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Chapter 1

Introduction

Advances of recent years in harmonic analysis and the theory of function spaces have con-
tributed to major developments in the theory of partial differential equations. Carleson
measures were first introduced by L. Carleson in 1962 to study a problem of analytic
interpolation and have undoubtedly played a significant role, in particular through their
connection with the boundedness of classical operators in harmonic analysis and the char-
acterization of function spaces in various geometrical settings by means of elliptic and
parabolic linear operators.

This thesis provides a novel approach to the study of certain boundary value problems
(and initial value problems) for nonlinear equations by exploiting the knowledge gener-
ated by the associated Carleson measure characterization of admissible data classes. In
contrast to existing methods available in the literature which are mostly based on direct
methods of calculus of variations or energy methods in general, the techniques developed
in this thesis are essentially nonvariational, require much weaker assumptions on the data
and produce stronger results. In particular, its peculiarity lies in that it is suitable for the
analysis of low regularity data problems. By low regularity data, we mean those satisfying
a smoothness property weaker than that needed in order for energy methods to be imple-
mented. In practice, whilst Carleson measures mainly appear in the analysis of problems
exhibiting a critical behavior reflected in the scaling symmetry and the nature of nonlin-
earity in the equation, these techniques can be suitably adapted to study subcritical and
supercritical semilinear equations in various domains. The main questions of interest are:

• Existence and uniqueness of solutions

• Continuous dependence of solutions on the data

• Regularity of solutions.
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1.1 Motivation

Consider the Cauchy problem for the viscous Hamilton-Jacobi equation of the form ∂tu −∆u = |∇u|2 in Ω× (0,∞)

u(x,0) = u0(x), x ∈Ω
(1.1.1)

and the corresponding stationary equation

−∆u = |∇u|2 in Ω. (1.1.2)

Both equations are scaling invariant with respect to the transformations

uλ(x, t) = u(λx,λ2t), (x, t) ∈Ωλ × (0,∞) and uλ(x) = u(λx)

respectively, for any λ > 0 where Ωλ = {x ∈ Rn : λx ∈Ω}. This observation has the conse-
quence that the nonlinear term in (1.1.2) cannot be weakened under any rescaling argu-
ment. If a weak solution u ∈ W 1,2(Ω) exists, then it does not enjoy a better smoothness
property by classical elliptic regularity theory. Moreover, supplementing (1.1.2) with zero
Dirichlet boundary condition, it is easy to check that

u1(x) = 0 and u2(x) = loglog(|x|−1)

are both solutions to (1.1.2) in Ω = B1/e(0) ⊂ R
2. While u1 is regular, u2 is a weak so-

lution with isolated singularity at the origin. Thus, weak solutions of (1.1.2) are neither
nonunique nor regular. Similar behavior also pertain to weak solutions of Problem (1.1.1),
also known as the Kardar-Parisi-Zhang equation [KPZ86] arising in the theory of growth
and roughening of surfaces. These type of problems are called critical and their intrinsic
properties (nature of nonlinearity, scaling and translation invariance) seem to be the main
reason why energy methods or classical compactness arguments fail to provide a satisfac-
tory answer to questions such as existence, uniqueness and regularity theory. Hence, their
analysis requires new analytical tools.

A recurring challenge in investigating the well-posedness theory in the context of
low regularity data comes from the definition of an adequate notion of solutions. For
parabolic problems, a Duhamel formulation based on semigroup theory leads to the so-
called mild solutions which seem to be the correct notion of solutions to work with. The
situation is a little different in the elliptic setting. There is a popular weaker concept of so-
lutions known as very weak solutions. It is obtained via a variational formulation wherein
less stringent regularity conditions on the solution and thus the data are needed. How-
ever, in practice, their existence is established by means of duality arguments and func-
tional analytical approaches mainly relying on the available theory for generalized weak
solutions, hence always confined in the framework of Sobolev spaces. It is a fairly general
principle, that given the Dirichlet problem for a semilinear elliptic equation, its solution
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can be represented as a sum of two sub-problems, the corresponding linear equation and
the inhomogeneous equation. This is always possible depending on the regularity of the
domain where the problem is posed. This type of solution, by analogy to mild solutions
is the notion of solutions we adopt. In either case, we fully exploit the regularizing prop-
erties of solutions to the associated linear equation generated by the prescribed rough
data (via Carleson measures or extrinsic characterization of boundary classes) in order to
identify the correct functional setting where solutions are sought for. This procedure, in
combination with the use of suitable Banach fixed point arguments leads to sharp results,
in the sense of optimal solution space for the prescribed data class.

As an illustration, three selected problems are discussed into three separate chapters.

The first chapter deals with the well-posedness of the Dirichlet problem for the weakly
harmonic maps equations from a smooth domain into a closed Riemannian manifold. It
presents a new approach to the harmonic maps problem in two and higher dimensions
for Dirichlet data having infinite energy. We show that under a mere smallness require-
ment on the Dirichlet data in the space of bounded mean oscillations or the space of
measurable essentially bounded functions, there exists a unique small weakly harmonic
map which is locally infinitely smooth. Whilst this regularity result may fail in absence
of this smallness condition, the solvability persists for large Dirichlet data provided the
domain is bounded and there exists a smooth stable weakly harmonic map. The main
finding improves the result by S. Hildebrant, H. Kaul and K. Widman as well as that of M.
Struwe both requiring 1

2 -regularity on the data in addition to the smallness of the energy.

The second part is concerned with the applicability of the method in the context of
initial value problems (based on a non-trivial adaptation of the ideas introduced by H.
Koch and D. Tataru in their work on the well-posedness for the Navier-Stokes equations).
The chemotaxis Navier-Stokes system describing bacterial swimming within viscous in-
compressible fluid environments and the double chemotaxis system coupling the Navier-
Stokes equations and the Keller-Segel system are investigated. Carefully analyzing each
coupling term in the system and using the scaling invariance feature of unknowns, we
identify classes of initial data, each of which is defined extrinsically via Carleson mea-
sures or their fractional analogues. Local well-posedness results are then established for
large data while sharp global existence theory is obtained under a smallness condition on
the initial data. Moreover, uniqueness criterion of solutions is also studied.

The third chapter is devoted to the study of the forced steady-state Navier-Stokes
equations. Supplementing the system with an inhomogeneous Dirichlet boundary condi-
tion, the solvability of the resulting problem is open in its full generality when the fluid
region is unbounded. The upper half-space in arbitrary dimensions is a simple example of
an unbounded domain which serves as a reference (practically, flows in many unbounded
domains locally via flattening reduces to the half-space). The stationary Navier-Stokes
system does not fall into the category of "critical" problems as described above and in
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contrast to the unsteady Navier-Stokes, Carleson type measures do not naturally appear
in this case. Nevertheless, some of our main ideas still prevail. The scaling feature and
the local integrability requirement on the solution suggest the choice of Dirichlet data in
a class of homogeneous Sobolev spaces with smoothness parameter s = −1/2. Existence,
uniqueness and local Hölder regularity of solutions are then established under a small-
ness condition on the data. These conclusions follows from a thorough analysis of the
Stokes system subject to boundary value in homogeneous Triebel-Lizorkin spaces with
negative amount of smoothness and external force in tent spaces for which we derive new
solvability statements, generalizing known results.

We contend that the techniques developed in the present thesis complement the ex-
isting methods in the literature and can be employed to analyze many other examples of
elliptic and parabolic problems.

1.2 Contributions

This thesis is essentially based on two publications and one preprint. A detailed list of
articles is indicated below.

• Gael Yomgne Diebou and Herbert Koch. "Dirichlet problem for weakly harmonic
maps with rough data". Comm. Partial Differential Equations, 47:7 (2022), 1504-
1535.

The main results of this article may be summarized as follows. Given a smooth closed Rie-
mannian manifold N , any map in L∞(∂Ω,N ) or in BMO(∂Ω,N ) with small norm gives
rise to a unique weakly harmonic map in Ω having locally finite energy. To produce this
conclusion, an equivalent reformulation of the problem is introduced and consists of a
fixed point equation with extended nonlinear term and a separated geometric constraint.
The intrinsic features of the original problem combined with the study of the correspond-
ing linear system, motivated by Carleson measures both suggest the appropriate frame-
work wherein a contraction mapping argument is carried out. This generates a bounded,
locally smooth solution to the extended problem which lives in a small neighborhood of
the manifold N . A maximum principle argument is invoked to show that this solution
satisfies the geometric condition. In addition, via a perturbative approach the smallness
assumption on the data can be removed whenever the domain is bounded.

• Gael Yomgne Diebou. "Well-posedness for chemotaxis-fluid models in arbitrary di-
mensions". To appear in Nonlinearity. ArXiv:2111.04792.

This article investigates the Cauchy problem for a strongly coupled system of equations
describing the chemotaxis driven processes of cells swimming in presence of an incom-
pressible viscous fluid. Prescribing initial data in an almost optimal class, local and global
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mild solutions satisfying the expected properties (mass conservation for the density of
cells and the nonnegativity perservation for the first two unknowns: oxygen concentra-
tion and cells density) are constructed. Moreover, a decay in time criterion guarantees the
uniqueness of these global solutions. In the process, the nature of the coupling terms is
used to deduce what assumptions on each unknown is needed in order for the system to
be meaningful. Combining this with the scaling and translation invariance features of the
system leads to the choice of admissible initial data classes, some of which are new and
identified using the knowledge generated by Carleson type measures arising in the study
of the linear counterpart of the system.

• Gael Yomgne Diebou. "Existence and regularity of solutions to stationary Navier-
Stokes equations arising from irregular data". Submitted for publication.

In this article, the forced incompressible stationary Navier-Stokes flow in the region R
n
+,

n ≥ 2 is analyzed. Existence of a unique solution satisfying a global integrabilty prop-
erty measured in a scale of tent spaces is established for small data in the homogenous
Sobolev space with −1

2 -degree of smoothness. Moreover, the velocity field is shown to be
locally Hölder continuous while the pressure belongs to Lploc(R

n
+) for every p ∈ (1,∞). The

main approach is based on the analysis of the inhomogeneous Stokes system for which we
derive a new solvability result involving Dirichlet data in Triebel-Lizorkin classes with
negative amount of smoothness.

This work was supported by the Deutscher Akademischer Austauschdienst (DAAD)
through the program "Graduate School Scholarship Programme, 2018" (Number 57395813)
and partially by the Hausdorff center for Mathematics at Bonn. I would like to express
my deep gratitude to both institutions.
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Chapter 2

Weakly harmonic maps into closed
Riemannian manifolds

2.1 Statement of main results

In this chapter, we are interested in the solvability of the Dirichlet problem for the weakly
harmonic maps equation subject to rough data at the boundary. We will consider two
types of domains namely, Ω ⊂R

n, n ≥ 2 bounded with C1,α boundary or the half-space

Ω = R
n
+ := {x = (x′ ,xn), x′ ∈Rn−1, xn > 0}.

LetN be a smooth closed Riemannian manifold. As a result of Nash’s embedding theorem
we can assume without any restriction that N isometrically embeds into R

m for some
positive integer m. Denote by Ẇ 1,2(Rn+,N ) the space of functions u : Rn+→R

m whose first
order (distributional) derivatives belong to the Lebesgue space L2(Rn+,R

nm) and satisfy the
constraint u(x) ∈N a.e. x ∈Rn+. With x1, ...,xn representing a coordinate system on R

n
+, one

can associate to any Sobolev map u ∈ Ẇ 1,2(Rn+,N ) an energy density defined as

e(u) =
n∑
i=1

∂xiu ·∂xiu = |∇u|2 .

The Dirichlet energy functional of u is then given by

E(u) =
1
2

ˆ
R
n
+

e(u)dx.

Consider a tubular neighborhood U of the manifold N in R
m on which the nearest point

projection map PN :U →N is well-defined and smooth (cf. Section 2.2.3 below). For any
test function φ ∈ C∞0 (Rn+,R

m) and for s > 0 small enough, critical points of the functional
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E are maps u in Ẇ 1,2(Rn+,N ) such that the first variation of the energy satisfies the identity

∂
∂s

∣∣∣∣∣
s=0
E(PN (u + sφ)) = 0

where PN (u + sφ) belongs to Ẇ 1,2(Rn+,N ). The Euler-Lagrange system associated to this
variational problem reads

∆u + Γ (u)(∇u,∇u) = 0 (2.1.1)

in the sense of distributions where ∆ is the Laplace operator for the n-dimensional Eu-
clidean space and Γ (q) : TqN × TqN → (TqN )⊥ is the second fundamental form of the
embedding N ↪→R

m with

Γ (u)(∇u,∇u) =
n∑
i=1

Γ (u)
(
∂u
∂xi

,
∂u
∂xi

)
.

Solutions of Syst. (2.1.1) are called weakly harmonic maps. Supplementing this equation
with the boundary condition

u = f on ∂Rn+, (2.1.2)

we aim at addressing the well-posedness issue for the boundary value problem (2.1.1)-
(2.1.2) when f assumes minimal translation and scale invariant regularity assumption in
the sense made precise at (2.1.6). The question of existence of harmonic maps plays an
important role in differential geometry, Teichmüller theory [Jos84] and in surface match-
ing problem (in computer vision). In hydrodynamics theory, weakly harmonic maps into
the 2-sphere are fundamental objects in the modelling of flows of nematic liquid crystals.

The Dirichlet problem for weakly harmonic maps in various geometrical settings have
been studied in many works. When the source manifold is a compact connected Rieman-
nian manifold of class C3, Hildebrandt and his collaborators [HKW77] showed the exis-
tence of small solutions in the energy space provided the image of the boundary is con-
tained in a small geodesic ball of N . Moreover, they further proved that if the radius of
the ball is strictly bounded above by π

2κ1/2 where κ ≥ 0 is an upper-bound for the sectional
curvature of N , then solutions are C2-regular in the interior. Uniqueness of these small
solutions was independently obtained by Jäger and Kaul in [JK79]. When Ω is the unit
Euclidean ball in R

3, Struwe [Str98] established solvability in the Sobolev classH1,2(Ω,N )
for data f having small energy. In particular, only solutions obeying the restriction

sup
x∈Ω,r>0

(
r−1

ˆ
Br (x)∩Ω

|∇u|2dy
)
< ε (2.1.3)

for ε > 0 sufficiently small are unique. This result was generalized to arbitrary dimension
(n ≥ 3) in [Mos01]. The study of rotationally symmetric weakly harmonic maps with finite
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energy and their stability is the main subject of the article [JK83]. Regarding regularity,
observe that the nonlinearity in Eq. (2.1.1) belongs to L1 whenever u has finite energy.
Thus a boostrapping argument will not improve the initial regularity of the solution. We
quote Helein’s unconditional regularity results for two-dimensional sources and general
targets [Hél91a, Hél91b] which use the special structure of the equation and the cele-
brated Wente’s inequality. See also [Jos84, Sch83] for the higher regularity of continuous
weakly harmonic maps.

We observe that most of the aforementioned solvability results employ direct methods
of calculus of variations under higher regularity condition on boundary data. In order to
lower the requirement in smoothness, one needs new techniques. A starting point is to
identify a befitting notion of solutions allowing for low regularity data. Formally, the
Dirichlet problem (2.1.1)-(2.1.2) can be reformulated using Green identities so that the
resulting equation reads

u(x) =Hf (x) +N (Γ (u)(∇u,∇u))(x), u(x) ∈N a.e. x ∈Rn+ (2.1.4)

where Hf is the Poisson extension of f and N the Newtonian potential, see Section 2.2
below for more details. Observe that v = Hf makes sense as an absolutely convergent
integral under the weaker condition

I :=
ˆ
R
n−1
|f (x′)|(1 + |x′ |n)−1dx′ <∞ (2.1.5)

and v solves the Laplace equation in R
n
+. If M denotes the centered Hardy-Littlewood

maximal function, then it can be verified that I ≤ CMf (z) for some constant C > 0 de-
pending on a fixed point z ∈ R

n−1. Thus, whether or not (2.1.5) holds can be verified
using the mapping properties ofM. It is worth pointing out that the latter fully charac-
terizes the solvability of the Dirichlet problem for linear elliptic systems of second-order
with constant complex coefficients in half-space [MMMM16]. Moreover, if u formally
solves Eq. (2.1.1) then, the rescaled map

uλ(x) := u(λx), x ∈Rn+, λ > 0 (2.1.6)

is another solution since the second fundamental form Γ (u)(·, ·) has a quadratic growth
in the gradient of u. Hence, we seek for classes of functions defined on R

n−1, enjoying
both (2.1.5) and the scaling law (2.1.6) and such that there exists a suitable notion of
trace associated to harmonic functions in half-space. Natural candidates include the John-
Nirenberg’s space BMO(Rn−1) and the class of measurable essentially bounded functions
on R

n−1. Indeed, it was established by Fefferman [Fef72] that f ∈ BMO(Rn−1) if its Poisson
extension v =Hf (x) satisfies

sup
x′∈Rn−1,xn>0

x−(n−1)
n

ˆ
Bxn (x′)

ˆ xn

0
s|∇v(y,s)|2dyds

1/2

<∞. (2.1.7)
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This condition was later shown to characterize all harmonic functions whose trace be-
long to BMO(Rn−1), see [FJN76, FS72]. This motivates the consideration of the following
functional setting.

Definition 2.1.1. Let n ≥ 2 and m > 1. Call X the space of functions u : Rn+ → R
m such

that
∥u∥X = ∥u∥L∞(Rn

+) + |u|X <∞ (2.1.8)

where the semi-norm | · |X reads

|u|X = sup
xn>0

xn∥∇u∥L∞(Rn−1) + sup
(x′ ,xn)∈Rn

+

x1−n
n

ˆ
Bxn(x

′)

ˆ xn

0
yn|∇u|2dyndy′

1/2

.

When endowed with the norm (2.1.8), X is a Banach space and one easily verifies that it is
scaling invariant with respect to (2.1.6). Such functional frameworks turn out to be suit-
able for the analysis of certain critical boundary value problems and their use certainly
goes beyong the context of harmonic maps. Our motivation comes from Koch & Tataru’s
work [KT01] on the well-posedness for the Navier-Stokes equations where similar spaces
with parabolic scaling and ideas leading to their consideration were first introduced. This
approach was subsequently employed in many other works [GdL19, KL12, KL15, Yom21,
Wan11], just to mention a few. While these articles exclusively deal with parabolic prob-
lems, the present work also aims at showing how elliptic boundary value problems subject
to low regularity data can be analyzed via similar methods. Observe that the first term
in Eq. (2.1.4) is harmonic and has a well-defined trace at the boundary while the second
term is continuous up to the boundary when u ∈ X. In what follows, the boundary value
problem should be understood in this sense.

We are ready to state our main results.

Theorem 2.1.2. Assume that f ∈ L∞(Rn−1,N). There exists a positive number ε := ε(n,N )
such that if ∥f ∥L∞(Rn−1) ≤ ε, then the Dirichlet problem (2.1.1)-(2.1.2) is uniquely solvable in a
small closed ball of X.

The BMO-Dirichlet problem for (2.1.1) is equally well-posed in the following sense.

Theorem 2.1.3. There exists ε0 > 0 such that for any map f in BMO(Rn−1,N ) satisfying
∥f ∥BMO(Rn−1) ≤ ε0, the BMO-Dirichlet problem (2.1.1)-(2.1.2) admits a solution u ∈ X. Fur-
thermore, this solution is unique in a small closed ball of X,

BX
cε0

(v) = {u ∈ X : ∥u − v∥X ≤ cε0}

for some constant c > 0 depending on N . Here v is the harmonic extension of f .

This existence result seems sharp in the sense that BMO(Rn−1) is the largest transla-
tion and scaling invariant (with respect to (2.1.6)) space so that the first iteration of the
fixed point map is well-defined.
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Remark 2.1.4. Although our solvability results have been stated for R
n
+, analogous con-

clusions for the geometrical setting given by bounded smooth domains remain valid in
natural analogues of X (see Theorem 2.4.5 for more details). Moreover,

• Our method also infers the solvability of the problem −∆u = |∇u|2 + F in Ω (with
F ∈ Y with small norm if Ω = R

n
+ or F ∈ Z (c.f. Section 2.4) with small norm if Ω is

bounded) subject to small Dirichlet data in L∞(∂Ω) or BMO(∂Ω). Its applicability
is not restricted to the dimension, it works well in the case n = 2.

• Unlike the results quoted earlier, our boundary data are allowed to have unbounded
energies. However, it is not clear whether the smallness assumptions on the size
of the boundary value can be relaxed. For bounded energy data, it is known that
uniqueness fails in absence of appropriate smallness condition (like (2.1.3) for weakly
harmonic maps from the unit ball in R

3). A similar observation was made in [JK79]
for smooth harmonic maps.

Despite these evidences about the necessity of having a size restriction condition on
the boundary data, one may still ask the question whether or not f in Theorem 2.1.2 and
2.1.3 can be prescribed "large" in the L∞-norm or BMO semi-norm, respectively. We come
back to this particular question in the last part of this chapter.

Remark 2.1.5. Solutions constructed in the above theorems are locally smooth. Indeed,
Theorem 2.1.2 tells us that ∇u is bounded in R

n−1 × (η,∞) for any η > 0 since u ∈ X. Thus
∆u ∈ L∞loc and u ∈ W 2,p

loc for any p < ∞ by the standard Lp-theory for elliptic equations.

Once again, by using (2.1.1), we arrive at ∆u ∈W 1,p
loc which infers u ∈W 3,p

loc . In a repetitive

way, one obtains that u belongs to the Sobolev space W k,p
loc for all k = 1,2,3, .... Applying

Sobolev embedding theorem ultimately yields u in C∞loc. This regularity result, however, is
another consequence of smallness – there are everywhere discontinuous weakly harmonic
maps [Riv95].

2.2 Preliminaries

2.2.1 The homogeneous theory

For a point x of Rn+, we write x = (x′ ,xn), x′ ∈Rn−1, xn ∈ (0,∞). Let f be a locally integrable
function on R

n−1. For a subset E ⊂ R
n−1, denote by |E| its Lebesgue measure and let

fE =
ffl
E f dx

′ = |E|−1 ´
E f dx

′ the integral mean of f . We say that f belongs to BMO(Rn−1) if

∥f ∥BMO(Rn−1) = sup
B
|B|−1

ˆ
B
|f (x′)− fB|dx′

where the supremum is taken over all balls in R
n−1. In what follows, we do not always

distinguish between BMO(Rn−1,Rm) and BMO(Rn−1) and it should be clear from the con-
text. Let T (B) = Br(x′)×(0, r) be the Carleson region above the boundary ball Br(x′) ⊂R

n−1.

11



A measure µ in R
n
+ is termed Carleson if C(µ) = sup

B
|B|−1µ(T (B)) is finite. The role of these

measures in connection to linear elliptic boundary value problems was first observed in
[Fef72, FS72]: BMO(Rn−1) is the trace space of harmonic functions v in R

n
+ for which

xn|∇v|2dx′dxn is a Carleson measure. Moreover, we have the equivalence

sup
x′∈Rn−1,xn>0

x−(n−1)
n

ˆ
Bxn (x′)

ˆ xn

0
s|∇v(y′ , s)|2dy′ds

1/2

≈ ∥f ∥BMO(Rn−1). (2.2.1)

Now consider the Laplace equation ∆v = 0 in R
n
+ with v

∣∣∣
∂Rn

+
= f . The Poisson extension

v(x) =Hf (x) := [Pxn ∗ f ](x′) (2.2.2)

is the unique solution which decays at infinity. Recall that Pxn is explicitly given by

Pxn(x
′) = x−(n−1)

n P (x′/xn) = cn
xn

(|x′ |2 + x2
n)n/2

where cn > 0 is a normalizing constant such that
ˆ
R
n−1
Pxn(x

′)dx′ = 1. We collect in the

following lemma the boundedness properties of H.

Lemma 2.2.1. Let f = (f1, ..., fm) defined on R
n−1. Then, Hf ∈ X for all f ∈ L∞(Rn−1) and

∥Hf ∥X ≤ C∥f ∥L∞(Rn−1). (2.2.3)

Moreover, if f ∈ BMO(Rn−1), then there exists a positive constant C > 0 independent of f such
that

|Hf |X ≤ C∥f ∥BMO(Rn−1). (2.2.4)

Proof. Note that the estimate (2.2.3) is invariant by scaling and translation; hence it suf-
fices to consider the case x′ = 0 and xn = 1, that is,

|v(0,1)|+ |∇v(0,1)|+
∥∥∥y1/2
d ∇v

∥∥∥
L2(B1(0)×(0,1))

≤ C∥f ∥L∞(Rn−1); v =Hf .

Observe that v is harmonic in R
n
+ so that the bound

|v(0,1)|+ |∇v(0,1)| ≤ C∥f ∥L∞(Rn−1)

follows from standard local elliptic estimates. To establish the third bound, one proceeds
as follows. Let B2(0) be a ball in R

n−1 and denote by χ its characteristic function. Decom-
pose f into a local and global part, f = χf + (1 −χ)f = f1 + f2. Taking into consideration
the harmonic extension of each part, set v = v1 + v2 and write∥∥∥y1/2

d ∇v
∥∥∥
L2(B1(0)×(0,1))

≤
∥∥∥y1/2
d ∇v1

∥∥∥
L2(B1(0)×(0,1))

+
∥∥∥y1/2
d ∇v2

∥∥∥
L2(B1(0)×(0,1))

= I1 + I2

12



We prove that both I1 and I2 satisfy the desired estimate. For the first integral, we use
integration by parts assuming that f1 is continuous with compact support. Let w be a
harmonic function in R

n
+ with w(x′ ,0) = f1. We have

0 =
ˆ
R
n
+

∆w(xnw)dx = −
ˆ
R
n
+

(∇w · edw+ xn|∇w|2)dx

= −
ˆ
R
n
+

(
∂w
∂xn

w+ xn|∇w|2
)
dx

from which it follows thatˆ
R
n
+

xn|∇w|2dx = −
ˆ
R
n−1

ˆ ∞
0
∂dw ·wdxddx′

=
1
2

ˆ
R
n−1
f 2

1 (x′)dx′ .

Thus
I1 ≤ C∥f1∥L2(Rn−1) ≤ C∥f ∥L∞(Rn−1). (2.2.5)

On the other hand, using the kernel decay property

|∂αPxn(x
′)| ≤ Cn|x|1−|α|−n for all x = (x′ ,xn) ∈Rn+ \ {0}, α ∈Nn (2.2.6)

one obtains
I2
2 =

∥∥∥y1/2
n ∇v2

∥∥∥2
L2(B1(0)×(0,1))

=
ˆ
R
n
+

yn|∇v2|2χB(0)×(0,1)dyndy
′ .

But

|∇v2(y′ , yn)| ≤
ˆ
|∇Pyn(y

′ − z′)||f2(z′)|dz′

≤
ˆ
R
n−1\B2(0)

|∇Pyn(y
′ − z′)||f (z′)|dz′

≤ C
ˆ
R
n−1\B2(0)

(yn + |y′ − z′ |)−n|f (z′)|dz′ .

Observe that for y′ ∈ B1(0) and 0 ≤ yn ≤ 1, it holds that

(yn + |y′ − z′ |)−n ≤ C(1 + |z′ |n)−1, z′ ∈Rn−1 \B2(0).

Thus

|∇v2(y′ , yn)| ≤ C∥f ∥L∞(Rn−1)

ˆ
R
n−1\B2(0)

(1 + |z′ |n)−1dz′

≤ C∥f ∥L∞(Rn−1).
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Upon squaring the previous inequality, multiplying by yn and integrating over the cylin-
der B1(0)× (0,1) one obtains the bound

ˆ
B1(0)

ˆ 1

0
yn|∇v2(y′ , yn)|2dyndy′ ≤ C∥f ∥2L∞(Rn−1)

which in turn completes the proof of the first statement (2.2.3).
Next, we prove the estimate

sup
xn>0

xn∥∇v(·,xn)∥L∞(Rn−1) ≤ C∥f ∥BMO(Rn−1). (2.2.7)

Since v is harmonic in R
n
+, then so is the gradient ∇v and by the mean value theorem, we

find that

|∂iv(x)| ≤ Cr−n
ˆ
Br (x)
|∂iv(y)|dy, i = {1, · · · ,n} (2.2.8)

for any ball Br(x) with Br(x) ⊂R
n
+, r > 0, x ∈Rn+. Let Bt/4(x) ⊂R

n
+ be the ball with center at

x and radius t/4 = xn/3. It follows that Bt/4(x) ⊂Qt(x′)× [t/2, t] where Qt(x′) is the cube in
R
n−1 with center at x′ and side-length t > 0. We may appeal to (2.2.8) and write

|∂iv(x)| ≤ Cn
( 
Bt/4(x)

|∂iv|2dy
)1/2

≤ Cnt−n/2
(ˆ
Qt(x′)

ˆ t

t/2
|∇v|2dyndy′

)1/2

≤ Cnt−(n+1)/2
(ˆ
Qt(x′)

ˆ t

t/2
yn|∇v|2dyndy′

)1/2

≤ Cnt−1
(
t1−n

ˆ
Qt(x′)

ˆ t

0
yn|∇v(y,yn)|2dyndy′

)1/2

,

which in turn implies (2.2.7) and shows (2.2.4) in view of (2.2.1).

Remark 2.2.2. Estimate (2.2.7) can alternatively be derived from the integral representa-
tion of v and the cancellation property

ˆ
R
n−1
∇ℓPxn(x

′ − y′)dy′ = 0 for all (x′ ,xn) ∈Rn+, for all ℓ ∈N. (2.2.9)
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2.2.2 The Poisson equation

This section is devoted to the study of the Poisson equation with source term in the space
Y collecting functions F defined on R

n
+ such that the quantity ∥F∥Y is finite,

∥F∥Y := sup
xn>0

x2
n∥F(·,xn)∥L∞(Rn−1) + sup

(x′ ,xn)∈Rn
+

x1−n
n

ˆ
Bxn(x

′)

ˆ xn

0
yn|F|dyndy′ .

It is clear that Y equipped with the above norm is complete, hence Banach. Let F be a
measurable function in R

n
+ such that

ˆ
R
n
+

yn|F(y)|
(1 + |y|)n

dy <∞. (2.2.10)

A solution u to the Poisson equation −∆u = F in R
n
+, u = 0 on R

n−1 can explicitly be given
by the Newtonian potential

u(x) =N F(x) :=
ˆ
R
n
+

G(x,y)F(y)dy

where G(·, ·) is the Green kernel for the Laplacian in the upper half-space R
n
+ explicitly

given by

G(x,y) = γn


[
|x − y|−(n−2) − |x − y∗|−(n−2)

]
if n ≥ 3

log |x − y| − log |x − y∗| if n = 2
, γn =


1

(n−2)σn
if n ≥ 3

1
2π

if n = 2

for x ∈ Rn+, y ∈ Rn+, x , y where σn is the surface area of the unit sphere of Rn and y∗ =
(y1, ...,−yn) is the reflection of the point y across the hyperplane {yn = 0}. From the explicit
expression of G(·, ·), we can deduce the following upper-bound estimates (see e.g. [Wid67,
Lemma 3.5])

1. For every x,y ∈Rn+, x , y

G(x,y) ≤ Cmin
{

min(xn, yn)
|x − y|n−1 ,

xnyn
|x − y|n

,
1

|x − y|n−2

}
.

2. For every x,y ∈Rn+, x , y

|∇G(x,y)| ≤min
{
|x − y|1−n, yn|x − y|−n

}
.

3. For each k ∈Nn,

|∇kG(x,y)| ≤ |x − y|2−|k|−n for all x,y ∈Rn+,x , y.
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It should be observed that functions in Y satisfy (2.2.10). Our next lemma deals with the
mapping properties of the Green potential.

Lemma 2.2.3. The Newtonian potential N maps Y boundedly into X i.e. for any F ∈ Y,
N F ∈ X and in addition, there holds the estimate

∥N F∥X ≤ C∥F∥Y (2.2.11)

where the constant C only depends on the dimension n.

Proof. Once again, due to the scaling and translation invariance nature of (2.2.11), its
validity simplifies to that of the following localized bound

|N F(0,1)|+ |∇N F(0,1)|+
∥∥∥y1/2
n |∇N F|

∥∥∥
L2(B1(0)×(0,∞))

≤ C∥F∥Y

whose proof is divided into two steps.

Step 1. The inequality |N F(0,1)| ≤ C∥F∥Y. By definition ofN , we have

|N F(0,1)| ≤
ˆ
R
n−1

ˆ ∞
0
G(en, y)|F(y)|dy′ndy, en = (0, ...0,1)

= I1 + I2 + I3 + I4

where

I1 =
ˆ
B1(0)

ˆ 1/2

0
G(en, y)|F(y)|dyndy′ , I2 =

ˆ
B1(0)

ˆ 2

1/2
G(en, y)|F(y)|dyndy′ ,

I3 =
ˆ
Bc1(0)

ˆ 2

0
G(en, y)|F(y)|dyndy′ , I4 =

ˆ
R
d−1

ˆ ∞
2
G(en, y)|F(y)|dyndy′ .

In what follows, we repeatedly make use of the above upper-bound estimates on the Green
function G(·, ·)

I1 =
ˆ
B1(0)

ˆ 1/2

0
G(en, y)|F(y)|dyndy′

≤ C
ˆ
B1(0)

ˆ 1/2

0

yn

(|y′ |2 + (1− yn)2)
n−1

2
|F(y)|dyndy′

≤ C2n−1
ˆ
B1(0)

ˆ 1/2

0
yn|F(y)|dyndy′

≤ C∥F∥Y.
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Moving on, we have

I2 =
ˆ
B1(0)

ˆ 2

1/2
G(en, y)|F(y)|dyndy′

≤ C
ˆ
B1(0)

ˆ 2

1/2

|F(y)|dyndy′

(|y′ |2 + (1− yn)2)
n−2

2

≤ C sup
yn>0

y2
n∥F(·, yn)∥L∞(Rn−1)

ˆ
B1(0)

ˆ 2

1/2
|y′ |2−ndyndy′

≤ C∥F∥Y
ˆ
|y′ |≤1

ˆ 2

1/2
|y′ |2−ndyndy′

≤ C∥F∥Y.

To estimate I3, cover Bc1(0) = R
n−1 \B1(0) with the family of cubes {Q1(z′)}z′∈Zn−1 centered

at z′, |z′ | > 1 with side length 1. It follows that

I3 ≤
ˆ
R
n−1\B1(0)

ˆ 2

0
G(en, y)|F(y)|dyndy′

≤ C
∑

z′∈Zn−1

|z′ |>1

ˆ
Q1(z′)∩Bc1(0)

ˆ 2

0

yn|F(y)|dyndy′

(|y′ |2 + (1− yn)2)n/2

≤ C
∑

z′∈Zn−1

|z′ |>1

|z′ |−n
ˆ
Q1(z′)

ˆ 2

0
yn|F(y)|dyndy′

≤ C∥F∥Y.

Finally, noticing that for all yn ≥ 2, yn − 1 ≥ yn/2 we obtain that

I4 =
ˆ
R
n−1

ˆ ∞
2
G(en, y)|F(y)|dyndy′

≤ C
ˆ
R
n−1

ˆ ∞
2

yn|F(y)|
(|y′ |2 + (yn − 1)2)n/2

dyndy
′

≤ C∥y2
nF∥L∞(Rn

+)

ˆ
R
n−1

ˆ ∞
2

dyndy
′

yn[|y′ |2 + y2
n]n/2

≤ C∥F∥Y
(ˆ

R
n−1

(1 + |z′ |2)−n/2dz′
)(ˆ ∞

2
y−2
n dyn

)
≤ C∥F∥Y.
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The strategy employed above via decomposition of the integral domain can also be used
to prove the local pointwise gradient estimate. Indeed, the relation

∇N F(x) =
ˆ
R
n
+

∇G(x,y)F(y)dy

holds in the sense of distributions so that by utilizing the pointwise bound (2) and split-
ting the above integral exactly as before in the same regions to get, say Ji , i = 1,2,3,4, we
obtain the desired estimate. We note however, that to estimate J2, one rather invokes the
property that |∇G(x, ·)| ∈ L

n
n−1 ,∞(Rn+) uniformly for any x ∈ Rn+. Here, Lp,∞(Rn) denotes the

Lorentz space defined as the set of measurable functions f such that sup
E
|E|1/p−1

ˆ
E
|f (y)|dy

is finite where the supremum is taken over all open subsets of Rn. This concludes step 1.

Step 2. The energy estimate.
One may proceed here as in the proof of Lemma 2.2.1 using the Green’s kernel bounds
together with the usual cut-off procedure on F but there is an alternative shorter argument
which allows us to derive this energy-type bound. In fact, there are two different estimates
leading to the desired L2-bound, namely

∥N F∥L∞(Rn
+) ≤ C∥F∥Y,

whose validity has already been justified in step 1 and the second bound∥∥∥x1/2
n |∇N F|

∥∥∥2
L2(Rn

+)
≤ ∥N F∥L∞(Rn

+)∥xnF∥L1(Rn
+)

which may be deduced from a priori estimates. We prove the latter estimate by assuming
that F ∈ Y is smooth and has compact support in R

n
+. Thus N F is smooth and it is not

difficult to justify the formal calculations below. Now multiply the equation −∆N F = F
in R

n
+ by xnN F and integrate by parts over Rn+ to obtain

−
ˆ
R
n
+

(xnN F) ·∆N Fdx =
ˆ
R
n
+

xnF ·N Fdx.

The left hand side of this identity further simplifies to

−
ˆ
R
n
+

(xnN F) ·∆N Fdx =
m∑
i=1

n∑
j=1

ˆ
R
n
+

∂j(xdN Fi)∂jN Fidx

=
m∑
i=1

n∑
j=1

ˆ
R
n
+

(
xn|∂jN Fi |2 +∂jxnN Fi∂jN Fi

)
dx

=
ˆ
R
n
+

xn|∇N F|2dx+
m∑
i=1

ˆ
R
n
+

∂n(N Fi)N Fidx

=
ˆ
R
n
+

xn|∇N F|2dx.
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As such, with the aid of Hölder’s inequality, this implies
ˆ
R
n
+

xn|∇N F|2dx =
ˆ
R
n
+

xnF ·N Fdx

≤ ∥N F∥L∞(Rn
+)∥xnF∥L1(Rn

+)

which completes this particular step and finishes the proof of Lemma 2.2.3.

Next, one shall prove that the solution u satisfies the condition u(x) ∈ N a.e. x ∈ Rn+.
This is done by invoking a suitable maximum principle (for unbounded domains). Let L
be a uniformly elliptic operator in Ω ⊂ R

n (possibly unbounded). We say that L satisfies
the maximum principle if for u ∈W 2,n

loc (Ω),

∥u∥L∞(Ω) <∞, Lu ≥ 0 in Ω and limsup
x→P

u(x) ≤ 0 for every P ∈ ∂Ω

implies
u ≤ 0 in Ω.

It is well-known that if Ω is unbounded such that its complement set R
n \Ω contains

an open infinite cone, then L = ∆ + c for c non-positive function satisfies the maximum
principle (see [BCN97, Lemma 2.1]). A first step towards proving the geometric constraint
is to estimate the distance (in the L∞-norm) between the solution and the target manifold
N .

Proposition 2.2.4. Assume that f is a measurable bounded map into N , compact smooth
manifold. There exists a constant C > 0 independent of f with

dist(v(x),N ) ≤ C∥f ∥L∞(Rn−1) (2.2.12)

for all x ∈ Rn+. For all Λ > 0, there exists C1 > 0 depending on Λ and N such that if f belongs
to BMO(Rn−1,N ), then

dist(v(x),N ) ≤ C1∥f ∥BMO(Rn−1) +Λ (2.2.13)

for every x ∈Rn+. Here, v is the Poisson extension of f .

Proof. We only give the proof of (2.2.13) for the first statement (2.2.12) directly follows
from the fact that the distance function is evaluated with respect to the sup norm. Pick

a real number ℓ > 0, fix x = (x′ ,xn) in R
n
+ and put fx =

 
Bℓ(0)

f (x′ − xny′)dy′. Owing to the

triangle inequality, one has the bound dist(v(x),N ) ≤ dist(v(x′ ,xn), fx) + dist(fx,N ). Since
f (y′) ∈N for all y′ ∈Rn−1, we find that

dist(fx,N ) ≤ |fx − f (x′ − xnz′)| for any z′ ∈ Bℓ(0),
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from which we easily deduce the bound

dist(fx,N ) ≤ ∥f ∥BMO(Rn−1). (2.2.14)

Also note that the Poisson kernel for the Laplace operator obeys Pxn(x
′) = x1−n

n P (x′/xn)

with |P (x′)| ≤ C

(|x′ |2 + 1)n/2
. This permits us to write

v(x) =
ˆ
R
n−1
P (y′)f (x′ − xny′)dy′ ,

from which it follows that

|v(x)− fx| =
∣∣∣∣∣ˆ

R
n−1
P (y′)[f (x′ − xny′)− fx]dy′

∣∣∣∣∣
=

∣∣∣∣∣(ˆ
Bℓ(0)

+
ˆ
R
n−1\Bℓ(0)

)
P (y′)[f (x′ − xny′)− fx]dy′

∣∣∣∣∣
≤ Cn

ˆ
Bℓ(0)

|f (x′ − xny′)− fx|
(|y′ |2 + 1)n/2

dy′ + 2∥f ∥L∞(Rn−1)

ˆ
R
n−1\Bℓ(0)

|P (y′)|dy′

≤ Cnℓn−1∥f ∥BMO(Rn−1) +CN

ˆ ∞
ℓ

rn−2

(1 + r2)n/2
dr

where the second estimate is a simple consequence of the compactness of N . With an
appropriate choice of the radius ℓ depending on Λ and N , one can achieve

CN

ˆ ∞
ℓ

rn−2

(1 + r2)n/2
dr ≤Λ.

Consequently, one has

|v(x)− fx| ≤ C′∥f ∥BMO(Rn−1) +Λ; C′ := C′(Λ,N ),

which combined with (2.2.14) gives the desired estimate.

2.2.3 Reformulation of the problem

The Dirichlet problem for (2.1.1) coupled with a boundary condition (2.1.2) can be recast
as

u(x) = v(x) +N (Γ (u)(∇u,∇u))(x); u(x) ∈N a.e x ∈Rn+ (2.2.15)

where v represents the harmonic extension of f andN the Newtonian potential. Thus, for
boundary data which are small in the L∞-norm (and BMO-semi-norm) one can uniquely
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solve Eq. (2.2.15) via Banach fixed point argument. However, there is an incompatibility
which emanates from the fact that u is thought of as an R

m-valued map whereas the
second fundamental form Γ (·) must be defined on N . To override this, we construct an
extension of Γ to the entire space R

m. In this respect, of significance to us is the nearest
point projection map whose Hessian is expressed in terms of the second fundamental
form Γ . We know (see for instance [Sim96, Appendix to chapter 2, Theorem 1]) that ifN is
a compact smooth manifold isometrically embedded in R

m, then N has a ρ-neighborhood
in R

m of the form Uρ = {z ∈ Rm : dist(z,N ) < ρ} such that the projection PN which maps a
point z ∈ Uρ to the closest point in N is well-defined and smooth. In addition, it satisfies
a number of properties which we partially recall below:

(a1) PN (z) ∈N, z −PN (z) ∈ (TPN (z)N )⊥, |PN (z)− z| = dist(z,N ) for all z ∈Uρ

(a2) |y − z| > dist(z,N ) for any y ∈N \ {PN (z)}, for all z ∈Uρ

(a3) PN (z+ y) = z for z ∈N , y ∈ (TzN )⊥, |y| < ρ and DV PN |z = P⊥PN (z)(V ), z ∈Uρ, V ∈Rm

(a4) Hess PN (z)(V1,V2) = −Γ (z)(V1,V2) for z ∈N and V1,V2 ∈ TzN

where DV stands for the directional derivative in the direction of V , P⊥PN (z) denotes the
orthogonal projection of Rm onto TPN (z)N and Hess PN (z) denotes the Hessian of PN at z.
We then extend the second fundamental form Γ as follows: take a smooth extension of
the projection PN , say P ∈ C∞(Rm,Rm) so that P restricted to Uρ coincides with PN and
define the extension Γ̃ of Γ by

Γ̃ (z)(V ,W ) = −Hess P (z)(V ,W ), z ∈Rm; V ,W ∈ TzRm.

In the special case N = S
m−1, the nearest point projection map P

S
m−1 can be realized ex-

plicitly. Clearly, the set U 1
4

= {u ∈ Rm : 3
4 ≤ |u| ≤

5
4 } is a neighborhood of Sm−1 in R

m and

one may consider P
S
m−1 :U 1

4
→ S

m−1, u 7→ u
|u|

. Now, introduce the operator S defined by

Su(x) = v(x) +N [̃Γ (u)(∇u,∇u)](x), x ∈Rn+. (2.2.16)

Note that the above formulation contains the information at boundary. Our problem then
becomes that of finding a map u = (u1, ...,um) such that

u = Su in R
n
+; u ∈N a.e. in R

n
+. (2.2.17)

In the sequel, we study some basic properties of the operator S , especially those required
for an eventual application of the Banach fixed point theorem. To this end, since v ∈ X
thanks to Lemma 2.2.1 consider the closed ball BX

ϵ (v) ⊂ X centered at v with radius ε,

BX
ε (v) = {u ∈ X : ∥u − v∥X ≤ ε}.
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Lemma 2.2.5. Assume that the Dirichlet data f : Rn−1→N satisfies ∥f ∥L∞(Rn−1) ≤ ε. For all u
in the ball BX

ε (v), there exists C > 0 depending only on n with ∥u∥X ≤ Cε.

The proof of this result immediately follows from Lemma 2.2.1. Likewise, we have

Lemma 2.2.6. Given f ∈ BMO(Rn−1,N ) with ∥f ∥BMO(Rn−1)m ≤ ε, the following estimates hold,
namely

|u|X ≤ cε, ∥u∥L∞(Rn
+) ≤ C for all u ∈ BX

ε (v)

where c := c(n) > 0 and C := C(ε,N ) > 0.

The next result establishes the mapping properties of S and arises as a direct conse-
quence of the Lemmas 2.2.5 and 2.2.6.

Lemma 2.2.7. There exists ε′ > 0 such that the operator S maps BX
ε′ (v) into itself whenever f ∈

L∞(Rn−1) satisfies the smallness condition ∥f ∥L∞(Rn−1) ≤ ε′. Furthermore, if ∥f ∥BMO(Rn−1) ≤ ε′

then S : BX
ε′ (v)→ BX

ε′ (v) continuously with respect to the semi-norm | · |X.

Proof. Let ε0 > 0 and let u ∈ BX
ε0

(v), we want to achieve ∥Su−v∥X ≤ ε0. Taking into account
(2.2.16) and by using the potential estimate from Lemma 2.2.3, it follows that

∥Su − v∥X = ∥N Γ̃ (u)(∇u,∇u)∥X ≤ C∥̃Γ (u)(∇u,∇u)∥Y

= C
(

sup
xn>0

x2
n∥̃Γ (u)(∇u,∇u)(·,xn)∥L∞(Rn−1)+

sup
(x′ ,xn)∈Rn

+

x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn |̃Γ (u)(∇u,∇u)(y′ , yn)|dyndy′

)
≤ C

(
sup
xn>0

x2
n∥∇u(·,xn)∥2L∞(Rn−1)+

sup
(x′ ,xn)∈Rn

+

x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇u(y′ , yn)|2dyndy′

)
≤ C

(
∥xn∇u(·,xn)∥L∞(Rn

+)+

sup
(x′ ,xn)∈Rn

+

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇u(y′ , yn)|2dyndy′

)1/2)2

≤ C∥u∥2X ≤ Cε
2
0 ≤ ε0

due to Lemma 2.2.5 as long as ε0 is chosen small enough. Mimicking the preceding proof,
one obtains the second part of the Lemma (relying in this case on Lemma 2.2.6) whenever
f is sufficiently small in BMO.
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Lemma 2.2.8. Let ε′ > 0 be as in Lemma 2.2.7. There exists ε0 ∈ (0, ε′) with the property that
if ∥f ∥L∞(Rn−1) ≤ ε0 then the operator S : BX

ε0
(v) → BX

ε0
(v) is a contraction map, that is, there

exists θ ∈ (0,1) with

∥Su −Sw∥X ≤ θ∥u −w∥X for all u,w ∈ BX
ε0

(v).

Proof. By linearity ofN and in light of Lemma 2.2.3, we have that

∥Su −Sw∥X =
∥∥∥N [̃Γ (u)(∇u,∇u)− Γ̃ (w)(∇w,∇w)]

∥∥∥
X

≤ C
∥∥∥(̃Γ (u)(∇u,∇u)− Γ̃ (u)(∇w,∇w)) + (̃Γ (u)(∇w,∇w)− Γ̃ (w)(∇w,∇w))

∥∥∥
Y

≤ C(J1 + J2)

where
J1 =

∥∥∥|∇(u −w)|(|∇u|+ |∇w|)
∥∥∥

Y
and J2 =

∥∥∥|u −w||∇w|2∥∥∥
Y
.

We estimate J1 using Hölder’s inequality and Lemma 2.2.5 as follows.

J1 = sup
xn>0

x2
n

∥∥∥|∇(u −w)|(|∇u|+ |∇w|)(·,xn)
∥∥∥
L∞(Rn−1)

+

sup
x′∈Rn−1,xn>0

x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇(u −w)|(|∇u|+ |∇w|)dyndy′

≤ sup
xn>0

xn∥∇(u −w)(·,xn)∥L∞(Rn−1) sup
xn>0

xn
(
∥∇u(·,xn)∥L∞(Rn−1) + ∥∇w(·,xn)∥L∞(Rn−1)

)
+

sup
x′∈Rn−1,xn>0

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn(|∇u|+ |∇w|)2dyndy

′
)1/2

·

sup
x′∈Rn−1,xn>0

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇(u −w)|2dyndy′

)1/2

≤ C(|u|X + |w|X)
(

sup
xn>0

xn∥∇(u −w)(·,xn)∥L∞(Rn−1)+

sup
x′∈Rn−1,xn>0

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇(u −w)|2dyndy′

)1/2)
≤ Cε0

(
sup
xn>0

xn∥∇(u −w)(·,xn)∥L∞(Rn−1)+

sup
x′∈Rn−1,xn>0

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇(u −w)|2dyndy′

)1/2)
≤ Cε0∥u −w∥X.
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Estimating J2 does require the use of the inequality a2 + b2 ≤ (a+ b)2, a,b ≥ 0 and Lemma
2.2.5. Indeed,

J2 =
∥∥∥|∇w|2|u −w|∥∥∥

Y

= sup
xn>0

x2
n

∥∥∥|∇w|2|u −w|(·,xn)
∥∥∥
L∞(Rn−1)

+ sup
x′∈Rn−1,xn>0

x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇w|2|u −w|dyndy′

≤ sup
xn>0

x2
n∥∇w(·,xn)∥2L∞(Rn−1)∥u −w∥L∞(Rn

+)+

∥u −w∥L∞(Rn
+) sup
x′∈Rn−1,xn>0

x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇w|2dyndy′

≤ ∥u −w∥L∞(Rn
+)

(
sup
xn>0

xn∥∇w(·,xn)∥L∞(Rn−1)+

sup
x′∈Rn−1,xn>0

(
x1−n
n

ˆ
Bxn (x′)

ˆ xn

0
yn|∇w|2dyndy′

)1/2)2

≤ C∥u −w∥L∞(Rn
+)∥w∥2X

≤ Cε2
0∥u −w∥X.

Summarizing, we find that

∥Su −Sw∥X ≤ Cε0(1 + ε0)∥u −w∥X.

One can make θ = Cε0(1+ε0) < 1 if ε′ is chosen sufficiently small. This achieves the proof
of Lemma 2.2.8.

Following the lines of the above proof, we easily deduce the following.

Lemma 2.2.9. Let ε′ > 0 be the number in Lemma 2.2.7. There exists ε1 ∈ (0, ε′) and θ0 ∈ (0,1)
such that whenever f ∈ BMO(Rn−1) with f (x′) ∈ N a.e. x′ ∈ Rn−1 satisfies ∥f ∥BMO(Rn−1) ≤ ε1,
the operator S : BX

ε1
(v)→ BX

ε1
(v) is a θ0-contraction map, that is,

∥Su −Sw∥X ≤ θ0∥u −w∥X for all u,w ∈ BX
ε1

(v).

2.3 Proofs of the main results

This section aims at proving Theorems 2.1.2 and 2.1.3 by making use of the auxiliary
results derived in the previous section.

24



Proof of Theorem 2.1.2

A simple application of the contraction principle establishes the existence and uniqueness
of solutions. The main task is to show that the solution u satisfies the constraint u ∈N .

Proof. In light of Lemmas 2.2.7 and 2.2.8 and the Banach fixed-point Theorem, there
exists ε0 := ε0(N,n) such that for ∥f ∥L∞(Rn−1) ≤ ε0, Eq. (2.2.17) admits a unique small
solution in X. Now, we need to show that this solution lies in N using Proposition 2.2.4.
As announced in Section 2.2, we first show that the distance from the solution u to N can
be appropriately controlled so that u lives in a tubular neighborhood of N . Let x ∈Rn+, by
virtue of Proposition 2.2.4, we have that

dist(u(x),N ) ≤ dist(v(x),N ) + sup
x∈Rn

+

|u(x)− v(x)|

≤ c∥f ∥L∞(Rn−1) + ∥u − v∥L∞(Rn
+)

≤ cε0 + c′∥u∥2X
≤ Cε0(1 + ε0).

This implies that u ∈ Uρ0
with Cε0(1 + ε0) < ρ0 (which may be chosen small as far as ε0 is

sufficiently small). As a consequence, one obtains the following identity

∆u = ∇2PN (u)(∇u,∇u) in R
n
+, (2.3.1)

from (a4) (see section 2.3). Now define for z ∈Uρ0
, the map ΥN (z) = z −PN (z) and observe

that the conclusion immediately follows if ΥN (u) vanishes identically. The existence the-
ory reveals that the gradient of the solution u to the Dirichlet problem (2.1.1)-(2.1.2) is
locally bounded; this qualitative property as pointed out in Remark 2.1.5 entails higher
regularity of u. In fact, u ∈ C∞loc ∩ L

∞(Rn+), ΥN (u) is bounded and the following holds in
the weak sense

∆

(
1
2
|ΥN (u)|2

)
= ⟨ΥN (u),∆ΥN (u)⟩+ |∇ΥN (u)|2

=
〈
ΥN (u),∇2ΥN (u)(∇u,∇u)

〉
+ ⟨ΥN (u),∇ΥN (u)(∆u)⟩+ |∇ΥN (u)|2

= −
〈
ΥN (u),∇2PN (u)(∇u,∇u)

〉
− ⟨ΥN (u),∇ΥN (u)(∆u)⟩+ |∇ΥN (u)|2

= |∇ΥN (u)|2

where we have successively used besides the formulas ∇ΥN (z)(p) = (Id − ∇PN (z))(p) and
∇2ΥN (z)(p,q) = −∇2PN (z)(p,q) for all p,q ∈Rm, the identity (2.3.1) together with the prop-
erties (a1) and (a3). Indeed, it holds that

ΥN (u) ∈ (TPN (u)N )⊥ and ∇PN (u)(∇2PN (u)(∇u,∇u)) ∈ TPN (u)N
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for u ∈ Uρ0
. On the other hand, since PN coincides with the identity map of N at the

boundary, it follows that ΥN (u) = 0 on R
n−1. Hence, G(u) = 1

2 |ΥN (u)|2 is a bounded sub-
harmonic function in R

n
+, one can apply the maximum principle to obtain the conclusion

u = PN (u) ∈N . The proof of Theorem 2.1.2 is now complete.

Proof of Theorem 2.1.3

Here, we argue similarly as before given that the auxiliary results used in the proof of
Theorem 2.1.2 have analogous versions for data sitting in BMO(Rn−1).

Proof. Thanks to Lemmas 2.2.7 and 2.2.9, an application of the Banach fixed point Theo-
rem shows that Eq. (2.2.17) has a unique solution u in BX

Cε1
(v) = {u ∈ X : ∥u − v∥X ≤ Cε1}

for some constant C > 0 whenever f satisfies the smallness condition ∥f ∥BMO(Rn−1) ≤ ε1.
In the next lines, we prove that u ∈N . In effect, it follows from Proposition 2.2.4 (applied
with Λ = ε1) that

dist(u(x),N ) ≤ dist(v(x),N ) + ∥u − v∥X
≤ C1ε1 + ε1 +Cε1

≤ C2ε1

for any x ∈ R
n
+. This shows in particular that u ∈ Uρ provided C2ε1 < ρ. Therefore, as

before we can define ΥN (u) and observe that ΥN (u)
∣∣∣
R
n−1 = 0. Then by a similar argument

to that performed above we conclude that u(x) ∈N a.e. x ∈Rn+.

2.4 Large data situation in bounded domains

In this section we attempt to answer the question whether or not the Dirichlet problem
for weakly harmonic maps equations subject to “large” data in BMO(Rn−1) or L∞(Rn−1)
is solvable (in the sense described in Section 2.1). In such a scenario, it is clear, based on
the theory which has been developed earlier that the norm of the solution in our func-
tion space X may grow, leading to a nonexistence result. This motivates the consideration
of stable smooth solutions of equation (2.1.1) and more specifically, boundary data which
are to a certain sense close to the latter – we shall be more precise regarding this statement
in subsequent lines. Existence of stable harmonic maps is not a restricting assumption as
exemplified by the class of harmonic maps into targets with nonpositive sectional cur-
vature (see Remark 2.4.2 below). Another class of stable harmonic maps includes local
minimizers of the energy E which are smooth under suitable conditions on boundary
data. Opting for a perturbation technique the main difficulty comes from the nonlin-
ear geometric constraints in the problem which we bypass by considering an appropriate
extension problem and maximum principle arguments as performed in the proof of The-
orems 2.1.2 and 2.1.3. However, we will need the source manifold to be bounded unlike
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the case treated earlier involving the half-space domain. Consider the weakly harmonic
maps equation

−∆u = Γ (u)(∇u,∇u) in Ω (2.4.1)

subject to the Dirichlet boundary condition

u|∂Ω = f (2.4.2)

where Ω ⊂ R
n is a C1,α, (α ∈ (0,1]) bounded domain. Our main Theorems in Section 2.1

claims that if f has a small L∞ or BMO norm, then Problem (2.4.1)-(2.4.2) is solvable in
W. Before we define the notion of stability, recall that a weak solution to BVP (2.4.1)-
(2.4.2) is a map u ∈ L∞ ∩W 1,2

f (Ω,N ) such that

ˆ
Ω

{
(∇u,∇φ) +

n∑
j=1

Γ (u)(∂ju,∂ju) ·φ
}
dx = 0 (2.4.3)

for all φ ∈ L∞ ∩W 1,2
0 (Ω,Rm) where (·, ·) denotes the standard scalar product in R

nm and

L∞ ∩W 1,2
f (Ω,N ) = {v ∈ L∞ ∩W 1,2(Ω,Rm) : v ∈N a.e. on Ω and v

∣∣∣
∂Ω

= f }.

Definition 2.4.1. Let u be a nontrivial weak solution of Eq. (2.4.1). We say that u is
strictly stable if

Qu(φ) :=
ˆ
Ω

{
|∇φ|2 +

n∑
j=1

RN (φ,∂ju)∂ju ·φ
}
dx ≥M∥φ∥2L2(Ω) (2.4.4)

for every φ ∈ L∞ ∩W 1,2
0 (Ω,Rm), φ ∈ TuN a.e. and for some M > 0. In case M = 0, we say

that u is stable.

In the above definition RN (·, ·)· denotes the curvature tensor of N which at each point
u of N is a trilinear map on TuN × TuN × TuN to TuN . The notion of strict stability
involving a weighted L2-norm on the R.H.S. of (2.4.4) appeared in the study of har-
monic maps with prescribed set of singularities [HM92]. Note that the integral expres-
sion in (2.4.4) up to a change in sign in the second term due to the symmetry feature
(RN (U,V )W,Z) = −RN ((U,V )Z,W ) represents the second variation formula of the energy
functional associated to (2.4.1), see [Sch83]. Thus stability of u and nonnegativeness of
the second variation of the energy are formally two equivalent notions.

Remark 2.4.2. If the target N has a nonpositive sectional curvature (in the sense of dis-
tributions) then any weakly harmonic map u : Ω→ N is stable, that is, u satisfies (2.4.4)
with M = 0.
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2.4.1 Function spaces and linear estimates

Recall the definition of the space of bounded mean oscillations defined on the boundary

BMO(∂Ω) =
{
f ∈ L1

loc(∂Ω) : ∥f ∥BMO(∂Ω) = sup
S⊂∂Ω

σ (S)−1
ˆ
S
|f (ξ)− fS |dσ (ξ)

}
where S = Sr(ζ), ζ ∈ ∂Ω is the surface ball centered at ζ with radius r > 0 and

fS =
 
S
f dσ =

1
σ (S)

ˆ
S
f dσ .

Call T (Sr(ζ)) = Ω∩ Br(ζ) the Carleson region associated to the surface ball Sr(ζ) and let
r0 > 0. A measure µ in Ω is termed Carleson if there exists a constant C > 0 depending
on r0 such that for all r ≤ r0, µ(T (Sr )) ≤ Cσ (Sr ) with dσ being the Lebesgue surface mea-
sure. Fabes & Neri in [FN80] showed that harmonic functions on Ω whose traces belong
to BMO(∂Ω) can also be characterized by means of Carleson measures. Indeed, u is har-
monic in Ω and the measure dµ(x) = |∇u(x)|2d(x)dx (d(x) is the distance from x to ∂Ω) is
Carleson if and only if u is the Poisson integral of f ∈ BMO(∂Ω). In addition,

sup
S⊂∂Ω

(
σ (S)−1

ˆ
T (S)

d(y)|∇u(y)|2dy
)1/2

≤ C∥f ∥BMO(∂Ω) (2.4.5)

where the supremum runs over all surface balls S ⊂ ∂Ω. Next, we introduce some func-
tion spaces which will be useful in the sequel. For ξ ∈ ∂Ω such that d(x) = |x − ξ |, we
use the shorthand T (S) for the Carleson region associated to the surface ball Sd(x)(ξ), i.e.
T (Sd(x)(ξ)).

Definition 2.4.3. We say that w : Ω → R
m belongs to W if the quantity ∥w∥W is finite

where

∥w∥W = sup
x∈Ω
|w(x)|+ sup

x∈Ω
d(x)|∇w(x)|+ sup

x∈Ω

(
d(x)1−n

ˆ
T (S)

d(y)|∇w(y)|2dy
)1/2

.

We denote by Z the space of functions F : Ω→R
m such that

∥F∥Z = sup
x∈Ω

d(x)2|F(x)|+ sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|F(y)|dy <∞.

Observe that the function spaces W and Z are simply the analogs of X and Y in
bounded domains respectively, which have been used earlier in Section 1, the fundamen-
tal difference being that the distance function to the boundary in this case is a bounded
function. Therefore, it is not surprising that some of the results derived in Section 2 per-
sist here. This is the case of the lemma below which provides some relevant information
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on the solutions to both homogeneous (subject to BMO and L∞ boundary data) and in-
homogeneous (with source term in Z) problems for the Laplacian. In what follows we set
[w]W to be

[w]W := sup
x∈Ω

d(x)|∇w(x)|+ sup
x∈Ω

(
d(x)1−n

ˆ
T (S)

d(y)|∇w(y)|2dy
)1/2

.

Lemma 2.4.4. Let F ∈ Z and u such that −∆u = F in Ω with u|∂Ω= f . The following conclu-
sions hold:

1. If f ∈ BMO(∂Ω), then u satisfies

[u]W ≤ C(∥f ∥BMO(∂Ω) + ∥F∥Z).

2. For f in L∞(∂Ω), u is an element of W and it holds that

∥u∥W ≤ c(∥f ∥L∞(∂Ω) + ∥F∥Z).

The generic constants C and c appearing in the above estimates only depend on the dimension
and Ω.

Proof. We distinguish between two steps.
Step 1. Assume that F = 0. We prove the corresponding two claims of the lemma.
Let f ∈ BMO(∂Ω,Rm), we would like to establish the bound [u]W ≤ c∥f ∥BMO(∂Ω). Note
that from the Carleson measure characterization of BMO(∂Ω), one only needs to verify
that the estimate

sup
x∈Ω

d(x)|∇u(x)| ≤ c∥f ∥BMO(∂Ω)

is valid. Pick x0 ∈ Ω, put R0 = d(x0)
2 and assume that B3R0

(x0) ⊂⊂ Ω. By harmonicity of
Diu (i = 1,2, · · · ,d) and standard interior estimates for the Laplace equation we have

|∇u(x0)|2 ≤ c
 
BR0/4(x0)

|∇u|2dy

≤ cR1−n
0 d(x0)−1

ˆ
BR0/4(x0)

|∇u|2dy.

Let ξ0,ξy ∈ ∂Ω such that d(x0) = |x0 − ξ0| and d(y) = |y − ξy |. Since |y − x0| ≤ d(x0)/8, we
have |y − ξ0| ≤ 9R0/4 and 7d(x0)/8 ≤ d(y) so that

|∇u(x0)|2 ≤ c′R1−n
0 d(x0)−2

ˆ
T (S 9R0

4
(ξ0))

d(y)|∇u|2dy,

29



from which it follows that

d(x0)2|∇u(x0)|2 ≤ c′R1−n
0

ˆ
T (S9R0/4(ξ0))

d(y)|∇u|2dy.

At this point, as x0 was chosen arbitrary we simply pass to the supremum over Ω on both
sides of the above inequality to deduce the desired estimate. For f bounded, the bounds

∥u∥L∞(Ω) ≤ c∥f ∥L∞(∂Ω) and sup
x∈Ω

d(x)|∇u(x)| ≤ C∥f ∥L∞(∂Ω) (2.4.6)

follows from elliptic interior estimates. Next, we prove the Carleson measure estimate

sup
x∈Ω

(
d(x)1−n

ˆ
T (S)

d(y)|∇u(y)|2dy
)1/2

≤ C∥f ∥L∞(Ω). (2.4.7)

Fix x ∈ Ω and let 2S := S2d(x)(ξ) be the surface ball with center at ξ ∈ ∂Ω and radius
2d(x). Denoting by 12S the characteristic function of 2S, we make the decomposition
f = 12Sf + (1 − 12S )f = f1 + f2 and write correspondingly u = u1 + u2 for the Poisson
extension of f to Ω. We first prove (2.4.7) for u2 with the aid of the following pointwise
decay bound for the Poisson kernel for the Laplacian in Ω:

|∇xP (x,ζ)| ≤ cd(x)
|x − ζ|n+1 , ζ ∈ ∂Ω

which can be found e.g. in [Ste72]. In effect, let y ∈ T (S), we have

|∇u2(y)| ≤
ˆ
|∇P (y,ζ)||f2(ζ)|dσ (ζ)

≤ cd(y)
ˆ
∂Ω\(2S)

|y − ζ|−(n+1)|f (ζ)|dσ (ζ)

≤ cd(y)∥f ∥L∞(∂Ω)

∞∑
i=1

ˆ
Si

|y − ζ|−(n+1)dσ (ζ)

where Si = 2i+1S \2iS. Let ζ ∈ Si , we have 2id(x) < |ζ −ξ | which by the triangle inequality
implies |y − ζ| ≥ |ξ − ζ| − |y − ξ | > 2id(x)− d(x) ≥ 2i−1d(x). Hence, we have that

|∇u2(y)| ≤ cd(y)d(x)−2∥f ∥L∞(∂Ω)

∞∑
i=1

2(1−i)(n+1)2(i+1)(n−1)

≤ Cd(x)−1∥f ∥L∞(∂Ω)

since d(y) ≤ d(x) whenever y ∈ T (S). Squaring the above inequality, multiplying both
sides by d(y) and integrating over the Carleson region T (S), we obtain(

d(x)1−n
ˆ
T (S)

d(y)|∇u2(y)|2dy
)1/2

≤ C∥f ∥L∞(∂Ω).
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This yields the bound we were looking for after taking the supremum over Ω on both
sides. To establish the corresponding estimate for u1, we assume without any restriction
that f1 is supported in 2S and that ∥u1∥L∞(Ω) is finite (in view of estimate (2.4.6)). Thus,
we have

ˆ
T (S)

d(y)|∇u1(y)|2dy ≤ C
ˆ
Ω

d(y)|∇u1|2dy ≤ C
ˆ
∂Ω

[N ∗u1(ζ)]2dσ (ζ) (2.4.8)

where N ∗u1(ζ) = sup
Γ (ζ)
|u1(x)| is the nontangential maximal function of u1, Γ (ζ) is the cone

in Ω with vertex at ζ ∈ ∂Ω. We note that the last estimate in (2.4.8) is due to Dahlberg
[Dah80]. Hence, from the mapping properties of the nontangential maximal function in
Lebesgue spaces (see [Dah79]) and the fact that Ω is smooth, we find from (2.4.8) that

ˆ
T (S)

d(y)|∇u1(y)|2dy ≤ C∥f1∥2L2(∂Ω) ≤ Cd(x)n−1∥f ∥2L∞(∂Ω).

This shows that (2.4.7) is valid and completes this part.
Step 2. We prove that any solution u of −∆u = F in Ω which vanishes on ∂Ω satisfies the
bound

∥u∥W ≤ C∥F∥Z. (2.4.9)

Under the condition that Ω satisfies the uniform exterior sphere condition, the Green
function GΩ for ∆ satisfies (see [GW82, Theorem 3.3])

GΩ(x,y) ≤ Cmin
(

1
|x − y|n−2 ,

d(y)
|x − y|n−1 ,

d(x)d(y)
|x − y|n

)
and

|∇GΩ(x,y)| ≤ Cmin
(
|x − y|1−n,

d(y)
|x − y|n

)
.

To derive the L∞-estimate, we may write u as the Green potential of F such that for x ∈Ω,
we have

|u(x)| ≤
ˆ
Ω

|GΩ(x − y)||F(y)|dy

≤
{ˆ
{y∈Ω: |x−y|≤2−1d(x)}

+
ˆ
{y∈Ω: |x−y|>2−1d(x)}

}
|GΩ(x − y)||F(y)|dy

= I + II.
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Since for any y ∈ B2−1d(x)(x) we have the inequality d(y) ≥ d(x)/2, we handle I as follows

I ≤ c sup
x∈Ω

(d2(y)|F(y)|)
ˆ
Ω∩B2−1d(x)(x)

d−2(y)|x − y|2−ndy

≤ c∥F∥Zd−2(x)
ˆ
B2−1d(x)(x)

|x − y|2−ndy

I ≤ c∥F∥Z. (2.4.10)

In order to estimate the second integral, we cover the set
{
y ∈Ω : |x−y| > 2−1d(x)

}
with the

family of annuli (Ai)i , Ai = 2iBd(x)(x) \ 2i−1Bd(x)(x) and use the above pointwise estimate
on the Green kernel to arrive at

II ≤
∞∑
i=0

ˆ
Ai

|F(y)|GΩ(x − y)dy

≤ C
∞∑
i=0

ˆ
Ai

d(x)d(y)|F(y)|
|x − y|n

dy

≤ Cd1−n(x)
∞∑
i=0

2−(i−1)n
ˆ

2iBd(x)(x)
d(y)|F(y)|dy.

It is easy to see that y ∈ T (2i+1S) whenever y ∈ 2iBd(x)(x) so that

II ≤
∞∑
i=0

2−(i−1)n2(i+1)(n−1)(2i+1d(x))1−n
ˆ
T (2i+1S)

d(y)|F(y)|dy ≤ C∥F∥Z.

Combining the latter with (2.4.10) yields the desired L∞-bound. The estimate of the
weighted-sup norm of ∇u is obtained in a similar fashion using the pointwise gradient
bounds on the Green kernel, details are omitted. In the same vein, the very last esti-
mate (bound on the Carleson measure norm of u) follows from a much stronger variant
which can be obtained via an integration by parts argument (testing the Poisson equation
against d(y)u) combined with the previous L∞-estimate. This finishes the proof of Lemma
2.4.4.

The main result of this section, pertaining to the solvability of the Dirichlet problem
(2.4.1) is the following

Theorem 2.4.5. Let v be a smooth solution of (2.4.1) subject to v
∣∣∣
∂Ω

= g ∈ C1(∂Ω) and assume
v obeys the strict stability condition (2.4.4). Then there exists ε > 0 such that for any (large)
bounded map f : ∂Ω→R

m satisfying ∥f −g∥L∞(∂Ω) ≤ ε, there exists a solution u of the Dirichlet
problem (2.4.1)-(2.4.2) in φ+ v + W. Moreover, this solution is unique in the ball

BW
cΩε = {u ∈W : ∥u −φ− v∥W ≤ cΩε}
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for some constant cΩ depending on the domain only. In particular, the solution u lies in a small
neighborhood of v, that is, ∥u − v∥W ≤ τ where τ depends on ε and Ω. Here, φ denotes the
Poisson extension of (f − g) to Ω.

Remark 2.4.6. If f is chosen large in BMO(∂Ω,N ), then the Poisson extension of h = f −g,
φh is also bounded and a similar smallness hypothesis on the BMO-perturbation h yields
the existence of a solution u such that u − v −φh is small in X.

The stability condition in Theorem 2.4.5, i.e. (2.4.4) can be replaced by an invertibility
condition for the linearized operator associated to Qv(·, ·). Indeed, consider the bilinear
form defined for any ψ,φ ∈W 1,2

0 (Ω) with φ ∈ TvN by

Qu(ψ,φ) :=
ˆ
Ω

{
(∇ψ,∇φ) +

n∑
j=1

RN (φ,∂ju)∂ju ·ψ
}
dx.

Our next result shows that the conclusion of Theorem 2.4.5 remains valid under a weaker
condition.

Proposition 2.4.7. Let φ ∈ W 1,2
0 (Ω) with φ ∈ TvN . If condition (2.4.4) is replaced by the

requirement that
Qv(ψ,φ) = 0 ∀ψ ∈ C∞0 (Ω) =⇒ ψ = 0, (2.4.11)

then the conclusion of Theorem 2.4.5 remains true.

2.4.2 Idea and structure of the proof of Theorem 2.4.5

We discuss in this part the procedure we adopt in establishing the claims in Theorem
2.4.5. Once again, the plan is to perform a suitable perturbation argument in order to
have a setting in which our hypotheses fit. To this end we convert the original equation
into a vanishing boundary data problem. Set h = f − g where g = v

∣∣∣
∂Ω

and denote by φh
the Poisson extension of h to Ω. Make the ansatz w = u − v −φh and realize that w solves
the boundary value problem

−∆w = Γ (v +w+φh)(∇(v +w+φh),∇(v +w+φh))− Γ (v)(∇v,∇v) in Ω, w
∣∣∣
∂Ω

= 0

which can be transformed into the following Dirichlet problem

−Lvw = F(v,φh,w) in Ω

w = 0 on ∂Ω
(2.4.12)

where −Lv is the operator acting on vector-valued functions defined on Ω and given by

Lvw := ∆w+
n∑
j=1

RN (w,∂jv)∂jv
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while the nonlinearity F(v,φh, ·) reads

F(v,φh,w) = Γ (v +w+φh)(∇(v +w+φh),∇(v +w+φh))− Γ (v)(∇v,∇v) +
n∑
j=1

RN (w,∂jv)∂jv.

The main focus is now on problem (2.4.12) for it is clear that from its solvability directly
follows the statement of Theorem 2.4.5. Assume for a moment that −Lv defined as an
operator from W to Z can be inverted so that problem (2.4.12) is reformulated as a fixed
point equation

find w ∈W : w = (−Lv)−1 ◦ F̃(v,φh,w) in Ω

where F̃(v,φh, ·) is a suitable extension of F(v,φh, ·) which we define in subsequent lines.
This allows us to avoid the geometric constraints which we treat separately. Hence, for so
long as the composition K(v,φh, ·) := (−Lv)−1 ◦ F̃(v,φh, ·) with v and φh as described above
can be shown to be a strict contraction mapping, we are done. With other words, this
amounts to saying that if altogether the following key estimate

∥w∥W ≤ C∥Lvw∥Z (2.4.13)

combined with the contraction property: ∃ θ0 ∈ (0,1) such that

∥F̃(v,φh,w1)− F̃(v,φh,w2)∥Z ≤ θ0∥w1 −w2∥W (2.4.14)

for w1 and w2 in some ball of W hold true, then Theorem 2.4.5 readily appears as a
consequence of an application of the Banach fixed point theorem. Note that estimate
(2.4.14) only makes sense once we know that F̃(v,φh,w) is an element of Z for any w ∈
W. However, −Lv does not possess these mapping properties. In contrast, what we do
know is that if the nonlinearity F̃(v,φh, ·) maps into the Sobolev space W −1,2(Ω), then the
Dirichlet problem (2.4.12) is uniquely solvable inW 1,2

0 (Ω). Moreover, the inverse operator
(−Lv)−1 :W −1,2(Ω)→W 1,2

0 (Ω) is continuous, that is,

∥w∥W 1,2
0 (Ω) ≤ C∥Lvw∥W −1,2(Ω)m .

This is a consequence of the stability condition (2.4.4), since it entails the coercivity of
the continuous bilinear form associated to −Lv onW 1,2

0 (Ω) and an application of the Lax-
Milgram theorem. On the other hand, it can be checked that neitherW 1,2

0 (Ω) is a subspace
of W nor F̃(v,φh,w) does lie in the Sobolev space W −1,2(Ω) whenever w ∈ W 1,2

0 (Ω). It
rather seems plausible to establish that the nonlinearity in (2.4.12) is well-behaved with
respect to the topology of the function space Z. By this, we mean for every w ∈W we have

F̃(v,φh,w) ∈ Z, (2.4.15)

which in turn shows that estimate (2.4.14) is legitimate. Summarizing, we shall prove
that the nonlinearity F̃(v,φh, ·) satisfies the needed properties (2.4.14) and (2.4.15) – this

34



will constitute the first part of the proof whereas the second segment aims at showing
that the operator −Lv is invertible and obeys the continuity property (2.4.13). A decisive
point in achieving these facts is that one has solvability of −Lvw =H in W 1,2

0 (Ω) for H in
the dual space W −1,2(Ω).

To define F̃(v,φh, ·), recall the relation between the nearest point projection map and
the second fundamental form

D2PN (u)(V ,W ) = −Γ (u)(V ,W ) (2.4.16)

whenever u ∈N for all V ,W ∈ TuN . Let P ∈ C∞(Rm,Rm) be any extension of PN such that
P
∣∣∣
Uϱ

= PN where Uϱ := {x ∈Rm : dist(x,N ) < ϱ} for some ϱ > 0 sufficiently small and define

Γ̃ (z)(V ,W ) =D2P (z)(V ,W ) for z ∈Rm. Then

F̃(v,φh,w) = Γ̃ (v +w+φh)(∇(v +w+φh),∇(v +w+φh))− Γ̃ (v)(∇v,∇v) +
n∑
j=1

RN (w,∂jv)∂jv.

(2.4.17)

Proof of Theorem 2.4.5. Part 1. We state a lemma in which one quantifies the statement
(2.4.15) and also shows that (2.4.14) is indeed true.

Lemma 2.4.8. Let v falling under the scope of Theorem 2.4.5 with v = g on ∂Ω and denote by
φh the Poisson extension of h = f − g. Then the map F̃(v,φh, ·) sends W onto Z and there exists
a dimensional constant C := C(Ω) and K := K(v) such that

∥F̃(v,φh,w)∥Z ≤ C∥w∥W(1 + ∥w∥W) +C∥φh∥W(1 + ∥φh∥W)+ (2.4.18)

C(∥w∥W + ∥φh∥W)(∥w∥2W + ∥φh∥2W +K(v)
)
.

In addition, if ∥h∥L∞(Ω) ≤ ε for some ε > 0 small, then there exists τ := τ(Ω, ε) and η ∈ (0,1)
such that for all w1,w2 in the closed ball BW

τ (0) = {w ∈W : ∥w∥W ≤ τ}, we have

∥F̃(v,φh,w1)− F̃(v,φh,w2)∥Z ≤ η∥w1 −w2∥W.

Proof of Lemma 2.4.8. Observe that (2.4.17) can further be written as

F̃(v,φh,w) = F1(v,φh,w) +F2(v,φh,w) +F3(v,φh,w)

where

F1(v,φh,w) = Γ̃ (v)(∇(w+ v +φ),∇(w+ v +φ))− Γ̃ (v)(∇v,∇v)

F2(v,φh,w) =
n∑
j=1

RN (w,∂jv)∂jv,

F3(v,φh,w) = Γ̃ (w+ v +φh)(∇(w+ v +φh),∇(w+ v +φh))− Γ̃ (v)(∇(w+φh + v),∇(w+φh + v))
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with v and φh are as described above. Since Γ̃ (·, ·) and RN (·, ·)· are smooth maps, one can
easily verify that

|F1(v,φh,w)| ≤ c1(|∇v||∇(w+φh)|+ |∇(w+φh)|2) (2.4.19)

where c1 := c1(∥v∥L∞(Ω)) and there exist c2, c3 > 0 with

|F2(v,φh,w)| ≤ c2|w||∇v|2, |F3(v,φh,w)| ≤ c3|w+φh||∇(w+ v +φh)|2. (2.4.20)

Let w ∈W, we have

∥F̃(v,φh,w)∥Z = sup
x∈Ω

d(x)2|F̃(v,φh,w)(x)|+ sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|F̃(v,φh,w)(y)|dy := I1 + I2.

Making use of (2.4.19) and (2.4.20), we separately estimate each of the above terms as
follows. For the first term,

I1 ≤ C
[

sup
x∈Ω

d(x)2(|∇v||∇(w+φh)|+ |∇(w+φh)|2) + sup
x∈Ω

d(x)2(|w||∇v|2)+

sup
x∈Ω

d2(x)(|w+φh||∇(w+φh + v)|2)
]

≤ C
[
C(v)sup

x∈Ω
d(x)(|∇φh|+ |∇w|) + sup

x∈Ω
d2(x)(|∇w|2 + |∇φh|2) +C(v)∥w∥L∞(Ω)+

(∥w∥L∞(Ω) + ∥φh∥L∞(Ω))sup
x∈Ω

d2(x)(|∇w|2 + |∇φh|2 + |∇v|2)
]

≤ C∥w∥W(1 + ∥w∥W) +C∥φh∥W(1 + ∥φh∥W) +C(∥w∥W + ∥φh∥W)(∥w∥2W + ∥φh∥2W +C(v)
)
.
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Taking into account the hypotheses on v, it follows that

I2 = sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|F̃(v,φh,w)(y)|dy

≤ C
[

sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)(|∇v||∇(w+φh)|+ |∇(w+φh)|2)dy+

sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|w||∇v|2dy + sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|w+φh||∇(w+φh + v)|2dy
]

≤ C
[
C(v)sup

x∈Ω
d(x)

1−n
2
∥∥∥d(·)1/2|∇w|

∥∥∥
L2(T (S))

+ sup
x∈Ω

d(x)
1−n

2
∥∥∥d(·)1/2|∇φh|

∥∥∥
L2(T (S))

+

sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇w|

∥∥∥2
L2(T (S))

+ sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇φh|

∥∥∥2
L2(T (S))

+

C(v)∥w∥L∞(Ω) + (∥w∥L∞(Ω) + ∥φh∥L∞(Ω))
(
sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇w|

∥∥∥2
L2(T (S))

+

sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇φh|

∥∥∥2
L2(T (S))

+C(v)
)]

≤ C
[
∥w∥W(1 + ∥w∥W) +C∥φh∥W(1 + ∥φh∥W) + (∥w∥W + ∥φh∥W)(∥w∥2W + ∥φh∥2W +C(v))

]
.

Collecting the bounds on I1 and I2 and adding them up we conclude on the validity of
(2.4.18). Next, we estimate F̃(v,φh,w1) − F̃(v,φh,w2) for w1,w2 ∈W under the condition
that h = f − g is small in the L∞-norm. Write

F̃(v,φh,w1)− F̃(v,φh,w2) := A+B+C

where

A = Γ̃ (w1 + v +φh)(∇(w1 + v +φh),∇(w1 + v +φh))−
Γ̃ (w2 + v +φh)(∇(w1 + v +φh),∇(w1 + v +φh))

B = Γ̃ (w2 + v +φh)(∇(w1 + v +φh),∇(w1 + v +φh))−
Γ̃ (w2 + v +φh)(∇(w2 + v +φh),∇(w2 + v +φh))

C =
n∑
i=1

RN (w2 −w1,∂iv)∂iv

so that it suffices to estimate each of these quantities in Z. For the same reasons as above,
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we have

∥A∥Z ≤ C sup
x∈Ω

d(x)2|(w1 −w2)(x)||∇(w1 + v +φh)|2+

C sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|w1 −w2||∇(w1 + v +φh)|2dy

≤ C∥w1 −w2∥L∞(Ω)

(
sup
x∈Ω

d2(x)|∇(w1 + v +φh)|2 +C(v)+

sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇w1|

∥∥∥2
L2(T (S))

+ sup
x∈Ω

d(x)1−n
∥∥∥d(·)1/2|∇φh|

∥∥∥2
L2(T (S))

)
≤ C∥w1 −w2∥W

(
∥w1∥2W + ∥φh∥2W +C(v)

)
(2.4.21)

Observe that B can further be written as

Γ̃ (w2 + v +φh)(∇(w1 −w2),∇(w1 + v +φh)) + Γ̃ (w2 + v +φh)(∇w2,∇(w1 −w2))+

Γ̃ (w2 + v +φh)(∇(w1 −w2),∇(v +φh))

from which we deduce that

∥B∥Z ≤ C sup
x∈Ω

d(x)2(|∇(w1 −w2)(x)||∇w1 + v +φh|) +C sup
x∈Ω

d(x)2(|∇(w1 −w2)||∇w2(x)|+

C sup
x∈Ω

d(x)2(|∇(w1 −w2(x)||∇(v +φh)|)+

C sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|∇(w1 −w2)||∇(w1 + v +φh)|dy+

C sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|∇(w1 −w2)||∇w2|dy+

C sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|∇(w1 −w2)||∇(v +φh)|dy

≤ C∥w1 −w2∥W(∥w1∥W + ∥w2∥W + ∥φh∥W +C(v)) (2.4.22)

where we have applied Hölder’s inequality to estimate the integral terms. Finally, we have

∥C∥Z ≤ C sup
x∈Ω

d(x)2|∇v|2|w1 −w2|+C sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|∇v|2|w1 −w2|dy

≤ CC(v)∥w1 −w2∥W. (2.4.23)

The generic constant appearing in (2.4.21), (2.4.22) and (2.4.23) depends on diam Ω.
Recall that φh is small in W since h is small in L∞(∂Ω) from Lemma 2.4.4. For w1 and
w2 in the closed ball BW

τ (0) of W, we deduce in view of the above bounds on A, B and
C that the second part of Lemma 2.4.8 holds true. The proof of Lemma 2.4.8 is now
complete.
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Part 2. Here we prove the invertibility of the operator −Lv together with (2.4.13). Let
us introduce the operator L := ∆+ ℓ acting on R

m-valued functions defined on Ω where ℓ
is a smooth linear map. Consider the zero data Dirichlet boundary value problem

−Lw(x) = F(x), x ∈Ω
w(x) = 0, x ∈ ∂Ω

(2.4.24)

where F ∈ Z. Remark that the operatorLv has the form of L with

ℓ(w) =
n∑
j=1

RN (w,∂jv)∂jv.

Now if w0 is a solution of the Poisson equation −∆w0 = F in Ω with zero data at the
boundary, then w1 = w −w0 solves the Dirichlet problem

−Lw1 = F0 :=
n∑
j=1

RN (w0,∂jv)∂jv in Ω

w1
∣∣∣
∂Ω

= 0.

(2.4.25)

At this point, we only need to show that w1 belongs to W with a corresponding "good"
estimate since the solution w0 is well understood by now due to Lemma 2.4.4. A first step
towards this is the following

Claim 2.4.9. F0 belongs to Z∩W −1,2(Ω).

Let us momentarily defer the proof of this claim and observe that it implies the exis-
tence of a unique w1 ∈W 1,2

0 (Ω) solving (2.4.25). The extra information F0 ∈ Z will enable

us to improve the regularity of w1 via an iterative scheme. Set F1 =
n∑
j=1

RN (w1,∂jv)∂jv

and let w2 be such that −∆w2 = F0 in Ω. One can easily verify that F1 ∈ L2(Ω) and that
w3 = w1 −w2 is a solution to the problem −∆w3 = F1 with zero data on ∂Ω. This implies
by elliptic regularity theory w3 ∈ W 2,2(Ω). Iterating this procedure, we eventually find
w1 ∈W. Hence, w = w1 +w0 ∈W and ∥w∥W ≤ C∥F∥Z. This, in concert with part 1, proves
(2.4.13). By the method of continuity, −Lv is invertible. Moreover, for w1,w2 ∈ BW

τ (0), we
have in view of (2.4.13) and using Lemma 2.4.8 from part 1,

∥K(v,φ,w1)−K(v,φ,w2)∥W ≤ C∥F̃(v,φ,w1 −w2)∥Z
≤ ε∥w1 −w2∥W

where ε = ε(τ) can be made small if τ is sufficiently small. Thus, K(v,φ, ·) is a strict
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contraction mapping. We now verify that F0 ∈ Z∩W −1,2(Ω).

∥F0∥Z = sup
x∈Ω

d(x)2|F0(x)|+ sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)|F0(y)|dy

= I + II.

Using the smoothness of RN and the fact that w0 ∈W, one finds that

I ≤ sup
x∈Ω

d(x)2
∣∣∣∣∣ n∑
j=1

RN (w0,∂jv)∂jv
∣∣∣∣∣ ≤ C(v)∥w0∥W

≤ C(v)∥F∥Z.

For the solid integral, we have

II ≤ sup
x∈Ω

d(x)1−n
ˆ
T (S)

d(y)
∣∣∣∣∣ n∑
j=1

RN (w0,∂jv)∂jv
∣∣∣∣∣dy

≤ C(v)∥w0∥L∞(Ω)

≤ C(v)∥w0∥W ≤ C(v)∥F∥Z.

Now we establish that F0 ∈ W −1,2(Ω). Let ϕ ∈ W 1,2
0 (Ω), using the integration by parts

formula and Hölder’s inequality, it follows that∣∣∣∣∣⟨F0,ϕ⟩W −1,2,W 1,2
0

∣∣∣∣∣ =
∣∣∣∣∣ˆ

Ω

(
n∑
j=1

RN (w0,∂jv)∂jv) ·ϕdx
∣∣∣∣∣

≤ C(v)∥w0∥W∥ϕ∥L2(Ω)

≤ C(v)∥F∥Z∥ϕ∥W 1,2(Ω).

To conclude the proof of Theorem 2.4.5, one needs to show that w + φh + v ∈ N . Since
v ∈N , it holds that

dist(w+φh + v,N ) ≤ C∥w+φh∥L∞(Ω)

≤ C(∥w∥W + ∥φh∥W) ≤ Cε

for ε > 0 small. Thus w +φh + v ∈ Uε′ , ε′ = Cε (with Uε′ as defined above) so that one can
define ΥN (w +φh + v) = w +φh + v − PN (w +φh + v). It is clear that ΥN (w +φh + v)

∣∣∣
∂Ω

= 0

because (w+φh + v)
∣∣∣
∂Ω
∈N . Moreover, similar calculations to those performed in Section

2.3 reveals that ΥN (w+φh +v) is subharmonic in Ω. As a consequence, ΥN (w+φh +v) = 0
in Ω. This achieves the Proof of Theorem 2.4.5.
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Proof of Proposition 2.4.7. We first solve the inhomogeneous linear problem −Lvw =H in
W 1,2

0 (Ω) forH in Z. The remaining bit of the proof will just be a reprise of the argument in

part 2 of the proof of Theorem 2.4.5. Again, writeLv := ∆+ ℓ with ℓ(·) =
n∑
j=1

RN (·,∂jv)∂jv

and set K = (−∆)−1 ◦ ℓ. The operator ℓ is bounded and compact from W 1,2
0 (Ω) to L2(Ω).

On the other hand, the inverse Laplacian (−∆)−1 : L2(Ω) → L2(Ω) is also bounded and
compact so that K can be realized as a linear bounded compact operator from W 1,2

0 (Ω) to
L2(Ω) and H̃ = (−∆)−1H ∈ L2(Ω) since (−∆)−1 maps continuously Z into W. Our problem
therefore reduces to that of solvingw+Kw = H̃ in Ω

w|∂Ω = 0.

By virtue of the hypothesis in Proposition 2.4.7, the trivial solution is the only solution
of w + Kw = 0 in Ω with vanishing boundary data. Hence, existence of a unique solu-
tion for the above problem in W 1,2

0 (Ω) is a consequence of the Fredholm alternative. The
conclusion then follows from the proof of Theorem 2.4.5 (see part 2) as previously men-
tioned.
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Chapter 3

Well-posedness of Chemotaxis-fluids
models

3.1 Introduction

Micro-organisms (e.g. bacteria) have very limited ability to adapt to fluid environments
due to their small size. They respond to detectable change by swimming towards spe-
cific regions. The orientation mechanism by which they approach or are repelled from a
chemical source is known as chemotaxis. When the fluid is incompressible, upon assum-
ing that swimmers contribute at a very small scale to the swimmers-fluid suspension and
that hydrodynamics interactions between swimmers (e.g. cell-cell interaction, which can
lead to collective motion, see for instance [CM17] and cited works therein) are negligible,
the authors in [TCD+05] proposed the following mathematical model

∂tc −Dc∆c+nf (c) +u · ∇c = 0 in Ω× (0,T )

∂tn−Dn∆n+ ρdiv (nχ(c)∇c) +u · ∇n = 0 in Ω× (0,T )

∂tu +u · ∇u − ν∆u +n∇Φ +∇p = 0 in Ω× (0,T )

div u = 0 in Ω× (0,T )

(3.1.1)

where c is the concentration of oxygen, n is the density of cells, u is the velocity field of the
fluid governed by the incompressible Navier-Stokes equations with scalar pressure p and
viscosity ν. The time-independent gravitational force exerted from a bacteria onto the
fluid is modelled through ∇Φ . The constant ρ represents the magnitude of chemotaxis
and Dc,Dn are diffusion coefficients. The function f (c) models the inactivity level caused
by a low supply of oxygen and χ(c) is a suitable cut-off function (usually determined
by experiments). The second equation in (3.1.1) describes the mass balance equation
for the cells combining the advection effect (modelled through u · ∇n), the chemotactic
effect or the migration towards regions of high concentration of oxygen (modelled by
div (nχ(c)∇c)) and the diffusion of cells (modelled through Dn∆).
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The analysis of the Cauchy problem for Syst. 3.1.1 seems challenging from a math-
ematical point of view and a lot of effort over the past recent years have been devoted
to the understanding of its dynamics with a particular focus on the existence of local
and global solutions as well as their qualitative behaviour (long-time asymptotic, stabil-
ity, blow-up,...). Some of the main challenges arising in the analysis of Syst. 3.1.1 are
inherited from the Navier-Stokes equations.

3.1.1 Known results

When Ω ⊂ R
N is a (sufficiently) smooth bounded domain, upon neglecting the contribu-

tion of the convection term u · ∇u in (3.1.1), Lorz [Lor10] obtained the existence of local-
in-time weak solutions for the associated initial boundary value problem with no-flux
boundary conditions in dimensions N = 2,3 for χ(c) ≡ const., ν = Dc = Dn = ρ = 1 under
some monotonicity and differentiabilily condition on f . Still in absence of the convection
term, global well-posedness in R

2 was proved by Duan, Lorz & Markowich [DLM10] for
non-constant smooth χ under a smallness assumption on either the gravitational force
∇Φ or the initial concentration c0. Moreover, in the presence of a convection term, they
established the existence of classical solutions in R

3 using uniform a priori estimates un-
der a suitable smallness condition on the initial data in H3(R3) and derived time-decay
rate of solutions near constant steady states. For Ω ⊂ R

3 smooth and bounded, Winkler
[Win16] constructed global weak solutions under some structural and strong smoothness
assumptions on f and χ. Under very similar requirements, the same author in [Win17]
introduced the notion of eventual energy solutions and proved that the initial-boundary
value problem for Syst. 3.1.1 (with homogeneous Neumann conditions) admits at least
one such solution. Existence of smooth local solutions in higher order Sobolev space and
blow-up issues have been considered by Chae, Kang & Lee [CKL13] for N = 2,3. Their re-
sult was later extended by Zhang in [Zha14] in the framework of Besov spaces by means of
Fourier localisation technique. Regarding large data global existence, we quote the works
[LL11, Win12, ZZ14] and references therein. Other interesting related models with in-
homogeneous tensor-valued chemotactic sensitivity can be found in [CL16, Win15]. A
popular model considers the choices f (c) = c, χ(c) = 1; Dc = Dn = ρ = ν = 1 and Ω = R

N

turning (3.1.1) into the system
∂tc −∆c+ cn+u · ∇c = 0 in R

N × (0,T )

∂tn−∆n+ div (n∇c) +u · ∇n = 0 in R
N × (0,T )

∂tu −∆u +u · ∇u +n∇Φ +∇p = 0 in R
N × (0,T )

div u = 0 in R
N × (0,T ).

(CNS)

where T ∈ (0,∞]. Recently, small data global existence and large data local existence
in critical Besov space have been investigated in [CLY15]. Kozono, Miura & Sugiyama
[KMS16] obtained global existence and large time asymptotic behaviour of solutions to
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(CNS) for initial data

[c0,n0,u0] ∈ L∞(RN )×LN/2,∞(RN )×LN,∞(RN ) with ∇c ∈ LN,∞(RN )

when N ≥ 3 (and n0 ∈ L1(R2) when N = 2) having a sufficiently small norm. Their proof
relies on heat semigroups estimates in weak-Lebesgue spaces combined with the implicit
function theorem. Using a Picard iteration argument, the authors in [YFS19] (see also
[FP19] for similar results pertaining to a generalized model) extended the latter result by
considering small data

[c0,n0,u0] ∈ L∞(RN )×N −s1p1,λ,∞(RN )×N −s2p2,λ,∞(RN ) with ∇c ∈ N −s3p3,λ,∞(RN )

for some parameters sj > 0 depending on 0 ≤ λ < N , N ≥ 2 and 1 < pj < ∞, j = 1,2,3.
HereN −sp,λ,∞(RN ) stands for the homogeneous Besov-Morrey space (see below for the defi-
nition). We note that in the aforementioned results, the extra assumption on the gradient
of the initial concentration plays a central role and as we will show later, this hypothesis
is unnecessary and can be discarded.

The main purpose of this chapter is the study of the well-posedness for the Cauchy
problem (CNS) and its generalized model (cf. Syst. D-CNS in Section 3.2). In particular,
we are interested in the existence of small data global-in-time and large data local-in-time
solutions in the largest scaling and translation invariant function spaces. The method
carried out here is dimension independent so that our results are valid in any space di-
mension larger or equal to two. Our motivation comes from the work by Koch & Tataru
[KT01]. Introducing a new function space (see X3 below) based on the intrinsic prop-
erties of solutions, they investigated the local and global well-posedness issues for the
incompressible Navier-Stokes equations (the third equation in (CNS) with Φ = 0). More
precisely, they proved existence of a unique small global solution under the conditions
that the initial data is divergence-free and has small BMO−1-norm and of local solutions
for divergence-free initial data in VMO−1. As observed by the authors in [CG09], their re-
sults seem to be the endpoint case for small data global existence. Coming back to (CNS),
there is an additional term in the Navier-Stokes equations which causes further difficulty.
We also observe that most of the existing local existence theory are obtained under higher
regularity assumptions on the initial data. We show later that initial concentration c0
which are L∞-close to a uniformly continuous function give rise to local-in-time solutions.
This allows one to prescribe, as a byproduct, initial data c0 which are small perturbations
in L∞(RN ), N ≥ 2 of constants leading to global existence statements.

3.2 Local and global Existence theory

System CNS is scaling and translation invariant provided Φ ∈ S ′(RN ) is such that ∇Φ is
homogeneous of degree −1. More precisely, if [c,n,u] solves (CNS) (in a classical sense),
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then [cδ,nδ,uδ] with

cδ(x, t) = c(δx,δ2t), nδ(x, t) = δ2n(δx,δ2t), uδ(x, t) = δu(δx,δ2t) (3.2.1)

for all δ > 0 is another solution. On the other hand, a weaker requirement on the un-
knowns c,n and u for (CNS) to make sense is that

c ∈ L∞loc(R
N × [0,∞)),∇c ∈ L2

loc(R
N × (0,∞))

n ∈ L2
loc(R

N × [0,∞))

u ∈ L2
loc(R

N × [0,∞)).

(3.2.2)

Thus we look for initial data [c0,n0,u0] whose caloric extension [̃c, ñ, ũ] satisfy the scaling
and translation invariant analogue of condition (3.2.2), that is,

sup
t>0
∥c̃(t)∥L∞(RN ) + sup

x,R>0
R−N

ˆ
BR(x)

ˆ R2

0
|∇c̃(t,y)|2dtdy <∞ (3.2.3a)

sup
x,R>0

R2−N
ˆ
BR(x)

ˆ R2

0
|ñ(t,y)|2dtdy <∞ (3.2.3b)

sup
x,R>0

R−N
ˆ
BR(x)

ˆ R2

0
|ũ(t,y)|2dtdy <∞. (3.2.3c)

It is well-known that the finiteness of the second term in (3.2.3a) is equivalent to c0 being
an element of BMO(RN ) with the equivalence of semi-norms, see for instance [Ste72].
However, the requirement that c be bounded in space and time rules out the choice of c0
in BMO(RN ). It rather seems plausible to prescribe the initial data c0 in a subclass namely,
in L∞(RN ). On the other hand, condition (3.2.3c) is equivalent to u0 ∈ BMO−1(RN ), see
[KT01]. By analogy to the latter cases, one would like to relate condition (3.2.3b) to some
class of functions defined on R

N in an extrinsic manner.

Definition 3.2.1. LetN > 2. A tempered distribution f on R
N is an element ofL −1

2,N−2(RN )

if its caloric extension f̃ = et∆f satisfies

∥f ∥L −1
2,N−2(RN ) := sup

x,R>0

(
|B(x,R)|2/N−1

ˆ R2

0

ˆ
B(x,R)

|f̃ (y, t)|2dydt
)1/2

<∞. (3.2.4)

Carleson measures characterization of square Campanato spaces (see [JXY16]) sug-
gests that L −1

2,N−2(RN ) may be regarded as the space of derivatives of distributions in the
Campanato classL2,N−2(RN ).

Lemma 3.2.2. A tempered distribution f belongs to L −1
2,N−2(RN ) if and only if there exists

fj ∈L2,N−2(RN ), j = 1, · · · ,N such that f =
N∑
j=1

∂jfj .
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The proof of this lemma is postponed to the Appendix for convenience. Let r > 0 and
the open ball Br(x) = {y ∈ RN : |y − x| < r}. For 1 ≤ p < ∞, 0 ≤ µ < N , recall the Morrey
space Mp,µ(RN ) defined as

Mp,µ(RN ) = {f ∈ Lploc(R
N ) : ∥f ∥Mp,µ(RN ) <∞} (3.2.5)

where

∥f ∥Mp,µ(RN ) := sup
x∈RN ,r>0

r−
µ
p ∥f ∥Lp(Br (x)). (3.2.6)

With f Br (x) :=
ffl
Br (x) f (y)dy denoting the integral mean of f , the Campanato spaceLp,λ(RN ),

λ ∈ [0,N + p) collects all functions f ∈ Lploc(R
N ) such that ∥f ∥Lp,λ(RN ) is finite where

∥f ∥Lp,λ(RN ) = sup
x∈RN ,r>0

(
r−λ

ˆ
Br (x)

∣∣∣f (x)− f Br (x)

∣∣∣p)1/p

. (3.2.7)

The expression in (3.2.7) defines a semi-norm on Lp,λ(RN ) and upon identifying func-
tions which differ by a real constant, this space becomes Banach. Campanato spaces
unify some classical function spaces: the space Lp,λ(RN ) coincides with the space of
bounded mean oscillations BMO(RN ) when λ = N , reduces to constants when λ ≥ N + p
and is equivalent to the homogeneous Hölder space C0,α(RN ), α = λ−N

p ∈ (0,1) whenever

N < λ < N + p. We also define the local Campanato space Lp,λ;R(RN ) (resp. local Mor-
rey space Mp,λ;R(RN )) by taking in (3.2.7) (resp. in (3.2.6)) balls of radius R and smaller.
The space L −1

2,N−2;R(RN ) is defined analogously and we use the notation L −1
2,N−2(RN ) for

L −1
2,N−2;∞(RN ).

Definition 3.2.3. A tempered distribution f is an element of BMO−1(RN ) if there exists
f = (f1, · · · , fN ), fj ∈ BMO(RN ), j = 1, · · · ,N such that f =

∑N
j=1∂jfj . This space is equipped

with the norm

∥f ∥BMO−1(RN ) = inf
{ N∑
j=1

∥fj∥BMO(RN ) : f =
N∑
j=1

∂jfj

}
.

The local space BMO−1
R (RN ) is defined similarly as above by replacing the BMO semi-

norm by its local version. The Sarason space of vanishing mean oscillations is defined
as

VMO(RN ) =
{
h ∈ BMO(RN ) : lim

R→0
∥h∥BMOR(RN ) = 0

}
.

We say that f ∈ VMO−1(RN ) if

lim
R→0
∥f ∥BMO−1

R (RN ) = 0.
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Let f ∈L −1
2,λ;1(RN ). We say that f belongs to VL −1

2,λ (RN ) if

lim
R→0
∥f ∥L −1

2,λ;R(RN ) = 0.

Recall the definition of Besov-Morrey spaces [KY94, Maz03]. Let ψ be a Schwartz
function supported in the annulus 1/2 ≤ |ξ | ≤ 2 with values in [0,1] such that∑

j∈Z
ψ(2−jξ) = 1, ξ ∈RN \ {0}.

Let F and S ′∞(RN ) denote respectively, the Fourier transform and the space of Schwartz
distribution in R

N modulo polynomials. Set ∆̇jf = F −1(ψ(2−j ·)F f ), the homogeneous
Littlewood-Paley projection of f . The homogeneous Besov-Morrey space N s

p,λ,q(R
N ) for

s ∈R, 0 ≤ λ < N and p,q ∈ [1,∞] is defined as

N s
p,λ,q(R

N ) := {f ∈ S ′0(RN ) : ∥f ∥N s
p,λ,q(R

N ) <∞}

where

∥f ∥N s
p,λ,q(R

N ) =


(∑
j∈Z

(
2js

∥∥∥∆̇jf ∥∥∥Mp,λ(RN )

)q)1/q

<∞, q ∈ [1,∞)

sup
j∈Z

(
2js

∥∥∥∆̇jf ∥∥∥Mp,λ(RN )

)
, q =∞.

These spaces were introduced by Kozono and Yamazaki in [KY94] and can be regarded as
straightforward extensions of homogeneous Besov spaces. As a matter of fact, one has

N s
p,0,q(R

N ) = Ḃspq(R
N ), 1 ≤ p,q ≤∞.

Definition 3.2.4. Let T ∈ (0,∞]. We say that a function v : RN ×R+→R, N > 2 belongs to
Xj,T , j = 1,2 if ∥v∥Xj,T

is finite,

∥v∥X1,T
= sup

0<t≤T
∥v(t)∥L∞(RN ) + [v]X1,T

where

[v]X1,T
= sup

0<t≤T
t

1
2 ∥∇v(t)∥L∞(RN ) + sup

x∈RN ,0<R≤T
1
2

(
|B(x,R)|−1

ˆ R2

0

ˆ
B(x,R)

|∇v(y, t)|2dydt
) 1

2

,

and

∥v∥X2,T
= sup

0<t≤T
t∥v(t)∥L∞(RN ) + sup

x∈RN ,0<R≤T
1
2

(
|B(x,R)|

2
N −1

ˆ R2

0

ˆ
B(x,R)

|v(y, t)|2dydt
)1/2

.
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The space X3,T collects all functions u : RN ×R+→R
N such that

∥u∥X3,T
= sup

0<t≤T
t

1
2 ∥u(t)∥L∞(RN ) + sup

x∈RN ,0<R≤T
1
2

(
|B(x,R)|−1

ˆ R2

0

ˆ
B(x,R)

|u(y, t)|2dydt
) 1

2

is finite. We simply write Xj instead of Xj,∞ and adopt the notation [·]Xj,∞ = [·]Xj
.

We easily verify that each of the spaces Xj,T is a Banach space when endowed with the
norm ∥ · ∥Xj,T

, j = 1,2,3 respectively. Note that X3 is the Koch-Tataru space [KT01]. The
above discussion motivates the choice of the class X0, comprising 3-tuples [c0,n0,u0] such
that

c0 ∈ L∞(RN ), n0 ∈L −1
2,N−2(RN ) and u0 ∈ BMO−1(RN ,RN ). (3.2.8)

Now for T ∈ (0,∞], define the spaces

XT = X1,T ×X2,T ×X3,T and X0 = L∞(RN )×L −1
2,N−2(RN )×BMO−1(RN )

with their respective norms∥∥∥[c,n,u]
∥∥∥

XT
:= ∥c∥X1,T

+ ∥n∥X2,T
+ ∥u∥X3,T

,∥∥∥[c0,n0,u0]
∥∥∥

X0
:= ∥c0∥L∞(RN ) + ∥n0∥L −1

2,N−2(RN ) + ∥u0∥BMO−1(RN ).

When N = 2, the spaceL −1
2,N−2(RN ) is replaced by the homogeneous Besov space Ḃ−1

2,2(RN )
(or the negative Sobolev space H−1(RN )) and we instead define X2 with the norm

∥v∥X2
= sup

t>0
t∥v(t)∥L∞(R2) + ∥v∥L2(0,∞;L2(R2)).

In what follows, UC(RN ) stands for the space of uniformly continuous (real valued) func-
tions in R

N .
The main results of this paper read as follows.

Theorem 3.2.5 (Local existence). Let N ≥ 2. There exists ε0 > 0 so that for all R > 0 and
for any Φ ∈ S ′(RN ) with ∇Φ ∈ M2,N−2(RN ), [n0,u0] in L −1

2,N−2;R(RN ) × BMO−1
R (RN ) with

∇ ·u0 = 0, for any function c0 : RN →R and all d0 ∈UC(RN ) satisfying

∥c0 − d0∥L∞(RN ) + ∥n0∥L −1
2,N−2;R(RN ) + ∥u0∥BMO−1

R (RN ) < ε0, (3.2.9)

there exists δ0 := δ0(d0, ε0) > 0, T0 := T0(δ0,R) > 0 and a unique solution [c,n,u] of (CNS) in
(Γδ0

+ X1,T 2
0

) ×X2,T 2
0
×X3,T 2

0
provided ∥∇Φ∥M2,N−2(RN ) < ε0. In particular, for all [c0,n0,u0] in

UC(RN )
L∞(RN )

×VL −1
2,N−2(RN )×VMO−1(RN ) with ∇·u0 = 0 there exists a unique small local

solution. Here Γs = es
2∆d0, s > 0 and UC(RN )

L∞(RN )
is the closure of UC(RN ) in the L∞-norm.
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Theorem 3.2.6 (Global existence). Let N ≥ 2. There exists ε > 0 such that for every 3-tuple
[c0,n0,u0] in X0 with ∇ ·u0 = 0 and all Φ ∈ S ′(RN ) with ∇Φ ∈M2,N−2(RN ), if it holds that∥∥∥[c0,n0,u0]

∥∥∥
X0

+ ∥∇Φ∥M2,N−2(RN ) < ε, (3.2.10)

then there exists a global solution [c,n,u] ∈ X of (CNS). This solution is unique in the closed
ball

BX
Cε :=

{
[c,n,u] ∈ X :

∥∥∥[c,n,u]
∥∥∥

X
≤ Cε

}
for some constant C > 0.

Our next result deals with the uniqueness of global mild solutions constructed in The-
orem 3.2.6.

Theorem 3.2.7. Let Φ ∈ S ′(RN ) and U0 = [c0,n0,u0] ∈ X0 such that ∇ · u0 = 0. Assume that
[c1,n1,u1] and [c2,n2,u2] are two global mild solutions of (CNS) in L∞loc(0,∞;L∞(RN )) with
initial data U0 and ∇Φ ∈M2,N−2(RN ) with sufficiently small norm. If it holds that

lim
T→0

∥∥∥[c1,n1,u1]
∥∥∥

XT
= 0, lim

T→0

∥∥∥[c2,n2,u2]
∥∥∥

XT
= 0, (3.2.11)

then [c1,n1,u1] = [c2,n2,u2] on R
N × [0,∞).

Moving on, we study a more general model known as the double chemotaxis system

∂tc −∆c+ cn+u · ∇c = 0 in R
N ×R+

∂tn−∆n+u · ∇n+ div (n∇c) + div (n∇v) = 0 in R
N ×R+

∂tv −∆v +u · ∇v +κv −n = 0 in R
N ×R+

∂tu −∆u +u · ∇u +∇p+nΨ = 0 in R
N ×R+

div u = 0 in R
N ×R+

c(0) = c0,n(0) = n0,v(0) = v0,u(0) = u0 in R
N

(D-CNS)

where c,n,u,p have the same meaning as before, v is the concentration of chemical attrac-
tant, κ ≥ 0 represents the decay rate of the attractant and Ψ is an external force acting on
the fluid. For v = 0, (D-CNS) is closely related to (CNS). Unlike in the classical parabolic-
parabolic Keller-Segel system of chemotaxis [KS70] ∂tn−∆n = −div (n∇v)

∂tv −∆v = n−κv
in Ω× (0,∞), (3.2.12)

the oxygen in the model (3.1.1) is consumed and not produced by the bacteria. Syst. D-
CNS couples the Keller-Segel model and the Navier-Stokes equations. We refer the reader
to [BBTW15, HV97, Hor03, NSY97] for existence of solutions and blow-up phenomena
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in bounded two dimensional smooth domains depending on the range of the total mass´
Ω
n0dy. See also [CC08] and references therein for the case Ω = R

2. To the best of our
knowledge the blow-up of solutions to (3.2.12) in dimension 3 and higher is an unsolved
problem.

Comparing the above system of equations to (CNS), one sees that the new equation
with unknown v has no proper scaling if κ , 0. However, we can take advantage of our
earlier analysis and the scaling property inherited from the case κ = 0, i.e. vδ(x, t) =
v(δ2t,δx) to make the choice of v0 in BMO. In fact the term −κv is linear so that Lk :=
−∆ + κ can be treated as a perturbation of the Laplacian. In order to state our results in
this case we consider for 0 < T ≤∞, the function space

ZT =
{
[c,n,v,u] : c ∈ X1,T , n ∈ X2,T , v ∈ X1,T , u ∈ X3,T

}
equipped with the norm∥∥∥[c,n,v,u]

∥∥∥
ZT

= ∥c∥X1,T
+ ∥n0∥X2,T

+ ∥v∥X1,T
+ ∥u∥X3,T

.

The local and global well-posedness result pertaining to (D-CNS) is given in the next
theorems.

Theorem 3.2.8 (Local existence). Let N ≥ 2. There exists ε0 > 0 with the following property.
For all R > 0 and all [n0,v0,u0] ∈L −1

2,N−2;R(RN )×BMOR(RN )×BMO−1
R (RN ) with ∇ · u0 = 0,

for all function c0 : RN →R and d0 ∈UC(RN ), if it holds that

∥c0 −w0∥L∞(RN ) + ∥n0∥L −1
2,N−2;R(RN ) + ∥v0∥BMOR(RN ) + ∥u0∥BMO−1

R (RN ) < ε0 (3.2.13)

then there exists δ0 := δ0(d0, ε0), T0 := T0(δ0,R) and a mild solution [c,n,v,u] of (D-CNS)
such that [c,n,v − ṽκ,u] ∈ (Γδ0

+ X1,T 2
0

)×X2,T 2
0
×X1,T 2

0
×X3,T 2

0
provided Ψ ∈M2,N−2(RN ) with

∥Ψ ∥M2,N−2(RN ) < ε0. In particular, for all

[c0,n0,v0,u0] ∈UC(RN )
L∞(RN )

×VL −1
2,N−2(RN )×VMO(RN )×VMO−1(RN )

with ∇·u0 = 0, there exists a unique small local solution. For κ > 0, ṽκ,R denotes the Lκ-caloric
extension of v0.

Next, consider the space

Z0 =
{
[c0,n0,v0,u0] : c0 ∈ L∞(RN ), n0 ∈L −1

2,N−2(RN ), v0 ∈ BMO(RN ), u0 ∈ BMO−1(RN )
}

with the norm∥∥∥[c0,n0,v0,u0]
∥∥∥

Z0
= ∥c0∥L∞(RN ) + ∥n0∥L −1

2,N−2(RN ) + ∥v0∥BMO(RN ) + ∥u0∥BMO−1(RN ).
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Theorem 3.2.9. Assume N ≥ 2. Syst. D-CNS is globally well-posed. There exist ε > 0 and
ϑ := ϑ(ε) > 0 such that for any [c0,n0,v0,u0] ∈ Z0 with ∇ · u0 = 0 and Ψ ∈ M2,N−2(RN )
satisfying ∥∥∥[c0,n0,v0,u0]

∥∥∥
Z0

+ ∥Ψ ∥M2,N−2(RN ) < ε,

there exists a mild solution [c,n,v,u] of (D-CNS). This solution is unique in the set

BZ
2ϑ :=

{
[c,n,v,u] ∈ Z :

∥∥∥[c,n,v,u]− [0,0, ṽκ,0]
∥∥∥

Z
≤ 2ϑ

}
.

Moreover, we have the following uniqueness criterion. Let [c1,n1,v1,u1], [c2,n2,v2,u2] be two
global mild solutions of (D-CNS) in L∞loc(0,∞;L∞(RN )) with the same initial data [c0,n0,v0,u0].
If the condition

lim
T→0

∥∥∥[c1,n1,v1,u1]
∥∥∥

ZT
= 0, lim

T→0

∥∥∥[c2,n2,v2,u2]
∥∥∥

ZT
= 0 (3.2.14)

is satisfied, then [c1,n1,v1,u1] = [c2,n2,v2,u2] on R
N × [0,∞).

From the two previous theorems, we deduce that the Keller-Segel system (3.2.12) is

locally well-posed for initial data in VL −1
2,N−2(RN ) × VMO(RN ) and globally well-posed

whenever [n0,v0] ∈L −1
2,N−2(RN )×BMO(RN ) with ∥n0∥L −1

2,N−2(RN ) + ∥u0∥BMO(RN ) sufficiently
small.

Remark 3.2.10. As a direct consequence of Theorem 3.2.5, one deduces the existence of
global in time solutions for initial data which are small L∞-perturbations of constants.

Remark 3.2.11. Comparing our main results with earlier findings, one merely requires the
initial data c0 to belong to L∞(RN ) together with a suitable smallness condition and no
assumption on its first order derivative is needed. Moreover, for 2 ≤ p < ∞, N > 2 and
0 ≤ λ < N , due to the embeddings (see the Appendix for the proofs)

N −2s
p,λ,∞(RN ) ⊂L −1

2,N−2(RN ) ⊂ Ḃ−2
∞,∞(RN ); s = 1 +

λ−N
2p

, (N −λ)/2 ≤ p < N −λ (3.2.15)

N −sp,λ,∞(RN ) ⊂ BMO−1(RN ); s = 1− N −λ
p

, p > N −λ (3.2.16)

our initial data class in Theorem 3.2.6 is larger than those considered in [YFS19]. Like-
wise, in Theorem 3.2.9, the initial concentration of chemical attractant is taken in BMO(RN )
and no extra requirement on its first order gradient is necessary unlike in the articles
[FP19, KY94]. In fact, their initial data classes are contained in ours when the dimensions
is larger or equal to 3. This plainly shows that our global existence results encompasses all
those which have been cited before. In 2D, however, the initial concentration n0 is taken
in a smaller class Ḃ−1

22(R2) but gives rise to a much natural functional setting. Finally, it
is worth pointing out that our local well-posedness results (Theorems 3.2.5 and 3.2.8) are
derived under much weaker regularity assumptions as compared to those obtained for
instance in [CKL13, Zha14] and related works therein.
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Remark 3.2.12 (Self-similar solutions). From the embedding LN/2,∞(RN ) ⊂ L −1
2,N−2(RN ),

one sees that L −1
2,N−2(RN ) contains homogeneous distributions of degree −2. Thus, if

[c0,n0,u0] is homogeneous of degree 0, −2 and −1, respectively and
∥∥∥[c0,n0,u0]

∥∥∥
X0

is suf-
ficiently small, then as a by-product of Theorem 3.2.6, there exits a unique (forward self-
similar) solution [c,n,u] satisfying

n(x, t) = δ2n(δx,δ2t), c(x, t) = c(δx,δ2t), u(x, t) = δu(δx,δ2t) for all δ > 0. (3.2.17)

provided Φ ∈ S ′(RN ), ∇Φ ∈M2,N−2(RN ) is homogeneous of degree −1 with the quantity
∥∇Φ∥M2,N−2(RN ) chosen small enough. A similar conclusion persists if in the double chemo-
taxis Navier-Stokes equation (D-CNS), one takes κ = 0, v0 and Ψ homogeneous of degree
0 and −1, respectively.

Finally we point out that our settings may easily be adapted to study the higher regu-
larity of solutions to (CNS) and (D-CNS) which arise from small initial data in X0 and Z0
respectively as well as the time decay rate of spatial derivatives.

3.3 Preliminaries and auxiliary results

In this section, we collect key estimates for the homogeneous and the inhomogeneous heat
equation. For a suitable function f (e.g. smooth and compactly supported), denote by Sf
the operator

Sf (x, t) = e∆tf (x) = (gt ∗ f )(x)

where gt(x) = g(x, t) =
e
|x|
4t

(4πt)
N
2

. Then Sf solve the heat equation (∂t−∆)u = 0 in R
N ×(0,∞),

u(0) = f on R
N .

Lemma 3.3.1. Assume N > 2. Let 0 < R ≤ ∞. The operator S maps L∞(RN ) to X1,R2 ,
L −1

2,N−λ;R(RN ) to X2,R2 and BMO−1
R (RN ) to X3,R2 continuously. If N = 2, then Sf ∈ X2 when-

ever f ∈ Ḃ−1
2,2(R2) and there exists C > 0 independent of f such that

∥Sf ∥X2
≤ C∥f ∥Ḃ−1

2,2(R2). (3.3.1)

Proof. From the Carleson measure characterization of BMO (see e.g. [Ste72]) it is well-
known that

sup
x∈RN ,r>0

|B(x,r)|−1
ˆ r2

0

ˆ
B(x,r)

|∇Sf (x, t)|2dxdt ≈ ∥f ∥BMO(RN ).

If f ∈ BMOR(RN ) for some 0 < R ≤ ∞, then an analogue of the above inequality holds
where the supremum on the left-hand side is taken over all balls of radius R and smaller.
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Thus, from the continuous embedding L∞(RN ) ⊂ BMOR(RN ) one gets the estimate

sup
x∈RN ,0<r≤R

|B(x,r)|−1
ˆ r2

0

ˆ
B(x,r)

|∇Sf (x, t)|2dxdt ≤ C∥f ∥L∞(RN )

for any f ∈ L∞(RN ). On the other hand, the estimate

sup
0<t≤R2

∥Sf (t)∥L∞(RN ) + sup
0<t≤R2

t1/2∥∇Sf (t)∥L∞(RN ) ≤ C∥f ∥L∞(RN )

follows straight from the smoothing effect of the heat semigroup. The boundedness prop-
erty of S fromL −1

2,N−2;R(RN ) to X2,R2 is a consequence of (3.2.15) and the Carleson charac-
terization of L −1

2,N−2;R(RN ) (see Definition 3.2.1 and Lemma 3.5.2 in the Appendix) while
the proof of the third statement can be found in [LR02]. In the case N = 2, we shall show
that

sup
t>0

t∥u(t)∥L∞(R2) ≤ C∥f ∥Ḃ−1
2,2(R2) (3.3.2)

and

∥u∥L2(0,∞;L2(R2)) ≤ C∥f ∥Ḃ−1
2,2(R2). (3.3.3)

While the latter estimate follows from the caloric characterization of Besov spaces [Tri83],
the former is established as follows. For x ∈ RN and 0 < s < t/2, one may use semigroup
properties and Hölder’s inequality to get

|et∆f (x)| =
∣∣∣e(t−s)∆es∆f (x)

∣∣∣
≤ C

(
1
t

ˆ t/2

0

ˆ
R

2
g(x − y, t − s)|es∆f (y)|2dyds

)1/2

≤ C
(

1
t

ˆ t/2

0

ˆ
R

2
(t − s)−1e−

|x−y|2
4(t−s) |es∆f (y)|2dyds

)1/2

≤ Ct−1
(ˆ t/2

0

ˆ
R

2
e−
|x−y|2
4(t−s) |es∆f (y)|2dyds

)1/2

≤ Ct−1∥es∆f ∥L2(0,∞;L2(R2))

≤ Ct−1∥f ∥Ḃ−1
2,2(R2).

Passing to the supremum on both sides over all t ∈R+ yields the desired bound.

Let d0 ∈ UC(RN ), for any ε0 > 0, there exists δ0 > 0 such that for all x,y ∈ RN with
|x − y| < δ0, we have |d0(x)− d0(y)| ≤ ε0.
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Lemma 3.3.2. Let d0 ∈UC(RN ) and set Γδ0
= eδ

2
0∆d0. Then the following estimates hold.

∥Γδ0
∥L∞(RN ) ≤ C (3.3.4)

∥Γδ0
− d0∥L∞(RN ) + δ0∥∇Γδ0

∥L∞(RN ) + δ2
0∥∇

2Γδ0
∥L∞(RN ) ≤ Cε0 (3.3.5)

for some constant C > 0.

Proof. We refer the reader to [KL12].

3.3.1 Bilinear estimates

Let Rj = ∂j(−∆)−1/2, j = 1, ...,N denote the Riesz transform and P = Id − ∇∆−1(∇·) be the
Leray projection onto divergence-free vector fields. Applying P to the Navier-Stokes equa-
tions in (CNS), the resulting equations can be recast (using Duhamel’s principle) into the
following integral system

c = et∆c0 −
ˆ t

0
e(t−s)∆(cn+u · ∇c)(·, s)ds

n = et∆n0 −
ˆ t

0
e(t−s)∆∇ · (n∇c+nu)(·, s)ds

u = et∆u0 −
ˆ t

0
e(t−s)∆P∇ · (u ⊗u)(·, s)ds −

ˆ t

0
e(t−s)∆P(n∇Φ)(·, s)ds.

(3.3.6)

Define the linear map

LΦ (n) =
ˆ t

0
e(t−s)∆P(n∇Φ)(·, s)ds

and the bilinear maps

B1(w,n) =
ˆ t

0
e(t−s)∆(wn)(·, s)ds,

B2(n,w) =
ˆ t

0
e(t−s)∆∇ · (nw)(·, s)ds,

B3(u,w) =
ˆ t

0
e(t−s)∆P∇ · (u ⊗w)(·, s)ds

whenever the integrals are well-defined. The next lemma establishes the continuity prop-
erties of these maps in targeted functions spaces.

Lemma 3.3.3. Let N ≥ 2 and 0 < T ≤ ∞. Assume that Φ ∈ S ′(RN ) with ∇Φ ∈M2,N−2(RN ).
The linear operator LΦ (n) : X2,T → X3,T continuously and the bilinear operators Bj(·, ·), j =
1,2,3 are such that

B1 : X1,T ×X2,T → X1,T , B1 : X3,T ×X3,T → X1,T , B2 : X3,T ×X3,T → X1,T
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and B3 : X3,T ×X3,T → X3,T continuously. Moreover, there exists Cj > 0, j = 1, · · · ,5 such that

∥LΦ (n)∥X3,T
≤ C1∥n∥X2,T

∥∇Φ∥M2,N−2(RN ) for all n ∈ X2,T (3.3.7)

∥B1(w,n)∥X1,T
≤ C2∥w∥X1,T

∥n∥X2,T
for all w ∈ X1,T and n ∈ X2,T (3.3.8)

∥B1(u,w)∥X1,T
≤ C3∥u∥X3,T

∥w∥X3,T
for all u,w ∈ X3,T (3.3.9)

∥B2(n,w)∥X2,T
≤ C4∥n∥X2,T

∥w∥X3,T
for all n ∈ X2,T and w ∈ X3,T (3.3.10)

∥B3(v,w)∥X3,T
≤ C5∥v∥X3,T

∥w∥X3,T
for all v,w ∈ X3,T . (3.3.11)

Let f be a locally integrable function and Mf its uncentered maximal function de-
fined as

Mf (x) = sup
B∋x
|B|−1

ˆ
B
|f (y)|dy.

Let p ∈ (1,∞) with 1/p + 1/p′ = 1. A nonnegative measurable function µ on R
N belongs to

the Muckenhoupt weight class Ap(RN ) = Ap if

[µ]Ap := sup
B⊂RN

( 
B
µ(x)dx

)( 
B
µ(x)−p

′/pdx

)p/p′
<∞.

Given a weight µ ∈ Ap and denoting L
p
µ(RN ) = Lp(RN ,µdx), it is well-known (see e.g.

[GCdF85]) that µ ∈ Ap if and only if M is bounded on L
p
µ(RN ). Given a non-negative

measurable function h on R+ and α,β ∈ (0,1), define the fractional integral operator

E(h)(s) =
ˆ s

0
(s − σ )α−1σ−βh(σ )dσ.

The next lemma establishes the boundedness properties of E between weighted-Lebesgue
spaces.

Lemma 3.3.4. Let α,β ∈ (0,1) and p ∈ (1,∞) such that −1/p < α − β < 1/p′ holds. Then E
maps Lpν(R+) continuously into Lp(R+) where ν(s) = s(α−β)p, s > 0. In particular, E is bounded
on Lp(R+) (including p =∞) if α = β.

Proof. The proof of the lemma relies on the following pointwise estimate for the operator
E: for 0 < α,β < 1, there exists C := C(α,β) > 0 such that

|E(h)(s)| ≤ Csα−βM(h)(s). (3.3.12)

We have

E(h)(s) =
(ˆ s/2

0
+
ˆ s

s/2

)
(s − σ )α−1σ−βh(σ )dσ := I + II.
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By a simple covering argument, it follows that

|I | =
∞∑
j=1

ˆ 2−js

2−j−1s
(s − σ )α−1σ−β |h(σ )|dσ

≤ Csα−1
∞∑
j=1

(2−j−1s)−β
ˆ 2−js

2−j−1s
|h(σ )|dσ

≤ Csα−1
∞∑
j=1

(2−j−1s)−β+1
 2−js

2−j−1s
|h(σ )|dσ

≤ Csα−β
( ∞∑
j=1

2−j(1−β)
)
M(h)(s)

and

|II | =
∞∑
j=1

ˆ s−2−js

s−2−j−1s
(s − σ )α−1σ−β |h(σ )|dσ

≤ Cs−β
∞∑
j=1

(2−j−1s)α−1
ˆ s−2−j−1s

s−2−js
|h(σ )|dσ

≤ Cs−β
∞∑
j=1

(2−j−1s)α
 s−2−j−1s

s−2−js
|h(σ )|dσ

≤ Csα−β
( ∞∑
j=1

2−jα
)
M(h)(s).

An immediate consequence of 3.3.12 is that the mapping properties of E may be deduced
from those of M. Since the function ν(s) = s(α−β)p is an Ap-weight under the restriction
−1/p < α − β < 1/p′, one has

∥E(h)∥Lp(R+) ≤ C∥Mh∥Lpν (R+) ≤ C∥h∥Lpν (R+).

Proof of Lemma 3.3.3. We estimate B1, B2 andLΦ (n) in 3 steps respectively. The required
bound on the bilinear map B3 is known and can be found for instance in [KT01].

Step 1 (Estimates on B1). We prove that B1(·, ·) is continuous from X1,T × X2,T to X1,T .
Mimicking the same steps, we similarly show that B1(·, ·) : X3,T ×X3,T → X1,T is continuous.
The details of the latter case are therefore omitted. Let w ∈ X1,T and n ∈ X2,T . For (x, t) ∈
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R
N × (0,T ] write

B1(w,n)(x, t) =
ˆ t

0

ˆ
R
N
g(x − y, t − s)(wn)(y,s)dyds := B11(w,n)(x, t) +B12(w,n)(x, t)

where

B11(w,n)(x, t) =
ˆ t/2

0

ˆ
R
N
g(x − y, t − s)(wn)(y,s)dyds,

B12(w,n)(x, t) =
ˆ t

t/2

ˆ
R
N
g(x − y, t − s)(wn)(y,s)dyds.

Let Bcr(x) denote the complement of the Euclidean ball Br(x) = B(x,r) with center at x ∈RN
and radius r > 0 and further make the decomposition

B11(w,n)(x, t) =
ˆ t/2

0

(ˆ
B2
√
t(x)

+
ˆ
Bc

2
√
t
(x)

)
g(x − y, t − s)(wn)(y,s)dyds

= B1
11(w,n)(x, t) +B2

11(w,n)(x, t).

Using Hölder’s inequality, one gets

|B1
11(w,n)(x, t)| ≤

ˆ t/2

0

ˆ
B2
√
t(x)
g(x − y, t − s)|(nw)(y,s)|dyds

≤ C sup
0<t≤T

∥w(t)∥L∞(RN )∥g∥L2(B2
√
t(0)×[t/2,t])

(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

≤ C∥w∥X1,T
t

2−N
4

(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

≤ C∥w∥X1,T
∥n∥X2,T

.
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On the other hand, if one sets Aj(x) = B(j+1)
√
t(x) \Bj√t(x), then it follows that

|B2
11(w,n)(x, t)| ≤

ˆ t/2

0

ˆ
Bc

2
√
t
(x)
g(x − y, t − s)|(nw)(y,s)|dyds

≤ C sup
0<t≤T

∥w(t)∥L∞(RN )

∞∑
j=2

ˆ t/2

0

ˆ
Aj (x)

e−
|x−y|2
4(t−s)

(t − s)N/2
|n(y,s)|dyds

≤ C∥w∥X1,T

∞∑
j=2

e−
j2

2

∑
z∈Aj (x)∩

√
tZN

ˆ t/2

0

ˆ
B√t(z)

(t − s)−N/2|n(y,s)|dyds

≤ C∥w∥X1,T

∞∑
j=2

e−
j2

2

∑
z∈Aj (x)∩

√
tZN

t
2−N

4

(ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
)1/2

≤ C∥w∥X1,T

( ∞∑
j=2

jN−1e−
j2

2

)
sup
z∈RN

(
t2−N

ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
)1/2

≤ C∥w∥X1,T
∥n∥X2,T

.

Since g ∈ L1(RN ), it holds that

|B12(w,n)(x, t)| =
ˆ t

t/2

ˆ
R
N
g(x − y, t − s)|(wn)(y,s)|dyds

≤ C sup
0<t≤T

∥w(t)∥L∞(RN ) sup
0<t≤T

t∥n(t)∥L∞(RN )t
−1
ˆ t/2

0
∥g(·, s)∥L1(RN )ds

≤ C∥w∥X1,T
∥n∥X2,T

.

Moving on, we prove the pointwise gradient bound on B1. For any x ∈ RN , 0 < t ≤ T and
k1(x, t) = ∇xg(x, t) we have

∇B1(w,n)(x, t) =
ˆ t

0

ˆ
R
N
k1(x − y, t − s)(wn)(y,s)dyds

=
ˆ t/2

0

ˆ
R
N
k1(x − y, t − s)(wn)(y,s)dyds+

ˆ t

t/2

ˆ
R
N
k1(x − y, t − s)(wn)(y,s)dyds

:= B1
1(w,n)(x, t) +B2

1(w,n)(x, t).

We estimate each of these terms using the fact that k1(x, t) = −t−1xg(x, t) (recall g is the
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heat kernel). Indeed,

|B2
1(w,n)(x, t)| ≤ C∥w∥X1

∥n∥X2

ˆ t

t/2

ˆ
R
N
s−1|k1(x − y, t − s)|dyds

≤ C∥w∥X1
∥n∥X2

ˆ t

t/2

ˆ
R
N

|x − y|
s(t − s)

g(x − y, t − s)dyds

≤ Ct−1/2∥w∥X1,T
∥n∥X2,T

.

Now, note that ∥k1(·, ·)∥L2(B2
√
t(x)×[t/2,t]) ≤ Ct−

N
4 so that by arguing as above, we find

|B1
1(w,n)(x, t)| ≤

ˆ t/2

0

ˆ
B2
√
t(x)
|k1(x − y, t − s)||(nw)(y,s)|dyds+

ˆ t/2

0

ˆ
Bc

2
√
t
(x)
|k1(x − y, t − s)||(nw)(y,s)|dyds

≤ C sup
0<t≤T

∥w(t)∥L∞(RN )∥k1(·, ·)∥L2(B2
√
t(0)×[t/2,t])∥n(·, ·)∥L2(B2

√
t(x)×(0,t/2])+

C sup
0<t≤T

∥w(t)∥L∞(RN )

∞∑
j=2

ˆ t/2

0

ˆ
Aj (x)
|k1(x − y, t − s)||n(y,s)|dyds

≤ C∥w∥X1,T
t−

N
4

(ˆ t/2

0

ˆ
B√t(x)

|n(y,s)|2dyds
)1/2

+

C∥w∥X1,T

∞∑
j=2

(j + 1)e−
j2

2

∑
z∈Aj (x)∩

√
tZN

t
−N
4

(ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
) 1

2

≤ Ct−
1
2 ∥w∥X1,T

∥n∥X2,T
+

Ct−
1
2 ∥w∥X1,T

∞∑
j=2

(j + 1)jN−1e−
j2

2 sup
z∈RN

(
t−

2−N
2

ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
) 1

2

≤ Ct−
1
2 ∥w∥X1,T

∥n∥X2,T
.

To estimate the L2-gradient norm, write

|B(x, t)|−1
ˆ t2

0

ˆ
B(x,t)

|∇B1(n,w)(y,s)|2dyds = |B(x, t)|−1
ˆ t2

0

ˆ
B(x,t)

|I1(n,w)(y,s)|2dyds+

|B(x, t)|−1
ˆ t2

0

ˆ
B(x,t)

|I2(n,w)(y,s)|2dyds

= I(w,n)(x, t) + II(w,n)(x, t), 0 < t ≤ T
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where

I1(w,n)(y,s) =
ˆ s

0

ˆ
R
N
k1(y − z, s − σ )(wn1B(x,2t))(z,σ )dzdσ,

and

I2(w,n)(y,s) =
ˆ s

0

ˆ
R
N
k1(y − z, s − σ )(wn1Bc(x,2t))(z,σ )dzdσ.

Since |k1(y,s)| ≤ C(|y|2 + s)−
N+1

2 for y ∈RN , s > 0, one may use Young’s convolution inequal-
ity to obtain

∥I1(w,n)(·, s)∥L2(RN ) ≤ C
ˆ s

0
(s − σ )−1/2∥wn1B2t(x)(·,σ )∥L2(RN )dσ

≤ C∥w∥X1,T
s1/2

ˆ s

0
(s − σ )−1/2σ−1/2∥n1B2t(x)(σ )∥L2(RN )dσ.

Thus, by Lemma 3.3.4 applied with p = 2; α = β = 1
2 , I(w,n)(x, t) may be estimated as

follows

∣∣∣I(w,n)(x, t)
∣∣∣ ≤ |B(x, t)|−1

ˆ t2

0
∥I1(·, s)∥2L2(RN )ds

≤ C∥w∥2X1,T
|B(x, t)|−1t2

ˆ t2

0
∥n1B2t(x)(·, s)∥2L2(RN )ds

≤ C∥w∥2X1,T
|B(x, t)|

2
N −1

ˆ t2

0

ˆ
B2t(x)

|n(y,s)|2dyds

≤ C∥w∥2X1,T
∥n∥2X2,T

.

Remark that if z ∈ Bc(x,2t) and y ∈ B(x, t), then |y − z| ≥ 1
2
|x − z|. Thus, for s ≤ t2 < T , one
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has

|I2(w,n)(y,s)| ≤
ˆ s

0

ˆ
|x−z|≥2t

|k1(y − z, s − σ )||(wn)(z,σ )|dzdσ

≤ C
ˆ s

0

ˆ
|x−z|≥2t

|(wn)(z,σ )|dzdσ
(|y − z|+ (s − σ )1/2)N+1

≤ C∥w∥X1,T

ˆ s

0

ˆ
|x−z|≥2t

|y − z|−(N+1)|n(z,σ )|dzdσ

≤ C∥w∥X1,T

ˆ t2

0

∞∑
j=2

ˆ
B(x,(j+1)t)\B(x,jt)

|x − z|−(N+1)|n(z,σ )|dzdσ

≤ C∥w∥X1,T
t−(N+1)

∞∑
j=2

j−(N+1)
∑
q∈tZN

q∈B(x,(j+1)t)\B(x,jt)

ˆ t2

0

ˆ
B(q,t)

|n(z,σ )|dzdσ

≤ C∥w∥X1,T
t−1

( ∞∑
j=2

j−2
)

sup
q∈RN

(
t2−N

ˆ t2

0

ˆ
B(q,t)

|n(z,σ )|2dzdσ
) 1

2

≤ Ct−1∥w∥X1,T
∥n∥X2,T

.

This estimate directly gives the desired bound for II(w,n), namely

sup
x∈RN ,0<t≤

√
T

∣∣∣II(w,n)(x, t)
∣∣∣ ≤ C∥w∥X1,T

∥n∥X2,T
.

Step 2 (The bounds on B2). Let n ∈ X2,T and w ∈ X3,T , we want to show that

∥B2(n,w)∥X2,T
≤ C∥n∥X2,T

∥w∥X3,T
. (3.3.13)

We first estimate the norm sup
x∈RN ,0<t≤

√
T

[B2(n,w)]1/2
x,t where

[B2(n,w)]x,t := |B(x, t)|2/N−1
ˆ t2

0

ˆ
B(x,t)

|B2(n,w)|2dyds.

To this end, split B2(n,w)(y,s) into two parts

B21(n,w)(y,s) =
ˆ s

0

ˆ
R
N
∇g(y − z, s − σ ) · (nw1B2t(x))(z,σ )dzdσ,

and

B22(n,w)(y,s) =
ˆ s

0

ˆ
R
N
∇g(y − z, s − σ ) · (nw1Bc2t(x))(z,σ )dzdσ.
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Arguing as before, we can show that the following inequality is valid, namely

|B22(n,w)(x, t)| ≤ Ct−2∥n∥X2,T
∥w∥X3,T

from which we immediately get

sup
x∈RN ,0<t≤

√
T

[B22(n,w)]x,t ≤ C∥n∥2X2,T
∥w∥2X3,T

. (3.3.14)

Next, using Young’s convolution inequality and Lemma 3.3.4 with α = β = 1/2 it follows
that

∥B22(n,w)(·, s)∥L2(RN ) ≤ C
ˆ s

0
(s − σ )−1/2∥wn1B2t(x)(·,σ )∥L2(RN )dσ

≤ C sup
0<t≤T

t
1
2 ∥w(·, t)∥L∞(RN )

ˆ s

0
(s − σ )−

1
2σ−

1
2 ∥n1B2t(x)(σ )∥L2(RN )dσ

and

[B21(n,w)]x,t = |B(x, t)|2/N−1
ˆ t2

0

ˆ
B(x,t)

|B21(n,w)(y,s)|2dyds

≤ C|B(x, t)|2/N−1
ˆ t2

0
∥wn1B2t(x)(·, s)∥2L2(RN )ds

≤ C∥w∥2X3,T
|B(x, t)|2/N−1

∥∥∥∥(n1B2t(x))∥L2(RN )(·)
∥∥∥
L2(0,t2]

≤ C∥w∥2X3,T
|B(x, t)|

2
N −1

ˆ t2

0

ˆ
B(x,2t)

|n(y,s)|2dyds

≤ C∥w∥2X3,T
∥n∥2X2,T

. (3.3.15)

Combining (3.3.14) and (3.3.15), we get the desired bound. Next, we show that

sup
0<t≤T

t∥B2(n,w)∥L∞(RN ) ≤ C∥n∥X2,T
∥w∥X3,T

. (3.3.16)

Once again, we make the decomposition

B2(n,w)(x, t) =
ˆ t

0

ˆ
R
N
∇g(x − y, t − s) · (nw)(y,s)dyds

:= B1
2(n,w)(x, t) +B2

2(n,w)(x, t)

where

B1
2(n,w)(x, t) =

ˆ t/2

0

ˆ
R
N
∇g(x − y, t − s) · (nw)(y,s)dyds,

B2
2(n,w)(x, t) =

ˆ t

t/2

ˆ
R
N
∇g(x − y, t − s) · (nw)(y,s)dyds.
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To bound B2
2(n,w), we use the kernel decay bound and proceed as follows

|B2
2(n,w)(x, t)| ≤ C∥w∥X3,T

∥n∥X2,T

ˆ t

t/2

ˆ
R
N
s−3/2|∇g(x − y, t − s)|dyds

≤ C∥w∥X3,T
∥n∥X2,T

ˆ t

t/2

ˆ
R
N
s−3/2 |x − y|

(t − s)
g(x − y, t − s)dyds

≤ Ct−1∥w∥X3,T
∥n∥X2,T

.

To estimate B1
2(n,w), we decompose it as a sum of two integrals and use Hölder’s inequal-

ity:

|B1
2(n,w)(x, t)| ≤

ˆ t/2

0

ˆ
B2
√
t(x)
|∇g(x − y, t − s)||(nw)(y,s)|dyds+

ˆ t/2

0

ˆ
Bc

2
√
t
(x)
|∇g(x − y, t − s)||(nw)(y,s)|dyds

≤ Ct−
N+1

2

(ˆ t
2

0

ˆ
B(x,2

√
t)
|n(y,s)|2dyds

) 1
2
(ˆ t

2

0

ˆ
B(x,2

√
t)
|w(y,s)|2dyds

) 1
2

+Ct−
N+1

2

∞∑
j=2

(j + 1)e−j
2/2

ˆ t/2

0

ˆ
B(x,(j+1)

√
t)\B(x,j

√
t)
|nw(y,s)|dyds

≤ Ct−1∥w∥X3,T
∥n∥X1,T

+

Ct−
N+1

2

( ∞∑
j=2

(j + 1)jN−1e−
j2

2

)(ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
) 1

2

·

(ˆ t/2

0

ˆ
B√t(z)

|w(y,s)|2dyds
) 1

2

≤ Ct−1∥w∥X3,T
∥n∥X2,T

.

This shows (3.3.16) and finishes Step 2.

Step 3 (The bounds on LΦ (n)). Here we show that LΦ is continuous on X3,T for n ∈ X2,T
and ∇Φ ∈ M2,N−2(RN ) for T ∈ (0,∞]. The operator et∆P is an integral operator whose
kernel is given by the Oseen kernel k2(t) which satisfies the polynomial decay bound (see
for instance [LR02, Chapter 11])

t|α|/2|∂αk2(x, t)| ≤ Ct−N/2(1 + t−1/2|x|)−N−|α| for all α ∈NN , x ∈RN and t > 0. (3.3.17)

Set

[LΦ (n)]x,t :=
(
|B(x, t)|−1

ˆ t2

0

ˆ
B(x,t)

|LΦ (n)(y,s)|2dyds
)1/2

.
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We primarily show that sup
x∈RN ,0<t≤T 1/2

[LΦ (n)]x,t ≤ C∥n∥X2,T
∥∇Φ∥M2,N−2(RN ). Define

L 1
Φ (n)(y,s) =

ˆ s

0

ˆ
R
N
k2(y − z, s − σ )(n(σ )1B2t(x)∇Φ)(z)dzdσ,

L 2
Φ (n)(y,s) =

ˆ s

0

ˆ
R
N
k2(y − z, s − σ )(n(σ )1Bc2t(x)∇Φ)(z)dzdσ.

For s ≤ t2 < T and y ∈ B(x,2t), we have

|L 2
Φ (n)(y,s)| ≤

ˆ s

0

ˆ
|x−z|≥2t

|k2(y − z, s − σ )||(n(σ )∇Φ)(z)|dzdσ

≤ C
ˆ s

0

ˆ
|x−z|≥2t

(s − σ )−N/2|n(σ )∇Φ(z)|
(1 + |y − z|(s − σ )−1/2)N

dzdσ

≤ Ct−N
∞∑
j=2

j−N
∑
z∈tZN

z∈B(x,(j+1)t)\B(x,jt)

ˆ t2

0

ˆ
B(z,t)
|(n(σ )∇Φ)(y)|dzdσ

≤ Ct1−N
( ∞∑
j=2

j−1
)(ˆ

B(z,t)
|∇Φ |2dy

)1/2(ˆ t2

0

ˆ
B(z,t)
|n(y,s)|2dyds

) 1
2

≤ Ct−1∥n∥X2,T
∥∇Φ∥M2,N−2;

√
T (RN )

where Hölder’s inequality was used to obtain the estimate before the last. Hence,

sup
x∈RN ,0<t≤

√
T

[L 2
Φ (n)]x,t ≤ C∥n∥X2,T

∥∇Φ∥M2,N−2;
√
T (RN ).

On the other hand, let 0 < η < 1/2, 1 < θ <
N

N + 2η − 1
. Take 1 < θ0 < 2 such that

1
θ

+
1
θ0

=

3
2

. Then by Young’s inequality we find that

∥L 1
Φ (n)(s)∥L2(RN ) ≤ C

ˆ s

0
(s − σ )

N
2 (1/θ−1)∥n(σ )1B(x,2t)∇Φ∥Lθ0 (RN )dσ

≤ Ct2η
ˆ s

0
(s − σ )

N
2 ( 1

θ−1)σ−η∥n(σ )1B(x,2t)∇Φ∥Lθ0 (RN )dσ.
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This implies (in view of Lemma 3.3.4 with α = 1 + N
2 ( 1

θ − 1), β = η and p = 2) that

[L 1
Φ (n)]2

x,t ≤ |B(x, t)|−1
ˆ t2

0
∥L 1

Φ (n)(·, s)∥2L2(RN )ds

≤ Ct4η |B(x, t)|−1
ˆ t2

0
s2+N (1/θ−1)−2η∥n(s)1B2t(x)∇Φ∥2Lθ0 (RN )ds

≤ C
(

sup
0<t≤T

t∥n(t)∥L∞(RN )

)2
t4η−N ∥∇Φ∥2

Lθ0 (B(x,2t))

ˆ t2

0
sN (1/θ−1)−2ηds

≤ C∥n∥2X2,T
t4η−N+N (2/θ0−1)∥∇Φ∥2L2(B(x,2t))

ˆ t2

0
sN (1/θ−1)−2ηds

≤ C∥∇Φ∥2M2,N−2(RN )∥n∥
2
X2,T

.

Finally, we need to prove the estimate

sup
0<t≤T

t1/2∥LΦ (n)(·, t)∥L∞(RN ) ≤ C∥n∥X2,T
∥∇Φ∥M2,N−2(RN ). (3.3.18)

Making use of (3.3.17) and Hölder’s inequality we have∣∣∣LΦ (n)(x, t)
∣∣∣ ≤ ˆ t

2

0

ˆ
B2
√
t(x)

|(n(s)∇Φ)(y)|dyds
(|x − y|+ (t − s)

1
2 )N

+
ˆ t

2

0

ˆ
Bc

2
√
t
(x)

|(n(s)∇Φ)(y)|dyds
(|x − y|+ (t − s)

1
2 )N

≤ Ct
−N
2

ˆ t/2

0

(ˆ
B2
√
t(x)
|n(y,s)|2dy

) 1
2

∥∇Φ∥L2(B2
√
t(x))ds+

C
∞∑
j=2

ˆ t/2

0

ˆ
Aj (x)

|(n(s)∇Φ)(y)|dyds
(|x − y|+ (t − s)1/2)N

≤ Ct
1−N

2

(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

∥∇Φ∥L2(B2
√
t(x))+

C
∞∑
j=2

j−N
∑

z∈Aj (x)
z∈
√
tZN

t
1−N

2

(ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
) 1

2

∥∇Φ∥L2(B2
√
t(x))

≤ Ct
1−N

2

(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

∥∇Φ∥L2(B2
√
t(x))

(
1 +

∞∑
j=2

j−1
)
.

This clearly implies that

sup
0<t≤T

t
1
2
∥∥∥LΦ (n)(t)

∥∥∥
L∞(RN )

≤ C∥∇Φ∥M2,N−2(RN )∥n∥X2,T
.
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On the other hand, using (3.3.17) with |α| = 1 we find that∣∣∣[k2(·, t) ∗ (n∇Φ)](x)
∣∣∣ =

∣∣∣∣∣ˆ
R
N
k2(x − y, t)(n∇Φ)(y)dy

∣∣∣∣∣
≤
ˆ ∞

0

∣∣∣∣∣dk2(r, t)
dr

∣∣∣∣∣(ˆ
Br (x)
|(n∇Φ)(y)|dy

)
dr

≤ Ct−N/2−1/2
ˆ ∞

0
(1 + t−1/2r)−(N+1)rN/2∥n∇Φ∥L2(Br (x))dr

≤ Ct−1/2∥n∇Φ∥M2,N−2(RN )

ˆ ∞
0

rN−1

(1 + r)N+1dr.

Thus,

|LΦ (n)(x, t)| ≤
∣∣∣∣∣ˆ t

t/2
e(t−s)∆P(n∇Φ)(y,s)ds

∣∣∣∣∣
≤
ˆ t

t/2

∥∥∥∥∥e(t−s)∆P(n∇Φ)(y,s)
∥∥∥∥∥
L∞(RN )

ds

≤ C
ˆ t

t/2
(t − s)−

1
2 ∥n(s, ·)∇Φ∥M2,N−2(RN )ds

≤ C sup
0<t≤T

t∥n(t)∥L∞(RN )∥∇Φ∥M2,N−2(RN )

ˆ t

t/2
(t − s)−

1
2 s−1ds

≤ Ct−
1
2 ∥n∥X2,T

∥∇Φ∥M2,N−2(RN ).

This gives (3.3.18), concludes Step 3 and thus the proof of Lemma 3.3.3.

Now we turn to the proof of Theorem 3.2.9. Reformulate (D-CNS) into the following
system whose solutions are referred to as mild solutions

c = et∆c0 −
ˆ t

0
e(t−s)∆(cn+u · ∇c)(·, s)ds

n = et∆n0 −
ˆ t

0
e(t−s)∆∇ · (un+n∇c+n∇v)(·, s)ds

v = e−κtet∆v0 −
ˆ t

0
e−κ(t−s)e(t−s)∆(u · ∇v)(·, s)ds −

ˆ t

0
e−κ(t−s)e(t−s)∆n(·, s)ds

u = et∆u0 −
ˆ t

0
e(t−s)∆P∇ · (u ⊗u)(·, s)ds −

ˆ t

0
e(t−s)∆P(nΨ )(·, s)ds.

(3.3.19)

In order to prove the well-posedness of Syst. 3.3.19, one needs in addition to Lemma 3.3.3
another auxiliary result about the mapping properties of the linear operator L and the
bilinear map B5 respectively given by

L n(t) =
ˆ t

0
e−κ(t−s)e(t−s)∆n(·, s)ds, t > 0
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and

B4(u,v)(t) =
ˆ t

0
e−κ(t−s)e(t−s)∆(u · ∇v)(·, s)ds, t > 0, κ > 0.

Lemma 3.3.5. Let κ > 0 and 0 < T ≤ ∞. The linear operator L is continuous from X2,T to
X1,T and there exists C > 0 such that

∥L n∥X1,T
≤ C∥n∥X2,T

(3.3.20)

for any n ∈ X2,T . Moreover, if v ∈ X1,T and u ∈ X3,T , then B4(u,v) ∈ X1,T and

∥B4(u,v)∥X1,T
≤ C∥u∥X3,T

∥v∥X1,T
. (3.3.21)

This Lemma is proved in a similar fashion as before. We include the details for the
sake of completeness.

Proof. Let n ∈ X2,T , we have

L n(x, t) =
(ˆ t/2

0
+
ˆ t

t/2

)
e−κ(t−s)e(t−s)∆n(y,s)dyds := J1(x, t) + J2(x, t).

Only using the property g(·, t) ∈ L1(RN ) for every t > 0, we bound J2 as follows:

|J2(x, t)| =
ˆ t

t/2
e−κ(t−s)

ˆ
R
N
g(x − y, t − s)|n(y,s)|dyds

≤ C sup
t>0

t∥n(t)∥L∞(RN )

ˆ t

t/2
s−1e−κ(t−s)ds

≤ C∥n∥X2,T
.

Regarding J1, we further split it into two terms, J1 = J11 + J12 with

J11(x, t) =
ˆ t/2

0

ˆ
B2
√
t(x)
e−κ(t−s)g(x − y, t − s)n(y,s)dyds,

J12(x, t) =
ˆ t/2

0

ˆ
Bc

2
√
t
(x)
e−κ(t−s)g(x − y, t − s)n(y,s)dyds.

By Hölder’s inequality,

|J11(x, t)| ≤ C
∥∥∥e−κ·g(·, ·)

∥∥∥
L2(B2

√
t(0)×[t/2,t])

(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

≤ Ct−N/4+1/2
(ˆ t/2

0

ˆ
B2
√
t(x)
|n(y,s)|2dyds

) 1
2

≤ C∥n∥X2,T
.
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With Aj(x) as previously defined, we have

|J12(x, t)| ≤
ˆ t/2

0

ˆ
Bc

2
√
t
(x)
e−κ(t−s)g(x − y, t − s)|n(y,s)|dyds

≤ C
∞∑
j=2

e−κ(t−s)e−
j2

2

∑
z∈Aj (x)∩

√
tZN

ˆ t/2

0

ˆ
B√t(z)

e−κ(t−s)(t − s)−n/2|n(y,s)|dyds

≤ C
∞∑
j=2

e−
j2

2

∑
z∈Aj (x)∩

√
tZN

t
2−N

4 e−
κ
2t

(ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
)1/2

≤ C
( ∞∑
j=2

jN−1e−
j2

2

)
sup
z∈RN

(
t2−N

ˆ t/2

0

ˆ
B√t(z)

|n(y,s)|2dyds
)1/2

≤ C∥n∥X2,T
.

The pointwise gradient estimate sup
0<t≤T

t
1
2 ∥L n(·, t)∥L∞(RN ) ≤ C∥n∥X2,T

follows the same steps

using the decay of the kernel k1(x, t) = ∇xg(t). Next, we show the energy-type estimate

[L n]Car := sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−1

ˆ t

0

ˆ
B(x,
√
t)
|∇L n(y,s)|2dyds

)1/2

≤ C∥n∥X2,T
.

Let n ∈ X2,T and for (x, t) ∈RN × (0,T ] write (in the sense of distributions)

∇L n(y,s) =
ˆ s

0

ˆ
R
N
e−κ(s−σ )k1(y − z, s − σ )1B(x,2

√
t)n(z,σ )dzdσ+

ˆ s

0

ˆ
R
N
e−κ(s−σ )k1(y − z, s − σ )(1− 1B(x,2

√
t))n(z,σ )dzdσ

:= I1(n)(y,s) + I2(n)(y,s).

As such, we have that

[L n]Car = sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−1

ˆ t

0

ˆ
B(x,
√
t)
|I1(n)(y,s)|2dyds

)1/2

+

sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−1

ˆ t

0

ˆ
B(x,
√
t)
|I2(n)(y,s)|2dyds

)1/2

=M1 +M2.

Using the following L2-bound

∥I1(n)(·, s)∥L2(RN ) ≤ C
ˆ s

0
e−κ(s−σ )(s − σ )−1/2∥n1B(x,2

√
t)(·,σ )∥L2(RN ),
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the bound on M1 follows from an application of Lemma 3.3.4 with p = 2, α = β = 1/2.
Indeed,

M1 ≤ sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−1

ˆ t

0
∥K1(n)(·, s)∥2L2(RN )ds

)1/2

≤ C sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−1t

ˆ t

0
∥n1B(x,2

√
t)∥

2
L2(RN ))]

2(s)ds
)1/2

≤ C sup
x∈RN ,0<t≤T

(
|B(x,

√
t)|−(1−2/N )

ˆ t

0

ˆ
B(x,2

√
t)
|n(y,s)|2dyds

)1/2

≤ C∥n∥X2,T
.

Also, for y ∈ B(x,2
√
t) and z ∈RN \B(x,2

√
t), we have |y − z| ≥ |x − z|/2. Thus for s ≤ t,

|I2(n)(y,s)| ≤
ˆ s

0

ˆ
R
N \B(x,2

√
t)
e−κ(s−σ )|k1(y − z, s − σ )||n(z,σ )|dzdσ

≤ C
ˆ t

0

ˆ
|x−z|≥2

√
t

e−κ(s−σ )

(|x − y|+ (s − σ )1/2)N+1
|n(z,σ )|dzdσ

≤ C
ˆ t

0

ˆ
|x−z|≥2

√
t

|n(z,σ )|dzdσ
|x − y|N+1 .

Performing a similar covering argument as before we obtain the estimate M2 ≤ C∥n∥X2,T
.

To conclude the proof we show that

∥B4(u,v)∥X1,T
≤ C∥u∥X3,T

∥v∥X1,T
(3.3.22)

for all u ∈ X3,T and v ∈ X1,T . Put

N1(u,v)(x, t) =
ˆ t/2

0

ˆ
R
N
e−κ(t−s)g(x − y, t − s)(u · ∇v)(y,s)dyds

N2(u,v)(x, t) =
ˆ t

t/2

ˆ
R
N
e−κ(t−s)g(x − y, t − s)(u · ∇v)(y,s)dyds.

We have

|N2(u,v)(x, t)| =
ˆ t

t/2

ˆ
R
N
e−κ(t−s)g(x − y, t − s)|(u · ∇v)(y,s)|dyds

≤ C sup
0<t≤T

t
1
2 ∥u(t)∥L∞(RN ) sup

0<t≤T
t

1
2 ∥∇v(t)∥L∞(RN )t

−1
ˆ 1

2

0
e−κs∥g(s)∥L1(RN )ds

≤ C∥u∥X3,T
∥v∥X1,T

.
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We estimate N1 using Hölder’s inequality:

|N1(u,v)(x, t)| =
ˆ t/2

0

ˆ
B2
√
t(x)
e−κ(t−s)g(x − y, t − s)|(u · ∇v)(y,s)|dyds+

ˆ t/2

0

ˆ
R
N \B2

√
t(x)
e−κ(t−s)g(x − y, t − s)|(u · ∇v)(y,s)|dyds

≤ Ct−N/2
(ˆ t/2

0

ˆ
B2
√
t(x)
|u(y,s)|2dyds

) 1
2
(ˆ t/2

0

ˆ
B2
√
t(x)
|∇v(y,s)|2dyds

) 1
2

+C
∞∑
j=2

ˆ t/2

0

ˆ
Aj (x)

e−κ(t−s) e−
|x−y|2
4(t−s)

(t − s)N/2
|(u · ∇v)(y,s)|dyds

≤ C∥u∥X3,T
∥v∥X1,T

+

C
∞∑
j=2

e−
j2

2

∑
z∈Aj (x)∩

√
tZN

ˆ t/2

0

ˆ
B√t(z)

e−κ(t−s)(t − s)−
N
2 |(u · ∇v)(y,s)|dyds

≤ C∥u∥X1,T
∥v∥X1,T

+

C
∞∑
j=2

e−
j2

2

∑
z∈Aj (x)∩

√
tZN

t
−N
2 e−

κt
2

(ˆ t/2

0

ˆ
B√t(z)

|u(y,s)|2dyds
) 1

2

·

(ˆ t/2

0

ˆ
B√t(z)

|∇v(y,s)|2dyds
) 1

2

≤ C∥u∥X3,T
∥v∥X1,T

+
( ∞∑
j=2

e−
j2

2 jN−1
)
∥u∥X3,T

∥v∥X1,T
≤ C∥u∥X3,T

∥v∥X1,T
.

The gradient estimate sup
0<t≤T

t1/2∥∇B4(u,v)∥L∞(RN ) ≤ C∥u∥X1,T
∥v∥X1,T

is obtained in a similar

fashion. It remains to establish the L2-gradient estimate

[B4(u,v)]Car = sup
x∈RN ,0<t≤T

|B(x,
√
t)|−1

ˆ t

0

ˆ
B(x,
√
t)
|∇B4(u,v)(y,s)|2dyds

≤ C∥u∥X3,T
∥v∥X1,T

. (3.3.23)

Set

B41(u,v)(y,s) =
ˆ s

0

ˆ
R
N
e−κ(t−s)k1(y − z, s − σ )[(u1B(x,2

√
t)) · ∇v](z,σ )dzdσ,

and

B42(u,v)(y,s) =
ˆ s

0

ˆ
R
N
e−κ(t−s)k1(y − z, s − σ )[(u1

R
N \B(x,2

√
t)) · ∇v](z,σ )dzdσ.
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Then, by Young’s convolution inequality one has

∥B41(u,v)(s)∥L2(RN ) ≤ C
ˆ s

0
e−κ(t−s)

∥∥∥[(u1B(x,2
√
t)) · ∇v](·,σ )

∥∥∥
L2(RN )

≤ C sup
0<s≤T

s
1
2 ∥∇v∥L∞(RN )

ˆ s

0
e−κ(s−σ )(s − σ )−

1
2σ−

1
2 ∥1B(x,2

√
t)u∥L2(RN )dσ

≤ C∥v∥X1,T

ˆ s

0
(s − σ )−

1
2σ−

1
2 ∥1B(x,2

√
t)u(σ )∥L2(RN )dσ

and thus by Lemma 3.3.4 with p = 2, α = β = 1/2, it holds that

[B41(u,v)]Car = sup
x∈RN ,0<t≤T

|B(x,
√
t)|−1

ˆ t

0

ˆ
B(x,
√
t)
|B51(u,v)(y,s)|2dxdt

≤ C sup
x∈RN ,0<t≤T

|B(x,
√
t)|−1

ˆ t

0
∥B52(u,v)(·, s)∥2L2(RN )ds

≤ C∥v∥X1,T
sup

x∈RN ,0<t≤T
|B(x,

√
t)|−1

ˆ t

0
∥1B(x,2

√
t)u(·, s)∥2L2(RN )ds

≤ C∥u∥X3,T
∥v∥X1,T

. (3.3.24)

On the other hand,

|B42(u,v)(y,s)| =
ˆ s

0

ˆ
R
N \B(x,2

√
t)
e−κ(t−s)|k1(y − z, s − σ )|

∣∣∣[u · ∇v](z,σ )
∣∣∣dzdσ

≤ C
∞∑
j=2

ˆ s

0

ˆ
Aj (x)

e−κ(s−σ )(u · ∇v)(z,σ )dzdσ
(|y − z|+ (s − σ )1/2)N+1

≤ C
∞∑
j=2

ˆ s

0

ˆ
Aj (x)
|y − z|−(N+1)e−κ(s−σ )(u · ∇v)(z,σ )dzdσ

≤ C
∞∑
j=2

j−(N+1)
∑

z∈Aj (x)∩
√
tZN

t
−(N+1)

2

(ˆ t

0

ˆ
B√t(z)

|(u · ∇v)(y,s)|dyds
) 1

2

≤ C
( ∞∑
j=2

j−2
)
t−1/2∥u∥X3,T

∥v∥X1,T

where the last estimate follows from Hölder’s inequality. This implies that

[B42(u,v)]Car ≤ C∥u∥X3,T
∥v∥X1,T

.

Combining this with (3.3.24), we obtain (3.3.23). The proof of Lemma 3.3.5 is now com-
plete.
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3.4 Proofs of main results

We mainly present the proofs of the local well-posedness results since the existence of
global-in-time solutions is a direct consequence of Lemmas 3.3.1, 3.3.3 and the contrac-
tion mapping principle. Also, the uniqueness criterion in Theorem 3.2.7 and 3.2.9 may
be established via similar arguments – we therefore only present the proof of the former.

Proof of Theorem 3.2.5

Let d0 ∈ UC(RN ) and Γδ0
as in Lemma 3.3.2. Make the ansatz c = c − Γδ0

and observe that
c solves the Cauchy problem

∂tc −∆c = −(c − Γδ0
)n−u · (∇c+∇Γδ0

)−∆Γδ0
in R

N ×R+

c(0) = c0 − Γδ0
on R

N .

It is clear that the conclusion of Theorem 3.2.5 now follows from the well-posedness of
the following system of equations

c = et∆c0 −
ˆ t

0
e(t−s)∆[(c+ Γδ0

)n+u · ∇(c+∇Γδ0
) +∆Γδ0

](·, s)ds

n = et∆n0 −
ˆ t

0
e(t−s)∆∇ · [n∇(c+ Γδ0

) +nu](·, s)ds

u = et∆u0 −
ˆ t

0
e(t−s)∆P∇ · (u ⊗u)(·, s)ds −

ˆ t

0
e(t−s)∆P(n∇Φ)(·, s)ds.

(3.4.1)

Next, define the maps

F1(c,n,u,Γδ0
) = B1(c+ Γδ0

,n) +B1(u,∇(c+ Γδ0
)) +

ˆ t

0
e(t−s)∆∆Γδ0

ds

F2(c,n,u,Γδ0
) = B2(n,∇(c+ Γδ0

)) +B2(n,u)

F3(n,u,∇Φ) = B3(u,u) +LΦ (n)

where Bj , j = 1,2,3 are as in Section 3.3. Combining Lemmas 3.3.2 and 3.3.3 we obtain
the following result.

Proposition 3.4.1. Let Γδ0
= eδ

2
0∆d0. Let R > 0 and put T0 = min(δ0,R). Given [c,n,u] in XT 2

0
and ∇Φ ∈M2,N−2, one has

∥F1(c,n,u,Γδ0
)∥X1,T 2

0
≤ C1(∥c∥X1,T 2

0
+ 1)∥n∥X2,T 2

0
+C1∥u∥X3,T 2

0
(∥c∥X1,T 2

0
+ ε0) +C1ε0 (3.4.2)

∥F2(c,n,u,Γδ0
)∥X2,T 2

0
≤ C2(∥c∥X1,T 2

0
+ ∥u∥X3,T 2

0
+ ε0)∥n∥X2,T 2

0
(3.4.3)

∥F3(n,u,∇Φ)∥X3,T 2
0
≤ C3(∥u∥2X3,T 2

0

+ ∥n∥X2,T 2
0
∥∇Φ∥M2,N−2(RN )) (3.4.4)
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for some constants C1,C2,C3 > 0. Moreover, for any [c1,n1,u1] ∈ XT 2
0

, it holds that∥∥∥F1(c,n,u,Γδ0
)−F1(c1,n1,u1, Γδ0

)
∥∥∥

X1,T 2
0

≤ C1(∥c∥2X1,T 2
0

+ 1)∥n−n1∥X2,T 2
0

+

C1∥n1∥X2,T 2
0

(∥c − c1∥2X1,T 2
0

) +C1(∥c∥X1,T 2
0

+ ε0)∥u −u1∥X3,T 2
0∥∥∥F2(c,n,u,Γδ0

)−F2(c1,n1,u1, Γδ0
)
∥∥∥

X2,T 2
0

≤ C2[(ε0∥c1∥X1,T 2
0

+ ∥u∥X3,T 2
0

)∥n−n1∥X2,T 2
0

+

(∥n1∥X2,T 2
0
∥u −u1∥X3,T 2

0
+ ∥n∥X2,T 2

0
∥c − c1∥X1,T 2

0
)]∥∥∥F3(n,u,∇Φ)−F3(n1,u1,∇Φ)

∥∥∥
X3,T 2

0

≤ C3(∥u∥X3,T 2
0

+ ∥u1∥X3,T 2
0

)∥u −u1∥X3,T 2
0

+

C3∥n−n1∥X2,T 2
0
∥∇Φ∥M2,N−2(RN ).

From Lemma 3.3.2, we remark that ∥c0∥L∞(RN ) ≤ ∥c0 − d0∥L∞(RN ) +Cε0 for some C > 0.
Let R > 0 fixed and ε0 > ε0. Assume that

∥c0 − d0∥L∞(RN ) + ∥n0∥L −1
2,N−2;R(RN ) + ∥u0∥BMO−1

R (RN ) < ε0,

then by Lemma 3.3.1, it holds that∥∥∥[et∆c0, e
t∆n0, e

t∆u0]
∥∥∥

XT 2
0

≤ C0ε0. (3.4.5)

Let U = [c,n,u] and introduce the map

F (U ) = (et∆c0 +F1(U,Γδ0
), et∆n0 +F2(U,Γδ0

), et∆u0 +F3(n,u,∇Φ)).

Using Proposition 3.4.1 together with (3.4.5), we have

∥F (U )∥XT 2
0
≤ ∥et∆c0, e

t∆n0, e
t∆u0)∥XT 2

0
+ ∥F1(U,Γδ0

)∥X1,T 2
0

+ ∥F2(U,Γδ0
)∥X2,T 2

0
+∥∥∥F3(et∆n0 +F2(U,Γδ0

),u,∇Φ)
∥∥∥

X3,T 2
0

≤ (2C0 +C1)ε0 + ((C1 +C2 +C1C2)ε0 + ε2
0C2C3)∥U∥XT 2

0
+

(2C1 + 2C2 +C3 + 2ε0C2(C3 +C1))∥U∥2XT 2
0

≤ Cε0

for some C > 0 provided ∥U∥XT 2
0
≤ Cε0 and ε0 is chosen sufficiently small. On the other

hand, we similarly show that F is a contraction on BCε0
= {U ∈ XT 2

0
: ∥U∥XT 2

0
≤ Cε0}. This

implies that F has a unique fixed point in BCε0
and concludes the proof of Theorem 3.2.5.
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Proof of Theorem 3.2.7

Assume that Φ ∈ S ′(RN ) such that∇Φ ∈M2,N−2(RN ) and letUj = [cj ,nj ,uj ] ∈ L∞loc(0,∞;L∞(RN )),
j = 1,2 and set U =U1−U2. Through similar ideas as in [Miu05], we first show that U = 0
on R

N × [0,T0) for some T0 > 0. By Lemma 3.3.3 and the identities

(c1 − c2) = B1(c2,n2 −n1)) +B1(c2 − c1,n1)) +B1(u2,∇(c2 − c1))) +B1(u2 −u1,∇c1)

(n1 −n2) = B2(n1 −n2,∇c2) +B2(n1,∇(c2 − c1)) +B2(n2,u2 −u1) +B2(u1,n2 −n1)

(u1 −u2) = B3(u2,u2 −u1) +B3(u2 −u1,u1) +LΦ (n2 −n1),

it follows that

∥U∥XT
= ∥c − c1∥X1,T

+ ∥n1 −n2∥X2,T
+ ∥u1 −u2∥X2,T

≤ K1

(
∥U1∥XT

+ ∥U2∥XT
+ ∥∇Φ∥M2,N−2(RN )

)
∥U∥XT

. (3.4.6)

In view of condition (3.2.11), there exists T0 > 0 such that ∥U1∥XT0
+ ∥U2∥XT0

≤ 1
4K1

. Given

ε ∈ (0,1), if ∥∇Φ∥M2,N−2(RN ) ≤
ε

4K1
, then (3.4.6) implies that

∥U∥XT0
≤ 1

2
∥U∥XT0

.

Hence, U1 = U2 on R
N × [0,T0). To extend this property to the whole interval [0,∞),

observe that
K12 ≡ sup

s∈(T0,T )
∥U1(s)∥L∞(RN ) + sup

s∈(T0,T )
∥U2(s)∥L∞(RN ) <∞

since U1,U2 ∈ L∞loc(0,∞;L∞(RN )). Now set

a(t) = sup
T0<s<t

∥U (s)∥L∞(RN ), t > T0.

We claim that there exits τ := τ(T0) such that U1 = U2 on R
N × [0,T0 + τ). To see this,

compute

|(c1 − c2)(x, t)| =
∣∣∣∣∣ˆ t

0

ˆ
R
N
g(x − y, t − s)[c2(n2 −n1) +n1(c2 − c1)+

u2∇(c2 − c1) + (u2 −u1)∇c1]dyds
∣∣∣∣∣

≤
ˆ t

T0

ˆ
R
N
g(x − y, t − s)(|c2(n2 −n1)|+ |n1(c2 − c1)|+

|u2∇(c2 − c1)|+ |(u2 −u1)∇c1|)dyds

≤ C1K12a(t)
ˆ t

T0

ˆ
R
N
g(x − y, t − s)dyds

≤ C1K12a(t)(t − T0).
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On the other hand, using (3.3.17), we find that

|(u1 −u2)(x, t)| =
∣∣∣∣∣ˆ t

0

ˆ
R
N
∇k2(x − y, t − s)[u2 ⊗ (u2 −u1) + (u2 −u1)⊗u1]dyds+

ˆ t

0

ˆ
R
N
k2(x − y, t − s)(n2 −n1)∇Φ]dyds

∣∣∣∣∣
≤
ˆ t

T0

ˆ
R
N
|∇k2(x − y, t − s)||u2 ⊗ (u2 −u1)|+ |(u2 −u1)⊗u1|dyds+

ˆ t

T0

ˆ
R
N
|k2(x − y, t − s)||(n2 −n1)∇Φ |dyds

≤ C3K12a(t)
ˆ t

T0

ˆ
R
N

dy

[(x − y)2 + (t − s)]
N+1

2

ds+

C4

ˆ t

T0

ˆ
R
N

|(n2 −n1)(s)∇Φ |dy
(|x − y|+ (t − s)1/2)−N

ds

≤ C3K12a(t)
√
t − T0 +C4

ˆ t

T0

(t − s)−1/2∥(n2 −n1)(s)∇Φ∥M2,N−2(RN )ds

≤ C3K12a(t)
√
t − T0 +C4a(t)∥∇Φ∥M2,N−2(RN )

ˆ t

T0

(t − s)−1/2ds

≤ C3K12a(t)
√
t − T0 +C4a(t)∥∇Φ∥M2,N−2(RN )

√
t − T0.

Also, we have

|(n1 −n2)(x, t)| =
∣∣∣∣∣ˆ t

0

ˆ
R
N
g(x − y, t − s)∇ · [(n2 −n1)∇c2 +n1∇(c2 − c1)+

n2(u2 −u1) +u1(n2 −n1)]dyds
∣∣∣∣∣

≤
ˆ t

T0

ˆ
R
N
|∇g(x − y, t − s)|

(
|(n2 −n1)∇c2|+ |n1∇(c2 − c1)|+

|n2(u2 −u1)|+ |u1(n2 −n1)|
)
dyds

≤ C2K12a(t)
ˆ t

T0

ˆ
R
N

dy

[(x − y)2 + (t − s)]
N+1

2

ds

≤ C2K12a(t)
(ˆ t

T0

(t − s)−1/2ds

)(ˆ
R
N

dy

(|y|2 + 1)
N+1

2

)
≤ C2K12a(t)

√
t − T0.
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Summarizing, we have that (setting C5 = max(C1,C2 +C3,C4∥∇Φ∥M2,N−2(RN )))

|U (x, t)| ≤ C5K12a(t)
(
(t − T0) +

K12 + 1
K12

(t − T0)
1
2

)
from which it follows that

a(T0 + τ) ≤ 1
4
a(T0 + τ)

for τ = θ2, θ =

√(
K12 + 1
K12

)2

+
1

C5K12
− K12 + 1

K12
> 0. This shows the claim. Iterating this

procedure yields the desired conclusion.

Proof of Theorem 3.2.8

The argument here is similar to that used above. We give the details for the reader’s
convenience. Let d0 ∈ UC(RN ), Γδ0

and c = c − Γδ0
as before. Next let ṽκ = e−tκet∆v0 and

make the change of variable w = v − ṽκ. Then Syst. (3.3.19) becomes

c = et∆c0 −
ˆ t

0
e(t−s)∆[(c+ Γδ0

)n+u · ∇(c+∇Γδ0
) +∆Γδ0

](·, s)ds

n = et∆n0 −
ˆ t

0
e(t−s)∆∇ · [nu +n∇(c+ Γδ0

) +n∇(w+ ṽκ)](·, s)ds

w =
ˆ t

0
e−(t−s)κe(t−s)∆[u · ∇(w+ ṽκ) +n](·, s)ds

u = e−tκet∆u0 −
ˆ t

0
e−tκe(t−s)∆P∇ · (u ⊗u)(·, s)ds −

ˆ t

0
e(t−s)∆P(nΨ )(·, s)ds.

(3.4.7)

Observe that if v0 ∈ BMOR(RN ) for some 0 < R ≤∞, then

[ṽκ]X1,R2 ≤ C∥v0∥BMOR(RN ).

This easily follows from the Carleson measure characterization of BMOR(RN ). Remark
that the kernel of the integral operator e−tκet∆, κ > 0 is bounded above by the heat kernel.
This in turn implies that ∇ṽκ ∈ X3,R2 . Hence, setting

F2,κ(c,n,w,u) = B2(n,∇(c+ Γδ0
)) +B2(n,u) +B2(n,∇(w+ ṽκ))

F4(n,w,u) = B4(u,w+ ṽκ) +L (n),

the next Proposition follows from Lemmas 3.3.3 and 3.3.5.
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Proposition 3.4.2. For R > 0 and T0 = min(δ0,R). If [n,w,u] ∈ X2,T 2
0
× X1,T 2

0
× X3,T 2

0
then

F2,κ(c,n,w,u) ∈ X2,T 2
0

, F4(n,w,u) ∈ X1,T 2
0

and there exists C4,C5 > 0 such that

∥F2,κ(c,n,w,u)∥X2,T 2
0
≤ C5(∥c∥X1,T 2

0
+ ∥u∥X3,T 2

0
+ [ṽκ]X1,T 2

0
+ ∥w∥X1,T 2

0
+ ε0)∥n∥X2,T 2

0
(3.4.8)

∥F4(n,w,u)∥X1,T 2
0
≤ C4([ṽκ]X1,T 2

0
+ ∥w∥X1,T 2

0
)∥u∥X3,T 2

0
+C4∥n∥X2,T 2

0
. (3.4.9)

In addition, for any [c1,n1,w1,u1] ∈ ZT 2
0

, it holds that∥∥∥F2,κ(c,n,w,u)−F2,κ(c1,n1,w1,u1)
∥∥∥

X2,T 2
0

≤ C5∥n∥X2,T 2
0
∥w −w1∥X1,T 2

0
+

C5(∥c∥2X1,T 2
0

+ [ṽκ]X1,T 2
0

+ ∥w∥X1,T 2
0

+ 1)∥n−n1∥X2,T 2
0

+

C5

[
∥n1∥X2,T 2

0
(∥c − c1∥2X1,T 2

0

) + (∥c∥X1,T 2
0

+ ε0)∥u −u1∥X3,T 2
0

]
∥∥∥F4(n,w,u)−F4(n1,w1,u1)

∥∥∥
X1,T 2

0

≤ C4(∥w1∥X1,T 2
0

+ [w1]X1,T 2
0

)∥u −u1∥X3,T 2
0

+

C4∥u∥X1,T 2
0
∥w −w1∥X1,T 2

0
+C4∥n−n1∥X2,T 2

0
.

The remaining part of the proof is done exactly as before. The details are omitted.

3.5 Appendix

This section contains all the deferred proofs which follow as particular cases of more
general results.

Definition 3.5.1. LetN ≥ 3 and −2 < λ ≤ 2. We say that a tempered distribution f belongs
toL −1

2,N−λ(RN ) if ∥f ∥L −1
2,N−λ(RN ) is finite,

∥f ∥L −1
2,N−λ(RN ) = sup

x∈RN ,R>0

(
|B(x,R)|

λ
N −1

ˆ R2

0

ˆ
B(x,R)

|et∆f (y,s)|2dyds
)1/2

.

For λ = 0,L −1
2,N−λ(RN ) is the space BMO−1(RN ). Recall the characterization of square-

Campanato spaces via caloric extension [JXY16]: f ∈ L2,N−λ(RN ), λ ∈ (−2,2] if and only
if its caloric extension u = et∆f ∈ T 2,λ and ∥u∥T 2,λ ≤ C∥f ∥L2,N−λ(RN ) where C is a constant
independent of f and

∥u∥T 2,λ := sup
x∈RN ,R>0

(
|B(x,R)|

λ
N −1

ˆ R2

0

ˆ
B(x,R)

|∇u(y,s)|2dyds
)1/2

.

This extrinsic definition of Campanato spaces suggests thatL −1
2,N−λ(RN ) = ∇·(L2,N−λ(RN ))N .

This is indeed the case as shown below.
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Lemma 3.5.2. Assume that λ ∈ (−2,2] and N > 2. A tempered distribution f ∈ L −1
2,N−λ(RN )

if and only if there exists a family (fl)
N
l=1 ⊂ L

−1
2,N−λ(RN ) such that f =

∑N
l=1 fl . Moreover, the

following equivalence holds

∥f ∥L −1
2,N−λ(RN ) ≈ inf

{ N∑
l=1

∥fl∥L −1
2,N−λ(RN ) : f =

N∑
l=1

∂lfl

}
. (3.5.1)

Proof of Lemma 3.5.2. Let f be a tempered distribution. Assume that there is fl ∈L −1
2,N−λ(RN ),

l = 1, · · · ,N with f =
∑N
l=1 fl . Using the characterization of Morrey spaces by heat exten-

sion we obtain

∥f ∥L −1
2,N−λ(RN ) ≤ C

N∑
l=1

sup
x∈RN ,R>0

(
|B(x,R)|

λ
N −1

ˆ R2

0

ˆ
B(x,R)

|∂jet∆fl |2dyds
)1/2

≤ C
N∑
l=1

∥fl∥L −1
2,N−λ(RN ).

This shows that ∇ · (L2,N−λ(RN ))N ⊂L −1
2,N−λ(RN ). The converse follows from the observa-

tion that if f ∈L −1
2,N−λ(RN ) then fj,l = ∂j∂l(−∆)−1f ∈L −1

2,N−λ(RN ). Indeed, let ϕ ∈ C∞0 (RN )
be a cut-off function with supp ϕ ⊂ B(0,1), the Euclidean unit ball and

´
R
N ϕdx = 1. Set

ϕR(x) = R−Nϕ(x/R) for R > 0 and write

et∆fj,l = ∂j∂l(−∆)−1(et∆f ) = f 1
j,l + f 2

j,l

where f 1
j,l = ϕR ∗∂j∂l(−∆)−1(et∆f ) and f 2

j,l = fj,l − f 1
j,l . Noticing that ∂j∂l(−∆)−1 is a Fourier

multiplier of order 0, one has

∥f 1
j,l∥L∞(RN ) ≤ C∥ϕR∥

Ḃ
1+ λ2
1,1 (RN )

∥fj,l∥
Ḃ
−(1+ λ2 )
∞,∞ (RN )

≤ CR−1− λ2 ∥et∆f ∥
Ḃ
−(1+ λ2 )
∞,∞ (RN )

≤ CR−1− λ2 ∥f ∥
Ḃ
−(1+ λ2 )
∞,∞ (RN )

≤ CR−1− λ2 ∥f ∥L −1
2,N−λ(RN )

since the operator et∆ maps Ḃsp,q(R
N ) into itself (for 1 ≤ p,q ≤ ∞, s ∈ R) in addition to

L −1
2,N−λ(RN ) ⊂ Ḃ−(1+λ/2)

∞,∞ (RN ). The proof of the latter continuous embedding is given below.
Using this, it follows that

ˆ R2

0

ˆ
B(x,R)

|f 1
j,l |

2dydt ≤ C|B(x,R)|1−
λ
N ∥f ∥L −1

2,N−λ(RN ).
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To estimate f 2
j,l , we further decompose it into two parts writing f 2

j,l = f 21
j,l + f 22

j,l with

f 21
j,l = ∂j∂l(−∆)−1(ζx,Re

t∆f )−ϕR ∗∂j∂l(−∆)−1(ζx,Re
t∆f )

f 22
j,l = ∂j∂l(−∆)−1[(1− ζx,R)et∆f ]−ϕR ∗∂j∂l(−∆)−1[(1− ζx,R)et∆f ]

where ζx,R = ζ(R−1(x − ·)) and ζ ∈ C∞0 (RN ), supp ζ ⊂ B(0,20), ζ = 1 on B(0,10). By
Pancherel’s identity,

ˆ R2

0

ˆ
B(x,R)

|∂j∂l(−∆)−1(ζx,Re
t∆f )|2dydt ≤

ˆ R2

0
∥∂j∂l(−∆)−1(ζx,Re

t∆f )∥2L2(RN )dt

≤ C
ˆ R2

0

∥∥∥ξjξl |ξ |−2F
(
ζx,Re

t∆f
)∥∥∥2
L2(RN )

dt

≤ C
ˆ R2

0

∥∥∥F (
ζx,Re

t∆f )
∥∥∥2
L2(RN )

dt

≤ C
ˆ R2

0

∥∥∥ζx,Ret∆f ∥∥∥2
L2(RN )

dt. (3.5.2)

On the other hand, invoking Minkowski’s inequality we find that

ˆ R

0

ˆ
BR(x)
|ϕR ∗∂j∂l(−∆)−1(ζx,Re

t∆f )|2dydt ≤
ˆ R2

0
∥ϕR ∗∂j∂l(−∆)−1(ζx,Re

t∆f )∥2L2dt

≤ C
ˆ R2

0
∥∂j∂l(−∆)−1(ζx,Re

t∆f )∥2L2(RN )dt

≤ C
ˆ R2

0

∥∥∥ζx,Ret∆f ∥∥∥2
L2(RN )

dt. (3.5.3)

Thus, from (3.5.2) and (3.5.3), one deduces that

ˆ R2

0

ˆ
B(x,R)

|f 21
j,l (y, t)|2dydt ≤ C|B(x,R)|1−λ/N .

In order to estimate the term f 22
j,l , recall the pointwise estimate (see [LR02, Page 161])

∣∣∣f 22
j,l (y, t)

∣∣∣ ≤ C ˆ
|x−z|≥10R

R

|x − z|N+1 |e
t∆f (z)|dz, y ∈ B(x,R). (3.5.4)
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Set Âk = B(x,10R(k + 1)) \B(x,10Rk) and observe that (3.5.4) implies

ˆ
B(x,R)

∣∣∣f 22
j,l (y, t)

∣∣∣2dy ≤ CRN+1
ˆ
|x−z|≥10R

1
|x − z|N+1 |e

t∆f (z)|2dz

≤ CRN+1
∞∑
k=1

ˆ
Âk

1
|x − z|N+1 |e

t∆f (z)|2dz

≤ C
∞∑
k=1

k−(N+1)
∑
w∈ZN

&
w∈Âk

ˆ
B(w,R)

|et∆f |2dz

≤ C
( ∞∑
k=1

k−2
)ˆ

B(w,R)
|et∆f |2dz.

Hence,

|B(x,R)|1/λ−N
ˆ R2

0

ˆ
B(x,R)

∣∣∣f 22
j,l (y, t)

∣∣∣2dydt ≤ C.
Next, let fl = −∂l(−∆)−1f . It is clear that fl ∈ L2,N−λ(RN ) for each l = 1, ...,N . Moreover,
we verify that

F
( N∑
l=1

∂lfl

)
(ξ) =

N∑
l=1

iξlF (fl)(ξ) =
N∑
l=1

−iξl(iξl)|ξ |−2F (f )(ξ) = F (f )(ξ).

This achieves the proof of Lemma 3.5.2.

Proof of the embedding (3.2.15). Let N ≥ 3, 0 ≤ β < N , 0 ≤ λ ≤ 2 and take 2 ≤ p < 2(N−β)
λ

(2 ≤ p < ∞ when λ = 0). Assume that f ∈ N −2s
p,β,∞(RN ), s = λ+2

4 + β−N
2p > 0. From the

characterization of Besov-Morrey spaces (see e.g. [KY94, Maz03]), it holds that

sup
t>0

ts∥et∆f ∥Mp,β(RN ) ≈ ∥f ∥N −2s
p,β,∞(RN ). (3.5.5)

For t > 0, a use of Hölder’s inequality yields

∥et∆f ∥2L2(BR(x)) ≤ CR
N (p−2)
p ∥et∆f (·, t)∥2Lp(BR(x))

≤ CR
2β+N (p−2)

p t−2s∥f ∥2N −2s
p,β,∞(RN )
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for any x ∈RN and R > 0 so that

∥f ∥L −1
2,N−λ(RN ) = sup

x∈RN ,R>0

(
|B(x,R)|

λ
N −1

ˆ R2

0

ˆ
B(x,R)

|et∆f (y)|2dydt
)1/2

= sup
x∈RN ,R>0

(
|B(x,R)|

λ
N −1

ˆ R2

0
∥et∆f (t)∥2L2(BR(x))dt

) 1
2

≤ C sup
x∈RN ,R>0

(
|B(x,R)|

λ
N −1R

2β+N (p−2)
p

ˆ R2

0
t−2sdt

)1/2

∥f ∥N −2s
p,β,∞(RN )

≤ C∥f ∥N −2s
p,β,∞(RN ).

The proof of the continuous embedding L −1
2,N−λ(RN ) ⊂ Ḃ−(1+λ/2)

∞,∞ (RN ) which holds for any
λ ∈ (−2,2] follows from the definition of L −1

2,N−λ(RN ) and is inspired by [Can04, Propo-
sition 7]. Let ⟨·, ·⟩ denote the duality pairing between S(RN ) and its dual S ′(RN ). There
exists a constant C > 0 such that∣∣∣⟨f , e− |x|24 ⟩

∣∣∣ ≤ C∥f ∥L −1
2,N−λ(RN ) (3.5.6)

for all f ∈L −1
2,N−λ(RN ). By translation invariance ofL −1

2,N−λ(RN ), (3.5.6) implies that∣∣∣(e− |·|24 ∗ f )
∣∣∣ ≤ C∥f ∥L −1

2,N−λ(RN ).

Moreover, by the invariance ofL −1
2,N−λ(RN ) with respect to the scaling map fλ(·) = δλ/2+1f (δ·),

δ > 0 it holds that

sup
t>0

t
λ
4 + 1

2 ∥et∆f ∥L∞(RN ) ≤ C∥f ∥L −1
2,N−λ(RN )

which produces the desired bound.

It is worth pointing out that the membership of a distribution f in L −1
2,N−λ(RN ) may

be interpreted in terms of Carleson measures.

Definition 3.5.3. Let α > 0. A positive measure µ in R
N ×R+ is a (parabolic) α-Carleson

measure if

sup
B⊂RN

µ(T (B))
|B|α

<∞

where the supremum is taken over all balls in R
N and T (B) is the (parabolic) Carleson

box T (Br(x)) = Br(x)× (0, r2] for x ∈RN and r > 0.

By this definition, it is easy to see that f belongs to L −1
2,N−λ(RN ), N > 2 implies that

dµ(x, t) = |n(x, t)|2dxdt is a (1− λ
N )-Carleson measure. Thus,L −1

2,N−λ(RN ) may be identified
with the dual of certain tent space, we refer the interested reader to [Ame18].
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Chapter 4

Existence and regularity of Solutions
to Stationary Navier-Stokes
equations arising from irregular data

4.1 Introduction

The steady state (forced) incompressible Navier-Stokes equations in a domain Ω ⊂ R
n,

n ≥ 2 is the following system−∆u +∇π+u · ∇u = F in Ω

div u = 0 in Ω
(NS)

where u : Ω→R
n is the unknown velocity field, π : Ω→R is the unknown scalar pressure

and F : Ω→ R
n is a given external force. This system is supplemented by the boundary

condition
u = f on ∂Ω (4.1.1)

where f = (f1, ..., fn) is a prescribed vector field satisfying (in the case Ω smooth bounded)

the compatibility condition
ˆ
∂Ω
f ·Ndσ (Q) = 0 with N = (N1, · · · ,Nn) being the outer unit

normal vector at the boundary.
Probably, the first striking result regarding the solvability of the Dirichlet problem

for the Navier-Stokes equations was obtained by Leray [Ler33]. In a bounded three di-
mensional domain, he showed the existence of a weak solution (u,π) ∈ W 1,2(Ω) × L2(Ω)
provided f ∈ W 1/2,2(∂Ω) and F ∈ W −1,2(Ω). Existence of generalized weak solutions to
(NS)-(4.1.1), those are (u,π) ∈W 1,q(Ω)× Lq(Ω), q ∈ [2,∞) is a consequence of the work of
Cattabriga [Cat61] (the reader may consult the monograph [Gal11] for a more complete
theory). It is also known that in the most physically relevant dimensions n = 2,3; any
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weak solution is smooth (see e.g. [Lad69] and [Ser83] in the case of nonhomogeneous
data). The Lp-regularity of weak solutions in four dimensions is proved in [Ger79]. As
for uniqueness, it seems that a smallness assumption on the given data is necessary and a
recent result by Luo [Luo19] predicts that this condition cannot be dropped.

There have been growing interest in recent years in the analysis of the Navier-Stokes
equations subject to low regularity data. By this we mean that the data lies in a space
whose regularity index is less than that giving rise to generalized weak solutions. Assume
that f enjoys a low regularity property, does problem (NS)-(4.1.1) admits a solution? In
the affirmative case, what are the qualitative properties of such solutions? Prescribing
boundary value with low regularity forces one to consider a notion of solution weaker
than weak solutions, that is, those which need not to have finite Dirichlet energy. A good
candidate, roughly speaking is obtained by testing (NS) against a suitable divergence-
free smooth vector field and performing two successive integration by parts after which
a variational formulation is obtained. This idea to the best of our knowledge, first ap-
peared in [Ama00]. When Ω ⊂R

n, n = 2,3 is a C2 regular bounded domain, the author in
[MP00] constructed such a solution in L2n/(n−1)(Ω) provided f ∈ L2(∂Ω) (with arbitrarily
large norm) and F ∈ W −1,2n/(n−1)(Ω). Existence, uniqueness and regularity of very weak
solutions (u,π) in the class Lq(Ω)×W −1,q(Ω) have been obtained in [FGS06, GSS05] under
certain smallness conditions on f ∈ W −1/q,q(∂Ω) and F ∈ W −1,r(Ω) with 1 < r ≤ q < ∞,
1/r ≤ 1/n+ 1/q. These results were generalized in [Kim09] where the author gave a com-
plete theory for very weak solutions of (NS)-(4.1.1). In particular, refining the definition
of very weak solutions and using some ideas from the preceding references, the author
showed the existence of (u,π) ∈ Ln(Ω) ×W −1,n(Ω) for arbitrary large data f and forcing
term F for n = 3,4. In two-dimensions, he proved existence of (u,π) ∈ Lq0(Ω)×W −1,1/q0(Ω),
2 < q0 < 3. Moreover, he investigated the regularity of these solutions and also derived
uniqueness results under suitable smallness requirements. The existence theory for very
weak solutions in unbounded domains (the half-space, exterior domains, ect.) seems to
be more subtle. We refer the reader to [Fin61] for an interesting discussion pertaining
to generalized (weak) solutions. In general the same methods (as those employed in e.g.
[Kim09]) cannot be carried out because the boundary of the domain is unbounded. We
point out, however, the following existing results [ANR08, FS15] for the linear Stokes
problem in half-space and [KKP15] in exterior domains.

This chapter aims at establishing the solvability theory for (NS) relying on novel ideas.
The techniques employed here complement those introduced in Chapter 2. Assuming
Ω = R

n
+, we seek for velocity field of the form u = v +w where v solves the linear Stokes

equation with Dirichlet data f while w solves the inhomogeneous Stokes problem with
zero boundary data and source term F+u ·∇u. Odqvist [Odq30] proved that v assumes an
integral representation, it is the Stokes extension of f to R

n
+ (see Section 4.2). We look for

f in a large class of distributions on R
n−1 for which v is well-defined and has f as trace in

a suitable sense. On one hand, (NS) is scaling (and translation) invariant with respect to
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the maps

uλ(x) = λu(λx), πλ(x) = λ2π(λx), λ > 0

for appropriately rescaled external force and boundary data. On the other hand, we want
to have u in the local Lebesgue space L2

loc in order to make sense of the equation. From
these observations, we are led to the consideration of v in T 2(n−1),2, a scale of tent spaces
introduced by Coifmann, Meyer and Stein in [CMS85]. Thanks to the work by Triebel
[Tri83] and others, we know that v must have a distributional trace f in the homogeneous
negative Sobolev space Ḣ−1/2,2(n−1)(Rn−1). By the same token, the pressure π is sought for

in the weighted tent space T 2(n−1),2
−1/(n−1) (see below for the definition of weighted tent spaces).

Tent spaces naturally arise in the analysis of linear elliptic equations and systems, see e.g.
[AA11, HMM11] and references therein. We quote the recent work [YK22] where these
spaces are used in the context of nonlinear systems.

The main result of this chapter states that there exits a unique solution of (NS)-(4.1.1)
in a suitable framework under a smallness condition on f ∈ Ḣ−1/2,2(n−1)(Rn−1). A more
general statement involving Dirichlet data in homogeneous Triebel-Lizorkin spaces is ob-
tained. The global integrability of solutions is expressed in terms of tent norms and it is
further shown that these solutions enjoy a better regularity locally. This latter property is
derived from the pointwise decay rate of the velocity field near the boundary. To achieve
this, we study the inhomogeneous Stokes problem in R

n
+ (which plays a fundamental role

in the analysis of (NS) when the flow takes place in an exterior region, a channel or a
pipe) and derived key estimates of the solution for prescribed data in the homogeneous
Triebel-Lizorkin class with negative amount of smoothness. These estimates are new and
generalize those obtained in [FS15].

4.1.1 Tent spaces and functional settings

Throughout, a point x ∈ Rn+ will typically be denoted by (x′ ,xn), x′ ∈ Rn−1 and xn > 0. For
R > 0, BR(x′) is the closed ball with radius R > 0 and center at x′ ∈ R

n−1. Given α > 0,
define the cone (nontangential region) with vertex at x′ ∈Rn−1 by

Γα(x′) := {(y′ , yn) ∈Rn+ : |x′ − y′ | < αyn}.

We simply use the notation Γ when α = 1. Given a ball B = BR(x′), we denote by T (B) =
BR(x′) × (0,2R) the Carleson box over BR(x′). For q ∈ [1,∞), consider the functionals Aq,
Cq defined for F measurable in R

n
+ by

AqF(x′) =
(¨

Γ (x′)
|F(y′ , yn)|qy−(n−1)

n dy′dyn

)1/q

, A∞F(x′) = esssup
(y′ ,yn)∈Γ (x′)

|F(y′ , yn)| (4.1.2)

CqF(x′) = sup
B∋x′

(¨
T (B)
|F(y′ , yn)|qdyndy′

)1/q

. (4.1.3)
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The membership of each of these functionals in a Lebesgue space gives rise to a scale of
functions space first introduced by Coifman, Meyer and Stein [CMS85]. We point out here
the use of a different normalization in (4.1.2) and (4.1.3). Let p,q ∈ [1,∞). The tent space
T p,q collects all functions F ∈ Lqloc(R

n
+) for whichAqF ∈ Lp(Rn−1). We equip this space with

the norm
∥F∥T p,q := ∥AqF∥Lp(Rn−1). (4.1.4)

When p =∞, the space T∞,q is defined by

T∞,q = {F ∈ Lqloc(R
n
+) :CqF ∈ L∞(Rn−1)}.

The space T∞,q is intrinsically linked to Carleson measures. In fact, it is the space of
functions F ∈ Lqloc(R

n
+) for which dµ(y′ , yn) = |F|qdy′dyn is a Carleson measure in R

n
+. For

any p ∈ (1,∞] and q ∈ [1,∞), T p,q is a Banach space having the space of functions in Lq(Rn+)
with compact support as a dense subspace. This property together with the completeness
of T p,q for any p,q ∈ [1,∞) follows from Lemma 4.1.1 below.

Lemma 4.1.1. Let K be a compact set in R
n
+ and assume that F ∈ T p,q for p,q ∈ [1,∞). Then

C1∥1KF∥T p,q ≤ ∥F∥Lq(K) ≤ C2∥F∥T p,q (4.1.5)

where the constant C1,C2 only depend on p,q,n and K .

Out of convenience, we defer the proof of Lemma 4.1.1 to the Appendix.

Remark 4.1.2. We also remark that change of aperture in the cone does not affect the tent
norm. In other words, if

Aαq F(x′) :=
(¨

Γα(x′)
|F(y′ , yn)|qy−(n−1)

n dy′dyn

)1/q

, α > 0

then

∥Aαq ∥Lp(Rn−1) ≈ ∥A
β
qF∥Lp(Rn−1) (4.1.6)

where the implicit constant depends on p,q and α,β ∈ (0,∞). See [CMS85, Proposition 4,
p. 309] which remains valid for q , 2.

For s ∈ R, we say that F : Rn+ → R belongs to the weighted tent spaces [Ame18,
HMM11], which we denote by T p,qs if

(y′ , yn) 7→ y
−(n−1)s
n F(y′ , yn) ∈ T p,q.

We easily verify that ∥F∥T p,qs
:=

∥∥∥y(1−n)s
n F

∥∥∥
T p,q

defines a norm on T p,qs . Moreover, for s1, s2 ∈
R such that s2 < s1 and 1 ≤ p1 < p2 ≤ ∞, q ∈ (0,∞] the following continuous embedding
holds (see [Ame18, Lemma 2.19])

T
p1q
s1 ⊂ T p2q

s2 (4.1.7)

provided s2 − s1 =
1
p2
− 1
p1

. Recall Hölder’s inequality in weighted tent spaces.
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Lemma 4.1.3. Let pi ,qi , ri ∈ [1,∞) and si ∈ R, i = {0,1,2} such that
∑2
i=1 1/pi = 1/p0 and∑2

i=1 1/qi = 1/q0 with the convention 1/∞ = 0. If f ∈ T p1,q1
s1 and g ∈ T p2,q2

s2 , then f g ∈ T p0,q0
s0

and it holds that
∥f g∥T p0 ,q0

s0
≤ C∥f ∥T p1 ,q1

s1
∥g∥T p2 ,q2

s2
(4.1.8)

provided s0 = s1 + s2.

This lemma can be proved via a direct argument – there is also another strategy re-
lying on factorization of tent spaces, see [Hua16]. It is long-established that there is an
intrinsic connection between weighted tent spaces and Triebel-Lizorkin spaces which we
now recall its definition.

Let us denote by S(Rn−1) the class of Schwartz (smooth rapidly decreasing) functions
on R

n−1 and S ′(Rn−1) its topological dual space endowed with the weak-⋆ topology. De-
fine the space

S0(Rn−1) = {f ∈ S(Rn−1)
∣∣∣ ˆ xγf (x)dx = 0, ∀γ ∈Nn}

which inherits the topology of S(Rn−1) as subspace. This space may be identified with
the space of Schwartz functions whose Fourier transforms vanish together with all their
derivatives at the origin. Its dual space is denoted by S ′0(Rn−1). Let ϕ be a cut-off function
given by

ϕ(ξ) =


1 if |ξ | ≤ 1

smooth if 1 < |ξ | ≤ 2

0 if |ξ | > 2.

Let ψ(ξ) = ϕ(ξ)−ϕ(2ξ) and define ψj(ξ) = ψ(2−jξ), j ∈Z so that∑
j∈Z

ψj(ξ) = 1, ξ ∈Rn−1 \ {0}.

Let us denote by F f the Fourier transform of f on R
n−1 and by ∆̇j = F −1(ψjF ) the homo-

geneous Littlewood-Paley operator. Let f ∈ S ′0(Rn−1). For s ∈ R; p,q ∈ [1,∞) we say that f
belongs to the Triebel-Lizorkin space Ḟsp,q(R

n−1) if

∥f ∥Ḟsp,q(Rn−1) =
∥∥∥∥∥( ∞∑
j=−∞

2−jsq
∣∣∣∆̇jf ∣∣∣q)1/q∥∥∥∥∥

Lp(Rn−1)
<∞.

This space is of Banach type and is equivalent to the Sobolev space Ḣ s,p(Rn−1) whenever
q = 2 and 1 < p < ∞. Moreover, for 1 ≤ q1,q2 ≤ ∞ and −∞ < s2 < s1 < ∞ we have the
continuous inclusion

Ḟs1p1,q1(Rn−1) ⊂ Ḟs2p2,q2(Rn−1)

provided p1,p2 ∈ (1,∞) with s1 − n−1
p1

= s2 − n−1
p2

.
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Definition 4.1.4. For q ∈ ( n
n−1 ,∞), n ≥ 2 we define Xq as the space of vector fields u : Rn+→

R
n satisfying ∥u∥Xq <∞ and Zq := {π : Rn+→R

∣∣∣ ∥π∥Zq <∞} where

∥u∥Xq = sup
xn>0

x
1
q−1
n ∥u(·,xn)∥L∞(Rn−1) + ∥u∥T p,q

and

∥π∥Zq := ∥π∥T p,qs0
, s0 = − 1

n− 1
, p = (n− 1)(q − 1)q.

Definition 4.1.5. Let 1 ≤ η < τ <∞. We say that F : Rn+→R
n belongs to Yτ,η if

∥F∥Yτ,η = sup
xn>0

x
1
η + n−1

τ
n ∥F(·,xn)∥L∞(Rn−1) + ∥F∥T τ,η

is finite.

Note that either of the expression ∥ · ∥Xq or ∥ · ∥Zq defines a norm on Xq and Zq respec-
tively. It can also be easily verified that they are Banach spaces. For convenience, when
q = 2, we will specially denote the spaces Xq and Zq by X and Z, respectively.

4.1.2 Main results

Our first result deals with the well-posedness theory. In what follows, the dimension is
assumed larger or equals to 3 unless otherwise stated.

Theorem 4.1.6. Assume that F = 0. (NS)-(4.1.1) has a unique solution (u,π) in a small closed
ball of X× Z provided the data f has a sufficiently small [Ḣ−

1
2 ,2(n−1)(Rn−1)]n-norm.

In presence of the forcing term, our main finding reads as follows.

Theorem 4.1.7. Let 1 < η < τ <∞ such that
1
η

+
n− 1
τ

= 3. There exist ε > 0 and κ := κ(ε) > 0

such that for every f ∈ [Ḣ−
1
2 ,2(n−1)(Rn−1)]n and F ∈ Yτ,η with ∥f ∥

Ḣ−
1
2 ,2(n−1)(Rn−1)

+ ∥F∥Yτ,η < ε,

(NS)-(4.1.1) has a solution (u,π) in X × Z which is the only one among those satisfying the
condition ∥u∥X + ∥π∥Z ≤ 2κ.

Existence of solutions in Xq ×Zq for any 2 < q <∞ is a consequence of Theorem 4.1.7
together with an improved regularity result. In more details, the statement reads as fol-
lows.

Theorem 4.1.8. Let 2 < q < ∞, η > 0 as in Theorem 4.1.7 and 1 < η1 < τ1 < ∞. Given f in[
Ḣ−

1
2 ,2(n−1) ∩ Ḟsp,q(Rn−1)

]n
and F ∈ Yτ,η ∩Yτ1,η1 , there exist εq ∈ (0, ε) and κq > 0 such that if
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∥f ∥
Ḣ−

1
2 ,2(n−1)(Rn−1)

+ ∥F∥Yτ,η < εq then there exists a solution (u,π) of (NS)-(4.1.1) in the space

Xq ×Zq which is unique in the ball

B2κq (0) = {(u,π) ∈ X×Z : ∥u∥X + ∥π∥Z ≤ 2κq}

provided 1
η1

+ n−1
τ1

= 2 + 1
q−1 , s = −1

q and p = (n− 1)(q − 1)q.

The uniqueness of the pressure as claimed in the previous results should be under-
stood up to an additive constant. We also record the following regularity result which
arises as a consequence of the local boundedness property of the velocity field.

Theorem 4.1.9. If (u,π) ∈ X×Z is the solution of problem (NS)-(4.1.1) constructed in Theorem
4.1.6 or Theorem 4.1.7, then (u,π) ∈ [C0,α

loc (Rn+)]n × Lploc(R
n
+) for some α ∈ (0,1) and every

p ∈ (1,∞).

Remark 4.1.10. It should be observed that Theorem 4.1.7 in the precise form stated above
fails to hold in two dimensions. Indeed, if n = 2, then the exponents η and τ will obviously
fail to satisfy the required assumption in Theorem 4.1.7. A close inspection reveals that
the two-dimensional (unforced) Navier-Stokes equations is well-posed, that is, Theorem
4.1.6 is true in 2 dimensions. Theorem 4.1.8 shows that if f is taken in a slightly more
regular space, then the solution (u,π) has a better global integrability property.

4.2 Auxiliary results

This section is devoted to the analysis of the Dirichlet problem for the following system
−∆u +∇π = F + div H in R

n
+

div u = 0 in R
n
+

u = f on ∂Rn+

(S)

for given vector fields f ,F and tensor H . Our goal is to prove that (S) admits a solution
(u,π) in the target space Xq ×Zq whose norm can be estimated by the norms of f , F and
H in suitable functions spaces. To this end, for better readability we simply separate the
study into two parts: the homogeneous case (f = 0) and the inhomogeneous case (F = 0,
H = 0).

4.2.1 Homogeneous Stokes system and linear estimates

Consider the Stokes operator LS acting on pair of functions (u,π) ∈ [D ′(Rn)]n ×D ′(Rn),
n > 2 and given by

LS(u,π) =
(
−∆u1 +∂1π, · · · ,−∆un +∂nπ,

n∑
i=1

∂iui
)
.
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A fundamental solution of the Stokes operator LS in R
n is a pair (E,b) with E = (Eij )

n
i,j=1

inMn×n[S ′(Rn)] and b = (b1, ...,bn) ∈ [S ′(Rn)]n satisfying coordinate-wise the equations
−∆Eij +∂ibj = δijδ in S ′(Rn), i, j ∈ {1, ...,n}
n∑
k=1

∂kEkj = 0 in S ′(Rn), j ∈ {1, ...,n}.

Applying the Fourier transform to both sides of each of the above equations yields the
explicit expressions

Eij(x) =
1

2ωn−1

[
1

(n− 2)

δij
|x|n−2 +

xixj
|x|n

]
, bj =

1
ωn−1

xj
|x|n

, i, j ∈ {1, ...,n} (4.2.1)

defined for x ∈Rn−1 \{0} where ωn−1 is the surface area of the unit sphere in R
n−1. Details

of explicit computations leading to (4.2.1) can be found in [Mit13, Chap. 10]. On the
other hand, when n = 2, E and b assume the following forms:

Eij(x) =
1

4π

[
xixj
|x|2
− δij log |x|

]
, bj =

xj
2π|x|2

, x ∈Rn−1 \ {0}, i, j ∈ {1, ...,n}. (4.2.2)

Now, let us consider the homogeneous Stokes system
−∆u +∇π = 0 in R

n
+

div u = 0 in R
n
+

u = f on ∂Rn+.

(4.2.3)

With the convolution being understood in a component wise sense, define

Hf (x′ ,xn) = (Kxn ∗ f )(x′), Ef (x′ ,xn) = (kxn ∗ f )(x′) (4.2.4)

where
Kxn(x

′) = (Kij(x
′ ,xn))1≤i,j≤n and kxn(x

′) = (k1(x′ ,xn), ...,kn(x′ ,xn))

are commonly referred to as the Odqvist kernels [Odq30] – each entry of the tensors
assuming an explicit form in terms of (4.2.1) via the formulas

Kij(x) = 2(∂xnEij +∂jEin + δjnbi) =
2n
ωn−1

xnxixj
|x|n+2 (4.2.5)

and
kj(x) = 4∂jbn =

1
ωn−1

∂j
4xn
|x|n

. (4.2.6)

For the derivation of these kernels, the interested reader may as well consult the articles
[Odq30, Sol77]. Note that if f belongs to the weighted Lebesgue space L1

(
R
n−1, dx′

(1+|x′ |)n
)
,
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then u =Hf and π = Ef are both meaningful as absolutely convergent integrals and (u,π)
is the unique solution of Eq. (4.2.3) decaying at infinity. This is no longer the case if f is
merely a generic distribution. In fact, the Stokes extension H does not map S ′(Rn−1) into
itself in general (for example, in one dimension f (x′) = x′2 ∈ S ′(R) but Hf < S ′(R)). How-
ever, it can be shown that if f ∈ S ′0(Rn−1), then so are Hf and Ef . Poisson extensions of
Schwartz distributions have been studied by H. Triebel [Tri83] – they characterize almost
all scale of Triebel-Lizorkin spaces on R

n−1 using tent spaces. In particular, the following
equivalence holds true

∥f ∥
Ḟ
− 1
q

p,q (Rn−1)
∼

∥∥∥∥∥Aq[Pxn ∗ f ]
∥∥∥∥∥
Lp(Rn−1)

, p = q(q − 1)(n− 1) (4.2.7)

where 1 < q < ∞ and Pxn(x
′) = cnxn(|x′ |2 + x2

n)−
n
2 (with cn normalizing constant such that

Pxn has a normalized L1-norm equals to 1) is the Poisson kernel for the Laplacian in R
n
+.

Lemma 4.2.1. Let n ≥ 2, q ∈ ( n
n−1 ,∞) and set p = (n − 1)q(q − 1). There exists a constant

C := C(n,q) > 0 such that

∥Hf ∥Xq + ∥Ef ∥Zq + sup
xn>0

x
q/(q−1)
n ∥Ef (·,xn)∥L∞(Rn−1) ≤ C∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
(4.2.8)

for all f ∈ [Ḟ
− 1
q

p,q(Rn−1)]n where Hf and Ef are defined as in (4.2.4).

We state two more auxiliary results which will be useful in the demonstration of
Lemma 4.2.1.

Lemma 4.2.2 (Averaging Lemma). Assume that F ∈ Lq(Rn+), q ≥ 1. We have
ˆ
R
n−1

¨
Γ (x′)
|F(y′ , yn)|q

dy′dyn
yn−1
n

dx′ = µ
ˆ
R
n
+

|F(y)|qdy

where µ > 0 only depends on n, the dimension.

The proof of this identity follows from a simple application of Fubini–Tonelli’s Theo-
rem.

Lemma 4.2.3. Let K ⊂ R
n
+ compact set and E(K) = {x′ ∈ Rn−1 : K ∩ Γ (x′) , ∅}. Then E(K) is

open, its Lebesgue measure |E(K)| is finite and only depends on K .

Proof. Let x′ ∈ E(K), there exists (y′ , yn) ∈ R
n
+ with (y′ , yn) ∈ K and y′ ∈ Byn(x

′). Putting
R = yn − |x′ − y′ | > 0, it plainly follows that B(x′ ,R) ⊂ E(K). Moving on, we remark that
E(K) is actually bounded. Moreover, since K is compact, we may assume without loss of
generality that K = Bθ(z′)× [a,b] for some a,b,θ > 0 with a < b and thus a simple covering
argument implies that |E(K)| ≤ Cθn−1 for some constant C > 0.
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Now we are ready to prove Lemma 4.2.1.

Proof of Lemma 4.2.1. By a direct computation, each coefficient of the matrix K satisfies
the pointwise estimate

∣∣∣∇kKij(x′ ,xn)
∣∣∣ ≤ cx−kn Pxn(x′), k = 0,1 for each i, j = 1, · · · ,n. Also,

from the explicit expression

kj(x
′ ,xn) =

4
ωn−1


xnxj
|x|n+2 if j = 1, ...,n− 1
nx2

n−|x|2
n|x|n+2 if j = n

we verify that |kj(x′ ,xn)| ≤ Cx−1
n Pxn(x

′) for all (x′ ,xn) ∈ R
n
+. Let fj in Ḟ

− 1
q

pq (Rn−1) and set
(u,π) = (H(f ),E(f )). For x ∈Rn+ fixed, the interior estimate (see e.g. [Sim92]) for the linear
Stokes problem together with Lemma 4.2.2 allow us to write

|π(x)|q ≤ C|Bxn/2(x)|−1
ˆ
Bxn/2(x)

|π(y′ , yn)|qdy′dyn

≤ C|Bxn/2(x)|−1
ˆ
Bxn/2(x)

|y−1
n (Pyn ∗ f )|qdy′dyn

≤ C|Bxn/2(x)|−1
ˆ
Bxn (x′)×[xn/3,2xn]

|y−1
n (Pyn ∗ f )|qdy′dyn

≤ Cx−(n+q)
n

ˆ
R
n−1

ˆ ∞
0

ˆ
Byn (z′)

1Bxn (x′)×[xn/3,2xn](y
′ , yn)|Pyn ∗ f |

q dy
′dyn
yn−1
n

dz′

≤ Cx−(n+q)
n

∥∥∥Aq[Pyn ∗ f ]
∥∥∥q
Lp(Rn−1)

∣∣∣∣∣E(Bxn(x′)× [xn/3,2xn]
)∣∣∣∣∣

p−q
p

≤ Cx
−1−q− (n−1)q

p
n ∥f ∥q

Ḟ
−1/q
p,q (Rn−1)

.

Observe that we have used Hölder’s inequality and Lemma 4.2.3 to get the estimate before
the last and the choice p = q(n−1)(q−1) yields the desired bound. From the above remark
on the kernel kj , one has

∥π∥T p,q1
=

∥∥∥∥∥(¨
Γ (·)
|ynπ(y′ , yn)|q

dy′dyn
yn−1
n

)1/q∥∥∥∥∥
Lp(Rn−1)

≤ C
∥∥∥∥∥(¨

Γ (·)
|Pyn ∗ f |

q dy
′dyn
yn−1
n

)1/q∥∥∥∥∥
Lp(Rn−1)

≤ C∥f ∥
Ḟ
−1/q
p,q (Rn−1).

The latter bound is a consequence of the extrinsic characterization (4.2.7). The same
observation pertaining to the velocity field gives ∥u∥T p,q ≤ C∥f ∥Ḟ−1/q

p,q (Rn−1). It then remains

to establish the bound

sup
xn>0

x
1
q−1
n ∥u(·,xn)∥L∞(Rn−1) ≤ C∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
. (4.2.9)
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By the mean value property for the velocity field [Sim92, Theorem 4.5] and with the same
notation as above

|ui(x)| ≤
 
Bxn/2(x)

|ui(y)|dy +
1
2

 
Bxn/2(x)

|π(z)||zi − xi |dz := I + II, i = 1,2, ...,n.

Using Hölder’s inequality and Lemma 4.2.2, we estimate I as follows:

Iq ≤ Cx−(n−1)
n

ˆ
Bxn/2(x)

|Pxn ∗ fj |
qdy

≤ Cx−(n−1)
n

ˆ
R
n−1

¨
Γ (z′)

1Bxn/2(x)(y)|Pxn ∗ fj |
qy
−(n−1)
n dydz′

≤ Cx−(n−1)
n

∥∥∥Pxn ∗ fj∥∥∥qT p,q ∣∣∣∣∣E(B xn
2

(x′)× [xn/3,2xn]
)∣∣∣∣∣

p−q
p

≤ Cxq/(q−1)
n ∥f ∥q

Ḟ
−1/q
p,q (Rn−1)

. (4.2.10)

In order to estimate the integral II := 1
2

 
Bxn/2(x)

|π(z)||zi − xi |dz, we use the fact that if

z ∈ Bxn/2(x), then Bxn/2(z) ⊂ Bxn(x). Indeed, we have

II ≤ |Bxn/2(x)|−1
ˆ
Bxn/2(x)

( 
Bxn/2(z)

|π(y)|dy
)
|zi − xi |dz

≤ C|Bxn(x)|−1
( 

Bxn (x)
|π(y)|qdy

)1/q ˆ
Bxn/2(x)

|z − x|dz

≤ C|Bxn(x)|−1
( 

Bxn (x)
|π(y)|qdy

)1/q ˆ xn/2

0
σndσ

≤ x
− 1
q−1

n ∥f ∥
Ḟ
−1/q
p,q (Rn−1) (4.2.11)

Combining (4.2.10) and (4.2.11), we obtain (4.2.9). This achieves the proof of Theorem
4.2.1.

4.2.2 Inhomogeneous Stokes system

Consider the operators G and Ψ in R
n
+ respectively defined by

G (F,H)(x) =
ˆ
R
n
+

G(x,y)F(y)dy −
ˆ
R
n
+

∇yG(x,y)H(y)dy,

Ψ (F,H)(x) =
ˆ
R
n
+

g(x,y)F(y)dy −
ˆ
R
n
+

∇yg(x,y)H(y)dy
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whenever the integrals make sense for almost every x ∈Rn+. The kernelsG(x,y) = (Gij(x,y))ni,j=1
and g(x,y) = (gj(x,y))nj=1, (x , y) are the Green tensor for the Stokes operator in R

n
+, that

is, coordinates-wise the function satisfying
−∆xGij +∂igj = δxδij in R

n
+

∂iGij = 0 in R
n
+

Gij(x, ·)
∣∣∣
∂Rn

+
= 0.

(4.2.12)

in the sense of distributions where δx is the Dirac distribution with mass at x ∈Rn+, Under
mild assumptions on F and H , the vector-valued functions v = G (F,H) and w = Ψ (F,H)
satisfy the system of equations

−∆v +∇w = F + div H in R
n
+

div v = 0 in R
n
+

v = 0 on ∂Rn+

(4.2.13)

Refined properties of Green matrices were recently obtained by the authors in [KMT18]
relying on ideas introduced earlier in the articles [MPS84] (for n = 2,3) and [Gal11] (for
the general case). For our purpose we will need the following properties which include
sharp pointwise decay bounds. In what follows, Nn

0 =

Lemma 4.2.4. Let n ≥ 2. The Green tensor G is symmetric, Gij(x,y) = Gji(y,x) for all x,y ∈
R
n
+, x , y and satisfies together with g the pointwise estimates

|Gij(x,y)| ≤ C
(
xnyn
|x − y|2

+ 1{n=2} log(2 + yn|x − y|−1)
)

(4.2.14)

∣∣∣∇αx∇βyGij(x,y)
∣∣∣ ≤ CN


|x − y|−(n−2+N )

xnyn
|x − y|n+N if αn = βn = 0

xn
|x − y|n−1+N if αn = 0

(4.2.15)

for all multi-indices α,β with |α|+ |β| =N > 0. Moreover,∣∣∣∇αgj(x,y)
∣∣∣ ≤ Cα |x − y|−(n−1)−|α|, j = 1, ...,n (4.2.16)

where the constants are independent of x and y.

These inequalities find their applicability in our next result which deals with the map-
ping properties of the potentials G and Ψ . Recall the space Yτ,η introduced in Section 4.1.
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Proposition 4.2.5. Fix n ≥ 3 and assume that q ∈ ( n
n−1 ,∞). Let 1 < η < τ < ∞ and 1 ≤ σ <

Λ < p <∞ satisfy the condition

1
η

+
n− 1
τ

= 2 +
1

q − 1
= 1 +

1
σ

+
n− 1
Λ

.

For all F ∈ Yτ,η and H ∈ YΛ,σ we have G (F,H) ∈ Xq, Ψ (F,H) ∈ Zq and it holds that

∥G (F,H)∥Xq + ∥Ψ (F,H)∥Zq ≤ C(∥F∥Yτ,η + ∥H∥YΛ,σ ) (4.2.17)

for some constant C := C(n,q) > 0 independent of F and H .

Remark 4.2.6. The proof of the above result reveals that elliptic estimates of the form

sup
xn>0

x
1
q−1 +|α|
n

∥∥∥∂αx′u∥∥∥L∞(Rn−1)
≤ (∥F∥Yτ,η + ∥H∥YΛ,σ ) (4.2.18)

are valid for u solution of the Stokes equation (4.2.13) for each multi-index α. However,
it is not clear whether vertical derivatives of u enjoy this property. In fact, we are relying
heavily on (4.2.15) which seems to fail in the case αn , 0 or βn , 0, see [KMT18, Remark
2.6]. We also point out that in absence of the forcing term F, Proposition 4.2.5 holds true
in two dimensions.

The proof of the proposition essentially relies on two auxiliary results, one of which
deals with the mapping properties in mixed Lebesgue spaces of the operator Gβ defined
for 0 < β < n by

GβF(y) =
ˆ
R
n
+

F(z)dz
|y − z|n−β

(4.2.19)

whenever the integral exists for almost all y ∈ R
n
+. For p,q ∈ [1,∞], let us denote by

LpLq(Rn+) the mixed Lebesgue space of function F : Rn+ → R with the property that x′ 7→
F(x′ , ·) ∈ Lp(Rn−1) and xn 7→ F(·,xn) ∈ Lq(R+) and equip it with the norm

∥F∥LpLq(Rn
+) =

∥∥∥∥F(·,xn)∥Lq(R+,dxn)

∥∥∥
Lp(Rn−1)

.

Lemma 4.2.7. Let 0 < β < n and 1 < τ <∞. Assume that 1 ≤ η ≤ q ≤ p <∞ are such that

1
η
< β +

1
q
,

n− 1
p

=
n− 1
τ

+
1
η
− 1
q
− β. (4.2.20)

Then the operator Gβ is bounded from LτLη(Rn+) into LpLq(Rn+).

Recall the Riesz potential Iα of order α ∈ (0,n − 1), that is, the convolution operator
with the kernel |x|α−(n−1), x ∈Rn−1 \ {0}.
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Proof. Along the lines of the proof of [Yom22, Lemma 2.2], take F ∈ LτLη(Rn+) and let F̃ be
the zero extension of F to R

n. For 1 ≤ η <∞, 1 < τ <∞, we have

∥GβF∥LpLq(Rn
+) =

∥∥∥∥∥∥∥∥GβF(y′ , ·)
∥∥∥
Lq(R+)

∥∥∥∥∥
Lp(Rn−1)

.

Let x′ ∈ Rn−1 and set S(x′ , s) = (|x′ |2 + s2)−
n−β

2 , s > 0. For 1 ≤ θ <∞ such that 1
η + 1

θ ≥ 1 we
use Minkowski’s inequality to arrive at∥∥∥GβF(y′ , ·)

∥∥∥
Lq(R+)

=
∥∥∥∥∥ˆ

R
n
+

|F(z′ , zn)|dz′dzn
(|y′ − z′ |2 + | · −zn|2)

n−β
2

∥∥∥∥∥
Lq(R+)

=
∥∥∥∥∥ˆ

R
n−1

(
S(|y′ − z′ |, ·) ∗ |F̃|(z′)

)
(yn)dy′

∥∥∥∥∥
Lq(R+,dyn)

≤ C
ˆ
R
n−1

∥∥∥(S(|y′ − z′ |, ·) ∗ |F̃|)(z′ , ·)∥Lq(R+)dz
′

≤ C
ˆ
R
n−1

∥∥∥S(|y′ − z′ |, ·)
∥∥∥
Lθ(R+)

∥F(z′ , ·)∥Lη (R+)dz
′

≤ C[Iβ+ 1
θ−1∥F(·, yn)∥Lη (R+,dyn)](y

′), y′ ∈Rn−1

where 1
q + 1 = 1

θ + 1
η . Thus, if n−1

p = n−1
τ − (β + 1

θ − 1), then by the boundedness of Iα in
Lebesgue spaces, we find that

∥GβF∥LpLq(Rn
+) ≤ C

∥∥∥Iβ− 1
θ−1∥F(y′ , ·)∥Lη (R+)

∥∥∥
Lp(Rn−1,dy′)

≤ C
∥∥∥F∥∥∥

LτLη (Rn
+)
.

Remark 4.2.8. In the sequel, we will need an analogue of Lemma (4.2.7) in weighted mixed
Lebesgue spaces of the form∥∥∥∥∥∥∥∥GβF(·, yn)

∥∥∥
Lq(R+,y

q
ndyn)

∥∥∥∥∥
Lp(Rn−1)

≤ C
∥∥∥∥∥∥∥∥F(·, yn)

∥∥∥
Lη (R+,y

bη
n dyn)

∥∥∥∥∥
Lr (Rn−1)

(4.2.21)

for all functions F such that (x′ ,xn) 7→ xbnF ∈ LrLη(Rn+). This is valid under the conditions
2 +

1
q

= (n− 1)
(

1
r
− 1
p

)
+

1
η

+ b − (β − 1)

1 < r < p <∞, b ≥ 1

n > β + 2 + 1
q −

1
η − b.

(4.2.22)
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In fact, one may use the same strategy as before to prove (4.2.21). If a ≥ 1 and δ > 1 are
such that

1
δ

+ a = (n− 1)
(

1
r
− 1
p

)
− (β − 1),

then using the weighted convolution inequality [GFWZ18, Theorem 1.2] for n = 1, we
obtain

∥∥∥GβF(y′ , ·)
∥∥∥
Lq(R+,y

q
ndyn)

≤ C
ˆ
R
n−1
∥S(|y′ − z′ |, ·)∥Lδ(R+,y

aδ
n dyn)∥F(z′ , ·)∥

Lη (R+,y
bη
n )
dz′

≤ I 1
δ+a+β−1∥F(·, yn)∥

Lη (R+,y
bη
n dyn)

(y′), y′ ∈Rn−1.

This, in conjunction with (4.2.22) gives the desired bound.

We are now ready to prove Proposition 4.2.5 and we divide the proof in two steps.

Step 1. The bound

∥G (F,H)∥Xq ≤ C(∥F∥Yτ,η + ∥H∥YΛ,σ ). (4.2.23)

Let 1 < η <∞ and 1 < τ <∞ such that 1
η + n−1

τ = 2 + 1
q−1 . Pick F in Yτ,η and H ∈ YΛ,σ . We

first prove that

sup
xn>0

x
1/(q−1)
n ∥G (F,H)(·,xn)∥L∞(Rn−1) ≤ ∥F∥Yτ,η . (4.2.24)

Fix x′ ∈Rn−1 and xn > 0 and write

ˆ
R
n
+

G(x′ ,xn, y)F(y)dy = J1 + J2 + J3 + J4

where

J1 =
ˆ
Bxn (x′)

ˆ xn/2

0
G(x,y)F(y)dy, J2 =

ˆ
Bxn (x′)

ˆ 2xn

xn/2
G(x,y)F(y)dy,

J3 =
ˆ
R
n−1\Bxn (x′)

ˆ 2xn

0
G(x,y)F(y)dy, J4 =

ˆ
R
n−1

ˆ ∞
2xn
G(x,y)F(y)dy.

Next, we estimate each of these integrals by means of the pointwise inequalities from
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Lemma 4.2.4. Indeed, starting with J1 and using the summation convention, we have

|J1| ≤
ˆ
Bxn (x′)

ˆ xn/2

0
|Gij(x′ ,xn, y)||Fj(y)|dy

≤ C
ˆ
Bxn (x′)

ˆ xn/2

0

|F(y)|
(|x′ − y′ |2 + (xn − yn)2)

n−2
2

dyndy
′

≤ Cx−(n−2)
n x

n
η′
n

(ˆ
Bxn (x′)

ˆ xn/2

0
|F(y)|ηdyndy′

)1/η

≤ Cx
−(n−2)+ n

η′
n

(ˆ
R
n−1

¨
Γ (x′)∩Bxn (x′)×(0,xn/2)

|F(y)|ηy−(n−1)
n dyndy

′dz′
)1/η

≤ Cx
−(n−2)+ n

η′
n ∥F∥T τ,η

∣∣∣E(Bxn/2(x′)× (0,xn/2))
∣∣∣ τ−ητη

≤ Cx
2− n−1

τ −
1
η

n ∥F∥T τ,η .

where we have utilized Hölder’s inequality in order to derive the third and fifth bounds
in the above chain of estimates and 1

η′ + 1
η = 1. On the other hand,

|J2| ≤
ˆ
Bxn (x′)

ˆ 2xn

xn/2
|Gij(x,y)||Fj(y)|dy

≤ C
ˆ
Bxn (x′)

ˆ 2xn

xn/2
|x − y|−(n−2)|Fj(y)|dy

≤ C sup
yn>0

y
n−1
τ + 1

η
n ∥F(·, yn)∥L∞(Rn−1)

ˆ
Bxn (x′)

ˆ 2xn

xn/2

y
− 1
η −

n−1
τ

n dyndy
′

[|x′ − y′ |2 + (xn − yn)2](n−2)/2

≤ Cx
− 1
η −

n−1
τ

n ∥F∥Yτ,η
ˆ
Bxn (x′)

ˆ 2xn

xn/2
|x′ − y′ |−(n−2)dyndy

′

≤ Cx
1− 1

η −
n−1
τ

n ∥F∥Yτ,η
ˆ
Bxn (x′)

|x′ − y′ |−(n−2)dy

≤ Cx
2− 1

η −
n−1
τ

n ∥F∥Yτ,η .
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Similarly as above, by Lemma 4.2.2 and Hölder’s inequality, we find that

|J3| ≤
ˆ
R
n−1\Bxn (x′)

ˆ 2xn

0
|Gij(x,y)||Fj(y)|dy

≤ Cxn
ˆ
R
n−1\Bxn (x′)

ˆ 2xn

0
|x − y|−(n−1)|Fj(y)|dy

≤ Cxn
∞∑
k=1

ˆ
2kBxn (x′)\2k−1Bxn (x′)

ˆ 2xn

0
|x − y|−(n−1)|Fj(y)|dy

≤ Cx2−n+n/η′
n

∞∑
k=1

2−(k−1)(n−1)+ (n−1)k
η′

(ˆ
2kBxn (x′)

ˆ 2xn

0
|Fj(y)|ηdyndy′

) 1
η

≤ Cx
2− nη + (n−1)(τ−η)

τη
n

[ˆ
R
n−1

(¨
Γ (z′)
|Fj(y)|η

dy

yn−1
n

)τ/η
dz′

] 1
τ
( ∞∑
k=1

2−
k(n−1)
τ

)
≤ Cx

2− 1
η −

n−1
τ

n ∥F∥Yτ,η .

Again, by using the Green matrix bound 4.2.14, we bound J4 as follows

|J4| ≤
ˆ
R
n−1

ˆ ∞
2xn
|Gij(x,y)||Fj(y)|dy

≤ C
ˆ
R
n−1

ˆ ∞
2xn

xnyn|Fj(y)|
|x − y|n

dy

≤ C
ˆ
R
n−1

ˆ ∞
2xn

xnyn|Fj(y)|dyndy′[
|x′ − y′ |2 + y2

n

] n
2

≤ C sup
yn>0

y
1
η + n−1

τ
n ∥F(·, yn)∥L∞(Rn−1)

(ˆ ∞
2xn
xny

− 1
η −

n−1
τ

n dyn

)(ˆ
R
n−1

dz′[
|z′ |2 + 1

] n
2

)

≤ Cx
2− 1

η −
n−1
τ

n ∥F∥Yτ,η .

In the same vein, we establish the weighted gradient sup-norm estimate

sup
xn>0

x
q/(q−1)
n

∥∥∥∥∥ˆ
R
n
+

∇yG(·,xn, y)H(y)dy
∥∥∥∥∥
L∞(Rn−1)

≤ C∥H∥YΛ,σ . (4.2.25)

Decompose the solid integral in the above estimate into four parts to get

L1 =
ˆ
Bxn (x′)

ˆ xn/2

0
∇yG(x,y)H(y)dy, L2 =

ˆ
Bxn (x′)

ˆ 2xn

xn/2
∇yG(x,y)H(y)dy,
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L3 =
ˆ
R
n−1\Bxn (x′)

ˆ 2xn

0
∇yG(x,y)H(y)dy, L4 =

ˆ
R
n−1

ˆ ∞
2xn
∇yG(x,y)H(y)dy.

Suppose 1
σ + n−1

Λ = 1
η + n−1

τ − 1. Utilizing (4.2.15) and Hölder’s inequality, we arrive at

|L1| ≤
ˆ
Bxn (x′)

ˆ xn/2

0
|∇yG(x,y)||H(y)|dy

≤ C
ˆ
Bxn (x′)

ˆ xn/2

0

|H(y′ , yn)|
(|x′ − y′ |2 + (xn − yn)2)

n−1
2

dyndy
′

≤ Cx1− 1
σ −

n−1
Λ

n ∥AqH∥LΛ(Rn−1)

≤ Cx1− 1
σ −

n−1
Λ

n ∥H∥YΛ,σ

Next, noticing that |∇Gij(x, ·)| belongs to the weak-Lebesgue space L
n
n−1 ,∞(Rn+) uniformly

for all x ∈Rn+, it follows that

|L2| ≤
ˆ
Bxn (x′)

ˆ 2xn

xn/2
|∇yG(x,y)H(y)|dy

≤ C sup
xn>0

x
1
σ + n−1

Λ
n ∥H(·,xn)∥L∞(Rn−1)

ˆ
Bxn (x′)

ˆ 2xn

xn/2
y
− 1
σ −

n−1
Λ

n |∇yG(x,y)|dyndy′

≤ Cx−
1
σ −

n−1
Λ

n sup
xn>0

x
1
σ + n−1

Λ
n ∥H(·,xn)∥L∞(Rn−1)∥∇yG(x, ·)∥L1(Bxn (x′)×[xn/2,2xn])

≤ Cx1− 1
σ −

n−1
Λ

n ∥H∥YΛ,σ .

Recall here that for any p > 1 the belonging of f to Lp,∞(Rn−1) is equivalent to the condi-
tion

sup
E⊂Rn−1

|E|1/p−1
ˆ
E
|f (y)|dy <∞

100



where the supremum runs over all open set E of Rn−1. We argue as before to bound L3

|L3| ≤
ˆ
R
n−1\Bxn (x′)

ˆ 2xn

0
|∇yG(x,y)H(y)|dyndy′

≤
∞∑
k=1

ˆ
2kBxn (x′)\2k−1Bxn (x′)

ˆ 2xn

0
|∇yG(x,y)||H(y)|dyndy′

≤ C
∞∑
k=1

ˆ
2kBxn (x′)\2k−1Bxn (x′)

ˆ 2xn

0
|x − y|−n+1|H(y)|dyndy′

≤ Cx1− nσ
n

∞∑
k=1

2−(n−1)k+ k(n−1)
σ ′

(ˆ
R
n−1

¨
Γ (z′)∩[2kBxn (x′)×(0,2xn)]

|H(y)|σ
dyndy

′

yn−1
n

dz′
) 1
σ

≤ Cx
−(n−1)+ n

σ ′ +
(Λ−σ )
Λσ n

n

∞∑
k=1

2−(k−1)(n−1)+ k(n−1)
σ ′ +k(n−1) (Λ−σ )

σΛ ∥AσH∥LΛ(Rn−1)

≤ Cx1− 1
σ −

n−1
Λ

n ∥H∥T Λ,σ
∞∑
k=1

2−
(n−1)
Λ k

≤ Cx
2− 1

η −
n−1
τ

n ∥H∥YΛ,σ .

Finally, observe that for yn > 2xn, we have yn − xn > 1
2yn so that by the third bound in

(4.2.15), we find that

|L4| ≤
ˆ
R
n−1

ˆ ∞
2xn
|∇yG(x,y)||H(y)|dy

≤ C
ˆ
R
n−1

ˆ ∞
2xn

xn|H(y)|dyndy′[
|x′ − y′ |2 + (xn − yn)2

] n
2

≤ C
ˆ
R
n−1

ˆ ∞
2xn

xn|H(y)|dyndy′[
|x′ − y′ |2 + y2

n

] n
2

≤ C sup
xn>0

x
1
σ + n−1

Λ
n ∥H(·,xn)∥L∞(Rn−1)

(ˆ
R
n−1

dy′

(|y′ |2 + 1)
n
2

)(ˆ ∞
2xn
xny

− 1
σ −

n−1
Λ −1

n dyn

)
≤ Cx1− 1

σ −
n−1
Λ

n ∥H∥YΛ,σ .

Summing up all the above inequalities, one obtains (4.2.24). Next, we show that

∥G (F,H)∥T nq(q−1),q ≤ C(∥F∥T τ,η + ∥H∥T Λ,σ ). (4.2.26)

Write

∥G (F,H)∥T p,q ≤
∥∥∥∥∥ˆ

R
n
+

G(·, y)F(y)dy
∥∥∥∥∥
T p,q

+
∥∥∥∥∥ˆ

R
n
+

∇yG(·, y)H(y)dy
∥∥∥∥∥
T p,q

:= I + II.
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Fix x′ ∈Rn−1 and yn > 0 and let’s decompose F ∈ Lηloc(R
n
+) into three parts

F = F1B4yn (x′)×(0,4yn] +F1B4yn (x′)×(4yn,∞) +F1(Rn−1\B4yn (x′))×(0,∞) = F1 +F2 +F3

and write

I := Σ1 +Σ2 +Σ3, Σi =
∥∥∥∥∥ˆ

R
n
+

G(·, y)Fi(y)dy
∥∥∥∥∥
T p,q

, i = 1,2,3.

We control Σ3 using the following

Claim 4.2.9. For all x′ ∈Rn−1 and yn > 0, there exists C > 0 independent on x′ and yn such
that

A(x′ , yn) ≤ CG2

( 
Byn (·)
|F(z′ , ·)|dz′

)
(x′ , yn).

Here,

A(x′ , yn) =
( 

Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F3(z)dz
∣∣∣∣∣qdy′) 1

q

, (x′ , yn) ∈Rn+.
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Proof. We have

A(x′ , yn) ≤
( 

Byn (x′)

(ˆ
R
n
+

|G(y,z)||F3(z)|dz
)q
dy′

)1/q

≤ C
( 

Byn (x′)

(ˆ ∞
0

ˆ
R
n−1\B4yn (x′)

|F(z′ , zn)|dz′dzn
(|y′ − z′ |2 + |yn − zn|2)

n−2
2

)q
dy′

)1/q

≤ C
( 

Byn (x′)

(ˆ ∞
0

ˆ
{|x′−z′ |>4yn}

|F(z′ , zn)|dz′dzn
(|y′ − z′ |2 + |yn − zn|2)

n−2
2

 
Byn (z′)

dw

)q
dy′

) 1
q

≤ C
( 

Byn (x′)

(ˆ ∞
0

ˆ
{|x′−w|>3yn}

 
Byn (w)

|F(z′ , zn)|dz′dwdzn
(|y′ − z′ |2 + |yn − zn|2)

n−2
2

)q
dy′

)1/q

≤ C
( 

Byn (x′)

(ˆ ∞
0

ˆ
{|x′−w|>3yn}

(|x′ −w|2 + |yn − zn|2)
−(n−2)

2 ·

 
Byn (w)

[
(|x′ −w|2 + |yn − zn|2)
(|y′ − z′ |2 + |yn − zn|2)

] n−2
2

|F(z′ , zn)|dz′dwdzn
)q
dy′

) 1
q

≤ C
( 

Byn (x′)

(ˆ ∞
0

ˆ
{|x′−w|>3yn}

(|x′ −w|2 + |yn − zn|2)
−(n−2)

2 ·

 
Byn (w)

|F(z′ , zn)|dz′dwdzn
)q
dy′

)1/q

≤ C
ˆ ∞

0

ˆ
{|x′−w|>3yn}

(|x′ −w|2 + |yn − zn|2)
−(n−2)

2

( 
Byn (w)

|F(z′ , zn)|dz′
)
dwdzn

≤ C
ˆ
R
n
+

(|x′ −w|2 + |yn − zn|2)
−(n−2)

2

( 
Byn (w)

|F(z′ , zn)|dz′
)
dwdzn

≤ CG2

( 
Byn (·)
|F(z′ , ·)|dz′

)
(x′ , yn).

Applying Lemma 4.2.7 and Jensen’s inequality, the above claim clearly implies that

Σ3 = ∥A∥LpLq(Rn
+) ≤ C

∥∥∥∥∥G2

( 
Byn (·)
|F(z′ , ·)|dz′

)∥∥∥∥∥
LpLq(Rn

+)

≤ C
∥∥∥∥∥ 

Byn (·)
|F(z′ , yn)|dz′

∥∥∥∥∥
LpLq(Rn

+)

≤ C∥F∥T τ,η .
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To bound Σ2, we first observe that

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣ ≤ CynAηF(x′)

(ˆ ∞
4yn

ˆ
B4yn (x′)

z
n−1
η−1
n dz′dzn

(|y′ − z′ |2 + |yn − zn|2)
(n−1)η′

2

) 1
η′

≤ Cy
2− 1

η
n AηF(x′), x′ ∈ B(y′ , yn). (4.2.27)

On the other hand, this inequality also implies the pointwise bound

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣ ≤ Cy− 1

q−1
n ∥AηF∥Lτ (Rn−1), y′ ∈ B(x′ , yn). (4.2.28)

Let M > 0 to be determined later. Using (4.2.27) and (4.2.28), we find that

ˆ ∞
0

 
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn ≤ ˆ M

0

 
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn+

ˆ ∞
M

 
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn

≤ CM1+(2− 1
η )q[AηF(x′)]q +M−

1
q−1 ∥F∥qT τ,η .

Optimizing this inequality with respect to M, that is taking M =
(
∥F∥T τ,η
AηF(x′)

) τ
n−1

, we arrive

at

(ˆ ∞
0

 
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn) 1

q

≤ C∥F∥
1− τ

q(n−1)(q−1)

T τ,η [AηF(x′)]
τ

q(n−1)(q−1) .

Taking the Lp-norm on both sides of the inequality, we conclude that

Σ2 ≤ C∥F∥T τ,η .

Finally, estimating Σ1 goes through a duality argument. Let r = (n − 1)(q − 1) and ϕ ∈
Lr
′
(Rn−1), ϕ ≥ 0 and define the operator

Mtϕ(x′) = t−(n−1)
ˆ
Bt(x′)

ϕ(y′)dy′ , t > 0.
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If ⟨·, ·⟩ denotes the duality bracket between Lp(Rn−1) and its dual Lp
′
(Rn−1), then〈

Aqq
[ˆ

R
n
+

G(·, z)F1(z)dz
]
,ϕ

〉
=
ˆ
R
n−1

ˆ ∞
0

ˆ
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

G(y,z)F1(z)dz
∣∣∣∣∣q dy′dynyn−1

n
ϕ(x′)dx′

≤ C
ˆ
R
n−1

ˆ ∞
0

 
Byn (y′)

ϕ(x′)dx′[G2|F|(y′ , yn)]qdy′dyn

≤ C
ˆ
R
n−1

ˆ ∞
0

[G2|F|(y′ , yn)]qMynϕ(y′)dy′dyn

≤ C∥G2F∥
q
LpLq(Rn

+)∥M·ϕ∥Lr′L∞(Rn
+)

≤ C∥G2F∥
q
LpLq(Rn

+)∥Mϕ∥Lr′ (Rn−1).

Applying Lemma 4.2.7, the fact that
ˆ ∞

0
|F(y′ , yn)|qdy′ ≤ liminf

α→0
[Aαq F(y′)]q (which is a con-

sequence of the Lebesgue differentiation Theorem and Fatou lemma), the boundedness of
the Hardy-Littlewood maximal function in Lebesgue spaces successively, we obtain〈

Aqq
[ˆ

R
n
+

G(·, z)F1(z)dz
]
,ϕ

〉
≤ ∥F∥qT τ,η∥ϕ∥Lr′ (Rn−1) ∀ϕ ∈ Lr

′
(Rn−1),

from which it plainly follows that

Σ1 ≤ C∥F∥T τ,η .

We equally estimate II splittingH into three components exactly as before and follow the
same procedure (details are left to the interested reader). This yields∥∥∥∥∥ˆ

R
n
+

∇yG(·, y)H(y)dy
∥∥∥∥∥
T p,q
≤ C∥H∥T Λ,σ .

Summarizing, we see that (4.2.23) holds true. This finishes Step 1.

Step 2. The estimate

∥Ψ (F,H)∥Zq ≤ C
(
∥F∥Yτ,η + ∥H∥YΛ,σ

)
(4.2.29)

for all F ∈ Yτ,η and H ∈ YΛ,σ . We have

∥Ψ (F,H)∥T p,qs0
≤

∥∥∥∥∥ˆ
R
n
+

g(·, y)F(y)dy
∥∥∥∥∥
T
p,q
s0

+
∥∥∥∥∥ˆ

R
n
+

∇yg(·, y)H(y)dy
∥∥∥∥∥
T
p,q
s0

:= III + IV .

Let F1, F2 and F3 as above and write correspondingly

III ≤ III1 + III2 + III3, IIIi =
∥∥∥∥∥ˆ

R
n
+

g(·, y)Fi(y)dy
∥∥∥∥∥
T
p,q
s0

, i = 1,2,3.
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Since (see proof of Claim 4.2.9)( 
Byn (x′)

∣∣∣∣∣ˆ
R
n
+

g(y,z)F3(z)dz
∣∣∣∣∣qdy′) 1

q

≤ cG1

( 
Byn (·)
|F(z′ , ·)|dz′

)
(x′ , yn), (x′ , yn) ∈Rn+.

Now let τ < r <∞ such that 1
r + 1

n−1 ≤
1
τ . Invoking (4.2.21) with β = 1 and b = (n−1)(1/τ −

1/r) together with Jensen’s inequality we arrive at

III3 ≤ C
∥∥∥∥∥∥∥∥G1

( 
Byn (·)
|F(z′ , ·)|dz′

)∥∥∥
Lq(R+,y

q
ndyn)

∥∥∥∥∥
Lp(Rn−1)

≤ C
(ˆ

R
n−1

(ˆ ∞
0

 
Byn (x′)

|ybnF(z′ , yn)|ηdz′dyn
) r
η

dx′
) 1
r

≤ C∥F∥T τ,η .

The last inequality follows from the embedding (4.1.7) (with s1 = 0, s2 = − b
n−1 , q = η,

p1 = τ and p2 = r). Moving on, we use (4.2.16) and Hölder’s inequality to get the pointwise
bound ∣∣∣∣∣ˆ

R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣ ≤ C|G1F2(y)|

≤ CAηF(x′)
(ˆ ∞

4yn

ˆ
B4yn (x′)

z
n−1
η−1
n dz′dzn

(|y′ − z′ |2 + |yn − zn|2)
(n−1)η′

2

) 1
η′

≤ Cy
1− 1

η
n AηF(x′), x′ ∈ Byn(y

′) (4.2.30)

from which it follows that∣∣∣∣∣ˆ
R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣ ≤ Cy− q

q−1
n ∥AηF∥Lτ (Rn−1), y′ ∈ B(x′ , yn). (4.2.31)

Therefore, for M > 0 to be determined later, we haveˆ ∞
0

 
Byn (x′)

y
q
n

∣∣∣∣∣ˆ
R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn ≤ ˆ M

0

 
Byn (x′)

y
q
n

∣∣∣∣∣ˆ
R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn+

ˆ ∞
M

 
Byn (x′)

y
q
n

∣∣∣∣∣ˆ
R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn

≤ CM1+(2− 1
η )q[AηF(x′)]q +M−

1
q−1 ∥F∥qT τ,η .

The choice M =
(
∥F∥T τ,η
AηF(x′)

) τ
n−1

yields

(ˆ ∞
0

 
Byn (x′)

y
q
n

∣∣∣∣∣ˆ
R
n
+

g(y,z)F2(z)dz
∣∣∣∣∣qdy′dyn) 1

q

≤ C∥F∥
1− τ

(n−1)q(q−1)

T τ,η [AηF(x′)]
τ

(n−1)q(q−1) .
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Hence, (after taking the Lp-norm on both sides of the previous inequality)

III2 ≤ C∥F∥T τ,η .

We also claim that

III1 ≤ C∥F∥T τ,η .

In fact, setting VF(y,yn) = yn

ˆ
R
n
+

g(y,z)F1(z)dz, for all φ ∈ Lr(Rn−1) we have that

〈
Aqq(VF),ϕ

〉
=
ˆ
R
n−1

ˆ ∞
0

ˆ
Byn (x′)

∣∣∣VF1(y′ , yn)
∣∣∣q dy′dyn
yn−1
n

φ(x′)dx′

≤ C
ˆ
R
n−1

ˆ ∞
0

 
Byn (y′)

φ(x′)dx′[yn(G1|F|)(y′ , yn)]qdy′dyn

≤ C
ˆ
R
n−1

ˆ ∞
0

[yn(G1|F|)(y′ , yn)]qMynφ(y′)dy′dyn

≤ C
∥∥∥(y′ , yn) 7→ ynG1|F|

∥∥∥q
LpLq(Rn

+)
∥M·φ∥Lr′L∞(Rn

+)

≤ C∥F∥q
T
m,η

− b
n−1

∥Mφ∥Lr′ (Rn−1)

≤ C∥F∥qT τ,η∥φ∥Lr′ (Rn−1)

Note that the penultimate inequality follows from Remark 4.2.8 with m ∈ (1, r) is such
that 1

τ ≤
1
m −

1
n−1 and b = (n−1)( 1

τ −
1
m ) while the last bound comes from (4.1.7). Collecting

and summing up all the estimates on the Σi ’s, we find that∥∥∥∥∥ˆ
R
n
+

g(·, y)F(y)dy
∥∥∥∥∥
T p,q
≤ C∥F∥T τ,η .

The remaining estimate reads∥∥∥∥∥ˆ
R
n
+

∇yg(·, y)H(y)dy
∥∥∥∥∥
T p,q
≤ C∥H∥T Λ,σ .

The argument used here is similar to the previous one. In fact, for (y′ , yn) ∈Rn+ we write

yn

∣∣∣∣∣ˆ
R
n
+

∇zg(y,z)H(z)dz
∣∣∣∣∣ ≤ 3∑

k=1

Γk(y
′ , yn),
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with

Γ1(y′ , yn) = yn

ˆ
R
n−1\B4yn (y′)

ˆ ∞
0
|∇zg(y,z)||H(z)|dz

Γ2(y′ , yn) = yn

ˆ
B4yn (y′)

ˆ ∞
4yn
|∇zg(y,z)||H(z)|dz

Γ3(y′ , yn) = yn

ˆ
B4yn (y′)

ˆ 4yn

0
|∇zg(y,z)||H(z)|dz.

It is easy to see that |Γ1(y′ , yn)| ≤ G1H(y′ , yn) for any (y′ , yn) ∈ Rn+. Then, by Step 1 and in
particular (4.2.26), we deduce the desired estimate. Next, we show that

∥Γ2∥T p,q ≤ C∥H∥T Λ,σ . (4.2.32)

To achieve this, let us primarily observe that

|Γ2(y′ , yn)| ≤ CynA
5
4
σH(x′)

(ˆ ∞
4yn

ˆ
B4yn (x′)

z
n−1
σ−1
n dz′dzn

(|y′ − z′ |2 + |yn − zn|2)
nσ ′

2

) 1
σ ′

≤ Cy1− 1
σ

n A
5
4
σH(x′), x′ ∈ B(y′ , yn).

Taking theΛ-power of both sides of the last inequality and integrating with respect to the
variable x′

|Γ2(y′ , yn)| ≤ Cy1− 1
σ −

n−1
Λ

n

∥∥∥A 5
4
σH

∥∥∥
LΛ(Rn−1)

≤ C∥H∥T Λ,σ , y′ ∈ B(x′ , yn).

Let δ > 0. The preceding inequalities imply
ˆ ∞

0

 
Byn (x′)

∣∣∣Γ2(y′ , yn)
∣∣∣qdy′dyn ≤ (ˆ δ

0
+
ˆ ∞
δ

) 
Byn (x′)

∣∣∣Γ2(y′ , yn)
∣∣∣qdy′dyn

≤ Cδ1+ q
σ ′ [AσH(x′)]q + δ

1−
(
n−1
Λ −

1
σ ′

)
q∥H∥q

T Λ,σ
.

Optimizing with respect to δ (i.e. choosing δ =
(
∥H∥T Λ,σ /A

5
4
σH(x′)

) Λ
n−1

) yields

(ˆ ∞
0

 
Byn (x′)

∣∣∣Γ2(y′ , yn)
∣∣∣qdy′dyn) 1

q

≤ C∥H∥
Λ
n−1 (1+ 1

q−
1
σ )

T Λ,σ

[
A

5
4
σH(x′)

]1− Λ
n−1 (1+ 1

q−
1
σ )
.

Taking the Lp-norm on both sides and using Remark 4.1.2 gives (4.2.32). Finally, the T p,q-
norm of Γ3 is controlled from above by a constant multiple of ∥H∥T Λ,σ . This is derived
from a simple duality argument. The proof of Proposition 4.2.5 is now complete.
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We can now summarize the findings obtained above into a single theorem establishing
the well-posedness of System (S) for boundary data in the scale of Triebel-Lizorkin space
with negative amount of smoothness. We say that a pair (u,π) is a solution to (S) if u and
π satisfy the relations

u(x) =Hf (x) +G (F,H)(x), π(x) = Ef (x) +Ψ (F,H)(x), x ∈Rn+. (4.2.33)

Theorem 4.2.10. Assume that the positive numbers η,Λ,σ ,p,q are as in Proposition 4.2.5.
Then for any f ∈ [Ḟ−1/q

p,q (Rn−1)]n, F ∈ Yτ,η and H ∈ YΛ,σ , the Stokes system (S) has a solution
(u,π) ∈ Zq× ∈ Xq (in the sense made precise in (4.2.33)) which obeys

∥u∥Xq + ∥π∥Zq ≤ C(∥f ∥
Ḟ
− 1
q

p,q (Rn−1)
+ ∥F∥Yτ,η + ∥H∥YΛ,σ ) (4.2.34)

for some constant C > 0 independent of f , F and H .

Practically, Theorem 4.2.10 can easily be extended to the case where the vector field
u is not necessarily solenoidal, i.e. div u = φ using the formulation derived in [Sol77,
formula 2.32], see also [Cat61] so that our result gives an alternative approach to the
Dirichlet problem for the Stokes system (to be compared to [ANR08] wherein the analysis
is carried out in weigthed Sobolev spaces).

Remark 4.2.11. These estimates of the velocity field and the pressure in tent and weighted
tent framework respectively against boundary data in low regularity spaces are new and

generalize well-known results [FS15]. In fact, our boundary class Ḟ
− 1
q

p,q(Rn−1) contains the

homogeneous Sobolev space Ḣ s,r(Rn−1) for −1/q < s and
n− 1
r
− s =

1
q − 1

.

4.3 Proofs of main results

Here, we give a detailed proof of some of our main findings relying on preliminary results
obtained in Section 4.2. The procedure used in the proof of Theorem 4.1.6 and 4.1.7 is
the same, thus only the proof of the latter and that of 4.1.8 will be given.

Proof of Theorem 4.1.7. Let f ∈ [Ḣ−
1
2 ,2(n−1)(Rn−1)]n with n > 2 and assume F ∈ Yτ,η for

1 < η < τ <∞with
1
η

+
n− 1
τ

= 3. Equip the Banach space X×Z by the norm ∥·∥ := ∥·∥X+∥·∥Z
and introduce the operatorsL defined by

L (u,π) =
(
Hf +G [F,u ⊗u], E(f ) +Ψ [F,u ⊗u]

)
where H and E are given by (4.2.4). A solution of Eq. (NS) according to Definition 4.2.33
is a couple (u,π) satisfying the fixed point equation

(u,π) =L (u,π) in R
n
+. (4.3.1)
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Using a Banach fixed point argument, we wish to show that the latter equation admits a
solution in X×Z. Let (u,π), (v,π′) ∈ X×Z two solutions of Eq. (4.3.1) associated to the same
Dirichlet data and forcing term and use Proposition 4.2.5 with q = 2, (Λ,σ ) = (n− 1,1) to
get ∥∥∥L (u,π)−L (v,π′)

∥∥∥ =
∥∥∥G (0,u ⊗u − v ⊗ v)

∥∥∥
X

+
∥∥∥Ψ (0,u ⊗u − v ⊗ v

∥∥∥
Z

≤ C∥u ⊗u − v ⊗ v∥Yn−1,1

≤ C(∥u ⊗ (u − v)∥Yn−1,1 + ∥(u − v)⊗ v∥Yn−1,1)

≤ C(sup
xn>0

x2
n

∥∥∥[u ⊗ (u − v)](·,xn)
∥∥∥
L∞(Rn−1)

+ ∥u ⊗ (u − v)∥T n−1,1+

sup
xn>0

x2
n∥[(u − v)⊗ v](·,xn)∥L∞(Rn−1) + ∥(u − v)⊗ v∥T n−1,1)

≤ C
(

sup
xn>0

xn∥u(·,xn)∥L∞(Rn−1) sup
xn>0

xn∥(u − v)(·,xn)∥L∞(Rn−1)+

sup
xn>0

xn∥(u − v)(·,xn)∥L∞(Rn−1) sup
xn>0

xn∥v(·,xn)∥L∞(Rn−1)+

∥u∥T 2(n−1),2∥u − v∥T 2(n−1),2 + ∥u − v∥T 2(n−1),2∥v∥T 2(n−1),2

)
≤ C∥u − v∥X(∥u∥X + ∥v∥X). (4.3.2)

In light of Lemma 4.2.1 (applied with q = 2) we find that∥∥∥L (u,π)
∥∥∥ ≤ K(

∥u∥2X + ∥Hf ∥X + ∥G [F,0]∥X + ∥E(f )∥Z + ∥Ψ [F,0]∥Z
)

≤ K(∥u∥2X + ∥f ∥Ḣ−1/2,2(n−1)(Rn−1) + ∥F∥Yτ,η ). (4.3.3)

Now pick ε > 0 such that ∥f ∥Ḣ−1/2,2(n−1)(Rn−1) + ∥F∥Yτ,η ≤ ε. If ε is sufficiently small, then it
readily follows from (4.3.2) and (4.3.3) thatL has a unique fixed point in a closed ball of
X×Z centered at the origin with radius cε for some c > 0.

Proof of Theorem 4.1.8. Let 2 < q <∞ and put p = (n− 1)q(q − 1). Further let 1 < η1 < τ1 <
n− 1 and 1 < σ < Λ such that

1
η1

+
n− 1
τ1

= 1 +
1
σ

+
n− 1
Λ

= 2 +
1

q − 1
. (4.3.4)

Assume f ∈ Ḣ−
1
2 ,2(n−1) ∩ Ḟ

− 1
q

p,q(Rn−1) and F ∈ Yτ1,η1 ∩ Yτ,η . We remark that the solution
found above may be realized as the unique limit in X × Z of the following sequence of
approximations given by

(u1,π1) = (H(f ),E(f )), (uj+1,πj+1) = (G [F,uj ⊗uj ] +u1,Ψ [F,uj ⊗uj ] +π1), j = 1,2, · · ·

Each element of this sequence belongs to Xq × Zq. In fact, since (u1,π1) ∈ Xq × Zq (see
Lemma 4.2.1) one may proceed via an induction argument to prove the claim. Choose
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(σ,Λ) such that 1
σ = 1

2 + 1
q , 1

Λ = 1
2(n−1) + 1

p and invoke Proposition 4.2.5, Hölder’s inequality
in tent spaces simultaneously to have for each j = 1, ...

∥(uj+1,πj+1)∥Xq×Zq = ∥G [F,uj ⊗uj ] +u1∥Xq + ∥Ψ [F,uj ⊗uj ] +πj∥Zq

≤ C
(
∥u1∥Xq + ∥G [F,uj ⊗uj ]∥Xq + ∥π1∥Zq + ∥Ψ [F,uj ⊗uj ]∥Zq

)
≤ C

(
∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
+ ∥F∥Yτ1 ,η1 + ∥uj ⊗uj∥YΛ,σ

)
≤ C

(
∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
+ ∥F∥Yτ1 ,η1 + ∥uj∥T 2(n−1),2∥uj∥T p,q+

sup
xn>0

x
1
η + n−1

Λ
n ∥uj ⊗uj(·,xn)∥L∞(Rn−1)

)
≤ C

(
∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
+ ∥F∥Yτ1 ,η1 + sup

xn>0
x

1
q−1
n ∥uj(·,xn)∥L∞(Rn−1)·

sup
xn>0

xn∥uj(·,xn)∥L∞(Rn−1) + ∥uj∥T 2(n−1),2∥uj∥T p,q
)

≤ C
(
∥f ∥

Ḟ
− 1
q

p,q (Rn−1)
+ ∥F∥Yτ1 ,η1 + ∥uj∥X∥uj∥Xq

)
so that if (uj ,πj ) ∈ Xq ×Zq, then so is (uj+1,πj+1). Next, we show that the latter sequence
is Cauchy in Xq ×Zq. We estimate (wj ,qj ) = (uj+1 −uj ,πj+1 −πj ), j = 1,2, ...

∥(wj ,qj )∥Xq×Zq =
∥∥∥G [0,uj ⊗uj −uj−1 ⊗uj−1]

∥∥∥
Xq +

∥∥∥Ψ [0,uj ⊗uj −uj−1 ⊗uj−1]
∥∥∥

Zq

≤ c∥uj ⊗uj −uj−1 ⊗uj−1∥YΛ,η
≤ c∥uj ⊗wj−1 +wj−1 ⊗uj−1∥YΛ,η
≤ c∥wj−1∥Xq (∥uj∥X + ∥uj−1∥X)

≤ c∥(wj−1,qj−1)∥Xq×Zq (∥uj∥X + ∥uj−1∥X).

Let ε > 0 be as in Theorem 4.1.7 and take 0 < εq < ε. If ∥f ∥
Ḣ−

1
2 ,2(n−1) + ∥F∥Yτ,η ≤ εq, then the

conclusion of Theorem 4.1.7 shows that ∥uj∥X ≤ 2κq, κq = κq(εq). Whence,

∥(wj ,qj )∥Xq×Zq ≤ Cκq∥(wj−1,qj−1)∥Xq×Zq .

With εq > 0 chosen sufficiently small with Cκq < 1, a simple iteration of the previous
inequality yields

∥(wj ,qj )∥Xq×Zq ≤ (Cκq)
j−1∥(w1,q1)∥Xq×Zq

thus implying the convergence of the sequence (wj ,qj ) in Xq × Zq. The limit of this se-
quence solves (NS) and by uniqueness, it is the same as that constructed in Theorem
4.1.7.
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4.4 Appendix

Here we sketch the proof of Lemma 4.1.1. Let K ⊂ R
n
+ be a compact set. Then by Lemma

4.2.3 we know that E(K) = {x′ ∈Rn−1 : K ∩ Γ (x′) , ∅} has a finite Lebesgue measure. Let us
denote by 1K the characteristic function of the compact set K . If p ≤ q, then via Hölder’s
inequality, one obtains

∥1Kf ∥T p,q =
(ˆ

R
n−1

(¨
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)p/q

dx′
)1/p

=
(ˆ

E(K)

(¨
Γ (x′)
|f |qy1−n

n dy′dyndx
′
)p/q

dx′
)1/p

≤
(ˆ

E(K)

¨
Γ (x′)
|f |qy1−n

n dy′dyndx
′
)1/q∣∣∣E(K)

∣∣∣ 1
p−

1
q

≤
∣∣∣E(K)

∣∣∣ 1
p−

1
q

(ˆ
R
n−1

¨
Γ (x′)∩K

|f |qy1−n
n dy′dyndx

′
)1/q

≤
∣∣∣E(K)

∣∣∣ 1
p−

1
q ∥f ∥Lq(K).

Moving on, for q < p, applying Minkowski’s inequality implies

∥1Kf ∥T p,q =
(ˆ

R
n−1

(¨
Γ (x′)

1K |f |qy1−n
n dy′dyn

)p/q
dx′

)1/p

=
(ˆ

R
n−1

(ˆ
R
n−1

ˆ ∞
0

1Byn (y′)(x
′)1K (y′ , yn)|f |qy1−n

n dyndy
′
)p/q

dx′
)1/p

≤ CK
(ˆ

R
n−1

ˆ ∞
0

1K |f |qdy′dyndx′
)1/q

≤ CK∥f ∥Lq(K).
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Assuming that p ≤ q, we use Lemma 4.2.2 and Minkowski’s inequality simultaneously to
get

∥f ∥Lq(K) =
(ˆ

R
n
+

1K |f |qdy′dyn
)1/q

≤ C
(ˆ

R
n−1

¨
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)1/q

≤ CK
(ˆ

R
n−1

¨
Γ (x′)

y
(n−1)p
q

n 1K |f |qy1−n
n dy′dyndx

′
)1/q

≤ CK
(ˆ

R
n−1

(¨
Γ (x′)
|f |qy1−n

n dy′dyn

)p/q
dx′

)1/p

≤ CK∥f ∥T p,q .

When p > q, the desired bound follows from Hölder’s inequality. Indeed, we have

∥f ∥Lq(K) =
(ˆ

R
n
+

1K |f |qdy′dyn
)1/q

≤ C
(ˆ

R
n−1

¨
Γ (x′)

1K |f |qy1−n
n dy′dyndx

′
)1/q

≤ C
(ˆ

E(K)

¨
Γ (x′)
|f |qy1−n

n dy′dyndx
′
)1/q

≤ C
(ˆ

R
n−1

(¨
Γ (x′)
|f |qy1−n

n dy′dyn

)p/q
dx′

)1/p∣∣∣E(K)
∣∣∣ 1
q−

1
p

≤ C
∣∣∣E(K)

∣∣∣ 1
q−

1
p ∥f ∥T p,q .
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