations to see if these techniques are robust enough
to cover them as well. In particular, we deal here with multidimensional stochastic differential
equations of the form

dxt= bt
1(xt)dt+ bt

2(xt)d�t+dwt; x02Rd; (4.1)

where � is a fractional Brownian motion with Hurst parameter � >1/24.1 and w is a deterministic
continuous path. As before, we are interested in understanding how the additive perturbation
affects the SDE, by first identifying analytic conditions on w which ensure wellposedness for (4.1)
even when it fails for w� 0, and then verifying that such properties are satisfied by interesting
examples of stochastic processes.

Like in Chapter 3, let us first provide an account of the main known results for (4.1) with w�0.
Since � > 1/2, the SDE is pathwise meaningful either in the sense of Young integrals or fractional
calculus; for b1 and b2 sufficiently smooth, existence of a unique solution is classical, see e.g. [224,
132], as well as Appendix D from [38] for a general survey. Sharp conditions for wellposedness, in
the form of Osgood-type regularity for b1 and b2, are given in [273], generalizing to the case �>1/2
the results from [275, 260] for �=1/2; this includes the case of b1 and b2 spatially Lipschitz.

For d= 1 and b2� 1, we have already seen that [226] first established pathwise uniqueness
for b1 satisfying suitable Hölder regularity; this result can be extended to a broader class of non-
degenerate diffusion coefficients b2 by means of a Doss�Sussman transformation, in the style of [13].

Recently, [172] investigated the case with b1� 0 and b2 non-degenerate of bounded variation;
however, the conditions included therein for wellposedness are fairly specific and require verification
for each choice of b2.

None of the results mentioned above includes the case of general Hölder continuous diffusion
b2 and smooth drift b1. This is not due to technical limitations of the proofs; in fact, uniqueness
in general does not hold. To see this, let d=1, y be a solution to the ODE y_t= f(yt) with y0=0,
and define the process xt := y(�t). Under the assumption that f is �-Hölder with �(1 + �)> 1,
Young chain rule shows that x satisfies the SDE

dxt= f(xt) d�t; x0=0:

As a consequence, to any solution of the ODE we can associate a solution of the SDE; if uniqueness
fails for the first, it will also fail for latter. For instance we can take

f(z)=
1

1¡� jz j
�; yt

1=0; yt
2= t

1
1¡�;

which implies that xt1= 0 and xt
2= (�t)

1/(1¡�) are two different solutions starting from 0 to the
same SDE; the above procedure actually allows to construct infinitely many of them.

Therefore the wellposedness theory for SDEs driven by fBm with �>1/2 cannot be better than
the one for classical ODEs. At the same time, it is interesting to understand how the presence of w
affects these equations and whether it can cure such pathologies. The results that will be presented
here are all based on the paper [139]; to the best of our knowledge, it is the first work to consider
the presence of the additional term b2 in the regularisation by noise context.

4.1. Throughout this section we will use the noncanonical parameter � to denote the Hurst parameter of �;
the reason, as will become clear in a second, is that we will use H to measure instead the Ho�lder regularity of the
perturbation w (which itself can be sampled as another independent fBm).
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There are several reasons why it is interesting to consider (4.1), including the following:

i. For b2 sufficiently regular, the term
R
b2(x)d� is analytically well defined, so it looks like a

�mild perturbation� of (4.1) in the case b2� 0.

ii. Since we are also allowed to vary the regularity of �, we can now study the nontrivial
interplay between the parameter �, the (possibly distributional) regularity of b2 and the
Ho�lder regularity of w, which will be measured by the parameter H 2 (0; 1).

iii. Since � is not Markovian nor a semimartingale, many classical probabilistic tools (martin-
gale problems, generators, Itô formula) are again not available, which creates new challenges
and requires to adopt different strategies.

iv. As will be discussed in more detail in Section 4.3 at the end of the chapter, the case �=1/2
(i.e. � sampled as Bm, which might be regarded as the most natural class to consider after
the ODE case), seems to be significantly harder and therein our techniques break down.

From now on, in order not to hinder the main ides with technical details, we will focus for simplicity
on the additively perturbed SDE (in integral form)

xt=x0+

Z
0

t

b(xs)d�s+wt; (4.2)

namely with b1� 0 and b2� b not depending on time, but being possibly distributional. Indeed
equation (4.2) presents the same main difficulties as (4.1); once they are properly understood,
generalising the results to (4.1) is almost straightforward, as will be shown in Section 4.2.3.

Our main strategy is a variation of the one from Chapter 3, based on a change of variable
which allows for the use of the nonlinear Young formalism. Given a solution x to (4.2), � :=x¡w
formally solves

�t= �0+

Z
0

t

b(�s+ws)d�s: (4.3)

If both b and w are sufficiently regular, then (4.3) can be reinterpreted as the nonlinear YDE

�t= �0+

Z
0

t

¡wb(ds; �s); (4.4)

where we denote by ¡wb the multiplicative averaged field , formally defined as

¡wb(t; y)=

Z
0

t

b(y+wr)d�r; t2 [0; T ]; y 2Rd; (4.5)

it plays in this context the same role as the classical averaged field Twb from Chapter 3.
We can then define x to be a solution to (4.2) by imposing the ansatz x=w+�, with � solution

to (4.4); in this way we can give meaning to (4.2) for less regular choices of b and w, assuming we
are able to define ¡wb and establish its regularity. Existence and uniqueness of x then reduces to
that of �, which in turn follows from the abstract theory of nonlinear YDEs (see Chapter 1) applied
to the random field ¡wb.

There are however some major problems in achieving the program outlined above, compared
to the case of perturbed ODEs treated in Chapter 3. Recall that by Section 3.1.1, the classical
averaged field Twb is always analytically well defined as a distribution, so the only problem is to
establish its regularity, which can be accomplished probabilistically like in Sections 3.1.3-3.1.4. In
contrast, in order to define the integral appearing in (4.5) as a Young integral, we need at least to
require w to be H-Hölder continuous with �+H > 1; without this assumption, it is unclear how
to interpret neither (4.2) nor (4.5), even when b is a smooth function! At the same time, it is clear
from our earlier results (cf. Theorems 3.54-3.59) that a strong regularisation effect is expected to
hold for especially rough w, i.e. for very small values of H, thus making the requirement �+H>1
too restrictive.
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In order to overcome this difficulty, we will invoke recently developed stochastic estimates
by Hairer and Li [166], regarding Wiener integrals of the form

R
fs d�s, where � is an fBm with

� > 1/2 and f : [0; T ]!R is a possibly distributional process, see the upcoming Proposition 4.7.
Remarkably, this not only allows to define ¡wb as a random field, but also relates its space-time
Hölder regularity to that of Twb, with no restrictions on the value H 2 (0; 1) (cf. Theorem 4.12).
With this tool at hand, we can then apply the already existing results for Twb in order to define
¡wb and solve the associated equation (4.4).

Our approach presents several nice features: it identifies sufficient analytic conditions for w to
regularise the SDE, in the form of regularity requirements for Twb; it provides a pathwise solution
concept for (4.2) in terms of equation (4.4), which should be regarded as a random nonlinear YDE
rather than an SDE; no adaptedness requirements are needed to guarantee uniqueness; finally, the
existence of an associated Lipschitz flow is a direct consequence of the nonlinear YDE theory.

As an illustrative example of the kind of results we will obtain, let us provide the following
statement, which can be regarded as the main result of this chapter.

Theorem 4.1. Let b2B1� with � 2R, � and w be sampled as independent fBms of parameters
respectively � and H with � > 1/2; further assume that

�> 2¡ 1

H

�
�¡ 1

2

�
: (4.6)

Then strong existence and path-by-path wellposedness holds for the SDE ( 4.2), which moreover
admits a Cloc

1 flow of solutions.

The exact meaning of the statement will be clear from Section 4.2.2, which contains the rigorous
definition of solutions to the SDE, as well as the concepts of strong existence and path-by-path
wellposedness.

Remark 4.2. Let us make some observations on condition (4.6):

i. For any fixed � > 1/2 and �2R arbitrarily low, we can find H > 0 small enough such that
condition (4.6) is satisfied; in particular, given an arbitrarily irregulr drift b, we can find
an additive perturbation w restoring wellposedness of the SDE (4.2) and yielding a flow of
solutions (in fact, the flow can be made arbitrarily regular, see Theorem 4.34).

ii. With a slight abuse, we can consider the fBm of parameter �=1 to be given by �t=Nt,
where N is a standard Gaussian variable in Rm (this is the only possible 1-self-similar
centered Gaussian process); observe that in the limit �"1 condition (4.6) becomes �>2¡ 1

2H
,

namely we recover the first condition in equation (3.43) from Theorem 3.54.

iii. On the other hand, if we set � = 1/2, condition (4.6) degenerates to � > 2, with H not
playing any role; thus our techniques do not extend to the case of � sampled as a Bm.

iv. In order to treat non-Lipschitz drifts b, i.e. allow �< 1 in condition (4.6), we must impose
�>H+1/2 (which always enforcesH<1/2<� since �<1); in order to handle distributional
b, i.e. allow �< 0, we must impose � > 2H +1/2 (which always enforces H < 1/4).

Structure of the chapter. Section 4.1 is devoted to the rigorous definition of ¡wb and the
study of its regularity, first analytically and then stochastically. We can then apply the results to
establish wellposedness of the SDE (4.2) in Section 4.2, which contains the proof of Theorem 4.1,
as well as a discussion on further generalizations allowing to cover (4.1) as well. Finally, Section 4.3
points out some current open problems and future directions.
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Notations and conventions. Let us make here slightly more explicit the setting of equa-
tion (4.2), which will hold throughout the entire chapter. We will always work on a finite time
interval [0; T ] and � will always be sampled as an Rm-valued fBm of parameter � 2 (1/2; 1).
Instead the perturbation w will be always considered to be a deterministic, Rd-valued continuous
path (although, up to conditioning, it can be sampled as another process independent of �, like
in the setting of Theorem 4.1). The distributional field b will be matrix-valued, b2D 0(Rd;Rd�m)
(say regular for the moment), so that everyhing is consistent. The Ho�lder regularity of w will be
measured by means of the parameter H 2 (0; 1) and we will always tacitly assume H 6 �, which is
natural in view of our purposes: in order to regularise the SDE, we expect w to be rougher than �.

Like in Chapter 3, we will always assume for simplicity w0=0, so that whenever we apply the
change of variables �=x¡w we don't need to to modify the initial condition x02Rd.

Since � now denotes an fBm, we will not be allowed to use it in the notations for function
spaces; except for this detail, we will adopt mostly all the same notations from Chapters 1 and 3
concerning function spaces Lt

qB1
� , Ct

Cx
�;�, etc. To this we add the notation Cxn for the space of

continuous and bounded functions with continuous and bounded derivatives up to order n, the
notation D=Cc1 for the space of test functions and D 0 for its dual.

When dealing with continuous paths, to the established notations w 2 Ct0, w 2 Ct� we will
add also w 2Ct�¡ := \">0Ct�¡" to denote the space of all functions with are �almost� �-Ho�lder
continuous (it has a natural Frechét topology induced by the family of seminorms k�kC�¡"). Let
us also recall that we will frequently use the incremental notation xs;t=xt¡xs.

We will use both B(0; R), BR(0) and BR to denote the ball of radius R in Rn for suitable n.
As before, even when not stated explicitly, whenever we work with a stochastic process (e.g. �)

we assume the existence of an underlying complete probability space (
;F ;P); if an unspecified
filtration Ft appears, it can be taken as the natural one generated by the process. The notations
for E, L!

pE =Lp(
;E) and L!
p =L!

pRn are the same as in Chapter 3.

4.1 Multiplicative averaged fields
The main purpose of this section is to give meaning to what we will always refer in the following
to as a multiplicative averaged field , formally given by formula

¡s;t
w b(x)=

Z
s

t

b(x+wr) dhr (4.7)

for suitable continuous pahts w and h. We will proceed as follows: we will first define ¡wb analyt-
ically as a distribution, for any pair of regular enough paths w and h (not necessarily sampled as
stochastic processes), in Section 4.1.1; then we will show in Section 4.1.2 how, in the case where
h= �(!) is sampled as an fBm of parameter �>1/2, we can weaken the regularity on w by defining
¡wb probabilistically ; finally in Section 4.1.3 we develop some interpolation estimates that will be
needed in order to relate the regularity of ¡wb to that of Twb.

For notational simplicity, throughout this section (and the chapter in general), we will often
write regularity assumptions of the form w2CtH, h2Ct�; however it is easy to check that, since the
parameters H and � always appear in strict inequality, everything generalizes to the case w2CtH¡,
h2Ct�¡, so that it can be applied to the case where w and h are sampled as suitable fBms.

4.1.1 Analytic definition
The purpose of this section is to analytically define the multiplicative averaging operator ¡w as a
map from D0 to itself; to this end, we need to impose some regularity on w and h, namely require
H+ �>1 (recall that we are also always imposing H6 �). We will shortly see in Section 4.1.2 that,
for � sampled as a fBm, we can drop the condition H + � > 1, by defining ¡wb as a random field.

Recall that for any v 2Rd, � v denotes the translation operator by v, i.e. � vb(�)= b(�+ v).

Lemma 4.3. Let �2R, w 2CtH, h2Ct� and � 2 (0; 1] such that

�+ �H > 1:
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Then for any b2B1
�+� there exists a unique element of Ct�B1� , which we denote by ¡wb and which

we will refer to as a multiplicative averaged field, such that for any s6 t in [0; T ] it holds

k¡s;tw b¡ b(�+ws)hs;tkB1� . jt¡ sj�+�H:

Moreover there exists a constant C =C(�+ �H; T ) such that for any b2B1
�+� it holds

k¡wbkC�B1� 6CkbkB1�+�JhKC�(1+ JwKCH): (4.8)

In particular, the map ¡w: b 7!¡wb is an element of L(B1
�+�;Ct

�B1
� ). If �> 0, then ¡wb defined

as above coincides with the pointwise map defined by the Young integral

(¡s;t
w b)(x)=

Z
s

t

b(x+wr)dhr: (4.9)

Proof. All the statements easily follow from an application of sewing techniques (cf. Lemma 1.1).
For any s6 t, set �s;t := (�wsb)hs;t2B1� ; it holds ��s;u;t=(�wsb¡ �wub)hu;t with the estimates

k��s;u;tkB1� =k�wsb¡ �wubkB1� jhu;tj. kbkB1�+� jws;uj
� jhu;tj

6kbkB1�+�JwKCH
� JhKC�jt¡ sj�+�H ;

where we used the basic estimate k� yb¡ � zbkB1� . jy¡ z j�kbkB1�+� given by Lemma A.7.
The sewing lemma thus implies the existence and uniqueness of ¡wb, as well as the bound

k¡s;tw b¡ b(�+ws)hs;tkB1� . kbkB1�+�JwKCH
� JhKC�jt¡ sj�+�H:

We then have

k¡s;tw bkB1� .k�wsbkB1� jhs;tj + kbkB1�+�JwKCH
� JhKC�jt¡ sj�+�H

.jt¡ sj�kbkB1�+�JhKC�(1+ JwKCH);

which implies the bound (4.8). The last claim follows from the fact that the Young integral in (4.9)
corresponds to the sewing of h�s;t; �xi and thus must coincide with h¡s;tw b; �xi. �

The operator ¡w behaves similarly to the classical averaging operator Tw; we summarize some
of its properties in the following two lemmas, which are exact analogues of Lemmas 3.3 and 3.9
from Chapter 3.

Lemma 4.4. Let ¡wb be given as in Lemma 4.3. Then the following properties hold:

i Averaging and space differentiation (in the distributional sense) commute:

@i¡
wb=¡w@ib 8 b2B1� ; i=1; : : : ; d:

ii Averaging and spatial convolution commute: for any K 2Cc1 it holds

K � (¡wb) =¡w(K � b) 8 b2B1� :

iii If b is compactly supported, then so is ¡wb, with

supp¡s;tw b� supp b+B(0; kwk1) 8s6 t6T

Similarly, if b1 and b2 coincide on B(0;R), then ¡wb1 and ¡wb2 coincide on B(0;R¡kwk1).

iv The operator ¡w can be extended to an operator from D 0 to itself by the duality formula

h¡s;tw  ; 'i := h ;¡s;t¡w'i 8 2D 0; '2Cc1:

Proof. The proof is analogue to that of Lemma 4.3. Indeed, by setting �[b]s;t := (�wsb)hs;t, it is
immediate to check that

@xi�[b] =�[@xib]; K ��s;t[b] =�s;t[K � b]

and so the same relations must hold between the respective sewings, proving points i. and ii..
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The first part of point iii. follows from the fact that, for any s < t, �s;t[b] is supported on
supp b+B(0; ws)� supp b+B(0; kwk1) and the second part by applying a similar reasoning to
b1¡ b2. Finally, it follows from Lemma 4.3 and point iii. that ¡s;tw continuously maps Cc1 into
itself; therefore also the dual definition from D 0 to itself is meaningful. Whenever  and ' are both
smooth, we have the relation

h(�ws )hs;t; 'i= h ; (�¡ws')hs;ti

which implies the same relation for the respective sewings, i.e. h¡s;tw  ; 'i= h ;¡s;t¡w'i. �

Lemma 4.5. Let b2D0 be such that ¡wb2Ct
Cx

�;� for some ;�2(0;1) and �2 (0;1). Let f�"g">0
be a family of standard mollifiers and set b"= �"�b. Then for any ">0 it holds ¡wb"2Ct

Cx
�;� with

k¡wb"k;�;�. k¡wbk;�;�; (4.10)

moreover ¡wb"!¡wb as "! 0 in Ct
Cx

� 0;� for any � 0< �.

Proof. It is enough to prove the claim for �2 (0;1), as the other cases follow by repeating the same
argument forDk¡wb=¡wDkb. The bound (4.10) follows from point iii. of Lemma 4.4, since we have

k¡wb"k;�;R= k�" �¡wbk;�;R. k¡wbk;�;R+".R�k¡wbk;�;�

where we used the fact that �" is supported in B" and (R+ ")��R� since R> 1 and "2 (0; 1). By
properties of convolutions, for any s< t and any x2BR(0) it holds

j¡s;tw b"(x)¡¡s;tw b(x)j. "�k¡s;tw bk�;R+". "�R�jt¡ sjk¡wbk;�;�;

from here, the argument is based on interpolation estimates like in Lemma 3.9. �

Remark 4.6. For simplicity, we focused on the case b2B1� , as it is the natural class of spaces
where to formulate the main results of this chapter. But it is clear that many statements from this
specific section, like Lemma 4.3, extend immediately to general b2Bp;q� , as the proofs essentially
rely only on the property k� yb¡ � zbkBp;q� . jy¡ z j�kbkBp;q�+� which is granted by Lemma A.7.

4.1.2 Stochastic estimates
We will now assume that h= �(!) is sampled as a fractional Brownian motion with � > 1/2, with
trajectories in Ct

�¡ (recall that all the results from Section 4.1.1 still apply under this regularity
condition). In this case, thanks to the more specific probabilistic structure, we can extend the
definition of ¡wb to allow less restrictive assumptions of b and w; moreover, we will show that ¡wb
inherits the spatial regularity of Twb.

Our starting point is an estimate for Wiener-type integrals due to Hairer and Li [166], which we
recall first. In the next statement, for �2 [0;1], f 2Ct¡� must be interpreted as t 7!

R
0

t
frdr2Ct1¡�;

the quantity kf kC[s;t]¡� then correspond to the Ct
1¡�-norm of u 7!

R
s

u
fr dr, for u2 [s; t].

Proposition 4.7. (Lemma 3.4 from [166]) Let � be a fBm with Hurst parameter � > 1/2 and
fix 06�< � ¡ 1/2 as well as s> 0. Let r 7! fr be smooth and such that fr with r> s measurable
w.r.t. Fs. Then, for t> s with jt¡ sj6 1 and 26 p< q, one has the boundZ

s

t

fr d�r


L!
p
.
kf kC[s;t]¡�


L!
q
jt¡ sj�¡�

where kf kC[s;t]¡� denotes the negative Ho�lder norm on [s; t].

By linearity and density, this immediately allows to extend the notion of integral against � to
any integrand in L!

qCt
¡� (satisfying the above measurabily assumption), for any 06 �< � ¡ 1/2;

such an integral may no longer agree with the Young one.

In fact, we will not need Proposition 4.7 in its fulls generality, rather only the simpler case
where we allow f to be a deterministic (possibly distributional) function.
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Proposition 4.8. Let � be a fBm with Hurst parameter � > 1/2, f : [0; T ]!R be a smooth
deterministic function; for any s < t,

R
s

t
fr d�r is a well defined centered Gaussian variable. For

any  > 3/2¡ � there exists a constant C =C(; �; T ) such that its variance can be controlled byZ
s

t

fr d�r


L!
2
6C

Z
0

�
fr dr


C
jt¡ sj+�¡1 8 [s; t]� [0; T ]:

By density and linearity, this immediately allows to extend the definition of
R
s

t
fr d�r as a centered

Gaussian variable satisfying ( 4.8) to any distribution f such that
R
0

�
frdr2Ct

 for some >3/2¡�.

Proof. For smooth f , the fact that
R
s

t
fr d�r is well defined, Gaussian and centered is classical:

for instance we can define it by means of Young integrals (so that it is the limit of Gaussian sums
of the form

P
fti�ti;ti+1) or by integration by parts as

R
s

t
fr d�r= (f�)s;t¡

R
s

t
�rfr
0dr. Since f is

deterministic, estimate (4.8) then follows from Proposition 4.7 for the choice p= 2, q =1 and
=1¡�: indeed �<�¡1/2 is then equivalent to >3/2¡�. The general case follows by standard
density arguments. �

Remark 4.9. From an analytic point of view, Propositions 4.7-4.8 are quite magical: if both f
and d� are negative distributions, there shouldn't be any way to define their product f d� as a
distribution (which is somewhat equivalent to defining the process

R
0

�
fd�). There is however a

simple heuristical argument explaining why this works and leads to the above prescriptions on the
parameter �, �.

Recall that, for �>1/2, fBm can be loosely written as d�=K�¡1/2dW , whereW is a standard
Bm and K� is a fractional operator of integral type; in terms of regularity counting, both K�¡1/2
and its dual act as the fractional integral I�¡1/2, in the sense that they (almost) map W s;p into
W s+�¡1/2;p. Assuming this to be true, we haveZ

s

t

fr d�r=

Z
s

t

fr (K�¡1/2dW )r=

Z
s

t

(K�¡1/2
� f)r dWr

where the latter integral would be well defined as soon as K�¡1/2
� f 2Lt2, which roughly amounts

to f 2Wt
1/2¡�;2; if we already know that f 2 Ct¡�, it then suffices ¡� > 1/2¡ �, which yields

K�¡1/2
� f 2Ct

�¡1/2¡�. Assuming further that K�¡1/2
� has the right �recentering� property, namely

that (K�¡1/2
� f)s=0, by Itô isometry we find

E

���������Z
s

t

fr d�r

��������2�12 =E�Z
s

t

j(K�¡1/2
� f)r j2dr

�1
2

.kK�¡1/2
� f kC�¡1/2¡�E

�Z
s

t

jr j2(�¡k)¡1dr
�1
2 . kf kC¡�jt¡ sj�¡�

which is exactly estimate (4.8). In fact, after writing the work [139], we realized that in the special
case of deterministic f , a sharper version of Proposition 4.8 was already available in the literature,
see Theorem 3.3 from [185].

Proposition 4.8 immediately extends to the case where f 2D 0(R;Rd�m) and � is a Rm-valued
fBm by reasoning componentwise. Keeping in mind that we are interested in estimating ¡wb, setting
fr=b(x+wr), we see that ¡s;tw b(x):=

R
s

t
frd�r is a well-defined Gaussian random variable as soon asZ

0

�
b(x+wr)dr=T

wb(�; x)2Ct
 for some  >

3
2
¡ �:

The above argument however only concerns the variable ¡s;tw b(x) at fixed s; t; x; defining the whole
random field (t; x) 7!¡wb(t;x) and establishing its space-time Ho�lder regularity requires a bit more
work. We start by deriving a priori estimates in the case where ¡wb is alearedy rigorously well-
defined.
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Lemma 4.10. Let b2Cx2, � be an fBm of parameter � >1/2 and w2CtH a deterministic path such
that � +H > 1. Define the multiplicative averaged field ¡wb pathwise as in Lemma 4.3; namely,
for any ! 2
 such that �(!)2Ct�¡, set

¡s;t
w b(x)(!) :=

Z
s

t

b(x+wr)d�r(!): (4.11)

Then for any  > 3/2¡ � there exist constants �;K, only depending on �; ; T, such that for any
�; �2 (0; 1) it holds:

E

"
exp

 
�

k¡s;tw b(x)k2

kTwbkCC0;�
2 jt¡ sj2(+�¡1)R2�

!#
6K 8x2BR; 8R> 1; (4.12)

E

"
exp

 
�

k¡s;tw b(x)¡¡s;tw b(y)k2

kTwbkCC�;�
2 jx¡ y j2�jt¡ sj2(+�¡1)R2�

!#
6K 8x; y 2BR; 8R> 1; (4.13)

E

"
exp

 
�

kr¡s;tw b(x)k2

kTwbkCC1+�;�
2 jx¡ y j2�jt¡ sj2(+�¡1)R2�

!#
6K 8x; y 2BR; 8R> 1: (4.14)

Proof. The results are a direct application of Proposition 4.8. It follows from Lemma 4.3, for
the choice �= �=1, that ¡wb2Ct�¡Cx1, as well as Twb2Ct1Cx2, so that ¡s;tw b(x) and r¡s;tw b(x) are
classically well defined. Since they are also centered Gaussian variables, in order to obtain estimates
of the form (4.12)-(4.14) it is enough to control their variance; it holds

k¡s;tw b(x)kL!2 =
Z

s

t

b(x+wr)d�r


L!
2

.
Z

0

�
b(x+wr)dr


C
jt¡ sj+�¡1. kTwbkCC0;�jt¡ sj+�¡1R�

whenever x2BR; similarly for x; y 2BR we have

k¡s;tw b(x)¡¡s;tw b(y)kL!2 .kTwb(�; x)¡Twb(�; y)kC jt¡ sj+�¡1
.kTwbkCC�;�jx¡ y j� jt¡ sj+�¡1R�:

Finally (4.14) follows from r¡wb=¡wrb and an application of 4.13 with b replaced by rb (we are
also using the fact that Twrb=rTwb). �

We can now combine the estimates from Lemma 4.10 with suitable versions of the Garsia-
Rodemich-Rumsey lemma like those in Appendix A.5; we then obtain the following result.

Corollary 4.11. Let b1, b2, w1, w2, � be as in Lemma 4.10,  > 3/2¡ � and �; �2 (0; 1) be fixed
parameters. Then for any choice of (p;  0; � 0; �0) such that

p2 [1;1];  0< + �¡ 1; � 0< �; �<�0

there exists a constant C (depending on T and the above parameters) such that

E[k¡w1b1¡¡w2b2k
C
0
C�
0;�0

p ]6C kTw1b1¡Tw2b2k
CC�;�
p : (4.15)

Proof. As the multiplicative averaging acts linearly, it suffices to show the statement for a single
Twb. Combining estimates (4.12)-(4.13) of Lemma 4.10 with Corollary A.30 and Remark A.31 from
Appendix A.5, for any "> 0 we fine the existence of constant �0; K 0> 0 (depending on " and the
previous parameters, but not on the specific Twb in consideration) such that

E

"
exp

 
�0
k¡wbkC+�¡1¡"C�¡";�+"

2

kTwbkCC�;�
2

!#
6K 0:
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Moments estimates of the form (4.15) for any p2 [1;1) then immediately follow by choosing ">0
small enough in function of  0; � 0; �0. �

We are now finally ready to extend the definition of ¡wb to suitable distributional fields. The
next statement represents the main result of this section; for completeness, it includes some of the
properties already established so far.

Theorem 4.12. Let � be a fBm of Hurst parameter � > 1/2. Then for any deterministic b2Cx2
and w 2CtH with H + � > 1, it's possible to define the averaged field ¡wb in ( 4.7) pathwise as a
Young integral with h= �(!); ¡wb can be regarded as a random field from [0; T ]�Rd to Rd.

The definition extends continuously in a unique way to any pair (b;w) with b2D 0, w2Ct0 such
that Twb2Ct

Cx
�;� for some  > 3/2¡ �, �; �2 (0; 1). In that case

¡wb2Lp(
;Ct
 0Cx

� 0;�0) 8 p<1;  0< + �¡ 1; � 0< �; �0>�

and there exists C>0 (depending on all the above parameters) such that for any (bi;wi) satisfying
Tw

i
bi2Ct

Cx
�;� it holds

E[k¡w1b1¡¡w2b2k
C
0
C�
0;�0

p ]6CkTw1b1¡Tw2b2k
CC�;�
p : (4.16)

More generally, estimate ( 4.16) holds replacing � 0, � with n+ � 0, n+ � respectively, for any n2N;
namely, ¡wb inherits higher space regularity from Twb.

Proof. The proof is divided in two natural steps: we will first show that, thanks to Corollary 4.11,
we can extend the definition of ¡wb to the case of regular b and continuous (but not necessarily
Hölder regular) w; then we will show that, under the assumption that Twb is sufficiently regular,
the definition further extends to the case of distributional b.

Step 1. Let b2Cx2, wn be a sequence in Ct1 such that wn!w in Ct0. Our aim is to show that
the sequence ¡w

n
b is Cauchy in a suitable weighted Hölder space and thus admits a unique limit,

which we define to be ¡wb. In particular, while we cannot define anymore the field ¡wb analytically
as done in Section 4.1.1, it is still well defined as a random variable.

Since b2Cx2, for any n;m2N we have the estimates��������Z
s

t

b(x+wr
n)dr¡

Z
s

t

b(x+wr
m)dr

��������6 kbkC1Z
s

t

jwrn¡wrmjdr6 kbkC1kwn¡wmkC0jt¡ sj

and similarly, for fixed n and any x; y 2Rd,��������Z
s

t

b(x+wr
n) dr¡

Z
s

t

b(y+wr
n) dr

��������6 kbkC1jx¡ y jjt¡ sj:
One can then apply triangular inequality and interpolate the two inequalities above to deduce that,
for any � 2 (0; 1), it holds

jTs;tw
n

b(x)¡Ts;tw
m

b(y)j. kbkC1jx¡ y j�kwn¡wmk11¡� jt¡ sj:

Since wn!w in Ct0, the sequence fwngn is Cauchy in Ct0; by the above estimate, fTwnbgn is also
Cauchy in Ct

1Cx
�, for any � < 1. Combined with (4.15), this implies that for any  0< �, � 0< �,

�0> 0 and p2 [2;1) it holds

E[k¡wnb¡¡wmbk
C
0
C�
0;�0

p ]. kTwnb¡TwmbkC1C�
p .kbkC1 kwn¡wmk11¡�:

Therefore the sequence f¡wnbgn is Cauchy in Lp(
;Ct
 0Cx

� 0;�0) and it admits a unique limit, which
we define to be ¡wb. It follows from the arguments above that this is a good definition, as it does
not depend on the chosen sequence fwngn such that wn!w. By construction, inequality (4.16)
extends to any pairs (wi; bi) with wi2Ct0 and bi2Cx2.

More generally, by iterating the reasoning to Dkb for k6n, the above procedure shows that if
b2Cxn+1 and w is a continuous path, then ¡wb belongs to Ct

 0Cx
n+� 0;�0.

Step 2. We now want to pass to the case in which b is distributional, w is continuous and
Twb2Ct

Cx
�;� (resp. Ct

Cx
n+�;�) for some  > 3/2¡ �.
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By Lemma 3.9, we can choose a family of mollifiers f�"g">0, a parameter #>0 arbitrarily small
and a sequence "n!0 such that, setting bn= b"n= �"n� b, it holds that Twbn!Twb in Ct

Cx
�¡#. In

particular, fTwbngn is a Cauchy sequence in Ct
Cx

�¡#;� and choosing # such that ¡#> 3/2¡ �,
by the previous step ¡wbn are well defined random fields; moreover for any  0<  + � ¡ # ¡ 1,
� 0< �¡#, �0>� and p2 [2;1) it follows from Corollary 4.11 that they satisfy

[k¡wbn¡¡wbmkC 0C� 0;�0
p ]. kTwbn¡TwbmkCC�¡#;�

p : (4.17)

This implies that f¡wbngn is a Cauchy sequence in Lp(
;Ct
 0Cx

1+� 0;�0) and thus admits a unique
limit, which we define to be ¡wb. It follows from Lemma 3.9 that ¡wb does not depend on the chosen
family of mollifiers. More generally, given any sequence of smooth functions bn s.t. Twbn!Twb in
Ct
Cx

�¡#;�, the above estimates show that the associated multiplicative averaged fields ¡wbn must
converge to ¡wb. Moreover, for any pair of random fields ¡w1b1, ¡w2b2 defined in this way, for wi

continuous paths and bi possibly distributional fields, we have the inequality

E[ k¡w1b1¡¡w2b2kC 0C� 0;�0
p ]. kTw1b1¡Tw2b2kCC�;�

p

which can be rephrased as the fact that the multiplicative averaging, seen as a map Twb 7! ¡wb

from Ct
Cx

�;� to Lp(
;Ct
 0Cx

� 0;�0), is linear and continuous.
The general case of Twb2Ct

Cx
n+�;� follows as before by iterating the reasoning to the deriv-

atives DkTwb=TwDkb. �

Remark 4.13. If w 2CtH with �+H > 1, the procedure from Theorem 4.12 is consistent with
the one from Section 4.1.1, namely the random field ¡wb is a regular representative of the random
distribution defined pathwise by means of Lemma 4.3.

Remark 4.14. Several properties satisfied by the analytical definition of ¡wb from Lemma 4.4
extend by the approximation procedure to the more general definition of Theorem 4.12, once they
are interpreted as equalities between random variables. For instance it is still true that, forK 2Cc1,
K �¡wb=¡w(K � b); similarly, if both Twb and Twrb are regular enough, then ¡wrb=r¡wb.

Remark 4.15. The proof of Theorem 4.12 also contains the following fact: if Twb2Ct
Cx

n+�;�,
then it's possible to find a sequence (bn; wn) with bn2Cx1, wn2Ct1 such that bn! b in the sense
of distributions, wn!w in Ct

0 and ¡w
n
bn! ¡wb in Lp(
;Ct

 0Ct
n+� 0;�0) for any  0<  +H ¡ 1,

� 0< � and �0>�.

4.1.3 Regularity in terms of classical averaged field
With Theorem 4.12 at hand, we are able to relate the regularity of ¡wb to that of Twb, although
in a slightly abstract fashion. The next step is to derive explicit conditions on Twb, ensuring that
¡wb is regular enough to apply the �nonlinear Young machinery�; we start with a simple observation.

Remark 4.16. By Theorem 4.12, if Twb2Ct
Cx

1+�;� for any � 2 (0; 1] and any �> 0 and it holds

 >
3
2
¡ �;

then it's possible to find parameters  0, � 0, �0 so that P-a.s. ¡wb2Ct
 0Cx

1+� 0;�0 and

 0>
1
2
;  0(1+ � 0)> 1; � 0+�06 1;

namely the usual conditions under which we know how to solve the associated nonlinear Young
equation (e.g. by Corollary 1.24).

Next, we need some conditions relating the regularity of Twb in a suitable space-time Ho�lder
scale to another. This is accomplished by means of the following more general interpolation esti-
mate in weighted Ho�lder spaces, which is of interest on its own.
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Lemma 4.17. Let f 2Cx
�;�\B1� with �2R, �; �> 0 and � >�. For any � 2 [0; 1], set

�� := (1¡ �)�+ ��; �� := ��:

Then for any �>¡�/(�¡�) it holds
kf kC��;��. kf kB1�

1¡� kf kC�;�
� :

Proof. Although weighted Ho�lder (and more generally weighted Besov) spaces have already
appeared in the literature (see e.g. [221]), we haven't found results for our specific setting, so
we give a self-contained proof.

For simplicity, we will only consider the case � 2 (0; 1], the general one being similar. Also,
we will only consider ��=¡�/(� ¡�), namely we will provide a control on kf k

C
0;�

��; the general
inequality then follows by interpolating between kf k

C
0;��� and kf kC�;�, which can be done in an

elementary way.
Let us start by providing a bound in k�nf kC0;��� for n 2N. Recall that �nf =Kn � f where

Kn(x) =2
ndK(2nx) for a function K 2S satisfying

R
Rd
K(x)dx=0; therefore

j�nf(x)j=
��������Z

Rd
K(y)[f(x+2¡ny)¡ f(x)] dy

��������
.
Z
Rd
jK(y)j kf kC�;� 2¡n� jy j� (jxj�+2¡n�jy j�) dy

. kf kC�;� 2¡n� (1+ jxj�):

As the bound holds for any x2Rd, we conclude that k�nf kC0;�. kf kC�;� 2¡n�; recall that from
the definition of f 2B1� we also have k�nf kC06 kf kB1� 2¡n�.

Now consider x2BR(0); we can estimate jf(x)j by means of the series of LP blocks as follows:

jf(x)j6
X
n<N

j�nf(x)j+
X
n>N

j�nf(x)j

6
X
n<N

k�nf kC0+
X
n>N

k�nf kC0;�R�

.kf kB1�
X
n<N

2¡n�+ kf kC�;�R�
X
n>N

2¡n�

.kf kB1� 2¡N�+ kf kC�;�R� 2¡N�:

Choosing N such that 2N(�¡�)�kf kC�;�R�/kf kB1� then yields

sup
x2BR(0)

jf(x)j. kf kB1�
1¡�� kf kC�;�

�� R��� 8R> 1

and thus the conclusion. �

Remark 4.18. We imposed the restriction �>¡�/(�¡�) because technically we haven't defined
the spaces Cx

�;� for � < 0. This could be accomplished by working with Littlewood-Paley blocks,
imposing that f 2Cx

�;� if kf kC�;� := supn f2n�k�nf kC0;�g<1; in that case, one could extend
the interpolation inequality from Lemma 4.17 for any �2 [0; 1]. We refrain from going into further
detail on the topic since it is outside the scope of our applications.

Corollary 4.19. Let b2B1� be such that Twb2Ct
Cx

�;� with �<� and set ��, �� as in Lemma 4.17;
also define � := 1¡ �+ �. Then for any � 2 [0; 1] with �>¡�/(�¡�) it holds

kTwbkC�C��;��. kbkB1�
1¡� kTwbkCC�;�

� :

Proof. Recall that if b 2B1� , then Twb 2Ct1B1� with kTs;tw bkB1� 6 jt¡ sjkbkB1� ; combined with
Lemma 4.17, this implies

kTs;tw bkC��;��. kTs;tw bkB1�
1¡� kTs;tw bkC�;�

� . kbkB1�
1¡�kTwbkCC�;�

� jt¡ sj1¡�+��

which readily implies the conclusion. �
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Remark 4.20. We conclude this section with a short observation for future use, concerning the
regularity of the process t 7! ¡wb(t; x0) at a fixed x02Rd. If Twb2Ct

Cloc
0 for some  > 3/2¡ �,

then for any  0< + �¡ 1 and any x02Rd there exists �= �(x0; 
0;  ; �) such that

E[exp(�k¡wb(�; x0)kC 0
2 )]<1;

indeed this follows immediately from estimate (4.12) and Corollary A.27.

4.2 Applications to perturbed multiplicative SDEs
Having successfully defined ¡wb, we are now ready to study the associated SDE.

We will first show in Section 4.2.1 how the nonlinear Young interpretation of the equations is
consistent with the standard one, whenever w, h and b are regular enough, but ¡wb already provides
useful information in order to establish uniqueness of solutions. Then in Section 4.2.2 we pass to
the more interesting case where the equation doesn't have a meaningful standard interpretation
anymore (due to lack of regularity of either b or w); this part contains the main results of the chapter
and shows the efficiency of the nonlinear Young machinery in solving the SDE and quantifying
the regularising effect of the perturbation w. Finally, we discuss in Section 4.2.3 some further
generalizations of the main results.

4.2.1 Classical Young equations as averaged equations
The content of this section, similarly to that of Section 4.1.1, is entirely analytic and holds also
when � is replaced by any deterministic path h 2 Ct� (as before, all the statements generalize
immediately to the h2Ct�¡ as well). As before, we will always tacitly assume H 6 �.

We start by showing that the nonlinear YDE formulation of the problem is a natural general-
isation of the original one, provided b and w are regular enough.

Lemma 4.21. Let b2Cx2, w2CtH and h2Ct� with � >1/2, �+H>1. Then for any x02Rd there
exists a unique solution x2CtH to the perturbed Young differential equation

xt=x0+

Z
0

t

b(xs)dhs+wt 8 t2 [0; T ]; (4.18)

in particular, x= �+w, where � 2Ct� is the unique solution to the nonlinear YDE

�t= �0+

Z
0

t

¡wb(ds; �s): (4.19)

For any �2(0;1) satisfying �+�H>1 there exists a constant C=C(�;�;H;T ) such that � satisfies
the a priori estimate

J�KC�6C(1+ kbkC�2 JhKC�2 )(1+ JwKCH): (4.20)

Proof. It is easy to check that x2CtH solves (4.18) if and only if �=x¡w2CtH satisfies

�t= �0+

Z
0

t

b(�s+ws)dhs= �0+

Z
0

t

b~(s; �s)dhs 8 t2 [0; T ]

where b~(t; z) := b(z+wt); by properties of Young integrals, any such � must also belong to Ct�. The
drift b~ satisfies

jb~(t; z1)¡ b~(s; z2)j+ jrb~(t; z1)¡rb~(s; z2)j. kbkC2jz1¡ z2j+kbkC2JwKCH jt¡ sjH

which by classical results implies existence and uniqueness of solutions to the YDE associated to
b~ in the class Ct�, see for instance Theorem 2.1 from [224] or Section 3 from [72].

In order to show that � solves (4.19), it is enough to prove thatZ
0

�
b(ws+ �s)dhs=

Z
0

�
¡wb(ds; �s):
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Since b2Cx2 and �+H > 1, by Lemma 4.3 we have ¡wb2Ct�Cx1 and the nonlinear Young integralR
0

�
¡wb(ds; �s) is well defined (because �2Ct� and � > 1/2). By the respective definition of the two

integrals, it holds��������Z
s

t

b(wr+ �r)dhr¡
Z
s

t

¡wb(dr; �s)

��������=��������Z
s

t

b(wr+ �r)dhr� b(ws+ �s)hs;t�¡s;tw b(�s)¡
Z
s

t

¡wb(dr; �s)

��������
.jt¡ sjH+�+

��������b(ws+ �s)hs;t¡Z
s

t

b(�s+wr)dhr

��������.jt¡ sjH+�
which implies that they must coincide.

We now move on to prove (4.20). For any 0<�<T , denote by J�K�;� (resp. J�KH;�) the quantity

J�K�;�= sup
jt¡sj6�

j�s;tj
jt¡ sj� :

By properties of Young integrals, for any s< t such that jt¡ sj<� it holds

j�s;tj =
��������Z
s

t

b(wr+ �r)dhr

��������
. jb(ws+ �s)hs;tj+ jt¡ sj�+�H JbKC�JhKC� J�+wKH;��

. jt¡ sj�kbkC�JhKC�+ jt¡ sj���H JbKC�JhKC�(1+ JwKCH+ J�K�;�)

. jt¡ sj�kbkC�JhKC�(1+��H+��HJwKCH)+ jt¡ sj���HkbkC�JhKC�J�K�;�:

Dividing by jt¡ sj�, taking the supremum over jt¡ sj6�, we find �=�(�; �;H; T ) such that

J�K�;�6�kbkC�JhKC�(1+��H+��HJwKCH)+���HkbkC�JhKC�J�K�;�;

choosing � such that 1/46���HkbkC�JhKCH6 1/2, we obtain

J�KH;�. 1+ kbkC�JhKC�+ JwKCH:

Applying Exercise 4.24 from [132], we deduce that

J�KCH.�H¡1(1+ kbkC�JhKC�+ JwKCH). (kbkC�JhKCH)
1¡�
�H (1+ kbkC�JhKC�+ JwKCH)

and the conclusion follows from the fact that by hypothesis (1¡ �)/(�H)< 1. �

In the case b and w are regular enough for the classical SDE (4.18) to be meaningful, the non-
linear Young formalism still gives non trivial criteria in order to establish uniqueness of solutions,
as the next proposition shows.

Proposition 4.22. Let b2Cx� for some �2 (0;1) such that �+�H>1. Then for any x02Rd there
exists at least one solution x2CtH, x2w+Ct� to the YDE ( 4.18). If ¡wb2Ct

Cloc
1+� for some ;

� 2 (0; 1) satisfying
+ �� > 1;

then such solution x is unique in the class w+Ct�.

Proof. The proof follows several arguments that we frequently employed in Chapter 1 (it shares
a strong similarity to Section 1.4.3 in the role played by the higher regularity � 2Ct�), so we will
mostly sketch it.

Step 1: Existence. Let b" be a sequence of mollifications of b and denote by x" the unique
solution of the YDE (4.18) associated to b" with initial data x0. Then x"= �"+w satisfy the a
priori bound (4.20), uniformly in "> 0 and so by Ascoli�Arzelà we can extract a subsequence �"n

such that �"n! � in Ct�
0
for any � 0<�. Combining this fact with b"n! b in Cx�

0
for any �0<�, it

is easy to check by the continuity properties of Young integrals that x := �+w must be a solution
to the YDE associated to b, with initial data x0.

Step 2: Averaging formulation. Reasoning as in the proof of Proposition 4.21, it can be shown
that � is also a solution of (4.19).
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Step 3: Uniqueness. Given any two solutions x1, x2 for the same x0, xi= �i+w with �i2Ct�,
we claim that their difference e=x1¡x2= �1¡ �2 satisfies a linear YDE of the form

det=dvt et; vt: =

Z
0

tZ
0

1

r¡wb(ds; ��s1+(1¡�)�s2) d�;

which follows from an application of Corollary 1.10. Finally, since e satisfies a linear YDE with
initial data v0=0, it must hold v� 0, which yields uniqueness. �

Proposition 4.22 covers the case where the SDE (4.18) is already meaningful in the Young
sense and both formulations (as an SDE for x and a nonlinear YDE for �) provide some useful
information on the solutions. We now pass instead to the case where w 2CtH with H + � < 1, so
that the Young formulation completely breaks down (even for smooth b!) and the only meaningful
interpretation is given by (4.19), provided ¡wb is smooth enough; in the nonlinear YDE framework,
this amounts as usual to require ¡wb2Ct

Cx
�;� for parameters satisfying

; �; �2 (0; 1];  >
1
2
; (1+ �)> 1; �+�6 1: (4.21)

Lemma 4.23. Consider a sequence bn of regular functions (say in Cx2), x0n2Rd and wn2CtH with
�+H > 1; denote by xn the unique solution starting from x0

n to the classical YDE

dxn= bn(xn) dh+dwn:

Suppose that

x0
n!x0 in Rd; wn!w in Ct0; ¡wnbn!A in Ct

Cx
1+�;�

where ; �; � are parameters satisfying ( 4.21). Then xn converge uniformly to w+ �, where � is
the unique solution starting from �0 :=x0¡w0 to the nonlinear YDE associated to A.

Proof. We know from Lemma 4.21 that in the smooth case, �n := xn¡wn is a solution to the
nonlinear YDE associated to (¡w

n
bn; x0

n¡w0n), where the multiplicative averaging operator ¡w
n
bn

is classically defined pointwise and by hypothesis (¡w
n
bn; x0

n¡w0n)! (A;�0) in Ct
Cx

1+�;��Rd. It
then follows from Theorem 1.25 that �n! � in Ct

; since wn!w, it follows that xn=wn+ �n!
w+ �. �

We stated Lemma 4.23 in a general fashion, so that it can be applied in many situations,
but it is clear that our main aim is to combine it with the stochastic construction of ¡wb from
Theorem 4.12, which truly relies on h= �(!) being a typical realization of fBm. Nontheless, in the
regime H+ �>1, if the regularity of ¡wb is known, the approximating sequence can be constructed
explicitly and we obtain the following result, which holds for any given continuous path h 2Ct�,
not necessarily sampled as a stochastic process.

Proposition 4.24. Let w2CtH, h2Ct� with H + � >1 and let b2D 0 be such that ¡wb2Ct
Cx

1+�;�

for some ; �; � satisfying ( 4.21). Then for any �02Rd there exists a unique solution � 2Ct
 to

the nonlinear YDE

�t= �0+

Z
0

t

¡wb(ds; �s): (4.22)

Moreover, denoting by b" a sequence of mollifications of b and by x" the solutions associated to

xt
"= �0+

Z
0

t

b"(xs
")dhs+wt;

then setting �"=x"¡w, it holds �"! � in Ct
 as "! 0.

Proof. The first claim follows from Corollary 1.24. By Lemma 4.5, ¡wb" are uniformly bounded
in Ct

Cx
1+�;� and they are converging to ¡wb in Ct

Cx
1+� 0;� for any � 0< �; we can choose it so that

(1+ � 0)> 1. The conclusion then follows from Theorem 1.25. �
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4.2.2 Main results
In this section we are alwats going to assume that we are dealing with a distributional drift b and
that w 2CtH with H + � < 1, so that we cannot analytically define the SDE nor ¡wb; nontheless,
the results from Section 4.2.1 suggest the following consistent concept of solution, which is in line
with Definition 3.32 from the previous chapter.

Definition 4.25. Let � be a fBm of parameter � > 1/2 defined on a probability space (
;F ;P),
w 2Ct0 a deterministic path and b a distributional field. We say that a process x is a pathwise
solution starting at x02Rd to the SDE

dxt= b(xt)d�t+dwt

if there exist parameters ; �; � satisfying ( 4.21) and a set 
0�
 of full probability such that, for
all ! 2
0, the following hold:

i. ¡wb(!) is well defined in the sense of Theorem 4.12 and ¡wb(!)2Ct
Cx

�;�.

ii. x(!)0=x0 and x(!)2w+Ct
.

iii. �(!) :=x(!)¡w satisfies the nonlinear YDE

�t(!)=x0+

Z
0

t

¡wb(!)(ds; �s(!)): (4.23)

Remark 4.26. Recall that, to any x02Rd and A2Ct
Cx

�;�, we can associate the set C(x0; A) as
defined in Section 1.4.1. Then conditions i. and iii. from Definition 4.25 may be rephrased as

P(! 2
: ¡wb(!)2Ct
Cx

�;�; �(!)2C(x0;¡wb(!)))= 1:

Similarly to Remark 3.33, one can then apply the disintegration theorem to deduce that the
conditional law of � given the knowledge of � must be supported on C(x0;¡wb(!)).

Next, we can formulate an analogue of (the second part of) Definition 3.36.

Definition 4.27. Let �, w, b and the parameters ; �; � be as in Definition 4.25. We say that
path-by-path wellposedness holds for the SDE if

P(! 2
: ¡wb(!)2Ct
Cx

�;�; C(x0;¡
wb(!)) is a singleton for all x02Rd)= 1: (4.24)

Remark 4.28. Many of the definitions given in Section 3.2.1 from Chapter 3 (strong and weak
existence, pathwise uniqueness, uniqueness in law) carry almost identically to this setting, so
we refrain from writing them explicitly. Also the relations between them (like Remark 3.37 and
Proposition 3.39) transfer to this setting similarly. For instance, it is still true that the property
of path-by-path wellposedness is exclusively a requirement on w and the law of �, but not of the
specific probability space in consideration (which might be taken as the canonical one).

As a consequence of the nonlinear Young theory presented in Chapter 1 (for instance by
Corollary 1.24), we immediately deduce the following.

Lemma 4.29. Let �, w, b and the parameters ; �; � be as in Definition 4.25 and suppose that

P(! 2
: ¡wb(!)2Ct
Cx

1+�;�)= 1;

then path-by-path wellposedness holds for the SDE.

Remark 4.30. For future reference, let us collect here some known facts from abstract nonlinear
Young theory and how they adapt to our setting.

If A2Ct
Cx

1+�;� for parameters satisfying (4.21), then by Theorem 1.34 the associated YDE is
wellposed for any x02Rd and there exists an associated flow of diffeomorphism; let us denote it by
I(A). Theorem 1.35 then ensures that, if A2Ct

Cx
n+�;�, then I(A)2Ct

Cloc
n , while Corollary 1.36

ensures the continuity of the map A 7!I(A) from Ct
Cx

n+�;� to Ct0Cloc
n for any n>1. In particular,

given a random driver A, we can associate to it a random flow I(A) defined on the same probability
space; moreover by construction the values I(A)0!t(x) only depend on the history of the driver
A up to time t, or more precisely

�(I(A)s!u(x): s6u6 t; x2R)��(As;u(x): s6u6 t; x2R)
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where � denotes the filtration generated by the family of random variables. In our setting, we will
take A=¡wb, so that the associated random flow is adapted to the filtration generated by ¡wb; by
Theorem 4.12, the latter process is adapted to the filtration generated by �. Overall we deduce
that, whenever ¡wb satisfies the assumptions of Lemma 4.29, the SDE (4.25) admits a Cloc

1 random
flow of strong solutions (which are also unique).

We are now finally ready to provide explicit conditions on the deterministic averaged field Twb
to ensure wellposedness of the SDE (4.25) and provide the statements and proofs of our main
results. As a consequence, we also prove Theorem 4.1 from the introduction of this chapter.

Theorem 4.31. Let � > 1/2, b2D 0 and w2Ct0 a deterministic path such that

Twb2Ct
Cx

1+�;� for some  2
�
3
2
¡ �; 1

�
and any � 2 (0; 1] and any �> 0; (4.25)

then path-by-path wellposedness holds for the SDE ( 4.25), in the sense of Definition 4.27.
In particular, for any x02Rd, any two pathwise solutions defined on the same probability space

(
;F ;P; �) starting from x0 are indistinguishable. Moreover, solutions are adapted to the filtration
generated by � and they form a random Cloc

1 flow; specifically, the unique solution starting at x0 is
given by

xt(!)=wt+ I(¡wb(!))(t; x0) (4.26)

where I(¡wb) is the random Cloc
1 flow defined in Remark 4.30.

Proof. It follows from Theorem 4.12 and Remark 4.16 that, under the regularity assumption (4.25),
the multiplicative averaged field ¡wb is a welldefined random field and we can find  0; � 0; �0 sat-
isfying (4.21) such that P-a.s. ¡wb2Ct

 0Cx
1+� 0;�0.

Path-by-path wellposedness then readily follows from Lemma 4.29. Indistinguishability of solu-
tions is now a consequence a standard procedure: given any two pathwise solutions xi= �i+w
starting at x0, by definition it must hold �i2C(x0;¡wb) P-a.s.; we can then find a set 
0�
 of
sull probability such that, for all ! 2
0, �i(!)2C(x0;¡wb(!)) and ¡wb(!)2Ct

 0Cx
1+� 0;�0, so that

C(x0;¡
wb(!)) is a singleton. This implies �1(!)= �2(!) and thus x1(!)=x2(!) for all ! 2
0.

Formula (4.26) follows from the definition xt=wt+�t, the fact that � solves the YDE associated
to (x0; ¡

wb) and the definition of I(¡wb(!)) as the flow of solutions to ¡wb(!). Adaptability
of solutions to the filtration generated by � follows from equation (4.26) and the final part of
Remark 4.30. �

The next statement recollects many of the properties we have established for solutions throughout
our construction: whenever b and w are regular enough, then our concept of pathwise solution
is consistent with the classical one from Young integration; when they are not regular anymore,
we can still find �recovery sequences� bn! b and wn!w such that the associated classical solu-
tions converge to ours (thus making it a meaningful notion of solution).

Proposition 4.32. Let �, b, w, � as in Theorem 4.31. Then:

i If b2Cx2 and w2CtH with �+H > 1, then any pathwise solution to the Young SDE

xt(!)=x0+

Z
0

t

b(xs(!))d�s(!) +wt;

is also a solution in the sense of Definition 4.25.

ii If condition ( 4.25) holds, then it's possible to find sequences (bn; wn)2Cx2�Ct1 such that
bn! b in D 0, wn!w in Ct0 and the associated pathwise solutions xn converge in probability
to the unique pathwise solution x given by Theorem 4.31.

iii More generally, if condition ( 4.25) holds, for any sequence (bn; wn) 2Cx2�Ct1 satisfying
bn! b in D0 and wn!w in Ct0 and such that additionally

Tw
n
bn is Cauchy in Ct

Cx
�;� for some  2

�
3
2
¡ �; 1

�
and any � 2 (0; 1] and any �> 0;
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the associated pathwise solutions xn converge in probability to x.

Proof. Part i. is just a consequence of Lemma 4.21.
Under condition (4.25), by Remark 4.15, we can find a sequence (bn; wn) with the above

properties such that ¡w
n
bn(!)! ¡wb(!) in Ct

 0Cx
1+� 0;�0 for P-a.e. !, where we can choose the

parameters  0; � 0; �0 so that they satisfy condition (4.21). Therefore Point ii. follows from an
application of Lemma 4.23.

Suppose now (bn; wn) is a sequence in Cx
2� Ct1 satisfying the assumptions of Point iii.; by

properties of classical averaged fields (cf. Section 3.1.1), Tw
n
bn!Twb in the sense of distributions,

which implies by the assumption that Twb2Ct
Cx

�;� and Tw
n
bn! Twb in Ct

Cx
�;�. But then by

Theorem 4.12 and Remark 4.16, we can find  0; � 0; �0 satisfying (4.21) such that ¡w
n
bn!¡wb in

Lp(
;Ct
 0Cx

� 0;�0). The conclusion then follows again from an application of Lemma 4.23. �

We can now specialize the assumptions of Theorem 4.31 by only requiring Twb to enjoy some
space-time regularity with fixed time parameter  = 1/2; this is clearly convenient in view of
combining this theory with the results from Sections 3.1.3-3.1.4 and Theorem 3.60.

Proposition 4.33. Let b 2B1� , � 2R, w be such that Twb 2Ct
1/2Cx

�+�;� for all � > 0 and all
� > 0 satisfying

�+ �(2�¡ 1)> 2; (4.27)

Then the hypothesis of Theorem 4.31 are met. If in addition Twb2Ct
1/2
Cx
�+�;� for all �> 0 and

all � > 0 satisfying

�+ �(2�¡ 1)>n+1; (4.28)

then the random flow associated to the SDE is Cloc
n .

Proof. To show the first statement, we need to verify that under condition (4.27), Twb2Ct
Cx

�;�

for some  > 3/2¡ � and all � 2 (0; 2]; by the assumption and Corollary 4.19, we deduce that Twb
belongs to Ct

�Cx
��;� for all �> 0, where

�=1¡
�

2
; ��=�+ ��:

It remains to show that, for any choice of � 2 (0; 2], we can find � 2 (0; 1) and � satisfying (4.27)
such that �> 3/2¡ � and ��= �; it is enough to impose the set of conditions(

1¡ �

2
>

3

2
¡ �

�+ ��> 2
: (4.29)

Short algebraic manipulations show the equivalence between system (4.29) and the hypothesis (4.27).
Similar computations show that, under (4.28), Twb 2 Ct

Cx
n+1, which implies that we can find

 0; � 0; �0 satisfying (4.21) such that ¡wb 2 Ct
 0Cx

n+� 0;�0; the regularity of the flow then follows
from Remark 4.30. �

The proofs of Theorem 4.31 and Proposition 4.33 only rely on the analytical regularity of Twb,
where w is a deterministic continuous path. There is plenty of choice for w, as the next statement
shows; it include as a special case Theorem 4.1 from the introduction of this chapter.

Theorem 4.34. Let w be sampled as an fBm (independent of �) of parameter H 2 (0; 1), b2B1�
for some �2R such that

�> 2¡ 1
H

�
�¡ 1

2

�
: (4.30)

Then almost every realisation of w satisfies condition ( 4.27). If in addition

�>n+1¡ 1
H

�
�¡ 1

2

�
; (4.31)
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then almost every realisation satisfies condition ( 4.28).
Moreover, under ( 4.30) (resp. ( 4.31)), almost every w 2CtH satisfies ( 4.27) (resp. ( 4.28)),

genericity being understood in the sense of prevalence. Finally, almost every w2Ct0 satisfies con-
dition ( 4.28) for any choice of �2R and n2N.

Proof. The case of w sampled as an fBm follows from the results from Sections 3.1.3-3.1.4, e.g.
Corollary 3.27. Indeed, for b2B1� , by condition (3.24) almost every realisation of w satisfies

Twb2Ct
1/2Cx

�;� for all �> 0 and �<�+
1
2H

;

or equivalently Twb2Ct
1/2Cx

�+�;� for all �> 0 and � < 1/(2H).
Under condition (4.30), it's possible to find " > 0 small enough such that � = 1/(2H) ¡ "

satisfies (4.27); similarly under condition (4.31), we can choose �=1/(2H)¡" so that (4.28) holds.
The conclusion follows from an application of Proposition 4.33.

The statement for generic w 2Ct� follows from the exact same reasoning, only applying The-
orem 3.60. The last statement follows from the fact that for almost every w2Ct0, Twb2Ct

1/2
Cx
�+�;�

for any fixed �> 0 and � > 0, combined with the property that countable intersection of prevalent
sets is still prevalent.4.2 �

Remark 4.35. The result shows that, for fixed � >1/2, the introduction of a suitable continuous
perturbation w allows to give meaning and solve the SDE with arbitrarily irregular distributional
drift b; moreover the associated flow of solutions can become arbitrarily regular in space. As before,
there is a nontrivial interplay between the irregularity of w (measured by how small H gets) and
its regularizing effect needed to define ¡wb (which can be written in function of 1/H). Regarding
the case of continuous stochastic processes having an infnitely regularising effect on the equations,
more examples will be given in Section 5.3.2, like an infinite series of fBms (Example 5.50) or the
�-log Brownian motion (the process X� from Proposition 5.51).

4.2.3 Further generalizations

We describe here how our techniques can be readapted to extend the results to other settings; most
of the content given here is taken from Section 5 of [139]. In order to avoid unnecessary repetitions,
the arguments will be mostly sketched, highlighting the main ideas but without delving too much
into technical details.

Time inhomogeneous diffusion coefficients. So far we assumed the diffusion coefficient b
to be homogeneous, i.e. bt(x) = b(x); however, our method can be easily extended to the general
case of time-dependent drifts. We will outline here sufficient conditions for wellposedness of the
SDE in this case.

The first basic step amounts to defining the multiplicative averaged field ¡wb; it is easy to check
that that if (t; x) 7! bt(x) is smooth in both variables and w 2CtH with �+H > 1, the analytical
definition of ¡wb from Lemma 4.3 still holds. In fact, if b2Ct

�B1
�+� with � 2R and �; � 2 (0; 1],

under the assumptions �+ �H > 1, �+ �> 1, there exists a unique distribution ¡wb2Ct�B1� such
that

k¡s;tw b¡ bs(�+ws)�s;tkB1� . jt¡ sj�+�H^�: (4.32)

To see this, one can apply the sewing lemma to �s;t= bs(�+ws)�s;t, which satifies

k��s;u;tkB1� .[kbs(�+wu)¡ bu(�+wu)kB1� + kbs(�+wu)¡ bs(�+ws)kB1� ]j�u;tj
.kbkC�B1�+�J�KC�(1+ JwKCH)jt¡ sj

�+�H^�

which readily implies (4.32); there in this case ¡wb is analytically well-defined.

4.2. Alternatively, one could use the property that almost every w 2Ct0 is infinitely regularising in an even
stronger sense, defined in terms of �-irregularity, as will be presented in the upcoming Chapter 5.
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To extend the definition to less regular w, we can again exploit Proposition 4.8 and Lemma 4.10
to get an equivalent of Theorem 4.12; indeed the fundamental assumption therein is the regularity
Twb2Ct

Cx
1+�;�, regardless of whether b is time-dependent or not.

Having defined ¡wb and quantified its regularity in function of Twb, one can then go through
the same abstract procedure for existence and uniqueness of nonlinear Young equations by setting
As;t(x) =¡s;t

w b(x) and invoking the results from Chapter 1. Overall, one can obtain path-by-path
wellponedness results for drifts b 2 Lt

qB1
� for suitable values of q and �; for instance, if w is

sampled as an fBm of parameter H independent of �, then an analogue of condition (4.30) from
Theorem 4.34, given the regularity results for Twb from Corollary 3.27, is given by

�> 2¡ 1
H

�
1¡ 2

q

��
�¡ 1

2

�
: (4.33)

In particular, if b2Lt
qB1

� with q2 (2;1) and �2R satisfying (4.33), then path-by-path wellposed-
ness holds for the associated SDE, which admits a random flow of diffeomorphisms.

Including a non-Lipschitz drift term.Up until now we have only considered equation (4.25),
which amounts to (4.1) in the case when b1� 0 and b2= b. However, our results immediately
extend to equations with both non trivial drift and diffusion, namely of the form

xt=x0+

Z
0

t

bs
1(xs)ds+

Z
0

t

bs
2(xs)d�s+wt; x02Rd:

The extension to time-dependent diffusions has been explained in the paragraph above, so we only
need to focus on how to handle the additional presence of b1. By the usual change of variables
�=x¡w, we see that � formally solves the equation

�t=x0+

Z
0

t

bs
1(�s+ws)ds+

Z
0

t

bs
2(�s+ws)d�s:

Setting

As;t(x) :=Ts;t
w b1(x)+¡s;t

w b2(x);

we can interpret the equation in the Young integral sense as

�t=x0+

Z
0

t

A(ds; �s):

Under the condition that A is sufficiently regular, existence and uniqueness for the YDE holds
(cf. Corollary 1.24) and moreover there is an associated flow of solutions I(A), which depends
continuously on A and inherits its spatial regularity (cf. Remark 4.30).

It is therefore enough to require Twb1 and ¡wb2 to belong to Ct
Cx

1+�;� for suitable ; �;�; then
the results from Section 4.2.2 can be extended directly. As an example, one can take b12Lt

q1B1
�1

for (q1; �1) satisfying

�1> 2¡
1
2H

�
1¡ 2

q1

�
and b22Lt

q2B1
�2 for (q2;�2) satisfying (4.33). One might even consider more complicated situations,

like the presence of multiple independent fBms �i with different parameters �i>1/2 and associated
to different diffusion terms bi, but let's leave it like that for simplicity.

Random initial conditions. So far we have only considered deterministic initial data x02Rd.
However, especially in view of applications to optimal transport and fluid dynamics equations,
it is often interesting to allow random initial data for the SDE. This extension can be easily
implemented in our framework, as we are now going to explain; for simplicity we restrict to
equation (4.25), namely with b1� 0 and b2 time-independent, but everything can be extended
easily to the setting of the previous paragraph. We can readapt Definition 4.25 to accommodate
the presence of random initial data.
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Definition 4.36. Let (
;F ;P) be a probability space on which an fBm � of Hurst parameter
� > 1/2, as well as an independent Rd-valued random variable �, are defined; consider also a
continuous deterministic path w and a distributional field b. We say that a process x is a pathwise
solution to the SDE

dxt= b(xt)d�t+dwt; x0= �

if there exist parameters ; �; � satisfying ( 4.21) such that ¡wb is well defined in the sense of
Theorem 4.12 and, setting �=x¡w, it holds

P(! 2
 : ¡wb(!)2Ct
Cx

�;�; �(!) =Ct
 ; �(!)2C(�(!);¡wb(!)) )= 1:

Here we have adopted directly the equivalent formulation of Definition 4.25 coming from
Remark 4.26, where we recall that C(x0; A) is the set defined in Section 1.4.1. As a consequence
of the nonlinear Young theory (cf. Remark 4.30), we deduce the following result.

Corollary 4.37. Let �;b;w; � be as in Definition 4.36 and such that the assumptions of Lemma 4.29
are satisfied. Then any pathwise solution x to the SDE with initial condition �, x= �+w, satisfies

P(! 2
 : �(!)t=I(¡wb(!))(t; �(!)) for all t2 [0; T ])= 1

where I is the map defined in Remark 4.30, i.e. I(¡wb(!)) is the flow associated to ¡wb(!). In
particular all the conclusions follow if the assumptions of Theorem 4.31 are satisfied; if w is sampled
as an independent fBm of parameter H, it suffices to enforce condition ( 4.30) from Theorem 4.34.

Associated transport equation. Allowing for random initial conditions can be alternatively
be interpreted as looking at the continuity equation associated to the equation (and in particular
to how the initial law L(�) evolves at positive times). It then shouldn't come as a surprise,
given the abstract results from Section 2.1 and their application to perturbed ODEs presented in
Section 3.2.4, that we can handle the associated transport equation in this setting as well.

For the SDE (4.25), it is formally given by

dut+ b � rutd�t+dwt � rut=0;

by the usual Galilean transformation u~t(x)=ut(x+wt) the equation then becomes

du~t+ b~t � ru~td�t=0

which can be interpreted in the nonlinear Young framework as

u~dt+¡dt
wb � ru~t=0:

Given this identification, assuming ¡wb is sufficiently regular (namely satisfying the assumptions of
Lemma 4.29), existence and uniqueness of solutions to the transport equation (e.g. for u02Cloc

1 )
then follows from the abstract results of Section 2.1.

4.3 Open problems and future directions
As I already mentioned in the introduction, to the best of my knowledge, the paper [139] with
Fabian is the first one to study regularisation by noise phenomena in the setting of SDE (4.1); so
there aren't really many bibliographic references to talk about, apart from the already mentioned
ones for b2� 0. The only other paper I'm aware of is [257], which consider the one-dimensional
case and piecewise Lipschitz drifts with jump discontinuities, buinding on previous works [192, 165,
219] treating mixed SDEs (i.e. allowing for both Young integral terms

R
bs
2(xs)d�s and Itô termsR

bs
3(xs)dWs with W standard Bm).
The material presented here is all taken from [139], up to some small modifications. Like in

Chapter 3, working with the weighted Ho�lder spaces Ct
Cx

�;�, although a bit technical, requires less
restrictive assumptions on b (in [139] we had to additionally impose compactness of the support
of b, which is no longer needed here); I have also omitted some additionally results concerning the
more regular case b2B1� with �+�H > 1, which mostly result in Theorem 4 from [139].
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For the sake of discussion, in the following I will restrict to the case of the SDE with only
diffusive part, namely (4.1) with b1� 0 and b2= b.

The first major question one could ask concerning Theorem 4.1 is whether condition (4.6) is
optimal for strong existence and uniqueness to hold. Unfortunately, this is probably not the case,
and it should be most likely possible to weaken it to b2B1� with

�> 1¡ 1

H

�
�¡ 1

2

�
: (4.34)

There are several facts hinting to this:

i. In line with Remark 4.2, as �"1, condition (4.34) becomes �> 1¡ 1/(2H) and thus is in
agreement with Theorem 3.30.

ii. Going through similar regularity counting arguments to those of Theorems 4.31-4.34, it
can be shown that in this case P-a.s. ¡wb2Ct

Cx
�;� for some  > 1/2 and all � 2 (0; 1) and

all �> 0; as a consequence, a priori estimates on the solution � to the YDE are available,
which yield the existence of weak solutions by tightness arguments. Alternatively, one can
also establish the existence of pathwise solution by a readaptation of Lemma 3.40.

iii. Moreover, again under condition (4.34), it can be checked (cf. Corollary 3.27) that P-a.s.
Twb 2Ct�H+1¡"Cx

0;� for all "; � > 0; by Remark 4.20, this implies that ¡wb 2Ct
 0Cx

0;� for
any �> 0 and any  0<�H + �. Observe that, under (4.34), one can choose  0>H +1/2;
since �s;t�¡s;tw b(�s) + o(jt¡ sj), this implies that any solution � will belong to Ct

 0 as well.
But then the solution x is of the form x= �+w, with w sampled as an fBm of parameter
H and � belonging P-a.s. to the Cameron-Martin space HH+1/2. By Girsanov's theorem,
we then expect the existence of another equivalent measure Q such that x is distributed as
an fBm of parameter H under Q; one then expects at least uniqueness in law under (4.34).

The reason why the above argument is not formalized into a rigorous proof is because I have realized
that the solution concept we adopted in Definition 4.25 (which still has a lot of nice consequences,
like an easy construction of the stochastic flow) is too �rigid� to allow for the use of Girsanov,
since it really relies on treating w as a deterministic perturbation in order to exploit the stochastic
estimates from Proposition 4.8 (so probabilistic tools at the level of w are hard to implement here).
One could try to invert the reasoning at Point iii. above, by first looking at

yt=x0+wt=x0�
Z
0

t

b(x0+ws)d�s+wt=x0+

Z
0

t

b(ys)d�s+wt¡ht

and then trying to show that under a new chang of measure w¡h=w~ is an fBm of parameter H ,
thus making y a weak solution to the SDE. There are two difficulties in doing so:

a) It is hard to verify Novikov's condition, due to the presence of both Gaussians w and �;
think of b(x)=x, where this would amount to estimating Gaussian tails for

R
0

t
wsd�s, which

morally behaves as the product of two independent real Gaussians.

b) Even if Novikov were successful, I still wouldn't be able to show that the pair (y; w~) is a
weak solution to the SDE in the sense of Definition 4.25, which is why I'm calling it too
rigid. Compared to Chapter 3, what is lacking is an equivalent of Lemma 3.42, i.e. something
ensuring that

R
0

t
¡wb(ds; �s+ �~s) =

R
0

t
¡w+�b(ds; �~s). The reason for this is that, since the

process � is constructed starting from �, one cannot regard w+ � as �-independent, which
interferes with the construction of ¡w+�b from Theorem 4.12.

Given such restrictions, it is natural to wonder whether the pathwise approach here is the most
suitable one, or other more probabilistic strategies have a higher chance of success.4.3

4.3. In fact, Khoa Lê showed me privately some computations, based on the use of the stochastic sewing
lemma [194], which seem to confirm that strong existence and uniqueness holds for b2B1� under (4.34).
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If one tried to run a similar scaling argument to that of Section 3.4, the situation is even worse:
it would predict wellposedness in the subcritical regime for b2Lt

qB1
� with

�> 1¡ 1
H

�
�¡ 1

q

�
(4.35)

which would become a natural generalisation of (3.53) allowing for � 2 (1/2; 1]. The validity of
the scaling argument is debatable, as can be very sensitive to the choice of the Banach space in
consideration (e.g. replacing B1� with Lx

p for �=¡d/p might give more reasonable expectations).

Even ignoring (4.35), condition (4.34) reveals quite an interesting structure, compared to similar
observations provided by Remark 4.2. Indeed, if (4.34) were true, than any choice of H would
yield a regularising effect on the equation, in the sense of allowing non-Lipschitz drifts b2B1� for
suitable �<1. The condition H 6 �, although natural, doesn't seem to play any relevant role; this
might be explained as the fact that, while b is allowed to be very degenerate, the presence of a
purely additive term w (thus strongly nondegenerate) still improves the solution theory, even when
w is not the roughest term in the decomposition x= �+w. In order to reach distributional drifts
�<0, condition (4.34) still enforces �>H+1/2, which suggests a strong link to the considerations
based on Girsanov's theorem. Finally, in the case H =1/2 (i.e. w sampled as Bm), the condition
becomes �> 2(1¡ �), which is still better (to the best of my knowledge) than known results on
wellposedness of the associated Kolmogorov equation (which becomes a Young-type parabolic
equation like those treated in Section 2.2), formally given by

du=�udt+ b � rud�:

All the above considerations reveal that there is still quite a lot to be understood about equa-
tion (4.1), even though we start having regularisation by noise results for it.

Among possible extensions which go beyond the setting of (4.1), one possibility is to replace
� by a deterministic �-Ho�lder continuous path, with no further information on it. In this case,
one cannot invoke Proposition 4.7 anymore and instead should exploit heavily the regularising
effect of w sampled as an fBm of parameter H. Although there are no published results on the
matter, stochastic sewing techniques seem to be more effective in tackling this problem (see again
Footnote 4.3).

A second interesting problem of course concerns decreasing the value of � to cover the range
� 2 (0; 1/2]. The problem is harder already at the analytical level: in order to solve

xt=x0+

Z
0

t

b(xs)d�s+wt

one would need to define first
R
0

t
b(xs)d�s. This can be accomplished in the setting of rough path

theory, but only under the fundamental assumption that (�;w) as an Rm+d-valued path admits a
rough lift (in particular, we not only need

R
0

t
�sd�s to be well-defined, but also

R
0

t
wsd�s). Besides

that, applying the change of variables �=x¡w, the problem can be reduced as usual to the study
of the regularity of the averaged field ¡wb2Ct

Cloc
� ; it is natural to expect the value  to be always

less or equal to � (i.e. the regularity of �), which means that even having defined ¡wb, one couldn't
apply the nonlinear Young machinery afterwards. There is some small hope given by analogous
theories of nonlinear rough paths, see [230, 70], but overall it seems to me that the problem is
beyond reach.

The case �=1/2 (namely � sampled as Bm) is quite special, due to the Itô isometry (assuming
we interpret the integral appearing in the SDE in the Itô sense, which I will do in the following,
although it's not the only option). Indeed, considering w as a fixed deterministic path, defining
the Gaussian random variable

¡s;t
w b(y)=

Z
s

t

b(y+ws)d�s
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is equivalent to showing that

E[j¡s;tw b(y)j2] =
Z
s

t

jbj2(y+ws)ds=Ts;tw jbj2(y)<1:

This shows a nontrivial relation between ¡wb and the classical averaging Tw of another object,
namely jbj2. The problem is, there is no need for jbj2 to be a well-defined distribution! We are then
forced to impose this assumption, which means (due to it positivity) that jbj2 should be at least a
Radon measure (and the most natural requirement then becomes b2Lx2). Unfortunately, trying to
iterate the argument at the level of spatial derivative @i¡s;tw b=¡s;tw @ib becomes now quite painful, as
it then enforces @ib2Lx2 as well, so that even in order to have something like ¡wb2Ct

Cloc
1 we must

already impose at least b2Wx
1;2, regardless of the regularising effect of w. This regularity condition

starts being quite expensive and makes the whole approach not very effective, compared to other
techniques (e.g. the DiPerna-Lions approach, readapted to the case of SDEs e.g. in [281, 59]).

Nontheless, given that one can define and estimate both integrals of the form
R
0

t
b(�s+ws) d�s

and the multiplicative averaged field ¡wb, there is some hope to derive a priori estimates for the SDE
and establish weak existence of solutions, which is in fact what is accomplished in the upcoming
work [28].
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Chapter 5
�-irregularity
We have seen in Chapter 3 that, given a path w and a drift b, we can analyse the regularity of
the averaged field Twb, which in turn allows to solve perturbed (possibly singular) ODEs. In
particular, for fixed b and W fBm of parameter H, we expect a spatial regularizing effect of order
at most 1/(2H); in practical terms, this means that to any drift, say b2Lt1Bp� for simplicity, we
can associated a set ¡b of full probability such that

TW (!)b2Ct
1/2Bp

�+
1
2H
¡ 8! 2¡b: (5.1)

One can ask the following more ambitious question: can we find a universally regularising path w?
Namely, can we find w such that

Twb2Ct
1/2Bp

�+
1
2H
¡

for all drifts b in a given class E?

To some extent, this amounts to inverting the (uncountable) quantifiers involving statement (5.1)
for TW (!)b, i.e. finding a b-independent set ¡�
, hopefully with P(¡)=1, where (5.1) holds.

Remark 3.5 already informs us that this problem has no solution if the class E is allowed to
contain time-dependent drifts; still, there is some hope in the autonomous case, e.g. for E =Bp

�.
This question was raised in [57] and shown to be closely related to Conjecture 1.2, left therein
open. It turns out that, even in this formulation, the statement is somewhat too strong to hold
true; anticipating some of the concepts that will appear throughout the chapter5.1, let us briefly
explain why. The argument is a courtesy of N. Perkowski (see also Remark 3.7 from [170]).

Suppose that there exist parameter �; >0, and a continuous path w, such that Tw is a bounded
operator from B1

¡� to B1
 (let us ignore the presence of possible growth conditions for simplicity);

choose p large enough so that Bp
¡�/2 ,!B1

¡�/2¡d/p ,!B1
¡�. Then it holds��������Z

0

T

b(ws)ds

��������= jTwb(0)j6 kTwbkB1 6 kbkBp¡�/2; (5.2)

on the other hand, by the occupation time formula, for b smooth it holdsZ
0

T

b(ws)ds=

Z
Rd
b(x)�w(dx)= hb; �wi

where �w is the occupation measure of w on [0; T ]. Therefore equation (5.2) is telling us that the
linear operator b 7! hb; �wi, which is well defined for smooth b, extends uniquely to a bounded
operator on Bp

¡�/2; by duality this implies �w(dx) = `w(x)dx for some `w 2Bp0
�/2. By standard

facts from geometric measure theory, we can deduce that the support of �w, given by w([0; T ]),
must be of Hausdorff dimension d; in turn, this implies that w cannot belong to Ct� for any �>1/d.

The above argument technically doesn't disprove the existence of �universal regularizers� (which,
as we will see, still exist); but it informs us that, in order to cover the class E =B1

� , they must
have very limited Ho�lder regularity. In particular it tells us that, if W is a fBm of parameter
H > 1/d, although the results from Chapter 3 still hold, we cannot �invert the quantifiers� and
obtain a negligible set ¡ outside of which TW improves the regularity of Besov-Ho�lder func-
tions by a factor of almost 1/(2H).

5.1. The reader who is not acquainted with concepts like occupation measures or Hausdorff dimension might
skip the next paragraph and come back here after reading the rest of the chapter; Section 5.1 would mostly suffice.
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A partial solution to this conundrum (which, given the above observations, seems to be the
best we can hope for) is again presented in [57], where the authors choose to consider the class
E given by Fourier�Lebesgue spaces FL�;p (see Appendix A.2), which in particular includes the
fractional Sobolev spacesH�.5.2 By introducing the concept of (; �)-irregularity (see the upcoming
Definition 5.1), they establish the following fact: if w is (; �)-irregular, then its averaged field Tw

satisfies

kTs;tw bkFL�+�;p6C(w)jt¡ sjkbkFL�;p 8b2FL�;p;

with an estimate uniform in � 2R, p 2 [1;1]. Further, it is proved [57] that, if w is a typical
trajectory of fBm, then for any �<1/(2H) there exists  >1/2 such that it is (; �)-irregular. We
see therefore that we recover analogous results to those from Section 3.1.3 (i.e. a spatial regularity
improvement of almost 1/(2H), at the price of a time regularity close to 1/2); we pay the price
of dealing with the less standard class E=FL�;p, but we gain the set ¡ being independent of b.

In this chapter, we explore in detail the analytical concept of (; �)-irregularity; it tries to cap-
ture quantitatively the idea, due to the erratic behaviour of w, we should see cancellations whenever
considering averages along the path of the form

R
s

t
f(wr)dr ; this is accomplished by looking at

the decay of oscillatory integrals of the form
R
s

t
ei��wrdr. Almost all the material presented here is

taken from [143].
It turns out that the notion of (; �)-irregularity is in fact quite rich and finds applications

well behind the scope it was originally introduced for in [57]. On one hand, useful criteria can
be developed to check that typical trajectories of many stochastic processes are (; �)-irregular;
on the other, this purely analytic notion can be combined with notions coming from different
areas (gemetric measure theory, rough paths) to obtain new insight on the properties of w. It
also poses some new, challenging problems (see in particular Sections 5.4.3-5.4.5 and the open
Conjectures 5.72, 5.75) and allows to establish pathwise regularisation by noise results, not only
for ODEs, but PDEs too (Section 5.2.2). Last but not least, we can show that almost every Ho�lder
continuous function (in the sense of prevalence) is (; �) irregular (for suitable ; �), so that many
of the aforementioned results can be stated without any reference to an underlying probability
space. We will see in Chapter 6 another application of �-irregularity, in relation to the mixing
properties of shear flows.

Structure of the chapter. We introduce in Section 5.1 all our main actors: the concepts
of �-irregularity and occupation measure, their relation to averaging operators and the class of
strongly locally nondeterministic Gaussian fields. Then we present in Section 5.2 the main results
of this chapter, together with their applications to several regularisation by noise phenomena in
ODEs and PDEs.

Sections 5.3 and 5.4 constitue the main body of the paper, presenting the proofs. The first
mostly deals with sufficient conditions for stochastic processes to be �-irregular; instead the latter
examines (mostly) analytical properties of �-irregular paths, with particular emphasis on the so
called �perturbation problem�. Finally, we present further bibliographical remarks in Section 5.5.

5.2. One could draw here a nice analogy with the solution theory for PDEs like wave equations. Indeed, if one
considers the linear wave PDE on Rd

@t
2u=�u; ujt=0=0; @tujt=0=f ;

then the solution at time t > 0 is given by the linear operator

Tt f =
sin(tjrj)
jrj f ;

in the sense that St acts in Fourier space bymultiplying f̂ by sin(tj� j)/j� j. It is then clear that TtmapsHs intoHs+1

for any s2R; but if one tries to have a similar result in Lp-based results, this is not true in general, with explicit
counterexamples given in [235]. What is more, when d= 3, Tt has the alternative harmonic mean representation
Ttf = �t� f , where �t is the unit measure on the sphere St= fx2Rd: jxj= tg, which is singular w.r.t. the Lebesgue
measure; in particular, a similar argument to the one above readily implies that Tt cannot mapB1� intoB1

�+" for any
�2R and ">0. Roughly speaking Tt here behaves exactly like Ttw would, in the case where the path w is 1-irregular
but also �-Ho�lder continuous with �>1/d (e.g. for d=3, typical realization of fBmwithH 2 (1/3;1/2) would work).
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Notations and conventions. We will adopt mostly the same notations as in Chapter 3, e.g.
for a. b, the function spaces Ct

Bp
s, the heat semigroup Pt= et�, etc. We will frequently work

with the Fourier�Lebesgue spaces FLs;p, for which we refer to Appendix A.2. For �2 (0;1) nN,
we will use both notations B1� and Cx� to denote Besov�Ho�lder spaces. Like in Chapter 4, we will
sometimes use Ct

¡ to denote \">0Ct
¡"; similarly for Ct

¡Cx
�¡, etc.

As usual, Cc1 denotes the set of smooth, compactly supported functions; instead we will use
Cb
1 to denote the class of infinitely differentiable functions with all bounded derivatives and by

Cloc
1 that of smooth functions, whose derivatives might however explode at infinity.
As before, statements of the form �for almost every (a.e.) '� must be understood in the preva-

lence sense, see Appendix A.3. Given a matrix A, A� denotes its transpose, A¡1 its inverse.
Whenever we work with a stochastic process X , even if not specified, we implicitly assume the

existence of an underlying filtered probability space (
;F ;Ft;P) with F ;Ft satisfying the standard
assumptions. We adopt the short notation Es[�]=E[�jFs]. Whenever it doesn't creat confusion, we
will use L!

p for Lp(
;P;Rm) for suitable m2N.

5.1 Preliminaries

5.1.1 Definition and first properties
The concept of �-irregularity was introduced in [57] as an analytic property of continuous functions,
which allows to quantitatively measure their oscillatory behaviour, as well as their smoothing effect
on perturbations of ODEs.

Definition 5.1. Let ; �> 0. A measurable path w: [0; T ]!Rd is (; �)-irregular if there exists
a constant C such that��������Z

s

t

ei��wrdr

��������6C j� j¡�jt¡ sj 8� 2R=/0
d ; s; t2 [0; T ]: (5.3)

We denote by k�wkW;� the optimal constant C; with the notation �t
w(�)=

R
0

t
ei��wr dr, it holds

k�wkW;� := sup
�2Rd;s=/ t

j�s;tw (�)jj� j�
jt¡ sj :

We say that w is �-irregular if there exists  > 1/2 such that w is (; �)-irregular.

We have the trivial bound j�s;tw (�)j6 jt¡ sj, so that (5.3) is always satisfies for j� j small; the
relevant information in the above definition is given by the uniform bound as j� j!1. Therefore we
can replace j� j with any other function with same asymptotics (in the original definition from [57],
1+ j� j appeared, here instead we adopt j� j for its better scaling properties).

Let us collect some elementary facts on �-irregular functions. In the next statement, SO(d)
denotes the special orthonormal group on Rd.

Lemma 5.2. Let w: [0; T ]!Rd be a (; �)-irregular continuous path. Then the following hold:

i. Symmetry invariance: ¡w is (; �)-irregular with k�wkW;�= k�¡wkW;�.

ii. Translation invariance: for any r6T, w�¡wr is (; �)-irregular, k�w�¡wrkW;�=k�wkW;�.

iii. Scaling invariance: for any �2 (0; 1), w�(t) :=�¡(1¡)/�w(�t) is (; �)-irregular.

iv. Rotation invariance: for any O2SO(d), Ow is (; �)-irregular with k�OwkW,�=k�wkW,�.

v. More generally, if A2Rd�d is invertible, then Aw is (; �)-irregular with

k�AwkWT
,�6 k(A�)¡1k�k�wkW,�:
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Proof. All the statements follow from elementary calculations; let us prove only iii. and v. . Fix
�2 (0; 1), then

�s;t
w�(�)=

Z
s

t

ei���
¡(1¡)/�w�r dr=�¡1

Z
�s

�t

ei�
¡(1¡)/���wr dr=�¡1��s;�t

�
�
¡1¡

� �
�
;

so that�����s;tw�(�)����j� j�
jt¡ sj =

j��s;�t(�¡(1¡)/� �)jj� j�
�jt¡ sj =

j��s;�t(�¡(1¡)/� �)jj�¡(1¡)/� � j�
j�t¡�sj 6 k�wkW;�:

Regarding Point v., similarly we have

j�s;tAw(�)jj� j�
jt¡ sj =

��������Z
s

t

ei(A
��)�wr dr

�������� j� j�
jt¡ sj 6 k�

wkW;�

�
jA�� j
j� j

�¡�
6 k(A�)¡1k�k�wkW,�: �

Remark 5.3. There is a striking analogy between Points i.�iii. and properties of stochastic
processes like symmetry, stationarity and self-similarity; however the latter properties are of sta-
tistical nature, namely they preserve the law of the process, while �-irregularity is an analytical
property which holds for deterministic trajectories. By property iii., we deduce the existence of a
critical scaling parameter associated to the pair (; �), given by

�;�
� =

1¡ 
�

; (5.4)

we will see in Theorem 5.31 how �;�
� relates to regularity of (; �)-irregular paths.

Remark 5.4. Clearly, (; �)-irregularity for w is equivalent to the following: there exists a constant
C such that, for any v 2 Sd¡1, v � w is (; �)-irregular with k�v�wkW;�6 C: The latter is not
equivalent to checking (; �)-irregularity of the coordinates w(i) (i.e. to v= ei): for instance if w is
a 1-dimensional (; �)-irregular function and we define w~t := (wt;¡wt), then the single coordinates
of w~ are (; �)-irregular but w~ is not, since (1; 1) �w~� 0.

Lemma 5.5. Let w be (; �)-irregular, then for any � 2 [0; 1] it is also (�; ��)-irregular for the
choice �=1¡ �+ �, ��= �� and it holds k�wkW�;��6 k�wkW;�

� .

Proof. The conclusion follows immediately by interpolating the two inequalities

j�s;tw (�)j6 jt¡ sj; j�s;tw (�)j6 k�wkW;�jt¡ sj j� j¡�: �

The above lemma shows that we can always trade space regularity for time regularity, i.e. we
can decrease the parameter � in order to increase . Observe that

�;�
� =

1¡ 
�

=
1¡ �
��

= ��;��
� ;

namely, the critical scaling parameter �� is left unchanged by this procedure.

In dimension d>2, it is in general difficult to construct examples of (; �)-irregular paths. This
fact is one of the main motivations of our interest in establishing the prevalence of this property.
The situation is different in the case d = 1, in which there are simple conditions to establish
�-irregularity (at least for some values of �).

Proposition 5.6. (Proposition 1.4 from [66]) Let w2Ct1 satisfy inft jwt0j> � > 0 and w 002Lt1;
then w is (; 1¡ )-irregular for any  2 (0; 1).

In higher dimension, we still know that �-irregular functions exist:

Theorem 5.7. (Theorem 1.4 from [57]) Let H 2 (0; 1) and denote by �H the law of fBm; then
for any �< (2H)¡1 there exists  > 1/2 such that

�H(w2Ct0 : w is (; �)-irregular)= 1:
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Remark 5.8. By no coincidence, the borderline parameter �=1/(2H) is the same appearing in
Section 3.1.3 in terms of the space regularity improvement of TWb compared to b (for instance
when b2Lt1Bps for some p2 [2;1)).

Combined with Lemma 5.5, Theorem 5.7 implies the existence of continuous (; �)-irregular
functions for any choice of  2 (0; 1) and �<1.

Let us also introduce the concept of exponential irregularity , which first appeared in [143].

Definition 5.9. A measurable path w: [0; T ]!Rd is exponentially irregular if there exist
positive constants c1, c2 and  2 (0; 1) such that

j�s;tw (�)j6 c1 e¡c2j�jjt¡ sj 8� 2R=/0
d ; s; t2 [0; T ]: (5.5)

We now prove that the �-irregularity and exponential irregularity properties define Borel sets,
which is the first step in order to establish their prevalence.

Lemma 5.10. For any �> 0, the set

A= fw: [0; T ]!Rdjw is �-irregular g

is Borel measurable w.r.t to the topology induced by any of the following norms: k�kLp, p2 [1;1],
k�kC0, k�kC�, �2 (0; 1).

Proof. The proof is similar to that of Lemma 3.6. We can write the set A as follows:

A=
[

n;m2N
An;m=

[
n;m2N

(
w: [0; T ]!Rd

���������� sup
�2Rd;s=/ t

j�s;tw (�)jj� j�

jt¡ sj1/2+1/m
6n
)
:

It will be then sufficient to show that for every m;n the set Am;n is closed in the aforementioned
topologies. We will actually show that it is closed under convergence in measure, which is weaker
than any of the norms considered and therefore yields the conclusion.

Let wk be a sequence of elements of An;m such that wk!w in measure; by dominated conver-
gence, for any fixed s< t and � 2Rd it holds �s;t

wk(�)!�s;t
w (�). But then

j�s;tw (�)jj� j�

jt¡ sj1/2+1/m
= lim
k!1

j�s;twk(�)jj� j�

jt¡ sj1/2+1/m
6n

and since the reasoning holds for any fixed s< t and � we can conclude that f 2An;m as well. �

Remark 5.11. More generally, given a modulus of continuity � and a function F :Rd!R+, the
same proof shows that the set

B=

(
w: [0; T ]!Rd

���������� sup
�2Rd;s=/ t

j�s;tw (�)jF (�)
�(jt¡ sj) <1

)
is Borel measurable in any of the above topologies. The fact that exponential irregularity defines
Borel sets is established similarly.

We conclude this section with a brief detour on Carathéodory functions and their connection
with the exponential irregularity property. Here �d denotes the Lebesgue measure on Rd, while
�[0;T ] denotes the Lebesgue measure on [0; T ].

Definition 5.12. A measurable path w: [0; T ]!Rd is a Carathéodory function if, for any set
D�Rd such that �d(D)> 0 and any s< t, it holds �[0;T ](w¡1(D)\ [s; t])> 0.

Observe that if w is Carathéodory, then it is unbounded on every interval, thus discontinuous.

Lemma 5.13. Let w be an exponentially irregular measurable path, then w is Carathéodory.

Proof. The statement follows immediately from the considerations given at the beginning of
Section 6 from [36], see also Sections 11 and 28 from [152]. Let us briefly sketch the proof.
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Denote by �s;t
w the occupation measure associated to w, see Definition 5.14 below; by the

exponential irregularity of w, we can find c> 0 such that for any s< t it holdsZ
Rd
ecj�jj�̂s;tw (�)j2d�=

Z
Rd
ecj�jj�s;tw (�)j2d� <1:

It then follows from the Paley�Wiener theorem that �s;tw is analytic and therefore it cannot vanish
on any set D�Rd such that �d(D)> 0; in particular, it must hold

�[0;T ](w
¡1(D)\ [s; t])=

Z
D

�s;t
w (y) dy > 0: �

5.1.2 Link with occupation measures and averaging operators
So far we have discussed several properties of �-irregularity, but we haven't rigorously established
its relation with regularisation by noise phenomena. It turns out that �-irregularity is closely tied
to the occupation measure of the path w.

In the following Mx=M(Rd) denotes the set of all finite Radon measures on Rd, endowed
with the total variation norm k�kTV; M+ is the closed subset of non-negative measures.

Definition 5.14. Given a measurable path w: [0; T ]!Rd, we define its occupation measure as
the family (�s;t

w )06s6t6T �M+ given by �s;tw =w�(�[s;t)), namelyZ
Rd
f(y)�s;t

w (dy)=

Z
[s;t)

f(wr)dr 8f 2C0:

Observe that by definition �s;t
w = �0;t

w ¡ �0;s
w ; for this reason, we will identity the family (�s;t

w )s6t
with the map �w2Ct0M+ given by t 7! �t

w= �0;t
w , so that �s;tw represents an increment of �0;�w .

Note that �w 2Lip([0; T ];M+) with k�s;tw kTV= jt¡ sj and Gateaux derivative �_ tw= �wt.
The Fourier transform of �s;tw is given by

�s;t
wc (�)=

Z
Rd
e¡i��y�s;t

w (dy) =

Z
s

t

e¡i��wr dr=�s;t
w (�)

which shows that w is (; �)-irregular if and only if the map t 7! �t
w belongs to Ct

FL�;1; here the
Fourier�Lebesgue space FL�;1 is given by

FL�;1= ff 2S 0: h�i�jf̂ (�)j 2L1g;

see Appendix A.2 for more details. In particular we have

k�wkW;��k�wkCFL�;1:

Remark 5.15. We will mostly work with given measurable paths w, but both definitions of �w

and �w are not affected by changing w on a Lebesgue negligible subset of [0; T ]; therefore they also
makes sense when dealing with equivalence classes like w 2Lt

p for p2 [1;1]. Similarly, it makes
sense for w in an equivalence class to say that it is (; �)-irregular (resp. exponentially irregular).

Occupation measures are also closely related to averaging operators.

Definition 5.16. Let w 2Lt1; we define the averaging operator associated to w as the family of
linear operators fTs;tw ; 06 s6 t6T g acting on S 0 given by

Ts;t
w b=

Z
s

t

b(� +wr) dr:

Equivalently, Ts;tw can be defined by duality as follows: for any '2S and any b2S 0 it holds

hTs;tw b; 'i= hb;
Z
s

t

'(� ¡wr)dri: (5.6)
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As before, Ts;tw =T0;tw ¡T0;sw and therefore we identify (Ts;t
w )s6t with the map t 7!Tt

w=T0;t
w .

Remark 5.17. Differently from Definitions 5.1 and 5.14, in Definition 5.16 we required w 2Lt1.
This is because otherwise it would be a priori unclear, for a given Schwartz function ' 2 S,R
s

t
'(� ¡wr)dr is also Schwartz, and so if the above is a good definition. However, by looking at

the Fourier transform '(� ¡wt)= e¡i��wt '̂, one can check that w2Lt1 can be relaxed to requiringZ
0

T

jwtjndt <1 for all n2N;

namely w2Lt
p for all p<1.

Averaging operators can be defined for time-dependent distributions, as done in Section 3.1.1.
However, in the time-dependent case we lose the following fundamental property, which relates the
averaging operator to the occupation measure.

Lemma 5.18. Let w 2Lt1, �w and Tw as above. Then for any b 2 S 0, Ts;tw b= �~s;t
w � b, where �~

denotes the reflection of �, namely �~s;tw (A)= �s;t(¡A).

Proof. Observe that by definition of occupation measure, for any s6 t and any R> kwkL1, it
holds supp �s;tw �BR. Since �s;tw is a measure with compact support, the convolution b� �s;tw is well
defined whenever b2S 0; the same goes for �~s;tw . For any '2S and x2Rd it holdsZ

s

t

'(x¡wr)dr=
Z
'(x¡ y)�s;tw (dy)= (' � �s;tw )(x):

The conclusion follows by the duality formula (5.6) and the identity hb; ' � �s;tw i= h�~s;tw � b; 'i. �

As a consequence, in order to quantify the regularising properties of Tw, it suffices to estimate
the regularity of �w in suitable function spaces. This is exactly where the notion of �-irregularity
comes into play.

Lemma 5.19. Let w 2Lt1 be (; �)-irregular. Then for any �2R and p2 [1;1], the averaging
operator Tw belongs to Ct

L(FL�;p;FL�+�;p) and for any b2FL�;p it holds

kTs;tw bkFL�+�;p. jt¡ sjkbkFL�;pk�wkW;�: (5.7)

Proof. The statement follows from the considerations given in the introduction of [57]. Alterna-
tively, using Lemma A.16 from Appendix A.2, it holds

kTs;tw bkFL�+�;p= k�~s;tw � bkFL�+�;p6 k�~s;tw kFL�;1 kbkFL�;p. jt¡ sjkbkFL�;pk�wkW;�: �

Unfortunately, Fourier�Lebesgue spaces are not always very useful in applications (with the
exception of the scale p= 2, in which case FL�;2=H�). We can however use Fourier�Lebesgue
embeddings to deduce regularity for �s;tw in other scales of spaces, which in turn imples different
estimates for Ts;tw . To this end, following [152], we introduce the concept of occupation density ; in
the probabilistic literature it is usually referred to as local time and we will indifferently use both
terminologies.

Definition 5.20. We say that a measurable w: [0; T ]!Rd admits an occupation density if, for
any s< t, �s;tw is absolutely continuous w.r.t. �[s;t), in which case we denote by `s;tw its density, so
that �s;tw (dx)= `s;t

w (x)dx. As usual, it holds `s;tw = `0;t
w ¡ `0;sw and we set `0;tw = `t

w; sometimes we will
also use the notation `tw(x)= `w(t; x).

The regularity of `w is again a property defining Borel sets.

Lemma 5.21. For any �; � > 0 and �> 0, the following set is Borel in the C�-topology:

A=
n
'2Ct�: ' admits a local time `'2Ct�~Cx

�~ for all �~<�; �~< �
o
:
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Proof. The proof is almost identical to that of Lemma 5.10; it holds

A=
[
n;m

An;m=
[
n;m

�
'2Ct�: k`'kCt�¡1/nCx�¡1/n6m

	
and usual arguments allow to show that An;m is closed in Ct0 (thus Ct�) for any n;m2N. �

With Definition 5.20 and Fourier�Lebesgue embeddings at hand, we can relate �-irregularity
of w to the regularity of `w and to the action of Tw on Besov scales Bp� (or more generally Bp;q� ).
Similar statements can be given for Sobolev spaces W k;p or Bessel spaces L�;p=(1¡�)¡�/2Lp.

Lemma 5.22. Let w: [0; T ]!Rd be a (; �)-irregular measurable path. Then:

i. If �>d/2, then w admits an occupation density `w 2Ct
Lx

2 \LiptLx1.

ii. If �>d, then `w is jointly continuous in (t; x) and `w2Ct
Cx

0.

iii. If �>d/2+ s for some s>0, then `w2Ct
Hx

s; in particular, if w2Lt1, then ` is compactly
supported on [0; T ]�Rd and therefore `w2Ct

Wx
s;1.

iv. Thuse, if �>d/2+ s for some s> 0 and w2Lt1, then for any �2R, p2 [1;1] it holds

Tw2Ct
L(Bp�; Bp�+s):

In particular, for any b2Bp� it holds

kTu;tw bkBp�+s. jt¡uj
kbkBp�kwkL1

d/2k�wkW;� uniformly in u< t:

Proof. By the Fourier�Lebesgue embedding FL�;1 ,!FL0;2=Lx2, which holds for �> d/2 (see
Lemma A.15 in Appendix A.2), we deduce that �w2Ct

Lx
2, i.e. for any s<t the measure �s;tw can

be identified with a function in Lx2, which is exactly `s;tw . Moreover �s;tw is a positive measure with
total variation k�s;tw kM= t¡ s, which implies that `s;tw 2Lx1 with k`s;tw kL1= t¡ s and thus i.

Point ii. and the first part of iii. follow similarly by using the embeddings FL�;1 ,!FL0;1 ,!C0,
valid for �>d, and FL�;1 ,!FL�¡d/2¡";2 ,!Hx

s, valid for �¡ d/2¡ "> s.
The second half of iii. follows from the fact that if w 2Lt1, then �s;tw is supported on BkwkL1

and so we have the estimate k`s;tw kW s;1. kwkL1
d/2k`s;tw kHs.

Finally, statement iv. can be deduced from the previous estimate and the Young-type inequality

kf � gkBp�+s. kf kBp� kgkW s;1: �

As already mentioned (cf. Remark 3.5), the operator Tw in general cannot regularise time-depen-
dent fields b = b(t; x), at least not uniformly over all b 2 Ct0E for suitable Banach spaces E.
Intuitively, the reason is that the oscillations in time of b could compensate those of w, and
thus limit the induced cancellations. However, if b is behaves sufficiently well as a function of
t, it is still possible to obtain a regularising result.

Lemma 5.23. Let w2Lt1 be (; �)-irregular, b2Ct
�FL�;p with �>1¡ . Then Twb2Ct

FL�+�;p
and there exists a constant C =C(+ �; T )> 0 such that, for all 06 s6 t6T, it holfd

kTs;tw bkFL�+�;p6CkbkC�FL�;pk�wkW;�jt¡ sj: (5.8)

Namely, the linear map Tw:Ct
�FL�;p!Ct

FL�;p+� is bounded with constant Ck�wkW;�.

Proof. Let us first assume that b is smooth; in this case, for any [s; t]� [0; T ] and any sequence
� of partitions of [s; t] with infinitesimal mesh, it holds

Ts;t
w b(x) =

Z
s

t

br(x+wr)dr= lim
j�j!0

X
i

Z
ti

ti+1

bti(x+wr)dr

= lim
j�j!0

X
i

Tti;ti+1
w [b(ti; �)](x)= lim

j�j!0

X
i

(bti � �~ti;ti+1w )(x):
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Namely, the function Ts;tw b is the sewing (in the sense of Lemma 1.1) in FL�;p+� of ¡s;t := bs � �~s;tw .
By the assumptions, it holds

k¡s;tkFL�;p+�6kbskFL�;p k�~s;tw kFL�;16 kbkC�FL�;pk�wkW;�jt¡ sj ;
k�¡s;u;tkFL�;p+�=kbs;u � �~u;tw kFL�;p+�6 kbkC�FL�;pk�wkW;�jt¡ sj+� ;

where by assumption + � > 1; applying Lemma 1.1 we deduce estimate (5.8).
The case of general b follows from a standard approximation procedure: given b2Ct

�FL�;p, we
can find a smooth sequence bn such that kbnkC�FL�;p6 kbkC�FL�;p and bn! b in Ct

�¡FL�¡;p. By
properties of averaging, for any s < t, Ts;tw bn converges to Ts;tw b weakly-� in FL�;p; the conclusion
then follows from taking the liminf as n!1 on both sides of (5.8) applied to bn and using the
Fatou property of weak-� convergence. �

Remark 5.24. It is clear that the proof can be readapted in a more general setting: given E;
F ;G function spaces such that �: (f ; g) 7! f � g is a bilinear bounded map from E �F into G, if
�w2Ct

F and + � > 1, then Tw:Ct
�E!Ct

G is a linear bounded map. This can be applied in
combination with Lemma 5.22 to obtain regularising effects of Tw when E and G are taken in
suitable Besov scales.

5.1.3 Notions of local nondeterminism of stochastic processes
There is now a huge literature on local-nondeterminism and several alternative definitions, which
are not in general equivalent, see [272] for a survey; here we identify two types of LND which are
closely tied to �-irregularity and exponential irregularity of sample paths of Gaussian processes.
They will play a major role in the proofs in Section 5.3.

Definition 5.25. Let (Xt)t2[0;T ] be an Rd-valued separable Gaussian process adapted to a given
filtration Ft. We say that X is strongly locally nondeterministic with parameter � > 0, X is
�-SLND for short, if there exists � > 0 such that

Var(XtjFs)& jt¡ sj2� Id uniformly in s; t such that 0< t¡ s< �: (5.9)

Properly speaking, in the terminology of [272], Definition 5.25 is that of a one-sided strong
local nondeterminism, but we have preferred to adopt the terminology �-SLND for simplicity.

As already pointed out in Appendix A.1, if WH is a fractional Brownian motion of parameter
H 2 (0; 1), then it is H-SLND.

Let us extend the definition of fBm recursively as follows: given WH, fBm of Hurst parameter
H 2 (n; n+1), we define the process Wt

H+1 :=
R
0

t
Ws

Hds to be the fBm of Hurst parameter H +1;
in this way, we can cover H 2 (0;+1)nN. It is clear thatWH is a Gaussian centered process, with
trajectories in Ct

H¡. It might be slightly less obvious that WH is also H-SLND, for any such H.
To see this, recall from Appendix A.1 that, for H 2 (0; 1), we have the representation

Wt
H= cH

Z
¡1

t �
(t¡ r)+

H¡1/2¡ (¡r)+
H¡1/2�

dBr

where B is a 2-sided standard Bm. Taking Ft=�(Br : r6 t), it holds

Wt
H+1¡EsWt

H+1=

Z
0

t

(Wr
H ¡EsWr

H)dr=

Z
s

t

(Wr
H ¡EsWr

H)dr

=cH

Z
s

tZ
s

r

(r¡u)H¡1/2 dBudr= c~H

Z
s

t

(t¡u)(H+1)¡1/2dBu;

where in the last passage we applied stochastic Fubini theorem. As a consequence,

Var(Wt
H+1jFs) =Var(Wt

H+1¡EsWt
H+1)

�HId
Z
s

t

(t¡u)2(H+1)¡1du� jt¡uj2(H+1) Id

which shows the (H +1)-SLND property for WH+1. The general case WH+n, with H 2 (0; 1) and
n2N, can be handled similarly.
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The argument above shows a few nice properties: i) it is possible to have �-SLND Gaussian
processes with arbitrarily smooth trajectories; ii) such processes may also have derivatives which
are still �~-SLND, for other values �~> 0.

The second notion of local nondeterminism we will need is the following one.

Definition 5.26. Let fXtgt2[0;T ] be an Rd-valued separable Gaussian process adapted to a given
filtration Ft. We say that X is exponentially locally nondeterministic with parameter � > 0,
X is �-eSLND for short, if there exists � > 0 s.t.

Var(XtjFs)& jlog(t¡ s)j¡� Id uniformly in s; t such that 0<t¡ s<�: (5.10)

It is desirable to have explicit examples of processes satisfying Definition 5.26. One way to
construct them is to consider, for given � > 0, the Rd-valued Gaussian process X� defined by

Xt
�=

Z
0

t

(t¡ s)¡1/2jlog (t¡ s)j¡�/2¡1/2dBs 8t2 [0; 1/2]: (5.11)

The proof that this process is �-eSLND is not entirely trivial and will be given later, see Proposi-
tion 5.51 in Section 5.3.2.

Remark 5.27. Definitions 5.25 and 5.26 only involve the conditional variance of the process X
and are thus independent of its mean. This implies that they are all properties invariant under
deterministic perturbations; namely, if X is a �-(e)SLND process and f is a given measurable
function, then X + f is still �-(e)SLND. This can be interpreted as the chaoticity represented by
local nondeterminism being too strong to be disrupted by deterministic additive perturbations; this
fundamental feature will allow us to prove prevalence of �-irregularity and exponential irregularity.

5.2 Main results and applications
Compared to other chapters, here we prefer to adopt a slightly different structure. Rather than
delving immediately in the proofs of single statements, we will present in Section 5.2.1 below the
main results of this chapter and we will apply them in Section 5.2.2 to present several instances
of regularisation by noise in ODEs and PDEs. The proofs will be instead postponed to the later
Sections 5.3-5.4, which constitute the main body of the current chapter.

5.2.1 Statements
The start by presenting the main probabilistic result of this chapter.

Theorem 5.28. The following hold:

i. Let X be a continuous �-SLND Gaussian process in Rd; then for any �< (2�)¡1 there exists
= (�; �)> 1/2 such that X is (; �)-irregular with probability 1.

ii. If additionally � < 1/d, then `X 2Ct
1¡�d¡Cx

0\Ct0Cx
1^[1/(2�)¡d/2]¡ with probability 1.

iii. Let X be a �-eSLND Gaussian with measurable, L2-integrable trajectories and � 2 (0; 1];
then X is exponentially irregular with probability 1.

The proof will be presented in Section 5.3; we can immediately combine Theorem 5.28 with
the basic considerations from Section 5.1.3 (especially Remark 5.27) to obtain the following preva-
lence result (for the notion of Cloc

1 slowly increasing function, we refer to Definition A.17 in
Appendix A.2).

Theorem 5.29. It holds that:

i. For any � 2 (0;1), almost every '2Ct� is �-irregular for any �< (2�)¡1. If �> 1, then in
addition for any k < �, D(k)' is �-irregular for any �< (2(�¡ k))¡1.
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ii. For � 2 (0; 1/d), almost every '2Ct� admits an occupation density `' and moreover

`'2Ct1¡�d¡Cx0\Ct0Cx
1^

�
1
2�
¡d
2

�
¡
:

iii. Almost every ' 2Ct0 is �-irregular for any � <1. In particular, its occupation measures
(�s;t

' )�Cc1 and its averaging operator T ' maps S 0 into the space of Cloc
1 , slowly increasing

functions; moreover, T ' maps [s2RBp;qs into Cb1.

iv. For any p 2 [1;1), almost every ' 2 Lt
p is exponentially irregular; in particular it is

Carathéodory and its occupation measures (�s;t
' ) are analytic.

We avoid providing very similar statements, but like Point ii. above, Point i. in combinations
with Lemmata 5.19, 5.22 and 5.23 provides several other prevalence statements in Ct� regarding
the regularity of `' and the regularising effect of T ' acting on suitable function spaces.

Proof. We have already seen in Lemmas 5.10 and 5.21 that all the above properties (�-irregularity,
exponential irregularity, Ho�lder continuity of local times) define Borel measurable sets in the
function spaces appearing in points i.-iv., so we only need to provide suitable measures �witnessing�
their prevalence.

Let us start from the case � 2 (0; 1). Let �H to be the law on Ct� of a fBm WH of parameter
H = �+ " for some "> 0, which is tight on Ct�; let '2Ct� be fixed. The process WH is H-SLND
and by Remark 5.27 so is '+WH; then by Point i. of Theorem 5.28 it holds

�H
�
'+w is �-irregular for any �<

1
2H

�
=P

�
'+WH is �-irregular for any �<

1
2H

�
=1:

This implies that almost every ' 2Ct� is �-irregular for any � < 1/(2� + 2"); taking a sequence
"n #0, using the fact that countable intersection of prevalent sets is still prevalent, we obtain the
conclusion in this case.

Consider now the case �2 [n;n+1), n>1; set �=n+�, �2 [0;1). Denote by �n+H the law of the
process Wn+H obtained by integrating n times an fBm, which is discussed in Section 5.1.3; choose
H >�, so that �n+H is tight in Ct�. Now fix '2Ct�; the process Y is (n+H)-SLND with D(k)Y

being (n+H ¡ k)-SLND for any k 2f1; : : : ; ng therefore Y + ' and D(k)(Y + ')=D(k)Y +D(k)'
have the same properties by Remark 5.27. Applying Point i. of Theorem 5.28 and arguing as in
the previous point, taking a sequence Hn #�, the proof of claim i. is complete.

The proof of Point ii. is essentially the same, again using �H with H = �+ " as a witnessing
measure, only this time relying on a combination of Point ii. of Theorem 5.28.

The first part of Claim iii. is identical, relying this time on the fact that we can take any
H >0 and we obtain �-irregularity for any �<1/(2H), together with the property that countable
intersection of prevalent sets is prevalent. The second part of claim iii. concerning Cloc

1 follows from
the fact that Cc1 ,!S and an application of Proposition A.18; the part concerning Cb1 instead
follows from Lemma 5.22.

The second part of Point iv. follows from Lemma 5.13, once we have shown the first part. For any
�2 (0;1), denote by �� the law of (a measurable version of) the process X� defined in (5.11), which
is �-eSLND by Proposition 5.51. Let '2Lt

p; we can require ' to be an actual measurable function
in its equivalence class, since the property of exponential irregularity does not depend on the chosen
representative. By Remark 5.27, the process '+X� is also �-eSLND and so by Theorem 5.28

��('+w is exponentially irregular) =P('+X� is exponentially irregular) =1;

which implies the conclusion. �
Theorem 5.29, combined with geometric measure theory considerations, implies the next result.

Here dimF and dimH denote respectively the Fourier and Hausdorff dimensions; their definitions, as
well as that of Salem sets, will be recalled in Section 5.4.1, together with the proof of Theorem 5.30.

Theorem 5.30. Let � 2 [0; 1). The following hold:

i. If �> 1/d, then almost every '2Ct� has the property that

dimF('([s; t]))= dimH('([s; t])) =
1
�

8[s; t]� [0; T ]:
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ii. If � < 1/d, then almost every '2Ct� has the property that

dimF ('([s; t]))= dimH('([s; t]))= d 8[s; t]� [0; T ]:

Moreover, for all [s; t]�Rd, '([s; t]) contains an open set.

In particular, for all � 2 [0; 1), the image of almost every function '2Ct� is a Salem set.

The study of analytic properties of (; �)-irregular paths allows to show that, as the name
suggests, they have a highly oscillatory behaviour; this can be related to other notions of roughness
already existing in the literature.

Theorem 5.31. Let w be (; �)-irregular, �;�� defined as in ( 5.4). Then for any � > �;�� , w is
nowhere �-Ho�lder continuous and has infinite modulus of �-Ho�lder roughness; for any p< (�;�� )¡1

and any interval [s; t]� [0; T ], w has infinite p-variation on [s; t].

The proof is given in Section 5.4.2, where the concept of modulus of �-Ho�lder roughness is
also recalled. Quite nicely, Theorem 5.31 provides an alternative proof of Hunt's original results
from [178].

Corollary 5.32. Let � 2 [0; 1), then almost every '2Ct� is nowhere (�+ ")-Ho�lder for any "> 0.

Proof. By Theorem 5.29, almost every ' 2Ct� has the following property: for any � < 1/(2�),
there exists  > 1/2 such that ' is (; �)-irregular. It holds

�;�
� =

1¡ 
�

>
1
2�

which implies by Theorem 5.31 that any such function is nowhere �~-Ho�lder for any �~> 1/(2�).
Taking �=1/(2�+2") the conclusion follows. �

5.2.2 Applications to regularisation by noise
In this section we show how our main prevalence statement, Theorem 5.29, can be combined with
already existing results to obtain results on the regularising effect of almost every w2Ct� on ODEs
and PDEs.

As mentioned before, (; �)-irregularity is closely related to the regularising properties of the
averaging operator Tw; in turn, as already explained in Chapter 3, regularity of the averaged field
Twb is all that is needed in order to develop a good solution theory for the perturbed ODE

d
dt
xt= b(xt)+

d
dt
wt; (5.12)

see Theorem 3.52. We can combine it with Lemma 5.19 and Theorem 5.29 as follows.

Theorem 5.33. Let � 2 [0; 1), then a.e. w 2Ct� is such that, for any �2R, the following hold:

i. If � > max f3/2 ¡ (2�)¡1; 0g or � > 2 ¡ (2�)¡1, then for any b 2 FL�;1 the perturbed
ODE ( 5.12) is well posed and admits a locally Lipschitz flow.

ii. If �>max fn+1/2¡ (2�)¡1; 0g or �>n+1¡ (2�)¡1, then for any b2FL�;1 the flow is
locally Cn.

In particular, for almost every ' 2 Ct0, for any � 2R and any b 2 FL�;1, the ODE (5.12) is
wellposed and admits a C1 flow.

The last part of the statement is again an instance of the 1-regularising effect of generic
continuous functions on (5.12). Applying Lemma 5.22, analogous statements can be given replacing
Fourier�Lebesgue FL�;1 with other scales like Bp;qs spaces. In addition, we can also consider

time-dependent fields b, for instance such that b2Ct
1/2FL�;1, thanks to Lemma 5.23.
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The theory developed for solving (5.12) can be also successfully applied to the study first order
linear PDEs of the form

@tu+ b � ru+ cu+
dw
dt
� ru=0; (5.13)

once they are interpreted in a suitable nonlinear Young sense (cf. Sections 3.2.4 and 3.2.4). The
abstract results from Section 2.1 (equivalently, its adaptation to this setting given by Theorem 3.57)
can then be combined with Lemma 5.19 and Theorem 5.29 to obtain the following.

Theorem 5.34. Let � 2 [0; 1); then a.e. w 2Ct� is such that, for any �2R, the following hold:

i. If �>max f3/2¡ (2�)¡1; 0g or �> 2¡ (2�)¡1, then for any b2FL�;1 the transport PDE

@tu+ b � ru+
dw

dt
� ru=0

has a unique solution u2Ct0Cloc
1 \Ct

1/2
Cloc
0 for any u02Cx1.

ii. If �>maxf3/2¡ (2�)¡1;0g or �>2¡(2�)¡1, then for any b2FL�;1 the continuity equation

@tu+r� (bu) +
dw
dt
� ru=0

has a unique weak solution u2Ct
1/2
(Cx

1)�\Lt1Mx for any u02Mx.

In the above cases, w enters the equation as a perturbation that can be reabsorbed by shifting
the phase space (i.e. applying a Galilean transformation, as explained in Section 3.2.4 when passing
from (3.45) to (3.46)), which is why the operator Tw appears. In the next examples instead w has
the role of modulating a given group of transformations.

In the papers [66] and [65], the authors study the regularising properties of (; �)-irregular
paths on nonlinear dispersive PDEs of the general form

d
dt
't=A't

dwt
dt

+N ('t); (5.14)

where w2Ct0, ':D!R (or C), A is a linear unbounded operator and N is a nonlinearity (typically
of polynomial type). Their cases of interest are:

1. (NLS) Nonlinear cubic Schro�dinger, D=Td or Rd, d=1; 2, A= i�, N (') = ij'j2';
2. General NLS on D=R with A= i@x2, N (')= ij'j�', �2 (1; 4];

3. (dNLS) Nonlinear derivative cubic Schro�dinger on T, A= i@x2, N (')= i@(j'j2¡k'kL22 )';
4. (KdV) Korteweg�de Vries, D=T or R, A=@x3, N (')= @x('2);

5. (mKdV) Modified Korteweg�de Vries, D=T, A= @x3, N (')= @x('3¡ 3'k'kL22 ).
In all the cases above, although the original system (i.e. with wt= t) would be of integrable nature,
the presence of w doesn't allow to exploit this feature; moreover the group fetAgt2R associated to
A acts isometrically on all H�-spaces, thus doesn't provide a priori any regularisation.

In order to give meaning to (5.14), the authors adopt the mild formulation (which would be
justified for w 2C1 by the chain rule, but a posteriori is meaningful for any continuous w5.3):

't=Ut
w'0+Ut

w

Z
0

t

(Us
w)¡1N ('s)ds; Ut

w: =ewtA:

Applying the change of variables  t=(Utw)¡1't, the equation becomes

 t= '0+

Z
0

t

(Us
w)¡1N (Usw s)ds: (5.15)

5.3. There is a non trivial aspect underlying this apparently simplemaneuver. In particular, if w can be enhanced
to a rough path, the idea that the chain rule should transfer to w by density of smooth functions actually means
that we are by assumption working with a geometric rough path. In the stochastic setting, if w were sampled as a
Brownian motion, then multiplication by dw/dt should be interpreted in the Stratonovich sense.
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The major obstacle, in order to solve equation (5.15) in spaces H� of low regularity, is that it
is unclear how to define the nonlinearity N in a pointwise manner. The fundamental intuition
from [66, 65] is that we actually don't need it; instead, it suffices to know that that the �time-
averaged modulated nonlinearity� is meaningful, namely the family of operators fXs;tgs<t formally
given by

Xs;t(�): =

Z
s

t

(Ur
w)¡1N (Urw�)ds; s < t:

Using the �-irregularity of w, it is possible to show that the maps Xs;t are continuous from H�

to itself (actually C1, since they are the monoid associated to an n-linear bounded operator).
Then ' is defined to be a solution to (5.14) if and only if the associated  solves (5.15), which is
interpreted as a nonlinear Young equation in a Hilbert space. We refrain from giving further details
on the topic and only point out that our Theorem 5.29, combined with their results (Theorem 1.8
from [66], Theorems 1.6 and 1.7 from [65]), gives the following statements.

Theorem 5.35. Let � 2 [0; 1). Then for almost every w 2Ct�, the w-modulated cubic NLS on T
and R has a unique global solution in H� for any �> 0; moreover the equation admits a locally
Lipschitz continuous flow.

Theorem 5.36. Let � 2 [0; 2/3). Then:

i. For almost every w2Ct�, the w-modulated KdV on T has a unique local solution in H� for
any '02H� with �>¡(2�)¡1, which is global if �>¡min f3/2; (4�)¡1g.

ii. For almost every w2Ct�, the w-modulated KdV on R has a unique local solution in H� for
any '02H� with �>¡min f3/4; (2�)¡1g,which is global if �>¡min f3/4; (4�)¡1g.

Moreover for any � 2 [0; 1), for almost every w 2Ct�, the w-modulated mKdV on T has a unique
local solution in H� for any '02H� with �> 1/2.

Analogue statements can be obtained combining Theorem 5.29 with other results from the
aforementioned papers, for instance Theorems 1.9 and 1.10 from [66].

In the setting of standard dispersive equations, a key role in establishing uniqueness of solutions
is played by Strichartz estimates. In the paper [101], for a given path w2Ct0R, the authors study
under which conditions the operator A given by

f 7! (Af)t :=

Z
0

t

jwt¡wsj¡�fsds

is bounded from Lt
p to Lt

q for suitable values of (p; q); the idea is to apply this kind of modulated
Hardy�Littlewood�Sobolev inequality to obtain Strichartz estimates for the modulated semigroup

Ps;t (x)= e
i�(wt¡ws) (x)=

1

(4�(wt¡ws))d/2

Z
Rd

exp
�
i
jx¡ y j2
4(wt¡ws)

�
'(y)dy:

The authors only consider w sampled as a stochastic process, specifically a fBm of parameter
H 2 (0; 1); however, up to a closer inspection of the proof, Theorem 1.1 from [101] can be restated
in an analytic fashion as follows.

Theorem 5.37. Suppose that w2Ct0 admits an occupation density `w2Ct
�Cx

0 for some � 2 (0; 1).
Then for any p; q 2 (1;1) and �2 (0; 1) satisfying

2¡�= 1
p
+
1
q

there exists a constant C > 0 such that for all f 2Lt
p and g 2Lt

q it holds��������Z
0

TZ
0

T

ft jwt¡wsj¡� gs dsdt
��������6CT�� kf kLpkgkLq:

For any � 2 [0; 1), almost every '2Ct� satisfies the above assumption for any � < 1¡ �.
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Proof. The proof of Theorem 1.1 in [101] is entirely analytical, as it follows closely the proof of
the standard Hardy�Littlewood�Sobolev inequality from Lieb�Loss [203], but it requires a key
property satisfied by fBm paths, given in Lemma 2.1 therein: defined

M(r; T ) := sup
t2[0;T ]

Z
0

T

1jwt¡wsj<r ds;

then there must exist a constant c such that

M(r; T )6 2crT � for all r > 0: (5.16)

It is not difficult to see that requirement (5.16) is equivalent to the request that `Tw(x)6 cT � for
all x2R; indeed, assume first that `Tw(x)6 cT � holds, then

M(r; T )= sup
t2[0;T ]

Z
0

T

1ws2B(wt;r) ds= sup
t2[0;T ]

Z
B(wt;r)

`T
w(x)dx. 2rcT �:

On the other side, if w admits a continuous density `w and (5.16) holds, then

`T
w(wt)= lim

r!0

1
2r

Z
B(wt;r)

`T
w(x)dx6 lim

r!0

1
2r
M(r; T )6 cT �;

and since we know that `Tw is supported on w([0; T ]), the above estimate extends to all x2Rd.
It is now clear that requirement (5.16) can be expressed in entirely analytical terms, and so

does the proof of Theorem 1.1 from [101]; the authors are only using the additional fact that almost
every fBm trajectory satisfies (5.16). But then to get the last statement, it now suffices to apply
Point ii. of Theorem 5.29 (for d=1) instead. �

Similarly, the proofs of Strichartz estimates and wellposedness for w-modulated NLS (Propo-
sition 1.1 and Theorem 1.2 respectively) from [101] are entirely deterministic and only rely on the
validity of the above modulated Hardy�Littlewood�Sobolev inequality; they can therefore be fully
generalised to prevalence results, similarly to Theorems 5.35 and 5.36 above.

In [64], the authors provide regularity estimates for solutions to scalar conservation laws mod-
ulated by a path w of the form5.4

@tu+
X
i=1

d

@xiA
i(u) � dwt

i

dt
=0 on Td; ujt=0=u02Lx1: (5.17)

They use the concept of (; �)-irregularity to show regularisation by noise phenomena whenever
w is sampled as an fBm, but their results are of analytic (or path-by-path) type; before stating
their result, let us point out a simplification: given a (; �)-irregular w 2Ct�, the authors impose,
on a suitable parameter �> 0, depending on another parameter � > 1, the condition

�<
�(�+1)¡ (1¡ )

(��_ 1)(�+1)+ (1¡ ) ^
�+2(��_ 1)

(��_ 1)(2�+1)+ (1¡ ) :=c1^ c2:

Thanks to Theorem 5.31, we can actually simplify the above expression; we claim that c16 c2.
Indeed, since �6 �;�� , we have

�(�+1)¡ (1¡ )6 �+ ��;�
� ¡ (1¡ )6 �;

to check that c16 c2, it then suffices to verify that

�
(��_ 1)(�+1)+1¡  6

�+2(��_ 1)
(��_ 1)(2�+1)+ (1¡ )

and after a few algebraic manipulations we see that this is equivalent to

��6 2[(��_ 1)(�+1)+1¡ ];

5.4. The authors in [64] use the notation �dwti/dt to stress that they are using a �Stratonovich type� noise, see
the previous footnote.
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this is now clearly always true since �> 1, so that ��6 (��_ 1)�6 2(��_ 1)(�+1).
The main result of [64] can then be restated as follows:

Theorem 5.38. (Theorem 2.4 from [64]) Let w 2 Ct� be (; �)-irregular and let u be a
quasi-solution to ( 5.17). Assume A=(A1;:::;Ad)2C2(R;Rd) satisfies the following non-degeneracy
condition: there exist � > 1 and c> 0 such that, for A0= a=(a1; : : : ; ad)2C1(R;Rd), it holds

inf
v2Rd

max
i=1; : : : ;d

jvi(ai(x)¡ ai(y))j> cjx¡ y j� for all x; y 2R:

Then there exists a constant C =C(k�wkW;�) such that for all T > 0 and all

�<
�(�+1)¡ (1¡ )

(��_ 1)(�+1)+ (1¡ )
it holds Z

0

T

kutkW�;1dt6C(ku0kL1+ kukLt;x1 + kwkC� ka0(v)mkTV): (5.18)

If u is an entropy solution then in addition

kutkW�;1<1 for all t> 0:

We avoid here providing all the details on the above result, for which we refer the reader to [64].
Let us only mention that the definition of quasi-solution to (5.17) requires the existence of a finite
Radon measure m associated to u, which is the one appearing in estimate (5.18); u is an entropy
solution if m is non-negative. A few algebraic manipulations, combined with Theorem 5.29, imply
the following result.

Corollary 5.39. Let � 2 (0; 1). For a.e. '2Ct�, the statement of Theorem 5.38 holds for any

�<
1

(� _ 2�)(�+1)+ �
:

5.3 Criteria for stochastic processes

This section is devoted to the study of probabilistic properties ensuring that a stochastic process has
(; �)-irregular sample paths, or even continuous occupation measure. It includes the proof of our
main result (Theorem 5.28), which is the cornerstone for our prevalence statements (Theorem 5.29),
but also develops several criteria of independent interest. In particular, we establish �-irregularity
of processes like fBm, �-stable process, Ornstein�Uhlenbeck as well as Xt=

R
0

t
Bsds; many of these

process have already appeared in regularisation by noise phenomena, see [194, 15, 61, 60] among
others.

5.3.1 General criteria
We provide here useful general criteria to establish �-irregularity for a given stochastic process,
which will then be applied to several examples in the upcoming Sections 5.3.2 and 5.3.3.

We adopt the following convention: although we always write statements to hold for any �2Rd,
they must be interpreted as �for all � large enough�, i.e. j� j>C for some universal deterministic
constant C > 0, so that for instance expressions like log j� j are meaningful. We have seen that in
the case of �-irregularity this is not an issue, since the only relevant information given by k�wkW;�

is for large values of j� j. Similarly, for a modulus of continuity ' defined only on a neighbourhood
of 0, t and s are tacitly assumed to be sufficiently close whenever '(jt¡ sj) appears.

The next statement given in a general form, but keep in mind that our primary focus is the
case F (�) = j� j� for suitable values of �.
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Theorem 5.40. Let (Xt)t2[0;T ] be an Rd-valued stochastic process with P-a.s. measurable trajec-
tories, F :Rd! [0;1) be a continuous function such that:

i. there exists c> 0 such that F (x)�F (y) whenever jx¡ y j6 c;
ii. F has at most polynomial growth, i.e. F (�). j� j� as �!1 for some �<1.

Also assume that there exist positive constants �; �; �;K such that the following hold:

1. Integrability condition:

E

�
exp
�
�

Z
0

T

jXtj� dt
��

<1; (5.19)

2. Continuity condition

E

"
exp

 
�
j�s;tX (�)j2 jF (�)j2

jt¡ sj

!#
6K 8� 2Rd; 0< t¡ s< �: (5.20)

Then, for the choice �(x) = xjlog xj
p

, defining the random variable

Y := sup
s=/ t;�2Rd

j�s;tX (�)jF (�)
�(jt¡ sj) logj� j

p ;

there exists �> 0 such that E[exp(�Y 2)]<1.

Proof. Let us first show that, starting from (5.20), we can find another constant �~ such that the
same bound holds over all s<t, without the restriction jt¡sj<�. Let [s; t] be such that jt¡ sj>�;
we can split the interval [s; t] in at most n= bT /�c+ 1 intervals of the form [ti; ti+1], of size at
most �; we have the estimate

E

"
exp

 
�~
j�s;tX (�)j2 jF (�)j2

jt¡ sj

!#
6E
"
exp

 
n�~
�

X
i

j�ti;ti+1
X (�)j2jF (�)j2

!#

=E

"Y
i

exp
�
n�~
�
j�ti;ti+1X (�)j2jF (�)j2

�#

6
Y
i

E

"
exp

 
n2�~

j�ti;ti+1X (�)j2jF (�)j2
jti+1¡ tij

!#
1/n

:

Choosing �~ such that (bT /�c+1)2�~6 � we obtain

sup
jt¡sj>�
�2Rd

E

"
exp

 
�~
j�s;tX (�)j2 jF (�)j2

jt¡ sj

!#
6K:

From now on, with a slight abuse, we will denote by � the new constant �~ under which we have
a bound of the form (5.20) over all possible t=/ s.

Let us define, for any s=/ t and suitable �> 0, the following quantity:

Js;t(�) :=
X
n2N

2¡n
X

�22¡nZd
2¡n(d+1)(1+ j� j)¡(d+1) exp

 
�
j�s;tX (�)j2jF (�)j2

jt¡ sj

!
:

It follows from (5.20) that, for all �6 �, E[Js;t(�)]6K uniformly in s; t; moreover by Jensen's
inequality, it's easy to see that Js;t(�)�.Js;t(��) for any �> 1. Let us also define

Ys;t :=
1

jt¡ sj1/2
sup
�2Rd

j�s;tX (�)jF (�)
logj� j

p :

To conclude, it suffices to show the existence of �2 (0; �) such that E[exp(�Ys;t2 )]6K uniformly
in s< t, as we can then apply Corollary A.27 from Appendix A.5 to get the desired bound for Y .

5.3 Criteria for stochastic processes 141



Fix � 2Rd. For any n2N, we can find �~2 2¡nZd such that j� ¡ �~j. 2¡n; for such �~ it holds

j�s;tX (�~)jF (�~)
jt¡ sj1/2

.�¡1/2 logJs;t(�)+n+ logj�~j
q

:

By the elementary estimate jei��x¡ ei�~�xj6 2�j�¡ �~j� jxj�, valid for � 2 (0; 1), we also have

j�s;tX (�~)¡�s;tX (�)j6
Z
s

t

jei��Xr¡ ei�~�Xr jdr. j� ¡ �~j�
Z
s

t

jXr j�dr6 j� ¡ �~j�kXkL�� ;

which interpolated together with j�s;tX (�)j6 jt¡ sj gives

j�s;tX (�~)¡�s;tX (�)j. jt¡ sj1/2j� ¡ �~j�/2kXkL�
�/2
:

Gathering everything together, using the fact that for n big enough it holds j� j � j�~j, as well as
F (�)�F (�~) (thanks to assumption i.), we obtain

j�s;tX (�)jF (�) . j�s;tX (�)¡�s;tX (�~)jF (�)+ j�s;tX (�~)jF (�~)
. jt¡ sj1/2 j� ¡ �~j�/2 kXkL�

�/2
F (�)

+jt¡ sj1/2�¡1/2 logJs;t(�) + n+ logj�~j
q

. jt¡ sj1/2 kXkL�
�/2

2¡n�/2F (�)

+jt¡ sj1/2�¡1/2 logJs;t(�) +n+ logj� j+ c
p

Choosing n� log j� j, which is by assumption ii. is enough to guarantee F (�) 2¡n�/2. 1, we get

j�s;tX (�)jF (�). jt¡ sj1/2
�
kXkL�

�/2
+�¡1/2 logJs;t(�)+ logj� j

p �
:

Dividing by logj� j
p

jt¡ sj1/2 and taking the supremum we get

Ys;t. kXkL�
�/2

+�¡1/2+�¡1/2 logJs;t(�)
p

;

and so there exists a constant C such that

exp(�Ys;t2 ) . exp(�CkXkL�� ) Js;t(�)C

. exp(2�CkXkL�� )+ Js;t(�)2C

. exp(2�CkXkL�� )+ Js;t(2�C):

Choosing � such that 2�C 6 �, we therefore obtain a uniform bound for E[exp(�Ys;t2 )], which by
the above reasoning implies the conclusion. �

Remark 5.41. Going through the same proof, one can obtain a similar statement for F such that:

i. there exist constants c1; c2; c3> 0 such that F (x)6 c1F (c2 y) whenever jx¡ y j6 c3;
ii. F has exponential-type growth, i.e. logF (�)6 c4j� j� as �!1 for some �<1, c4> 0.

Then under conditions (5.19) and (5.20), it is possible to find c> 0 such that, defining

Y := sup
s=/ t;�2Rd

j�s;tX (�)jF (c�)
�(jt¡ sj) j� j� ; (5.21)

the same conclusion as in Theorem 5.40 holds. The choice F (�) = exp(�j� j�) satisfies the above
requirements and in this case we can get rid of j� j� in the denominator of (5.21) by changing c.

We immediately deduce the following result.

Corollary 5.42. Let X be a process satisfying the assumptions of Theorem 5.40 for F (�)= j� j�.
Then for any �<�, there exists = (�)> 1/2 such that X is (; �)-irregular. Moreover

E[exp(�k�XkW;�
2 )]<1 8�2R: (5.22)
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Proof. Let Y be as in Theorem 5.40; interpolating the trivial estimate j�s;tX (�)j6 jt¡ sj with

j�s;tX (�)j6Y j� j¡� (logj� j)1/2 jt¡ sj1/2 jlog jt¡ sjj1/2

we obtain that, for any fixed "> 0, it holds

j�s;tX (�)j6Y 1¡2" j� j¡�(1¡2") (logj� j)1/2¡" jt¡ sj1/2+" jlog jt¡ sjj1/2¡"

.";T Y 1¡2"j� j¡�(1¡3") jt¡ sj1/2+"/2:

Setting �=�(1¡ 3")<�, =1/2+ "/2> 1/2, we obtain

k�XkW;�.Y 1¡2"

which also implies that, for a suitable C =C("), taking �> 0 small enough, it holds

E[exp(�k�XkW;�
� )]6E[exp(�CY 2)]<1 (5.23)

where � :=2/(1¡2")>2; therefore from (5.23) we immediately deduce (5.22). The reasoning holds
for any "> 0, so we can invert the relations between �, " and  to deduce that for any given �<�
we can take (�)=1/2+ (1¡ �/�)/6. �

Theorem 5.40 and Corollary 5.42 are well suited for establishing �-irregularity in several sit-
uations, as we will show in the next section. However, conditions (5.19) and (5.20) are in general
difficult to check, due to their exponential nature; we present now a weaker version of Theorem 5.40,
which relaxes condition (5.19).

Corollary 5.43. Let Xt be an Rd-valued stochastic process with P-a.s. measurable trajectories;
assume that it satisfies the continuity condition ( 5.20) from Theorem 5.40 for F (�) = j� j� and
that there exists � > 0 such that

P

�Z
0

T

jXtj� dt <1
�
=1:

Then for any �<� there exists = (�)> 1/2 such that P-a.s. X� is (; �)-irregular.

Proof. Let f 2Ct0 be a deterministic continuous function which is �~-irregular for sufficiently large
�~<1; existence of such functions is granted by Theorem 5.7.

For any N 2N, set A=f!2
: kX�(!)kL�6N g and define X�N :=1AX�+1Acf�. Then it is easy
to check that by construction

E[exp(�kX�NkL�)]<1 8�2R:

Letting �; �;K denote the constants under which X satisfies condition (5.20), we have

E

"
exp

 
�
j�s;tX

N

(�)j2j� j2�
jt¡ sj

!#
6E

"
exp

 
�
j�s;tX

N

(�)j2j� j2�
jt¡ sj

!#
+ exp

 
�
j�s;t
f (�)j2j� j2�

jt¡ sj

!
6K+ exp(�k�fkW;�~

2 )<1

uniformly over � 2Rd; jt¡ sj<�, which implies that XN also satisfies condition (5.20). Therefore,
for fixed N and �<�, XN is P-a.s. �-irregular; but then

P(X is �-irregular)>P(X =XN ; XN is �-irregular)= 1¡P(kXkL�>N)! 1 as N!1: �

We conclude this section by providing easy-to-check sufficient conditions for (5.20) to hold. The
result is an immediate consequence of Lemma 3.22 from Section 3.1.4, thus proof is omitted; but
it is quite handy to state it explicitly, given how often it will be applied in the next sections.

Lemma 5.44. Let Xt be an Rd-valued stochastic process with measurable trajectories; assume
there exists a deterministic function F :Rd! [0;+1) such that, for all t¡ s<�, P-a.s. it holds��������Es�Z

s

t

ei��Xudu

���������6F (�)¡2 8� 2Rd: (5.24)
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Then there exist universal constants �;K > 0 such that

E

"
exp

 
�
j�s;tX (�)j2 jF (�)j2

jt¡ sj

!#
6K 8� 2Rd; t¡ s< �; (5.25)

namely, condition ( 5.20) from Theorem 5.40 is satisfied.

5.3.2 �-irregularity for Gaussian processes and examples
We apply here the results of the previous section to prove part of Theorem 5.28. More quantitative
results are given in the next two statements; we start with the case of �-SLND Gaussian processes.

Theorem 5.45. Let Xt be a Rd-valued separable Gaussian process with measurable paths; suppose
that X is �-SLND and that additionallyZ

0

T

E[jXtj2] dt<1: (5.26)

Then for any �< (2�)¡1, there exists = (�)> 1/2 such that X is P-a.s. (; �) irregular with

E[exp(�k�XkW;�
2 )]<1 8�2R:

Proof. It suffices to verify that the conditions from Theorem 5.40 are satisfied for F (�)= j� j1/2�,
as the conclusion then follows from Corollary 5.42.

By assumption (5.26), X� is an L2(0; T ;Rd)-valued Gaussian process; by Fernique's theorem
(see [111]), we can deduce that there exists �> 0 such that

E[exp(�kXkL22 )]<1;

namely condition (5.19) is satisfied. It remains to check condition (5.20), which we plan to do with
the help of Lemma 5.44. Let Ft be the natural filtration associated to X; for any � 2Rd and any
t¡ s< �, � being the parameter for which the �-SLND condition is satisfied, it holds��������Es�Z

s

t

ei��Xudu

���������=��������Z
s

t

Es[e
i��(Xu¡EsXu+EsXu)]du

��������
=

��������Z
s

t

ei��EsXuE[ei��(Xu¡EsXu)]du

��������
6
Z
s

t

exp
�
¡1
2
� � (Var(XujFs)�)

�
du

6
Z
s

t

exp(¡cj� j2ju¡ sj2�)du

6
Z
0

1
exp(¡cj� j2 r2�)dr� j� j¡1/�:

Therefore assumption (5.24) from Lemma 5.44 is satisfied for F (�)� j� j1/(2�), which implies the
verification of condition (5.20) from Theorem 5.40 and the conclusion. �

The next statement concerns the case of �-eSLND processes.

Proposition 5.46. Let Xt be a Rd-valued separable Gaussian process with measurable paths, which
is �-eSLND and satisfies condition ( 5.26). Then there exist constants c; �> 0 such that, defining

Y := sup
s=/ t;�2Rd

j�s;tX (�)j exp(c1j� j2/(1+�))
�(jt¡ sj)

with �(x)= xjlog xj
p

, it holds

E[exp(�Y 2)]<1:

In particular, if �6 1, then X is exponentially irregular.
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Proof. As in the proof of Theorem 5.45, condition (5.26) implies condition (5.19) by Fernique's
Theorem. The rest of the proof is similar, again relying on Lemma 5.44, only this time we want
to apply Remark 5.41 for the choice F (�) = exp(j� j2/(1+�)).

For any t¡ s< �, where � is the parameter in the �-eSLND condition, as before it holds��������Es�Z
s

t

ei��Xudu

���������=Z
s

t

exp
�
¡1
2
� � (Var(XujFs)�)

�
du

6
Z
0

1

exp(¡cj� j2jlog r j¡�) dr

�
Z
0

+1
exp
�
¡cj� j2x¡x¡

1
�

�
x
¡�+1

� dx

.
Z
0

1
exp
�
¡c~
�
j� j2x+x¡

1
�

��
dx

where in the third line we used the change of variables x= jlog r j¡�. By the general inequality
a+ b& a� b1¡�, valid for all a; b > 0 and � 2 (0; 1), it holds

j� j2x+x¡
1
� & j� j2(1¡�)x1¡�

�+1
� = j� j2/(�+1)

for the choice �= �/(�+1); therefore there exists a constant c1 such that��������Es�Z
s

t

ei��Xudu

���������. exp(¡2c1j� j2/(�+1))
Z
0

1
exp
�
¡c~
2
x
¡1
�

�
dx. exp(¡2c1j� j2/(�+1)):

By Lemma 5.44, we deduce that Condition (5.20) is satified for F (�) � exp(c1j� j2/(�+1)); the
conclusion then follows from Remark 5.41. In particular if � 2 (0; 1], then 2/(� + 1)> 1, which
implies that X is exponentially irregular. �

We have already seen in Section 5.1.3 that the (generalized) fBm of parameterH 2 (0;1) enjoys
the �-SLND condition for �=1/(2H).

The rest of this section is devoted to providing further examples of Gaussian processes satisfying
the assumptions of Theorem 5.45; in the following, (Ft)t denotes either the filtration generated by
B or the filtration generated by a given process X , which will be clear from the context.

Example 5.47. Let B be a standard Brownian motion in Rd and let A2Rd�d, x02Rd, �>0 and
a given deterministic function f : [0; T ]!Rd; consider a generalised Ornstein�Uhlenbeck process
in Rd, solution to the SDE

dXt=(¡AXt+ ft)dt+�dBt; X0=x0:

The explicit expression for X is given by

Xt=e
¡tAx0+

Z
0

t

e¡(t¡s)Afs ds+�

Z
0

t

e¡(t¡s)A dBs

=e¡(t¡s)AXs+

Z
s

t

e¡(t¡r)Afr dr+�

Z
s

t

e¡(t¡r)A dBr;

in particular, it holds

Xt¡EsXt=�

Z
s

t

e¡(t¡r)A dBr:

It follows that for any s< t such that js¡ tj<� and any v 2Rd it holds

Var(Xt � v jFs)=Var((Xt¡EsXt) � v)=�2
Z
s

t

je¡(t¡r)A� v j2dr=�2
Z
0

t¡s
je¡rA�v j2dr;

choosing � small enough, so that kId¡ e¡rA
�k6 1/2 for all r < �, we deduce that

Var(Xt � v jFs)&�2jv j2 jt¡ sj;

namely Var(XtjFs)& jt¡ sj Id. We conclude that X is �-irregular for any �< 1.
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Example 5.48. There is a general class of Gaussian processes for which a �-SLND condition holds,
given by so called moving averages of white noise, as already observed by Berman (see Section 3
from [37]). Specifically, let K: �2!Rd�d be a function such that (KK�)(t; r)& jt¡ r j2�¡1 Id, for
some � > 0 and all (r; t) with t¡ r < �; given B standard Bm in Rd, define the process

Xt :=

Z
0

t

K(t; r) dBr:

Then for any s< t it holds Xt¡EsXt=
R
s

t
K(t; r)dBr, which implies that

Var(XtjFs)=
Z
s

t

(KK�)(t; r)dr& jt¡ sj2� Id

for all s<t such that jt¡ sj<�. We deduce that X has �-irregular trajectories for any �< (2�)¡1.
The standard example for this type of processes is for the choice K(t; r) = k(t¡ r) Id, where k:
R+!R is such that jk(t)j& jtj�¡1/2. Taking k(t) = jtjH¡1/2 we obtain the d-dim. Lévy fBm
(sometimes also referred to as type-II fBm), for which again we have �< (2H)¡1.

Example 5.49. The class of moving averages is closed under integration. Given K and X as
above, defining Y :=

R
0

�
Xsds, by stochastic Fubini it holds

Yt=

Z
0

tZ
0

s

K(s; r)dBr ds=

Z
0

tZ
r

t

K(s; r)dsdBr=

Z
0

t

K~(t; r)dBr

where K~(t; r): =
R
r

t
K(s; r)ds. In the special case where K(t; r) = k(t; r) Id with k: �2! [0;+1)

satisfying k(t; r)& jt¡ r j�¡1/2 whenever 0< t¡ r < �, we findZ
s

t

(K~K~�)(t; r)dr=Id

Z
s

t
�Z

r

t

k(s; u)du

�
2

dr& jt¡ r j2(�+1) Id

which shows that Y is (�+1)-SLND. Choosing K(t; r)= jt¡ r jH¡1/2 Id, i.e. X being a Lévy fBm
of parameter H, we deduce Y is �-irregular for any �< (2+2H)¡1. The argument can be iterated,
producing �Lévy fBm of parameter n+H�, which will be �-irregular for any �< (2n+2H)¡1; see
the similarity with the fBm of parameter n+H as defined in Section 5.1.3.

Example 5.50. The following example is taken from [6] and it provides an explicit Gaussian
process with continuous trajectories which are P-a.s. �-irregular for all � <1. Functions with
such properties can be also constructed by prevalence techniques, using the fact that countable
intersection of prevalent sets is prevalent.

Let Hn be a sequence in (0;1) such that Hn #0 and fWHngn be a sequence of independent fBms
in Rd with parameters Hn, defined on an interval [0; T ]; also consider a sequence �n of strictly
positive numbers such that X

n

�nE[kWHnkC0 ]<1

(for instance one can take �n=(1+E[kWHnkC0 ])¡1n¡2). Then it holds

E
�X

n

�n kWHnkC0
�
<1

which implies that P-a.s. the series
P
n�nW

Hn is absolutely convergent, thus uniformly convergent
to an element of Ct0; we denote such limit by Y , which is therefore a Gaussian variable on Ct0. By
construction

Var(YtjFs)>�nVar(Wt
HnjFs)=�n cHnjt¡ sj2Hn;

which implies that P-a.s. Y is �-irregular for any � < (2Hn)
¡1. As the reasoning holds for all n

and Hn #0 we conclude that Y is P-a.s. �-irregular for all �<1.

Finally, we present the proof of the statement already claimed at the end of Section 5.1.3,
concerning the �-eSLND property of suitable Gaussian processes.
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Proposition 5.51. Let � > 0 and consider the Rd-valued Gaussian process X� defined by

Xt
�=

Z
0

t

(t¡ s)¡1/2jlog (t¡ s)j¡�/2¡1/2dBs 8t2 [0; 1/2] (5.27)

where B is a standard Bm in Rd. Then X� admits a modification which is �-eSLND and satisfies
the hypothesis of Proposition 5.46; moreover, X� has trajectories in Lt

p for any p<1.

Proof. The process X is separable, as it is constructed from Bm, which is a separable process.
Moreover, it is easy to check X is stochastically continuous, therefore by Proposition 3.2 from [85]
it admits a measurable modification; from now on we will work with this modification. It holds

Var(Xt) = Id

Z
0

t

(t¡ s)¡1jlog (t¡ s)j¡�¡1ds= c� jlog tj¡�. 1 8t2 [0; 1/2];

by properties of Gaussian variables, we can then find �> 0 small enough such that

E

�Z
0

1/2

exp(�jXtj2) dt
�
=

Z
0

1/2

E[exp(�jXtj2)] dt <1;

which implies that X 2Lt
p for all p2 [1;1). Finally, since X is the moving average of white noise

associated to K(t; r)= k(t¡ r)Id, k(t¡ r)= jt¡ r j¡1/2 jlog jt¡ r jj¡�/2¡1/2, for any s< t it holds

Var(XtjFs)= Id
Z
s

t

k2(t¡ r) dr= Id
Z
0

t¡s
u¡1jlog uj¡�¡1dr�jlog(t¡ s)j¡�Id

which proves the �-eSLND property. �

Remark 5.52. We have constructed the process X on the interval [0; 1/2] for simplicity, but up
to rescaling, a process with the same properties can be constructed on any finite interval [0; T ].
Recall that for �6 1, X is exponentially irregular, thus Carathéodory and unbounded; therefore
the Lp (actually, exponential) integrability obtained is optimal in this case. On the other hand, in
the regime � >1 it can be shown, using the results from [110], [212], that the resulting process has
continuous trajectories. The results presented here are taken from [143]; while we were working on
the manuscript, the work-[170] came out, in which the same process is independently introduced
and called p-log Brownian motion (see Section 4 therein); our condition � >0 corresponds to p>1
therein. However the authors in [170] only provide estimates for �X in the regime p> 1/2, which
corresponds to � > 1, and do not prove the exponential decay of �X(�); our results in that regard
are much sharper.

Further examples of �-irregular functions can be produced by combining a given �-SLND
Gaussian process X with suitable deterministic functions.

Proposition 5.53. The following hold:

a) Given a measurable, deterministic f : [0; T ]!Rd and a �-SLND Gaussian process X, set Y :
=f +X; then Y is also �-SLND. If moreover X satisfies condition ( 5.26) and f 2Lt� for
some � 2 (0;1), then Y is �-irregular for any �< 1/(2�). A similar statement holds for f
as above and X �-eSLND.

b) Given a measurable, deterministic f : [0; T ]!R satisfying c¡16 jftj 6 c for some c > 0
and a process X satisfying the assumptions of Theorem 5.45, Y := fX also satisfies those
assumptions and is therefore �-irregular for any �< 1/(2�).

c) Let X is a �-SLND Gaussian process with � 2 (0; 1]; suppose X has trajectories in Ct�. Let
A2Ct

Rd�d be a deterministic function, with �+  > 1, satisfying

AtAt
�> cId 8t2 [0; T ]:

Then the process Y defined by the Young integral Y�=
R
0

�
AsdXs is also Gaussian, �-SLND,

with trajectories in Ct�; it is �-irregular for any �< 1/(2�).
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Proof. Part a) follows from Remark 5.27 and the fact that if f 2Lt� andX satisfies the integrability
assumptions, then so does f +X. Regarding b), it is clear that the process Y defined in this way
is still Gaussian satisfying (5.26). The process Y is �-SLND since

Var(YtjFs)= jftj2Var(XtjFs)�Var(XtjFs)& jt¡ sj2�Id:

It remains to prove c). By properties of Young integrals, ' 7!
R
0

�
Ad' is a bounded linear map

from Ct
� to itself, therefore Y is a Gaussian process on Ct� since X is so; by Fernique's theorem,

it holds E[exp(�kY kC�)]<1 for all �2R. By definition of Young integral, we have

Yt=Ys+AsXs;t+Rs;t

where jRs;tj. jt¡ sj�+kAkCkXkC�. This implies that Y satisfies

Yt¡EsYt=As (Xt¡EsXt) + (Rs;t¡EsRs;t);

where Xt¡EsXt and Rs;t¡EsRs;t are both Gaussian variables independent of Fs. Moreover

E[jRs;t¡EsRs;tj2]6E[jRs;tj2]. jt¡ sj2(�+) kAkC2 E[kXkC�2 ]. jt¡ sj2(�+)

where �+  > 1> � and so the variance above is of order o(jt¡ sj2�) as js¡ tj � 0. The decay of
Var(YtjFs) for s� t is thus governed by

Var(As (Xt¡EsXt))=AsVar(XtjFs)As�& jt¡ sj2�AsAs�& jt¡ sj2� Id

whenever jt¡sj is small enough. This implies that Y is �-SLND and �-irregular for any �<1/�. �

Remark 5.54. The examples from Proposition 5.53 can be further combined together, for instance
by considering

Yt :=

Z
0

t

AsdXs+ ftXt+ gt

for A, f , g satisfying the previous assumptions. One can moreover replace such deterministic
objects by stochastic processes Z i, independent of X, satisfying suitable regularity and integrability
assumptions; this can be readily seen by first conditioning on Z i and applying the deterministic
result. This allows to construct processes with �-irregular trajectories which are not Gaussian nor
Markovian.

5.3.3 �-irregularity for �-stable processes
Section 5.3.2 deals exclusively with Gaussian processes, but the criteria developed in Section 5.3.1
apply in more general situations, including Markov processes. Here we treat the case of suitable
�-stable processes.

Let us first recall some important facts on stable processes (see [250] for a detailed overview).
A process X with values in Rd is a symmetric �-stable process with spherical measure � (up to a
renormalising constant) if it is a Lévy process such that, for any s< t,

E[exp(ih�;Xt¡Xsi)] = exp
�
¡(t¡ s)

Z
Sd¡1

jh�; zij��(dz)
�
:

From now on, we will say thatX satisfies the non-degeneracy condition if there exists c>0 such that

G(�) :=

Z
Sd¡1

jh�; zij��(dz)> cj� j�: (5.28)

Similar conditions have already appeared in the literature on regularisation by noise, see e.g. [61].

Proposition 5.55. Let X be a symmetric �-stable process satisfying the non-degeneracy condi-
tion ( 5.28). Then X is P-a.s. �-irregular for any �<�/2.
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Proof. Let Ft be the natural filtration associated to X; for any �2Rd and s<t, by the indepen-
dence of increments and the non degeneracy condition, it holds��������Es�Z

s

t

eih�;Xridr

���������= ��������eih�;XsiZ
s

t

e¡(r¡s)G(�)dr

��������=Z
0

t¡s
e¡rG(�)dr6

Z
0

1
e¡cr j�j

�

dr� j� j¡�:

Applying Lemma 5.44 to the choice F (�) = j� j�/2, there exists �> 0 s.t.

sup
s=/ t;�2Rd

E

"
exp

 
�
j� j� j�s;tX (�)j2

jt¡ sj

!#
<1:

We would like to conclude that the process X is �-irregular for any �<�/2, but the integrability
condition from Theorem 5.40 is not satisfied. However, the process X belongs P-a.s. to Lt� for
any � <� (see Example 25.10 from [250]) and therefore we can apply Corollary 5.43 to obtain the
conclusion. �

Remark 5.56. The non-degeneracy condition (5.28) is for instance satisfied in the cases of �1
being the uniform measure on Sd¡1 and �2=

P
i=1
d �ei. The associated processes have respectively

generators L1=(¡�)�/2 and L2=
P
i (¡@xi

2 )�/2.

The previous examples generalises to anisotropic Markov processes, which show different irreg-
ularity behaviour in different directions. Property (5.29) below could be regarded as a notion of
��-irregularity�, where now � is a vector in Rd.

Corollary 5.57. Let �= (�1; : : : ; �d)2 (0; 2)d and let X be Rd-valued process whose components
X(i) are independent symmetric �i-stable processes, so that

E[exp(ih�;Xt¡Xsi)] = exp
�
¡jt¡ sj

X
i

j�ij�i
�
:

Define 9�9�2 =
P
i j�ij

�i. Then setting �(x)= xjlog xj
p

, P-a.s. it holds

sup
s=/ t;�2Rd

9�9�j�s;tX (�)j
logj� j

p
�(jt¡ sj)

<1: (5.29)

Proof. Going through the same calculations as in Proposition 5.55, we deduce the existence of
�> 0 such that

sup
s=/ t;�2Rd

E

"
exp

 
�
9�9�2 j�s;tX (�)j2

jt¡ sj

!#
<1:

The conclusion then follows from Theorem 5.40 applied to the choice F (�)=9�9� (together with
a reasoning analogous to that of Corollary 5.43, in order to relax the integrability condition). �

5.3.4 Ho�lder continuity of local time for Gaussian processes
We prove here that, under suitable assumptions, a Gaussian process X is not only �-irregular, but
it also possesses an Ho�lder continuous local time. To this end, we introduce another notion of local
nondeterminism (which is actually Berman's original one from [37]).

Definition 5.58. Let (Xt)t2[0;T ] be an Rd-valued separable Gaussian process. We say that X is
locally nondeterministic with parameter � > 0, X is �-LND for short, if for every integer n> 2
there exist positive constants cn and �n such that

Var

 X
k=1

n

vk � (Xtk+1¡Xtk)

!
> cn

X
k=1

n

Var(vk � (Xtk+1¡Xtk)) = cn
X
k=1

n

jvkj2 jtk+1¡ tkj2� (5.30)

for all ordered points t1< t2< : : : < tn with tn¡ t1<�n and vk2Rm.

Let us immediately explain how this new notion relates to Definition 5.25.
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Lemma 5.59. Let X be a �-SLND Gaussian process, then X is �-LND. The converse does not
hold, i.e. there exist processes which are �-LND but not �-SLND.

Proof. The result is classical, Remark 2.3 from [272] and the references therein. �

We are now ready to prove the following result (which, by Lemma 5.59, immediately implies
Point ii. of Theorem 5.28)

Theorem 5.60. Let X be a Rd-valued continuous Gaussian process which is �-LND with parameter
� 2 (0; 1/d). Then P-a.s. `X 2Ct�1Cx�2 for any �i2 [0; 1) satisfying

�1+2��2< 1¡ �d: (5.31)
In particular,

`X 2Ct
1¡�d¡Cx

0\Ct0Cx
1^

�
1
2�
¡d
2

�
¡

P-a.s.

Proof. Let us make a preliminary observation: even if X is not centered, we may always write
it as X =  +W , where  t=E[Xt] is continuous and deterministic and W is a centered Gaussian
process. Clearly, W is �-LND if and only if X is so (with same constants cn; �n); from now on we
will work with this decomposition of X.

Our proof follows quite closely the one given in Sections 25-26 from [152], so we will mostly
sketch it. For simplicity, we will already assume that `X is a well defined function, which we can
evaluate pointwise and express in terms of its Fourier transform5.5. In order to conclude, since `X

is P-a.s. compactly supported (by continuity of X), it is enough to show that, for any �i as above
and any k 2 2N, it holds

E[(`s;t(x)¡ `s;t(y))k]6Ckjx¡ y j�1kjs¡ tj�2k 8h2Rn; 06 s6 t6T :

Actually, it is enough to show the above for js¡ tj<� with �= �(k) small enough; indeed, we will
take �=�2k as in the LND property associated toW . By arbitrariness of k2N, the conclusion then
follows from an application of a multiparameter Garsia-Rademich-Rumsay lemma (see e.g. [177]).

In order to obtain such estimates, we first rewrite the above quantity in terms of the Fourier
transform of `X: we have

`s;t
X (x) = (2�)¡d

Z
Rd
`̂s;t
X
(�) ei��xd�=(2�)¡d

Z
Rd

Z
[s;t]

e¡i��( r+Wr)drei��xd�:

Therefore (dropping the term (2�)¡d for simplicity) it holds

E[(`s;t
X (x)¡ `s;tX (y))k]�E

��Z
Rd

�Z
[s;t]

e¡i��( r+Wr)dr

�
(ei��x¡ ei��y)d�

�
k
�

=E

"Z
Rdk�[s;t]k

exp
 
¡i
X
j

�j �Wtj

!Y
j

e
¡i�j� tj(ei�j�x¡ ei�j�y) d�j dtj

#

=

Z
Rdk�[s;t]k

exp

 
¡1
2
Var
 X

j

�j �Wtj

!!Y
j

e
¡i�j� tj(ei�j�x¡ ei�j�y)d�j dtj

.jx¡ y j�k
Z
Rdk�[s;t]k

exp

 
¡1
2
Var
 X

j

�j �Wtj

!!Y
j

j�j j�d�j dtj

where in the last passage we used the fact that, since k 2 2N, the above quantity coincide with its
absolute value, together with the basic inequalities����������Yj (ei�j�x¡ ei�j�y)

����������=1;
����������Yj (ei�j�x¡ ei�j�y)

����������. jx¡ y j�kYj j�j j� for �2 [0; 1]:

Observe that in the last quantity the deterministic function  has disappeared and it does not
play any role in the subsequent estimates.

5.5. Rigorously, we should first mollify `X, obtain stochastic estimates which do not depend on the mollification
and then pass to the limit; we omit this mostly tedious passage.
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It remains to obtain, exploiting the LND property, estimates for the quantity

Ik: =

Z
Rdk�[s;t]k

Y
j

j�j j� exp
 
¡1
2
Var
 X

j

�j �Xtj

!!
d�j dtj:

Up to a multiplicative combinatorial factor, it holds

Ik�k
Z
Rdk��k

exp

 
¡1
2
Var
 X

j

�j �Xtj

!!Y
j

j�j j�dtj d�j

where �k= fs < r1< : : : < rk< tg is the k-th simplex. By the change of variables �j= vj ¡ vj+1
(and �k= vk, vk+1=0) and the basic inequality ja¡ bj�6 jaj�+ jbj�, we obtain

Ik�
Z
Rdk��k

exp

 
¡1
2
Var
 X

j

vj �Xtj¡1;tj

!!Y
j

jvj¡ vj+1j� dtj dvj

6
X
m

cm

Z
Rdk��k

Y
j

jvj j�m;j exp
 
¡1
2
Var
 X

j

vj �Xtj¡1;tj
!!

dtj dvj

6
X
m

cm

Z
Rdk��k

Y
j

[jvj j�m;j exp(¡cjvj j2jtj¡ tj¡1j2�)]dtj dvj

6
X
m

cm

Z
Rdk�[s;t]k

Y
j

[jvj j�m;j exp(¡cjvj j2jt~j j2�)]dt~j dvj

=
X
m

cm
Y
j

Z
Rd�[s;t]

jv j�m;j exp(¡cjv j2jtj2�) dtdv;

where the sum is over m=m(k) is finite, the coefficients cm and m;j are of combinatorial tipe
and m;j2f0;1;2g. In the third line we used the change of variables t~j= tj¡ tj¡1. Finally observe
that by scalingZ

Rd�[s;t]
jv j�m;j exp(¡cjv j2jtj2�) dtdv� cH

Z
0

jt¡sj
u¡�d¡m;j��du. cH jt¡ sj1¡�d¡2��

since m;j 2 f0; 1; 2g and we are imposing the condition 1¡ �d ¡ 2�� > 0. Combining all the
estimates we obtain

E[(`s;t
X (x)¡ `s;tX (y))k].k;H jx¡ y j�k jt¡ sj(1¡�d¡2��)k

which implies `X 2Ct�1Cx�2 for any

�1< 1¡ �d¡ 2��; �2<�<
1

2�
¡ d

2
^ 1: �

Remark 5.61. The literature on local nondeterminism is nowadays huge, we refer the interested
reader again to [272] and the references therein. Here for simplicity we only dealt with Gaussian
processes, but the notion(s) can be generalized to include Lévy processes as well. It is also easy to
check, going through the proof of Theorem 5.60, that a similar statement can be shown for -stable
processes satisfying condition (5.28); the only difference is that the parameter 1/� appearing in
condition (5.31) is replaced by  (in a perfect parallelism with Theorem 5.45 and Proposition 5.55).
Finally, in Theorem 5.60 the constraint �2<1 appears, but it could be overcome by also considering
the regularity of derivatives of higher derivatives of `X (again expressed in terms of their Fourier
transform); this way, one could achieve the full regularity `X 2Ct0Cx

1/(2�)¡d/2¡.

5.4 Analytic properties of �-irregularity
This section is devoted to the study of deterministic (; �)-irregular paths. It includes the proof
of Theorems 5.30 and 5.31, which are presented respectively in Sections 5.4.1 and 5.4.2. In Sec-
tion 5.4.3 and 5.4.4 we also discuss what we call the perturbation problem.
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5.4.1 Fourier dimension and Salem sets
We highlight here the connection between �-irregularity and Fourier dimension and provide the
proof of Theorem 5.30. This connection was already noticed in [65]; we start by recalling some
facts of geometric measure theory, which can be found in [215].

Definition 5.62. Given E �Rd Borel, denote by M+(E) the set of positive measures supported
on E. The Fourier and Hausdorff dimension of E correspond respectively to

dimF(E)= sup f�2 [0; d]: 9�2M+(E); �̂2FL�/2;1g;

dimH(E)= sup f�2 [0; d]: 9�2M+(E); I
�(�)<1g;

where

I�(�) :=

Z
R2d

�(dx)�(dy)
jx¡ y j� = c�;d

Z
j� j�¡dj�̂(�)j2d�= c�;dk�kFL�/2¡d/2;2

2 :

It is clear from the definition and the embedding FLs;1 ,!FLs¡d/2¡";2 that

06 dimF (E)6dimH(E)6 d; (5.32)

moreover, there are examples in which all inequalities in (5.32) are strict. This motivates the
following definition.

Definition 5.63. A Borel set E �Rd is a Salem set if dimF(E)= dimH(E).

If w is (; �)-irregular, it is clear that for any [s; t]� [0; T ] it holds

�s;t
w 2FL�;1; I�(�s;t

w ).� jt¡ sj2k�wkW,�
2 8�< 2�:

In particular, since �s;tw is a measure supported on w([s; t]), it holds

min (d; 2�)6 dimF(w([s; t])) 8[s; t]� [0; T ]:

On the other hand, recall that iff 2Ct�, then for any [s; t]� [0; T ] it holds dimH(f([s; t]))6 �¡1.
We are now ready to give the proof of Theorem 5.30.

Proof. (of Theorem 5.30) Suppose first �> 1/d. By Theorem 5.29, a.e. '2Ct� is �-irregular
for any �< (2�)¡1. It then follows from (5.32) and the above considerations that

2�=min (d; 2�)6 dimF('([s; t]))6 dimH('([s; t]))6 �¡1;

since the inequality holds for all �< (2�)¡1, the conclusion follows. The case � < 1/d is even more
direct, since in this case we can find �< (2�)¡1 such that 2�>d and therefore we obtain

d=min (d; 2�)6 dimF('([s; t]))6dimH('([s; t]))6 d:
Finally, if � < 1/d, then by Point ii. of Theorem 5.29, almost every ' 2 Ct� admits a jointly
continuous occupation density `s;t

' . Therefore, there exists x 2 '([s; t]) such that `s;t
' (x)> " > 0

and by continuity the same must hold on an open ball B(x; r) for some r > 0; this implies that
B(x; r)� supp `s;t

' = '([s; t]). �

It is possible to show that �-irregular paths cannot be �-Ho�lder for � too large reasoning by
dimensionality, since otherwise it wouldn't be true that dimF(w([s; t]))>min (d; 2�); in the next
section we are going to provide a much sharper result.

5.4.2 �-irregular paths are rough
The results of this section are inspired by the similar discussion carried out in Sections 9-11
of [152], in which it is shown that functions with sufficiently regular occupation densities must
exhibit a quite erratic behaviour. Let us point out however that here we only assume the function
w to be (; �)-irregular, which in general does not imply the existence of an occupation density.
Theorem 5.31 follows from the results of this section and implies that the prevalence results from
Theorem 5.29 are sharp, see also the discussion in Remark 5.70 below.
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The next statement shows that (; �)-irregularity is indeed a notion of irregularity, in a sense
that can be explicitly quantified. We recall to the reader the existence of a critical parameter �;��

associated to (; �), as discussed in Remark 5.3; it is given by

�;�
� =

1¡ 
�

:

In the next statement, �1 denotes the Lebesgue measure on the real line.

Theorem 5.64. Let w be a (; �)-irregular function. Then for any �>�;�� , w is nowhere �-Ho�lder
continuous. In particular, for any fixed M>0 and any s2 [0; T ], the set of points t around s which
satisfy an approximate �-Ho�lder condition with constant M is a zero density set:

lim
"!0+

1
�1(B(s; ")\ [0; T ])

�1(t2B(s; ")\ [0; T ] : jws;tj6M jt¡ sj�)= 0:

Proof. First consider the case of � < d. Let  2 Cc1(Rd) be a radially symmetric, decreasing
function such that  � 1 on B1. Fix M > 0 and let us consider first s 2 (0; T ), so that �1(B(s;
")\ [0; T ])= 2" whenever " is small enough; up to translation, we can assume ws=0. We have

1
2"
�1(t2 (s¡ "; s+ ") : jws;tj6M jt¡ sj�)6 1

2"
�1(t2 (s¡ "; s+ ") : jwtj6M"�)

6 1
2"
�1

�
t2 (s¡ "; s+ ") :  

�
wt
M"�

�
> 1
�

6 1
2"

Z
s¡"

s+"

 
�
wt
M"�

�
dt

=
1
2"

Z
Rd
 
�

y

M"�

�
�s¡";s+"
w (dy)

=
Md

2
"d�¡1

Z
Rd
 ̂(M"��)�̂s¡";s+"

w (�) d�

.M"+�d¡1k�wkW,�

Z
Rd
j ̂(M"��)j (1+ j� j)¡�d�:

By Ho�lder's inequality, for any q >d/�>1, setting 1/q 0=1¡ 1/ q it holdsZ
Rd
j ̂(M"��)j (1+ j� j)¡�d� .M;q "

¡�d
q 0 kf̂ kLp:

Therefore we obtain
1
2"
�1(t2 (s¡ "; s+ ") : jws;tj6M jt¡ sj�) .M;q k�wkW,�"+�d/q¡1;

where the last quantity is infinitesimal as "! 0 for any q such that d/ q < � and + �d/q > 1. In
particular, if � satisfies � >�;�� , then it's always possible to find such q, which gives the conclusion
for s2 [0; T ]. The reasoning at the endpoints f0; T g is analogous: for instance in the case s= 0,
similar calculations yield

1
"
�1(t2 (0; ") : jwt¡w0j6M jtj�). k�wkW,�"+d�/q¡1:

This concludes the proof in the case �<d; for �>d, we can just invoke Lemma 5.5 and find a new
pair (~; �~) with �~<d such that w is (~; �~)-irregular and �;�� = �~;�~

� . �

Remark 5.65. It is clear from the proof that the statement can be localised as follows. For a
fixed s2 [0; T ], if the map t 7! �t

w satisfies an approximate -Holder condition in FL�;1 around s,
namely there exist constants C; r > 0 such that

k�s;tw kF�;16C jt¡ sj for all t2 (s¡ r; s+ r);

then w cannot satisfy an approximate �-Holder condition around s for any � > �;�� .

Let us recall that for a given path w2Ct0, its p-variation on an interval [s; t]� [0; T ] is defined as

kwkp¡var;[s;t]=
�
sup
�

X
i

jwti;ti+1jp
�
1/p

5.4 Analytic properties of �-irregularity 153



where the supremum is taken over all possible finite partitions �= fs= t0< : : : < tn= tg of [s; t].

Corollary 5.66. Let w be (; �)-irregular. Then for any p < (�;�
� )¡1 and any [s; t]� [0; T ],

kwkp¡var;[s;t]=+1.

Proof. Since the �-irregularity property is scaling invariant and the p-variation is invariant under
reparametrization, it suffices to show that if w is (; �)-irregular, then kwkp¡var;[0;1]=1 for any p
as above. Going through analogous computations to those of Theorem 5.64, it can be shown that
for any � > �;�� it holds

lim
"!0+

sup
s2[0;1¡"]

1

"
�1(t2 (s; s+ ") : jws;tj6 "�)= 0:

In particular, for all "> 0 small enough it holds

sup
s2[0;1¡"]

�1(t2 (s; s+ ") : jws;tj>"�)>
"
2
> 0;

thus for any s2 [0; 1¡ "], there exists t2 (s; s+ ") such that jws;tj> "�. Taking n� 1/", we can
construct a partition f0= t0< :::<t2n=1g such that t2k=k" and t2k+12 (t2k; t2k+2) has the above
property. We obtain

kwkp¡var
p >

X
k=0

2n¡1

jwtk;tk+1jp& "p�¡1;

since " can be taken arbitrarily small, if p < 1/� then kwkp¡var=1. As the reasoning holds for
any � > �;�� , the conclusion follows. �

Theorem 5.64 suggests that the behaviour of w is quite wild. This intuition can be captured
by the following notions of irregularity, introduced in [136] and nicely presented in [132].

Definition 5.67. We say that a path w 2Ct� is rough at time s, s2 (0; T ), if

limsup
t!s

jv �ws;tj
jt¡ sj2� =+1 8v 2Sd¡1:

A path w is truly rough if it is rough on some dense set of [0; T ].

Definition 5.68. A path w2Ct� is �-Hölder rough for �2 (0;1) on scale "0 if there exists a constant
L :=L�(w) :=L(�; "0; T ;w)> 0 such that, for every v 2Sd¡1, s2 [0; T ] and "2 (0; "0], there exists
t2 [0; T ] satisfying

jt¡ sj<" and jv � (ws;t)j>L�(w)"�: (5.33)

The largest such value of L is called the modulus of �-Hölder roughness of w.

Corollary 5.69. Let w be a (; �)-irregular path; then for any � >�;�� , w is �-Hölder rough with
infinite modulus of �-Hölder roughness.

Proof. For simplicity we show all the properties for s away from the endpoints f0; T g, but it is
easy readapt the reasoning in the other case. Recall that, if w is (; �)-irregular and v2Sd¡1, then
v �w is (; �)-irregular and k�v�wkW,�6k�wkW,�. The calculations in the proof of Theorem 5.64
show that, for any � > �;�� and any M > 0,

lim
"!0+

1
2"
�1ft2 (s¡ "; s+ ") : jv �ws;tj>M"�g=1;

where the rate of convergence only depends on M and k�v�wkW,�6 k�wkW,�; therefore it is
uniform in s and v. For fixed M > 0, we can find "0= "0(M; �) sufficiently small such that

1
2"
�1ft2 (s¡ "; s+ ") : jv �ws;tj>M"�g>

1
2
;

where the estimate holds for all "2 (0; "0], uniformly in s and v. Since the set has non-zero Lebesgue
measure, it's always possible to find t2 (s¡ "; s+ ") such that jv �ws;tj>M"�, which shows that
the definition of �-Ho�lder roughness is satisfied with �= � and L>M . By the arbitrariness of M ,
the conclusion follows. �
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Remark 5.70. We conclude this section with a discussion on the optimality of Theorem 5.29,
based on the results of the last two sections.

1. For � 2 (0; 1), optimality follows from the reasoning in the proof of Corollary 5.32.

2. By applying Lemma 5.5, in the case �=0 the result can be strengthened to the fact that
almost every '2Ct0 is (; �)-irregular for any  <1 and any �<1. Time regularity cannot
be improved to `w being differentiable in time, since we know that (in the weak sense)

d

ds
`(s; �)js=t= �wt 8t2 [0; T ]:

Moreover f`s;tw g�Cc1 cannot be improved to `s;tw being analytic, since this would imply that
w([s; t]) is an unbounded set.

3. One might wonder if, since by Lemma 5.5 we can always raise the value of  by lowering
the one of �, we can also do the opposite; in particular if, without imposing the restriction
 > 1/2, we can find functions '2C� which are (; �)-irregular for a pair (; �) satisfying
�6 �;�� but also �> (2�)¡1. In the case � > 1/d, this possibility is ruled out by reasoning
with Fourier dimensions, since it must hold

2�=min (d; 2�)6dimF(w([s; t]))6 dimH(w([s; t]))6 �¡1

independently of the value of .

4. If �6 1/d, the problem posed above is currently open. The only information we are able
to provide in this case is that for d=1, by Proposition 5.6, there exist indeed C1 functions
which are (; 1¡ )-irregular for any  2 (0; 1).

Although Point 4: is open in terms of generic '2C�, a simple computation shows that fBm
paths do not have this property (the proof can also be readapted to consider other Gaussian
processes).

Lemma 5.71. Let W be a fBm of parameter H 2 (0;1); for any s<t and any �> (2H)¡1, it holds

E[k�s;tW kFL�;12 ] =1:

Proof. Up to rescaling, we can assume s=0, t=1. Since FL�;1 ,!H�¡d/2¡, in order to conclude
it suffices to show that

E[k�1W kH1/(2H)¡d/2
2 ] =1:

This quantity can now be computed explicitly:

E[k�1W kH1/(2H)¡d/2
2 ] = E

�Z
Rd
j� j

1
H
¡d
��������Z
0

1

ei��Ws ds

��������2d��
=

Z
Rd

Z
[0;1]2

j� j
1
H
¡d

E[ei��(Ws;t)]dtdsd�

=

Z
Rd

Z
[0;1]2

j� j
1
H
¡d exp

�
¡j� j

2jt¡ sj2H
2

�
dtdsd�

=

�Z
Rd
j�~j

1
H
¡d
e¡j�

~j2/2d�~
��Z

[0;1]2
jt¡ sj¡1dtds

�
=1

where in the last passage we use the change of variables �~= � jt¡ sjH. �

The above result leads us to the following conjecture.

Conjecture 5.72. There exists no function '2Ct� which is (; �)-irregular with �> 1/(2�)_ 1.

5.4.3 The general perturbation problem
The perturbation problem was first introduced in Section 12 of [152], in the context of paths which
admit an occupation density. In the case of �-irregularity, it can be reformulated as:
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Problem: If w is �-irregular and ' is a sufficiently regular function, is w+ ' still �-irregular?

We address here the more general question:

Problem: Which classes of transformations preserve the property of (; �)-irregularity?

It follows from the results of the previous section that good candidates are transformations
which preserve the very oscillatory behaviour of w, namely at least the property that

limsup
t!s

jv �ws;tj
jt¡ sj� =+1 for all s2 (0; T ); v 2Sd¡1; � > �;�

� : (5.34)

Interestingly, it turns out that several transformations F :Ct0!Ct
0 have the property that, if w

is (; �)-irregular, then F (w) is (~; �~)-irregular for a new pair of parameters (~; �~) such that
�;�
� = �~;�~

� ; in particular, property (5.34) is preserved. However, we can't show that (; �)= (~; �~),
which remains a major open problem. A notable exception is given by the additive perturbations
F (w)=w+ ' with '2Ct1, whose treatment is postponed to the next subsection.

We start by showing that (; �)-irregularity is invariant under regular time reparametrization.

Lemma 5.73. Let w be (; �)-irregular, g 2Ct
� with �+  > 1. Then��������Z

s

t

ei��wrgrdr

��������. k�wkW,�kgkC� jt¡ sj j� j¡� uniformly in � 2Rd.

In particular, for � as above, let � : [0; T ]! [�(0); �(T )] be a Ct
1+�-diffeomorphism, i.e. � 2Ct

1+�

is invertible on its image with inverse of class Ct
1+�. Then w~r :=w�¡1(r) is also �-irregular and

k�w~kW,�. k�¡1kC1+�k� kC1+�k�wkW,�: (5.35)

Proof. Let w, g be as above. Then by properties of Young integral it holds��������Z
s

t

ei��wrgrdr

��������=��������Z
s

t

gr d

�Z
s

r

ei��wu du

���������
.jgsj

��������Z
s

t

ei��wrdr

��������+ jt¡ sj�+JgKC�sZ
s

�
ei��wrdr

{

C

.jt¡ sj j� j¡�kgkC�k�wkW,�;

which gives the first claim. Applying the change of variables r~= �¡1(r), we then have��������Z
s

t

ei��w~rdr

��������=
����������
Z
�¡1(s)

�¡1(t)

ei��wr �r
0dr

����������.j�¡1(t)¡ �¡1(s)j j� j¡�k� 0kC�k�wkW;�

.jt¡ sj j� j¡�k�¡1kC1+�k� kC1+�k�wkW,�

which implies (5.35). �

Remark 5.74. Lemma 5.73 can be used to further enlarge the class of stochastic processes X
which are �-irregular: given any such X and any random Ct

3/2-diffeomorphism, Yt:=X�¡1(t) is still
a �-irregular process.

Let us make some considerations based on the result above. Recall that if f 2Ct� for � 2 (0; 1)
and � is sufficiently regular (i.e. bi-Lipschitz), then f � �¡1 is still Ct�, but this is not true for a
general homeomorphism � . On the other hand, if f 2Ct0 has finite 1/�-variation, then there exist a
homeomorphism � and g 2Ct� such that f � �¡1= g (see for instance Proposition 5.15 from [134]).
Moreover the 1/�-variation is a quantity invariant under time reparametrization. Lemma 5.73
suggests that a similar situation here: (; �)-irregularity is preserved only if the reparametrization
is smooth enough, but there might exist another underlying property which is invariant under a
larger class of homeomorphism � . We formulate this as a conjecture.
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Conjecture 5.75. For any pair (; �), there exists a property P such that:

1. For any f 2Ct0 with property P, there exists a homeomorphism � such that g= f � �¡1 is
(; �)-irregular.

2. The property P is invariant under time reparametrization.

In the rest of the section, we will address the perturbation problem only for transformations
z=F (w) with a very specific structure, which makes z �locally look like w�. The treatment is a
bit abstract, but simple examples will be given in Remark 5.78.

Definition 5.76. Let w be (; �)-irregular. We say that z is controlled by w with Gubinelli
derivative z 0 if there exist z 02C0([0; T ];Rd�d) and R2C2

�([0; T ];Rd) with � >�;�� such that

zs;t= zs
0ws;t+Rs;t for all s< t:

Here R2C2
�([0; T ];Rd) means that R: �2!Rd (�2 being the 2-simplex) and it satisfies

kRk� := sup
s<t

jRs;tj
jt¡ sj�

<1:

The definition of controlled paths is usually given in the rough paths framework, see for instance [162]
and [132]; here instead we do not impose w; z 2Ct� with R2C22� and do not require w to admit
a rough lift (interestingly, all of that structure is not needed for Definition 5.76 to be meaningful).

It follows from property (5.34) that for a given z, if such a pair (z 0;R) exists, then it is necessarily
unique. Indeed, let (z~0;R~) be another such pair and set A= z 0¡ z~0, B=R¡R~. Choosing � 2 (0; 1)
such that �;�� <� < �, for any s2 (0; T ) and any v 2Sd¡1 it holds

limsup
t!s

j(As�v) �ws;tj
jt¡ sj� = limsup

t!s

jBs;tj
jt¡ sj� 6 kBk� limsup

t!s
jt¡ sj�¡�=0

which implies by (5.34) that As�v=0 for all v2Sd¡1 and s2 (0; T ), thus A�0 and so B�0 as well.
From now on, we will additionally assume in addition that there exists c> 0 such that

zs
0 (zs
0)�> c2 Id 8s2 [0; T ]: (5.36)

In particular, the above non-degeneracy condition implies that z satisfies property (5.34) as well.

Proposition 5.77. Let w be (; �)-irregular, z controlled by w with z 0 satisfying ( 5.36). Then
there exists ~> 1/2 such z is (~; �~)-irregular and �~ is given by

�~=
�

1¡ + �
�¡ 1¡ 

1¡ + �
> 0;

moreover �;�� = �~;�~
� and we have the estimate

k�zkW~;�~. (kRk�+ c¡�)(1+ k�wkW;�):

Proof. For any s< t, it holds��������Z
s

t

ei��zr dr

��������=��������Z
s

t

ei��zs;r dr

��������
6
��������Z
s

t

[ei��zs;r¡ ei��zs
0ws;r]dr

��������+ ��������Z
s

t

ei��zs
0ws;r dr

��������
.
Z
s

t

j� jjRs;r j dr+ c¡�k�wkW;�j� j¡�jt¡ sj

.kRk� j� jjt¡ sj1+�+ c¡�k�wkW;�j� j¡�jt¡ sj:

First assume that jt¡ sj1¡+� j� j1+�61, so that j� jjt¡ sj1+�6 j� j¡�jt¡ sj, then in this case we
trivially get ��������Z

s

t

ei��zr dr

��������. (kRk�+ c¡�k�wkW;�)j� j¡�jt¡ sj: (5.37)
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Assume now that jt¡ sj1¡+� j� j1+�> 1; choose N 2N such that N1¡+�� jt¡ sj1¡+� j� j1+�
and split the interval [s; t] in N subinterval of size jt¡ sj/N . Applying the previous estimate to
each of them and summing over we obtain��������Z

s

t

ei��zr dr

��������.kRk�N¡� j� jjt¡ sj1+�+ c¡�k�wkW;�N1¡ jt¡ sj j� j¡�

�(kRk�+ c¡�k�wkW;�)jt¡ sj j� j¡�~

where

�~=
�

1¡ + �
�¡ 1¡ 

1¡ + �
= ��+ �¡ 1

for suitable choice of � 2 (0; 1). Since �~< �, by Lemma 5.5 we can always find ~2 (; 1) such that
w is (~; �~)-irregular and �~;�~

� = �;�
� and k�wkW~;�~. k�wkW,�

� . 1 + k�wkW;�; equation (5.37)
applied with k�wkW~;�~, together with the above estimate, then implies��������Z

s

t

ei��zr dr

��������. (kRk�+ c¡�)(1+ k�wkW;�)j� j¡�~jt¡ sj~

which gives the conclusion. �

Remark 5.78. If for instance w is �-irregular and �>1, then we obtain that z is �~-irregular with

�~> 2
3
�¡ 1

3
:

Examples of z satisfying the above assumptions are the following:

� Take zt= 'twt with '2Ct
�R satisfying 't> c> 0, then zs0= 's Id, Rs;t=wt's;t2C2

�.

� Suppose w 2 Ct� with � 2 (0; 1) and take zt=
R
0

t
As dws, where A 2 C�([0; T ];Rd�d) sat-

isfies (5.36), �+ � > 1 and the integral is defined in the Young sense. Then zt
0=At and

�=�+ �.

� Finally, if z =w+ ' with ' 2Ct
�, then y 0� Id and Rs;t= 's;t2C2

�; this case is however
quite special and better estimates are available, see Section 5.4.4 below.

Let us highlight the difference between the purely analytical result of Proposition 5.77 compared
to the probabilistic result of Proposition 5.53, in which instead we have examples of Gaussian
processes which are �-irregular with parameter � invariant under any of the deterministic trans-
formations from the list above.

There is another notable class of transformations which preserve some properties of the occupa-
tion measure �w. In this case however, it is rather complicated to consider the (; �)-irregularity
property, and it is instead more natural to reason with occupation densities. Suppose that w admits
an occupation density `s;tw (which we know to be true for almost every w2Ct� when � < 1/d) and
let F :Rd!Rd be a global diffeomorphism; define zt=F (wt). Then z still admits an occupation
density `s;tz ; indeed for all smooth  :Rd!R it holdsZ
s

t

 (zr)dr=

Z
s

t

 (F (wr))dr=

Z
Rd
 (F (x))`s;t

w (x)dx=

Z
Rd
 (x) jdet (DF¡1(x))j `s;tw (F¡1(x))dx;

which shows that

�s;t
z (dx)= jdet (DF¡1(x))j `s;tw (F¡1(x))dx= `s;t

z (x) dx:

In particular, `s;tz inherits the regularity of `s;tw and F ; for instance, if `w2Ct
Cx

� with �2(0;1), then

k`s;tz kC�.kdet (DF¡1)kC� k`s;tw �F¡1kC�
.kdet (DF¡1)kC� kF¡1kC1k`s;tw kC�
.kF¡1kC1+� k`wkCC� jt¡ sj ;
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Similar estimates hold if � > 1, or `w 2Ct
Lx

p, etc.

5.4.4 The additive perturbation problem
In this section, we will consider for simplicity only the case w 2 Ct� with � 2 (0; 1). In view of
Theorem 5.29, we will always assume �>1/2 (equivalently (2�)¡1<1). As the name of the section
suggests, we want to analyse the (; �) irregularity of w+', for suitable (regular) perturbations '.

The next (partial) result is a slight improvement of Theorem 1.6 from [57].

Lemma 5.79. Let w be (; �)-irregular and '2Ct
� with � 2 (0; 1], � >�;�� . Then, for any choice

of �6 � satisfying 1¡  <� < ��, w+ ' is (~; �~)-irregular for the choice

~= 

�
1¡ �

��

�
+

�
��
; �~= �¡ �

�
;

and it holds

k�w+'kW~,�~. (1+ k�wkW,�)
¡
1+ k'k

C�
�/��

:

If w is �-irregular and � >max f1/2; (2�)¡1g, then w+ ' is
�
1

2
+

1

4��
; �¡ 1

2�

�
-irregular with

k�w+'kW~,�~. (1+ k�wkW,�)
¡
1+ k'k

C�
1/2��

:

Proof. Since '2Ct
�, so does ei��', for all �2Rd. For any �>1¡  we can then apply the estimates

from Young integration as follows:��������Z
s

t

ei��(wr+'r)dr

��������=��������Z
s

t

ei��'r d

�Z
s

r

ei��wudu

���������
.�+ jei��'sj

��������Z
s

t

ei��wrdr

��������+ jt¡ sj+�Jei��'KC�sZ
s

�
ei��wrdr

{

C

6
��������Z
s

t

ei��wrdr

��������+ jt¡ sj+�j� j¡�k�wkW,�Jei��'KC�:

By interpolation and the hypothesis �6 �, we have

jei��'t¡ ei��'sj6 2; jei��'t¡ ei��'sj6 j� jjt¡ sj�J'KC� ) jei��'t¡ ei��'sj. k'k
C�
�/� j� j�/� jt¡ sj�;

similarly, for any � 2 (0; 1), it holds��������Z
s

t

ei��wrdr

��������. k�wkW,�
� jt¡ sj�+1¡�j� j¡��:

Putting everything together, we obtain��������Z
s

t

ei��(wr+'r)dr

��������. k�wkW,�
� jt¡ sj�+1¡� j� j¡��+ jt¡ sj+� j� j¡�+�/�k�wkW,�k'k

C�
�/�

:

Choosing � 2 (0; 1) such that ��= �¡ �/�, namely �=1¡ �/(��) we obtain the first statement.
The second one simply follows from the assumption  > 1/2, taking �=1/2. �

Lemma 5.79 implies that, even if we consider a perturbation '2Ct1, we should expect a loss
in spatial regularity of order 1/2, which is only partially recovered by an improvement in time
regularity of order 1/(4�). The new parameters (~; �~) given by (5.79) satisfy �;�� = �~;�~

� , which
implies that w+ ' still satisfies property (5.34), as can be checked directly using the fact that
'2Ct

� for some � >�;�� . This hints that the above result, while not being fully satisfactory, might
be optimal, even if we cannot exclude the existence of other pairs ( 0; �0) with �0> �~ such that
w+ ' is ( 0; �0)-irregular.

The proof above cannot provide better results in the case '2Ct
� with � > 1. Even if it were

false in general that w+ ' is (; �)-irregular whenever w is so and '2Ct
� with � >�;�� , we would

at least expect the claim to be true whenever ' is Ct1; this is a problem left open in [57] and [66].

5.4 Analytic properties of �-irregularity 159



Following [143], we are able to give it a positive answer, up to strengthening the notion of
�-irregularity. Before giving the rigorous statement, let us give an intuition by considering the
following case. Suppose that '2Ct

1+� for some �2 [0;1] and that w satisfies the following property:
for any a2Rd, t 7!wt+ at is �-irregular, uniformly in a, in the sense that supa k�w+atkW,�<1.
Then we could improve the estimates in the proof of Lemma 5.79 as follows:��������Z

s

t

ei��(wr+'r)dr

��������=��������e¡i��('s+s's0)Z
s

t

ei��(wr+'r)
��������

=

��������Z
s

t

ei��('s;r¡'s
0(r¡s)) d

�Z
s

r

ei��(wu+'s
0u)du

���������
.k�w+'s0tkW;�jt¡ sj j� j¡�+ k�w+'s0tkW;�jt¡ sjkei��('s;�¡'s

0(�¡s))kC1/2
.wjt¡ sj j� j¡�+ jt¡ sjj� j¡�kei��('s;�¡'s

0(�¡s))kC1/2

where the last norm is taken over the interval [s; t]. As before, we can estimate it using simple
interpolation arguments, only this time we have

j's;u¡ 's0(u¡ s)¡ 's;v+ 's
0(v¡ s)j=j'u;v¡ 's0(v¡u)j=

��������Z
v

u

'r;s
0 dr

��������
6
Z
v

u

J'0KC� jr¡ sj�dr.' ju¡ v j1/2jt¡ sj1/2+�

where we used the fact that [v; u]� [s; t]. Therefore we obtain��������Z
s

t

ei��(wr+'r)dr

��������. jt¡ sj j� j¡�+ jt¡ sj3/2+� j� j1¡�;
we can now reason as in the proof of Lemma 5.77, i.e. split the interval [s; t] into N subintervals
of size jt¡ sj/N , apply the estimate on them, sum over N and choose N � j� j1/(1+�) to obtain��������Z

s

t

ei��(wr+'r)dr

��������. jt¡ sj j� j¡�+1/2(1+�):
This shows that w+' is (�¡ (2+2�)¡1)-irregular. In particular, even if we are not able to recover
�-irregularity, the loss of regularity for '2C1+� is now expected to be (2+2�)¡1, which suggests
that more generally for '2C�, w+ ' should be (�¡ (2�)¡1)-irregular, for any � 2 [1/2;+1).

This motivates the following definition; here F (�)= j� j�/ logj� j
p

, �(x) = x jlog xj
p

.

Definition 5.80. We say that w2Ct0 is strongly �-irregular if the following holds: for any n2N,
given � 2Rn and denoting by gr

� :=
P
k=1
n �kr

k, then

sup
�2Rd;�2Rn;s=/ t

j
R
s

t
ei��wr+igr

�

dr jF (�)
log(1+ j� j)

p
�(jt¡ sj)

<1: (5.38)

Definition 5.80 formalises the idea that the irregularity of w should be only mildly affected by
polynomial perturbations of any degree; this allows to proceed as above, by locally expanding a
more general additive perturbation ' in its Taylor series, centered around s.

Theorem 5.81. Let w be strongly �-irregular. Then for any '2Ct
�, �2 [1/2;1) and for any �~<�,

w+ ' is (�~¡ 1/2�)-irregular. In particular, if '2Ct1, then w+ ' is �~-irregular for any �~< �.

We omit the proof, which can be found in [143], Theorem 80; once the key idea presented above
is understood, passing from '2Ct

1+� to '2Ct
n+� is mostly a technical matter. Of course, in order

for Theorem 5.81 to be useful, we need Definition 5.80 to be non-vacuous; this is the aim of the
next result.

Theorem 5.82. For any �2 (0; 1), almost every '2Ct� is strongly �-irregular for any �< (2�)¡1.
Almost every '2Ct0 is strongly �-irregular for any �<1.
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Again we omit the proof and refer to Theorem 81 from [143]. Let us however briefly explain
the strategy of proof:

i. It is enough to show that, if X is a �-SLND continuous Gaussian process, then it is P-a.s.
strongly �-irregular for any �< 1/(2�). Indeed once this is established, obtaining a preva-
lence statement can be accomplished as usual, leveraging on Remark 5.27; the fact that the
strong �-irregularity property defines Borel sets can be shown as in Lemma 5.10.

ii. To fix the ideas, from now on let X be a fBm of parameter H 2 (0; 1). Then again by
Remark 5.27, and the results from Section 5.3.2, for any g� as in Definition 5.80 it holds

E

24exp
0@� j� j 1Hjt¡ sj

��������Z
s

t

ei��Xr+igr
�

dr

��������2
1A356K

for some universal constants �;K > 0.

iii. From here, one needs to run a Kolmogorov type of argument carefully tracking how many
�dyadic� g� (in the sense of having coefficients �k 2 2¡NZn) are needed; this gives rise to
the logarithmic corrections appearing in Definition 5.80.

We haven't dedicated in this thesis much space to the concept of strong �-irregularity, because it is
somehow very unsatisfactory. It is very technical, not particularly elegant, and although it works it
doesn't appear to give any useful insight on how to overcome the main difficulties in manipulating
�-irregular functions.

In comparison to the analytic results obtained here, the stochastic ones from Proposition 5.53
require much less effort, while having stronger conclusion; still, they are subject to the (major!)
constraint of the perturbation ' being deterministic. In the next section we will see how to relax
this condition.

5.4.5 The stochastic perturbation problem
We have already seen in Section 5.3.2 (e.g. Proposition 5.53) that �-irregular Gaussian processes
W are often insensitive to deterministic perturbations ', in the sense that W + ' is �-irregular
for the same parameters as �; this is in stark contrast with the pathwise results from Section 5.4.4
(e.g. Proposition 5.79), where we expect a �regularity loss� resulting in a new parameter �~< �.

However, dealing only with deterministic (or more generally, independent from W ) perturba-
tions is by far too restrictive. An alternative approach to the problem relies on the use of Girsanov
transform: if we know that Law(W +�) is equivalent to Law(W ) on Ct0, then it shares all its almost
sure pathwise properties, including �-irregularity. For instance, this reasoning ensures that many
of the solutions to SDEs constructed in Chapter 3 are �-irregular.

In fact, it is not even necessary to have equivalence of laws (namely, we don't need to verify
Novikov): it suffices to know that Law(W + �)� Law(W ), which can be accomplished under the
mere requirement thatP(�2CMW)=1, see Proposition 1 from [198] e Theorem 7.4 from [206]. Here
CMW denotes the Cameron-Martin space associated to W ; if it is a fBm of parameter H 2 (0; 1),
then CMW=HH+1/2 and it is well-known that Ct

H+1/2+2"
,!Wt

H+1/2+";2
,!HH+1/2 (see [137]),

providing more practical conditions to verify this requirement.
Also this approach presents some drawbacks; if the process W is �-SLND, but is not a fBm,

verifying the validity of Girsanov may be much harder (although still possible, see e.g. the recent
work [229]).

We present here a different approach, which combines the �sewing analysis� from Section 5.4.4
to the stochastic properties of W , yielding a more satisfactory result, see Theorem 5.83 below.
The content of this section is mostly yet unpublished, although strongly based on [154] and the
ongoing work [142].

Let us first recall a basic property of conditional expectations: for any Fs-measurable Y , it holds

kX ¡EsXkLp6 kX ¡Y kLp+ kEs[Y ¡X]kLp6 2kX ¡Y kLp: (5.39)

We are now ready to present the main result of this section.
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Theorem 5.83. Let (
;F ;Ft;P) be a filtered probability space and W be an adapted, Gaussian,
Rd-valued �-SLND process w.r.t. Ft5.6; assume further that E[jWs;tj]. jt¡ sj�~ for another para-
meter �~>0. Let � be another adapted Rd-valued process; suppose that there exists ">0 such that,
for all p2 [1;1), it holds

k�t¡Es�tkL!p.p jt¡ sj
�+

1
2
+" 8s< t (5.40)

and that E[k�kLt1
2d ]<1. Then P-a.s. the process X : =W + � is �-irregular for any �< 1/(2�).

Remark 5.84. Condition (5.40) may be seen as a refinement of the one guaranteeing validity of
Girsanov (at least when the process W is a fBm); indeed, � < 1/2 and E[k�k

C�+1/2+"
p ]<1, then

by (5.39) it holds

k�t¡Es�tkL!p6 2k�t¡ �skL!p6 2E
h
k�k

Ct
�+1/2+"

p
i
1/p
jt¡ sj�+1/2+":

We may somehow interpret (5.40) as a �regularity condition� for stochastic processes, where stan-
dard increments are replaced by �t¡Es�t.

In this sense, in analogy with Girsanov, the process X will have the same properties as W
(specifically, it will be �-irregular for the same values �) if it is of the formW +�, with � possessing
approximately 1/2-regularity more than W . In another light, condition (5.40) ensures that �t can
be sufficiently well predicted by all the history up to time s, opposite to the local nondeterminism
of W , which implies its chaoticity.

Compare these results to the ones given in Section 5.4.4: although � is (by far!) not smooth,
there is no loss in the parameter � associated to X and we don't need to invoke a complicated
condition like strong �-irregularity.

In order to give the proof of Theorem 5.83, we need a few preparations. We start with an
analytical result showing that, under suitable assumptions, we can obtain FL�;1 bounds starting
from FL�;p with p<1.

Lemma 5.85. Suppose  2FL�;p has support contained in BR, �> 0. Then  2FL�;1 and there
exists a constant C(�; p)> 0 such that

k kFL�;16CRd/pk kFL�;p: (5.41)

Proof. Up to a rescaling argument, it suffices to prove the statement in the case R=1. Let g2Cc1
such that g� 1 on B(0; 1), then by assumption  =  g and so  ̂=  ̂ � ĝ. But then

(1+ j� j)�j ̂(�)j6(1+ j� j)�
Z
j ̂(� ¡ �)jjĝ(�)jd�

.�
Z
(1+ j� ¡ � j)�jf̂(� ¡ �)j(1+ j� j)�jĝ(�)jd�

.kf kFL�;pkgkFL�;p0�p kf kFL�;p

which gives the conclusion. �

We now provide an alternative general criterion to establish �-irregularity of a given process.

Lemma 5.86. Let (Xt)t2[0;T ] be a Rd-valued stochastic process with bounded trajectories. Suppose
that it satisfies E[kXkL12d ]<1 and that there exist  2 (0; 1), �> 0 such that

E

���������Z
s

t

ei��Xrdr

��������p�1p.p jt¡ sj j� j¡� 8� 2Rd; s < t

for all p2 [1;1). Then X is P-a.s. (~; �~)-irregular for any ~< , �~< �.

5.6. Here for simplicity, when referring to �-SLND, we will enforce Var(WtjFs)6 c jt¡ sj2� uniformly over all
s<t (namelywith �=T in (5.9)). The general case doesn't pose any additional problems and can be treated similarly.
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Proof. For simplicity, in the following computations, whenever the FL�;p-norm appears, we will
restrict the integral on j� j> 1. This comes with no harm, since we are always dealing with finite
measures �, whose Fourier transform is bounded; by the trivial estimate j�̂s;tX (�)j6 jt ¡ sj, the
presence of the additional weight h�i� doesn't play any role for j� j6 1. By definition of �s;tX and
the assumptions, for any fixed "> 0 and s< t it holds

E[k�s;tX kFL�¡";p
p ]�

Z
j�j>1

h�i(�¡")pE
���������Z

s

t

ei��Xrdr

��������p�d�
.p
Z
Rd
h�i(�¡")p jt¡ sjp j� j¡�p d�

6jt¡ sjp
Z
j�j>1

j� j¡"pd�.";p jt¡ sjp

up to choosing p large enough so that p">d. By Lemma 5.85, it then holds

E
�
k�s;tX kFL�¡";1

p/2 �
.E
�
kXkL1d k�s;tX kFL�¡";p

p/2 �
.E[kXkL12d ]1/2E[k�s;tX kFL�¡";p

p ]1/2. jt¡ sjp/2:
As the estimate holds for any p, an application of Kolmogorov's continuity criterion readily yields
�X 2Ct

¡"FL�¡";1 P-a.s.; since "> 0 was arbitrary, we obtain the conclusion. �
The final and most important tool we will need is a (heavily simplified version of) the shifted sto-

chastic sewing lemma, which first appeared in [154]. We adopt the same notation as in Lemma 1.1,
in particular �As;u;t=As;t¡As;u¡Au;t.

Lemma 5.87. Let (As;t)(s;t)2[0;T ]2 be a family of random variables in L!
p, p2 [1;1), such that As;t

is Ft-measurable. Suppose that there exists a process (At)t2[0;T ] which is the limit of the Riemann-
Stjeltes sums associated to A, in the sense that

At¡As= lim
j�j!0

X
i

Ati;ti+1

where the limit is in probability in 
 and holds along all possible sequences of deterministic parti-
tions f�ngn with mesh j�nj! 0. Additionally assume that there exist "; Ci> 0 such that

i. kAs;tkL!p6C1 jt¡ sj
1/2+" for all s< t;

ii. kEs¡(t¡s)�As;u;tkL!p6C2 jt¡ sj1+" for all s< t with s> t¡ s, where u=(t+ s)/2.
Then there exists a constant K, only depending on " and p, such that

kAt¡AskLp6K(C1jt¡ sj1/2+"+C2 jt¡ sj1+") 8s< t: (5.42)

Proof. The statement is a simplified version of Lemma 2.2 from [154]. In particular, here we are
taking for simplicity M = 1; "1= "2 and we are assuming the process A to already exist (usually
this is instead one of the conclusions of sewing type lemmas). Moreover we only consider u to be
the midpoint of (s; t), which is enough to work with dyadic partitions; indeed we are only claiming
the a posteriori estimate (5.42), knowing that A already exists. Equation (5.42) corresponds to
eq. (2.15) from [154] and can be proved as therein. �
Proof. (of Theorem 5.83) Fix � 2Rd; consider the family of random variables As;t given by

As;t: =Es¡(t¡s)

Z
s

t

ei��(Es¡(t¡s)�r+Wr)dr;

with the convention that Ea = E whenever a < 0. We start by showing that the limit of the
Riemann-Stjeltes sums of A is given by

R
s

t
ei��(�r+Wr)dr. Applying the basic inequality (5.39) and

assumption (5.40), it holdsZ
s

t

ei��(�r+Wr)dr¡As;t

L!
p
.
Z

s

t

ei��(�r+Wr)¡ ei��(Es¡(t¡s)�r+Ws¡(t¡s))dr

L!
p

.j� j
Z
s

t

k�r¡Es¡(t¡s)�rkL!p+ kWr¡Ws¡(t¡s)kL!p

.j� j
¡
jt¡ sj�+3/2+ jt¡ sj�~+1

�
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which readily implies the claim.
We pass to verifying assumptions i.-ii. from Lemma 5.87, By the �-SLND property of W , it

holds

jAs;tj. jt¡ sj e¡cj�j
2jt¡sj2�. j� j¡

1¡2"
2� jt¡ sj

1
2
+"

where we used the basic inequality e¡x
2
x�. 1 for �=(1¡ 2")/(2�) and x= j� jjt¡ sj�. Similarly,

recalling that u=(t+ s)/2, so that t¡u=u¡ s=(t¡ s)/2, it holds

kEs¡(t¡s)�As;u;tkL!p6
Eu¡(t¡u)

Z
u

t

ei��Wr(ei��Es¡(t¡s)�r¡ ei��Eu¡(t¡u)�r) dr

L!
p

+

Es¡(u¡s)Z
s

u

ei��Wr(ei��Es¡(t¡s)�r¡ ei��Es¡(u¡s)�r) dr

L!
p

6
Z
u

t

e¡cj�j
2jr¡u+(t¡u)j2� kei��Es¡(t¡s)�r¡ ei��Eu¡(t¡u)�rkL!p dr

+

Z
s

u

e¡cj�j
2jr¡s+(u¡s)j2� kei��Es¡(t¡s)�r¡ ei��Es¡(u¡s)�rkL!p dr

6e¡cj�j2jt¡uj2� j� j
Z
u

t

kEs¡(t¡s)�r¡Eu¡(t¡u)�rkL!p dr

+ e¡cj�j
2jt¡uj2� j� j

Z
s

u

kEs¡(t¡s)�r¡Es¡(u¡s)�rkL!p dr

.e¡c~j�j2jt¡sj2� j� j jt¡ sj�+3/2+";

above we used assumption (5.40) and basic properties of conditional expectation as follows:

kEu¡(t¡u)[Es¡(t¡s)�r¡ �r]kL!p6 k�r¡Es¡(t¡s)�rkL!p.p jr¡ s+(t¡ s)j�+1/2+":

Applying the basic inequality e¡x
2
x�. 1, this time for �=1+1/(2�), we find

kEs¡(t¡s)�As;u;tkL!p . j� j1¡� jt¡ sj
�+3/2+"¡��= j� j¡

1
2� jt¡ sj1+":

The assumptions of Lemma 5.87 are therefore satisfies and by (5.42) we can deduce thatZ
s

t

ei��(�r+Wr)dr


L!
p
.";p jt¡ sj1/2+" j� j

¡1¡2"
2� 8� 2Rd; s < t:

The conclusion then follows by the arbitrariness of "> 0; p <1 and Lemma 5.86. �

As already mentioned in Remark 5.84, in the case � < 1/2, a simple condition to verify
that (5.40) holds is to impose E[k�k

C�+1/2+"
p ]<1.5.7 More interestingly, for � > 1/2, there exist

processes � satisfying (5.40) with limited Ho�lder regularity. To illustrate this, from now on we
will work with the W being a (generalized) fBm of Hurst parameter H 2 (1/2;1) nN (which
was defined in Section 5.1.3) and look at SDEs of the form

Xt=x0+

Z
0

t

bs(Xs)ds+Wt: (5.43)

Lemma 5.88. Let W be a fBm of parameter H 2 (1/2;1) nN, x02Rd and b2Lt1Cx� with

�> 1¡ 1
2H

; (5.44)

5.7. Actually, the same argument holds true also for � > 1, up to further Taylor expanding: indeed

k�t¡Es�tkLp.

�t¡
X

k6b�c
�s
(k)(t¡ s)k

k!


Lp

.E[k�kC�
p ]1/pjt¡ sj�:
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suppose X is a solution to ( 5.43). Then X = � +W with � satisfying the assumptions of The-
orem 5.83 for �=H; in particular, X is P-a.s. �-irregular for any �< 1/(2H).

Proof. Observe that under (5.44), �> 0, so equation (5.43) is meaningful in the classical sense.
Let us assume for simplicity x0=0 (true up to shifting and relabelling b); then � satisfies

�t=

Z
0

t

br(�r+Wr)dr:

Suppose we already know that k�t¡Es�tkLp. jt¡ sj for some  >0 (this is certainly the case for
=1, since b2Lt;x1 ); then, by the properties of conditional expectation, we have

k�t¡Es�tkL!p62
�t¡ �s¡Z

s

t

br(Es�r+EsWr)dr


L!
p

.
Z
s

t

kbr(�r+Wr)¡ br(Es�r+EsWr)kL!p dr

.kbkL1C�
Z
s

t

(kj�r¡Es�r j�kL!p+ kjWr¡EsWr j�kL!p) dr

.kbkL1C�
Z
s

t

(k�r¡Es�rkL!p
� + jr¡ sj�H) dr

.kbkL1C�jt¡ sj�(^H)+1:

In particular, as long as  <H , we can improve it to a new exponent  0=�+1. The affine map
 7!�+1 admits a unique fixed point �=(1¡�)¡1 and by (5.44) �>H; this implies that, after
a finite amount of iterations of this procedure, the estimate will stabilize to

k�t¡Es�tkLp. jt¡ sj�H+1:

Finally, again by (5.44), it's easy to see that �H +1>H +1/2. �

Remark 5.89. We left a few details in the above setup vague on purpose. Since, as already
mentioned, we are restricting ourselves to the case � > 0, it's easy to construct weak solutions
(X;W ) to (5.43) by standard tightness arguments; in particular, X might not be adapted to the
filtration generated by W , but we can find a common filtration Ft under which both processes
are adapted and W is a Ft-fBm (so that it is H-SLND w.r.t. Ft). It is far less obvious to see that
actually, under condition (5.44), equation (5.43) admits a strong, pathwise unique solution; this is
not a consequence of the results from Chapter 3, since the drift b enjoys limited time regularity.
The claim instead follows from the strategy adopted in [154], although therein the author only
considers time-independent drifts; a further generalization will be presented in the upcoming [142].

5.5 Bibliographical comments
As already mentioned, almost all of the material presented is taken from [143]; there are two notable
exceptions: Section 5.3.4, whose prevalence result is unpublished (although the proof is strongly
based on [152]) and Section 5.4.5, based on the ongoing project [142]. Let me mention that The-
orem 5.83 is mostly non-optimal, as condition (5.40) can be further refined (but the presentation
becomes quite technical). I also decided to exclude some technical parts, like Section 4.4 from [143],
or the proofs of the statements involving strong �-irregularity appearing in Section 5.4.4.

As already mentioned, while with Max we were completing the first draft of [143], the work [170]
appeared, which clearly shares several key intuitions (the role played by the local nondeterminism
property, the relation with occupation measures, the infinitely regularising effect of some contin-
uous functions); in some sense, [170] merges the contents of Chapters 3 and 5. This simplification
allows for a short, elegant and self-contained exposition, but comes at a considerable price; indeed,
one loses the fine structure of the original problem and many statements become non optimal (e.g.
in terms of the required smallness of the parameter H). Also, the authors in [170] do not realize
that they can fully work outside a probabilistic framework through the concept of prevalence.
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On the historical side, let me mention that the problem of regularity of the local times of
Gaussian processes is more than fifty years old (yet still very active!), with pioneering works by
Berman [36, 37], Pitt [240] and Kahane [186]; see the reviews [152] and [272] for further references.
Although the authors therein did not study the concept of �-irregularity (it hadn't been introduced
yet!), there is a striking similarity between the stochastic estimates first presented in [57] and those
already appearing in Chapter 18 from [186] (which were not motivated by regularisation by noise,
but rather the study of the Hausdorff dimension of images of fractional Brownian motion).

Concerning the results on regularisation by noise for PDEs presented in Section 5.2.2, notable
precursors are given by the works [88, 89, 34] for the study of modulated dispersive equations
and [205, 156] for scalar conservation laws; all these works results however only consider w sampled
as a Brownian motion and crucially relied on its stochastic properties. The realization that pathwise
properties of the process can be exploited to obtain path-by-path results (and largely extend
the class of allowed processes w) instead is due to [66, 65, 64], see also [151] for the case of
Hamilton�Jacobi equation.

In a different direction, the regularity of local times of Volterra-Lévy processes has been recently
studied in [167]; the techniques presented is Section 5.3 allow to show that these processes are
�-irregular as well. In the upcoming work [142], together with Máté Gerencsér we will show
�-irregularity of a large class of solutions to SDEs driven by �-SLND Gaussian processes.

There are yet many interesting problems to explore related to �-irregularity, besides Conjec-
tures 5.72 and 5.75. For instance, it is a completely open problem is to understand whether a similar
(useful) concept could be introduced for paths on manifolds. On another note, one could try to
study �-irregularity of random fields and try to apply it in regularisation by noise for PDEs.5.8

Let me conclude with a more philophical discussion, which is also propedeutical for the upcoming
Chapter 6. Like regularity can be measured in many different ways and at several different scales,
the same holds for irregularity. While �-irregularity seems to be special (a posteriori, maybe
even magical), given the plethora of applications it finds, it is of course not the only possible such
notion; it also doesn't completely recover other �irregularity� properties of the path (like the sharp
Ho�lder regularity of local times from Section 5.3.4, which is not a consequence of Lemma 5.22).

Depending on the problem in consideration, one might need to introduce a tailor-made notion
of irregularity to tackle it. Notable examples are given by the works [172, 173], which develop
the concept of variability of paths (still partially related to �-irregularity, see the discussion in
Section 4.5 from [172]) and the scaling condition introduced in Section 3.1 of [64].

Let me also mention the upcoming works [174, 248]; on one hand, the authors further explore
connections between notions of roughness, also provide a negative answer to Conjecture 5.75; on
the other, another concept of irregularity, based on small ball probability estimates is introduced,
which is still deeply tied to the joint space-time regularity of �w, but is also easier to check for
stochastic processes which are not of Gaussian nature.

Although slightly artificial, there is in fact a systematic way to introduce quantitative irregu-
larity properties, based on �inverse norms�; in a broad sense, this class includes the aforementioned
scaling condition from [64] and the upcoming Wei's irregularity condition (see Definition 6.26 and
Remark 6.27).

Definition 5.90. Given a measurable path w: [0; T ]!Rd, �2 (0; 1], � 2 (0; 1), we set

Iw
�;�: =

Z
[0;T ]2

jt¡ sj��¡1
jwt¡wsj�

dsdt (5.45)

possibly taking value +1.

The intuition is that Iw
�;� represents an inverse Gagliardo�Niremberg seminorm. Let me shortly

discuss some connections between the finiteness of Iw
�;�, the irregularity of w and other concepts

of irregularity, as well as criteria for stochastic processes.

5.8. Fabian Harang communicated to me privately his attempts to pursue this line of research in the case 2D
dispersive type of equations with additive fractional Brownian sheet.
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Set Iw
�,�=

R
[0;T ]

F (t) dt, where

F (t): =

Z
[0;T ]

jt¡ sj��¡1
jwt¡wsj�

ds:

Lemma 5.91. Let w: [0; T ]!Rd satisfy F (t) <1. Then w does not satisfy an approximate
�-Ho�lder condition around t, i.e.

limsup
s!t

jwt¡wsj
jt¡ sj� =+1: (5.46)

In particular, if Iw
�;�<1, then w satisfies ( 5.46) at a.e. t2 [0; T ].

Proof. We are actually gonna show a slightly stronger statement, in which the limsup is replaced
by the approximate limit superior (see [152]). Let t be such that F (t)<1 and let LT denote the
Lebesgue measure on [0; T ]. Then for a given N > 0 it holds

1
2"
LT fs2 (t¡ "; t+ "): jwt¡sj6N jt¡ sj�g=

1
2"
LT
�
s2 (t¡ "; t+ "): jt¡ sj

��

jwt¡wsj�
>N¡�

�
6N

�

2"

Z
(t¡";t+")

jt¡ sj��
jwt¡wsj�

ds

6N
�

2

Z
(t¡";t+")

jt¡ sj��¡1
jwt¡wsj�

ds;

Since F (t)<1, the last quantity is infinitesimal as "! 0:

lim
"!0

Z
(t¡";t+")

jt¡ sj��¡1
jwt¡wsj�

ds=0:

As the reasoning holds for any N , it follows that for any t such that F (t)<1 it holds

ap¡ limsup
s!t

jwt¡wsj
jt¡ sj� =+1:

The second claim follows from the fact that, if Iw
�,�<1, then F (t)<1 for a.e. t2 [0; T ]. �

We can readily find simple conditions for a process X to satisfy IX
�;�<1. For simplicity, let

us consider a centered, R-valued Gaussian process X such that

E[jXt¡Xsj2]>C jt¡ sj2� 8(s; t)2 [0; T ]2 (5.47)

for some C > 0. Then for any � < 1 it holds

E

�Z
[0;T ]2

jt¡ sj��¡1
jXt¡Xsj�

dsdt

�
=

Z
[0;T ]2

jt¡ sj��¡1E[jXt¡Xsj¡�] dsdt

��
Z
[0;T ]2

jt¡ sj��¡1Var(Xt¡Xs)¡�/2dsdt

.
Z
[0;T ]2

jt¡ sj��¡1¡�� dsdt <1

whenever � <�, regardless the value of �. As a consequence, for P-a.e. !2
, the path X(!) does
not satisfy an approximate Ho�lder condition of order � > � on a set of points t of full Lebesgue
measure.

The next two lemmas give explicit conditions for the finiteness Iw
�;�.

Lemma 5.92. Let w be such that `w 2 Ct
Cx

0. Then F (t)<1 for all t 2 [0; T ] and � 2 (0; 1);
� 2 (0; d) such that

��+  > 1;
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in this case, there exists a constant C =C(�; �; ) such that

F (t)6Ck`wkC�C0 kwkL1d¡�(1+T ) 8t2 [0; T ]:

Proof. Let us fix t 2 [0; T ]. We adopt the following convention: whenever I is a finite union of
intervals, we denote by Ì

w the local time on I, i.e. Ì
w=

P
i `si;ti
w where I =[i[si; ti]. Moreover, for

n2N, let us set In: =fs2 [0; T ]: js¡ tj 2 (2¡n¡1; 2¡n]g, which is always the union of two intervals
of size 2¡n¡1. Then we can decompose F (t) as follows:

F (t) =

Z
fs2[0;T ]:js¡tj>1g

jt¡ sj��¡1
jwt¡wsj�

ds+
X
n2N

Z
s2In

jt¡ sj��¡1
jwt¡wsj�

ds

.
Z
fs2[0;T ]:js¡tj>1g

jwt¡wsj¡� ds+
X
n

2n(1¡��)
Z
s2In

jwt¡wsj¡� ds:

We can now estimate the intervals appearing in the series as follows:Z
In

jwt¡wsj¡� ds=
Z
Rd
jwt¡xj¡� Ìn

w (x)dx

6k Ìn
w kC0

Z
B(wt;2kwkL1)

jwt¡xj¡� dx

.k`wkCC0 kwkL1d¡� 2¡n;

similarly, the first integral can be estimated byZ
fs2[0;T ]:js¡tj>1g

jwt¡wsj¡� ds6
Z
Rd
jwt¡xj¡� `Tw(x)dx.T k`wkCC0 kwkL1d¡�:

Overall, we obtain

F (t).�k`wkC�C0 kwkL1d¡�
�
T +

X
n

2n(1¡��¡)
�
<1

under the condition ��+  > 1. �

Lemma 5.93. Let w be (; �)-irregular. Then F (t)<1 for all t2 [0;T ] and �2 (0;1); �2 (0; d) s.t.

� < �; �+ � > 1;

in this case there exists a constant C =C(�; �; ; �) such that

F (t)6C k�wkW;� (1+T ) 8t2 [0; T ]:

Proof. The proof is analogous to the one above, the main difference being how to estimate the
integrals appearing in the series associated to F (t). This time we use Parseval identity and the
fact that F(j�j¡�) = c�;dj�j�¡d (cf. Proposition 1.29 from [19]), to getZ

In

jwt¡wsj¡� ds=
Z
Rd
jwt¡xj¡��In

w (dx)

��
Z
Rd
j� j�¡d ei��wt �̂In

w (�) d�

6k�̂InwkFL�;1
Z
Rd
j� j�¡d(1+ j� j)¡�d�

.�;� k�wkW;� 2¡n

under the condition � < �, so that the integral is convergent. The estimate for the integral over
fs2 [0; T ]: jt¡ sj> 1g is analogous. Summing over, we find

F (t).�;�k�wkW;�

�
T +

X
n

2n(1¡��¡)
�
<1

under the condition ��+  > 1. �
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So far, to the best of my knowledge, the condition Iw
�;�<1 has not appeared in the literature,

thus it is hard to say whether it can have any practical purpose. Nontheless, I presented it here
to emphasize that (; �)-irregularity is only one option (not necessarily the best one!) and not the
end of the story. There is likely a �mathematical panorama of irregularities� out there waiting to
be discovered.
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Chapter 6

Inviscid mixing for shear flows

As the title of the chapter suggests, here we will stray away from the standard regularisation by
noise setting (even more generally, from the probabilistic framework). We ask the reader a bit of
patience, as it will become increasingly clear why there is a natural fil rouge and a common philos-
ophy connecting the results given here with the ones from previous parts of the thesis (especially
Chapter 5).

In order to properly explain the motivations for this chapter, we need go far back to one of the
most fundamental classes of PDEs in fluid mechanics, namely advection-diffusion equations

@tf + b � rf = ��f: (6.1)

For the moment, let us assume the equation to be set on a compact, smooth, d-dimensional manifold
M without boundaries and let b be a smooth, divergence free vector field; r is the covariant
derivative, � the Laplace-Beltrami operator, �> 0 and an initial condition f jt=0=f0 is given.

Usually f appearing in (6.1) represents the density of a quantity (e.g. chemical, temperature,
etc.) which is subject to diffusion and transported by the field b. For simplicity we will restrict here
to the case of a passive scalar f , i.e. in the situation where b is given and does not depend on f ;
let us stress however that the case of active scalars is the most interesting in fluid dynamics, and
often people study (6.1) as a simplified toy problem for more complicated situations.

Since b is divergence free, the mean f� :=
R
f(x) dx of the solution to (6.1) is constant; here

dx denotes the normalized volume form on M and the Lp-norms appearing in the sequel are
understood w.r.t. it. A natural question, both for theoretical reasons and in view of applications,
is to understand how fast the passive scalar f solving (6.1) is mixed by the dynamics, in the sense
of getting close to its mean f�= f�0. In fact, a simple computation based on (6.1) and r� b=0 yields

d
dt
kf ¡ f�kL22 =¡2�kr(f ¡ f�)kL22 ; (6.2)

applying in the above the Poincarè inequality kf ¡ f�kL22 6 �¡1kr(f ¡ f�)kL22 , where � is the first
eigenvalue of ¡�, and Gro�nwall's lemma then yields

kft¡ f�kL26 e¡
�

�
tkf0¡ f�kL2 8t> 0; (6.3)

namely, an exponentially fast decay to 0. Formula (6.3) presents both several advantages and
drawbacks: on one hand, kft¡ f�kL22 has a natural interpretation as a variance, thus justifies its use
for a quantitative description of mixing; on the other, in the computation b does not play any role
(it cancels out when deriving (6.2) due to r� b=0). Most importantly, in physical and engineering
applications �� 1 and thus a decay of the form (6.3) is hardly of practical use; in the limit case
� =0 it holds kft¡ f�kL2= kf0¡ f�kL2 for all t> 0, again due to r � b=0.

The above discussion then raises the question, first addressed in [214]: what is an efficient way
of quantifying mixing? Taking �=0 in (6.1), we are left with the transport equation

@tf + b � rf =0 (6.4)

which can be solved explicitly by ft(x)= f0(�t
¡1(x)), where f�tgt>0 is the flow generated by b and

�t
¡1 denotes is inverse as a function fromM to itself. In this way we find a pleasant ambiguity with

ergodic theory: since r � b=0, �t preserves the volume measure and one can rather ask whether
�t is mixing in the sense that

lim
t!1

vol(�t
¡1(A)\B)= vol(A) vol(B) 8A;B 2B(M):
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In fact, this property has a nice characterization at the Eulerian level (6.4): the flow �t is mixing
in the ergodic theory sense if and only if, for any f0 2 L2, the associated solution f to (6.4) is
such that ft¡ f�* 0 as t!1, where * denotes weak convergence in L2. The result is classical,
see e.g. [74]; it is also worth mentioning [233], which discusses physical (kinetic) mechanisms for
mixing and addresses the problem using concepts and methods of dynamical systems theory, as
well as [193] for a more complete discussion of the relation between weak convergence and mixing.

The next natural step in this chain of considerations is the realization (first due to [204]) that,
since we are working on a compact manifold and kft¡ f�kL2 is constant, ft¡ f�* 0 if and only if
kft¡ f�kH¡s! 0 for any s< 0.6.1 In particular, we can use the smallness of kft¡ f�kH¡s as a way
to measure how mixed is ft. This doesn't however fully answer the problem, especially if the final
goal is to devise an optimal mixer b for a given initial state f0; quoting the review [261]: �Any
negative Sobolev norm will capture mixing in the sense of ergodic theory, so there is no profound
difference in using either norm. However, the rate at which different norms decrease will in general
be different, so different optimal solutions can be obtained.�

In fact, there are in the literature two common choices: i) the norm k�kH¡1/2, motivated by the
pioneering works [214, 213]; ii) the norm k�kH¡1, mostly due to its simplicity of use (the evolution
of kft¡ f�kH¡1 can be computed almost explicitly from (6.1) and k�kH¡1 has a rather simple dual
interpretation), see [261] and the references therein.

We are now ready to come full circle back to the PDE (6.1); we already mentioned that, in
the energy balance (6.2), the presence of b doesn't play any role, which questions the optimality
of (6.3). The answer, both deep and surprisingly elegant, was obtained in [73]: in order for the
presence of b to affect the exponential decay in (6.3), in a way that can be quantified precisely by
the property of relaxation enhancing flows, it suffices for b to be mixing in the sense of ergodic
theory!6.2 The aforementioned property (as given in Definition 1.1 from [73]) may be equivalently
rephrased in the following sense (see equation (1.2) from [79]):

Definition 6.1. The vector field b is diffusion enhancing if there exist C; �0> 0 and a contin-
uous, increasing function r: (0; �0]! (0; 1) such that any solution f to ( 6.1) satisfies

kft¡ f�kL26Ce¡r(�)tkf0¡ f�kL2 8t> 0 (6.5)

and moreover

lim
�!0

�

r(�)
=0: (6.6)

Condition (6.6) encodes the idea that the rate r is sublinear; the idea behind Definition 6.5
is that, when �� 1, the relevant time scale of the dynamics (in the sense of kft¡ f�kL2 staying
macroscopic) is given by t�r(�)¡1. By condition (6.6), r(�)¡1��¡1, the latter being the standard
diffusive time scale suggested by (6.3), which also holds in the absence of b.

To make the context less abstract, let us mention a real-life example of diffusion enhancement:
whenever we pour sugar in a cup of coffee and stir it, what we are actually doing is accelerating the
dissolution of the sugar by means of a mechanical (mixing) action. The sugar is naturally subject
to diffusion, so the coffee would eventually become sweet even without stirring; but in order for
it to do so in a reasonable amount of time (before the coffee gets cold), we need to use our spoon
(thus change the relevant time-scale of the dynamics to accomodate the human one).

We can now finally come to the main purpose of this chapter, which is based on the work [144].
The theoretical questions we will try to address here (in a very simplified setting, that will be shortly
presented) are the following: i) are generic vector fields b mixing and/or diffusion enhancing?
ii) what is the optimal rate we can hope to achieve? iii) is there a link between the mixing
properties of b and its roughness? iv) what is the correct way to measure roughness in this setting?

6.1. Here H¡s can be defined either by duality of by spectral theory, e.g. g 2H¡s iff (1¡�)¡s/2g 2L2. We
will soon specialize to the case M =Td d-dimensional torus, where H¡s can be defined in a more standard way in
terms of Fourier series.

6.2. Actually there is an exact characterization in terms of the spectum of b � r in H1(M) and a sufficient
condition is given by weakly mixing b, see Theorem 1.2 and Corollary 1.3 from [73]; here for simplicity we will only
work in the mixing framework.
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We hope the reader will now start to realize why this chapter is a pertinent addition to this
thesis. Indeed, genericity will be understood in the sense of prevalence, allowing us to give prob-
abilistic proofs and a key role in our analysis will be played by �-irregular fields (spoiler: this will
not be the only notion of roughness we wil employ! think of Section 5.5).

Moreover, we will obtain here a nice counterpart of the principle �the rougher the noise, the
better the regularisation�, which can be summarized as �the rougher the drift, the faster the mixing�.

As already mentioned, we will not however address questions i)-iv) in the fully general setting
of the PDE (6.1) (or its counterpart (6.4)), but we will restrict ourselves to the paragdimatic (yet
undoubtly simpler) setting of 2-dimensional shear flows on T2 (see the upcoming eq. (6.7)).

Structure of the chapter. In Section 6.1 we introduce our rigorous analytical setup and
provide the statements of our main results, specifically Theorems 6.2, 6.6 and 6.7.

Sections 6.2 and 6.3 contain the proofs of Theorems 6.6 and 6.7 and are designed in a similar
manner: in both cases we will first prove the lower bound, then introduce the concept of �-irreg-
ularity (resp. Wei's condition) and explain its connection to the upper bound, as well as to the
irregularity of u; finally, we will show by probabilistic means that a.e. u 2B1;1� satisfies such
property. The end of Section 6.3 also contains the proof of Theorem 6.2.

Finally, Section 6.4 contains further comments on future research directions and a broader
discussion on existing literature.

Notations and conventions. We will mostly adopt the same notations and conventions as
in previous chapters, up to the following few exceptions.

As already mentioned, Td will denote the d-dimensional torus, which whenever needed for
simplicity will be identified with [¡�; �]d with periodic boundary condition.

Since we will both consider function spaces like L2(T;C) or L2(T2;R) (similarly forHs), we will
quite often write them explicitly instead of resorting to the shortcut notation L2 (which however
will still be used when there is no confusion). We denote by dTd(x; y) the canonical distance on the
flat torus Td, namely dTd(x; y) = infk2Zd jx+2�k ¡ y j, where j�j denotes the Euclidean distance
on Rd. With a slight abuse, we will keep writing jxj for x2Td to denote dTd(x; 0).

Operator norms for linear operators between two Banach spaces E, F will be denoted by
k�kE!F , while L will be sometimes used to denote the Lebesgue measure on Td.

Finally, we will keep using the notation Es[X] to indicate conditioning w.r.t. a reference filtra-
tion Fs, whenever there is no ambiguity (otherwise we will use the full expression E[X jFs]).

6.1 Analytical setting and main results

We are interested in the long time behavior of solutions f to(
@tf +u@xf = ��f

f jt=0=f0;
R
T
f0(x; y)dx=0

(6.7)

on the 2-dimensional flat torusT2. The PDE (6.7) is an advection-diffusion equation associated to a
shear flow u=u(y):T!R, f :R>0�T2!R with initial condition f02L2(T2) and where �2 [0;1] is
the diffusion coefficient. Indeed, defining b:T2!R2 as b(x; y):=(u(y);0)T , equation (6.7) becomes
a particular instance of (6.1); note that such b is a divergence-free vector field and a stationary
solution to 2D Euler equations, thus (6.7) describes the action a perfect fluid on the passive scalar f .

Exactly for this reason, shear flows have received a lot of attention in the literature, in connec-
tion to the aforementioned problem of understanding the interaction between mixing and diffusion
in fluid mechanics and the transfer of energy from large to small scales for the scalar f . In
particular, shear flows are sufficiently simple to allow explicit calculations, while presenting a highly
non trivial behavior, as already observed by Kelvin in [187] in the case of the Couette flow u(y)= y.
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Observe that for continuous u, eq. (6.7) can be solved explicitly by Feynman�Kac formula,
giving

ft(x; y)=E

�
f0

�
x¡

Z
0

t

u(y+ 2�
p

Bs
2)ds+ 2�

p
Bt
1; y+ 2�

p
Bt
2

��
(6.8)

where B=(B1; B2) is a standard 2D Brownian motion. In the case �=0 we obtain

ft(x; y)= f0(x¡ tu(y); y): (6.9)

Both formulas (6.8) and (6.9) can then be extended to the case u2L1(T),6.3 in which case eq. (6.7)
must be understood in the weak sense, and generate continuous semigroups et(¡u@x+��) on L2(T2).
Yet, they do not provide any immediate insight on the long time behavior of the solution f , in
particular on the decay in time of quantities like kftkH¡s and kftkL2.

Following the line of research initiated in [271, 71], we consider rough shear flows, in the sense
of requiring u2B1;1� (T) for some �2 (0; 1). Here B1;1� (T) denote the Besov�Nikolskii spaces, see
Appendix A.2 for their definition.

We are interested in understanding the behavior of generic u2B1;1� (T), a problem explicitly
left open in [71]. For this purpose, we will again adopt the measure-theoretic notion of prevalence,
which is recalled Section A.3. As usual, the expression �for almost every ' 2E�, where E is a
function space, will be understood in the sense of prevalence.

The next statement summarizes the main findings of [144].

Theorem 6.2. Let �2 (0; 1). The following hold:

i. For almost every u 2B1;1� (T) we have inviscid mixing in the scale H1/2(T2), in the fol-
lowing sense: for any �~ >�, there exists C =C(�; �~; u) such that, for any f0 2H1/2(T)
satisfying

R
T
f(x; �)dx� 0, it holds

ke¡tu@x f0kH¡1/26Ct
¡ 1
2�~ kf0kH1/2 8t> 0:

ii. For almost every u2B1;1� (T) we have enhanced dissipation in the following sense that: for
any �~>� there exist Ci=C(�;�~;u) such that, for any f02L2(T) satisfying

R
T
f(x; �)dx�0,

it holds

ket(¡u@x+�)f0kL26C1 exp
�
¡C2 t�

�~
�~+2

�
kf0kL2 8t> 0; � 2 [0; 1]:

In the above statement, the condition
R
T
f(x; �)dx� 0 is necessary, as it naturally ensures that

f witnesses the effect of the transport operator u@x; indeed gt(y): =
R
T
ft(x; y)dx must solve the

standard heat equation @tg=�@y2g and thus cannot exhibit any mixing/enhanced dissipation effect
(it is similar to considering the decay of f ¡ f� in the context of (6.5)).

There is no obvious a priori reason to work with the spaces B1;1� (T) (e.g. in [71] the authors deal
with C�(T)=B1;1� (T)), rather they arise naturally in our analysis. One of the main intuitions of
the work [144] is the identification of such spaces as the correct one for studying generic inviscid
mixing and enhanced dissipation properties of shear flows. At the same time, let us mention that
the only truly relevant parameter is �2 (0; 1): indeed statements similar to those of Theorem 6.2
can be given for the (smaller) spaces Bp;q� (T) for any choice of p; q2 [1;1], see Remark 6.8 below.

Remark 6.3. Before moving further, let us heuristically motivate the connection between Points i.
and ii. of Theorem 6.2 and why it is natural to expect the exponent ��/(�+2) to appear, given the
decay kftkH¡1/2. t¡1/(2�). In fact, the argument can be given in the general framework from the
introduction: let f� be a solution to (6.1) with � > 0, f�= 0 and b:Td!Rd be a divergence free
vector field; then f� satisfies the energy balance

d

dt
kft�kL22 =¡2�krft�kL22 :

6.3. For u2L1(T), the formal expression
R
0
t
u(y+ 2�

p
Bs
2)ds in (6.8) can be made rigorous using the local time

of B2; alternatively, equation (6.7) can be solved by applying the Fourier transform in the x-variable and solving
the family of equations for fk=Pkf , see the beginning of Appendix B from [144] for more details.
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Now assume the solution f to the transport equation @tf + b �rf =0 to satisfy kftkH_ ¡s. t¡�s for
suitable parameters �>0; s2 (0;1] (for s>1, one may reduce to s=1 by Riesz�Thorin interpolation
theorem). For �� 1 and sufficiently short times, we expect f� and f to stay close and therefore
f� to exhibit the same decay as f . By the interpolation inequality

kf�kL2. kf�kH_ ¡s
1

1+s krf�kL2
s

s+1;

we can then deduce that

d
dt
kft�kL2

¡2
s � �kft�kL2

¡2
�
s+1
s

�
krft�kL22 & � kft�kH_ ¡s

¡1
s & �t

2
�: (6.10)

Assume for simplicity kf0kL2= 1 and define � > 0 to be the first time such that kft�kL2= 1/2.
Integrating (6.10) over [0; � ], we obtain

1� 2
2
s ¡ 1&�

Z
0

�

t
2
�dt� ��1+

2
� =

¡
�

�

�+2 �
� �

�+2:

Namely, in order for the energy kft�kL2 to be reduced by half by the dynamics, we need to wait
for at most � . �¡�/(�+2). Iterating the argument on intervals [n� ; n(� +1)] would then produce

an asymptotic decay at least of the form exp(¡Ct�
�

�+2).

Although the above argument is clearly heuristic, it predicts the correct exponent �

�+2
and

works for any choice of the parameter s> 0 (in particular for s=1/2 as in Theorem 6.2) and not
only for s=1, which is the case receiving the most attention in the literature.

Unfortunately, there are only few rigorous quantitative results connecting explicitly inviscid
mixing and enhanced dissipation properties (see [76] and the references therein) and they appear
not to be optimal in the case of shear flows6.4. For instance for s2 (0; 1], an application of Corol-
lary 2.3 from [76] would only predict a decay

kftkL26 exp(¡C�qs t)kf0kL2; qs :=
�(1+ s)
�+ s+�s

;

in particular q1=
2�

2�+1
while q1/2=

3�

3�+1
.

Relation with existing literature. Understanding the interaction between mixing and dif-
fusion is one of the most fundamental problems in fluid mechanics, dating back to the works of
Kelvin [187] and Reynolds [245].

As already mentioned, in the pioneering work [73], such relation has been formalized math-
ematically by introducing the concept of relaxation enhancing flow; the result has been recently
revisited in a more quantitative fashion in the works [76, 109]. The use of weak norms H¡s in
order to quantify mixing of passive scalars was first introduced in [214] for s=1/2, the general
case being due to [204]; see also the review [261] and the recent work [231].

Shear flows and circular flows in particular have been recently studied by several authors,
employing a variety of technique, including stationary phase methods and hypocoercivity
schemes [32, 75, 77], spectral methods [271, 149] and stochastic analysis [79]. Roughly speaking,
the main known results for (6.7) are the following:

� If u 2Cn+1 has a finite number of critical points with maximal order n, then enhanced
dissipation holds with r(�)� �

n

n+2(1+ log �¡1)¡1, see Theorem 1.1 in [32].

� There exist u2C�, � 2 (0; 1), for which enhanced dissipation holds with r(�)� �
�

�+2, see
Theorem 5.1 from [271].

� The above results are sharp, up to logarithmic corrections, in the sense that for u2Cn+1

(resp. u 2 C�) the best possible rate is r(�) � �
n

n+2 (resp. r(�)� �
�

�+2), see Theorem 4
in [79]; the proof is based on the Lagrangian Fluctuation Dissipation relation introduced
in [99], [100].

6.4. Actually, in order to apply Corollary 2.3 from [76], one would need to verify the abstract condition (2.4)
therein, which tipically requires u to be Lipschitz. Leaving aside this technicality and assuming the result is still
applicable, it doesn't yield the optimal rate anyway.
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Let us also mention the remarkable stable mixing estimate obtained in [75] for u satisfying Assump-
tion (H) therein6.5. Motivated by the above results, the authors of [71] explore the mixing and
enhanced dissipation properties of rough shear flows, namely u sharply ��Ho�lder for �2 (0; 1). In
particular, they construct a Weierstrass-type flow u such that the following hold (see Theorem 1.1
in [71]):

1. enhanced dissipation holds with rate r(�)� �
�

�+2, confirming the results from [271];

2. along suitable sequences tn!1, inviscid mixing holds on H¡1 with rate r(t)� t1/�:

ke¡tnu@xf0kH¡1. tn
¡ 1
� kf0kH1:

3. however, to the authors' surprise, there exist other sequences t~n!1 on which inviscid
mixing only holds with rate r(t)� t, in the sense that

ke¡tnu@xf0kH¡1& tn¡1 kf0kH1:

In particular, the inviscid mixing rate r(t)� t is the same attained by suitable Lipschitz functions;
the authors wonder whether such a discrepancy between Points 2. and 3. is to be expected for
generic flows u2C�, see the paragraph �Perspectives�, p.3 in [71].

The main aim of the present work is to give a negative answer to the above question, while
letting a more natural picture emerge in the context of generic rough shear flows. Theorem 6.2
shows that for generic u 2B1;1� (similarly for u 2C�, see Remark 6.8) inviscid mixing holds on
H¡1/2 with rate r(t)� t1/2�, uniformly over all t> 0. Such a decay is also the best possible, see
Theorem 6.6 below. On the other hand, Theorem 6.2 confirms the enhanced dissipation rate
r(�)� ��/(�+2), already identified in [271, 71], as a property of generic shear flows.

A complete picture is however still missing; for instance, the question whether generic u2B1;1�
satisfy inviscid mixing on H¡1 with rate r(t)� t¡1/� is still open and goes beyond the methods
presented here. It also raises the question (supported by the works [214] and [102]) whether H¡1

is indeed the correct way of measuring mixing and whether H¡1/2 is instead a better one.

Structure of the proof. As done frequently in the literature, in order to prove Theorem 6.2
for the PDE (6.7), we will pass to study its hypoelliptic counterpart

@tf +u@xf = �@y
2f (6.11)

again under the assumption
R
T
f0(x; y)dx=0 for all y 2T.

For k 2Z0 :=Z n f0g, define the Fourier transform in the x-variable as

(Pkf)(y) :=

Z
T

f(x; y)e¡ikxdx

so that any f :T2!R has a decomposition f(x; y)=
P
k (Pkf)(y)e

ikx. If f solves (6.11), then for
each k 2Z0 the function ft

k := Pkft solves the one dimensional complex valued PDE (harmonic
oscillator)

@tf
k+ ikufk= �@y

2fk: (6.12)

For k 2Z0, �> 0 and u2L1(T), the PDE (6.12) has an associated semigroup on L2(T;C), which

we denote by et(¡iku+�@y
2); observe that the parameter k, up to its sign, may be removed by the

rescaling t~= tjk j, �~= �/ jk j. In this way, the study of asymptotic behavior of fk may be reduced
to that of f�1, which motivates the following definitions.

Recall that whenever referring to a rate r:R>0!R>0, we mean a continuous, increasing map.

Definition 6.4. A velocity field u2L1(T) is said to be mixing on the scale Hs(T;C), s>0, with
rate r, if there exist a constant C > 0 such that

ke¡itkukHs!H¡s6
C

r(tjk j) 8k 2Z0; t> 1: (6.13)

6.5. As a side remark, it is extremely interesting to observe the similarity between the assumption from Proposi-
ition 1.4 from [66] and Assumption (H) from [75].
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Definition 6.5. A velocity field u2L1(T) is said to be diffusion enhancing on L2(T;C) with
rate r if there exists a constant C > 0 such thatet(¡iku+�@y2)L2!L26C exp

�
¡r
�
�
jk j

�
jk jt

�
8k 2Z0; � 2 (0; 1]; t> 1: (6.14)

The following theorems, which are the main results of this chapter, provide sharp inviscid
mixing and enhanced diffusion statements for generic shear flows. In particular, they describe
precisely the behavior of solutions to (6.7) at each Fourier level Pk.

Theorem 6.6. (Inviscid case �=0) Let �2 (0; 1).

a) Lower bound. Suppose that u2B1;1� (T) is mixing on the scale H1/2(T;C) with rate r, in

the sense of Definition 6.4; then necessarily r(t). t
1
2�.

b) Upper bound. Almost every u2B1;1� (T) satisfies the following property: for any �~>�, u

is mixing on the scale H1/2(T;C) with rate r(t)& t
1
2�~ .

Theorem 6.7. (Dissipative case � > 0) Let �2 (0; 1).

a) Lower bound. Suppose that u2B1;1� (T) is diffusion enhancing with rate r, in the sense of

Definition 6.5; then necessarily r(�). �
�

�+2.

b) Upper bound. Almost every u2B1;1� (T) satisfies the following property: for any �~>�, u
is diffusion enhancing with rate r(�)& ��~/(�~+2).

Theorems 6.6 and 6.7 will be proven respectively in Sections 6.2 and 6.3, which are structured
in a very similar way. Roughly speaking, the strategy we adopt in proving upper and lower bounds
may be summarized in three main steps:

1. In both cases, the lower bound follows from estimates which explicitly employ the regularity
assumption u 2 B1;1� ; in the case � > 0, we need to preliminary establish a Lagrangian
Fluctuation-Dissipation relation for the PDE (6.12) (see Proposition 6.24) similarly in spirit
to what was done in [79].

2. The upper bound is satisfied by any u enjoying a suitable analytic property, which encodes
its irregularity. It turns out that the right properties are given respectively by �-irregularity
(already introduced in Chapter 5) for �=0 and by Wei's irregularity condition (see Defini-
tion 6.26) for � >0. A shear flow u satisfying any of such properties necessarily enjoys only
limited regularity in the scales B1;1� (see Lemmas 6.17 and 6.30), confirming that these are
the correct spaces to work with.

3. Finally, we show that a.e. u 2 B1;1� is �-irregular (resp. satisfies Wei's condition), see
Section 6.2.3 (resp. Section 6.3.4). As before, this is achieved by probabilistic methods, using
the law of fractional Brownian motion to construct a measure witnessing the prevalence of
such properties.

Remark 6.8. Let us stress that points a) of Theorems 6.6-6.7 holds for all u 2B1;1� , not only
generic elements. Since T is finite, we have the embeddings Bp;q� ,!B1;1

� for any p; q 2 [1;1],
thus the lower bound is true for all u2Bp;q� as well. On the other hand, the proofs of points b) of
Theorems 6.6-6.7 can be easily readapted to provide the same statements for almost every u2Bp;q� ,
for any choice of p; q 2 [1;1].

In particular, one could always work with the spaces C�=B1;1� if desired. There are however
several reasons for working with B1;1� , or more generally Bp;q� , instead of C�.

Mathematically, such spaces include genuinely discontinuous functions, as well as (possibly
continuous) functions of finite p-variation for any p2 [1;1]: it holds

Bp;1
1/p ,!Vc

p ,!V p ,!Bp;1
1/p ;

see Proposition 4.3 from [207], Proposition 2.3 from [135] for more details.
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Physically, a simple way to explain singularities in fully developed turbulence is by means of
structure functions (see e.g. [131]), which are closely related to the finite difference characterization
of Besov spaces Bp;1� . Turbulence is also believed to be closely connected to multifractality (again
we refer to the appendix of [131]), a feature which is absent from generic u 2 C� (which are
monofractal) but instead manifested by almost every u2Bp;q� , see [184, 130, 129].

Our results show that the only relevant parameter in understanding mixing and enhanced
dissipation rates for a.e. u 2Bp;q� is � 2 (0; 1), regardless of the values of p; q; thus there is no
apparent connection between mixing and multifractal features of u, at least in the context of shear
flows.

6.2 Inviscid mixing
This section contains the proof of Theorem 6.6, which is split in several steps.

Recall the setting: in order to study the transport equation @tf +u@xf =0, we pass to Fourier
modes ftk(y)= (Pkft)(y), each one solving @tfk+ ikufk=0; namely, ftk(y)= e¡iktu(y)f0k(y). It is
thus natural to take a slightly more general perspective and study properties of maps of the form
y 7! ei�u(y)g(y) with � 2R, g 2Hs(T).

All the proofs of this section (and the upcoming Section 6.3) are heavily based on fine properties
of Besov spaces, for which we refer the reader to Appendix A.2.

6.2.1 Lower bounds in terms of regularity
We show here that the regularity of u, measured in the Besov�Nikolskii scale B1;1� , necessarily
implies a lower bound on the decay of solutions in the H¡1/2-norm. The proof is partly inspired
by that of Proposition 3.2 from [71].

Lemma 6.9. Let u2B1;1� (T) for some �2 (0;1). Then for any g2H1(T) there exists a constant
C =C(�; g) such that

kei�u gkH¡1/2>C(1+ kukB1;1� )
¡ 1
2� j� j¡

1
2� 8j� j> 1: (6.15)

Proof. Fix � with j� j> 1 and set g� := ei�ug; we claim that g�2B2;1
�/2. By Sobolev and Besov

embeddings, g 2 L1 \ B2;1
�/2; ei�u 2 L1, so it's enough to show that ei�u 2B2;1

�/2. By the basic

estimate jeia¡ eibj6 2
p
ja¡ bj1/2, it holds

kei�u(�+y)¡ ei�u(�+y~)kL2.j� j1/2ku(� + y)¡u(� + y~)kL1
1/2

.j� j1/2kukB1;1�
1/2

dT(y; y~)
�/2:

By the equivalent characterization of Besov�Nikolskii spaces, this implies

kei�uk
B2;1
�/2 . 1+ j� j1/2kukB1;1�

1/2 . (1+ kukB1;1� )1/2j� j1/2

and so by Proposition A.12 in Appendix A.2 we conclude that g�2B2;1
�/2 with

kg�k
B2;1
�/2 . kgkH1(1+ kukB1;1� )1/2j� j1/2: (6.16)

Clearly kg�kL2= kgkL2. Using the interpolation inequality from Corollary A.10 in Appendix A.2
(for the choice s1=1/2, s2=�/2) we obtain

kgkL2= kg�kL2. kg�kH¡1/2
�

1+� kg�k
B2;1
�/2

1
1+� : (6.17)

Rearranging now the terms in (6.17) and applying the estimate (6.16) we find

kg�kH¡1/2 & kg�k
B2;1
�/2

¡ 1
� kgkL2

1+
1
�

& kgkL2
1+

1
�kgkH1

¡ 1
�(1+ kukB1;1� )

¡ 1
2�j� j¡

1
2�

(6.18)
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where the hidden constant in (6.18) only depends on �. Using the definition of g� and relabelling
the constant to include the g-dependent terms yields the conclusion. �

Corollary 6.10. Let u2B1;1� (T) be mixing with rate r, in the sense of Definition 6.4. Then there
exists a constant C =C(�; u) such that

r(t)6C t
1
2�:

Proof. Choose any g2H1(T) with kgkH1/2=1; then by Definition 6.4 applied for the choice k=1
and Lemma 6.9 for �=¡t, it holds

1
r(t)

& ke¡itukH1/2!H¡1/2> ke¡itugkH¡1/2&�;g (1+ kukB1;1� )
¡ 1
2� t
¡ 1
2�;

up to relabelling constants, this yields the conclusion. �

Remark 6.11. In fact, the statement of Lemma 6.9 can be generalized as follows. For �2 (0; 1),
u2B1;1� (T), g 2H1(T) and any s> 0 there exists a constant C(�; g; s) such that

kei�u gkH¡s>C(1+ kukB1;1� )
¡ s
� j� j¡

s

� 8j� j> 1:

Then arguing as in Corollary 6.10 one can conclude that the best possible rate for inviscid mixing
on the scale Hs(T) is r(t)� t¡s/�. Taking s= 1 provides the rate t¡1/�, which is in line with
Proposition 3.2 from [71].

6.2.2 Upper bounds in terms of �-irregularity
The concept of �-irregularity was introduced in Section 5.1.1 for paths defined on [0; T ]; for the
reader's convenience, we recall here the definition, modified in order to allow paths defined on T.

Definition 6.12. Let  2 [0; 1), �> 0; a measurable map u:R!R is said to be (; �)-irregular if
there exists a constant C > 0 such that��������Z

I

ei�u(z)dz

��������6C jI j j� j¡� 8� 2R; I �R with jI j6 2� (6.19)

where I stands for an interval of R and jI j denotes its length6.6. A map u:T!R is said to be
(; �)-irregular if it is so once it is identified with a 2�-periodic map u:R!R. In both cases, the
optimal constant C in ( 6.19) is denoted by k�uk;�. We say that u is �-irregular for short if there
exists  > 1/2 such that it is (; �)-irregular.

The property of �-irregularity may be rephrased in the following form, more suited for the
purposes of this chapter.

Lemma 6.13. Let u:T!R be (; �)-irregular, then

kei�ukB1;1¡1 . k�uk;� j� j¡� 8� 2R:

Proof. For y�2 [¡�; �] and � 2R, define the function

v�(y�)=

Z
¡�

y�

ei�u(y)dy¡
�
y�+�
2�

�Z
¡�

�

ei�u(y)dy;

by periodicity, it can be identified with a function on T. Then, by definition of (; �)-irregularity,
it holds kv�kC. k�uk;� j� j¡�; by Proposition A.8, we deduce that

kei�ukB11¡1=
(v�)0+ 1

2�

Z
¡�

�

ei�u(y)dy


B1;1
¡1

.kv�kC+
1

2�

��������Z
¡�

�

ei�u(y)dy

��������. k�uk;� j� j¡�
6.6. The condition jI j6 2� appearing in (6.19) is merely out of convenience, since our endgoal is to work on T

which we identify with [¡�; �], but it could have been replaced with jI j6M for any fixed finite M > 0.
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implying the conclusion. �

The relation between �-irregularity and inviscid mixing comes from the next result.

Lemma 6.14. Let u:T!R be (; �)-irregular for some  > 1/2. Then there exists a constant
C =C() such that

kei�u gkH¡1/26C k�uk;� j� j¡�kgkH1/2 8�=/ 0; g 2H1/2: (6.20)

As a consequence, u is mixing on the scale H1/2 with rate r(t)= t�, in the sense of Definition 6.4.

Proof. By assumption +1/2> 1, thus by Proposition A.11 and Lemma 6.13 it holds

kei�ugkB2;1¡1.ke
i�ukB1;1¡1 kgk

B2;1
1/2

.k�uk;� j� j¡�kgkB2;21/2
=k�uk;� j� j¡�kgkH1/2:

Again by the hypothesis  ¡ 1>¡1/2 and so by Besov embeddings B2;1
¡1 ,!H¡1/2, yielding the

first claim. Applying estimate (6.20) for k 2Z0, �=¡tk gives

ke¡itkukH1/2!H¡1/26
Ck�uk;�
(tjk j)�

and thus the conclusion. �

Remark 6.15. Going through the same proof as in Lemma 6.14, one can show that if u is
(; �)-irregular with  > 1¡ s, then it is mixing on the scale Hs with rate r(t) = t¡�. In the case
 = 0 an even simpler proof, based on duality and integration by parts, provides mixing on the
scale H1 with the same rate. In fact, since H1(T;C) is an algebra, by integration by parts it holds

jhei�u f ; gij=
��������Z
¡�

�

ei�u(y) f(y)g(y)dy

��������
6j(fg)(¡�)j

��������Z
¡�

�

ei�u(y)dy

��������+Z
¡�

�

j(fg)0(y)j
��������Z
¡�

y

ei�u(z)dz

��������dy
.(kfgkL1+ k(fg)0kL1) k�uk0;� j� j¡�
.kf kH1kgkH1k�uk0;� j� j¡�

which by duality implies kei�u f kH¡1. kf kH1k�uk0;� j� j¡� and so the claim.

As we have already seen, the property of �-irregularity implies roughness of u, in a sense that
can be quantified precisely. In particular, the notion of �-Ho�lder roughness (cf. Definition 5.68)
carries immediately to the periodic setting (one only needs to be careful by replacing jy ¡ z j by
the canonical distance on the torus dT(y; z)). In fact, since we are in the one dimensional case,
Definition 5.68 admits the following equivalent characterization: u:T!R is �-Ho�lder rough with
modulus of �-Ho�lder roughness L�(u) if and only if

L�(u)= inf
y2T;�>0

sup
z2B�(y)

ju(z)¡u(y)j
��

> 0: (6.21)

Arguing as in the proofs of Theorem 5.64, Corollary 5.66, Corollary 5.69, one can then show the
following result.

Proposition 6.16. Let u:T!R be (; �)-irregular and set �� := (1¡ )/�. Then:

a) u is �-Ho�lder rough for any �>�� with L�(u) =+1.

b) u has infinite p-variation on any subinterval I �T and for any p> 1/��.

The parameter �� is also linked to the regularity of u in the Besov�Nikolskii scales B1;1� ;
although the result is also true for u: [0; T ]!Rd, we preferred to keep this result here, rather than
in the general discussion in Section 5.4.2.
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Lemma 6.17. Let u:T!R be (; �)-irregular and set ��=(1¡ )/�; then u does not belong to
B1;1
� for any �>��.

Proof. Fix �>�� and choose �~2 (��;�); going through the same computations as in Theorem 5.64
and Corollary 5.66, it can be shown that

lim
"!0+

inf
y2T

"¡1�1(h2 (0; "): ju(y+h)¡u(y)j> "�~)= 1;

where L denotes the Lebesgue measure on R. It follows that, for all ">0 sufficiently small, it must
hold

�6
Z
T

"¡1�1(h2 (0; "): ju(y+h)¡u(y)j> "�~) dy

6
Z
T

"¡1¡�~
Z
0

"

ju(y+h)¡u(y)jdhdy

="¡1¡�~
Z
0

"

ku(� +h)¡u(�)kL1dh

6"�¡�~ JuKB1;1�

where in the second passage we used Markov's inequality. Since �>�~, letting "! 0+ we conclude
that JuKB1;1� =+1. �

Remark 6.18. If u is �-irregular, then Lemma 6.17 implies that u does not belong to B1;1� for
any �> (2�)¡1. Conversely, if u2B1;1� , then it can only be �-irregular for parameters � satisfying
�6 (2�)¡1.

6.2.3 Prevalence statements and proof of Theorem 6.6

Given the results of Sections 6.2.1�6.2.2, it is natural to wonder whether generic elements of B1;1�

are �almost as irregular as possible�, in the sense of being �-irregular for any �< (2�)¡1; given the
results from Chapter 5, the reader will not be surprised that we can give a positive answer. Yet,
the proof requires a few simple preparations.

Differently from before, in this section we will denote functions on T by ', while the letter
u shall be used for the canonical process associated to the measure � involved in the proofs of
prevalence statements (which, up to technical modifications, will be the usual fBm law �H).

We identify the torus T with the interval [¡�; �], up to ¡���; thus any measurable function
':T!R can be identified with ': [¡�; �]!R such that '(¡�) = '(�). Any such ' is in a 1-
1 correspondence with a pair ('1; '2) of measurable functions defined on [0; �], given by '1(y):
='(y), '2(y): ='(¡y); they satisfy the constraint '1(�)= '2(�).

Lemma 6.19. A measurable function ':T!R is (; �)-irregular if and only if the functions '1;
'2: [0; �]!R are so.

Proof. The proof is elementary. Given I � [¡�; �], setting I1= I \ [0; �], I2= I \ [¡�; 0] it holds
max fjI1j; jI2jg6 jI j6 2max fjI1j; jI2jg, so that

max fk�'1k;�; k�'2k;�g6 k�'k;�6 2max fk�'1k;�; k�'2k;�g: �

Conversely, given a measurable '~: [0; �]!R, we can associate it another function '= T '~:
T!R by setting T'~(y)= '~(jy j), which corresponds to (T'~)1=(T'~)2= '~.

It immediately follows from Lemma 6.19 that T'~ is (; �)-irregular if and only if '~ is so; it is
also easy to check that, if '~ 2B1;1� (0; �)\L1(0; �), then T'~ 2B1;1� (T).

Next, we give the following result, which is a simple analogue of Point i. of Theorem 5.29.

Proposition 6.20. Let �2 (0; 1); then a.e. '2B1;1� (0; �) is �-irregular for every �< (2�)¡1.
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Proof. Given �> 0, define the set A�= f'2B1;1� (0; �) : ' is �-irregularg; arguing as in the proof
of Lemma 5.10, it's easy to check that A� defines a Borel set. If we show that A� is prevalent in
B1;1
� (0; �) for any �< (2�)¡1, then the same holds for

A: =
�
'2B1;1� (0; �) : ' is �-irregular for every �<

1
2�

�
=
\
n=1

1

A 1
2�
¡ 1
n

which implies the conclusion.
Now fix �< (2�)¡1 and choose H 2 (0; 1) such that H >�, �< (2H)¡1; denote by �H the law

of fractional Brownian motion on C([0; �]) and by u= fuy; y 2 [0; �]g the associated canonical
process. Since �H is supported on CH¡"([0; �]) for any ">0 andH>�, it is also a tight probability
measure on B1;1

� (0; �). Since u is a H-SLND process and � < (2H)¡1, it follows from Point a)
of Proposition 5.53 that, for any measurable ': [0; �]!R, �H-a.s. '+ u is �-irregular. Taking
'2B1;1� (0; �) we deduce that

�H('+A�)= 1 8'2B1;1� (0; �);

namely that �H witnesses the prevalence of A� in B1;1� (0; �). �

Corollary 6.21. Let �2 (0; 1), then a.e. '2B1;1� (T) is �-irregular for any �< (2�)¡1.

Proof. The proof that the set A := f'2B1;1� (T) : ' is �-irregular for any �< 1/2� g is Borel in
the topology of B1;1� (T) is again identical to that of Lemma 5.10.

Now let � be a measure on B1;1� (0; �) witnessing the prevalence statement of Proposition 6.20;
since in that proof we can take �= �H for suitable H >�, we may assume � to take values in
B1;1
� (0; �)\L1(0; �). Therefore we can define a measure on B1;1� (T) by �=T]�, where (T'~)(y)=

'~(jy j) for y2 [0; �]; also recall the notation '1; '2 from Lemma 6.19. For any '2B1;1� (T) it holds

�('+A)=�
��

u2B1;1� (0; �) : Tu+ ' is �-irregular for any �<
1
2�

��
=�

 \
i=1

2 �
u2B1;1� (0; �) : u+ 'i is �-irregular for any �<

1
2�

�!
=1

where we used the fact that the � witnesses the prevalence of the statement of Proposition 6.20 and
that the intersection of sets of full measure is still of full measure. Thus � witnesses the prevalence
of the set A. �

We are now ready to complete the

Proof of Theorem 6.6. The lower bound comes from Corollary 6.10, while the upper bound
from a combination of Lemma 6.14 and Corollary 6.21. �

Remark 6.22. In this section we have always focused on u belonging to the scales B1;1� (T) with
�2 (0;1). If one is instead interested in the mixing properties of generic u2C(T), much faster rates
are available, given the results from Chapter 5. Indeed, for any � > 1, it's possible to construct
u~� 2C([0; �]) satisfying��������Z

y1

y2

ei�u
�(z)dz

��������.;� jy2¡ y1j exp�¡C;� j� j 2
1+�

�
8� 2R; 06 y16 y26 � (6.22)

and so by symmetrization the same holds for u� :=Tu~�. Such u~� are given by typical realization of
the processX� as defined in Proposition 5.51; in fact, one could use the law of such process to prove
that almost every u2C(T) satisfies (6.22) for any � > 1. Arguing as in the proof of Lemma 6.14,
one can deduce that such u are exponentially mixing, in the sense that they satisfy the estimate

kei�u gkH¡1. exp
�
¡C;� j� j

2
1+�

�
kgkH1 8g 2H1(T;C) (6.23)

and so that

ke¡tu@xf kLx2Hy¡1. exp
�
¡C;� t

2
1+�

�
kf kLx2Hy1 (6.24)
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for all f 2H1(T2) satisfying P0f � 0.

6.3 Enhanced dissipation
This section contains the proof of Theorem 6.7, which is split in several steps.

Recall the setting: we want to study the asymptotic behavior of the family of complex-valued
PDEs (6.12), equivalently obtain upper and lower bounds on

ketLk;�kL2(T;C)!L2(T;C) as t!1;
where Lk;� :=¡iku+ �@y2:

6.3.1 Lower bounds in terms of regularity
We show here that if u has regularity of degree �2 (0;1), as measured in a suitable Besov�Nikolskii
scale, then the its best possible diffusion enhancing rate is r(�)� ��/(2+�). The precise statement
goes as follows.

Proposition 6.23. Let u2B1;1� (T) be diffusion enhancing with rate r, in the sense of Defini-
tion 6.5; then there exists a constant C > 0 such that

r(�)6C�
�

�+2

for all � 2 (0; 1].

In order to provide estimates for etLk;�, it is convenient to study more generally the properties
of solutions g:T!C to

@tg+ i�ug= �@yy g (6.25)

in function of the parameters � 2R, � 2 (0; 1) and the shear flow u.
The proof of Proposition 6.23 follows a similar strategy to [79] and is based on deriving a

Lagrangian Fluctuation-Dissipation relation (FDR) for the PDE (6.25), which is a result of inde-
pendent interest.

Proposition 6.24. Let u2L1(T), g be a solution to ( 6.25) with initial data g02L2(T;C); for
any (t; y)2R>0�T, define the complex random variable

Zt
y= exp

�
¡i�

Z
0

t

u(y+ 2�
p

Bs)ds

�
g0(y+ 2�

p
Bt)

where B is a standard real-valued Brownian motion. Then we have the following Lagrangian FDR:

kg0kL22 ¡kgtkL22 =

Z
T

Var(Zt
y) dy: (6.26)

Proof. Without loss of generality, we can assume u and g0 to be smooth, as identity (6.26) in the
general case follows from an approximation argument (the definition of Zt

y is meaningful for any
u2L1(T) thanks to the properties of the local time of a Brownian motion). By the Feynman�Kac
formula, the solution g to (6.25) is given by gt(y)=E[Zt

y]. Moreover since u is real valued, we have
the energy balance

kg0kL22 ¡kgtkL22 =2�

Z
0

t

k@ygskL22 ds;

and more generally, the map (t; x) 7! jg j2(t; x) satisfies

@tjg j2= �@y2jg j2¡ 2� j@yg j2:

Now let h to be a solution of @th= �@y2h with initial data h0= jg0j2. It holds

d
dt

Z
T

[jg j2¡h] dx=¡2�k@ygkL22 ;
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which implies that

kg0kL22 ¡kgtkL22 =2�

Z
0

t

k@ygkL22 =

Z
T

[ht(y)¡ jgt(y)j2]dy:

Finally, since by Feynman�Kac, h(t; y)=E[jg0(y+ 2�
p

Bt)j2], we obtain

kg0kL22 ¡kgtkL22 =

Z
T

(E[jg0(y+ 2�
p

Bt)j2]¡ jE[Zt
y]j2) dx

=

Z
T

(E[jZt
y j2]¡ jE[Zt

y]j2)dx

which gives the conclusion. �

Lemma 6.25. Let g02H1(T;C), u2B1;1� (T) for some �2 (0; 1) and � 2R. Then there exists
C =C(�)> 0 such that the solution g to ( 6.25) satisfies

kg0kL22 ¡kgtkL22 6Ckg0kH1
2
�
�t+ JuKB1;1� j� j �

�

2 t
1+

�

2

�
8t; � > 0:

Proof. Recall the elementary identity 2Var(X)=E[jX ¡X~ j2] for X~ being an i.i.d. copy of X . In
our setting, we can take

Z~t
y
= exp

�
¡i�

Z
0

t

u(y+ �
p

B~s)ds

�
g0(y+ �

p
B~t);

where B~ is another Brownian motion independent of B. Therefore

kg0kL22 ¡kgtkL22 =
1

2

Z
T

E[jZt
y¡Z~t

y j2] dy

6E

�Z
T

jg0(y+ �
p

Bt)¡ g0(y+ �
p

B~t)j2dy
�

+ kg0kL12 E

�Z
T

������e¡i�R0tu(y+ �
p

Bs)ds¡ e¡i�
R
0
t
u(y+ �

p
B~s)ds

������2dy�:
Using the inequality jei�a¡ ei�bj6 2

p
j� j1/2jb¡ aj1/2 and the characterization of Besov spaces in

terms of finite differences (see Appendix A.2), we deduce that

kg0kL22 ¡kgtkL22 .E[kg0(� + �
p

Bt)¡ g0(�+ �
p

B~t)kL22 ]

+ kg0kL12 j� jE
�Z

T

Z
0

t

ju(y+ �
p

Bs)¡u(y+ �
p

B~s)jdsdy
�

.kg0kH1
2

�
�E[jBt¡B~tj2] + j� j

Z
0

t

E[ku(�+ �
p

Bs)¡u(�+ �
p

B~s)kL1] ds
�

.kg0kH1
2

�
�t+ JuKB1;1� j� j �

�

2

Z
0

t

E[jBs¡B~sj�] ds
�
;

computing the last expectation yields the conclusion. �

We are now ready to complete the

Proof of Proposition 6.23. The proof goes along the same lines as Lemma 2 from [79]. We
argue by contradiction. Assume there exists no such constant C, then it must hold

limsup
�!0+

�
¡ �

�+2 r(�)=+1: (6.27)

Now fix g02H1 with kg0kL2= 1; by Definition 6.5 and Lemma 6.25 applied to � = 1 we deduce
that there exist constants C1; C2> 0 such that, for any �6 1 and t> 1, it holds

1¡C1 e¡r(�)t61¡ketL1;�kL22 6 1¡kgtkL22

6C2kg0kH1
2
�
�t+ JuKB1;1� �

�

2 t
1+

�

2

�
6C2kg0kH1

2 (1+ JuKB1;1� )�
�

2 t
1+

�

2 :
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Let �n #0 be a sequence realizing the limsup in (6.27) and choose

tn=
¡
r(�n) �n

�/(�+2)�¡1/2;
then we obtain

1¡C1 exp
�
¡
�
�n
¡ �

�+2 r(�)
�
1/2
�
.g0;u

�
�n
¡ �

�+2 r(�)
�¡�+2

4 :

Taking the limit as n!1 on both sides, we find 16 0, which is absurd. �

6.3.2 Wei's irregularity condition
A major role in the analysis of dissipation enhancement by rough shear flows is played by the
following condition, first introduced in [271] (although described in a slightly different manner).

Definition 6.26. We say that u 2L1(0; T ) satisfies Wei's condition with parameter � > 0 if,
setting  (y)=

R
0

y
u(z)dz, it holds

¡�(u) :=

�
inf

�2(0;1);y�2[0;T¡�]
�¡2�¡3 inf

c1;c22R

Z
y�

y�+�

j (y)¡ c1¡ c2y j2 dy
�
1/2

> 0: (6.28)

A similar definition holds for u2Lloc
1 (R); u2L1(T) is said to satisfy Wei's condition once it is

identified with a 2�-periodic map on R.

Remark 6.27. Note that the condition is independent of the choice of the primitive  . Denoting
by P1 the set of all polynomials of degree at most one, for u2Lloc

1 (R) the definition is equivalent to

¡�(u)=

�
inf

I�R;jI j<1
jI j¡2�¡3 inf

P2P1

Z
I

j (y)¡P (y)j2dy
�
1/2

> 0;

this highlights its �complementarity� to the seminorm J KL12;2�+3 associated to the higher order
Campanato space L1

2;2�+3, as defined in [54] (think of the analogy with Definition 5.90!). Observe
that ¡� is homogeneous, i.e. ¡�(�u)=�¡�(u) for all �> 0.

The importance of condition (6.28) comes from the following result.

Theorem 6.28. Let u2L1(T) be such that ¡�(u)> 0 for some �> 0. Then there exist positive
constants C1; C2, depending on � and ¡�(u), such that

ketLk;�kL2!L26C1 exp
�
¡C2 �

�

�+2 jk j
2

�+2 t
�
8� 2 (0; 1); k 2Z0; t> 0: (6.29)

Namely, u is diffusion enhancing with rate r(x)�x�/(�+2), in the sense of Definition 6.5.

Proof. The statement comes from Theorem 5.1 from [271]; therein u is required to be continuous,
but this restriction is not necessary, see Appendix B from [144] for the proof. �

Following the same approach as in Section 6.2, we proceed to show that the condition ¡�(u)
implies irregularity of u; we start by relating it to the property of �-Ho�lder roughness, in the sense
of its characterization (6.21).

Lemma 6.29. Let u 2L1(T) be such that ¡�(u)> 0 for some �> 0. Then u is �-Ho�lder rough
and it holds L�(u)>¡�(u).

Proof. Fix � > 0, y�2 [¡�; �]; it holds

inf
c1;c22R

Z
y�

y�+�

j (y)¡ c1¡ c2y j2dy6
Z
y�

y�+�

j (y)¡  (y�)¡  0(y�)(y¡ y�)j2dy

6
Z
y�

y�+�
�Z

y�

y

ju(z)¡u(y�)jdz
�
2

dy

6�2�+3
 

sup
z2B�(y�)

ju(z)¡u(y�)j
��

!
2

:
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As the inequality holds for all � and y�, we obtain ¡�(u)26L�(u)2 and the conclusion. �

We can also relate Wei's condition to regularity in the Besov�Nikolskii scales B1;1� .

Lemma 6.30. Let u2L1(T) be such that ¡�(u)> 0 for some �2 (0; 1). Then u does not belong
to B1;1�~ for any �~>� and does not belong to B1;q� for any q <1.

Proof. For any y�2 [¡�; �] and � > 0 it holds

�2�+3¡�(u)
26
Z
y�

y�+�
��������Z
y�

y

[u(z)¡u(y�)]dz
��������2dy

6
Z
y�

y�+�
�Z

y�

y�+�

ju(z)¡u(y�)jdz
�
2

dy

thus implying that

inf
y�2T

Z
0

�

ju(y�+h)¡u(y�)jdh> �1+�¡�(u) 8� 2 (0; 1): (6.30)

Now fix �~>�; starting from (6.30) and arguing as in the proof of Lemma 6.17 (with " replaced
by �), one obtains

2�¡�(u)6 ��~¡�JuKB1;1�~ ;

which implies the first claim by letting �! 0+. Integrating (6.30) over y�2T yieldsZ
0

�

ku(� +h)¡u(�)kL1dh> �1+�¡�(u) 8� 2 (0; 1); (6.31)

now assume by contradiction that u2B1;q� for some q <1, then by its equivalent characterization
(see Appendix A.2) and the uniform integrability of h 7!h¡1¡�qku(�+h)¡u(�)kL1

q it must hold

lim
�!0+

Z
0

�ku(�+h)¡u(�)kL1
q

jhj1+�q
dh=0: (6.32)

On the other hand, by estimate (6.31) and Jensen's inequality, it holdsZ
0

�ku(� +h)¡u(�)kL1
q

jhj1+�q
dh>�¡1¡�q

Z
0

�

ku(� +h)¡u(�)kL1
q dh

>�¡q(1+�)
�Z

0

�

ku(�+h)¡u(�)kL1dh
�q

>¡�(u)q> 0

uniformly in � 2 (0; 1), contradicting (6.32). �

Remark 6.31. It follows from Lemma 6.30 and the construction presented in Section 2 from [71]
that, for any �2Q as in Lemma 2.1 therein, there exists a Weierstrass-type function which belongs
to C�(T), satisfies Wei's condition with parameter � and does not belong to Bp;q� for any p2 [1;1];
q 2 [1;1), nor to any Bp;q�~ with �~>�.

In light of Theorem 6.28, in order to show that almost every shear flow u enhances dissipation,
it will suffice to show that almost every u satisfies Wei's condition. We therefore need to find
sufficient conditions in order for ¡�(u)> 0 to hold. We start with the following simple fact, whose
proof is almost identical to that of Lemma 6.19.

Lemma 6.32. A map u:T!R satisfies ¡�(u)> 0 if and only if the maps ui: [0; �]!R defined
by u1(x)=u(x), u2(x)=u(¡x) do so.

In this way, we can reduce the task to identifying sufficient conditions for functions defined
on a standard interval [0; �]. For any � > 0, we denote by ��

2 the discrete Laplacian operator
��
2f(y)= f(y+2�)¡ 2f(y+ �)+ f(y).
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Lemma 6.33. For any �> 0 and any (y�; �) it holds

�¡2�¡3 inf
c1;c2

Z
y�

y�+3�

j (y)¡ c1¡ c2y j2dy>
1

12

�Z
y�

y�+�

j��
2 (y)j¡

1
1+� dy

�¡2(1+�)
: (6.33)

Proof. First observe that ��
2(c1+ c2y)� 0 for any c1, c2 and that for any f it holdsZ
y�

y�+3�

jf(y)j2dy> 1
12

Z
y�

y�+�

j��
2f(y)j2dy:

Next, applying Jensen's inequality for g(x)=x
¡ 1
2(1+�), which is convex on (0;1), it holds�

1
�

Z
y�

y�+�

j��
2f(y)j2dy

�¡ 1
2(1+�)6 1

�

Z
y�

y�+�

j��
2f(y)j¡

1
1+�dy:

Algebraic manipulations of this inequality and the choice f(y)=  (y)¡ c1¡ c2y yield (6.33). �

In view of Lemma 6.33, given �> 0 and an integrable u: [0; �]!R, we define

G�(y; �): =

Z
y�

y�+�

j��
2 (y)j¡

1
1+� dy; (6.34)

where  is as usual a primitive of u (defined up to constant). The next result reduces the verification
of Wei's condition to controlling a countable family of quantities associated to G�.

Lemma 6.34. For any �2 (0; 1) and "> 0, define �: =�+ "(1+�) and

K�;"(u): = sup
n2N;16k62n¡1

2¡n"G�(�k2
¡n; �2¡n¡1):

Then there exists a constant C =C(�; ") such that

¡�(u)>C (K�;"(u))
¡1¡�:

Proof. First observe that, for any � 2 (0; 1);

j¡�(u)j2�� inf
�2(0;1/3);y�2[0;1¡3�]

�¡2�¡3 inf
c1;c22R

Z
y�

y�+3�

j (y)¡ c1¡ c2y j2dy

so to conclude it suffices to provide a lower bound on the latter for our choice of �. Fix (y�; �) and
choose n2N and k 2f1; : : : ; 2n¡ 1g such that

� 2 (�2¡n; �2¡n+1]; y�2 [�(k¡ 1)2¡n; �k2¡n]

so that [y�; y�+3�]� [y~; y~+3�~] for the choice y~=�k2¡n, �~= �2¡n¡1. As a consequence,

�¡2�¡3 inf
c1;c22R

Z
y�

y�+3�

j (y)¡ c1¡ c2y j2dy

&� �~¡2�¡3 inf
c1;c22R

Z
y~

y~+3�~

j (y)¡ c1¡ c2y j2dy

& �~¡2(�¡�)

 Z
y~

y~+�~

j��
2 (y)j¡

1
1+� dy

!¡2(1+�)
=(�~"G�(y~; �~))

¡2(1+�)

where in the second passage we employed inequality (6.33) and then the definition of �. Overall
we deduce by the definition of K and the choice of (y~; �~) that

�¡2�¡3 inf
c1;c22R

Z
y�

y�+3�

j (z)¡ c1¡ c2z j2dz&�K�;"(u)
¡2(1+�);

6.3 Enhanced dissipation 187



taking the infimum over (�; y) yields the conclusion. �

6.3.3 Sufficient conditions for stochastic processes
In order to establish prevalence statements, we will sample u as a suitable stochastic process.
Lemma 6.34 readily gives the following intermediate, general result.

Proposition 6.35. Let u: [0; �]!R be an integrable stochastic process,  =
R
0

�
us ds and suppose

that there exist �; �> 0, �2 (0; 1) such that

sup
�2(0;1);y�2[0;�¡�]

E[exp(�G�(y�; �))]6�

for G as defined in ( 6.34). Then for any � >� it holds P(¡�(u)> 0)= 1.

Proof. By virtue of Lemma 6.34, for �=�+ "(1+�) it holds

P(¡�(u)> 0)>P(K�;"(u)<1);

so to conclude it suffices to show that P(K�;"(u)<1)=1 for all ">0. Given � as in the hypothesis,
define the random variable

J : =
X
n2N

2¡2n
X
k=1

2n¡1

exp(�G�(�k2¡n; �2¡n¡1)):

By assumption E[J ]<1, so that P(J <1) =1. For any n; k it holds

G�(�k2
¡n; �2¡n¡1)6 1

�
log(22nJ). n

�
(1+ log J)

which implies that

Y := sup
n2N;16k62¡n¡1

1
n
G�(�k2

¡n; �2¡n¡1). 1
�
(1+ log J)<1 P-a.s.

Finally, for any "> 0 it holds K�;"(u)."Y , which yields the conclusion. �

Wewant to apply Proposition 6.35 to a specific family of Gaussian processes (i.e. those satisfying
suitable local nondetermism property, similarly to Chapter 5); this requires a few preparations,
in terms of the three Lemmas 6.36-6.38 below.

The next elementary lemma often appears in the probabilistic literature in connection to so
called Krylov or Khasminskii type of estimates, see Lemma 1.1 from [241] for a slightly more general
statement. For the sake of completeness, we give the proof; we also invite the reader to compare
this result with the one from Lemma 5.44, where the integrand is not required to be nonnegative.

Lemma 6.36. Let X be a real valued, nonnegative stochastic process, defined on an interval [t1; t2],
adapted to a filtration fFsgs2[t1;t2]; suppose there exists a deterministic C > 0 such that

ess sup
!2


Es

�Z
s

t

Xr

�
6C 8s2 [t1; t2]:

Then for any �2 (0; 1) it holds

E

�
exp
�
�
C

Z
t1

t2

Xr dr

��
6 (1¡�)¡1:

Proof. Up to rescaling X, we may assume C =1. It holds

E

�
exp
�
�

Z
t1

t2

Xr dr

��
=
X
n=0

1
�n

n!
E

��Z
t1

t2

Xr dr

�n�
=
X
n=0

1

�nIn

where

In=E

�Z
t1<r1<: : :<rn<t2

Xr1 � : : : �Xrn dr1: : :drn
�
:
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By the assumptions and the non-negativity of X, it holds

In=

Z
t1<r1<: : :<rn¡1<t2

E

�
Xr1 � : : : �Xrn¡1

Z
rn¡1

t

Xrndrn

�
dr1: : :drn¡1

=

Z
t1<r1<: : :<rn¡1<t2

E

�
Xr1 � : : : �Xrn¡1Ern¡1

�Z
rn¡1

t

Xrndrn

��
dr1: : :drn¡1

6
Z
t1<r1<: : :<rn¡1<t2

E[Xr1 � : : : �Xrn¡1]dr1: : :drn¡1= In¡1

which iteratively implies In6 1. Therefore we obtain

E

�
exp
�
�

Z
s

t

Xudu

��
6
X
n=0

1

�n=(1¡�)¡1: �

In the next statement, N (m; �2) denotes the law of a standard Gaussian variable with mean
m and variance �2.

Lemma 6.37. Let Z�N (m;�2) be a real valued Gaussian variable. Then for any �2 (0; 1) there
exists c�> 0 such that

E[jZ j¡�]6 c��¡�:

Proof. Set Z =�N +m, then E[jZ j¡�] =�¡�E[jN ¡xj¡�] for x=¡m/�; therefore is suffices to
show that

sup
x2R

E[jN ¡xj¡� ] = sup
x2R

Z
jx¡ y j¡� p(y) dy= kj�j¡� � pkL1<1

where p stands for the Gaussian density p(x) = (2�)¡1/2exp(¡jxj2/2). By Young's inequality it
holds

kj � j¡� � pkL16k(j � j¡�1j�j<1) � pkL1+ k(j � j¡�1j�j>1) � pkL1
6kj � j¡�1j�j<1kL1kpkL1+ kj � j¡�1j�j>1kL1 kpkL1
6(2�)¡1/2kj�j¡�1j�j<1kL1+1<1

which gives the conclusion. �

Lemma 6.38. Let Y : [0; �]!R be a (1 +H)-SLND Gaussian process with constant CY, in the
sense of Definition 5.25. Then for any �>H there exists �=�(�;H;CY )> 0 such that

E

�
exp
�
�

Z
y�

y�+�

j��
2 Yy j

¡ 1
1+� dy

��
6 2 8� 2 (0; 1); y�2 [0; �¡ �]:

Proof. The result follows Lemmas 6.36 and 6.37 applied to the process Xy= j��
2  y j

¡ 1
1+�.

Indeed, denote by Fy the natural filtration generated by  and set Gy :=Fy+2�. It is clear that
��
2 y=Yy+2�¡ 2Yy+�+Yy is Gy-adapted; for any [z; y]� [y�; y�+ �] it holds

Var(��
2Yy jGz) =Var(Yy+2�jFz+2�)>CY jy¡ z j2(1+H):

Therefore we have a decomposition ��
2Yy=Ez[��

2Yy] + (��
2Yy¡Ez[��

2Yy]) :=Ez[��
2Yy] +Zz;y with

Ez[��
2Yy] adapted to Gz and Zz;y Gaussian and independent of Gz; thus

E

�Z
u

y�+�

j��
2Yy j

¡ 1
1+�dy

��������Gz�=Z
z

y�+�

E
h
jZz;y+ �j

¡ 1
1+�

i
(Ez[��

2Yy]) dy:

By Lemma 6.37, since Var(Zz;y)>CY jy¡ z j2(1+H) and �=(1+�)¡12 (0; 1), it holds

sup
x2R

E
h
jZz;y+xj

¡ 1
1+�

i
.� Var(Zz;y)

¡ 1
2(1+�) .�;H;CY jy¡ z j

¡1+H
1+�
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and thus

E

�Z
z

y�+�

j��
2Xy j

¡ 1
1+�dy

��������Gz�.Z
z

y�+�

jy¡ z j¡
1+H
1+� dz

.
Z
0

1

jr j¡
1+H
1+� dr�C(�;H;CY )

where the estimate is uniform over z 2 [y�; y�+ �], y�2T and � 2 (0; 1). Choosing

�=
1

2C(�;H;CY )
;

we obtain the conclusion by applying Lemma 6.36. �

Corollary 6.39. Let X: [0; �]!R be a Gaussian process such that

Yy=

Z
0

y

Xz dz

is (1+H)-SLND for some H 2 (0; 1). Then

P(¡�(X)> 0)= 1

for any �>H.

Proof. It follows immediately combining Lemma 6.38 and Proposition 6.35. �

6.3.4 Prevalence statements and proof of Theorems 6.7, 6.2
Similarly to Section 6.2.3, we define for '~: [0; �]!R the map (T'~)(y) = '~(jy j); conversely for ':
T!R, '1(y): ='(y), '2(y): ='(¡y). Recall that if '~2B1;1� \L1, then T'~2B1;1� .

We are now ready to provide a prevalence statement which is of interest on its own.

Theorem 6.40. Let �2 (0; 1); then a.e. '2B1;1� (0; �) satisfies ¡�(')> 0 for all � >�.

Proof. Fix �2 (0; 1) and define A: =f'2B1;1� (0; �) : ¡�(')> 0 for all � >�g; it holds

A=
\
n=1

1 [
m=1

1

An;m :=
\
n=1

1 [
m=1

1 �
'2B1;1� (0; �) : ¡�(')>

1
m

for �=�+
1
n

�
:

The sets An;m are closed in the topology of B1;1� (0;�) (the map ' 7!¡�(') is upper semicontinuous
in the topology of L1(0; �)), thus A is Borel measurable. In order to conclude, it is enough to show
that for any � >�, the set A�: =f'2B1;1� (0; �) : ¡�(')> 0g (which is Borel by the same line of
argument) is prevalent.

Now fix � > � and choose H 2 (�; �); denote by �H the law of fractional Brownian motion
of parameter H on C([0; �]) and by u= fuygy2[0;�] the associated canonical process. Since �H

is supported on CH¡"([0; �]) for any " > 0 and H > �, it is tight on B1;1
� (0; �). As shown in

Section 5.1.3 (as well as Example 5.49), the associated process  =
R
0

�
u(y)dy is (1+H)-SLND and

so is f +  for any measurable f : [0; �]!R.
In particular, for a given '2B1;1� (0; �), taking f =

R
0

�
'(y)dy, it follows from Corollary 6.39

and the choice � >H that

�H('+A�)=�H(fu2B1;1� (0; �) : ¡�(u+ ')> 0g)= 1:

As the reasoning holds for any '2B1;1� (0; �), we deduce that �H witnesses the prevalence of A�
and we obtain the conclusion. �

Corollary 6.41. Almost every '2B1;1� (T) satisfies ¡�(')> 0 for all � >�.

Proof. The proof is almost identical to that of Corollary 6.21, only this time employing the
measure � = T]� for (T'~)(x) = '~(jxj), � being a measure witnessing the prevalence statement
from Theorem 6.40; as in Corollary 6.21, we may assume � to be a tight probability measure on
B1;1
� (0; �)\L1(0; �), so that � is tight on B1;1� (T). �
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At this point we have all the ingredient to close the dissipative case.

Proof of Theorem 6.7. The lower bound comes from Proposition 6.23, while the upper bound
from a combination of Theorem 6.28 and Corollary 6.41. �

The main result of the paper, Theorem 6.2, is now a direct consequence of Theorems 6:6 and 6.7.
In fact, let us record here a slightly sharper estimate. Given f 2L2(T2), for any s2R define

kf kLx2Hys
2 :=

X
k2Z

kPk f kHs(T;C)2 =
X

(k;�)2Z2
(1+ j� j2)s jf̂(k; �)j2;

it's clear that, for s> 0, kf kLx2Hys6 kf kHs(T2) and kf kH¡s(T2)6 kf kLx2Hy¡s.

Theorem 6.42. Almost every u2B1;1� (T) satisfies the following property: for any �~>�, there
exists C =C(�; �~; u) such that, for any f02H1/2(T2) with P0f0� 0, it holds

ketu@xf0kLx2Hy¡1/26Ct
¡ 1
2�~kf0kLx2Hy1/2 : (6.35)

Almost every u2B1;1� (T) satisfies the following property: for any �~>� there exist Ci=C(�;�~; u)
such that, for any f02L2(T2) with P0f0� 0, it holds

ke¡t(u@x¡��)f kL2(T2)6C1 exp
�
¡C2 t�

�~
�~+2

�
kf0kL2(T2): (6.36)

Proof. By Theorem 6.6 b), for a.e. u2B1;1� (T) and any �~>� it holds

ke¡tu@xf0kLx2Hy¡1/2
2 =

X
k2Z0

kPk(e¡tu@xf0)kH¡1/2
2 .

X
k2Z0

(tjk j)¡
1
�~kPkf0kH¡1/2

2 . t¡
1
�~kf0kLx2Hy¡1/2

2

proving (6.35). Denote L�=¡u@x+ �@y2, so that ¡u@x+¡��=L�+ �@x2, where the operators L�
and �@x2 commute; also observe that Pk(et@x

2
f)= e¡tk

2
Pkf .

Combining these facts with Theorem 6.7, for a.e. u2B1;1� (T) and any �~>� it holds

ket(¡u@x+��)f kL22 =
X
k2Z0

kPk(et@x
2
etL�f)kL22 =

X
k2Z0

e¡2tk
2kPk(etL�f)kL22

.
X
k2Z0

exp
�
¡2tjk j2¡Ct�

�

�+2jk j
2

�+2

�
kPk f kL22

.exp
�
¡Ct�

�

�+2

�X
k2Z0

kPk f kL22

which yields (6.36). �

6.4 Open problems and further references

6.4.1 Closing remarks and future directions
We have shown in this chapter that generic rough shear flows satisfy both inviscid mixing and
enhanced dissipation properties, with rates sharply determined by their regularity � 2 (0; 1) as
measured in the Besov scale B1;1� . In the enhanced dissipation case, this confirms the intuition
from [71]; instead in the inviscid mixing one, it shows that the behavior presented by Weier-
strass-type functions constructed therein is not generic in the sense of prevalence. Our results
provide a connection to the property of �-irregularity, which was never observed before in this
context, and highlight the importance of working with mixing scales H¡s with s=/ 1 (especially
H¡1/2). We conclude by presenting a few additional remarks and open problems arising from this
work.
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Remark 6.43. We are currently unable to establish a clear connection between the properties
of �-irregularity and Wei's condition. Lemma 6.14 and the trivial estimate kftkH¡16 kftkH¡1/2
imply that, for � 2 (0; 1/2), the shear flows u2C� constructed in [71] satisfy ¡�(u)> 0 but are
not �-irregular with �� (2�)¡1; thus one implication does not hold in general. Heuristically, this
fact is similar to the existence of flows with small dissipation time which are not mixing, like the
cellular flows presented in [183]. The above argument also implies the existence of Weierstrass type
functions which are not �-irregular, for suitable values �. We believe this problem was open in the
probabilistic community, although never been explicitly addressed in the literature.

Given the above remark, it is reasonable to expect the property of �-irregularity to be strictly
stronger than Wei's condition, although we are not able to prove it.

Conjecture 6.44. If u:T!R is �-irregular, then it satisfies Wei's condition for any �< (2�)¡1.

Even without establishing a direct connection to Wei's condition, it would be desirable to show
directly that �-irregular functions are also diffusion enhancing, in line with the heuristic argument
presented in Remark 6.3. Since such functions are mixing, they are indeed �qualitatively� diffusion
enhancing by [73]; however, the quantitative results from [76] do not provide the sharp rate which
is known to hold for typical fBm trajectories.

Conjecture 6.45. If u:T!R is �-irregular, then it is diffusion enhancing with r(�)� ��/(�+2)
for any �< (2�)¡1, in the sense of Defiition 6.5.

Conjectures 6.44 and 6.45 are the most natural ones to address, in order to obtain a cleaner
picture on what are the correct notions of irregularity to use in connection to mixing properties.
They are not however necessarily the most interesting ones.

As already seen in Chapter 5, the property of (; �)-irregularity can be formulated in terms of
(the Fourier transform of) the occupation measure of u (since we are on the torus, we will denote
it by �T

u ); closely related to it, there is also the local time of u, namely the Radon�Nikodym
derivative d�T

u /d�T. This gives rise to the following task:

Problem. Find a link between the mixing properties of u and the regularity of its local time.

In a different direction, although there are valid reasons to measure mixing by the weak norm
H¡1/2, it would be desirable to extend the results to other scales, especially the most often consid-
ered H¡1. Given Remark 6.15, this can be reduced to the task of finding (0; �)-irregular functions
with arbitrarily large � (in particular, scaling would suggest u 2C� with �� 1/�). As already
mentioned in Remark 5.70, it is however an open problem to provide examples of (0; �)-irregular
functions u, for any � > 1. Instead there are several examples of u: [0; �]!R which are (0; 1)-
irregular, including the choice u(y)= y, see Proposition 5.6.

Remark 6.46. Finally, recall that the property of �-irregularity holds for generic vector-valued
functions u: [0; 1]!Rd (resp. u:T!Rd), for any d2N. In particular, similar statements to part
i. of Theorem 6.2 can be established for �higher dimensional� shear flows of the form

@tf +u� � rf = ��f (6.37)

for f :Td+1!R, u�(x1; : : : ; xd+1) := (u(xd+1); 0)T ; observe that for d=2, u� is a stationary solution
to 3D Euler equations. In light of [73], the vector field u� constructed by a �-irregular u is diffusion
enhancing; thus can be applied in the study of suppression of blow-up by mixing phenomena,
similarly to what was done e.g. in [188, 33, 183, 78].

Instead of (6.37), one might consider the case of parallel shear flows, i.e. PDEs of the form

@tf + v(y)@xf = ��f (6.38)
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where now f = f(t; x; y), x2R (or x2T) and y 2Td (or more generally y 2
, 
 smooth subset
of Rd, in which case f is prescribed suitable boundary conditions). This case has been examined,
by means of resolvent estimates, in the recent work [149] (at least for fairly smooth v).

When �=0, our analysis on inviscid mixing estimates would still work, if we were to introduce
a suitable definition of �-irregularity for fields v:Rd!R. So far, examples of �-irregular fields
have not been given in the literature, although it is reasonable to expect typical realisation of
fractional Brownian sheet to fullfill this kind of notion. An analogue of Wei's condition and a clear
link between it and a diffusion enhancement property is instead completely open.

6.4.2 Bibliographical comments

As already illustrated at the beginning of this chapter, the study of the mixing and enhanced dissi-
pation properties of vector fields lies at the intersection of several disciplines: ergodic theory, PDEs
and functional analysis, but also engineering applications (devising optimal stirring strategies for
chemicals) and theoretical physics (understanding energy cascade mechanisms and more generally
turbulence). There are several important mathematical contributions I haven't discussed properly,
due to the large literature and its countless ramifications; I try to mention some of them here in
terms of different �thematic blocks�.

Universal, generic and random mixers. If we go away from the shear flow setting, where
the best possible mixing rates are of polynomial type (cf. Theorem 6.6), it is by now well estab-
lished that, even in the case of an incompressible Lipschitz drift b, the associated flow can mix
exponentially fast. A natural questions in this context is whether one can find universal exponential
mixers (in the sense of mixing exponentially fast all initial data f0 2Hs for some s> 0). The
work [102] answers affirmatively the question in any dimension d> 2 and any s> 0, while showing
the impossibility of universal mixers (even not exponential) for s=0.

In a different direction, the work [40] studies for d=2 (more precisely on [0; 1]2) whether the
properties of being exponential, strong or weakly mixing are generic (in the Baire sense, w.r.t. to
a suitable topology on Lt1BVx), or at least form a dense set, for time-periodic vector fields.

Another natural assumption is to either consider a random flow, by taking b itself solution to a
fundamental (stochastic) equation of fluid dynamics like Navier-Stokes, or to deal with a stochastic
flow (tipically the so called isotropic Brownian flows first introduced in [181, 274]), the latter being
strictly connected to the Kraichnan model of turbulence [62, 104]. The first option has recently
seen tremendous progress thanks to the works by Bedrossian and collaborators, see [30, 31] and
the references therein; regarding the second one, a classical result can be found in [98], while novel
advances are given in [157].

Functional mixing and geometric mixing. In order to measure �mixedness� of a given
density f , we adopted the use of negative Sobolev norms k�kH¡s, due to their natural connection to
ergodic theory. This is however only one possible option, usually referred to as functional mixing,
with an alternative given by the so called geometric mixing property, first introduce by Bressan in
the work [48] and associated to his famous cost-rearrangement conjecture. The terminology in the
literature is not completely settled: for instance the definitions adopted in [2, 3] are rather different
from the ones in [284] (which we will shortly comment more in depth).

Relation with propagation of regularity. In the analytic community, the importance
of the concept of geometric mixing comes from its close connection to the general principle that
�propagation of regularity implies lower bounds on mixing� (also testified by our Theorems 6.6-6.7).
Indeed, the first work to give a partial positive answer to Bressan's rearrangement conjecture
was [81], which derived it as a simple corollary of their general results on Lusin-Lipschitz type
regularity of generalized Lagrangian flows. Since then, several papers have sharpened these argu-
ments, including [253], [182] (cf. Lemma 2.3), [197] and [50] (cf. Lemma 3.9). Related to Bressan's
conjecture(s), let us finally mention the recent work [39].
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Let me conclude by commenting further on the relation between geometric and functional
mixing. I follow the definitions from [284, 102]; here Q= (0; 1)d is the unit cube, which can be
endowed with either slip, no-slip or periodic boundary conditions (the latter reducing to Td)

Definition 6.47. (Definition 1.1 from [102]) Let f 2 L1(Q) be mean-zero on Q and let ";
�2 (0; 1/2]. We say that f is �-mixed up to scale " if

1

jB"(y)j

��������Z
B"(y)

f(x)dx

��������6�kf k1 8y 2Q:

The smallest such " is the (�-dependent) geometric mixing scale of f.

As explained in the comments in [284] right after Corollary 1.5, there is a deep link between
the geometric mixing scale and the mix-norm defined in [214] (which is in turn equivalent to the
functional norm k�kH¡1/2 by the results therein). In particular we have the following:

� if f is �-mixed up to scale ", then kf kH¡1/2. "+�2
p

kf kL1;

� conversely, if kf kH¡1/2.�3/4"3/2kf kL1, then f is �-mixed up to scale ".

These two facts provide the justification why in [102] the quantity kf kH¡1/2
2 /kf kL12 is defined as

the functional mixing scale of f . It would be interesting in the future to understand if a suitable
analogue of our Theorem 6.6 can be given in terms of geometric mixing rates and whether the
above link between the two notions can be sharpened.
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Appendix A
Miscellanea

A.1 Fractional Brownian Motion
Fractional Brownian motion (henceforth fBm) is a fundamental fractional process, first intro-
duced by Kolmogorov [189] in the study of turbulence and later rediscovered by Mandelbrot, Van
Ness [211]. We recall in this appendix several classical facts involving fBm, which can be found
in [225, 236].

A one dimensional fBm (Wt)t>0 of Hurst parameterH 2(0;1) is a centered, continuous Gaussian
process with covariance

E[WtWs] =
1

2
(jtj2H+ jsj2H ¡ jt¡ sj2H):

A d-dimensional fBm of parameter H 2 (0; 1) is a Gaussian process with i.i.d. coordinates distrib-
uted as one dimensional fBms with the same parameter.

When H =1/2, fBm coincides with standard Brownian motion; however for H =/ 1/2, it is not
a semimartingale nor a Markov process, see [247]. Still, it shares many properties of Brownian
motion, such as stationarity, reflexivity and self-similarity. Sharp results on the support of �H,
the law of fBm of parameter H 2 (0; 1), go back to [68] (see also [268] for a modern proof which
extends to the vector valued case): it holds

�H(CH¡"([0; T ];Rd))= 1 8"> 0; �H(Bp;1
H (0; T ;Rd)) =1 8p2 [1;1); T 2 (0;1);

while

�H(CH([0; T ];Rd))= 0; �H(Bp;q
H (0; T ;Rd)) =0 8p; q 2 [1;1); T 2 (0;1);

here Bp;qH denote Besov spaces as defined in Appendix A.2. In particular, fBm trajectories are
sharply not H-Ho�lder continuous, but by Ascoli�Arzelà �H is a tight probability measure on
Bp;1
H¡"(0; T ;Rd) for any "> 0, p2 [1;1] and T 2 (0;1).

A very useful property of fBm is that it admits representations in terms of stochastic integrals.
Given a two-sided Brownian motion fBtgt2R, a fBm of parameter H =/ 1/2 can be constructed by

Wt= cH

Z
¡1

t �
(t¡ r)+

H¡1/2¡ (¡r)+
H¡1/2�

dBr (A.1)

where cH=¡(H+1/2)¡1 is a suitable renormalising constant and ¡ denotes the Gamma function.
Such a representation is usually called non canonical as the filtration Ft= �(Bs: s6 t) is strictly
larger than the one generated by W ; set EsX : =E[X jFs]. Expression (A.1) is useful as it imme-
diately shows that, for any pair 06 s< t, Wt decomposes into the sum Wt=(Wt¡EsWt) +EsWt,
where

Wt¡EsWt= cH

Z
s

t

(t¡ r)H¡1/2dBr; EsWt= cH

Z
¡1

s �
(t¡ r)+

H¡1/2¡ (¡r)+
H¡1/2�

dBr:

In particular, EsWt is Fs-measurable, while Wt¡EsWt is independent of Fs and

Var(Wt¡EsWt) = c~H jt¡ sj2H

for c~H= cH2 /(2H). This also implies that

Var(Wtj�(Wr; r6 s))>Var(WtjFs) =Var(Wt¡EsWt)= c~H jt¡ sj2H: (A.2)
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Equation A.2 is a strong local nondeterminism property; loosely speaking, it means that for
any s < t, the increment Wt¡Ws contains a part which is independent of the history of the path
up to time s, thus making its trajectories �intrinsically chaotic�. The local nondeterminism (LND)
property was first introduced by Berman in [37] in the study of local times of Gaussian processes;
it plays a major role in the regularisation by noise effect of fBm trajectories on SDEs (see the
thorough discussion in Section 5.1.3).

Another useful integral representation of fBm is based on fractional calculus, which we quickly
introduce and for which we refer the interested reader to [249]. For simplicity, from now on we only
work with d=1, but everything can be immediately extended to Rd by reasoning componentwise.

Given f 2L1(0; T ) and �> 0, the fractional integral of order � of f is defined as

(I�f)�=
1

¡(�)

Z
0

�
(t¡ s)�¡1fsds: (A.3)

For �2 (0;1) and p>1, the map I� is an injective bounded operator on Lp=Lp(0; T ); we denote by
I�(Lp) the image of Lp under the I�, which is a Banach space endowed with the norm kf kI�(Lp) :=
kgkLp if f=I�g. On this domain, I� admits an inverse, the fractional derivative of order �, given by

(D�f)t=
1

¡(1¡�)
d
dt

Z
0

t fs
(t¡ s)� ds=

1
¡(1¡�)

�
ft
t�
+�

Z
0

t ft¡ fs
(t¡ s)�+1 ds

�
: (A.4)

With this notation in mind, a fBm of Hurst parameter H 2 (0; 1) can be constructed starting from
a standard Brownian motion B on the interval [0; T ] by setting W =KH(dB), where the operator
KH is defined as

KHf =

(
I1sH¡1/2IH¡1/2s1/2¡Hh ifH > 1/2
I2H s1/2¡H I1/2¡HsH¡1/2h ifH 6 1/2

where s� denotes the multiplication operator by the function s 7! s�. It can be shown that this
definition of W is meaningful and that the operator KH corresponds to a Volterra kernel KH(t; s),
so that the above representation is equivalent to

Wt=

Z
0

t

KH(t; s) dBs: (A.5)

The explicit expression for KH in the case H > 1/2 is given by

KH(t; s)= cH s
1/2¡H

Z
s

t

(u¡ s)H¡3/2uH¡1/2du; (A.6)

in the case H < 1/2 it is more complicated and can be found in [225]. It can be shown that the
processes B andW generate the same filtration, which makes (A.5) a canonical representation;
moreover KH is invertible, so that for any given fBm W on a probability space, one construct an
associated standard Bm by setting B�=

R
0

�
(KH
¡1W )s ds. The inverse operator KH

¡1 is given by

KH
¡1f =

(
sH¡1/2DH¡1/2s1/2¡Hf 0 ifH > 1/2

s1/2¡HD1/2¡HsH¡1/2D2Hf ifH < 1/2
: (A.7)

Given a filtered space (
;F ;fFtgt>0;P), we say that a processW is an Ft-fBm if it is a fBm under
P and the associated B is an Ft-Bm in the usual sense.

The importance of the representation (A.5) lies in the following version of Girsanov theorem
for fractional Brownian motion.

Theorem A.1. (Girsanov) Let (
;F ;fFtgt>0;P) be a filtered probability space, W be an Ft-fBm
of parameter H 2 (0;1) and h be an Ft-adapted process with continuous trajectories s.t. h0=0. Let
B be the Bm such that W =KH dB. Suppose that KH

¡1h2Lt2 with probability 1 and that

E

�
dP
dQ

�
=1; (A.8)
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where the variable dP/dQ is given by

dP

dQ
= exp

�
¡
Z
0

T

(KH
¡1h)sdBs¡

1

2

Z
0

T

j(KH¡1h)sj2ds
�
: (A.9)

Then the shifted process W~ :=W +h is an Ft-fBm with parameter H under the probability Q. A
sufficient condition in order for (A.8) to hold is given by Novikov's condition

E

�
exp
�
1
2

Z
0

T

j(KH¡1h)sj2ds
��

<1: (A.10)

Proof. The result is taken from [226], Theorem 2, with the exception of the final part which is
just classical Novikov condition; in the original statement from [226], the process h is taken of the
form h�=

R
0

�
usds, but this doesn't play any role in the proof, which indeed holds also in the case

h is not of bounded variation. �

A.2 Function spaces
We recall here the definition and main properties of the Besov spaces Bp;qs , which have been used
frequently throught this thesis. For simplicity, we will only state the results on Rd, where Besov
spaces can be defined by means of Littlewood�Paley blocks as done in the monograph [19]. The
same results transfer to the analogous spaces on Td by a clever use of Poisson summation formula,
see [163], [222]; alternatively, periodic Besov spaces have been treated in Chapter 3 of [251]. Besov
spaces on general open domains O�Rd can be defined by means of finite differences, see e.g. [201]
or the classical paper [256] for spaces on an interval I �R. Finite different characterizations are
robust enough to generalize to functions taking values in a metric space, see [207].

To avoid confusion, in this section Br will denote the open ball in Rd of radius r > 0, B�r its
closure. Closed annuli on Rd are then of the form A=B�R nBr with 0<r <R. Let us also recall
that S = S(Rd) denotes the Schwarz space, S 0 the space of tempered distributions; the Fourier
transform of f will be denoted by either Ff or f̂ .

Definition A.2. Let A be the annulus B�8/3nB3/4. A dyadic pair is a couple of functions (�; ')
such that �2Cc1(B4/3), '2Cc1(A) and such that

�(�)+
X
j=0

1

'(2¡j �)= 1 8� 2Rd

as well as
jj ¡ j 0j> 2) supp'(2¡j � )\ supp'(2¡j 0 � )= ;:

Given such a dyadic pair, we define the operator �¡1 by �¡1f =F¡1(�Ff) and similarly �j for
j> 0 by �jf =F¡1('(2¡j � )Ff).

Before introducing Besov spaces, let us recall some fundamental inequalities involving functions
with compactly supported Fourier transform, which come very handy when applied to Little-
wood�Paley blocks �j.

Lemma A.3. ([19], Lemma 2.1, Bernstein estimates) Let A be an annulus and B be a ball.
There exists a constant C such that, for any k 2N, p; q 2 [1;1] with q> p, �> 0 and any u2Lp,
it holds

Supp û��B ) kDkukLq6Ck+1�
k+d

�
1
p
¡ 1
q

�
kukLp;

Supp û��A ) kDkukLq>C¡k¡1�
k+d

�
1
p
¡ 1
q

�
kukLp:

Lemma A.4. ([19], Lemma 2.4) Let A be an annulus. There exist positive constants c; C such
that for any p2 [1;1]; t > 0, �2N and any u2Lp, it holds

Supp û��A ) kPtukLp6Ce¡ct�
2kukLp:
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Definition A.5. For s2R, (p; q)2 [1;1]2, the (inhomogeneous) Besov space Bp;qs (Rd) =Bp;q
s

is defined as the set of all tempered distributions f 2S 0 such that

kf kBp;qs :=

0@X
j=0

1

2sj qk�jf kLp
q

1A1/q<1
with the usual convention when q=1.

Bp;q
s endowed with k�kBp;qs is a Banach space and enjoys the Fatou property, see Theorem 2.72

from [19]; its definition does not depend on the chosen (�; '), in the sense that different pairs yield
the same space of distributions with equivalent norms. If p; q=/ 1, Bp;qs is separable and Cc1 is
dense in it; if p; q 2 (1;1), Bp;qs is reflexive and its dual can be identified with Bp0;q 0

¡s .
Let us mention some basic facts that can be easily checked using the definition of Bp;qs . For

any "> 0 and any p; q 2 [1;1], Bp;qs continuously embeds in Bp;1
s¡"; for any p2 [1;1], we have the

embeddings

Bp;1
0 ,!Lp ,!Bp;1

0 ;

where the second inclusion comes from Young's inequality for convolutions: for all j> 0 it holds

k�jf kLp= kF¡1('(2¡j � )) � f kLp6 kF¡1('(2¡j � ))kL1kf kLp= kF¡1(')kL1kf kLp:

Similarly, M ,!B1;1
0 , M denoting the set of finite signed measures on Rd. For p 2 [2;1) we

actually have the sharper embedding Bp;20 ,!Lp, which also induces the dual embedding Lp
0
,!

Bp0;2
0 , see Theorem 2.40 from [19].A.1

Besov spaces are handy to use due to their many properties, including functional embeddings,
behavior under translation and derivation, and interpolation inequalities.

Proposition A.6. ([19], Prop. 2.71, Besov embeddings) Let 16 p16 p261, 16 q16 q261.
Then for any s2R, the space Bp1;q1

s continuously embeds in Bp2;q2
s� , where

s�= s¡ d
�
1

p1
¡ 1

p2

�
:

Lemma A.7. Let f 2Bp;qs and set � vf = f(� + v) for all v 2Rd. Then for any �2 [0; 1] it holds

k�xf ¡ � yf kBp;qs¡�. jx¡ y j
� 8x; y 2Rd:

Proof. For any j 2N, by Bernstein estimates and interpolation inequalities it holds

k�j(�xf ¡ � yf)kLp=k(�x¡ � y)�jf kLp
6jx¡ y j� k(�x¡ � y)D�jf kLp� k(�x¡ � y)�jf kLp1¡�

.jx¡ y j� 2j� k�jf kLp:

Therefore

k�xf ¡ � yf k
Bp;q
s¡�
q =

X
j

2(s¡�)jq k(�x¡ � y)�jf kLp
q . jx¡ y j�

X
j

2sjq k�jf kLp
q

which yields the conclusion. �

Proposition A.8. ([222], Prop. A.5) Let s 2R, p; q 2 [1;1], i 2 f1; : : : ; ng. Then the map
f 7! @if is a continuous linear operator from Bp;q

s to Bp;q
s¡1.

A.1. In fact, this follows from a much more general embedding result. Similarly to the Besov spaces Bp;qs , one
can use dyadic pairs to define the Triebel�Lizorkin spaces Fp;qs , see [263]. Standard Sobolev spacesW k;p with k2N;
p2 (1;1) coincide with Fp;2k and for p2 [2;1); s2R by Minkowski's inequality one has Bp;2s ,!Fp;2

s ; Fp0;2
s ,!Bp0;2

s .
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Proposition A.9. ([19], Thm. 2.80, Interpolation inequalities) A constant C exists which
satisfies the following properties. For any s1; s22R with s1<s2, �2 (0; 1) and p; q2 [1;1], setting
s�= �s1+(1¡ �)s2, it holds

kf kBp;qs� 6 kf kBp;qs1
� kf kBp;qs2

1¡� ; (A.11)

kf kBp;1s� 6
C

s2¡ s1

�
1
�
+

1
1¡ �

�
kf kBp;1s1

� kf kBp;1s2
1¡� : (A.12)

Proof. The result is well known, see e.g. Theorem 2.80 from [19]; let us provide a simple proof of
inequality (A.12) without tracking the exact dependence of the constants on s2¡s1, �: By linearity,
we may assume kf kBp;1s2 =1; then for any N > 0 it holds

kf kBp;1s� =
X
j<N

2j(�s1+(1¡�)s2)k�jf kLp+
X
j>N

2j(�s1+(1¡�)s2)k�jf kLp

6kf kBp;1s1
X
j<N

2j(1¡�)(s2¡s1)+ kf kBp;1s2
X
j>N

2¡j�(s2¡s1)

.kf kBp;1s1 2N(1¡�)(s2¡s1)+2¡N�(s2¡s1):

Choosing N such that kf kBp;1s1 � 2¡N(s2¡s1) the conclusion then follows. �

Let us stress the power of inequality (A.12): by means of Besov norms Bp;qs with q=1, we are
actually able to control an intermediate Besov norm with q=1 (and thus by embeddings also for
any other q2 [1;1), or Triebel-Lizorkin norms Fp;q

s� ). In particular, the so called Agmon inequality
(see Lemma 13.2 from [1]) may be regarded as a particular subcase of (A.12); another simple
consequence of Proposition A.9, which is quite useful in Chapter 6, is the following.

Corollary A.10. For any s1; s2> 0 there exists a constant C(s1; s2) such that

kf kL26C kf kH¡s1
s2/(s1+s2) kf kB2;1s2

s1/(s1+s2) 8f 2B2;1s2 : (A.13)

Proof. Applying Proposition A.9 for the choice p=2, �=s2/(s1¡s2) and using Besov embeddings,
we find

kf kL26 kf kB2;10 . kf kB2;1¡s1
� kf kB2;1s2

1¡� . kf kH¡s1� kf kB2;1s2
1¡� : �

Another advantage of Besov spaces is that they allow to define the product between distribu-
tions, at least whenever the sum of their regularities is positive. The key tool in the proof of such
results is the so called Bony's paradecomposition.

Proposition A.11. ([222], Prop. A.7) Let s1; s22R and p; p1; p2; q 2 [1;1] be such that

s1< 0<s2; s1+ s2> 0;
1
p
=
1
p1
+
1
p2
;

then (f ; g) 7! fg is a well-defined continuous bilinear map from Bp1;q
s1 �Bp2;q

s2 to Bp;q
s1 .

Besov spaces of positive regularity also enjoy a nice algebra structure. Observe that when sp>d,
by Besov embedding the intersection with L1 is redundant.

Proposition A.12. ([19], Cor. 2.86) For any s> 0 and p; q2 [1;1], the space Bp;qs \L1 is an
algebra and there exists a constant C =C(s) such that

kfgkBp;qs 6C(kf kL1kgkBp;qs + kf kBp;qs kgkL1) 8f ; g 2Bp;qs \L1:

We also need to recall the action of the heat flow Pt on Besov spaces. The statement is classical
and can be proved easily using Lemma A.4; see Proposition 5, p. 2414 of [221], for the proof in a
more general context.
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Lemma A.13. For any s2R, �> 0, p; q 2 [1;1] and for any f 2Bp;qs , t> 0 it holds

kPtf kBp;qs+�. t
¡�/2kf kBp;qs :

Finally, let us mention that Besov spaces include several other classical function spaces (when-
ever we say that two spaces coincide, we enforce equivalence of the respective norms):

� For s2R, B2;2s coincides with the fractional Sobolev space Hs.

� For s 2 (0;1) nN, B1;1s coincides with the Ho�lder space Cs, i.e. the space of bounded
functions with bounded, fsg-Ho�lder continuous derivatives up to order bsc.

� For s2 (0;1) and p2 [1;1), the space Bp;1s , often referred to as Besov�Nikolskii space, can
be characterized by the equivalent norm

kf k~Bp;1s :=kf kLp+ sup
x=/ y2Rd

kf(�+x)¡ f(�+ y)kLp
jx¡ y js :

� For s2 (0; 1), p; q 2 [1;1) the space Bp;qs has equivalent norm

kf k~Bp;qs :=kf kLp+
�Z

Rd

�
kf(�+x)¡ f(�)kLp

jxjs

�q
1

jxjd dx
�
1/q

:

When p= q 2 (1;1), the above integral quantity is a Gagliardo�Niremberg seminorm and
Bp;p
s coincides with the fractional Sobolev space W s;p, see e.g. [95].

We conclude this section by discussing another (less canonical) class of functions which was used
in Chapter 5, namely the Fourier�Lebesgue spaces.

Definition A.14. Let s2R, p2 [1;1]; Fourier�Lebesgue space FLs;p=FLs;p(Rd) is defined as

FLs;p= ff 2S 0(Rd): h�isjf̂(�)j 2Lp(Rd)g

where h�i=(1+ j� j2)1/2. It is a Banach space endowed with the norm

kf kFLs;p= kh�isf̂ kLp:

It follows immediately from the definition that we could replace h�i with any other locally
bounded function with the same behaviour at infinity, e.g. (1 + j�j); h�i is usually considered
as it is the Fourier symbol associated to the operator (I ¡�)1/2. Here is a list of relations of
Fourier�Lebesgue spaces with other known functional spaces:

� For any s2R, FLs;2 coincides the classical fractional Sobolev space Hs=(I ¡�)s/2L2.
� By the Hausdorff�Young inequality (see Proposition 2.2.16 from [160]), for p2 [1;2] we have

the embedding Lp ,!FL0;p0; similarly for the Bessel spaces Ls;p= (I ¡�)¡s/2Lp we have
Ls;p ,!FLs;p0 and conversely FLs;p ,!Ls;p

0
(always only for p2 [1; 2]).

� In the case f 2L1 the result is slightly stronger, namely f̂ is uniformly continuous, bounded
and f̂(�)! 0 as �!1 by the Riemann�Lebesgue lemma; if f is a finite measure on Rd,
then f̂ is still uniformly continuous and bounded.

� We have the embedding FL0;1 ,!C0 and more generally FLs;1 ,!Cs, where for s= n2N
we mean the classical Cn space, while for s fractional or negative Cs=B1;1s .

There are also embeddings in different scales of Fourier�Lebesgue spaces.

Lemma A.15. For any q < p and any "> 0 it holds

FLs;p ,!FLs¡d
�
1
q
¡ 1
p

�
¡";q

:

Proof. For any q < p and � > 0 we have

kf kFLs¡�;q=
�Z

Rd
(h�isjf̂(�)j)qh�i¡�qd�

�
1/q

6 kf kFLs;p
�Z

Rd
h�i¡�

pq

p¡q

�1
q
¡ 1
p
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where the integral is convergent if and only if ¡�pq/(p¡ q)<¡d , namely

� > d

�
1
q
¡ 1
p

�
: �

The above statement can be combined with other embeddings like the ones mentioned above.
For instance we have FLs;1 ,!FLs¡d/2¡";2=Hs¡d/2¡" and FLs;1 ,!FLs¡d¡";1 ,!C�¡d¡".

One of the main motivations to introduce Fourier�Lebesgue spaces is that they behave nicely
under convolution, due to the properties of Fourier transform.

Lemma A.16. Let f 2FL�;p, g2FL�;q with 1

p
+

1

q
61. Then f � g2FL�+�;r where 1

r
=

1

p
+

1

q
and

kf � gkFL�+�;r6 kf kFL�;pkgkFL�;q:

Proof. By the properties of Fourier transform f � gd = f̂ ĝ, therefore

kf � gkFL�+�;r=
�Z

Rd
(h�i�jf̂ (�)j)r (h�i� jĝ(�)j)r d�

�
1/r

6 kf kFL�;pkgkFL�;q

where in the last passage we used the generalised Ho�lder inequality k' kLr6 k'kLpk kLq for r,
p and q as above. �

As a consequence, any bounded Fourier symbol acts continuously on FL�;p, for any choice of
� and p; we also have FL�;p �FL�;1 ,!FL�+�;p.

We conclude this appendix by recalling a classical fact on the properties of convolutions with
tempered distributions. To this end, we first recall that the following notion.

Definition A.17. A function '2Cloc
1 (Rd) is said to be slowly increasing if all of its derivatives

grow at most polynomially at infinity, namely if for any �2Nd there exists N(�) such that

j@�'(x)j6 hxiN(�) 8x2Rd:

Proposition A.18. (Proposition 9.10 from [127]) If '2S and  2S 0, then '�  is a slowly
increasing Cloc

1 function.

A.3 Prevalence

Prevalence [232] is a notion of �Lebesgue measure zero sets� in infinite dimensional complete
metric vector spaces. Such sets cannot be naively defined, due to the fact that there cannot exist
�-additive, translation invariant measures in infinite dimensional spaces. It was first introduced by
Christensen in [67] in the context of abelian Polish groups and later rediscovered independently by
Hunt, Sauer and Yorke in [179] for complete metric vector spaces. A key advantage of prevalence,
with respect to other notions of genericity, is that it allows the use of probabilistic methods in the
proof.

Prevalence has been used in different contexts in order to study the properties of generic
functions belonging to spaces of suitable regularity. For instance, it was proved in [178] that almost
every continuous function is nowhere differentiable, while in [129, 130] the multifractal nature of
generic Sobolev functions was shown. Recently, prevalence has also attracted a lot of attention in
the study of dimension of graphs and images of continuous functions, see among others [128, 26].

Here we follow the setting and the terminology given in [179] even if, for our purposes, working
on a Banach space E will always suffice.
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Definition A.19. Let E be a complete metric vector space. A Borel set A�E is said to be shy
if there exists a measure � such that:

i. There exists a compact set K �E such that 0< �(K)<1.

ii. For every v 2E, �(v+A) =0.
In this case, the measure � is said to be transverse to A. More generally, a subset of E is shy if
it is contained in a shy Borel set. The complement of a shy set is called a prevalent set.

Sometimes it is said more informally that the measure � �witnesses� the prevalence of Ac.
It follows immediately from part i. of the definition that, if needed, one can assume � to be a

compactly supported probability measure on E. If E is separable, then any probability measure
on E is tight and therefore i. is automatically satisfied.

The following properties hold for prevalence:

1. If E is finite dimensional, then a set A is shy if and only if it has zero Lebesgue measure.

2. If A is shy, then so is v+A for any v 2E.

3. Prevalent sets are dense.

4. If dim(E)=+1, then compact subsets of E are shy.

5. Countable union of shy sets is shy; conversely, countable intersection of prevalent sets is
prevalent.

All proofs can be found in [179]; let us only give a short proof of Point 1.
If Ld(A)= 0, where Ld denotes the Lebesgue measure on Rd, then Definition A.19 is satisfied

for �=Ld due its the translation invariance property. Conversely, if A is shy, then there exists
a probability measure � transverse to it; then combining Definition A.19 with the translation
invariance of Ld and Fubini theorem, it holds

Ld(A) =�(Rd)�Ld(A)= (� �Ld)(A) =
Z
Rd
�(x+A) dx=0:

We will say that a statement holds for almost every v 2E whenever the set of elements of E
for which the statement holds is prevalent. Property 1. states that this convention is consistent
with the finite dimensional case.

Definition A.19 might appear to depend on a given measure � transverse to A; as the next
lemma shows, once such a measure can be found, infinitely many others can be produced from it,
thus making the property to some extend independent of the specific measure under consideration.

Lemma A.20. Let � be a measure tranverse to a Borel set A � E. Then for any compactly
supported � 2M(E), � � � is transverse to A.

Proof. By Fubini, for any v 2E, it holds

(� � �)(v+A)=
Z
E

�(v+w+A) �(dw) =

Z
E

0�(dw)= 0:

Similarly, it's easy to check the existence of a compact set K �E such that (� � �)(K)<1. �

In the context of a function space E, it is natural to consider as probability measure the law
induced by an E-valued stochastic process. Namely, given a stochastic process W defined on a
probability space (
;F ;P), taking values in a separable Banach space E, in order to show that a
property P holds for a.e. f 2E, it suffices to show that

P(f +W satisfies property P) =1 8f 2E:

Clearly, we are assuming that the set A= fw 2E :w satisfies property Pg is Borel measurable; if
E is not separable, then we need to additionally require the law of W to be tight, so as to satisfy
Point i. of Definition A.19.
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As a consequence of Properties 4. and 5., the set of all possible realisations of a probability
measure on a separable Banach space is a shy set, as it is contained in a countable union of compact
sets (this is true more generally for any tight measure on a Banach space). This highlights the
difference between a statement of the form

�Property P holds for a.e. f �
and, for instance,

�Property P holds for all Brownian trajectories�;

where this last statement corresponds to �(Property P holds) = 1, � being the Wiener measure
on C([0; 1]). Indeed, the second statement doesn't provide any information regarding whether the
property might be prevalent or not. Intuitively, the elements satisfying a prevalence statement are
�many more� than just the realisations of the Wiener measure.

A.4 Stochastic integration in Banach spaces
In this appendix we recall several results on abstract stochastic integration; in view of application
to Chapter 3, we will only recall results for martingale type p spaces, but the modern theory is far
reaching and allows for the more general setting of UMD Banach spaces.

All the material presented here is taken from [266, 267]. For simplicity we restrict to the case
of W being a real valued Bm (the extension to the d-dim. case being straightforward), but one
could consider H-cylindrical Brownian motion, H being an abstract Hilbert space. This gives rise
to -Radonifying norms (H; E); in the simple case H=R it holds k�k(H;E)= k�kE.

Definition A.21. Let p 2 [1; 2]. A Banach space E has martingale type p if there exists a
constant C > 0 such that for all finite E-valued martingale difference sequences (dn)n=1N it holds

E

"X
n=1

N

dn


E

p #
6Cp

X
n=1

N

E[kdnkE
p ]:

The least admissible constant is denoted by Cp;E.

Examples of martingale type spaces are the following:

� Every Banach space has martingale type 1.

� Every Hilbert space has martingale type 2.

� A closed subspace of a Banach space of martingale type p has still martingale type p.

� If E has martingale type p and (S;A; �) is a measure space, then Lr(S;E) with r2 [1;1)
has martingale type p^ r; in particular Lebesgue spaces Lp(Rd) have martingale type p^2.

� Let (E0; E1) be an interpolation couple such that Ei has martingale type pi 2 [1; 2], let
� 2 (0; 1) and consider p2 [1; 2] such that 1/p=(1¡ �)/p0+ �/p1. Then both the complex
and real interpolation spaces E� and E~� have martingale type p.

For the last two examples, see Propositions 7.1.3 and 7.1.4 from [180]. It follows that Sobolev
spaces W k;p(Rd) with p 2 [2;1) have martingale type 2 as they can be identified with closed
subspaces of Lp(Rd)
n for suitable n. Besov spaces Bp;qs with p; q2 [2;1) have martingale type 2,
as can be shown alternatively by: a) by constructing them as interpolation spaces (see for instance
Section 17.3 from [201]); b) identifying Bp;qs by means of its Littlewood-Paley decomposition with
`q(N; �;Lp(Rd)), where �(fjg)= 2¡sqj.

Let W be a real valued Ft-Bm on a filtered probability space (
; F ; fFtgt>0;P), fFtgt>0
being a filtration satisfying the usual conditions. For martingale type 2 spaces it is possible to
define stochastic integrals analogously to the Euclidean case: for an adapted elementary process
�:R+�
!E, namely of the form

�(t; !) =
X
i=1

n¡1

xi 1(ti;ti+1]�Fi(t; !)
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where 06 t1< t2< � � �<tn, xi2E, Fi2Fti, we setZ
0

�
�dW : =

X
i=1

n¡1

xi 1Fi(W�^ti+1¡W�^ti):

Using the martingale type 2 property it is then possible to show that the L2 norm of the process
defined in this way is controlled by k�kL2(R+�
;E), see Theorem 4.6 from [267]. By standard
approximation procedures, together with Doob's maximal inequality, the following analogue of
standard Itô integration can then be proven.

Theorem A.22. Let �:R+�
!E be a progressively measurable process satisfying

k�kL2(R+�
;E)
2 =E

�Z
0

+1
k�tkE2 dt

�
<1:

Then
R
�dW is well defined as an E-valued martingale with paths in Cb(R+;E) and satisfies

E

"
sup
t>0

Z
0

t

�s dWs


E

2
#
6 4C2;E2 E

�Z
0

+1
k�tkE2 dt

�
: (A.14)

Remark A.23. It follows immediately from the definition for simple processes and the usual
approximation procedure that, for any � as above and any deterministic '� 2E�, the following
identity holds

h'�;
Z
0

�
�sdWsi=

Z
0

�
h'�; �sidWs (A.15)

where the integral on the r.h.s. is a standard real valued stochastic integral.

In the setting of martingale type 2 spaces a one-sided Burkholder's inequality is available; we
state it with the optimal asymptotic behaviour of the constants, which is needed in the estimates
in Section 3.1.3. It was first shown by Seidler in [252].

Theorem A.24. (Theorem 4.7 from [267]) Let E be martingale type 2. Then for any progres-
sively measurable process �:R+�
!E and p2 (0;1) there exists a constant C~p;E such that

E

"
sup
t>0

Z
0

t

�sdWs


E

2
#
6C~p;Ep E

��Z
0

1
k�skE2 ds

�
p/2
�
: (A.16)

In particular, it is possible to choose C~p;E such that C~p;E 6CE p
p

for any p> 2, where CE is a
universal constant that only depends on the space E.

Finally we recall the Azuma-Hoeffiding inequality in martingale type p spaces, which played a
key role in Section 3.1.4.

Theorem A.25. Let E be a Banach space of martingale type p2 (1; 2], and fXngn>1 be an E-
valued martingale sequence satisfying kXn+1¡XnkE6 cn P-a.s. for all n2N, where fcngn>1 are
deterministic constansts. Then there exist �;K depending on E such that

E

"
exp

 
�
kX1kE

pP
n cn

p

!#
6K: (A.17)

Proof. The result is a useful rewriting of Theorem 1.3 from [208], where it is stated in terms of
p-uniformly smooth Banach spaces; it was shown by Pisier [239] that martingale type p spaces
admit an equivalent p-uniformly smooth norm.

By linearity, we can assume
P
n cn

p=1; by Theorem 1.3 from [208], there exists �>0 such that

E[exp(� kX1kE
p )] =

Z
0

+1
P(exp(� kX1kE

p )>a) da6 1+
Z
1

+1
2a
¡�
� da :=K

where the last quantity is finite as soon as we take �<�. �
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A.5 Space-time regularity of random fields
The Garsia-Rodemich-Rumsay lemma [150] is a very powerful tool to analyse the local regularity of
vector fields starting from macroscopic integral quantities. The following version is taken from [258],
Exercise 2.41; see also Appendix B from [84].

Theorem A.26. Let p;  : [0;+1)! [0;+1) be strictly increasing functions, B�(a; r) denote the
closed ball of radius r > 0 around a2Rd and let E be a Banach space; assume f :B�(a; r)!E is a
continuous map such that

B :=

Z
B(a;r)�B(a;r)

 

�
kf(x)¡ f(y)kE
p(jx¡ y j)

�
dxdy <1: (A.18)

Then there exists a dimensional constant �d such that

kf(x)¡ f(y)kE6
Z
0

2jx¡y j
 ¡1

�
�dB

u2d

�
p(du) 8x; y 2B�(a; r): (A.19)

Starting from Theorem A.26, one can derive several criteria for establishing regularity of sto-
chastic processes and vector fields, as well as Gaussian tails of the associated norms.

Corollary A.27. Let fXtgt2[0;T ] be a continuous, E-valued stochastic process such that

E

�
exp
�
�
kXs;tkE
jt¡ sj2�

2
��
6K 8s; t2 [0; T ]: (A.20)

Then there exists c> 0, depending only on �, such that

E

"
exp

 
c�

����������sups=/ t

kXs;tkE
��(t¡ s)

����������
2
!#
6KT 2 (A.21)

for the choice ��(t¡ s)= jt¡ sj� jlogjt¡ sjj
p

.

Proof. Up to rescaling, we may assume �= 1. We apply Theorem A.26 for the choice d= 1,
 = exp(x2), p= jt¡ sj�; for B as defined in (A.18), we deduce that

kXs;tkE6�
Z
0

2jt¡sj
log(�d)+ logB ¡ 2d log u

p
u�¡1du.� logB

p
!(t¡ s)

and so that

sup
s=/ t

kXs;tkE
��(t¡ s)

6 c~ logB
p

for some c~= c~�. Taking c= c~¡2 and using the hypothesis (A.20) in the definition of B, we obtain

E

"
exp

 
c

����������sups=/ t

kXs;tkE
��(t¡ s)

����������
2
!#
6E[B]6KT 2: �

Remark A.28. In the case of a Gaussian processX , Corollary A.27 provides a quantitative version
of Fernique's theorem [111]. If for any �>0 there existsK� such thatX satisfies assumption (A.20),
then we can infer the stronger conclusion that

E

"
exp

 
�

����������sups=/ t

kXs;tkE
��(t¡ s)

����������
2
!#

<1 8�> 0:

A similar consideration also applies to the upcoming Corollary A.30.

In the remainder of this Section, we are going to apply Theorem A.26 to deduce joint space-
time regularity of suitable vector fields; in particular we will estimate seminorms of the form
J�K�;�, J�K�;R, J�K�;�;� as defined in Section 1.1.1. Our approach is not the only possible, see [177],
Section 2.5 from [21] or Section 3.2 from [139] for some alternatives.
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Corollary A.29. Suppose we are given a continuous random vector field F :Rd!R such that

E

�
exp
�
�
jF (x)¡F (y)j2
jx¡ y j2�

��
_E[exp(�jF (x)j2)]6K x; y 2Rd: (A.22)

Then for any �>0 and ">0, P-a.s. it holds F 2Cx
�¡";�; moreover there exists constants c;C > 0

depending on d; �; "; � such that

E[exp(c�kF k�¡";�2 )]6CK: (A.23)

Proof. It is clear from assumption (A.22) and the definition of kF k�¡";� that we only need to
estimate the corresponding seminorm JF K�¡";�; as before, we can assume �=1.

As in the proof of Corollary A.27, an application of Theorem A.26 for the choice  (x)=exp(x2),
p(x)=x� on B�(0; R) with fixed R gives the existence of c~= c~(d; �; ") such that

E[c~JF K�¡";R2 ]6KR2d 8R> 1; (A.24)

we have only introduce the parameter "> 0 for simplicity, to get rid of logarithmic corrections.
Observe that by definition

JF K�¡";�= sup
R>1

R¡� JF K�¡";R� sup
n>1

2¡n�JF K�¡";2n: (A.25)

Define the random variable

J =
X
n

2¡n(2d+1)exp(�JF K�¡";2n2 );

by estimate (A.24), it holds E[J ].K. Moreover (A.25) and simple manipulations show that

JF K�¡";�� sup
n>1

2¡n�JF K�¡";2n. sup
n>1

2¡n� log J +n
p

.� 1+ log J
p

;

up to relabelling the hidden constants, we conclude that E[ exp(c JF K�¡";�2 )]6E[J ].K: �

Recall the incremental notation Fs;t(x) :=F (t; x)¡F (s; x) from Chapter 1.

Corollary A.30. Suppose we are given a continuous random field F (t; x): [0; T ]�Rd!Rd such
that F (0; �)� 0; assume there exist �;K > 0 such that

E

�
exp
�
�
jFs;t(x)¡Fs;t(y)j2
jt¡ sj2� jx¡ y j2�

��
_E

�
exp
�
�
jFs;t(x)j
jt¡ sj2�

2
��
6K 8s; t2 [0; T ]; x; y 2Rd: (A.26)

Then for any ">0 and �>0, P-a.s. it holds F 2Ct�¡"Cx
�¡";�; there exist constants c;C, depending

on d; "; �; �; � such that, for �� as defined in Corollary A.27, it holds

E

"
exp

 
c�

����������sups=/ t

kFs;tk�¡";�
��(t¡ s)

����������
2
!#
6CKT 2: (A.27)

Proof. For any s< t, applying Corollary A.29 for the choice F~(x)=Fs;t/ jt¡ sj�, we deduce the
existence of c; C > 0 such that

E

"
exp

 
c�
kFs;tk�¡";�2

jt¡ sj2�

!#
6CK;

up to relabelling the constants, the conclusion then follows by applying Corollary A.27 for the
choice E=C�¡";�. �

Remark A.31. Corollary A.30 admits several extensions; for instance, if instead of (A.26) we had
assumed more generally that, for any R> 1, it holds

E

�
exp
�
�
jFs;t(x)¡Fs;t(y)j2
jt¡ sj2� jx¡ y j2�R2�

��
_E

�
exp
�
�

jFs;t(x)j
jt¡ sj2�R2�

2
��
6K 8s; t2 [0; T ]; x; y 2B�R(0);
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then similar computations would show that for any "> 0 P-a.s. it holds F 2Ct�¡"Cx
�¡";�+" and

E

"
exp

 
c�

����������sups=/ t

kFs;tk�¡";�+"
��(t¡ s)

����������
2
!#
.KT 2:

A.6 Nonlinear Young lemmas

We collect in this appendix some basic tools concerning nonlinear Young integrals, as treated in
Chapter 1. For the sake of brevity, we do not include the (elementary) proofs, which can be found
in [141].

Let us shortly recall the setting: V is a separable Banach space, endowed with its Borel
�-algebra; the space C2

�;�V is defined as in Section 1.1.1 and endowed with the �-algebra induced by
the norm k�k�;�. Recall that by the Lemma 1.1, the map J :C2

�;�V !Ct
�V is linear and continuous.

Lemma A.32. (Lemma A.1 from [141]) Let V as above, (S;A; �) a measure space and consider
a measurable map ¡:S!C2

�;�V, � 7!¡(�), such thatZ
S

k¡(�)k�;��(d�)<1:

Then the map J �¡:S!Ct
�V is measurable and it holds

J
�Z

S

¡(�)�(d�)

�
=

Z
S

J (¡(�))�(d�): (A.28)

Lemma A.33. (Lemma A.2 from [141]) Let f¡ngn�C2
�;�V satisfying supn k�¡nk�6R and

limn k¡nk�! 0. Then J ¡n! 0 in Ct�V and for all n big enough it holds

JJ ¡nK�.T ;� (1+R) k¡nk�
(�¡1)/(�¡�)

: (A.29)

The next simple interpolation estimate concerns the effect of translations on CV
n+�.

Lemma A.34. (Lemma A.3 from [141]) Let f 2CV
n+�, z1; z22V. Then for any � 2 (0; 1) with

� <n+ � it holds

kf( � + z1)¡ f( � + z2)kn+�¡�. kz1¡ z2kV� kf kn+�:

Finally we recall a useful density result; here approximation in Ct
�¡CV ;W

�¡ stands for approxi-
mation in Ct

�¡"CV ;W
�¡" , for any "> 0.

Lemma A.35. (Lemma A.4 from [141]) Any A2Ct�CV ;W
� can be approximated in Ct

�¡CV ;W
�¡

by a sequence An such that @tAn exists and is continuous.
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