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Abstract

In the last decade, the world has witnessed a massive upheaval in intelligent systems’ design and
development, especially for systems that can interact with humans. Such systems, capable of real-time
interaction with end users can be realized in several ways, ranging from text/speech based to gesture
or electroencephalogram (EEG). Speech/text-based human-machine interactive (HMI) systems have
become part of human’s everyday life in the form of Alexa, Siri, etc. Aforesaid HMI systems can be
realized as question-answering systems or Dialogue systems/chatbots; where the former is capable of
answering individual queries from the user while the latter has an additional understanding of the
conversational context.
Both kinds of systems can potentially benefit from additional world knowledge, which is present

across both unstructured and structured sources. Unstructured sources consist of textual knowledge
present in the form of definitions or text articles; while, structured knowledge can be present in the
form of, e.g., Knowledge Graphs or RDBMS. However, integrating both structured and unstructured
knowledge while designing such systems is challenging because the models have to solve multiple
tasks of inferencing, coherent response generation, and knowledge integration.
In this thesis, we explore different techniques for integrating additional world knowledge into

methods used for implementing question-answering and dialogue systems. Firstly, we examine
different techniques to incorporate structural information present in a Knowledge Graph (KG) into
Knowledge-Graph-based question answering systems (KGQA). Here, we investigate how to improve
KGQA with added structural information of the Knowledge Graph. Most KGQA systems do entity
and relation linking separately and have no deeper understanding of the connected KG components
and structure of the KG elements. We explore and propose different algorithms for KG-aware question
answering, both as modular and end-to-end settings. Secondly, we investigate different techniques
for incorporating world knowledge, present in the form of both structured and unstructured sources
into multi-turn conversational systems. For unstructured knowledge integration, we probe end-to-end
techniques to make retrieval-based chatbots better using textual definitions of in-domain keywords.
Henceforth, we explore techniques to incorporate structured information present in the form of
Knowledge Graphs into generative dialogue systems. Several novel neural network architectures are
proposed which implicitly look into the Knowledge Graph during the dialogue generation process.
Some architectures are for handling goal-oriented dialogues while others are designed to handle both
goal and non-goal oriented dialogues. For the first model, we incorporate joint Knowledge Graph
and word embeddings, projected in the same vector space for task-oriented dialogues. Secondly, we
incorporate a copy mechanism into the response generation process for end-to-end generative dialogue
systems, where the model can probabilistically copy information from the underlying Knowledge
Graph-based on the question. Finally, we use a pre-trained transformer (BERT) model which is capable
of answering from the Knowledge Graph by jointly performing entity linking, relation identification
while generating coherent responses at the same time.
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CHAPTER 1

Introduction

Natural language-based human-machine interaction (HMI) is a sub-category of general Artificial
Intelligence (AI). Systems and methods which can communicate with end-users have been studied
for a long time [1] [2] [3]. Such systems can be broadly classified into question-answering systems
and dialogue systems/chatbots. The former can also be realized as a question-answering system but
with an additional understanding of the interaction context. Humans understand and interpret natural
language with its knowledge and intelligence [1]. Intuitively, systems developed with integrated
additional world knowledge potentially can also benefit human-machine interactive systems.

World knowledge can be present in the form of both structured and unstructured knowledge sources.
The majority of data sources are unstructured [4], consisting of mostly free-text-based knowledge such
as metadata, definitions, journals, books, e-mails. Structured knowledge on the other hand comprises
knowledge organized in the form of a pre-defined data model. Examples of structured knowledge
sources are Knowledge Graphs [5], relational databases (RDBMS). Both these types of data sources
can potentially benefit question-answering and dialogue systems. For example, let us consider the
dialogue happening in 1.1. The first question,Who is the president of France can be answered from
the Knowledge Graph. However, the second question what is the name of the incumbent before him,
requires more domain-specific understanding. In that case, integrating the definition of the political
domain-specific word incumbent is potentially beneficial for the system. The third query is an example
where the system could also use knowledge stored in a RDBMS database for responding to the user. It
must be noted that in the case of this example, the first question is an example of a question-answering
system, but the latter ones require contextual knowledge from the previous questions and answers.

Research objectives: Previous research have focused on integrating structural knowledge for
Question Answering [6] [7] [8], textual knowledge for retrieval-based chatbots [9] [8], and additional
KG information for generative dialogue systems [10] [11]. However, most of these techniques focus
on having modular architectures for integrating additional knowledge into QA and dialogue systems.
Potentially, integrating multiple sources in an end-to-end way can improve the performance of question
answering and dialogue systems. In this research, we will focus on integrating additional world
knowledge, from structured and unstructured sources into question answering and dialogue systems,
in an end-to-end manner.

1



Chapter 1 Introduction

Figure 1.1: Example where a Conversation System can benefit from several knowledge sources in order to have
knowledge-grounded conversation with the user.

1.1 Motivation and Challenges

1.1.1 Knowledge and Artificial Intelligence

Over the past century, several studies have been made on understanding human general intelligence.
Spearman’s [12] theory of human intelligence defines intelligence as a two-factored process, namely
general and specific abilities. The general abilities have further been stratified with the Carroll-Horn-
Cattell (CHC) model [13]. Their proposed model defines a hierarchical, three-stratummodel of general
cognitive intelligence as shown in figure 1.2. The second strata of the model comprises of 10 broad
factors, among them the most researched factors being Fluid Intelligence, Crystallized Intelligence,
Broad Visual Perception and Cognitive Processing Speed. Fluid Intelligence is interpreted as the
property or capacity to solve complex, novel problems using inductive and deductive reasoning skills.
Crystallized Intelligence on the other hand is the knowledge or information one collects during their
lifetime or studies. Broad Visual Perception, is interpreted as the ability of an individual to generate,
retain, retrieve and transform visual images. On the other hand, Cognitive Processing Speed is a broad
ability to fluently perform relatively easy or over-learned tasks, particularly which require attention

2



1.1 Motivation and Challenges

and focused concentration.
Early advocates of Artificial intelligence focused on solving the general aspect of fluid intelligence,

which quintessentially deals with the ability of a machine to reason. [14] proposed a general problem
solver (GPS) which could solve mathematical problems that require deductive logic. Many more AI
approaches also followed similar lines which focused on having artificial agents possessing reasoning
skills. However, most of these approaches could only solve basic reasoning tasks and not real-world
problems. Later onwards, the focus of AI research shifted from systems able to handle general
problem-solving tasks to systems that firstly learn from the knowledge of human experts and then
aid in automating the task of those experts to some extent [15]. Also as stated by later researchers
of cognition, "the bottom line is that intelligence is a function of knowledge. One may have the
potentiality of intelligence, but without knowledge, nothing will become of that intelligence" [16].

Figure 1.2: Hierarchical Structure of General Intelligence as defined by the CHC model. The last strata
representing general intelligence as defined by [12]. Diagram adapted from [17]

Drawing inspirations from the studies in human cognition and psychology, in this thesis, we focus
on designing AI agents which are able to implicitly integrate different knowledge sources while
performing several downstream tasks for human-machine interaction.

1.1.2 Challenges in Knowledge Integration

World knowledge is available across multiple sources; although integrating additional knowledge is
potentially beneficial for an AI system, however integrating knowledge into a chatbot or QA system is
challenging.

3



Chapter 1 Introduction

Knowledge Integration

As mentioned previously, knowledge as an additional source is distributed across several sources,
both structured and unstructured. Integrating such sources into a neural network model will depend
on the downstream task, hence separate neural network architectures are required depending on the
downstream task addressed. For example, a network architecture for an unstructured knowledge source
needs to infer important concept(s) in the source which will affect the end-task such as response
selection. While, for structured sources, the network architecture must be designed in a way where
apart from determining importance, the model should also be able to infer and respond using the
source.

Inferencing Capabilities

As mentioned previously, for the case of structured knowledge source integration into a neural network
model, a specific downstream task would require the model to infer when the model should use the
knowledge from the knowledge source and when to learn the task from the training data. For example,
in the case of a dialogue system, if the task of the model is to have both knowledge-grounded and also
chit-chat/small talks. The model, when integrated with additional knowledge should infer when to use
the knowledge for the query being posed by the user and when to use the knowledge learned from the
corpus, implicitly.

End-to-end Integration

Several previous works have worked on integrating additional knowledge into interactive systems,
both for question answering [7] [18] and dialogue systems [9] [19] [20]. However, most of these
approaches are modular, where the additional world knowledge is incorporated in a modular fashion,
with individual task-specific modules designed to perform the final end-task of human-machine
interaction. The problem with modular architecture is, several errors in a module would propagate and
hence affect the performance of other downstream modules. On the other hand, modular architectures
are easier to interpret and infer the outputs for every module and make more informed decisions.
Hence, in this thesis, we focus on integrating additional knowledge using both modular and end-to-end,
differentiable neural network architectures. However, empirical evidence suggests that end-to-end
models perform better than modular approaches for the downstream tasks.

1.2 Research Questions

After discussing the motivation and challenges, we will head on to discuss the research questions. The
sub research questions are described in 1.3

∗ Research Question 1

How theKnowledgeGraph Structure can be incorporated forKnowledgeGraphQuestion
Answering?
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1.2 Research Questions

RQ: How to integrate external 
Knowledge into text-based human 
machine interactive systems?

RQ2: Can Domain Knowledge in the 
form of Unstructured Text improve 
Chatbots' performance?

RQ4: How response generation in 
a Generative Dialogue system can 
be made Knowldge Graph aware?

RQ3: Can Jointly-Trained KG and 
Word Embeddings improve 
Task-Oriented Dialogue Systems?

RQ1: How the Knowledge Graph 
Structure can be incorporated for 
Knowledge Graph Question 
Answering?

Figure 1.3: The sub-research questions contributing to the main Research Question.

Incorporating additional information of Knowledge Graph Structure can potentially improve
the performance of Knowledge Graph-based Question Answering systems. For Knowledge
Graph-based question answering systems, the main tasks are entity linking and relation detection.
Both these tasks can benefit from the integration of additional knowledge in terms of Knowledge
Graph structure, more specifically the knowledge about neighboring entities and relations
connected at 1 or 2-hops. We would like to investigate what are the different strategies to
incorporate this additional structural information into KGQA models. We would explore both
end-to-end and modular approaches and how much they affect the performances of such systems.
The models are evaluated in terms of f1 scores for the task of entity linking.

• Research Question 2

Can Domain Knowledge in the form of Unstructured Text improve Chatbots’ perfor-
mance?

For the second research question, we would like to investigate the task of adding unstructured
domain knowledge for retrieval-based chatbots. Such knowledge, present in the form of textual
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Chapter 1 Introduction

descriptions of domain-specific keywords can potentially improve the performance of the bots.
The main objective here is to study end-to-end neural network models that can integrate this
unstructured knowledge for the downstream task of response selection. We would empirically
evaluate whether the proposed models integrated with additional domain knowledge can respond
with better answers measured in terms of Recall@top-K.

• Research Question 3

Can Jointly-Trained KG and Word Embeddings improve Task-Oriented Dialogue Sys-
tems?

Both word and Knowledge graph embeddings can capture the semantic similarity between
corresponding elements in separate vector spaces. Projecting them in the same vector space can
capture the semantics between Knowledge Graph elements and words. These joint embeddings
can be used as input for modeling dialogue generation and can potentially benefit the end task
of knowledge grounded dialogue generation. For the third research question, we would like to
study neural network architectures for integrating joint Knowledge Graph and word embeddings
in the downstream task of knowledge grounded dialogue generation, for task-oriented chatbots.
The proposed model’s knowledge groundedness is evaluated in terms of BLEU scores.

• Research Question 4

How response generation in aGenerative Dialogue system can bemadeKnowledgeGraph
aware?

Task-oriented dialogues are relatively easy to model because of their limited vocabulary sizes.
Studying dialogue generation for task-oriented bots in the last research question, we would
like to extend the research to incorporate knowledge groundedness for both task and non-
task-oriented settings. Specifically, different neural network architectures that can implicitly
integrate Knowledge Graphs during the response generation process are studied here. The main
challenge for this research objective is to have systems that can produce knowledge aware, as
well as grammatically correct responses. The improvements of the proposed models in terms of
knowledge-groundedness are measured using entity f1 scores, while grammatical correctness
and articulation are measured using BLEU scores.

1.3 Thesis Overview

This section narrates an overall, high-level overview of the thesis mentioning the scientific contributions
made to answer the research questions defined in the previous section. Also, a list of publications and
the thesis structure is defined here.
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1.3 Thesis Overview

1.3.1 Contributions

Answering Research Question 1

For integrating additional structural knowledge into a Question Answering system, based on Knowledge
Graphs, the system must be able to infer from additional structural connectivity information for the
entities and relations in a query posed by the user. In order to answer this, we firstly investigate several
modular approaches. We propose two modular approaches EARL and PNEL which use structural
connectivity information as features from the probable set of entities and relations and finally using
a supervised method to pick the most probable pair of entities and relations required to answer the
question. Finally, we propose a novel neural network architecture, which uses the entity span and
probable relation information in a single neural network model to predict the final entity-relation pair.
This model is trained in an end-to-end, differentiable manner and achieves better performance than
other similar models.

Answering Research Question 2

From question-answering systems, we focus our attention on dialogue system. For addressing the
second research question, we investigate methods to incorporate domain knowledge present in the
form of unstructured text. We propose a novel neural network model, which adds the additional textual
knowledge using a separate LSTM focused on learning the importance of a domain-specific keyword.
This model is trained end-to-end and achieves state-of-the-art performance on retrieval-based chatbots.

Answering Research Question 3

Devising methods in order to have a low-dimensional representation for entities and relations in a
Knowledge Graph, is a well-researched topic. These dense embeddings are later used for downstream
tasks such as relation linking, triple classification, or missing relation type. Word-embeddings on the
other hand also is a well-researched topic and can successfully capture semantic relations between
words. In order to answer research question 3, we propose an end-to-end model for task-oriented
dialogue systems which is based on jointly embedding word and Knowledge Graph elements in the
same vector space and use it in the downstream task of task-oriented dialogue generation with several
novel loss functions. Empirical results suggest that using the proposed technique generates better
task-oriented dialogues measured in terms of BLEU scores.

Answering Research Question 4

From task-oriented, knowledge grounded dialogue systems, in order to make the systems extendable to
non-task oriented dialogues as well. In order to tackle that, we firstly create a dataset for Knowledge
Graph-based, non-task oriented dialogues in the domain of football. Additionally, we also propose 2
end-to-end neural network-based models for the task of task and non-task oriented, generative dialogue
systems. Firstly, we model the dialogue generation process using a knowledge copy method, where
the model learns to copy facts from an in-memory knowledge structure conditioned on the question
posed to the model. Henceforth, we propose another novel neural network architecture, where the
model learns to answer by conditionally generating tokens from the corpus or using Knowledge Graph
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relation information. Additionally, we also use a state-of-the-art pre-trained transformer model as
input which aids in the final performance of the proposed architecture.

1.3.2 Publications

This section summarizes the scientific contributions made during the course of this thesis work.

Accepted Papers

• Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann, EARL: joint
entity and relation linking for question answering over Knowledge Graphs, International
Semantic Web Conference(ISWC), 2018.

• Debayan Banerjee, Debanjan Chaudhuri, Mohnish Dubey, and Jens Lehmann, PNEL: Pointer
Network based End-To-End Entity Linking over Knowledge Graphs, International Semantic
Web Conference(ISWC), 2020.

• Debanjan Chaudhuri, Augustinus Kristiadi, Jens Lehmann, and Asja Fischer, Improving re-
sponse selection in multi-turn dialogue systems by incorporating domain knowledge, Conference
on Natural Language Learning (CoNLL), 2018.

• Firas Kassawat, Debanjan Chaudhuri, and Jens Lehmann, Incorporating joint embeddings
into goal-oriented dialogues with multi-task learning, Extended Semantic Web Conference
(ESWC), 2019.

• Debanjan Chaudhuri, Md Rashad Al Hasan Rony, Simon Jordan, and Jens Lehmann, Using a
KG-Copy Network for Non-Goal Oriented Dialogues, International Semantic Web Conference
(ISWC), 2019.

• Debanjan Chaudhuri, Md Rashad Al Hasan Rony, and Jens Lehmann, Grounding Dialogue
Systems via Knowledge Graph Aware Decoding with Pre-trained Transformers, 2021.

Papers in Review

• Md Rashad Al Hasan Rony, Debanjan Chaudhuri, Rostislav Nedelchev, Asja Fischer, and Jens
Lehmann, End-to-End Entity Linking and Disambiguation leveraging Word and Knowledge
Graph Embeddings, 2021.

The rest of the thesis is organized as follows: In chapter 2, all the related concepts required to follow
this thesis are mentioned. Chapter 3 summarizes all the previous works relating to human-machine
interaction, especially using speech and text. Chapter 4.3.6 summarizes the methods proposed in this
work to answer research question 1. The subsequent chapters, namely chapter 5.5.4, 6.4.3 describe
novel model and methods proposed to answer research question 2 and 3, respectively. The final
research question is studied in 7.6.2 and 8.5.3 and the different approaches and methods are described
to answer it. The research is concluded in chapter 9.2.2.
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CHAPTER 2

Preliminaries

In this chapter, we summarize the related concepts required to follow the rest of this thesis. We
firstly start with the basic concepts of natural language processing and different knowledge source
descriptions. Eventually we will focus on more advanced concepts in natural language processing and
deep learning

2.1 Natural Language Processing

Natural language processing (NLP) is a sub-field of linguistics and computer science concerned with
the interactions between computers and human languages, in particular how to device algorithms
which can interpret and process natural, human language.

Language processing, although has deep significance in the field of linguistics; however, recent
research in NLP focus mainly on several individual tasks relating to language processing. Text
classification is one of such task, where the task of a model is to classify a piece of text, the latter
could be short sentence(s) or larger documents. Text classification can be used for sentiment analysis,
document classification and many other business cases. Another NLP task is sequential classification,
where the model is suppose to tag or classify each token of a text piece. Such classification task is
generally used for the task of entity span detection, part-of-speech identification, et cetera. Probabilistic
language generation also comes under the umbrella of NLP as well. Here, a model generates words
based on a context of words such as in language modelling or dialogue generation. These are mainly
supervised tasks, however there can also be unsupervised tasks such as text clustering etcetera.

The standard process to solve a NLP task is to calculate the conditional distribution ?data(. |-) by
learning from labelled dataset(s) which consists of pairs G8 ∈ - and H8 ∈ Y (supervised learning);
or the data distribution ?data(-) by learning from unlabelled datasets consisting of samples G8 ∈ -
(unsupervised learning).

NLP tasks can be modelled using two methodologies 1) Rule based NLP and 2) Statistical NLP.
Rule based NLP was based on the insights of language understanding as in[21]. Such approaches
made use of a set of rules defined by formal grammar and a finite set of compositional rules and make
predictions based on them. However, designing such rules is very time consuming, requires domain
experts to design such rules and cannot be easily extended to new or real-world datasets.

Statistical approaches for understanding language and solving related tasks emerged, premised on the
distributional hypothesis[22]. Given a dataset, domain experts devise features and its corresponding
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Chapter 2 Preliminaries

extractors, for a particular task. Using these features and a suitable mathematical model the necessary
decision planes can be learned automatically from the data. Inspite of coming a step forward from
rule-based systems, feature engineering is still limited in scope to the kind of features humans can
come up with to extract the most out of data.

With recent advancements in neural network based machine learning models, most of NLP research
is now focused on using neural networks for learning latent features from the dataset. With the
introduction in embedding words into distributed vector spaces has seen rapid advancement in NLP
research. More recently, with pre-trained transformer based models, NLP methodologies has reached
new heights.

2.1.1 Knowledge Sources

As mentioned previously, world knowledge is present across several sources.

Unstructured Knowledge Sources

The whole web can be considered both structured and unstructured, but most of it is unstructured. As
defined by [23], unstructured knowledge is a knowledge source which has no identifiable structure.
From [24] Unstructured data is also described as data, that cannot be stored in rows and columns
in a relational database. Storing data in an unstructured form without any defined data schema is a
common way of filing in information. An example for unstructured data is a document that is archived
in a file folder. Other examples are videos and images. The advantage of unstructured data is, that no
additional effort on its classification is necessary. A limitation of this kind of data is, that no controlled
navigation within unstructured content is possible.

2.1.2 Structured Knowledge Sources

Fully structured data follows a predefined schema. "An instance of such a schema is some data
that conforms to this specification" [25]. Typical structured data sources are relational databases or
Knowledge Graphs. Typical phase of designing a structural data source is firstly to design the schema
and subsequently the content is created, populating the database. Knowledge graphs are also created
and populated in the same way. Additionally Knowledge Graphs are also created semi-automatically
using techniques such as relation linking and discovery.

Relational Databases

A relational database is a type of structured data source that stores and provides access to data points
that are related to one another. As mentioned previously, relational databases are based on a relational
model, an intuitive, straightforward way of representing data in tables. In such databases, each row in
the table is a record with a unique ID called the key (primary or foreign). The columns of the table
hold attributes of the data, and each record usually has a value for each attribute, making it easy to
establish the relationships among data points.
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2.2 Neural Networks

Figure 2.1: Knowledge Base and corresponding Knowledge Graph

Knowledge Graph

Definition 1 (Knowledge Graph) Within the scope of this work, we define a Knowledge Graph as a
labelled directed multi-graph. A labelled directed multi-graph is a tuple  � = (+, �, !) where +
is a set called vertices, ! is a set of edge labels and � ⊆ + × ! × + is a set of ordered triples. The
Knowledge Graph vertices represent entities and the edges represent relationships between those
entities.

A Knowledge Graph is a form of structured human knowledge [26]. It consists of facts in the form
of entities, relationships and semantic descriptions. . Entities can be real-world objects and abstract
concepts, relationships represent the relation between entities, and semantic descriptions of entities
and their relationships contain types and properties with a well-defined meaning.

While Knowledge Graph and Knowledge Base are two terms used synonymously, there is a minor
difference between the two. A knowledge graph can be viewed as a graph when considering its graph
structure. When it involves formal semantics, it can be taken as a knowledge base for interpretation
and inference over facts. Examples of knowledge base and Knowledge Graph are illustrated in 2.1.
Knowledge can be expressed as a fact or triple, used interchangibly in the form of (head, relation,
tail) or (subject, predicate, object) under the resource description framework (RDF), for example,
(Albert Einstein, WinnerOf, Nobel Prize). It can also be represented as a directed graph with nodes
as entities and edges as relations.

2.2 Neural Networks

From knowledge sources wewould now shift our focus to explaining themachine learningmethods used
in this thesis. Neural networks(NN) are the most extensively used in recent machine learning models
and specifically in this thesis. Different models of NNs have achieved state-of-the-art performance
across various computer vision and NLP related tasks. In this section, we will give a brief overview of
the fundamental building blocks of NN and then describe specific architectures and modules related to
the task of NLP.

The simplest Neural Network model is a feed-forward neural network ormulti-layer perceptron
(MLP) which is a composition of multiple layers of perceptron with non-linear activation functions.
Amongst them, the most simple one would be a single layer feed forward network defined as follows:
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##"!%1(x) = 6
(
xW1 + b1

)
W2 + b2

x ∈ R38= ,W1 ∈ R38=×31 ,b1 ∈ R31 ,W2 ∈ R31×32 , b2 ∈ R32
(2.1)

where W1,b1 and W2,b2 are the weight matrix and the bias for the first and second linear
transformation, respectively. These are the parameters which are trained using techniques such as
back-propagation, and 6 represents the nonlinear activation function. A simplified representation for a
two-layer MLP, which then can be generalized to N layers would be:

##"!%2(x) = Ĥ

h1
= 6

1
(
xW1 + b1

)
h2
= 6

2
(
h1W2 + b2

)
Ĥ = h2W3

(2.2)

A layer is defined as the resulting vector from each linear transformation. The final layer, i.e., the
outermost layer is called the output layer where a transformation is applied in order to get probabilities
for several tasks. Generally, a softmax or sigmoid transformation is applied at the last layer. All layers
apart from the output layer are called hidden layers. The output of one layer acts as an input to the
next layer, which eventually produces the output Y. This process is called forward propagation and the
non-linearity at each layer makes neural networks universal approximators. The non-linear function 6,
also called activation function, can be of many type and few of the typically used ones are:

• Sigmoid: It transforms the input x to a value between [0,1] and is defined as:

6(x) = 1
1 + 4−x

(2.3)

• Rectified linear unit (RELU)[27]: It clips the negative input value to zero and is defined as:

6(x) = <0G(0, x) (2.4)

• Hyperbolic tangent function (Tanh): It maps the output value to [-1,1] and is defined as:

6(x) = 4
2x − 1
4

2x + 1
(2.5)

Gradients are computed one layer at a time in the reverse direction of the forward propagation by
employing the chain rule of differentiation. The method of computing the gradients of the final loss
function with respect to each weight, across all the layers is called backpropagation. Backpropagation
has become a quintessential algorithm shared across several neural network architectures.
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2.2 Neural Networks

2.2.1 Deep Learning

After defining basic neural networks, we will now define the different neural network architectures
that are generally used for NLP and computer vision tasks. Deep learning is the extension of neural
network, where multiple hidden layers are used in the architecture in contrast to a single hidden layer
for simple perceptron. Large proportions of this section contain material from Deep Learning[28].

Deep learning models, or neural networks are composite, parameterized functions which can be
trained to output Ĥ8 ' H8 ∈ Y when given G8 ∈ -; or generate samples Ĝ8 ' G8 ∈ - . From a theoretical
perspective, they can be seen as a family of probability distributions ?model(, \), indexed by \, which
maps any configurations G to a real number estimating the true probability ?data(H |G) (discriminative
models), or in the case of generating samples, ?data(G) (generative models).

A deep learning model can be seen as a function 5 which is arbitrary and is parameterized with \
which works as follows:

Ĥ8 = 5 (G8; \) (2.6)
?model(H8 |G8; \) = Ĥ8 (2.7)

Here, Ĥ8 is the output of the model given G8 as the input. We would want a value of the index \ which
aligns ?model(, \) as close as possible to ?data. That is, for an input vector G8, we would want the
model’s output vector Ĥ8 be a distribution over all possible labels, with H8 having the being assigned
the highest probability, where (G8 , H8) are samples generated from ?data. One way to achieve this is to
use the principle of (conditional) maximum likelihood estimation or conditional MLE, defined as:

\
ML

= argmax
\

?model(. |-; \) (2.8)

which can be further resolved to:

\
ML

= argmin
\

Ex,y∼ ?̂data − log ?model(y |x; \) (2.9)

Hence we can find the most optimal set of parameters for our model by formulating it as an optimization
problem. The loss function or objective function of this optimization objective would be the negative
log likelihood (NLL) computed over samples (G8 , H8) sampled from ?̂data

1, guided by the MLE
principle.

We may also minimize the KL divergence2, yields cross-entropy loss between the training data and
the model distribution as the objective function.

We may replace Negative Log Loss with an arbitrary loss function L( 5 (G8; \), H8), which takes the
model output over an instance, true (real) label of the instance, and model parameters as the input, and
returns a score representative of the prediction errors of the model.

1Note that in Eqn. 2.9, ?̂data represents the empirical distribution based on sampled data at hand, since we have no
direct access to the true data generating distribution ?data.

2http://benlansdell.github.io/statistics/likelihood/
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Eqn 2.9 can then be generalized as:

\
∗
= argmin

\

Ex,y∼ ?̂dataL( 5 (x; \), y) (2.10)

= argmin
\

1
<

<∑
8=1
L( 5 (G8; \), H8) (2.11)

where < is the number of labelled samples in a given dataset.
The surface of the loss function may be highly complex and lie in a high dimensional space for

many deep learning model (number of dimensions as high as 350 million[29]). This renders grid
search or random search based solutions computationally intractable. The intractability is further
compounded upon by the fact that the actual value of the loss surface at any point would require
computing the loss function over the entire dataset.

Most commonly gradient descent is used to optimize the objective function - L. The gradient of
a function 5 (G) is the vector containing all the partial derivatives, denoted by ∇G 5 (G), and critical
points are points where every element of the gradient is equal to zero. To minimize L, we would like
to find the direction in which L decreases the fastest, at any point in the parameter space \, which is
to say

min
D,D

)
D=1

u)∇\L( 5 (x; \), y) (2.12)

min
D,D

)
D=1
| |u | |2 | |∇\L( 5 (x; \), y) | |22>Bq (2.13)

where u is a unit vector representing the direction in which we wish to move, and q is the angle
between u and the gradient. Since the magnitude of any unit vector (| |u | |2) is 1, the gradient term
isn’t influenced by u, Eqn. 2.13 can be resolved to minu2>Bq. Hence moving in opposite direction of
∇\L minimizes L the most. This leads to the following update step:

\
′
= \ − ∇\L (2.14)

where, is the learning rate, determining the magnitude of the update. This update step, if computed
indefinitely (or multiple number of times) will converge the model to a local minima[30, Chapter 9.3.1].
This optimization scheme also has some problems. Firstly, the loss surface of any neural network

may have several local minimas and saddle points [31]. Models trained based on (vanilla) gradient
descent can get stuck (converge) on either of them. Furthermore, computing the loss over the entire
dataset is computationally expensive.

An alternative learning method - stochastic gradient descent (SGD) is thus more commonly used
to train neural models. Instead of computing the loss over the entire dataset, training under SGD
involves sampling a mini-batch of examples � = G1, . . . G<

′ drawn uniformly from the training set.
This is done treating the gradient as an expectation, which can be approximately estimated using a
small set of samples. Sampling mini batches from the dataset for each update step ensures a much
reduced training time. Further, this stochastic nature introduces variations to the loss function and
consequentially the gradients, reducing convergence time and possibly converging potentially to a
better minima (i.e. with lower loss values).

For some other methods of training a deep neural network one may look at [32–36] and interested
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readers may refer [28].
We can now sequentialize steps to building a deep learning algorithm into (i) a labelled dataset

denoted by ?̂data, (ii) a loss function L( 5 (G8; \), H8 , \), (iii) an optimisation procedure (e.g. stochastic
gradient descent), and (iv) a model. In the rest of this section, we discuss some common model
components and architectures relevant to this work.

2.2.2 Deep Learning Models

This section describes different deep learning model architectures or neural networks that are used,
and are usually trained using the gradient learning methods as mentioned above.

Given the objective ofmodelling ?̂data, wewouldwant to devise functionswhich (i) are parameterised,
and receptive to change in parameters, (ii) are able to learn complex representations of input data by
learning simpler representations and or combining them, and (iii) are non-linear, since multiple linear
transformations when combined can be represented by one linear transformation rendering multiple
layers superfluous Being able to train them using gradient descent requires that these functions must
be (iv) are end-to-end differentiable.

Let us consider the following linear transformation:

ŷ =Wx + b (2.15)

where x ∈ R# ,W ∈ R#×" and ŷ, b ∈ R" . Treating W and b as parameters, we can represent it with
the following function:

5linear(x; \) =W\x + b\ (2.16)

where 5linear : R# ↦→ R" is a function parameterized which can compute an "-dimensional vector
given #-dimensional vectors as inputs. Present in existing literature as a linear regressor, this function
can be trained to weigh the # different features of input differently and produce an " dimensional
vector. For classification over an " dimensional label space . , we can interpret 5linear’s output as a
probabilitiy distribution over the " classes, and can choose the class with the highest score as the
model’s predicted output. We can alternatively normalize, and interpret its output (ŷ = 5linear(x; \)) as
a distribution ?model(y|x).
A linear regressor thus satisfies most of the requirements except for non-linearity. To incorporate

non-linearity, we can simply augment ŷ s.t. ŷ = 6 ◦ 5 , where 6 is a non-linear function, known as
the activation function. The most common activation function, namely the sigmoid function (f(z)),
defined as

f(z) = 1
1 + 4−z

(2.17)

is a bounded, differentiable and monotonic function f : R ↦→ (0, 1). Its generalisation to multi-
dimensional domain and range is known as the softmax function.

softmax(z)8 =
4
z8∑"

9=1 4
z 9

(2.18)

Softmax is most often used as the activation function over the final outputs of a model, given that it
can interpret an =-dimensional vector as a probability distribution over = classes.
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Other common choices of activation functions include the hyperbolic tangent function C0=ℎ : R ↦→
(−1, 1), and the more commonly used Rectified Linear Unit 6(z) = max{0, z} or (ReLU).
This constitutes the building block of neural networks, namely - a feed forward layer, composed

of a linear function 5linear(x; \), and an activation function. We may sequentially place these layers to
constitute a model that can learn a complex non-linear, parameterized function, which can be trained
to fit a probability distribution. All but the final layers are called hidden layers, and layer whose
outputs constitute the model’s output is called output layer. The output of one layer acts as the input to
the next, and the process in which these inputs are passed across layers is called forward propagation.
Correspondingly, during learning, we compute the gradients of the model one layer at a time. Using
the chain rule of differentiation as used in calculus. Only the gradients of the layer directly above
the current one affects its gradients, making the process of computing the gradients computationally
efficient. The process in which these gradients are computed across each layer (from top to bottom) is
called backpropagation.
For example, a two layered feed forward network 5mlp with two hidden layers can be denoted as

follows:

h1 = 61(W1 x + b01)
h2 = 62(W2 h1 + b2)
ŷ =W>DC h2 + b2)

?model(H |x) = softmax(ŷ) (2.19)

Some commonly used layers are as follows:
Feed forward, fully connected layers are not suitable for all tasks. When making predictions over

time-dependent, sequential input of length ; and dimensions = with an < dimensional label space a
single layer feed forward network would require ; × = × < + < parameters. However if instead we use
a recurrent model, where the hidden layers are time-dependent on each other and hence is suitable for
such sequential tasks.

Moreover, simple feed forward networks ignore structure of the input while making predictions, as
the input needs to be a flattened array of numbers. For an image of dimension < rows and = columns,
for example, a linear array of < × = needs to be input, losing neighbouring pixel information for the
network. than not. In the subsequent sections we will give a brief overview of deep learning layers
used for different tasks.

Recurrent Layers

Recurrent neural networks or RNNs[37] are a set of neural networks architectures which can handle
data sequential in nature 〈x (1) , . . . x () )〉 ∈ - . For example, in case of a sentence, the last word of the
sentence is probabilistically dependent on the first and other subsequent words as well, to form a latent
representation of the whole sentence, the models must take into account the whole sequence of words.
Recurrent models share parameters when processing inputs at different time-steps and learns the

parameters of the model \ in a time-dependent manner.
In other words, they process the inputs repeatedly - applying the same parameterised transformation

over each vector (x (C) ), processing each vector across all time-steps. This enables the model to
generalize over sequences of multiple different lengths as well.
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Furthermore, to be able to make inferences across different temporal position, recurrent models pass
a fixed length vector across time-steps, often referred to as the hidden state, or the memory updating
the parameters at each time-step. We can define them using the following equation:

h(C) = 6rnn(Wx(C) + Uh(C−1) + b) (2.20)

Where, 6 being the activation function (e.g. tanh), x(C) is the CCℎ input in the sequence, h(C−1) is the
hidden state corresponding to the C − 1Cℎ input. The weight matrices W, U and the bias b parameterize
this layer (\ for this model), and are shared across time-steps.
One shortcoming of these models is lack of sense of directionality. The flow of information in

Eqn. 2.20 is left-to-right which might be sub-optimal when making decisions involving elements
across the sequences, or right-to-left scripts (e.g. Hebrew sentences). A bidirectional RNN (or
BiRNN) aims to partially rectify these drawbacks by using an RTL (right to left) RNN alongwith the
conventional LTR (left to right) one, and combining their hidden states at each time to produce the
final summary vector, as follows:

h(C)
;
= 6rnn(W;x

(C) + U;h
(C−1)
;
+ b;)

h(C)A = 6
′

rnn(WAx
(C) + UAh

(C+1)
A + bA )

h(C) = [h(C)
;
, h(C)A ] (2.21)

W;,WA ,U;,UA , b;, bA being the parameters of the layer and shared across time-steps.
There are several other shortcomings of these recurrent architectures namely: vanishing or exploding

gradients, information loss across long time-steps which are solved using methods proposed by [38–40].
. We discuss them briefly, below.

Long Short-Term Memory (LSTM) Layers

[41] proposed a Long Short-Term Memory (LSTM) cell, an augmented recurrent cell, which can
explicitly retain information for even sequences which are long. An LSTM cell transfers not just
the last layer’s hidden output h(C) across time-steps, but an internal cell state c(C) on which the cell’s
hidden outputs are dependent on. Further, using, removing, and adding information to the cells is
managed by the means of three gating mechanisms implemented using: output, forget, and input gates.
For the sake of brevity, we omit an in depth explanation of each gate, and refer interested readers to
an excellent explanation of the topic -[42], and directly mention the equations which characterise an
LSTM cell:

f(C) = 66 (W 5 x
(C) + U 5 h

(C−1) + b 5 )
i(C) = 66 (W8x

(C) + U8h
(C−1) + b8)

o(C) = 66 (W>x
(C) + U>h

(C) + b>)
c(C) = f(C) ◦ c(C−1) + i(C) ◦ 62 (W2x

(C) + U2h
(C−1) + b2) (2.22)

h(C) = o(C) ◦ 6ℎ (c
(C) ) (2.23)

17



Chapter 2 Preliminaries

where f(C) , i(C) and o(C) represent the different gates which dictate the edit operations on the cell
state c(C) as depicted in Eqn. 2.22. Furthermore, 66 are sigmoid activation functions, 62, 6ℎ
are ℎH?4A1>;82 C0=64=C activations, ◦ represents the Hadamard product, and W∗,U∗, and b∗ are
parameters, which are time-invariant. Akin to the RNN layer, a layer of LSTM can be also modified
for bidirectionality using bi-directional models and concatenating their outputs.
Different variations of these recurrent units have been proposed, including Gated Recurrent Unit

(GRU) [43], Minimal Gated Unit (MGU) [44].

Pointer Networks

For the definitions below we borrow heavily from the original work on Pointer Networks [45].
Sequence-to-Sequence Model
Given a training pair, (P, �P), the sequence-to-sequence [46] model computes the conditional

probability ?(�P |P; \) using a parametric model (an RNN with parameters ) to estimate the terms of
the probability chain rule

?(CP |%; \) =
<(P)∏
8=1

?(C8 |�1, ....�8−1,P; \) (2.24)

Here % = {%1, ..., %=} is a sequence of n vectors and �P = {�1, ..., �<(P) } is a sequence of <(P)
indices, each between 1 and n. The parameters of the model are learnt by maximizing the conditional
probabilities for the training set, i.e.

\
∗
= argmax

\

∑
P,�P

log ?(CP |P; \) (2.25)

where the sum is over training examples.
Contest Based Input Attention
The normal sequence-to-sequence model produces the output sequence CP using the fixed

dimensional state of the recognition RNN at the end of the input sequence P. This constrains
the amount of information and computation that can flow through to the generative model. The
attention model of [47] mitigates this problem by augmenting the encoder and decoder RNNs with an
additional neural network that uses an attention mechanism over the entire sequence of encoder RNN
states. For notation purposes, let us define the encoder and decoder hidden states as (41, ..., 4=) and
(31, ..., 3m(P) ), respectively. For the LSTM RNNs, we use the state after the output gate has been
component-wise multiplied by the cell activations. We compute the attention vector at each output
time i as follows:

D
8
9 = E

)
C0=ℎ(,14 9 +,238) 9 ∈ (1, ..., =) (2.26)

0
8
9 = B> 5 C<0G(D

8
9) 9 ∈ (1, ..., =) (2.27)

3
‘
8 =

=∑
9=1
0
8
94 9 (2.28)
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where softmax normalizes the vector D8 (of length n) to be the "attention" mask over the inputs,
and v,,1, and,2 are learnable parameters of the model. In all our experiments, we use the same
hidden dimensionality at the encoder and decoder (typically 512), so v is a vector and,1 and,2 are
square matrices. Lastly, 3‘

8 and 38 are concatenated and used as the hidden states from which we make
predictions and which we feed to the next time step in the recurrent model.

Ptr-Net
A modification of the attention model that allows us to apply the method to solve combinatorial

optimization problems where the output dictionary size depends on the number of elements in the
input sequence: The sequence-to-sequence model softmax distribution over a fixed sized output
dictionary to compute ?(�8 |�1, ..., �81,P). Thus it cannot be used for problems where the size of the
output dictionary is equal to the length of the input sequence. To solve this problem one can model
?(�8 |�1, ..., �81,P) using the attention mechanism of as follows:

D
8
9 = E

)
C0=ℎ(,14 9 +,238) 9 ∈ (1, ..., =) (2.29)

?(�8 |�1, ..., �81,P) = B> 5 C<0G(D8) (2.30)

where softmax normalizes the vector D8 (of length n) to be an output distribution over the dictionary
of inputs, and v,,1, and,2 are learnable parameters of the output model. Here, we do not blend the
encoder state 4 9 to propagate extra information to the decoder, but instead, use D89 as pointers to the
input elements. In a similar way, to condition on �81 we simply copy the corresponding %�81

as the
input.

Transformers

In order to handle the problem with long-term dependency, recently a self-attention based model was
proposed for sequence-to-sequence tasks called transformers [48]. In the case of transformers, the
encoder and decoder blocks has similar architecture with only difference of having a masked attention
module for the decoder. Self-attention is where the final output or representation for a token is created
based on all the other tokens in a sequence. It is calculated using three vectors namely: query vector
(&), key vector ( ) and value vector(+). The final attention is calculated as:

0CC4=C8>=(&,  ,+) = B> 5 C<0G(& 
)√
3:

)+ (2.31)

Where, 3: is the dimension of the vectors. The model is trained in a similar fashion as other
sequence-to-sequence models (RNN based) by predicting the next word at a time by shifting the
decoder words. However, in the case of the transformers, the future words in the decoder are masked
(with zeros) to avoid the decoder the see the future output.

A lot of further research [49] [50] has successfully trained such transformer architecture in an
unsupervised manner by training the transformer as a language model but by replacing 15% of the
words in the sequence by a mask (mask language modelling) and also to predict whether the next
sentence is really a next sentence in a document or not (next sentence prediction). These pre-trained
transformer models has been very beneficial for other downstream tasks such as question-answering,
reading comprehension, sentence classification and so on.

19



Chapter 2 Preliminaries

Convolutional Layers

Convolutional Neural Networks (CNNs) as proposed by [51] are neural layers specialized in processing
grid-like data structures such as images (2-D grid), or even sequential data which can be modeled as a
1-D grid. As the name suggests, these layers involve the convolutional operation using parameterized,
multi-dimensional kernels. These kernels are learnable parameters, used to compute a weighted average
over subset of input values to produce one value as an output representation: ℎconv9 =W:x 9−</2: 9+</2
where W: is a kernel of < dimensions, and x is a 1-D input of =. By sliding this kernel over the length
of x, we can compute an output representations of = −< + 1 dimensions. This operation of sliding the
kernel over an input is called the convolution operation, and can be generalised for multi-dimensional
inputs and kernels.
When an input is passed through a feed-forward layer, each output value < is influenced by each

input value = correspondingly weighted by,<,=, a scalar parameter. When processing structured
inputs, this is disadvantegous because of the increased number of parameters, as well as particularly
difficult for the model to be spatially aware. Convolutional layers instead have sparse interactions as
the inputs are convolved, or multiplied with kernels that are significantly smaller in size. Furthermore,
given that we slide the same kernel across the inputs, as opposed to having different parameters
corresponding to each term in the output vector, the kernel parameters are shared. This invariance
helps to train the kernels to find a specific feature over the inputs, for instance an edge in an image,
or in less abstract layers: a geometric shape, or a written character, implicitly. In practice, we have
multiple kernels (with independent parameters in each) produce multiple output representations of
the input corresponding to the presence of feature each kernel is trying to find, giving the kernel
their other commonly used name - a feature map. Note that we use the term feature not to denote
human-interpretable features but rather a latent, high-dimensional representation in a space with little
co-relation to a human interpretable concept.

These multiple outputs are then passed through activation functions, and finally through a pooling
layer which replace the output of the net at a certain location with a summary statistic of the nearby
outputs[28, Chapter 9.3], making the outputs become more invariant to slight variations in the input.
All the outputs from all the convolution filters are finally flattened and passes on to a fully-connected
layer and finally all the network learns with traditional backpropagation based method as explained in
the previous sections.
A convolution layer, thus, is composed of (i) a convolution operation, (ii) an activation, and (iii) a

pooling operation (could be average, or max pooling). Models composed primarily of convolution
layers have shown tremendous performance over multiple tasks, primarily, but not restricted to the
domain of computer vision [52–54]. Recently, their use for NLP tasks has been explored, and has
shown promising results[55, 56] as well.

Time Distributed Feed Forward Layers

A time distributed feed-forward layer is fully connected layer applied on one element of the input
sequence at a time. Intuitively, this can be imagined as a recurrent architecture without the hidden
states. We can describe them by the following equations:

ŷ(C) = 6(Wx(C) + t) (2.32)
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which we can alternatively represent as:

ŷ(C) = 6( 5mlp(x
(C) ; \)) (2.33)

In practice, we use this to classify tokens (as explained below), and more commonly to embed input
word tokens into a distributed, low-dimensional vector space, traditionally used as the first layer in
neural network models involved in natural language processing.

The latter, known as the embedding layer has no explicit activation function.
We discuss the use and the process of training embedding layer at length in the next section -

Sec. 2.3.1.
These layers conclude the background neural network architectures that will be used in this thesis,

in the later sections we will explain how these architectures for different natural language processing
tasks.
Since, most of these thesis focus on using recurrent architectures, we will focus mostly using

recurrent architectures and also transformers in the next parts of this section.

2.2.3 Deep Learning Architectures for NLP Tasks

A natural language processing task) (., ?data(. ), ?data(. |-)), for a particular domain � (-, ?data(-))
can be broadly classified into four categories based on the type of textual understanding it requires. In
this subsection, we will describe those NLP categories.
Note that, we will use 5RNN as an abstract function which may be composed of multiple recurrent

layers, with or without bi-directionality, have any activation function, and may use any recurrent cell
including RNNs, LSTMs et cetera. Similarly, 5MLP may be used to denote one feed-forward layer, or a
combination of multiple such layers, with some activation function applied across each layer.

Sentence Level Classification

For the task of sentence level or sequence level classification, given a sequence of word tokens
G8 = G

(1)
8
. . . G

() )
8

, a model should classify the sequence G8 into one of = classes. Common examples
of such tasks include sentiment classification, topic classification, document classification.

In order to classify the sentence or sequence, firstly the sentence is encoded using a word embedding
layer (explained later) and then passed on to a RNN or CNN module to get a final representation of
the whole sentence. Thereafter, a final classifier is added after this encoded output which creates
a distribution over a label space. We cumulatively refer to the layers which create an encoded
representation of the text as encoder.

In practice the encoder consists of the aforementioned embedding layer (or a time distributed feed
forward layer), and a recurrent layer (or convolutional). The following equations provide an abstract
summary in case of a RNN based encoder:

x(C)emb = 5emb(x
(C) ; \emb) (2.34)

h(C)enc = 5rnn(x
(C)
emb; \emb) (2.35)

ŷ = 5mlp(h
() )
enc ; \mlp) (2.36)
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where 5emb and 5rnn collectively constitute the encoder, and 5mlp is called the classifier which takes
the final hidden state of the RNN as the sequence’s summary. For a convolutional based method, the
final encoded representation is obtained by concatenating the mean and max pooled (across time)
representations of the hidden states h(1)enc . . . h

() )
enc along with the final state.

Token Level Classification

Unlike sentence level, for token level classification a model should assign a label in one of = classes to
each token in a sentence rather than the entire sentence. Common examples of which include Part of
Speech tagging, named entity recognition.

In order to tackle it, the previously mentioned network can be replaced by using a time distributed
feed forward layer (See Sec. 2.2.2), as opposed to a regular MLP. We can thus modify Eqn. 2.36 as
follows:

ŷ(C) = 5mlp(h
(C)
enc; \mlp) (2.37)

This modification allows us to make prediction corresponding to each hidden state (representing a
summary of the sequence up-to that point).

Interestingly, by keeping the label space same as the feature space, we can train the model to predict
the next word given the sequence so far. This task is referred to as language modelling
The neural architecture defined here, and above (2.34-2.36) are collectively referred to as an

encoder-classifier network.

Sequence Generation

Instead of classifying a given sequence into one of = classes, some task might involve generating text
given a particular input. Some examples include generating captions given an image, or generating
sentences from data.

Neural approaches to solve this task introduce the concept of a conditional recurrent layer. So far
we’ve seen a recurrent layer as a function which encodes an input sequence’s elements by the means of
the cell state. Instead, we can think of it as a generative model which generates a hidden state vector
conditioned on the input.

For the case of sequence generation, the conditional RNN is introduced which is conditioned on the
encoded output of an encoder RNN and is trained to generate a sequence of words given the input
query.
The task of sequence generation follows of step of creating a fixed length context vector given an

input from an arbitrary feature space, and then using it to condition a recurrent layer to generate the
desired sequence. The latter (combination of an RNN and a time distributed feed forward layer) is
referred to as the decoder of the model. As above, we refer to the part of the model which encodes the
given input to a fixed length context vector as the encoder. The resultant model can be described by
the following equations:

h = 5enc(x; \enc) (2.38)

s(C) = 5rnn(h, s
(C−1) ; \rnn) (2.39)

ŷ = 5mlp(s
(C) ; \mlp) (2.40)
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where 5enc is an arbitrary encoder, and 5rnn is conditioned on the encoder’s output h.

Sequence Transduction

Tasks which fall under this classification involve trying to predict a sequence given another. Typical
examples include machine translation, dialogue generation et cetera, wherein we wish for the model to
generate a sequence having the same semantic meaning, but in a different language, or paraphrasing
wherein we wish for the model to rephrase one or many sentence keeping their semantic meaning
intact.

To solve this, we can modify the network above, especially the decoder to generate a token at every
time stamp conditioned on the given input query and the previously generated output.
That is to say, that we can replace 5enc in Eqn. 2.38 with a combination of an embedding layer

(explained later) and a recurrent layer. Here, we can use both, the last hidden state of the encoding RNN,
or its pooled summary (across time) as the context vector. These models are called encoder-decoder,
or sequence-to-sequence networks.

2.3 Representing Language as Dense Vectors

So far we have discussed about how to handle different neural network architectures that can handle
several input types for different tasks. However, one of the biggest challenges for natural language
processing is to represent the text or words of the language which the neural network or machine
learning model can understand.

Before the neural network based NLPmodels, words (or tokens) were represented as one-hot encoded
vectors or n-gram based methods. However, they suffered from the curse of dimensionality. Later on,
dense represented vectors were used to represent the words where were learned in an unsupervised
way. More recently, pre-trained transformer based models are used instead of word-embeddings which
empirically performed significantly better across all NLP tasks.

In this section we will explain the different embedding methods for encoding natural language. We
will furthermore also discuss techniques proposed for encoding Knowledge Graph elements (entity
and relations) using similar low-dimensional Knowledge Graph embeddings.

2.3.1 Word Embeddings

Asmentioned before, instead of assigning a unique representation of each word using one-hot encoding,
and explicitly modeling the relations between them, in a distributed representation scheme, each word
is assigned a vector in a shared space. The meaning of the words and their relations to others are
captured by the activations in the vector and the similarity between them[57, Ch. 10.4]. This results in
words with similar meaning are close to each other in the distributed vector space.

Numerous approaches exist for designing and training word embeddings model. Notably, [58]
propose one of the most popular approach for training word embeddings namely, skip-gram models.
Skip-gram models are trained to predict the context given a target word, i.e. words surrounding the
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target words, using unsupervised techniques. This is done by optimising the following loss function:

!SGNS = −
1
|C|

|� |∑
C=1

∑
−�≤ 9≤�, 9≠0

log ?model

(
G
(C+ 9) |G (C)

)
(2.41)

where G (1:) ) is a sequence sampled from the training data. In practice G (C) represents the CCℎ word
occurring in the sequence, as an index of the vocabulary V (the feature space for the task). Using this,
we can then define a skip-gram model as:

x(C)emb =Wembx
(C) (2.42)

ŷ = softmax(Wcontextx
(C)
emb) (2.43)

?model(x
(C+ 9) |x(C) ) = ŷ (2.44)

where Wemb is a linear layer (without a bias or an activation) with |V| input dimensions and an arbitrary
hidden dimension (typically 100-300), also known as the embedding layer, and correspondingly
Wcontext is another linear layer known as the context layer which maps the transforms the hidden space
to the output space.
Here the trained embedding layer (or the embedding matrix) is of particular interest, since it

transforms a word index to a low-dimensional, dense representation space and can be used for later
downstream tasks. For the neural architectures explained previously, this embedding layer is used as
5emb whose main job is to represent the tokens as vectors to be used across several downstream tasks
such as sentiment classification, language modelling, dialogue generation, et cetera.

2.3.2 Pre-trained Transformers

As explained previously pre-trained transformer models, trained on different tasks can also be used as
embeddings for several other downstream tasks. Such models are BERT [49], Transformer-XL [59],
XLM.

Along with the objectives of masked language modelling and next-sentence prediction, another
novelty in the case of these pre-trained transformer models is they use a positional encoding added to
the traditional word embedding model which denotes the position of a word in a sequence.
These pre-trained model has improved upon almost all NLP downstream tasks compared to using

traditional word embeddings. Such pre-trained models outputs an embedding for the whole sentence
corresponding to a special [CLS] token and also for each token in a sequence. The former can be used
for sentence level classification tasks while the latter is used for token or sequence level classification
tasks.

2.3.3 Knowledge Graph Embeddings

Similar to natural language words, many studies have also focused on getting dense vector represen-
tations for Knowledge Graph entities and relations as well. Such embeddings can also capture the
semantics of KG elements and can be used for downstream tasks such as relation linking, knowldge
graph completion.

Representation Space: Most works literature mainly focuses real-valued point-wise space
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including vector, matrix and tensor space, eg, TransE [60] while other kinds of space such as complex
vector space eg, RotateE [61] Gaussian space eg, TransG [62] and manifold eg, DihEdral [63] are
utilized as well.

Scoring Function: The scoring function is used to measure the plausibility of facts in a Knowledge
Graph, which is also referred to the energy function in case of energy-based learning framework.
Energy-based learning aims to learn the energy function �\ (G) parameterized by \ taking G as input,
and to make sure true facts (positive samples) have higher scores than false facts (negative samples).
In this thesis, the term of scoring function is adopted for unification. There are two typical types of
scoring functions, i.e., distance-based [60] and similarity-based [64] functions. Distance-based scoring
function measures the plausibility of facts by calculating the distance between entities, where additive
translation with relations as ℎ + A ≈ C is widely used. Semantic similarity-based scoring measures
the plausibility of facts by semantic matching, which usually adopts multiplicative formulation, i.e.,
ℎ
)
"A ≈ C

) , to transform head entity near the tail in the representation space.
Encoding Models: Several models are being proposed that encode the interactions of entities

and relations through specific model architectures, including linear/bilinear models, factorization
models, neural networks. Linear models formulate relations as a linear/bilinear [60] mapping by
projecting head entities into a representation space close to tail entities. Factorization [65] aims
to decompose relational data into low-rank matrices for representation learning. Neural networks
[66] encode relational data with non-linear neural activation and more complex network structures.
Within neural networks the use of convolutional neural networks [67], recurrent neural networks [68],
Transformers [69] and Graph Neural Networks [70] are common.

TransE

TransE [60] is one of mostly used KG embeddings (for downstream tasks) which represents entities
and relations in d-dimension vector space, i.e., h, t, r ∈ R3 , and makes embeddings follow the
translational principle ℎ + A ≈ C.
In the case of PNEL, one of the model proposed in this thesis, we utilise PyTorch-BigGraph [71]

translation embeddings with the dot function as a comparator. Since the number of entities in our
chosen Knowledge Graph of Wikidata is high (74 millions) a suitable comparison function has to be
chosen to be able to discriminate between embeddings in a crowded space. As opposed to cosine, dot
product considers both angle and length of overlap and hence is more discriminative in case of larger
datasets.
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Related Work

In this chapter, we discuss the different previous works relating to human-machine interactive systems,
specifically text-based systems for interaction. We will first describe different previous works on
human-machine interactive systems and proceed depth-first into interactive systems that can be realized
as a question-answering system or as a dialogue systemwith additional contextual information.Previous
methods and systems relating to question answering and dialogue systems are briefed upon here.

3.1 Human Machine Interactive Systems

As mentioned previously, human machine interactive systems can be realized using several method-
ologies [72] which are summarized below

3.1.1 Computer Vision Based

Vision based HMIs are mostly focused on gesture or motion detection and analysis. These systems
has several applications ranging from automobile control to gaming. It is a well-research topics and
various models and systems are proposed for gesture and motion detection [73] [74] [75].

3.1.2 Laser Based HMI

Laser based HMI can be used in conjunction with vision based systems or can also be developed as
standalone architectures. By connecting multiple Infra Red(IR) LEDs with IR sensors, one can create
a LED-based Multi-touch Sensor which are used in a interactive LCD screen [76] which has several
potential applications. Laser based models can also be used to build virtual keyboard [77] and recently
also has found usage for building augmented reality [78] systems.

3.1.3 Bionic Technology Based

Bionic HMI systems are influenced from medical based applications. Such systems can built using
Electroencephalography(EEG) for tracking the electrical activity in the brain [79] [80] [81]. Also,
some BCI systems are based on Electrocardiogram (ECG), Electromyography (EMG) [82], or
Electrooculography (EOG) based [83]. Some systems are also modeled by combining EMG, EOG
and EEG together.
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3.1.4 Speech Based HMI

Last, and the most commonly used HMI are speech based, where the machine interacts with the user
using speech interfaces [84] [85] [86].
Speech based human-machine interactive systems, which are the most widely used method for

HMI has been researched for a long time. Initial speech based systems were restricted to command
based systems where the user interacts with the system using simple commands with restricted
vocabularies [87]. Later systems were based on interactive voice responses (IVR) [88]. IVR systems
are traditionally built using Dual-Tone Multi-Frequency signaling (or DTMF), but recently voice
recognition technologies are also in place. More recently, speech-based HMI’s are very much available
in every smartphones as voice-enabled personal assistants (eg. siri, cortana). Such systems are built
using a speech to text module on top and having a natural language understanding built using statistical
methods in the background.
The scope of this thesis is the background natural language understanding modules implemented

in a traditional speech-based human machine interactive system. Interactive systems based on
natural language are quintessentially conversations agents or dialogue systems which are studied
in this work. In the next sections, previous works on conversation systems are stated, including
different question-answering systems which can be thought of as conversation systems without any
understanding of the conversation context, but able to respond to user’s request.

3.2 Question Answering Systems

Question answering systems, as defined by [89] wrt. human-computer interaction: “For human-
computer interaction, natural language is the best information access mechanism for humans. Hence,
Question Answering Systems (QAS) have special significance and advantages over search engines and
are considered to be the ultimate goal of semantic Web research for user’s information needs". The
last few decades have seen many researches on developing question answering systems. Such systems,
can be realized using several techniques which will be discussed in the following sections.

3.2.1 Retrieval Based Question Answering System

These kind of systems answers a user query using information retrieval based methods, where an
answer is retrieved from a set of documents which could be stored in a database or present in the web.
More traditional retrieval based systems are tf-idf based, where they propose additional mechanism
like word based matching like in [90], using word embeddings [91] or using language models [92]
[93].

Deep Learning based approaches on the other hand firstly also uses shallow term-frequency based
models to generate a set of candidate answers, and finally use deep neural network based methods to
re-rank the fetched candidates. Suchmodels can be representational (using a dense latent representation
for the query and answer candidates) or interaction based (computing interactiong between query and
answer tokens using DL). Both Convolutional neural network (CNN) and LSTM based methods are
proposed for latent representation based QA systems. Some CNN based models are [94] [95], while
LSTM based models are [96] [97]. Additionally there are also models proposed using a hybrid CNN
and LSTM architecture as proposed in the QA-LSTM model by [98]. For interaction based models, a
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matching matrix is created based on the words in the query and answer candidates and learned using
attention [99], rnns [100] or more recent pre-trained transformer based (BERT) [49].

3.2.2 Reading Comprehension based Question Answering

Question Answering systems can also be realized using reading comprehension based methods, where
a question can be answered using a paragraph. Previous models for reading comprehension were
based on LSTM networks, where the question and the paragraph is encoded using a LSTM model,
concatenated and henceforth a probability distribution using attention mechanism is created for the
probable document tokens which can answer the question. Some of these LSTM models are proposed
in the works by [101] [102] [103] [104].
Similar to other NLP tasks, there are also recent systems which uses pre-trained transformers

for comprehensive QA. [49] did fine-tuning on a pre-trained transformer BERT model which they
proposed. They represent the query and the paragraph using the BERT model and introduce two
output vectors which represents the start and end index of the phrase from the paragraph which can
answer the query. The final prediction is made by using a softmax over all the words in the paragraph.
[105] also reported state-of-the-art accuracy for the task of reading comprehension for QA with
auto-regressive pre-trained transformers.

3.2.3 Question Answering over Knowledge Graphs

Next type of question answering systems are over Knowledge Graphs (KGQA); where, given a question,
a model firstly tries to predict the entity mentioned in the question (entity linking), then it predicts the
relations that are used in the question (relation linking). Both simple and complex questions (based on
the number of entities and relations in the questions) can be answered using knowldge graphs.

The SimpleQuestions dataset, as proposed by [106] is the first large scale dataset for simple questions
over Freebase. It consists of 108,442 questions split into train(70%), valid(10%), and test(20%). They
also proposed an end-to-end architecture using memory networks along with the dataset.

The second end-to-end approach for simple question answering over Freebase was provided by [107].
They proposed a character LSTM based question encoder for encoding the question, a CNN based
encoder for encoding the KG entity and relation, and finally an attention-based LSTM decoder for
predicting an entity-relation pair given the question. A similar ent-to-end approach was suggested by
[7]. It employs Gated Recurrent Unit (GRU) based encoders that work on character and word level
and in addition encode the hierarchical types of relations and entities to provide further information.

Furthermore, a growing set of modular architectures was proposed on the SimpleQuestions dataset.
[95] proposed a character-level CNN for identifying entity mentions and a separate word-level CNN
with attentive max-pooling to select Knowledge Graph tuples. [8] utilized a hierarchical residual
bidirectional LSTM for for predicting a relation, which is then used to re-rank the entity candidates.
They replaced the topic entity in the question with a generic token <e> during relation prediction
which helps in better distinguishing the relative position of each word compared to the entity.

[108] proposed a conditional probabilistic framework with bidirectional GRUs that takes advantage
of Knowledge Graph embeddings. [6] suggested to use a combination of relatively simple, component-
based approaches that build on bidirectional GRUs, bidirectional LSTMs (BiLSTMs), and conditional
random fields (CRFs) as well as on graph-based heuristics to select the most relevant entity given a
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question from a candidate set. The resulting model provides strong baselines for simple question-
answering. More recently, [109] proposed an architecture based on KG embeddings, [110] proposed a
technique combining LSTM-CRF based entity detection with BiLSTM based relation linking where
they also replace the topic entity with generic tokens following [8].

Some other open-domain Knowledge Graphs are Wikidata[111] and DBpedia [112]. In particular,
there are two very recent efforts that provided adaptations of the SimpleQuestions dataset [106] to
Wikidata [113] and DBpedia [114]. In addition, there is the Question Answering over Linked Data
(QALD) [115–117] series of challenges that use DBpedia as a knowledge base for QA.

For complex KGQA, the WebQSP dataset is proposed over freebase which is later mapped to
wikidata by [118]. They also additionally propose a graph neural network based model called VCG
for the task.

3.3 Dialogue Systems

Along with question answering systems, human-computer conversational systems also have attracted
increasing attention in the research community and dialogue systems have become a field of research
on its own. The conversation models proposed in early studies [119–121] were designed for catering
to specific domains only, e.g. for performing restaurant bookings, and required substantial rule-based
strategy building and human efforts in the building process. With the advancements in machine
learning, there have been more and more studies on conversational agents which are based on data-
driven approaches. Data-driven dialogue systems can chiefly be realized by two types of architectures:
(1) pipeline architectures, which follow a modular pattern for modelling the dialogues, where each
component is trained/created separately to perform a specific sub-task, and (2) end-to-end architectures,
which consist of a single trainable module for modelling the conversations.

Task-oriented dialogue systems, which are designed to assist users in achieving specific goals,
were mainly realized by pipeline architectures. Recently however, there have been more and more
works on end-to-end dialogue systems because of the limitations of the former modular architectures,
namely, the credit assignment problem and inter-component dependency, as for example described by
[122]. [123] and [124] proposed encoder-decoder-based neural networks for modeling task oriented
dialogues. Moreover, [122] proposed an end-to-end reinforcement learning-based system for jointly
learning to perform dialogue state-tracking [86] and policy learning [125].

Since task oriented systems primarily focus on completing a specific task, they usually do not allow
free flowing, articulate conversations with the user. Therefore, there has been considerable effort
to develop non-goal driven dialogue systems, which are able to converse with humans on an open
domain [126]. Such systems can be modeled using either generative architectures, which are able to
freely generate responses to user queries, or retrieval-based systems, which pick a response suitable to
a context utterance out of a provided set of responses. Retrieval-based systems are therefore more
limited in their output while having the advantage of producing more informative, constrained, and
grammatically correct responses [127].

3.3.1 Generative models

[126] were the first to formulate the task of automatic response generation as phrase-based statistical
machine translation, which they tackled with n-gram-based language models. Later approaches [128–
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130] applied Recurrent Neural Network (RNN)-based encoder-decoder architectures. However,
dialogue generation is considerably more difficult than language translation because of the wide
possibility of responses in interactions. Also, for dialogues, in order to generate a suitable response at
a certain time-step, knowing only the previous utterance is often not enough and the ability to leverage
the context from the sequence of previous utterances is required. To overcome such challenges, a
hierarchical RNN encoder-decoder-based system has been proposed by [131] for leveraging contextual
information in conversations. [132] proposed a neural network architecture which can leverage
contextual information in the previous dialogue utterances to generate a response. Following
similar lines, an encoder-decoder based system has been proposed by [131] using hierarchical neural
architecture. The model essentially contains two stacked RNNs (Recurrent neural networks) stacked
on top of one another. The first rnn encodes each utterance into a fixed length vector, this is called as
sentence-level RNN. The next context-level RNN is responsible for summarizing the conversation at
time-step t using all the utterance vectors from the sentence-level RNN from time-steps 0..(C − 1).

Leveraging background information for dialogue system improvement is a well-researched topic as
well, especially in goal-oriented setting [123, 124, 133]. [20] proposed the in-car dataset which uses a
knowledge base for in-car conversation about weather, location and so on. Recently, [10] proposed
memory-network based encoder-decoder architecture for integrating knowledge into the dialogue
generation process on this dataset. Improved models in this task are proposed by [134, 135]. [136]
proposed a soccer dialogue dataset along with a KG-Copy mechanism for non-goal oriented dialogues
which are KG-integrated.

More recently, transformer-based [48] pre-trained models have achieved success in solving various
downstream tasks in the field of NLP such as question answering [137] [49], machine translation [138],
summarization [50]. In a recent work, [139] investigated on transformer-based model for non-goal
oriented dialogue generation in single-turn dialogue setting.

In past years, there is increased focus on encoding graph structure using neural networks, a.k.a. Graph
Neural Networks (GNNs) [140, 141]. A generalization of CNN to graph domain, Graph Convolutional
Networks (GCNs) [142] has become popular in the past years. Such architectures are also adapted for
encoding and extracting information from Knowledge Graphs [143].

3.3.2 Retrieval-based models

Earlier works on retrieval-based systems focused on modeling short-text, single-turn dialogues. [144]
introduced a data set for this task and proposed a response selection system which is based on
information retrieval techniques like the vector space model and semantic matching. [127] suggested
to apply a deep neural network for matching contexts and responses, while [145] proposed a topic
aware convolutional neural tensor network for answer retrieval in short-text scenarios.

More recently, there has been increased focus on developing retrieval-based models for multi-turn
dialogues which is more challenging as the models need to take into account long-term dependencies
in the context. [146], introduced the Ubuntu Dialogue Corpus (UDC), which is the largest freely
available multi-turn dialogue data set. Moreover, the authors proposed to leverage RNNs, e.g. LSTMs,
to encode both the context and the response, before computing the score of the pair based on the
similarity of the encodings (w.r.t. a certain measure). This class of methods is referred to as dual
encoder architectures. Shortly after, [147] investigated the performance of dual encoders with different
kind of encoder networks, such as convolutional neural networks (CNNs) and bi-directional LSTMs.
[148] followed a different approach and trained a single CNN to map a context-response pair to the

31



Chapter 3 Related Work

corresponding matching score.
Later on, various extensions of the dual encoder architecture have been proposed. [149] employed

two encoders in parallel, one working on word- the other on utterance-level. wu2017sequential
proposed the Sequential Matching Network (SMN), where the candidate response is matched with
every utterance in the context separately, based on which a final score is computed. The Cross
Convolution Network (CNN) [150] extends the dual encoder with a cross convolution operation. The
latter is a dot product between the embeddings of the context and response followed by a max-pooling
operation. Both of the outputs are concatenated and fed into a fully-connected layer for similarity
matching. Moreover, [150] improve the representation of rare words by learning different embeddings
for them from the data.
Handling rare words has also been studied by [151], who proposed to handle Out-of-Vocabulary

(OOV) words by using both pre-trained word embeddings and embeddings from task-specific data.
Furthermore, many models targeting response selection along with other sentence pair scoring tasks

such as paraphrasing, semantic text scoring, and recognizing textual entailment have been proposed.
[152] investigated a stacked RNN-CNN architecture and attention-based models for sentence-pair
scoring. Match-SRNN [100] employs a spatial RNN to capture local interactions between sentence
pairs. Match-LSTM [153] improves its matching performance by using LSTM-based, attention-
weighted sentence representations. QA-LSTM [154] uses a simple attention mechanism and combines
the LSTM encoder with a CNN.

Incorporating unstructured domain knowledge into dialogue system has initially been studied by [9]
and followed by [19], who incorporated a loosely-structured knowledge base into a neural network
using a special gating mechanism. They created the knowledge base from domain-specific data,
however their model is not able to leverage any external domain knowledge.
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CHAPTER 4

Improving Knowledge-Based Question
Answering using Structural Information.

In this section, we will answer research question 1: "How the Knowledge Graph Structure can be
incorporated for Knowledge Graph Question Answering?". We firstly investigate a modular approach
for entity linking namely EARL 4.1, and finally we propose two end-to-end methods: PNEL 4.2 ELiDi
4.3 for entity linking and compare the methods on simplequestion dataset [106]. It must be mentioned
that although we are reporting entity linking scores, we also have used the predicted relations for entity
linking. This is synonymous to the task of question answering measured by micro-average accuracy
of entity and relation pair linking as proposed in [106].

4.1 EARL

The first modular approach, EARL for entity linking and disambiguation is described in this section.
We firstly describe the methodology for EARL and then discuss the evaluation and finally the
shortcomings of the model. A paper on this topic is published in the international semantic web
conference (ISWC) [155]. The author devised the E/R prediction module, the adaptive E/R learning
method, and co-writing the paper.
In this section we first discuss the step of span detection of entity and relation in natural language

question and candidate list generation. We perform the disambiguation by two different approaches,
which are discussed later in this section.

4.1.1 Introduction

As discussed previously, question answering is a two-step process. Firstly, entity linking is done
followed by relation linking. for entity linking, The first step is to identify and spot the span of the
entity mentioned in a question (entity span detection). The second step is to disambiguate or link the
entity to the Knowledge Graph (linking). For linking, the candidates are generated for the spotted
span of the entity and then the best candidate is chosen for the linking. These two steps are similarly
followed in standard relation linking approaches. In our approach, we first spot the spans of entities
and relations. After that, the (disambiguation) linking task is performed jointly for both entities and
relations. However, it must be noted that relations can also be directly predicted from the question
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Figure 4.1: EARL Architecture: In the disambiguation phase one may choose either Connection Density or
GTSP. In cases where training data is not available beforehand GTSP works better.

itself rather from detecting relation spans.
For EARL, we firstly spot the spans of entities and relations. After that, the (disambiguation)

linking task is performed jointly for both entities and relations.
In this section we first discuss the step of span detection of entity and relation in natural language

question and candidate list generation. We perform the disambiguation by two different approaches,
which are discussed later in this section.

4.1.2 Candidate Generation Steps

Shallow Parsing

Given a question, we firstly perform chunking or shallow parsing. EARL uses SENNA[156] as the
keyword extractor. We also remove stop words from the question at this stage. In example question
"Where was the founder of Tesla and SpaceX born?" we identify <founder, Tesla, SpaceX, born> as
our keyword phrases.

E/R Prediction

Once keyword phrases are extracted from the questions, the next step in EARL is to predict whether
each of these is an entity or a relation. We use a character embedding based long-short term memory
network (LSTM) to do the same. The network is trained using labels for entity and relation in the
Knowledge Graph. For handling out of vocabulary words [157], and also to encode the Knowledge
Graph structure in the network, we take a multi-task learning approach with hard parameter sharing.
Our model is trained on a custom loss given by:

E = (1 − U) ∗ E��� + U ∗ E�� (4.1)

Where, E��� is the binary cross entropy loss for the learning objective of a phrase being an entity
or a relation and E�3 is the squared eucledian distance between the predicted embedding and the
correct embedding for that label. The value of U is empirically selected as 0.25. We use pre-trained
label embeddings from RDF2Vec [158] which are trained on Knowledge Graphs. RDF2Vec provides
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latent representation for entities and relations in RDF graphs. It efficiently captures the semantic
relatedness between entities and relations.

We use a hidden layer size of 128 for the LSTM, followed by two dense layers of sizes 512 and 256
respectively. A dropout value of 0.5 is used in the dense layers. The network is trained using Adam
optimizer [159] with a learning rate of 0.0001 and a batch size of 128. Going back to the example,
this module identifies "founder" and "born" as relations, "Tesla" and "SpaceX" as entities.

Candidate List Generation

This module retrieves a candidate list for each keyword identified in the natural language question by
the shallow parser. To retrieve the top candidates for a keyword we create an Elasticsearch1 index
of URI-label pairs. Since EARL requires an exhaustive list of labels for a URI in the Knowledge
Graph, we expand the labels. We used Wikidata labels for entities which are in same-as relation in
the knowledge base. For relations we require labels which were semantically equivalent (such as
writer, author) for which we took synonyms from the Oxford Dictionary API 2. To cover grammatical
variations of a particular label, we added inflections from fastText3. We avoid any bias held towards or
against popular entities and relations.

The output of these pre-processing steps are i) set of keywords from the question, ii) every keyword
is identified either as relation or entity, iii) for every keyword there is a set of candidate URIs from the
Knowledge Graph.

4.1.3 Using GTSP for Disambiguation

At this point we may use either a GTSP based solution or Connection Density (later explained in 4.3)
for disambiguation. We start with the formalisation for GTSP based solution.
The entity and relation linking process can be formalised via spotting and candidate generation

functions as follows: Let ( be the set of all strings. We assume that there is a function B?>C : ( → 2(

which maps a string B (the input question) to a setK of substrings of B. We call this setK the keywords
occurring in our input. Moreover, we assume there is a function cand � : K → 2+∪! which maps
each keyword to a set of candidate node and edge labels for our Knowledge Graph � = (+, �, !). The
goal of joint entity and relation linking is to find combinations of candidates, which are closely related.
How closely nodes are related is modelled by a cost function cost � : (+ ∪ !) × (+ ∪ !) → [0, 1].
Lower values indicate closer relationships. According to our first postulate, we aim to encode graph
distances in the cost function to reward those combinations of entities and relations, which are located
close to each other in the input Knowledge Graph. To be able to consider distances between both
relations and entities, we transform the Knowledge Graph into its subdivision graph (see Definition ??).
This subdivision graph allows us to elegantly define the distance function as illustrated in Figure 4.3.

Given the Knowledge Graph  � and the functions B?>C, 20=3 and 2>BC, we can cast the problem
of joint entity and relation linking as an instance of the Generalised Travelling Salesman (GTSP)
problem: We construct a graph � with + =

⋃
:∈ cand(:). Each node set cand(:) is called a cluster

in this vertex set. The GTSP problem is to find a subset + ′ = (E1, . . . , E=) of + which contains exactly
one node from each cluster and the total cost

∑=−1
8=1 cost(E8 , E8+1) is minimal with respect to all such

1 https://www.elastic.co/products/elasticsearch
2 https://developer.oxforddictionaries.com/
3 https://fasttext.cc/
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Figure 4.2: Using GTSP for disambiguation : The bold line represents the solution offered by the GTSP solver.
Each edge represents an existing connection in the Knowledge Graph. The edge weight is equal to the number
of hops between the two nodes in the Knowledge Graph. We also add the index search ranks of the two nodes
the edges connect to the edge weight when solving for GTSP.

subsets. Please note that in our formalisation of the GTSP, we do not require + ′ to be a cycle, i.e. E1
and E= can be different. Moreover, we do not require clusters to be disjoint, i.e. different keywords can
have overlapping candidate sets.

Figure 4.2 illustrates the problem formulation. Each candidate set for a keyword forms a cluster in
the graph. The weight of each edge in this graph is given by the cost function, which includes the
distance between the nodes in the subdivision graph of the input Knowledge Graph as well as the
confidence scores of the candidates. The GTSP requires the solution to visit one element per cluster
and minimises the overall distance.

Approximate GTSP Solvers

In order to solve the joint entity and relation linking problem, the corresponding GTSP instance needs
to be solved. Unfortunately, the GTSP is NP-hard [160] and hence it is intractable. However, since
GTSP can be reduced to standard TSP, several polynomial approximation algorithms exist to solve
GTSP. The state-of-the-art approximate GTSP solver is the Lin–Kernighan–Helsgaun algorithm [161].
Here, a GTSP instance is transformed into standard asymmetric TSP instances using the Noon-Bean
transformation. It allows the heuristic TSP solver LKH to be used for solving the initial GTSP. Among
LKH’s characteristics, its use of 1-tree approximation for determining a candidate edge set, the
extension of the basic search step, and effective rules for directing and pruning the search contribute
to its efficiency.
While a GTSP based solution would be suitable for solving the joint entity and relation linking

problem, it has the drawback that it can only provide the best candidate for each keyword given the list
of candidates. Most approximate GTSP solutions do not explore all possible paths and nodes and
hence a comprehensive scoring and re-ranking of nodes is not possible. Ideally, we would like to go
beyond this and re-rank all candidates for a given keyword. This would open up new opportunities
from a QA perspective, i.e. a user could be presented with a sorted list of multiple possible answers to
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GTSP Connection Density
Requires no training data Requires data to train the XGBoost clas-

sifier
The approximate GSTP LKH solution
is only able to return the top result as
not all possible paths are explored.

Returns a list of all possible candidates
in order of score

Time complexity of LKH is O(=!2)
where n = number of nodes in graph, L
= number of clusters in graph of

Time complexity is O(#2
!

2) where
N = number of nodes per cluster, L =
number of clusters in graph

Relies on identifying the path with min-
imum cost

Depends on identifying dense and short-
hop connections

Table 4.1: Comparison of GTSP based approach and Connection density for Disambiguation

select from.

4.1.4 Using Connection Density for Disambiguation

As discussed earlier, once the candidate list generation is achieved, EARL offers two independent
modules for the entity and relation linking. In the previous subsection 4.2 we discussed one approach
using GTSP. In this subsection we will discuss the second approach for disambiguation using
Connection Density, which works as an alternative to the GTSP approach. We have also compared the
two methods in table 2.

Formalisation of Connection Density:

For identified keywords in a question we have the set K as defined earlier. For each keyword  8 we
have list !8 which consists of all the candidate uris generated by text search. We have = such candidate
lists for each question given by, L = {!1, !2, !3, ..., !=}. We consider a probable candidate 28< ∈ !8 ,

Figure 4.3: Connection Density with example: The dotted lines represent corresponding connections between
the nodes in the knowledge base.
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where < is the total number of candidates to be considered per keyword, which is the same as the
number of items in each list.

The hop distance 3 �ℎ>?B(2:8 , 2
>
9 ) ∈ Z

+ is number of hops between 2:8 and 2
>
9 in the subdivision

Knowledge Graph. If the shortest path from 2
:
8 and 2>9 requires the traversal of ℎ edges then

3 �ℎ>?B(2:8 , 2
>
9 ) = ℎ.

Connection Density is based on the three features: Text similarity based initial Rank of the List
item (R8) Connection-Count (C) and Hop-Count (H )

Initial Rank of the List (R8), is generated by retrieving the candidates from the search index via text
search. This is achieved in the preprocessing steps as mentioned in the section 4. Further, to define C
we introduce 3�>==42C.

3�>==42C (2:8 , 2
>
9 ) =

{
1 if 3 �ℎ>?B(2:8 , 2

>
9 ) 6 2

0 otherwise
(4.2)

The Connection-Count C for an candidate 2, is the number of connections from 2 to candidates in
all the other lists divided by the total number = of keywords spotted. We consider nodes at hop counts
of greater than 2 disconnected because nodes too far away from each other in the knowledge base do
not carry meaningful semantic connection to each other.

C(2:8 ) = 1/=
∑
> |>≠:

9=<∑
9=1

3�>==42C (2:8 , 2
>
9 ) (4.3)

The Hop-CountH for a candidate 2, is the sum of distances from 2 to all the other candidates in all
the other lists divided by the total number of keywords spotted.

H(2:8 ) = 1/=
∑
> |>≠:

9=<∑
9=1

3 �ℎ>?B(2:8 , 2
>
9 ) (4.4)

Candidate Re-ranking:

H , C and R8 constitute our feature space X. This feature space is used to find the most relevant
candidate given a set of candidates for an identified keyword in the question. We use a machine
learning classifier to learn the probability of being the most suitable candidate c̄8 given the set of
candidates. The final list R 5 is obtained by re-ranking the candidate lists based on the probability
assigned by the classifier. Ideally, c̄8 should be the top-most candidate in R 5 .

The training data consists of the featuresH , C and R8 and a label 1 if the candidate is the correct, 0
otherwise. For the testing, we apply the learned function from the classifier 5 onX for every candidate
∈ 28 and get a probability score for being the most suitable candidate. We perform experiments with
three different classifiers, namely extreme gradient boosting(xgboost), SVM(with a linear kernel) and
logistic regression to re-rank the candidates. The experiments are done using a 5-fold cross-validation
strategy where, for each fold we train the classifier on the training set and observe the mean reciprocal
rank (MRR) of c̄8 on the testing set after re-ranking the candidate lists based on the assigned probability.
The average MRR on 5-fold cross-validation for the three classifiers are 0.905, 0.704 and 0.794
respectively. Hence, we use xgboost as the final classifier in our subsequent experiments for re-ranking.
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Algorithm

We now present a pseudo-code version of the algorithm to calculate the two features: Connection
Density algorithm is used for finding hop count and connection count for each candidate node. We
then pass these features to a classifier for scoring and ranking This algorithm (Algorithm 1 Connection
Density) has a time complexity given by O(#2

!
2) where N is the number of keywords and L is the

number of candidates for each keyword.

Algorithmus 1 : Connection Density
function :ConnectionDensity( )
input :L , with = number of keywords // an array of arrays
output :Hop-CountH , Connection-Count C

1 dConnectCounter = { } // Count for connections from and to each node
2 dHopCounter = { } // Similarly hop counts for each node
3 foreach !0 ∈ L do
4 foreach 208 ∈ !0 do
5 3�>==42C�>D=C4A[208 ] = 0 // Initialising the dictionary
6 3�>?�>D=C4A[208 ] = 0

7 foreach (!0, !1) ∈ L do
8 foreach 208 ∈ !0 do
9 foreach 219 ∈ !1 do
10 if 3 �ℎ>?B(208 ,2

1
9 ) <= 2 then

11 3�>==42C�>D=C4A[208 ] += 1
12 3�>==42C�>D=C4A[219 ] += 1

13 3�>?�>D=C4A[208 ] += dKGhops(208 ,2
1
9 )

14 3�>?�>D=C4A[219 ] += dKGhops(208 ,2
1
9 )

15 foreach (28 , B2>A4) ∈ 3�>==42C�>D=C4A do
16 C(28) = 3�>==42C�>D=C4A (28)/= // Normalisation with respect to

number of keywords spotted

17 foreach (28 , B2>A4) ∈ 3�>?�>D=C4A do
18 H(28) = 3�>?�>D=C4A (28)/=
19 return (Hop-CountH , Connection-Count C)

4.1.5 Adaptive E/R Learning

EARL uses a series of sequential modules with little to no feedback across them. Hence, the errors in
one module propagate down the line. To trammel this, we implement an adaptive approach especially
for curbing the errors made in the pre-processing modules. While conducting experiments, it was
observed that most of the errors are in the shallow parsing phase, mainly because of grammatical
errors in LC-QuAD which directly affects the consecutive E/R prediction and candidate selection
steps. If the E/R prediction is erroneous, it will search in a wrong Elasticsearch index for probable
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Figure 4.4: Adaptive E/R learning

candidate list generation. In such a case none of the candidates ∈ 28 for a keyword would contain c̄8 as
is reflected by the probabilities assigned to 28 by the re-ranker module. If the maximum probability
assigned to 28 is less than a very small threshold value, empirically chosen as 0.01, we re-do the steps
from ER prediction after altering the original prediction. If the initial assigned probability is entity,
we change it to relation and vice-versa, example figure 4.4. This module is empirically evaluated in
table 4.4.

4.1.6 Evaluation

Data Set: LC-QuAD [162] is the largest complex questions data set available for QA over KGs. We
have annotated this data set to create a gold label data set for entity and relation linking, i.e. each
question now contains the correct KG entity and relation URIs with their respective text spans in
the question. This annotation was done in a semi-automated process and subsequently manually
verified. The annotated dataset of 5000 questions is publicly available at https://figshare.
com/projects/EARL/28218

Experiment 1: Comparison of GTSP, LKH and Connection Density

Aim: We evaluate hypotheses (H1 and H2) that the connection density and GTSP can be used for
joint linking task. We also evaluate the LKH approximation solution of GTSP for doing this task. We
compare the time complexity of the three different approaches. Results: Connection density results
in a similar accuracy as that of an exact GTSP solution with a better time complexity (see Table 4.2).
Connection density has worse time complexity than approximate GTSP solver LKH if we assume
the best case of equal cluster sizes for LKH. However, it provides a better accuracy. Moreover, the
average time taken in EARL using connection density (including the candidate generation step) is 0.42
seconds per question. Further observing Table 4.2, we can see that the brute force GTSP solution
and Connection Density have similar accuracy, but the brute force GTSP solution has exponential
time complexity. The approximate solution LKH has polynomial run time, but its accuracy drops
compared to the brute force GTSP solution. Moreover, from a question answering perspective the
ranked list offered by the Connection Density approach is useful since it can be presented to the user
as a list of possible correct solutions or used by subsequent processing steps of a QA system. Hence,
for further experiments in this section we used the connection density approach.
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Experiment 2: Evaluating Joint Connectivity and Re-ranker

Aim: Evaluating the performance of Connection Density for predicting the correct entity and relation
candidates from a set of possible E-R candidates. Here we evaluate hypothesis H2, the correct
candidates exhibit relatively dense and short-hop connections.

Metrics: We use the mean reciprocal rank of the correct candidate c̄8 for each entity/relation in the
query. From the probable candidate list generation step, we fetch a list of top candidates for each
identified phrase in a query with a : value of 10, 30, 50 and 100, where k is the number of results
from text search for each keyword spotted. To evaluate the robustness of our classifier and features we
perform two tests. i) On the top half of Table 4.3 we re-rank the top k candidates returned from the
previous step. ii) On the bottom half of Table 4 we artificially insert the correct candidate into each
list to purely test re-ranking abilities of our system (this portion of the table contains :∗ as the number
of items in each candidate list). We inject the correct uris at the lowest rank (see :∗), if it was not
retrieved in the top : results from previous step.
Results: The results in Table 4.3 depict that our algorithm is able to successfully re-rank the correct
URIs if the correct ones are already present. In case correct URIs were missing in the candidate list,
we inserted URIs artificially as the last candidate . The MRR then increased from 0.568 to 0.905.

Approach Accuracy (K=30) Accuracy (K=10) Time Complexity

Brute Force GTSP 0.61 0.62 O(=22=)
LKH - GTSP 0.59 0.58 O(=!2)
Connection Density 0.61 0.62 O(#2

!
2)

Table 4.2: Empirical comparison of Connection Density and GTSP: n = number of nodes in graph; L = number
of clusters in graph; N = number of nodes per cluster; top K results retrieved from ElasticSearch.

Value of k Rf based on Ri Rf based on
C,H

Rf based on
Ri ,C,H

: = 10 0.543 0.689 0.708
: = 30 0.544 0.666 0.735
: = 50 0.543 0.617 0.737
: = 100 0.540 0.534 0.733

:
∗ = 10 0.568 0.864 0.905
:
∗ = 30 0.554 0.779 0.864
:
∗ = 50 0.549 0.708 0.852
:
∗ = 50 0.545 0.603 0.817

Table 4.3: Evaluation of joint linking performance
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System Accuracy LC-QuAD Accuracy - QALD

FOX [163] + AGDISTIS [164] 0.36 0.30
DBpediaSpotlight [165] 0.40 0.42
TextRazor5 0.52 0.53
Babelfy [166] 0.56 0.56

EARL without adaptive learning 0.61 0.55
EARL with adaptive learning 0.65 0.57

Table 4.4: Evaluating EARL’s Entity Linking performance

System Accuracy LC-QuAD Accuracy - QALD

ReMatch [167] 0.12 0.31
RelMatch [168] 0.15 0.29

EARL without adaptive learning 0.32 0.45
EARL with adaptive learning 0.36 0.47

Table 4.5: Evaluating EARL’s Relation Linking performance

Experiment 3: Evaluating Entity Linking

Aim: To evaluate the performance of EARL with other state-of-the-art systems on the entity linking
task. This also evaluates our hypothesis H3.
Metrics: We are reporting the performance on accuracy. Accuracy is defined by the ratio of the
correctly identified entities over the total number of entities present.
Result: EARL performs better entity linking than the other systems (Table 4.4), namely Babelfy,
DBpediaSpotlight, TextRazor and AGDISTIS + FOX (limited to entity types - LOC, PER, ORG).
We conducted this test on the LC-QuAD and QALD-7 dataset4. The value of k is set to 30 while
re-ranking and fetching the most probable entity.

Experiment 4: Evaluating Relation Linking

Aim: Given a question, the task is to the perform relation linking in the question. This also evaluates
our hypothesis H3.
Metrics: We use the same accuracy metric as in the Experiment 3
Results: As reported in Table 4.5, EARL outperforms other approaches we could run on LC-QuAD
and QALD. The large difference in accuracy of relation-linking over LC-QuAD over QALD, is due
to the face that LC-QuAD has 82% questions with more than one relation, thus detecting relation
phrases in the question was difficult.

4https://project-hobbit.eu/challenges/qald2017/
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4.1.7 Discussion

Our analysis shows that we have provided two tractable (polynomial with respect to the number
of clusters and the elements per cluster) approaches of solving the joint entity and relation linking
problem. We experimently achieve similar accuracy as the exact GTSP solution with both LKH-GTSP
and Connection Density with better time complexity, which allows us to use the system in QA engines
in practice. It must be noted that one of the salient features of LKH-GTSP is that it requires no training
data for the disambiguation module while on the other hand Connection Density performs better given
training data for its XGBoost classifier. While the system was tested on DBpedia, it is not restricted to
a particular Knowledge Graph.

There are some limitations: The current approach does not tackle questions with hidden relations,
such as "How many shows does HBO have?". Here the semantic understanding of the corresponding
SPARQL query is to count all TV shows (dbo:TelevisionShow) which are owned by (dbo:company) the
HBO (dbr:HBO). Here dbo:company is the hidden relation which we do not attempt to link. However,
it could be argued that this problem goes beyond the scope of relation linking and could be better
handled by the query generation phase of a semantic QA system.
Another limitation is that EARL cannot be used as inference tool for entities as required by some

questions. For example Taikonaut is an astronaut with Chinese nationality. The system can only
link taikonaut to dbr:Astronaut, but additional information can not be captured. It should be noted,
however, that EARL can tackle the problem of the "lexical gap" to a great extent as it uses synonyms
via the grammar inflection forms.

Our approaches of LKH-GTSP and Connection Density both have polynomial and approximately
similar time complexities. EARL with either Connection Density or LKH-GTSP can process a
question in a few hundred milliseconds on a standard desktop computer on average. The result logs,
experimental setup and source code of our system are publicly available 6.

4.2 PNEL

The next system we propose is PNEL, which stands for Pointer Network based Entity Linker. As
mentioned previously, the entity linking process is two-phased: span detection and linking. These
two methods are separately implemented using by different machine learning models which require
separate training. Especially for the span detection part, sentences with marked entity spans are a
requirement. In practice, such data is not easily available. Moreover, errors introduced by the MD
phase cascade on to the ED phase. Hence, a movement towards end-to-end Entity Linkers began
[169] [170]. Such systems do not require labelled entity spans during training. In spite of the benefits
of end-to-end models some challenges remain: Due to the lack of a span detector at the initial phase,
each word of the sentence needs to be considered as an entity candidate for the disambiguation which
leads to the generation of a much larger number of entity candidates. To re-rank these candidates a
large amount of time is consumed, not just in processing the features of the candidates, but also in
compiling their features.
In this work, we remain cognizant of these challenges and design a system that completely avoids

querying the Knowledge Graph during runtime. PNEL (Pointer Network based Entity Linker)
instead relies on pre-computed and pre-indexed TransE embeddings and pre-indexed entity label and

6https://github.com/AskNowQA/EARL
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P2: Q9036
Nikola Tesla
Serbian-American 
Inventor
Input n-gram: Tesla

P4: Q163343
tesla
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Input n-gram: founded 
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P1: Q478214
Tesla
Automotive company
Input n-gram: Tesla
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Input n-gram: founded Tesla
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Figure 4.5: The red and green dots represent entity candidate vectors for the given question. The green vectors
are the correct entity vectors. Although they belong to the same entity they are not the same dots because they
come from different n-grams. At each time step the Pointer Network points to one of the input candidate entities
as the linked entity, or to the END symbol to indicate no choice.

description text as the only set of features for a given candidate entity. We demonstrate that this
produces competitive performance while maintaining lower response times when compared to another
end-to-end entity-linking system, VCG [170].

4.2.1 Introduction

Inspired by the use case of Pointer Networks [45] in solving the convex hull and the generalised
travelling salesman problems, this work adapts the approach to solving entity linking. Conceptually,
each candidate entity is a point in an euclidean space, and the pointer network finds the correct
set of points for the given problem. A paper [171] about the proposed method is published in the
international semantic web conference (ISWC). The author was responsible on ideating the main
proposed algorithm and also co-writing the paper.
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4.2.2 Encoding for Input

Which country is San Francisco located in ?

1. Q2374
2. Q1123
3. Q62
...
...
.
.
30. Q45456

1. Q62
2. Q1123
3. Q8712
...
...
.
.
30. Q45456

1. Q2374
2. Q1123
3. Q62
...
...
.
.
30. Q72495

1. Q1174
2. Q1123
3. Q2112
...
...
.
.
30. Q45456

TransE
Text 
Rank + 
n-gram

Word 
embedding

Sentence 
Embedding

1403
dim

1403 
dim …         120  vectors          …. 1403 

dim

Vk1       Vk2                                                                                          Vk120

San Francisco Francisco located San Francisco 
      located

Francisco

Label+Description 
Embedding

Figure 4.6: The word “Francisco" is vectorised in the following manner: 4 n-grams represented by the underlines
are considered and searched against an entity label database. The top 50 search results are depicted for each of
the n-grams resulting in 200 candidates. For the entity Q72495, for example, we fetch its TransE embedding,
add its text search rank, n-gram length, word index position as features. Additionally we also append the fastText
embedding for “Francisco" and the entire fastText embedding for the sentence (average of word vectors) to the
feature. We then append the fastText embeddings for the label and description for this entity. Hence we get a
1142 dimensional vector \k120 corresponding to entity candidate Q72495. For all 200 candidate entities for
“Francisco", we have a sequence of two hundred 1142 dimensional vectors as input to the pointer network. For
the sentence above which has 7 words, this results in a final sequence of 7 × 200 = 1400 vectors each of length
1142 as input to our pointer network. Any one or more of these vectors could be the correct entities.

The first step is to take the input sentence and vectorise it for feeding into the pointer network. We
take varying length of n-grams, also called n-gram tiling and vectorise each such n-gram.
Given an input sentence ( = {B1, B2...B=} where B: is a token (word) in the given sentence, we

vectorise B: to E: , which is done in the following manner:

1. Take the following 4 n-grams: [B:], [B:−1, B:], [B: , B:+1], [B:−1, B: , B:+1]

2. For each such n-gram find the top ! text matches in the entity label database. We use the
OKAPI BM25 algorithm for label search.
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3. For each such candidate form a candidate vector comprising of the concatenation of the following
features

a) ':; = Rank of entity candidate in text search (length 1), where 1 ≤ ; ≤ !
b) =6A0<;4= = The number of words in the current n-gram under consideration where

1 ≤ =6A0<;4= ≤ 3 (length 1)

c) : = The index of the token B: (length 1)

d) ?>B: = A one-hot vector of length 36 denoting the PoS tag of the word under consideration.
The 36 different tags are as declared in the Penn Treebank Project [172]. (length 36)

e) �=C�<143:; = TransE Entity Embedding (length 200)

f) (4=C�)�<143 = fastText embedding of sentence ( (length 300), which is a mean of the
embeddings of the tokens of (. In some sense this carries within it the problem statement.

g) )>:�)�<143: = fastText embedding of token B: (length 300). Addition of this feature
might seem wasteful considering we have already added the sentence vector above, but as
shown in the ablation experiment in Experiment 4.11, it results in an improvement.

h) �4B2A8?C8>=�<143:; = fastText embedding of the Wikidata description for entity
candidate :; (length 300)

i) )4GC"0C2ℎ"4CA82:; = This is a triple of values, each ranging from 0 to 100, that measures
the degree of text match between the token under consideration B: and the label of the
entity candidate :;. The three similarity matches are simple ratio, partial ratio, and token
sort ratio. In case of simple ratio the following pair of text corresponds to perfect match:
"Elon Musk" and "Elon Musk". In case of partial ratio the following pair of
text corresponds to a perfect match: "Elon Musk" and "Musk". In case of token
sort ratio the following pair of text corresponds to a perfect match: "Elon Musk" and
"Musk Elon". (length 3)

For each token B: we have an expanded sequence of token vectors, comprising of 4 n-grams,
upto 50 candidates per n-gram, where each vector is of length 1142. Hence each token B: is
transformed into 4 × 50 = 200 vectors, each a 1142 length vector. We may denote this transformation
as B: → {E:1, E:2....E:200}. Note that there may be less than 50 search results for a given token so
there may be less than 200 entity candidates in the final vectorisation. Each of these E: vectors is an
entity candidate.

4.2.3 Training

For the entire sentence, a sequence of such vectors is provided as input to the pointer network. During
training the labels for the given input sequence are the index numbers of the correct entities in the input
sequence. Note that the same entity appears multiple times because of n-gram tiling and searching.
During each decoding time step the decoder produces a softmax distribution over the input sequence,
which in our implementation has a maximum sequence length of 3000. Additionally the BEGIN,
END, PAD symbols add to a total of 3003 symbols to softmax over. The cross entropy loss function
is averaged over the entire output sequence of labels and is considered the final loss for the entire input
sequence.
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Figure 4.7: K=Number of search candidates per n-gram. On the left: K vs F1 score on a set of 100 WebQSP
test questions, with average word length of 6.68. F1 is maximum for K=40 and 50. On the right: K vs time
taken for PNEL to return a response. The relationship appears to be close to linear.

Network Configuration

We use a single layer bi-LSTM [173] pointer network with 512 hidden units in a layer and an attention
size of 128. Addition of an extra layer to the network did not result in an improvement. The Adam
optimizer [159] was used with an initial learning rate of 0.001. A maximum input sequence length of
3000 and a maximum output length of 100 were enforced.

4.2.4 Datasets

For reasons explained in section 1 we exclusively evaluate on Wikidata based datasets. We use the
following:

• WebQSP: We use the dataset released by Sorokin et al [170] where the original WebQSP
dataset by Yih et al [174], which was based on Freebase, has been adapted and all Freebase IDs
converted to their respective Wikidata IDs. WebQSP contains questions that were originally
collected for the WebQuestions dataset from web search logs (Berant et al [175]). WebQSP is a
relatively small dataset consisting of 3098 train 1639 test questions which cover 3794 and 2002
entities respectively. The dataset has a mixture of simple and complex questions. We found
some questions in the test set that had failed Freebase to Wikidata entity ID conversions. We
skipped such questions during PNEL’s evaluation.

• SimpleQuestions: To test the performance of PNEL on simple questions, we choose Simple-
Questions [106], which as the name suggests, consists only of Simple Questions. The training
set has more than 30,000 questions while the test set has close to 10,000 questions. This dataset
was also originally based on Freeebase and later the entity IDs were converted to corresponding
Wikidata IDs. However out of the 10,000 test questions only about half are answerable on the
current Wikidata.

• LC-QuAD 2.0: Unlike the first two datasets, LC-QuAD 2.0 [176] is based on Wikidata since
it’s inception and is also the most recent dataset of the three. It carries a mixture of simple and
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complex questions which were verbalised by human workers on Amazon Mechanical Turk. It is
a large and varied dataset comprising of 24180 train questions and 6046 test questions which
cover 33609 and 8417 entities respectively.

4.2.5 Evaluation

In this section we evaluate our proposed model(s) against different state-of-the-art methods for KGQA.
As notations, PNEL-L stands for PNEL trained on LC-QuAD 2.0. PNEL-W and PNEL-S stand for
PNEL trained on WebQSP and SimpleQuestions respectively.

Experiment 1 : EL over KBPearl split of LC-QuAD 2.0 test set

Objective: The purpose of this experiment is to benchmark PNEL against a large number of EL
systems not just over Wikidata but also other KBs.
Method: The results are largely taken from KBPearl. PNEL is trained on the LC-QuAD 2.0 training
set. For a fair comparison, the systems are tested on the 1294 questions split of test set provided by
KBPearl. We train PNEL for 2 epochs.
Remarks: Results for Falcon 2.0 and OpenTapioca were obtained by accessing their live API. The
original Falcon 2.0 paper provides an F1 of 0.69 on 15% of randomly selected questions from a
combination of the train and test splits of the dataset. Several systems in the table below do not
originally produce Wikidata entity IDs, hence the authors of KBpearl have converted the IDs to
corresponding Wikidata IDs.
Analysis: As observed from the results in Table 1, PNEL outperforms all other systems on this
particular split of LC-QuAD 2.0 dataset.

Entity Linker Precision Recall F1
Falcon[177] 0.533 0.598 0.564
EARL[178] 0.403 0.498 0.445
Spotlight[165] 0.585 0.657 0.619
TagMe[179] 0.352 0.864 0.500
OpenTapioca[180] 0.237 0.411 0.301
QKBfly[181] 0.518 0.479 0.498
Falcon 2.0 0.395 0.268 0.320
KBPearl-NN 0.561 0.647 0.601

PNEL-L 0.803 0.517 0.629

Table 4.6: Evaluation on KBPearl split of LC-QuAD 2.0 test set

Experiment 2 : EL over full LC-QuAD 2.0 test set

Objective: The objective of this experiment is to compare systems that return Wikidata IDs for the
EL task.
Method: We train PNEL on LC-QuAD 2.0 train set and test on all 6046 questions in test set. PNEL
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was trained for 2 epochs.
Remarks: Results for competing systems were obtained by accessing their live APIs. We choose
systems that return Wikidata IDs.
Analysis: Similar to the previous experiment, PNEL performs the best on the LC-QuAD 2.0 test set.

Entity Linker Precision Recall F1
VCG[170] 0.516 0.432 0.470
OpenTapioca[180] 0.237 0.411 0.301
Falcon 2.0 0.418 0.476 0.445

PNEL-L 0.688 0.516 0.589

Table 4.7: Evaluation on LC-QuAD 2.0 test set

Experiment 3 : EL over WebQSP test set

Objective: Benchmark against an end-to-end model that returns Wikidata IDs.
Method: Train and test PNEL on WebQSP train and test sets respectively. PNEL is trained for 10
epochs.
Remarks: Results for the competing systems were taken from Sorokin et al [170].

Entity Linker Precision Recall F1
Spotlight 0.704 0.514 0.595
S-MART[182] 0.666 0.772 0.715
VCG[170] 0.826 0.653 0.730

PNEL-L 0.636 0.480 0.547
PNEL-W 0.886 0.596 0.712

Table 4.8: Evaluation on WebQSP

Analysis: PNEL comes in third best in this experiment, beaten by VCG and S-MART. S-MART
has high recall because it performs semantic information retrieval apart from lexical matching for
candidate generation. VCG is more similar to PNEL in that it is also an end-to-end system. It has
higher recall but lower precision than PNEL.

Experiment 4 : EL over SimpleQuestions test set

Objective: Benchmark systems on the SimpleQuestions Dataset.
Method: Train and test PNEL on SimpleQuestions train and test sets respectively. PNEL is trained
for 2 epochs.
Remarks: We extended the results form Falcon 2.0 [183] article.
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Entity Linker Precision Recall F1
OpenTapioca[180] 0.16 0.28 0.20
Falcon 2.0 0.38 0.44 0.41

PNEL-L 0.31 0.25 0.28
PNEL-S 0.74 0.63 0.68

Table 4.9: Evaluation on SimpleQuestions

Analysis: PNEL outperforms the competing systems both in precision and recall for SimpleQues-
tions dataset. As observed, PNEL has the best precision across all datasets, however, recall seems to
be PNEL’s weakness.

Experiment 5 : Candidate generation accuracy

Objective: The purpose of this experiment is to see what percentage of correct entity candidates were
made available to PNEL after the text search phase. This sets a limit on the maximum performance
that can be expected from PNEL.
Remarks: PNEL considers each token a possible correct entity, but since it only considers top-K
text search matches for each token, it also loses potentially correct entity candidates before the
disambiguation phase. The results below are for K=30.

Dataset PNEL (%)
WebQSP 73
LC-QuAD 2.0 82
SimpleQuestions 90

Table 4.10: Entity Candidates available post label search

Experiment 6 : Ablation of features affecting accuracy

Objective: Our final experiment is an ablation study on the WebQSP dataset to understand the
importance of different feature vectors used in the model.

Analysis: It appears that the most important feature is the TransE entity embedding, which implicitly
contains the entire KG structure information. On removing this feature there is drop in F1 score from
0.712 to 0.221. On the other hand the least important feature seem to be the description embedding.
Removal of this feature merely leads to a drop in F1 from 0.712 to 0.700. A possible reason is that the
Text Search Rank potentially encodes significant text similarity information, and TransE potentially
encodes other type and category related information that description often adds. Removal of the Text
Search Rank also results in a large drop in F1 reaching to 0.399 from 0.712.
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Sentence
Embed.

Word
Embed.

Descript.
Embed.

TransE PoS
Tags

Text
Rank

n-gram
length

Text
Match
Metric

F1
Score

X X X X X X X X 0.712
X X X X X X X 0.554

X X X X X X X 0.666
X X X X X X X 0.700
X X X X X X X 0.221
X X X X X X X 0.685
X X X X X X X 0.399
X X X X X X X 0.554
X X X X X X X 0.698

Table 4.11: Ablation test for PNEL on WebQSP test set features

Experiment 7 : Run Time Evaluation

Objective: We look at a comparison of run times across the systems we have evaluated on

System Seconds Target KG
VCG 8.62 Wikidata
PNEL 3.14 Wikidata

Falcon 2.0 1.08 Wikidata
EARL 0.79 DBpedia
TagME 0.29 Wikipedia
Spotlight 0.16 DBpedia
Falcon 0.16 DBpedia
OpenTapioca 0.07 Wikidata

Table 4.12: Time taken per question on the WebQSP dataset of 1639 questions

4.2.6 Discussion

In this work we have proposed PNEL, an end-to-end Entity Linking system based on the Pointer
Network model. We make no modifications to the original Pointer Network model, but identify its
utility for the problem statement of EL, and successfully model the problem so the Pointer Network is
able to find the right set of entities. We evaluate our approach on three datasets of varying complexity
and report state of the art results on two of them. On the third dataset, WebQSP, we perform best in
precision but lag behind in recall. We select such features that require no real time KG queries during
inference. This demonstrates that the Pointer Network model, and the choice of features presented in
this work, result in a practical and deployable EL solution for the largest Knowledge Graph publicly
available - Wikidata.
A prominent feature of PNEL is high precision and low recall. We focus on loss in recall in this
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section. For LC-QuAD 2.0 test set consisting of 6046 questions, the precision, recall and F-score
are 0.688, 0.516 and 0.589 respectively. We categorise the phases of loss in recall in two sections
1) Failure in the candidate generation phase 2) Failure in re-ranking/disambiguation phase. When
considering the top 50 search candidates during text label search, it was found that 75.3% of the
correct entities were recovered from the entity label index. This meant that before re-ranking we had
already lost 24.7% recall accuracy. During re-ranking phase, a further 23.7% in absolute accuracy
was lost, leading to our recall of 0.516. We drill down into the 23.7% absolute loss in accuracy during
re-ranking, attempting to find the reasons for such loss, since this would expose the weaknesses of the
model. In the plots below, we consider all those questions which contained the right candidate entity
in the candidate generation phase. Hence, we discard those questions for our analysis, which already
failed in the candidate generation phase.

Entity Count Questions Count Precision Recall F1
1 3311 0.687 0.636 0.656
2 1981 0.774 0.498 0.602
3 88 0.666 0.431 0.518

Table 4.13: Comparison of PNEL’s performance with respect to number of entities in a question.

4.3 ELiDi

All question answering or entity-linking systems along with EARL and PNEL suffer from two main
problems. Firstly, such systems are not able to handle relations which are not seen during training
[184], and hence exhibits poor performance in terms of adaptability to new domains and datasets.
Secondly, most systems, and specifically publicly available entity-linking resources are trained on
a particular dataset, over a specific Knowledge Graph and are not easily extendable to new datasets
or Knowledge Graph, in a zero-shot setting [185]. Moreover, an open-source entity-linking system
should be fast and easily be integrated into systems with minimal hardware requirements. Knowledge
graph embeddings capture semantic similarity between relations which can potentially aid in learning
relations not seen during training but are semantically similar to relations present in the training set.
In this chapter, we propose a novel, end-to-end, fast system for entity linking leveraging Knowledge
Graph embeddings. The system achieves comparable entity-liking performance with respect to other
state-of-the-art methods for entity linking. Furthermore, the model is extendable to unseen datasets
and exhibits state-of-the-art performance in zero-shot entity linking settings.
A paper [186] about ELiDi is submitted in the extended semantic web conference. The author

was responsible in devising and implementing the main algorithm, running the experiments and also
co-writing the paper.

4.3.1 Introduction

Knowledge graphs are data structures that lack a default numerical representation that allows their
straightforward application in a standard machine learning context. Statistical relation learning
therefore relies beside other approaches on latent feature models for making prediction over KGs.
These latent features usually correspond to embedding vectors of the KG entities and relations. Given
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the embeddings of the entities and relations of a fact (ℎ, A, C), a score function outputs the a value
indicating the probability that the fact is existing in the KG. In this chapter, we use TransE [187] to
learn the KG embeddings used by our model. Let the embedding vector of subject and object entity be
given by ®ℎ and ®C respectively, and that of the relation by a vector ®A , then the score function of TransE
is given by 5 (ℎ, A, C) = −‖®ℎ + ®A − ®C‖. We employ two kinds of embeddings in the proposed model
namely word embeddings and KG embeddings which are defined in the previous section.

For matching a question to the entities and relations of a KG, likely candidates are first selected in
an reprocessing step to reduce the enormous number of candidates in the KG. This is described in the
following sections.

Entity Candidates Generation

For the end-to-end training process, we first start with a simple language based candidate generation
process selecting potential candidate entities for a given question. That is, given a question we generate
candidates by matching the tf-idf vectors of the query with that of the entity labels of all the entities
in the Knowledge Graph, resulting in a list of = entity candidates 41

2 , 4
2
2 ..4

=
2 for a given question.

This list is then re-ranked based on the tf-idf similarity score, whether the candidate label is present
in the question, number of relation the candidate is connected to in the KG and whether it has a
direct mapping to wikipedia or not. This is done to give importance to important entities (defined by
connectivity in the KG) following previous works [6] [110].

Relation Candidate Generation

To generate a set of entity specific relation candidates, for each entity 4 92 in the entity candidate set we
extract the list of relations connected to this candidate at a 1-hop distance in the Freebase Knowledge
Graph. For the 9 Cℎ entity candidate 4 92 , the relation candidates are A

1
9 ...A

=
9 .

4.3.2 Model Description

The proposed neural network model is quintessentially composed of three parts as visualized in 4.8:

1. A word-embedding based entity span detection model, which selects the probable words of
an entity in a natural language question, represented by a bi-LSTM.

2. An word-embedding based relation prediction model which links the the question to one of
the relations in the Knowledge Graph, represented by a bi-LSTM with self-attention.

3. An entity prediction model which takes the predictions of the previous two submodels into
account and employs a sentinel gating mechanism that performs disambiguation based on
similarity measures.

The different model parts and the training objective of the resulting model will be described in more
detail in the following.
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Figure 4.8: Architecture of ELiDi.

Entity Span Detection

The span detection module is inspired by [6]. The given question is firstly passed through a bi-
directional LSTM. Its output hidden states are then passed through a fully connected layer and a
sigmoid (f) activation function which outputs the probability of the word at time-step C corresponding
to an entity (or not). Mathematically, this can be described as

ℎC = 5B?0= (GC ) ; >C = f(,ℎC ) (4.5)

where, >C is the output probability,, the weight matrix of the fully connected layer, and ℎC the hidden
state vector from the applying the bi-directional LSTM 5B?0= on the input question GC . We use I-O
encoding for the output for training.
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Relation Prediction

For relation prediction, the question is passed into a self-attention based bi-directional LSTM which
was inspired by [188]. The attention weighted hidden states are then fed into a fully-connected
classification layer outputting a probability over the A= relations in the Knowledge Graph.

HA = C0=ℎ(,A (UA ∗ 5A4; (GC ))) (4.6)

,A being a set of model parameters, UA the self-attention weights and 5A4; is the Bi-LSTM function
which produces a response for every time-step C for the input query GC .

Entity prediction

Word-based Entity Candidate Selection: With the help of the entity span identified by the
span detection submodule described in 4.3.2, the questions are now compared to the entity candidates
based on vector similarity methods. More specifically, the word embedding of each word of the
question is multiplied with corresponding output probability from the entity-span detection model
leading to an "entity-weighted" word representation

4C = >C ∗ F
4<1
C (4.7)

where, F4<1C denotes the word embedding of the C-th word in the question and >C is the sigmoid output
from 4.3.2. We then take a simple average of the entity-weighted representations of all words of the
questions to yield the entity embedding of the question 44<1@ .
Similarly, the entity candidates 41

2 , 4
2
2 ..4

=
2 generated in the preprocessing step described in 4.3.1

are represented by the word embeddings of their labels 44<11
2 , 44<12

2 .. 44<1=2 . If a label consists of
multiple words, the word embeddings are averaged to yield a singe representation. Finally, to compute
the similarity between a question and an entity candidate, the cosine between the question embedding
and the entity embedding is estimated. For the 9 Cℎ candidate, that is

B8<
9
2 = 2>B(4

4<1
@ , 4

4<1 9
2 ) (4.8)

and the vector B8<2 = (B8<
1
2 , . . . , B8<

=
2) represents the word based similarity of the question to all

entity candidates.
KG-based Entity Candidate Selection To leverage the relational information encoded in the KG,

we firstly take the logits over A= from the relation prediction model and draw a categorical representation
using gumbel softmax [189]. This representation is multiplied with the KG embeddings over A= to get
a KG embedding based representation of the query A4<1@ . This relation specific representation is then
compared against the full relation candidate set of each candidate entity, where each candidate relation
is as well represented by its KG embedding. To match the relation specific question representation
to relation candidates for a given entity, we estimate the cosine similarity of the corresponding
KG embeddings followed by a max-pooling operation over all the candidate relations of an entity
which produces an entity specific similarity metric B8< 9

:6
, which indicates the degree of matching

between the question and an entity candidate from a KG perspective, which specifically takes relation
information into account. Mathematically, for the 9-th entity candidate, let the embedding of the :-th
relation candidate A:9 be denoted by A4<1:9 . The KG based similarity B8< 9

:6
between the question and
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the 9-th entity then given by

B8<
9

:6
= <0G?>>; (2>B(A4<1@ , A

4<11
9 ),

2>B(A4<1@ , A
4<12
9 )

..

2>B(A4<1@ , A
4<1:
9 )) ,

(4.9)

and the vector B8<:6 = (B8<
1
:6, . . . , B8<

=
:6) represents the KG based similarity of the question to all

entity candidates.

Disambiguation and final prediction The final entity prediction is based on the word- and
KG-based similarity measures B8<2 and B8<:6 First, for disambiguation, the word based similarity
vector B8<2 is passed into a gating mechanism

60<1 = ,6B8<2 (4.10)

with,6 ∈ R=-1, which aims at estimating if there is more than one single likely candidate in the entity
candidate set based on word similarity. If so, the KG based similarity B8<:6 should also be taken into
account, which is done by averaging B8<2 and B8<:6 and predicting the final entity candidate by

H
4
? = f(60<1 ∗mean(B8<:6, B8<2) + (1 − 60<1) ∗ B8<2) (4.11)

Note that, H4? ∈ R= are the logits over the set of candidate entities, from which the entity with the
highest probability can be picked. During inferencing, we perform an additional step for ensuring
the entity and relation predicted from the model forms a pair in the KG. In order to achieve that, we
take the top 5 probable relation from the relation linker and choose the one which is connected to the
predicted entity at 1-hop.

4.3.3 Training & Inference

Training objective

The model is trained based on a multi-task objective, where the total loss is the sum of the losses from
the entity span detection, relation detection, entity candidate prediction, and disambiguation. The
individual loss function are given below7.
The loss function for the entity span detection model is the average binary cross entropy !B?0= over
the words of the input question, with

!B?0= =
1
)

)∑
C=1

;C

;C = −[HC · logf(>C ) + (1 − HC ) · log(1 − f(>C ))]
(4.12)

where HC is the label denoting if the C-th word belongs to the entity span or not. For relation prediction,

7
H is used to denote the true label for all tasks here
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a weighted cross-entropy loss !A4; is used (where the weights are given by the relative ratio of relations
in the training set having the same class as the sample) and for entity prediction a vanilla cross-entropy
loss !4=C , which depends on the parameters of all sub-models. Furthermore, an additional cross entropy
loss function !0<1 is used to train the gating function. Last but not least, we add an regularization
term for soft-parameter sharing following [190] resulting in a total loss given by

! = !B?0= + !A4; + !4=C + !0<1 + ||,
1
B?0= −,

1
A4; | |

2 (4.13)

where,,1
B?0= and,

1
A4; are the hidden layer weights of the entity span detection and relation detection

module. Given !, all parameters of the model are jointly trained in an end-to-end manner.

Inferencing

During inference, for a given question, firstly the entity span is predicted using 4.3.2. The candidate
generation step from 4.3.1 during inference is different than the process used during training. Instead
of using the whole question, we get a set of candidates using the predicted span. Henceforth, using
these candidate labels, all the other steps namely relation linking 4.3.2, entity prediction using labels
4.3.2, entity candidate selection using the KG 4.3.2 and finally the disambiguation and prediction
using the gating mechanism 4.3.2 is performed. For extending the model to new knowldge graphs, like
wikidata [111], in a zero-shot setting we firstly try to get the WikiData ID of the predicted freebase
entity id in case there is a direct mapping available. Otherwise, we get the predicted span, get ngrams
out of them and search in wikidata with entity labels using these extracted ngrams 2. All the SPARQL
calls are made using wikidata query service 8.
Algorithmus 2 :Wikidata Entity ID mapping
1 WikiID: Wikidata ID of the linked entity
2 5 1_83 ← 64C_ 5 A4410B4_83 (&) F3_4=C8CH ← 64C_ 5 A4410B4_<0??8=6( 5 1_83)
3 if F3_4=C8CH ≠ ∅ then
4 ,8:8�� ← F3_4=C8CH
5 else
6 4_B?0=← 34C42C_4=C8CH_B?0=(&) B?0=_=6A0< ← 64C_B?0=_=6A0<(4_B?0=) while

,8:8��B ≠ ∅ do
7 ,8:8�� ← 64C_��_ 5 A><_;014; (B?0=)

8 returnWikiID

Model Settings

We use the pre-processed data and word-embeddings provided by [6] to train our models. To obtain
KG embeddings, we train TransE [187] on the provided Freebase KG of 2 million entities. The size of
the word embedding vectors is 300, and that of the KG embeddings is 50. The KG embeddings are kept
fixed but the word embeddings are fine-tuned during optimization. For training the disambiguation
gate 60<1 we use a label of 1 if the correct entity label is present more than one times in the entity
candidates, and label of 0 otherwise.For training, a batch-size of 100 is used and the model is trained

8https://query.wikidata.org/
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Table 4.14: Entity Linking Accuracy over Freebase Knowledge Graph

Model Accuracy(% of Cand. Present)
BiLSTM [6] 65.0 (-)
Attentive CNN [95] 73.6 (-)

ELiDi (n=100) 77.8(92.0)
ELiDi (n=200) 78.3(94.3)
ELiDi (n=300) 78.6(95.4)

for 100 epochs. We save the model with the best validation accuracy of entity prediction and evaluate
it on the test set. We apply Adam [159] for optimization with a learning rate of 1e-4. The size of
the hidden layer of both the entity span and relation prediction Bi-LSTM is set to 300. The training
process is conducted on a GPU with 3072 CUDA cores and a VRAM of 12GB.

The average inference speed is 1.5 secs/query in a machine with 2 cores and 2.60 Ghz. It must be
noted that, this time includes the time require to make the Wikidata API call (0.7 secs/query).

4.3.4 Datasets

SimpleQuestions (SQ): The SimpleQuestions dataset [106], which, as the name implies, consists
only of simple questions, is used to test the performance of ELiDi on simple questions. More than
30,000 questions are in the training set, whereas the test set has close to 10,000 questions. This dataset
was published based on Freebase in its initial release. Later a mapping from freebase entity IDs to
corresponding Wikidata entity IDs was published to use Wikidata as the knowledge base. Nearly half
of the questions in the test data are answerable by the Wikidata version of the data.

WebQSP: The WebQSP dataset is consists of both simple and complex types of questions. The
original version of the WebQSP was released by [174]. Later, [191] released a Wikidata version of the
data by mapping the Freebase entity IDs to corresponding Wikidata entity IDs. We use the dataset
released by [191] as Freebase is no longer maintained. The dataset contains 3098 questions in the
train set and 1639 questions in the test set.

4.3.5 Evaluation

In this section, we compare our model with other state-of-the-art end-to-end entity linking systems as
well as other open-source resources for entity linking over both freebase and Wikidata.

Entity-linking over Freebase

We compare our system for the task of entity-linking over freebase with other state-of-the-art, end-
to-end entity linking systems for the simple question dataset [106]. The results are summarized in
4.14. The system is baselined against a simple BiLSTM model as proposed by [6] and Attentive
CNN [174]. It must be noted that although there are more recent systems on the task with pre-trained
transformers, specifically BERT [49] based models such as the works by [192]. However, in this
chapter we have focused on proposing a resource which is energy and cost efficient, and can be
deployed in low-resource configurations unlike pre-trained transformers [193].
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Table 4.15: Entity Linking on SimpleQuestions over Wikidata Knowledge Graph

Model Precision Recall F1-score

OpenTapioca[180] 16.0 28.0 20.0
Falcon 2.0[194] 38.0 44.0 41.0
PNEL-S[171] 74.0 63.0 68.0

ELiDi (n=100) 76.8 76.3 76.5

Table 4.16: Entity Linking on WebQSP over Wikidata Knowledge Graph

Model Precision Recall F1-score

TAGME[195] 53.1 27.3 36.1
DBpedia Spotlight[165] 70.4 51.4 59.5

ELiDi (n=100) 71.5 61.3 66.0

Entity-linking over Wikidata

Simple Questions over Wikidata: Additionally, the pre-trained ELiDi, trained on SimpleQues-
tions over Freebase is used for the SimpleQuestions over Wikidata test-set in a zero-shot setting. The
entities in the questions are converted to their corresponding Wikidata IDs and is also used in the
recent works by [171]. The results are summarized in Table 4.15. We are baselining against 3 systems
which are trained on the simplequestion dataset namely: OpenTapioca [180], Falcon 2.0[194] and
PNEL [171]. As observed, ELiDi outperforms all the other systems, even in a zero-shot setting.

WebQSP over Wikidata: We furthermore have evaluated ELiDi on the WebQSP dataset over
Wikidata proposed by [191] in a similar zero-shot setting like before. The results are portrayed in Table
4.16. We have baselined against open-source entity linking tools for this dataset namely DBPedia
Spotlight [165] and TAGME [195]. For the latter, we have searched in wikidata with the extracted
wikipedia entity using the same method as in 2. It must be noted that the performance of some other
systems like those from [171] and [170] are better than ours by 6.2 and 7 % respectively; however, we
haven’t baselined against them because those are trained explicitly on the WebQSP data.

4.3.6 Discussion

Ablation Study

Finally, we do an ablation study where we remove some parts of the proposed model and observe the
performance of entity linking for = = 300. The results are in Table 4.17. As observed, the entity-linking
accuracy from not training the relation linker are at par with [6] in Table 4.17. The gating mechanism
adds 3.97 %, because doing only a mean from the entity and relation prediction similarity scores
would add in extra information overhead for the candidate selection for wrongly classified relation.
The proposed soft-loss aids in 0.43 % increase in entity-linking accuracy and the candidate re-ranking
improves it by 1.04%.
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Table 4.17: Ablation Study

Approach Entity-linking

Removing !A4; from total loss 67.55
Removing gating mechanism 60<1 74.63
Removing soft-loss from total loss 78.17
Without re-ranking candidates 77.56
Our Best Model: ELiDi (n=300) 78.60

Table 4.18: Span Detection Error (Green - correct span, blue - detected span).

what ’s a rocket that has been flown
who is a swedish composer
what ’s the name of an environmental disaster
in italy
which korean air flight was in an accident

Additionally, as discussed previously, since relation classification systems are not able to generalize
to unseen relations as observed in the works by [184], we do an ablation study on the relation
classification task using a vanilla BiLSTM [6] and from the output of our relation detector 4.3.2. Our
model scores 55.2 % on the SQB dataset [184] compared to 34.2 % for the former. This proves that
using Knowledge Graph embeddings can help the model generalize better to unseen data.

Quantitative and Error Analysis

We do a quantitative analysis from the results of our best model with ==300. Percentage of questions
with soft-disambiguity is 21.1 % and with hard-ambiguity is 18.51 %. Our model is able to predict
84.81 % of correct entity candidates for soft-disambiguation cases, out of which 75.02 % of times
the correct relation was identified and 9.78 % the model predicted the wrong relation but the correct
candidate is picked using our proposed KG embeddings based method; which proves that our intuition
for using KG embeddings for the final task can be beneficial. For hard-ambiguity cases, the model
was able to predict the correct candidate with an accuracy of 35.66 % (1432 out of 4015 cases), out of
which the model predicted wrong relations 4.4 % of cases. But, it should be noted that there are no
explicit linguistic signals to solve hard-disambiguity, following previous works we are predicting these
cases based solely on candidate importance.
The model is able to predict the correct candidate 97.70 % of the times for cases where no

disambiguation is required. Out of the 440 such wrongly classified candidates, 165 cases are because
the true entity and correct relation are not connected in the KG at 1-hop, 162 because the entity span
detector was not able to predict the correct span and the rest for wrong prediction in the disambiguate
gating mechanism.
For some of the cases where the entity-span detector has failed to identify the correct entity is in

table 4.18. In such cases, there are more than 1 entity in the question. Hence, it is difficult for the
entity span detector to detect the correct entity.
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For the final question-answering task, as mentioned previously, although the end-to-end accuracy
for [6] is better than ours, but the task of question answering is particularly challenging in this case
because we do not use any scores from string matching based methods such as Levenshtein distance for
entity linking as done as an additional post-processing step by [6], especially in cases where the entity
candidates and the entity mention in the question consists of out-of-vocabulary words. Also, for some
cases, it is challenging to disambiguate between the predicted relations because there are no explicit
linguistic signals available. To exemplify, let us consider the question what county is sandy balls near
?. The predicted relation relation for this question by our model is "fb:location.location.containedby",
while the true relation in the dataset is "fb:travel.tourist_attraction.near_travel_destination".

Moreover, for the zero-shot entity linking task, the model is often not able to handle entity labels
with punctuation such as for the extracted entity span james k polk the corresponding correct wikidata
entity has label james k. polk. Additionally for WebQSP, there are often more than one entity mention
in the question, but ELiDi always predicts single entity as output.
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CHAPTER 5

Improving Retrieval-Based Chatbots with
added Domain Knowledge.

5.1 Introduction

In the previous chapter, we focus on answering the first research question, where we propose several
techniques for question answering using structured knowledge graphs as a source. In this chapter we
move to chatbots and focus on answering the second research question: "Can Domain Knowledge in
the form of Unstructured Text improve Chatbots’ performance?". A paper about this is published in
SIGNLL conference on computational natural language learning [196]. The author has devised the
main algorithm, did the implementation, carried out the evaluations and co-wrote the paper.
As also previously discussed, in a conversation scenario, a dialogue system can be applied to the

task of freely generating a new response or to the task of selecting a response from a set of candidate
responses based on the previous utterances, i.e. the context of the dialogue. The former is known as
generative dialogue system while the latter is called retrieval-based (or response selection) dialogue
system.
Both approaches can be realized using a modular architecture, where each module is responsible

for a certain task such as natural language understanding, dialogue state-tracking, natural language
generation, or can be trained in an end-to-end manner optimized on a single objective function.
Previous work, belonging to the latter category, by [146] applied neural networks to multi-turn

response selection in conversations by encoding the utterances in the context as well as the possible
responses with a Long Short-termMemory (LSTM) [41]. Based on the context and response encodings,
the neural network then estimates the probability for each response to be the correct one given the
context. More recently, several enhanced architectures have been proposed that build on the general
idea of encoding response and context first and performing some embedding-based matching after
[148–151].
Although such approaches result in efficient text-pair matching capabilities, they fail to attend

over logical consistencies for longer utterances in the context, given the response. Moreover, in
domain specific scenarios, a system’s ability to incorporate additional domain knowledge can be
very beneficial, e.g. for the example shown in Table 5.1. In this chapter, we propose a novel neural
network architecture for multi-turn response-selection that extends the model proposed by [146]. Our
major contributions are: (1) a neural network paradigm that is able to attend over important words
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Context
Utterance 1:
My networking card is not working on my Ubuntu, can somebody help me?
Utterance 2:
What’s your kernel version? Run uname -r or sudo dpkg -l |grep linux-headers
|grep ii |awk ’{print $3}’ and paste the output here.
Utterance 3:
It’s 2.8.0-30-generic.
Utterance 4:
Your card is not supported in that kernel. You need to upgrade, that’s like decade
old kernel!
Utterance 5:
Ok how do I install the new kernel??
Response
Just do sudo apt-get upgrade, that’s it.

Table 5.1: Illustration of a multi-turn conversation with domain specific words (UNIX commands) in italics.

in a context utterance given the response encoding (and vice versa), (2) an approach to incorporate
additional domain knowledge into the neural network by encoding the description of domain specific
words with a GRU and using a bilinear operation to merge the resulting domain specific representations
with the vanilla word embeddings, and (3) an empirical evaluation on a publicly available multi-turn
dialogue corpus showing that our system outperforms all other state-of-the-art methods for response
selection in a multi-turn setting.

5.2 Background

In this section, we will explain the task at hand and give a brief introduction to the neural network
architectures our proposed model is based on.

5.2.1 Problem definition

Let the data set D = {(28 , A8 , H8)}
"
8=1 be a set of " triples consisting of context 28, response A8, and

ground truth label H8. Each context is a sequence of utterances, that is 28 = {D8;}
!
;=1, where ! is the

maximum context length. We define an utterance as a sequence of words {FC }
)
C=1. Thus, 28 can

also be viewed as a sequence of words by concatenating all utterances in 28. Each response A8 is an
utterance and H8 ∈ {0, 1} is the corresponding label of the given triple which takes a value of 1 if A8 is
the correct response for 28 and 0 otherwise. The goal of retrieval-based dialogue systems is then to
learn a predictive distribution ?(H |2, A, )) parameterized by ) . That is, given a context 2 and response
A , we would like to infer the probability of A being a response to context 2.
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5.2.2 RNNs, BiRNNs and GRUs

Recurrent neural networks are one of the most popular classes of models for processing sequences of
words, = {FC }

)
C=1 with arbitrary length ) ∈ N, e.g. utterances or sentences. Although, explained in

section 2, we are revisiting the concepts of RNNs for continuity and notation purposes. Each word FC
is first mapped onto its vector representation wC (also referred to as word embedding), which serves as
input to the RNN at time step C. The central element of RNNs is the recurrence relation of its hidden
units, described by

−→h C = 5 (−→h C−1,wC |5) , (5.1)

where 5 are the parameters of the RNN and 5 is some nonlinear function. Accordingly, the state −→h C
of the hidden units at time step C depends on the state −→h C−1 in the previous time step and the C-th word
in the sequence. This way, the hidden state −→h) obtained after ) updates contains information about
the whole sequence, , and can thus be regarded as an embedding of the sequence.

The RNN architecture can also be altered to take into account dependencies coming from both the
past and the future by adding an additional sub-RNN that moves backward in time, giving rise to
the name bi-directional RNN (biRNN). To achieve this, the network architecture is extended by an
additional set of hidden units. The states←−hC of those hidden units are updated based on the current
input word and the hidden state from the next time step. That is for C = 1, . . . , ) − 1:

←−h) −C = 5 (←−h) −C+1,w) −C |5) . (5.2)

Here, the words are processed in reverse order, i.e. F) , . . . , F1, such that
←−h) (analogous to −→h) in the

forward directed RNN) contains information about the whole sequence. At the C-th time step, the
model’s hidden representation of the sequence is then usually obtained by the concatenation of the
hidden states from the forward and the backward RNN, i.e. by hC = [

−→h C ,
←−h C ] and the embedding of

the whole sequence, is given by h, = [−→h) ,
←−h) ].

Modeling very long sequences with RNNs is hard: [40] showed that RNNs suffer from vanishing
and exploding gradients, which makes training over long-term dependency difficult. Such problems
can be addressed by augmenting the RNN with additional gating mechanisms, as it is done in LSTMs
and the Gated Recurrent Unit (GRU) [197]. These mechanisms allow the RNN to learn how much to
update the hidden state flexibly in each step and help the RNN to deal with the vanishing gradient
problem in long sequences better than vanilla RNNs. The gating mechanism of GRUs is motivated by
that of LSTMs, but is much simpler to compute and implement. It contains two gates, namely the
reset and update gate, whose states at time C are denoted by zt and rt, respectively. Formally, a GRU is
defined by the following update equations

zC = f(WIxC + UIhC−1) ,
rC = f(WAxC + UAhC−1) ,
h̃C = tanh(WℎxC + Uℎr8 � hC−1) ,
hC = zC � h̃C + (1 − zC ) � hC−1 ,

where xC is the input (corresponding to wC in our setting) and the set of weight matrices q = {WI ,
UI ,WA , UA , Wℎ, Uℎ} constitute the learnable model parameters.
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5.2.3 Dual Encoder

Recurrent neural networks and their variants have been used in many applications in the field of
natural language processing, including retrieval-based dialogue systems. In this area the dual encoder
(DE) [146] became a popular model. It uses a single RNN encoder to transform both context and
response into low dimensional vectors and computes their similarity. More formally, let hc and hr be
the encoded context and response, respectively. The probability of A being the correct response for 2
is then computed by the DE as

?(H |2, A, )) = f((hc)T M hr + 1) , (5.3)

where ) = {5,M, 1} (recall, that 5 is the set of parameters of the encoder RNN that outputs hc and hr

) is the set of parameters of the full model and f is the sigmoid function. Note, that the same RNN is
used to encode both context and response.
In summary, this approach can be described as first creating latent representations of context and

response in the same vector space and then using the similarity between these latent embeddings (as
induced by matrix M and bias 1) for estimating the probability of the the response being the correct
one for the given context.

5.3 Model description

Our model extends the DE described in Section 5.2.3 by two attention mechanisms which make
the context encoding response-aware and vice versa. Furthermore, we augment the model with
a mechanism for incorporating external knowledge to improve the handling of rare words. Both
extensions are described in detail in the following subsections.

5.3.1 Attention augmented encoding

As described above, in the DE context and response are encoded independently from each other based
on the same RNN. Instead of simply taking the final hidden state h2 (and hA ) of the RNN as context
(and response) encoding, we propose to use a response-aware attention mechanism to calculate the
context embedding and vice versa.
Subsequently, we will describe this mechanism formally. Recall that a context 2 can be seen as

sequence of words {F2C }
)
C=1 where all utterances are concatenated and ) is the total number of words

in the context. Given this sequence, the RNN (in our experiments a bi-directional GRU) produces a
sequence of hidden states h21 , . . . , h

2
) and an encoding of the whole context sequence h2 as described

in Section 5.2.2. Analogously, we get hA1, . . . , h
A

)
′ and hA for a response consisting of a sequence of

words {FAC }
)
′

C=1, where )
′ is the total number of words in the response.

For calculating the response-aware context encoding, we first estimate attention weights U2C for the
hidden state h2C in each time step, depending on the response encoding hA :

U
2
C ∝ exp((h2C )

TW2h
A ) , (5.4)
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Figure 5.1: Our proposed way to incorporate domain knowledge into the model. #C and 1 − #C represent the
(multiplicative) weights for the description embedding and the word embedding respectively. The resulting
combination, ŵAC acts as an input of the encoder.

where W2 is a learnable parameter matrix. The response-aware context embedding then is given by

ĥ2 =
)∑
C=1

U
2
C h2C . (5.5)

Intuitively this means, that depending on the response we focus on different parts of the context
sequence, for judging on how well the response matches the context. This may resemble human focus.

Similarly, we calculate the context-aware response encoding by

ĥA =
)∑
C=1

U
A
C hAC , (5.6)

with attention weights

U
A
C ∝ exp((hAC )

TWAh
2) . (5.7)

The two attention-weighted encodings (for response and context, respectively) then replace the vanilla
encodings in equation (5.3), that is

?(H |2, A, )) = f((ĥ2)T M ĥA + 1) . (5.8)
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5.3.2 Incorporating domain keyword descriptions

[198] proposed a method for learning embeddings for OOV words based on external dictionary
definitions. They learn these description embeddings of words using an LSTM for encoding the
corresponding definition. If a particular word included in the dictionary also appears in the corpus’
vocabulary (for which vanilla word embeddings are given), they add the word embedding and the
description embedding together. Otherwise, in the case of OOV words, they use solely the description
embedding in place of the missing word embedding. Inspired by this approach, we use a similar
technique to incorporate domain keyword descriptions into word embeddings.

If a word FAC in the response utterance is in the set of domain keywords K, we firstly extract its
description. The description of FAC is a sequence of words {F

3
C: }

 
:=1, which is projected onto sequence

of embeddings {w3C: }
 
:=1. This sequence is encoded using another bi-directional GRU to obtain a

vector representation h3C of the same dimension as the vanilla word embeddings. If FAC is not in K , we
simply set h3C to zero. We call h3C the description embedding.

Some domain specific words might also happen to be common words. For instance, in the case of
the UDC’s vocabulary, there exist tokens such as shutdown 1 or who 2, which are ambiguous, i.e.,
although they are valid UNIX commands, they are also common words in natural language. The
description embeddings of domain specific words can be simply added to the vanilla word embeddings
as suggested by [198]. However, it might be advantageous if the model can determine itself whether to
treat the current word as a domain specific word, a common word, or something in between, depending
on the context. For instance, if the context is mainly talking about system users, then who is most
likely a UNIX keyword. Therefore, we propose a more flexible way to combine the description
embedding h3C and the word embedding wAC , that is, we define the final word embedding to be a convex
combination of both, and let the combination coefficients be given by a function of h3C and the context
embedding ĥ2. Intuitively, this allows the model to flexibly focus on the description or the vanilla
embedding, in dependence on the context and the description. Formally, the combination coefficients
#C of t-th word in the response is given by

#C ∝ exp(UTĥ2 + VTwAC ) , (5.9)

where U and V are learnable parameter matrices. Note that #C is a vector of the same dimension as
the embeddings. The final embedding of FAC (which serves as input to the response encoder) is then
the weighted sum

ŵAC = #C � h3C + (1 − #C ) � wAC , (5.10)

where � denotes the element wise multiplication.

1UNIX command for system shutdown.
2UNIX command to get a list of currently logged-in users.
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5.4 Experiment

5.4.1 Ubuntu multi-turn dialogue corpus

Extending the work of [199], [146] introduced a version of the Ubuntu chat log conversations which is
the largest publicly available multi-turn, dyadic, and domain-specific dialogue data set. The chats are
extracted from Ubuntu related topic specific chat rooms in the Freenode Internet Relay Chat (IRC)
network. Usually, experienced users address a problem of someone by suggesting a potential solution
and a name mention of the addressed user. A conversation between a pair of users often stops when
the problem has been solved. However, they might continue having a discussion which is not related
to the topic.

A preprocessed version of the above corpus and the needed vocabulary are provided by [200]. The
preprocessing consisted of replacing numbers, URLs, and system paths with special placeholders as
suggested by [19]. No additional preprocessing is performed by us. The data set consists of 1 million
training triples, 500k validation triples, and 500k test triples. One half of the 1 million training triples
are positive (triples with H = 1, i.e. the provided response fits the context) the other half negative
(triples with H = 0). In contrast, in the validation and test set, for every context 28, there exists one
positive triple providing the ground-truth response to 28 and nine negative triples with unbefitting
responses. Thus, in these sets, the ratio between positive and negative triples per context is 1:9 which
makes evaluating the model with information retrieval metrics such as Recall@k possible (see Section
5.5).

Model R2@1 R10@1 R10@3 R10@5
DE-RNN [147] 0.768 0.403 0.547 0.819
DE-CNN [147] 0.848 0.549 0.684 0.896
DE-LSTM [147] 0.901 0.638 0.784 0.949
DE-BiLSTM [147] 0.895 0.630 0.780 0.944

MultiView [149] 0.908 0.662 0.801 0.951
DL2R [148] 0.899 0.626 0.783 0.944
r-LSTM [19] 0.889 0.649 0.857 0.932

MV-LSTM [100] 0.906 0.653 0.804 0.946
Match-LSTM [153] 0.904 0.653 0.799 0.944
QA-LSTM [154] 0.903 0.633 0.789 0.943

SMNdyn [200] 0.926 0.726 0.847 0.961
CCN [150] - 0.727 0.858 0.971
ESIM [151] - 0.734 0.854 0.967

AK-DE-biGRU (Ours) 0.933 0.747 0.868 0.972

Table 5.2: Evaluation results of our models compared to various baselines on Ubuntu Dialogue Corpus.
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5.4.2 Model hyperparameters

We chose a word embedding dimension of 200 as done by [200]. We use fastText [201] to pre-train the
word embeddings using the training set instead of using off-the-shelf word embeddings, following [200].
We set the hidden dimension of our GRU to be 300, as in the work of [146]. We restricted the sequence
length of a context by a maximum of 320 words, and that of the response by 160. Because of the
resulting size of the model and limited GPU memory, we had to use a smaller batch size of 32. We
optimize the binary cross entropy loss of our model with respect to the training data using Adam [159]
with an initial learning rate of 0.0001. We train our model for a maximum of 20 epochs as according
to our experience, this is more than enough to achieve convergence. The training is stopped when
the validation recall does not increase after three subsequent epochs. The test set is evaluated on the
model with the best validation recall.

For the implementation, we use PyTorch [202]. We train the model end-to-end with a single 12GB
GPU. The implementation3 of our models along with the additional domain knowledge base4 are
publicly available.

5.5 Results

Following [146] and [147], we use the Recall@k evaluation metric, where '=@: corresponds to the
fraction of of examples for which the correct response is under the : best out of a set of = candidate
responses, which were ranked according to there their probabilities under the model.

In our evaluation specifically, we use '2@1, '10@1, '10@3, and '10@5.

5.5.1 Comparison against baselines

We compare our model, which we refer to as Attention and external Knowledge augmented DE with
bi-directional GRU (AK-DE-biGRU), against models previously tested on the same data set: the basic
DE models analyzed by [146] and [147] using different encoders, such as convolutional neural network
(DE-CNN), LSTM (DE-LSTM) and bi-directional LSTM (DE-BiLSTM); theMulti-View, DL2R
and r-LSTM models proposed by [149], [148] and [19], respectively; architectures for advanced
context and response matching, namely MV-LSTM [100], Match-LSTM [153], and QA-LSTM
[154]; architectures processing the context utterances individually, namely SMNdyn [200] and CCN;
and we also use recently proposed ESIM [151] as a baseline.
The results are reported in Table 5.2. Our model outperforms all other models used as baselines.

The largest improvement of our model compared to the best of the baselines (i.e. ESIM in general
and SMNdyn for '2@1 metric) are with respect to the '10@1 and '10@3 metric, where we observed
absolute improvements of 0.013 and 0.014 corresponding to 1.8% and 1.6% relative improvement
, respectively. For '2@1 and '10@5 we observed more modest improvements of 0.007 (0.8%)
and 0.005 (0.5%), respectively. Our results are significantly better with ? < 10−6 for a one-sample
one-tailed t-test compared to the best baseline (ESIM), on '10@1, '10@3, '10@5 metrics, using the
outcome of 15 independent experiments. The variance between different trials is smaller than 0.001
for all evaluation metrics.

3https://github.com/SmartDataAnalytics/AK-DE-biGRU.
4Command descriptions scraped from Ubuntu man pages.
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Model R10@1 R10@3 R10@5
DE-GRU 0.685 0.831 0.960
DE-biGRU 0.678 0.813 0.956
A-DE-GRU 0.712 0.845 0.964
A-DE-biGRU 0.739 0.864 0.968
AK+-DE-biGRU 0.743 0.867 0.969
AK-DE-biGRUF2E 0.745 0.866 0.970
AK-DE-biGRU 0.747 0.868 0.972

Table 5.3: Ablation study with different settings.

5.5.2 Ablation study

Our model differs in various ways from the vanilla DE: it uses a GRU instead of an LSTM for the
encoding, introduces an attention mechanism for the encoding of the context and another for the
encoding of the response, and incorporates additional knowledge in the response encoding process.
To analyze the effect of these components on the over all performance, we analyzed different

model variants: a DE using a GRU or a bi-directional GRU as encoder (DE-GRU and DE-biGRU,
respectively) and both of these models with attention augmented encoding for embedding both context
and response (A-DE-GRU and A-DE-biGRU, respectively). We also tested the effects of using a
simple addition instead of the weighted summation given in equation (5.10) for merging the word
embedding with the desciption embedding (AK+-DE-biGRU). Finally, we investigated a version of
our model (AK-DE-biGRUw2v) where we used pre-trained word2vec embeddings, as done by [200],
instead of learning our own word embeddings from the data set.
The results of the study are presented in Table 8.6(b). With the basic models, i.e. DE-GRU and

DE-biGRU, as baselines, we observed around 4% and 9% improvement on '10@1 when incorporating
the attention mechanism (A-DE-GRU and A-DE-biGRU, respectively).
When domain knowledge is incorporated by simple addition (as in the work of [198]), i.e. in

AK+-DE-biGRU, we noticed 0.5% further improvement. Note however, that the results are not as good
as when using the proposed weighted addition. Finally, using our method of incorporating domain
knowledge in combination with embeddings trained from scratch with fastText [201], the performance
gets 0.3% better than when using pretrained word2vec embeddings. In total, compared to the
DE-biGRU baseline, our model (AK-DE-biGRU) achieves 10% of improvement in terms of the '10@1
metric. Thus, the results clearly suggest that both the attention mechanism and the incorporation of
domain knowledge, are effective approaches for improving the dual encoder architecture. Curiously,
we noticed that for the baseline models, using a GRU as the encoder is better than using a biGRU. This
finding is in line with the results from [147] reported in Table 5.2. However, the table is turned when
augmenting the models with an attention mechanism where the biGRU-based model outperforms the
one with the GRU. This observation motivates us to consider a biGRU instead of a GRU in our final
model.

5.5.3 Visualizing response attentions

To further investigate the results given by our model, we qualitatively inspected several samples of
response utterances and their attention weights, as shown in Table 5.4.
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Example Response Utterances

gui for shutdown try typing BD3> BℎDC3>F= -h now

BD3> 0?C-64C install qt4-designer there could be some qt dev packages too
but i think the above will install them as dependencies

certainly won n’t make a difference i m
sure but maybe try BD3> BℎDC3>F= -r
now shutdown works just fine graphical and command line

pci can you put the output of ;B?28 on __url__ and give me the link please

i do n’t see a line in xorg conf for hsync and vsync do you get the same
you d create it i m looking at gentoo and ubuntu forums a sec

can be many reasons of CA024A>DC4
__url__ you will not get a complete result

Table 5.4: Visualization of attention weight in utterance samples, darker shade means higher attention weight.

Context utterances

Utterance 1: Ubuntu <version>
Utterance 2: hi all sony vaio fx120 will not turn off when shutting down, any
ideas? btw acpi =o ff in boot parameters anything else i should be trying?
Utterance 3: how are you shutting down i.e. terminal or gui?

Table 5.5: Sample context utterances from UDC’s test set whose correct response is the first utterance in
Table 5.4.

We noticed that our model learned to focus on technical terms, such as lspci, shutdown, and
traceroute. We also observed that the model is able to capture contextual importance, i.e. it is able to
focus on context relevant words. For example, given the context in Table 5.5 and the correct response
in the first row of Table 5.4, one can see the attention on the word shutdown, where it gets a lower
weight when used as a common word in the first occurance than as a UNIX command in the second. 5

5.5.4 Error analysis

We qualitatively analyzed our model’s errors. We observed that our model’s predictions are biased
toward high information utterances. That is, we observed for some examples that the correct response
is generic (i.e. has low information), our model chooses a non-generic response, as shown in Table 5.6.
Furthermore, we computed the average utterance information content (the entropy) for both the correct
and predicted responses, based on [203], where we obtained 9.25 bits and 9.34 bits, respectively. This
quantitatively indicates that our model is slightly biased toward high information responses.

5N.B. The conversations are taken directly from the corpus and can be grammatically inconsistent.
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Examples of model error:

Correct: ok will do :), nope.
Predicted: __url__ if you go down to the bottom of that tutorial i also have a post there that is a bit
more detailed about my problem poster name is trent

Correct: hmm! ok
Predicted: as did i w/ fbsd ... just check out the livecd for a bit

Correct: okay thank you a thread i hope :)
Predicted: hmm ok because im not sure about iwconfig and wpa but we can give it a try do gksudo
gedit __path__ then add a record like this __url__

Correct: right .. it is, it exists i verified
Predicted: i want to connect to your computer remotely if you allow me to so i can fix the problem
for you just follow the following procedure.

Correct: roger .. lemme check, got it ... thanks dude :)
Predicted: just click the partition and then click the blue text next to mount point or you can simply
navigate to that path

Table 5.6: Examples on the error our model made. We observed that our model’s predictions are biased towards
non-generic responses.
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CHAPTER 6

Improving task-oriented, generative
Chatbots using Knowledge Graph
Embeddings

6.1 Introduction

After dealing with unstructured knowledge sources in the last chapter, we are moving back to structured
knowledge sources and trying to answer the third research question "Can Jointly-Trained KG and
Word Embeddings improve Task-Oriented Dialogue Systems?". Here, we propose end-to-end neural
network-based model which incorporates knowledge graphs into the response generation process using
novel loss functions. The methods proposed is published as a research paper [134] in the Extended
semantic web conference. The author proposed and implemented on the loss functions proposed in
this work and also co-wrote the paper.

Last decade has seen a considerable rise in the need for effective task-oriented dialogue agents that
can help the user to achieve specific goals and everyday tasks such as weather forecast assistance,
schedule arrangement, and location navigation. Neural network based dialogue models proved to be
the most promising architectures so far which can effectively use dialogue corpora in order to build
such agents. However, these models struggle to reason over and incorporate state-full knowledge
while preserving their end-to-end text generation functionality. They often require additional user
supervision or additional data annotation to incorporate some dialogue-state information along with
additional knowledge.

To help the dialogue agents overcome these problems, they have often been built with several pipelined
modules such as language understanding, dialog management, question answering components, and
natural language generation [10]. However, modeling the dependencies between such modules is
complex and may not result in very natural conversations.
The problem becomes much more complicated in multi-domain scenarios, because the text

generation in such scenarios hugely depends on the domain the user is talking about, where each
domain will have its own vocabulary that differs from other domains. Hence, understanding user
intent during the text generation process can be beneficial. Table 6.1 shows sample user utterances
along with its intent. While generating new tokens, the model can benefit from this because separate
intents will follow different vocabulary distributions.
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User utterance Intent
Book a seat for me in any good Chinese restaurant nearby Restaurant Booking
Book a flight ticket for me from Berlin to Paris for tomorrow Flight Booking
Please show me the direction to the main train station Navigation
Please cancel my appointment with the dentist for tomorrow Scheduling

Table 6.1: User query and respective intents

In order to tackle the aforementioned problems, we propose a novel neural network architecture
trained using a multi-task learning paradigm, which along with generating tokens from the vocabulary
also tries to predict the intent of the user utterances. By doing so, the model is able to relate the
generated words to the predicted intent and uses this to exclude words unrelated to the current
conversation from the next word candidate prediction. Our model utilizes joint text and Knowledge
Graph embeddings as inputs to the model inspired by the works of [204].
Additionally, after projecting the entities and text into the same vector space, we propose an

additional training criterion to use as a novel regularization technique called entity loss, which further
penalizes the model if the predicted entity is different from the original. The loss is the mean of the
vector distance between the predicted and correct entities.

Furthermore, to guarantee a state-full knowledge incorporation we included a Knowledge Graph
(KG) key-value look-up to implement a way of knowledge tracking during the utterances of a dialogue.

A KG in the context of this thesis is a directed, multi-relational graph that represents entities as
nodes, and their relations as edges, and can be used as an abstraction of the real world. KGs consists
of triples of the form (h,r,t) ∈  �, where h and t denote the head and tail entities, respectively, and r
denotes their relation.
Our main contributions in this chapter are as follows:

• Utilizing joint text and Knowledge Graph embeddings into an end-to-end model for improving
the performance of task-oriented dialogue systems.

• A multi-task learning of dialogue generation and learning user intent during decoding.

• A novel entity loss based regularization technique which penalizes the model if the predicted
entity is further from the true entity in vector space.

6.2 Model Description

In this section, we present our model architecture. Firstly, we discuss the attention based RNN
encoder-decoder architecture, and then we explain the intent predictor, joint embedding vector space
and additional entity loss based regularization.

6.2.1 Attention Based Seq-to-seq Model

Our model is quintessentially based on an RNN-based encoder-decoder architecture taking inspirations
from the works proposed by [129], [128] and [130]w. Given the input utterances from the user in a
dialogue scenario �, the system has to produce an output utterance >C for each time-step C, i.e. there is
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a sequence
{
(81, >1), (82, >2), ..., (8=, >=)

}
where = denotes the total number of utterances in a dialogue.

We reprocess these utterances and present them as:{
(81, >1), ( [81; >1; 82], >2), ..., ( [81; >1; ...; >=−1; 8=], >=)

}
, where we present an input as the sequence

of all previous utterances concatenated with the current input. This is done in order to maintain the
context in the dialogue.

Let G1, ...G< denote the words in each input utterance (where < is the length of the utterance). We
firstly map these words to their embedding vector representations using ΦGC which can be either a
randomly initialized or a pretrained embedding. Then these distributed representations are fed into the
RNN-encoder (LSTM [41] in this case) as follows:

ℎC = !()" (Φ
GC , ℎC−1) (6.1)

ℎC = (ℎ0, ....ℎ<) represents the hidden states of the encoder.
These encoder inputs are fed into a decoder which is again a recurrent module. It generates a token

for every time-stamp C given by the probability

?(HC |HC−1, ..., H1, GC ) = 6(HC−1, BC , 2C ) (6.2)

Where, 6(.) is a softmax function, BC is the hidden state of the decoder at time-step C given by

BC = !()" (BC−1, HC−1, 2C ) (6.3)

Additionally, we use an attention mechanism over the encoder hidden-states as proposed by [47],
[205]. The attention mechanism is calculated as

U8 9 =
4G?(48 9)∑<
:=1 4G?(48:)

(6.4)

48 9 = C0=ℎ(,2 [B8−1, ℎ 9]) (6.5)

The final weighted context from the encoder is given by

28 =
∑
<

U8 9ℎ 9 (6.6)

Where, U8 9 represent the attention weights learned by the model, 28 the context vector,,2 a weight
parameter that has to be learned by the model.

6.2.2 Predicting Intent

The intent predictor module is used to predict the intent from the user utterance. It is computed using
the encoder LSTM‘s hidden representation ℎC as computed at every timestamp C. The intent output
prediction is given by:

8>DC = ,> (C0=ℎ(,8 [ℎC ; 2C ]))) (6.7)

Where, 8>DC is the intent score ∈ R82 for the CCℎ time-step, ,8 and ,> are the trainable weight
parameters for the intent predictor and 82 is the total number of intent classes. The latter can be the
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different domains the dialogue system wants to converse upon, for example restaurant booking, flight
booking et cetera.

6.2.3 Training Joint Text and Knowledge Graph Embeddings

Learning distributed embeddings for words has been widely studied for neural network based natural
language understanding. [58] was the first to propose a model to learn such distributed representations.
In order to leverage additional information from Knowledge Graphs in goal-oriented dialogues, we
need to first project the embeddings for both texts appearing in the dialogue corpus and Knowledge
Graphs in the same vector space. For learning such word embeddings, we adopted the work done
by [204], which proposes a model for training the embeddings from both a corpus and a Knowledge
Graph jointly. The proposed method is described in three steps: firstly training the Global Vectors
(GloVe) following [206], secondly incorporating the Knowledge Graph, and jointly learning the former
two using the proposed model with a linear combination of both their objective functions.

Glove Vectors (GloVe)

Firstly, we train the embedding vectors by creating a global word co-occurrence matrix - from both
the input and target sentences, where each word in these sentences is represented by a row in -
containing the co-occurrence of context words in a given contextual window. Finally, the GloVe
embedding learning method minimizes the weighted least squares loss presented as:

�� =
1
2

∑
8∈+

∑
9∈+

5 (-8 9) (F
>
8 F 9 + 18 + 1 9 − ;>6(-8 9))

2 (6.8)

Where -8 9 denote the total occurrences of target word F8 and the context word F 9 and the weighting
function 5 assigns a lower weight for extremely frequent co-occurrences to prevent their over-emphasis.

Incorporating the Knowledge Graph

The GloVe embeddings themselves do not take the semantic relation between corresponding words
into account. Therefore, in order to leverage a Knowledge Graph while creating the word embeddings,
we define an objective �B that only considers the three-way co-occurrences between a target word F8
and one of its context word F 9 along with the semantic relation ' that exists between them in the KG.
The KG-based objective is defined as follows:

�( =
1
2

∑
8∈+

∑
9∈+

'(F8 , F 9) (F8 − F 9)
2 (6.9)

Where '(F8 , F 9) indicates the strength of the relation ' between F8 and F 9 , which assigns a lower
weight for extremely frequent co-occurrences to prevent over-emphasising such co-occurrences and if
there is no semantic relation between F8 and F 9 then '(F8 , F 9) will be set to zero.
For the final step, to train both the corpus and the KG objectives jointly. We define the combined

objective function � as their linearly weighted combination

� = �� + _�( (6.10)
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Figure 6.1: Sequence-to-Sequence based module with multi-task learning of user intent regularized with
additional Entity Loss

_ is the regularization coefficient that regulates the influence of the Knowledge Graph on those
learned from the corpus.

6.2.4 Regularizing using additional Entity Loss

After projecting the Knowledge Graphs and the text in the same vector space, we compute an additional
loss which is equal to the vector distances between the predicted entity and correct entity. The intuition
behind using this loss is to penalize the model for predicting the wrong entity during decoding, in
vector space. We use cosine distance to measure the entity loss as given by:

Entity; = 1 − q
42>AA .q

4?A43

‖q42>AA ‖‖q4?A43 ‖
(6.11)

q
42>AA and q4?A43 being the vector embeddings for the correct and predicted entities, respectively.

6.2.5 Final objective Function

The final objective function for training the model is the summation of the cross-entropy (CE) loss
from the decoder (Vocab;), the cross-entropy loss from the intent predictor (Intent;) and the entity
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loss (Entity;).
The total loss is given by:

!C>C = Vocab; + Intent; + Entity; (6.12)

The model is trained with back-propagation using Adam [159] optimizer.

6.2.6 Key-Value Entity Look-up

As mentioned before the Knowledge Graph (KG) can change from one dataset to another or even as in
our case from one dialogue to another. This will result in the generation of KG entities that do not
belong to the current dialogue. Since we are incorporating global knowledge information using the
joint embedding, this additional step would ensure local KG integration aiding in the improvement of
the model. To accomplish this, we added an additional lookup step during decoding. While generating
a new token during decoding at time-step C, we firstly check if the predicted token is an entity. If it’s
an entity, we first do a lookup into the local dialogue KG to check its presence. If the entity is not
present, then we pick the one with the entity with the highest softmax probability that is present in the
local KG using greedy search. The technique is illustrated in figure 6.2. As seen in the figure, for the
query what is the weather like in New York, today?, during decoding at C = 2, the model outputs a
softmax distribution with highest probability1 (0.08) for the token raining after predicting it is. We
keep a copy of all the global KG entities and first check whether the predicted token is an entity in the
global KG or not. Since raining is indeed an entity, we further do a look up into the local dialogue KG
if it exists. For this scenario it doesn’t, hence we do a greedy search for the next best-predicted tokens
which are present in the local KG. In this specific case, sunny is the next most probable entity that
exists in the local KG, We pick this entity for the time-step and feed it into the next. The final output
will be it is sunny today in New York.

One such example in a real-case setting is shown in table 6.6. The distance for the gas station
was generated as 2_miles, whereas we can observe that in the local KG, the correct distance entity is
5_miles. Hence by performing the additional entity lookup, we replace 2_miles with the correct entity
during decoding. Empirical evidence suggests that this strategy can gain in performance as depicted
in table 8.6(b).

6.3 Experiments

6.3.1 Dataset

To test our hypothesis of multi-task learning of intent and dialogues, we needed a dataset which has
multiple domains and user intents annotated along with a Knowledge Graph for task-oriented dialogues.
[11] introduced such a multi-turn, multi-domain task-oriented dialogue dataset. They performed a
Wizard-of-Oz based data collection scheme inspired by [123]. They used the Amazon Mechanical
Turk (AMT) platform for data collection. The statics of the datasets are mentioned in Table 6.2. The
dataset is a conversation workflow in an in-car setting where the driver (user) is asking the assistant
for scheduling appointments, weather forecasts, and navigation. Both roles are played by AMT turkers

1this is a fictitious example for explaining the algorithm, the scores are not what is being predicted from the real case
scenarios
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Figure 6.2: An example of how KVL works to replace predicted entities with correct ones from the local KG.

(workers). In driver mode, the turker asked a question while the assistant turker responds to the query
using the provided Knowledge Graph. The Knowledge graph statistics are provided in Table 6.3.

Training Dialogues 2,425
Validation Dialogues 302
Test Dialogues 304
Avg. # Utterances Per Dialogue 5.25
Avg. # Tokens Per Utterance 9
Vocabulary Size 1,601

Table 6.2: Statistics of the in-car multi-turn, multi-domain, goal-oriented dialogue dataset.

6.3.2 Pre-processing and Model Hyper-parameters

We processed the dataset by creating inputs out of the driver’s utterances and the accompanied KG
and the model outputs would be the current task intent and the assistants’ output. We also processed
the entire Knowledge Graph to identify the entities and convert them into canonicalized forms. We
also split entities with multiple objects. For instance, a weather forecast that looks like "frost, low
of 20F, high of 30F" can be split into (weather-condition="frost", low-temperature="low of 20F",
high-temperature="high of 30F").

For training the Joint Embedding we used a contextual window for the co-occurrence matrix equal
to 15 which is 1

4
Cℎ of the mean of input size. We trained the model with U = 0.01 and _ = 10000 and
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the embedding vectors with dimensions of 300 for 500 epochs with learning rate equals to 14 − 4 and
a weight-decay of 14 − 6. The stats regarding the Knowledge Graph is provided in Table 6.3.

As for the sequence-to-sequence model, we trained each of them on a GPU with 3072 CUDA cores
and a VRAM of 12GB. The model is trained for 1000 epoch with a batch size of 128 and a hidden
layer size equal to the embedding dimension of 300. We set the learning rate to be 14 − 4 for the
encoder and 54 − 4 for the decoder, we also added a gradient clipping of 50.0 for countering the
‘exploding gradient‘ problem; by doing so we prevent the gradients from growing exponentially and
either overflow (undefined values), or overshoot steep cliffs in the cost function. We didn’t do any
exhaustive hyper-parameter optimization, the values reported here are the ones used for all models.
Our codes and preprocessing scripts are available in 2.

Number of entities 291
Number of Triples 2,512
Number of Triples found in context 1,242
Max Triple co-occurrence 750
Unique words co-occurrences 1,30,803

Table 6.3: Statistics of the trained Joint Embedding.

6.4 Results

In this section, we report the results from our model on the mentioned dataset. We evaluate our system
using BLEU scores as suggested by [207]. BLEU as defined by [207] analyzes the co-occurrences of
n-grams in the reference and the proposed responses. It computes the n-gram precision for the whole
dataset, which is then multiplied by a brevity penalty to penalize short translations We are reporting
the geometric means of BLEU-1, BLEU-2, BLEU-3, and BLEU-4. In addition to that we evaluated
the both our model and the Mem2Seq model proposed by [10] using an Embedding-based metrics
such as Greedy Matching, Embedding Average and Vector Extrema as proposed by [208] 3. We are
using an Attention based seq-to-seq model as a baseline along with the other state-of-the-art models on
this corpora [11] (KV Retrieval Net) and [10] (Mem2Seq H3). We are reporting our best model which
is attention based Sequence-to-sequence model (S2S+Intent+JE+EL) with Joint Embeddings (JE)
as inputs and trained as a multi-task objective of learning response utterance along with user Intent
further, regularized using Entity Loss (EL). This model is further improved with an additional step
called Key-Value Entity Look-up (KVL) which is done during inference. The method was explained
in 6.2.6.
As seen from the results, our proposed architecture has absolute improvements of 0.92 over KV

Retrieval Net and 1.52 over Mem2Seq (H3) on BLEU. Although, the results are not directly comparable
with the latter because we use canonicalized entity forms like [11]. We are reporting BLEU scores
because for task-oriented dialogues there’s not much variance between the generated answers, unlike
open-domain dialogues [208]. We are using the official version (i.e. moses multi-bleu.perl script) 4for

2https://github.com/s6fikass/Chatbot_KVNN
3We report these metrics for our best model and only for Mem2Seq because their implementation is open-source.
4multi-bleu: https://raw.githubusercontent.com/moses-smt/mosesdecoder/master/
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6.4 Results

Model BLEU Emb. Avg. Vec. Ext. Greedy
Attention based Seq-to-Seq 8.4 - - -
KV Retrieval Net(no enc attention) 10.8 - - -
KV Retrieval Net 13.2 - - -
Mem2Seq H3 12.6 0.668 0.742 0.528
S2S+Intent+JE+EL 14.12 - - -
S2S+Intent+JE+EL+KVL 18.31 0.955 0.974 0.625

Table 6.4: Results compared to baseline and State-of-the-art models.

doing all the evaluations. Also, as seen in table 8.2, our proposed model performs significantly better
than Mem2Seq on emedding-based metrics too.

Model Used BLEU Score BLEU with KVL
S2S+glove 10.42 14.63
S2S+JE 13.35 15.29
S2S+Intent+JE 12.65 17.89
S2S+Intent+glove 13.25 17.27
S2S+Intent+JE+EL 14.12 18.31

Table 6.5: Ablation Study.

6.4.1 Ablation Study

As mentioned in the results, our best model is based on Joint embeddings as inputs, followed by jointly
learning user intent and text generation; with entity loss based on further regularization techniques.
To analyze which specific part is influencing the performance, we did an ablation study dissecting the
different components of the model one by one. The performances are reported in Table 8.6(b).
The first model is a sequence-to-sequence (S2S) model with Glove [206] embeddings as input.

These embeddings are trained on the training set. It can be seen that with the domain-vocabulary
knowledge the model already performs better than vanilla attention sequence-to-sequence model. The
next (S2S+JE) is the same model with Joint text and Knowledge Graph embeddings (also trained on
the dialogue corpus and provided Knowledge Graph). This model has an absolute improvement of 2.93
in BLEU scores. Interestingly, adding the intent along with Joint Embeddings drops the performance
by 0.7 but the encounters a little improvement with glove vectors. The model sees a further boost in
performances (relative improvement of 3.7) over vanilla models with GloVe. All the models encounter
better performances with the proposed key-value lookup (KVL) technique during inferencing.

6.4.2 Qualitative Analysis

To qualitatively understand the performance improvements of the model with a different setting as
in Table 8.6(b) we analyze the outputs from all of them for a given user query. For the user (driver)

scripts/generic/multi-bleu.perl
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Chapter 6 Improving task-oriented, generative Chatbots using Knowledge Graph Embeddings

Driver Where is the nearest gas station?
S2S chevron is 5_pm away at <UNK> it is going to snow
S2S+GloVe chevron is 3_pm at room_215
S2S+JE chevron is 5_miles at <UNK> high_of_30_f
S2S+Intent+JE chevron is at 783_arcadia_pl
S2S+Intent+JE+EL chevron is 2_miles away at 783_arcadia_pl
S2S+Intent+JE+EL+KVL chevron is 5_miles away at 783_arcadia_pl
Target chevron is 5_miles away at 783_arcadia_pl

Table 6.6: Example of generated responses on the Navigation domain explaining the improvement process
through the model stages.

query Where is the nearest gas station ?, predicted responses are given in Table 6.6. The Knowledge
Graph snapshot for this particular dialogue scenario is in Table 6.7.
As observed, the sequence-to-sequence (S2S) model is not able to produce knowledge grounded

responses since it has no information about the backgroundKnowledge Graph. Using Joint Embeddings
(S2S+JE), although produces more knowledge grounded responses (since chevron is an entity of type
gas_station and is at a distance of 5_miles), it outputs entities like high_of_30_f which is not related to
navigation intent but the weather. Incorporating intent into the model (S2S+Intent+JE) ensures that it is
generating words conditionally dependent on the intent also. Further grammatical improvements in the
model response are seen with entity loss (S2S+Intent+JE+EL) which is further made more knowledge
grounded with the proposed KVL method as seen in the last response (S2S+Intent+JE+EL+KVL). To
further understand the quality of the produced responses, we did a human evaluation of a subset of the
predicted responses from the test set. We asked the annotators to judge the response whether it is
human-like or not on a scale of 1-5. The average score given by the annotators is 4.51.

Subject Relation Object
chevron distance 5_miles
chevron traffic_info moderate_traffic
chevron poi_type gas_station
chevron address 783_arcadia_pl

Table 6.7: KG triples for the dialogue in Table 6.6, for navigation.

6.4.3 Error Analysis

To further understand the model performance, we did a further analysis of the responses from the test
set which gave very low BLEU scores during evaluation. The target and the predicted response are in
Table 6.8.

As observed, the model produces fewer word overlaps for generic responses like have a good day.
But, the responses are grammatically and semantically correct, which cannot be measured using BLEU
scores. The other types of errors are factual errors where the model fails because it requires reasoning
as in case of the 4Cℎ example. The user is asking if the weather is cloudy in this case, in Fresno.
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6.4 Results

Predicted Sentence Target Sentence
You’re welcome Have a good day
What city do you want the forecast for What city can i give you this weather for
Setting gps for quickest route now I picked the route for you drive carefully
It is cloudy with a low of 80f in fresno There are no clouds in fresno right now

Table 6.8: Error Analysis.

Subject Relation Object
fresno monday clear_skies
fresno monday low_40f

Table 6.9: KG triples and context for the error analysis in Table 6.8 for weather.
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CHAPTER 7

Using a Knowledge Copy Mechanism into
the response-generation process

7.1 Introduction

Moving in the same direction of generating dialogues using a knowledge graph, in this chapter
and in the next chapter we define models to answer the fourth research question "How response
generation in a Generative Dialogue system can be made Knowledge Graph aware?". In the following
chapter we explore techniques to directly incorporate the Knowledge Graph information into the
response generation process. The methods proposed are published as a paper [136] in the International
semantic web conference. The author proposed the novel architecture proposed in this chapter, ran the
experiments and also co-wrote the paper with peers.
With the recent advancements in neural network based techniques for language understanding

and generation, there is an upheaved interest in having systems which are able to have articulate
conversations with humans. Dialogue systems can generally be classified into goal and non-goal
oriented systems, based on the nature of the conversation. The former category includes systems
which are able to solve specific set of tasks for users within a particular domain, e.g. restaurant or flight
booking. Non-goal oriented dialogue systems, on the other hand, are a first step towards chit-chat
scenarios where humans engage in conversations with bots over non-trivial topics. Both types of
dialogue systems can benefit from added additional world knowledge [196],[11],[209].
For the case of non-goal oriented dialogues, the systems should be able to handle factoid as well

as non-factoid queries like chit-chats or opinions on different subjects/domains. Generally, such
systems are realized by using an extrinsic dialogue managers using intent detection subsequently
followed by response generation (for the predicted intent) [210], [211]. Furthermore, in case of factoid
queries posed to such systems, it is very important that they generate well articulated responses which
are knowledge grounded. The systems must be able to generate a grammatically correct as well as
factually grounded responses to such queries, while preserving co-references across the dialogue
contexts. For better understanding, let us consider an example dialogue and the involved Knowledge
Graph snippet in Figure 7.1. The conversation consists of chit-chat as well as factoid queries. For
the factoid question "do you know what is the home ground of Arsenal?", the system must be able to
answer with the correct entity (Emirates Stadium) along with a grammatically correct sentence; as
well as handle co-references("its" in the third user utterance meaning the stadium). Ideally, for an
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end-to-end system for non-goal oriented dialogues, the system should be able to handle all these kind
of queries using a single, end-to-end architecture.

There are existing conversation datasets supported by Knowledge Graphs for well-grounded response
generation. [11] introduced an in-car dialogue dataset for multi-domain, task-oriented dialogues along
with a Knowledge Graph which can be used to answer questions about the task the user wants to be
assisted with. The dataset consists of dialogues from the following domains: calendar scheduling,
weather information retrieval, and point-of interest navigation. For non-goal oriented dialogues,
[212] proposed a dataset in the movie domain. The proposed dataset contains short dialogues for
factoid question answering over movies or for recommendations. They also provide a Knowledge
Graph consisting of triples as (s, r, o). Where s is the subject, r stands for relations and o being the
object. An example of a triple from the dataset is: (Flags of Our Fathers, directed_by, Clint Eastwood).
The movie dialogues can utilize this provided Knowledge Graph for recommendation and question
answering purposes. However, this dataset only tackles the problem of factual response generation in
dialogues, and not well articulated ones.

To cater to the problem of generating well articulated, knowledge grounded responses for non-goal
oriented dialogue systems, we propose a new dataset in the domain of soccer. We also propose
the KG-Copy network which is able to copy facts from the KGs in case of factoid questions while
generating well-articulated sentences as well as implicitly handling chit-chats, opinions by generating
responses like a traditional sequence-to-sequence model.

The contributions of the paper can be summarized as follows:

• A new dataset of 2,990 conversations for non-goal oriented dialogues in the domain of soccer,
over various club and national teams.

• A soccer Knowledge Graph which consists of facts, as triples, curated from wikipedia.

• An end-to-end based, novel neural network architecture as a baseline approach on this dataset.
The network is empirically evaluated against other state-of-the-art architectures for knowledge
grounded dialogue systems. The evaluation is done based on both knowledge groundedness
using entity-F1 score and also standard, automated metrics (BLEU) for evaluating dialogue
systems.

7.2 Soccer Dialogues Dataset

7.2.1 Wizard-of-Oz Style Data Collection

The proposed dataset for conversations over soccer is collected using AMT (Amazon Mechanical
Turk) [213]. The dialogues are collected in an wizard-of-oz style [214] setup. In such a setup, humans
believe they are interacting with machines, while the interaction is completely done by humans. The
turkers, acting as users, were instructed to initiate a conversation about the given team with any query
or opinion or just have some small-talks. This initial utterance is again posted as another AMT task
for replying, this time a different turker is acting as a system. Turkers assigned to the system role
were asked to use Wikipedia to answer questions posed by the user. We encouraged the turkers to
ask factual questions as well as posing opinions over the given teams, or have chit chat conversations.
After a sequence of 7-8 utterances, the turkers were instructed to eventually end the conversation. A
screenshot from the experimental setup is shown in Figure 7.2. We restricted the Knowledge Graph to a
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7.2 Soccer Dialogues Dataset

Figure 7.1: A conversation about the football club Arsenal and the Knowledge Graph involved.

limited set of teams. The teams are picked based on popularity, the national teams chosen are: Sweden,
Spain, Senegal, Portugal, Nigeria, Mexico, Italy, Iceland, Germany, France, Croatia, Colombia, Brazil,
Belgium, Argentina, Uruguay and Switzerland. The club teams provided for conversing are: F.C.
Barcelona, Real Madrid, Juventus F.C., Manchester United, Paris Saint Germain F.C., Liverpool F.C.,
Chelsea F.C., Atletico Madrid, F.C. Bayern Munich, F.C. Porto and Borussia Dortmund. We also
encouraged people to converse about soccer without any particular team. The number of conversations
are equally distributed across all teams. The statistics of the total number of conversations are given in
Table 7.1.

Dataset # of Dialogues # of Utterances
Train 2,493 12,243
Validation 149 737
Test 348 1,727

Table 7.1: Statistics of Soccer Dataset.
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Figure 7.2: AMT setup for getting conversations over soccer.

7.2.2 Ensuring Coherence

In order to ensure coherent dialogues between turkers, an additional task is created for each dialogue,
where turkers were asked to annotate if the give dialogue is coherent or incoherent. Dialogues which
are tagged incoherent by turkers are discarded.

7.2.3 Soccer Knowledge Graph

A KG in the context of this paper is a directed, multi-relational graph that represents entities as nodes,
and their relations as edges, which can be used as an abstraction of the real world. KGs consists of
triples of the form (s,r,o) ∈  �, where s and o denote the subject and object entities, respectively, and
r denotes their relation.
Following [215], we created a soccer Knowledge Graph from WikiData [111] which consists of

information such as a team’s coach, captain and also information such as home ground and its capacity
for soccer clubs. For information about players, we have parsed individual wikipedia pages of the
teams and mined goals scored, position, caps, height and age of players. This ensures that the info in
the KG is up to date. Finally, we curated the Knowledge Graphs for each team manually and added
information such as jersey color. The KG schema is provided in 7.3 and additional statistics about KG
and conversation is provided in table 7.2.
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Figure 7.3: Schema of the proposed Knowledge Graph for Arsenal.

Statistics Count

Total Vocabulary Words (E) 4782
Avg. Number of Conversations/team 83
Avg. Number of Triples/team 148
Avg. Number of Entities/ team 108
Avg. Number of Relations/team 13

Table 7.2: KG statistics.

7.3 KG-Copy Model

The problem we are tackling in this chapter is: given a Knowledge Graph (KG), and an input context
in a dialogue, the model should be able to generate factual as well as well articulated response. During
the dialogue generation process, at every time-step C, the model could either use the KG or generate a
word from the vocabulary. We propose the KG Copy model which tackles this particular problem of
producing well-grounded response generation.
KG-Copy is essentially a sequence-to-sequence encoder-decoder based neural network model,

where the decoder can generate words either from the vocabulary or from the Knowledge Graph. The
model is mainly influenced by the copynets approach [216]. However, unlike copynets, KG-Copy
copies tokens from the local Knowledge Graph using a special gating mechanism. Here, local KG
depicts the KG for the team the dialogue is about. We introduce the KG-Copy’s encoder, decoder and
the gating mechanism below.

91



Chapter 7 Using a Knowledge Copy Mechanism into the response-generation process

7.3.1 KG-Copy Encoder

The encoder is based on a recurrent neural network (RNN), more specifically a long-short term
memory network (LSTM). It encodes the given input word sequence - = [G1, G2..., G) ] to a fixed
length vector 2. The hidden states are defined by

ℎC = 54=2 (GC , ℎC−1) (7.1)

where 54=2 is the encoder recurrent function and the context vector 2 is given by

2 = q(ℎ1, ℎ2...ℎ) ) (7.2)

Here in, q is the summarization function given the hidden states ℎC . It can be computed by taking the
last hidden state ℎ) or applying attention over the hidden states [47, 217] and getting a weighted value
of the hidden states (attention).

7.3.2 KG-Copy Decoder

The decoder is an attention based RNN (LSTM) model. The input to the decoder is the context 2 from
the encoder along with ℎ) . At time-step C, the hidden-state of the decoder is given by

ℎ
3
C = 5342 (GC , ℎC−1) (7.3)

Where 5342 is the recurrent function of the decoder. The decoder hidden-states are initialized using
ℎ) and the first token is <sos>. The attention mechanism [217]. The attention weights are calculated
by concatenating the hidden states ℎ3C along with ℎC .

UC = B> 5 C<0G(,B (C0=ℎ(,2 [ℎC ; ℎ
3
C ])) (7.4)

Here in,,2 and,B are the weights of the attention model. The final weighted context representation
is given by

ℎ̃C =
∑
C

UCℎC (7.5)

This representation is concatenated (represented by ;) with the hidden states of the decoder to
generate an output from the vocabulary with size E.
The output is then given by

>C = ,> ( [ℎC ; ℎ̃
3
C ]) (7.6)

In the above equation,,> are the output weights with dimension Rℎ38<-E . ℎ38< is the dimension
of the hidden layer of the decoder RNN.

7.3.3 Sentient Gating

The sentient gating, as mentioned previously, is inspired mainly by [216, 218]. This gate acts as a
sentinel mechanism which decides whether to copy from the local KG or to generate a word from
training vocabulary (E). The final objective function can be written as the probability of predicting the
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next word during decoding based on the encoder hidden-states and the Knowledge Graph (KG).

?(HC |ℎC ..ℎ1,  �) (7.7)

The proposed gating is an embedding based model. At every time-step C, the input query and the input
to the decoder are fed into the sentient gate. Firstly, a simple averaging of the input query embedding
is done generating 4<1@, which can be treated as an vector representation of the input context.

4<1@ =
1
#

∑
(4<1F1....4<1FC ) (7.8)

4<1FC is the embedding of the CCℎ word in the context. N.B. we only consider noun and verb phrases
in the context to calculate 4<1@ . For the KG representation, an embedding average of the local KG’s
subject entity and relation labels for each triple is performed yielding a KG embedding 4<1:6. We
consider a total of : triples in the local KG.
Finally, the query embedding is matched with these KG embeddings using a similarity function

(cosine similarity in this case).

:6B8< = C0=ℎ(2>B(4<1@, 4<1
1
:6), 2>B(4<1@, 4<1

2
:6)...2>B(4<1@, 4<1

:
:6)) (7.9)

The input to the decoder at C is fed into the embedding too as mentioned previously yielding 4<13 .
The final sentient value at C is given by :

BC = B86<>83 (,B4=C [4<1@ + 4<13; :6B8<; BC−1]) (7.10)

,B4=C is another trainable parameter of the model and ";" is the concatenation operation. The final
prediction is given by:

>DCC = BC ∗ :6B8< + (1 − BC ) ∗ >C (7.11)

The model is visualized in Figure 7.4.

7.4 Training and Model Hyper-parameters

7.4.1 Training Objective

The model is trained based on a multi-task objective, where the final objective is to optimize the
cross-entropy based vocabulary loss (;E>201) and also the binary cross-entropy loss (!B4=C84=C ) for the
sentient gate (B6). This value is 1 if the generated token at that step comes from the KG, otherwise 0.
For example, in the example provided in 7.1, for the 2=3 system utterance, this value would be 1 for
C = 5 (Emirates Stadium), but 0 for the previous time-steps.
The total loss is given by:

!C>C = !E>201 + !B4=C84=C (7.12)
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Figure 7.4: KG-Copy Model Encoder-Decoder Architecture for Knowledge Grounded Response Generation.

7.4.2 Training Details

To train the model, we perform a string similarity over KG for each of the questions in training data
set to find which questions are answerable from the KG. Then we replace those answers with the
position number of the triples where the answer (object) belongs in the KG, during pre-processing.
This is followed by a manual step where we verify whether the input query is simple, factoid question
or not and also the correctness of answer (object). The vocabulary is built only using the training data.
No additional pre-processing is done for the validation and test sets except changing words to their
corresponding indices in the vocabulary.

For training, a batch-size of 32 is used and the model is trained for 100 epochs. We save the model
with the best validation f1-score and evaluate it on the test set. We apply Adam [159] for optimization
with a learning rate of 1e-3 for the encoder and 5e-3 for the decoder. The size of the hidden layer of
both the encoder and decoder LSTM is set to 64. We train the decoder RNN with teacher-forcing [219].
The input word embedding layer is of dimension 300 and initialized with pretrained fasttext [201]
word embeddings. A dropout [220] of 0.3 is used for the encoder and decoder RNNs and 0.4 for the
input embedding. The training process is conducted on a GPU with 3072 CUDA cores and a VRAM
of 12GB. The soccer dataset (conversation and KG) and the KG-Copy model’s code are open-sourced
1 for ensuring reproducibility.

1https://github.com/SmartDataAnalytics/KG-Copy_Network
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7.5 Evaluation

We compare our proposed model with Mem2Seq and a vanilla encoder-decoder with attention. We
report the BLEU scores [207] and also the entity-F1 scores on both the proposed soccer dataset and
the In-car dialogue dataset. The results show that our proposed model performs better than both the
vanilla attention sequence-to-sequence models and Mem2Seq model across both metrics. Our model
outperforms Mem2Seq by 1.51 in BLEU score and 15 % on entity-F1 score. It performs better than the
vanilla sequence-to-sequence model by 1.21 on the BLEU metric on the soccer dataset. Interestingly,
Mem2Seq performs better than the vanilla model on validation, but it fails to generalize on test set.
The proposed model although has lower BLEU on the in-car dialogue dataset, but has a better entity
f1 scores (by 19.4 %), implying stronger reasoning capabilities over entities and relations [10].

Model BLEU Entity-F1
Valid | Test Valid | Test

Vanilla Encoder-decoder with Attention 1.04 | 0.82 _ | _
Mem2Seq [10] 1.30 | 0.52 6.78 | 7.03

KG Copy (proposed model) 2.56 | 2.05 24.98 | 23.58

Table 7.3: Results on Soccer Dataset.

Model BLEU Entity-F1
Vanilla Encoder-decoder with Attention 8.4 10.3
Mem2Seq [10] 12.6 33.4

KG Copy (proposed model) 9.6 52.8

Table 7.4: Results on the In-car Dialogue Dataset.

7.6 Discussion

7.6.1 Qualitative Analysis

In this section, we will qualitatively analyze the response generation of our model along with the
background knowledge integration (grounding) and compare it with both Mem2Seq and vanilla
sequence-to-sequence models.
Some example response from test are given in Table 7.6. As seen, the KG-copy model is able to

have more articulate responses compare to sequence-to-sequence and Mem2Seq models. The model
is also able to form well articulate opinions compared to other models (2=3 column) 2.

2Seq2Seq model has generated a more articulated response based on the given context but it is factually wrong: Senegal
is nicknamed the Lions of Teranga and not Nigeria.
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Figure 7.5: Response Generation during Decoding for KG-Copy Model.

Some more examples along with the response from our model are given in Table 7.7. As observed,
all those responses are well grounded. The first response is factually correct and also a well-articulate
one; interestingly, even the true human response on the other hand is not. The last response is
knowledge ground but not well articulate.The model is also able to perform co-reference resolution
implicitly while generating responses. To verify, let us consider another conversation between an user
with the deployed KG-copy model.
User utterance: i like the team pretty much
Response: i don’t think they’re a lot of winning.
User utterance: who is the captain of argentina ?
Response: lionel messi is the captain
User utterance: do you know the name of their coach ?
Response: lionel scaloni is the coach
In the last response, the model is able to identify that the pronoun "their" refers to the team and is able
to maintain a knowledge grounded, as well as articulate responses even for relatively long dialogue
turns. For time-step C = 0, the visualization of the sentient gating mechanism is provided in Figure 7.5.
The vocabulary distribution is over E, and the object distribution here is over the local KG for the team.

Furthermore, following [11], we did an internal survey regarding the responses generated by
KG-Copy network, judging the quality of responses based on the context on a scale of 1-5 on
correctness and human-like sentence formation. The former measures how correct the generated
response is with respect to the true response from the turker, and the latter how grammatically correct
the produced response is. We randomly pick 50 conversation utterances from the test set and report
this human evaluation both on Mem2Seq and KG-copy in Table 7.5.
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Model Correctness Human-like

Mem2Seq 1.30 2.44
KG-Copy 2.26 3.88

Table 7.5: Human evaluation of generated responses.

Context Type factoid opinions

Input contexts what is the name of the captain
of mexico ?

I like this team.

True response andres guardado (captain) nigeria is a very well performing
team and i like them a lot as well

Seq2Seq The is is They are nicknamed the Lions of
Teranga.

Mem2Seq Mexico is the They are a

KG-Copy andres guardado. they are a good team.

Table 7.6: KG-copy Response for Factoid and non-Factoid queries.

input contexts Turker Response KG copy response

who is the captain of iceland? aron gunnarsson aron gunnarsson is the captain.

who is the captain of italy ? chiellini giorgio chiellini is the captain.

who is the coach for italy ? i think roberto mancini roberto mancini is the coach

who is the coach of bayern munich ? niko kovac is the current manager niko kovac

Table 7.7: KG Copy Model’s Knowledge Grounded Responses.

7.6.2 Error Analysis

Although the model is able to generate some well articulated, knowledge grounded responses for
factual queries as seen in Tables 7.6 and 7.7, the model often fails in producing factually correct
responses as also evident from Table 7.5. More of those cases are analyzed below.

The model produces too generic and non-factual responses to queries about opinions about favorite
players as shown in Table 7.8. This is mostly because the vocabulary size is relatively large compare
to the size of training dialogues. This can be improved with more training data, especially with more
knowledge grounded conversations. For the first response, the model is not able to interpret the
question and generates a generic response. For the second case, the generated response is not factual
because the question is about Argentina, but Eden Hazard is from a different team (Belgium).

The KG-copy model also often suffers when more complex quantitative and other reasoning skills
are required to respond to the context. For example, for the first context in Table 7.9, the model needs
to perform a count operation over the KG to answer it, which is currently unsupported. Similarly,
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input contexts True Response KG copy response

who is senegal ’s best current
player not including mane ?

keita balde diao i think it is the best player in
the world cup

who ’s your favorite player ? messi i think eden hazard is the best
player

Table 7.8: Incorrect opinionated responses from KG-Copy model.

for the second case the model would require better language inferencing to respond. The model also
suffers from the problem of unknown words in the test set.

input contexts how many world cups has the
brazil team won ?

who was the top scorer in the
world cup for belgium ?

True Response brazil has won the fifa world cup
five times

eden hazard

Predicted they won the world cup i think it was the top scorer for
the world cup

Table 7.9: Incorrect factual responses from KG Copy model.
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CHAPTER 8

Grounding Dialogue Systems via
Knowledge Graph Aware Decoding with
Pre-trained Transformers

8.1 Introduction

While continuing to answer the fourth research question from the previous chapter, in this chapter we
propose a better knowledge-grounded model which directly answers using the relation information
from the Knowledge Graph rather than copying the object information like in the previous KG-copy
model. The work is submitted as a research paper in the extended semantic web conference [221].
The author has devised the main algorithm, partly ran experiments and also co-wrote the paper.

From the last chapter, we have seen that generative dialogue systems can benefit from the integration
of additional world knowledge [20]. In particular, Knowledge Graphs, which are an abstraction of
real world knowledge, have been shown to be useful for this purpose. We will focus on more ways of
integrating the KG into the dialogue generation process in this chapter.
To model the response using the KG, all current methods [10, 20][7] assume that the entity

in the input query or a sub-graph of the whole KG, which can be used to generate the answer, is
already known [10, 135]. This assumption makes it difficult to scale such systems to real-world
scenarios, because the task of extracting sub-graphs or, alternatively, performing entity linking in large
Knowledge Graphs is non-trivial [222]. An example of a Knowledge Graph based dialogue system is
shown in Figure 8.1. In order to generate the response James Cameron is the director, the system has
to link the entity mentioned in the question in the first turn i.e. Titanic, and identify the relation in the
KG connecting the entities Titanic with James Cameron, namely directed by. Additionally, to obtain a
natural dialogue system, it should also reply with coherent responses (eg. "James Cameron is the
director") and should be able to handle small-talk such as greetings, humour and so on. Furthermore,
in order to perform multi-turn dialogues, the system should also be able to perform co-reference
resolution and connect the pronoun (he) in the second question with James Cameron.
In order to tackle these research challenges, we model the dialogue generation process by jointly

learning the entity and relation information during the dialogue generation process using a pre-trained
BERT model in an end-to-end manner. The model’s response generation is designed to learn to
predict relation(s) from the input KG instead of the actual object(s) (intermediate representation).
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Figure 8.1: Example of a knowledge grounded conversation.

Additionally, a graph Laplacian based method is used to encode the input sub-graph and use it for the
final decoding process.
Experimental results suggest that the proposed method improves upon previous state-of-the-art

approaches for both goal and non-goal oriented dialogues. Overall, the contributions of this paper are
as follows:

• A novel approach, leveraging the Knowledge Graph elements (entities and relations) in the
questions along with pre-trained transformers, which helps in generating suitable knowledge
grounded responses.

• We have also additionally encoded the sub-graph structure of the entity of the input query with
a Graph Laplacian, which is traditionally used in graph neural networks. This novel decoding
method further improves performance.

• An extensive evaluation and ablation study of the proposed model on two datasets requiring
grounded KG knowledge: an in-car dialogue dataset and soccer dialogues for goal and non-goal
oriented setting, respectively. Evaluation results show that the proposed model produces
improved knowledge grounded responses compared to other state-of-the-art dialogue systems
w.r.t. automated metrics, and human-evaluation for both goal and non-goal oriented dialogues.

8.2 Model Description

We aim to solve the problem of answer generation in a dialogue using a KG as defined below.
In this work, the vertices + of the (Knowledge Graph)  � represent entities 4 ∈ + , while the edges

represent the relationships between those entities. A fact is an ordered triple consisting of an entity 4
(or subject B), an object > and the relation A (a.k.a. predicate ?) between them, denoted by (B, ?, >).
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8.2 Model Description

Figure 8.2: KGIRNet model diagram.

The proposed model for dialogue generation, which we call KGIRNet, is quintessentially a sequence-
to-sequence based model with a pre-trained transformer serving as its input as illustrated in Figure 8.2.
In contrast to previous works, we introduce an intermediate query representation using the relation
information, for training. We also employ a Graph Laplacian based method for encoding the input
sub-graph of the KG that aids in predicting the correct relation(s) as well as filter out irrelevant KG
elements. Our approach consists of the following steps for which more details are provided below:
Firstly, we encode the input query @ with a pre-trained BERT model (Section 8.2.1). Next we detect
a core entity 4 occurring in @ (Section 8.2.2). Input query @ and generated output is appended to
the dialogue context in every utterance. The input query, encoded using the BERT model is then
passed through an LSTM encoder to get an encoded representation (Section 8.2.3). This encoded
representation is passed onto another LSTM decoder (Section 8.2.5), which outputs a probability
distribution for the output tokens at every time-step. Additionally, the model also extracts the :-hop
neighbourhood of 4 in the KG and encodes it using graph based encoding (Section 8.2.6) and perform
a Hadamard product with token probability distribution from the decoder. The decoding process stops
when it encounters a special token, < �$( > (end of sentence). Dotted lines in the model diagram
represent operations performed at a different time-step C in the decoding process.
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8.2.1 Query Encoding

BERT is a pre-trained multi-layer, bi-directional transformer [48] model proposed by [49]. It is trained
on unlabelled data for two-phased objective: masked language model and next sentence prediction.
For encoding any text, special tokens [CLS] and [SEP] are inserted at the beginning and the end of the
text, respectively. In the case of KGIRNet, the input query @ = (@1, @2, ...@=) at turn C3 in the dialogue,
along with the context upto turn C3 − 1 is first encoded using this pre-trained BERT model which
produces hidden states ()1, )2....)=) for each token and an aggregated hidden state representation �
for the [CLS] (first) token. We encode the whole query @ along with the context, concatenated with a
special token, < �$* > (end of utterance).

8.2.2 Entity Detection

The aggregated hidden representation from the BERT model � is passed to a fully connected hidden
layer to predict the entity 48=? ∈ + in the input question as given by

48=? = B> 5 C<0G(F4=C� + 14=C ) (8.1)

Where, F4=C and 14=C are the parameters of the fully connected hidden layer.

8.2.3 Input Query Encoder

The hidden state representations ()1, )2....)=) of the input query @ (and dialogue context) using BERT
is further encoded using an LSTM [41] encoder which produces a final hidden state at the =-th
time-step given by

ℎ
4
= = 54=2 ()=, ℎ

4
=−1) (8.2)

54=2 is a recurrent function and )= is the hidden state for the input token @= from BERT.
The final representation of the encoder response is a representation at every = denoted by

�4 = (ℎ
4
0 , ℎ

4
1 ....ℎ

4
# ) (8.3)

8.2.4 Intermediate Representation

As an intermediate response, we let the model learn the relation or edge label(s) required to answer
the question, instead of the actual object label(s). In order to do this, we additionally incorporated
the relation labels obtained by applying the label function 5; to all edges in the KG into the output
vocabulary set. If the output vocabulary size for a vanilla sequence-to-sequence model is E>, the total
output vocabulary size becomes E>3 which is the sum of E> and E:6. The latter being the labels from
applying the 5; to all edges (or relations) in the KG.

For example, if in a certain response, a token corresponds to an object label >; (obtained by applying
5; to >) in the fact (4, A, >), the token is replaced with a KG token E:6 corresponding to the edge or
relation label A; of A ∈ � in the KG. During training, the decoder would see the string obtained by
applying 5; to the edge between the entities Titanic and James Cameroon, denoted here as r:directedBy.
Hence, it will try to learn the relation instead of the actual object. This makes the system more generic
and KG aware, and easily scalable to new facts and domains.
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8.2 Model Description

During evaluation, when the decoder generates a token from E:6, a KG lookup is done to decode
the label >; of the node > ∈ + in the KG (+ being the set of nodes or vertices in the KG). This is
generally done using a SPARQL query.

8.2.5 Decoding Process

The decoding process generates an output token at every time-step C in the response generation process.
It gets as input the encoded response �4 and also the KG distribution from the graph encoding process
as explained later. The decoder is also a LSTM, which is initialized with the encoder last hidden states
and the first token used as input to it is a special token, < ($( > (start of sentence). The decoder
hidden states are similar to that of the encoder as given by the recurrent function 5342

ℎ
3
= = 5342 (F342 , ℎ

3
=−1) (8.4)

This hidden state is used to compute an attention over all the hidden states of the encoder following
[217], as given by

UC = B> 5 C<0G(,B (C0=ℎ(,2 [�4; ℎ
3
C ])) (8.5)

Where,,2 and,B are the weights of the attention model. The final weighted context representation
is given by

ℎ̃C =
∑
C

UCℎC (8.6)

This representation is concatenated (represented by ;) with the hidden states of the decoder to
generate an output from the vocabulary with size E>3 .
The output vocab distribution from the decoder is given by

$342 = ,> ( [ℎC ; ℎ̃
3
C ]) (8.7)

In the above equation, ,> are the output weights with dimension Rℎ38<-E>3 . ℎ38< being the
dimension of the hidden layer of the decoder LSTM. The total loss is the sum of the vocabulary loss
and the entity detection loss. Finally, we use beam-search [223] during the the decoding method.

8.2.6 Sub-Graph Encoding

In order to limit the KGIRNet model to predict only from those relations which are connected to the
input entity predicted from step 8.2.1, we encode the sub-graph along with its labels and use it in the
final decoding process while evaluating.

The :-hop sub-graph of the input entity is encoded using Graph Laplacian [142] given by

�4=2 = �
−1
�̃ 58= (8.8)

Where, �̃ = � + �. � being the adjacency matrix, � is the identity matrix and D is the degree matrix.
58= is a feature representation of the vertices and edges in the input graph. �4=2 is a vector with
dimensions R8: corresponding to the total number of nodes and edges in the :-hop sub-graph of 4.
An example of the sub-graph encoding mechanism is shown in 8.3.
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Figure 8.3: Sub-Graph Encoding using Graph Laplacian.

The final vocabulary distribution $ 5 ∈ '
E>3 is a Hadamard product of this graph vector and the

vocabulary distribution output from the decoder.

$ 5 = $342 � �4=2 (8.9)

This step essentially helps the model to give additional importance to the relations connected at
k-hop based on its similarity with the query also to filter(mask) out relations from the response which
are not connected to it. For the query in 8.3 who is the director of Avatar and how was it rated ? The
graph laplacian based encoding method using only relation labels already gives higher scores for the
relations directed_by and rating, which are required by the question. This vector when multiplied with
the final output vocabulary helps in better relation learning.

8.3 Experimental Setup

8.3.1 Datasets

Available datasets for knowledge grounded conversations are the in-car dialogue data as proposed
by [20] and soccer dialogues over football club and national teams using a Knowledge Graph [136].
The former contains dialogues for assisting the driver of a car with data related to weather, schedules
and navigation, in a goal-oriented setting. The soccer dataset contains non-goal oriented dialogues
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Table 8.1: Dataset statistics.

In-car Dialogues Soccer Dialogues
Number of triples 8561 4301
Number of entity 271 932
Number of relations 36 30

Number of dialogues in train data 2011 1328
Number of utterances in train data 5528 6523
KG-grounded questions in train data (%) 44.95% 6.53%

Number of dialogues in validation data 242 149
Number of utterances in validation data 657 737
KG-grounded questions in validation data (%) 33.94% 4.61%

Number of dialogues in test data 256 348
Number of utterances in test data 709 1727
KG-grounded questions in test data (%) 34.84% 3.88%

about questions on different soccer teams along with a Knowledge Graph consisting of facts extracted
from Wikipedia about the respective clubs and national soccer teams. Both the datasets were collected
using Amazon Mechanical Turk (AMT). The statistics of the datasets are provided in Table 8.1. As
observed, the number of dialogues for both the dataset is low.
To perform a KG grounded dialogue as in KG based question-answering [224], it is important to

annotate the dialogues with KG information such as the entities and relations, the dialogues are about.
Such information were missing in the soccer dataset, hence we have semi-automatically annotated
them with the input entity 48=? in the query @ and the relations in the :-hop sub-graph of the input
entity required to answer @. For the domain of in-car it was possible to automatically extract the entity
and relation information from the dialogues and input local KG snippets. All datasets and code used
for this paper are publicly available 1.

8.3.2 Evaluation Metrics

We evaluate the models using the standard evaluation metrics BLEU [207] and entity F1 scores as used
in the discussed state-of-the-art models. However, unlike [10] we use entity F1 scores based on the
nodes+ of the KG, as inspired by previous works on KG based question answering [106]. Additionally,
we use METEOR [225] because it correlates the most with human judgement scores [226].

8.3.3 Model Settings

We use BERT-base-uncased model for encoding the input query. The encoder and decoder is modelled
using an LSTM (long short term memory) with a hidden size of 256 and the KGIRNet model is trained
with a batch size of 20. The learning rate of the used encoder is 1e-4. For the decoder we select a
learning rate of 1e-3. We use the Adam optimizer to optimize the weights of the neural networks.

1https://github.com/DeepInEvil/kgirnet
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Table 8.2: Evaluation on goal and non-goal oriented dialogues.

Models
In-Car Dialogues Soccer Dialogues

BLEU Entity F1 METEOR BLEU Entity F1 METEOR
Seq2Seq 4.96 10.70 21.20 1.37 0.0 7.8

Mem2Seq[10] 9.43 24.60 28.80 0.82 04.95 7.8
GLMP[135] 9.15 21.28 29.10 0.43 22.40 7.7

Transformer[48] 8.27 24.79 29.06 0.45 0.0 6.7
DialoGPT[139] 7.35 21.36 20.50 0.76 0.0 5.5
KG-Copy[7] - - - 1.93 03.17 10.89

KGIRNet 11.76 32.67 30.02 1.51 34.33 8.24

For all of our experiments we use a sub-graph size of k=2. For calculating 58= as in Equation 8.8, we
use averaged word embedding similarity values between the query and the labels of the sub-graph
elements. The similarity function used in this case is cosine similarity. We save the model with best
validation entity f1 score. The code of the model is added as a supplementary material.

Table 8.3: Relation Linking Accuracy on SQB [184] Dataset.

Method Model Accuracy

Supervised Bi-LSTM [6] 38.5
HR-LSTM [8] 64.3

Unsupervised Embedding Similarity 60.1
Graph Laplacian (this work) 69.7

8.4 Results

In this section, we summarize the results from our experiments. We evaluate our proposed model
KGIRNet against the current state-of-the-art systems for KG based dialogues; namely Mem2Seq [10],
GLMP [135], and KG-Copy [136]2. To include a baseline method, the results from a vanilla
Seq2Seq model using an LSTM encoder-decoder are also reported in Table 8.2, along with a vanilla
transformer [48] and a pre-trained GPT-2 model, DialoGPT [139] fine-tuned individually on both the
datasets.
We observe that KGIRNet outperforms other approaches for both goal (in-car) and non-goal

oriented (soccer) dialogues except for BLEU and METEOR scores on the soccer dataset. The effect
of knowledge groundedness is particularly visible in the case of soccer dialogues, where most models
(except GLMP) produces feeble knowledge grounded responses.

2KG-Copy reports on a subset of the in-car testset hence it is not reported here
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In addition to evaluating dialogues, we also evaluate the proposed graph laplacian based relation
learning module for the task of knowldge-graph based relation linking. Although, it is a well-researched
topic and some systems claim to have solved the problem [110], but such systems are not able to
handle relations which are not present in the training data [184]. The later also proposed a new,
balanced dataset (SQB) for simple question answering which has same proportions of seen and unseen
relations in the test or evaluation set. We have evaluated our unsupervised graph laplacian based
method for relation linking on the SQB dataset against supervised methods namely Bi-LSTM [6],
hr-bilstm [8] and unsupervised method such as text embedding based similarity between the query and
the relations connected to the subject entity with 1-hop. The results are reported in 8.3. As observed,
Graph Laplacian performs better wrt. supervised methods on unseen relations and also better than
shallow embedding based similarity. This is one of the motivation for using this simple method during
KGIRNet’s decoding process.

8.5 Discussion

Table 8.4: Analyzing sample predictions.

Input Query True Response Predicted Responses
GLMP Mem2Seq KGIRNet

who is currently
coaching bvb dort-
mund

lucien favre the is the coach yes , they have a
good

lucien favre is the
coach of bvb dort-
mund

when did italy last
win the world cup

2006 italy won the
world cup in
2006

i think they have a
good team

italy won the world
cup in 2006

what time is my doc-
torappointment?

your doctorap-
pointment is
scheduled for
friday at 11am

your next is is at
1pm at 7pm

your doctorappoint-
ment is at 1pm

your doctorappoint-
ment is on friday at
11am

i need gas valero is 4_miles
away

there is a valero
away

chevron is
gas_station away
chevron is at away

there is a valero
nearby

For in-car dialogues, we train and evaluate on queries which require knowledge from the KG, hence
we omit the scheduling conversations where the driver asks the car to schedule a meeting/conference.
In order to get the Knowledge Graph candidate triples for all the other models (Mem2Seq and GLMP),
we provide them with the 2-hop sub-graph of the correct input entity instead of the local knowledge
as used in the respective models; this, represents a scenario closer to a real-world KG grounded
conversation. For the in-car dataset, the human baseline BLEU score as reported in [20] is 13.5 (the
KGIRNet score is 11.76). The BLEU scores for soccer are low because non-goal oriented dialogues
are more complicated to model due to large vocabulary sizes (more than 3 times the vocabulary size
of the of in-car dataset). Also in the case of soccer dialogues, number of factual conversation is low
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(4%) compared to the total number of utterances and also the conversations are more generic and
repetitive in nature.

We also performed a human-based evaluation on the whole test dataset of the generated responses
from the KGIRNet model and its closest competitors i.e. Mem2Seq, GLMP and DialoGPT models.
We asked 3 (1 from CS and 2 from non-CS background) annotators to rate the quality of the generated
responses between 1-5 with respect to the dialogue context (higher is better). The measures requested
to evaluate upon are correctness (Corr.) and human-like (human) answer generation capabilities. The
Cohen’s kappa of the annotations is 0.55. The results are reported in Table 8.6(a). It is evident from
the results that the correctness of KGIRNet is the highest on both datasets with a larger margin in the
in-car setting. DialoGPT produces more human-like answers in the case of soccer, but performs worse
in the case of in-car dialogues.

8.5.1 Ablation Study

As an ablation study we train a sequence-to-sequence model with pre-trained fasttext embeddings
as input (S2S), and the same model with pre-trained BERT as input embedding (S2S_BERT). Both
these models do not have any information about the structure of the underlying Knowledge Graph.
Secondly, we try to understand how much the intermediate representation aids to the model, so
we train a model (KGIRNet_NB) with fasttext embeddings as input instead of BERT along with
intermediate relation representation. Thirdly, we train a model with pre-trained BERT but without
the haddamard product of the encoded sub-graph and the final output vocabulary distribution from
Step 8.2.6. This model is denoted as KGIRNet_NS. As observed, models that are devoid of any KG
structure has very low entity F1 scores, which is more observable in the case of soccer dialogues since
the knowledge grounded queries are very low, so the model is not able to learn any fact(s) from the
dataset. The proposed intermediate relation learning along with Graph Laplacian based sub-graph
encoding technique observably assists in producing better knowledge grounded responses in both the
domains; although, the latter aids in more knowledge groundedness in the domain of soccer dialogues
(higher entity F1 scores). We also did an ablation study on the entity detection accuracy of the
end-to-end KGIRNet model in the domain of in-car and compared it with a standalone Convolutional
neural network (CNN) model which predicts the entity from the input query, the accuracies are 79.69
% and 77.29% respectively.

Table 8.5: In-depth evaluation of KGIRNet model.

Models In-Car Soccer
Corr. Human Corr. Human

Mem2Seq 3.09 3.70 1.14 3.48
GLMP 3.01 3.88 1.10 2.17

DialoGPT 2.32 3.43 1.32 3.88

KGIRNet 3.60 4.42 1.59 3.78

(a) Human evaluation.

Models In-Car Dialogues Soccer Dialogues
BLEU EntityF1 BLEU EntityF1

S2S 4.96 10.70 1.49 0.0
S2S_BERT 7.53 09.10 1.44 0.0
KGIRNet_NB 9.52 29.03 0.91 29.85
KGIRNet_NS 11.40 33.03 1.05 28.35

KGIRNet 11.76 32.67 1.51 34.32

(b) Ablation study.
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8.5.2 Qualitative Analysis

The responses generated by KGIRNet are analyzed in this section. Responses from some of the
discussed models along with the input query are provided in Table 8.4. We compare the results with
two other state-of-the-art models with the closest evaluation scores, namely Mem2Seq and GLMP.
The first two responses are for soccer dialogues, while the latter two are for in-car setting. We inspect
that qualitatively the proposed KGIRNet model produces better knowledge grounded and coherent
responses in both the settings. In the case of soccer dialogues, predicting single relation in the
response is sufficient, while for the case of in-car dialogues, responses can require multiple relation
identification. KGIRNet model is able to handle such multiple relations as well (e.g., A:date friday and
A:time 11am for the third utterance).

Table 8.7: Analysing fact-fullness of KGIRNet.

Input Query True Response Predicted Response Intermediate Re-
sponse

who is senegal cap-
tain ?

cheikhou kouyate sadiomane is the cap-
tain of senegal

r:captain is the cap-
tain of @entity

who is the goalie for
iceland

hannes halldorsson runar alex runarsson r:goalkeeper

To understand more about the advantages of KG grounded generation process, consider the examples
from the soccer dataset below in Table 8.7, in which the model has failed. We have also included
the intermediate responses that are generated from the decoder before the KG lookup phase for
the reference. In the first case, while constructing the KG, the captain was Sadio Mane, whereas
the during the dialogue collection phase the probable captain was Checikhou Kouyate (as per the
annotator). These errors on temporal information can easily be tackled using Knowledge Grounded
dialogue systems, where the system can potentially reflect current information with updated real world
knowledge. For the second case, the current main goalkeeper for the Iceland national football team is
Hannes Halldórsson; however, Rúnar Alex Rúnarsson is also among the 3 goalkeepers for the team
and the model has no additional information to disambiguate between them to produce the same
response as the human annotator. KGIRNet is also able to infer conversational context implicitly in
dialogues with the system (Table 8.8).

8.5.3 Error Analysis

To analyze more on the shortcomings of our proposed KGIRNet, we stated some sample erroneous
responses from the model in Table 8.9. The first three are from soccer and the rest in-car dialogues.
The model often produces generic responses for soccer as in the first example. Our model is only
able to handle simple factoid queries and not able to answer queries requiring comparative reasoning
such as best player, youngest player etc, as observable from the second and third cases. In the second
case, the model answers with the coach’s name and when asked for the best player for Argentina and
it replies with the name of an Uruguayan player in the third case. The model also produces generic
relations like coach name, number of world cup championship as response when any such keyword is
present in the input. For the in-car dataset, the replies are less generic and more coherent; however, in
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Table 8.8: A conversation with KGIRNet.

User: what s the weather forecast for today and tomorrow ?

KGIRNet: what city do you want the weather for

User: los angeles

KGIRNet: it will be 40f - 60f onmondaywarmon tuesdaywindy onwednesday
hot on thursday

User: thanks

KGIRNet: you are welcome

cases like the fourth example, the model is not able to perform logical reasoning (negation). Moreover,
the model fails in cases where the input entity is not recognized correctly as in case of the last example.
Although, the name of the friend is fetched from the vocabulary, but the predicted entity is wrong
hence the model is not able to decode the relation A:address from the KG during decoding.

Table 8.9: Error analysis of KGIRNet.

Input Query True Response Predicted Response

portugal win the last eu-
rocup ?

yes they won the last eu-
ropcup

portugal has won the world
cup.

who is switzerlandś best
player ?

xherdan shaqiri petkovic is the coach of
switzerland

who is considered their best
player ?

traditionally their top scor-
ers.

luis suarez is the best
player in argentina

will it be warm in
grand_rapids on saturday

it will not be warm in
grand_rapids on saturday

it is not predicted to fall on
tuesday in grand_rapids

where does my friend live ? tom lives at
580_van_ness_ave

tom s house is located at
A:address

In general, the model’s entity detection fails in case of conversations with long dialogue contexts.
Incorporating KG information into the entity detection process, where we consider the sub-graph of
the entity in the first interaction can potentially help in further performance improvements.
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CHAPTER 9

Conclusion and Future Directions

Integrating external knowledge into human-machine interactive systems is one of the most important
steps in order to achieve general artificial intelligence. Inspired by previous works in cognition, this
research is primarily focused on integrating knowledge into text-based interactive systems. The main
focus of this research is to answer the research question: How to integrate external knowledge into
text-based human machine interactive systems?, as defined in 1. Several end-to-end as well as modular
architectures are proposed to integrate external knowledge into question answering and dialogue
systems. As also mentioned previously, the focus of this thesis is to integrate both structured and
unstructured knowledge into interactive systems, but the main focus has been on integrating structure
knowledge available in the form of Knowledge Graphs. The overall summary of the contributions are
depicted in Fig 9.1.

9.1 Answering the Research Questions

∗ Research Question 1

How theKnowledgeGraph Structure can be incorporated forKnowledgeGraphQuestion
Answering?

In order to answer the first research question (RQ1) three models, namely EARL, PNEL and
ELiDi. EARL, is a modular architecture leveraging connected relation information for the task
of entity linking while the other two namely PNEL and ELiDi being end-to-end models. A
comparison is made with the other state-of-the-art models for entity linking models for the final
task of Knowledge Graph based question answering. A final evaluation of all the models is
performed on the task of simple question answering. As evident from the results, end-to-end
approaches perform better on the task of entity linking. Additionally, as also evident ELiDi is
also able to generalize better to unseen data in a zero-shot scenario.

∗ Research Question 2
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EARL

PNEL

ELiDi

RQ3

Integrate External Knowledge 
(RQ)

AK-DE-biGRURQ2

KG-S2S

RQ1

KG-Copy

KGIRNet

RQ4

Figure 9.1: A Figure depicting the overall contribution of this Thesis towards Answering the main Research
Question(RQ).

Can Domain Knowledge in the form of Unstructured Text improve Chatbots’ perfor-
mance?

For answering the second research question, a novel end-to-end neural network architecture
is proposed namely AK-DE-biGRU. The model is able to integrate additional knowledge in
the form of domain keyword definitions into the final task of retrieval-based dialogue. An
additional GRU is used to encode the keyword definition along with the query tokens with a
novel gating mechanism. The experimental results demonstrate that our model outperformed
other state-of-the-art methods for response selection in a multi-turn dialogue setting measured
in term of recall @top-k, and that the attention mechanism and incorporating additional domain
knowledge are indeed effective approaches for improving the response selection performance of
the dual encoder architecture.

• Research Question 3
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9.2 Future Directions

Can Jointly-Trained KG and Word Embeddings improve Task-Oriented Dialogue Sys-
tems?

To answer the third research question, we propose a novel neural network architecture called
KG-S2S to improve goal-oriented dialogue systems using joint text and Knowledge Graph
embeddings with learning user query intent as a multi-task learning paradigm. The model
is enhanced with further regularization techniques based on entity loss which aids in further
performance improvements. Empirical evaluations suggest that our suggested KG-S2S model
gains over existing state-of-the-art systems on BLEU scores for multi-domain, task-oriented
dialogue systems. Although, we are not reporting entity-f1 scores since we are treating
canonicalized entity forms as vocabulary tokens and BLEU scores will already reflect the
presence of the correct entity in the responses.

• Research Question 4

How response generation in aGenerative Dialogue system can bemadeKnowledgeGraph
aware?

We have a two-fold approach to answer the fourth and the last research question. Firstly, a new
dataset is proposed for the task of non-goal oriented knowledge-grounded dialogue generation.
Secondly, we propose two end-to-end models namely KG-Copy and KGIRNet for the task of
dialogue generation in both goal and non-goal oriented setting. KG-Copy is based on copying
facts (objects) from the Knowledge Graph while generation responses while the later is based
on generating relation(s) during the generation phase using graph laplacian and relation aware
decoding. Empirical evidence suggest that KG-Copy performs better than other state-of-the-art
models wrt. BLEU and Entity-f1 scores, while KGIRNet further improves on the results and
also produces more coherent responses as evident from the human evaluations.

9.2 Future Directions

The main future research directions we would like to extend the ideas proposed in this thesis are

9.2.1 Transfer Learning for KGQA

For the task of Knowledge Graph based question answering, we would like to focus on transfer learning
methodologies and adapt pre-trained models for the task. For entity linking, we would like to use
pre-trained transformers those are fine-tuned for the task of named entity recognition and adapt them
for entity linking for questions by incorporating additional Knowledge Graph information.
The biggest challenge for relation linking for KGQA is that the models are not able to adapt to

handle relations that are not seen in the training phase [184]. We would like to handle this using
relation label information during the training process and use pre-trained models and use them in a
discriminative manner using relation label and questions for relation linking.
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9.2.2 Annealing Language Models with Knowledge Graph Information

Although, pre-trained transformer based language models exhibits good understanding of text and
can easily be fine-tuned into different tasks with improved performance. However, such models often
fail when it comes to generating knowledge grounded responses. As also evident from the results of
DialoGPT [139] from 8.2, although it produces more natural responses but fails in the cases where
additional knowledge was required. As a future work, we would like to focus on adapting pre-trained
language models to be more knowledge aware and use them for the purpose of dialogue generation.

9.2.3 Evaluating Knowledge Groundedness of Generated Dialogues

Another future directions we would like to explore is having automatic metrics for evaluation of
knowledge groundedness for the evaluated dialogues. Although, automatic evaluation of generated
dialogues, or natural language generation is a well-researched topics, only few recent works have
focused on factual correction of the generated dialogues. Evaluating knowledge grounded dialogues
would depend on the query posed, and the entities generated during the dialogue generation process.
We would like to investigate automated evaluation metrics which will also consider the underlying
knowledge graphwhile evaluating the generation dialogues. Potentially using jointly trainedKnowledge
Graph embeddings can be used for designing such evaluation metrics.
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