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Abstract
by Soumajit Majumder

for the degree of

Doctor rerum naturalium

Interactive instance segmentation allows users to select and obtain accurate
pixel-level masks for objects of interest by providing inputs such as clicks,
scribbles, or bounding boxes. It has always been a problem of interest in com-
puter vision research, as it addresses quality problems faced by fully automated
segmentation methods. The segmented results are helpful for downstream
applications such as human-machine collaborative annotation, image/video
editing, and mage-based medical diagnosis. The goal is to obtain accurate
pixel-level masks for objects with minimal user input. In this dissertation, we
propose several frameworks for performing interactive instance segmentation
using user-provided clicks.

In interactive instance segmentation, users give feedback to refine segmen-
tation masks iteratively. Typically, such frameworks refine false negatives and
false positive regions via a succession of ‘positive’ and ‘negative’ clicks placed
centrally in these regions. These user-provided ‘positive’ and ‘negative’ clicks
are transformed into separate guidance maps that provide the network with
necessary cues on the whereabouts of the object of interest. Most interactive
frameworks incorporate these guidance maps at the image input layer. Our
work proposes a novel transformation of user clicks to generate content-aware
and location-aware guidance maps that leverage the hierarchical structural
information present in an image. Using our guidance maps, even the most
basic fully convolutional networks (FCNs) are able to outperform existing ap-
proaches that require state-of-the-art segmentation networks. Next, we pro-
pose an intuitive alternative for ‘positive’ and ‘negative’ refinement clicking by
letting users click on the object boundary. We also propose a new multi-stage
guidance framework for interactive segmentation. By incorporating user cues
at different stages of the network, we allow user interactions to impact the fi-
nal segmentation output more directly. We investigate and address challenges
pertaining to user-click representation, refinement strategy, and network de-
sign in this work.

Through this dissertation, we advanced the state-of-the-art in interactive
instance segmentation, proposed novel user click transformations and refine-
ment strategies, presented new insights on the task-specialized design of such
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interactive frameworks. We demonstrated the effectiveness of our frameworks
through comprehensive experimentation and by comparing them with existing
state-of-the-art on standardized public benchmarks. We conclude this disser-
tation by presenting open challenges and outlining future research directions
for interactive instance segmentation research.

Keywords: interactive segmentation, image segmentation, instance segmen-
tation.
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Zusammenfassung
von Soumajit Majumder

zur Erlangung des Doktorgrades

Doctor rerum naturalium

Die interaktive Instanzsegmentierung ermöglicht es Benutzern, genaue Masken
auf Pixelebene für Objekte von Interesse auszuwählen und zu erhalten, indem
Eingaben wie Klicks, Umrisse oder Objekt-Boxen bereitgestellt werden. Es
war schon immer ein interessantes Problem in der Computer-Vision-Forschung,
da es Qualitätsprobleme adressiert, die bei vollautomatischen Segmentierungs-
methoden auftreten. Die segmentierten Ergebnisse sind hilfreich für nachge-
lagerte Anwendungen wie kollaborative Annotation zwischen Mensch und Mas-
chine, Bild-/Videobearbeitung und bildbasierte medizinische Diagnose. Das
Ziel ist es, genaue Masken auf Pixelebene für Objekte mit minimaler Be-
nutzereingabe zu erhalten. In dieser Dissertation schlagen wir mehrere An-
sätze für die Durchführung interaktiver Instanzsegmentierung mit benutzerde-
finierten Klicks vor.

Bei der interaktiven Instanzsegmentierung geben die Benutzer Feedback,
um die Segmentierungsmasken iterativ zu verfeinern. Typischerweise verfein-
ern solche Ansätze falsch-negative und falsch-positive Regionen durch eine
Folge von ‘positiven’ und ‘negativen’ Klicks, die zentral in diesen Regionen
platziert werden. Diese vom Benutzer bereitgestellten ‘positiven’ und ‘nega-
tiven’ Klicks werden in separate Orientierungskarten umgewandelt, die dem
Netzwerk die notwendigen Hinweise auf den Verbleib des zu segmentieren-
den Objekts geben. Die meisten interaktiven Ansätze integrieren diese Orien-
tierungskarten in der Bildeingabe-Schicht. Diese Arbeit schlägt eine neuartige
Transformation von Benutzerklicks vor, um inhalts- und ortsbezogene Orien-
tierungskarten zu erzeugen, die die hierarchischen Strukturinformationen eines
Bildes nutzen. Mit unseren Orientierungskarten sind selbst die einfachsten Fal-
tungsnetze in der Lage, bestehende Ansätze zu übertreffen, die hochmoderne
Segmentierungsnetzwerke erfordern. Als nächstes schlagen wir eine intuitive
Alternative für ‘positive’ und ‘negative’ Verfeinerungsklicks vor, indem wir
den Benutzer auf die Objektgrenze klicken lassen. Außerdem schlagen wir ein
neues mehrstufiges Anleitungskonzept für die interaktive Segmentierung vor.
Durch die Einbeziehung von Benutzerhinweisen in verschiedenen Phasen des
Netzwerks ermöglichen wir, dass Benutzerinteraktionen die endgültige Seg-
mentierungsausgabe direkter beeinflussen. In dieser Arbeit untersuchen und
adressieren wir Herausforderungen, die die Benutzer-Klick-Darstellung, die
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Verfeinerungsstrategie und das Netzwerkdesign betreffen.

In dieser Arbeit haben wir den Stand der Technik bei der interaktiven In-
stanzsegmentierung weiterentwickelt, neuartige Benutzer-Klick-Transformationen
und Verfeinerungsstrategien vorgeschlagen und neue Erkenntnisse über das
aufgabenspezifische Design solcher interaktiven Ansätze präsentiert. Wir demon-
strierten die Effektivität unserer Ansätze durch umfassende Experimente und
durch Vergleiche mit dem bestehenden Stand der Technik auf standardisierten
öffentlichen Benchmarks. Wir schließen diese Dissertation ab, indem wir of-
fene Herausforderungen präsentieren und zukünftige Forschungsrichtungen für
die interaktive Instanzsegmentierungsforschung skizzieren.

Schlagwörter: interaktive Segmentierung, Bildsegmentierung, Instanzseg-
mentierung.
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1.1 Image segmentation drives several crucial technologies. (a) Image
from Cityscapes dataset (Cordts et al., 2016). In autonomous driv-
ing, it is crucial to locate and outline all pedestrians, cars, traffic signs,
and other static and dynamic objects. With recent advances in image
segmentation, self-driving cars equipped with state-of-the-art com-
puter vision models can localize multiple objects and safely navigate
challenging urban pathways. (b) Commercial software such as Pho-
toshop also benefit from image segmentation methods. With newly
launched features such as the object selection tool, Photoshop CC
users can obtain a precise selection of objects with few clicks instead
of tediously tracing pixels.1(c) Image from DRIVE dataset (Niemei-
jer et al., 2004). Retinal vessel segmentation is critical for medical
image analysis as it helps early diagnosis of ophthalmic disorders.
Automated segmentation of such vessels allows the development of
computer-aided diagnosis systems. . . . . . . . . . . . . . . . . . . . 2
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the same label. In instance segmentation, similar objects are assigned
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mentation, the user specifies the target object (shown using a green
circle), and the corresponding segmentation mask is generated. . . . 3
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an object of interest and user clicks, the positive and negative clicks
(marked in green and red respectively) are separately transformed
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(2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 In natural imagery, objects can manifest themselves in different forms
and sizes. Object sizes in public benchmarks, such as Pascal VOC
2012 or MS COCO, can be divided into three different categories
- (a) large, (b) medium, and (c) small objects (Noh et al., 2015).
When it comes to segmentation models, small objects are the most
challenging to segment as they are more likely to be occluded and
are even challenging for the naked human eye (as seen in (c)). The
segmentation mask for the objects of interest are overlaid in green. . 6
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1.5 Segmentation masks generated from the networks are not always per-
fect. Given an initial positive click from the user (shown in green) on
the object of interest, the generated segmentation masks (overlaid)
shows false positive regions where the background pixels were marked
as foreground. Here, the false positive error in the left image is sig-
nificantly larger compared to the other images. We provide a rough
visual estimate using the red bounding boxes. In order to refine the
mask and remove the false positives, most interactive frameworks re-
quire the user to place a click in the center of the largest erroneous
region (skipped for the right for ease of visualization). The corre-
sponding refinement click is shown using a red circle. We note that
these refinement clicks do not account for the spatial extent of the
error which can vary to a large extent across different instances. . . . 8

2.1 Assume a user interested in segmenting the white car. In popular
interactive frameworks, a user can provide cues regarding the where-
abouts of the target object (in this example, the white car) to the seg-
mentation method via inputs such as (a) boundary clicks (Le et al.,
2018), (b) extreme clicks placed on the top-right-bottom-left extremes
of the object (Maninis et al., 2018), (c) scribbles (Rother et al., 2004;
Li et al., 2004) inside and outside the object of interest, (d) region of
interest (Kass et al., 1988; Mortensen and Barrett, 1995), (e) bound-
ing boxes (Rother et al., 2004; Xu et al., 2017b; Agustsson et al., 2019)
enclosing the object, and (e) clicks (Xu et al., 2016; Liew et al., 2017).
User interactions marking background pixels are shown in red; green
markings are used to indicate object enclosures or user interactions
marking foreground pixels. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Intelligent Scissors. (a) At the onset, the user places a click on the de-
sired object boundary (marked in red). (b-c) The user then proceeds
to provide the next boundary click; the green cross-hair shows the live
marker location, the yellow line shows the live contour segment. (c)
Following the second click, a “set” or fixed segment boundary is gen-
erated (marked in blue) (d-e) The user continues tracing the object
boundary placing additional boundary clicks till (f) the final object
boundary is obtained. Image from Mortensen and Barrett (1998). . . 16

2.3 GrabCut. (a) The user marks the foreground with a bounding box.
(b) Following the initial segmentation (c), user provides additional
edits by marking the foreground and background with white and red
brush respectively. (d) The process is repeated till the desired result
is obtained. Image from Rother et al. (2004). . . . . . . . . . . . . . 18
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2.4 Graph Cuts with shape prior. (a) Shape templates (b) The user in-
tends to segment the guitar occluded by the bicycle. (c) The user
provides initial scribbles to mark the target of interest. (d) Segmen-
tation result obtained using the template in (a) as shape prior (d)
Segmentation result obtained without using a shape prior. Image
from Vu and Manjunath (2008). . . . . . . . . . . . . . . . . . . . . . 19

2.5 Lazy Snapping for digital image composition. (a) Input image (b) The
user marks the object and background with yellow and blue scribbles
respectively. (c) Based on the initial result, the user can additionally
zoom in and adjust the current boundary by interacting with the
polygon vertices in the zoomed-in view. (d) Once a satisfactory result
is obtained, the object mask can be used for downstream tasks such
as digital image composition. Image from Li et al. (2004). . . . . . . 20

2.6 Framework of RIS-Net (Liew et al., 2017). In order for refinement
clicks to significantly improve the generated segmentation mask, RIS-
Net proposed a two-branch network consisting of a global branch for
the entire image segmentation and a local branch for local regional
refinement. The global branch is similar to the framework of Xu
et al. (2016); the input image with the guidance maps are fed for-
ward through a FCN to obtain a coarse segmentation. In the local
branch, feature descriptors for the click pair are extracted via the ROI
pooling layer which are then enriched with global feature descriptors.
Finally, both global and local predictions are fused to output the final
segmentation mask. Image from Liew et al. (2017). . . . . . . . . . 23

2.7 The framework of Hu et al. (2019) utilizes two separate networks but
with identical architecture to extract features from the image and the
guidance maps. The network consists of the first 10 convolutional lay-
ers of the VGG-16 (Simonyan and Zisserman, 2014) network. Features
from both the image and the interaction streams are concatenated; a
fusion network then is used to predict the segmentation mask from
the concatenated feature maps. Image from Hu et al. (2019). . . . . 25

2.8 Consider the scenario where the user places a click on the bug on
the flower. It is unclear from the click itself whether the user desires
the segmentation mask for the bug or for the flower. To circumvent
this, the segmentation network in Liew et al. (2019) outputs a set of
candidate segmentation masks of various scales and their correspond-
ing objectness scores; NMS further prunes the set of candidates and
presents the top K predictions to the user. Based on the user inten-
tion, the user can either opt for the mask corresponding to the bug,
or the flower with an additional click. Image from Liew et al. (2019). 26
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2.9 The framework of Agustsson et al. (2019) starts with an image in-
put to the Mask R-CNN model (He et al., 2017). Next, RoI features
for the objects are obtained directly via cropping by leveraging the
user-provided extreme points. Additional corrective scribbles are con-
catenated with the RoI features and then processed by the segmenta-
tion head. Individual region predictions are projected into the image
canvas.Image from Agustsson et al. (2019). . . . . . . . . . . . . . . . 28

2.10 In Acuna et al. (2018), the image is first processed by the CNN to
predict the first vertex of the polygon. This initial vertex along with
the generated image features are fed to a RNN which outputs polygon
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image-sized output. Image from Acuna et al. (2018). . . . . . . . . . 29
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3.2 The VGG-16 (Simonyan and Zisserman, 2014) network consists of
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3.4 The framework of FCN (Long et al., 2015) transforms the fully con-
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3.5 Atrous convolution (Holschneider et al., 1990) introduces an addi-
tional parameter “rate” to the convolution operation. This defines
the spacing between the weights in the convolution kernels. Atrous
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Chapter 1

Introduction

1.1 Motivation

Image segmentation. Understanding and reasoning about structures in an
image is a key area of computer vision research. Image segmentation is the first
step in that direction (Fu and Mui, 1981). In computer vision research, image
segmentation refers to the task of partitioning an image, i.e. grouping image
pixels, into regions that are simultaneously compact and expressive (Ballard and
Brown, 1982). It is one of the most fundamental and challenging problems in
computer vision. Image segmentation enables key technologies like autonomous
driving (Cordts et al., 2016), medical image analysis (Rosenfeld, 1976; Stalling
and Hege, 1996; Wang et al., 2018b), image search engines (Wan et al., 2014),
smart phone photography (Chen et al., 2018a). It still remains an active area
of research (Hao et al., 2020; Hafiz and Bhat, 2020), with literature dating back
to over half a century (Doyle, 1962; Wacker and Landgrebe, 1970). Early image
segmentation algorithms include threshold selection techniques (Doyle, 1962;
Prewitt and Mendelsohn, 1966; Weszka, 1978), clustering (Wacker and Landgrebe,
1970), edge detection (Davis, 1975), region merging techniques (Rosenfeld, 1976;
Fu and Mui, 1981; Jain and Dubes, 1988) among others. Image segmentation is
a critical component in an image processing pipeline; errors in segmentation will
negatively impact feature extraction, classification, and interpretation (Jain and
Dubes, 1988). Early segmentation algorithms assigned class labels to pixel based on
low-level features. The lack of semantic understanding meant that masks generated
were often erroneous and undesirable. Interactive instance segmentation algorithms
became popular as a means to alleviate the imperfections inherent to these early
segmentation methods (Kass et al., 1988). Interactive instance segmentation allows
users to select objects of interest down to the pixel level by providing inputs such
as clicks (Boykov and Jolly, 2001), scribbles (Li et al., 2004; Bai and Wu, 2014), or
bounding boxes (Rother et al., 2004; Maninis et al., 2018).

Interactive image segmentation. GrabCut (Rother et al., 2004) is a pioneering
example of interactive segmentation. It segments object instances initialized
with a user-marked bounding box by iteratively updating a color-based Gaussian
mixture model (GMMs). GrabCut achieves good performance when the object
and background color distributions are well-separable. However, such methods
try to estimate the object and background distributions from low-level features
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(b) (c)(a)

Figure 1.1: Image segmentation drives several crucial technologies. (a) Image from
Cityscapes dataset (Cordts et al., 2016). In autonomous driving, it is crucial to locate
and outline all pedestrians, cars, traffic signs, and other static and dynamic objects.
With recent advances in image segmentation, self-driving cars equipped with state-
of-the-art computer vision models can localize multiple objects and safely navigate
challenging urban pathways. (b) Commercial software such as Photoshop also benefit
from image segmentation methods. With newly launched features such as the object
selection tool, Photoshop CC users can obtain a precise selection of objects with few
clicks instead of tediously tracing pixels.1(c) Image from DRIVE dataset (Niemeijer
et al., 2004). Retinal vessel segmentation is critical for medical image analysis as
it helps early diagnosis of ophthalmic disorders. Automated segmentation of such
vessels allows the development of computer-aided diagnosis systems.

such as color (Rother et al., 2004) and texture. Such low-level features are
unfortunately ineffective in several instances, e.g. in images with similar foreground
and background appearances (Kass et al., 1988; Mortensen and Barrett, 1995;
Boykov and Jolly, 2001; Rother et al., 2004), intricate textures (Mortensen and
Barrett, 1995), and poor illumination. Often, this results in low-level feature based
incoherent segmentation of an object. In order to obtain sufficiently accurate
segmentation masks, all these methods require substantially more user interac-
tions thereby increasing the burden on the user (Xu et al., 2016). Despite their
shortcomings, early interactive instance segmentation approaches remained pop-
ular with some variants becoming part of commercially successful software packages.

Deep learning and image segmentation. Riding on the advances in CNN
architectures (Simonyan and Zisserman, 2014; He et al., 2016) and transfer
learning (Zeiler and Fergus, 2014), computer vision systems improved significantly,
especially in tasks like image segmentation, e.g. semantic segmentation (Long et al.,
2015; Liang-Chieh et al., 2015; Chen et al., 2018b; Zhao et al., 2017; Chen et al.,
2018c), instance segmentation (He et al., 2017; Wang et al., 2019), and panoptic

1https://www.theverge.com/2019/11/4/20943796/adobe-photoshop-object-selection-tool-
cloud-psd-update
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(a) Input Image (b) Semantic Segmentation (c) Instance Segmentation (d) Interactive Segmentation

Figure 1.2: We can broadly divide image segmentation into three types. In seman-
tic segmentation, all objects of the same class are marked using the same label. In
instance segmentation, similar objects are assigned their own unique labels along-
side the class label. In interactive segmentation, the user specifies the target object
(shown using a green circle), and the corresponding segmentation mask is generated.

segmentation (Xiong et al., 2019). Fully convolutional networks (FCNs) (Long
et al., 2015) is a notable example; it laid the foundation for successful semantic
segmentation models which followed. Availability of high quality large-scale datasets
laid the foundation for these successful segmentation models (Castrejon et al., 2017;
Acuna et al., 2018; Ling et al., 2019). However, instance segmentation is often
considered as one of the most expensive and difficult to annotate (Benenson et al.,
2019). Manual labelling of such data is highly laborious. Annotating single objects
can take up to 40 seconds per object (Castrejon et al., 2017; Acuna et al., 2018)
and a full image can take as long as 1.5 hours for Cityscapes (Cordts et al., 2016).

The need for large scale annotations. Over time, segmentation models
became larger and their performance more dependent on the volume of training
data (Chen et al., 2018c). There arose a need in the computer vision community
to annotate large-scale datasets to sustain the progress (Castrejon et al., 2017).
Manual annotation on the other hand continued to remain expensive. In order to
reduce the dependency on detailed annotations such as per-pixel masks, several
segmentation methods also considered training in a weakly supervised setting (Dai
et al., 2015; Jain and Grauman, 2016; Khoreva et al., 2017). These approaches
aim to learn segmentation models from weak annotations such as image labels or
bounding boxes (Dai et al., 2015; Khoreva et al., 2017). Other approaches relied
on scribbles (Lin et al., 2016) or single point (Bearman et al., 2016) on each of
the objects. Although these approaches demonstrate promising performance, they
are not yet competitive with their fully supervised counterparts leveraging detailed
annotations. Thus, the need for large-scale datasets with high quality segmentation
masks persisted.

Human-machine collaborative annotation. To sustain the progress of vision
models, one now could leverage the advances in human-in-the-loop interactive



4 Chapter 1. Introduction

Figure 1.3: Interactive framework of Xu et al. (2016). Given an input image
with an object of interest and user clicks, the positive and negative clicks (marked
in green and red respectively) are separately transformed into guidance maps and
concatenated (denoted as ⊕) with the RGB channels to compose an input pair to
the FCN models. Desired output is the ground truth mask of the target instance.
Image from Xu et al. (2016).

instance segmentation frameworks for the annotation of large scale datasets (Be-
nenson et al., 2019; Andriluka et al., 2018; Maninis et al., 2018; Ling et al., 2019;
Castrejon et al., 2017; Acuna et al., 2018). Indeed, deep interactive frameworks
helped speed up annotation by a significant factor (Acuna et al., 2018). By working
with high-level representations encoded in FCNs, the number of user interactions
required to generate quality segments greatly reduced (Xu et al., 2016). Trained on
existing segmentation datasets, such as Pascal VOC 2012 (Everingham et al., 2010),
deep interactive frameworks showed great promise in generalizing to unseen classes
during training, e.g. annotating instances from non-overlapping object classes from
the MS COCO (Lin et al., 2014) dataset.

Deep learning frameworks for interactive instance segmentation. In stan-
dard automated deep instance segmentation (Vincent and Soille, 1991; Dai et al.,
2016; He et al., 2017), the RGB image is given as input and segmentation masks for
each object instance are predicted. If the resulting masks are unsatisfactory, they
need to be manually rectified. Post-segmentation, the model has no role to play.
Instead, in deep interactive instance segmentation, users can repeatedly provide
cues to the segmentation network until a satisfactory mask is obtained. In the
initial work of (Xu et al., 2016), user-provided clicks are converted to Euclidean
distance transform maps which are concatenated with the color channels and fed as
input to a FCN (Long et al., 2015) (shown in Fig. 1.3). The input layer of the FCN
was modified to accommodate the “positive” and “negative” user clicks. Clicks are
then added iteratively based on the errors of the previous prediction. On arrival of
each new click, the Euclidean distance transform maps are updated and inference
is performed. The process is repeated until a satisfactory result is obtained.
This framework of (Xu et al., 2016) was widely adopted across deep interactive
frameworks (Liew et al., 2017; Mahadevan et al., 2018; Li et al., 2018; Jang and Kim,
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2019; Sofiiuk et al., 2020; Lin et al., 2020). Other widely adopted extensions include
the use of newer FCN architectures (Mahadevan et al., 2018; Benard and Gygli,
2017) such as Deeplabv2 (Chen et al., 2018b) and Deeplabv3+ (Chen et al., 2018c)
as the segmentation backbone, Gaussian user-click transformation (Mahadevan
et al., 2018), and iterative training procedures (Mahadevan et al., 2018; Liew et al.,
2017).

Interactive frameworks in current day. To date, interactive instance segmen-
tation remains an active area of research (Lin et al., 2020). Other than addressing
the frailties of segmentation algorithms and models, interactive frameworks form
the key technology for a variety of downstream applications which desire high
quality segment masks. These include image and video editing for digital image
composition (Mortensen and Barrett, 1995; Rother et al., 2004; Li et al., 2004;
Benard and Gygli, 2017; Li et al., 2004), image-based medical diagnosis (Wang
et al., 2018a,b), autonomous driving (Cordts et al., 2016), and human-machine
collaborative annotation (Andriluka et al., 2018; Benenson et al., 2019; Castrejon
et al., 2017; Acuna et al., 2018; Ling et al., 2019).

Our research goal. The holy grail of interactive instance segmentation is to achieve
one-click segmentation (Li et al., 2018). The user places one click on the instance
of interest, and the system returns a pixel-accurate segmentation mask. Despite
significant progress, advanced deep learning-based frameworks (Sofiiuk et al., 2020;
Lin et al., 2020) still require multiple clicks. In this thesis, we focus on click-based
interactive instance segmentation. We question design choices made in existing
interactive frameworks and propose efficient interactive frameworks. We advance
the current state-of-the-art approaches in interactive instance segmentation through
our work as we strive towards the unified goal of one-click segmentation.

1.2 Challenges

Despite significant progress over the recent years, interactive image segmen-
tation still remains a challenging problem in computer vision. It inherits both
the challenges of image segmentation and unconstrained human-machine interaction.

Objects at multiple scales. Across the main benchmarks, such as Pascal VOC
2012 (Everingham et al., 2010), and MS COCO (Lin et al., 2014), objects can appear
at multiple scales ranging from small (less than 32 × 32 pixels) to large (bigger
than 96× 96) (Fig. 1.4). Small objects, in particular, are difficult for segmentation
networks to tackle; they are often ignored and classified as background pixels (Noh
et al., 2015). This is an outcome of the repeated combination of down-sampling
operations (max-pooling, convolution with strides) performed at consecutive layers
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(a) Large objects 
(> 96 x 96 pixels)

(b) Medium objects 
(> 32 x 32 pixels and < 96 x 96 pixels)

(c) Small objects 
(< 32 x 32 pixels)

Figure 1.4: In natural imagery, objects can manifest themselves in different forms
and sizes. Object sizes in public benchmarks, such as Pascal VOC 2012 or MS
COCO, can be divided into three different categories - (a) large, (b) medium, and
(c) small objects (Noh et al., 2015). When it comes to segmentation models, small
objects are the most challenging to segment as they are more likely to be occluded
and are even challenging for the naked human eye (as seen in (c)). The segmentation
mask for the objects of interest are overlaid in green.

of the deep CNN backbones that constitute the segmentation models. The encoded
feature maps have significantly lower spatial resolution and is often too coarse, e.g.
a stride of 32 in FCN-32s (Long et al., 2015) and 8 in Deeplabv2 (Chen et al., 2018b).

To sidestep this limitation, segmentation networks often use skip architec-
tures (Long et al., 2015), and atrous convolutions (Liang-Chieh et al., 2015; Chen
et al., 2018b,c). The detailed structures in small objects are nonetheless lost. On
the other hand, specifying the scale of an object have been shown to improve
segmentation performance (Papandreou et al., 2015). Thus, we require approaches
that can convey, either implicitly or explicitly, the scale of an object from the user
interactions to the segmentation network. Small objects are particularly challenging
for interactive frameworks as the user has to identify the small objects as well as
refine the segmentation approaches.

Modeling user interaction. Across most interactive methods, the first click is
intended for selecting the object of interest. Subsequent clicks (Xu et al., 2016;
Mahadevan et al., 2018; Benard and Gygli, 2017) are then placed to refine parts of
the object or correct erroneous predictions. Intuitively, the positive clicks should
add portions of missing foreground, while negative clicks remove falsely segmented
parts of the background. Users place clicks centrally in regions that directly
corresponds with false negatives and false positives. While such succession of clicks
on the false positive and false negative regions have been shown to be effective,
there are two inherent limitations.
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First, current refinement clicks do not specify the spatial extent of the erroneous
region. Also, while positive clicks intended to remove false negative regions are
always placed within the object, negative refinement clicks can occur anywhere
within the image. Such succession of clicks, therefore, does not tighten the prior on
the location of the object. As more refinement clicks are added, the segmentation
network is unable to meaningfully leverage them. Not surprisingly, a plateauing
occurs, as the average per instance mIoU tends to stagnate beyond 5-6 clicks.
Therefore, we require refinement clicks with more utility which alongside refinement,
also places a stronger cue on where the object is.

Second, depending on the order of arrival, different user clicks have distinct
purposes. The first click is almost exclusively intended for selecting the object of
interest. Ensuing clicks are used for refinement. This scheme of interaction, i.e.
localization followed by refinement, is highly intuitive and well supported by user
studies (Benenson et al., 2019). Yet, when looking at the current state-of-the-art
frameworks (Xu et al., 2016; Jang and Kim, 2019; Sofiiuk et al., 2020), we find
no distinction during learning between the tasks of localization versus refinement.
Clicks are sampled as a group based on the ground truth masks according to
some predetermined scheme (Xu et al., 2016). They are also treated equally
when generating guidance maps (Benard and Gygli, 2017; Mahadevan et al., 2018;
Majumder and Yao, 2019a; Xu et al., 2016) without any notion of intended purpose.
Unintentionally, this can lead to sub-optimal leveraging of user clues. Therefore, we
require approaches which can better leverage the user cues for their intended purpose.

User click representation. Conventionally, cross existing frameworks (Xu et al.,
2016; Liew et al., 2017; Mahadevan et al., 2018; Jang and Kim, 2019; Lin et al.,
2020), the input consists of the RGB image as well as ‘guidance’ maps based
on user-provided supervision. This supervision can come in the form of clicks,
scribbles (Agustsson et al., 2019) or bounding boxes (Xu et al., 2017b; Maninis
et al., 2018; Agustsson et al., 2019). In a click-based interaction setting, users give
‘positive’ clicks on the object of interest and ‘negative’ clicks on the background or
other objects in the scene. The guidance map helps the network to focus on the
object instance to segment. In the iterative setting, it helps to correct errors from
previous segmentations (Benard and Gygli, 2017; Liew et al., 2017; Mahadevan
et al., 2018; Xu et al., 2016).

Following the user-provided clicks, guidance maps are generated via fixed rules
and are not visible to the end user. Only the image, intermediate, and end segmen-
tation results are visible to the interacting user. Representation of user interactions
to date remains an open question in interactive segmentation research. Current
methods rely on distance-based primitives, e.g. Euclidean distance maps (Xu et al.,
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Figure 1.5: Segmentation masks generated from the networks are not always per-
fect. Given an initial positive click from the user (shown in green) on the object of
interest, the generated segmentation masks (overlaid) shows false positive regions
where the background pixels were marked as foreground. Here, the false positive
error in the left image is significantly larger compared to the other images. We pro-
vide a rough visual estimate using the red bounding boxes. In order to refine the
mask and remove the false positives, most interactive frameworks require the user
to place a click in the center of the largest erroneous region (skipped for the right
for ease of visualization). The corresponding refinement click is shown using a red
circle. We note that these refinement clicks do not account for the spatial extent of
the error which can vary to a large extent across different instances.

2016), Gaussians (Mahadevan et al., 2018; Benard and Gygli, 2017), which disregard
the basic structures present in a scene, e.g. color and texture consistency. These user
click representations lack basic image content awareness. Thus, we need user click
encodings which are able to leverage the low-level and high-level structures present
in the image.

1.3 Contribution

While the last few years saw a pronounced increase in the size of models, the
demand for data to date remains a bottleneck (Benenson et al., 2019). The cost
of manual annotation is very high; this drives the need for methodologies enabling
faster and efficient scale-up of human annotations. Consequently, research activity
in interactive segmentation has seen a significant uptick.

In this dissertation, we addressed different facets of the deep interactive segmen-
tation problem pertaining to framerwork design. Our proposed interactive frame-
works presented in this dissertation have been presented in conferences and published
in proceedings (Majumder and Yao, 2019a,b; Majumder et al., 2020b,a).

• Soumajit Majumder, and Angela Yao. “Content-aware multi-level guidance
for interactive instance segmentation.” CVPR, 2019.



1.3. Contribution 9

• Soumajit Majumder, and Angela Yao. “Localized Interactive Instance Seg-
mentation.” GCPR, 2019.

• Soumajit Majumder, Abhinav Rai, Anshul Khurana, and Angela Yao. “Two-
in-One Refinement for Interactive Segmentation.” BMVC, 2020.

• Soumajit Majumder, Anshul Khurana, Abhinav Rai, and Angela Yao.
“Multi-Stage Fusion for One-Click Segmentation.” GCPR, 2020.

Efficient encoding of user interaction. In popular interactive image segmen-
tation, user feedback is typically given as pixel clicks (Hu et al., 2019; Li et al.,
2018; Liew et al., 2017; Mahadevan et al., 2018; Maninis et al., 2018; Xu et al.,
2016). To leverage these user inputs, clicks are transformed into guidance maps via
simplistic primitives such as Euclidean (Hu et al., 2019; Li et al., 2018; Xu et al.,
2016) or Gaussian distance maps (Benard and Gygli, 2017; Mahadevan et al., 2018;
Maninis et al., 2018). These transformations disregard the basic image consistencies
present in the scene, such as colour, local contours, and textures. This of course
also precludes even more sophisticated structures such as object hypotheses, all of
which can be determined in an unsupervised way.

Another drawback of these structure-agnostic Euclidean and Guidance-based
guidance maps is that they do not account for the scale of the object during
interaction. These distance maps are primarily used for localizing the user clicks.
However, object scale has a direct impact on the network performance when it
comes to image segmentation (Noh et al., 2015).

Our motivation is to maximize the information that can be harnessed from
user-provided clicks and generate more meaningful user click transformations.
As our first contribution, we propose an effective transformation of user clicks
incorporating low-level cues such as color and texture, based on superpixels (Yao
et al., 2015; Achanta et al., 2012), to more high-level information such as class-
independent object hypotheses (Pont-Tuset et al., 2017; Maninis et al., 2016). For
our second contribution, we proposed an algorithm which enables us to estimate
the object scale based on the user-provided clicks and refines these guidance maps
accordingly. Our work is the first work to investigate the impact of guidance map
generation and the incorporation for the task of interactive instance segmentation.

Localized interaction. Interactive segmentation is a localized task; a user
interested in recovering or cutting an object instance from the scene would focus
more on delineating the object of interest from it’s nearby background pixels.
However, in current interactive instance segmentation works, the user is granted
a free hand when providing clicks to segment an object; clicks are allowed on
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background pixels and other object instances far apart from the target object (Xu
et al., 2016; Liew et al., 2017). Directing user clicks to specify the location may
seem like an obvious way for interaction but few works on interactive segmentation
have done so to date. Instead, existing frameworks impose hard constraints by
directly cropping out the bounding boxes derived from user-given inputs (Maninis
et al., 2018) or class-dependent object detections (Xu et al., 2017b).

Our interest is to direct and leverage user clicks to weakly constrain the
area of interest for interactive segmentation. Limiting the spatial extent offers
advantages for both for the network and the user, i.e. it tells the network which
area to focus on for learning and also gives some indication of object scale; it also
directs the user clicks to ambiguous locations which will most benefit from guidance.

As our contribution, we propose a new transformation scheme for the user-
provided clicks. This provides a weak localization prior on the object of interest
all the while being consistent with low-level image structures such as edges,
textures, etc. Additionally, we generate this prior in a class-agnostic fashion.
Unlike (Xu et al., 2017b), our proposed approach does not rely on class-specific
bounding box detections. As more and more clicks arrive, this proposed transfor-
mation gradually refines the localization prior.

Two-in-one refinement. Across most interactive frameworks (Xu et al., 2016;
Mahadevan et al., 2018; Liew et al., 2017; Hu et al., 2019; Majumder and Yao,
2019a; Liew et al., 2017; Jang and Kim, 2019) including our preceding works, the
first positive click is reserved for selecting the object of interest. Refinement of the
generated mask is done via a successive placement of positive and negative clicks.
Positive clicks add portions of missing foreground, while negative clicks remove
falsely segmented parts of the background (Xu et al., 2016; Liew et al., 2019; Li
et al., 2018; Liew et al., 2017).

While such clicking strategy for refinement have been proven to be successful,
to distinguish between the two forms of refinement, interactive frameworks require
separate input encodings, so there are always at least two guidance maps (Xu et al.,
2016; Liew et al., 2019; Li et al., 2018; Liew et al., 2017). More importantly, users
are expected to identify the largest erroneous region and then place clicks centrally
in those false negative and false positive regions. Boundary clicks, on the other
hand, are more intuitive and easier to mark. In addition, boundary clicks have
more utility, as they provide a much stronger cue on the object. As more and more
boundary refinement clicks become available, the instance gets explicitly encircled
with refinement clicks.
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As our first contribution, instead of conventional positive and negative clicks to
fix false negatives and false positives, we ask users to click on object boundaries
in the vicinity of errors. Additionally, we observe that current frameworks treat
all positive clicks indiscriminately. As our next contribution, we propose task-
specialized framework where dedicated networks are applied to select and refine the
object. As our final contribution, we propose a boundary-aware loss function which
in unison with our boundary clicks provide a strong cue for interactive segmentation.

Multi-stage fusion of user interaction. The holy grail of interactive in-
stance segmentation is to achieve one-click segmentation. The user places one
click on the object of interest, and the system returns an accurate mask. This
is particularly desired and crucial for downstream applications such as casual
photography (Chen et al., 2018a). Such use-cases has a strong focus on maximizing
the mean intersection over union (mIoU) with a single click. Despite significant
progress, advanced deep learning-based frameworks still require multiple clicks. We
observe that existing approaches particularly fare poorly with only one or two clicks.

To make the most of the first (few) click(s), we hypothesize that user cues’
guidance should be fused into the network at multiple locations rather than via
early fusion. Similar to gradients vanishing as they reach the initial layers during
back-propagation, user-input cues also diminish as it progresses through the network
during a forward pass. This effect is further accentuated by the many layers of
the deep CNNs (Hu et al., 2019). A late fusion would allow the user interaction
to have a direct and more pronounced effect on the final segmentation mask. The
attempts in previous works (Hu et al., 2019; Rakelly et al., 2018) to have late-fusion
of user interaction resulted in extremely parameter heavy network designs with
instances requiring additional 100 million parameters (Rakelly et al., 2018). As our
contribution, we propose an light-weight and easier-to-train interactive framework
to perform fusion of user interactions at multiple stages of the network.

Summary of our contributions. The challenge of acquiring clicks is a recurring
theme across all click-based segmentation methods. Intuitively, lower clicks are de-
sirable for several downstream applications such as mobile photography, commercial
editing software, and annotation frameworks. As such, interactive frameworks are
benchmarked using the number of clicks required to reach the desired segmentation
quality. In this dissertation, we propose multiple approaches for click-efficient inter-
active segmentation. With our proposed user-click encodings, refinement schemes,
and newer network designs, we are able to attain state-of-the-art performance on
several challenging public benchmarks. Finally, our work lays the foundation for
task-specialized (select and refine) interactive frameworks and network designs that
guarantees user clicks to have more impact on the segmentation outcome.
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1.4 Organization

In this dissertation, we develop new frameworks and algorithms for performing inter-
active image segmentation as we made progress towards reducing annotation effort
and achieving the collective goal of one-click segmentation. The thesis is organized
as follows:

• In Chapter 2, we perform a literature review of existing interactive frame-
works, both classical and deep learning based approaches. We discuss the
relative advantages and shortcomings of the individual frameworks.

• In Chapter 3, we present an overview of the machine learning (ML) and deep
learning (DL) components that constitute our interactive instance segmenta-
tion frameworks.

• In Chapter 4, we present our algorithm for content-aware user click represen-
tation and demonstrate how such click encoding can positively impact deep
learning frameworks to reduce annotation effort. The content of this chapter
corresponds to our CVPR 2019 publication “Content-aware multi-level guid-
ance for interactive instance segmentation” (Majumder and Yao, 2019a).

• In Chapter 5, we introduce our localized interactive image segmentation
framework. Different to existing methods, we constrain users to place clicks
in the vicinity of the object. Using such a strategy allows us to impose a
weak location prior which manifests itself in improved accuracy and lowered
annotation effort. The content of this chapter were presented in our GCPR
2019 work “Localized Interactive Instance Segmentation” (Majumder and Yao,
2019b).

• In Chapter 6, we introduce our two-in-one refinement framework which sim-
plifies user corrective clicks to be of a single type as opposed to existing frame-
works requiring two types of clicking. The content of this chapter corresponds
to our BMVC 2020 publication “Two-in-One Refinement for Interactive Seg-
mentation” (Majumder et al., 2020b).

• In Chapter 7, we propose a multi-stage fusion architecture for light-weight
yet effect incorporation of user click encoding at different layers of the seg-
mentation network. The chapter contains our findings reported in our GCPR
2020 publication “Multi-Stage Fusion for One-Click Segmentation” (Majumder
et al., 2020a).

• In Chapter 8, we summarize our contributions to the field of interactive
image segmentation research, and we conclude this dissertation by outlining
the remaining challenges and how the field will shape up in the near future.
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Related Works

Over the recent years, automated semantic and instance segmentation algorithms
have become very effective in object delineation. However, several downstream
applications like image and video editing tools (Benard and Gygli, 2017) and
medical image analysis (Wang et al., 2018a; Grady et al., 2005) require exact
pixel-level masks. Semantic segmentation models also benefit from training on
high quality annotations (Khoreva et al., 2017). Erroneous masks generated from
automated segmentation approaches are hence undesirable for such applications.
Human beings, on the other hand, can effortlessly understand the semantics of
the scene, and identify the foreground object(s). But it is a time-consuming and
cumbersome process to manually outline the object boundaries (Kass et al., 1988)
pixel by pixel. Interactive segmentation algorithms provide a solution to this by
invoking the aid of a human to correct the errors. With interactive frameworks,
humans can provide high-level guidance, in the form of coarse and sparse annota-
tions (Kass et al., 1988; Boykov and Jolly, 2001; Rother et al., 2004; Xu et al., 2016),
and the segmentation algorithm propagates that annotations down to the pixel level.

Early interactive instance segmentation methods include parametric active
contour model (Kass et al., 1988; McInerney and Terzopoulos, 2000; Cremers
et al., 2002), and intelligent scissors (Mortensen and Barrett, 1995; Barrett and
Mortensen, 1997; Falcao et al., 1998). These methods primarily rely on boundary
properties when performing segmentation. As a result, in the presence of low
contrast and noisy boundaries, and highly textured (or un-textured) regions, these
methods tend to fare poorly (Xu et al., 2016). Other methods consider both regional
and boundary properties. These include methods based on graph cuts (Boykov and
Jolly, 2001; Rother et al., 2004; Vezhnevets and Konouchine, 2005; Li et al., 2004),
geodesics (Bai and Sapiro, 2009; Criminisi et al., 2008), and or a combination of
the two (Gulshan et al., 2010; Price et al., 2010). However, the performance of such
methods were limited by their lack of higher understanding of objects.

2012 is widely considered as the start of the deep learning revolution. The
term deep learning (DL) refers to the branch of machine learning (ML) based on
neural networks (Fukushima and Miyake, 1982) with many layers; hence the term
deep. Although neural networks existed in literature, it was not until 2012 that
DL-based methods started to significantly outperform other ML approaches on
several challenging benchmarks (Russakovsky et al., 2015; Everingham et al., 2010;
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Lin et al., 2014). Convolutional neural networks (CNNs), a class of neural network
models, performed particularly well for hand-written digit classification (LeCun
et al., 1998). However, CNNs went out of favor with the rise of support vector
machines (SVMs) (Hearst et al., 1998) and random forests (Breiman, 2001). In
2012, they regained popularity after it substantially outperformed other competing
methods, an error rate of 16.5% (Krizhevsky et al., 2012) compared to 26.1%
from the 2nd place method, on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Deng et al., 2009; Russakovsky et al., 2015). Several
factors contributed to this improvement - increase in processing ability and the
decreasing cost of GPUs, better regularization strategies like Dropout (Hinton
et al., 2012), and the availability of large scale training datasets with millions of
manually annotated examples (Deng et al., 2009). Some well-known CNN models
include AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015),
VGG (Simonyan and Zisserman, 2014), and ResNet (He et al., 2016).

Research in computer vision, particularly image segmentation, greatly benefited
from the advent of deep learning based methods. Deep CNNs paved the way for fully
convolutional networks or FCNs (Long et al., 2015) which demonstrated exemplary
performance when it comes to semantic segmentation on challenging public bench-
marks such as Pascal VOC 2012 (Everingham et al., 2010) and the MS COCO (Lin
et al., 2014) dataset. The work of Xu et al. (2016) was the first to propose a
deep learning based interactive segmentation framework. In this seminal work, the
weights of the segmentation model was initialized with the weights of contemporary
state-of-the-art model on semantic segmentation, FCN-8s (Long et al., 2015). Since
then, FCNs have been integral part of interactive frameworks with newer frame-
works adapting the contemporary state-of-the-art semantic segmentation models,
Deeplabv2 (Maninis et al., 2018), and Deeplabv3+ (Mahadevan et al., 2018; Benard
and Gygli, 2017).

2.1 Classical boundary-based approaches

Snakes. Introduced in 1988, Active Contours or Snakes (Kass et al., 1988)
quickly gained popularity for the task of interactive image segmentation. After
being initialized with a rough boundary approximation, snakes iteratively adjust
the boundary points in parallel to minimize an energy functional and achieve an
optimal boundary. This energy functional is a combination of image forces, such
as boundary curvature and color gradient magnitude, and external constraint
forces. The image forces push the snake toward salient image features like lines,
edges. The external constraint forces are responsible for putting the snake near
the desired local minimum; these external forces, for example, can come from a
user interface. Eventually, the snake deforms itself into conformity with the nearest
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(a) Boundary Clicks (b) Extreme Clicks (c) Scribbles

(f) Clicks(e) Bounding box(d) Region of interest

Figure 2.1: Assume a user interested in segmenting the white car. In popular
interactive frameworks, a user can provide cues regarding the whereabouts of the
target object (in this example, the white car) to the segmentation method via inputs
such as (a) boundary clicks (Le et al., 2018), (b) extreme clicks placed on the top-
right-bottom-left extremes of the object (Maninis et al., 2018), (c) scribbles (Rother
et al., 2004; Li et al., 2004) inside and outside the object of interest, (d) region of
interest (Kass et al., 1988; Mortensen and Barrett, 1995), (e) bounding boxes (Rother
et al., 2004; Xu et al., 2017b; Agustsson et al., 2019) enclosing the object, and (e)
clicks (Xu et al., 2016; Liew et al., 2017). User interactions marking background
pixels are shown in red; green markings are used to indicate object enclosures or
user interactions marking foreground pixels.

salient contour. As the contours evolve by minimizing their energy functional, they
often wiggle and slither, which accounts for their name. Snakes continued to remain
popular well after its debut. Variants of the original implementation such as finite
element snakes (Cohen and Cohen, 1993), B-snakes (Menet et al., 1990; Blake and
Isard, 1998), Fourier snakes (Staib and Duncan, 1992), T-Snakes (McInerney and
Terzopoulos, 2000), and Diffusion snakes (Cremers et al., 2002) were proposed to
decrease the sensitivity towards contour initialization and to increase robustness
against noise. However, Snakes required a high degree of domain dependence
and extensive user interaction to define an initial boundary. Segmentation results
remained too dependent on the initialization. If the result was not satisfactory, the
process must be repeated with a different initialization, or the boundary needed to
be manually edited. Often this was tedious and time-consuming. Other avenues for
correction included parameter adjustment, which is difficult for a naive user.
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(a) (b) (c)

(e) (f)(d)

Figure 2.2: Intelligent Scissors. (a) At the onset, the user places a click on the
desired object boundary (marked in red). (b-c) The user then proceeds to provide
the next boundary click; the green cross-hair shows the live marker location, the
yellow line shows the live contour segment. (c) Following the second click, a “set”
or fixed segment boundary is generated (marked in blue) (d-e) The user continues
tracing the object boundary placing additional boundary clicks till (f) the final object
boundary is obtained. Image from Mortensen and Barrett (1998).

Intelligent Scissors. After Snakes (Kass et al., 1988), Intelligent Scis-
sors (Mortensen and Barrett, 1995; Barrett and Mortensen, 1996; Stalling
and Hege, 1996), also referred to as Live Wire (Barrett and Mortensen, 1997; Falcao
et al., 1998), became popular as an interactive boundary tracing tool. Intelligent
Scissors allows a user to choose a minimum contour by roughly tracing the object’s
boundary using an interactive terminal, e.g. the computer mouse. As the user
traces the cursor along the boundary, the minimum cost path from the current
cursor position to the last “seed” point is shown. The entire 2-D object boundary
is specified via a set of live-wire segments in this manner. Intelligent Scissors share
several similarities with Snakes. Both Snakes and Intelligent Scissors require user
interaction and use similar boundary features and cost functions to find optimal
boundaries. However, in literature, they are considered as competing methods
as their methodologies differ from one another in several ways. First, Snakes
iteratively compute a final optimal boundary by refining a single initial boundary
approximation provided the user. In Intelligent Scissors, the user interactively select
an optimal boundary segment from potentially all possible minimum cost paths; the
complete boundary is obtained through incremental movements. Second, Snakes
are globally optimal over the entire contour, whereas Intelligent Scissors boundaries
are piecewise optimal (i.e., between seed points). Variants of both Snakes and
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Intelligent Scissors achieved commercial success as part of popular software such as
GIMP, Magnetic Lasso in Adobe Photoshop (Li et al., 2004).

Summary. While easier and more economical than just manually tracing individ-
ual pixels on the boundary, both Snakes (Kass et al., 1988) and Intelligent Scis-
sors (Mortensen and Barrett, 1995) still demand a large amount of user attention.
In images with highly textured regions, there exist many alternative minimal paths.
Intelligent Scissors, in such instances, requires many user interactions. If a mistake
is made, the user has to retrace the curve; for Snakes the user has to re-draw the
entire contour again. Finally, once the initial boundary is specified, both Snakes and
Intelligent Scissors are no longer helpful. Any errors at the end must be attended to
at the pixel level using traditional selection tools.

2.2 Classical region-based approaches

Boundary-based methods paved the way for region-based methods. Region-based
methods, such as interactive Graph cuts (Boykov and Jolly, 2001) and Grab-
Cut (Rother et al., 2004), became popular as they typically demanded less precise
hints from the user. Instead of enclosing regions (Kass et al., 1988) or pixel-accurate
clicks on the boundary (Mortensen and Barrett, 1995), these approaches required
hints in the form of few pixel clicks or scribbles (Rother et al., 2004). The popularity
of region-based approaches was driven by the success of graph cuts (Ford Jr and
Fulkerson, 1962; Goldberg and Tarjan, 1988; Boykov and Jolly, 2001) for a variety
of computer vision tasks. Graph cut algorithms had already demonstrated great
potential for solving many vision and graphics problems, such as image restoration,
multi-view reconstruction, texture synthesis, etc. An additional benefit of graph
cut algorithms (Boykov and Jolly, 2001) is that it seamlessly allows to incorporate
both regional and boundary properties of the segment. Thus, graph cuts became
the algorithm of choice for most newly proposed interactive segmentation methods.
In these methods (Boykov and Jolly, 2001; Rother et al., 2004), the foreground and
background seeds (user-provided hints) are treated as source and sink nodes for a
max-flow min-cut operation in the Graph Cuts method. Using a max-flow min-cut
algorithm, a set of edges with the minimum total weight is found and then returned
as the object boundary.

Interactive graph cuts. In interactive graph cuts (Boykov and Jolly, 2001), the
user imposes hard constraints for the final segmentation by indicating certain pixels
(seeds) that have to be part of the object and certain pixels that have to be part
of the background. These hard constraints provide clues on what the user intends
to segment. The globally optimal instance boundary is then obtained using a fast
min-cut max-flow algorithm (Boykov and Kolmogorov, 2004). The set of edges with
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(a) (b) (c) (d)

Figure 2.3: GrabCut. (a) The user marks the foreground with a bounding box. (b)
Following the initial segmentation (c), user provides additional edits by marking the
foreground and background with white and red brush respectively. (d) The process
is repeated till the desired result is obtained. Image from Rother et al. (2004).

the minimum total weight is found and returned as the object boundary. Due to the
algorithm’s stability and strong mathematical foundation, interactive graph cuts
became popular and led to several variants and extensions, e.g. GrabCut (Rother
et al., 2004), Lazy Snapping (Li et al., 2004) etc. It should be noted that hard
constraints were also an integral part of previous boundary-based interactive seg-
mentation techniques. For example, in Intelligent Scissors (Mortensen and Barrett,
1995), the user had to indicate certain seed pixels where the segmentation boundary
should pass. In Snakes (Kass et al., 1988), the users confined the object with an ini-
tial boundary approximation; pixels on the outside had to segmented as background.

GrabCut. GrabCut (Rother et al., 2004) is a pioneering example of iterative
interactive segmentation; it extends interactive graph cuts (Boykov and Jolly,
2001) by introducing an iterative refinement scheme that uses graph cut for the
intermediate updates. It starts with an user drawing a bounding box around the
object of interest which serves as an initial approximation of the object labeling.
At each iteration, it gathers and updates the foreground background color statistics
(using Gaussian mixture models) according to the current prediction, and applies
graph cut on the re-weighted graph to compute a newly refined mask (Fig. 2.3).

A serious difficulty across graph cut based methods is its bias towards producing
segments with shorter boundaries; a small cut (Grady et al., 2005). This is also
known as the length or shrinking bias (Price et al., 2010). The boundary term in
graph-cut methods consists of a summation over the segmented regions’ boundary.
If the regional properties are weighted not as heavily as the boundary properties, the
max-flow min-cut algorithm (Boykov and Kolmogorov, 2004) returns the smallest
cut separating the seeds. It may return very small segmentation if a smaller number
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(a) Shape Templates

(b) Guitar occluded 
by bicycle 

(c) Initial user 
scribbles 

(d) Segmentation with 
shape prior 

(e) Segmentation w/o 
shape prior 

Figure 2.4: Graph Cuts with shape prior. (a) Shape templates (b) The user intends
to segment the guitar occluded by the bicycle. (c) The user provides initial scribbles
to mark the target of interest. (d) Segmentation result obtained using the template
in (a) as shape prior (d) Segmentation result obtained without using a shape prior.
Image from Vu and Manjunath (2008).

of seeds are used or if the seeds are not well spread out across the object. This
also causes problems by returning solutions where boundary takes a shortcut over
a protruded section of the object in an attempt to minimize boundary length.

Graph Cuts with shape priors. Several methods (Freedman and Zhang, 2005;
Slabaugh and Unal, 2005; Malcolm et al., 2007; Vu and Manjunath, 2008; Veksler,
2008; Das et al., 2006; Gulshan et al., 2010; Isack et al., 2018) incorporated shape
priors into graph cut techniques to counteract the bias towards shorter boundaries.
Such shape priors include elliptical (Slabaugh and Unal, 2005), convex blobs (Das
et al., 2006), and star shape (Veksler, 2008; Gulshan et al., 2010; Isack et al.,
2018) priors. Other GrabCut extensions include incorporating tightness priors for
bounding boxes (Lempitsky et al., 2009). The work of Slabaugh and Unal (2005)
was the first one to consider the use of shape priors in the form of ellipses in a graph
cuts-based algorithms. Ellipses offer a simple yet descriptive shape that can model a
wide range of objects, including anatomical structures like blood vessels and lymph
nodes, the segmentation of which was the primary application in (Slabaugh and
Unal, 2005). The work of (Das et al., 2006) propose a graph cut-based method for
segmenting compact objects, i.e. objects with low perimeter to area ratio (Veksler,
2002). They modify the boundary term to incorporate bias towards larger objects.
However, both these works, did not generalize to highly variable shapes. In a more
generic approach towards shape prior for graph cut segmentation, (Veksler, 2008)
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Figure 2.5: Lazy Snapping for digital image composition. (a) Input image (b) The
user marks the object and background with yellow and blue scribbles respectively. (c)
Based on the initial result, the user can additionally zoom in and adjust the current
boundary by interacting with the polygon vertices in the zoomed-in view. (d) Once
a satisfactory result is obtained, the object mask can be used for downstream tasks
such as digital image composition. Image from Li et al. (2004).

incorporated the star shape prior. A major benefit of incorporating the shape
constraints is that the objects were segmented more robustly and reliably. However,
these techniques all require additional parameters or computation.

Lazy Snapping. For low-resolution images, GrabCut operated at an interactive
speed (Li et al., 2004). However, its use for segmenting higher resolution images
was limited by intense memory requirements and time complexity. To overcome
this, the work of Lazy Snapping (Li et al., 2004) proposes a two-step coarse-to-fine
approach for interactive instance segmentation. To mitigate the computational
burden, the image is initially segmented using the watershed algorithm (Vincent
and Soille, 1991). Different from interactive graph cuts (Boykov and Jolly, 2001)
and GrabCut (Rother et al., 2004), the nodes in the graph cut optimization are
now the segmented regions instead of the pixels. This approximation produces
significantly improves the speed. The number of nodes and edges for the graph cut
algorithm is reduced by more than 10 times (Li et al., 2004) compared to GrabCut.
The final boundary edits are performed using a simple polygon framework, in
similar spirit to Intelligent Scissors (Mortensen and Barrett, 1995). Lazy Snapping
offers the advantages of both region-based (e.g. relaxed user seed specification) and
boundary-based (e.g. pixel-level boundary editing) methods in an unified framework.

The work of Lombaert et al. (2005) also studied the application of graph cuts for
high-resolution data. To reduce the computational burden, the approach performs
graph cuts on a lower resolution. Next, it propagates the result to the higher
resolution image by only computing the graph cuts in a narrow band surrounding
the projected foreground background. As the graph cut runs only on the sub-graph
in the the narrow band, the additional computation required at the higher resolution
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is significantly less than running it on the full graph. This use of a smaller graphs
in all resolutions reduces the running time and memory consumption compared
with the original graph cut algorithm.

Random Walks. In another graph-based approach (Grady et al., 2005), the
author used random walks to determine the foreground-background pixel labels
via label propagation on a weighted graph. Since this algorithm is not seeking
the smallest boundary, it does not suffer from the small cut problem. After
obtaining foreground and background (seed) pixels from users, the algorithm places
a random walker at each unlabeled pixel. Each pixel is then assigned the label of
the user-annotated pixel they first arrive at. The work of Sinop and Grady (2007)
extended this formulation by proposing a framework that unifies random walk,
graph cuts, and shortest path algorithms for the task of interactive segmentation.
Compared to existing graph cut methods, random walk algorithms achieve better
segmentation performance. However, the random walks algorithm lacks a global
color distribution model, making it very sensitive to the location and the number of
foreground and background seeds. Other extensions include the work of Price et al.
(2010) which uses the geodesic distance as a unary for the graph cut optimization.

Summary. The primary drawback of these classical approaches is insufficient or
rather lack of semantic or objectness priors. These methods rely on low-level fea-
tures, such as color distributions and contrast, to model the object and background
distributions. Therefore, their performance is restricted by the suitability of low-
level features to distinguish between the foreground and background. As a result,
for images with similar foreground and background appearances, complex textures,
and difficult lighting conditions, the annotation effort increases significantly as these
algorithms require users to label a large number of pixels (Xu et al., 2016).

2.3 FCN-based deep learning approaches

As with most of the other research in computer vision, image segmentation was
greatly impacted by the arrival of deep neural network architectures. Deep neural
networks (DNNs) learn a strong representation of objectness and have shown
superior performance in distinguishing different objects across images (Russakovsky
et al., 2015). The features learned by DNNs also proved to be highly transferable
to other tasks such as semantic (Long et al., 2015) and instance segmentation (He
et al., 2017). Deep semantic and instance segmentation approaches outperformed
existing state-of-the-art algorithms with ease (Long et al., 2015; He et al., 2017).
Not surprisingly, several researchers since then have focused on applying deep
segmentation models to improve existing interactive segmentation frameworks.
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The success of instance segmentation and semantic segmentation models, how-
ever, did not directly translate to interactive segmentation methods. First, semantic
segmentation methods, such as Fully Convolutional Networks (FCNs) (Long et al.,
2015), operates at class-level masks and not instance-level masks. Second, both
semantic and instance segmentation approaches do not generalize to instances
from unseen classes. This lack of generalization ability to unseen classes makes it
impractical as one needs to train a model for each and every possible object class.
Most importantly, existing fully automated instance and semantic segmentation
methods do not respond to user inputs. While user-provided clicks can select an
instance mask from generated segmentation, it was unclear how the algorithms
would respond to additional user clicks.

FCNs inspired the first deep learning-based interactive instance segmentation
framework. In the seminal work of Xu et al. (2016), the authors proposed an
FCN-based architecture that accepts user-provided clicks as additional input along
with the image. In this framework, to select an object instance in the image,
users provide a “positive” click on the object of interest. Based on the initial
prediction, users can then iteratively provide “positive” and “negative” clicks to
add object pixels misclassified as background and remove background pixels mis-
classified as the object. The process is repeated until a satisfactory result is obtained.

The usability of user-provided positive and negative clicks is restricted because
of their sparsity. In order to efficiently leverage such user-provided clicks, in (Xu
et al., 2016), they are converted to guidance maps using Euclidean distance
transformation. The 2-channel guidance maps, one channel each for the “positive”
and “negative” clicks, are then concatenated with the 3-channel RGB image, and
fed as input to a FCN (Long et al., 2015). Typically, the weights of such FCNs
are initialized with that of the state-of-the-art network on semantic segmentation
FCN-8s (Long et al., 2015). The network is trained with only two labels - object
and background. Since obtaining clicks from actual users for training the network
require significant effort, user clicks are sampled using several heuristics to generate
image - user interactions training tuples. The segmentation model is fine-tuned
on many of these pairs. At test time, clicks are sampled and added one by one
based on the errors of the currently predicted mask. The process is repeated until
a satisfactory segmentation mask is obtained; for challenging datasets such as
Pascal VOC 2012 (Everingham et al., 2010) and MS COCO Lin et al. (2014), the
generated masks should have a minimum of 85% mIoU w.r.t the ground truth.
In Xu et al. (2016), users can interact with the segmentation models only via point
clicks. Additionally, user clicks added during refinement often fail to improve the
prediction significantly. A following work (Xu et al., 2017b) investigated the use
of loose bounding boxes and other arbitrary shaped closed curves (e.g. ellipses,
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Figure 2.6: Framework of RIS-Net (Liew et al., 2017). In order for refinement
clicks to significantly improve the generated segmentation mask, RIS-Net proposed a
two-branch network consisting of a global branch for the entire image segmentation
and a local branch for local regional refinement. The global branch is similar to
the framework of Xu et al. (2016); the input image with the guidance maps are fed
forward through a FCN to obtain a coarse segmentation. In the local branch, feature
descriptors for the click pair are extracted via the ROI pooling layer which are then
enriched with global feature descriptors. Finally, both global and local predictions
are fused to output the final segmentation mask. Image from Liew et al. (2017).

circles) for interactive segmentation. Such arbitrary shapes are easier to mark
and reduces annotation effort. Given an arbitrary shape loosely outlining the
object, the algorithm first transforms it into an Euclidean distance map. Similar
to (Xu et al., 2016), a FCN then predicts the foreground background from the
concatenated image-distance map input. However, in (Xu et al., 2017b), users
cannot provide additional corrective clicks to improve upon the initial segmentation.

In order to fully leverage the information in refinement clicks, the work of Liew
et al. (2017) proposes a two-branch network - it includes a global branch producing
coarse global predictions and a local branch utilizing multi-scale spatial pyramid
features to make refined local predictions; the final prediction is the combined
results from the two branches. Both the frameworks of (Xu et al., 2016) and (Liew
et al., 2017) apply graph cut optimization to the output segmentation mask from
the FCN model.

While the frameworks in (Xu et al., 2016, 2017b; Liew et al., 2017) varied in
network design and mode of user interaction (clicks vs. arbitrarily-shaped enclo-
sures), all methods used Euclidean distance transform to encode the user-provided
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clicks. The work of Benard and Gygli (2017) empirically showed that encoding
user clicks using Gaussians with a small standard deviation over Euclidean distance
maps (Xu et al., 2016; Liew et al., 2017) led to performance improvement. A more
recent work (Benenson et al., 2019) observed that encoding user clicks as small
binary disks is more effective than the Gaussian transformation.

Across these previous methods (Liew et al., 2017; Xu et al., 2016; Benard and
Gygli, 2017), the click sampling strategies adopted during training and testing are
different. User clicks during training are sampled independent of the training error
following heuristics outlined in (Xu et al., 2016). However, at test time, these
methods base their click sampling strategy to mimic the clicking pattern of a human
annotator; clicks are sampled iteratively based on the errors of the predicted mask.
Predetermined click placements during training with no regards to the network
prediction errors has an adversely affects the model accuracy. To address this
discrepancy in click sampling during train and test time, the work of Mahadevan
et al. (2018) proposed an iterative training algorithm where it samples training
user clicks progressively based on the misclassification in the network prediction
following each epoch. This led to a better segmentation performance without
requiring post-processing via graph cuts (Xu et al., 2016; Liew et al., 2017; Benard
and Gygli, 2017). This training algorithm was adopted across most of the interactive
segmentation approaches that followed (Liew et al., 2019; Lin et al., 2020).

The work of Maninis et al. (2018) introduced an interactive approach for
foreground segmentation from the extreme points (i.e., left-, right-, top- and
bottom-most pixels) of the object. Here, users mark the extreme points on the
object boundaries; these extreme points are then encoded using Gaussians and
then concatenated with the 3-channel RGB channel. The 4-channel input is
passed through a segmentation network to produce the final prediction. While
the approach typically produces high quality segments, it is difficult to refine the
unsatisfactory segments with additional clicks (Mahadevan et al., 2018). Similar
in spirit to Maninis et al. (2018), the work of Le et al. (2018) proposed an
interactive approach where the users click on the boundary of the target object.
However, the boundary clicks in (Le et al., 2018) is not limited to the extreme points.

Fig. 2.7 shows the two-stream framework for interactive segmentation. Different
to prior approaches, the two-stream network uses two dedicated streams to extract
features from the image and the user-interactions. The extracted features are fused
at different layers of the network enabling both early and late fusion of the image
and user interactions. This form of late fusion allows the user-provided cues to
have more impact on the predicted mask as the abstraction, in the form of stacked
network layers, between the prediction and the user interaction is reduced. It
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Figure 2.7: The framework of Hu et al. (2019) utilizes two separate networks but
with identical architecture to extract features from the image and the guidance maps.
The network consists of the first 10 convolutional layers of the VGG-16 (Simonyan
and Zisserman, 2014) network. Features from both the image and the interaction
streams are concatenated; a fusion network then is used to predict the segmentation
mask from the concatenated feature maps. Image from Hu et al. (2019).

should be noted that the work of Liew et al. (2017) also uses a two-stream network;
however, it only performs an early fusion of the image and the guidance maps
generated from user interactions.

In interactive instance segmentation, there can be situations where the algorithm
fails to assess the diversity in user expectations particularly when the target object
is a part of another object. Consider a scenario when an user intends to segment
the tie worn by a person. The algorithm can incorrectly generate a mask for the
person thereby requiring excessive user input to correct the segmentation result.
To address such ambiguities, the works of (Li et al., 2018; Liew et al., 2019)
proposed interactive frameworks which generates multiple hypothesis segmentations
and selects a more accurate choice among them. The work of Li et al. (2018)
demonstrated that training the network to generate diverse segmentation given the
user click improves the segmentation performance. However, the unconstrained
training framework of Li et al. (2018) meant that generated diverse segmentations
were either not too different from one another or not meaningful. The approach
in Liew et al. (2019) improved upon this by imposing a set of scale priors to produce
candidate prediction masks of different scales given the user click. An objectness
classifier is used on top of the diverse segmentations to generate meaningful object
masks for the user to select from (Fig. 2.8).

Other notable FCN-based interactive segmentation frameworks include (Jang
and Kim, 2019; Sofiiuk et al., 2020). The work of Jang and Kim (2019) observed
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Figure 2.8: Consider the scenario where the user places a click on the bug on the
flower. It is unclear from the click itself whether the user desires the segmentation
mask for the bug or for the flower. To circumvent this, the segmentation network
in Liew et al. (2019) outputs a set of candidate segmentation masks of various scales
and their corresponding objectness scores; NMS further prunes the set of candidates
and presents the top K predictions to the user. Based on the user intention, the
user can either opt for the mask corresponding to the bug, or the flower with an
additional click. Image from Liew et al. (2019).

that across prior works, it is not guaranteed that the user-provided pixel annotation
matches the network output,i.e. the user selects an object with a positive click,
however in the resulting segmentation mask, that click is assigned a background
label and vice-versa. In order to ensure consistent segmentation output, during
inference, the framework of Jang and Kim (2019) performs backpropagation on the
network activations iteratively until all user-clicked pixels have correct labels in the
output segmentation mask; the network weights are kept unchanged. The work
of Sofiiuk et al. (2020) expand upon this framework by reducing the computational
cost resulting from the optimization at inference time.

In all the mentioned approaches, user provided clicks are treated indiscrimi-
nately by the FCN. The work of Lin et al. (2020) pointed out the unique nature
of the first click; it not only indicates the location of the target instance but also
provides global context for the target object. Ensuing clicks serve to improve
the segmentation obtained after the first click. Accordingly, in their approach, a
separate module is proposed for utilizing the guidance from the first interaction click.

Summary. FCN-based approaches paved the way for successful interactive instance
segmentation methods. The availability of state-of-the-art semantic segmentation
models and the availability of annotated instances in images continues to be a
significant force in driving down user-annotation efforts. Simply by adapting
state-of-the-art models, it was possible to improve the segmentation performance
significantly. Furthermore, different from early classical approaches, which relied on
bounding boxes (Rother et al., 2004) and scribbles (Kass et al., 1988; Mortensen
and Barrett, 1995; Li et al., 2004), the FCN-based frameworks use pixel clicks which
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are cheaper to annotate. Empirically, these methods demonstrated that a single
click is often sufficient to obtain a good segmentation mask for specific instances.

One common drawback, however, applicable for a majority of the approaches is
that the training and evaluation of these methods rely on synthetically generated
clicks following the heuristics established in (Xu et al., 2016). User clicks are
understandably costly to annotate. Especially with datasets like Pascal VOC 2012

and MS COCO, where the number of instances can vary from the order of tens
of thousands to hundreds of thousands, the cost of acquiring actual user click
annotation can be prohibitive.

Finally, majority of FCN-based methods demonstrate their efficacy based on
the evaluation framework proposed in (Xu et al., 2016). While it ensures fairness in
comparing methods, it often precludes comparison in terms of actual user time, e.g.
in seconds, it takes for the algorithm to reach the desired quality in producing
segmentation masks. A time-based evaluation framework is critical as on-boarding
state-of-the-art segmentation models can improve performance significantly but
at the cost of extra computation. Time-based comparisons can currently be
observed across current interactive video object segmentation frameworks where
algorithms are judged on the quality of the generated segmentation in a specified
time window, e.g. mIoU@60 seconds (Oh et al., 2019; Heo et al., 2020, 2021).

2.4 Mask R-CNN -based deep learning approaches

A majority of the FCN-based approaches interactively segment only one object at a
time. For full image segmentation (Andriluka et al., 2018; Agustsson et al., 2019),
i.e. interactively segmenting all objects in the scene, such FCN-based approaches
would require multiple passes. This stems from the fact that the FCN backbones
used in such frameworks are trained for the task of instance-agnostic semantic
segmentation. Different to FCNs, Mask R-CNN (He et al., 2017) are trained for the
task of automated instance segmentation.

In (Andriluka et al., 2018), Mask R-CNN (He et al., 2017) is used to create
a fixed pool of proposal segments; the human annotator then performs full image
segmentation by assigning proposal segments to the individual objects. The work
of Agustsson et al. (2019) starts with annotating the four extreme points for indi-
vidual objects (Maninis et al., 2018). Instead of clicks (Xu et al., 2016; Mahadevan
et al., 2018), errors in network predictions are iteratively refined with corrective
scribbles. The approach of Andriluka et al. (2020) extends the segmentation to
non-object categories (e.g., sky, grass) as well.
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Figure 2.9: The framework of Agustsson et al. (2019) starts with an image input
to the Mask R-CNN model (He et al., 2017). Next, RoI features for the objects
are obtained directly via cropping by leveraging the user-provided extreme points.
Additional corrective scribbles are concatenated with the RoI features and then
processed by the segmentation head. Individual region predictions are projected
into the image canvas.Image from Agustsson et al. (2019).

Summary. Mask R-CNN -based approaches offers certain advantages over the
FCN-based interactive frameworks. Conventionally, FCN-based approaches focus
on segmenting one instance in the image at a time. Segmenting each instance,
for example, in Fig. 2.9, a conventional FCN-based approach would require four
separate passes, with each pass requiring additional refinement clicks from the user.
In addition to requiring multiple passes, in current FCN-based approaches, the
interactions meant for a single instance are not leveraged for the other instances in
the scene. Mask R-CNN-based approaches overcome these two limiting factor of
FCN-based approaches. In Mask R-CNN -based approaches, corrective refinements
for a specific instance can be leveraged as a cue for the remaining instances in the
image (Agustsson et al., 2019).

With the exception of (Andriluka et al., 2020), a major drawback of existing Mask
R-CNN -based approaches (Andriluka et al., 2018; Agustsson et al., 2019) is their
inability to generalize to novel object classes. Although withheld from (simulated)
users during the interactive, class labels are nonetheless used to obtain class-specific
predictions during training and inference. Unlike FCN-based approaches which per-
forms class-agnostic binary segmentation, the class labels are indeed an integral part
of the network design for the Mask R-CNN -based approaches.
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Figure 2.10: In Acuna et al. (2018), the image is first processed by the CNN to
predict the first vertex of the polygon. This initial vertex along with the generated
image features are fed to a RNN which outputs polygon vertices at each time step.
An evaluator network selects the best polygon from a set of candidates proposed by
the RNN decoder. Finally, a graph neural network aligns the polygon vertices and
generates the image-sized output. Image from Acuna et al. (2018).

2.5 RNN-based deep learning approaches

Another group of approaches formulate the task of interactive instance segmentation
as one of polygon prediction problem (Castrejon et al., 2017; Acuna et al., 2018;
Ling et al., 2019). In (Castrejon et al., 2017; Acuna et al., 2018), a recurrent
neural network (RNN) is used to predict the vertices of a polygon outlining the
target instance sequentially. The annotator can intervene whenever an error
occurs, by correcting the misplaced vertex. The network continues its prediction
by conditioning on the correction. The work of Ling et al. (2019) parameterize
objects using polygon or splines and uses graph convolution networks (GCNs) for
performing the segmentation.

Summary. Different from FCN-based and Mask R-CNN-based approaches, RNN-
based approaches do not produce dense per-pixel segmentation masks as outputs.
Instead, these methods predict a polygon vertices or spline to enclose an object; such
sparser outputs are desirable given the recurrent nature of the models. However,
similar to Mask R-CNN-based approaches, RNN-based approaches are limited to
the object classes that the models observed during training and cannot generalize
to novel object classes during test time.





Chapter 3

Background

In this chapter, we discuss the key components that constitute our proposed in-
teractive segmentation frameworks. We begin with briefly discussing Convolutional
Neural Networks (CNNs) and the functional units that constitute them. CNN’s
are ubiquitous across deep learning-based interactive frameworks; they act as fea-
ture extraction backbones for semantic segmentation and instance segmentation ap-
proaches. Next, we discuss Fully Convolutional Networks or FCNs; our proposed
frameworks rely on such pre-trained FCN models to yield per-pixel outputs. We
then provide a brief overview of the superpixel and object proposal generation algo-
rithms that constitute the pre-processing step for content-aware user click encodings.
Finally, we conclude the chapter with an overview of the image datasets and the eval-
uation metrics used for benchmarking interactive image segmentation approaches.

3.1 Convolutional Neural Networks (CNNs)

CNNs have enjoyed great success across various large-scale image classification chal-
lenges (Russakovsky et al., 2015). Their name stems from the most significant
operation in the network - convolution. CNNs can be viewed as a sequence of layers;
these layers can be grouped into two primary categories - (i) feature extraction layers
and (ii) classification layers. In the feature extraction layers, CNNs perform a series
of convolution and non-linear operations (e.g., tanh/ReLU activations and spatial
pooling operations) over different resolutions of the feature maps. Feature extrac-
tion layers in succession enable CNNs to extract and integrate low (e.g., edges), mid,
and high-level (e.g., objectness) features (Zeiler et al., 2011). The depth, i.e., the
number of stacked convolutional layers in the network, decides the levels/hierarchies
of features encoded by the CNNs; the deeper, the better (He et al., 2016). The clas-
sification layers primarily consist of fully connected layers, which learn non-linear
combinations of the extracted features. CNNs are integral to the state-of-the-art
performance of fully convolutional networks (FCNs) for image segmentation tasks
such as semantic segmentation and interactive image segmentation. In this section,
we begin the discussion with what constitutes a CNN. Next, we look into two CNN
architectures - VGG-16 (Simonyan and Zisserman, 2014), and ResNet-101 He et al.
(2016). VGG-16 and ResNet-101 constitute the backbone of our FCN-8s (Long et al.,
2015) and Deeplabv2 (Chen et al., 2018b) semantic segmentation models which we
adapt and use in our interactive frameworks (Chapters 4, 5, 6, and 7).
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Figure 3.1: Example of a CNN architecture for image classification. Here, the CNN
receives a RGB image as input and produces as output the probability of the image
belonging to a particular class over 1000 classes (Russakovsky et al., 2015).

3.1.1 Components

Convolution. In CNNs, the convolution operation serves as a means to extract
features from an 3-D input feature map (or an image for the first layer). The
convolution of an input feature map fin ∈ Rh×w×d1 with d2 convolution kernels of
spatial extent k1×k2 results in a feature map fout of dimension,⌊h− k1 + 2p

s
+ 1

⌋
×
⌊w − k2 + 2p

s
+ 1

⌋
× d2 (3.1)

As evident from Eqn. 3.1, the output dimension is controlled by five hyperpa-
rameters - number of filters d2, spatial extent of the filter parameterised by k1
and k2, stride s, and padding p. For square kernels, we have k1=k2. Stride
s defines the step size with which the convolution kernel moves each time. A
stride of 1 means the kernel slides pixel-by-pixel; the larger the stride, the
smaller the spatial output. Padding adds a layer of zero-pixel values surround-
ing the input feature map. Padding prevents the output feature map from shrinking.

Convolution offers several advantages, such as sparse interactions, parameter
sharing, and equivariant representations (Goodfellow et al., 2016). Traditionally, in
multilayer perceptrons or MLPs, each input unit interacts with each output unit via
a unique set of network weights. However, in CNNs, the convolution kernel interacts
with the input units sparsely ; the output units typically interact with only a subset
of the input units. Additionally, unlike MLPs, the same kernel weights are applied
at every position of the input. Overall, it results in fewer parameters and keeps the
model size in check. Finally, parameter sharing enables the convolution operation
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to be equivariant to translation. Conventionally, non-linear activations follow the
convolution operation. ReLU (Maas et al., 2013) is such an example of a non-linear
activation.

ReLU(x) = max(0, x) (3.2)

Pooling. In CNNs, pooling operations typically take place in between CNN layers
or blocks (see Fig. 3.2). The pooling operation involves sliding a filter individual
channels of the input feature map and summarizing the features covered by the
window. These operations are parameterised by the kernel size and the stride; a
common example is a 2×2 window with a stride of 2. More formally, the output
feature map dimension obtained after a pooling operation with kernel k1×k2 and
stride s on an input feature map fin of dimension h×w×d1 is fout of dimension,⌊h− k1

s
+ 1

⌋
×

⌊w − k2
s

+ 1
⌋
× d1 (3.3)

The commonly used pooling operations include average and max-pooling; average
pooling replaces the feature map values with an average value computed over the
pooling window. Likewise, the max-pooling operation replaces the feature map
values with the maximum value within the neighborhood.

Max-pooling operation with non-overlapping strides performs several key
functions. As evident from the stride, the pooling operations reduce the memory
footprint of the intermediate feature maps. Next, it increases the receptive field of
subsequent convolutions operations; 2×2 max-pooling with a stride of 2 increases
the receptive field by a factor of 2. This allows the deeper layers of the network
to discern high-level semantic information. Finally, for image classification tasks,
“whether an object exists? ” supersedes “where does the object exist? ”. With the
max-pooling operation, the dominant feature from a region is always preserved
making the network robust to small translations of the features in the input map.

Fully Connected (FC) layers. The fully-connected (FC) layers constitute the
last few layers of CNNs. Different to convolution layers where feature responses are
computed in local neighborhoods, every output response in an FC layer is computed
by using the values of all the input feature map locations. Implementation-wise, FC
layers are simply feed forward neural networks which learn non-linear combinations
of extracted features from the convolutional layers. After the FC layers, the final
layer in image classification CNNs use the softmax activation function to get
probabilities of the input belonging to a particular category (classification).

Batch normalization. transforms every unit in a feature map to have zero
mean and have unit variance. Batch normalization layers behave differently during
training and inference. During training, the batch normalization (BN) layer
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normalizes the channel-wise output using the mean and the standard deviation
of the current batch. During inference, the BN layer performs the channel-wise
normalization using the moving average of the mean and standard deviation that
the deep learning model observed during training. With batch normalization
layers, it is possible to train deep neural networks using much higher learning
rates while being less sensitive to parameter initialization (Ioffe and Szegedy,
2015). Conventionally, such layers are positioned before the non-linear activa-
tions (He et al., 2016). Generally, using batch normalization layers have been
shown to improve the performance of deep learning models (Ioffe and Szegedy, 2015).

Training. CNN’s are parameterized using trainable weights in the order of hun-
dreds of millions (Simonyan and Zisserman, 2014). To find an optimal set of values
for these weights, CNNs are trained to minimize a loss function. Depending on
the task at hand, the loss function quantifies the discrepancy between the network
output and the desired output specified in the ground truth, e.g., cross-entropy
loss for image classification. Ideally, if the prediction deviates too much from the
ground truth, the loss function should increase in value. Gradually, as the network
updates its weights via some optimization, the value of the loss function decreases.

More formally, let the loss function be L(y, ŷ) where y and ŷ denote the ground
truth and the network prediction respectively. The optimal set of weights w are
obtained by minimizing the empirical risk over the available training data D with
N samples,

LD(w) =
1

N

N∑
i=1

L(yi, ŷi) (3.4)

The minimization of Eqn. 3.4 is performed via gradient descent on the total empirical
loss. In practice, large-scale datasets are difficult to fit into memory. Hence gradient
updates are performed after seeing only a few training samples in a mini-batch using
Stochastic Gradient Descent (SGD). The weight update rule is given by,

w← w − αOLd(w) (3.5)

where d ⊂ D, α is the learning rate and OLd(w) denotes the weight gradients w.r.t
the loss Ld computed over the mini-batch d = {xi, yi}Ki=1;K << N . We refer
the reader to Goodfellow et al. (2016) for further details on CNN architectures and
training.

3.1.2 VGG-16

AlexNet (Krizhevsky et al., 2012) demonstrated that state-of-the-art performance
on challenging large-scale datasets such as ImageNet (Russakovsky et al., 2015)
can be achieved using deep CNNs. However, such architectures typically use large
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Figure 3.2: The VGG-16 (Simonyan and Zisserman, 2014) network consists of 5
convolution blocks with a total of 16 layers. At the end of each block, max-pooling
operation downsamples the feature map along the spatial axes (h×w → h

2×
w
2 ) by

a factor of 2. Here we show a image classification use-case; the network receives as
input a RGB image which it classifies into one of the 1000 possible classes in the
used dataset.

convolution kernels, such as 11×11 in AlexNet (Krizhevsky et al., 2012). This
comes at the cost of increased computation. Unlike AlexNet, VGG (Simonyan and
Zisserman, 2014) uses convolution filters with small kernels of size 3×3 with a stride
of 1 for all convolutional layers in the network (Fig. 3.2).

Stacking multiple layers allows VGG to have the same receptive field as CNNs
with large kernels but less depth, e.g., stacking two 3×3 convolutions, without spatial
pooling operation, has an effective receptive field of 5×5; three such layers result
in a 7×7 receptive field. However, having 3 layers of 3×3 over 7×7 offers two key
advantages. First, instead of a single non-linear activation layer, the architecture can
now incorporate 3 non-linear layers making the network more discriminative. Next,
it requires fewer parameters. Next, a 7×7 kernel is parameterised by 49 network
weights whereas 3 layers of 3×3 are parameterised by 3×32 = 27 parameters. This
allows the VGG architecture to grow in depth without a parameter explosion.

3.1.3 ResNet-101

VGG-16 (Simonyan and Zisserman, 2014) demonstrated that increasing the number
of stacked layers can improve the performance of deep CNNs which raises the ques-
tion “Is designing better CNN architectures as trivial as stacking more convolutional
layers? ” Ideally, if the additional layers can perform identity mappings between the
input and output feature maps, a CNN with more layers should not have training
error greater than it’s shallower counterpart. Unfortunately, indiscriminate stacking
of convolutional layers to increase depth eventually leads to performance degradation
which underlines the difficulties that these additional layers have in approximating
identity mappings. The work of (He et al., 2016) address the degradation problem
by introducing a deep residual learning framework. The building block of such a
framework is shown in Fig. 3.3. Given an input feature map fin, each building block
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Figure 3.3: Bottleneck layer in ResNet-50/101/152 (He et al., 2016) utilizes 1×1
convolutions to create a bottleneck in the residual connection. This bottleneck layer
reduces the number of parameters and lowers the computation cost and allows the
network to increase in depth without significant increase in the number of trainable
parameters. Here, D refers to the number of channels in the feature maps and ⊕
refers to the element-wise operation.

realizes a non-linear mapping F(fin) + fin of the input feature. With such a for-
mulation, if fin provides an optimal mapping, the weights of the residual layers are
simply driven to zero by the optimization algorithm. Such a formulation can be
realized by feed-forward neural networks with shortcut or skip connections. In the
residual formulation, skip connections perform the identity mapping; such identity
connections neither incur extra parameter nor computational complexity.

3.2 Fully Convolutional Networks (FCNs)

Fully Convolutional Networks or FCNs are a class of neural networks consisting only
of convolution blocks (convolution, non-linearity, pooling) and no fully connected lay-
ers. Different to CNNs, FCNs can operate on inputs of any arbitrary dimension, and
produce correspondingly-sized outputs. Popular FCN models include FCN-8s (Long
et al., 2015) and Deeplabv2 (Chen et al., 2018b) for semantic segmentation. These
semantic segmentation models are trained in an end-to-end fashion to minimize the
per-pixel cross entropy loss.

3.2.1 FCN-8s

Deep CNNs trained on large scale image datasets yield powerful models for challeng-
ing computer vision tasks. However, conventionally the outputs of CNNs are limited
to coarse prediction, e.g. class labels for images (Simonyan and Zisserman, 2014; He
et al., 2016). Additionally, input image dimension are dictated by the kernel sizes in
the fully connected layers; the kernel size should match the spatial dimension of the
input feature maps. However, for several computer vision applications, e.g. semantic
segmentation (Long et al., 2015), instance segmentation (He et al., 2017), and inter-
active instance segmentation (Xu et al., 2016), dense output in the form of per-pixel
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Figure 3.4: The framework of FCN (Long et al., 2015) transforms the fully con-
nected layers of image classification CNNs into convolution layers. This enables
FCNs to dense output in the form of per-pixel class prediction instead of an image-
level prediction. Image from Long et al. (2015).

predictions are desired. Fully Convolutional Networks or FCNs (Long et al., 2015)
are able to achieve this. The work of FCN-8s (Long et al., 2015) was the first to
propose a FCN capable of being trained in a fully supervised end-to-end manner by
adapting and extending existing image classification models, e.g. VGG (Simonyan
and Zisserman, 2014). Fully connected (FC) layers in such deep CNN models accept
fixed-size feature maps and disregard the spatial coordinates. Implementation-wise,
such FC layers can be viewed as convolutions with kernels that span the spatial
extent of the input. By doing away with the feature map flattening in the fully
connected layers, the framework of Long et al. (2015) was able to predict class label
at each individual pixel (after upsampling) (Fig. 3.4).

3.2.2 Deeplabv2

FCNs for semantic segmentation primarily use an encoder-decoder architecture.
The encoders of choice are deep CNNs, e.g. VGG-16 in FCN-8s (Long et al., 2015).
However, these deep CNNs originally devised for image classification aggressively
downsample input images and ensuing feature maps to fit the dimensions of the inner
fully connected layers. In FCN-8s, the VGG encoder reduces the spatial resolution
by a factor of 32. Accordingly, FCN-8s has to rely on skip connections to preserve
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Kernel = 3x3, Rate = 1 Kernel = 3x3, Rate = 2  Kernel = 3x3, Rate = 3

Figure 3.5: Atrous convolution (Holschneider et al., 1990) introduces an additional
parameter “rate” to the convolution operation. This defines the spacing between the
weights in the convolution kernels. Atrous convolution enables Deeplab (Liang-Chieh
et al., 2015) to have a large field-of-view while keeping the number of parameters
fixed. With a rate of 2, a 3×3 kernel has the same field-of-view as that of a 5×5
kernel, while only using 9 parameters instead of 25.

feature map resolution. In order to preserve feature resolution, Deeplab proposes
the use of atrous convolutions (Liang-Chieh et al., 2015). Atrous (or dilated)
convolutions are regular convolutions with a factor “rate” that allows us to expand
the filter’s field of view (Fig. 3.5). With atrous convolution, Deeplab is able to
extract multi-scale features without feature map downsampling. Deeplabv2 (Chen
et al., 2018b) introduces the idea of atrous spatial pyramid pooling (ASPP) into
the Deeplab framework. ASPP adds multiple parallel atrous convolutions with
different dilation rates; the resultant feature maps are processed in separate parallel
branches and are then fused together to generate the final result (Fig. 3.6). ASPP
allows the Deeplab framework to account for the varying object sizes.

Figure 3.6: Deeplabv2 (Chen et al., 2018b) introduces the concept of ASPP into
the Deeplab framework. Here, multiple parallel branches perform atrous convolution
with different rates. This allows the incorporation of multi-scale information for
a single pixel, as shown on the left. In the right, the implementation of ASPP
framework within the VGG network is shown. Image from Chen et al. (2018b).
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(a) CTF (b) SEEDS (c) SLIC

Figure 3.7: Superpixel algorithms segments images into a collection of pixels called
“superpixels”. Ideally, pixels within such superpixels should share visual characteris-
tics such as color, texture. Another desirable property is that superpixel boundaries
should align with the high-contrast edges in the image. Here, we observe superpixels
(boundaries of which are marked in red) obtained by using the popular superpixel
algorithms - SLIC (Achanta et al., 2012), SEEDS (Van den Bergh et al., 2012), and
CTF (Yao et al., 2015) algorithm. Image from Yao et al. (2015).

3.3 Superpixels

Superpixels are perceptual grouping of pixels that share common characteris-
tics (Ren and Malik, 2003), e.g., color, texture. Superpixels partitions images into
a tractable set of segments, which in turn can be used as computation units for
high level computer vision tasks such as object detection (Shu et al., 2013; Yan
et al., 2015), object proposal generation (Pont-Tuset et al., 2017; Rantalankila
et al., 2014) and semantic segmentation (Gould et al., 2008; Cadena and Košecká,
2014) to name a few. Superpixels are computationally efficient; with superpixels,
it is possible to speed up such higher-level tasks significantly by orders of tens or
thousands without sacrificing the performance. Typically, the input to superpixel
algorithms is the desired number of superpixels N . There exists a wide variety of
superpixel algorithms which can be distinguished from one another by the objective
functions they minimize and the optimization algorithm (Achanta et al., 2012;
Stutz et al., 2018).

Simple Linear Iterative Clustering or SLIC is a popular superpixel generation
algorithm (Achanta et al., 2012) which clusters pixels based on their color similarity
(in CIE-LAB color space) and spatial proximity. SLIC starts from a regular grid
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Figure 3.8: CTF (Yao et al., 2015) starts by performing boundary-level at the
coarsest level (left) and then proceeds in a coarse-to-fine manner with the finest
updates being applied at the pixel level (right). Image from Yao et al. (2015).

of centers (avoiding initialization of centers on edges) and performs a k-means
style optimization. SLIC iteratively repeats the process of associating pixels with
the nearest cluster centers and updating the cluster centers at each iteration; the
process repeats till convergence. Examples of superpixels generated using SLIC are
shown in Fig. 3.7. Other popular superpixel algorithms include SEEDS (Yao et al.,
2015) and CTF (Yao et al., 2015). Both the framework of SEEDS (Van den Bergh
et al., 2012) and CTF (Yao et al., 2015) use a coarse-to-fine energy update strategy
where boundary-level updates start at the coarsest level (larger block size) and then
proceeds to the finest level (pixels) iteratively (Fig. 3.8).

In this dissertation, we make use of SLIC and CTF superpixels for content-
aware encoding of the user-clicks (Chapter. 4). The superpixels are generated in an
unsupervised manner (Achanta et al., 2012; Yao et al., 2015). We avail the in-built
MATLAB implementation of SLIC and the public implementation of CTF provided
by Yao et al. (2015)1. We use the default parameters of the individual algorithms
and only provide the number of superpixels as input.

3.4 Object Proposals

Object proposal generation is an image pre-processing technique which provides
a collection of high-quality, class-independent object hypothesis (Carreira and
Sminchisescu, 2011; Endres and Hoiem, 2013; Pont-Tuset et al., 2017). The
generated proposals, in turn, can be used as input to object detection and instance
segmentation methods and avoid the need for exhaustive sliding window search
conventionally used in such methods. The goal for such algorithms to find a small
set of object hypotheses that captures all objects in the scene.

Here, we briefly outline the framework of Multiscale Combinatorial Grouping or
MCG (Pont-Tuset et al., 2017) which proposes class-independent object proposals.
MCG initializes by segmenting the image (at different resolutions) into image
regions. These regions are indexed by their place in the segmentation hierarchy.

1CTF implementation: https://bitbucket.org/mboben/spixel
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Figure 3.9: Multiscale Combinatorial Grouping (Pont-Tuset et al., 2017) (MCG)
performs hierarchical segmentation at different resolutions of the input image. The
generated hierarchies are aligned (via boundary snapping) and combined to generate
a single multiscale segmentation hierarchy. The contour values (the higher the value,
the darker it is) in the intermediate segmented images can be interpreted as the
measure of contrast of that particular contour. Finally, candidate object proposals
are generated by exploring the combinatorial space of the generated regions. We
make use of such object proposal candidates in our user-click encodings. Image
from Pont-Tuset et al. (2017).

At the finest level these image segments are superpixels; regions from the coarse
level are unions of region from the finer levels. At the finest level, the superpixels
are constructed on the basis of low-level features such as brightness, color, and
texture difference (Martin et al., 2004), contours (Xiaofeng and Bo, 2012), and
edges (Dollár and Zitnick, 2013). However, it is unlikely that such segments
obtained using low-level features are able to capture complex objects in its entirety.
Accordingly, to capture complete objects, MCG creates a set of object hypothe-
sis by combinatorially merging image regions from different segmentation hierarchies.

For generation of our content-aware user click encodings (Chapter. 4), we use the
pre-computed object proposals for Pascal VOC 2012 (Everingham et al., 2010) and
MS COCO (Lin et al., 2014) made publicly available by the authors of MCG (Pont-
Tuset et al., 2017)2. For obtaining the object proposals for the GrabCut (Rother
et al., 2004) and the Berkeley (McGuinness and O’connor, 2010) dataset, we use the
publicly available implementation of MCG (Pont-Tuset et al., 2017)3 algorithm on
the ‘accurate’ setting. MCG returns, on an average, 500-1000 superpixels or regions
for each image.

2https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg
3https://github.com/jponttuset/mcg
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3.5 Evaluation Metrics

Fully automated semantic segmentation algorithms in literature (Long et al., 2015;
Liang-Chieh et al., 2015; Chen et al., 2018b,c) are typically evaluated using the
mean intersection over union (mIoU). First, the intersection over union (IoU)
is computed for each semantic class; mIoU is then computed by the taking the
average over IoUs for all the semantic classes. Semantic segmentation methods
are conventionally compared using the mIoU w.r.t the ground truth masks of an
withheld test-set (Everingham et al., 2010); The higher the mIoU, the better is the
segmentation method (Chen et al., 2018c).

More formally, for an image, let yij be the number of pixels from class i that
were predicted as class j and let the total number of pixels belonging to class i be
given by ti =

∑
j yij . Then the mIoU is given by (Long et al., 2015),

mIoU =
1

nC

∑
i yii

(ti +
∑

j yji − yii)
(3.6)

Any prediction errors from such automated methods can be corrected as a
separate post-processing method; typically, the segmentation algorithm does not
play any role beyond the prediction (Long et al., 2015; Chen et al., 2018b,c).
Different from such automated segmentation methods, in interactive segmentation
frameworks (Xu et al., 2016), users can add a succession of ‘positive’ and ‘negative’
clicks to improve the generated output mask by removing the false negatives and
false positives, respectively. These user cues, at each step, are processed by the
segmentation algorithm, which then generates an updated prediction based on the
user-provided cues.

Existing click-based deep interactive frameworks are commonly evaluated
using two metrics (Xu et al., 2016; Liew et al., 2017; Mahadevan et al., 2018;
Li et al., 2018; Jang and Kim, 2019; Lin et al., 2020) - mIoU%@clicks and
clicks@mIoU%. The first metric, mIoU%@clicks, compares the average mIoU
over all the object instances in the dataset after each round of clicking. This metric
quantifies the responsiveness of interactive frameworks to new user clicks. As more
and more clicks are added, the underlying segmentation algorithm should respond
to the user-provided cues and improve the predicted mask.

clicks@mIoU% denotes the average number of clicks required to reach a
desired mIoU across all instances of the dataset. This metric primarily evaluates
the suitability of a framework for an annotation task where high-quality segments
are desired for each instance in the scene preferably with a low number of clicks.
On the other hand, this fixed mIoU threshold is 90% for the simpler datasets, such
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as, GrabCut (Rother et al., 2004) and Berkeley (McGuinness and O’connor, 2010)
and 85% for the more challenging Pascal VOC 2012 (Everingham et al., 2010) and
MS COCO (Lin et al., 2014) datasets. Following (Xu et al., 2016), the maximum
number of clicks for an instance is limited to 20 (Xu et al., 2016).

Both automated segmentation methods and interactive segmentation methods
are evaluated on datasets with dense per-pixel annotations. Different to semantic
segmentation methods, majority of the existing interactive frameworks operate
in a class-agnostic manner. So, unlike semantic segmentation methods, class
labels are not required during training and evaluation of interactive frameworks.
Conventionally, interactive frameworks are trained using the ground truth masks of
individual instances from the train set of large-scale datasets such as Pascal VOC
2012 (Everingham et al., 2010) and MS COCO (Lin et al., 2014). Such datasets
contain annotated instances in the order of tens to hundreds of thousands. To
demonstrate the generalization ability of interactive frameworks, they are evaluated
on datasets with instances from previously unseen classes. These typically include
the GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor, 2010), and
the MS COCO (Lin et al., 2014) dataset, provided instances from these datasets
were not used during training.

GrabCut (Rother et al., 2004) and Berkeley (McGuinness and O’connor,
2010) are small-scale datasets with around 50 to 100 foreground objects. The
images from GrabCut, typically, consist of a single foreground object, with a very
distinctive appearance. Compared to GrabCut, the instances in the Berkeley
dataset are more challenging with heavily textured and low contrast background.
Both the datasets are popular for benchmarking interactive segmentation methods.
Pascal VOC 2012 (Everingham et al., 2010) consists of 1464 training and 1449
validation images across 20 object classes; majority of the images contain multiple
foreground objects. For training, conventionally, 1464 images plus the additional
instance annotations from SBD (Hariharan et al., 2011) are considered, which
results in around 20, 000 instances. It is a very popular dataset for benchmarking
interactive segmentation methods as well as semantic segmentation methods (Chen
et al., 2018c). MS COCO (Lin et al., 2014) is another large-scale image segmen-
tation dataset with instances from 80 different object categories, 20 of which are
common with Pascal VOC 2012. Existing interactive frameworks, typically, do not
report their performance on all the validation instances of MS COCO; instead these
frameworks report the performance over 800 instances that are randomly sampled
with 10 instances coming from each object class.





Chapter 4

Content-Aware Guidance Maps

This chapter includes the content of the following publication:

• Soumajit Majumder and Angela Yao. “Content-aware multi-level guidance for
interactive instance segmentation.” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

Figure 4.1: Existing interactive instance segmentation (Xu et al., 2016; Liew et al.,
2017; Li et al., 2018; Hu et al., 2019) techniques do not utilize any image information
when generating guidance maps (second column). In contrast, our proposed tech-
nique exploits image structures such as superpixels and object proposals, allowing
us to generate more informative guidance maps (first column, bottom row).

In interactive instance segmentation, users give feedback to iteratively refine
segmentation masks. The user-provided clicks are transformed into guidance maps
which provide the network with necessary cues on the whereabouts of the object
of interest. Guidance maps used in current systems are purely distance-based and
are either too localized or non-informative. We propose a novel transformation of
user clicks to generate content-aware guidance maps that leverage the hierarchical
structural information present in an image. Using our guidance maps, even the
most basic FCNs are able to outperform existing approaches that require state-
of-the-art segmentation networks pre-trained on large scale segmentation datasets.
We demonstrate the effectiveness of our proposed transformation strategy through
comprehensive experimentation in which we significantly raise state-of-the-art on
four standard interactive segmentation benchmarks.

4.1 Introduction

Interactive object selection and segmentation allows users to interactively select
objects of interest down to the pixel level by providing inputs such as clicks,
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scribbles, or bounding boxes. The segmented results are useful for downstream
applications such as image/video editing (Li et al., 2004; Benard and Gygli,
2017), image-based medical diagnosis (Wang et al., 2018a,b), human-machine
collaborative annotation (Andriluka et al., 2018), etc. GrabCut (Rother et al.,
2004) is a pioneering example of interactive segmentation which segments objects
from a user-provided bounding box by iteratively updating a colour-based Gaussian
mixture model. Other methods include Graph Cuts (Boykov and Jolly, 2001),
Random Walk (Grady et al., 2005) and GeoS (Criminisi et al., 2008) though more
recent methods (Xu et al., 2016; Liew et al., 2017; Mahadevan et al., 2018) approach
the problem with deep learning architectures such as FCNs.

In standard, non-interactive instance segmentation (Vincent and Soille, 1991;
Dai et al., 2016; Hariharan et al., 2014, 2015; He et al., 2017), the RGB image is
given as input and segmentation masks for each object instance are predicted. In
an interactive setting, however, the input consists of the RGB image as well as
‘guidance’ maps based on user-provided supervision. The guidance map helps to
select the specific instance to segment; when working in an iterative setting, it can
also help correct errors from previous segmentations (Xu et al., 2016; Liew et al.,
2017; Benard and Gygli, 2017; Mahadevan et al., 2018).

User feedback, in most deep learning-based interactive image segmentation
approaches, is typically given in the form of point clicks (Xu et al., 2016; Liew
et al., 2017; Mahadevan et al., 2018; Li et al., 2018; Hu et al., 2019). In majority
of these works, these user-provided clicks are transformed into guidance maps using
simplistic primitives, e.g. Euclidean-based distance transformation (Xu et al., 2016;
Li et al., 2018) and Gaussian transformations (Benard and Gygli, 2017; Mahadevan
et al., 2018; Maninis et al., 2018). Examples of such guidance maps can be found
in Fig. 4.3.

We observe that existing user-click transformations are agnostic to the image
content. Such existing guidance maps disregard even the most basic image consis-
tencies present in the scene, such as colour and texture homogeneity (Achanta et al.,
2012; Van den Bergh et al., 2012; Yao et al., 2015). This, of course, also precludes
even more sophisticated structures such as object hypotheses, all of which can be
determined in an unsupervised way (Pont-Tuset et al., 2017). Our motivation is to
maximize the information which can be harnessed from user-provided clicks and,
in that process, generate more meaningful guidance maps for interactive instance
segmentation.

In this work, we propose a simple yet effective transformation of user-provided
clicks which enables us to leverage a hierarchy of image information, starting from
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low-level cues such as appearance and texture, based on superpixels (Achanta et al.,
2012; Yao et al., 2015), to more high-level information such as class-independent
object hypotheses (see Fig. 4.3). Ours is the first work to investigate the impact
of guidance map generation for interactive segmentation. Our findings suggest
that current Gaussian- and Euclidean distance based maps are too simple and
do not fully leverage structures present in the image. A second and common
drawback of current distance-based guidance maps is that they fail to account for
the scale of the object during interaction. Object scale has a direct impact on
the network performance when it comes to classification (Papandreou et al., 2015)
or segmentation (Noh et al., 2015). Gaussian- and Euclidean distance maps are
primarily used for localizing the user clicks and do not account for the object scale.
Our algorithm roughly estimates the object scale based on the user-provided clicks
and refines the guidance maps accordingly.

Our proposed approach is extremely flexible in that the generated guidance map
can be paired with any method which accepts guidance as a new input channel (Xu
et al., 2016; Liew et al., 2017; Benard and Gygli, 2017; Mahadevan et al., 2018; Hu
et al., 2019). We demonstrate via experimentation that providing content-aware
guidance by leveraging the structured information in an image leads to a significant
improvement in performance when compared to the existing state-of-the-art, all the
while using a simple, off-the-shelf, CNN architecture. The key contributions of our
work are as follows:

• We propose a novel transformation of user-provided clicks which generates
guidance maps by leveraging hierarchical information present in a scene.

• We propose a framework which can account for the scale of an object and
generate the guidance map accordingly in a click-based user feedback scheme.

• We perform a systematic study of the impact of guidance maps on the interac-
tive segmentation performance when generated based on features at different
levels of the image hierarchy.

• We achieve state-of-the-art performance on four segmentation benchmarks; the
GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor, 2010),
Pascal VOC 2012 (Everingham et al., 2010) and MS COCO (Lin et al., 2014)
datasets. Our proposed method significantly reduces the amount of user in-
teraction required for accurate segmentation and uses the fewest number of
average clicks per instance.

4.2 Related Works

Segmenting objects interactively using clicks, scribbles, or bounding boxes has
always been a problem of interest in computer vision research, as it can solve some
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quality problems faced by fully-automated segmentation methods. Early variants
of interactive image segmentation methods, such as the parametric active contour
model (Kass et al., 1988) and intelligent scissors (Mortensen and Barrett, 1995)
mainly considered boundary properties when performing segmentation; as a result
they tend to fare poorly on weak edges. More recent methods are based on graph
cuts (Boykov and Jolly, 2001; Rother et al., 2004; Vezhnevets and Konouchine, 2005;
Li et al., 2004), geodesics (Bai and Sapiro, 2009; Criminisi et al., 2008), and or a
combination of the two (Gulshan et al., 2010; Price et al., 2010). However, all these
algorithms try to estimate the foreground/background distributions from low-level
features such as color and texture, which are unfortunately insufficient in several
instances, e.g., in images with similar foreground and background appearances,
intricate textures, and poor illumination.

As with many other areas of computer vision, deep learning-based methods
have become popular also in interactive segmentation in the past few years. In the
initial work of Xu et al. (2016), user-provided clicks are converted to Euclidean
distance transform maps which are concatenated with the color channels and fed
as input to a FCN (Long et al., 2015). Clicks are then added iteratively based on
the errors of the previous prediction. On arrival of each new click, the Euclidean
distance transform maps are updated and inference is performed. The process is
repeated until a satisfactory result is obtained. Subsequent works have focused
primarily on making extensions with newer CNN architectures (Mahadevan et al.,
2018; Benard and Gygli, 2017) and iterative training procedures (Mahadevan et al.,
2018; Liew et al., 2017). In the majority of these works, user guidance has been
provided in the form of point clicks (Xu et al., 2016; Mahadevan et al., 2018;
Liew et al., 2017; Maninis et al., 2018; Li et al., 2018) which are then transformed
into a Euclidean-based distance map (Xu et al., 2016; Li et al., 2018). One
observation made in (Benard and Gygli, 2017; Mahadevan et al., 2018; Maninis
et al., 2018) was that encoding the clicks as Gaussians led to some performance
improvement because it localizes the clicks better (Mahadevan et al., 2018) and can
encode both positive and negative click in a single channel (Benard and Gygli, 2017).

In Chen et al. (2018a), the authors explore the use of superpixels to generate the
guidance map. However, in contrast to Chen et al. (2018a) which uses superpixels
to maintain computational efficiency wrt. to their graph optimization, our guidance
maps uses superpixels to leverage the local similarities contained within it. This is a
general principle that we carry across image structures of varying levels for encoding
user inputs. For the most part, there has been little attention paid to how user inputs
should be incorporated as guidance; the main focus in interactive segmentation has
been dedicated towards the training procedure and network architectures.
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Superpixel-based Guidance Map

Object-based 
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Distance Transform 
of the initial prediction 
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Figure 4.2: Outline. Given an input image and user interactions, we transform the
positive and negative clicks (denoted by the green and red dots respectively) into
three separate channels (2 channel superpixel-based and 1 object proposal-based
guidance map), which are concatenated (denoted as ⊕) with the 3-channel image
input and is fed to our network. Additionally, we concatenate the euclidean distance
transform of the predicted mask from the previous iteration as our final non-color
channel. The solid green line indicates our estimate of the object scale based on the
initial pair of positive and negative click. The desired output is the ground truth
map of the selected object.

4.3 Proposed Approach

We follow previous interactive frameworks (Xu et al., 2016; Liew et al., 2017; Ma-
hadevan et al., 2018) in which a user can provide both ‘positive’ and ‘negative’ clicks
to indicate foreground and background or other objects respectively (as shown in
Fig. 4.2). We denote the set of click positions as {p0,p1} with subscripts 0 and 1
to denote positive and negative clicks respectively. To date, guidance maps have
been generated by as a function of the distance between each pixel of the image grid
to the point of interaction. More formally, for each pixel position p on the image
grid, the pair of distance-based guidance maps for positive and negative clicks can
be computed as

Gd0(p) = min
c∈{p0}

d(p, c) and Gd1(p) = min
c∈{p1}

d(p, c). (4.1)

In the case of Euclidean guidance maps (Xu et al., 2016), the function d(·, ·) is sim-
ply the Euclidean distance; for the Gaussian guidance maps, d(·, ·) is the value of a
Gaussian with a standard deviation of 10 pixels that is centered on the click (Ma-
hadevan et al., 2018; Benard and Gygli, 2017). For the Gaussians, the min operator
is replaced with the max operator. However, such guidance is image-agnostic and
assumes that each pixel in the scene is independent. Our proposed approach eschews
this assumption and proposes the generation of multiple guidance maps which align
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with both low-level and high-level image structures present in the scene. We rep-
resent low-level structures with superpixels and high-level ones with region-based
object proposals and describe how we generate guidance maps from these structures
in Sections 4.4 and 4.5.

4.4 Superpixel-based guidance map

We first consider a form of guidance based on non-overlapping regions; in our
implementation, we use superpixels. Superpixels group together locally similarly
coloured pixels while respecting object boundaries (Achanta et al., 2012) and
were the standard working unit of pre-CNN -based (classical) segmentation algo-
rithms (Papazoglou and Ferrari, 2013; Faktor and Irani, 2014). Previous works have
shown that most, if not all, pixels in a superpixel belong to the same category (He
et al., 2006; Papazoglou and Ferrari, 2013; Faktor and Irani, 2014). Based on
this observation, we propagate user-provided clicks which are marked on single
pixels to the entire superpixel. We then assign guidance values to each of the other
superpixels in the scene based on the minimum Euclidean distance from the centroid
of each superpixel to the centroid of a user-selected superpixel. One can think
of the guidance as a discretized version of Eq. 4.1 based on low-level image structures.

More formally, let {S} represent the set of superpixels from an image and fSP (p)
be a function which maps each pixel location p in the image to the corresponding
superpixel in {S}. We further define a positive and negative superpixel set based
on the positive and negative clicks, i.e. {s0 = fSP (p0)} and {s1 = fSP (p1)} respec-
tively. Similar to the distance-based guidance maps in Eq. 4.1, we generate a pair of
guidance maps. However, rather than treating each pixel individually, we propagate
the distances between superpixel centers to all pixels within each superpixel, i.e.

Gsp
t (p) = min

s∈{st}
dc (s, fSP (p)) , where t = {0, 1}, (4.2)

and dc(si, sj) is the Euclidean distance between the centers sci and s
c
j of superpixels

si and sj respectively, where sci = (
∑

i xi/|si|,
∑

i yi/|si|) where |si| denotes the
number of pixels within si. For consistency across training images, the guidance
maps values are scaled between [0, 255]. When the user provides no clicks, all pixel
values are set to 255. Examples guidance maps are shown in the second and third
column of Fig. 4.3 respectively.

4.5 Object-based guidance map

Superpixels can be grouped together perceptually into category-independent object
proposals. We also generate guidance maps from higher-level image structures,
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Figure 4.3: Example of content-aware guidance maps. We transform the user-
provided positive (shown as green dots) and negative (shown as red dots) clicks
into guidance maps for the instance segmentation network (columns 2 to 5). The
second and third column correspond to the positive and negative Euclidean distance
transformation based guidance map respectively (Xu et al., 2016; Liew et al., 2017).
Rows 4 and 5 correspond to our proposed positive and negative superpixel based
guidance map respectively. Examples of the proposed object based guidance map
and the scale-aware guidance map are shown in rows 6 and 7 respectively. For the
clarity of visualization, we inverted the values of the object-based guidance map and
the scale-aware guidance map (Best viewed in color).
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specifically region-based object proposals (Arbelaez et al., 2011; Uijlings et al.,
2013; Krähenbühl and Koltun, 2014; Maninis et al., 2016; Pont-Tuset et al., 2017).
Such proposals have been used in the past as weak supervision for semantic
segmentation (Dai et al., 2015; Khoreva et al., 2017) and allow us to incorporate a
weak object-related prior to the guidance map, even if the instance is not explicitly
specified by the user-provided clicks. To do so, we begin with a set of object
proposals (Pont-Tuset et al., 2017), which have positive clicks its pixel support. For
each pixel in the guidance map, we count the number of proposals from this set to
which the pixel belongs. Pixels belonging to same object proposals are more likely
to belong in the same object category and the number of proposals to which pixels
belong incorporates a co-occurrence prior with respect to the current positive clicks.

More formally, let {Lp} be the set of object proposals for an image with support
of pixel location p. The object-based guidance map can be generated as follows:

Go(p) =
∑

p′∈{p0}

∑
L∈{Lp′}

1[p ⊂ L] (4.3)

where 1[p⊂L] is an indicator function which returns 1 if object proposal L has in
its support or contains pixel p. Similar to the superpixel-base guidance map, the
object-based guidance is also re-scaled to [0, 255]. In the absence of user-provided
clicks, all pixels are set to 0. Examples are shown in the fourth column of Fig. 4.3.

4.6 Scale-aware guidance

Within an image, object instances can exhibit a large variation in their spatial
extent (Singh and Davis, 2018). While deep CNNs are known for their ability to
handle objects at different scales (Liang-Chieh et al., 2015), specifying the scale
explicitly leads to an improvement in performance (Papandreou et al., 2015).
Interactive instance segmentation methods (Maninis et al., 2018) which isolate the
object tend to have a superior performance. For segmenting object instances, it is
thus desirable to construct guidance maps which exhibit spatial extents consistent
with the object.

A common limitation of most click-based interactive approaches is that the
provided guidance is non-informative about scaling of the intended object instance.
The commonly used forms of guidance are either too localized (Mahadevan et al.,
2018) (guidance map values are clipped to 0 at a distance of 20 pixels from the
clicks) or non-informative (Xu et al., 2016).

Suppose now that we have some rough estimate of an object’s scale in pixels,
either in width or length. A convenient way to make our guidance maps scale-
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aware is to incorporate contributions of superpixels and object proposals which are
in agreement with this scale. More specifically, we can apply this to the superpixel
guidance map by truncating distances exceeding some factor f of our scale measure
s, i.e.,

Gsp-sc
t (p) = min [Gsp

t (p), fs] . (4.4)

We can apply similar constraints to the object-proposal based guidance by consid-
ering only the proposals within an accepted size range bounded by tolerance factors
f1 and f2:

Go-sc(p) =
∑

p′∈{p0}

∑
L∈{Lp′}

1[p ⊂ L] · 1[f1 ≤ |L|/s2 ≤ f2]. (4.5)

4.6.1 Simulating user interactions

Even when selecting the same object instance, it is unlikely that different users
will provide the same interactions inputs. For the model to fully capture expected
behaviour across different users, one would need significant amounts of interaction
training data. Rather than obtaining these clicks from actual users for training, we
simply simulate user clicks and generate guidance maps accordingly.

We follow the sampling strategies proposed in Xu et al. (2016). For each object
instance, we sample Npos positive clicks within the object maintaining a distance din1
pixels from the object boundary and din2 pixels from each other. For negative clicks,
we test the first two of the three sampling strategies outlined in Xu et al. (2016),
one in which N1

neg clicks are sampled randomly from the background, ensuring a dis-
tance of dout1 pixels away from the object boundary and dout2 pixels from each other
and one in which N2

neg clicks on each of the negative objects (objects not of interest).

The above click-sampling strategy helps the network to understand notions such
as negative objects and background but cannot train the network to identify and
correct errors made during the prediction (Mahadevan et al., 2018). To this end,
we randomly sample Niter clicks based on the segmentation errors. After an initial
prediction is obtained, positive or negative clicks are randomly sampled from the
error. Existing set of clicks are then replaced with the newly sampled clicks with a
probability of 0.3. To mimic a typical user’s behavior (Mahadevan et al., 2018), the
error-correction clicks are placed closest to the center of the largest misclassified
(false positive or false negative) region.

To estimate the scale measure s, we reserve the first two clicks, one positive and
one negative, and assume that the Euclidean distance between the two is a roughly
proportional measure; f , f1 and f2 are then set accordingly.
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4.7 Experimental Validation

4.7.1 Datasets and Evaluation

We apply our proposed guidance maps and evaluate the resulting instance segmen-
tations on four publicly available datasets: PASCAL VOC 2012 (Everingham et al.,
2010), GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor, 2010),
and MS COCO (Lin et al., 2014).

Evaluation. Fully automated instance segmentation is usually evaluated with mean
intersection over union (mIoU) between the ground truth and predicted segmenta-
tion mask. Interactive instance segmentation is differently evaluated because a user
can always add more positive and negative clicks to improve the segmentation and
thereby increase the mIoU. As such, the established way of evaluating an interac-
tive system is according to the number of clicks required for each object instance to
achieve a fixed mIoU. Similar to existing frameworks (Xu et al., 2016; Liew et al.,
2017; Mahadevan et al., 2018; Benard and Gygli, 2017), we limit the maximum num-
ber of clicks per instance to 20. Unlike Xu et al. (2016); Liew et al. (2017), we do
not apply any post-processing with a conditional random field and directly use the
segmentation output from the FCN.

4.7.2 Implementation Details

Training. As our base segmentation network, we adopt the FCN-8s (Long et al.,
2015) pre-trained on Pascal VOC 2012 dataset (Everingham et al., 2010) as pro-
vided by MatConvNet (Vedaldi and Lenc, 2015). The output layer is replaced with
a two-class softmax layer to produce binary segmentations of the specified object
instance. We fine-tune the network on the 1464 training images with instance-level
segmentation masks of Pascal VOC 2012 segmentation dataset (Everingham et al.,
2010) together with the 10582 masks of SBD (Hariharan et al., 2011). We further
augment the training samples with random scaling and flipping operations. We use
zero initialization for the extra channels of the first convolutional layer (conv1_1).
Following (Xu et al., 2016), we fine-tune first the stride-32 FCN variant and then
the stride-16 and stride-8 variants. The network is trained to minimize the aver-
age binary cross-entropy loss. For optimization, we use a learning rate of 0.01 and
stochastic gradient descent (SGD) with Nesterov momentum with the default value
of 0.9 is used.

Click Sampling. We generate training images with a variety of click numbers
and locations; sometimes, clicks end up being sampled from the same superpixel,
which reduces training data variation. To prevent this and also make the network
more robust to the click number and location for training, we sample randomly
from the following hyperparameters rather than fixing them to single values: Npos=
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{2, 3, 4, 5}, N1
neg = {5, 10}, N2

neg = {3, 5}, din1 = {15, 20, 40}, din2 = {7, 10, 20}, dout1 =

{15, 40, 60}, dout2 = {10, 15, 25}. The randomness in the number of clicks and their
relative distances prevents the network from over-fitting during training.

Guidance Dropout. Since the FCNs are pre-trained on Pascal VOC 2012, we
expect the network to return a good initial prediction for images with object in-
stances from one of its 20 classes. Thus, during training, when the network receives
images without any instance ambiguity (i.e. an image with single object), we zero the
guidance maps (value of 0 for object guidance map and 255 for the superpixel based
guidance map) with a probability of 0.2 to encourage good segmentations without
any guidance. We further increase robustness by resetting the positive or negative
superpixel-based guidance with a probability of 0.4.

Interaction Loop. During evaluation, a user provides positive and negative clicks
sequentially to segment the object of interest. After each click is added, the guidance
maps are recomputed; in addition the distance transform of predicted mask from
the previous iteration is provided as an extra channel (Mahadevan et al., 2018). The
newly generated guidance map is concatenated with the image and given as input
to the FCN-8s network which produces an updated segmentation map.

Superpixels and Object Proposals. We use the implementation provided
in Pont-Tuset et al. (2017) for generating superpixels; on average, each frame has
500−1000 superpixels. For comparison, we also try other superpixelling variants, e.g.
SLIC (Achanta et al., 2012) and CTF (Yao et al., 2015). Although several other
object proposal algorithms exist (Carreira and Sminchisescu, 2011; Uijlings et al.,
2013; Pont-Tuset et al., 2017), we use only MCG (Pont-Tuset et al., 2017) as it has
been shown to have higher quality proposals. The final stage of MCG returns a
ranking which we disregard. We use the pre-computed object proposals for Pascal
VOC 2012 and MS COCO provided by the authors of Pont-Tuset et al. (2017). For
GrabCut and Berkeley, we run MCG (Pont-Tuset et al., 2017) on the ‘accurate’
setting to obtain our set of object proposals1.

4.7.3 Impact of Structure-Based Guidance.

We begin by looking at the impact of superpixel based guidance. As a baseline,
we compare with Xu et al. (2016), which uses a standard Euclidean distance-based
guidance as given in Eq. 4.1 (second and third column of Fig. 4.3). Similar to Xu
et al. (2016), we concatenate our positive and negative superpixel-based guidance
maps with the three color channels and feed it as an input to the FCN-8s (Long
et al., 2015). We use the superpixels computed using MCG (Pont-Tuset et al.,

1https://github.com/jponttuset/mcg
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2017). For a fair comparison, we train our network non-iteratively, i.e., during
training, we do not generate click samples based on the error in the prediction and
do not append the distance transform of the current predicted mask as an extra
channel. Looking at Table. 4.1, we see that our superpixel based guidance maps sig-
nificantly reduce the number of clicks required to reach the standard mIoU threshold.

The object-based guidance provides the network with a weak localization prior of
the object of interest. Adding the object-based guidance with the superpixel based
guidance leads to further improvements in performance (see third row of Table. 4.1).
The impact is more prominent for datasets with a single distinct foreground object
(e.g. 9.3% and 14% relative improvement for the Berkeley and GrabCut dataset).
Finally, by making the feedback iterative, i.e. based on previous segmentation errors,
we can further reduce the number of clicks. Overall, our structure-based guidance
maps can reduce the number of clicks by 35% to 47% and unequivocally proves that
having structural information in the guidance map is highly beneficial.

GrabCut Berkeley VOC 2012
@90% @90% @85%

Euclidean (Xu et al., 2016) 6.04 8.65 6.88
SP 4.44 6.67 4.23
SP+Obj. 3.82 6.05 4.02

SP+Obj.+Iter 3.58 5.60 3.62

Table 4.1: Clicks required for different types of guidance. Guidance maps leveraging
structural information require significantly less clicks than Euclidean distance-based
guidance. SP refers to the superpixel guidance maps and Obj refers to the obect
based guidance map and Iter refers to iterative training.

4.7.4 Impact of Scale-Aware Guidance

Due to fixed-size receptive field, FCNs experience difficulty when segmenting small
objects (Noh et al., 2015). The benefits of our scale-aware guidance map is most
pronounced for segmenting small objects; for larger objects (≥ 32 × 32 pixels), it
does not seem to have that much of an impact. To highlight the impact of our
guidance on small object instances, we pick the subset of 621 objects from Pascal
VOC 2012 (Everingham et al., 2010) which are smaller than 32×32; objects smaller
than this size are harder to identify (Singh and Davis, 2018).

In the scale agnostic setting, we consider all object proposals which has the click
in its pixel support for generating the object-based guidance map, i.e. (as shown
in Equation. 4.3; note that this is equivalent to having f1 = 0, f2 =∞). Since the
lower bound on scale has little effect, we set f1=0. Looking at the average number
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Figure 4.4: (a) Scale-Aware Guidance. The figure shows the average number of
clicks required for segmenting small object instances (smaller than 32 × 32 pix-
els (Singh and Davis, 2018)) for varying degrees of tolerance till which we accept
object proposals for generating our guidance map based on our estimated object
scale and the ground truth object scale (computed as the square root of the number
of pixels in the object mask). (b) Number of superpixels. The figure shows the
average number of clicks required for segmenting object instances in Pascal VOC
2012 val set for different number of superpixels.

of clicks required per instance to reach 85% mIoU for the subset of small objects
(see Fig. 4.4 (a)), we find that having a soft scale estimate improves the network
performance when it comes to segmenting smaller objects. This is primarily because
the guidance map disregards object proposals which are not consistent in scale and
can degrade the network performance by inducing a misleading co-occurrence prior.

When the scale s is based on ground truth (as the square root of the number
of pixels in the mask foreground, see black curve in Fig. 4.4 (a)), the average clicks
required per instance is consistently lower than the scale-agnostic case, even when
as we relax f2 up to 6, i.e. allowing for object proposals which are 6 times larger
than the actual object scale. Estimating the scale from the clicks is of course much
less accurate than when it is take from the ground truth masks (compare blue curve
vs black curve in Fig. 4.4 (a)). Nevertheless, even with such a coarse estimate,
we find improvements in the number of clicks required as compared to the scale-
agnostic scenario (compare red dashed line in Fig. 4.4 (a)). Given the first pair
of positive and negative clicks, our estimated object scale is

√
πd where d is the

euclidean distance between the positive and the negative click. In our experiments,
we observed that our estimated scale varies between 50-300% from the ground truth
scale. In comparison to a scale-agnostic setting, over the Pascal VOC 2012 val set, we
observe an improvement of 0.1 clicks (a relative improvement of 2%) on the small
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objects subset and an improvement of 0.032 clicks per instance for objects larger
than 32× 32 pixels. Segmenting small objects with CNNs can be problematic (Noh
et al., 2015); we observed similar difficulties in preliminary experiments. For objects
smaller than 32×32 pixels from Pascal VOC 2012 val set, we require an average of
4.33 clicks which is significantly higher than our dataset average of 3.62 clicks.

4.7.5 Superpixels

Type of Superpixels. To study the impact of the superpixeling algorithm, we
consider the two variants SLIC (Achanta et al., 2012) and CTF (Yao et al., 2015)
and use only the superpixel based guidance map. On an average, MCG (Pont-Tuset
et al., 2017) generates 500 − 1000 superpixels for each image in its default setting.
For a fair comparison, we generate 500 and 1000 superpixels using SLIC and CTF.
We observe that using 1000 SLIC superpixels results in performance similar to the
MCG (see Table. 4.2). However, irrespective of the superpixeling method, we found
an overall improvement when the guidance maps are generated based on superpixels
instead of pixel-based distances.

#superpixels SLIC CTF MCG
(Achanta et al., 2012) (Yao et al., 2015) (Pont-Tuset et al., 2017)

500 4.45 4.82 4.231000 4.29 4.58

Table 4.2: Choice of superpixel algorithm. In this setting we only consider the
superpixel-based guidance maps and report the average number of clicks required to
attain a mIoU of 85% for all instances in the Pascal VOC 2012 val set.

Number of Superpixels. We now study the impact of the number of super-
pixels. For this, we consider only the superpixel-based map as guidance and use
SLIC (Achanta et al., 2012) as the superpixel algorithm. In the extreme case, all su-
perpixels will have one pixel in its support and the guidance map degenerates to the
Euclidean distance transform commonly used in existing interactive methods (Xu
et al., 2016; Li et al., 2018). We use the reported results in iFCN (Xu et al., 2016)
on Pascal VOC 2012 val set as our degenerate case (as shown by the red curve
in Fig. 4.4 (b)). In addition to the reported results for 500 and 1000 superpixels
on Pascal VOC 2012 val set, we generate 2000, 5000 and 10000 superpixels using
SLIC (Achanta et al., 2012), as shown in Fig. 4.4(b). We notice an initial gain in
performance, but with increase in the number of superpixels, the performance drops
as our network requires more and more clicks to segment the object of interest. As
the number of superpixels increase, the benefits of local structure based grouping is
lost as each superpixel is segmented into similar and redundant superpixels.
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Method Base GrabCut Berkeley VOC-2012 COCO-20 COCO-60
Network @90% @90% @85% @85% @85%

GCICCV’01 - 15.06 11.10 14.33 18.67 17.80
RWMICCAI’05 - 11.37 12.30 14.02 13.91 11.53
GMICCV’09 - 14.75 12.44 15.96 17.32 14.86
ESCCVPR’10 - 11.79 8.52 12.11 13.90 11.63
GSCCVPR’10 - 11.73 8.38 12.57 14.37 12.45
iFCNCVPR’16 FCN-8s (Long et al., 2015) 6.04 8.65 6.88 8.31 7.82
RISICCV’17 Deeplab (Liang-Chieh et al., 2015) 5.00 6.03 5.12 5.98 6.44
VOS-WildarXiv’17 Deeplabv3+ (Chen et al., 2018c) 3.80 - 5.60 - -
ITISBMVC’18 Deeplabv3+ (Chen et al., 2018c) 5.60 - 3.80 - -
LDCVPR’18 CAN (Yu and Koltun, 2016) 4.79 - - 12.45 12.45
Two-StreamNN’19 VGG-16 (Simonyan and Zisserman, 2014) 3.76 6.49 4.58 9.62 9.62
Ours FCN-8s (Long et al., 2015) 3.58 5.60 3.62 5.40 6.10

Table 4.3: The average number of clicks required to achieve a particular mIoU on four public benchmarks by classical
interactive frameworks - GC (Boykov and Jolly, 2001), RW (Grady et al., 2005), GM (Bai and Sapiro, 2009), ESC (Gul-
shan et al., 2010), and GSC (Gulshan et al., 2010); and deep learning-based interactive frameworks - iFCN (Xu et al.,
2016), RIS (Liew et al., 2017), VOS-Wild (Benard and Gygli, 2017), ITIS (Mahadevan et al., 2018), LD (Li et al.,
2018), and Two-Stream (Hu et al., 2019). The best results are indicated in bold. We observe that even with an earlier
segmentation backbone (Long et al., 2015), our proposed framework is able to outperform existing deep learning based
approaches using state-of-the-art segmentation models (Chen et al., 2018b,c). COCO-20 and COCO-60 refers to the
instances from 20 overlapping and 60 non-overlapping w.r.t Pascal VOC 2012 object categories respectively.
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4.7.6 Comparison to State of the Art

We compare the average number of clicks required to reach some required mIoU
(see Table. 4.3) against other methods reported in the literature. The methods vary
in the base segmentation network from the basic FCNs to the highly sophisticated
Deeplabv3+ and also make use of additional CRF post-processing. We achieve the
lowest number of clicks required for all datasets across the board, again proving the
benefits of applying guidance maps based on existing image structures. We report
results for our best trained SP+Obj+Iter network. To reach the mIoU threshold of
90% on GrabCut and Berkeley, our full model needs the fewest number of clicks as
shown in Table. 4.3 with a relative improvement of 5.79% and 7.13% over the cur-
rent benchmark. For Pascal VOC 2012 val set, we observe a relative improvement
of 4.7%. For MS COCO, we observe a larger improvement for the 20 seen categories
from Pascal VOC 2012, as our networks were trained heavily on these object cate-
gories. Overall, we achieve an improvement of 9.7% and 5.28% over the 20 seen and
60 unseen object categories. We note that such an improvement is achieved despite
the fact that our base network is the most primitive of the methods compared, i.e. an
FCN-8s, in comparison to the others who use more complex (Deeplabv3+) network
architectures with much deeper (ResNet-101) backbones. It should be noted that
FCTSFN (Hu et al., 2019) and IIS-LD (Li et al., 2018) report their result over all
the 80 classes of MS COCO and not separately for 20 seen and 60 unseen classes.
We also compare our approach to that of Chen et al. (2018a) which targets images
with only a single foreground object. To be comparable, we consider only our results
with a single positive (foreground) click. We find that for the GrabCut and Berkeley
dataset, our mIoU is higher by 4% and 8% respectively.

4.8 Qualitative Results

Zero Clicks. We show via some qualitative examples, the benefits of having the
guidance dropout. In several instances, our network is able to produce high quality
masks without any user guidance (as shown in Fig. 4.5).

Multiple Clicks. In Fig. 4.6, we show some examples where undesired objects and
background was removed with only a few clicks resulting in a suitable object mask.

Failure Cases. We show some examples from Pascal VOC 2012 val set, where our
network is unable to generate object masks with ≥ 85% mIoU and exhausts the 20

click budget (see Fig. 4.7). These failure cases are representative of the problems
faced by CNNs while segmenting objects from images such as, small objects (Noh
et al., 2015), occlusion, motion blur and objects with very fine structures. In general,
we observed that our network had difficulty in handling three object classes from
Pascal VOC 2012 - chair, bicycle and potted plant. This stems from the inability of
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CNNs to produce very fine segmentations, most likely due to the loss of resolution
from downsampling in the encoder.

4.9 Discussion and Conclusion

In this work, we investigated the impact of the guidance maps for interactive object
segmentation. Conventional methods use distance transform based approaches for
generating guidance maps which disregard the inherent image structure. We pro-
posed a scale aware guidance map generated using hierarchical image information
which leads to significant reduction in the average number of clicks required to obtain
a desirable object mask. During experimentation, we observed that the object in-
stances within the datasets varied greatly in difficulty. For instance, on Pascal VOC
2012, the base network, without any user guidance, is able to meet the ≥ 85% mIoU
criteria for 433 of the 697 instances. Similarly observations were made for GrabCut
(≥ 90% mIoU, 13 out of 50) and Berkeley (≥ 90% mIoU, 15 out of 100). On the
other hand, we encountered instances where our algorithm repeatedly exhausted the
20 click budget regardless of sampled click locations and iterative feedback based on
prediction errors. This is especially true for objects with very fine detailing, such
as spokes in bicycle wheels, partially occluded chairs, etc. Based on these two ex-
treme cases, we conclude that interactive segmentation is perhaps not so relevant for
single object instances featuring prominently at the center of the scene and should
feature more challenging scenarios. On the other hand, we need to design better
algorithms which can handle objects that are not contiguous in region, i.e. has holes
and are able to handle scenarios of occlusion. Depending on the target application,
dedicated base architectures may be necessary to efficiently handle these cases.
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Figure 4.5: Zero Clicks. Examples of high-quality object masks generated without
any user guidance. Generated object boundaries are shown in green (Best viewed in
color).
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Figure 4.6: Multi Clicks. With a few clicks, background and undesired objects
were removed from the final prediction mask. Green dots indicate positive click, red
dots indicate negative click. Ground truth object boundaries are shown in cyan and
predicted object boundaries are shown in green (Best viewed in color).
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Figure 4.7: Failure Cases. Examples of failure cases. Ground truth object bound-
aries are shown in cyan. Generated object boundaries from the predicted mask are
shown in green. In the dog example, the network has difficulty distinguishing the fur
from the background. For the car example, it is either too small (1st row, 2nd col-
umn) or too occluded (2nd row, 1st column). For the bicycle, chair and potted plant
example, the error in prediction is due to the inability of the network in handling
very fine structures. (Best viewed in color).



Chapter 5

Localized Interactive Instance
Segmentation

This chapter includes the content of the following publication:

• Soumajit Majumder and Angela Yao. “Localized Interactive Instance Segmen-
tation.” DAGM German Conference on Pattern Recognition (GCPR), 2019.

In current interactive instance segmentation works, the user is granted a free
hand when providing clicks to segment an object; clicks are allowed on background
pixels and other object instances far from the target object. This form of interac-
tion is highly inconsistent with the end goal of efficiently isolating objects of interest.
In our work, we propose a clicking scheme wherein user interactions are restricted
to the proximity of the object. In addition, we propose a novel transformation of
the user-provided clicks to generate a weak localization prior on the object which
is consistent with image structures such as edges, textures etc. We demonstrate
the effectiveness of our proposed clicking scheme and localization strategy through
detailed experimentation in which we raise state-of-the-art on several standard in-
teractive segmentation benchmarks.

5.1 Introduction

Interactive object selection or interactive instance segmentation allows users to
select objects of interest down to a pixel level by providing inputs such as clicks,
scribbles and bounding boxes. The selected results are useful for downstream
applications such as image/video editing (Benard and Gygli, 2017; Li et al., 2004),
medical diagnosis (Wang et al., 2018a,b), image annotation tools (Andriluka et al.,
2018; Benenson et al., 2019) etc. GrabCut (Rother et al., 2004) is a pioneering
example of interactive segmentation; other notable methods include Lazy Snap-
ping (Li et al., 2004) and Random Walk (Grady et al., 2005).

More recent methods (Hu et al., 2019; Liew et al., 2017; Majumder and
Yao, 2019a; Maninis et al., 2018; Xu et al., 2016) have approached the problem
with deep learning architectures such as fully convolutional networks (FCNs).
In deep interactive segmentation, the input consists of the RGB image as well
as ‘guidance’ maps based on user-provided supervision. Users give ‘positive’
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clicks on the object of interest and ‘negative’ clicks on the background or other
objects in the scene. The guidance map helps the network to focus on the object
instance to segment; in an iterative setting, it helps to correct errors from previous
segmentations (Benard and Gygli, 2017; Liew et al., 2017; Mahadevan et al.,
2018; Majumder and Yao, 2019a; Xu et al., 2016). Typically, such guidance maps
are generated via fixed rules and are not visible to the end user; only the im-
age and intermediate and end segmentation results are visible to the interacting user.

For deep interactive segmentation, research efforts have predominantly been
limited to introducing new architectures (Benard and Gygli, 2017; Mahadevan et al.,
2018) and more sophisticated training procedures (Liew et al., 2017; Mahadevan
et al., 2018). Yet minimizing user interaction and maintaining high quality seg-
mentation requires a fine interplay between good specification of user interactions
and careful leveraging of the provided inputs. Previous methods have ignored
these aspects by allowing users to freely provide inputs (Benard and Gygli, 2017;
Mahadevan et al., 2018; Xu et al., 2016) in any order and at any location in the scene.

In addition, the guidance generated from the clicks are primitive and agnostic
to structures present in the image (Benard and Gygli, 2017; Mahadevan et al.,
2018; Maninis et al., 2018). In fact, the number and type of clicks to give, as well
as how to encode user clicks are open research questions with enormous impact
on the performance of the interactive system. For example, (Majumder and Yao,
2019a) showed that with improved click encodings, a simple base segmentation
network such as the FCN-8s (Long et al., 2015) can outperform methods (Benard
and Gygli, 2017; Mahadevan et al., 2018; Maninis et al., 2018) that use much deeper
and stronger base networks such as ResNet-101 (He et al., 2016). In this work, we
follow along this line of work in looking at how to cleverly specify and leverage user
clicks to improve interactive instance segmentation.

In this work, our interest is in directing user clicks to weakly constrain
the area of interest for interactive segmentation. Limiting the spatial extent is
advantageous both for the network and the user, i.e. it tells the network which
area to focus on for learning and also gives some indication of object scale; it also
directs the user clicks to ambiguous locations which will most benefit from guidance.

Directing user clicks to specify the location may seem like an obvious way
for interaction but few works on interactive segmentation have done so to date.
Instead, they favour hard constraints enacted by directly cropping out the bounding
boxes derived from user-given inputs (Maninis et al., 2018) or object detections (Xu
et al., 2017b). This hard crop relies on highly specific user inputs such as extreme
points (Maninis et al., 2018) which may slow down the user interaction, or having
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pre-trained object detectors for the object classes of interest for segmentation (Xu
et al., 2017b). We favour a simple approach, where we ask users to first roughly
localize objects with the first two interactions, e.g. on the two opposite corners in
a bounding box, or clicking at the center of the object and one outside the object
boundary. We propose using these first two interactions or clicks as the initial form
of interaction. Ensuing corrective positive and negative clicks are constrained to be
outside and within the enclosing boundary.

In addition, we propose a new transformation scheme for the user-provided clicks
which provides a weak localization prior on the object of interest and is consistent
with low-level structures such as edges, textures, etc in the scene. Unlike (Xu et al.,
2017b), this prior is generated without using class-specific bounding box detections.
With the arrival of newer clicks, this proposed transformation gradually refines the
localization prior. Our proposed approach can deal naturally with several types
of guidance modalities, including superpixel-based guidances (Majumder and Yao,
2019a) and bounding box type guidances (Xu et al., 2017b). Our key contributions
are as follows:

• We propose a simple yet efficient clicking scheme which focuses the user’s
attention to the object of interest and its vicinity.

• We propose a novel transformation of the user clicks which provides a weak
localization prior on the object; with the arrival of new user clicks the generated
guidance map gradually refines to the object boundary.

• Our proposed approach achieves state-of-the-art performance on three interac-
tive image segmentation benchmarks including the challenging MS COCO (Lin
et al., 2014) dataset; like other competing state-of-the-art methods in litera-
ture, through simulation of user clicks, we significantly reduce the amount of
user input required to generate accurate segmentation.

5.2 Related Works

The development of automated semantic and instance segmentation frameworks
is a rapidly growing area in computer vision (Chen et al., 2018c; Yu et al., 2018;
Zhang et al., 2018). Accompanying this line of work is interactive segmentation
- where users give clicks, scribbles, or bounding boxes to adjust and improve the
outputs of these fully automated methods. Early interactive image segmentation
approaches include parametric active contours, snakes (Kass et al., 1988) and
intelligent scissors (Mortensen and Barrett, 1995). Since these methods focus
primarily on boundary properties, they suffer when edge evidence is weak. More
recent methods are based on graph cuts (Boykov and Jolly, 2001; Li et al., 2004;
Rother et al., 2004; Vezhnevets and Konouchine, 2005), geodesics (Bai and Sapiro,
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2009; Criminisi et al., 2008), or a combination of both (Gulshan et al., 2010;
Price et al., 2010). However, since these methods try to separate foreground and
background solely based on low-level features such as colour and texture, they are
not robust and fare poorly when segmenting images with similar foreground and
background appearances, intricate textures, and poor lighting.

Recently, deep convolutional neural networks (CNNs) have been incorporated
into interactive segmentation frameworks. The initial work of Xu et al. (2016) uses
Euclidean distance maps to represent user-provided positive and negative clicks
which are then concatenated with the original colour image and provided as input
to a fully convolutional network (Long et al., 2015). Following works have focused
primarily on making extensions with newer CNN architectures (Benard and Gygli,
2017; Mahadevan et al., 2018) and iterative training procedures (Liew et al., 2017;
Mahadevan et al., 2018). Instead of training with fixed user clicks as input (Xu
et al., 2016), iterative training algorithms (Liew et al., 2017; Mahadevan et al.,
2018) progressively add clicks based on the error of the network predictions.

In the majority of interactive segmentation frameworks, user guidance has been
provided in the form of point-wise clicks (Hu et al., 2019; Li et al., 2018; Liew et al.,
2017; Mahadevan et al., 2018; Maninis et al., 2018; Xu et al., 2016) which are then
transformed into a Euclidean distance map (Hu et al., 2019; Li et al., 2018; Xu et al.,
2016). One observation made in (Benard and Gygli, 2017; Mahadevan et al., 2018;
Maninis et al., 2018) was that encoding the clicks as Gaussians led to performance
improvement because it localizes the clicks better (Mahadevan et al., 2018) and
can encode both positive and negative click in a single channel (Benard and Gygli,
2017). A more recent work (Benenson et al., 2019) observed encoding user clicks
as small binary disks to be more effective than Gaussian and the Euclidean encoding.

Different to (Benard and Gygli, 2017; Mahadevan et al., 2018; Xu et al., 2016;
Maninis et al., 2018; Benenson et al., 2019; Liew et al., 2017), we use guidance maps
which are consistent with the low-level image structures. Additionally, we propose a
superpixel box guidance map which provides weak localization cues to the network.
This is similar in spirit to (Benenson et al., 2019; Maninis et al., 2018; Xu et al.,
2017b) in which object bounding boxes are cropped out from extreme points specified
by the user (Maninis et al., 2018), (loose) ground truth bounding boxes (Benenson
et al., 2019) or object detections (Xu et al., 2017b). Our work relaxes the hard
constraint of (Maninis et al., 2018), wherein clicks have to be placed on the four
extremities of the object and on the object boundary. Furthermore, unlike (Xu
et al., 2017b), our proposed superpixel box guidance is class-agnostic and does not
require having pre-trained object detectors available.
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Guidance	Maps

DeepLab-v2

Figure 5.1: Outline. Given an image and user clicks, we transform the positive and
negative clicks (denoted by the green and red circles respectively) into three separate
channels - 2 channel superpixel-based (middle column, rows 1-2) and 1 superpixel-
box (middle column, row 3) guidance map. These are concatenated (denoted by ⊕)
with the 3-channel image input and is fed to our base segmentation network.

5.3 Proposed Method

We adopt the common approach for interactive segmentation that has been used
in previous deep learning-based frameworks (Benard and Gygli, 2017; Liew et al.,
2017; Majumder and Yao, 2019a; Mahadevan et al., 2018; Xu et al., 2016). The user
provides inputs on the original RGB image in the form of ‘positive’ and ‘negative’
clicks to indicate foreground and background respectively. The clicks are then
encoded into guidance maps via transformations (Section 5.3.2 and Section 5.3.3).

Typically, pixel values on the guidance map are a function of the pixel distance on
the image grid to the points of interaction (see Fig. 5.2). This includes Euclidean (Hu
et al., 2019; Xu et al., 2016) and Gaussian guidance maps (Benard and Gygli, 2017;
Mahadevan et al., 2018; Maninis et al., 2018). However, such guidance maps are
generated in an image-agnostic manner with the assumption that pixels in an image
are independent of one another. Alternative variants take image structures such as
superpixels (Chen et al., 2018a; Majumder and Yao, 2019a) and region-based object
proposals (Majumder and Yao, 2019a) into consideration for generating guidance
maps. Guidance maps are then concatenated as additional channels to the input
image and passed through the network (Xu et al., 2016; Liew et al., 2017; Maninis
et al., 2018; Chen et al., 2018a) (see Fig. 5.1).

5.3.1 Interaction Loop

In previous works (Benard and Gygli, 2017; Hu et al., 2019; Mahadevan et al., 2018;
Majumder and Yao, 2019a; Xu et al., 2016), the user has the liberty to provide
clicks anywhere in the scene. This includes clicking on object instances far from
the one of interest. Intuitively, a user interested in recovering an object instance
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from the scene would primarily fixate in the vicinity of the object of interest and
focus more on delineating the object from the nearby background. Additionally,
unconstrained clicks on the background and other objects fail to provide hints on
the whereabouts of the object which calls for additional click sampling strategies
are proposed (Xu et al., 2016; Benard and Gygli, 2017; Mahadevan et al., 2018) to
ensure negative clicks encompassing the object.

We propose a simple yet intuitive interaction framework. At the onset of
interaction, the user provides a click at the center of the object of interest followed
by another click on a background pixel in the vicinity of the object (see Fig. 5.2).
This first pair of clicks is used to generate a coarse prior on the location of the
object (see Sec. 5.3.3) in the form of an enclosing box. We then restrict the locations
of user subsequent inputs. More specifically, negative clicks need to be given inside
the estimated bounding box, while positive clicks need to be given outside. In turn,
the new positive clicks are then used to update the location prior.

Let us denote the set of positive and negative clicks as {c+i } and {c
−
i } respectively

for i = {1, · · · , n} and the initial foreground and background click as c+0 and c−0
respectively. Based on {c+0 , c

−
0 }, a coarse prior G on the object location is generated

(see Sec. 5.3.3). We then restrict the locations of user subsequent inputs. More
specifically, negative clicks need to be given inside the estimated object location,
while positive clicks need to be given outside. The new positive clicks are used to
update the bounding box boundaries ẽ0 and ẽ1, while all additional clicks, c+i 6=0 and
c−i 6=0, are used to update G.

5.3.2 Superpixel-based Guidance Maps

Superpixels are known for their ability to group locally similar pixels (Faktor and
Irani, 2014; He et al., 2006; Papazoglou and Ferrari, 2013). For our guidance
maps, we consider the superpixel-based variant of (Majumder and Yao, 2019a)
which outperformed approaches using Euclidean and Gaussian guidance maps.
In (Majumder and Yao, 2019a), user clicks given at single pixels are propagated to
entire superpixels. Guidance values of other superpixels in the scene are then given
by the minimum Euclidean distance from the centroid of each superpixel to the
centroid of a user-selected superpixel. Example of such superpixel-based guidance
maps are shown in Fig. 5.2.

More specifically, let {Z} denote the set of superpixels constituting an image
and fpZ denote a function which maps every pixel p to its corresponding superpixel.
Let {z+} = fpZ({c+}) and {z−} = fpZ({c−}) be the set of positive and negative su-
perpixels based on the user-provided clicks. The value of each pixel for the guidance
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map S+Z (p) corresponding to the set of positive clicks {c+} is given by,

S+Z (p) = min
z∈{z+}

d2c(z, f
p
Z(p)), (5.1)

and likewise for S−Z (·) for {c−}. In Equation 5.1, d2c(zi, zj) is the Euclidean
distance between the centroids zci and z

c
j of superpixels zi and zj respectively, where

zci = (
∑

i xi/|zi|,
∑

i yi/|zi|) and |zi| is the number of superpixels in zi. The values
of the guidance maps are truncated to 255. Examples of such guidance maps are
shown in Fig. 5.2.

We additionally experimented with guidance maps generated based on the CIE-
LAB color difference between the annotated superpixels and the other superpixels
as per (Chen et al., 2018a) but we did not observe any promising results.

5.3.3 Superpixel-box Guidance Maps

Cropping images to exactly contain the object of interest has been shown to improve
interactive segmentation performance (Benenson et al., 2019; Maninis et al., 2018).
However, such frameworks are limited by the placement of the additional clicks; the
framework of Maninis et al. (2018) requires corrective clicks to be placed precisely
on object boundaries. Besides, this also leads to a set of unnatural training images
dominated by the object of interest. This prevents the network from learning from
the background regions. Unlike (Maninis et al., 2018), we refrain from cropping the
image to contain only the object of interest.

Instead, we provide, as an additional guidance channel, a weak prior on the
whereabouts of the object in the scene based on the initial pair of clicks. At
the onset, it behaves like a weak bounding box albeit consistent with low-level
image features. With the arrival of additional clicks, it gets further refined into
sloppy contours (Dutt Jain and Grauman, 2013), and provides the segmentation
network with a strong cue on the location of the objects (see Fig. 5.2). Unlike
object-based guidance maps (Majumder and Yao, 2019a) generated based on object
proposals (Pont-Tuset et al., 2017), our proposed guidance is more flexible and
adapts more quickly to the user-provided inputs.

More formally, given the first pair of positive and negative click c+0 = (x+0 , y
+
0 )

and c−0 = (x−0 , y
−
0 ) for an image of size w×h, we obtain the top-left and the bottom-

right co-ordinates of the object, e0 and e1 respectively. Let {Zb} ⊂ {Z} be the set
of superpixels which lie on or inside the spatial extent defined by e0 and e1. The
value of each pixel p of the superpixel-box based guidance map is given by,

G(p) = 1[p ⊂ z] · 1[z ⊂ {Zb}] (5.2)
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where 1[p ⊂ z] is an indicator function which returns 1 if pixel p lies belongs to
superpixel z. 1[z ⊂ {Zb}] returns 1 if superpixel z belongs to the set of superpixels
{Zb}. For the additional set of clicks {c+i 6=0} and {c−i 6=0}, we obtain the updated
guidance map ˆG(p) as follows,

{z+i 6=0} = fpZ({c
+
i 6=0}) (5.3)

{z−i 6=0} = fpZ({c
−
i 6=0}) (5.4)

ˆ{Zb} = {Zb} ∪ {z+i 6=0} \ {z
−
i 6=0} (5.5)

ˆG(p) = 1[p ⊂ z] · 1[z ⊂ ˆ{Zb}] (5.6)

5.3.4 Simulating User Interactions

To train and test our network, we simulate user interactions, as per previous works
on interactive segmentation (Xu et al., 2016; Liew et al., 2017; Mahadevan et al.,
2018). For simulating user interactions, we make use of the ground truth masks of
Pascal VOC 2012 (Everingham et al., 2010) along with the additional masks from
Semantic Boundaries Dataset (SBD) (Hariharan et al., 2011). We use the centroid
of the ground truth masks as our first positive click; for concave object masks,
clicks falling outside the object mask are relocated to a point within the object.
We then displace the click location by 20-50 pixels randomly; we ensure that the
final click location remains within the object. This is done to introduce variation
in the training data; the perturbation prevents center clicks to always fall on the
same superpixel during each training iteration and also better approximates true
user interactions which may not perfectly localize the object center.

Next, we sample the first negative click which is at least d pixels away from the
center click; in our experiments for a bounding box of height h and width w, we set
d to be,

d = (r1 − r2) · w + (1 + r2) · h (5.7)

where r1 is sampled from the uniform distribution U(0, 1) and r2 is sampled from
the normal distribution N (0, 1). We use the first pair of clicks to generate the
enclosing superpixel box; we keep superpixel boxes with an intersection over union of
≥ 0.7. For simulating additional positive and negative clicks, we pick 2-5 superpixels
at random from the set of superpixels lying outside the enclosing box and inside
respectively.
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Figure 5.2: Examples of Guidance maps. At the onset of interaction, our approach
receives an initial pair of enclosing clicks (denoted by yellow and blue at the center
of the object and on a background pixel respectively). These clicks are transformed
into guidance maps. With each round of additional clicking, the guidance maps
are updated by considering the positive clicks (shown in green) and negative clicks
(shown in red). Examples of user click transformations are shown in rows 2 to 6; rows
2-3: positive and negative Euclidean distance maps, rows 4-5: positive and negative
superpixel-based guidance maps, row 6: the superpixel-box guidance. The values of
the superpixel-box guidance are inverted for ease of visualization. The image along
with the guidance maps are used as input for the segmentation network. Note that
euclidean distance maps are not used as guidance maps in our approach.
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5.4 Experimentation

5.4.1 Datasets and Evaluation

Dataset. We evaluate the performance our proposed method on five publicly
available datasets used for benchmarking interactive image and video segmenta-
tion (Chen et al., 2018a; Liew et al., 2017; Majumder and Yao, 2019a; Maninis
et al., 2018; Xu et al., 2016): Pascal VOC 2012 (Everingham et al., 2010),
GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor, 2010), MS
COCO (Lin et al., 2014) and DAVIS 2016 (Perazzi et al., 2016). DAVIS 2016 is a
dataset for video object segmentation. It consists of 50 video sequences 20 from
which are in the validation set. The sequences feature a single foreground object;
the pixel mask of the object is provided for all frames. For fair comparison with (Xu
et al., 2016; Liew et al., 2017; Majumder and Yao, 2019a), we split the dataset into
the 20 Pascal VOC 2012 categories and the 60 additional categories, and randomly
sample 10 images per category for evaluation.

Evaluation. The performance of fully automated instance segmentation algorithms
is usually measured by the average mean intersection over union (mIoU) between the
ground truth masks and the predicted object masks. In interactive segmentation,
a user can always provide more positive and negative clicks to further improve the
predicted segmentation. The established way of evaluating an interactive system is
based on the number of clicks required for each object instance to achieve a fixed
mIoU (Xu et al., 2016). This fixed mIoU threshold is 90% for GrabCut and Berkeley
and 85% for the more challenging Pascal VOC 2012 and MS COCO. Like (Xu et al.,
2016; Benard and Gygli, 2017; Liew et al., 2017; Mahadevan et al., 2018; Majumder
and Yao, 2019a), we threshold the maximum number of clicks per instance to 20

clicks. Unlike (Xu et al., 2016; Benard and Gygli, 2017; Liew et al., 2017), we do
not apply any post-processing with a conditional random field.

5.4.2 Implementation Details

Model Architecture. As our base segmentation network, we use Deeplabv2 (Chen
et al., 2018b); it consists of a ResNet-101 (He et al., 2016) backbone and a Pyramid
Scene Parsing network (Zhao et al., 2017) acting as the prediction head. The
output of the CNN is a probability map representing whether a pixel belongs to the
object. We initialize the weights from a network Deeplabv2 model pre-trained on
ImageNet (Russakovsky et al., 2015), and fine-tuned on Pascal VOC 2012 (Ever-
ingham et al., 2010) for semantic segmentation.

Training Data. We further tune the network for instance segmentation on the 1464
training images of Pascal VOC 2012 (Everingham et al., 2010) with the instance-level
masks, along with the 10582 images of SBD (Hariharan et al., 2011). We further
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augment the training samples with random scaling, flipping and rotation operations.

Superpixels. We use SLIC (Achanta et al., 2012) as our superpixeling algo-
rithm. We generate around 1000 superpixels on an average per image; using
1000 SLIC superpixels over 500 SLIC superpixels have been shown to improve
performance (Majumder and Yao, 2019a). Generating finer superpixels (≥ 2000

superpixels per image) degrades the performance as the superpixel-based guidance
map degenerates to the Euclidean distance map. During evaluation on the
GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor, 2010), MS
COCO (Lin et al., 2014) and DAVIS 2016 (Perazzi et al., 2016) dataset, we roughly
generate 1000 SLIC superpixels (Achanta et al., 2012) for each image.

Training Details. Our network is trained to minimize a pixel-wise binary
cross-entropy loss between the ground truth mask and the predicted mask. For
optimization, we use stochastic gradient descent with Nesterov momentum with its
default value of 0.9. The learning rate is fixed at 10−8 across all epochs and weight
decay is 5 · 10−4. A mini-batch of size 5 is used. The implementation is done in
PyTorch and built on top of the implementation provided by (Maninis et al., 2018).
We train our network for 50 epochs.

Guidance Dropout. Dropout can be incorporated into the guidance inputs by in-
troducing fixed-value maps during training with some probability. Guidance dropout
has been shown to be effective for interactive segmentation (Majumder and Yao,
2019a) since it encourages the base segmentation network which is trained for se-
mantic segmentation to switch over to instance segmentation without any user in-
teraction. Following Majumder and Yao (2019a), during training, when the network
receives an image with single object, we fix the value of 255 for the superpixel-based
and the superpixel-box based guidance map with a probability of 0.1 to encourage
good initial segmentations in absence of clicks. Additionally to make it robust to
the number of user clicks, during training, we provide guidance maps with a sin-
gle positive click (at the center) and the initial positive-negative click pair with a
probability of 0.1.

5.4.3 Ablation Studies

We perform an ablation study to analyze the impact of different components in
our interactive instance segmentation pipeline on the final segmentation output.
We use the Berkeley dataset (McGuinness and O’connor, 2010) for performing our
ablation studies (see Table. 5.1). Similar to the observation in (Majumder and Yao,
2019a), using a superpixel-based guidance map leads to a significant improvement
over its euclidean distance map counterpart (denoted by EU) as used in iFCN (Xu
et al., 2016) (Table. 5.1, rows 1-2). We observe additional gains from adopting
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EU SP BBox SPBox DT Base Berkeley
Network @90%

X FCN-8s 8.65
X FCN-8s 6.67
X Deeplabv2 6.32

X X X Deeplabv2 5.49
X X Deeplabv2 5.26
X X Deeplabv2 5.18

Table 5.1: Ablation Study. We report the average number of clicks need to reach 90%
mIoU over all instances in the Berkeley dataset (McGuinness and O’connor, 2010)
under different configurations of the guidance maps as well as segmentation models.
For rows 1-2, we report the values directly from Xu et al. (2016) and Majumder and
Yao (2019a) respectively.

the more recent ResNet-101 (He et al., 2016) as our backbone architecture w.r.t
FCN-8s (Long et al., 2015) as used in (Majumder and Yao, 2019a) (Table. 5.1, row 3).

Next, the benefits of having a weak localization prior on the object of interest as
an additional mode of guidance (Table. 5.1, rows 4-6). BBox refers to the rectilinear
box drawn between corner pixel locations e0 and e1 generated from user clicks {c+i }
and {c−i }. SPBox refers to the superpixel-box guidance generated from {c+i } and
{c−i } (Sec. 5.3.3, Equations 2-6). Having a weak localization prior is shown to
improve results across the board; the improvement is higher when using the SPBox
guidance. Additionally, we consider the distance transform (DT) of the BBox as
guidance but the average number of clicks increase from 5.26 to 5.49. Throughout our
experiments, we use the superpixel-based guidances and the superpixel-box guidance
as our guidance maps.

5.4.4 Comparison to State of the Art

We compare the average number of clicks required to reach a required mIoU (see
Table. 5.2) against existing interactive segmentation approaches. We achieve the
lowest number of clicks required for the GrabCut and for the challenging MS COCO
(both seen and unseen categories) datasets, proving the benefits of restricting the
interaction to only the object of interest. In Fig. 5.3, we show some qualitative results
from the Pascal VOC 2012 val set. As shown in Table. 5.2, our full model needs the
fewest number of clicks to reach the required mIoU threshold of 90% on GrabCut,
with a relative improvement of 3.3%. For MS COCO, we observe an improvement
of 4.6% and 6.5% over the 20 seen and 60 unseen object categories respectively. We
also report a relative 7.5% improvement for Pascal VOC 2012 val set w.r.t previous
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Method GrabCut Berkeley VOC-2012 COCO-20 COCO-60
@90% @90% @85% @85% @85%

iFCNCVPR’16 6.04 8.65 6.88 8.31 7.82
RISICCV’17 5.00 6.03 5.12 5.98 6.44
VOS-WildarXiv’17 3.80 - 5.60 - -
ITISBMVC’18 5.60 - 3.80 - -
LDCVPR’18 4.79 - - 12.45 12.45
Two-StreamNN’19 3.76 6.49 4.58 9.62 9.62
CAGCVPR’19 3.58 5.60 3.62 5.40 6.10
BRSCVPR’19 3.60 5.08 - - -
Ours 3.46 5.18 3.70 5.15 5.70

Table 5.2: Average number of clicks required to achieve a fixed mIoU across state-
of-the-art deep learning-based interactive frameworks - iFCN (Xu et al., 2016),
RIS (Liew et al., 2017), VOS-Wild (Benard and Gygli, 2017), ITIS (Mahadevan
et al., 2018), LD (Li et al., 2018), Two-Stream (Hu et al., 2019), CAG (Majumder and
Yao, 2019a), LIS (Majumder and Yao, 2019b), and BRS (Jang and Kim, 2019). Best
results are indicated in bold. COCO-20 and COCO-60 refers to the instances from
20 overlapping and 60 non-overlapping categories w.r.t Pascal VOC 2012 classes.

state-of-art algorithms using a fixed clicking scheme (Maninis et al., 2018). For MS
COCO dataset, it should be noted that Two-Stream (Hu et al., 2019) and LD (Li
et al., 2018) report their result averaged over all the 80 object categories.

Figure 5.3: Qualitative Results. Examples of high-quality object segmentations
generated on the Pascal VOC 2012 val set. Note that final segmentation masks might
not align to object boundaries as no CRF-based post-processing was performed. For
ease of visualization, we skip plotting the user-provided clicks.
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5.4.5 Correcting Masks for Video Object Segmentation

Fully automated video object segmentation techniques can generate object seg-
mentation masks of unsatisfactory quality; such masks are unsuitable for their
intended downstream application. Such scenarios can benefit from interactive
segmentation approaches. Given an unsatisfactory prediction, users can provide
additional clicks to improve the mask. OSVOS (Caelles et al., 2017) is such a video
object segmentation algorithm. It fine-tunes the segmentation network using the
ground truth mask of the first frame in a video; it then segments objects in the
videos in a frame-by-frame manner. Following (Benard and Gygli, 2017; Mahadevan
et al., 2018), we proceed to improve the worst segmentation masks per sequence as
generated by OSVOS on the DAVIS 2016 (Perazzi et al., 2016) validation set. We
report the mIoU after the addition of 1, 4 and 10 clicks.

Method OSVOS 1-click 4-clicks 10-clicks

GrabCut(Rother et al., 2004) 50.4 46.6 53.5 68.8
iFCN(Xu et al., 2016) 50.4 55.7 71.3 79.9
VOS-Wild(Benard and Gygli, 2017) 50.4 63.8 75.7 82.2
ITIS(Mahadevan et al., 2018) 50.4 67.0 77.1 82.8

Ours 50.4 72.2 80.1 84.3

Table 5.3: Refinement of the worst predictions from OSVOS on the DAVIS 2016 val
set. We report the updated mIoU after the addition of 1, 4, and 10 clicks for refining
the segmentations generated using OSVOS.

We initialize our enclosing area for the superpixel-box guidance map based on
the initial segmentation by OSVOS. Superpixel-based guidance maps are set to a
value of 255. We then provide additional positive and negative clicks to improve the
mask quality which are then used to update the superpixel-based guidance maps.
Our proposed algorithm reports a significant gain of over 5% in mIoU for a single
click and also outperforms the reported results for 4 and 10 clicks (see Table. 5.3).

5.5 Conclusion

In this chapter, we demonstrate that limiting the extent of user interaction to only
the object of interest can significantly reduce the amount of user interaction required
to obtain satisfactory segmentations. Additionally, via experiments, we demonstrate
the benefits of having a weak localization prior generated in the form of superpixel
box guidance. Our proposed algorithm primarily faced difficulties when trying to
segment occluded instances. In such cases, the superpixel box guidance overlaps sig-
nificantly, making it difficult for the network to segment both the instances properly.



Chapter 6

Two-in-One Refinement for
Interactive Segmentation

This chapter includes the content of the following publication:

• Soumajit Majumder, Abhinav Rai, Anshul Khurana, and Angela Yao. “Two-
in-One Refinement for Interactive Segmentation.” British Machine Vision
Conference (BMVC), 2020.

Deep convolutional neural networks are now mainstream for click-based interac-
tive image segmentation. Most frameworks refine false negatives and false positive
regions via a succession of positive and negative clicks placed centrally in these
regions. In this chapter, we propose a simple yet intuitive two-in-one refinement
strategy placing clicks on the boundary of the object of interest. As boundary clicks
are a strong cue for extracting the object of interest and we find that they are
much more effective in correcting wrong segmentation masks. In addition, we pro-
pose a boundary-aware loss that encourages segmentation masks to respect instance
boundaries. We place our new refinement scheme and loss formulation within a task-
specialized segmentation framework and achieve state-of-the-art performance on the
standard datasets - Berkeley, Pascal VOC 2012, DAVIS 2016, and MS COCO. We
exceed competing methods by 6.5%, 9.4%, 10.5% and 2.5%, respectively.

6.1 Introduction

The goal of interactive image segmentation is to obtain an accurate pixel-level mask
for an object with minimal user input. It is a fundamental processing stage for
applications such as image editing (Benard and Gygli, 2017) and medical imaging
analysis (Wang et al., 2018a). More recently, with the increased popularity of deep
learning, the demand for mask-level annotations for segmentation tasks has risen
dramatically. Manual labelling of such data is highly laborious; a single image
can take as long as 1.5 hours for Cityscapes (Cordts et al., 2016). Alternatively,
one can leverage the advances of automated segmentation and use human-in-the-
loop frameworks (Benenson et al., 2019; Andriluka et al., 2018; Maninis et al., 2018).

The holy grail of interactive instance segmentation is to achieve single-click
segmentation. The user places one click on the object of interest, and the system
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Figure 6.1: Two-in-One Refinement. Our two-in-one refinement strategy places
refinement clicks on the target boundary of error regions. The top row shows sam-
ple images with ground truth masks in green. The second row shows an initial
segmentation from the selection stage overlaid in cyan, with yellow circles marking
refinement click locations.

returns an accurate mask. Despite significant progress, advanced deep learning-
based frameworks (Liew et al., 2019; Sofiiuk et al., 2020; Kontogianni et al., 2020)
still require multiple clicks: one to indicate the object of interest, and others
to refine the segmentation mask. In all interactive frameworks (Xu et al., 2016;
Mahadevan et al., 2018; Liew et al., 2017; Hu et al., 2019; Liew et al., 2017; Jang
and Kim, 2019), refinement is done via a succession of positive and negative clicks.
Intuitively, the positive clicks should add portions of missing foreground, while
negative clicks remove falsely segmented parts of the background. Users place
clicks centrally in regions that directly corresponds with false negatives and false
positives. Distinguishing between the two forms of refinement, however, requires
separate input encodings, so there are always at least two guidance maps (Xu et al.,
2016; Liew et al., 2019; Li et al., 2018; Liew et al., 2017). Additionally, a plateauing
occurs, as the average per instance mIoU tends to stagnate beyond 5-6 clicks (Xu
et al., 2016; Mahadevan et al., 2018; Liew et al., 2017).

In this work, we do away with positive and negative clicks and propose a novel
two-in-one refinement strategy. We ask users instead to place clicks on the instance
boundary in the vicinity of errors (see Fig. 6.1). Boundary clicks have more utility,
as they provide a much stronger cue than clicks placed centrally in regions of false
positives and false negatives. Furthermore, as more and more boundary refinement
clicks become available, the instance gets explicitly encircled with refinement clicks.

To accommodate our new refinement scheme, we use dedicated networks for
object selection versus refinement (see Fig. 6.2). Most previous works have used
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a single network (Xu et al., 2016; Mahadevan et al., 2018; Liew et al., 2017; Jang
and Kim, 2019; Sofiiuk et al., 2020), treating the initial selection click simply as
any other positive click. In our case, the initial selection click is placed centrally
within the object (Liew et al., 2019), while refinement clicks are placed on object
boundaries. As a result, task separation becomes necessary. Having two networks
does add some computation overhead in training and inference. To mitigate the
impact, we share feature representations across the networks (see Fig. 6.2). The
final refinement network is a lightweight block using three successive convolutions
(see Sec. 6.3.2). In return, separating the tasks allows more freedom for the
networks to specialize and thereby achieves state-of-the-art results.

For learning the selection network, we propose a new and highly effective
boundary-aware cross-entropy loss. This loss encourages predicted segmentation
masks to remain close to the instance boundaries, and through a single selection
click, restricts the working image space. In contrast, previous works require two
to four clicks. We find that isolating the region of interest for segmentation is
particularly helpful for small objects, which previous works (Majumder and Yao,
2019a; Kontogianni et al., 2020) have already shown are the most difficult to segment.

The key contributions of our approach are summarized as follows:

• We propose a novel two-in-one refinement strategy for interactive segmentation
where users refine segment masks by clicking on the instance boundary.

• We propose a boundary-aware cross-entropy loss which constrains the predic-
tion and allows us to integrate a crop mechanism without the use of bound-
ing boxes (Benenson et al., 2019) or explicit confining clicks at extremal
points (Maninis et al., 2018; Benenson et al., 2019).

• A framework that separates selection and refinement tasks, with which we
achieve relative mIoU gains of 10-15% over state-of-the-art approaches that
use even deeper backbones.

6.2 Related Works

Deep-learning approaches (Mahadevan et al., 2018; Liew et al., 2019) based on
fully convolutional network architectures (Long et al., 2015; Chen et al., 2018c,b)
now excel at producing good quality segmentation masks even for challenging
large-scale datasets (Everingham et al., 2010; Lin et al., 2014). With user-provided
cues such as bounding boxes (Benenson et al., 2019), clicks (Xu et al., 2016;
Mahadevan et al., 2018; Benard and Gygli, 2017), and scribbles (Agustsson et al.,
2019), these approaches can generate instance segmentation masks with over 90%

mean Intersection over Union (mIoU) w.r.t ground truth with less than four user
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clicks (Liew et al., 2019; Majumder and Yao, 2019a; Kontogianni et al., 2020).

Of these, click-based interactive frameworks (Xu et al., 2016; Mahadevan
et al., 2018; Liew et al., 2017; Jang and Kim, 2019; Li et al., 2018) have par-
ticularly gained popularity in the last five years. The initial work of Xu et al.
(2016) encoded user clicks as Euclidean distance maps; the maps are then con-
catenated with the RGB channels and fed as input to an FCN (Long et al.,
2015). Based on the previous prediction errors, further clicks are added, usually
on the center of the largest incorrect region (Benenson et al., 2019; Liew et al., 2019).

Across most of these approaches, user clicks are transformed guidance maps
via Euclidean distance (Xu et al., 2016; Li et al., 2018) or Gaussians (Mahadevan
et al., 2018). Alternatively, superpixels (Chen et al., 2018a; Majumder and Yao,
2019a,b) and region-based object proposals (Majumder and Yao, 2019a) have also
been used to generate content-aware guidance maps. Given an initial bounding box,
Polygon-RNN (Castrejon et al., 2017) predicts the vertices of the polygon outlining
the object. Other considerations for interactive segmentation frameworks include a
two-stream network (Hu et al., 2019) and backpropagation refinement scheme (Jang
and Kim, 2019; Sofiiuk et al., 2020).

Historically, many classical approaches for interactive segmentation (Le et al.,
2018; Mortensen and Barrett, 1995; Li et al., 2004; Kass et al., 1988; Gleicher,
1995) segmented objects by allowing users to interact with boundary pixels. Early
variants used boundary tracing (Kass et al., 1988; Mortensen and Barrett, 1995;
Falcao et al., 1998) but as such approaches relied solely on low-level image features
such as gradients (Gleicher, 1995), they do not work well on unconstrained images.
More recently, the DEXTR framework (Maninis et al., 2018) proposed using
extremal boundary clicks to select and enclose the object. As DEXTR (Maninis
et al., 2018) requires a minimum of four clicks at the outset, it requires significantly
more user input than state-of-the-art methods (Liew et al., 2019; Majumder and
Yao, 2019a; Jang and Kim, 2019; Kontogianni et al., 2020).

Recently, Le et al. (2018) proposed a deep learning-based framework for inter-
actively finding object boundaries. Unlike Le et al. (2018) and DEXTR, we treat
boundary clicks as a means of refining or correcting prediction errors. Click locations
are neither arbitrary (Le et al., 2018) nor constrained to extremal points (Maninis
et al., 2018) but conditioned by prediction errors of the preceding selection network
(see Fig. 6.2). Additionally, we do not make use of traditional boundary predic-
tion losses (Yu et al., 2017; Le et al., 2018). Finally, we report results on the more
challenging Pascal VOC 2012 (Everingham et al., 2010) and MS COCO (Lin et al.,
2014) datasets.
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Segmentation Backbone
 [ Deeplabv2-ResNet101-

PSP ]
Two-in-One
Refinement

512-d Feature Map

Figure 6.2: Outline. Given an initial selection click (shown in green) on the object
of interest, our selection network generates a full-image segmentation, cropping co-
ordinates and learned feature representations. Given the initial segmentation, the
user refines with clicks on the boundary of the object in the cropped image and the
segmentation mask is updated. Further refinement clicks (in yellow) can be added
until a suitable mask is obtained.

6.3 Proposed Method

We follow the conventional paradigm of (Xu et al., 2016; Liew et al., 2017; Benard
and Gygli, 2017; Majumder and Yao, 2019a; Jang and Kim, 2019) which transforms
user clicks into ‘guidance’ maps of the same size as the input image. The guidance
maps are appended as extra channels to the RGB image and given as input to an
FCN (Long et al., 2015). To generate the guidance maps, we use Gaussian trans-
formations (Maninis et al., 2018; Benard and Gygli, 2017) as it offers a favourable
trade-off between simplicity and performance. We initialize an image-sized channel
of zeros and place Gaussians with a small standard deviation of 10 pixels at each
user click location.

During training, we pass the RGB image channels concatenated with the guid-
ance map from the first click through the selection network. The selection network
returns the initial segmentation mask and corresponding feature maps. Based on
the initial masks, we crop the prediction and the feature maps. We then deter-
mine refinement clicks from the crops, transform them into a guidance map, and
append the guidance maps with the cropped feature maps. Finally, we process with
a lightweight refinement network to generate a refined segmentation mask. Fur-
ther refinement clicks can be added iteratively to reach an acceptable segmentation
quality. Fig. 6.2 illustrates this process.

6.3.1 Selection Network

We initialize our selection network with the weights from Deeplabv2 (Chen et al.,
2018b) pre-trained on Pascal VOC 2012 (Everingham et al., 2010) for semantic
segmentation. Deeplabv2 uses a ResNet-101 (He et al., 2016) as the feature
extraction backbone and PSP module (Zhao et al., 2017) for performing multi-scale
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feature aggregation. Extracted features from Deeplabv2 has 512 channels. The
final 1-channel prediction logits come from a 1×1 convolution. We modify the
final layer of Deeplabv2 (Chen et al., 2018b) to additionally return the 512-channel
features, which we later reuse in the refinement network. We note that other
backbones (Long et al., 2015; Chen et al., 2018c) can be used for the selection
network as well.

Typically, interactive frameworks are trained to minimize the standard class-
balanced binary cross-entropy loss is given by,

LCB-CE =
∑
p∈P

wyp · BCE(yp, ŷp). (6.1)

Here P is the number of pixels in the image, BCE(·) is the standard cross-entropy
loss between the label yp and the prediction ŷp at pixel location p (Long et al.,
2015). wyp denotes the inverse normalized frequency of ground truth labels
yp ∈ {0, 1} of the mini-batch. We observe that for Eqn. 6.1, all pixels, irrespective
of their location, contribute equally to the loss function. This often leads to noisy
and non-continuous segment predictions (Audebert et al., 2019; Xue et al., 2020)
that require further post-processing (Xu et al., 2016; Benard and Gygli, 2017).
To circumvent this, several methods have explored learning from the distance
transform (Ye, 1988; Xu et al., 2016) via additional regression losses (Xue et al.,
2020; Audebert et al., 2019).

To this end, we propose a boundary-aware cross entropy loss (BA-CE) which
selectively increases the penalty for incorrect classification of background pixels lying
within some distance (in pixels) of the target instance. Unlike (Calivá et al., 2019),
we opt for asymmetric penalty formulation. This focuses the network on learning
instance-background transitions and prevents disjoint predictions far-off from the
target instance. Formally, let B (∈ M) denote the set of boundary pixels for the
ground truth maskM. We define a per-pixel weighting factor w(B, p) as a function
of the minimum Euclidean distance from the set of boundary pixels pb ∈ B.

w(B, p) =

{
0 d(B, p) > τ or p ∈M
d(B, p)
k d(B, p) ≤ τ and p /∈M

(6.2)

where d(B, p) = min ‖p− pB‖22 ∀ pB ∈ B. τ denotes the width along the instance
boundary (in pixels) where the penalty term is enforced. In our experiments, we fix
k = 255 and τ = 40. Our proposed BA-CE loss function is given as,

LBA-CE =
∑
p∈P

wyp · (1 + w(B, p)) · BCE(yp, ŷp). (6.3)
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6.3.2 Refinement Network

Given the first selection click, the selection network returns 512-channel feature
map F ∈ Rh×w×512 and the predicted mask trimmed (see Fig. 6.2). Based on
the trimmed predicted mask, the user annotates additional refinement clicks to
undo the prediction errors. We encode these user-provided refinement clicks using
Gaussians in a single channel G ∈ Rh×w×1. We concatenate F and G along the
feature-map dimension pass it through our lightweight refinement network.

For cropping the initial prediction from the selection network to the target
instance, we make use of the RoIAlign layer (He et al., 2017) to obtain Ft from F .
RoIAlign (He et al., 2017) takes as input the region of interest (ROI) coordinates
and the feature map and produces a fixed-size representation regardless of ROI
size. Instead of RoIAlign (He et al., 2017), naive cropping is also an alternative.
We obtain the cropping coordinates by first applying a sigmoid operator on the
initial prediction logits and then selecting pixels with values higher than a specific
threshold. We pass these coordinates to the RoIAlign layer and obtain features
Ft for the cropped representation. We then concatenate Ft with GFt and pass it
through the refinement network. GFt denotes the user click encoding on the cropped
initial prediction. During training, we observed that naively processing raw features
Ft through the refinement network is detrimental. Thus, we perform a channel-wise
normalization of Ft before concatenating it with GFt .

Our refinement network consists of 3 convolutional blocks. We denote the i-th
block as Ci(m,n, k), which consists of a k×k×m×n convolution followed by batch
normalization and ReLU. Here, k refers to kernel size, m the number of input feature
channels and n the number of output feature channels. The architecture of our
refinement layer is given by,[

C1(513, 512, 3)→ C2(512, 256, 3)→ C3(256, 256, 3)
]

(6.4)

The final prediction logits are obtained via 1×1 convolution which squashes the
256-channel into a single channel output. Threshold selection and instance recall
are discussed in more detail in Sec. 6.4.2. We note that our selection network is
not trained to minimize the bounding box regression loss (He et al., 2017) as per
standard instance segmentation.

6.3.3 Click Sampling

Like previous works (Xu et al., 2016; Mahadevan et al., 2018; Chen et al., 2018a;
Hu et al., 2019; Liew et al., 2019; Benard and Gygli, 2017), we simulate clicks for
training and evaluation.
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Selection click sampling. The initial selection click is typically assigned on the
center of the target object (Liew et al., 2019). For convexly shaped instances, the
center of mass computed using the ground truth serves as a prior for click initial-
ization. In concave shapes, we shift the initialization to an interior point furthest
from the instance boundary. To mimic humans in placing clicks and make our
training robust, we further add random displacements of up to 25 pixels to the sam-
pled click location. Visualizations of selection click placements are shown in Fig. 6.3.

Refinement click sampling. Refinement clicks are sampled according to seg-
mentation outputs from the selection network. Given the prediction and ground
truth masks, false positive and false negative regions are computed. The erroneous
regions are then clustered based on connectivity (Mahadevan et al., 2018) while
discarding regions with pixels fewer than m% of the ground truth. We then
select a minimum of k1 clicks and a maximum of k2 from the remaining error
regions. In our experiments, we vary m between 1-5 while k1 and k2 fixed at
2 and 4 respectively i.e., the network sees 2-4 refinement clicks to refine each instance.

For sampling refinement clicks corresponding to the false negative regions, a
one-sided (directed) Hausdorff distance is used. Let BFN and πFN denote the set of
ground truth boundary pixels and the predicted boundary pixels outlining the false
negative region respectively. For the false positive clusters, we opt for the min−min

formulation. Likewise, let BFP and πFN denote the set of ground truth boundary
pixels and the predicted boundary pixels outlining the corresponding false positive
region respectively. The sampled click locations cb, FN ∈ BFN and cb, FP ∈ BFP
corresponding to false negative and false positive regions are given respectively by,

cb,FN = argmax
x∈BFN

min
y∈πFN

‖x− y‖2 and cb,FP = argmin
x∈BFP

min
y∈πFP

‖x− y‖2. (6.5)

During inference, it is unlikely that users clicks will align exactly with the object
boundary. During training, we randomly perturb the click location up to 10 pixels
to compensate.

6.3.4 Implementation Details

Similar to (Mahadevan et al., 2018; Xu et al., 2016; Kontogianni et al., 2020;
Majumder and Yao, 2019a; Liew et al., 2017), we simulate user click behavior and
use the 1464 training images from Pascal VOC 2012 (Everingham et al., 2010)
plus the additional instance annotations from SBD provided by (Hariharan et al.,
2011). We further augment with random scaling, flipping, and rotation operations.
Unlike (Liew et al., 2019; Mahadevan et al., 2018), we do not use training instances
from MS COCO (Lin et al., 2014).
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For training both the selection and refinement network, we minimize the BA-CE
loss (Eqn. 6.3) using stochastic gradient descent with Nesterov momentum (fixed at
the default value of 0.9) and apply a fixed learning rate of 10−8 across all epochs with
weight decay of 0.0005. Training of the selection network typically converges within
80 epochs. For training the refinement network, we pick training instances with
0.2-0.6 mIoU based on predictions by the selection network. Training requires 10-15
epochs; to make the network more responsive to refinement clicks, we increase the
pixel contribution to the loss by a scalar factor of 2 within a 40×40 neighbourhood
of the sampled refinement click location.

6.4 Experiments

6.4.1 Datasets & Evaluation

We evaluate our proposed approach on five publicly available datasets. Grab-
cut (Rother et al., 2004) and Berkeley (McGuinness and O’connor, 2010) are have
49 and 96 images respectively, and feature mostly a single prominent foreground
object. Pascal VOC 2012 (Everingham et al., 2010) has 3427 instances across
1449 validation images spread across 20 object categories. MS COCO has 5000

validation (val2017) images over 80 categories, 20 of which overlap with Pascal.
Like (Xu et al., 2016; Liew et al., 2017; Kontogianni et al., 2020), we pick 10 images
randomly per category for evaluation and tabulate the 20 seen Pascal versus 60

other unseen categories separately. The DAVIS 2016 dataset (Perazzi et al., 2016)
consists of 50 high-resolution videos; following (Li et al., 2018; Jang and Kim,
2019), we randomly sample 10% of the frames to get 345 images.

In existing literature, non-interactive semantic segmentation (Chen et al.,
2018b,c; Long et al., 2015) frameworks are evaluated with mean intersection over
union (mIoU) (Everingham et al., 2010) by comparing the ground truth mask with
the segmentation predictions of the network. Unlike semantic segmentation, in
interactive segmentation, user interactions aimed to improve the current network
prediction are available. Typically, such interactions come in the form of clicks and
should increase the mIoU of the predicted mask by fixing errors in foreground or
background areas.

We evaluate our framework with the two standard metrics (Benard and Gygli,
2017; Mahadevan et al., 2018; Xu et al., 2016) (a) clicks@mIoU% which is
the average number of clicks needed to reach fixed mIoU on each instance and
(b) mIoU%@clicks, the mean intersection over union given k user-assigned selec-
tion and/or refinement clicks per instance. In keeping with existing approaches (Be-
nard and Gygli, 2017; Liew et al., 2017; Mahadevan et al., 2018; Xu et al., 2016;
Liew et al., 2019; Majumder and Yao, 2019a), we threshold the number of clicks per
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Dataset ITIS with CB-CE with BA-CE

GrabCut (Rother et al., 2004) 82.1 84.0 84.8
Pascal VOC 2012 (Everingham et al., 2010) 71.0 78.2 80.6

Table 6.1: Selection Network. Average mIoU over all instances in the GrabCut
and Pascal VOC 2012 val set obtained using ITIS (Mahadevan et al., 2018) and
our frameworks; one network trained using a standard class-balanced cross-entropy
loss (CB-CE) and another using our newly proposed boundary-aware cross-entropy
(BA-CE) given only one (selection) click. Best results in bold.

instance to 20. The minimum mIoU threshold is set at 90% for the GrabCut and
Berkeley dataset. For the more challenging DAVIS, Pascal and MS COCO datasets,
the threshold is 85% mIoU (Xu et al., 2016; Liew et al., 2017; Benard and Gygli,
2017; Majumder and Yao, 2019a; Hu et al., 2019).

6.4.2 Selection Network

We train two selection networks to minimize the standard class-balanced BCE
(Eqn. 6.1) and our proposed variant (Eqn. 6.3). We observe an outright gain of
2.4% over the Pascal VOC 2012 val set (Everingham et al., 2010) and significant
mIoU gains over recent state-of-the-art methods (Mahadevan et al., 2018) across
the three datasets for the network trained with the BA-CE loss (Eqn. 6.3). The
most significant aspect of the BA-CE loss function is its ability to constrain the
network prediction; this is a desirable and necessary property which allows us to
crop to the target instance. With a single click, we achieve 80.6% mIoU averaged
over Pascal VOC 2012 (see Table. 6.1).

For further evaluation, we apply the sigmoid operation on the 1-channel logits
predicted by both variants of the selection networks and crop the image region to
pixel values > 0.001. To avoid tight cropping, which can lead to undesired boundary
artifacts, we relax the cropped region via padding. The instance recall rate for all
the validation instances in the Pascal (Everingham et al., 2010) dataset vs padding
in pixels is shown in Fig. 6.3(a). The BA-CE network successfully recalls 99.6%

instances, i.e. the cropped feature map retains the entire object 3414 times out of
3427; for the other 13 instances, we assume a penalty of 20 clicks.

We additionally plot the area reduction (in %-age of the image area) after crop-
ping given a fixed padding (shown in Fig. 6.3(a)). We observe that the network
trained to minimize the CB-CE loss (Eqn. 6.1) offers more area reduction at the
cost of a lower recall. However, this network is undesirable, as we intend to segment
all annotated instances in the Pascal VOC 2012 val set (Everingham et al., 2010).
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(a) VOC Instance Recall in % vs padding (b) Prediction results with CB-CE (Row 1) vs BA-CE (Row 2)

Figure 6.3: CB-CE vs BA-CE. Comparison of the class balanced cross-entropy
(CB-CE) (Maninis et al., 2018) with our proposed boundary aware cross-entropy
(BA-CE) loss. Green points denote initial selection clicks.

Qualitative results are shown in Fig. 6.3(b). We observe that BA-CE encourages
spatially coherent segmentation masks.

6.4.3 Comparison to the state-of-the-art

We compare the clicks@mIoU% performance of our method against competing
methods (Xu et al., 2016; Liew et al., 2017, 2019; Majumder and Yao, 2019b; Jang
and Kim, 2019) in see Table. 6.2. As an ablation study to verify the effectiveness
of task separation in the interactive workflow, we also test a variant where the
refinement network is trained to accept iterative positive and negative clicks, as
per (Xu et al., 2016; Mahadevan et al., 2018; Liew et al., 2017; Majumder and Yao,
2019b,a; Liew et al., 2019) (Ours-PNR). In Ours-PNR, based on an initial mask
from the selection network, users iteratively provide positive and negative clicks;
the clicks are then encoded as Gaussians in two separate channels. The rest of the
pipeline is unchanged.

This variant outperforms several competing methods, suggesting that existing
frameworks can also benefit by task splitting across dedicated networks. Our
full variant using the two-in-one refinement (Ours-BRC ) achieves state-of-the-art
on almost all the benchmarks. Our boundary-based refinement offers a 10%
improvement in comparison to Ours-PNR.

We significantly raise the bar on the Berkeley (McGuinness and O’connor, 2010),
Pascal VOC 2012 val set (Everingham et al., 2010), and DAVIS 2016 (Perazzi et al.,
2016) datasets by 6.5%, 9.4% and 10.5% respectively. Additionally, we outper-
form current state-of-the-art (Majumder and Yao, 2019b) on MS COCO (Lin et al.,
2014) seen and unseen by around 2.5% and 1% respectively. Additionally, we are
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Method Grabcut Berkeley VOC-2012 DAVIS COCO-20 COCO-60
@90% @90% @85% @85% @85% @85%

iFCNCVPR’16 6.04 8.65 6.88 - 8.31 7.82
RISICCV’17 5.00 6.03 5.12 - 5.98 6.44
ITISBMVC’18 5.60 - 3.80 - - -
CAGCVPR’19 3.58 5.60 3.62 - 5.40 6.10
LISGCPR’19 3.46 5.18 3.70 - 5.15 5.70
BRSCVPR’19 3.60 5.08 - 5.58 - -
MSGICCV’19 1.96 4.00 3.51 - - -
LFCECCV’20 3.07 4.94 3.18 5.57 9.14 9.87

Ours-BCR 2.30 3.74 2.88 4.98 5.02 5.65

Table 6.2: Average number of clicks required to achieve a fixed mIoU across state-
of-the-art deep learning-based interactive frameworks - iFCN (Xu et al., 2016),
RIS (Liew et al., 2017), ITIS (Mahadevan et al., 2018), CAG (Majumder and Yao,
2019a), LIS (Majumder and Yao, 2019b), BRS (Jang and Kim, 2019), LFC (Kon-
togianni et al., 2020), MSG (Liew et al., 2019). Best results are indicated in bold.
COCO-20 and COCO-60 refers to the instances from 20 overlapping and 60 non-
overlapping w.r.t Pascal VOC 2012 object categories respectively.

comparable with current state-of-the-art MSG (Liew et al., 2019) on the GrabCut
dataset (Rother et al., 2004). In Fig. 6.4, we plot our average mIoU vs the number of
clicks against competing methods RW (Grady et al., 2005), GC (Boykov and Jolly,
2001), GM (Bai and Sapiro, 2009), iFCN (Xu et al., 2016), RIS (Liew et al., 2017),
ITIS (Mahadevan et al., 2018), CAG (Majumder and Yao, 2019a). Task-separation
give us a head-start w.r.t all existing approaches for the first click placement. Over-
all, our approach shows better performance in most cases.

6.4.4 User study

We validate the use of boundary clicks for refinement with a user study, using 50

images from Pascal VOC val set with mIoU between 60%-75% as predicted by
the selection network. We overlay the prediction of the selection network and also
presented the ground truth mask as a separate image. Our 5 participants are tasked
with providing refinement clicks on the boundary pixels corresponding to the largest
error regions. On average, participants correctly identified the largest erroneous
region with a mean accuracy of 88%. Errors may arise when multiple blobs have
similar sizes; for example, in Fig. 6.2, the erroneous region on the left and right
boundary of the bus is almost similar in size. Click placements were typically fast,
with a mean ± standard deviation of 3.38±0.8 seconds. Click placements were also
quite accurate and fell within 2-5 pixels of the instance boundary. For comparison,
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(a) GrabCut (b) Berkeley (c) Pascal VOC 2012

Figure 6.4: mIoU%@clicks across 3 datasets (GrabCut, Berkeley, Pascal VOC
2012) for our approach vs 8 competing interactive methods - RW (Grady et al.,
2005), GC (Boykov and Jolly, 2001), GM (Bai and Sapiro, 2009), iFCN (Xu et al.,
2016), RIS (Liew et al., 2017), ITIS (Mahadevan et al., 2018), CAG (Majumder and
Yao, 2019a). RW, GC, and GM are classical interactive methods, whereas iFCN,
RIS, ITIS, and CAG are FCN-based interactive frameworks.

for each instance, DEXTR (Maninis et al., 2018) acquired four extremal clicks for
each object instance within 7 seconds.

6.5 Conclusion

In this chapter, we have proposed a new two-in-one refinement strategy for
interactive object segmentation. Instead of conventional positive and negative
clicks to fix false negative and false positive segmentations, we ask users to click on
object boundaries. To accompany this new refinement scheme, we propose a new
boundary-aware loss formulation and a task-specialized framework where dedicated
networks are applied to select and refine the object. The refinement network
is lightweight and reuses feature maps from the selection network, so additional
computational overhead minimal. We find that boundary clicks coupled with our
boundary-aware loss provide a strong cue for interactive segmentation and raises
state-of-the-art on several benchmark datasets.





Chapter 7

Multi-Stage Fusion for One-Click
Segmentation

This chapter includes the content of the following publication:

• Soumajit Majumder, Anshul Khurana, Abhinav Rai, and Angela Yao. “Multi-
Stage Fusion for One-Click Segmentation.” DAGM German Conference on
Pattern Recognition (GCPR), 2020.

Segmenting objects of interest in an image is an essential building block of ap-
plications such as photo-editing and image analysis. Under interactive settings,
one should achieve good segmentations while minimizing user input. Current deep
learning-based interactive segmentation approaches use early fusion and incorporate
user cues at the image input layer. Since segmentation CNNs have many layers, early
fusion may weaken the influence of user interactions on the final prediction results.
In this chapter, we propose a new multi-stage guidance framework for interactive
segmentation. By incorporating user cues at different stages of the network, we al-
low user interactions to impact the final segmentation output in a more direct way.
Our proposed framework has a negligible increase in parameter count compared to
early-fusion frameworks. We perform extensive experimentation on the standard in-
teractive instance segmentation and one-click segmentation benchmarks and report
state-of-the-art performance.

7.1 Introduction

The widespread availability of smartphones had made taking photos easier than
ever. In a typical image capturing scenario, the user taps the device touchscreen
to focus on the object of interest. This tap directly locates the object in the scene
and can be leveraged for segmentation. Generated segmentations are implicit, but
are applicable for downstream photo applications, such as simulated ‘bokeh’ or
other special-effects filters such as background blur (see Fig. 7.1). In this work, we
specifically tackle “tap-and-shoot segmentation” (Chen et al., 2018a), a special case
of interactive instance segmentation.

Interactive segmentation leverages inputs such as clicks, scribbles, or bounding
boxes to help segment objects from the background down to the pixel level. Two
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Figure 7.1: We consider the popular special-effect filter used in mobile photography
- background blur. Here the user intends to blur the rest of the image barring
the dog. In most existing interactive segmentation approaches (Xu et al., 2016;
Liew et al., 2017; Mahadevan et al., 2018; Sofiiuk et al., 2020), the user click (here
placed on the dog) is leveraged only at the input layer and its influence diminishes
through the layers. This can result in unsatisfactory image effects, e.g portions of
the dog’s elbow and ear are wrongly classified as background and are mistakenly
blurred (shown in enlarged red boxes). Our proposed multi-stage fusion allows user
click to have a more direct effect leading to improvement in segmentation quality
(shown in enlarged green boxes).

key differences distinguish tap-and-shoot segmentation from standard interactive
segmentation. First, tap-and-shoot uses only “positive” clicks marking foreground,
as we assume that the user clicks (only) on the object of interest during the
capture process. Standard interactive segmentation uses both positive and negative
clicks (Xu et al., 2016; Mahadevan et al., 2018; Sofiiuk et al., 2020) to respectively
indicate the object of interest versus background or non-relevant foreground
objects. Secondly, tap-and-shoot has a strong focus on maximizing the mean
intersection over union (mIoU) with a single click because the target applica-
tion is casual photography. In contrast, standard interactive segmentation tries to
achieve some threshold mIoU (e.g. 85%) while minimizing the total number of clicks.

This second distinction is subtle but critical for designing and learning tap-and-
shoot segmentation frameworks. Our finding is that existing approaches fare poorly
with only one or two clicks – they are simply not trained to maximize performance
under such settings. To make the most of the first (few) click(s), we hypothesize that
user cues’ guidance should be fused into the network at multiple locations rather
than via early fusion. Just as gradients vanish towards the initial layers during
back-propagation, input signals also diminish as it makes a forward pass through
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the network. The many layers of deep CNNs further exacerbate this effect (Hu
et al., 2019; Park et al., 2019). A late fusion would allow the user interaction to
have a direct and more pronounced effect on the final segmentation mask. To this
end, we propose an interactive segmentation framework with multi-stage fusion and
demonstrate its advantages over the common early fusion frameworks and other
alternatives. Specifically, we propose a light-weight fusion block that encodes the
user click transformation and allows a shorter connection from user inputs to the
final segmentation layer.

Most similar in spirit to our framework are the frameworks of Hu et al. (2019)
and Rakelly et al. (2018). These two works also propose alternatives to early fusion
but are extremely parameter heavy. For example, the framework of Hu et al. (2019)
uses two dedicated VGG (Simonyan and Zisserman, 2014) networks to to extract
features from the image and the user interactions separately before fusing into a
final instance segmentation mask (see Fig. 7.2(c)). Rakelly et al. (2018) uses a
single stream but applies a simple late fusion of element-wise multiplication on the
feature maps (see Fig. 7.2(b)). It therefore has separate ‘positive’ and ‘negative’
feature maps and the number of weights for the following layer increases by a factor
of 2. For VGG, this doubles the parameters of the ensuing ‘fc6’ layer from 100 to
200 million. Compared to Rakelly et al. (2018), our last-stage fusion approach is
light-weight and uses less than 1.5% more trainable parameters.

Our contributions are summarized as follows:

• We propose a novel one-click interactive segmentation framework that fuses
user guidance at different network stages.

• We demonstrate that multi-stage fusion is highly beneficial for propagating
guidance and increasing the mIoU since it allows user interaction to have a
more direct impact on the final segmentation.

• Comprehensive experiments on six benchmarks show that our approach signif-
icantly outperforms existing state-of-the-art for both tap-and-shoot and stan-
dard interactive instance segmentation.

7.2 Related Works

As an essential building block of image/video editing applications, interactive
segmentation and dates back decades (Mortensen and Barrett, 1995). The latest
methods (Mahadevan et al., 2018; Xu et al., 2016; Hu et al., 2019; Rakelly
et al., 2018) integrate deep architectures such as FCN-8s (Long et al., 2015) or
Deeplab (Chen et al., 2018c,b). Most of these approaches integrate user cues in the
input stage. The clicks are transformed into ‘guidance’ maps and appended to the
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three-channel colour image input before being passed through a CNN (Mahadevan
et al., 2018; Xu et al., 2016; Majumder and Yao, 2019a).

Early Interactive Instance Segmentation approaches used graph-
cuts (Rother et al., 2004), geodesics, or a combination (Gulshan et al., 2010). These
methods’ performance is limited as they separate the foreground and background
based on low-level colour and texture features. Consequently, for scenes where
foreground and background are similar in appearance, or lighting and contrast is
low, more labelling effort from the users to achieve good segmentations (Xu et al.,
2016). Recently, deep convolutional neural networks (Long et al., 2015; Chen
et al., 2018b,c) have been incorporated into interactive segmentation frameworks.
Initially, Xu et al. (2016) used Euclidean distance-based guidance maps to represent
user-provided clicks and are passed along with the input RGB image through a
fully convolutional network.

Subsequent works made extensions with newer CNN architectures (Mahade-
van et al., 2018), iterative training procedures (Mahadevan et al., 2018) and
content-aware guidance maps (Majumder and Yao, 2019a,b). These works share
a structural similarity: the guidance maps are concatenated with the RGB image
as additional channels at the first (input) layer. We refer to this form of struc-
ture as early fusion (see Fig. 7.2(a)). Architecture-wise, early fusion is simple
and easy to train; however, user inputs’ influence gets diminished through the layers.

Tap-and-Shoot Segmentation was introduced by (Chen et al., 2018a), and
refers to the one-click interactive setting. One assumes that during image capture,
the user taps the touchscreen (once) on the foreground object of interest, from
which one can directly segment the object of interest. Chen et al. (2018a) uses
early fusion; it transforms the user tap into a guidance map via two shortest-path
minimizations and then concatenates the map to the input image. The authors
validate on simple datasets such as ECSSD (Shi et al., 2015) and MSRA10K (Cheng
et al., 2014), where the images contain a single dominant foreground object. As we
show later (see Table. 7.1), these datasets are so simplistic that properly trained
networks with no user input can also generate high-quality segmentation masks
which are comparable or even surpass the results reported by (Chen et al., 2018a).

Feature Fusion in Deep Architectures offers an efficient way to leverage
complementary information, either from different modalities (Vielzeuf et al., 2017),
or different levels of abstraction (Zhang et al., 2019). Element-wise multiplica-
tion (Rakelly et al., 2018) and addition (Hu et al., 2019; Liu et al., 2019) are
two common operations applied for fusing multiple channels. Other strategies
include ‘skip’ connections (Long et al., 2015), where features from earlier layers
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(a) Early fusion

 (c) Two-stream FCN 

 (b) Late fusion

 (d) Proposed approach
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Figure 7.2: (a) Existing interactive instance segmentation and “tap-and-shoot"
segmentation techniques concatenate user provided cues as an extra guidance map(s)
(for ‘positive’ and ‘negative’ clicks) with the RGB and pass everything through a
segmentation network. (b-c) Other alternative approaches are extremely parameter
heavy. (b) The work of (Hu et al., 2019) uses two dedicated VGG (Simonyan and
Zisserman, 2014) networks for extracting features from image and user interactions
separately. (c) The work of (Rakelly et al., 2018) performs late fusion via element-
wise multiplication on the feature maps which requires an additional 100 million
parameters. (d) We leverage user guidance at the input (early fusion) and via late
fusion. Our multi-stage fusion reduces the layers of abstraction and allows user
interactions to have a more direct impact on the final output.

are concatenated with the features extracted from the deeper layers. Recently, a
few interactive instance segmentation works have begun exploring outside of the
early-fusion paradigm to integrate user guidance (Hu et al., 2019; Rakelly et al.,
2018). However, these approaches are heavy in their computational footprint,
as they increase the number of parameters to be learned by order of hundred of
millions (Rakelly et al., 2018). Dilution of input information is common-place in
deep CNNs as the input gets processed several blocks of convolution (Park et al.,
2019). Feature fusion helps preserve input information by reducing the layers of
abstraction between the user interaction and the segmentation output.
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7.3 Proposed Method

7.3.1 Overview

We follow the conventional paradigm of (Xu et al., 2016) in which ‘positive’ and
‘negative’ user clicks are transformed into ‘guidance’ maps of the same size as the
input image. Unlike majority of the interactive frameworks (Xu et al., 2016; Liew
et al., 2017; Mahadevan et al., 2018; Li et al., 2018; Sofiiuk et al., 2020), we work
within the one-click setting. The user provides a single ‘positive’ click on the object
of interest; this click is then encoded into a single channel guidance map G. We
then feed the 3-channel RGB image input and the guidance map as an additional
channel into a fully convolutional network. Fig. 7.3(a) shows an overview of our
pipeline. Typically these FCNs are fine-tuned versions of semantic segmentation
networks such as FCN-8s (Long et al., 2015) or Deeplab (Chen et al., 2018b).

For our base segmentation network, we use Deeplabv2 (Chen et al., 2018b); it
consists of a ResNet-101 (He et al., 2016) feature extraction backbone and a Pyramid
Scene Parsing (PSP) module (Zhao et al., 2017) acting as the prediction head. Upon
receiving the input of size h×w×4, the ResNet-101 backbone generates feature maps
with a stride of 8, i.e., of dimension h

8×
w
8×2048 (Fig. 7.3(a)).

7.3.2 Multi-stage fusion

The fusion module consists of 3 Squeeze-and-Excitation residual blocks (SE-
ResNet) (Hu et al., 2018). Proposed in (Hu et al., 2018), SE-ResNet blocks have
been shown to effective for a variety of vision tasks such as image classification on
ImageNet (Russakovsky et al., 2015) and object detection on MS COCO (Lin et al.,
2014). SE-ResNet blocks incur minimal additional computational overhead as they
consist of two 3×3 convolutional layers, two inexpensive fully connected layers and
channel-wise scaling operation. Each SE-ResNet block consists of a residual block,
a squeeze operation which produces a channel descriptor by aggregating feature
maps across their spatial operation, dimensionality reduction layer (by reduction
ratio r) and an excitation operation which captures the channel interdependencies.
The individual components of the SE-ResNet block is shown in Fig. 7.3(b). The
residual block consists of two 3×3 convolutions, batch normalization, and a ReLU
non-linearity (Fig. 7.3(c)). We fix the number of filter banks to be 256 for each of
the 3×3 convolution. The reduction ratio r is kept as 16 (Hu et al., 2018). The
input to the fusion block is a h/4×w/4×256 feature map which is obtained by
processing the h×w×4 input with 7×7 convolution operation with stride 2, batch
normalization, ReLU non-linearity (Maas et al., 2013) and a 2×2 max-pooling
operation with a stride of 2 (Init block, Fig. 7.3(a)). The final SE-ResNet block
downsamples to generate a h/8×w/8×256 feature map. This is concatenated with
the h/8×w/8×2048 obtained from the feature extraction backbone to obtain a
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Figure 7.3: (a) Overview of our pipeline. Given an image and a ‘positive’ user
click (shown in green circle), we transform the click into a Gaussian guidance map,
which is concatenated with the 3-channel image input and is fed to our segmentation
network. For ease of visualization, inverted values for the Gaussian guidance map
is shown in the image. The output is the segmentation mask of the selected object.
(b) SE-ResNet block (Hu et al., 2018) (c) Residual block in SE-ResNet.

h/8×w/8×2304 feature map.

On top of these feature maps, PSP performs pooling operations at different grid
scales on the feature maps to gather the global contextual prior, leading to feature
maps of dimensions h/8×w/8×512. The multi-scale feature pooling of PSP (Zhao
et al., 2017) enables the network to capture objects occurring at different image
scales. Pixel-wise foreground-background classification is performed on these down-
sampled feature maps. The network outputs a probability map representing whether
a pixel belongs to the object of interest or not. Bi-linear interpolation is performed
to up-sample the predicted probability map to have the same dimensions as the
original input image.

7.3.3 Transforming user click

In interactive approaches, pixel values of the guidance map are defined as a func-
tion of its distance on the image grid to the point of user interaction (Eqn. 7.1).
This includes Euclidean (Xu et al., 2016; Hu et al., 2019) and Gaussian guidance
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maps (Mahadevan et al., 2018). For each pixel position p on the image grid, the
pair of distance-based guidance maps for positive (+) and negative clicks (−) can
be computed as

Gd+(p) = min
c∈{p+}

d(p, c) and Gd−(p) = min
c∈{p−}

d(p, c). (7.1)

For Euclidean guidance maps (Xu et al., 2016), the function d(·, ·) is the Euclidean
distance. For Gaussian guidance maps, the ‘min’ is replaced by a ‘max’ operator.
A more recent approach advocated taking image structures such as super-pixels and
region-based object proposals into consideration to generate guidance maps (Ma-
jumder and Yao, 2019a,b). To generate the guidance maps, we use Gaussian trans-
formations (Mahadevan et al., 2018) as it offers a favourable trade-off between sim-
plicity and performance. We initialize an image-sized all zero channel and place a
Gaussian with a standard deviation of 10 pixels at the user click location. Note that
we do not use ‘negative’ clicks in our framework.

7.3.4 Implementation Details

Network Optimization. We train the network to minimize the class-balanced
binary cross-entropy loss,

L =
∑
j∈N

wyj · BCE(yj , ŷj) (7.2)

where N is the number of pixels in the image, BCE(·) is the standard cross-entropy
loss between the label yj and the prediction ŷj at pixel location j given by,

BCE(yj , ŷj) = −yj · logŷj − (1− yj) · log(1− ŷj) (7.3)

wyj is the inverse normalized frequency of labels yj ∈ {0, 1} within the mini-batch.
We optimize using mini-batch SGD with Nesterov momentum (with default value
of 0.9) and a batch size of 5. The learning rate is fixed at 10−8 across all epochs
and weight decay is 0.0005. For the ResNet-101 backbone, we initialize the network
weights from a model pre-trained on ImageNet (Russakovsky et al., 2015). During
training, we first update the early-fusion skeleton for 30-35 epochs. Next we freeze
the weights of the early-fusion model and train the late-fusion weights for 5-10
epochs. Finally, we train the joint network for another 5 epochs.

Simulating user clicks. Manually collecting user interactions is an expensive and
arduous process (Benenson et al., 2019). In a similar vein as (Chen et al., 2018a)
and other interactive segmentation frameworks (Xu et al., 2016; Liew et al., 2017;
Mahadevan et al., 2018; Jang and Kim, 2019; Sofiiuk et al., 2020), we simulate user
interactions to train and evaluate our method. During training, we use the ground
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truth masks of the object instances from the MSRA10K dataset. To initialize,
we take the center of mass of the ground truth mask as our user click location;
we then jitter the click location by U(−50, 50) pixels randomly (U is the uniform
distribution). The clicked pixel location is constrained to the confines of the object
ground truth mask. The random perturbation introduces variation in the training
data and also allows better approximation of true user interactions.

7.4 Experimental Validation

7.4.1 Datasets

We evaluate on six publicly available datasets commonly used to benchmark inter-
active image segmentation (Xu et al., 2016; Mahadevan et al., 2018; Chen et al.,
2018a; Majumder and Yao, 2019a): MSRA10K (Cheng et al., 2014), ECSSD (Shi
et al., 2015), GrabCut (Rother et al., 2004), Berkeley (McGuinness and O’connor,
2010), Pascal VOC 2012 (Everingham et al., 2010) and MS COCO (Lin et al.,
2014). We use mean intersection over union (mIoU) of foreground w.r.t. to the
ground truth object mask across all instances to evaluate the segmentation accuracy
as per existing works (Long et al., 2015; Xu et al., 2016; Mahadevan et al., 2018;
Chen et al., 2018a; Majumder and Yao, 2019a).

MSRA10K has 10000 natural images; the images are characterized by va-
riety in the foreground objects whilst the background is relatively homogeneous.
Extended complex scene saliency dataset (ECSSD) is a dataset of 1000 natural
images with structurally complex backgrounds. GrabCut is a dataset consisting
of 49 images with typically a distinct foreground object. It is a popular dataset
for benchmarking interactive instance segmentation algorithms. The Berkeley
dataset consists of 96 natural images. Pascal VOC 2012 consists of 1464 training
and 1449 validation images across 20 different object classes; many images contain
multiple objects. MS COCO is a challenging large-scale image segmentation
dataset with images from 80 different object categories, 20 of which are in common
with the Pascal VOC 2012 categories.

7.4.2 Tap-and-Shoot Segmentation

Following Chen et al. (2018a), we use MSRA10K (Cheng et al., 2014) for training.
We partition the dataset into three non-overlapping subsets of 8000, 1000 and
1000 images as our training, validation, and test set. We report the mIoU after
training for 16k iterations and again after network convergence (at 43k iterations
for our implementation, vs. 260k iterations in Chen et al. (2018a)) in Table. 7.1.
During training, we resize the images to 512×512 pixels. This choice of resolution
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Method G res GrabCut Berkeley ECSSD MSRA-10K

TNS ! 256 72.3 / 79.0 55.7 / 67.0 70.3 / 76.0 81.1 / 85.0
vgg-baseline % 256 73.5 / 77.4 58.2 / 63.2 71.2 / 72.3 83.4 / 86.2
vgg-early ! 256 76.2 / 80.1 62.8 / 65.3 74.8 / 76.5 87.1 / 87.5
resnet-baseline % 256 81.6 / 83.0 68.5 / 68.2 80.2 / 82.0 86.4 / 86.9
resnet-early ! 256 83.3 / 84.3 75.0 / 75.3 82.0 / 83.6 88.6 / 89.6
resnet-multi ! 256 84.1 / 85.7 75.1 / 78.4 81.9 / 85.2 91.5 / 92.1
resnet-baseline % 512 76.1 / 79.0 65.5 / 68.3 79.9 / 82.6 87.0 / 87.9
resnet-early ! 512 82.9 / 84.5 76.2 / 78.1 85.6 / 85.7 91.5 / 91.4
resnet-multi ! 512 83.1 / 86.2 80.1 / 81.3 86.8 / 87.1 92.5 / 93.1

Table 7.1: Ablation Study: Tap-and-Shoot Segmentation (Chen et al., 2018a). ‘res’
refers to the image resolution used during training. We report average mIoU for the
segmentation results after training for 16k iterations and after training convergence.
The -baseline models receive a 3-channel RGB image as input without the guidance
map G. For comparison, we report the performance of (Chen et al., 2018a) in the
first row (abbreviated as TNS).

is driven primarily by matching the resolution to that of the training images for the
ResNet-101 backbone (He et al., 2016).

The -baseline models are trained using only the 3-channel RGB image and the
instance ground truth mask without any user click transformations. The -early
models use Gaussian guidance maps (Mahadevan et al., 2018); the network input
is 3-channel RGB image and Gaussian encoding of the user’s tap on the object of
interest (Fig. 7.2(a)). The -multi models refer to the multi-stage fusion models
with Gaussian encoding of user clicks. Note that we do not train a late-fusion
model; standalone late-fusion models show inferior performance compared to their
early-fusion counterparts (Rakelly et al., 2018).

From Table. 7.1, we observe that our trained network converges mostly within 16k
iterations. For simplistic datasets such as MSRA10K (Cheng et al., 2014) and EC-
SSD (Shi et al., 2015), the vgg-baseline without user click transformation compares
favourably with the approach of Chen et al. (2018a) at the same training resolu-
tion of 256×256. resnet-baseline models trained with 512× 512 images significantly
outperform (Chen et al., 2018a) reporting absolute mIoU gains of till 7% across
the datasets. Based on this result alone, we conclude that one-click (and standard)
interactive segmentation approaches should be benchmarked on more challenging
datasets such as Pascal VOC 2012 (Everingham et al., 2010) and MS COCO (Lin
et al., 2014), which feature cluttered scenes, multiple objects, occlusions and chal-
lenging lighting conditions (see Table. 7.3).
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Input Image with the overlaid gt mask Disk guidance mapEuclidean guidance Gaussian guidance

Figure 7.4: Examples of guidance maps. Given a click (shown as green circle) on
the object of interest (highlighted in yellow), existing approaches transform it into
guidance maps and uses it as an additional input channel. For ease of visualization,
inverted values for the disk guidance map and the Gaussian guidance map are shown
in the image.

Furthermore, with only the Gaussian transformation and ResNet-101 backbone
trained on 512×512, we are able to achieve mIoU improvements in the range of 5-
11% across datasets at convergence w.r.t Chen et al. (2018a). Having the multi-stage
fusion offers us absolute mIoU gains of 1-4% w.r.t the early fusion variant (resnet-
early vs. resnet-multi when trained with 512×512 images). Additionally, our resnet
models require significantly less memory; 195.8 MB (stored as 32-bit/4-byte floating
point numbers) instead of the 652.45 MB required for the segmentation network
of Chen et al. (2018a).

7.4.3 Interactive image segmentation

Approaches in the literature (Xu et al., 2016; Mahadevan et al., 2018; Majumder
and Yao, 2019a; Hu et al., 2019) are typically evaluated by (1) the average number
of clicks needed to reach the desired level of segmentation (85% mIoU for Pascal
VOC 2012, MS COCO, 90% mIoU for the less challenging Grabcut and Berkeley)
and (2) the average mIoU vs the number of clicks.

The first criterion is primarily geared towards annotation tasks (Xu et al.,
2016; Liew et al., 2017; Mahadevan et al., 2018; Jang and Kim, 2019; Sofiiuk
et al., 2020) where high-quality segments are desired for each instance in the scene
desirably with a low number of clicks. In this work, we are concerned primarily
with achieving high-quality segments for the object of interest given only a single
click. Accordingly, given a single user click, we report the average mIoU across all
instances for the GrabCut, Berkeley and the Pascal VOC 2012 val dataset. For MS
COCO object instances, following (Xu et al., 2016), we split the dataset into the 20

Pascal VOC 2012 categories and the 60 additional categories, and randomly sample
10 images per category for evaluation. We also report the average mIoU across
these 800 sampled MS COCO instances for a fair comparison with Hu et al. (2019).
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G GrabCut Berkeley VOC-2012 COCO-20 COCO-60

Euclidean 82.6 82.7 75.1 63.2 46.8
Disk 84.5 81.3 74.5 65.3 51.5
Gaussian 84.0 82.9 78.1 64.2 49.8

Gaussian-multi 86.2(2.2 ↑) 84.0(1.1 ↑) 80.8(2.7 ↑) 64.5(0.3 ↑) 52.3(2.5 ↑)

Table 7.2: We train separate networks to study the impact of different forms of user-
click transformation - Euclidean (Xu et al., 2016), Gaussian (Benard and Gygli,
2017), and Disk (Benenson et al., 2019). The best results are indicated in bold.
COCO-20 and COCO-60 refers to the instances from 20 overlapping categories and
60 non-overlapping categories of Pascal VOC 2012 respectively. The mIoU improve-
ment (in %) when using the multi-stage framework is indicated using ↑.

For training (Xu et al., 2016; Majumder and Yao, 2019a; Hu et al., 2019), we
use the ground truth masks of object instances from Pascal VOC 2012 (Everingham
et al., 2010) train set with additional masks from Semantic Boundaries Dataset
(SBD) (Hariharan et al., 2011) resulting in 10582 images. Note that unlike (Ma-
hadevan et al., 2018), we do not use the training instances from MS COCO.

Ablation Study. We perform extensive ablation studies to thoroughly analyze
the effectiveness of the individual components of our one-click segmentation frame-
work. First, to validate our choice of guidance maps, we consider the user click
transformations commonly used in existing interactive segmentation algorithms
- Euclidean distance maps (Xu et al., 2016; Hu et al., 2019), Gaussian distance
maps (Mahadevan et al., 2018) and disk (Benenson et al., 2019). Fig. 7.4 shows
examples of such guidance maps. For each kind of guidance map, we train separate
networks to understand the impact of different user click transformations. For
evaluation, we report the average mIoU over all instances in the dataset, given a
single click (see Table. 7.2). Next, we study the impact of our proposed late-fusion
module (denoted by -multi in Table. 7.2); we observe an average mIoU improvement
of around 1.8% across different datasets.

One-click segmentation. We next the segmentation performance of our method
with existing interactive instance segmentation approaches (see Table. 7.3). The
approaches are grouped separately into 3 different categories - pre-deep learning ap-
proaches, deep learning-based interactive instance segmentation approaches and tap-
and-shoot segmentation approaches. From Table. 7.3, we observe that our approach
outperforms the classical interactive segmentation works by a significant margin
reporting 40% absolute improvement in average mIoU. We also outperform exist-
ing state-of-the-art interactive instance segmentation approaches by a considerable



7.5. User Study 105

Method Network GrabCut Berkeley VOC-2012 COCO-20 COCO-60

GC - 41.7 33.8 27.7 - 8.9
GM - 23.7 24.5 23.8 - 22.1
GD - 48.8 36.1 31.0 - 25.2
iFCN FCN-8s 62.9 61.3 53.6 42.9
ITIS Deeplabv3+ 82.1 - 71.0 - -
CAG FCN-8s 83.2 - 74.0 - -
TS FCN-8s 77.7 74.5 62.3 42.5 42.5
TNS FCN-8s 79.0 67.0 - - -
Ours-best Deeplabv2 86.2(3.0 ↑) 84.0(9.5 ↑) 80.8(6.8 ↑) 64.5(22.0 ↑) 52.3(9.6 ↑)

Table 7.3: Average mIoU given a single click. The approaches are grouped sepa-
rately into 3 different categories - pre-deep learning approaches, deep learning-based
interactive instance segmentation approaches and tap-and-shoot segmentation ap-
proaches respectively. For GC(Boykov and Jolly, 2001), GM(Bai and Sapiro, 2009),
GD(Gulshan et al., 2010), and iFCN(Xu et al., 2016) we make use of the values pro-
vided by the authors of iFCN(Xu et al., 2016). We additionally use the mIoU values
reported in ITIS (Mahadevan et al., 2018), CAG (Majumder and Yao, 2019a), the
two-stream framework of Hu et al. (2019), and TNS (Chen et al., 2018a). The mIoU
improvement (in %) over existing state-of-the-art approaches is indicated using ↑.

margin (> 3%). Additionally, we report an absolute mIoU improvement of 7.2%
and 17% on Grabcut and Berkeley over the tap-and-shoot segmentation framework
of Chen et al. (2018a). We show qualitative results to demonstrate the effectiveness
of our proposed algorithm (see Fig. 7.5). The resulting segmentations demonstrate
that our approach is highly effective for the one-click segmentation paradigm.

7.5 User Study

Across existing state-of-the-art interactive frameworks (Xu et al., 2016; Mahadevan
et al., 2018; Sofiiuk et al., 2020), user clicks are simulated following the protocols
established in (Xu et al., 2016; Mahadevan et al., 2018). For our user study, we
consult 5 participants uninitiated to the task of interactive segmentation. We
prepare a toy dataset with 50 object instances from the MSRA10K (Cheng et al.,
2014) dataset. We presented the image with the segmentation mask for the target
object overlaid on the image and asked the users to provide their click.

During training, we applied random perturbations of U(−50, 50) pixels to the
center of mass of the object instance to obtain the final user click. Our user study
found that participants placed clicks at a mean distance of 24 pixels from the center of
the mask with a standard deviation of 27 pixels. This result validates our assumption
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Figure 7.5: Qualitative Results. Incorporating the user clicks at different stages
of the network leads to an improvement in the quality of masks generated (second
row) w.r.t the early-fusion variants (first row). Click locations are shown in green
circles. The extreme right column shows a scenario where both the networks failed
to generate a satisfactory mask.

that users are more likely to click in the vicinity of the object’s center-of-mass. It also
supports our click sampling scheme for generating training instances when training
the object selection stage. On average, we observed that users took 2.3 seconds with
a standard deviation of 0.8 seconds to position their click.

7.6 Conclusion

In this work, we propose a one-click segmentation framework that produces
high-quality segmentation masks. We validated our design choices through detailed
ablation studies; we observed that having a multi-stage module improves the
segmentation framework and gives the network an edge over its early-fusion
variants. Via experiments, we observed that for the single click scenario, our
proposed approach significantly outperforms existing state-of-the-art approaches
- including the more complicated interactive instance segmentation models using
state-of-the-art segmentation models (Chen et al., 2018c).

However, we observe existing tap-and-shoot segmentation frameworks (Chen
et al., 2018a), including our proposed framework, are limited by their inability to
learn from negative clicks (Xu et al., 2016; Mahadevan et al., 2018). One major
drawback of such a training scenario is that the network does not have a notion of
corrective clicking; if the generated segmentation mask extends beyond the object
boundaries, it cannot rectify this mistake. Clicking on locations outside the object
can mitigate this effect, though this then deviates from tap-and-shoot interaction.



Chapter 8

Conclusion

8.1 Overview

In the future, as deep learning models increase in size, the need for large-scale, high-
quality annotations will only rise. To ensure the steady progress of deep learning
segmentation models, we require interactive frameworks to scale up with this in-
creasing need. In this dissertation, we propose different interactive frameworks with
the goal of efficiently leveraging user-provided clicks as we strive towards the shared
goal of one-click segmentation. In this final chapter, we summarize our contribu-
tions to interactive segmentation research. Finally, we conclude the chapter and the
dissertation discussing the challenges often encountered when designing interactive
frameworks and what holds in the future for interactive image segmentation.

8.2 Contributions

Through this dissertation, we highlighted and addressed different facets of interac-
tive instance segmentation. We summarize our contribution as follows:

User click representation. Across several interactive frameworks (Xu et al.,
2016; Liew et al., 2017; Li et al., 2018; Jang and Kim, 2019; Sofiiuk et al., 2020),
users interact with the segmentation models via pixel clicks. These clicks are
far and few, e.g., at the onset of interaction, users mark only a single pixel on
the target object. Information encoded in such clicks is sparse. Accordingly,
existing approaches apply distance-based transformations to de-sparsify the in-
formation such that segmentation backbones can meaningfully leverage them.
These distance-based transformations include Euclidean (Xu et al., 2016; Li et al.,
2018) and Gaussian (Mahadevan et al., 2018; Jang and Kim, 2019; Sofiiuk et al.,
2020) distance-based transformation. As research in the field progressed, the
role of user-click transformations in the performance of interactive frameworks
went un-noticed. Following works focused primarily on adapting contemporary
state-of-the-art FCN architectures (Mahadevan et al., 2018) and iterative training
procedures (Liew et al., 2017; Mahadevan et al., 2018).

We observed that existing guidance maps disregard basic consistencies in
the scene, such as color, textures (Achanta et al., 2012), and object propos-
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als (Pont-Tuset et al., 2017) that can be obtained in an unsupervised manner. By
meaningfully leveraging such low-level cues (Yao et al., 2015; Achanta et al., 2012)
and high-level cues (Pont-Tuset et al., 2017; Maninis et al., 2016), we proposed
an effective user-click transformation framework that significantly impacts the
performance of interactive frameworks. Our work was the first in deep interactive
segmentation literature to investigate and highlight the impact of guidance maps
in the performance of interactive frameworks. Using an outdated segmentation
backbone FCN-8s (Long et al., 2015), we were able to comprehensively outperform
contemporary interactive frameworks using state-of-the-art segmentation backbones
such as Deeplabv3+ (Chen et al., 2018c) across all public benchmarks.

Localized interactions. Intuitively, a user interested in segmenting an object
instance from the scene would primarily focus in the vicinity of object. User clicks,
thereby, should either be on the object or close to object. However, across existing
frameworks (Liew et al., 2017; Li et al., 2018; Sofiiuk et al., 2020) including our
work (Majumder and Yao, 2019a), user-interactions are generated synthetically
following heuristics outlined in (Xu et al., 2016). While positive clicks are still
restricted, by their definition, to be within the object confinements, negative clicks
are allowed anywhere on the background pixels even for pixels far apart from the
object. Other frameworks which restrict the placement of user clicks do so via
enforcing hard constraints (Xu et al., 2017b; Maninis et al., 2018); such frame-
works are typically non-iterative and users cannot refine the errors segmentation
masks (Xu et al., 2017b).

Our motivation was to direct the user clicks to the vicinity of the object without
using hard constraints, e.g., extreme clicks (Maninis et al., 2018; Agustsson et al.,
2019). Spatially limiting user clicks gives us the opportunity to enforce a weak
constraint on the location and scale of the object which in turn facilitates the
network training under less ambiguous circumstances. In our work, we proposed
a new transformation scheme for the user-provided clicks which provides a weak
localization prior on the object of interest and while being consistent with scene-level
consistencies such as edges, textures, etc. in the scene.

Two-in-one refinement. Instead of conventional positive and negative clicks to
fix false negatives and false positives (Xu et al., 2016; Liew et al., 2017; Mahadevan
et al., 2018; Majumder and Yao, 2019a; Sofiiuk et al., 2020), we ask users to click
on object boundaries in the vicinity of largest segmentation errors. This lessens the
effort on the user’s part. Previously, the user had to identify and then click centrally
in the largest erroneous regions. Instead, our proposed boundary refinement clicks is
intuitive for the user. Additionally, it provides a stronger cue for the object location.
Unlike our previous works (Majumder and Yao, 2019a,b), we use Gaussians for
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user-click transformation. Content-aware user-click encodings do offer significant
benefit over Gaussians and Euclidean transforms, as we demonstrated in previous
chapters. However object proposals (Pont-Tuset et al., 2017) necessary for such en-
codings are expensive to obtain; processing a single image can take tens of seconds.
Secondly, from an implementation stand-point, Gaussian encodings are easier to use.

Also, current frameworks treat all positive clicks indiscriminately (Xu et al.,
2016; Liew et al., 2017; Mahadevan et al., 2018; Majumder and Yao, 2019a; Sofiiuk
et al., 2020). However, in practice, the network leverages the first positive click to
select the object. Following positive clicks are used to mark false negative errors.
Our work was the first to frame interactive segmentation as a two stage task -
select and refine. Through experiments, we demonstrate the benefits of a two-stage
approach and we believe that disentangling the tasks will enable the research
community to develop streamlined networks for the selection and refinement task.

Multi-stage fusion of user interaction. In this work, we aim for maximizing
the performance achievable with a single user click. The end goal is to get closer to
one-click segmentation - the endgame for interactive frameworks. Having a good
initial segmentation mask is crucial for several commercial downstream approaches
such as Photoshop and mobile photography (Chen et al., 2018a). Despite signif-
icant progress over the years, advanced deep learning-based frameworks tend to
under-utilize and particularly fare poorly with only one or two clicks.

To make the most of first (few) click(s), we propose the fusion of user guidance
at multiple stages of the network rather than via early fusion. A late fusion allows
the user interaction to have a direct and more pronounced effect on the final
segmentation mask. While previous approaches attempted late fusion of user inter-
action (Hu et al., 2019; Rakelly et al., 2018), it came with a heavy cost with newer
networks requiring additional parameters in the order of 100 million (Rakelly et al.,
2018). Instead, we propose an light-weight and easier-to-train alternative to perform
fusion of user interactions at multiple stages of the network. For a single click, our
design outperforms all competing approaches with minimal computational overhead.

Summary. User clicks drive interactive segmentation; they provide cues on the ob-
ject location and the segmentation error. However, clicks are expensive and difficult
to obtain. Our goal is thus to make the most out of every user-provided click and
build click-efficient interactive frameworks. We explore the design of such efficient
frameworks by extending the capabilities of different components in the interactive
pipeline - user click representation, click refinement, and network design. First, to
make clicks more informative, we leverage image features and click locations to pro-
vide additional image content awareness and spatial context to user clicks. Next,
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we bring more utility to the user-provided clicks by proposing boundary clicks for
refinement. Finally, we propose a network design that guarantees user clicks have
more impact on the segmentation output.

8.3 Discussions and Outlook

User study. Existing interactive frameworks are designed on the premise of
integrating and collaborating with actual user inputs to speed up dense (e.g., pixel-
level) annotation of images. Ideally, for training such frameworks, real user input is
desired. However, such annotations are expensive to acquire (Kass et al., 1988; Xu
et al., 2016; Khoreva et al., 2017). Instead, training and test clicks are synthesized
using instance-level masks present in the dataset. Typically, most approaches use
the click sampling strategies established in (Xu et al., 2016) and (Mahadevan et al.,
2018); other methods synthesize clicks per their algorithm (Liew et al., 2019; Sofiiuk
et al., 2020). Assumptions made in such cases might not hold, limiting the methods’
performance when interacting with an actual user.

Furthermore, click strategies might vary in difficulty to the user even when they
serve the same functionality. For example, tight bounding boxes and extreme clicks
both enclose an object of interest with tight boundaries. However, users spend an
average of 7 seconds (Papadopoulos et al., 2017; Maninis et al., 2018) to mark the
four extremities of an object; for bounding boxes it takes an user an average of 35
seconds (Su et al., 2012; Papadopoulos et al., 2017).

Currently, only a handful of click-based interactive methods (Liew et al., 2019;
Majumder et al., 2020b,a) take user-clicking behavior into accounts. To ensure
that our frameworks (Majumder et al., 2020b,a) are consistent with the users, we
performed user studies to validate our click sampling strategies. In the future,
newer interactive frameworks should validate their click sampling strategies using
actual users and also compare the merits and demerits of a newly proposed click
sampling strategy for the user.

Datasets and Evaluation. Deep learning-based interactive frameworks rely on
dense pixel-level annotation for object instances during training. The commonly
used datasets for training are Pascal VOC 2012 (Everingham et al., 2010) and the
MS COCO (Lin et al., 2014) train set. These datasets capture the diversity of
unconstrained imagery and have been pivotal to the success of current state-of-the-
art methods in semantic (Long et al., 2015; Chen et al., 2018c), instance (He et al.,
2017), and interactive segmentation algorithms (Xu et al., 2016).

Current state-of-the-art interactive methods achieve overall good segmentation
performance; however, due to the coarse nature of the annotation, and inconsisten-
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Figure 8.1: We show some examples demonstrating the lack of consistency in the
per-pixel annotation of the instances from the ‘bicycle’ class in the Pascal VOC
2012 (Everingham et al., 2010) and SBD (Hariharan et al., 2011). However, despite
this inconsistency, several interactive frameworks rely on the annotations from both
these datasets jointly during training. The ground truth masks are overlaid in green.

cies across datasets, instances from certain object classes incur heavy penalties in
the form of additional clicks. Thin object segmentation, i.e. segmentation of object
instances with elongated thin structures, is one challenging aspect where current
methods falter. To circumvent this, several approaches (Li et al., 2018; Jang and
Kim, 2019; Sofiiuk et al., 2020) opt for consistency in annotations. Instead of
training on Pascal VOC 2012 train set with additional masks from SBD (Hariharan
et al., 2011) which results in conflicting annotations (Fig. 8.1), these methods opt to
train and validate only on the SBD train and val set. Recently, the work of (Liew
et al., 2021) proposed the ThinObject-5K dataset with high quality annotations
for segmenting objects with thin regions and proposed a framework targeting the
segmentation of objects of such nature.

Another challenging aspect is small objects, i.e. objects occupying less than
32×32 pixels (Noh et al., 2015). Segmentation of small objects is challenging due to
the inherent limitations of CNNs. This is further exacerbated by the imbalance in
the datasets when it comes to small vs large objects (Majumder and Yao, 2019a).
To address the dataset imbalance, several current methods rely on class-balanced
cross entropy loss functions (Maninis et al., 2018; Majumder and Yao, 2019a).
Additionally, certain approaches (Li et al., 2018; Liew et al., 2019) including
ours (Majumder and Yao, 2019a) adopt scale-aware measures to ensure the quality
of masks generated for small objects.
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Ideally, developed interactive frameworks should be robust against variations
in object sizes and appearance. However, current benchmarks do not distinguish
between the object diversity. In such cases, the gains in segmenting larger objects
are offset by the heavy click penalties incurred by small objects and objects with
thin structures. Going ahead, interactive frameworks should report the performance
on small, large and thin objects separately to underline the versatility of their
proposed approach.

Interaction modality. Throughout the dissertation, most interactive frameworks
in discussion made use of user input in the form of spatial interactions, e.g. bounding
boxes (Xu et al., 2017b; Agustsson et al., 2019), polygon vertices (Castrejon et al.,
2017; Acuna et al., 2018), and pixel clicks (Xu et al., 2016; Liew et al., 2017; Jang
and Kim, 2019; Sofiiuk et al., 2020). Spatial interactions are easily obtainable
and provide the segmentation backbone with the knowledge of where the object
is. However, these spatial interactions can fall short in instances where there are
diverse scales of object candidates at the clicked user location (Li et al., 2018;
Lombaert et al., 2005). Natural language phrases, in such cases, can guide the
segmentation network by explicitly specifying what the target of interest is (Fig. 8.2).

Although language-based inputs have been previously considered in literature
for the task of automated image segmentation (Hu et al., 2016), the use of such
inputs are limited in interactive segmentation literature. To date, only the work
of Ding et al. (2020) considers the use of language-based inputs for the task of
interactive segmentation. In future, language-based inputs could be used for better
representation of user intention when segmenting the target object.

Future direction. Interactive frameworks have improved leaps and bounds over
the last few years. Even for challenging datasets such as Pascal VOC 2012 (Ever-
ingham et al., 2010), the number of clicks required to reach 85% mIoU has reduced
drastically from 15.06 (Rother et al., 2004) to 2.88 (Majumder et al., 2020b). For
simpler datasets such as the GrabCut dataset (Rother et al., 2004), it is now
possible to obtain segmentation masks with 90% w.r.t ground truth masks with
around 2 clicks. The goal of one-click segmentation certainly seems within reach.

Human-machine collaborative annotation and commercial applications are
typically mentioned as downstream applications across most interactive frame-
works (Mahadevan et al., 2018; Andriluka et al., 2018; Li et al., 2018). However, the
difference in requirements of these downstream applications are often overlooked.
Instead, most interactive frameworks, typically target the 85%-90% mIoU w.r.t
ground truth masks of the instances (Xu et al., 2016). While a mIoU in the range
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Figure 8.2: Clicks and phrases have their own advantages and dis-advantages. For
interactive frameworks, spatial interactions, e.g. clicks, are more suited for providing
cues on where the object is. Phrases, on the other hand, can help interactive frame-
works by disambiguating among competing instances at the user-provided clicked
location. Image from Ding et al. (2020).

of 85%-90% is satisfactory for annotation purposes, for downstream applications
such as Photoshop, a mIoU of 99% would certainly be more desirable than a
90% mIoU (Forte et al., 2020). Besides, outputs with high mIoU w.r.t ground
truth masks, e.g. 95% on the SBD dataset (Hariharan et al., 2011), does not
guarantee high quality masks as ground truth masks themselves might not follow
the object boundaries (Forte et al., 2020). Furthermore, for commercial software
and applications such as image matting (Xu et al., 2017a), the low quality of the
images in the current datasets are prohibitive. A one-size-fits-all approach to
interactive framework design can thus be counter-productive. Instead, in future,
design of interactive frameworks need to be application driven.

In recent years, interactive image frameworks have been integral to the progress
in deep learning-based interactive video object segmentation approaches. Inter-
estingly, in such interactive video object segmentation (VOS) frameworks (Cheng
et al., 2021), the first step is similar to interactive image segmentation; the user
annotates one of the frames with clicks (Cheng et al., 2021) or scribbles (Oh et al.,
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2019) which is used to generate the object mask. This generated mask is then
propagated across the entire video (Cheng et al., 2021; Oh et al., 2019). With videos
becoming ubiquitous, the demand for stronger video understanding models will
drive the need for densely annotated video datasets. Consequently, over the course
of next few years, research in interactive frameworks for images and videos will
receive significant attention. Interactive image segmentation has been an integral
part of computer vision research for decades (Kass et al., 1988; Rother et al., 2004;
Lin et al., 2020) and will continue to do so in future (Andriluka et al., 2020).
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