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Abstract

Floquet engineering, the control by external time-periodic forcing, is a powerful tool to manipulate
different quantum systems. The underlying principle is that driving a system periodically with
frequency l induces hybridization of the eigenstates of a static system separated in energy by
a multiple of ℏl. By choosing a proper driving scheme one can thus take an advantage of this
hybridization to create new synthetically designed properties, that would be inaccessible in equilibrium.

In this thesis Floquet engineering is utilized to tailor topological and transport properties of surface
plasmon polaritons propagating in arrays of coupled waveguides. Evanescently coupled waveguides
is a widely used experimental platform to study various coherent quantum phenomena encountered
in atomic and condensed matter physics. Such experiments are based on the mathematical analogy
between the paraxial Helmholtz equation for the electromagnetic field propagating in arrays of coupled
waveguides and the Schrödinger equation that describes temporal evolution of a single particle
wavefunction in tight-binding atomic lattices. Within this quantum-optical analogy the time axis of
a quantum system is directly mapped into the propagation distance of surface plasmon polaritons.
Therefore, periodically modulating the waveguide geometry along the propagation distance enables us
to mimic the effect of external time-periodic field.

Under the scope of this thesis we investigate three periodically-driven one-dimensional tight-binding
systems that illuminate different applications of the Floquet engineering. In order to make predictions
about the dynamics of each system we perform numerical calculations based on the Floquet theory.
The obtained theoretical findings are used to design the plasmonic structures, which are then fabricated
by negative-tone electron beam lithography. The propagation of surface plasmon polaritons in the
fabricated samples is monitored by real- and Fourier space leakage radiation microscopy.

As the first system, we consider a one-dimensional prototype of a topological insulator described by
the Su-Schriefer-Heeger model. This model supports two topologically distinct phases that, when
interfaced, give rise to a topologically protected edge state localized at the boundary. This is the
manifestation of the so-called bulk boundary correspondence principle. The question we address here
is what happens with the topological edge state if the boundary between the two phases is subject to
local time-periodic perturbations while the bulk is kept static?

In the second project we deal with the topological transport quantization that emerges in the slowly
driven Rice-Mele model. This phenomenon, known as the Thouless pumping, breaks down at the
non-adiabatic conditions, which is the major limitation for the experimental realization of this effect.
The reason is that finite driving frequencies induce coupling between the forward and backward
propagating Floquet states. As a result, the system becomes topologically trivial and the transport
deviates from perfect quantization. We are aimed to show that using sufficiently strong time-periodic
losses the Thouless pumping can be restored at an arbitrary large driving frequency.
Inspired by the previously obtained results, in the third part of this thesis we demonstrate another

application of time-periodic losses. In contrast to the previous example where losses were applied
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globally, here, they are confined only to the few lattice sites and serve as a directional filter for a
Hamiltonian, i.e. lossless, quantum ratchet. Ratchet is a system where broken space and time inversion
symmetry gives rise to a directional transport without a bias force. As a ratchet system we consider
a periodically-driven Su-Schrieffer-Heeger model, which for certain resonant driving frequencies
supports directional current once the relevant symmetries are broken by initial conditions. On the
example of this system we want to show that properly chosen time-periodic losses can transmit the
current in one direction but strongly suppress it in the opposite direction.
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CHAPTER 1

Introduction

Time-periodic driving via external fields is a powerful technique for coherent control of various
quantum systems. Also known as Floquet engineering, this methodmathematically relies on the Floquet
theory, the formalism developed to systematically analyse Hamiltonians with discrete translational
invariance in time. The primary goal of the Floquet approach is to transform the time-periodic
problem into a time-independent one that yields the general quasi-stationary solution. This allows
for an intuitive way to understand the behaviour of a driven system and thereby enables to find a
proper driving scheme to confer the desired properties on it. Floquet engineering finds ever-widening
applications to tailor cold atoms in optical lattices [1, 2]. The range of use also includes solid state [3],
photonic [4, 5] and acoustic [6] systems. By choosing appropriate driving scheme one can, for
instance, control single-particle tunnelling [7], tune transport regimes from ballistic to localised [8],
create artificial gauge fields [9], induce quantum phase transitions [10], pump charge [11], and tailor
the transmission across the modulated region [12, 13]. Furthermore, using periodic driving one
can change the topological properties of a system [14]. Remarkably, some driven systems exhibit
topological phenomena without any static counterparts [15].
Topology is an emergent concept in solid state physics to classify states of matter that do not fit into
the Landau’s paradigm of spontaneous symmetry breaking. Although most phase transitions in nature
can be explained in the framework of the Ginsburg-Landau theory, the discovery of the quantum Hall
effect by K. von Klitzing has shown that this paradigm is not completely exhaustive [16]. The stepwise
change of the Hall conductivity in strong magnetic field at low temperature was a principally new
kind of phase transition that happened without spontaneous symmetry breaking. Another surprising
observation was that the conductivity on each quantum Hall plateau turned out to be a universal
quantity independent of smooth variations of Hamiltonian parameters and cannot be changed unless
the system undergoes a phase transition. Later on it was recognized that this universality comes
from the fact that some physical observable, e.g. the conductance, can be associated with a certain
topological invariant and thus is robust against a homotopy of the Hamiltonian, i.e. protected by
topology [17, 18]. Until now a great variety of topological materials and phases has been discovered
including topological insulators [19], topological superconductors [20], Dirac or Weyl semimetals [21].
The common feature of these phases is that the topological properties of the bulk material have a strong
influence on the character of the states at the boundary, the so-called bulk boundary correspondence
principle. For instance, topological insulators, like ordinary insulators, have an insulating energy
gap in the bulk but, in addition, support metallic boundary states whose energy lies within the band
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Chapter 1 Introduction

gap. These states are unidirectional and do not suffer from a scattering by impurities which makes
them particularly interesting for practical applications in quantum computing [22], spintronics [19],
acoustics [23] and photonics [24].
In this thesis Floquet engineering is employed to tailor topological and transport properties in arrays of
evanescently coupled plasmonic waveguides. Over the past decades arrays of coupled waveguides have
become a well-established experimental platform used to study certain coherent quantum phenomena
encountered in atomic and condensed matter physics [25–27]. The underlying principle is that
the propagation of light or, in our case surface plasmon polaritons, in such arrays mathematically
realizes the single-particle Schrödinger equation on a tight-binding lattice with the waveguide axis
playing the role of time [26, 28, 29]. Uncomplicated experimental setting, precise control over
the system parameters during sample fabrication, and the possibility of a direct visualization are
the major advantages of such quantum simulators. A great variety of quantum-optical analogies
have been already realized on the basis of coupled waveguides. Restricting ourselves to phenomena
related to solid-state physics we mention Zener tunnelling [30], Anderson localization [31], Bloch
oscillations [32], dynamic localization [33], and various topological phenomena [24]. Periodically
modulating a waveguide geometry along the propagation distance enables to mimic the effect of
external periodic driving making arrays of coupled waveguides an ideal playground for Floquet
engineering [4, 5]. In the context of quantum simulations, plasmonic waveguides provide an additional
benefit in comparison to the conventional optical waveguides that is rooted in the specific detection
technique, the so-called leakage radiation microscopy. This method does not only allow to capture
full wavepacket evolution in real space by a single camera snapshot but also gives access to the
momentum-resolved spectrum in Fourier space [28, 29]. The latter is a particularly interesting feature
in the view of Floquet engineering as it allows to directly image the quasienergy bands of an equivalent
driven system.
In this work we combine real- and Fourier space leakage radiation microscopy to characterize a number
of plasmonic analogues of the periodically-driven one-dimensional tight-binding lattices. Prior to the
optical experiments the behaviour of the systems of interest is predicted by numerical calculations
based on the Floquet theory. The plasmonic waveguide arrays are designed with an eye on the results
of the theoretical analysis and fabricated by negative-tone grayscale electron beam lithography. This
thesis includes three research projects that illuminate different applications of Floquet engineering.
In the first project we investigate the robustness of a topological edge state against local time-periodic
perturbations in the otherwise static one-dimensional plasmonic topological insulator. It is known that
the bulk-boundary correspondence principle and the ensuing topological protection are in general
valid only in the case of static deformations [34, 35]. The reason is that in the static case the coupling
of the edge state to the bulk states is energetically forbidden due to the presence of the band gap.
Dynamic perturbations, in contrast, can cause hybridisation of the states and drastically change their
character. The question we address here is how far the topological protection can be extended to the
case of local time-periodic perturbations if the bulk is kept static, i.e. the topological properties of the
bulk are unchanged.
In the second project, non-Hermitian Floquet engineering is introduced as a tool to restore topological
transport quantization in fast Thouless pumps. Thouless pumping is a robust quantized current that
emerges in slowly driven one-dimensional lattices as a consequence of a non-trivial topological
invariant, the so-called Chern number. Being the temporal analogue of the integer quantum Hall
effect [36], Thouless pumping has played a prominent role in the development of topology as a
concept in condensed matter physics. Up to date it remains an issue of intense research activities, both
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theoretical and experimental [37–40]. The fundamental problem for experimental applications of this
effect is the adiabaticity requirement. At nonzero driving frequencies, unavoidable in experiments,
the system becomes topologically trivial due to non-adiabatic coupling between different bands and,
as a result, the particle transport deviates from perfect quantization [15, 39, 41]. To overcome this
limitation we will employ time-periodic modulation of dissipation. There are many examples how
losses profoundly influence the system dynamics. In addition to ubiquitous exponential decay, they may
cause such peculiar phenomena as unidirectional robust transport [42], asymmetric transmission or
reflection [43, 44], and non-Hermitian topological edge states associated with exceptional points [45–
47]. Dissipation has been utilized to probe topological quantities [48, 49]. Another fascinating
example is the so-called non-Hermitian shortcut to adiabaticity [50–52], which describes faster
evolution of a wavefunction in a system with an additional time-dependent gain or loss than in its
Hermitian counterpart. The key feature of this work is that the losses are modulated periodically in a
way that they could suppress non-adiabatic effects and thereby restore topological pumping at fast
driving frequencies. Our plasmonic experiments is a perfect platform to study the effect of periodic
losses because they can be easily implemented by tailoring a waveguide geometry.
Finally, in the last projectwewill demonstrate another application of non-Hermitian Floquet engineering
by constructing a direction-dependent filter for a non-adiabatic Hamiltonian quantum ratchet. Ratchets
are systems that convert periodic drive into directed motion without a bias force by breaking of space-
and time-reversal symmetry [53]. Introduced by Smoluchowski [54] and Feynman [55], ratchets
represent a wide class of microscopic motors, which operate in classical as well as in quantum systems.
In particular, the ratchet effect was observed in microbiological [56] and molecular motion [57],
semiconductor [58] and superconductor [59] heterostructures, irradiated graphene [60], electron
pumps [61], photonic setups [62, 63], and Bose-Einstein condensates [64]. The common limitation that
share all non-adiabatic Hamiltonian, i.e. lossless, quantum ratchets is that their efficiency sensitively
depends on the initial conditions [64–67]. It turns out that non-optimal initial conditions lead to
unwanted excitation of eigenstates that move opposite to the net current thereby reducing the ratchet
performance. In contrast, it is often desired to achieve maximal current without the initial state
preparation. In order to relax strict initial state requirements we will use local time-periodic losses that
are aimed to selectively absorb the states moving in one direction but transmit in the opposite direction.
Remarkably, the local character of the applied losses prevents additional dissipation into the bulk.
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Chapter 1 Introduction

Outline

This thesis is structured as follows. Chapter 2 introduces the essential theoretical concepts from
condensed matter physics relevant for this work. It starts with some basic definitions that are followed
by the derivation of the Schrödinger equation in the tight-binding approximation. Next, we outline
the principles of the Floquet approach in treating time-periodic systems and, lastly, we give a brief
introduction to the topic of topological phases of matter. Chapter 3 summarizes the basic theory behind
our plasmonic experiments. After describing the general properties of surface plasmon polaritons, we
discuss the relevant excitation, detection and guiding techniques. The ultimate result of this part is
the derivation of the coupled mode equations which yield the connection between the wavepacket
dynamics in arrays of coupled waveguides and the tight-binding model for crystaline solids. The
experimental methods are described in Chapter 4. Having laid out the background for our results, we
present our first quantum-optical analogy in Chapter 5. Here, we explore the limits of topological
protection under local periodic driving in the otherwise static Su-Schreefer-Heeger model. Chapter 6
is aimed to demonstrate that topological pumping in the driven Rice-Mele model can be restored
outside of the adiabatic limit by making use of time-periodic losses. In Chapter 7 a dynamic dissipative
impurity is designed such that it works as a direction-dependent filter in a Hamiltonian quantum
ratchet based on the periodically-driven Su-Schrieffer-Heeger model.
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CHAPTER 2

Time-periodic and topological tight-binding
systems

This chapter provides a self-contained introduction to the relevant theoretical concepts needed to
describe the systems of interest for the present thesis. In Section 2.1 we begin with elementary notions
of condensed matter physics and then derive the tight-binding Hamiltonian that describes the evolution
of an electron wave function in one-dimensional solids. Section 2.2 focuses on periodically driven
systems and outlines the basics of the Floquet theory. Finally, Section 2.3 briefly introduces the topic
of topological phenomena occurring in condensed matter systems.

2.1 Tight-binding systems

2.1.1 Basic notions of condensed matter physics

The key feature of crystalline solids is the regular arrangement of the constituting atoms. A crystal
can be viewed as a basis of one or several atoms that repeats itself after any discrete translation by a
vector of the form

R =

3∑
9

= 9a 9 , (2.1)

with 3 being the number of dimension, a 9 being a primitive lattice vector, and = 9 ∈ Z, where symbol Z
denotes the set of integers. The Fourier transform of the real-space lattice (2.1) is called the reciprocal
lattice whose points in the momentum space are located at

G =

3∑
9

< 9b 9 , (2.2)

where the vectors b 9 satisfy a8 · b 9 = 2cX8 9 and < 9 ∈ Z. An electron inside a crystal finds itself in the
periodic potential, consequently, its Hamiltonian is translation invariant:

�̂ (r + R) = �̂ (r) (2.3)
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Chapter 2 Time-periodic and topological tight-binding systems

for any R given by Eq. (2.1). The Bloch’s theorem tells us that there exist the eigenstates of �̂ called
the Bloch states that can be written in the form [95]:

|kU,: (r)〉 = 4
8k·r |DU,k(r)〉. (2.4)

Here, the Bloch modes |DU,k(r + R)〉 = |DU,k(r)〉 have the periodicity of the lattice, U is the band
index, and k is the quasimomentum confined to the first Brillouin zone (BZ), i.e. |k| < |k +G| for any
G given by Eq. (2.2). If we apply the time-independent Schrödinger equation (SE) to the Bloch states
we obtain

�̂k |DU,k(r)〉 = nU (k) |DU,k(r)〉, (2.5)

with �̂: = 4
−8k·r

�̂4
8k·r being the so-called Bloch or momentum-space Hamiltonian. The k-periodic

eigenvalues nU (k) = nU (k +G) ∀G are said to form the Uth energy band.
Sometimes it is convenient to operate in the real space rather than in the momentum space. In such
a case, one can make use of the Wannier states. These are a set of orthonormal states localized on
atomic sites that can be always constructed from the Bloch states and vice versa via the discrete
Fourier transform [96]:

|FU (R 9 , r)〉 =
1
√
#

∑
:

4
−8k·R 9 |kU,k(r)〉, : ∈ 1stBZ (2.6)

with 9 ranging from 1 up to the number of lattice sites.

2.1.2 One-dimensional tight-binding model

Let qa(r) be the wave function of an electron at the outer shell of an isolated atom which satisfies the
stationary SE:

�̂aqa(r) = naqa(r). (2.7)

Here, the Hamiltoian:

�̂a = −
ℏ

2

2<
∇2 +*a(r), (2.8)

where ℏ is the reduced Planck’s constant, < is the mass of an electron and*a(r) is the atomic potential
centered at r = 0.
Next, consider a 1D crystal formed by # atoms sitting on the lattice sites G 9 = 90 with 0 being

Figure 2.1: Schematic of the tight-binding chain composed of N atoms. Here,* (G) is the potential of the whole
lattice,*a (G − G 9 ) is the potential of an individual atom, 0 is the lattice constant, qa (G − G 9 ) is the atomic orbital
which quickly decays away from G = G 9 .
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2.1 Tight-binding systems

the lattice constant along the G-axis (see Fig. 2.1). For simplicity, we assume that all the atoms are
identical and each separately can be described by the Hamiltonian (2.8). Electron spin is not taken
into account. The crystal Hamiltonian then reads

�̂ = − ℏ
2

2<
m

2

mG
2 +* (G), * (G) =

#∑
9

*a(G − G 9). (2.9)

The approximate solution of this Hamiltonian can be found using the tight-binding (TB) approxima-
tion [95, 97]. Here, one starts with considering the extreme case of isolated atoms where the wave
function of an electron on a site 9 is solely given by an atomic orbital qa(G − G 9). When the atoms
are brought together to form a crystal, the atomic orbitals start to overlap. However, if the overlap is
small the electrons are still almost localized at the original orbitals but have a tiny probability to hop
to the neighboring site. This idea is best seen in the position space spanned by the Wannier basis.
Using atomic orbitals as an approximate form of the Wannier functions and, for brevity, denoting
|F(G 9 , G)〉 = | 9〉 we can rewrite the crystal Hamiltonian as follows [96]:

�̂ =
∑
9 9
′
| 9 ′〉〈 9 ′ |�̂ | 9〉〈 9 |, (2.10)

where the matrix elements are given by

〈 9 ′ |�̂ | 9〉 = � 9 9′ ≈
∫

dGq∗0 (G − G 9′)
(
− ℏ

2

2<
m

2

mG
2 +* (G)

)
q0 (G − G 9). (2.11)

Since the atomic orbitals are highly localized, only diagonal elements and those that correspond
to the nearest neighbors make a significant contribution while others can be neglected. Rewriting
the crystal Hamiltonian (2.9) as a sum of the atomic Hamiltonian and the remaining potential
�̂ = �̂0 (G − G 9) + *̃ (G − G 9), where *̃ (G − G 9) =

∑
9
′
≠ 9 *0 (G − G 9′) and using Eq. (2.7) we come to

� 9 9 ≡ � 9 = �0 −
∫

dGq∗0 (G − G 9)*̃ (G − G 9)q0 (G − G 9) (2.12)

and
� 9 9+1 ≡ � 9 9+1 ≈ −

∫
dGq∗0 (G − G 9+1)*̃ (G − G 9)q0 (G − G 9). (2.13)

Then the tight-binding Hamiltonian can be written in a form:

�̂TB =
∑
9

� 9 | 9〉〈 9 | −
∑
9

� 9+1 9 ( | 9 + 1〉〈 9 | + ℎ.2.), (2.14)

where ℎ.2. denotes Hermitian conjugate. Equation (2.14) shows that � 9 represents an energy on site
9 which mainly consists of the atomic potential minus a constant correction due to interaction with
the lattice, while � 9 9+1 measures the probability for an electron to hop to the neighboring site. It is
clear, that if all atoms in a TB chain are equivalent then the on-site energies � 9 ≡ � and the coupling
constants � 9±1 9 ≡ � are just the same for all 9 . Although, in general, they can vary from site to site.
In the case of all-identical atoms, the Hamiltonian (2.14) has a simple exact solution. Imposing the
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Chapter 2 Time-periodic and topological tight-binding systems

periodic boundary conditions we satisfy the Bloch’s theorem and can look for the eigenstates in a
plane wave form:

|:〉 = 1
√
#

∑
9

4
8:G 9 | 9〉, : ∈ 1stBZ (2.15)

with the inversion formula

| 9〉 = 1
√
#

∑
:

4
−8:G 9 |:〉, : ∈ 1stBZ. (2.16)

Plugging Eq. (2.16) into (2.14) we obtain

�̂TB(:) =
1
#

∑
9

∑
::
′
� |:〉〈: ′ |4−8 90 (:−:

′) − 1
#

∑
9

∑
::
′
� |:〉〈: ′ |4−8 90 (:−:

′)
(
4
−8:0 + 48:

′
0
)

=
∑
:

n (:) |:〉〈: |
(2.17)

with
n (:) = � − 2� cos :0. (2.18)

Eq. (2.18) gives the dispersion relation for the electron that is plotted in Fig. 2.2. In the beginning we
have assumed that each atomic state contributes a single electron, while its maximum occupancy is
limited by the Pauli principle to two. As a consequence, the band formed by this dispersion relation
must be half filled and the Fermi energy �F = � . Note, that in Fig. 2.2 �F is set to zero. Since there is
a single continuous band with no band gaps, one can always find allowed energy states arbitrary close
to the Fermi energy. This system thus describes a metal. The band width, defined as the difference
between the maximum and the minimum energy, equals to 4�.

Figure 2.2: Dispersion relation � (:) obtained from the TB Hamiltonian 2.14 with all-identical atoms. The
Fermi energy �F is set to zero. The red part of the curve highlights the filled part of the band.
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2.2 Time-periodic systems

Matrix form

The temporal evolution of an arbitrary electron state |Ψ(C)〉 in a 1D tight-binding lattice is found by
solving the time-dependent SE:

8
d
dC
|Ψ(C)〉 = �̂TB |Ψ(C)〉, (2.19)

which in the Wannier basis {| 9〉} can be viewed as a matrix problem, where

|Ψ(C)〉 =
(
· · · ? 9−1(C) ? 9 (C) ? 9+1(C) · · ·

)T
(2.20)

is a vector whose elements are time-dependent amplitudes ? 9 (C) = 〈 9 |Ψ(C)〉 and

�̂TB =

©­­­­­­­­­«

. . .
. . .

. . . � 9−1 −� 9−1 9
−� 9−1 9 � 9 −� 9 9+1

−� 9 9+1 � 9+1
. . .

. . .
. . .

ª®®®®®®®®®¬
(2.21)

is the matrix for the Hamiltonian (2.14). Note, that here and later on ℏ is set to 1. If by n 9 and |Φ 9〉 we
denote the eigenvalues and corresponding eigenstate vectors of the matrix Hamiltonian (2.21), the
solution of Eq. (2.19) can be written as:

|Ψ(C)〉 =
#∑
9=1
2 94
−8n 9 C |Φ 9 〉, (2.22)

where 2 9 are constants determined by initial conditions, i.e. 2 9 = 〈Φ 9 |Ψ(C = 0)〉.

2.2 Time-periodic systems

In the previous section we dealt with a static one-dimensional tight-binding lattice. According to
Eq. (2.22), the temporal evolution of an electron wave function in such a system is fully described by
the eigenenergies and eigenstates of the time-independent Hamiltonian (2.14). Now imagine that a
TB lattice is subject to some periodic external field oscillating with the frequency l. As a result, the
system’s Hamiltonian inherits periodic behaviour:

�̂ (C) = �̂ (C + )), (2.23)

where ) = 2c/l is the period of the driving. It is clear, that in such a case the static energy spectrum
is no longer relevant, as energy is exchanged with the driving field. However, the symmetry of the
Hamiltonian under discrete time translations, C → C +) has an important consequence for the system’s
dynamics that can be systematically understood in the framework of the Floquet formalism.

9



Chapter 2 Time-periodic and topological tight-binding systems

2.2.1 Floquet theory

Central for the Floquet formalism is the Floquet theorem which was originally developed to solve
linear differential equations with periodic coefficients. In the realm of quantum mechanics, the Floquet
theory is the temporal analogue of Bloch’s theorem. While Bloch’s theorem suggests the form of the
eigen wave functions based on the spatial periodicity of the crystal potential, the Floquet theorem
gives an analogous result for Hamiltonians periodic in time.
Consider a quantum system whose Hamiltonian obeys the periodicity condition (2.23). According to
the Floquet theorem [1, 99], there exist solutions of the corresponding time-dependent SE

8
d
dC
|Ψ(C)〉 = �̂ (C) |Ψ(C)〉 (2.24)

called Floquet states that have the form:

|Ψ 9 (C)〉 = 4
−in 9 C |Φ 9 (C)〉, (2.25)

where n 9 is a constant quasienergy and |Φ 9 (C)〉 is a T-periodic Floquet mode |Φ 9 (C)〉 = |Φ 9 (C + ))〉.
The term "quasienergy" arises from the analogy to the quasimomentum : associated with Bloch states
in crystalline solids. Substituting the Floquet ansatz (2.25) into the SE (2.24) yields:(

�̂ (C) − i
d
dC

)
|Φ 9 (C)〉 = n 9 |Φ 9 (C)〉. (2.26)

The equation above reveals that the quasienergies n 9 are eigenvalues of the so-called Floquet
Hamiltonian Ĥ ≡ �̂ (C) − i m

mC
. It can be readily seen that multiplying a Floquet mode in Eq. 2.26 by

4
8=lC with = ∈ Z

|Φ̃ 9 (C)〉 → |Φ 9 (C)〉4
8=lC (2.27)

shifts the corresponding eigenvalue by =l:

ñ 9 = n 9 + =l. (2.28)

Crucially, this operation does not alter the corresponding Floquet state:

|Ψ 9 (C)〉 = 4
−i ñ 9 C |Φ̃ 9 (C)〉 = 4

−in 9 C |Φ 9 (C)〉. (2.29)

Hence, the quasienergies are defined up to integer multiples of l and one can always choose all n 9 to
lie within the interval [−l/2, l/2), which is called the first Floquet Brillouin zone (FBZ) in analogy
to the BZ for quasimomentum. From now on, we assume that index 9 counts only n 9 which lie in the
same FBZ, so that each quasienergy represents a unique Floquet state.
The corresponding eigenvectors of Ĥ , the Floquet modes |Φ 9 (C)〉, are periodic in time. It suggests to
consider the Floquet Hamiltonian as an operator acting in the extended Hilbert space R ⊗ T [100].
This space is composed of the usual Hilbert space R of square-integrable functions on configuration
space r and the space of T-periodic functions T spanned by the Fourier basis 48=lC , = ∈ Z. The direct
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2.2 Time-periodic systems

product R ⊗ T is in turn also a Hilbert space with the inner product defined as follows:

〈〈0 |1〉〉 = 1
)

∫ )

0
〈0(C) |1(C)〉dC. (2.30)

The orthonormality condition for the Floquet modes thus takes the form:

〈〈Φ 9 (C) |Φ 9
′ (C)〉〉 = 1

)

∫ )

0
dC

∫ ∞

−∞
drΦ∗9 (r, C)Φ 9

′ (r, C) = X 9 9′ . (2.31)

In R ⊗T the Floquet modes {|Φ 9 (C)〉} form a complete set and for every time C, the temporal evolution
of any state can be expressed as:

|Ψ(C)〉 =
∑
9

2 94
−8 n 9 C |Φ 9 (C)〉, (2.32)

where 2 9 = 〈Φ 9 (0) |Ψ(0)〉.

2.2.2 Time-independent representation of periodically driven systems

Since the quasienergies and the Floquet modes allow to fully reconstruct the dynamics of a time-
periodic system for the given initial conditions, our main goal is to solve the eigenvalue problem (2.26).
It turns out that with the help of the extended Hilbert space R ⊗ T , one can map this time-dependent
problem to a time-independent one with an extra dimension [101, 102]. Indeed, representing the
Hamiltonian and the Floquet modes in the Fourier basis

�̂ (C) =
∞∑

==−∞
e−i=lC

�̂=,

|Φ 9 (C)〉 =
∞∑

==−∞
e−i=lC |Φ=9 〉,

(2.33)

and plugging them into Eq. (2.26) we arrive at the time-independent Floquet equation:(
�̂0 − =l

)
|Φ=9 〉 +

∑
<≠0

�̂< |Φ
=−<
9 〉 = n 9 |Φ

=
9 〉, ∀= ∈ Z, (2.34)

where the Floquet index = can be considered as a position in a fictitious spatial dimension. Denoting
by �̂ an identity matrix, we can rewrite Eq. (2.34) as the following eigenvalue problem with an infinite
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Chapter 2 Time-periodic and topological tight-binding systems

Figure 2.3: Schematic of the Floquet picture: a periodically driven 1D lattice is equivalent to a static lattice with
an additional spatial dimension, in which the position is determined by the Floquet index =. The =th layer has a
potential offset of =l relative to �̂0 as if the system was subject to a constant electric field Eeff ∝ l along the
Floquet direction = (green arrow). Red and blue arrows exemplify the coupling between the chains induced by
�̂1 and �̂2, respectively (the higher order couplings are not shown).

block-matrix operator:

©­­­­­­­­­­«

. . .
. . .

. . .
. . .

. . . �̂0 − (= − 1)l�̂ �̂−1 �̂−2
. . .

. . . �̂1 �̂0 − =l�̂ �̂−1
. . .

. . . �̂2 �̂1 �̂0 − (= + 1)l�̂ . . .

. . .
. . .

. . .
. . .

ª®®®®®®®®®®¬

©­­­­­­­«

...

|Φ=−1
9 〉
|Φ=9 〉
|Φ=+19 〉
...

ª®®®®®®®¬
= n 9

©­­­­­­­«

...

|Φ=−1
9 〉
|Φ=9 〉
|Φ=+19 〉
...

ª®®®®®®®¬
, (2.35)

which can be readily solved numerically after reasonable truncation in the Floquet space.
Significantly, the above result does not only allow to compute the system’s dynamics, but also provides
an intuitive picture which helps to understand the behaviour of periodically driven systems. This
is illustrated in Figure 2.3 on a 1D TB lattice subject to periodic driving. Here, the Hamiltonian
is given by (2.21) with the only difference, that the on-site energies and/or hopping amplitudes are
periodic functions of time. The Floquet equation (2.35) tells us that this system is equivalent to a
time-independent (1 + 1)D lattice composed of an infinite number of TB chains labeled by the Floquet
index = with the overall potential shifted by =l. This potential offset can be viewed as an effective
constant electric field directed along the fictitious dimension (see green arrow in Fig. 2.3). In the static
Floquet analogue, the coupling within each chain is described by �̂0 while the Fourier components
�̂= provide coupling between the chains. Using the Floquet picture one can transfer the concepts
relevant for non-driven systems of higher dimensionality with the Hamiltonian being replaced by the
Floquet operator and energy by quasienergy. In particular, it allows to systematically analyse energy
bands of periodically driven lattices which can be obtained as described below.

Floquet-Bloch systems

If a system possesses translation symmetry in both space and time �̂ (G, C) = �̂ (G + 0, C) = �̂ (G, C +)),
it satisfies Bloch’s theorem and the Floquet theorem simultaneously. In the following chapters of this
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2.2 Time-periodic systems

thesis we take an advantage of such a two-fold translation symmetry to access quasienergy dispersion
relations of periodically driven lattices. For that we proceed in two steps: First, we use the plane wave
basis states |:〉 (see Eq. (2.15)) to diagonalize the Hamiltonian with respect to the quasimomentum :

and obtain the Bloch Hamiltonian:
�̂: (C) = 〈: |�̂ |:〉. (2.36)

In the second step, the Floquet theory is applied to �̂: (C) at every fixed : value taken from the 1st BZ:
: ∈ [−c/0, c/0). Thus we look for the eigenstates of the form [2, 102]:

|k�U,: (G, C)〉 = 4
8:G−8 nU (:)C |qU,: (G, C)〉, (2.37)

where the Floquet-Bloch modes are periodic in both space and time |qU,: (G, C)〉 = |qU,: (G + 0, C)〉 =
|qU,: (G + 0, C + ))〉 and nU (:) are the :-dependent quasienergies with U being a band index. The
states (2.37) have all the properties of the Floquet states, i.e. the Floquet-Bloch modes obey the
orthonormality condition (2.31) and the quasienergies are uniquely defined up to integer multiples of
l. Since the quasienergy spectrum is periodic along momentum and energy axes, one defines the
two-dimensional Floquet-Bloch Brillouin zone (FBBZ) as {−l/2 ≤ n < l/2;−c/0 ≤ : < c/0}.
In order to find |qU,: (G, C)〉 and nU (:), we follow the procedure described by Eqs. (2.33) - (2.35)
replacing �̂ (C) by �̂: (C) and |Φ 9 (C)〉 by |qU,: (G, C)〉, respectively.
Eq. (2.35) then reveals the structure of the energy spectrum of a periodically driven system (see
Fig. 2.4): The bands of the undriven system described by the zeroth Fourier component �̂:0 are
split into infinitely many copies called Floquet replicas spaced by the driving frequency l whereas
the coupling between the bands depends on the driving regime as given by the higher-order Fourier
components �̂:=. Depending on the magnitude of the driving frequency l in comparison to the
energy scales of �̂:0, different frequency regimes are realized. When l is low the Floquet spectrum
becomes denser extending the required size of the Floquet matrix (2.35) and hence the calculation
time. As l increases the coupling between the bands gets weaker which ultimately breaks the system
into uncoupled 1D chains. We note that due to the used experimental platform, the extreme adiabatic

Figure 2.4: Principle of the Floquet-Bloch spectrum formation. (a) Schematic of bands of an arbitrary static
system described by �̂:0. (b) Periodic driving splits these bands into the Floquet replicas spaced by the driving
frequency l. From left to right l as well as the distance between the replicas increase. The orange rectangle
highlights the 1st FBBZ. When the Floquet replicas of the bands intersect, they may couple, i.e. hybridize, and
the avoided crossings appear as shown in the central picture. The strength of coupling and hence the width of a
gap at an avoided crossing depends on a particular driving scheme.
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Chapter 2 Time-periodic and topological tight-binding systems

(l→ 0) or high frequency regimes (l→∞) are out of the scope of this thesis. In contrast, we will
focus on the intermediate frequency regime, when the driving frequency remains comparable to the
band width of the undriven Hamiltonian.

2.3 Topological systems

Topological phenomena in 1D TB systems will be of particular interest to us. In order to understand
the origin of these phenomena, let us begin with the definition: Topology is a branch of mathematics
that studies properties of continuity. In particular, those properties of geometric objects that are
preserved under continuous deformations such as stretching, twisting or bending excluding those that
imply creation or closure of holes and cutting or gluing parts together. A deformation of this kind is
called a homotopy and the objects that can be smoothly deformed into each other are called homotopic,
e.g. a torus and a cup in Fig. 2.5 (a). Figure 2.5 (b), in contrast, shows topologically distinct surfaces
in R3. These objects can be distinguished by an integer number called genus (number of holes) that is
a topological invariant. An important difference between geometry and topology is that geometric
properties have local structure, while topological proprieties are defined by the geometry as a whole
and thus have global structure.
In the last decades topology has been developed into a powerful concept to classify fundamentally new
phases of matter that do not fit into the Landau paradigm of spontaneous symmetry breaking [103].
The example with a torus and a cup clearly shows that having the same topological invariant the
objects can be of absolutely different shapes. In the same vein, physical properties associated
with topological invariants have universal character and exhibit remarkable robustness against a
wide range of deformations [104]. Topology was found to underlie various fascinating physical
phenomena including integer and fractional quantum Hall effect [103], quantized charge pumping [36],
topologically-protected edge states [19], Majorana bound states [105] etc.
The topological invariants of crystalline solids can be expressed in terms of the so-called geometric
or Berry phase. This is the phase picked up by a quantum particle during an adiabatic loop in the
Hamiltonian’s parameter space. Below we derive it and discuss the most relevant for this thesis cases
of one- and two-dimentional parameter space.

2.3.1 Berry phase and topological invariants

Consider a Hamiltonian that smoothly depends on time through a parameter R(C):

�̂ (C) = �̂ (R(C)). (2.38)

Figure 2.5: (a) Example of homotopic objects. (b) Topologically distinct surfaces in R3.
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2.3 Topological systems

For every R we can define the instantaneous eigenvalues �U (R) and the instantaneous eigenstates
|U(R)〉 as [106]:

�̂ (R) |U(R)〉 = �U (R) |U(R)〉. (2.39)

In the following we assume the energy spectrum to be discrete and non-degenerate. According to the
adiabatic theorem, if R changes slowly enough then the system prepared in a state |Ψ(0)〉 = |U(R(0))〉
at time C = 0 will remain in this state over time:

|Ψ(C)〉 = 48iU (C) |U(R(C))〉. (2.40)

with iU (C) being a pure phase factor. By "slow" is meant that the characteristic rate of change of the
Hamiltonian is much smaller than the energy gap between �U and the neighboring states. Plugging
Eq. (2.40) into the time-dependent SE yields

8

(
m

mC
iU

)
|U〉 + m

mC
|U〉 = �̂

8
|U〉. (2.41)

In order to find iU we multiply Eq. (2.41) by 〈U |, use Eq. 2.39, and integrate over C. As a result, one
finds that the phase iU consists of the two terms

iU = ZU + WU, (2.42)

where
ZU = −

∫ C

0
�U (C

′)dC ′ (2.43)

and
WU = 8

∫ C

0
〈U(R(C ′)) | m

mC
′ |U((R(C

′))〉dC ′. (2.44)

The first term ZU is the so-called dynamic phase. In order to make sense of the second term let us
rewrite it as

WU = 8

∫
�

〈U(R) | m
mR
|U(R)〉 · dR =

∫
�

AU (R) · dR, (2.45)

with integration done over the path � that the vector R traverses in the parameter space. Importantly,
substitution R(C ′) → R(g(C ′)): g(0) = 0 and g(C) = C in Eq. (2.45) does not change WU meaning that
this phase only depends on the path �, i.e. on the geometry of the parameter space, but not on how
exactly the vector R depends on time. Therefore, as opposed to dynamic phase, WU is referred to as
geometric or Berry phase. The integrand in Eq. (2.45)

�
U
9 = 8〈U(R) |m' 9

U(R)〉 (2.46)

is known as the Berry connection. It can be easily checked that the Berry connection and the geometric
phase generally depend on the gauge. However, if the path � is a closed loop, i.e. R(0) = R(C), then
the Berry phase

WU =

∮
�

AU · dR (2.47)

becomes gauge-invariant and, therefore, can be in principle linked to a physical observable.
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Chapter 2 Time-periodic and topological tight-binding systems

Figure 2.6: The first Brillouin zone in 1D turns into a ring and in 2D turns into a torus, upon connecting the
boundaries as highlighted by dashed arrows.

It turns out that the ideas discussed above are directly applied to the energy bands in crystalline solids.
Recall Eq. (2.5) that is the SE for the periodic part of the Bloch states |DU,k〉. Due to periodicity of
the Bloch Hamiltonian �̂k with respect to the quasimomentum k, the opposite edges of the first BZ
represent the same state and thus can be "glued" together. Thus, the 1D BZ is identified with a ring
)

1, the 2D BZ is a torus )2 (see Fig. 2.6). More generally, the =-dimensional BZ is the hypertorus )=.
From this perspective, k plays a role of the parameter that creates a loop when runs through the 1st

BZ. Now one can readily define the Berry connection and the Berry phase of the Uth band by simply
substituting |U(R)〉 → |DU,k〉 and m/m' 9 → m/m: 9 in Eqs. (2.46) and (2.47), respectively. The total
Berry phase WU picked up by an electron moving through the BZ takes discrete moduli and is used to
characterize topological properties of the energy bands.
The Berry phase in one-dimensional crystals is commonly called the Zak phase [107, 108]:

W
U
Z = 8

∮ c/0

−c/0
d: 〈DU,: |

m

m:
|DU,:〉. (2.48)

In Chapter 5 we will see that the value of the Zak phase is related to a topological invariant in
the Su-Schrieffer-Heeger model and that, if it happens to be non-zero, underlies the existence of
topologically-protected edge states.
In 1D TB systems a two-dimensional topological invariant can arise as well. Indeed, by adding an
adiabatically varying time-periodic parameter \ : \ (C) = \ (C + )) to the Bloch Hamiltonian of a 1D
lattice one essentially creates the two-dimensional parameter space. Let R = (:, \). Using the Stoke’s
theorem we can rewrite the Berry phase (2.47) as an area integral over an open surface ((�) spanned
by the loop �: ∮

�

AU · dR =

∬
( (�)

Ω
U (:, \)d:d\, (2.49)

with
Ω
U (:, \) = 8

[
〈m\DU,: |m:DU,:〉 − 〈m:DU,: |m\DU,:〉

]
(2.50)

being the so-called Berry curvature. Unlike the Berry connection, the Berry curvature is independent of
a gauge and plays a role of the local geometric property of the energy band. The famous Gauss-Bonnet
theorem provides a link between geometry and topology. It states that the curvature integrated over a
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closed 2D surface is quantized in the units of 2c [104]. When applied to the Berry curvature it reads∫ c/0

−c/0
d:

∫ )

0
dCΩU (:, \ (C)) = 2c�, (2.51)

where � is an integer called the Chern number. Equation (2.51) can be also rewritten as the winding
of the Zak phase: ∮

d\
mW

U
Z

m\
= 2c�. (2.52)

The Chern number is widely known as the topological invariant that characterises quantum Hall states.
In Chapter 6 it will appear to be responsible for the topological transport quantization in a slowly
varying 1D potential, the phenomenon called Thouless pumping.
The concept of the Berry phase and the Chern number might look a bit too abstract. In order to gain a
better understanding of these ideas it is instructive to draw an analogy with more familiar physics,
namely, with electromagnetism. Taking a closer look at Eq. (2.47), one may recognize that the Berry
phase reminds the magnetic flux given by the loop integral of the gauge-dependent vector potential
represented by the Berry connection. On the other hand, we know that the magnetic flux can be
defined as the surface integral of the magnetic field. Consequently, Eq. (2.49) suggests that the Berry
curvature is a kind of the magnetic field.
The implication of the Chern number we will illustrate on a simple example of a two-band system [104,
106]. Consider a Bloch Hamiltonian of a 2D lattice with two internal degrees of freedom which may
arise e.g. from a double-site unit cell or the two spin states. Here, we have assumed two spatial
dimensions in order to meet the necessary condition for the Chern number that is the 2D cyclically
varying parameter given by the wavevector k = (:G , :H) ∈ 1stBZ. Due to the internal degrees of
freedom, the Hilbert space is also two-dimensional, thus the general Bloch Hamiltonian can be written
as a linear combination of the Pauli matrices

�̂k = ℎGf̂G + ℎHf̂H + ℎIf̂I = h(k) · f̂. (2.53)

The spectrum of this Hamiltonian consists of the two energy bands �± = ±|h(k) | which cross at
h = (0, 0, 0). Since the 2D BZ is a torus )2, the function h(k) defines a continuous mapping
)

2 → R3\(0, 0, 0), where the origin is excluded to avoid the degeneracy. Therefore, the endpoint of
h(k) traces out a surface that is topologically equivalent to a torus as k runs through the first BZ. It
turns out, that the Berry curvature of this system is given by [104, 106]

Ω
±
= ± h

2|h|3
, (2.54)

which looks exactly like the field of a point-like magnetic monopole sitting in the origin. Now it
becomes clear why the Chern number must be integer: The Chern number of the band �−(k) (or
�+(k)) is the flux of the monopole field Ω− (or Ω+) through the deformed torus traced by h(k). If
the origin is inside the "torus", then � = 1 (or −1). If it lies outside, then � = 0. Evidently, the
Chern number is insensitive to local deformations of the "torus" and cannot be altered unless we
cross the origin. At the transition point the band gap closes, the spectrum becomes degenerate and
no adiabatic following is possible, hence, the Berry phase and the associated topological invariant
are not defined. Note, that the "torus" can in principle intersect itself giving rise to the higher Chern
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Chapter 2 Time-periodic and topological tight-binding systems

numbers� = 2, 3, etc. To conclude this example, let us outline some important features of topological
invariants. First, a topological invariant must take only quantized values. Second, it is robust in a sense
that it cannot be changed under continuous deformation of the band. In fact, the only way to change
the topological invariant of a static system lies through the closure of the band gap and breaking some
global symmetries of the Hamiltonian. These symmetries will be introduced in the next section.
An important remark is that in the context of topological robustness we can only talk about static
or slow adiabatic deformations of a system. Dynamic perturbations, in contrast, may pump enough
energy to a system to overcome the band gap and the whole concept of topological robustness is,
strictly saying, no longer valid. However, if perturbations are periodic in time, then a system can be
effectively treated as a static system with a modified Hamiltonian in the framework of Floquet theory.
This allows to define topological invariants for Floquet systems [109, 110]. As we have seen in the
previous sections, time-periodic perturbations can drastically change the band structure of a system
and open new band gaps. It underlies the remarkable richness of topological phases found in Floquet
systems. When subject to time-periodic perturbations, a system, trivial in equilibrium, can become a
topological insulator [111–113]. Also there exist Floquet systems that support topologically-protected
edge states that do not have analogues in non-driven systems. Such states are known as anomalous
edge modes [114].

2.3.2 Symmetries and topological classification

Having discussed the particular examples of topological invariants we can ask ourselves, which
systems can exhibit non-trivial topological properties and which not? What are the different kinds
of topological systems? The answers on these questions are found in the so-called periodic table of
topological invariants (see Table 2.1), where the systems of non-interacting fermions are arranged
according to dimensionality and special symmetry properties [115–117]. Here, if non-trivial topology
is possible, it is indicated by the entries Z or Z2, if not, it is denoted by 0. Z and Z2 are the corresponding
homotopy groups, i.e. the topological invariants characterized by an integer number or a binary
quantity, respectively.
Let us consider the symmetries that underlie topological classification. We typically understand a
symmetry as some unitary operator that commutes with the Hamiltonian, for instance, spin-rotation
symmetry or space-translation symmetry. In practice, such symmetries can be always eliminated by
writing the Hamiltonian in a block form and focusing the attention on one block, i.e. the reduced
Hamiltonian. That is precisely what we did previously to obtain the Bloch Hamiltonian in the case
of space-translation symmetry. However, the symmetries we are interested in are different because
they cannot be made to disappear by any block decomposition [117]. They are sometimes called the
generalized symmetries owing to the fact that they reflect very general, non-local characteristics of a
system and thus persist even in utterly reduced Hamiltonians. Now imagine we have found all the
unitary matrices that commute with some Hamiltonian �̂ and thereby exhausted all the symmetries
which are present. We block diagonalized �̂ using these unitary transformations and obtained the
blocks ℎ̂ that cannot be further reduced. Which symmetries are left for these blocks? The first two
symmetries of this kind are time-reversal T and charge-conjugation C (or particle-hole) symmetries.
When acting on the blocks ℎ̂, they are given by antiunitary matrices that can either commute or
anticommute with ℎ̂. The combination of these two form a third symmetry called chiral (or sublattice,
hence the notation S). It is in turn given by a unitary matrix that anticommutes with ℎ̂. Based on
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2.3 Topological systems

Class T C S 3 = 1 3 = 2 3 = 3 3 = 4
A 0 0 0 0 Z 0 Z

AIII 0 0 + Z 0 Z 0
AI + 0 0 0 0 0 Z

BDI + + + Z 0 0 0
D 0 + 0 Z2 Z 0 0
DIII - + + Z2 Z2 Z 0
AII - 0 0 0 Z2 Z2 Z

CII - - + Z 0 Z2 Z2
C 0 - 0 0 Z 0 Z2
CI + - + 0 0 Z 0

Table 2.1: Periodic table of topological invariants [115]. The first column from the left side contains 10
symmetry classes labeled using the notations of Altland and Zirnbauer. Each class is characterized by the
presence or absence of the time reversal (T ), charge conjugation or particle-hole (C), and chiral (S) symmetry.
If a symmetry is present, it is denoted by + or - depending on the sign of T 2, C2, and S2 if absent, it is denoted
by 0. 3 is the spatial dimension. The possibility to find a topologically non-trivial system is indicated by Z or
Z2 depending on the type of a topological invariant. Whereas if all the Hamiltonians in the chosen symmetry
class of a certain dimensionality are topologically trivial, it is indicated by 0.

invariance (or not invariance) of the Hamiltonian under T , C, and S, a system can be assigned to one
of the symmetry classes of the periodic Table 2.1.
It turns out that there can be only ten different symmetry classes and this list is exhaustive in accordance
with the classification scheme of Altland and Zirnbauer [118]. To puzzle out why, we have to mention
an important property of T and C, namely, both transformation matrices can square to plus or minus
identity, more specifically, the Hamiltonian can be either not invariant under, e.g. T , or invariant and
T 2

= +1, or invariant and T 2
= −1, and the same holds for C. As a result, we get 9 options how

the Hamiltonian can respond to time-reversal and charge conjugation. Finally, it is also necessary to
consider the action of combination of T and C. Indeed, there can be a situation when that both T and
C symmetries are violated, but the Hamiltonian is invariant under S = TC (see class AIII). Note that
square of S is always plus identity, S2

= (TC)2 = +1. Therefore, there are in total 10 options.
By looking at the action of T , C, and S on the creation and annihilation operators and demanding
that canonical commutation (or anticommutation) relations hold true, one can derive the criteria that
help to determine whether a given single-particle Hamiltonian obeys a certain generalized symmetry
or not. Below we list these criteria for static systems.

1. Time-reversal transformation can be represented as T = K*T, whereK is complex conjugation
and*T is a unitary rotation. The real-space Hamiltonian � is said to be time-reversal symmetric
if

T : *
†
T�
∗
*T = �, (2.55)

where "∗" denotes complex conjugation. In momentum space it holds

T : *†T�
∗
:*T = �−: . (2.56)

Note, that for spinless particles *T ≡ I and Eq. (2.55) simplifies to �∗ = �. In this case, T
always squares to +1 [119].
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2. Charge conjugation reads C = K*C, whereK is again complex conjugation and*C is a unitary
rotation. The real-space Hamiltonian � is said to be symmetric under charge conjugation if and
only if there exist such*C that

C : *
†
C�
∗
*C = −�. (2.57)

In momentum space this condition reads

C : *
†
C�
∗
:*C = −�−: . (2.58)

3. For being chiral symmetric, � must obey

S : *
†
S�*S = −�. (2.59)

The fact that chiral transformation is a combination of time-reversal and charge conjugation
imposes additional requirements on the operator*S, namely it must be unitary, Hermitian, and
local (act in the same way within each unit cell) [106]. In momentum space chiral symmetry
requires

S : *
†
S�:*S = −�: . (2.60)

For Floquet-Bloch systems the above criteria can be formulated as follows [120, 121]:

1. Time reversal symmetry is present if there exist such a time moment C0 ∈ [0, )] and a unitary
operator*T that

T : *†T�
∗
: (C0 + C)*T = �−: (C0 − C); (2.61)

2. Charge conjugation implies the existence of such a unitary matrix*C that

C : *
†
C�: (C)

∗
*C = −�: (C); (2.62)

3. Finally, for chiral symmetry there exist such a unitary operator*S and a time point C0 ∈ [0, )]
that

S : *
†
S�: (C0 + C)*S = −�: (C0 − C). (2.63)

Presence of the generalized symmetries leads to important consequences for the energy (or quasienergy)
spectrum of a system.

1. Namely, if time-reversal symmetry is satisfied, then the spectrum is symmetric around : = 0, in
other words, the eigenenergies of the eigenstates withmomenta : and−: are equal n (:) = n (−:);

2. If the Hamiltonian obeys charge conjugation symmetry then n (:) = −n (−:);

3. If chiral symmetry is present, then the spectrum of a system is symmetric around n = 0, i.e.
n (:) = −n (:).
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CHAPTER 3

Theoretical basics of surface plasmon polariton
waveguides

The present chapter contains the essential theoretical background for understanding the working
principle of our experimental platform that are arrays of dielectric loaded surface plasmon polariton
waveguides. Section 3.1 is devoted to the introduction to surface plasmon polaritons (SPPs), the
electromagnetic waves living at the interface between metal and dielectric. It begins with the
fundamentals of electromagnetism and the optical properties of metals which give rise to the existence
of SSPs. Next, the relevant methods of their excitation and detection are discussed. In Section 3.2
SPP propagation in dielectric waveguide structures is considered: from a single waveguide up to an
array of N coupled waveguides. Lastly, we explain how arrays of plasmonic waveguides can be used
as quantum simulators.

3.1 Introduction to surface plasmon polaritons

3.1.1 Fundamentals of electromagnetism

The existence of surface plasmon polaritons can be well understood within the framework of classical
electromagnetism which firmly relies on the laws formulated by James Clerk Maxwell in early
1860s [68]. These laws link four macroscopic fields: the dielectric induction D, the electric field
E, the magnetic induction B, and the magnetic field H. In the SI unit convention, the Maxwell’s
equations are given by [69]

∇ · D(r, C) = d(r, C), (3.1a)
∇ · B(r, C) = 0, (3.1b)

∇ × E(r, C) = −mB(r, C)
mC

, (3.1c)

∇ ×H(r, C) = j(r, C) + mD(r, C)
mC

, (3.1d)
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Chapter 3 Theoretical basics of surface plasmon polariton waveguides

where d is the charge density and j is the current density. The auxiliary fields D and H are defined as

D = Y0E + P, (3.2a)

H =
1
`0

B +M, (3.2b)

where P is the volume density of electric dipole moments (polarization), M is the density of magnetic
moments (magnetization), Y0

1 is the vacuum permittivity, and `0
2 is the vacuum permeability. In the

present thesis we can limit ourselves to consideration of linear, isotropic and non-magnetic media
with P and M being proportional to the electric and magnetic field, respectively. As a result, the
constitutive relations take a simple form

D = Y0YE, (3.3a)
B = `0H, (3.3b)

with Y being the relative permittivity (also called dielectric function).
Later on it will be important to understand how the electromagnetic fields behave at an interface
between two isotropic media. If there are no free charges and free currents at the interface, i.e.
d = 0 and j = 0, the boundary conditions imply the continuity of the tangential components of the
electric and magnetic fields and the continuity of the normal components of the electric and magnetic
inductions. These conditions follow from the Maxwell’s equations and are summarized below [69]

n̂ × (E2 − E1) = 0, (3.4a)
n̂ × (H2 −H1) = 0, (3.4b)
n̂ · (D2 − D1) = 0, (3.4c)
n̂ · (B2 − B1) = 0, (3.4d)

where n̂ is a unit vector, normal to the interface and indices 1 and 2 label two media.
Another significant consequence of the Maxwell’s equations is that the oscillating electric field creates
an oscillating magnetic field and vice versa giving rise to propagation of electromagnetic waves in free
space. The corresponding wave equations are obtained by applying curl (∇×) to Eq. (3.1c) or (3.1d)
and then using the vector identity ∇ × (∇ × E) = ∇(∇ · E) − ∇2E. In the following we assume no
external charges d = 0 and currents j = 0 and take the constitutive relations form above (3.3a)-(3.3b)
into account. Thus, we obtain the wave equation which for the electric field is given by

Y

2
2
0

m
2E
mC

2 − ∇
2E = 0, (3.5)

where 20 = 1/√Y0`0 is the speed of light in vacuum 3. With the harmonic wave ansatz E(r, C) =

1
Y0 ≈ 8.854 × 10−12 F

m
2
`0 ≈ 1.257 × 10−6 H

m
3
20 ≈ 2.998 × 108 m

s
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3.1 Introduction to surface plasmon polaritons

E(r)4−8lC Eq. 3.5 reduces to the so-called Helmholtz equation [68]:(
∇2 + Y:2

0

)
· E = 0, (3.6)

where by :0 = l/20 we denoted the vacuum wave number.

3.1.2 Optical properties of metals

Electromagnetic response of metals is a complex interplay of different contributions. If the frequency
of an external field is smaller than the energy of the interband transitions, the contribution of conducting
electrons dominates and the optical properties can be well described by the classical model named
after the German physicist Paul Drude [68, 70]. This model assumes that the electrons in a metal
can move freely under the applied external field. The only damping force arises from the random
collisions with the static ion cores which happen with the frequency Wc. All the lattice effects are
accounted by the effective electron mass <∗ while other interactions are neglected. When the external
oscillating field E(C) = E04

−8lC is applied, the equation of motion reads

<
∗¥x + <∗Wc ¤x = −4E(C), (3.7)

where 4 is the elementary charge4. Substituting the harmonic wave ansatz for the electron displacement
x(C) = x04

−8lC into Eq. (3.7) one obtains

x(C) = 4E(C)
<
∗

1
l

2 + 8Wcl
. (3.8)

The displacement of the electrons distributed with the density = induces the macroscopic polarization:

P = −4=x = −4
2
=E(C)
<
∗

1
l

2 + 8Wcl
. (3.9)

Inserting Eq. 3.9 into the definition (3.2a) and comparing the result with the constitutive relation (3.3a)
yields the dielectric function

YD(l) = 1 −
l

2
p

l
2 + 8Wcl

, (3.10)

where l2
p =

=4
2

Y0<
∗ denotes the plasma frequency.

Up to now we have only considered conducting electrons which turns out to be insufficient to describe
the optical properties of the noble metals used in this work, i.e. gold and silver. There are two
additional factors that have to be taken into account to make the model more accurate. First, the filled
3-band of a noble metal results in a polarization offset which can be accounted by substituting 1 in
Eq. (3.10) by Y∞ > 1. Second, starting from the near infrared frequencies on there is an increasing
contribution of the electronic transitions between the bands [71]. This effect however can be easily
incorporated in the Drude model by adding the classical Lorenz-oscillator terms with the proper

4
4 ≈ 1.602 × 10−19C
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resonance frequency lj [72]. The resulting dielectric function is given by

YDL(l) = Y∞ +
l

2
p

l
2 + 8Wcl

−
∑
9

5 9l
2
9

(l2
9 − l

2 − 8lW 9)
, (3.11)

where 5 9 and W 9 are the corresponding weighting factor and the bandwidth, respectively. The extended
equation (3.11) is referred to as Drude-Lorenz model. In the Table 3.1 the model parameters for
gold and silver are summarized. For the frequency l = 1.266 eV (ℏ = 1 throughout the thesis
unless otherwise indicated) corresponding to the experimental wavelength of _ = 0.98 µm we obtain
YAu = −40.6890 + 82.629 and YAg = −48.770 + 81.750 for gold and silver, respectively.

Y∞ lp (eV) Wc (eV) 51 l1 (eV) W1 (eV) 52 l2 (eV) W2 (eV)

Au 6.210 8.794 0.066 -1 2.646 0.382 - - -
Ag 1.798 8.794 0.057 3.008 5.374 288.227 2.341 25.223 39.875

Table 3.1: Parameters of the Drude-Lorenz model for Au and Ag over the 400-1000 nm wavelength range.
Taken from [73, 74]

3.1.3 Surface plasmon polaritons

Having discussed the fundamentals of electromagnetic waves and the optical properties of metals
we now come to description of surface plasmon polaritons. SPPs are collective oscillations of the
electromagnetic field and the conducting electrons localized at the interface between metal and
dielectric. Let us consider such an interface perpendicular to the H-axis so that the upper half-space
H > 0 is filled with a dielectric with permittivity Yd and the lower half-space H ≤ 0 with a metal
with Ym as shown in Fig. 3.1. Without loss of generality we choose the I-axis to be the propagation
direction and for the sake of simplicity we assume no spatial field variation along the G-axis. With
these assumptions and harmonic time dependence, the electric (as well as magnetic) field of SPPs can
be written in a form E(r, C) = E(H)48VI4−8lC , where V is the propagation constant, i.e. the wave vector
component in the propagation direction V = :I . Inserting this ansatz into the Helmholtz equation (3.6)
yields:

m
2E(H)
mH

2 +
(
Y:

2
0 − V

2
)
E(H) = 0. (3.12)

An analogous equation obviously holds true for the magnetic field H. In the following we will consider
two polarization states: TM (transverse magnetic, i.e. H = (�G , 0, 0)

T and E = (0, �H , �I)
T) and TE

(transverse electric, i.e. H = (0, �H , �I)
T and E = (�G , 0, 0)

T) which is sufficient as they form a basis

Figure 3.1: Geometry for the SPP propagation at the interface between dielectric and metal.
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3.1 Introduction to surface plasmon polaritons

in the polarization state space [68].
First, we focus on the case of TM-polarization. Using Eq. (3.12) as well as the curl equations (3.1c)
and (3.1d) we obtain the explicit expression for the SPP field:

H(r, C) = (1, 0, 0)T�14
8:dH4

8VI
4
−8lC

E(r, C) =
(
0,− V

lY0Yd
,

:d
lY0Yd

)T
�14

8:dH4
8VI
4
−8lC (3.13)

for H > 0 and
H(r, C) = (1, 0, 0)T�24

8:mH4
8VI
4
−8lC

E(r, C) =
(
0,− V

lY0Ym
,

:m
lY0Ym

)T
�24

8:mH4
8VI
4
−8lC (3.14)

for y<0, where
:

2
9 = :

2
0Y 9 − V

2
9 = d,m (3.15)

are the wave vector components perpendicular to the interface. According to the boundary conditions
(3.4a)-(3.4b), the tangential electric and magnetic field components at the interface must be continuous.
Thus, comparing Eqs. (3.13) and (3.14) we find that �1 = �2 and

:d
:m

=
Yd
Ym
. (3.16)

This relation in combination with Eqs. (3.15) leads to the central result of this section, namely the
dispersion relation of SPPs:

V = :0

√
YdYm
Yd + Ym

. (3.17)

With the help of Eq. (3.17) the perpendicular wave vector components can be rewritten as:

: 9 = ∓:0

√
Y

2
9

Yd + Ym
, 9 = d,m, (3.18)

where according to our sign convention "−" stands for 9 = d and "+" for 9 = m. Having Eqs. (3.17)
and (3.18) at hand, we can derive the conditions under which the propagating surface waves can
exist. For simplicity, we neglect the imaginary parts of the dielectric functions. First, in order to have
propagating waves, V must be real and therefore the radicand in (3.17) positive. Second, localization at
the interface demands that both :d and :m are imaginary which holds true only when the denominator
in (3.18) is negative. Combining these considerations we arrive at:

Yd + Ym < 0
Yd · Ym < 0

(3.19)

The conditions (3.19) are satisfied only if one of the dielectric functions is negative and has the larger
absolute value. As we have calculated in the previous subsection, the dielectric functions of gold and
silver indeed have the large negative real part with the relatively small imaginary part at the frequency
of interest. Consequently, the SPPs can exist in this case at the interface between a metal and such
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Chapter 3 Theoretical basics of surface plasmon polariton waveguides

Figure 3.2: Dispersion curve for SPPs propagating at the air-gold (red) and air-silver (blue) interfaces and photons
(grey) in the air at the near infrared and visible regime. The black dashed line highlights the experimentally
relevant frequency l = 1.266 eV.

dielectric media as air Yd = 1 or fused silica Yd = 2.25.
Before discussing the properties of propagating SPPs, we briefly touch upon the case of TE polarization.
Following the same reasoning as for TM polarization, it is easy to show that the continuity of the
non-zero tangential field components implies that :d = :m [68]. This equality contradicts with the
requirement of localization at the interface and hence no SPPs can exist with TE polarization.
Now let us have a closer look at the dispersion relation of SPPs (3.17). In the following we no longer
neglect the imaginary part of the SPP propagation constant and denote V = V′ + 8V′′. In Fig. 3.2 the
real part of the SPP dispersion V′(l) is plotted for the interface air-metal and compared to the light
line in the air. It is seen that at the same frequency l the propagation constant of an SPP is larger than
the wave vector of light in free space, i.e. V′ > :0. The ratio

=eff =
V

:0
(3.20)

gives the so-called effective refractive index of SPPs and can be regarded as a measure of the
momentum difference. For instance, at the free-space wavelength _ = 980 nm Eq. (3.20) gives
=

Au
eff = 1.0125 + 0.00088 and =Ag

eff = 1.0105 + 0.00018 for gold and silver, respectively.
The imaginary part of the effective refractive index is responsible for the decay of SPPs in propagation
direction. The energy dissipation is primarily caused by ohmic losses in a metal and results in a
limited propagation length:

! =
1

2Im{=eff}:0
, (3.21)

which is defined as the distance after which the field intensity drops by the factor of 4. The propagation
length for gold and silver at _ = 980 nm is !Au

= 95µm and !Ag
= 638µm.

Another important property of SPPs is the strong concentration of the field near the surface in both
media. The electromagnetic fields described by (3.13) and (3.14) decay exponentially as 4−: 9 |H |
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normal to the interface. The characteristic penetration depth of the SPP field can be defined as follows:

X 9 =
1��Im{: 9}�� 9 = d,m. (3.22)

Applying Eqs. (3.18) and (3.22) to air/gold and air/silver interfaces at _ = 980 nm we obtain
X

Au
d = 984 nm, and XAg

d = 1076 nm in the air and XAu
m = 24 nm and XAg

m = 22 nm in a metal. These
values show that the longer propagation length is associated with weaker localization of SPPs in the
dielectric media.

3.1.4 Excitation of surface plasmon polaritons

SPPs can be excited either by electrons or photons [75]. In the following we will focus on the latter
case as it is more relevant for the experiments described in this thesis. In the previous subsection we
have seen that an SPP at the dielectric-metal interface has a larger wave vector (or momentum) than a
photon propagating in this dielectric media at the same frequency l (or energy ℏl). Thus, a photon
impinging onto the metallic surface from the free space can not excite an SPP due to momentum and
energy conservation. The inverse process is likewise forbidden, an SPP does not directly couple to the
radiating waves.
There are several ways to overcome the momentum mismatch between SPPs and photons. For example,
one can make use of the evanescent field that results from total internal reflection in a coupling medium
such as a prism. A prism can be positioned either below the thin metal film in the Kretschmann
configuration [76] or very close to a metal surface in the Otto configuration [77]. Alternatively, SPPs
can be excited by highly localized light sources placed in the immediate vicinity to the metallic surface,
e.g. fluorescent molecules [78] or a tip of a scanning near-field optical microscope [79]. In this
thesis we use another method, the so-called grating coupler [68], which is the most suited for our
experiments.
The working principle of a grating coupler is sketched in Fig. 3.3. Here, the light with a wave vector
k0 impinges onto a grating of rectangular ridges with a spatial period 3 at an angle \. More generally,
the grating can be any periodic structure: ridges, grooves, holes etc. When the light hits the grating it
gets diffracted. As a result, the wave vector component parallel to the grating :0‖ = :0 sin \ can be
changed by an integer of the reciprocal lattice vector g = êI2c/3. SPPs are excited when the phase

Figure 3.3: Sketch of a grating coupler for excitation of SPPs at the interface between metal and dielectric
with Ym and Yd, respectively. The electromagnetic wave the with wave vector k0 impinges at an angle \ onto
the grating with the spatial period 3. After diffraction the wave vector component parallel to the grating k0‖
acquires an additional shift g to match the real part of the SPP wave vector V′.
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matching condition is fulfilled:

V
′
= :0 sin \ + 2c=

3
, = ∈ Z. (3.23)

For normal incidence and the experimentally relevant _ = 980 nm the required grating period is
3 = 968 nm and 3 = 970 nm for SPPs at air-gold and air-silver interfaces, respectively. We note that
SPPs can be also excited by focusing light on the rough metal surface [75], because the random small
defects can be thought of as a superposition of gratings with different periods.

3.1.5 Detection of surface plasmon polaritons

Successful optical excitation of SPPs is commonly detected as the reduced intensity of the reflected
light [68]. However, for the needs of this thesis, it is highly desirable to access full SPP intensity
distribution at the surface as well as SPP momentum distribution. The scanning near field optical
microscopy could be the method of choice as it allows to detect not only the amplitude of the SPP field
but also its phase [80]. On the downside, scanning a sample line by line can be very time-consuming
especially in case of relatively large plasmonic structures as used in our experiments (∼ 100 µm).
Therefore, we choose a handier approach, namely leakage radiation microscopy (LRM) [81].
LRM is a far-field technique which enables to obtain full SPP intensity distribution in real or in
momentum space with a single measurement. Fig. 3.4 shows the principal scheme of LRM. Here, the
metallic film of thickness � is deposited on top pf a glass substrate. SPPs propagate along the air-metal
interface so that the momentum mismatch prevents radiation loss into the air (V′ > :0). However, the
SPP mode can leak into the substrate with higher permittivity (Yg = 2.25) if the metallic film is thin
enough for the SPP field to penetrate through. In fact, � must be in the order of the penetration depth
of the SPP field in the metal (see Eq. (3.22) and the next subsection). Coupling between SPPs and
the radiating mode with a wave vector kLR occurs when their wave vector components parallel to the
surface match, i.e. :LR‖ = V

′. Denoting by \LR the emission angle of leakage radiation we come to

Figure 3.4: Working principal of the leakage radiation microscopy. The glass substrate with permittivity
Yg = 2.25 is covered by a metallic film of thickness � and surrounded by air with Ya = 1. The SPPs propagate
along the air/metal interface with propagation constant V. If the metal layer is thin, the SPP mode becomes
leaky and radiates onto the glass substrate at an angle \LR. The leakage radiation (LR) as well as the transmitted
laser beam are collected by the oil immersion objective.
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the following phase-matching condition:

:0=g sin \LR = V
′
, (3.24)

where =g =
√
Yg is the refractive index of the glass substrate (\LR ≈ 42◦ for gold and silver at

_ = 980 nm). Note that \LR is larger than the critical angle of the total internal reflection at glass-air
interface. For this reason, leakage radiation must be collected by an oil immersion objective with
sufficiently high numerical aperture: NA> √Yg sin \LR. The collected light can be then imaged
onto the camera as described in the chapter "Methods" in Sec. 4.2.1. Looking ahead we note that
LRM allows for two options [81]: First, one can image the sample plane and obtain the real-space
intensity distribution of SPPs � (G, I) ∝ |� (G, I) |2. Second, imaging the back focal plane (BFP) of
the oil immersion objective gives an access to the momentum-space intensity distribution which is
proportional to the absolute value squared of the 2D Fourier transform of the SPP field:

�̃ (:G , :I) ∝
����∬ dGdI� (G, I)4−8:G G4−8:I I

����2 . (3.25)

Optimal film thickness

After we addressed the basic principle of LRM, we determine the optimal film thickness �. In order
to analyse how leakage losses alter the SPP dispersion relation in dependence on �, we consider the
system of two interfaces (a/m) air/metal and (m/g) metal/glass coupled via evanescent SPP tunnelling
through the metallic layer. The SPP dispersion relation for such a system can only be computed
numerically by solving an implicit equation. An elegant way to derive this equation is described in
Refs. [75, 81], where authors find zeros of the Fresnel reflectivity for the layered structure (g/m/a).
This approach can be understood by noticing that leakage of SPPs through the thin metal slab can be
regarded as the reversal of prism coupling in Kretschmann configuration. The Fresnel reflectivity
coefficient for the TM wave impinging onto the interface between glass and metal reads:

Agm =
:g/Yg − :m/Ym

:g/Yg + :m/Ym
, (3.26)

where :g = −
√
:

2
0Yg − V

2 and :m = +
√
:

2
0Ym − V

2 are the wave vector components perpendicular
to the interface. Likewise, one defines the Fresnel coefficient for the metal-air interface Ama with

:a = −
√
:

2
0Ya − V

2. The reflectivity of the slab (g/m/a) is given by the sum of the contributions of the
primarily reflected wave and those which arise from multiple internal reflections:

Agma = Agm + CgmAmaCmg4
82:m�

∞∑
9=1
(AmgAma4

82:m�) 9−1
=
Agm + Ama4

82:m�

1 + AgmAma4
82:m�

, (3.27)

where we used the geometric sum and the properties which immediately follow from the corresponding
Fresnel coefficients: CgmCmg = 1 − A2

gm and A8 9 = −A 98 (see e.g. [82]). Next, we set the numenator to
zero:

Agm + Ama4
82:m� = 0. (3.28)
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Figure 3.5: Properties of SPPs propagating at the air-gold interface and leaking into the glass in dependence on
metal thickness �: (a) Propagation length; (b) Real part of the propagation constant V′.

From the relation above we obtain the desired implicit equation for V:

(:g/Yg − :m/Ym) (:m/Ym + :a/Ya) + (:m/Ym − :a/Ya) (:g/Yg + :m/Ym)4
82:m� = 0. (3.29)

Solving Eq. (3.29) numerically we get V′ and V′′ as a function of the film thickness �.
In Fig. 3.5 we plot the the propagation length and the real part of the propagation constant of SPPs
in dependence of � in case of a gold film. If the film is too thick, e.g. � > 70 nm, the coupling is
so weak that the system behaves almost like disconnected interfaces and leakage radiation can be
hardly detected. For smaller thicknesses the coupling enhances, radiation losses increase, hence the
propagation length of SPPs shortens (Fig. 3.5 (a)). However, for � < 50 nm the coupling is so strong
that it also shifts the real part of the propagation constant V′ (Fig. 3.5 (b)). Based on the above we
can conclude that the optimal thickness lies in between 50 nm and 70 nm because in this region V′

remains almost unaffected while at the same time sufficient intensity fraction leaks into the far field.
Analogously, one finds that silver behaves in a similar manner.

3.2 Dielectric loaded surface plasmon polariton waveguides

3.2.1 Single DLSPPW

Having discussed the basics of free propagating SPPs we continue with SPP wave-guiding. As we
have seen, SPPs are intrinsically tightly bound to an interface between metal and dielectric but are free
to propagate in any direction along the surface. It is possible, however, to restrict SPP propagation to a
single direction using various waveguide configurations. SPP waveguides range widely: dielectric
ridges, metal nano-wires, metal stripes, slots or grooves in a metallic film, chains of metal nanospheres
etc [83, 84]. In the following we will focus on the so-called dielectric-loaded surface plasmon polariton
waveguides (DLSPPWs) as they are the key components of our quantum simulators.
The key idea of a DLSPPW was borrowed from conventional integrated optics, where the lateral mode
confinement is achieved using a high-index dielectric core [85]. Similarly, a dielectric ridge placed on
top of a metal film can confine SPPs if the permittivity of the ridge is higher than the permittivity of
the surrounding media [86].
Let us consider the DLSPPW geometry sketched in Fig. 3.6. We assume that the metal is gold, the
surrounding space is filled with air, and the dielectric stripe consists of poly-methyl-methacrylate
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Figure 3.6: Sketch of a DLSPPW. The dielectric ridge made of PMMA with permittivity Yp lies on a metallic
surface (Ym) surrounded by media (Ya). ℎ and F denote the height and the width of a DLSPPW respectively.

(PMMA) (refractive index = = 1.49). PMMA is a common material for DLSPPWs since it is an
electron resist that can be structured at nanoscale using electron beam lithography [86]. The waveguide
width and height are set to F = 250 nm and ℎ = 110 nm, respectively, which is typical for our
experiments at the free-space wavelength of _ = 980 nm. In the I-direction we assume continuous
translational symmetry and can therefore limit ourselves to consideration of a cross-section parallel to
the GH-plane. The electric field of a guided SPP mode propagating in the I-direction is given by

E(G, H, I, C) = E(G, H)48 (VI−lC) . (3.30)

Inserting the ansatz (3.30) into the Helmholtz equation (3.6) yields

∇2
t E +

(
Y(G, H):2

0 − V
2
)
E = 0, (3.31)

where ∇2
t = m

2
G + m

2
H is the Laplacian in the transverse plane and Y(G, H) is the permittivity, which is

homogeneous within each medium:

Y(G, H) =


Yp if (−F/2 ≤ G ≤ F/2) and (0 ≤ H ≤ ℎ)
Ym if H < 0
Ya elsewhere.

(3.32)

At each interface between two different media the usual boundary conditions for the electric and
magnetic fields hold (see Eqs. (3.4a)-(3.4d)). This boundary value problem for the partial differential
equation (PDE) lacks an analytical solution, but can be solved numerically e.g. using the finite element
method (FEM) [85, 87].
In FEM the finite-sized model domain is discretized into small elements, usually triangles in 2D
problems or tetrahedrons in the 3D case. Within each element the unknown continuous variable
(e.g. electric field) is approximated by a basis function. This function is connected to the ones in the
neighboring elements at the nodal points (vertexes of the triangles). The PDE with the corresponding
boundary conditions is then replaced by a system of algebraic equations, whose solution gives an
approximation of the PDE solution.
In order to access the electromagnetic field distribution and dispersion relation of a guided SPP mode
we perform FEM calculations using COMSOL Multiphysics. We assume that the field is localized
around the dielectric ridge and falls off to almost zero at the boundary of the modelling area Ω. For
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that we choose a sufficiently large model domain Ω = (−3 µm ≤ G ≤ 3 µm) ∪ (−1 µm ≤ H ≤ 3 µm)
and at the exterior boundary mΩ we set the boundary condition of a perfect electric conductor [88]:

(n̂ × E) = 0. (3.33)

Next, we discretize our 2D domain using triangle mesh. Since the accuracy of the FEM calculations
depends on the mesh size, we use finer mesh for the regions where we expect faster change of the
field. The maximum element size inside the DLSPPW is set to 10 nm while away from the ridge the
element size can reach 200 nm.
After finite element analysis we obtain the electric field distribution E(G, H), G, H ∈ Ω. In Fig. 3.7 (a)
we plot the absolute value of the normal field component EH (G, H) in arbitrary units. As expected,
the field is concentrated in the PMMA ridge and decays exponentially into air and metal. Due to
conservation of the normal component of the dielectric induction, EH experiences jumps at every
horizontal interface between the media, e.g. air/PMMA and air/gold. The resulting mode index equals
=eff = 1.038 + 0.00228. Here, the real and imaginary parts of =eff are larger than the ones for free
propagating SPPs (see Sec. 3.1.3). This is due to the higher index of the PMMA and associated
stronger confinement of SPPs to the surface.
In the next step we study how the mode index depends on the geometrical parameters of DLSPPWs.
For that we perform FEM calculations for different height values in the range from 90 nm to 190 nm
and the widths of F = 200 nm, 250 nm, and 300 nm. The real and imaginary parts of =eff are shown
in Figs. 3.7 (b) and (c), respectively. It is evident that the larger the cross-section of the PMMA ridge,
i.e. the product ℎ × F, the stronger is field confinement to the interface and, consequently, the larger
are both the real and the imaginary parts of the mode index. This dependency remains also if the
shape of a DLSPPW deviates from a perfect rectangle [89].

Figure 3.7: (a) Normalized modulus of electric component EH in a single-standing DLSPPW calculated by
FEM. (b) Real and (c) imaginary part of the guided mode index versus DLSPPW heigh ℎ at constant widths F.

Single-mode condition

Note that at a further increased width, a DLSPPW can also support higher order modes TM0n [86,
88]. At the fixed height value ℎ, the single-mode condition for a DLSPPW is given by the cut-off
width Fcut for the TM01 mode, i.e. the minimum ridge width which supports two modes. As shown in
Ref. [88], the cut-off width can be estimated using the effective index method (EIM). This approach is
based on the assumption that the variables G and H in the Helmholtz equation (3.31) can be separated.
It allows to split the original problem into a system of two 1D Helmholtz equations that can be solved
individually using the standard procedure for the planar slab waveguides (e.g. see [85]). As a result,
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one comes to the following single-mode condition [88]:

Fcut =
c

:0

√
=
′2
mpa(ℎ) − =

′2
ma

. (3.34)

Here, =′ma is the real part of the effective refractive index of SPPs propagating at an interface metal/air
(see Eq. (3.20)), while =′mpa(ℎ) corresponds to the SPPs on a metallic surface coated with a PMMA
layer of thickness ℎ and surrounded by air. One expects that the latter quantity should have the following
limits: lim

ℎ→0
=
′
mpa(ℎ) = =

′
ma and lim

ℎ→∞
=
′
mpa(ℎ) = =

′
mp, where =

′
mp stands for SPPs at a metal/PMMA

interface. It was indeed shown that with increasing coating thickness ℎ, the index =′mpa(ℎ) grows
monotonously between these limiting values [75, 88]. Substituting the upper limit =′mp into Eq. (3.34)
we obtain Fcut = 426 nm. In all our experiments we will always work below this value to ensure the
single-mode regime at any DLSPPW height.

3.2.2 Coupling between two DLSPPWs

After we investigated the characteristics of a single DLSPPW, we move on to the case of multiple
waveguides. If two or more waveguides are brought into close proximity, so that their mode wave
functions overlap, mode coupling occurs leading to power exchange between the waveguides. The
wave propagation in a coupled waveguide system can be analysed with the help of the coupled mode
theory (CMT). This approach relies on the assumption that if the waveguides are well separated (weak
coupling regime) the eigenmodes of a coupled system can be approximated by a linear combination
of individual waveguide modes [85]. Nowadays, several CMT formulations exist varying in the
application area and accuracy (see [90] and references therein). It is beyond the scope of this thesis to
discuss all these formulations. Instead, we will focus on the conventional CMT which assumes that the
waveguide modes are orthogonal to each other. Despite a number of simplifications and assumptions,
this formulation showed itself well-suited to capture the essential physics behind our experiments with
DLSPPWs.
To derive the CMT equations we adapt the approach described in Ref. [91] to TM modes and consider
two single-mode DLSPPWs with permittivities Y1,2 spaced at a distance 3 (see Fig. 3.8). Let Yma(G, H)
be the permittivity distribution in the GH plane for a free metal/air interface: Yma(G, H) = Ym in metal
(H ≤ 0) and Yma(G, H) = Ya in air (y>0). For convenience, we introduce the excess permittivity due
to the presence of the waveguides ΔY 9 (G, H), which takes the value Y 9 − Ya inside the waveguide 9

Figure 3.8: Two DLSPPWs with permittivities Ya + ΔY1,2 separated by a distance 3. Ya denotes the permittivity
of the surrounding media (air).
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( 9 = 1, 2) and zero elsewhere. Thus, the permittivity distribution of the composite system can be
written as a sum Y(G, H) = Yma(G, H) + ΔY1(G, H) + ΔY2(G, H).
We denote the fields of the individual waveguide modes before coupling by (E1,H1) and (E2,H2).
With homogeneity in the I direction these fields have the form:

E 9 (G, H, C) = E 9 (G, H)4
8 (V 9 I−lC) , (3.35)

H 9 (G, H, C) = H 9 (G, H)4
8 (V 9 I−lC) . (3.36)

and therefore satisfy the following Helmholtz equation:(
m

2
G + m

2
H + :

2
0 (Yma(G, H) + ΔY 9 (G, H))

)
(E 9 ,H 9) = V

2
9 (E 9 ,H 9), 9 = 1, 2, (3.37)

where V 9 is the propagation constant of the mode 9 . In the following we neglect the propagation losses
and assume V′′9 ≈ 0. This substantially simplifies the derivation, while the losses can be incorporated
later to the final result.
The optical power carried by each mode is given by the time average of the normal component of the
Poynting vector [85]:

% 9 =
1
2

Re
∬ (

Et 9 ×H∗t 9
)
I

dGdH (3.38)

where t denotes the transverse field component. In the absence of losses % 9 is conserved. When the
waveguides are far apart, the interaction between the modes tends to zero. In this case, the modes
obey the orthogonality condition, i.e. the total power flow in the composite system is the sum of the
powers carried by each mode individually:

%sum =
1
2

Re
∬ (

Et ×H∗t
)
I

dGdH = %1 + %2, (3.39)

where Et = Et1 + Et2 and Ht = Ht1 +Ht2. The mode orthogonality therefore implies that the cross
terms in (3.39) must vanish:

1
2

Re
∬ (

Et 9′ ×H∗t 9
)
I

dGdH = X 9′, 9 , (3.40)

where X 9′, 9 is the Kronecker delta and the input power of each mode % 9 is normalized to 1 W. We
know that plasmonic modes have TM polarization. Since the orthogonality relation is applied to the
transversal field components, it is convenient to continue our derivation in terms of the magnetic field.
Applying the Maxwell equation (3.1d) to TM modes, Eq. (3.40) reduces to:

V 9′

2lY0

∬ H 9
′ · H ∗9

Y(G, H) dGdH = X 9′, 9 . (3.41)

where we neglect the imaginary part of the permittivity distribution Y(G, H) because the DLSPPW
modes are mostly concentrated in a dielectric structure and decay within a short range inside a metal.
If the orthogonality relation holds true, the individual waveguide modes form a complete orthogonal
basis and any arbitrary electromagnetic field propagating along the composite waveguide structure
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can be expressed as a superposition of the modal fields:

H(G, H, I, C) = 01(I)H1(G, H)4
8 (V1I−lC) + 02(I)H2(G, H)4

8 (V2I−lC) , (3.42)

where 01,2(I) are the modal expansion coefficients which are to be found. This field obeys the wave
equation 3.5, which for our geometry takes the form:(

m
2
G + m

2
H + m

2
I + :

2
0 (Yma(G, H) + ΔY1(G, H) + ΔY2(G, H))

)
H = 0. (3.43)

Substituting the CMT ansatz (3.42) into (3.43) we assume slow variation of the modal coefficients, i.e.
neglect the second order derivatives d2

0 9/dI
2. With the help of Eq. (3.37) we come to:

28V1
d01
dI
H14

8V1I + 28V2
d02
dI
H24

8V2I + 01:
2
0ΔY2H14

8V1I + 02:
2
0ΔY1H24

8V2I = 0. (3.44)

Next, we multiply Eq. 3.44 by H ∗1 /Y(G, H) and H
∗
2 /Y(G, H) and integrate over the whole GH plane

using the orthonormalization condition 3.41. As a result, we obtain:

d01
dI

= 8�1101 + 8�12024
8 (V2−V1)I

d02
dI

= 8�2202 + 8�21014
8 (V1−V2)I ,

(3.45)

where

� 9 9 =
l`0

4

∬ H ∗9ΔY 9′ (G, H)H 9

Y(G, H) dGdH,

� 9′ 9 =
l`0

4

∬ H ∗
9
′ΔY 9′ (G, H)H 9

Y(G, H) dGdH, 9 , 9
′
= 1, 2.

(3.46)

The overlap integrals above are carried out only inside the core of the 9 ′th waveguide, becauseΔY 9′ (G, H)
is zero elsewhere. From the previous subsection we know that the mode fields decay exponentially
away from the waveguide core. It implies that � 9 9 and � 9′ 9 depend as 4−[3 on the separation 3, where
[ is the decay rate, and � 9 9 � � 9′ 9 sinceH 9

′ (G, H) � H 9 (G, H) for (G, H) ∈ waveguide 9 .
Eqs. (3.45) can be rewritten with the new variables 0̃ 9 = 0 94

8V 9 I :

d0̃1
dI

= 8 Ṽ10̃1 + 8�120̃2

d0̃2
dI

= 8 Ṽ20̃2 + 8�210̃1,

(3.47)

where Ṽ 9 = V 9 + � 9 9 . Now it becomes evident, that the terms � 9 9 represent a small correction to the
propagation constant V 9 due to the coupling effect (� 9 9 � V 9), while � 9′ 9 are the coupling constants
responsible for the power exchange between the waveguides. Due to mode normalization, the total
power in the waveguide system is given by % =

∑
9 |0̃ 9 |

2. The power flux conservation implies
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d%/dI ≡ 0 or

d
∑
9 |0̃ 9 |

2

dI
=

∑
9

(
0̃ 9

d0̃∗9
dI
+ 0̃∗9

d0̃ 9
dI

)
= 8

∑
9
′
9

(
� 9′ 9 − �

∗
9 9
′

)
0̃
∗
9
′ 0̃ 9 ≡ 0, (3.48)

from which we derive the reciprocity relation between the couplings � 9′ 9 = �
∗
9 9
′.

Assume that at I = 0 we start with the boundary conditions 0̃1(0) = 1 and 0̃2(0) = 0. Solving the
CMT equations (3.47) yields:

0̃1(I) = (cosΩI + 8(Δ/Ω) sinΩI)48qI ,
0̃2(I) = 8(�21/Ω) sinΩI48qI ,

(3.49)

where Δ = ( Ṽ2 − Ṽ1)/2, Ω =

√
Δ

2 + �12�21, and q = ( Ṽ1 + Ṽ2)/2. In terms of powers in the two
waveguides % 9 = |0 9 |

2 the solution is given by

%1(I) = cos2
ΩI + (Δ/Ω)2 sin2

ΩI,

%2(I) = (�21/Ω)
2 sin2

ΩI.
(3.50)

This result indicates that due to coupling the power flux is periodically exchanged between the
waveguides. For identical waveguides, i.e. Δ = 0, the power is completely transferred to the second
waveguide after the distance called coupling length

!c =
c

2|�12 |
2 . (3.51)

Coupling constants

In real DLSPPWs the energy is not conserved due to propagation losses. Nevertheless, rigorous
analysis of the mode coupling in a general case of complex propagation constants and lossy media
shows that the system can be still described with the coupled differential equations (3.47) with some
modifications to the orthogonality relation and the coupling coefficients [92]. In order to determine the
coupling constants in this thesis we will either use the aforementioned mode analysis in COMSOL or
measure them experimentally. Both these approaches naturally account for the losses in a plasmonic
system and lead to consistent results (see Ref. [93] for details). As an example, in Fig. 3.9 we plot the
real part of the coupling constants � obtained with COMSOL against the distance 3 for three different
waveguide heights ℎ = 100 nm, 150 nm, and 200 nm, while the width of the waveguides is kept
constant F = 250 nm. The dependency � (3) can be well approximated by an exponential function
∝ 4−[3 , where the rate [ increases with increasing waveguide height. This result is expected since the
mode fields become more confined, i.e. decay faster, with increasing waveguide cross-section (see
Sec. 3.2.1). The imaginary part of the coupling constant is two orders of magnitude smaller than the
imaginary part of the propagation constant and is usually not taken into account.
We note that in the case of non-identical lossy waveguides the coupling constants become in general
non-reciprocal, i.e. � 9 9′ ≠ �

∗
9
′
9
. The difference between them can be, however, often neglected since

it is proportional to the power cross term and gets exponentially small with increasing separation
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Figure 3.9: Calculated real part of the coupling constant Re{�} between two DLSPPWs made of PMMA on
gold as a function of distance between the waveguides 3 at three different waveguide heights ℎ and a constant
width F = 250 nm. [ denotes the exponential factor of the approximating function ∝ 4−[3 .

3. Finally, it should be emphasized that regardless of the assumptions we make, the CMT is still an
approximation which is valid only for the weakly coupled regime. The accuracy of the conventional
CMT in dependence on the spacing between the DLSPPWs was analyzed in Ref. [89].

Variation along the propagation direction

Of particular interest for this thesis is the situation when the parameters of a coupled waveguide system
(the waveguides’ cross-sections or the spacing between them) are periodically modulated along the
propagation distance. If the spatial scale of such modulation Λ is much larger than the spatial scale of
the field evolution given by the wavelength _, i.e. Λ/_ � 1, the propagating wavepacket is expected
to adiabatically follow slow variations of the permittivity profile ΔY 9 = ΔY 9 (G, H, I) and the system
can be described by Eqs. (3.47) where the propagation and coupling constants are replaced by the
corresponding functions of I: V 9 = V 9 (I) and � 9 9′ = � 9 9′ (I) [94].

3.2.3 Array of N coupled DLSPPWs

The approach discussed above can be readily extended to the case of more than two coupled waveguides.
Let us consider an array of N parallel DLSPPWs, where each waveguide is characterized by the
propagation constant V 9 , 9 = 1, ..., # (see Fig. 3.10). The mode decomposition of the system wave
function becomes:

H(G, H, I) =
#∑
9=1
0̃ 9 (I)H 9 (G, H) (3.52)

Next, we follow the same procedure as described in the previous subsection and assume that only the
next-nearest neighbour coupling is present. It leads to the system of # coupled differential equations
analogous to Eqs. 3.47, where the 9 th modal amplitude evolves as:

d0̃ 9
dI

= 8

(
� 9−1 9 0̃ 9−1 + V 9 0̃ 9 + � 9 9+10̃ 9+1

)
. (3.53)
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Figure 3.10: An array of N parallel DLSPPWs. V 9 is the propagation constant of the 9
th waveguide and � 9 , 9+1 is

the coupling between the waveguides 9 and 9 + 1

Here, we neglected the small correction in the propagation constant and assumed that the couplings
are real and reciprocal, i.e. � 9 9±1 = � 9±1 9 . The CMT equations (3.53) can be rewritten in a compact
matrix form:

da
dI
= 8MCMTa, (3.54)

where
a(I) =

(
· · · 0̃ 9−1 0̃ 9 0̃ 9+1 · · ·

)T

and

MCMT =

©­­­­­­­­­«

. . .
. . .

. . . V 9−1 � 9−1 9
� 9−1 9 V 9 � 9 9+1

� 9 9+1 V 9+1
. . .

. . .
. . .

ª®®®®®®®®®¬
. (3.55)

3.2.4 DLSPPW arrays as quantum simulators

Electromagnetic waves propagating in arrays of coupled waveguides are subject to a spatially periodic
refractive index distribution and thus can resemble behaviour of an electron wave function travelling
through the periodic potential of a crystal lattice. It is evident, that the time-dependent SE (2.19)
in the tight-binding approximation derived in the previous chapter and the CMT equation (3.54) for
an array of coupled waveguides have exactly the same mathematical form. In the optical system
the propagation distance I plays the role of time C, while the propagation constants V 9 and coupling
constants � 9 , 9+1 stand for the on-site energies � 9 and the hopping amplitudes � 9 , 9+1, respectively. We
on purpose use exactly the same notations for the coupling constants and hopping amplitudes since
the physical meaning of both quantities is identical in the scope of this work. The direct comparison
yields that the electromagnetic field in the 9 th waveguide as a function of propagation distance 0̃ 9 (I)
corresponds to the time-dependent probability amplitude of an electron to reside at the 9 th lattice site,
i.e. ? 9 (C) = 〈 9 |Ψ(C)〉. Thus, monitoring the spatial intensity distribution � (G, I) ∝ |E(G, I) |2 in arrays
of coupled waveguides one can simulate the temporal evolution of the electron’s probability density
|Ψ(G, C) |2 in an analogous tight-binding system.
As we have previously discussed in Sec. 3.2, the propagation and coupling constants in a waveguide
array can be precisely adjusted by tuning the waveguide geometry. Such a high controllability of the
system’s parameters and the outstanding ability of direct visualization make waveguide arrays an
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attractive platform for quantum simulations. Among the condensed-matter phenomena which have
been already realized in this optical setting are Bloch oscillations [25], Zener tunneling [30], Anderson
localization [31], dynamic localization [8], and various topological phenomena [98].
An important advantage provided by plasmonic waveguides used in this thesis is a powerful detection
technique that is the leakage radiation microscopy introduced in Subsection 3.1.5. It not only captures
the full spatial intensity distribution in the array by a single measurement, but also allows for the
Fourier imaging. In the quantum-optical analogy the intensity distribution in Fourier space � (:G , :I)
(see Eq. (3.25)) corresponds to the squared modulus of the 2D Fourier transform of an electron wave
function in space and time domains:

|Ψ̃(:, n) |2 =
���� 1
2c

∬
dGdCΨ(G, C)4−8:G4−8 n C

����2 . (3.56)

The above quantity is the momentum and energy resolved probability density which carries information
about population and shape of the system’s energy bands. In the following chapters the combination
of real- and Fourier space imaging will be used to study periodically-driven and topological 1D TB
systems.
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CHAPTER 4

Experimental methods

In this chapter we touch upon the experimental techniques used to realize and study 1D TB systems
with the help of plasmonic waveguide arrays. The chapter is divided into two sections. Section 4.1 is
focused on the fabrication of the DLSPPW arrays which mimic the system of interest. Section 4.2
contains the description of optical measurements of SPP propagation in the fabricated arrays that carry
information about either the system’s temporal evolution in real-space or its momentum-resolved
spectrum.

4.1 Sample fabrication

The predictive value of any quantum simulator directly depends on the degree to which one can
control the characteristic parameters of the model system. In the case of DLSPPW arrays, it is central
to fabricate the waveguides with a precisely adjusted geometry at the nanoscale. In this thesis it is
achieved by utilization of electron beam lithography (EBL) [122]. The fabrication process consists
of substrate cleaning, evaporation of a metal film, spin coating, and, finally, lithography. Below we
discuss them step-by-step along with the methods involved.

4.1.1 Substrate preparation

Substrate cleaning

The fabrication process always starts with the substrate cleaning. As a substrate we use a 22 mm×22 mm
microscope cover glass with a thickness of 0.17 mm and a refractive index of =g = 1.52. The cover
slips are thoroughly cleaned by wiping them with lens cleaning tissues sequentially soaked in acetone,
isopropanol, ethanol, and distilled water. In order to remove residual contamination, the substrates are
either immersed in acetone in an ultrasonic bath for 60 min or treated for 10 min at each side in the
plasma cleaner Diener Zepto. Afterwards, the substrates are ready for the metal film deposition which
is done by thermal evaporation.
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Thermal evaporation

Thermal evaporation has become the most established deposition method in plasmonics due to its
affordability and good performance in creating thin and smooth metallic films [123]. During this
process, a material in the high-vacuum chamber (UNIVEX 250 from Leybold) is heated up to its
evaporation point by sending an electric current through the tungsten boat in which it is placed. The
vaporized material then rises to the substrate which is fixed above the source and homogeneously coats
the surface. The evaporation rate and the layer thickness are monitored by a sensor, which detects a
change in the resonance oscillation frequency of the quartz crystal driven by the piezo-electric effect.
In this thesis we deposit either gold or silver depending on the needs of a particular experiment: While
gold films possess lower surface roughness and better chemical stability, silver films enable longer
SPP propagation lengths (see Sec. 3.1.3). For both metals the film thickness is chosen to be 60 nm as
a good trade-off between the leakage radiation intensity and propagation losses (see Sec. 3.1.5). We
note that evaporation conditions for gold and silver substantially differ.
In case of gold, it is sufficient to pump the chamber down to 2 · 10−6 mbar and use an evaporation rate
of 2 Å

s , which typically consumes 0.25 g of material for 60 nm-thick film. In order to improve adhesion
of the film, 5 nm of chromium is deposited prior to gold at a rate of 1 Å

s . Since the evaporation
chamber enables to mount two material sources at once, no the intermediate ventilation between the
layers is needed.
In contrast to gold, silver is much more susceptible to residual gases in the chamber such as water
vapor and oxygen due to lower adhesion energy and random crystalline orientation of the grains
in the film [123]. The effect of residual gases can be minimized by improving vacuum and using
higher deposition rates [124]. For our evaporation system the best reachable vacuum is approximately
8 · 10−7 mbar and the maximum rate which can be stably maintained is 35 Å

s [125]. At such a rate,
the larger part of the material is lost during the ramp-up of the evaporator. To compensate for these
losses, the boat is loaded with approximately 0.75 g of silver. As an adhesion layer we deposit 2 nm of
copper below the silver film at a rate of 2 Å

s .

Spin coating

Before electron beam exposure, an electron resist is spread over the substrate surface via spin coating.
As a resist we use polymethylmethacrylate (PMMA) with a molecular weight of 950 k dissolved at
4% in annisole. For spin coating 90 µL of PMMA solution is pipetted onto the metallized side of
the substrate. Then the samples are spun in two steps: the first step lasts 3 s at a speed of 500 rpm
to distribute the solution over the surface; the second 90 s at 1500 rpm, results in an approximately
200 nm thick polymer film. To remove the residuals of the solvent, the spin-coated samples are
annealed on a hot plate for 90 s at 175 °C.

4.1.2 Electron beam lithography

The main principle of EBL is that a focused electron beam scans over the resist that is sensitive
to electrons modifying its chemical structure and thereby changing its solubility. It follows by the
development step when some parts of the resist get dissolved revealing the transferred pattern. One
distinguishes negative- and positive-tone EBL (see Fig. 4.1): In the first case (Fig. 4.1 (a)), the regions
exposed to electrons become insoluble in the developer unlike the rest of the resist. This lithography
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4.1 Sample fabrication

Figure 4.1: The basic steps of the negative- (a) and positive-tone (b) electron beam lithography process.

type, in addition, allows for gray-scale patterning, i.e. the height of the printed structures can be
controlled by the applied electron dose. In the second case (Fig. 4.1 (b)), in contrast, the exposed
resist is dissolved by a proper solvent thus creating a mask for further processing steps, e.g. metal
deposition. Note that depending on the applied electron dose PMMA can act either as a positive- or
negative-tone resist [126, 127]: At moderate doses the polymer chains of PMMA are cut into smaller
fragments increasing solubility of the resist, while at higher doses these fragments crosslink with each
other forming a hard insoluble material.
In order to fabricate DLSPPW arrays, we mostly use gray-scale negative-tone EBL as it is a fast yet
high-resolution method to create three-dimensional dielectric nanostructures. However, in chapter 7,
positive-tone EBL is utilized as well in order to deposit chromium patches under the waveguides and
locally increase propagation losses for SPPs.
Throughout this thesis, the EBL process is carried out inside the ZEISS Sigma scanning electron
microscope (SEM) equipped with the Raith ELPHY Plus EBL system. For electron beam exposure
the substrates are mounted onto a mechanical stage and placed inside the vacuum chamber of the
SEM which is then pumped. Inside the SEM the electron beam is created by the field-emission gun,
accelerated by the acceleration voltage, and focused onto the sample surface by the combination of
magnetic and electrostatic lenses and an adjustable aperture. We typically use the acceleration voltage
of 10 kV and an aperture diameter of 30 µm.
During the writing process, the beam is deflected by the magnetic scan coils. The maximum beam
deflection is determined by the chosen magnification and circumscribes the so-called write field. The
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write field containing one array of DLSPPWs has a size of 200 µm×200 µm corresponding to the
magnification 300 ×. In order to switch from one write field to another and print several arrays in one
EBL process, the substrate is moved relative to the electron beam by the mechanical stage.
In the EBL system the pattern to be written is pixelated. The electron dose assigned to each pixel is
related to the beam current �beam, the step size Xstep (= pixel size), and the dwell time Cdwell (= exposure
time per pixel) via:

� =
�beamCdwell

X
2
step

. (4.1)

The step size is fixed and set to 0.0096 µm, while the dwell time required for the given dose is
recalculated before every lithography session depending on the magnitude of the electric current. The
latter is measured by a Faraday cup integrated into the mechanical stage.

Negative-tone gray-scale EBL

With the chosen SEM settings the negative-tone EBL is performed at electron doses lying between
approximately 10 and 35 C

m2 . Within this range, the height of the printed structure grows with the
applied dose from 0 up to the maximum which is defined by the PMMA layer thickness resulting from
the spin coating. After electron beam exposure, the unexposed resist is dissolved by development in
acetone for 60 s which finalizes the fabrication process (see Fig. 4.1 (a)).
The minimum line width produced by this technique is about 150 nm [126]. The main factor which
limits the resolution is the so-called proximity effect, i.e. a smeared-out exposure dose caused by
back-scattered and secondary electrons. This effect plays an important role in EBL because in addition
to line widening, it strongly affects the structures printed in close vicinity. We discuss this effect in
more details below in the subsection "Dose test".

Dose test

Here, we consider the dose test aimed at showing how the geometry of the DLSPPWs produced by
negative-tone EBL depends on the exposure dose. In this test the single-standing PMMA ridges are
fabricated as described above with different doses in the range of 14 to 28 C

m2 . Single-standing means
that the structures are well separated from each other so that there is no proximity effect from the
neighbors. All the ridges are designed to have a width of 350 nm and a length of 180 µm, which are
chosen as typical values for the single-mode DLSPPWs. A magnified SEM micrograph of such a
waveguide fabricated at a dose of 25.2 C

m2 is shown in Fig. 4.2 (a).
The geometrical parameters of these wavegides are measured with atomic force microscopy (AFM) on
a NeaSNOM microscope. Fig. 4.2 (b) presents a waveguide profile %(G) which results from averaging
over 20 AFM scans of a waveguide shown in (a) made with a step of 50 nm along the z-axis. Since the
shape of the ridges is asymmetric and evidently deviates from a perfect rectangular due to the proximity
effect, we define the characteristic width as F =

∫
%(G)dG/ℎ, where ℎ is the maximum height of the

profile. This definition is motivated by the fact that the propagation constant of a waveguide mainly
depends on its cross-section

∫
%(G)dG (see Sec. 3.2.1). Therefore, our waveguide can be treated as an

effective rectangular with a width F and a height ℎ. We note that our data is slightly influenced by the
finite size of an AFM tip, for a detailed analysis see Ref. [93].
In Fig. 4.2 (c) the measured heights ℎ and widths F are plotted against the applied dose �. It is
evident that the proximity effect leads to a broadening of the waveguides: The resulting width grows

44



4.1 Sample fabrication

Figure 4.2: (a) Magnified SEM micrograph of a PMMA ridge designed to have a width of 350 nm printed with a
dose of 25.2 C

m2 . (b) The averaged profile of a waveguide shown in (a) obtained from AFM data. Here, ℎ denotes
the maximum height of a waveguide. (c) Results of the dose test for single-standing DLSPPWs designed with a
constant width of 350 nm. The black diamonds represent the effective widths, while the black circles represent
the heights. The fitting functions for measured widths and heights are shown as blue and red lines, respectively.

with the applied dose. This dependency can be fitted by a first-order polynom F(�) = ? · � + @,
where ? = 16.07 ± 1.52 nmm2

C and @ = −78.74 ± 30.16 nm. The waveguide height as a function of the
dose is well described by a sigmoid [93]:

ℎ(�) = 0

4
−�/1 + 2

, (4.2)

where the fitting parameters are given by 0 = 0.071 ± 0.033 nm, 1 = 2.56 ± 0.17 C
m2 , and 2 =

4.73 · 10−4 ± 2.14 · 10−4.
The obtained result is a good starting point for choosing the dose needed to achieve the desired
geometrical parameters of PMMA ridges. However, the predictions based on this test are accurate
only if separation between the ridges is sufficiently large (> 1.5 µm). It must be taken into account
that if waveguides in an array are printed closer to each other, the real exposure dose turns out to be
larger than the assigned one due to the proximity effect [128]. This effect can be canceled out by
adjusting the exposure dose.

Positive-tone EBL

For the positive-tone EBL in this thesis all the SEM settings other than the exposure dose remain the
same as for the negative-tone EBL which enables us to combine both lithography types in one session.
The dose of 3 C

m2 leads to the fragmentation of long PMMA chains while the crosslinking does not yet
occur. At the development stage these low-weight fragments are removed by immersing the samples
for 45 s in a developer consisting of a solution 3:1 of isopropanol and methyl isobutylketone (MIBK)
with added butanone to 1.5 % of the final volume. The developer is beforehand cooled down to 8 °C in
order to increase resolution [129]. As illustrated in Fig. 4.1 (b), it results in a negative mask on top of
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which the desired material is deposited by thermal evaporation. At the last lift-off stage, the samples
are dipped into 60 °C hot N-Methyl-2-Pyrrolidone (NMP) for 2 hours and then rinsed in acetone and
isopropanol. The PMMA mask is dissolved and we obtain the final pattern with sub 10 nm resolution.

4.2 Optical measurements

The fabricated samples are investigated in the optical setup based on leakage radiation microscopy that
was introduced in Sec. 3.1.5. In this setup SPPs are excited by a laser beam focused onto the grating
deposited on top of one or several DLSPPWs. The excited SPPs then leak into the glass substrate and
can be imaged in the real or Fourier space as described below.

4.2.1 Real- and Fourier-space imaging

The operation principal of real- and Fourier-space imaging of leakage radiation is sketched in
Fig. 4.3 (a). Here, the first objective (Obj.1) focuses the laser beam onto the sample and excites
SPPs. The emitted leakage radiation as well as the transmitted laser beam are collected by a high
NA oil immersion objective (Obj. 2). For simplicity, the combination of lenses inside the second
objective is substituted by an effective single lens (OL). The colored solid lines display the rays which
leave the sample from three different positions in real space at two angles \free (blue) and \guided
(red) being the leakage radiation angles for free and guided SPPs, respectively. The objective is
infinity-corrected so that a ray bundle emitted from one point in the real space becomes collimated
after passing through it. As a result, a real-space image cannot be formed without an additional tube

Figure 4.3: (a) Formation of real- and Fourier-space images in leakage radiation microscopy. The laser beam
(pale red) is focused by the first objective (Obj.1) onto the sample surface. The transmitted beam and the leakage
radiation are collected by the second objective (Obj.2) and imaged with the help of a tube lens (TL). OL denotes
the effective objective lens. The cone of light with the maximum opening angle collected by Obj.2 is shown in
pale yellow. Different light paths of leakage radiation are displayed as blue and red lines corresponding to the
leakage radiation angles of free \free and guided \guided SPPs. The focal distances of these lenses are marked as
5obj and 5tube. Σ0 and F0 are the sample plane and the back focal plane of the second objective, respectively. Σ1
and F1 are the corresponding image planes produced by the tube lens. 30 and 31 are the distances from F0 to the
tube lens and from the tube lens to F1. (b) Schematic sketch of the light distribution at F1 in case of excitation
of a single DLSPPW. :free and :guided are the wavenumbers of free and guided SPP modes. NA1 and NA2 are
numerical apertures of the first and the second objectives, respectively.
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lens placed behind the objective. The real-image plane (Σ1) coincides then with the focal plane of this
lens. The magnification of a real-space image is given by the ratio between the focal distances of the
tube lens and the imaging objective: " = 5tube/ 5obj. The distance between the objective’s lens and
the tube lens is called "parallel beam path" or "infinity space". This space is usually utilized to insert
additional optical elements into the setup and does not influence the position or magnification of a
real-space image. However, note that if the infinity space gets too long it may cause visual artifacts.
This happens when the collimated ray bundles deflect from the optical axis so far that a fraction of
light cannot be collected by the tube lens due to its finite size.
The Fourier space is accessed by imaging the back focal plane of the second objective (F0). At this
plane all the rays which leave the sample at the same angle (\G , \I) are focused to one point (dG , dI)
no matter where they are emitted from in the real space. For an aplanatic objective the position of this
point relative to the optical axis and the emission angle are linked by the Abbe sine condition [130]:

dU = 5obj= sin \U U = G, I, (4.3)

where = is the refractive index of immersion oil. Hence, the outmost points of the F0 are spaced
away from the optical axis at a distance dmax = 5obj= sin \max = 5objNA2, where NA2 is the numerical
aperture of the second objective.
Now, we recall that the leakage radiation angle of SPPs is related to the SPP wave vector via Eq. (3.24).
Denoting by :G and :I the corresponding components of the real part of the SPP wave vector and
using Eqs. (3.24) and (4.3) we come to

dU = 5obj
:U

:0
, U = G, I, (4.4)

where :0 is the vacuum wavenumber. Thus, in the back focal plane we observe the momentum
distribution of propagating SPPs (see Eq. (3.25)).
In order to generate an image of F0 we can utilize the same tube lens (see F1). The position of F1, in
contrast to Σ1, directly depends on the length of infinity space and can be estimated using the thin lens
approximation:

1
30
+ 1
31
=

1
5t
, (4.5)

where 30 and 31 are the distances from F0 to the lens and from the lens to F1, respectively. The linear
magnification of an image is given by the ratio: " = −31/30, where the minus sign denotes reflection
over the optical axis.
Next we consider a simple example of Fourier-space imaging in the case of an isolated single-mode
DLSPPW lying parallel to the I-axis. Exciting one guided SPP mode propagating along the I-direction,
the laser beam simultaneously gives rise to free SPPs that can propagate in all directions. Then if a
camera is placed in F1, we would observe the image schematically sketched in Fig. 4.3 (b). Here, the
transmitted laser beam is projected into the small spot in the center, whose radius is proportional to the
numerical aperture of the first objective NA1. Free SPPs propagating in all directions are manifested
by the circle with a radius :free, while the guided mode is seen as a horizontal line :I ≡ :guided. Now
it is clear that the first objective must fulfill NA1 < :free. But what are the main criteria for the second
objective?
For real-space imaging the higher is the magnification and NA2, the better is the resolution. For
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Fourier-space imaging, in contrast, higher magnification at the same NA leads to the smaller image size
because 5obj in Eq. 4.3 is in inverse proportion to magnification 5obj ∝ 1/" . The effect of the NA for
Fourier-space imaging is ambiguous. At first sight, higher NA2 must be advantageous because it allows
to detect larger SPP momentum. However, the comparative analysis made in Ref. [131] demonstrated
that the objectives with very high NA can result in strongly aberrated Fourier images. The authors find
that high-NA plan-corrected apochromat (Plan Apo) objectives with a low magnification (NA = 1.4,
60 ×) are best suited for Fourier-space imaging. Since the typical size of our DLSPPW array is on the
order of 100 µm, such objectives provide sufficient resolution for real-space imaging as well.

4.2.2 Optical setup

A schematic of the LRM setup utilized in this thesis for optical measurements is given in Fig. 4.4. As
a light source we use a laser diode with central wavelength of 980 nm and maximum output power of
30 mW. Since the beam directly emitted from the diode has a poorly shaped profile, the laser light is
coupled into a single-mode fiber via a fiber coupler. Passing the fiber, the beam acquires a perfect
Gaussian profile that guarantees the smallest possible focal spot. At the output port of the fiber the
beam is collimated by a fiber collimator and directed to a polarizing beamsplitter (PBS). Here, the
PBS not only provides a TM-polarization needed for SPP excitation but also allows to introduce an
additional white light source that serves for sample illuminating. The laser beam as well as the white
light are focused onto the sample by the first objective (Obj.1: magnification 20× and NA1 = 0.4).
The sample can be moved relative to the laser spot by making use of a 3D translation stage to which it
is attached. Light emitted from the backside of the sample is collected by an infinity-corrected oil
immersion objective (Obj.2: Plan Apo 60×, NA2 = 1.4).
Next, the beam passes through a system of lenses {L1, L2, L3/ L4} that helps to focus the desired image
onto a scientific complementary metal–oxide–semiconductor (sCMOS) camera (Marana Andor). The
first two lenses generate the intermediate real and Fourier images. At the intermediate BFP a knife
edge is placed (between L2 and L3) in order to filter out the laser beam while keeping the leakage
radiation from guided SPPs. Note that this can be always done since NA1 < :free, i.e. at the BFP
the transmitted beam and the leakage radiation are spatially separated (see Fig. 4.3 (b)). In our setup

Figure 4.4: Sketch of the optical setup used for real- and Fourier-space imaging of excited DLSPPWs. PBS
denotes polarizing beamsplitter. The dashed contour of the lenses L3 and L4 indicates that they can move along
the rails in the direction of the yellow arrows and only one of them is involved at any one time. In case of
Fourier-space imaging it is L3, for real-space imaging it is L4.
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Figure 4.5: Part of the optical setup from Fig. 4.4 containing the system of four lenses {L1, L2, L3/ L4} with
all the distances marked. Σ0 and F0 denote the sample plane and the back focal plane of the second objective,
respectively, while Σ1 and F1 are the corresponding intermediate images. The dashed contour of the lenses L3
and L4 indicates that they are not involved both simultaneously but only one of them is used depending on the
imaging type.

L1 and L2 are thoroughly fixed, while L3 and L4 are mounted onto the carriages that can slide along
the rails whereby these lenses can be easily removed from the beam path and then placed back with
no need for alignment. These lenses are not used simultaneously: Depending on whether L3 or L4
is inserted into the light path the Fourier or real-space image can be focused onto the camera. The
camera’s position in turn does not change. Such a configuration is more preferable than having all
lenses fixed because the bulky cooling system makes a displacement of the camera difficult. The exact
arrangement of the lenses in our setup is elaborated below.

Lens system

In order to perform real- and Fourier space imaging without moving the camera the lens system has
to fulfill the following requirements: First, it must focus the BFP and the real-space plane to the
same position in space and switching between them should be fast and convenient. Second, both
images should cover most of the camera sensor but not exceed it. Note that our camera has a relatively
large 22.5 mm×22.5 mm sensor. Finally, one should keep the setup as compact as possible and use
minimum optical elements.
To meet these requirements we employ the lens system sketched in Fig. 4.5. Here, L1 is a tube lens
compatible with our imaging objective with a focal length of 51 = 200 mm. The lenses L2, L3, and L4
have the corresponding focal lengths of 52 = 53 = 75 mm, and 54 = 150 mm. The distances 301 and
312 are chosen to be equal to 51 and 52, respectively. As a result, the sample plane Σ0 and the back
focal plane F0 are projected behind L2 at a distance of 52 − 5

2
2 / 51 and 52, respectively (see Σ1 and F1).

More importantly, both intermediate images are comparably sized, and due to the relatively short 52,
Σ1 and F1 are found close to each other which allows us to magnify and project them onto the sCMOS
camera with the help of either !3 or !4. During the setup alignment, one first sets the distance 323 so
that the Fourier-space image is properly sized and, next, finds 324 to focus the real-space image at
the same position. Let us demonstrate that it is possible for a certain range of distances by a simple
calculation.
If we assume that a DLSPPW array has a length of 180 µm, the objective and the tube lens give a
magnification of 60×, and the lens L2 adds a factor of 52/ 51, we end up with the characteristic image
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Figure 4.6: (a) Distances 324 (red line) and 3cam (blue line) as a function 323 (all notations correspond to the
ones in Fig. 4.5). The dashed red line shows the real part of the complex solutions for 324. The yellow marker
shows the suitable distance range. (b) Size of the real-space image ℎΣ versus the Fourier image size ℎF when
they are projected onto the camera at 323, 324, and 3cam taken from (a). The yellow marker indicates the suitable
size range.

size of ℎΣ1
= 4.05 mm. The size of the Fourier image F1 is a product of the BFP diameter and the

magnification factor: ℎF1
= 2 5objNA2 52/ 51 = 3.5 mm.

Once the sizes of the intermediate images are found, the distances 323, 324, and 3cam can be determined
as follows: we use 323 as a variable and for each value calculate the position of the camera 3cam(323).
Then knowing that the distances 324 and 3cam(323) − 324 are linked by the thin lens formula (4.5),
we obtain a quadratic equation for 324. The solutions of this equation are plotted in Fig. 4.6 (a). For
323 / 16.8 cm we have two branches of real solutions corresponding to 324 < 2 54 and 324 > 2 54 .
Now we can compute the corresponding magnifications and hence the final image sizes that are seen
by the camera (see Fig. 4.6 (b)). As expected, for 324 > 2 54 both images get magnified. With a yellow
marker the suitable size range is shown based on the criteria that both images must be larger than half
of the sensor width but smaller than the full width. From this we finally determine the optimal values
for 323 and 324 (see yellow marker in Fig. 4.6 (a)).
The above calculations can be used as a starting point when the setup is built. In practice, these
distances are found manually by shifting the corresponding lenses. Therefore, after each realignment
of the setup, the image sizes can slightly differ and a proper calibration of the real- and Fourier space
images is needed. The calibration procedure was explained in details in Ref. [93] and will not be
discussed here.
As a final remark, let us note that another solution for the lens system in the LRM setup with a fixed
camera was presented in Ref. [132]. However, such a configuration would not provide a sufficient
image magnification for our camera.
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CHAPTER 5

Limits of topological protection under local
periodic driving

A fundamental consequence of non-zero topological invariants are midgap edge states supported
by the interface between two topologically distinct insulators. Despite localization at the boundary,
the existence of these states is determined by a property defined for a bulk Hamiltonian, i.e. for a
fully periodic system. As a result of this bulk-boundary correspondence principle, such states are
intrinsically insensitive to static deformation as long as the band gap remains open and the relevant
symmetries are preserved [103, 116]. This intriguing phenomenon has been observed in a number of
solid state [133, 134], photonic [24] and cold atom systems [135]. Whereas in the static case, the
coupling of the edge state to the bulk states is energetically forbidden, dynamic perturbations of the
system might result in hybridization of the modes and drastically change their character.
In this chapter we explore the effect of local time-periodic perturbations on a topologically protected
edge state. This problem is comprehensively studied experimentally, by means of the arrays of coupled
plasmonic waveguides, as well as theoretically, by means of Floquet theory. As a toy model we use
a paradigmatic model describing a 1D topological insulator named after Su, Schriefer and Heeger
(SSH). Periodic perturbations are applied locally to the edge, while the bulk is kept static. This
allows us to study topological protection for a special kind of Floquet systems. The fact that we do
not drive the bulk distinguishes our work from previous studies [136, 137] and guarantees that the
topological invariants stay unchanged and the bulk gap stays open. In theory we consider two different
polarizations of the perturbing field: longitudinal and transverse polarization with respect to the lattice.
Due to specific properties of our experimental platform, the plasmonic waveguide system is only
suited to realize longitudinal modulation of the edge. The transverse polarization in turn was realized
by C. Jörg under the supervision of G. von Freymann from the Technical University of Kaiserslautern
(TU Kaiserslautern) in an independent experiment with dielectric waveguide arrays. The Floquet
analysis was done in close cooperation with C. Dauer and F. Letscher under the supervision of S.
Eggert and M. Fleischhauer, respectively, from the TU Kaiserslautern.
The chapter is organised as follows: The static SSH model and its toplogical properties are introduced
in Section 5.1. In Section 5.2 we analyse the perturbed SSH model using the Floquet theory with an
eye on our experimental realizations. In Section 5.3 we describe the plasmonic implementation of
the perturbed SSH model, present the results of our optical measurements, and compare them with
theoretical predictions. This chapter closely follows Ref. [138].
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Figure 5.1: Schematic representation of the SSHmodel. Here, the thickness of the line connecting the lattice sites
reflects the strength of the bond. �1 and �2 denote the intracell and intercell hopping amplitudes, respectively.
The index j labels the unit cells that are encircled by the dotted lines. 0 is the lattice constant.

5.1 Su-Schrieffer-Heeger model

The SSH model is known as the simplest system with non-trivial topology. Therefore, it is commonly
encountered in literature as a toy model to illustrate basic topological phenomena. This model was first
introduced by Su, Schrieffer, and Heeger in order to explain conducting properties of poly-acetylene
(C2H2)= [139] and describes a 1D tight-binding chain with alternating strong and weak hopping
amplitudes (see Fig. 5.1). In contrast to the lattice model discussed in Sec. 2.1.1, where we had a
single-site unit cell, the SSH model has two sites per unit cell labeled as � and �. The TB Hamiltonian
for such a chain consisting of # unit cells reads [106]

�̂ = −�1

#∑
9=1
( | 9 , �〉〈 9 , �| + ℎ.2.) − �2

#−1∑
9=1
( | 9 + 1, �〉〈 9 , �| + ℎ.2.) , (5.1)

where �1 and �2 are the intracell and intercell hopping amplitudes, respectively. Without loss of
generality the on-site energies are set to zero. Here, | 9 , � (or �)〉 denotes the state of the system
when the electron resides on sublattice � (or �) in unit cell 9 ∈ {1, 2, ..., #}. It is important
to note that the basis states in the Hamiltonian (5.1) can be also written as the tensor product
| 9 , � (or �)〉 = | 9〉 ⊗ |� (or �)〉. This representation illustrates the fact that the full Hilbert space can
be divided into two subspacesHexternal ⊗ Hinternal, where the external Hilbert space accounts for the
unit cell index, while the internal Hilbert space is the space of the sublattice indices A and B.

5.1.1 Bulk Hamiltonian

We begin with analyzing the bulk part of the SSH model. For that we impose periodic boundary
conditions by closing the SSH chain into the ring as shown in Fig. 5.2. Mathematically it corresponds
to adding of the coupling term between the first and the last lattice sites to the Hamiltonian �̂ given by
Eq. (5.1):

�̂bulk = �̂ − �2( |1, �〉〈#, �| + |#, �〉〈1, �|). (5.2)

The resulting periodicity allows us to apply the Bloch theorem similar to how we did it in Sec. 2.1.1.
The only difference is that now we use the plane wave basis states (2.15) that belong not to the full
Hilbert space but only to the external subspaceHexternal:

| 9〉 ⊗ |� (or �)〉 = 1
√
#

∑
:

4
−8: 9 |:〉 ⊗ |� (or �)〉, : ∈ 1stBZ (5.3)
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Figure 5.2: SSH model under periodic boundary conditions, where the unit cells 1 and # are connected via the
intercell coupling �2.

Here and subsequently we set the lattice constant to 0 = 1. Substituting Eq. (5.3) into Eq. (5.2) we
come to

�̂bulk = −
∑
:

(�1 + �24
8:) |:, �〉〈:, �| + (�1 + �24

−8:) |:, �〉〈:, �|. (5.4)

Separation of the external and internal degrees of freedom in Eq. (5.4) results into

�̂bulk = −
∑
:

|:〉〈: | ⊗
{
(�1 + �24

8:) |�〉〈�| + (�1 + �24
−8:) |�〉〈�|

}
. (5.5)

The expression above can be also rewritten as

�̂bulk =
∑
:

|:〉�̂: 〈: | (5.6)

with �̂: being the Bloch Hamiltonian of the SSH model. Note that �̂: acts in the internal Hilbert
spaceHinternal and its matrix representation reads

�̂: = −
(

0 d(:)
d
∗(:) 0

)
, (5.7)

where d(:) = �1 + �24
−8: . Solving the stationary SE (2.5) for the Bloch Hamiltonian (5.7) we find the

:-dependent eigenvalues

�± = ±|d(:) | = ±
√
�

2
1 + �

2
2 + 2�1�2 cos : (5.8)

that form two energy bands of the SSH model. This dispersion relation is exemplified in Fig. 5.3 in
the first Brillouin zone for different values of the hopping amplitudes �1 and �2. The total bandwidth
of the SSH model is given by 2(�1 + �2) while the width of the gap separating the two bands equals
to 2|�1 − �2 |. Like in Sec. 2.1.1 we can assume the Fermi energy to lie in the middle of the band
structure (�F = 0). Thus if �1 ≠ �2 the Fermi energy lies inside the band gap and the system must
be an insulator (Fig. 5.3 (a) and (c)), while at �1 = �2 the band gap closes and the system becomes a
conductor (Fig. 5.3 (b)).
It is evident that swapping �1 and �2 in Eq. (5.8) does not change the dispersion relation of the SSH
model (compare Figs. 5.3 (a) and (c)). However, as we will see later, despite the same bulk spectrum,
the cases �1 > �2 and �1 < �2 correspond to different topological phases which leads to interesting
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Figure 5.3: Dispersion relation of the SSH model with periodic boundary conditions for different parameter
sets: (a) �1 = 1, �2 = 0.5; (b) �1 = 1, �2 = 1; (c) �1 = 0.5, �2 = 1. The Fermi energy is assumed to be zero.

physical consequences.

5.1.2 Topological properties

We recall that in Sec. 2.3.1 the Berry phase has been introduced as a quantity that characterizes
topological properties of Bloch Hamiltonians. The bulk of the SSH model has a 1D parameter space
due to the quasimomentum : that makes a loop when it runs through the first Brillioun zone. In 1D
case the Berry phase reduces to the Zak phase that is given by Eq. (2.48). But before we calculate it
for the SSH model, let us introduce some useful notations.
Since the Bloch Hamiltonian of the SSH model formally describes a two-level system, it can be written
with the help of the Pauli matrices f̂ = (f̂G , f̂H , f̂I)

T as follows:

�̂: = −h(:) · f̂, (5.9)

where the components of the vector h(:) are given by [108]

ℎG = Re(d(:)) = �1 + �2 cos :;
ℎH = −Im(d(:)) = �2 sin :;
ℎI = 0.

(5.10)

As : varies across the 1st BZ the endpoint of the vector h(:) traces out a circle of a radius �2 centered
at a point (�1, 0). This is illustrated in Fig. 5.4 for different values of �1 and �2. Comparing Figs. 5.4 (a)
and (c) one notices that depending on the ratio between �1 and �2 the circle either winds around the
origin (0, 0) or not. It turns out that this behaviour is directly related to the value of the Zak phase.
As we have learnt from the Sec. 2.3.1, computation of the Zak phase requires knowing the eigenvectors
of the Bloch Hamiltonian. For the SSH model we get

|D±〉 =
1
√

2

(
4
−8q (:)

±1

)
(5.11)

where the phase q(:) is defined as

d(:) = |d(:) |4−8q (:) . (5.12)
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5.1 Su-Schrieffer-Heeger model

Figure 5.4: Trajectories of h(:) as : runs through the 1st BZ in the ℎG − ℎH plane for different parameter sets:
(a) �1 = 1, �2 = 0.5; (b) �1 = 1, �2 = 1; (c) �1 = 0.5, �2 = 1.

This phase can be also understood as an angle between the vector h(:) and the positive ℎG axis as
shown in Fig. 5.4. The Berry connection of the ground state |−〉 reads

�− = 8〈D− |
d

d:
|D−〉 =

1
2

dq
d:
. (5.13)

Thus, the Zak phase is

WZ =

∮ c

−c
d:

dq
d:

=
Δq

2
, (5.14)

where Δq is the variation of the phase q(:) as : runs though the 1st BZ. From the plots in Fig. 5.4 it
immediately follows that

WZ =


0 if �1 > �2

c if �1 < �2

undefined if �1 = �2

. (5.15)

Eq. (5.15) demonstrates that the Zak phase in the SSH model is quantized, i.e. it can be either 0
or c. The fact that the value of WZ only depends on whether the trajectory traced by h(:) encloses
the origin or not, makes it insensitive to small changes in the Hamiltonian. Importantly, the state of
the chain characterized by WZ = 0 cannot be continuously deformed into the state WZ = c and vice
versa without crossing the origin, i.e., closing the band gap. Therefore, the Zak phase plays a role
of a topological invariant for the SSH model and distinguishes two topologically distinct phases or
dimerisations. The point where the Zak phase is undefined corresponds to the topological phase
transition. In the following, we will refer to the phase with WZ = 0 as "trivial" and to the phase with
WZ = c as "non-trivial" or topological. Note that in literature one can also encounter a topological
invariant of the SSH model called the winding number [106]. Being simply the Zak phase divided by
c, it takes the values 0 or 1.

5.1.3 Edge states and bulk-boundary correspondence principle

In order to see the physical consequences of different values of the Zak phase we have to look at the
SSH chain with open boundaries. Note that we cut the periodic system so that the breaking point lies
in between the unit cells and not inside a unit cell. As a result, in the trivial phase the edge sites are
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Chapter 5 Limits of topological protection under local periodic driving

Figure 5.5: The SSH chain with open boundaries in the trivial phase �1 > �2 (top) and in the topological phase
�1 < �2 (bottom).

connected to the neighboring sites via the strong bond, while in the topological phase the outermost
couplings are weak as sketched in Fig. 5.5.
The effect of open boundaries becomes most evident in the so-called fully dimerized limit. In this
limit the weak hopping amplitude (�2 in the trivial phase and �1 in the topological phase) tends to zero
which ultimately breaks the chain into disconnected dimers. The energy eigenvalues of the resulting
Hamiltonian can be found without performing any calculations. Indeed, we know that each dimer
contributes two solutions given by the superposition of the sites � and �. Thus we have

�̂ ( | 9 , �〉 ± | 9 , �〉) = �±( | 9 , �〉 ± | 9 , �〉) 9 = 1, 2, ..., # (5.16)

with �± = ±�1 and

�̂ ( | 9 , �〉 ± | 9 + 1, �〉) = �±( | 9 , �〉 ± | 9 + 1, �〉) 9 = 1, 2, ..., # − 1 (5.17)

with �± = ±�2 for the trivial and non-trivial dimerisations, respectively. As a result, the eigenvalues
no longer depend on : , the two bands become flat, and the group velocity vanishes. It is clearly an
anticipated result for the chain consisting of disconnected dimers. However, in the topological phase
in addition to the above there are two single-standing sites at each boundary that support zero-energy
eigenvalues:

�̂ |1, �〉 = �̂ |#, �〉 = 0. (5.18)

These are the edge states that naturally cannot appear in the trivial phase.
But what happens if we go away from the fully dimerized limit by allowing the finite hopping
amplitude �1 in the topological SSH chain? Solving the eigenvalue problem for the Hamiltonian (5.1)
numerically we find that with increasing �1 the previously degenerate bulk states split and start to
form the bands (see Fig. 5.6 (a)). Meanwhile, the zero-energy eigenvalues persist as long as �1 < �2.
Strictly speaking, there is a negligible deviation from zero which is caused by the finite length of the
chain but we will comment on it later. When approaching the point of the topological phase transition
(�1 = �2) the band gap shrinks while the states in the middle of the spectrum start to deflect from zero.
By increasing �1 even further we reopen the gap and turn the system into the trivial phase, where there
are no states at zero energy.
Next, we draw our attention to the corresponding wave functions. Fig. 5.6 (b) exemplifies the wave
function amplitudes at each lattice site for three different states at the point when �1 = 0.5�2. The
plots (1) and (2) show that two almost-zero-energy eigenstates have symmetric and anti-symmetric
wave functions, respectively, that decay exponentially as we move away from the edges. It is evident
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5.1 Su-Schrieffer-Heeger model

Figure 5.6: (a) Energy eigenvalues of the SSH chain consisting of # = 20 unit cells in dependence on the
hopping amplitude �1. The edge states in the non-trivial phase are highlighted by red color. In the trivial phase
these states become a part of the bands. (b) The wave function amplitude at each lattice site for the two edge
states (1), (2) and for the bulk state (3). These states are marked in (a) and correspond to the situation when
�1 = 0.5�2. Adopted from Ref. [106].

that they result from even and odd superpositions of the wave functions completely localized at each
boundary. If the two edges are infinitely far apart (thermodynamic limit), the edge states can not
overlap and the corresponding eigenvalues are exactly zero. In contrast, when these states overlap,
they hybridize and split in energy which causes the aforementioned deviation from zero. The splitting
in the vicinity of the phase transition becomes larger. It indicates that the localization length of the
edge states also increases. In fact, one can show that the the localization length is given by [106]

b
−1
= log

���� �2
�1

���� . (5.19)

As a comparison, in plot (3) we present an example of a bulk state. In contrast to the edge states, it
is totally delocalized throughout the chain. In Fig. 5.6 one can notice another important difference
between bulk and edge states of the SSH model. Whereas the bulk states have equal support on both
sublattices � and �, the edge states have vanishing amplitude on every second site. This property is
due to the presence of chiral symmetry that will be explained in the next subsection.
Now it is reasonable to ask ourselves what is the origin of these edge states and how is it related to
the value of the Zak phase? It turns out that when we cut the SSH chain we thereby connect it to the
outside world (vacuum) which is, by definition, always topologically trivial. Therefore, if the SSH
chain features a non-zero Zak phase there is a jump in the topological invariant at the interface which
implies the closing of the band gap. And the band gap closes by means of the zero-energy states.
Clearly, an edge state can occur not only at an open end of the SSH chain but also at an interface
between two chains with different topologies as realized, for instance, in [28].
Although a topological edge state is exponentially localized at the interface between two phases, we
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remember that the Zak phase was obtained using the bulk Hamiltonian. This is the manifestation of
the so-called bulk-boundary correspondence principle. Due to this principle, the topological edge
states cannot be destroyed even by strong static deformations as long as the topological property of the
bulk is unaltered. It is important to emphasize that the bulk-boundary correspondence principle and
the ensuing topological protection are in general valid only for the case of static deformations [34].
This is due to the fact that in the static case the coupling of the edge state to the bulk states is prevented
by the band gap, while dynamic perturbations can in principle induce hybridization of these states.
Hence, it is important to understand under which conditions such a hybridization becomes relevant
and when not.

5.1.4 Symmetries

The SSH model obeys chiral symmetry (see Sec. 2.3.2) because the operator

*S = %� − %�, (5.20)

where
%� =

∑
9

|�, 9〉〈�, 9 | and %� =
∑
9

|�, 9〉〈�, 9 | (5.21)

is unitary, Hermitian, and local (within each unit cell) and it satisfies:

*
†
S�̂*S = −�̂. (5.22)

We note that operators %� and %� from Eq. (5.21) act as projectors on sublattices � and �, respectively,
and that they can be alternatively expressed as

%� =
1
2
(I +*S) and %� =

1
2
(I −*S). (5.23)

Due to chiral symmetry, the spectrum of the SSH model is symmetric with respect to zero energy.
Indeed, if |Ψ 9〉 is an eigenstate of �̂ with energy � 9 , then *S |Ψ 9〉 is also an eigenstate with energy

Figure 5.7: (a) An example of a trajectory that adiabatically connects two dimerisations without crossing the
origin in the case when ℎI ≠ 0 is allowed. (b) If the constraint ℎI = 0 is imposed, the trajectory that connects
two dimerizations strictly lies on the plane (ℎG , ℎH) and has to cross the origin. Adopted from Ref. [106].
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−� 9 , i.e.

�̂ |Ψ 9〉 = � 9 |Ψ 9〉 =⇒ �̂*S |Ψ 9〉 = −*S�̂ |Ψ 9〉 = −*S� 9 |Ψ 9〉 = −� 9*S |Ψ 9〉. (5.24)

This leads to important consequences for bulk and edge states. If � 9 ≠ 0 (bulk states), then |Ψ 9〉 and
*S |Ψ 9〉 have different energies and must be orthogonal

0 = 〈Ψ 9 |*S |Ψ 9〉 = 〈Ψ 9 |%�|Ψ 9〉 − 〈Ψ 9 |%� |Ψ 9〉. (5.25)

Since %� and %� are the lattice projectors, Eq. (5.25) means that the bulk states have equal support on
both sublattices. The edge states, in contrast, can be chosen to have support only on one sublattice.
If � 9 = 0, the corresponding states |Ψ 9〉 and *( |Ψ 9〉 are degenerate and thus can be rearranged
as ( |Ψ 9〉 ±*( |Ψ 9〉)/

√
2. Taking into account Eq. (5.23), it becomes obvious that these states have

vanishing amplitude on one of the sublattices

�̂ |Ψ 9〉 = 0 =⇒ �̂ ( |Ψ 9〉 ±*( |Ψ 9〉)/
√

2 = �̂
√

2%�,� |Ψ 9〉 = 0 (5.26)

In momentum space the condition providing chiral symmetry reads

f̂I �̂: f̂I = −�̂: , (5.27)

that can only hold true if ℎI = 0 which is indeed the case for the SSH model (see Eq. (5.10)).
Importantly, if we allow ℎI ≠ 0 and break chiral symmetry, then it is possible to adiabatically connect
two different dimerisations of the SSH model without crossing the origin as exemplified in Fig. 5.7 (a).
Chiral symmetry restricts us to the surface (ℎG , ℎH) so that the gap closure can not be avoided in the
transition from one dimerisation to another (Fig. 5.7 (b)). Therefore, the quantized value of the Zak
phase is, in fact, a consequence of chiral symmetry. For this reason, the SSH model is an example of
the so-called symmetry-protected topology [140].
Note that presence of chiral symmetry automatically implies time-reversal and charge conjugation
symmetries. Since T 2 is always +1 for spinless particles and, in our case,*C can be chosen equal to
*S, hence C

2
= +1 as well. Consequently, the SSH model belongs to the BDI symmetry class of the

Altland-Zirnbauer classification scheme (see Table 2.1).

5.2 Perturbed SSH model

We are interested in what happens if an edge between two topologically distinct phases of the SSH
model is subject to an external periodic field, while the bulk stays intact. The corresponding model is
sketched in Fig. 5.8 for two different polarization states of the perturbing field that can oscillate either
parallel (a) or perpendicular (b) to the chain. Here, unlike in the previous sections, �1 and �2 denote
the strong and the weak bonds, respectively, regardless whether these bonds connect the atoms within
one unit cell or the atoms from the neighboring unit cells. As explained in Sec. 5.1.3, the topological
edge state emerges at every interface between two topologically distinct phases. By repeating the weak
bonds twice we attach the two SSH chains with different dimerisations and thereby create such an
interface. We apply local time-periodic perturbations with the frequency l associated with a single
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Chapter 5 Limits of topological protection under local periodic driving

Figure 5.8: Sketches of the SSH chains with time-periodic perturbations of a single lattice site at the interface
between two distinct dimerization. (a) The perturbing field is polarized along the chain. (b) The perturbing field
is polarized perpendicular with respect to the chain. Here, �1 (�2) denotes the large (small) hopping amplitude
in the bulk, �0,1 (C) (�−1,0 (C)) is the periodically modulated hopping amplitude between the 0th and 1st lattice
sites (0th and −1st lattice sites), l is the driving frequency.

lattice site at the interface (site 0 in Fig. 5.8). In particular, we harmonically modulate the hopping
amplitudes between the 0th site and its nearest neighbours (site 1 and -1):

�−1,0(C) = �2 + Δ� sin (lC + q1),
�0,1(C) = �2 + Δ� sin (lC + q2)

(5.28)

and the local on-site potential
+0(C) = −Δ+ + Δ+ cos(lC). (5.29)

The phase factors are q1 = 0, q2 = c for the longitudinal modulation and q1 = q2 = c/2 for the
transverse modulation, respectively. Due to the specific character of each experimental realization
we can set Δ+ = 0 for the plasmonic waveguide model, while for the dielectric waveguides Δ+ ≠ 0
holds (see Sec. 5.3 for details). Assuming # = 4" + 1 lattice sites (" dimers to either side of the
topological defect and one unpaired site in the middle), the corresponding Hamiltonian can be written
as a sum of a time-independent and time-periodic part

H(C) = H0 + HT(C), (5.30)

given by

H0 =

0∑
B=−"+1

(�1 |2B − 1〉〈2B − 2| + �2 |2B〉〈2B − 1|)

+
"−1∑
B=0
(�2 |2B + 1〉〈2B | + �1 |2B + 2〉〈2B + 1|)

+ h.c. − Δ+ |0〉〈0|

(5.31)

and
HT(C) =Δ� sin(lC + q1) | − 1〉〈0| + Δ� sin(lC + q2) |0〉〈1|

+ h.c. + Δ+ cos(lC) |0〉〈0|,
(5.32)

where B labels the lattice sites.
The Hamiltonian of the perturbed SSH model (5.30) is periodic in time, hence the Floquet theory
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applies (see Sec. 2.2). Before we come to the Floquet analysis, let us briefly comment on the
topological properties of our model. We know that topological invariants are global characteristics of
bulk Hamiltonians and, therefore, topological invariants of time-periodic systems must be obtained
using the Floquet Hamiltonian if the bulk is periodically driven. However, in our case, the bulk is
static. The topological invariant, i.e., in our case, the Zak phase, must not depend on the representation
of our system; whether we use the Floquet picture or not it stays the same as in the static SSH model.
Another important property of our model is that in the absence of the on-site potential offset (Δ+ = 0)
the local time-periodic perturbations preserve chiral symmetry. Indeed, if Δ+ = 0 the unitary,
Hermitian, and local operator

*S =

"∑
B=−"

|2B〉〈2B | −
"−1∑

B=−"−1
|2B + 1〉〈2B + 1| (5.33)

fulfills the relation*†SH0*S = −H0 for the static Hamiltonian (5.31). For the time-periodic part (5.32)
it holds

*
†
SHT(C + C0)*S = −HT(−C + C0), (5.34)

where C0 = )/4 for the longitudinal and C0 = 0 for the transverse modulation, which implies chiral
symmetry for Floquet systems (see Sec. 2.3.2). Being chirally symmetric our system possesses a
zero-energy Floquet mode which exhibits a vanishing amplitude on every second lattice site [35,
137]. Adding a harmonic time-dependent on-site potential variation (Δ+ ≠ 0) breaks chiral symmetry.
Nevertheless, as was shown in [35], it does not affect the topological robustness of the system.

5.2.1 Floquet analysis

We apply the Floquet theory that was outlined in Sec. 2.2 to the Hamiltonian (5.30). In our further
calculations, it is convenient to express H0 and HT(C) as (4" + 1) × (4" + 1) matrices

H0 =

©­­­­­­­­­­­­­­­«

. . .

�2
�2 0 �1

�1 0 �2 0
�2 −Δ+ �2
0 �2 0 �1

�1 0 �2
�2

. . .

ª®®®®®®®®®®®®®®®¬

, (5.35)

and
HT(C) = H1e−ilC + H−1eilC

, (5.36)
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Figure 5.9: (1+1)D time-independent analogue of the SSH model with local periodic perturbations at the
interface and �1 (�2) being the large (small) hopping amplitude. The Floquet index = enumerates coupled SSH
chains, each with the overall potential −=l. Red and blue arrows denote the coupling between Floquet replicas
(=) and sites (B) created by the harmonic driving of local couplings with amplitude Δ� and on-site potential
with Δ+ (compare with Eq. (5.37)).

where the Fourier components H±1 according to Eq. (2.33) are

H±1 = ∓
1
2
·

©­­­­­­­­­­­«

. . .

0
0000 0 0 iΔ�e∓iq1 0
iΔ�e∓iq1 ∓Δ+ iΔ�e∓iq2

0 iΔ�e∓iq2 00 0 00
0

. . .

ª®®®®®®®®®®®¬
. (5.37)

The boxes in (5.35) and (5.37) highlight the central parts of the matrices which are associated with the
defect (0th lattice site in Fig. 5.8). Due to the spatially local character of perturbations of our model,
all the elements outside of the box in the time-dependent part HT(C) are zero.
Now we have everything at hand to compose the time-independent Floquet equation (2.34) that in the
matrix form reads

©­­­­­­­«

. . .

H1 H0 + lI H−1
H1 H0 H−1

H1 H0 − lI H−1
. . .

ª®®®®®®®¬

©­­­­­­­«

...

|Φ=−1
9 〉
|Φ=9 〉
|Φ=+19 〉
...

ª®®®®®®®¬
= Y 9

©­­­­­­­«

...

|Φ=−1
9 〉
|Φ=9 〉
|Φ=+19 〉
...

ª®®®®®®®¬
. (5.38)

Here, the index of the operator elements runs over the lattice sites. This equation transforms our
1-dimensional time-periodic system into a (1+1)-dimensional time-independent system that is displayed
in Fig. 5.9. The resulting (1+1)D lattice consists of an infinite number of SSH chains labeled by the
Floquet index = with the overall potential shifted by −=l. Each lattice site can now be identified by
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two numbers [=, B], where B is the site index within each chain and = labels the Floquet replicas of the
system. Due to local perturbations the chains are coupled to each other only through the sites in the
vicinity of the topological defect (B = −1, 0, 1). The harmonic variation of the hoppings �−1,0(C) and
�0,1(C) thus induces the bonds between the sites [=, 0] and [= ± 1,±1], ∀= with the hopping amplitude
Δ�/2. Likewise, a harmonic on-site potential variation at the 0th lattice site with the amplitude Δ+
creates bonds between the central sites [=, 0] and [= ± 1, 0] ∀= with the hopping term Δ+/2. Hence,
we anticipate that by applying a local perturbation to the interface, we selectively populate the Floquet
replicas of the topological edge state while the bulk states should stay almost unaffected.
In order to see how local perturbation affect the topological edge state we have to solve the eigenvalue
problem which involves the infinite matrix (5.38). Numerically, it is realized by introducing a
cutoff Floquet index =cutoff such that |Φ=9 〉 = 0 for any = > =cutoff . A sufficiently large =cutoff yields
eigenvectors and eigenvalues that converge well. Note, that at constant driving amplitude the value
of a cutoff depends on the driving frequency l because the lower is l, the more Floquet replicas
must be taken into account and hence the larger is =cutoff . We restrict ourselves to the quasienergies
from the first Floquet Brillouin zone Y ∈ [−l/2, l/2). The corresponding eigenvectors contain the
Fourier components of the Floquet modes |Φ=9 〉 where each of them is associated with the energy
Y
=
9 = Y 9 + =l. The complete solution of the Schrödinger equation is given by

|Ψ(C)〉 =
∑
9

2 9

∑
=

4(−iY=9 C) |Φ=9 〉, (5.39)

where the constants 2 9 are found from the initial conditions |Ψ(0)〉 as follows

2 9 = 〈Φ 9 (0) |Ψ(0)〉, |Φ 9 (0)〉 =
∑
=

|Φ=9 〉. (5.40)

As an initial condition we solely excite the central lattice site B = 0 in accordance with our experiments
(see Sec. 5.3). Note that |Ψ(C)〉 is a time-dependent vector whose components, corresponding to
different lattice sites B, take the value of a wave function Ψ(B, C). The 2D Fourier transform Ψ̃(:, �)
yields the momentum representation of the wave function Ψ(B, C).
A useful quantity for our analysis is the spectral weight of a Floquet state at a given energy. The
temporal Fourier transform of the wave function (5.39) reads |Ψ(�)〉 = ∑

9 ,= 2 9 |Φ
=
9 〉X(� − Y

=
9 ) and

motivates to define the spectral weight at energy � = Y=9 by

F(Y=9 ) = |2 9 |
2〈Φ=9 |Φ

=
9 〉. (5.41)

The sum over all weights is normalized to one
∑
Y F(Y) ≡ 1.

In the following we present results of the numerical calculations for the model with the longitudinal
modulation of the topological defect (Fig. 5.8 (a)). In this case, the couplings to the left �−1,0(C)
and right �0,1(C) nearest neighbors of the 0th site change with a phase shift of c. We choose
�−1,0(C) = �2 + Δ� sinlC, �0,1(C) = �2 − Δ� sinlC and +0(C) ≡ 0. In all our calculations we set
�1 = 1, �2/�1 = 0.5, Δ� = 0.3�1, and 2" = 100 dimers. The corresponding quasienergy spectrum
in dependence on the driving frequency l is presented in Fig. 5.10. Here, color coding indicates
the spectral weight of each Floquet state calculated using Eq. (5.41). As we have expected, local
time-periodic perturbations split the topological edge state into the Floquet copies that are seen as
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bright diverging lines, whereas no significant change of the bulk states is observed. Importantly,
if the energy of such a Floquet replica of the edge state (=l) has the same value as that of a bulk
state (|�1 − �2 | ≤ Y ≤ |�1 + �2 |), then the edge and bulk states hybridise. As a consequence, the
edge state depopulates into the bulk due to the local time-periodic coupling. Due to relatively small
driving amplitude, the first-order Floquet replica of the topological edge state becomes predominantly
populated and thus plays the principle role in this effect. Depending on its spectral position, we
can distinguish three frequency regimes: low-frequency l < |�1 − �2 |, intermediate frequency
|�1 − �2 | ≤ l ≤ |�1 + �2 |, and high frequency l > |�1 + �2 |.
Before we discuss each frequency regime separately, as reference, we consider the static system
(Δ� = 0) which can be thought as the limit l→ 0. In Fig. 5.11 (a) we plot the corresponding temporal
evolution of the probability density |Ψ(B, C) |2 (see Eq. (5.39), where Ψ(B, C) is the projection of |Ψ(C)〉
on the lattice sites B) for the single-site input at the 0th lattice site. Here, the excited bulk modes are
spreading ballistically while the topological edge state shows itself as a fraction of the probability
density localized at the interface. The momentum distribution of the probability density |Ψ̃(:, �) |2
(see Fig. 5.11 (b)) features two cosine-shaped bands (compare with Fig. 5.3) and a horizontal line in
the middle of the band gap, a manifestation of the topological edge state.
In the low frequency regime (l < |�1 − �2 |), the first (= = ±1) replicas of the zero-energy mode
lie inside the band gap (see green arrows in Fig. 5.11 (d)). Additionally, one observes higher
replicas (= > 1) that overlap with the bulk states in the frequency interval l= ∈ [

|�1−�2 |
=

,
|�1+�2 |
=
] and

thereby induce higher-order transitions. However, for all the modulation amplitudes accessible in the
experiments the effect of higher replicas is negligible which is confirmed by the calculation of the
decay rates that will be addressed later. Fig. 5.11 (c) shows that |Ψ(B, C) |2 stays localized at the 0th

Figure 5.10: Frequency-dependent quasienergy spectrum with assigned weights in the case of the longitudinal
perturbations at the interface. In the left column the spectrum of a static system is shown which can thought as
a limit l → 0. In the calculations we assumed 2" = 100 dimers, �1 = 1, �2/�1 = 0.5, and Δ� = 0.3�1. As
initial conditions we solely excited the 0th lattice site.
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Figure 5.11: Temporal evolution of the probability density (left) and corresponding momentum-resolved spectra
(right) for: (a, b) undriven case, (c, d) low frequency (l = 0.3�1), (e, f) intermediate frequency (l = �1), (g, h)
high frequency (l = 2�1). The histograms at the right side from (a), (c), (e), and (g) show the distribution of the
probability density at C = 50�−1

1 . In the spectra, magenta arrows point to the 0th Floquet replica of the edge state,
while green arrows indicate the location of its 1st Floquet replicas. All calculations were performed for the
longitudinally modulated SSH model with 2" = 100 dimers, �1 = 1, �2/�1 = 0.5, and Δ� = 0.3�1. As initial
conditions we solely excited the 0th lattice site.

lattice site.
This picture completely changes in the intermediate frequency regime (|�1 − �2 | ≤ l ≤ |�1 + �2 |),
when the first replicas of the topological edge state enter the energy interval of the static bulk states
inducing the aforementioned hybridization of bulk and edge states. As a result, the probability density
delocalizes (Fig. 5.11 (e)) and the momentum distribution also shows the pronounced coupling, i.e.
the population of the zero-energy state drops drastically despite the non-trivial topological invariants
(see magenta arrow, Fig. 5.11 (f)), while the bulk bands gain more weight (green arrows in Fig. 5.11
(f)). No such coupling has been observed when driving the whole bulk of the system, as in [136].
There, the driving induces gaps to open when two Floquet replicas overlap, such that edge states are
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protected by the gaps from coupling to bulk states. Here, however, due to the spatially local driving no
such gaps are opened, and coupling can occur.
Finally, in the high frequency regime (l > |�1 + �2 |) the 1st Floquet replicas of the zero energy mode
lie outside of the band and no hybridization of bulk and edge states takes place. Consequently, the
probability density is again localized and the population of the topological edge state is restored
(Figs. 5.11 (g), 5.11 (h)).
We note, that in our system no anomalous edge states [114] are created for any driving frequency since
there is no periodic drive of the bulk. The periodic intensity modulation at the interface in Figs. 5.11 (c)
and (g) results from beating of the topological edge state and its Floquet replicas. The asymmetry of
the probability density distribution |Ψ(B, C) |2 with respect to the interface in Figs. 5.11 (c), (e), and (g)
results from the c phase shift of the longitudinal coupling modulation.
Analogous calculations for the transverse perturbations (couplings are modulated in phase) show
qualitatively the same behavior. This case fulfills parity, which leads to a symmetric distribution of
|Ψ(B, C) |2 around the 0th site. Adding a periodic local on-site potential variation for the 0th site violates
chiral symmetry by shifting the energy of the edge mode by the amount of Δ+ . However, this does not
have a strong influence on the overall picture if the corresponding amplitude Δ+ is smaller or in the
order of Δ�.

Decay rate of a topological edge state

An insightful quantitative analysis of the perturbed SSH model was provided by C. Dauer from the
TU Kaiserslautern. For the same model parameters he evaluated how fast the topological edge state
decays due to coupling to the bulk states. We briefly discuss his results as they are important for
completeness of the theoretical analysis.
The first finding was that the decay rates due to = > 1-order transitions are very low for the
experimentally observable time scales. For example, the maximum 2nd-order transition rate for our
driving scheme was estimated to be two orders of magnitude smaller than the rate of the 1st-order
transition. Hence, it is indeed reasonable to restrict ourselves to consideration of the 1st-order Floquet
replicas only.
The 1st-order transition rate Γ in dependence on the driving frequency l was calculated using two
different approaches. First, it was extracted by fitting the squared overlap between the zero-energy
eigenstate of the undriven SSH model |Y = 0〉 and the time-dependent solution of the perturbed
problem |Ψ(C)〉 with an exponentially decaying function:

|〈Y = 0|Ψ(C)〉〉|2 ≈ (1 − 2)4−ΓC + 2, (5.42)

where the parameter 2 was zero at the intermediate frequency interval l ∈ [|�1 − �2 |, |�1 + �2 |] (see
Fig. 5.12 (a)). Second, the decay rate ΓFGR was evaluated using Fermi’s golden rule. Both methods
showed qualitatively the same behaviour (see Fig. 5.12 (b)): The decay rate reached the maximum
of Γ ≈ 0.2�1 inside the intermediate frequency interval and dropped to zero at l = |�1 − �2 | and
l = |�1 + �2 |. Fig. 5.12 (c) proves that at small driving amplitudes Δ� the decay rates defined in these
two different ways converge.
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Figure 5.12: Results of the decay rates calculations of the topological edge state in the perturbed SSH model
obtained by C. Dauer from TU Kaiserslautern. (a) Fitting parameter 2 from Eq. (5.42) versus driving frequency
l. (b) The decay rates of the topological edge mode in dependence on driving frequency in the intermediate
frequency regime, obtained by two different methods: from Eq. (5.42) (blue line) and Fermi’s golden rule (red
line) at the driving amplitude Δ� = 0.3�1. (c) The decay rate Γ sampled at l = 1.01�1 in dependence on driving
amplitude Δ�. The dashed line marks Δ� = 0.3�1 which was used in the previous numerical calculations.

5.3 Experiments

Our theoretical predictions are verified by the experiments based on arrays of coupled DLSPPWs.
The experimental realization of the perturbed SSH model described by Eqs. (5.30), (5.31), and (5.32)
is based on the mathematical equivalence between the time-dependent TB Schrödinger equation and
equations of the coupled mode theory as justified in Sec. 3.2.4. Fig. 5.13 (a) illustrates the plasmonic
implementation of the SSH model with longitudinal time-periodic perturbations of the topological
defect. The strong and weak bonds �1 and �2 are modeled by alternating short 31 and long 32 distances
between adjacent waveguides, respectively. The central unpaired waveguide represents an interface
between two distinct dimerizations of the SSH model. Since in the waveguide model the propagation
distance I plays the role of time [4], bending the 0th waveguide sinusoidally with amplitude �, we
implement longitudinal perturbations at the interface. Different frequency regimes are realized by
varying the period ) while � is always kept constant.
Whereas localization of SPPs to a surface allows to realize only longitudinal perturbations, dielectric
waveguides fabricated with direct laser writing have an additional dimensional degree of freedom
thereby allowing for transverse bending of a waveguide. In contrast to DLSPPWs, dielectric waveguides
are designed to guide light. However, by monitoring light intensity in arrays of coupled dielectric
waveguides, one can simulate TB systems by means of the same quantum-optical analogy which
was discussed in the context of a plasmonic system. Transverse perturbations of the topological
defect in the SSH model were implemented in dielectric waveguide arrays by C. Jörg from the TU
Kaiserslautern as shown in Fig. 5.13 (b).
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Figure 5.13: Sketches of the experimental realizations of the SSH chain with time-periodic perturbations of
a single lattice site at the interface between two distinct dimerizations. (a) Longitudinal modulation of the
boundary implemented in a plasmonic waveguide array. (b) Transverse modulation of the boundary implemented
in a dielectric waveguide array. Here, 31 (32) is the short (long) center-to-center distance, � is the maximum
deflection of the 0th waveguide from the center, and ) is the period of driving. Note that in the waveguide
system the propagation distance I corresponds to time C in the Schrödinger equation.

5.3.1 Fabricated samples

The DLSPPW arrays are fabricated by negative-tone gray-scale electron beam lithography (see Sec. 4.1
for details). Fig. 5.14 (a) depicts an electron micrograph of a typical sample. In the following,
propagation and coupling constants are calculated numerically using the finite element method which
was introduced in Sec. 3.2.1. The width and the height of each waveguide are designed to be 250 nm
and 110 nm, respectively, to guarantee single-mode operation at the working light wavelength of
_ = 980 nm. This results in a propagation constant of a single DLSPPW of V = 6.65 μm−1. In all the
samples the short distance is 31 = 0.7 μm and the long distance is 32 = 1.1 μm. These separations
correspond to coupling constants �1 = 0.16 μm−1 and �2 = 0.08 μm−1, respectively. These parameters
are chosen to ensure sufficient coupling between the adjacent waveguides and to create a large enough
band gap to see topological effects. The position of the central waveguide is modulated sinusoidally
resulting in

�0,1(C) = �1 · ?14
(−?2 ·� sin(lC)) , (5.43)

where ?1 = 0.49 and ?2 = 1.75 μm−1 are fitting parameters and l is the modulation frequency. For
all the samples the maximum deflection of the central waveguide is chosen to be � = 0.3 μm, being
a good trade-off between bending losses and the strength of dynamic effects. It corresponds to the
coupling variation of Δ� ≈ 0.25�1 (for linear approximation of the exponent in Eq. (5.43)). Varying
the period ) from 8 μm up to 80 μm we realize different frequency regimes. In the static case, the 0th

waveguide is kept straight.
In Sec. 4.1 we have already mentioned the proximity effect which inevitably arises in lithographic
processes. If we fabricate all the waveguides with equal electron dose, then, due to this effect, every
first waveguide in a dimer (in the order of fabrication) acquires an additional dose from the second
waveguide, and thereby its height turns to be larger. Moreover, the central curved waveguide, due to
periodic modulation of the distance to the subsequently fabricated nearest neighbor, features periodic
height variation. It leads to unwanted on-site potential variation which breaks chiral symmetry and
thus can influence the topological properties of the system. These effects were revealed by atomic
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Figure 5.14: (a) Scanning electron micrograph of the plasmonic waveguide sample with the period ) = 10 μm.
The red dotted box highlights the grating coupler. (b) The AFM scans of two DLSPPW arrays with ) = 10 μm
fabricated with different SEM settings. Plots in the bottom show the height of the 0th waveguide taken
correspondingly from the AFM scans on top. Here, the black dots are the sampling points while the red lines are
smoothing splines. The waveguides are first fabricated with equal dose (left) demonstrating that the heights of
the waveguides from one dimer are different (compare waveguides 1 and 2) and the height of the 0th waveguide
varies periodically. Then the electron dose was adjusted so that all the waveguide heights are equal and there is
no periodic height variation of the wobbling waveguide (right). Note that the random height variation seen in
the bottom plots comes from the measurement error.

force microscopy (see Fig. 5.14 (b)). In order to keep the heights of the waveguides constant, the
proximity effect in the lithographic process was compensated by equalizing the background dose. It
was achieved by reducing the dose for every first waveguide in a dimer. In addition to that, the curved
waveguide was fabricated with slightly increased dose as the last element, i.e. after all the straight
waveguides are written. The resulting geometry was again controlled after fabrication by atomic force
microscopy to ensure that all the waveguides are of the same height.
Periodic bending of the central waveguide can cause local on-site potential variation. Using the
approach described in Ref. [141], where a curved waveguide is considered as a straight waveguide
with modified propagation constant, we can approximate the periodic modulation of the real part of
the propagation constant due to sinusoidal bending as

Ṽ(I) ≈ V − Δ+ ()) (1 − sin 4cI/)), (5.44)

with V being the propagation constant in the absence of modulation and Δ+ > 0 is an amplitude that
depends on ) . Note the factor of 4c in the argument of the sine in Eq. (5.44), it comes from the fact
that the change in propagation constant does not depend on whether the waveguide core deflects to the
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Figure 5.15: Fourier-space LRM micrographs recorded for isolated sinusoidally bent DLSPPWs at ) = 80 µm
(left) and ) = 10 µm (right). The horizontal red line indicates the position of the prime mode. No shift is
observed.

right or to the left, thus, Ṽ(I) varies with half the waveguide period. In order to estimate Δ+ for our
experiments, single-standing sinusoidally-bent waveguides at different periods ) were fabricated and
measured using Fourier-space LRM (see Sec. 4.2). Next, the spectral positions of the prime waveguide
mode at different periods were compared (see Fig. 5.15). We use the term "prime" to distinguish this
mode from the side bands that result from modulation. We expected that, due to increased radius
of curvature, the shift Δ+ ()) of the prime mode would be larger for lower ) . However, no visible
difference was observed in our experiments, the position of the prime mode at all ) was approximately
the same as for the straight waveguide that is V = 6.65 μm−1. Therefore, we can estimate the maximum
Δ+ to be smaller than the resolution of the Fourier measurements, i.e. Δ+ < 0.02 μm−1. This is
already more than four times smaller than the variation of the coupling constant Δ� = 0.086 μm−1.
These results justify that, due to strong confinement of the SPPs, we can neglect the variation of the
effective refractive index due to the curvature of the waveguide, i.e. we can set the on-site potential
+0(C) ≈ 0.

5.3.2 Optical measurements

In the resulting arrays SPPs are excited by focusing a TM-polarized laser beam onto the grating
coupler (see red dotted box in Fig. 5.14 (a)), which was fabricated on top of the 0th waveguide.
The propagation of SPPs in each array is monitored by real- and Fourier-space leakage radiation
microscopy as described in details in Sec. 4.2.
We first consider the intensity distribution of SPPs in the real-space � (G, I), that corresponds to the
probability density distribution |Ψ(B, C) |2. Fig. 5.16 presents the real-space LRM measurements for
the static case as well as for three different frequency regimes. For our experimental parameters
�2/�1 = 0.5, thus low, intermediate, and high frequency regimes are realized at the periods of
) = 80 µm, ) = 50 µm, and ) = 8 µm, respectively, corresponding to l = 0.49�1, l = 0.8�1,
and l = 4.9�1. In all plots, G = 0 indicates the position of the 0th waveguide which represents an
interface between two SSH chains with topologically distinct dimerisations, while the origin of the I
axis is placed immediately after the grating coupler. The case of the static SSH model is shown in
Fig. 5.16 (a). Similar to numerical simulations from Fig. 5.11 (a), the excitation of the topologically
protected mode results in localization of SPPs at the interface. The decaying intensity along the I-axis
is due to radiation losses and absorption. However, this does not affect the topological properties of
the system [28]. As predicted by Floquet theory, SPP localization at the interface in real space is
also observed for modulation at low (Fig. 5.16 (b)) and high (Fig. 5.16 (d)) frequencies (compare to
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Figure 5.16: Real-space leakage radiation micrographs of the DLSPPW arrays, analogous to the SSH model
with a topological defect at G = 0. The geometric parameters of all arrays are chosen such that �2/�1 = 0.5. (a)
Corresponds to the static case. In (b-d) the defect is modulated in the longitudinal direction (Δ� ≈ 0.25�1) with
different frequencies: (b) low frequency regime (l = 0.49�1 corresponding to ) = 80 μm), (c) intermediate
frequency regime (l = 0.8�1 corresponding to) = 50 μm), (d) high frequency regime (l = 4.9�1 corresponding
to ) = 8 μm). The histograms at the right side show the intensity distribution after the propagation distance of
I = 130 μm.

Figs. 5.11 (c) and (g)). In contrast, in the intermediate frequency regime (Fig. 5.16 (c)), delocalization
of SPPs into the bulk is observed (see histogram at the right side of Fig. 5.16 (c)). Hence, we see clear
experimental evidence of the depopulation of a topologically protected edge mode by local driving in
agreement with the results of our Floquet analysis (see Fig. 5.11 (e)).
Next, we come to the Fourier-space measurements which were performed for the same DLSPPW
arrays (see Fig. 5.17). As we have learnt from the quantum-optical analogy, these momentum resolved
spectra � (:G , :I) can be directly related to the Fourier-transformed probability density |Ψ̃(:, �) |2.
The static SSH model shown in Fig. 5.17 (a) features the midgap position of the topologically protected
edge mode. We note that the asymmetry of the bulk bands arises from non-vanishing next-nearest
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Figure 5.17: The Fourier-space leakage radiation micrographs of the DLSPPW arrays corresponding to the
real-space measurements from Fig. 5.16. All the parameters of the samples are the same as in Fig. 5.16. Again,
(a) is the static case, while in (b), (c), and (d) the topological defect is longitudinally modulated with low,
intermediate, and high frequency, respectively. The magenta arrows highlight the 0th Floquet replica of the edge
state, while green ones point to the location of its first Floquet replicas.

neighbor coupling [28]. In the low and high frequency regimes, the Fourier-space measurements
reveal that the 1st Floquet replicas do not overlap with the bulk bands: they either reside inside the
band gap (Fig. 5.17 (b)) or outside of the bands (Fig. 5.17 (d)), respectively. Finally, the energy of the
1st Floquet replicas coincides with the static bulk states in the intermediate frequency regime and the
edge mode becomes fainter due to coupling to the bulk states induced by time-periodic perturbations
(Fig. 5.17 (c)). These results confirm the numerically predicted behaviour in Figs 5.11 (b), (d), (f),
and (h).
Experiments with 3D-printed dielectric waveguides performed by C. Jörg from TU Kaiserslautern
showed that transverse periodic perturbations of the topological defect also led to depopulation of the
topologically-protected edge state in the intermediate frequency regime. The obtained results agreed
well with the corresponding Floquet analysis. The detailed description of these experiments can be
found in [138].

Summary

In conclusion, in this chapter we got familiar with the simplest model for a topological insulator,
the Su-Schrieffer-Heeger model. On its example we have shown that if an edge of a topologically
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non-trivial material is locally subject to an external periodic field, it can result into the depopulation
of an edge state for a certain frequency range. In the case when the perturbation respects the chiral
symmetry, the topological edge state remains in the middle of the band gap. Local driving splits this
midgap state into the Floquet copies but keeps the bulk spectrum almost unaltered. The depopulation
happens once the Floquet replicas of the edge state intersect the bulk energies. For the examined
driving scheme, where the amplitude of the driving is relatively small, this effect is predominantly
governed by the first-order replica. This phenomenon was analysed theoretically with the help of the
Floquet theory and demonstrated experimentally in arrays of plamonic waveguides for longitudinal
polarization of the perturbing field. Independent experiments based on dielectric waveguides showed
qualitatively the same behaviour for transverse polarization.
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CHAPTER 6

Observation of topological transport quantization
by dissipation in fast Thouless pumps

The focus of this chapter is the topological transport quantization in slowly varying one-dimensional
potentials known as the Thouless pumping [36]. The standard model for realizing of the Thouless
pumping is the periodically driven Rice-Mele (RM) model [41, 142]. It describes a dimerized
tight-binding chain whose system parameters change cyclically along a closed loop in the Hamiltonian
parameter space. In the adiabatic regime, for a homogeneously filled band the net particle transfer per
pumping cycle is an integer given by the Chern number, a topological invariant, and thus is robust
against topology-preserving perturbations. Periodicity in time naturally suggests to consider Thouless
pumping within the Floquet formalism. From this perspective, a nontrivial Chern number manifests
itself in the continuous winding of the quasienergy band around the two-dimensional Floquet-Bloch
Brilliouin zone.
Since its discovery, Thouless pumping has been believed to be restricted only to the limit of adiabatically
slow driving. The reason is that at finite driving frequencies, the system becomes topologically trivial
due to non-adiabatic transitions between the bands [15, 39]. In Floquet picture, these transitions
show themselves as gap opening at the avoided crossings of the quasienergy bands propagating in
the opposite directions. As a result, the winding number becomes trivial and particle transport
deviates from perfect quantization. The adiabaticity requirement is one of the major limitations for the
experimental observation of the Thouless pumping.
In this chapter, we introduce a time-periodic modulation of the dissipation as a new concept to
overcome this limitation. In particular, we show that a topological band structure and the associated
quantized transport in the driven RM model can be restored even at driving frequencies as large as the
system’s band gap. The basic idea is to suppress non-adiabatic transitions by tailored, time-periodic
losses. In order to analyse systems of this kind, we generalize the Floquet-Bloch theory using
elements of non-Hermitian quantum mechanics. Theoretical results presented in this chapter were
performed in close cooperation with H. Qiu and J. Kroha from the University of Bonn. Our theoretical
predictions are then confirmed by an experimental observation of the topological transport quantization
in DLSPPW arrays.
The chapter is organized as follows: In Section 6.1 we introduce the Rice-Mele model and on its
basis explain the mechanism of topological transport quantization upon slow periodic variation of
the system’s parameters. We thereafter consider the Thouless pumping in the Floquet picture and
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show that at finite driving frequencies it breaks down. Next, in Section 6.2 we add time-periodic
losses to the driven RM model, develop a suitable non-Hermitian Floquet-Bloch theory and designate
conditions for dissipative transport quantization. In the end of the section we present the results of our
theoretical analysis. Finally, in Section 6.3 we implement the driven RM model with periodic losses to
DLSPPW arrays and show the resulting optical measurements. The chapter closely follows Ref. [143].

6.1 Thouless pumping in the driven Rice-Mele model

6.1.1 Static Rice-Mele model

Our starting point is the static Rice-Mele model (see sketch in Fig. 6.1). It was originally developed to
study soliton excitations in linearly conjugated diatomic polymers with alternating single and double
bonds such as poly-carbonitrile (CH = N)= [144]. The Hamiltonian of the RM model with # unit
cells can be obtained from the SSH Hamiltonian (5.1), that was analysed in the previous chapter, by
adding extra onsite potential offsets D0 and D1 to the sublattices � and �, respectively

�̂ = − �1

#∑
9=1
( | 9 , �〉〈 9 , �| + ℎ.2.) − �2

#−1∑
9=1
( | 9 + 1, �〉〈 9 , �| + ℎ.2.)

− D0
#∑
9

| 9 , �〉〈 9 , �| − D1
#∑
9

| 9 , �〉〈 9 , �|.
(6.1)

We impose periodic boundary conditions analogously to how it was done for the SSH model (see
Sec. 5.1.1 for details). As a consequence, the solutions of the time-independent SE are the Bloch states

|kU,:〉 = |:〉 ⊗ |DU,:〉, U ∈ {−, +}, (6.2)

Figure 6.1: Schematic representation of the RMmodel. Here, the thickness of the line connecting the lattice sites
reflects the strength of the bond. �1 and �2 denote the intercell and intracell hopping amplitudes, respectively.
The sites � and � have an extra onsite potential shifted by +ΔD and −ΔD, respectively. The index j labels the
unit cells. 0 is the lattice constant.
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comprised of the plane wave basis states |:〉 ∈ Hexternal (see Eq. (2.15)) and the Bloch modes
|DU,:〉 ∈ Hinternal. The Bloch modes are the eigenstates of the Bloch Hamiltonian

�̂: = −
(
ℎ0 + ℎI ℎG − 8ℎH
ℎG + 8ℎH ℎ0 − ℎI

)
= −ℎGf̂G − ℎHf̂H − ℎIf̂I − ℎ0f̂0, (6.3)

where {f̂G , f̂H , f̂I} are the Pauli matrices, f̂0 is the identity matrix and

ℎG = �1 + �2 cos :;
ℎH = �2 sin :;
ℎI = (D0 + D1)/2 = D̄;
ℎ0 = (D0 − D1)/2 = ΔD;

(6.4)

Here and elsewhere, the lattice constant is set to one 0 = 1. The corresponding eigenvalues read

�±(:) = D̄ ±
√
ΔD

2 + �2
1 + �

2
2 + 2�1�2 cos :, U ∈ {1, 2}. (6.5)

Eq. (6.5) shows that, if we set the Fermi energy �F = D̄, the RM model describes an insulator whose
spectrum consists of the two bands separated by a band gap of 2

√
ΔD

2 + Δ�2, where we denoted
Δ� = �1 − �2. This gap closes and the system becomes a metal only simultaneously when ΔD = 0 and
Δ� = 0.
Since in this chapter we will inquire about the transport phenomena, it is necessary to know where a
particle is localized in the lattice. We go back from momentum space to position space by making use
of the Wannier states

|FU, 9〉 =
1
√
#

∑
:

4
−8 9: |kU,:〉, : ∈ 1stBZ (6.6)

which form an orthonormal set in Hexternal ⊗ Hinternal (see Sec. 2.1.1). At this point it is important
to note, that the Bloch states are unique only up to a phase factor, i.e. a gauge transformation
|kU,:〉 → |kU,:〉4

8j (:) , where j(:) is an arbitrary chosen real phase, gives rise to an equally good
set of Bloch states. In contrast, this phase can significantly alter the localization properties of the
Wannier states. Luckily, in 1D one we can always find a gauge such that |FU, 9〉 is localized around G 9
and decays rapidly away from G 9 [145]. In the following, we assume that such a gauge is found and
that the Bloch states in Eq. (6.6) already incorporate the proper phase factor.

6.1.2 Connection between the Wannier center and the Zak phase

Using the position operator

Ĝ =

#∑
9

9 ( | 9 , �〉〈 9 , �| + | 9 , �〉〈 9 , �|) , 9 ∈ {1, 2, ..., #} (6.7)

we define the Wannier center with respect to a unit cell as [106]

-̄
U
9 = 〈FU, 9 |Ĝ |FU, 9〉. (6.8)
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Inserting Eqs. (2.15) and (6.2) into Eq. (6.6) and taking into account Eq. (6.7) we get

Ĝ |FU, 9〉 = Ĝ
1
√
#

∑
:

4
−8 9: 1
√
#

#∑
;=1

4
8;: |;〉 ⊗ |DU,:〉

=
1
#

∑
:

4
−8 9:

#∑
;=1

;4
8;: |;〉 ⊗ |DU,:〉.

(6.9)

Since # is assumed to be large, we can replace the sum by an integral over the Brillouin zone∑
: → #

2c

∫
BZ d: and transform it using partial integration

Ĝ |FU, 9〉 =
1

2c

∫
BZ

d:
∑
;

;4
−8 ( 9−;): |;〉 ⊗ |DU,:〉

=
−8
2c

∫
BZ

d:
m

m:

∑
;

4
−8 ( 9−;): |;〉 ⊗ |DU,:〉

+ 9

2c

∫
BZ

d:
∑
;

4
−8 ( 9−;): |;〉 ⊗ |DU,:〉

+ 8

2c

∫
BZ

d:
∑
;

4
−8 ( 9−;): |;〉 ⊗ m

m:
|DU,:〉.

(6.10)

Eq. (6.10) can be simplified by noticing that the first term is a periodic function of : , hence, integration
over the 1st BZ gives zero (

−8
2c

∑
;

4
−8 ( 9−;): |;〉 ⊗ |DU,:〉

)�����c
−c

= 0, (6.11)

while the second term recovers the original Wannier function multiplied by 9

9

2c

∫
BZ

d:
∑
;

4
−8 ( 9−;): |;〉 ⊗ |DU,:〉 = 9 |FU, 9〉. (6.12)

It brings us to the central result of this subsection

-̄
U
9 = 9 +

8

2c

∫
BZ

d: 〈DU,: |
m

m:
|DU,:〉, (6.13)

where the first term simply tells us that the Wannier functions are equally spaced from each other by a
distance of one unit cell, while the second term is exactly given by the Zak phase WUZ divided by 2c
(compare to Eq. (2.48)).
Recall that in the SSH model the Zak phase served as a topological invariant and was quantized (see
Sec. 5.1.2 for details). In particular, for the filled band it took two different values, W−Z = 0 or W−Z = c,
depending on the dimerization, i.e. on whether �1/�2 > 1 or �1/�2 < 1. However, the SSH model is
just a special case of the RM model for ΔD = 0. Computation of the Zak phase for the RM model at
different values of Δ� and ΔD reveals that it is not quantized, in contrast, it can take any value from −c
to c (see Fig. 6.1).
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Figure 6.2: Zak phase W−Z of the lower band computed for the RM model in dependence on Δ� and ΔD. In the
calculations we assumed �1 = 1 + Δ�/2, �2 = 1 − Δ�/2, Δ� ∈ [−0.5, 0.5] and ΔD ∈ [−0.5, 0.5]. The black
circle exemplifies a closed loop in (Δ�,ΔD) parametrized by an angle \. The dashed green line shows the case
of the SSH model.

Eq. (6.13) allows to look at the Zak phase from a different perspective. Now, we can interpret WZ as
a relative shift of an electron from the filled band within a unit cell. That is why the Zak phase is
commonly used as a measure of the electric polarization in one-dimensional solids [119, 146]. Let us
consider the SSH model as an example. The Zak phase can be either 0 or c. In terms of the position
operator, it means that the charge center of the band is localized either on a lattice site, or in the middle
of the intercell bond and the difference between these two situations is half the lattice constant 0/2.
Hence, if we go from one dimerisation to another, there is a change in polarization of Δ% = 40/2,
where 4 is the elementary charge.

6.1.3 Symmetries

It is easy to check that the RM model satisfies time-reversal symmetry and T = +1. However, due
the extra onsite potential ΔD, it violates charge conjugation and chiral (or sublattice) symmetries, i.e.
C = 0 and S = 0. Indeed, if we add an onsite energy of −ΔD to sites � and +ΔD to sites �, we will not
end up with the same situation upon exchanging � and � sites. Going back to the periodic Table 2.1,
we find that the RM model belongs to the AI symmetry class of the Altland-Zirnbauer classification
scheme and thus cannot be topological in 1D.
However, one can "reinstall" topology by introducing adiabatic periodic variation of the parameters

Δ� → Δ� (C) = Δ� (C + ))
ΔD → ΔD(C) = ΔD(C + )).

(6.14)

We can thereby break time-reversal symmetry and create an extra dimension in the parameter space
by means of the time-dependent parameter R(C) = (Δ� (C),ΔD(C)). As a result, we jump to the A
symmetry class, which in 2D allows for a non-trivial topology. As we will see later, the relevant
topological invariant in this case is the Chern number.
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

6.1.4 Adiabatic charge pumping

Now, we have everything at hand to construct a topological quantum pump. It is clear that in order to
pump particles through the chain, one has to shift the Wannier centers, which implies changing the
Zak phase. We can now return to Fig. 6.2 and consider a closed loop in parameter space (Δ�,ΔD). If
we parametrize the parametric path by an angle \ and change it adiabatically from 0 to 2c, then after a
full cycle the Wannier centers will be shifted by

Δ-
U
=

1
2c

∮
d\
mW

U
Z

m\
. (6.15)

Without performing any calculations we can already guess from Fig. 6.2 that if such a loop encloses
the metallic point (Δ�,ΔD) = (0, 0), then the total Zak phase accumulated during the cycle is 2c, thus
the Wannier centers of the lower band get shifted by one unit cell Δ-− = 1. If not, then Δ-− = 0.
Note, that for the upper band the Zak phase has the inverse sign. Hence, if filled, it pumps a charge in
the opposite direction Δ-+ = −1.
We can rewrite Eq. (6.15) as

Δ-
U
=

8

2c

∫
BZ

d:
∫ 2c

0
d\

m

m\
〈DU,: |

m

m:
|DU,:〉

=
1

2c

∫
BZ

d:
∫ 2c

0
d\8

[
〈m\DU,: |m:DU,:〉 − 〈m:DU,: |m\DU,:〉

]
= �.

(6.16)

One immediately notices that the shift of the Wannier centers in a closed loop is an integral over the
Berry curvature and, hence, must be an integer. From Sec. 2.3.1 we have learnt that this integer is a
topological invariant called the Chern number. Indeed, the value of� is robust against deformations of
the parametric loop. As long as we do not cross the origin and thereby close the band gap, the particle
will be always pumped exactly by one unit cell after each cycle giving rise to quantized current. To
sum up, we have found that a nontrivial Chern number leads to quantized particle transfer in the bulk.
This phenomenon is known as Thouless pumping. Although Thouless pumping was theoretically
predicted long ago, the first experimental realizations were reported only recently [37, 38].
For a better understanding of the transport mechanism in the Thouless pump let us follow a full
pumping cycle step by step. The problem becomes particularly simple in the fully dimerized limit. In
this limit, the couplings �1 and �2 are periodically turned on and off such that at every instant time
point the chain falls apart into disconnected dimers. For instance, we can choose the following driving
protocol, where one driving period C ∈ [0, )) reads

�1(C) =
{

sin \ (C) if C ∈ [0, )/2)
0 if C ∈ [)/2, ))

,

�2(C) =
{

0 if C ∈ [0, )/2)
− sin \ (C) if C ∈ [)/2, ))

,

D0 (C) = cos \ (C),
D1 (C) = D0 (C − )/2)

(6.17)
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6.1 Thouless pumping in the driven Rice-Mele model

Figure 6.3: Sketch of the full pumping cycle of the driven Rice-Mele model. Here, the lattice is represented
by a continuous potential profile, where the potential minima correspond to lattice sites. The lower is the
barrier between the wells the higher is the probability to hop to the neighboring site and hence, the higher is the
coupling. In the fully dimerized limit, we assume that high barrier means zero coupling. Evolution of the wave
function probability density is schematically shown in red. The position of the Wannier center is indicated by
grey circles. It is localized at site � at C = 0 and gets shifted by one unit cell by the end of the period. At the
right side of the figure the red circles highlight the points in the parametric cycle (Δ�,ΔD).

with \ (C) = 2cC
)

. During such a period the system traces out a circle in the parameter space (Δ�,ΔD)
centered in the origin. Hence, the band gap always remains open. At C = 0 the atoms in the chain
are totally disconnected and the eigenstates are localized atomic orbitals. Assume that the particle is
situated in site � of the 9 th unit cell at the initial time point, i.e. |Ψ(0)〉 = | 9 , �〉. Within the first half
of the period acts only the intracell hopping amplitude �1, the onsite potential at site � rises while the
onsite potential at site � gets lower. Since �2 = 0, we can restrict ourselves to a two-site problem with
the Hamiltonian

�̂) /2 = −
(
cos \ (C) sin \ (C)
sin \ (C) − cos \ (C).

)
(6.18)
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

Using Eq. (2.39) we find the instantaneous eigenstates of this Hamiltonian

|� = −1〉 = cos
\ (C)

2
|�〉 − sin

\ (C)
2
|�〉,

|� = +1〉 = sin
\ (C)

2
|�〉 + cos

\ (C)
2
|�〉.

(6.19)

If at C = 0 the system was in the ground state |� = −1〉, then, according to the adiabatic theorem,
it will remain in this state over the time up to a phase factor (see Eq. (2.40)). However, this
phase factor can be eliminated if we only consider populations on sites � and � of unit cell 9 ,
i.e. P�(C) = |〈Ψ(C) | 9 , �〉|

2 and P� (C) = |〈Ψ(C) | 9 , �〉|
2. One finds that the populations evolve as

P�(C) = cos2 \ (C)
2 and P� (C) = sin2 \ (C)

2 . Thus, at C = )/2 we have P�()/2) = 0 and P� ()/2) = 1,
meaning that the particle is totally transferred to site �. In the next half of the period we repeat the
same procedure with site � from unit cell 9 and site � from unit cell 9 + 1. These ideas are sketched
pictorially in Fig. 6.3. Through this process by the end of the period the particle is shifted by one
lattice constant to the right.

6.1.5 Thouless pump in the Floquet picture

The driven Rice-Mele model is translational invariant in both space and time. Thus, it is natural
to apply the Floquet-Bloch theory introduced in Sec. 2.2.2. As a result, the eigenstates of the
time-periodic RM Hamiltonian can be written in the form of the Floquet-Bloch states |k�U,:〉 given
by Eq. (2.37) with the corresponding quasienergies nU (:) belonging to the 1st Floquet-Bloch BZ
{−l/2 ≤ n < l/2;−c ≤ : < c} with l = 2c/) . The velocity operator reads Ê = m�̂:/m: , hence
for each Floquet-Bloch state |k�U,:〉 its eigenvalue is the group velocity [147]

〈EU,:〉 =
mnU (:)
m:

. (6.20)

Multiplying it by ) we get a shift after one period Δ-U: = ) 〈EU,:〉. Integration over the BZ thus yields
the shift of a charge by a completely filled band within one period

Δ-
U
=

1
l

∫
BZ

d:
mnU (:)
m:

. (6.21)

It is intutively clear that Eqs. (6.21) and (6.16) must give us the same result. This can be actually
proved by establishing a connection between the adiabatic treatment and Floquet picture. Solving the
stationary SE for the time-dependent RM Bloch Hamiltonian �̂: (C) at every fixed time point C, one
obtains the instantaneous eigenvalues �U (:, C) and instantaneous Bloch modes |DU,: (C)〉. In Ref. [39]
it was shown that in the adiabatic limit the quasienergy of the band U equals to

nU (:) =
ZU,: + WU,:

)
, (6.22)

where ZU,: = −
∫ )

0 dC�U (:, C) and WU,: = 8
∫ )

0 dC〈DU,: (C) |mCDU,: (C)〉 are the dynamic and geometric
phases, respectively. Recall that in Sec. 2.3.1 we have already encountered these phases in the context
of adiabatic evolution of instantaneous states. Eq. (6.22) provides us the sought connection. Indeed,
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6.1 Thouless pumping in the driven Rice-Mele model

Figure 6.4: The first FBBZ which evolves into a 2D torus due to the periodicity along the n-axis (coincidence of
blue dashed-dotted lines), as well as the : axis (coinciding red dashed lines). The magenta and green lines
are the schematic counter-propagating quasienergy bands. They wind around the torus with winding numbers
a = ±1.

plugging it into Eq. (6.21), the dynamic phase vanishes and we end up with Eq. (6.16), where the
Wannier center displacement was expressed as an integral of the Berry curvature.
Eq. (6.21) brings us to an important consequence for the quasienergy spectrum of the driven RM
model. Note, that it identifies the charge pumped within one period with a winding number of the
quasienergy bands a. It is clear, that in order to have a quantized displacement of a charge, i.e.
Δ-

U
= ±1, the filled quasienergy band nU (:) has to obey

nU (c) − nU (−c) = ±l. (6.23)

This has an elegant geometric interpretation. Due to the periodicity in energy and momentum, we can
glue the corresponding edges of the FBBZ and represent it as a 2D torus. Then the quantized transport
is present if and only if the quasienergy bands wind around this torus. This is illustrated in Fig. 6.4,
where the magenta and green lines schematically show the two counter-propagating Floquet-Bloch
bands that wind around the FBBZ with winding numbers a = ±1.

6.1.6 Non-adiabatic breaking of Thouless pump

Up to now, we have always relied on the fact that the RM model is driven adiabatically. However,
in view of experimental realization of Thouless pumping in a plasmonic waveguide system, it is
impossible to achieve adiabatic conditions due to losses, inherent for plasmons. In the previous chapter
we have seen that experimentally achievable frequency range is the order of the band gap, which is
clearly very far from adiabaticity.
The question naturally arises what happens with Thouless pumping if the RM model is driven at a
finite frequency l, away from the adiabatic limit? This problem was comprehensively studied in
Refs. [15, 39, 41] and it was found out that, despite the topological nature of this effect, Thouless
pumping is not robust against non-adiabatic effects. More specifically, non-zero driving frequencies
lead to hybridization of the forward-propagating and backward-propagating states. In the Floquet
picture it manifests itself in the gap opening at the avoided crossings of the quasienergy bands as
sketched in Fig. 6.5 (a). As a result, the bands no longer wind around the FBBZ so that the Chern
number, or winding number around the FBBZ, becomes trivial. This implies deviation of particle
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

Figure 6.5: (a) Non-adiabatic breaking of Thouless pumping in the Floquet picture. The magenta and green
lines depict forward- and backward propagating bands which, in the non-adiabatic regime, hybridize resulting in
the gap � opening at the avoided crossings. Therefore, the winding number becomes trivial. (b) Non-adiabatic
breaking of Thouless pumping in the fully dimerized RMmodel. Probability density distribution is schematically
shown in red, the grey circles indicate the position of the Wannier center. At C = 0 the particle is localized at site
�. At C = )/2 the particle is partially transferred to site �, however, the population on site � remains non-zero.
At C = ) the wave function delocalizes even further shifting the Wannier center to the left in comparison to
adiabatic limit shown in Fig. 6.3.

transport from perfect quantization.
To have a simple picture in mind of how transport quantization breaks down at fast driving, we refer
to the fully dimerized limit that was introduced in Sec. 6.1.4. Consider the non-adiabatically driven
RM model with pumping protocol given by Eq. (6.17) and assume that the system is initiated at site
�. At sufficiently high l the adiabatic theorem is no longer valid, hence, the transitions between the
instantaneous states are allowed. Due to these transitions, at half period the particle is only partially
transferred to the site � with non-zero probability to stay at site �. Through this process, instead of
being shifted by one unit cell at the end of the period, the wave function smears in real space giving
rise to deviation from quantized transport predicted for adiabatic limit. This situation is illustrated in
Fig. 6.5 (b).
Summarizing the above, quantized transport in the simplified version of the RM model breaks down
when full population transfer between the neighboring lattice sites cannot be completed within a half
period. Interestingly, there exist several techniques that allow to accelerate population transfer in
two-level quantum systems compared to the adiabatic evolution. One approach is to create a "shortcut
to adiabaticity" utilizing time-dependent gain or loss [50–52]. It was shown that additional complex
time-dependent diagonal terms in the Hamiltonian representing gain or loss (depending on the sign)
of population in the two bare states can be chosen such that they totally cancel nonadiabatic coupling.
These ideas inspired the non-Hermitian modification of the RM model presented below, where
engineered time-periodic losses are aimed to suppress non-adiabatic transitions and thereby restore
topological transport quantization for the experimentally relevant driving frequencies. Although, due
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6.2 Non-Hermitian RM model

to losses, the norm of the state vector is not conserved during time evolution, the great advantage of
our model is that it can be easily implemented to arrays of DLSPPWs (see Sec. 6.3).

6.2 Non-Hermitian RM model

Consider a periodically driven RM model with additional on-site, periodic dissipation (see Fig. 6.6)

�̂NH(C) = − �1(C)
#∑
9=1
( | 9 , �〉〈 9 , �| + ℎ.2.) − �2(C)

#−1∑
9=1
( | 9 + 1, �〉〈 9 , �| + ℎ.2.)

−
#∑
9

[ (
D0 (C) + 8W0 (C)

)
| 9 , �〉〈 9 , �| +

(
D1 (C) + 8W1 (C)

)
| 9 , �〉〈 9 , �|

]
,

(6.24)

where �1/2(C), D0 (C) and D1 (C), are all real-valued, periodic functions of time given by

D0 (C) = D0 cos(lC + i), D1 (C) = D0 (C − )/2),
�1(C) = �04

−_(1−sin lC)
, �2(C) = �1(C − )/2),

with D0, �0, _ > 0, and i = 0 (unless otherwise specified). The choice of the hopping amplitudes is
motivated by the exponential dependence of the wave-function overlaps on the spacing _(1 − sinlC)
between neighboring sites, as in the coupled waveguide system. In our NH modification of the RM
model, the time-periodic decay rates W0 (C) ≥ 0 and W1 (C) ≥ 0 are nonzero once the on-site potential
exceeds the mean value D̄ = 0. This resembles, for instance, a realistic situation where particles in a
trapping potential are lost from the trap once the trapping potential is not sufficiently deep. Thus, we
choose

W0 (C) = W0Θ(D0 (C)) cos(lC + i), W1 (C) = W0 (C − )/2),

Figure 6.6: (a) Schematic of the periodically driven, NH RM lattice for four equidistant times during a pumping
cycle. Lossy sites are depicted by a red color, and the large (small) hopping amplitudes �1,2 by thick (thin) lines
connecting the sites. (b) Pumping cycle in the parameter space (�1 − �2, D0 − D1 , W0 − W1).
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

where Θ(G) is the Heaviside step function.

6.2.1 Non-Hermitian Floquet-Bloch theory

In momentum space the Hamiltonian (6.24) reads

 ̂: (C) = �̂: (C) − 8Γ̂(C), (6.25)

where �̂: (C) is given by Eq. (6.3) with all parameters being periodic in time and

Γ̂(C) =
(
W0 (C) 0

0 W1 (C)

)
. (6.26)

While the time evolution of Hermitian systems can be always described by an effective time-independent
Hamiltonian, the Floquet representation for lossy systems does not always exist and remains a matter of
intensive ongoing research [148]. However, for a specific case of Hamiltonians like (6.25), where both
terms separately are Hermitian, i.e. �̂: = �̂

†
:
and Γ̂ = Γ̂†, we can extend conventional Floquet-Bloch

theory outlined in Sec. 2.2.2 using elements of the so-called biorthogonal quantum mechanics (see e.g.
Ref. [149]). This formalism generalizes the notion of orthogonality in standard Hermitian quantum
mechanics and is perfectly suited for analysis of such complex Hamiltonians.
Due to periodicity in time, we look for the eigenstates of  ̂: in the form

|D�U,:〉 = 4
8 nU (:)C |qU,: (C)〉, (6.27)

where |q:,U (C)〉 = |q:,U (C + ))〉 are time-periodic Floquet-Bloch modes which, by construction,
satisfy the Floquet equation

K̂: (C) |qU,: (C)〉 = nU (:) |qU,: (C)〉, (6.28)

with K̂: (C) ≡ [ ̂: (C) − imC ]. Note, that we distinguish the eigenstates of the Hamiltonian in momentum-
space (6.25) and real-space (6.24) representations denoting them by |D�U,:〉 and |k

�
U,:〉, respectively.

They are linked via |k�U,:〉 = |:〉 ⊗ |D
�
U,:〉. Just like we did it previously, using the Fourier expansion

|qU,: (C)〉 =
∑
=

4
−8=lC |qU,:,=〉 (6.29)

 ̂: (C) =
∑
=

4
−8=lC

 
=
: (6.30)

we obtain the time-independent Floquet equation∑
;

(
 
(=−;)
:

− =lX=,;
)
|q (;)
U,:,<

〉 = nU,<(:) |q
(=)
U,:,<

〉, (6.31)

that can be solved numerically upon reasonable truncation in Floquet space.
The found quasienergies nU (:) taken from the first FBBZ are complex numbers, whose imaginary
parts account for decay. In the next step we want to expand the arbitrary quantum state |Ψ(C)〉, prepared
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at the initial time moment at |Ψ(0)〉, in terms of the eigenstates of the complex Floquet equation, i.e.

|Ψ(C)〉 =
∑
U,:,=

�U,:4
−8 (nU (:)+=l)C |:〉 ⊗ |qU,:,=〉 (6.32)

Commonly, the expansion coefficients �U,: are found by projecting the corresponding Floquet state
at C = 0 given by |k�U,: (0)〉 = |:〉 ⊗

∑
= |qU,:,=〉 onto the initial conditions |Ψ(0)〉. However, this

technique fails when dealing with eigenvectors of complex Hamiltonians. The reason is that such
eigenvectors are in general not orthogonal to each other [51, 149]. In our numerical calculations, we
indeed find that at nonzero decay rate W0 > 0 the Floquet-Bloch modes with different band indices
become nonorthogonal 〈qV,: (0) |qU,: (0)〉 ≠ 0 for any U, V.
This problem can be handled with the aid of the adjoint Floquet-Bloch modes |q̃U,: (C)〉 constructed
in the following way. When |qU,: (C)〉 is an eigenstate of Eq. (6.28) then there exists the so-called
biorthogonal partner |q̃U,: (C)〉 defined as

K̂†
:
|q̃(C)U,:〉 = n

∗
U (:) |q̃U,: (C)〉. (6.33)

Using Eq. (6.28) and the Hermitian adjoint of Eq. (6.33) it is easy to show that for non-degenerate
nU (:) ≠ nV (:

′) they satisfy
〈q̃U,: (0) |qV,:′ (0)〉 = 0. (6.34)

The scalar product in the generalized Floquet theory reads

〈〈0̃ |1〉〉 = 1
)

∫ )

0
dC〈〈0̃ |1〉〉, (6.35)

where |0̃〉 is the biorthogonal partner of |0〉 (c.f. Eq. (2.30)). For further calculations it is useful to
normalize the two bases

|qU,:〉 →
|qU,:〉√
〈q̃U,: |qU,:〉

|q̃U,:〉 →
|q̃U,:〉√
〈q̃U,: |qU,:〉

(6.36)

such that the Floquet-Bloch modes and their biorthogonal partners obey the biorthonormality relation

〈〈q̃U,: |qV,:′〉〉 = X:,:′XU,V . (6.37)

As a consequence, the Floquet-Bloch modes by themselves are no longer normalized, i.e.
〈qU,: (0) |qU,: (0)〉 ≠ 1. The advantage of this convention becomes evident by noting that the dynamics
of the two adjoint Floquet states, |k�U,: (C)〉 and |k̃

�
U,: (C)〉, is governed by quasienergies nU (:) and

n
∗
U (:), respectively. This means, that whenever the probability density of the dissipative Floquet state
exponentially decays in time 〈k�U,: (C) |k

�
U,: (C)〉 ∝ 4

−2Im{nU (:) }C , the density of the adjoint state grows
as 〈k̃�U,: (C) |k̃

�
U,: (C)〉 ∝ 4

2Im{nU (:) }C . Thus, the scalar product (6.35) is aimed to preserve the norm in
time which simplifies various calculations. For instance, the period-averaged expectation value of a
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generic observable �̂ in a pure dissipative Floquet state |k�U,:〉 reads

〈�〉) = 〈〈k̃
�
U,: | �̂|k

�
U,:〉〉. (6.38)

The desired expansion coefficients are ultimately found by projecting the biorthogonal partner of the
corresponding Floquet state onto the initial condition

�U,: = 〈k̃
�
U,: (0) |Ψ(0)〉. (6.39)

In our DLSPPW experiments we commonly measure real- and Fourier space intensity distributions
of propagating SPPs in properly designed arrays as described in Sec. 4.2. The time evolution of
probability density that corresponds to our real-space measurements can be calculated using Eqs. (6.32)
and (6.39), in a straightforward way as |Ψ(B, C) |2, where Ψ(B, C) is the projection of |Ψ(C)〉 onto the
lattice sites labeled by the index B. The momentum- and energy-resolved spectra that we measure in
Fourier space are calculated as intensity of the Fourier transform Ψ(:, �) using

� (�, :) = |Ψ(:, �) |2 ∝
∑
U,V,=

�
∗
:V�:U 〈q:,V,= |q:,U,=〉

(� − n∗V (:) − =l − 80) (� − nU (:) − =l + 80)
. (6.40)

Note, that, due to the non-orthogonality of the Floquet-Bloch modes, Eq. (6.40) involves the mixing
of the two bands U, V. However, as we will see later, in our model it is possible to effectively populate
only one band U by exciting the system at a single site on the initially non-lossy sublattice. In this
case, the cross terms vanish and Eq. (6.40) simplifies to

�U (�, :) ∝
∑
=

�
∗
:U�:U 〈q:,U,= |q:,U,=〉
|� − n∗U (:) − =l − 80|

2 . (6.41)

Strictly speaking, due to non-Hermiticity, the quantity above is not the "true spectral density" because
the Floquet-Blochmodes are not normalized. The spectral density which accounts for the normalization
condition necessarily involves the biorthogonal partner states and reads

(U (�, :) =
∑
=

�̃
∗
U,:�U,: 〈q̃:,U,= |q:,U,=〉
|� − n∗U (:) − =l − 80|

2 , (6.42)

where �̃U,: = 〈k
�
U,: (0) |Ψ(0)〉. An analogue of Eq. (6.42) was derived by J. Kroha from the University

of Bonn from the imaginary part of the Green’s function (see Ref. [143] for details). Nevertheless, our
calculations show that, despite a slight deviation, Eqs. (6.40) and (6.42) lead to very similar results. It
justifies that our Fourier measurements provide detailed information about the relative occupation of
the quasienergy bands.

6.2.2 Dissipative transport quantization

Here, we heavily rely on the derivations of J. Kroha from the University of Bonn. In Sec. 6.1.4 we
have seen that in the adiabatic Thouless pump the particle gets shifted by one lattice constant per
cycle given by the Berry phase accumulated in the closed loop in the Hamiltonian parameter space.
However, the concept of Berry phase intrinsically leans on the adiabatic theorem and thus fails at
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finite driving frequencies. Therefore, if we want to study a fast pumped, dissipative situation, it is
better to use the Floquet picture, where the transport quantization is associated with the quasienergy
winding around the 2D FBBZ as explained in Sec. 6.1.5.
In the non-Hermitian case, the velocity operator reads Ê = mRe{ ̂: }/m: = m�̂:/m: , hence, the
displacement of the particle during one pumping cycle carried by a dissipative Floquet-Bloch state
|k�U,:〉 = |:〉 ⊗ |D

�
U,:〉 is

Δ-
U
: = 〈〈D̃

�
U,: |Ê |D

�
U,:〉〉) =

dRe{nU (:)}
d:

). (6.43)

Note that, in contrast to Eq. (15) from Ref. [143], in the expression above we have used the NH
definition of the expectation value (6.38). This prevents the emergence of the exponential decay factor
4
−2Im{nU (:) }) . The shift per cycle carried by a homogeneously filled band U is obtained by integration
over all :-states

Δ-
U
=

∫ c

−c

d:
2c

dRe{nU (:)}
d:

) = aU, (6.44)

where aU is the winding number of the real part of the quasienergies. To sum up, we have found that
the winding of the real part of the quasienergy bands indicates the transport quantization in our lossy
RM model.

6.2.3 Results of NH Floquet analysis

We apply the non-Hermitian Floquet formalism to the dissipative RM model (6.24) driven at the
frequencies relevant for the DLSPPW-based experiments. In our numerical calculations we set
D0 = �0 = 1, _ = 1.75 and all energies are given in units of �0. In what follows we consider the
time-evolution of the states |Ψ�(C)〉 and |Ψ� (C)〉 that have been initiated at C = 0 with non-zero
amplitude at a single site on sublattices � and �, respectively. This corresponds to the typical situation
in our experiments, when we excite SPPs in a single waveguide in the array (see Sec. 6.3).
To begin with, we analyze the Hermitian case (W0 = 0, l = 1.1�0) shown in Fig. 6.7 (a). Evidently,
the counterpropagating bands hybridize, accompanied by avoided crossings and gaps with a width �
opening at the FBBZ boundaries, such that the bands become topologically trivial. As a result, the
charge pumped per period deviates from the quantized value. This indicates the generic breakdown
of quantized Thouless pumping at any finite pumping frequncy l (see Sec. 6.1.6). Note, that in the
absence of losses the spectral density |Ψ� (:, �) |

2 is just a reflection of |Ψ�(:, �) |
2 about � = 0, i.e.

|Ψ� (:, �) |
2
= |Ψ�(:,−�) |

2.
Now we add time-periodic losses with the amplitude of W = 0.4�0 (see Figs. 6.7 (b-d)). As a result,
for the parametric cycle configuration shown in Fig. 6.6 (b) at the initial time moment, the decay
rate on sublattice � is zero, while on sublattice � is W0. Our calculations reveal several profound
effects of non-Hermiticty. First, the quasienergies become complex, whereby the right-moving and
left-moving bands acquire considerably different dampings shown in Fig. 6.7 (d) and seen as different
broadenings of the spectral band occupations in Fig. 6.7 (b) and (c). Second, the two inputs are no
longer equivalent in respect to the relative populations of the two bands. In particular, for the input
� we almost exclusively excite right-moving states, while for the input � in addition to the lossy
left-moving states, we partially populate right moving-states. Remarkably, in the case of input � the
right-moving band is populated almost homogeneously. Thus, it is a way to create the topologically
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

Figure 6.7: (a-c) Band structures of the RM model driven at non-adiabatic frequency l = 1.1�0. Thin lines
highlight the Floquet quasienergy bands (real parts), color code shows normalized spectral density calculated
using Eq. (6.40). (a) Input � in Hermitian case (W0 = 0). The band gaps at � = ±l/2 indicate a topologically
trivial band structure, i.e., the breakdown of transport quantization. (b) Same as in (a) but for the NH RM model
with W0 = 0.4�0 when the system is excited at a single site of the initially nonlossy sublattice �. Almost no
mixing of Floquet modes occurs. The gap at the FBBZ boundary closes, restoring transport quantization. Right-
and left- moving bands are distinguished by magenta and green color, respectively. (c) Same as in (b), but for a
state injected at a site of the initially lossy sublattice �. Left-moving bands are predominantly populated with
a broad distribution, indicating high losses. (d) Imaginary part of the quasienergy bands presented in (b, c),
showing low dissipation in the right-moving band. (e) The size of the band gap � in dependence on the driving
frequency at different loss amplitudes W0. The black dashed line shows l = 1.1�0.

important complete band filling, which would otherwise be possible only in fermionic systems at
low temperature. Finally, and most importantly, the gap � closes and, hence, the bands wind around
the entire 2D FBBZ. Quasienergy winding together with complete band filling restores transport
quantization according to Eq. (6.44).
Furthermore, we find, that the gaps close once W0 is larger than some threshold value. In order to study
this threshold behaviour we numerically evaluated the gap size � at various driving frequencies and
loss amplitudes (see Fig. 6.7 (e)). In the Hermitian case (W0 = 0) the gap size has a complex oscillatory
behaviour as a function of the driving frequency as also noted by [150]. Our analysis shows that a
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Figure 6.8: The center-of-mass position in the NH RM model of the injected wavepacket after up to 5 full
pumping cycles (l = 1.1�0) at different loss amplitudes W0 for a single-site input on (a) sublattice � and (b)
sublattice �. The black dashed line show the adiabatic limit in the Hermitian case W0 = 0.

larger gap size requires stronger damping in order to close it. For instance, at the previously analyzed
driving frequency l0 = 1.1�0 the loss amplitude W0 should be larger than 0.3�0 to close the gap.
Next, we investigate the transport properties of the NH RM model in real space characterized by the
position of the center of mass (CoM) of the wave-packet

〈G(C)〉 = 〈Ψ(C) |Ĝ |Ψ(C)〉〈Ψ(C) |Ψ(C)〉 . (6.45)

We choose this quantity because it can be also extracted from the measured real-space SPP distributions
and thus enables the direct comparison between numerical and experimental results. In Fig. 6.8 (a,b)
we plot CoM after up to 5 completed driving cycles at various losses and a fixed driving frequency
l = 1.1�0 for different initial conditions, input � or �. In the adiabatic case the mean displacement is
almost +1 (−1) unit cell per cycle for delta-like excitations on sublattice � (�). Small deviations from
unity result from slight inhomogeneity of the band population. At the driving frequency l = 1.1�0 the
displacement per cycle is considerably smaller in the Hermitian case (W = 0) indicating deviation from
the quantized transport. With increasing the losses this deviation becomes smaller and smaller for
input � and for W ≥ 0.3 the displacement cannot be distinguished from the adiabatic case. Surprisingly,
for the input � we observe that the CoM position switches direction with time. This is a signature of
the chirality of the Floquet bands and is due to the fact that the propagation of even poorly populated
low-loss states in positive G-direction starts to dominate after the first few periods, while the states
propagating in negative G-direction are quickly damped due to the phase relation of the periodic losses
with respect to the hopping amplitude.

6.3 Experiments

In order to test our theoretical predictions we perform experiments based on DLSPPWs. The
experimental realization of the model described by Eq. (6.24), is based on the mathematical equivalence
between the time-dependent Schrödinger equation in the tight-binding approximation and the paraxial
Helmholtz equation which describes propagation of light in coupled waveguide arrays. Fig. 6.9 shows
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

Figure 6.9: Sketch of the plasmonic implementation of the NH RM model.

a scheme of a DLSPPW array. The waveguide array represents a dimerized 1D lattice, where each
unit cell contains two waveguides, � and �. Here, the propagation direction I plays the role of time.
Periodic modulation of the effective hopping amplitudes is reached by sinusoidally varying the spacing
between the adjacent waveguides d1,2(I) while the on-site potential variation is realized by changing
the waveguides’ cross-sections (heights h0,1 (I) and widths w0,1 (I)). In addition, the variation of the
waveguides’ cross-section affects the instantaneous losses W0,1 (I). When the cross-section decreases,
the confinement of the guided mode weakens. As a result, the modes can couple to free-propagating
surface plasmon polaritons (SPPs) and scatter out from the array. We employ this effect to introduce
time-dependent losses W0,1 (I).

6.3.1 Fabricated samples

The DLSPPW arrays are fabricated by negative-tone gray-scale electron beam lithography as described
in Sec. 4.1. A scanning electron micrograph and an AFM scan of a typical sample are shown in
Fig. 6.10. The waveguides consist of PMMA ridges deposited on top of a 60 nm thick gold film
evaporated on a glass substrate. The modulated part of the array is preceded by a short straight
interval of the length 7.5 µm. This region contains the grating couplers (red boxes) which are used for
SPP excitation. The grating is deposited only onto the two waveguides (inputs � and �), while the
extension of others to this region is needed to prevent fire-end excitation of the adjacent waveguides.
In order to ensure equal excitation conditions all the waveguides start with the same height which
then smoothly approaches the initial conditions at I = 0 (blue dotted line). The mean center-to-center
distance between the ridges is 1.7 µm and the maximum deflection from the center is 0.5 µm. The
resulting variation of coupling constants is

�1(I) = �0e−_(1−sinΩI)

�2(I) = �1(I − )/2)
(6.46)

with �0 = 0.144 μm−1 and _ = 1.75. The cross-section of each waveguide is controlled by the applied
electron dose during the lithographic process. By varying the electron dose sinusoidally along the
I-axis we modulate the waveguides’ cross-sections. The resulting geometry is measured by AFM
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Figure 6.10: Scanning electron micrograph of a typical sample with �0 = 0.144 μm−1, l = 1.45�0, D0 = 1.1 �0,
W0 = 0.8 �0. The red boxes highlight the grating couplers deposited onto the input waveguide � and �. Blue
dashed line corresponds to I = 0 and separates the excitation region from the modulated part of the array. The
AFM scan at the top right corner shows the waveguide height variation.

and the corresponding real parts of the propagation constants are calculated numerically using the
finite element method (see Sec. 3.2.1). For the waveguides from sublattices � and � the real parts of
propagation constants are modulated according to

V
′
0 (I) ≈ V̄

′ + D0 cos (ΩI + i),
V
′
1 (I) = V

′
0 (I − )/2),

(6.47)

where V̄′ = 6.62 μm−1 corresponds to the mean height ℎ = 95 nm and the mean width F = 250 nm of
a waveguide. The amplitude of modulation D0 is determined by the maximum electron dose variation
in EBL and can be adjusted within the accessible range limited by the thickness of the PMMA layer.

Implementation of periodic losses

In addition to the real part of the propagation constant, variation of the waveguide’s cross-section
modulates the instantaneous losses W0,1 (I). The finite element method predicts: With decreasing
cross-section of a DLSPPW the losses steadily decrease approaching the limit of free-propagating
SPPs for a vanishing waveguide core (see Fig. 3.7). But in the experiment we observe the inverse
situation, namely, when the waveguide’s cross-section gets smaller than the mean value (ℎ = 95 nm,
F = 250 nm), the losses rapidly increase. It is shown in Fig. 6.11, where we compare the SPP
propagation in single-standing straight waveguides printed with different electron doses that cover
the range used for fabrication of the sample in Fig. 6.10. At a first glance it seems to contradict with
the FEM calculations. However, this contradiction can be easily resolved by looking carefully at this
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Chapter 6 Observation of topological transport quantization by dissipation in fast Thouless pumps

Figure 6.11: Real-space intensity distributions of SPPs propagating in single-standing straight DLSPPWs
of different cross-sections. These DLSPPWs are printed with electron doses that cover the range used for
fabrication of the sample in Fig. 6.10. The resulting waveguide heights ℎ are shown on top. White dashed line
indicates where the excitation region ends. The data demonstrates strong losses in the waveguides of heights
below average.

problem. When the waveguide core gets smaller, the confinement of the guided mode weakens and its
propagation constant tends to the value of free propagating SPPs. As a result, the guided mode couples
to a continuum of free propagating SPPs and scatters out from a DLSPPW. The FEM calculations in
turn only determine how much of the optical power is absorbed by metal. With decreasing waveguide
cross-section, the optical power is obviously not absorbed more intensively, but, nevertheless, it is
effectively lost from the waveguide system.
Experimental data shown in Fig. 6.11 confirms that coupling to free-propagating SPPs is the dominant
source of I-dependent losses in our plasmonic implementation of the driven NH RMmodel. Therefore,
we approximate the periodic decay function by

W0 (I) ≈ W̄ + W0Θ(D0 (I)) cos(ΩI + i),
W1 (I) = W0 (I − )/2),

(6.48)

where W0 denotes the maximum decay rate induced by coupling to free SPPs, while W̄ = 0.015 μm−1

accounts for other losses that are assumed to be independent of I. Note, that in our experimental
model the parameters D0 and W0 are always linked to each other, we cannot change the amplitude of
the "potential" D0 without changing the amplitude of losses W0.
.
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Figure 6.12: (a) Real-space SPP intensity distribution for D0 = 1.1�0, W0 = 0.8�0, and i = 0. Plot on the right
shows the projection of the corresponding pumping cycle onto the plane (�1 − �2, D0 − D1). (b) Fourier-space
SPP intensity distribution corresponding to (a). (c) Real-space SPP intensity distribution for D0 = 1.1�0,
W0 = 0.8�0, and i = π/2. Plot on the right again shows the corresponding cycle in parameter space. (d)
Fourier-space SPP intensity distribution corresponding to (c).

6.3.2 Optical measurements

In our optical experiments SPPs are excited by focusing a TM-polarized laser beam onto the grating
coupler deposited on top of the input waveguide (either sublattice � or �). The propagation of SPPs in
an array is monitored by real- and Fourier-space leakage radiation microscopy as described in Sec. 4.2.
We first consider a pumping cycle that encloses the critical point. For this purpose we choose the
geometrical parameters of the DLSPPW array such that D0 = 1.1�0 and l = 1.45�0. By comparing
the real-space intensity distribution to numerical calculations we estimate the loss amplitude to be
W0 = 0.8�0. The real-space SPP intensity distribution � (G, I) recorded by leakage radiation microscopy
for single site excitation at site � is shown in Fig. 6.12 (a). According to the aforementioned quantum
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Figure 6.13: (a) Real-space SPP intensity distributions for different driving frequencies and single-site
excitation at waveguide �. The left and right column correspond to arrays with cross-section modulation
(D0 = 1.1�0, W0 = 0.8) and without cross-section modulation (D0 = 0, W0 = 0), respectively. (b) The CoM
position of the SPP intensity in dependence on propagation distance I calculated from the experimental results
shown in (a). Note that the I-axis here is normalized to the period ) . Red markers correspond to arrays with
cross-section modulation and blue markers correspond to no modulation. The black dashed line shows the
anticipated adiabatic behavior.

optical analogy this corresponds to the probability density � (G, C) = |Ψ(G, C) |2. We observe for all I
a strongly localized wave packet, whose CoM is transported in positive G-direction in a quantized
manner, i.e., by one unit cell per driving period (see dotted lines), even though the driving frequency
l is larger than the modulation amplitudes of all relevant parameters.
The corresponding momentum resolved spectrum � (:G , :I) is obtained by Fourier-space leakage
radiation microscopy and is shown in Fig. 6.12 (b). This intensity distribution is analogous to
the spectral energy density presented in Fig. 6.7. We note that this technique provides the full
decomposition in momentum components in the higher Brillouin zones. The main feature of the
spectrum is a continuous band with average slope 0/) . The absence of gaps in the band indicates that
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Figure 6.14: Fourier-space SPP intensity distributions for different driving frequencies and single-site excitation
at waveguide � corresponding to the real-space measurements in Fig. 6.13 (a). The images on the left-hand
side correspond to the case with cross-section modulation (D0 = 1.1�0, W0 = 0.8). As the frequency increases
the Floquet bands get closer (see green arrows) and flatter, nevertheless, they remain continuous which is a
hallmark of quantized displacement in real space. On the right-hand side the data for constant cross-section
modulation is displayed (D0 = 0, W0 = 0). Here, changing the frequency has an additional effect on the band
structure: the gaps at the FBZ boarder start to open (see green circles). Such a behavior of the quasienergies
results in the decreasing CoM shift as confirmed by Fig. 6.13 (b). The scale at the bottom right corner in every
micrograph shows the size of two FBZs.

the band winds around the 2D FBBZ {−l/2 ≤ :I < l/2;−c/0 ≤ :G < c/0}. This is a hallmark of
a quantized pumping and confirms our theoretical predictions (see Fig. 6.7 (b)).
As a reference measurement, we consider the parametric cycle, where all parameters are changing
with the same amplitudes as in the previous case but the phase is chosen as i = π/2. Under these
conditions the Hamiltonian is symmetric under space and time inversion. In Fig. 6.12 (c) we present
the real-space SPP intensity distribution for this parametric cycle. In contrast to the previous case the
wave packet is spreading and we do not observe CoM transport in G-direction. The corresponding
momentum resolved spectrum shows a complicated band structure with multiple band gaps (see
Fig. 6.12 (d)). Obviously, none of the bands winds around the 2D FBBZ.
We note, that directional transport of light in periodically curved waveguides can be in principle also
achieved by using a simple combination of directional couplers with constant effective mode index,
i.e., constant waveguide cross-section [63, 151]. However, due to periodic exchange of power between
two coupled waveguides this effect has a resonant character and the period of modulation plays in
this case a crucial role. In order to demonstrate that the directional transport in our system has a
different origin, we repeat the experiment shown in Fig. 6.12 (a) for three different driving frequencies
l (0.7�0, 1.1�0, 1.45�0). Moreover we prepare two sets of samples, one with modulation of the
waveguide cross-section as before (D0 = 1.1�0, W0 = 0.8�0) and the second with constant cross-section
(D0 = 0, W0 = 0). The measured real space intensity distributions are depicted in Fig. 6.13 (a). We
extract from this data the CoM position after up to 4 complete periods as displayed in Fig. 6.13 (b). In
the case with cross-section modulation (red markers) the CoM is shifted by one unit cell per period )
at all chosen driving frequencies. We note that the somewhat lower than unit slope of the CoM plots
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Figure 6.15: (a) Real-space SPP intensity distributions for the arrays with different strengths of the cross-section
modulation (D0 = 0.3�0, W0 = 0.1�0), (D0 = 1.1�0, W0 = 0.8�0), and (D0 = 1.5�0, W0 = 1.1�0). Measurements on
the left-hand side show the SPP propagation after excitation at sublattice � (low-loss input). Measurements
on the right-hand side show the SPP propagation after excitation at sublattice � (high-loss input) (b) The
CoM position of the SPP intensity in dependence on propagation distance I calculated from the experimental
results shown in (a). Note that the I-axis here is normalized to the period ) . The black dashed line shows the
anticipated adiabatic behavior.

in Fig. 6.13 (b) during the first pumping cycle is an artifact which arises from non-ideal excitation
conditions, such as weak excitation of the neighboring waveguides. The deviations at large distance
are statistical and result from increasing measurement errors due to camera noise and decaying signal
intensity. In Fourier space changing the modulation frequency influences primarily the width of the
Floquet BZ: the lower is the frequency, the smaller is the distance between the neighboring bands and
the smaller is the tilt of these bands which reflects the wavepacket group velocity in absolute values
(see Fig. 6.14).
Without cross-section modulation (blue markers in Fig. 6.13 (b)) the CoM displacement per period at
these frequencies is much smaller than in the quantized case and depends on the driving frequency.
These measurements confirm that the observed directional transport in our system is not a resonant
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directional coupler effect.
Up to now we only considered experiments with excitation at sub-lattice � (low loss input). The
numerical calculations predict that the transport in the opposite direction for single site excitation at
sub-lattice � is strongly suppressed by the time-periodic losses. To test this, we perform additional
experiments to study how the transport properties depend on the initial conditions for different
strengths of cross-section modulation. In doing so we tune the amplitude of the on-site potential D0
and simultaneously the loss amplitude W0. Fig. 6.15 (a) shows the real space intensity distributions for
the excitation at the waveguides � (left column) and � (right column) for three different cross-section
modulations and the driving frequency l = 1.45�0. The CoM displacement derived from this data is
depicted in Fig. 6.15 (b) (waveguide �: circles, waveguide �: triangles). In case of small modulation
strength (D0 = 0.3�0, W0 = 0.1�0, red markers) SPPs excited at site � and � are transported in +G and
-G directions, respectively. However, for both inputs the mean displacement of the CoM is less than 1
unit cell per period. For the modulation strength (D0 = 1.1�0, W0 = 0.8�0, blue markers) input � shows
quantized displacement of the CoM while the sign of the mean displacement for input � switches
from + to -. This effect becomes even stronger at higher modulation strength D0 = 1.5�0, W0 = 1.1�0
(green) – as predicted by theory (compare with Figs. 6.8 (a-b)). In Fourier space (see Fig. 6.16) the
increasing modulation strength has two main effects: first, the bands get broadened due to higher
losses, second, the difference between inputs � and � gets more and more pronounced. In case of the
input � the broadening effect is much stronger because of the populated high-loss band.

Figure 6.16: Fourier-space SPP intensity distributions for the arrays with different strengths of the cross-section
modulation (D0 = 0.3�0, W0 = 0.1�0), (D0 = 1.1�0, W0 = 0.8�0), and (D0 = 1.5�0, W0 = 1.1�0) corresponding to
real-space measurements in Fig. 6.15 (a). Measurements on the left-hand side show the SPP propagation after
excitation at sublattice � (low-loss input). Measurements on the right-hand side show the SPP propagation
after excitation at sublattice � (high-loss input). Increasing the modulation strength results in a strong band
broadening caused by a growing damping rate. This effect is more pronounced for the input �.
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Summary

In conclusion, in this chapter we have considered the Thouless pumping, i.e. the quantization of
particle transport that emerges in the slowly driven Rice-Mele model as a result of the non-trivial Chern
number. We have learnt that at non-adiabatic driving frequencies the system becomes topologically
trivial due to hybridization of the counter-propagating Floquet-Bloch bands. As a result, the particle
transport deviates from perfect quantization, which poses a problem for the experimental observation
of the Thouless pumping. To overcome this limitation we have introduced the non-Hermitain Floquet
engineering. In particular, with the help of the non-Hermitian Floquet-Bloch theory we have shown that
properly chosen periodic modulation of dissipation enables to restore the non-trivial Floquet-Bloch
band structure and the associated quantized displacement of the Wannier center for the driving
frequencies as large as the system’s band gap. Our theoretical predictions have been confirmed by
the experiments with plasmonic waveguide arrays, where the periodic losses were implemented by
enhancing coupling to free-propagating SPPs with a decreasing waveguide cross-section.
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CHAPTER 7

Dissipation engineered directional filter for
quantum ratchets

Broadly speaking, ratchets are systems where a periodic drive together with the broken space-time
symmetry give rise to a directed motion in the absence of a bias force [53]. Ratchets are found in
classical [56, 57, 63] as well as in quantum systems [64, 65]. By operation mechanism ratchets are
divided into those, that are based on dissipative forces and thermal motion, and lossless or Hamiltonian
ratchets where directed transport arises from a coherence effect. One such example is Thouless
pumping, where quantized particle displacement per period is given by the Berry phase accumulated
during the closed loop in Hamiltonian parameter space. Since the driven Hamiltonian explicitly
breaks space and time inversion symmetries, as long as we have a complete band filling any initial
condition can carry a current. However, as we saw in the previous chapter, such a ratchet is not
robust to non-adiabatic effects unless losses are introduced globally. This inevitably hampers practical
applications since adiabatic conditions cannot be reached in most experimental situations and it
is often desirable to minimize losses. In non-adiabatic Hamiltonian quantum ratchets, in contrast,
transport efficacy sensitively depends on the initial state [64–67]. Due to periodicity in time, they
can be described in terms of the Floquet-Bloch states with the well-defined group velocity. Since the
system’s Hamiltonian supports current in both directions, only the overlap with the initial conditions
determines the contribution of different Floquet-Bloch states to the resulting current. Therefore,
preparation of the initial state is crucial for optimal transport efficiency, which is often a challenging
problem when dealing with real quantum systems.
From the previous chapter we have learnt, that properly designed time-periodic losses cause non-
reciprocity of the wavepacket transport, i.e. favor the forward current but suppress the backward
current. In this chapter we further develop this idea by constructing a direction-dependent filter
for a non-adiabatic Hamiltonian quantum ratchet based on local impurity with engineered dynamic
dissipation. Such a filter is aimed to relax strict initial-state requirements via suppressing the Floquet-
Bloch states moving in the unwanted direction. Notably, being local it does not cause additional losses
in the bulk.
As a simple ratchet model, we consider the driven SSH model that supports quantized transport for
certain non-adiabatic driving frequencies once the space-time symmetry is broken by initial conditions.
This model is introduced in Section 7.1. Its transport properties are analysed in the framework of the
Floquet-Bloch theory in close cooperation with C. Dauer from the TU Kaiserslautern and A. Sidorenko
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from the University of Bonn. In Section 7.2 we introduce time-dependent losses localized at a finite
number of lattice sites. Motivated by the conditions of our experimental system, we implement these
losses by the imaginary part of the potential. Our original premise is to use different spatio-temporal
distributions of the moving Floquet-Bloch states to selectively absorb the states moving in one direction
but transmit those that propagate in the opposite direction. Our ideas were proved by C. Dauer from the
TU Kaiserslautern, who under the supervision of S. Eggert developed a numerical method based on the
Floquet S-matrix theory and by its means computed the direction-dependent transmission coefficients
for a broad range of the system parameters. His results are presented in this section because they
clearly quantify the filter performance and allow to optimize the driving scheme. Furthermore, in
Section 7.3 we provide the experimental observation of transport rectification in arrays of DLSPPWs
with controlled losses. While in the previous chapter controlling losses was inseparable from changing
the real part of the potential, here, we implement losses explicitly by locally depositing an absorber
under the chosen DLSPPWs. In order to minimize the overall losses in the system we substitute gold
by silver for sample fabrication. This chapter closely follows Ref. [152].

7.1 Ratchet model

Whereas in Sec. 5.1 we have analysed the properties of the static SSH model, here, we consider this
model with parameters periodic in time. In the absence of losses the corresponding Hamiltonian for
the chain of # = 2" + 1 unit cells reads

�̂SSH(C) = −�1(C)
"∑

9=−"
( | 9 , �〉〈 9 , �| + ℎ.2.) − �2(C)

"−1∑
9=−"

( | 9 + 1, �〉〈 9 , �| + ℎ.2.) , (7.1)

where �1(C) = �1(C+)) and �2(C) = �2(C+)) are the)-periodic intra- and intercell hopping amplitudes.
In our model these parameters are modulated such that �1(C) > �2(C) holds for the first half of the
period while the situation is inverted in the second half (see Fig. 7.1). As will be shown later, at
certain driving frequencies this model supports almost dispersionless Floquet-Bloch states that can be
selectively populated upon single-site excitation giving rise to unidirectional current.

Figure 7.1: Sketch of the dimerized tight-binding Floquet chain with time-periodically modulated hopping
amplitudes �1 (C) and �2 (C). The chain has two sublattices � and �, unit cells are labeled by 9 . In the first half
of the period �1 > �2 (top) and in the second half �1 < �2 (bottom).
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In order to reveal how the ratchet effect comes about in our model we again refer to the fully dimerized
limit (see Sec. 5.1.3 and Sec. 6.1.4). In this limit it is assumed that the hopping amplitudes are
modulated according to

�1(C) =
{
� if C ∈ [0, )/2)
0 if C ∈ [)/2, ))

,

�2(C) =
{

0 if C ∈ [0, )/2)
� if C ∈ [)/2, ))

.

(7.2)

Next, we initiate the system at a single site on sublattice � of the unit cell 9 , i.e. |Ψ�(0)〉 = | 9 , �〉,
and restrict ourselves to the first half of the period. Solution of the time-dependent SE yields that the
time-evolution of the state |Ψ�(C)〉 is governed by Rabi oscillations between the two lattice sites �
and � from unit cell 9 with Rabi frequency ΩR = �

|Ψ�(C)〉 = cos (�C) | 9 , �〉 − 8 sin (�C) | 9 , �〉 for C ∈ [0, )/2). (7.3)

Thus, if the period of driving is chosen such such that the condition �)= = c + 2c= for = = 0, 1, 2, ...
is satisfied, then at the half period the system ends up with full population transfer between the two
neighboring sites. In the terms of driving frequencies this condition reads

l= =
2�

1 + 2=
, = = 0, 1, 2, ... (7.4)

Clear, that through this process the particle will be transported to the right with the quantized average
group velocity of one unit cell per driving period. We note, that the optical analogue of such a system
is a mesh of directional couplers, where the same principle enables to rectify light beams (see e.g.
Ref. [63]). Let us emphasise the difference between the quantized transport in the driven SSH model
and in the RM model from Sec. 6.1.4. In Thouless pump the population transfer was achieved by
adiabatic state evolution and the period of driving played no role as long as the adiabatic condition
was fulfilled. Here, in contrast, the transport is of resonant character and solely relies on the special
choice of the driving frequency. For instance, if �) ′= = 2c + 2c= or

l
′
= =

�

1 + = , = = 0, 1, 2, ... (7.5)

then at the end of the half cycle the full population returns to site � and with the flow of time the
particle will always stay confined to the two neighboring lattice sites such that the average group
velocity goes to zero.
Now we go away from the fully dimerized limit and use the functional form of the hopping amplitudes
that resembles experimental conditions. Since in the experiments below we sinusoidally vary the
spacing between the neighboring sites, the hopping amplitudes as functions of time become

�1(C) = �04
−_(1−sin(lC))

,

�2(C) = �1(C − )/2).
(7.6)

In the following, we set _ = 2.11, lattice constant 0 = 1 and all energies are in the units of �0. In order

103



Chapter 7 Dissipation engineered directional filter for quantum ratchets

to access the band structure of our model, we impose periodic boundary conditions and transform the
Hamiltonian (7.1) to momentum space (see Sec. 5.1.1 for details). The resulting Bloch Hamiltonian
reads

�̂: (C) = −
(

0 d(:, C)
d
∗(:, C) 0

)
, (7.7)

where d(:, C) = �1(C) + �2(C)4
−8: . It is easy to check that the Hamiltonian (7.7) obeys time-

reversal, charge-conjugation, and chiral symmetries using the criteria for the Floquet-Bloch sys-
tems (2.61), (2.62), and (2) with*T = I,*C = *S = f̂I and C0 = )/4.
For theoretical analysis of our ratchet model we utilize the Floquet-Bloch theory outlined in Sec. 2.2.2.
First, we calculate the quasienergy bands nU (:), U ∈ {1, 2}. Fig. 7.2 (a) shows the result for three
different driving frequencies l ∈ {0.597�0, 1.195�0, 2�0} exemplified in the 1st Floquet-Bloch BZ
{−l/2 ≤ n < l/2;−c ≤ : < c}. Color code indicates the expectation value of the velocity operator
in the corresponding Floquet-Bloch state 〈EU,:〉 calculated using Eq. (6.20). It is evident, that the
driving frequency has a huge impact on the band shape: At l = 1.195�0 (num. 2) the bands are
nearly linear with the group velocity of ±1/) ; in contrast, at l = 0.597�0 (num. 1) the bands are
almost flat with the close-to-zero group velocity. Due to chiral symmetry, the quasienergy spectrum is
always symmetric with respect to n = 0. We can therefore choose to label the quasienergies and the
corresponding Floquet-Bloch states according to the sign of the group velocity such that U = 1 stands
for 〈EU,:〉 ≥ 0 and U = 2 for 〈EU,:〉 ≤ 0.
Next, we average the group velocity over all U = 1 states

〈Ē1〉 =
1

2c

∫ c

−c
d: 〈E1,:〉 (7.8)

and plot it in dependence on the driving frequencyl in Fig. 7.2 (b). As predicted by the fully dimerized
limit, the band-averaged group velocity oscillates with l. C. Dauer from the TU Kaiserslautern
derived the general analytical expressions for frequencies l= and l

′
= corresponding to maxima and

minima of 〈Ē1〉, respectively. These expressions resemble Eqs. (7.4) and (7.5) with the difference
that �/2 is substituted by the period-averaged coupling

∫ 1
0 db�@ (b2c/l), @ = 1, 2 (see Eq. (3-4) in

Ref. [152]).
The frequency-dependent quasienergy spectrum for our model was calculated by A. Sidorenko from
University of Bonn (see Fig. 7.2 (c)). She revealed that the observed oscillatory behaviour of 〈Ē1〉 is
directly connected to the oscillating size of the band gap opening at the boarders of the Floquet BZ,
i.e. at n = l/2 + <l, < ∈ Z. The ratchet transport is expected to be most efficient when the average
group velocity reaches its maximum of one unit cell per driving period. These points correspond to
gapless helical bands, which in turn feature minimal dispersion as seen from Fig. 7.2 (a).
In the view of our experimental setup, the achievable frequency range is roughly l ∈ [0.7�0, 2�0].
Thus, we focus only on the first maximum l0 = 1.195�0 as it lies in this range. In this case, the
density of the periodic Floquet-Bloch states oscillates between the two sublattices (see Fig. 7.2): The
density of a right-moving state U = 1 is mostly concentrated on sublattice � at the beginning of the
period, then it tunnels to sublattice � at C = )/2 and by the end of the period returns back to �. The
time-reversal symmetry guarantees that this process is exactly inverted for the left-moving state U = 2
with the same quasienergy. Note, that due to almost vanishing dispersion such a spatio-temporal
distribution of the Floquet-Bloch states is largely independent of the magnitude of the quasimomentum
: . The unidirectional transport in our model occurs when the asymmetric initial conditions are applied,
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Figure 7.2: (a) Band structure in the 1st FBBZ at three different driving frequencies: 1: l = 0.597�0, 2:
l = 1.195�0, 3: l = 2�0. The color-code shows the corresponding group velocity 〈EU,:〉. (b) Average absolute
value of the group velocity as a function of l. Grey solid and dashed lines mark the local maxima and minima of
the group velocity, respectively, while the numbers highlight the frequencies from (a). (c) Quasienergy spectra
in dependence on the driving frequency calculated by A. Sidorenko from University of Bonn. (d) Squared
absolute value of the state amplitude at l = 1.195�0 with positive (U = 1) and negative (U = 2) group velocity
along one period at sublattices � and �.

i.e. the system is initiated at one sublattice � or �. Via Fourier transform, this results in predominant
population of only the left- or right-moving states, respectively. Such initial conditions effectively
break space and time inversion symmetries thereby providing the necessary conditions for the ratchet
effect.
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7.2 Direction-dependent filter

Now, we additionally subject two central lattice sites, � and � from the central unit cell 9 = 0, to
time-periodic losses oscillating at the same frequency l as the bulk (see Fig. 7.3 (a)). As we know
from the previous chapter, losses in our waveguide experiments are well described by the complex
on-site potentials. The corresponding Hamiltonian is the sum of the SSH Hamiltonian (7.1) and the
local impurity + (C):

�̂ (C) = �̂SSH(C) ++ (C),
+ (C) = − 8W0 (C) |0, �〉〈0, �| − 8W1 (C) |0, �〉〈0, �|

(7.9)

The decay rates on sublattices �/� are denoted by W0/1 (C) and have a form of)-periodic step functions,
i.e. the on-site losses can be turned on and off in a periodic manner as realized in our experiments
below. The mathematical description is given by

W0 =W0Θ{− cos (lC + i) − cos (c!/))}
W1 =W0 (C − )/2)

(7.10)

where Θ{G} is the Heaviside function, W0 is the loss amplitude, ! is the duration of the losses within
one period ) (! < )), and i is the phase shift. Note, that for i = 0 the losses are out of phase with

Figure 7.3: (a) Sketch of the driven SSH model with time-periodically modulated decay rates W0,1 (C). The
reflection A:,U and transmission C:,U of the Floquet state with quasimomentum : and band index U are
schematically indicated by grey arrows. (b) Loss functions W0/1 (C) on sublattices �/� of unit cell 9 = 0 in the
case of i = 0 that have a form of temporal intervals ! of the constant decay rate W0. The probability densities
of the Floquet modes |q1,: |

2 and |q2,: |
2 are adopted from Fig. 7.2 (d) to demonstrate that such time-periodic

losses are able to selectively absorb U = 2 states.
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the coupling constants, i.e. they are centered at C = (< + 1/2) ) on sublattice � and at C = < ) on
sublattice � (see Fig. 7.3 (b)).
Consider a quantum particle propagating along the driven SSH chain and scattered by the local
dissipative impurity as shown by gray arrows in Fig. 7.3 (a). The transmission and reflection amplitude
of the Floquet-Bloch state |qU,: (C)〉 are denoted by CU,: and AU,: , respectively, while)U,: = |CU,: |

2 and
'U,: = |AU,: |

2 stand for the corresponding transmission and reflection coefficients for the probability
density. In what follows we want to explain descriptively that by choosing a proper driving scheme the
transmission coefficients for the right-moving Floquet-Bloch states U = 1 can be made much larger
than for the left-moving states U = 2, i.e. |)1,: | � |)2,: |. In order to understand the origin of such
a non-reciprocal transmission induced by + (C), assume that the system is driven with the resonant
frequencyl0, so that the bands are helical and the band-averaged group velocity is maximal. Here, it is
central to look at the periodic exchange of the state density between the two sublattices. In the previous
section it was shown that the counter-propagating Floquet-Bloch states have different spatio-temporal
distributions which enabled to populate only states moving in the chosen direction by proper choice
of the initial conditions. The same feature can be employed for direction-dependent filtering. In
particular, introducing strong losses at space-time moments, where the maxima of |q2,: (C) |

2 reside, the
time-reversal symmetry and the oscillatory motion of the states guarantees that |q1,: (C) |

2 is minimal
at these moments. Thus, at i = 0 we expect that such time-periodic losses should effectively absorb
only the states moving in −G direction (U = 2), while the states moving in +G direction (U = 1) should
stay almost unaffected.
Our expectations were confirmed by C. Dauer from the TU Kaiserslautern, who explicitly calculated
the direction-dependent transmission and reflection coefficients for the scattering problem described
by Eq. (7.9). For that, he developed the Floquet S-matrix formalism for a special case when the
bulk and the impurity are both periodically modulated in time with the same frequency l (see
Ref. [152] for details). We briefly discuss his results because they allow to quantify the efficiency of
our direction-dependent filter and thereby help to optimize the system parameters. The transmission
coefficients for U = 1 and U = 2 states in dependence on ! and W0 are shown in Fig. 7.4 (a) and (b),
respectively. Here, l = l0, i = 0, and initial conditions correspond to the uniform superposition of
either all the U = 1 or U = 2 states. Due to negligible dispersion at l0, the transmission coefficients
were averaged over the 1st BZ, i.e. )U = 1

2c

∫
�/

d:)U,: . Fig. 7.4 (a) reveals that for ! < 0.5)
U = 1 states are well transmitted with close-to-one )1. In contrast, the transmission )2 in Fig. 7.4 (b)
drops sharply with increasing ! and W0. Remarkably, the ratio )1/)2 can even exceed 103 in the
examined parameter range, which clearly demonstrates that our dissipative impurity works as a perfect
direction-dependent filter.
It is natural to wonder what happens if we change the phase shift i in Eq. (7.10)? The band-averaged
reflection and transmission coefficients for fixed W0 = 1.5�0 and ! = 0.25) in dependence on i are
plotted in Fig. 7.4 (c). At i = 0 and c the spatio-temporal loss distribution coincides with the maxima
of the Floquet-Bloch states moving in −G or +G directions, respectively. In this case, the unidirectional
transmission effect is most pronounced while the reflection coefficient is low and does not depend on
the propagation direction. In contrast, at i = c/4 and 3c/4 the losses are centered at the points where
the counter-propagating Floquet-Bloch states have equal support on both sublattices. At these points
the transmission coefficients for U = 1 and U = 2 states become equal while the reflection coefficients
reach their local maxima and turn to be direction-dependent.
Finally, the performance of our filter was analysed for various driving frequencies. Fig. 7.4 (d) shows
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Figure 7.4: Results of the Floquet S-matrix analysis performed by C. Dauer from TU Kaiserslautern. Band-
averaged transmission coefficient for (a) U = 1 and (b) U = 2 states in dependence on the impurity parameters W0
and ! at l0 = 1.195�0, i = 0. (c) Transmission (blue) and reflection (red) of U = 1 (solid) and U = 2 (dashed)
moving states as functions of the phase shift i for fixed W = 1.5�0 and ! = 0.25 ) . (d) Transmission of U = 1
states for ! = 0.25 ) and W0 = 1.5�0 in dependence on the driving frequency l and quasimomentum : . White
dashed line highlights the resonant frequency l0.

that at l0 the transmission coefficient )1,: is maximal and homogeneous for all quasimomenta : ,
while away from the resonance it decreases for the states around : = 0. This is due to hybridization of
the quasienergy bands. Note, that the corresponding reflection coefficient, in contrast, increases with
with the detuning (see the corresponding data in Ref. [152]).

7.3 Experiments

Relying on the quantum-optical analogy described in Sec. 3.2.4 we realize unidirectional transmittance
in arrays of DLSPPWs. According to this analogy, time is directly mapped into propagation distance I
which enables us to mimic a Floquet system by periodic modulation of the corresponding parameters
along the waveguide axis. The sketch of a typical sample is displayed in Fig. 7.5. Such a DLSPPW
array is analogous to a one-dimensional Floquet chain with two sites (waveguides) per unit cell, �
and �. The cross-sections of all the waveguides are kept constant. The sinusoidal modulation of
the center-to-center distances 31,2(I) results in periodic modulation of the corresponding coupling
constants. We introduce local periodic dissipation W0/1 (I) by deposition of chromium stripes below
the waveguides. It was shown that Cr can cause strong losses with negligible effect on the real part
of the effective refractive index [153]. Thus, in contrast to the approach from the previous chapter,
this technique allows us to control the imaginary part of the propagation constant without need for
change the real part. In order to minimize the overall losses, we use silver instead of gold for substrate
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Figure 7.5: Sketch of a plasmonic waveguide array featuring unidirectional transmittance. Green and red arrows
indicate the low and high loss directions, respectively.

preparation.

7.3.1 Fabricated samples

A scanning electron micrograph of a DLSPPW array with locally modulated dissipation is shown in
Fig. 7.6. Such a sample is fabricated through a two-step process which combines the positive- and
negative-tone electron beam lithography (see Sec. 4.1 for details). The sample preparation starts with
evaporation of 62 nm of Ag and 2 nm of Cu for adhesion on a cleaned surface of a glass substrate.
Then the sample is spin coated with the PMMA. In the first EBL step, we utilize PMMA as both
positive- and negative-tone resist. While a template for the lossy regions are written with the low
electron dose of 3 C/m2, the alignment markers are fabricated with high electron dose of 30 C/m2

that induces PMMA cross-linking. The reason is that cross-linked PMMA forms sufficiently high
structures that stay clearly visible under the second layer of PMMA in the next lithography step. The
areas exposed to low electron dose are dissolved in a developer and 15 nm of Cr is evaporated on top
of the substrate. After the lift-off process, we end up with the Cr stripes and the alignment markers at
the predefined positions. The width of each Cr stripe is set to 1.3 µm. Afterwards, the sample is again
spin coated with PMMA and the second EBL step takes place. Now we fabricate the DLSPPW arrays
on top of the Cr stripes with a constant electron dose of about 20 C/m2 using the markers for the
alignment. In this step, PMMA acts only as a negative tone resist. Finally, the samples are developed
in acetone.
The atomic force microscopy measurements revealed that the applied electron dose results in the
mean waveguide height of 90 nm and the width of 270 nm, which allows us to work in a single mode
regime at a vacuum wavelength of _ = 0.98 µm. For these geometrical parameters we numerically
calculate the real part of the propagation constant of the guided mode using FEM (see Sec. 3.2.1)
which yields V′ = 6.55 μm−1. Due to strong confinement of SPPs we can neglect the variation of
a propagation constant caused by waveguide bending and thus consider the real part of the on-site
potential to have a constant offset which be can always set to zero (see Sec. 5.3.1). The imaginary part
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of the propagation constant is obtained by measuring the propagation length of SPPs and equals to
V
′′
= (7.3 ± 0.02) · 10−3

μm−1. In our model system V
′′ is responsible for the constant decay rate

caused by ohmic losses in the metal, imperfections of the fabricated film, and leakage radiation into
the substrate. These losses are assumed to be homogeneous and independent of I, in contrast, to the
dissipation induced by Cr stripes. Using FEM simulations we estimate the minimum loss strength
caused by the Cr layer to be W0 = 0.25 μm−1. Note, that W0 � V

′′. The width of the Cr stripe is
designed to be much larger than the width of a waveguide (see Fig. 7.6). We can, therefore, assume
the losses to be approximately constant along the whole length of the stripe ! as given by Eq. (7.10).
The distance between the adjacent waveguides varies as 31,2 = 2 ± 0.65 · sinlI μm, l = 2c/) . The
sinusoidal modulation of 31,2(I) in turn results in periodic modulation of the corresponding coupling
constants. This modulation can be expressed by Eq. (7.6) since the mode overlap decays as ∝ 4−0 ·3
with the distance 3 between the waveguides. The parameters from Eq. (7.6) are determined in an
auxiliary experiment. For that experiment pairs of straight waveguides with different center-to-center
distances are fabricated on top of a silver film. On this sample the real-space leakage radiation
microscopy is performed under the excitation of one waveguide from each pair. Then the coupling
length !c in dependence on the distance between two waveguides 3 is extracted. According to
Eq. (3.51), the measured coupling lengths give us direct access to the distance-dependent coupling
constants � (3) (see Fig. 7.7). Fitting the function ln � (3) by a line we obtain _ = 2.11 ± 0.21 and
�0 = 0.16 ± 0.05 μm−1. Analogous measurements for gold films are described in details in Ref. [93].
As shown in Fig. 7.6 the modulated part of the array is preceded by a short straight interval of the
length 6 μm. This region contains the grating coupler (red box) which is used for SPP excitation. The
grating is deposited only onto the two waveguides at the left and right side from the dissipative region
(inputs � and �), while the extension of others to this region is needed to prevent fire-end excitation of
the adjacent waveguides.

Figure 7.6: SEM scan of a typical sample. Inputs � and � are marked by red boxes and white dotted lines
highlight the region with periodic dissipation. Blue dashed line corresponds to I = 0 and separates the excitation
region from the modulated part of the array. The chromium stripe used to implement losses is magnified in the
top right corner.
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Figure 7.7: Experimental coupling constants plotted against the distance between the two straight DLSPPWs on
silver films. The dependence � (3) is fitted by an exponential function (red line).

7.3.2 Optical measurements

The propagation of SPPs in the fabricated arrays is monitored by the real- and Fourier space leakage
radiation microscopy (see Sec. 4.2). First, we consider the case without engineered losses and
determine the driving frequency l at which the directed transverse motion of SSPs with the highest
group velocity 〈Ē〉 is achieved. Theory predicts for this case the absence of hybridization of the
counter-propagating states and, therefore, the most pronounced one-way transmission effect. In order
to find the group velocity maximum, arrays of modulated DLSPPWs (no Cr is deposited) with various
frequencies of modulation are produced. For every array the real-space intensity distribution � (G, I)
(analogous to |Ψ(G, C) |2) is measured after a single-site excitation at the sublattice �. Note that the
corresponding data for the input � is just mirrored about G = 0. The experimental data is then used to
extract the position of the center of mass 〈G(I)〉 of the wavepacket as a function of I (see Eq. (6.45)).
The group velocity 〈Ē〉 is found as the slope of the linear fit to 〈G(I)〉 and plotted in units of a unit cell
per driving period 0/) against l in Fig. 7.8 (a). The resulting curve reaches the peak value of about
0.63 at l = Ω1 ≈ 0.23 μm−1. The measured peak value of the group velocity is smaller than 1 as
would be expected from the completely filled band (see Fig. 7.2 (b)). We attribute this deviation to
the contribution of camera noise and non-perfect excitation conditions. By the latter is meant that,
first, the overlap of the states moving in the −G direction with the initial conditions is not exactly zero,
second, when guided SPPs are excited by shining laser light onto the grating coupler, the laser spot
slightly excites the neighboring waveguides. These factors inevitably decrease the CoM displacement.
The quantitative comparison with the theoretical value of l0 requires the value of �0, which has an
experimental uncertainty 1.09�0 ≥ Ω1 ≥ 2.09�0 that is fully consistent with the theoretical value of
l0 = 1.195�0. In Figs. 7.8 (b), (c) we compare the real- and Fourier-space intensity distributions for
two frequencies Ω1 (close to the resonance l0) and Ω2 (maximum frequency in our measurements,
away from the resonance). In real space at Ω1 we observe that the wavepacket is confined, and
the intensity maximum is transported in positive G-direction (Fig. 7.8 (b), top). The corresponding
Fourier intensity distribution � (:G , :I) shown in Fig. 7.8 (c) (top) reveals nearly linear dispersion and
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predominant population of the Floquet states with 〈EU,:〉 > 0. In contrast, at Ω2 the wavepacket is
spreading in both directions (see Fig. 7.8 (b), bottom) and in Fourier space (see Fig. 7.8 (c), bottom)
the gaps between the quasienergy bands broaden, and the states with 〈EU,:〉 < 0 become noticeably
populated. Such a behaviour results from hybridization of counter-propagating states and is fully
consistent with the theory (compare with Fig. 7.2 (b)).
Next, we fabricate DLSPPW arrays with local modulated losses using the optimal driving frequency
Ω1 determined above. For that we deposit Cr stripes of length ! = 0.3) beneath the two waveguides
in between the inputs � and �, so that the phase shift in Eq. (7.10) is zero i = 0 (see Fig. 7.3 (b)).
The inputs are placed such that the excited wavepacket impinges upon the region of modulated losses
from both sides. In Fig. 7.9 (a) the resulting real-space intensity distributions of SPPs for two input
conditions are displayed. Here, the wavepacket impinging from the region G > 0 (top image) is strongly
damped such that no SPPs are visible after the lossy region. Since the transmitted wave is lower than

Figure 7.8: (a) Measured mean group velocity of a wavepacket versus driving frequency l for the single-site
excitation at the input �. (b) Real-space SPP intensity distributions corresponding to the arrays modulated with
frequency Ω1 = 0.23 μm−1 and Ω2 = 0.39 μm−1. (c) Fourier-space SPP intensity distributions for the same
arrays as in (b).
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Figure 7.9: Real space intensity distributions for the DLSPPW arrays with local modulated dissipation
(highlighted by white dashed lines) featuring unidirectional transmittance at Ω1. The wavepacket is excited at
G > 0 (input �, top) or at G < 0 (input �, bottom). The area plots at the right side from the real-space data
show the intensity distribution after the propagation distance I = 5) . (a) Chromium stripes with ! = 0.3) were
deposited below two waveguides. The red arrows point to reflected wave. (b) The same as in (a), but the length
of the Cr stripe was reduced to ! = 0.15) .
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the noise level, the transmission coefficient must be )U=2 < 10−2. In contrast, when the wavepacket
impinges from the opposite side, G < 0, it is partially transmitted (bottom image). By comparing to
the case with no loss, we can estimate the transmission coefficient )U=1 ≈ 0.53. Additionally, the
weak reflection from the interface is observed for both sides (see red arrows). This can be related to
the slight shift of the Cr stripes in respect to the waveguides which leads to a non-zero phase shift i.
We now aim to improve the performance of the direction-dependent filtering in our system, in particular,
we want to increase the transmission in the low-loss direction )U=1 while keeping the )U=2 below the
detection limit of ∼ 10−2. Relying on the numerical calculations discussed above, at the constant loss
strength W0 this can be realized by reducing the Cr stripe length !. Indeed, for ! = 0.15) (Fig 7.9 (b))
we again observe strong absorption in −G direction such that )U=2 < 10−2, however, the transmission
in the opposite direction is substantially increased )U=1 ≈ 0.92. In this case we see no reflection from
the interface.

Summary

In conclusion, in this chapter we have employed the idea of the non-Hermitian Floquet engineering
developed during the previous project to construct a direction-dependent filter for a fast Hamiltonian
quantum ratchet. On the example of the driven SSH model, we have shown that a properly chosen
driving scheme gives rise to a directional particle transport at certain resonant frequencies. However,
the transport efficiency in this (in fact any) non-adiabatic Hamiltonian quantum ratchet depends
critically on the initial conditions. In contrast, it is often desirable to achieve optimal transport efficiency
without initial-state preparation. In order to circumvent this technical challenge we have proposed
the filter based on a dissipative impurity that selectively suppresses the states moving in the chosen
direction by taking advantage of the distinct spatio-temporal distributions of the counter-propagating
Floquet-Bloch states. In addition, we have provided the direct experimental observation of the one-way
transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with
engineered losses. These losses were implemented explicitly by placing an absorber below the two
central waveguides in a two-step lithographic process.
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Summary

In this thesis Floquet engineering was utilized to tailor topological and transport properties of
one-dimensional tight-binding lattices. The systems of interest were analysed within the Floquet
formalism and realized experimentally in arrays of evanescently coupled plasmonic waveguides. Our
experiments relied on a mathematical equivalence of the single-particle Schrödinger equation in the
tight-binding approximation and the coupled mode theory. The plasmonic samples were fabricated by
electron beam lithography while their optical characterization was performed with the help of the real
and Fourier space leakage radiation microscopy. Throughout this work we have observed a remarkable
agreement of the experimental results with the numerical calculations based on the Floquet theory
which unambiguously shows that arrays of plasmonic waveguides are a perfectly suited platform for
Floquet engineering. Our theoretical and experimental findings illuminate new interesting aspects of
Floquet engineering in the realm of topological and non-Hermitian systems.
In Chapter 5 we have demonstrated that local time-periodic driving of an edge in a system with
non-trivial bulk topology can lead to a depopulation of a topological edge state. If the Hamiltonian
obeys chiral symmetry, the energy of the topological edge state always remains symmetric with respect
to zero. In the fully static case, this guarantees the energetic separation of the edge from the bulk states
due to the presence of a band gap. Periodic driving splits the band structure into the Floquet replicas
spaced by the energy of ℏl. Since the edge is driven locally, only the Floquet copies of the edge state
becomes populated, meanwhile the bulk spectrum stays almost unaltered. Although the topological
character of the bulk cannot be changed by any local perturbation, we observe a dramatic change
in the occupation and spectral characteristics of the topological edge state for a certain frequency
window. This can only be explained by hybridisation with the bulk states because the depopulation
happens once the Floquet replicas of the edge state overlap with the bulk energies. For the examined
driving protocol, where the amplitude of the driving is smaller than the characteristic energy scale
of the system, this effect is predominantly governed by the first-order replica. In the intermediate
frequency range, enough energy is imparted to the system to destroy its topological protection, or, in
more strict terms, the concept of topological protection is not valid any longer. Interestingly, if the
driving frequency is high enough such that the Floquet replicas are well separated from each other, the
localization of the edge state is not affected. This phenomenon was analysed theoretically with the
help of the Floquet theory and demonstrated experimentally in arrays of plamonic waveguides for the
longitudinal polarization of the perturbing field. Independent experiments based on the dielectric
waveguides performed in the TU Kaiserslautern showed qualitatively the same behaviour for the
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transverse polarization.
In Chapter 6 the concept of the non-Hermitian Floquet engineering has been introduced. Specifically,
we considered a non-Hermitian extension of the periodically driven Rice-Mele model. For the
theoretical analysis of such a system the Floquet theory has been generalized to the case of complex
linear time-periodic Hamiltonians using the elements of biorthogonal quantum mechanics. While fast
driving of the dissipationless systems always destructs the quantization of the Thouless pumping, we
have demonstrated theoretically that time- and space-periodic dissipation can lead to the restoration
of the quantized transport for non-adiabatic driving conditions. The reason is that periodic losses
can modify the Floquet-Bloch band structure in such a way that they close the band gaps present
in the Hermitian Floquet-driven system. It results in chiral quasienergy bands that wind around the
two-dimensional Floquet-Bloch Brillouin zone, which thus carry a quantized transport given by the
qusienergy winding number. Remarkably, that this is not due to a dissipation-induced band broadening,
but a true renormalization of the real part of the energy eigenvalues, induced by the non-Hermiticity
of the eigenvalue equation. Controlling the loss strength in the non-Hermitian Rice-Mele model one
can restore topological transport quantization for an arbitrary fast driving frequency. Upon excitation
of a single lattice site it was possible to homogeneously populate a single band, that is a necessary
condition for probing the topological transport properties. We also have shown that systems with
periodic loss modulation can be easily simulated by arrays of plasmonic waveguides. One way to
implement such losses is to take an advantage of the enhanced coupling to free-propagating SPPs with a
decreased waveguide cross-section. This effect allowed us to experimentally realize the non-Hermitian
Rice-Mele model in arrays of plasmonic waveguides. In real space, the center of mass of the excited
surface-plasmon polariton wavepacket was shifted by one unit cell per driving cycle. In Fourier space
quantized pumping was seen as a chiral Floquet band that winds around the quasienergy Brillouin
zone. Additional experiments showed that, first, unlike in a simple combination of directional couplers,
the SPP transport in our system was independent on the driving frequency. Second, the transport in
the opposite direction was strongly suppressed. Such a behavior perfectly agrees with the theoretical
predictions based on the non-Hermitian Floquet-Bloch analysis.
Finally, in Chapter 7 the non-Hermitian Floquet engineering has been applied to construct a direction-
dependent filter for a fast Hamiltonian quantum ratchet. The role of a ratchet system played the driven
SSH model. The theoretical analysis based on the Floquet-Bloch theory has shown that in the case
when space and time inversion symmetries were broken by initial conditions such a model supported a
directional current at certain resonant frequencies. These frequencies were characterized by helical
Floquet bands with a vanishing dispersion. The generation of a directional current by asymmetric
initial condition was achieved due to the oscillations of the counter-propagating Floquet-Bloch states
between the two sublattices. Such an oscillatory behaviour also predefined the design of the local
periodic losses for the direction-dependent filtering. The resulting dissipative impurity enabled a
largely nonreciprocal transport at all quasimomenta and a wide range of the system parameters. This
was demonstrated by numerical calculations of the transmission and reflection coefficients conducted
in the theoretical group from the TU Kaiserslautern. Theoretical predictions were confirmed by the
direct experimental observation of the one-way transmittance in periodically modulated plasmonic
waveguide arrays containing a local impurity with engineered losses. In contrast to Chapter 6, these
losses were implemented explicitly by placing chromium stripes below the two central waveguides in
a two-step lithographic process. This method allows to control the imaginary part of the propagation
constant without changing the real part, which opens new possibilities to use the non-Hermitian
Floquet engineering in the plasmonic waveguide arrays. In addition to that, the overall losses were
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successfully reduced by substituting gold by silver in sample fabrication.
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CHAPTER 9

Outlook

This thesis gives a valuable insight into the Floquet engineering as a tool for coherent control of
topological and transport properties of surface plasmon polaritons in evanescently coupled waveguide
arrays. Our findings are not only interesting by themselves for the broad scientific community, but
also open up several new directions for the future research work both theoretical and experimental.
Below I would like to mention some of them.
The first direction is to deepen our knowledge on the systems that were considered in this thesis. For
instance, regarding the driven SSH model, it will be interesting to study how the spatial extent of
the external driving field affects the topological protection of an edge state. On the one hand, we
found out that if a single site at the boundary of the topologically non-trivial SSH model is driven
at the frequency that lies within the bulk energies, then the edge state couples to the bulk states and
its localization in real space is destroyed. On the other hand, it is known that if the SSH model is
subject to time-periodic driving globally, i.e. in the whole bulk, then in the same frequency range it
supports a localized edge state at zero energy [5, 136]. In addition to that, the overlap of the Floquet
replicas of the bulk band structure results in the opening of the new band gaps at the boarder of the
Floquet Brillouin zone that host anomalous topological edge states, the so-called c-modes. Such
c-modes are also localized at the edge and were recently observed in our research group on the same
plasmonic waveguide platform. However, it is unclear what happens during the transition between the
local and global driving schemes. Specifically, how far the driving field has to be extended such that
the wavepacket localization at the edge stabilizes and how it correlates with the system parameters?
The dissipative Rice-Mele model introduced in this thesis also leaves much space for the further
research. The model parameters that were considered in this thesis were primarily inspired by the
waveguide experiments, however, the driving scheme has not yet been optimized. Thus, one could
try to find the best way to modulate time-periodic decay rates to efficiently restore a quantized
transport with minimal intensity attenuation. In this context, the effect of coupling of the guided
SPP mode to continuum of free propagating SPPs which was utilized to implement losses in the
non-Hermitian Rice-Mele model also deserves a deeper analysis to improve the control over the
system parameters. Another important issue is to address the stability of the dissipative quantized
pumping against disorder. What is more, our experiments can serve as a starting point for future
theoretical investigations of more elaborate many-body systems. Understanding the role of interactions
in topological systems is still in its infancy and currently of growing interest. In our case, the observed
stabilization of the topological transport in plasmonic wavegude arrays was due to the imaginary terms
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in the single-particle Schrödinger equation. However, it is known that such imaginary terms in an
effective single-particle equation of motion can also arise from many-body interactions. Thus, it will
be interesting to see whether the topological transport stabilization at non-adiabatic conditions can be
achieved not only by modulating losses, but rather by tailoring the interactions and whether this effect
is feasible in ultracold gas experiments. In this realm, we note a closely related work on nonlinear
Thouless pumping that has been recently published [154].
The second direction is to use the experimental and numerical expertise collected during this work to
further study the interplay between Floquet drive, topology and non-Hermiticity. Of particular interest
is the realization of non-Hermitian topological phases that have recently attracted much attention
[155–157]. Another point to consider is that losses can serve not only as an instrument to change
the topological properties of a non-Hermitian system, but also to detect topological invariants of
the unitary dynamics. With this in mind, our plasmonic waveguide platform can be readily adopted
for probing the topological invariants in one-dimensional tight-binding lattices via losses using the
scheme proposed in Ref. [158]. The underlying idea is that the bulk winding number can be detected
through the displacement of a single particle in the presence of the time-periodic losses applied to one
sublattice. Such losses play a role of the repeated measurements that perturb the system dynamics in a
periodic fashion. This detection scheme can be applied for static as well as time-periodic systems that
respect chiral symmetry.
Last but not the least, the future work should be aimed towards the improvement of the existing
experimental setup and finding the alternative solutions to mimic more complex Floquet topological
systems with the tools of nanophotonics. Plasmonic waveguides allow for a very powerful detection
technique but naturally suffer from ohmic losses that strongly limit the observation time of the modelled
system. In spite of an advantage of strong field confinement, short propagation length additionally
causes poor nonlinear performance of integrated plasmonic devices [159, 160]. In contrast, introducing
nonlinearity is highly desirable for any photonic quantum simulator because it opens a path towards
modelling systems with interparticle interactions. As already mentioned, addressing the affect of
interactions in topological and Floquet systems is in turn an issue of fundamental importance.
In order to overcome the problem ofmetal absorption and at the same time keep using the same detection
method, instead of SPPs one can try to build an experimental platform on the basis of Bloch surface
waves (BSW). Such electromagnetic waves are exponentially confined to the interface constituted by a
multilayered dielectric structure (one-dimensional photonic crystal) and a homogeneous dielectric
medium due to the presence of a band gap in a photonic crystal. Such a configuration does not include
a metallic layer and hence the propagation length of BSWs is substantially larger than for SPPs which
has been pointed out in several works [161–165]. It has been demonstrated that Bloch surface waves
can be manipulated by dielectric ridges at nanoscale and the same excitation and detection techniques
as for SPPs are applicable. Of interest to us is that excitation by a grating coupler and detection via
the leakage radiation microscopy have been already successfully realized [165]. Therefore, using
BSWs it might be possible to keep all the advantages of the existing setup, but get additional benefits
from the all-dielectric configuration. Although the propagation length would be still much shorter
than in the usual optical waveguides, such a BSW-based platform opens new opportunities to realize
nonlinearity, in comparison to SPPs. For instance, one can utilize for this purpose novel strongly
non-linear materials, such as monolayers of transition metal dichalcogenides [166].
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