
Temporal Graph Algorithms

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Lutz Oettershagen

aus
Engelskirchen

Bonn, Februar, 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachterin: Prof. Dr. Petra Mutzel
Gutachter: Prof. Dr. Giuseppe F. Italiano

Tag der Promotion: 14.07.2022
Erscheinungsjahr: 2022

Abstract

Temporal graphs are often good models for real-life scenarios due to the in-
herently dynamic nature of most real-world activities and processes. A signifi-
cant difference between conventional static and temporal graphs is the induced
order of the edges in walks and paths. In a temporal walk, at each vertex,
the time stamp of the next edge of the walk cannot be earlier than the arrival
time at the vertex. We present temporal graph algorithms to analyze temporal
graphs that make use of temporal walks or paths. There is a need for algo-
rithms designed explicitly for temporal graphs because the interpretation as,
or aggregation into, a static graph model is often not an appropriate solution
for handling the temporal dynamics. The reason is that static interpretation
and aggregation often lead to a loss of causal information.
Hence, we introduce algorithms and tools specifically designed for analyzing

temporal networks such as, e.g., dynamic social network data, human contact
graphs, or communication networks. We introduce an efficient top-k algorithm
for temporal closeness and lift an approximation for the temporal closeness to
the temporal domain. The temporal closeness of a vertex is the sum of the
reciprocals of the durations of the fastest paths to all other vertices. Further-
more, we present the Temporal Walk Centrality that ranks vertices accord-
ing to their ability to pass information. We demonstrate that vertices with
high temporal walk centrality are key players in disseminating information
and present efficient and scalable algorithms for the computation of temporal
walk centrality. Next, we introduce an index to speed up single-source-all-
destination (SSAD) temporal distance queries. We call our index Substream
index and show that deciding if there exists a Substream index of a given size
is NP-complete. We provide an approximation and a greedy algorithm for com-
puting the index and show their efficiency and effectiveness. Furthermore, we
consider the classification of dissemination processes on temporal graphs, such
as the spread of rumors, fake news, or diseases. We introduce a framework to
lift standard graph kernels and graph-based neural networks to the temporal
domain. We explore three different approaches and investigate the trade-offs
between loss of temporal information and efficiency. Finally, we discuss the
complexity of temporal path enumeration and counting in weighted temporal
graphs. In a weighted temporal graph, each edge has an additional real cost
value. We introduce two bicriteria temporal min-cost path problems. We are
interested in the set of all efficient paths with low cost and short duration
or early arrival time, respectively. We show that the efficient paths can be
enumerated with polynomial delay.

iii

Acknowledgments

First of all, I want to thank my advisor Petra Mutzel for her scientific
supervision and for giving me the opportunity to work with her and her group
in excellent scientific environments at the TU Dortmund University and the
University of Bonn. Furthermore, I want to sincerely express my gratitude to
her for introducing me to the research field of temporal graphs, her professional
guidance in research and academia, and for giving me the freedom to pursue
my research. I also thank her for allowing me to travel to various conferences.
I thank my collaborators, Nils Kriege and Christopher Morris, for sharing

their knowledge and experiences. Special thanks to Christopher for the mo-
tivating and insightful discussions over the years and Nils for his scientific
guidance. I am grateful for the interesting discussions with my colleagues at
the TU Dortmund University and the University of Bonn. Special thanks
go out to Denis Kurz, with whom I shared the office in Dortmund. I also
thank my colleagues for their support during writing this thesis. I thank the
secretaries Gundel Jankord and Antje Bertram for their organizational help.
Furthermore, I thank my parents, Liane and Klaus, and my brothers, Lars

and Felix, for fully supporting my academic journey from the very beginning.
Finally, I thank my partner Shufang for her support and the many precious

discussions we had!

February 23,. 2022
Lutz Oettershagen

v

Contents

Abstract iii

Acknowledgements v

1. Introduction 1
1.1. Contributions and Organization 4
1.2. Corresponding Publications . 7

2. Preliminaries 9
2.1. Notation and General Definitions 9
2.2. Static Graphs . 9
2.3. Temporal Graphs . 10

2.3.1. Temporal Walks and Paths 11
2.3.2. Reachability . 12
2.3.3. Restricting Time Intervals 12
2.3.4. Static Representations 12
2.3.5. Optimality of Temporal Paths 12

2.4. Data Structures and Algorithms 14
2.4.1. Temporal Edge Streams 14
2.4.2. A Data Structure for Low Dynamics 14
2.4.3. Edge Incidence Lists . 15

2.5. Notation . 16

3. Centrality in Temporal Graphs 17
3.1. Motivation and Contribution 17
3.2. Related Work . 18
3.3. Temporal Closeness Centrality 20

3.3.1. Harmonic Temporal Closeness 21
3.3.2. Algorithms for Temporal Closeness 22
3.3.3. Computing In-Closeness 28
3.3.4. Approximation of the Temporal Closeness 29
3.3.5. Experiments . 30
3.3.6. Conclusion . 34

3.4. Temporal Walk Centrality . 36
3.4.1. Strict and Non-strict Temporal Walks 36
3.4.2. Temporal Walk Centrality 37
3.4.3. Computation of the Temporal Walk Centrality 40

vii

Contents

3.4.4. Experiments . 47
3.4.5. Conclusion . 52

4. Temporal Distance Indexing 53
4.1. Motivation and Contribution 53
4.2. Related Work . 56
4.3. Temporal Edge Streams . 56
4.4. Substream Index . 57

4.4.1. Hardness of Finding a Minimal Substream Index 59
4.4.2. A Greedy Approximation 60
4.4.3. Improving the Greedy Algorithm 62
4.4.4. Dynamic Updates . 66

4.5. Experimental Results . 67
4.5.1. Indexing Time and Index Size 68
4.5.2. Querying Time . 71
4.5.3. Effect of the Sketch Size 74
4.5.4. Dynamic Updates . 75

4.6. Case Study: Temporal Closeness 75
4.7. Conclusion . 77

5. Classification of Dissemination 79
5.1. Motivation and Contribution 79
5.2. Related Work . 81
5.3. Static Graph Classification . 82
5.4. Modeling Dissemination on Temporal Graphs 83
5.5. A Framework for Temporal Graph Classification 84

5.5.1. Reduced Graph Representation 84
5.5.2. Labeled Directed Line Graph Expansion 85
5.5.3. Static Expansion . 85

5.6. Approximation for the Directed Line Graph Expansion 86
5.7. Experiments . 89

5.7.1. Data Sets . 89
5.7.2. Graph Kernels and Graph Neural Networks 91
5.7.3. Experimental Protocol 92
5.7.4. Results and Discussion 92

5.8. Conclusion . 97

6. Bicriteria Temporal Paths 99
6.1. Motivation and Contribution 99
6.2. Related Work . 101
6.3. Temporal Path Enumeration and Counting 101
6.4. Structural Results . 103
6.5. Min-Cost Fastest Path Enumeration Problem 107
6.6. Min-Cost Earliest Arrival Path Enumeration Problem 113
6.7. Complexity of Counting Efficient Paths 116
6.8. Conclusion . 118

viii

Contents

7. Conclusion and Future Work 119
7.1. Conclusion . 119
7.2. Outlook and Future Work . 120

A. Data Sets 121
A.1. List of Data Sets . 121

B. Additional Results 123

C. Curriculum Vitae 127

Bibliography 129

ix

Chapter 1
Introduction

In data analytics, graphs are commonly used to represent linked data. A
graph consists of a set of vertices and a set of edges. The vertices can represent
various entities, e.g., persons or computers. The edges define relations or
links between these entities, e.g., friendships between persons or network
connections between computers. The data often originates from dynamic
systems that change over time: Links are formed or broken, such that the
topology of the graph changes over time. Temporal Graphs can capture these
changes. Here, a temporal graph is a graph that changes over time, i.e., each
edge has a time stamp that determines when the edge exists in the graph.
Hence, the topology of the graph changes in discrete time. Temporal graphs
are often good models for real-life scenarios due to the inherently dynamic
nature of most real-world activities and processes. In many situations, events,
e.g., communication in social networks, are time-stamped, such that temporal
graphs naturally arise from the recorded data.
In general, a temporal graph cannot be interpreted as a conventional, la-

beled, static graph. The reason is that the temporal interpretation of the
edge labels, i.e., the edge labels determine the times when edges exist, usually
makes a difference that can not be ignored and often has far-reaching im-
plications. Consider the following example of a simple email communication
network representing the exchange of information between Alice, Bob, and
Carol. Figure 1.1a shows that Bob writes an email to Carol on Monday, and
the following day Alice writes to Bob. Figure 1.1b shows the corresponding
static graph that ignores the temporal information. The example in Fig-
ure 1.1a shows that the temporal information induces the order in which the
communication between Alice, Bob, and Carol happened. Notice that a flow
of information from Alice to Carol is impossible due to the chronological order
of the communications. In Figure 1.1b, this causal information is missing—the
representation is incomplete and might lead to incorrect conclusions. Recent
research in temporal graphs takes the temporal information into account. On
the other hand, the success of applying static graphs for modeling networks at-
tests that aggregation into a static graph model can be an appropriate solution
for handling the temporal changes depending on the time scale and the rate
of changes. However, like in the previous example, static graphs obtained by

1

Chapter 1. Introduction

Alice

Bob

Carol

Tuesday Monday

(a)

Alice

Bob

Carol

(b)

Figure 1.1.

aggregation can lead to a loss of causal information. Hence, research in tem-
poral graphs increasingly gains attention. In the following, we give prominent
modeling and application examples from a set of diverse yet partly overlapping
areas.

• Communication networks are a prime example of the application of tempo-
ral graphs. Email (or text message) networks model the (almost) instan-
taneous communication between the participants, and have been used to
identify different dynamics of communication as well as properties of the
participants [26, 47, 78]. Vertices of the network represent the participants
and temporal edges represent each communication. In the case of telephone
(or in general non-instantaneous) communication, the temporal edges may
additionally model the duration of each communication.

• Proximity and contact networks record the contacts between individuals by
measuring their proximity. For example, modern smartphones are ubiqui-
tous and can be used to record the proximity of users to identify contacts
or build opportunistic networks [8, 28]. Several works discuss the spreading
of diseases in contact networks, e.g., [33, 138].

• Social networks, formal or informal, are a fundamental part of human life.
Nowadays, the usage of online social networks is part of the life of billions
of users. Prominent examples for online social networks are Facebook and
WeChat. In online and offline social networks, participants or users join
and leave the network over time and form or end relations with other
participants. Recent works discuss various aspects of temporal properties
of social networks, e.g., [70, 127].

• Transportation networks consist of spatial locations connected with means of
transportation. For example, consider a temporal graph where the vertices
represent airports, and temporal edges schedule connections between the
airports [147]. Similarly, public transport can naturally be modeled using
temporal graphs [55, 80].

• Biological networks of different kinds. On a molecular level, there are works
on modeling protein-protein interactions using temporal networks [104, 152].

2

2

1
2

44

33

4
5

6

4

1

3

2

3
a

b c

d e

f

g

h

i

j

k

(a) Temporal graph G: Each edge has a
discrete time stamp

a

b c

d e

f

g

h

i

j

k

(b) The aggregated static graph obtained
by replacing temporal edges with
static ones.

1

1

a

b

c
d

ef

g

h
i

j
k

2 2

2a

b

c
d

ef

g

h
i

j
k

3
3

3

a

b

c
d

ef

g

h
i

j
k

4

4

4
4

a

b

c
d

ef

g

h
i

j
k

1 2 3 4Time

...

3

(c) The representation of G as a sequence of static graphs, in which at time t only
the edges with time stamp t are available. Only the first four static graphs are
shown, i.e., for t ≤ 4.

Figure 1.2.

In neuroscience, temporal graphs are used to obtain information about
neural brain networks, e.g., see [172].

Due to the versatility of temporal graphs, they have been introduced in
multiple research disciplines independently and in parallel. An early overview
of various dynamic graph models is given by Harary and Gupta [72]. More
recent and comprehensive introductions to temporal graphs are provided in,
e.g., [77, 103, 161, 184]. The various groups working on these concepts did not
often exchange terminology. Hence, temporal graphs are known under several
names, e.g., time-varying graphs [27], stream graphs [103], link streams [103],
dynamic graphs [156], or evolving graphs [2]. Sometimes, instead of the term
graph, the term network is used. Here, we use graph and network interchange-
ably. Furthermore, similar to the term temporal graphs, many concepts are
named differently in different works. We give alternative names when intro-
ducing these concepts.
Besides different naming conventions, there are different definitions for tem-

poral graphs. Some works consider temporal graphs with infinite edge sets or
time domain or temporal graphs in which the edges exist in continuous time
intervals [27]. Closely related to the temporal graph model is the term dy-
namic graph and corresponding algorithms, where sequential graph updates,
i.e., edge insertions or deletions, are allowed, and the goal is to keep some

3

Chapter 1. Introduction

data structure or graph property up to date. However, here, the temporal
order of edges, e.g., in walks, is usually not relevant and does not need to be
considered.
In this work, we restrict our discussions to finite and discrete time. Fur-

thermore, vertex and edge sets are finite. A finite temporal graph consists of
a finite set of (static) vertices and a finite set of temporal edges. A temporal
edge connects two vertices at a specific availability time, and edge traversal
costs a non-negative amount of time (called the transition time). The avail-
ability time denotes the time when an edge is available for transition, and the
transition time defines how long the transition takes. For example, consider
a public bus transportation network where each temporal edge represents one
connection. Now consider a temporal edge between two bus stops a and b, rep-
resenting a single connection. In this example, the availability time denotes
when the bus leaves a, and the transition time is the travel time of the bus
driving from stop a to b.
Some concepts of static graphs naturally translate to temporal graphs, e.g.,

we can consider directed and undirected temporal graphs. Figure 1.2a shows a
further example of an undirected temporal graph. At each bidirectional edge,
the availability time is shown. Ignoring the temporal information gives the
aggregated static graph shown in Figure 1.2b. The temporal graph can also
be interpreted as a sequence of static graphs over time. At each time point t,
the corresponding static graph only has the edges with availability time t (see
Figure 1.2c).

1.1. Contributions and Organization

In Chapter 2, we present the preliminaries commonly used in the following
chapters. Additionally, we provide further definitions in the chapters in which
they are used. In the following, we give an overview of the content and the
contributions of the remaining parts and chapters.

Chapter 3 In this chapter, we discuss centrality measures, specifically de-
signed for temporal networks and corresponding efficient algorithms for their
computation. The first part of Chapter 3 concerns temporal closeness cen-
trality. The classical closeness centrality of a vertex in a static graph is the
reciprocal of the sum of the distances to all other vertices [13]. Various tem-
poral variants have been discussed, e.g., in [115, 147, 171]. We consider the
harmonic temporal closeness with respect to the shortest duration distance
in temporal networks. We introduce an efficient algorithm for computing the
exact top-k temporal closeness values and the corresponding vertices. As far
as we know, it is the first top-k algorithm for this problem. The algorithm can
be generalized to the task of computing all closeness values. If edge traversal
takes an equal amount of time for all edges, we lift an approximation algo-
rithm for closeness to the temporal domain. The algorithm approximates the
temporal closeness for all vertices with high probability. We experimentally

4

1.1. Contributions and Organization

evaluate our new approaches on real-world data sets and show that they lead
to drastically reduced running times. Moreover, we demonstrate that the top-
k temporal and static closeness vertex sets differ quite largely in real-world
networks, which is an important insight that confirms the need for dedicated
temporal centrality measures.
In the second part of Chapter 3, we propose the new Temporal Walk Cen-

trality, which quantifies the importance of a vertex by measuring its ability
to obtain and distribute information in a temporal network. Ranking nodes
of social or communication networks according to their importance in the
dissemination of information is an important and common task, see, e.g.,
[14, 157, 170]. In contrast to the widely-used betweenness centrality, e.g.,
in [25], we assume that information does not necessarily spread on shortest
paths but on temporal random walks that satisfy the time constraints of the
network. We show that temporal walk centrality can identify vertices playing
central roles in dissemination processes that might not be detected by related
betweenness concepts and other common static and temporal centrality mea-
sures. We propose exact and approximation algorithms with different running
times depending on the properties of the temporal network and parameters of
our new centrality measure. A technical contribution is a general approach to
lift existing algebraic methods for counting walks in static networks to tem-
poral networks. Our experiments on real-world temporal networks show the
efficiency and accuracy of our algorithms. Finally, we demonstrate that the
rankings by temporal walk centrality often differ significantly from those of
other state-of-the-art temporal centralities.

Chapter 4 Typical tasks in analyzing temporal graphs are single-source-
all-destination (SSAD) temporal distance queries, which are, e.g., common
during the computation of centrality measures in temporal social networks.
An SSAD query starting at a vertex v asks for the temporal distances, e.g.,
durations, earliest arrival times, or the number of hops between v and all other
reachable vertices. We introduce a new index to speed up SSAD temporal
distance queries. As far as we know, this is the first index for answering SSAD
queries in temporal networks. Previous indexes for paths or distance queries
in temporal graphs are designed for single-source-single-destination queries,
e.g., [30, 189, 199]. Our indexing is based on the construction of k subgraphs
and a mapping from the vertices to the subgraphs. Each subgraph contains
the temporal edges sufficient to answer the queries starting from any vertex
mapped to the subgraph. We answer a query starting at a vertex v with a
single pass over the edges of the subgraph. The new index supports dynamic
updates, i.e., efficient insertion and deletion of temporal edges. We call our
index Substream index and show that deciding if there exists a Substream
index of a given size is NP-complete. We provide a greedy approximation that
constructs an index at most k/δ times larger than an optimal index where
δ, with 1 ≤ δ ≤ k, depends on the temporal and spatial structure of the
graph. The running time is in O(kmn). Next, we improve the running time

5

Chapter 1. Introduction

of the approximation in three ways. First, we use a secondary index called
Time Skip index. It speeds up the construction and queries by skipping edges
that do not need to be considered. Next, we apply min-hashing to avoid
costly union operations. Finally, we use parallelization to take the parallel
processing capabilities of modern processors into account. The running time
of the parallel algorithm is in O(knmP) on a parallel machine with P processors,
where m ≥ P and k ≥ P . Our extensive evaluation using real-world temporal
networks shows the efficiency and effectiveness of our indices. Compared to
state-of-the-art temporal distance algorithms, the computed indices improve
query times up to an order of magnitude.

Chapter 5 We consider dissemination processes on the temporal graphs.
Such dissemination processes can be the spreading of (fake) news, infectious
diseases, or computer viruses. We introduce the classification problem that
asks to discriminate dissemination of different origins or parameters, like in-
fection probability. The current state-of-the-art methods for supervised graph
classification are mainly designed for static graphs and may not capture tem-
poral information, see e.g., [100, 191, 200]. Hence, they have very limited
abilities to distinguish between graphs modeling different dissemination pro-
cesses. Therefore, we introduce a framework to lift standard graph kernels
and graph-based neural networks to the temporal domain to address this lim-
itation. We explore three different approaches and investigate the trade-offs
between loss of temporal information and efficiency. Moreover, to handle
large-scale graphs, we propose stochastic variants of our kernels with provable
approximation guarantees. We evaluate our methods, both kernel and neural
architectures, on various real-world social networks to validate our theoretical
findings. Our methods beat static approaches by a large margin in accuracy
while still being scalable to large graphs and data sets. Moreover, we show that
our framework reaches high classification accuracy in scenarios where most of
the dissemination process information is incomplete.

Chapter 6 We discuss the complexity of temporal path enumeration and
counting in weighted temporal graphs. In a weighted temporal graph, each
edge has an availability time, a traversal time, and some real cost. We
introduce two bicriteria temporal min-cost path problems in which we are
interested in the set of all efficient paths with low cost and short duration or
early arrival time, respectively. However, the number of efficient paths can be
exponential in the input size. For the case of strictly positive edge costs, we
provide algorithms that enumerate the set of efficient paths with polynomial-
time delay and polynomial space. As far as we know, our algorithms are the
first for enumerating weighted temporal paths. If we are only interested in the
set of Pareto-optimal solutions and not in the paths themselves, then these
can be determined in polynomial time if all edge costs are nonnegative. As
far as we know, these are the first algorithms for these problems. In addition,
for each Pareto-optimal solution, we can find an efficient path in polynomial

6

1.2. Corresponding Publications

time. On the negative side, we prove that counting the number of efficient
paths is #P-complete, even in the non-weighted single criterion case.

Finally, in Chapter 7, we give a conclusion and discuss the future work.

1.2. Corresponding Publications
Parts of this thesis have been published in the following publications. The
author of this thesis is the first author of all listed publications. We list the
publications in order of the relevant chapters.

Chapter 3:

• Lutz Oettershagen and Petra Mutzel. Efficient top-k temporal closeness
calculation in temporal networks. In IEEE International Conference on
Data Mining (ICDM), pages 402–411. IEEE, 2020

• Lutz Oettershagen and Petra Mutzel. Computing top-k temporal close-
ness in temporal networks. Knowledge and Information Systems, pages
1–29, 2022

• Lutz Oettershagen, Petra Mutzel, and Nils M Kriege. Temporal walk
centrality: Ranking nodes in evolving networks. In WWW ’22: The Web
Conference 2022. ACM, 2022

Chapter 4:

• Lutz Oettershagen and Petra Mutzel. An index for single source all des-
tinations distance queries in temporal graphs. CoRR, abs/2111.10095,
2021

Chapter 5:

• Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra
Mutzel. Classifying dissemination processes in temporal graphs. Big
Data, 8(5):363–378, 2020

• Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra
Mutzel. Temporal graph kernels for classifying dissemination processes.
In SIAM International Conference on Data Mining (SDM), pages
496–504. SIAM, 2020

Chapter 6:

• Petra Mutzel and Lutz Oettershagen. On the enumeration of bicriteria
temporal paths. In Theory and Applications of Models of Computation
(TAMC), volume 11436 of Lecture Notes in Computer Science, pages
518–535. Springer, 2019

7

Chapter 2
Preliminaries

This chapter introduces our notation and terminology commonly used
throughout this thesis. Additional definitions relevant for individual chapters
are introduced where needed.

2.1. Notation and General Definitions
We denote the set of natural numbers with N = {0, 1, 2, . . .} including zero.
We use [`] with ` ∈ N to denote the set {1, . . . , `}. We refer to the set of real
numbers with R and to the non-negative real numbers with R≥0. We denote
other sets with capital letters. For a set A, the cardinality |A| is its number
of elements.

2.2. Static Graphs
Definition 2.1. An undirected (static) graph G = (V,E) consists of a finite
set of vertices V and a finite set E ⊆ {{u, v} ⊆ V | u 6= v} of undirected edges.

A vertex v ∈ V is incident to e ∈ E if v ∈ e. Two vertices u, v ∈ V are
adjacent if {u, v} ∈ E. The degree δ(v) of a vertex v ∈ V is the number of
edges incident to v. We use V (G) to denote the set of vertices of G, and E(G)
to denote the set of edges of G.

Definition 2.2. A directed (static) graph G = (V,E) consists of a finite set
of vertices V and a finite set E ⊆ {(u, v) ∈ V × V | u 6= v} of directed edges.

A vertex v ∈ V is incident to e ∈ E if e = (v, u) or e = (u, v) for some
u ∈ V . In the first case, e = (v, u) is an outgoing edge of v; in the second
case, e = (u, v), e is in incoming edge at v. For a directed edge uv, we call
u tail of e, and v head of e. Two vertices u, v ∈ V are adjacent if (u, v) ∈ E
or (v, u) ∈ E. The out-degree d+(v) of a vertex v in a directed graph is the
number of outgoing edges of v. Analogously, the in-degree d−(v) of a vertex
v in a directed graph is the number of incoming edges of v. The degree of
v is d(v) = d+(v) + d−(v). Directed graphs can be seen as a generalization
of undirected graphs—we can model an undirected graph G = (V,E) with a

9

Chapter 2. Preliminaries

directed graph D = (V,E′) by using for each undirected edge {u, v} ∈ E two
directed edges (u, v) ∈ E′ and (v, u) ∈ E′.

Labeled Graphs A labeled (directed) graph G = (V,E, l) consists of a finite
set of vertices V , a finite set of (directed) edges E, and a labeling function
l : V ∪ E → Σ that assigns a label to each vertex or edge, where Σ is a finite
alphabet.

Walks and Paths A walk (v1, e1, v2, . . . , ek, vk+1) in a (directed) graph
G = (V,E) is an alternating sequence of vertices vi ∈ V for 1 ≤ i ≤ k + 1
and (directed) edges ei ∈ E for 1 ≤ i ≤ k connecting consecutive vertices.
For notational convenience, we sometimes omit edges. The length of a walk
(v1, e1, v2, . . . , ek, vk+1) is k, i.e., the number of edges. A path is a walk that
visits each vertex v ∈ V at most once. A cycle is a walk where the first vertex
equals the last vertex and all other vertices v ∈ V are visited at most once. A
directed, acyclic graph is called DAG.

2.3. Temporal Graphs

Definition 2.3. A temporal graph G = (V, E) consists of a finite set of
vertices V and a finite set of temporal edges E. An undirected temporal edge
e = ({u, v}, t, λ) consists of the vertex set {u, v} ⊆ V with u 6= v, availability
time (or time stamp) t ∈ N and transition time λ ∈ N. In a directed temporal
graph the temporal edges are directed, i.e., e = (u, v, t, λ) ∈ V × V × N2.

For the ease of readability, we write e = (u, v, t, λ) for both undirected
and directed edges if the context is clear. We use n = |V | and m = |E|
to denote the numbers of vertices and temporal edges, respectively. The
arrival time of an edge e = (u, v, t, λ) (at vertex v) is t + λ. We denote
the lifetime of a temporal graph G = (V, E) with L(G) = [tmin, tmax] where
tmin = min{t | e = (u, v, t, λ) ∈ E} and tmax = max{t+λ | e = (u, v, t, λ) ∈ E}.
And, we denote the number of incoming (outgoing) temporal edges of a vertex
v ∈ V by δ−(v) (δ+(v)). We call δ−(v) (δ+(v)) also the in-degree (out-degree)
of v. We use V (G) to denote the set of vertices of G. For u ∈ V let τ+(G, u) =
|{t | (u, v, t, λ) ∈ E}| and τ−(G, u) = |{t + λ | (v, u, t, λ) ∈ E}|. Furthermore,
let τ+

max(G) = max{τ+(G, u) | u ∈ V }, and τ−max(G) = max{τ−(G, u) | u ∈ V },
i.e., the largest numbers of different availability or arrival times at any v ∈ V .
If the context is clear, we omit G and just write τ+(u), τ−(u), τ+

max, and τ−max.
It is possible to model an undirected temporal graph by a directed temporal
graph using a forward- and a backward-directed edge with equal time stamps
and traversal times for each undirected edge. Furthermore, notice that for
a temporal graph, the number of edges is not polynomially bounded by the
number of vertices.
We denote with G = (V, E , λ) a temporal graph in which all edges have

equal transition time λ. In this case, we may omit λ from edges and write

10

2.3. Temporal Graphs

(u, v, t) ∈ E . With T (G), we denote the set of all availability and arrival times
of edges in G, i.e., T (G) = {t, t+ λ | (u, v, t, λ) ∈ E}.

For v ∈ V let T (v) = {t | (v, w, t, λ) ∈ E}, i.e., the set of availability times
of edges incident to v. For convenience, we may regard the sets of times as a
sequence that is ordered by the canonical ordering of the natural numbers.
Furthermore, temporal graphs can be labeled or weighted. We give corre-

sponding definitions in the chapters where we use labeled or weighted temporal
graphs.

2.3.1. Temporal Walks and Paths

We introduce the notions of temporal walks and paths, which are the ba-
sis for the ideas and algorithms in the following chapters. Finding temporal
paths, deciding reachability, and determining temporal distances are essen-
tial tasks in various applications and scenarios, e.g., in the computation of
temporal centrality measures [18, 140], solving time-dependent transportation
problems [62, 81, 153], or in the simulation and analysis of epidemics [50, 105].
Several previous works discuss temporal paths. Early work on temporal paths
is from Cooke and Halsey [36]. Kempe et al. [88] discuss time-respecting paths
and related connectivity problems. Bui-Xuan et al. [24] introduce algorithms
for finding the shortest, fastest, and earliest arrival paths, which are can be
seen as variations of Dijkstra’s shortest paths algorithm [42]. Their algorithms
do not support different transition times between pairs of vertices. In [79],
variants of temporal graph traversals are defined. Wu et al. [188] introduce
streaming algorithms for finding the fastest, shortest, latest departure, and
earliest arrival paths.

Definition 2.4. A temporal walk in a temporal graph G is an alternat-
ing sequence (v1, e1, . . . , ek, vk+1) of vertices and temporal edges connecting
consecutive vertices where for 1 ≤ i < k, ei = (vi, vi+1, ti, λi) ∈ E, and
ei+1 = (vi+1, vi+2, ti+i, λi+1) ∈ E the time ti + λi ≤ ti+1 holds.

For notational convenience, we may omit vertices. We call a temporal walk
that contains edges with λ = 0 non-strict temporal walk, else strict walk. The
length of a temporal walk ω is the number of edges it contains, and we denote
it with |ω|. The length of a strict temporal walk is upper bounded by |E|,
whereas for non-strictness, there can be arbitrary long walks.

Definition 2.5. A temporal path P is a temporal walk in which each vertex
is visited at most once.

We call a walk (path) starting at u and arriving at v a (u, v)-walk
((u, v)-path). Temporal walks (paths) are also called time-respecting walks
(paths) [88, 78]. Furthermore, temporal paths are sometimes called jour-
neys [24]. Finally, for a path P = (e1, . . . , ei, . . . , ek) and i ∈ [k], we call
(e1, . . . , ei) prefix path and (ei, . . . , ek) suffix path of P .

11

Chapter 2. Preliminaries

2.3.2. Reachability

We say vertex v is reachable from vertex u if there exists a temporal (u, v)-
walk. Temporal graphs are, in general, not connected and have non-symmetric,
non-transitive, limited reachability between vertices with respect to temporal
walks. Let R(u) be the set of temporally reachable vertices from u, i.e., the
set of vertices that can be reached from u using a temporal path in G. We
define r(u) = |R(u)|.

2.3.3. Restricting Time Intervals

Given a temporal graph G = (V, E), it is common to restrict questions, queries,
and algorithms on G to a given time interval I = [a, b], such that only the
temporal subgraph G′ = (V, E ′) with E ′ = {(u, v, t, λ) ∈ E | t ≥ a and t+ λ ≤
b} needs to be considered. Notice that we can compute G′ = (V, E ′) in
O(|E|) in a preprocessing step before further computations. However, often we
can straightforwardly adapt our algorithms to respect the restricting interval
without preprocessing.

2.3.4. Static Representations

Occasionally it can be helpful to represent a temporal graph by a static, i.e.,
non-temporal, graph. Various static representations of temporal graphs offer
different trade-offs between the size of the resulting static graph and the loss
of temporal information.
A very common and basic static representation is the aggregated graph.

Given a temporal graph G, removing all time stamps and traversal times, and
merging resulting multi-edges, we obtain the aggregated, or underlying static,
graph A(G) = (V,Es) with Es = {(u, v) | (u, v, t, λ) ∈ E} (or Es = {{u, v} |
({u, v}, t, λ) ∈ E} if G is undirected). The aggregated graph can be much
smaller than the temporal graph as its number of edges is in O(n2). However,
it does not preserve any temporal information.
An example of a static representation leading to a potentially very large

static graph is to expand the graph over time, i.e., to use copies of all vertices
for each possible time stamp and edges that proceed forward in time, resulting
in a directed acyclic graph [122]. This representation preserves the temporal
information. For example, the authors of [123] use it to examine a temporal
traveling salesperson problem.
We will define and use other static representations in Chapters 3 and 5.

2.3.5. Optimality of Temporal Paths

First, we distinguish the following properties of temporal walks (and paths).

Definition 2.6. Let ω = (e1, . . . , e`) be a temporal walk in a temporal graph
G. The starting time of ω is s(ω) = t1, the arrival time is a(ω) = t` +λ`, and
the duration is d(ω) = a(ω)− s(ω).

12

2.3. Temporal Graphs

a b

cd

(2, 1)

(5, 2)

(1, 5) (7,
2)

(6, 1)

(6, 2)

(8, 4)

Figure 2.1.: Example of a temporal graph G. At each edge the availability and
transition time is given as pair (t, λ).

For example, in Figure 2.1, there are three paths between vertices a and
d. The first one consists of only the edge P1 = ((a, d, 1, 5)) and with d(P1) =
a(P1) − s(P1) = 6 − 1 = 5. The second paths is P2 = ((a, b, 2, 1), (b, d, 7, 2))
with d(P2) = a(P2) − s(P2) = 9 − 2 = 7. And lastly, path three P3 =
((a, b, 5, 2), (b, d, 7, 2)) with d(P3) = a(P3)− s(P3) = 9− 5 = 4.
We consider the following optimality criteria.

Definition 2.7. Let G be a temporal graph and P be the set of all temporal
paths in G. A (s, z)-path1 P ∈ P is

• an earliest arrival path if there is no other (s, z)-path P ′ ∈ P with
a(P ′) < a(P),

• a latest departure path if there is no other (s, z)-path P ′ ∈ P with
s(P ′) > s(P),

• a minimum duration, or fastest, path if there is no other (s, z)-path
P ′ ∈ P with d(P ′) < d(P), and

• a shortest path if there is no other (s, z)-path P ′ ∈ P with l(P ′) < l(P).

For the example in Figure 2.1, P3 is the only fastest (a, d)-path. Notice that
the subpath P ′3 = ((a, b, 5, 2)) is not a fastest (a, b)-path. The only fastest
(a, b)-path consists of edge (a, b, 2, 1) and has a duration of one. In general,
for each of the optimality criteria stated in Definition 2.7, it holds that a
subpath of an optimal path is not necessarily optimal itself. However, for
earliest arrival paths, the following lemma holds.

Lemma 2.1 (Bui-Xuan et al. [24]). Let G = (V, E) be a temporal graph and
u, v ∈ V . If u can reach v then there exists an earliest arrival path P between
u and v, such that all prefix paths of P are earliest arrival paths.

1We use z instead of t as the target vertex because in this thesis we use t to denote a time
stamp.

13

Chapter 2. Preliminaries

2.4. Data Structures and Algorithms

We now discuss common data structures for temporal graphs and correspond-
ing temporal path algorithms.

2.4.1. Temporal Edge Streams

The temporal graph is given as a sequence of its m edges, chronologically
ordered by the availability time of the edges in increasing order, with ties
being broken arbitrarily. This representation is often natural when events
represented by the edges are sequentially recorded over time.
Algorithms for temporal edge streams usually pass over the edges in se-

quential order. The state-of-the-art streaming algorithms for finding optimal
paths and temporal distances are introduced in [188]. They use a single pass
over the edge stream. Algorithm 2.1 shows the earliest arrival time algo-

Algorithm 2.1 Earliest arrival time algorithm [188].

Input: Temporal graph G = (V, E), start vertex u ∈ V , interval I = [α, β].
Output: Earliest arrival times arrival[v] for all v ∈ V .

1: Initialize arrival[v] =∞ for v ∈ V , arrival[u] = α
2: for e = (v, w, t, λ) ∈ E do . in chronological order of availability time
3: if t+ λ < arrival[w] then
4: arrival[w]← t+ λ
5: else if t > β then
6: goto line 7
7: return arrival[v] for all v ∈ V

rithm that computes for a given vertex u all earliest arrival times at the other
vertices. The running time is bounded by O(m + n). The latest departure
paths can be computed in a similar way to Algorithm 2.1 using a reverse pass
over the edges [188]. Wu et al. [188] also introduced algorithms for comput-
ing the single-source-all-destination shortest and fastest (minimum duration)
paths. For a temporal graph G = (V, E), let δ− be the maximal in-degree in
G, and π = min{δ−, τ+(u)}. The running time of the streaming algorithm
for computing fastest paths is in O(n + m log π), and for the shortest path
in O(n + m log δ−). In graphs with equal transition time for all edges, the
running times are O(n+m) for the fastest and the shortest path algorithms.

2.4.2. A Data Structure for Low Dynamics

Bui-Xuan et al. [24] introduce a data structure and algorithms for temporal
graphs with low dynamics. In such graphs, we can use an interval determining
the edge availability instead of a single availability time for each edge. The
graph data structure described in [24] has a linked list of its neighbors for
each vertex u ∈ V . Each vertex v in this neighbor list of u has a sorted array

14

2.4. Data Structures and Algorithms

of time intervals determining when u and v are connected. Additionally, for
each neighbor v of u, the transition time λ(u, v) is stored. Hence, the data
structure does not support individual transition times for each edge.
Moreover, Bui-Xuan et al. propose algorithms for the earliest arrival time,

shortest, and fastest paths. Algorithm 2.2 shows the earliest arrival time
algorithm. In line 10, the function f : V × V × N → N returns the earliest
time t when an edge between two vertices is available. The value of f can

Algorithm 2.2 Earliest arrival time algorithm [24].

Input: Temporal graph G = (V, E) in Bui-Xuan representation, start vertex
u ∈ V .
Output: Earliest arrival times arrival[v] for all v ∈ V .

1: Initialize arrival[v] =∞ for all v ∈ V , arrival[u] = 0
2: Initialize finished[v] = false for all v ∈ V
3: Initialize priority queue Q
4: Insert u into Q with arrival time 0
5: while Q not empty do
6: x← Q.extractMin
7: finished[x] = true
8: for v in neighbor list of x do
9: if not finished[v] then

10: t← f(x, v, arrival[x])
11: if arrival[v] > t+ λ(x, v) then
12: arrival[v]← t+ λ(x, v)
13: insert or update v in Q
14: return arrival

be found with a binary search in the time interval array in O(logψ) time,
where ψ is the number of time intervals between the two vertices. The total
running time of Algorithm 2.2 is in O(|Es| · (logn+ logψ)), where |Es| is the
number of edges in the underlying static graph. Bui-Xuan et al. furthermore
propose a shortest path algorithm with running time O(|Es| ·D) where D is
the diameter of the underlying graph of G. Their fastest paths algorithm is
only for temporal graphs G = (V, E , 0), i.e., all edges have transition time zero.

2.4.3. Edge Incidence Lists

Instead of neighbor lists like in Bui-Xuan et al. [24], we can also use more
conventional edge-based incidence lists. Hence, each vertex has a list of
temporal edges to its neighbors. The list of temporal edges does not need
to be sorted by the time stamps of the edges. Based on this data structure,
we introduce in Section 3.3.2 a new label setting algorithm for finding fastest
paths that we use for a top-k temporal closeness algorithm.
Note that due to Lemma 2.1, we can use a variation of Dijkstra’s algo-

rithm [42] for finding the earliest arrival times. This approach sometimes

15

Chapter 2. Preliminaries

performs better than Algorithm 2.1 because Dijkstra’s algorithm stops com-
putation after it has explored all paths to reachable vertices and the priority
queue is empty, whereas Algorithm 2.1 always has to continue processing until
all edges in the restricting time interval are processed. The running time of
Dijkstra’s algorithm for finding the earliest arrival times is in O(m+ n logn)
using Fibonacci heaps [53].

2.5. Notation
Table 2.1 shows the commonly used symbols and notations.

Table 2.1.: Commonly used symbols and notations

Symbol Definition

N Natural numbers
R, R≥0 Real numbers, non-negative real numbers

[`] {1, . . . , `}

V Set of vertices
E Set of static edges

G = (V,E) Static (directed) graph

E Set of temporal edges
e = (u, v, t, λ) Temporal (u, v)-edge at time t with transition time λ

λ Transition time
G = (V, E) Temporal graph G with vertices V and temporal edges E
G = (V, E , λ) Temporal graph G with vertices V and temporal edges E with equal λ

n, m Number of vertices, temporal edges
n+ Number of non-sink vertices
T (v) Set of availability times of edges incident to vertex v
T (G) Set of availability and arrival times in G
L(G) Lifetime of G

τ−(v), τ+(v) Number of distinct arrival, availability times at v ∈ V
τ−max, τ

+
max Max. number of distinct arrival, availability times over all v ∈ V

δ−(v), δ+(v) In-degree and out-degree of vertex v
δ−max, δ+

max Maximal in-degree and out-degree
τ , I Time intervals
R(u) Set of from u reachable vertices
r(u) Cardinality of R(u)

16

Chapter 3
Centrality in Temporal Graphs

Measuring the centrality of vertices in a network is a cornerstone of network
analysis. The goal is to determine the importance of vertices in the network
and find the most central ones.

3.1. Motivation and Contribution

Many concepts of centrality have been proposed (see, e.g., [39, 133, 162] for
overviews), and their informative value must be assessed based on a research
question. Two central questions are the following:

1. Which vertices can reach the other vertices well?

2. What is the ranking of the vertices by their ability to obtain and pass
on information or diseases?

The first question can be answered for static graphs using, e.g., the closeness
centrality, which is a staple centrality measure in network analysis [13]. It
is defined as the inverse of the sum of the smallest distances to the other
vertices of the network. The second question is often answered by applying
variants of the betweenness centrality. The most widely-used definition due
to Freeman [54] measures the betweenness of a vertex as the fraction of
shortest paths between pairs of vertices that pass through it. Since information
or diseases do not necessarily spread along shortest paths, a betweenness
centrality based on random walks has been proposed [132].
In this chapter, we discuss these questions from a temporal perspective.

Because most centrality measures are primarily designed for static networks,
they cannot directly and meaningfully be applied to temporal networks. The
reason is that we need to respect the causality implied by the forward flow
of time for analyzing temporal networks. Hence, we use centrality measures
explicitly designed for temporal networks:

1. We consider the harmonic temporal closeness of a vertex. We define it
here as the sum of the reciprocals of the durations of the fastest paths to
all other vertices. Temporal closeness is an important centrality measure

17

Chapter 3. Centrality in Temporal Graphs

for temporal networks, and various variants of temporal closeness have
been discussed, e.g., in [115, 147, 171, 161]. However, the computation
with respect to the minimum duration distance is expensive and can be
prohibitive for large temporal networks. Here, we introduce an efficient
algorithm for computing the exact top-k temporal closeness values and
the corresponding vertices. It is the first top-k algorithm for this cen-
trality measure, as far as we know. The algorithm can be generalized to
the task of computing all closeness values. Our algorithms are based on
a new label setting fastest paths algorithm, which allows us to stop the
computation for vertices with low temporal closeness early.
For the case that edge traversal takes an equal amount of time for
all edges, we introduce the temporal transpose of a temporal graph,
which we use to compute the in-closeness using our top-k algorithm.
Furthermore, we give an approximation for the temporal closeness for all
vertices, respectively, with high probability. We experimentally evaluate
all our new approaches on real-world data sets and show that they lead to
drastically reduced running times compared to the baseline. Moreover,
we demonstrate that the top-k temporal and static closeness vertex sets
differ quite largely in real-world networks.

2. We propose the new temporal walk centrality, which quantifies the im-
portance of a vertex by measuring its ability to obtain and distribute
information in a temporal network. In contrast to the widely-used be-
tweenness centrality, we assume that information does not necessarily
spread on shortest paths but on temporal random walks that satisfy the
time constraints of the network. We show that temporal walk centrality
is able to identify vertices that can pass information well. We propose
exact and approximation algorithms with different running times de-
pending on the properties of the temporal network and the parameters
of our new centrality measure. A technical contribution is a general
approach to lift existing algebraic methods for counting walks in static
networks to temporal networks. Our experiments on real-world temporal
networks show the efficiency and accuracy of our algorithms. Finally, we
demonstrate that the rankings by temporal walk centrality often differ
significantly from those of other state-of-the-art temporal centralities.

3.2. Related Work

Comprehensive overviews and introductions of centrality approaches are pro-
vided, e.g., in [39, 102, 155, 162]. The problem of ranking vertices and selecting
the k most influential vertices has been widely studied see, e.g., [15, 194, 198].
Bergamini et al. [15] introduced algorithms for computing the top-k closeness
in unweighted static graphs. They start a breadth-first search (BFS) from
each vertex in order to find the shortest distance to all other vertices. In each
BFS run, they calculate an upper bound for the closeness of the current ver-

18

3.2. Related Work

tex. Their algorithm stops the computation early if the current vertex cannot
have a top-k closeness value. We adopt this strategy for temporal closeness in
Section 3.3.2. Our algorithm differs by computing the fastest temporal paths,
allowing variable transition times, and using corresponding upper bounds. A
simple adaption of the static closeness algorithm from [15] would be impossi-
ble because it does not take the temporal features, like temporal edges with
transition times or waiting times at vertices, into account. In [16], Bisenius
et al. extend the same framework to dynamic graphs in which edges can be
added and removed. It allows efficient updates of the static closeness after edge
insertions or deletions. However, their algorithm works for static closeness us-
ing unweighted static shortest paths without considering edge availability or
transition times.
Eppstein and Wang [51] proposed a randomized approximation algorithm

for closeness in weighted undirected graphs. It approximates the closeness of
all vertices with a small additive error with high probability. Their algorithm
also is not directly applicable to the temporal case. We apply the temporal
transpose introduced in Section 3.3.3 such that the algorithm can be used to
approximate temporal closeness. Based on [51], Okamoto et al. [144] intro-
duced an algorithm for approximating the top-k closeness. First, they use
an approximation to find a candidate set of vertices. Next, they rank the
top-k vertices with high probability. Cohen et al. [34] combined the sam-
pling approach and a pivoting technique for approximating the closeness of all
vertices. Wu et al. [188] introduce streaming algorithms operating on the tem-
poral edge stream in which the edges arrive with non-decreasing time stamps
(see also Section 2.4.1). We use their state-of-the-art streaming algorithms for
the fastest paths to compute temporal closeness as a baseline in our experi-
ments. Nicosia et al. [135] and Kim and Anderson [92] examine a wide range
of properties of temporal graphs, including various temporal centrality mea-
sures. In [169] and [171], the authors compare temporal distance metrics and
temporal centrality measures to their static counterparts. They reveal that
the temporal versions for analyzing temporal graphs have advantages over
static approaches on the aggregated graphs. Variants of temporal closeness
have been introduced in [147, 115, 161]. In [147], the authors use the mean
duration between vertices as distance, and the authors of [115] only consider
paths starting at a specific time t. Based on the latter, Crescenzi et al. [38] in-
troduce a temporal closeness variant based on the durations of earliest arrival
paths by integrating over all starting times in a given time interval.
In a recent work, Buß et al. [25] evaluate the theoretical complexity and

practical hardness of computing several variants of temporal betweenness
centrality. They discuss temporal betweenness for different temporal distance
measures of path lengths and show that the running time of the computation
of temporal betweenness using temporal shortest paths is in O(n3 · T 2) with
n being the number of vertices and T the total number of time steps in the
temporal graph. In [176], the authors extend Brandes’ algorithm [19] for
distributed computation of betweenness centrality in temporal graphs. They

19

Chapter 3. Centrality in Temporal Graphs

introduce shortest-fastest paths as a combination of the conventional distance
and shortest duration. The Katz centrality introduced in [87] measures vertex
importance in terms of the number of random walks starting (or arriving) at
a vertex, down-weighted by their length. The authors of [14, 66] adapt the
walk-based Katz centrality to temporal graphs. Rozenshtein and Gionis [157]
incorporate the temporal character in the definition of the PageRank and
consider a walk-based perspective. Hence, they obtain a temporal PageRank
by replacing walks with temporal walks. Related to the considered vertex
importance is the concept of influence in social networks, which has been
studied extensively, see, e.g., [89, 190] and references therein. Here, one is
interested in a subset of the vertices that, when activated (e.g., convinced to
adopt a product), have the strongest effect on the network according to some
diffusion model. Finding such a set is typically NP-hard but can often be
approximated with guarantees [89]. Recently, dynamic graph algorithms and
approaches for temporal networks have been proposed [190].

3.3. Temporal Closeness Centrality
In this section, we define the harmonic temporal closeness as the sum of the
reciprocals of the durations of the fastest paths leaving a vertex. Harmonic
closeness for non-connected static graphs was introduced in [116]. The rea-
son for using the harmonic variant for temporal closeness and in-closeness is
that reachability between vertices, even in an undirected temporal graph, is
restricted. It has been shown that in networks modeling dissemination pro-
cesses, like the spread of viruses or fake news, a vertex with a high temporal
closeness can be expected to be of high importance for the transportation or
dissemination process [169, 171]. In general, high temporal closeness vertices
in temporal networks can differ from high static closeness and high degree
vertices. For example, in the temporal graph shown in Figure 1.2a, traversing
an edge takes one time unit for all edges. Figure 1.2b shows the aggregated
static graph, in which static edges replace the temporal edges. In this static
graph, the most central vertex in terms of static closeness is a. It also has
the most outgoing edges. However, in the temporal graph, the vertex with
the highest temporal closeness is vertex e. Notice that in the temporal graph,
vertex a can only reach its direct neighbors, while vertex e can reach all other
vertices. Computing the exact temporal closeness values of all vertices can be
costly because it demands finding a fastest temporal path between each pair
of vertices. However, often knowing the top-k important vertices is sufficient.
Hence, our contributions are:

1. We propose a new algorithm for computing the top-k harmonic temporal
closeness values and the corresponding vertex sets in a temporal network.
It is the first top-k algorithm for this centrality measure, as far as we
know. This algorithm can be simplified for the task of computing the
closeness values of all vertices. The algorithms are based on a new
minimum duration path algorithm on temporal graphs.

20

3.3. Temporal Closeness Centrality

2. For temporal graphs with equal transition times, we introduce the tem-
poral transpose, which is a generalization of reversing the edges in a
directed static graph. Using the temporal transpose, we adapt a stochas-
tic sampling algorithm for approximating the temporal closeness of all
vertices.

3. We comprehensively evaluate our algorithms using real-world temporal
networks. As a baseline, we use the temporal closeness algorithm based
on the edge stream fastest path algorithm introduced by Wu et al. [188].
Our approaches decrease the running times for all data sets significantly.

3.3.1. Harmonic Temporal Closeness

We consider directed temporal graphs with strictly positive transition times.
For a temporal graph G = (V, E), let Puv be the set of all temporal paths
between u, v ∈ V in G. We define the shortest duration between u and v
as d(u, v) = minP∈Puv(d(P)). If v is not reachable from vertex u, we set
d(u, v) = ∞, and we define 1

∞ = 0. Due to the restricted reachability in
temporal graphs, we use the harmonic variant of temporal closeness. Marchiori
and Latora [116] introduced harmonic closeness in static graphs.

Definition 3.1 (Harmonic Temporal Closeness). Let G = (V, E) be a temporal
graph. We define the harmonic temporal closeness for u ∈ V as c(u) =∑
v∈V \{u}

1
d(u,v) . We call cn(u) = c(u)

|V | the normalized harmonic temporal
closeness.

Now we define the top-k temporal closeness problem.

Definition 3.2. For a temporal graph G = (V, E) and k ∈ N, the Top-k
Harmonic Temporal Closeness Problem asks for the k largest values of the
harmonic temporal closeness and the set of all vertices in V with these values.

Notice that the temporal closeness can be defined using either the outgoing
or incoming fastest paths, i.e., using d(u, v) or d(v, u). In the first case,
the temporal closeness describes how well the vertex u is connected to other
vertices in terms of duration. In the second case, it describes how well the other
vertices can reach the vertex u in terms of duration. Therefore, analogous
to the harmonic temporal closeness, we define the harmonic temporal in-
closeness.

Definition 3.3 (Harmonic Temporal in-Closeness). Let G = (V, E) be a tem-
poral graph. We define the harmonic temporal in-closeness for u ∈ V as
~c(u) =

∑
v∈V \{u}

1
d(v,u) .

In Section 3.3.3, we introduce the temporal transpose of a temporal graph. It
can be used with our temporal closeness algorithms to calculate the harmonic
temporal in-closeness in case that all edges have equal transition times. In the
following, we drop the word harmonic and just say temporal closeness.

21

Chapter 3. Centrality in Temporal Graphs

3.3.2. Algorithms for Temporal Closeness

First, we present a new fastest path algorithm, which we then use for the
top-k temporal closeness computation. The new algorithm is tailored to be
part of our top-k algorithm and operates on the incidence list representation
of the temporal graph, i.e., for each vertex, all outgoing edges are in a list (see
Section 2.4.3).

A Label Setting Fastest Path Algorithm

Recall that, in general, a sub-path of a fastest path is not necessarily a fastest
path. We deal with this problem by using a label setting algorithm that finds
the fastest paths from a start vertex u to all other vertices. The algorithm
uses labels, where each label l = (v, s, a) represents a (u, v)-path that starts at
time s at vertex u and arrives at time a at vertex v. For each vertex v ∈ V , the
algorithm keeps all such labels in a list Π[v] and uses a dominance check when
a new label is created to remove labels that cannot lead to optimal paths. We
use the dominance relation, which is also used in [188].

Definition 3.4 (Dominance). We say label (v, s′, a′) dominates label (v, s, a)
if s < s′ and a ≥ a′, or s = s′ and a > a′.

A non-dominated label does not necessarily represent a fastest path. How-
ever, it might represent a prefix-path of a fastest path. On the other hand, a
dominated label cannot represent a fastest path or a prefix-path of a fastest
path. Therefore, all dominated labels can be deleted. Using a dominance
check, Algorithm 3.1 only keeps labels that may lead to a fastest path. In
the case of two equal labels, we only need to keep one. Besides the label lists
Π[v], we use a priority queue Q containing all labels which still need to be
processed. In each iteration of the while loop, we get the label (v, s, a) with
the smallest duration a − s from the priority queue (line 5). At this point,
if the algorithm discovers v for the first time, the shortest duration d(u, v) is
found.

Lemma 3.1. Let (l1 = (w1, s1, a1), . . . , lp = (wp, sp, ap)) be the sequence of
labels returned by the extractMin call of the priority queue. Then the durations
are non-decreasing, i.e., ai − si ≤ aj − sj for 1 ≤ i < j ≤ p.

Proof. The duration is strictly increasing in the length of a path because we
have strictly positive transition times, i.e., using an edge takes at least one
time step. We use induction over the iterations i of the while loop (line 4).
The first initial label has duration a−s = 0. Now assume the hypothesis holds
after the i-th iteration. In the (i + 1)-th iteration, first, the label li+1 with
the currently shortest duration is returned from the priority queue. Next, the
inner for loop (line 9) iterates over all outgoing edges at w, and a new label
might be added to the priority queue for each possible extension of the (u,w)-
path. The duration of all newly inserted labels is larger than the one of li+1,
and therefore also larger than the duration of any label that was already in

22

3.3. Temporal Closeness Centrality

Algorithm 3.1

Input: G = (V, E) and u ∈ V .
Output: Min. duration of all (u, v)-paths for all v ∈ V in G.

1: Initialize PQ Q and insert l0 = (u, 0, 0)
2: Initialize d[v] =∞ for all v ∈ V , d[u] = 0, F = ∅
3: Initialize empty lists Π[v] for all v ∈ V
4: while Q not empty and |F | < |V | do
5: l = (v, s, a)← Q.extractMin
6: if v 6∈ F then
7: d[v] = a− s
8: F = F ∪ v
9: for each outgoing edge e = (v, w, t, λ) from v do

10: if l.a ≤ e.t then
11: if l = l0 then l′ = (w, t, t+ λ)
12: else l′ = (w, l.s, t+ λ)
13: remove dominated labels from Π[w] and Q
14: if l′ is not dominated then
15: Q.insert(l′) and Π[w].add(l′)
16: return d

the queue when li+1 was returned. However, labels newly inserted during one
iteration of the while loop may have an equal duration.

Lemma 3.2. If during the iterations of the while loop a vertex v is inserted
in F (lines 6 ff.), the duration d[v] = a− s is equal to the duration of a fastest
(vj , v)-path.

Proof. Vertex v is added to F when label l = (v, s, a) is returned from the
priority queue and if v 6∈ F . After a vertex has been added to F , it remains
in F . Therefore, l is the first label that is processed for vertex v. Due to
Lemma 3.1, it follows that the durations of the processed labels are non-
decreasing. Consequently, a− s is the shortest duration of a fastest path from
u to v.

The following theorem states the correctness and asymptotic running time
of Algorithm 3.1.

Theorem 3.1. Let G = (V, E) be a temporal graph, u ∈ V . And,
let δ+

max be the maximal out-degree in G, π = min{τ−max, τ+(u)} and
ξ = max{πδ+

max, log(|E|)}. Algorithm 3.1 returns the durations of the fastest
(u, v)-paths for all v ∈ V in G in running time O(|V |+ |E| · τ+(u) · ξ).

Proof. Let w ∈ R(u) be a temporally reachable vertex. There has to be at
least one, or the temporal closeness of u is 0. Because w is reachable, we know
that there exists a fastest temporal (u,w)-path P = (v1 = u, e1, . . . , e`−1, v` =
w). By induction over the length `, we show that for each prefix-path, a

23

Chapter 3. Centrality in Temporal Graphs

corresponding label is generated. For h = 0, we have the initial label at vertex
u. We assume the hypothesis holds for all prefix-paths of length ≤ h. Now, for
the case h + 1, we have the prefix-path Ph = (v1 = u, e1, . . . , eh, vh+1) which
consists of (v1 = u, e1, . . . , vh) and edge eh arriving at vertex vh+1. By applying
the induction hypothesis, a label (vh, s′, a′) for Ph was created and added to Q.
The only way the label could get deleted without being processed is by being
dominated by a label (vh, s′′, a′′). Without loss of generality, we can assume
that not both s′ = s′′ and a′ ≥ a′′ hold (in this case we consider the path
represented by (vh, s′′, a′′)). Assume that s′ < s′′ and a′ ≥ a′′ then P would
not be a fastest temporal path. Therefore, the label does not get deleted from
Q due to dominance checks. However, eventually it gets processed in some
iteration and d[w] is updated to the shortest duration. With Lemma 3.2 it
follows that a fastest temporal path has been found. At most for each edge and
availability time at u, a label may be generated and inserted into the priority
queue. Hence, the total number of labels is upper bounded by |E| · τ+(u), and
Q will eventually be empty and the algorithm terminates.
For the running time, we have the following considerations. Initialization is

done inO(|V |). The while loop (line 4) is called for every label (v, s, a), and the
inner for loop (line 9) is called for each outgoing edge at vertex v in G. During
the inner for loop, a new label is created and compared to all labels at vertex
w for the dominance check. Due to the dominance check, for each possible
arrival time, we may only keep the label with the latest starting time and no
equal labels. And, for two labels with equal starting times, we only keep the
one with the earlier arrival time. Therefore, the number of labels at a vertex
w is less or equal to the maximum of the number of different arrival times at
any v ∈ V and different starting times at u, i.e., the size of Π[w] is at most π.
The domination checks for all outgoing edges (line 9 ff.) can be done in πδ+

max.
The total number of labels generated is less or equal to |E| · τ+(u). However,
at any time there are at most |E| labels in the priority queue, because we only
keep the label with the latest starting time per edge. Therefore, the cost for
extracting a label from the priority queue is amortized O(log(|E|)) using a
Fibonacci heap, and inserting is possible in constant time [53]. Together, it
follows that the running time is in O(|V |+ |E| · τ+(u) · ξ).

Notice that Algorithm 3.1 can easily be adapted to only find paths that
start and end in a given restricting time interval I by checking the start and
arrival time of each processed edge.

Computing Top-k Temporal Closeness

Based on the fastest path algorithm presented in Section 3.3.2, we now in-
troduce the top-k temporal closeness algorithm. Given a temporal graph G,
Algorithm 3.2 computes the exact top-k temporal closeness values and the
corresponding vertices in G. If vertices share a top-k temporal closeness value,
the algorithm finds all of these vertices. We adapt the pruning framework in-
troduced by Bergamini et al. [15] for the temporal closeness case. In contrast

24

3.3. Temporal Closeness Centrality

to their work, we compute the fastest paths in temporal graphs instead of BFS
in static graphs and introduce upper bounds that take temporal aspects like
transition and waiting times into account. We iteratively run Algorithm 3.1
for each u ∈ V . During the computations, we determine upper bounds of
the closeness and stop the closeness computation of u if we are sure that the
closeness of u cannot be in the set of the top-k values. For calculating the
upper bounds, we use two pairwise disjunctive subsets of the vertices that get
updated every iteration, i.e., Fi(u) ∪ Ti(u) ⊆ V , with

1. Fi(u) contains u and all vertices for which we already computed the
exact temporal distance from u, and

2. Ti(u) contains all vertices w for which there is an edge e = (v, w, t, λ) ∈ E
with v ∈ Fi(u) and w 6∈ Fi(u).

Together with the set R(u) of reachable vertices, which does not change during
the algorithm, we obtain the upper bound c̄i(u) of the temporal closeness of
vertex u in iteration i as

c̄i(u) =
∑

v∈Fi(u)

1
d(u, v) +

∑
v∈Ti(u)

1
lower bound for d(u, v)

+ |R(u)| − |Fi(u)| − |Ti(u)|
common lower bound d for all v ∈ R(u) \ (Fi(u) ∪ Ti(u))

≤
∑

v∈Fi(u)

1
d(u, v) +

∑
v∈Ti(u)

1
lower bound for d(u, v)

+ |V | − |Fi(u)| − |Ti(u)|
common lower bound d for all v ∈ V \ (Fi(u) ∪ Ti(u)) .

In the following, we introduce upper bounds for the temporal closeness, such
that we can use Algorithm 3.1 to compute the duration c(u) exactly or stop
the computation if the vertex cannot achieve a top-k temporal closeness value.
Algorithm 3.2 has as input a temporal graph G. The algorithm orders the ver-
tices in order of decreasing number of outgoing edges and starts the computa-
tion of the closeness for each vertex vj in the determined order. The intuition
behind processing the vertices by decreasing out-degree is that a vertex with
many outgoing edges can reach many other vertices fast. The processing order
of the vertices is crucial in order to stop the computations for as many ver-
tices as soon as possible. After ordering the vertices, for each vj , the shortest
durations from vj to the reachable vertices are computed using the adapted
version of Algorithm 3.1. In each iteration of the while loop (line 10), the
algorithm extracts the label (v, s, a) with the smallest duration a− s from the
priority queue, and if v is still in Ti−1(vj) then it found the shortest duration
d(vj , v). Let (l1 = (w1, s1, a1), . . . , lp = (wp, sp, ap)) be the sequence of labels
returned by the extractMin call of the priority queue. Then the durations are
non-decreasing, i.e., ai − si ≤ ah − sh for 1 ≤ i < h ≤ p. And, in iteration i,
when reaching line 26, the label li+1 that is returned from the priority queue
in iteration i + 1 is determined. It holds that di+1 = ai+1 − si+1 is the next

25

Chapter 3. Centrality in Temporal Graphs

Algorithm 3.2

Input: A temporal graph G = (V, E).
Output: Top-k temporal closeness values and vertices.

1: Determine λmin and ∆
2: Let v1, . . . , vn ∈ V in order of decreasing out-degree
3: for j = 1 . . . n do
4: Initialize label l0 = (vj , 0, 0) at vertex vj
5: Initialize PQ Q and insert l0
6: Initialize d[v] =∞ for all v ∈ V
7: Initialize F0(vj) = ∅, T0(vj) = {vj}
8: Initialize empty lists Π[v] for all v ∈ V
9: d[vj] = 0, i = 1

10: while Q not empty and |Fi−1(vj)| < |V | do
11: l = (v, s, a)← Q.extractMin
12: if v ∈ Ti−1(vj) and v 6∈ Fi−1(vj) then
13: d[v] = a− s
14: Ti(vj) = Ti−1(vj) \ {v}
15: else Ti(vj) = Ti−1(vj)
16: Fi(vj) = Fi−1(vj) ∪ {v}
17: for each e = (v, w, t, λ) ∈ E do
18: if l.a ≤ e.t then
19: if l.s = l0 then l′ = (w, t, t+ λ)
20: else l′ = (w, l.s, t+ λ)
21: remove dominated labels from Π[w] and Q
22: if l′ is not dominated then
23: Q.insert(l′) and Π[w].add(l′)
24: if w 6∈ Fi(vj) then
25: Ti(vj) = Ti(vj) ∪ {w}
26: update c̄(vj) according to Equation (3.1)
27: if c̄(vj) < smallest value in top k values then
28: stop computation for vertex vj
29: update top-k results with vj and c(vj) = c̄(vj)
30: return top-k values and corresponding vertices

26

3.3. Temporal Closeness Centrality

possible duration to any reachable vertex that is not yet in Fi(vj). Now, let
∆ be the minimal temporal waiting time at a vertex w over all vertices, i.e.,
∆ = minw∈V {tb − (ta + λa) | (x,w, ta, λa), (w, y, tb, λb) ∈ E and ta + λa ≤ tb}.
Furthermore, let λmin the smallest transition time in E .

Lemma 3.3. In Algorithm 3.2, during the inner while loop in line 26, for
each vertex w ∈ Ti(vj), the duration d(vj , w) is lower bounded by di+1. And,
for each vertex z ∈ V \ (Fi(vj) ∪ Ti(vj)), it is d(vj , r) ≥ di+1 +∆+ λmin.

Proof. Let w ∈ Ti(vj). Then its duration is not found yet. The next label
li+1 provides the next possible duration any reachable vertex can have with
di+1 = ai+1 − si+1. Moreover, for any vertex z that is not in Fi(vj) ∪ Ti(vj),
we have to account for at least the additional waiting time at a vertex in
y ∈ Ti(vj) plus the transition time from y to z.

Altogether, we have the following upper bound.

Theorem 3.2. In Algorithm 3.2, the temporal closeness c(u) in iteration i of
the while loop is less or equal to

c̄i(u) =
∑

v∈Fi(u)

1
d(u, v) + |Ti(u)|

di+1
+ |V | − |Fi(u)| − |Ti(u)|

di+1 +∆+ λmin
. (3.1)

Finally, we discuss the running time of the algorithm.

Theorem 3.3. Let δ+
max be the maximal out-degree in G, π = min{τ−max, τ+

max},
and furthermore ξ = max{πδ+

max, log(|E|)}. The running time of Algorithm 3.2
is in O(|V |2 + |V ||E| · τ+

max · ξ).

Proof. Ordering the vertices by decreasing out-degree takes O(|V | log |V |)
time. Computing λmin takes O(|E|) time. We can compute ∆ by checking
for each edge (u, v, t, λ) ∈ E the time stamps of the outgoing edges at v in
O(|E|δ+

max). Initialization is done in O(|E|). The outer for loop (line 4) is
called for each vertex, and the inner loop is an adaption of Algorithm 1. The
updating of the upper bound can be done in constant time. Therefore, we
have |V | times the running time of Algorithm 1. Keeping track of the top-k
results is possible in O(|V | log k).

We can adapt this algorithm to compute the closeness for all vertices. In this
case, we do not need to keep track of the partitioning of the vertex set or the
upper bound c̄(vi). Furthermore, if we want to compute the temporal closeness
only considering paths that start or arrive in a restricting time interval I, we
remove all edges that are not leaving or arriving during the time interval I in
a preprocessing step and then call Algorithm 3.2.

27

Chapter 3. Centrality in Temporal Graphs

s

u

v

w z

1

6

4

7 6

8
s

u

v

w z

8

3

5

2 3

1

Figure 3.1.: Example for a temporal graph G and its temporal transpose T (G).
All edges of G and T (G) have unit transition times and tmax = 9
due to edge (w, z, 8, 1).

Comparison to the baseline algorithm

For a temporal graph G = (V, E) and a time interval I, the baseline algorithm
first removes all edges that are not in I. Next, it runs the fastest path edge
streaming algorithm from Wu et al. [188] for each u ∈ V to determine the
closeness c(u). Their fastest path algorithm uses a single pass over the edges,
which need to be sorted by non-decreasing time stamps (see Section 2.4.1).
One crucial difference is that their algorithm may update the minimal duration
of a vertex after it was visited the first time. This is necessary if, e.g., the
last edge of the edge stream is the fastest (u, v)-path consisting of a single
edge. However, for our top-k algorithms, the fastest duration between two
vertices u and v must be determined when v is discovered for the first time.
For a temporal graph G = (V, E) spanning time interval I, let δ−max be the
maximal in-degree in G, and let π = min{δ−max, τ+(u)}. The running time of
the edge stream algorithm for computing fastest path is in O(|V | + |E| log π)
and in graphs with equal transition time for all edges in O(|V | + |E|). For
π′ = min{δ−max, τ+

max}, starting their algorithm from each vertex leads to
temporal closeness algorithms with running times of O(|V |2 + |V ||E| log π′), or
O(|V |2 + |V ||E|), respectively. Notice that this is faster than the worst-case
running time of our algorithm. However, the streaming algorithm always has
to scan all edges. Even for a vertex v with no outgoing edge, the edge stream
algorithm has to traverse over all edges because, in each iteration, it only
knows the edges up to the point in time of the current edge and can not rule
out possible future edges incident to v. Our algorithm, however, stops in this
case after one iteration. Therefore, our algorithm performs well on real-world
data sets.

3.3.3. Computing In-Closeness

For computing the in-closeness, we first introduce the concept of the temporal
transpose of a temporal graph.

Definition 3.5. For a temporal graph G = (V, E), we call T (G) = (V, Ẽ) with
edge set Ẽ = {(v, u, tmax − t, λ) | (u, v, t, λ) ∈ E} and tmax = max{t + λ |
(u, v, t, λ) ∈ E} the temporal transpose of G.

Figure 3.1 shows an example for a temporal graph G and its temporal
transpose T (G).

28

3.3. Temporal Closeness Centrality

Lemma 3.4. Let G = (V, E , λ) be a temporal graph in which all edges have
the equal transition time λ, T (G) its temporal transpose, and u, v ∈ V . For
each (u, v)-path Puv with duration d(Puv) = dP in G there exists a (v, u)-path
Pvu with duration d(Pvu) = dP in T (G) and vice versa.

Proof. We use t(e) to denote the availability time of edge e ∈ E . First
notice that every (non-temporal) (u, v)-path P in G corresponds to a (non-
temporal) (v, u)-path in T (G) that visits the vertices in reverse order of P .
Therefore, having a temporal path in G (or T (G)) there exists a sequence of
vertices and edges in T (G) (or G, respectively) for which we have to show
that the time stamps at the edges allow for a temporal path. Let P =
(v1, e1, v2, . . . , e`, v`+1) be a temporal path in G. Now, consider the sequence
Q = (v`+1, e

′
`, v`−1, . . . , e

′
1, v1) in T (G), with e′i = (vi+1, vi, tmax − t, λ) for

each ei = (vi, vi+1, t, λ) and i ∈ {1, . . . , `}. From t(ei) + λ ≤ t(ei+1) follows
tmax − t(ei) ≥ tmax − t(ei+1) + λ. Therefore, the sequence Q is a temporal
path in T (G). The other direction is symmetric. Furthermore, we have

d(P) = a(P)− s(P)
= λ+ t(e`)− t(e1)
= λ+ t(e`)− t(e1) + tmax − tmax
= λ+ (tmax − t(e1))− (tmax − t(e`))
= λ+ t(e′1)− t(e′`)
= a(Q)− s(Q) = d(Q).

Lemma 3.4 shows that the set of vertices R(u) reachable by u in the trans-
posed graph T (G) is equal to the set of vertices in G that can reach u. This
fact yields the following result.

Theorem 3.4. Let G be a temporal graph in which all edges have equal
transition times, and T (G) its temporal transpose. The temporal closeness
c(u) of a vertex u ∈ V in T (G) is equal to the temporal in-closeness ~c(u) in G.

3.3.4. Approximation of the Temporal Closeness

We lift the randomized algorithm for undirected, static graphs from Wang et
al. [51] to the temporal domain. Algorithm 3.3 computes an approximation
of the normalized temporal closeness for each vertex in a directed temporal
graph with equal transition times. Given a temporal graph G and sampling
size h ∈ N, the algorithm first computes the temporal transpose T (G), and
then samples h vertices v1, . . . , vh. For each vertex vi it determines the shortest
durations to all vertices w ∈ V \ {vi} in T (G). Due to Lemma 3.4, we can
estimate the closeness of a vertex u in G by averaging the distances d(v, u)
found in T (G).

29

Chapter 3. Centrality in Temporal Graphs

Algorithm 3.3

Input: Temporal graph G = (V, E) and h ∈ N.
Output: Estimates ĉn(u) for u ∈ V .

1: Calculate T (G)
2: Sample v1, . . . , vh from V
3: for i = 1 . . . h do
4: Compute d(vi, w) for all w ∈ V in T (G)
5: for u ∈ V do
6: Let ĉn(u) = 1

h

∑h
i=1

1
d(vi,u)

Theorem 3.5. Let G = (V, E) be a temporal graph and h ∈ N. Algorithm 3.3
approximates the normalized temporal closeness ĉn(u) for each vertex u ∈ V ,
such that for h = log |V | · ε−2 the probability P

(
|ĉn(u) − cn(u)| ≥ ε

)
≤ 2
|V |2 .

The running time is in O(h · (|V |+ |E|)).

Proof. Due to Lemma 3.4, we know that there is a one-to-one mapping between
the temporal paths in G and I(G) in which corresponding paths have the
same duration. Next, we use Hoeffdings inequality [75]. Let x1, . . . , xh be
independent random variables that are bounded by 0 ≤ xi ≤ 1 for i ∈
{1, . . . h}. Furthermore, let S =

∑h
i=1 xi and µ = E

[
S/h

]
the expected mean.

Then the following inequality holds:

P
(
|S/h− µ| ≥ ε

)
≤ 2e−2hε2 .

Now, for xi = 1
d(vi,u) and µ = E

[∑h
i=1

1
d(vi,u) ·

1
h

]
we have

P

(∣∣∣1/h · h∑
i=1

1
d(vi, u) − µ

∣∣∣ ≥ ε) ≤ 2e−2hε2 .

Then with h = log |V | · ε−2 it follows

P
(
|ĉn(u)− cn(u)| ≥ ε

)
≤ 2e−2(log |V |·ε−2)ε2 = 2

|V |2
.

3.3.5. Experiments

We address the following questions:

Q1. Running time efficiency: How do the running times of the algorithms
for the top-k temporal closeness, the temporal closeness for all vertices,
and the baseline compare to each other?

Q2. Approximation quality: How well does the sampling algorithm in
terms of running time and approximation quality perform?

30

3.3. Temporal Closeness Centrality

Table 3.1.: Statistics and properties of the real world networks, with |Es| being
the number of edges in the aggregated graph.

Data set
Property

|V | |E| δ+
max δ−max τ+

max τ−max |T (G)| |Es|

Infectious 10 972 415 912 457 544 310 307 76 943 52 761
Arxiv 28 093 4 596 803 9 301 3 962 321 284 2 337 3 148 447
Facebook 63 731 817 035 998 219 412 86 333 924 817 035
Prosper 89 269 3 394 978 9 436 1 071 412 8 1 259 3 330 224
WikipediaSG 208 142 810 702 1 574 4 939 153 223 223 810 702
WikiTalkNl 225 749 1 554 698 113 867 36 413 75 045 36 410 1 389 632 565 476
Digg 279 630 1 731 653 995 12 038 982 11 506 6 864 1 731 653
FlickrSG 323 181 1 577 469 3 153 2 128 20 20 20 1 577 469

Q3. Comparison of temporal closeness to other centralities: How
does temporal closeness compare to static closeness, degree centrality,
and reachability? How do the temporal closeness and the temporal in-
closeness compare to each other?

Data Sets

We used the following real-world temporal graph data sets:

• Infectious: A face-to-face contact network of visitors of a conference [82].

• Arxiv: An authors collaboration network [109].

• Facebook: This graph is a subset of the activity of a Facebook commu-
nity [180].

• Prosper : A network based on a personal loan website [154].

• WikipediaSG: The network is based on the Wikipedia network [126].

• WikiTalkNl: Vertices represent users and edges edits of a user’s talk page
by another user [108, 168].

• Digg and FlickrSG: Digg and Flickr are social networks [76, 124].

For WikipediaSG and FlickrSG, we chose a random time interval in the
size of ten percent of the total time span. For the other data sets, the time
interval spans over all edges. Table 3.1 gives an overview of the statistics of
the networks. The transition times are equal for all edges in all data sets.
Appendix A provides further details of the data sets.

Experimental Protocol and Algorithms

We conducted all experiments on a workstation with an AMD EPYC 7402P
24-Core Processor with 3.35GHz and 256GB of RAM running Ubuntu 18.04.3
LTS. We use the following algorithms:

• TC-Top-k is our top-k temporal closeness algorithm.

31

Chapter 3. Centrality in Temporal Graphs

Table 3.2.: Running times in seconds for the exact temporal closeness algo-
rithms.

Data set
Algorithm

Tc-Top-1 Tc-Top-10 Tc-Top-100 Tc-Top-1000 Tc-Top-All EdgeStr
Infectious 0.97 1.02 1.06 1.17 1.29 8.63
Arxiv 31.00 53.09 191.37 698.17 1 222.00 694.77
Facebook 10.80 11.39 15.32 40.38 146.76 238.70
Prosper 48.40 53.10 64.84 73.40 233.54 1 272.89
WikipediaSG 77.20 76.86 78.92 94.19 285.11 1 037.42
WikiTalkNl 228.02 357.27 680.99 1 559.69 2 507.11 1 962.87
Digg 181.77 198.97 273.43 1 276.78 7 223.53 3 879.99
FlickrSG 218.04 219.90 253.15 649.66 9 072.10 5 698.11

• TC-All is our temporal closeness algorithm for computing the exact
values for all vertices.

• TC-Approx is our temporal closeness approximation.
• EdgeStr is the temporal closeness algorithm based on the edge stream

algorithm for equal transition times [188].

The source code for EdgeStr was provided by the authors of [188]. All
algorithms are implemented in C++. We used GNU CC Compiler 9.3.0 with
the flag –O3 for all algorithms.

Results and Discussion

Q1. Running time efficiency: Table 3.2 shows the running times of the
exact temporal closeness algorithms. We set k ∈ {1, 10, 100, 1000} for the top-
k algorithms. For all data sets, the top-k algorithms need significantly less
running time than EdgeStr and TC-All. Figure 3.2 shows the speed-ups
of the top-k algorithm compared to EdgeStr. Our Tc-Top-k shows speed-
ups of more than 25 times faster than the baseline. With increasing k, the
running time also increases because the upper bounds calculated during the
run of Tc-Top-k converge slower at the lower end of the top-k values. Our
exact algorithm TC-All is faster than EdgeStr for the Infectious, Facebook,
Prosper and WikipediaSG data sets. For the Arxiv, Digg, WikiTalk, and
the FlickrSG data sets, EdgeStr is faster than TC-All. The reason is a
higher number of labels per vertex that are generated during the iterations of
Algorithm 3.2, leading to worse performance of TC-All.
Q2. Approximation quality: We ran the Algorithm 3.3 ten times for each
data set with the sampling sizes h = p · n with p ∈ {0.1, 0.2, 0.5}. Table 3.3
reports the average running times and the standard deviations. Theorem 3.5
shows that TC-Approx with high probability computes closeness values with
a small additive error. For a fixed error ε, the sample size h grows logarithmi-
cally in n, and the approximation is most suitable for large data sets. Choosing
a large enough h for data sets with not many vertices may lead to too high
running times that can exceed the running times of the exact algorithms. As
expected, with increased sampling sizes, the approximation error is reduced.

32

3.3. Temporal Closeness Centrality

Infec
tio

us
Arxiv

Facebook

Prosper

WikipediaSG
Digg

WikiTalkNl

FlickrSG

1

5

10

15

20

25

S
p

ee
d

-u
p

TC-Top-1 TC-Top-10 TC-Top-100 TC-Top-1000

Figure 3.2.: Speed-ups of the running times of the top-k algorithms compared
to baseline EdgeStr.

Table 3.3.: Running times in seconds and mean approximation error including
standard deviations for TC-Approx with sampling sizes h = p·|V |.

Data set

TC-Approx

Running time Approximation error
p = 0.1 p = 0.2 p = 0.5 p = 0.1 p = 0.2 p = 0.5

Infectious 0.25±0.01 0.47±0.01 1.12±0.01 0.58±0.06 0.58±0.07 0.42±0.09
Arxiv 410.78±5.16 862.46±10.71 2 067.93±7.52 0.55±0.10 0.58±0.09 0.39±0.35
Facebook 28.22±0.37 56.61±1.00 131.58±1.20 0.44±0.11 0.42±0.17 0.30±0.10
Prosper 48.83±0.94 98.00±0.62 228.96±0.48 0.45±0.10 0.43±0.12 0.31±0.12
WikipediaSG 84.51±0.67 170.38±2.92 353.54±4.23 0.30±0.09 0.28±0.14 0.20±0.16
WikiTalkNl 1 573.23±10.06 3 173.40±27.47 7 744.86±35.24 0.08±0.08 0.07±0.10 0.05±0.04
Digg 1 682.70±27.82 3 356.85±42.60 8 259.91±62.70 0.18±0.00 0.16±0.01 0.15±0.01
FlickrSG 1 656.13±7.58 3 288.93±27.47 6 946.62±44.30 0.35±0.14 0.34±0.10 0.27±0.10

Q3. Comparison of temporal closeness to other centralities: We mea-
sured the Jaccard similarity between the temporal and static top-k closeness
vertex sets. Table 3.4 shows that the similarity is very low in most cases,
and for Facebook and Digg, it is zero. In the case of Arxiv and k = 10, the
similarity is highest with 0.81. Furthermore, Table 3.4 shows the Jaccard
similarity between the temporal top-k closeness vertices and the vertices with
the largest number of outgoing temporal edges, i.e., the out-degree centrality.
For all chosen k, the Jaccard similarity for Infectious is low. For Facebook,
WikipediaSG, FlickrSG the sets of the top-10 temporal closeness vertices and
degree centrality vertices are equal. However, the similarity declines fast for
each of these data sets and is very low for k = 1000. We also compared the
Jaccard similarity between the top-k temporal closeness vertices and the top-
k vertex sets of vertices with the highest reachability values, i.e., vertices u
for which r(u) is highest (Table 3.4). The values are small for all data sets,
with 0.23 being the highest similarity for Arxiv and k = 1000. For k = 10,

33

Chapter 3. Centrality in Temporal Graphs

Table 3.4.: Jaccard similarity between the top-k temporal closeness vertices
and the temporal in-closeness, static closeness vertices in the ag-
gregated graph, vertices with the highest number of outgoing tem-
poral edges, and vertices with the highest reachability.

Data set
Static closeness Degree centrality Reachability Temporal in-closeness

k = 10 k = 100 k = 1000 k = 10 k = 100 k = 1000 k = 10 k = 100 k = 1000 k = 10 k = 100 k = 1000

Infectious 0.25 0.18 0.26 0.00 0.11 0.09 0.00 0.03 0.09 0.00 0.03 0.15
Arxiv 0.81 0.41 0.41 0.25 0.54 0.63 0.00 0.08 0.23 0.00 0.04 0.10
Facebook 0.00 0.00 0.01 1.00 0.74 0.01 0.17 0.06 0.18 0.00 0.03 0.09
Prosper 0.00 0.45 0.41 0.81 0.90 0.01 0.00 0.03 0.06 0.00 0.00 0.00
WikipediaSG 0.00 0.15 0.39 1.00 0.70 0.005 0.00 0.02 0.07 0.00 0.00 0.07
WikiTalkNl 0.42 0.45 0.63 0.53 0.57 0.004 0.00 0.01 0.13 0.17 0.50 0.66
Digg 0.00 0.00 0.00 0.83 0.56 0.004 0.00 0.00 0.01 0.00 0.00 0.13
FlickrSG 0.42 0.34 0.25 1.00 0.95 0.003 0.05 0.05 0.13 0.33 0.26 0.33

all similarities are zero with the exception of the Facebook and FlickrSG data
sets with similarities of 0.17 and 0.05. The Jaccard similarities between the
top-k temporal closeness and the temporal in-closeness vertices are very low
for all data sets but WikiTalkNl and FlickrSG. These low Jaccard similarities
are expected due to the missing symmetries of the directed temporal edges
and the temporal restrictions. The vertices with a high temporal closeness are
different from the vertices that have a high temporal in-closeness.
To further investigate the relationships between temporal closeness, degree

centrality, and reachability, we measured the correlation between them using
Kendall’s τ coefficient [90]. The Kendall rank correlation coefficient is com-
monly used for determining the relationship between centrality measures [65].
The correlation coefficient takes on values between one and minus one, where
values close to one indicate similar rankings, close to zero no correlation, and
close to minus one a strong negative correlation. Figure 3.3 shows the correla-
tion matrices for all data sets. The correlation between degree and temporal
closeness is very strong for most data sets. For the Infectious and WikiTalkNl
data sets it is 0.53 and 0.78, and for the other data sets it is between 0.94 and
one. The reason for the high correlation is that, in the case of unit traversal
times, each direct neighbor adds a value of one to the temporal closeness. For
the reachability, the correlation varies between 0.56 for the Infectious and 0.97
for the WikiTalkNl data set, with an average value of 0.82.

3.3.6. Conclusion

We introduced algorithms for computing temporal closeness in temporal
graphs. The basis for our algorithms is a new fastest path algorithm using
a label setting strategy that might be of interest on its own. Our top-k
temporal closeness algorithms improved the running times for all real-world
data sets. Furthermore, we adapted a randomized approximation algorithm
for approximating the closeness of all vertices. The sampling algorithm for
temporal closeness has only a small additive error with high probability. Our
approaches allow us to efficiently find the most relevant vertices and their
temporal closeness in temporal graphs.

34

3.3. Temporal Closeness Centrality

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.53 0.56 0.046

0.53 1 0.33 0.026

0.56 0.33 1 0.06

0.046 0.026 0.06 1
0.00

0.25

0.50

0.75

1.00

(a) Infectious

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.97 0.76 0.24

0.97 1 0.77 0.26

0.76 0.77 1 0.42

0.24 0.26 0.42 1
0.00

0.25

0.50

0.75

1.00

(b) Arxiv
T

em
p

or
al

C
lo

se
n

es
s

D
eg

re
e

C
en

tr
al

it
y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.99 0.86 0.43

0.99 1 0.85 0.43

0.86 0.85 1 0.42

0.43 0.43 0.42 1
0.00

0.25

0.50

0.75

1.00

(c) Facebook
T

em
p

or
al

C
lo

se
n

es
s

D
eg

re
e

C
en

tr
al

it
y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.99 0.8 0.11

0.99 1 0.79 0.11

0.8 0.79 1 0.2

0.11 0.11 0.2 1
0.00

0.25

0.50

0.75

1.00

(d) Prosper

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.99 0.86 0.14

0.99 1 0.84 0.14

0.86 0.84 1 0.18

0.14 0.14 0.18 1
0.00

0.25

0.50

0.75

1.00

(e) WikipediaSG

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.78 0.97 0.14

0.78 1 0.77 0.17

0.97 0.77 1 0.15

0.14 0.17 0.15 1
0.00

0.25

0.50

0.75

1.00

(f) WikiTalk

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 1 0.94 0.15

1 1 0.94 0.15

0.94 0.94 1 0.17

0.15 0.15 0.17 1
0.00

0.25

0.50

0.75

1.00

(g) Digg

T
em

p
or

al
C

lo
se

n
es

s
D

eg
re

e
C

en
tr

al
it

y

R
ea

ch
ab

ili
ty

S
ta

ti
c

C
lo

se
n

es
s

Temporal
Closeness

Degree
Centrality

Reachability

Static
Closeness

1 0.94 0.84 0.28

0.94 1 0.77 0.27

0.84 0.77 1 0.32

0.28 0.27 0.32 1
0.00

0.25

0.50

0.75

1.00

(h) FlickrSG

Figure 3.3.: Correlation matrices for temporal, static, degree and reachability
centrality for the Kendall’s τ coefficient.

35

Chapter 3. Centrality in Temporal Graphs

3.4. Temporal Walk Centrality

We now introduce a centrality measure for temporal networks called temporal
walk centrality, which assesses the importance of a vertex by its ability to
obtain and distribute information. Like the static random walk betweenness,
the temporal walk centrality counts random walks passing through a vertex.
However, as we stated before, the temporal nature of sequential events modeled
by temporal networks implies causality by the forward flow of time, which
needs to be respected in temporal network analysis. Therefore, to take the
implied causality into account, we use temporal walks instead of static walks.
Analogously to [25], we distinguish between strict and non-strict temporal
walks. We assume that a global transition time is required to traverse edges,
which is allowed to be zero. In this case, non-strict temporal walks can include
consecutive edges with equal time stamps and may contain cycles. On the
other hand, if the transition time is non-zero, each edge can be contained
at most once in a strict temporal walk. While some previously proposed
temporal walk-based techniques only support strict temporal walks [157, 14],
others are designed to take non-strict temporal walks of unbounded length into
account [66]. Temporal walk centrality supports both models, and we propose
corresponding algorithms with different properties. Our contributions are the
following:

1. We introduce the temporal walk centrality, which captures the ability
of vertices in temporal networks to obtain and distribute information.
We demonstrate that vertices with high temporal walk centrality are key
players in the dissemination of information.

2. We present efficient algorithms for computing the temporal walk cen-
trality with non-strict and strict temporal walks. For the first case, we
propose to derive a static directed line graph from which temporal walks
can be counted by general algebraic techniques. This yields an exact and
iterative approximate algorithm with running time bounded by O(km2),
where m is the number of temporal edges and k is the number of iter-
ations. For strict temporal walks, we introduce a highly efficient and
scalable streaming-based algorithm with running time in O(m · τmax),
where τmax is the maximal number of arrival or availability times at any
vertex.

3. Our evaluation shows that our approximation is efficient and achieves
high-quality solutions. Furthermore, our streaming algorithm is fast
even for temporal graphs with hundreds of millions of edges. Finally,
our experiments show that the temporal walk centrality differs from
other state-of-the-art temporal centrality measures recommending its
application in scenarios where information spreads along random walks.

3.4.1. Strict and Non-strict Temporal Walks

In this section, we consider temporal graphs G = (V, E , λ) with an equal
transition time λ for all edges. Recall that we distinguish between λ = 0

36

3.4. Temporal Walk Centrality

with non-strict temporal walks and λ > 0 with strict temporal walks. Our
definitions and algorithms can be easily extended to the case of individual
transition times λe for each edge e instead of the global parameter λ.

3.4.2. Temporal Walk Centrality

The intuition of our new centrality measure is that vertices are regarded as
important if they are involved in the process of passing information. The time
stamps of the temporal edges imply causality and direct the information flow
in the network. Therefore, we measure the contribution of a vertex by means of
temporal walks respecting such aspects. We define the centrality of a vertex v
as the number of temporal walks passing through v, where the temporal walks
are weighted depending on their length and temporal structure. We formalize
this concept before proposing our new centrality measure and define a weight
function for temporal walks similar to [14] and [134].

Definition 3.6 (Temporal walk weight). Let G = (V, E , λ) be a temporal
graph, and ω = (e1, . . . , e`) a temporal walk in G. We define the weight of a
temporal walk ω as

τΦ(ω) =
`−1∏
i=1

Φ(ti + λ, ti+1), (3.2)

where the function Φ : N × N → R is a time depended weight function. We
define τΦ(ω′) = 1 for walks ω′ of length zero and one.

We discuss concrete examples of the function Φ later in this section. First,
we define the total weight of incoming and outgoing temporal walks at each
vertex v ∈ V .

Definition 3.7. Let G = (V, E , λ) be a temporal graph, and let W in(v, t) and
Wout(v, t) be the sets of incoming and outgoing temporal walks, resp., at vertex
v and time t. We define

Win(v, t) =
∑

ω∈Win(v,t)
τΦin(ω) and Wout(v, t) =

∑
ω∈Wout(v,t)

τΦout(ω).

The temporal walk weight functions τΦin and τΦout allow to weight incoming
and outgoing walks independently. Using Win and Wout, we now define the
temporal walk centrality.

Definition 3.8 (Temporal Walk Centrality). Let G = (V, E) be a temporal
graph. We call

C(v) =
∑

t1,t2∈T (G),t1≤t2

(Win(v, t1) ·Wout(v, t2) · Φm(t1, t2))

the temporal walk centrality of vertex v ∈ V .

37

Chapter 3. Centrality in Temporal Graphs

The time-depended weight function Φm is, similarly to Φin and Φout, used
to weight the time between obtaining and distributing information at vertex
v. Using these functions, we can weight temporal walks depending on different
structural and temporal properties. We propose the following weight functions
based on walk length and waiting times:

1. Weighting based on length: By setting Φ(t1, t2) = α, with 0 < α < 1,
for all t1, t2 ∈ N, we obtain an exponential decay in the length of the
walk, i.e., τΦ(ω) = α|ω|−1. In this case, we set Φm(t1, t2) = 1. Hence,
long walks are down-weighted compared to short walks controlled by the
parameter α. In the following, we denote this variant with Φα.

2. Weighting based on waiting time: The value of information decreases
with time, and we might want to weight the ability to quickly distribute
new information high. In this case, we define Φ(t1, t2) = 1

1+t2−t1 . The
weight decreases with increasing waiting time at every vertex and re-
mains stable at vertices, where information is passed through without
delay. In the following, we denote this variant with Φt.

In both examples, we set Φin(t1, t2) = Φout(t1, t2) = Φ(t1, t2). Notice, that
our definition is general and supports further weight functions such as a
combination of (1) and (2), where we set Φ(t1, t2) = α

1+t2−t1 for all t1, t2 ∈ N.
Another example would be to use different values for α for incoming and
outgoing walks. Finally, we can also achieve an exponential decay in the total
duration by defining Φ(t1, t2) = exp(t2 − t1), leading to a total weight of
exp(tl − t1).
To see how the temporal walk centrality generalizes the Katz and degree

centrality, consider the following. If we fix Win(v, t) = 1, and use the weighting
function Φ(a, b) = α it follows that C(v) equals the Katz centrality. If we,
additionally, only consider walks of length one, C(v) equals the outdegree
centrality. Note that a walk length restriction can be added straightforwardly.

Comparison to Other Centrality Measures

We compare our new temporal walk centrality to other state-of-the-art cen-
trality measures for temporal and static graphs using an example graph and
a subgraph of a real-world communication network.

First example: Consider the temporal graph G = (V, E , λ) with λ = 1
and availability times shown in Figure 3.4. Vertices a, f , and g cannot pass
any information and are marked in gray. Vertex a does not have any incoming
edges. Thus, it cannot pass any information. Similarly, vertex g does not have
any outgoing edges. For vertex f , the only outgoing edge has availability time
two. However, information can reach f only via edge (e, f, 5) at time 6 at the
earliest. Hence, vertex f cannot pass on any information in a dissemination
process.

38

3.4. Temporal Walk Centrality

Table 3.5 shows a comparison of the resulting rankings of the vertices of
the temporal graph shown in Figure 3.4. The rankings are computed with
different temporal and static centrality measures. Temporal betweenness is
the shortest paths variant from [25]. It counts the number of temporal shortest
paths that visit a vertex. The temporal PageRank [157] is a temporal version
of the static PageRank centrality [20]. Temporal Katz centrality is defined in
[14]. The vertices are ranked according to the number of incoming temporal
walks weighted by a time depended exponential decay function. The temporal
closeness centrality is the harmonic temporal closeness defined in Section 3.3.1.
Our temporal walk centrality is computed with τΦin(ω) = τΦout(ω) = 1 for all
walks ω in G, and we set Φm(t, t′) = 1 for all t, t′ ∈ N.

We observe that only the temporal walk centrality can identify the vertices
a, f , and g as vertices that have no capability of passing information. Notice
that temporal betweenness assigns the vertices to only three different ranks
because it only considers the temporal shortest paths. Therefore, it does
not reveal the difference between, e.g., vertex d and vertices a, f , or g,
although d may play an essential role in a dissemination process while the
other cannot. Similarly, the static betweenness assigns all vertices to even
only two ranks. The reason is that the computation of static shortest paths
ignores the temporal restrictions. We can see similar problems for the other
centrality measures, e.g., temporal Katz and temporal closeness rank vertices
g and a, respectively, highest. Similarly, the degree, temporal PageRank,
static closeness, and static random walk betweenness fail to rank the vertices
according to our idea of important vertices that can distribute information
efficiently. In conclusion, only temporal walk centrality can distinguish the
vertices that are important in dissemination processes. It ranks the vertices
according to the intuition that vertices that can be reached easily and can
reach other vertices are important.

Enron email network: We consider an induced subgraph of the Enron
email network [96]. The network represents the email communication in a
company, where vertices are employees, and temporal edges represent emails.
The subgraph is an ego-network with radius one of the employee represented by
vertex zero. Figure 3.5 shows the network with different centrality measures,
where a darker vertex color means higher centrality. Figure 3.5a illustrates the
temporal walk centrality with Φα and α = 1. We compare it with temporal
betweenness centrality (Figure 3.5b) and the static random walk betweenness
(Figure 3.5c). The former assigns high centrality values only to vertices that
are part of many shortest temporal paths. Therefore, only a few vertices get
a relatively high centrality value, namely the vertices 3, 4, and 34. However,
vertices that have a high capability to pass information, e.g., vertex 21, are
assigned a low centrality value. On the other hand, in Figure 3.5c, we see
that the static random walk centrality, which does not respect the temporal
properties of the network, assigns high values to many vertices. The reason is
that considering static walks instead of temporal walks leads to over-counting

39

Chapter 3. Centrality in Temporal Graphs

a

b

c

d

e

f

g

1 3

2

3

3

4 5 2

5

Figure 3.4.: Temporal graph G with the availability times shown at the edges
and λ = 1. Vertices that cannot pass on information are marked
in gray.

Table 3.5.: Vertex rankings for the temporal graph shown in Figure 3.4 ob-
tained by different centrality measures.

Centrality Vertex Ranking

Temporal Walk 1: e 2: c 3: d 4: b 5: afg

Temporal Betweenness [25] 1: c 2: e 3: abdfg
Temporal PageRank [157] 1: ce 2: a 3: fg 4: bd
Temporal Katz [14] 1: g 2: f 3: e 4: c 5: d 6: b 7: a
Temporal Closeness [139] 1: a 2: c 3: b 4: e 5: d 6: f 7: g

In-Degree 1: ceg 2: bdf 3: a
Out-Degree 1: acd 2: bdf 3: g
Static Betweenness [54] 1: ce 2: abdfg
Static Harmonic Closeness [116] 1: a 2: c 3: b 4: de 5: f 6: g
Static Random Walk Betweenness [132] 1: ce 2: d 3: bf 4: ag

vertex visits by ignoring the restricted temporal reachability. Hence, many
vertices in Figure 3.5c obtained a similar centrality value resulting in less
information about the importance of the vertices.

3.4.3. Computation of the Temporal Walk Centrality

Computing the walk centrality of a vertex v ∈ V involves counting the
weighted in- and outgoing walks at v over time. In Definition 3.8, Win

can be interpreted as a matrix that contains the weighted sum of the walks
that arrive at vertex v at time t. Analogously, we have the matrix Wout for
the outgoing walks. In the following, we first describe several methods for
computing these matrices and then how to calculate the walk centrality from
them.
Table 3.6 gives an overview of the different algorithms, their running time,

and properties. Notice that our algorithms perform on par or favorable com-
pared to related state-of-the-art algorithms. The algorithm proposed in [132]
for the static random walk betweenness has a running time in O((|E|+ |V |) ·
|V |2) and space complexity in O(|V |2) for a static graph G = (V,E). Fur-
thermore, the algorithm proposed in [25] for computing temporal betweenness
using temporal shortest paths has a running time in O(|V |3 · T 2) with T the
total number of time steps in a temporal graph G = (V, E , λ), and a space
complexity of O(|V | · T + |E|).

40

3.4. Temporal Walk Centrality

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(a) Temporal walk
centrality.

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(b) Temporal between-
ness.

0

1

2

3

4

5

6

7

8

9

10

11

121314

15
16

17

18

19

20
21

22

23
24

25

26

27

28 29

30

31

32

33

34

35

36

37

(c) Static walk be-
tweenness.

Figure 3.5.: Induced subgraph of the Enron email network consisting of 38
vertices and 541 temporal edges. The vertices are colored ac-
cording to their centrality value with darker color meaning higher
centrality.

Table 3.6.: Overview of algorithms for computing the temporal walk cen-
trality and their properties. Here, γ < 2.373 is the exponent
of matrix multiplication, k the number of fixed-point iterations,
e = |E(DL(G))| ≤ |E|2 the number of edges in the directed line
graph, and τmax the largest cardinality of availability or arrival
times at a vertex.

Method Sec. Running Time Space Non-strict Exact

DlgMa 3.4.3 O(|E|γ) O(|E|2) 3 3

Approx 3.4.3 O(k(|E|+ e)) O(|E|+ e) 3 7

Stream 3.4.3 O(|E| · τmax) O(|V | · τmax) 7 3 if Φm = 1
O(|E|2 · τmax) O(|V | · τmax) 7 3 otherwise

For the analysis of our algorithms for computing the temporal walk central-
ity, we assume |E| ≥ 1/2|V |, which holds unless isolated vertices exist. Since
an isolated vertex v is not involved in non-trivial walks and has C(v) = 0,
we can safely delete all isolated vertices in a preprocessing step. Furthermore,
our algorithms can be adapted to respect interval restricted temporal walks by
running them on the temporal subgraph containing only the edges (u, v, t) ∈ E
for which a ≤ t and t+ λ ≤ b.

Directed Line Graph Expansion

Counting (weighted) walks in static networks can conveniently be realized in
terms of basic linear algebra operations. Polynomial-time computable closed-
form expressions are well-known supporting walks of unbounded length when
long walks are sufficiently down-weighted to guarantee convergence [87, 133].
We lift the algebraic methods for walk counting to counting temporal walks
by means of the directed line graph expansion. Variants of directed line
graph expansions have been previously used for survivability and reliability
analysis [91, 114]. These variants support only strict temporal walks. In

41

Chapter 3. Centrality in Temporal Graphs

n2
ac

n1
ab n3

bc n3
cd

n3
ce

n4
de n5

ef

n5
eg

n2
fg

Figure 3.6.: Directed line graph representation of the temporal graph G shown
in Figure 3.4.

contrast, we allow temporal walks that can traverse the same edge multiple
times when the transition time is zero leading to a potentially infinite number
of temporal walks. Moreover, our definition uses directed graphs and we do
not add additional start and sink vertices as in [91, 114].

Definition 3.9 (Directed line graph expansion). Given a temporal graph
G = (V, E , λ), the directed line graph expansion DL(G) = (V ′, E′) is the
directed graph, where every temporal edge (u, v, t) in E is represented by a
vertex ntuv, and there is an edge from ntuv to nsxy if v = x and t+ λ ≤ s.

Figure 3.6 illustrates the concept of the directed line graph expansion.

Theorem 3.6. Let G = (V, E , λ) be a temporal graph and DL(G) = (V ′, E′)
its directed line graph expansion. Then, |V ′| = |E| and

|E(DL(G))| ≤
∑

v∈V (G)
δ−(v) · δ+(v) = O(|E|2).

Proof. Clearly the number of vertices of DL(G) is |E|. The number of edges is
maximal when at each vertex of the temporal graph every incoming edge can
be combined with all outgoing edges, which is, for example, the case when the
transition time λ is zero and all edges have the same time stamp. Then the
number of edges in the directed line graph expansion of G = (V, E , λ) is

|E(DL(G))| =
∑

v∈V (G)
d−(v) · d+(v) = O(|E|2).

This corresponds to the number of edges in the directed line graph of the
underlying static graph with parallel edges [73].

The walks in the directed line graph are closely related to the temporal
walks in the original temporal graph. We will use this relation for algebraic
weighted walk counting and establish the correspondence formally.

Lemma 3.5. Let G be a temporal graph and ` ≥ 1 Moreover, let W`(G) be the
walks of length ` in the graph G and W`(G) the temporal walks in the temporal
graph G. There is a bijection Γ : W`−1(DL(G))→W`(G) given by(

nt1v1v2 , n
t2
v2v3 , . . . , n

t`
v`v`+1

)
7→ (v1, e1, v2, . . . , e`, v`+1)

with ei = (vi, vi+1, ti) for i ∈ {1, . . . , `}.

42

3.4. Temporal Walk Centrality

Proof. Let ω be a walk in DL(G). It directly follows from Definition 3.9, that
Γ (ω) is a walk in G that satisfies the time constraints. Vice versa, every
temporal walk ω in G corresponds to a sequence of edges, whose vertices are
adjacent in DL(G).

We identify the temporal walks starting at a specific vertex and time in a
temporal graph, with walks starting at several different vertices in its directed
line graph expansion.

Corollary 3.1. The temporal walks of length ` ≥ 1 in a temporal graph G
starting (ending) at the vertex v at time t are in one-to-one correspondence
with the walks of length ` − 1 in DL(G) starting (ending) at the vertices
Xout(v, t) (Xin(v, t)), where

Xout(v, t) = {nsuw ∈ V (DL(G)) | v = u ∧ t = s}
Xin(v, t) = {nsuw ∈ V (DL(G)) | v = w ∧ t = s+ λ}.

We endow the directed line graph expansion with edge weights such that the
weight of a walk corresponds to the temporal walk weight of its temporal walk
according to Definition 3.6. In a static graph with edge weights w : E → R,
the weight of a walk ω = (e1, e2, . . . , e`) is w(ω) =

∏`
i=1w(ei). We annotate

an edge e =
(
ntuv, n

s
vw

)
in the directed line graph by wΦ(e) = Φ(t+ λ, s).

Lemma 3.6. Let ω be a walk in the directed line graph expansion DL(G) of
the temporal graph G, then we have wΦ(ω) = τΦ(Γ (ω)).

Proof. Let ω =
(
nt1v1v2 , n

t2
v2v3 , . . . , n

t`
v`v`+1

)
. Application of edge weights yields

wΦ(ω) =
∏`−1
i=1 Φ(ti + λ, ti+1) = τΦ(Γ (ω)).

The combination of these results allows to compute the temporal walk cen-
trality. To this end, we count the in- and outgoing walks in the directed
line graph expansion weighted by Φin and Φout, respectively, and apply Corol-
lary 3.1 to derive the corresponding values for the temporal graph. More
precisely, let Wout(v, `) denote the sum of weighted walks of length ` in the
static graph starting at the vertex v. Then, we obtain

Wout(v, t) =
∑

x∈Xout(v,t)
Wout(x), Wout(x) :=

∞∑
`=0

Wout(x, `).

The value Win can be obtained similarly by using the set Xin(v, t) and incom-
ing weighted walk counts Win(x). Counting weighted walks in (static) graphs
can be realized by means of matrix methods. However, when the transition
time λ is non-zero, the directed line graph is acyclic since an edge can only
be traversed at most once by a walk. In this case, we can sum the weights
of incoming and outgoing walks for all vertices in linear time. The weight
of walks starting at a vertex v is the sum of the weighted walks starting at
outgoing neighbors of v; hence the weighted walk counting can be realized

43

Chapter 3. Centrality in Temporal Graphs

in a bottom-up fashion starting at the sinks and propagating weighted walk
counts level-wise upwards. However, in Section 3.4.3, we present an efficient
algorithm for the case of strict walks that does not require the computation
of the directed line graph.

Computation by matrix inversion Let ~A be the weighted adjacency
matrix of a graph G with weights w, where auv = w(u, v) if (u, v) ∈ E

and 0 otherwise. It is well known that the entry a
(`)
uv of ~A` is the sum

of weighted walks of length ` from vertex u to vertex v. Hence, we have
Wout(x, `) =

[
~A`~1
]
x
and Wout(x) =

[(∑∞
`=0

~A`
)
~1
]
x
. The sum of matrix

powers is know as Neumann series and the identity
∑∞
`=0

~A` = (~I − ~A)−1

holds if the sum converges. This is guaranteed when ρ(~A) < 1, where ρ
denotes the spectral radius, i.e., the largest absolute value of an eigenvalue. In
this case all weighted walks without length bound can be counted by inversion
of an n × n matrix, where n = |E|. Exact matrix inversion is in time O(nγ),
where γ < 2.373 is theoretically possible [5] by improving the seminal work of
Coppersmith and Winograd [37].

Lemma 3.7. The weighted temporal walks in a temporal graph G = (V, E , λ)
can be counted exactly in O(|E|γ) time with space O(|E|2), where γ < 2.373 is
the exponent of matrix multiplication.

In practice, roughly cubic running time is expected. For large graphs this
is prohibitive even when the directed line graph is sparse as the inverse of a
sparse matrix not necessarily is sparse.

Algorithm 3.4 Approximate counting weighted outgoing walks in directed
graphs.

Input: Directed weighted graph G, error-tolerance ε.
Output: Weighted walk counts Wout(v) = [~r]v.

1: Initialize ~A from G and verify ρ(~A) < 1
2: ~v ← ~1
3: ~r ← ~v
4: repeat
5: ~v ← ~A~v
6: ~r ← ~r + ~v
7: until ‖~v‖1 < ε

Approximation by fixed-point iteration We propose an approximation
algorithm based on iterated matrix-vector multiplication which benefits from
algorithms and data structures for sparse matrices. Algorithm 3.4 approx-
imates Wout(x) for an error-tolerance of ε, where ‖·‖1 denotes the 1-norm.
It can analogously be applied to compute Win(x) by reversing all edges or
transposing the weighted adjacency matrix in a preprocessing step.

44

3.4. Temporal Walk Centrality

Lemma 3.8. The weighted temporal walk counts of a temporal graph G =
(V, E , λ) can be approximated in time O(k(|E| + e)) and space O(|E| + e),
where e = |E(DL(G))| and k is the number of iterations required to meet the
error tolerance.

In practice, the directed line graph expansion is often sparse with
|E(DL(G))| � |E|2 and we expect significant advantages of the approximate
method in this case. We verify this hypothesis experimentally in Section 3.4.4.

Streaming Algorithm

In the case of λ > 0, we can avoid the construction of the directed line graph
representation by directly operating on the temporal graph in edge stream
representation, where the edges are given in chronological order. We use two
passes over the edge stream. In a forward pass, we compute the weights of
incoming walks at each vertex and in a backward pass of outgoing walks.
Algorithm 3.5 processes the edges in chronological order (ties are broken
arbitrarily) to compute the matrix Win. Hence, when processing a temporal
edge (u, v, t) the incoming walk counts for the vertex u at all arrival times
before t are correctly computed since all edges (·, u, t′) with t′ + λ ≤ t have
already been processed.

Algorithm 3.5 Streaming algorithms for incoming walks.

Input: Temporal graph G = (V, E , λ), function Φin.
Output: Matrix Win.

1: for (u, v, t) ∈ E in chronological order do
2: if Win(v, t+ λ) not initialised then
3: Win(v, t+ λ) = 0
4: Win(v, t+ λ) += 1
5: for t′ with Win(u, t′) > 0 do
6: if t ≥ t′ then
7: Win(v, t+ λ) += Win(u, t′) · Φin(t′, t)

Theorem 3.7. Let G = (V, E , λ) with λ > 0. Algorithm 3.5 computes Win

correctly, and has a running time in O(|E| · τ−max) and a space complexity in
O(|V | · τ−max), with τ−max being the maximal size of the set of availability times
of edges arriving at a vertex over all vertices.

Proof. Let ω` be a walk of length 1 ≤ ` ≤ k arriving at vertex v. For ` = 1,
the walk consists of a single edge e1 = (u, v, t). Algorithm 3.5 iterates over all
edges, and therefore, also over e1. Therefore, Win(v, t+ λ) will be initialized
with one, and the walk is counted. For ` > 1, we now have to check that
we count only temporal walks. However, because the algorithm processes the
edges in chronological order and due to line 6, the edge can only extend walks
that arrive not later at u than t. Consider a walk ω2 = ((u,w, t), (w, v, t′))

45

Chapter 3. Centrality in Temporal Graphs

of length ` = 2 arriving at v. The walk ((u,w, t)) arriving at vertex w was
counted before because t + λ ≤ t′, hence Win(w, t + λ) > 0. Next, the walks
from w are added to the walks at v, weighted by Φin(t, t′). Consider the walk
ω` = (e1, . . . , e` = (v`, v`+1, t`)). By our assumption, it follows that the path
ω`−1 = (e1, . . . , e`−1 = (v`−1, v`, t`−1)) of length `− 1 arrived at time t`−1 + λ
at v` and was counted correctly. The algorithm adds the walks of length `− 1
arriving at v` to the number of walks of length ` at vertex v`+1 weighted by
Φin(t`−1, t`).
For the running time, Algorithm 3.5 iterates over all |E| edges in chrono-

logical order, and for each e ∈ E , it iterates over all entries of Win for which
Win(e.u, t) > 0, i.e., at most τ−max rows. Therefore, the running time is in
O(|E| · τ−max), using a minimal perfect hash function for indexing the arrival
times. For each vertex v ∈ V and arrival time ta, we store the sum of the
weighted walks arriving at v at time ta.

Counting the matrix Wout for the outgoing walks can be done in a symmetric
way to Algorithm 3.5 with equal time and space complexity, where we replace
τ−max by τ+

max with τ+
max the maximal number of distinct availability times

of edges leaving a vertex over all vertices. Hence, the total running time
for both directions is in O(|E| · max{τ−max, τ+

max}) and the space complexity
O(|V | ·max{τ−max, τ+

max}).

Computing the Temporal Walk Centrality from the Matrices

After obtaining the matrices Win and Wout, we compute the walk centrality
for all vertices. At each vertex v in V , for all pairs of arrival and starting times
ta and ts with ta ≤ ts the function Φm(ta, ts) must be evaluated. Hence, for
each v ∈ V we have to evaluate Φm at most τ−(v) · τ+(v) times. Under the
assumption that we can evaluate Φm in constant time, the total running time
is in O(|V | · τ−max · τ+

max). Alternatively, we can observe that the running time
is at most quadratic in the number of temporal edges.

In case that Φm(ta, ts) = 1 for all ta, ts ∈ N, we can compute the centrality
of all vertices in time linear in the number of temporal edges. Algorithm 3.6
iterates over all time points T (v) in increasing order and iteratively sums up
the number of incoming walks (line 5f.). We multiply the total incoming weight
with the current outgoing weight and add the result to the centrality value of
v.

Theorem 3.8. For Φm(t1, t2) = 1 and t1, t2 ∈ N, Algorithm 3.6 computes the
walk centrality from Win and Wout in O(|E|) time.

Proof. Algorithm 3.6 iterates over all vertices and over all time stamps t ∈
T (v). The sum of the time stamps over all vertices as well as the number of
vertices itself are bounded by |E|.

46

3.4. Temporal Walk Centrality

Algorithm 3.6 Streaming algorithms for incoming walks.

Input: Win and Wout.
Output: Walk centrality C(v) for all v ∈ V .

1: for v ∈ V do
2: C(v)← 0
3: insum ← 0
4: for t ∈ T (v) in increasing order do
5: insum += Win(v, t)
6: C(v) += Wout(v, t) · insum

3.4.4. Experiments

We discuss the following research questions:

Q1. Efficiency and Scalability: How do our algorithms for computing the
temporal walk centrality differ in terms of running time in practice? Do
they scale to large networks?

Q2. Accuracy of Approx: How is the accuracy of Approx compared to
the exact results?

Q3. Effect of the Parameters: How do the choices of the parameters affect
the temporal walk centrality?

Q4. Comparison of Vertex Rankings: How do the rankings by temporal
walk centrality compare to other temporal centrality measures?

Data Sets

We use the following real-world temporal graph data sets: (1) Hospital con-
tains the contacts between hospital patients and medical personal [179]. (2)
HTMLConf is a contact network of visitors of a conference [82]. (3) Highschool
is a contact network of students over seven days [120]. (4) College is based on
an online social network used by students [145, 148]. (6) Facebook is a subset
of the activity of a Facebook community [180]. (7) Enron is an email network
between employees of a company [96]. (8) AskUbuntu is a network of inter-
actions on the stack exchange website Ask Ubuntu [149]. (9) Digg is a social
network in which vertices represent persons and edges friendships. The time
stamps indicate when friendships were formed [76]. (10) Epinion is a network
based on the product rating website Epinions [119]. (11) WikiTalkFr is a so-
cial network based on the user pages of the Wikipedia website [168]. Vertices
represent users and edges messages on the user page [168]. (12) Wikipedia is
based on Wikipedia pages and hyperlinks between them [126]. (13) Youtube is
a social network on a video platform [125]. (14) Delicious is a network based
on a bookmarking website [185]. Table 3.7 shows the properties and statistics
of the data sets. The transition time λ is one for all data sets. Appendix A
provides further details of the data sets.

47

Chapter 3. Centrality in Temporal Graphs

Table 3.7.: Statistics of the data sets with G = DL(G). The type is either
undirected (u) or directed (d).

Data set
Properties

Type |V (G)| |E(G)| |T (G)| τ−max τ+
max |V (G)| |E(G)|

Hospital u 75 32 424 9 453 2 902 2 902 64 848 62 314 564
HTMLConf u 113 20 818 5 246 1 390 1 390 41 636 13 535 789
Highschool u 1 894 188 508 7 375 3 500 3 500 377 016 342 993 330
College d 1 899 59 835 58 911 1 539 1 539 59 835 4 039 885
Facebook d 63 731 817 035 333 924 455 455 817 035 8 051 691
Enron d 87 101 1 134 046 213 167 6 033 5 353 1 134 046 361 625 773
AskUbuntu d 159 316 964 437 257 079 837 2 358 257 305 2 967 386
Digg d 279 630 1 731 652 6 865 1 328 330 1 731 652 94 858 234
Epinion d 755 760 13 668 320 501 181 498 13 668 281 94 633 962
WikiTalkFr d 1 420 367 4 641 928 3 442 682 16 213 1 092 785 4 641 928 1 696 871 574
Wikipedia d 1 870 709 39 953 145 2 198 1 931 489 39 953 145 2 763 845 227
Youtube d 3 223 585 9 375 374 203 191 203 9 375 374 4 410 951 091
Delicious d 4 512 099 219 532 884 1 583 1 583 1 317 219 532 884 83 533 929 266

Algorithms and Experimental Protocol

We implemented the following algorithms in C++ using the GNU CC Com-
piler 10.3.0 and the Eigen library for matrix operations on sparse data struc-
tures.

• Stream is the implementation of Algorithm 3.5.

• DlgMa uses the directed line graph expansion (DLG) and matrix in-
version (Section 3.4.3).

• Approx is the DLG-based approximation using fixed-point iteration
(Algorithm 3.4).

All experiments ran on a computer cluster. Each experiment had an exclusive
node with an Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and 192 GB of
RAM. The time limit was set to two hours.

Results and Discussion

Q1. Efficiency and Scalability: First, we evaluated the running times
of our algorithms. For Stream, we use both Φα(t1, t2) = α and Φt(t1, t2) =

1
1+t2−t1 to compute two variants of the temporal walk centrality. For the other
algorithms, we use Φα. In all cases, we set α = 0.001. We set Φm(t1, t2) = 1 in
case of Φα, and Φm(t1, t2) = Φt(t1, t2) otherwise. Table 3.8 shows the results.
For Stream the running time is lowest for all data sets. It is at least five times
faster than the approximation Approx, and several orders of magnitude faster
than DlgMa. In the case of Φt, compared to Φα, the running times increase.
The increase is less than 10% for half of the data sets. For WikiTalkFr the
increase is the most with 42.6%. The reason are the large values of the maximal
number of availability or arrival times τ−max and τ+

max (see Table 3.7). Youtube

48

3.4. Temporal Walk Centrality

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s

Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.64 0.75 0.75 0.75 0.75 0.51 0.49 0.45

0.64 1 0.8 0.8 0.8 0.8 0.54 0.61 0.68

0.75 0.8 1 0.98 0.98 1 0.64 0.68 0.58

0.75 0.8 0.98 1 1 0.98 0.64 0.68 0.59

0.75 0.8 0.98 1 1 0.98 0.64 0.68 0.59

0.75 0.8 1 0.98 0.98 1 0.64 0.68 0.58

0.51 0.54 0.64 0.64 0.64 0.64 1 0.75 0.51

0.49 0.61 0.68 0.68 0.68 0.68 0.75 1 0.67

0.45 0.68 0.58 0.59 0.59 0.58 0.51 0.67 1

0.5

0.6

0.7

0.8

0.9

1.0

(a) Facebook

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s
Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.95 0.95 0.95 0.95 0.95 0.33 0.34 0.65

0.95 1 0.98 0.97 0.97 0.98 0.33 0.34 0.65

0.95 0.98 1 0.98 0.97 1 0.33 0.34 0.65

0.95 0.97 0.98 1 0.99 0.98 0.33 0.34 0.66

0.95 0.97 0.97 0.99 1 0.97 0.33 0.34 0.66

0.95 0.98 1 0.98 0.97 1 0.33 0.34 0.65

0.33 0.33 0.33 0.33 0.33 0.33 1 0.54 -0.04

0.34 0.34 0.34 0.34 0.34 0.34 0.54 1 0.026

0.65 0.65 0.65 0.66 0.66 0.65 -0.04 0.026 1

0.0

0.2

0.4

0.6

0.8

1.0

(b) Enron

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s

Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.9 0.9 0.9 0.9 0.9 0.28 0.26 0.38

0.9 1 0.99 0.99 0.99 0.99 0.28 0.26 0.38

0.9 0.99 1 1 1 1 0.28 0.26 0.38

0.9 0.99 1 1 1 1 0.28 0.26 0.38

0.9 0.99 1 1 1 1 0.28 0.26 0.38

0.9 0.99 1 1 1 1 0.28 0.26 0.38

0.28 0.28 0.28 0.28 0.28 0.28 1 0.66 -0.4

0.26 0.26 0.26 0.26 0.26 0.26 0.66 1 -0.23

0.38 0.38 0.38 0.38 0.38 0.38 -0.4 -0.23 1
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) AskUbuntu

Figure 3.7.: Kendall rank correla-
tion between the rank-
ings computed using
different variants of
the temporal walk cen-
trality and other tem-
poral centrality mea-
sures.

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s

Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.69 0.83 0.82 0.82 0.83 0.29 0.38 0.28

0.69 1 0.78 0.76 0.76 0.78 0.32 0.42 0.33

0.83 0.78 1 0.96 0.96 1 0.27 0.47 0.39

0.82 0.76 0.96 1 1 0.96 0.28 0.49 0.39

0.82 0.76 0.96 1 1 0.96 0.29 0.49 0.38

0.83 0.78 1 0.96 0.96 1 0.27 0.47 0.39

0.29 0.32 0.27 0.28 0.29 0.27 1 0.26 -0.061

0.38 0.42 0.47 0.49 0.49 0.47 0.26 1 0.66

0.28 0.33 0.39 0.39 0.38 0.39 -0.061 0.66 1

0.0

0.2

0.4

0.6

0.8

1.0

(a) Facebook

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s

Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.75 0.82 0.91 0.9 0.82 0.61 0.74 0.81

0.75 1 0.86 0.77 0.73 0.86 0.5 0.66 0.67

0.82 0.86 1 0.86 0.83 1 0.53 0.71 0.75

0.91 0.77 0.86 1 0.94 0.86 0.57 0.77 0.81

0.9 0.73 0.83 0.94 1 0.83 0.58 0.75 0.83

0.82 0.86 1 0.86 0.83 1 0.53 0.71 0.75

0.61 0.5 0.53 0.57 0.58 0.53 1 0.59 0.5

0.74 0.66 0.71 0.77 0.75 0.71 0.59 1 0.6

0.81 0.67 0.75 0.81 0.83 0.75 0.5 0.6 1

0.6

0.7

0.8

0.9

1.0

(b) Enron

T
w

c
(Φ

t)

T
w

c
(Φ

α
=

0.
1
)

T
w

c
(Φ

α
=

0.
01

)

T
w

c
(Φ

α
=

0.
00

1
)

T
w

c
(Φ

α
=

0.
00

01
)

T
w

c
(Φ

α
=

0.
01

,
δ=

0)

T
em

p
or

al
K

at
z

T
em

p
or

al
P

ag
eR

an
k

T
em

p
or

al
C

lo
se

n
es

s

Twc (Φt)

Twc (Φα=0.1)

Twc (Φα=0.01)

Twc (Φα=0.001)

Twc (Φα=0.0001)

Twc (Φα=0.01, δ=0)

Temporal Katz

Temporal PageRank

Temporal Closeness

1 0.74 0.75 0.75 0.75 0.75 0.56 0.52 0.43

0.74 1 0.86 0.83 0.83 0.86 0.52 0.51 0.5

0.75 0.86 1 0.97 0.96 1 0.58 0.59 0.54

0.75 0.83 0.97 1 1 0.97 0.59 0.59 0.54

0.75 0.83 0.96 1 1 0.96 0.59 0.6 0.54

0.75 0.86 1 0.97 0.96 1 0.58 0.59 0.54

0.56 0.52 0.58 0.59 0.59 0.58 1 0.66 0.15

0.52 0.51 0.59 0.59 0.6 0.59 0.66 1 0.36

0.43 0.5 0.54 0.54 0.54 0.54 0.15 0.36 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) AskUbuntu

Figure 3.8.: Kendall rank correla-
tion between the rank-
ings using only the
top-k, with k = d|V | ·
0.001e vertices with
the highest centrality
values.

49

Chapter 3. Centrality in Temporal Graphs

Table 3.8.: Running times in seconds (OOT–out of time, OOM–out of mem-
ory).

Data set
Stream with various Φ DlgMa Approx for various ε

Φα Φt 0.1 0.001 0.00001

Hospital 2.50 3.04 OOT 18.32 18.69 19.00
HTMLConf 0.56 0.58 5 213.17 3.35 3.46 3.53
Highschool 20.98 23.24 OOT 117.95 123.67 128.44
College 0.17 0.21 OOT 1.05 1.06 1.07
Infectious 1.29 1.33 OOT 12.75 13.06 13.22
Facebook 0.57 0.64 OOT 4.23 4.30 4.30
Enron 11.31 15.09 OOT 124.13 129.33 131.94
AskUbuntu 0.21 0.28 OOT 1.06 1.07 1.08
Digg 1.70 1.81 OOT 41.95 42.48 42.90
Epinion 2.62 2.71 OOT 41.31 41.38 41.83
WikiTalk 126.42 226.25 OOM OOM OOM OOM
Wikipedia 190.11 200.81 OOM OOM OOM OOM
Youtube 9.63 9.91 OOM OOM OOM OOM
Delicious 1 851.68 1 928.51 OOM OOM OOM OOM

Table 3.9.: Mean relative errors of Approx for various ε.

Data set
Approx with various ε

0.1 0.001 0.00001

Hospital 2.20E-08 1.38E-10 3.89E-12
HTMLConf 6.04E-08 1.08E-09 1.69E-12
Highschool 1.64E-09 9.13E-12 4.63E-14
College 4.00E-08 8.78E-11 3.87E-12
Infectious 1.11E-09 2.71E-12 1.26E-13
Facebook 3.29E-12 9.08E-15 9.08E-15
Enron 3.44E-09 7.13E-12 9.35E-14
AskUbuntu 5.42E-10 5.71E-12 5.50E-14
Digg 5.20E-12 7.30E-14 1.10E-15
Epinion 2.89E-16 2.89E-16 1.22E-16

has small values for τ−max and τ+
max, and hence, the computations of Stream

for both variants of Φ are much faster compared to WikiTalkFr, even though
Youtube has more vertices and edges. DlgMa could only compute the results
for the first two data sets in the given time limit of two hours. The reason is
that the input matrices are large, and the computed inverse matrices are not
always sparse. However, the approximation algorithm Approx computed the
centrality values efficiently. The very large DLGs for WikiTalkFr, Wikipedia,
Youtube, and Delicious (see Table 3.7) lead to out-of-memory errors during
the computation of DlgMa. Even though the DLG is often much smaller
than the theoretical maximal size, the sizes of the DLGs can be a bottle-neck
of the DLG-based algorithms.
In case that λ > 0 and we only have to consider strict temporal walks,

Stream shows very good scalability. Even for the large data sets Wikipedia

50

3.4. Temporal Walk Centrality

and Delicious with around 40 and 220 million edges, respectively, the compu-
tations are time- and space-efficient.

Q2. Accuracy of Approx: We evaluated the accuracy of our approximation
algorithm Approx for α = 0.001. Table 3.9 shows the mean relative errors
for ε ∈ {0.1, 0.001, 0.00001} compared to the exact results computed with
Stream for all data sets for which the DLG could be computed. Let W =
{v ∈ V | C(v) 6= 0} and Ĉ(v) be the approximated value for v ∈ V , we report

1
|W |

∑
v∈W

|C(v)−Ĉ(v)|
C(v) . For all ε, the errors are insignificant and very low. The

error decreases for smaller ε as expected. A smaller value of α leads to fast
convergence. In conclusion, these results show that Approx is highly accurate
while being efficient (see Q1).

Q3. Effect of the Parameters: We computed the vertex rankings using
temporal walk centrality for Φα, α ∈ {0.1, 0.01, 0.001, 0.0001}, and for Φt.
Furthermore, we set the transition time λ = 0 and computed the temporal
walk centrality with Φα for α = 0.001. We measured the pairwise Kendall
rank correlations (Kendall’s τ coefficient [90]) between the rankings. Figure 3.7
shows correlation matrices for HTMLConf, Facebook, Enron, and AskUbuntu.
We observed similar results for the other data sets. Twc denotes the different
rankings computed with the variations of the temporal walk centrality. The
correlation between the rankings using temporal walk centrality with Φα is
strong for all choices of α. Only for Facebook there is for α = 0.1 a slightly
weaker correlation of 0.8 with respect to the other α values. The influence of α
seems to be limited if we consider the complete rankings of all vertices because
the majority of vertices obtain similar positions. In the case that we consider
for the rankings the 0.1% vertices with the highest centralities, the impact of
α is stronger (see Figure 3.8) because the ratio of differently ranked vertices
increases. Using a zero transition time of λ = 0 did not lead to different
rankings compared to λ = 1. The correlation between the rankings using Φt
and Φα is high with values between 0.75 and 0.95, but it is weaker than any
of the correlations between the other Twc rankings. Hence, using the waiting
time-based weighting can lead to temporal walk centrality rankings different
from using distance-based weighting.

Q4. Comparison of Vertex Rankings: We used the temporal version of
PageRank (α = 0.99, β = 0.5), harmonic temporal closeness, and temporal
Katz centrality (constant weighting with β = 0.01) to compute the vertex
rankings for the Facebook, Enron, and AskUbuntu data sets. Due to the high
running times of the temporal betweenness, the results could not be obtained
in a time limit of twelve hours. We report the results in the correlation matri-
ces shown in Figure 3.7. The correlations between the variants of the temporal
walk centrality and the other temporal centrality measures are between 0.26
and 0.68. The rankings of the other temporal centrality measures have only
a weak association with the rankings obtained using the temporal walk cen-
trality. This is expected, as the other centrality measures are not designed for
ranking vertices according to their importance in information spreading.

51

Chapter 3. Centrality in Temporal Graphs

3.4.5. Conclusion

We introduced the temporal walk centrality for temporal networks, which cap-
tures the intuition of important vertices capable of obtaining and distributing
information efficiently. We illustrated how the temporal walk centrality can
identify vertices that are crucial for the dissemination of information. We
theoretically and experimentally showed that temporal walk centrality can be
computed efficiently and with high accuracy in the case of our approximation.
Moreover, our streaming algorithm scales to very large temporal networks.

52

Chapter 4
Temporal Distance Indexing

The previous chapter showed that answering temporal distance queries is
a common and essential task in temporal graph analysis. Like in the static
case, indexing methods can help answer queries fast. The indexing approach
consists of two phases. First, in an offline phase, the index is computed, and
second, in an online phase, queries given to the index are answered efficiently.
Indexing methods designed for static graphs can often not be applied or do
not perform well in the temporal domain. A wide range of work exists for
single-source-single-destination reachability and distance indexing in static
graphs. Similarly, in the case of temporal graphs, existing works focus on the
single-source-single-destination case, e.g., [183, 189, 199, 30]. In this chapter,
we focus on single-source-all-destination (SSAD) queries and introduce new
indices for efficiently answering SSAD temporal distance queries in temporal
graphs. SSAD queries often arise, e.g., during (social) network analysis and
the computation of centrality measures [18, 106, 140, 171, 169]. Our new
indices improve query times up to an order of magnitude.

4.1. Motivation and Contribution

Table 4.1 shows a comparison of the complexities for answering SSAD distance
queries in static and temporal graphs. We consider the classic shortest path
distance in static graphs and the earliest arrival distance for the temporal
graphs. In both cases, there are two extreme approaches—no indexing versus
computing and storing all pair-wise distances. Let n be the number of vertices
and m be the number of edges of the input graph. For an unweighted static
graph, we can determine the shortest path distances using a breadth- or depth-
first-search (BFS, DFS) without indexing inO(n+m) time. The other extreme
is to compute all pair-wise distances, i.e., compute the distances for all v ∈ V
in O(n2 +nm) running time beforehand, store the records using O(n2) space,
and answer a query in O(n) time for outputting the distances of at most n
reachable vertices. Now, comparing the temporal to the static case, we have a
slightly different situation. It is common to restrict a query to a time interval
τ , such that only edges are considered that leave a vertex or arrive at a vertex
during the interval τ . In the case of the direct computation of the earliest

53

Chapter 4. Temporal Distance Indexing

a

c

b

d

e f

3

1

2
2

9

3

1
6

7

(a) G

a

c

b

d

e f

3

1

2
2

9

3

(b) G1

a

c

b

d

e f

9 1
6

7

(c) G2

Figure 4.1.: (a) Temporal graph G with availability times shown at the edges.
The transition times are one for all edges. The edge stream ξ(a) is
highlighted red; it contains all edges that can be part of a temporal
path starting at a. (b) Temporal subgraph G1 of G contains all
edges, such that all queries starting at one of the vertices a, b,
and c can be answered. (c) Temporal subgraph G2 contains all
edges, such that all queries starting at d, e, or f can be answered.
Vertices that can not be reached are colored gray.

arrival distances without constructing an index, we also have a running time
of O(n+m) using the edge streaming algorithm (OnePass) introduced in [188]
(see Section 2.4.1). However, due to the restrictive time interval τ , (naively)
storing the pair-wise distances also needs to include all possible combinations
of starting and arrival times of the temporal edges. Therefore the size of the
record is in O(n2 · |T |2), where T is the time interval spanned by the temporal
graph, i.e., from the starting time of the earliest edge to the arrival time of
the last edge of the graph. Our new Substream index reduces this memory
usage substantially and leads to faster query times than direct computation.
Furthermore, our index computes the optimal paths between vertices during
a query, which can also be returned if needed. Deciding if a Substream index
of a given size exists is NP-complete. However, we provide an efficient greedy
approximation with a provable approximation ratio and an improved parallel
version of the greedy algorithm that performs well on large real-world data
sets.
We exploit the often very limited reachability in temporal graphs to find k

smaller subgraphs sufficient to answer all queries. On these smaller subgraphs,
we use the state-of-the-art temporal path and distance algorithms that only
need a single pass over a temporal edge stream, i.e., the sequence of the
temporal edges in non-decreasing availability time [188].
More specifically, we construct the index using the following procedure.

Given a temporal graph G = (V, E), we find k smaller subgraphs. To each
vertex v ∈ V of the input graph, we assign one of the k subgraphs S, such
that temporal distance queries starting at v can be answered with a single
pass over the edge stream S. Notice that we do not need to find a partition of

54

4.1. Motivation and Contribution

Table 4.1.: Complexity comparison of shortest path and earliest arrival dis-
tance queries in unweighted static and temporal graphs with n
vertices and m (temporal) edges. T is the time interval spanned
by the temporal graph, ∆ the maximal number of edges over the
substreams.

Approach Query Time Index Size Construction Compl.

Static BFS, DFS O(n+m) – –
Store pair-wise dist. O(n) O(n2) O(n2 + nm)

Temporal
OnePass [188] O(n+m) – –
Store pair-wise dist. O(n) O(n2 · |T |2) O(n2 + n ·m)
Substream index O(∆) O(n+ k ·m) NP-hard (Thm. 4.2)

the input graph, and the constructed subgraphs may share vertices or edges.
For example, Figure 4.1 shows a temporal graph (a), for which all temporal
distance queries starting from vertices a, b, or c can be answered using only
the temporal subgraph shown in (b) and starting from any of the remaining
vertices using only the temporal subgraph shown in (c).
Moreover, it is, in general, not sufficient to store the temporal graph in an

adjacency (or incidence) list representation and answer distance queries using
Dijkstra-like or label setting algorithms. The streaming approach for com-
puting the temporal distances is, in most cases, already significantly faster
compared to other approaches [188]. Hence, we base our index on the con-
struction of substreams to leverage the performance of streaming algorithms.
Our index supports dynamic updates, i.e., efficient insertion and deletion of
temporal edges to avoid costly recomputation of the index. Our contributions
are the following:

1. We propose the Substream index for temporal graphs. A Substream index
for a temporal graph G consists of k ∈ N subgraphs and an assignment
function f : V → {0, . . . , k}. The space complexity is linear in the size
of G, and the index supports dynamic updates. We show that deciding
if a Substream index of a given size can be constructed is an NP-complete
problem.

2. We introduce a greedy approximation for constructing a Substream in-
dex. It constructs an index with a size that is maximal k/δ times larger
than an optimal index where 1 ≤ δ ≤ k depends on the temporal con-
nectedness of the temporal graph. The indexing time is in O(knm).

3. We improve the greedy algorithm. First, we introduce a secondary
index called Time Skip. It is based on the idea to skip most edges
with availability time before the availability time of the first edge that
needs to be considered in a query. Next, we apply min-hashing to speed
up costly union operations. Finally, we parallelize the algorithm, leading
to a running time in O(knmP) on a parallel machine with P processors,

55

Chapter 4. Temporal Distance Indexing

where m ≥ P and k ≥ P .

4. Finally, we evaluate our algorithms using real-world temporal networks.
Even though computing a substream index is a NP-hard problem, we
show that our improved algorithm can compute indices for temporal
graphs with several million edges in the given time limit, where the
straightforward approximation fails. Compared to state-of-the-art tem-
poral distance algorithms, the computed indices improve running times
up to an order of magnitude. Furthermore, in a use-case, we apply our
algorithms to rank all vertices according to the temporal closeness cen-
trality and show that our indices improve the running times significantly
for ranking all vertices.

4.2. Related Work

Yu and Cheng [197] give an overview of indexing techniques for reachability
and distances in static graphs. Common approaches enrich the static graph
with labels at the vertices that can be used to determine reachability or
distances. Among them are hub/hop [35, 58, 32, 84, 151, 1, 113], landmark [4],
and interval labelings [165], as well as tree [3, 182, 173], chain [31] and path
covers [85]. Further approaches are specifically designed for road networks,
e.g., are contraction hierarchies [60, 61], transit nodes [11, 49], and highway
hierarchies [159, 160].

There are several works on SSSD time-dependent routing in transportation
networks, e.g., [12, 10, 41, 59]. Wang et al. [183] propose Timetable Labeling
(TTL), a labeling-based index for SSSD reachability queries that extends hub
labelings for temporal graphs. In [189], the authors introduce an index for
SSSD reachability queries in temporal graphs called TopChain. The index
uses a static representation of the temporal graph as a directed acyclic graph
(DAG). On the DAG, a chain cover with corresponding labels for all vertices
is computed. The labeling can then be used to determine the reachability
between vertices. TopChain is faster than TTL and has shorter query times
(see [189]). We used TopChain as an SSSD baseline in our evaluation (see
Section 3.4.4). The authors of [199] present an index for reachability queries
designed for distributed environments. It is similar to TopChain but forgoes
the transformation into a DAG. The authors of [30] use 2-hop labelings to
index bipartite temporal graphs to answer reachability queries.
As far as we know, our work is the first one to introduce an indexing

technique for SSAD temporal distance queries.

4.3. Temporal Edge Streams

In this chapter, we consider directed temporal graphs in a stream representa-
tion. We call a sequence S = (e1, . . . , em) of m (directed) temporal edges with
non-decreasing availability times a temporal edge stream. In the following, we

56

4.4. Substream Index

sometimes omit temporal and only say edge stream. A temporal edge stream
S induces a temporal graph G = (VS , S) with VS = {u, v | (u, v, t, λ) ∈ S},
where we for notational convenience, interpret the sequence S as a set of edges.
Given a temporal edge stream S, we denote with n the number of vertices of
the induced temporal graph, and with n+ the number of vertices with at least
one outgoing edge, i.e., non-sink vertices. Let S and S′ be temporal edge
streams and S′ ⊆ S, i.e., S′ contains only edges from S. We call S′ a sub-
stream of S. If it is clear from the context, we use the view of a temporal
graph G and the corresponding edge stream interchangeably. The size of an
edge stream S consisting of m edges is |S| = m. We assume that m ≥ n

2 ,
which holds unless isolated vertices exist, to simplify the discussion of running
time complexities. Note that edge streams do not have isolated vertices. Let
S1 and S2 be two temporal edge streams, we denote by S3 = S1∪S2 the union
of the two temporal edges streams, and S3 is a temporal edge stream, i.e.,
the edges of S3 are ordered in non-decreasing order of their availability time.
Notice that S3 can be computed in O(|S1|+ |S2|) times due to the ordering of
the edges in non-decreasing availability times.
We denote with ξ(v) the subset of edges that can be used by any temporal

walk starting at v ordered in non-decreasing availability times, i.e., ξ(v) is
a temporal edge stream. For example, in Figure 4.1a the edges of ξ(a) are
highlighted in red. Recall that temporal graphs are, in general, not strongly
connected and have limited reachability between vertices, and that temporal
distance and path computation can be additionally restricted to a time interval
I = [a, b] such that only edges e = (u, v, t, λ) are considered that start or arrive
in the interval I, i.e., a ≤ t < b and a < t+ λ ≤ b.

Temporal Distance Queries Indexing for answering temporal distance
queries is a two-phased process. For a given temporal graph G, in the indexing
phase, an index is constructed. The index is a data structure capable of
answering queries fast during the query phase. A query is a pair (u, τ) with
u ∈ V and τ = [a, b] is the restricting time interval. A temporal distance query
(u, τ) asks for the temporal distances, e.g., earliest arrival times, duration of
the fastest paths, or lengths of the shortest paths, between vertex u and all
other vertices v ∈ V with respect to the restricting time interval τ , i.e., all
paths have to start and arrive at time points in τ .

4.4. Substream Index

We now present our new index called Substream index. The substream index
constructs k temporal subgraphs from a given temporal graph, leveraging the
following simple observation.

Observation 4.1. All temporal distance queries, w.r.t. earliest arrival time,
shortest path, and shortest duration, starting at a vertex v ∈ V , can be
answered solely with edges in ξ(v).

57

Chapter 4. Temporal Distance Indexing

To see why this holds, assume there is a query with start vertex v that can
not be answered using ξ(v). Then there is a path that contains an edge that
is not in ξ(v). This is a contradiction to the definition of ξ(v).
Given a temporal graph G = (V, E) in its edge stream representation S and

2 ≤ k < n, we first construct k substreams S1, . . . , Sk of S. Each vertex v ∈ V
is assigned to exactly one of the new substreams, such that the substream
contains all edges that can be used by any temporal walk leaving v. We use
an additional empty stream S0 = ∅ to which we assign all sink-vertices, i.e.,
vertices with no outgoing edges. The substreams and the vertex assignment
together form the substream index, which we define as follows.

Definition 4.1. Let S be a temporal edge stream and 2 ≤ k ∈ N. We define
the pair I = (S, f) with S = {S0, S1, . . . , Sk}, Si ⊆ S for 1 ≤ i ≤ k, S0 = ∅,
and f : V → [k]∪ {0} as substream index, with f maps v ∈ V (S) to an index
i of subset Si ∈ S, such that ξ(v) ⊆ Si.

Given a substream index (S, f) and a query (v, τ), we answer it by running
an edge streaming algorithm, e.g., earliest arrival or fastest paths streaming
algorithm (see Section 2.4.1), on the substream Sf(v) for vertex v and restrict-
ing time interval τ . The running times of the streaming algorithms depend
on the number of edges in the substreams. We define the size of a substream
index accordingly.

Definition 4.2. Let I = (S, f) be a substream index. The size of I is
size(I) = maxS∈S{|S|}.

Before discussing the query times, we bound the number of vertices that
can be assigned to a substream.

Lemma 4.1. The maximal number of vertices assigned to any substream Si
is at most 2 · size(I)

Proof. For i ∈ [k], the number of vertices occurring in Si is |{u, v | (u, v, t, λ) ∈
Si}| ≤ 2|Si|. Hence, the maximal number of vertices assigned to any substream
Si is at most 2 · size(I).

We now discuss the query times of the substream index.

Theorem 4.1. Let I be a substream index, ∆ = size(I), and let δ be the
maximal in-degree of a vertex in any of the substreams. Given a query (u, τ),
let τ+(u) the set of availability times of edges leaving the query vertex u, and
ρ = min{δ, |τ+(u)|}.

1. An earliest arrival query can be answered in O(∆).

2. Answering a fastest path query is possible in O(∆ log ρ) and a shortest
path query in O(∆ log δ).

3. If transition times are equal for all edges, the running times for fastest
and shortest path queries are also in O(∆).

58

4.4. Substream Index

Proof. The results follow directly from the running times of the streaming
algorithms [188] (see Section 2.4.1), and Lemma 4.1.

For a temporal graph with m edges and n vertices, the space complexity
of the substream index is in O(k · m + n). For real-world temporal graphs,
the limited reachability often leads to considerably smaller indices (compared
to the worst case), as shown in our experiments (Section 4.5). Finally, note
that a substream index can be used to output the distances as well as the
corresponding paths.

4.4.1. Hardness of Finding a Minimal Substream Index

In the following, we show that deciding if there exists a substream index with
a given size is NP-complete.

Theorem 4.2. Given a temporal graph G = (V, E), k ∈ N, and B ∈ N.
Deciding if there exists a substream index I with k substreams and size(I) ≤ B
is NP-complete.

Proof. We use a polynomial-time reduction from UnaryBinPacking, which
is the following NP-complete problem [56]:

Given: A set of m items, each with positive size wi ∈ N encoded in unary for
i ∈ [m], k ∈ N, and B ∈ N.
Question: Is there a partition I1, . . . , Ik of {1, . . . ,m} such that
max1≤i≤k{Wi} ≤ B where Wi =

∑
j∈Ii wj?

Given a substream index I for a temporal graph and B ∈ N, we can verify
if size(I) ≤ B in polynomial time. Hence, the problem is in NP. We reduce
UnaryBinPacking to the problem of deciding if there exists a substream
index of size less or equal to B. Given an instance of UnaryBinPacking
with m items of sizes wi for i ∈ [m], we construct a temporal graph G = (V, E)
that consists of m vertices in polynomial time. More specifically, for each
i ∈ [m], we construct a vertex vi that has wi self-loops, such that each edge
e ∈ E has a unique availability time. We show that if UnaryBinPacking has
a yes answer, then size(I) ≤ B and vice versa.
⇒: Let I1, . . . , Ik be the partition of [m] such that max1≤i≤k{Wi} ≤ B. For
our Substream index, we use k substreams Si =

⋃
j∈Ii ξ(vj) for i ∈ [k]. Because

|ξ(vj)| = wj for j ∈ [m] it follows that the size of the substream index

size(I) = max
1≤i≤k

{|Si|} = max
1≤i≤k

{∑
j∈Ii wj

}
≤ B.

⇐: Let I = (S, f) with S = {S0, . . . , Sk} be the Substream index with
size(I) = max1≤i≤k{|Si|} ≤ B. From the vertex mapping f , we construct
the partition I1, . . . , Ik of [m] such that max1≤i≤k{Wi} ≤ B holds for the
UnaryBinPacking instance. Let Ii = {j ∈ [m] | f(vj) = i} for i ∈ [k].
Finally, with |ξ(vj)| = wj , it follows that max1≤i≤k{

∑
j∈Ii wj} ≤ B.

59

Chapter 4. Temporal Distance Indexing

4.4.2. A Greedy Approximation

We now introduce a polynomial-time algorithm for computing a substream
index with a bounded ratio between the size of the computed index and the
optimal size. Algorithm 4.1 shows the simple greedy algorithm for computing
the substream index for a temporal graph in edge stream representation S.
After initialization, Algorithm 4.1 runs n iterations of the for loop in line 2ff.
The vertices are processed in an arbitrary order v1, . . . , vn. In iteration i, the
algorithm first computes the temporal edge stream ξ(vi). This computation
is done with a single pass over the edge stream by storing and iteratively
updating the minimum arrival times at the reached vertices and collecting all
edges that can be part of a temporal walk starting at vi. After computing ξ(vi),
it is added to one of the substreams, and the mapping f(vi) = j is updated.
In each round, ξ(vi) is added to one of the substreams Sj ∈ {S1, . . . , Sk}, such
that |Sj ∪ ξ(vi)| is minimal (line 7ff.). All vertices v ∈ V for which ξ(v) is
empty are assigned to the empty substream S0 (line 5).

Algorithm 4.1 Greedy algorithm for computing a temporal substream index.

Input: Temporal edge stream S, k ∈ N, k ≥ 2.
Output: Substream index (S, f)

1: Initialize Sj = ∅ for 1 ≤ j ≤ k, and f(v) = 0 for v ∈ V
2: for i = 1 to n do
3: Compute ξ(vi)
4: if ξ(vi) = ∅ then
5: f(vi)← 0
6: else
7: Let Sj such that |Sj ∪ ξ(vi)| is minimal
8: Sj ← Sj ∪ ξ(vi)
9: f(vi)← j

10: return ({S1, . . . , Sk}, f)

We now discuss the approximation ratio and running time. First, we show
lower and upper bounds of the size of the optimal and greedy solutions,
respectively. We use the bounds to show the approximation guarantee for the
ratio of the sizes of an optimal index and one constructed by Algorithm 4.1.

Lemma 4.2. Let G be a temporal graph with n+ non-sink vertices, k ∈ N,
and let B ⊆ {ξ(v) | v ∈ V } such that |B| =

⌈
n+

k

⌉
and the union

∣∣∣⋃ξ∈B ξ∣∣∣ is
maximal.

1. The size of an optimal index is size(Opt) ≥ m
k ,

2. and of the greedy solution size(Greedy) ≤
∣∣∣⋃ξ∈B ξ∣∣∣ .

Proof. (1) Each edge e ∈ E has to be in at least one substream. The size of
the substream index is minimized if the edges are distributed equally to all

60

4.4. Substream Index

substreams—in this case, reassigning any edge from one of the k substreams to
another would lead to an increase of the size of the index. Hence, size(Opt) ≥
m
k . (2) Assume in some iteration i the edge stream ξ(vi) is added to a
substream Sj such that after the addition |Sj | > | ∪ξ∈B ξ|. Algorithm 4.1
chooses Sj such that adding ξ(vi) to any other substream does not lead to a
smaller value. Hence, for all S` with 1 ≤ ` ≤ k it is |S` ∪ ξ(vi)| > | ∪ξ∈B ξ|.
However, this leads to a contradiction to the maximal size of the sum over all
substreams

∑
1≤`≤k |S` ∪ ξ(vi)| ≤ k · | ∪ξ∈B ξ|.

Theorem 4.3. The ratio between the size of the greedy solution and the
optimal solution for any valid input S and k is bounded by

size(Greedy)
size(Opt) ≤ k

δ
, (4.1)

with δ = m
|∪ξ∈Bξ| and 1 ≤ δ ≤ k.

Proof. With the two bounds from Lemma 4.2, follows

size(Greedy)
size(Opt) ≤

|
⋃
ξ∈B ξ|
m
k

=
k · |

⋃
ξ∈B ξ|
m

= k

δ

Furthermore, we show that 1 ≤ δ ≤ k. Because ∪ξ∈Bξ ⊆ E it follows 1 ≤ δ.
And, δ is maximal if | ∪ξ∈B ξ| is minimal. The term | ∪ξ∈B ξ| is minimal if
each element ξ ∈ B contributes as least as possible. We argue that each ξ ∈ B
contributes at least one to | ∪ξ∈B ξ| or | ∪ξ∈B ξ| = |E|. If we can remove an
element b ∈ B such that | ∪ξ∈B ξ| = | ∪ξ∈B\{b} ξ| then | ∪ξ∈B ξ| = |E|. Assume
that | ∪ξ∈B ξ| = | ∪ξ∈B\{b} ξ| and | ∪ξ∈B ξ| 6= |E|. Then there exists an edge
e = (u, v, t, λ) ∈ E that is in no edge stream ξ ∈ B. This means we can
replace b with ξ(u) and have a set B′ with | ∪ξ∈B′ ξ| > | ∪ξ∈B ξ|. This is a
contradiction to the maximality of the union of the sets in B. Furthermore,
if each b ∈ B adds exactly one to the size of the union, then n+ ≥ m. Hence,
δ ≤ m

dn+/ke ≤
m·k
n+ , and with n+ ≥ m the result follows.

Figure 4.2 show examples for minimum and maximum values of k/δ. The
first temporal graph G = (V, E) (Figure 4.2a) is a chain with increasing
availability times. Each vertex vi can reach all following vertices vj with
1 ≤ i < j ≤ n, therefore, ξ(v1) = E and ∪ξ∈Bξ = E . It follows that k/δ = k. In
Figure 4.2b, the temporal graph is a chain with decreasing availability times,
resulting in much lower reachability. Each vertex can only reach its direct
following neighbor. Hence, ξ(vi) = {vi+1} for all 1 ≤ i < n. In consequence,
k/δ = k

n−1
(n−1)/k

= 1.

For the running time, we have the following result.

Theorem 4.4. Given a temporal graph S in edge stream representation, and
2 ≤ k ∈ N, the running time of Algorithm 4.1 is in O(mnk).

61

Chapter 4. Temporal Distance Indexing

v1 v2 v3 v4 vn−1 vn
1 2 . . . n− 2 n− 1

(a) The edge stream ξ(v1) contains all edges.

v1 v2 v3 v4 vn−1 vn
n− 1 n− 2 . . . 2 1

(b) All ξ(v) for v ∈ V \ {vn} contain one edge, and ξ(vn) = ∅.

Figure 4.2.: Two temporal graphs with unit transition times and the availabil-
ity times are shown at the edges.

Proof. Initialization is done in O(n). The running time for computing all ξ(v)
of Algorithm 4.1 is O(nm). For the assignment of the edge streams ξ(v) to the
substreams S1, . . . , Sk, the algorithm needs to compute the union ξ(vi) ∪ Sj
for each j ∈ {1, . . . , k}. The sizes of Sj and ξ(vi) are bounded by the number
of edges m, i.e., the running time of the computation of one union is in O(m).
The algorithm needs n · (k+ 1) union operations, leading to a running time of
O(nmk).

In the following section, we improve the greedy algorithm to obtain an
algorithm with better practical performance.

4.4.3. Improving the Greedy Algorithm

We improve the greedy algorithm presented in Section 4.4.2 in three ways:
1) We introduce an auxiliary index called Time Skip index. It allows skipping
edges that are too early in the temporal edge stream and do not need to
be considered for answering a given query. 2) We use bottom-h1 sketches to
avoid the costly union operations that we need to find the right substream to
which we assign an edge stream. 3) We use parallelization and a batch-wise
computation scheme to benefit from modern parallel processing capabilities.
Note that using only improvements 1) and 3), we would obtain a parallel

greedy algorithm with the same approximation ratio as Algorithm 4.1. How-
ever, improvement 2) leads to the loss of the approximation guarantee. In
our experimental evaluation in Section 4.5, we will see that (i) the improved
algorithm usually leads to indices that are not larger than the ones computed
with Algorithm 4.1, and (ii) the query times of the indices constructed with
the improved algorithm are substantially faster for all data sets. We now
describe each the improvements in detail.

Time Skip Index

The idea of the time skip index is to ignore all edges that have timestamps
earlier than the availability time of the first edge leaving the query vertex

1Also often called bottom-k sketch. We use h instead of k because k denotes the number of
substreams.

62

4.4. Substream Index

v. Let S be a temporal edge stream with edges e1, . . . , em. By definition,
the edges are sorted in non-decreasing order of their availability times. The
position of the first outgoing edge from vertex v might be at a late position in
the edge stream S. For example, the first outgoing edge ep at v could be at a
position p > m/2. Therefore, if we know the position p of the first edge, we
can start the streaming algorithm at position p and skip more than half of the
edges in the run of the streaming algorithm. To exploit this idea, we build an
index that maps each vertex v ∈ V to the first position p in the edge stream S
of the first edge ep = (v, w, t, λ) that starts at vertex v. A query to the Time
Skip index consists of the starting vertex v ∈ V and the index returns the
position p in the temporal edge stream of the first edge (v, w, t, λ) from where
a streaming algorithm can start processing. To compute the Time Skip index,
we first initialize an array of length n in which we store the first positions of
the earliest outgoing edges for each v ∈ V . We use a single pass over the edge
stream to find these positions. Hence, the Time Skip index can be computed
in O(n+m) running time, and it has a space complexity in O(n). We use the
Time Skip index in two ways. First, it is used to speed up the computation of
the edges streams ξ(v) during the index construction. Secondly, we compute
a Time Skip index for each of the final substreams in S to speed up the query
times.

Bottom-h Sketches

The main drawback of Algorithm 4.1 is that it has to compute the union
of Sj ∪ ξ(vi) for all substreams Sj for 1 ≤ j ≤ k in order to determine the
substream to which the edge stream ξ(vi) should be added. To avoid these
expensive union computations, we reduce the sizes of ξ(v) for v ∈ V by using
sketches of the edge streams, and estimate the Jaccard distance between the
sketches of the edge streams and substreams. For two sets A and B, the
Jaccard distance is defined as J(A,B) = 1 − |A∩B||A∪B| . The Jaccard distance
between two sets can be estimated using min-wise hashing [21]. The idea is
to generate randomized sketches of sets that are too large to handle directly.
After computing the sketches, further operations are done in the sketch space.
This way, it is possible to construct unions of sketches and estimate the Jaccard
similarity between pairs of the original sets efficiently.
More specifically, let A be a set of integers. A bottom-h sketch s(A) is

generated by applying a permutation π to the set A and choosing h smallest
elements of the set {π(a) | a ∈ A} ordered in non-decreasing value2. For two
sets A and B, we can obtain s(A ∪ B) by choosing h smallest elements from
s(A) and s(B). This way, we obtain a sample of the union A ∪ B of size h.
Now, the subset s(A∪B)∩ s(A)∩ s(B) contains only the elements that are in
the intersection of A, B, and the union sketch s(A∪B). We use the following
result.

Lemma 4.3 ([21]). The value
2We assume that |A| ≥ h, otherwise we choose only |A| elements.

63

Chapter 4. Temporal Distance Indexing

Ĵ(A,B) = 1− |s(A∪B)∩ s(a)∩ s(b)|
|s(A∪B)|

is an unbiased estimator for the Jaccard distance.

Using the estimated Jaccard distance between an edge stream ξ(v) and a
substream Sj , we decide if we should add ξ(v) to Sj . If the estimated Jaccard
distance is low, then we expect that adding ξ(v) to Sj does not lead to a
significant increase in the size of Sj .
We now describe how we compute and use the sketches of the edge streams.

During the computation of ξ(vi), the algorithm iterates over the input stream
S, starting from position p determined by the time skip index, and processes
the edges ep, . . . , e`, . . . , em in chronological order. Let e` = (u, v, t, λ) be an
edge that can be traversed, i.e., the arrival time at u is smaller or equal to
t. We compute a bottom-h sketch using the hashed position π(`) of edge e`
in the input stream. Therefore, we compute a hash value for all edges that
can be traversed, and we keep the h smallest hashed values π1, . . . , πh as our
sketch s(ξ(vi)) = (π1, . . . , πh), where the hash function π is a permutation of
[m]. Note that the position ` of edge e` in the edge stream S is a unique
identifier of e`. Furthermore, each edge e` = (u, v, t, λ) represents a substream
of S consisting of all edges in e = (x, y, te, λe) ∈ ξ(v) with availability time
te ≥ t + λ, i.e., the corresponding subgraph that is reachable after traversing
e.

In the assignment phase (line 8 ff.), Algorithm 4.2 proceeds similarly to
Algorithm 4.1 in a greedy fashion. However, we adapt the assignment objective
such that it leads to improved substreams in terms of size and query times.
To this end, we additionally consider the number of assigned vertices.

Definition 4.3. Let v ∈ V (S), and Ij = |{v ∈ V (S) | f(v) = Sj}| the number
of vertices assigned to Sj. We define the ranking function o : V (S) × [k] →
[1, n] as

o(v, j) = 1
2(Ij + 1) · (Ĵ(s(Sj), s(ξ(v)) + 1).

Using the ranking function, Algorithm 4.2 decides to add the edge stream
ξ(v) to the substream Sj if o(v, j) is minimal for 1 ≤ j ≤ k (line 12). By
additionally considering the number Ij of vertices assigned to substream Sj ,
we optimize for small substreams Si and a vertex assignment such that vertices
are assigned to smaller substreams Si rather than to larger ones. Note that
if a vertex u is assigned to a small substream, queries starting at u can be
answered fast. If the function o(v, j) is close to one, not many vertices are
assigned to j, or the estimated Jaccard distance between ξ(v) and Sj is small.
On the other hand, if o(v, j) is closer to n, the number of to Sj assigned
vertices is high, and/or the estimated Jaccard distance is high. The intuition
is that, even if we have a substream that contains a majority of edges, we
want to assign the remaining vertices to substreams with a smaller size if
possible. By factoring in the number of assigned vertices Ij , we (heuristically)
distribute the assigned vertices between the k substreams to find a balance

64

4.4. Substream Index

between substream size and the number of assigned vertices. Our experiments
in Section 4.5 demonstrate that using the ranking function is a successful
strategy for obtaining small indices that answer queries quickly.

Parallelization

The final improvement is parallelization. Algorithm 4.2 shows our improved
greedy algorithm that has as input the temporal graph S, the number of
substreams k, the hash-size h, and a batch-size B > 0. After the initialization
and the computation of the Time Skip index, it processes the input graph
in batches of size B to allow a parallel computation of the edge stream
assignment. The batch size determines how many vertices are processed in
each iteration of the outer while-loop (line 4ff.). For each batch of vertices,
Algorithm 4.2 runs three phases of computation. In the first phase (line 5f.),
Algorithm 4.2 first computes the edge streams ξ(vi) for all vertices vi that part
of the current batch. The Time Skip index is used to find the first position
1 ≤ p ≤ m of vi in S. The second phase computes an assignment of the
edge streams to the substreams using the bottom-h sketches. To this end, we
keep the sketches s(Sj) of the substreams stored as Cj for each j ∈ [k]. After
finding the right substream, ξ(vi) is added to Sj , and Cj , Ij and f(v) are
updated accordingly. The third phase (line 16 f.) constructs the substreams
in parallel using the determined assignment of edge streams. Finally, after
all batches are processed, the Time Skip indices for each Si are computed in
parallel (line 22).

Theorem 4.5. Given a temporal graph in edge stream representation with m
edges and n ≤ m vertices, and B, h, k ∈ N with h ≥ 1, k ≥ 2, and h · k ≤ m.
Then, the running time of Algorithm 4.2 is in O(knmP) on a parallel machine3

with P processors, for P ≤ k and P ≤ m.

Proof. Initialization is done in O(n). Computing the initial Time Skip index
for the input S takes O(m) time. The algorithm iterates over dn/Be batches.
In one iteration of the while loop, the running time for the parallel computation
of the edge sets E(vi) is in O(B · (n+m)/P). For the bottom-h sketch, we use
a sorted list to keep the smallest h hash values of the edges. Updating the list
is done in log h. Finding the indices i for the substreams Si in line 12 takes
O(B · ((kh/P) + logP)) time. Therefore, the total running time of the first
two phases is dn/Be · B · (O(m/P) + O(kh/P + logP)) = O(nmP + n logP).
The total running time of the update phase is dn/Be ·(O(kP ·Bm) = O(kP nm).
Computing the Time Skip index for Si with i ∈ [k] in parallel takes O(kP ·m)
time.

3We consider the Concurrent Read Exclusive Write (CREW) PRAM model (see, e.g., [175]).

65

Chapter 4. Temporal Distance Indexing

Algorithm 4.2 Parallel substream index computation.

Input: Temporal edge stream S, k,B ∈ N, k ≥ 2, B ≥ 1.
Output: Substream index (S, f)

1: Init. in parallel ρi = 0, Si = ∅, Ci = ∅ for i ∈ [k], and f(v) = 0 for v ∈ VS
2: Compute initial Time Skip index
3: start← 1, end← B
4: while start < n do
. Phase 1: compute streams & sketches

5: parallel for i = start, . . . , end do
6: compute ξ(vi) and s(ξ(vi)) using initial Time Skip index
7: end
. Phase 2: compute stream assignments

8: for i = start, . . . , end do
9: if ξ(vi) = ∅ then

10: f(vi)← 0
11: else
12: in parallel find j ∈ [k] such that o(vi, j) is minimal
13: Cj ← Cj] s(ξ(vi))
14: f(vi)← j
15: ρj ← ρj + 1

. Phase 3: updating substreams
16: parallel for j = 1, . . . , k do
17: for v with f(v) = j do
18: Sj ← Sj ∪ ξ(v)
19: end
20: start← start+B
21: end← min(end+B,n)
22: Compute in parallel Time Skip index for Si, i ∈ [k]
23: return ({S1, . . . , Sk}, f)

4.4.4. Dynamic Updates

To support dynamic updates of the Substream index, we store for each edge the
indices of the substreams and the positions in the substream that contain the
edge. Moreover, we store for each vertex v the time it appears in a substream as
head or tail of an edge for the first time. We need additionalO(k·m+n) storage
memory; however, this does not change the space complexity of the substream
index. We present the update routines for edge deletion and insertion in the
following. Recall that we do not have isolated vertices, and a new vertex
can be inserted with edge insertion. Deleting a vertex is done by deleting its
adjacent edges.

66

4.5. Experimental Results

Edge deletion

Let Ed be a set of edges to delete. For each edge e in Ed, we look up
each substream S′ that contains e and add S′ to the set M of modified
substreams. Furthermore, we mark e as deleted. Next, for each modified
substream S′ ∈ M, we use one pass over S′ to delete all edges marked for
deletion, update the Time skip index, as well as the first time a vertex appears,
and the positions of the edges in the substreams. Therefore, deletion of all
edges in Ed is possible in O(|M| · size(I)).

Edge insertion

Let edge e = (u, v, t, λ) be the edge that we want to insert. First, we determine
the set Ea that contains the edges that are reachable in the substream Sf(v)
starting a path from time t + λ using a forward pass in Sf(v). Now, for each
substream S′ in which vertex u appears before or at time t, we add the edges
Ea to S′. LetM be the set of effected substreams. In total, we need maximal
O(|M| · size(I)) time for the insertion of e.

4.5. Experimental Results
We implemented our algorithms in C++ using GNU CC Compiler 9.3.0. with
the flag –O3, and use OpenMP v4.5 for multithreading. The experiments ran
on a computer cluster, where each experiment had an exclusive node with an
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, 192 GB of RAM, and 16 cores.
The time limit for each experiment was set to 48 hours.
Algorithms: We use the following of our algorithms.

• Greedy is the implementation of Algorithm 4.1.

• SubStream is the improved parallel greedy algorithm presented in Sec-
tion 4.4.3 (Algorithm 4.2).

• TimeSkip is the Time Skip index described in Section 4.4.3 applied
directly to the input graph.

We denote the corresponding indices also with Greedy, SubStream, and
TimeSkip. We use the following baselines:

• TopChain is the state-of-the-art index for single-source-single-
destination queries [189]. We set the parameter for the top-k chain
labeling to k = 5.

• OnePass and OnePassFP are the SSAD edge stream algorithm for
earliest arrival and minimum duration [188] described in Section 2.4.1.

• Xuan is the algorithm for SSAD earliest-arrival paths from [24] de-
scribed in Section 2.4.2.

67

Chapter 4. Temporal Distance Indexing

Table 4.2.: Statistics of the data sets. Es = {(u, v) | (u, v, t, λ) ∈ E} denotes
the edge set of the aggregated graph.

Data set
Properties

|V | |E| |T (G)| |Es| ∅|ξ(v)| max |ξ(v)|

Infectious 10 972 415 912 76 943 52 761 1 100.1 9 339
AskUbuntu 159 316 964 437 960 866 596 932 3 050.8 117 930
Digg 279 630 1 731 652 6 865 1 731 652 78 081.2 1 415 290
Prosper 89 269 3 394 978 1 259 3 330 224 14 979.4 205 461
Arxiv 28 093 4 596 803 2 337 3 148 447 260 471.5 3 860 987
Youtube 3 223 585 9 375 374 203 9 375 374 136 682.2 4 928 847
StackOverflow 2 464 606 17 823 525 16 926 738 16 266 394 851 232.8 11 982 619.0

Table 4.3.: Indexing times in seconds. For SubStream, we report the aver-
ages and standard deviations over ten runs. OOT—Out of time.

Data set
Greedy SubStream

k = 512 k = 1024 k = 2048 k = 4096 k = 512 k = 1024 k = 2048 k = 4096 TimeSkip TopChain

Infectious 3.5 6.0 9.8 15.8 0.85±0.1 0.85±0.1 1.18±0.3 1.72±0.1 0.001 0.43
AskUbuntu 263.0 368.5 557.0 792.1 6.58±0.7 7.81±1.4 8.96±2.3 14.57±5.4 0.004 0.53
Digg 12 025.1 22 065.3 38 191.1 69 703.9 57.78±1.7 58.88±2.9 62.99±3.9 67.37±2.9 0.004 1.73
Prosper 614.2 872.2 1 426.2 2 303.7 16.76±0.4 17.53±0.6 20.08±0.9 24.00±0.8 0.001 1.98
Arxiv 6 366.5 9 812.0 13 773.7 19 000.9 19.48±0.8 19.37±1.3 20.14±0.7 21.94±0.6 0.002 0.78
Youtube OOT OOT OOT OOT 4 250.43±35.7 4 174.79±21.2 4 222.68±41.6 4 375.91±70.0 0.035 12.46
StackOverflow OOT OOT OOT OOT 10 649.93±137.4 10 536.05±115.2 10 608.94±92.8 10 877.09±122.8 0.056 45.95

• Dl is the Dijkstra-like algorithm for earliest-arrival paths using an edge
incidence list representation described in Section 2.4.3.

• LabelFp is our label setting algorithm for SSAD fastest paths described
in Section 3.3.2.

TopChain, OnePass, and OnePassFp were provided by the correspond-
ing authors. We implemented Xuan using the graph data structure and algo-
rithm described in [24] and Section 2.4.2.

Data sets: We used the following real-world temporal graphs. (1) Infectious:
a face-to-face human contact network [82]. (2) AskUbuntu: Interactions on the
website Ask Ubuntu [149]. (3) Digg: A social network [76]. (4) Prosper: A
temporal network based on a personal loan website. (5) Arxiv: An author
collaboration graph from the arXiv website [109]. (6) Youtube: A social
network on the video platform Youtube [125]. (7) StackOverflow: Interactions
on the website StackOverflow [149]. Table 4.2 shows statistics of the data sets.
Appendix A provides further details of the data sets.

4.5.1. Indexing Time and Index Size

For our SubStream index, we set the number of substreams to k = 2i for
i ∈ {9, . . . , 12} and the sketch size h = 8. The effect of different sketch sizes
will be discussed in Section 4.5.3. We set the batch size B to n for data sets
with less than one million vertices and 2048 otherwise. Furthermore, we used
32 threads. We discuss the effect of varying the batch size in Section 4.5.1
and the vertical scalability in Section 4.5.1. We report the indexing times in

68

4.5. Experimental Results

Table 4.4.: Index sizes in MiB. For SubStream, we report the averages and
standard deviations over ten runs. OOT—Out of time.

Data set
Greedy SubStream

k = 512 k = 1024 k = 2048 k = 4096 k = 512 k = 1024 k = 2048 k = 4096 TimeSkip TopChain

Infectious 7.9 11.7 17.2 26.0 5.80±0.1 7.80±0.0 11.36±0.1 18.15±0.1 0.04 28.49
AskUbuntu 194.3 323.2 471.8 633.0 18.20±1.0 27.47±0.8 43.65±1.1 77.57±3.0 0.11 20.41
Digg 2 673.8 5 287.6 10 361.8 19 407.0 675.03±15.1 1 141.56±32.0 2 051.65±56.7 3 913.49±121.6 0.34 50.09
Prosper 308.2 549.5 945.1 1 565.8 107.81±3.5 161.96±4.2 254.43±6.1 419.32±7.2 0.52 65.42
Arxiv 5 507.8 9 034.8 13 335.7 17 404.6 1 043.28±27.2 1 599.63±60.6 2 613.33±77.0 4 318.25±70.3 1.07 18.86
Youtube OOT OOT OOT OOT 2 827.89±398.6 4 204.57±488.1 5 961.32±253.1 10 095.49±331.2 12.29 351.03
StackOverflow OOT OOT OOT OOT 6 098.22±416.7 10 142.39±612.1 17 375.83±907.1 30 784.04±1904.5 9.40 1 501.00

seconds in Table 4.3 and the index sizes in MiB in Table 4.4. For SubStream,
we run the indexing ten times and report the averages and standard deviations.

Indexing time

As expected, Greedy has high running times. It has up to several orders of
magnitude higher running times than the other indices, and for the two largest
data sets, Youtube and StackOverflow the computations could not be finished
in the given time limit of 48 hours. SubStream improves the indexing time of
Greedy immensely for all data sets. However, SubStream has higher index-
ing times than TopChain for all data sets. The indexing time of TopChain
is linear in the graph size, and the indexing for SubStream computes for each
vertex v ∈ V all reachable edges ξ(v), hence higher running times and weaker
scalability of SubStream are expected. However, in Section 4.5.2, we will see
that the query times using TopChain for SSAD queries cannot compete with
our indices and are, in most cases, several orders of magnitude higher. Besides
the graph size, the indexing times of Greedy and SubStream also depend
on the sizes of ξ(v). For smaller average reachability, i.e., smaller |ξ(v)| on
average, the unions of the ξ(v) in Algorithm 4.1 and Algorithm 4.2 are faster,
whereas for large average |ξ(v)| the unions are costly. For a larger number of
substreams k, the running time of Greedy linearly increases as expected due
to the increasing number of union operations. In Algorithm 4.2, the unions
during the second phase for the sketches of the edge streams are much faster as
the sketch size is only h = 8; hence, the increase in running time for increasing
k is much smaller. In some cases, going from k = 512 to k = 1024, the running
time of SubStream decreases because in the third phase, when the final sub-
streams are constructed, fewer large substreams need to be combined. This is
the case for Arxiv, Youtube, and StackOverflow. The indexing for TimeSkip
is considerably faster than for SubStream and TopChain because it only
needs a single pass over all edges. Hence, TimeSkip shows the best scalability.

Indexing size

In the case of Infectious for all k and AskUbuntu for k = 512, SubStream
has a smaller index size in MiB than TopChain. For the other data sets,
TopChain uses less space. The storage size (index size in MiB) of the
Greedy and SubStream indices increase with increasing k for all data sets

69

Chapter 4. Temporal Distance Indexing

0 100000 200000
|S|

101

102

103

#
S

u
b

st
re

am
s

Prosper

0 1
|S| ×106

101

102

103

#
S

u
b

st
re

am
s

Digg

0 2 4
|S| ×106

101

102

103

#
S

u
b

st
re

am
s

Arxiv

0 10000
|S|

101

102

103

#
S

u
b

st
re

am
s

Infectious

Greedy SubStream

Figure 4.3.: Histogram of the substream sizes |S|. The sketch-size for Sub-
Stream is h = 8.

because a larger number of substreams often leads to a larger number of
edges that are part of several substreams (recall that the substreams are not a
partition of the graph). The sizes of the indices computed with SubStream
are often considerably smaller than those computed with Greedy. The reason
is that the average substream sizes of the Greedy indices are larger than the
average sizes of the substreams in the SubStream indices. Table 4.5 shows
statistics of the substream sizes |S| computed by Greedy and SubStream
for k = 2048 and k = 4096. Note that the minimum number of edges in
any substream is up to several orders of magnitudes higher for Greedy.
Furthermore, the maximum sizes of the substreams of the indices constructed
with SubStream are only larger for Infectious, showing that SubStream
usually computes indices I with size(I) bounded by the approximation ratio
of Greedy. For increasing k, the median and mean sizes of the substreams
decrease for both Greedy and SubStream. The gap between median and
mean is often small for Greedy and large for SubStream where the median
is always smaller than the mean. Hence, the distributions for SubStream
are positively skewed with many substreams that consist of fewer edges than
the mean sizes of the substreams. Figure 4.3 shows the size distribution of
the substreams for Greedy and SubStream for k = 2048 and h = 8. The
y-axis uses a logarithmic scale. The figure shows the histograms for Prosper,
Digg, and Arxiv. We observed similar results for Infectious and AskUbuntu
(see Figure B.1 in Appendix B). We see that the distribution of the sizes
for SubStream is in favor of smaller substreams. This property not only
leads to smaller index (storage) sizes but also better query times, as we see in
Section 4.5.2.
The memory usage of TimeSkip compared to SubStream and TopChain

is orders of magnitude smaller. For each vertex v, only the position of the first
edge in the substream assigned to v needs to be stored.

Effect of the batch size

For Algorithm 4.2, we varied B ∈ {1024, 2048, 4096, 8192, 16384, |V |}. Fig-
ure 4.5a shows the trade-off between the running time and the maximal mem-

70

4.5. Experimental Results

0 200000
|Si|

10

1000

I i

Prosper

0 1
|Si| ×106

10

1000

I i

Digg

0.0 2.5
|Si| ×106

10

1000

I i

Arxiv

0 1
|Si| ×107

7× 102

8× 102

I i

StackOverflow

Greedy SubStream

Figure 4.4.: Scatter plots with the substream sizes Si on the x-axis and the
number Ii of vertices assigned to Si on the y-axis for k = 2048.
For SubStream, h = 8.

Table 4.5.: Statistics of the substream sizes |S| with S ∈ S (K = 103 and
M = 106).

Data set
Greedy, k = 2048 Greedy, k = 4096 SubStream, k = 2048 SubStream, k = 4096

min max median mean min max median mean min max median mean min max median mean

Infectious 0.5K 9.3K 1.6K 2.2K 0.1K 9.3K 1.1K 1.7K 7.0 10.3K 0.8K 1.6K 1.0 9.7K 0.5K 1.2K
AskUbuntu 0.3K 0.1M 61.3K 60.3K 64.0 0.1M 30.1K 40.5K 35.0 0.1M 77.0 5.9K 16.0 0.1M 30.0 5.2K
Digg 1.2M 1.4M 1.3M 1.3M 0.8M 1.4M 1.3M 1.2M 50.0 1.4M 0.1K 0.3M 18.0 1.4M 61.0 0.2M
Prosper 71.7K 0.2M 0.1M 0.1M 42.1K 0.2M 92.4K 0.1M 0.1K 0.2M 1.2K 32.3K 26.0 0.2M 0.5K 26.5K
Arxiv 0.2M 3.9M 1.5M 1.7M 0.9K 3.9M 0.9M 1.1M 45.0 3.9M 1.1K 0.3M 7.0 3.9M 0.5K 0.3M
Youtube – – – – – – – – 1.4K 5.5M 93.3K 0.7M 0.6K 5.3M 86.3K 0.6M
StackOverflow – – – – – – – – 0.3M 12.0M 1.4M 2.8M 1.2K 12.0M 0.2M 1.9M

ory used during the computations for the Arxiv data set. The parallel uti-
lization of processing units is reduced for smaller batch sizes, and hence, the
indexing time increases. However, fewer edge streams need to be held in
memory during the computation, and, therefore, the memory usage is less.
For larger batch sizes, the memory consumption increases while the indexing
time decreases. We observed similar behavior for all data sets. Hence, the best
indexing time can be achieved with large batch sizes. In the case of many ver-
tices and large edge streams ξ(v), a smaller batch size can reduce the amount
of memory required for the computation.

Vertical Scalability

We set k = 2048, h = 8, and varied the number of threads in {1, 2, 4, 8, 16, 32}
for Algorithm 4.2. Figure 4.5b shows the running times for Arxiv, which
decrease with an increasing number of threads. We observed similar behavior
for all data sets. Up to 16 threads, doubling the number of threads almost
halves the running time. From 16 to 32 threads reduces the running time by
more than 25%. Hence, Algorithm 4.2 shows good vertical scalability.

4.5.2. Querying Time

For each data set, we chose two random subsets Q1 ⊆ V and Q2 ⊆ V
with |Q1| = |Q2| = 1000. We run SSAD earliest arrival from each vertex
u ∈ Q1, and minimum duration queries from each vertex u ∈ Q2. We

71

Chapter 4. Temporal Distance Indexing

1024
2048

4096
8192

16384 |V |

B

0

5

10

15

In
d

ex
in

g
ti

m
e

(s
)

Arxiv

Indexing Time

Memory

0

20

40

60

M
ax

.
m

em
or

y
(G

iB
)

(a)

1 2 4 8 16 32
Number of Threads

0

100

200

In
d

ex
in

g
ti

m
e

(s
)

Arxiv

(b)

Figure 4.5.: (a) The trade-off between indexing time in seconds and memory
usage in GiB of Algorithm 4.2 for different block sizes. The block
sizes are on the x-axis. (b) Running times in seconds for different
numbers of threads used for Algorithm 4.2.

used the same sets Q1 and Q2 for all algorithms. Furthermore, we used
the lifetime spanned by each temporal graph as the restrictive time interval.
We discuss the effect of varying the size of the restrictive time interval in
Section 4.5.2. Because TopChain only supports SSSD queries, we added
queries from each vertex u ∈ Q1, or u ∈ Q2 respectively, to all vertices v ∈ V
for TopChain. For our SubStream index, we set the number of substreams
to k = 2i for i ∈ {9, . . . , 12} and the sketch size h = 8. We discuss the effect
of different sketch sizes h in Section 4.5.3. We report the average running
times and standard deviations over ten separately constructed and evaluated
SubStream indices.

Running times

Table 4.6 shows the total running times for the 1000 earliest arrival (Ta-
ble 4.6a) and minimum duration (Table 4.6b) queries. Our indices perform
best for all data sets and both query types. For TopChain, we only report
the running times of reachability queries in Table 4.6a because the provided
implementation does not support other types of queries. The reported run-
ning times are lower bounds for the earliest arrival and minimum duration
queries (see [189]). The query times of TopChain are up to several orders of
magnitude higher than the running times of our indices for both earliest ar-
rival and minimum duration queries. The reason is that TopChain is designed
for SSSD queries. TopChain cannot answer the query for StackOverflow in
the time limit. SubStream is the fastest for all data sets and earliest ar-
rival queries. In the case of minimum duration, only for the Digg data set,
TimeSkip is faster. SubStream answers queries in most cases slightly faster
than Greedy. The reasons are the smaller substreams and the better distri-

72

4.5. Experimental Results

Table 4.6.: Total querying time for 1000 queries in seconds. For SubStream,
we report the mean and standard deviations over ten indices.

(a) Earliest arrival queries (OOT–out of time).

Data set
Greedy SubStream TimeSkip Baselines

k = 512 k = 1024 k = 2048 k = 4096 k = 512 k = 1024 k = 2048 k = 4096 OnePass Dl Xuan TopChain

Infectious 0.008 0.008 0.006 0.006 0.008±0.0 0.007±0.0 0.006±0.0 0.006±0.0 0.114 0.235 0.023 0.034 0.144
AskUbuntu 0.083 0.057 0.053 0.058 0.053±0.0 0.056±0.0 0.052±0.0 0.051±0.0 0.111 0.244 0.482 1.200 10.643
Digg 0.833 0.880 0.860 0.846 0.684±0.0 0.665±0.0 0.663±0.0 0.637±0.0 0.700 1.897 4.794 28.505 664.473
Prosper 0.231 0.211 0.185 0.148 0.194±0.0 0.173±0.0 0.156±0.0 0.146±0.0 1.485 2.828 0.678 4.440 217.687
Arxiv 1.925 1.649 1.271 1.068 1.100±0.0 1.029±0.0 0.985±0.1 0.890±0.0 2.599 4.418 3.062 43.937 1526.040
Youtube – – – – 5.160±0.5 4.380±0.4 3.893±0.3 3.705±0.2 7.320 22.928 38.743 87.082 45857.200
StackOverflow – – – – 12.766±0.9 12.002±0.8 10.736±0.4 10.325±0.6 19.953 49.110 139.676 500.871 OOT

(b) Minimum duration queries.

Data set
Greedy SubStream TimeSkip Baselines

k = 512 k = 1024 k = 2048 k = 4096 k = 512 k = 1024 k = 2048 k = 4096 OnePassFp LabelFp

Infectious 0.084 0.083 0.079 0.079 0.083±0.0 0.080±0.0 0.079±0.0 0.076±0.0 0.596 0.908 0.170
AskUbuntu 0.909 0.774 0.772 0.768 0.808±0.0 0.783±0.0 0.768±0.0 0.770±0.0 0.961 1.642 1.272
Digg 8.905 8.871 8.732 8.254 7.466±0.3 7.357±0.3 7.300±0.3 7.258±0.3 6.690 13.077 44.759
Prosper 1.640 1.477 1.376 1.303 1.429±0.1 1.316±0.1 1.280±0.1 1.238±0.1 8.994 18.702 3.005
Arxiv 13.305 12.738 11.425 11.362 10.945±0.2 10.780±0.3 10.549±0.2 10.422±0.2 17.114 21.023 83.369
Youtube – – – – 68.814±1.6 67.016±1.0 64.590±6.9 58.191±9.5 85.325 160.184 105.141
StackOverflow – – – – 133.000±5.6 132.185±6.4 131.996±5.9 132.050±3.9 181.156 298.686 967.430

bution of vertices to the substreams, such that vertices are more often assigned
to substreams with a lower number of edges than to substreams with many
edges (see Figure 4.3). Figure 4.4 shows scatter plots where the x-axis de-
notes the substream sizes |Si| and the y-axis the number of assigned vertices
Ii for i ∈ [k]. We see for Prosper, Digg, and Arxiv that SubStream con-
structs indices that have more vertices assigned to substreams with smaller
sizes. Hence, the queries can be answered faster. We observed similar results
for Infectious and AskUbuntu shown in Figure B.2 in Appendix B. For Digg,
the SubStream index still has many large substreams, which explains its
performance close to that of TimeSkip. In general, query times are low if the
average substream size over S ∈ S is small compared to |E|, see Table 4.5.
The query times mostly decrease for increasing k because the number of edges
in each of the k substreams is reduced; thus, fewer edges must be considered
during the queries. SubStream has speedups of 2.9 up to 49.3 for earliest
arrival queries and between 1.7 and 14.7 for the minimum duration queries.
The average speed ups of SubStream compared to OnePass, Dl, and Xuan
are 11.5, 8.15, and 32.8, respectively. For minimum duration queries, the av-
erage speedups of SubStream compared to OnePassFp and LabelFp are
5 and 4.1, respectively. The TimeSkip index needs more time to answer the
earliest arrival queries than SubStream, but it is faster than TopChain and
OnePass for all data sets. In the case of the minimum duration queries,
TimeSkip is fastest for Digg and faster than OnePassFp for all data sets.
As expected, the running times increase with graph size in most cases. Note
that Dl and Xuan can be faster than OnePass if many vertices have limited
reachability. The reason is that they stop processing when no further edge can
be relaxed and the priority queue is empty, where the streaming algorithms
have to process the remaining stream until the end of the time interval. Sim-
ilarly, LabelFp is faster than OnePassFp for some data sets. Finally, Dl is
faster than Xuan because the latter is primarily designed for temporal graphs

73

Chapter 4. Temporal Distance Indexing

2 4 8 16 32 64 128
ω

100

R
u

n
n

in
g

ti
m

e
(s

)
AskUbuntu

2 4 8 16 32 64 128
ω

100

101

R
u

n
n

in
g

ti
m

e
(s

)

Prosper

2 4 8 16 32 64 128
ω

100

101

102

R
u

n
n

in
g

ti
m

e
(s

)

Arxiv

2 4 8 16 32 64 128
ω

10−1

100

R
u

n
n

in
g

ti
m

e
(s

)

Infectious

SubStream TimeSkip OnePass Dl Xuan

Figure 4.6.: Decreasing running times for shorter time intervals. The y-axis
uses a logarithmic scale.

with low dynamics [24].

Effect of Varying Time Intervals

The time interval size of a query can have a large impact on the querying time
because a smaller time interval leads to a smaller search space. Therefore,
we evaluate the performance of our indices for varying time intervals. We
chose restrictive time intervals that are a fraction of the lifetime T (G) of the
temporal graph G. For each ω = 2i with i ∈ [7], we chose 10 000 intervals of
length `ω = T (G)/ω starting at a random starting time in [tmin, tmax−`ω]. For
each interval, we choose a random starting vertex v ∈ V . We used the same
intervals and starting vertices for each algorithm. Figure 4.6 shows the total
running times for 10 000 earliest arrival queries for Digg, Prosper, and Arxiv.
Further results are shown in Appendix B. The running times are decreasing
with increasing ω for our indices, mostly proportional with the decrease of the
baselines for almost all data sets. Only for Arxiv and ω ≥ 64, Dl beats our
approaches. In all other cases, SubStream has the best running times for
all ω. TimeSkip is second best for all ω in case of the AskUbuntu, Youtube,
and StackOverflow data sets. In conclusion, our indices also perform very well
when the queries are restricted to different time intervals.

4.5.3. Effect of the Sketch Size

Figure 4.7 shows scatter plots for Prosper, Digg, and Arxiv that have the
substream size |Si| on the x-axis and the number of assigned vertices Ii on
the y-axis for k = 2048 and h ∈ {1, 8, 64}. For increasing h, the sizes |Si| are
getting smaller and fewer vertices are assigned to large Si. We observed similar
behavior for the other data sets (see Figure B.4 in Appendix B). Furthermore,
we ran Algorithm 4.2 with k = 2048 and h = 2i for i ∈ {0, . . . , 6}. Figure 4.8
shows the effects on the indexing times, the index sizes, and the earliest arrival
querying times for Prosper, Arxiv, and Youtube. Figure B.5 in Appendix B
shows the results for the other data sets. For Prosper and h = 1, the running
times over the ten runs vary more than for higher h. The mean indexing time

74

4.6. Case Study: Temporal Closeness

0 100000 200000
|Si|

20

30

40

I i

Prosper

0 1
|Si| ×106

30

40

50

I i

Digg

0 2 4
|Si| ×106

10

15

20

I i

Arxiv

0 10000
|Si|

4

6

8

I i

Infectious

h = 1 h = 8 h = 64

Figure 4.7.: Scatter plots with the substream sizes Si on the x-axis and the
number Ii of vertices assigned to Si on the y-axis. The number of
substreams is k = 2048.

and the variance drop for h = 2 and increase with increasing h. The index size
is, in most cases, minimal for h = 8, and for most data sets, the size increases
with h > 8. The query times decrease with increasing h for most data sets.
However, for the larger data sets Youtube and StackOverflow the query times
increase with h. The reason is that for Youtube and StackOverflow, even
though the maximal substream sizes are decreasing for larger values of h, the
minimal and average substream sizes increase.

4.5.4. Dynamic Updates

We evaluated the dynamic update times for deleting 1000 randomly chosen
edges and inserting 1000 new edges. First, we computed the substream index
for k = 2048 and h = 8. Next, we ran the deletions and insertions. Figure 4.9
shows the average running times per edge for insertion and deletion. The dele-
tion times are between 0.02 and 58.2 milliseconds, and the insertion times are
between 0.45 and 722.4 milliseconds, showing that the index can be updated
efficiently. However, note that insertion is slower than deletion because the
latter is a batch operation, where for insertion, we have to insert each edge
separately.

4.6. Case Study: Temporal Closeness

We apply our index to the problem of computing the temporal closeness
introduced in Section 3.3.2. In order to rank all vertices according to their
closeness value, we have to compute all pair-wise optimal paths. We compare
our indices to the top-` algorithm introduced in Section 3.3.2 for ` = 1024
(Tc-Top-1024), and to EdgeStr (see Section 3.3.2). Table 4.7 shows the
running times. The computations were conducted on a workstation with an
AMD EPYC 7402P 24-Core Processor with 2.80 GHz and 256 GB of RAM
running Ubuntu 18.04.3 LTS with a time limit of 72 hours. For SubStream,
we used the number of substreams k = 2048 and a sketch size of h = 8. Our

75

Chapter 4. Temporal Distance Indexing

1 2 4 8 16 32 64
h

20

30

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

300

400

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

0.15

0.20

E
A

Q
u

er
y

ti
m

e
(s

)

(a) Prosper

1 2 4 8 16 32 64
h

25

50

75

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

3000

4000

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

1.0

1.5

E
A

Q
u

er
y

ti
m

e
(s

)
(b) Arxiv

1 2 4 8 16 32 64
h

5000

10000

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

10000

20000

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

4

6

E
A

Q
u

er
y

ti
m

e
(s

)

(c) Youtube

Figure 4.8.: Effect of varying the sketch size h for SubStream, k = 2048, and
h = 2i with i ∈ {0, . . . , 6} over ten runs.

Infec
tio

us

AskUbuntu
Digg

Prosper
Arxiv

Youtube

StackOverflow

100

102

R
u

n
n

in
g

ti
m

e
(m

s) Delete

Insert

Figure 4.9.: The average running times for edge deletion and edge insertion in
ms. The y-axis uses a logarithmic scale.

76

4.7. Conclusion

Table 4.7.: Running times for computing the temporal closeness in seconds (s)
and hours (h). OOT—Out of time after 72 hours.

Data set
Running Times (s)

SubStream TimeSkip EdgeStr Tc-Top-1024

Infectious 0.68 s 5.71 s 8.63 s 1.16 s
AskUbuntu 74.39 s 103.80 s 204.25 s 51.50 s
Digg 1 840.83 s 2 194.84 s 3 879.99 s 1 816.39 s
Prosper 85.54 s 676.17 s 1 272.89 s 81.68 s
Arxiv 286.06 s 508.88 s 694.77 s 701.53 s
Youtube 68.13 h OOT OOT 13.78 h
StackOverflow OOT OOT OOT 18.22 h

indices improved the running times for all data sets compared to EdgeStr.
Compared to the Tc-Top-1024 algorithm, SubStream is faster for Infectious,
Arxiv, WikiTalkFr, and Epinion, with speed-ups of 1.34, 2.45, 1.15, and 3.05,
respectively. For Digg and Prosper, SubStream is on par with Tc-Top-1024.
In the case of the remaining data sets, AskUbuntu and Youtube, Tc-Top-1024
is 1.44 and 4.94 times, respectively, faster. Only SubStream and Tc-Top-
1024 finished the computation for Youtube in the given time limit of 72 hours.
Furthermore, the indexing and the querying time of SubStream together are
less than the query times of the baselines for the Arxiv data set. Notice that in
contrast to Tc-Top-1024, our indices and EdgeStr compute the complete
ranking of all vertices. With TimeSkip, the computations are faster than
EdgeStr for all data sets. Compared to the Tc-Top-1024 algorithm applying
the TimeSkip index decreases the running times for Arxiv by 27.5%. Finally,
for StackOverflow, only the Tc-Top-1024 algorithms could finish within the
time limit.

4.7. Conclusion
The Substream index improved the running times of SSAD queries for all
data sets compared to the direct computation significantly. Our case study
showed that the application in temporal network analysis and the computation
of distance-based centrality measures profits immensely using the proposed
indexing techniques. The support of dynamic updates avoids costly complete
recomputation of the index in case of edge insertion or deletion. The Time
Skip index introduced as part of the Substream index often performs very well
on its own.

77

Chapter 5
Classification of Dissemination

We introduce a framework to lift standard graph kernels and graph neural
networks (GNNs) to the temporal domain. We explore three different ap-
proaches and investigate the trade-offs between loss of temporal information
and efficiency.

5.1. Motivation and Contribution

A prominent method, primarily used for supervised graph classification with
support vector machines, are graph kernels, which compute similarity scores
between pairs of graphs. In the last fifteen years, a plethora of graph kernels
has been published [100]. Furthermore, recently, graph neural networks have
emerged as an alternative [191, 200]. With few exceptions, both approaches
are designed for static graphs and cannot utilize temporal information. In
temporal graphs, the implied causality directs dissemination processes, i.e.,
the spread of information or disease over time. Consider, for example, a social
network where Alice and Bob were in contact before Bob and Carol became
in contact. Hence, information may have been passed from Alice to Carol but
not vice versa. Consequently, static graph kernels and graph neural networks
will inevitably fail whenever such implicit direction is essential for the learning
task.
To further exemplify this, assume that a (sub-)group in a social network

suffers from unspecific symptoms that occurred at some point in time and
are most likely caused by an unidentified disease. Here, vertices represent
persons, and edges represent contacts between them at specific points in time,
cf. Figure 5.1. An obvious question now is whether an infectious disease causes
the symptoms. However, dissemination processes are typically complex since
persons may have different risk factors of becoming infected, the transmission
rate is unknown, information about infected persons may be incomplete, and
finally, the network structure itself might suffer from noise. Therefore, this
question is difficult to answer by just analyzing a single network. By rely-
ing on similar network data of past epidemics, we can model the detection
of a dissemination process of a disease as a supervised graph classification
problem. In the simplest case, one class contains temporal graphs under a dis-

79

Chapter 5. Classification of Dissemination

1

1

4
2

2

3

4
1

4

a

b
c

d
e

f
g

G

(a) Temporal graph G:
Vertices represent
persons and edges
their interactions.

Day 1 2 3 4

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

a

b

c

d

e

f

g

G

(b) The infection spreads over time: For each day t,
there is a static graph containing only the edges
representing interactions on day t. Initially, ver-
tex c is infected (labeled red).

Figure 5.1.: Example of an epidemic outbreak.

semination process of a disease, and the other class consists of graphs where
the vertex labels cannot be explained by the temporal information, i.e., the
symptoms are not caused by an infectious disease. Another critical case is dis-
criminating temporal graphs that are subject to different infectious diseases.
For example, the process may differ in infection rate and might be caused
by different infectious diseases. Furthermore, infections or disseminated in-
formation in general often is asymptomatic and hence may not be recognized
or not reported [186]. Therefore, we additionally consider the scenario where
disseminated information is incomplete. Finally, observe that the above learn-
ing problem can also model the detection of other dissemination processes in
dynamic networks, e.g., dissemination of fake news in social media or viruses
in computer or mobile phone networks [74, 181]. Here, we consider temporal
graphs, where edges exist at specific, integral points in time, and vertex la-
bels, e.g., representing infected and non-infected, may change over time. The
key to solving these classification tasks is to take the temporal characteristics
of such graphs into account adequately. Note that the current state-of-the-
art methods for supervised graph classification are mainly designed for static
graphs [100, 191, 200]. They often lack the capability to capture temporal
information and have limited abilities to distinguish between temporal graphs
modeling different dissemination processes.
Therefore, we propose graph kernels and GNNs for classifying dissemination

processes in temporal graphs. More specifically, our main contributions are:

1. We introduce three transformations for mapping temporal graphs to
static graphs such that conventional, static kernels, and graph neural
approaches can be successfully applied. For each, we analyze the trade-
off between the loss of temporal information and the size of the resulting
static graph.

80

5.2. Related Work

2. Moreover, we present a stochastic kernel based on temporal walks with
provable approximation guarantees for large-scale problems.

3. Finally, we comprehensively evaluate our methods together with random
walk and Weisfeiler-Leman subtree graph kernels and standard graph
neural networks. For our experiments, we use real-world data sets to-
gether with simulations of epidemic spread. Our results confirm that
taking temporal information into account is crucial for detecting dissem-
ination processes. Moreover, we demonstrate that our approach works
well even if information about infected vertices is incomplete or missing.

5.2. Related Work

Graph kernels have been studied extensively in the past 15 years, see [100].
Important approaches include random-walk and shortest paths-based ker-
nels [17, 57, 101, 167], as well as the Weisfeiler-Leman subtree kernel [128, 164].
Further recent works focus on assignment-based approaches [99, 137], spectral
approaches [98], and graph decomposition approaches [136]. Almost all kernels
focus on static graphs, with few exceptions. In [110], a family of algorithms to
recompute the random walk kernel efficiently when graphs are modified is pre-
sented. Wu et al. [187] proposed graph kernels for human action recognition
in video sequences. To this end, they encode each frame’s features as well as
the dynamic changes between successive frames by separate graphs, which are
then compared by random walk kernels. Paaßen et al. [146] use graph kernels
for predicting the next graph in a dynamically changing series of graphs. Sim-
ilarly, Anil et al. [6] propose spectral graph kernels to predict the evolution of
social networks. Spatio-temporal convolution kernels for identifying trajectory
data of moving objects were introduced in [97].
Recently, graph neural networks [63] emerged as an alternative to graph

kernels. Here, two recent surveys [191, 200] provide a thorough overview of
GNNs. Notable instances of this model include [45, 69, 111] and the spec-
tral approaches proposed in [22, 40, 94]—all of which descend from early work
in [95, 121, 163]. A unifying message passing architecture can be found in [63].
The authors of [130, 117, 192] investigate the power of GNNs and the relation-
ship to the Weisfeiler-Leman algorithm. For dynamic graphs, several works
focus on link prediction in single graphs, e.g., [64, 134, 174], or discuss vertex
classification, e.g., [44, 150]. In [195], the authors introduce a spatio-temporal
graph convolution network for recognition of skeleton movement. The authors
of [83] use spatio-temporal graphs representing activities to infer recurrent
neural networks for the recognition of these activities. Traffic forecasting is
another field of application for GNNs in dynamic settings that attracted at-
tention recently, e.g., [67, 196]. Here, graphs are static road networks, and
distributed sensors measure the vehicle traffic at different positions and times.
Hence, the dynamics are given by the temporally changing amount of traffic,
which the authors of [112] model as a diffusion process in a static street net-

81

Chapter 5. Classification of Dissemination

work. However, to the best of our knowledge, neither graph kernels nor neural
approaches have been suggested to take the temporality of edges and labels,
as well as dissemination processes on graphs into account.

5.3. Static Graph Classification

Our proposed framework can be used to lift static graph kernels and GNNs to
the temporal domain. We now give an overview of the static approaches. In
the following, we refer to multisets with {{·}} and to the scalar product between
two vectors a and b with 〈a, b〉.

Kernels for Static Graphs

A kernel on a non-empty set X is a symmetric, positive-semidefinite function
κ : X × X → R. Equivalently, a function κ is a kernel if there is a feature
map φ : X → H to a Hilbert space H with inner product 〈·, ·〉, such that
κ(x, y) = 〈φ(x), φ(y)〉 for all x and y in X . Let G be the set of all graphs, then
a symmetric, positive-semidefinite function G × G → R is a graph kernel. We
briefly summarize two well-known kernels for static graphs.

Random Walk Kernels Random walk kernels measure the similarity of
two graphs by counting their (weighted) common walks [57, 167]. For a
walk w = (v1, e1, . . . , vk+1) let L(w) = (l(v1), l(e1), . . . , l(vk+1)) denote the
labels encountered on the walk. Two walks w1 and w2 are considered to be
common if L(w1) = L(w2), i.e., L(w1) and L(w2) are component-wise equal.
We consider the k-step random walk kernel κkRW(G,H) = 〈φRW(G), φRW(H)〉
counting walks up to length k. Here, the feature map φRW is defined by
φRW(G)s = |{w ∈ W`(G) | s = L(w)}|, where s ∈ Σ2`+1 and W`(G) is the set
of walks in G of length ` ∈ {1, . . . , k}.

Weisfeiler-Leman Subtree Kernels Weisfeiler-Leman subtree kernels are
based on the well-known Weisfeiler-Leman algorithm for isomorphism test-
ing [164]: Let G and H be graphs, and l be a labeling function V (G)∪V (H)→
Σ. In each iteration i ≥ 0, the algorithm computes a labeling function
li : V (G) ∪ V (H) → Σ, where l0 = l. Now in iteration i > 0, we set
li(v) = (li−1(v), {{li−1(u) | u ∈ N(v)}}) for v in V (G) ∪ V (H). In prac-
tice, one maps the above pair to a unique element from Σ. The idea of the
Weisfeiler-Leman subtree kernel [164] is to compute the above algorithm for
h ≥ 0 iterations, and after each iteration i, compute a feature map φi(G) in
R|Σi| for each graph G, where Σi ⊆ Σ denotes the image of li. Each com-
ponent φi(G)c counts the number of occurrences of vertices labeled with c in
Σi. The overall feature map φWL(G) is defined as the concatenation of the
feature maps of all h iterations. Then, the Weisfeiler-Leman subtree kernel
for h iterations is κhWL(G,H) = 〈φWL(G), φWL(H)〉. This kernel can also be
interpreted in terms of walks. A label li(v) represents the unique rooted tree

82

5.4. Modeling Dissemination on Temporal Graphs

of height i (up to isomorphism) obtained by simultaneously taking all possible
walks of length i starting at v, where repeated vertices visited in the past are
treated as distinct.

Graph Neural Networks

We combine our framework with graph neural networks. Specifically, we use
Graph Isomorphism Networks (GINs) [192], which have the same power as the
Weisfeiler-Leman algorithm in terms of distinguishing non-isomorphic graphs.
Here, the hidden state h(t)

v for vertex v ∈ V is computed using

h(t)
v = MLP(t)

((
1 + ε(t)

)
· h(t−1)

v +
∑

w∈N(v)
h(t−1)
w

)
,

with MLP being a multi-layer perceptron. The weight ε is a learnable param-
eter. To incorporate edge features, we use

h(t)
v = MLP(t)

((
1 + ε(t)

)
· h(t−1)

v +
∑

w∈N(v)
σ
(
h(t−1)
w + MLP(t)

e (evw)
))

,

where evw is a vectorial representation of the edge label between vertices v and
w, e.g., a one-hot encoding, and MLPe is a multi-layer perceptron that maps
the edge embedding to the same dimension as the vertex embedding. Finally,
σ is a non-linear function applied componentwise, e.g., a rectified linear unit
(ReLU).

5.4. Modeling Dissemination on Temporal Graphs

To model dissemination on the temporal graphs, we use vertex labels that can
change over time. We define labeled temporal graphs.

Definition 5.1. A labeled temporal graph G = (V, E , l) consists of a finite
set of vertices V , a finite set of temporal edges E, and a labeling function. The
labeling function l : V ×T → Σ assigns a label to each vertex at each time step
t ∈ T (G).

We may omit labeled when referring to labeled and directed temporal graphs
in the following. Furthermore, we assume that traversing an edge in a temporal
walk takes one unit of time and is not possible instantaneously. Therefore,
this chapter uses a global transition time of one for all edges. Next, we define
waiting times and label sequences for temporal walks.

Definition 5.2. Let G = (V,E, l) be a labeled temporal graph, and let ω =
(v1, e1 = (v1, v2, t1), v2, . . . , e` = (v`, v`+1, t`), v`+1) be a temporal walk in G.
The waiting time at vertex vi with 1 < i ≤ ` is ti − (ti−1 + 1). We define
the function L that maps a temporal walk ω to the label sequence L(ω) =
(l(v1, t1), l(v2, t1 + 1), l(v2, t2), l(v3, t2 + 1), . . . , l(v`, t`), l(v`+1, t` + 1)).

83

Chapter 5. Classification of Dissemination

Table 5.1.: Overview of the trade-offs of the proposed transformations. The
third column describes the ability of the approaches to take waiting
times into account: 7 not supported, H always, 3 approach is
flexible.

Transformation Preserves information Waiting times Size of static graph

Reduced Graph Representation 7 7 O(|V |2)
Directed Line Graph Expansion 3 3 O(|E|2)
Static Expansion 3 H O(|E|)

5.5. A Framework for Temporal Graph
Classification

In the following, temporal graphs are mapped to static graphs such that
conventional static kernels can be applied, e.g., the random walk or Weisfeiler-
Leman subtree kernel.
Temporal walks enable us to gain insights into the interpretation of the

derived temporal graph kernels whenever the static graph kernel can be un-
derstood in terms of walks. This is natural in the case of random walk kernels
but also for the widely-used Weisfeiler-Leman subtree kernel, cf. Section 5.3.
We introduce three approaches that differ in the size of the resulting static
graph and in their ability to preserve temporal information as well as to model
waiting times; see Table 5.1 for an overview.

5.5.1. Reduced Graph Representation

First, we propose a straightforward approach to incorporate temporal informa-
tion in static graphs. In a temporal graph G = (V, E , l), a pair of vertices may
be connected with multiple edges with pairwise different availability times.
In this case, we only preserve the edge with the earliest availability time and
delete all other edges. We obtain the subgraph G′ = (V, E ′, l) with E ′ ⊆ E .
From this we construct a static, labeled, directed graph RG(G) = (V,E, ls) by
inserting an edge e = (u, v) into E for every temporal edge e′ = (u, v, t′) ∈ E ′.
We set the new static edge labels ls(e) to the position τ(t′) in the ordered
sequence of all (remaining) availability times t′ in E ′. Next, the temporal de-
velopment of the dissemination is encoded using the vertex labels. Therefore,
if the label of a vertex v ∈ V in G stays constant over time, we set ls(v) = 0.
For the remaining vertex labels, we take the ordered sequence TV of all points
in time when any vertex label changes for the first time. Then, for each vertex
changing its label for the first time at time tl, we set ls(v) = τ(tl), where τ(tl)
denotes the position of tl in the sequence TV . Applying this procedure results
in the reduced graph representation RG(G) = (V,E, ls). The transformation
may lead to a loss of information. However, notice that RG(G) is a simple,
undirected graph with at most one edge between each pair of vertices. Hence,
its number of edges is bounded by |V |2, which can be much smaller than |E|.

84

5.5. A Framework for Temporal Graph Classification

5.5.2. Labeled Directed Line Graph Expansion

In order to avoid a loss of information, we propose to represent labeled tempo-
ral graphs by labeled directed static graphs that are capable of fully encoding
temporal information. To this end, we extend the directed line graph expan-
sion from Definition 3.9.

Definition 5.3 (Labeled directed line graph expansion). Given a temporal
graph G = (V, E , l), the directed line graph expansion DL(G) = (V ′, E′, l′) is
the directed graph, where every temporal edge (u, v, t) is represented by a vertex
ntuv, and there is an edge from ntuv to nsvy if t < s. For each vertex ntuv, we
set the label l′(ntuv) = (l(u, t), l(v, t+ 1)).

Figure 5.2b shows an example of the transformation of the graph shown
in Figure 5.2c. In Figure 5.2b, the walk (n2

ca, n
3
ab, n

7
bc) in DL(G) of length 2

corresponds to the temporal walk (c, (c, a, 2), a, (a, b, 3), b, (b, c, 7), c) of length
3 in the temporal graph G.
The vertex labeling of DL(G) is sufficient to encode all the label information

of the temporal graph G, i.e., two temporal walks exhibit the same label
sequence (according to the function L in Definition 5.2) if and only if the
corresponding walks in the directed line graph expansion have the same label
sequence. This is a direct consequence of Lemma 3.5. Therefore, all static
kernels that can be interpreted in terms of walks are lifted to temporal graphs
and the concept of temporal walks by applying them to the directed line
graph expansion. Moreover, the directed line graph expansion supports to take
waiting times into account by annotating an edge

(
nsuv, n

t
vw

)
with the waiting

time t − s − 1 at v. Since a cycle in the directed line graph expansion would
correspond to a cyclic sequence of edges with strictly increasing time stamps,
the directed line graph DL(G) of a temporal graph G is acyclic. Consequently,
the maximum length of a walk in the directed line graph expansion is bounded.
Therefore, there is no need to down-weight walks with increasing length to
ensure convergence, which avoids the problem of halting [167].

5.5.3. Static Expansion

A disadvantage of the directed line graph expansion is that it may lead to a
quadratic blowup with respect to the number of temporal edges. Here, we
propose an approach that utilizes the static expansion of a temporal graph
resulting in a static graph of linear size. The static expansion SE(G) of a
temporal graph G is a static, directed, and acyclic graph that contains the
temporal information of G. First, we introduce copies of vertices for times
at which edges arrive or leave a vertex. We connect these new vertices with
different types of edges to be able to distinguish between taking an edge of
a temporal walk or waiting at a vertex. In [188], the authors used a similar
transformation of the temporal graph into a static representation for solving
minimum paths problems. However, their transformation differs slightly in
the construction and does not contain edges for representing waiting or node

85

Chapter 5. Classification of Dissemination

labels. In the following, we describe our static expansion in detail. For
G = (V, E , l), we construct SE(G) = (U,E, l′) with U being a set of time-
vertices. Each time-vertex (v, t) ∈ U represents a vertex v ∈ V at time t.
Time-vertices are connected by directed edges that mirror the flow of time, i.e.,
if an edge from (v, t) ∈ U to (u, s) ∈ U exists, then t < s. For each temporal
edge e ∈ E , we introduce at most two time-vertices that represent the start-
and endpoints of e. Next, we add edges that correspond to temporal edges in
E and additional edges that represent possible waiting times at a vertex. For
the following definition, let the bijection τv : T (v) → {1, . . . , |T (v)|} assign to
each time its position in the ordered sequence of T (v) for v ∈ V .

Definition 5.4 (Static expansion). For a temporal graph G = (V, E , l), we
define the static expansion as a labeled, directed graph SE(G) = (U,E, l′),
with vertex set U = {(u, t), (v, t + 1) | (u, v, t) ∈ E}, and edge set E =
EN ∪ EW1 ∪ EW2, where

EN =
{(

(u, t), (v, t+ 1)
)
| (u, v, t) ∈ E

}
,

EW1 =
{(

(w, i+ 1), (w, j)
)
| (w, i+ 1), (w, j) ∈ U ,

i, j ∈ T (w), τw(i) + 1 = τw(j) and i+ 1 < j
}
, and

EW2 =
{(

(w, i), (w, j)
)
| (w, i), (w, j) ∈ U ,

i, j ∈ T (w), τw(i) + 1 = τw(j) and i < j
}
.

For each time-vertex (w, t) ∈ U , we set l′((w, t)) = l(w, t). For each edge in
e ∈ EN , we set l′(e) = η, and for each edge in e ∈ EW1∪EW2, we set l′(e) = ω.

Figure 5.2c shows an example of the transformation. Notice that the label
sequence of a static walk in SE(G) encodes the times of waiting. Since for all
edges ((u, t1), (v, t2)) ∈ E it holds that t1 < t2, the resulting graph is acyclic.
Finally, we have the following result.

Theorem 5.1. The size of the static expansion SE(G) = (U,E, l′) of a tem-
poral graph G is in O(|E|).

Proof. The size of U is bounded by 2 · |E|. At most two vertices for each
temporal edge e ∈ E are inserted. For each e ∈ E , there are at most three
edges in E. One edge represents using e at time t, and two possible waiting
edges, one at each vertex inserted for edge e. Consequently, |E| ∈ O(|E|).

5.6. Approximation for the Directed Line Graph
Expansion

Although the directed line graph expansion preserves the temporal informa-
tion and is able to model waiting times, see Table 5.1 and Lemma 3.5, the
construction may lead to a quadratic blowup in graph size (Theorem 3.6).
Hence, we propose a stochastic variant based on sampling temporal walks
with provable approximation guarantees.

86

5.6. Approximation for the Directed Line Graph Expansion

a

cb

3

2

7

3 27

(a)

a

cb

3

2

7

3 27

n2
ac

n2
can3

ba

n3
ab

n7
cb

n7
bc

(b)
(a, 2) (a, 3)

(b, 3)

(c, 2) (c, 3)

(a, 4)

(b, 4)

(c, 7) (c, 8)

(b, 7) (b, 8)

ω

ω

ω

ω

ω

η

η

η

η

η

η

(c)

Figure 5.2.: (a) A temporal graph G with (static) red and black vertex labels.
(b) Directed line graph expansion DL(G) (edges are in solid and
vertex labels are omitted) (c) Static expansion SE(G).

Let G = (V, E , l) be a temporal graph, the algorithm approximates the
normalized feature vector φ̂kRW(G) = φkRW(G)/‖φkRW(G)‖1, resulting in the
normalized kernel κ̂kRW(G1,G2) = 〈φ̂kRW(G1), φ̂kRW(G2)〉 for two temporal graphs
G1 and G2. The algorithm starts by sampling S temporal walks at random
(with replacement) from all possible walks in G, where the exact value of S
will be determined later. We compute a histogram φ̃kRW(G), where each entry
φ̃kRW(G)s counts the number of temporal walks w with L(w) = s encountered
during the above procedure, normalized by 1/|S|. Algorithm 5.1 shows the
pseudocode.

Algorithm 5.1

Input: A temporal graph G, a walk length k ∈ N, S ∈ N.
Output: A feature vector φ̃kRW(G) of normalized temporal walk counts.

1: Initialize feature vector φ̃kRW(G) to a vector of zeros
2: parallel for 1, . . . , S do
3: sample k-step walk w
4: φ̃kRW(G)L(w) ← φ̃kRW(G)L(w) + 1/S
5: end
6: return φ̃kRW(G)

We get the following result, showing that Algorithm 5.1 can approximate

87

Chapter 5. Classification of Dissemination

the normalized (temporal) random-walk kernel κ̂kRW(G1,G2) up to an additive
error.

Theorem 5.2. Let F be a set of temporal graphs with label alphabet Σ.
Moreover, let k > 0, and let Γ (Σ, k) denote an upperbound for the number
of temporal walks of length k with labels from Σ. By setting

S = log(2 · |F| · Γ (Σ, k) · 1/δ)
2(λ/Γ (Σ,k))2 , (5.1)

Algorithm 5.1 approximates the normalized temporal random walk kernel κ̂RW
with probability (1− δ), such that

sup
G1,G2∈F

∣∣∣κ̂kRW(G1,G2)− 〈φ̃kRW(G1), φ̃kRW(G2)〉
∣∣∣ ≤ 3λ.

Proof. First, by an application of the Hoeffding bound [75] together with the
union bound, it follows that by setting

S = log(2 · |F| · Γ (Σ, k) · 1/δ)
2ε2 ,

it holds that with probability 1− δ,∣∣∣φ̂kRW(Gi)j − φ̃kRW(Gi)j
∣∣∣ ≤ ε,

for all j for 1 ≤ j ≤ Γ (Σ, k), and all temporal graphs Gi in F . Let G1 and G2
in F , then

κ̃kRW(G1,G2) =
〈
φ̃kRW(G1), φ̃kRW(G2)

〉
≤
Γ (Σ,k)∑
i=1

(
φ̂kRW(G1)i · φ̂kRW(G2)i

)

+ ε ·
Γ (Σ,k)∑
i=1

(
φ̂kRW(G1)i + φ̂kRW(G2)i

)
+
Γ (Σ,k)∑
i=1

ε2

≤ κ̂kRW(G1,G2) + 2Γ (Σ, k) · ε+ Γ (Σ, k) · ε.

The last inequality follows from the fact that the components of φ̂kRW(·) are in
[0, 1]. The result then follows by setting ε = λ/Γ (Σ,k).

Algorithm 5.1 can be easily modified for the static (non-temporal) graphs
and applied to all three of our kernel approaches.
So far, we assumed that we have access to an oracle to sample the tem-

poral walks uniformly at random from the temporal graph G. One possible
practical way to obtain the uniformly sampled temporal walks is to use rejec-
tion sampling. To this end, we start by uniformly sampling a random edge
e1 = (u, v, t1) ∈ E and extend it to a k-step temporal random walk w. At each
step, we choose an incident edge uniformly from all edges with availability

88

5.7. Experiments

time not earlier than the arrival time at the current vertex. The probability
of choosing a temporal walk w = (v1, e1, . . . , vi, ei = (vi, vi+1, ti), . . . , ek, vk+1)
from all possible temporal walks of length k is then Pw = 1

|E| ·Π
k
i=2

1
d(vi,ti−1+1)

with d(vi, ti−1 + 1) being the number of incident edges to vi with availability
time at least ti−1 + 1, i.e., the arrival time at vi. On the other hand, a lower
bound for the probability of any k-step temporal walk is Pmin = 1

|V | ·
1
∆k

with
∆ being the maximal out-degree in G. To obtain uniform probabilities for the
sampled walks, we accept a walk only with probability Pmin

Pw
. Otherwise, we

reject w and restart the walk sampling procedure. Hence, each accepted walk
has the uniform probability of Pw · Pmin

Pw
= Pmin.

Notice that we can forgo the rejection step in the case that the graphs for
which we compute the kernel have similar biases during the walk sampling
procedure.

5.7. Experiments

To evaluate our proposed approaches and investigate their benefits compared
to static graph kernels and graph neural networks, we address the following
questions:

Q1. Accuracy and running time: How well do our temporal approaches
compare to each other and the static approaches in terms of (a) accuracy
and (b) running time?

Q2. Approximation quality: How does the approximation for the directed
line graph kernel compare to the exact algorithm in terms of running time
and accuracy?

Q3. Incomplete knowledge: How is the classification accuracy affected by
incomplete knowledge of the dissemination process?

5.7.1. Data Sets

In order to evaluate our approaches in different settings of information dis-
semination, we chose real-world data sets of physical and digital human inter-
actions. We selected six temporal graph data sets representing different types
of social interactions. The first three data sets contain physical human inter-
actions and allow to model, e.g., dissemination of infectious diseases or the
spreading of rumors. The Infectious data set consists of contacts between vis-
itors of the exhibition Infectious: Stay Away [82]. Highschool represents inter-
actions between students in twenty-second intervals over seven days. Similarly,
MIT is a temporal graph of interactions among students of the Massachusetts
Institute of Technology [46]. The remaining three data sets are digital social
networks. These allow us to model the spread of computer viruses, fake news,
or viral memes. More specifically, Facebook is a subset of the activity of a
Facebook community [180], and the Tumblr graph contains quoting between

89

Chapter 5. Classification of Dissemination

Table 5.2.: Statistics and properties of the data sets before and after the
transformations. Original are the statistics of the data sets with
no transformation applied, RG after applying the reduced graph,
LD after the directed line graph, and SE the static expansion
transformation. The number of graphs (size) is not affected by
the transformations. For the directed graphs (LD, SE) we report
the arithmetic mean of the maximal out-degree.

Property
Data set

MIT Highschool Infectious Tumblr Dblp Facebook

O
rig

in
al

size 97 180 200 373 755 995
∅ |V | 20 52.3 50 53.1 52.9 95.7
min |E| 63 151 109 48 105 88
max |E| 3 363 589 505 190 275 181
∅ |E| 734.6 272.4 229.9 99.9 160.0 134.5
∅ max d(v) 712.1 96.8 46.1 25.1 27.1 21.2

RG

∅ |V | 20 52.3 50 53.1 52.9 95.7
min |E| 19 47 78 28 67 75
max |E| 38 170 214 147 155 119
∅ |E| 36.6 112.1 126.0 71.7 99.8 101.7
∅ max d(v) 680.7 30.8 22.8 17.9 16.5 15.1

DL

∅ |V | 1 469.2 544.8 459.7 199.8 320.1 269.0
min |E| 1 236 3 888 741 492 581 421
max |E| 6 397 802 35 736 17 096 2 613 3 331 1685
∅ |E| 648 697.0 11 550.3 4 592.6 553.2 1 454.1 855.4
∅ max d+(v) 708.5 94.4 40.2 1 107.0 25.9 19.9

SE

∅ |V | 1 621 614.1 314.4 313.5 314.5 445.6
min |E| 308 650 348 202 386 328
max |E| 16 168 2 526 1 998 822 916 816
∅ |E| 3 778.3 1 176.1 821.2 442.4 574.2 553.7
∅ max d+(v) 8.9 10.8 12.8 5.9 10.4 7.9

Tumblr users [107]. Rozenshtein et al. [158] used these graphs and epidemic
simulations to reconstruct dissemination processes. Finally, DBLP is a tem-
poral co-author graphs from a subset of the Digital Bibliography & Library
Project database. Appendix A provides further details of the temporal graphs.
To obtain data sets for supervised graph classification, we generated induced

subgraphs by starting a breadth-first search (BFS) run from each vertex. We
terminated the BFS when at most 20 vertices in case of the MIT, 50 vertices in
case of the Infectious, 60 vertices in case of the Highschool, Tumblr, or DBLP,
and 100 vertices in the case of the Facebook graph had been added. Using
the above procedure, we generated between 97 and 995 graphs for each of the
data sets. See Table 5.2 for data set statistics. In the following, we describe
the model for the dissemination process and the classification tasks.

• Dissemination Process Simulation We simulated a dissemination pro-
cess on each of the subgraphs according to the susceptible-infected (SI)
model—a common approach to simulate epidemic spreading, e.g., see [9].
In the SI model, each vertex is either susceptible or infected. An infected
vertex is part of the dissemination process. Initially, a seed of s vertices
is selected randomly and labeled as infected. Infections propagate in dis-

90

5.7. Experiments

crete time steps along temporal edges with a fixed probability 0 < p ≤ 1.
If a vertex is infected, it stays infected indefinitely. A newly infected ver-
tex may infect its neighbors at the next time step. The simulation runs
until at least |V | · I vertices with 0 < I ≤ 1 are infected, or further
infections are impossible.

• Classification Tasks We consider two classification tasks. The first is
the discrimination of temporal graphs with vertex labels corresponding
to observations of a dissemination process and temporal graphs in which
the labeling is not a result of a dissemination process. Here, for each data
set, we run the SI simulation with equal parameters of s = 1, p = 0.5 and
I = 0.5 for all graphs. We used half of the data set as our first class. For
our second class, we used the remaining graphs. For each graph in the
second class, we counted the number Vinf of infected vertices, reset the
labels of all vertices back to uninfected, and finally infected Vinf vertices
randomly at a random time.

The second classification task is the discrimination of temporal graphs
that differ in the dissemination processes itself. Therefore, we run the
SI simulation with different parameters for each of the two subsets. For
both subsets we set s = 1 and I = 0.5. However, for the first subset
of graphs, we set the infection probability p = 0.2, and for the second
subset, we set p = 0.8. The simulation repeatedly runs until at least
|V | · I vertices are infected, or no more infections are possible. Notice
that counting the number of infected vertices is not sufficient to solve
the classification tasks.

To evaluate our methods under conditions with incomplete information,
we generated additional data sets based on Infectious for both classifica-
tion tasks. For each graph, we randomly set the labels of {10%, . . . , 80%}
of the infected vertices back to non-infected. We repeated this ten times
resulting in 80 data sets for each of the two classification tasks.

5.7.2. Graph Kernels and Graph Neural Networks

In this section, we describe the graph kernels and GNNs we used for the
experiments.

Graph kernels As a baseline, we use the k-step random walk (Stat-RW)
and the Weisfeiler-Leman subtree (Stat-WL) kernel on the static graphs ob-
tained by interpreting the time stamps as discrete edge labels and assigning
the concatenated sequence of its labels to each vertex. To evaluate the three
approaches of Section 5.5, we use the k-step random walk and the Weisfeiler-
Leman subtree kernel, resulting in the following kernel instances: (1) RG-RW
and RG-WL, which use the reduced graph representation, (2) DL-RW and
DL-WL, which use the directed line graph expansion, (3) SE-RW and SE-WL,
which use the static expansion. We evaluate the approximation (APPROX)

91

Chapter 5. Classification of Dissemination

for the directed line graph expansion with sample sizes S = 50, S = 100 and
S = 250. For each kernel, we computed the normalized Gram matrix.

GNN models We use a GNN model based on the GIN architecture intro-
duced in [192], see Section 5.3. The final GNN layer is fed into a four-layer
MLP followed by a softmax function. Alternatively, we used a Jumping Knowl-
edge (JK) approach [193] to combine the outputs of all layers.
Our neural networks were trained for 200 epochs using the Adam opti-

mizer with cross-entropy loss [93]. Analogously to the kernel case, we trained
GNNs on the static graphs obtained by interpreting the time stamps as dis-
crete edge labels and assigning to each vertex the concatenated sequence of its
labels (Stat-GIN and Stat-JK). Furthermore, for each of our three transfor-
mations, we trained GNNs by using the transformed data sets. We have (1)
RG-GIN and RG-JK for the reduced graph, (2) DL-GIN and DL-JK for the
directed line graph expansion, and (3) SE-GIN and SE-JK for the static ex-
pansion. Our GNN approaches are implemented using the PyTorch Geometric
library [52].

5.7.3. Experimental Protocol

We report the classification accuracies obtained with the C-SVM implemen-
tation of LIBSVM [29] and the neural networks, using 10-fold cross valida-
tion. Hyperparameters for kernel as well as neural approaches were select-
ing using the approach proposed in [129]. The C-parameter of the C-SVM
(C ∈ {10−3, 10−2, . . . , 102, 103}), the number of steps of the random walk
kernel (k ∈ {1, . . . , 5}) and the number of iterations of the Weisfeiler-Leman
subtree kernel (h ∈ {1, . . . , 5}) were selected based on validation set perfor-
mance. The feature dimension of the neural networks was fixed to 256, and
the numbers of layers were selected from {1, . . . , 5} based on validation set
performance. The batch size and the learning rate were fixed to 64. We used
a learning rate decay of 0.5 with a patience parameter of 5, a starting learning
rate of 0.01 and a minimum of 10−6 We repeated each 10-fold cross-validation
ten times with different random folds and reported average accuracy and stan-
dard deviations.
All neural experiments were conducted on a workstation with four Nvidia

Tesla V100 GPU cards with 32GB of GPU memory running Oracle Linux
Server 7.7. All other experiments were conducted on a workstation with
an Intel Xeon E5-2640v3 with 2.60 GHz and 128 GB of RAM running
Ubuntu 16.04.6 LTS using a single core. We used GNU C++ Compiler 5.5.0
with the flag –O2.

5.7.4. Results and Discussion

In the following, we answer questions Q1 to Q3.
Q1. Accuracy and running time: Table 5.3 and Table 5.4 show that
taking temporal information into account is crucial. Our approaches lead to

92

5.7. Experiments

Table 5.3.: Classification accuracy in percent and standard deviation for the
first classification task. For each data set, we highlight the highest
accuracy. OOM—Out of memory.

Kernel/NN
Data set

MIT Highschool Infectious Tumblr Dblp Facebook

St
at
ic

Stat-RW 61.03 ±2.4 61.61 ±4.3 75.80 ±1.6 79.50 ±1.6 83.64 ±0.8 85.46 ±0.5
Stat-WL 43.48 ±1.9 48.38 ±1.5 64.95 ±5.3 76.87 ±0.9 78.36 ±0.6 82.41 ±0.6
Stat-GIN 65.20 ±4.5 50.77 ±5.4 66.05 ±3.7 74.46 ±2.1 85.37 ±1.5 87.22 ±0.8
Stat-JK OOM 49.17 ±3.7 53.60 ±3.8 71.69 ±1.7 85.88 ±0.7 85.68 ±0.9

Te
m
po

ra
l

RG-RW 61.31 ±2.7 90.16 ±1.0 89.30 ±1.0 74.99 ±1.9 90.60 ±1.0 82.86 ±0.6
RG-WL 81.88 ±1.1 89.88 ±0.9 91.75 ±1.0 70.50 ±1.0 90.45 ±0.5 81.15 ±0.8
RG-GIN 50.65 ±4.2 51.11 ±2.5 58.20 ±4.0 72.63 ±1.8 86.36 ±0.9 89.54 ±0.8
RG-JK 50.74 ±3.1 50.83 ±4.9 47.85 ±2.7 69.14 ±3.6 86.43 ±0.7 87.27 ±0.6

DL-RW 92.91 ±0.9 98.33 ±0.7 97.05 ±0.8 94.64 ±0.5 98.16 ±0.1 96.46 ±0.1
DL-WL 90.67 ±1.6 98.88 ±0.4 97.35 ±1.5 94.05 ±0.9 98.56 ±0.3 96.59 ±0.4
DL-GIN OOM 88.67 ±2.1 92.85 ±1.7 90.39 ±1.4 97.72 ±0.4 94.29 ±0.2
DL-JK OOM 86.22 ±2.6 91.55 ±2.3 89.30 ±1.5 97.57 ±0.3 93.05 ±0.6

SE-RW 88.56 ±1.0 96.89 ±1.2 97.60 ±0.6 93.97 ±0.9 98.65 ±0.3 95.46 ±0.2
SE-WL 87.31 ±1.9 96.72 ±0.7 94.45 ±1.1 93.51 ±0.6 97.38 ±0.2 95.39 ±0.4
SE-GIN 75.98 ±3.7 92.28 ±1.2 93.10 ±1.9 92.78 ±1.1 97.87 ±0.3 94.72 ±0.5
SE-JK 75.37 ±3.6 92.33 ±2.7 93.50 ±1.9 92.30 ±0.9 97.14 ±0.9 95.02 ±0.6

APPROX (S=50) 81.88 ±1.0 81.66 ±1.7 84.55 ±1.6 86.92 ±1.2 92.56 ±0.9 89.51 ±0.5
APPROX (S=100) 83.69 ±3.6 86.11 ±1.2 89.35 ±1.6 90.62 ±0.6 94.92 ±0.7 92.55 ±0.4
APPROX (S=250) 84.26 ±3.3 91.05 ±6.4 91.85 ±1.7 92.73 ±0.9 97.03 ±0.4 94.97 ±0.4

improvements in accuracy over all data sets. In most cases, the improvement
is substantial. For the first classification task, DL-RW and DL-WL reach
the best accuracies for all but the Tumblr data set, here SE-RW is best.
However, also for the other data sets, SE-RW and SE-WL are on par with
slightly lower accuracies. The results for DL-GIN, DL-JK, SE-GIN and SE-
JK are for all data sets substantially better than for Stat-GIN and Stat-JK,
with exception of the MIT data set, for which both DL-GIN and DL-JK
run out of memory and SE-GIN and SE-JK do not perform better than the
baseline or kernels. Combined with the reduced graph transformation, the
neural networks perform worse or not much better than the baseline and the
kernels for all data sets. The reason for the poor performance of the reduced
graph approach is its inherent loss of information. Similarly, static approaches
cannot capture the temporal order of the dissemination process. This prevents
them from distinguishing well between the two classes. Furthermore, the
static approaches use the time stamps of temporal edges as conventional edge
labels. Consider two temporal graphs with the same temporal and topological
structure, but one is shifted so far ahead in time that the graphs do not
share any edge label. The static approaches will not recognize these graphs as
similar, even if they allow the same sets of label sequences from temporal walks.
On the other hand, the static expansion and the directed line graph expansion
maintain the temporal information and perform in most cases similarly well.
The out-of-memory errors for Stat-JK together with the MIT data set are
caused by a large number of possible edge features, i.e., the time stamps
interpreted as discrete edge labels.

93

Chapter 5. Classification of Dissemination

Table 5.4.: Classification accuracy in percent and standard deviation for the
second classification task. For each data set, we highlight the
highest accuracy. OOM—Out of memory.

Kernel/NN
Data set

MIT Highschool Infectious Tumblr Dblp Facebook

St
at
ic

Stat-RW 56.84 ±2.6 62.83 ±2.9 63.05 ±1.4 65.26 ±1.9 61.17 ±0.9 65.76 ±1.1
Stat-WL 42.42 ±3.9 60.83 ±3.2 63.60 ±1.3 68.31 ±1.5 63.11 ±0.9 68.92 ±0.9
Stat-GIN 55.60 ±11.0 54.05 ±4.7 55.25 ±3.3 64.99 ±1.1 61.92 ±1.2 68.25 ±1.5
Stat-JK OOM 53.16 ±3.2 53.00 ±2.9 65.42 ±2.8 61.34 ±1.1 67.73 ±1.7

Te
m
po

ra
l

RG-RW 58.03 ±3.7 77.33 ±2.4 72.05 ±2.2 68.48 ±1.5 63.24 ±1.2 66.68 ±0.9
RG-WL 66.81 ±2.0 82.78 ±1.3 77.40 ±1.2 68.25 ±1.2 66.16 ±0.5 66.96 ±0.7
RG-GIN 53.80 ±16.0 53.61 ±3.5 51.80 ±4.2 64.70 ±2.4 60.24 ±1.8 67.75 ±1.3
RG-JK 51.80 ±9.7 54.61 ±2.9 52.60 ±3.2 65.50 ±2.6 61.00 ±1.1 67.75 ±1.0

DL-RW 82.64 ±2.1 91.44 ±1.1 87.35 ±1.3 76.51 ±0.5 81.79 ±0.9 79.97 ±0.5
DL-WL 40.87 ±3.6 87.11 ±1.7 77.55 ±2.0 78.69 ±0.8 74.47 ±1.1 79.44 ±0.5
DL-GIN OOM 89.11 ±2.0 80.60 ±2.2 75.45 ±2.4 80.05 ±1.1 83.16 ±0.9
DL-JK OOM 85.00 ±2.8 75.70 ±3.5 73.10 ±1.8 79.98 ±1.3 82.26 ±1.1

SE-RW 51.03 ±5.1 90.77 ±1.1 83.60 ±1.1 77.09 ±1.0 83.31 ±1.0 79.56 ±0.6
SE-WL 46.52 ±3.9 91.55 ±0.9 79.60 ±1.5 78.64 ±1.4 81.24 ±0.6 74.68 ±0.7
SE-GIN 51.40 ±11.1 85.88 ±2.1 75.05 ±3.4 73.23 ±1.7 80.72 ±1.1 82.21 ±0.9
SE-JK 51.40 ±10.9 82.44 ±2.0 74.25 ±2.4 74.55 ±1.4 81.18 ±1.0 80.46 ±0.9

APPROX (S=50) 55.81 ±3.2 77.94 ±1.8 71.70 ±2.2 72.96 ±1.4 68.70 ±0.8 71.96 ±0.8
APPROX (S=100) 59.24 ±5.5 83.56 ±1.1 76.25 ±2.5 73.03 ±2.3 72.50 ±0.7 72.80 ±0.6
APPROX (S=250) 59.48 ±3.9 88.56 ±1.7 78.75 ±3.0 75.47 ±1.2 74.44 ±0.9 76.54 ±1.3

We have a similar situation for the second classification task; our temporal
kernels and neural networks beat the static kernels in all cases. The Stat-RW
and Stat-WL kernels have a significantly lower accuracy for all data sets and
cannot successfully detect dissemination processes. The results of the neural
approaches vary. They beat all kernels for the Facebook data set. Also, for
the Dblp data set, the differences of the accuracies for DL-GIN, DL-WL and
DL-RW are marginal, but the result for DL-JK is slightly worse. The results
for SE-GIN are worse for all data sets but Facebook compared to the kernels
SE-WL and SE-RW. Similar to the first classification task, RG-GIN and
RG-JK do not perform well in most cases and do not deliver any improvement
compared to the static baselines. However, for the Facebook data set, both
RG-GIN and RG-JK beat RG-RW and RG-WL. Overall, we suspect that
the varying results for the neural network approaches are due to the different
data set sizes. For the larger data sets Dblp and Facebook , the training of
the neural nets seem to be more successful by reaching better generalization
abilities, especially for the reduced graph approach. In general, the second
classification task poses a greater challenge for the temporal approaches that
reach lower accuracy than the first classification task. Especially the MIT
data set seems to be hard; only the DL-RW reaches an accuracy of over
80%. However, it also has the overall highest running time for this data
set due to its quadratic blowup. Table 5.2 shows the statistics of the data
sets after the transformation. Notice the size difference between the reduced
graph transformation and the directed line graph approach, which explains
the differences in the running times. Furthermore, the large sizes of the MIT

94

5.7. Experiments

Table 5.5.: Running times for calculating the kernels for the first classification
task in milliseconds (ms). Random walk length k = 3 (k = 2 for
DL-RW) and number of iterations of WL h = 3 (h = 2 for DL-
WL). For each data set, we highlight the shortest running time.

Kernel
Data set

MIT Highschool Infectious Tumblr Dblp Facebook

St
at
. Stat-RW 50 330 124 060 130 630 29 209 1 090 141 456 421

Stat-WL 87 106 129 164 410 715

Te
m
po

ra
l

RG-RW 270 4 017 10 259 14 563 99 327 357 414
RG-WL 22 84 96 145 405 757
DL-RW 26 447 614 33 643 10 764 2 887 6715 5 050
DL-WL 71 636 1 972 847 429 1 242 1 131
SE-RW 7 211 3 660 4 973 2 018 6 454 5 173
SE-WL 581 382 262 302 1 097 1 359
APPROX (S=50) 188 301 309 409 1 261 1 926
APPROX (S=100) 363 412 599 944 1 982 3 452
APPROX (S=250) 896 1 589 1 451 1 901 5 044 7 607

Table 5.6.: Running times of the different transformations in milliseconds (ms).

Transformation
Data set

MIT Highschool Infectious Tumblr Dblp Facebook
Reduced Graph 12 13 12 12 31 51
Directed Line Graph Expansion 4 408 145 108 34 126 107
Static Expansion 106 77 54 69 174 219

data set after the directed line graph expansion prohibited the training of
the neural network with the available memory, i.e., leading to out-of-memory
errors. See Table 5.5 for the running times for calculating the kernels for the
first classification task. We report for all approaches, with the exception of
DL-RW and DL-WL, the running times for a random walk length of k = 3
and h = 3 iterations of the Weisfeiler-Leman kernels. Because in the directed
line graph expansion DL(G) of a temporal graph G, walks of length ` in
DL(G) represent walks of length `+1 in G, we report for DL-RW and DL-WL
the running times for k = 2 and h = 2. For the second classification task,
the running times for calculating the kernels are similar. The running times
for the random walk kernels are by orders of magnitude higher than those
of the Weisfeiler-Leman kernels. The reduced graph kernels cannot compete
with our other approaches in terms of accuracy. In particular, for the second
classification task, the loss of temporal information led to lower accuracies.
However, the kernels still beat the static baselines for all data sets but Tumblr
and Facebook while having low running times, especially for RG-WL. For
a lower average number of temporal edges and vertex degree in the original
data sets, the advantage of the reduced graph approach gained by reducing
the number of edges decreases, and with larger data sets, the running times
increase, i.e., for Facebook and Tumblr , RG-RW, and RG-WL deliver slightly

95

Chapter 5. Classification of Dissemination

10 20 30 40 50 60 70 80

Percentage

40

50

60

70

80

90

100

A
cc

u
ra

cy

DL-RW SE-RW DL-WL SE-WL Stat-WL

10 20 30 40 50 60 70 80

Reset labels (%)

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

(a) First classification task.

10 20 30 40 50 60 70 80

Reset labels (%)

50

60

70

80

90

A
cc

u
ra

cy
(%

)

(b) Second classification task.

Figure 5.3.: Results of DL-WL, SE-WL and Stat-WL kernel for the Infectious
data set under incomplete data.

worse results compared to the static kernels. Table 5.6 shows the cumulative
running times of the transformations for each data set.
Q2. Approximation quality: For a sample size of S = 50 APPROX
performs better than the static kernels. The accuracies are on par or better
than those of the reduced graph kernels. With larger sample sizes of S = 100
and S = 250, the gap between the accuracies of APPROX and DL-RW is
reduced for all data sets in both classification tasks. Table 5.5 shows that the
running time of the approximation algorithm is by orders of magnitude faster
for the MIT data set. For S = 50 and S = 100, there is an improvement in
running times for all data sets. For S = 250 and the Facebook data set, the
exact algorithm is faster.
Q3. Incomplete knowledge: We ran the k-step random walk and
Weisfeiler-Leman subtree kernels for the Infectious data sets where infected
vertices were randomly set to non-infected. For the first classification task
with incomplete knowledge, our kernels keep high average accuracy, see
Figure 5.3a. The Stat-WL kernel reaches only an average accuracy of 60.8%
at 10% reset labels and falls to only 47.0% accuracy at 60% information loss.

The second task turns out to be more susceptible to the loss of information.
Compared to the first classification task, here, the temporal kernels’ loss of
accuracy increases stronger with the increasing percentage of reset labels,
see Figure 5.3b. However, for up to 60% information loss, SE-RW achieves
an average accuracy of over 70%. Stat-WL cannot compete and has low
accuracies already for 10% reset labels. To summarize, the results show
that our temporal kernels are still working in scenarios in which most of the
dissemination data is missing. This is especially important because infections
often are asymptomatic or not reported.

96

5.8. Conclusion

5.8. Conclusion
We introduced a framework for lifting static graph classification approaches to
the temporal domain and obtained temporal variants of the Weisfeiler-Leman
subtree and the k-step random walk kernel. Moreover, we successfully ap-
plied our framework to graph neural networks. Additionally, we presented
a stochastic kernel with provable approximation guarantees. We empirically
evaluated our methods on real-world social networks showing that incorpo-
rating temporal information is crucial for classifying temporal graphs under
consideration of dissemination processes. The approximation approach per-
forms well and can speed up computation by orders of magnitude. Finally, we
demonstrated that our proposed kernels work in scenarios where information
about the dissemination process is incomplete or partly missing.

97

Chapter 6
Bicriteria Temporal Paths

In this chapter, we discuss problems for weighted temporal graphs. The
additional edge weights add a new dimension to the problem of finding optimal
paths, and we are interested in bicriteria optimality.

Definition 6.1. A weighted temporal graph G = (V, E) consists of a set V of
vertices and a set E of weighted and directed temporal edges. A weighted and
directed temporal edge e = (u, v, t, λ, c) ∈ E is a directed temporal edge with
additional cost c ∈ R≥0.

In a weighted temporal graph, the cost of a path P = (e1, . . . , ek) is the
sum of the edge costs, i.e. c(P) =

∑k
i=1 ci. Figure 6.1 shows an example. The

(s, z)-path ((s, b, 1, 1, 2), (b, z, 2, 1, 1)) has an arrival time of three, a duration
of two, and a cost of three. The (s, z)-path ((s, z, 3, 1, 3)) also costs three, but
it has a later arrival time of four and is faster with a duration of only one.

6.1. Motivation and Contribution
For a given directed weighted temporal graph G = (V, E), a source s ∈ V ,
and a target z ∈ V , our goal is to find earliest arrival or fastest (s, z)-paths
with minimal costs. Motivation can be found in typical queries in (public)
transportation networks. For example, each vertex represents a bus stop,

G : G1 : G2 : G3 :

s a

bz

(1, 1, 1)

(3
,1
,3)

(2
,1
,2)

(1, 1, 2)

(2, 1, 1)

s a

bz

(1, 1, 1)
(1, 1, 2)

s a

bz
(2, 1, 1)

(2
,1
,2)

s a

bz

(3
,1
,3)

Figure 6.1.: Example for a weighted temporal graph G. Each edge label (t, λ, c)
describes the time t when the edge is available, its traversal time
λ, and its cost c. For each time step t ∈ {1, 2, 3}, layer Gt is
shown.

99

Chapter 6. Bicriteria Temporal Paths

metro stop, or transfer point, and each edge represents a connection between
two such points. In this model, the availability time of an edge is the departure
time of the bus or metro, the traversal time is the time a vehicle takes between
the two transfer points, and the edge cost represents the ticket price. Two
naturally occurring problems are the following: (1) Minimizing the costs and
the arrival times, or (2) minimizing the costs and the total travel time. In
general, no path minimizes both objectives simultaneously, and therefore we
are interested in the set of all efficient paths. We use common terminology
of multi-criteria optimization [48], and call a path efficient if no other path
is strictly better in one of the criteria and at least as good concerning both
criteria. Moreover, a path is efficient if and only if its cost vector is Pareto-
optimal.
The Min-Cost Fastest Paths Enumeration Problem (McfEnum)

and the Min-Cost Earliest Arrival Paths Enumeration Problem
(MceaEnum) are the enumeration problems in which the task is to enumer-
ate exactly all efficient paths concerning cost and duration or cost and arrival
time, respectively. One obstacle is that there can be an exponential number of
efficient paths. So one cannot expect to find polynomial-time algorithms for
these problems. However, Johnson, Yannakakis, and Papadimitriou [86] de-
fined complexity classes for enumeration problems, where the time complexity
is expressed not only in terms of the input size but also in the output size. We
use the output complexity model to analyze the proposed enumeration prob-
lems and show that they belong to the class of polynomial-time delay with
polynomial space (PSDelayP). If we are only interested in the sets of Pareto-
optimal solutions and not the paths themselves, we show that these problems
can be solved in polynomial-time for nonnegative edge weights. We can also
provide an associated path with each solution in these cases. On the negative
side, we show that counting the number of efficient paths is not easier than
their enumeration, i.e., determining the number of efficient paths is hard. We
show the following:

1. McfEnum and MceaEnum are in PSDelayP for weighted temporal
graphs with strictly positive edge costs.

2. In the case of nonnegative edge costs, finding the Pareto-optimal set
of cost vectors is possible in polynomial time (thus, the set of Pareto-
optimal solutions are polynomially bounded in the size of the input),
and for each Pareto-optimal solution, we can find an efficient path in
polynomial time.

3. The decision versions that ask if a path is efficient are in P. Deciding if
there exists an efficient path with a given cost and duration or arrival
time is possible in polynomial time.

4. The counting versions are #P-complete, even for the single criterion
unweighted case.

100

6.2. Related Work

6.2. Related Work

Hansen [71] introduces bicriteria path problems in static graphs and provides
an example for a family of graphs for which the number of efficient paths
grows exponentially with the number of vertices. Meggido shows that de-
ciding if there is a path that respects an upper bound on both objective
functions is NP-complete (Meggido 1977, private communication with Garey
and Johnson [56]). Martins [118] presents a label setting algorithm based
on the well known Dijkstra algorithm for the bicriteria shortest path prob-
lem that finds the set of all efficient (s, v)-paths for all v ∈ V . Ehrgott and
Gandibleux [48] provide a good overview of the work on bi- and multi-criteria
shortest path problems. Hamacher et al. [68] propose an algorithm for the bi-
criteria time-dependent shortest path problem in networks where edges have
time-dependent costs and traversal times. Each edge has a two-dimensional
time-dependent cost vector. Waiting at a vertex may be penalized by addi-
tional bicriteria time-dependent costs. They propose a label setting algorithm
that starts from the target vertex and finds the set of all efficient paths to
each possible start vertex. Disser et al. [43] discuss a practical work on the
multi-criteria shortest path problem in time-dependent train networks. They
additionally introduce foot-paths and particular transfer rules to model real-
istic train timetables. Note that these algorithms are designed for the enu-
meration of efficient paths. In fact, we are not aware of an algorithm for the
enumeration of efficient temporal paths in temporal graphs.

6.3. Temporal Path Enumeration and Counting

For the discussion of bicriteria path problems, we use the following definitions.
Let X be the set of all feasible (s, z)-paths, and let f(P) be the temporal value
of P , i.e., either arrival time f(P) = a(P) or duration f(P) = d(P). We call
a path P ∈ X efficient if there is no other path Q ∈ X with c(Q) < c(P) and
f(Q) ≤ f(P) or c(Q) ≤ c(P) and f(Q) < f(P). We map each P ∈ X to a
vector (f(P), c(P)) in the two-dimensional objective space, which we denote
by Y. Complementary to efficiency in the decision space, we have the concept
of domination in the objective space. We say (f(P), c(P)) ∈ Y dominates
(f(Q), c(Q)) ∈ Y if either c(P) < c(Q) and f(P) ≤ f(Q) or c(P) ≤ c(Q) and
f(P) < f(Q). We call (f(P), c(P)) nondominated if and only if P is efficient.
We define the following bicriteria enumeration problems.

• Min-Cost Fastest Paths Enumeration Problem (McfEnum)
Given: A weighted temporal graph G = (V, E) and s, z ∈ V .
Task: Enumerate all and only (s, z)-paths that are efficient with
respect to duration and costs.

• Min-Cost Earliest Arrival Paths Enumeration Problem
(MceaEnum)
Given: A weighted temporal graph G = (V, E) and s, z ∈ V .

101

Chapter 6. Bicriteria Temporal Paths

Task: Enumerate all and only (s, z)-paths that are efficient with
respect to arrival time and costs.

We denote by Mcf and Mcea the optimization versions, in which the task is
to find a single efficient (s, z)-path. The counting versions #Mcea and #Mcf
ask for the number of solutions. Bi- and multicriteria optimization problems
are often not easily comparable using the traditional notion of worst-case
complexity due to their potentially exponential number of efficient solutions.
We use the output complexity model as proposed by Johnson, Yannakakis, and
Papadimitriou [86]. Here, the time complexity is stated as a function in the
size of the input and the output.

Definition 6.2. Let P be an enumeration problem. Then P is in

1. DelayP (Polynomial Time Delay) if the time delay until the output of the
first and between the output of any two consecutive solutions is bounded
by a polynomial in the input size, and

2. PSDelayP (Polynomial Time Delay with Polynomial Space) if P is in
DelayP and the used space is also bounded by a polynomial in the input
size.

In Sections 6.5 and 6.6, we show that McfEnum and MceaEnum are both
in PSDelayP if the input graph has strictly positive edge costs. We provide
algorithms that enumerate the set of all efficient paths in polynomial time delay
and use space bounded by a polynomial in the input size. By enumerating
the set of all efficient paths, we can also count them, i.e., enumeration is at
least as hard as counting. Naturally, the question arises if we can obtain the
number of efficient paths more easily. Valiant [177] introduced the class #P.
We use the following definitions from Arora and Barak [7].

Definition 6.3. A function f : {0, 1}∗ → N is in #P if there exists a poly-
nomial p : N → N and a deterministic polynomial-time Turing machine M
such that for every x ∈ {0, 1}∗ f(x) = |{y ∈ {0, 1}p(x) : M(x, y) = 1}|, where
M(x, y) = 1 iff M accepts x with certificate y.

In other words, the class #P consists of all functions f such that f(x)
is equal to the number of computation paths from the initial configuration
to an accepting configuration of a polynomial-time nondeterministic Turing
machine M with input x. In the following, we use the notion of an oracle
Turing machine where the oracles are not limited to answer only boolean but
arbitrary, polynomially bounded functions. Let f : {0, 1}∗ → {0, 1}∗ be such
a function. We define FPf as the class of functions that can be computed by
a polynomial-time Turing machine with constant-time access to f .

Definition 6.4. A function f is #P-complete iff it is in #P and #P ⊆ FPf .

A polynomial-time algorithm for a #P-complete problem would imply P =
NP. To show #P-completeness for a counting problem C, we verify that C ∈

102

6.4. Structural Results

#P and reduce a #P-complete problem C′ to C, using a polynomial Turing
reduction. Valiant [177] showed that calculating the permanent of a (0, 1)-
matrix is #P-complete. This is especially interesting because the permanent of
a (0, 1)-matrix corresponds to the number of perfect matchings in a bipartite
graph. Deciding if a bipartite graph has a perfect matching is possible in
polynomial time. Moreover, Valiant [178] proved #P-completeness for ST-
Path. The input of ST-Path is a static, directed graph G = (V,E) and
s, t ∈ V ; the output is the number of (s, t)-paths. In Section 6.7, we reduce
ST-Path to the non-weighted earliest arrival temporal path counting problem.

6.4. Structural Results
We show that it is possible to find an efficient (s, z)-path for the Min-Cost
Earliest Arrival Path Problem (Mcea) in a graph G, if we can solve the
Min-Cost Fastest Path Problem (Mcf). We use a transformed graph G′ in
which a new source vertex and a single edge are added. The polynomial-time
reduction is from a search problem to another search problem. We show that
it preserves the existence of solutions, and we also provide a mapping between
the solutions. This is also known as Levin reduction.

Lemma 6.1. There is a Levin reduction from Mcea to Mcf.

Proof. Let I = (G = (V,E), s, z) be an instance of Mcea. We construct
the Mcf instance I ′ = (G′ = (V ∪ {s′}, E ∪ {e0 = (s′, s, 0, 0, 0)}), s′, z) in
polynomial time. Moreover, let XI be the sets of all (s, z)-paths for I, and XI′
be the sets of all (s′, z)-paths for I ′. We define g : XI → XI′ as bijection that
prepends edge e0 to the paths in XI , i.e., g((e1, . . . , ek)) = (e0, e1, . . . , ek). We
show that P ∈ XI is efficient (for Mcea) iff. g(P) ∈ XI′ is efficient (for Mcf).
Let P = (e1, . . . , ek) be an efficient (s, z)-path in G with respect to costs

and arrival time. Then Q = g(P) = (e0, e1, . . . , ek) is an (s′, z)-path in G′ with
a(Q) = a(P) and c(Q) = c(P). Now, assume Q is not efficient with respect
to costs and duration in G′. Then there is a path Q′ with less costs and at
most the duration of Q or with shorter duration and at most the same costs
of Q. Path Q′ also begins with edge e0, and G contains a path P ′ that uses
the same edges as Q′ with the exception of edge e0. Then, at least one of the
following two cases holds.

• Case c(Q′) ≤ c(Q) and d(Q′) < d(Q): Since the costs of e0 are 0, it
follows that c(P ′) = c(Q′) ≤ c(Q) = c(P). Because the paths start at
time 0 and for each path d(P) = a(P)−s(P), it follows d(Q′) = a(Q′) =
a(P ′) < a(P) = a(Q) = d(Q).

• Case c(Q′) < c(Q) and d(Q′) ≤ d(Q): Analogously, here we have
c(P ′) = c(Q′) < c(Q) = c(P). And a(P ′) = a(Q′) ≤ a(Q) = a(P).

Either of these two cases leads to a contradiction to the assumption that P is
efficient.

103

Chapter 6. Bicriteria Temporal Paths

Let Q = (e0, e1, . . . , ek) and assume it is an efficient (s′, z)-path in G′ with
respect to cost and duration. Then there exists an (s, z)-path P = (e1, . . . , ek)
in G such that g(P) = Q, a(Q) = a(P) and c(Q) = c(P). Now, assume that
P is not efficient. Then there is a path P ′ with less costs and not later arrival
time than P or with earlier arrival time and at most the costs of P . In G′

exists the path Q′ = g(P ′) that uses the same edges as P ′, and additionally
the edge e0 as prefix path from s′ to s. We have the cases c(P ′) < c(P) and
a(P ′) ≤ a(P) or c(P ′) ≤ c(P) and a(P ′) < a(P). Again, either of them leads
to a contradiction to the assumption that Q is efficient.

Based on this result, we first present an algorithm for McfEnum in Sec-
tion 6.5 that we use in a modified version to solve MceaEnum in Section 6.6.
We focus on graphs with strictly positive edge costs in the rest of this section.

Observation 6.1. Let G = (V, E) be a weighted temporal graph. If for all
edges e = (u, v, t, λ, c) ∈ E it holds that c > 0, then all efficient walks for
MceaEnum and McfEnum are simple, i.e., are paths.

Like in the non-temporal static case, it is possible to delete the edges of a
cycle in the non-simple walk. We denote the two special cases for graphs with
strictly positive edge costs by (c>0)-McfEnum and (c>0)-MceaEnum.
Our enumeration algorithms use a label setting technique. A label l =

(b, a, c, p, v, r,Π) at vertex v ∈ V corresponds to an (s, v)-path and consists of
the following entries:

b = s(Ps,v) starting time,
a = a(Ps,v) arrival time,
c = c(Ps,v) cost,

p predecessor label,
v current vertex,
r availability time of the previous edge, and
Π reference to a list of equivalent labels.

Moreover, each label is uniquely identifiable by an additional identifier and
has a reference to the edge that leads to its creation (denoted by l.edge).
The proposed algorithms process the edges in order of their availability time.
When processing an edge e = (u, v, t, λ, ce), all paths that end at vertex
u can be extended by pushing labels over edge e to vertex v. Pushing a
label l = (b, a, c, p, u, r,Π) over e means that we create a new label lnew =
(b, t+ λ, c+ ce, l, v, t, ·) at vertex v.
If we created and stored a label for each efficient path, we possibly would

need exponential space in the input size. The reason is that the number
of efficient paths can be exponential in the input size. Figure 6.2 shows
an example for McfEnum and MceaEnum, similar to the one provided by
Hansen [71] but adapted to the weighted temporal case. The shown temporal
graph G has n = 2m

3 + 1 vertices and m > 3 edges. There are two paths

104

6.4. Structural Results

s v3

v2

x

v4

z

y

v5 . . .

(1,
1, 1

)

(1, 2, 2)

(2, 1, 1) (3,
1, 1

)

(3, 2, 2)

(4, 1, 1)

(n− 2, 2, 2)

(n
−

2, 1
, 1)

(n−
1, 1, 1)

Figure 6.2.: Example for an exponential number of efficient paths for
MceaEnum and McfEnum. All (s, v)-paths for v ∈ V are effi-
cient.

from s to v3, four paths from s to v5, eight paths from s to v7 and so on. All
(s, v)-paths for v ∈ V are efficient. In total, there are 2b

n
2 c efficient (s, z)-paths

to be enumerated. However, the following lemma exhibits properties of the
problems that help us achieve polynomial-time delay and a linear or quadratic
space complexity. Let YA (YF) denote the objective space for MceaEnum
(McfEnum, respectively).

Lemma 6.2. For MceaEnum, the number of nondominated points in YA is
in O(τ+(s)) = O(m). For McfEnum, the number of nondominated points in
YF is in O(τ+(s) · τ−(z)) = O(m2).

Proof. Let G = (V, E) be a weighted temporal graph and s, z ∈ V . First, we
show that the statement holds for MceaEnum. The possibilities for different
arrival times at vertex z are limited by the number of incoming edges at z.
For each path Ps,z, there are τ−(z) ∈ O(m) different arrival times. For each
arrival time a, there can only be one nondominated point (a, c) ∈ YA with the
minimum costs of c, and representing exactly all efficient paths with arrival
time a and costs c. Now consider the case for McfEnum. The number of
distinct availability times of edges leaving the source vertex τ+(s) is bounded
by O(m). Because the duration of any (s, z)-path P equals a(P)−s(P), there
are at most τ+(s) ·τ−(z) ∈ O(m2) different durations possible at vertex z. For
each duration, there can only be one nondominated point (d, c) ∈ YF having
minimum costs c.

Note that for general bicriteria optimization (path) problems, there can be
an exponential number of nondominated points in the objective space. Skriver
and Andersen [166] give an example for a family of graphs with an exponential
number of nondominated points for a bicriteria path problem. The fact that,
in our case, the number of nondominated points in the objective space is
polynomially bounded allows us to achieve polynomial-time delay and space
complexity for our algorithms. The idea is to consider equivalence classes
of labels at each vertex, such that we only have to proceed with a single
representative for each class. First, we define the following relations between
labels.

Definition 6.5. Let l1 = (b1, a1, c1, p1, v, r1, Π1) and l2 = (b2, a2, c2, p2, v, r2, Π2)
be two labels at vertex v.

105

Chapter 6. Bicriteria Temporal Paths

1. Label l1 is equivalent to l2 iff c1 = c2 and b1 = b2.

2. Label l1 predominates l2 if l1, and l2 are not equivalent, b1 ≥ b2, a1 ≤ a2
and c1 ≤ c2, with at least one of the inequalities being strict.

3. Finally, label l1 dominates l2 if a1 − b1 ≤ a2 − b2 and c1 ≤ c2 with at
least one of the inequalities being strict.

For each class of equivalent labels, we have a representative l and a list Πl

that contains all equivalent labels to l. For each vertex v ∈ V , we have a set
Rv that contains all representatives. The algorithms consist of two consecutive
phases:

• Phase 1 calculates the set of nonequivalent representatives Rv for every
vertex v ∈ V such that every label in Rv represents a set of equivalent
paths from s to v. For each of the nonequivalent labels l ∈ Rv, we store
the list Πl that contains all labels equivalent to l.

• Phase 2 recombines the sets of equivalent labels in a backtracking fash-
ion, such that we can enumerate exactly all efficient (s, z)-paths without
holding the paths in memory.

A label in Πl at vertex v represents all (s, v)-paths that are an extension of
all paths represented by its predecessor, and l ∈ Rv is a representative for all
labels in Πl. The representative itself is in Πl and has the minimum arrival
time among all labels in Πl.
We have to take into account that a prefix path Ps,w of an efficient (s, z)-

path may not be an efficient (s, w)-path. Figure 6.3 (a) shows an example

u

w z

v

s

(2, 2, 1)
(2, 3, 2)

(6,
1, 1

)

(5, 1, 1)
(1,

1, 1
)

(5, 1, 1)

(a)

0
0
0



 5
10
5



1
7
6


1

9
7


s u z

(5, 5, 5)

(1, 6, 6)

(8, 1, 1)

(b)

Figure 6.3.: (a) An example for non-efficient prefix paths. (b) The vertices are
annotated with labels that describe the starting time, arrival time
and costs of the paths starting at s.

of a weighted temporal graph with a non-optimal prefix path. Consider the
following paths:

• P ∗s,z = ((s, w, 2, 3, 2), (w, z, 5, 1, 1)) with arrival time 6 and duration 4,

• P 1
s,w = ((s, w, 2, 3, 2)) with arrival time 5 and duration 3,

106

6.5. Min-Cost Fastest Path Enumeration Problem

• P 2
s,w = ((s, u, 1, 2, 1), (u,w, 2, 1, 1)) with arrival time 3 and duration 3,

and

• P 3
s,w = ((s, v, 5, 1, 1), (v, w, 6, 1, 1)) with arrival time 7 and duration 2.

All (s, z)-paths have cost 3, and all (s, w)-paths have cost 2. Path P ∗s,z is
efficient for McfEnum and MceaEnum. For MceaEnum, the prefix path
P 1
s,w is not efficient because P 2

s,w arrives earlier. However, for McfEnum,
the only efficient (s, w)-path is P 3

s,w. Consequently, we cannot discard a non-
efficient path that possibly is a prefix path of an efficient path. We use the
predomination relation to remove all labels that do not represent prefix paths
of efficient paths.

Lemma 6.3. Let l1 = (b1, a1, c1, p1, v, r1, Π1) and l2 = (b2, a2, c2, p2, v, r2, Π2)
be two distinct labels at vertex v ∈ V . If l1 predominates l2, then l2 cannot be
a label representing a prefix path of any efficient path.

Proof. There are two distinct paths P 1
s,v and P 2

s,v from s to v corresponding to
l1 and l2. Due to the predomination of l1 over l2, it follows that a1 = a(P 1

s,v) ≤
a(P 2

s,v) = a2, b1 = s(P 1
s,v) ≥ s(P 2

s,v) = b2 and c1 = c(P 1
s,v) ≤ c(P 2

s,v) = c2
with at least one of the latter two relations being strict due to the fact that
the labels are not equivalent. Let Ps,w be a path from s to some w ∈ V
such that P 2

s,v is a prefix path of Ps,w, and assume that Ps,w is efficient.
Let P ′s,w be the path where the prefix path P 2

s,v is replaced by P 1
s,v. This

is possible because a(P 1
s,v) ≤ a(P 2

s,v). Now, since s(P 1
s,v) ≥ s(P 2

s,v) and
c(P 1

s,v) ≤ c(P 2
s,v) with at least one of the inequalities being strict, it follows

that a(P ′s,w)− s(P ′s,w) ≤ a(Ps,w)− s(Ps,w) and c(P ′s,w) ≤ c(Ps,w) also with one
of the inequalities being strict. Therefore, P ′s,w dominates Ps,w, a contradiction
to the assumption that Ps,w is efficient.

Figure 6.3 (b) shows an example of a non-predominated label of a prefix path
that we cannot discard. Although path P1 = ((s, u, 5, 5, 5)) dominates path
P2 = ((s, u, 1, 6, 6)), we cannot discard P2. The reason is that the arrival time
of P1 is later than the availability time of the only edge from u to z. Therefore,
P2 is the prefix path of the only efficient path ((s, u, 1, 6, 6), (u, z, 8, 1, 1)).

6.5. Min-Cost Fastest Path Enumeration Problem
In this section, we present the algorithm for McfEnum. Algorithm 6.1 expects
as input a weighted temporal graph with strictly positive edge costs in the edge
stream representation, the source vertex s ∈ V , and the target vertex z ∈ V .
First, we insert an initial label linit into Rs and Πlinit . The algorithm then
successively processes the m edges in order of their availability time. For
each edge e = (u, v, t, λ, c), we first determine the set S ⊆ Ru of labels with
distinct starting times, minimal costs, and an arrival time less or equal to t
at vertex u (line 4). Next, we push each label in S over e. We check for
predomination and equivalence with the other labels in Rv and discard all

107

Chapter 6. Bicriteria Temporal Paths

Algorithm 6.1 for McfEnum

Input: Graph G in edge stream representation, source s ∈ V and target z ∈ V
Output: All efficient (s, z)-paths

. Phase 1
1: initialize Rv for each v ∈ V
2: insert label linit = (0, 0, 0,−, s,−, Πlinit) into Rs and Πlinit

3: for each edge e = (u, v, te, λe, ce) do
4: S ← {(b, a, c, p, v, r, ·) ∈ Ru | a ≤ te, c minimal and distinct starting

times b}
5: for each l = (b, a, c, p, v, r, ·) ∈ S with a ≤ te do
6: if u = s then
7: lnew ← (te, te + λe, ce, l, s, te, ·)
8: else
9: lnew ← (b, te + λe, c+ ce, l, u, te, ·)

10: for each l′ = (b′, a′, c′, p′, v, t′, Π ′) ∈ Rv do
11: if lnew predominates l′ then
12: remove l′ from Rv and delete Π ′
13: else if l′ is equivalent to lnew then
14: insert lnew into Π ′
15: set reference Π ← Π ′

16: if te + λe < a′ then
17: replace l′ in Rv by lnew
18: goto 5
19: else if l′ predominates lnew then
20: delete lnew
21: goto 5
22: insert lnew into Rv and initialize Πlnew with lnew

. Phase 2
23: mark nondominated labels in Rz
24: for each marked label l′ = (b, a, c, p, z, r,Π) ∈ Rz do
25: for each label l ∈ Π with minimal arrival time do
26: initialize empty path P
27: call OutputPaths(l, P);

. Procedure for outputting paths
28: procedure OutputPaths(label l = (b, a, c, p, cur, r,Π), path P)
29: prepend edge l.edge to P
30: if l has predecessor p = (bp, ap, cp, pp, vp, rp, Πp) then
31: for each label l′ = (bl′ , al′ , cl′ , pl′ , vl′ , rl′ , Πp) in Πp do
32: if al′ ≤ r then
33: call OutputPaths(l′, P , visited)
34: return
35: output path P

108

6.5. Min-Cost Fastest Path Enumeration Problem

predominated labels. In case the new label is predominated, we discard it and
continue with the next label in S. In case the new label lnew is equivalent to
a label l = (a, c, p, v, te, Π) ∈ Rv, we add lnew to Π. If lnew arrives earlier at v
than the arrival time of l, we replace the representative l with lnew in Rv. If
the new label is not predominated and not equivalent to any label in Rv, we
insert lnew into Rv and Πlnew . In this case, lnew is a new representative, and
we initialize Πlnew (which contains only lnew at this point). For the following
discussion, we define the set of all labels at vertex v ∈ V as Lv =

⋃
l∈Rv

Πl.

Lemma 6.4. Let Ps,v be an efficient path and Ps,w a prefix path of Ps,v. At
the end of Phase 1 of Algorithm 6.1, Rw contains a label representing Ps,w.

Proof. We show that each prefix path P0, P1, . . . , Pk, with P0 = Ps,s and
Pk = Ps,v is represented by a label at the last vertex of each prefix path by
induction over the length h. For h = 0, we have P0 = Ps,s and the initial
label linit = l0 = (0, 0, 0,−, s,−, Πlinit) representing P0 can not be (pre-)
dominated by another label and is in Ls after Phase 1 finishes. Assume the
hypothesis is true for h = i− 1 and consider the case for h = i and the prefix
path Pi = Ps,vi+1 = (e1, . . . , ei = (vi, vi+1, ti, λi, ci)), which consists of the
prefix path Pi−1 = Ps,vi = (e1, . . . , ei−1 = (vi−1, vi, ti−1, λi−1, ci−1)) and edge
ei = (vi, vi+1, ti, λi, ci). Due to the induction hypothesis, we conclude that
Lvi contains a label li−1 = (b, ai−1, ci−1, pi−1, vi, ri−1, Πi−1) that represents
Pi−1. Because Pi−1 is a prefix path of Ps,v, the representing label li−1 must
have the minimum cost in Lvi under all labels with starting time b before
edge ei arrives. Else, it would have been predominated and replaced by a
cheaper one (Lemma 6.3). The set S contains a label that represents li−1,
because the representative of Πi−1 has an arrival time less or equal to ai−1.
Therefore, the algorithm pushes lnew = (b, ti+λi, ci−1 + ci, li−1, vi+1, ti, ·) over
edge ei. If Rvi+1 is empty the label lnew gets inserted into Rvi+1 and Πlnew .
Otherwise, we have to check for predomination and equivalence with every
label l′ = (b′, a′, c′, p′, vi+1, r

′, Π ′) ∈ Rvi+1 . There are the following cases:

1. lnew predominates l′: We can remove l′ from Rvi+1 because it will never
be part of an efficient path (Lemma 6.3). The same is true for each label
in Π ′, and therefore we delete Π ′. However, we keep lnew and continue
with the next label.

2. lnew and l′ are equivalent: We add lnew to Π ′. In this case, we represent
the path Pi by the representative of Π ′. Consequently, the path is
represented by a label in Lvi+1 .

If neither of these two cases applies for any label in Rvi+1 , we add lnew to
Rvi+1 and to Πlnew . The case that a label l is not equivalent to lnew and
predominates lnew cannot be for the following reason. If l predominates lnew,
there is a path P ′ from s to vi+1 with fewer costs or later starting time (because
l and lnew are not equivalent) and a no later arrival time. Replacing the prefix
path Pi with P ′ in the path Ps,v would lead to an (s, v)-path with fewer costs

109

Chapter 6. Bicriteria Temporal Paths

and/or shorter duration. This contradicts our assumption that Ps,v is efficient.
Therefore, after Phase 1 finished, the label lnew representing the prefix path
Pi is in Lvi . It follows that if Ps,v = (e1, . . . , ek) is an efficient path, then
after Phase 1, the set Rv contains a label representing Ps,v (possibly, such
that a label in Rv represents a list of equivalent labels that contains the label
representing Ps,v).

After all edges have been processed, the algorithm continues with Phase 2.
First, the algorithm marks all nondominated labels in Rz. For each marked
label l, the algorithm iterates over the list of equivalent labels Πl and calls
the output procedure for each label in Πl. We show that all and only efficient
paths are enumerated.

Theorem 6.1. Let G = (V,E) be a weighted temporal graph with strictly
positive edge costs and s, z ∈ V an instance of McfEnum. Algorithm 6.1
outputs exactly all efficient (s, z)-paths.

Proof. Lemma 6.4 implies that for each efficient path Ps,z, there is a cor-
responding representative label in Rz after Phase 1 is finished. Note that
there might also be labels in Lz that do not represent efficient paths. First,
we mark all nondominated labels in Rz. For every marked representative
l′ = (b, a, c, p, z, r,Πl′) in Rz, we proceed by calling the output procedure for
all labels l ∈ Πl′ with minimal arrival time. Each such label l represents at
least one efficient (s, z)-path, and we call the output procedure with l and
the empty path P . Let path Q = (e1 . . . , ek) be an efficient (s, z)-paths rep-
resented by l. We show that the output procedure successively constructs
the suffix paths Pk−i+1 = (ek−i+1, . . . , ek) of Q for i ∈ {1, . . . , k} and finally
outputs Q = P1 = (e1, . . . , ek).

We use induction over the length i ≥ 1 of the suffix path. For i = 1
the statement is true. Pk = (ek) is constructed by the first instruction,
which prepends the last edge of Q to the initially empty path. Assume the
statement holds for a fixed i < k, i.e., the suffix path Pk−i+1 of Q with length
i has been constructed by calling the output procedure with Pk−i+2 and label
l̃ = (b, a, c, p, vk−i+1, r,Π). Now, for i+1, the suffix path Pk−i = (ek−i, . . . , ek)
equals suffix-path Pk−i+1 with the additional edge ek−i = (vk−i, vk−i+1, t, λ, c)
prepended and where vk−i+1 is the first vertex of Pk−i+1. If label l̃ has a
predecessor p = (b, ap, cp, pp, vk−i, rp, Π ′), the algorithm recursively calls the
output procedure for each label in the list of equivalent labels Π ′ that has an
arrival time less or equal to the time r of the edge that led to the creation of
l̃. Due to Lemma 6.4 and the induction hypothesis, the algorithm particularly
calls the output procedure for the label l′ that represents the beginning of the
suffix path Pk−i. Because Q is a temporal path, the arrival time at vk−i is less
or equal to the time of the edge that leads to the label l̃. Consequently, there
is a call of the output procedure that constructs Pk−i. If label l̃ does not have
a predecessor, the algorithm arrives at vertex s, and the algorithm outputs
the complete path Q = P1. Therefore, all efficient paths are enumerated.

110

6.5. Min-Cost Fastest Path Enumeration Problem

s u

v

w z

Rs =


0

0
0




Ru =


3

6
3




Rv =


7

8
1




Rw =

l =

3
7
4

 ,
7

9
2




Rz =


 7

10
6

 ,
3

9
5




e1 = (3, 3, 3)

e5
= (7,

1, 1
)

e2 = (3, 4, 4)
e 3

=
(6
, 3
, 1

)

e4 = (6, 2, 1)

e
6 =

(8, 1, 1)

e8 = (9, 1, 5)

e7 = (8, 1, 1)

Figure 6.4.: Example for Algorithm 6.1. Each vertex is annotated with the
representatives after Phase 1 finished.

We still have to show that only efficient paths are enumerated. In order to
enumerate a non-efficient (s, z)-path Q′, there has to be a label lq in Lz for
which the output procedure is called and which represents Q′. For Q′ to be
non-efficient, there has to be at least one label ld in Lz that dominates lq. In
line 23, the algorithm marks all nondominated labels in Rz. This implies that
ld and lq have the same cost and start times and that they are in the same list,
let this list be Πx for some label x ∈ Rz. Because lq is dominated by ld, the
arrival time of ld is strictly earlier than the arrival time of lq. However, we call
the output procedure only for the labels in Πx with the minimal arrival time.
Consequently, it is impossible that the non-efficient path Q′ is enumerated.
Finally, because all edge costs are strictly positive and due to Observation 6.1,
only paths are enumerated.

Example: Figure 6.4 shows an example for Algorithm 6.1 at the end of
Phase 1. The indices of the edges are according to the position in the se-
quence of the edge stream. The representative labels at the vertices only show
the starting time, arrival time, and cost. The lists Π of equivalent labels are
not shown. All of them contain only the representative, except for Πl repre-
sented by label l in Rw. The list Πl contains label l = (3, 7, 4)T represent-
ing path ((s, w, 3, 4, 4)) and the equivalent label (3, 8, 4)T representing path
((s, u, 3, 3, 3), (u,w, 6, 1, 1)). There are three efficient paths. Starting the out-
put procedure from vertex z with the label (7, 10, 6)T yields path (e5, e8), and
starting with the label (3, 9, 5)T yields the two paths (e1, e4, e7) and (e2, e7).
Notice that label (7, 9, 2)T in Rw, which dominates label (3, 7, 4)T , is not part
of an efficient (s, z)-path due to its late arrival time.

Lemma 6.5. Phase 1 of Algorithm 6.1 has a time complexity of O(τ+(s)·m2).

Proof. The outer loop iterates overm edges. For each edge e = (u, v, te, λe, ce),

111

Chapter 6. Bicriteria Temporal Paths

we have to find the set S ⊆ Ru consisting of all labels with minimal cost,
distinct starting times, and arrival time less or equal to te (see line 4). This can
be done in O(m) time. For each label in S, we have to check for predominance
or equivalence with each label in Rv in O(S · m) total time. Since we have
|S| ≤ τ+(s), we get a total time of O(τ+(s) ·m2).

The following lemma shows that the number of labels is polynomially
bounded in the input size.

Lemma 6.6. The total number of labels generated and held at the vertices in
Algorithm 6.1 is less than or equal to τ+(s) ·m+ 1.

Proof. We need one initial label linit. For each incoming edge e = (u, v, t, λ, c)
in the edge stream, we generate at most |S| ≤ τ+(s) new labels, which we
push over e to vertex v. Therefore, we generate at most τ+(s) ·m + 1 labels
in total.

Theorem 6.2. (c>0)-McfEnum ∈ PSDelayP.

Proof. Phase 1 takes only polynomial time in the size of the input, i.e., the
number of edges (Lemma 6.5). In Phase 2 of Algorithm 6.1, we first find and
mark all nondominated labels in Rz in O(m2) time. For each nondominated
label, we call the output procedure, which visits at most O(m2) labels and
outputs at least one path. It follows that the time between outputting two
consecutively processed paths is also bounded by O(m2). Therefore, (c>0)-
McfEnum is in DelayP. The space complexity is dominated by the number of
labels we have to manage throughout the algorithm. Due to Lemma 6.6,
the number of labels is in O(m2). Consequently, (c>0)-McfEnum is in
PSDelayP.

Notice that if we allow zero-weighted edges, the algorithm enumerates walks.
However, removing zero-weighted cycles to obtain only paths could repeatedly
lead to the same path, such that we would not be able to guarantee that
the time between outputting two successive efficient paths is polynomially
bounded. However, the following problems are easy to decide, even if we allow
zero weighted edges.

Theorem 6.3. Given a weighted temporal graph G = (V, E), s, z ∈ V and

1. an (s, z)-path P , deciding if P is efficient for McfEnum, or

2. c ∈ R≥0 and d ∈ N, deciding if there exists an (s, z)-path P with d(P) ≤ d
and c(P) ≤ c is possible in polynomial time.

Proof. (1) We use Phase 1 of Algorithm 6.1 and calculate the set N ⊆ Y of
nondominated points. Due to the possibility of edges with cost 0, there may
be non-simple paths, i.e., walks, that have zero-weighted cycles. Nonetheless,
Phase 1 terminates after processing the m edges. If there exists an efficient
(s, z)-walk W with (c(W), a(W)), then there also exists a simple and efficient

112

6.6. Min-Cost Earliest Arrival Path Enumeration Problem

(s, z)-path Q with the same cost vector. Q is the same path as W but
without the zero-weighted cycles. In order to decide if the given path P is
efficient, we first calculate the cost vector (c(P), a(P)), and then validate if
(c(P), a(P)) ∈ N . (2) We only need to compare (c, d) to the points in N . The
size of N is polynomially bounded (Lemma 6.2). Phase 1 and calculating the
cost of P takes polynomial time.

We can find a maximal set of efficient paths with pairwise different cost
vectors in polynomial time.

Corollary 6.1. Given a temporal graph G = (V, E) and s, z ∈ V , a maximal
set of efficient (s, z)-paths with pairwise different cost vectors for McfEnum
can be found in O(τ+(s) ·m2).

Proof. We use Phase 1 of Algorithm 6.1 and calculate the set N ⊆ Y of
nondominated points in O(τ+(s) ·m2) time. Furthermore, we use a modified
output procedure that stops after outputting the first path. We call the
procedure for each nondominated label in Rz, and if a walk is found, we
additionally remove all zero-weighted cycles. Finding the walk and removing
the cycles is possible in linear time since the length of a walk is bounded by
m.

6.6. Min-Cost Earliest Arrival Path Enumeration
Problem

Based on the reduction of Lemma 6.1 presented in Section 6.4, we modify
Algorithm 6.1 to solve (c>0)-MceaEnum. Let (G = (V,E), s, z) be the
instance for (c>0)-MceaEnum and (G′ = (V ′, E′), s′, z) be the transformed
instance in which all paths start at time 0 at the new source s′. Although
edge (s, s′, 0, 0, 0) has cost 0, because s′ has no incoming edges, any efficient
walk in the transformed instance is simple, i.e., a path. With all paths
starting at 0, there are the following consequences for the relations between
labels defined in Definition 6.5. First, consider the equivalence and let l1 =
(0, a1, c1, p1, v, r1, Π1) and l2 = (0, a2, c2, p2, v, r2, Π2) be two labels at vertex
v. Because the starting time of both labels is 0, the labels are equivalent if
c1 = c2. It follows that label l1 predominates l2 if a1 ≤ a2 and c1 < c2, hence
there is no distinction between domination and predomination.
Algorithm 6.2 shows a modified version of Algorithm 6.1 that sets all starting

times to 0. The modified algorithm only needs a linear amount of space and
less running time for Phase 1. The reasons for this are that in line 4, it
only needs to find a single label with the minimum costs instead of the set
S. Moreover, at each vertex v, it only has one representative l in Rv with
minimal costs (with respect to the other labels in Rv) due to the equivalence
of labels that have equal costs. Furthermore, in Phase 2, we do not need to
explicitly find the nondominated labels in Rz. Because each label l in Rz has

113

Chapter 6. Bicriteria Temporal Paths

a unique cost value, we consider each represented class Πl and call the output
procedure with the labels that have the minimum arrival time in Πl.

Algorithm 6.2 for MceaEnum

Input: Graph G in edge stream representation, source s ∈ V and target z ∈ V
Output: All efficient (s, z)-paths

. Phase 1
1: initialize Rv for each v ∈ V
2: insert label linit = (0, 0, 0, 0,−, s,Πlinit) into Rs and Πlinit

3: for each edge e = (u, v, te, λe, ce) do
4: l← (0, a, c, p, u, ·, ·) ∈ Ru with a ≤ te and c minimal
5: lnew ← (0, te + λe, c+ ce, l, v, te, Π)
6: for each l′ = (0, a′, c′, p′, v, r′, Π ′) ∈ Rv do
7: if lnew dominates l′ then
8: remove l′ from Rv and delete Π ′
9: else if l′ dominates lnew then

10: delete lnew
11: goto line 3
12: else if l′ is equivalent to lnew then
13: set reference Π ← Π ′

14: insert pnew into Π ′
15: if te + λe < a′ then
16: replace l′ in Rv by lnew
17: goto line 3
18: Π ← Πlnew

19: insert lnew into Rv and u into Πlnew

. Phase 2
20: for each label l′ = (0, a, c, p, z, r,Πl′) ∈ Rz do
21: for each label l ∈ Πl′ with minimal arrival time do
22: initialize empty path P
23: call OutputPaths(l, P)

Theorem 6.4. Algorithm 6.2 outputs exactly all efficient (s, z)-paths with
respect to arrival time and costs.

Proof. Lemma 6.4 implies that for each efficient path Ps,z, there is a cor-
responding representative label in Rz after Phase 1 is finished. For every
representative l′ = (0, a, c, p, z, r,Π) in Rz, it holds by construction that all
labels in Πl′ have the same costs. Therefore, we only need to consider the
nondominated labels with minimal arrival time amin over all labels in Πl′ .
Hence, for each l′ ∈ Rz, we call the output procedure for every label in l ∈ Πl′

if l has minimal arrival time amin in Πl′ .

Algorithm 6.2 uses a linear number of labels.

114

6.6. Min-Cost Earliest Arrival Path Enumeration Problem

Lemma 6.7. The total number of labels generated and held at the vertices in
Algorithm 6.2 is at most m+ 1.

Proof. We need one initial label linit at the source vertex s. For each incoming
edge e = (u, v, t, λ, c) in the edge stream, in line 3, we choose the label l with
minimal costs and arrival time at most t. We only push l and generate at
most one new label lnew at vertex v. Therefore, we generate at most m + 1
labels in total.

Lemma 6.8. Phase 1 of Algorithm 6.2 has a time complexity of O(m2).

Proof. The outer loop iterates over m edges. In each iteration, we have to find
the representative label l ∈ Ru with minimum costs and arrival time a ≤ te.
This is possible in constant time since we always keep the label with the earliest
arrival time of each equivalence class as the representative in Ru. We only need
to check if the arrival time of this label is earlier than the availability time
of the current edge. Next, we have to check the domination and equivalence
between lnew and each label l′ ∈ Rv. Each of the cases takes constant time,
and there are O(m) labels in Rv. Altogether, the time complexity of O(m2)
follows.

Algorithm 6.2 lists all efficient paths in polynomial delay and uses only linear
space.

Theorem 6.5. (c>0)-MceaEnum ∈ PSDelayP.

Using Algorithm 6.2, also the results of Theorem 6.3 and Corollary 6.1 can
be adapted for the earliest arrival case.

Theorem 6.6. Given a weighted temporal graph G = (V, E), s, z ∈ V and

1. an (s, z)-path P , deciding if P is efficient for MceaEnum, or

2. c ∈ R≥0 and a ∈ N, deciding if there exists an (s, z)-path P with a(P) ≤ a
and c(P) ≤ c is possible in polynomial time.

Corollary 6.2. Given a temporal graph G = (V, E) and s, z ∈ V , a maximal
set of efficient (s, z)-paths with pairwise different cost vectors for MceaEnum
can be found in time O(m2).

The running time of the first phase of Algorithm 6.2 can be further improved.
The authors of [23] showed that a running time of O(m logm) based on the
definition of an isotonicity property is possible. It states that for any two
(s, v)-paths P1 and P2 with c(P1) ≤ c(P2) that are extended with the same
edge e, it holds that c(P ′1) ≤ c(P ′2) where P ′1 and P ′2 are the with e extended
paths. Based on this property, the authors propose an improvement of the
first phase, in which we keep the label lists at the vertices sorted by arrival
times. Then, in the domination check, only a single label needs to be removed
in constant time, and inserting a new label is possible in O(m logm).

115

Chapter 6. Bicriteria Temporal Paths

6.7. Complexity of Counting Efficient Paths

In this section, we discuss the complexity of counting efficient paths and show
that the counting versions #Mcf and #Mcea are both #P-complete. First,
we show that already the unweighted earliest arrival temporal path problem
is #P-complete.

Earliest Arrival (s, z)-Paths Counting Problem (#Eap)
Input: A temporal graph G = (V, E) and s, z ∈ V .
Output: Number of fastest (s, z)-paths?

Lemma 6.9. #Eap is #P-complete.

Proof. We provide a polynomial-time Turing reduction from ST-Path to
#Eap. #Eap is the special case of #Mcea, where all edge costs are 0. It is
possible to decide if a path P is efficient for Mcea in polynomial time. This
implies that #Eap is in #P. The input of ST-Path is a static, directed graph
G = (V,E) and two vertices s, t ∈ V . The output is the number of simple
paths from s to t. Valiant [178] showed that the problem is #P-complete. Given
a static, directed graph G = (V,E) with n = |V | and two vertices s, t ∈ V ,
we construct a temporal graph with n − 1 layers Gτ = (V ∪ {z}, Eτ) with
temporal edges

Eτ = {(u, v, i, 1) | (u, v) ∈ E, 1 ≤ i ≤ τ} ∪ {(t, z, n, 1)},

for τ ∈ {1, . . . , n− 1}. Figure 6.5 shows an example of the construction. Each
temporal (s, z)-path in Gτ ends with the edge (t, z, n, 1). This construction
allows to determine all temporal (s, z)-paths of lengths 2 ≤ ` ≤ τ + 1 in
Gτ , with τ + 1 being the maximal length of any path in Gτ . For each
τ ∈ {1, . . . , n− 1} let yτ be the total number of earliest arrival (s, z)-paths in
Gτ . Note that yτ equals the number of (s, z)-paths that use at most τ+1 edges
because each edge traversal takes one time step. Each temporal (s, z)-path in
Gτ corresponds to exactly one (s, t)-path in the static graph G consisting of the
same sequence of edges but the last edge. Let xτ be the number of temporal
(s, z)-paths that use exactly τ + 1 edges. Then it holds that the number of
(s, t)-paths in G equals

∑n−1
τ=1 xτ .

A path of exactly τ + 1 edges in Gτ does not have to wait at any vertex,
besides possibly at vertex t. But a path of length ` ≤ τ can wait for τ + 1− `
time steps at one or more vertices that it visits beside vertex t. In order to
derive the value xτ from yτ , we have to account for all paths of length ` ≤ τ
that have such waiting times. Consider a path of length ` in Gτ with ` ≤ τ .
From the τ time steps, we choose ` time steps in which we do not wait and
traverse an edge. Consequently, knowing that there exist x` paths of length `
inG`, it follows that there are x`·

(τ
`

)
paths of length ` with waiting times inGτ .

Algorithm 6.3 calculates x1, . . . , xn−1, given an oracle for #Eap in polynomial
time based on these observations. The algorithm iteratively determines the
number xτ of (s, z)-path with length τ + 1 for τ ∈ {1, . . . , n − 1}. Each of

116

6.7. Complexity of Counting Efficient Paths

Algorithm 6.3

Input: Graph G = (V,E), source s ∈ V and target t ∈ V
Output: Number of efficient (s, t)-paths

1: for τ = 1, . . . , n− 1 do
2: Construct Gτ
3: yτ = #Earliest arrival (s, z)-path in Gτ

4: xτ = yτ −
τ−1∑
i=1

(
τ

i

)
· xi

return
∑n−1
i=1 xi

u

w ts z

...

... ...

...

n

τ

1

τ1
1

τ

1

τ

1

τ

1

τ

Figure 6.5.: Example for the reduction from ST-Path to #Eap.
The instance of ST-Path consists of a graph G =
(V,E) with vertices V = {s, u, w, t} and edges E =
{(s, u), (s, w), (s, t), (u,w), (u, t), (w, t)}. In iteration τ of
the reduction we use the oracle for #Eap to find all (s′, z)-path
in the modified graph.

these paths corresponds to exactly one (s, t)-path of length τ in G. Summing
up all xi for 1 ≤ i ≤ n−1 leads exactly to the number of (s, t)-paths in G.

Now consider the Fastest (s, z)-Path Counting Problem (#Fp). Both
problems #Eap and #Fp are special cases of the weighted versions #Mcea
and #Mcf. The parsimonious reduction of Lemma 6.1 implies that also #Fp
is #P-complete. Consequently, it follows Theorem 6.7.

Theorem 6.7. #Mcf and #Mcea are #P-complete.

A similar result to Lemma 6.9 was independently shown in [25] in the con-
text of temporal betweeness computation. In [25], the authors give a reduction
from a matching problem (imperfect matchings) to show #P-completeness of
counting strict temporal (s, z)-paths, which implies #P-completeness for earli-
est arrival and fastest temporal path counting.

117

Chapter 6. Bicriteria Temporal Paths

6.8. Conclusion
We discussed the bicriteria optimization problems Min-Cost Earliest
Arrival Paths Enumeration Problem (MceaEnum) and Min-Cost
Fastest Paths Enumeration (McfEnum). We have shown that enu-
merating exactly all efficient paths with low costs and early arrival time or
short duration is possible in polynomial time delay and linear or polynomial
space if the input graph has strictly positive edge costs. In the case of
nonnegative edge costs, it is possible to determine a maximal set of efficient
paths with pairwise different cost vectors in O(m2) time or O(τ+(s) · m2)
time, respectively. We can find an efficient path for each non-dominated point
in polynomial time. For the cases of zero-weighted or even negative edge
weights, we cannot guarantee polynomial-time delay for our algorithms to
solve McfEnum or MceaEnum. However, the proposed algorithms can be
used to determine all efficient (s, z)-walks in polynomial time delay. Because
each edge in a temporal graph can only be used for departure at a specific
time, the number of different walks is finite, and the algorithms terminate.
Counting temporal paths is hard, even in the unweighted single criterion case.
We showed #P-completeness for all discussed counting problems.

118

Chapter 7
Conclusion and Future Work

7.1. Conclusion

We introduced algorithms for temporal graphs, which are of increasing signif-
icance in network research. Our algorithms and methods specifically designed
for temporal graphs can be a step towards a broader toolbox for temporal
graph analytics similar to the broad field of static graph analytics. Our con-
tributions are manifold. We presented algorithms for ranking nodes according
to temporal closeness and the new temporal walk centrality. We showed that
the top-k computation of the temporal closeness improved the efficiency for
large temporal networks. Identifying and ranking nodes of web-based social
networks and communication networks according to their importance in the
dissemination of information are critical and challenging tasks, especially if
the considered networks are non-static and of temporal nature. With our
work on the new temporal walk centrality measure, we can rank nodes ac-
cording to their importance in information spreading. Possible applications
are the surveillance of spreading fake news or infectious diseases in temporal
networks. As we saw, temporal distance and path computation are ubiquitous
in analyzing temporal networks. Hence, we proposed the efficient Substream
index to answer single-source-all-destination temporal distance queries fast.
The Time Skip index often performs very well on its own. Our new indices
are general approaches and employable in other streaming-based scenarios.
On the other hand, not only identifying single vertices but classifying net-

works by their dissemination patterns can be a valuable tool in the early
detection of spreading diseases or fake news. We believe that the classifica-
tion of dissemination, like spreading diseases and (fake) news, will gain in-
creasing attention. Our framework for classifying dissemination on temporal
graphs showed very high classification accuracy. Even in the case of incomplete
knowledge, we achieved high classification accuracy.
We also discussed problems on the temporal graphs that include additional

non-temporal edge costs. Such weighted temporal graphs can, e.g., model
transportation networks where the costs represent, e.g., fuel or ticket costs.
We showed that we could enumerate all efficient paths with polynomial delay
in the case of weighted temporal graphs.

119

Chapter 7. Conclusion and Future Work

7.2. Outlook and Future Work
The field of temporal graph algorithms leaves a lot to be discovered. In our
work, we discussed different areas, and in the following, we state possible
directions for future works in these areas.

• Temporal centrality measures: For the temporal walk centrality,
more general weight functions for temporal walks could be studied, which
not only depend on two points in time but, e.g., also on the number and
availability times of incident edges of a node in the walk. Suitable weight
functions can allow a probabilistic interpretation of the temporal walk
centrality.
Modifications of temporal walk centrality from a vertex centrality mea-
sure to a group centrality measure for vertices or edges could lead to
insights about structures in temporal graphs that are important in dis-
semination processes.

• Temporal graph indexing: We want to investigate the characteristics
of temporal graphs that lead to good performing substream indices in
future work. The goal is to introduce corresponding temporal graph
classes with further provable performance guarantees.
Combining our substream index with indexing techniques for single-
source-single-destination queries, e.g., hop labels, might be fruitful.

• Dissemination classification: Developing approaches that do not
explicitly transform the data set could improve performance. In future
work, we want to adapt the (k-dimensional) Weisfeiler-Leman kernel to
operate on the temporal graph directly.

• Enumeration and counting: The next step for generalizing the bi-
criteria case for enumerating efficient paths can be its extension with
more (temporal) criteria and, e.g., the consideration of waiting time
constraints.

120

Appendix A
Data Sets

We provide additional details for the data sets used in the experimental
sections of Chapters 3 to 5.

A.1. List of Data Sets
• AskUbuntu: A network of interactions on the stack exchange website Ask

Ubuntu [149]. The interactions are responses to answers user questions.
Each edge represents an answer to an question.

• Arxiv: An authors collaboration network from the arXiv’s High En-
ergy Physics - Phenomenology (hep-ph) section [109]. Vertices represent
authors and edges collaborations. The time stamp of an edge is the
publication date.

• College is based on an online social network used by students [145,
148]. The online community for students at the University of California,
Irvine was designed for social interactions among the students. Vertices
represent the students and temporal edges messages send between users.

• DBLP: We used a subset of the Digital Bibliography & Library Project
(https://dblp.uni-trier.de/) database to generate temporal co-
author graphs. The subset was chosen by considering publications in
proceedings of selected machine learning conferences. Vertices represent
authors, and the time stamp of an edge is the year of a joint publication.

• Delicious is a network based on a bookmark website [185]. The vertices
represent users and tags. Each edge between shows that a user tagged
a bookmark.

• Digg is a social network in which vertices represent persons and edges
friendships. The time stamps indicate when friendships were formed [76].

• Enron is an email network between employees of a company [96]. The
network consists of emails sent between employees of Enron between 1999
and 2003. Vertices in the network represent employees and temporal

121

https://dblp.uni-trier.de/

Appendix A. Data Sets

edges emails. In this version of the network, edges with erroneous
timestamps were removed.

• Epinion is a network based on the product rating website Epinions [119].
The graph is bipartite, and vertices represent users and products. Edges
connect users with products and represent ratings at a specific times.

• Facebook: This graph is a subset of the activity of a Facebook com-
munity over three months and contains interactions in the form of wall
posts [180]. Vertices represents users and edges wall posts.

• Flickr: A social network [124]. Vertices represent users and temporal
edges friendships. The timestamps of the edges are the time when the
friendship was established.

• Highschool is a contact network of students over seven days [120].

• Hospital contains the contacts between hospital patients and medical
personal [179].

• HTMLConf is a contact network of visitors of a conference [82].

• Infectious: The Infectious graph represents face-to-face contacts between
visitors of the exhibition Infectious: Stay Away [82].

• Prosper: A network based on the personal loan website www.prosper.
com [154]. Vertices represent persons, and each edge a loan from one
person to another person.

• Mit: A temporal graph of interactions among students of the Mas-
sachusetts Institute of Technology [46]. Vertices represent persons and
edges physical contacts.

• StackOverflow: A network of interactions on the stack exchange website
Stack Overflow [149]. The interactions are responses to answers user
questions. Each edge represents an answer to an question.

• Wikipedia: The network is based on the Wikipedia network. Each vertex
represents a Wikipedia page, and each edge a hyperlink between two
pages [126].

• WikiTalkNl is a social network based on the user pages of the Netherlands
Wikipedia website [168]. Vertices represent users and edges messages on
the user page [168].

• Youtube: A social network on the video platform Youtube [125]. Vertices
represent users and edges (non-symmetric) friendship. The availability
time determines the date when the friendship was established.

122

www.prosper.com
www.prosper.com

Appendix B
Additional Results

In this chapter, we presents additional results for Section 4.5.

0 5000 10000
|S|

101

102

103

#
S

u
b

st
re

am
s

Infectious

0 50000 100000
|S|

101

102

103

#
S

u
b

st
re

am
s

AskUbuntu

0 10000
|S|

101

102

103

#
S

u
b

st
re

am
s

Infectious

Greedy SubStream

Figure B.1.: Histogram of the substream sizes |S|. The sketch-size for Sub-
Stream is h = 8.

0 10000
|Si|

1.0

10.0

I i

Infectious

0 100000
|Si|

1

10

100

I i

AskUbuntu

0 1
|Si| ×107

7× 102

8× 102

I i

StackOverflow

Greedy SubStream

Figure B.2.: Scatter plots with the substream sizes Si on the x-axis and the
number Ii of vertices assigned to Si on the y-axis for k = 2048.
For SubStream, h = 8.

123

Appendix B. Additional Results

2 4 8 16 32 64 128
ω

10−1

100
R

u
n

n
in

g
ti

m
e

(s
)

Infectious

2 4 8 16 32 64 128
ω

100

101

R
u

n
n

in
g

ti
m

e
(s

)

Prosper

2 4 8 16 32 64 128
ω

101

102

R
u

n
n

in
g

ti
m

e
(s

)

Youtube

2 4 8 16 32 64 128
ω

101

102

103

R
u

n
n

in
g

ti
m

e
(s

)

StackOverflow

2 4 8 16 32 64 128
ω

10−1

100

R
u

n
n

in
g

ti
m

e
(s

)
Infectious

SubStream TimeSkip OnePass Dl Xuan

Figure B.3.: Decreasing running times for shorter time intervals. The y-axis
uses a logarithmic scale.

0 5000 10000
|Si|

4

6

8

I i

Infectious

0 50000 100000
|Si|

40

60

I i

AskUbuntu

0 2 4
|Si| ×106

600

800

1,000

I i

Youtube

0.0 0.5 1.0
|Si| ×107

600

800

1,000

I i

StackOverflow

0 10000
|Si|

4

6

8

I i

Infectious

h = 1 h = 8 h = 64

Figure B.4.: Scatter plots with the substream sizes Si on the x-axis and the
number Ii of vertices assigned to Si on the y-axis. The number
of substreams is k = 2048.

124

1 2 4 8 16 32 64
h

1

2
In

d
ex

in
g

ti
m

e
(s

)

1 2 4 8 16 32 64
h

12

13

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

0.0060

0.0065

0.0070

E
A

Q
u

er
y

ti
m

e
(s

)

(a) Infectious

1 2 4 8 16 32 64
h

10

15

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

40

50
In

d
ex

si
ze

(M
B

)

1 2 4 8 16 32 64
h

0.05

0.06

E
A

Q
u

er
y

ti
m

e
(s

)

(b) AskUbuntu

1 2 4 8 16 32 64
h

100

200

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

2000

2500

3000

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

0.6

0.7

0.8
E

A
Q

u
er

y
ti

m
e

(s
)

(c) Digg

1 2 4 8 16 32 64
h

10000

15000

In
d

ex
in

g
ti

m
e

(s
)

1 2 4 8 16 32 64
h

10000

20000

30000

In
d

ex
si

ze
(M

B
)

1 2 4 8 16 32 64
h

10

12

14

E
A

Q
u

er
y

ti
m

e
(s

)

(d) StackOverflow

Figure B.5.: Effect of varying the sketch size h for SubStream, k = 2048, and
h = 2i with i ∈ {0, . . . , 6} over ten runs. For StackOverflow and
h = 64, the computations could not finish in the time limit of 48
hours.

125

Bibliography

[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F.
Werneck. Hierarchical hub labelings for shortest paths. In European
Symposium on Algorithms, pages 24–35. Springer, 2012.

[2] Charu C. Aggarwal and Karthik Subbian. Evolutionary network analy-
sis: A survey. ACM Comput. Surv., 47(1):10:1–10:36, 2014.

[3] Rakesh Agrawal, Alexander Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and knowledge
bases. In James Clifford, Bruce G. Lindsay, and David Maier, editors,
Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, pages 253–262. ACM Press, 1989.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-
path distance queries on large networks by pruned landmark labeling.
In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 349–360, 2013.

[5] Josh Alman and Virginia Vassilevska Williams. A refined laser method
and faster matrix multiplication. In Dániel Marx, editor, Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
522–539. SIAM, 2021.

[6] Akash Anil, Niladri Sett, and Sanasam Ranbir Singh. Modeling evolu-
tion of a social network using temporalgraph kernels. In Proceedings of
the 37th International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, pages 1051–1054, 2014.

[7] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[8] Chen Avin, Michal Kouckỳ, and Zvi Lotker. How to explore a fast-
changing world (cover time of a simple random walk on evolving graphs).
In International Colloquium on Automata, Languages, and Program-
ming, pages 121–132. Springer, 2008.

[9] Yuan Bai, Bo Yang, Lijuan Lin, Jose L Herrera, Zhanwei Du, and
Petter Holme. Optimizing sentinel surveillance in temporal network
epidemiology. Scientific Reports, 7(1):1–10, 2017.

[10] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris

129

Bibliography

Harrelson, Veselin Raychev, and Fabien Viger. Fast routing in very large
public transportation networks using transfer patterns. In Mark de Berg
and Ulrich Meyer, editors, Algorithms - ESA 2010, 18th Annual Euro-
pean Symposium, volume 6346 of Lecture Notes in Computer Science,
pages 290–301. Springer, 2010.

[11] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast
routing in road networks with transit nodes. Science, 316(5824):566–566,
2007.

[12] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter.
Time-dependent contraction hierarchies. In Irene Finocchi and John
Hershberger, editors, Proceedings of the Eleventh Workshop on Algo-
rithm Engineering and Experiments, ALENEX, pages 97–105. SIAM,
2009.

[13] Alex Bavelas. Communication patterns in task-oriented groups. The
Journal of the Acoustical Society of America, 22(6):725–730, 1950.

[14] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A. Benczúr.
Temporal walk based centrality metric for graph streams. Applied Net-
work Science, 3(1):32:1–32:26, 2018.

[15] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea
Marino, and Henning Meyerhenke. Computing top-k closeness cen-
trality faster in unweighted graphs. ACM Trans. Knowl. Discov. Data,
13(5):53:1–53:40, 2019.

[16] Patrick Bisenius, Elisabetta Bergamini, Eugenio Angriman, and Hen-
ning Meyerhenke. Computing top-k closeness centrality in fully-dynamic
graphs. In Proceedings of the Twentieth Workshop on Algorithm Engi-
neering and Experiments, ALENEX, pages 21–35. SIAM, 2018.

[17] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels
on graphs. In Fifth IEEE International Conference on Data Mining,
pages 8–pp. IEEE, 2005.

[18] Dan Braha and Yaneer Bar-Yam. Time-dependent complex networks:
Dynamic centrality, dynamic motifs, and cycles of social interactions. In
Adaptive Networks, pages 39–50. Springer, 2009.

[19] Ulrik Brandes. A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[20] Sergey Brin and Lawrence Page. The anatomy of a large-scale hyper-
textual web search engine. Computer networks and ISDN systems, 30(1-
7):107–117, 1998.

[21] Andrei Z. Broder. On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES, pages
21–29. IEEE, 1997.

130

Bibliography

[22] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and deep locally connected networks on graphs. In Inter-
national Conference on Learning Representation, 2014.

[23] Filippo Brunelli, Pierluigi Crescenzi, and Laurent Viennot. On comput-
ing pareto optimal paths in weighted time-dependent networks. Infor-
mation Processing Letters, 168:106086, 2021.

[24] Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing
shortest, fastest, and foremost journeys in dynamic networks. Inter-
national Journal of Foundations of Computer Science, 14(02):267–285,
2003.

[25] Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar.
Algorithmic aspects of temporal betweenness. In Rajesh Gupta, Yan
Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 2084–2092. ACM, 2020.

[26] Julián Candia, Marta C González, Pu Wang, Timothy Schoenharl, Greg
Madey, and Albert-László Barabási. Uncovering individual and collec-
tive human dynamics from mobile phone records. Journal of physics A:
mathematical and theoretical, 41(22):224015, 2008.

[27] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola
Santoro. Time-varying graphs and dynamic networks. International
Journal of Parallel, Emergent and Distributed Systems, 27(5):387–408,
2012.

[28] Augustin Chaintreau, Abderrahmen Mtibaa, Laurent Massoulié, and
Christophe Diot. The diameter of opportunistic mobile networks. In
Jim Kurose and Henning Schulzrinne, editors, Proceedings of the 2007
ACM Conference on Emerging Network Experiment and Technology,
CoNEXT, page 12. ACM, 2007.

[29] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011.

[30] Xiaoshuang Chen, Kai Wang, Xuemin Lin, Wenjie Zhang, Lu Qin, and
Ying Zhang. Efficiently answering reachability and path queries on
temporal bipartite graphs. Proceedings of the VLDB Endowment, 2021.

[31] Yangjun Chen and Yibin Chen. An efficient algorithm for answering
graph reachability queries. In Gustavo Alonso, José A. Blakeley, and
Arbee L. P. Chen, editors, Proceedings of the 24th International Con-
ference on Data Engineering, ICDE, pages 893–902. IEEE Computer
Society, 2008.

[32] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S.
Yu. Fast computation of reachability labeling for large graphs. In

131

Bibliography

Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian
Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten
Grust, and Christian Böhm, editors, Advances in Database Technology
- EDBT 2006, 10th International Conference on Extending Database
Technology, volume 3896 of Lecture Notes in Computer Science, pages
961–979. Springer, 2006.

[33] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cat-
tuto, Francesco Gullo, and Alain Barrat. Relevance of temporal cores
for epidemic spread in temporal networks. Scientific reports, 10(1):1–15,
2020.

[34] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck.
Computing classic closeness centrality, at scale. In Proceedings of the
second ACM conference on Online social networks, pages 37–50, 2014.

[35] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability
and distance queries via 2-hop labels. SIAM J. Comput., 32(5):1338–
1355, 2003.

[36] Kenneth L Cooke and Eric Halsey. The shortest route through a network
with time-dependent internodal transit times. Journal of Mathematical
Analysis and Applications, 14(3):493–498, 1966.

[37] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, STOC ’87, pages 1–6, New York,
NY, USA, 1987. ACM.

[38] Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Finding
top-k nodes for temporal closeness in large temporal graphs. Algorithms,
13(9):211, 2020.

[39] Kousik Das, Sovan Samanta, and Madhumangal Pal. Study on centrality
measures in social networks: a survey. Social Network Analysis and
Mining, 8(1):13, 2018.

[40] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In
Advances in Neural Information Processing Systems, pages 3844–3852,
2016.

[41] Daniel Delling. Time-dependent sharc-routing. Algorithmica, 60(1):60–
94, 2011.

[42] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[43] Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-
criteria shortest paths in time-dependent train networks. In Interna-
tional Workshop on Experimental and Efficient Algorithms, pages 347–
361. Springer, 2008.

132

Bibliography

[44] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. Dy-
namic network embedding: An extended approach for skip-gram based
network embedding. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, pages 2086–2092, 2018.

[45] David K. Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Con-
volutional networks on graphs for learning molecular fingerprints. In
Advances in Neural Information Processing Systems, pages 2224–2232,
2015.

[46] Nathan Eagle and Alex Sandy Pentland. Reality mining: Sensing com-
plex social systems. Personal and Ubiquitous Computing, 10(4):255–268,
2006.

[47] Jean-Pierre Eckmann, Elisha Moses, and Danilo Sergi. Entropy of di-
alogues creates coherent structures in e-mail traffic. Proceedings of the
National Academy of Sciences, 101(40):14333–14337, 2004.

[48] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bib-
liography of multiobjective combinatorial optimization. OR-Spektrum,
22(4):425–460, 2000.

[49] Jochen Eisner and Stefan Funke. Transit nodes–lower bounds and refined
construction. In 2012 Proceedings of the Fourteenth Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 141–149. SIAM,
2012.

[50] Jessica Enright and Rowland Raymond Kao. Epidemics on dynamic
networks. Epidemics, 24:88–97, 2018.

[51] David Eppstein and Joseph Wang. Fast approximation of centrality. In
Proceedings of the Twelfth Annual Symposium on Discrete Algorithms
(SODA), pages 228–229. ACM/SIAM, 2001.

[52] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Representation Learn-
ing on Graphs and Manifolds, 2019.

[53] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms. Journal of the
ACM (JACM), 34(3):596–615, 1987.

[54] Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40:35–41, 1977.

[55] Riccardo Gallotti and Marc Barthelemy. The multilayer temporal net-
work of public transport in great britain. Scientific data, 2(1):1–8, 2015.

[56] David S. Garey, Michael R.and Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness (Series of Books in the
Mathematical Sciences). W. H. Freeman, first edition edition, 1979.

133

Bibliography

[57] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Learning Theory and
Kernel Machines, pages 129–143. Springer, 2003.

[58] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance
labeling in graphs. Journal of Algorithms, 53(1):85–112, 2004.

[59] Robert Geisberger. Contraction of timetable networks with realistic
transfers. In Paola Festa, editor, Experimental Algorithms, 9th Inter-
national Symposium, SEA, volume 6049 of Lecture Notes in Computer
Science, pages 71–82. Springer, 2010.

[60] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction hierarchies: Faster and simpler hierarchical routing in road
networks. In Catherine C. McGeoch, editor, Experimental Algorithms,
7th International Workshop, WEA 2008, volume 5038 of Lecture Notes
in Computer Science, pages 319–333. Springer, 2008.

[61] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vet-
ter. Exact routing in large road networks using contraction hierarchies.
Transportation Science, 46(3):388–404, 2012.

[62] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. Time-
dependent routing problems: A review. Computers & operations re-
search, 64:189–197, 2015.

[63] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 1263–1272, 2017.

[64] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyn-
graph2vec: Capturing network dynamics using dynamic graph repre-
sentation learning. Knowledge-Based Systems, 187:104816, 2020.

[65] Felipe Grando, Diego Noble, and Luis C. Lamb. An analysis of cen-
trality measures for complex and social networks. In 2016 IEEE Global
Communications Conference (GLOBECOM), pages 1–6. IEEE, 2016.

[66] Peter Grindrod, Mark C. Parsons, Desmond J Higham, and Ernesto
Estrada. Communicability across evolving networks. Physical Review E,
83(4):046120, 2011.

[67] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan.
Attention based spatial-temporal graph convolutional networks for traf-
fic flow forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 922–929, 2019.

[68] Horst W. Hamacher, Stefan Ruzika, and Stevanus A. Tjandra. Algo-
rithms for time-dependent bicriteria shortest path problems. Discrete
optimization, 3(3):238–254, 2006.

[69] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

134

Bibliography

learning on large graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[70] Steve Hanneke and Eric P. Xing. Discrete temporal models of social
networks. In ICML Workshop on Statistical Network Analysis, pages
115–125. Springer, 2006.

[71] Pierre Hansen. Bicriterion path problems. In Günter Fandel and Tomas
Gal, editors, Multiple Criteria Decision Making Theory and Application,
pages 109–127, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

[72] Frank Harary and Gopal Gupta. Dynamic graph models. Mathematical
and Computer Modelling, 25(7):79–87, 1997.

[73] Frank Harary and Robert Z. Norman. Some properties of line digraphs.
Rendiconti del Circolo Matematico di Palermo, 9(2):161–168, May 1960.

[74] Nicholas A. Heard, Nicholas A. Heard, and Niall M. Adams. Dynamic
Networks and Cyber-Security. Imperial College Press, 2016.

[75] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The Collected Works of Wassily Hoeffding, pages 409–426.
Springer New York, New York, NY, 1994.

[76] Tad Hogg and Kristina Lerman. Social dynamics of digg. EPJ Data
Science, 1(1):5, 2012.

[77] Petter Holme. Modern temporal network theory: a colloquium. The
European Physical Journal B, 88(9):234, 2015.

[78] Petter Holme, Christofer R. Edling, and Fredrik Liljeros. Structure
and time evolution of an internet dating community. Social Networks,
26(2):155–174, 2004.

[79] Silu Huang, James Cheng, and Huanhuan Wu. Temporal graph traver-
sals: Definitions, algorithms, and applications. CoRR, abs/1401.1919,
2014.

[80] Nam Huynh and Johan Barthelemy. A comparative study of topological
analysis and temporal network analysis of a public transport system.
International Journal of Transportation Science and Technology, 2021.

[81] Abdelfattah Idri, Mariyem Oukarfi, Azedine Boulmakoul, Karine
Zeitouni, and Ali Masri. A new time-dependent shortest path algo-
rithm for multimodal transportation network. Procedia Computer Sci-
ence, 109:692–697, 2017.

[82] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François
Pinton, and Wouter Van den Broeck. What’s in a crowd? Analy-
sis of face-to-face behavioral networks. Journal of Theoretical Biology,
271(1):166–180, 2011.

[83] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena.
Structural-rnn: Deep learning on spatio-temporal graphs. In Proceedings

135

Bibliography

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5308–5317, 2016.

[84] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: a
high-compression indexing scheme for reachability query. In Ugur Çet-
intemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul, ed-
itors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD, pages 813–826. ACM, 2009.

[85] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently
answering reachability queries on very large directed graphs. In Ja-
son Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD, pages 595–608.
ACM, 2008.

[86] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.
On generating all maximal independent sets. Information Processing
Letters, 27(3):119–123, 1988.

[87] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, 1953.

[88] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity
and inference problems for temporal networks. J. Comput. Syst. Sci.,
64(4):820–842, 2002.

[89] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In Lise Getoor, Ted E.
Senator, Pedro M. Domingos, and Christos Faloutsos, editors, Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 137–146. ACM, 2003.

[90] Maurice G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81–93, 1938.

[91] Gaurav Khanna, Sanjay K. Chaturvedi, and Sieteng Soh. Two-
terminal reliability analysis for time-evolving and predictable delay-
tolerant networks. Recent Advances in Electrical & Electronic Engineer-
ing (Formerly Recent Patents on Electrical & Electronic Engineering),
13(2):236–250, 2020.

[92] Hyoungshick Kim and Ross Anderson. Temporal node centrality in
complex networks. Physical Review E, 85(2):026107, 2012.

[93] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

[94] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representation, 2017.

[95] Dmitry B. Kireev. Chemnet: A novel neural network based method

136

Bibliography

for graph/property mapping. Journal of Chemical Information and
Computer Sciences, 35(2):175–180, 1995.

[96] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset
for email classification research. In European Conference on Machine
Learning, pages 217–226. Springer, 2004.

[97] Konstantin Knauf, Daniel Memmert, and Ulf Brefeld. Spatio-temporal
convolution kernels. Machine Learning, 102(2):247–273, 2016.

[98] Risi Kondor and Horace Pan. The multiscale Laplacian graph kernel. In
Advances in Neural Information Processing Systems, pages 2990–2998,
2016.

[99] Nils M. Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid
optimal assignment kernels and applications to graph classification. In
Advances in Neural Information Processing Systems, pages 1623–1631,
2016.

[100] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey
on graph kernels. Applied Network Science, 5(1):1–42, 2020.

[101] Nils M Kriege, Marion Neumann, Christopher Morris, Kristian Kersting,
and Petra Mutzel. A unifying view of explicit and implicit feature maps
of graph kernels. Data Mining and Knowledge Discovery, 33(6):1505–
1547, 2019.

[102] Andrea Landherr, Bettina Friedl, and Julia Heidemann. A critical re-
view of centrality measures in social networks. Business & Information
Systems Engineering, 2(6):371–385, 2010.

[103] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream
graphs and link streams for the modeling of interactions over time. Soc.
Netw. Anal. Min., 8(1):61:1–61:29, 2018.

[104] Sophie Lebre, Jennifer Becq, Frederic Devaux, Michael PH Stumpf, and
Gaelle Lelandais. Statistical inference of the time-varying structure of
gene-regulation networks. BMC systems biology, 4(1):1–16, 2010.

[105] Hartmut H. K. Lentz, Andreas Koher, Philipp Hövel, Jörn Gethmann,
Carola Sauter-Louis, Thomas Selhorst, and Franz J. Conraths. Disease
spread through animal movements: a static and temporal network anal-
ysis of pig trade in germany. PloS one, 11(5):e0155196, 2016.

[106] Hartmut H. K. Lentz, Thomas Selhorst, and Igor M. Sokolov. Unfolding
accessibility provides a macroscopic approach to temporal networks.
Physical review letters, 110(11):118701, 2013.

[107] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking
and the dynamics of the news cycle. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 497–506, 2009.

137

Bibliography

[108] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Governance
in social media: A case study of the wikipedia promotion process. In
Fourth International AAAI Conference on Weblogs and Social Media,
2010.

[109] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl. Discov.
Data, 1(1):2–es, 2007.

[110] Liangyue Li, Hanghang Tong, Yanghua Xiao, and Wei Fan. Cheetah:
Fast graph kernel tracking on dynamic graphs. In Proceedings of the
2015 SIAM International Conference on Data Mining, pages 280–288.
SIAM, 2015.

[111] Wenchao Li, Hassen Saidi, Huascar Sanchez, Martin Schäf, and Pascal
Schweitzer. Detecting similar programs via the Weisfeiler-Leman graph
kernel. In International Conference on Software Reuse, pages 315–330.
Springer, 2016.

[112] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. arXiv
preprint arXiv:1707.01926, 2017.

[113] Ye Li, Leong Hou U., Man Lung Yiu, and Ngai Meng Kou. An experi-
mental study on hub labeling based shortest path algorithms. Proceed-
ings of the VLDB Endowment, 11(4):445–457, 2017.

[114] Qingkai Liang and Eytan Modiano. Survivability in time-varying net-
works. IEEE Transactions on Mobile Computing, 16(9):2668–2681, 2016.

[115] Ciémence Magnien and Fabien Tarissan. Time evolution of the im-
portance of nodes in dynamic networks. In 2015 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 1200–1207. IEEE, 2015.

[116] Massimo Marchiori and Vito Latora. Harmony in the small-world.
Physica A: Statistical Mechanics and its Applications, 285(3-4):539–546,
2000.

[117] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman.
Provably powerful graph networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems, pages 2153–2164, 2019.

[118] Ernesto Queiros Vieira Martins. On a multicriteria shortest path prob-
lem. European Journal of Operational Research, 16(2):236–245, 1984.

[119] Paolo Massa and Paolo Avesani. Controversial users demand local trust
metrics: An experimental study on epinions. com community. In AAAI,
volume 5, pages 121–126, 2005.

[120] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact pat-
terns in a high school: a comparison between data collected using

138

Bibliography

wearable sensors, contact diaries and friendship surveys. PloS one,
10(9):e0136497, 2015.

[121] Christian Merkwirth and Thomas Lengauer. Automatic generation of
complementary descriptors with molecular graph networks. Journal of
Chemical Information and Modeling, 45(5):1159–1168, 2005.

[122] Othon Michail. An introduction to temporal graphs: An algorithmic
perspective. Internet Math., 12(4):239–280, 2016.

[123] Othon Michail and Paul G. Spirakis. Traveling salesman problems in
temporal graphs. Theoretical Computer Science, 634:1–23, 2016.

[124] Alan Mislove, Hema Swetha Koppula, Krishna P Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Growth of the flickr social network.
In Proceedings of the first workshop on Online social networks, pages
25–30, 2008.

[125] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM SIGCOMM Internet
Measurement Conference, IMC, pages 29–42. ACM, 2007.

[126] Alan E. Mislove. Online social networks: measurement, analysis, and
applications to distributed information systems. PhD thesis, Rice Uni-
versity, 2009.

[127] Antoine Moinet, Michele Starnini, and Romualdo Pastor-Satorras.
Burstiness and aging in social temporal networks. Physical review letters,
114(10):108701, 2015.

[128] Christopher Morris, Kristian Kersting, and Petra Mutzel. Glocalized
weisfeiler-lehman graph kernels: Global-local feature maps of graphs. In
2017 IEEE International Conference on Data Mining, pages 327–336.
IEEE, 2017.

[129] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting,
Petra Mutzel, and Marion Neumann. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020.

[130] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and
Leman go neural: Higher-order graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–
4609, 2019.

[131] Petra Mutzel and Lutz Oettershagen. On the enumeration of bicriteria
temporal paths. In Theory and Applications of Models of Computation
(TAMC), volume 11436 of Lecture Notes in Computer Science, pages
518–535. Springer, 2019.

139

Bibliography

[132] Mark E. J. Newman. A measure of betweenness centrality based on
random walks. Soc. Networks, 27(1):39–54, 2005.

[133] Mark E. J. Newman. Networks: An Introduction. Oxford University
Press, 2010.

[134] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed,
Eunyee Koh, and Sungchul Kim. Continuous-time dynamic network
embeddings. In Companion Proceedings of the The Web Conference,
pages 969–976, 2018.

[135] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni
Russo, and Vito Latora. Graph metrics for temporal networks. In
Temporal Networks, pages 15–40. Springer, 2013.

[136] Giannis Nikolentzos, Polykarpos Meladianos, Stratis Limnios, and
Michalis Vazirgiannis. A degeneracy framework for graph similarity.
In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, pages 2595–2601, 2018.

[137] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Matching node embeddings for graph similarity. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[138] Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra
Mutzel. Classifying dissemination processes in temporal graphs. Big
Data, 8(5):363–378, 2020.

[139] Lutz Oettershagen, Nils M. Kriege, Christopher Morris, and Petra
Mutzel. Temporal graph kernels for classifying dissemination processes.
In SIAM International Conference on Data Mining (SDM), pages 496–
504. SIAM, 2020.

[140] Lutz Oettershagen and Petra Mutzel. Efficient top-k temporal closeness
calculation in temporal networks. In IEEE International Conference on
Data Mining (ICDM), pages 402–411. IEEE, 2020.

[141] Lutz Oettershagen and Petra Mutzel. An index for single source all des-
tinations distance queries in temporal graphs. CoRR, abs/2111.10095,
2021.

[142] Lutz Oettershagen and Petra Mutzel. Computing top-k temporal close-
ness in temporal networks. Knowledge and Information Systems, pages
1–29, 2022.

[143] Lutz Oettershagen, Petra Mutzel, and Nils M Kriege. Temporal walk
centrality: Ranking nodes in evolving networks. In WWW ’22: The Web
Conference 2022. ACM, 2022.

[144] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. Ranking of closeness
centrality for large-scale social networks. In Frontiers in Algorithmics,
Second Annual International Workshop, FAW, pages 186–195. Springer,
2008.

140

Bibliography

[145] Tore Opsahl and Pietro Panzarasa. Clustering in weighted networks.
Social networks, 31(2):155–163, 2009.

[146] Benjamin Paaßen, Christina Göpfert, and Barbara Hammer. Time
series prediction for graphs in kernel and dissimilarity spaces. Neural
Processing Letters, 48(2):669–689, 2018.

[147] Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and
centrality in temporal networks. Physical Review E, 84(1):016105, 2011.

[148] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an
online community. Journal of the American Society for Information
Science and Technology, 60(5):911–932, 2009.

[149] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in
temporal networks. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pages 601–610, 2017.

[150] Hogun Park and Jennifer Neville. Exploiting interaction links for node
classification with deep graph neural networks. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 3223–
3230, 2019.

[151] You Peng, Ying Zhang, Xuemin Lin, Lu Qin, andWenjie Zhang. Answer-
ing billion-scale label-constrained reachability queries within microsec-
ond. Proceedings of the VLDB Endowment, 13(6):812–825, 2020.

[152] Teresa M. Przytycka, Mona Singh, and Donna K. Slonim. Toward
the dynamic interactome: it’s about time. Briefings in bioinformatics,
11(1):15–29, 2010.

[153] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaro-
liagis. Efficient models for timetable information in public transportation
systems. Journal of Experimental Algorithmics (JEA), 12:1–39, 2008.

[154] Ursula Redmond and Pádraig Cunningham. A temporal network anal-
ysis reveals the unprofitability of arbitrage in the prosper marketplace.
Expert Systems with Applications, 40(9):3715–3721, 2013.

[155] Francisco Aparecido Rodrigues. Network centrality: an introduction.
In A Mathematical Modeling Approach from Nonlinear Dynamics to
Complex Systems, pages 177–196. Springer, 2019.

[156] Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic
networks: A survey. ACM Comput. Surv., 51(2):35:1–35:37, 2018.

[157] Polina Rozenshtein and Aristides Gionis. Temporal pagerank. In Ma-
chine Learning and Knowledge Discovery in Databases - European Con-
ference, ECML PKDD, volume 9852 of Lecture Notes in Computer Sci-
ence, pages 674–689. Springer, 2016.

[158] Polina Rozenshtein, Aristides Gionis, B Aditya Prakash, and Jilles

141

Bibliography

Vreeken. Reconstructing an epidemic over time. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1835–1844, 2016.

[159] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact
shortest path queries. In European Symposium on Algorithms, pages
568–579. Springer, 2005.

[160] Peter Sanders and Dominik Schultes. Engineering highway hierarchies.
In European Symposium on Algorithms, pages 804–816. Springer, 2006.

[161] Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud
Casteigts, and Frederic Amblard. Time-varying graphs and social
network analysis: Temporal indicators and metrics. arXiv preprint
arXiv:1102.0629, 2011.

[162] Akrati Saxena and Sudarshan Iyengar. Centrality measures in complex
networks: A survey. CoRR, abs/2011.07190, 2020.

[163] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

[164] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M. Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(77):2539–2561, 2011.

[165] Feng Shuo, Xie Ning, Shen de Rong, Li Nuo, Kou Yue, and Yu Ge.
Ailabel: A fast interval labeling approach for reachability query on very
large graphs. In Asia-Pacific Web Conference, pages 560–572. Springer,
2015.

[166] Anders J. V. Skriver and Kim Allan Andersen. A label correcting
approach for solving bicriterion shortest-path problems. Computers &
Operations Research, 27(6):507–524, 2000.

[167] Mahito Sugiyama and Karsten Borgwardt. Halting in random walk
kernels. In Advances in Neural Information Processing Systems, pages
1639–1647, 2015.

[168] Jun Sun, Jérôme Kunegis, and Steffen Staab. Predicting user roles in so-
cial networks using transfer learning with feature transformation. In Car-
lotta Domeniconi, Francesco Gullo, Francesco Bonchi, Josep Domingo-
Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, edi-
tors, IEEE International Conference on Data Mining Workshops, ICDM
Workshops, pages 128–135. IEEE Computer Society, 2016.

[169] John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia, Cecilia
Mascolo, Mirco Musolesi, and Vito Latora. Applications of temporal
graph metrics to real-world networks. In Temporal Networks, pages 135–
159. Springer, 2013.

142

Bibliography

[170] John Tang, Cecilia Mascolo, Mirco Musolesi, and Vito Latora. Exploit-
ing temporal complex network metrics in mobile malware containment.
In 2011 IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks, pages 1–9. IEEE, 2011.

[171] John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo
Nicosia. Analysing information flows and key mediators through tempo-
ral centrality metrics. In Proc. 3rd Workshop on Social Network Systems,
pages 1–6, 2010.

[172] William Hedley Thompson, Per Brantefors, and Peter Fransson. From
static to temporal network theory: Applications to functional brain
connectivity. Network Neuroscience, 1(2):69–99, 2017.

[173] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of
very large graphs. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 845–856. ACM, 2007.

[174] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. Dyrep: Learning representations over dynamic graphs. In 7th
International Conference on Learning Representations, 2019.

[175] Roman Trobec, Boštjan Slivnik, Patricio Bulić, and Borut Robič. In-
troduction to parallel computing: from algorithms to programming on
state-of-the-art platforms. Springer, 2018.

[176] Ioanna Tsalouchidou, Ricardo Baeza-Yates, Francesco Bonchi, Kewen
Liao, and Timos Sellis. Temporal betweenness centrality in dynamic
graphs. International Journal of Data Science and Analytics, pages 1–
16, 2019.

[177] Leslie G. Valiant. The complexity of computing the permanent. Theo-
retical computer science, 8(2):189–201, 1979.

[178] Leslie G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8(3):410–421, 1979.

[179] Philippe Vanhems, Alain Barrat, Ciro Cattuto, Jean-François Pinton,
Nagham Khanafer, Corinne Régis, Byeul-a Kim, Brigitte Comte, and
Nicolas Voirin. Estimating potential infection transmission routes in
hospital wards using wearable proximity sensors. PloS one, 8(9):e73970,
2013.

[180] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gum-
madi. On the evolution of user interaction in facebook. In Proceedings
of the 2nd ACM workshop on Online social networks, pages 37–42, 2009.

[181] Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of true and
false news online. Science, 359(6380):1146–1151, 2018.

[182] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual
labeling: Answering graph reachability queries in constant time. In Ling

143

Bibliography

Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, editors,
Proceedings of the 22nd International Conference on Data Engineering,
ICDE, page 75. IEEE Computer Society, 2006.

[183] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and Shuigeng Zhou.
Efficient route planning on public transportation networks: A labelling
approach. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 967–982, 2015.

[184] Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang. Time-dependent
graphs: Definitions, applications, and algorithms. Data Science and
Engineering, 4(4):352–366, 2019.

[185] Robert Wetzker, Carsten Zimmermann, and Christian Bauckhage. An-
alyzing social bookmarking systems: A del. icio. us cookbook. In Pro-
ceedings of the ECAI 2008 Mining Social Data Workshop, pages 26–30,
2008.

[186] World Health Organization (WHO). Ebola virus disease, democratic
republic of the congo, external situation report 43. 2019.

[187] Baoxin Wu, Chunfeng Yuan, and Weiming Hu. Human action recogni-
tion based on context-dependent graph kernels. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
2609–2616, 2014.

[188] HuanhuanWu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan
Xu. Path problems in temporal graphs. Proc. VLDB Endowment,
7(9):721–732, 2014.

[189] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping
Ke. Reachability and time-based path queries in temporal graphs. In
2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pages 145–156. IEEE, 2016.

[190] Xudong Wu, Luoyi Fu, Zixin Zhang, Huan Long, Jingfan Meng, Xinbing
Wang, and Guihai Chen. Evolving influence maximization in evolving
networks. ACM Trans. Internet Technol., 20(4), October 2020.

[191] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S Yu. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learning Systems,
2020.

[192] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826,
2018.

[193] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs
with jumping knowledge networks. In 35th International Conference on
Machine Learning, pages 5449–5458, 2018.

144

Bibliography

[194] Erjia Yan and Ying Ding. Applying centrality measures to impact anal-
ysis: A coauthorship network analysis. Journal of the American Society
for Information Science and Technology, 60(10):2107–2118, 2009.

[195] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph con-
volutional networks for skeleton-based action recognition. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pages
7444–7452, 2018.

[196] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph con-
volutional networks: A deep learning framework for traffic forecasting.
In Proceedings of the 27th International Joint Conference on Artificial
Intelligence, pages 3634–3640, 2018.

[197] Jeffrey Xu Yu and Jiefeng Cheng. Graph reachability queries: A survey.
In Charu C. Aggarwal and Haixun Wang, editors, Managing and Mining
Graph Data, volume 40 of Advances in Database Systems, pages 181–215.
Springer, 2010.

[198] Justin Zhan, Sweta Gurung, and Sai Phani Krishna Parsa. Identification
of top-k nodes in large networks using Katz centrality. J. Big Data,
4(1):1–19, 2017.

[199] Tianming Zhang, Yunjun Gao, Lu Chen, Wei Guo, Shiliang Pu, Baihua
Zheng, and Christian S. Jensen. Efficient distributed reachability query-
ing of massive temporal graphs. The VLDB Journal, 28(6):871–896,
2019.

[200] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:
A review of methods and applications. arXiv preprint arXiv:1812.08434,
2018.

145

	Abstract
	Acknowledgements
	Introduction
	Contributions and Organization
	Corresponding Publications

	Preliminaries
	Notation and General Definitions
	Static Graphs
	Temporal Graphs
	Temporal Walks and Paths
	Reachability
	Restricting Time Intervals
	Static Representations
	Optimality of Temporal Paths

	Data Structures and Algorithms
	Temporal Edge Streams
	A Data Structure for Low Dynamics
	Edge Incidence Lists

	Notation

	Centrality in Temporal Graphs
	Motivation and Contribution
	Related Work
	Temporal Closeness Centrality
	Harmonic Temporal Closeness
	Algorithms for Temporal Closeness
	Computing In-Closeness
	Approximation of the Temporal Closeness
	Experiments
	Conclusion

	Temporal Walk Centrality
	Strict and Non-strict Temporal Walks
	Temporal Walk Centrality
	Computation of the Temporal Walk Centrality
	Experiments
	Conclusion

	Temporal Distance Indexing
	Motivation and Contribution
	Related Work
	Temporal Edge Streams
	Substream Index
	Hardness of Finding a Minimal Substream Index
	A Greedy Approximation
	Improving the Greedy Algorithm
	Dynamic Updates

	Experimental Results
	Indexing Time and Index Size
	Querying Time
	Effect of the Sketch Size
	Dynamic Updates

	Case Study: Temporal Closeness
	Conclusion

	Classification of Dissemination
	Motivation and Contribution
	Related Work
	Static Graph Classification
	Modeling Dissemination on Temporal Graphs
	A Framework for Temporal Graph Classification
	Reduced Graph Representation
	Labeled Directed Line Graph Expansion
	Static Expansion

	Approximation for the Directed Line Graph Expansion
	Experiments
	Data Sets
	Graph Kernels and Graph Neural Networks
	Experimental Protocol
	Results and Discussion

	Conclusion

	Bicriteria Temporal Paths
	Motivation and Contribution
	Related Work
	Temporal Path Enumeration and Counting
	Structural Results
	Min-Cost Fastest Path Enumeration Problem
	Min-Cost Earliest Arrival Path Enumeration Problem
	Complexity of Counting Efficient Paths
	Conclusion

	Conclusion and Future Work
	Conclusion
	Outlook and Future Work

	Data Sets
	List of Data Sets

	Additional Results
	Curriculum Vitae
	Bibliography

