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1. Abstract  
Obesity is considered one of the major risk factors for chronic diseases and mortality. 

Although body mass index (BMI) is generally used to classify obesity, BMI can lead to 

the misclassification of individuals at cardiometabolic risk. Some individuals with a high 

BMI actually have a low cardiovascular disease (CVD) risk. The limited suitability of BMI 

for risk classification is due to the lack of information regarding body fat distribution, par-

ticularly abdominal fat. Beyond BMI, other anthropometric measurements such as waist 

circumference (WC), waist to hip ratio (WHR), and waist to height ratio (WHtR) are 

commonly used as proxies for abdominal fat. However, also their associations with car-

diometabolic risk and thus validity as risk markers remain questionable. Abdominal fat 

consists of visceral and subcutaneous adipose tissue (VAT and SAT), two metabolically 

different fat compartments. However, the relationships of VAT and SAT with cardiomet-

abolic risks are rather complex and not yet completely understood. In this thesis, I aimed 

to investigate the association of abdominal fat, as assessed through anthropometric and 

abdominal MRI measurements, with cardiometabolic risk markers of metabolic health. 

To enable this, I first collaborated with experts of artificial intelligence in medical imag-

ing, and targeted metabolomics analysis, to develop the measures to be used (fat seg-

mentation; metabolic profiling). Next, I investigated the interplay of abdominal fat-related 

biomarkers and metabolic health. The analyses were based on the first 5000 partici-

pants from the baseline examination of the Rhineland Study. My main findings are 4-

fold. First, I confirmed that larger VAT volumes are more metabolically detrimental than 

SAT in women, whereas VAT and SAT are associated with cardiometabolic risk markers 

to a similar extent in men. Second, I observed that among anthropometric measure-

ments, WC is the best surrogate marker for VAT. However, none of the anthropometric 

measurements added further information on cardiometabolic risk markers above that 

offered by VAT alone, suggesting that abdominal MRI measurements cannot be re-

placed if we want to understand underlying mechanisms linking adiposity and metabolic 

diseases. Third, I found that larger VAT volume in metabolically unhealthy persons might 

alter the metabolism of branched-chain (BCAA) and aromatic amino acids (AAA). And 

lastly, my research suggests that BCAA and AAA downstream metabolites might be in-

volved in the mechanisms that underlie the relationship of abdominal VAT with metabolic 

health. 
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2. Introduction & Aims with references  

2.1 Obesity prevalence 

Obesity is considered one of the major health problems around the world and is one of 

the main causes of non-communicable diseases such as CVD, type 2 diabetes (T2D), 

musculoskeletal disorders, and some types of cancer (Heymsfield and Wadden, 2017) 

(GBD 2015 Obesity Collaborators, 2017) (World Health Organization, 2021). Historically, 

obesity has been assessed by the Quetelet index. This index was first reported in 1835 

by Alphonse Quetelet, who attempted to define the average man using data from the 

heights and weights of the French and Scottish armies. His results showed that body 

weight increases as the square of the body height (Eknoyan, 2006) (Rössner, 2007). 

The Quetelet index, later called BMI, is calculated by dividing weight in kilograms by the 

square of body height measured in meters (kg/m2). The World Health Organization 

(WHO) established several cut-off values of BMI to classify the population as under-

weight (BMI < 18.5), normal weight ( ³ 18.5 BMI £ 24.9), overweight (³ 25 BMI £  29.9), 

and obese (BMI ³  30) (WHO Consultation, 2000). Epidemiological studies have report-

ed that worldwide the prevalence of overweight and obesity has risen significantly over 

the past three decades. Overall, about 13% of the adult population worldwide (11% of 

men and 15% of women) were obese in 2016 (World Health Organization, 2021). 

The prevalence of overweight and obesity has increased in both developed and devel-

oping countries, but patterns differ between men and women. In developed countries, 

men have higher rates of overweight and obesity, while in developing countries, women 

exhibit higher rates, and this relationship persists over time (Jaacks et al., 2019). In 

Germany, the obesity prevalence is also increasing despite strategies implemented by 

the Federal Government. The German Health Interview and Examination Survey for 

Adults (DEGS1) reported in 2013 that 24% of women and 23% of men were obese 

(Mensink et al., 2013). More recently, the German Health Update (GEDA) study series, 

using self-reported data on height and weight, reported that 46.7% of women and 61.6% 

of men in Germany were overweight, and the overall prevalence of obesity was 18.1% 

for both sexes (Schienkiewitz et al., 2017).  
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2.2 Obesity Paradox 
 

Increases in BMI contribute to a high proportion of deaths due to CVD and T2D (GBD 

2015 Obesity Collaborators, 2017). However, a considerable proportion of BMI-related 

deaths occurred in people without obesity (Afshin et al., 2017). Several studies found a 

non-linear (U-shaped curve) association of BMI with CVD and mortality, in which individ-

uals with a BMI threshold of 25 to 30 kg/m2 (overweight) have a lower mortality risk 

compared with individuals at a low (normal weight) and high spectrum (obesity) of BMI 

(Berrington de Gonzalez et al., 2010; Di Angelantonio et al., 2016; Flegal et al., 2007; 

Song et al., 2015). This so-called “obesity paradox” has raised the importance of a fur-

ther subclassification of obesity groups according to their metabolic profile. For instance, 

studies have reported that there is a subset of individuals with a high BMI that can be 

considered metabolically healthy (MH) as they present a healthy metabolic profile, char-

acterized by high insulin sensitivity, a favourable lipid profile, and low pro-inflammatory 

cytokine levels, and normal blood pressure. Conversely, another subset of individuals 

with normal or low BMI are metabolically unhealthy (MU) (Wildman et al., 2008)(Stefan 

et al., 2013). Body fat distribution, and specifically abdominal fat, is a cornerstone in 

understanding the complex relationships between obesity and metabolic diseases and is 

considered an essential factor in the mechanisms involved in converting MH phenotype 

to MU (Hwang et al., 2015). A challenge for population research into obesity is that the 

easily obtainable measure of BMI does not directly depict body fat, and even less, 

abdominal fat distribution (Sommer et al., 2020). 

2.3 Abdominal fat 
 

Abdominal fat is an important risk factor for chronic diseases (Després, 2012). One of 

the first pieces of research studying the effects of abdominal fat distribution on cardi-

ometabolic risk was done by Jean Vague more than 50 years ago. His work drew atten-

tion to sex differences in abdominal fat accumulation, with men tending to accumulate 

fat around the trunk and upper body (android obesity) while women store more fat 

around the thighs and hips (gynoid obesity) (Vague, 1956). Abdominal adipose tissue is 

distributed principally in two main compartments: subcutaneous adipose tissue (SAT) 

and visceral adipose tissue (VAT).  



 9 

Anatomically, SAT is defined as the adipose tissue layer found between the dermis and 

the aponeuroses and fasciae of the muscles. The main areas for subcutaneous fat dep-

osition are the femoral-gluteal regions, back, and anterior abdominal wall. SAT repre-

sents about 80% of all body fat of a healthy individual (Ibrahim, 2010). 

Abdominal VAT, a term originating from the Latin “viscera” word, stands for “organs in 

the cavities of the body” and can be distributed in three main body cavities: intrathoracic 

(ITAT), intraabdominal (IAAT), and intrapelvic (IPAT). Although the anatomical definition 

for VAT varies across studies, the majority define VAT as the abdominal fat accumulated 

in the IAAT cavity. This region is usually localized 5 cm below the lumbar 4th or from the 

lumbar 5th to the slice corresponding to the superior border of the liver (Shen et al., 

2003). Usually, VAT quantification also includes the fat surrounding the retroperitoneal 

organs, such as the pancreas, kidneys, duodenum, ascending colon, and descending 

colon (Nauli and Matin, 2019), and represents approximately 10 to 20% of the total body 

fat in men and 5 to 8% of total body fat in women. Because of its anatomical position, 

venous blood from visceral fat is drained directly to the liver through the portal vein 

(Ibrahim, 2010).   

2.4 Abdominal adipose tissue expansion and metabolic complications 
 
Adipose tissue is an endocrine organ, and one of its main functions is to store fat and 

release it in response to energy needs (Rosen and Spiegelman, 2014). Adipocytes are 

the representative cells of the adipose tissue, storing fat as triglycerides and free fatty 

acids (FFAs). In a response to an excess of energy intake, there is an increased de-

mand for fat storage in the adipocytes by absorbing FFAs and triglycerides in the 

postprandial period. As a result, adipocytes expand increasing the cell numbers via 

preadipocyte differentiation (hyperplasia) and increasing the cell size by lipid droplet 

expansion (hypertrophy) (Ghaben and Scherer, 2019)(Arner et al., 2010). Hyperplasia is 

known as a healthier mechanism of expansion because adipocytes keep a normal phys-

iological process storing excess of FFAs and triglycerides. It is suggested that SAT is 

the initial site for fat storage, however, once the storage capacity of SAT adipocytes is 

exceeded, they reach a limit of expansion and become hypertrophic. Those hypertrophic 

adipocytes start to accumulate in the VAT or in organs that are not adapted to store fat 

(ectopic fat) (Ibrahim, 2010). Ectopic fat is mainly accumulated in the major glucose reg-
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ulatory or peripheral organs such as the liver, skeletal muscle, pancreas, and heart. This 

type of fat accumulation is considered “lipotoxic” because interferes with normal insulin 

signaling, promotes insulin resistance, and increases the risk of T2D (Chait and den 

Hartigh, 2020).  

Although the expansion of SAT adipocytes, in response to an excess of energy intake, 

occurs principally through hypertrophy rather than hyperplasia (Rosen and Spiegelman, 

2014), the size and number of adipocytes within VAT and SAT can highly vary at a 

population level (Suárez-Cuenca et al., 2021). Several cellular pathways and genetic 

factors have been proposed to be involved in the regulation of adipocyte size and mor-

phology (Tandon et al., 2018) (Ye et al., 2022) (Macotela et al., 2012). The way adipo-

cytes expand determines the metabolic complications of abdominal fat (Suárez-Cuenca 

et al., 2021) by activating selective mechanisms that lead to inter-individual differences 

in cardiometabolic risk (Suárez-Cuenca et al., 2021) (Tandon et al., 2018) such as pro-

moting inflammation, disrupting insulin sensitivity, and impairing lipid metabolism. 

2.4.1 Hypoxia, macrophages infiltration and inflammatory cytokines 

Hypertrophic adipocytes expand by increasing their size and can rapidly reach the local 

limit of tissue oxygen diffusion, becoming hypoxic. Acute hypoxia leads to cell death and 

triggers physiologic stimuli for collagen breakdown and infiltration of macrophages. Mac-

rophages are the main inflammatory cell type that infiltrates the adipose tissue and con-

tribute considerably to the local levels of pro-inflammatory molecules. An increased rate 

of collagen synthesis and rates of adipocyte necrosis is associated with high levels of 

pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 6 

(IL-6), and a decrease of anti-inflammatory cytokines such as leptin and adiponectin 

(Ghaben and Scherer, 2019). Pro-inflammatory cytokines secreted in the adipose tissue 

antagonize insulin action and promote systemic inflammation (Smith and Kahn, 2016). 

2.4.2 Glucose and lipid metabolism 

Adipocytes play an important role in the regulation of glucose and insulin homeostasis.  

The relationship between adipocytes and glucose homeostasis is mainly regulated by 

glucose transporter type 4 (GLUT4), the major insulin-regulated glucose transporter 

(Abel et al., 2001) Hypertrophic adipocytes show a reduced expression of glucose 
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transporter type 4 (GLUT4), which leads to a decrease of de novo lipid synthesis and 

impair glucose uptake in the adipocytes, affecting the capability of adipocytes to store 

and (re-) esterify fatty acids (FAs), and causing high circulating levels of FAs (Smith and 

Kahn, 2016). An excess of FFA can cause metabolic disturbance in several ways. FFA 

may interact with insulin receptors and cause decreased insulin sensitivity, inhibit glu-

cose uptake, and stimulate glyconeogenesis. Additionally, FFAs are substrates for he-

patic triglyceride production and influence the assembly and secretion of very-low-

density lipoproteins (VLDL) (Arner, 1995). Thus, elevated FFAs levels promote hepatic 

lipid accumulation, contributing to glucose intolerance, hypertriglyceridemia, insulin re-

sistance, and hyperinsulinemia (Smith and Kahn, 2016) (Ebbert and Jensen, 2013). 

Metabolic dysfunction of hypertrophic adipocytes can also lead to increase production of 

lipid species that can accumulate in non-adipose organs, causing organic failure 

(Chaurasia and Summers, 2015).  

2.4.3 Metabolic differences between VAT and SAT 

Adipocytes from VAT and SAT show heterogeneous functionality and mechanisms that 

may underlie their differential contributions to cardiometabolic risk. 

It has been shown that hypertrophic adipocytes from VAT are more insulin-resistant, 

have a higher rate of insulin-stimulated glucose uptake (Ibrahim, 2010) (Ye et al., 2022), 

and secrete higher concentrations of pro-inflammatory cytokines compared with SAT 

adipocytes (Kranendonk et al., 2015). VAT has a higher rate of lipolysis than SAT and 

direct access to the liver through the portal system. Thus, VAT provides direct FFAs and 

cytokines to the liver and other non-fat tissues, increasing the risk of developing hepatic 

insulin resistance and T2D (Arner, 1995) (Rytka et al., 2011) 

In addition, based on the “gut-to-adipose tissue axis” theory, higher inflammation in VAT 

might be highly influenced by lipopolysaccharide from the gut microbiome because of 

the VAT’s proximity to the intestine (Hersoug et al., 2018) (Hersoug et al., 2016). 

Previous work has also shown that SAT adipocytes have a higher rate of differentiation 

in response to different stimuli than VAT adipocytes, indicating that SAT fat expands 

mainly by hyperplasia, whereas VAT expands by hypertrophy (Macotela et al., 2012). 

Moreover, adipocyte precursor cells (APCs) of VAT and SAT showed different gene ex-
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pression signatures. These differences in the genetic background might also explain the 

differences concerning cardiometabolic risk (Macotela et al., 2012). 

Still, the association of VAT and SAT with cardiometabolic risk at the population level is 

complex, and accurately measuring abdominal fat is essential to getting a more compre-

hensive understanding of the underlying mechanisms of metabolic health.   

2.5 Methods to assess abdominal obesity  

2.5.1 Anthropometric measurements  

Anthropometric measurements are indirect and non-invasive methods to assess body 

composition. They are widely used in epidemiological studies because of their feasibility 

in clinical practice. Beyond the already mentioned BMI, other measures such as WC, 

WHR, and WHtR are used in clinical practice to estimate abdominal obesity (Cornier et 

al., 2011; Neeland et al., 2019). Some epidemiological studies have shown the superiori-

ty of these surrogates over BMI when evaluating risk for CVD (Bodenant et al., 

2011)(Kidy et al., 2017) or risk of mortality (Pischon et al., 2008). For instance, the Eu-

ropean Prospective Investigation into Cancer and Nutrition (EPIC) reported that the as-

sociations of BMI with the risk of death followed a J-shaped curve, with higher risks of 

death observed in both the lower and upper BMI categories. Interestingly, they found a 

stronger association between high WC with mortality risk in individuals with low BMI 

(Pischon et al., 2008). Worldwide, the estimation of obesity prevalence comes from ex-

tensive national data that rely on BMI (World Health Organization, 2021). However, an-

thropometric measurements are an indirect measurement of adiposity and are sensitive 

to different types of measurement errors because of a lack of standardized techniques 

(Ulijaszek and Kerr, 1999). Measures of circumferences can be influenced by muscles 

and bones and do not accurately discriminate between VAT and SAT (Bosy-Westphal et 

al., 2010).  

2.5.2 Imaging methods 

An accurate assessment of VAT and SAT is essential for identifying individuals at higher 

risk of CVD and investigating the underlying mechanisms involved in the relationship of 

abdominal obesity with cardiometabolic risk. 
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The development of body fat measurement techniques started many years ago, from 

dissection and chemical analysis of cadavers (Martin et al., 2003) (Janssens et al., 

1994) to less invasive techniques. Nowadays, there is a wide range of invasive and non-

invasive methods for body composition analysis, of which imaging techniques such as 

computed tomography (CT) and MRI are considered the gold standard for abdominal fat 

assessment. Nonetheless, due to the high radiation exposure with CT scans, MRI 

measurements are preferred (Borga et al., 2018) (Cornier et al., 2011). 

MRI uses quantitative fat water imaging, which is a precise measurement of regional 

adipose tissue and lean tissue. The basis for quantitative fat water imaging is fat water 

separated, or Dixon imaging, where the different magnetic resonance frequencies of 

protons in fat and water are used for separating the two signals into a fat image and a 

water image (Dixon, Thomas, 1984). Abdominal MRI scans can be done by single-slice 

or multiple-slice acquisition. However, multiple-slices are preferred for a more accurate 

abdominal fat volume quantification (Shuster et al., 2012). Since MRI does not induce 

radiation, there is no limited time for scanning which reduces the uncertainty of their lo-

cations (Borga et al., 2018). The localization and quantification of VAT and SAT volumes 

are done with manual and/or semi-automated segmentation methods. However, manual 

segmentation methods are time-consuming, expensive, and introduce significant intra- 

and inter-operator variability (West et al., 2016). With the increasing demand for accu-

rate quantification of abdominal adipose tissue in large cohort studies, automated quan-

tification methods are needed (West et al., 2016). Nonetheless, the performance of au-

tomated segmentation is challenging because of the complex structures and shapes of 

the adipose across individuals and the inherent properties of Dixon images such as low-

intensity contrast between adipose tissue classes, inhomogeneous signals, and potential 

organ motion. Thus, the development and validation of robust automated pipelines for 

large population-based studies are essential (Estrada et al., 2020). 

2.6 Metabolomic biomarkers of abdominal fat and metabolic health. 

The link between abdominal adipose tissue and metabolic health can be mediated by 

biomarkers such as metabolites. These molecules are signatures of environmental ex-

posures and they can also be used as biomarkers to classify individuals at risk for cer-

tain diseases (Wild, 2005). 



 14 

Studies have shown that obesity is associated with disorders in protein metabolism 

(Guillet et al., 2011), especially the metabolism of branched-chain (BCAA) and aromatic 

amino acids (AAA). BCAA and AAA are considered essential amino acids because they 

must be obtained from the diet. The main metabolites from BCAA are Isoleucine (Ile), 

leucine (Leu), and Valine (Val). They are involved in protein synthesis and insulin secre-

tion. Phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr) belong to the AAA amino 

acids. They serve as precursors for the synthesis of many biologically/neurologically ac-

tive compounds that are essential for maintaining normal biological functions (Han et al., 

2019). However, an imbalance between protein intake and protein catabolism can cause 

physiological problems (Neinast et al., 2019). Alteration in protein breakdown is the pri-

mary source of elevated concentrations of BCAA and AAA in circulation. High circulating 

BCAA and AAA have been associated with obesity (Cussotto et al., 2020), insulin re-

sistance (Wiklund et al., 2016), and cardiometabolic risk factors (Cheng et al., 2012). 

They have also been established as biomarkers to predict the future development of 

T2D (Wang et al., 2011), metabolic syndrome, dyslipidemia, and hypertension 

(Yamakado et al., 2015). 

Interestingly, studies have shown that adipocytes play an important role in the obesity-

related alteration of amino acid metabolism. Trp can be further metabolized in down-

stream metabolites by three main pathways: the kynurenine pathway (KP), the serotonin 

pathway, and indole derivatives under the direct or indirect control of the microbiota 

(Agus et al., 2018). The highest proportion of Trp metabolism is through KP (Badawy 

and Guillemin, 2019). This pathway is mainly regulated by the indoleamine 2,3-

dioxygenase-1 (IDO1) enzyme, activated by proinflammatory cytokines in the adipose 

tissue (Wolowczuk et al., 2012). Certain downstream metabolites of the KP are neuro-

toxic and have been associated with chronic diseases (Chen and Guillemin, 2009). 

Likewise, BCAA metabolism can be regulated in adipocytes. Animal (Herman et al., 

2010) and human (Lackey et al., 2013) studies have shown that in adipocytes, the ex-

pression of BCAA catabolic enzyme is decreased, particularly in the VAT of MU obese 

individuals (Lackey et al., 2013). This suppression of BCAA catabolism in adipose tissue 

can cause systemic elevations of BCAAs in the circulation. Thus, the measurement of 

BCAA and AAA-derived circulating metabolites is becoming increasingly important. 
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2.6.1 Metabolomics 

Metabolomic analysis can profile metabolites in biofluids, cells, and tissues to identify 

metabolites and metabolic pathways that are associated with particular phenotypes or 

diseases. There are mainly two approaches to metabolite identification, untargeted and 

targeted metabolomics.  

Untargeted metabolomics aims to measure the broadest range of metabolites present in 

an extracted sample without a priori knowledge of the metabolome, with the advantage 

of possibly identifying novel metabolites. Targeted metabolomic analyses, on the other 

hand, measure the concentrations of a predefined set of metabolites. A standard curve 

for a concentration range of the metabolite of interest is prepared, so that accurate 

quantification can be gained. This type of analysis can be used to obtain exact concen-

trations of metabolites identified by untargeted metabolomics, providing analytical valida-

tion. Through the use of internal standards, analysis can be undertaken in a quantitative 

or semi-quantitative manner (Johnson et al., 2016) (Roberts et al., 2012). The validation 

of targeted and robust methods that cover a large number of putative metabolites such 

as BCAA, AAA, and AAA-breakdown metabolites is needed. 
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2.7 Aim 
 

The overarching goal of this thesis was to identify abdominal fat-related biomarkers as-

sociated with cardiometabolic risk markers. For this, I first contributed to developing and 

validating an automated deep learning pipeline for localizing, segmenting, and quantify-

ing VAT and SAT from MRI Dixon fat images (Chapter 3.1). Moreover, I also contributed 

to validating a UHPLC-ESI-MS/MS method for targeted quantification of putative metab-

olites from BCAA and AAA metabolism (Chapter 3.2). I next used the data on abdominal 

adipose tissue distribution to investigate the relation of VAT and SAT with anthropomet-

ric measurements and cardiometabolic risk factors (Chapter 3.3). Furthermore, I investi-

gated the relationship of VAT and SAT with circulating BCAA, AAA, and AAA-breakdown 

metabolites across metabolic health status and evaluated the association of those me-

tabolites with cardiometabolic risk markers, and whether they mediate the link between 

abdominal adipose tissue and metabolic health (Chapter 3.4).  

Towards the end of this thesis (Chapter 4), I will discuss my main results in the context 

of what is already known, how my findings contribute to a better understanding of the 

complex associations between VAT and SAT with cardiometabolic risk, and give direc-

tions for further research on this important topic. 
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1  |   INTRODUCTION

The excess of body fat depots is an increasing major public 
health issue worldwide and an important risk factor for the 
development of metabolic disorders and reduced quality of 
life.1,2 While the body mass index (BMI) is a widely used in-
dicator of adipose tissue accumulation in the body, it does not 
provide information on fat distribution3 neither with respect 
to different fat tissue types nor with respect to deposit loca-
tion. Different compartments of adipose tissue are associated 
with different physiopathological effects.4,5 Abdominal adi-
pose tissue (AAT), composed of subcutaneous and visceral 
adipose tissue (SAT and VAT), has long been associated with 
an increased risk of chronic cardiovascular diseases, glucose 
impairment, and dyslipidemia.6,7 Recently, several studies 
have indicated a stronger relation between the accumulation 
of VAT with an adverse metabolic and inflammatory profile 
compared to SAT.8,9 Therefore, an accurate and independent 
measurement of VAT and SAT volumes (VAT‐V and SAT‐V) 
is of significant clinical and research interest.

Currently, the gold standard for measuring VAT‐V 
and SAT‐V is the manual segmentation of abdominal fat 
images from Dixon magnetic resonance (MR) scans—a very 
expensive and time‐consuming process. Thus, especially for 
large studies, automatic segmentation methods are required. 
However, achieving good accuracy is challenging due to 
complex AAT structures, a wide variety of VAT shapes, large 
anatomical differences across subjects, and the inherent prop-
erties of the Dixon images: low intensity contrast between 
adipose tissue classes, inhomogeneous signals, and potential 
organ motion. So far, those limitations impeded the wide‐
spread implementation of automatic and semi‐automatic 
techniques based on intensity and shape features, such as 
fuzzy‐clustering,10 k‐means clustering,11 graph cut12,13 active 
contour methods,14 and statistical shape models.15

Recently, fully convolutional neural networks (F‐CNNs)16,17  
have been widely adopted in the computer vision commu-
nity for pixel/voxel‐wise image segmentation in an end‐to‐
end fashion to overcome above‐mentioned challenges. With 
these methods there is no need to extract manual features, 
divide images into patches, or implement sliding window 
techniques. F‐CNNs can automatically extract intrinsic 
features and integrate global context to resolve local ambi-
guities thereby improving the results of the predicted mod-
els.17 Langer et al18 proposed a three‐channel UNet for AAT 
segmentation, which is a conventional architecture for 2D 
medical image segmentation.19 While this method showed 
promising results, we demonstrate that our network architec-
ture outperforms the traditional UNet for segmenting AAT on 
our images with a wide range of anatomical variation. More 
recent architectures such as the SD‐Net20 and Dense‐UNet, 
a densely connected network,21 have the potential to im-
prove generalizability and robustness by encouraging feature 

re‐usability and strengthening information propagation across 
the network.21 In prior work, we introduced a competitive 
dense fully convolutional network (CDFNet)22 as a new 2D 
F‐CNN architecture that promotes feature selectivity within a 
network by introducing maximum attention through a maxout  
activation unit.23 The maxout boosts performance by allow-
ing the creation of specialized sub‐networks that target a 
specific structure during training.24 Therefore, this approach 
facilitates the learning of more complex structures22,24 with 
the added benefit of reducing the number of training parame-
ters relative to the aforementioned networks.

In this paper, we propose FatSegNet, a novel fully auto-
mated deep learning pipeline based on our CDFNet archi-
tecture to localize and segment VAT and SAT on abdominal 
Dixon MR images from the Rhineland Study, an ongoing 
large population‐based cohort study.25,26 To constrain AAT 
segmentations to a consistent anatomically defined region, 
the proposed pipeline consists of three stages:

1.	 Localization of the abdominal region using a semantic 
segmentation approach by implementing CDFNet mod-
els on sagittal and coronal planes; we use the lumbar 
vertebrae positions as reference points for selecting the 
region of interest.

2.	 Segmentation of VAT and SAT within the abdominal re-
gion through 2D CDFNet models on three different planes 
(axial, sagittal, and coronal).

3.	 A view aggregation stage where the previous gener-
ated label maps are combined to generate a final 3D 
segmentation.

We initially evaluate and compare the individual stages of the 
pipeline with other deep learning approaches in a sixfold cross‐
validation. We show that the proposed network architecture 
(CDFNet) improves segmentation performance and simulta-
neously reduces the number of required training parameters in 
step 1 and 2. After asserting segmentation accuracy, we evalu-
ate the whole pipeline (FatSegNet) with respect to robustness 
and reliability against two independent test sets: a manually 
edited and a test–retest set. Finally, we present a case study on 
unseen data comparing the VAT‐V and SAT‐V calculated from 
the FatSegNet segmentations against BMI to replicate age and 
sex effects on these volumes in a large cohort.

2  |   METHODS

2.1  |  Data

2.1.1  |  MR imaging acquisition
MR image acquisition was performed at two different sites 
both with identical 3T Siemens MAGNETOM Prisma 
MR scanners (Siemens Healthcare, Erlangen, Germany).  
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The body coil was used for signal reception of a three‐ 
dimensional two‐point Dixon sequence (acquisition time = 
12 s, echo time TE1 = 1.23 ms, TE2 = 2.46 ms, repetition 
time TR = 4.12 ms, axial field of view = 500 mm × 437 mm, 
flip angle = 6◦, left‐right readout bandwidth = 750 Hz/pixel, 
partial Fourier factor 6/8 × 5/8). Based on a preceding  
moving‐table abdominal localizer, the field‐of‐view was cen-
tered on the middle of the third lumbar vertebra (L, L3). Data 
were acquired during a single breath‐hold in supine posi-
tion with arms placed at the sides. The image resolution was 
finally interpolated from 2.0 mm × 2.7 mm × 10.0 mm to 
2.0 mm × 2.0 mm × 5.0 mm (matrix size = 256 × 224 × 72).

2.1.2  |  Datasets
The Rhineland Study is an ongoing population‐based pro-
spective cohort (https​://www.rhein​land-studie.de/) which 
enrolls participants aged 30 years and above at baseline 
from Bonn, Germany. The study is carried out in accordance 
with the recommendations of the International Council for 
Harmonisation (ICH) Good Clinical Practice (GCP) stand-
ards (ICH‐GCP). Written informed consent was obtained 
from all participants in accordance with the Declaration of 
Helsinki.

The first 641 subjects from the Rhineland Study with BMI 
and abdominal MR Dixon scans are included. The sample 
presents a mean age of 54.2 years (range 30 to 95) and 55.2% 
of the subjects are women. The BMI of the participants ranges 
from 17.2 to 47.7 kg/m2 with a mean of 25.2 kg/m2. Subjects 
were stratified into two subsets: 38 scans were manually an-
notated for training and testing; the remaining 603 subjects 
were segmented using the proposed pipeline. After visual 
inspection, 16 subjects were excluded due to poor image 
quality or extreme motion artifacts (e.g. potentially caused 
by breathing). Thus, 587 participants were used for the case 
study analysis and a subset of 50 subjects were randomly 

selected for manual corrections of the predicted label maps. 
This manually edited set and an independent test–retest set of 
17 healthy young volunteers were used to assess reliability of 
the automated segmentation and volume estimates.

Ground truth data
38 subjects were randomly selected from sex and BMI 
strata to ensure a balanced population distribution. These 
scans were manually annotated by two trained raters with-
out any semi‐automated support such as thresholding, 
which can reduce accuracy in the ground truth and lead to 
overestimation of the performance of the proposed auto-
mated method.

Specific label schemes were created for each individual 
task of the pipeline. For localizing the abdominal region, 
raters divided the scans into three different blocks defined 
by the location of the vertebrae as follows: the abdomi-
nal region (from lower bound of twelfth thoracic vertebra 
(Th12) to the lower bound of L5), the thoracic region (all 
above the lower bound of Th12), and the pelvic region (ev-
erything below the lower bound of L5), as illustrated in 
Figure 1E). For AAT segmentation, 60 slices per subject 
were manually labeled into three classes: SAT, VAT, and 
bone with neighbouring tissues. The bone was labeled to 
prevent bone marrow from being misclassified as adipose 
tissue. In order to improve spatial context and prevent mis-
classification of the arms, the dataset was complemented 
by a synthetic class defined as “other tissue” that was com-
posed of any soft tissue inside the abdomen cavity that is 
not VAT or SAT. The manual annotations are illustrated in 
Figure 1B,C. Furthermore, four subjects were labeled by 
both raters to evaluate the inter‐rater variability.

Test–retest data
17 additional subjects were recruited with the exclusive 
purpose of measuring the acquisition protocol reliability. 

F I G U R E  1   MR Dixon images and ground truth from two subjects with different BMI (obese (upper), normal (lower). A, Fat images: axial 
plane. B, Initial manual segmentation (blue: SAT, green: VAT, orange: bone and surrounding structures). C, Ground truth with additional synthetic 
class (red: other‐tissue) and filled‐in bone structures (orange). D, Fat images: coronal plane. E, Ground truth for localization of region of interest 
(red: thoracic region, white: abdominal region (region of interest), blue: pelvic region)

(A) (B) (C) (D) (E)

https://www.rheinland-studie.de/
https://www.rheinland-studie.de/
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The group presents a mean age of 25.5 years (range: 20 
to 31) and 65.0% of the participants are women; all of 
them have a normal BMI (BMI <25 kg/m2). Subjects were 
scanned in two consecutive sessions. Before starting the 
second session, subjects were removed from the scanner 
and re‐positioned.

2.2  |  FatSegNet pipeline
The FatSegNet is to be deployed as a post‐processing adipose 
analysis pipeline for the abdominal Dixon MR images ac-
quired in the Rhineland Study. Therefore, it should meet the 
following requirements: (1) be fully automated, (2) segment 
the different adipose tissue types within the anatomically 
defined abdominal region, and (3) be robust to body type 
variations and generalizable in presence of high population 
heterogeneity. Following the prior conditions, we designed 
FatSegNet as a fully automated deep learning pipeline for 
adipose segmentation (Figure 2).

The proposed pipeline consists of three stages: (1) the ab-
dominal region is localized by averaging bounding boxes from 
two abdominal segmentation maps generated by CDFNets on 
the sagittal and coronal view. For each view a bounding box 
is set to the full image width. The height is extracted by lo-
calizing the highest and lowest slice with at least 85% of none 
background voxels classified as abdominal region. Highest 
and lowest slice position are averaged across the views. (2) 
Afterward, adipose tissue is segmented within the abdominal 
region by three CDFNets on different views (axial, coronal, 
and sagittal) with standardized input sizes (zero padding). 
(3) Finally, a view aggregation network merges the predicted 
label maps from the previous stage into a final segmentation; 
the implemented multi‐view scheme is designed to improve 
segmentation of structures that are not clearly visible due to 

poor lateral resolution. This 2.5D strategy produces a fully 
automated pipeline to accurately segment adipose tissue in-
side a consistent anatomically defined abdominal region.

2.2.1  |  Pipeline components
Competitive dense fully convolutional network (CDFNet)
For the segmentation task, we introduce the CDFNet archi-
tecture due to its robustness and generalizability properties. 
The proposed network improves feature selectivity and, 
thus, boosts the learning of fine‐grained anatomies without 
increasing the number of learned parameters.22 We imple-
mented the CDFNet by suitably adopting the Dense‐UNet 
architecture proposed by Roy et al27 and extending it toward 
competitive learning via maxout activations.24

The Dense‐UNet proposed in27 follows the usual dumb‐
bell like architecture with four dense‐block encoders, four 
dense‐block decoders and one bottleneck layer. Each dense‐
block is based on short‐range skip connections between con-
volutional layers as introduced for densely connected neural 
networks28; the dense connection approach stacks multiple 
convolutional layers in sequence and the input of a layer is 
iteratively concatenated with the outputs of the previous lay-
ers. This type of connectivity improves feature reusability, 
increases information propagation, and alleviates vanishing 
gradients.28 The architecture additionally incorporates the 
traditional long‐range skip connections between all encoder 
and decoder blocks of the same spatial resolution as intro-
duced by Ronnenberger et al19 which improves gradient flow 
and spatial information recovery.

Within the Dense‐UNet, the information aggregation 
through these connections is performed by concatenation lay-
ers. Such a design increases the size of the output feature map 
along the feature channels, which in turn results in the need to 

F I G U R E  2   Proposed FatSegNet Pipeline for segmenting AAT. The pipeline is divided into three stages: First, localization of abdominal 
region. Then, tissue segmentation on the abdominal region and finally, view aggregation. Both local and global volume estimates of individual 
structures are calculated on the final prediction
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learn filters with a higher number of parameters. Goodfellow 
et al introduced the idea of competitive learning through max-
out activations,23 which was adapted by Liao and Carneiro24 
for competitive pooling of multi‐scale filter outputs. Both23 
and24 proved that the use of maxout competitive units boosts 
performance by creating a large number of dedicated sub‐ 
networks within a network that learns to target specific  
sub‐tasks and reduces the number of required parameters sig-
nificantly, which in turn can prevent over‐fitting.

The maxout is a simple feed‐forward activation function 
that chooses the maximum value from its inputs.23 Within 
a CNN, a maxout feature map is constructed by taking the 
maximum across multiple input feature maps for a particular 
spatial location. The proposed CDFNet uses competitive lay-
ers (maxout activation) instead of concatenation layers. Our 
preliminary results22 demonstrate that these competitive units 
promote the formation of dedicated local sub‐networks in 
each of the densely connected blocks within the encoder and 
the decoder paths. This encourages sub‐modularity through 
a network‐in‐network design that can learn more efficiently. 
Toward this, we propose two novel architectural elements tar-
geted at introducing competition within the short‐ and long‐
range connections, as follows:

1.	 Local Competition—Competitive Dense Block (CDB): 
By introducing maxout activations within the short‐range 
skip connections of each of the densely connected con-
volutional layers (at the same resolution), we encour-
age local competition during learning of filters. The 
multiple convolution layers in each block prevent filter 
co‐adaptation.

2.	 Global Competition—Competitive Un‐pooling Block 
(CUB): We introduce a maxout activation between a long‐
range skip connection from the encoder and the features 
up‐sampled from the prior lower resolution decoder block. 
This promotes competition between finer feature maps with 
smaller receptive fields (skip connections) and coarser fea-
ture maps from the decoder path that spans much wider re-
ceptive fields encompassing higher contextual information.

In brief, the proposed CDFNet comprises a sequence of four 
CDBs, constituting the encoder path (down‐sampling block), 
and four CDBs constituting the decoder path (up‐sampling 
block), which is joined via a bottleneck layer. The bottleneck 
consists of a 2D convolutional layer followed by a Batch 
Normalization. The skip‐connections from each of the encoder 
blocks feed into the CUB that subsequently forward features 
into the corresponding decoder block of the same resolution as 
illustrated in Figure 3.

View aggregation network
The proposed view aggregation network is designed to regular-
ize the prediction for a given voxel by considering spatial infor-
mation from the coronal, axial, and sagittal view. The network, 
therefore, merges the probability maps of the three different 
CDFNets from the previous stage by applying a (3 × 3 × 3) 
3D‐convolution (30 filters) followed by a Batch Normalization. 
Then a (1 × 1 × 1) 3D‐convolution is employed to reduce the 
feature maps to the desired number of classes (n = 5). The final 
prediction probabilities are obtained via a concluding softmax 
layer (as illustrated in Supporting Information Figure S1). 
Our approach learns to weigh each view differently on a voxel 

F I G U R E  3   Proposed network architecture: Competitive Dense Fully Convolutional Network (CDFNet), with 4 competitive dense blocks 
(CDB) on each encoder and decoder path and 4 competitive unpool blocks (CUB) between them. CDB and CUB induce local and global 
competition within the network. Note—the output filters for all convolutional layers in CUB, CDB, and Bottleneck were standardized to 64 
channels
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level, compared to standard hard‐coded global view aggre-
gation schemes. Such hard‐coded weighting schemes can be 
suboptimal when working with anisotropic voxels sizes (e.g., 
here 2  mm × 2  mm × 5  mm) as resolution differences im-
pose a challenge when combining the spatial information from 
the finer (within‐plane) and coarser (across slice) resolutions. 
Additionally, in the presence of high variance, abdominal body 
shapes across subjects segmentation benefit from data‐driven 
approaches that can flexibly adopt weights to individual situa-
tions and even spatial locations, which are not possible if hard‐
coded global weights are being used.

2.3  |  Experimental setup
For training and testing the pipeline, we perform a sixfold 
cross‐validation subject‐space split on the ground truth data-
set. For each fold, 32 subjects are used for training and 6 
held out for testing; the test sets splits are approximately bal-
anced based on their BMI classification (underweight [BMI 
<18.5 kg/m2], normal [18.5 ≤ BMI <25 kg/m2], overweight 
[25 ≤ BMI <30 kg/m2], and obese [BMI ≥ 30 kg/m2]). This 
selection process ensures that all BMI categories are used for 
bench‐marking the cross‐validation models. Additionally, 
a final model is implemented using 33 subjects for training 
holding out 5 subjects spanning different BMI levels for a 
final performance sanity check (visual quality check and sta-
bility of Dice score). Given the limited ground truth data, for 
all models a validation set to assets convergence during train-
ing was created by randomly separating 15% of the slices from 
the corresponding training set. This allows evaluating perfor-
mance and generalizability on a completely separate test set.

2.3.1  |  Baselines and comparative methods
We validate the FatSegNet by comparing the performance of 
each stage of the pipeline against the cross‐validation test sets 
using Dice score index (DSC) to measure similarity between 
the prediction and the ground truth. Let M (ground truth) 
and P (prediction) denote the labels binary segmentation, the 
Dice score index is defined as 

where |M| and |P| represents the number of elements in each 
segmentation and |M ∩ P| the number of common elements. 
Therefore, the DSC ranges from 0 to 1 and a higher DSC rep-
resents a better agreement between segmentations.

Additionally, we benchmark the proposed CDFNet mod-
els for abdominal region localization and AAT delineation 
with state‐of‐the‐art segmentation F‐CNNs such as UNet,19 
SD‐Net,20 and Dense‐UNet.27 We use the probability maps 
generated from the aforementioned networks to train the view 
aggregation model and measure performance with and without 

view aggregation. The proposed view aggregation performance 
for each FCNNs is compared against two non‐data‐driven 
(hard‐coded) methods: equally balanced weights for all views 
and axial focus weights (accounting for higher in‐plane reso-
lution, axial = 0.5, coronal = 0.25, sagittal = 0.25). Finally, to 
permit a fair comparison, all benchmark networks follow the 
same architecture of four encoder blocks, four decoders blocks, 
and one bottleneck layer as illustrated in Figure 3 with an input 
image size of 224 × 256. Note, significant differences between 
our proposed methods and comparative baselines are evaluated 
by a Wilcoxon signed‐rank test29 after multiple comparisons 
correction using a one‐sided adaptive FDR.30

The aforementioned models are implemented in Keras31 
with a TensorFlow back‐end using an NVIDIA Titan Xp GPU 
with 12 GB RAM and the following parameters: batch size of 
8, momentum set to 0.9, constant weight decay of 10−06, and 
an initial learning rate of 0.01 decreased by a order of 10 every 
20 epochs. The models are trained for 60 epochs with an early‐
stopping criterion (no relevant changes on the validation loss 
after the last 8 epochs—convergence was observed around 
50 epochs). A composite loss function of median frequency 
balanced logistic loss and Dice loss20 is used. This loss func-
tion emphasizes the boundaries between classes and supports 
learning of unbalanced classes such as VAT. Finally, online 
data augmentation (translation, rotation and global scaling) is 
performed to increase training set size and improve the net-
works generalizability. Note, the FatSegNet implementation is 
available at https​://github.com/reuter-lab/FatSe​gNet.

2.3.2  |  Pipeline reliability
We assess the FatSegNet reliability by comparing the differ-
ence of VAT‐V and SAT‐V across sessions for each subject 
of the test–retest and manually edited set. Given a predicted 
label map and N

i
(l) the number of voxels classified as l (VAT 

or SAT) in session i (test–retest, or manual–automated), the 
absolute percent difference (APD(l)) of a label volume meas-
ures variability across sessions. It is defined as 

Additionally, we calculate the agreement of total VAT‐V 
and SAT‐V between sessions by an intra‐class correlation 
(ICC) using a two‐way fixed, absolute agreement and single 
measures ICC(A,1).32

2.3.3  |  Case study analysis on the 
Rhineland study
We compare the volumes of abdominal adipose tissue 
(AAT‐V, SAT‐V, and VAT‐V) generated from FatSegNet 
with BMI on the unseen dataset. A fast quality control is 

(1)DSC=
2 ⋅ |M∩P|

|M|+ |P|

(2)APD(l)=
2 ⋅ ||N1(l)−N2(l)||

N1(l)+N2(l)
⋅100

https://github.com/reuter-lab/FatSegNet
https://github.com/reuter-lab/FatSegNet
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performed to identify drastic failure cases. The differences 
among BMI groups are evaluated with a one‐way analysis of 
variance (ANOVA) with subsequent Tukey’s honest signifi-
cant difference (HSD) post hoc comparisons. The associa-
tions of volumes of abdominal adipose tissue and BMI are 
assessed using partial correlation and linear regression after 
accounting for age, sex, and height of the abdominal region. 
Separate linear regression analyses are performed to explore 
the effect of age on SAT‐V and VAT‐V in men and women. 
All the statistical analyses are performed in R.33

3  |   RESULTS

3.1  |  Method validation

3.1.1  |  Localization of abdominal region
For assessing the performance of abdominal region detection 
after creation of an average bounding box from the coronal 
and sagittal views the average Dice overlap (sixfold cross‐
validation) was calculated, as illustrated on the Supporting 
Information Figure S2. We observe that all models perform 
extremely well on the relatively easy task of localizing the 
desired abdominal region (DSC >0.96). There is no signif-
icant difference between the models; however, we use our 
CDFNet because it requires substantially less parameters (see 
Table 1) compared to the UNet and Dense‐UNet.

3.1.2  |  Segmentation of AAT
In Table 1, we present the average Dice score (sixfold cross‐
validation) for VAT and SAT for each individual view as 
well as for the view aggregation model. Here, we observe 
that all methods work extremely well for SAT segmentation. 
Nevertheless, our proposed CDFNet outperforms the UNet 
and SD‐Net on all single‐view models and, when compared 
with the Dense‐UNet, there is significant improvement in the 
sagittal and coronal views. For the more challenging task of 
VAT recognition, which is a more fine‐grained compartment 
with large shape variation, the proposed CDFNet outperforms 
the SD‐Net on all single planes; when compared with Dense‐
UNet and U‐Net, there is only significant improvement in the 
axial and coronal plane. Nonetheless, CDFNet achieves this 
performance with ∼30% (Dense‐UNet) and ∼80% (UNet) 
less parameters, demonstrating that the proposed architecture 
improves feature selectivity and simplifies network learn-
ing. Furthermore, fewer parameters can help decrease over‐ 
fitting error, especially when training with limited annotated 
data, and thus improve generalizability.

Note, that Dice scores increase and difference of pairwise 
comparisons is slightly reduced after the view aggregation 
(Table 1), showing that this steps helps all individual net-
works to reach a better performance by introducing spatial T
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information from multiple views and regularizing the pre-
diction maps. The proposed data‐driven aggregation scheme 
outperforms (DSC) the hard‐coded models for SAT and 
with statistically significance for VAT as shown in Table 2. 
Furthermore, learned weights are spatially varying and can 
adjust to subject‐specific anatomy, which in turn can improve 
generalizability. We empirically observe that the aggregation 
model smoothes the label maps slightly, resulting in visually 
more appealing boundaries. It also significantly reduces the 
arms from being misclassified as adipose tissue which can 
otherwise be observed in different views, especially on over-
weight and obese subjects, where arms are located closer to the 
abdominal cavity, as seen Supporting Information Figure S3.

Finally it should be highlighted, that all single‐view and 
the view aggregation models achieve similarly excellent 
results on the SAT segmentation compared to inter‐rater 
variability and outperform the manual raters for the more 
challenging VAT segmentation by a margin.

3.1.3  |  FatSegNet reliability
Table 3 presents the reliability metrics evaluated on the test–
retest and the manually edited test set. The proposed pipe-
line presents only a small absolute percent volume difference 
(APD) for VAT and SAT, and excellent agreement between 
the predicted and corrected segmentation maps. It must be 
noted, that APD is larger for both tissue types in the test– 
retest setting as it also includes variance from acquisition 
noise (e.g. motion artefacts, non‐linearities based on different 
positioning) in addition to potential variances of the process-
ing pipelines. Nevertheless, we observe excellent agreement 

(ICC) between sessions for the test–retest dataset for both 
adipose tissue types.

3.2  |  Case study: Analysis of Rhineland 
study data

3.2.1  |  The characteristics of the 
study population
After visual quality inspection, 16 scans were flagged due 
to image artefacts, such as motion or low contrast (see  
Figure 4C,D for two examples). The characteristics of the 
remaining 587 participants with valid data on BMI and vol-
umes of abdominal adipose tissue are presented in Supporting 
Information Table S1. The mean (SD) age of the subjects is 
54.2 (13.3) years, and 54.7% are women. 311 (53.0%) sub-
jects are normal weight, 209 (35.6%) overweight, and 67 
(11.4%) obese. We observed a BMI increase with age (β = 
0.03, P = .007) and a borderline significance of age differ-
ence among BMI groups (P = .052, ANOVA). Obvious dif-
ferences are observed in AAT‐V, VAT‐V, and SAT‐V across 
BMI groups (P <  .001, ANOVA). VAT‐V to SAT‐V ratio 
is higher in overweight and obese participants compared to 
those with normal weight (P < .001), but there is no differ-
ence between overweight and obese (P = .505).

3.2.2  |  The association between abdominal 
adipose tissue volumes and BMI
BMI shows a strong positive correlation with AAT‐V and 
SAT‐V (AAT‐V: r = .88, P < .001; SAT‐V: r = .85, P < .001), 

T A B L E  2   Mean (and standard deviation) Dice scores (cross‐validation) of hard‐coded balanced weights, hard‐coded axial focus weights, and 
the proposed view aggregation for abdominal adipose tissue segmentation

Subcutaneous (SAT) Visceral (VAT)

Single‐view model Balanced Axial focus Proposed Balanced Axial focus Proposed

UNet 0.970 (0.026) 0.970 (0.026) 0.972 (0.019) 0.830 (0.098)a 0.829 (0.099)a 0.837 (0.095)

SD‐Net 0.970 (0.026)a 0.972 (0.025)a 0.972 (0.020) 0.839 (0.084)a 0.838 (0.085)a 0.843 (0.082)

Dense‐UNet 0.973 (0.025) 0.974 (0.024)a 0.975 (0.019) 0.841 (0.081)a 0.840 (0.082)a 0.847 (0.080)

CDFNet 0.972 (0.025)a 0.973 (0.024) 0.975 (0.018) 0.844 (0.077)a 0.841 (0.080)a 0.850 (0.076)

Note: We show FDR corrected significance indicators of Wilcoxon signed‐rank test29 comparing the proposed data‐driven aggregation scheme vs. each hard‐coded 
method.
aStatistical difference using a one‐sided adaptive FDR multiple comparison correction30 at a level of 0.05. 

T A B L E  3   Mean absolute percent difference (APD) and interclass correlation agreement (ICC(A,1)) for the volumes estimates of VAT and 
SAT across sessions of the manually edited and test–retest set

Manually edited set Test–retest set

Metric SAT‐V VAT‐V SAT‐V VAT‐V

ICC [95% CI] 0.999 [0.999‐1.000] 0.999 [0.994‐0.999] 0.996 [0.986‐0.999] 0.998 [0.995‐0.999]

APD (SD) 0.149% (0.424) 1.398% (0.963) 3.254% (2.524) 2.957% (2.600)
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but only a moderate correlation with VAT‐V (r  =  0.65, 
P <  .001) after adjusting for age, sex, and abdominal region 
height. As illustrated in Figure 5, both SAT‐V and VAT‐V are 
positively associated with BMI after accounting for age, sex, 
and abdominal region height (P < .001). The accumulation of 
SAT‐V is higher than VAT‐V as BMI increases.

3.2.3  |  Influence of age and sex on 
VAT‐V and SAT‐V
The influence of age and sex on VAT‐V and SAT‐V follows 
different patterns (as illustrated in Figure 6). Men tend to have 
lower SAT and higher VAT compared to women (P < .001). 
VAT‐V significantly increase with age in both men and women. 
Conversely, SAT‐V is weakly associated with age in women  
(β = 0.02, P = .012), but not in men (β = −0.01, P = .337).

4  |   DISCUSSION

In our study, we established, validated, and implemented 
a novel deep learning pipeline to segment and quantify the 
components of abdominal adipose tissue, namely, VAT‐V, 
SAT‐V, and AAT‐V on a fast acquisition abdominal Dixon 
MR protocol for subjects from the Rhineland Study, a large 
population‐based cohort. The proposed pipeline is fully au-
tomated and requires approximately 1 minute for analyzing 
a subject’s whole volume. Moreover, since the pipeline is 
based on deep learning models, it can be easily updated and 
retrained as the study progresses and new manual data are 
generated—which can further improve overall pipeline ro-
bustness and generalizability, providing a pragmatic solution 
for a population‐based study.

The proposed pipeline, termed FatSegNet implements 
a three‐stage design with the CDFNet architecture at the 
core for localizing the abdominal region and segmenting 

the AAT. The introduction of our CDFNet inside the pipe-
line boosts the competition among filters to improve fea-
ture selectivity within the networks. CDFNet introduces 
competition at a local scale by substituting concatena-
tion layers with maxout activations that prevent filter co‐ 
adaptation and reduce the overall network complexity. It 
also induces competition at a global scale through com-
petitive unpooling. This network design, in turn, can learn 
more efficiently.

For the first stage of the pipeline, i.e. localization of the 
abdominal region, all FCNNs can successfully determine the 
upper and lower limit of the abdominal region from a seg-
mentation prediction map. However, our CDFNet requires 
significantly fewer parameters compared to the traditional 
UNet and Dense‐UNet. Furthermore, the localization block 
is able to identify the abdominal region correctly even in 
cases with scoliosis (curved spine) as illustrated in Figure 7F.  
For the more challenging task of segmenting AAT, we 
demonstrate that CDFNet recovers VAT significantly bet-
ter than traditional deep learning variants that rely on 

F I G U R E  4   Examples of FatSegNet predictions and excluded cases on the Rhineland Study. (A, B) Subjects with different body shapes and 
accurate segmentations. (C, D) Excluded subjects from the case study due to extreme motion noise (C), or low image contrast quality (D).

(A) (B) (C) (D)

F I G U R E  5   Association of BMI with SAT‐Volume and VAT‐
Volume
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concatenation layers. Additionally, each individual CDFNet 
view model outperforms manual raters for segmenting the 
complex VAT and accomplishes equivalent results on SAT. 
The selection of an inhomogeneous BMI testing set ensures 
that our method is evaluated for different body types and 
avoids biases, as better segmentation performance can be 
achieved on subjects with high content of AAT compared to 
lean subjects.34,35 Moreover, images from individuals with 
high AAT could be accompanied by other types of issues, 

such as fat shadowing (Figure 7D), or arms located in close 
proximity to the abdominal cavity (Figure 7A,D,E). These 
issues are mitigated by our view aggregation model that reg-
ularizes the predicted segmentation by combining the spatial 
context from different views ultimately improving segmenta-
tion of tissue boundaries. Moreover, this approach automat-
ically prevents misclassification of arms whereas previous 
deep learning AAT segmentation methods required manual 
removal of the upper extremities in a pre‐processing step.18 

F I G U R E  6   The association between 
age and SAT‐Volume and VAT‐Volume in 
men and women

F I G U R E  7   Examples of FatSegNet 
predictions on the Rhineland Study. (A‐F) 
Accurate automatic segmentation of 
different body shapes. Extreme cases: A, 
arms are in front of the abdominal cavity, 
and F, deviated spine

(A) (B) (C)

(F)(E)(D)
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Note, that we prefer the 2D over a full 3D approach in this 
work. A full 3D network architecture has more parameters, 
requiring significantly more expert annotated training data 
(full 3D cases) and/or artificial data augmentation, which 
could increase the chance of overfitting—in addition to in-
creased GPU memory requirements.

As demonstrated on the Rhineland Study data, the pro-
posed pipeline exhibits high robustness and generalizabil-
ity across a wide range of age, BMI, and a variety of body 
shapes as seen in Figures 7 and 4A,B. FatSegNet successfully 
identifies the AAT in different abdomen morphologies, spine 
curvatures, adipose shadowing, arms positioning, or inten-
sity inhomogeneities. Furthermore, the pipeline has a high 
test–retest reliability between the calculated volumes of VAT 
and SAT without the need of any image pre‐processing (bias‐ 
correction, image registration, etc.) or manual selection 
of a slice or region. Furthermore, the manually edited test 
set demonstrates a high similarity of automated and man-
ual labels and excellent agreement of volume estimates. 
However, as is usual with any automated method, segmen-
tation reliability decreases when input images have low 
quality as illustrated in Figure 4C,D where the scans present 
severe motion/breathing artifacts or very low‐image contrast. 
In order to detect these problematic images in large studies, 
an automated or manual quality control protocol should be 
implemented before passing images to automated pipelines.

In accordance with previous studies on smaller data 
sets,13,36 our data showed a lower correlation of BMI with 
VAT‐V than with AAT‐V and SAT‐V. We also observed a 
sex difference of the SAT‐V and VAT‐V accumulation as 
previously reported37,38: men were more likely to have higher 
VAT‐V and lower SAT‐V compared to women. Moreover, 
we further explored the association between age with SAT‐V 
and VAT‐V and found an obvious age effect on the accumu-
lation of VAT‐V in both men and women, and a weak age 
effect on SAT‐V in women but not in men. This discrepancy 
was previously observed by Machann et al,37 who assessed 
the body composition using MRI in 150 healthy volunteers 
aged 19 to 69 years. They reported a strong correlation  
between VAT‐V and age both in men and women, whereas 
SAT‐V only slightly increased with age in women. The fact 
that our results replicate these previous findings on a large 
unseen dataset corroborates stability and sensitivity of our 
pipeline.

In conclusion, we have developed a fully automated post‐
processing pipeline for adipose tissue segmentation on ab-
dominal Dixon MRI based on deep learning methods. While 
reducing the number of required parameters, the pipeline out-
performs other deep learning architectures and demonstrates 
high reliability. Furthermore, the proposed method was suc-
cessfully deployed in a large population‐based cohort, where 
it replicated well known SAT‐V and VAT‐V age and sex as-
sociations and demonstrated generalizability across a large 

range of anatomical differences, both with respect to body 
shape and fat distribution.
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FIGURE S1 View aggregation Network. The proposed net-
work is composed of a initial 3D convolution layer with 30 
channels, followed by a batch normalization and a 3D con-
volutional layer for reducing the feature map dimensionality 
into the number of classes(n = 5)
FIGURE S2 Step 1: Abdominal region localization. Dice scores 
box‐plot: Average Dice score (cross‐validation) of the abdominal 
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TABLE S1 Case study analysis on the Rhineland Study data. 
Characteristics of the participants (n = 587) showing mean 
(SD) for continuous and counts (PCT) for categorical variables

region detection comparing the Proposed CDFNet vs. other 
FCNN architectures. The Dice scores are calculated on the 
average abdominal region generated from the average bounding 
boxes of the sagittal and coronal model. There is no significant 
difference between models, nonetheless, the proposed method 
achieves the same performance with ∼30% and ∼80% less 
parameters compared to Dense‐UNet and UNet, respectively
FIGURE S3 Comparison of single view model (left) vs. view 
aggregation (right): AAT predictions of two unseen subjects: A, 
normal subject, B, obese subject. View aggregation avoids arm‐
misclassification (red boxes) and improves SAT (purple box)

https://doi.org/10.1002/mrm.28022
https://doi.org/10.1002/mrm.28022


36 

3.2 Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyro-
sine and Branched Chain Amino Acid Pathways  

metabolites

H

OH

OH

Article

Metabolic Profiling of Human Plasma and Urine,
Targeting Tryptophan, Tyrosine and Branched Chain
Amino Acid Pathways

Andrea Anesi 1,† , Josep Rubert 2,† , Kolade Oluwagbemigun 3 , Ximena Orozco-Ruiz 4,
Ute Nöthlings 3 , Monique M.B. Breteler 4,5 and Fulvio Mattivi 2,6,*

1 Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund
Mach (FEM), Via E. Mach 1, 38010 San Michele all’ Adige, Italy; andrea.anesi@fmach.it

2 CIBIO, Department of Cellular, Computational and Integrative Biology, Via Sommarive 9, 38123 Povo, Italy;
josep.rubert@unitn.it

3 Nutritional Epidemiology, Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee
19b, 53115 Bonn, Germany; koluwagb@uni-bonn.de (K.O.); noethlings@uni-bonn.de (U.N.)

4 Population Health Sciences, German Center for Neurodegenerative diseases (DZNE), Venusberg-Campus
1-Building 99, 53127 Bonn, Germany; Ximena.Orozco-Ruiz@dzne.de (X.O.-R.);
monique.breteler@dzne.de (M.M.B.B.)

5 Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of
Bonn, Venusberg-Campus 1-Building 11, 53127 Bonn, Germany

6 University of Trento, Department of Physics, Bioorganic Chemistry Laboratory, Via Sommarive 14,
38123 Povo, Italy

* Correspondence: fulvio.mattivi@unitn.it; Tel.: +39-0461-615-259
† These authors contributed equally to this work.

Received: 2 October 2019; Accepted: 28 October 2019; Published: 1 November 2019
����������
�������

Abstract: Tryptophan and tyrosine metabolism has a major effect on human health, and disorders
have been associated with the development of several pathologies. Recently, gut microbial metabolism
was found to be important for maintaining correct physiology. Here, we describe the development
and validation of a UHPLC-ESI-MS/MS method for targeted quantification of 39 metabolites related
to tryptophan and tyrosine metabolism, branched chain amino acids and gut-derived metabolites
in human plasma and urine. Extraction from plasma was optimised using 96-well plates, shown to
be effective in removing phospholipids. Urine was filtered and diluted ten-fold. Metabolites were
separated with reverse phase chromatography and detected using triple quadrupole MS. Linear
ranges (from ppb to ppm) and correlation coefficients (r2 > 0.990) were established for both matrices
independently and the method was shown to be linear for all tested metabolites. At medium spiked
concentration, recovery was over 80% in both matrices, while analytical precision was excellent
(CV < 15%). Matrix effects were minimal and retention time stability was excellent. The applicability
of the methods was tested on biological samples, and metabolite concentrations were found to be in
agreement with available data. The method allows the analysis of up to 96 samples per day and was
demonstrated to be stable for up to three weeks from acquisition.

Keywords: tryptophan metabolism; tyrosine metabolism; branched chain amino acids; gut microbiota
metabolites; targeted metabolomics; LC-MS/MS; human plasma; urine; clinical studies

1. Introduction

The emerging field of “nutrition-microbiome-human health” has raised many unanswered
questions regarding the complex relationship and interplay of gut microbiota, their metabolites in
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homeostasis and human physiology. Results from epidemiological studies, clinical trials and recent 
meta-analyses have supported the link between mood disorders, obesity and gut microbiota [1–3], 
and recent data have strikingly indicated that emotional stress, anxiety and depression may influence the 
development of gastrointestinal disorders and cancer [4–8]; however, the relationship between them is 
still unclear. It has been suggested that gut microbial metabolites act on the gut epithelium, modulating 
downstream signalling pathways involved in the control of digestion, metabolism, immunity, the brain 
and pain [9–13]. 

Indeed, during the last few years, the link between gut microbiota and the brain has been 
investigated in depth [3,14–16], demonstrating that depression is associated with decreased gut 
microbiota richness and diversity [17]. The concept of the “brain-gut-microbiome axis” has recently been 
introduced to describe the complex interactions between gut microbiota and human physiology [18]. 

Tryptophan  (TRP)  metabolism  has  claimed  to  be  a  key  player  in  neurophysiology  and 
depression  [14,17–20],  regulation  of  immune  response  and  inflammation,  inflammatory  bowel 
diseases [21], metabolic syndrome and obesity [18]. TRP is an essential amino acid bearing an 
indole group critical for protein synthesis, but it also serves as a substrate for the generation of several 
bioactive compounds. In mammals, about 95% of ingested TRP is catabolised through the kynurenine 
pathway (KP) [20,22,23] into a range of metabolites known to be involved in inflammation, immune 
response and excitatory neurotransmissions [22,24] (Figure 1). Kynurenine (KYN) and its metabolites 

are known for their beneficial effects on the central nervous system [20]. 
Minor pathways of TRP degradation lead to synthesis of the neurotransmitter serotonin (5-HT) 

via the hydroxylation pathway, tryptamine (TRY) via decarboxylation and indole-3-pyruvic acid via 
transamination pathways [11,23]. Several bacteria have the ability to synthesize 5-HT from dietary TRP, 
and are therefore able to modulate the brain-gut axis [25]. Gut microbiota can also produce indole and 
its derivatives, such as indole-3-propionic acid (IPA), indole-3-lactic acid (ILA) and indole-3-aldehyde 
(IALD) [26]. Indole is synthesized from TRP via the tryptophanase enzyme and this metabolite is able 
to maintain host-microbe homeostasis on the mucosal surface [26–28]. Hepatic sulfonation of indole 
leads to the production of indoxyl sulfate (IS), a cytotoxic metabolite that induces renal and vascular 
dysfunction [29,30]. IPA is a potent antioxidant able to reduce DNA damage and lipid peroxidation, 
and to maintain mucosal homeostasis and intestinal barrier functions [31,32]. Clostridium sporogenes 
is the predominant IPA producer, but a recent work demonstrated that four other gut bacteria can 
synthesize it: Peptostreptococcus anaerobius CC14N and three strains of Clostridium cadaveris [33]. ILA is 
an intermediate of IPA production from TRP operated by C. sporogenes, but it is also produced by 
Bifidobacterium spp [34]. ILA was also identified as a potential biomarker for alcohol-induced liver 
disease in Ppara mouse model [35]. IALD is produced from bacteria belonging to the Lactobacillus 
genera and helps to maintain host-microbial homeostasis [36]. 

The importance of qualitatively and quantitatively understanding gut microbiota regulation of 
TRP metabolism in healthy and diseased conditions thus appears to be clear. On the other hand, 
emerging evidence has also shown that different concentrations in human biofluids (blood and urine) 
and tissues of branched chain amino acids (BCAAs), such as L-methionine (MET), L-valine (VAL), 
L-isoleucine (ILE) and L-leucine (LEU) among others, might play an unrecognised and crucial role
in the development of intestinal health [37,38], depression [39] and cancer [40]. In the light of these
facts, it is clear that there is a complex inter-kingdom regulatory network and interactions occurring
between the host, microbiome, and diet.
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Figure 1. Principal branches of the TRP and TYR metabolic pathways covered in this analytical method and structures of the main BCAAs. Red circles represent the 
metabolites detected in plasma, orange circles those detected in urine. The size of the circle is proportional to the median concentration in each biofluid. : metabolite 

with median concentration of < 1 µM; : metabolite with median concentration of 1 < x < 10 µM; : metabolite with median concentration of > 10 µM. 
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Accurate quantitation of TRP derived metabolites and BCAAs in plasma, serum and urine is 
becoming increasingly important, since subtle changes may be responsible for mechanistic responses. 
However, to date the development and validation of a single robust targeted method providing broad 
coverage and suitable for the main biofluids is still lacking. More frequently, only a few metabolites 
related to KP have been monitored [41–48]. Zhu and colleagues reported on the quantitation of 
19 metabolites in urine and human serum, including microbial derived metabolites [49]. One main 
drawback of this method, which could limit applicability in clinical studies requiring the inclusion 
of a large number of samples, is the number of laborious steps proposed for metabolite extraction, 
which requires the use of single tubes, 1 h incubation at −20 ◦C to ensure protein precipitation and 
three centrifugation steps. 

In 2016, Marcos and co-workers proposed a method for quantitation of 17 TRP metabolites and 
BCAAs in urine and plasma [50]. Again, the procedure for extraction of metabolites from plasma 
limited the processing of a large sample set. More recently, Whiley and colleagues (2019) published a 
thoroughly validated method for the quantitation of 18 TRP metabolites in serum and plasma based on 
Phenomenex PHREE SPE 96-well plate extraction that allows high-throughput sample preparation [51]. 
The study, which to our knowledge represents the state-of-the-art in the field, covers the quantitative 
analysis of 18 metabolites associated with KP and 5-HT degradation pathways, but did not cover 
BCAAs or gut-derived metabolites. 

Here, we present a validated analytical method for the simultaneous separation and detection 
of 39 metabolites in both plasma and urine using Ultra High Performance Liquid Chromatography- 
ElectroSpray-Ionization-Tandem Mass Spectrometry (UHPLC-ESI-MS/MS). Preliminary application 
of this method in two independent epidemiological studies across the lifespan of the DOrtmund 
Nutritional and Anthropometric Longitudinally Designed (DONALD) Study and the Rhineland Study 
allowed us to establish the typical ranges for these 39 metabolites present in the human biofluids of 
two German populations. 

Legend: TRP: L-tryptophan; KYN: kynurenine; KA: kynurenic acid; 3-OH-KYN: 3-hydroxy 
kynurenine; 3-OH-AA: 3-hydroxy-anthranilic acid; AA: anthranilic acid; XA: xanthurenic acid; 
QA: quinolinic acid; PA: picolinic acid; 2-AM: 2-aminophenol; 5-OH-TRP: 5-hydroxy-L-tryptophan; 
5-HT: serotonin; 5-OH-IAA: 5-hydroxyindole-3-acetic acid; 5-ME-IAA: 5-methoxyindole-3-acetic 
acid; NA-5-HT: N-acetyl-5-hydroxytryptamine; MEL: melatonin; 5-ME-TRY: 5-methoxytryptamine; 
TRY: tryptamine; IACN: indole-3-acetonitrile; IAA: indole-3-acetic acid; IACT: indole-3-acetamide; 
ILA: indole-3-lactic acid; IPA: indole-3-propionic acid; IALD: indole-3-carboxaldehyde; IS: indoxyl 
sulfate; NAC: 1-acetylisatin; ICA: indole-3-carboxylic acid; TRPME: tryptophan methyl ester; PHE: 
phenylalanine; TYR: tyrosine; TYRA: tyramine; DA: dopamine; 3-ME-TYRA: 3-methoxy-p-tyramine; 
DOPAC: 3,4-dihydroxyphenyl acetic acid; HVA: homovanillic acid; GABA: gamma-aminobutyric acid; 
ILE: L-isoleucine; LEU: L-leucine; VAL: L-valine; MET: L-methionine. 

2. Results

2.1. Liquid Chromatography and Mass Spectrometry 

Two Multiple Reaction Monitoring (MRM) transitions were optimised for each target compound 
by changing Collision Energy (CE) and Cone Voltage (CV). The one displaying the highest intensity 
was selected as the quantifier ion (Q), while the less intense one was selected as the qualifier ion (q). 
MS parameters and retention times (RT) are reported in Table 1. 



Metabolites 2019, 9, 261 5 of 24 

Table 1. Internal standard used for quantification, RT (min) and MS parameters (parent m/z, polarity, 
quantifier and qualifier ions m/z, CV and CE) for the selected analytes. A Waters ACQUITY HSST3 
(1.8 µm, 2.1 × 150 mm) column was used for metabolite separation. 

Metabolite  Internal RT Parent  Q 
Standard (min)    m/z ESI m/z 

q 
m/z 

CV 
(V) 

CE 
(eV) 

γ-aminobutyric acid MET-d4 1.16 104.03 + 68.95 86.14 12 14 

l-valine MET-d4 1.47 118.03 + 55.01 72.02 12 18 

picolinic acid MET-d4 1.53 124.00 + 77.96 105.87 26 10 

dopamine-d4 1.66 158.16 + 94.85 122.4 12 22 

dopamine DA-d4 1.67 154.22 + 91.02 119.01 12 20 

methionine-d4 1.68 154.09 + 59.17 62.95 12 16 

methionine MET-d4 1.68 150.22 + 104.02 56.04 12 10 

2-aminophenol TRP-d5 1.70 110.16 + 92.00 65.01 20 14 

quinolinic acid MET-d4 1.80 168.22 + 77.98 106.03 14 16 

3-hydroxykynurenine TRP-d5 2.01 225.176 + 110.02 162.01 14 18 

tyrosine-d4 2.04 186.16 + 140.11 93.95 12 14 

tyrosine TYR-d4 2.07 182.17 + 136.07 90.96 18 16 

l-isoleucine MET-d4 2.25 132.09 + 86.00 69.00 10 12 

tyramine TYR-d4 2.25 138.12 + 76.68 103.97 10 24 

l-leucine MET-d4 2.38 132.09 + 86.00 43.00 10 12 

serotonin-d4 2.93 181.16 + 118.14 146.05 12 26 

serotonin 5-HT-d4 3.02 177.22 + 115.09 132.18 10 26 

5-hydroxy-tryptophan TRP-d5 3.00 221.29 + 162.01 134.02 12 18 

3-methoxy-p-tyramine TYR-d4 3.02 168.22 + 91.00 119.05 8 20 

kynurenine TRP-d5 3.53 209.12 + 94.01 146.08 14 16 

dl-phenylalanine TYR-d4 3.61 166.22 + 120.10 103.01 14 20 

3-hydroxyanthranilic acid TRP-d5 4.75 154.22 + 80.01 108.01 10 22 

tryptophan-d5 4.90 210.16 + 150.09 122.11 12 18 

tryptophan TRP-d5 4.94 205.29 + 146.06 118.01 12 16 

1-acetylisatin TRP-d5 4.94 190.01 + 148.01 162.01 18 10 

DOPAC-d5 4.99 172.11 - 128.04 99.99 14 8 

3,4-dihydroxyphenyl acetic 
acid DOPAC-d5 5.04 167.07 - 123.05 94.99 14 8 

xanthurenic acid TRP-d5 5.03 206.09 + 160.00 132.02 20 18 

kynurenic acid-d5 5.41 195.09 + 149.06 121.08 24 18 

kynurenic acid KA-d5 5.44 190.09 + 143.99 116.00 20 20 

tryptamine TRP-d5 5.45 161.13 + 127.20 117.40 12 24 

5-methoxytryptamine TRP-d5 5.60 191.20 + 159.09 143.08 12 22 

5-hydroxyindole acetic acid-d5 5.71 197.16 + 150.16 122.17 16 14 

5-hydroxyindole acetic acid 5-OH-IAA- 
d5 

5.74 192.23 + 146.27 91.00 18 14 

N-acetyl-5-hydroxytryptamine TRP-d5 5.86 219.20 + 160.07 115.09 16 16 

tryptophan methyl ester TRP-d5 6.07 219.14 + 160.00 132.02 12 18 
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Table 1. Cont. 

Metabolite  Internal 
Standard 

RT 
(min) 

Parent 

m/z ESI 
Q 

m/z 
q 

m/z 
CV 
(V) 

CE 
(eV) 

homovanillic acid DOPAC-d5 6.20 181.09 - 137.08 121.99 8 10 

indoxyl sulfate TRP-d5 6.24 212.04 - 80.08 132.02 24 20 

indole-3-acetamide TRP-d5 6.53 175.05 + 102.99 76.95 14 30 

anthranilic acid TRP-d5 6.78 138.22 + 91.99 65.04 10 22 

indole-3-lactic acid TRP-d5 6.96 206.11 + 160.09 130.02 18 10 

indole-3-carboxylic acid TRP-d5 7.15 162.08 + 116.03 88.95 16 20 

melatonin TRP-d5 7.31 233.22 + 174.08 159.05 16 14 

5-methoxyindole acetic acid TRP-d5 7.35 206.17 + 160.17 145.05 16 16 

indole-3-carboxaldehyde TRP-d5 7.36 146.09 + 118.05 90.97 22 24 

indole-3-acetonitrile TRP-d5 7.52 130.22 + 76.95 102.99 30 22 

indole-3-acetic acid TRP-d5 7.53 176.09 + 130.00 102.99 18 12 

indole-3-propionic acid TRP-d5 8.06 190.11 + 130.02 54.96 12 16 

With our chromatographic setup, GABA was practically non-retained and eluted with the 
chromatographic front. The 150 mm column enabled separation of ILE from LEU, as highlighted 
in Figure 2 for the BEH (panel A) and HSST3 (B) columns. The HSST3 column provided baseline 
separation of ILE (RT: 2.25 min) from LEU (RT: 2.38 min). 

100 1.91 100 2.28 

A B 

2.07 

2.16 

0 0 
0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.5 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.5 

Figure 2. MRM (132.096 > 86.0) for ILE (left peak) and LEU (right peak) in plasma samples. (A): Waters 
ACQUITY BEH C18 1.7 µm, 2.1 × 150 mm; (B): Waters ACQUITY HSST3 1.8 µm, 2.1 × 150 mm. 

The presence of different substituents on the indole moiety enabled separation of all indole 
derivatives within 8.5 min. The total run time, including column re-equilibration, was 14 min. 
This made it possible to acquire up to 96 samples (one 96-well plate) in 24 h. Directing flow waste 
during non-acquisition time enabled us to acquire up to 300 samples per batch without significant 
signal losses for both matrices. 

2.2. Linearity and Limit of Quantification (LOQ) 

The linearity range for each metabolite was established by using calibration curves in water with 
0.1% formic acid (FA), since it was impossible to obtain analyte-free matrices (blanks). Linearity ranges 
covered 4+ orders of magnitude, from a few ppb to ppm. The availability of a large number of samples 
obtained from two independent German observational and epidemiological studies across the lifespan 
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allowed us to finely tune calibration. Working calibration ranges were specifically designed for each 
metabolite, to cover the expected concentrations in plasma and urine. All working calibration curves 
were found to have a good correlation coefficient (r2 > 0.990) in the tested ranges for both plasma and 
urine (see Table S1). 

Metabolites at low concentration levels were linear in the range 1–250 ng/mL. By contrast, for high 
level metabolites, the upper quantification point was 12500 ng/mL, and above this the MS response 
was no longer linear. The exceptions were 3-hydroxykynurenine (3-OH-KYN) in urine, which was 
linear between 15–25,600 ng/mL, and homovanillic acid (HVA) in plasma, which was linear in the 
range of 156–25,000 ng/mL. 

LOQs were in the order of a few ng/mL for low level metabolites, except for 2-aminophenol (2-AM) 
(78.1 ng/mL) and 3-hydroxyanthranilic acid (3-OH-AA) (31.2 ng/mL) in plasma, indole-3-acetonitrile 
(IACN) in urine (19.5 mg/mL) and 3-OH-KYN in both matrices (31.2 and 15.6 ng/mL in plasma and urine 
respectively). For high level metabolites, the LOQ was set as the lowest calibration point. Metabolites 
detected in negative ion mode (HVA, DOPAC and IS) displayed higher LOQs in both matrices. 

2.3. Retention Time Stability 

For both matrices, metabolite RT stability was addressed over a period of three weeks. Most of 
the metabolites showed a coefficient of variation lower than 1%, except for 2-AM (CV%: 2.10) and 
TYR-d4 (CV% 1.04) in plasma, and IS (CV% 1.09) in urine. See Table S1 for details on plasma and 
urine respectively. 

2.4. Matrix Effects 

Matrix effects (ME), evaluated with the matrix match calibration (MMC) approach, were minimal 
and in the range of 80–120% for most metabolites in both plasma and urine (Table S1). Ion suppression 
by the matrix component significantly affected quantification of the most polar metabolites: VAL, 
dopamine (DA), MET, and quinolinic acid (QA) were suppressed both in plasma and urine, while 
2-AM and tyramine (TYRA) were affected only in urine. Quantification of GABA was significantly
deviated in both matrices due to its poor retention with a C18 analytical column.

2.5. Recovery, Intra- and Inter-Day Accuracy and Precision 

At medium spiked concentration, metabolite recovery from plasma was over 85%, except for VAL 
(80.7%) and picolinic acid (PA) (82.8%). At low spiked concentration, recovery was over 80% for all 
metabolites except GABA (71.2%) and QA (76.5%). In urine, recovery at medium spiked concentration 
was over 80% for all metabolites. At low spiked concentration, several metabolites, such as DA, ILE, 
LEU, TYRA and 3-OH-KYN, had lower recovery, due to the fact that spiked values were close to the 
LOQ, so analytical error was greater. Recovery at the highest spiked concentration was slightly over 
80% for all metabolites, except 3-OH-AA in urine and GABA in both matrices. All information on 
plasma and urine can be found in Table S2. 

Accuracy at medium spiked concentration was excellent for all metabolites (CV<15%) in both 
plasma and urine (Table S2). At low concentrations, precision was lower than 20% for all metabolites 
in plasma, except for PA, 3-OH-KYN, 3-methoxy-p-tyramine (3-ME-TYRA), 3-OH-AA, DOPAC, 
5-methoxytryptamine (5-ME-TRY), 5-hydroxyindole-acetic acid (5-OH-IAA) and TRP- methyl ester
(TRPME). Accuracy at low spiked concentration was not calculated for the internal standard. At the
highest concentration, accuracy was low for VAL in plasma and PHE, TYR, 3-OH-AA and TRP in urine.
This was due to the fact that spiked amounts were above the detector linear response. Accuracy was
unsatisfactory for GABA at all concentration levels and was not reported. We propose to use data on
GABA to detect fold changes rather than to provide accurate quantitative data.
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2.6. Carryover Effect and Phospholipid Removal 

No carryover effect was observed within and between runs for either plasma or urine. Figure 3 
shows the MRM transition of TRP (205.29 > 146.06; RT: 4.95 min) for a plasma sample spiked at the 
highest concentration (25,000 ng/mL) (panel A) and the blank, after the acquisition of 5 plasma samples 
spiked at the highest concentration (B). Similarly, (C) shows the MRM transition of kynurenic acid (KA) 
(190.09 > 149.99; RT: 5.45 min) at the highest calibration point, while (D) shows the MRM acquired in 
the following run after injection of acetonitrile (ACN). Column cleaning for 3 min at 100% B ensured 
complete elution of the tested metabolites, while the strong wash solvent ensured good needle cleaning. 

4.97 

A 
205.287 > 146.06 (Tryptophan) 

3.71e7 
190.096 > 143.992 (Kynurenic acid) 

3.93e6 

C 

4.60 4.80 5.00 5.20 5.40 
Time 

4.60 4.80 5.00 5.20 5.40 
Time 

5.06 205.287 > 146.06 (Tryptophan) 5.11   190.096 > 143.992 (Kynurenic acid) 

4.89 

4.85 

B
 

4.96 

5.00 

5.12 

1.57e4 

D
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5.15 949
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5.18 

5.28 
5.30 
5.36        5.50 
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4.60 4.80 5.00 5.20 5.40 
Time 

Figure 3. MRM of TRP (205.29 > 146.06) after injection of a plasma sample spiked at the highest 
concentration (panel A) and injection of ACN at the end of the entire batch (n = 5) (B). MRM of KA 
(190.09 > 143.99) at the highest point of calibration (C) and in the following run after injection of 
ACN (D). 
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Biological samples, particularly plasma, contain significant amounts of phospholipids, mainly 
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM). All these matrix 
components can significantly affect compound ionization through ion enhancement/suppression effects. 
With our chromatographic setup, phospholipids eluted after 8.50 min, therefore well after the last 
eluting metabolite (IPA, RT: 8.06 min). Nevertheless, Ostro 96-well plates were also able to efficiently 
remove phospholipids from plasma, as demonstrated by the Precursor Ion Scan (PIS) of m/z 184.03 on 
crude plasma (Figure 4A) or plasma after sample clean up (B). Urine contained traces of PC and SM 
and 10-fold dilution did not affect the MS response (data not shown). 

Figure 4. Panel A: Chromatogram of PIS of m/z 184.03 in untreated plasma, showing the signal generated 
by presence of PC and SM. Panel B: chromatogram of PIS of m/z 184.03 after plasma clean up on an 
Ostro 96-well plate, demonstrating the removal of interfering signal due to lipids eluting after 8.50 min 

2.7. Method Application to Biological Samples 

To demonstrate the applicability of the method, we analysed fasting samples of plasma (n = 1000) 
and 24-h urine samples (n = 672) from two independent populations. As the Rhineland Study did not 
collect 24-h urine and the DONALD study did not collect blood, no paired samples were available from 
the same individual. Samples were pseudonymised and randomised prior to extraction, and were 
extracted independently. Biological QCs were prepared by mixing equal volumes of sample. Twenty 
QCs were injected at the beginning of the acquisition sequence in order to stabilise the MS response 
and at intervals of 15 samples across the sequence in order to test MS stability. Calibration curves were 
acquired after the first 20 QCs, approximately every 300 samples, and at the end of each batch. 

The method allowed quantification of 24 metabolites in plasma and 30 metabolites in urine: 
23 metabolites were common to the two matrices; DOPAC was detected exclusively in plasma, while 
8 metabolites were found exclusively in urine (Figure 5). The metabolites in our study resulting 
unique to urine were the neurotransmitter TYRA, the metabolite from methylation of DA, 3-ME-TYRA, 
the immediate precursor of 5-HT, 5-OH-TRP, the highly reactive neurotoxin 3-OH-KYN and the uremic 
toxin AA in the KP, as well as the β-arylamine neurotransmitter and microbial catabolite TRY and the 
intermediate of the indole-3-acetic acid (IAA) pathway indole-3-acetamide (IACT) (Figure 1). 
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Figure 5. Venn diagram illustrating metabolites found exclusively in plasma (1), exclusively in urine 
(8) and in both matrices (23).

The minimum, median and maximum values detected in both matrices for the two German 
populations are reported in Table 2. Qualitatively, here we divided the metabolites into three categories 
according to the median value: low (median < 1 µM), medium (median 1< × <10) and high (median > 
10) level metabolites (Figure 6). In general, high level metabolites in plasma (VAL, ILE, LEU, MET,
TYR, PHE and TRP) were also present in high concentrations in urine. Medium level metabolites (QA,
KYN, IACN and IAA) were detected in higher concentrations in urine, except for IPA, which was
found at a lower concentration. Of the low level metabolites in plasma, XA, KA, 5-OH-IAA and HVA 
were those excreted at the highest concentrations in urine. As expected, indole-3-carbocylic acid (ICA)
was detected only in urine.

Figure 6. Box plots (90% confidence interval) and graphic distribution of metabolites with (A) low 
(5-HT, median 0.492 µM), (B) medium (XA, median 5.424 µM) and (C) high median (TRP, median 
64.02 µM) levels quantified in urine in the DONALD study (n = 672). 
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Table 2. Metabolite concentration ranges (µM) detected in plasma and urine. n.d.: not detected; n.a.: 
data not available. 

Plasma (µM)  Urine (µM) 

Metabolite Min Median Max Min Median Max 

l-valine 12.09 62.12 130 1.678 29.15 94.71 

picolinic acid 0.00179 0.0198 0.057 0.649 1.402 2.488 

dopamine 0 0.0128 0.0718 0.29 2.089 8.029 

methionine 3.09 11.45 25.10 0 2.158 36.23 

2-aminophenol n.d. n.d.

quinolinic acid 0.414 1.404 9.694 10.58 40.16 146 

3-hydroxykynurenine n.d. 0 0.357 3.870 

tyrosine 6.721 27.86 71.30 6.013 136 849 

l-isoleucine 4.924 26.46 77.95 0.106 12.69 55.82 

tyramine n.d. 0.197 4.518 139 

l-leucine 10.71 57.07 120.0 1.763 33.05 158 

serotonin 0 0.167 1.047 0.04 0.492 1.905 

5-hydroxy-tryptophan n.d. 0.0394 0.151 0.723 

3-methoxy-p-tyramine n.d. 0.0846 0.346 1.722 

kynurenine 0.450 1.270 3.479 0.215 3.703 43.88 

dl-phenylalanine 8.096 27.86 71.30 2.342 18.08 107 

3-hydroxyanthranilic acid 0.177 0.203 0.322 0.0808 0.412 4.494 

tryptophan 8.499 29.82 81.49 7.051 64.02 366 

1-acetylisatin n.d. n.d.

3,4-dihydroxyphenyl acetic acid 0 0.0477 73.7 n.d.

xanthurenic acid 0.02 0.0661 0.183 0.561 5.424 36.10 

kynurenic acid 0.00553 0.0185 0.167 3.334 20.38 91.75 

tryptamine n.d. 0.0272 0.449 2.467 

5-methoxytryptamine n.d. n.d.

5-hydroxyindole acetic acid 0.0164 0.0447 0.456 0.0268 19.68 89.54 

N-acetyl-5-hydroxytryptamine n.d. n.d.

tryptophan methyl ester n.d. n.d.

homovanillic acid 0.0118 0.0782 1.0 9.313 35.58 136 

indoxyl sulfate 0.0491 2.744 12.99 n.a.

indole-3-acetamide n.d. 0.0170 0.272 10.07 

anthranilic acid n.d. 0.0950 0.401 2.058 

indole-3-lactic acid 0.0759 0.697 4.009 0.198 1.165 18.90 

indole-3-carboxylic acid n.d. 0.0305 0.0994 7.279 

melatonin n.d. n.d.

5-methoxyindole acetic acid n.d. n.d.

indole-3-carboxaldehyde 0.0103 0.0494 0.186 0.00245 0.123 3.992 

indole-3-acetonitrile 0.326 2.003 31.72 3.116 15.60 96.82 

indole-3-acetic acid 0.292 1.51 23.01 6.114 30.09 205 

indole-3-propionic acid 0 1.156 12.75 0.0187 0.0557 2.197 
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3. Discussion 
 

3.1. Optimisation of MS Parameters and Analytical Specificity 

The selection of Q and q ions was based on signal intensity, with Q ions being the most intense. 
In order to increase MS settling time, we selected just one qualifier ion per molecule and tried to 
avoid MRM transitions common to many metabolites when possible. Recently, Whiley et al. (2019) 
highlighted that the second transition of the TRP 13C-isotope shares the same MRM transition as XA 
(206.09 > 132.01), interfering with its quantification [51]. With our experimental setup, XA quantification 
was achieved by MRM transition (206.09 > 160.01) while the MRM (206.09 > 132.01) was used for 
qualitative purposes. Furthermore, the two peaks were chromatographically sufficiently separated, 
having TRP and XA RT of 4.94 and 5.03 min respectively. The MRM transition (206.09 > 160.01) was 
also common to ILA (RT: 6.96 min) and 5-methoxyindole-acetic acid (5-ME-IAA) (RT: 7.35 min), but the 
three molecules were well separated. 

Similarly, N-acetyl-5-hydroxytryptamine (NA-5-HT) and the TRPME had the same MRM for 
quantification (219.2 > 160.0), but the two peaks were baseline separated, having an RT of 5.86 and 
6.07 min respectively. 

All the tested compounds except DOPAC and HVA contained nitrogen atoms and were easily 
detected as [M+H]+ in positive ion mode. IS contains both a nitrogen atom and a sulfate group, but a 
better response is obtained in negative ion mode. Therefore DOPAC, HVA and IS were detected as 
[M–H]-, by setting up polar switching within the chromatographic run. 

Calibration accuracy was obtained with the use of 8 deuterated standards (Table 1). Since 
deuterated internal standards were not available for all the tested metabolites, and in order to limit the 
cost of the calibration, we opted for a) chemically related molecules (i.e., TYR-d4 for PHE, TRP-d5 for 
indole derivatives and DOPAC-d5 for HVA in negative ion mode) and b) molecules eluting nearby 
(i.e., MET-d4 for BCAAs). 

 
3.2. Choice of Chromatographic Technique 

Two analytical approaches were initially tested, based on Reversed-Phase (RP) chromatography on 
a Waters ACQUITY BEH C18 1.7 µm, 2.1 × 150 mm, and Hydrophilic Interaction Liquid Chromatography 
(HILIC) using a Waters ACQUITY BEH AMIDE 1.7 µm, 2.1 × 150 mm. HILIC was tested due to the 
high polarity of certain metabolites, such as GABA, VAL, ILE, LEU, TYR, MET, DA, among others. 
This column is widely considered to be suitable for the analysis of several other polar metabolites [52]. 
This column provided excellent efficiency and chromatographic resolution for separation of most polar 
compounds, but indole derivatives were poorly retained, hampering their separation and quantification 
(see Figure S1 for details). 

HILIC RT stability was affected by slight pH modification and we noticed that RT shifts could appear 
during long acquisition sequences. Nevertheless, ammonium formate, present in both mobile phases, 
tends to stick on the orifice plate after desolvation, which increases the chance of source contamination 
and ion suppression. All these considerations made HILIC relatively less attractive for the analysis of 
TRP-derived metabolites in a large number of biological samples. At this point, RP chromatography 
was selected for further method optimisation and HILIC remained as a complementary tool for the 
separation of highly hydrophilic compounds. 

 
3.3. Optimisation of Chromatography on C18 Stationary Phase 

Five different RP columns were tested using different elution programs: Waters ACQUITY BEH 
C18 1.7 µm, 2.1 × 150 mm; Waters ACQUITY HSST3 1.8 µm, 2.1 × 150 mm; Waters Cortecs UPLC C18 

1.6 µm, 2.1 × 100 mm; Phenomenex Kinetex Polar C18 2.6 µm, 2.1 × 100 mm; and Phenomenex Kinetex 
EVO C18 2.6 µm, 2.1 × 100 mm (see Figure S2 for details). 

Most polar compounds were poorly retained on 100 mm columns, even if the percentage of aqueous 
solvent was increased to 100%; therefore, these columns were not selected for further optimisation. 
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150 mm columns demonstrated the same separation efficiency, but the Waters HSST3 column was 
selected given that a) polar compounds are better retained, b) the critical couple of analytes ILE (RT: 
2.25 min) and LEU (RT: 2.38 min) are baseline separated (Figure 2, panels A and B). 

 
3.4. Comparison of Proposed Extraction Procedures and Analytical Performance: Efficiency and Efficacy 

The efficiency and efficacy of Ostro 96-well plate and Liquid-Liquid Extraction (LLE) methods 
were first evaluated for an initial set of 21 key metabolites in plasma, by studying recovery and relative 
standard deviations (RSDs) (Table 3). The Ostro 96-well plate rapidly extracted and precipitated 
proteins using ice-cold ACN, containing 1% FA. To improve metabolite recovery, plates were shaken 
twice for 10 min before filtering; different ratios of water: ACN (1:1, v/v, 8:2, v/v and pure ACN), 
and the addition of FA were also tested as reconstitution solvents. According to the manufacturer’s 
procedures, a mixture of water and MeOH were used to recover extracted metabolites. In our case, 
MeOH was replaced by ACN in order to a) increase retention and b) increase the selectivity and peak 
shapes of more polar compounds, especially those eluting in the first 3 min of the chromatographic run. 
Ultimately, water: ACN (8:2, v/v) 0.1% FA was a good compromise for metabolite recovery, peak shape 
and chromatographic selectivity. On the other hand, urine samples were simply diluted and filtered. 
In this context, the dilution factor was first studied. Urine samples were diluted five- and ten-fold in 
water with 0.1% FA. Five-fold dilution enabled the detection of metabolites present in low amounts as 
DA, but those present at high levels could saturate the detector, hampering quantification. Ten-fold 
dilution avoided detector saturation, while at the same time the presence of more water in the sample 
improved the retention of polar compounds and peak shapes. 

 
Table 3. Recovery obtained from analysis of 21 pre-selected metabolites using LLE or Ostro 96-well plate. 
The selected metabolites were: GABA, 2-AM, VAL, MET, ILE, LEU, DA, 5-HT, PHE, TYR, 3-ME-TYRA, 
TRP, AA, 1-acetylisatin, 3-OH-AA, IACN, IAA, KA, XA, NA-5-HT, 5-OH-TRP and alpha-chloralose. 

 

Recovery (Average = 5)  Extraction Methods 

21 pre-selected metabolites LLE Ostro 96-Well plate 

<50 1 1 
50–60 1 1 
60–70 5 0 
70–80 3 1 
80–90 4 1 
90–100 3 15 
>100 4 2 

 
LLE and Ostro 96-well plate methods were compared in terms of plasma recovery (Table 3). In this 

table, LLE and Ostro 96-well plate showed a suitable range of recovery, which in the vast majority 
of cases was over 60%. However, the LLE method showed relatively lower recovery rates compared 
to Ostro 96 well plate, ranging from 50% to 90%. Recovery was over 75% for LEU, ILE and VAL. 
By contrast, 5-OH-TRP and KA did not reach 65% recovery, and XA showed the lowest recovery. 
On the other hand, Ostro 96-well plate was able to adequately extract the selected metabolites, with 15 
metabolites ranging from 90-100%, such as TRP, MET and KYN. More importantly, the recovery 
obtained was in an acceptable range and RSDs were below 20%. To sum up, data comparison 
showed that the Ostro 96-well plate method offered an appropriate range of recovery and low RSDs 
compared with LLE. It should be noted that this method is supposed to be routinely used within the 
HEALTHMARK project and thousands of samples from several clinical studies would be analysed. 
Therefore, in addition to the standard parameters required for a new method (sufficiently innovative 
and robust compared to other available methods for the intended application), here reproducibility, 
speed and accurate quantification are strongly required. For these reasons, the Ostro 96-well plate 
method was selected, since it was the most efficient and effective extraction procedure evaluated. 
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The combination of sample preparation with an Ostro 96-well plate and UHPLC separation with C18 
stationary phase was selected for further studies in order to extend the number of metabolites and 
validate the method. 

 
3.5. Method Validation 

The following parameters were studied for 40 metabolites related to TRP and TYR metabolism 
and BCAAs: linearity, LOQ, recovery, precision as repeatability and within-lab reproducibility, process 
efficiency and ME. Calibration curves were designed independently for plasma and urine to cover 
the expected metabolite concentration range according to available data, and changed accordingly 
after the analysis of biological samples, in order to precisely define the typical working range for 
each metabolite. 

Linear dynamic ranges for both plasma and urine were acceptable, as the correlation coefficient 
was always adequate (r2 > 0.990). For low level metabolites, the LOQ was in the range of a few ng/Ml 
for both matrices, except for some compounds that behaved differently. As an example, 2-AM had 
a LOQ of 3.9 ng/mL in urine, while in plasma it went up to 78.1 ng/mL. For high level metabolites 
(BCAAs, TRP, TYR and PHE), it is not necessary to achieve an LOQ of few ng/mL and the value was 
set as the lowest calibration point falling within the linear range. 

The use of Ostro 96-well plates with modifications enabled us to achieve satisfactory recovery, 
over 85% in plasma and 80% in urine spiked at low concentration. Similarly, accuracy at medium 
spiked concentration was excellent for both matrices, with CV being below 15%. 

Several metabolites saw a decrease in recovery and poorer accuracy at low spiked concentration; 
this was due to the fact that spiked amounts were close to the LOQ, and analytical error may therefore 
be greater. The quantification of GABA was significantly deviated in both matrices. This is because 
GABA was not retained with our experimental setup and eluted with the chromatographic front. 

We propose using data on GABA to detect fold changes rather than to provide absolute 
quantification. For better quantification of most polar metabolites, HILIC may still represent an 
appropriate method. The presence of co-eluting compounds may affect the ionization of the targeted 
metabolites producing ME. In this research, ME was negligible for most metabolites, ranging between 
80–120% in both plasma and urine. Ion suppression by matrix components significantly affected 
quantification for VAL, DA, MET, QA and LEU in plasma, together with 2-AM and TYRA in urine. These 
metabolites are the most polar of those tested and were eluted at the beginning of the chromatographic 
run, before 2.5 min. Several attempts were made to improve chromatographic separation and MS 
response.  For example, starting with 100% mobile phase A or keeping it isocratically at 95%A for 
a few minutes increased retention, but the peak shapes got worse, hampering integration and thus 
quantification. Phospholipids were efficiently removed from plasma by Ostro 96-well plates, while no 
significant effects were detected in urine. 

Removal of matrix contaminant, together with splitting of the UHPLC flow to waste during 
non-acquisition time, along with good column cleaning, enabled us to acquire up to 300 samples per 
batch without any significant shift in RT and alteration in the MS response. This is very important in 
clinical applications, where simultaneous analysis of a large number of samples in the lowest number 
of separate batches is desirable. 

 
3.6. Method Application 

The availability of a large number of samples both for plasma (Rhineland Study) and urine 
(DONALD Study) allowed us to monitor the typical range of presence for each of these metabolites 
in two independent German populations. The method allowed the quantification of 24 out of 
39 metabolites in plasma and 30 metabolites in urine (Table 2). In general, the results were in agreement 
with published results, despite some biological variation (Table S4). 

This information is relevant for the analyst, since it allowed us to verify that the method allows 
quantitative analysis of 39 out of the 40 target metabolites (all of them except GABA). More detailed 
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analysis of multiple factors of variability influencing the concentration of these compounds is outside 
the scope of this paper and will be the subject of other publications. 

 
3.7. Study Strengths and Limitations 

Most of the studies available in the literature cover a limited number of metabolites related to 
TRP, TYR, BCAAs and gut-derived metabolites [49–51]. To achieve a full understanding of microbial 
metabolite–host interaction in homeostasis and diseases, we validated an analytical method for the 
separation and detection of 39 metabolites, targeting key branches of different metabolic pathways 
simultaneously, in particular those related to the microbiota-gut-brain axis [10], covering the different 

forms of TRP usage, simultaneously investigating serotonergic metabolism [25] and KP metabolism [22]. 
Our quantitative results suggest that the method is suitable for high-throughput applications 

in clinical studies, covering an unprecedented number of crucial metabolites in a single analysis. 
It represents the starting point for future research, and other metabolites of interest can be inserted 
as required. 

The method was designed for low sample requirements, minimal sample handling and working 
steps, fast extraction, high sample throughput and fast instrumental analysis of 14 min per sample. 
Up to 384 samples (4 well plates) can be extracted by a single operator per day, and up to 96 samples 
can be acquired per day. 

The  method  was  independently  validated  on  plasma  and  urine,   in  order  to  support 
multi-compartment studies, allowing direct comparison of metabolite concentrations in both biofluids. 

One limitation of this study relates to pre-analytical sample management, from sample collection 
to handling and storage, which can affect sample quality. This issue was outside the scope of this 
work, but we are aware it is important for the final results [53–57]. For example, accurate measurement 
of 5-HT in the whole blood sample is affected by 5-HT instability and reflects platelet 5-HT [58–60]; 
inappropriate blood sample handling can lead to inaccurate results. To avoid these problems, we relied 
on standard laboratory practices to prepare samples, such as those highlighted in [57]. In this particular 
case, we selected fasting plasma; EDTA blood was collected and centrifuged within 10 min of collection, 
and aliquoted and stored at −80 ◦C within 2 h of collection. EDTA is commonly used as anticoagulants 
for the generation of platelet-free plasma [61]. 

Urine was collected as 24-h samples in order to obtain an overall picture of an individual’s 
metabolic excretion and to eliminate the wide variability observed for spot urine collection. Urine pH 
can affect the final results; to avoid this problem urine pH was checked at sampling (pH range: 4.9-7.9) 
and all the samples fell within the desired range [62]. Furthermore, since the samples were stored at 
low temperature, urine pH was expected to be stable until the analytical phase [62]. 

The attention of researchers on complex interactions between gut bacteria and human brain has 
increased in recent years [15,16,22,25]. In 2013, the term “psychobiotics” was introduced to define 
beneficial bacteria that, when ingested in appropriate quantities (probiotics), exert positive effects 
in psychiatric patients by influencing the gut bacteria-brain-relationship [63]. This definition was 
then expanded to prebiotics, food components that support growth of intrinsic commensal bacteria, 
but this concept could be extended to any substance that “exerts a microbiome-mediated psychological 
effect” [64]. The psychobiotics treatment could be an interesting strategy to improve life of people 
suffering from psychiatric disorders but further studies are needed to facilitate its development [64,65]; 
our validated method can be a complementary tool to evaluate the direct effect of psychobiotics on 
TRP, TYR, BCAA and gut-derived metabolites. 

 
4. Materials and Methods 

 
4.1. Reagents and Chemicals 

Gamma-aminobutyric acid (HMDB0000112), tryptamine (HMDB0000303) and l-tyrosine 
(HMDB0000158) were purchased from Fluka (Milan, Italy); 2-aminophenol (ChemSpider ID 5596; 
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PubCHem CID 5801), 3,4-dihydroxyphenyl acetic acid (HMDB0001336), 3,4-dihydroxyphenyl acetic 
acid-d5, 3-hydroxykynurenine (HMDB0011631), 5-methoxyindole-3-acetic acid (HMDB0004096), 5-
methoxytryptamine (HMDB0004095), indole-3-acetic acid (HMDB0000197), indole-3-carboxaldehyde 
(HMDB0029737), indole-3-carboxylic acid (HMDB0003320), indole-3-lactic acid (HMDB0000671), 
indole-3-propionic acid (HMDB0002302), indoxyl sulfate (HMDB0000682), kynurenine (HMDB0000684), 
melatonin (HMDB0001389), dl-phenylalanine (HMDB0000159), picolinic acid (HMDB0002243), 
tryptophan methyl ester (ChemSpider ID 70366, PubCHem CID 77980) and tyramine 
(HMDB0000306) were purchased from Sigma (Milan, Italy); 1-acetylisatin  (ChemSpider  ID 
10845, PubCHem CID 11321), 3-hydroxyanthranilic acid (HMDB0001476), 3-methoxy-p-tyramine 
(HMDB0000022), 5-hydroxyindole-3-acetic  acid  (HMDB0000763),  5-hydroxyindole-3-acetic acid-
d5, 5-hydroxy-tryptophan (HMDB0000472), anthranilic acid (HMDB0001123), dopamine 
(HMDB0000073), dopamine-d4, homovanillic acid (HMDB0000118), indole-3-acetamide 
(HMDB0029739), indole-3-acetonitrile (HMDB0006524), kynurenic acid (HMDB0000715), kynurenic 
acid-d5, l-isoleucine (HMDB0000172), l-leucine (HMDB0000687), l-valine (HMDB0000883), methionine 
(HMDB0000696), methionine-d4, N-acetyl-5-hydroxytryptamine (HMDB0001238), quinolinic acid 
(HMDB0000232), serotonin (HMDB0000259), serotonin-d4. l-tryptophan (HMDB0000929), l-
trypophan-d5, l-tyrosine-d4 and xanthurenic acid (HMDB0000881) were purchased from Spectra 
2000 (Rome, Italy). Human citrated plasma was obtained from Sigma (Milan, Italy). 

LC-MS grade acetonitrile (ACN), methanol (MeOH) and 2-propanol were purchased from 
Honeywell (Monza, Italy), LC-MS grade FA was purchased from Sigma (Milan, Italy). Ultrapure 
Milli-Q deionized water was obtained from Elix (Merck-Millipore, Milan, Italy). OSTRO 96-well plates 
(25 mg) were purchased from Waters (Milan, Italy). Human plasma was purchased from Sigma Aldrich 
(Milan, Italy). 

 
4.2. Preparation of Stock Solution and Calibration Curves 

Stock solutions (1000 mg/mL) were prepared by dissolving each standard in methanol except TYR, 
TYR-d4 and 3-OH-KYN, which were dissolved in 1 M HCl, KA-d5 in MeOH: DMSO 1:1 (v/v) and XA 
in DMSO. The concentration ranges are reported in Table S3. 

 
4.3. Method Validation 

 
4.3.1. Linearity and LOQs 

Calibration standards were evaluated at 14 concentration levels, prepared with serial dilution in 
water with 0.1% FA. A linear polynomial model was employed with 1/X weighting factor. The method 
was considered linear in a specific concentration range if the correlation coefficient (2) was equal to or 
greater than 0.990. The calibration range was designed according to data available in literature, public 
databases (www.hmdbr.ca) and from analysis of real plasma and urine samples. LOQs were calculated 
by estimating the calibration points with a signal-to-noise ratio (S/N) of 10. 

 
4.3.2. Recovery, Intra- and Inter-Day Accuracy and Precision, and RT Stability 

Analytical recovery was assessed by spiking standards in plasma and urine at low, medium 
and high concentrations according to the calibration ranges described above. The low and high 
concentration were set as 5-fold lower or higher than the medium values. As both matrices contained 
tested metabolites at a different concentration, the spiked concentration was calculated as the % of 
metabolite recovered compared to the spiked concentration after subtracting the average response 
from the blank (unspiked) sample. Calibration curves in water with 0.1% FA were used for recovery 
determination. See Tables S1 and S2 for further details. 

Intra-day repeatability was assessed by analysing samples (n = 5) spiked at low, medium and 
high concentration for both plasma and urine within one day. Inter-day repeatability was assessed 
by analysing QC (n = 5), analysed on three separate days (1, 3 and 5).  Precision is expressed as 
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the coefficient of the variation percentage (CV%) estimated for spiked QC, after subtracting the 
concentration of unspiked samples. For acceptance, CV was required to be within 15% at the medium 
and high concentration and within 20% at the low concentration. 

 
4.3.3. RT Stability 

RT stability was assessed by analysis of metabolites detected in 1000 plasma and 672 urine samples. 
For metabolites not detected in biological samples, the RT was obtained from analysis of QC spiked at 
medium standard concentration. 

 
4.3.4. Analysis of Blank Samples and ME 

Urine blanks (5X) were prepared as described in paragraph 4.4.1 by diluting 25 µL of sample in 
225 µL of water with 0.1% FA. Plasma blanks (5X) were prepared as described in paragraph 4.4.1.2 by 
adding 20 µL of ACN 1% FA to 50 µL plasma instead of standard mix. 

MEs were evaluated using a MMC approach. Solvent calibration slopes (SC) were compared 
with those obtained by fortifying the biological fluids and the deviation was calculated as follows: 
% of variation = (MMC slope/SC slope) × 100. For plasma, 50 µL of sample and 20 µL of ACN 1% 
FA (MMC) were loaded into Ostro 96-well plates and extracted as described below. Dried samples 
were reconstituted in 100 µL of water/ACN (8:2, v/v), 0.1% FA at appropriate concentration levels. 
For urine, 25 µL of deionized water (SC) or urine (MMC) were diluted with 225 µL 0.1% FA spiked at 
appropriate levels. 

 
4.3.5. Carryover Effect and Phospholipid Removal 

The carryover effect was assessed by injecting neat ACN after the highest calibration points of SC 
and MMC and after the acquisition of each recovery batch. 

Plasma clean up from phospholipids was addressed by performing a PIS in positive ion mode at 
m/z 184.03 (protonated phosphocholine), which is specific for PC and SM. 50 µL of plasma were directly 
mixed with 50 µL of water: ACN 8:2 (v/v), 0.1% FA in order to achieve the same dilution obtained after 
plasma extraction on Ostro 96-well plates. For urine, the comparison was conducted with undiluted 
and 10-fold diluted urine. 

 
4.4. Extraction Procedures 

 
4.4.1. Urine 

Urine was thawed on ice and 25 µl aliquots were loaded into 96-well multifilter plates (Millipore) 
together with 225 µl of internal standard mix (500 ng/mL) in water with 0.1% FA. 96-well plates were 
shaken on a vortex for 15 sec, and subsequently filtered using a positive pressure-96 manifold (Waters). 
Samples were collected in 350 µL 96-well plates and kept at −80 ◦C until analysis. 

Plasma 

Plasma aliquots (50 µL) were loaded onto an Ostro 96-well plate (Waters, Milan, Italy) and 20 µL 
of internal standard mix in ACN 1% FA (500 ng/mL) were added. Protein precipitation and metabolite 
extraction were performed by adding 150 µL of ice-cold ACN 1% FA. Plates were covered, vortexed for 
15 sec and placed on an Eppendorf shaker for 10 min at 500 rpm (Eppendorf, Milan, Italy), then filtered 
using a positive pressure-96 manifold (Waters). The extraction procedure was repeated by adding 
150 µL of ice-cold ACN 1% FA. Extracts were brought to dryness with a gentle stream of nitrogen at 
37 ◦C using a Techne Dr-block DB 3D heater, re-dissolved in 100 µl of water: ACN 8:2 0.1 % FA and 
transferred into 350 µL 96-well plates, kept at −80 ◦C until analysis. 
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LLE of Urine and Plasma 

100 uL of plasma or urine were extracted using 200 uL of ice-cold ACN containing internal 
standards. The mixtures were first shacked for 30 min at 500 rpm (5 ◦C). Then, mixtures were stored 1 h 
at −20 ◦C to improve protein precipitation and then centrifuged at 17,968 g (14000 rpm) for 15 min at 
4 ◦C. Afterwards, the supernatants were collected and stored at −80 ◦C until analysis. The supernatants 
were directly injected. 

 
4.5. Ultra High Performance Liquid Chromatography-Electrospray Ionization-Triple Quadrupole-Mass 
Spectrometry (UHPLC-ESI-QqQ-MS) 

Detection was performed on a Waters® Xevo TQ MS Triple Quadrupole equipped with ESI 
source and coupled online with an Aquity UHPLC (Waters, Milford, MA, USA). The MS operated 
in positive ionization mode, setting the capillary at 270 ◦C, the source at 300 ◦C and source voltage 
at 3 kV. Detection of IS, DOPAC, DOPAC-d5 and HVA were performed in negative ion mode in the 
same run by setting polarity switching. Ultra-high purity argon was used as collision gas. MS and 
MS/MS conditions were optimised via software (Intellistart, Waters, Milford, MA, USA) by infusing 
analytical standards. 

 
4.5.1. RP C18 Chromatography 

Chromatographic separation was performed using a Water UPLC HSST3 (1.8 µm, 2.1 × 150 mm, 
100 A pore diameter) purchased from Waters (Milan, Italy). Mobile phase A was water with 0.1% FA, 
B was ACN 0.1% FA. The gradient started with 5% B and was maintained for 0.5 min; then % B was 
increased to 10% at 2.5 min, 15% at 3.5 min, 25% at 4.5 min, 35% at 5.5 min, 45% at 6.5 min, 55% at 
7 min and then to 100%B at 7.5 min. Final conditions were retained for 3 min and the column was 
re-equilibrated to the initial conditions for 4 min. The total run time including column re-equilibration 
was 14 min. The flow rate was 0.3 mL/min, the injection volume was 2 µL and the column oven was 
set at 40 ◦C. The weak and strong solvent washes were water: MeOH (9:1, v/v) and water: ACN: 
MeOH: 2-propanol (1:1:1:1, v/v/v/v) respectively. Data were acquired and processed with Mass Lynx 4.1 
software (Waters). 

 
4.5.2. HILIC Chromatography 

A Waters ACQUITY BEH AMIDE 1.7 µm, 2.1 x 150 mm analytical column was used. The mobile 
phases consisted of (A) 10 mM ammonium formate and 0.2% FA in water: ACN (1:1, v/v), and (B) 
10 mM ammonium formate and 0.2% FA in water: ACN (5:95, v/v). A multi-step elution gradient was 
developed as follows, at a flow rate of 0.5 mL/min: at 0.0 min, 100% B a gradient up to 4.0 min, 90% B; 
then %B was decreased to 70% at 8.0 min, 60% at min 9.0, 50% at min 9.5 and maintained isocratically 
until min 11.0. Lastly, a reconditioning period up to 1.5 min at 100% B was used. The sample injection 
volume was 5 µL and the autosampler temperature was kept at 5 ◦C. The weak and strong solvent 
washes were water: ACN: MeOH: 2-propanol (1:1:1:1, v/v/v/v) and water: MeOH (9:1, v/v) respectively. 

 
4.6. Method Application to Biological Samples 

This analysis was carried out as part of the European Joint Programming Initiative, “A Healthy Diet 
for a Healthy Life” Metabolic HEALTH through Nutrition, Microbiota and Tryptophan bioMARKers 
(HEALTHMARK) project. The project aims to investigate the complex associations between microbiota 
and microbiota-derived bioactives of the TRP metabolism, diet and metabolic health. The applicability 
of the method was assessed by analysis of 24-h urine (n = 672, mean age of 16 years with 50.5% males 
and 49.5% females) collected within the DONALD study and of plasma samples (n = 1000) obtained 
from adults (age ≥ 30 years) collected within the Rhineland study. Data were analysed using Statistica 
v. 13.3 (TIBCO Software Inc., Palo Alto, CA, USA). 
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4.6.1. The DONALD Study 

The DONALD study is an ongoing, open cohort study conducted in Dortmund, Germany by the 
Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 
Bonn, Germany. This study has collected data on the diet, growth, development and metabolism of 
apparently healthy children and adolescents since 1985. Children are enrolled at 3 months of age. 
The collection of 24-h urine samples is part of the annual assessments as soon as the children can 
provide the samples. The pre-analytical urine pH range was between 4.9 and 7.9, therefore suitable for 
metabolite quantification [62]. All samples were stored at −22 ◦C without the addition of preservatives 
or chemicals and then at −80 ◦C until laboratory analysis. Further details on the DONALD study [66] 
and urine collection and storage [67] have been described elsewhere. The DONALD study was 
approved by the Ethics Committee of the University of Bonn according to the guidelines of the 
Declaration of Helsinki (approval number 098/06). Written consent was obtained from parents and 
later on from study participants. 

 
4.6.2. The Rhineland Study 

The Rhineland Study is an ongoing community-based cohort study in which all inhabitants of 
two geographically defined areas in the city of Bonn, Germany aged 30–100 years are being invited 
to participate. Persons living in these areas are predominantly German with Caucasian ethnicity. 
Participation in the study is possible by invitation only. The only exclusion criterion is insufficient 
German language skills to give informed consent. Approval to undertake the study was obtained 
from the ethics committee of the University of Bonn, Medical Faculty (approval number 338/15). 
All participants gave written informed consent. 

Fasting blood was collected from all participants between 7:00 and 9:30 am, including 2 × 10 mL 
EDTA blood (EDTA Vacutainer K2), an anticoagulant commonly used for the generation of platelet-free 
plasma. Plasma is centrifuged for 10 min at 2000× g at 20 ◦C within 10 min of blood collection; 
centrifuge brake is set on off to avoid platelet activation. Automated aliquoting of the plasma takes 
place within less than 35 min after centrifugation into 500 µL aliquots (Hamilton Microlab Star). 
All aliquots are directly cooled (10 ◦C) during the process and are placed into a chest freezer (−80 ◦C) 
within less than 45 min after aliquoting. Time points of blood withdrawal, centrifugation, aliquoting 
and freezing time are documented in the laboratory information management system (LIMS). 

 
5. Conclusions 

A UHPLC-ESI-QqQ-MS method was developed for high-throughput, accurate quantification of 
39 metabolites related to TRP, TYR, BCAAs and several gut-derived metabolites.  The inclusion of 
a large number of known metabolites, whose concentration is driven by microbial metabolite–host 
interaction, provided a new metabolomic profiling method suitable for supporting clinical investigation 
of several important biological questions and opening up new possibilities for nutritional studies 
aimed at understanding and preventing disease. 

Metabolite extraction from plasma was designed on Ostro 96-well plates in order to ensure 
protein precipitation, lipid removal and good metabolite recovery. For urine, we opted for filtration 
and 10-fold dilution in order to ensure the simultaneous analysis of metabolites present in different 
concentration ranges. 

The new method was then tested on a large number of real human plasma and urine samples 
obtained from two main observational and epidemiological studies across the lifespan. This allowed us 
to estimate the typical working concentration range for each analyte, and to verify that application of 
the method to real samples representative of Central Europe subpopulations falls within the validation 
conditions of the method. 
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Abstract 

Objective: This study aimed to assess the relationships of subcutaneous and visceral 

adipose tissue (aSAT and aVAT) with anthropometric measurements and compare their 

respective associations with cardiometabolic risk markers.  

Methods: We included 3350 participants from the population-based Rhineland 

Study. Volumes of aSAT and aVAT were assessed with magnetic resonance imaging. 

Anthropometric measurements included body mass index (BMI), waist circumference 

(WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). We used markers of 

blood lipids, glucose metabolism, inflammation, and systolic blood pressure (SBP) to 

assess cardiometabolic risk.  

Results: Among anthropometric measurements, BMI had the strongest correlation with 

aSAT and WC with aVAT. Larger aVAT had a stronger association with cardiometabolic 

risk markers than aSAT in women (P <0.001), except for SBP. In men, the associations 

of aVAT were significantly weaker than in women and not different from aSAT, except 

for insulin. The associations of anthropometric measurements with cardiometabolic risk 

markers largely improved by adding aVAT. 

Conclusions:  In women, larger aVAT volumes are more metabolically detrimental than 

larger aSAT. In men, aSAT and aVAT are associated with cardiometabolic risk markers 

to a similar extent. Although WC is higher correlated with aVAT than BMI, aVAT was the 

best predictor of cardiometabolic risk markers 
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Introduction 
 

Obesity is one of the major risk factors for cardiovascular diseases (CVD) and mortality 

(1) and its prevalence is increasing worldwide  (2). The World Health Organization 

(WHO) defines obesity as an excessive fat accumulation in the adipose tissue that im-

pairs health. Obesity is traditionally evaluated using body mass index (BMI) (3). Howev-

er, BMI can neither distinguish between fat mass and fat-free mass, nor can it differenti-

ate body fat distributions (4). Therefore, the sole use of BMI to estimate the prevalence 

of obesity and to assess the effects of excess adiposity on disease burden may result in 

biased estimations. Indeed, a large overlap in mortality risk between individuals with 

high and low BMI has been reported (5–7). Abdominal fat is the hallmark of obesity that 

is associated with the highest risk of cardiometabolic diseases (8,9). Within abdominal 

fat, one can distinguish between abdominal subcutaneous adipose (aSAT) and ab-

dominal visceral adipose tissue (aVAT)  (10). These fat depots have different structural 

and metabolic characteristics (11) that result in inconsistent associations with CVD re-

ported across studies. For instance, aSAT in contrast with aVAT has been associated 

with a decreased risk for insulin resistance (12), and longitudinally, did not show an as-

sociation with incidence CVD and cancer (13). Other studies, however, have shown that 

high volumes of both aVAT and aSAT are significantly associated with different cardi-

ometabolic risk factors (14–17). 

Imaging methods such as Magnetic Resonance Imaging (MRI) and computerized axial 

tomography (CT) are considered “gold standard” techniques to quantify abdominal adi-

pose tissue. However, because of the radiation exposure of CT scanning, MRI meas-

urements are preferred (18) . However, MRI imaging is not always available in clinical 

practice, and the manual quantification of abdominal fat on MR images is very time-

consuming. Therefore, other proxies of obesity such as WC, WHR, and WHtR are com-

monly used as surrogates for abdominal fat. Several systematic reviews, meta-analyses 

(19–22), and epidemiological studies (7,23) have compared the performance of anthro-

pometric measurements in predicting cardiometabolic risk and mortality. However, re-

sults are inconsistent concerning the superiority of any of these measures. Whereas 

some studies found that WHtR outperforms BMI and WC in the association with certain 

cardiometabolic risk factors (20–22), a large longitudinal study showed that WC, WHR, 
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and BMI, used individually or combined, did not improve the prediction of CVD risk over 

some of the Framingham risk score covariates (23).   

Whether and to what extent anthropometric measurements are accurate surrogates of 

abdominal fat measurements is an important question. Whereas some smaller studies 

suggested WC to correlate best with MRI aSAT (24) or aVAT (25,26), it remains unclear 

to what extent anthropometric measures can capture additional aspects of cardiovascu-

lar risk. Therefore, in a large population study, we examined the relationship between 

anthropometric measurements and aSAT and aVAT as measured on MRI, and their dif-

ferential association with cardiometabolic risk markers. Moreover, we investigated 

whether anthropometric measurements can provide additional information beyond what 

is offered by aSAT and aVAT measurements, and vice versa.  

Methods 
Study population 

This analysis was based on the first 5000 participants who participated in the baseline 

examination of the population-based Rhineland Study between May 2016 and February 

2020. The Rhineland Study is a community-based prospective cohort study in two geo-

graphically defined areas in the city of Bonn, Germany (27). Names and addresses of all 

inhabitants of these areas were obtained from the municipality, and people were invited 

to participate via direct mailing. Inclusion criteria are being aged 30 years or older and 

having sufficient command of the German language to provide written informed consent. 

We excluded participants with any serious illness, metallic fragments, or implants, as 

were pregnant or lactating women for the MRI examinations. The population structure in 

our target areas is conformed by participants predominantly German with Caucasian 

ethnicity. The study was conducted following the Declaration of Helsinki guidelines and 

approved by the Medical Faculty Ethics Committee of the University of Bonn.  

From the 5000 participants, a total of 3503 participants had complete data on abdominal 

MRI and anthropometric measurements. Of those, we excluded 42 underweight partici-

pants (BMI ≤ 18.5) and 111 persons with extreme outliers in cardiometabolic risk mark-

ers. Thus, the overall sample size for analysis was 3350 participants.  

 

Anthropometric measurements  
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Anthropometric measurements were collected by trained study technicians. All meas-

urements were performed on participants wearing light underwear, without shoes, socks, 

jewelry, watches, or belts. Body height and weight were measured with the wireless 

measuring station SECA 285 device in an upright position with the feet in a slightly V-

shaped open side by side, keeping the end of the external auditory canal on an imagi-

nary horizontal line at the level of the yoke arch ("Frankfurt Line"). WC and hip circum-

ferences were measured an ergonomic measuring tape (SECA 201) to the nearest 0.1 

cm. The tape was placed at the middle point between the lowest rib and the iliac crest to 

measure WC and around the widest portion of the buttocks for hip circumference (28). 

During the measurements, participants were asked to stand upright with their legs open 

at hip-width breathing normally not retracting the abdomen. WHR was calculated divid-

ing WC by the hip circumference and WHtR by dividing WC by body height. Finally, BMI 

was calculated as weight in kilograms divided by the square of height in meters.  

 

Imaging and Abdominal fat segmentation  

To quantify aSAT and aVAT volumes, abdominal MR Dixon images were acquired using 

3T Siemens MAGNETOM Prisma MR Scanners (Siemens Healthcare, Erlangen, Ger-

many). We computed the region of interest (ROI) defined from the lower bound of the 

twelfth thoracic vertebra to the lower bound of the fifth lumbar vertebrae.  

The ROI, fat tissue segmentation, and quantification (aSAT and aVAT volumes) were 

obtained using FatSegNet, a fully automated and validated postprocessing pipeline (29). 

The quality of the FatSegNet outputs were manually assessed in a subset of 1040 seg-

mentation maps. This subset was selected based on image quality flags (i.e. motion arti-

facts, water-fat swaps, etc.), examination warnings, and 10% of random cases. 

 

Cardiometabolic risk markers 

Seated systolic blood pressure (SBP) and diastolic blood pressure (DBP) were meas-

ured three times with 10 minutes intervals in a temperature controlled room. We used 

the mean of the last two measurements in our analysis.  

Fasting plasma samples were collected and stored at -80° C until analysis. Glucose, 

glycated hemoglobin (HbA1c), insulin, triglycerides, high-density lipoprotein (HDL-C), 

and low-density lipoprotein (LDL-C) cholesterol were measured according to standard 
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procedures at University Hospital Bonn. Additionally, C-reactive protein was measured 

by high-sensitivity assay (Dimension Vista® System, Siemens Healthcare Diagnostics 

GmbH). TNFA and IL-6 were quantified using the Single-Molecule Assay (SIMOA) bead-

based technology in an HD-1 device (Qanterix, USA). 

 

Other covariates  

Age, biological sex, smoking status, menopause status, medication (lipid-lowering, dia-

betes, and antihypertensive medication) and hormone therapy used were assessed 

through self-report. Women who indicated they underwent bilateral oophorectomy or had 

no menstruation for more than a year not due to pregnancy, breastfeeding, or contracep-

tion, and women above the age of 60 years were classified as postmenopausal.  

Smoking status at baseline was evaluated with a self-administered questionnaire and 

classified as non-smoking and current smoking. Missing information in smoking status 

was imputed based on blood cotinine level, measured with a metabolomics platform 

(Metabolon, Durham, UK). For this, we first identified the 97.5th percentile of cotinine 

levels in non-smokers and set it as a cut-off value. Participants above this cut-off were 

classified in the current smoking group.  

 

Statistical analysis. 

Clinical and demographic characteristics were compared between sexes using analysis 

of covariance (ANCOVA) adjusting for age. Fasting glucose, insulin, triglycerides, hs-

CRP, IL-6, and TNFA levels were log-transformed before analysis due to their skewed 

distributions. For concentrations of glucose and lipid related cardiometabolic risk mark-

ers, we defined outliers as values above or below 3 times the interquartile range (IQR). 

For inflammatory markers, we defined outliers as values above or below 5 standard de-

viations (SD) from the mean values. All anthropometric measurements and cardiometa-

bolic risk markers were standardized to a mean of 0 and SD of 1 to facilitate the compar-

ison of effect sizes. Because of the reported sex differences in body fat distribution and 

cardiometabolic risk markers (30), we stratified all analyses by sex. To assess the rela-

tionship of anthropometric measurements with aSAT and aVAT, we used sex-specific 

partial correlation, adjusted for age and ROI height of the abdominal MRI fat segmenta-

tion.  
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To evaluate the relationship between aSAT and aVAT (independent variables) with car-

diometabolic risk markers (dependent variables), we used sex-specific multivariable lin-

ear regression models. The initial model (model 1) was adjusted for age, smoking (non-

smoking used as the reference group), menopause status and hormone therapy (women 

only), medication and ROI height. We tested statistical differences in the standardized 

effect sizes between aSAT and aVAT with the equation of Clogg et al (31). To statistical-

ly test for sex differences, we also ran the models including both men and women, ad-

justing for sex and with a sex-interaction term added. Further, we assessed the inde-

pendent relationship of aSAT with cardiometabolic risk markers while accounting for 

aVAT, and vice versa, by including both aSAT and aVAT simultaneously in the models. 

To examine the relations of aSAT and aVAT with cardiometabolic risk markers inde-

pendently of the anthropometric measurements, we next ran additional multivariable lin-

ear regression models where we separately added either BMI, WC, WHR, or WHtR as 

covariates.  

Finally, we used the Akaike information criterion (AIC) to compare the fit across all the 

different regression models linking anthropometric measures and aSAT and aVAT with 

cardiometabolic risk markers, to assess which measurement(s) best predicted cardi-

ometabolic risk (a lower AIC value indicating a better model fit). All statistical analyses 

were conducted with the software package R version 1.1.463 (32). A P value < 0.05 was 

considered statistically significant.  
 

Results 
The demographic and clinical characteristics of the study participants are depicted in 

Table 1. Overall, this study included 1942 women (58%) and 1408 men (42%). There 

were no differences in mean age between women and men (55 ± 13.3 vs. 54 ± 13.8, 

p=0.095). Independently of age, men had higher mean values for anthropometric meas-

urements, aVAT, and total abdominal adipose tissue (TAAT) than women. However, 

women showed larger aSAT volumes than men (3.3 ± 1.7 vs. 2.8 ± 1.2 li-

ters, p<0.001). We also observed that men on average had a less favorable cardiomet-

abolic risk profile than women.  
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Table 1 Demographic and clinical characteristics of the study participants. 

 

 

Women 

(n=1942) 

 Men 

(n=1408) P-adjusted 

Age, years (SD) 55 (13.3)  54 (13.8) 0.095 

Current smokers, n (%) 240 (12.4)  183 (13) 0.669 

Non smokes, n (%) 686 (37.4)  560 (41.1)  

Menopause, n (%) 1142 (63.6)    

Abdominal adipose tissue 

aVAT, L [IQ range] 0.8 [0.4, 1.5]  2.1 [1.1, 3.2] <0.001 

aSAT, L (SD) 3.3 (1.7)  2.8 (1.2) <0.001 

TAAT, L (SD) 4.4 (2.4)  5.1 (2.3) <0.001 

Anthropometric measurements 

BMI, kg/m2 (SD) 25.1 (4.6)  26.1 (3.4) <0.001 

WC, cm (SD) 81.9 (11.5)  93.4 (10.5) <0.001 

WHR (SD) 0.8 (0.07)  0.9 (0.07) <0.001 

WHtR (SD) 0.5 (0.07)  0.5 (0.06) <0.001 

Cardiometabolic risk markers 

Triglycerides, mg/dL  

[IQ range] 
84 [65, 111]  106 [78, 150] <0.001 

HDL-C, mg/dL (SD) 70.4 (16.9)  54.1 (14.2) <0.001 

LDL-C, mg/dL (SD) 126.5 (36.8)  128.8 (34.4) 0.027 

Glucose, mg/dL 

[IQ range] 87 [82, 93.6] 

 

92 [86.2, 99] <0.001 

Insulin, mU/L [IQ range] 7.3 [5.3, 10.4]  8.8 [5.9, 12.9] <0.001 

HbA1c, % (SD) 5.4 (0.4)  5.4 (0.4) 0.219 

hs-CRP, mg/L (SD) 0.8 [0.5, 1.9]  0.8 [0.4, 1.6] 0.042 

TNFA, pg/mL [IQ range] 2.3 [1.8, 2.7]  2.4 [2.05, 2.9] <0.001 

IL-6, pg/mL [IQ range] 1.2 [0.8, 1.9]  1.2 [0.8, 1.9] 0.006 

SBP, mmHg (SD) 123.4 (17.1)  129.6 (13.4) <0.001 

Abbreviations: aVAT, visceral adipose tissue; aSAT, subcutaneous adipose tissue; TAAT, total abdominal adipose tissue; BMI, body 
mass index; WC, waist circumference; WHR, Waist-to-hip ratio; WHtR, waist-to-height ratio; HDL-C, high-density lipoprotein cholester-
ol; LDL-C, low-density lipoprotein cholesterol; TNFA, Tumor necrosis factor alpha; IL-6, Interleukin 6; SBP, systolic blood pressure. 

Note. Data are presented as mean (SD) for normally distributed variables and median [25th, 75th percentiles] for not normally distributed 
variables and as a percentage (%) for proportions. Clinical characteristics were compared using ANCOVA test adjusting for age. 
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The sex-specific correlation of anthropometric measurements with aSAT and aVAT ad-

justed for age and ROI height is depicted in Table 2. Among the anthropometric meas-

urements, BMI had the highest correlation with aSAT (r=0.905, P <0.001; r=0.818, P 

<0.001) and WC had the highest correlation with aVAT (r =0.814, P <0.001; r=0.815, P 

<0.001) in both, women and men respectively. However, in women, the correlation of 

BMI with aSAT was considerably superior to the correlation of WC with aVAT 

 

Table 2 Sex-specific partial correlation of anthropometric measurements with abdominal MRI-fat varia-

bles. 

 Women  Men 

 aSAT aVAT aTAT  aSAT aVAT aTAT 

BMI 0.905 
(0.90, 0.91) 

0.757 
(0.74, 0.78) 

0.910 
(0.90, 0.92) 

 0.818 
(0.80, 0.83) 

0.737 
(0.71, 0.76) 

0.858 
(0.84, 0.87) 

WC 0.879 
(0.87, 0.89) 

0.814 
(0.80, 0.83) 

0.909 
(0.90, 0.92) 

 0.811 
(0.79, 0.83) 

0.815 
(0.80, 0.83) 

0.898 
(0.89, 0.91) 

WHR 0.506 
(0.47, 0.54) 

0.619 
(0.59, 0.65) 

0.573 
(0.54, 0.60) 

 0.546 
(0.51, 0.58) 

0.736 
(0.71, 0.76) 

0.708 
(0.68, 0.73) 

WHtR 0.857 
(0.84, 0.87) 

0.798 
(0.78, 0.81) 

0.888 
(0.88, 0.90) 

 0.768 
(0.75, 0.79) 

0.804 
(0.78, 0.82) 

0.868 
(0.85, 0.88) 

Abbreviations: aSAT, abdominal subcutaneous adipose tissue; aVAT, abdominal visceral adipose tissue; aTAT, 
abdominal total adipose tissue; BMI, body mass index; WC, waist circumference; WHR, Waist-to-hip ratio; WHtR, 
waist-to-height ratio. 

Note: Partial correlation was adjusted by age and height of the ROI. (95% confidence interval). All correlations were 
statistically significant (p<0.001). 

 

Table 3 shows the associations of aSAT and aVAT volumes with cardiometabolic risk 

markers with and without adjusting for one another. In the initial models, we observed 

that both larger aSAT and aVAT were associated with cardiometabolic risk markers, in 

both women and men. However, in women, aVAT was significantly stronger associated 

with cardiometabolic risk markers than aSAT (P aSAT vs. aVAT <0.001), except for SBP 

(aSAT β =0.14; aVAT β =0.20, P aSAT vs. aVAT = 0.102). In men, the effects of aVAT and 

aSAT on cardiometabolic risk markers were of similar magnitude, except for insulin lev-

els that more strongly depended on aSAT than aVAT levels (aSAT β =0.71; aVAT β 

=0.62, P aSAT vs. aVAT =0.024). 
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When aSAT and aVAT were entered simultaneously in the model, the effect sizes of 

aSAT mostly became much smaller.  Independently of aVAT, aSAT remained only sig-

nificantly associated in women with levels of glucose, insulin, hs-CRP, and IL-6, and with 

SBP; and in men with levels of insulin, hs-CRP, TNFA, and IL-6, and with SBP. The as-

sociations of aVAT with cardiometabolic risk markers, on the other hand, did not change 

or changed only slightly when adjusted for aSAT, and remained statistically significant 

for all cardiometabolic risk markers, except SBP, for both men and women. When we 

tested for sex differences, we found statistically significant sex interaction effects in the 

association of aVAT with all cardiometabolic risk markers, with larger volumes of aVAT 

being consistently more strongly associated with a more adverse cardiometabolic risk 

profile in women than in men. For aSAT, we only observed statistically significant sex 

differences in its association with triglycerides and insulin levels, with larger aSAT vol-

ume being more strongly associated with higher concentrations of triglycerides and insu-

lin levels in men than in women.  
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Table 3 Sex-specific multivariable linear regression models estimating changes of 1-SD 
on cardiometabolic risk markers per SD in aSAT and aVAT volumes. 
  Women (n=1942)  Men (n=1408)   

  Model 1  
Model 1 + 
aSAT and 

aVAT 
 Model 1  

Model 1 + 
aSAT and 

aVAT 

  

  ß (95% CI) P value a ß (95% CI)  ß (95% CI) P value a  ß (95% CI)  P value b 

Triglycerides, (mg/dL)         

 
aSAT 0.27 

(0.23 to 0.30) <0.001 

0.01 
(-0.04 to 0.06)  0.40 

(0.33 to 0.47) 0.083 

0.02 
(-0.07 to 0.10)  0.001 

aVAT 0.63 
(0.57 to 0.69) 

0.62 
(0.57 to 0.74)  0.47 

(0.42 to 0.52) 
0.46 

(0.40 to 0.53)  <0.001 

HDL-C, (mg/dL)          

 
aSAT -0.28 

(-0.32 to -0.24) <0.001 

-0.02 
(-0.08 – 0.03)  -0.25 

(-0.31 to -0.20) 0.148 

-0.01 
(-0.08 to 0.05)  0.774 

aVAT -0.64 
(-0.71 to -0.58) 

-0.62 
(-0.72 to -0.52)  -0.30 

(-0.34 to -0.26) 
-0.30 

(-0.35 to -0.24)  <0.001 

LDL-C, (mg/dL)          

 
aSAT 0.14 

(0.10 to 0.18) <0.001 

-0.01 
(-0.07 to 0.05)  0.20 

(0.14 – 0.26) 0.728 

0.08 
(0.00 to 0.16) 

 
 0.323 

aVAT 0.33 
(0.26 to 0.41) 

0.34 
(0.24 to 0.45)  0.19 

(0.14 – 0.24) 
0.15 

(0.08 to 0.21)  <0.001 

Glucose, (mg/dL)          

 
aSAT 0.25 

(0.21 to 0.29) <0.001 

0.09 
(0.03 to 0.14)  0.25 

(0.18 to 0.31) 0.870 

0.07 
(-0.01 to 0.14)  0.799 

aVAT 0.50 
(0.43 to 0.57) 

0.39 
(0.29 to 0.49)  0.25 

(0.21 to 0.30) 
0.22 

(0.16 to 0.28) 
 
 <0.001 

Insulin, (mU/L)        

 
aSAT 0.43 

(0.39 to 0.29) <0.001 

0.17 
(0.12 to 0.22)  0.71 

(0.65 to 0.77) 0.024 

0.34 
(0.27 to 0.41)  <0.001 

aVAT 0.84 
(0.78 to 0.90) 

0.63 
(0.54 to 0.71) 

 0.62 
(0.58 to 0.67) 

0.45 
(0.39 to 0.51)  <0.001 

HbA1c, (%)          

 
aSAT 0.06 

(0.02 to 0.10) <0.001 

-0.06 
(-0.11 to -0.00) 

 0.11 
(0.05 to 0.18) 0.364 

-0.02 
(-0.10 to 0.06)  0.252 

aVAT 0.21 
(0.14 to 0.27) 

0.28 
(0.18 to 0.38) 

 0.15 
(0.10 to 0.20) 

0.16 
(0.09 to 0.22)  0.043 

hs-CRP, (mg/dL)          

 
aSAT 0.46 

(0.42 to 0.50) <0.001 

0.28 
(0.22 to 0.33) 

 0.43 
(0.37 to 0.49) 0.080 

0.22 
(0.15 to 0.30)  0.341 

aVAT 0.79 
(0.72 to 0.86) 

0.42 
(0.33 to 0.53) 

 0.36 
(0.31 to 0.40) 

0.25 
(0.19 to 0.31)  <0.001 

TNFA, (pg/mL)          

 
aSAT 0.19 

(0.14 to 0.23) <0.001 

0.05 
(-0.02 to 0.11) 

 0.20 
(0.14 to 0.27) 0.608 

0.09 
(0.01 to 0.17)  0.645 

aVAT 0.39 
(0.32 to 0.47) 

0.32 
(0.21 to 0.44) 

 0.18 
(0.13 to 0.23) 

0.14 
(0.08 to 0.20)  <0.001 

IL-6, (pg/mL)          

 
aSAT 0.28 

(0.24 to 0.32) <0.001 

0.13 
(0.08 – 0.19) 

 0.31 
(0.25 to 0.37) 0.071 

0.19 
(0.11 to 0.28)  0.595 

aVAT 0.52 
(0.45 to 0.59) 

0.35 
(0.24 – 0.45) 

 0.24 
(0.19 to 0.29) 

0.14 
(0.08 to 0.20)  <0.001 

SBP, (mmHg)          

 
aSAT 0.14 

(0.09 to 0.18) 0.102 

0.11 
(0.05 to 0.17) 

 0.17 
(0.12 to 0.23) 0.152 

0.12 
(0.05 to 0.19)  0.656 

aVAT 0.20 
(0.13 to 0.28) 

0.06 
(-0.04 to 0.16) 

 0.12 
(0.08 to 0.16) 

0.06 
(0.00 to 0.12)  <0.001 

Values are beta coefficients (95% confidence interval). Mode 1, multivariable linear regression model adjusted for age, smoking, menopause 
status and medication use and ROI height. Additionally, model 1 was adjusted aSAT and aVAT simultaneously.  
Abbreviations: aVAT, abdominal visceral adipose tissue; aSAT, abdominal subcutaneous adipose tissue; SBP, systolic blood pressure; HDL-
C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TNFA, Tumor necrosis factor alpha; IL-6, Interleukin 6. a P 
value for differences in the standardized effect sizes between aSAT and aVAT. b P value for sex interaction terms in model 1. 
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The associations of aSAT and aVAT with cardiometabolic risk markers with additional 

adjustment for anthropometric measurements are shown in Figures 1a and 1b. For both 

women and men, the associations of aSAT with cardiometabolic risk markers became 

weaker and partly no longer statistically significant after adjusting for anthropometric 

measurements, whereas the associations of aVAT with cardiometabolic risk markers 

remained statistically significant, and mostly only slightly changed, except for SBP.   

When considered separately, anthropometric measurements were associated with car-

diometabolic risk markers. However, these relations attenuated and were no longer 

statisitically significant for most of the cardiometabolic risk markers after accounting for 

aSAT and aVAT. In women, however, WC, WHR and WHtR remained statistically asso-

ciated with lower HDL-C and higher insulin levels. In men, the effect size of all anthro-

pometric measurements with SBP remained without change and statistically significant 

afer adding aSAT and aVAT to the models. Furthermore, WHR remained weakly but 

singnificantly associated with higher tryglicerides, insulin, IL-6 levels and low HDL-C. 

BMI and WHtR also remained significantly associated with higher insulin levels in wom-

en and men (supplementary Figure 1).  

Figure 2 shows the comparison of the ability of the various anthropometric, aSAT, aVAT 

to predict cardiometabolic risk markers levels, without and with additional adjustment for 

aSAT, aVAT, or both. When evaluated separately, aVAT best predicted all cardiometa-

bolic risk factors in both women and men, except for SBP (in both women and men), hs-

CRP (in women), IL-6 (in men). For these immune markers, aSAT and aVAT performed 

approximately equally when considered separately, and the model improved when both 

were added simultaneously. SBP was best predicted by aSAT in women, and by WC in 

men. Adding aVAT to the models of the anthropometric measures significantly improved 

the prediction of all other cardiometabolic risk factors. Moreover, combined models in-

cluding aSAT and aVAT did not or hardly outperform the models that only contained 

aVAT. Interestingly, when comparing the performance of the various anthropometric 

measurements, patterns were different between women and men. In women, WHR was 

the poorest single predictor of most cardiometabolic risk markers. In men, on the contra-

ry, WHR was the best single predictor of several risk markers, including levels of triglyc-

erides, HDL-C, HbA1c, and Il-6, while BMI and aSAT most poorly predicted several of 

these and other risk markers (Figure 2). 



 72 

Figure 1 Multivariable linear regression models estimating the change of 1-SD increase of cardiometabolic risk markers per SD increase in aSAT and aVAT in 1a) women and 1b) men.  

Note. Shapes represent beta coefficients of the different models. Black and orange stars represent the effect size of aSAT(black) and aVAT (orange) from multivariable linear regression models 
adjusted for age, medication use, smoking, hormone replacement therapy, and menopause status and height of ROI. Squares, circles, diamonds, and triangles shapes represent the effect sizes of 
aVAT (black) and aSAT (orange) after additionally adjusting for BMI, WC, WHR, and WHtR respectively. The vertical lines crossing the shapes represent the 95% confidence interval. 
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Figure 2 Change in model fit (AIC) estimating cardiometabolic risk markers after accounting for aVAT and aSAT in 1a) women and 
1b) men.  
Note. Dots in the figure are positioned in the AIC value from model 1 (grey), adjusted for age, medication use, smoking, hormone 
replacement therapy, and menopause status and height of ROI, and models additionally adjusted for aSAT (yellow), aVAT (blue), or 
aVAT and aSAT simultaneously (red) 
All multivariable linear regression models were adjusted for age, medication use, smoking, hormone replacement therapy, and men-
opause status.  
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Figure S1
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Supplementary Figure 1 Multivariable linear regression models estimating the change of 1-SD increase of cardiometabolic risk markers per SD increase in BMI (red), WC (blue), WHR (orange), and 
WHtR (black). 
Note. Shapes represent beta coefficients of the different models.  Squares represent the effect size of anthropometric measurements from multivariable linear region models adjusted for age, medica-
tion use, smoking, hormone replacement therapy, and menopause status. Circles, diamonds, and triangles represent the effect size of anthropometric measurements after further adjustment for SAT, 
VAT, or VAT and SAT simultaneously. The horizontal lines crossing the shapes represent the 95% confidence interval. 
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Discussion: 
In this population-based study, we showed that among commonly used anthropometric 

measurements, BMI had the highest correlation with aSAT, and WC with aVAT in both 

sexes. However, the correlation of WC with aVAT outperformed in women compared to 

men.  

In line with previous studies we found that aVAT is more metabolically detrimental than 

aSAT in women (33–36). However, our study identified a different pattern in men, from 

whom aSAT and aVAT were associated with cardiometabolic risk markers to a similar 

extent. The strength of the association of aVAT with cardiometabolic risk markers was 

not significantly modified after adjustment for anthropometric measurements in either 

women or men. However, associations of aSAT were attenuated and remained signifi-

cant for only some of the cardiometabolic risk markers. 

Correlation of anthropometric measurements with aSAT and aVAT 

Since many large epidemiological studies merely rely on anthropometric measurements 

to classify obesity, we compared the correlations of BMI, WC, WHR, and WHtR with MRI 

measured aSAT and aVAT. BMI had the strongest correlation with aSAT, whereas WC 

had the strongest correlation with aVAT. Some smaller studies (£120 participants) re-

ported only weak correlations of anthropometric measurements with aVAT, especially in 

comparison to correlations with aSAT and aTAT (24,25,37). However, our findings con-

cur however with a study based on the German EPIC cohort, which showed that among 

a range of anthropometric measures, WC showed the highest correlation with VAT (25) 

and expanded those findings by identifing a higher correlation of WC with aVAT in 

women compared to men.  

Associations of aSAT and aVAT with cardiometabolic risk markers 

Earlier studies reported aVAT rather than aSAT to be associated with cardiometabolic 

risk markers (16, 34–36). We confirmed that observation in women but not in men, for 

whom aSAT and aVAT had similar effects on cardiometabolic risk markers, except for 

insulin (larger aSAT volumes were more strongly associated with higher insulin levels 

than aVAT). Remarkably, we observed associations of aVAT volume with levels of blood 

lipids, markers of glucose metabolism and inflammation markers, but not with SBP. 

Many observational studies have shown obesity, primarily measured by BMI, to be as-

sociated with high blood pressure. Indeed, in our data we found that BMI and WC best 
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predicted SBP in both women and men, with some improvement of the prediction in 

women by taking aSAT into account. This suggests that the association of high BMI with 

increased blood pressure is might not primarily a consequence of increasing aVAT ac-

cumulation but rather general adiposity. 

The heterogenous associations of aSAT and aVAT with cardiometabolic risk could be 

explained by the metabolic differences of the adipocytes in these fat compartments. Hy-

pertrophic adipocytes are a hallmark of dysfunctional adipose tissue, particularly in 

aVAT, because they have a higher rate of lipolysis which increases the release of free 

fatty acids (FFAs) (38). The FFAs from aVAT are drained directly to the liver through the 

portal vein (11), increasing the hepatic storage (39) and circulating levels of triglycerides 

(40). Furthermore, hypertrophic adipocytes from aVAT are more insulin-resistant, have a 

stronger association with lipid impairment markers, and secrete higher concentrations of 

pro-inflammatory cytokines than aSAT adipocytes (41,42).  

Our results show that although men had higher aVAT volumes, the effects of larger 

aVAT were more metabolically detrimental in women. Previously, one study showed that 

particularly in women, the proportion of hepatic FFAs delivery from the aVAT was higher 

than in men (43). Other explanations of the sex differences in distribution and cardi-

ometabolic effects of adipose tissue may involve sex-specific adipose tissue provoked 

immune responses (44) and sex-specific genetic factors (45). However, this requires 

further research.   

Associations of aSAT and aVAT with cardiometabolic risk markers independently of an-

thropometric measurements 

In our study, aVAT was significantly associated with all the cardiometabolic risk markers, 

except for SBP, independently of any of the anthropometric measurements. This corrob-

orates and extends findings from prior studies which showed significant associations of 

aVAT with certain cardiometabolic risk markers independently of BMI (15,17) and WC 

(33). For aSAT, the strength of the relations with cardiometabolic risk markers usually 

attenuated to a greater or lesser extent upon adjustment for anthropometric measures.  

In contrast, anthropometric measurements were weakly or no longer associated with 

cardiometabolic risk markers once we accounted for aSAT and aVAT, with one big ex-

ception for SBP in men, in which the effect sizes of anthropometric measurements did 
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not change after accounting for aSAT and aVAT. Indeed, when we compared different 

measures of obesity, aVAT was the single best predictor of cardiometabolic risk markers 

(lowest AIC), except for SBP, with little or no model improvement when other obesity 

markers were added. 

Strengths and limitations  

The main strengths of our study include the use of a large community-based sample 

with a broad age range, the accurate quantification of aSAT and aVAT from multi-slice 

MR images with a validated method, and the exploration of a broad number of cardi-

ometabolic risk markers and anthropometric measurements. This is the first study that 

compares the performance of several commonly used anthropometric measurements 

with aVAT and aSAT predicting cardiometabolic risk markers. 

A limitation is that, due to the resolution of our fast Dixon MRI sequence, we were not 

able to differentiate between superficial (SSAT) and deep SAT (DSAT), which are con-

sidered two metabolic different fat compartments. Furthermore, we did not assess fat 

accumulation in other anatomical parts. For instance, gluteofemoral fat mass accumula-

tion can be a strong determinant for a decreased cardiovascular risk. Our results warrant 

future research elucidating the physiology and mechanisms implicated in the metabolic 

sex differences in the association of abdominal adipose tissue and cardiometabolic risk 

markers. 

 

Conclusion 
In conclusion, larger aVAT volumes were more metabolically detrimental in women, 

whereas in men, aSAT and aVAT were associated with cardiometabolic risk markers to 

a similar extent. Our results support that, principally in women WC could be the closest 

surrogate measure of aVAT for epidemiological studies that merely rely on anthropomet-

ric measurements. However, none of the anthropometric measurements outperformed 

aVAT alone in predicting cardiometabolic risk markers nor added further information.  
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Abstract
Context: Visceral (VAT) and subcutaneous adipose tissue (SAT) function as endocrine organs capable of influencing metabolic health across 
adiposity levels.
Objective: We aimed to investigate whether metabolites associated with VAT and SAT impact metabolic health through metabolite 
concentrations.
Methods: Analyses are based on 1790 participants from the population-based Rhineland Study. We assessed plasma levels of methionine (Met), 
branched-chain amino acids (BCAA), aromatic amino acids (AAA), and their metabolic downstream metabolites with liquid chromatography-mass 
spectrometry. VAT and SAT volumes were assessed by magnetic resonance imaging (MRI). Metabolically healthy and unhealthy phenotypes 
were defined using Wildman criteria.
Results: Metabolically unhealthy participants had higher concentrations of BCAA than metabolically healthy participants (P < 0.001). In meta-
bolically unhealthy participants, VAT volumes were significantly associated with levels of L-isoleucine, L-leucine, indole-3-lactic acid, and indole-
3-propionic acid (in log SD units: β = 0.16, P = 0.003; β = 0.12, P = 0.038; β = 0.11, P = 0.035 and β = −0.16, P = 0.010, respectively). Higher 
concentrations of certain BCAA and AAA-downstream metabolites significantly increased the odds of cardiometabolic risk markers. The relation 
between VAT volume and cardiometabolic risk markers was mediated by BCAA (indirect effects 3.7%-11%, P = 0.02 to < 0.0001), while the ef-
fect of VAT on systemic inflammation was mediated through higher kynurenine concentrations (indirect effect 6.4%, P < 0.0001).
Conclusion: Larger volumes of VAT in metabolically unhealthy individuals are associated with altered concentrations of circulating BCAA and 
AAA-downstream metabolites, increasing the odds of cardiometabolic risk markers. This suggests that these metabolites are involved in the 
mechanisms that underlie the relationship of abdominal VAT with metabolic health.
Key Words: branched-chain amino acids, aromatic amino acids, metabolites, cardiometabolic risk markers, visceral adipose tissue, subcutaneous adipose 
tissue
Abbreviations: 3-IAA, indole-3-acetic acid; 5-HIAA, 5-hydroxyindole-3-acetic acid; 5-HT, serotonin; AAA, aromatic amino acid; BCAA, branched-chain amino 
acid; BMI, body mass index; DA, dopamine; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; hsCRP, 
high-sensitivity C-reactive protein; I3A, indole-3-carboxaldehyde; ILA, indole-3-lactic acid; IPA, indole-3-propionic acid; Kyn, kynurenine; KYNA, kynurenic acid; 
OR, odds ratio; Phe, phenylalanine; ROI, region of interest; SAT, subcutaneous adipose tissue; T2D, type 2 diabetes; Trp, tryptophan; Tyr, tyrosine; VAT, visceral 
adipose tissue; XA, xanthurenic acid.

Obesity is worldwide one of the major risk factors for car-
diovascular diseases, type 2 diabetes (T2D), different types of 
cancer, and a high rate of mortality (1, 2). However, there is 
a growing awareness that obesity is a heterogeneous condi-
tion, and that risk pro!les for metabolic and cardiovascular 
disease vary widely among individuals with the same body 
mass index (BMI). Thus, risk strati!cation of individuals ac-
cording to their metabotype, that is, grouping according to 
similarities in metabolic pro!le, becomes crucial (3, 4) Among 
individuals with high BMI, a subset can be considered meta-
bolically healthy as they have a healthy metabolic pro!le char-
acterized by high insulin sensitivity, favorable lipid pro!le, low 

pro-in"ammatory cytokine levels, and normal blood pressure. 
Conversely, there are also individuals who are metabolically 
unhealthy despite a low BMI (5, 6). The variation of meta-
bolic health across obesity groups is mainly due to differences 
in abdominal fat distribution (7) such as visceral (VAT) and 
subcutaneous abdominal adipose tissues (SAT) (8). Larger 
SAT and VAT have been associated with future conversion to 
metabolically unhealthy from a healthy phenotype (9). One 
important mechanism by which VAT and SAT are involved in 
the progression from a metabolically healthy to a metabolically 
unhealthy phenotype is by changes in the functionality of the 
adipocytes through their ability to expand (10). Hypertrophic 
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adipocytes are characteristic of an unhealthier mechanism of 
adipocyte expansion. They cause a cascade of metabolic dys-
function by promoting insulin resistance and glucose intoler-
ance and they induce in!ammation by secreting high levels of 
pro-in!ammatory cytokines (11, 12). Furthermore, the higher 
release of free fatty acids by hypertrophic adipocytes leads 
to hepatic lipid accumulation and hypertriglyceridemia (13). 
Nevertheless, the connection between abdominal fat and meta-
bolically unhealthy phenotype is yet not totally understood 
and could be explained by other factors such as metabolomic 
biomarkers. Metabolomics has emerged as a powerful tool 
for assessing perturbations in metabolic pathways and for 
determining biomarkers that are associated with speci"c health 
conditions or diseases. Metabolomic biomarkers are a measure 
of exposure and susceptibility to speci"c outcomes and allow us 
to classify at-risk/diseased individuals (14). It has been shown 
that there are differences in circulating levels of branched-chain 
amino acids (BCAA) and aromatic amino acids (AAA) across 
metabolic phenotypes (15-17). Furthermore, BCAA and AAA 
have been associated with metabolic abnormalities and obesity 
in cross-sectional studies (18, 19), and could predict the de-
velopment of diabetes (20, 21) and cardiovascular diseases in 
longitudinal studies (22).

Evidence from animal and human adipose tissue studies 
suggests that the adipose tissue is an important determinant 
of BCAA and AAA oxidation and metabolism (23-25).

In particular, the route of tryptophan (Trp) catabolism 
through the kynurenine (Kyn) pathway degrades Trp into 
several metabolites with toxic and in!ammatory effects. The 
kynurenine pathway can be upregulated in the adipose tissue by 
activating indoleamine 2,3-dioxygenase (IDO) (24, 25), a rate-
limiting enzyme that breaks down Trp into downstream prod-
ucts such as Kyn, kynurenic acid (KYNA) and xanthurenic acid 
(XA) (26). Thus, increased activity of the kynurenine pathway 
in the adipose tissue is re!ected in the higher circulation of toxic 
Trp-derived metabolites. On the other hand, gene expression of 
enzymes involved in the catabolism of BCAA in the adipocytes 
(23, 27, 28) reportedly decreases mainly in VAT compartments 
(23), which leads to a signi"cant increase in circulating levels of 
BCAA in persons with high levels of VAT.

To our knowledge, few studies have investigated the rela-
tionship between abdominal adipose tissue and methionine 
(Met). Two animal studies showed that a diet restricted on Met 
was associated with a reduction of VAT accumulation and hep-
atic triglyceride synthesis. Furthermore, in the VAT adipocytes, 
lipogenesis and fatty acid oxidation increased, and there was 
an improvement in insulin sensitivity (29, 30). Similar results 
were further replicated in humans with metabolic syndrome 
(31). Additionally, some authors showed that the uptake of 
Met was diminished in the VAT of obese subjects, re!ecting an 
increased release of Met in the circulation (32, 33). Therefore, 
circulating metabolites could constitute the biological link be-
tween adiposity and metabolic diseases.

Thus, we aimed to understand whether known metabolites 
associated with VAT and SAT impact metabolic health and 
how they are involved in the link between abdominal VAT 
and SAT with cardiometabolic risk markers.

Methods
Study Population
We selected the "rst 2000 participants from the Rhineland 
Study, who participated between March 2016 to April 2019 

and for whom blood samples and abdominal MRI data were 
available, for further metabolomic analysis as described below.

The Rhineland Study is an ongoing community-based co-
hort study in Bonn, Germany, that started in 2016. One of its 
central aims is to "nd biomarkers and multimodal biomarker 
pro"les to identify individuals at risk for neurodegenerative 
and other age-related diseases. Participants in the Rhineland 
Study are recruited from 2 municipal districts in Bonn and are 
primarily Caucasians of European descent. Inclusion criteria 
are age of 30 years or older and suf"cient command of the 
German language to provide written informed consent.

At baseline examination, participants completed an 8-hour 
in-depth multidomain phenotypic assessment of anthro-
pometry, physical activity and "tness, cardiovascular health, 
brain imaging, cognitive testing, neurologic functioning, 
ophthalmologic health and functioning, and other sensory 
systems. No "nancial incentives were offered for study par-
ticipation (34). The study was approved by the Medical 
Faculty Ethics Committee of the University of Bonn and con-
ducted following the Declaration of Helsinki. We obtained 
informed written consent from all the participants before they 
underwent any of the examinations.

Blood Samples
Overnight fasting plasma samples were collected in 2 × 10 mL 
EDTA tubes from all participants between 7:00 and 9:30 
a.m. and directly processed. The plasma was centrifuged 
within less than 10 minutes after blood withdrawal for 10 
minutes at 2000g at 20 °C (brake of the centrifuge set off to 
avoid platelet activation). Automated aliquoting (Hamilton 
Microlab Star) of the plasma was done within less than 35 
minutes after centrifugation into 500-µL aliquots. All aliquots 
were directly cooled (10 °C) during the process. The aliquots 
were placed into a chest freezer (−80 °C) within less than 45 
minutes after aliquoting.

Targeted Metabolomics
For metabolomics analysis, frozen plasma samples were 
shipped on dry ice to Fondazione Edmund Mach (FEM), in 
Trento Italy. Metabolomics analyses were done in 2 batches, 
with a 7-month time difference between batches.

Liquid chromatography–tandem mass spectrometry (LC-
MS/MS) targeted analyses were performed on 2000 frozen 
plasma samples; all samples were thawed at 4 °C. An aliquot 
of 50  µL was loaded on 96-well plates Ostro (Water) and 
20 µL of an internal standard mix in methanol were added 
(tryptophan-d5, tyrosine-d4, methionine-d4, serotonin-d4, 
kynurenic acid-d5, 5-hydroxyindole-acetic acid-d5 and 
dopamine-d5 at 2.5 ppm; "nal concentration in the extracted 
and recovered sample: 0.5 ppm).

Ultra-High Performance Liquid Chromatography-
Electrospray Ionization-Triple-Quadrupole-Mass 
Spectrometry Analysis
The detection was performed on a Waters Xevo Triple 
Quadrupole–mass spectrometer (MS) equipped with 
electrospray ionization (ESI) source and coupled on-line with 
an Aquity UHPLC (Waters). The MS operated in positive 
and negative ion modes. Separations were performed on a 
Water UPLC HSST3 (150 × 2.1 mm I.D., 1.8 μm particle size, 
100 Å pore diameter) purchased from Waters. Mobile phase 
A was water containing 0.1% formic acid, mobile phase B 
was acetonitrile with 0.1% formic acid. The gradient started 
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at 5% B and was maintained for 0.5 minutes; then %B was 
increased to 10% at 2.5 minutes, to 15% at 3.5 minutes, to 
25% at 4.5 minutes, to 35% at 5.5 minutes, to 45% at 6.5 
minutes, to 55% at 7 minutes and then to 100% B at 7.5 min-
utes. Final conditions were kept for 3 minutes and then the 
column was re-equilibrated for 4 minutes. The !ow rate was 
0.3 mL/min, the injection volume was 2 μL, the column oven 
was set at 40 °C and the sample tray temperature was 5 °C. 
With this method, we are able to quantify 3 BCAAs, L-valine 
(Val), L-isoleucine (Ile), and L-leucine (Leu); as well as 13 aro-
matic amino acids and their metabolic downstream products; 
5-hydroxyindole-3-acetic acid (5-HIAA), serotonin (5-HT), 
indole-3-acetic acid (3-IAA), indole-3-carboxaldehyde (I3A), 
indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), 
kynurenic acid (KYNA), kynurenine (Kyn), xanthurenic acid 
(XA), L-tryptophan (Trp), L-phenylalanine (Phe), L-tyrosine 
(Tyr), dopamine (DA), and L-methionine (Met). Further de-
tails of the methods are described elsewhere (35).

Biochemical and Clinical Measurements
Fasting insulin, high-density lipoprotein cholesterol (HDL-C), 
triglycerides, glucose, and high-sensitivity C-reactive protein 
(hsCRP) were measured on the day of blood withdrawal ac-
cording to standard procedures at the University Hospital 
Bonn (UKB). HsCRP was measured by high-sensitivity 
assay (Dimension Vista System, Siemens Healthcare 
Diagnostics GmbH).

We used the homeostatic model assessment to calculate in-
sulin resistance (HOMA-IR), as glucose levels (mmol/L) × in-
sulin levels (mU/L)/22.5.

Systolic and diastolic blood pressure were measured 3 times 
in sitting position, with 10 minutes intervals, in a resting 
and quiet environment. The mean of the blood pressure was 
obtained from the mean of the last 2 measurements.

Metabolic Health Classification
Metabolic health was de$ned using Wildman et  al cri-
teria (5), which include 6 cardiometabolic risk markers 
de$ned as follow: 1)  elevated blood pressure: systolic/dia-
stolic blood pressure ≥ 130/85  mm Hg or antihypertensive 
medication use; 2)  elevated triglyceride level: fasting tri-
glyceride level ≥ 150  mg/dL; 3)  low HDL-C level: HDL-C 
level < 40 mg/dL in men or < 50 mg/dL in women or lipid-
lowering medication use; 4)  systemic in!ammation: hsCRP 
level > 0.1  mg/L; 5)  elevated glucose level: fasting glucose 
level ≥ 100  mg/dL or antidiabetic medication use; 6)  in-
sulin resistance: HOMA-IR > 5.13. Metabolically unhealthy 
phenotype was de$ned when participants had ≥ 2 of the 
above cardiometabolic risk markers, and metabolically 
healthy when < 2 cardiometabolic risk markers were present.

Abdominal Fat Segmentation
Abdominal MR image acquisition was performed using 
a 2-point Dixon sequence at 2 different sites, both with 
identical 3T Siemens MAGNETOM Prisma MR scanners 
(Siemens Healthcare, Erlangen, Germany). Data were ac-
quired during a single breath-hold in a supine position with 
arms at the sides.

Abdominal MRI-fat variables were extracted from the pre-
dicted segmentation maps of the Fat-SegNet pipeline, a fully 
automated deep learning pipeline that accurately segments 
VAT and SAT inside a consistent anatomically de$ned ab-
dominal region (36).

The segmented area was de$ned from the lower bound of 
the twelfth thoracic vertebra to the lower bound of the $fth 
lumbar vertebra. We calculated the height of the region of 
interest segmented (height of ROI) measuring the segmented 
slices on the Z-axis.

Total Energy and Protein Intake
We assessed dietary intake with a self-administered semi-
quantitative food frequency questionnaire (FFQ) (37). To 
calculate protein and energy intakes, we used an algorithm 
developed by The Institute of Nutritional and Food Sciences 
at the University of Bonn, utilizing as reference the German 
Food Code and Nutrient Data Base (version 3.02).

Statistical Analysis
We compared differences in the adjusted mean concentration 
of metabolites and clinical characteristics between metabol-
ically healthy and metabolically unhealthy participants with 
analysis of covariance (ANCOVA) adjusting for age, sex, and, 
additionally, BMI.

For further analyses, all metabolite concentrations were 
log-transformed to obtain approximately normal distribu-
tions. We applied rank-based inverse normal transformed due 
to skewness of the metabolite residuals. Outliers in metabol-
ites were identi$ed as concentrations above or below 3 times 
the interquartile range (IQR) before the rank-based inverse 
normal transformation.

We used multivariable linear regression to assess the as-
sociation of VAT and SAT with metabolite concentrations, 
independent of BMI. In every model, we considered single 
metabolites as the dependent variable, and VAT and SAT as 
the main independent variables, adjusting for BMI, age, sex, 
batch effect, and height of the ROI. In additional analyses, 
we further adjusted the linear regression models for dietary 
total energy and protein intake. To account for multiple com-
parisons, we adjusted P values for multiple testing using the 
Benjamini-Hochberg method (38). We evaluated whether the 
association of VAT and SAT with metabolite concentrations 
differed between sexes by including sex-VAT and sex-SAT 
interaction terms in the models.

To analyze the association of metabolite concentration with 
presence of cardiometabolic risk markers we used logistic re-
gression models. We $rst adjusted for age, sex, BMI, batch 
effect, and smoking. Subsequently, we additionally included 
VAT and SAT to evaluate whether the associations of metab-
olites with cardiometabolic risk markers were independent of 
abdominal adiposity. In additional analyses, we further ad-
justed the logistic regression models for dietary total energy 
and protein intake.

To investigate whether the effects of metabolites on 
cardiometabolic risk markers differed between sexes, we 
added sex-metabolite interaction terms to our models.

The effect sizes from the linear and logistic regression 
models (beta coef$cients and odds ratio [OR]) can be inter-
preted as standardized effect sizes due to the inverse rank 
normalization (1-SD increased in log standardized units of 
metabolites). All models were adjusted for age, sex, BMI, 
batch effect, smoking, VAT, SAT, and the height of the ROI.

Mediation Analysis
To investigate whether the association of abdominal fat with 
cardiometabolic risk markers is mediated through circu-
lating metabolites, we performed a causal mediation analysis. 
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Since VAT rather than SAT is strongly associated with higher 
odds of cardiometabolic risk markers, we considered VAT 
as the main independent variable to calculate the direct and 
indirect effect. All models were adjusted for sex, age, BMI, 
batch effect, and SAT. To evaluate the indirect effect, which 
depicts how much of the effect of VAT on cardiometabolic 
risk markers is mediated through metabolite concentration, 
we applied the product method (39). We used bootstrapping 
to assess whether the mediation effect was statistically signi!-
cant (different from zero) (40).

Results
From the 2000 study participants with metabolomics ana-
lyses, we excluded participants with extreme values in me-
tabolite concentration (n = 152) and cardiometabolic risk 
markers (n = 44), as well as those participants without valid 
data on abdominal MRI-fat segmentation (n = 14), leaving 
1790 participants who were included in the analyses. Table 
1 shows the descriptive characteristics of the participants 
strati!ed by metabolic health phenotypes. Independently of 
age and sex, metabolically unhealthy participants had signi!-
cantly higher concentrations of Val, Leu, Ile, Tyr, Phe, Kyn, 
Kyn/Trp, KYNA, I3A, and lower concentrations of IPA. 
When we further adjusted the mean differences for BMI, only 
concentrations of Val, Ile, and Leu remained statistically sig-
ni!cantly higher in metabolically unhealthy compared with 
metabolically healthy participants.

Figure 1 depicts the association of VAT and SAT volumes 
with metabolite concentration in metabolic health pheno-
types, independently of age, sex, and BMI. We observed sig-
ni!cant associations of VAT with Ile, Leu, ILA, and IPA (in 
log standard deviation units per L increase in VAT: β = 0.16, 
P = 0.002; β = 0.12, P = 0.02; β = 0.11, P = 0.02; β = −0.16, 
P = 0.005, respectively), only in metabolically unhealthy par-
ticipants. Findings were also similar after adjustment for total 
diet energy and protein intake (data not shown)

The association of circulating metabolites with the pres-
ence of cardiometabolic risk markers without and with ad-
justment for VAT and SAT are shown in Fig. 2A and Fig. 2B. 
We observed a considerable reduction of the strength of the 
associations of metabolites with cardiometabolic risk markers 
after accounting for abdominal fat and BMI in the models. 
However, levels of some of the BCAA metabolites, such as Ile 
and Leu, remained statistically signi!cantly associated with an 
increased odds of hypertriglyceridemia (OR per 1 SD increase 
in concentration = 1.39 [95% CI, 1.19-1.62]; OR = 1.34 
[95% CI, 1.15-1.56]), low HDL-cholesterol (OR = 1.25 [95% 
CI, 1.08-1.45]; OR = 1.19 [95% CI, 1.03-1.37]), glucose im-
pairment (OR = 1.32 [95% CI, 1.13-1.54]; OR = 1.23 [95% 
CI, 1.06-1.42]), and insulin resistance (OR = 1.95 [95% CI, 
[1.50-2.58]; OR = 1.74 [95% CI, 1.33-2.28]).

After adjusting for BMI and abdominal fat, higher levels 
of Tyr and Phe were associated with a signi!cantly increased 
odds of insulin resistance (OR = 1.83 [95% CI, 1.42-2.36; 
OR = 1.42 [95% CI, 1.10-1.83]), whereas only Trp break-
down products (Kyn, Kyn/Trp, and ILA) were signi!cantly 
associated with higher odds of systemic in$ammation. Higher 
levels of ILA were associated with an increased odds of 
hypertriglyceridemia (OR = 1.26 [95% CI, 1.07-1.49]), in-
sulin resistance (OR = 1.38 [95% CI, 1.04-1.82]) and sys-
temic in$ammation (OR = 1.26 [95% CI, 1.10-1.44]), but 
with lower odds of low HDL-cholesterol (OR = 0.81 [95% 

CI, 0.69-0.95]). We further observed that higher IPA levels 
were associated with lower odds of glucose impairment 
(OR = 0.80 [95% CI, 0.69-0.92]). Findings were also similar 
after adjustment for total diet energy and protein intake (data 
not shown)

We found no signi!cant sex effects except for the re-
lation between 5-HT and hypertriglyceridemia (Psex-
interaction < 0.001), where per SD increase 5-HT 
concentration the odds of having hypertriglyceridemia de-
creased with 29% (P = 0.002) in women but increased by 
24% (P = 0.027) in men.

Table 2 shows the associations where we found a signi!-
cant mediation effect of metabolite concentrations in the rela-
tionship between VAT and cardiometabolic risk markers. Ile 
and Leu were the main metabolites with signi!cant mediation 
effects for hypertriglyceridemia, low HDL-C, glucose impair-
ment, and insulin resistance. For systemic in$ammation, Kyn 
was the only metabolite that showed a statistically signi!cant 
mediation effect, with 6.4% of the effect of VAT volumes on 
the increased risk of systemic in$ammation being mediated 
through increases in concentrations of Kyn levels.

Discussion
We found that levels of BCAA metabolites differ between 
metabolically unhealthy and metabolically healthy parti-
cipants, regardless of BMI. Moreover, in metabolically un-
healthy participants, VAT rather than SAT was implicated 
in altered metabolism of some of the BCAA and AAA me-
tabolites. We further observed that independently of abdom-
inal and general adiposity, higher circulating concentrations 
of BCAA and AAA-downstream metabolites were associated 
with a greater likelihood of the presence of cardiometabolic 
risk markers, especially of insulin resistance. Causal analysis 
revealed that several of these metabolites partly mediated 
the link between abdominal VAT and cardiometabolic risk 
markers.

Some previous studies in smaller samples have evaluated 
how metabolites differ across metabolic phenotypes in obese 
individuals, using different criteria of metabolic syndrome 
(41, 42) and metabolically health de!nition (15, 43) to classify 
healthy and unhealthy status. One study including 78 women 
showed that metabolically unhealthy obese participants had 
higher concentrations of BCAA, Tyr, and Phe compared with 
obese metabolically healthy (41). Likewise, metabolically un-
healthy overweight/obese subjects showed signi!cantly higher 
Kyn levels and Kyn/Trp ratio in comparison with healthy in-
dividuals (42). Other studies, however, found no differences in 
BCAA, Phe, and Tyr levels between metabolically healthy and 
metabolically unhealthy obese subjects (15). Furthermore, 
those metabolites were similarly associated with the odds of 
metabolically healthy and unhealthy phenotypes in obesity 
(43). Our study extended the prior work by demonstrating 
that BCAA metabolites levels are signi!cantly higher in meta-
bolically unhealthy individuals independently of adiposity 
levels in a large cohort study.

We found a signi!cantly stronger effect of VAT than 
SAT on abnormal plasma metabolite levels. This is in line 
with previous studies, performed in 40 to maximally 491 
healthy individuals, showing that VAT rather than SAT 
was associated with plasma BCAA and AAA levels (44-46). 
Moreover, it !ts with !ndings from a longitudinal study of 
diet-induced weight loss, which reported that a decreased 
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VAT mass was signi!cantly associated with a reduction in 
BCAA levels independently of weight loss after 2 years of 
follow-up (47).

Some studies have investigated abdominal fat tissue–speci!c 
differences in the up/downregulation of the metabolism of 
BCAA and AAA (23-25). They concluded that mainly in VAT, 
the expression of catabolizing enzymes for BCAA and certain 
AAA is altered. Piro et al (33) reported that pathologically 
obese people had lower concentrations of BCAA in the VAT 
tissue than healthy participants but had increased production 
of BCAA catabolites. That suggests that an impaired BCAA 
catabolism in VAT boosts higher plasma circulation of these 

metabolites. Moreover, the functionality of adipose tissue can 
also differ across metabolic health phenotypes. Genes related 
to BCAA catabolism reportedly are more downregulated 
in the abdominal adipose tissue of metabolically unhealthy 
obese compared to metabolically healthy obese individuals 
(15, 48). Thus, in the metabolically healthy phenotype, the 
abdominal adipose tissue is characterized by the mainten-
ance of mitochondrial function and absence of in#ammation, 
while in the metabolically unhealthy phenotype the adipose 
tissue is more dysfunctional (48). Our results could comple-
ment this approach in a large population-based study since 
we found that only in metabolically unhealthy participants, 

Table 1. Characteristics of the study population.

 Metabolically 
healthy  
(n = 1017) 

Metabolically 
unhealthy  
(n = 773) 

Adjusted for age and sexa Adjusted for age, sex, and 
BMIa

Mean difference  
[95% CI] 

P value  
 

Mean difference  
[95% CI] 

P value  
 

Women, n (%) 621 (58.0) 341 (44.1) −0.7 [−0.9 to −0.6] <0.001 −0.7 [−0.9 to −0.5] <0.001

Age, years (SD) 50.1 (12.4) 60.1 (13.7) 10.3 [9.0 to 11.5] <0.001 10.7 [9.3 to 12.0] <0.001

BMI, kg/m2 (SD) 24.0 (3.4) 27.5 (4.1) 3.6 [3.2 to 4.0] <0.001 3.6 [3.2 to 4.0] <0.001

VAT, L (SD) 1.0 (0.8) 2.3 (1.2) 1.0 [0.9 to 1.1] <0.001 0.4 [0.4 to 0.5] <0.001

SAT, L (SD) 2.6 (1.3) 3.7 (1.6) 1.3 [1.2 to 1.5] <0.001 0.2 [0.1 to 0.3] <0.001

Total energy intake, kcal/day (SD) 2507 (821) 2545 (859) −18.9 [−99 to 61.1] 0.642 −7.2 [−95.4 to 81] 0.873

Protein intake, g (SD) 79.5 (24) 81.4 (26) 0.9 [ −1.5 to 3.3] 0.461 0.8 [−1.8 to 3.4] 0.552

Met, Umol (SD) 11.5 (2.78) 11.5 (2.8) −0.02 [−0.3 to 0.3] 0.87 −0.04 [−0.3 to 0.3] 0.79

Val, Umol (SD) 50.7 (21.3) 54.7 (22.9) 4.6 [2.4 to 6.8] <0.001 2.9 [0.5 to 5.4] 0.02

Leu, Umol (SD) 56.9 (13.8) 62.3 (15.4) 4.3 [2.9 to 5.6] <0.001 2.5 [1.03 to 3.9] 0.001

Ile, Umol (SD) 27.1 (7.2) 30.3 (8.2) 2.6 [1.9 to 3.3] <0.001 1.7 [0.9 to 2.4] <0.001

Tyr, Umol (SD) 32.4 (8.9) 36.2 (9.8) 2.6 [1.6-3.5] <0.001 0.9 [−0.1 to 1.9] 0.09

Phe, Umol (SD) 32.5 (8.0) 34.3 (8.4) 1.1 [0.3 to 1.9] 0.01 0.1 [−0.7 to 1.0] 0.77

DA, Umol (SD) 0.02 (0.01) 0.02 (0.01) −0.0 [−0.0 to 0.0] 0.58 −0.0 [−0.0 to 0.0] 0.27

XA, Umol (SD) 0.3 (0.07) 0.3 (0.07) 0.0 [0.0 to 0.01] 0.16 0.0 [−0.01 to 0.01] 0.54

Trp, Umol (SD) 30.7 (7.5) 31.4 (7.5) 0.6 [−0.1 to 1.4] 0.10 0.2 [−0.6 to 1.0] 0.63

Kyn, Umol (SD) 1.5 (0.6) 1.7 (0.6) 0.09 [0.03 to 0.2] 0.002 0.01 [−0.05 to 0.08] 0.71

Kyn/Trp, Umol (SD) 0.04 (0.01) 0.05 (0.02) 0.0 [0.0 to 0.0] 0.01 −0.0 [−0.0 to 0.0] 0.88

KYNA, Umol (SD) 0.03 (0.01) 0.03 (0.02) 0.002  
[0.0006 to 0.003]

0.007 −0.0 [ −0.0 to 0.0] 0.82

IPA, Umol (SD) 1.4 (0.9) 1.2 (0.8) −0.2 [−0.3 to −0.1] <0.001 −0.9 [−0.2 to 0.01] 0.07

ILA, Umol (SD) 0.8 (0.3) 0.9 (0.4) 0.03 [−0.0 to 0.06] 0.08 0.0 [ −0.03 to 0.04] 0.81

I3A, Umol (SD) 0.05 (0.02) 0.05 (0.02) 0.0 [0.0 to 0.0] 0.01 0.0 [−0.0 to 0.0] 0.11

3-IAA, Umol (SD) 2.02 (1.0) 2.1 (1.2) −0.03 [−0.1 to 0.08] 0.62 −0.03 [ −0.1 to 0.09] 0.58

5-HT, Umol (SD) 0.1 (0.07) 0.1 (0.06) −0.0 [−0.01 to 0.0] 0.27 0.0 [ −0.01 to 0.01] 0.98

5-HIAA, Umol (SD) 0.02 (0.01) 0.02 (0.01) −0.0 [−0.0 to 0.0] 0.12 −0.0 [−0.0 to 0.0] 0.12

Prevalence of cardiometabolic risk factors 

Hypertension, N (%) 248 (24.4%) 656 (84.8%)     

Hypertriglyceridemia,  
N (%)

25 (2.6%) 294 (38.7%)     

Low HDL-C, N (%) 35 (3.4%) 290 (37.5%)     

Glucose impairment, N (%) 34 (3.3%) 279 (36.1%)     

Insulin resistance, N (%) 0 (0%) 103 (13.8%)     

Systemic in#ammation, N (%) 197 (20.5%) 550 (72.5%)     

Data are presented as mean (SD) or frequencies (%). Characteristics and mean metabolite concentrations were compared using an ANCOVA test.
aWhen applicable.
Abbreviations: 3-IAA, indole-3-acetic acid; 5-HIAA, 5-hydroxyindole-3-acetic acid; 5-HT, serotonin; DA, dopamine; I3A, indole-3-carboxaldehyde; IPA, 
indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/tryptophan ratio; KYNA, kynurenic acid; Leu, 
L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; Tyr, L-tyrosine; Val, L-valine; VAT, visceral 
adipose tissue; XA, xanthurenic acid. 
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larger VAT was associated with an increased level of several 
circulating metabolites.

We found that BCAA, AAA, and AAA-downstream me-
tabolites were strongly associated with higher odds of 
cardiometabolic risk markers, independently of the well-
known effects of VAT and SAT. The strongest effects were 
for insulin resistance, mainly by high concentrations of 
BCAA, Tyr, Trp, and XA metabolites. BCAA and certain 
AAA-downstream metabolites have been largely associated 
with insulin resistance in some population studies (20-22), 
suggesting that high concentrations of these metabolites are 
strong markers of an early manifestation of T2D.

To further elucidate possible mechanisms, an animal study 
showed that BCAAs lead to insulin resistance by activation 
of the mechanistic target of rapamycin (mTOR) and P70-S6 
kinase 1 (S6K-1) in exposure to a high-fat diet (49), resulting 
in insulin resistance through the phosphorylation of insulin 
receptor substrate 1 (IRS-1) (50). On the other hand, in a 
human study, it was observed that elevated concentrations 
of BCAA could induce insulin resistance in human skeletal 
muscle by the direct inhibition of muscle glucose transport 
and/or phosphorylation with a subsequent reduction in rates 
of glycogen synthesis (51). Furthermore, the accumulation of 
toxic intermediates from the BCAA oxidation and impair-
ment of mitochondria functionality may also be involved 
in the association between BCAA and insulin resistance 
(50). Moreover, few studies have investigated the mechan-
isms linking AAA with insulin resistance. One study showed 
that beta-cell function is affected by oral Tyr and its derived 
breakdown metabolites such as DA (52). Certain Trp down-
stream metabolites such as XA and KYNA have been asso-
ciated with an impaired production, release, and biological 
activity of insulin. One intermediate pathway of Trp metab-
olism is the Kyn–nicotinamide adenine dinucleotide (NAD). 
Downregulation of the NAD pathway leads to the produc-
tion of XA and KYNA and a decreased formation of NAD 
leads to inhibition of synthesis and secretion of insulin and 
the death of pancreatic beta cells (53).

In addition to insulin resistance, prior epidemiological studies 
have also evaluated a wider number of cardiometabolic risk 
markers as outcomes of impaired metabolite concentrations 
(54, 55). For instance, circulating levels of BCAA and AAA 
metabolites were associated with dyslipidemia, high blood 
pressure (54), and with a higher odds ratio of T2D, metabolic 
syndrome, and dyslipidemia after a 4-year follow-up period 
(55). This "ts our observations that higher circulating concen-
trations of BCAA, AAA, and AAA-downstream metabolites 
were not only associated with insulin resistance, but also with 
the presence of other cardiometabolic risk markers, albeit to 
a lesser extent.

We found no sex differences for the associations be-
tween metabolite concentrations and cardiometabolic risk 
markers, except for the association of 5-HT levels with the 
odds of having hypertriglyceridemia. Higher 5-HT levels 
were associated with a signi"cantly lower likelihood of 
hypertriglyceridemia in women, and a signi"cantly increased 
likelihood in men. Serotonin (5-HT) is a metabolite from the 
hydroxylation pathway of Trp catabolism associated with en-
ergy homeostasis, appetite regulation, and depressive symp-
toms. Furthermore, 5-HT also participates in the regulation 
of hepatic lipid balance (56) and induces lipolysis of stored 
triacylglycerol increasing plasma levels of free fatty acids 
and glycerol (57). To the best of our knowledge, there are no 
population-based studies showing sex differences on the as-
sociation of 5-HT levels with hypertriglyceridemia. One pos-
sible explanation, however, could lie in the different genetic 
architecture of 5-HT between men and women which may 
impact the variation on susceptibility to different phenotypes 
(58). Nonetheless, research on the molecular mechanism by 
which 5-HT associates with cardiometabolic risk markers in 
men and women is scarce. Therefore, we can not completely 
exclude that our "nding of a sex-dependent association of 
5-HT with hypertriglyceridemia, could have been spurious.

We observed that although BCAA had an abdominal fat–in-
dependent effect on the odds of some of the cardiometabolic 
risk markers, Ile and Leu partially mediate the association 

Figure 1. Association of VAT and SAT with metabolite concentrations stratified by metabolic health phenotypes. Models were adjusted for age, sex, 
BMI, batch effect, height of the ROI, VAT, and SAT simultaneously. Multiple testing was performed using the Benjamini and Hochberg method to adjust 
P values. Abbreviations: 3-IAA, indole-3-acetic acid; 5-HT, serotonin; 5-HIAA, 5-hydroxyindole-3-acetic acid; DA, dopamine; I3A, indole-3-carboxaldehyde; 
IPA, indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/tryptophan ratio; KYNA, kynurenic acid; Leu, 
L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; Tyr, L-tyrosine; Val, L-valine; VAT, visceral adipose 
tissue; XA, xanthurenic acid.
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of VAT with hypertriglyceridemia, low HDL-C, glucose im-
pairment, and insulin resistance. These results suggest that 
BCAA are associated with metabolic health in 2 ways; acting 
as mediators between the connection of high VAT accumula-
tion and cardiometabolic risk markers, and having an indi-
vidual contribution for a higher odds of cardiometabolic risk 
markers. We also observed that Kyn was the only metabolite 
that partly mediated the association of VAT with systemic in-
!ammation. Menni et al (59) analyzed the mediation effect of 
VAT in the association of BCAA with insulin resistance and 
showed that 19.4% to 46.6% of the variance of HOMA-IR 
explained by BCAA metabolites was through high VAT mass. 
Our results, however, support the hypothesis that altered 
metabolite concentrations are a consequence of a disrupted 
metabolism in adipocytes, and biologically, they could me-
diate the relationship between VAT and cardiometabolic risk 
markers.

Several limitations of this study should be considered. 
First, we based our analysis on cross-sectional data, which 
does not allow us to draw causal conclusions on whether 
high VAT volumes are the cause of disruptions in metabolite 
concentrations and whether metabolites have a causal ef-
fect on higher odds of cardiometabolic risk markers. Second, 
we identi#ed metabolites in plasma and did not have tissue-
speci#c information to draw more precise inferences on the 
effects of VAT and SAT metabolism. As a strength of our 
study, we consider the large and homogenous study popula-
tion, including men and women from a broad spectrum of 
ages. Second, the targeted metabolomic approach performed 
in our study allowed us to quantify a large number of known 
metabolites with high sensitivity and accuracy. In a sensi-
tivity analysis, we found neither in!uence of total energy 
and total protein intake on the associations of VAT and SAT 
with metabolites concentration, nor in the association of 

Figure 2. Odds ratio of cardiometabolic risk markers per increase in metabolite concentration. A) Logistic regression model adjusted for age, sex, 
smoking status, batch effect, and BMI. B) Additionally, models were adjusted for VAT, SAT, and height of the ROI. The horizontal lines crossing the 
squares and circles shapes represent the 95% CI. Abbreviations: 3-IAA, indole-3-acetic acid; 5-HT, serotonin; 5-HIAA, 5-hydroxyindole-3-acetic acid; DA, 
dopamine; I3A, indole-3-carboxaldehyde; IPA, indole-3-propionic acid; ILA, indole-3-lactic acid; Ile, L-isoleucine; Kyn, kynurenine; Kyn/Trp, kynurenine/
tryptophan ratio; KYNA, kynurenic acid; Leu, L-leucine; Met, L-methionine; Phe, L-phenylalanine; SAT, subcutaneous adipose tissue; Trp, L-tryptophan; 
Tyr, L-tyrosine; Val, L-valine; VAT, visceral adipose tissue; XA, xanthurenic acid. * P value < 0.05, ** P value < 0.01, *** P value < 0.001. Ω P value for 
sex-interaction < 0.001.
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metabolite concentration with the odds of cardiometabolic 
risk markers (data not shown).

This is the "rst large-scale study highlighting the import-
ance to include the simultaneous analysis in human plasma, 
by liquid chromatography–tandem mass spectrometry, of the 
metabolites belonging to Trp, BCAA, and AAA pathways. 
Several of these, as depicted in Fig. 1, emerged as potentially 
useful clinical markers to understand the link between the ab-
dominal VAT and metabolic health risk markers. We also used 
a validated method to accurately quantify abdominal fat from 
MRI images that enable us to compare the metabolic activ-
ities of VAT and SAT volumes as different fat compartments. 
We considered as outcomes different cardiometabolic risk 
markers (prior state of disease) that allow identifying individ-
uals before the onset of a disease. This study incites the fur-
ther integration of genetic and lifestyle information to help to 
elucidate causal effects of metabolites on cardiometabolic risk 
markers and to understand the mechanism behind changes in 
VAT metabolism impact circulating metabolites.

Conclusion
In summary, we have shown that in metabolically unhealthy 
individuals, VAT is associated with an altered BCAA and 
AAA metabolism, as re#ected in circulating concentrations. 
BCAA, AAA, and AAA-downstream metabolites are im-
portant biomarkers in metabolic health abnormalities, and 

they are also partial mediators in the connection between 
VAT and cardiometabolic risk markers. Thus, these metab-
olites may provide a better insight into the biological mech-
anisms that underlie the relationship of abdominal VAT with 
metabolic health.
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Table 2. Mediation effect of metabolites in the relation of VAT with cardiometabolic risk factors.

Cardiometabolic  
risk markers 

Metabolite Direct effect  
(95% CI) 

Indirect effect  
(95% CI) 

Proportion mediated, %  
(95% CI) 

P value 

Hypertriglyceridemia Ile 0.053  
(0.04 – 0.06)

0.004  
(0.002 – 0.01)

6.5  
(3.1 – 11.0)

<0.001

 Leu 0.054  
(0.05 – 0.06)

0.002  
(0.0008 – 0.001)

4.03  
(1.6 – 8.0)

<0.001

 ILA 0.055  
(0.05 – 0.06)

0.009  
(0.00007 – 0.002)

1.7  
(0.3 – 4.0)

0.02

Low HDL-C Ile 0.044  
(0.03 – 0.05)

0.003  
(0.001 – 0.01)

6.7  
(2.0 – 14.0)

0.002

 Leu 0.045  
(0.003 – 0.08)

0.002  
(0.0001 – 0.004)

3.7  
(0.2 – 9.0)

0.02

Systemic in#ammation Kyn 0.037  
(0.02 – 0.04)

0.002  
(0.0007 – 0.005)

6.4  
(2.0 – 11.0)

<0.001

Glucose impairment Ile 0.036  
(0.02 – 0.05)

0.003  
(0.002 – 0.01)

8.8  
(3.2 – 18.0)

<0.001

 Leu 0.037  
(0.02 – 0.05)

0.002  
(0.0003 – 0.001)

4.6  
(0.7 – 11.0)

0.02

 IPA 0.036  
(0.02 – 0.05)

0.002  
(0.0007 – 0.001)

6.3  
(1.9 – 13.0)

0.004

Insulin resistance Ile 0.009  
(0.006 – 0.013)

0.001  
(0.0005 – 0.002)

11.0  
(5.8 – 18.0)

<0.001

 Leu 0.010  
(0.008 – 0.013)

0.0007  
(0.0002 – 0.001)

6.5  
(2.5 – 12.0)

0.002

 ILA 0.011  
(0.007 – 0.015)

0.0003  
(0.00002 – 0.001)

2.5  
(0.2 – 6.0)

0.02

 Tyr 0.010  
(0.007 – 0.013)

0.0008  
(0.0003 – 0.002)

7.8  
(3.2 – 14.0)

<0.001

 Phe 0.011  
(0.007 – 0.01)

0.0003  
(0.00002 – 0.001)

2.6  
(0.4 – 6.0)

0.02

Models for mediation analysis were adjusted for age, sex, BMI, VAT, SAT, height of ROI, and batch effect.
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4. General discussion 
Thousands of years ago Hippocrates wrote, “Corpulence is not only a disease itself but 

the harbinger of others”. Nowadays, epidemiological studies have largely confirmed that 

statement, pointing to the health consequences of obesity (Di Angelantonio et al., 2016; 

GBD 2015 Obesity Collaborators, 2017), and obesity has become a focus of attention in 

several countries and health organizations 

Several factors are involved in the development of obesity, including genetic, environ-

mental, and behavioural aspects. Nevertheless, it seems that the main causes of the 

current global obesity problem lie in environmental and behavioural changes such as an 

increase in the intake of high energy-dense food, together with low physical activity 

(Haslam and James, 2005; WHO Consultation on Obesity (1999: Geneva, 2000). More-

over, the classification of obesity becomes challenging as a subset of individuals with 

the same obesity level, seem to be protected from developing obesity-related diseases 

(Wildman et al., 2008). 

This thesis showed that abdominal fat plays a central role in the health problems related 

to obesity. The excessive accumulation of fat in the abdominal cavity causes a cascade 

of physiological processes such as chronic inflammation and chronic organ failure in 

different body systems. Therefore, epidemiological studies should estimate obesity 

prevalence based on abdominal fat and not only BMI. To our knowledge, only one study 

(Wong et al., 2020) has reported on the global prevalence of central obesity based on 

WC measurements. They reported that the overall prevalence of central obesity was 

41.5%, based on data from 288 selected studies from different countries. This preva-

lence increased with age and tended to be higher in women compared to men (Wong et 

al., 2020). In 2010, Moebus et al. reported that the prevalence of central obesity (WC > 

102 cm in men or >88 cm in women) was 39.5% for the German population (Moebus et 

al., 2010), which is much higher than the BMI-based obesity prevalence reported by the 

Robert Koch Institute (23% of men and 24% of women) (Mensink et al., 2013). 

To date, longitudinal studies have reported on the associations of excess abdominal 

obesity (VAT and SAT) with mortality (Koster et al., 2015)(Rao et al., 2021) and 

incidence of CVD risk factors (Britton et al., 2013)(Lee et al., 2016)(Abraham et al., 

2015) in a relatively large sample size from different population-based studies. They 

similarly found weak or no effects of larger SAT volumes. For example, in the Jackson 
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study, only higher VAT volumes were associated with higher heart failure incidence after 

a follow-up of 10.6 years (Rao et al., 2021). Koster A et al. found that in older adults, 

VAT was a strong predictor of mortality in obese women while SAT was associated with 

lower mortality risk in normal and overweight women. Since only significant associations 

were found in women, they emphasized the importance of sex differences regarding ad-

ipose distribution and mortality (Koster et al., 2015).  

 

In this thesis, I presented the validation of MRI and metabolomic techniques to acquire 

cardiometabolic risk markers. We validated a novel deep learning pipeline (termed 

FatSegNet) to reliably segment and quantify VAT and SAT on a fast acquisition ab-

dominal DIXON MR protocol (approximately 1 minute for analyzing a subject’s whole 

volume) in the Rhineland Study. This pipeline was able to show high robustness and 

generalizability across a wide range of ages, BMI, and body shapes. Furthermore, the 

pipeline showed high reliability when compared with manually labelled images. The fast 

acquisition performance and accuracy of FastSegNet positioned it as a suitable method 

to accurately quantify VAT and SAT in large population-based cohort studies that in-

clude MRI. This pipeline is open-source, which will allow for external validation in differ-

ent populations.  

This thesis also includes the validation of a single robust targeted method using UHPLC-

ESI-MS/MS that quantified a broad coverage of metabolites from BCAA and AAA me-

tabolism in a large sample set, requiring a low amount of biomaterial sample with a fast 

extraction. This method was validated using urine and plasma biomaterial from two in-

dependent epidemiological studies across the lifespan, in the Dortmund Nutritional and 

Anthropometric Longitudinally Designed (DONALD) Study and the Rhineland Study. The 

results established typical ranges for these metabolites in the human biofluids of two 

German populations.  

Because of the important emerging role of BCAA, AAA, and AAA-breakdown metabo-

lites on cardiometabolic risk, this method is applicable for large prospective cohort stud-

ies. The acquisition of MRI and metabolomics biomarkers, allowed me to address sev-

eral questions on the complex link between abdominal adipose tissue and cardiometa-

bolic risk markers. I compared how anthropometric measurements (indirect measure-

ments of adiposity) correlated to direct MRI-abdominal fat. Furthermore, I evaluated the 
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association of several metabolites from the BCAA and AAA with VAT and SAT, and how 

those metabolites mediate the relationship between abdominal fat with cardiometabolic 

risk. Interestingly, our results confirm and expand upon previous findings by showing 

that men and women have different patterns of abdominal fat accumulation, and the im-

pact of larger VAT and SAT volumes on cardiometabolic risk factors significantly differs 

between sexes.  

The differences in fat accumulation between men and women have previously been em-

phasized as an evolutionary process, suggesting that a greater fat accumulation in 

thighs and buttocks in women was due to an adaptation for their functional reproduction 

and fertility (Power and Schulkin, 2008). However, the biological underpinning explana-

tions remain poorly understood. Evidence has shown that sex differences may be de-

termined by a complex interplay of genetic, epigenetic, and hormonal factors 

(Karastergiou et al., 2012). Furthermore, sex differences go beyond not only differences 

in anatomical fat accumulation but also in their interaction with cardiometabolic diseas-

es. Our study demonstrated that women are significantly more susceptible to the meta-

bolic harmful effects of increased amounts of VAT than men. Interestingly, we also ob-

served that in men, the associations of VAT and SAT with cardiometabolic risk markers 

were equally strong. Evidence has suggested a healthier expansion of SAT in obese 

women (hyperplasia) when compared to men (Karastergiou et al., 2012). Nonetheless, 

the proportion of hepatic FFAs delivery from VAT in women is higher than in men 

(Nielsen et al., 2004), which may confirm the more harmful effect of larger VAT volume 

in women as compared to men.  

The understanding of the mechanisms linking abdominal fat with cardiometabolic risk 

markers is essential to identifying individuals at risk before cardiometabolic diseases 

become present. In a more clinical perspective, these mechanisms will assist in finding 

and implementing targeted strategies to reduce abdominal fat. A reduction in abdominal 

fat, however, should not only be reflected as weight loss, but rather as changes in the 

functionality of adipocytes that can impact metabolic health. It has been proposed that 

diet and physical activity can improve the inflammation profile and enhance the function-

ality of adipose tissue. Specifically, certain food components have been associated with 

a healthy phenotype by impacting the metabolism in the adipose tissue (Nielsen et al., 

2004). As a whole, dietary and physical activity interventions have been proven to have 
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positive effects on fat mobilization (Gepner et al., 2018). Specific exercise dosages and 

modalities have also been involved in reducing VAT and improving metabolic health 

(Chang et al., 2021) by stimulating positive adaptations in mitochondrial function in SAT 

(Mendham et al., 2020).  

One of the main limitations of this thesis is the use of cross-sectional data, which makes 

it difficult to conclude causal associations of VAT and SAT with cardiometabolic risk. 

However, several strengths are worth mentioning. First, we included a large sample size 

with a broad age range. Second, we accurately quantified abdominal fat through MRI, 

which at a population-based scale, gives us the possibility to evaluate and compare VAT 

and SAT as two different metabolic fat compartments. We also included metabolites as 

putative biomarkers of metabolic health using a very sensitive technique to evaluate a 

broad number of cardiometabolic risk markers. 

In summary, we can conclude that it is crucial to classify individuals at cardiometabolic 

risk based on accurate measures of abdominal obesity. The observed differences in the 

association of VAT and SAT with cardiometabolic risk markers, and the remarkable sex 

differences, insight into further research. The deep phenotyping in the Rhineland study 

and the upcoming follow-up examinations will create opportunities for further research 

questions that seek to understand the complex interaction of adiposity and cardiometa-

bolic diseases. One example is identifying genetic and epigenetic components that de-

termine the differences in VAT and SAT accumulation, and understanding how they 

might be involved in the complex connection of VAT and SAT with cardiometabolic risk 

in men and women. Additionally, examining the interaction of abdominal fat with envi-

ronmental factors such as diet and physical activity could open a window to find targeted 

strategies that prevent the development of metabolic diseases by lowering VAT accumu-

lation and improving its metabolic functionality. 
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