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Introduction

The world is complex and full of challenges. Structural economists and other
scientists create insights that help policy-makers to decide how to react to those
challenges. Their toolkit for creating insights contains three building blocks: Empir-
ical data, which are scarce and imperfect but provide the fundamental link between
theoretical models and the real world. Modeling, which is the creative process of
building less complex – wrong but useful – versions of the world. And Computation,
which is necessary to fit models to data and simulate quantities of interest. Under
the names Observation, Theory, and Computation, these steps are often called the
three pillars of science.

The three go hand in hand and one component can often substitute for another:
Doing more computations can relax the need for simplifying assumptions when
creating models; large sample sizes allow data driven model selection; explicitly
modeling decision-making of individuals makes it possible to use data that was not
collected in randomized controlled trials.

This substitutability is important for two reasons: Firstly, the costs of the three
components have developed very differently over the last decades. Datasets have
increased in size but only at a slow rate; the cost of creative modeling is unlikely
to ever change; computation is getting cheaper at an exponential rate. Secondly,
there are sometimes hard restrictions. Collecting panel data, for example, is not
only expensive but inherently takes a lot of time.

This dissertation consists of three independent research studies. All of them use
empirical datasets, modeling, and computation to shed light on important topics.
The first chapter develops an extremely detailed agent based model of disease trans-
mission and uses it to quantify the effects of vaccinations, seasonality, and rapid test-
ing on the spread of CoViD-19. The second chapter acknowledges that any outcome
of a complex model comes with a lot of uncertainty. It embeds standard techniques
for uncertainty quantification in a decision-theoretic framework. The third chapter
uses methods from the skill formation literature to analyze the decline of health
and cognitive capacity in the last years of life. Below, I provide a brief summary of
chapters two and three. The summary of the first chapter is embedded in a short
history of the project and the evolution of the pandemic in Germany.
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Chapter 1: The Effectiveness of Testing, Vaccinations and Contact Restric-
tions for Containing the CoViD-19 Pandemic: We started working on the project
in the summer of 2020. Due to a strict initial lockdown that was relaxed only slowly,
the case numbers were low. However, it was not clear whether they would stay low
when measures were to be relaxed further. It was also unknown whether seasonality
would have an effect. There were no vaccinations and no rapid tests. Official con-
tact tracing was seen as a primary reaction to potentially rising case numbers. The
highest case numbers Germany had seen were less than 60 cases per million and
there was hope that it would never get higher.

Our main motivation was to find optimal combinations of non-pharmaceutical
interventions (such as contact tracing, PCR testing and contact reductions in specific
sectors) to keep case numbers constant at a low level and to determine thresholds
that would warrant a full lockdown. We had collected data on beliefs about the
pandemic and compliance with policies that we hoped to feed into such a model.
Moreover, we thought that it would be important to use as many data sources as
possible to calibrate realistic contact networks and reactions to policies. It became
apparent that common epidemiological models were not designed to leverage such
different data sources. In addition, many of those models do not have policy invari-
ant parameters, rendering them unsuitable for ex-ante evaluation of fine-grained
policies.

At the core of our model are physical contacts between heterogeneous agents.
Each contact between infectious and susceptible individuals bears the risk of trans-
mitting the virus. Contacts occur in four networks: Within the household, at work,
at school, or in other settings (leisure activities, grocery shopping, medical appoint-
ments, etc.). Some contacts recur regularly; others occur at random. Pre-pandemic
contact diaries, census data and real-timemobility data are used to calibrate realistic
contact networks. While the number of contacts is influenced by policies, the infec-
tion probabilities of each contact are policy invariant parameters that are estimated
with the method of simulated moments from observed case numbers.

The first application of the model took place at the beginning of November
2020 (Dorn, Gabler, Gaudecker, Peichl, Raabe, et al., 2020). Case numbers had sky-
rocketed to about 180 per million and the so-called “lockdown light” took effect.
It was a much more nuanced policy than previous lockdowns. Our model correctly
predicted that the lockdown light would be enough to stop the exponential increase
but not to bring case numbers down. Moreover, we predicted that schools do play a
role for the transmission of the disease but that split class approaches combined with
strict hygiene measures are almost as effective as complete school closures. Doing
such fine-grained simulations of school policies was possible because we imposed
almost no simplifying assumptions on schools. We simulated full classrooms that
have classes with multiple teachers per day.

In December, the case numbers grew even higher and every new week brought
new policies. It became essential to model all these policies in detail, so we could
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continue to fit case numbers and use longer time series to better estimate the trans-
mission probabilities. To the best of our knowledge, we are the only research group
that fit a model to actual case numbers of an entire country over more than nine
months.

Moreover, it became clear that the share of undetected cases had increased dra-
matically as contact tracing became infeasible due to the sheer number of cases. We
thus added PCR testing to our model and calibrated the tests to fit available esti-
mates of the share of unknown cases. In December and January, we published two
policy reports to show the importance of private contact tracing during the Christ-
mas holidays (Gabler, Raabe, Röhrl, and Gaudecker, 2020) and the effect of working
from home (Gabler, Raabe, Röhrl, and Gaudecker, 2021). Our predicted effect of
increasing the share of people working from home lined up well with reduced form
estimates from other groups (Fadinger and Schymik, 2020).

At the beginning of March 2021, cases rose sharply due to the new Alpha variant.
In April, they dropped suddenly, taking many forecasters by surprise. Vaccinations,
freely available rapid tests and seasonality were the most likely explanations for the
decline. We thus incorporated extremely detailed models of rapid testing and behav-
ioral reactions to positive test results into the model. Moreover, we added the more
contagious Alpha variant, vaccinations and an exogenously calibrated seasonality
effect to our model. This specification is the one described in chapter 1. The results
show that all three factors are important but that rapid tests play a much larger role
than expected at the time. Extensive robustness checks – which we performed with
data that only became available much later (see section 1.B.12) – show that this re-
sult is very robust even though our original assumptions on the sensitivity of rapid
tests had been optimistic.

Chapter 2: Structural models for policy-making: Coping with parametric
uncertainty Structural Microeconomists use complex models of economic agents
making optimal decisions, subject to constraints. Usually, these models have para-
metric utility functions and the parameters of those functions are estimated by fitting
the model to data. The estimated model is then used to investigate economic mech-
anisms, predict the impact of proposed policies, and inform optimal policy-making.
Typically, the uncertainty around the estimated parameters is neither taken into
account in the model predictions nor in the calculation of optimal policies.

We develop an approach that copes with parametric uncertainty in computa-
tional models and embeds model informed policy-making in a decision-theoretic
framework. This approach treats the model as a black box and is thus not specific
to microeconometric models. As an illustration, we apply the method to the semi-
nal career decisions of young men model (Keane and Wolpin, 1997). The model is
well known and akin to many contemporary dynamic discrete choice models. We
document considerable uncertainty in the models’ policy predictions and highlight
the resulting policy recommendations obtained from using different formal rules of
decision-making under uncertainty.



4 | Introduction

Chapter 3: Mens Sana in Corpore Sano? Development and maintenance of
human capital throughout the life-cycle enables individuals to lead longer, more
productive and more fulfilling lives. While there is a vast literature on the devel-
opment of human capital during childhood, much fewer studies in economics have
analyzed the decline of physical and cognitive capacities during later stages of life
within a dynamic framework.

In this paper, we take a broad and systematic approach to model the interdepen-
dency of physical and cognitive capacity over intividuals’ later part of the life-cycle.
To this end, we adapt the Technology of Skill Formation model by Cunha, Heckman,
and Schennach (2010) to the context of aging. Our model has four latent factors:
physical capacity, cognitive capacity, physical exercise, and cognitive stimulation.
While the latent factors are not observable, the model allows us to identify their
joint distribution from their effects on observable variables. Moreover, the model
enables us to estimate dynamic relationships between the latent factors that are
uncontaminated by measurement error.

We incorporate a simple model of mortality into the model to remove the se-
lection bias that would arise from ignoring that mortality carries information about
latent health. We estimate the model parameters with a maximum likelihood esti-
mator on data from the Health and Retirement Study. The estimator is similar to
the one used by Cunha, Heckman, and Schennach (2010), but we were forced to
derive a numerically more robust version due to challenges that stem from the large
number of periods and high correlation between factors. The estimation is done sep-
arately for men and women to account for gender differences in life expectancy and
aging.

Our key findings are as follows: 1) There is substantial noise in all observed vari-
ables. While most measurements have a high correlation with the latent factor they
measure, no single measurement dominates to an extent where it would be justified
to just use a single variable and ignore the measurement error in the econometric
analysis. 2) Despite a strong decline in means for physical and cognitive capacity,
the rank order of these latent factors is remarkably stable. 3) Physical and cognitive
capacity can be influenced by investments until very high ages. Cognitive stimula-
tion is a specific investment into cognitive capacity. Physical exercise has a larger
effect on physical capacity and a small effect on cognitive capacity.
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Chapter 1

The Effectiveness of Testing,

Vaccinations and Contact Restrictions

for Containing the CoViD-19 Pandemic
Joint with Tobias Raabe, Klara Röhrl and Hans-Martin von

Gaudecker

1.1 Introduction

Since early 2020, the CoViD-19 pandemic has presented an enormous challenge to
humanity on many dimensions. The development of highly effective vaccines holds
the promise of containment in the medium term. However, most countries find them-
selves many months—and often years—away from reaching vaccination levels that
would end the pandemic or even protect the most vulnerable (Mathieu, Ritchie,
Ortiz-Ospina, Roser, Hasell, et al., 2021). In the meantime, it is of utmost impor-
tance to employ an effective mix of strategies for containing the virus. The most
frequent initial response was a set of non-pharmaceutical interventions (NPIs) to re-
duce contacts between individuals. While this has allowed some countries to sustain
equilibria with very low infection number—see Contreras, Dehning, Mohr, Bauer,
Spitzner, et al. (2021) for a theoretical equilibrium at low case numbers which is
sustained with test-trace-and-isolate policies—, most have seen large fluctuations of
infection rates over time. Containment measures have become increasingly diverse
and now include rapid testing, more nuanced NPIs, and contact tracing. Neither

⋆ The authors are grateful for support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC 2126/1– 390838866 – and through
CRC-TR 224 (Projects A02 and C01), by the IZA Institute of Labor Economics, and by the Google Cloud
CoViD-19 research credits program.
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these policies’ effects nor the influence of seasonal patterns or of more infectious
virus strains are well understood in quantitative terms.

This paper develops a quantitative model incorporating these factors simulta-
neously. The framework allows to combine a wide variety of data and mechanisms
in a timely fashion, making it useful to predict the effects of various interventions.
Behavioral reactions to symptoms or positive tests are explicitly taken into account.
We apply the model to Germany, where new infections fell by almost 80% during
May 2021. Our analysis shows that, aside from seasonality, frequent and large-scale
rapid testing caused the bulk of this decrease, which is in line with prior predictions
(Mina and Andersen, 2021). We conclude that it should have a large role for at least
as long as vaccinations have not been offered to an entire population.

1.2 Model Description

At the core of our agent-based model (Aleta, Martín-Corral, Piontti, Ajelli, Litvinova,
et al., 2020; Hinch, Probert, Nurtay, Kendall, Wymant, et al., 2021)—we review
more literature in Supplementary Material B.1—are physical contacts between het-
erogeneous agents (Figure 1a). Each contact between an infectious individual and
somebody susceptible to the disease bears the risk of transmitting the virus. Con-
tacts occur in up to four networks: Within the household, at work, at school, or
in other settings (leisure activities, grocery shopping, medical appointments, etc.).
Some contacts recur regularly, others occur at random. Empirical applications can
take the population and household structure from census data and the network-
specific frequencies of contacts from diary data measuring contacts before the pan-
demic (Mossong, Hens, Jit, Beutels, Auranen, et al., 2008; Hoang, Coletti, Melegaro,
Wallinga, Grijalva, et al., 2019). Within each network, meeting frequencies depend
on age and geographical location (see Supplementary Material A.4).

The four contact networks are chosen so that the most common NPIs can bemod-
eled in great detail. NPIs affect the number of contacts or the risk of transmitting the
disease upon having physical contact. The effect of different NPIs will generally vary
across contact types. For example, a mandate to work from home will reduce the
number of work contacts to zero for a fraction of the working population. Schools
and daycare can be closed entirely, operate at reduced capacity—including an alter-
nating schedule—, or implement mitigation measures like masking requirements
or air filters (Lessler, Grabowski, Grantz, Badillo-Goicoechea, Metcalf, et al., 2021).
Curfews may reduce the number of contacts in settings outside of work and school.
In any setting, measures like masking requirements would reduce the probability of
infection associated with a contact (Cheng, Ma, Witt, Rapp, Wild, et al., 2021).

In the model, susceptibility to contracting the SARS-CoV-2 virus is dependent
on age (Davies, Klepac, Liu, Prem, Jit, et al., 2020; Goldstein, Lipsitch, and Cevik,
2020). A possible infection progresses as shown in Figure 1b. We differentiate be-
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d. Translating all infections to recorded ones

Figure 1.2.1. A description of the model can be found in Supplementary Material B. Figure 1a

shows the influence of an agent’s contacts to other agents on infections. Demographic charac-

teristics set the baseline number of contacts in different networks (η). The agents may reduce

the number of contacts due to NPIs, showing symptoms, or testing positively for SARS-CoV-2 (τ).

Infections may occur when a susceptible agent meets an infectious agent; the probability de-

pends on the type of contact (βc), on seasonality (κc), and on NPIs (ρc, t). If infected, the infection

progresses as depicted in Figure 1b. If rapid tests are available, agents’ demand is modeled as

in Figure 1c. All reasons trigger a test only for a fraction of individuals depending on an individ-

ual compliance parameter; the thresholds for triggering test demand differ across reasons and

they may depend on calendar time (πc, t and τc, t). Figure 1d shows the model of translating all

infections in the simulated data to age-specific recorded infections. The model uses data on the

aggregate share of recorded cases (ψ), the share of positive PCR tests triggered by symptoms

(χsymptom), and the false positive rate of rapid tests (ppositive|infected, i, t). The lower part of the graph

is relevant only for periods where rapid tests are available. All parameters are explained in Sup-

plementary Material A.11.

tween an initial period of infection without being infectious or showing symptoms,
being infectious (presymptomatic or asymptomatic), showing symptoms, requiring
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intensive care, and recovery or death (similar to Aleta et al. (2020)). The probabil-
ities of transitioning between these states depend on age; their duration is random
and calibrated to medical literature (for a detailed description see Supplementary
Material A.1). Conditional on the type of contact, infectiousness is independent of
age (Jones, Biele, Mühlemann, Veith, Schneider, et al., 2021).

The model includes several other features, which are crucial to describe the evo-
lution of the pandemic in 2020-2021. New virus strains with different infectiousness
profiles may appear. Vaccines may become available. During the vaccine roll-out,
priority may depend on age and occupation; vaccine hesitancy is modelled by some
individuals refusing vaccination offers. With some probability, vaccinated agents
become immune and do not transmit the virus (Hunter and Brainard, 2021; Levine-
Tiefenbrun, Yelin, Katz, Herzel, Golan, et al., 2021; Petter, Mor, Zuckerman, Oz-Levi,
Younger, et al., 2021; Pritchard, Matthews, Stoesser, Eyre, Gethings, et al., 2021).

We include two types of tests. Polymerase chain reaction (PCR) tests reveal
whether an individual is infected or not; there is no uncertainty to the result. PCR
tests require at least one day to be processed and there are aggregate capacity con-
straints. In contrast, rapid antigen tests yield immediate results. Specificity and sen-
sitivity of these tests is set according to data analyzed in Brümmer, Katzenschlager,
Gaeddert, Erdmann, Schmitz, et al. (2021), Özcürümez, Katsounas, Holdenrieder,
Meyer, Renz, et al. (2021), and Scheiblauer, Filomena, Nitsche, Puyskens, Corman,
et al. (2021); sensitivity depends on the timing of the test relative to the onset of
infectiousness as in Smith, Gibson, Martinez, Ke, Mirza, et al. (2021). We analyse
robustness to different assumptions in Supplementary Material B.12. After a phase-
in period, all tests that are demanded will be performed. Figure 1c shows our model
for rapid test demand. Schools may require staff and students to be tested regularly.
Rapid tests may be offered by employers to on-site workers. Individuals may demand
tests for private reasons, which include having plans to meet other people, showing
symptoms of CoViD-19, and a household member having tested positively for the
virus. We endow each agent with an individual compliance parameter. This param-
eter determines whether she takes up rapid tests. Positive test results or symptoms
lead most individuals to reduce their contacts; this is why tests impact the actual
contacts in Figure 1.

Modelling a population of agents according to actual demographic characteris-
tics means that we can use a wide array of data to identify and calibrate the model’s
many parameters (see Supplementary Material A for a complete description). Con-
tact diaries yield pre-pandemic distributions of contacts for different contact types
and their assortativity by age group. Mobility data is used to model the evolution of
work contacts. School and daycare policies can be incorporated directly from official
directives. Administrative records on the number of tests, vaccinations by age and
region, and the prevalence of virus strains are generally available. Surveys may ask
about test offers, propensities to take them up, and past tests. Other studies’ esti-
mates of the seasonality of infections can be incorporated directly. The remaining
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parameters—most notably, these include infection probabilities by contact network
and the effects of some NPIs, see Supplementary Material A.9—will be chosen nu-
merically so that the model matches features of the data (see McFadden (1989) for
the general method). In our application, we keep the number of free parameters low
in order to avoid overfitting. The data features to be matched include official case
numbers for each age group and region, deaths, and the share of the B.1.1.7 strain.

The main issue with official case numbers is that they will contain only a fraction
of all infections. In the German case, this specifically amounts to positive PCR tests.
We thus model recorded cases as depicted in Figure 1d. We take mortality-based
aggregate estimates of the share of detected cases and use data on the share of PCR
tests administered because of CoViD-19 symptoms. As the share of asymptomatic
individuals varies by age group, this gives us age-specific shares (see Figure B.11).
Our estimates suggest that—in the absence of rapid testing—the detection rate is
80% higher on average for individuals above age 80 compared to school age children.
Once rapid test become available, confirmation of a positive result is another reason
leading to positive PCR tests.

1.3 Second and Third Waves of the Covid-19 Pandemic in

Germany

The model is applied to the second and third waves of the CoViD-19 pandemic in
Germany, covering the period mid-September 2020 to the end of May 2021. Fig-
ure 2 describes the evolution of the pandemic and of its drivers. The black line in
Figure 2a shows officially recorded cases; the black line in Figure 2b the Oxford
Response Stringency Index (Hale, Atav, Hallas, Kira, Phillips, et al., 2020), which
tracks the tightness of non-pharmaceutical interventions. The index is shown for il-
lustration of the NPIs, we never use it directly. For legibility reasons, we transform
the index so that lower values represent higher levels of restrictions. A value of zero
means all measures incorporated in the index are turned on. The value one rep-
resents the situation in mid-September, with restrictions on gatherings and public
events, masking requirements, but open schools and workplaces. In the seven weeks
between mid September and early November, cases increased by a factor of ten. Re-
strictions were somewhat tightened in mid-October and again in early November.
New infections remained constant throughout November before rising again in De-
cember, prompting the most stringent lockdown to this date. Schools and daycare
centers were closed, so were customer-facing businesses except for grocery and drug
stores. From the peak of the second wave just before Christmas until the trough in
mid-February, newly detected cases decreased by almost three quarters. The third
wave in the spring of 2021 is associated with the B.1.1.7 (Alpha) strain, which be-
came dominant in March (Figure 2c). Note that we do not model B.1.617.2 (Delta).
That variant was first detected in Germany in April; at the end of our simulation pe-
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Figure 1.3.1. Evolution of the pandemic, its drivers, and model fit, September 2020 to May 2021:

Data sources are described in Supplementary Material A. Age- and region-specific analogues to

Figure 2a can be found in Supplementary Material B.10. For legibility reasons, all lines in Figure 2b

are rolling 7-day averages. The Oxford Response Stringency Index is scaled as 2 · (1 − x/100), so

that a value of one refers to the situation at the start of our sample period and zero means that

all NPIs included in the index are turned on. The other lines in Figure 2b show the product of the

effect of contact reductions, increased hygiene regulations, and seasonality. See Appendix A.5

for separate plots of the three factors by contact type.

riod it accounted for less than 5% of cases. In early March, some NPIs were relaxed;
e.g., hairdressers and home improvement stores were allowed to open again to the
public. There were many changes in details of regulations afterwards, but they did
not change the overall stringency index.

By March 2021, the set of policy instruments had become much more diverse.
Around the turn of the year, the first people were vaccinated with a focus on older
age groups and medical staff (Figure 2d). Until the end of May, 43% had received at
least one dose of a vaccine. In late 2020, rapid tests started to replace regular PCR
tests for staff in many medical and nursing facilities. These had to be administered
by medical doctors or in pharmacies. At-home tests approved by authorities became
available in mid-March. Rapid test centers were opened, and one test per person
and week was made available free of charge. In several states, customers were only
allowed to enter certain stores with a recent negative rapid test result. These devel-
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opments are characteristic of many countries: The initial focus on NPIs to slow the
spread of the disease has been accompanied by vaccines and a growing acceptance
and use of rapid tests. At broadly similar points in time, novel strains of the virus
have started to pose additional challenges.

1.4 Results

We draw simulated samples of agents from the population structure in September
2020 and use the model to predict recorded infection rates until the end of May
2021. See Supplementary Materials A.2 and B.9 for details. The blue line in Fig-
ure 2a shows that our model’s predictions are very close to officially recorded cases
in the aggregate. This is also true for infections by age and geographical region (see
Supplementary Material B.10).

The effects of various mechanisms can be disentangled due to the distinct tem-
poral variation in the drivers of the pandemic. Next to the stringency index, the
three lines in Figure 2b summarize how contact reductions, increased hygiene reg-
ulations, and seasonality evolved since early September for each of the three broad
contact networks. For example, a value of 0.75 for the work multiplier means that
if the environment was the same as in September (levels of infection rates, no rapid
tests or vaccinations, only the wildtype virus present), infections at the workplace
would be reduced by 25%. Two aspects are particularly interesting. First, all lines
broadly follow the stringency index and they would do so even more if we left out
seasonality and school vacations (roughly the last two weeks of October, two weeks
each around Christmas and Easter, and some days in late May). Second, the most
stringent regulations coincide with the period of decreasing infection rates between
late December 2020 and mid-February 2021. The subsequent reversal of the trend is
associated with the spread of the B.1.1.7 variant. During the steep drop in recorded
cases during May 2021, for 42% of the population took at least one rapid tests per
week, the first-dose vaccination rate rose from 28% to 43%, and seasonality lowered
the relative infectiousness of contacts.

In order to better understand the contributions of rapid tests, vaccinations, and
seasonality on the evolution of infections in 2021, Figure 1.4.1 considers various
scenarios. NPIs are always held constant at their values in the baseline scenario.
Figure 3a shows the model fit (the blue line, same as in Figure 2a), a scenario with-
out any of the three factors (red line), and three scenarios turning each of these
factors on individually. Figure 3b does the same for total infections in the model.
Figure 3c employs Shapley values (Shapley, 2016) to decompose the difference in
total infections between the scenario without any of the three factors and our main
specification.

Until mid-March, there is no visible difference between the different scenarios.
Seasonality hardly changes, and only few vaccinations and rapid tests were admin-
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c. Decomposition of the difference between the
scenario without any of the three factors and the main
scenario in Figure 3b.
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Figure 1.4.1. The effect of different interventions on recorded and actual infections. The blue line

in Figure 3a is the same as in Figure 2a and refers to our baseline scenario, so does the blue line in

Figure 3b. The red lines refer to a situation where NPIs evolve as in the baseline scenario and the

B.1.1.7 variant is introduced in the same way; vaccinations, rapid tests, and seasonality remain

at their January levels. The other scenarios turn each of these three factors on individually. The

decompositions in Figures 3c and 3d are based on Shapley values, which are explained more

thoroughly in Appendix A.10. For legibility reasons, all lines are rolling 7-day averages.

istered. Even thereafter, the effect of the vaccination campaign is surprisingly small
at first sight. Whether considering recorded or total infections with only one chan-
nel active, the final level is always the highest in case of the vaccination campaign
(orange lines). The Shapley value decomposition shows that vaccinations contribute
16% to the cumulative difference between scenarios. Reasons for the low share are
the slow start—it took until March 24th until 10% of the population had received
their first vaccination, the 20% mark was reached on April 19th—and the focus on
older individuals. These groups contribute less to the spread of the disease than oth-
ers due to a lower number of contacts. By the end of our study period, when first-dose
vaccination rates reached 43% of the population, the numbers of new cases would
have started to decline. It is important to note that the initial focus of the campaign
was to prevent deaths and severe disease. Indeed, the case fatality rate was consid-
erably lower during the third wave when compared to the second (4.4% between
October and February and 1.4% between March and the end of May).
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Seasonality has a large effect in slowing the spread of SARS-CoV-2. By May 31,
both observed and total cases would be reduced by a factor of four if only seasonal-
ity mattered. However, in this period, cases would have kept on rising throughout,
just at a much lower pace this is in line with results in Gavenčiak, Monrad, Leech,
Sharma, Mindermann, et al. (2021), which our seasonality measure is based on.
Nevertheless, we estimate seasonality to be a quantitatively important factor deter-
mining the evolution of the pandemic, explaining most of the early changes and
43% of the cumulative difference by the end of May.

A similar-sized effect—42% in the decomposition—comes from rapid testing.
Here, it is crucial to differentiate between recorded cases and actual cases. Addi-
tional testing means that additional infections will be recorded which would other-
wise remain undetected. Figure 3a shows that this effect is large and may persist for
some time. Until late April, recorded cases are higher in the scenario with rapid test-
ing alone when compared to the setting where none of the three mechanisms are
turned on. The effect on total cases, however, is visible immediately in Figure 3b.
Despite the fact that only 10% of the population performed weekly rapid tests in
March on average, new infections on April 1 would have been reduced by 53% rela-
tive to the scenario without vaccinations, rapid tests, or seasonality. In Supplemen-
tary Material B.12, we provide a detailed analysis of whether our results are robust
regarding the sensitivity parameters we assume for rapid tests. Even if we take a
pessimistic stance, the effect is only reduced from 42% to 38%.

So why is rapid testing so effective? In order to shed more light on this question,
Figure 3d decomposes the difference in the scenario without rapid tests and the
main specification into the three channels for rapid tests. Tests at schools have the
smallest effect, which is largely explained by schools not operating at full capacity
during our period of study and the relatively small number of students. (18% of our
population are in the education sector, e.g., pupils, teachers; 46% are workers out-
side the education sector.) Almost 40% come from tests at the workplace. Despite
the fact that rapid tests for private reasons are phased in only in mid-March, they
make up for more than half of the total effect. The reason lies in the fact that a sub-
stantial share of these tests is driven by an elevated probability to carry the virus,
i.e., showing symptoms of CoViD-19 or following up on a positive test of a household
member. The latter is essentially a form of contact tracing, which has been shown
to be very effective (Kretzschmar, Rozhnova, Bootsma, Boven, Wijgert, et al., 2020;
Contreras et al., 2021; Fetzer and Graeber, 2021). Indeed, a deeper analysis in Sup-
plementary Material B.15 shows that the same amount of rapid tests administered
randomly in the population would not have been nearly as effective.
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Figure 1.5.1. Effects of different scenarios for policies regarding schools and workplaces. Blue

lines in both figures refer to our baseline scenario; they are the same as in Figure 3b. Interven-

tions start at Easter because there were no capacity constraints for rapid tests afterwards. For

legibility reasons, all lines are rolling 7-day averages.

1.5 Discussion and Conclusions

Having quantified the effects of various mechanisms, we now simulate hypothetical
scenarios comparing changes in NPIs and testing regimes. Two of the most con-
tentious NPIs concern schools and mandates to work from home. In many countries,
schools switched to remote instruction during the first wave, so did Germany. After
the summer break, they were operating at full capacity with increased hygiene mea-
sures, before being closed again from mid-December onward. Some states started
opening them gradually in late February, but operation at normal capacity did not
resume until the beginning of June. Figure 4a shows the effects of different policies
regarding schools starting after Easter, at which point rapid tests had become widely
available. We estimate the realized scenario to have essentially the same effect as a
situation with closed schools. Under fully opened schools with mandatory tests, total
infections would have been 6% higher; this number rises to 20%without tests. These
effect sizes are broadly in line with empirical studies (e.g. Berger, Fritz, and Kauer-
mann (2021) and Vlachos, Hertegård, and B. Svaleryd (2021), see Supplementary
Material B.11 for a comparison). In light of the large negative effects school closures
have on children and parents (Luijten, Muilekom, Teela, Polderman, Terwee, et al.,
2021; Melegari, Giallonardo, Sacco, Marcucci, Orecchio, et al., 2021)—and in par-
ticular on those with low socio-economic status—these results in conjunction with
hindsight bias suggest that opening schools combined with a testing strategy would
have been beneficial. In other situations, and in particular when rapid tests are not
available at scale, trade-offs may well be different.

Figure 4b shows that with a large fraction of workers receiving tests, testing
at the workplace has larger effects than mandating employees to work from home.
Whether the share of workers working at the usual workplace is reduced or increased
by ten percent changes infection rates by 2.5% or less in either direction. Making
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testing mandatory twice a week—assuming independent compliance by employers
and workers of 95% each—would have reduced infections by 23%. Reducing rapid
tests offers by employers to the level of March would have increased infections by
13%.

Our analysis has shown that during the transition to high levels of vaccination
and possibly thereafter, large-scale rapid testing can substitute for some NPIs. This
comes at a fraction of the cost. A week of the fairly strict lockdown in early 2021
is estimated to have cost around 50 Euros per capita (Wollmershäuser, 2021); re-
tail prices for rapid tests were below one Euro in early June 2021 and below five
Euros for firms. While we do not distinguish between self-administered rapid tests
and point of care rapid tests, the former are likely to play a larger role for indication-
driven testing. Widespread availability at low prices seems important. However, they
rely on purely voluntary participation in a non-public setting. The benefit of point-
of-care rapid tests as a precondition to participate in leisure activities as well as
mandatory tests at the workplace or at school come from screening the entire popu-
lation. This is important because disadvantaged groups are less likely to be reached
by testing campaigns relying on voluntary participation (e.g. Stillman and Tonin
(2022)); at the same time, these groups have a higher risk to contract CoViD-19
(Robert Koch-Institut, 2021a). Mandatory tests at school and at the workplace will
extend more into these groups. The same goes for individuals who exhibit a low
level of compliance with CoViD-19-related regulations. Compared to vaccinations,
rapid testing programmes allow a much quicker roll-out, making it arguably the
most effective tool to contain the pandemic in the short run.

Appendix 1.A Materials and Methods

The model is described by a large number of parameters that govern the number
of contacts a person has, the reduction in contacts due to NPIs, the demand for
rapid tests and PCR tests, the likelihood of becoming infected on each contact, the
likelihood of developing light or strong symptoms or even dying from the disease as
well as the duration each stage of the disease takes.

1.A.1 Course of Disease

This section discusses the parameters governing the course of disease, their sources
and how we arrived at the distributions used in the paper. See Figure 1.2.1 for a
summary of our disease progression model.

The first stage of any disease is the infection. As detailed in Equation 1.B.1 the
infection probability depends on the contact type, the calendar date to determine
the seasonality, the age group of the susceptible person and the variant the infec-
tious person is carrying. The base infection probability of each contact type (βc) is
estimated inside our model (Section 1.A.9). How we model and calibrate the sea-
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sonality effect is detailed in Section 1.B.8. For the susceptibility of each age group
(ζa) we take the estimates of Davies, Klepac, et al. (2020) (Extended Data Fig. 4).
Lastly, we calibrate the infectiousness of the B.1.1.7 variant (σB.1.1.7) from Davies,
Abbott, Barnard, Jarvis, Kucharski, et al. (2021) to 1.67.

We denote the latent period—i.e., the time span between infection and the start
of infectiousness—by γinfectious. Zhao, Tang, Musa, Ma, Zhang, et al. (2021) estimate
the latent period to last 3.3 days (95% CI: 0.2, 7.9) on average. In line with this
estimate our latent period lasts one to five days.

Once individuals become infectious, a share of them goes on to develop symp-
toms while others remain asymptomatic. We rely on data by Davies, Klepac, et al.
(2020) for the age-dependent probability to develop symptoms. It varies from 25%
for children and young adults to nearly 70% for the elderly. Similar to Peak, Kahn,
Grad, Childs, Li, et al. (2020) and in line with He, Lau, Wu, Deng, Wang, et al.
(2020) we set the length of the presymptomatic stage of age group a, γsymptoms, a to
be one or two days. The probability to become symptomatic for age group a is split
equally between one and two days. This combined with our latency period leads
to an incubation period that is in line with the meta analysis by McAloon, Collins,
Hunt, Barber, Byrne, et al. (2020).

We assume that the duration of infectiousness (γstop infectious) is the same for both
symptomatic and asymptomatic individuals as evidence suggests little differences in
the transmission rates between symptomatic and asymptomatic patients (Yin and
Jin (2020)) and that the viral load between symptomatic and asymptomatic indi-
viduals are similar (Zou, Ruan, Huang, Liang, Huang, et al. (2020), Byrne, McEvoy,
Collins, Hunt, Casey, et al. (2020), Singanayagam, Patel, Charlett, Bernal, Saliba,
et al. (2020)). Our distribution of the duration of infectiousness is based on Byrne
et al. (2020). For symptomatic cases they arrive at zero to five days before symptom
onset (see their figure 2) and three to eight days of infectiousness afterwards.1 Ex-
cluding the most extreme combinations, we arrive at 3 to 11 days as the duration of
infectiousness.

We use the duration to recovery of mild and moderate cases reported by Bi, Wu,
Mei, Ye, Zou, et al. (2020, Figure S3, Panel 2) for the duration of symptoms for non-
ICU requiring symptomatic cases (γstop symptoms). We only disaggregate by age how
likely individuals are to require intensive care.

For the time from symptom onset until need for intensive care we rely on data
by Stokes, Zambrano, Anderson, Marder, Raz, et al. (2020)) and Hinch, Probert,
Nurtay, Kendall, Wymatt, et al. (2021) (γicu, a). For those who will require inten-
sive care we follow Chen, Qi, Liu, Ling, Qian, et al. (2020) who estimate the time
from symptom onset to ICU admission as 8.5± 4 days. This aligns well with num-

1. Viral loads may be detected much later but eight days seems to be the time after which most
people are culture negative, as also reported by Singanayagam et al. (2020).
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bers reported for the time from first symptoms to hospitalization: Gaythorpe, Imai,
Cuomo-Dannenburg, Baguelin, Bhatia, et al. (2020) report a mean of 5.76 with a
standard deviation of four. We assume that the time between symptom onset and
ICU takes four, six, eight or ten days with equal probabilities.

We take the survival probabilities and time to death and time until recovery
(γstop icu a and γdead, a) from intensive care from Hinch, Probert, Nurtay, Kendall,
Wymatt, et al. (2021). They report time until death to have a mean of 11.74 days
and a standard deviation of 8.79 days. To match this we discretize that 41% of in-
dividuals who will die from Covid-19 do so after one day in intensive care, 22% die
after twelve days, 29% after 20 days and 7% after 32 days. Again, we rescale this
for every age group among those that will not survive. For survivors Hinch, Probert,
Nurtay, Kendall, Wymatt, et al. (2021) reports a mean duration of 18.8 days until re-
covery and a standard deviation of 12.21 days. We discretize this such that of those
who recover in intensive care, 22% do so after one day, 30% after 15 days, 28% after
25 days and 18% after 45 days.

Individuals can become immune either through infection (γimmune) or vacci-
nation (γvacc, d). As reinfections are very rare (Abu-Raddad, Chemaitelly, Malek,
Ahmed, Mohamoud, et al., 2020), we set the immunity period to one year with
probability one, i.e. everyone that has been infected enjoys immunity for the rest of
the simulation period.

The second route to immunity is through vaccination. Germany has mostly re-
lied on the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S vac-
cines with smaller shares of the Moderna and Johnson&Johnson vaccines (impf-
dashboard.de, 2021). As Pritchard et al. (2021) and Harris, Hall, Zaidi, Andrews,
Dunbar, et al. (2021) find no difference in the effectiveness between the two most
common vaccines, we do not distinguish between vaccine types.

Immunity is binary in our model, i.e. individuals achieve either sterile immu-
nity or remain susceptible. Thus, we cannot simply use the reported effectiveness
but must also include the risk of asymptomatic and sub-clinical reinfection among
the vaccinated in our probability to become immune upon vaccination. This is im-
portant as there is ample evidence by now that vaccinated individuals can still get
infected with SARS-CoV-2 and transmit the disease (Harris, Hall, et al., 2021; Levine-
Tiefenbrun et al., 2021; Petter et al., 2021).

The reported effectiveness for BNT162b2 is estimated to be 90% 21 days after
the first shot (Hunter and Brainard, 2021). The effectiveness does not increase much
through the booster shot as Thompson, Burgess, Naleway, Tyner, Yoon, et al. (2021)
report 90% (95% CI = 68%–97%) effectiveness against PCR-confirmed infections
after two doses for mRNA vaccines in general. We therefore do not distinguish be-
tween the first and the booster shot.

On the other hand, Lipsitch and Kahn (2021) report a lower bound on transmis-
sion for the very similar Moderna vaccine of 61%.
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To strike a middle ground we assume that 75% of individuals achieve sterile
immunity after vaccination. This is split into 35% reaching immunity after 14 days
after the first shot and 40% reaching immunity after 21 days.

1.A.2 The Synthetic Population

We build a synthetic population based on the German microcensus (Forschungs-
datenzentren Der Statistischen Ämter Des Bundes Und Der Länder, 2018). We only
use private households, i.e. exclude living arrangements such as nursing homes as
non-private households vary widely in size and it is very difficult to know which
contacts take place in such living arrangements.

We sample households to build our synthetic population of over one million
households keeping for each of the 2.3 million individuals their age, gender, occu-
pation and whether they work on Saturdays and Sundays. For each household we
draw its county and set the corresponding federal state.

We randomly assign 35% of children below three to attend a nursery (Destatis,
2020). For children between three and six years old, we assume all go to preschool
(officially 92.5% according to Destatis (2020)). Children that attend a nursery meet
in groups of four (Bertelsmann Stiftung, 2019) plus one adult care taker every week-
day when there are no school vacations. Preschool children meet in groups of nine
(Bertelsmann Stiftung, 2019) with two adult care takers. These groups are mixed
with respect to age but all belong to the same state and mostly to the same county.

Every child that goes to school is part of a school class. Each school class meets
three times per weekday, each time with a different set of two teachers, unless there
are vacations or policies that suspend schools.2 Each class consists of approximately
23 students (OECD, 2013). All students in a class are of the same age and live in the
same state and mostly also in the same county. In addition, each child gets assigned
a value that captures his or her need to attend nursery, preschool or school. This
allows us to capture various degrees of emergency care that can be granted while
educational facilities are closed or are on some kind of rotating schedule.

Workers are assigned to a daily meeting work group. The group sizes vary to
match the number of daily repeating work contacts reported by working individu-
als in Mossong et al. (2008). These groups only consist of workers that work in the
same county. For a distribution of the number of daily recurring work contacts see
Figure 1.A.2e. To match the number of weekly work groups we match each worker
with up to 14 other workers into pairs to match the number of reported weekly work
contacts shown in Figure 1.A.2f. Each pair is assigned a weekday on which they al-
ways meet in the absence of work policies. 80% of these contacts are individuals
from the same county. In the same way children have an educational priority deter-
mining if they are entitled to emergency care workers are assigned a work contact

2. We implement vacations on the federal state level.
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priority that captures how necessary their work is and to which degree they can
work from home. This means that it’s always the same individuals that continue to
have work contacts when work from home mandates of a certain strictness are in
place.

In addition to creating groups for educational facilities and work we also have
other recurring contacts to represent things like groups of friends or sports teams
that practice regularly together. Both daily and weekly groups are created analo-
gously to the work groups but matching the numbers in Figure 1.A.2b and Fig-
ure 1.A.2c. In addition, since leisure contacts are highly assortative by age all in-
dividuals that have a daily leisure contact are matched with a person not only from
the same county but also from the same age group.

The individuals in our population can react to events such as developing symp-
toms that are typical of CoViD-19, a positive PCR test or a positive rapid test by
reducing their contacts. To determine who would reduce their contacts in such a
situation or demand a rapid test we introduce a quarantine compliance parameter.
Similarly, we introduce a rapid test compliance parameter that determines in which
order individuals start demanding rapid tests when rapid tests become increasingly
available. This makes sure that when for example only 10% of workers get tested,
it’s the same workers that have access to tests every week.

Lastly, for the distribution of vaccinations every individual is assigned a vaccina-
tion group and a vaccination rank from that group that creates a complete vaccina-
tion queue over the population including a share that refuses to be vaccinated (ξ)
which we calibrate to 15% (Robert Koch-Institut, 2021b). The vaccination groups
are created tomatch the recommendations by the Ständige Impfkommission (Vygen-
Bonnet, Koch, Bogdan, Harder, Heininger, et al., 2020).3 To cover that the Pfizer-
BioNTech vaccine was later approved for younger age groups we put adolescents
and children into two groups that follow after the general population. These groups
do not become eligible within our simulation frame until June. The way vaccinations
are rolled out in our model is shown in Figure 1.A.1.

3. We cover that teachers were prioritized more than recommended by the commission.
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Figure 1.A.1. Vaccination Rates by Age Group

Note: An individual’s vaccination priority depends on her work contact priority, her age group and a ran-

dom component to capture preconditions like diabetes. 15% of the population refuse to be vaccinated (ξ).

Adolescents would be vaccinated after the general population and children last. The figure clearly shows

that the first vaccinations go to some workers with very high work contact priority and to the 80 to 100

age group followed by the 60 to 79 year olds. Both groups are saturated with vaccinations by mid March

and start of May respectively. By June a third of the younger adults have received the vaccination but these

groups still remain far from herd immunity thresholds.

1.A.3 Number of Contacts

We calibrate the parameters for the predicted numbers of contacts from contact di-
aries of over 2000 individuals from Germany, Belgium, the Netherlands and Luxem-
bourg (Mossong et al., 2008). Each contact diary contains all contacts an individual
had throughout one day, including information on the other person (such as age and
gender) and information on the contact. Importantly, for each contact individuals
entered of which type the contact (school, leisure, work etc.) was and how frequent
the contact with the other person is. Binning the number of contacts for very high
numbers, we arrive at the distributions of the numbers of contacts by type of contact
(ηc) as shown in Figure 1.A.2.
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Figure 1.A.2. Number of Contacts of the Different Contact Types

Note: This figure shows the pre-pandemic number of contacts individuals report of different contact types

(η
c
). In the model it is sampled every day which of the numbers of non recurrent contacts a person is planned

to have. Note that the contact diaries include such high values that super spreading events are well possible

in our model through non recurrent models. For recurrent contacts individuals are put into groups that meet

either every day or on a particular week day every day. The upper row shows the distribution of the number

of other contacts individuals report (η
other

). Other contacts include all contacts that are not household

members, school contacts or work contacts, for example leisure contacts. We assume that individuals in

households with children or teachers or retired individuals have additional non recurrent other contacts

during school vacations to cover things like family visits or travel during vacations. The lower row shows the

distribution of the different types of work contacts (η
work

). Work contacts only take place between working

individuals.

An exception where we do not rely on the data by Mossong et al. (2008) are
the household contacts. Since households are included in the the German microcen-
sus (Forschungsdatenzentren Der Statistischen Ämter Des Bundes Und Der Länder,
2018) on which we build our synthetic population we simply assume for the house-
hold contacts that individuals meet all other household members every day. The
number of household contacts that happen every day is shown in Figure 1.A.3.
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Figure 1.A.3. Number of Household Contacts

Note: Every individual meets all other household members every day. The German microcensus sampled

full households such that our synthetic population automatically fits population characteristics such as

size and age distribution.

1.A.4 Assortativity

As explained in section 1.B.5, the probability that two individuals are matched can
depend on background characteristics. In particular, we allow this probability to
depend on age and county of residence (α). While we do not have good data on
geographical assortativity and set it such that 80% of contacts are within the same
county, we can calibrate the assortativity by age from Mossong et al. (2008).

Figure 1.A.4a shows that assortativity of the other contacts by age is especially
strong for children and adolescents. For older people, the pattern becomes more dis-
persed around their own age group, but within-age-group contacts are still the most
common contacts. Figure 1.A.4b shows that assortativity by age is also important
among work contacts.

For recurrent contacts, we constructed groups to have the following features:
Recurrent work contacts are not assortative by age. Daily work groups are always
of the same county and weekly work contacts are to 80% with workers from the
same county. Other recurrent contacts are constructed the same way but we impose
for daily contacts that they are always with individuals from the same age group.
School classes are groups where the same children of the mostly same age and
county meet with teachers every day. Nurseries and preschools mix children by age
but match them to come mostly from the same county. Household age composition
follows directly from the Germanmicrocensus data we use to construct our synthetic
population.
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Figure 1.A.4. Assortativity by Age Group for Non Recurrent Other and Work Contacts

Note: The figure shows the distribution of non recurrent contacts by age group for other contacts on the

left and work contacts on the right. A row shows the share of contacts a certain age group has with all other

age groups. Higher values are colored in darker red tones. The diagonal represents the share of contacts

with individuals from the same age group. The 80-100 age group for other contacts was so small that we

assumed for them to have the same contact distribution as the 70-79 year olds. For work contacts, we only

show age groups that have a significant fraction of working individuals.

1.A.5 Policies

Our policies (denoted by ρ) usually affect one of three contact types: education,
work and other contacts. Germany had no policies limiting contacts within house-
holds so there are no policies on them in our model.⁴

For nurseries, preschools and schools we implement vacations as announced
by the German federal states as well as school closures, emergency care and rotat-
ing schedules where only one half of students attends every other week or day. An
approximation of the share of contacts still taking place with the different school
regulations can be found in Figure 1.A.5a. Note that schooling policies differ be-
tween states and usually involve rules that depend on local incidences. We simplify
these rules to one federal policy from the federal incidence and the policies of the
three most populous federal states (North Rhine-Westphalia, Bavaria and Baden-
Württemberg). The testing policies for schools are described in Section 1.A.6.

Until November schools were open normally. Starting in November, we assume
that increased hygiene measures were taken. Schools stayed open until mid De-
cember. From mid December until January 10 schools closed and only offered so

4. Household contacts can, however, be reduced when individuals quarantine themselves after
developing symptoms, for example. This happens to a lesser degree than other contacts to capture
difficulties in isolation within the home.
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called “emergency care” for young children whose parents could credibly demon-
strate that both had to work and had no other child care arrangement. Approx-
imately 25% of primary school children and 5% of secondary students attended
school as a result. After January 10 when parents had returned to work the rules
for emergency care were relaxed and approximately a third of primary school chil-
dren and 10% of secondary students attended school as a result. In addition, grad-
uating classes (most adolescents between 16 and 18) were allowed to return to
school in a rotating scheme where each class was split in two groups. Relying on
anecdotal evidence we assume that the groups rotate on a daily basis.Starting on
February 22 primary school children were also allowed to return to school on a ro-
tating basis until mid March. We summarize the school policy from mid March un-
til Easter as all students being on a rotating school schedule. In addition, children
that qualify for emergency care also attend on days where their group is scheduled
to not attend school physically. After the Easter break schools were mostly closed
again. Part of this was a federal law, the so called “Bundesnotbremse” (Bundes-
gesetzblatt, 2021) that set rules for schools based on local incidences that were
binding at the time. As a result, most states adjusted their schooling policies and
during April most schools were closed with emergency care arrangements as in
the time from January 10 to February 21. As cases fell schools were allowed to
gradually open. We summarize this as students being on the same rotating sched-
ule as from mid March to Easter starting on May 1 (Bayerisches Staatsministerium
für Unterricht und Kultus, 2021; Landesregierung von Baden-Württemberg, 2021a;
Landesregierung von Baden-Württemberg, 2021b; Ministerium für Schule und Bil-
dung des Landes Nordrhein-Westfalen, 2021a; Ministerium für Schule und Bildung
des Landes Nordrhein-Westfalen, 2021b; Ministerium für Schule und Bildung des
Landes Nordrhein-Westfalen, 2021c; Ministerium für Schule und Bildung des Lan-
des Nordrhein-Westfalen, 2021d; Bayerisches Staatsministerium für Unterricht und
Kultus, no date; Landesregierung von Baden-Württemberg, no date).

The policies for preschools and nurseries are similar to the school policies but
simpler. Until November children attended completely normally, starting in Novem-
ber with increased hygiene measures. Nurseries and preschools stayed open until
mid December. From mid December until January 10, nurseries and preschools
were nearly completely closed. If parents could credibly demonstrate that both
parents work in systemically relevant professions and no other child care ar-
rangement was possible, nurseries and preschools offered so called “emergency
care”. We assume 10% of children qualified and used emergency care during this
time. After January 10 when parents had returned to work the rules for emer-
gency care were relaxed and we assume a third of children attended nursery and
preschool. This policy stayed in place until February 20. Afterwards, preschools
and nurseries were open normally (maintaining increased hygiene measures) un-
til mid March. Then during the third wave the restrictions February were put
back into place until end of April when nurseries and preschools opened again
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and stayed open for the rest of our simulation period - maintaining increased hy-
giene measures. (Bayerisches Staatsiministerium für Familie, Arbeit und Soziales,
2021a; Landesregierung von Baden-Württemberg, 2021c; Landesregierung von
Baden-Württemberg, 2021d; Bayerisches Staatsiministerium für Familie, Arbeit und
Soziales, 2021b; Landesregierung von Baden-Württemberg, no date; Ministerium
für Kinder, Familie, Flüchtlinge und Integration des Landes Nordrhein-Westfalen,
no date).

For work contacts we use the reductions in work mobility reported by the Google
Mobility Data (Google, LLC, 2021) to calibrate the reduction in physical work con-
tacts (ρw, attend, t). Reductions in work contacts are not random but governed through
a work contact priority where the policy changes the threshold below which workers
stay home. Figure 1.A.5b shows the share of workers that go to work over time at the
federal German level. We use the data on the state level to account for local holidays
and differences in state regulations. In addition, for both work and school contacts
we assume that hygiene measures (such as masks, ventilation and hand washing) be-
came more strict and more conscientiously observed in November 2020, leading to a
reduction of 33% in the number of contacts with the potential to transmit Covid-19
(ρhygiene).
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Figure 1.A.5. The Contact Reduction Effects of School and Work Attendance Policies

Note: The left figure shows the approximate share of school contacts taking place with and without vaca-

tions factored in. In contrast to other policies, school policies are not implemented via multipliers but as

mechanistic models (e.g. split class approaches in with emergency care). For the above plot we assigned

approximate multipliers to those policies. The figure is, thus, only an illustration that shows the approxi-

mate share of contacts taking place compared to the pre-pandemic level with and without vacations. The

right figure shows the work mobility as reported by Google, LLC (2021). We take this as a proxy of the share

of workers who still have physical work contacts (ρ
w, attend, t

). The figure interpolates over weekends as we

handle weekend effects through information on work on weekends in the German census data we use. The

figure shows the share for Germany as a whole. To capture the effect that local policies, school vacations,

etc. have on work contacts we use the data on the state level to determine which workers go to work de-

pending on the state they live in.
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Lastly, for the other contacts category (ρother, t) we could not calibrate the poli-
cies from data but estimated the policy effects. The estimation and values are de-
tailed in Section 1.A.9 and Figure 1.A.10.

1.A.6 Rapid Test Demand

In our model, there are five reasons why rapid tests are done:

1. someone plans to have work contacts
2. someone is an employee or student of an educational facility
3. a household member has tested positive or developed symptoms
4. someone has developed symptoms but has not received a PCR test
5. someone plans to participate in a weekly non-work meeting

For work contacts, we know from the COSMO study (Betsch, Korn, Felgendreff,
Eitze, Schmid, et al. (2021), 20th/21st of April) that 60% of workers who receive a
test offer by their employer regularly use it (πw, d). We assume this share to be time
constant.

In addition, there are some surveys that allow us to trace the expansion of em-
ployers who offer tests to their employees (πw, s, t). Mid march, 20% of employ-
ers offered tests to their employees (Deutscher Industrie- und Handelskammertag,
2021). In the second half of March, 23% of employees reported being offered weekly
rapid tests by their employer (Ahlers, Lübker, and Jung, 2021). This share increased
to 61% until the first days of April (Bonin, Krause-Pilatus, and Rinne, 2021; Bun-
desministerium für Wirtschaft und Energie, 2021). Until mid April 72% of workers
were expected to receive a weekly test offer (Bonin, Krause-Pilatus, and Rinne, 2021;
Bundesministerium für Wirtschaft und Energie, 2021). However, according to sur-
veys conducted in mid April (Betsch, Korn, Felgendreff, Eitze, Schmid, Sprengholz,
Wieler, Schmich, Stollorz, Ramharter, Bosnjak, Omer, Thaiss, De Bock, and Von Rü-
den, 2021), less than two thirds of individuals with work contacts receive a test offer.
Starting on April 19th employers were required by law to provide two weekly tests
to their employees (Bundesanzeiger, 2021b). We assume that compliance is incom-
plete and only 80% of employers actually offer tests. We interpolate between these
points linearly, arriving at the blue line in Figure 1.A.6. In addition, we increase the
frequency of testing (θt, work) from weekly to twice weekly during April.

We assume that employees in educational facilities start getting tested in 2021
and that by March 1st 30% of them (πteacher, t) are tested weekly (θbefore Easter, educ =
7). The share increases to 90% for the week before Easter. At that time both
Bavaria (Bayerisches Staatsministerium für Gesundheit und Pflege, 2021) and
Baden-Württemberg (Ministerium für Kultus, Jugend und Sport Baden Württem-
berg, 2021) were offering tests to teachers and North-Rhine Westphalia (Minis-
terium für Schule und Bildung des Landes Nordrhein-Westfalen, 2021f) and Lower
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Saxony (Niedersächsisches Kultusministerium, 2021) were already testing students
and tests for students and teachers were already mandatory in Saxony (Sächsisches
Staatsministerium für Kultus, 2021). After Easter we assume that 95% of teachers
get tested twice per week (θafter Easter, educ = 3).

Tests for students started later (Ministerium für Kultus, Jugend und Sport Baden
Württemberg, 2021; Ministerium für Schule und Bildung des Landes Nordrhein-
Westfalen, 2021f) so we assume that they only start in February and only 10% of
students get tested by March 1st (πstudents, t). Relying on the same sources as above
we approximate that by the week before Easter this share had increased to 40%
(Ministerium für Schule und Bildung des Landes Nordrhein-Westfalen, 2021f). Af-
ter Easter the share of students receiving twice weekly tests is set to 75%. This is
based on tests becomingmandatory in Bavaria (Bayerische Staatskanzlei, 2021) and
North Rhine-Westphalia (Ministerium für Schule und Bildung des Landes Nordrhein-
Westfalen, 2021e) after their Easter breaks and on the 19th in Baden-Württemberg
(Ministerium für Kultus, Jugend und Sport Baden-Württemberg, 2021), after which
we assume twice weekly rapid tests to be mandatory for all students in Germany.
Again, we interpolate linearly between these points and arrive at the purple line for
teachers and the red line for school students in Figure 1.A.6.

To limit our degrees of freedom, we only have one parameter that governs how
many individuals do a rapid test because of any of the private demand reasons
(πprivate, t).⁵ We assume that there is no private rapid test demand until March when
both the citizens’ tests and rapid tests for lay people started to become available
(Bundesanzeiger, 2021a; Presse- und Informationsamt der Bundesregierung, 2021)
and other access to rapid tests was very limited.

According to the COSMO study (Betsch, Korn, Felgendreff, Eitze, Schmid, et al.,
2021) 63% would have been willing to take a test in the round of 23rd of February
2021 when an acquaintance would have tested positive. Since this is only asking
for willingness not actual behavior, we take this as the upper bound of private rapid
test demand which we estimate in our model to be reached in the beginning of May.
To cover that many people are likely to have sought and done their first rapid test
before the Easter holidays we add another point that we estimate for the rapid test
demand around Easter. Similarly, we estimate one point in mid March when tests
started to become available in grocery stores and pharmacies which we estimate in
our model. The resulting share of private rapid test demand is shown as the green
line in Figure 1.A.6 (also see Section 1.A.9 for details on the estimation).

5. The reasons that can lead to an individual doing a rapid test for private reasons are own
symptoms but no PCR test, planned weekly leisure meeting or a symptomatic or positively tested
household member
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Figure 1.A.6. Share of Individuals Doing a Rapid Test.

Note: Rapid test demand can be triggered by individuals planning to have education contacts (πteacher, t

or πstudents, t), work contacts (πw, d and πw, s, t), developing symptoms without access to a PCR test, having a

household member with a positive test or symptoms (πprivate, t). In each case whether a rapid test is done

depends on how long it has been since the individual’s last rapid test and her individual compliance pa-

rameter. As an example, take a worker in May. In that time workers are encouraged to test themselves twice

weekly (or every three days, i.e. θMay, work = 3) but there is no general requirement to test themselves. If

the worker has not done a test within the last four days in our model she will demand a test if her (time-

constant) compliance parameter belongs to the upper 60% in the population.
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1.A.7 Share of Detected Cases

One important feature of our model is that we distinguish between undetected and
detected cases and that we model which cases are detected and which are not (see
Section 1.B.7 for a detailed description for how we model both rapid and PCR tests).
For our model it is important to have an estimate for the share of cases that is de-
tected in the absence of rapid tests (ψt). For this we rely on the Paul, Steinberg,
Schaller, Haemmerl, Thum, et al. (Dunkelzifferradar Project 2020) which uses esti-
mates of the case fatality rate to estimate the number of total cases given the number
of CoViD-19 deaths which are assumed to be perfectly observable. For 2020, we fol-
low the reported share of detected cases quite closely. One exception is the phase of
November 2020 where we interpolate to maintain monotonicity during the fall as
there was no reason why the share of detected cases should have risen in that time⁶

Since vaccinations started after Christmas 2020 and these were predominantly
given to nursing homes in the beginning and other vulnerable groups in spring, we
expect the relationship between deaths and the number of total infections to change
rapidly in 2021. This is why we stop using the share of detected cases estimated by
the Dunkelzifferradar after Christmas. Instead, we assume that the share of detected
cases would have stayed the same in the absence of rapid tests. Thus, we also achieve
in our model an increase in the share of detected cases but this is driven from inside
our model through increased rapid testing which lead follow-up PCR tests when
they are positive (see Section 1.B.13 and 1.B.7).

Lastly, we model reductions in the share of detected cases due to the two major
holidays in our simulation period, Christmas and Easter. During both holidays many
laboratories did not process tests and most physicians’ offices were closed, leading to
less PCR tests and short and large drops in the share of known cases. The resulting
share of detected cases in the absence of rapid tests is shown in Figure 1.A.7 and
was estimated to fit the data.

6. The testing policy changed in November (Robert Koch Institute, 2020). However, this only
moved the rare PCR tests more towards vulnerable groups.
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Figure 1.A.7. Share of Detected Cases in the Absence of Rapid Tests

Note: The figure shows the share of cases that is reported as an official case via PCR confirmation. We

use the overall share of known cases that was estimated through the case fatality ratio by the Paul et al.

(Dunkelzifferradar Project 2020) for all of 2020 and then assume it to be constant as vaccinations of the

elderly strongly affect the case fatality rate which the project does not account for. Starting in 2021 in

addition to the overall numbers of detected cases through symptoms and a random component, cases are

also detected through confirmation of positive rapid tests which happens endogenously inside the model.

For the public holidays of Christmas and Easter we lower the share of detected cases as fewer PCR tests

are available during public holidays. See Figure 1.B.11 for how the share of detected cases develops in our

model for each age group

1.A.8 PCR Testing and Behavioral Response

This section describes the remaining parameters for our testing model. Refer to Sec-
tion 1.B.7 for a description of the full testing model.

From the share of detected cases and the number of infections we arrive at the
number of positive PCR tests in our model. A share of these positive tests goes to
symptomatic individuals (χsymptom, t). This share is calibrated from German data on
case characteristics (Robert Koch Instititue, 2021) and shown in Figure 1.A.8. We
keep χsymptom, t constant after Christmas because the RKI data does not include if a
PCR test was done to confirm a positive rapid test and this share is used for PCR test
demand without prior rapid test indication.

PCR tests take one to four days until their result is revealed to the individual
(γPCR, d). Relying on the ARS data (Robert Koch-Institut, 2020) we calculate that
33% of individuals receive the test result after one day, 50% after two days, 10%
after three days and 7% after four days.
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Figure 1.A.8. Share of Positive PCR Tests Administered to Symptomatic Individuals

Note: The share of positive PCR tests that are administered to symptomatic individuals (χ
symptom, t

). Since it

was not recorded for every case if the person was symptomatic or not we take the midpoint between the

upper and lower bound. We keep the share constant after Christmas because the RKI data does not include

if a PCR test was done to confirm a positive rapid test and this share is used for PCR test demand without

prior rapid test indication.

To model the demand for PCR tests through rapid tests, we only need the share
of individuals that seek a PCR test to confirm a positive rapid test result (χconfirmation).
We calibrate this from Betsch, Korn, Felgendreff, Eitze, Schmid, Sprengholz, Wieler,
Schmich, Stollorz, Ramharter, Bosnjak, Omer, Thaiss, De Bock, and Von Rüden
(2021) who asked this as a hypothetical question in March of 2021. There 82%
of Germans reported that they would follow up on a positive rapid test with a PCR
test.

Lastly, we need to set the parameters that decide how individuals reduce their
contacts after certain events, τ. We distinguish between the reduction in household
contacts (which are harder to avoid) and non household contacts. There are three
events which trigger potential contact reductions: showing symptoms of CoViD-19,
having received a positive rapid test and having received a positive PCR test. The
only survey data we are aware of on this is Betsch, Korn, Felgendreff, Eitze, Schmid,
Sprengholz, Wieler, Schmich, Stollorz, Ramharter, Bosnjak, Omer, Thaiss, De Bock,
and Von Rüden (2021) where 85% of individuals claimed they would isolate and
restrict their contatcs after a positive rapid test. We assume this reduction for non
household contacts. As household contacts are much more difficult to avoid, we
assume that they are only reduced by 30%. We assume the same behavior for indi-
viduals that develop symptoms. Lastly, we assume the response to a positive PCR test
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to be stronger than in the other two cases and set the reduction of non household
contacts to 95% and the reduction of household contacts to 50%.

1.A.9 Estimated Parameters

We estimate parameters that cannot be calibrated outside of the model with the
method of simulated moments (McFadden, 1989) by minimizing the distance be-
tween simulated and observed infection rates (disaggregated by region and age
groups) and fatality rates. Since our model includes a lot of randomness, we aver-
age simulated infection rates over several model runs.

All estimated parameters are described in Table 1.A.1.
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Table 1.A.1. Estimated Parameters

notation estimate note

Infection Probabili-

ties

βhousehold 0.1 base probability of getting infected by an infectious household member

βschool 0.012 base probability of getting infected by an infectious classmate or teacher

βyoung educ 0.005 base probability of getting infected by an infectious classmate or teacher

βwork 0.1475 base infection probability for work contacts

βother 0.15875 base infection probability for other contacts

Policy Parameters

ρhygiene 0.66 reduces infectiousness of work and education contacts from November to end of simulation

ρother, before Oct 1 0.75 before October

ρother, Oct 1 to Oct 20 1.00 high activity due to reopenings and fall vacations

ρother, Oct 21 to Nov 1 0.75 anticipation of a lockdown and precaution due to high incidenes

ρother, Nov 2 to Dec 1 0.52 “lockdown light”

ρother, Dec 2 to Dec 23 0.57 “lockdown light” with lockdown fatigue and holiday shopping

ρother, Dec 24 to Dec 26 0.65 Christmas holidays

ρother, Dec 27 to Feb 10 0.35 hard lockdown after Christmas

ρother, Feb 11 to Feb 28 0.50 lower precaution due to low incidences and lockdown fatigue

ρother, after Feb 28 0.515 many contact reducing policies are lifted

B.1.1.7 Introduction

ωB.1.1.7, Jan 31 0.986 number of B.1.1.7 cases per 100 000 individuals to import on January 31st. Imported B.1.1.7 cases gradually

rise from January 1st where 0 cases are imported. No cases are imported in other months.

Rapid Test Introduc-

tion

πprivate,t Figure 1.A.6 the private rapid tests levels in mid March and at Easter as well as the date at which full availability of private

rapid tests is reached are fit to the data. Values between those levels are interpolated linearly. The remaining

rapid tests demands are calibrated from surveys. See Section 1.A.6
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We fit our model to data for Germany frommid September 2020 until June 2021.
We do not use earlier periods for three reasons. Firstly, in the beginning PCR tests
were very scarce and the reported case numbers unreliable. Secondly, during the
summer the case numbers were extremely low. This could lead to the epidemic going
extinct in our simulation. Thirdly, over the summer, imported cases from touristic
travel were likely important for the infection dynamic but there is not enough data
to include them into our model.

To avoid over-fitting and simplify the numerical optimization problem, we only
allow for five different infection probabilities: 1) for contacts in schools 2) for con-
tacts in preschools and nurseries. 3) for work contacts. 4) for households. 5) for
other contacts.

Since the infectiousness of a contact between an infectious and a susceptible
person depends on many things, the numerical values of the infection probabilities
in Table 1.A.1 only reflect a base probability. This base probability is modified by a
seasonality factor, an age specific susceptiblity factor and an infectiousness factor
that depends on the virus strand of the infected person. The base infection proba-
bility is only equal to the actual infection probability when all of those factors are
1. This would be the case for a contact between an 80+ year old susceptible person
with a person who is infected with the B.1.1.7 strand of the virus on January first.

It is not possible to rank different types of contacts according to their infectious-
ness just from the numerical values of the infection probabilities. There are two
reasons for this: Firstly, for computational reasons the seasonality factor is normal-
ized such that it reaches 1 at its peak. It has thus a lower average for contact types
with strong seasonality (e.g. other contacts) than for contact types with weak sea-
sonality (e.g. work contacts). Secondly, for household and school contacts we do
not have data on whether people actually have physical contact. Thus the infection
probabilities for those contact types are actually the product of the probability to
actually have physical contact on a given day and the infection probability of that
contact.

In order to get a feeling for the infectiousness of each contact type it is more
intuitive to look at how many infections were actually caused by each contact type.
This is depicted in Figure 1.A.9. We can see that work and other contacts are the
main drivers of the pandemic, followed by infections in households. Schools and
preschools contribute fewer infections which is to be expected given that there are
much fewer students than working adults in the German population. Nevertheless,
Figure 1.B.16 shows that schools do have a notable effect on the infection dynamic
in the long run.

We also estimate a parameter that reflects the effect of hygiene measures at
work and in educational facilities. This parameter becomes active in November 2020
when stricter mask mandates and distancing rules were introduced. It is estimated
to reduce infectiousness of contacts by one third.
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Figure 1.A.9. Daily share of infections by contact type

Note: Daily share of infections that were contributed by each contact type. Darker colors mean that a larger

share of infections were contributed by that contact type. The majority of infections take place in the work-

place, in households and via other contacts. Schools and preschools contribute less infections, especially

after hygiene measures have been introduced.
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Figure 1.A.10. Share of Pre-Pandemic Other Contacts Taking Place with Infection Potential

Note: Values of the other multiplier. All values are estimated via the method of simulated moments. The

rationale behind each switching point is described in Table 1.A.1

Moreover, we estimate nine different multipliers that reflect how strongly other
contacts are reduced over time. The dates at which we switch between the mul-
tipliers usually coincide with policy changes and is not determined from the case
numbers. The only exception to this are slight adjustments to parameters to incor-
porate lockdown fatigue (towards the end of a lockdown period) or precautionary
contact reductions (in times of high incidences right before a lockdown is enacted).
The estimated other multipliers are also depicted in Figure 1.A.10.

While we estimate nine different values for the other contact multiplier, they
are not estimated completely freely. In particular we ensure that the ordering of
the parameter values is consistent with the stringency of policies. For example, the
strongest contact reduction was estimated for January 2021 during where very strict
measures and curfews were in place, whereas the weakest contact reduction was in
October 2020 where policies were very lenient.

Since we do not have good data on the reduction of other contacts, it is not possi-
ble to separately estimate parameters for contact reduction and the effect of hygiene
measures. The reported other multipliers in Table 1.A.1 are thus a combination of
contact reduction and hygiene measures.

Finally we estimate one parameter that governs the introduction of the B.1.1.7
virus variant in January 2021. This parameter implies that at the end of January
roughly one case per 100 000 individuals per day is imported. After January we do
not model imported cases of B.1.1.7 anymore because they are negligible compared
to the endogenous growth of that virus variant.
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While a formal identification argument is beyond the scope of this paper, be-
low we give a rough intuition which features of the data help us to estimate each
parameter.

The different infection probabilities can be separately identified because the de-
gree to which each contact type is active varies over time (e.g. school closures, va-
cations and different work from home policies) and they affect different subgroups
of the population differently (e.g. βschool most strongly affects kids whereas βwork

has the strongest effect on adults in working age and βother affects all age groups
equally). The hygiene and other multipliers can be identified because they are only
active in certain time periods. However, it is necessary to normalize one other multi-
plier to 1 because there is no period without any contact reduction in our data. The
introduction parameter for the B.1.1.7 mutation can be identified from the share of
that virus strand in the population. The rapid test demand parameters are identified
because rapid tests first lead to a very steep increase in observed cases and then to
a sudden decrease – in a time where almost all other things in the model would not
cause a change in trend.

1.A.10 Shapley Values

We decompose the effects of different NPIs and seasonality on the infection rates
with Shapley values. Shapley values (Shapley, 2016) are a concept in game theory
to divide payoffs between a coalition of players. It allows to assign a single value
to the contribution of an NPI or seasonality which takes into account substitutional
and complementary effects with other factors.

More formally, define a coalitional game with N players and a super-additive
function νwhich maps subsets of N to the real numbers. The function ν is also called
the characteristic function and assigns a value to a coalition. Then, the Shapley value
φ for player i is

φi(ν) =
1
|N|!

∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!(ν(S ∪ {i}) − ν(S))

The last term (ν(S∪ {i})− ν(S)) is the marginal contribution of player i minus
the coalition without player i. Then, compute the sum of marginal contributions
over all subsets S of N which do not include player i. Each marginal contribution
has to be multiplied by all combinations of other players in S which precede i and
all possible combinations of remaining players which follow player i in the coalition.
To arrive at the Shapley value for player i, divide the sum by the total number of
combinations.

The Shapley value has some properties.

Efficiency The sum of Shapley values is equal to the value of a coalition formed by
all players.
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Symmetry The Shapley does not depend on the label of a player but only on its
position in the characteristic function.

Linearity The Shapley value depends linearly on the values from the characteristic
function ν.

Dummy Axiom The Shapley value of a player who contributes nothing to any coali-
tion is 0.

To produce panels c and b of Figure 1.4.1 we calculate the Shapley values of each
factor in the comparison on the cumulative number of saved infections between the
main scenario and the scenario without any of the factors for every day. Then, we
divide up the saved infections on a particular day according to the Shapley values
for the same day which yields the daily saved infections for each factor.
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1.A.11 Overview Model Parameters

Table 1.A.2. Contacts, Matching and Policies

name notation time active source description

n_contacts ηc, n always Mossong et al.

(2008)

probability to have n contacts in contact type c. For non recur-

rent contacts the number of contacts is drawn for each individual

every day. For recurrent contacts individuals are assigned group

identifiers that determine the groups in which they meet either

daily or weekly. The number of groups individuals belong to are

calibrated to arrive at the number of recurrent contacts reported

in Mossong et al. (2008). See Section 1.A.3.

degree_of_assortativity αc, ai , aj , countyi , countyj
always Mossong et al.

(2008)

probability in contact type c that an individual of age group

ai and county countyi meets an individual of age group aj and

county countyj. Contacts can be assortative by age group, state

and county. The degree of assortativity depends on the contact

type c. See Section 1.A.4 for details.

work_attend_multiplier ρw, attend, t always Google, LLC

(2021)

share of workers that continue to have work contacts, i.e. do not

work from home on date t. We use the reduction in work mobility

reported by Google, LLC (2021) as a proxy for the share of workers

that work from home. See Section 1.A.5 for details.

hygiene_multiplier ρhygiene since Novem-

ber 2020

estimated reduction in transmission during work and educational contacts

due to stricter hygiene measures such as wearing face masks. See

Section 1.A.9.

other_multiplier ρother, t always estimated reduction in the transmission during other contacts, such as

leisure. This incorporates both hygiene measures as well as the

reduction of physical meetings. There are nine breakpoints for the

whole estimation period. See Section 1.A.9 for details.
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Table 1.A.3. Infection Probabilities and Virus Variants

name notation time active source description

infection_prob βc always estimated Base infection probability of contact type c. For each contact, this

base probability is further adjusted by the seasonality, suscepti-

bility of the contact and the virus strain. See Section 1.A.9 for de-

tails.

susceptibility ζa always Davies,

Klepac, et al.

(2020)

Susceptibility to Covid-19 depends on a person’s age group. The

higher the age the more easily people become infected. The sus-

ceptibility of the oldest age group is normalized to one.

seasonality κc always Gavenčiak

et al. (2021)

The probability to contract Covid-19 when exposed depends on

the seasonality. Since different contact types are more or less

subject to seasonal variation (e.g. by moving contacts outdoors)

the seasonality also depends on the contact type. Refer to Sec-

tion 1.B.8 for an explanation.

variant_infectiousness σv always Davies, Ab-

bott, et al.

(2021)

Variant v’s infectiousness relative to the wild type.

variant_introduction ωv,t time depen-

dent

estimated Number of infections per 100,000 individuals of variant v to be

introduced on day t. See Section 1.A.9 for details.
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Table 1.A.4. Disease and Vaccination Model

name notation time active source description

p_duration_immune γimmune, d always see Sec-

tion 1.A.1

probability to stay immune for d days after having contracted

CoViD-19

p_duration_until_infectious γinfectious, d always see Sec-

tion 1.A.1

probability to become infectious d days after infection

p_duration_of_infectiousness γstop infectious, d always see Sec-

tion 1.A.1

probability that infectiousness lasts d days

p_duration_until_symptoms γsymptoms, a, d always see Sec-

tion 1.A.1

probability for individuals of age group a to develop symptoms d

days (possibly infinite) after becoming infectious

p_duration_of_symptoms γstop symptoms, d always see Sec-

tion 1.A.1

probability for individuals of age group a that symptoms last d

days

p_duration_until_icu γicu, a, d always see Sec-

tion 1.A.1

probability for symptomatic individuals of age group a to require

intensive care d days (possibly infinite) after symptom onset

p_duration_of_icu γstop icu, a, d always see Sec-

tion 1.A.1

probability to recover after d days from requiring intensive care

p_duration_until_death γdead, a, d always see Sec-

tion 1.A.1

probability for individuals of age group a in intensive care to die

after d days (possibly infinite)

p_until_immune_by_vaccine γvacc, d 2021 see Sec-

tion 1.A.1

probability to develop immunity d days (possibly infinite) after

being vaccinated

share_vaccine_refusers ξ always Frisch (2021) share of individuals refusing to be vaccinated. See Section 1.A.2
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Table 1.A.5. Rapid Testing

name notation time active source description

rapid_test_specificity pnegative|not infected 2021 Brümmer et al.

(2021)

the probability of an uninfected person to receive a negative rapid

test result. See Section 1.B.7.

rapid_test_sensitivity ppositive|infected, i, t 2021 see 1.B.7 the probability of an infected person to receive a positive rapid

test result. This depends on the timing of the test relative to the

individual’s onset of infectiousness. See Section 1.B.7.

share_accepting_work_rapid_test_

offer

πw, d 2021 Betsch, Korn,

Felgendreff,

Eitze, Schmid,

Sprengholz,

Wieler,

Schmich,

Stollorz,

Ramharter,

Bosnjak,

Omer, Thaiss,

De Bock, and

Von Rüden

(2021)

share of workers that regularly pick up rapid test offers by their

employers when they do not work from home. In our baseline

specification this is time constant. See Section 1.A.6.

share_workers_receiving_rapid_

test_offer

πw, s, t 2021 see 1.A.6 share of workers that get a regular rapid test offer by their em-

ployer when they do not work from home on date t.

share_educ_workers_with_rapid_

test

πteacher, t 2021 see 1.A.6 share of educational workers who test themselves as part of their

work on date t

share_students_with_rapid_testπstudents, t 2021 see 1.A.6 share of school pupils that do rapid tests at school on date t.

share_private_rapid_test_demandπprivate, t 2021 see 1.A.6 share of individuals that do a rapid test when any of the private

reason events such as a household member testing positive occur

on date t.

rapid_test_educ_freq θt, educ 2021 see 1.A.6 Frequency with which individuals test themselves in educational

settings at time t. See Section 1.A.6.

rapid_test_work_freq θt, work 2021 see 1.A.6 Frequency with which complying workers test themselves at time

t. See Section 1.A.6.
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Table 1.A.6. PCR Testing, Case Detection and Behavioral Response

name notation time active source description

p_duration_until_test_result γPCR, d always Robert Koch-

Institut (2020)

probability that it takes d days between the performance of a PCR

test and receiving the result. See Section 1.A.8.

share_of_tests_for_symptomaticsχsymptom, t always calibrated

from RKI

share of positive PCR tests that are performed on individuals be-

cause of Covid-19 symptoms. See Section 1.A.8.

share_w_positive_rapid_test_

requesting_pcr

χconfirmation 2021 Betsch, Korn,

Felgendreff,

Eitze, Schmid,

Sprengholz,

Wieler,

Schmich,

Stollorz,

Ramharter,

Bosnjak,

Omer, Thaiss,

De Bock, and

Von Rüden

(2021)

share of individuals with positive rapid test that seek a PCR test.

See Section 1.A.8.

share_known_cases_without_

rapid_tests

ψt always Paul et al.

(2020)

share of cases that would be detected in the absence of rapid

tests (see Section 1.B.7)

symptomatic_multiplier τsymptoms, c always see 1.A.8 share of symptomatic individuals that still have contacts of type

c.

positive_pcr_multiplier τpositive PCR, c always see 1.A.8 share of individuals with a positive PCR test that still have con-

tacts of type c.

positive_rapid_test_multiplier τpositive rapid test, c 2021 Betsch, Korn,

Felgendreff,

Eitze, Schmid,

Sprengholz,

Wieler,

Schmich,

Stollorz,

Ramharter,

Bosnjak,

Omer, Thaiss,

De Bock, and

Von Rüden

(2021)

share of individuals with a recent positive rapid test that still have

contacts of type c. See Section 1.A.8
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1.A.12 Reproducibility

The source code used for this paper is open source and available under the MIT
License. It is split into two parts

• The source code for the model can be found at https://github.com/covid-19-
impact-lab/sid/ and its documentation at https://sid-dev.readthedocs.io.

• The source code for the application to Germany can be found at
https://github.com/covid-19-impact-lab/sid-germany/ with a shorter docu-
mentation at https://sid-germany.readthedocs.io.

We are grateful to the authors and contributors of the following software pack-
ages upon which our software is built: conda Anaconda (2016), conda-forge conda-
forge community (2015) dask Rocklin (2015), estimagic Gabler (2020), holoviews
Stevens, Rudiger, and Bednar (2015), matplotlib Hunter (2007), numba Lam,
Pitrou, and Seibert (2015), numpy Harris, Millman, Walt, Gommers, Virtanen, et al.
(2020), pandasMcKinney (2010) and The pandas development team (2020), pytask
Raabe (2020), Python Van Rossum and Drake Jr (1995), scipy Virtanen, Gommers,
Oliphant, Haberland, Reddy, et al. (2020), and seaborn Waskom (2021).

Appendix 1.B Supplementary Text

1.B.1 Literature Review

A commonly used model class in epidemiology are agent-based simulation models.
In a prototypical agent-based simulation model, individuals are simulated as moving
particles. Infections take place when two particles come closer than a certain contact
radius (e.g. Silva, Batista, Lima, Alves, Guimarães, et al. (2020) and Cuevas (2020)).
While the simulation approach makes it easy to incorporate heterogeneity in disease
progression, it is hard to incorporate heterogeneity in meeting patterns. Moreover,
policies are modeled as changes in the contact radius or momentum equation of the
particles. The translation from real policies to corresponding model parameters is a
hard task.

These shortcomings have motivated variations of agent-based simulation mod-
els where moving particles have been replaced by contact networks for households,
work and random contacts. The OpenABM-Covid-19 model by Hinch, Probert, Nur-
tay, Kendall, Wymant, et al. (2021) and the model by Aleta et al. (2020) are the
closest in spirit to ours.

The OpenABM-Covid-19 model by Hinch, Probert, Nurtay, Kendall, Wymant,
et al. (2021) also uses detailed contact networks for workplaces, schools and house-
holds and can evaluate the effect of several NPIs. The main focus of their application
are contact tracing policies (Abueg, Hinch, Wu, Liu, Probert, et al., 2021). Recently
they have also added support for multiple virus strains and vaccinations.

https://github.com/covid-19-impact-lab/sid/
https://github.com/covid-19-impact-lab/sid/
https://sid-dev.readthedocs.io
https://github.com/covid-19-impact-lab/sid-germany/
https://sid-germany.readthedocs.io
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Aleta et al. (2020) develop an agent-based simulation model with a very high
geographical resolution by estimating contact networks from fine grained mobility
data for the Boston metropolitan area. They use this model to show how NPIs, con-
tact tracing and PCR testing can influence the infection dynamics. However, they do
not calibrate their model to match actual infection numbers which makes it more
suitable to explore the general mechanics of different disease mitigation measures
than for their quantitative evaluation.

Bicher, Rippinger, Urach, Brunmeir, Siebert, et al. (2021) simulate the entire
Austrian population. They use data from the first wave (February 21 to April 9, 2020)
to calibrate their model and predict the effect of different NPIs and contact tracing
policies until November 2020. They use the same data provided by Mossong et al.
(2008) as we to calibrate contact networks for households, workplaces and schools.
The model focuses on analyzing the effect of different contact tracing strategies and
not on modelling enacted Austrian policies over a long period of time.

Moreover, there are several working papers that develop agent-based simulation
models with contact networks in conjunction with economic models. Examples are
Basurto, Dawid, Harting, Hepp, and Kohlweyer (2020), Delli Gatti and Reissl (2020)
and Mellacher (2020).

Our model combines elements from the above models and adds several others.
To the best of our knowledge, our model is the only one with the following features:

1. The free model parameters have been estimated with the method of simulated
moments (McFadden, 1989). Despite having few free parameters our model does
an excellent job in explaining observed case numbers and the spread of the B.1.1.7
mutation over more than nine months of data.

2. We have an extremely fine grained representation of schools and preschools.
We can thus easily model all schooling policies that have been implemented in Ger-
many in the past nine months. This includes complete school closures, phases where
only those students whose parents could not find any private childcare arrangement
could attend, split class approaches for some or all age groups and combinations
thereof. Moreover, we can account for additional hygiene measures whose effect is
estimated inside the model.

3. We model the evolution of the pandemic and all enacted policies since the
start of the second wave. Since the vast majority of cases has occurred in that time
period and we also model unobserved infections our simulations take into account
that many people are already immune because they have recovered from an infection
and that this immunity is not spread randomly across the population.

4. We have an extremely detailed model of PCR and rapid tests with a share of
detected cases that varies over time and across age groups.

5. Our model is designed to combine information from many different data
sources. Examples are surveys on rapid test demand (Betsch, Korn, Felgendreff,
Eitze, Schmid, Sprengholz, Wieler, Schmich, Stollorz, Ramharter, Bosnjak, Omer,
Thaiss, De Bock, and Von Rüden, 2021), reaction to test results (Betsch, Korn, Fel-
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gendreff, Eitze, Schmid, Sprengholz, Wieler, Schmich, Stollorz, Ramharter, Bosn-
jak, Omer, Thaiss, De Bock, and Von Rüden, 2021), contact diaries (Mossong et al.,
2008), share of detected cases (Paul et al., 2020) and many more.

1.B.2 Summary

We use an agent-based simulation model with detailed contact networks. The model
structure is depicted in panel a of Figure 1.2.1.

We distinguish between eight types of contacts which are all listed in Fig-
ure 1.2.1: households, recurrent and random work contacts, recurrent and random
leisure contacts, as well as nursery, preschool, and school contacts.

The number of contacts is translated into infections by a matching algorithm.
There are different matching algorithms for recurrent contacts (e.g. classmates, fam-
ily members) and non-recurrent contacts (e.g. clients, contacts in supermarkets).
All types of contacts can be assortative with respect to geographic and demographic
characteristics.

The infection probabilities of contacts vary with contact type, age of the suscep-
tible person, and the virus strain of the infected person. Moreover, they follow a
seasonal pattern. The strength of the seasonality effect is higher for contacts that
are easy to be moved to an outside location in summer (such as leisure contacts)
and smaller for contacts that take place inside even in summer (e.g. work contacts).

Once a person is infected, the disease progresses in a fairly standard way which
is depicted in panel b of Figure 1.2.1. Asymptomatic cases and cases with mild symp-
toms are infectious for some time and recover eventually. Cases with severe symp-
toms additionally require hospitalization and lead to either recovery or death.

After rapid tests become available, people who work or go to school can receive
rapid tests there. Moreover, people can decide to do a rapid test if they develop
symptoms, have many planned contacts or have a sick or positively tested household
member. People who have a positive rapid test demand a confirmatory PCR test with
a certain probability. Moreover, PCR tests can be demanded because of symptoms
or randomly.

This rich model of PCR and rapid tests leads to a share of detected cases that
varies over time and across age groups. It also allows to quantify the effect of changes
in testing policies on the dynamic of infections.

People who have symptoms or received a positive test can reduce their number
of contacts across all contact types endogenously. The extent to which this is done
is calibrated from survey data.

The model makes it very simple to translate policies into model quantities. For
example, school closures imply the complete suspension of school contacts. A strict
lockdown implies shutting down work contacts of all people who are not employed
in a systemically relevant sector. It is also possible to have more sophisticated policies



Appendix 1.B Supplementary Text | 49

that condition the number of contacts on observable characteristics, risk contacts or
health states.

An important feature of the model is that the number of contacts an individual
has of each contact type can be calibrated from publicly available data (Mossong
et al., 2008). This in turn allows us to estimate policy-invariant infection probabili-
ties from time series of infection and death rates using the method of simulated mo-
ments (McFadden, 1989). Since the infection probabilities are time-invariant, data
collected since the beginning of the pandemic can be used for estimation. Moreover,
since we model the testing strategies that were in place at each point in time, we
can correct the estimates for the fact that not all infections are observed.

The model has a very modular structure and can easily be extended to distin-
guish more contact types, add more stages to the disease progression, implement
new policies or test demand models. The main bottleneck is not complexity or com-
putational cost but the availability of data to calibrate additional model features.

1.B.3 Modeling Numbers of Contacts

Consider a hypothetical population of 1,000 individuals in which 50 were infected
with a novel infectious disease. From this alone, it is impossible to say whether only
those 50 people had contact with an infectious person and the disease has an in-
fection probability per contact (β) of one or whether everyone met one infectious
person but the disease has an infection probability of only 5 percent per contact.
SEIR models do not distinguish between the number of contacts (η) and the infec-
tiousness of each contact (β). Instead, they combine the two into one parameter
that is not invariant to social distancing policies.

To model social distancing policies, we need to disentangle the effects of the
number of contacts of each individual and the effect of mostly policy-invariant in-
fection probabilities specific to each contact type.

The number and type of contacts in our model can be easily extended. Each type
of contacts is described by a function that maps individual characteristics, health
states and the date into a number of planned contacts for each individual. This
allows to model a wide range of contact types.

In our empirical application we distinguish the following contact types that are
depicted in panel a of Figure 1.2.1 and can be further grouped in the categories
household, work, education and others:

• Households: Each household member meets all other household members every
day.

• Recurrent work contacts: These capture contacts with coworkers, repeating
clients and superiors. Some of these recurrent contacts take place on every work-
day, others just once per week. The contacts are assortative in geographical lo-
cation and age.
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• Non recurrent work contacts: Working adults have contacts with randomly
drawn other people, which are assortative in geographical location and age.

• Schools: Each student meets all of his classmates every day. Class sizes are cal-
ibrated to be representative for Germany and students have the same age and
mostly live in the same county. Schools are closed on weekends and during vaca-
tions, which vary by states. School classes also meet six teachers every day and
some of the teachers meet each other.

• Preschools: Children who are between three and six years old attend preschool.
Each group consists of nine children of mixed ages and two adults who live
mostly in the same county. They all meet each other every work day when there
are no vacations.

• Nurseries: Children younger than three years may attend a nursery and inter-
act with one adult. The age of the children varies within groups but all live in
the same county. They all meet each other every work day when there are no
vacations.

• Non recurrent other contacts: Contacts with randomly drawn other people,
which are assortative with respect to geographic location and and age group.
This contact type reflects contacts during leisure activities, grocery shopping,
medical appointments, etc..

• Recurrent other contacts representing contacts with friends neighbours or family
members who do not live in the same household. Some of these contacts happen
daily, others only once per week. They are assortative in geographic location and
age.

The number of random and recurrent contacts at the workplace, during leisure
activities and at home is calibrated with data provided by Mossong et al. (2008). For
details see Section 1.A.3. In particular, we sample the number of contacts or group
sizes from empirical distributions. It would also be possible to use economic or other
behavioral models to predict the number of contacts.

1.B.4 Reducing Numbers of Contacts via NPIs

Our model makes it very easy to model a wide range of NPIs, either in isolation or
simultaneously. This is important for two reasons: Firstly, it allows to predict and
quantify the effect of novel NPIs. Secondly, it allows to model the actually imple-
mented policy environment in great detail, which is necessary to use the full time
series of infections and fatality rates to estimate the model parameters.⁷

7. See Avery, Bossert, Clark, Ellison, and Ellison (2020) for an explanation why it can be harmful
to use too long time series to estimate simple SEIR type models.
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Instead of thinking of policies as completely replacing how many contacts peo-
ple have, it is often more helpful to think of them as adjusting the pre-pandemic
number of contacts. Therefore, we implement policies as a step that happens after
the number of contacts is calculated but before individuals are matched.

On an abstract level, a policy is a functions that modifies the number of contacts
of one contact type. This function can be random or deterministic. For example,
school closures simply set all school contacts to zero. A work from home mandate
leads to a share of workers staying home every day whereas those who cannot work
from home are unaffected. Hygiene measures at work randomly reduce the number
of infectious contacts for all workers who still go to work.

Policies can also interact. For example, school vacations are temporally reducing
school contacts to zero while at the same time increasing other contacts to account
for increased leisure activities and family visits during this time. This is important to
reproduce the finding that school vacations do not reduce infection numbers even
though schools lead to infections when open (Isphording, Lipfert, and Pestel, 2021).

The most complex policies are typically found in the education sector. Since the
beginning of 2021 schools have switched back and fourth between full closures,
split class approaches with alternating schedules for some or all age groups and
reopening while maintaining hygiene measures. On top of that there are different
policies for allowing young students whose parents work full time to attend school
even on days where they normally would not. For details on how we calibrate these
policies see Section 1.A.5.

Importantly, policies can depend on the health states of participating individuals.
For example children rarely go to school when they have symptoms. It would even
be possible to quarantine entire school classes if one student tested positive and
many other forms of contact tracing. For an application of our model showcasing
private contact tracing in the context of the Christmas holidays see Gabler, Raabe,
Röhrl, and Gaudecker (2020).

Not all things that reduce contacts compared to the pre-pandemic level are
driven by NPIs. Therefore, we also model endogenous contact reductions that de-
pend on the health state of individuals. Other possible factors could include things
such as the local incidence. The extent to which contacts are reduced can be cali-
brated from surveys.

1.B.5 Matching Individuals

The empirical data described above only allows to estimate the number of contacts
each person has. In order to simulate transmissions of Covid-19, the numbers of
contacts have to be translated into actual meetings between people. This is achieved
by a matching algorithm:

As described in section 1.B.3, some contact types are recurrent (i.e. the same
people meet regularly), others are non-recurrent (i.e. it would only be by accident
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that two people meet twice). The matching process is different for recurrent and
non recurrent contact models.

Recurrent contacts are described by two components: 1) A set of time invariant
groups, such as school classes or groups of co-workers. Those groups are generated
once at the beginning of the simulation. The groups can be sampled from empiri-
cal data or created by randomly matching simulated individuals into groups. 2) A
deterministic or random function that takes the value 0 (non-participating) and 1
(participating) and can depend on the weekday, date and health states of the entire
population. This can be used to model things like vacations, weekends or symp-
tomatic people who stay home (see section 1.B.4 for details).

Given those two components, the disease transmission for recurrent contacts is
extremely simple: On each simulated day, every person who does not stay home
meets all other group members who do not stay home. If there is a contact between
individual i who is infected with virus variant v and infectious and individual j who
is in age group a and susceptible, then j becomes infected with the following prob-
ability

P(infection) = βc · sc,t · σv · ζa (1.B.1)

where βc denotes the base infection probability of contact type c, sc,t is a sea-
sonality factor between zero and one that depends on the contact type c and time
t (see Equation 1.B.5), σv is the infectiousness factor of virus variant v and ζa is an
age dependent susceptibility factor.

The assumption that all group members have contacts with all other group mem-
bers is not fully realistic, but a good approximation to reality, especially in light of
the suspected role of aerosol transmission for Covid-19 (Anderson, Turnham, Grif-
fin, and Clarke, 2020; Morawska, Tang, Bahnfleth, Bluyssen, Boerstra, et al., 2020).
Alternatively, the infection probability of recurrent contact types can be interpreted
as being the product of a true infection probability and the probability that an actual
contact takes place.

The matching of non-recurrent contact types is more difficult because the con-
tact network is resampled randomly every day. Moreover, it needs to allow for assor-
tative matching. In our application, all random contacts are assortative with respect
to age group a (it is usually more likely to meet people from the same age group) and
county (it is more likely to meet people from the same county) but in principle any
set of discrete variables can be used. This set of variables that influence matching
probabilities induce a discrete partition of the population into groups.

Below we first describe one iteration of a simplified matching algorithm that
illustrates what we want to achieve. In practice, we approximate the result of this
matching algorithm by a two stage sampling procedure that is computationally more
efficient. The matching is done for each non-recurrent contact type c. The following
step is repeated until no individual has unmatched contacts left. Let z be an iteration
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counter for the matching algorithm and i denote the individual whose unmatched
contacts we are trying to match.

Let Kz,i,c denote the number of unmatched contacts of individual i of contact type
c before iteration z is completed. Note that Kz,i,c ≤ nic which is the total number of
contacts individual i has of type c.

Let ai denote i’s age group and countyi her county of residence.
We first draw individual j from the distribution defined by probability mass func-

tion Fz over individuals j ̸= i in the synthetic population where the probability fzj is
calculated as follows:

fzj = αc,ai,aj,countyi,countyj

︸ ︷︷ ︸

Group Probability

·
Kz,j,c

∑N
l=1 Kz,l,c · Icountyl=countyj∧al=aj
︸ ︷︷ ︸

Individual Probability

(1.B.2)

We then draw an individual j. If one of the two participants is susceptible and
the other one is infectious, we sample whether an infection takes place. The success
probability for this event is calculated as in Equation 1.B.1. Finally we update the
remaining numbers of unmatched contacts by setting:

Kz+1,i,c = Kz,i,c − 1 (1.B.3)

Kz+1,j,c = Kz,j,c − 1 (1.B.4)

The runtime of this algorithm scales roughly cubic in the number N of simu-
lated individuals. This is because the number of iterations is proportional to N, in
each iteration we have evaluate Equation 1.B.2 N times and each evaluation of that
equation entails a sum over N individuals.

This makes it prohibitively expensive. We therefore replace the above algorithm
by a two stage sampling procedure, where we first sample the group fromwhich indi-
vidual j will be drawn according to the group probabilities defined in Equation 1.B.2.
Next we sample an individual from this group with the Individual probabilities de-
fined in Equation 1.B.2.

Thus, while the calculation of any given second stage probability entails exactly
the same number of calculations as before we do not have to calculate a second
stage probability for all simulated individuals but only for those who are members
of the group that was sampled in the first stage.

It is easy to see that ex-ante the probability of being sampled are identical be-
tween the two stage sampling and the one stage sampling. The only drawback is
that towards the end of the matching process it becomes possible to sample a group
in which no unmatched contacts are left. In our empirical application this happens
extremely rarely. This is so for two reasons: Firstly, the first stage sampling proba-
bilities have been estimated from the same dataset as the numbers of contacts so
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there cannot be any mismatches such as for example a group that has a low proba-
bility of being sampled in the first stage but where all members have many contacts.
Secondly, the group sizes are relatively large and we go over individuals in random
order. Therefore, groups where no unmatched contacts remain only occur very late
in the matching process.⁸

1.B.6 Course of Disease

The disease progression in the model is fairly standard. It is depicted in panel b of
Figure 1.2.1 and the values and source of the relevant parameters are described in
Section 1.A.1.

First, infected individuals will become infectious after one to five days. Over-
all, about one third of people remain asymptomatic. The rest develop symptoms
about one to two days after they become infectious. Modeling asymptomatic and
pre-symptomatic cases is important because those people do not reduce their con-
tacts nor do they have an elevated probability to demand a test. Thus they can poten-
tially infect many other people (Donsimoni, Glawion, Plachter, and Wälde, 2020).
The probability to develop symptoms with Covid-19 is highly age dependent with
75% of children not developing clinical symptoms (Davies, Klepac, et al., 2020).

A small share of symptomatic people will develop strong symptoms that require
intensive care. The exact share and time span is age-dependent. An age-dependent
share of intensive care unit (ICU) patients will die after spending up to 32 days in
intensive care. Moreover, if the ICU capacity was reached, all patients who require
intensive care but do not receive it die.

We allow the progression of the disease to be stochastic in two ways: Firstly, state
changes only occur with a certain probability (e.g. only a fraction of infected individ-
uals develops symptoms). Secondly, the number of periods for which an individual
remains in a state is drawn randomly. The parameters that govern these processes
are taken from the literature and detailed in Section 1.A.1. For an overview of our
disease progression parameters see Table 1.A.4.

1.B.7 Testing

Having a realistic model of PCR and rapid tests is crucial for two reasons: Firstly, only
via a testing model can the simulated infections from themodel be made comparable
to official case numbers. Secondly, individuals with undetected or not yet detected
infections are an important driver of the pandemic.

8. If unmatched contacts were a concern one could simply use the fast two stage sampling
process for a first pass over contacts and then match all remaining contacts with the slow algorithm.
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In principle, our modeling approach is flexible enough to incorporate mechanis-
tic test demand, allocation and processing models. However, there is not enough
data available to calibrate such a mechanistic model.

Therefore, we build a simpler model of PCR and rapid tests that can be calibrated
with available data on test demand and availability and – nevertheless – can produce
a share of undetected cases that varies over time and across age groups and agrees
with other estimates over the time periods where they are available.

PCR tests are modeled since the beginning of the simulation and determine
whether a infection is officially recorded. Rapid tests are only added at the begin-
ning of 2021. Positive rapid tests do not enter official case numbers directly, but
most people with a positive rapid tests demand a confirmatory PCR test. However,
positive rapid tests can have a strong effect on the infection dynamics because they
trigger contact reductions and additional rapid tests.

During 2020 people can demand PCR tests either because they have symptoms
or randomly. The probability that a PCR test is performed in each of the two situ-
ations depends on the number of new infections and the number of available tests.
Thus, it varies strongly over time and is unknown.

To distribute the correct number of PCR tests among symptomatic and asymp-
tomatic infections without knowing explicit test demand probabilities, we use the
following approach: First, we calculate the total number of positive PCR tests by
multiplying the number of newly infected individuals with an estimate of the share
of detected cases from the Dunkelzifferradar project (Paul et al., 2020). Next, we
determine how many of these tests should go to symptomatic and asymptomatic
individuals from data by the RKI (Robert Koch-Institut, 2020). Then, we sample the
individuals to which those tests are allocated from the pools of symptomatic and
asymptomatic infected but not yet tested individuals.

Sampling uniformly from the pool of symptomatic individuals ensures that age
groups who are more likely to develop symptoms are also more likely to receive tests.
Thus, the share of detected cases is much higher for the elderly than for children in
time periods where many tests are done because of symptoms.

At the beginning of 2021, two challenges arise: Firstly, the externally estimated
share of detected cases from Dunkelzifferradar project (Paul et al., 2020) can no
longer be used because it is based on the case fatality rate which changes drastically
due to vaccinations. Secondly, rapid tests become available at a large scale.

We solve the first challenge by assuming that the share of detected cases would
have remained at the level it reached before Christmas if rapid tests had not become
available. While this is only an approximation to reality, changes in the share of
detected cases that would have happened without rapid tests are very likely to be
small compared to the changes caused by rapid tests.

The second challenge is solved by mechanistic rapid test demand models for the
workplace, schools and by private individuals. The calibration of these models is
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described in Section 1.A.6. Figure 1.B.6 shows that the number of performed rapid
tests in the model fits the empirical data well (where empirical data is available).

In contrast to PCR tests, rapid tests are not perfect and can be falsely positive or
falsely negative. While the specificity of rapid tests is calibrated at 99.4% (Brümmer
et al., 2021), their sensitivity strongly depends on the timing of the rapid test relative
to the start of infectiousness. We follow Smith et al. (2021) for our main results:
Before the onset of infectiousness the sensitivity is very low (35%). On the first day
of infectiousness it is much higher (88%) but still lower than during the remaining
infectious period (92%). After infectiousness stops, the sensitivity drops to 50%. We
show that our results are robust to more conservative assumptions in Section 1.B.12.

Modeling the diagnostic gap before and at the beginning of infectiousness is
very important to address concerns that rapid tests are too unreliable to serve as
screening devices.

We do not distinguish between self administered rapid tests and those that are
administered by medical personnel. While there were concerns that self adminis-
tered tests are less reliable, a recent study has found no basis for this concern (Lind-
ner, Nikolai, Kausch, Wintel, Hommes, et al., 2020).

While rapid tests do not directly enter official case numbers, 82% (χconfirmation)
of positively tested individuals seek a PCR test (Betsch, Korn, Felgendreff, Eitze,
Schmid, Sprengholz, Wieler, Schmich, Stollorz, Ramharter, Bosnjak, Omer, Thaiss,
De Bock, and Von Rüden, 2021). Importantly, those PCR tests are made in addition
to the tests that would have been done otherwise. Section 1.B.13 discusses the effect
of rapid tests on the share of detected cases.

1.B.8 Seasonality

It is widely acknowledged that the transmission of SARS-CoV-2 is subject to seasonal
influences. Infectiousness is increased in winter when most contacts take place in-
side and the immune system is weakened by low levels of vitamin D, dry air and large
temperature swings. For a detailed overview of possible drivers see Kronfeld-Schor,
Stevenson, Nickbakhsh, Schernhammer, Dopico, et al. (2021).

We follow Kühn, Abele, Mitra, Koslow, Abedi, et al. (2020) and Gavenčiak et al.
(2021) in modeling seasonality in the transmission of SARS-CoV-2 as a multiplicative
factor on infection probabilities. The factor follows a sine curve that reaches its
maximum at January 1 and its minimum on June 30.

For simplicity we normalize the factor to reach one at its maximum. Thus, the
formula of the seasonality factor is given by:

sc,t = 1 + 0.5κcsin
�

π

�

1
2
+

t
182.5

��

− 0.5κc (1.B.5)

Where κc is difference in the seasonality factor between peak infectiousness and
lowest infectiousness.
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Figure 1.B.1. Seasonality by Type of Contact

Note: We model seasonality as a factor that reduces the probability of infection of all encounters. The factor

depends on the day and is calculated from a sinus shaped function with its maximum on January 1. Since

seasonality can affect the transmission both through physical conditions such as temperature and humidity

as well as through the numbers of contacts that take place outside we assume two seasonality factors. One

for other contacts which we expect to be strongly affected by fairer weather with a maximum reduction of

42% in the infection probability. The other seasonality only makes contacts up to 21% less infectious and

is applied to household, work and school contacts.

The subscript c is needed because the strength of the seasonality effect differs
across contact types: Work, household and school contacts are likely to take place in-
side even in summer. Thus they are only subject to seasonality due to factors that in-
fluence the immune system. Other contacts (for example meeting friends and while
doing leisure activities) are mostly happening outside in the summer. Therefore,
transmission via those contacts should have a stronger seasonal pattern.

We calibrate κstrong to 0.42 and κweak to 0.21. This is in line with Gavenčiak et al.
(2021) and Kühn et al. (2020).

The two seasonality curves are shown in Figure 1.B.1.

1.B.9 Initial Conditions

Consider a situation where you want to start a simulation with the beginning set
amidst the pandemic. It means that several thousands of individuals should already
have recovered from the disease, be infectious, symptomatic or in intensive care
at the start of your simulation. Additionally, the sample of infectious people who
will determine the course of the pandemic in the following periods is likely not
representative of the whole population because of differences in behavior (number
of contacts, assortativity), past policies (school closures), etc.. The distribution of
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health states in the population at the beginning of the simulation is called initial
conditions.

To come up with realistic initial conditions, we match reported infections from
official data to simulated individuals by age group and county. We use one month
of data to generate initial conditions with in all possible health states. Meanwhile
health states evolve until the beginning of the simulation period without simulat-
ing infections by contacts. We also correct reported infections for a reporting lag
and scale them up by the share of detected cases to arrive at the true number of
infections.

1.B.10 Model Fit

This section compares simulated data from our model with empirical data from
Germany. We look at observed infections (overall as well as by age group and federal
state), the effective replication number, the spread of B.1.1.7 and vaccinations.

Overall, our model achieves an excellent fit of the two waves of infections with
few free parameters (Figure 1.B.2a). As a result the effective replication number Rt

also closely follows that reported by the RKI (see Figure 1.B.2b). We also achieve an
excellent fit for most age groups in Germany. The fit is also good for many German
federal states. Despite the fact that the number of performed rapid tests and their
distribution in the population are determined endogenously in our model, we fit the
share of the population with at least a weekly rapid test very well. For the share of
individuals who have ever done a rapid test we err on the side of too few test.

Our fit of the infection rates in Germany between October 2020 and June 2021
is excellent. The incidence in our model matches both the levels and the shape of the
reported incidence almost perfectly. When the prevalence of the virus is high and es-
pecially after explosive growth phases, the effect of random events on the incidence
is large. Therefore all reported simulations average over at least 30 simulation runs
which is enough to reduce the sampling uncertainty to a negligible level.

Our fit of the effective replication number Rt closely follows the values reported
by the RKI (see Figure 1.B.2b) even though we calculate Rt on all infected individu-
als not just the detected cases. This explains why the Rt in our simulations is higher
during phases where the share of detected cases (ψt) falls. This is the case in the fall
of 2020 (see Figure 1.A.7) where the RKI underestimated the effective replication
number due to observing a falling share of cases. Analogously, the Rt in our simula-
tions is lower than the Rt reported by the RKI in spring where the share of known
cases increased due to increased rapid testing.
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Figure 1.B.2. Model Fit of the Reported Cases and the Effective Replication Number

Note: Both figures show averages and single runs. The average is the thick line. Single runs are shown as

lighter and thinner lines. We averaged and show 30 simulation runs. The left figure shows the daily incidence

rate per million for the simulated reported infection rates. The official case numbers as reported by the RKI

are plotted in black. The fit is overall very good. The right figure shows the effective replication number (Rt)

as reported by the RKI and as calculated in our model. The Rt gives the average number of new infections

caused by one infected individual. The Rt in our model broadly follows the Rt reported by the RKI. Two

differences stand out. Firstly, the RKI’s Rt drops faster in November. This is likely due to a decline in the

estimated overall share of detected cases (ψ
t
) when the second wave hit Germany. The second difference

is from mid February to mid March where the RKI’s reported Rt increased more rapidly than that in our

model. Here the opposite effect can be expected. During this time rapid tests increased strongly leading to

more cases being detected. In the short term this leads an Rt estimation that is based on detected cases

to overestimate the replication number. For legibility reasons, all lines are rolling 7-day averages.

Zooming into the different age groups in Figure 1.B.3, we can see that our model
is also able to reproduce the infection rates on this level. The only major deviation
from this pattern is that our model predicts too few infections for the 80 to 100 year
olds. This was to be expected because our synthetic population does not include
inhabitants of nursing homes. Outbreaks in nursing homes led to a large number of
infections among the oldest during the second wave of the pandemic in Germany.
Moreover, the model predicts too few observed infections for the 15 to 34 years old
at the end of 2020 and the 5 to 14 years old in April and May 2021. The former
is likely due to the fact that this age group has a very active social life which is
not fully captured by our contact networks. The latter probably comes from a too
conservative model of school reopenings.
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Figure 1.B.3. Simulated and Empirical Infections by Age Group

Note: The figure shows the number of reported versus simulated cases per one million people per day for

different age groups. The age group of individuals above 80 needs to be interpreted with caution because

our synthetic population only includes private households, i.e. nursing homes are not represented in our

model. They accounted for many cases and deaths in the winter of 2020 and many 80 to 100 year olds

live in these facilities. We average over 30 simulation runs. For legibility reasons, all lines are rolling 7-day

averages.

Our model fit is also very good for the different German federal states. This
holds not only for the large states such as North Rhine-Westphalia or Bavaria but
also for many smaller states such as Hessen or Rhineland-Palatinate. This shows that
using school vacations dates and work mobility reductions by Google, LLC (2021) at
the state level combined with county and age group specific initial conditions (see
Section 1.B.9) and county level assortativity of contacts is sufficient to represent
many local differences. The fit is especially good given that our model does not aim
to have a high local resolution. For example we abstract from population density
and cross-border travel. It is, thus, unsurprising that there are states that we do not
match well, such as very thinly populated Mecklenburg-Vorpommern and Schleswig-
Holstein or Saxony with its large border to the Czech Republic that had a much
higher incidence than Germany.
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Figure 1.B.4. Simulated and Empirical Infections by Federal State

Note: The figure shows the number of reported versus simulated cases per one million people per day for

different federal states. We averaged over 30 simulation runs. For legibility reasons, all lines are rolling

7-day averages.
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We fit the proliferation of the B.1.1.7 variant quite exactly despite only introduc-
ing a few cases in January (ωB.1.1.7,t) as can be seen in Figure 1.B.5a. Since we only
model B.1.1.7 and do not include other variants, B.1.1.7 reaches a share of nearly
100% by May while the true rate plateaued at 90%. By the end of May B.1.617.2
gained traction in Germany. However, given that B.1.617.2 made up less than 5%
even at the end of our simulation period, we did not include it in our model.
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Figure 1.B.5. Model Fit of the Share of B.1.1.7 and Vaccinations

Note: The left figure shows the share of B.1.1.7 as reported by the RKI and as calculated in our model. We

only introduce a few cases over the course of January. From then B.1.1.7 takes over endogenously through

its increased infectiousness (σB.1.1.7). The right figure shows the rate of individuals that are vaccinated in our

synthetic population versus in the general German population. For legibility reasons, all lines are rolling

7-day averages.

The fit of the share of vaccinated individuals can be seen in Figure 1.B.5b. In
Germany, vaccines were rolled out according to four priority groups. The first vac-
cines were mostly reserved for nursing homes and some selected professions such
as first responders. Since we do not have nursing home inhabitants in our model,
we subtract the first percent of vaccinations which is equivalent to the share of Ger-
mans living in nursing homes. Afterwards, the share of vaccinated individuals in
the population follows the German increase exactly. We took great care to model
the prioritization of older individuals and professions that cannot reduce physical
contact easily such as teachers or medical staff (see Section 1.A.2 and Figure 1.A.1
for the vaccination rates in our model by age group).

The most difficult moment to match in our model is the rapid test demand. This
is because we have five different channels through which individuals demand rapid
tests and many of the demand curves are at least partially calibrated through survey
data. It is therefore very reassuring that we fit the share of individuals that do weekly
rapid tests almost perfectly. For the share of individuals that have ever done a rapid
test our model is conservative. There are two reasons for this: Firstly, we do not
model people who have done rapid tests out of curiosity once they became available.
Secondly, in the model, the decision to take a rapid test is based on a time invariant
individual specific compliance factor without any additional random components.
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While this captures important features of rapid test demand it abstracts from people
who turn down rapid tests most of the time but accept them sometimes. Fortunately,
Section 1.B.11 shows that our main results are robust to changes in the exact shares
of individuals demanding rapid tests.
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Figure 1.B.6. Share of Individuals With Rapid Tests

Note: Both panels compare empirical and simulated rapid test demands. The empirical data comes from

Betsch, Wieler, et al. (2021). The left panel compares the share of individuals who have ever done a rapid

test. The right panel compares the share of individuals who have done a rapid test within the last seven

days in our simulation compared to the share reporting to have done at least weekly rapid tests in the last

four weeks in the COSMO survey. Overall our calibration of rapid tests are slightly conservative. The overall

share is below that in the study. We fit the share of weekly tests quite exactly. For legibility reasons, all

simulated lines are rolling 7-day averages.

1.B.11 Model Validation

Achieving a good in-sample fit does not necessarily guarantee that our model will
also be able to make out of sample predictions. For example, it could be that the
results are very sensitive to the exact number of vaccinations, the work mobility
multiplier (ρw, attend, t) or the number of performed rapid tests (governed by the π
parameters) – all of which are things that cannot be known exactly ex-ante.

In this section we compare simulated infections that use all available data with
out of sample predictions that only use data that was available at March 1 2021.

For the out of sample predictions we predict the number of vaccinations between
March and Junewith a simple linear regressionmodel that was fitted on vaccine data
from February. This prediction model is pessimistic compared to the actual number
of vaccinations. The work mobility multiplier (ρw, attend, t) is predicted to be constant
at a value of 0.75, which is an approximate average of the second half of February.
This turned out to be optimistic.

The area that is fraught with the most uncertainty is the introduction of rapid
tests, because it comprises both supply and demand factors. Moreover, accurately
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predicting the number of rapid tests is expected to be important because rapid tests
play a large role for the transmission dynamic.

We therefore make a scenario analysis with different assumptions on the avail-
ability of rapid tests. The number of rapid tests performed in each scenario can be
seen in Figure 1.B.7. All scenarios are the same until March 1 and have the same
level of rapid tests when all supply constraints are resolved. They differ in the date
at which the full number of tests is reached. For students (πstudents, t) and teachers
(πteacher, t) the full number of rapid tests is reached after the Easter holidays in all
scenarios. For rapid tests in the workplace (πw, s, t) and private rapid tests (πprivate, t)
it is reached between May 1 and June 10, depending on the scenario.
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(b) Rapid Test Parameters:

Medium Scenario
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(c) Rapid Test Parameters: Late

Scenario

Figure 1.B.7. Rapid Test Introduction in the Three Scenarios

Note: Number of rapid tests performed in the different prediction scenarios. All scenarios are the same until

March 1 and have the same level of rapid tests when all supply constraints are resolved. They differ in the

date at which the full number of tests is reached. For students (πstudents, t) and teachers (πteacher, t) the full

number of rapid tests is reached after the Easter holidays in all scenarios. For rapid tests in the workplace

(πw, s, t) and private rapid tests (πprivate, t) it is reached between May 1 and June 10, depending on the scenario.

Moreover, the out of sample predictions assume that the share of detected cases
(ψt) that would have been obtained without rapid tests is not affected by the Easter
holidays because the extent to which this was the case was estimated from case
numbers in April.

The results of the out of sample prediction are displayed in Figure 1.B.8. While
all scenarios considerably deviate from the ex-post scenario, they all reproduce the
steep increase of cases until the end of April, followed by a decline until June. We
can therefore conclude that our main results are not sensitive to measurement errors
in the number of rapid tests, vaccinations or mobility data.

Another form of validating our model is to see how well our main results align
with other studies that evaluate the effect of large scale rapid testing. Of course, this
has to be taken with a grain of salt as the effect of any rapid testing policy depends
on the incidence of the disease in the population, how well other testing policies
such as PCR tests are working, the effect of seasonality and NPIs that are in place.

Nevertheless, it is reassuring that other studies find effect sizes in the same order
of magnitude.
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Figure 1.B.8. Out of Sample Prediction for Reported and Total Cases from March to June 2021.

Note: The ex-post scenario is an in-sample prediction that uses all available information and is very close

to actual case numbers. For the other scenarios data on vaccinations, work mobility and rapid tests that

became available after March 1 have been replaced by prediction models that are calibrated with data

from February. Moreover, they do not model a lower number of detected cases over the Easter holidays. The

different scenarios make different assumptions on the date at which full availability of rapid tests is reached.

While the out of sample predictions differ substantially for the exact case numbers at the beginning of June

(between 20 and 70 cases per million), they can all reproduce the decline in case numbers that is jointly

driven by seasonality, large scale rapid tests and vaccinations. For legibility reasons, all lines are rolling

7-day averages. Each line is the average over 30 simulation runs.

Pavelka, Van-Zandvoort, Abbott, Sherratt, Majdan, et al. (2021) estimate that a
mass testing campaign in Slovakia in October and November 2020 where approxi-
mately 65 % of the population took a rapid test within a two week period lead to
a reduction in case numbers of 70 % three weeks after the start of the intervention.
Moreover, they find that this strong reduction in cases cannot be explained by isola-
tion of people who tested positive alone but only when they took into account that
household members of people who tested positive reduced their contacts.

While we do not model the exact scenario of Pavelka et al. (2021), we can
roughly compare their estimates with our predictions for the difference between
the baseline scenario and and a scenario without rapid tests. In May about 45% of
people do at least one rapid test in every week. Taking into account that there are
many repeated testers the number of people who do a test within a two week period
is probably slightly less than the 65% from the intervention in Slovakia. On the other
hand, we have many people who do more than one rapid test in that time which
also leads to the detection of cases. Our model predicts that the observed incidence
with tests is approximately 65% lower than without tests after three weeks. Thus
we have an effect size in the same order of magnitude but are slightly less optimistic
regarding the efficiency of rapid tests.

Berger, Fritz, and Kauermann (2021) analyse the effect of twice weekly rapid
testing in schools. They have twomain findings: Firstly, rapid tests reduced the share
of undetected cases among students by a factor between two and four. Secondly,
open schools with mandatory testing might lead to the same or even lower numbers
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of infections than closed schools. The estimates are based on infection numbers after
the Easter holiday.

Again, we do not directly simulate their scenarios but can roughly compare our
results to theirs. We estimate a share of undetected cases of approximately 75%
among school age children (five to 14 years) at the beginning of April, see Fig-
ure 1.B.11. This drops to slightly less than 40% at the end of our simulation period.
Thus in the long run, mandatory tests at schools led to a reduction of the share of
undetected cases by a factor of more than 1.8 which is just slightly below the factor
of two to four predicted by Berger, Fritz, and Kauermann (2021).

Similarly we are slightly less optimistic for the effect of opening schools with
testing compared to closing schools. While they predict that opening schools could
even be beneficial we estimate that it would lead to a slight increase in case numbers
see Figure 1.B.16).

1.B.12 Robustness to assumptions about rapid test sensitivity

Our main results are based on rapid test sensitivities read from clinical trials. Recent
studies showing that the actual sensitivity of rapid tests may be lower than that (e.g.,
Scheiblauer et al., 2021).

This section shows that our results are robust to making less favorable assump-
tions on rapid test sensitivity. We proceed by describing several possible ways of cal-
ibrating rapid test sensitivity profiles based on recent studies. Since none of these
methods is inherently better than the others, we make simulations with two sensitiv-
ity profiles: The average over all methods and the lower envelope over all methods
using recent studies.

Both profiles imply lower sensitivities of rapid tests than used in our main results.
This is especially true during the later stage of an infection. However, the main
results stay very robust. The original result was that rapid tests, seasonality and
vaccinations are responsible for 42%, 43% and 16%, respectively. With the average
profile, the effect of rapid tests decreases to 41 %. With the lower envelope profile,
which is an extremely unfavorable assumption, it becomes 38%.

The effect of rapid tests on infection dynamics strongly depends on when an
infection is detected. Earlier detection means that it is more likely that the infection
has not yet been discovered for a different reason (e.g. due to the onset of symptoms)
and that the infected person can be isolated before spreading the disease to others.

The sensitivity of rapid tests depends on the viral load in the respiratory tract. It
is low at the beginning of an infection (especially before the onset of infectiousness),
high in the first few days of infectiousness and then gradually decreasing towards
the end of infectiousness.

We thus need to calibrate a profile of rapid test sensitivities based on the number
of days until or since the onset of infectiousness.
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Unfortunately, such sensitivity profiles are not usually reported in studies. We
thus need to create them by combining two types of studies: 1. Studies that report
the viral load in terms of threshold cycle (Ct) values determined by PCR test (e.g.
Jang, Rhee, Wi, and Jung, 2021; Ong, Chiew, Ang, Mak, Cui, et al., 2021; Zuin,
Gentili, Cervellati, Rizzo, and Zuliani, 2021; Bonnet, Masse, Benamar, Vilcu, Swital,
et al., 2022; Cosentino, Bernard, Ambroise, Giannoli, Guedj, et al., 2022). 2. Studies
that report the sensitivity of rapid tests for different Ct values (e.g. Brümmer et al.,
2021; Scheiblauer et al., 2021).

It is natural to assume that the evolution of Ct values over time as well as the
effect of Ct values on rapid test sensitivity are continuous functions. However, the
results of the available studies are usually reported in a discretized way. This leads
to multiple ways of calculating the sensitivity profiles. Some try to recover the un-
derlying continuous functions using interpolation or regression, others simply use
the discretized values.

For the calibration of Ct values over time we can either use discretized values
for several time bins from Ong et al. (2021) and Jang et al. (2021). Alternatively,
we can use linearized formulas for calculating sensitivities over time Cosentino et al.
(2022) and complement it with interpolations of data points from Jang et al. (2021)
in the pre-infectious stage. Throughout we assume that the Ct values of individuals
who eventually develop symptoms and those who do not follow the same trajectory.
This is in line with results by Zuin et al. (2021) and recent evidence that rapid tests
excel at discovering asymptomatic cases Rosella, Agrawal, Gans, Goldfarb, Sennik,
et al. (2022).

For themapping of Ct values to rapid test sensitivities, again we have two options.
First, we can simply look up the discretized values for the three Ct bins provided in
Scheiblauer et al. (2021) (below 20, 25 to 30 and above 35). Secondly, we can use
linear regression to estimate a continous mapping for the relationship by assuming
that the Ct values of each bin are achieved exactly at the bin midpoints and that the
relationship is linear.

In general, using discretized values can lead to an underestimation of peak sensi-
tivities and an overestimation of very low sensitivities. This is because discretization
is essentially a smoothing device. On the other hand, it has the advantage of simply
working with published results, without introducing any tuning parameters or other
assumptions.
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Figure 1.B.9. Rapid test sensitivity profiles

Note: The figure shows estimated sensitivities of rapid tests over the course of an infection. The x-axis

shows days relative to the onset of infectiousness. The y-axis shows the estimated rapid test sensitivities.

The grey lines are the raw sensitivity estimates obtained with different methods of dealing with discretized

data. The blue line shows their average and the yellow line their lower envelope. The turquoise line are the

test sensitivities used for the main results of the paper.

Figure 1.B.9 shows that the updated sensitivity estimates are lower than the ones
used for our original results, especially towards the end of an infection. However, the
main results barely change. This is due to the fact that the differences are largest
towards the later stage of an infection. Uncovering an infection that was previously
undetected at that stage does not have a large effect on infection dynamics.
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Figure 1.B.10. Shapley decompositions for different values of rapid test sensitivity

Note: The figure shows updated versions of the Shapley decomposition in figure 1.4.1. The decompositions

are based on 20 model runs with different random seeds. The share attributed to each channel is rounded

to the next full percentage point to acknowledge the remaining sampling uncertainty.
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1.B.13 Share of Detected Cases

This section shows the share of detected cases for different age groups. See Sec-
tion 1.B.7 for an explanation of how we model the detection of cases and Sec-
tion 1.A.7 for the calibration of the relevant parameters.

The share of detected cases fall drastically from October to December when the
incidence of CoViD-19 skyrocketed, PCR tests were still scarce and official contact
tracing became impossible due to the sheer amount of cases.

As rapid tests become available and more and more individuals receive positive
rapid tests and seek PCR tests, the share of detected cases starts to increase. While
first rapid tests are available since the beginning of 2021 the effect only becomes
substantial after March when access to rapid tests was greatly expanded.

Overall, the share of detected cases is much higher in older age groups. This is
because the likelihood to develop symptoms increases with age and symptomatic
cases are more likely to be detected.

A notable exception is that school age children (5-14, green line) overtake the
next age group in May 2021. This comes from a particularly strong increase in their
share of detected cases after Easter, when weekly rapid tests become mandatory in
schools.
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Figure 1.B.11. Share of Detected Cases by Age Group

Note: The figure shows the share of cases that is reported as an official case for each age group in our simu-

lated population. For legibility reasons, all lines are rolling 7-day averages of the average of 30 simulation

runs.

1.B.14 Simulated Rapid Tests

In order to make the most use out of limited data sources on rapid test usage, we
model the number of performed rapid tests as a result of time invariant willingness
to do rapid tests and time varying supply side factors and events that trigger rapid
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tests. Thus, the π parameters governing when individuals do rapid tests described
in Section 1.A.6 are only indirectly related to the number of rapid tests that are
actually performed in the model. When it comes to positive and negative rapid tests,
there is even an additional layer because rapid tests are imperfectly sensitive and
specific.

In this section we look at how rapid tests expanded in our simulations over time
and to what degree they are useful as a screening device despite their imperfections.

We start with the share of the population doing a rapid test and receiving a
positive rapid test over time by the channel through which the test was demanded
in Figures 1.B.12a, 1.B.12b, respectively. Overall, the share of the population getting
a rapid test on a given day increases from 2% in mid March to over 10% by May. The
work rapid tests are a little ragged because of public holidays. For education rapid
tests both vacations (first half of April) as well as the opening of schools in May are
very visible in the rapid test demand. Overall, work tests make up the largest fraction
of rapid tests. The image is very similar for the share of positive tests, except that
the overall number of positive tests starts decreasing in May as rapid test expansion
comes to a halt and cases fall, especially the positive share of private rapid tests falls
as less and less individuals are triggered to seek a rapid test because of a risk contact
in their household.

Mar
2021

Apr
2021

May
2021

Jun
2021

0.00

0.02

0.04

0.06

0.08

0.10

sh
ar

e 
of

 th
e 

po
pu

la
tio

n 
wi

th
 te

st
s

private
work
educ
aggregate

(a) Share of the Population Doing a Rapid Test on a

Given Day, by Channels

Mar
2021

Apr
2021

May
2021

Jun
2021

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

sh
ar

e 
of

 th
e 

po
pu

la
tio

n 
wi

th
 p

os
iti

ve
 te

st
s

private
work
educ
aggregate

(b) Share of the Population Testing Positive on a

Given Day, by Channels

Figure 1.B.12. Rapid Test Shares in the Population by Channel

Note: Rapid tests in the education setting are demanded by teachers (nursery, preschool and school) as well

as pupils. After Easter the required frequency of tests is increased from once per week to twice per week.

Work rapid tests are demanded by individuals that still have work contacts, i.e. do not work from home. The

share of employers offering rapid tests increases over the time frame and the frequency of testing is also

increased. Private tests are demanded by individuals for one of three reasons: having developed symptoms

without access to a PCR test, having a household member that has tested positive or developed symptoms

or having planned a weekly meeting with friends. Panel a shows the share of the population doing a rapid

test on a given day. Panel b shows the share of the population testing positive on a given day (true and

false positives).
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Next, we show the tests split by whether they are true positive, false positive, true
negative or false negative (see Figure 1.B.13) in numbers per million individuals to
make the metric comparable to incidences.

The number of true positives (Figure 1.B.13a) rapidly increases and peaks at
the end of April with over 200 cases per million detected through rapid tests per
day. This means that our model suggests that Germany was able to detect up to
16,600 cases per day that would have likely gone undetected otherwise. The most
powerful tool for detecting cases are the private rapid tests. This is because a large
share of them are targeted, i.e. triggered by events in the household. However, this
does not mean that rapid tests in the workplace or at school are less important. It
is rather the combination of large scale screening at work and in schools and very
efficient follow up tests whenever those screening tests detected a case. Shapley
values (Figure 1.4.1) take this into account and assign about 50% of the overall
reduction of case numbers via rapid tests to private rapid tests with work and school
rapid tests accounting for 40% and 7%, respectively.

Such a large effect of rapid tests seems to be at odds with the general perception
that they are not very reliable. However, one has to differentiate between the relia-
bility of one test in isolation and the effect imperfect tests can have when employed
at a large scale. On average our tests have a sensitivity of slightly more than 70%.
This means they miss almost 30% of infections among the tested. Of course perfect
tests would have an even larger effect but the relevant number to compare is that
up to 200 cases per million are detected by rapid tests every day which would have
otherwise gone undetected.

This clearly shows that the large effect of rapid tests on the infection dynamic
is not driven by unrealistic assumptions about their sensitivity but rather by the fact
that there was a very large number of infected individuals who did not know they are
infected. Detecting and isolating some of them is enough to slow down the overall
infection dynamic.
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Figure 1.B.13. Simulated Rapid Test Statistics

Note: Each panel shows the number of rapid tests per million inhabitants that fall into the respective cate-

gory. Private rapid tests are especially good at detecting cases but since they are often triggered by rapid

tests from other channels, the other groups of tests, especially rapid tests at the workplace, also play an

important role for containing the pandemic. All results are averaged over 30 simulation runs. For legibility

reasons, all lines are rolling 7-day averages.
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A similar picture arises, when looking at the false positive rate, i.e. the share
of positive tests that go to people who are not infected. Figure 1.B.14a shows that
the false positive rate is very high. On average 60% to 93% of positive tests are
received by individuals that are not infected. The false positive rate increases over
time. This is due to the low prevalence of infections in the population, which falls
over time. Again, private rapid tests are an exceptionwith amuch lower false positive
rate because those tests are primarily demanded when there is a high likelihood of
being infected. The false negative rate of 0.2% looks very low. As discussed above
this is deceiving and just a mechanical consequence of a very low prevalence of the
disease and the many rapid tests done by non-infected people.
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Figure 1.B.14. False Positive and False Negative Rates by Channel

Note: The left panel shows the share of positive tests that are given to people who are not infected. This

share is large as can be expected with a very low baseline rate of positive individuals. As the incidence in

the population drops, the false positive rate increases. An exception are the private rapid tests because

they are – especially when the incidence is high – often triggered by events that make it likely that the

test taker is infected and therefore their false positive rate is much lower. The right panel shows the false

negative rate in the population, i.e. the share of negative tests done by infected individuals. This is very low

because there are many truly negative tests in times of low incidences and large scale screening tests.

1.B.15 Scenarios

Here we complement our analysis of the effectiveness of vaccinations and rapid tests
by showing the effects of rapid test policies vis-à-vis the more traditional NPIs, work
from home mandates and school closures. All scenarios start after Easter (April 6).
Our analyses show that many socially costly NPIs can be avoided through strong
rapid testing policies.

Figure 1.B.15 shows the effects of different work policies on the infections in the
general population. We compare four scenarios with our baseline scenario: Keeping
the share of workers having physical work contacts the same as in our baseline
scenario the orange line shows what would have happened with rapid testing in
firms at the level of mid March (orange line) where only 14% of workers regularly
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did rapid tests. We also include a scenario what would have happened if rapid tests
had become truly mandatory after Easter⁹, assuming a 95% compliance rate on
both the employer and the employee side. On the work from home dimension we
compare our baseline scenario with 10% more or less work from home compared to
the baseline scenario. For the total cases, the picture is very clear. Given the testing
policy Germany had in place during that time (twice weekly tests done by 35% to
50% of workers over that time frame) whether 70% (10% below the actual mobility)
or 85% (10% above the actual mobility) of workers attend work physically makes
little difference for the incidence. On the other hand, the effect of a laxer or more
ambitious testing policy for firms is sizable: As can be seen in Figure 1.B.15b the gap
between the two scenarios grows to over 80 incidence points around May 1.As in
other scenarios, the observed cases can be misleading because more testing leads to
more detected cases. It takes two to three weeks for the reduction in new infections
to dominate the increased detection. Furthermore, the two opposing effects lead to
a smaller effect size than is actually the case.
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Figure 1.B.15. The Effect of Different Work Scenarios on Reported and Total Cases

Note: The figure shows the development of cases after different hypothetical work policy changes take

place at Easter until the end of our simulation period. We vary the share of workers that have physical

work contacts (10% more or less compared to the share in the baseline scenario, 85% or 70% of workers,

respectively) and how many tests are performed at work relative to our baseline scenario. As an ambitious

scenario we implement mandatory tests for all employees that do not work from home, assuming 95%

compliance on both the employer and the employee side. On the other hand, we show what would have

happened if the test offers had fallen back to the level of mid March (only 14% of workers are tested regu-

larly). The observed cases can be misleading because more testing leads to more detected cases. It takes

two to three weeks for the reduction in new infections to dominate the increased detection. Furthermore,

the two opposing effects lead to a smaller effect size than is actually the case.

9. Starting on April 19th employers were required by law to provide twoweekly tests to their em-
ployees (Bundesanzeiger, 2021b). However, voluntarily only 60% of workers regularly test themselves
when offered tests (Betsch, Korn, Felgendreff, Eitze, Schmid, Sprengholz, Wieler, Schmich, Stollorz,
Ramharter, Bosnjak, Omer, Thaiss, De Bock, and Von Rüden (2021), 20th/21st of April).
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The second commonly employed and also very contentious NPI we look at are
school closures. Due to the very high incidence we model the German schooling
policy as generous emergency care with rotating on-site schooling for graduating
classes for April. In May where cases fall and schools gradually opened, we model
the policy as rotating on-site schooling for most students (except for children eligible
for emergency care and graduating classes who attend in full). We compare this
baseline scenario to simply keeping schools completely closed (the brown line) and
opening schools normally (but maintaining our hygiene multiplier to account for
mask wearing, ventilation etc.) with and without tests.

As can be seen, the transmission potential in schools is very low both in the gen-
erous emergency setting as well as the rotating operation. The difference to keeping
schools completely closed is very small. Also, consistent testing reduces the trans-
mission potential at schools strongly. Had schools opened directly after Easter given
the testing rates Germany managed at schools during that time, the total incidence
would have been only been 9 incidence points higher on average. Tests, however,
are crucial here. Had schools opened completely without any testing of students
and staff, schools would have added up to 50 incidence points.
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Figure 1.B.16. The Effect of Different School Scenarios on Reported and Total Cases

Note: The figure shows the development of cases after different hypothetical school policy changes take

place at Easter until the end of our simulation period. Apart from the enacted school policies as our base-

line we simulate how cases would have developed if schools had been closed completely as the strictest

possible counterfactual scenario and two opening models: One where schools open normally (with hygiene

measures) without any testing in the education sector and one where schools open normally but testing

develops as in the baseline scenario.

Lastly, we shed some light on the role our rapid test demand channels play for
the effect of rapid tests on case numbers. To do so we ran two scenarios where we
allocated rapid tests either completely randomly in the entire population or among
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70% of the population to account for the fact that a share of the population might
refuse or be very hard to reach with rapid tests.1⁰

Figure 1.B.17 shows how the incidence of detected and total cases develops in
the two random scenarios (red and purple line) relative to our baseline scenario
(blue line). Two things stand out: Firstly, the total number of cases falls much faster
in our baseline scenario compared to the two random scenarios. Secondly, this is
not because the share of detected cases is higher in the baseline scenario; in fact, it
is even slightly lower until end of April.

There are two mechanisms that can explain these surprising facts: Firstly, tests
at the workplace predominantly target a group that has many contacts. Thus, catch-
ing infections in this group prevents more infections than in the general population.
Secondly, rapid tests that are done because of private contact tracing are more effec-
tive at interrupting infection chains because they catch many infections in an early
stage. Isolating infected individuals early on means that there are fewer days on
which they can infect others. The difference between the two random scenarios are
small. This is likely due to only a small fraction of the population being tested on
any given day.
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Figure 1.B.17. The Role of Targeted and Compliance Driven Rapid Test Demand

Note: The figure shows the development of cases in two scenarios where rapid tests are distributed ran-

domly in the population compared to our baseline scenario after Easter. In the baseline scenario rapid

tests are targeted to workers, students, teachers and individuals at high risk of being infected including a

weekly or twice weekly spacing between rapid tests. In the scenario with 30% refusers tests are randomly

distributed among 70% of the population who are identified as compliers.

10. We calculate the number of rapid tests as in our baseline model. This leads to similar numbers
of rapid tests. However given the higher incidence in our random scenarios these scenarios have a
slightly higher number of rapid tests.
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Chapter 2

Structural Models for Policy-Making:

Coping with Parametric Uncertainty
Joint with Philipp Eisenhauer and Lena Janys

2.1 Introduction

Structural microeconometricians use highly parameterized computational models
to investigate economic mechanisms, predict the impact of proposed policies,
and inform optimal policy-making (Wolpin, 2013). These models represent deep
structural relationships of theoretical economic models invariant to policy changes
(Hood and Koopmans, 1953). The sources of uncertainty in such an analysis are
ubiquitous (Saltelli, Bammer, Bruno, Charters, Di Fiore, et al., 2020). For example,
models are often misspecified, there are numerical approximation errors in their
implementation, and model parameters are uncertain. Therefore, most disciplines
require a proper account of uncertainty before using computational models to
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inform decision-making (National Research Council, 2012; Renn, Baghramian, and
Capaccioli, 2019).

The following study focuses on parametric uncertainty in structural microecono-
metric models that are estimated on observed data. Researchers often do not
account for parametric uncertainty and conduct an as-if analysis in which the point
estimates serve as a stand-in for the true model parameters. They then continue to
study the implications of their models at the point estimates (Eisenhauer, Heckman,
and Mosso, 2015; Blundell, Costa Dias, Meghir, and Shaw, 2016; Adda, Dustmann,
and Stevens, 2017; Eckstein, Keane, and Lifshitz, 2019) and rank competing
policy proposals based on the point predictions alone (Todd and Wolpin, 2006;
Cunha, Heckman, and Schennach, 2010; Blundell and Shephard, 2012; Gayle and
Shephard, 2019). In fact, Keane, Todd, and Wolpin (2011) states in their handbook
article that they are unaware of any applied work that reports the distribution of
policy predictions under parametric uncertainty. To the best of our knowledge, this
statement remains true more than a decade later. Consequently, economists risk
accepting fragile findings as facts, ignoring the trade-off between model complexity
and prediction uncertainty, and neglecting to frame policy advice as a decision
problem under uncertainty.

To mitigate these shortcomings, we develop an approach that copes with parametric
uncertainty in structural microeconometric models and embeds model-informed
policy-making in a decision-theoretic framework. Ideally, policy-makers fix the
parameter space ex-ante and then evaluate the policy options according to decision
rules. However, this approach is often computationally intractable. We, therefore,
follow Manski (2021)’s suggestion and, instead of using the parameter estimates
as-if they were true, incorporate uncertainty in the analysis by treating the esti-
mated confidence set as-if it is correct. We use the confidence set to construct an
uncertainty set that is anchored in empirical estimates, statistically meaningful,
and computationally tractable (Ben-Tal, Hertog, De Waegenaere, Melenberg, and
Rennen, 2013). Instead of just focusing on the point estimates, we evaluate
counterfactual policies based on all parametrizations within the uncertainty set.

We draw on statistical decision theory (Manski, 2013) to deal with the uncertainty
in counterfactual predictions. This approach promotes a well-reasoned and trans-
parent policy process. Before a decision, it clarifies trade-offs between choices
(Gilboa, Rouziou, and Sibony, 2018). Afterward, decision-theoretic principles allow
constituents to scrutinize the coherence of choices (Gilboa and Samuelson, 2021),
ease the ex-post justification (Berger, Berger, Bosetti, Gilboa, Hansen, et al., 2021),
and facilitate the communication of uncertainty (Manski, 2019).
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We tailor our approach to the class of Eckstein-Keane-Wolpin (EKW) models
(Aguirregabiria and Mira, 2010). Labor economists often use EKW models to learn
about human capital investment and consumption-saving decisions and predict the
impact of proposed reforms to education policy and welfare programs (Keane, Todd,
and Wolpin, 2011; Blundell, 2017; Low and Meghir, 2017). The analysis of these
models poses serious computational challenges. During estimation, EKW models
are solved thousands of times and even a single solution often takes several minutes.
Thus, a decision-theoretic ex-ante analysis of alternative decision rules across the
whole parameter space, as intended by (Wald, 1950), is infeasible. Instead we
construct an uncertainty set, a subset of the whole parameter space, and deal with
the ex-post uncertainty after estimating the model. This compromise allows us to
garner the benefits of using statistical decision theory to shape policy-making under
uncertainty while ensuring the computational tractability of our analysis.

As an example of our approach, we analyze the seminal human capital investment
model by Keane and Wolpin (1997) as a well-known, empirically grounded, and
computationally demanding test case. We follow the authors and estimate the
model on the National Longitudinal Survey of Youth 1979 (NLSY79) (Bureau of
Labor Statistics, 2019) using the original dataset and reproduce all core results.
We revisit their predictions for the impact of a tuition subsidy on completed years
of schooling. The economics of the model implies that the nonlinear mapping
between the model parameters and predictions is truncated at zero, and we thus
use the Confidence Set (CS) bootstrap (Woutersen and Ham, 2019) to estimate
the confidence set for the counterfactuals. We document considerable uncertainty
in the policy predictions and highlight the resulting policy recommendations from
different formal rules on decision-making under uncertainty.

Our work extends existing research exploring the sensitivity of implications and
predictions to parametric uncertainty in macroeconomics and climate economics.
For example, Harenberg, Marelli, Sudret, and Winschel (2019) study uncertainty
propagation and sensitivity analysis for a standard real business cycle model. Cai
and Lontzek (2019) examine how uncertainties and risks in economic and climate
systems affect the social cost of carbon. However, neither of them estimates their
model on data. Instead, they rely on expert judgments to inform the degree of
parametric uncertainty. They do not investigate the consequences of uncertainty
for policy decisions in a decision-theoretic framework.

We complement a burgeoning literature on the sensitivity analysis of policy
predictions in light of model or moment misspecification. For example, Andrews,
Gentzkow, and Shapiro (2017) and Andrews, Gentzkow, and Shapiro (2020) treat
the model specification as given and then analyze the sensitivity of the parameter
estimates to the misspecification of the moments used for estimation. Christensen
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and Connault (2019) study global sensitivity of the model predictions to misspec-
ification of the distribution of unobservables. Jørgensen (2021) provides a local
measure for the sensitivity of counterfactuals to model parameters that are fixed be-
fore the estimation of the model.1 This literature does not embed the counterfactual
predictions in a decision-theoretic setting. Recent work by Kalouptsidi, Kitamura,
Lima, and Souza-Rodrigues (2021), Kalouptsidi, Scott, and Souza-Rodrigues
(2021), and Norets and Tang (2014) studies (partial) identification and inference
on counterfactuals. However, they all adopt the setup outlined in Rust (1987) and
exploit the additive separability of the immediate utility function between observed
and unobserved state variables, which does not apply to EKW models. In related
work, Blesch and Eisenhauer (2021) conduct a decision-theoretic ex-ante analysis
to determine optimal decision rules in Rust (1987)’s stochastic dynamic investment
model where the decision-maker directly accounts for uncertainty in the model’s
transition dynamics. They only consider uncertainty in a subset of the model’s
parameters which are estimated outside the model and remain fixed to their point
estimates during the analysis.

In Section 2.2, we describe the decision-theoretic framework for making model-
informed decisions under parametric uncertainty using an illustrative example. Af-
ter summarizing the empirical setting of Keane and Wolpin (1997) in Section 2.3,
we present our results in Section 2.4. We complete our analysis in Section 2.5 with
a brief conclusion and outlook.

2.2 Structural Models for Policy-Making

In the following section, we discuss uncertainty propagation and the common
practice of using estimated parameters as a plug-in replacement for the true model
parameters. We then explore the limitations of this strategy and introduce our
alternative approach, in which we implement estimated confidence sets to construct
uncertainty sets. In so doing, we are able to cope with uncertain policy predictions
in a proper decision-theoretic framework.

At a high level, a structural microeconometric model provides a mapping M (θ )
between the l model parameters θ ∈ Θ and a quantity y that is of interest to policy-
makers.

Rl ⊃ Θ ∋ θ 7→ M (θ ) = y

1. For other examples, see Armstrong and Kolesár (2021), Bonhomme and Weidner (2021),
Bugni and Ura (2019), and Mukhin (2018).
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A policy g ∈ G changes the mapping toMg(θ ) and produces a counterfactual yg.

Estimation of a baseline modelM (θ ) describing the status-quo on observed data
allows researchers to learn about the true parameters. Frequentist estimation
procedures such as maximum likelihood estimation and the method of simulated
moments produce a point estimate θ̂ . However, uncertainty about the true parame-
ters remains.

Previewing our empirical analysis of Keane and Wolpin (1997), ourM is provided
by a dynamic model of human capital accumulation, which we estimate on ob-
served schooling and labor market decisions using simulated maximum likelihood
estimation. The policy g is the implementation of a college tuition subsidy, and
the counterfactual is the level of completed schooling in the population. Example
parameters that drive the economics of the model are time preferences of individ-
uals, the return to schooling, and the transferability of work experience across
occupations.

The following illustrative example highlights our key points. We consider two poli-
cies g ∈ {1,2} that result in two different mappings (M1,M2) of the same scalar
θ to a counterfactual yg. Higher values of yg are more desirable for a policy-maker.
The point estimate θ̂ is determined by estimating a baseline model on an observed
dataset. We denote the probability density function of its sampling distribution by fθ̂ .

Under the first policy, the counterfactual is an increasing nonlinear function of θ . In
the case of the second policy, the relationship is decreasing and linear.
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Notes: We parameterize the two models as y1 = exp θ and y2 = 29.08 −
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Figure 2.2.1. Model comparison

Figure 2.2.1 traces the counterfactual from both models over a range of the param-
eter. At the point estimate, both models yield the same value for the counterfactual.
Once we account for uncertainty in our estimates of the true parameter, deciding
which policy to adopt becomes less straightforward: for higher values of θ , the first
policy is preferred, while the opposite is true for lower values.

2.2.1 Uncertainty Sets

Manski (2021) suggests acknowledging parametric uncertainty by working with
estimated confidence sets instead of point estimates. A confidence set Θ(α) ⊂ Θ
covers the true parameters, from an ex-ante point of view, with a predetermined
coverage probability of (1−α). Proceeding with our analysis, we refine the status
quo procedure, in which estimated parameter values serve as a stand-in for the
model’s true parametrization. Instead, we assume the estimated confidence set for
the parameters Θ̂(α) and the counterfactual Θ̂yg

(α) are correct and analyze policy
decisions accordingly.

Based on the estimated confidence sets, we construct so-called uncertainty sets for
the parameters U (α) and the prediction Uyg

(α) by only considering parameteriza-
tions that we cannot reject based on a hypothesis test with confidence level 1−α.
This approach ensures the tractability of our decision-theoretic analysis, as the un-
certainty set of the parameters is much smaller than the whole parameter space of
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the model. We adopt this procedure from the literature on data-driven robust opti-
mization in operations research (Ben-Tal et al., 2013; Bertsimas, Gupta, and Kallus,
2018).

2.2.2 Statistical Decision Theory

In our setting, a policy-maker relies on a structural model with an uncertain
parametrization to map alternative policies to counterfactual predictions. In most
cases, the preferred policy depends on the model’s uncertain true parameters.
We, therefore, draw on statistical decision theory to organize the decision-making
process (Gilboa, 2009; Marinacci, 2015).

Returning to our example, we rank the two policies according to alternative
statistical decision rules using an uncertainty set derived from a confidence set with
a 90% coverage probability. In what follows, we postulate a simple linear utility
function U(yg) to describe the policy-maker’s preferences.2

Figure 2.2.2 shows the implied sampling distribution of the predictions for the two
alternative policies and the corresponding uncertainty sets Uyg

(0.1). The mapping
M1 is highly nonlinear, while the mapping M2 is linear. When evaluated at the
point estimate, the counterfactual is the same under both policies, so a policy-maker
is indifferent. However, the spread of the uncertainty set differs considerably.

2. We assume that the sampling distribution of the point estimate is normal with a mean of
three and a standard deviation of three-fourths. We can derive the uncertainty sets directly and simply
consider realizations of θ ∈ [1.76,4.23].
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Figure 2.2.2. Comparing policy predictions

Decision theory proposes a variety of different rules for reasonable decisions in
this setting. We explore the following four: (1) as-if optimization, (2) maximin
criterion, (3) minimax regret rule, and (4) subjective Bayes.

As-if optimization describes the predominant practice. The estimation of the model
produces point estimates that serve as a plug-in for the true parameters. The decision
maximizes the utility at the point estimate. More formally,

g∗ = argmax
g∈G

U(Mg(θ̂ )).

Given our example, an as-if policy-maker is indifferent between the two policies,
since both policies result in the same counterfactual at the point estimates as
indicated by the dashed line in Figure 2.2.2.

The maximin criterion and minimax regret rule are two common alternatives that fa-
vor actions that work uniformly well over all possible parameters in the uncertainty
set. This approach departs from as-if optimization, which only considers a policy’s
performance at a single point in the uncertainty set. The maximin decision (Wald,
1950; Gilboa and Schmeidler, 1989) is determined by computing the minimum util-
ity for each policy within the uncertainty set and choosing the one with the highest
worst-case outcome. Stated concisely,

g∗ = arg max
g∈G

min
θ∈U (α)

U(Mg(θ )).

Returning to Figure 2.2.2, a maximin policy-maker prefers g2 as the worst-case
outcome. Within the uncertainty set, y

2
is better than under the alternative policy,
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g1.

The minimax regret rule (Niehans, 1948; Manski, 2004) computes the maximum
regret for each policy over the whole uncertainty set and chooses the policy that
minimizes the maximum regret. The regret of choosing a policy g for a given pa-
rameterization of the model is the difference between the maximum possible utility
achieved from adopting g̃ ∈ G and the actual utility obtained. The decision maxi-
mizes:

g∗ = arg min
g∈G

max
θ∈U (α)

�

max
g̃∈G

U(Mg̃(θ )) − U(Mg(θ ))
�

︸ ︷︷ ︸

regret

.

Figure 2.2.3 compares our two policy examples over the uncertainty sets. A policy-
maker adopting policy g1 regrets his choice for small values of the model parameter,
while the opposite is true for larger values. The regret of each policy is maximized at
the boundaries of the uncertainty set. Maximum regret is minimized when a policy-
maker chooses g1. It corresponds to the difference in the counterfactual at the lower
boundary of the uncertainty set instead of the larger difference at its upper bound.
This outcome contradicts the maximin decision in which policy g2 is preferred.
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Figure 2.2.3. Comparing policy regret

Each decision rule presented so far focuses on a single point in the uncertainty set
as the policy’s relevant performance measure. Bayesian approaches aggregate a
policy’s performance over the complete uncertainty set.
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Maximization of the subjective expected utility (Savage, 1954) requires the policy-
maker to place a subjective probability distribution fθ over the parameters in the un-
certainty set. A policy-maker then selects the alternative with the highest expected
subjective utility. Formally,

g∗ = argmax
g∈G

∫

U (α)

U(Mg(θ ))dfθ .

Applying a uniform distribution to our example, a policy-maker chooses g1, which
performs well for high values of θ and still reasonably well for low values.

2.3 Eckstein-Keane-Wolpin Models

We now present the general structure of Eckstein-Keane-Wolpin (EKW) models
(Aguirregabiria and Mira, 2010) and their solution approach. We then turn to the
customized version used by Keane and Wolpin (1997) to study the career deci-
sions of young men and investigate the consequences of parametric uncertainty in
this empirically-grounded and computationally demanding setting. We outline their
model’s basic setup, provide some descriptive statistics of the empirical data used in
our estimation, and then discuss the core findings.

2.3.1 General Structure

EKW models describe sequential decision-making under uncertainty (Gilboa, 2009;
Machina and Viscusi, 2014). At time t= 1, . . . , T each individual observes the state
of their choice environment st ∈ S and chooses an action at from the set of admissible
actionsA . The decision has two consequences: an individual receives an immediate
utility ut(st, at) and their environment evolves to a new state st+1. The transition
from st to st+1 is affected by the action but remains uncertain. Since individuals are
forward-looking, they do not simply choose the alternative with the highest imme-
diate utility. Instead, they take the future consequences of their actions into account.

A policy π= (dπ1 , . . . , dπT ) provides the individual with instructions for choosing an
action in any possible future state. It is a sequence of decision rules dπt that specify
the action dπt (st) ∈A at a particular time t for any possible state st under π. The
implementation of a policy generates a sequence of utilities that depends on the
objective transition probability distribution pt(st, at) for the evolution from state st

to st+1 induced by the model.

Figure 2.3.1 depicts the timing of events for two generic periods. At the beginning
of period t, an individual fully learns about each action’s immediate utility, selects
one of the alternatives, and receives its immediate utility. Then, the state evolves
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Figure 2.3.1. Timing of events

from st to st+1, and the process repeats itself in t+ 1.

Individuals make their decisions facing uncertainty about the future and seek to
maximize their expected total discounted utilities over all decision periods given
all available information. They have rational expectations (Muth, 1961), so their
subjective beliefs about the future agree with the objective probabilities for all
possible future events provided by the model. Immediate utilities are separable
between periods (Kahneman, Wakker, and Sarin, 1997), and a discount factor
δ parameterizes a preference for immediate over future utilities (Samuelson, 1937).

Equation (2.3.1) formally describes the individual’s objective. Given an initial state
s1, they implement a policy π that maximizes the expected total discounted utilities
over all decision periods given the information available at the time.

max
π∈Π

Eπs1

� T
∑

t=1

δt−1ut(st, dπt (st))

�

(2.3.1)

EKWmodels are set up as a standard Markov decision process (MDP) (White, 1993;
Puterman, 1994; Rust, 1994) that can be solved by a simple backward induction
procedure. In the final period T, there is no future to consider, and the optimal action
is choosing the alternative with the highest immediate utility in each state. With
the decision rule for the final period, we can determine all other optimal decisions
recursively. We use our group’s open-source research code respy (Gabler and Raabe,
2020), which allows for the flexible specification, simulation, and estimation of EKW
models. Detailed documentation of the software and its numerical components is
available at http://respy.readthedocs.io.

2.3.2 The Career Decisions of Young Men

Keane andWolpin (1997) specialize the model above to explore the career decisions
of young men regarding their schooling, work, and occupational choices using the
National Longitudinal Survey of Youth 1979 (NLSY79) (Bureau of Labor Statistics,

http://respy.readthedocs.io
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Figure 2.3.2. Decision tree

2019) for the estimation of the model. We restrict ourselves to a basic summary
of their setup. Further documentation of the model specification and the observed
dataset is available in the Appendix.

Keane and Wolpin (1997) follows individuals over their working life from young
adulthood at age 16 to retirement at age 65. Each decision period t= 16, . . . , 65
represents a school year. Figure 2.3.2 illustrates the initial decision problem as
individuals select one of five alternatives from the set of admissible actions a ∈A .
They can decide to either work in a blue-collar or a white-collar occupation
(a= 1,2), serve in the military (a= 3), attend school (a= 4), or stay at home
(a= 5).

Individuals are already heterogeneous when entering the model. They differ
with respect to their level of initial schooling h16, and have one of four different
J = {1, . . . , 4} alternative-specific skill endowment types e=

�

ej,a

�

J×A .

The immediate utility ua(·) of each alternative consists of a non-pecuniary util-
ity ζa(·) and, at least for the working alternatives, an additional wage compo-
nent wa(·). Both depend on the level of human capital as measured by their
alternative-specific skill endowment e, their years of completed schooling ht, and
their occupation-specific work experience kt =

�

ka,t

�

a∈{1,2,3}. The immediate utili-
ties are influenced by last-period choices at−1 and alternative-specific productivity
shocks εt =
�

εa,t

�

a∈A as well. Their general form is given by:
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ua(·) =







ζa(kt, ht, t, at−1) + wa(kt, ht, t, at−1, ej,a,εa,t) ifa ∈ {1, 2,3}

ζa(kt, ht, t, at−1, ej,a,εa,t) ifa ∈ {4,5}.

Work experience kt and years of completed schooling ht evolve deterministically.
There is no uncertainty about grade completion (Altonji, 1993) and no part-time
enrollment. Schooling is defined by time spent in school, not by formal credentials
acquired. Once individuals reach a certain amount of schooling, they acquire a de-
gree.

ka,t+1 = ka,t + I[at = a] ifa ∈ {1,2, 3}

ht+1 = ht + I[at = 4]

The productivity shocks εt are uncorrelated across time and follow a multivariate
normal distribution with mean 0 and covariance matrix Σ. Given the structure
of the utility functions and the distribution of the shocks, the state at time t is
st = {kt, ht, t, at−1, e,εt}.

Skill endowments e and initial schooling h16 are the only sources of persistent
heterogeneity in the model. All remaining differences in life-cycle decisions result
from different transitory shocks εt that occur over time.

Theoretical and empirical research from specialized disciplines within economics in-
forms the specification of each ua(·). As an example, we provide the exact functional
form of the non-pecuniary utility from schooling in Equation (2.3.2). Further details
on the specification of the utility functions are available in the Appendix.

ζ4(st) = ej,4
︸︷︷︸

type

+βtc1
· I[ht ≥ 12] + βtc2

· I[ht ≥ 16]
︸ ︷︷ ︸

tuition costs

+γ4,4 · t + γ4,5 · I[t < 18]
︸ ︷︷ ︸

time trend
(2.3.2)

+ βrc1
· I[at−1 ̸= 4, ht < 12] + βrc2

· I[at−1 ̸= 4, ht ≥ 12]
︸ ︷︷ ︸

re-enrollment cost

+ . . . + ε4,t

There is a direct cost in the form of tuition for continuing education after high
school βtc1

and college βtc2
. The decision to leave school is reversible, but entails

re-enrollment costs that differ by schooling category (βrc1
,βrc2

).

We analyze the original dataset used by Keane and Wolpin (1997). We only provide
a brief description and relegate further details to the Appendix. The authors
construct their sample based on the NLSY79, a nationally representative sample
of young men and women living in the United States in 1979 and born between
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1957 and 1964. Individuals were followed from 1979 onwards and repeatedly
interviewed about their schooling decisions and labor market experiences. Based
on this information, individuals are assigned to either working in one of the three
occupations, attending school, or simply staying at home.

Keane and Wolpin (1997) restrict attention to white men, who turned 16 between
1977 and 1981, and exploit information collected between 1979 and 1987. Thus,
individuals in the sample range in age between 16 and 26 years old. While the
sample initially consists of 1,373 individuals at age 16, this number drops to 256
at the age of 26 due to sample attrition and missing data. Overall, the final sample
consists of 12,359 person-period observations.

Figure 2.3.3 summarizes the evolution of choices and wages over the sample period.
Roughly 86% of individuals initially enroll in school, but this share steadily declines
with age. Nevertheless, about 39% pursue some form of higher education and
obtain more than a high school degree. As individuals leave school, most of them
initially pursue a blue-collar occupation. However, the relative share of white-collar
workers increases as individuals entering the labor market later gain access to
higher levels of schooling. At age 26, about 48% work in a blue-collar occupation
and 34% in a white-collar occupation. The share of individuals in the military
peaks around age 20 at 8%. At its maximum around age 18, approximately 20% of
individuals stay at home.
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Figure 2.3.3. Data overview

For an individual, the average wage starts at about $10,000 at age 16 and increases
considerably up to about $25,000 by the age of 26. While starting wages for
blue-collar workers are about $10,286, wages in white-collar occupations and the
military start around $9,000. However, wages for white-collar occupations increase
sharply over time, overtaking blue-collar wages around age 21. By the end of the
observation period, wages for white-collar occupations are about 50% higher than
blue-collar wages at $32,756 compared to only $20,739. Military wages remain
lowest throughout.

We consider observations for i= 1, . . . , N individuals in each time period t= 1, . . . , Ti.
For every observation (i, t) in the data, we observe the action ait, some components
ūit of the utility, and a subset s̄it of the state sit. Therefore, from an economist’s point
of view, we must distinguish between two types of state variables sit = {s̄it, e,εt}. At
time t, the economist and individual both observe s̄it, while {e,εt} is only observed
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by the individual.

We use simulated maximum likelihood (Fisher, 1922; Manski and Lerman, 1977)
estimation and determine the 88 model parameters θ̂ that maximize the likelihood
function L (θ | D). As we only observe a subset s̄t = {kt, ht, t, at−1} of the state, we
can determine the probability pit(ait, ūit | s̄it,θ ) of individual i at time t in s̄it choosing
ait and receiving ūit given parametric assumptions about the distribution of εt. The
objective function takes the following form:

θ̂ ≡ arg max
θ∈Θ

N
∏

i=1

Ti
∏

t=1

pit(ait, ūit | s̄it,θ )

︸ ︷︷ ︸

L (θ |D)

.

Overall, our parameter estimates are in broad agreement with the results reported
in the original paper and the related literature. For example, individuals discount
future utilities by 6% per year. The returns to schooling vary according to occu-
pation. While wages for white-collar occupations increase by about 6% with each
additional year of schooling, they only increase by 2% for those working blue collar
jobs. Skills are transferable across occupations as work experience increases wages
in both blue and white-collar occupations.

Figure 2.3.4 shows the overall agreement between the empirical data and a dataset
simulated using the estimated model parameters. We show average wages and the
share of individuals choosing a blue-collar occupation over time. The results are
based on a simulated sample of 10,000 individuals. Additional model fit statistics
are available in the Appendix.
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Figure 2.3.4. Model fit

We adhere to the procedure outlined by the authors of the original paper and use
the estimated model to conduct the ex-ante evaluation of a $2,000 tuition subsidy
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on educational attainment. We simulate a sample of 10,000 individuals using the
point estimates and compare completed schooling to a sample of the same size, but
with a reduction of β̂tc1

by $2,000. The subsidy increases average final schooling by
0.65 years. College graduation increases by 13 percentage points, and high school
graduation rates improve by 4 percentage points.

2.3.3 Confidence Set Bootstrap

The construction of confidence sets for counterfactuals in many structural models
poses two distinct challenges. First, the computational burden of even a single
estimation of the model is considerable. This makes the application of a standard
bootstrap approach (Efron, 1979) infeasible. Second, the nonlinear mapping from
the parameters of the model to the counterfactual predictions often has kinks or
is truncated. For example, in our case, the predicted impact of a tuition subsidy
is bounded from below by zero. This violates the smoothness requirements of the
delta method.

We use the Confidence Set (CS) bootstrap to construct the confidence set of the
counterfactual. Although the CS bootstrap was originally proposed in Rao (1973),
it has only recently been formalized by Woutersen and Ham (2019). Its application
does not require repeated estimations of the model, as it uses the asymptotic normal
distribution of the estimator for θ̂ . Furthermore, its validity does not depend on
the differentiability of the prediction function.3

Algorithm 1 provides a concise description of the steps involved, where χ2
l (1−α)

is the quantile function for probability 1−α of the chi-square distribution with l
degrees of freedom.

3. See Reich and Judd (2020) for a critical assessment of confidence sets based on asymptotic
arguments. They advocate the use of likelihood-ratio confidence intervals instead and set up their
computation as a constraint optimization problem.
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Algorithm 1 . Confidence Set bootstrap

for m = 1, . . . , M do

Draw θ̂m ∼ N (θ̂, Σ̂)

if (θ̂m − θ̂)′Σ̂−1(θ̂m − θ̂) ≤ χ2
l
(1 − α) then

Compute ŷg,m =Mg(θ̂m)

Add ŷg,m to sample Y = {ŷg,1, . . . , ŷg,m−1}

end if

end for

Set Θyg
(α) = [min(Y), max(Y)]

To summarize, we draw a large sample of M parameters from the estimated
asymptotic normal distribution of our estimator with mean θ̂ and covariance matrix
Σ̂, accepting only those draws that are elements of the confidence set of the model
parameters. We then compute the counterfactual for all remaining draws and
calculate the confidence set for the counterfactual based on its lowest and highest
value.

The CS bootstrap poses a considerable computational challenge. In many appli-
cations, including our own, a single prediction of a counterfactual takes several
minutes. At the same time, the number of parameter samples must be large to
ensure that the minimum and maximum values for the counterfactual prediction
are reliable. However, the algorithm is amenable to parallelization using modern
high-performance computational resources by processing each of the M parameter
draws independently.

Our uncertainty sets then take the following form:

U (α) ≡
�

θ ∈ Θ : (θ − θ̂ )′Σ̂−1(θ − θ̂ ) ≤ χ2
l (1 − α)
	

Uyg
(α) ≡
�

Mg(θ ) : (θ − θ̂ )′Σ̂−1(θ − θ̂ ) ≤ χ2
l (1 − α),θ ∈ Θ

	

.

2.4 Results

Turning to the presentation of our results, we focus on the impact of a $2, 000
tuition subsidy on completed schooling and use the 90% uncertainty set to measure
the degree of uncertainty. All our results potentially depend on the size of the
uncertainty set. In practice, policy-makers choose the uncertainty set’s size in
line with their underlying preferences - the more desirable protection against
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unfavorable outcomes is, the larger the uncertainty set will be.⁴

All results are based on 30, 000 draws from the asymptotic normal distribution of
our parameter estimates. We follow Keane and Wolpin (1997) and start by analyz-
ing the prediction for a general subsidy. Then we turn to the situation where we
use endowment types for policy targeting. Throughout our analysis, we postulate a
linear utility function for the policy-maker.

2.4.1 General Subsidy

Figure 2.4.1 explores the impact prediction for a general tuition subsidy. We show
the point prediction, its sampling distribution, and the uncertainty set. At the point
estimate, average schooling increases by 0.65 years. However, there is considerable
uncertainty about the prediction, as the uncertainty set ranges from 0.15 to 1.10
years.
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Figure 2.4.1. General subsidy

In Figure 2.4.2, we trace the effect of the discount rate δ on the subsidy’s impact
over the uncertainty set, while keeping all other parameters at their point estimate.
Initially, as δ increases, so does the policy’s impact as individuals value the long-term
benefits from increasing their level of schooling more and more. However, for high
levels of the discount factor, the policy’s impact starts to decrease as most individuals
already complete a high school or college degree even without the subsidy.

4. In a different setting, Blesch and Eisenhauer (2021) conduct an ex-ante performance evalua-
tion of the statistical decision functions over the whole parameter space (Wald, 1950; Manski, 2021).
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Figure 2.4.2. Time preference

2.4.2 Targeted Subsidy

So far, we restricted the analysis to a general subsidy available to the whole
population and the average predicted impact. We now examine the setting in which
a policy-maker can target individuals based on the type of their initial endowment.
The importance of early endowment heterogeneity in shaping economic outcomes
over the life-cycle is the most important finding from Keane and Wolpin (1997). It
served as motivation for a host of subsequent research on the determinants of skill
heterogeneity among adolescents (Todd and Wolpin, 2007; Erosa, Koreshkova, and
Restuccia, 2010; Caucutt and Lochner, 2020).

To ease the exposition, we initially focus our discussion of results on Type 1 and
Type 3 individuals. We later rank policies targeting either of the four types based
on the different decision-theoretic criteria. Additional results are available in our
Appendix.

Figure 2.4.3 confirms that life-cycle choices differ considerably by initial endowment
type. On the left, we show the number of periods the two types spend on average in
each of the five alternatives. Those characterized as Type 1 individuals spend more
than six years on their education even after entering the model. Type 3 individuals,
on the other hand, extend their academic pursuits for only an additional two years.
This difference translates into very different labor market experiences. While Type
1 individuals work for about 35 years in a white-collar occupation, Type 3 work-
ers switch more frequently between white and blue-collar occupations and spend a
comparable amount of time working in either occupation – approximately 44 years
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split equally among white and blue-collar occupations. Both types only spend a short
time at home.
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Figure 2.4.3. Type heterogeneity

On the right, we show the distribution of final schooling for both types. Years of
schooling are considerably higher for Type 1 individuals with an average of more
than 16 years compared to only 12 years for those identified as Type 3 individ-
uals. Nearly all Type 1 individuals enroll in college andmost graduate with a degree.

Figure 2.4.4 provides a visualization of our core results for a targeted subsidy. At
the point estimates, the predicted impact is considerably lower for Type 1 than Type
3. However, the prediction uncertainty is much larger for Type 3 compared to Type
1. The uncertainty set for Type 3 ranges all the way from 0 to 1.2 years, while the
prediction for Type 1 is between 0.18 and 0.75.
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Figure 2.4.4. Targeted subsidy

This heterogeneity in impact and prediction uncertainty follows directly from the
underlying economics of the model. Type 1 individuals are already more likely
to have a college degree before the subsidy, and thus, the predicted impact is
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smaller. Alternatively, Type 1 individuals affected by the subsidy are in the middle
of pursuing a college education and thus directly benefit from it. Since Type 3
individuals are at the lower end of the schooling distribution, a tuition subsidy can
considerably increase their level of schooling. Whether the subsidy succeeds in
doing so, however, remains uncertain.

We now consider the policy option to target Type 2 and Type 4 as well. Their point
predictions are actually highest with an additional 0.81 years on average for Type 2
and 0.75 years for Type 4. However, both predictions are fraught with uncertainty.
For Type 2 the uncertainty set ranges from 0.17 to 1.3, while for Type 4 it starts at
zero and spans all the way to 1.18.

Figure 2.4.5 shows the policy alternative’s ranking by the decision-theoretic crite-
ria we discussed in Section 2.2.2. Ranking alternatives using as-if optimization is
straightforward. A policy targeting Type 2 is the most preferred alternative, while a
focus on Type 1 is the least attractive. However, once we account for the presence of
uncertainty in the predictions, a more nuanced picture emerges. Moving from as-if
optimization to a subjective Bayes criterion using a uniform distribution over the
uncertainty set does not change the ordering. However, once a decision-maker is
concerned with performance across the whole range of values in the uncertainty set
– we move to the minimax regret or maximin criterion – a policy targeting Type 1
becomes more and more attractive despite its low point prediction because its worst-
case utility is highest.

As-if Subjective
Bayes

Minimax
regret

Maximin

Rank 1

Rank 2

Rank 3

Rank 4

Type 1 Type 2 Type 3 Type 4

Figure 2.4.5. Policy ranking
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In general, framing policy advice as a decision problem under uncertainty shows
that there are many different ways of making reasonable decisions. The ranking of
policies varies depending on the decision criteria. Not only that, but due to the nec-
essary ex-post nature of our implementation, the ranking for a given criteria also
depends on the choice of α. The selection of α is part of the decision problem: the
more a policy-maker is concerned about worst-case scenarios, the smaller the appro-
priate value for α will be. After deciding on a preferred decision rule, we suggest
performing a sensitivity analysis around the selected α value by checking how much
the policy ranking varies within a neighborhood.

2.5 Conclusion

We develop a generic approach that addresses parametric uncertainty when using
models to inform policy-making. We propose a decision-theoretic analysis of com-
putationally demanding structural models based on uncertainty sets. We construct
the uncertainty sets from empirical estimates and ensure their computational
tractability by using the confidence set bootstrap. We revisit the seminal work
by Keane and Wolpin (1997) to document the empirical relevance of prediction
uncertainty and showcase our analysis. Focusing on their ex-ante evaluation of
a tuition subsidy, we report considerable uncertainty in the policy’s impact on
completed schooling. We show how a policy-maker’s preferred policy depends on
the choice of alternative formal rules for decision-making under uncertainty.

In our ongoing research, we pursue three avenues for further improvements. First,
we link our work with the literature on inference under (local) model misspecifica-
tion to refine the construction of our uncertainty sets. For example, Armstrong and
Kolesár (2021) and Bonhomme and Weidner (2021) propose different methods for
taking misspecification into account when constructing confidence sets. Second, we
incorporate ideas from the literature on global sensitivity analysis (Razavi, Jake-
man, Saltelli, Prieur, Iooss, et al., 2021) to identify the parameters most responsible
for uncertainty in predictions. The attribution of importance based on Shapely val-
ues, familiar to economists from game theory, appears promising (Shapley, 1953;
Owen, 2014) as well. Third, we address our analysis’s computational burden using
surrogate modeling (Forrester, Sobester, and Keane, 2008), which emulates the full
model’s behavior at a negligible cost per run and allows us to determine prediction
uncertainty using a nonparametric bootstrap procedure.
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Appendix 2.A Sumplementary Material

The Appendix contains details on our computational implementation, the estimation
dataset, and additional results.

2.A.1 Computation

Using the same computational implementation as Keane and Wolpin (1997), we
outline the immediate utility functions for each of the five alternatives. We first
focus on their common structure and then present their parameterization. We also
provide the economic motivation for their specification.

We follow individuals over their working life from age 16 until retirement at age
65. Each decision period t= 16, . . . , 65 represents a school year. Individuals can
select one of five alternatives from the set of admissible actions a ∈A . They can
decide to either work in a blue-collar or white-collar occupation (a= 1, 2), serve in
the military (a= 3), attend school (a= 4), or stay at home (a= 5).

Individuals differ with respect to their initial level of completed schooling h16,
and they possess one of four J = {1, . . . , 4} alternative-specific skill endowments
e=
�

ej,a

�

J×A .

The immediate utility ua(·) of each alternative consists of a non-pecuniary util-
ity ζa(·) and, at least for the working alternatives, an additional wage compo-
nent wa(·), both of which depend on the level of human capital as measured by
their occupation-specific work experience kt =

�

ka,t

�

a∈{1,2,3}, years of completed
schooling ht, and alternative-specific skill endowment e. The immediate utility func-
tions are influenced by last-period choices at−1 and alternative-specific productivity
shocks εt =
�

εa,t

�

a∈A as well. Their general form is given by:

ua(·) =







ζa(kt, ht, t, at−1) + wa(kt, ht, t, at−1, ej,a,εa,t) ifa ∈ {1,2, 3}

ζa(kt, ht, t, at−1, ej,a,εa,t) ifa ∈ {4,5}.

Work experience kt and years of completed schooling ht evolve deterministically:

ka,t+1 = ka,t + I[at = a] ifa ∈ {1,2, 3}

ht+1 = ht + I[at = 4].

The productivity shocks are uncorrelated across time and follow a multivariate
normal distribution with mean 0 and covariance matrix Σ. Given the structure
of the utility functions and the distribution of the shocks, the state at time t is
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st = {kt, ht, t, at−1, e,εt}.

Empirical and theoretical research from specialized disciplines within economics
informs the exact specification of ua(·). We now discuss each of its components in
detail.

Non-Pecuniary Utility

We begin by presenting the parameterization of the non-pecuniary utility for all five
alternatives.

Blue-collar. Equation (2.A.1) shows the parameterization of the non-pecuniary
utility from working in a blue-collar occupation:

ζ1(kt, ht, at−1) = α1 + c1,1 · I[at−1 ̸= 1] + c1,2 · I[k1,t = 0] (2.A.1)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1].

A constant α1 captures the net monetary equivalent of on-the-job amenities. Non-
pecuniary utility includes mobility and search costs c1,1, which are higher for in-
dividuals who had previously never worked in a blue-collar occupation, c1,2, and
captures returns from high school, ϑ1, and college degrees, ϑ2. Additionally, there
is a detrimental effect of prematurely leaving the military after one year, ϑ3.

White-collar. The non-pecuniary utility from working in a white-collar occupation
is specified analogously. Equation (2.A.2) shows its parameterization:

ζ2(kt, ht, at−1) = α2 + c2,1 · I[at−1 ̸= 2] + c2,2 · I[k2,t = 0] (2.A.2)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1].

Military. Equation (2.A.3) shows the parameterization of the non-pecuniary utility
from working in the military:

ζ3(k3.t, ht) = c3,2 · I[k3,t = 0] + ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16]. (2.A.3)

Although search costs c3,1 = 0 are absent, there is a mobility cost if an individual
has never previously served in the military, c3,2. Individuals still experience a non-
pecuniary utility from completing high school, ϑ1, and college, ϑ2.
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School. Equation (2.A.4) shows the parameterization of the non-pecuniary utility
from schooling:

ζ4(k3,t, ht, t, at−1, ej,4,ε4,t) = ej,4 + βtc1
· I[ht ≥ 12] + βtc2

· I[ht ≥ 16] (2.A.4)

+ βrc1
· I[at−1 ̸= 4, ht < 12]

+ βrc2
· I[at−1 ̸= 4, ht ≥ 12] + γ4,4 · t

+ γ4,5 · I[t < 18] + ϑ1 · I[ht ≥ 12]

+ ϑ2 · I[ht ≥ 16] + ϑ3 · I[k3,t = 1] + ε4,t.

There are direct costs for pursuing higher education, which primarily take the form
of college, βtc1

, and graduate school tuition fees, βtc2
. The decision to leave school is

reversible, but entails adjustment costs that differ by schooling category (βrc1
,βrc2

).
Education is defined by time spent in school, not by formal credentials acquired.
Once individuals reach a certain amount of schooling, they acquire a degree. There is
no uncertainty about grade completion (Altonji, 1993) and no part-time enrollment.
Individuals value the completion of high school and college (ϑ1,ϑ2).

Home. Equation (2.A.5) shows the parameterization of the non-pecuniary utility
from staying at home:

ζ5(k3,t, ht, t, ej,5,ε5,1) = ej,5 + γ5,4 · I[18 ≤ t ≤ 20] + γ5,5 · I[t ≥ 21] (2.A.5)

+ ϑ1 · I[ht ≥ 12] + ϑ2 · I[ht ≥ 16]

+ ϑ3 · I[k3,t = 1] + ε5,t.

Staying at home as a young adult, γ5,4, is less stigmatized than doing so as an older
individual, γ5,5. Possessing a degree (ϑ1,ϑ2) or leaving the military prematurely, ϑ3,
influences the immediate utility as well.

Wage Component

The wage component wa(·) for the working alternatives is given by the product of
the market-equilibrium rental price ra and an occupation-specific skill level xa(·).
The latter is determined by the overall level of human capital:

wa(·) = ra xa(·).

This specification leads to a standard logarithmic wage equation in which the con-
stant term is the skill rental price ln(ra) and wages follow a log-normal distribution.
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The occupation-specific skill level xa(·) is determined by a skill production function,
which includes a deterministic component Γa(·) and a multiplicative stochastic pro-
ductivity shock εa,t:

xa(kt, ht, t, at−1, ej,a,εa,t) = exp
�

Γa(kt, ht, t, at−1, ej,a) · εa,t

�

.

Blue-collar. Equation (2.A.6) shows the parameterization of the deterministic com-
ponent of the skill production function:

Γ1(kt, ht, t, at−1, ej,1) = ej,1 + β1,1 · ht + β1,2 · I[ht ≥ 12] (2.A.6)

+ β1,3 · I[ht ≥ 16] + γ1,1 · k1,t + γ1,2 · (k1,t)
2

+ γ1,3 · I[k1,t > 0] + γ1,4 · t + γ1,5 · I[t < 18]

+ γ1,6 · I[at−1 = 1] + γ1,7 · k2,t + γ1,8 · k3,t.

There are several notable features. The first part of the skill production function
is motivated by Mincer (1974) and, hence, linear in years of completed schooling,
β1,1, quadratic in experience (γ1,1,γ1,2), and separable between the two of them.
There are so-called sheep-skin effects (Hungerford and Solon, 1987; Jaeger and
Page, 1996) associated with completing a high school, β1,2, or graduate education,
β1,3, which capture the impact of completing a degree beyond the associated years
of schooling. There is also a first-year blue-collar experience effect γ1,3. Additionally,
job skills depreciate for blue-collar workers, who were unemployed in the previous
period, γ1,6. All forms of work experience (γ1,7,γ1,8) are transferable.

White-collar. The wage component from working in a white-collar occupation is
specified analogously. Equation (2.A.7) shows the parameterization of the determin-
istic component of the skill production function:

Γ2(kt, ht, t, at−1, ej,2) = ej,2 + β2,1 · ht + β2,2 · I[ht ≥ 12] (2.A.7)

+ β2,3 · I[ht ≥ 16] + γ2,1 · k2,t + γ2,2 · (k2,t)
2

+ γ2,3 · I[k2,t > 0] + γ2,4 · t + γ2,5 · I[t < 18]

+ γ2,6 · I[at−1 = 2] + γ2,7 · k1,t + γ2,8 · k3,t.
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Military. Equation (2.A.8) shows the parameterization of the deterministic compo-
nent of the skill production function:

Γ3(k3,t, ht, t, ej,3) = ej,3 + β3,1 · ht (2.A.8)

+ γ3,1 · k3,t + γ3,2 · (k3,t)
2 + γ3,3 · I[k3,t > 0]

+ γ3,4 · t + γ3,5 · I[t < 18].

Unlike the civilian sector, there are no sheep-skin effects from completing military
training, (β3,2 = β3,3 = 0). Furthermore, the previous occupational choice has no
influence (γ3,6 = 0), and any experience other than military is non-transferable
(γ3,7 = γ3,8 = 0).

Remark 1. Our parameterization for the immediate utility of serving in the mili-
tary differs from Keane and Wolpin (1997), as we remain unsure about their exact
specification. The authors state in Footnote 31 (p. 498) that the constant for the
non-pecuniary utility α3,t depends on age. However, we are unable to determine the
precise nature of the relationship. Equation (C3) (p. 521) also indicates no produc-
tivity shock εa,t in the wage component. Table 7 (p. 500) reports such estimates.

Table 2.A.1 presents an overview of the model’s parameters.

Table 2.A.1. Overview of parameters in the Keane and Wolpin (1997) extended model.

Parameter Description

Preference and type-specific parameters

δ discount factor

ej,a initial endowment of type j in alternative a specific skills

Common parameters immediate utility

αa return on non-wage working conditions

ë1 non-pecuniary premium for finishing high school

ë2 non-pecuniary premium for finishing college

ë3 non-pecuniary premium for leaving the military early

Schooling-related parameters

βa,1 return on each additional year of completed schooling

βa,2 skill premium for high school graduates

continued on next page
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continued from previous page

βa,3 skill premium for college graduates

βtc1
tuition costs for high school

βtc2
tuition costs for college

βrc1
re-entry costs for high school

βrc2
re-entry costs for college

β5,2 skill premium for high school graduates

β5,3 skill premium for college graduates

Experience-related parameters

γa,1 return on same-sector experience

γa,2 return squared on same-sector experience

γa,3 premium for having previously worked in sector

γa,4 return on age effect

γa,5 return on age effect for minors

γa,6 premium for remaining in same sector

γa,7 return on civilian cross-sector experience

γa,8 return on non-civilian sector experience

γ3,1 return on same-sector experience

γ3,2 return squared on same-sector experience

γ3,3 premium for having previously worked in sector

γ3,4 return on age effect

γ3,5 return on age effect for minors

γ4,4 return on age effect

γ4,5 return on age effect for minors

γ5,4 return on age, between 17 and 21

γ5,5 return on age, older than 21

Mobility and search parameters

ca,1 premium for switching to occupation a

ca,2 premium for working in occupation a for the first time

c3,2 premium for serving in the military for the first time

Error correlation

continued on next page
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continued from previous page

σa,a standard deviation of shock in alternative a

σi,j correlation between shocks in alternative a = i and a = j with i ̸= j

Note: The above list is an overview of the model parameters. The immediate utilities

for the alternatives do not necessarily include all of them.

2.A.2 Data

We use the same data as Keane and Wolpin (1997), who derive their sample
from the National Longitudinal Survey of Youth 1979 (NLSY79) (Bureau of
Labor Statistics, 2019). The NLSY79 is a nationally representative sample of
young men and women living in the United States in 1979 and born between
1957 and 1964. Individuals were followed from 1979 onwards and repeatedly
interviewed about their educational decisions and labor market experiences. Based
on this information, individuals are assigned to either working in one of three
occupations, attending school, or simply staying at home. The decision period is
represented by the school year. The sample is restricted to white men, who turned
16 between 1977 and 1981, and it uses information collected between 1979 and
1987. Thus, the individuals in the sample range in age between 16 and 26 years old.

Figure 2.A.1 shows the sample size by age. While the sample initially consists of
1,373 16-year-olds, this value drops to 256, once the sampled individuals reach the
age of 26 due to sample attrition, missing data, and the short observation period.
Overall, the final sample consists of 12,359 person-period observations.
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Figure 2.A.1. Sample size

Figure 2.A.2 shows the distribution of initial schooling among individuals at the
time they enter the model. The majority of individuals enter the model with ten
years of schooling, while about a quarter of the sample has less than ten years of
schooling. About 7.5% of individuals already attended school for 11 years.
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Figure 2.A.2. Initial schooling

Figure 2.A.3 shows heterogeneity of choices by the level of initial schooling.
Individuals who enter the model with only seven years of schooling spend an
additional 0.65 years in school after age 16. Consequently, they spend around
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four years at home. In the event that they are working, it is likely in a blue-collar
occupation. When starting with ten years of schooling, then individuals add roughly
another three years while in the model. This increase is about half a year more than
individuals that start with eleven years.
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Figure 2.A.3. Average choices by initial schooling

Figure 2.A.4 documents strong persistence in choices over time. For example,
among those with a white-collar occupation in t, 67% work in the same occupation
in t+ 1, while 20% switch to a blue-collar job.
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Figure 2.A.4. Transition matrix
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2.A.3 Results

Figure 2.A.5 shows further comparisons between the simulated and empirical data.
All results from the estimated model are based on 10,000 individuals.
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Figure 2.A.5. Model fit

Figure 2.A.6 provides the point prediction, its sampling distribution, and the esti-
mated confidence set for the impact of the tuition subsidy on all types. All results
are based on 30,000 draws from the asymptotic normal distribution of our parame-
ter estimates.
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Figure 2.A.6. Targeted subsidy for all types

Figure 2.A.7 shows the impact of the tuition subsidy at the upper δH and lower δL

bound of the estimated confidence set for δ. The results for both scenarios are based
on simulated samples of 10, 000 individuals.
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Figure 2.A.7. Policy impact and time preference
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Chapter 3

Mens Sana in Corpore Sano?
Joint with Hans-Martin von Gaudecker, Jürgen Maurer and Mariam

Petrosyan

3.1 Introduction

Development and maintenance of human capital throughout the life-course enables
individuals to lead longer, more productive and more satisfactory lives. The notion
of human capital generally comprises a broad range of useful abilities that shape
individuals’ capabilities, behaviors and wellbeing such as their knowledge, skills,
and health among others (World Bank, 2018). While there is a large economic lit-
erature on early-life human capital development and its effects on adult outcomes
(Heckman and Mosso, 2014), fewer studies in economics have analyzed the roles
individual investments and corresponding technologies for the maintenance and
depreciation of human capital during later life within an integrated framework to
model later-life human capital dynamics (McFadden, 2008).

Physical and cognitive capacity represent two key forms of human capital during
adulthood and are perhaps the most important forms of human capital at older ages,
especially after retirement. Physical and cognitive capacity are key determinants of
many important outcomes in health economics and beyond such as mortality, health-
care use and healthcare cost and spending, falls and disability, long-term care needs
and nursing home use, economic and social participation and subjective wellbeing
to name but a few. As a result, investments in the maintenance of physical and cogni-
tive capacity are key to ensuring a healthier, longer, and happier old-age. Moreover,
since many of these outcomes are highly uncertain, demand for various healthcare

⋆

We would like to thank Johannes Ewald for preparatory work in his M.Sc. thesis at the University
of Bonn (March 2020). The authors are grateful for support by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2126/1– 390838866
– and through CRC-TR 224 (Project C01).



130 | 3 Mens Sana in Corpore Sano?

and long-term care related insurance products depends on the later-life dynamics of
physical and cognitive capacity (Hosseini, Kopecky, and Zhao, 2022). Understand-
ing the later-life dynamics of physical and cognitive capacity is, therefore, a key
pre-requisite and input into models aimed at studying the role of later-life human
capital on these important later-life outcomes and related investment and insurance
decisions.

While physical and cognitive capacity tend to decline during later life (Niccoli
and Partridge, 2012), there is considerable heterogeneity in the onset and speed of
such aging-related declines across individuals, which is often related to individual
differences in exposures and investments (Crimmins, 2020). What is more, several
studies have in fact shown significant improvements in later life physical and cog-
nitive capacity following targeted investments such as physical exercise programs
or cognitive trainings, suggesting that both physical and cognitive function remain
malleable even at very high ages (Fiatarone, O’Neill, Ryan, Clements, Solares, et al.,
1994; Ball, Berch, Helmers, Jobe, Leveck, et al., 2002). This evidence suggests that
aging-related changes in function are not fully pre-determined biologically but can
be postponed, slowed down, compensated and in certain instances perhaps even
(temporarily) reversed or overcompensated through appropriate later-life invest-
ments. These findings highlight the important role of health investments for physical
and cognitive capacity throughout the entire life course, even if early-life health in-
vestments into health to build up "reserves" for later life may be more efficient due
to a higher degree of malleability early in life, the longer time horizon available
to capitalize on early investments and potentially important complementarities of
health investments over time (Cunha, Heckman, and Schennach, 2010).

Besides documenting the continued malleability of physical and cognitive ca-
pacity during later life, the more recent literature in gerontological science has also
found for evidence potentially important cross-effects of physical function on cog-
nitive function and vice versa. These cross-effects may go beyond the responses of
physical and cognitive function due to common risk factors such as physical inac-
tivity or diseases affecting both physical and cognitive capacities such as Parkin-
son’s disease, and represent more general connections between physical and cog-
nitive capacity (Clouston, Brewster, Kuh, Richards, Cooper, et al., 2013). Evidence
for such connections comes from both observational studies and RCTs, often but
not always focused on the connection between cognitive and gait (dys-)function
(Montero-Odasso, Verghese, Beauchet, and Hausdorff, 2012). In view of these find-
ings, economic models of human capital maintenance and depreciation during later
life should thus allow for flexible later-life dynamics of physical and cognitive capac-
ities that can incorporate different forms of investment, and possible cross-effects
between physical and cognitive capacities.

Varied existing conceptualizations of physical and cognitive capacity used in
the literature and potentially widespread measurement error in physical and cog-
nitive assessments in survey data and self-reported health investments further com-
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plicate the already complex task of capturing the joint dynamics of later-life physi-
cal and cognitive capacity and related investments (Bound, Brown, and Mathiowetz,
2001; Baker, Stabile, and Deri, 2004; Kapteyn, Banks, Hamer, Smith, Steptoe, et al.,
2018; Hosseini, Kopecky, and Zhao, 2022). Physical capacity, for example, is a mul-
tifaceted concept that is generally assessed through multiple self-reported and/or
performance-based survey items presenting noisy measurements for underlying true
physical capacity (Kasper, Chan, and Freedman, 2017). Similarly, cognition com-
prises a range of different cognitive functions such as such as perception, attention,
intelligence, knowledge, memory and working memory, judgement, reasoning, com-
putation, problem solving or comprehension, whose corresponding measurements
have signal value for overall cognitive capacity (Salthouse, 2010; Salthouse, 2012).
Perhaps more surprisingly, even commonly used survey items for health investments
such as self-reported physical activity contain substantial measurement error rela-
tive to actual health investments and, therefore, need to be treated with caution
(Kapteyn et al., 2018). Given the large potential for significant measurement error
in survey-based assessments of physical and cognitive capacity and corresponding
health investments documented in the literature, it seems prudent to employ an an-
alytical framework that can readily accommodate such measurement errors when
analyzing the joint dynamics of these outcomes.

The main objective of this paper is to estimate the technology for human cap-
ital maintenance and depreciation in later-life focusing on the dynamic interplay
between later-life physical and cognitive capacity and corresponding investments
among older adults in the US. To this end, we propose the use of a non-linear dy-
namic latent factor model as first proposed by Cunha, Heckman and Schennach
(Cunha, Heckman, and Schennach, 2010) as a framework to model early-life human
capital accummulation, to study later-life human capital depreciation processes us-
ing longitudinal data from the US Health and Retirement Study (HRS). Applying
this framework to investigate the joint dynamics of later-life physical and cognitive
capacity and related investments is very attractive as such a non-linear dynamic
latent factor model can incorporate the main aforementioned stylized facts about
human capital depreciation, i.e., (1) allowing for a joint modelling of physical and
cognitive capacity and investments that can incorporate potentially important cross-
domain effects; (2) integrating the continued malleability of both physical and cog-
nitive capacity into the model to study dynamically optimal investment paths and
(3) accounting for error in the measurement of physical and cognitive function and
corresponding investments in a context where there are several measurements of
each of these domains in many commonly used data sets, but each measurement
is likely to provide only a noisy signal for the underlying construct at hand. In ad-
dition to accommodating key stylized facts about human capital maintenance and
depreciation into a unified framework, our model also allows us to identify the dis-
tribution of latent factors from noisy measurements, simulate the effects of different
investment patterns on physical and cognitive capacity, calculate optimal investment
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patterns, notably the role of investments for human capital maintenance in younger
old vs older old individuals, and anchor the results in interpretable metrics such as
survival probabilities.

Our paper relates to two strands of research in economics, a methodological one
on the use of non-linear dynamic latent factor models for estimating dynamic human
capital production, which has-to the best of our knowledge-so far only been applied
to the case of human capital accumulation in early life but not to human capital
maintenance and depreciation in later life, and a more substantive one on the mea-
surement and modelling of health dynamics during adulthood and later life. From a
methodological point of view, our paper transfers widely used methods for the study
of early-life human capital accumulation to the study of later-life dynamics of phys-
ical and cognitive function and eventual mortality. As a technical contribution, we
show how to incorporate mortality into the framework and improve the numerical
stability of a well known maximum likelihood estimator. By applying non-linear dy-
namic latent factor models to questions of aging and later life health dynamics, we
show the usefulness of these methods to study human development not just in early
life but across the entirely life-course, especially since many of the modelling and
measurement issues mentioned above seem common to both ends of the life-course.
As a result, we hope that our paper will aspire a larger group of life-course and aging
researchers to consider such models in their research both in health economics and
related fields.

Substantively, we contribute to the literature on how to measure and model
later-life health dynamics in situations where we observe multiple potentially very
noisy measurements for fewer latent concepts such as physical and cognitive capac-
ity, which has long challenged empirical analyses in health economics and beyond.
More specifically, one important issue in this literature is how to measure health in
a comprehensive yet parsimonious way in view of the multifaceted nature of health
on the one hand and the common need for dimensionality reduction in economet-
ric models on the other. To address this trade-off, one set of commonly adopted
approach to measuring health is to directly use (usually ordered measurements of)
self-rated health as summary measure of health as outcome of interest (Contoyannis,
Jones, and Rice, 2004; Heiss, 2011; Latham and Peek, 2012). This approach is gener-
ally motivated by a high predictive value of self-rated health for mortality (Idler and
Benyamini, 1997). Alternatively to directly using self-reports to measure health, a
commonly used approach is to "instrument" health via a larger and "more objective"
set of individual health measurements, such as information on specific health condi-
tions, functional limitations, performance test results or anthropometric measures.
This approach endogenously derives weights for aggregating the more detailed set
of individual health measurements into a single health index that can then be used
in further analysis (Cutler and Richardson, 1997; Jürges, 2007). Relative to using
self-rated health directly as outcome, the approach aims to improve measurement
by using "more objective" measures of health to construct an underlying health in-
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dex, whereby the weights attributed to each detailed and "more objective" health
measure in the final health index is determined by the partial association of the
respective detailed health measure with self-rated health. While this approach can
address some known issues with self-rated health, such as potential age-, sex- or SES-
dependent reporting heterogeneity (Lindeboom and Van Doorslaer, 2004; Dowd
and Zajacova, 2007; Dowd and Zajacova, 2010), there is often still considerable
measurement error in the "more objective" health measures that cannot be purged
using this approach and may require further consideration (Baker, Stabile, and Deri,
2004; Maurer, Klein, and Vella, 2011). A second related approach side-steps the
use of self-rated health entirely and instead uses principal component analysis of
the more detailed health measurements to derive lower dimensional health indices
(Jenicek, Cleroux, and Lamoureux, 1979; Poterba, Venti, and Wise, 2017; Nakazato,
Sugiyama, Ohno, Shimoyama, Leung, et al., 2020). A third and increasingly popu-
lar approach simplifies the aggregation process for the more detailed health mea-
surements even further by constructing a so-called “frailty index” or “deficit index”,
which simply consists of the total number of prevalent "health deficits" divided by
the total number of potential "health deficits" (Rockwood and Mitnitski, 2007; Hos-
seini, Kopecky, and Zhao, 2022). A such constructed "frailty index"/"deficit index"
is thus bounded to lie between zero and one and represents the percentage of po-
tential "health deficits" already suffered by a given individual. A final set of studies
refrains from performing some form of dimensionality reduction and uses the more
detailed health measures directly in their analyses, either in isolation or simultane-
ously. As this is, for example„ the standard approach of disease-based analyses, most
published papers on health adopt this latter approach.

While all of the aforementioned approaches have their respective advantages
and disadvantages in measuring and modelling health in economic applications and
have been employed with some success in the literature, they have mainly been
used to describe the dynamic evolution of health during adulthood as inputs for
structural models in health economics concerning retirement, housing or insurance
decisions rather than studying the production technology of later life health mainte-
nance or depreciation directly. Regarding the latter, the aforementioned approaches
have some potential downsides that we aim to address in this paper. First, to the
best of our knowledge, our paper is the first to explicitly study the dynamic inter-
play between physical capacity, cognitive capacity and related investments in the
context of a structural non-linear dynamic latent factor model as first proposed by
Cunha, Heckman and Schennach (Cunha, Heckman, and Schennach, 2010), which
can generate new insights on the dynamic relationships between physical and cog-
nitive capacity as well as investment into these important facets of human capital.
Second, explicitly distinguishing between physical and cognitive capacity is thereby
not only important due to increasing evidence for potentially important cross-effects
between the two health domains cited above but also in view of likely differences in
the consequences of depleted levels of physical vs cognitive capacity for functioning,
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participation and other important later life outcomes (Crimmins, 2020; Amengual,
Bueren, and Crego, 2021). In the economics literature, there is to date only lim-
ited evidence on the potential cross-effects between physical and cognitive capacity
maintenance with Schiele and Schmitz (Schiele and Schmitz, 2021) being a notable
exception studying the effects of adverse physical health shocks on cognitive capac-
ity in later life using non-structural event study methods. Third, our approach can
accommodate a situation where information about a few latent factors needs to be
extracted from many measurements of the underlying construct which can poten-
tially suffer from severe measurement error.

Our analysis complements the aforementioned approaches to modelling and an-
alyzing later-life health by delivering new insights on the dynamics of later-life hu-
man capital and related investments among older adults in the US. Our approach,
thereby, highlights the structural production function of older adults concerning the
maintenance and depreciation of physical and cognitive capacity. Our key findings
are as follows: 1) There is substantial noise in all observed variables. While most
measurements have a high correlation with the latent factor they measure, no sin-
gle measurement dominates to an extent where it would be justified to just use a
single variable and ignore the measurement error in the econometric analysis. 2)
Despite a strong decline in means of physical and cognitive capacity, the rank order
of these latent factors is remarkably stable. 3) Physical and cognitive capacity can
be influenced by investments until very high ages. Cognitive stimulation is a specific
investment into cognitive capacity. Physical exercise has a larger effect on physical
capacity and a small effect on cognitive capacity.

The remainder of the paper is organized as follows: Section 3.2 provides infor-
mation on our main data source and gives detailed description of the factor measure-
ments. Section 3.3 describes our empirical approach and the challenges associated
with it. Section 3.4 presents and discusses our results, and section 3.5 concludes.

3.2 Data and Measurements

We base our empirical analysis on the 1992-2016 waves of the Health and Retire-
ment Study (HRS) conducted by The University of Michigan. The HRS offers longi-
tudinal panel data with representative sample of approximately 40,000 individuals
living in the U.S. and aged 50 and above. The HRS core questionnaire offers rich set
of measures of physical health, mental status, and behaviors. Measures of physical
and cognitive capacities include self-reported diagnoses, subjective assessments, and
objective biomedical markers. Additional off-wave surveys offer additional measures
that are particularly relevant for our analysis. Specifically, we employ the Consump-
tion and Activities Mail Survey (CAMS) (Health and Retirement Study, 2022b) to
extract measurements for Exercise and Cognitive Stimulation.



3.2 Data and Measurements | 135

Wherever possible, we include data prepared by the RAND corporation (Health
and Retirement Study, 2022c), which provides a harmonized and easy-to-use ver-
sion of the core HRS data. Out of the many variables we need, several are not in-
cluded in the RAND HRS data, however, and we recur to the original core files
(Health and Retirement Study, 2022b).

We start our analysis at age 68, when most people are retired and we start to
see meaningful variation in the measures at our disposal for physical and cognitive
capacity. The last age we consider is 93, after which the sample size becomes small.
Since the HRS questionnaire is administered biannually, we work with two-year
transitions and age groups. For conciseness, we refer to these age groups by the
lower bound included – “age 68” thus includes ages 68 and 69, and at the other
end of the spectrum “age 92” comprises ages 92 and 93. Because men and women
show very different aging patterns, we present all statistics by gender. We will also
estimate the model separately for each gender.

We standardize almost all measures to have mean zero and unit variance in the
first age group included in our data. Any age trends are thus preserved. For example,
until age 90, themean of (residualized) grip strength declines by around 1.4 original
standard deviations. At the same time, the dispersion of grip strength shrinks to
around 80% of its original standard deviation. For categorical variables, all of which
have numerical values with spacing 1, we add noise using uniform distributions on
(−0.5, 0.5). This preserves the original ordering and add to the numerical stability
of the estimator below. Changing the seed of the random number generator did not
affect any results; future work will pursue additional robustness exercises.

3.2.1 Physical Capacity

We employ six variables as measurements for physical capacity. Quite naturally, vi-
tal status is a dummy for being alive, which becomes zero in the first HRS wave
after an individual has died. It is set to missing thereafter, so that the average of
this variable can be interpreted as the probability of surviving until the next survey
wave. The first row of Figure 3.2.1 shows the age trends in our measures of physi-
cal capacity.1 Unsurprisingly, survival probabilities decreases in age both for women
(Figure 3.2.1a) and men (Figure 3.2.1b). Note that the level of survival probabilities
is depressed because the HRS is very good at tracking respondents’ dates of death
even when they have not responded to previous waves. In this version of the data
preparation, individuals who did not respond to a survey round would not enter the
denominator of vital status.

The second measurement shown in Figures 3.2.1a and 3.2.1b is a version of
the frailty index used, for example, in Hosseini, Kopecky, and Zhao (2022). The

1. Figure 3.A.1 in Appendix 3.A shows the same trends for the standard deviations of our mea-
surements.
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frailty index is the unweighted sum of all recorded medical conditions a doctor has
diagnosed in an individual. These conditions comprise high blood pressure, diabetes,
cancer, lung disease, heart disease, stroke, psychiatric problems, and arthritis. We
reverse it so that higher values indicate better health. The reversed frailty index
declines by 0.4 (women) and 0.3 (men) original standard deviations until the end
of the age range we consider. Note that this trend and all those we will subsequently
discuss are conditional on survival. Due to the high predictive power of the frailty
index for mortality—as noted by Hosseini, Kopecky, and Zhao (2022) and others—
the effect of mortality selection is particularly large here. For individuals still alive
at age 80, average frailty at age 68 is 0.39 among women and 0.34 among men. By
including vital status among the health measures, our model below will take care of
this to some extent, but it is important to keep in mind for the descriptive statistics.

Grip Strength measurements were introduced to the HRS survey in 2006 and
consist of in-home physical tests of the hand grip strength, conducted twice for each
hand. To obtain our variable of use, we average the four measurements. Our mea-
sure of grip strength is then the residual of a regression of average grip strength on
individuals’ height. We partial height out because of the high correlation between
height and grip strength (Steiber, 2016) and we do not expect differences in grip
strength associated with differences in height to be indicative of physical capacity.
Among all measures pertaining to physical health, grip strength shows the steepest
decline.

Mobility summarizes difficulties in performing the various activities of daily
living: walking several blocks, walking one block, walking across the room, climbing
several flights of stairs, and climbing one flight of stairs. As with the frailty index, we
add up indicators for each measurement and reverse the scale so that higher values
are associated with greater mobility. Mobility declines strongly in age. At the same
time, its standard deviation rises as mobility impairments become more frequent
over time.

Closely related, the Large Muscle Index summarizes difficulties in performing
a number of activities associated with large muscles’ strength. These activities are
sitting for two hours, getting up from a chair, stooping ot kneeling or crouching, and
pushing or pulling a large object. Again, we revert the order of the values to have a
positive association between the variable and physical capacity.

Finally, Self-Reported Health is a measure of health that is based on the re-
spondent’s self-assessed rating of their general health status. The values range from
1 (poor) to 5 (excellent). It probably is the most common health measure employed
by economists as it provides an individuals’ summary of her/his health in a single
measure.
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure 3.2.1. Average measurements by age
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3.2.2 Cognitive Capacity

During interviews (in-person and via phone) HRS conducts a rich set of tests mea-
suring respondents’ cognitive capacity. For respondents that do not answer some
of the cognitive test questions, HRS assumes non-random missing values and pro-
vides cross-wave imputation data in special data files (Health and Retirement Study,
2022a). Our measures of cognitive capacity are based on these cognitive tests and
respondents’ subjective ranking of their general memory status. In total, we employ
five measures of cognitive capacity.

Serial 7 Subtraction is our first measure and is based on the test of serial sev-
ens (SST) during which respondents are asked to subtract 7 from 100 and from
continue subtracting 7 from each resulting number for a maximum of five times.
The respondents are then assigned scores based on the total number of correct an-
swers. In psycho-medical literature SST has widely been used to assess mental status
of patients with dementia and been generally regarded as a measure of concentra-
tion (Karzmark, 2000). Figures 3.2.1c and 3.2.1d demonstrate a steady decline in
concentration, as measured by the serial sevens, for both men and women, from our
youngest age group to the oldest one being somewhat larger for women (0.5 units of
original standard deviaton) than for men (0.4 units of original standard deviation).

Our second measure of cognitive capability is Vocabulary which is a test sum-
marizing respondents’ ability to provide correct definitions of words from a list of
five words. One of two sets of words is assigned randomly at the first interview, and
alternating sets are given during subsequent interviews. The two alternating sets of
words are 1) repair, fabric, domestic, remorse, plagiarize; and 2) conceal, enormous,
perimeter, compassion, audacious. We can see in Figures 3.2.1c and 3.2.1d that Vo-
cabulary test has an age trend similar to that of the Serial 7 Subtraction, both in
terms of absolute slopes and relative differences between men and women.

Immediate Word Recall is the third variable in Figures 3.2.1c and 3.2.1d and
results from a test that asks the respondents to recall words (in any order) form a
list of ten (later waves) or twenty (earlier waves) words, directly after being read
the list. Examples of words included in a list are lake, car, army, etc. In in the initial
wave, respondents were randomly assigned a list from the set of four lists and during
the consequent four waves there were assigned a different list (McCammon, Fisher,
Hassan, Faul, Rodgers, et al., 2022). Delayed Word Recall has the same structure
as immediate word recall. In this task, respondents are asked to recall the same list
of words once more, after spending several minutes on answering other survey ques-
tions. Word recall tests are widely used as measures of episodic memory frequently
administered to patients with alzheimer’s disease (see, e.g., Dixon and Frias, 2014;
Runge, 2015).

Both of the word recall variables being measures of the same conceptual variable
(episodic memory) perhaps explains the similar trends that they display. Of all the
measurements of cognitive capacity, word recall variables have the sharpest decline
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over the age span in our model, and as with other measurements, the decline is
larger for women than for men, with the caveat that our data are conditional on
survival.

Finally, Self-Rated Memory, is our last measure of cognitive capacity and is
based on respondents’ self-assessed rating of their general memory status. The val-
ues range from 1 (poor) to 5 (excellent). Self-Rated Memory displays a moderate
decline in both genders, which has a somewhat more pronounced trend among men.

3.2.3 Exercise and Cognitive Stimulation

We use Vigorous, Moderate and Light Activities as measures for investment in
physical health. Each of these survey questions asks respondents how often they do
vigorous (running, jogging, cycling, etc.), moderate (gardening, cleaning the car,
walking at moderate pace, dancing, stretching) and light/mildly energetic (vacu-
uming, laundry, home repair), respectively. Up until the sixth wave (year 2002) re-
spondents were only asked if they do vigorous activities at least three times a week.
Starting from wave seven, this questionnaire item was replaced by the three activity
questions that we use in our study. Figures 3.2.1e and 3.2.1f show that with age
people do less of all types of physical activities, with largely similar trends for men
and women.

To obtainmeasures for cognitive stimulation, we utilized the CAMS surveywhich
allowed us to construct measures of time respondents spend on different cognitively
stimulating activities. Among these, our first measurement of cognitive stimulation
is Reading that counts weekly hours spent on reading books, newspapers, or mag-
azines. The association between reading and cognitive decline has been studied in
psycho-medical literature, and reading has been found to be positively associated
with hampered cognitive decline (Chang, Wu, and Hsiung, 2021). In Figures 3.2.1g
and 3.2.1h we see that Reading has declining trend among women and is rather sta-
ble among men.

The second variable in Figures 3.2.1g and 3.2.1h is Listening to Music, and it
meausres how many hours weekly respondents listen to music. The effects of music
listening on cognitive functioning of at-risk patients have been studied in psycho-
medical literature, and listening to music has been found to be beneficial for cogni-
tive functioning (see, e.g., Särkämö, Tervaniemi, Laitinen, Forsblom, Soinila, et al.,
2008; Särkämö and Soto, 2012). As with most measurements of cognitive stimula-
tion, we observe a declining age trend for Listening to Music both among men and
women.

Our last variables for cogntivie stimulation are Stimulating Hobbies and Com-
munication which summarize how many hours respondents spend weekly on var-
ious hobbies that may be expected to stimulate cognition, and the weekly hours
spent on interacting with others, respectively. Stimulating Hobbies aggregates the
survey variables that ask howmany hours respondents spend on: 1) playing cards or
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solving jigsaw puzzles, 2) singing or playing instruments, 3) doing arts and crafts,
and 4) going to movies or lectures. We construct the Communication variable as
the sum of hours spent on visiting with others in person and communication via
letters/phone/email. Looking at Figures 3.2.1g and 3.2.1h, Communication has
similarly declining tred among men and women, whereas Stimulating Hobbies has
a steeper slope for women and than for men.

3.2.4 Raw Correlations in the Data

Figures 3.2.2 and 3.2.3 show correlation matrices for women and men, respectively.
Each figure contains two panels. The upper panels show within-period correlations
until age 79, the lower panels do the same ages 80 and above. We show the lower
triangular part of the correlation matrix. We leave out the indicator for being alive
because we only measure the other variables whenever it is one. In addition to show-
ing the numbers, we color the matrix’ elements such that a correlation of 1 is dark
red, 0 is white, and −1 is dark blue. Scaling is linear on both sides of the origin.
Variables are ordered by factor, which we include in the label of the first measure
pertaining to it. The measures in the first five rows and columns—from the reversed
frailty index until self-reported health—load on physical capacity. The subsequent
block of five rows and columns load on cognitive capacity. In the lower part of the
matrix, exercise and cognitive stimulation load on three and four measures, respec-
tively.

Several patterns are visually apparent in all four correlation matrices. First of
all, the blocks of measures pertaining to each factor are clearly visible as having sub-
stantial cross-correlation throughout. For example, the first four entries in the first
columns are the correlations of the reversed frailty index with the other measures
loading on physical capacity. Across all four panels, correlations are at least 0.3 with
the exception of the correlation of reversed frailty and grip strength, which is at least
0.1 throughout.

Similarly, the triangle with correlations for measurements pertaining to cogni-
tive capacity—with the three corners (Serial 7 Subtraction, Vocabulary), (Serial 7
Subtraction, Self-Rated Memory), and (DelayedWord Recall, Self-Rated Memory)—
has distinctly dark colors throughout. Unsurprisingly, correlations are particularly
large between the two word recall tasks. The three correlations between the various
types of physical activity are high throughout. The six elements to the bottom right
to the matrix contain the correlations among themeasures loading on cognitive stim-
ulation. Among all factors, these have the weakest within-factor correlations with
values ranging from 0.09 to 0.25. This is not very surprising as the variables do cover
a much wider range of activities than, say, the various activity levels that load on
exercising.

A second salient feature is that almost all elements are positive. This implies
that it is important to model physical and cognitive capacity jointly with each other
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(a) Aged below 80

(b) Aged 80 and above

Figure 3.2.2. Cross factor measurement correlations (female).
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(a) Aged below 80

(b) Aged 80 and above

Figure 3.2.3. Cross factor measurement correlations (male).
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and with the two types of investments. This being written, there are clear level
differences. Maybe unsurprisingly, the largest correlations are between measures
of exercise and those of physical capacity. Most measures of cognitive capacity are
substantially and positively related to variables measuring physical capacity and
exercise, respectively. The correlation patterns are somewhat more mixed when it
comes to cognitive stimulation and the other three factors.

This is related to our third broad observation: While the general patterns noted
so far hold up across age groups and genders, there are some important differences.
For example, the correlations of grip strength with other health measures are higher
among women than among men, particularly at higher ages. Correlation patterns
of individual measures pertaining to cognitive stimulation and cognitive capacity
are quite distinct among men and women, particularly at older ages. For example,
among individuals aged 80 and above, reading and serial 7 subtraction have a corre-
lation of 0.27 among women whereas it is 0.18 among men. Among women in this
age group, listening to music is slightly negatively correlated with serial 7 subtrac-
tion and vocabulary scores. For men, the same correlations are small and positive.

While these patterns are informative, the 2× 2× 153 numbers in Figures 3.2.2
and 3.2.3 are clearly too many to make sense of directly – and the matrices already
reduce the 13 periods we observe in our data to 2. In the next section, we outline a
framework that constructs latent variables for our four factors and which allows us
to interpret their joint evolution.

3.2.5 Example Transitions

Before going to the formal model, we show a few exemplary trajectories of physical
and cognitive capacity. Figure 3.2.4 shows the trajectories of 500 randomly sampled
individuals from our dataset. Dots at the end of a trajectory mean that that person
died in the next period. Trajectories that do not end in a dot are from individuals
whose death was not observed, either because they dropped out of the sample or
are still alive in the last wave.

The highlighted lines are hand-picked examples of individuals that had a phys-
ical capacity close to the 90th percentile, but very different trajectories afterwards.
The blue line shows a person that had a strong decline in physical capacity over two
periods and then passed away. The yellow line shows a person with a very volatile
trajectory in both physical and cognitive capacity. The red line shows an individual
who had a bad health shock at some point but recovered and enjoyed a high level of
physical capacity for many years. The right panel of the figure shows the cognitive
capacity of the same individuals. All three lines show fluctuations around a robust
declining trend.

The plot illustrates that vastly different trajectories of physical and cognitive
capacities are possible even for people with similar starting conditions in terms of
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Figure 3.2.4. Trajectories for decline of health and cognitive capacity

physical capacity. Answering the question whether such differences can be explained
or are the product of random shocks requires ar more rigorous approach.

3.3 Model

3.3.1 The Technology of Aging

Analyzing the joint evolution of physical and cognitive capacity and the effect phys-
ical exercise and cognitive stimulation have on both poses many econometric chal-
lenges.

1. As discussed in the previous section, there are many potential observed variables
to measure each concept we analyze. In order to make the results interpretable,
their dimensionality has to be reduced.

2. All observed variables are subject to measurement error, which is potentially
large in many cases.

3. Physical and cognitive capacity, exercise, and cognitive stimulation are dynam-
ically intertwined in the sense that each of them has a potential effect on all
others. For example, exercise should improve physical capacity. Conversely, it
may well be that the cost of exercise might be higher at low levels of physical
capacity because physiotherapy is less enjoyable than a walk in nature.

4. The relationships between variables might change over time.
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The Technology of Skill Formation (Cunha and Heckman, 2007; Cunha, Heck-
man, and Schennach, 2010) is an econometric framework that emerged to deal
with very similar challenges in the context of skill formation during childhood. It
distinguishes observed variables—for example an IQ test—from latent factors such
as cognitive and non-cognitive skills. The technology is the law of motion of latent
factors over multiple discrete time periods. Observed variables are stochastic func-
tions of one or more latent factors. In addition to the latent factors of interest, the
framework allows for observed or latent investments such as parental investments
in skills or schooling.

To account for the multitude of potential effects, each latent factor may depend
on lagged values of itself and all other latent factors. The law of motion of the latent
factors is usually nonlinear. This is necessary to allow for different productivity of
investments at different levels of skills. Moreover, it allows for dynamic complemen-
tarity, i.e., the fact that earlier investments may increase the productivity of later
investments (Cunha and Heckman, 2007).

The Technology of Skill Formation maps perfectly on our setting. Instead of cog-
nitive and non-cognitive skills, our Technology of Aging models physical and cogni-
tive capacity. Instead of parental investments, we have exercise and cognitive stimu-
lation. While we separate investments into a physical and cognitive component, we
allow each investment factor to influence both latent capacities.

Transition Functions

We assume the following law of motion of our latent factors:

x1,t+1 = β1,t +
4
∑

i=1

γ1,t,ixt,i +
4
∑

i=1

i
∑

j=1

δ1,t,i,jxt,ixj,t + η1,t

x2,t+1 = β2,t +
4
∑

i=1

γ2,t,ixt,i +
4
∑

i=1

i
∑

j=1

δ2,t,i,jxt,ixj,t + η2,t

x3,t+1 = β3,t +
∑

i∈{1,2,3}

γ3,t,ixt,i + η3,t

x4,t+1 = β4,t +
∑

i∈{1,2,4}

γ4,t,ixt,i + η4,t

(3.3.1)

Where x1, x2, x3, and x4 are physical capacity, cognitive capacity, exercise, and
cognitive stimulation, respectively. β , γ and δ denote the technology parameters to
be estimated. η denotes a stochastic shock.

The first two equations in (3.3.1) mean that physical and cognitive capacity
follow a flexible functional form containing all lagged factors, their squares, and
their interaction terms. This is known as the translog function in the skill formation
literature (because skills are typically assumed to be measured in logs, not levels)
and has been used by, for example, Agostinelli and Wiswall (2016a). The translog
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function allows for dynamic complementarity but does not assume it. While this
functional form is not a standard economic production function, we interpret it as
a flexible approximation to an arbitrary underlying production function in the spirit
of a nonparametric series estimator.

The bottom two equations in (3.3.1) relate to exercise and cognitive stimula-
tions, respectively. Both investment factors are assumed to depend on their own
lagged values along with the lagged values of physical and cognitive capacity.

Measurement System

We assume the measurement equations to be linear with an additively separable and
normally distributed error term. All of them thus have the following form:

yℓ,t = αℓ,t +
4
∑

i=1

hℓ,t,ixt,i + εℓ,t (3.3.2)

where yℓ,t denotes the ℓth measurement in period t, α is the intercept of the measure-
ment equation and h are factor loadings. In the empirical application we only have
measurements that load on just one factor, so that for all measurements, three out
of the potentially four loadings hℓ,t are zero by construction. Subject to identifica-
tion requirements outlined in Cunha, Heckman, and Schennach (2010), this could
easily be relaxed.

In typical applications of the Technology of Skill Formation, the number and type
of available measurement variables varies strongly across periods. This is because
any test score that is applicable to very young children would not work for older
children. In our case, the measurements stay the same across periods and most of
them can be assumed to be time-invariant, i.e. to have the same loading, intercept,
and standard deviation of measurement error in each period.

3.3.2 Identification and Interpretation of Parameters

The econometric model implied by the Technology of Skill Formation is a Structural
Equation Model or dynamic latent factor model. Linear Structural equation models
are widely used since the 1970ies to study relationships between latent and observ-
able variables. However, standard identification results and software for Structural
Equation Models are not applicable to our setting because they usually require lin-
earity assumptions or put restrictions on the connectedness of the underlying causal
graph, which go beyond those encoded in our system (3.3.1).

Cunha, Heckman, and Schennach (2010) provide general nonparametric identi-
fication results for nonlinear dynamic latent factor models. The exact conditions for
identification depend on the assumptions one is willing to put on the nature of mea-
surement error. Typically, having at least two dedicated continuous measurements
for each latent factor in each period is sufficient to identify an arbitrary production
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function under mild conditions. Doing so requires normalizations of location and
scale in each period because latent factors do not have a natural unit of measure-
ment.

A subsequent literature (Agostinelli and Wiswall, 2016b; Freyberger, 2021) has
shown that much fewer normalizations are required when empirical applications
assume the popular constant-elasticity-of-substitution (CES) form, which implies
restrictions on the location and scale of its outputs (see Appendix 3.C.1 for details).
Our specification of the production function (3.3.1) does not impose any such restric-
tions. However, as discussed previously, we have at least one age invariant measure-
ment for each latent factor. We always use such measurements for normalizations,
which pin down the location and scale of each corresponding factor in all periods.

The lack of natural units for the latent factors and the requirement for normaliza-
tions also poses challenges for the interpretation of the results. In short: any outcome
that depends on transformations of measurements outside of the model, the choice
of the measurement being normalized, or the values of the normalized parameters
cannot be interpreted without further information. For details and a more formal
definition see Freyberger (2021).

In practical applications, different ways of dealing with this have emerged.
Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010) propose
to anchor the latent factors in terms of observable cardinal variables. For example,
they anchor cognitive and non-cognitive skills in terms of years of schooling, wages
or the probability to commit a criminal offense. For each anchoring outcome, they
re-estimate the model to obtain estimated production function parameters in terms
of anchored factors. Attanasio, Meghir, and Nix (2020) do not have access to adult
outcomes. Instead they communicate the variables that were normalized and state
that results have to be interpreted with respect to the normalizations. Del Bono,
Kinsler, and Pavan (2020) propose to simply standardize the variance of the latent
factors in logs. This allows for statements such as increasing investment by 1 % in-
creases skills by x %. While this is invariant to any normalization of location and
scale in the measurement system, the approach is only valid if one defines that skills
are measured in logs not levels. Due to the ordinality of skills, this is a valid but
arbitrary definition and thus the approach falls short of its goal to be completely
objective. Freyberger (2021) proposes to translate inputs and outputs of the pro-
duction functions into ranks. This is invariant to any normalization of location and
scale, assumptions on whether latent factors are measured in levels or logs and
transformations of the measurements outside of the model.

We acknowledge that there is no single natural scale for latent factors and thus
see value in all of the above approaches. For example, translating everything to
ranks is a natural way of solving a problem that is caused by ordinality. Moreover,
it makes the results completely invariant to many decisions made by the econome-
trician. However, it might not be as interpretable as anchoring approaches. For ex-
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ample, it destroys any time trend that was present in the measurements. To address
the shortcomings of any single method, we thus use a combination of all of them.

We standardize age invariant measures with respect to their mean and stan-
dard deviation at age 68. We estimate the parameters of the production function,
normalizing one age-invariant measure for each factor in period zero. The normal-
ized measures are the reversed Frailty Index, Serial 7 Subtraction, Moderate Activ-
ity, and Reading. This preserves the time trend in the measurement variables and
means that our estimated parameters and the time trend can roughly be interpreted
in terms of standard deviations at age 68. For reference, we also show the marginal
distributions of each latent factor and the joint distributions of each factor pair at
multiple ages (see 3.D.3).

3.3.3 Estimation

Multiple estimators for nonlinear dynamic latent factor models are available.
Agostinelli and Wiswall (2016a) estimate the fist period factor loadings from ratios
of covariances between measurements. To estimate production function parameters,
they subsequently employ an iterative IV approach. Their method is very tractable;
it comes at the cost of statistical efficiency. Our own experiments on simulated data
suggest that it works well for models with few periods but becomes imprecise if there
are ten or more periods, especially when the correlation between latent factors is
high.

Attanasio, Cunha, and Jervis (2019) use linear regression on Bartlett factor
scores with a correction approach. This estimator is computationally very attractive.
However, it does not deal well with missing observations. Several of our variables
are not contained in the core HRS questionnair; they are available for subsets of
individuals at different points in time. Because of this, the estimator of Attanasio,
Cunha, and Jervis (2019) is unsuitable for our application.

Attanasio, Meghir, and Nix (2020) first estimate the distribution of the latent
factors as a mixture of normal distributions and then estimate the parameters of the
production functions on a simulated sample from that distribution. This approach is
computationally harder than the two previous ones but simpler than the maximum
likelihood estimator by Cunha, Heckman, and Schennach (2010). The required as-
sumptions are the same as for the likelihood estimator.

Cunha, Heckman, and Schennach (2010) use a maximum likelihood estimator.
For computational tractability, they use nonlinear Kalman Filters to factorize the
likelihood function into a product of conditional likelihoods. This estimator is com-
putationally more difficult than the others. In its original formulation, numerical
stability is often compromised. However, the estimator is statistically efficient and
it can deal well with observations that are missing at random.

We derive a mathematically equivalent but numerically stable version of the like-
lihood estimator used by Cunha, Heckman, and Schennach (2010). Our version
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replaces standard filters by square-root Kalman filters (Prvan and Osborne, 1988;
van der Merwe and Wan, 2001), which are numerically more robust. The compu-
tational cost is similar to the original approach. The details of the original and the
reformulated estimator as well as the exact assumptions required for estimation are
described in Appendix 3.B.

To account for mortality, we add a dummy variable for being alive as an addi-
tional measurement of physical capacity. This is analogous to a linear probability
model of survival. Thus, the estimated health state of survivors is adjusted upwards,
while the health state of everyone who has passed away is adjusted downwards com-
pared to a state estimation that ignores mortality. In future work we plan to replace
the linear probability model of mortality by a Probit model.

A flexible implementation of the new estimator can be found in the Python pack-
age skillmodels (Gabler, 2022a). It uses JAX (Bradbury, Frostig, Hawkins, Johnson,
Leary, et al., 2018) for just in time compilation and automatic differentiation. This
reduces the computational cost drastically. We use estimagic (Gabler, 2022b) for
numerical optimization and the calculation of standard errors. To generate good
start values for the optimization, we first decompose the model into four single
factor model with much fewer free parameters. In a second step we estimate a lin-
ear model. In the third step we estimate the full nonlinear model. We use pytask
(Raabe, 2020) and the Templates for Reproducible Research Projects in Economics
(Gaudecker, 2019) to automate our research project and to parallelize many tasks.
The full estimation takes approximately four hours on a laptop.

3.4 Results

We present our results in three stages. First, we describe the measurement system.
Next, we describe broad patterns for the transition equations. Finally, we dig deeper
into the dynamic effects of changing factors along their distribution.

3.4.1 Measurement System

Table 3.4.1 shows exemplary parameter estimates of the measurement system. The
first panel shows the parameters that we constrain to be time-invariant. The three
panels below display time-varying parameters of the system at ages 70, 80, and
90. We show loadings and standard deviations for women and men, respectively.
Tables 3.D.1–3.D.8 in Appendix 3.D.1 show the complete set of parameter estimates,
including the intercepts. Remember from Section 3.2 that we scale all measures—
except for dummy measuring vital status, which retains its natural form—to have
mean zero and unit variance in the initial period.

For the measurements loading on physical capacity, we normalize the reversed
frailty index to have intercept zero and unit loading. We also restrict the parame-
ters relating to mobility, the large muscle index, and self-reported health to be time-
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Table 3.4.1. Loadings and Measurement Standard Deviations

Female Male

Loading Meas. Std. Loading Meas. Std.

Age Factor Measurement

All Physical

Capacity

Frailty Index (Reversed) 1.000 0.707∗∗∗ 1.000 0.796∗∗∗

(0.001) (0.002)

Mobility 1.228∗∗∗ 0.766∗∗∗ 1.331∗∗∗ 0.750∗∗∗

(0.005) (0.003) (0.007) (0.003)

Large Muscle Index 0.929∗∗∗ 0.750∗∗∗ 1.032∗∗∗ 0.761∗∗∗

(0.005) (0.002) (0.006) (0.003)

Self-Reported Health 0.950∗∗∗ 0.765∗∗∗ 0.963∗∗∗ 0.793∗∗∗

(0.004) (0.002) (0.006) (0.003)

Cognitive

Capacity

Serial 7 Subtraction 1.000 0.890∗∗∗ 1.000 0.907∗∗∗

(0.003) (0.004)

Vocabulary 0.839∗∗∗ 0.923∗∗∗ 0.960∗∗∗ 0.900∗∗∗

(0.013) (0.004) (0.016) (0.004)

Immediate Word Recall 1.801∗∗∗ 0.583∗∗∗ 1.684∗∗∗ 0.599∗∗∗

(0.015) (0.003) (0.016) (0.003)

Delayed Word Recall 1.805∗∗∗ 0.595∗∗∗ 1.648∗∗∗ 0.605∗∗∗

(0.014) (0.002) (0.015) (0.003)

Exercise Vigorous Activity 0.682∗∗∗ 0.809∗∗∗ 0.741∗∗∗ 0.814∗∗∗

(0.010) (0.004) (0.012) (0.005)

Moderate Activity 1.000 0.794∗∗∗ 1.000 0.816∗∗∗

(0.004) (0.004)

Light Activity 1.076∗∗∗ 0.933∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.012) (0.004) (0.013) (0.004)

Cognitive

Stimulation

Reading 1.000 0.780∗∗∗ 1.000 0.683∗∗∗

(0.006) (0.007)

Listening to Music 0.512∗∗∗ 0.980∗∗∗ 0.229∗∗∗ 1.004∗∗∗

(0.010) (0.006) (0.010) (0.007)

Stimulating Hobbies 0.578∗∗∗ 0.925∗∗∗ 0.375∗∗∗ 0.969∗∗∗

(0.011) (0.005) (0.012) (0.005)

Communication 0.523∗∗∗ 0.999∗∗∗ 0.325∗∗∗ 0.989∗∗∗

(0.010) (0.005) (0.011) (0.006)

70 Physical

Capacity

Alive 0.042∗∗∗ 0.303∗∗∗ 0.058∗∗∗ 0.303∗∗∗

(0.011) (0.039) (0.013) (0.035)

Grip Strength 0.489∗∗∗ 0.933∗∗∗ 0.578∗∗∗ 0.978∗∗∗

(0.042) (0.015) (0.053) (0.020)

Cognitive

Capacity

Self-Rated Memory 0.576∗∗∗ 0.961∗∗∗ 0.626∗∗∗ 0.937∗∗∗

(0.031) (0.009) (0.035) (0.011)

80 Physical

Capacity

Alive 0.091∗∗∗ 0.353∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.023) (0.047) (0.031) (0.068)

Grip Strength 0.367∗∗∗ 0.882∗∗∗ 0.571∗∗∗ 0.891∗∗∗

(0.052) (0.021) (0.061) (0.023)

Cognitive

Capacity

Self-Rated Memory 0.470∗∗∗ 1.013∗∗∗ 0.589∗∗∗ 0.988∗∗∗

(0.038) (0.012) (0.048) (0.015)

90 Physical

Capacity

Alive 0.137∗ 0.425∗∗∗ 0.204∗ 0.430∗∗∗

(0.081) (0.133) (0.121) (0.128)

Grip Strength 0.357∗∗∗ 0.736∗∗∗ 0.508∗∗∗ 0.766∗∗∗

(0.099) (0.032) (0.120) (0.055)

Cognitive

Capacity

Self-Rated Memory 0.459∗∗∗ 1.081∗∗∗ 0.386∗∗∗ 1.080∗∗∗

(0.097) (0.026) (0.120) (0.038)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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invariant – all of these have fairly similar time trends as seen in Figure 3.2.1 (note
that mobility has a steeper trend than the others, but making the measurement sys-
tem time-varying did not change results). All four measurement have similar factor
loadings in the 0.93–1.33 range and the standard deviation in their measurement
errors is very similar, too (0.75–0.8). The correlations between these four measure-
ments are high throughout in the 0.6-0.85 range (see the correlation matrices in
Section 3.D.2 of the Appendix).

We leave the measurement systems for vital status and grip strength unrestricted
across age groups. The standard deviation of measurement error in grip strength
decreases over time; the loadings decrease for females and stay roughly constant
for males. In sum, this means that the correlation between grip strength and the
latent factor representing physical capacity stays constant with age for women at
0.3 and increases for men from 0.35 to 0.45. The loading on vital status increases
for both genders. Due to the fact that the dummy for being alive has its natural scale,
the coefficient has a meaningful interpretation in terms of survival probabilities. At
age 70, the interquartile range of physical capacity is 0.95 for women and 0.78
for men (see Appendix Section 3.D.3). Changing physical capacity from its first to
its third quartile thus increases the probability of survival by 0.95× 4.2%= 4% for
women and 0.78× 5.8%= 4.5% for men. At age 80, the interquartile ranges are
just below 1 and the loadings of 0.09 for both genders directly measure changes in
survival chances as one moves across the outer quartiles. The same is true at age
90 for men (∆survival = 0.2), for women the distribution is less dispersed at that age
and an interquartile range of 0.8 implies a increase in survival probabilities of 11%.
This is in line with the intuition that physical capacity is more predictive of death
at older ages, as deterioration of overall health becomes a more important cause
of death than fairly sudden shocks such as cancer or heart attacks (Gill, Gahbauer,
Han, and Allore, 2010).

For measures pertaining to cognitive capacity, we normalize the results from the
serial 7 subtraction task to have intercept zero and unit loading. This measure along
with the vocabulary score and the two word recall tasks are restricted to have the
same factor loading andmeasurement error variance across all ages. Serial 7 subtrac-
tion and the vocabulary score look very similar in terms of loading andmeasurement
error. For the word recall tasks, loadings are substantially higher and measurement
errors are lower than this. Consequently, all correlations between these measures
and the cognitive capacity factor are high throughout – around 0.5 for serial 7 sub-
traction and vocabulary; exceeding 0.8 for the word recall tasks. The measurement
system of self-ratedmemory is allowed to vary with age. For both genders, its loading
is estimated to be about 0.6 initially and decreases over time. The standard deviation
of measurement error is around unity, with a slightly increasing trend. Consequently,
the correlation of self-rated memory with cognitive capacity us declining with age
which is consistent with Huang and Maurer (2019)
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Given the similarity of our measurements for exercise, it is unsurprising that all
three of them load substantially on the underlying factor. Moderate activity—the
normalized measurement—has the largest correlation with the exercise factor at all
ages. The correlation of vigorous activity and exercise declines over time whereas
light activity goes the other direction. Both of these trends are more pronounced
among women than among men.

Among the measurements loading on cognitive stimulation, we normalize the
parameters on the time spent reading. This is also the dominant one among the
four measurements with a standard deviation of its error around 0.78 (women) and
0.68 (men) and correlations with the factor exceeding 0.7 throughout. The errors on
the other three measurements are between 0.9 and 1; their loadings are estimated
to be around 0.5 for women and 0.3 for men. For women, these coefficients trans-
lates into correlations with the cognitive stimulation factor of around 0.4, which are
roughly stable over time. Among men, they start from a level around 0.2-0.3. While
communication activities maintain a constant correlation with the factor, listening
to music or pursuing stimulating hobbies have hardly any relation left with it by age
90.

In sum, the measurements show a high correlation with the factors they are
supposed to identify. For many measurements, it is sensible to restrict the model
parameters to be time invariant and we do so. Measurements that are allowed to
be changing with age vary in a way that makes sense in the light of prior literature.
Differences between genders are not dramatic, but large enough to command sepa-
rate estimation. Having established these direct relations to the data, we now turn
to the core contribution of our paper: The joint evolution of physical and cognitive
capacity and the impact of exercise and cognitive stimulation.

3.4.2 Transition Equations

The translog production functions for physical and cognitive capacity have many
parameters. In total, we have 15 coefficients per factor, which needs to be multi-
plied with four age groups (or“stages” in the terminonlogy of Cunha, Heckman,
and Schennach, 2010) and two genders. Furthermore, the parameters do not have
intuitive interpretations without referring to precise values of the four factors in our
model. We thus refrain from listing the parameters in the main text and relegate
them to Tables 3.D.9–3.D.16 in Appendix 3.D.4. We note that the vast majority of
parameters is very precisely estimated. The set of model parameters is completed
with the initial distribution of states and the standard deviation of period-by-period
innovations, which we relegate to Appendix 3.D.5.

As a first pass, Figure 3.4.1 shows transition equations for physical capacity (first
row of each subfigure referring to women and men, respectively) and cognitive ca-
pacity as a function of the input factors. Each of the sixteen panels contains four
lines, one for each age group or stage. Input factors are kept at their median except
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for the one on the x-axis, which is varied from the 1st to the 99th percentile of its
distribution in the respective age group.

(a) Transitions, females

(b) Transitions, males

Figure 3.4.1. Next period states as a function of current states, other factors evaluated at the

median

The top left panel in Figure 3.4.1a thus shows the result of the following thought
experiment: Conditional on current age, what is a woman’s expected value of phys-
ical capacity in two years as a function of her current physical capacity while fixing
cognitive capacity, exercise, and cognitive stimulation at their median values. The
results show that there is a high degree of persistence in all age groups. For the up-
per part of the distribution of physical capacity, the lines are below the 45°-line (the
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distributions at ages 70, 80, and 90 are shown in in Appendix 3.D.3, Figures 3.D.7–
3.D.9; as a rough guide to interpret the first panel of Figure 3.4.1a, the first quartile
at age 90 has a value of −1.2). The transition function is below 45°-line everywhere
in the youngest age group, which has the steepest slope throughout. This means that
at median levels of cognitive capacity, exercise, and cognitive stimulation, physical
capacity will unambiguously decline in expectation regardless of the initial level.
In contrast, for very low values of physical capacity at older ages, there would be
some mean reversion – if all other factors were at their median. Of course, cognitive
capacity is not a (direct) choice and there might be substantial costs to reaching
median levels of exercise or cognitive stimulation if physical capacity is very low, for
example.

Increased cognitive capacity is associated with a slightly more favorable evo-
lution of physical capacity. For example, changing cognitive capacity from its first
quartile (−0.63) to its third quartile (−0.17) at age 80 is associated with an increase
of age-82 physical capacity of 0.02 units or just under 2 percentiles. The correspond-
ing effects of increased exercise are positive as well and tend to be larger. The same
interquartile move for exercise at age 80 (from −0.81 to −0.06) leads to an increase
of physical capacity by 0.16 units, which corresponds to almost 5 percentiles. The ef-
fects of cognitive stimulation on the dynamics of physical capacity are often slightly
negative at median levels of physical capacity, cognitive capacity, and exercise.

The second row of Figure 3.4.1a shows the corresponding effects for the evo-
lution of cognitive capacity. We start with the second panel, which contains the
own-effects. They are much less persistent than the own-effects for physical capac-
ity as evident by the flatter slopes at all ages. The four lines are also further apart
except at the very bottom of the distribution of cognitive capacity. This means that
at almost any level of cognitive capacity, the dynamics are worse for higher ages,
provided all other factors are at their median.

The first panel in the second row of Figure 3.4.1a displays modestly positive ef-
fects of physical capacity in the lower age groups; these become zero for higher ages
and, in the highest age group, turn out to be negative at very low levels of physical
capacity. Exercise has mostly positive effects on the evolution of cognitive capacity
at median values of other states with an exception being in the lower half of the
exercise distribution during women’s upper seventies. Finally, cognitive stimulation
has positive effects almost everywhere. Note that the lines are visually misleading
to some extent because of the long left tail of cognitive stimulation. For example,
the first quartile at age 80 is −0.66, the slope is steepest to the left of it. Moving
cognitive stimulation to its third quartile at 0.14 has hardly any effect.

Figure 3.4.1b shows the same set of transition functions for men. Again, the
broad patterns are fairly similar to women, but there are some important differ-
ences. For example, physical capacity is deteriorating more quickly for ages 74 and
beyond across the entire distribution of current physical capacity; only at the very
bottom of the distribution there is some sign of mean reversion. For the own-effects
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of physical capacity, there is a similar pattern to what we noted for the own effects
of cognitive capacity among women: At almost any level of physical capacity, the
dynamics are worse for higher ages, provided all other factors are at their median.
In contrast, for cognitive capacity, the same effect is somewhat less pronounced then
for women; the lower two age group and the upper two age groups look much more
similar to each other there. The signs and magnitudes we noted for the off-diagonal
elements generally hold up, although some curvatures appear markedly different.
These mostly concern the tails of the distributions, however.

3.4.3 Dynamic Effects Over Several Periods

A major benefit of our dynamic model over multiple periods is that it can be used to
evaluate the dynamic effects of interventions through various channels. For exam-
ple, a positive relation between exercise and cognitive capacity in the cross-section
does not mean much because it is not the snapshot that matters, but the history of
processes that has led there. In this section, we highlight a few examples of how the
distributions of factors change in several years’ time when we exogenously manipu-
late the factors measuring investments, i.e., exercise or cognitive stimulation.

Tables 3.4.2 and 3.4.3 contain the effects of one possible set of such exercises
for women and men, respectively. In the baseline scenario, we fix all factors at their
age-80 medians. The next row shows the age-86 quantiles the factors are expected
to end up at. We then change exercise to its first quartile at age 80, leaving all other
factors at their median and letting all of them evolve according to the estimated
transition equations until age 86. We repeat this exercise for setting the exercise
factor to its third quartile at age 80. The last two panels do the same for cognitive
stimulation. We do not take into account that mortality might be affected by the
experiment – all effects are conditional on the corresponding individual in the data
still being alive at age 86.

The main takeaway from the baseline exercise is that even when fixing every-
thing at the median, there can be large expected changes just a few years down
the road. For women, physical capacity is expected to be at the 45th percentile at
age 86, whereas cognitive capacity would be expected at its 64th percentile. Hardly
any change would be expected in the quantiles of exercise or cognitive stimulation.
In stark contrast, for men there would be large drops in the expected quantiles of
physical capacity, exercise, and cognitive stimulation along with a tiny drop in the
quantile of cognitive capacity.

Due to the high persistence in exercise (for women, see Table 3.D.13 or Fig-
ure 3.D.13 in the Appendix; the numbers for men follow directly after those), chang-
ing at age 80 essentially means setting it to the same quantile all three periods. Do-
ing so has a large effect on physical capacity (drops by 6-7 percentiles); cognitive
capacity and cognitive stimulation barely change. The effect of increasing exercise
to its third quartile is almost symmetric for women; the improvement is only three
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Table 3.4.2. 6-year-ahead effects of changing exercise or cognitive stimulation, females

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Scenario Age

Baseline
80 0.50 0.50 0.50 0.50

86 0.45 0.64 0.49 0.51

Exercise low
80 0.50 0.50 0.25 0.50

86 0.39 0.63 0.28 0.51

Exercise high
80 0.50 0.50 0.75 0.50

86 0.50 0.65 0.67 0.52

Cognitive Stimulation low
80 0.50 0.50 0.50 0.25

86 0.46 0.52 0.48 0.29

Cognitive Stimulation high
80 0.50 0.50 0.50 0.75

86 0.40 0.71 0.49 0.72

Table 3.4.3. 6-year-ahead effects of changing exercise or cognitive stimulation, males

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Scenario Age

Baseline
80 0.50 0.50 0.50 0.50

86 0.34 0.48 0.39 0.38

Exercise low
80 0.50 0.50 0.25 0.50

86 0.27 0.49 0.23 0.37

Exercise high
80 0.50 0.50 0.75 0.50

86 0.37 0.50 0.54 0.39

Cognitive Stimulation low
80 0.50 0.50 0.50 0.25

86 0.35 0.43 0.39 0.19

Cognitive Stimulation high
80 0.50 0.50 0.50 0.75

86 0.33 0.53 0.40 0.60
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percentiles for men. Note that, by age 86, exercise has reverted to its 54th percentile,
so less of an effect might be expected, too.

Fixing cognitive stimulation at its first quartile reduces cognitive capacity by
12 percentiles for women and by 5 percentiles for men. Interestingly, the larger
effect for women occurs despite the fact that at age 86, cognitive stimulation is
expected to be at its 29th percentile for women compared to the 19th percentile for
men. Conversely, increasing cognitive stimulation substantially improves cognition
for both genders. It also has a detrimental effect on women’s health whereas there
is no effect for men.

3.5 Conclusions and Outlook

We adapt a nonlinear dynamic latent factor framework that was developed for skill
formation of children to study the physical and cognitive decline between ages 68
and 93. To this end, we incorporate mortality into themodel. Themodel is estimated
with a rich set of measures from the Health and Retirement Study.

We document a large amount of measurement error in all observed variables.
While most measurements have a high correlation with the latent factor they mea-
sure, no single measurement is a good enough proxy to use in isolation. A dynamic
latent factor model is therefore a good fit for this setting. Having a rich set of time
invariant measurements for each latent factor, lets us overcome some of the chal-
lenges related to the interpretability of latent factors. To make our results even
more interpretable we also present them in terms of population ranks and use sur-
vival probabilities to anchor physical capacity.

We find that, despite a strong decline in means for physical and cognitive ca-
pacity, the rank order of these latent factors is remarkably stable over periods. Nev-
ertheless, physical and cognitive capacity can be influenced by investments until
very high ages. Cognitive stimulation is a specific investment into cognitive capac-
ity. Physical exercise has a larger effect on physical capacity and a small effect on
cognitive capacity.

We leave a few extensions of our approach for future work. Besides expanding
the sampling period by another wave, we want to add mental health as a separate
latent factor that is different from cognitive and physical capacity but can influence
both. As a robustness check we want to replace the linear probability model of mor-
tality by a probit model. This requires the addition of nonlinear measurement equa-
tions to the model. To address any concerns of endogeneity of investments, we will
use a control function approach similar to recent skill formation papers (Agostinelli
and Wiswall, 2016a; Attanasio, Meghir, and Nix, 2020) as endogeneity correction.
Finally we will use the model to simulate the effect of different investment poli-
cies and use Shapley decompositions to attribute the dynamic of investments over
multiple periods to different channels of transmission.
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Appendix 3.A Additional Background on the Data and

Measurements
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure 3.A.1. Standard deviation of measurements by age
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Appendix 3.B The Maximum Likelihood Estimator

3.B.1 State Estimation

3.B.1.1 Preliminaries

To discuss the econometric approach used in this paper and potential alternatives it
is convenient to express the model in state space notation.

To do so, let xt ∈ RN denote the vector of latent factors (i.e. physical capacity,
cognitive capacity, physical exercise and cognitive stimulation) in period t.

Similarly, let yt ∈ RLt denote the vector of all observable measurements in period
t.

Then the transition function of the latent factors can be written as:

xt+1 = Ft(xt) + ηt (3.B.1)

where ηt is a vector of error terms with ηj
t on the jth position. Let Qt denote the

covariance matrix of ηt

The linear measurement system can be written as:

yt = Htxt + εt (3.B.2)

where Ht is a matrix of coefficients known as factor loadings and εt is a vector of
measurement errors with εt,l on the lth position. Let Rt denote the covariance matrix
of εt.

Equations 3.B.1 and 3.B.2 define a state space model. Equation 3.B.1 is called
transition equation. Equation 3.B.2 is called measurement equation. The vector xt

is called the state of the system. The matrices Qt and Rt are called process noise and
measurement noise, respectively.

To see why it was handy to rewrite the technology of skill formation in state
form, assume for a moment that the transition function Ft (including parameters)
as well as the matrices Ht, Qt and Rt are known for all t ∈ T but the state vectors
xt are unknown and have to be estimated from measurements yt. This problem is
known as optimal state estimation, which is a well researched topic in physics and
engineering.

To efficiently estimate the state vector in period t, an estimator should not only
use measurements from this period, but also take the information from all previous
measurements into account. For linear systems, Kalman filters are the method of
choice for state estimation (Kalman, 1960). For nonlinear systems, several nonlinear
variants of the Kalman filter have been developed. Kalman filters treat the state of a
system itself as random vector. Therefore, they are sometimes classified as Bayesian
filters.
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Kalman filters consist of a predict and an update step. They are initialised with
an initial estimate for the mean x̄0 and covariance matrix P0 of the distribution of the
state vector. Then, in each period, the newmeasurements are incorporated to update
themean and covariancematrix of the state vector. After that, the transition equation
is used to predict the mean and covariance matrix of the state vector in the next
period. This predicted state vector can then again be updated with measurements.

For the application of Kalman filters, the following assumptions must hold:

1. ηt ∼N (0N,Qt) where 0N denotes a vector of zeros of length N, Qt is a diagonal
matrix.

2. The ηj
t are serially independent over all t.

3. εt ∼N (0Lt
,Rt) where Rt is a diagonal matrix.

4. The εt,l are serially independent over all t.
5. εt,l and ηj

t are independent of xt for all t= 1, . . . , T, l= 1, . . . , L and each factor
j.

6. The distribution of the state vector p(xt) can be approximated by a mixture of
normal distributions for all t= 1, . . . , T

Due to the assumption of a linear measurement system, the state vector can be
estimated by combining the update step of a linear Kalman filter with the predict
step of a nonlinear Kalman filter. For computational reasons, it will be convenient
not to incorporate all measurements at once but to perform a separate update step
for each measurement.

3.B.1.2 The Update Step of the Kalman Filter

The aim of the Kalman update is to efficiently combine information from measure-
ments in the current periodwith previousmeasurements. To do so, themeasurement
function is used to convert the pre-update state vector into predicted measurements
for the current period (equation 3.B.3). The difference between the predicted and
actual measurements is called residual (equation 3.B.4). This residual, scaled by the
so called Kalman gain, is then added to the pre-update state vector (equation 3.B.8).
The Kalman gain is smaller if the variance of the measurement (calculated by equa-
tion 3.B.6) is large. This has the intuitive consequence that noisy measurements
receive a low weight. The Kalman gain becomes larger if the pre-update covariance
matrix has large diagonal entries (equation 3.B.5 and 3.B.7). Thus, measurements
receive more weight if the pre-update state is known imprecisely due to bad initial
values or a high process noise, for example. After the incorporation of the measure-
ments, the state is always known with the same or more precision than before. This
is reflected by subtracting a positive semi-definite matrix from the pre-update co-
variance matrix (equation 3.B.9).
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Let x̄t|y−t,l
denote the mean of the conditional distribution of the state vector given

all measurements up to but not including the lth measurement in period t. Let Pt|y−t,l
denote the covariance matrix of this distribution. Let ht,l denote the lth row of Ht.
Let rt,l,l be the lth diagonal element of Rt. The update step that incorporates the lth

measurement into the estimate is given by the following equations:

ȳt,l|y−t,l
= ht,lx̄t|y−t,l

ȳt,l|y−t,l
= E(yt,l|y−t,l) (3.B.3)

δt,l = yt,l − ȳt,l|y−t,l
δt,l can be interpreted as residual (3.B.4)

f t,l = Pt|y−t,l
hT

t,l f t,l is an intermediate result (3.B.5)

σt,l = ht,lf t,l + rt,l,l σt,l is the variance of yt,l (3.B.6)

kt,l =
1
σt,l

f t,l kt,l is the (scaled) Kalman gain (3.B.7)

x̄t|yt,l
= x̄t|y−t,l

+ kt,lδt,l x̄t|yt,l
is the updated mean (3.B.8)

Pt|yt,l
= Pt|y−t,l

−
1
σt,l

f t,lf
T
t,l Pt|yt,l

is the updated covariance matrix (3.B.9)

3.B.1.3 The Predict Step of the Kalman Filter

In linear systems, the mean and covariance matrix of the system can be propagated
to the next period by simply applying the linear transition equation.With a nonlinear
transition function, however, this is not possible, as E(f(X) ̸= f(E(X) in general. For
the nonlinear predict step, two basic options exist: The extended Kalman filter and
the unscented Kalman filter. Cunha, Heckman and Schennach choose the unscented
Kalman filter because it has been shown to be more reliable in a wide range of
settings (Van Der Merwe, 2004).

The intuition of the predict step of the unscented Kalman filter is relatively sim-
ple: firstly, a deterministic sample of points in the state space, called sigma points
(equation 3.B.10), and accompanying weights are chosen (equation 3.B.11). Usu-
ally these are 2N + 1 points and weights, where N is the length of the state vector.
Secondly, these sigma points are transformed using the true nonlinear transition
equation. Thirdly, the weighted sample mean is used as estimate for the next pe-
riod mean of the state vector (equation 3.B.12). Fourthly, the sum of the covariance
matrix of the process noise and the weighted sample covariance of the transformed
sigma points is used as estimate of the covariance matrix of the state vector (equa-
tion 3.B.13). Intuitively, the addition of the process noise accounts for the fact that
the prediction always adds some uncertainty about the state of the system.

For the choice of sigma points and sigma weights, many different algorithms
exist. All have in common that some form of matrix square root of the covariance
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matrix of the state vector is taken. Two definitions of matrix square root exist: 1) A is
a matrix square root of P if P= AA. 2) A is a matrix square root of P if P= AAT. The
matrix square root is not unique in general and some matrices do not have a square
root. However, all symmetric positive semi-definite matrices, i.e. all valid covari-
ance matrices, can be decomposed into P= LLT where L is lower triangular (Zhang,
1999). For the unscented Kalman filter, both definitions of matrix square root work.
Below, the sigma point algorithm proposed by Julier and Uhlmann (1997), is pre-
sented without reference to a particular type of matrix square root:

Let κ ∈ R be a scaling parameter. Usually, κ is set to 2 if the distribution of the
state vector is assumed to be normal. Let Pt|t denote the covariance matrix of the
state vector, conditional on all measurements up to and including period t. Define
St|t ≡
p

Pt|t as the matrix square root of Pt|t and let st,n denote its nth column.
Sigma points are calculated according to the following equations:

χt,n = x̄t|t for n = 0

χt,n = x̄t|t +
p

N + κ st,n for n = 1, . . . N (3.B.10)

χt,n = x̄t|t −
p

N + κ st,n for n = N + 1, . . . 2N

where χt,n is the nth sigma point at period t that is calculated after incorporating
all measurements of that period. The corresponding sigma weights are calculated
as follows:

wt,n =
κ

N + κ
for n = 0 (3.B.11)

wt,n =
1

2(N + κ)
for n = 1, . . . , 2N

where wt,n is the nth sigma weight. Define eχt,n ≡ Ft(χt,n) where Ft(·) is defined
as in equation 3.B.1. Then the predict step of the unscented Kalman filter is given
by:

x̄t+1|t =
2N
∑

n=0

wt,n eχt,n (3.B.12)

Pt+1|t =

� 2N
∑

n=0

wt,n(eχt,n − x̄t+1|t)(eχt,n − x̄t+1|t)
T

�

+ Qt (3.B.13)
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3.B.2 The Likelihood Interpretation of the Kalman Filter

Of course, the parameters of the function Ft and the matrices Ht, Qt and Rt are
unknown in reality. However, they can be estimated by maximum likelihood. The
direct maximization of the likelihood function would involve the evaluation of high
dimensional integrals which is computationally very expensive (Cunha, Heckman,
and Schennach, 2010). Instead, Kalman filters can be used to reduce the sumber of
computations required for each evaluation of the likelihood function dramatically.

To see how, define θ as the vector with all estimated parameters of the model.
Then, the likelihood contribution of individual i is given by:

L (θ |y1, . . . ,yT) ≡ pθ (y1, . . . ,yT) =
T
∏

t=1

Lt
∏

l=1

pθ (yt,l|y−t,l) (3.B.14)

where pθ (y1, . . . ,yT) denotes the joint density of all measurements for individ-
ual i, conditional on the parameter vector θ and pθ (yt,l|y−t,l) is the density of the
lth measurement in period t, given all measurements up to but not including this
measurement. The subscript i is again omitted for readability.

To see how this relates to the Kalman filter, recall that for each t= 1, . . . , T and
each l= 1, . . . , Lt, equation 3.B.3 calculates ȳt,l|y−t,l

, i.e the expected value of the lth

measurement in period t, conditional on all previous measurements. In addition, due
to the normality and independence assumptions on the error terms and the factor
distribution, yt,l is normally distributed around ȳt,l|y−t,l

. Equation 3.B.6 can be used
to calculate the variance σt,l of this distribution. Thus, pθ (yt,l|y−t,l)= φȳt,l|y−t,l

,σt,l
(yt,l)

where φµ,σ(·) is the density of a normal random variable with mean µ and variance
σ.

A nice feature of the estimator based on this factorization of the likelihood func-
tion is that it can deal very well with missing observations. If measurement yt,l is
missing for inidividual i, the corresponding update of the state vector is just skipped.
More formally, this means that the missing measurement is integrated out from the
likelihood function.

3.B.3 Numerical Stability

3.B.3.1 Numerical Challenges

While the Kalman filter based maximum likelihood estimator is statistically and com-
putationally efficient, it is numerically unstable. The numerical instability caused by
floating point imprecision is inherent to Kalman filters and has been discovered soon
after Kalman published his original article. Since then, the precision of computers
has increased enormously such that nowadays numerical problems are not a big
issue for well specified Kalman filters. However, during the maximization of the like-
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lihood function the optimizer might pick parameter combinations that are far from
leading to a well specified filter.

The numerical problems manifest themselves in two places:

1. In the update step, the subtraction in equation 3.B.9 can lead to negative diago-
nal elements in the updated covariance matrix of the state vector. While this is
mathematically impossible in a well specified Kalman filter, numerical impreci-
sions and badly specified Kalman filters during the maximization process make
it possible.

2. Even if the covariance matrix of the state vector has nonnegative diagonal en-
tries, numerical imprecisions might render it not positive semi-definite. With
this the existence of a matrix square root is not guaranteed, which can make the
calculation of sigma points impossible.

Cunha, Heckman and Schennach mention the numerical problems in their sup-
plementary material. To solve the first problem, they recommend to find good initial
values for the maximization by first constraining some parameters and letting the
code find good initial values for the others. For the second problem, they propose to
set all off-diagonal elements of P to zero before taking the square root, which then
corresponds to taking the element wise square root of the diagonal elements. While
this prevents the estimator from crashing, it is not standard practice in Kalman fil-
tering and it is not guaranteed that an estimator based on this type of matrix square
root produces reliable results.

3.B.3.2 Outline of the Solution

A better approach is to use a square root implementation of the Kalman filter. Many
different square root Kalman filters exist. They are mathematically equivalent to
normal Kalman filters but numerically more stable.

Instead of propagating the full covariance matrix of the state vector, square root
Kalman filters propagate the square root of this matrix. This has three advantages:

1. It avoids overflow errors due to numbers with very small or large absolute values,
as taking the square root makes large numbers smaller and small numbers larger.

2. By using a matrix square root A of the type P= AAT, the problematic covariance
matrix is guaranteed to be positive semi-definite (Zhang, 1999), i.e. a valid co-
variance matrix. In particular, its diagonal entries are sums of squared terms
and, consequently, guaranteed to be nonnegative. This solves the first problem.

3. By choosing an appropriate pair of square root update and predict algorithms,
taking matrix square roots can be completely avoided. This eliminates the sec-
ond problem.

The computational requirements of square root filters are comparable to those
of normal Kalman filters. In the nonlinear case, they are even lower. For a maximally
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robust estimator, we use a pair of square root update and predict algorithms that
completely avoid taking matrix square roots. The algorithm for the update was de-
veloped by Prvan and Osborne (Prvan and Osborne, 1988). The unscented square
root predict step was proposed by Van Der Merwe and Wan (van der Merwe and
Wan, 2001). Both propagate the transpose of a lower triangular matrix square root
of the state covariance matrix.

3.B.3.3 The QR Decomposition of a Matrix

Both square root algorithms rely on a matrix factorization called QR decomposition.
Note that in this subsection, Q and R do not denote the covariance matrices of the
process and measurement noise but factors into which a matrix is decomposed.

QR is called QR decomposition of an m× n matrix A with m≥ n if:

1. A= QR

2. Q is an orthogonal m×m matrix
3. R is an m× n matrix and the first n rows of R form a upper triangular matrix

and its remaining rows only contain zeros

The QR decomposition of a matrix always exists but is not unique. A useful prop-
erty of the QR decomposition is that:

ATA = (QR)TQR = RTQTQR = RTR (3.B.15)
where the last equality comes from the defining property of orthogonal matrices

that QTQ= QQT = I, where I denotes the identity matrix. Thus, the upper triangu-
lar part of R is the transpose of a lower triangular matrix square root of ATA. For
convenience, let qr(A) denote the QR decomposition of A that only returns the upper
triangular part of the matrix R.

3.B.3.4 The Update Step of the Square-Root Kalman Filter

Let St|y−l,t
be a lower triangular matrix square root of Pt|y−l,t

and keep the rest of the
notation as in section 3.B.1. Then, the square root update that incorporates the lth

measurement in period t is given by the following equations:
ȳt,l|y−t,l

and δt,l are calculated as in equation 3.B.3 and 3.B.4 respectively. Then
the following intermediate results are calculated.

f ∗t,l = ST
t|y−t,l

hT
t,l (3.B.16)

Mt,l =





p

rt,l,l 0T
N

f ∗t,l ST
t|y−t,l



 (3.B.17)

It can be shown that:
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qr(Mt,l) =





p

σt,l
1p
σt,l

fT
t,l

0N ST
t|yt,l



 (3.B.18)

where ST
t|yt,l

is the transpose of a lower triangular square root of the updated covari-
ance matrix and 0N denotes a column vector of length N that is filled with zeros.

The matrix in equation 3.B.18 also contains f t,l and σt,l such that the Kalman
gain can be calculated as in equation 3.B.7 and the mean of the state vector can be
updated as in equation 3.B.8.

To see why equation 3.B.18 holds, define Ut,l ≡ qr(Mt,l) and partition it as fol-
lows:

Ut,l =





U1,1 U1,2

0 U2,2



 (3.B.19)

where U1,1 is a scalar, U1,2 a row vector of length N, 0 a column vector of length
N filled with zeros and U2,2 an upper triangular N × N matrix. Recall from the defi-
nition of Ut,l and equation 3.B.15 that UT

t,lUt,l = MT
t,lMt,l. Multiplying out both sides

of this equality yields:




rt,l,l + f ∗Tt,l f
∗
t,l f ∗Tt,l S

T
t|y−t,l

St|y−t,l
f ∗t,l St|y−t,l

ST
t|y−t,l



 =





U2
1,1 U1,1U1,2

UT
1,2U1,1 UT

1,2U1,2 + UT
2,2U2,2



 (3.B.20)

It is obvious from equation 3.B.6 and 3.B.16 that U1,1 =
p

σt,l. Using this and
noting that f ∗Tt,l S

T
t|y−t,l

= fT
t,l, where f t,l is defined as in equation 3.B.5, one obtains

that:

U1,2 =
fT

t,l
p

σt,l
(3.B.21)

It remains to show that U2,2 = ST
t|yt,l

. By noting that the bottom right element
of the left hand side of equation 3.B.20 is, by definition, equal to the pre-update
covariance matrix Pt|y−t,l

and plugging in the value for U1,2, one obtains that:

UT
2,2U2,2 = Pt|y−t,l

−
1
σt,l

f t,lf
T
t,l = Pt|yt,l

(3.B.22)

where the last equality comes comes from equation 3.B.9. Thus UT
2,2 is a matrix

square root of Pt|yt,l
and by the definition of the QR decomposition it is lower triangu-

lar, which completes the proof. Importantly, no part of the proof requires the lower
triangular square roots of Pt|y−t,l

or Pt|yt,l
to be unique or makes reference to a specific

type of matrix square root.



168 | 3 Mens Sana in Corpore Sano?

3.B.3.5 The Predict Step of the Square-Root Kalman Filter

For the square root implementation of the unscented predict step in period t, firstly
the sigma points are calculated as in equation 3.B.10, where this time St|t is required
to be a lower triangular matrix square root of Pt|t. Again, X̃t denotes the (2N + 1)×
N matrix of the transformed sigma points. The calculation of the predicted mean of
the state vector remains the same as before (equation 3.B.12).

Define At as stacked matrix of weighted deviations of the sigma points from the
predicted mean and the covariance matrix of the transition shocks:

At ≡













p

wt,0(X̃t,0 − x̄t+1|t)
T

. . .
p

wt,2n(X̃t,2n − x̄t+1|t)
T

p

Qt













(3.B.23)

Then equation 3.B.13 can be rewritten as:

Pt+1|t = AT
t At (3.B.24)

and by the relation of the QR decomposition and and the lower triangular matrix
square root (equation 3.B.15) a lower triangular matrix square root of Pt+1|t is given
by qr(At)

T.

Appendix 3.C Detailed Model Setup

3.C.1 Background on Identification

Cunha, Heckman, and Schennach (2010) provide very general nonparametric Iden-
tification result for nonlinear dynamic latent factor models. The exact conditions for
identification depend on the assumptions one is willing to put on the measurement
error. However, having at least two dedicated measurements for each latent factor
in each period is sufficient to identify an arbitrary production function under mild
conditions. Since latent factors do not have a natural unit of measurement, the iden-
tification requires normalizations of location and scale. Thus, Cunha, Heckman, and
Schennach (2010) normalize one loading of each factor in each period to 1 and one
intercept of each factor in each period to 0. While the identification result works for
arbitrary production functions, they use a parametric CES function in their empirical
application.

Agostinelli and Wiswall (2016b) criticize the identification result by Cunha,
Heckman, and Schennach (2010) to be flawed. They point out that the CES pro-
duction function already puts a restriction on the scale and location of its output.
Thus, normalization of scale and location are only required in the first period and
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re-normalizations in each period are actually not normalizations but testable as-
sumptions. Moreover, they show that under the implicit restrictions imposed by the
CES production function, identification under a linear measurement system can be
achieved with as little as one measurement per latent factor and period as long as
there are at least two measurements in the first period.

Freyberger (2021) shows that the CES production function also imposes implicit
restrictions on the relative scale of the latent factors and thus identification can be
achieved if only the location and scale of a single factor are normalized in the first
period.

While the critique by Agostinelli and Wiswall (2016b) that over-normalizations
are detrimental is correct, it mostly applies to the empirical application and not the
general identification result in Cunha, Heckman, and Schennach (2010) nor the
maximum likelihood estimator used in the paper. The identification result states
that latent factors have no natural scale and location that could be be identified
from data and thus their location and scale has to be fixed by restrictions imposed by
the econometrician. Cunha, Heckman, and Schennach (2010) restrict factor load-
ings and intercepts but mention, that instead of factor loadings, the variances of
measurement errors could be restricted. Of course, these restrictions are mutually
exclusive and it would not be valid to restrict factor loadings and variances of mea-
surement error at the same time. The main contribution of Agostinelli and Wiswall
(2016b) is to point out that using restrictive functional forms for the production
function is yet another way of fixing the location and scale of the latent factors.

Appendix 3.D Additional Tables and Figures for the Main

Specification

3.D.1 Complete Set of Parameters of the Measurement System
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Table 3.D.1. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity,

Females

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.707∗∗∗

(0.001)

Mobility −0.113∗∗∗ 1.228∗∗∗ 0.766∗∗∗

(0.003) (0.005) (0.003)

Large Muscle Index 0.005∗ 0.929∗∗∗ 0.750∗∗∗

(0.003) (0.005) (0.002)

Self-Reported Health −0.048∗∗∗ 0.950∗∗∗ 0.765∗∗∗

(0.003) (0.004) (0.002)

70 Alive 0.897∗∗∗ 0.042∗∗∗ 0.303∗∗∗

(0.103) (0.011) (0.039)

Grip Strength −0.126∗∗∗ 0.489∗∗∗ 0.933∗∗∗

(0.027) (0.042) (0.015)

72 Alive 0.909∗∗∗ 0.045∗∗∗ 0.288∗∗∗

(0.107) (0.011) (0.038)

Grip Strength −0.241∗∗∗ 0.396∗∗∗ 0.922∗∗∗

(0.028) (0.042) (0.016)

74 Alive 0.902∗∗∗ 0.060∗∗∗ 0.301∗∗∗

(0.097) (0.013) (0.036)

Grip Strength −0.292∗∗∗ 0.466∗∗∗ 0.935∗∗∗

(0.030) (0.043) (0.018)

76 Alive 0.885∗∗∗ 0.073∗∗∗ 0.327∗∗∗

(0.101) (0.018) (0.043)

Grip Strength −0.471∗∗∗ 0.368∗∗∗ 0.924∗∗∗

(0.030) (0.049) (0.012)

78 Alive 0.879∗∗∗ 0.075∗∗∗ 0.339∗∗∗

(0.103) (0.019) (0.046)

Grip Strength −0.540∗∗∗ 0.447∗∗∗ 0.924∗∗∗

(0.033) (0.048) (0.019)

80 Alive 0.871∗∗∗ 0.091∗∗∗ 0.353∗∗∗

(0.097) (0.023) (0.047)

Grip Strength −0.758∗∗∗ 0.367∗∗∗ 0.882∗∗∗

(0.034) (0.052) (0.021)

82 Alive 0.870∗∗∗ 0.089∗∗∗ 0.359∗∗∗

(0.112) (0.026) (0.054)

Grip Strength −0.789∗∗∗ 0.336∗∗∗ 0.861∗∗∗

(0.037) (0.055) (0.020)

84 Alive 0.869∗∗∗ 0.110∗∗∗ 0.371∗∗∗

(0.105) (0.030) (0.053)

Grip Strength −0.980∗∗∗ 0.334∗∗∗ 0.866∗∗∗

(0.042) (0.061) (0.026)

86 Alive 0.856∗∗∗ 0.123∗∗∗ 0.391∗∗∗

(0.122) (0.040) (0.067)

Grip Strength −0.997∗∗∗ 0.337∗∗∗ 0.839∗∗∗

(0.046) (0.071) (0.028)

88 Alive 0.846∗∗∗ 0.129∗∗ 0.406∗∗∗

(0.146) (0.053) (0.086)

Grip Strength −1.191∗∗∗ 0.413∗∗∗ 0.827∗∗∗

(0.060) (0.084) (0.035)

90 Alive 0.828∗∗∗ 0.137∗ 0.425∗∗∗

(0.203) (0.081) (0.133)

Grip Strength −1.105∗∗∗ 0.357∗∗∗ 0.736∗∗∗

(0.062) (0.099) (0.032)

92 Alive 0.819∗∗∗ 0.168 0.443∗∗∗

(0.215) (0.116) (0.148)

Grip Strength −1.362∗∗∗ 0.350∗∗∗ 0.746∗∗∗

(0.083) (0.116) (0.048)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.2. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity,

Males

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.796∗∗∗

(0.002)

Mobility −0.015∗∗∗ 1.331∗∗∗ 0.750∗∗∗

(0.005) (0.007) (0.003)

Large Muscle Index 0.042∗∗∗ 1.032∗∗∗ 0.761∗∗∗

(0.004) (0.006) (0.003)

Self-Reported Health 0.026∗∗∗ 0.963∗∗∗ 0.793∗∗∗

(0.003) (0.006) (0.003)

70 Alive 0.901∗∗∗ 0.058∗∗∗ 0.303∗∗∗

(0.092) (0.013) (0.035)

Grip Strength −0.056 0.578∗∗∗ 0.978∗∗∗

(0.034) (0.053) (0.020)

72 Alive 0.907∗∗∗ 0.075∗∗∗ 0.298∗∗∗

(0.083) (0.015) (0.030)

Grip Strength −0.294∗∗∗ 0.550∗∗∗ 0.959∗∗∗

(0.034) (0.053) (0.020)

74 Alive 0.900∗∗∗ 0.061∗∗∗ 0.310∗∗∗

(0.119) (0.017) (0.046)

Grip Strength −0.318∗∗∗ 0.497∗∗∗ 0.922∗∗∗

(0.035) (0.057) (0.021)

76 Alive 0.876∗∗∗ 0.073∗∗∗ 0.344∗∗∗

(0.129) (0.024) (0.059)

Grip Strength −0.506∗∗∗ 0.559∗∗∗ 0.898∗∗∗

(0.037) (0.057) (0.020)

78 Alive 0.872∗∗∗ 0.081∗∗∗ 0.355∗∗∗

(0.130) (0.027) (0.062)

Grip Strength −0.560∗∗∗ 0.553∗∗∗ 0.920∗∗∗

(0.041) (0.059) (0.023)

80 Alive 0.866∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.135) (0.031) (0.068)

Grip Strength −0.737∗∗∗ 0.571∗∗∗ 0.891∗∗∗

(0.043) (0.061) (0.023)

82 Alive 0.852∗∗∗ 0.136∗∗∗ 0.394∗∗∗

(0.117) (0.043) (0.066)

Grip Strength −0.959∗∗∗ 0.468∗∗∗ 0.872∗∗∗

(0.046) (0.065) (0.025)

84 Alive 0.868∗∗∗ 0.139∗∗∗ 0.387∗∗∗

(0.130) (0.047) (0.068)

Grip Strength −1.042∗∗∗ 0.557∗∗∗ 0.842∗∗∗

(0.052) (0.069) (0.027)

86 Alive 0.849∗∗∗ 0.140∗∗ 0.408∗∗∗

(0.157) (0.062) (0.092)

Grip Strength −1.238∗∗∗ 0.488∗∗∗ 0.841∗∗∗

(0.064) (0.085) (0.034)

88 Alive 0.856∗∗∗ 0.176∗∗ 0.418∗∗∗

(0.154) (0.074) (0.090)

Grip Strength −1.283∗∗∗ 0.471∗∗∗ 0.826∗∗∗

(0.071) (0.109) (0.045)

90 Alive 0.850∗∗∗ 0.204∗ 0.430∗∗∗

(0.212) (0.121) (0.128)

Grip Strength −1.358∗∗∗ 0.508∗∗∗ 0.766∗∗∗

(0.102) (0.120) (0.055)

92 Alive 0.765∗∗ 0.183 0.464∗

(0.312) (0.218) (0.268)

Grip Strength −1.493∗∗∗ 0.684∗∗∗ 0.816∗∗∗

(0.123) (0.166) (0.077)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.3. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity,

Females

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.890∗∗∗

(0.003)

Vocabulary 0.043∗∗∗ 0.839∗∗∗ 0.923∗∗∗

(0.006) (0.013) (0.004)

Immediate Word Recall −0.161∗∗∗ 1.801∗∗∗ 0.583∗∗∗

(0.006) (0.015) (0.003)

Delayed Word Recall −0.189∗∗∗ 1.805∗∗∗ 0.595∗∗∗

(0.006) (0.014) (0.002)

70 Self-Rated Memory 0.005 0.576∗∗∗ 0.961∗∗∗

(0.014) (0.031) (0.009)

72 Self-Rated Memory 0.029∗∗ 0.593∗∗∗ 0.955∗∗∗

(0.015) (0.030) (0.009)

74 Self-Rated Memory 0.016 0.555∗∗∗ 0.973∗∗∗

(0.015) (0.030) (0.009)

76 Self-Rated Memory 0.028∗ 0.497∗∗∗ 0.968∗∗∗

(0.017) (0.033) (0.010)

78 Self-Rated Memory 0.045∗∗ 0.501∗∗∗ 0.992∗∗∗

(0.019) (0.035) (0.011)

80 Self-Rated Memory 0.052∗∗ 0.470∗∗∗ 1.013∗∗∗

(0.022) (0.038) (0.012)

82 Self-Rated Memory 0.069∗∗ 0.460∗∗∗ 1.010∗∗∗

(0.027) (0.043) (0.013)

84 Self-Rated Memory 0.083∗∗ 0.398∗∗∗ 1.035∗∗∗

(0.032) (0.050) (0.015)

86 Self-Rated Memory 0.079∗ 0.393∗∗∗ 1.063∗∗∗

(0.041) (0.058) (0.018)

88 Self-Rated Memory 0.261∗∗∗ 0.549∗∗∗ 1.069∗∗∗

(0.055) (0.075) (0.021)

90 Self-Rated Memory 0.210∗∗∗ 0.459∗∗∗ 1.081∗∗∗

(0.074) (0.097) (0.026)

92 Self-Rated Memory 0.218∗∗ 0.538∗∗∗ 1.145∗∗∗

(0.110) (0.133) (0.040)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.4. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity,

Males

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.907∗∗∗

(0.004)

Vocabulary 0.048∗∗∗ 0.960∗∗∗ 0.900∗∗∗

(0.008) (0.016) (0.004)

Immediate Word Recall −0.183∗∗∗ 1.684∗∗∗ 0.599∗∗∗

(0.008) (0.016) (0.003)

Delayed Word Recall −0.200∗∗∗ 1.648∗∗∗ 0.605∗∗∗

(0.008) (0.015) (0.003)

70 Self-Rated Memory −0.041∗∗ 0.626∗∗∗ 0.937∗∗∗

(0.017) (0.035) (0.011)

72 Self-Rated Memory −0.052∗∗∗ 0.560∗∗∗ 0.955∗∗∗

(0.017) (0.034) (0.011)

74 Self-Rated Memory −0.043∗∗ 0.573∗∗∗ 0.949∗∗∗

(0.017) (0.035) (0.011)

76 Self-Rated Memory −0.039∗∗ 0.527∗∗∗ 0.955∗∗∗

(0.020) (0.040) (0.012)

78 Self-Rated Memory −0.051∗∗ 0.607∗∗∗ 0.972∗∗∗

(0.022) (0.043) (0.013)

80 Self-Rated Memory −0.002 0.589∗∗∗ 0.988∗∗∗

(0.026) (0.048) (0.015)

82 Self-Rated Memory −0.019 0.479∗∗∗ 1.033∗∗∗

(0.034) (0.057) (0.018)

84 Self-Rated Memory −0.019 0.520∗∗∗ 1.007∗∗∗

(0.040) (0.063) (0.020)

86 Self-Rated Memory −0.019 0.464∗∗∗ 0.992∗∗∗

(0.046) (0.071) (0.022)

88 Self-Rated Memory 0.007 0.509∗∗∗ 1.035∗∗∗

(0.065) (0.091) (0.028)

90 Self-Rated Memory 0.011 0.386∗∗∗ 1.080∗∗∗

(0.089) (0.120) (0.038)

92 Self-Rated Memory 0.003 0.599∗∗∗ 1.011∗∗∗

(0.125) (0.182) (0.049)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.5. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Females

Intercept Loading Meas. Std.

All Vigorous Activity −0.009 0.682∗∗∗ 0.809∗∗∗

(0.006) (0.010) (0.004)

Moderate Activity 0.000 1.000 0.794∗∗∗

(0.004)

Light Activity −0.127∗∗∗ 1.076∗∗∗ 0.933∗∗∗

(0.007) (0.012) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.D.6. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Males

Intercept Loading Meas. Std.

All Vigorous Activity −0.012∗∗ 0.741∗∗∗ 0.814∗∗∗

(0.006) (0.012) (0.005)

Moderate Activity 0.000 1.000 0.816∗∗∗

(0.004)

Light Activity −0.077∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.007) (0.013) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.7. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimula-

tion, Females

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.780∗∗∗

(0.006)

Listening to Music −0.168∗∗∗ 0.512∗∗∗ 0.980∗∗∗

(0.006) (0.010) (0.006)

Stimulating Hobbies −0.069∗∗∗ 0.578∗∗∗ 0.925∗∗∗

(0.007) (0.011) (0.005)

Communication −0.062∗∗∗ 0.523∗∗∗ 0.999∗∗∗

(0.006) (0.010) (0.005)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.D.8. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimula-

tion, Males

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.683∗∗∗

(0.007)

Listening to Music −0.175∗∗∗ 0.229∗∗∗ 1.004∗∗∗

(0.007) (0.010) (0.007)

Stimulating Hobbies −0.012 0.375∗∗∗ 0.969∗∗∗

(0.009) (0.012) (0.005)

Communication −0.083∗∗∗ 0.325∗∗∗ 0.989∗∗∗

(0.007) (0.011) (0.006)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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3.D.2 Correlations Between Measurements and Factors

Figure 3.D.1. Correlations across implied factors and measurement correlations – females aged

70
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Figure 3.D.2. Correlations across implied factors and measurement correlations – females aged

80
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Figure 3.D.3. Correlations across implied factors and measurement correlations – females aged

90
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Figure 3.D.4. Correlations across implied factors and measurement correlations – males aged 70
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Figure 3.D.5. Correlations across implied factors and measurement correlations – males aged 80
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Figure 3.D.6. Correlations across implied factors and measurement correlations – males aged 90
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3.D.3 Factor Distributions

Figure 3.D.7. Factor distributions – females aged 70
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Figure 3.D.8. Factor distributions – females aged 80
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Figure 3.D.9. Factor distributions – females aged 90
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Figure 3.D.10. Factor distributions – males aged 70
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Figure 3.D.11. Factor distributions – males aged 80
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Figure 3.D.12. Factor distributions – males aged 90
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3.D.4 Transition Equations

Figure 3.D.13. Transition equations for all factors (other factors evaluated at the median), fe-

males
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Figure 3.D.14. Transition equations for all factors (other factors evaluated at the median), males
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Table 3.D.9. Transition Parameters for Physical Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.999∗∗∗ 0.972∗∗∗ 0.969∗∗∗ 0.994∗∗∗

(0.006) (0.008) (0.014) (0.035)

Cognitive Capacity 0.007 0.003 −0.086∗∗∗ −0.093

(0.008) (0.011) (0.023) (0.069)

Exercise 0.066∗∗∗ 0.074∗∗∗ 0.054∗∗∗ −0.022

(0.007) (0.009) (0.015) (0.043)

Cognitive Stimulation −0.035∗∗∗ −0.025∗∗∗ 0.039∗∗∗ 0.021

(0.006) (0.008) (0.015) (0.034)

Physical Capacity Squared −0.015 0.030∗∗∗ 0.041∗∗∗ 0.002

(0.009) (0.012) (0.015) (0.030)

Cognitive Capacity Squared −0.066∗∗∗ −0.097∗∗∗ −0.180∗∗∗ −0.235∗∗∗

(0.015) (0.019) (0.031) (0.067)

Exercise Squared −0.074∗∗∗ −0.031∗ −0.001 −0.136∗∗∗

(0.016) (0.016) (0.021) (0.040)

Cognitive Stimulation Squared −0.004 −0.029∗∗ −0.066∗∗∗ −0.045∗∗

(0.013) (0.012) (0.015) (0.021)

Physical Capacity × Cognitive Capacity 0.069∗∗∗ 0.099∗∗∗ 0.142∗∗∗ 0.221∗∗∗

(0.018) (0.021) (0.032) (0.065)

Physical Capacity × Exercise 0.075∗∗∗ 0.024 0.014 0.161∗∗∗

(0.019) (0.021) (0.027) (0.054)

Physical Capacity × Cognitive Stimulation −0.074∗∗∗ −0.036∗∗ −0.080∗∗∗ −0.115∗∗∗

(0.015) (0.016) (0.021) (0.036)

Cognitive Capacity × Exercise −0.099∗∗∗ −0.211∗∗∗ −0.267∗∗∗ −0.254∗∗∗

(0.024) (0.026) (0.040) (0.071)

Cognitive Capacity × Cognitive Stimulation 0.077∗∗∗ 0.148∗∗∗ 0.187∗∗∗ 0.170∗∗∗

(0.022) (0.025) (0.037) (0.060)

Exercise × Cognitive Stimulation 0.085∗∗∗ 0.094∗∗∗ 0.170∗∗∗ 0.148∗∗∗

(0.024) (0.020) (0.027) (0.043)

Constant −0.072∗∗∗ −0.104∗∗∗ −0.120∗∗∗ −0.089∗∗∗

(0.006) (0.007) (0.011) (0.025)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1



Appendix 3.D Additional Tables and Figures for the Main Specification | 191

Table 3.D.10. Transition Parameters for Physical Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 1.010∗∗∗ 0.989∗∗∗ 0.997∗∗∗ 0.939∗∗∗

(0.008) (0.011) (0.023) (0.062)

Cognitive Capacity 0.034∗∗∗ 0.036∗∗∗ 0.034 −0.031

(0.009) (0.013) (0.035) (0.113)

Exercise 0.051∗∗∗ 0.082∗∗∗ 0.070∗∗∗ 0.133∗

(0.006) (0.009) (0.020) (0.070)

Cognitive Stimulation −0.039∗∗∗ −0.037∗∗∗ −0.029 −0.048

(0.007) (0.009) (0.022) (0.065)

Physical Capacity Squared −0.020∗ 0.057∗∗∗ 0.073∗∗∗ 0.062

(0.011) (0.013) (0.024) (0.054)

Cognitive Capacity Squared 0.004 −0.074∗∗∗ 0.047 −0.037

(0.018) (0.021) (0.046) (0.112)

Exercise Squared −0.012 0.019 0.009 0.032

(0.012) (0.014) (0.025) (0.062)

Cognitive Stimulation Squared 0.024∗∗∗ −0.005 0.044∗∗ 0.067∗

(0.009) (0.011) (0.021) (0.035)

Physical Capacity × Cognitive Capacity −0.010 0.024 0.131∗∗∗ 0.120

(0.019) (0.024) (0.047) (0.114)

Physical Capacity × Exercise −0.006 −0.045∗∗ 0.002 −0.019

(0.017) (0.020) (0.039) (0.088)

Physical Capacity × Cognitive Stimulation 0.006 0.026 −0.074∗∗ −0.052

(0.015) (0.017) (0.032) (0.071)

Cognitive Capacity × Exercise −0.078∗∗∗ −0.073∗∗∗ −0.207∗∗∗ −0.152

(0.019) (0.025) (0.050) (0.119)

Cognitive Capacity × Cognitive Stimulation −0.026 0.076∗∗∗ −0.088∗ −0.088

(0.021) (0.024) (0.050) (0.105)

Exercise × Cognitive Stimulation 0.047∗∗∗ 0.011 0.101∗∗∗ 0.027

(0.016) (0.017) (0.034) (0.080)

Constant −0.090∗∗∗ −0.124∗∗∗ −0.191∗∗∗ −0.246∗∗∗

(0.007) (0.008) (0.016) (0.044)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.11. Transition Parameters for Cognitive Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.042∗∗∗ 0.046∗∗∗ 0.011 0.016

(0.008) (0.009) (0.013) (0.028)

Cognitive Capacity 0.664∗∗∗ 0.568∗∗∗ 0.600∗∗∗ 0.521∗∗∗

(0.010) (0.012) (0.019) (0.052)

Exercise 0.013 −0.011 0.038∗∗ 0.039

(0.011) (0.011) (0.016) (0.037)

Cognitive Stimulation 0.100∗∗∗ 0.151∗∗∗ 0.129∗∗∗ 0.194∗∗∗

(0.010) (0.010) (0.014) (0.027)

Physical Capacity Squared −0.019 −0.014 0.005 0.022

(0.013) (0.014) (0.016) (0.024)

Cognitive Capacity Squared −0.096∗∗∗ −0.274∗∗∗ −0.210∗∗∗ −0.150∗∗∗

(0.018) (0.023) (0.027) (0.058)

Exercise Squared 0.025 0.067∗∗∗ 0.047∗∗ 0.072∗∗

(0.026) (0.022) (0.024) (0.036)

Cognitive Stimulation Squared 0.025 −0.045∗∗∗ −0.058∗∗∗ −0.069∗∗∗

(0.019) (0.016) (0.015) (0.019)

Physical Capacity × Cognitive Capacity 0.064∗∗∗ 0.203∗∗∗ 0.132∗∗∗ 0.218∗∗∗

(0.021) (0.024) (0.033) (0.058)

Physical Capacity × Exercise 0.030 −0.022 −0.034 −0.056

(0.029) (0.026) (0.030) (0.046)

Physical Capacity × Cognitive Stimulation −0.002 −0.070∗∗∗ −0.051∗∗ −0.081∗∗

(0.022) (0.021) (0.022) (0.033)

Cognitive Capacity × Exercise −0.044 −0.178∗∗∗ −0.056 −0.243∗∗∗

(0.029) (0.030) (0.038) (0.072)

Cognitive Capacity × Cognitive Stimulation 0.015 0.227∗∗∗ 0.199∗∗∗ 0.262∗∗∗

(0.027) (0.031) (0.033) (0.054)

Exercise × Cognitive Stimulation −0.070∗∗ 0.029 0.016 0.080∗

(0.034) (0.028) (0.029) (0.042)

Constant −0.045∗∗∗ −0.098∗∗∗ −0.163∗∗∗ −0.263∗∗∗

(0.009) (0.010) (0.011) (0.020)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.12. Transition Parameters for Cognitive Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.040∗∗∗ 0.030∗∗ 0.027 −0.041

(0.010) (0.012) (0.017) (0.045)

Cognitive Capacity 0.738∗∗∗ 0.668∗∗∗ 0.699∗∗∗ 0.760∗∗∗

(0.011) (0.013) (0.026) (0.075)

Exercise 0.029∗∗∗ 0.019∗ 0.025 0.090∗

(0.010) (0.011) (0.016) (0.053)

Cognitive Stimulation 0.059∗∗∗ 0.099∗∗∗ 0.099∗∗∗ 0.020

(0.010) (0.010) (0.016) (0.039)

Physical Capacity Squared 0.018 −0.012 0.006 −0.052

(0.017) (0.018) (0.023) (0.044)

Cognitive Capacity Squared −0.054∗∗∗ −0.177∗∗∗ −0.141∗∗∗ 0.044

(0.018) (0.024) (0.040) (0.088)

Exercise Squared 0.026 0.046∗∗ 0.040∗ −0.013

(0.021) (0.020) (0.023) (0.057)

Cognitive Stimulation Squared 0.054∗∗∗ −0.044∗∗∗ −0.017 0.037

(0.014) (0.014) (0.017) (0.025)

Physical Capacity × Cognitive Capacity 0.043∗ 0.062∗∗ 0.071∗ −0.023

(0.025) (0.031) (0.043) (0.087)

Physical Capacity × Exercise −0.001 −0.008 −0.030 0.092

(0.030) (0.031) (0.034) (0.081)

Physical Capacity × Cognitive Stimulation −0.000 −0.028 0.006 0.006

(0.022) (0.023) (0.028) (0.055)

Cognitive Capacity × Exercise −0.039 −0.083∗∗∗ −0.033 0.016

(0.028) (0.031) (0.042) (0.092)

Cognitive Capacity × Cognitive Stimulation −0.068∗∗∗ 0.162∗∗∗ 0.114∗∗∗ −0.098

(0.025) (0.027) (0.042) (0.076)

Exercise × Cognitive Stimulation −0.023 0.031 −0.003 −0.031

(0.027) (0.025) (0.029) (0.059)

Constant −0.079∗∗∗ −0.082∗∗∗ −0.164∗∗∗ −0.209∗∗∗

(0.010) (0.011) (0.014) (0.028)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.13. Transition Parameters for Exercise, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.026∗∗∗ 0.029∗∗∗ 0.035∗∗ 0.053∗∗

(0.010) (0.011) (0.014) (0.021)

Cognitive Capacity 0.006 0.050∗∗∗ 0.110∗∗∗ 0.138∗∗∗

(0.011) (0.011) (0.015) (0.027)

Exercise 0.990∗∗∗ 0.941∗∗∗ 0.880∗∗∗ 0.790∗∗∗

(0.014) (0.014) (0.018) (0.027)

Constant −0.074∗∗∗ −0.109∗∗∗ −0.155∗∗∗ −0.258∗∗∗

(0.004) (0.005) (0.008) (0.017)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.D.14. Transition Parameters for Exercise, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.075∗∗∗ 0.059∗∗∗ 0.106∗∗∗ 0.117∗∗∗

(0.012) (0.013) (0.021) (0.038)

Cognitive Capacity 0.038∗∗∗ 0.025∗ 0.132∗∗∗ 0.056

(0.013) (0.014) (0.022) (0.044)

Exercise 0.933∗∗∗ 0.945∗∗∗ 0.825∗∗∗ 0.782∗∗∗

(0.015) (0.015) (0.022) (0.047)

Constant −0.078∗∗∗ −0.111∗∗∗ −0.178∗∗∗ −0.266∗∗∗

(0.005) (0.006) (0.011) (0.025)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.D.15. Transition Parameters for Cognitive Stimulation, Females

68-73 74-79 80-85 86-91

Physical Capacity −0.006 0.041∗∗∗ 0.008 0.116∗∗∗

(0.013) (0.014) (0.020) (0.041)

Cognitive Capacity 0.050∗∗ 0.076∗∗∗ 0.120∗∗∗ 0.081

(0.022) (0.023) (0.035) (0.072)

Cognitive Stimulation 1.020∗∗∗ 0.962∗∗∗ 0.985∗∗∗ 0.927∗∗∗

(0.018) (0.017) (0.024) (0.046)

Constant −0.033∗∗∗ −0.071∗∗∗ −0.046∗∗∗ −0.144∗∗∗

(0.007) (0.009) (0.014) (0.035)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.D.16. Transition Parameters for Cognitive Stimulation, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.011 0.037∗∗ 0.079∗∗ 0.020

(0.018) (0.019) (0.032) (0.080)

Cognitive Capacity 0.134∗∗∗ 0.046 0.057 0.119

(0.026) (0.031) (0.050) (0.141)

Cognitive Stimulation 0.953∗∗∗ 0.982∗∗∗ 0.936∗∗∗ 0.858∗∗∗

(0.018) (0.019) (0.030) (0.067)

Constant −0.033∗∗∗ −0.039∗∗∗ −0.056∗∗ −0.051

(0.009) (0.011) (0.022) (0.070)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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3.D.5 Distributions of Initial Factors and of Shocks to Factors

Table 3.D.17. Distribution of the initial states, females

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.19 0.68 1.00 0.35 0.66 0.36

Cognitive Capacity 0.11 0.46 0.35 1.00 0.32 0.52

Exercise 0.15 0.59 0.66 0.32 1.00 0.51

Cognitive Stimulation 0.08 0.68 0.36 0.52 0.51 1.00

Table 3.D.18. Distribution of the intitial states, males

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.10 0.61 1.00 0.30 0.58 0.30

Cognitive Capacity 0.11 0.49 0.30 1.00 0.27 0.42

Exercise 0.12 0.64 0.58 0.27 1.00 0.33

Cognitive Stimulation 0.04 0.79 0.30 0.42 0.33 1.00
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Table 3.D.19. Standard deviations of shocks

Male Female

68-73 Physical Capacity 0.094∗∗∗ 0.005

(0.008) (0.103)

Cognitive Capacity 0.292∗∗∗ 0.308∗∗∗

(0.005) (0.004)

Exercise 0.236∗∗∗ 0.164∗∗∗

(0.012) (0.011)

Cognitive Stimulation 0.155∗∗∗ 0.001

(0.028) (2.725)

74-79 Physical Capacity 0.161∗∗∗ 0.159∗∗∗

(0.006) (0.005)

Cognitive Capacity 0.283∗∗∗ 0.302∗∗∗

(0.005) (0.004)

Exercise 0.261∗∗∗ 0.240∗∗∗

(0.012) (0.009)

Cognitive Stimulation 0.190∗∗∗ 0.185∗∗∗

(0.026) (0.017)

80-85 Physical Capacity 0.231∗∗∗ 0.188∗∗∗

(0.009) (0.008)

Cognitive Capacity 0.240∗∗∗ 0.274∗∗∗

(0.006) (0.005)

Exercise 0.326∗∗∗ 0.275∗∗∗

(0.015) (0.012)

Cognitive Stimulation 0.319∗∗∗ 0.225∗∗∗

(0.031) (0.024)

86-91 Physical Capacity 0.315∗∗∗ 0.227∗∗∗

(0.020) (0.012)

Cognitive Capacity 0.250∗∗∗ 0.238∗∗∗

(0.013) (0.010)

Exercise 0.372∗∗∗ 0.304∗∗∗

(0.028) (0.017)

Cognitive Stimulation 0.471∗∗∗ 0.309∗∗∗

(0.059) (0.047)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Appendix 3.E Results for a Linearized Model

3.E.1 Measurement System
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Table 3.E.1. Loadings and Measurement Standard Deviations for Physical Capacity, Females

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.705∗∗∗

(0.001)

Mobility −0.114∗∗∗ 1.222∗∗∗ 0.768∗∗∗

(0.003) (0.005) (0.002)

Large Muscle Index 0.005∗ 0.926∗∗∗ 0.750∗∗∗

(0.003) (0.005) (0.002)

Self-Reported Health −0.048∗∗∗ 0.947∗∗∗ 0.765∗∗∗

(0.003) (0.004) (0.002)

70 Alive 0.897∗∗∗ 0.042∗∗∗ 0.303∗∗∗

(0.101) (0.011) (0.038)

Grip Strength −0.125∗∗∗ 0.488∗∗∗ 0.933∗∗∗

(0.027) (0.042) (0.015)

72 Alive 0.910∗∗∗ 0.045∗∗∗ 0.288∗∗∗

(0.106) (0.011) (0.037)

Grip Strength −0.240∗∗∗ 0.395∗∗∗ 0.922∗∗∗

(0.028) (0.042) (0.016)

74 Alive 0.902∗∗∗ 0.060∗∗∗ 0.301∗∗∗

(0.096) (0.013) (0.036)

Grip Strength −0.291∗∗∗ 0.464∗∗∗ 0.936∗∗∗

(0.030) (0.042) (0.018)

76 Alive 0.886∗∗∗ 0.073∗∗∗ 0.327∗∗∗

(0.099) (0.018) (0.042)

Grip Strength −0.470∗∗∗ 0.367∗∗∗ 0.924∗∗∗

(0.030) (0.048) (0.012)

78 Alive 0.879∗∗∗ 0.075∗∗∗ 0.339∗∗∗

(0.101) (0.019) (0.045)

Grip Strength −0.540∗∗∗ 0.445∗∗∗ 0.924∗∗∗

(0.033) (0.048) (0.019)

80 Alive 0.870∗∗∗ 0.091∗∗∗ 0.353∗∗∗

(0.097) (0.022) (0.046)

Grip Strength −0.758∗∗∗ 0.365∗∗∗ 0.882∗∗∗

(0.034) (0.052) (0.021)

82 Alive 0.871∗∗∗ 0.090∗∗∗ 0.359∗∗∗

(0.109) (0.026) (0.053)

Grip Strength −0.789∗∗∗ 0.339∗∗∗ 0.860∗∗∗

(0.036) (0.054) (0.020)

84 Alive 0.869∗∗∗ 0.110∗∗∗ 0.371∗∗∗

(0.103) (0.030) (0.052)

Grip Strength −0.979∗∗∗ 0.336∗∗∗ 0.866∗∗∗

(0.041) (0.060) (0.025)

86 Alive 0.855∗∗∗ 0.120∗∗∗ 0.391∗∗∗

(0.124) (0.040) (0.069)

Grip Strength −0.999∗∗∗ 0.332∗∗∗ 0.840∗∗∗

(0.046) (0.070) (0.028)

88 Alive 0.845∗∗∗ 0.128∗∗ 0.406∗∗∗

(0.142) (0.051) (0.084)

Grip Strength −1.190∗∗∗ 0.415∗∗∗ 0.826∗∗∗

(0.059) (0.082) (0.035)

90 Alive 0.826∗∗∗ 0.133∗ 0.425∗∗∗

(0.204) (0.080) (0.135)

Grip Strength −1.099∗∗∗ 0.371∗∗∗ 0.734∗∗∗

(0.061) (0.097) (0.031)

92 Alive 0.816∗∗∗ 0.164 0.444∗∗∗

(0.228) (0.120) (0.159)

Grip Strength −1.357∗∗∗ 0.356∗∗∗ 0.745∗∗∗

(0.083) (0.115) (0.047)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.2. Loadings and Measurement Standard Deviations for Physical Capacity, Males

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.796∗∗∗

(0.002)

Mobility −0.015∗∗∗ 1.330∗∗∗ 0.751∗∗∗

(0.005) (0.007) (0.003)

Large Muscle Index 0.043∗∗∗ 1.033∗∗∗ 0.761∗∗∗

(0.004) (0.006) (0.003)

Self-Reported Health 0.027∗∗∗ 0.964∗∗∗ 0.792∗∗∗

(0.003) (0.006) (0.003)

70 Alive 0.901∗∗∗ 0.057∗∗∗ 0.303∗∗∗

(0.093) (0.013) (0.035)

Grip Strength −0.055 0.578∗∗∗ 0.977∗∗∗

(0.034) (0.053) (0.020)

72 Alive 0.907∗∗∗ 0.074∗∗∗ 0.298∗∗∗

(0.083) (0.015) (0.030)

Grip Strength −0.294∗∗∗ 0.549∗∗∗ 0.959∗∗∗

(0.034) (0.053) (0.020)

74 Alive 0.900∗∗∗ 0.061∗∗∗ 0.310∗∗∗

(0.119) (0.017) (0.046)

Grip Strength −0.317∗∗∗ 0.499∗∗∗ 0.922∗∗∗

(0.035) (0.057) (0.021)

76 Alive 0.876∗∗∗ 0.073∗∗∗ 0.344∗∗∗

(0.129) (0.024) (0.059)

Grip Strength −0.505∗∗∗ 0.557∗∗∗ 0.898∗∗∗

(0.036) (0.056) (0.020)

78 Alive 0.872∗∗∗ 0.081∗∗∗ 0.355∗∗∗

(0.128) (0.026) (0.061)

Grip Strength −0.559∗∗∗ 0.552∗∗∗ 0.920∗∗∗

(0.040) (0.058) (0.022)

80 Alive 0.866∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.132) (0.031) (0.066)

Grip Strength −0.736∗∗∗ 0.573∗∗∗ 0.891∗∗∗

(0.042) (0.062) (0.023)

82 Alive 0.853∗∗∗ 0.136∗∗∗ 0.393∗∗∗

(0.114) (0.042) (0.064)

Grip Strength −0.959∗∗∗ 0.466∗∗∗ 0.873∗∗∗

(0.046) (0.064) (0.025)

84 Alive 0.869∗∗∗ 0.138∗∗∗ 0.387∗∗∗

(0.127) (0.046) (0.067)

Grip Strength −1.040∗∗∗ 0.561∗∗∗ 0.842∗∗∗

(0.052) (0.068) (0.027)

86 Alive 0.847∗∗∗ 0.137∗∗ 0.408∗∗∗

(0.158) (0.061) (0.092)

Grip Strength −1.237∗∗∗ 0.491∗∗∗ 0.841∗∗∗

(0.063) (0.083) (0.033)

88 Alive 0.858∗∗∗ 0.179∗∗ 0.416∗∗∗

(0.145) (0.071) (0.083)

Grip Strength −1.280∗∗∗ 0.480∗∗∗ 0.824∗∗∗

(0.069) (0.107) (0.044)

90 Alive 0.851∗∗∗ 0.204∗ 0.429∗∗∗

(0.201) (0.116) (0.120)

Grip Strength −1.361∗∗∗ 0.503∗∗∗ 0.767∗∗∗

(0.097) (0.114) (0.053)

92 Alive 0.765∗∗ 0.183 0.464∗

(0.317) (0.220) (0.271)

Grip Strength −1.487∗∗∗ 0.683∗∗∗ 0.817∗∗∗

(0.120) (0.162) (0.076)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.3. Loadings and Measurement Standard Deviations for Cognitive Capacity, Females

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.890∗∗∗

(0.003)

Vocabulary 0.044∗∗∗ 0.840∗∗∗ 0.923∗∗∗

(0.006) (0.013) (0.004)

Immediate Word Recall −0.161∗∗∗ 1.799∗∗∗ 0.584∗∗∗

(0.006) (0.014) (0.003)

Delayed Word Recall −0.189∗∗∗ 1.803∗∗∗ 0.595∗∗∗

(0.006) (0.014) (0.002)

70 Self-Rated Memory 0.005 0.577∗∗∗ 0.961∗∗∗

(0.014) (0.031) (0.009)

72 Self-Rated Memory 0.029∗∗ 0.595∗∗∗ 0.954∗∗∗

(0.014) (0.030) (0.009)

74 Self-Rated Memory 0.016 0.562∗∗∗ 0.972∗∗∗

(0.015) (0.030) (0.009)

76 Self-Rated Memory 0.028∗ 0.496∗∗∗ 0.968∗∗∗

(0.017) (0.032) (0.010)

78 Self-Rated Memory 0.046∗∗ 0.501∗∗∗ 0.992∗∗∗

(0.019) (0.035) (0.011)

80 Self-Rated Memory 0.054∗∗ 0.480∗∗∗ 1.012∗∗∗

(0.022) (0.038) (0.012)

82 Self-Rated Memory 0.069∗∗ 0.460∗∗∗ 1.009∗∗∗

(0.027) (0.043) (0.013)

84 Self-Rated Memory 0.082∗∗ 0.396∗∗∗ 1.035∗∗∗

(0.032) (0.050) (0.015)

86 Self-Rated Memory 0.079∗∗ 0.393∗∗∗ 1.063∗∗∗

(0.040) (0.058) (0.018)

88 Self-Rated Memory 0.261∗∗∗ 0.549∗∗∗ 1.069∗∗∗

(0.054) (0.074) (0.021)

90 Self-Rated Memory 0.213∗∗∗ 0.463∗∗∗ 1.080∗∗∗

(0.074) (0.096) (0.026)

92 Self-Rated Memory 0.215∗∗ 0.532∗∗∗ 1.146∗∗∗

(0.108) (0.131) (0.040)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.4. Loadings and Measurement Standard Deviations for Cognitive Capacity, Males

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.907∗∗∗

(0.004)

Vocabulary 0.048∗∗∗ 0.962∗∗∗ 0.900∗∗∗

(0.007) (0.015) (0.004)

Immediate Word Recall −0.184∗∗∗ 1.683∗∗∗ 0.600∗∗∗

(0.008) (0.015) (0.003)

Delayed Word Recall −0.201∗∗∗ 1.647∗∗∗ 0.607∗∗∗

(0.008) (0.015) (0.003)

70 Self-Rated Memory −0.041∗∗ 0.627∗∗∗ 0.937∗∗∗

(0.016) (0.035) (0.011)

72 Self-Rated Memory −0.052∗∗∗ 0.563∗∗∗ 0.955∗∗∗

(0.017) (0.034) (0.011)

74 Self-Rated Memory −0.043∗∗ 0.579∗∗∗ 0.948∗∗∗

(0.017) (0.035) (0.011)

76 Self-Rated Memory −0.039∗∗ 0.528∗∗∗ 0.955∗∗∗

(0.019) (0.039) (0.012)

78 Self-Rated Memory −0.050∗∗ 0.610∗∗∗ 0.971∗∗∗

(0.022) (0.043) (0.013)

80 Self-Rated Memory −0.001 0.596∗∗∗ 0.988∗∗∗

(0.026) (0.048) (0.015)

82 Self-Rated Memory −0.019 0.478∗∗∗ 1.033∗∗∗

(0.034) (0.056) (0.018)

84 Self-Rated Memory −0.018 0.520∗∗∗ 1.007∗∗∗

(0.039) (0.062) (0.020)

86 Self-Rated Memory −0.018 0.465∗∗∗ 0.992∗∗∗

(0.045) (0.069) (0.021)

88 Self-Rated Memory 0.007 0.511∗∗∗ 1.035∗∗∗

(0.063) (0.088) (0.027)

90 Self-Rated Memory 0.013 0.391∗∗∗ 1.080∗∗∗

(0.086) (0.117) (0.037)

92 Self-Rated Memory 0.006 0.602∗∗∗ 1.011∗∗∗

(0.124) (0.180) (0.048)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.5. Loadings and Measurement Standard Deviations for Exercise, Females

Intercept Loading Meas. Std.

All Vigorous Activity −0.009 0.683∗∗∗ 0.808∗∗∗

(0.006) (0.010) (0.004)

Moderate Activity 0.000 1.000 0.794∗∗∗

(0.004)

Light Activity −0.127∗∗∗ 1.077∗∗∗ 0.933∗∗∗

(0.007) (0.012) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.6. Loadings and Measurement Standard Deviations for Exercise, Males

Intercept Loading Meas. Std.

All Vigorous Activity −0.012∗∗ 0.742∗∗∗ 0.813∗∗∗

(0.006) (0.012) (0.005)

Moderate Activity 0.000 1.000 0.816∗∗∗

(0.004)

Light Activity −0.078∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.007) (0.013) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.7. Loadings and Measurement Standard Deviations for Cognitive Stimulation, Females

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.769∗∗∗

(0.006)

Listening to Music −0.168∗∗∗ 0.498∗∗∗ 0.981∗∗∗

(0.006) (0.010) (0.006)

Stimulating Hobbies −0.068∗∗∗ 0.564∗∗∗ 0.926∗∗∗

(0.007) (0.011) (0.005)

Communication −0.062∗∗∗ 0.513∗∗∗ 0.999∗∗∗

(0.006) (0.010) (0.005)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.8. Loadings and Measurement Standard Deviations for Cognitive Stimulation, Males

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.674∗∗∗

(0.007)

Listening to Music −0.175∗∗∗ 0.223∗∗∗ 1.005∗∗∗

(0.007) (0.010) (0.007)

Stimulating Hobbies −0.011 0.369∗∗∗ 0.970∗∗∗

(0.009) (0.011) (0.005)

Communication −0.082∗∗∗ 0.320∗∗∗ 0.990∗∗∗

(0.007) (0.010) (0.006)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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3.E.2 Transition Equations

(a) Transitions, females

(b) Transitions, males

Figure 3.E.1. Transition equations (other factors evaluated at the median)
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Table 3.E.9. Transition Parameters for Physical Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 1.000∗∗∗ 0.950∗∗∗ 0.905∗∗∗ 0.835∗∗∗

(0.006) (0.007) (0.009) (0.017)

Cognitive Capacity −0.020∗∗∗ 0.020∗∗ 0.053∗∗∗ 0.164∗∗∗

(0.007) (0.009) (0.015) (0.029)

Exercise 0.046∗∗∗ 0.081∗∗∗ 0.109∗∗∗ 0.128∗∗∗

(0.007) (0.008) (0.010) (0.019)

Cognitive Stimulation −0.003 −0.019∗∗ −0.026∗∗ −0.061∗∗∗

(0.007) (0.008) (0.011) (0.017)

Constant −0.086∗∗∗ −0.105∗∗∗ −0.117∗∗∗ −0.090∗∗∗

(0.002) (0.004) (0.007) (0.018)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.10. Transition Parameters for Physical Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 1.010∗∗∗ 0.957∗∗∗ 0.922∗∗∗ 0.842∗∗∗

(0.007) (0.008) (0.013) (0.030)

Cognitive Capacity 0.009 0.028∗∗ 0.038∗∗ −0.003

(0.009) (0.011) (0.019) (0.042)

Exercise 0.039∗∗∗ 0.081∗∗∗ 0.098∗∗∗ 0.173∗∗∗

(0.006) (0.007) (0.013) (0.030)

Cognitive Stimulation −0.004 −0.018∗∗ −0.020 0.020

(0.007) (0.008) (0.014) (0.029)

Constant −0.090∗∗∗ −0.115∗∗∗ −0.139∗∗∗ −0.200∗∗∗

(0.003) (0.005) (0.010) (0.029)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.11. Transition Parameters for Cognitive Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.040∗∗∗ 0.011 −0.023∗∗ −0.052∗∗∗

(0.007) (0.008) (0.010) (0.015)

Cognitive Capacity 0.664∗∗∗ 0.639∗∗∗ 0.693∗∗∗ 0.664∗∗∗

(0.010) (0.011) (0.014) (0.026)

Exercise 0.023∗∗ 0.024∗∗ 0.047∗∗∗ 0.078∗∗∗

(0.010) (0.011) (0.012) (0.018)

Cognitive Stimulation 0.097∗∗∗ 0.126∗∗∗ 0.095∗∗∗ 0.087∗∗∗

(0.010) (0.010) (0.011) (0.016)

Constant −0.054∗∗∗ −0.122∗∗∗ −0.180∗∗∗ −0.248∗∗∗

(0.003) (0.004) (0.006) (0.013)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.12. Transition Parameters for Cognitive Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.037∗∗∗ 0.024∗∗ 0.003 −0.052∗∗

(0.009) (0.010) (0.012) (0.024)

Cognitive Capacity 0.733∗∗∗ 0.704∗∗∗ 0.782∗∗∗ 0.730∗∗∗

(0.011) (0.013) (0.017) (0.033)

Exercise 0.028∗∗∗ 0.023∗∗ 0.028∗∗ 0.084∗∗∗

(0.010) (0.010) (0.012) (0.026)

Cognitive Stimulation 0.063∗∗∗ 0.089∗∗∗ 0.061∗∗∗ 0.063∗∗∗

(0.010) (0.010) (0.013) (0.023)

Constant −0.056∗∗∗ −0.105∗∗∗ −0.160∗∗∗ −0.203∗∗∗

(0.004) (0.004) (0.007) (0.017)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.13. Transition Parameters for Exercise, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.027∗∗∗ 0.030∗∗∗ 0.027∗∗ 0.052∗∗

(0.010) (0.011) (0.014) (0.021)

Cognitive Capacity 0.005 0.040∗∗∗ 0.101∗∗∗ 0.115∗∗∗

(0.010) (0.011) (0.016) (0.027)

Exercise 0.991∗∗∗ 0.941∗∗∗ 0.886∗∗∗ 0.802∗∗∗

(0.014) (0.014) (0.018) (0.026)

Constant −0.073∗∗∗ −0.111∗∗∗ −0.158∗∗∗ −0.261∗∗∗

(0.004) (0.005) (0.008) (0.016)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.14. Transition Parameters for Exercise, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.073∗∗∗ 0.063∗∗∗ 0.106∗∗∗ 0.117∗∗∗

(0.012) (0.013) (0.020) (0.037)

Cognitive Capacity 0.038∗∗∗ 0.022 0.133∗∗∗ 0.045

(0.013) (0.014) (0.022) (0.042)

Exercise 0.934∗∗∗ 0.942∗∗∗ 0.820∗∗∗ 0.786∗∗∗

(0.015) (0.015) (0.021) (0.046)

Constant −0.078∗∗∗ −0.111∗∗∗ −0.180∗∗∗ −0.268∗∗∗

(0.005) (0.006) (0.011) (0.024)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.15. Transition Parameters for Cognitive Stimulation, Females

68-73 74-79 80-85 86-91

Physical Capacity −0.010 0.024∗ −0.000 0.101∗∗

(0.013) (0.014) (0.021) (0.043)

Cognitive Capacity 0.041∗ 0.097∗∗∗ 0.115∗∗∗ 0.109

(0.023) (0.024) (0.038) (0.076)

Cognitive Stimulation 1.030∗∗∗ 0.960∗∗∗ 0.980∗∗∗ 0.922∗∗∗

(0.018) (0.017) (0.025) (0.049)

Constant −0.037∗∗∗ −0.064∗∗∗ −0.057∗∗∗ −0.141∗∗∗

(0.007) (0.009) (0.015) (0.034)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 3.E.16. Transition Parameters for Cognitive Stimulation, Males

68-73 74-79 80-85 86-91

Physical Capacity −0.007 0.033∗ 0.067∗∗ 0.025

(0.018) (0.019) (0.032) (0.080)

Cognitive Capacity 0.143∗∗∗ 0.059∗ 0.048 0.110

(0.026) (0.030) (0.049) (0.138)

Cognitive Stimulation 0.950∗∗∗ 0.974∗∗∗ 0.939∗∗∗ 0.843∗∗∗

(0.018) (0.019) (0.032) (0.067)

Constant −0.034∗∗∗ −0.036∗∗∗ −0.062∗∗∗ −0.059

(0.009) (0.011) (0.023) (0.069)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 3.E.17. Standard deviations of shocks

Male All Male All Linear Female All Female All Linear

68-73 Physical Capacity 0.094∗∗∗ 0.111∗∗∗ 0.005 0.038∗∗∗

(0.008) (0.006) (0.103) (0.014)

Cognitive Capacity 0.292∗∗∗ 0.294∗∗∗ 0.308∗∗∗ 0.308∗∗∗

(0.005) (0.004) (0.004) (0.004)

Exercise 0.236∗∗∗ 0.235∗∗∗ 0.164∗∗∗ 0.158∗∗∗

(0.012) (0.012) (0.011) (0.011)

Cognitive Stimulation 0.155∗∗∗ 0.171∗∗∗ 0.001 0.001

(0.028) (0.026) (2.725) (2.840)

74-79 Physical Capacity 0.161∗∗∗ 0.181∗∗∗ 0.159∗∗∗ 0.183∗∗∗

(0.006) (0.005) (0.005) (0.004)

Cognitive Capacity 0.283∗∗∗ 0.287∗∗∗ 0.302∗∗∗ 0.309∗∗∗

(0.005) (0.005) (0.004) (0.004)

Exercise 0.261∗∗∗ 0.264∗∗∗ 0.240∗∗∗ 0.243∗∗∗

(0.012) (0.012) (0.009) (0.009)

Cognitive Stimulation 0.190∗∗∗ 0.198∗∗∗ 0.185∗∗∗ 0.192∗∗∗

(0.026) (0.025) (0.017) (0.017)

80-85 Physical Capacity 0.231∗∗∗ 0.252∗∗∗ 0.188∗∗∗ 0.219∗∗∗

(0.009) (0.007) (0.008) (0.006)

Cognitive Capacity 0.240∗∗∗ 0.243∗∗∗ 0.274∗∗∗ 0.279∗∗∗

(0.006) (0.006) (0.005) (0.004)

Exercise 0.326∗∗∗ 0.328∗∗∗ 0.275∗∗∗ 0.273∗∗∗

(0.015) (0.015) (0.012) (0.012)

Cognitive Stimulation 0.319∗∗∗ 0.326∗∗∗ 0.225∗∗∗ 0.231∗∗∗

(0.031) (0.031) (0.024) (0.024)

86-91 Physical Capacity 0.315∗∗∗ 0.341∗∗∗ 0.227∗∗∗ 0.268∗∗∗

(0.020) (0.014) (0.012) (0.010)

Cognitive Capacity 0.250∗∗∗ 0.254∗∗∗ 0.238∗∗∗ 0.258∗∗∗

(0.013) (0.009) (0.010) (0.007)

Exercise 0.372∗∗∗ 0.372∗∗∗ 0.304∗∗∗ 0.295∗∗∗

(0.028) (0.027) (0.017) (0.018)

Cognitive Stimulation 0.471∗∗∗ 0.487∗∗∗ 0.309∗∗∗ 0.313∗∗∗

(0.059) (0.056) (0.047) (0.049)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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