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1 Introduction 

1.1 Skin melanoma and its molecular subtypes 
 

Melanoma is the deadliest type of skin cancer which begins by aberrant genetic and 

epigenetic control in melanocytes(Sarkar et al., 2015)(Dahl and Guldberg, 2007).  

Melanoma tumors bear a higher mutational load in comparison to other tumors and are 

known as highly heterogenous by somatic mutations as well as tumor 

phenotypes(PCAWG Mutational Signatures Working Group et al., 2020). Genetic 

heterogeneity, microenvironment-dependent epigenetic reprogramming, and tumor 

immunity make melanomas very challenging and interesting targets of research in both 

aspects of etiology and precision medicine (Merlino et al., 2016). 

Genome-wide studies using high-throughput sequencing technologies rapidly advanced 

our understanding of molecular subtypes and mechanisms of melanoma genesis, 

metastasis, and response to the therapies. Using large scale melanoma exome 

sequencing, a landscape of driver mutations in melanomas has been described with the 

major mutational signatures and driver genes/pathways; This analyses of mutational and 

copy number data revealed that BRAF, NRAS, and NF1 are the most frequently mutated 

genes in melanomas and cytosine to thymidine (C>T) transitions account for 46% of 

mutational signatures which are known for UV-induced mutagenesis(Hodis et al., 2012). 

Using whole-genome, exome, and transcriptome sequencing followed by protein-based 

analysis further studies classified cutaneous melanomas by genomic mutations and 

immune signatures. According to this genomic classification, four major molecular 

subtypes of cutaneous melanomas were identified either as mutated in BRAF, RAS, NF1, 

or Triple-wild-type. In addition, each subtype was independently identified with signatures 

of tumor immunogenic microenvironment which contribute to the evaluation of immuno-

therapeutic strategies and patients' survival(Akbani et al., 2015). 

Other researchers expanded on the insight of genomic drivers in major subtypes of 

melanoma using whole-genome data; it was shown that cutaneous, acral, and mucosal 

melanomas exhibit different mutational profiles which should be considered to improve 

targeted therapies in each subtype(Hayward et al., 2017).  
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1.2 The next generation of targeted therapies and immunotherapies 
revolutionized melanoma therapies using genomic and epigenomic melanoma 
profiles 

 

Like the other types of cancer, melanoma is a genetic disorder that could be precisely 

characterized and controlled by molecular mechanisms. Targeted therapy using 

molecular drugs and monoclonal antibodies first became possible by understanding the 

driver genes and proteins in cancer. The most advanced FDA-approved therapies for 

melanoma include single-targeted or combination of targeted drugs to inhibit BRAF, MEK, 

RAS signaling as well as immunotherapies using antibody-mediated blockade of immune 

checkpoints CTLA-4 and PD-1(Merlino et al., 2016).  

Epigenetic markers and alterations also became a trending focus of research in melanoma 

genesis and precision therapies since they are known for reversible regulation and 

microenvironmental interplay with tumor genetics. 

Hugo et al published robust shreds of evidence that DNA methylation alterations 

contribute to resistance mechanisms in mitogen-activated protein kinase inhibitor (MAPKi) 

therapies. Using patient-matched melanoma exomes, transcriptomes and methylomes 

they indicated that interplay of CpG-methylation changes with tumor microenvironment 

and immunity in MAPKi-resistant melanomas are modulated beyond the genetic changes 

(Hugo et al., 2015).  

Epigenetic regulation in cancer works via different mechanisms including DNA 

methylation, histone acetylation, histone methylation, and Non-coding RNA (Cheng et al., 

2019). Growing evidence by epi/genetic research during recent years developed the idea 

of targeting epigenetic markers using “epidrugs” –including inhibitors of DNA 

methyltransferases and histone deacetylases– to improve cancer treatments. Despite 

genetic mutations, epigenetic alterations (epimutations) are reversible and 

reprogrammable. An increasing number of epidrugs are receiving FDA approval or 

passing through preclinical and clinical trials which aim to reprogram resistance 

mechanisms and to increase the efficacy of targeted therapies against cancer (Dahl and 

Guldberg, 2007)(Miranda Furtado et al., 2019). In the following paragraphs, I focus on 

cellular and molecular mechanisms which raised questions about epi/genetic dynamics of 

melanomas in therapy context and their contribution to epidrugs discovery.  
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1.3 Phenotype plasticity and melanoma cell dedifferentiation as non-genetic 
candidate mechanisms to combat therapy resistance 

 

Therapeutic approaches for melanoma have benefited from multifaceted research and 

growing experimental data from melanoma cells behavior. Epi/genetic studies 

demonstrated molecular knowledge about melanoma cells differentiation, cell cycle and 

proliferation, metabolism, and other non-genetic mechanisms which affect melanomas 

phenotype, dynamics, and their responses to the therapies. These mechanisms have 

been studied for contribution to tumor metastasis and resistance to therapies that also led 

to epidrugs research and development(Miranda Furtado et al., 2019).  

Melanoma phenotype plasticity has been introduced as a mechanism of resistance to 

targeted therapies and immunotherapies. This phenomenon indicates phenotype 

switching between different states of differentiation, proliferation, or invasion in 

melanomas through the epithelial-mesenchymal transition of melanoma cells (Rambow et 

al., 2019)(Hoek et al., 2008). Phenotype plasticity is controlled under numerous secreted 

factors in the tumor microenvironment (secretome). Transforming growth factor (TGFb), 

extracellular matrix (ECM) proteins, cytokines, proinflammatory factors like tumor necrosis 

factor (TNF), and immune cells are of the most influential secreted factors which drive loss 

of melanocytic differentiation (Arozarena and Wellbrock, 2019)   (Figure 1.1). Melanocytic 

plasticity signature (MPS) in melanomas was recently identified using comparative 

genomic and transcriptomic analysis on multiple preclinical models and clinical cohorts. 

MPS was applied for predicting patients' survival and response to immunotherapy 

(ICB)(Pérez-Guijarro et al., 2020)(Tsoi et al., 2018).  

Experimental and molecular data have provided evidence indicating that phenotype 

plasticity happens via epi/genetic reprogramming in melanoma cells in interaction with the 

tumor microenvironment, stress factors, and immune cells. Melanoma cells 

dedifferentiation under proinflammatory tumor microenvironment has been explained as 

a mechanism of resistance to adoptive T-cell transfer immunotherapy in melanomas 

(Landsberg et al., 2012). Tumor microenvironment and immunity are known as influencers 

of melanoma cell plasticity which leads to loss of responsiveness to immunotherapies 

(Hölzel et al., 2013)(Riesenberg et al., 2015). On the other hand, in human melanoma 

cells epigenetic downregulation of developmental and differentiation genes like SOX10 
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and MITF (melanocyte inducing transcription factor also known as the microphthalmia-

associated transcription factor) leads to aberrant signaling and dedifferentiation and 

consequently acquired therapy resistance(Shaffer et al., 2017). Analyses of expression 

and DNA methylation data in TCGA melanoma cohorts confirmed that downregulation of 

MITF –a known key gene of melanocytic differentiation– correlates with hypermethylation 

of CpG islands in this gene. Interestingly further experiments in human melanoma cell 

lines also showed that MITF expression could be restored using a hypomethylation agent 

(Lauss et al., 2015). Altogether, dedifferentiation-mediated resistance in melanoma 

therapy appeared as a convincing and highly interdisciplinary target of research to 

improve the efficacy of targeted therapies and immunotherapies. 
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A B 

Figure 1.1 Adaptive phenotype plasticity in melanoma. 

A) The secretome in tumor microenvironment controls phenotype switch between 
differentiated (MITFhigh) proliferative melanoma and dedifferentiated (MITFlow) invasive 
melanoma. Phenotype plasticity is controlled under numerous secreted factors in tumor 
microenvironment (secretome) including transforming growth factor (TGFb) and 
extracellular matrix (ECM) proteins secreted by cancer associated fibroblasts (CAFs). In 
addition, metabolic factors like hypoxia and restriction of nutrients (glucose and 
glutamine) are known for contribution to loss of melanocytic differentiation signature 
MITFlow, AXLhigh. 

B) Proinflammatory factors like tumor necrosis factor (TNF), cytokines, and immune cells 
are of other complex secretome in melanoma microenvironment which drive phenotype 
switch and contribute to loss of melanocytic differentiation signature MITFlow, JUNhigh. 
(Arozarena and Wellbrock, 2019) 
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1.4 MITF gene in melanocytic differentiation and microenvironment-induced 
melanoma phenotype plasticity  

 

MITF gene is known as the key transcription factor of melanocytic differentiation 

(Hemesath et al., 1994). MITF expression is crucial in normal melanocytic differentiation 

as well as melanoma cell proliferation and melanoma progression. In addition to 

melanocytic differentiation, MITF controls cell cycle, metabolism, and cell survival. The 

most important target genes of MITF in melanocytic differentiation include TYR, TYRP1, 

DCT, PMEL, and MLANA. Other important target genes of MITF in melanocytes and 

melanoma cells include CDK2 in cell cycle control, BCL2 and BCL2A1 in survival, and 

PPARGC1A in metabolism (Kawakami and Fisher, 2017).  

Downregulation of MITF and dedifferentiated phenotype have been observed in targeted 

therapy and immunotherapy resistant melanomas (Konieczkowski et al., 2014)(Müller et 

al., 2014). Transcriptional and mutational analysis in a big cohort of matched samples 

from melanoma patients under ICB immunotherapy recently revealed dedifferentiation 

and downregulation of MITF accompanying with downregulation of MHC1(major 

histocompatibility complex I) in anti-PD1 resistant melanomas. (Lee et al., 2020). 

Previously, experimental data demonstrated that downregulation of MITF which leads to 

epithelial-mesenchymal transitioning and dedifferentiation in a pro-inflammatory 

microenvironment, correlate with escaping the immune recognition by adoptive T-cell 

transfer (ACT) therapy (Landsberg et al., 2012). 

Multiple in-vivo and in-vitro studies have suggested that melanoma progression and 

dedifferentiation-mediated resistance develop through phenotype plasticity or “phenotype-

switch model” indicating the interplay of MITF signaling with melanoma 

microenvironment(Arozarena and Wellbrock, 2019).  

Phenotype-switch model has been first described based on in-vitro observations of 

melanoma cell lines with two distinct MITF expression profiles and corresponding tumor 

behavior: “proliferative” with positive expression of MITF, and “invasive” with negative 

expression of MITF(Hoek et al., 2006). However, this concept was further supported by 

in-vivo observations and could explain the central role of MITF in microenvironment-

induced or adaptive reprogramming of melanoma cells differentiation (Hoek et al., 2008). 
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Upregulation of MITF has been assigned to the melanocytic stage in a progressive four-

stage melanocytic differentiation signature which was established based on expression 

data of melanomas. This signature was demonstrated on observations of reversible 

dedifferentiation and melanoma phenotype switching in response to ACT immunotherapy 

as well as MAPKi targeted therapy (Tsoi et al., 2018)(Mica et al., 2013). 

In conclusion, dysregulated expression of MITF in melanoma (MITFlow melanomas) is 

bounded with adaptive melanocytic dedifferentiation, proliferation, and higher 

immunogenic response with proinflammatory and increased immune cells 

infiltration(Huergo-Zapico et al., 2018)(Landsberg et al., 2012)(Riesenberg et al., 2015). 

 

1.5 DNA methylation as the first-line epigenetic regulator to screen for tissue-
specific and adaptive differentiation  

 

DNA methylation is known as the most stable and inheritable epigenetic mark in 

mammalian cell development and differentiation. DNA methylation changes reflect the 

history of cancer cells in response to the tumor microenvironment and the tissue of origin 

even after long-term culture (Schellenberg et al., 2011). DNA methylation is mediated by 

DNA methyltransferases on cytosine(C) of CpG dinucleotides and represents the only 

covalent modification of DNA in mammals. CpG dinucleotides tend to locate in promoter 

regions of genes which are called “CpG Islands”. Hypermethylation of CpG islands often 

contributes to the downregulation of gene expression while hypomethylation of methylated 

promoters contributes to upregulation or ectopic expression of the corresponding 

gene(Bernstein et al., 2007). Global hypomethylation and site-specific hypermethylation 

of tumor suppressors or other gene promoters are well-known epigenetic modifications 

associated with cancer phenotype(Feinberg et al., 2006). Experimental data have shown 

that DNA methylation alterations can also reflect chromatin changes and align with histone 

modifications. Therefore, DNA methylation is known as the first useful and cost-effective 

epigenetic marker to screen(Kim and Costello, 2017)(Shipony et al., 2014).  

Adaptive phenotype-switch model and dedifferentiation-mediated resistance to melanoma 

therapies appeared to be controlled beyond mutational load and genetic changes rather 

by epigenetic modifications(Hugo et al., 2015). DNA methylation changes have been 

found aligned with chromatin remodeling in MITF-mediated phenotype switching in 
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melanoma cells: open chromatin correlated with a decreased level of methylation and 

repressed chromatin correlated with an increased level of methylation(Verfaillie et al., 

2015). In another genome-wide analysis of methylation profiles from invasive melanomas, 

hypermethylation of MITF promoter and its target genes in melanocytic differentiation 

pathway –MLANA, TYR, and RAB27A– have been observed(Lauss et al., 2015). 

 

1.6 Preclinical models and comparative analysis for molecular characterization 
and precision therapy in melanoma 

 

Preclinical models of human melanoma have tremendously contributed to current insight 

on mechanisms of melanoma progression, tumor characteristics, and developing novel 

therapeutic strategies. Comparative or cross-species analyses implement data from 

human tumors, animal tumors, and preclinical models of human tumors to identify 

conserved epi/genetic alterations and mechanisms in tumor genesis and progression. 

Such alterations and mechanisms have been promising targets of research and 

development for cancer therapies and specifically melanoma therapies. 

There are multiple approaches including different species to model human melanoma in 

other animals or organoids but here I focus on murine models of human melanoma and 

specifically the genetically engineered mouse (GEM) models which have been 

implemented for this study. 

To date, murine melanoma models have been generated based on four main strategies:  

1) Human melanoma cell xenografts were implanted into immunocompromised mice. 

2) Murine melanoma cells –driven by genetic engineering or autochthonous 

melanomas– were implanted into syngeneic wild-type mice with no immune 

manipulation. 

3) Melanoma is driven by genetic engineering with or without carcinogen induction in 

mice.  

4) Melanoma cells –driven by genetic engineering or autochthonous melanomas– 

were implanted into a genetically engineered model with the manipulated tumor 

microenvironment. 

Each model comes with different advantages and disadvantages (Pérez-Guijarro et al., 

2017)(Zaidi et al., 2008). Melanoma cell xenografts recapitulate the complex genetic 
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heterogeneity of human melanomas and have been used to predict the tumor response 

to drugs; however, predicting the clinical outcomes remains challenging. Syngeneic 

models provide more feasible transplantation with a functional immune system. 

Genetically engineered murine (GEM) models provide a precise platform to reproduce 

specific genetic mutation and molecular signaling of melanoma genesis and therefore 

recapitulate human melanomas of that specific molecular profile. GEM models of 

melanoma are popular for studying molecular mechanisms of melanoma progression and 

therapy resistance. They evade the heterogeneity and complex genetic aberrations of 

human melanomas and keep the focus of study on particular molecular mechanisms (van 

der Weyden et al., 2016)(Saleh, 2018).    

1.6.1 Genetically engineered murine (GEM) models of human melanoma 

Genetically engineered mouse models of cutaneous melanoma have been established for 

decades and provided a vital platform for modeling precise genetic alterations of human 

patients and their consequences. They carry a variety of engineered mutations or 

modifications which lead to activation of oncogenes, inactivation of tumor suppressors, 

and melanocyte-specific expression of key genes in melanoma genesis HRAS, NRAS, 

BRAF (Figure 1.2 A). GEM melanoma models could be developed without carcinogens 

induction or they are induced with carcinogens like UV (ultraviolet) radiation and DMBA 

(7,12-dimethylbenz(a)anthracene)(Pérez-Guijarro et al., 2017)(van der Weyden et al., 

2016). UV-induced GEM models have been anticipated to become the best tools for 

molecular studies of melanoma progression, target validation, and therapy resistance. 

 

1.6.1.1 A Hgf-Cdk4R24C preclinical model of melanoma for precision ACT-therapy 
 

Hgf-Cdk4R24C has been initially established for studying the impact and molecular 

mechanisms of UV carcinogen in melanoma genesis as well as developing ACT 

immunotherapy against invasive melanoma. This GEM model has been engineered with 

overexpression of HGF (hepatocyte growth factor) in addition to an oncogenic mutation in 

Cdk4 (cyclin-dependent kinase 4) (Gaffal et al., 2011)(Tormo et al., 2006)(Bald et al., 

2014) (Figure 1.2 B).  
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Hgf-Cdk4R24C appeared as a successful model of invasive human melanoma with a similar 

phenotype of clinical patients and immunotolerant in transplantation. Further in-vivo and 

in-vitro studies using Hgf-Cdk4R24C melanoma indicated adaptive phenotype-switch and 

dedifferentiation as a mechanism of resistance to immunotherapy (Landsberg et al., 

2012).  
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A 

B 

Figure 1.2 Targeted genes and pathways in genetically engineered murine (GEM) models 
of cutaneous melanoma. 

A) Activated rat sarcoma protein (RAS)/raf proto-oncogene serine threonine protein 

kinase (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-

regulated kinase (ERK) (RAS/RAF/MEK/ERK) and phosphoinositide-3 kinase (PI3K) 

pathways recapitulate the most frequently altered pathways of proliferation in human 

melanomas. Specific allelic modifications available in current preclinical murine models of 

melanoma are highlighted in red(Pérez-Guijarro et al., 2017). B) Hgf-Cdk4R24C murine 

model of melanoma includes oncogenic activation of cyclin-dependent kinase 4 (CDK4) 

and stimulation of tyrosine kinases in proliferation signaling by overexpression of growth 

factor (HGF). This model has been developed for studying the mechanisms of resistance 

to Adoptive T cell transfer immunotherapy (ACT) by Landsberg and colleagues. Figure is 

generated using Biorender.com.                     
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1.7 Mechanisms of resistance to melanoma therapies 
 

Targeted therapy and immunotherapy have shown unprecedented advances in clinical 

response and tumor regression. However, successful tumor remission is not durable and 

the majority of melanomas either exhibit intrinsic resistance or they acquire resistance to 

the therapeutic regimes. Mechanisms of resistance are very complex and include genetic 

mutations as well as non-genetic alterations in melanoma cells and also induced by the 

tumor microenvironment (Figure 1.3). Addressing these mechanisms contribute to the 

improvement of quality response, patient survival, and precision medicine in 

cancer(Winder and Virós, 2018).  

Intrinsic resistance to immunotherapeutic regimes in melanoma cells can be associated 

with genetic or non-genetic events that arise natural resistance in tumor entities. For 

example, upregulation of genes involved in epithelial-mesenchymal transition (AXL, 

ROR2, WNT5A, LOXL2, TWIST2, TAGLIN, FAP), as well as genes in angiogenesis and 

wound healing, have been shown to be associated with intrinsic resistance to anti-PD1 

immunotherapy (Hugo et al., 2016). This expression signature significantly overlaps with 

the expression signature which was previously observed in acquired MAPKi-resistant 

melanomas with evidence of non-genomic programming through DNA-methylation 

alterations (Hugo et al., 2015).   Loss of PTEN is another melanoma cell-intrinsic mutation 

that leads to upregulation of immunosuppressive cytokines and consequently decreased 

T-cell mediated immunotherapy(Peng et al., 2016).  

Immunotherapy resistance in melanomas can be acquired through immunity-related 

events which affect T-cell recognition and tumor cell killing: for example, mutations in 

genes of interferon-receptor signaling and mutations which affect antigen presentation. 

Another example is INFg (Interferon-g) stimulus which plays a dual function in anti-tumor 

immune response as well as immune escape. Continuous exposure to  INFg leads to 

constitutive upregulation of PD-L1 –the ligand for PD1 receptor–  by Treg (regulatory) cells 

and consequently suppression of T cell-mediated response (Spranger et al., 2013)(Tumeh 

et al., 2014). Treg cells exhibit regulatory immunosuppressive function by repressing the 

proliferation and activation of effector T cells. Infiltration of c-Met+   (Met receptor tyrosine 

kinase) neutrophils in the tumor microenvironment are associated with adaptive 
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suppression of  T cell-mediated immune response and effector functions by expression of 

inhibitory ligand PD-L1(Glodde et al., 2017).  

Another mechanism of adaptive resistance to immunotherapy and impaired recognition of 

tumor-specific T cells was explained by melanoma phenotype switching in the pro-

inflammatory tumor microenvironment. I will focus on this mechanism in the following 

paragraphs.  

1.7.1 Inflammation-induced melanoma cell dedifferentiation as a mechanism of 
acquired resistance to ACT-therapy 

Natural selection of tumor cells/clones with less immunogenic or antigen-deficient 

phenotypes has been explained under the term “cancer immunoediting” as a mechanism 

in acquired resistance to T cell-mediated immunotherapy. This simply implies that 

immunoselection of antigen-deficient melanoma cells leads to T cell tolerance and 

outgrowth of such tumor cells (Khong and Restifo, 2002)(Winder and Virós, 

2018)(Matsushita et al., 2012).  

Landsberg and colleagues established a preclinical model for ACT immunotherapy in a 

genetically engineered mouse model that successfully recapitulated the clinical behavior 

of therapy-resistant melanoma. This model was aimed to study the mechanisms of T cell-

mediated immunotherapy resistance and brought experimental evidence of 

immunoevasion by dedifferentiation phenotype switching and loss of melanoma cell-

specific antigens. Interestingly this dedifferentiated resistant phenotype was reversible 

and mirrored non-genetic and tumor-microenvironmental events. Landsberg and 

colleagues showed that in the Hgf-Cdk4R24C model under adoptive T cell transfer (ACT) 

therapy, melanoma evolve a dedifferentiated phenotype with a proinflammatory tumor 

microenvironment and significant secretion of TNFa (tumor necrosis factor a). Their data 

addressed the loss of melanocytic antigens aligned with adaptive dedifferentiation as a 

mechanism of immunotherapy resistance and loss of melanoma-specific T cell 

recognition(Landsberg et al., 2012). Moreover, they confirmed that melanoma cell 

differentiation is lost through downregulation of the MITF pathway and melanocytic genes 

expression.  

Further molecular experiments using expression profiles of murine and human melanoma 

cells revealed that pro-inflammatory immune response with the signature of TNFa and 
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other pro-inflammatory cytokines –which were produced by T cells in the tumor 

microenvironment during ACT therapy– is interconnected with upregulation of 

transcription factor c-Jun (Jun proto-oncogene) and downregulation of MITF signaling. 

The MITFlow/c-JUNhigh signature was demonstrated in melanomas with the significant 

secretion of proinflammatory cytokine TNFa  as well as myeloid cells infiltration into the 

tumor microenvironment (Riesenberg et al., 2015). They observed that the expression of 

c-Jun is antagonistic to the expression of MITF and downregulates the melanocytic 

differentiation genes expression.  

Proinflammatory-induced and reversible melanocytic dedifferentiation was later identified 

as a mechanism of acquired resistance to ACT therapy in a clinical melanoma patient. 

Interestingly it was also confirmed in corresponding human melanoma cells that 

dedifferentiated phenotype is reversible in response to the withdrawal of pro-inflammatory 

stimuli(Mehta et al., 2018). 

Taken together, proinflammatory induced phenotype switching from differentiated 

MITFhigh melanoma to dedifferentiated MITFlow melanoma explained how melanomas 

switch their behavior from proliferative to invasive and acquire ACT therapy resistance 

through immunoselection of antigen-deficient phenotype. 

 

1.8 Research gap and objectives of this study 
 

Landsberg and colleagues showed the interconnection of dedifferentiated melanoma 

phenotype and melanoma cell plasticity with proinflammatory tumor microenvironment 

and T cell-mediated therapy resistance. However, the molecular modulators of this 

interconnection remained unknown. I am specifically interested in epi/genetic 

mechanisms that could explain the evolution of reversible melanocytic dedifferentiation in 

ACT therapy-resistant melanoma phenotype. According to previous experimental data, 

there was a clear need for integrative analysis of genomic, transcriptomic, and particularly 

epigenetic alterations to gain a deeper mechanistic understanding of dedifferentiation-

mediated therapy resistance. I hypothesized that proinflammatory induced reversible 

dedifferentiation in melanoma is programmed by epigenetic alterations –specifically 

changing DNA methylation marks– beyond somatic mutations. To test this hypothesis, I 
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took advantage of the established primary melanoma and therapy-resistant melanoma 

cell lines from the Hgf-Cdk4R24C preclinical model at Prof. Landsberg´s lab.  

 

1.8.1 Mutational characterization and comparative analysis of preclinical model 
Hgf-Cdk4R24C and HCmel cells 

I aimed to genetically characterize melanoma cells of our preclinical model Hgf-Cdk4R24C 

in order to identify the somatic mutational load and possible driver mutations as well as 

their relevance to therapy resistance mechanisms. This identification contributed to 

genetic classification and molecular subtyping of our preclinical model compared to other 

available cell lines of murine models of human melanoma BCmel4, Mel114433, 

B9013HCB, B2905, and B16-F10.  

1.8.2 Molecular dynamics of resistant phenotype in melanoma cells of preclinical 
model Hgf-Cdk4R24C, using exome data, expression profiles, and DNA 
methylation profiles 

I proposed a dynamic or reversible molecular mechanism for reversible dedifferentiation-

mediated therapy resistance which could interconnect the proinflammatory tumor 

microenvironment with dedifferentiated phenotype and loss of T cell-specific antigens in 

resistant melanoma cells. Therefore, I aimed to analyze molecular profiles of genomic 

mutations, gene expressions, and DNA methylation in primary and resistant melanoma 

cells of the Hgf-Cdk4R24C preclinical model. I conducted differential analysis and 

integrative analysis to identify the source of molecular differences between primary and 

resistant melanoma cells which indicated programming mechanisms of these phenotypes.  
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Figure 1.3 Mechanisms of resistance to cancer immunotherapy. 

Key mechanisms of resistance to immunotherapy are summarized in three categories: 

tumor intrinsic factors, host-related factors, and tumor microenvironmental factors   (Bai 

et al., 2020). 
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1.9 Genome-wide experimental and analytical methods; advantages and 
limitations 

High-throughput sequencing technologies have equipped biomedical researchers to 

conduct genomic and epigenomic profiling and analyses. The more layers of molecular 

data we add, the more complete picture we get from underlying biomechanisms. 

Nevertheless, the variety of choices for experimental technologies and analytical methods 

may impose some complexities on researchers. Particularly when it comes to comparative 

genomics and non-human species the availability and compatibility of the methods must 

be considered. In the following paragraphs, I briefly review the commonly used methods 

for genome-wide profiling of DNA methylation, gene expression, and somatic mutations, 

and elaborate on our method of choice for experimental advantages as well as limitations. 

 

1.9.1 Genome-wide DNA methylation profiling  

Commonly used methods for DNA methylation profiling mainly differ from the target 

population of the cells (pooled cells or single cell), the tools of genomic DNA fragmentation 

(restriction enzymes or sonication), the method of methylated DNA enrichment (affinity 

enrichment or bisulfite conversion), and the method of reading DNA fragments 

(sequencing or microarray)(Figure 1.4) (Yong et al., 2016). Genome-wide DNA 

methylation profiling methods which apply microarray technology are limited to their 

defined target region and not suitable for exploratory analyses outside the targeted 

genomic subset and for different species. Bisulfite (BS) conversion-based DNA 

sequencing is known as the gold standard method for DNA methylation profiling that 

includes conversion of unmethylated cytosine to uracil using sodium bisulfite followed by 

sequencing. This method yields single-base resolution of methylated DNA, however, it 

limits many researchers by the costs of deep sequencing for genome-wide approaches 

(Yong et al., 2016) (Frommer et al., 1992)(Meissner, 2005). 

In this study, I took advantage of genome-wide coverage and lower costs of the MeDIP 

sequencing experiment for global profiling of methylated DNA as well as its availability for 

mouse genome. Methylated DNA Immunoprecipitation followed by next-generation 

sequencing (MeDIP-seq) offers a cost-effective alternative to genome-wide bisulfite 

sequencing with reasonable resolution (100-300 bp) and accurate enrichment of 
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methylated DNA based on specific antibody affinity. MeDIP-seq outperforms other 

genome-wide DNA methylation assays RRBS(reduced representation bisulfite 

sequencing) and Infinium (BS conversion-based DNA methylation array) for genomic 

coverage (Bock et al., 2010). However, MeDIP-seq data require statistical correction for 

CpG bias and transformation to absolute methylation measures. For this, I adopted a 

specific bioinformatic framework for quantitative sequence enrichment analysis which has 

been validated by BS-based measurements and experimental data (Grimm et al., 

2013)(Lienhard et al., 2017). Nevertheless, MeDIP-seq has limited statistical power to 

detect differential methylation in poor CpG regions and does not provide single-base 

resolution. Therefore, I recommend MeDIP-seq as the first experimental choice for global 

DNA methylation profiling and further validation using BS-conversion-based methods 

followed by sequencing for deeper methylated DNA readouts. 

1.9.2 Genome-wide expression profiling  

Commonly used technologies for genome-wide expression analysis include microarrays 

and transcriptome sequencing (RNA-seq). Both methods provide accurate high-

throughput readouts of transcripts, but transcriptome sequencing outperforms microarrays 

for genomic coverage and it became more favorable as the costs of sequencing are 

decreasing. RNA sequencing is currently known as the most robust measurement for 

genome-wide expression and transcriptional activity(Corchete et al., 2020)(Geraci et al., 

2020). 

The most challenging part of high-throughput expression profiling is the statistical 

analyses of several thousand transcripts; This represents a very complex type of multiple 

testing which could produce an unexpectedly high number of false-positive associations. 

Several statistical methods have been developed to deal with this problem with a specific 

focus for normalization. Here I briefly introduce some of the most popular normalization 

methods for RNA-seq analysis including our method of choice –DESeq: 

• Transcript length normalization includes depth normalized reads divided by the 

length of the corresponding transcript in kilobases. This computation yield reads 

per kilobase per million reads (RPKM) values which used to be the most common 

measurement for RNA-seq data analysis (Mortazavi et al., 2008). This method may 

not perform well for bulk RNA-seq and differential analysis because it is not 
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maintained across samples and could cause biases (Li et al., 2015) (Robinson and 

Oshlack, 2010). 

• The trimmed mean of M-values (TMM) method takes the observations with closest 

average expression to mean of all samples as a reference and compares all other 

samples as tests to it. This normalization method provided one of the most simple 

yet robust ways to estimate the ratio of RNA production and was implemented in 

popular statistical frameworks like edgeR (Robinson and Oshlack, 2010). 

• DESeq method performs an internal normalization on transcript counts where the 

geometric mean of all transcript counts is calculated and compared to the median 

of the ratio for each gene (transcript). DESeq method performs similarly to the TMM 

method in terms of qualitative characteristics of normalized data, the results of 

differential analysis, and maintaining a false-positive rate. In addition, the DESeq 

method is specifically developed for differential expression analysis in experiments 

with smaller sample sizes and overdispersion (Anders et al., 2015)(Anders and 

Huber, 2010).  

Yet, there is no single best pipeline that could be used for all RNA-seq experiments 

and research applications. Every experiment could adopt a combination of established 

analytical methods as well as specific modifications upon the aim of the study (Figure 

1.5)(Conesa et al., 2016). 
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Figure 1.4 A summary of commonly used methods for genome-wide DNA methylation 
profiling 

(Yong et al., 2016). Major differences between the methods are demonstrated by approaching 

the cell populations or single cell profiling, fragmentation of DNA by random sonication or 

defined cleavage, enrichment of methylated DNA by bisulfite conversion or enrichment 

proteins, and reading the methylated DNA by sequencing or microarray.  
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Figure 1.5 Main steps of RNA sequencing experiment and analytical approaches 

A) Pre-analysis include design of experiment and sequencing method as well as quality control 

of the sequencing data. 

B) Core-analysis include main analytical approaches for gene expression profiling and 

analysis: differential expression and biological interpretation. 

C) Advanced analysis includes variety of visualizations upon aim of experiment, non-coding 

RNA and alternative transcripts profiling, single cell RNA sequencing, and variety of omics data 

integration. 
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2 Materials and Methods 

2.1 Murine melanoma cell lines 
2.1.1 Origin and characteristics of the cell lines  

HCmel3, HCmel12, HCmel17, HCmel31 melanoma cell lines were generated from DMBA-

induced HgftgCdk4R24C primary melanomas with pigmented phenotype as previously 

described (Landsberg et al., 2012)(Bald et al., 2014)(Ho et al., n.d.). BCmel4 melanoma 

cell line was driven from a Tyr::CreERT2 BrafLSL-V600E Cdk4R24C mouse with the amelanotic 

phenotype(Ho et al., n.d.). All melanoma cell lines were generated from mice on the 

C57BL/6 strain background purchased from Charles River and according to the 

institutional and national guidelines for the care and use of laboratory animals with 

approval by the local government authorities (LANUV, NRW, Germany). 

Splenocyte cell line HCBT was generated from the spleen tissue of a HgftgCdk4R24C mouse 

as matched normal tissue for all melanoma cell lines in this study. 

ACT-resistant cell lines in this study include HCmel3-R1, HCmel3-R2, HCmel3-R2-2, and 

HCmel17-R cell lines which were generated from a HgftgCdk4R24C relapsed melanoma 

under Adoptive Cell Transfer (ACT) therapy.   

Tumor tissues were collected, dissociated mechanically, incubated with 1 mg ml−1 of 

collagenase D (Roche) for 30 min at 37 °C, and filtered through 70-µm cell strainers (BD 

Biosciences). One-million cells were seeded into collagen-coated 6-well plates and 

cultured in complete RPMI 1640 medium supplemented with 10% FCS (Biochrome), 

2 mM L-glutamine (Gibco), 10 mM non-essential amino acids (Gibco), 1 mM HEPES 

(Gibco), 20 μM 2-mercaptoethanol, 100 IU ml−1 penicillin and 100 μg ml−1 streptomycin 

(Invitrogen). 

To perform Adoptive T-cell transfer (ACT) protocol mice were preconditioned by 

intraperitoneal injection of 2 mg cyclophosphamide 1 day before intravenous delivery of 

2 × 106 naive gp100-specific CTLs isolated from spleens of TCR-transgenic Pmel-1 mice 

that were activated in vivo by one intraperitoneal injection of 5 × 108 plaque-forming units 

of the recombinant adenoviral vector Ad-gp100. Fifty micrograms of CpG 1826 (MWG 

Biotech) and 50 μg of poly(I: C) (Invivogen) in 100 μl PBS were injected peritumorally after 



 

 

 

32 

3, 7, and 10 days. Ad-gp100 was propagated on HEK 293 cells, purified by cesium 

chloride density-gradient centrifugation and subsequent dialysis according to standard 

protocols as previously described(Landsberg et al., 2012). 

CL1 cell line of M1 tumor was generated from a UV induced BrafCA/+; Pten flox/+; Cdkn2a 
flox/+, Tyr-Cre ERT-tg melanoma, CL2 cell line of M2 tumor from a UV-induced BrafCA/+; 

Cdkn2a flox/+, Tyr-Cre ERT-tg Hgftg melanoma, and CL4 cell line of M4 tumor from a UV-

induced Hgftg melanoma as previously described (Pérez-Guijarro et al., 2020).  

The B16-F10 cell line was generated as the 10th serial passage subclone of the 

spontaneous B16 tumor line in C57BL/6 mice and purchased from the American Type 

Culture Collection (ATCC) (Del Castillo Velasco-Herrera et al., 2018).  
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Table 2.1 Origin and characteristics of the cell lines 
Cell line  Murine 

background  
Genetic 
modification  

Carcinogen  Tumor 
Phenotype  

Therapeutic 
protocol 

HCmel3 C57BL/6 Hgftg 

Cdk4R24C 

DMBA Primary   

HCmel3-R1  

(HCmel1515) 

C57BL/6 Hgftg 

Cdk4R24C 

DMBA Resistant  ACT 

HCmel3-R2  

(HCmel2514) 

C57BL/6 Hgftg 

Cdk4R24C 

DMBA Resistant  ACT 

HCmel3-R2-2 

(HCmel3037) 

C57BL/6 Hgftg 

Cdk4R24C 

DMBA Resistant  ACT 

HCmel17 C57BL/6 Hgftg 

Cdk4R24C 

DMBA Primary  

HCmel17-R 

(HCmel3814) 

C57BL/6 Hgftg 

Cdk4R24C 

DMBA Resistant  ACT 

HCmel12 C57BL/6 Hgftg 

Cdk4R24C 
DMBA Primary  

HCmel31 C57BL/6 Hgftg 

Cdk4R24C 

DMBA Primary  

BCmel4 C57BL/6 Tyr-CreERT2 BrafLSL-

V600E Cdk4R24C 

DMBA Primary  

HCBmel 

(splenocyte) 

C57BL/6 Hgftg 

Cdk4R24C 

DMBA Normal  

CL1 

(Mel114433) 

C57BL/6 BrafCA/+ 

Pten flox/+ 

Cdkn2a flox/+ 

Tyr-Cre ERT-tg 

UV Primary  

CL2 

(B9013HCB) 

C57BL/6 BrafCA/+ 

Cdkn2a flox/+ 

Tyr-Cre ERT-tg 

Hgftg 

UV Primary  

CL4 

(B2905) 

C57BL/6 Hgftg UV Primary  

B16-F10 C57BL/6 

 

None  None  Primary  
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2.1.2 Cell lines culture and authentication 

All the HCmel and BCmel cell lines were cultured in RPMI medium supplemented with 

10% FBS and 1% L-glutamine at 37°C in 5% CO2.  

 

Table 2.2 Medium components for cell culture 

 

 

Cell lines were confirmed as Mycoplasma negative using Mycoplasma-specific PCR. 

CL1 (Mel114433), and CL4 (B2905) were cultured in RPMI medium supplemented with 

10% FBS and 1% L-glutamine. CL2 cell line (B9013HCB) was cultured in Tu2% medium. 

Authentication of CL1, CL2, and CL4 cell lines was performed by WES, genotyping the 

alleles in corresponding mouse models and SKY analysis, and was confirmed 

as Mycoplasma negative using a Mycoplasma detection kit (Lonza, LT07-418) 

B16-F10 cells were screened for the presence of mycoplasma and other mouse 

pathogens (Charles River Laboratories, Wilmington, MA, USA). Cells were cultured at 

37°C in 5% CO2 in high glucose Dulbecco's modified Eagle's medium (DMEM) 

Cell culture medium components  Provider  
RMPI 1640 Invitrogen 

FBS Superior S0615 Biochrom 

Penicillin-Streptomycin Gibco™ 15140122 

 

Sodium Pyruvate MEM 100 mM Gibco/Invitrogen; 11360-039 

 

MEM Non-Essential Amino Acids Solution 

10 mM 

Gibco/Invitrogen ; 11140-035 

HEPES Buffer Solution 1M Gibco, 15630-056 

Trypsin-EDTA Gibco, 25300-054 

PBS Dulbeccos Life Technologies 14190094 
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supplemented with 10% fetal bovine serum, 29.2 mg·mL−1 L-glutamine, 

10 000 units·mL−1 penicillin and 10 000 μg·mL−1 streptomycin. 

 

2.2 DNA and RNA isolation 
 

For HCmel and BCmel cell pellets were collected for each cell to simultaneously extract 

DNA and RNA using the AllPrep DNA/RNA Mini kit (Cat No. 80204, Qiagen) according to 

the manufacturer’s instructions. Mouse genomic DNA concentration was measured using 

Nanodrop. 

 

 

 

 

 

 

 

 Cell line  DNA ng/µl 
HCmel3 62,99 

HCmel3R-2 35,08 

HCmel3R-1 61,30 

HCmel3R-2-2 30,33 

HCmel17 35,75 

HCmel17-R 59,98 

HCmel12 45,59 

HCmel31 27,01 

BCmel4 39,38 

HCBmelMilz 56,66 
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For B16-F10 cells DNA was extracted from cell pellets using the QIAGEN Puregene Core 

Kit A. 

2.3 Mutational profiling using whole-exome sequencing (WES) technology 
 

2.3.1 Sequencing technology and library preparation for WES experiment 

For HCmel, BCmel, and HCBT cell lines DNA quality was measured using Bioanalyzer 

DNA high sensitivity kit (Agilent Technologies). Exome capture preparation was performed 

using SureSelectXT Kit for Illumina platform (ILM) of Agilent Technologies. Library 

preparation for PairedEnd 100-bp sequencing was performed using HiSeq SBS Kit V4 

(250 cycle kit) reagents for accurately determining the DNA sequence of each cluster on a 

flow cell using sequencing by synthesis (SBS) technology on the HiSeq system. Next-

Generation Sequencing experiments were performed at the Sequencing Core Facility of 

the Max-Planck Institute for Molecular Genetics in Berlin.   

 

For CL1, CL2, and CL4 cell lines Mouse genomic DNA concentration was measured using 

the picogreen assay. A total of 200 ng of DNA was sheared by Covaris Instrument (E210) 

to ~150–200 bp fragments. Shearing was performed in a Covaris snap cap tube 

(microTUBE Covaris p/n 520045) with the following parameters: duty cycle, 10%; 

intensity, 5; cycle burst, 200; time, 360 s at 4 °C. Samples quality assessment was 

validated by Bioanalyzer DNA high sensitivity kit of Agilent Technologies. 

Agilent SureSelectXT library prep ILM Kit (Agilent Technologies, G9611A) was used to 

prepare the library for each sheared mouse DNA sample. DNA fragment ends were 

repaired, followed by adenylation of the 3′ end and then ligation of the paired-end adaptor. 

Adaptor-ligated libraries were then amplified (pre-capture PCR amplification: 98 °C 2 min, 

ten cycles; 98 °C 30 s; 65 °C 30 s; 72 °C 1 min; then 72 °C 10 min, 4 °C hold) by Herculase 

II fusion enzyme (Agilent Technologies, 600679). After each step, DNA was purified by 

Ampure XP beads (Beckmann Coulter Genomics, A63882). DNA Lo Bind Tubes, 1.5 ml 
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of PCR clean (Eppendorf, 022431021), or 96-well plates were used to process the 

samples. 

Samples were analyzed by bioanalyzer using a DNA-1000 kit (Agilent, 5067-1504). The 

concentration of each library was determined by integrating under the peak of 

approximately 225–275 bp. Then each genomic DNA library (~750–1,000 ng) was 

hybridized with biotinylated mouse-specific capture RNA baits (SureSelectXT Mouse All 

Exon, 5190-4641, 16 reactions) in the presence of blocking oligonucleotides. 

Hybridization was performed at 65 °C for 16 h using SureSelectXT kit reagents. Bait-target 

hybrids were captured by streptavidin-coated magnetic beads (Dynabeads MyOne 

Streptavidin T1, Life Technologies, 6560) for 30 min at room temperature. Then after a 

series of washes to remove the nonspecifically bound DNA, the captured library was 

eluted in nuclease-free water and half volume was amplified with individual index (post-

capture PCR amplification: 98 °C 2 min; ten cycles, 98 °C 30 s; 57 °C 30 s; 72 °C 1 min; 

then 72 °C 10 min, 4 °C holds). A Bioanalyzer high sensitivity kit was used to validate the 

size of the libraries before sequencing. 

For the B16-F10 cell line, Paired-end 75-bp libraries were prepared and sequenced using 

the Illumina HiSeq platform for whole-genome sequencing. 

 

2.3.2 Exome data processing 

For HCmel, BCmel, and HCBmel cell lines raw sequence reads (FASTQ files) were 

evaluated for base quality (Phred-scaled score) per position and per read, read length, 

GC%, and sequencing depth/coverage using Pre-alignment-QAQC toolkit of Partek Flow 

(v 8.0). 

Sequencing reads were aligned against the Genome Reference Consortium Mouse Build 

38 (GRCm38 or mm10 ) using BWA-mem algorithm (Li, 2013) (BWA v 0.7.15) on Partek 

Flow with the following input parameters: mismatch penalty 4, gap open penalty 6, min 

seed length 19, bandwidth 100, extension drop-off 100, reseeding factor 1.5, MEM 

occurrence limit 10000, matching score 1, gap extension penalty 1, clipping penalty 5, 

unpaired penalty 9, alignment score cutoff 30. Alignments were sorted, indexed, and 

converted to BAM files using SamTools and custom command lines of Partek Flow.  
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Alignment coverage report and target enrichment map were obtained using Post-

alignment-QC custom command lines of Partek Flow with the following parameters: 

coverage level 1,20,50,100, Auto-detect strand specificity, and Annotation model of 

Ensembl Transcripts release 95. 

Aligned reads were filtered for duplicates (reads with same start positions), low mapping 

score (Min mapping quality 20), mismatch sections (Max mismatched bases 2), 

singletons, and unaligned reads using custom command lines of Partek Flow.  

For CL1, CL2, CL4 cell lines I used processed whole-exome sequencing data (VCF files) 

deposited on NCBI Gene Expression Omnibus (GEO) under GSE144946. FASTQ 

sequence reads were mapped to the mouse reference genome mm10 with BWA or 

Bowtie. All analyses were carried out on NIH’s biowulf2 high-performance computing 

environment. Statistical analysis was carried out in the R environment. 

For the B16-F10 cell line, I used published whole-genome sequencing data deposited in 

the European Nucleotide Archive (ERP001691) (Del Castillo Velasco-Herrera et al., 2018, 

p. 16). Raw reads were mapped to the mouse reference genome (GRCm38p1) using 

BWA-mem v 0.7.5 and PCR duplicates marked using Picard tools MarkDuplicates v 1.72. 

 

2.3.3 Somatic variant calling and variants annotation 

Somatic variant calling, filtering, and genomic annotations were performed at the Lab of 

Computational Onco-Immunology –Division Applied Bioinformatics, DKFZ Heidelberg– by 

Dr. Charles Imbusch under the supervision of Prof. Benedikt Brors. GATK MuTect 

(Cibulskis et al., 2013) algorithm (v 1.7.0) was used to call single nucleotide variants 

(SNVs) and short indels in HCmel and BCmel cells. Normal splenocyte-driven cell line 

HCBmel was used for matched Normal/Tumor somatic variant calling to filter germline 

variants in melanoma cell lines. An in-house black list was implemented to filter for murine 

background variants and low-quality calls. Filtered variants were annotated for functional 

consequences using the ANNOVAR software tool (Wang et al., 2010) according to the 

mm10 reference genome. The somatic mutational load was computed as the count of 

nonsynonymous somatic mutations detected by WES data analyses for every cell line. 
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For the B16-F10 cell line, single nucleotide variants (SNVs) and short indels were called 

using Samtools mpileup ( v 0.1.19-58-g3d123 cd)  and the resulting variants were filtered 

using VCFTools (Danecek et al., n.d.). Variants with low variant quality (QUAL < 20), or 

the number of reads supporting the variant less than 5 (DP < 5) or SNPGAP less than 10, 

were discarded. All the variants reported by the Mouse Genomes Project(Keane et al., 

2011) were filtered for the genetic backgrounds of each cell line group. Variants located 

within ± 50 bp of structural variants reported by the mouse genomes project were 

discarded. Variants were annotated for functional consequences using Ensemble's 

Variant Effect Predictor v74(McLaren et al., 2016). 

 

The resulting variants were filtered for duplicates, mismatches, singletons, unaligned 

reads, poor-quality reads (DP<5), and poor-quality calls (QUAL<20) using VCFtools 

(Danecek et al., n.d.). 

For CL1, CL2, CL4 Single-nucleotide variants were identified using SAMtools-mpileup or 

GATK HaplotypeCaller. Mouse germline single-nucleotide polymorphisms were filtered 

out using the Sanger Mouse Genomes Project database for variants identified from whole-

genome sequencing of 36 mouse strains. Variants with a Phred-scaled quality score of 

less than 30 and variants in normal spleen samples of the in-house collection were filtered. 

Variants were annotated using ANNOVAR software to identify nonsynonymous mutations. 

 

 

2.3.4 Mutational analysis; somatic mutations heatmap, signatures, and 
intersections 

For HCmel and BCmel cell lines I interpreted key functional genes in melanoma 

progression and Immunotherapy resistance using the insights of “Genomic Classification 

of Cutaneous Melanoma”(Akbani et al., 2015), the “Landscape of Driver Mutations in 

Melanoma”(Hodis et al., 2012)(Hayward et al., 2017), and Cancer Mutation Census 

(CMC) (GRCh37.COSMIC v92)(Tate et al., 2019). 

I implemented the somatic variants data (VCF files) to extract somatic mutational 

signatures for each cell line according to Welcome Trust Sanger Institute (WTSI) 

Mutational Signature Framework in human cancer (COSMIC signatures) (Australian 
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Pancreatic Cancer Genome Initiative et al., 2013) using deconstructSigs method (v 

1.8.0)(Rosenthal et al., 2016) in R (v 4.0.0). 

I used UpsetR(Lex and Gehlenborg, 2014) (v 1.4.0) on R (v 4.0.0) to extract the exclusive 

intersections of mutated genes between HCmel primary and ACT-resistant cell lines and 

visualize the acquired mutations which candidates for therapy resistance mechanism. I 

used Integrative Genomic Viewer (IGV) v 2.4.14 (Thorvaldsdottir et al., 2013) to confirm 

the presence of germline mutations and acquired somatic mutations in ACT-resistant cell 

lines within their corresponding BAM files. 

For CL1, CL2, CL4 cell lines mutation signature analysis, 5′ and 3′ nucleotide sequences 

flanking the mutations were retrieved from the mm10 reference genome using Bedtools 

Getfasta. The frequency of 96 trinucleotides (six substitutions multiplied by 16 

combinations of 5′ and 3′ nucleotides) was computed for each sample with an in-house R 

script. Cosmic Signatures were identified using the R package deconstructSigs.  

For the B16-F10 cell line, somatic mutational signatures were identified using the filtered 

somatic single nucleotide variants and the non-negative matrix factorization method from 

the SomaticSignatures R package (v 2.6.1). 

 

2.4 Expression profiling using bulk RNA sequencing (RNAseq) technology 
 

2.4.1 RNAseq library preparation and method 

For HCmel cell lines total RNA was implemented to enrich mRNA components using 

Illumina TruSeq Stranded mRNA LT Sample Prep kit. Sequencing library preparation was 

performed using the HiSeq SBS Kit V4 250 cycle reagents kit to run paired-end 51-bp 

sequencing on the HiSeq2500 system. Next-Generation Sequencing experiments were 

performed at the Sequencing Core Facility of the Max-Planck Institute for Molecular 

Genetics in Berlin.   

 

For CL1, CL2, CL4 cell lines between 100 ng to 1 μg of total RNA were used to capture 

mRNA with oligonucleotide-dT coated magnetic beads. The mRNA was fragmented, and 

then a random-primed cDNA synthesis was performed. The RNA was fragmented into 



 

 

 

41 

small pieces and cleaved RNA fragments were copied into first-strand cDNA using RT 

and random primers, followed by second-strand cDNA synthesis using DNA polymerase 

I and RNase H. The resulting double-strand cDNA was used as input to a standard 

Illumina library prep with end repair, adaptor ligation, and PCR amplification being 

performed to obtain a sequencing-ready library. The final purified product was then 

quantitated by qPCR before cluster generation and sequencing. 

For the B16-F10 cell line, 1 μg of total RNA per sample was submitted for sequencing. 

Unstranded 75-bp paired-end barcoded libraries were prepared with the standard Illumina 

library preparation kit. RNA libraries were sequenced on the Illumina Hiseq platform and 

the data was deposited in public databases (European Nucleotide Archive (ERP001690) 

and ArrayExpress (E-ERAD-94)). 

 

2.4.2 RNAseq data processing  

For HCmel cell lines I used Partek Flow platform (v 8.0) for feasible application of Next 

Generation Sequencing (NGS) analysis tools and following data processing: 

Pre-alignment QA/QC was performed to evaluate read length, read quality, GC%, and 

read counts. Filtering contaminant reads were done using Bowtie2 (Langmead and 

Salzberg, 2012) (v 2.2.5) with the following parameters; seed length 22, seed mismatches 

0, seed extension attempts 2, the interval between seeds S-1.0-1.25, align to both strands, 

ambiguous character functions L-0.0-0.15, gaps per read 15, gap end buffer 4, ambiguous 

character penalties 1, alignment score cutoff L,-0.6,-0.6, mismatch penalty range 6-2, read 

gap penalties 5-3, reference gap penalties 5-3, max fragment length 500, min fragment 

length 0, mate orientations forward-reverse. I removed rDNA, mtrDNA, and mismatches 

before submitting them for alignment. I trimmed 3’ adaptors 

(AGATCGGAAGAGCACACGTCTGAACTCCAGTCA, 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT) using CutAdapt tool (v 1.2.1) with 

following parameters; max error rate 0.1, match times 1, min overlap length 3, min read 

length 25, quality cutoff 0, zero-cap true.  

Filtered reads were subsequently aligned using STAR aligner (Dobin et al., n.d.) (v 2.6.1d) 

against  Genome Reference Consortium Mouse Build 38 (mm10). Aligned reads (BAM 

files) were directly quantified for gene/transcript counts using the HTSeq program(Anders 
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et al., 2015) (v 0.11.0) with the following parameters; strand specificity true, min QUAL 10, 

union overlap mode. HTSeq provides a framework to compute the counts of aligned reads 

for each gene that overlaps with identical positions of a single gene exon. The output of 

HTSeq is a count table of gene-transcripts per sample which I obtained for further 

analyses using the DESeq2 method. 

Principal Component Analyses (PCA) was performed using DESeq2 statistical framework 

in R to explore the variance-covariance of gene expression values within the cell lines for 

experimental quality control and unsupervised clustering analyses. 

2.4.3 Differential expression analysis to identify significant differentially 
expressed genes between primary and ACT-resistant cell lines 

Differential expression analysis was performed between HCmel primary cell lines and their 

ACT-resistant/escaper cell lines using expression profiles based on DESeq2 (v 3.5) 

method on R for moderated estimation of Fold Change(FC) and dispersion(Love et al., 

2014).  DESeq2 applies the Wald test to compare the two groups and to compute the 

probability of differential expression for each gene between two samples (p-value). I 

considered a significant cut-off for differentially expressed genes with log-FC of 2 or 

greater for upregulation and -2 or smaller for downregulation when the adjusted p-value 

((Benjamini-Hochberg correction for multiple testing) is smaller than 0.01. Further 

exploratory analyses and data visualization (volcano plot) was performed to define stricter 

cut-off of significance based on log-FC and biological functions. 

2.4.4 Biological function enrichment analysis 

To perform biological functions enrichment for differentially expressed genes, 

corresponding Gene Ontology terms were implemented by REVIGO(Supek and Bosˇnjak, 

2011) to extract significant biological functions. I confirmed the results using the DAVID 

algorithm for biological functions and classification (v6.8)(Huang et al., 2007).   

I used clusterProfiler (v 3.16.0) (Yu, 2018) in R to compare biological themes amongst 

gene clusters. I selected significant differentially expressed gene clusters with the three 

highest functional enrichment scores to show the biological significance of differentially 

expressed genes between primary and ACT-resistant cell lines. 
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2.5 DNA-methylation profiling using MeDIP-seq 
 

2.5.1 MeDIP sequencing library preparation and sequencing technology 

For all HCmel, BCmel, and HBCmel cell lines Magnetic Methylated DNA 

Immunoprecipitation kit (MagMEDIP Kit Cat.No. C02010020 mc-magme-A10) by 

Diagnode was used for capturing methylated DNA. DNA was sheared by sonication to 

fragments between 100-600 bp. 1 μg or more of sonicated DNA was immunoprecipitated 

(IP) with a 5-methylcytosine antibody. IP-methylated-DNA was washed and purified using 

magnetic wash buffer and magnetic rack according to the manufacturer’s instructions. IP-

methylated-DNA was subsequently purified using IPure kit (Cat.No.AL-100-0100) and 

validated by qPCR using methylated and unmethylated specific primers for the mouse. 

Library preparation for next-generation sequencing was performed using NEB Next Ultra 

Ligation kit reagents. A sequencing experiment was performed using HiSeq SBS Kit, V4 

250 cycle kit to run 51-bp paired-end sequencing on the HiSeq2500 machine. Preparation 

of the libraries and Next Generation Sequencing experiments were performed at the 

Sequencing Core Facility of the Max-Planck Institute for Molecular Genetics in Berlin.   

 

 

2.5.2 MeDIP-seq data processing and quality control 

raw sequence reads (FASTQ files) were evaluated for base quality (Phred-scaled score) 

per position and per read, read length, GC%, and sequencing depth/coverage using the 

Pre-alignment-QAQC toolkit of Partek Flow (v 8.0). 

Sequencing reads were aligned against the Genome Reference Consortium Mouse Build 

38 (GRCm38 or mm10 ) using BWA-mem algorithm (Li, 2013) (BWA v 0.7.15) on Partek 

Flow with the following input parameters: mismatch penalty 4, gap open penalty 6, min 

seed length 19, bandwidth 100, extension drop-off 100, reseeding factor 1.5, MEM 

occurrence limit 10000, matching score 1, gap extension penalty 1, clipping penalty 5, 
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unpaired penalty 9, alignment score cutoff 30. Alignments were sorted, indexed, and 

converted to bam files using SamTools and custom command lines of Partek Flow.  

Alignment coverage report and target enrichment map were obtained using Post-

alignment-QC custom command lines of Partek Flow with the following parameters: 

coverage level 1,20,50,100, Auto-detect strand specificity, and Annotation model of 

Ensembl Transcripts release 95. 

Aligned reads were filtered for duplicates (reads with same start positions), low mapping 

score (Min mapping quality 20), mismatch sections (Max mismatched bases 2), 

singletons, and unaligned reads using custom command lines of Partek Flow.  

 

2.5.3 Quantitative CpG enrichment and differential DNA-methylation analysis 

I performed quantitative sequence enrichment analysis using QSEA (Lienhard et al., 

2017) for enriched CpG sites.  This includes normalization, transformation to absolute 

methylation level, and differential methylation analysis. 

I used QSEA for statistical modeling and transformation of MeDIP-seq enrichment data to 

absolute methylation levels similar to BS-sequencing read-outs. The transformation works 

based on a Bayesian model that explicitly takes background reads and CpG density-

dependent enrichment profiles of the experiments into account. Data normalization 

accounts for the effect of CNVs on the read counts. For differential methylation analysis, 

QSEA impalements generalized linear model (GLM) and a likelihood ratio test, similar to 

tests I performed to detect deferentially expressed genes in DEseq2. Using this method, 

read counts were modeled with a negative binomial distribution with mean and dispersion 

parameters. For each window, it fits a GLM with a logarithmic link function. Significance 

testing is performed by fitting a reduced model, then the likelihood ratio (LR) of the models 

was compared to a Chi-squared distribution. 

 

Read pairs greater than 1000bp were filtered to reduce non-specific enrichment 

background reads. Beta values were computed as an estimation of methylation level using 

the ratio of intensities between methylated and unmethylated CpG sites. Genomic regions 

(bins) with greater than 2 CpG sites were included to compute Beta values with a 

confidence interval of 20%.   
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CpG density was mapped using CpG Islands (CGIs) reference of UCSC for mouse 

genome (mm10) and CGI shores were considered 2kb upstream and downstream of each 

CGI. Transcription Start Site (TSS) bins were mapped according to Ensemble Transcripts 

reference for mouse genome (GrCm38.5 Biomart). Gene promoter regions were 

considered in 2kb upstream and downstream of TSS (TSS shores). 

PCA was performed to explore and visualize the variance-covariance of bins with 

confident Beta values within DNA-methylation profiles. Clustering analysis was performed 

within the regions with 1% highest CpG density for primary and ACT-resistant (HCmel) 

cell lines. Splenocyte and BCmel cell lines were implemented as controls for different 

epigenetic backgrounds and identical DNA-methylation profiles. 

Differentially methylated regions (DMRs) were computed using the QSEA method 

comparing primary and ACT-resistant cell lines of the Hgf-Cdk4 model. Clustering analysis 

was performed as quality control of experimental design for DMRs with a p-value smaller 

than 0.01 and a q-value smaller than 0.05 to evaluate the significance of clustering 

between primary and resistant cell lines. 

DMRs were annotated using Ensemble Transcripts reference (GrCm38.5_biomart) and 

Cancer Gene Census was used to extract functional implications in melanoma. 

Database for Annotation, Visualization, and Integrated Discovery (DAVID)(Huang et al., 

2007) was used to classify biological functions of significant differentially methylated 

genes. 

 

2.5.4 Functional enrichment analysis of DMRs 

I used clusterProfiler(Yu, 2018) (v 3.16.0) in R version 4.0.0 to compare Bioprocesses and 

Gene Ontology (GO) among gene clusters. I selected significant differentially methylated 

genes with the highest functional enrichment scores (top 3 levels) to show their biological 

significance in primary and ACT-resistant cell lines. 
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3 Results 

3.1 Genomic characterization of the preclinical mice driven cell lines recapitulate 
diverse molecular subtypes of human melanoma 

Preclinical mice models of human melanoma have been broadly used to improve precision 

immunotherapy and targeted therapy in melanoma, but they have not been well 

characterized for mutational landscapes. To characterize somatic mutational profiles and 

processes I selected two transgenic models and corresponding cell lines which were 

previously established and developed for ACT therapy in the lab of Experimental 

Dermatology, University Hospital of Bonn: Hgf-Cdk4 and Braf-Cdk4 (Landsberg et al., 

2012)(Bald et al., 2014)(Ho et al., n.d.).  I conducted whole-exome sequencing (WES) 

analysis for four primary melanoma cell lines driven from Hgf-Cdk4; HCmel3, HCmel17, 

HCmel12, HCmel31, and one cell line driven from Braf-Cdk4 model; BCmel4. Normal 

spleen tissue of an Hgf-Cdk4 mouse was been used as germline mutational background 

for all melanoma cell lines in this study. 

In addition, I used publicly available genomic data -whole exome and whole genome- of 

murine models BrafCA/+; Pten flox/+; Cdkn2a flox/+, Tyr-Cre ERT-tg, BrafCA/+; Cdkn2a flox/+, Tyr-

Cre ERT-tg Hgftg, Hgftg (successively CL1, CL2, CL4 cell lines), and B16 (B16-F10 cell line) 

to recapitulate different molecular subtypes of human skin melanoma for comparative 

mutational analysis. 

3.1.1 Exome sequencing, somatic variant calling, and evaluation of the results 

To analyze somatic mutational landscapes of HCmel and BCmel melanoma cell lines we 

performed somatic variant calling using exome data for each cell line. Evaluation of exome 

sequencing data showed high base call accuracy with an average Phred score of 35, and 

a low duplication rate which supports greater than 92% unique reads. Evaluation of exome 

capture efficiency reported 60-70% coverage of targeted regions with 20-fold sequencing 

depth for 90% of replicates that show successful target enrichment to perform variant 

calling for each cell line (Figure 3.1 and Figure s1 in supplements). 

To evaluate the correlation of the cell lines based on their exome mutational profiles 

hierarchal clustering was performed on their somatic single nucleotide variants (SNVs); 
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results show consistency with the origin of the cell lines and our experimental design. 

(Figure 3.2) 

 

3.1.2 Mutational loads and driver mutations in HCmel and BCmel primary 
melanoma cell lines (compared to other murine melanoma cell lines) 

 

Comparison of nonsynonymous single nucleotide somatic mutations count between all 

HCmel and BCmel cell lines showed that BCmel4 harbors the lowest mutational load with 

48 and HCmel12 the highest mutational load with 521 mutations. Hcmel3 and HCmel17 

show very similar mutational load successively with 438 and 443 while HCmel31 stands 

in the middle with 203 nonsynonymous somatic mutations. Somatic signatures analysis 

showed a predominance of A>T base transversions which is consistent with 7,12-

dimethylbenz(a)anthracene (DMBA) exposure during tumorigenesis of HCmel and BCmel 

melanomas. 

I compared these results with the somatic mutation profiles of CL1, CL2, CL4 cell lines 

which were driven from UV-induced melanomas, and B16-F10 which was driven from 

spontaneous melanoma; CL1 harbors germline modifications in Braf, Cdkn2a, and PTEN 

genes and appeared to harbor higher somatic mutational load than all HCmel and BCmel 

cell lines. CL2 harbors germline mutations in Braf, Hgf, and Cdkn2a and showed a lower 

mutational load than HCmel12, HCmel3, and HCmel17 but similar to HCmel31. CL4 

stands in the middle bearing germline modification of Hgf, and mutational load in between 

CL1 and CL2 (Figure 3.3 B). Somatic mutational signatures of CL1, CL2, and CL4 showed 

prevailed C>T base transitions which mirror UV-induced melanoma genesis in 

corresponding tumors (Figure 3.3 A). To compare mutational characteristics of the cell 

lines with human melanoma key driver genes I adopted “Genomic Classification of 

Cutaneous Melanoma”, the “Landscape of Driver Mutations in Melanoma”, and the Cancer 

Mutation Census (CMC). A matrix of mutated genes in preclinical models depicts diverse 

genetic subtypes of human melanoma and highlights that Hgf-Cdk4 and Hgf-Braf models 

together recapitulate the melanomas classified under BRAF-RAS-NF1-wild-type and 

BRAF-mutated (Figure 3.3 C). 
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3.1.3 Mutational characterization of ACT-resistant HCmel cell lines compared to 
their corresponding primary cell lines 

Landsberg and her colleagues at the lab of Experimental Dermatology, University Hospital 

of Bonn, previously showed that dedifferentiated melanomas resist ACT immunotherapy 

in a pro-inflammatory tumor microenvironment. I was interested to dissect the genetic 

drivers of this dedifferentiated resistant phenotype versus epigenetic selection. To meet 

this aim, I first analyzed somatic mutational loads and somatic mutational signatures using 

corresponding exome sequencing data and with the same methods previously described 

for primary melanoma cell lines of Hgf-Cdk4 melanoma. I used four ACT-resistant 

escapers of HCmel3 and Hcmel17 for this analysis: HCmel3-R, HCmel3-R1, HCmel3-R2, 

HCmel3-R2-2, and HCmel17 (Figure 3.4). Mutational loads show increased in all ACT-

resistant escapers compared to their primary cell lines while somatic signatures do not 

show any difference (Figure 3.5).  

 

3.1.4 Acquired mutations in ACT-resistant cell lines: Random genomic 
aberrations/mutations can cause dedifferentiation in melanoma cells leading 
to ACT-resistance in the Hgf-Cdk4 mouse model 

To identify acquired mutations that could drive melanocytic dedifferentiation leading to 

ACT-resistance in the Hgf-Cdk4 model I detected nonsynonymous somatic variations 

which were exclusively shared between Hgf-Cdk4 driven cell lines with ACT-resistant 

phenotype (HCmel-R cell lines). 132 mutated genes were exclusively shared between 

HCmel3-R1, HCmel3-R2, HCmel3-R2-2, and HCmel17-R and were not mutated in 

HCmel3 and HCmel17. I focused on genes with known functional implications in 

melanoma genesis, differentiation, and immunotherapy resistance which were mutated in 

all ACT-resistant cell lines. 116 of these genes were identified as functionally known using 

DAVID functional annotation and Gene Ontology enrichment analysis, and 7 genes were 

tiered by COSMIC Cancer Mutation Census (CMC v92) namely CASP8, DCAF12l2, 

EXT2, GNAQ, LZTR, MUC4, SMC1A.  
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I identified AXL as a solely mutated gene which was also differentially downregulated in 

all ACT-resistant melanoma cell lines compared to primary melanoma cell lines. This 

exonic mutation in AXL is a T>A genomic base transition which translates to W317R in 

the amino acid sequence of AXL receptor tyrosine kinase. 

Finally, I curated a list of 37 mutated genes in all ACT-resistant melanoma cell lines using 

databases mentioned before, experimental data, and scientific literature; These mutated 

genes may suggest potential candidates for contribution to ACT-resistance mechanisms 

in melanoma cells solely or in contribution to epigenetic drivers and regulators (Table 3.1).   
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Figure 3.1 Exome data quality and sequencing coverage for HCmel and 
BCmel cell lines. 

Evaluation of sequencing coverage of targeted exomes shows that our 
experiment provides 20 unique reads for targeted regions in 90% of replicates. 
This plot was generated by Dr. Stefan Börno at the sequencing core facility of 
the Max Planck Institute in Berlin, where we performed the NGS experiments 
of this study. 
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Figure 3.2 Evaluation of somatic variant calling in BCmel and HCmel exome profiles. 

A) Pearson correlation of single nucleotide variants (SNVs) was performed as a quality 
control of somatic variant calling to discard self-correlation between samples. B) Hierarchal 
clustering of the cell lines using SNVs in Exome profiles consists with the origin of the cell 
lines and our experimental design. These plots were generated by Dr. Charles Imbusch as 
he contributed to somatic variants calling which was comprehensively explained in 
methods. 
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Figure 3.3 Comparison of mutational 
landscapes between primary melanoma cell 
lines of different GEM models and spontaneous 
melanoma (B16) 

A) Somatic mutational signatures in HCmel and 

BCmel cell lines compared to CL1, CL2, CL4, 

and B16-F10 cell lines recapitulate diversity of 

major base alterations and melanoma genesis in 

preclinical models. B) Mutational loads show the 

number of single nucleotide nonsynonymous 

somatic mutations in every cell line with diverse 

genetic backgrounds. C) Matrix of mutations in 

key driver genes of human melanoma mirrors 

the genetic characteristics of preclinical models 

in our study. Color codes were adopted from 

“Genomic classification of Cutaneous 

Melanoma” (Akbani et al.); blue for BRAF-

mutated, green for RAS-mutated, and yellow for  

                                                                  BRAF-RAS-NF1-wilde-typemelanomas. 
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Re-transplantation

Figure 3.4 Hgf-Cdk4R24C murine preclinical model of melanoma for studying 
resistance mechanism to adoptive T cell transfer (ACT) immunotherapy 

Graphical summery of experimental design to generate HCmel primary melanoma cell 
lines and their ACT-resistant (HCmel-R) escapers for molecular studies on pro-
inflammatory induced dedifferentiation and ACT-resistance (Created with 
BioRender.com).  
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Figure 3.5 Somatic nonsynonymous mutations were acquired in ACT therapy-resistant 
HCmel-R melanoma cell lines compared to primary HCmel cell lines. 

Left: bar plot shows mutational loads (set size) increased in resistant cell lines compared 
to primary cell lines (HCmel3 and HCmel17). Right: upset plot shows intersect 
(intersection size) of exclusively shared mutated genes within one upset. 132 mutated 
genes are exclusively shared between resistant cell lines HCmel3-R1, HCmel3-R2, 
HCmel3-R2-2, and HCmel17-R. 
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Table 3.1 Exclusively shared mutated genes between all ACT-resistant (HCmel-R) 
melanoma cell lines candidate for contribution to resistance mechanisms 

37 genes (out of 132) were selected for known biological functions and potential relevance 

to melanoma cell proliferation, differentiation, and immunogenic response. Cancer 

Mutation Census (CMC) tier 1 is colored in red meaning strong relevance to cancer and 

oncogenic transformation, tier 2 is colored in orange meaning a strong indication of a role 

in cancer with less experimental evidence. Genes involved in immunity are colored in 

purple and genes with a known role in epigenetic control and differentiation are colored in 

green.   
Gene ID Mutations CMC tier Biological functions on GO, DAVID, and Protein Atlas (THPA) 

AHR 
c.T835G: p.F279V 

 

NA Development and differentiation, cell cycle regulation 

ARHGAP21 
c.G4186C: p.D1396H 

c.G4216C: p.D1406H 

 

NA GTPase-activating protein, Cell adhesion 

ATR 
c.A2864T: p.Q955L 

 

1; Tumor 

suppressor  

Suppression of growth, genome instability, escaping programmed 

cell death, change of cellular energetics 

AXL 
c.T949A: p.W317R 

 

NA Cell proliferation, differentiation, survival, motility, immunologic 

response 

BCR 
c.A448T: p.S150C 

 

1; Fusion Cell survival, differentiation, and function of B cells 

CASP8 
c.G1312A:p.G438R 1; Tumor 

suppressor  

Proliferative signaling, tumor-promoting inflammation, invasion and 

metastasis, angiogenesis, escaping programmed cell death 

CD9 
c.T442G: p.L148V 

 

NA Cell adhesion and motility, tumor metastasis, immunologic 

response 

CLGN 
c.A149T: p.K50M 

 

NA Differentiation factor 

DCAF12L2 
c.G982A:p.A328T 

 

2; NA Cell cycle, apoptosis  

EXT2 
c.A314C: p.K105T 

 

1; Tumor 

suppressor  

Prognostic marker in renal cancer 

EYA3 
c.A160G: p.M54V 

c.A112G: p.M38V 

 

NA Transcription regulator, DNA repair, developmental protein 

FBXL4 
c.A1755T: p.K585N 

 

NA Cell cycle control 

GDF6 
c.A428T: p.H143L 

 

NA Growth, differentiation factor, apoptosis, cytokine 

GNAQ 
c.A626T: p.Q209L 

 

1; Oncogene Proliferative signaling 

GSTA4 
c.T647A: p.V216D 

 

NA Cellular defense 
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HIVEP2 
c.A922T: p.R308X 

 

NA DNA-binding transcription regulator, enhanced in keratinocytes 

IGSF9B 
c.G318T: p.E106D 

c.G318T: p.E106D 

 

NA Immunoglobulin superfamily member, Cell adhesion, enhanced in 

keratinocytes 

IHH 
c.T643G: p.W215G 

 

NA Developmental protein-enhanced in undifferentiated cells, 

prognostic marker in endometrial cancer 

ITPR3 
c.A2439T: p.K813N 

 

NA Metabolism and growth 

KRT13 
c.A833T: p.E278V 

 

NA Cell structure, prognostic marker in renal cancer  

LZTR1 
c.T427G: p.L143V 

 

2; Tumor 

suppressor 

Negative regulator of RAS-MAPK signaling 

MMP8 
c.A329T: p.H110L 

 

NA Matrix metalloproteinase  

MTF1 
c.A1163T: p.Q388L 

 

NA DNA-binding transcription regulator 

MUC4 
c.G29A: p.W10X 

 

2; Oncogene Tumor progression and growth, apoptosis repressor 

PAX4 
c.T409G:p.L137V 

 

NA DNA-binding transcription regulator, Differentiation  

PAXIP1 
c.A2932C: p.M978L 

 

NA DNA repair and transcription regulation 

PLCG2 
c.A812C: p.K271T 

 

NA Transmembrane signaling, prognostic marker in renal cancer, 

mutated in autoinflammation 

POLR2H 
c.T154G: p.L52V 

 

NA DNA-binding subunit of RNA-polymerase II, prognostic marker in 

renal cancer 

PRMT5 
c.A1159T: p.R387W 

 

NA Methyltransferase, transcription and chromatin regulator, 

methylates multiple target genes in cell proliferation, migration, and 

differentiation  

SMC1A 
c.C1756T: p.R586W 

 

2; Tumor 

suppressor  

Cell cycle regulation, DNA repair 

TIPARP 
c.A1637G: p.N546S 

 

NA Transferase, transcription regulator for AHR, prognostic marker in 

breast cancer 

TNFSF4 
c.A34T: p.N12Y 

 

NA Cytokine of TNF family, antigen presentation (APC), and 

stimulating T-cell proliferation  

TRIML1 
c.G1174A: p.D392N 

 

NA Transferase and developmental protein in Ubl pathway 

UBL7 
c.T137G: p.L46R 

 

NA Ubl conjugation pathway 

WNT10A 
c.T746A: p.V249E 

 

NA Developmental protein in WNT signaling pathway, oncogenesis 

ZFC3H1 
c.A3093T: p.E1031D 

 

NA Subunit of PAXT complex, prognostic marker in renal cancer 

ZW10 
c.T1326A: p.D442E 

 

NA Cell cycle regulation and cell division 
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3.2 Expression profiling revealed differentiation signature in HCmel melanoma 
cell lines 

To expand on molecular characterization of Hgf-Cdk4 preclinical model-driven cell lines I 

conducted expression profiling using RNA sequencing data for primary melanoma cell 

lines (HCmel3, HCmel17, HCmel12, HCmel31) and their escapers on ACT therapy 

(HCmel17-R, HCmel3-R1, HCmel3-R2, HCmel3-R2-2). I was particularly interested in 

expression signatures related to resistance mechanisms in these cell lines. 

3.2.1 Bulk mRNA enrichment, quantification of transcript counts, and evaluation 
of the results 

Evaluation of mRNA sequencing data showed high base call accuracy with an average 

Phred score of 37 which means greater than 99.9% accurate identification of nucleobases. 

Target enrichment efficiency assay reported greater than 80% on-target coverage with 

~40-fold sequencing depth. These values showed successful target enrichment and 

sufficient data quality to perform gene expression profiling for each cell line (Figure 3.6 

and Figure s2 in supplements). 

3.2.2 Principal component analysis on expression profiles indicates two distinct 
groups of primary and resistant cell lines 

To explore the relationships and co-variances between the cell lines I first conducted an 

unsupervised clustering principal component analysis (PCA) based on log-transformed 

normalized transcripts counts for all samples. PCA results showed that expression profiles 

distinctly differ between primary and ACT-resistant cell lines. The clustering pattern of the 

samples on the PCA plot showed consistency with our experimental design and origin of 

the cell lines (Figure 3.7).    
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3.2.3 Differentially expressed genes in primary and ACT-resistant cell lines 
indicated downregulation of melanocytic differentiation genes in resistant 
phenotypes 

According to previous experimental data published by Landsberg et al., dedifferentiation 

and phenotypic plasticity suggest a resistance mechanism in preclinical melanomas 

against T-cell therapy. To study molecular elements of this resistant phenotype in the Hgf-

Cdk4 preclinical model, I differentially analyzed the expression profiles of ACT-resistant 

HCmel cell lines (HCmel3-R1, HCmel3-R2, HCmel3-R2-2, and HCmel17-R) compared to 

primary HCmel cell lines (HCmel3, HCmel17, HCmel12, HCmel31). Differential 

expression analyses confirmed downregulation of melanocytic differentiation key genes 

in ACT-resistant melanoma cells highlighting Mitf, Pmel, Tyr, Sox10, and Mlana. On the 

other hand, upregulated genes underlined proliferative and metastatic functions in 

resistant cell lines namely Fosl1, Cdk6, Col8a1, Col12a1, and Hdgf.  Furthermore, 

functional interactions in most variable differentially expressed genes of resistant profiles 

built up three major clusters of “cell cycle”, “differentiation regulators” and “melanocytic 

differentiation” (Figure 3.8 A-D). 
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HCmel and Hcmel-R
cell lines

RNA HiSeq2500 Gene/Transcripts counts
TruSeq standard RNA protocol

Figure 3.6 RNA sequencing experiment, data quality, and coverage report  for HCmel 
cell lines. 

A) Graphical summery of the RNAseq experiment workflow (Created with 
BioRender.com). 
B) RNA sequencing coverage summery describes at least 40x of reads per position that 

aligned to known reference sequence (Created using PartekFlow alignment tools). 
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Figure 3.7 Unsupervised principal component analysis on expression profiles indicates 
two distinct groups of primary and resistant cell lines 

Using the DESeq2 method I computed the regularized log2 transform of the normalized 

transcripts counts for all samples. PC1 and PC2 indicate the first and the second principal 

components along which the cell lines show the most variation in gene expression values. 

The more similar gene expression profiles are, the closer they appear on the PC1 axis. 
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Figure 3.8 Differentially expressed genes in primary and ACT-resistant cell lines 
indicate downregulation of melanocytic differentiation and developmental genes in 
resistant phenotypes. 

A) Volcano plot shows differentially expressed genes in resistant cell lines compared 

to primary cell lines. Red dots indicate the significant differential expression with values 

>2 for log2 fold change and Wald test adjusted p-value <0.01 which consist of 461 

genes (only some of the most variable values are labeled with gene names to avoid 

visualization overlaps). B) Clustering heatmap (top) of the most variable differentially 

expressed genes between primary and ACT-resistant cell lines which appeared in the 

three top-ranked DAVID functional enrichment clusters(down). P-values are computed 

using a modified Fisher Exact test called EASE Score; the smaller, the more enriched. 
C) Bioprocesses enrichment bar plots for 461 differentially expressed genes in 

resistant cell lines show the frequency of up/downregulated genes in each bioprocess; 

Most of the downregulated genes contribute to melanocytic differentiation processes 

(top) while upregulated genes mainly enrich for proliferative cell processes (down). 

Hypergeometric distribution p-value cutoff =0.01, FDR=0.05 for multiple testing. D) 

Gene Ontology enrichment analysis for 461 differentially expressed genes reflects the 

contribution of immunogenic and proinflammatory bioprocesses with dedifferentiated 

ACT-resistant phenotype. E) Major Protein Networks of the most variable differentially 

expressed genes –identified by STRING (v 11.0)– recap target genes and broad 

biological interactions of MITF. 
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3.3 MeDIP-seq experiment and DNA-methylation profiling of the cell lines revealed 
the source of difference by DNA-methylation between primary and resistant 
cell lines 

Landsberg et al. showed that melanomas resist T-cell therapy due to reversible 

dedifferentiation of the melanoma cells. The proinflammatory response was identified as 

a microenvironmental influencer in melanoma cell plasticity and dedifferentiation of ACT-

resistant melanomas. Therefore, I hypothesized that the proinflammatory 

microenvironment drives therapy resistance via DNA-methylation alterations in melanoma 

cell differentiation genes. 

To test this hypothesis, I conducted genome-wide DNA-methylation profiling –by 

Methylated DNA Immunoprecipitation followed by next-generation sequencing (MeDIP-

seq)– for primary (HCmel) and resistant (HCmel-R) cell lines and analyzed the data to 

identify differentially methylated genomic regions. In this experiment methylation level is 

estimated as “Beta value” which is quantified using the ratio of CpG methylation intensities 

between methylated and unmethylated alleles. 

3.3.1 MeDIP-seq data quality and post alignment coverage report 

Pre-alignment quality control of MeDIP sequencing data showed the average Phred score 

per base position greater than 30 that yields greater than 99.9% accurate identification of 

nucleobases for all samples. Post alignment evaluation results showed 35-45% unique 

methylated DNA fragments mapped to mm10 mouse reference genome (Figure s3). 

3.3.2 ACT-Resistant melanoma cells showed a distinct DNA-methylation 
landscape from primary melanoma cells   

To explore the relationship between primary and resistant HCmel cell lines I conducted 

Principle Component Analysis (PCA) using beta values (transformed to absolute 

methylation and normalized counts). PCA results revealed distinct DNA methylation 

profiling between ACT-resistant samples from primary cell lines. Resistant profiles cluster 

close together on first and second principal components (PC1 and PC2) while primary 

melanoma cell lines appear heterogeneously separated.  
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3.3.3 CpG Islands indicate the source of difference by DNA-Methylation between 
primary and resistant cell lines 

In this study, I questioned if expression-related genomic regions could indicate a 

significant difference between DNA methylation profiles of primary and ACT-resistant 

melanoma cells. Therefore, I performed differential methylation analysis using MeDIP 

sequencing profiles of HCmel-R samples compared to HCmel. The results showed major 

hypermethylation of CpG islands (CGIs) in HCmel-R and overall hypomethylation of all 

genomic regions. Transcriptional start sites (TSS) and CpG island shores revealed less 

difference by methylation data.  (Figure 3.9) 

3.3.4 Differentially methylated genes contribute to melanoma cell differentiation 
signature and reflect the proinflammatory microenvironment 

To identify differentially methylated genes and corresponding biological functions in ACT-

resistant melanoma cell lines I first defined a significant cutoff based on the difference of 

beta values for CGIs. Then I annotated gene ranges and gene names for differentially 

methylated regions (DMRs) and implemented the list of 659 differentially methylated 

known genes for Gene Ontology (GO) and bioprocess enrichment. 

My results indicated key genes of melanoma cell differentiation and pigmentation namely 

Mitf, Hps1, Kit, Rab27a, Slc45a2, Spns2, Sox11, and Ednrb amongst the most variable 

differentially methylated genes.  

125 differentially methylated genes were enriched for immune system processes among 

them Gata2, Ifnar2, Irf1, Irf3, Il16, Il17rc, Il6ra, Il4ra, Il34 Il7, Tnfsf11, and Thy1 are known 

for contributing to an inflammatory and pro-inflammatory response. (Figure 3.10) 

To integrate the results of differential analysis on DNA methylation and expression data, I 

took the intersection of differentially methylated genes separately with upregulated and 

downregulated genes. The integrated plot showed the genes with altered methylation and 

expression status in ACT-resistant versus primary melanoma cells. MITF gene/pathway 

stands among these genes (Figure 3.11). 
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I conducted Gene Ontology (GO) grouping and functional enrichment analysis for the 

gene in intersection area to see which biological functions could be regulated by 

methylation alterations (Figure 3.12). Significant enriched bioprocesses include 

developmental pigmentation (Mitf, Rab27a, Slc45a2), melanocyte differentiation and 

protein localization to cell surface (Mitf, Rab27a), extracellular matrix signaling (Fzd4), 

macrophage activation involved in immune response (Dysf), and response to interferon-

alpha (Ifnar2). 

3.3.5 Mutational load increased but could not fully explain the mechanism of 
reversible and de-differentiation mediated resistance 

I conducted an integrative analysis to see whether the exclusively mutated genes in 

resistant cell lines could relate to differential expression in these cells. The intersection of 

genes with non-synonymous somatic mutation detected only in all resistant melanoma 

cells with the list of differentially expressed genes in these cells, include only one gene –

Axl (Figure 3.13). So, I found only AXL gene as the exclusively mutated gene in all the 

resistant cell lines with evidence of upregulation of this gene by expression data. 

Upregulation of AXL is known in dedifferentiated and therapy resistant tumors but is not 

clearly known as driven by a genomic mutation, neither in reversible de-differentiation 

mediated resistance. 
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Figure 3.9 MeDIP-seq data analyses showed a genomic landscape of DNA 
methylation changes in HCmel and HCmel-R cell lines 

A) Bar plot shows DNA methylation changes per genomic region in HCmel-R cell 

lines compared to HCmel cell lines showed drastic hypermethylation in CpG Islands 

(CGIs) in contrast with overall hypomethylation in other targeted regions. ROI stands 

for region of interest.  

B) Histogram is plotted to show distribution of differences of means of Beta values 

(b) in differentially methylated CGIs in HCmel-R compared to HCmel (x = b HCmel-

R - b HCmel). I defined a cutoff of 0.3 for methylation changes for downstream 

analysis. 
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Figure 3.10 Differentially hypermethylated CGIs in HCmel-R cells mirrored downregulation of 
genes with known functions in melanoma cell differentiation while hypomethylated CGIs 
contribute to known genes in cell proliferation. 

A) Volcano plot shows the most variable DNA-Methylation changes in annotated CGIs (Delta 

Beta values>= 0.3 and p values =< 0.01). Only some of most differentially methylated genes 

are labeled on corresponding spots for a better reading. 

B) Bar plot shows Gene Ontology enrichment of differentially methylated genes per biological 

processes and counts of the involved genes in each process. 

C) Bar plot features the enrichment of DNA methylation (gain or loss) per genomic region of 

interest (ROI) in HCmel-R cells compared to HCmel. I used QSEA statistical framework to 

assess the enrichment of differentially methylated genes; Mitf, Rab27a, Ifnar2, Gata2, and 

Fosl1 were selected for contribution to melanoma cell differentiation, proliferation, and 

immune response.    
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Figure 3.11 Intersection of differentially methylated and differentially expressed genes 
highlights the potential role of the MITF gene/pathway in ACT-resistant versus primary 
melanoma cells. 

A) Venn diagram shows the intersection of upregulated (log2 FC >2) and downregulated 

(log2 FC < -2) genes with differentially methylated (DM) genes (delta beta > 0.3). Non-

canonical gene names were filtered. 
B) Scatter plot depicts the intersection of 51 differentially methylated and differentially 

expressed genes with expression values (log2 FC) and methylation differences (delta beta 

of resistant cells – primary cells).   
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Figure 3.12  

A 

B 

Figure 3.12 The interaction of immune response with melanoma cell development and 

differentiation is traced in integrative functional enrichment. 

A) Gene Ontology (GO) groups for the intersection of differentially methylated and 

differentially expressed genes (51 genes). 

B) Functional enrichment based on GO groups show the significant bioprocesses in 

these genes. (Hypergeometric distribution p -value cutoff =0.05) 
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Figure 3.13 Integration of somatic mutations with differential expression (DE) analysis in 

resistant cell lines indicates one gene; AXL.  

Venn diagram shows the intersection of 123 genes (which were known with gene 

ontologies out of 132 exclusively mutated genes in all resistant cell lines) with 461 

differentially expressed genes. The intersection includes only one gene which is Axl. 
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4 Discussion 
 

 

4.1 Key findings of this study  
 

4.1.1 Hgf-Cdk4R24C melanoma cell lines harbor additional driver mutations similar 
to the “Triple-WT” molecular subtype of human melanoma  

Melanoma research and drug discoveries have been revolutionized by new tools and 

technologies for molecular profiling of melanomas because they could improve the 

efficacy of treatments by precise target selection and personalized medicine. I used the 

Hgf-Cdk4R24C preclinical melanoma model under adoptive T cell transfer (ACT) 

immunotherapy to study the molecular mechanisms of immunotherapy resistance in 

melanoma. This model has been phenotypically well described for recapitulating clinical 

behavior of melanoma phenotype switching –from proliferative to invasive– and resistance 

to T cell-mediated immunotherapy (Landsberg et al., 2012). However, the model was not 

profiled for somatic mutations and genomic subtyping.  Molecular subtypes of cutaneous 

human melanoma have been described in four major subtypes based on their mutational 

profiles; BRAF mutated, RAS mutated, NF1 mutated, and Triple-WT (wild-type). These 

subtypes have been shown to be predictive for immunotherapy outcomes. In addition, 

somatic mutational load and mutational signature have been demonstrated to be 

correlated with clinical responses to immunotherapies (Pérez-Guijarro et al., 2020)(Akbani 

et al., 2015).  

I analyzed the mutational profile of Hgf-Cdk4R24C melanoma cells. In this experimental 

mouse model, germline mutations of Hgf and Cdk4R24C induce 5-15 spontaneous 

melanomas within the first year of life (Kohlmeyer et al., 2009). As not all melanocytes 

progressed to melanoma cells, I hypothesized that additional acquired mutations 

contribute to melanoma genesis in this model. Using exome sequencing data and 

mutational analysis I showed that Hgf-Cdk4R24C melanoma cells harbor additional driver 

mutations in Trp53, Rac1, and Gna11 which recapitulate the genomic subtype of Triple-

WT cutaneous human melanoma. Since HCmel melanoma cells were DMBA induced, it 
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was expected to find HRAS mutations in their mutation profiles but I could not find such 

mutations in my data. Comparative analysis of somatic mutation profiles between murine 

melanomas and cell lines would bring more information about specific mutational selection 

in vitro. 

Counts of nonsynonymous somatic mutations indicated that in melanoma cells derived 

from the Hgf-Cdk4R24C model (HCmel cell lines) mutational load is higher than other 

genetically engineered murine (GEM) preclinical models but lower than the popular 

spontaneous murine melanoma model B16 (Figure 3.3). Mutations counts in COSMIC 

melanoma cell lines show a much higher load of somatic mutations in human skin 

melanoma than available murine models.  

In addition, I performed a comparative analysis between mutational profiles of ACT-

resistant cell lines (HCmel-R) compared to primary melanoma cells (HCmel) all derived 

from of Hgf-Cdk4R24C model. Mutational loads showed an increased count in ACT therapy-

resistant cell lines (HCmel-R) compared to primary melanoma cells (HCmel) which means 

accumulation of somatic mutations. I identified the exclusively shared mutated genes in 

all ACT therapy-resistant cell lines which candidate for contribution to resistance 

mechanisms (Figure 3.5 and Table 3.1). Further functional experiments are required to 

delineate such contributions which were beyond the aims of this study. 

4.1.2 Epigenetic alterations act beyond the somatic mutations in inflammation-
induced reversible melanocytic dedifferentiation and ACT-therapy resistance 

Genomic mutations could not explain the reversible resistant phenotype in the Hgf-

Cdk4R24C model (Figure 3.4) and melanocytic plasticity signature (MPS) which were 

observed experimentally and confirmed using expression data (Landsberg et al., 2012).  

Tsoi and colleagues elaborated on the melanocytic differentiation signature in melanoma 

subtyping and drug response. Their analysis using Landsberg’s expression data again 

showed the loss of melanocytic differentiation in immunotherapy resistant melanoma cells 

compared to primary melanoma cells which indicated treatment-induced dedifferentiation 

in melanoma cells (Figure 4.1)  (Tsoi et al., 2018). These findings are consistent with the 

results of my differential analysis using RNA-seq data which confirmed the loss of 

melanocytic differentiation signature with significant downregulation of MITF (Figure 3.8 

A-B). Consequently, all of the main target genes of MITF were downregulated which 
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involve different pathways namely TYR, TYRP1, DCT, PMEL, MLANA as key genes of 

melanocytic differentiation, CDK2 in cell cycle control, BCL2 in cell survival and 

antiapoptotic response, and PPARGC1A in metabolism.  

Comprehensive functional enrichment on differentially expressed genes showed that 

downregulated genes mostly contribute to developmental and differentiation proteins 

while upregulated genes contribute to cell proliferation, senescence, and invasion (Figure 

3.8 C-D). These results confirmed our previous experimental findings and the hypothesis 

that melanoma cells escape T cell recognition through dedifferentiation and loss of 

melanocytic antigens. 

I also observed upregulation of the AXL gene in our resistant cells which may indicate 

melanocytic dedifferentiation signature of MITFlow AXLhigh. But interestingly AXL was also 

amongst the exclusively mutated genes in resistant cell lines. I could not find any known 

function of this mutation that associates with upregulation of AXL, so with available data, 

I could not delineate if these findings suggest a novel intrinsic factor for melanocytic 

dedifferentiation signature of MITFlow AXLhigh or mirror a more complex tumor 

microenvironment with proinflammatory factors. According to cBioPortal (TCGA, Pan-

Cancer Atlas) for Cancer Genomics, 13% of human skin melanomas harbor different 

coding mutations in the AXL gene which are not functionally characterized and are often 

associated with higher mRNA expression.  

Integrative analysis of mutational profile, expression, and DNA methylation in patients-

matched melanoma samples by Hugo and colleagues showed that accumulation of 

somatic mutations in melanoma patients could not predict patient’s response to 

immunotherapy and targeted therapy, suggesting the regulatory contribution of non-

genomic alterations in acquired resistance(Hugo et al., 2015)(Hugo et al., 2016). 

MITF has been termed the “master transcriptional regulator” of melanocytic development 

and differentiation. It refers not only to a gene but also to a molecular pathway that 

coordinates a broad range of bioprocesses. Moreover, MITF appeared as a predominant 

interactor with tumor microenvironmental factors and immune response including 

inflammatory mechanisms in melanoma and other cancers (Ballotti et al., 2020). 

Our protein interaction analysis demonstrated that MITF stands centrally in a network of 

differentially expressed genes which involves SOX10, IRF4, ZFP536, TFAP2A regulators 

of differentiation bioprocesses, CDK2, CDK6, XRCC6 in cell cycle control, and MLANA, 
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SLC45A2, OCA2, PMEL, TYR, RAB38, TRPM1, GPNMB in melanocytic differentiation 

which are known target genes of MITF (Figure 3.8 E). These experimental and 

computational data indicated the influential role of MITF expression and its altered 

mechanisms in MPS and ACT immunotherapy resistance in the Hgf-Cdk4R24C model.    

Based on our previous studies and experimental data I hypothesized that epigenetic 

factors regulate the proinflammatory-induced reversible melanocytic dedifferentiation and 

response to ACT immunotherapy. I considered DNA methylation alterations as the first 

line epigenetic mark to check for plastic melanocytic dedifferentiation in ACT-resistant 

melanoma. Our expression data confirmed the loss of melanocytic differentiation in ACT 

resistant melanoma cells which mirrored the melanocytic plasticity signature observed in 

corresponding Hgf-Cdk4R24C melanoma. I implemented DNA methylation profiles of 

primary and ACT immunotherapy-resistant melanoma cells and analyzed them for 

differential methylation. My analyses results showed that ACT-resistant melanoma cells 

(HCmel-R) significantly differ from primary melanoma cells (HCmel) by DNA methylation 

landscape particularly in CpG islands (CGIs) (Figure 3.9). I observed global 

hypomethylation in all genomic regions of ACT-resistant methylation profiles compared to 

primary ones while CGIs appeared hypermethylated for a significant set of genes. Gene 

set enrichment analysis and bioprocesses enrichment on differentially methylated CGIs 

indicated a strong contribution of genes in melanoma cell differentiation and proliferation 

as well as immune response (Figure 3.10).  

Integrative analysis of differential methylation and expressed genes indicated 51 genes 

with known functions in melanocytic differentiation, proliferation, and immune response 

including MITF (Figure 3.11). I found MITF amongst the most variable genes with 

corresponding hypermethylated GCI and downregulated expression in ACT-resistant 

melanoma cells of the Hgf-Cdk4R24C model. These findings strongly suggest the regulatory 

role of epigenetic alterations specifically DNA methylation in proinflammatory-induced 

melanoma cell plasticity, loss of melanocytic antigens, and consequently T cell-mediated 

therapy resistance in our model. 
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4.2 Clinical relevance and applications 
 

4.2.1 MITF pathway offers a potential target to improve immunotherapy using DNA-
methylation targeted drugs 

Lauss and colleagues previously showed that DNA methylation alterations correlate with 

MITF expression levels in melanoma patients. They showed that hypermethylation of the 

MITF gene promoter correlates with the downregulation of MITF and its target genes –the 

same as I showed in our preclinical model. In addition, they could restore MITF pathway 

activity using a hypomethylating agent (5-Aza) in human melanoma cells that confirmed 

the regulatory role of DNA methylation in MITF activity (Lauss et al., 2015).  

Our findings contribute to the discovery of regulatory mechanisms of dedifferentiation-

mediated immunotherapy resistance in melanoma specifically in MITF as master 

coordinator of melanocytic differentiation, proliferation, and immune response (Figure 

4.2). These findings offer fundamental applications for reprogramming resistance 

mechanisms using methylation-targeted drugs against melanoma. 

 

4.2.2 AXL is a potential target to overcome resistance to immunotherapy and 
targeted therapy in melanoma 

I showed that an identical mutation with an increased level of gene expression in AXL 

receptor tyrosine kinase occurred in all ACT therapy-resistant melanoma samples of our 

preclinical model. Whether this mutation is functionally relevant to loss of melanoma cell 

differentiation and T cell recognition or it explains a separate mechanism of resistance 

requires further studies. AXL plays a key regulatory role in a variety of vital bioprocesses 

including proliferation, survival, motility, and immunogenic response(Gay et al., 2017). 

Although genomic mutations in AXL are not known as an oncogenic driver, 

overexpression of AXL has been detected in a variety of human malignancies including 

melanoma. Clinical and experimental studies indicated expression alterations in AXL 

correlated with patient’s survival and therapy response and approached this gene as a 

therapeutic target or biomarker (Tirosh et al., 2016) (Boshuizen et al., 2018)(Gautron et 



 

 

 

80 

al., 2021). Soluble AXL (sAXL) has been shown to be correlated with shorter survival in 

invasive melanomas under immunotherapy and therefore is suggested as a biomarker for 

monitoring melanoma progression and therapy response (Flem-Karlsen et al., 2020). Our 

findings together with all these interesting pieces of evidence indicate the important but 

less delineated role of AXL in cancer therapy. 

 

4.2.3 Targeting melanocytic dedifferentiation drivers as a mechanism of 
resistance to improve immunotherapy outcomes 

Melanoma cell plasticity has appeared as an attractive candidate mechanism of resistance 

to targeted therapy and immunotherapy.  Tumor cell plasticity and phenotype switching 

account for a variety of non-genetic resistance mechanisms that lead to therapy 

resistance, tumor cell survival, and proliferation. Our findings indicated that DNA 

methylation controls phenotype switching and immunotherapy resistance via 

dysregulation of MITF. Targeting the master regulator of dedifferentiation and phenotype 

plasticity contributes to reprogramming this mechanism of resistance and increasing the 

efficiency of therapeutic strategies and precision melanoma therapy.  

4.3 Future perspectives and research suggestions 
 

In this study, I focused on molecular experiments and computational analysis based on 

previous in-vitro and in-vivo experimental data and materials. My findings significantly 

pointed out the regulatory role of methylation alterations in proinflammatory induced 

melanoma cell dedifferentiation of the Hgf-Cdk4R24C preclinical model. However, to 

translate these findings for clinical implications I suggest further computational and 

experimental validations:   

4.3.1 Functional validation 

Landsberg and colleagues showed that in murine and human melanoma cells, reversible 

dedifferentiation and loss of T cell-specific antigens under proinflammatory tumor 

microenvironment was reproducible by exposure to proinflammatory agent TNFa 

(Landsberg et al., 2012). Our molecular findings indicated epigenetic control underlying 
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this observation via DNA methylation alterations specifically the significant 

hypermethylation of the MITF gene/pathway. Therefore, I propose an experimental 

validation that tests the effect of a site-specific hypomethylating agent on MITF together 

with proinflammatory induction. I suggest using a CRISPER-Cas9-mediated epigenetic 

editing system to specifically modify the promoter methylation in order to restore the gene 

expression of the MITF pathway. Such experimental validation could be recruited using 

the same murine preclinical model as well as relevant clinical materials and human 

melanoma cells.  

4.3.2 Bioinformatic validation; detection of immunogenic signatures which 
correlate with methylation alterations of MITF pathway in relevant clinical 
cohorts 

 

Lauss and colleagues showed the correlation of DNA methylation alterations in MITF with 

its expression in clinical cohorts of melanoma (Lauss et al., 2015). I showed this 

correlation for the first time in a preclinical model with immunotherapy context (ACT 

therapy) and its association with tumor cell dedifferentiation-mediated resistance 

mechanisms in melanoma therapy. Based on these findings I suggest bioinformatic 

analysis to check for immune escape signatures including inflammatory-related 

bioprocesses with melanocytic plasticity signature (MPS) and altered DNA methylation 

marks in clinical cohorts of melanoma. Such exploratory analysis shed light on epigenetic 

mechanisms of MPS and their interconnection with tumor immunity and 

microenvironment. The same analytical approach could be conducted using matched 

melanoma samples on treatment to identify such interconnection in response to 

immunotherapy.   

Very recently, Newell and colleagues published an integrative analysis using multi-omics 

data –Genome-wide mutations, methylation, and expression in addition to immune cell 

infiltrate profiling– in a cohort of skin melanoma patients to study molecular mechanisms 

of resistance and response to immune checkpoint inhibitors (Newell et al., 2021). Their 

results indicate that immunogenic tumor microenvironment and DNA methylation 

alterations are associated with response to immunotherapy while no specific genomic 

mutation correlated with therapy response. They specifically showed that high INF-g 
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signature predicts response to immunotherapy. Although I did not have in-vivo data for 

my genome-wide study, I showed the trace of immune system bioprocesses using 

functional enrichment of differentially methylated genes in melanoma cells of the Hgf-

Cdk4R24C preclinical model. IFNAR2 –the encoding gene for essential subunits of 

interferons alpha and beta receptor– appeared amongst hypermethylated and 

downregulated genes in ACT therapy-resistant melanoma cells (Figure 3.10 and Figure 

3.11). Downregulation of this gene has been shown in immunodeficiency. Targeting IF 

receptors has been recently shown to be effective for combating therapy resistance(Cao 

et al., 2021).  These pieces of evidence arise more interest about epigenetic regulation of 

response and resistance mechanisms via Interferon Pathway/Signaling within the tumor 

microenvironment.  

4.3.3 Histone modifications and methylation assays 

Common epigenetic methylation alterations in tumor progression and response to therapy 

include DNA methylation marks as well as histone methylation. Methylation and 

acetylation are the most common regulatory modifications on histones that occur next to 

promoter and enhancer regions (Wang et al., 2009)(Miranda Furtado et al., 2019). 

Aberrant epigenetic histone modifications have been shown in cancer therapy outcomes. 

Comprehensive molecular analysis on other epigenetic alterations specifically histone 

methylation and DNA methylation using new technologies with higher resolution 

contribute to better demonstration of epigenetic regulatory mechanisms in melanoma 

therapy resistance. 
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(Tsoi et al., 2018)  

Figure 4.1 ACT immunotherapy-induced dedifferentiation in context of four-stage 
differentiation signature in melanoma 

ACT immunotherapy resistant melanoma cells (HCmel3-R) show loss of melanocytic 
differentiation compared to primary melanoma cells (HCmel3). Tsoi et al. reproduced 
this signature using gene expression array data published by Landsberg et al. which 
showed Hgf-Cdk4R24C melanomas resist to ACT immunotherapy through reversible 
and adaptive dedifferentiation. 
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Figure 4.2 Broad biological functions and interactions of MITF gene/pathway in 
melanocytes, melanoma, and immune response (Ballotti et al., 2020). 
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5 Abstract 
 
Molecular studies empowered novel therapeutic strategies against melanoma in recent 

years, however, therapy resistance lowers the efficacy of targeted therapies and 

immunotherapies and remained a complex obstacle. Dedifferentiation in melanoma 

indicates phenotypic plasticity and imposes resistance to immunotherapy and targeted 

therapy. 

Murine preclinical models provide vital tools for comparative onco-genomics to study 

molecular mechanisms underlying tumor phenotypes and to improve therapeutic 

strategies in human patients. Hgf-Cdk4R24C mouse preclinical model demonstrated 

invasive melanoma with proinflammatory induced dedifferentiation and resistance to T-

cell mediated immunotherapy. Therefore, it serves as an informative and helpful model to 

study molecular mechanisms of adaptive therapy resistance in melanoma. 

 

I performed the first integrative analysis of genome-wide mutations, methylation, and 

expression profiles of primary and relapsed melanoma cells of Hgf-Cdk4R24C mouse 

preclinical model of human melanoma under adoptive T cell transfer (ACT) 

immunotherapy. I analyzed somatic mutations, differentially methylated genes, and 

differentially expressed genes and featured the corresponding biological pathways and 

functions. 

My analyses revealed significant DNA methylation alterations in developmental and 

differentiation genes notably hypermethylation and downregulation of MITF in melanoma 

cells with dedifferentiated phenotype, loss of melanocyte-specific antigens, and resistance 

to ACT immunotherapy.  

 

My findings consistent with my hypothesis indicated that reversible epigenetic alterations 

regulate melanocytic dedifferentiation and phenotype plasticity beyond genetic mutations. 

Using differential expression analysis and comparative exome data analysis I found an 

identical mutation in the AXL gene with upregulated expression in all ACT therapy-

resistant melanoma cells. Delineation of the functional relevance of AXL mutation with 

melanoma cell plasticity and therapy resistance would bring more insights to therapeutic 

strategies. 
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I provided significant evidence indicating the importance of epigenetic regulation 

specifically DNA methylation in dedifferentiation-mediated therapy resistance in 

melanoma.  Therefore, I suggest DNA methylation marks of the master regulator of 

melanocytic differentiation – MITF – as highly potential targets to restore melanoma cell 

differentiation and response to the therapy.  
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Figure s1. Supplementary data to exome data quality and sequencing 
coverage for HCmel and BCmel cell lines. A) Average base quality scores show 

greater than 30 Phred score quality for all the samples which means greater than 

99.9% accuracy of the base calling by sequencing experiment. B) Post alignment 

coverage reports show efficient target enrichment with 60-70_% on-target 

coverage. I reevaluated and plotted data using Partek Flow alignment and quality 

control toolkits. 
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A B 

Figure s2. RNA sequencing quality and coverage report   for HCmel and 
HCmel-R cell lines. 
A) Base calling quality shows the average of 35 Phred score per base position. B) 

Target enrichment coverage plot shows at least 80% successful on-target 

enrichment for all samples. I used Partek Flow bioinformatic toolkit for alignment 

and post alignment quality control. 
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Figure s3. MeDIP-seq data quality and post alignment coverage report high 
quality of base calling and efficient capture of Methylated DNA. 
A)  Grafical summery of MeDIP-seq experiment for genome-wide methylated-DNA 

enrichment using immunoprecipitation followed by next generation sequencing. 

B) Sequencing data quality shows average base quality of 35 Phred score per base 

position for each cell line. C) Post alignment quality report for methylated-DNA reads 

aligned with BWA-mem against mouse genome reference mm10. Plots are 

generated using Partek Flow bioinformatic toolkit. 

 

MeDIPHCmel, HCmel-R cell lines DNA HiSeq2500 Methylated-DNA profiles

B C 

A 



 

 

 

112 

 

 

 

  

  

A 



 

 

 

113 

  

Figure s4. Melanoma cell differentiation genes and developmental proteins 
were strongly enriched in biological functions of differentially expressed and 
differentially methylated genes. Biological functions enrichment and classification 

results using Database for Annotation, Visualization, and Integrated Discovery 

(DAVID v6.8) for differentially expressed genes (A) and differentially methylated 

genes (B).   
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ID Description Count geneID 

GO:0000003 GO:0000003 reproduction 3 Fzd4/Kalrn/Mfge8 
GO:0002376 GO:0002376 immune system 

process 
11 Flt1/Foxn1/Ifnar2/Mitf/Nfatc2/Rab11fip5/Rab27a/Rbfox2/Sdc4/Skap1/Dys

f 
GO:0007610 GO:0007610 behavior 4 Fzd4/Kalrn/Map1a/Rin1 
GO:0008152 GO:0008152 metabolic 

process 
27 Aff3/Agpat1/Cdk15/Cog6/Col5a1/Cyfip2/Flt1/Foxn1/Fzd4/Hecw2/Ifnar2/K

alrn/Lrrfip1/Map1a/Mcf2l/Mitf/Nfatc2/Rab27a/Rbfox2/Sdc4/Skap1/Spsb4/
Tsc22d1/Usp24/Dysf/Tnfrsf9/Slc45a2 

GO:0009987 GO:0009987 cellular process 45 Aff3/Agpat1/Cdk15/Cog6/Col5a1/Col8a1/Cyfip2/Dock5/Fam174b/Flt1/Fo
xn1/Frmd5/Fzd4/Hecw2/Ifnar2/Itpr1/Kalrn/Kcnn2/Lamc2/Lrrfip1/Map1a/M
cf2l/Mfge8/Mitf/Nfatc2/Pde4dip/Ptgir/Rab11fip5/Rab27a/Rbfox2/Rin1/Sc
n5a/Sdc4/Skap1/Spsb4/Syt9/Tsc22d1/Usp24/Dysf/Arhgap22/Tnfrsf9/Cal
d1/Arhgap26/Slc45a2/Gpc6 

GO:0022414 GO:0022414 reproductive 
process 

3 Fzd4/Kalrn/Mfge8 

GO:0022610 GO:0022610 biological 
adhesion 

12 Col5a1/Col8a1/Cyfip2/Dock5/Frmd5/Fzd4/Lamc2/Mfge8/Sdc4/Skap1/Dy
sf/Gpc6 

GO:0023052 GO:0023052 signaling 24 Cyfip2/Dock5/Flt1/Fzd4/Ifnar2/Itpr1/Kalrn/Kcnn2/Map1a/Mcf2l/Mitf/Nfatc
2/Ptgir/Rab11fip5/Rbfox2/Rin1/Scn5a/Skap1/Spsb4/Syt9/Dysf/Arhgap22/
Arhgap26/Gpc6 

GO:0032501 GO:0032501 multicellular 
organismal 
process 

30 Aff3/Agpat1/Col5a1/Col8a1/Cyfip2/Dock5/Flt1/Foxn1/Fzd4/Hecw2/Itpr1/
Kalrn/Kcnn2/Lamc2/Map1a/Mfge8/Mitf/Nfatc2/Rab11fip5/Rab27a/Rbfox2
/Rin1/Scn5a/Sdc4/Dysf/Arhgap22/Tnfrsf9/Cald1/Slc45a2/Gpc6 

GO:0032502 GO:0032502 developmental 
process 

23 Aff3/Col5a1/Col8a1/Cyfip2/Dock5/Flt1/Foxn1/Fzd4/Hecw2/Itpr1/Kalrn/La
mc2/Map1a/Mfge8/Mitf/Nfatc2/Rab27a/Rbfox2/Scn5a/Sdc4/Dysf/Arhgap
22/Gpc6 

GO:0040007 GO:0040007 growth 2 Cyfip2/Dysf 
GO:0040011 GO:0040011 locomotion 14 Col5a1/Dock5/Flt1/Foxn1/Frmd5/Fzd4/Kalrn/Lamc2/Mitf/Nfatc2/Rbfox2/S

dc4/Dysf/Gpc6 
GO:0043473 GO:0043473 pigmentation 3 Mitf/Rab27a/Slc45a2 
GO:0044419 GO:0044419 interspecies 

interaction 
between 
organisms 

5 Ifnar2/Ptgir/Rab11fip5/Rab27a/Kalm 

GO:0048518 GO:0048518 positive 
regulation of 
biological 
process 

27 Agpat1/Col8a1/Cyfip2/Dock5/Flt1/Foxn1/Frmd5/Fzd4/Hecw2/Itpr1/Kalrn/
Lamc2/Lrrfip1/Map1a/Mcf2l/Mfge8/Mitf/Nfatc2/Pde4dip/Rab27a/Scn5a/S
dc4/Skap1/Spsb4/Syt9/Tsc22d1/Dysf 

GO:0048519 GO:0048519 negative 
regulation of 
biological 
process 

19 Col5a1/Dock5/Flt1/Frmd5/Fzd4/Hecw2/Itpr1/Kalrn/Lrrfip1/Map1a/Mitf/Nf
atc2/Ptgir/Rab11fip5/Rbfox2/Sdc4/Tsc22d1/Dysf/Tnfrsf9 

GO:0050789 GO:0050789 regulation of 
biological 
process 

41 Aff3/Agpat1/Cdk15/Col5a1/Col8a1/Cyfip2/Dock5/Flt1/Foxn1/Frmd5/Fzd4
/Hecw2/Ifnar2/Itpr1/Kalrn/Kcnn2/Lamc2/Lrrfip1/Map1a/Mcf2l/Mfge8/Mitf/
Nfatc2/Pde4dip/Ptgir/Rab11fip5/Rab27a/Rbfox2/Rin1/Scn5a/Sdc4/Skap1
/Spsb4/Syt9/Tsc22d1/Dysf/Arhgap22/Tnfrsf9/Cald1/Arhgap26/Gpc6 

GO:0050896 GO:0050896 response to 
stimulus 

28 Aff3/Col5a1/Cyfip2/Dock5/Flt1/Fzd4/Ifnar2/Itpr1/Kalrn/Lamc2/Mcf2l/Mitf/
Nfatc2/Ptgir/Rab11fip5/Rab27a/Rbfox2/Rin1/Scn5a/Sdc4/Skap1/Spsb4/
Syt9/Dysf/Arhgap22/Arhgap26/Slc45a2/Gpc6 

GO:0051179 GO:0051179 localization 28 Cog6/Col5a1/Dock5/Flt1/Foxn1/Frmd5/Fzd4/Hecw2/Itpr1/Kalrn/Kcnn2/La
mc2/Map1a/Mfge8/Mitf/Nfatc2/Osbpl3/Rab11fip5/Rab27a/Rbfox2/Rin1/S
cn5a/Sdc4/Skap1/Syt9/Dysf/Slc45a2/Gpc6 

GO:0051704 GO:0051704 multi-organism 
process 

2 Kalrn/Mfge8 
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GO:0065007 GO:0065007 biological 
regulation 

41 Aff3/Agpat1/Cdk15/Col5a1/Col8a1/Cyfip2/Dock5/Flt1/Foxn1/Frmd5/Fzd4
/Hecw2/Ifnar2/Itpr1/Kalrn/Kcnn2/Lamc2/Lrrfip1/Map1a/Mcf2l/Mfge8/Mitf/
Nfatc2/Pde4dip/Ptgir/Rab11fip5/Rab27a/Rbfox2/Rin1/Scn5a/Sdc4/Skap1
/Spsb4/Syt9/Tsc22d1/Dysf/Arhgap22/Tnfrsf9/Cald1/Arhgap26/Gpc6 

 

Table s1. List of gene IDs in intersection of differential methylation with differential 
expression analysis which were grouped by gene ontology. (Supplement to figure 3.12) 


