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Introduction

This dissertation consists of three essays in microeconomic theory on individual
decisions in large collectives. An “important concern of microeconomics is how
economic units interact to form larger units – markets and industries.” (Pindyck
and Rubinfeld, 2013, p. 3). The topic of the three essays in this thesis is how
individual behavior shapes a large collective and how in return the large collective
affects the individual behavior.

Chapter 1, Voting with Endogenous Timing, studies the role of timing in common-
value elections. In many collective decision processes, people want to coordinate on
the best policy decision. However, people might have different information and
different beliefs about what the best decision in a given situation is. As private
information might not be easily communicable, voting procedures help aggregate
information and find the best policy to implement. Austen-Smith and Banks (1996)
and Feddersen and Pesendorfer (1996) analyze simultaneous voting procedures un-
der the scope of game theory by introducing strategic voters who act rationally.
However, if voters act simultaneously, better-informed voters have little possibility
to influence other voters. We contribute to the branch of strategic voting literature
by exploring the effects of an endogenous timing decision on voting procedures. We
construct a model with two voting periods where voters receive private informa-
tion about the state of the world, and can afterward decide for themselves when to
publicly cast their votes.

As an implication, disclosing the own vote in period one allows an agent to
inform the voters who have decided to vote in period two and possibly influence
their voting decision. In contrast, a voter who votes in period two does not disclose
her own vote but observes the votes from period one and makes a better-informed
voting decision herself. We show that in welfare-optimal equilibria, agents use their
timing to communicate the strength of their private information to the other voters.
Voters with more informative private signals vote in period one and voters with
less informative private signals wait for period two. This communication allows the
collective a better information aggregation than simultaneous voting or voting with
an exogenously fixed timing.

Chapter 2, On-the-Match Search and Match-Specific Productivity Growth, which



2 Introduction

is joint work with Sophie Kreutzkamp and Axel Niemeyer, investigates a frictional
search-and-matching model with heterogeneous agents that continue searching when
matched, similar to the model of Shimer and Smith (2000). The novelty of our model
is the combination of productivity growth inside a match with the option for both
partners to rematch. As partners become more attuned to each other, the value of
persisting partnerships increases over time. Additionally, the possibility that your
partner might leave you changes how you perceive the value of the current partner-
ship. Consequently, the partner’s rematching behavior affects your own rematching
behavior, and vice versa. For this effect to occur, the two-sided rematching of our
model is of crucial importance. In contrast to our model, on-the-job search mod-
els with one-sided rematching, like for example surveyed by Rogerson, Shimer, and
Wright (2005), do not feature this interaction.

Our primary interest lies in understanding how productivity growth and the op-
tion to rematch affect the agents’ equilibrium behavior and, consequently, the set
of steady-state equilibria. Without productivity growth, there exists a coordination
problem that leads to a multiplicity of equilibria. We show that even minuscule
productivity growth is sufficient to eliminate unreasonable equilibria that typically
occur in models with on-the-match search. Therefore, vanishing growth rates can
serve as a criterion for equilibrium selection in such models. Further, productivity
growth can accelerate sorting in the market. On the one hand, it stabilizes even
asymmetric matches between more productive and less productive agents over time,
on the other hand, it also destabilizes them: Capital accumulation provides incen-
tives for agents to foster growth in more stable relationships, which are most often
between agents of the same productivity type. We show that there exist parameters
for which the latter effect dominates in equilibrium. In such settings less productive
agents who are matched with more productive agents actively seek to rematch with
another less productive agent, which leads to an increased sorting into symmetric
matches. As a result, the collective market structure is more assortative and the
assertiveness of the market stems from both the rematching behavior of the less
productive agents as well as of the more productive agents.

Chapter 3, Partnership Dissolution in a Search Market with On-the-Match Learn-
ing, analyzes the steady-state equilibria of a search-and-matching market with ex-
ante homogeneous agents and on-the-match learning. In many matches, it is not
clear upon forming how good of a fit the match actually is. An agent can be a good
potential partner for one agent but a bad fit for another one. The goodness of the
fit may only be found out while the match persists and agents learn about it over
time.

We construct a model where, upon forming a match, the agents draw unobserved
types that specify the idiosyncratic profitability of the current match. This aspect is
in the spirit of Smith (1995) who models an exchange market where the valuations



3

for every good are idiosyncratic. While being in a match, the agents receive infor-
mation about their unknown types over time following a Poisson process. As the
continuation value of a match does not only depend on the profitability for oneself
but also on the partner’s rematching behavior, agents have an endogenous interest
in their partners finding the match profitable. Applying comparative statics, we
show that a faster learning rate is beneficial for the agents if the profitability in
a match has a strong positive correlation between partners, and, in contrast, that
with a strong negative correlation, a faster learning rate reduces the ex-ante expected
payoff of the agents.

While Chapter 1 analyzes a collective decision problem where individual agents
have to decide on a policy together, Chapter 2 and Chapter 3 feature the com-
mon theme of rematching in a large search market where the individual matching
decisions shape the market structure. Notably, in both of the latter chapters, the
expected continuation payoff inside a match changes over time as the absence of bad
news over a period of time mathematically has similar effects on the present value
of a match as capital accumulation has. The major differences in the models are
that Chapter 2 assumes a common ranking over heterogeneous agents with constant
productivity types and capital accumulation inside the matches, while Chapter 3
considers ex-ante homogeneous agents whose productivity types are idiosyncratic,
initially unknown to the agents, and have to be learned over time.

All three essays illustrate the role of individual decisions in large collectives.
While a single agent has little to no power to make a change by herself, the aggre-
gation of individual actions fundamentally shapes the collective as a whole, and in
return, affects the behavior of the individuals.
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Chapter 1

Voting with Endogenous Timing

1.1 Introduction

In many collective decision processes agents can and do preemptively announce their
positions. For instance, when a parliament votes on a bill, participating politicians
often publicly disclose their stances beforehand. An example was the second im-
peachment trial of Donald Trump, where various senators spoke out in favor or
against an impeachment before the official vote even began.1 This kind of infor-
mation disclosure can affect the decision-making. It discloses information to the
other politicians about the own opinion on the bill. The other politicians can react
to this information and adjust their behavior accordingly. Additionally, voters can
anticipate this effect and may use their own vote to influence the other voters.

In this chapter, we analyze how the possibility to disclose the own action and
thereby inform the other voters can affect a voting procedure and the associated
information aggregation.2 We provide a stylized model of sequential voting with
common values, two voting periods, and endogenous timing. The voters have to
decide between two options, and every voter receives a private signal about which
option is more preferable. We model a prior announcement of the own vote as bind-
ing.3 We restrict the analysis to homogeneous preferences throughout this chapter.
The voters all agree on the best decision for each state of the world and get the same
utility, but their private information about the state have different realizations.

The main trade-off for each voter arises from the timing decision: The voter
can vote early and disclose her vote to the other voters. This informs others and

1The senators’ positions were prominently announced in the media at that time. See for example
CNN Politics (2021) or Zurcher, Anthony (2021).

2There are various other effects associated to a preemptive disclosure. For example, a prior
announcement of the own vote informs the citizens about the political agenda and increases trans-
parency. Politicians can use this for reputation-building as described by Keefer and Vlaicu (2007)
who analyze the role of credibility and reputation in democracies.

3Even though a public disclosure of the own vote is only a partial commitment, it is strong in the
sense that politicians generally care about their reputation, and deviating from an announcement
may lead to a loss of reputation.
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allows them to make better-informed voting decisions but the voter cannot observe
other votes herself. Alternatively, the voter can vote late and first observe the other
voters’ early votes. This provides additional information to the voter and allows her
to make a better-informed voting decision but in return she cannot inform others.
The more informative the votes are in period one, the higher is the incentive to vote
in period two.

We start by showing the existence of a welfare-optimal equilibrium. Due to the
infinite type space and the sequential voting structure, we construct a non-standard
metric on the strategy-space for this. Then, we characterize the welfare-optimal
equilibria of the two-period voting game. Similarly to simultaneous voting studied
by Duggan and Martinelli (2001), the strategies of a welfare-optimal equilibrium
follow a cutoff rule. In the first period, voters with more informative signals cast an
early vote to influence other voters in their direction. Voters with less informative
signals wait for period two to get more information before voting.

We show that the welfare-optimal equilibria of our sequential voting model with
endogenous timing welfare-dominate all equilibria of simultaneous voting games and
voting games with exogenously fixed voting sequences. More precisely, it is the com-
bination of the timing decision and the voting decision that conveys useful informa-
tion to the other voters.

In setups where the swing voter’s curse4 occurs, voting with endogenous timing
mitigates its negative effect on welfare, even outperforming simultaneous voting with
abstention.

Moreover, information is aggregated even under assumptions for which the si-
multaneous voting model fails to do so. In particular, even in a setting with bounded
signals and under the unanimity voting rule, the probability of the correct decision
under a welfare-optimal equilibrium of our two-period voting game converges to one
as the number of voters grows large.

Our results contrast the result of Dekel and Piccione (2000) who show that in
general if the timing is exogenous, the disclosure of the votes alone does not improve
the information aggregation of a voting procedure compared to simultaneous voting.
The reason is that learning the other agents’ votes only changes the probability of
being pivotal but not the optimal action upon being pivotal. Instead, if the timing
is endogenous, agents cannot only use the vote itself but also the timing of the vote
to convey information about the strength of the own signal to the other voters. As
a result, endogenizing timing improves the outcome of a voting procedure.

The rest of this chapter is organized as follows. Section 1.1.1 gives an overview
over the related literature. Section 1.2 lays out the model with two periods. In
Section 1.3, an example illustrates the model and the voter’s behavior. Section 1.4

4If ties are randomly broken, less informed voters may strictly prefer to abstain rather than to
vote. See Feddersen and Pesendorfer (1996) for more details on the swing voter’s curse.
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contains the main analysis and characterizes the welfare-optimal equilibria. Sec-
tion 1.5 covers information aggregation and Section 1.6 relates sequential voting to
the swing voter’s curse under the simple majority voting rule. Section 1.7 shows
that voting with endogenous timing welfare-dominates a voting procedure with a
fixed voting sequence and Section 1.8 concludes. The proofs of the results can be
found in Appendix 1.A.

1.1.1 Related Literature

Our model is related to the Condorcet Jury Theorem and information aggregation
in large elections. Condorcet (1785) suggested that for homogeneous preferences,
a decision made by a large group of “sincere” voters yields better results than a
decision made by an individual alone. This result was later reproduced for strategic
voters in simultaneous voting procedures.5

Feddersen and Pesendorfer (1998) show that even for large electorates informa-
tion is not aggregated under the unanimity voting rule for binary signals due to the
bounded informativeness. In contrast to their result, the probability of choosing the
optimal decision converges to one in our two-period voting model with endogenous
timing.

Previous work on sequential voting has mainly focused on exogenously fixed
voting sequences. We contribute to this line of research by endogenizing the timing
decision in a sequential voting game. This work builds on Schmieter (2019), where
the welfare-optimality of cutoff rules is shown for the special case of the unanimity
voting rule.

Dekel and Piccione (2000) consider sequential voting with two alternatives where
the order of voting is exogenously fixed. In their setting, voters cast their vote in a
given order, and every voter observes all actions that have been made prior to her
vote. They show that each symmetric equilibrium of the corresponding simultaneous
voting game is also an equilibrium of any sequential voting game, regardless of the
voting sequence. Furthermore, they prove that under the unanimity voting rule, the
set of equilibria of any sequential voting game, regardless of the voting sequence, is
equal to the set of equilibria of the corresponding simultaneous voting game. An
important implication from their work is that observing the votes of the other voters
does not improve the aggregation of information. This is due to the fact that voters
condition on the event of being pivotal. Since in their model there exists exactly
one event for which a voter is pivotal, this conditioning is equivalent to observing
the other agents’ votes directly. Thus, learning the votes of other agents does not
convey useful information. In particular, learning the earlier voters’ actions does not
change the behavior of the later voters. However, except for the unanimity voting

5Among others, Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997, 1998)
and Duggan and Martinelli (2001) analyze strategic voting.
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rule, they do not show whether a new equilibrium of the sequential voting game
might welfare-dominate the equilibria of the simultaneous voting game. Also, their
equivalence result under the unanimity voting rule relies on the exogeneity of the
voting sequence.

One crucial aspect of Dekel and Piccione (2000) is that they do not allow for
any tie-breaking in their model. Instead, they restrict their analysis to np-voting
rules, where alternative one is adopted if and only if at least np voters vote for it and
alternative two is chosen otherwise. Their result does for example not carry over to a
simple majority voting rule with tie-breaking by a fair coin toss. In particular, their
analysis excludes settings where the so-called swing voter’s curse occurs: Feddersen
and Pesendorfer (1996) show that under the simple majority voting rule with an
even number of voters and tie-breaking by a fair coin toss, less informed voters
strictly prefer to abstain. As a result, allowing abstention in such simultaneous
voting settings increases welfare. We show that the welfare-optimal equilibrium
of our two-period model without abstention welfare-dominates all equilibria of the
simultaneous voting model with abstention.

Dekel and Piccione (2014) analyze voting with an endogenous timing decision.
Compared to our model, they cover three alternatives, private values, and voters
have to decide for a voting period before they learn their preferences. In particular,
voters in their model have a conflict of interest, and, in contrast to our model,
revealing information to other voters can have a negative effect for oneself.

There are various other papers related to sequential voting. Battaglini (2005)
adds abstention and costs of voting to the model of Dekel and Piccione (2000) and
shows that even arbitrarily small voting costs can break the equivalence of equilibria.
Another strand of literature analyzes herding behavior

(
see for example Fey (1998)

)
,

where herding hinders full information aggregation. The difference to sequential
voting is that herding features an individual payoff relevant choice for each agent
instead of a collective decision. Callander (2002) relates herding to sequential voting
and shows that if voters want to vote for the winning candidate, herding occurs with
probability one. Eyster and Rabin (2005) introduce the concept of cursed equilibria,
where agents underestimate the correlation of other players’ information. Piketty
(2000) considers two-period voting, where both periods are payoff-relevant. There,
agents of different types use the first period to signal information and influence the
outcome of the second voting period. In contrast to our model, there are three
competing candidates and the voters are confronted with a coordination problem
rather than a problem of information aggregation. McLennan (1998) shows that for
common interest games, a symmetric strategy that maximizes the expected welfare
is a Nash equilibrium. We use this finding multiple times to prove our results.
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1.2 The Model

In this section, we introduce our model of sequential voting with two voting periods.
There are N ≥ 2 jurors who vote on whether to convict or acquit a defendant.6

An unknown state ω describes whether the defendant is innocent, I, or guilty, G.
The realization of ω is randomly drawn according to a commonly known prior q :=
P (ω = I) and 1− q = P (ω = G) with q ∈ (0, 1).

Each agent i ∈ {1, . . . , N} receives a private signal si about ω from the closed in-
terval S := [s

¯
, s̄] ⊆ R. Conditional on the state, the signals are drawn independently

from each other, according to the cumulative distribution function F (·|I) if the de-
fendant is innocent or F (·|G) if the defendant is guilty. The distribution functions
F (·|I) and F (·|G) are absolutely continuous and have piecewise continuous densities
f(·|I) and f(·|G) which are strictly positive on S.

We assume that the likelihood ratio of the signals, f(s|I)/f(s|G), is weakly de-
creasing on S. This implies that low signals indicate innocence, while high signals
are indicators of guilt. We let the signals be sufficiently informative by assuming
that both events{

s ∈ S
∣∣∣ f(s|I)
f(s|G) <

1− q
q

}
and

{
s ∈ S

∣∣∣ f(s|I)
f(s|G) >

1− q
q

}
occur with positive probability. That is, the likelihood ratio of a single signal can
dominate the likelihood ratio of the prior in either direction.

Preferences and Timing The defendant can be either acquitted, A, or convicted,
C. The agents have common preferences and want to match the outcome with the
state. They get a utility of 1 if C is implemented in state G or if A is implemented
in state I and a utility of 0 otherwise.

The outcome is determined by a voting procedure with two voting periods, period
one (early) and period two (late). In period one, the agents can either vote for A or C
or choose to wait, denoted by W . In period two, the agents who waited observe the
aggregated votes from period one and now have to vote for either A or C themselves.
Abstention is not allowed in period two. Agents who already voted in period one
cannot change their decision anymore and are not allowed to vote a second time.

The voting rule is parameterized by a pair (K, p) ∈ {1, 2, . . . , N − 1} × [0, 1]. If
strictly less than K voters vote for conviction, then the defendant is acquitted and if
strictly more than K voters vote for conviction, then the defendant is convicted. If
the number of C-votes is exactly K, then conviction occurs with probability p.7 This

6To simplify the exposition, we frame the model as if it were about a decision at court, but
it is in no way restricted to this particular application. The notation mainly follows Duggan and
Martinelli (2001).

7Note that the voting rules (K, 0) and (K + 1, 1) are equivalent.
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captures all standard (anonymous) voting rules such as the unanimity voting rule,
all super-majority voting rules, and the simple majority voting rule with and without
random tie-breaking. For example, for the parameters (N − 1, 0), the defendant is
only convicted if all N voters vote unanimously for C, i.e., we have the unanimity
voting rule. With an even number of voters N , the voting rule (N

2 ,
1
2) represents the

simple majority voting rule where a tie is broken by a fair coin flip.

Histories, Strategies, and Equilibria A (public) history h specifies the past
voting actions. Let h = ∅ denote the empty history at the beginning of period one.
A history in period two can be characterized by a pair h = (nA, nC) that specifies
the number nA of early A-votes and the number nC of early C-votes. Let H be the
set of all histories.8

A mixed strategy for voter i is given by the probabilities of voting for A, waiting
W , and voting for C for every private signal s ∈ S and every history h ∈ H.
Formally, a mixed strategy is a measurable9 function

σi : S ×H →
{
(pA, pW , pC) ∈ [0, 1]3

∣∣ pA + pW + pC = 1
}
,

with pW = 0 for every history of period two. The triple σi(si, h) = (pA, pW , pC)
specifies the probabilities pY of playing action Y for each Y ∈ {A,W,C} for every
signal si ∈ S and at every history h ∈ H. Let σi

A, σi
W and σi

C be the marginals of
σi, i.e., the maps to pA, pW and pC , respectively. For convenience, let σi(si, h) = A,
σi(si, h) = W , and σi(si, h) = C denote that the corresponding actions are played
with probability 1.

Fix a single voter i, fix a strategy σi and the strategies σ−i of the other voters.
For these strategies, the expected utility for voter i is given by

U(σi, σ−i) = qP (A|I, σi, σ−i) + (1− q)P (C|G, σi, σ−i),

where P (Y |ω, σi, σ−i) denotes the probability of outcome Y under state ω given the
strategies σi and σ−i, i.e., the expected utility is the ex-ante probability of choosing
the correct outcome. The strategies (σ1, . . . , σN ) constitute a mixed Bayesian Nash
equilibrium if for every voter i, the strategy σi maximizes U(σi, σ−i) for fixed σ−i.
We restrict attention to symmetric strategies and omit the index i to write σ/σY

for the strategies/marginals instead of σi/σi
Y .

As the expected utility in an equilibrium is identical for every voter, we consider
welfare on a per-capita level and call it the expected welfare U(σ). A welfare-optimal

8Formally, H =
{

(nA, nC) ∈ {0, 1, . . . , N − 1}2 | nA + nC < N, nC ≤ K, nA ≤ N − K
}

∪ {∅}.
9Let B(S) and B([0, 1]3) denote the Borel σ-algebras on S and [0, 1]3, respectively. Consider the

power set P(H), which is a σ-algebra on the finite set H. A strategy σi is required to be measurable
with respect to the product σ-algebra Σ = B(S) × P(H) and B([0, 1]3).
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equilibrium is an equilibrium that maximizes the welfare, or equivalently, the ex-
ante probability of a correct decision. Unless stated otherwise, “equilibrium” refers
to symmetric mixed Bayesian Nash equilibrium.10

Assumptions For some results, we additionally assume that the following prop-
erties hold. Their usage is explicitly stated each time. The first assumption says
that the likelihood ratio is strictly decreasing instead of weakly decreasing. That is,
no two signals induce the same belief.

Strictly monotone likelihood ratio property (MLRP<). The likelihood ratio of the
signals, f(s|I)/f(s|G), is strictly decreasing on S.

The second assumption states that the informativeness of the signals is un-
bounded. This is for convenience only and ensures that all cutoffs are in the interior
of S, thus avoiding the need to consider corner cases.

Unbounded likelihood ratio (ULR). The likelihood ratio of the signals is unbounded,
i.e.,

lim
s→

¯
s

f(s|I)
f(s|G) =∞

lim
s→s

f(s|I)
f(s|G) = 0.

Monotonicity A strategy profile is monotone if voting A or C in period one
increases the probability of the respective outcome regardless of the state ω. We
will see that this class of strategy profiles has multiple desirable properties. First, in
monotone equilibria, the agents’ votes and beliefs are aligned: If an agent knew which
outcome is correct, then she would vote for that outcome. Second, for the number of
voters being large, there are monotone equilibria that implement the correct outcome
with a probability close to one. Therefore, under the viewpoint of information
aggregation, it is without loss to restrict attention to monotone equilibria. Third,
monotone equilibria are a generalization of cutoff equilibria of the simultaneous
voting game and they will be particularly straightforward to work with.

Formally, monotonicity is defined as follows. Fix a strategy profile σ of the two-
period game. Let P (Y, ω) denote the probability that the defendant is convicted
given that the state is ω and given that a voter i votes for Y ∈ {A,W,C} in the

10We will later see that in a welfare-optimal Bayesian Nash equilibrium pσ(Y |∅, ω) ∈ (0, 1) holds
for all Y ∈ {A, W, C} and ω ∈ {I, G}, i.e., agents wait with positive probability. Therefore, all
public histories are reached with strictly positive probability, and the beliefs are determined by
Bayes’ rule. For improved readability, we omit the beliefs and consider Bayesian Nash equilibria
instead of perfect Bayesian equilibria throughout this chapter.
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first stage and that the remaining N − 1 voters follow strategy σ. If voter i waits in
period one, then she also follows strategy σ in period two. Now, the strategy profile
σ is called monotone if the inequalities

P (A, I) ≤ P (W, I) ≤ P (C, I)

P (A,G) ≤ P (W,G) ≤ P (C,G)

hold, i.e., the probability of conviction is monotone increasing in the actions A, W ,
and C.

An illustration of a monotone strategy profile is the following strategy profile
where agents follow cutoff rules: Agents with a strong signal towards innocence vote
for acquittal and agents with a strong signal towards guilt vote for conviction in
period one. Agents with intermediate signals wait in period one and vote in period
two, conditioning on the own signal and the observed votes (see Figure 1.1).

s
¯ s̄

early A early W early C

Figure 1.1: Example of a monotone strategy

Monotonicity rules out strategy profiles where the meanings of the votes are
reversed, e.g., strategy profiles where voting early for conviction actually decreases
the probability of conviction.

One example of a strategy profile that is not monotone is illustrated in Figure 1.2.
Voters with low/intermediate signals vote for acquittal/conviction in period one and
voters with high signals wait in period one. Voters understand waiting as a strong
signal towards guilt and vote in period two according to their updated beliefs. For
a given number of early A-votes, the lower the number of early C-votes is, the more
the agents update their beliefs towards G. Therefore, voting early for C can actu-
ally decrease the probability of C being the outcome. Depending on the parameters,
there can exist strategy profiles of this form that constitute equilibria.

s
¯ s̄

early A early C early W

Figure 1.2: Example of a non-monotone strategy

Note that non-monotone equilibria can only exist due to the sequential nature of
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the voting procedure and are not possible in related simultaneous voting games. For
the remainder of this chapter, we restrict our attention to the class of monotone
equilibria.

Derived Terms We conclude this section by defining and deriving some technical
terms for later use. Fix some strategy σi. The probability that voter i votes for
Y ∈ {A,W,C} in period one, conditional on the state ω, is obtained by integrating
the marginal σi

Y over all signals, i.e.,

pσi(Y |∅, ω) :=
∫

S
σi

Y (s, ∅)dF (s|ω).

Now, assume that waiting occurs with positive probability and consider an agent
i who waited in period one. Then, the probability pσi(Y |h, ω) of agent i voting for
Y ∈ {A,C} at history h ̸= ∅ given that the state is ω is

pσi(Y |h, ω) :=
∫

S σ
i
Y (s, h)σi

W (s, ∅)dF (s|ω)
pσi(W |∅, ω) .

Furthermore, let

Gσi(s|ω) :=
∫ s

¯
s σ

i
W (s′, ∅)dF (s′|ω)
pσi(W |∅, ω)

denote the conditional distribution of signals of agents who waited in period one.
Fix a state ω and a strategy profile σ. Then, the history after period one is

trinominally distributed with parameters N and pσ(Y |∅, ω) for Y ∈ {A,W,C}. More
precisely, the probability that history h = (nA, nC) occurs is

P (h|ω, σ) = N !
nA!nC !(N−nA−nC)!pσ(A|∅, ω)nApσ(C|∅, ω)nCpσ(W |∅, ω)N−nA−nC .

The period two vote count after history h is then binominally distributed with
parameters N − nA − nC and pσ(C|h, ω). The probability that after history h, the
total number of C-votes is equal to k ≥ nC is

P (k|h, ω, σ) =
(
N − nA − nC

k − nC

)
pσ(C|h, ω)k−nCpσ(A|h, ω)N−k−nA .

Taking the sum over all possible histories yields the ex-ante probability P (k|ω, σ) of
a vote count k

P (k|ω, σ) =
∑

h=(nA,nC)
P (h|ω, σ)P (k|h, ω, σ).

From this, we obtain the probability of conviction in state ω under strategy profile
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σ. It is given by the sum of the probabilities of all vote counts where the defendant
is convicted

P (C|ω, σ) =
N∑

k=K+1
P (k|ω, σ) + pP (K|ω, σ).

This includes the event of exactly K votes for conviction where the outcome is a
conviction with probability p.

1.3 Example with Two Voters

To illustrate the model, we present an example with N = 2 voters under the voting
rule (1, 0), i.e., under the unanimity voting rule, and solve it for one and two periods,
respectively.

Let the prior be q = 1
2 and let the signals be distributed on the unit interval

[0, 1] according to the conditional density functions

f(s|I) = 2− 2s, f(s|G) = 2s.

Figure 1.3 displays the signal distributions and the likelihood ratio.

s0 0.5 1
0

1

2 f(s|I)

f(s|G)
s0 0.5 1

0

0.5

1
F (s|I)

F (s|G)

s0 0.5 1
0

1

2

3

4

•

f(s|I)
f(s|G) = 1−s

s

Figure 1.3: Density functions, c.d.f.’s and likelihood ratio

The densities are symmetric in the sense that f(s|I) = f(1− s|G) holds. However,
due to the unanimity voting rule, the setup is asymmetric in I and G. A single vote
for A suffices for acquittal, while two votes are necessary for conviction. Strategic
voters take the voting rule into account and adjust their voting behavior accordingly.

Example 1a: One Period First, consider a single voting period with simultane-
ous voting. We use the results from Duggan and Martinelli (2001) who show that in
their one-period model there is a unique responsive11 equilibrium. The equilibrium

11Duggan and Martinelli (2001) call an equilibrium in their simultaneous voting model a re-
sponsive equilibrium if there is no σi that chooses one action with probability 1, i.e., for all σi,
0 <

∫
σi(s)dF (s|G) < 1 and 0 <

∫
σi(s)dF (s|I) < 1 hold.
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follows a cutoff rule, i.e., there is a unique cutoff ŝ such that the strategies are almost
everywhere equal to

σ(s) =

A, for s ∈ [0, ŝ]

C, for s ∈ (ŝ, 1].

To calculate the cutoff ŝ, one has to condition on the event that a voter is pivotal,
i.e., the event that a voter’s decision could change the outcome. In this example, a
voter is pivotal if and only if the other voter votes C. Conditioning on this event, a
voter with signal ŝ is indifferent between voting for A and voting for C if and only
if

f(ŝ|I)
f(ŝ|G)

1− F (ŝ|I)
1− F (ŝ|G)

q

1− q = 1

holds. Solving this for ŝ yields ŝ = 1
3 and the ex-ante expected pay-off in this

equilibrium is U1 ≈ 0.796. Voters with low signals vote for A, while voters with
high signals vote for C. Although voters with a signal s ∈ (1

3 ,
1
2) assign a higher

probability to state I than to state G, they still vote for C in equilibrium as they
try to counteract the bias of the voting rule.

The probabilities of having a signal in the respective intervals conditional on the
state are depicted in Figure 1.4.

s0 1ŝ = 1
3

0

1

2

f(s|I)
5
9

4
9

s0 1ŝ = 1
3

0

1

2

f(s|G)

1
9

8
9

Figure 1.4: Conditional probabilities for Example 1a

Example 1b: Two Periods Now, consider the same example within our two-
period model. For this setup, there exist various equilibria. We present a welfare-
optimal equilibrium. Recall that h = (0, 0) and h = (0, 1) denote the possible
histories in period two with 0 and 1 early C-votes, respectively.
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Claim 1.1. A welfare-optimal equilibrium is given by the strategies

σ(s, ∅) =


A, for s ∈ [0, x̂]

W, for s ∈ (x̂, ẑ]

C, for s ∈ (ẑ, 1]

σ(s, (0, 0)) =

A, for s ∈ [0, ŷ]

C, for s ∈ (ŷ, 1]

σ(s, (0, 1)) =

A, for s ∈ [0, x̂]

C, for s ∈ (x̂, 1]

with the cutoffs x̂ = 1
7 , ŷ = 3

7 and ẑ = 5
7 .

The strategies are graphically illustrated in Figure 1.5. There, “late A/C” labels
the signals for which a voter votes either A or C in period two depending on the
other voter’s action as described below.

0 x̂ = 1
7 ŷ = 3

7 ẑ = 5
7

1

early A early W early C

late A/C late C

Figure 1.5: Strategy for Example 1b

The probabilities of having a signal in the respective intervals conditional on the
state are the integrals of the corresponding densities and they are displayed in Fig-
ure 1.6.

s0 1x̂ = 1
7 ŷ = 3

7 ẑ = 5
7

0

1

2

f(s|I)
0.27

0.41
0.25

0.08
s0 1x̂ = 1

7 ŷ = 3
7 ẑ = 5

7

0

1

2

f(s|G)

0.02
0.16

0.33
0.49

Figure 1.6: Conditional probabilities for Example 1b
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In this equilibrium, a voter with a signal s ≤ 1
7 immediately votes for A and

ends the game. A voter with a signal s > 5
7 votes for C in period one. This can be

understood as a message for the other agent about the strength of the private signal.
A voter i with a signal s ∈ (1

7 ,
3
7 ] waits in period one and then votes depending on

the other voter j’s behavior. If j has voted for C in period one, then i also votes for
C in period two. If j has instead waited in period one, then i votes for A. A voter
with a signal s ∈ (3

7 ,
5
7 ] always waits and then votes C in period one. This way, she

votes for C but ensures that the other voter does not misinterpret her voting as a
strong indicator of guilt.

Using this voting structure allows the agents to communicate with each other.
An agent with a strong signal votes early, and by doing so, she informs the other
voter that her signal is highly informative. A voter with a weak signal waits for the
other agent to vote and updates her beliefs depending on the outcome of period one.
The values of the cutoffs x̂, ŷ and ẑ are determined by the likelihood ratios

f(x̂|I)
f(x̂|G)

1− F (ẑ|I)
1− F (ẑ|G) = 1 (1.1a)

f(ŷ|I)
f(ŷ|G)

F (ẑ|I)− F (ŷ|I)
F (ẑ|G)− F (ŷ|G) = 1 (1.1b)

f(ẑ|I)
f(ẑ|G)

F (ŷ|I)− F (x̂|I)
F (ŷ|G)− F (x̂|G) = 1. (1.1c)

Setting the likelihood ratios equal to 1 identifies the signal strength at which a
strategic voter, who conditions on the event of being pivotal, is indifferent between
two actions. Consider an agent i with a signal equal to the cutoff x̂ who considers
voting early A or voting late A/C. She is pivotal with her choice, if and only if the
other agent votes for C in period one. If the other agent has a signal lower than ẑ,
then i will vote for A in period two either way. Similarly, an agent with signal ŷ
is only pivotal if the other agent has a signal s ∈ (ŷ, ẑ] and an agent with signal ẑ
is only pivotal if the other agent has a signal s ∈ (x̂, ŷ]. The cutoffs are derived in
detail in the appendix.

The defendant is acquitted if at least one voter has a signal below x̂ or both
voters have signals in (x̂, ẑ] with at least one of them being in (x̂, ŷ]. Otherwise, the
defendant is convicted. As a result, with two voting periods, the ex-ante expected
payoff, which is the probability of a correct choice, is U2 ≈ 0.8265 and it is larger
than the ex-ante expected payoff with only one period. In this example, introducing
a second period results in a strict welfare improvement.

At least a weak welfare improvement was to be expected since the outcome of the
equilibrium of the model with one period can also be implemented by an equilibrium
in the model with two periods. To see this claim, note that if all agents vote in period
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one, then no agent has a strict incentive to wait.12 We show in the next section that
it holds generally that the introduction of the second voting period implies a strict
welfare gain for all parameters.

1.4 Welfare-Optimal Equilibrium

In this section, we show the existence of a welfare-optimal equilibrium, we charac-
terize the structure of welfare-optimal equilibria, and we show that there is a strict
welfare improvement to a standard voting procedure with only one period. The re-
sults hold for all (K, p)-voting rules. In particular, they also apply to the unanimity
voting rule and the simple majority voting rule.

First, we formalize the notion of a cutoff equilibrium in the two-period model.
An equilibrium is called a cutoff equilibrium if, at every history, the agents’ strategies
follow (monotone) cutoff rules. More precisely, an equilibrium σ follows a cutoff rule
in period one if there are cutoffs ŝA, ŝC ∈ [s

¯
, s̄] with ŝA ≤ ŝC such that

σ(s, ∅) =


A, for s ≤ ŝA

W, for ŝA < s ≤ ŝC

C, for s > ŝC

holds for almost all signals s ∈ S.
Fix a history h ∈ H\{∅} from period two. Then, an equilibrium σ follows a

cutoff rule at history h if there is some cutoff ŝh ∈ [s
¯
, s̄] such that

σ
(
s, h

)
=

A, for s ≤ ŝh

C, for s > ŝh

holds for almost all signals s ∈ S.
We call an equilibrium σ a cutoff equilibrium, if it follows a cutoff rule in period

one and at every history h ̸= ∅.
Our main result shows that (i) there exists an equilibrium that maximizes wel-

fare (in the class of all symmetric monotone equilibria) and (ii) all equilibria that
maximize welfare (in the class of all symmetric monotone equilibria) follow cutoff
rules. This result generalizes the findings of Duggan and Martinelli (2001) for the
simultaneous voting model to the model with two voting periods.

Theorem 1.1. There exists a welfare-optimal equilibrium. Under (MLRP<) and
(ULR), every welfare-optimal equilibrium is a cutoff equilibrium.

12An agent who waits only learns whether or not she is pivotal. Since agents already condition
on the event of being pivotal, waiting does not increase the expected payoff of an agent in this
situation.



1.4. Welfare-Optimal Equilibrium 19

Note that there is a multiplicity of welfare-optimal equilibria. First, changing
σ on a set of measure zero does not change the welfare and does still constitute an
equilibrium. Moreover, for some parameters, there also exist welfare-optimal cutoff
equilibria with different cutoffs simultaneously. Theorem 1.1 uses the assumptions
(MLRP<) and (ULR) to ensure that every action A,W and C is played in period
one with positive probability. Relaxing these assumptions allows for setups where
degenerate13 equilibria can be welfare-optimal.

The first part of the theorem states the existence of a welfare-optimal equilib-
rium. This is proven by the maximality principle. While the strategy-space is not
compact under the usual metrics, we construct a specific metric on the set S of the
symmetric monotone strategy profiles. Under this metric, S is compact, and the
function Ψ : S → [0, 1] that maps a strategy profile to its induced welfare is contin-
uous. By the maximality principle, there exists a strategy profile which maximizes
welfare. McLennan (1998) shows that such a welfare-optimal strategy profile always
constitutes an equilibrium.

After having established existence, the remainder of this section is dedicated to
proving the second part of Theorem 1.1: First, in Lemma 1.1 we show that in every
welfare-optimal equilibrium, both voting periods are used. Then, in Lemma 1.2 and
Lemma 1.3 we analyze the equilibrium strategies in period one and two, respectively.

Lemma 1.1. Assume that (MLRP<) holds and let σ be a welfare-optimal equilib-
rium. Then, agents wait with a probability strictly between 0 and 1, i.e.,

0 < pσ(W |∅, ω) < 1

holds for ω ∈ {I,G}.

The first period can be used to differentiate between agents with more infor-
mative and less informative signals. This way, any agent who waits can update
her prior accordingly and make a better-informed decision, increasing the expected
payoff. Equilibria that do not use both periods forfeit this opportunity of commu-
nication and, as a result, cannot be welfare-optimal.

For the proof, we start with an equilibrium σ in which only one period is used and
construct an equilibrium with higher welfare over several steps. First, we construct
a strategy profile σ′ with the same welfare as σ: The agents’ time of voting can be
split between both periods without changing the outcome. To do so, we let voters
with more informative signals vote in period one and voters with less informative

13Here, with “degenerate”, we mean that not all actions are used. For example, without (ULR),
there exist parameters for which it is never optimal to vote for A. Similarly, without (MLRP<),
there exist parameters for which the welfare-optimal equilibria do not use both periods (e.g. settings
with binary signals and a small number of voters). In such settings, there can exist welfare-optimal
equilibria that yield the same outcome as a degenerate cutoff equilibrium but do not follow cutoff
rules themselves.
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signals vote in period two. The resulting strategy profile σ′ is not necessarily an
equilibrium but yields the same welfare as σ by construction. Now, starting from σ′,
we construct a strategy profile σ′′ with strictly higher welfare as follows. For some
signals, there is a profitable deviation from σ′ for an individual voter in period two:
As the voting of period one reveals information about the signal strengths of the
other voters, a voter in period two can update her prior accordingly and deviate to a
more profitable strategy. By McLennan (1998), this individual profitable deviation
shows the existence of a symmetric profitable deviation σ′′ where every voter plays
the individual profitable deviation with a small probability ε. Hence we have shown
that an equilibrium in which only one voting period is used is not a welfare-optimal
(symmetric) strategy profile. For the second step, we use again an argument by
McLennan (1998) who shows that a welfare-optimal equilibrium is also a welfare-
optimal symmetric strategy profile. Since σ is not the latter, it can also not be a
welfare-optimal equilibrium.

As an immediate implication, there exists an equilibrium of the two-period voting
game that yields a strictly higher welfare than all equilibria of the voting game with
only one period.

Corollary 1.1. Under assumption (MLRP<), there exists an equilibrium of the two-
period voting game that strictly welfare-dominates all equilibria of the simultaneous
voting game.

Another direct implication of Lemma 1.1 is that in a welfare-optimal equilibrium,
the inequalities of the monotonicity conditions are strict, i.e., the probabilities of
conviction given that one voter votes A, W , or C, respectively, cannot be equal.

Corollary 1.2. Under assumption (MLRP<), in any welfare-optimal equilibrium

P (A,ω) < P (W,ω) < P (C,ω)

holds for ω ∈ {I,G}.

If, in a welfare-optimal equilibrium, waiting led to the same probability of con-
viction as any other action, then the equilibrium would be outcome-equivalent to
an equilibrium without waiting. By Lemma 1.1, this cannot be true for a welfare-
optimal equilibrium.

Strategies in Period One Now, we analyze the equilibrium strategies in period
one. We show why agents follow cutoff strategies, and we establish equations that
characterize these cutoffs.

Fix a strategy profile σ and assume that (MLRP<) holds. Recall that P (Y, ω)
denotes the probability that the defendant is convicted given that the state is ω and
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given that all voters follow strategy σ except for one voter who instead votes for
Y ∈ {A,W,C} in the first stage.

First, we focus on comparing voting C with waiting in period one. The probabil-
ity that one individual voter changes the outcome with voting C instead of waiting
is

P (C,ω)− P (W,ω).

For a given signal s, the conditional probability of being in state G is

(1− q) f(s|G)
qf(s|I) + (1− q)f(s|G)

and therefore, the probability of changing the outcome for the better with voting C
instead of waiting is

(1− q) f(s|G)
qf(s|I) + (1− q)f(s|G)

(
P (C,G)− P (W,G)

)
. (1.2)

Analogously, the probability of changing the outcome for the worse is

q
f(s|I)

qf(s|I) + (1− q)f(s|G)
(
P (C, I)− P (W, I)

)
. (1.3)

The net effect of voting C instead of waiting is strictly positive if and only if the
ratio of term (1.3) divided by term (1.2),

q

1− q
f(s|I)
f(s|G)

P (C, I)− P (W, I)
P (C,G)− P (W,G) , (1.4)

is strictly smaller than 1. If the ratio is strictly larger than 1, then an agent stricly
prefers waiting to voting C in period one. For a fixed strategy in period two and fixed
strategies of the other voters, because of f(s|I)

f(s|G) being strictly monotone, setting term
(1.4) equal to 1 yields a unique cutoff ŝC for which an agent is indifferent between
voting C in period one and waiting.

For the second cutoff, ŝA, we analogously get that an agent is indifferent between
voting A in period one and waiting if and only if

q

1− q
f(s|I)
f(s|G)

P (W, I)− P (A, I)
P (W,G)− P (A,G) = 1 (1.5)

holds. Note that for general strategy profiles ŝA ≤ ŝC does not need to hold. How-
ever, for welfare-optimal equilbria, agents wait with strictly positive probability and
we get that the cutoffs for the first period are ordered as in Figure 1.7.
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s
¯ ŝA ŝC s̄

early A early W early C

Figure 1.7: Cutoff strategies in period one

This observation is formally derived by the following lemma.

Lemma 1.2. Under (MLRP<) and (ULR) for every monotone equilibrium σ with
a probability of waiting strictly between 0 and 1, the equilibrium follows a cutoff rule
in period one.

Strategies in Period Two We continue by analyzing the equilibrium strategies in
period two. To understand the equilibrium behavior, first, note that every history h
in period two induces a single-period game for all agents who waited. In the induced
game, the votes of all agents who voted in period one are observed by the remaining
agents and thus result in an updated prior.

Fix an equilibrium σ in which agents wait with probability strictly between 0
and 1. Then, the updated prior at history h = (nA, nC) is given by

ρσ,h = q

1− q

(
pσ(A|∅, I)
pσ(A|∅, G)

)nA
(
pσ(C|∅, I)
pσ(C|∅, G)

)nC
(
pσ(W |∅, I)
pσ(W |∅, G)

)N−nA−nC−1
. (1.6)

It consists of the ex-ante prior q
1−q , the likelihood ratio of nA agents voting for A in

period one, (
pσ(A|∅, I)
pσ(A|∅, G)

)nA

, (1.6a)

the likelihood ratio of nC agents voting for C in period one,(
pσ(C|∅, I)
pσ(C|∅, G)

)nC

, (1.6b)

and the likelihood ratio of the remaining N − nA − nC − 1 voters waiting in period
one,

(
pσ(W |∅, I)
pσ(W |∅, G)

)N−nA−nC−1
(1.6c)

(excluding one voter, since every voter knows her own signal).
At history h, the one-period game is played with the induced conditional distri-
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bution function

Gσ(s|ω) =
∫ s

¯
s σW (s′, ∅)dF (s′|ω)

pσ(W |∅, ω)

replacing F (s|ω) and with the updated prior ρσ,h replacing the ex-ante prior q
1−q .

We call this the at h induced game Gh and use σGh
for the strategy profile played

at Gh that is induced by σ.
Under voting rules without tie-breaking14 and with the assumption of a suffi-

ciently weak prior, Duggan and Martinelli (2001) show that in the simultaneous
voting model, there is an almost everywhere unique responsive equilibrium15 and it
follows a cutoff rule.

However, in the two-period voting game, the updated prior ρσ,h is an endogenous
object. For fixed parameters, there may be some histories for which the prior is
sufficiently weak and other histories for which it is not. Therefore, there can exist
induced games Gh with a responsive equilibrium and other induced games without
one. Our next result characterizes the period two equilibrium strategies of a welfare-
optimal equilibrium. To calculate the cutoffs, we first need the likelihood ratio of
being pivotal. If the (K, p)-voting rule allows for tie-breaks, i.e., p ∈ (0, 1), then
there are two events where a single voter is pivotal. In the first event, the voter
changes the outcome from A to a tie-break, and in the second event, the voter
changes the outcome from a tie-break to C. Without random tie-breaks, i.e., with
p ∈ {0, 1}, exactly one of these events can occur. For a general (K, p)-voting rule,
the likelihood ratio lh(ŝh) of a single voter to be pivotal at history h is

pGσ(ŝh|I)(N−K)−nA
(

1 − Gσ(ŝh|I)
)K−nC −1

+ (1 − p)Gσ(ŝh|I)(N−K)−nA−1
(

1 − Gσ(ŝh|I)
)K−nC

pGσ(ŝh|G)(N−K)−nA

(
1 − Gσ(ŝh|G)

)K−nC −1
+ (1 − p)Gσ(ŝh|G)(N−K)−nA−1

(
1 − Gσ(ŝh|G)

)K−nC
,

(1.7)

if all other voter follow a cutoff rule with cutoff ŝh.
Now, we are ready to characterize the period-two strategies in a welfare-optimal

equilibrium.

Lemma 1.3. Assume that (MLRP<) and (ULR) hold and fix a welfare-optimal
equilibrium σ of the two-period voting game. Then, at every history h ∈ H\{∅}, σ
follows a cutoff rule with a cutoff ŝh which is equivalent16 to the unique solution for

14In our model, these are voting rules of the form (K, 0) or (K, 1).
15An equilibrium of the one-period voting game is called responsive if both actions, A and C, are

played with positive probability.
16More precisely, if s′ lies between the first-period cutoffs ŝA and ŝC , then the cutoff ŝh is equal

to s′. If s′ is smaller than ŝA or larger than ŝC , then the induced game Gh has an unresponsive
equilibrium that maximizes its welfare and every cutoff ŝh < ŝA or ŝh > ŝC , respectively, yields the
same outcome.
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s′ of the equation

ρσ,h ·
f(s′|I)
f(s′|G) · lh(s′) = 1. (1.8)

Equation (1.8) consists of the updated prior ρσ,h, the likelihood ratio of the own
signal f(s′|I)

f(s′|G) , and the likelihood ratio of the event of being pivotal in period two
conditional on the observations in period one. A voter in period two is indifferent
between voting for A or C if and only if the product of these three is equal to 1. If
the product is strictly larger than 1, then conditioning on the event of being pivotal,
the voter reasons that the state is more likely to be I and, therefore, strictly prefers
voting for A in period two. Analogously, if the product is strictly smaller than 1,
then the voter strictly prefers voting for C.

We have now seen that the voters follow cutoff strategies in both periods and
how these cutoffs are calculated. This concludes the analysis of the structure of the
welfare-optimal equilibria.

1.5 Information Aggregation

We now show that the two-period voting procedure aggregates information when
the number of voters grows large. Consider a sequence (aN )N∈N of voting setups
where every aN has exactly N voters. We say that (aN )N∈N allows information
aggregation if there exists a sequence of equilibria σN for aN , respectively, such that
the probability of the correct decision under σN converges to 1 as N tends to infinity.

We show that our model with two periods allows for information aggregation even
in settings where simultaneous voting and sequential voting with an exogenous voting
sequence fail to do so. Feddersen and Pesendorfer (1998) analyze the unanimity
voting rule in a simultaneous voting model with binary signals. They prove that
even for large electorates, the probability of the correct decision is bounded away
from 1. There, an increase in the jury size does not lead to information aggregation.
Dekel and Piccione (2000) show that in a sequential voting model with exogenous
timing, the equilibria are equivalent to the equilibria of the simultaneous voting
model. Therefore, an exogenous voting sequence does also not allow for information
aggregation under the unanimity voting rule as long as the likelihood ratio of the
signals is bounded. In our two-period voting model, this observation does not hold
anymore. Theorem 1.2 shows that, even with only binary signals, information is
aggregated for a large jury size regardless of the voting rule.

Theorem 1.2. Fix a sequence (aN )N∈N of voting setups that share the same param-
eters and only differ in the number of voters N and the voting rule (K, p). Then,
regardless of the voting rules along the sequence, there exists a sequence of equilibria
for which the probability of a correct decision converges to 1.



1.6. The Swing Voter’s Curse 25

The idea of the proof is to construct a strategy profile σ as follows. For every
voting rule there is at least one of the two alternatives that needs a vote share
of at least 1

2 to win. Without loss of generality, let it be C. Fix a cutoff z with
F (z|I) + F (z|G) = 1 and let voters with signals above the cutoff z vote early for
C and the remaining voters wait for period two. The weakly monotone likelihood
ratio implies that F (z|I) > 1

2 and F (z|G) < 1
2 hold. By the strong law of large

numbers, the realized vote share of C-votes converges to the expected vote share.
The probability that the game ends in period one with a wrong decision converges
to 0. The expected vote share of early C-votes is different for both states, and
therefore, the late voters learn the correct state with probability converging to 1.
Thus, we have constructed a sequence of strategy profiles for which the probability
of a correct decision converges to 1. Now, the result of Theorem 1.2 follows by using
an argument by McLennan (1998) that says that under homogeneous preferences,
the welfare-optimal symmetric strategy profile is an equilibrium. Therefore, for a
sequence of welfare-optimal equilibria, the probability of the correct decision also
converges to 1.

Assumptions (MLRP<) and (ULR) are not needed for Theorem 1.2. The result
also holds if the informativeness of the signals is bounded. In particular, Theorem 1.2
also applies to the setup of Feddersen and Pesendorfer (1998) who consider a binary
signal space.

We conclude this section with Lemma 1.4 giving a bound on the speed of con-
vergence.

Lemma 1.4. The rate of convergence of the probability of a correct decision in the
welfare-optimal equilibrium of the two-period game is at least N−1.

1.6 The Swing Voter’s Curse

In this section, we analyze the so-called swing voter’s curse, which occurs under the
simple majority voting rule for an even number of voters.17 In this situation, in
the simultaneous voting game, less informed voters strictly prefer to abstain rather
than to vote

(
see Feddersen and Pesendorfer (1996)

)
. The reason for this swing

voter’s curse is that there exist two different voting situations where a single voter
i’s decision is pivotal. That is, if the aggregated number of A-votes of the other
voters is either one vote more or one vote less than the aggregated number of C-
votes of the other voters. In a simultaneous voting game, the swing voter’s curse
reduces welfare because less informed agents who strictly prefer not to vote have to
vote and may be pivotal, changing the outcome to the wrong alternative.

17We follow the literature by concentrating our analysis on the swing voter’s curse under the
simple majority voting rule. Note that the swing voter’s curse occurs in our setup also under other
voting rules as long as random tie-breaks can occur.
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In the simultaneous voting game, this effect can be mitigated, and the welfare
can be improved by allowing agents to abstain. However, this way, the information
of the less informed voters is lost. We show that the introduction of a second voting
period (without allowing for abstention in period two) can utilize the information
of such voters and leads to a greater welfare improvement than the possibility to
abstain.

First, note that voters in the two-period voting game can mimic abstention of the
simultaneous voting model. Voters can effectively abstain by waiting in period one
and then voting for the majority outcome from period one in period two (or random-
izing with probability 1

2 if the outcome of the first period is a tie). Therefore, the
two-period voting game can achieve the welfare of the welfare-optimal equilibrium
of the simultaneous voting game with abstention. The following theorem states that
there even exists a strict welfare improvement.

Theorem 1.3. Assume that N is even and that (MLRP<) and (ULR) hold. Then,
under the simple majority voting rule, the welfare-optimal equilibrium of the model
with two periods (without abstention) strictly welfare-dominates all equilibria of the
simultaneous voting game with abstention.

The first part of the proof is to construct a strategy profile of the two-period
voting game that yields the same welfare as the welfare-optimal equilibrium of the
simultaneous voting game with abstention. Then, we show that there is a profitable
deviation in the two-period voting game. Using McLennan, 1998, this shows that
there is an equilibrium in the two-period voting game, which yields a strictly higher
welfare than the simultaneous voting game with abstention.

As a result, the welfare of the welfare-optimal equilibria in the different voting
procedures can be ranked as follows:

USimultaneous ≼ UAbstain ≼ UTwoperiods (1.9)

If (MLRP<) and (ULR) hold, then the inequalities are strict. Without these assump-
tions, there exist parameters for which the welfare of all three voting procedures is
equal: A voting setting with binary signals, symmetric likelihood ratios, and a prior
of 1

2 is an example.

1.7 Endogenous Timing Compared to a Fixed Sequence

In this section, we compare our voting model with endogenous timing to a voting
procedure with an exogenously fixed voting sequence. More precisely, we compare it
to a setup with two voting periods where for each voter it is exogenously given (and
common knowledge) in which period this voter casts her vote. For a more detailed
analysis of voting with an exogenously fixed sequence, see Dekel and Piccione (2000).
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One substantial difference between an exogenously fixed voting sequence and
voting with endogenous timing is the asymmetry between voters that is induced by
the fixed timing of voting. Naturally, voters that vote in period one and voters that
vote in period two are not ex-ante equal. We show that if we allow for asymmetric
strategies in our voting model with endogenous timing, a strict welfare improvement
is gained over voting with a fixed sequence.

Theorem 1.4. Under assumptions (MLRP<) and (ULR), there exists a (poten-
tially) asymmetric equilibrium of the two-period voting game with endogenous timing
that strictly welfare-dominates all equilibria of the two-period voting game with an
exogenously fixed voting sequence.

The strict welfare gain is obtained by constructing a profitable deviation. We
start with a welfare-optimal equilibrium of the voting game with a fixed sequence.
The outcome of this equilibrium can be replicated with endogenous timing. Now,
we let a single voter in period one deviate and instead vote in period two with a
positive probability. This discloses additional information to the voters in period
two and subsequently allows for a profitable deviation. Therefore, an endogenous
timing decision yields a strict welfare improvement over a fixed voting sequence.

1.8 Conclusion

In this chapter, we explore a voting model with an endogenous timing decision.
We show the existence and characterize the structure of welfare-optimal equilibria.
We generalize the well-known result from simultaneous voting models that respon-
sive strategies follow cutoff rules. Moreover, the welfare-optimal equilibria of our
model with endogenous timing welfare-dominate the equilibria from simultaneous
voting models and voting procedures with a fixed voting sequence. Information is
aggregated even with bounded informativeness of the signals under the unanimity
voting rule. In the case of a possible random tie-break, sequential voting mitigates
the swing voter’s curse more effectively than abstention. The endogenous sorting
into the two voting periods allows the voters to convey the strength of their private
information to each other and ultimately make a better-informed collective decision.

There are various extensions to our model that can be pursued for future re-
search. First, the two periods can be generalized to an arbitrary finite number or
a countable infinite number of periods. Adding more periods makes the informa-
tion transmission of the agents more efficient, resulting in a higher probability of
choosing the correct outcome. However, we have shown in this chapter that even
under the unanimity voting rule with bounded signals, two voting periods suffice for
information aggregation.

Another possible extension is the generalization to a continuous time interval.
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Going from two periods to continuous time allows for finer communication between
the voters. Depending on the modeling of the strategies, continuous time can allow
the agents to perfectly communicate their signals and solves the collective coordina-
tion problem completely. Note that allowing the set of possible voting times to be
as rich as a real interval is a particularly strong assumption.

Possible other extensions in this line of research could be the addition of voting
costs that induce a free-riding problem, making waiting costly, or considering a
private value component such that the voter’s interests are not perfectly aligned
anymore.
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1.A Proofs

1.A.1 Proofs for Section 1.3

Proof of Claim 1.1. First, we show that if an equilibrium follows such cutoff rules,
then the cutoffs x̂, ŷ, and ẑ solve the following system of equations:

2x̂+ ẑ = 1 (1.10)

2ẑ − ẑ2 − 2ŷ − 2ŷẑ + 3ŷ2 = 0 (1.11)

2ŷ − ŷ2 − 2x̂+ x̂2 − 2ẑŷ + 2ẑx̂ = 0. (1.12)

Solving the system numerically then yields the unique solution x̂ = 1
7 , ŷ = 3

7 and
ẑ = 5

7 .
Equation (1.10) is given by setting a voter with signal x̂ to be indifferent between

voting A and waiting for period two:

f(x̂|I)
f(x̂|G)

P (PivAW |I)
P (PivAW |G) = 1

⇐⇒ f(x̂|I)
f(x̂|G)

1− F (ẑ|I)
1− F (ẑ|G) = 1

⇐⇒ 2− 2x̂
2x̂

1− 2ẑ + ẑ2

1− ẑ2 = 1

⇐⇒ (1− x̂)(1− ẑ) = x̂(1 + ẑ)

⇐⇒ 1− x̂− ẑ + x̂ẑ = x̂+ x̂ẑ

⇐⇒ 1 = 2x̂+ ẑ,

where P (PivAW |ω) is the probability of being pivotal with the decision of voting A
or waiting. It is equal to the probability that the other voter votes C. If the other
voter votes A or waits, then A will be the outcome even if i waits.

Equation (1.11) is given by setting a voter with signal ŷ who waited to be indif-
ferent for the case that the other voter also waited. Let P (PivAC) be the probability
that a voter is pivotal with deciding between voting late A or C. Then, one gets

f(ŷ|I)
f(ŷ|G)

P (PivAC |I)
P (PivAC |G) = 1

⇐⇒ f(ŷ|I)
f(ŷ|G)

F (ẑ|I)− F (ŷ|I)
F (ẑ|G)− F (ŷ|G) = 1

⇐⇒ 2− 2ŷ
2ŷ

2ẑ − ẑ2 − 2ŷ + ŷ2

ẑ2 − ŷ2 = 1
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⇐⇒ (1− ŷ)(2ẑ − ẑ2 − 2ŷ + ŷ2) = ŷ(ẑ2 − ŷ2)

⇐⇒ 2ẑ − ẑ2 − 2ŷ + ŷ2 − 2ŷẑ + ŷẑ2 + 2ŷ2 − ŷ3 = ŷẑ2 − ŷ3

⇐⇒ 2ẑ − ẑ2 − 2ŷ − 2ŷẑ + 3ŷ2 = 0.

Equation (1.12) is given by setting a voter with signal ẑ to be indifferent between
waiting and voting early C:

f(ẑ|I)
f(ẑ|G)

P (PivW C |I)
P (PivW C |G) = 1

⇐⇒ f(ẑ|I)
f(ẑ|G)

F (ŷ|I)− F (x̂|I)
F (ŷ|G)− F (x̂|G) = 1

⇐⇒ 2− 2ẑ
2ẑ

2ŷ − ŷ2 − 2x̂+ x̂2

ŷ2 − x̂2 = 1

⇐⇒ (1− ẑ)(2ŷ − ŷ2 − 2x̂+ x̂2) = ẑ(ŷ2 − x̂2)

⇐⇒ 2ŷ − ŷ2 − 2x̂+ x̂2 − 2ẑŷ + 2ẑx̂ = 0.

The probability P (PivW C |ω) of being pivotal between waiting and voting C in
period one is given by the probability that the other voter has a signal in the interval
(x̂, ŷ], which means that for voter i voting C early changes the outcome compared
to waiting.

To finish the proof of Claim 1.1, it is left to show that there exists a welfare-
optimal equilibrium that follows cutoff strategies. This part is deferred to Sec-
tion 1.4, Theorem 1.1, which shows for the two-period voting model that there is an
equilibrium that maximizes welfare and follows such cutoff rules.

1.A.2 Proofs for Section 1.4

Proof of Theorem 1.1. First, we show the existence of a welfare-optimal equilibrium.
We construct a metric dS on the set S of the symmetric monotone strategy profiles.
Let Z := H×{A,W,C}×{I,G}. The distance of two strategies under dS is given by
the sum of the differences of the induced ex-ante probabilities pσ(Y |h, ω) of playing
certain actions:

dS(σ1, σ2) =
∑

(h,Y,ω)∈Z

∣∣pσ1(Y |h, ω)− pσ2(Y |h, ω)
∣∣.

Next, we show that the metric space (S, dS) is compact. To show sequentially
compactness, we start with a sequence (σn)n∈N of symmetric monotone strategy
profiles. Let φ denote the function that maps such a strategy into the space of
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induced ex-ante probabilities, i.e.,

φ : S → [0, 1]6|H|

σ 7→
(
pσ(Y |h, ω)

)
(h,Y,ω)∈Z

Then, as [0, 1]6|H| together with the taxicab distance d1 is a compact space, the
sequence of the induced probabilities (φ(σn))n∈N has a convergent subsequence
(φ(σnk

))k∈N. Its limit is induced by a strategy profile σ∗.18 By construction, the
subsequence (φ(σnk

))k∈N converges to σ∗. Therefore, in S, every sequence has a
converging subsequence and (S, dS) is a compact metric space.

Now, the function φ is continuous with respect to the metrics dS and d1. Fur-
thermore, the function that maps the probabilities of actions to the expected welfare

ψ : [0, 1]6|H| → [0, 1](
pσ(Y |x, ω)

)
(h,Y,ω)∈Z

7→ U

is continuous with respect to the metrics d1 on [0, 1]6|H| and d1 on [0, 1].
By the continuity of the composition ψ ◦ φ and the compactness of the strategy

space, there exists a welfare-optimal symmetric strategy profile. McLennan (1998)
shows that such a welfare-optimal strategy profile constitutes an equilibrium.

The second statement of the theorem says that all welfare-optimal equilibria
follow cutoff rules. We prove this through the other results established in Section 1.4.
The overview is as follows: First, we fix a welfare-optimal equilibrium. Lemma 1.1
shows that in a welfare-optimal equilibrium, both periods are used. Lemma 1.2
shows that agents in a welfare-optimal equilibrium follow cutoff strategies in period
one for almost all signals. Lemma 1.3 shows that agents follow a strategy in period
two that is equivalent to a cutoff strategy. Together, these results show that in a
welfare-optimal equilibrium, agents follow a cutoff strategy for all signals except for a
subset with probability measure zero. Therefore, every welfare-optimal equilibrium
is almost everywhere equal to a cutoff equilibrium.

Proof of Lemma 1.1. Every equilibrium σ with pσ(W |∅, I) = 1 yields the same pay-
off as a corresponding equilibrium with pσ(W |∅, I) = 0, i.e., it is of no importance
whether all agents wait or no agent waits. Thus, it suffices to fix an equilibrium σ

with pσ(W |∅, I) = 0, which is optimal in the class of such equilibria and to show
that there exists an equilibrium with higher welfare. We show that there exists

18To construct such a strategy profile σ∗ for a given limit, define the strategy separately for every
history h. For a given h, start with cutoff strategies that induce the correct probabilities for state
ω = I. Then, adjust the strategy by shifting the probability mass between the actions to obtain the
probabilities for state ω = G without changing the probabilities for ω = I. As the probabilities are
the limit probabilities induced by monotone strategy profiles, the limit strategy profile σ∗ is also
monotone.
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an equilibrium with higher welfare by dividing the agents who vote for one action
such that some agents with specific signals vote in period one and the agents with
other signals vote in period two. Then, a single agent can profitably deviate due
to her updated information. Using a result by McLennan (1998), the existence of
a welfare-better strategy profile implies the existence of an equilibrium with higher
welfare.

First, we construct an equilibrium with pσ(W |∅, I) = 0 that is optimal in the
class of all such equilibria. As an equilibrium with pσ(W |∅, I) = 0 is equivalent to an
equilibrium of the simultaneous voting model, we can apply the results from Duggan
and Martinelli (2001) to our (more general) (K, p)-voting rule. A welfare-optimal
equilibrium is given by the strategy profile

σ(s, h) =

A, for s ∈ [s
¯
, ŝ]

C, for s ∈ (ŝ, s̄]

with ŝ being the solution of the equation

q

1− q
f(ŝ|I)
f(ŝ|G) lh(ŝ) = 1

where lh(ŝ) denotes the term

pF (ŝ|I)N−K
(
1− F (ŝ|I)

)K−1 + (1− p)F (ŝ|I)N−K−1(1− F (ŝ|I)
)K

pF (ŝh|G)N−K
(
1− F (ŝ|G)

)K−1 + (1− p)F (ŝ|G)N−K−1(1− F (ŝ|G)
)K ,

which is the likelihood ratio of being pivotal if all other voters follow the cutoff
rule with cutoff ŝ. Now, we modify the strategies without changing the outcome
by letting a small part of C-voters vote in period two instead of period one. Fix a
positive ε < 1− ŝ and define a new strategy profile σ′ by

σ′(s, ∅) =


A, for s ∈ [s

¯
, ŝ]

W, for s ∈ (ŝ, ŝ+ ε]

C, for s ∈ (ŝ+ ε, s̄]

σ′(s, h) =

A, for s ∈ [s
¯
, ŝ]

C, for s ∈ (ŝ, s̄]
, for all h ̸= ∅.

Now, we fix an agent i, the threshold ŝ and the strategies of all other agents. For
the case p ̸= 1, we construct a payoff increasing strategy profile σ′′

i for agent i
by letting her wait in period one and updating her prior at one particular history
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h = (N −K − 1,K). At any other history, i follows the strategy σ. This is given by

σ′′(s, ∅) = W

σ′′(s, (N −K − 1,K)) =

A, for s ∈ [s
¯
, ŝ′]

C, for s ∈ (ŝ′, s̄].

σ′′(s, h) =

A, for s ∈ [s
¯
, ŝ]

C, for s ∈ (ŝ, s̄].
for all h ̸= ∅, h ̸= (N −K − 1,K)

with ŝ′ being the unique solution of the equation

q

1− q
f(ŝ′|I)
f(ŝ′|G)

(
F (ŝ|I)
F (ŝ|G)

)N−K−1 ( 1− F (ŝ+ ε|I)
1− F (ŝ+ ε|G)

)K

= 1. (1.13)

Duggan and Martinelli (2001) show that the inequality

1− F (ŝ|I)
1− F (ŝ|G) >

1− F (ŝ+ ε|I)
1− F (ŝ+ ε|G)

follows from (MLRP<). As an immediate consequence, the likelihood ratio of being
pivotal is different for ŝ and ŝ′. This implies that

ŝ′ < ŝ

holds, i.e., the cutoffs of σ′ and σ′′ are different at history h = (N−K−1,K). Since
ŝ′ solves equation (1.13), it is the optimal strategy for agent i given that she observes
that exactly K voters vote C in period one. Hence, σ′′ is a profitable deviation for
player i. For the case p = 1, the analogue construction for history h = (N−K,K−1)
instead of h = (N −K − 1,K) yields the same result.

By a result of McLennan (1998), this implies that there exists a symmetric
equilibrium with higher welfare.

Proof of Corollary 1.1. Every equilibrium of the simultaneous voting game is outcome-
equivalent to an equilibrium of the two-period model with pσ(W |∅, I) = 0. By
Lemma 1.1, there exists an equilibrium with strictly higher welfare.

Proof of Corollary 1.2. Suppose for contradiction that there exists a welfare-optimal
equilibrium σ∗ with one of the inequalities being an equality. Without loss of gen-
erality, let

P (A,ω) = P (W,ω)

be true. Then, the strategy profile where in the first period all probability mass from
waiting is put onto A instead, yields the same expected welfare. By Lemma 1.1,
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there exists an equilibrium with strictly higher welfare, which contradicts welfare-
optimality of σ∗.

Proof of Lemma 1.2. We show that the best response to any symmetric strategy
profile σ follows cutoff rules in period one. Recall that P (Y, ω) is the probability
that the defendant is convicted given that the state is ω and given that one voter
votes for Y ∈ {A,W,C} in the first period and all other voters follow strategy σ.
The expected payoff of voting A early after receiving signal s is now given by

U(A, s) = f(s|I)
f(s|I) + f(s|G)

(
1− P (A, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (A,G). (1.14)

Similarly, let

U(W, s) = f(s|I)
f(s|I) + f(s|G)

(
1− P (W, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (W,G) (1.15)

and

U(C, s) = f(s|I)
f(s|I) + f(s|G)

(
1− P (C, I)

)
+ f(s|G)
f(s|I) + f(s|G)P (C,G) (1.16)

denote the respective expected payoffs. To see when a voter is indifferent between
two options, let x, al < ah and bl < bh be real numbers and consider the equation

xah + (1− x)bl = xal + (1− x)bh, (1.17)

which is uniquely solved by

x = bh − bl

(ah − al) + (bh − bl)
∈ [0, 1].

Set any two of the three utility functions (1.14) , (1.15) and (1.16) equal to each other.
Then, the resulting equation has the form of equation (1.17) with x = f(s|I)

f(s|I)+f(s|G) .
Thus, for every pair of utility functions this gives a unique solution for

f(s|I)
f(s|I) + f(s|G) ∈ [0, 1].

Furthermore, we know that it lies in the interior (0, 1) by Corollary 1.2.
Let xAW denote the value obtained by setting U(A, s) and U(W, s) to be equal.

Then, the utility of voting for A is strictly higher than the utility of voting for
W for all signals s with f(s|I)

f(s|I)+f(s|G) > xAW and strictly lower for all signals s
with f(s|I)

f(s|I)f(s|G) < xAW . In particular a voter is indifferent with a signal s with
f(s|I)

f(s|I)+f(s|G) = xAW . The same holds for xW C and xAC , which are defined the same
way.
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By monotonicity, one can rewrite

P (W, I) = P (A, I) + ε1

P (C, I) = P (A, I) + ε1 + ε2

P (W,G) = P (A, I) + δ1

P (C,G) = P (A, I) + δ1 + δ2

for ε1, ε2, δ1, δ2 > 0. Thus, one gets

xAW = δ1
ε1 + δ1

xAC = δ1 + δ2
ε1 + ε2 + δ1 + δ2

xW C = δ2
ε2 + δ2

.

In particular, xAC is a convex combination of xAW and xW C . By (MLRP<), the
term f(s|I)

f(s|I)+f(s|G) is strictly decreasing in s. By (ULR), for all x ∈ (0, 1) there exists
a unique

sx = sup
s

{ f(s|I)
f(s|I) + f(s|G) ≤ x

}
.

Now, exactly one of the three (in-)equalities

sxAW < sxAC < sxW C , (1.18)

sxAW > sxAC > sxW C , (1.19)

sxAW = sxAC = sxW C (1.20)

holds. If either (1.19) or (1.20) holds, then the equilibrium cannot be welfare-optimal
by Lemma 1.1 since there is no set of signals with a positive measure for which W

is a strictly best response. Thus, inequality (1.18) holds, which implies that the
equilibrium follows a cutoff rule in period one.

Proof of Lemma 1.3. Consider the history h = (nA, nC) in period two after nA

voters voted early A and nC voters voted early C. Let

Aσ,n =
{
s

∣∣∣∣ ( f(s|I)
f(s|G)

)N

>
1
ρσ,n

}

denote the set of all signals s such that the likelihood ratio raised to the power of
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N overcomes the updated prior. Similarly, define

Bσ,n =
{
s

∣∣∣∣ f(s|I)
f(s|G) <

1
ρσ,n

}

to be the set of all signals whose likelihood ratio is smaller than the updated prior.
Taking the idea from the proof of Lemma 2 in Duggan and Martinelli (2001), there
exists a responsive equilibrium in the induced game Gh if and only if the inequalities∫

Aσ,n

σW (s|∅)µ(ds) > 0

and ∫
Bσ,n

σW (s|∅)µ(ds) > 0

hold, i.e., if the probability that an agent has a signal which is stronger than the
prior in either direction is positive.

Consider now the case that this condition is satisfied at h. Even though as-
sumption (A4) in Duggan and Martinelli (2001) does not necessarily hold in our
two-period model, the assumptions necessary for their Theorem 1 are fulfilled and
its conclusion applies to the induced game Gh. Hence, there exists an almost every-
where unique responsive strategy profile that is an equilibrium of Gh with cutoff s′

given as the solution of

ρσ,h ·
f(s′|I)
f(s′|G) · lh(s′) = 1.

By Lemma 1.1 all histories are reached with positive probability. As an unresponsive
equilibrium in a one-period voting game yields a lower welfare than the unique
responsive equilibrium, we get that in a welfare-optimal equilibrium, the unique
responsive equilibrium is played in every induced game of periode two where one
exists.

At the histories where no responsive equilibrium exists, the welfare-optimal un-
responsive equilibrium is played in period two, i.e., either all voters vote A or all
voters vote C.

1.A.3 Proofs for Section 1.5

Proof of Theorem 1.2. As a consequence of McLennan (1998), it is sufficient to show
that there exists a sequence of strategy profiles for which the probability of a correct
decision converges to one.

For our construction, let z be a cutoff with the symmetric property F (z|I) +
F (z|G) = 1. By the intermediate value theorem, such a z exists. Let r := F (z|I) =
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1 − F (z|G). Intuitively, treating the two intervals [0, z] and (z, 1] like two discrete
signals that indicate innocence/guilt, respectively, r is the probability that an agent
receives a correct signal. The number of correct signals is binomially distributed
with parameters N and r. Note that r > 1

2 holds as the likelihood ratio is weekly
decreasing and not everywhere constant.

For each N , we now construct a strategy profile σN . Fix a setup aN with voting
rule (K, p). At least one of the two alternatives needs at least half of the votes to
be implemented with positive probability. First, consider the case that this C needs
at least N/2 votes, i.e., K ≥ N/2 holds. Define the strategy profile σN by

σN (s, ∅) =

W, for s ≤ z

C, for s > z

σN (s, h) = A, for all h ̸= ∅ with nC < N/2

σN (s, h) = C, for all h ̸= ∅ with nC ≥ N/2.

The outcome of σN is C if and only if at least N/2 voters receive a signal s ∈ (z, 1].
Now, consider the second case that A needs at least N/2 votes to be implemented

with positive probability. Analogously, we construct σN by

σN (s, ∅) =

A, for s ≤ z

W, for s > z

σN (s, h) = A, for all h ̸= ∅ with nA ≥ N/2

σN (s, h) = C, for all h ̸= ∅ with nA < N/2.

Again, the outcome of σN is C if and only if at least N/2 voters receive a signal
s ∈ (z, 1]. For both cases and for both states, the probability of a wrong decision
is bounded above by the probability that a binomially distributed random variable
X(N,r) with parameters N and r takes a value less or equal to N/2 (i.e., at least half
of the voters receive the wrong signal).

By the weak law of large numbers, the realized vote share of C-voters in period
one converges to the expected vote share 1− F (z|ωN ) in probability, which implies
that the correct outcome is implemented with probability approaching 1. Thus, we
have constructed a sequence (aN )N∈N of strategy profiles such that, regardless of
the sequence of voting rules along the setups, the probability of an incorrect choice
converges to 0 as N converges to infinity.

Proof of Lemma 1.4. Consider our construction for the proof of Theorem 1.2. The
probability of a wrong decision is bounded above by the probability that a binomially
distributed random variable X(N,r) with parameters N and r takes a value less or
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equal N/2. By Chebyshev’s inequality this probability is at most

P

(
X(N,r) ≤

N

2

)

≤ P
(∣∣X(N,r) − rN

∣∣ ≥ N(r − 1
2
))

≤ r(1− r)N
N2(r − 1

2
)2

= r(1− r)(
r − 1

2
)2 · 1

N

= O(N−1).

Thus, we have constructed a bounding sequence that converges to zero at rate N−1.
Therefore, for the probability of a wrong decision under the strategy profiles (σN ),
the rate of convergence is at least N−1. As the probability of a wrong decision is
even smaller in a welfare-optimal equilibrium, this constitutes a bound for the rate
of convergence of the probability of a correct decision for the sequence of welfare-
optimal monotone equilibria.

1.A.4 Proofs for Section 1.6

Proof of Theorem 1.3. Consider the welfare-optimal equilibrium of the simultaneous
voting game. Feddersen and Pesendorfer (1996) show that this equilibrium follows
a cutoff rule. The probability of a single voter abstaining is non-zero. Hence, for a
fixed N , there is a positive probability that all voters abstain. For the sequential
voting game, construct the strategy profile σ as follows. In the first period, the
strategy is given by the strategy profile of the simultaneous voting game, except that
agents wait instead of abstaining. In period two, all agents vote for the outcome
that gained a simple majority in period one. If the result of the first period results
is a tie, all agents who waited then vote for each alternative with equal probability.
This strategy profile is outcome-equivalent to the welfare-optimal equilibrium of the
simultaneous voting game.

Now, change the voting strategies such that at the history h = (0, 0) where every
agent waited, the welfare-optimal cutoff strategy of the induced game Gh is played.
This event occurs with positive probability, and the welfare-optimal equilibrium of
the induced game in period two yields a strictly higher welfare than a coin flip. Since
this strictly increases the probability of the correct decision, there exists a strategy
profile of the two-period model with strictly higher welfare than all equilibria of the
simultaneous voting model. By McLennan (1998), there also exists an equilibrium
with strictly higher welfare.
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1.A.5 Proofs for Section 1.7

Proof of Theorem 1.4. Consider a welfare-optimal equilibrium of the two-period vot-
ing game with a fixed voting sequence. The outcome of this equilibrium can be
replicated by an asymmetric strategy profile σ of the two-period voting game with
endogenous timing. If all voters vote in the same voting period, then the same argu-
ment as in Corollary 1.1 implies the existence of a profitable deviation. Therefore,
we consider the situation that there is at least one voter in each period.

Fix a single voter i who votes in period one. Let ε > 0 be sufficiently small
and define a deviation for voter i as follows: For a signal s with σ(s) = A and
F (s|I), F (s,G) ≤ ε, voter i waits in period one and votes for A in period two
instead. If the other voters in period two observe a history h where this event
occurred, they play the welfare-optimal equilibrium of the induced simultaneous
voting game. By the assumptions (MLRP<) and (ULR), the induced prior at h is
different compared to the induced prior where i votes early. Thus, the equilibrium
of the induced simultaneous voting game yields a strict welfare gain.

Note that the existence proof for Theorem 1.1 for a welfare-optimal symmetric
equilibrium also shows the existence of a welfare-optimal asymmetric equilibrium as
the number of voters is finite, and the space of all asymmetric strategy profiles is
therefore also compact.
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Chapter 2

On-the-Match Search and
Match-Specific Productivity
Growth

Joint with Sophie Kreutzkamp and Axel Niemeyer

2.1 Introduction

We study decentralized match formation as in Shimer and Smith (2000) with two
new features: Matches become more productive the longer they last and matched
partners continue to meet others.1 The combination of these two features is new
and captures many scenarios: For example, employees look for better jobs, and
firms try to replace underperforming employees. Architects, lawyers, and physicians
may part ways with their business partners upon getting to know someone more
capable. Professional athletes in badminton, skibob, or tennis may opt for more
talented partners. Marital relationships end in divorce and remarriage. In many
of these situations, it takes time for partners to become attuned to one another so
that partnerships become increasingly more productive the longer they persist. Our
primary goal is to investigate how such match-specific productivity growth affects
the agents’ matching decisions and which matching patterns emerge as a result.

There are two types of agents in our model, agents with a high productivity and
agents with a low productivity, and a continuum of agents for each type. Time is
continuous, and meetings between agents are Poisson events. If two agents meet
and agree to match, they form a pair. Paired agents produce a flow of output that
they divide in a fixed proportion; that is, we assume utility to be non-transferable
reflecting sticky wages or non-monetary partnerships. This output depends on both

1See also Smith (2006) and Burdett and Coles (1997) for decentralized search models.
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agents’ productivity types and the novel feature is that the output is an increasing
function of match tenure.2 We study steady-state equilibria, that is, we require each
agent’s matching decisions to maximize her expected lifetime utility, and we demand
that the distribution of both matched and unmatched agents is in steady-state.

A straightforward implication of productivity growth is a lock-in effect: Agents
become less likely to dissolve partnerships the longer they last. In particular, asym-
metric pairs, consisting of one more productive and one less productive agent, may
gladly stay together if neither agent finds a more suitable partner in due time. On
one hand such lock-in effects stabilize asymmetric pairs when productivity growth
is introduced to the model. On the other hand, our analysis uncovers subtle other
effects that oppose the lock-in effects.

To see why, observe that agents must make the following fundamental trade-off
when deciding with whom to (re-)match: They weigh the instantaneous utility en-
joyed from partners with higher productivity against the stability of a match, that
is, the rate at which they expect to be abandoned by their partner. With produc-
tivity growth, becoming single not only hurts because it entails a period without
production but also because one could have instead accumulated productivity in a
more stable match. In other words, productivity growth is an additional incentive
for agents to seek stability. This effect can stretch to the point where less productive
agents leave more productive partners to find stability with other less productive
agents, although their match with productive agents would become stable in the
long run.

A fundamental problem in models with on-the-match search is the possible mul-
tiplicity of equilibria. Which relationships are stable crucially depends on which
relationships agents believe to be stable. For example, even in a match of two
highly productive agents, if one agent believes that her partner plans to abandon
her, she may have an incentive to do so first. In other words, instability can be a
self-fulfilling prophecy. We show that there is a continuum of steady-state equilibria
when productivity does not grow, regardless of the model parameters. Moreover,
for any direction of match-to-match transitions, say, productive agents seeking less
productive partners, there exists a steady-state equilibrium featuring these transi-
tions.

Perhaps surprisingly, we show that miscoordination among highly productive
agents ceases to be an equilibrium when productivity does increase in match dura-
tion, regardless of how minuscule this growth is. A rough intuition is as follows: A
productive agent knows that there is a point in time far into the future where enough
productivity has accumulated such that a productive partner will never abandon her

2In many scenarios, one could also imagine that productivity is declining or has even more
complicated paths. We do not anaylze such settings but note that they would be interesting as
well.
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from then on, regardless of her own strategy. Thus, it is optimal for her not to aban-
don her partner even slightly before this point in time. Her partner will, in turn,
stick to the match even earlier. This unraveling halts only in the present. In other
words, when productivity grows, there is no reason for a pair of highly productive
agents to believe that their match is unstable.

Based on this observation, we can show that the steady-state equilibria under
productivity growth take a simple form: Equilibrium strategies are cutoff strategies.
That is, the agents only accept to rematch with other agents if their current match
has not lasted for too long. In particular, there are essentially only two types of
equilibria: Agents with low productivity either prefer highly productive partners or
other agents with low productivity. In particular, this shows that sorting occurs
in equilibrium. Further, this result provides a rationale for selecting equilibria in
a model without productivity growth based on whether they are limit equilibria in
our model with productivity growth as the growth rate vanishes.

This chapter proceeds as follows. The remainder of this section discusses the
related literature. Section 2.2 presents our model with on-the-match search and
match-specific productivity growth, and Section 2.3 develops steady-state equilib-
ria. Section 2.4 analyzes partial equilibrium behavior, and Section 2.5 investigates
the existence and uniqueness of steady-state equilibria. Section 2.6 discusses a limit
model with a productivity growth of zero. Section 2.7 discusses the effects of pro-
ductivity growth. Section 2.8 concludes. The proofs of all results are found in
Appendix 2.A.

2.1.1 Related Literature

On-the-job search is pervasive in labor markets (Fallick and Fleischman, 2004),
and search-theoric models have long taken this fact into account (see the survey by
Rogerson, Shimer, and Wright, 2005). However, on-the-job search and on-the-match
search, as considered in this chapter, are two separate notions. In a typical model
with one-sided on-the-job search, firms create jobs through vacancy posting, and
once a vacancy is filled, a firm cannot fire or replace its worker while the worker can
search for better jobs. On-the-match search, by contrast, postulates that all agents
– not only the agents on one side of the market – continue to search while being in a
match. It thus captures replacement hiring in labor markets as well as divorce and
remarriage in the marriage market (for empirical evidence, see Burgess, Lane, and
Stevens (2000) and Stevenson and Wolfers (2007), respectively).

Recall that the agents’ main trade-off with two-sided on-the-match search is
between productivity and stability. However, with one-sided on-the-job search, sta-
bility is not a concern because the market side that searches in the first place is not
abandoned. For this reason, search-and-matching models with heterogeneous work-
ers, heterogeneous firms, and on-the-job search (see Dolado, Jansen, and Jimeno
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(2009), Gautier, Teulings, and Vuuren (2010), and Lentz (2010)), are quite different
from ours.

In recent work, Bartolucci and Monzon (2019) and Goldmanis and Ray (2019)
argue that on-the-match search can lead to positive assortative matching even with-
out complementarities in the agents’ productivities. Both papers restrict attention
to a specific steady-state equilibrium in which agents replace their partners if and
only if they meet someone more productive. This equilibrium is only one of many
and may not generally exist. Thus, our scope is quite different from theirs as we ex-
plicitly tackle equilibrium multiplicity through exploring match-specific productivity
growth.

Cornelius (2003) also studies equilibrium multiplicity in a model that is similar
to our limit model without productivity growth. In contrast to us, she places some
restrictions on agents’ strategies, which rule out some equilibria in the first place. We
do not make these restrictions and instead show that productivity growth eliminates
the additional equilibria. Burdett, Imai, and Wright (2004) identify a related source
of equilibrium multiplicity that arises when search intensity is endogenous: If an
agent’s partner puts more effort into search, the agent may be inclined to do the
same.

Productivity growth has been first formally considered in Pissarides (1994) to
account for the empirical fact that job-to-job transitions decrease with tenure in the
labor market (see Hall, 1982). This feature has later been reconsidered in Schwartz
(2020). The scope of both papers is different from our model: Pissarides (1994)
studies on-the-job search with homogenous workers. While Schwartz (2020) does,
like us, include binary types of workers, he only solves his model numerically and
is primarily concerned with optimal unemployment insurance. In particular, the
idea to use productivity growth as a device for equilibrium selection in models with
on-the-match search is novel to our approach.

One could endogenize productivity growth, say, by modeling firms’ training de-
cisions. This endogenization would yield a model that we believe to be untractable
up to numeric solutions. For such approaches, see Lentz and Roys (2015) and Flinn,
Gemici, and Laufer (2017).

2.2 The Model

Agents Time is continuous. At every instant, there is a continuum of agents in
the market. Each agent has a permanent productivity type that is either L(ow) or
H(igh). For brevity, we call an agent of type i ∈ {L,H} an i-agent. Each agent
is either single or matched with another agent. We refer to a match in which both
agents have the same productivity type as symmetric, and we refer to a match in
which their productivity types differ as asymmetric.
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We assume that new single i-agents enter the market at a constant rate ηi, that
is, in an interval of time dt a mass ηidt of new single i-agents enters the market.
Moreover, each agent exits the market with Poisson rate δ so that the lifetime of
agents is random and exponentially distributed. If a matched agent exits the market,
her partner becomes single.

Search Search is undirected and time-consuming but otherwise costless. Meetings
between agents follow a quadratic search technology, that is, each agent (matched
or not) meets other agents uniformly at random with Poisson rate λm, where m
is the total mass of agents in the market and λ is a parameter that captures the
underlying degree of search frictions.3 When two agents meet, they observe each
others’ types and then decide whether or not to accept forming a match. If they
both accept to form a match, their current partnerships (if they are matched) are
dissolved, and their former partners become single.

Payoffs Without loss of generality, we normalize the flow utility of a single agent
to 0. When an i-agent is matched with a j-agent she obtains a flow utility uij(t) > 0,
where t is the time that the current match persists. Therefore, the total utility that
an i-agent receives in a match with a j-agent that is dissolved after persisting for
time s is ∫ s

0
uij(t) dt.

We assume that utility is non-transferable across agents. To ascribe meaning to
productivity types, we assume that H-partners provide a higher flow payoff than
L-partners, i.e., uiL(t) < uiH(t) holds for all i ∈ {L,H} and t ≥ 0.

The exit rate δ implicitly acts as a discount rate on future flow utility as agents
no longer gain utility when they exit the market. For simplicity, we assume no
further discounting beyond the exit rate. Throughout, we assume that the maximal
expected continuation payoff of a match is finite, that is,

∀i,j∈{L,H}

∫ ∞

0
uij(t)e−2δt dt <∞.

To study match-specific productivity growth, we assume that uij(·) is strictly
increasing for all i, j ∈ {L,H}. We also want productivity growth to have bite by
eventually locking agents into their matches. To guarantee eventual lock-in, assume

3In particular, the search velocity is independent of whether an agent is single or matched. This
assumption simplifies our analysis because it will render accepting any match a dominant strategy
for single agents. Relaxing this assumption does not change the gist of our results.



48 2.3. The Concept of Steady-State Equilibrium

that flow utilities grow arbitrarily large, that is,

lim
t→∞

uij(t) =∞

holds for all i, j ∈ {L,H}. We believe this assumption to be mild as it makes
no statement about when agents lock into their matches, or equivalently, how fast
productivity grows. We only assume that agents lock into their matches eventually.
For example, the point of lock-in may be orders of magnitude higher than the agents’
average lifetime of 1/δ.

2.3 The Concept of Steady-State Equilibrium

In this section, we define the concept of a steady-state equilibrium. A steady-
state equilibrium requires that the distribution of masses is time-invariant given the
agents’ acceptance strategies, and that the agents’ acceptance strategies form an
equilibrium given the steady-state masses.

A stationary acceptance strategy for an i-agent is a measurable function

pi : {∅, L,H} × {L,H} × [0,∞)→ [0, 1],

where pi(j, k, t) is the probability that an i-agent matched with a j-agent for time
t accepts to rematch with a k-agent upon meeting. For notational convenience, we
use ∅ as a placeholder for the non-existing partner of a single agent. It will be a
result in the analysis that pi(∅, ·, ·) = 1 for all i ∈ {L,H}, that is, all single agents
will accept to match with anyone they meet. Throughout, we restrict attention to
type-symmetric equilibria in which agents of the same type use the same strategy.

Balance Conditions Suppose that the agents follow stationary acceptance strate-
gies (pL, pH) and fix an instant of time. Let mij denote the current mass of i-agents
that are matched with j-agents, and let mi∅ denote the mass of single i-agents. Fur-
thermore, let mij(t) be the mass density of i-agents who have been matched with a
j-agent for exactly time t so that mij =

∫∞
0 mij(t)dt holds.4 We shall now develop

the balance conditions that ensure masses to be in steady-state given the strategies
(pL, pH). Let

mi,j,k =
∫ ∞

0
mik(t)pi(k, j, t)dt

4Note that mLH = mHL and mLH(t) = mHL(t) hold for all t as all asymmetric pairs consist of
one H-agent and one L-agent.
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be the mass of i-agents who agree to match with a j-agent if they are currently
matched with a k-agent, and let

Mi,j =
∑

k∈{L,H,∅}
mi,j,k

denote the mass of i-agents who accept to match with a j-agent. The quadratic
search technology then implies an inflow

Iij = λMi,jMj,i,

of i-agents into matches with j-agents. For the inflow of single i-agents, we have

Ii∅ = ηi + δ
∑

j∈{L,H}
mij + λ

∑
j∈{L,H}

∫ ∞

0
mij(t)

∑
k∈{L,H}

pj(i, k, t)Mk,jdt.

The right-hand side comprises the exogenous inflow ηi, the endogenous inflow of
i-agents whose partner exits the market (second term), and the endogenous inflow
of i-agents who are left by their partner for another agent (third term).

Let qij(t) denote the probability that a match between an i-agent and a j-agent
lasts for at least t units of time, given the stationary strategies (pL, pH) and given
the masses

M =
((
mL∅(t)

)
t≥0,

(
mH∅(t)

)
t≥0,

(
mLL(t)

)
t≥0,

(
mLH(t)

)
t≥0,

(
mHH(t)

)
t≥0

)
.

In other words, qij is the survival function with respect to match duration. For
notational convenience, we again write qi∅(t) for the probability that a single i-agent
stays single for at least t units of time. We formally derive these survival functions
in Section 2.A.1 in the appendix.

We are now equipped to state the pointwise balance conditions. We say that
a tuple (M, pL, pH) of fixed masses and strategies satisfies the pointwise balance
conditions, if

mij(t) = Iijqij(t) (2.1)

holds for all i ∈ {L,H}, j ∈ {L,H, ∅}, and t ≥ 0. It says that the mass density of
matches with duration t is equal to the induced inflow Iij times the induced survival
probability qij(t). The pointwise balance conditions ensure that the environment is
indeed stationary.

Definition 2.1. The tuple (M, pL, pH) is a steady-state if it satisfies the pointwise
balance conditions (equation (2.1)).

It is instructive to integrate both sides of equation (2.1) with respect to time to
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obtain aggregate balance conditions of the form

∀i ∈ {L,H} ∀j ∈ {L,H, ∅} : mij = Iij

∫ ∞

0
qij(t)dt. (2.2)

The aggregate balance conditions state that the mass of i-agents matched with j-
agents must equal the total inflow of such agents multiplied by the expected match
duration5 (and analogously for single agents).

Value Functions Previously, we have defined what it means for the masses to be
in steady-state, given a profile of stationary strategies (pL, pH). Now, we shall define
what it means for a profile of stationary strategies (pL, pH) to be a best response,
given a vector of masses M.

Let i ∈ {L,H} and j ∈ {∅, L,H}. Then, for given (M, pL, pH), let Vij(t0) denote
the expected lifetime utility of an i-agent who is matched with a j-agent for time
t0 (or for j = ∅ the lifetime utility of an agent who is single for time t0). The
expected lifetime utility of matched agents under the assumption that the masses
do not change over time is recursively given by

Vij(t0) =
∫ ∞

t0

qij(t)
qij(t0)uij(t)dt+

∫ ∞

t0

qij(t)
qij(t0)

∑
k∈{L,H}

(
λpi(j, k, t)Mk,iVik(0)

)
dt

+
∫ ∞

t0

qij(t)
qij(t0)

(
δ +

∑
k∈{L,H}

(
λpj(i, k, t)Mk,j

))
Vi∅(0) dt.

(2.3)

All three integrals are obtained by integration by parts. The first integral is the
conditional expected future flow payoff inside the current match given that the match
already lasted for a time t0. The second term is the expected continuation utility
if i rematches with another agent and the third term is the expected continuation
utility if her partner dissolves the match by rematching herself or exiting the market.

For singles, the expected lifetime utility is given by

Vi∅(t0) =
∫ ∞

t0

qi∅(t)
qi∅(t0)

∑
k∈{L,H}

(
λpi(∅, k, t)Mk,iVik(0)

)
dt. (2.4)

Since singles receive no flow utility and cannot be left by a partner, their expected
lifetime utility only contains the expected continuation utility upon rematching.

Masses and strategies constitute a partial equilibrium if the agents’ acceptance
decisions maximize their expected lifetime utility, given others’ strategies (pL, pH)
and given masses M that are constant over time.

5Since qij(·) is equal to the cdf function F of the time that a match is together, the integral over
the match survival function with respect to time is identical to the expected match duration.
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Definition 2.2. The tuple (M, pL, pH) is a partial equilibrium if

Vij(t) > Vik(0)⇒ pi(j, k, t) = 0

Vij(t) < Vik(0)⇒ pi(j, k, t) = 1

hold for all i, k ∈ {L,H}, j ∈ {L,H, ∅} and t ≥ 0.

Note that this particular definition demands that the agents’ acceptance decisions
are optimal conditional on being accepted. It thus rules out partial equilibria in
weakly dominated strategies where i-agents never accept to match with j-agents
because j-agents never accept to match with i-agents.

In a partial equilibrium, the strategies are optimal for given time-invariant masses
while in a steady-state the masses are time-invariant given the strategies. Together,
steady-state and partial equilibrium constitue our equilibrium concept of a steady-
state equilibrium.

Definition 2.3. The tuple (M, pL, pH) is a steady-state equilibrium if it is a steady-
state and a partial equilibrium.

2.4 Partial Equilibrium Analysis

Our first result characterizes partial equilibrium strategies. Recall that pi(j, k, t) is
the probability that an i-agent who is in a match with a j-agent for time t accepts
to form a new match with a k-agent upon meeting.

Lemma 2.1. Suppose that (pL, pH) are strategies that constitute a partial equilib-
rium. Then, the following statements hold:

(a) Single agents always accept to match, i.e., pi(∅, ·, ·) = 1 holds for all i ∈
{L,H}.

(b) Agents do not accept to match with a new partner who has the same type as
the current partner, i.e., pi(j, j, t) = 0 holds for all i, j ∈ {L,H} and t > 0.

(c) Agents in an HH-match never accept to match with a new partner, i.e.,
pH(H, ·, ·) = 0 holds.

(d) The agents follow cutoff strategies, i.e., for every (i, j, k) ∈ {L,H}3, there
exists tijk ∈ [0,∞) such that

pi(j, k, t) =

1, if t < tijk;

0, if t > tijk

holds.

The first two statements come as no surprise. Statement (a) says that single
agents accept any match, since continuing to search on-the-match has the same
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velocity λ. Statement (b) says that agents do not leave a j-agent for another j-
agent as they accumulate productivity in a match and a match that already existed
for time t is more desirable than a newly formed matched with the same type of
partner.

When a matched agent meets someone, her acceptance decision hinges on the
rematching strategies of her current and potential future partner. In particular,
distrust in one’s partner’s loyalty can become a self-fulfilling prophecy: It would be
conceivable that there might be equilibria where partners do not leave one another
up to a point in time where they suddenly start accepting rematches because they
rationally expect their partner to do the same. However, it turns out that such
behavior can never be equilibrium behavior. In statement (c), we establish that no
H-agent dissolves a symmetric match unless she exits the market.

We are then left with three cases where the agents’ equilibrium matching deci-
sions are still undetermined: First, the rematching decision of H-agents from asym-
metric to symmetric pairs. Second and third, the rematching decisions of L-agents
from symmetric to asymmetric pairs, and vice versa. In statement (d), we establish
that the agents employ cutoff strategies with respect to match duration. That is,
the agents accept to rematch until reaching a particular point in time after which
they remain loyal: Applied to the three remaining cases, we obtain that H-agents
never leave asymmetric pairs after tHLH and L-agents never leave symmetric (asym-
metric) pairs after tLLH (tLHL). We omit k in tijk and denote the three relevant
cutoffs by tHL, tLL, and tLH , respectively.

The intuition why agents never rematch their partners after some point in time is
as follows: Since the flow utility grows arbitrary large, there exists a (potentially very
large) point in time, after which both agents in a match strictly prefer to stay in the
current match - regardless of the partner’s actions. Anticipating this lock-in, both
partners will refrain from rematching even slightly earlier as the probability of one’s
partner meeting another agent vanishes in short timeframes while the productivity
advantage over a new match does not. Further backward induction eventually yields
a cutoff where at least one of the partners is indifferent between rematching and
locking into the match. For a pair of two H-agents, this backward iteration halts
only at the time of matching.

We now show that in asymmetric pairs, the L-agent reaches her cutoff point first.

Corollary 2.1. In every partial equilibrium, tLH ≤ tHL.

Intuitively, tLH cannot be larger than tHL because once an H-agent stays in an
asymmetric match forever, the L-agent in this match has no incentive to rematch
because she can never be better of than she is in a stable asymmetric relationship.

Cutoff strategies immediately imply that valuation functions of matched agents
are strictly increasing with respect to match duration.
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Corollary 2.2. In every partial equilibrium, Vij(t) is strictly increasing in t for all
i, j ∈ {L,H}.

Intuitively, longer match durations are desirable because the agents accumulate
match-specific productivity and because cutoff strategies render the probability of
being left by one’s partner weakly decreasing over time.

An H-agent arrives at her cutoff tHL when being indifferent between a newly
formed stable symmetric match and a stable asymmetric match that has accumu-
lated enough productivity.

Corollary 2.3. In every partial equilibrium, tHL ∈ (0,∞) is the unique solution to
the equation

VHL(tHL) = VHH(0)

or, equivalently, ∫ ∞

tHL

uHL(t)e−2δ(t−tHL)dt =
∫ ∞

0
uHH(t)e−2δtdt. (2.5)

This solution is the same across all partial equilibria.

The fact that a unique tHL solves equation (2.5) immediately follows from Corol-
lary 2.2. The cutoff tHL only depends on the primitives of the model because no
L-agent leaves an LH-pair after tHL and therefore, H-agents trade-off two matches
in which they are not left by the partner against one another. Hence, tHL is the
same across all partial equilibria and, a fortiori, across all steady-state equilibria.

L-agents in asymmetric matches anticipate being potentially left anytime before
tHL. However, they also anticipate their match to be stable anytime after tHL.
With this thought in mind, the cutoff tLH is such that L-agents they are indifferent
between rematching with another L-agent or staying in an asymmetric match that
will not be stable until tHL. The cutoff tLL after which L-agents stay in symmetric
matches is also determined by backwards induction. It turns out that L-agents
either rematch into symmetric pairs, into asymmetric pairs, or not at all.

Corollary 2.4. In every partial equilibrium, either

tLH > 0 ∧ tLL = 0 ∧ VLH(tLH) = VLL(0) or (2.6)

tLH = 0 ∧ tLL = 0 ∧ VLH(0) = VLL(0) or (2.7)

tLH = 0 ∧ tLL > 0 ∧ VLH(0) = VLL(tLL) (2.8)

holds.

The reason for this case distinction is simple: If an L-agent actively rematches
out of a match, she will not seek to rematch back into the same kind of match since
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the continuation value is increasing in time if all agents play cutoff strategies. The
case where L-agents stick to any match is non-generic as it requires them to be
exactly indifferent between symmetric and asymmetric matches and we prove that
such an equilibrium would disappear under a small perturbation of parameters.

Which type of partner an L-agent prefers in equilibrium hinges on her trading-off
higher flow utility with H-agents against conceivably higher stability in symmetric
partnerships. In other words, while matching with H-agents is productive in the
short run, the likelihood of being left by an H-agent may be higher than that of
being left by an L agent in the long run. The higher this likelihood, the more likely
an agent becomes single and consequently unproductive, and the more likely an
agent is to lose accumulated productivity that one could have instead nurtured in a
safer match.

With fixed masses M, by Corollary 2.3, the likelihood of being left by an H-
agent is the same across all partial equilibria, but the likelihood of being left by an
L-agent can differ between equilibria: If all other L-agents seek symmetric matches,
then symmetric matches are inherently stable for a given L-agent, which may lead
her to not rematch with H-agents as well. If all other L-agents seek asymmetric
matches, then symmetric matches are inherently unstable for a given L-agent, which
may too lead her to seek matches with H-agents.

These two kinds of partial equilibria may both exist for the same set of param-
eters as each can be self-fulfilling. Using the case distinction from Corollary 2.3, we
finally close this section by showing existence of a partial equilibrium.

Lemma 2.2. For any masses M, there exists a partial equilibrium (M, pL, pH). In
each of the three classes identified in Corollary 2.4 there exists at most one partial
equilibrium (M, pL, pH).

To summarize this section, the content of Lemma 2.1 says that the triple of
cutoffs (tHL, tLH , tLL) characterizes partial equilibrium strategies.6 Corollaries 2.1,
2.3, and 2.4 establish that partial equilibria can be classified solely based on the
rematching decisions of L-agents. Finally, Lemma 2.2 verifies the existence of partial
equilibria for given masses M and equilibrium uniqueness for each of the three
respective cases.

We now take these insights to the steady-state analysis where we account for the
balance conditions that ensure partial equilibrium behavior to preserve the masses
M which we so far only assumed to be fixed. Note already that the steady-state
analysis will complicate the basic intuition regarding the agents’ trade-offs estab-
lished in this section: Strategies no longer only affect the stability of matches but

6The equilibrium behavior at t = 0 and at the cutoffs is not determined. However, matching de-
cisions on a finite number of points in time do not affect equilibrium masses and utilities. Therefore,
it suffices to characterize equilibrium strategies up to a nullset.
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ILH

tLH tHL t

A

B C

mLH(t) = ILHqLH(t)

Figure 2.1: The steady-state mass density mLH(t) of asymmetric pairs decreases
exponentially over time; the rate changes at the cutoffs tLH and tHL.

they also determine who (or rather, how many agents) will be available for match-
ing. Consequently, strategies endogenize the cost of being left by one’s partner, or,
conversely, the value of stability.

2.5 Steady-State Analysis

Lemma 2.1 yields a concise characterization of partial equilibrium behavior, allowing
us to simplify the balance conditions (equation (2.1)) considerably. For example,
asymmetric pairs can only be in one of three different states: First, if the two agents
are matched for less than tLH , then both accept to rematch with other agents, and
therefore, the match dissolves at rate 2δ + λ(ML,L + MH,H). Second, if the agents
have been matched for longer than tLH but for shorter than tHL, then only H-
agents agree to rematch with other agents, and, consequently, the match dissolves
at rate 2δ + λMH,H . Third, for durations longer than tHL, the match is stable and
henceforth only dissolves at rate 2δ.

Hence, the survival function qLH decreases exponentially on each of the three
intervals, albeit with different rates. This observation is illustrated in Figure 2.1.
Let A, B, and C denote the total masses of asymmetric pairs in the respective
states. Similarly, LL-pairs can only be in one of two states, depending on whether
the match duration exceeds tLL, yielding two aggregate masses, D and E, instead
of three.

The balancing of the in- and outflow regarding these aggregate masses is enough
to ensure that the entire mass density mij(t) is time-invariant. More formally, for
every partial equilibrium (M, pL, pH) that satisfies the state-wise aggregate balance
conditions, there exist unique massesM′ such that the state-wise aggregate masses
are the same inM andM′, and such that (M′, pL, pH) is a steady-state equilibrium.
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Consider A =
∫ tLH

0 mLH(t) dt as a concrete example. We obtain7 the aggregate
balance condition for A by integrating both sides of the point-wise balance conditions
for mij(t) from 0 to tLH . The resulting aggregate balance condition is

ILH = (2δ + λ(ML,L +MH,H))A+ ILHqLH(tLH). (2.9)

The left-hand side of equation (2.9) is the inflow ILH of agents into asymmetric pairs
which is, by definition, the inflow into A. The right-hand side of equation (2.9) is
the outflow from A, which comprises the outflow by match dissolution (first term),
and the outflow into B from matches that last for longer than tLH (second term).

The simplified balance conditions allow us to prove the following result.

Theorem 2.1. There exists a steady-state equilibrium. Moreover, for every pair
(mL∅,mH∅) of single masses, there exists a unique pair of inflows (ηL, ηH) and a
unique tuple (M, pL, pH) consistent with these single masses such that (M, pL, pH)
is a steady-state equilibrium.

Theorem 2.1 establishes the existence of a steady-state equilibrium. It will be an
immediate corollary of Theorems 2.4 and 2.5 that uniqueness cannot generally be
guaranteed in our model. However, Theorem 2.1 provides an “inverse” uniqueness
result that has its own appeal: Observing the single masses in our model is sufficient
to uniquely back out the mass densities of matched agents, the agents equilibrium
behavior, and even the inflows that must have led to these single masses.

In the proof, we distinguish cases based on partial equilibrium behavior as in
Corollary 2.4. Consider, for instance, the case when L-agents prefer to match with
L-agents. Here, we fix tLL = 0 and can therefore completely describe strategies
(pL, pH) via the cutoff tLH .

Consider the composite mapping

T : tLH 7→ M 7→ tLH

where the first mapping returns steady-state masses M for a given cutoff tLH , and
the second mapping returns a partial equilibrium cutoff tLH for given massesM. We
first establish that this mapping is well-defined by showing that, given the cutoff tLH ,
the state-wise balance conditions have a unique solutionM.8 We then show that T is
continuous to finally conclude the existence of a fixed point by appealing to Brouwer’s
fixed point theorem. A fixed point corresponds to a steady-state equilibrium if
the cutoff tLH is non-zero. We show that a fixed point corresponds to a steady-
state equilibrium in at least one of our three cases from Corollary 2.4, establishing
existence.

7For the detailed aggregate balance conditions and their derivation, see Section 2.A.3 in the
appendix.

8Recall that Corollaries 2.2 and 2.4 already establish that tLH is unique given M.
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For the uniqueness part, we fix the single masses (mL∅,mH∅), allowing us to
ignore their balance conditions and to consequently ignore the inflows (ηL, ηH).
Given this, we show that T is strictly decreasing, establishing uniqueness for fixed
(mL∅,mH∅): The state-wise balance conditions imply that a higher cutoff tLH leads
to a larger mass A and a smaller mass A + B. However, the partial equilibrium
conditions imply that a larger mass A and a smaller mass A + B lead to a smaller
cutoff tLH . Finally, we show that there exist unique inflows (ηL, ηH) that solve the
balance conditions of the singles masses (mL∅,mH∅).

As a sanity check, let us briefly mention that we can uniquely predict equilibrium
behavior if the search technology is either very efficient or very inefficient.

Lemma 2.3. Fix all parameters except for λ. Then, there exists λ̄ > 0 such that
for all 0 < λ < λ̄, in all steady-state equilibria with search parameter λ we have
t∗LL > 0. Conversely, as λ → ∞, we get that mHH → ηH

δ , mLL → ηL
δ , and

mL∅,mH∅,mLH → 0 hold.

Intuitively, at low meeting rates, all matches are stable enough for agents to
make their rematching decisions based on flow utility alone. In particular, L-types
do not leave their H-type partners because the fear that their partner would meet
someone better is low. When agents encounter others quickly, the balance conditions
imply that all agents are matched symmetrically and that no agent remains single.

2.6 Limit Model

In this section, we discard the assumption of productivity growth and instead assume
that productivity in a match is time-invariant, that is, uij(t) = uij for all i, j ∈
{L,H} and t ≥ 0. We investigate this alternate model for two reasons. First, we
use it to benchmark the effects of productivity growth, which we then discuss in
Section 2.7. Second, the limit model is exemplary for models with on-the-match
search, where equilibrium multiplicity is pervasive. Productivity growth turns out
to eliminate some of these equilibria and can consequently serve as a criterion for
equilibrium selection.

Under productivity growth, the agents’ decision problems in a given match may
depend on the match duration duration, even if their partner’s strategies do not.
Without productivity growth, this decision problem is time-invariant if the partner’s
strategy is time-invariant as well. We thus restrict attention to stationary acceptance
strategies for i-agents that are measurable functions

pi : {L,H, ∅} × {L,H} → [0, 1]

where pi(j, k) is the probability that an i-agent accepts to match with a k-agent
when currently matched with a j-agent (or single).
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Given that agents play time-invariant strategies, their value functions are also
time-invariant, that is, Vij(t) = Vij for all i, j ∈ {L,H} and t ≥ 0. Moreover,
the aggregate balance conditions (equation (2.2)) are sufficient to ensure a steady-
state, that is, we no longer need to worry about balancing the mass density regarding
match duration but only the total masses of agents in every match and those of single
agents. An exact derivation of this fact and the corresponding balance conditions can
be found in Section 2.A.4 in the appendix. The definition of steady-state equilibrium
is otherwise analogous to that used in the analysis with productivity growth.

Partial Equilibrium Behavior We now turn to analyzing the agents’ partial
equilibrium behavior. For the same reasons as under productivity growth, single
agents accept to match with agents of any type (cf. Lemma 2.1, statement (a)).
However, matched agents no longer need to decline matching with agents of the
same type as their partner since their continuation utility is the same regardless of
this decision (cf. Lemma 2.1, statement (b)).

Under productivity growth, the L-agents alone determine the nature of equilib-
rium through their rematching decisions as H-agents never leave symmetric matches
voluntarily (cf. Lemma 2.1, statement (c)). This statement is no longer true when
productivity is constant over time: One can now rationalize beliefs that lead H-
agents to rematch out of symmetric pairs. It will be convenient to let ī ∈ {L,H}\{i}
denote the respective opposite type of i. Partial equilibrium requires that i-agents
matched with j-agents accept to rematch with agents of the opposite type j̄ than
their partner only if Vij̄ ≥ Vij . In particular, mixing and even rematching from both
j to j̄ and from j̄ to j can happen only if Vij̄ = Vij .

Recall that the respective equilibrium behavior is due to the agents weighing
flow utility against stability in a match. In the limit model, it hurts less to become
single as one cannot lose accumulated productivity. This simplification allows us
the capture the above trade-off in an intuitively accessible formula. Let

ri,j→∅ = δ +
∑

k∈{L,H}
λpj(i, k)Mk,j

denote the rate at which an i-agent becomes single because her j-partner either exits
the market or rematches. Moreover, let

ri,∅→k = λpi(∅, k)Mk,i.

denote the rate at which a single i-agent matches with a k-agent.
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Lemma 2.4. Vij̄ > Vij holds if and only if

uij̄

uij
>
δ +∑

k∈{L,H} ri,∅→k + ri,j̄→∅
δ +∑

k∈{L,H} ri,∅→k + ri,j→∅

holds.

In other words, an i-agent accepts to rematch with a type different than her
partner’s if the relative gain in flow utilities (left-hand side) exceeds the relative
gain in the costs of instability (right-hand side), that is, the rate at which i is left
by her potential new partner ri,j̄→∅ versus her old partner ri,j→∅.

Note the following comparative statics: If the exit rate δ or the rate of finding
a partner when being single ∑k∈{L,H} ri,∅→k is high, then the right-hand side is
close to 1. In either case, stability has no value, and agents make their rematching
decisions almost exclusively based on flow payoffs. Conversely, if these rates are low,
then the rate of being abandoned by one’s partner dominates the right-hand side,
and stability becomes an essential consideration.

The same argument as in Lemma 2.2 establishes the existence of partial equi-
libria for fixed masses M. However, we cannot restrict the set of partial equilibria
any further because lock-in points, as used in the proof of Lemma 2.1, do not exist
without productivity growth. Thus, all nine classes of equilibria, based on the pair-
wise comparisons between VLL and VLH as well as between VHL and VLH , remain.
Moreover, in each of these classes, agents can rematch with other agents of the same
type as their partner with positive probability.

Equilibrium Multiplicity We shall now explore the existence of steady-state
equilibria in the classes mentioned above. Our first result shows that, for any prob-
abilities by which agents accept to rematch with agents of the same type as their
current partner, there exists a steady-state equilibrium.

Theorem 2.2. For any (pi(j, j))(i,j)∈{L,H}2 ∈ [0, 1]4, there exists a steady-state
equilibrium.

One might be inclined to consider this kind of equilibrium multiplicity as con-
trived because, after all, one can adopt a tie-breaking rule to deal with indifferences.
This measure is not an easy way out because the mere existence of steady-state equi-
libria may hinge on mixed strategies, where the agents are, by definition, indifferent
as to whether or not to rematch. To see why, let us briefly review the basic argument
behind the proof of Theorem 2.2. As a first step, we establish the following lemma,
which is akin to the “fundamental matching lemma” in Shimer and Smith (2000).

Lemma 2.5. For any pair of strategies (pL, pH), there exist masses M solving the
balance conditions. Moreover, the set of solutions is continuous in (pL, pH).
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Now, for the sake of contradiction, suppose that no pure strategy equilibrium
exists. For example, if pL(L,H) = 1 and pL(H,L) = 0, that is, if L-agents rematch
with H-agents but not with L-agents, then we would need VLL > VLH to not have
a pure strategy equilibrium. If pL(L,H) = 0 and pL(H,L) = 1, we would need to
have VLH > VLL. Using Lemma 2.5 and an intermediate value theorem, we can
show that there must exist mixed strategies and induced steady-state masses such
that VLH = VLL – a mixed strategy equilibrium exists.

This existence argument requires that the agents play specific mixed strategies.
Consequently, it would not go through under any tie-breaking rule. Theorem 2.4 will
indeed confirm that, for some parameter constellations, there exist no meaningful
pure strategy steady-state equilibria in the limit model.

Next, we examine more closely the equilibrium multiplicity that stems from the
behavior of H-agents, which is not present when productivity grows.

Theorem 2.3. Fixing all other parameters, there exists a non-empty open set U ⊂
R4

+ of flow utilities such that there exists a steady-state equilibrium in each of the
following three cases for every (uLL, uLH , uHL, uHH) ∈ U :

1. VLL > VLH and VHH > VHL,
2. VLH > VLL and VHH > VHL, and
3. VLH > VLL and VHL > VHH .

Theorem 2.3 establishes the non-genericity of situations where, among multiple
other pure-strategy equilibria, there exists an equilibrium in which H-agents aban-
don other H-agents. Intuitively, if L-agents commit to matches with H-agents, but
H-agents expect to be abandoned by other H-agents, then they may seek stability in
asymmetric relationships and forego the higher flow utility in symmetric but unsta-
ble relationships. Simultaneously, though, symmetric relationships among H-agents
are stable if both partners believe their relationship to be stable. The belief about
(not) being abandoned thus turns out to be a self-fulfilling prophecy.

The two previous findings underline the difficulty of accurately predicting agents’
behavior in the limit model. Since more sophisticated models with on-the-match
search and heterogeneous agents also embed our limit model, these observations are
valid more generally.

Productivity Growth as a Selection Criterion In the analysis with produc-
tivity growth, we have established that agents do not rematch with the same types of
agents as their current partners and that H-agents do not rematch out of symmetric
matches (cf. Lemma 2.1). Our previous results show that these assertions cease to
be valid in the limit model. Nonetheless, we shall now pay particular attention to
those equilibria where agents do behave as under productivity growth because one
could argue that this is a realistic assumption on the agents’ behavior.
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Theorem 2.4. Among steady-state equilibria (M, pL, pH) with pi(j, j) = 0 for all
i, j ∈ {L,H}, pH(L,H) = 1, and pH(H,L) = 0, there exists at most one in each of
the following two cases:

1. pL(L,H) = 1 and pL(H,L) = 0, and
2. pL(L,H) = 0 and pL(H,L) = 1.

Moreover, there exist u, ū ≥ 1 such that the first steady-state equilibrium exists if
and only if uHL

uLL
≥ u holds and the second steady-state equilibrium exists if and only

if uHL
uLL
≤ ū holds.

Theorem 2.4 states that there is at most one equilibrium of each of those two
kinds of pure strategy equilibria that also occur in the model with productivity
growth. Moreover, it characterizes when these two equilibria exist: The equilibrium
in which L-agents rematch with H-agents exists if and only if L-agents are suffi-
ciently more productive with H-agents than with other L-agents, so that the higher
flow utility in asymmetric pairs dominates the agents’ preference for stability. The
equilibrium in which L-agents rematch with other L-agents exists if and only if L-
agents are not significantly less productive with L-agents, so that stability becomes
the more important consideration.

In particular, one can find parameters such that the two existence regions overlap,
in which case both steady-state equilibria co-exist. One can also find parameters
such that the two existence region do not overlap, in which case only mixed strategy
equilibria exist under the restrictions in Theorem 2.4. Intuitively, if all other L-
agents prefer symmetric matches, then there are many single H-agents in steady-
state. Thus, a given L-agent may prefer to match with an H-agent because she
expects to soon find a new partner upon becoming single. Conversely, if all other
L-agents prefer asymmetric matches, then there are few single H-agents in steady-
state. Thus, a given L-agent may prefer to match with another L-agent as the rate
with which she is left by an L-agent for an H-agent is low.

We shall now establish a correspondence between the above-mentioned equilibria
of the limit model and limit equilibria in the model with productivity growth, as the
growth rate vanishes. This result justifies the equilibrium selection in Theorem 2.4;
minuscule growth is sufficient to eliminate all other equilibria. For this, let us first
define precisely what a limit equilibrium is.

Definition 2.4. (M∗, t∗LH , t
∗
LL, t

∗
HL) is a limit equilibrium if there exist sequences((

un
ij(t)

)
i,j∈{L,H}, t≥0

)
n∈N

and
(
Mn, tnLH , t

n
LL, t

n
HL

)
n∈N

such that the following three properties hold:
1. un

ij(0) = uij and limm→∞ um
ij (t) = uij for all i, j ∈ {L,H}, n ∈ N, and t > 0,

2. (Mn, tnLH , t
n
LL, t

n
HL) is a steady-state equilibrium when flow utilities are given
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by
(
un

ij(t)
)

i,j∈{L,H}, t≥0
, and

3. (Mn, tnLH , t
n
LL, t

n
HL)→ (M∗, t∗LH , t

∗
LL, t

∗
HL) pointwise as n→∞.

In other words, if we (1) fix initial flow utilities uij and let subsequent flow
utilities converge to this value, and if we (2) pick a sequence of steady-state equilibria
corresponding to this sequence of flow utilities, then (3), the limit of the steady-state
masses and partial equilibrium cutoffs (if it exists) is said to be a limit equilibrium.
With slight abuse of notation, we allow the limit cutoffs t∗ij to take any value in
R+ ∪ {∞}.

We now need a notion that captures when a limit equilibrium is in fact an
equilibrium in the limit model.

Definition 2.5. A limit equilibrium (M∗, t∗LH , t
∗
LL, t

∗
HL) corresponds to a steady-

state equilibrium (M, pL, pH) in the limit model if

∀i, k ∈ {L,H} ∀j ∈ {L,H, ∅} : m∗
ij = mij ∧ m∗

i,k,j = mi,k,j

holds.

In other words, we declare two such equilibria as corresponding if they have the
same steady-state masses and the same masses of agents that accept a rematch with
other agents.

Theorem 2.5. If a steady-state equilibrium (M, pL, pH) in the limit model cor-
responds to a limit equilibrium, then pH(L,H) = 1, pH(H,L) = 0, pi(j, j) = 0,
and pL(L,H) · pL(H,L) = 0 for all i, j ∈ {L,H}. Every pure strategy steady-state
equilibrium (M, pL, pH) in the limit model with pH(L,H) = 1, pH(H,L) = 0, and
pi(j, j) = 0 for all i, j ∈ {L,H} corresponds to a limit equilibrium.

Theorem 2.5 confirms that (1) only those equilibria that fulfill the selection cri-
teria in Theorem 2.4 can be limit equilibria, and (2) that every such equilibrium in
pure strategies indeed corresponds to a limit equilibrium. In particular, this implies
that multiple equilibria can exist in our model with productivity growth. Mixed
strategy equilibria are dicier to handle, which also explains why we have stated
Definition 2.5 in terms of acceptance masses and not in terms of strategies: Recall
from Theorem 2.4 that a pure strategy equilibrium need not exist under the above
selection criteria. At the same time, Corollary 2.4 implies that mixed strategy equi-
libria are non-generic under productivity growth. To reconcile these two seemingly
contradictory facts, note that, to approximate a mixed strategy equilibrium in the
limit model, the cutoffs of L-agents must consequently converge to a finite limit as
productivity vanishes. In other words, agents mix via match duration and not by
explicitly playing mixed strategies.
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Figure 2.2: An example of flow payoffs without productivity growth for an L-agent if
she (a) stays with her H-partner or (b) rematches for an L-agent. Figure (c) shows
the difference in payoffs.

Equipped with Theorem 2.5, we now not only have a tool for selecting equilibria
in the limit model, but we can also compare what happens to the limit model when
productivity growth is introduced. We shall discuss this comparison in the next
section.

2.7 Discussion

A surprising result is that L-agents may prefer other L-agents over H-agents even
though matching with the latter yields a higher flow utility. In many matching
models, acceptance strategies are monotone, i.e., higher types are more accepted by
other agents. A positive sorting (with non-transferable utility) is generally driven
by the fact that highly productive agents search for other highly productive agents
and do not accept agents with a low productivity type. In contrast to that, in our
model L-agents may actually search for L-agents even after being matched to H-
agents. Thus, positive sorting does not only come from the H-agents’ decisions but
also from the L-agents.

To better understand the effects of match-specific productivity growth, we first
analyze the trade-off that agents face with constant productivity. Then, we look at
the changes to this trade-off when productivity grows.

As an example, let’s consider a consumption path, where an an L-agent is
matched with an H-agent and they meet the following other agents: First, at t1,
the L-agent meets another L-agent. Then, at t2 > t1 the H-agent meets another H-
agent and accepts to match. Finally, at t3 > t2 the L-agent meets another L-agent.
Without productivity growth, the flow utility for an L-agent who stays with her
H-partner at t1 is given by Figure 2.2a. It is uLH until t2, then 0 until t3 and uLL

afterwards. The flow utility of an L-agent who does accept the first other L-agent
is given by Figure 2.2b. It is uLH until t1 and uLL afterward. The difference in
utility between both decisions is given by the area between these two curves and is
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Figure 2.3: An example of flow payoffs with capital accumulation for an L-agents if
she (a) stays with her H-partner or (b) rematches for an L-agent. Figure (c) shows
the difference in payoffs.

displayed in Figure 2.2c. From t1 to t2 an L-agent who stays with her H-partner
receives a higher flow payoff (Area I). However she is left at t2 and gets no payoff
instead of uLL until t3 (Area II). If the L-agent could foresee all the future meet-
ings, then she would choose to stay with her H-partner at t1 if and only if I > II

holds.
Now, meetings (and market exits) occur at a given rate following a Poisson

Process. Therefore, an agent compares the difference in the flow payoffs to the
difference in the matching rates. As seen in the last section, the higher flow payoff
of an H-partner dominates for the decision of an i-agent if and only if

uiH(0)
uiL(0) ≥

δ + ri,∅→L + ri,∅→H + ri,H→∅
δ + ri,∅→L + ri,∅→H + ri,L→∅

holds.
Now, let’s consider the same example with productivity growth. Figure 2.3

displays the flow payoff as before. The main difference is that the flow payoff is
strictly increasing during a match. If the L-agent decides to stay with her partner
at t1 and is left at t2, she is not only single until t3, but she also has to start over
with accumulating productivity growth. If she instead accepts to rematch at t1,
her flow payoff increases from t1 on. Therefore, with productivity growth, her flow
payoff is different in both decisions even after time t3. The difference after time
t3 is given by area III in Figure 2.3c. If she could foresee the future meetings,
then she would choose to stay with her H-partner at t1 if and only if I > II + III

holds. In particular, being left reduces the L-agents’ payoffs for a longer time than in
the example without productivity growth. This illustrates how, with productivity
growth, agents have an additional incentive to value stability in a match: Even
though matches eventually become stable, the loss upon being left is more severe.
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2.8 Conclusion

We have characterized the steady-state equilibria in our decentralized matching
model with productivity growth and in a limit model with constant productivity. As
a surprising result, there are equilibria where L-agents prefer to rematch to another
L-agent over staying with an H-agent - even though the flow payoff in a match with
an H-agent is higher. The reason for this is the stability that another L-agent might
provide in a match and the forgone utility upon being left.

Another insight is that productivity growth does not allow for equilibria with
coordination failure. In the limit model without productivity growth, there can be
multiplicity of equilibria including equilibria where matched H-agents leave each
other driven by the belief that their partners are also searching to replace them.
Even with the slightest productivity growth, the equilibrium multiplicity in the limit
model ceases to exist. Based on this, we have presented an equilibrium selection
criterium for the model without productivity growth. Equilibria of the limit model
that have a coordination failure cannot be approximated as a limit of equilibria with
vanishing productivity growth, and vice versa.
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2.A Proofs

2.A.1 Proofs for Section 2.3

Survival Functions In this paragraph, we formally derive the survival functions
qij for pairs and qi∅ for singles.

First, we derive the outflow of agents out of pairs. For i, j ∈ {L,H} let Π(i, j)
be the set of permutations of the ordered set (i, j). For i ̸= j there are two permu-
tations9 and for i = j there is one permutation10.

Then, the outflow of agents out of ij-pairs that have been together for time t is

Oij(t) = 2 · δ
∑

π∈Π(i,j)
mπ(ij)(t) + 2 · λ

∑
π∈Π(i,j)

mπ(ij)(t)
∑

k∈{L,H}
pπ(i)(π(j), k, t)Mk,π(i),

(2.10)
and the outflow of unmatched i-agents that have been single for time t is

Oi∅(t) = δmi∅(t) + λmi∅(t)pi(∅, i, t)
∫ ∞

0
mi∅(s)pi(∅, i, s)ds+ λmi∅(t)

∑
k∈{L,H}

pi(∅, k, t)Mk,i.

(2.11)
Since rematchings and market exits arrive according to independent Poisson pro-
cesses, and since pairs break up when the first of these events occurs, they are
dissolved by a Poisson process at rate

Oij(t)∑
π∈Π(i,j)mπ(ij)(t)

.

Thus, the probability that such a pair does not dissolve before time t is

qij(t) = e
−
∫ t

0
Oij (s)∑

π∈Π(i,j) mπ(ij)(s)
ds

for pairs. Similar, for singles, the rate is given by

Oi∅(t)
mi∅(t)

and the survival probability is

qi∅(t) = e
−
∫ t

0
Oi∅(s)
mi∅(s) ds

.

9The first one is defined by π(ij) = (ij), π(i) = i and π(j) = j. The second one is defined by
π′(ij) = (ji), π′(i) = j and π′(j) = i.

10The unique permutation π in Π(i, i) is defined by π(ii) = (ii) and π(i) = i.
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2.A.2 Proofs for Section 2.4

Proof of Lemma 2.1. For single agents it is a strictly dominant strategy to always
accept to match. Therefore, in all steady-state equilibria

∀ t ≥ 0, i, j ∈ {L,H} : pi(∅, j, t) = 1

holds. For the next step, we need that agents follow cutoff strategies. First, we
restrict attention to the asymmetric pairs.

Claim. All agents in asymmetric pairs follow cutoff strategies with cutoffs tLH <

tHL. Furthermore, no agent in an asymmetric pair accepts to match with a partner
of the same type.

Proof of Claim. The proof proceeds in four steps:

1. Derive a lower and upper bound on the continuation payoffs.

2. Show that there exists some point in time t∗HL such that no agent rematches
at any t > t∗HL.

3. Show that there exists some t∗LH < t∗HL such that the agent of type L does not
rematch and the agent of type H rematches at any t ∈ (t∗LH , t

∗
HL).

4. Show that at any t < t∗LH , both agents rematch.

Step 1: First, let’s derive a lower and an upper bound on the continuation payoff of
the agents in an asymmetric pair: For i ̸= j define

V i(j, t, t′) := e−(2δ+λ(Mij+Mji))(t′−t) · Vi(j, t′)

and

V̄i(i, t, t′) :=
∫ t′

t
ui(j, t′′)e−2δ(t′′−t) dt′′

+ (δ + λMji) · Vi(∅, 0) + λMij · Vi(i, 0)
2δ ·

(
1− e−2δ(t′−t)

)
+ e−2δ(t′−t) · Vi(j, t′),

and note that
V i(j, t, t′) ≤ Vi(j, t) ≤ V̄i(j, t, t′)

holds.
Step 2 : The continuation payoff of an agent of type i ∈ {L,H} who is matched

with a j-agent with j ̸= i for time t and who stays in the current match is bounded
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below by

Vi(j, t) ≥
∫ ∞

t
e−(2δ+λ(Mi+Mj))(t′−t) · ui(j, t′) dt′

no matter what strategies the two agents pursue from time t onwards. This lower
bound is strictly increasing in t and by assumption it converges to infinity as t→∞,
while the payoff from leaving at time t and rematching into another match is at most
max{Vi(i, 0), Vi(j, 0)} which is bounded above as it is constant in t. Hence, there
exists some finite point in time Ti such that an i-agent strictly prefers staying to
leaving at any t ≥ Ti for any possible strategies sL and sH . Let T = max{TL, TH}
and note that it is a strictly dominant strategy to stay in the LH-pair from time T
onwards for both types.

Now, consider the sequence (tn)n∈N, which is defined as follows:

t0 = T,

tn = max{tLn , tHn } for all n > 0,

with
tin = inf

{
t ∈ R+|V i(j, t, tn−1) ≥ max{Vi(i, 0), Vi(j, 0)}

}
.

In words, this procedure iteratively constructs points in time such that no agent
wants to rematch thereafter, respectively. Note that tLn < tHn holds for all n. By
construction, (tn) is monotonically decreasing and bounded below (by 0). Conse-
quently, it converges. The limit is equal to t∗HL, which is the (unique) solution to
the equation ∫ ∞

t∗
HL

uH(L, t)e−2δtdt =
∫ ∞

0
uH(H, t)e−2δtdt,

that is, t∗HL is the point in time at which the agent of type H is indifferent between
staying in and leaving the LH-pair if both agents stay after t∗HL. To see that t∗HL is
the limit of (tn), note that tHn ≥ t∗HL holds for all n. This implies that limn→∞ tn ≥
t∗HL holds. So assume to the contrary that limn→∞ tn > t∗HL holds. But then, since
limn→∞ tHn ≥ limn→∞ tLn holds, we would have VH(L, limn→∞ tn) = VH(H, 0), which
is a contradiction.

Step 3 : First, there exists some non-empty interval [t̃, tH) on which the agent
of type H rematches and VHL(t) < VHL(, tH) = VHH(0) holds for all t ∈ [t̃, tH). In
order to verify this claim, note that there is some t̃ < tH satisfying UL(LH, t̃, tH) ≥
VLL(0), i.e., the agent of type L does not rematch on [t̃, tH). But then, the agent
of type H must rematch on [t̃, tH): The continuation payoff of the agent of type H
in the LH-pair at time t ∈ [t̃, tH) conditional on that the agent of type L does not
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rematch afterwards is given by

VHL(t) =
∫ tH

t
e−(2δ(τ−t)+λMH(SH(τ)−SH(t))) · erτdτ

+
∫ tH

t
[δVh∅(0) + λMHsH(τ) · VHH(0)] · e−(2δ(τ−t)+λMH(SH(τ)−SH(t)))dτ

+ e−(2δ(tH−t)+λMH(SH(tH)−SH(t))) · VHH(0).

The corresponding derivative is

dVHL(t)
dt

= (2δ + λMHsH(t)) · VHL(t)− ert − (δVH∅(0) + λMHsH(t)VHH(0)

=


2δVH(LH, t)− (ert + δVH∅(0)) + λMH(VH(LH, t)− VH(HH)),

if VH(LH, t) < VH(HH)

2δVH(LH, t)− (ert + δVH∅(0)), if VH(LH, t) ≥ VH(HH)

where the entries in the case distinction follow from the optimality of the strategy
pH . Moreover, it holds that dVHL(tH)

dt ≥ 0. Hence, we obtain that dVHL(t)
dt > 0

whenever VHL(t) ≥ VHH(0) for every t ∈ [t̃, tH). Consequently, continuity of the
derivative yields VHL(t) < VHH(0) for all t ∈ [t̃, tH). (If VHL(t) ≥ VHH(0) for some
t ∈ [t̃, tH), then VHL(·) would be strictly increasing on [t, tH ] which contradicts
VHL(tH) = VHH(0).)

As in the previous step, consider the sequence (un)n∈N given by

u0 = t̃,

un = max{uL
n , u

H
n } for all n > 0,

with
uL

n = inf{u ∈ R+|UL(LH, u, un−1) ≥ VLL(0)}

and

uH
n = inf{u ∈ R+|ŪH(LH, u′, un−1) ≤ VHH(0) for all u′ ∈ [u, un−1]}.

This sequence contains points in time after which the agent of type L does not
rematch and the agent of type H always rematches up to tH . Again, this sequence
is monotonically decreasing and bounded, and thus convergent. Its limit is the
largest solution tL in the interval [0, tH ] of the equation

∫ tH

tL

e−(2δ+λMH)(τ−tL) · erτdτ +
∫ tH

tL

(δ + λMH) · VL∅(0) · e−(2δ+λMH)(τ−tL)dτ

+e−(2δ+λMH)(tH−tL) · VLH(tH) = VLL(0),
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whenever it exists, and tL ≡ 0, otherwise. In words, tL is the largest point in time
at which the agent of type L is indifferent between staying and leaving if she stays
after tL and the agent of type H stays from time tH on. In particular, it follows
that tL < tH holds because the right hand side of the above equation attains the
value VLH(tH) > VLL(0) if tL = tH holds.

To check that tL must be the limit of the sequence (un), note that uL
n ≥ tL holds

for all n yielding limn→∞ un ≥ tL. So suppose that limn→∞ un > tL holds. But
then, we would have VHL(limn→∞ un) = VHH(0). However, since the agent of type
L does not rematch on [limn→∞ un,∞), we have that VHL(limn→∞ un) < VHH(0)
holds by the same reasoning as why VHL(t̃) < VHH(0) – a contradiction.

Step 4 : The proof of this step works similar as for the two cases before: First,
there exists some ũ < tL such that both agents will rematch on [ũ, tL) and Uij(ũ) <
Uii(0) holds for each i, j ∈ {L,H} with i ̸= j. Then, we consider the sequence
(vn)n∈N with

v0 = ũ,

vn = max{vL
n , v

H
n } for all n > 0,

with
vi

n = inf{v ∈ R+|Ūi(LH, v′, vn−1) ≤ Uii(0) for all v′ ∈ [v, vn−1]}

for each i. This sequence iteratively constructs points in time after which both
agents rematch (at least) up to tL, and it converges to 0. Thus, both types of agents
accept to rematch with probability 1 for all t ∈ [0, t∗LH). This finishes the proof of
the claim.

Continuation of the proof of Lemma 2.1. Analogously, we get that L-agents
in an LL-pair follow cutoff strategies and do not rematch to an L-agent. For the
rematching behavior for an agent in an HH-pair, assume for contradiction that an
H-agent in an H-pair rematches until some cutoff t0 > 0 and stays afterwards.
Then, the payoff of staying is

VHH(t0) =
∫ ∞

t0
uHH(t)e−2δtdt+ 1

2VH∅(0),

and the payoff of rematching with an L-agent is bounded above by

VHL(0) =
∫ ∞

0
uHL(t)e−2δtdt+ 1

2VH∅(0),

which is the expected payoff if no agent leaves an LH-pair. Note that for this to
be an upper bound we need that VHL(0) > VHH(0) holds by our assumption. Now,
VHH(t0) is strictly larger than VHL(0). Thus, an H-agent with an H-partner is not
indifferent at t0, but strictly prefers to stay. Therefore, there is an ε-ball around t0
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such that for all t in it, an H-agent prefers to stay. Hence, a strategy with cutoff t0

cannot be optimal and we get that

pH(H, ·, ·) = 0

holds. Together, this implies that for t > 0 all agents strictly prefer to stay in a pair
compared to rematching to a partner of the same type as their current partner, i.e.,
we get that

∀ t > 0, i, j ∈ {L,H} : pi(j, j, t) = 0

holds.

Proof of Corollary 2.1. It is shown in step (3) of the proof of Lemma 2.1 that tLH ≤
tHL has to hold in every partial equilibrium.

Proof of Corollary 2.2. By assumption, the flow utility is strictly increasing over
time and by Lemma 2.1, the agents’ strategies are weakly decreasing. Therefore
Vij(t) is strictly increasing.

Proof of Corollary 2.3. By Lemma 2.1, no H-agent rematches from an HH-pair.
Thus, the payoff in such a pair is

VHH(0) =
∫ ∞

0
uHH(t)e−2δtdt+ 1

2VH∅(0),

where the integral is the expected flow payoff and the term 1
2VH∅(0) comes from

the probability 1
2 that the partner dies before oneself multiplied by the expected

utility of being single. By t∗LH ≤ t∗HL, no L-agent rematches after t∗HL. Thus, the
continuation payoff at the cutoff is

VHL(t∗HL) =
∫ ∞

t∗
HL

uHL(t)e−2δtdt+ 1
2VH∅(0).

At the cutoff, the agent is indifferent. This leads to equation (2.5) as desired. For
existence and uniqueness of a solution, note that by assumption we have uHL(t) ≤
uHH(t) and therefore ∫ ∞

0
uHL(t)e−2δtdt ≤

∫ ∞

0
uHH(t)e−2δtdt

holds which implies VHL(0) < VHH(0). Furthermore, VHL(t0) is continuous and
strictly increasing in t0. Also, by assumption,

lim
t0→∞

VHL(t0) =∞
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holds. Thus, by the intermediate value theorem there exists a unique solution to
equation (2.5).

Proof of Corollary 2.4. In every steady-state equilibrium exactly one of the three
cases

Case 1: VLL(0) < VLH(0)

Case 2: VLL(0) = VLH(0)

Case 3: VLL(0) > VLH(0)

holds. By Corollary 2.2, we have

∀ t > 0, i ∈ {L,H} : VLi(t) > VLi(0).

Thus, if an agent prefers to match with an agent of a specific type at t = 0, she
strictly prefers to stay with such a partner afterwards. Together with the fact that
an agent is indifferent at a cutoff, the three possible cases for a partial equilibrium
are:

Case 1: tLH > 0 ∧ tLL = 0 ∧ VLH(tLH) = VLL(0)

Case 2: tLH = 0 ∧ tLL = 0 ∧ VLH(0) = VLL(0)

Case 3: tLH = 0 ∧ tLL > 0 ∧ VLH(0) = VLL(tLL).

Proof of Lemma 2.2. Fix the masses M and let i ∈ {L,H}. Then, let WL→H
Li be

the highest attainable utility of an L-agent who has just matched with an i-agent
when H-agents behave as specified in Corollary 2.3, a positive mass of L-agents
rematches into asymmetric pairs, and no L-agent rematches into symmetric pairs.
Define WH→L

Li analogously for the case that a positive mass of L agents rematches
into symmetric pairs and no L-agents rematch into asymmetric pairs. We have

WL→H
LL ≤WH→L

LL ∧ WL→H
LH ≤WH→L

LH

as the masses are constant and the decisions of other L-agents only matter in a
symmetric match. Moreover,

WH→L
LL −WL→H

LL ≥WH→L
LH −WL→H

LH

holds, as the decision of other L-agents not to leave a symmetric match always
benefits a given L-agent and this benefit is immediate in a symmetric match but
only implicit in an asymmetric match via the continuation utility from a symmetric
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match.
Suppose there exists no partial equilibrium as in equation (2.6) or equation (2.8).

Then,
WL→H

LH ≤WL→H
LL ∧ WH→L

LL ≤WH→L
LH

holds, which is only possible if

WL→H
LL = WH→L

LL = WL→H
LH = WH→L

LH

holds, so that a zero mass of L-agents rematch and every L-agent is indeed indif-
ferent when given the choice between matching with an L-agent or H-agent. Then,
equation (2.7) holds and there exists such a partial equilibrium. This establishes
existence. Uniqueness in every class follows from Corollary 2.4, the fact that the
masses are fixed, and the monotonicity of V : For a partial equilibrium that satisfies
equation (2.6) and for fixed masses there is at most one cutoff t∗LH that makes an
L-agent indifferent. For a partial equilibrium that satisfies equation (2.8) note that
for fixed masses the utility VLL(t) in a mixed pair is weakly decreasing in t∗LL. Again,
there is at most one cutoff t∗LL that makes an L-agent indifferent.

2.A.3 Proofs for Section 2.5

Aggregate Balance Conditions Let A/B/C denote the aggregated mass of
asymmetric pairs where “L and H” / “only H” / “no one” want to rematch into
symmetric pairs. Since the agents follow cutoff strategies, integrating over the point-
wise masses yields

A = ILH

∫ tLH

0
qLH(t)dt

B = ILH

∫ tHL

tLH

qLH(t)dt

C = ILH

∫ ∞

tHL

qLH(t)dt

with different exponential decay on the three intervalls:

t ≤ t∗LH : qLH(t) = e−(λML,L+λMH,H+2δ)t

t∗LH ≤ t ≤ t∗HL : qLH(t) = e−λML,Lt∗
LH−(MH,H+2δ)t

t∗HL ≤ t : qLH(t) = e−λML,Lt∗
LH−λMH,H t∗

HL−2δt.
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Analogously, for LL-pairs, let

D = ILL

∫ tLL

0
qLL(t)dt

E = ILL

∫ ∞

tLL
qLL(t)dt

with exponential decay

t ≤ t∗LL : qLL(t) = e−(2λMH,L+2δ)t

t∗LL ≤ t : qLL(t) = e−2λMH,Lt∗
LL−2δt.

denote the aggregate masses of agents, where in D both agents want to rematch into
asymmetric pairs and in E both agents prefer to stay in the current match.

By definition of A, B, C, D, and E, we have

ML,L = (A+mL∅)

MH,H = (A+B +mH∅)

MH,L = (mH∅).

Note, that by Corollary 2.2, A = 0 or D = 0 holds. Lemma 2.6 presents the five
aggregate balance conditions that are obtained by calculating the integrals.

Lemma 2.6. Every steady-state equilibrium satisfies the state-wise aggregate balance
conditions

(2δ + 2λA+ λB + λmL∅ + λmH∅)A = ILH(1− e−(λ(A+mL∅)+λ(A+B+mH∅)+2δ)t∗
LH ) (2.12)

(2δ + λA+ λB + λmH∅)B = ILHe
−(λ(A+mL∅)+λ(A+B+mH∅)+2δ)t∗

LH (2.13)
· (1− e−(λ(A+B+mH∅)+2δ)(t∗

HL−t∗
LH ))

2δC = ILHe
−(λ(A+mL∅)+λ(A+B+mH∅)+2δ)t∗

LH (2.14)
e−(λ(A+B+mH∅)+2δ)(t∗

HL−t∗
LH )

(2δ + 2λmH∅)D = ILL(1− e−(2λmH∅+2δ)t∗
LL) (2.15)

2δE = ILLe
−(2λmH∅+2δ)t∗

LL (2.16)

with ILH = λ(mL∅ +D)mH∅ and ILL = λ(mL∅ +A)2. Conversely, for every partial
equilibrium (M, pL, pH) that satisfies the state-wise aggregate balance conditions,
there exist unique masses M′ such that the state-wise aggregate masses are identi-
cal11 in M and M′, and such that (M′, pL, pH) is a steady-state equilibrium.

Proof. Every steady-state equilibrium satisfies the pointwise balance conditions. In-
11In particular A, B, C, D, E, mL∅, and mH∅ are the same. For a steady-state equilibrium, the

remaining mass mHH is uniquely given by the other masses.
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tegrating those yields the aggregate balance conditions.
For the converse statement fix some masses M that satisfy the state-wise ag-

gregate balance conditions. Then, for given A, B, C, D, E, mL∅, and mH∅, let the
pointwise masses in M′ be defined by the pointwise balance conditions:

t ≤ t∗LH : mLH(t) = λ(mL∅ +D)mH∅ · e−(λML,L+λMH,H+2δ)t

t∗LH ≤ t ≤ t∗HL : mLH(t) = λ(mL∅ +D)mH∅ · e−λML,Lt∗
LH−(MH,H+2δ)t

t∗HL ≤ t : mLH(t) = λ(mL∅ +D)mH∅ · e−λML,Lt∗
LH−λMH,H t∗

HL−2δt

t ≤ t∗LL : mLL(t) = λ(mL∅ +A)2 · e−(2λMH,L+2δ)t

t∗LL ≤ t : mLL(t) = λ(mL∅ +A)2 · e−2λMH,Lt∗
LL−2δt

mHH(t) = λ(mH∅ +A+B)2 · e−2δt

mL∅(t) = IL∅ · e−(ML,L+MH,L+δ)t

mH∅(t) = IH∅ · e−(ML,H+MH,H+δ)t.

By construction M′ satisfies the state-wise aggregate balance conditions and has
the same aggregate masses as M. Furthermore, as it satisfies the pintwise balance
conditions, M′ is a steady-state equilibrium.

Proof of Theorem 2.1. The proof proceeds as follows: First, fix some single masses
mL and mH . Then, let SL denote the set of all strategies with pL(L,H, t) = 0
and pi(∅, j, t) = 1 for all t and i, j ∈ {L,H}. Analogously, let SH be the set of all
strategies with pL(H,L, t) = 0 and pi(∅, j, t) = 1 for all t and i, j ∈ {L,H}. That
is, with either restriction, the agents are only allowed to rematch in one particu-
lar direction and singles always have to accept. We show that for both restricted
strategy spaces there exists a unique steady-state equilibrium where the strategies
are mutually optimal among all strategies in the restricted set. Then, we show that
there are only three cases: (1) The unique equilibrium under the restriction on SL is
also an equilibrium in the whole stratege space S and the unique equilibrium among
SH is not, (2) the other way round, and (3) in both restricted equilibria, L-agents
do not rematch and both equilibria are the same. Therefore, there exists a unique
steady-state equilibrium.

First, consider the case that the strategy space is restricted to SL, i.e., L-agents
are not allowed to leave an LL-pair. Adding the aggregate balance conditions (2.12),
(2.13), and (2.14) together implies an aggregate steady-state condition, i.e., for the
total mass of mixed pairs, the inflow equals the outflow:

2δ(A+B + C) + λA2 + λ(A+B)2 + λmH∅(A+B) +mL∅A = λmL∅mH∅.

The next lemma shows that identical cutoffs imply identical masses.
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Lemma 2.7. Assume that there are two steady-state equilibria restricted on SL for
which t∗LH , t∗HL, mL∅, and mH∅ are identical. Then, the masses A and B are also
equal in both equilibria.

Proof. Case 1: t∗LH > 0. Assume for contradiction that there are two different
steady-state equilibria with (A1, B1) ̸= (A2, B2). Without loss of generality assume
that A1 ≤ A2 holds.

The masses Ai and Bi satisfy the equations

Ai = ILH

∫ t∗
LH

0
e−(2λAi+λBi+λmL∅+λmH∅+2δ)tdt (2.17)

Bi = ILHe
−(2λAi+λBi+λmL∅+λmH∅+2δ)t∗

LH

∫ t∗
HL

t∗
LH

e−(λAi+λBi+λmH∅+2δ)(t−t∗
LH)dt.

(2.18)

If A1 ≤ A2 and B1 ≤ B2 hold with at least one inequality being strict, then
equations (2.17) and (2.18) would imply A1 > A2 and B1 > B2. By the same
argument, A1 = A2 and B1 > B2 is not possible.

Thus, A1 < A2 and B1 > B2 hold. Now rewrite (A2, B2) as (A1 + a,B1− b) and
with some a, b > 0. The decay for A2 needs to be smaller than the decay for A1,
i.e.,

2λ(A1 + a) + λ(B1 − b) +mL∅ +mH∅ + 2δ < 2λA1 + λB1 +mL∅ +mH∅ + 2δ

⇔ 2a < b.

Thus, we get

e−(2λA2+λB2+λ(mL∅+mH∅)+2δ)t∗
LH > e−(2λA1+λB1+λ(mL∅+mH∅)+2δ)t∗

LH ,

and hence, the decay for B2 from t∗LH to t∗HL must be larger than for B1. Therefore,

λ(A1 + a) + λ(B1 − b) + λmH∅ + 2δ > λA1 + λB1 + λmH∅ + 2δ

⇔ a > b

holds. This is a contradiction. Thus, for t∗LH > 0 there can be at most one solution
for A and B holding everything else fixed.

Case 2: t∗LH = 0. By t∗LH = 0, we get A = 0. Now we show that the equation

δB + λB2 + λmH∅B = ηLH(1− e−(λB+mh∅+2δ)t∗
HL)

has a unique solution in B: The LHS is convex is B and the RHS is concave in B.
At B = 0, the RHS is larger than the LHS. Thus, both sides cross at most once.
They cross at least once by the intermediate value theorem, since for large B the
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LHS is larger than 1, which is an upper bound for the RHS.

Lemma 2.8. Assume that there are two steady-states (t∗LH,1, A1, B1) ̸= (t∗LH,2, A2, B2)
restricted on SL and the variables ILH , t∗HL, mL∅, and mH∅ are the same in both
equilibria. Without loss of generality, let t∗LH,1 ≤ t∗LH,2. Then, t∗LH,1 < t∗LH,2 and

A1 < A2 ∧ B1 > B2 ∧ A1 +B1 > A2 +B2

hold.

Proof. By Lemma 2.7, the inequality t∗LH,1 < t∗LH,2 is strict, because otherwise both
steady-states are equal. The remainder of the proof proceeds by a case distinction.

Case 1: A1 ≥ A2 and A1 +B1 ≥ A2 +B2 holds. Then,

λA1 + λ(A1 +B1) + λ(mL∅ +mH∅) + 2δ ≥ λA2 + λ(A2 +B2) + λ(mL∅ +mH∅) + 2δ

holds, i.e., the decay of Ai is bigger in the first steady-state. Recall, that Ai is equal
to the integral

ILH

∫ t∗
LH

0
e−(λAi+λ(Ai+Bi)+λ(mL∅+mH∅)+2δ)tdt.

The larger decay in the first steady-state together with a smaller bound t∗LH,1 <

t∗LH,2, implies A1 < A2. This is a contradiction to our case assumption.
Case 2: A1 ≥ A2 and A1 +B1 < A2 +B2. Then, B1 < B2 holds. Furthermore,

by t∗LH,1 < t∗LH,2, the only possibility for A1 ≥ A2 is that the decay of Ai is bigger
in the second steady-state, i.e., 2A1 +B1 < 2A2 +B2. Now, Ai and Bi both have a
larger decay in the second steady-state and we have t∗LH,1 < t∗LH,2. Recall that

Ai +Bi = ILH

∫ t∗
LH

0
e−(λ(Ai+mL∅+λ(Ai+Bi+mH∅)+2δ)tdt

+ ILH

∫ t∗
HL

t∗
LH

e−λ(Ai+mL∅)t∗
LH−(λ(Ai+Bi+mH∅)+2δ)tdt

holds. Applying our observations to this term shows that A1 + B1 > A2 + B2 has
to hold and this is a contradiction.

Case 3: A1 < A2 and A1 +B1 ≤ A2 +B2. As in the previous case, this implies
2A1 +B1 > 2A2 +B2 and leads to a contradiction.

The only remaining case is A1 < A2 and A1 +B1 > A2 +B2. This implies that
B1 > B2 also holds.

Lemma 2.9. Assume that the strategies are in SL. For fixed VL∅(0), A, and B the
function W (tLH) := VLH(tLH)−VLL(0) is strictly increasing in tLH on the intervall
[0, t∗HL].
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Proof. We have

W (tLH) =
∫ t∗

HL

tLH

uLH(t)e−(2δ+λ(B∗+mH))(t−tLH) dt

+
∫ ∞

t∗
HL

uLH(t)e−(2δ+λ(B∗+mH))(t∗
HL−tLH)−2δ(t−t∗

HL) dt

+ δ + λ(A+B +mH)
2δ + λ(A+B +mH)

(
1− e−(2δ+λ(B∗+mH))(t∗

HL−tLH)

+ 1
2e

−(2δ+λ(B∗+mH))(t∗
HL−tLH)

)
VL∅(0)

−
∫ ∞

0
uLL(t)e−2δt dt− 1

2VL∅(0)

Now, the derivate of W (tLH) with respect to tLH is strictly positive.

Corollary 2.5. Fix everything except for t∗LH . Then, there is a unique t∗LH that
satisfies the equilibrium condition restricted on SL. If W (0) < 0 holds, then t∗LH ∈
(0, t∗HL) and else, t∗LH = 0.

Proof. This statement follows directly from the previous lemma.

Lemma 2.10. Fix a strategy profile in SL. Fix A,B and let t0 < t∗HL such that
W (t0) > 0 holds. Then, W (t0, A + B) = W (t0) with treating A and B as variables
is decreasing in A+B at (t0, A+B).

Proof. First, note that VLL(0) does not depend on A + B. We fix some ε > 0 and
show that VLH(t0, A + B) > VLH(t0, A + B + ε) holds, where again A and B are
treated as variables for the expected continuation payoffs.

By assumption, VLL(0) ≥ VL∅(0) holds. Now, the utility of player L with a given
stock A + B conditional on accepting a rematch with probability ε/A until time
t∗HL is larger than VLH(t0, A+B + ε), since under this strategy, exit rates and flow
utility is equal, but the payoff among exiting is larger. However, by W (t0) > 0,
rematching with probability zero is optimal and thus we get that VLH(t0, A+B) is
even larger.

Lemma 2.11. Consider two steady-states (t∗LH,1, A1, B1) ̸= (t∗LH,2, A2, B2) with
t∗LH,1 < t∗LH,2 and A1 + B1 > A2 + B2. Then, at least one of them does not satisfy
the equilibrium condition restricted on SL.

Proof. First, W (t, A+ B) is continuous in t and in A+ B. Then, suppose for con-
tradiction that both, (t∗LH,1, A1, B1) and (t∗LH,2, A2, B2), are steady-state equilibria.
Then,

W (t∗LH,1, A1 +B1) = 0 and W (t∗LH,2, A2 +B2) = 0.
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By Lemma 2.9, we get W (t∗LH,2, A1 +B1) > 0. Now, let

ε := inf{x ∈ R|W (t∗LH,2, A1 +B1 − x) = 0}.

Then, by continuity

W (t∗LH,2, A1 +B1 − ε) = 0

and

W (t∗LH,2, A1 +B1 − ε) = W (tL,2, A1 +B1)−
∫ A1+B1

A1+B1−ε

dW (t2, A+B)
d(A+B) d(A+B)

hold. By Lemma 2.10, the integral is at most zero. Thus,

W (t∗LH,2, A1 +B1 − ε) ≥W (t∗LH,2, A1 +B1) > 0

holds. This is a contradiction.

Lemma 2.12. Holding ILH , VL∅(0), and VH∅(0) fixed, there exists a unique steady-
state equilibrium on the restricted set SL.

Proof. First, we show existence. The steady-state equations imply unique masses
(A,B) for every given t∗LH . The function ϕ1(t∗LH) : [0, t∗HL] → R2 that maps every
t∗LH to such a pair (A,B) is well-defined and continuous. The equilibrium condition
implies a unique t∗LH ∈ [0, t∗HL] for every pair (A,B). The corresponding function
ϕ2 : R2 → [0, t∗HL] is again well-defined and continuous. The function ϕ = ϕ2 ◦ ϕ1

is therefore also continuous and defined on a compact interval. By Brouwer’s fixed-
point theorem, there exists a fixed point of ϕ. Now, if t∗LH is a fixed point of ϕ,
then

(
t∗LH , ϕ1(t∗LH)

)
is a steady-state equilibrium by construction. The uniqueness

is shown by Lemmas 2.7 and 2.11.

Lemma 2.13. Holding ILH , VL∅(0), and VH∅(0) fixed, there is a unique steady-state
equilibrium on the restricted set SH .

Proof. This proof works analogously to the proof of Lemma 2.12.

Let VL∅(0, (A,B)) be the continuation payoff of a single agent of type L in
the partial equilibrium with masses (A,B). The following lemma states that this
continuation payoff increases when A increases and A+B remains constant or when
A remains constant and A+B decreases:

Lemma 2.14. Let (A,B) and (A′, B′) be such that A > A′ and A + B < A′ + B′.
Then, it holds that

VL∅(0, (A,B)) > VL∅(0, (A′, B +A−A′)) > VL∅(0, (A′, B′)).
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Proof. In order to verify the first inequality, consider the partial equilibrium with
masses (A,B). Take an agent of type L, and suppose that this agent can meet other
agents of type L only at rate λ(A′ + mL) < λ(A + mL) while being in his current
match (where he may be single or paired with another agent of either type H or L),
but meets them at rate λ(A+mL) in any subsequent match. Compared to the case
where she can meet other agents of type L always at rate λ(A+mL), she is worse off
because she can rematch less whenever she wants to do so. Hence, her continuation
payoff at the beginning of her current match decreases, that is,

VL∅(0, [λ(A′ +mL), λ(A+mL), . . .]) < VL∅(0, [λ(A+mL), λ(A+mL), . . .]),
VLH(0, [λ(A′ +mL), λ(A+mL), . . .]) < VLH(0, [λ(A+mL), λ(A+mL), . . .]),
VLL(0, [λ(A′ +mL), λ(A+mL), . . .]) = VLL(0, [λ(A+mL), λ(A+mL), . . .]),

(2.19)

where the vector in squared brackets contains the agent’s meeting rates in the current
and all future matches. (In particular, the continuation payoffs are equal if the agent
is currently matched with another agent of type L because the agent never wants to
rematch while being in the LL-pair.)

Suppose now that the agent of type L can rematch at rate λ(A′ + mL) in her
current and the subsequent match, and at rate λ(A+mL) in all matches thereafter.
In comparison with the case where she can meet other agents of type L always at
rate λ(A + mL), she is now worse off for two reasons: First, she can rematch less
whenever he wants to do so in her current match. Second, her continuation payoff
when the current match dissolves is smaller due to equations (2.19). This yields

V∅(0, [λ(A′ +mL), λ(A′ +mL), λ(A+mL), . . .]) < VL∅(0, [λ(A+mL), λ(A+mL), . . .]),
VLH(0, [λ(A′ +mL), λ(A′ +mL), λ(A+mL), . . .]) < VLH(0, [λ(A+mL), λ(A+mL), . . .]),
VLL(0, [λ(A′ +mL), λ(A′ +mL), λ(A+mL), . . .]) < VLL(0, [λ(A+mL), λ(A+mL), . . .]),

Iterating forward, we obtain that

VL∅(0, [λ(A′ +mL), λ(A′ +mL), . . .]) < VL∅(0, [λ(A+mL), λ(A+mL), . . .])

holds, which leads to the desired inequality because of

VL∅(0, [λ(A+mL), λ(A+mL), . . .]) = VL∅(0, (A,B))

and

VL∅(0, [λ(A′ +mL), λ(A′ +mL), . . .]) = VL∅(0, (A′, B +A−A′))

due to the fact that the agents of type H meet other agents of the same type at rate
λ(mH +A+B) = λ(mH +A′ + (B+A−A′)) in both partial equilibria with masses
(A,B) and (A′, B +A−A′), respectively.
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To show the second inequality, consider an agent of type L in the partial equilib-
rium with masses (A′, B′), and suppose that her next of partner of type H (including
her current match) meets other agents of type H only at rate λ(mH + A′ + (B +
A− A′)) = λ(mH + A+B) < λ(mH + A′ +B′), and all his subsequent partners of
type H can meet other agents of that type at rate λ(mH +A′ +B′). Note that the
agent of type L benefits if her first next of partner of type H rematches less because
her continuation payoff from remaining in the match with this agent exceeds the
continuation payoff from becoming single. Consequently, her continuation payoff at
the beginning of the current match increases, i.e.,
VL∅(0, [λ(mH + A + B), λ(mH + A′ + B′), . . .]) > VL∅(0, [λ(mH + A′ + B′), λ(mH + A′ + B′), . . .])

VLH(0, [λ(mH + A + B), λ(mH + A′ + B′), . . .]) > VLH(0, [λ(mH + A′ + B′), λ(mH + A′ + B′), . . .]),

VLL(0, [λ(mH + A + B), λ(mH + A′ + B′), . . .]) > VLL(0, [λ(mH + A′ + B′), λ(mH + A′ + B′), . . .]),

where the vector in squared brackets now contains the meeting rates of the agent’s
partners of type H in her current and all future matches. As before, forward iteration
and the fact that the agents of type L meet other agents of the same type at rate
λ(mL + A′) in both partial equilibria with masses (A′, B + A − A′) and (A′, B′),
respectively, leads to

VL∅(0, (A′, B +A−A′)) = VL∅(0, [λ(mH +A+B), λ(mH +A+B), . . .])

> VL∅(0, [λ(mH +A′ +B′), λ(mH +A′ +B′), . . .])

= VL∅(0, (A′, B′)).

This finishes the proof.

Let VLL(0, (A,B)) denote the continuation payoff of an agent of type L when she
is matched into an LL-pair in the partial equilibrium with masses (A,B), and let
VLH(t, (A,B)) be her continuation payoff when she is matched with an agent of type
H for time t in that equilibrium. In the following, we argue that decision optimality
requires tL to decrease in equilibrium when A increases and A+B decreases:

Lemma 2.15. Consider two partial equilibria with masses (A,B) and (A′, B′) and
respective cutoffs tLH and t′LH such that A > A′ and A+B < A′ +B′. Then,

VLH(tLH , (A,B))− VLL(0, (A,B)) > VLH(tLH , (A′, B′))− VLL(0, (A′, B′))

holds.

Proof. Let VLH(tLH , (A,B), V̂ ) and VLL(0, (A,B), V̂ ) denote the respective contin-
uation payoffs of an agent of type L if she received continuation payoff V̂ upon
becoming single in her current match. It follows that

VLH(tLH , (A,B))− VLL(0, (A,B))
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= VLH(tLH , (A,B), VL∅(0, (A,B)))− VLL(0, (A,B), VL∅(0, (A,B)))

> VLH(tLH , (A,B), VL∅(0, (A′, B′)))− VLL(0, (A,B), VL∅(0, (A′, B′)))

> VLH(tLH , (A′, B′), VL∅(0, (A′, B′)))− VLL(0, (A′, B′), VL∅(0, (A′, B′)))

= VLH(tLH , (A′, B′))− VLL(0, (A′, B′)),

holds. To see the first inequality, recall that VL∅(0, (A,B)) > VL∅(0, (A′, B′)) holds
by Lemma 2.14 and note that the agent becomes single with higher probability in
an LH-pair at time tL than in an LL-pair because in the former the partner of
type H rematches on the interval [tL, tH ] while no agent rematches in the LL-pair.
Therefore, the difference VLH(tLH , (A,B), V̂ )−VLL(0, (A,B), V̂ ) is increasing in V̂ .
The second inequality is due to

VLL(0, (A,B), VL∅(0, (A′, B′))) = VLL(0, (A′, B′), VL∅(0, (A′, B′)))

and

VLH(tLH , (A,B), VL∅(0, (A′, B′))) > VLH(tLH , (A′, B′), VL∅(0, (A′, B′))).

In particular, the equality holds true because no agent rematches in an LL-pair. The
inequality follows from similar arguments as those used in the proof of Lemma 2.14:
Given a continuation payoff amounting to VL∅(0, (A′, B′)) when becoming single, the
agent of type L is better off in an LH-pair at time tLH if her partner of type H can
rematch only at a smaller rate.

To be indifferent at t = 0 between LL and LH with never rematching, we need
that for t∗LL = t∗LH = 0 an L-agent is indifferent between meeting both types, i.e.,

VLL(0) = VLH(0)

has to hold. Let B∗ denote the mass of mixed pairs conditional on L-agents never
rematching and H-agents using the cutoff determined as in Corollary 2.3. We know

VLL(0) =
∫ ∞

0
uLL(t)e−2δt dt+ 1

2VL∅(0)

VLH(0) =
∫ t∗

HL

0
uLH(t)e−(2δ+λ(B∗+mH))t dt

+
∫ ∞

t∗
HL

uLH(t)e−(2δ+λ(B∗+mH))t∗
HL−2δ(t−t∗

HL) dt

+
( δ + λ(A+B +mH)

2δ + λ(A+B +mH)(1− e−(2δ+λ(B∗+mH))t∗
HL

+ 1
2e

−(2δ+λ(B∗+mH))t∗
HL)

)
VL∅(0)
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VL∅(0) = λ(A+mL)
δ + λ(A+mL +mH)VLL(0) + λmH

δ + λ(A+mL +mH)VLH(0)

Plugging VL∅(0) into the other two expressions yields together with some algebra
two equations of the form

VLL(0) = a+ bVLH(0)

VLH(0) = c+ dVLL(0)

for some a, b, c, and d. These imply

VLL(0) = a+ bc

1 + cd

VLH(0) = c+ d
a+ bc

1 + cd
.

Setting VLL(0) and VLH(0) equal, yields after some algebra

a = c+ 2bcd− bc
1 + d

with

a =
(
1 + λ(A+mL)

2(δ + λ(A+mL +mH))
)−1 ∫ ∞

0
uLL(t)e−2δt dt

and b, c, and d do not depend on uLL(t).
Therefore, we get a cutoff Q∗ such that an L-agent is indifferent at t = 0 if and

only if Q = Q∗ holds for

Q =
∫ ∞

0
uLL(t)e−2δt dt.

Lemma 2.16. If there is an equilibrium with t∗LH > 0, then we have Q > Q∗.

Proof. If there exists such an equilibrium, then an L-agent with an H-partner is
indifferent at t∗LH , i.e.,

VLH

(
t∗LH, (A,B, t∗LH)

)
− VLL((A,B, t∗LH)

)
= 0

at that equilibrium. By monotonicty, we get

VLH

(
0, (A,B, t∗LH)

)
− VLL

(
(A,B, t∗LH)

)
< 0.

Changing (A,B) to the by t∗LH = 0 induced masses (0, B∗) implies by Lemma 2.15

VLH

(
0, (0, B∗, 0)

)
− VLL

(
(0, B∗, 0)

)
< 0
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and therefore, we get Q > Q∗.

Lemma 2.17. If there is a steady-state equilibrium with t∗LL > 0, then we have
Q < Q∗.

Proof. If there exists such an equilibrium, then an L-agent with an L-partner is
indifferent at t∗LL, i.e.,

VLL

(
t∗LL, (A,B, t∗LL)

)
− VLH

(
0, (A,B, t∗LL)

)
= 0

holds. By monotonicity, we get

VLL

(
0, (A,B, t∗LL)

)
− VLH

(
(A,B, t∗LL)

)
< 0.

Changing (A,B) to the by t∗LL = 0 induced masses (0, B∗) implies:

VLL

(
0, (0, B∗, 0)

)
− VLH

(
(0, B∗, 0)

)
< 0

and therefore, we get Q < Q∗.

Lemma 2.18. For every (mL,mH) there exists a steady-state equilibrium.

Proof. Consider the two games with restricted strategies: (1) with the strategies
restricted to SL and (2) with the strategies restricted to SH . For both games a
unique equilibrium exists by Lemmas 2.12 and 2.13. Consider an equilibrium of
game (1). Then, the only possibility that it is not an equilibrium of the whole game
is that t∗LH = 0 and

VLL

(
0, (0, B∗, 0)

)
< VLH

(
0, (0, B∗, 0)

)
hold. Similarly, the only equilibrium of game (2) that is not an equilibrium of the
whole game has t∗LL = 0 and

VLL

(
0, (0, B∗, 0)

)
> VLH

(
0, (0, B∗, 0)

)
.

Both cases cannot occur simultaneously. Hence there exists at least one equilibrium
of the whole game.

Let Q :=
∫∞

0 uLL(t)e−2δt dt denote the expected flow payoff in an LL-pair where
no agents rematches.
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Lemma 2.19. There exists a cutoff Q∗ such that

t∗LL > 0 ∧ t∗LH = 0 ⇔ Q < Q∗

t∗LL = 0 ∧ t∗LH = 0 ⇔ Q = Q∗

t∗LL = 0 ∧ t∗LH > 0 ⇔ Q > Q∗

hold, i.e., the comparison between Q and the cutoff Q∗ uniquely determines the type
of equilibrium.

Proof. Corollary 2.4 says that there are three possible types of equilibria: Lem-
mas 2.16 and 2.17 show that Q < Q∗, Q = Q∗, and Q > Q∗ are necessary conditions
for the existence for the existence of equilibria of type 1, 2, and 3. In particular,
these are mutually exclusive. Lemmas 2.12 and 2.13 show that within each type,
there is always a unique equilibrium. Finally, Lemma 2.18 states that there always
exists an equilibrium.

This finishes the proof of Theorem 2.1.

Proof of Lemma 2.3. Note that the total mass of i-agents in a steady-state equi-
librium is determined by the aggregate balance condition, i.e., inflow is equal to
outflow. In particular, the total mass of i-agents is ηi

δ and does not depend on λ.
Therefore, the rate at which an agent meets other agents also converges to zero.
Hence, the payoff with an H-partner converges to

Vij(t) =
∫ ∞

t
uij(t′)e−2δ(t′−t)dt′

and for a single the continuation payoff converges to zero.
With capital accumulation, we get ViL(0) < ViH(0) and the cutoffs t∗LL, t

∗
HL ∈

(0,∞) are given by∫ ∞

t∗
iL

uij(t′)e−2δ(t′−t)dt′ =
∫ ∞

0
uij(t′)e−2δ(t′−t)dt′.

Therefore, if λ is sufficiently small, all agents prefer matching with H-types.
The cutoff t∗HL does not depend on λ. As λ grows large, the probability that an

H-agent meets another H-agent before t∗HL converges to 1. The balance conditions
imply the convergence of the corresponding masses.
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2.A.4 Proofs for Section 2.6

Balance Conditions in the Limit Model Without capital accumulation, we
obtain from (2.10) and (2.11) that the rate

Oij(t)∑
π∈Π(i,j)mπ(ij)(t)

is constant in t for all i, j due to the time invariance of the agents’ strategies. This
yields that

qij(t) = e
−

Oij∑
π∈Π(i,j) mπ(ij)

t

for all i, j and all t ≥ 0, where

Oij ≡
∫ ∞

0
Oij(t)dt

is the total outflow of agents out of ij-pairs. As a consequence, the balance conditions
(2.1) are satisfied if and only if the aggregate balance conditions (2.2) hold. Note
that the latter ones can be written as

∑
π∈Π(i,j)

mπ(ij) =
∫ ∞

0
Iij · e

−
Oij∑

π∈Π(i,j) mπ(ij)
·t
dt = Iij ·

∑
π∈Π(i,j)mπ(ij)

Oij

hold, which is equivalent to
Iij = Oij . (2.20)

Cumulating the Balance Conditions In the limit model, we obtain

Mi,j =
∑

k∈{L,H,∅}
pi(k, j)mik.

The inflow of agents in ij-pairs with i, j ̸= ∅ is as before given by

Iij = 2 · λMi,jMj,i,

and the inflow single i-agents is now

Ii∅ = ηi + δ
∑

j∈{L,H}
mij + λ

∑
j∈{L,H}

mij

∑
k∈{L,H}

pj(i, k)Mk,j .

The outflow of agents out of ij-pairs with i, j ̸= ∅ is

Oij = 2 · δ
∑

π∈Π(i,j)
mπ(ij) + 2 · λ

∑
π∈Π(i,j)

mπ(ij)
∑

k∈{L,H}
pπ(i)(π(j), k)Mk,π(i), (2.21)
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and the outflow of single i-agents is given by

Oi∅ = δmi∅ + λ (pi(∅, i)mi∅)2 + λmi∅
∑

k∈{L,H}
pi(∅, k)Mk,i. (2.22)

Note that
Ii∅ + Iii + 1

2 · Iīi = Oi∅ +Oii + 1
2 ·Oīi (2.23)

is equivalent to
ηi = δ (mi∅ +mii +mīi) , (2.24)

that is, the inflow of i-agents into the market equals the outflow of i-agents out of
the market.12

Proof of Lemma 2.4. The expected continuation payoffs of an i-agent (2.4) and (2.3)
can be written as

Vi(j) =
∑

π∈Π(i,j)mπ(ij)

Oij

uij(0) +
∑

k∈{i,̄i,∅}

ri,j→k · Vi(k)


for all j ∈ {i, ī, ∅}, where ui∅(0) = 0 and ri,∅→∅ = 0. Using (2.21), (2.22), and the
definition of the switching rates ri,j→k yields

Vi(j) =
uij(0) +∑

k∈{i,̄i,∅} ri,j→k · Vi(k)
δ +∑

k∈{i,̄i,∅} ri,j→k

These three equations can be expressed as the linear system of equations
R∅∅ R∅i R∅̄i

Ri∅ Rii Rīi

Rī∅ Rīi Rī̄i


︸ ︷︷ ︸

=R

·


Vi(∅)
Vi(i)
Vi(̄i)

 =


0

uii(0)
uīi(0)

 ,

where

R =


δ + ri,∅→i + ri,∅→ī −ri,∅→i −ri,∅→ī

−ri,i→∅ δ + ri,i→∅ + ri,i→ī −ri,i→ī

−ri,̄i→∅ −ri,̄i→i δ + ri,̄i→∅ + ri,̄i→i

 .
It can be shown that det(R) > 0. Hence, the system of equation has a unique

12The cumulative balance conditions (2.24) can also be derived for the model with capital accu-
mulation by adding up the aggregate balance conditions as in (2.23).
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solution, which is given by

Vi(∅) = 1
det(R)

([
R∅̄iRīi −R∅iRī̄i

]
uii(0) +

[
R∅iRīi −R∅̄iRii

]
uīi(0)

)
(2.25)

Vi(i) = 1
det(R)

([
R∅∅Rī̄i −R∅̄iRī∅

]
uii(0) +

[
R∅̄iRi∅ −R∅∅Rīi

]
uīi(0)

)
(2.26)

Vi(̄i) = 1
det(R)

([
R∅iRī∅ −R∅∅Rīi

]
uii(0) + [R∅∅Rii −R∅iRi∅]uīi(0)

)
. (2.27)

From the equations (2.26) and (2.27), it follows that Vi(i) ≥ Vi(̄i) if and only if

uii(0)
uīi(0) ≥

δ + ri,∅→i + ri,∅→ī + ri,i→∅

δ + ri,∅→i + ri,∅→ī + ri,̄i→∅
.

Proof of Lemma 2.5. Fix some (pL, pH). Let M be the set of mass tuples m =
(mL∅,mH∅,mLL,mLH ,mHL,mHH) ∈ R6

+ satisfying the cumulative balance condi-
tions (2.24), and note that the set M is non-empty and compact. Moreover, it is
convex: For any m,m′ ∈M and any α ∈ [0, 1], it holds that αm + (1−α)m′ ∈M
as

δ
((
αmi∅ + (1− α)m′

i∅
)

+
(
αmii + (1− α)m′

ii

)
+
(
αmīi + (1− α)m′

īi

))
= α · δ(mi∅ +mii +mīi) + (1− α) · δ(m′

i∅ +m′
ii +m′

īi)

= αηi + (1− α)ηi = ηi

for each i ∈ {L,H}.
From the aggregate balance equations (2.20), one can construct a mapping T :

M→M in the following way: For each m ∈M, let

T (m) =



TL∅(m)
TH∅(m)
TLL(m)
TLH(m)
THL(m)
THH(m)


=



µI
L∅ − µO

L∅ + mL∅

µI
H∅ − µO

H∅ + mH∅

µI
LL − µO

LL + mLL

µI
LH − µO

LH + mLH

µI
HL − µO

HL + mHL

µI
HH − µO

HH + mHH


This mapping is well-defined, particularly because it holds that

δ(Ti∅(m) + Tii(m) + 1
2 · Tīi(m) = δ(mi∅ +mii +mīi) = ηi

for each i ∈ {L,H} and all m ∈ M implying that T (M) ⊆ M. Moreover, the
mapping is continuous because it is a polynomial map.

So by Brouwer’s fixed-point theorem, it has a fixed point, that is, there is a
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solution to the system of the aggregate balance equations (2.20).
To see the continuity result, let M denote the set of mass tuples m ∈ R5

+, and let
P denote the set of strategy tuples p = (pL, pH). Consider now the correspondence
Γ : P ⇒M defined by the solutions to the aggregate balance conditions (2.20), i.e,

Γ(p) ≡ {m ∈M |m solves (2.20) for all(i, j) ∈ {L,H} × {L,H, ∅} given p.}.

This correspondence is upper hemicontinuous: Take any p ∈ P , any sequence (pn) in
P converging to p and any sequence (mn) with mn ∈ Γ(pn) for all n. Note that the
sequence (mn) is bounded as it lies in M. Hence, it has a convergent subsequence
(mnk

) with limit m. Since mnk
solves the balance conditions (2.20) given pnk

for
each k, and since the sum/product of sequences converges to the sum/product of
their limits, it follows that m solves the equations (2.20) given p, that is, m ∈ Γ(p).

To see that this sequence is also lower hemicontinuous, take some p ∈ P and some
m ∈ Γ(p). Recall that the balance conditions (2.20) are polynomial in the masses
m, and note that small changes in p only lead to small changes in the coefficients.
Hence, for any p′ sufficiently close to p, there exists some m′ sufficiently close to m

that solves the equations given p′.

Proof of Theorem 2.2. Fix some (pi(j, j))(i,j)∈{L,H}2 ∈ [0, 1]4. In order to show the
existence of a steady-state equilibrium, recall from Lemma 2.5 that for any strat-
egy profile, there exist masses such that the balance conditions are satisfied. As
a consequence, equilibrium existence can only fail if the agents’ strategies are not
optimal. In particular, we need that Vi(j) ≤ Vi(k) if pi(j, k) > 0 and Vi(j) ≥ Vi(k)
if pi(j, k) = 0 hold.

For each (pH(L,H), pH(H,L)) ∈ [0, 1]2, let ΓL(pH(L,H), pH(H,L))

≡


pL(L, H) ∈ arg maxp∈[0,1] p · VL(H) + (1 − p) · VL(L)

(pL(L, H), pL(H, L)) ∈ [0, 1]2 and
pL(H, L) ∈ arg maxp∈[0,1] (1 − p) · VL(H) + p · VL(L)

 .

Verbally, the correspondence ΓL describes the set of best responses of the L-agents
regarding their rematching behavior to other types of agents in a match given that
behavior of the H-agents.

First of all, let’s verify that this correspondence is nonempty-valued: Assume for
contradiction that

ΓL(pH(L,H), pH(H,L)) = ∅

holds for some (pH(L,H), pH(H,L)) ∈ [0, 1]2. So in particular, this means that
(0, 1) /∈ ΓL(pH(L,H), pH(H,L)), that is, VL(H) > VL(L) at the point (0, 1). Anal-
ogously, (1, 0) /∈ ΓL(pH(L,H), pH(H,L)) holds, i.e., VL(H) < VL(L) at the point
(1, 0).
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Take now any path from the point (pL(L,H), pL(H,L)) = (0, 1) to the point
(1, 0). For each strategy profile (pL, pH) that corresponds to a point on this path,
select a solution m(pL, pH) to the respective balance conditions in such a way that
the constructed path of solutions is continuous along the path of strategies. This is
possible since the set of solutions is continuous by Lemma 2.5. Since the L-agents’
value function is jointly continuous in the masses and the agents’ strategies (cf.
equations (2.4) and (2.3)), there must exist some point (p∗

L(L,H), p∗
L(H,L)) on the

path between (0, 1) and (1, 0) at which VL(H) = VL(L) by the intermediate value
theorem. Hence,

(p∗
L(L,H), p∗

L(H,L)) ∈ ΓL(pH(L,H), pH(H,L))

holds – a contradiction.
Second, the correspondence ΓL is continuous: Fix some (pH(L,H), pH(H,L))

and some sequence ((pH(L,H)n, pH(H,L)n)) converging to (pH(L,H), pH(H,L))
and any sequence ((pL(L,H)n, pL(H,L)n)) with

(pL(L,H)n, pL(H,L)n) ∈ ΓL(pH(L,H)n, pH(H,L)n)

for all n. This sequence is bounded because it lies in the set [0, 1]2, it thus has a
subsequence

((pL(L,H)nk
, pL(H,L)nk

))

converging to some point (pL(L,H), pL(H,L)). Moreover, this subsequence has a
further subsequence

((pL(L,H)nkl
, pL(H,L)nkl

))

which converges to the point (pL(L,H), pL(H,L)) where either it holds true that
VL(H) > VL(L) at all points ((pH(L,H)nkl

, pH(H,L)nkl
), (pL(L,H)nkl

, pL(H,L)nkl
)),

VL(H) < VL(L) holds at all these points, or VL(H) = VL(L) holds at all these points.
If VL(H) > VL(L) holds true everywhere along the subsubsequece, then we have

(pL(L,H)nkl
, pL(H,L)nkl

) = (1, 0)

for all l implying that (pL(L,H), pL(H,L)) = (1, 0) holds. By the joint continuity of
VL in the agents’ strategies and the masses, we obtain VL(H) ≥ VL(L) at the limit
point ((pH(L,H), pH(H,L)), (pL(L,H), pL(H,L))). As a result, we get that

(pL(L,H), pL(H,L)) ∈ ΓL(pH(L,H), pH(H,L))
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holds. The proof for the case with VL(H) < VL(L) along the subsubsequece works
analogously.

Finally, if VL(H) = VL(L) everywhere along the subsubsequece, then the conti-
nuity of VL yields that VL(H) = VL(L) also holds in the limit. Hence,

(pL(L,H), pL(H,L)) ∈ ΓL(pH(L,H), pH(H,L))

holds because (pL(L,H), pL(H,L)) is optimal. Consequently, the correspondence is
upper hemicontinuous.

Take now some (pH(L,H), pH(H,L)) and

(pL(L,H), pL(H,L)) ∈ ΓL(pH(L,H), pH(H,L)).

If VL(H) > VL(L) at the point ((pH(L,H), pH(H,L)), (pL(L,H), pL(H,L))), then
for any (p′

H(L,H), p′
H(H,L)) sufficiently close to (pH(L,H), pH(H,L)) and the cor-

responding tuple (p′
L, p

′
H) with (p′

L(L,H), p′
L(H,L)) = (1, 0), there exists some

m(p′
L, p

′
H), which is sufficiently close to m(pL, pH) by Lemma 2.5. So by the conti-

nuity of VL, at the point ((p′
H(L,H), p′

H(H,L)), (p′
L(L,H), p′

L(H,L))) we have that
VL(H) ≥ VL(L) holds true so that we can conclude that

(p′
L(L,H), p′

L(H,L)) ∈ ΓL(p′
H(L,H), p′

H(H,L))

holds. For the case where at the point ((pH(L,H), pH(H,L)), (pL(L,H), pL(H,L)))
VL(H) < VL(L) holds, the argument works analogously.

Last, if VL(H) = VL(L) at the point ((pH(L,H), pH(H,L)), (pL(L,H), pL(H,L))),
then for any (p′

H(L,H), p′
H(H,L)) sufficiently close to (pH(L,H), pH(H,L)), we can

find some (p′
L(L,H), p′

L(H,L)) sufficiently close to (pL(L,H), pL(H,L)) such that
VL(H) = VL(L) at ((p′

H(L,H), p′
H(H,L)), (p′

L(L,H), p′
L(H,L))). Thus, ΓL is lower

hemicontinuous.
So far, we know that for any strategy of the H-agents, there exists some strategy

for the L-agents and some masses that satisfy the balance conditions such that the
L-agents’ strategy is optimal. So suppose now that no strategy for the H-agents is
optimal given any respective best response of the L-agents and any corresponding
masses. This means that VH(H) > VH(L) at the point (pH(L,H), pH(H,L) = (0, 1)
and VH(H) < VH(L) at the point (pH(L,H), pH(H,L) = (1, 0) given any best
response of the L-agents and any corresponding masses, respectively.

Take now any path between these two points, and note that by the intermediate
value theorem, we can find some point (p∗

L(L,H), p∗
L(H,L)) on that path such that

VH(H) = VH(L) at (p∗
L(L,H), p∗

L(H,L)) given some optimal strategy of the L-agents
and the corresponding masses. The existence of this point is guaranteed because VH

and ΓL are continuous.
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This completes the proof because we have shown that there exist strategies and
market masses such that the strategies are mutual best responses and the balance
conditions hold.

Proof of Theorem 2.3. Suppose first that uiL(0) = uiH(0) holds for all i ∈ {L,H}.
From Lemma 2.4, one can infer that Vi(j) > Vi(j̄) is equivalent to ri,j→∅ < ri,j̄→∅,

which holds if

pj(i, L) = 0 and pj(i,H) = 0 and
(
pj̄(i, L) > 0 or pj̄(i,H) > 0

)
.

Consider now the following two cases:
Case 1: VL(L) > VL(H) and VH(L) < VH(H): Optimality thus requires that

pL(L,H) = pH(H,L) = 0 and pL(H,L) = pH(L,H) = 1. Note that we need
rL,L→∅ < rL,H→∅ and rH,L→∅ > rH,H→∅. This is sustained in equilibrium if pL(L,L) =
pL(L,H) = 0, pH(L,H) = 1, pH(H,H) = pH(H,L) = 0 and pL(H,H) > 0.

Case 2: VL(L) < VL(H) and VH(L) > VH(H): Here, we need that rL,L→∅ >

rL,H→∅ and rH,L→∅ < rH,H→∅. This is sustained in equilibrium if pH(L,L) =
pH(L,H) = 0, pL(L,H) = 1, pL(H,H) = pL(H,L) = 0 and pH(H,L) = 1.

It follows that for all flow payoffs (uiL(0), uiH)i∈{L,H} so that uiH(0)
uiL(0) is sufficiently

close to 1 for all i, there is some equilibrium from each of the two above cases by
continuity of the value functions VL, VH in the flow payoffs.

Finally, consider the case with VL(L) < VL(H) and VH(L) < VH(H). By choos-
ing pi(L,L) = 1 and pi(H,H) = 0 for all i ∈ {L,H}, this turns out to be an
equilibrium for all flow payoffs with uiH(0) > uiL(0).

So there is an open, nonempty set of flow payoffs such that an equilibrium from
all three above cases exists.

Proof of Theorem 2.4. First of all, let’s verify the uniqueness results:
Step 1: For an equilibrium with LL→ LH and HL→ HH, the balance condi-

tions (2.20) reduce to

2λ (mL∅)2 = 2δmLL + 2λmLLmH∅ (2.28)
2λ (mH∅ +mHL)2 = 2δmHH (2.29)

2λmH∅ (mL∅ +mHL) = 2δ (mLH +mHL) + 2λmHL (mH∅ +mHL) (2.30)
ηL + δ (mLL +mLH) + λmLLmH∅ + λmLH (mH∅ +mHL)

= δmL∅ + λmL∅ (2mL∅ +mH∅) (2.31)
ηH + δ (mHH +mHL) = δmH∅ + λmH∅ (mL∅ +mLL + 2mH∅ +mHL) .

(2.32)

Then, it can be shown that the balance conditions, or equivalently the equations
(2.28)-(2.32) and the cumulative balance conditions (2.24), have a unique solution
m: Note first that for fixed mLH = mHL, the masses mHH and mH∅ as well as mLL
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and mL∅ can be uniquely determined from (2.24) for i = H and (2.29) as well as
(2.24) for i = L and (2.28), respectively. Consequently, if there existed two different
solutions m ̸= m′, it would hold that mHL ̸= m′

HL. Without loss of generality,
suppose that mHL > m′

HL. But then, the two cumulative balance conditions (2.24)
yield that mL∅ + mLL < m′

L∅ + m′
LL and mH∅ + mHH < m′

H∅ + m′
HH , that is,

mL∅ < m′
L∅ or mLL < m′

LL and mH∅ < m′
H∅ or mH∅ < m′

H∅. From (2.29), , one
can then conclude that mH∅ < m′

H∅. With that, we can infer from (2.28) that
mL∅ < m′

L∅. But since (2.30) is equivalent to

2λmH∅mL∅ = 2δ (mLH +mHL) + 2λmHLmHL,

one obtains that

2λmH∅mL∅ = 2δ (mLH +mHL) + 2λmHLmHL

> δ
(
m′

LH +m′
HL

)
+ 2λm′

HLm
′
HL

= 2λm′
H∅m

′
L∅

> 2λmH∅mL∅

holds, which is a contradiction.
Step 2: For an equilibrium with LL← LH and HL→ HH, the balance condi-

tions (2.20) reduce to

2λ (mL∅ + mLH)2 = 2δmLL (2.33)

2λ (mH∅ + mHL)2 = 2δmHH (2.34)

2λmL∅mH∅ = 2δmLH + 2λmLH (mL∅ + mLH)

+ 2λmHL (mH∅ + mHL) (2.35)

ηL + δ(mLL + mLH) + λmLH (mH∅ + mHL) = δmL∅ + λmL∅ (2mL∅ + mLH + mH∅) (2.36)

ηH + δ(mHH + mHL) + λmHL (mL∅ + mLH) = δmH∅ + λmH∅ (mL∅ + 2mH∅ + mHL) . (2.37)

Then, it can be shown that the equations (2.33)-(2.37) and the cumulative bal-
ance conditions (2.24), have a unique solution m: Again, note first that for fixed
mLH = mHL, the masses mLL and mL∅ as well as mHH and mH∅ can be uniquely
determined from (2.24) for i = L and (2.33) as well as (2.24) for i = H and
(2.34), respectively. So if there existed two solutions m ̸= m′, it would hold
that mHL ̸= m′

HL. Without loss of generality, suppose that mHL > m′
HL. Then,

the cumulative balance conditions (2.24) give us mL∅ + mLL < m′
L∅ + m′

LL and
mH∅ +mHH < m′

H∅ +m′
HH . From (2.33) and (2.34), it results that mL∅ < m′

L∅ and
mH∅ < m′

H∅. Moreover, one can conclude that

mL∅ ·mHL < m′
L∅ ·m

′
HL or mH∅ ·mHL < m′

H∅ ·m
′
HL

holds by (2.35). Indeed, (2.36) and (2.37) imply that both inequalities must hold
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since mLL + mLH > m′
LL + m′

LH and mHH + mHL > m′
HH + m′

HL. Furthermore,
equation (2.36) entails that mLH (mH∅mHL) < m′

LH

(
m′

H∅m
′
HL

)
.

Since mLH > m′
LH , we thus have

mH∅ +mHL < m′
H∅ +m′

HL.

Equation (2.24) for i = H then yields that mHH > m′
HH , whereas equation (2.29)

leads to mHH < m′
HH – a contradiction.

Let’s now prove the existence result: For that, recall from Lemma 2.5 that for
any strategy profile, there exist masses such that the balance conditions are satisfied.
As a consequence, equilibrium existence can only fail if the agents’ strategies are
not optimal. In particular, we need that VH(H) ≥ VH(L) in any equilibrium with
HL→ HH and pi(j, j) = 0 for all i, j. To see that this holds true, note that

rH,L→∅ = δ + λpL(H,L)(mL∅ + pL(H,L)mLH)

rH,H→∅ = δ

implying that

δ + rH,∅→L + rH,∅→H + rH,H→∅
δ + rH,∅→L + rH,∅→H + rH,L→∅

≤ 1 ≤ uHH(0)
uHL(0) .

If the L-agents behave according to LL→ LH, we obtain

rL,∅→L = λmL∅

rL,∅→H = λmH∅

rL,L→∅ = δ + λmH∅

rL,H→∅ = δ + λ(mH∅ +mLH).

Thus, we have
uLH(0)
uLL(0) ≥

δ + rL,∅→L + rL,∅→H + rL,H→∅
δ + rL,∅→L + rL,∅→H + rL,L→∅

if uLH(0)
uLL(0) is sufficiently large. In particular, this holds true if

uLH(0)
uLL(0) ≥ u ≡ 1 + ληH .
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Finally, if the L-agents behave according to LL← LH, we obtain

rL,∅→L = λ (mL∅ +mLH)

rL,∅→H = λmH∅

rL,L→∅ = δ

rL,H→∅ = δ + λ(mH∅ +mLH).

If uLH(0)
uLL(0) = 1, we have

uLH(0)
uLL(0) = 1 <

δ + rL,∅→L + rL,∅→H + rL,H→∅
δ + rL,∅→L + rL,∅→H + rL,L→∅

.

Hence, there is some ū > 1 such that

uLH(0)
uLL(0) ≤

δ + rL,∅→L + rL,∅→H + rL,H→∅
δ + rL,∅→L + rL,∅→H + rL,L→∅

if uLH(0)
uLL(0) ≤ ū.

Proof of Theorem 2.5. To prove the first claim of this theorem, fix some limit equi-
librium and some corresponding sequence of equilibria((

un
ij(t)

)
i,j∈{L,H}, t≥0

)
n∈N

and
(
Mn, tnLH , t

n
LL, t

n
HL

)
n∈N

.

Recall from Lemma 2.1 that

mn
H,L,H = 0

mn
H,H,L =

∫ tn
HL

0
mHL(t)n dt

for all n ∈ N. Moreover, it can be shown that tnHL → ∞ as n → ∞: Suppose not,
i.e., t∗HL <∞. Since∫ ∞

0
un

HL(t+ tnHL)e−2δtdt =
∫ ∞

0
un

HH(t)e−2δtdt,

holds for all n by Corollary 2.3, this equality must be preserved in the limit if t∗HL

is finite, that is, ∫ ∞

0
u∗

HLe
−2δtdt =

∫ ∞

0
u∗

HHe
−2δtdt.

But this is a contradiction because uHL < uHH . So in the limit, we get that
m∗

H,L,H = 0 and m∗
H,H,L = m∗

HL. Then, it follows by Definition 2.5 that pH(H,L) =
0 and pH(L,H) = 1.

Next, we can infer from Corollary 2.4 that tnLL · tnLH = 0 for all n implying that
t∗LL · t∗LH = 0 in the limit. Consequently, we obtain that m∗

L,H,L = 0 or m∗
L,L,H = 0,
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and thus pL(H,L) = 0 or pL(L,H) = 0.
By the same reasoning, we get that pi(j, j) = 0 for all i, j ∈ {L,H} because

mn
i,j,j = 0 holds for all n, and therefore m∗

i,j,j = 0.
For the second statement, fix a pure strategy steady-state equilibrium in the

limit model with pH(L,H) = 1, pH(H,L) = 0, and pi(j, j) = 0 for all i, j ∈ {L,H}.
We now construct a corresponding limit equilibrium. First, fix a sequence (rn)n∈N =( 1

n

)
n∈N. Then, define a sequence of utility functions by

un
ij(t) = uije

rnt

that is strictly decreasing and satisfies condition 1 in Definition 2.4.
Case 1: In the limit equilibrium, we have pL(L,H) = 0. Then, for n sufficiently

large, the equilibria along the sequence are unique with tLL = 0 and the masses
induced by the balance conditions converge to the masses of the limit equilibrium.
By continuity, the cutoff tLH converges to zero and the limit equilibrium corresponds
to the limit equilibrium of our sequence.

Case 2: In the limit equilibrium, we have pL(H,L) = 0. Then, analogously to
case 1, for n sufficiently large, the equilibria along the sequence are unique with
tLH = 0 and the masses induced by the balance conditions converge to the masses
of the limit equilibrium. By continuity, the cutoff tHL converges to zero and the
limit equilibrium corresponds to the limit of the equilibria of our sequence.
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Chapter 3

Partnership Dissolution in a
Search Market with
On-the-Match Learning

3.1 Introduction

This chapter studies a one-sided matching market with search frictions, on-the-match
learning, and on-the match rematching. A continuum of ex-ante homogeneous agents
meet each other following a Poisson process and have to decide whether to form a
match or not upon meeting. Inside a match, unknown and potentially correlated
types are drawn for each agent that specify whether or not that match is beneficial for
the corresponding agent. An agent receives an unobserved and constant positive flow
payoff if her current match is beneficial for her and a flow payoff of zero otherwise.
In particular, a match can be beneficial for one of the two agents and not beneficial
for the other one. Agents whose match is not beneficial receive public bad news
about their current match according to a Poisson process.

As in the previous chapter, a central assumption is that both agents in a match
can search for a new partner. This fundamentally shapes the set of possible equilib-
ria. Not only the payoff inside the match but also the endogenous risk of being left
by the partner are important factors for the agents’ decision-making. The rematch-
ing behavior of the partner affects the continuation value of the current match and,
as a consequence, affects the own behavior as well. This establishes an endogenous
interest of the agents in the match value for the partner.

Possible applications for this analysis are professional relationships between busi-
ness partners, athletes who search for a duo partner, or scientists searching for a
co-author. In these applications it is plausible that a partner does not find her cur-
rent match valuable anymore and that she tries to find a more fitting partner. One
can abstract from the one-sidedness of the search market and obtain the same results
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for a corresponding two-sided model. In particular, the trade-offs in this chapter also
apply to applications with two market sides like job markets or marriage markets.

We analyze the agents’ rematching behavior, the market structure, and the wel-
fare effect of the speed of learning. First, we provide the existence and uniqueness
of a steady-state equilibrium. The equilibrium behavior is as follows: For single
agents and agents who received bad news about the profitability for themselves it is
a dominant strategy to search for a partner. In matches where both agents have not
received bad news, the agents do not search for a new partner as not receiving bad
news for a period of time makes their belief about their current match type more op-
timistic than the belief about a potential new match. There are three counteracting
effects that determine the equilibrium behavior of an agent whose partner received
bad news: The first effect is that the longer the match persists without receiving
bad news herself, the more optimistic is the agent about her own type. The second
effect is that the agent takes into account that her partner tries to replace her after
receiving bad news. The third effect is that due to the partner’s bad news the agent
updates her belief about her own type. This third effect can change the belief for
better or for worse: Depending on whether there is a positive or negative correlation
between the unknown types in a pair, bad news for the partner is bad or good news
for oneself. Together, these three effects imply that even if an agent herself has not
received bad news, the bad news for the partner can cause the agent to try to replace
the partner to avoid the risk of becoming single. As a result, there are three cases of
how agents whose partners have received bad news behave in equilibrium. First, an
agent searches for a new partner if her current partner received bad news. Second,
an agent stays in the current match even if her current partner received bad news.
Third, an agent whose partner received bad news follows a cutoff strategy, i.e., she
searches for a new partner until the current match persists for a certain time and
stops searching afterward.

We use comparative statics to show that a faster learning rate is ex-ante beneficial
for the agents entering the market if the agents’ goals are aligned, i.e., if there is a
positive and sufficiently strong correlation of the unknown types in a pair. If both
agents in a match are likely to have the same type, then learning this type benefits
both of them. Conversely, if there is a sufficiently strong negative correlation, then
a faster learning rate ex-ante hurts the agents. If it is likely that there is exactly one
agent who profits from the match, then this agent is worse off by a faster learning
rate of the types and this utility loss dominates the utility gain of the partner.
In particular, with sufficiently strong negative correlation, agents in a pair would
strictly prefer that both of them would commit to never rematch if they could do
so, which would correspond to a learning rate of zero, i.e., no learning at all.

This section is concluded with an overview of the related literature. The rest of
this chapter is organized as follows. Section 3.2 presents the model. In Section 3.3,
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we define the equilibrium concept of a steady-state equilibrium. In Section 3.4,
existence and uniqueness is shown for the subclass of monotone steady-state equi-
libria. We show in Section 3.5 that the previous restriction to monotone equilibria
is without loss. Section 3.6 uses comparative statics to analyze the effect of a faster
learning rate on the agents’ welfare. Section 3.7 concludes. The proofs can be found
in Appendix 3.A.

3.1.1 Related Literature

Our model builds on the search framework developed by Burdett and Coles (1997),
Shimer and Smith (2000), Smith (2006), and Chapter 2 of this thesis. In these
models, having a high type results in a higher flow utility for all potential partners.
In this chapter, agents are ex-ante homogeneous and draw a new type each time
they form a new match. Therefore, here, a high long-term potential does not persist
outside of the current match.

The assumption of ex-ante homogeneous agents that has led to this chapter was
inspired by Smith (1995) who presents a search-and-exchange market for ex-ante
homogeneous goods where the valuations for the goods are drawn independently at
each meeting. In Smith (1995), agents who meet can exchange goods and separate
afterward while in our model matched agents form a pair, and their future utilities
also crucially depend on their partners’ rematching decisions.

On-the-job search in labor markets has been widely analyzed before. Pissarides
(1994) introduces search equilibria with on-the-job search. An important assumption
is that only workers can search for new jobs while being employed. For a survey
on search models of the labor market, see Rogerson, Shimer, and Wright (2005). In
contrast to on-the-job search, in our model, both agents in a match can continue
searching which is central to our results. Both agents in a pair can rematch and
the resulting equilibrium strategies have to be optimal given the partner’s future
rematching decisions.

A related strand of literature has studied partnership dissolution where two
agents jointly own an asset. Cramton, Gibbons, and Klemperer (1987) show that
an ex-post efficient dissolution is possible if the shares of the asset are sufficiently
even. Fieseler, Kittsteiner, and Moldovanu (2003) study interdependent valuations
and analyze when efficient trade can occur. In recent work, Loertscher and Wasser
(2019) study partnership dissolution with interdependent values and derive optimal
ownership structures. Van Essen and Wooders (2016) introduce a dynamic auction
format to dissolve partnerships. While this strand of literature analyzes how to
dissolve a partnership efficiently, we endogenize the question of when to dissolve
a partnership by modeling a search market and embedding the partnerships into
the market. Also, in our model, there is no jointly owned asset to be divided for
the dissolution of a partnership. Fershtman and Szabadi (2020) study a related
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question and also consider an endogenous partnership dissolution. In contrast to
our model, they analyze a single pair of agents with private information about the
joint desirability of the partnership who are not ex-ante sure whether or not to
dissolve their partnership.

3.2 The Model

We construct a one-sided search model with continuous time and non-transferable
utility where agents learn and search on-the-match. There is a continuum of ex-ante
homogeneous agents in the market. Every agent is either single or in a match with
another agent. New agents enter the market as singles at a constant rate η > 0 and
agents in the market meet each other following a quadratic meeting technology with
parameter λ > 0, that is, each agent meets an agent from a mass m in the market
uniformly at random with Poisson rate λm. When two agents meet, both of them
have to simultaneously decide whether to accept or decline forming a new match. If
both agents agree, they form a new pair and leave their respective partners (if they
are matched) who become singles.

After two agents form a pair, a hidden binary type (h or l) is drawn for each of
them that indicates the desirability of the current match. The probabilities for the
types are phh > 0 for (h, h), phl > 0 for (l, h) and (h, l), respectively, and pll > 0 for
(l, l). This allows the types to be correlated. We call pairs where the types are (l, h)
or (h, l) mixed pairs.

An h-agent gains an unobserved constant flow utility of w > 0 while being
matched with her partner. A single agent or a matched l-agent gains a flow utility
of 0. All agents discount future payoffs at rate r. For example, an h-agent whose
match is dissolved after time t0 receives an (unobserved) aggregated payoff of

∫ t0

0
w · e−rtdt = w

r

(
1− e−rt0

)
in that match.

If the hidden type of an agent is l, then the agent will receive bad news about
the current match due to a Poisson process at rate γ. The occurrence of bad news
is publicly observable by both agents in that match. If the hidden type of an agent
is h, then the agent will never receive bad news. Therefore, bad news fully reveal
that the type of the corresponding agent is l. For a matched agent, we denote the
(public) information about whether or not bad news occured in the current match
by (S, S′) ∈ {B,U} × {B,U}, where S = B if and only if the agent has received
bad news herself and S′ = B if and only if the partner has received bad news (B
standing for “bad news” and U standing for “unknown”). For the remainder of this
chapter, we use lower-case letters like i, j ∈ {l, h} for hidden types and upper-case
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letters like S, S′ ∈ {U,B} for the public information.

Beliefs If an agent is in a match without receiving bad news for a period of time,
she adjusts her belief accordingly. Let P (ij|SS′, t) denote the belief that the hidden
types are ij given that the information is (S, S′) and given that the pair is together
for time t. For the information (B,B) we know that the type is ll for sure. The
other conditional beliefs of the agents about the hidden types can be calculated by
the Bayesian rule. For the information (U,U) we get the beliefs

P (hh|UU, t) = phh

phh + 2phle−γt + plle−2γt
,

P (hl|UU, t) = P (lh|UU, t) = phle
−γt

phh + 2phle−γt + plle−2γt
,

P (ll|UU, t) = plle
−2γt

phh + 2phle−γt + plle−2γt
,

and for the information (U,B) we get the beliefs

P (hl|UB, t) = phl

phl + plle−γt
,

P (ll|UB, t) = plle
−γt

phl + plle−γt
.

Figure 3.1 illustrates the change of beliefs over time.

t

1

0.5

0.2

P (i = h|UU, t)

P (i = h|UB, t)

1 2 3 4 5

Figure 3.1: Conditional beliefs in pairs that have not received bad news for time t
are strictly increasing. The parameters used for the graphs are γ = ln(2), phh = 0.4,
phl = 0.1, and pll = 0.4.

The beliefs for the information (B,U) are analogous to the ones for (U,B). Note
that receiving no bad news over a period of time is generally good news for the
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agents, as the belief of having an h-type is increasing over time. In particular,

P (i = h|UU, t) = P (hh|UU, t) + P (hl|UU, t) and

P (i = h|UB, t) = P (hl|UB, t)

are both strictly increasing in t. Analogously, the belief that the partner has an
h-type is also increasing over time. For the remainder of this chapter, when we
write that the beliefs are increasing over time, we refer to the beliefs P (i = h|UU, t),
P (i = h|UB, t), and P (j = h|UU, t) being strictly increasing in t.

Strategies and Masses Note that the belief at time t is independent of the time
at which bad news occurred, since bad news fully reveal the state of the correspond-
ing agent and without bad news the conditional probability of having an h-type
only depends on the total amount of time without bad news. Therefore, we restrict
our attention to symmetric Markov strategies that only condition on the current
information type. A Markov strategy for an agent is a measurable function

φ :
{
∅, UU,UB,BU,BB

}
× [0,∞)→ [0, 1]

where φ(SS′, t) is the probability that an agent who is in a match for exactly time
t and for whom the information in the current match is (S, S′) accepts to rematch
upon meeting another agent. Similarly, φ(∅, t) is the probability that an agent who
is single for exactly time t agrees to match.

Let mij,SS′(t) denote mass of agents in pairs which are together for exactly time
t ∈ [0,∞), who have type i, whose partner has type j, and whose information is
SS′. Let Θ denote{
∅, (hh, UU), (hl, UU), (hl, UB), (lh, UU), (lh,BU), (ll, UU), (ll, UB), (ll, BU), (ll, BB)

}
,

i.e., the set of all indices of matches that can occur, where ∅ denotes singles. Let

M :=
(
mθ(t)

)
t≥0,θ∈Θ

denote the vector of all masses. For θ ∈ Θ let

mθ :=
∫ ∞

0
mθ(t)dt ∈ R+

denote the aggregated mass of such agents in the market.1 The aggregated mass of
1Note that, in general, the aggregated mass could be infinite.
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agents who accept forming a new match is given by

m0 :=
∫ ∞

0
m∅(t)φ(∅, t) dt +

∑
(ij,SS′)∈Θ\{∅}

∫ ∞

0
m(ij,SS′)(t)φ(SS′, t) dt.

The term is derived by integrating over all masses of agents times their respective
probability of accepting. In particular, λm0 is the rate of the Poisson process with
which an individual agent meets accepting agents.

Survival Probabilities For fixed masses and for θ ∈ Θ let qθ(t0, t1) denote the
survival probability from t0 to t1. More precisely, q(ij,SS′)(t0, t1) is the probability
that an ij-pair with information (S, S′) that is together for exactly time t0 is still
together after time t1 without changing its information. Similarly, q∅(t0, t1) is the
respective probability that a single who is single for time t0 is single for time t1.
Formally, the probabilities are

q∅(t0, t1) = exp
(
−
∫ t1

t0

λm0φ(∅, t) dt
)
,

q(ij,SS′)(t0, t1) = exp
(
−
∫ t1

t0

λm0φ(SS′, t) + λm0φ(S′S, t) +
(
1i=l1S=U + 1j=l1S′=U

)
γ dt

)
,

since agents form new matches following an inhomogeneous Poisson process with the
corresponding rate λm0φ(·, t). The term 1i=l1S=U + 1j=l1S′=U ∈ {0, 1, 2} denotes
the number of agents in the match who can still receive bad news.

Without knowing the hidden types, the expected survival probability of a match
with information (S, S′) is

qSS′(t0, t1) =
∑

i,j∈{h,l}
P (ij|SS′, t0) q(ij,SS′)(t0, t1),

where P (ij|SS′, t0) denotes the belief of the pair having types ij.

Continuation Payoffs Fix a vector of massesM and a strategy φ with m0 <∞.
Assume for now that the masses do not change over time. Then, the expected
continuation payoffs are well-defined. Let V (∅, t0) be the expected continuation
payoff of an agent who are single for exactly time t0 and let V (SS′, t0) be the
expected continuation payoffs of an agent that is in a match for exactly time t0 and
whose information is (S, S′). In particular, V (UU, 0) is equal to the expected utility
of forming a new match.

The expected continuation payoff V (·, t0) can be constructed from the following
components: All future flow payoffs in the current match are discounted by

qSS′(t0, t)e−r(t−t0),
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i.e., by the survival rate multiplied by the discount factor for time t. The expected
flow payoff in the current match is equal to w times the belief of having an h-type:

w
(
P (hh|SS′, t) + P (hl|SS′, t)

)
.

The rate of accepting a new match multiplied by the corresponding continuation
payoff is

λm0φ(SS′, t)V (UU, 0)

and the rate of becoming single multiplied by the continuation payoff of being single
is

λm0φ(S′S, t)V (∅, 0).

The term

1S=U

(
P (lh|SS′, t) + P (ll|SS′, t)

)
γV (BS, t)

describes the rate at which the agent oneself receives bad news times the continuation
payoff after that event. Similarly,

1S′=U

(
P (hl|SS′, t) + P (ll|SS′, t)

)
γV (SB, t)

is the rate at which the partner receives bad news times the continuation payoff.
Now, the expected continuation payoff V (SS′, t0) can be calculated recursively

by integrating over the expected future payoffs as follows: For all t0 ≥ 0,

V (SS′, t0) =
∫ ∞

t0
qSS′(t0, t)e−r(t−t0)

(
w
(
P (hh|SS′, t) + P (hl|SS′, t)

)
+ λm0φ(SS′, t)V (UU, 0) + λm0φ(S′S, t)V (∅, 0)

+ 1S=U

(
P (lh|SS′, t) + P (ll|SS′, t)

)
γV (BS, t)

+ 1S′=U

(
P (hl|SS′, t) + P (ll|SS′, t)

)
γV (SB, t)

)
dt,

V (∅, t0) =
∫ ∞

t0
q∅(t0, t)e−r(t−t0)λm0φ(∅, t)V (UU, 0) dt

holds.

3.3 Steady-State Equilibria

We split our equilibrium concept into two parts. The first part is the mutual op-
timality of the strategies. The second part requires the masses to satisfy certain
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balance conditions.
We now begin with the first part, the optimality.

Definition 3.1. The pair (M, φ) constitutes a partial equilibrium if m0 is finite and
φ is mutually optimal taking the masses as given, i.e., if for all public information
SS′ ∈ {∅, UU,UB,BU,BB} and t ≥ 0

V (UU, 0) < V (SS′, t) ⇒ φ(SS′, t) = 0

V (UU, 0) > V (SS′, t) ⇒ φ(SS′, t) = 1

holds.

Taking the masses and the strategies of the other agents as given and constant
over time, as well as the own strategy in the future2, fixes the continuation payoffs
V (UU, 0) for accepting to form a new match and V (SS′, t) of not accepting. If the
expected value of a new match is strictly larger than the continuation payoff of the
current state, then an agent accepts. Conversely, if the expected value of a new
match is strictly smaller, then an agent rejects.

Note that this equilibrium concept includes sequential rationality. In particular,
agents are not allowed to play non-optimal even on a measure null set or if the
partner would accept them with probability 0. When an agent is indifferent, i.e.,
at a time t with V (UU, 0) = U(SS′, t), then she can accept with any probability
q ∈ [0, 1].

In any partial equilibrium, singles and agents who received bad news always
accept to form a new match. As their current state yields a flow payoff of 0, their only
possible payoff comes from forming a new match. Consequently, as the equilibrium
strategy of an agent with bad news is constant, the corresponding partner has to
follow a monotone equilibrium strategy.

Lemma 3.1. In all partial equilibria φ(∅, t) = 1, φ(BU, t) = 1, and φ(BB, t) = 1
hold for all t. Furthermore, agents who have not received bad news, but whose part-
ners have received bad news follow a cutoff strategy, that is, they accept to rematch
until some cutoff t∗ ∈ [0,∞] and they do not accept afterwards.

For the second part of our equilibrium concept, the masses need to satisfy balance
conditions for every state. In short, for each type θ ∈ Θ, the masses have to be equal
to the inflow times the survival probability, i.e.,

mθ(t) = Inflow(θ) · qθ(0, t)

has to hold with Inflow(θ) being the inflow of new agents into state θ due the
matching process or new market entries of singles. More precisely:

2By the One-Shot Deviation Principle, it is sufficient the require pointwise optimality of the
strategies.
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Definition 3.2. A partial equilibrium (M, φ) is a steady-state equilibrium if for all
t ∈ [0,∞) the pointwise balance conditions

m∅(t) =
(
η + λm0(m0 −m∅)

)
q∅(0, t)

mhh,UU (t) = phhλm
2
0 qhh,UU (0, t)

mhl,UU (t) = 2phlλm
2
0 qhl,UU (0, t)

mll,UU (t) = pllλm
2
0 qll,UU (0, t)

mhl,UB(t) =
∫ t

0
γmhl,UU (t′) qhl,UB(t′, t) dt′

mll,UB(t) =
∫ t

0
2γmll,UU (t′) qll,UB(t′, t) dt′

mll,BB(t) =
∫ t

0
γmll,UB(t′) qll,BB(t′, t) dt′

hold.

The balance conditions state that the masses M together with the strategy φ

and the quadratic meeting technology imply the same massesM again. This ensures
that the masses remain stationary in equilibrium.

3.4 Characterization of Monotone Equilibria

The belief of having a high type as well as the belief of the partner having a high type
both increase over the time in a match. Therefore, agents become more optimistic
the longer a match persists without bad news. In the following, we analyze monotone
equilibria where agents willingness to accept to rematch decreases as their beliefs
increase. Later we will show that there exist in fact no non-monotone steady-state
equilibria. Therefore, it is without loss to restrict attention to monotone equilibria.

Definition 3.3. A partial equilibrium/steady-state equilibrium (M, φ) is called
monotone if the acceptance probability φ(SS′, t) is weakly decreasing in t for every
information (S, S′).

Since single agents and agents who have received bad news always accept to
rematch, the only equilibrium behaviors to be specified are the ones for agents with
information UU and UB. The next lemma says that in a monotone equilibrium,
agents with information UU never accept to match with a new partner.

Lemma 3.2. In all monotone partial equilibria φ(UU, t) = 0 holds for all t > 0.

The reason is that the continuation payoff in a match without bad news is strictly
increasing over time as the beliefs get more optimistic and the probability of being
left by the partner is non-increasing.
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Knowing the agents’ equilibrium behavior simplifies the balance conditions. More
precisely, for a partial equilibrium to satisfy the infinite set of pointwise balance con-
ditions it is necessary and sufficient to satisfy a finite number of aggregate balance
conditions. This reduction of the balance conditions to a finite set of equations is a
substantial simplification. In particular, for any given cutoff t∗ one can obtain the
masses numerically.

Lemma 3.3. A monotone steady-state equilibrium satisfies (M, φ) the aggregated
balance conditions. For generic parameters3 the aggregated balance conditions are:

m∅ = η + λm2
0

2λm0

mhh,UU =∞

mhl,UU = 2phlλm
2
0

γ

mll,UU = pllλm
2
0

2γ

mhl,UB,≤t∗ = phlm0

(
1 + 2λm0

γ − 2λm0
e−γt∗

− γ

γ − 2λm0
e−2λm0t∗

)
mhl,UB,>t∗ = phlm0

( 2γ
γ − 2λm0

e−2λm0t∗
− 4λm0

γ − 2λm0
e−γt∗

)
mll,UB,≤t∗ = pllm0

( 2λm0

γ + 2λm0
+ 2λm0e

−2γt∗
+ 4γλm0

γ + 2λm0
e−(2λm0+γ)t∗

)
mll,UB,>t∗ = pllm0

( 4γλm0

(γ + λm0)(γ − 2λm0)e
−(2λm0+γ)t∗

− 2λm0(γ + 2λm0)
(γ + λm0)(γ − 2λm0)e

−2γt∗
)

mll,BB = pllm0

( γ − 2λm0

2(γ + 2λm0) −
λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)
(γ + λm0)(γ − 2λm0) e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0) e−(2λm0+γ)t∗
)

m0 = m∅ +mhl,UB,≤t∗ + 1
2mhl,UB,>t∗ +mhl,UB,≤t∗ + 1

2mll,UB,>t∗ +mll,BB

Conversely, if the aggregated masses of a monotone partial equilibrium (M, φ) satisfy
the aggregated balance conditions, then there exists a unique monotone steady-state
equilibrium (M′, φ) that has the same aggregated masses as (M, φ).

These aggregate balance conditions are obtained by integrating the pointwise
balance conditions. As a direct consequence, the aggregate balance conditions are
necessary for the pointwise balance conditions. The last equation gives the mass
of all agents who are willing to accept a new match. The factor 1

2 of the masses
3With generic, we here mean that γ ̸= λm0 and γ ̸= 2λm0 hold. This is without loss as the

statement of Lemma 3.3 also holds for non-generic parameters but with different terms for the
masses.
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mhl,UB,>t∗ and mll,UB,>t∗ accounts for the fact that only half of the agents in such
pairs are willing to rematch. The crucial part of Lemma 3.3 is that the aggregate
balance conditions are also sufficient. The proof idea is that the aggregate masses
determine the mass m0 of agents who search for a new partner and the mass m0

determines the pointwise masses.
As a consequence of Lemma 3.3, we get the following equations which correspond

to the more commonly known balance conditions of the form “Inflow equals Outflow”.

Corollary 3.1. For any (M, φ) that satisfies the aggregated balance conditions, the
equations

2phlλm
2
0 = λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

pllλm
2
0 = λm0(2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB)

hold.

Corollary 3.1 says that the total inflow rate of agents into hl-pairs (2phlλm
2
0) is

equal to the total outflow rate (2λm0 times the the number of agents who accept
to rematch). The analogue also holds for ll-pairs while Lemma 3.3 shows the same
result for singles.

In a monotone steady-state equilibrium, every pair except for hh-pairs eventually
dissolves. This allows us to calculate the mass m0 of agents who accept forming a
new match, without knowing the specific equilibrium cutoff t∗.

Lemma 3.4. In every monotone steady-state equilibrium

m0 =
√

η

λphh

holds.

Lemma 3.4 uniquely determines the rate λm0 for a given choice of parameters.
Intuitively, the balance conditions imply that the inflow into the market is equal to
the rate at which agents enter an absorbing state, i.e., the rate at which hh-pairs
meet. Thus, η = phhλm

2
0 holds. Formally, adding the aggregated balance conditions

yields this result.
Our next lemma shows that for the given m0 there is a unique cutoff t∗ with a

corresponding monotone steady-state equilibrium. This gives uniqueness in the class
of monotone steady-state equilibria. When we talk about uniqueness, we formally
mean that the masses in the steady-state equilibrium are uniquely given and the the
strategies are unique up to a (finite) measure zero set of points (more precisely, in
equilibrium only the agents’ acceptance probabilities V (UU, 0) and V (UB, t∗) upon
being indifferent can be arbitrary).
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Lemma 3.5. There exists a unique monotone steady-state equilibrium.

This uniqueness result on the class of all monotone steady-state equilibria is in
fact without loss as we will show in the next section.

3.5 Equilibrium Uniqueness

We now analyze the structure of non-monotone partial equilibria and show that
those equilibria do not satisfy the balance conditions. Therefore there can only exist
monotone steady-state equilibria and by this we get uniqueness for the class of all
steady-state equilibria.

The next proposition characterizes the non-monotone partial equilibria.

Proposition 3.1. In any non-monotone partial equilibrium there exists a t0 ∈ [0,∞)
with

V (UU, t) > V (UU, 0) for all t ∈ (0, t0) and

V (UU, t) = V (UU, 0) for all t ≥ t0.

Furthermore, φ(UU, t) is strictly increasing after t0.

In the first part of the proof it is shown that V (UU, t) cannot go below V (UU, 0).
The second part of the proof shows that once V (UU, t) = V (UU, 0) holds for any
t > 0, then it also holds for all larger t. A key argument for both parts is that agents
become more optimistic over time and if all other circumstances are equal for two
different points in time, then the later point needs to have a higher continuation
payoff. Figure 3.2 illustrates the continuation payoff V (UU, t) for non-monotone
partial equilibria.

t

V

V (UU, 0)
V (UU, t)

t0

Figure 3.2: Continuation payoff for non-monotone partial equilibria

As long as V (UU, t) is larger than V (UU, 0), agents with information (U,U) do
not accept to rematch. After t0, the continuation payoff of not accepting is equal
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to the payoff of accepting. Therefore, agents follow a mixed strategy after t0 and
they mix with strictly increasing probability to keep their partners indifferent. Since
both agents in such a match would strictly prefer that both agents do not accept to
rematch, this can be interpreted as a coordination failure.

The next theorem states that a non-monotone equilibrium cannot be a steady-
state equilibrium.

Theorem 3.1. There exists a unique steady-state equilibrium and it is monotone.

This shows that our restriction to monotone equilibria and our analysis of them
are without loss of generality. In particular, in the last section, we have analyzed
the equilibrium structure of the unique steady-state equilibrium.

3.6 The Role of Learning

In this section, we investigate the impact of the learning rate on the agents. We use
comparative statics to analyze the welfare effects of a faster (or slower) learning rate
γ.

The following lemma considers the case of a strong positive correlation4. If phl

is close to 0, then agents have most likely the same type. In particular, bad news for
the partner is also bad news for oneself. Therefore, a faster learning rate benefits
both partners as both get the opportunity to leave an unprofitable match.

Lemma 3.6. Fix phh > 0 and let phl converge to 0. Then, the expected equilibrium
utility V (∅, 0) upon entering the market converges to

V ∗(∅, 0) = λm0
r + λm0

· 1− pll

r(1− pll
2γλm0

(r+2γ)(r+λm0))
· w.

For phl sufficiently small, V (∅, 0) is strictly increasing in γ.

In contrast to the previous lemma, now consider the case of a strong negative
correlation, i.e., phl being close to 1

2 . Then, there is most likely one “winner” with an
h-type and one “loser” with an l-type in each match. Learning who has a low type
in a match allows that agent to find a new match but imposes a negative externality
on the partner. We show that the negative externality on an h-agent is larger than
the gain of rematching for an l-agent. More precisely, upon forming a match, the
two partners would increase their ex-ante expected payoff if they could commit to
never leaving. As a consequence, a faster learning rate γ decreases the expected

4We consider the correlation between the hidden types in a match conditional on being in an
non-obsorbing state hl, lh, or ll. In our limit analysis, to prevent the equilibrium mass m0 of agents
who search for a match from diverging to ∞, we fix the probability phh > 0 of entering an absorbing
state.
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utility in equilibrium, and agents would be better of by learning at a slower pace,
or not learning at all.

Lemma 3.7. Fix phh > 0 and let pll converge to 0. Then, the expected equilibrium
utility V (∅, 0) upon entering the market converges to

V ∗∗(∅, 0) ≈ λm0
r + λm0

·
phh

r + phl
r+λm0+γ

(r+γ)(r+λm0)

1− phl
γλ2m2

0
(r+γ)(r+λm0)2 − phl

γλm0
(r+γ)(r+λm0)

· w.

For pll sufficiently small, V (∅, 0) is strictly decreasing in γ.

As a result, the effect of a faster learning rate is ambiguous. It depends on the
correlation, whether faster learning increases or decreases the welfare of agents. If
the agents’ goals are aligned (strong positive correlation), then faster learning is
beneficial. In contrast, with a strong negative correlation, slow learning is more
beneficial as the agents prefer not to know who wins and who loses in a match, to
prevent the match from being dissolved.

3.7 Conclusion

In this chapter, we analyze a search model with on-the-match search and on-the-
match learning. While being matched, agents learn about the idiosyncratic value
of the current match. Not only the own valuation but also the partner’s valuation
of the match are of importance for an agent as the partner’s rematching behavior
affects the present value of a persisting match. This leads to an endogenous interest
in the match being profitable for the partner.

We show the existence and uniqueness of a steady-state equilibrium. In equilib-
rium, agents follow cutoff strategies. Further, we provide an infinite set of pointwise
balance conditions that ensures the stationarity of the masses for each time t that
a match persists and we prove the equivalence to a finite set of aggregate balance
conditions. For the welfare effects of learning, the correlation between the types in a
match is of importance. With a strong positive correlation, faster learning increases
the ex-ante expected payoff while with a strong negative correlation, the ex-ante
payoff decreases with a faster learning rate. In the latter case, committing together
to never dissolve a match is ex-ante preferred by both agents.

An interesting direction of further research would be the extension to other in-
formation structures. For instance, if h-agents received good news over time, instead
of l-agents receiving bad news, then the beliefs inside a match grow more pessimistic
the longer a match persists without news. This would change the rematching behav-
ior of agents in a sense that agents in newly formed matches immediately search for
a new partner as even an ε of time without good news decreases the present value
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of the current match below the value of a newly formed match. For more general
information structures, like the occurrence of multiple different types of news, or the
beliefs following a Brownian motion, the drift of the belief would be of importance
to the agents’ equilibrium behavior.
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3.A Proofs

3.A.1 Proofs for Section 3.3

Proof of Lemma 3.1. For single agents and agents with bad news it is a dominant
strategy to always accept. An agent in a pair could copy the strategy of a sin-
gle/agent with bad news and receive a strictly higher payoff.

For the equilibrium behaviour of an agent with information (U,B), note that the
partner always accepts to rematch, i.e., her acceptance probability is constant over
time. Since the belief P (hl|UB, t) is strictly increasing in t, the continuation payoff
V (UB, t) is also strictly increasing in t. Thus, V (UB, t) crosses V (UU, 0) at most
once.

3.A.2 Proofs for Section 3.4

Proof of Lemma 3.2. The equilibrium behavior of agents with information (U,U)
follows from the fact that at t = 0 an agent is indifferent between accepting to
rematch and staying in the current match. By monotonicity, the acceptance proba-
bility of the partner is non-increasing. Therefore, the continuation payoff V (UU, t) is
strictly increasing over time. Since the continuation payoff at time t = 0 is identical
to the continuation payoff of accepting, agents with information (U,U) never accept
for t > 0.

Proof of Lemma 3.3. Integrating the pointwise balance equation for singles

m∅(t) =
(
η + λm0(m0 −m∅)

)
e−λm0t

over t yields

m∅ =
(
η + λm0(m0 −m∅)

)
· 1
λm0

,

which is equivalent to

m∅ = η + λm2
0

2λm0
.

Integrating the pointwise balance equation for hh-pairs

mhh,UU (t) = phhλm
2
0 · 1

over t yields

mhh,UU =∞.
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Integrating the pointwise balance equation for mhl,UU

mhl,UU (t) = 2phlλm
2
0e

−γt

over t yields

mhl,UU = 2phlλm
2
0

γ
.

Integrating the pointwise balance equation for mll,UU

mll,UU (t) = pllλm
2
0e

−2γt

over t yields

mll,UU = pllλm
2
0

2γ .

Integrating the three remaining pointwise balance conditions over t yields the inte-
grals

mhl,UB,≤t∗ = γ2phlλm2
0

∫ t∗

0

∫ t

0
exp
(

− γt′ − 2λm0(t − t′)
)

dt′dt

mhl,UB,>t∗ = γ2phlλm2
0

∫ ∞

t∗

∫ t

0
exp
(

− γt′ − λm0(t − t′) − λm0 max(t∗ − t′, 0)
)

dt′dt

mll,UB,≤t∗ = 2γpllλm2
0

∫ t∗

0

∫ t

0
exp
(

− 2γt′ − (2λm0 + γ)(t − t′)
)

dt′dt

mll,UB,>t∗ = 2γpllλm2
0

∫ ∞

t∗

∫ t

0
exp
(

− 2γt′ − (λm0 + γ)(t − t′) − λm0 max(t∗ − t′, 0)
)

dt′dt

mll,BB = 2γ2pllλm2
0

∫ ∞

0

∫ t

0

∫ t′

0
exp
(

− 2γt′′ − (λm0 + γ)(t′ − t′′) − λm0 max(min(t∗, t′) − t′′, 0)

− 2λm0(t − t′)
)

dt′′dt′dt,

where the survival functions qij,SS′(t′, t) are substituted by the corresponding expo-
nential functions given by the equilibrium strategies:

qhl,UB(t′, t) = exp
(
− λm0(t− t′)− λm0 max(min(t∗, t)− t′, 0)

)
qll,UB(t′, t) = exp

(
− (λm0 + γ)(t− t′)− λm0 max(min(t∗, t)− t′, 0)

)
qll,BB(t′, t) = exp

(
− 2λm0(t− t′)

)
.
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Solving these integrals gives the aggregate balance conditions

mhl,UB,≤t∗ = phlm0
(
1 + 2λm0

γ − 2λm0
e−γt∗ − γ

γ − 2λm0
e−2λm0t∗)

mhl,UB,>t∗ = phlm0
( 2γ
γ − 2λm0

e−2λm0t∗ − 4λm0
γ − 2λm0

e−γt∗)
mll,UB,≤t∗ = pllm0

( 2λm0
γ + 2λm0

+ 2λm0e
−2γt∗ + 4γλm0

γ + 2λm0
e−(2λm0+γ)t∗)

mll,UB,>t∗ = pllm0
( 4γλm0

(γ + λm0)(γ − 2λm0)e
−(2λm0+γ)t∗ − 2λm0(γ + 2λm0)

(γ + λm0)(γ − 2λm0)e
−2γt∗)

mll,BB = pllm0
( γ − 2λm0

2(γ + 2λm0) −
λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)
(γ + λm0)(γ − 2λm0) e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0) e−(2λm0+γ)t∗)
.

Thus, if the pointwise balance conditions are satisfied, so are the aggregated balance
conditions.

The final equation

m0 = m∅ +mhl,UB,≤t∗ + 1
2mhl,UB,>t∗ +mhl,UB,≤t∗ + 1

2mll,UB,>t∗ +mll,BB,

follows from the fact that the set of all agents who want to rematch consists of
the following: All singles, all agents who received bad news, and all agents whose
partner has received bad news and who are in match for a time less than t∗. For
t > t∗, only half of the agents in pairs with information UB are willing to rematch,
which implies that only half of the masses mhl,UB,>t∗ and mll,UB,>t∗ counts towards
m0.

It remains to show that the aggregate balance conditions are sufficient for the
pointwise balance equations. For this, we construct pointwise masses M as follows:
First, the aggregate masses uniquely determine the masses m0 of agents who search
for a new partner. Second, the masses m0, m∅ and the strategies uniquely determine
the pointwise masses

m∅(t) =
(
η + λm0(m0 −m∅)

)
q∅(0, t)

mhh,UU (t) = phhλm
2
0 qhh,UU (0, t)

mhl,UU (t) = 2phlλm
2
0 qhl,UU (0, t)

mll,UU (t) = pllλm
2
0 qll,UU (0, t).



118 3.A. Proofs

Finally, the remaining pointwise masses are uniquely determined by

mhl,UB(t) =
∫ t

0
γmhl,UU (t′) qhl,UB(t′, t) dt′

mll,UB(t) =
∫ t

0
2γmll,UU (t′) qll,UB(t′, t) dt′

mll,BB(t) =
∫ t

0
γmll,UB(t′) qll,BB(t′, t) dt′.

Therefore, there exists a unique (M′, φ) that has the same aggregated masses as
(M, φ) and satisfies the pointwise balance conditions.

Proof of Corollary 3.1. This corollary follows from summing the aggregate balance
conditions together. Adding two times

mhl,UB,≤t∗ = phlm0
(
1 + 2λm0

γ − 2λm0
e−γt∗ − γ

γ − 2λm0
e−2λm0t∗)

plus

mhl,UB,>t∗ = phlm0
( 2γ
γ − 2λm0

e−2λm0t∗ − 4λm0
γ − 2λm0

e−γt∗)
yields

2mhl,UB,≤t∗ +mhl,UB,>t∗ = 2phlm0.

Multiplying this by λm0 yields the first equation. Analogously, adding two times

mll,UB,≤t∗ = pllm0
( 2λm0
γ + 2λm0

+ 2λm0e
−2γt∗ + 4γλm0

γ + 2λm0
e−(2λm0+γ)t∗)

plus

mll,UB,>t∗ = pllm0
( 4γλm0

(γ + λm0)(γ − 2λm0)e
−(2λm0+γ)t∗ − 2λm0(γ + 2λm0)

(γ + λm0)(γ − 2λm0)e
−2γt∗)

plus two times

mll,BB = pllm0
( γ − 2λm0

2(γ + 2λm0) −
λm0(γ + 2λm0 − 2γ2 + 2γλm0 + 4λ2m2

0)
(γ + λm0)(γ − 2λm0) e−2γt∗

− 2γλm0(γ + 2λm0 + 2γ2 − 2γλm0 − 4λ2m2
0)

(γ + 2λm0)(γ + λm0)(γ − 2λm0) e−(2λm0+γ)t∗)
yields

2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB = pllm0.
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Multiplying by λm0 yields the second equation.

Proof of Lemma 3.4. For the proof, we substitute the masses by the aggregate bal-
ance conditions in the term that specifies m0: First, we multiply

m0 = m∅ +mhl,UB,≤t∗ + 1
2mhl,UB,>t∗ +mhl,UB,≤t∗ + 1

2mll,UB,>t∗ +mll,BB

from Lemma 3.3 by 2λm0 to obtain

2λm2
0 = 2λm0m∅ + λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

+ λm0(2mhl,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB).

Now, substituting the aggregate balance conditions

2λm0m∅ = η + λm2
0

2phlλm
2
0 = λm0(2mhl,UB,≤t∗ +mhl,UB,>t∗)

pllλm
2
0 = λm0(2mll,UB,≤t∗ +mll,UB,>t∗ + 2mll,BB)

from Lemma 3.3 and Corollary 3.1 yields

2λm2
0 = η + λm2

0 + 2phlλm
2
0 + pllλm

2
0.

By phh = (1− 2plh − pll), we get that

η = phhλm
2
0

holds and therefore, the aggregate balance conditions imply that m0 has to be

m0 =
√

η

λphh
.

Proof of Lemma 3.5. First, we show the existence of a monotone steady-state equi-
librium. As shown before, accepting is optimal for singles and agents with bad news.
Furthermore, φ(UU, t) = 0 is not only necessary for all monotone partial equilib-
rium, but also a best response to itself. For the existence, it remains to show that
there exists a cutoff t∗ ∈ [0,∞] and a corresponding steady-state equilibrium such
that it is optimal for agents with information (U,B) to accept to rematch until cutoff
t∗ and reject to rematch afterwards. Let

W (t) := V (UB, t)− V (UU, 0)
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denote the difference in the expected utility of staying in the current match minus
rematching given that all agents follow such a monotone strategy with cutoff t. The
difference W (t) is continuous by construction, strictly increasing in t, and bounded.
It converges to W (∞) := limt→∞W (t). If W (t) ≥ 0 for all t, then it is never optimal
to accept to rematch for an agent with information (U,B) and the cutoff t∗ = 0 is
optimal. If W (t) ≤ 0 for all t, then it is always optimal to accept to rematch for
an agent with information (U,B) and the cutoff t∗ = ∞ is optimal. If neither of
these two cases holds, then there exist t0 < t1 with W (t0) < 0 < W (t1). By the
intermediate value theorem, there is an interior cutoff t∗ ∈ (0,∞) with W (t∗) = 0,
i.e., agents are indifferent at the cutoff, they strictly prefer to rematch for all t < t∗

and strictly prefer to stay in the current match for all t > t∗. Thus, there always
exists a monotone steady-state equilibrium.

For uniqueness, suppose for contradiction that there are two monotone steady-
state equilibria with different cutoffs t∗1 < t∗2. Consider a single agent and take the
other agents’ strategies as given. In particular, the cutoff t∗ of the other agents has
no influence on the own continuation payoff, since m0 is the same in both equilibria
and the agents with bad news receive the same continuation payoff as a single agent.
The continuation payoff V (UU, 0) of forming a new match cannot be the same in
both equilibria. Otherwise, the continuation payoff for all future matches would be
equal in both equilibria and since V (UB, t) is strictly increasing in both equilibria,
this contradicts t∗1 ̸= t∗2. Thus, we get that V (UU, 0) is different in both equilibria
and since the cutoff choice t∗ of the other agents does not change the own expected
payoff, in at least one of the two equilibria the own choice of the cutoff is not
optimal.

3.A.3 Proofs for Section 3.5

Proof of Proposition 3.1. For this proof, we first need the following lemma that
shows that the continuation payoff at time t1 is higher than at time t0 if the following
three conditions are all satisfied: (1) the continuation payoff is higher at t1 + ε than
at t0 + ε for some ε > 0, (2) the partner rematches less often after t1 than after t0,
and (3) t1 > t0, i.e., the beliefs are more optimistic at t1.

Lemma 3.8. Fix any partial equilibrium and two points in time t0 < t1. If there
exists an ε > 0 with

V (UU, t0 + ε) ≤ V (UU, t1 + ε)

such that for almost all ξ ∈ (0, ε)

φ(UU, t0 + ξ) ≥ φ(UU, t1 + ξ)
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holds, then we get
V (UU, t0) < V (UU, t1).

t

V

V (UU, 0)

V (UU, t)

t0 t0 + ε t1 t1 + ε

Figure 3.3: Continuation payoff for Lemma 3.8

Proof. Fix a partial equilibrium. The continuation payoff at time t can be expressed
as a function of the continuation payoff at time t+ε, the own strategy, the partner’s
strategy, and the belief (which affects the expected rate at which bad news arrive).
The continuation payoff is decreasing in the acceptance probability of the partner
and it is increasing in the future continuation payoff at time t+ ε. Furthermore, the
continuation payoff strictly increases as agents become more optimistic over time.
Therefore, V (UU, t0) < V (UU, t1) holds.

Now, to prove Proposition 3.1, fix a non-monotone partial equilibrium. In the
following we use Lemma 3.8 to systematically exclude various cases of how V (UU, t)
might behave until only one possible equilibrium type remains. Then, we conclude
that all non-monotone partial equilibria must be of the form as described in Propo-
sition 3.1.

The first claim shows that the continuation payoff cannot go below V (UU, 0)
without going up again.

Claim 3.1. There is no t0 with V (UU, t) < V (UU, 0) for all t > t0.
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t

V

V (UU, 0)

V (UU, t)

t0

Figure 3.4: Continuation payoff for Claim 3.1

Proof. Assume for contradiction that there exists such a t0. Let

t1 = inf
t

{
∀t′ > t : V (UU, t′) < V (UU, 0)

}
be the infimum over all such times. After t1, agents strictly prefer to accept to
rematch. Thus, the partner’s acceptance probability does not change after t1. Since
agents get more optimistic over time, V (UU, t′) is strictly increasing on the interval
(t1,∞). This is a contradiction, since by construction and continuity V (UU, t0) =
V (UU, 0) holds.

The next claim shows that the continuation payoff cannot go below V (UU, 0)
and up again. Together with the last claim, this implies that V (UU, t) is always at
least as large as V (UU, 0).

Claim 3.2. There are no t < t′ with V (UU, t) < V (UU, t′) = V (UU, 0).

t

V

V (UU, 0)
V (UU, t)

t t′

Figure 3.5: Continuation payoff for Claim 3.2
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Proof. Assume for contradiction that there exist such t < t′. Now, we construct an
open interval (t0, t1) with positive length such that the continuation payoff is smaller
than V (UU, 0) at the interval and the interval is maximal under set-inclusion. More
precisely, we define

t0 = inf
t′

{
∀t′′ ∈ (t′, t) : V (UU, t′′) < V (UU, 0)

}
and

t1 = sup
t′

{
∀t′′ ∈ (t, t′) : V (UU, t′′) < V (UU, 0)

}
.

Then, (t0, t1) is such an interval. By continuity the agents are indifferent at the
boundary points, i.e., the equality V (UU, t0) = V (UU, t1) = V (UU, 0) holds. Now,
we compare the continuation payoff at the two times t0 and t0+t1

2 . Agents are
more optimistic at t0+t1

2 , the acceptance probability of the partner is 1 immediately
after both times, and the future continuation payoff is higher after t0+t1

2 . We apply
Lemma 3.8 to t0 and t0+t1

2 with ε = t1−t0
2 and we get V (UU, t0) < V (UU, t0+t1

2 )
which contradicts our construction.

The next claim shows that after t = 0 the continuation payoff cannot go above
V (UU, 0) without going down again.

Claim 3.3. There exists no t0 > 0 with V (UU, t0) = V (UU, 0) such that for all
larger t > t0 V (UU, t) > V (UU, 0) holds.

t

V

V (UU, 0)
V (UU, t)

t0

Figure 3.6: Continuation payoff for Claim 3.3

Proof. Assume for contradiction that there exists a t0 > 0 such that agents with
information (U,U) do not accept to rematch afterwards. Without loss, let t0 be the
minimum of all such times. Then, the agents are more optimistic at t0 than at t = 0
and the partner will always reject to rematch after t0. We apply Lemma 3.8 to 0
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and t0 with ε = t0 and get that the continuation payoff V (UU, t0) is strictly larger
than V (UU, 0). This is a contradiction to the minimality of t0.

Finally, the last claim says that after t = 0 the continuation payoff cannot go
above V (UU, 0) and reach V (UU, 0) again afterward. Together with the previous
claim, this implies that if V (UU, t) = V (UU, 0) holds for some t > 0, then the same
equality also holds for all t′ > t.

Claim 3.4. There exist no three points 0 < t0 < t1 < t2 such that V (UU, t0) =
V (UU, 0), V (UU, t1) > V (UU, 0), and V (UU, t2) = V (UU, 0) hold.

t

V

V (UU, 0)
V (UU, t)

t0 t1 t2

Figure 3.7: Continuation payoff for Claim 3.4

Proof. Assume for contradiction that there exist such three points. Without loss let
the distance t2− t0 be minimal of all such tuples. Then, V (UU, t) > V (UU, 0) holds
for all interior points t ∈ (t0, t2). Now, we distinguish two cases.

Case 1: t2 − t0 ≥ t0, i.e., the length of the interval (t0, t2) is larger than the
length of the interval (0, t0). Then, we apply Lemma 3.8 to 0 and t0 with ε = t0.
Agents are more optimistic at t0, agents are never left by their partner in the interval
(t0, 2t0), and the continuation payoff at 2t0 is strictly larger than at t0. Thus, we
get that V (UU, t0) ≥ V (UU, 0) holds which is a contradiction.

Case 2: t2 − t0 < t0, i.e., the length of the interval (t0, t2) is smaller than
the length of the interval (0, t0). Let t̂ := t0 − (t2 − t0). We apply Lemma 3.8
to t̂ and t0 with ε = t2 − t0 to compare the continuation payoffs V (UU, t̂) and
V (UU, t0). The beliefs are higher at t0, the partner does not accept to rematch at
the interval (t0, t2), and the continuation payoff at the end of the interval (t0, t2)
is equal to the continuation payoff at the end of the interval (t̂, t0). Therefore,
V (UU, t̂) < V (UU, t0) = V (UU, 0) holds. This is a contradiction, since we have
shown that V (UU, t) ≥ V (UU, 0) has to hold for all t.
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Continuation of the proof of Proposition 3.1. Now, we know that if we have
V (UU, t) = V (UU, 0) for any t > 0, then this equality also holds for all t′ > t. If this
equality would only hold for t = 0, then we would have a monotone equilibrium.
Therefore, in any non-monotone partial equilibrium exists a t ∈ [0,∞) such that
V (UU, t′) = V (UU, 0) holds for all t′ > t. Let

t0 = inf
t

{
∀t′ > t : V (UU, t′) = V (UU, 0)

}
be the earliest time after which V (UU, t) is constant. By the previous claims, we get
V (UU, t) > V (UU, 0) for all t ∈ (0, t0). Therefore, the partial equilibrium is exactly
as characterized in Proposition 3.1.

Proof of Theorem 3.1. In any non-monotone partial equilibrium, there is a time t0
after which φ(UU, t) is strictly increasing. Thus, the probability that an hh-pair
stays together for at least time t converges to 0 as t approaches ∞. Since agents
who received bad news accept to rematch with probability 1, there is no absorbing
state, i.e., every match is eventually dissolved.

Since the balance conditions imply that the inflow of agents into absorbing states
is equal to the inflow into the market, a non-monotone partial equilibrium does not
satisfy the balance conditions. Therefore, all steady-state equilibria have to be
monotone. Since there exists a unique monotone steady-state equilibrium, we get
uniqueness among all steady-state equilibria.

3.A.4 Proofs for Section 3.6

Proof of Lemma 3.6. First, we show that t∗ tends to∞ as phl vanishes. Let t̂ denote
the time at which

P (hl|UB, t) = P (i = h|UU, 0) ⇔

phl

phl + plle−γt
= phh

phh + 2phle−γt + plle−2γt
+ phle

−γt

phh + 2phle−γt + plle−2γt

holds. For agents whose partner received bad news, it is a dominant strategy to
search at all times before t̂. Thus, for the equilibrium cutoff t∗ > t̂ holds. Now,
consider a sequence where phl converges to 0. Along this sequence, the time t̂ tends
to ∞. Therefore, t∗ also tends to ∞.

Next, we consider the limit of such a sequence, i.e., let phl = 0 and t∗ =∞ hold.
Let V (ij) denote the expected continuation payoff of forming a new pair with type i
oneself and type j for the partner. Let V (x) denote the expected continuation payoff
of forming a new pair before the types are realized. Recall that V (∅, 0) denotes the
expected continuation payoff of becoming single. Then, by integrating the expected
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future utilities, we get for the continuation payoffs:

V (x) = phhV (hh) + pllV (ll)

V (hh) = w

r

V (ll) = 2γ
r + 2γV (∅, 0)

V (∅, 0) = λm0
r + λm0

V (x).

Taking these together, we get

V (x) = phh
w

r
+ pll

2γ
r + 2γ

λm0
r + λm0

V (x)

and therefore
V ∗(∅, 0) = λm0

r + λm0
· 1− pll

r(1− pll
2γλm0

(r+2γ)(r+λm0))
· w

holds. Taking the derivative with respect to the learning rate γ shows that dV ∗(∅,0)
dγ >

0 holds.
Now, by the continuity of the payoff functions, the payoff function V (∅, 0) con-

verges to V ∗(∅, 0) as phl vanishes. As the derivative of V ∗(∅, 0) is strictly positive,
dV (∅,0)

dγ > 0 is also positive for phl sufficiently small.

Proof of Lemma 3.7. Analogously to the proof of Lemma 3.6, for pll sufficiently
small, an agent whose partner received bad news stays in the match (t∗ = 0). Next,
consider the limit of such a sequence, i.e., pll = 0. The continuation payoffs are:

V (x) = phhV (hh) + phlV (hl) + plhV (lh)

V (hh) = w

r

V (hl) = w

r + γ
+ γ

r + γ

( w

r + λm0
+ λm0
r + λm0

V (∅, 0)
)

V (lh) = γ

r + γ
V (∅, 0)

V (∅, 0) = λm0
r + λm0

V (x).

Together, we get

V (x) =
phh

w
r + phl

w
r+γ + phl

γ
r+γ

w
r+λm0

1− phl
γ

r+γ
λm0

r+λm0
λm0

r+λm0
− phl

γ
r+γ

λm0
r+λm0
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and thus, the expected equilibrium utility upon entering the market is given by

V ∗∗(∅, 0) ≈ λm0
r + λm0

·
phh

r + phl
r+λm0+γ

(r+γ)(r+λm0)

1− phl
γλ2m2

0
(r+γ)(r+λm0)2 − phl

γλm0
(r+γ)(r+λm0)

· w

which is strictly decreasing in γ. By the continuity of the payoff functions, the payoff
function V (∅, 0) converges to V ∗∗(∅, 0) as pll vanishes. As the derivative of V ∗∗(∅, 0)
is strictly negative, dV (∅,0)

dγ > 0 is also negative for pll sufficiently small.
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