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SUMMARY

This thesis concerns problems arising in the study of flows of viscous fluids. In the first
part, we discuss the interaction of the flow of a viscous fluid with a random array of moving
particles in the limit of many particles and a total Stokes drag of order one. The second part
of this thesis analyses the dynamics of thin liquid films of non-Newtonian fluids driven by
capillary forces.

The description of an effective theory of arandom array of moving particles in a viscous
fluid is known as stochastic homogenisation in perforated domains. If the particles move
slowly, inertial effects can be neglected and the fluid flow can be described as a Stokes
flow in a perforated domain. Due to the viscous nature of the fluid, the interaction of the
particles through the fluid is of long range. The Brinkman equations describe the effective
theory for the fluid flow in the limit of many particles so that the collective Stokes drag is
of order one. The rigorous derivation of the Brinkman equations from a Stokes flow in a
perforated domain has been an active area of research.

This thesis addresses the quantitative study of the homogenisation result for the Stokes
flow in perforated domains. For a random configuration of particles and velocities, the
fluctuations around the limit are analysed. In the physical setting of three space dimen-
sions, the fluctuation field is derived explicitly, and convergence rates for an approxima-
tion of the velocity fields in the perforated domains are shown. Furthermore, this thesis
takes a first glance at a connection between stochastic homogenisation in perforated do-
mains and stochastic partial differential equations.

The dynamic behaviour of thin liquid films of viscous fluids is derived from an asymp-
totic expansion in terms of the film height of a free-boundary Navier-Stokes system in
the lubrication approximation. If the dynamics of the thin film are determined only from
viscous forces and surface tension, the evolution of the film height is, to leading order,
described by a fourth-order nonlinear degenerate-parabolic partial differential equation.
In the second part of this thesis, the long-time behaviour and stability of this thin-film
equation is studied for different non-Newtonian rheologies. That the evolution of the film
height only depends on viscous and capillary forces points towards a gradient-flow struc-
ture of the dynamics. The decay rates depend on the fluid rheology. This topic is addressed
in the final chapter of this thesis, where the gradient-flow structure of thin films of non-
Newtonian power-law fluids with general mobilities is studied.
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1 | INTRODUCTION

Abstract

Homogenisation theory in perforated domains strives to derive effective equa-
tions for the interaction of particles in different media such as viscous fluids. One
model describing the velocity of a viscous fluid containing many particles is given by
the Dirichlet problem for the Stokes equations in a perforated domain. In the case
of charged inclusions in a material, the electrostatic potential of this material is de-
scribed by the Dirichlet problem for the Poisson equation in a perforated domain.

If the size of the particles is scaled inversely to the number of particles such that
the total Stokes drag (or total capacitance) remains of order one, one obtains conver-
gence to a solution to a limit equation involving a ‘strange term’. Different techniques
for the derivation of this effective theory are described heuristically in this chapter. It
is explained how the resulting approximation can be modified to capture higher or-
ders of the homogenisation, giving an outlook on the main results of the first part.
Moreover, it is illustrated how this is connected with stochastic partial differential
equations. The chapter concludes with an overview of the mathematical literature
on the homogenisation problem for electrostatic and hydrostatic equations in perfo-
rated domains.

The study of the interaction of moving particles with a viscous fluid constitutes an im-
portant area of modern mathematics. Such systems of (small) particles moving in a fluid
have many essential applications in technology and physics and can be observed every-
where in nature.

While the effect of one single particle on the fluid is, by Newton’s third law, propor-
tional to its mass and therefore relatively small, many small particles can have a significant
and complex influence on the (dynamical) behaviour of the viscous fluid. The complexity
of this effect is not only due to the number of particles but also due to their long-range
interactions.

There is a similar effect in the electrostatics of materials with small charged inclu-
sions. As in the case of the fluid, one small inclusion only affects the electrostatic potential
slightly. Many inclusions induce similar complex effects.

In both cases, the analysis and numerics of the fluid flow with many particles or the
electrostatic potential of a material with many inclusions becomes mathematically inac-
cessible when the number of particles or inclusions is large. In many applications, only
the macroscopic effect of the particles on the fluid or the inclusions on the material are of
interest. This results in the study of the effective average velocity of the fluid or the effective
electrostatic potential of the material.

This macroscopic description, i.e. an effective theory for the fluid flow or for the elec-
trostatic potential, can be derived in the limit of many particles or inclusions. For this
limiting process which is called homogenisation, only a few physical parameters turn out
to be relevant: the viscosity and the mass density of the fluid or the conductivity of the
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material, as well as the average mass density of the particles or inclusions, their volume
fraction and their average velocity or charge.

The first part of this thesis deals with a particular effect induced by particles in a fluid
or by inclusions in a material: we consider the critical scaling for the Dirichlet problem
of the Poisson and Stokes equations in a domain ©,, C R?, d > 2, perforated by m tiny
(spherical) holes, described for example in [CM82a] and [All90a].

This critical scaling is characterised by the emergence of a ‘strange’ term signifying the
collective effects of the particles. It can be explained as the collective effect of the Stokes
drag given by each particle or the capacity of each inclusion. Consider a single spherical
particle with radius R > 0. Then the Stokes drag F; or the effect of viscosity on the particle
(or vice versa, the effect of the particle on the viscous fluid) is of order F; ~ R*2(V — u),
[Sto51]. Here, V' denotes the velocity of the particle and u the velocity of the undisturbed
fluid. In a system with m particles, the total Stokes drag is of order one if the product
mR%=2, with the number of particles m and the particle radius R,y,, is of order one. Note
that the limit of the particle number m — oo also leads to a vanishing volume fraction.

For the description of the electrostatic potential in materials with small inclusions the
same effect can be observed by considering the capacitance. The capacitance describes
the amount of electric charge of the inclusion compared to the electric potential in the
material surrounding it [Max73].

We study the limiting behaviour for both the Poisson equation (for the electrostatic
case) and Stokes equations (for fluid flows) in this scaling regime described by inclusions
with a collective effect of the capacitance or Stokes drag of order one. While the behaviour
of the corresponding equations in perforated domains in the limit of many (randomly dis-
tributed) small particles has been studied since the pioneering works [Hru79], [CM82a]
and [All90a], there are fewer and more restricted results on the quantitative behaviour of
the limiting process, [FOT85] and [Rub86].

In the critical scaling, the collective effect of all particles results in the appearance of
an additional term in the equation obtained in the limit of particle number m — oo. If the
radius of the particles were much smaller than the critical radius, i.e. if an_zm < 1, then
this collective effect disappears and one recovers the original equation in the limit.

On the other hand, if the particles are much larger, i.e. R%2m >> 1, the collective effect
of the particles dominates. Then the limiting equations are solely described by the (static)
evolution of the particles. In this case, a rescaled version of the homogenisation problem
converges to Darcy’s law (see e.g. [All90b] or [Giu21a]). The remainder of this thesis will
only be concerned with the case of the critical scaling for the radii of the particles.

This introductory chapter of the first part continues with a concrete formulation of the
problem for the Poisson and Stokes equations in Section . Section @ consists of a phe-
nomenological treatise of different mathematical methods to study the limiting behaviour
for the Poisson equation in the simple geometry of spherical particles distributed on a lat-
tice. Using a blow-up argument, we derive an explicit approximation which is modified
in Section [1.3 to include the corrections due to the fluctuations. A characterisation of the
fluctuations for the Poisson and Stokes equations in three dimensions for randomly dis-
tributed spheres with random velocities has been obtained in [HJ22]. A reprint of this pa-
per can be found in Appendix @ The fluctuations field can be described as a solution to a
linear stochastic partial differential equation. This link will be explored further in Section
[L.4. Finally, in Section [L.5, we give a general overview of the literature on homogenisation
results in perforated domains.
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Chapter E consists of a summary of the main result of the first part of this thesis. It
concerns the study of fluctuations for the homogenisation of the Stokes equations in R?,
perforated by particles with random positions and velocities. A reprint of the whole paper
can be found in Appendix @

In Chapter E, the link between the stochastic homogenisation problem and stochastic
partial differential equations is investigated in more detail. As preliminary steps, the ho-
mogenisation result is extended to the semilinear Poisson equation, and the solution to
the stochastic Helmholtz equation is derived as a homogenisation limit. These observa-
tions lead to the conjecture that one can obtain the elliptic @fl—theory from the theory of
stochastic homogenisation in perforated domains.

1.1 Formulation of the problem

We will now give the precise formulation of the homogenisation problem in a domain 2 C
R? for general space dimension d > 2. We consider a fixed number of spherical particles
m € N with a fixed radius R,, > 0 and centres X1, ..., X,, € €. Note that the positions
X; = Xi(m) also depend on m, but we suppress the corresponding index for simplicity
of notation. For the remainder of this thesis, we will restrict the analysis to the case of
spherical particles. In the case of non-spherical particles, additional effects might occur
depending on the geometry and corresponding dynamics. For results for non-spherical
holes see for example [CM82a] and [HMS19].
Furthermore, we denote by d,,, the minimal distance between the particles
A = i;éjer«I{lll,?.,m} | X — Xl

We will assume that m~/% ~ d,, > R,, ~ m~'. To avoid technicalities with particles
very close to the boundary, we assume that dist((X;)i=1,...m, Q) > 2R,,. With these
preliminaries, we denote the perforated domain by

Q= Q\ | B, (X3).
=1

For the description of the electrostatic potential in the domain €2,,,, we choose charges
Q1,...,Qm € R on each of the inclusions. Given a source term f € H 1(Q) (or f €
H~1(Q) in the case where (2 is unbounded), the electrostatic potential ,, : @ — R with
isotropic conductivity matrix ¢ = Id in the domain with inclusions Bp, (X;) and corre-
sponding charges (;, ¢ = 1, ..., m, is described by the Poisson equation

—Aup = f inQyp,
Um, :Qz inBRm(Xi), 1= 1,...,m, (1.1.1)
Uy, = 0 on Jf).

Then, equation ([L.1.1) has a unique weak solution u,, € H'(Q) (or u,, € H'(Q) for un-
bounded 2) by the standard theory of elliptic partial differential equations.

To obtain a macroscopic description, we now assume that the distribution of charges
is given by a macroscopic object. In the simplest (non-trivial) case, we may assume that
there is a function Q € H'(Q) such that

Qi — f Q) dr = ———— Q(x) dz = [Q]m(X0).

B, (X)) |BR,,(Xi)| JBg,, (x)
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(We could also give up on the charges being constant and just assign u,, = @ in Bg, (X;),
1 =1,...,m. This particular choice of charges will play a role in Chapter g though.)

Using the newly introduced functions [Q],, € H'(£2) (which we may modify close to
the boundary so that [Q] € H () by multiplication with a cut-off), we find that u,, — Q]
solves the Poisson equation in the perforated domain €2,,, given by

—Aum — [Qm) = f+ AlQlm  InQyy,
Um — [@Qlm =0 in Bg,, (X;),i=1,...,m,
Um — [Qm =0 on Of).

By the standard a priori estimate, we conclude that

Jum — [Qlmll e SN fla-10) + M@lmll ) S I fllz-1@) + QN H1(0)

and hence u,, is uniformly bounded in H}(2). We conclude that u,, has a weak accumu-
lation pointu € HE ().

For the case of the static description of a fluid flow around moving particles, we choose
velocities Vi,...,V,, € RZ Then, the Stokes flow v,,: & — R¢ around the particles
Bg,, (X;) with velocities V; is given, if we neglect inertial effects, by the Stokes equations
in the perforated domain

divv,, =0 in Q,,,
’Um:‘/; iHBRm(Xi),izl,...,m,
Um =0 on 092.

Here, p,,: © — R denotes the pressure and f € H'(;RY) is a force term (or f €
H! (€2; RY) for the case of unbounded (2). Again, by the standard theory, [L.1 has a unique
weak solution v, € H'(Q; R?) (v,,, € H'(€; RY) for unbounded ).

If we assume that the velocities are given by a macroscopic function V € H'(Q;R%)
such that

Vi = ]iRm(Xi) Vi(z)dz =: [V]n(X5),

then the sequence (vy, )y, is uniformly bounded in H} (€2; R?) and has a weak accumula-
tion pointv € H (Q; R9).

The task at hand is to understand these accumulation points. This is achieved by show-
ing that the accumulation points satisfy a screened (macroscopic) version of the original
equation. The following section will explain different variants of the identification of the
limit equation. Before we can get there, we need to fix some more assumptions on the
distribution of the inclusions or particles, cf. [NV04b].

Definition 1.1.1. We call a set of configurations for the centres of the holes (or particles)
(X{M)ierny C R?, d > 3, with a finite or countable index set I, C N andm € N admissible

7

if there is a constant Cy > 0 such that
(i) The number of particles in a cube Q C R% does not exceed Cym|Q)|.

(ii) Particles are well separated:

1
in|X; — X;| > —m /%
min X = X1 > 7m
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(iii) Particles are homogeneously distributed on average:

1 1
max max — Z v vz <9
Q< X;€e@Q@ M X,€Q |Xz - Xj|
JF
with éjg — 0 as |Q[ — 0.

(iv) collective capacity of order one: there is a measure i such that

1
> —H  opg, (x) — 1

i€y M2
in an appropriate sense.

These assumptions are satisfied for the particular case of the centres given by the lattice
m~1/d74 < R? (for the construction of the measure ; see below). We will analyse this
case phenomenologically in the following section. They are also satisfied with probability
converging to one in the case of particles that are randomly distributed either by a Poisson
point process or independently and identically with respect to a continuous density.

1.2 Homogenisation in perforated domains

We now study different techniques for the analysis of the limiting problem of equation
() phenomenologically. The study for the Stokes equations is similar. To do this, we
assume that Q = R? and that the holes are given on a lattice m~1/9Z¢. Notice that in an
open domain U C R? of order one there are roughly m holes so that we set

__1_
R, =m a2

to guarantee that R%-2m = 1.

@) @) O O Q_]t~vm a2

@) @) O O O

Figure 1.1: Particle configuration on the lattice.

We also choose charges (; on the hole By, (X;) and assume that these are macroscop-
ically given by a function Q € H'(R?) with Q; = [Q]n(X) = fBR (x)@dz in Bg,, (X),

X € m~1/d74, Then, as discussed previously, the electrostatic potential w,, is described
by the Poisson equation
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—Auy, = f in R\ Uxem-1/dz¢ Br,,(X),
U = [Q]m(X) in Bg, (X)forevery X € m~/74,

We consider v, = uy, — [Q]m, then v, solves the equation

~Avp = f+AQlm = f InRI\ Uxen-1/az4 Br,, (X)), a2
Uy =0 in Bg,, (X) for every X € m~ /174, o

As discussed before, we know that there is a weak solution v,, € H'(R%) to ()
and, by standard energy methods, we know that there is a weak accumulation point v €
H'(RY).

There are several different methods to derive the corresponding equation for the limit
point. The first method, which was developed in [CM82a; CM97] and applied to fluid flows
in [AlI90a], is based on the work of Tartar [Tar76] on so-called correctors. Here a suitable
test function vanishing in the particle is constructed that converges weakly in A (R9) to
the constant function 1. This function w,, carries the information on the capacity of the
holes.

Since the early work of Smoluchowski [Smo11]], a second method devised for studying
the limit is the method of reflections. This method constructs an approximation of the
solutions u,, iteratively in terms of a series starting from —Av = f and correcting the
errors made in each particle from the previous approximation. The method of reflection
has been rigorously studied in [HV18].

A third method is to derive a monopole approximation for u,,. Since —Au,, — f
is supported on 0Bpg,, (X), we can try to approximate —Auw,, — f as a sum u,, =
> xem-1/dz4 @x 0% over each monopole, taking the contribution of every single parti-
cle into account. The additional ingredient is to assume that the approximation is good
on each particle. This is achieved by choosing the corresponding charges ¢x so that
fBRm (x) Um dH4! = Qx forevery X € m~1/d74,

Finally, the limit equation can also be derived utilising a blow-up method as in [Gér22]
and [HJ22]. Here, one uses the accumulation point of the sequence u,,, to describe the
behaviour far away from each particle. This gives an explicit approximation for the charge
in each hole only in terms of the accumulation point and the position and charge of each
hole. In [HJ22] a refined version of this method has been used to study the fluctuations.

We now give more details on each of these methods in the case of the Poisson equation
() on R? with particles on the lattice.

METHOD OF OSCILLATING TEST FUNCTIONS

The first method we introduce here is the method of oscillating test functions. In order
to be able to test the Poisson equation () on a perforated domain, we want to use
test functions of the form w,,p for ¢ € C°(R?), where w,,, = 0 in Bg,, (X) for every
X € m~1/74 Then the weak formulation becomes

VoV (wme) dx—/ fwmedz.
R4 Rd

We make the following assumptions for the sequence (wyy, ), cf. [CM82al:

(A1) w,, € H}

loc

(R%);
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(A2) w,, = 0in Bg, (X) forevery X € m~1/474,
(A3) wy, — 1 weakly in HL (R%);

(A4) there is a measure pu € I/Vlgcl’oo(Rd) on R? such that for every sequence %, with

Oy = 0in Bg,, (X) for every X € m~Y?Z% and ©,,, — © weakly in H'(Q), it holds
(=Awm, pOm) — (1, 00)

forall p € C°(RY).

Observe that y is explicitly given by the formula

m—o0

) = Jim_ [ [Vunpds,
Rd

for every p € C>°(R?), cf. [CM824, Proposition 1.1].
With these assumptions, we may conclude that

/fwmwdm—>/ foda
Rd R

and

Vo V(wme) de = (—Awp,, pwpy,) — / vV, Ve dr — / U W A dx
Q

R4 Q

— (1, V) — / vApdz.
Q

Here, we used (A4) and (A3), which also implies that Vw,, — 0in L2

2 (R%). We conclude
that v is a weak solution to the equation

—Av+pw=f inR%

provided such a sequence of oscillating test functions exists.

The construction of the sequence w,,, uses the specific geometry of the positions of the
centre of the balls. Here, the geometry of the lattice comes in useful for this phenomeno-
logical discussion. The method has been used for more general (random) distributions of
particles for example in [DG94] [CMO09a], [CCL15], [CCL16], [GHV18] and [GH194].

In our setting of the lattice, it suffices to construct w,, on a fundamental domain given
by the cube C with sidelength 7~/ and centre 0.

We define the function w,,, then by the periodic continuation of the solution to

—Aw,, =0 in Bm_1/d/2(0) \ Br,,(0),
Wy =0 in Bg,, (0),
Wy = 1 inC\ B,,-1/a5(0).

Since the volume of the ball By, (0) is very small compared to the volume of the cube
C, one can show that w,,, — 1in H'(C). Recall the definition of the capacity of a set

Cap(K) = / IVl da,
R\ K
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vl

K Br,,(X)

Figure 1.2: Fundamental domain of one particle.

where w = 0 on K and w — 1 as |z| — co. We observe by rescaling the ball Bg,, (0) to the
ball with radius one and then sending m — oo that

pdr= (- Z)Hd_l(aBl(O))/

pdz. (1.2.2)
Rd

/ Vw|p dz —> Cap(Bl(O))/
R4 R

Hence, u = (d — 2)H(B1(0)) and the limit equation is given by
—Av+ (d—2)wgv = f inR,

withw, = H41(0B1(0)). Since [Q],, — Q inHi (R?), we conclude that u,, = vy, +[Q]m

converges weakly in H. (R9) to the function u, which solves

—Au+ (d—2uwg(u—Q) = f inR%

METHOD OF REFLECTIONS

The method of reflections was first used by Smoluchowski [Smo11]] to calculate the inter-
action of particles in a Stokes flow. There are many historical and recent results, most of
them numerical, using the method of reflections. For an overview, we refer the reader to
[LLS21]]. In the context of homogenisation in perforated domains, it was rigorously applied
in [HV18].

We again study the equation ()

—A’Um = f ian\UXEmfl/‘iZd BRm(X),
U = 0 in Bg,, (X) for every X € m~ /74,
If we neglect the particles, a first approximation could be given by
—Ady=f inR%

We consequently need to correct ¢ at each particle. This is known as reflection, and for
X € m~/479 we define ®; x via

~A®; x =0 inR?\ Bg, (X),
<I>1,X = —(I)O in BRm(X)-
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We then define ®1 = )y, ~1/az4 P1,x and consider ®( + ®1. Now &( + @1 x solves
() if there was only one particle. Since there are many particles, we have to continue
correcting and define

—A(D;“X:O ian\BRm(X),
Ppx ==y x Ph-1y InBg,(X),

and ®;, = >° ¢, 17474 Pk, x. To make this method rigorous, one now has to prove con-
vergence of the sequence Zé;v:o ®;.. Two main problems stand out: even ®;, consists of
infinitely many terms, and to obtain convergence a good decay rate of ®; x is needed.
Next, the convergence as N — oo has to be shown. We will not discuss this further here
since we will not use the method of reflections in this thesis. Note though, that one way
out is to replace —A with —A + X for A > 0, which guarantees exponential decay of the
fundamental solution. Using a version of the method of reflections, Figari, Orlandi and
Teta [FOT85] (for the Poisson equation) and Rubinstein [Rub86] (for the Stokes equations)
analysed the fluctuations for the stochastic homogenisation in a perforated domain with
finitely many particles with zero Dirichlet boundary conditions and under the technical
assumption that \ is very big. They assumed the particles to be independent and identi-
cally distributed given a continuous density.

The complete characterisation of the fluctuations for the Poisson and Stokes equations
with random Dirichlet boundary conditions will be discussed in Chapter E and Appendix
@ with a different approximation using the blow-up method introduced below.

THE MONOPOLE METHOD

Next, we introduce the monopole method to find an approximation. This approximation
was first used in [NV04b] and[NVO04a]. For the case of a single particle and f = 0 for sim-

plicity
—Aug =0 inR%\ B(0),
{uo =Qo onBy(0),
the solution is explicitly given by
up = (—=A) " (@68, (0)) »

where 55, (0) denotes the normalised Hausdorff measure on 9B1(0) and qp is a charge
depending only on ()y. Now we turn to the case of many particles and again study the

equation ()
—Aup =0  inRI\ Uyep-1/az4 Br,, (X),
Uy = [QmX in Bg, (X) forevery X € m~Yz,

Now, we make the ansatz that the solution is well-approximated by the sum of the
(rescaled) monopole solutions over all holes

_ 1 Rmgx
A Gy = (—A) 7! Y Rugxlx|=——2— > —
Um Um ( ) mdXxX0Xx (d _ 2>wd ’x — X‘d_Qa
Xem—1/dzd Xem—1/dzd
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for some charges gx € R to be determined. Since u,, = [Q]x and 4, is supposed to
approximate u,,, it makes sense to assume that

][ iy AHEY =[Ol (X).
O0BR,, (X)

Now assume that the charges are macroscopic so that they are given by a field ¢: R* — R
with gx = ¢(X). Then, on the one hand,

. _ 1 1 qx
() = (d—2)wgm Z |z — X|4-2
XEm—l/dzd
11 q(X)
(d —2)wqgm 2. |z — X |42
Xem~—1/dzd
1
- / W g,
(d—2)wa Jra |z —y|9=?
= (-4)"q(=),
by interpreting % > xem-1/dz4 as a Riemann sum, since there are of order m particles in
a domain of order one. On the other hand, evaluating @, on 0B, (X) for a given X, it is

N - 1 1 L q) d—1
Gy dHT = —————(X) + ][ — dH
f?BRm(X) (X) YZ;( 8B, (X) (d—2)wgm |x—Y‘d*2

1
~N——q(X +][ —A)lgdut?
(d —2)wq () 8BRm(X)( )
1
(d— 2)wq!

~
~

(X) + (=8)"1q(X).

But this implies that

1

mq(X) + (—A)*lq(X)-

[Qlm (X) &

Assuming this equation to hold true everywhere in R? and using that ¢ ~ —Au, [Q],, ~ Q,
we find
(d—2)wgQ = —Au+ (d — 2)wqu inR%.

THE BLOw-UP METHOD

Very recently, a fourth method to study the limiting behaviour was discovered in [Gér22]
and [HJ22]. The critical observation is that from —Au,, = f outside of the balls and
—Au,, = 0inside the balls, we may write

—AUm = fle\UXETn_l/dZd BRm(X) + Z qX’
Xem—l/dZd
for charges gx that are supported on 0Bpg,, (X ). The charge gx is uniquely determined by
the problem
—Avxy = f ian_1/d/2(X)\BRm(X)7

vx = [QI(X) inBg,, (X),
VX = Um on 8Bm71/d/2(X)
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for every X € m~1/974,
Then, since m /4 /2 is much larger than R,,, we approximate this equation by
~Avx =0 inRY\ Bg,, (X),
vx = [QI(X) inBg,, (X),
vy — u(X;) as|r— X| — oo,
where v is the accumulation point of v,,. This is the blow-up argument at the core
of this method. The approximation makes sense because, macroscopically speaking,
B,,-1/a/5(X) is still very small. So we can assume that v;, ~ u(X) is a good approxi-

mation on 0B5,,,-1/4 /2(X ), and the source term f does not play a role in determining the
corresponding charge. The solution to [L.2 then solves

—Avy = qgx inR%

where ¢x is given by
4x = R ([Q)(X) — v(X))d¥,

with §% denoting the normalised Hausdorff measure on 0Bpg,, (X).
Combining this, we get the ansatz

i = (=07 [f= D Ra(u(X) - [QIX))d%] . (1.2.3)

Xem~—1/dzd

If we believe that ,, ~ u,,, we can conclude that

U & gy = (=A)7{f = Y R (u(X) = [QI(X))0% | = GIf - wa(v - Q)]

Xem—1/dzd
by observing that
Y. Ru(u(X) - [Q)(X))6% = (d - 2)wi(u - Q)
Xem~—1/dgd

by the same argument as in (). Since u,, — u, we find that u solves
u=G[f = (d=2)wa(u - Q)],

or equivalently
—Au+ (d - 2)wa(u— Q) = f.

THE STOKES EQUATIONS

In this section, we have introduced four formal derivations of the limit system for the Pois-
son equation. In the case of the Stokes equations in three dimensions

—Aum—i-me:f inRS\UXG%ZZS BRm(X),
‘"L3

div g, =0 inR?\ Uye 123 Br,, (X),
m3

U = [V]m(X) in Br, (X) forevery X € 173
m3
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the same methods can be applied to show that the corresponding limit equations are the
Brinkman equations

~Au+6r(u—V)+Vp=f inR3
divu =0 in R3.

This equation was first derived in [Bri49].

1.3 Fluctuations around the limit

All the approximations introduced in the previous section allow deriving the limit equation
for the homogenisation problem () with more or less technical efforts and potentially
additional assumptions in the case of randomly distributed particles.

In the case of m holes being independently and identically distributed given a contin-
uous distribution p, the screening effect of the limit equation depends on p, i.e. the limit
equation is given almost surely by

—Au+ (d—2uwgp(u — Q) = f inR%L

This equation is deterministic, and so the limiting process can be interpreted as a law of
large number. If one also assumes that both the holes and charges are independently and
identically distributed according to f € P(R? x R), then with the definitions

pi= [ f(o.da),
R
j= / qf(x,dq)
R
the limiting equation has the form
—Au+ (d—2wglpu — j) = f inRY

Understanding the limiting process raises the natural question of higher orders of con-
vergence. In the stochastic setting, this is directly linked to the understanding of the fluc-
tuations around the limit. The approximations derived in the previous setting are not fine
enough to see the fluctuations.

It turns out that the approximation ,,, obtained from the blow-up method can be re-
fined to cover the fluctuations. This refined approximation will be used in Chapter @ and
Appendix @ to derive the central limit theorem scaling for the fluctuations and an explicit
formula for the covariance of the Gaussian field describing the fluctuations in three di-
mensions and under minor technical assumptions on the distribution f. This result holds
true both for the Poisson and Stokes equations. Since this result will only be obtained in
three dimensions, we continue with the discussion only for d = 3 and R,,, = ﬁ. We
have rescaled the radius to avoid the factor ws = 4 in the limiting equation.

The crucial idea to obtain the refined approximation is the observation that the fluctu-
ations are still given by a macroscopic object ¢,,, i.e.

U, = u +m ™2, + o(m™Y?),
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where &, is a random function. Inserting this in the approximation u,, derived in ()
and adapting this to the case of n particles and charges (X;, Q;)i=1,...m ~ f, we obtain

-----

m

o = () [f e () - ik 2 (X)),

=1

We need to define &,,. Assuming that we already know that

(=87 |- N > (u(Xi) — Qz’)] mu= (=) [ +5—pu],
=1
we get
Ut m T 2 A Uy Ay = (—A) T | f — % ;(U(Xi) — Qi +m7V2E,(X)) 0%

i=1

— (_A)fl ;Zml/Zé-m(Xl)éq)?Z] )
i=1

We cannot use the interpretation of % Sy m~1/ Qfm(Xi)%”}i since the resulting approx-
imation is not fine enough. Instead, we may use that @,,(X;) = Q; in Bg,, (X;) to obtain

i (X) ~ u(X5) + (—A) 7! [pu — 5] (Xs) — u(Xs) + Qi — m™26m (X5)
1
—(-A)"! - Z(U — Q) +&m(X;))d%, | (Xi).
J#
After requiring @, (X;) = @, this leads to

m_l/gﬁm(Xi) + (_A)_l [m_l/ngm} (Xz)

1
V26, (X;) + (—A)~! mgm_l/Qém(Xjﬁ}?j (Xi)
j (A

= () = S () - @08, | (X0
J#i

Assuming that equality between the first and last term holds in R¢, leads us to the defini-
tion of &, by

- 1
Em=(=A+p)"! |pu—j— p. > (u(X;) - Q))dx,
J#
Note that we have replaced 4, formally by dx, and that u(X;) is generally not defined

since u € Hﬁ)c(R?’) only. In Appendix @, where these technicalities will be addressed, we
will replace u(X;) by the mean of u over Bg,_, (X;) to get a well-defined approximation.
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We will show in Appendix @ that indeed a well-defined version &, is a good approxi-
mation for the fluctuation field. Then the fluctuations can be computed by noting that for
@1, 2 € CX(R?), it holds

E [€m(01)&m(p2)]
=K, <¢1, S (A4 ) (pu— j— (u(Xy) - @Z-)csxi))
=1 L2(R3)

02, Y _(=A+p)7! (pu —j — (u(X;) — Q;)dx,)
Jj=1 L2(R3)

= /R:SXW((U(%) — ) (A +p) 1) (@) (ul@) = v) - (A + p) " p2)(2)) f(dz, dv)

- (pu - j7 (_A + p)ilwl)L2(R3) (pu - ja (_A + p)71902)L2(R3) .

1.4 Alink to singular stochastic PDEs

The study of fluctuations for the stochastic homogenisation problem of the Poisson or
Stokes equations in a perforated domain is linked to stochastic partial differential equa-
tions. The fluctuation field for the stochastic homogenisation of the Poisson equation,
derived in [H]22], is the solution to the stochastic partial differential equation

—Au+pu =,

¢=([fo-upse.an)w

and W is a type of white noise.
In Chapter E, we show that the solution to the linear stochastic PDE

where ( is given by

(-A+1u=Z inT?

can be obtained as the homogenisation limit of the Poisson equation in a perforated do-
main with large random charges on the holes. We motivate this by the following heuristic:

1
considerholes { X1, ..., X, } = m~ 14741 T4 the radius R,,, = ﬁdmfﬁ and the equa-
tion

—Au,y, =0 in T\ UL, Br,, (X:),
Uy, = m1/2Qi in Bg,, (Xl)

Assume that the random charges @); are given independently and identically distributed
by a normal Gaussian. Then, it holds

1 m
— Y m'?Qibx, — E (1.4.1)
m =1

in law in distributions, where = denotes white noise in T¢. So, = is the isonormal Gaussian
process on L?(T%) with mean zero and covariance given by

E[=[p1]=]p2]] = /Td 1o dz.
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To derive the limit formally, we again make the ansatz

m

=1

~

1
Um ~ —
m
inspired by the monopole and blow-up method. The blow-up method suggests that if there

exists a limit u, then ¢; ~ m'/2Q; — (u);. By (L.4.1), we may then formally conclude that u
is a solution to

(-A+1u=2 inT%

1.5 Previous results and further literature

HOMOGENISATION IN PERFORATED DOMAINS

The mathematical theory of homogenisation in perforated domains can be traced back to
the 1940s. Then, for elliptic equations and fluid flows, the collective effect of rarefied sets of
inclusions or particles became an area of heuristic and rigorous study. As seminal works
in this area, one has to regard the derivation of the Brinkman equations as an effective
equation for a swarm of particles in the Stokes flow with a collective effect coming from
the Stokes drag by Brinkman [Bri49]. The spectrum of the Laplace operator in a domain
with tiny inclusions has been studied as early as in [Sam48].

Building on these seminal results, both the electro- and hydrostatic problem are anal-
ysed mathematically at least since the 1970s. Different methods to study the limiting be-
haviour of the homogenisation problem have been developed and applied in both cases.

For the homogenisation of the Poisson equation, the first rigorous results were ob-
tained in [Hru72], [MK74], [Hru77] and [Hru79] for elliptic equations of higher order. In
[MK74] (see [MKO08] for an English version), the authors allow for particles randomly dis-
tributed without overlapping and with random sizes. The homogenisation limit is then
derived by using projection operators in Hilbert spaces.

In [PV80] the corresponding problem for the linear heat equation is studied first. There,
probabilistic tools such as the survival time of a Brownian path are used to derive the limit.

Building on the energy introduced by Tartar [[Tar09], the method of oscillating test func-
tion is derived and used in [CM82al, [CM82b] (see [CM97] for an English version). An ear-
lier version in a special case was already studied in [CP79]. This method is used in many
extensions of the results obtained in [CM824]: see [DG94], [CCL15], [CCL16] and [GHV18§|
for applications to the homogenisation problem under different assumptions of the distri-
bution of the holes, radii and charges. In [CM09a], the method of oscillating test functions
is applied to an obstacle problem on the lattice with obstacles of random shapes. A similar
limit of the corresponding obstacle problems involving a collective term is derived.

The method of reflections is applied rigorously to the Poisson equation in [HV18].

Similar screening phenomena are also obtained in the series of papers [Nie99], [NV04b],
[NVO04a] and [NV06]. There, a dynamical version of the homogenisation problem is consid-
ered. The dynamical behaviour of the holes is given in terms of the solution u,,,. In [NV04b]|
and [NV04a], the monopole approximation is introduced to obtain a good approximation
employing the maximum principle. In unbounded domains, additional (exponential)
screening properties have to be derived [NV06] to obtain the limit.

From the suggestion of the Brinkman equations as an effective equation for the flow
around a swarm of particles [Bri49], the first rigorous results in the case of particles with
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zero velocity on a cubic lattice are obtained in [Bri86], [Lév83] and [San82]. The method of
oscillating test functions is applied in different regimes to the Stokes and Navier-Stokes
equations with stationary particles in [All90a] and [All90b]. The case of randomly dis-
tributed particles with random radii but zero velocity is studied in [Rub86] and [GH19a].
This was also studied via the method of reflections in [H6f21].

The case of particles with non-zero velocity was studied first in [DGRO08] for the sta-
tionary Stokes and Navier-Stokes equations under a minimal distance condition for the
particles. Physically, this corresponds to particles moving very slowly through a fluid. The
minimal distance condition is weakened in [Hil18]. The case of particles being randomly
distributed is studied in [CH2(0].

In [HMS19], the more general case of particles of different shapes that are translating
and rotating is discussed. In this case, additional terms appear in the homogenisation
limit. In [FNN16], the homogenisation problem for the evolutionary Navier-Stokes equa-
tions is studied. There, it is assumed that the distance of the particles is still much larger
than their diameter. The blow-up method in the case of the Stokes equations is first dis-
cussed in [Gér22] and [HJ22].

Besides the qualitative study and somewhat inspired by similar results for the case of
homogenisation in random media (see [AKM17] and [DGO20] for two seminal results and
the references therein), the quantitative analysis of the limiting process is an important
area of interest. A good understanding of convergence rates and approximations might
play an essential role in the rigorous derivation of the Vlasov-(Navier)-Stokes equations
(see [Bou+15] and the references therein for the modelling of the Vlasov-Stokes equations).

The earliest results on quantitative analysis go back to the study of fluctuations for both
the Poisson [FOT85] and Stokes equations [Rub86] via the method of reflections. In both
cases, an additional large mass has to be added from the start to obtain the convergence
of the method of reflections. Error estimates for the oscillating-test-function method were
first obtained in [KM89]. More recently, results on convergence rates and higher-order
estimates for homogenisation both of the Poisson and Stokes equations were obtained in
[Giu21b], [Fep22], [FJ21] and [Fep21]. The study of fluctuations of the Poisson and Stokes
equations with randomly distributed particles and random velocities is obtained as part
of this thesis and can be found in [H]J22] or Appendix @

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Singular stochastic partial differential equations have recognised a lot of attention in
recent years. The seminal papers that deal with the (parabolic) ®3-model are [Hail4],
[GIP15], [Kupl6] and [OW19]. In all these papers, different perturbative renormalisation
techniques are used to find a non-Gaussian limit as universality class of the parabolic
®3-model. The elliptic ®4-model for dimensions d = 4, 5 is studied in [GH19b]. The con-
nection between stochastic homogenisation and stochastic PDEs is, as of yet, unexplored
territory.



2 CONVERGENCE RATES AND
FLUCTUATIONS FOR THE STOKES—
BRINKMAN EQUATIONS AS
HOMOGENISATION LIMIT IN
PERFORATED DOMAINS

In this chapter, the results obtained in the paper

[HJ22]  R. M. Hofer and J. Jansen. “Convergence rates and fluctuations for the Stokes-
Brinkman equations as homogenization limit in perforated domains”. In:
arXiv:2004.04111 [math] (2022)

will be summarised. A reprint of the paper can be found in Appendix @

The research undertaken in the article in question is a collaboration with R. Hofer. All
authors and, in particular, the author of this thesis, have contributed significant parts to
each section of the work.

2.1 Introduction

Many mathematical models deal with the study of the interaction of moving particles with
the flow of a viscous, incompressible fluid. One of the general mathematical goals is the
rigorous derivation of a macroscopic model describing the effective dynamics of the sys-
tem in the limit of many small particles. A special case, neglecting the particle evolution
in time and studying the static picture, is the derivation of the Brinkman equations

~Au+ (pu—35)+Vp=nh, divu=0 inR>. (2.1.1)
from a Stokes flow around many small spherical particles
{ —Aty, +Vpm =h, divu, =0 inQ,,,
um =V; inBpg, (X;),i=1,...,m,
where .
QO =R\ | Br,, (X))
i=1

Here, the particle radius adheres to the critical scaling R,,, = &%m in which the total Stokes
drag exerted from the particles is of order one. Furthermore, we assume that the pairs
of centres and velocities of the particles (X;,V;) are independently and identically dis-

tributed according to f € P(R3 x R?) satisfying the assumptions

21



22 Fluctuations for Homogenisation in Perforated Domains

(HD) [ga, gs [v[2f(dz, dv) < oo;

(H2) the distribution of the centres p(-) := [zs f(-,dv) € WH(R3) is compactly sup-
ported;

(H3) the fluxis given by j(-) := [gs vf(-,dv) € H'(R?).

The additional term pu — j appearing in () accounts precisely for the collective,
macroscopic effect of the drag force of the particles on the fluid. It is well-known from the
theory of stochastic homogenisation that u,,, — u weakly in H! (R3), see e.g. [Hil18].

While this can be interpreted as a law-of-large-number-type result, the study of the
fluctuations for this limiting problem is a natural question since this also corresponds to
a sharper understanding of convergence rates for the limiting process.

2.2 Main results

The main result of the paper gives the complete characterisation of the fluctuations under
the assumptions given above in three dimensions. The fluctuations are described by a
Gaussian field with explicit covariance.

Theorem 2.2.1 (=Theorem A.1.%). Leth € H~'(R3) and let u,, and u be defined as in

(A.1.3) and (A.1.4).

(i) Forany B < 1/2 and any compact set K C R3

mP ||, — ullr2(xy — 0 in probability.

(i) Foreveryg € L*(R3) with compact support,

Emlg) = m2(g, um — u) — &[g]

in distribution, where £ is a Gaussian field with mean zero and covariance

E[¢[g1]¢lg2]] = / ((u(z) —v) - (Ag1)(2)) ((u(z) — v) - (Ag2)(2)) f(de, dv)

R3xR3
= (pu—j,Ag1) 2 (pu — j, Ag2) 2

forall gy, go € L?(R?) with compact support.

The convergence rate in part (i) of the theorem is optimal in view of part (ii). By in-
terpolating the convergence in LIQOC(]RS) with the a-priori energy estimates, one obtains
convergence in H (R?) for any s < 1 with rate m~#+%/2,

The proof of this result relies on a new approximation for the sequence (u, ). This
approximation is obtained by a refinement of the blow-up argument discussed in Section

1.9 also capturing the fluctuations. Therefore, define the approximation ,, by

1 & .
Upy, 1= h—— — Vi _7mi5im s
0 G m;(u Vi+m™2&,)
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where G denotes the solution operator to the Stokes equations in R® and §" denotes the
normalised Hausdorff measure on the sphere 0Bpg,, (X;). We derive that a natural candi-
date for the approximation of the fluctuation field is given by

m=AG'O,,
_1 ) 1 & m m
M”20 = Glpu—j) = — > G™ (((w); = V))a7").
=1

Here A denotes the solution operator to the Brinkman equations (). With this explicit
approximation ,,, it is now possible to derive the fluctuation field ¢ by the standard cen-
tral limit theorem. Note that @,, only relies on the homogenised solution u to (), the
particle positions and their velocities.

As a first step in the proof, we show that 4,, is a good approximation for v in the sense
of the following theorem.

Theorem 2.2.2 (=Theorem ). Foralle > 0andallB < 1

This theorem might be of more general interest regarding the rigorous derivation of the
Vlasov-Stokes equations.

The method of the paper is restricted to the case of three and possibly two space di-
mensions since in four or more space dimensions the error ||u,, — ul| 2 (re) turns out to
be of critical or supercritical order. This is reflected by the regularity of the fluctuation field
which is only a distribution in dimensions larger or equal than four. Furthermore, the re-
sult can be extended to the case of random radii R]" = r; R,,, provided the r; are indepen-
dent bounded random variables that are also independent of (Z;);—1,.._m, with E[r;] = 1.

While the above is framed in the context of the Stokes equations, the same result is
valid in the case of the Poisson equation

Um =Q; inBg, (X;),i=1,...,m,

under the same conditions for the random distribution of charges @); on the spherical in-

clusions Bp,, (X;) with
1

m — .
4mm

In this case, the corresponding homogenised equation is given by

—Au+pu—j=h inR3.






3 STOCHASTIC PDES AS
HOMOGENISATION LIMITS IN
PERFORATED DOMAINS

Abstract

In this chapter, the link between stochastic homogenisation in perforated do-
mains and stochastic partial differential equations is investigated. The study of the
fluctuation field suggests that solutions to linear elliptic stochastic partial differential
equations can be obtained as limits of the corresponding homogenisation problems
with large boundary values. This hints at a possible connection also for the nonlinear
4-model.

In the first part of this section, we give a sketch of the homogenisation of the semi-
linear Poisson equation in a perforated domain with deterministic boundary condi-
tions in the torus T¢, d > 3. Furthermore, we prove that the solution to the linear
stochastic partial differential equation (—A+\)u = Zin T? is the limit of ahomogeni-
sation problem in perforated domains with charges of order m!/2. In the second part,
we conjecture that under a specific choice of the probability space, this convergence
can be improved to pathwise convergence in the space of optimal regularity in any di-
mension. Building on this, it is conjectured that the elliptic ®-model can be obtained
as a homogenisation limit.

3.1 Introduction

In this chapter, we explore the link from stochastic homogenisation in perforated domains
to stochastic partial differential equations. The fluctuation field obtained in [H]22] for the
homogenisation of the Poisson equation in a randomly perforated domain is the solution
to the homogenised equation including a white Gaussian noise {( coming from the inter-
actions of particles.

A+ =, (3.1.1)

A > 0. One can also take the opposite perspective and find that solutions to elliptic
stochastic partial differential equations can be obtained as homogenisation limits with
large charges on the inclusions.

We explore this and explain the rigorous results available so far. A general theory is, as
of yet, undiscovered, but the available heuristics point out a path into this new territory.
While the study of fluctuations gives first results on the description of the linear theory, one
of the main areas of interest are nonlinear (singular) stochastic partial differential equa-
tions such as the elliptic @é—model, see [GH19b]. Due to the long-range interactions of
the particles in the perforated medium, it is a natural conjecture that these non-Gaussian
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universality classes can be obtained from stochastic homogenisation. Unfortunately, a
rigorous argument is at the moment not available.

This introductory section now proceeds with a discussion of semilinear elliptic equa-
tions in perforated domains with deterministic boundary data. It is argued that the non-
linear structure remains untouched in the critical scaling of the perforated domain. Fur-
thermore, we explain the known results on the linear elliptic stochastic PDE that one can
obtain from the study of fluctuations in [H]22].

In Section @, we explain the key ideas that are necessary to obtain a pathwise theory of
the convergence to the linear elliptic stochastic equation (). We close the section with
the main conjectures and present an idea of a proof. These conjectures are also the starting
point for the development of the corresponding nonlinear @3-theory from perturbative
arguments. The key features of the @fl-model are discussed in Section @ This section
closes with the main conjecture of the construction of a solution to the elliptic @g—model
via stochastic homogenisation in perforated domains.

SEMILINEAR ELLIPTIC EQUATIONS WITH DETERMINISTIC BOUNDARY DATA

The results obtained in this thesis for the problem of homogenisation in perforated do-
mains have considered linear equations. The derivation of an effective theory transfers to
the case of semilinear equations as we will demonstrate in the following. We discuss these
semilinear equations on the d-dimensional torus to allow for general charge distributions
on the holes and to avoid the technical problem of the holes intersecting the boundary of
the domain.

Fix d > 3 and let T? = R?/Z? the d-dimensional torus. We identify T¢ with [0, 1]¢.

We consider a deterministic and countable set & C R? of particles so that Definition
is satisfied, e.g. ® = Z?. More generally, as in [GHV18], ® could be given by a generic
configuration of a stationary point process for which the average number of points in a
domain of order one is bounded and which is strongly mixing (see the assumptions of
[GHV18] for more details).

Define the perforated domain

Q= T\ U Bg,,(X),
Xem~1/4en[0,1)d

where the radius of the holes is given as before by the critical scaling
1 1

Ry = r—p—m o2,
(d— 2)wdm

and wg = H?71(0B1(0)) is the surface area of the unit sphere.
Letp < % = 2* — 1, where 2* = d%dz denotes the critical Sobolev exponent. Fix a

distribution of charges ¢ € H'(T?). We study the equation

— At + [ [P My, = 0 in Qs
Uy, is periodic (3.1.2)
Um = q in Bg,, (X) for every X € m~ /4.

There is no obstruction in also adding a source term f € H'(T?)’. We omit this source
term to focus on the main novelty. Note that () is the Euler-Lagrange equation of the
functional

Fonlu) = / IVl + [uP ! dz,
Td
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defined on the set
X, = {u € HY(TY) : uw = qin Bg,, (X) for every X € m‘lCID}.
Since p < 2* — 1 and using v = q as a competitor, this implies the uniform bound

[l 1 (pay S Fm(um) = min < Fo(q) S llgll 2 (ray-

uEX

This uniform bound implies that there is u;, € H'(T%) a weak accumulation point
of the sequence (u, )men. To study the limit behaviour via the method of oscillating test
functions, we introduced the definitions g(s) = |s[P"!s and v, = u,, — ¢. Then, the
semilinear homogenisation problem () is equivalent to the equation

—Avpy, + g(vm +q¢) = Ag  inQyy,
v, is periodic,
Vm =0 in Bg,, (X) for every X € m~ /4.

Since the sequence (v, ), is also uniformly bounded in H'(T%), it also has a weak
accumulation point vy,.

By the assumptions on the set of centres of the holes ¢, there exists a sequence of os-
cillating test functions (wy, ), C H'(T?). Recall that (wy, )., has the following properties

(A1) wy, € HY(T?);
(A2) wy, =0in By, (X) forevery X € m‘écp;
(A3) w,, — 1 weaklyin H'(T%);

(A4) thereisameasure yu € W~1°°(T%) on T¢ such that for every sequence @, with 7, =
0in B, (X) forevery X € m~'/?® and ©,,, — # weakly in H*(T%), it holds

(=Awim, Pom) — (1, p0)
forall ¢ € C>°(T%).
For the proof of these properties for the case of ® = Z%, we refer the reader to [CM824].
For the case of a generic configuration of certain point processes, see [GHV18]. In both
cases, it holds i = 1 due to the explicit choice of the radii R,,, and the stationarity of the

point process.
Now, choose p € C°°(T9). We use wn, € H} () as a test function to obtain

Vop, - V(wnme) + g(vm + Qumpdr = — V(wmp) - Vgdz.
Td Td

We now take the limit: as in the linear case, it holds

Vop, - V(wpe)de — /Vvh -V + vpp dx and
Td

/ V(wmp) - Vgdz — / Ve - Vqgdz
Td Td
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as m — oo. For the nonlinear term, we may use the compactness of the Sobolev em-
bedding H!(T?) — L9(T%) for ¢ < 2* and the continuity of g to obtain that g(v,,, + ¢)

converges strongly to g(vy, + ¢) in LFT (T?) = L (T%). With this, we directly conclude
that

/ 9(Um + Qwmpdr — / g(vp + q)pdx
'ﬂ*d ']Td

as m — oo, since wy, — 1in H'(T?) implies that w,, — 1in L?"(T9) and 5 + =% = 1.
We conclude that vy, is a weak solution to

—Avp 4 vy +g(vp +q) = Ag  inT
Writing up, = vy, + ¢, we find that uj, is a weak solution to
—Aup, + (up — q) + Jup/P"tup, =0 in T
We summarise this result in the following theorem.

Theorem 3.1.1. Letd > 3,® = Z%,q € HY(T?) and f € L*(T%). Letp < H2. Then, the
weak solution u,, € H'(T%) to the semilinear Poisson equation in the perforated domain

— Aty + [t P g = f in T\ Uyem-1/dz¢ Br,, (X),
U, 1S periodic, (3.1.3)
Um = q in Br,, (X) forevery X € m~/7¢

converges weakly in H*(T%) to a solutionu;, € H(T?) of the semilinear Poisson equation
—Aup + (up = q) + |uplP "My, = f - inT.

The same result holds true almost surely for the choice of holes given by a stationary
point process with additional assumptions as in [GHV18].

In the last section of this chapter, we conjecture that the fluctuations for the homogeni-
sation limit of the semilinear equation (8.1.3) in a randomly perforated domain in dimen-
sion3 < d < 5are non-Gaussian and there is a link to the study of elliptic singular stochas-
tic partial differential equations.

THE LINEAR ELLIPTIC STOCHASTIC PDE

In [HJ22], the fluctuations of the linear homogenisation problem for the Poisson equation
in a randomly perforated domain are studied. The explicit form of the fluctuation field
implies that, formally, the fluctuation field is given by the solution to the stochastic partial
differential equation

—Au+pu=¢ inR?,

o= ([w-urse.an)w

where W is a type of white Gaussian noise.

where ( is given by
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The same method that was developed in [H]J22] can be applied in the setting of the torus
T3 = R3/Z3. Assume that Z; = (X;, Q;) are independently and identically distributed
accordingto f = p ® 1 € P(T? x R). For simplicity, we assume that

p= /Rf(»dv) =1,

i.e. the centres of the holes are uniformly distributed. Furthermore, assume that

= dg) =0
J /qu( q)
and
/ lq|>f(dz, dq) = 1.
T3 xR

We set the radius of the holes to

and consider the equation given by

(=A+ Duy, =0 inT3\ U2, Br,, (Xi),
um:m1/2Qi inBRm(XZ-), izl,...,m.

By the standard theory of homogenisation in perforated domains, we know that v,, =
m~1/2u,, converges to a weak solution to the equation

(~-A+2w=0 inT?

Then, v = 0. By Theorem and for every ¢ € L?(T%), we obtain that

/ Uppdz =m'? [ (vy, —v)pde — Ely),
Td T4

converges in law to the fluctuation field £. Furthermore, £ is the Gaussian field with mean
zero and covariance given by

El¢lp1)€lwa]] = /deR [0 (A +2)" o1 () (—A +2) " pa () f(dz, dg)

= [ A+ @) (=8 + 2 pala) do

But then, £ is the solution to the equation

where = denotes the standard white noise on T3, that is the Gaussian isonormal process
on L?(T?3) with mean zero and variance given by

B[E(e1)E(0)] = [

p1p2 de.
"]T3
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3.2 The linear stochastic Poisson equation as homogenisation
limit

In the introduction we proved that we can obtain solutions to the stochastic Poisson equa-
tion
(~-A4+2u=72= inT?,

where = denotes white noise on T?, as the homogenisation limit of the Poisson equation
in a perforated domain with large charges on each inclusion given by

(A +upy =0 inT*\ i, Br,,(Xi),
U = m2Q; inBgr,(X;),i=1,....,m

from the study of the fluctuation field in [HJ22]. Given the heuristical discussion of the
problem in Section , the restriction to three dimensions seems unnatural. Secondly,
the convergence is very weak: we only argued that u,,, converges in law weakly in L?(T4),
that is we have the convergence

(U, @) p2(ray = (U, ) 2(Ta)

in law for every ¢ € L2(T%)

To achieve the goal of constructing solutions to singular stochastic partial differental
equations as homogenisation limits, this convergence for the linear problem is not strong
enough to use a perturbative approach as in [GH19b]. It is desirable to achieve a path-
wise description. Therefore, recall that white noise satisfies = € H _g_(’]l‘d) almost
surely [Ver10]. Hence, since (—A + 2)~! maps H*(T%) to H**?(T%), we find that u €
H3+2)- (T?) almost surely. To obtain a pathwise theory, we would like to show that

Uy — u  in H(T¢) almost surely

for every s < —% + 2. This is natural in view of Proposition . Crucially, —% +2>0
only if d < 3. This is the main obstruction for the result in [HJ22] to work in dimensions
larger or equal than four, since the fluctuations are not in L120C (R9) any longer.

The work on the pathwise theory is not entirely completed. The following discussion
leads to two conjectures. The first conjecture concerns the pathwise theory for the linear
case. We discuss briefly the obstructions and give a sketch of an approach. In the follow-
ing section, we introduce the corresponding nonlinear (I)é-theory and conjecture that we
obtain the non-Gaussian limit via a homogenisation scheme.

To obtain a pathwise theory, one needs to make additional assumptions. For once, the
convergence in law is natural when choosing the charges on different probability spaces
for a different number of particles m. To upgrade to a pathwise convergence result, we
must work on a common probability space, which is naturally the probability space of
white noise. Secondly, even there, we have to make a careful choice of the charges to even
have hope of getting the convergence almost surely.

We restrict this discussion to the case of three space dimensions. We denote by

Am =m 322 0 [0, 1)

the lattice inside the torus consisting of m centres for the holes X1, ..., X,,. For X; € A,,,

we denote by
BY" = B, (X;)
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the ball with radius .
R, =

~ drm

and centre X;. Furthermore, we denote, for X; € A,, by C;" the fundamental domain with
centre z; C C}", i.e.

m o B 1 1
Ci —$Z+Cm and Cm = <—W,W> .

While the assumption of the particles lying on the lattice is merely to simplify the com-
putations, we need to choose the charges more carefully: letn € C2°(B; /»(0)) a standard
mollifier, thatis 0 <7 < land [ By2(0) ndx = 1. Then, define

N () = mi(m'/Pz),
so that n,,, (- — X;) is supported in C]" and satisfies fcgn Nm(z — X;)dz = 1. Let

—_

— — =
Em = Nm * 2

the mollification of white noise. Then, for almost all realisations of =, =,,, is a smooth func-
tion.
We define the charge on the hole by

(my _ L =
o, —\/m/q(m)umdw.

Note that o™ is a normal Gaussian field: E[o\"™] = 0 and

() gy _ J oo I (@) P de =1 i =
0 if | X; — X;| > m~4/4,

Note that we allow for short range correlations of the charges to simplify the notation.
Define u,, € H'(T?) as the unique weak solution to

{(—A+1)um =0 in €, := T\ ", B™,

Uy, = m%o*l(m) in B}".
For a fixed realisation of the noise Z, we define u € H*(T?), s < %, to be the solution
to
and i, € C°°(T?) to be the solution to
(=A +2)ty, ==, inT3.
We conjecture that u,, converges to u almost surely in H*(T¢) for every s < —% + 2.
Conjecture 3.2.1. There exists a subsequence of u,, (not relabelled) such that for every s <

% it holds
Uy —> u  almost surely in H*(T?).
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To prove this conjecture, we will need to obtain a new approximation @, for u,,.
We will demonstrate here that the natural approximation ,, obtained via the blow-up
method gives a good approximation for #,,. This approximation does not seem suitable
to obtain the necessary bounds for w,, — 4,, since the methods introduced in [H]J22] are
giving information on the level of H'(T%), where we do not expect convergence. To ob-
tain bounds in weaker spaces such as .>°(T%), a natural strategy is to apply the maximum
principle and use a similar argument as in [NV04b]. This fine-scale approximation has not
been obtained as part of this thesis but is a future direction of research.

Inspired by the blow-up method, we define

Lzagwxi - (/ Qi dx) 5}@] .
m r

Here, we denote A = (—A + 2)~! the solution operator to the homogenised equation and
G = (—A + 1)~ ! the solution operator to the Poisson equation in T?,

Uy =G

Furthermore, as an intermediate candidate, we also introduce

1 & (m
ﬁzag )5)(1.]. (3.2.1)

We prove the following first step for a proof of the conjecture.
Proposition 3.2.2. Forevery( < s < % it holds
E ||1~Lm — UHHS(’]I‘d)} —0

asm — oQ.

Proof. In [GH19b], it is shown that
E ||| — qus(Td)} —0

as m — oo for every 0 < s < 5. It now suffices to control @, — i, in L2((2, P); H*(T?)).
First, we use the operator identity

A=G-GA

to observe that

Wy, = Uy, + *1 E G \/mO'ZmA(SXi - < A=, d:c) 5)(2] .
m < cm
’L:1 7

In a first step, we estimate v,,, — u,,. We may use that A is a bounded operator from
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H*(T?) to H*=2(T3) for every s € [0,1/2).

E [H{)m - @m”%é‘(ﬂl‘?’)}

1
I mia Hs(T9)
- L m 9
(
<E ?ZUlm)(SXL — Zm
L =1 Hs—2(T3)
r 2
=E su — S o™e(Xs) - / Emep dz
HQO”HZ*S('[B):I m =1 Td

1 [& _ ]
=E sup | [Z /C.(m) Em (¢(Xi) —¢) dz ‘

HS"”H?—S(TB)Zl

For almost every realisation of the noise, we get the estimate
sup
ol gr2—s(r3

[Z /C<m> Zm (0(Xi) = ¢) dx]
Lo

5—2 sup [ Bl le(X) o] o

m =1 ”QDHH?fs(TS):I

Since H25(T3) — C2~*(T3) for every 0 < s < 3, itholds
—_ 1_
swp [ Bl — el do < [ (Rl = X ds

||%0HH2 S(TS)*I C
<malzs) /C(m) Bl da

i

We conclude that

1
E sup = | Y /(m> Em (0(X;) — ) dz

el rz—s o3y =1 | ™ | X A

2

2

1 1
< —=(1-2s) | = =
<E|m 4 - E o |Z | dz

Xi€Am

where in the final step we have used

E [|Em[2( / i (@)[2 dz = m / 0|2 da.
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We also have to estimate the remainder. We may use that also G is a bounded linear oper-
ator from H*~2(T%) to H*(T%) and use a similar strategy as before.

2

1™
Ellm ZG \/EUFA(SXi - ( A=, dx) 5Xz]
2
1 — _ _
=FE sup — Z [/ Em(Ap)(X;)dz — / (AZ) (X)) da;]
”('OHHQ_S(']I‘S):]' m i=1 Zm C;m

Now, we may use that, for almost every realisation of white noise, it holds

1 — = Vde — = N dz
5> [ [ Zntaear- [ (100004 ]

sup
||‘PHH2—S(T3):1

<
||‘PHH2—S(T3):1

m

D

i=1

o

i

;i [ | Enaoyde- [ 2,40

i=1

/C?(AEm)tpdx — /im(AEmM(Xi)l D .

We conclude as before, using that Ay is Hélder continuous, that

_l’_

2

1 m
E||—=Y G |VmolAdsx, - A=, dz | éx,

m =1 Z Z o Z Hs(T3)

1
< m*5(1*25)—2E [/ 1Zm|? + \AEdex}
m Td
< mfé(lfQS)fl‘
This concludes the proof. O

As discussed, both approximations appearing in the previous proof are not good
enough in L* (X, dBg,,(X;)) to use the maximum principle and obtain the miss-
ing bounds. While the previous discussion was restricted to the case d = 3, the preceding
proposition can easily be adapted to the case of general dimensions d > 3. This leads us
to the following conjecture.

1
Conjecture 3.2.3. Letd > 3and R, = m~ 4-2, Consider the solution to

1
(d—2)wq

A =0 T\ Uiz B, (X0
um =m*?6" inBg,,(X;), X; € m™ Y74,

m . 1 =
whereo[" = = fcg" E,, dz as before. Then

U — u in H*(T?) almost surely

d
foreverys < —5 + 2.
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3.3 The elliptic ®}-model via stochastic homogenisation

The study of singular stochastic partial differential equations has been an area of intensive
study in recent years. One model equation is the @é-model. While usually considered
in its parabolic form, the elliptic model shares most of the interesting features but in 2
more space dimensions. The elliptic @é-model on the torus T? consists of the study of the
equation

(-A+2w+v3=Z inT<
In dimensions d < 5, arescaling argument hints that solutions look locally as the solution

to the linear equation
(~A+2)® =2 inT%

The main difficulty arises from the low regularity of ® € H (—5+2)- (T%). Hence, in dimen-
sion d = 4,5 it is only a distribution and a perturbative approach around the solution to
the linear problem fails since there is no canonical interpretation of the nonlinear terms.
To regularise the equation, consider =,,, = 7,, * = as before,

(=A+2)®,, =5, inT?,
and
(=A 4+ 2)vy, + 03, =5, inT<

These functions are well-defined, but the natural approach v,,, = ®,, + ¥, fails at first
sight, since the covariance of ®, diverges as m — oo in dimensions d = 4,5. This is
the reason for the renormalisation argument: if we replace u3, by u3, — 7, u,, and send
rm — +00asm — oo in the correct way, one finds convergence of the sequence u,, to a
non-Gaussian limit v € D’(T¢) in distributions for almost every realisation of the noise,
see [GH19b]. Formally, u then solves

(—A+2)u+ uw—ocou=2% inT? (3.3.1)
in dimensions d = 4, 5 and, in dimension d = 3,
(~-A+2u+u’=Z= inT>. (3.3.2)

In Section @ we have conjectured a pathwise approximation for ® via solutions to the
homogenisation problem

um:ml/Qalm inBg, (Xi),i1=1,...,m.

It is a natural question to study the limiting behaviour of the semilinear homogenisa-
tion problem

(=A+Dup +up, =0 inT\UL, Br,, (X)),
U, = mY 2™ in Bg,, (X;).

We conjecture that one can obtain the renormalised solutions to (B.3.2) and (B.3.1)) as
a limit to a renormalised sequence u,,, for almost every realisation of white noise in distri-
butions. There are two main reasons for the conjecture: one can show that for the approx-
imation v,,, obtained in () it holds

Var [@m(x)?’] — +00
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in dimensions d = 4, 5 for every z € T with the same divergence rate as for Var [®,,(z)3].
In dimension d = 3, this variance remains bounded.

The second reason to believe that the sequence (u,, ), has anon-Gaussian limit comes
from the long-range interactions of the holes which is an indicator for a non-Gaussian
universality class.

We finish this short discussion with the main conjecture.

Conjecture 3.3.1. Letd € {3,4,5}. Then there is a sequence r,, > 0 withr,, — +oo if
d = 4, 5 such that, for almost every realisation of white noise, the solutions u,, to

(=A + Dy + w2, — rpy, =0 in T4\ U, Br,, (Xi),
Uy, = mM 2o in Bg,, (X;).

converge in distributions to a distributionu, € D' (T?) which formally solves

{(—A+2)u+u3 —oou=0 inTd
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4 | INTRODUCTION

Abstract

Thin films of incompressible, non-Newtonian, viscous fluids are ubiquitous in
nature and technology. Mathematically they are described by degenerate-parabolic
equations of second- or fourth-order depending on the influence of gravitational or
capillary forces. These equations are derived from a free-boundary Navier-Stokes sys-
tem via the lubrication approximation. In this chapter, the underlying physical and
mathematical effects are described, starting from the role of fluid rheology over a de-
scription of the lubrication approximation to the role of the contact angle between
fluid and solid and the slip conditions on the fluid-solid interface. The chapter con-
cludes with an outlook on the main results of this part and gives an overview of the
mathematical literature on Newtonian and non-Newtonian thin-film equations.

In the study of the dynamical behaviour of fluids, free-boundary problems arise natu-
rally in the description of physical phenomena observed in nature or applied in engineer-
ing. These free-boundary problems are usually constituted by coupled systems of partial
differential equations in a bulk domain filled by a fluid and equations on a moving bound-
ary. The dynamical behaviour of the boundary is then described by the interaction of the
fluid with the media surrounding it. Due to the complex processes that determine the cou-
pling, the resulting equations are inherently nonlinear and have a usually rich dynamical
and geometrical structure.

Thin fluid films are a famous example of such free-boundary problems. These are films
of incompressible, viscous fluids with a thickness ranging from nanometres to a few mi-
crometres spread on a solid. Both the interface between the fluid film and the surrounding
air and the contact line between fluid, solid and air are free boundaries.

Thin fluid films arise naturally in physics, chemistry and biophysics, geology and engi-
neering. The tear film in the human eye and the fluid on the inside of the alveoli in mammal
lungs are examples of thin liquid films. Film coating processes like the application of paint
or adhesives are used in many technological applications. Thin films of lubricants are used
in engineering to protect surfaces or reduce friction. Given the enormous length scales,
even lava flows above and underwater can be considered thin films. The ubiquity of thin
films in nature and technology also reflects the number of different dynamics and mod-
els in physics and mathematics. Typically, the resulting equations depend on the fluid’s
viscosity, the relation between the acting forces, and additional effects such as thermal ef-
fects or the presence of surfactants (see [CM09b] for a review of lubrication theory under
the influence of different effects).

Mathematically, thin fluid films are modelled via an asymptotic expansion. The start-
ing point of this expansion is the description of the free-boundary problem via the Navier—
Stokes equations in the fluid bulk combined with additional boundary conditions. In the
limit of high viscosity (or rather in the limit of a low Reynolds number) and using the lu-
brication approximation, a closed equation for the height of the thin film can be derived.
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The idea of this expansion dates back to Reynolds [Rey86]. Depending on the dominance
of gravitational or capillary forces, the resulting equation that describes the film height
dynamics is usually quasilinear, degenerate-parabolic and of second- or fourth-order.

In this part of the thesis, we investigate the dynamical behaviour of capillary-driven
thin films for fluids with non-Newtonian rheology. In this introductory Chapter @, we con-
tinue with the mathematical modelling of such fluid films on domains with lateral bound-
aries in Section @ We will discuss the typical constitutive laws for the viscosity in Sec-
tion @ and give insight into the lubrication approximation in Section @ In Section @,
we focus on the behaviour of the triple junction between fluid, solid and air. The move-
ment of this contact point also depends on the boundary condition at the fluid-solid inter-
face. We discuss several slip conditions and the no-slip paradox for Newtonian and certain
non-Newtonian fluids in Section @ In Section @, we introduce the energy-dissipation
mechanism for the thin-film equation. This mechanism is vital both for the construction of
weak solutions and the study of long-time behaviour. The natural energy is also the start-
ing point for studying the gradient-flow structure of thin films. We explore this in Section
@. Finally, we give an overview of the literature in Section @

Chapter E consists of a summary of the first main result of this part of the thesis. It
concerns the stability and long-time behaviour of power-law and Ellis-law thin films close
to a steady state. A reprint of the whole paper can be found in Appendix E

Finally, in Chapter B the gradient-flow structure of power-law thin films for general
mobilities is studied. Via a minimising movement scheme, it is shown that positive solu-
tions to the power-law thin-film equation are given by a gradient flow. General weak solu-
tions can then be approximated as limits of gradient-flow solutions to a modified thin-film
equation.

4.1 Formulation of the problem

Thin-film models arise in many different forms depending on which forces, effects, and
geometries are taken into account. The underlying principle for the derivation of the thin-
film model is an asymptotic expansion starting from a full free-boundary Navier-Stokes
system. For the sake of clarity of presentation, we focus on the case of one incompress-
ible, viscous, non-Newtonian fluid confined between lateral boundaries and located on
top of a flat solid bottom with no-slip condition. Furthermore, we assume the dominance
of capillary over gravitational forces and ignore the latter altogether. We ignore thermal
effects during the modelling. Finally, we assume that the fluid is homogeneous in one
spatial direction.

\
2> T

solid

Figure 4.1: Homogeneous (one-dimensional) thin fluid film on solid bottom.
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Fix an interval {2 = (a,b) C R. Denote the domain occupied by the fluid at time ¢ by
Q(t) C R2 We will assume that the free interface is modelled as the graph of a function
h(t,x) > 0, so that

Q) ={(z,2) €e A xR>0: 0< z < h(t,x)}.

The velocity field of the fluid is denoted by u = (u,v): (t) — R?, the fluid pressure by
p: Q(t) — R and the Cauchy stress tensor of the fluid by S(p,u): Q(t) — R3;?. The
dynamics of the fluid are described by non-Newtonian Navier-Stokes equations

p(Ou+ (u-V)u) = divS(p,u) inQ(?), @1.0)

divu = 0 in Q(t). o
Here, p denotes the constant density of the fluid. We assume that S(p,u) = —pld +
o(e) = —plId + 2u(|e|)e, where p(|e|) denotes the dynamic viscosity of the fluid, ¢ =

Eu = 5 (Vu+ (Vu)?') the rate-of-strain tensor and |¢| = /2 Tr(|€ul?). Then we have
div S(p,u) = —Vp+div u(|€u|)Eu. The Cauchy stress tensor and the rheology of the fluid
are discussed in more detail in Section jt.2.

The equation for the behaviour of the fluid in the bulk is complemented by boundary
conditions both on the solid bottom {(z, 2) € Q(¢) : z = 0} and on the free boundary that
is described by the graph of the function i denoted by I'(t) = {(z,2) € Q(¢) : z = h(t, )}

First, on the solid bottom, we prescribe a slip condition describing how fluid particles
move with respect to the solid. If adhesive forces dominate cohesive forces on the fluid-
solid interface, there is no slip between the fluid and the solid. In this case, we have

u=0 on{(z,2) €Qt):z=0}. (4.1.2)

Different slip conditions and their effect on the dynamics of the contact line are discussed
in Section @
We prescribe two more boundary conditions on the free surface I'(¢). Denote by

- ! (1,0,h(t, z))

V14 |0:h(t, x)]?

the unit tangent of the free surface I'(¢) and by

1
n= (=0zh(t,x),1)
1+ [0:h(t, z)|?
its outer unit normal. The first one, the so-called kinematic boundary condition, guaran-
tees that particles that are on the boundary remain at the boundary. Let V;, denote the
normal velocity of the interface I'(¢). We require

u-n="V, onI(¢).

Observingthat Vi, = (0¢(x, h(t,z))) n = —Ohta)  hig equation can be expressed
’ ’ V 1+|0zh(t,z)|?
explicitly as

Oth(t, z) + uozh(t,z) =v onI'(¢).
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The forces exerted on the boundary I'() are solely given by the capillary effects coming
from surface tension. We assume that the surface tension v > 0 of the fluid is constant.
Denote by x the mean curvature of I'. Then the stress-balance condition at the boundary
reads

S(p,u)n =yxkn onl'(t). (4.1.3)

Observe that this implies in particular that there are no tangential forces at the boundary,
since t - S(p,u)n = 0 on I'(t). The equations (4.1.1)-(4.1.3) constitute the complete free-
boundary Navier-Stokes system describing the dynamics of the fluid.

Finally, there are two additional constraints for the film height . Observe that by in-
compressibility, the mass of the fluid is conserved, i.e. |2(¢)| = |€2(0)| for every ¢ > 0. This
implies that the typical (average) film height

h::/h(t,x)dx, t>0,
Q

is constant. Furthermore, the contact angle of the fluid with the lateral wall is another
free parameter. This contact angle depends on the thermodynamic equilibrium between
the three phases — liquid, solid and air — at the triple junction OI'(¢). For convenience, we
assume that the contact angle is zero, i.e.

Ozh(t,x) =0 forz € 09,

and comment on the underlying physics and mathematical consequences in Section @

4.2 Fluid rheology

Aviscous fluid, as opposed to an ideal fluid, is a fluid in which the internal friction between
the molecules significantly affects the fluid motion. Internal friction is the force the fluid
exerts on itself to resist deformation. Hence, viscous fluids can resist distortion within a
characteristic time scale. The mechanical energy exerted on the system is dissipated in the
form of heat and cannot be recovered like in elastic materials [Rao14; Shel8].

A Newtonian fluid is a fluid where the stress o(¢) depends linearly on the strain rate
e = &u. The constant of proportionality 1y > 0 between the stress and strain rate is
the viscosity of the fluid. Typical fluids with a Newtonian behaviour are water or usual
lubrication oils.

Many fluids have a different behaviour, though. These fluids are called non-Newtonian
fluids, and many different effects can occur. We focus on such fluids for which the viscosity
= pu(|e|) is solely dependent on the strain rate.

Classically, two classes of non-Newtonian fluids with this behaviour can be distin-
guished: dilatant or shear-thickening fluids, where the fluid becomes more viscous under
the exertion of a higher strain. For these fluids, the viscosity is increasing in |e|. A typical
dilatant fluid is the mixture of corn starch in water. The second class consists of pseu-
doplastic or shear-thinning fluids that become less viscous under higher shear rates. The
viscosity decreases in |¢|. For example, a shear-thinning behaviour can be found in many
paints. For the mathematical modelling, constitutive laws on the relation between strain
and viscosity are needed. These can, for example, be derived empirically from experimen-
tal data. Two important examples in modelling and applications are Ostwald-de Waele
fluids and Ellis fluids.
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Ostwald—de Waele or power-law fluids are fluids for which the viscosity depends on the
rate of strain via a power law relation

1_
plel) = Kle[«~*,  a € (0,00).

K > 0is the consistency index. Such fluids have first been described in [Ost25] and
[Wae23]. For flow-behaviour exponents « > 1, the fluid is shear-thinning since then
W (le]) < 0. If0 < a < 1, the fluid is shear-thickening, and for & = 1 the case of a
Newtonian fluid is included in this model. In this case, K is equal to the viscosity g of
the Newtonian fluid. The power-law model is widely used in fluid dynamics, albeit it does
not cover the observation of constant viscosities at low or high strain rates in (real world)
applications.

A model that remedies the issue of the lack of description of such constant viscosities
for low strain rates for shear-thinning fluids is the Ellis constitutive law, [MB65],

11 o(e) a-l N
()~ o (“ ) ezt

01/2
Here, 110 > 0 denotes the constant viscosity for small strain rates, and 0 < 0/ < 0
denotes the characteristic stress at which the viscosity is reduced to 19/2. For & = 1 or
o1/2 — 00, We recover again the case of Newtonian fluid rheology.

There are many more models of non-Newtonian fluids. For example might the viscous
behaviour only appear beyond a certain yield stress. This behaviour is found for example
in molten chocolate. The Herschel-Bulkley and the Casson model are typical examples of
constitutive laws for yield stress non-Newtonian rheologies [Raol4].

To continue with the lubrication approximation, we assume that

a(e) = p(lel)e

and that the function s — p(|s|)s, s € R, is monotonically increasing. The relevance of
this assumption becomes clear in the lubrication approximation. Note that this property
holds true both for power-law and Ellis fluids.

4.3 Lubrication approximation

If the height of the fluid film is very small, then the dynamics of the system can be sim-
plified via an asymptotic expansion with respect to the aspect ratio ¢ = % The limit of
vanishing aspect ratio was first studied in 1886 by Reynolds in [Rey86]. We first transform
the system of equations ()—() into a system of dimensionless equations in dimen-

sionless variables.

DIMENSIONLESS VARIABLES AND THE LEADING-ORDER SYSTEM

In order to apply asymptotic analysis, we have to non-dimensionalise the system of equa-
tions. We will denote by L the characteristic length scale, by h the characteristic height of
the film. Moreover, ug denotes the characteristic horizontal velocity, vy the characteristic
vertical velocity and pg the characteristic pressure. By ¢y, we denote the macroscopic time
scale of the system and by ?.har the characteristic time scale of the non-Newtonian fluid.
The parameter

~| S
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denotes the aspect ratio of the film. We now introduce the dimensionless variables and
unknowns

. .2 - a3t = h
= —, Z==, t=¢e"—, h=-=,
L h to h
- u - v ~ p ~
U= —, V= p=— p=1,
uo V0 Po
pugL . 1 P 1 teh
Re = ) Y=Y—" A(7[é]) = —p(teharle]) =560
Ho Uo o Ho to

Consider the conservation of mass equation divu = 0. After rescaling, this equation
is given by

%aja + %8;@ =0 inQ®).

The conservation of mass equation balances if we assume that

UuQ . wo

L k'
This means that the vertical velocity is very small compared to the velocity in horizontal
direction, which implies that the thin film remains thin in times of order one. Furthermore,
we make the assumptions

B Le?

hed  Let
ug = ——, =
to

V)= — = —.
°7 % to

Then, we obtain the Reynolds number and the fluid pressure

L2e3 L £
_P and pO:MOUO _ Mot

Re = = .
toko h to

Note that since the fluid occupies a very thin layer, we are in the regime of laminar flows so
that the assumption of a small Reynolds number is formally justified. First, we compute

€0z % (6571 + 8285;17)> _. Tg(fl).

teharE () =
char€ (W) =7 <§ (a’éﬁ + 6265577) €00

With these choices, the system of equations in the bulk can be rewritten as

(O + 00zt + 0050) = = (—e0zp + 260 [p0z1] + €0 [10:1] + %05 [1077]),

(6;17 + ﬁai'f} + ’D@g@) = % (—82]5 + 28285 [/18517] + 528,2 [/18512] + 84853 [,&,8517]),
ozu+0:0 = 0.

6
<

‘h Om‘b‘

7
£

O N

inQ (t). Since we are only interested in the leading-order system, dividing the first equation
by € and then sending ¢ — 0, we obtain the system of equations

9:p = Oz [f(r|0zul)0z1l,
O:p =
Ozt + 0:0 =

=

(4.3.1)

)

e
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Observe thatwe used here that, ase — 0, |£a| — |9:4|. While (1.3.1) describes the leading-
order system in the bulk, we have to non-dimensionalise the boundary conditions and
pass to the limit. For the no-slip condition () we obtain

u=0 on{(z,2):2z=0}.

Note that the kinematic boundary condition remains invariant under rescaling since
its rescaled version is given by

ho(, - - h L
3 (agh + aajh) — 35 onD(d).
to to
Finally, the stress-balance condition () becomes

ot = 0 onT(#),
p = —402h onT(f).

DERIVATION OF THE THIN-FILM EQUATION FROM THE LEADING-ORDER SYSTEM

Now that we obtained the complete leading-order system, we can resolve this system to
derive a closed equation for the film height h. In the following, we drop the tildes intro-
duced in the previous subsection.

( Oep = 0:(u(7|0:ul)0:u] InQ(2),
d,p = 0 in Q(t),
Ou+0,v = 0 in Q(t),
u=v = 0 onz =0, (4.3.2)
Oth +ud,h = v onz=h,
ou = 0 onz=h,
p = —0ih onz = h.

First, we note that, using the incompressibility condition, the kinematic boundary con-

dition can be rewritten as
h(t,z)
/ u(t,z,z)dz| =0.
0

Hence, it suffices to determine v in terms of h. Since the pressure is constant in z-direction,
we obtain that

Oh(t, z) + Dy

p=—v9*h inQ(t).
Together with the first equation of (), this leads to

—y02h = 0, [u(7]0,ul)0,u]  in Q).
Since J,u vanishes at z = 0, we may integrate from z to h to find

w(T]0,u))0u = y(h — 2)02h  in Q(t).
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Since the function s — u(|s|)s is monotonically increasing, we may find a left-inverse
U: R — Rsuch that ¥(u(|s|)s) = s. So, we can resolve the equation for 9,u to obtain

Dxu = E\If (t9(h —2)32h)  inQ(2).
T
Using that u vanishes on the solid bottom, we obtain
u= 1/ v (T’Y(h - C)@gh) d¢ inQ(¢).
T Jo

Using that

h(t,z) z h(t,z)

/ / ¥ (7y(h = )0;h) dC = / CU(TC3h) d¢ in Q1)
0 0 0

and inserting this into the kinematic boundary condition, we obtain a closed equation for
the film height given by

8th + 6:1:

h(t,z)
1 / CU(TyCOh) dg] =0.
T Jo

On 0f), we have already required that
Ozh =0 on oS

Furthermore, the condition that the mass of the fluid is conserved over time leads to the
condition

8t/h(t,x)dx:0, t>0.
Q

Using the divergence theorem, this leads to

h(t,z) .
/ / CU(1yC¢A2h)d¢dH® =0, t>0.
o0 J0

We assume that there is no fluid flow through the lateral boundary. So we require that

h(t,z) .
/ CU(T7¢A2h)d¢ onOQ.
0

Observe that the resulting equation is of fourth-order, degenerate-parabolic, nonlinear
and complemented by two boundary conditions, so that the resulting system is a complete
description for the dynamics of the free surface at leading order.

In the case of power-law and Ellis-law fluids, ¥ is explicitly given. Recall that for power-

law fluids, we have p(|s|)s = K|s|'/* s, so that
1 _
U = E‘S‘a 18.

Then, for power-law fluids, the thin-film equation with a no-slip condition at the solid bot-
tom is given by (after rescaling in time)

O+ Oy [RF2|O3R*1 930 = 0 inQ,
Oph = ho+2|03h|° 183 = 0 ondN.
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For Ellis fluids with a no-slip condition, we obtain the thin-film equation

Bih + 0y [h3 (yg + |hO3h[*1) 83h] = 0 inQ,
Oph = h® (g + |hd3h[*1) 03 = 0 ondn.

Here vr > 0 denotes a physical parameter that depends on the constant surface tension,
the flow-behaviour exponent « > 1 and the characteristic stress 7y /5.

This thesis deals with capillary-driven thin fluid films, i.e. films where the dynamics are
governed by the capillary forces on the free surface. If the dynamics are governed instead
by gravitational forces, the resulting equations are of second order. For more complicated
dynamics, we refer the reader to the review article [DDB97].

A rigorous derivation for the thin-film equation from the Navier-Stokes systems has
been obtained in the special case of the Hele-Shaw flow in [GOO03].

4.4 Young’s law and the contact angle

We have assumed so far that the thin liquid film is enclosed between two lateral walls.
Additionally, we have assumed that the angle between the fluid and the lateral wall is 7,
thatis d;h(t,z) = 0forx € ON.

Typically though, thin films are not restricted between lateral boundaries but move
freely on ideal surfaces. In this case, the boundary of the thin film is given by 9{h > 0},
and the dynamics of this contact line between fluid and solid is part of the problem.

Vi
“o{h > 0} solid

Figure 4.2: Thin droplet on a solid bottom.

The speed V' of the contact line is given by the equation, since, if s(¢) denotes the con-
tact point at time ¢ and V' (t) = 5(¢), it holds

0= Lh(t, s(t)) = h(t, s(t)) + V(D)ht, 5(2),

Cdt
and hence
1% 1 L 1" Gmcoind
t) = i —_ .
0= lim h(t’m/o CU(rCOh) dC
ze{h>0}

The contact angle between the fluid and the solid is then given by Young’s law [Bon+09;
Gen85]. Young’s law states that the contact angle 6 is given by the equilibrium of the three
surface tensions at the triple junction

Ygs = Vs + €0s(0) g (4.4.1)
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Figure 4.3: Surface tension equilibrium at the contact point.
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Here, g5 denotes the surface tension between gas and solid, ;s denotes the surface
tension between liquid and solid and ~, denotes the surface tension between gas and lig-
uid. Note that () only has a solution § > 0 if vgs < 715 + 7g. In this case, the contact
angle is strictly positive, and the corresponding regime is called partial wetting. If, on the
other hand, vgs > 15 + g1, then 6 = 0. A global equilibrium configuration between the
surface tensions is not attained. This forces the liquid to spread and cover the solid bottom
eventually. This regime is hence called complete wetting.

Defining & = arctan(6), the complete free-boundary thin-film equation is then given
by the system

o +0, [ [ CU(rcodhydc] = 0 in{(t,2): h(t.z) > 0},
h =0 on d{(t,x) : h(t,x) > 0},
0.h = & ond{(t,x): h(t,z) > 0},

lim L1 (" cw(rq¢a? = f
z—>81g3>0} w7 Jo C¥(TyCOph) dC V(t) fort>0

for the unknowns (h, V'), where h is again the film height and V' denotes the speed of the
interface 9{(t, x) : h(t,z) > 0}.

It should be noted that Young’s law describes an asymptotic regime very close to the
contact point. Thus, 6 is often called the microscopic contact angle. This microscopic con-
tact angle is stationary since it is described by an equilibrium configuration via the capil-
lary forces of the fluid.

In contrast to the microscopic contact angle, at larger scales, one observes a different,
dynamic contact angle. In recent years, this macroscopic contact angle has been studied
in the partial and complete wetting regime. Using a travelling-wave ansatz, the adherence
of the macroscopic contact angle to the Cox—Voinov law (see [Cox86; Voi77]) to leading
order has been shown in the case of Newtonian thin-films with general slip length (see
below), [GW22] . In the case of complete wetting, it has been shown that the macroscopic
contact angle to leading order follows Tanner’s law (see [[Tan79]), [GGO16]. For a derivation
of the thin-film equation with a dynamic contact angle following Shikmurzaev’s approach
[Shi93], we refer the reader to [GNV22].

4.5 Slip conditions and the no-slip paradox
In the modelling, we have so far assumed the special case of the no-slip condition, that is

u=0 onz=0.
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The fluid molecules are stuck to the surface of the solid. For Newtonian and shear-
thickening fluids, the no-slip condition leads to the so-called no-slip paradox. This means
that infinite energy would be needed for the contact line between fluid and solid to move,
cf. [DD74]], [HS71]. To remedy the no-slip paradox, the Navier-slip model [Nav23] is used.
In this case, one allows for a free slippage between the solid and the fluid, proportional to
the vertical change of the horizontal velocity. This new boundary condition at the solid
bottom is
u=MA,u, v=0 onz=0.

The constant of proportionality A > 0 is called the slip length. Reviewing the lubrication
approximation, one arrives at a slightly changed equation for non-Newtonian thin-films.
In the case of Navier-slip, the equation reads

h(t,z) .
Oth + lam AR (TyhO2h) + / CU(TyCAh(t,x))dC| = 0.
T 0

In the case of the power-law thin-film equation, this reduces to
Oh + 0y [(AROTH + h*H2) 192K *103h] =0

Usually, the film height is assumed to be much smaller than the slip length, so that
AL > het2)and one drops the term with h%*2 from the equation. For a rigorous
justification of the Navier-slip condition, see [J]MO01].
A generalised version, see e.g. [Gen85] and [Bon+09], of the Navier-slip condition is
given by
uw=XA"T"h""20,u onz=0.
In this case and for fluids with non-Newtonian power-law rheology, one obtains the thin-

film equation
6th + 8:v [()\anha71+n + hoz+2) |a§h‘aflagh] —0.

4.6 Energy-dissipation mechanism, steady states and
long-time asymptotics

The results of this thesis deal with the case of a thin fluid film confined between two lat-
eral walls. In the case of power-law fluids and a no-slip condition at the solid bottom, the
corresponding thin-film equation has the form

Oh + 0y [hOT203R|*7103R] = 0 in Q,
Ozh = ho2|93h*103h = 0 on 99, (4.6.1)
h(0,2) = ho(xz) inf,

where h: (0,7) x © — R>(. Note that the average height of the film is conserved

/Qh(t,x)dx:/ﬂho(a;)dx

forallt € (0,7T). Testing the equation with 92h, we obtain an energy-dissipation formula

for strong solutions to ()

1 t 1
/ \6Ih(t,a;)|2dx+/ /ha“\af;ha“ dxds—/ |0,hol? dez.
2 Ja 0o Ja 2 Ja



50 Non-Newtonian Thin-Film Equations

For weak solutions obtained from a regularisation scheme, the energy-dissipation for-
mula continues to hold as an inequality. The energy-dissipation mechanism also directly
implies that the only non-negative steady-state solutions to () are given by positive
constants h(t,z) = hg = f,ho(z)dz (see Theorem B.3.59). If the thin film is strictly
bounded below, cf. Proposition , explicit decay rates of the energy can be deduced
from the energy-dissipation and a Lojasiewicz-Simon-type inequality. While in [AGO04]
only the qualitative result of convergence to the steady state for thin films of shear-thinning
power-law fluids is proved, Theorem provides a polynomial decay rate of the form

Ce
(1+ Caa—lt)ﬁ ’

1h(t, ) = holl (o) <

provided hy is initially close to kg in H'(£2). In the case of shear-thickening power-law
fluids, it is shown in Theorem that thin films convergence in finite time in H'(Q)
to the steady state, assuming that, initially, the profile is close to the equilibrium. Similar
results have also been obtained recently for thin films in the cylindrical Taylor-Couette
setting in [LV22] and [LPV22].

In the case of Ellis fluids, which are by their nature shear-thinning, the thin-film equa-
tion contains an additional Newtonian summand

Oh + 0y [h? (v + |ROZR|*1) O3] 0 in Q,
Oeh =13 (yg + |hO2R|* 1) 02h = 0 on 052,
h(0,z) = ho(x) onQ,

and the equation only degenerates in the film height but not in the third spatial derivative.
The corresponding energy-dissipation formula is given by

1 t 1
/ |8xh(t,x)|2da:+/ /th3\8§h2+h“+2\a§hya+2dxds:/ |0 hol? da.
2 Ja 0o Ja 2 Ja

Again, the only non-negative steady states to the Ellis-law thin-film equation are positive
constants [LM2(Q]. Close to the equilibrium, the Newtonian effects dominate the dynamics
so that thelong-time behaviour follows that of the Newtonian thin-film equation for which
exponential stability has been observed in [BP96]. In Theorem it is proved that the
same exponential stability holds for Ellis fluids, that is

1h(t,z) = holl 1 (o) < Ce™,

provided hq is close to hg in H' ().

4.7 Thin-film equations via gradient flows

The physically dominant forces for the thin fluid films investigated in this thesis are cap-
illary forces, i.e. the surface forces given by the surface tension of the fluid. Recall that in
the modelling they were introduced via the stress-balance condition at the free surface of
the thin film

7(p,u)n = ysn onI'(t),

where v > 0 denotes the surface tension and « the mean curvature. The more the surface
is bent locally, the bigger become the local stresses on the surface. These stresses govern
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the dynamics of the thin film. Surface tension forces the fluid into an equilibrium config-
uration which is described as a minimum of the length of the thin film (or surface area in

two spatial dimensions)
/ V1+10:h(t,2)|? dx,
Q

under the constraints given by the contact angle with the lateral boundary or the solid
bottom. Note that up to first-order, the length of the film is given by

/\/1+!8$h(t,x)\2da:~\9|+1/ 0uh(t,2) 2 da.
Q 2 Ja

This also gives a natural interpretation of the energy used in the previous Section @ asan
approximation of the length of the film. Itis well-known since the work of Almgren [AIm96]
that the Newtonian Hele-Shaw flow

Qh+0, [hO3h] = 0 inQ,
O:h=ho3h = 0 on 052,
h(0,2) = ho(x) inQ

is given by a gradient flow with respect to the surface energy

/ V14 |0.h(t,z)|?dx.
Q

In [GOO01] it is shown that the Hele-Shaw flow is a gradient flow with respect to the Dirichlet
energy and the metric tensor given by

gn(v1,v2) :/hj1j2 dz,
Q

where v1 4+ 0,(hj1) = 0and vy + 0, (hj2) = O with j; = jo = 00on 9. v1,v9: Q — Rare
tangent to the film height, thatis [, v; dz = [, vz dz = 0.
Formally, the Newtonian thin-film equation
Oh+ 0, [W"93h] = 0 in Q,
Ozh =h"d2h = 0 on 01,
h(0,z) = ho(x) in
with a general mobility m(h) = h" should then be a gradient flow with respect to the
Dirichlet energy and the metric tensor
J1J2

0 W da:,
where v1 + 0,51 = 0, j1 = 0on 02 and vy + 0,j2 = 0, jo = 0in 9N hold. This metric
tensor degenerates for superlinear mobilities, cf. Proposition p.2.1,.

Changing the corresponding dissipation by introducing a regularisation of the mobility
mgs(h) > 0, we construct solutions to the regularised thin-film equation

Oth + 0y [ms(h)|03n|*103R] = 0 in 2,
Ozh = ms(h)|02h|*7t02h = 0 on 012,
h(0,z) = ho(z) inQ,

in Chapter E, even in the case of non-Newtonian power-law fluids via a minimising move-
ment scheme for the Dirichlet energy with a dissipation functional given by

o [
6u+l(IilliVj=O Q T O
jt-n=0 in 99 m5(u) “

gn(vi,v2) =
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4.8 Previous results and further literature

Since the seminal work of Reynolds on lubrication theory [Rey86], thin-film equations
have become an important area of mathematical study. In the case of dominance of
gravitational forces, the dynamics of the thin film are described by the porous-medium
equation (or variances thereof in the case of power-law and Ellis fluids). For this nonlin-
ear degenerate-parabolic equation of second-order, the theory of existence of solutions
is seminally studied in [ZK50], [OKJ58] and [Sab61] (see also the monograph [Vaz06] for
more references).

NEWTONIAN THIN-FILM EQUATIONS

While the porous-medium equation is a degenerate-parabolic second-order equation, the
dynamics of the thin film under the dominance of capillary forces are given by the nonlin-
ear degenerate-parabolic fourth-order equation

O¢h + 0y [m(h)03h] = 0,

as we have seen in the introduction. While for the porous-medium equation the non-
negativity of solutions follows from the maximum principle, such tools are not available
for fourth-order equations. Besides the existence of weak solutions to the Newtonian thin-
film equation on a domain enclosed by lateral boundaries with general mobility function
m(u) = |ul™, n > 1, the problem of non-negativity is addressed in the seminal paper
[BF90] via the introduction of a notion of entropy that guarantees control of certain norms
of second derivatives via what is now known as Bernis’ estimates. Furthermore, forn > 4
the uniqueness of non-negative weak solutions is established.

The seminal result of Bernis and Friedman sparked an intensified study of the prop-
erties of such solutions. Source-type solutions are studied in [BPW92] and [FB97] for the
higher-dimensional case. The finite speed of propagation of the contact line is studied
in [Ber96b] and [Ber96a]. Moreover, [BBD95] and [BP96] study regularity, the behaviour
of the support and long-time behaviour. In [BBD95] non-uniqueness of non-negative
solutions is proved in the case of mobility exponent n < 3. A mechanism for non-
uniqueness by the self-similar lifting of isolated zeros of the thin-film equation is de-
scribed in [CKV18]. A waiting-time phenomenon for solutions to the thin-film equation is
observed in [DGGO1]. Optimal bounds for waiting times are obtained in [Fis14].

The existence of solutions in the case of higher space dimensions is studied in [Ber+98],
[PGGY98] and [Grii05]. Note that the concept of solutions in higher dimensions is even
weaker due to the more limited compactness. In [PGG98], a concept of strong solutions
for the higher-dimensional thin-film equation is introduced that is linked to the Bernis’
estimates obtained in [BF90] and [Ber96d] for the one-dimensional thin-film equation. For
convex domains, strong solutions are shown to exist.

The case of two stratified thin films of immiscible Newtonian fluids is studied in
[EMM13], [EM14] and [BG19]. The more involved geometry of a thin film in the setting of
Taylor—Couette flows for Newtonian fluids is investigated in [PV2Q].

A rigorous theory of the lubrication approximation for the Hele-Shaw flow with mo-
bility exponent n = 1 is established in the series of papers [0tt00], [GO01] and [GOO03].
In [KM15] the lubrication approximation for the Hele-Shaw flow is performed rigorously
from Darcy’s flow. A rigorous justification of the Hele-Shaw flow in thin threads is obtained
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in [MP12]. The case of the no-slip boundary condition is rigorously studied in [GP08] from
a Stokes flow with surface tension.

These rigorous derivation results formed one entry point into the mathematical study
of the full free-boundary problem for Newtonian thin films. In this case, the corresponding
system of equations for the film height ~: (0,7) x R — R>( and the speed V': (0,7") x
0{h > 0} — R of the interface 9{h > 0} is given by

Oth + 0, [W"03h(t,x)] = 0 in{(t,z) : h(t,z) > 0},
h =0 on {(t,x) : h(
Ozh = k on d{(t,x) : h(t,x) > 0},

lim A" 1O2h(t,x) = V(t) fort>0.
z—0{h>0}

The case k # 0 of non-zero contact angle is referred to as partial wetting, while the case
of zero contact angle £ = 0 is the complete wetting regime. Travelling-wave solutions
in different slippage and contact-angle regimes for the Newtonian thin-film equation are
studied in [BKO93], [BSB03] and [CG11], as well as in [GKK18] for the case of spin-coating.

From this starting point of travelling-wave solutions, there is a large amount of liter-
ature on classical solutions both in the partial and complete wetting regime for different
mobility exponents. In the one-dimensional case and using a boundary-layer analysis, this
includes the articles [Knii08], [GKO08; Bri+16], [GK10], [GGO13], [Gia+14], [Gnal5] and
[Gnal§] for the case of complete wetting. Here, the contact line dynamics are described
asymptotically via a travelling-wave ansatz and then matched to the parabolic behaviour
in the bulk. The partial wetting regime is discussed in [Kniill], [Kniil5]. The case of two
spatial dimensions has so far been mostly studied perturbatively around special solutions
Johl13], [GP18], [Degl7] and [Seil8].

A rigorous investigation of the behaviour of the macroscopic contact angle is con-
ducted in [GGO16], where it is shown that, in the complete wetting regime, the macro-
scopic contact angle follows Tanner’s law to leading order. Similarly, in [GW22], the adher-
ence of the macroscopic contact angle to the Cox—Voinov law to leading order is shown.

The gradient-flow structure of the Hele-Shaw flow has already been observed by Alm-
gren [Alm96]. More recently, a mathematical study of the gradient-flow structure of the
Newtonian thin-film equation with mobility exponents n < 1 has been conducted in
[LMS12], using a regularisation and a minimising movement scheme. While in this case
the dissipation functional is convex simultaneously in the film height /& and the flux j,
this fails in the case of superlinear mobility m. This case is studied in detail in Chapter
B of this work, even in the non-Newtonian power-law case for all flow-behaviour expo-
nents o > 0. Furthermore, numerical schemes for the gradient-flow structure for general
mobilities in the Newtonian case and on different geometries are investigated in[GR0Q],
[RV13] and [Van+17]. The study of the thin-film equation with a dynamic contact angle via
discretisations is studied in [PH21].

In [DMSO05], it is observed that, taking thermal fluctuations into account, the spread-
ing of thin droplets does not follow Tanner’s law and a stochastic version of the thin-film
equation is derived. Inspired by the effects of thermal fluctuations in film rupture [ASLO4],
Griin, Mecke and Rauscher [GMRO06] derive a different stochastic thin-film equation with
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an additional interface potential. Results on existence and positivity of solutions in dif-
ferent stochastic frameworks, such as martingale solutions, are studied in [FG18], [Cor18],
[GG20], [Dar+21], [Sau2l], [MG21] and [GK21].

Finally, thin films with surfactants acting on the surface tension of the fluids have been
an area of mathematical investigation. The corresponding dynamics change due to the
Marangoni effect, and the resulting model consists of a coupled system of a thin-film equa-
tion with the concentration of the surfactant. This coupled model is studied in [GW0§],
[Esc+12], [EL18], [Brul7], [BG20] and [Brul6].

NON-NEWTONIAN THIN-FILM EQUATIONS

The literature on non-Newtonian thin-film equations is sparser, and few phenomena have
yet been studied in detail. Since [WS94] and [AGO02] it has been known that shear-thinning
Ellis fluids do not exhibit the contact line paradox for fluids with no-slip boundary condi-
tion. General asymptotical regimes of the doubly nonlinear power-law thin-film equation
are studied in [Kin0la] and [KinO1b].

The seminal rigorous work on shear-thinning power-law thin-film equations in one
dimension

Oth + 0y [h”|8§h|0‘_18§h] = 0, inQ,

Ozh = h™O3h|*"192h = 0, onod,
for a > 1, is the work by Ansini and Giacomelli [AG04]. Note that this equation is doubly-
degenerate since it degenerates both in the film height / and the third spatial derivative of
h. They use a Galerkin approximation with a double regularisation scheme to guarantee
both global-in-time existence of weak solutions and non-negativity via a refined entropy
approach. Furthermore, many qualitative properties such as long-time behaviour, finite
speed of propagation and a waiting-time phenomenon are studied, and it is shown that
many results from the Newtonian case transfer to the case of shear-thinning power-law
fluids.

Local-in-time strong solutions for the Ellis-law thin-film equation are studied in the
framework of semigroups in [LM20]. Furthermore, the thin-film equation for power-law
fluids in the setting of a two-phase Taylor—Couette geometry is studied in [LPV22] for
shear-thickening rheology and in [LV22] for shear-thinning rheology. Besides existence of
weak solutions, the long-time asymptotics of solutions close to a steady state are analysed
using the energy-dissipation inequality.

The literature on gradient flows for non-Newtonian thin-film equations is even sparser.
We mention [BB2(] and [BB22] for works on asymptotic profiles in gradient flows of fourth-
order evolution equations.



5 LONG-TIME BEHAVIOUR AND
STABILITY FOR QUASILINEAR
DoOUBLY DEGENERATE-PARABOLIC
EQUATIONS OF HIGHER ORDER

This chapter is a summary of the results obtained in the paper

[JLN22] 7J. Jansen, C. Lienstromberg, and K. Nik. “Long-time behaviour and stability
for quasilinear doubly degenerate parabolic equations of higher order”. In:
arXiv:2204.08231 [math] (2022)

A reprint of the paper can be found in Appendix E

The research undertaken in the paper in question is a collaboration with C. Lien-
stromberg and K. Nik. All authors and, in particular, the author of this thesis have con-
tributed significant parts to each section of the work.

5.1 Introduction

As discussed in Section @, the capillary forces implemented in thin-film model compel
the length of the thin-film to equilibrate under the constraints given by the contact angle
at the lateral boundary. This effect is regardless of the rheology of the fluid. Since [AG04,
Theorem 1] it has been known that for the shear-thinning power-law thin-film equation

Opu+ 0y [ut?|93u|*103u] = 0, t>0, z e,
Opu = u2|03ul*12u = 0, t>0, z €0, (5.1.1)
’LL(07$) = UO(:E)v T € Q?

with @ > 1, solutions converge uniformly to their average @y = fQ u(t, z) dz for non-
negative initial data ug € H'(Q) with |z|3/2(c+t1)9,uy € Ly(€2). Note that the average film
height is conserved by the equation, so @y does not depend on time.

For the Newtonian thin-film equation, the long-time behaviour is studied qualitatively
in [BF90] and quantitatively in [BP96]. In the latter paper, exponential decay to the equi-
librium configuration g in H'(12) is shown. Using semigroup theory, see e.g. [Lun12] or
[HI11], in the Newtonian case, the exponential decay can even be shown in smaller func-
tion spaces.

While in the shear-thinning case atleast the qualitative theory has been studied before,
in the shear-thickening case oo < 1, no results have been obtained previously.
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Due to the Newtonian plateau at low stresses, Ellis-law fluids close to equilibrium are
expected to behave like Newtonian fluids. The corresponding thin-film equation with the
flow-behaviour exponent « > 1 is given by

Opu + 0y [WP[1 + [ud3u|*~ 1] 03u] 0, t>0,xe,
Ozu = u3[1 + |u8§u|a*1]8§u 0, t>0, z €0,
u(0,z) = wup(z), €.

5.2 Main results

POWER-LAW FLUIDS

Now we turn to the main results. Weak solutions had previously been only studied for
shear-thinning power-law fluids using a Galerkin approximation. Since we are inter-
ested in the behaviour close to steady states, the first result concerns the existence of
positive weak solutions also for shear-thickening fluids. Via regularisation of the nonlin-
earity involving 935, standard semigroup theory for the regularised equation, the energy-
dissipation mechanism and Minty’s trick, positive weak solutions are constructed.

Theorem 5.2.1 (=B.3.9). Fixa > 0. Given a positive initial value ug € Wsil 5(Q), 4p >
3+ 1/(a+1), withug(z) > 0, z € Q, there exists a timeT > 0 such that problem (5.1.1))
admits at least one positive weak solution

we O(0, 7] HY(Q)) 1 Lo ((0,T): W4y ()

with
up € Loz ((0,7); (War,5(9)))

on (0,T) in the sense of Definition . Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero, i.e. there is a constant Cr > 0 such that
0<Cr<u(t,r), 0<t<T, zecqQ.

(i) (Conservation of mass) u conserves its mass in the sense that
lu@)llz, ) = llvollz, @), 0<t<T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions

Elu](t) + /0 DIul(s) ds = Euo]
for almost everyt € [0, T].

Here )
Blu)(t) = /Q Ou(t, 2)[? da

denotes the energy and

Dlul(t) —/ﬂu(t,:zt)‘”Q85@(15,95)0”rl dz
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the dissipation functional at time ¢. Using bootstrapping, such local solutions can be ex-
tended to maximal positive solutions. Due to the degeneracy of the equation, solutions
cannot be expected to be unique, though.

Starting from the energy-dissipation mechanism, a Lojasiewicz-Simon-type inequal-
ity is derived for strictly positive solutions, implying that

d at1
—Elul(t) = =Dj(t) < =C(E[](®)) > -
Using this and a bootstrapping arguments, global solutions and explicit convergence
rates to the equilibrium are proved, provided the initial datum is close to equilibrium.

Theorem 5.2.2 (=Theorems B.5.1| and B.6.1)). Fix o > 0. Then there exists anc > 0 such
that, for all positive initial values ug € H*(Q) with |Jug — tUo|| () < €, problem (B.1.1)
possesses at least one global positive weak solution

u € C([07 OO); Hl(Q)) N La+1,loc((07 OO)§ Wo%Jrl,B(Q))
with
U € LO‘T‘HJOC((O’ OO), (Wa1+1,B(Q))/)7

satisfying the boundary conditionu, = 0 on OS2 pointwise for almost everyt > (0. Moreover,
this global solution has the following asymptotic behaviour:

(i) In the shear-thickening case() < a < 1, there exists a positive but finite time( < t* <
oo such that

u(t,”) — g in HY(Q), ast — t*, and wu(t,x) = a9, t>1t* x €.

(ii) In the shear-thinning casel < o < 0o, there exists a constant C' > 0 such that

_ Ce
[u(t) — Goll () < —, 0<t<oo.

1+ Cea-l)a-t
( )

(iii) In the Newtonian case o = 1, there exist positive constants C,~ > 0 such that

Hu(t) — EOHHl(Q) < Ce_vt, 0<t< 0.

ELLIS FLUIDS

Finally, the asymptotic behaviour of Ellis-law fluids are investigated. It is found that close
to equilibrium the Newtonian behaviour dominates, and the exponential convergence
rate to equilibrium present in Newtonian fluids is replicated for Ellis fluids.

Theorem 5.2.3 (=Theorem ). Fix1 < a < oo. There existse > 0 such that, for all
positive initial values ug € H' (Q) with |lug — to|| g1 () < €, there is a global positive weak
solution

u € C([Oa 00)3 Hl(Q)) N La+1,loc((07 OO); Wg-l—l,B(Q))
with

up € LO‘THJOC((Oa 00); (Wa1+1,B(Q))/)-
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Moreover, there are A > 0 and a constant C' > 0 such that
- Y
[u(t) — @ollgr () < Ce™luoll g (-
Furthermore, we find that the dissipation decreases exponentially along the solution in the
following L1 -in-time sense:
t

Dlu)(s) ds < Ce™*M||ug|[31 -
/2



6 THE GRADIENT-FLOW STRUCTURE
OF THE THIN-FILM EQUATION

Abstract

We study the gradient-flow structure of doubly-degenerate parabolic problems
of fourth-order in one spatial dimension, describing, for instance, the dynamics of
capillary-driven thin fluid films with non-Newtonian power-law rheology. We con-
struct a formal gradient system and show that the corresponding weighted Wasser-
stein distance degenerates for physical mobilities. We then set up a minimising
movement scheme with a modified mobility function. Using the Aubin-Lions-Simon
lemma to gain compactness, we show that the time-discrete flow of the minimising
movement scheme converges to a solution to the corresponding modified thin-film
equation that satisfies an energy-dissipation equality. Finally, we show that solu-
tions to the modified equation converge, for all flow-behaviour exponents, to a weak
solution to the thin-film equation. In the case of Newtonian fluids, we use entropy
methods to show that, under mild additional conditions, these weak solutions are
non-negative for all times.

The research undertaken in this chapter is a collaboration with P. Gladbach and C.
Lienstromberg. All authors and, in particular, the author of this thesis have contributed
significant parts to each section of the work.

6.1 Introduction

We consider a thin fluid film in abounded domain 2 ¢ R%, d > 1, with Lipschitzboundary.
Furthermore, we assume the fluid to be Non-Newtonian with power-law rheology, that is,
the constitutive law for the viscosity of the fluid is given by

1_
ullel) = polel=,

(see also Section @). Here € denotes the strain rate, ;1o > 0 is the characteristic viscosity,
and « > 0 is the flow-behaviour exponent. The local viscous stress of the fluid is given by

i_
o(e) = ullel)e = pole|=""e.

The fluid is shear-thickening if the flow-behaviour exponent satisfies o < 1. It is Newto-
nian if « = 1, and it is shear-thinning if & > 1.

For such fluids, after lubrication approximation, a generalised thin-film equation in
the domain 2 with initial condition u¢ > 0 for thin films with zero boundary angle is given
by
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Opu + div (u"|VAu|*"'VAu) =0, ¢>0, z€Q,
Vu-n=u"|VAu|*"'VAu-n=0, t>0,z¢c0d, (6.1.1)
u(0) = uo, x € Q.

Here m(u) = u™ is the mobility of the thin film. Physically, the mobility is explicitly
given once one specifies slippage conditions at the solid-fluid interface. For example, if
we prescribe a no-slip condition, we obtain m(u) = u®*2. Recall from Section @ that in
the case of the Navier-slip condition, we obtain m(u) = Au®*! + u%*2, where A > 0 is the
characteristic slip length. Note that, in both cases, the mobility is superlinear regardless
of the flow-behaviour exponent o > 0 since the mobility exponent n is greater than one.

By testing the equation with the function that is constantly equal to one, we find that
solutions to () conserve their mass:

a(t) = ]éu(t,a:) dz — ]éuo(a:) dr, >0,

It is well-known (see [Alm96], [Ott00], [GO03], where the latter two assume that d =
1) that for Newtonian fluids in the setting of Hele-Shaw flows, given by flow-behaviour
exponent a = 1 and mobility exponent n = 1, the thin-film equation is a gradient flow
with respect to the energy given by

E[u](t):/Q\Vu(t,af)Ide.

A numerical gradient flow scheme — discrete both in time and space — for the New-
tonian thin-film equation with general mobility exponents in one and two space dimen-
sions is studied in [GROQ]. Numerical schemes for more advanced geometries are studied
in [RV13] and [Van+17].

In [LMS12], the Newtonian thin-film equation with mobility exponents n € (0, 1] in
dimension d = 1 is studied as a gradient flow in weighted Wasserstein spaces. All these
results have in common that the dissipation potential turns out to be jointly convex in the
film height and the flux, as we will see later.

The problem of lack of convexity for physical mobility exponents n > 1 can be over-
come considering first a modified mobility function ms with ms > ¢ in R. Using a min-
imising movement scheme in the space {u € H'(2) : 4 = 1y}, solutions to the modified
thin-film equation will be constructed for general flow-behaviour exponents o > 0 in one
space dimension. In particular, this shows that positive solutions to the one-dimensional
power-law thin-film equation are given by a gradient flow. Furthermore, as one sends
mgs — m, these solutions converge to a weak solution of () in the sense of [BF9(Q].

GRADIENT SYSTEMS

InR%, d > 1, a gradient flow of a convex energy F: R? — R is given by a solution to
d
%x(t) = —VE[z](t). (6.1.2)

Gradient flows are curves of steepest descent for the energy since

4 Ble(t) = VEL])9(t) = ~|VEL)(0)
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Under the assumption of sufficient convexity of E, solutions to (6.1.4) can then be char-
acterised in terms of an energy-dissipation equality: an absolutely continuous curve
z: [0,00) — R%is a solution to (6.1.%) with initial value 2(0) = 2o € R% if and only if

Blel(t)+5 [

holds for every ¢t > 0, [ABS21]].

A more general approach to gradient flows is provided by the theory of gradient sys-
tems. To recall the basic notions in a formal manner, we mainly follow [Miel6].

Let X be a space in which there are notions of a formal tangent space 7'X and formal
cotangent space 7% X and a dual pairing (-, -) between T X and 7*X. For example, X
could be a Riemannian manifold or a Banach manifold.

2 t
%x(s) ds+;/0 [V E[z](s)|* ds = E[xo]

Definition 6.1.1 (Gradient system). A gradient system on a space X consists of a tuple
(E, V), where E: X — RU {400} isan energy functionaland V: X x TX — [0,00] isa
dissipation potential that is assumed to be lower semicontinuous, proper and convex with
U(u,0) =0 foreveryu € X.
We formally define the dual dissipation potential to be
U*(u, &) = sup{(§,v) —¥(v) :ve T, X}

as the formal Legendre transform of ¥. Then formally

U(u,v) + ¥ (u,&) > (u,v) forallue X, veT,Xand¢ e T, X. (6.1.3)
Definition 6.1.2 (Gradient flow). Given a gradient system (E, V) on aspace X, a solution

to a gradient flow is an absolutely continous curve u: [0,00) — X such that one of the
following three equivalent formulations are satisfied

(i) Oyu = O¢V*(u, —DEu]);
(i) 0 = 0,¥(u, Opu) + DEu);

(iii) ¥ (u,Oyu) + V*(u, —DE[u]) = (—DE[u], Ou).

Note that it is immediate from (iii) that formally gradient flows in gradient systems
satisfy the energy-dissipation equality

Elu(t)] + /O U (u, Oyu) + U (u, —~ DE[u]) ds = E[u(0)].

Note that formally (assuming that the chain rule is applicable) by (6.1.3), the energy-
dissipation equality is equivalent to the energy-dissipation inequality

Elu(t)] +/0 U(u,Ou) + U (u, —DEu])ds < Efu(0)].
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HEURISTIC FOR THE DISSIPATION POTENTIAL

LetQ C R% d > 1, be open, bounded and connected with smooth boundary. The concrete
setting for the power-law thin-film equation is the following. As discussed previously, the
first-order approximation of the length of the surface

1
= 2/Q|Vu|2 dz

is a natural energy. Since the mass is conserved, a natural choice for the space X is given
by

X::{UEHI(Q):][UCL’L':U(),UZO}
Q

for a fixed mass @ > 0. Elements of the formal tangent space T'X to X then have the form

TX := {veHl(Q):]évdm:O}.

There is a natural representation of such vector functions in terms of vector fields, that is
TX ~{divj:j-n=00no},

where n denotes the outer unit normal to 0€). To derive an explicit form of ¥, note that by
convexity, the condition in Definition (i) is equivalent to

Oyu € argmin ¥ (u,v) + (DE[u],v) = argmin ¥(u,divj) + (DE[u],divj).
velX j: divj=v,
j-n=0o0n 02

We now make the ansatz that the dissipation potential is given by a local object ¢ (u, 7)
so that
U(u,v) = inf / ¥(u,j)

7 v+div j=0,
7-n=00n 90N

Then it holds

i inf ) dz + (DE[u], —divj
U?}I}(j: Uj}g}vj:Q /Q ¥(u, j)dz + (DEu], —div j)
j-n=00n 02

= omin_ [ b(g)do -+ (DE[), ~divi),
j:v+divi=0, Jo
7-n=00n 0N
since we can exchange both infima.
We make the ansatz that P
J
m(u)d

P(u, j) =

for some p > 1, ¢ > 0 to be determined. Then

divj € argmin (VDElu),j)
v+divj=0, JQ MU
7-n=00n 0
if and only if j minimises
(VDEu], j)

q m(u)d



The Gradient-Flow Structure of the Thin-Film Equation 63

under the constraint j - n = 0 in 9€). Since DE[u] = —Awu, we conclude that
. p72 .
Fl Au,
m(u)9
and hence

1
j = m(u)% |VAU|E_1VAU
Since 0,u + divj = 0, we choose p = QT“ and ¢ = é to obtain that the pair (u, j) solves

the thin-film equation
Oru + div (m(u)|VAu|[* "'V Au) = 0.

To summarise, we conclude that we choose the dissipation potential

ot
U(u, Opu) = ) ig;f . ] al dz. (6.1.4)
+div j= o
imsoonon” m(u)

This approach of gradient flows would fit in the context of gradient flows on metric
spaces [AGS08] and the Otto calculus [JKO98] if

a+1

at1 1 i(t, )| o
dnd (uo, ul) = inf / w drdt : du+ lej =0,
o Jam(u(t,z))a

j-n=00n0Q, u>0,u(0,x) =up(x), u(l,x) = ul(:r)}

were a metric. We prove in Proposition that, for the physically relevant case of super-
linear mobilities, d,,, degenerates. In the case of concave mobilities m(s) = s*,0 < a < 1,
this metric is used in [LMS12] to write the Newtonian thin-film equation as a gradient flow.
In the latter case, the integrand is convex as a function of (u, j), while the integrand lacks
this convexity in the case of superlinear mobilities.

MAIN RESULTS

After we prove in Proposition that with the Dirichlet energy and the dissipation po-
tential

ot
. ] e
U(u, yu) = 5 1£1f . - dz,
+div j= P
itoonan Y m(u)

the corresponding metric degenerates, and we cannot find a gradient flow via Otto calculus
in metric spaces, we regularise the mobility m. We introduce ms: R — [0,1/4] so that
mg(s) > ¢ for s € Rand ms(s) = d for s < 0. We set up a minimising movement scheme
on H'(Q) x Lat1 (Q;RY). Therefore, if at time ¢ we are in the state u*, we determine u at
time ¢ + h and the flux to be the minimiser of the functional

a+1

L1 o gl e
Fi (u, :/ Vu|?dz + h / de,
o) =5 Q| ulfde+hime 0 mg(u) > o

where the minimisation runs over pairs (u, j) € H'(2) x Lat1 (€2; R?) that satisfy

u=2" +divj =0 inQ,
j-n=20 on 0f),
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and we choose an initial datum uy € H'(£2) with ug > 0.

In the case of one space dimension {2 C R, to gain enough compactness, we prove
that a subsequence of the corresponding linear interpolation 4/° converges, as h — 0, to
a weak solution

u? € Cy([0,00); HY(9)) 1 Ly ((0,00) Wiy 5(92)) 1 WL (10,00); (Wh1(©))
to the modified thin-film equation

Ou’ + div (ms(u®)93u’) =0, t>0, z €,
Gxu‘S:@gé:O, t>0, z €09,
u® (0, ) = up(x), x €,

which satisfies the energy-dissipation equality

1 ! 1
/]@cuf\de—i—/ /mg(ui)\@iuﬁ““ dxdT—/ Z10,ul|? d.
0?2 s Jo Q2

This already implies that positive solutions to the thin-film equation are given by the
corresponding gradient flow. We then show that every accumulation point

u e L2([0,00); HY(Q)) N €533 ([0, 00] x )

with 92u € Lotijoc({u > 0}) and dyu € Lat1([0,00); (W, (€2))") of the sequence u?,
as 0 — 0, is a weak solution to the thin-film equation

O’ + div (m(u®)d3u) =0, t>0,z€Q,
Dpud = m(u)d3u’ = 0, t>0, ze 0,
'LL(;(O,Q}) :u0<x)7 r €,

in the sense that

/0 (Opu, @)y Wi, dt — //{ N (w)|03u|*1D2u - ppdrdt =0
u>

holdsforall p € Ly41 ([0, o0); Wl 41 (Q)) Furthermore, u satisfies the energy-dissipation
inequality

1
/ La, ut]2d:r—|—// ()]0 \a+1dxds</2|axu0\2dx, t e [0,00).
{us>0} (o)

These solutions may not be non-negative for all times. Using the entropy method used
in [BF90], we deduce that in the case of Newtonian fluids and initial datum with finite
entropy, the weak solutions are non-negative for all times.

NOTATION

Throughout this chapter, we assume that € R%, d > 1, is an open and bounded domain
with Lipschitz boundary. Mostly, {2 C R will be an interval. We use, for k € Nand p €
[1, o], the notation W} () for the standard Sobolev space with norm

1/p

||UHWZ§(Q) = Z Haav”ip(g)

0<|a|<k
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Let Q2 C R an interval. To account for the Neumann-type boundary conditions of the
solutions to the thin-film equation, we further introduce the notation

{v e WFQ); vy = Vgae =000 00}, k=4,
W;ﬁB(Q)Z {UEWIf(Q);vz:Oon@Q}, 2 <k <3,
W), 0<k<l1.

The spaces Wj’B(Q), k € {0,...,4}, are closed linear subspaces of Wzﬂ“(Q)

OUTLINE OF THIS CHAPTER

The structure of this chapter is as follows: in Section @, we study the Benamou-Brenier
action functional derived previously and show that the corresponding distance degener-
ates in the (physically relevant) case of superlinear mobility functionals.

Due to the need to take a different approach to the gradient-flow structure, we set up a
minimising movement scheme for a modified thin-film equation in Section @ and study
the properties of the interpolations of the time-discrete flow. Using the De Giorgi tech-
nique, we derive an optimal discrete energy-dissipation inequality and use this to prove
a-priori bounds and show convergence to a limit.

In Section @, we investigate the limit obtained in Section @ We show that it satisfies
the energy-dissipation equality and solves the modified thin-film equation.

While from the results of Section @ it can already be deduced that positive solutions
to the power-law thin-film equation have a gradient-flow structure, in Section @ we study
thelimit of § — 0 and prove that the solutions to the modified thin-film equation converge
to weak solutions to the power-law thin-film equation. In the Newtonian case, we further
show that these solutions are non-negative for all times.

6.2 Benamou-Brenier action with superlinear mobility

In this section, we define for two non-negative functions ug, u; € L1(Q2), ug, u; > 0, with
fQ ug da = fﬂ u1 dx, the Benamou-Brenier action functional depending on a continuous
mobility function m : [0, c0) — [0, 00),

a+1

atl 1 i(t,x)| o
dm& (uO’ ul) = lnf / w dl‘ dt : atu + le] = 0,
0o Jam(u(t,z))a

jen=00n9Q, u>0,u(0,z) =uy(x), u(l,z) = ul(:r)}

If the mobility m(u) = u" is superlinear, we show that, since this functional lacks con-
vexity simultaneously in (u, j), d,, = 0. So, the natural distance for the setting of gradient
flows in metric spaces degenerates, and we have to resort to a different approach to obtain
a gradient-flow scheme.

Proposition 6.2.1. Let Q C R? be open, bounded, and connected, with Lipschitz bound-
ary. Assume thatm: [0,00) — [0, 00) satisfies
m(u)

lim
u—o00 U

=oco and m~'(0) = {0}.
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Then

a+1

dn (UO,'LLl) =0
for all pairsug, w1 € L*(Q) with [, uodz = [, u1 dz and infq v, infg uy > 0.

Remark 6.2.2. The proof uses a construction that first concentrates mass locally to
achieve a very high density, allowing it to be transported very effectively over large dis-
tances, and then dissipates the mass to meet the terminal values. A similar effect occurs
in [San07].

The opposite effect occurs in dynamic entropic optimal transport and certain mean
field games, where at intermediate times the mass is more spread out than at the end
points, see e.g. [BCS17].

Recall the Benamou-Brenier formula for the Wasserstein distance, cf. [BB0Q],

a+1

atl 1 (¢ o
W,¢ (uo,up) = inf / M dxdt : Oyu+divj =0,
Ta 0 Jo u(t,r)a

[e%

j-n=00n0Q, u>0,u(0,z) =up(x),u(l,z)= ul(:n)}

Proof. Define 6 := % min(ess infq ug, ess infq u1). For n > 0 define the grid
Zy :={z€nZ*NQ : dist(x,09) > n}.

Also define l,, > 0 as the longest length of a shortest curve in Q2 connecting any pointz €
with some 2z € Z,, that is

l, :=sup inf inf{L(y) : v C Qisa C'-curve connecting z and z}.
zeQ #€2n

By a compactness argument we then have lim,,_,o /;, = 0.

Define g := up — 6 > 6, 41 := w1 — & > 6. Then there are measures g, f11,, €
M (Z,) of the form
Hon = Z a0, Hin = Z B0
2€Zy 2€Zy

that satisfy

atl 5 o+l 5 o+l B atl B
W (o, To) < 1y / apdz and W9 (1, 01) < 1p° / 1 dz.
Q o Q

@

Now choose a coupling I' € M (Z, x Z,) of jug,, and p1 ,, e.g. the product measure
fon @ p1,- Define ¢, == min, ez, .r(: .1y>0 (2, 2") > 0 since the infimum ranges only
over finitely many points.

Also for any z, 2’ € Z, there exists a C'-curve v, ,» : [0,1] — Q connecting z and 2.
Let L, > 0 be the maximal length of such a curve and d,, > 0 the minimal distance from
any point on any such curve to 0.

Finally, we define for M > 0

Mo M4p
oM =0+ Z TndzﬂB(z,%) and g =0+ Z Tndz]lB(z,%)'
2€Zy 2E€4y
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a+1

We now wish to estimate d,* (ug,u1). Since d,, satisfies the triangle inequality, it is
a+1 a+1

- axs atl
enough to estimate dp,* (uo, o,y ), A (W01, Uiy, ar) and dp? (w1 a7, w1 ). We start
with the first and last term since they can be treated analogously. To do so, we note that
for any pair (u, j) we have

a+1

1 - atl l
/ M drdt < | esssup M / M drdt. (6.2.1)
0o Jam(u(t,r))= o

(t.w)esuppj m(u(t, r))

Observe that by construction it holds

Was1 (0,1, tom,m — ) < 77/ to dx.
e M QO

Combining this with the triangle inequality, we obtain

atl atl

W81 (o, uopmm — 9) < (WaTH (@0, po,y) + WaTH (p0,m> vo M — 5)) :
n | atl -
< (ln‘i‘M) a /QU()dI‘

Hence, for any ¢ > 0, there is a distributional solution j € Lay1([0,1] x Q;R?) to the
continuity equation

Ot + divyj = 0, t>0, €,
7-n=0, t>0, €0,
’INL(O,I‘) = ﬂo(x), T €,

u(l,2) = uopm(z) =6, =€,

with
a+1

j] atl M yetr [
dz dt<I/VaJr1 (o, uomr —0) +e < (ly+ ) @ tp dx + €.
0 Q Ua M 0

We see that u(t,x) := a(t,z) + 0 and j together solve the continuity equation with
initial and terminal values u(0, x) = uo(x) and u(1, ) = ug,,r(x). Moreover, by (6.2.1),
we have

L) s 0y
/ =2 dxdt <sup - [(ln—l—) /ﬁ0d$+€:| ,
o Jom(u(t,z))= s>5 m(s)a M Q

a+1
lim sup sup dp* (uo, uomm) < €,
n—0 M>1

Q=

so that

for every ¢ > 0 arbitrary. We conclude that

a+1
lim sup sup dpn* (uo,uopn) =0
n—0 M>1

and likewise
a+1

lim sup sup dp* (w1, u1,m) = 0.
n—0 M>1
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atl
Next, we estimate d,,;* (uoy M, U140 ). To this end, we define for M > %

d

M
U(t, $) =0+ ZF(Z’ Z/)W]}_B(,yz’zl(t)’%)(l'),

z,2!

and
d

. M .
J (t’ I‘) = Z F(Z, Z/)W]IB(’Y;Z/@%%) (l‘)r}/zg’(t)‘

This is clearly a curve connecting ug ,, » and u1 , y7, and

Md

essinf u(t,x) > ¢, — 00

(a.1)€supp j wan'
as M — oo, for every fixed n > 0. By the superlinear growth condition on m, it follows
that
u(t, )
ess sup

(z,t)Esupp j m(u(t, x))é
as M — oo, for every fixed n > 0. By (), we have that

atl [ u(t,x)é
(

Q=

atl
A (o.M, ULm,M) < | esssup L~ /ﬂo(:p) dz — 0
x,t)Esupp j m(u(t, LL’)) Q

1
[

as M — oo, for every fixed n > 0.
Finally, we concatenate the curves connecting ug with ug ; 7, uo a7 With uy ;) 27 and
u1,y,m With u1, and estimate

a+l

dni® (uo,u1)
a+1 a1l a+1

<limsup lim C <dm°‘ (UO, U,Qm,]v[) + d” (UO,n7M7 ul,mM) + dp (uLn,M, u1)>
n—0 M—oo

=0.
This concludes the proof. O

Remark6.2.3. Ifugandu; are smooth, the connecting curve (u, j) can be chosen smooth
in space-time via mollification and the dominated convergence theorem.

6.3 Minimising movement scheme for the modified thin-film
equation

In the previous section, we studied the distance we obtained heuristically for a gradient
flow approach for the thin-film equation. Since this distance degenerates, we now mod-
ify the mobility of the thin film to obtain a non-degenerate distance function and use a
minimising movement scheme in order to show that this modified thin-film equation is
indeed a gradient flow. We also fix the space dimension d = 1 and for simplicity only
consider thin films that are homogeneous in y-direction.

We fix a uniformly continuous mobility function m: R — [0, co) such that m(s) = 0
forall s < 0. Moreover, we fixd > 0 and consider a uniformly continuous ms: R — [§,1/4]
with the following properties
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i) ms(s) >0, s € R,and mgs(s) =9, s <0,
(i) ms(s) > m(s), s € R,
(iii) mgs — m locally uniformly on R.

Fix 6 > 0. We start setting up the minimising movement scheme. That is, we fix a
time step size h > (. If at a time ¢, we are at u*, we define the next iteration, that is the
approximation at time ¢ + h, to be a minimiser of the functional

a+1

N o gl e
.7:3*’6 u,j) == / dpul?dz + h / dx, (6.3.1)
(w.9) 2 Ja 19z a+l /g mg(u*)i

where the minimisation runs over pairs (u, j) € H'(2) x La1 (Q) that satisfy

divj+ %5 =0 inQ,
j=0 on 0.

Note that we sligthly changed the dissipation potential that we obtained in (): we
fix 4* in the second integral. This avoids problems with the lack of convexity. Heuristi-
cally, this is no major change since solutions turn out to be continuous in time, and hence
mgs(u(t + h)) and ms(u(t)) are very close.

Before we set up the minimising movement scheme, we first show existence, unique-
ness and regularity properties of a minimiser of the corresponding functional.

Definition 6.3.1. Let() C R a bounded interval, v* € H'(Q) andh > 0. We say that a
pair (u,j) € HY(Q) x Lat1 () solves the flow equation

. . u_u* — . Q
divj + *5 0 inQ, 6.3.2)
j=0 on 9f).
if the equation
1
—/j'azgodx—i—/(u—u*)godwzo (6.3.3)
Q h Ja

is satisfied for all o € C*(Q).

Remark 6.3.2 (Conservation of mass and Poincaré inequality). For every u* € H!(Q)
asolution (u, j) € H' () x Las1(Q; R?) to the flow equation (6.3.4) conserves its mass in

the sense that
ﬂ:—][udx—][u*dx,
Q Q

where @ denotes the average of u. Indeed, this follows immediately from (6.3.3) with the
choice ¢ = 1. In particular, v satisfies the Poincaré inequality

[ = all ) < CllOzullL,q) (6.3.4)
where C' > 0 is a positive constant that depends only on 2 and & = @*.

The following proposition guarantees existence and uniqueness of minimisers of the
functional ]:3;5 for a given initial datum u* € H'(Q).
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Proposition 6.3.3. Let) C R a bounded interval, v* € H'(Q). Fixh, § > 0. There
exists a unique minimiser (u°, j7%) € H'(Q) x Las1(Q) ofthefunctionalJ-"ff;(S defined in
(6.3.1), where the minimisation runs over all pairs uae HY(Q),j € Las1(Q) that solve the
flow equation () in the sense of Definition . ’

If the mobility mg is Lipschitz continuous, then the minimiser has the additional regularity
(uh?, 70 € WngLB(Q) X L a+1(Q2) and solves the elliptic boundary-value problem

Wt diy S = 0 in,

h,o * 03 h,d a—183 h,d inQ

I ms (u)|0;u =t ’ (6.3.5)
Ozu™ =0 on 011,

=0 on 0f.

In other words, Proposition characterises the minimiser of () as a solution
(uhd, "0y e W3 11.5(2) X La+1(€2) to the degenerate-elliptic boundary-value problem

U= 4 div (mg(u)|03ul*103u) = 0 inQ,
Oyu-n=0 on 01,
Ou-n=0 on 02,

where we use that ms(u*) > ¢ > 0.

Proof. Thisis a strictly convex minimisation problem with a linear constraint. Existence of
a unique minimiser follows from the direct method of the calculus of variations. Indeed,
since H'(2) x La+1(Q) is a reflexive Banach space and the set of all pairs

divj+ %% =0 inQ,
7=0 on 0f)

(u,7) € H'(Q) X La+1(Q) satisfying {

is a closed, non-empty and affine subspace, containing the point (u*,0), and the func-
tional in () is non-negative, there exists a minimising sequence. In view of the
Poincaré inequality (6.3.4) and the fact that ms(u*) > § > 0, we may extract a subse-
quence that converges weakly in H'(2) x La11(f2). The functional is strictly convex in

(u,7) € HY () x Lat1(£2), whence we obtain weak lower semicontinuity and therewith
the existence of a minimiser (u"?, j7°) € H'(Q) x La+1 (Q) solving the flow equation.
We are left with proving uniqueness. To this end, assume that (u1, j1) and (ug, j2) are

e . . . a+l
two minimisers of (6.3.1). By the strict convexity of v — [v|*, v € R, and k — |k,
k € R, we deduce that

Oyu1 = Orus and j; = jo a.e. in{l.

Since ug = 1o, it follows that (u1, j1) = (u2, jo2).
To derive the Euler-Lagrange equation for the minimiser (u"?, %) ¢ HY(Q) x
L oa11(€2), we first consider a solenoidal vector field £ € L a1 (2) with (k, 0z¢) = 0 for all

¢ € CY(Q). Then, we take the first variation

l—o
d hs ns :ho VIR
0= —F (" +ek) o =h | =——do

Q mgs(u*)a

)
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for all solenoidal vector fields k € Las1(€;R?%). Using the Helmholtz decomposition

[Sol77], this implies that
glza 1
j| e j = mgs(u*)adp1p
for some ) € W2, (Q).

Now, pickw € C*(£2) with average w = 0 and letk = 0, ®, where ® € W, | (2) solves

the Neumann problem
—02® =% inQ,
0, P -n=0 onof.

Since then
uh? 4 ew — u*

- +div (j"° + ek) = 0,

we may take the first variation

d .
0= %]:346 (uh"S + ew, ;M0 + 5k) le=0

— / A0, wdx + h / Ok dx
Q Q

:/8muh’58mwdw+/wwdw.
Q Q

(6.3.6)

In the last step, we have used () and the fact thaty € wl 4+1(€) is avalid test function.
Since this equation holds true for arbitrary w € C*({)) with average w = 0, we obtain in

particular that
1/} = aguh,é + C,

for some constant C, in the sense of distributions. This shows that u/° € H'(Q) satisfies

(8,u? 9,0) = —((¢p — C),v) forallv € HY(Q).

Using [ADN59, Theorem 3.3] yields

uh? e Wg:’H’B(Q) and 9,u"® =0 a.e.ondQ.

Summarising, we find that u"? € W? +1,5(Q2) satisfies the boundary-value problem

Y =0%u"4+C inQ,
Apu® - =0 on Jf).

R ;RS
)

J

Consequently, the minimiser (u
l—a
the function s — s« sisinvertible, we obtain

jh,6 — mg(u*) |aguh,5|a—laguh,5‘

Inserting this in the Euler-Lagrange equation, we obtain

u—u*

h

+ div (mg(u*)@iuh’é) =0.

This completes the proof.

l-a 1 .
)solves j o j"0 = mg(u*)=d3uM°. Hence, since
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The Euler-Lagrange equation () of the functional }'3,;5 is in fact a time-discretised
version of the modified thin-film equation. We can exploit this and define a minimising
movement scheme with step size h > 0 as follows. We pick an initial value ug € H'(Q)
and define recursively ug ? .= ug, and

(u?kil)haj(kﬂ) ) = ar(gn.;infu}é’é(u’j)’
u,j

where the minimisation runs over all pairsu € H'(Q), j € Lat1 (Q;R?) that solve the flow

equation () with u* = u}kL}f
Comparing (u?k‘il) Iy jé”kil) h) to (uz;f, 0), we get the weak energy-dissipation inequal-

ity

1 2
Flios(uy®,0) = / 5 || da 63.7)
k Q
a+1
2 ’jk wl "
_/ 8m ?ki—l) ’ d$+ha+1/ +1 s T
Q2 Q mgs(u kh)a
h,6 ( h,o h,6
- }—uzﬁ (u(k+1)h’j(k+1)h)'

This inequality may even be improved. Indeed, using the elementary identity
|x]2—\y|2:2y(w—y)+|x—y|2, xayERdv

we deduce the energy-dissipation formula
/ 1
Q2
“ sz
/ 1
_|_

Q

“J.z

2
h,6
- ’ dx

5 5 5 8
?k—f—l)h‘ df”_/ dru ?k:—i—l)h(uZh _“?Hl)h) dz
(“Z}f _“?kin )‘ dz

1
h.o 3 ho h,5
(k+1)h‘ dz + h/ Ipu Uy 1)h ‘3(k+1)h dz + /Q 5

(UZ: - u?kil)h) dz

:

h,6 ‘ (k+1)h 1 he  ho 2
= / (1) da:+h/ l daf:—i—/ = (ukh _“(k+1)h)‘ dx.
Q Q m u ’ [e3 Q
This implies
1 h,o 2 de > h,8 d h ‘ k—i—l)h d
5 T T = (k-‘rl h T+ Z. (6.3.8)
Q Q2 Q

ms (u

Now, we define the different interpolations of the minimising movement scheme
which are used in the following. First, the piecewise constant interpolation ( hio jhs 5)
given by

o = jho t € (kh, (k+ 1)h).
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Note that /"’ takes the value of u/9 at the current time, while j" takes the value of j"
after one time step in the future. Moreover, the piecewise affine interpolation @/ is given
by

Ahé h,8 h,8
(k+s)h - <1 S)Ukh + Su(kJrl)h ke N7 s € [07 1)

Lemma 6.3.4 (Discrete energy-dissipation inequality). (i) The pair (ﬂ? ’5, jth ’6) sat-
isfies the energy-dissipation inequality

Jrzb

h5

- dxdr (6.3.9)

a 1 Q2m§
a 1//m5

forallkh = s <t =1lhandk,l € Ny.

atl
hé‘ o
no)a

2
8111?’5’ dz

PR o+l 1
J; T+h‘ dIEdTS/Q2

(ii) The pair (i, ®j1°) solves the continuity equation

Oyl 4+ divih® =0, t>0,2€Q,
At =0, t>0, 2 €09,
o=, t>0, €09,

in sense of distributions, that is, the equation

T
/ / 3t1l?’6<p - jth’a cOppdxdt =0
0 Q

holds true for all o € C*>([0,T] x Q) and allT > 0.

Proof. (i) The energy-dissipation inequality may be derived from (), using that

; dxdr

/‘jk—&-l /(k—i—l /
(k+1)h
a—i—l/k /m6

Here we used that from () we know that

IO = s () |02, | Oy

_hs a+1
du T+h‘ dz dr.

(ii) This follows immediately from

hd o 8
Oyt = w oy, —up s € (kb (k+1)h), z € Q,

and the constraints

hé h

k+1)h kh
% +d1vy(k+1) =0 inQ
10) ukh =0 on 05}
](k+1)h =0 on 0f),

cf. (6.3.5).
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The previous result holds true in general dimension d > 1 on bounded Lipschitz do-
mains, replacing 93 by V92 and 9, by V and interpreting the boundary conditions to hold
true in normal direction and in the sense of traces. However, in order to evaluate the limit
h — 0 for 79, we have to guarantee that mg(ﬁf ’5) converges strongly. This requires that
the sequence @/ converges uniformly to a continuous function which is only valid in di-
mensiond = 1.

Lemma 6.3.5 (Uniform a-priori estimates). Letd = 1. Foreachd > 0 and eachT >
h > 0, the families (", j"°), and ("), satisfy the regularity properties

() @™ € Lo ([0, T]; HY(Q));

(i) @ € Lat1([h, T W3, 5();
(ifi) j" € Lax1 (0, 7] x ©);
(i) 9y € Lo (10, T); (Whi1());

) @0 € Loy ([h, T} W24 5(9)) N Lo([0,T]; H()),

with bounds that are uniform in h. That is, there exists a constant C > 0, independent
of h such that the families (", j"°), and (a"?), are, for each h > 0, bounded by C in

the respective norms. In particular, there exist subsequences (u™°, j"°), and (a"°), (not
relabeled) and a limit function

(u®,5°) € [L2((0,T); HR(2)) N H ([0, T); Hy' ()] x La ([0, T; Lo(92: T))

such that
(S 0 weakly in Loy1 ([, T]; W, a+1 5(D));
o o weakly in LQTH([O’ T] x )
s weakly in La+1([€, TiEW, a+1 5(€2 ))’
Oy — ud  weakly in Lasi ([0, T); (W2, 5()));
(ahd — wd  stronglyin C?[O, T];C*())

forall0 < e < T andall0 < p < . Furthermore, it holds that v’ € C([0,T]; H(Q)).

The proof strongly relies on the energy-dissipation equality ().

Proof. Step 1: Uniform a-priori estimates.
(i) and (ii) First, the energy-dissipation equality () immediately implies that

2
flosT [
Q Q

where the right-hand side is bounded due to the regularity of the initial value. That is,

“‘ dz, tel0,T],

9™ € Lo ([0,T); La(2)).

Moreover, since the mobility ms is bounded below, there exists a constant C; , > 0 such

that
T
5,

2
h,0
b’ da,

+1
*“‘ dt dz < C(;,a/
Q
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that is 934"° € Lo ([h, T); LaH(Q)) and, consequently,
G La+1([h T] Wa+1 B(Q))

with a uniform bound only dependent on |[ug|| 1 (-
(iii) This follows from the energy-dissipation equality (-), using the upper bound on

the mobility ms.

(iv) The regularity of the flux ;79 obtained in (iii) implies in partlcular that div jh NS
Lot ([0,7]; (WL, ,(€))"). Therefore, the continuity equation d,a™® = —divj™%, ob-
tained in Lemma - (ii), yields

RTINS Log1 ([0, T); (Was1,5(2)) ),

where the corresponding uniform bound follows by (iii).

(v) By definition of the piecewise affine interpolation @/~ we have that
Ah §1a+1 _h,0||a+1 a+1
(el (e N PR Y

Integration with respect to ¢ and the a-priori bound obtained in (i) yield the desired bound.
The same argument applies to the H!-bound.

Step 2: Compactness.
Combining the uniform bounds proved in step 1, an application of the Eberlein-Smulian
theorem provides the existence of the subsequences and weak accumulation points

ah® — f weakly in L1 ([e, T); W2, 5(9));
g — 40 weakly in Lo ((0,T) x Q);

ah® — f weakly in L1 ([, T]; W, a-l—l ()
Oy — 9pu®  weakly in Los (10,77; Wy, ().

1" converges strongly

By the Aubin-Lions-Simon lemma [Sim86], we find that @
(up to a subsequence) in C([e, T]; C*())) for everye > 0Oand 0 < p < 3. More-

over, by [Ber88, Remark 3.4], every function u® € L1 ((0,T]; W2, 5(Q)) with 9,a° €
Loss ([0,T]; (Wayy 5())") satisfies u’ € C([0; T]; H'(2)) and we also conclude u’(0) =
uQ.

Step 3: Uniqueness of the limit function.
We have claimed above that both %% and @ converge to the same limit «°. Indeed, we
observe that

40 N S h.o o0
Uisyn = Wgpsyn = (L= 8)Upg & UG 1y, — Uy
i h h.o
5( Uy 1)h — wy;)
= sh d1vg(k+1)h

= shdivg<k+s)h, keN, sel0,1).
This implies

i h,8 _h ,0
(k:+s k+s)h

<h Hdivjh’(s’

Laga ((0T); (Was1,5(9)) Lo (0T, at1,5()))

<Ch.
Lat1 ((0,T)xQ)

[

This proves that the limit functions coincide. O

<h
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Proposition 6.3.6 (Uniform convergence of the energy). Fix > 0. There is a subse-

quence (not relabelled) of (u"°),, such that
@™ — u’  strongly in Lo110c([0,00); H ()

and
E[i"°] — E[u’]  uniformly on compact subsets of [0, c0).

The proof of the second part of Proposition relies on the following result from
basic calculus which we prove here for the convenience of the reader.

Lemma 6.3.7. Let fi: [0,7] — R be a sequence of non-increasing real-valued functions.
Assume that fi.(t) — f(t) pointwise fort € [0,T], where f: [0,T7] — R is a continuous
function. Then fi, — f uniformly.

Proof. Fixe > 0. Since f is continuous on the compact interval [0, 7], f is uniformly
continuous. So there is 4 > 0 and a subdivision 0 = ¢ty < t; < ... < t, = T with
tir1 —t; < dforeveryi =0,...,n — 1, such that

I£(t) — f(s)] < % forallt, s € [t;,tiy1] andalli = 0,...,n — 1.
Since f,(t;) — f(ti), wefind N € Nsuch that
[fa(ti) = ()] <

We claim that | f,,(t) — f(t)| < eforallm > N andt € [0,T]. Fixt € [0, 7], then there is
i€{l,...,n}suchthatt € [t;,t;+1]. Since f, is non-increasing, we know that

fn(ti-i-l) < fn(t) < fn(tz)

foralln > Nand:=0,...,n.

CTNY)

and hence
[ (t) = f(0)] < max{]| fu(tiva) — FO) [fn(ti) = F()]}
< max{|fn(tiv1) = f(Eir1)], [fn(te) = f(8)]}
+max{|f(tiy1) — F@)], [f(t) — f(O)]}
<e
for everyn > N. This proves the lemma. O

Now we turn to the proof of the uniform convergence of the energy. The compactness
result follows from a modification of the Aubin-Lions-Simon lemma to piecewise constant
functions which can be found in [DJ12].

Proof of Proposition . @9 is a sequence of piecewise constant functions. In order
to obtain compactness in Lg110c ([0, 00]; H(2)), we apply [DJ12, Theorem 1]. Note
that W32, 5(Q2) embeds compactly in H'(2) and that the embedding of H'(Q2) into
(Waii, 5(9)) is continuous. Furthermore, by Lemma p.3.5, we know that (")}, is uni-
formly bounded in Lo 1 ([e, T]; W3, | p(2)) and that

«

s, | = Jlaiv /|
o Uttn — Ut Las1 (0.7 (Wh 4 (@)) = Jtt+h L1 (0,75 (Wh 41 (€2)))

o
< Oll7,51L oy (o130 < C



The Gradient-Flow Structure of the Thin-Film Equation 77

is also uniformly bounded in h. Hence, there is a subsequence (not relabelled) which con-
verges in L1 ([0,7]; H'()). Taking T = T,, = n and a diagonal subsequence ensures
that @™ — " in Ly 1,10¢ ([0, 00); H(9)).

For the uniform convergence of the energy, we apply Lemma b.3.7. By the strong con-
vergence in Lo 1 joc ([0, 00); H'(2)) we know that there is a subsequence (not relabelled)
such that

" (t) — ud(t) in H'(Q) for almost every ¢ € [0, c0).

Since u’ € C([0,00); H'(€2)) and hence the limit function is defined for every ¢ € [0, 00),
we may assume (after potentially modifying %™ on a set of measure zero that @9 () con-
verges to u’(t) for every t € [0,00). This guarantees that E[u](t) — FE[u](t) for every
€ [0,00). By continuity of the limit function, we also obtain that ¢ — FE[u°](t) is con-
tinuous. Finally, monotonicity of ¢ — E[a/9)(t) follows from the construction of @ a
minimising movement scheme via the weak energy-dissipation inequality (). Hence,
we may apply Lemma to obtain uniform convergence on compact subsets. O

Thanks to Lemma , Proposition , and by the uniform continuity of the mobil-
ity i, we are able to preserve the energy-dissipation inequality (6.3.9) in the limit & — 0
forevery 0 < s,t < oo based on lower semicontinuity of the dissipation.

Proposition 6.3.8 (Energy dissipation inequality). Any weak limit point
(¥, 5%) € [Las1 (0.TJ Wit 5(9)) 0 Whss (10,71 Wa iy 5(9))] % Lasa (10,7] x ©)

of the family (4", j79),, has the following properties.

(i) Forall0 < s <t < T, the energy-dissipation inequality

a4l
/ 9,82 da + +1// ‘]T‘ - ddr 6.3.10)
Qm,

1
//mg 83 5\0‘“ dxdTS/Wmug\de
Oz—i—l 92

is satisfied.

(ii) The pair (u®, j°) solves the continuity equation

ol +divi® =0, t>0,zeq,
dpul =0, t>0, z €09,
=0, t>0, x €09,

in sense of distributions, that is, the equation

T T
/ (Bul, @)y dt — / / 30 Oppdrdt =0
0 ot 0o Jo

holds true for all o € Lq+1([0,T); W2, 1(Q)) and allT > 0.

0%

Proof. (i) From the uniform convergence of E[a"] to E[u’] proved in Proposition
and continuity of ¢ — E[u’](t), we obtain
1 2 2
/ 5 0w, 5‘ dr ash— Oandt), —t (6.3.11)
Q
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forany0 < ¢ < T. Letnows;, = |s/h|handt;, = [t/h]h. Then, in view of (6.3.9) we know

that
/1 /th/
Q Oé+1 2 2ms a
a+1 1
//mg 83 hé’ dxdTg/
a—l—l 92

T T—‘rh
Taking the lim inf on both sides and using (6.3.11) which guarantees convergence of
the energy, we obtain

/ 1
02
th o
+ liminf / / T
h—0 |a+1 am )a
/ 1
S —
Q2
It remains to show

22 mes(ud)|03ud|?
//2m5 ) 5 dzdr

Ta
1

_h,6|2

dx + —dzdr

2
A
Opug’| du.

2
5‘ dx

th

‘83 hd‘a—f—l dx dr

2
dz.

th 1 th
<lim inf / /da:dT+ / /m5 9 |93ul0 |4t da dr
h—0 Oé+1 Qm& ur®)a a+1

Since s, < s < t < tp, for every h > 0 and by non-negativity of the integrand, it suffices to
prove

) 3,012
/ / W ms (ug ) Ozuz dz dr 6.3.12)

2ms(u 2

<liminf / / ——— dedr + —— //m(s 9 |3u0 |2 d dr
h—0 Oé+1 me. E —|—1

In Lemma we showed that

@ — w®  stronglyin C'([0,T] x Q).

In virtue of the Arzela—Ascoli theorem, this implies equicontinuity and thus also the uni-
form convergence

o —u’  ash— 0,

since %9 is a piecewise constant approximation of 4. Using the uniform continuity of

the mobility function ms, we find that

—h,é)

ms(@"°) — ms(u®)  uniformly as h — 0.
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Since mg(s) > ¢, s € R, by assumption, and since
j™ — 4% weaklyin La+1 ([0,7] x Q)

by Lemma , this implies by weak lower semicontinuity of the norm

// UT : d:L‘d7'<hm1nf// —————— dzdr.
Q mé ué h—0 am E

For the second term in () we use that
a;’jaﬁfh — 6§u‘5 weakly in LQH([O,T] X Q),

since 8212@_% is uniformly bounded in La1 ([0, 7] x ) and converges to 93u° in the sense
of distributions. Combining this with the uniform convergence of ms (@) to mg(u®) and
by weak lower semicontinuity of the norm, we deduce that

//mg 83 6\“+1dacd7<hm1nf/ /m(g
h—0

(ii) That the continuity equation is satisfied for all € C>°([0,T] x ) in the limit
h — 0 follows from Lemma (ii) and the weak convergence results of Lemma . By
density, we may extend this to ¢ € Lo41([0,7]; Wa, ,()). This completes the proof. [

a+1

) |3 dz dr.

T T+h

6.4 Energy-dissipation equality and the modified thin-film
equation

In this section, we want to study the limiting equation in the case § > 0. We want to prove
that if a pair

(w7, 5%) € [Las1 (0,70 Wit 5(9)) 0 Whss (10, 7]; (Wi 5())| % Lass ([0.7] x )
satisfies the energy-dissipation inequality () and the continuity equation

ol +divi® =0, t>0,zeQQ,

Opu’ =0, t>0, ze€df,
jo =0, t>0, 2 €00,
then, ° is a solution to the regularised power-law thin-film equation

Ou? + div (ms(u?)| 0202~ 193u’) =0, t>0, 2 €Q,
dpud - m =0, t>0, €09, (6.4.1)
Bud -n =0, t>0, €0

which satsifies the energy-dissipation equality

1 t 1
/|8xu?2dx—|—/ /mg(uf.)]ai’uﬂmrl dxdT:/ Z|0pul|? du.
Q2 s Jo Q2
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To this end, note first that every smooth solution (v, k) to the continuity equation

Ow+divk=0, t>0,z¢€,
0yv =0, t>0, z €09, (6.4.2)
k=0, t>0, €00

satisfies the reverse of inequality (). Indeed, integrating by parts twice yields

d
dt

k
|8 ve? dz = / ki - O3vda = —/ — ~m5(vt)a%13§vt dz.
2 m(

Ut) a+1

. ) e . atl . . .
Applying Young’s inequality a - b < S5fal o + a%rl |b|]**T! and integrating with respect to
time, we obtain

a+1

kr| a
/ —|0, vt| dz + +1// | | dxdT (6.4.3)
Q m5 UT

1
a—l—l/ /m(g vy ]83U7|a+1dxd7>/Q2laxvs|2da:.

We have equality in () if and only if Young’s inequality holds with equality, i.e. if and
only if

+

= = mg(vy) 030, ]°T ae. in (0,00) x Q.
ms(vr)a

The following proposition shows that the reverse energy-dissipation inequality is al-
ready satisfied for solutions (v, k) to (6.4.9) in the regularity class

[Laﬂ([o T Wi p(90) N Wha ([0.7); (W B(Q))’)} X Lat1([0,T] x Q).

In addition, we prove that weak solutions to the regularised thin-film equation () are
characterised by equality in ().

Proposition 6.4.1. If
(0,k) € |Laa (10,71 Wity 5(9) N Whia (10,7 (W1 5(9))| X Las1 (10,7 x )

satisfies the continuity equation () in the sense that

/ (Opvy, ¢>W1+1 dt — / / ki - Oppdxdt =0 (6.4.4)
0 @ 0 Q

forallp € Lai1([0,00); W2, 1(Q)), then

[0}

a+1l

/ |0x vt] dx + +1// |k o —dxdr (6.4.5)
Qm(g ’UT

1
+a+1/ /M§ Uy |83v7a+1dxd7->/92|8xv5|2dx




The Gradient-Flow Structure of the Thin-Film Equation 81

holds for all0 < s < t < co. Moreover, equality holds if and only if v is a weak solution to
the regularised thin-film equation

v + 0p(ms(v)|030[*7103v) =0, t>0, z €,
0,v =0, t>0, xz € 0,
o3v =0, t>0, zedf,

in the sense thatv € Lq11 ([0, T;; W2, | 5(Q)) N Wi, ([0,T7; (W;JFLB(Q)),) satisfies the

o

equation
/ (O, )1 dt — / / mg(v)|20|* 1020 - Oppdrdt =0 (6.4.6)
0 att 0o Jo

forally € Lat1([0,00); W2 1(9)).

«

Proof. We prove that the Dirichlet energy is absolutely continuous in time, i.e. that for all
0 <s <t < oo, wehave

1 1 !
/ = 10,v)? da —/ ~18,vs)? da = —/ / k- 02v, dz dr. (6.4.7)
02 Q2 s Ja

As a first step, we show that

1 1 t
/ - |8xvt]2 dx —/ — ]a@vs|2 dz = —/ (871)7,6%1)7)”/1 dr (6.4.8)
02 02 s atl

forall v € Lot ([0, T W2, 5(Q)) N Wi, ([0,7]; (W2, 5(2)") and 0 < s < t < oc.

o7

To this end, we mollify in time by introduciang, fore > 0,
v =mn.xv € COO([E, 0); W§+17B(Q)).

Then, v satisfies

1 1 ¢
/ 3 8,05 % da —/ 5 10,0 da = —/ (0;v%, 8§vf.>w1+1 dr (6.4.9)
Q Q s a

forall0 < ¢ < s <t < co. Moreover, we know that, for every s > 0,

V& — v strongly in C([s, 00); H'(Q))
920" — 02v  strongly in Lo ([s, 00); W2, 1(9)
Oy — O strongly in Lat1 ([s,00); Wi, (€))

«

as ¢ — 0. Here, the first convergence stated follows again from the generalised Lions—
Magenes theorem, [Ber88, Remark 3.4], that is

[0}

@ o

v € La1 ([0, T Wit 5(2) N Wai ((0,T]; Wass 5(02))
implies that v has a continuous representative
0 € C([0,T); H'())

with ¥ = v almost everywhere. Hence, we may take the limit in () to obtain () for
0 < s <t < oo. The case s = 0 follows by taking the limit s ™\ 0.



82 Non-Newtonian Thin-Film Equations

Now we note that

t t
2 _ 3
/S (Orvr, 8IUT)W5+1 dr = /S /Qk:T - Oyvr dxdr

by testing the continuity equation (B.4.4) with 02v,x(s € La-1([0, 00); W2, (%)), where
X[s,y) denotes the characteristic function of the interval [s, ¢]. By an application of Young’s
inequality, we have

a+1
a k| e 1
—ky - vy > — — ms
T " UgUr aJrlmg(’Uq—)é a—+1

which, together with (), proves (). Finally, equality in () holds forall0 < s <
t < oo ifand only if

(v;)]02v,*T ace. in[0,00) x Q,

kr = —mgs(v,)|030,|*"103v,  a.e. in [0, 00) x Q.
Inserting this in the continuity equation () proves (). O

Since by Proposition any accumulation point (u’, j°) of the family (a"°, j79),,
satisfies the conditions of Proposition , we find that u° is a weak solution to the reg-
ularised thin-film equation (). For flow-behaviour exponents « # 1, this equations
degenerates in the third derivative and hence we cannot claim uniqueness of solutions.
For the Newtonian case @ = 1 though, uniqueness of solutions is well-known by standard
parabolic theory.

Theorem 6.4.2. Givenug € H' (), there exists

u® € Cy([0,00); H'(2)) N Lat1((0,00); W21 5(2)) N Waia (0, 00); Wi, (2))

«
@

“h,o

such that a subsequence of (", "), converges as follows:

ahd — w® weakly in Lo ([0,00); W21 5(92)) N WL, ([0,00); (W (9))),

a0 —s u®  strongly in Cloc ([0, 00); CP(Q)) for every0 < p < 1,

g0 — 3% weaklyin LQTH([O,oo) x Q).
Furthermore, it holds

7% =mgs(u®)3u’  a.e. in[0,00) x Q.
Moreover; u° is the weak solution to the initial-boundary-value problem

Opud + div (m(g(u‘s)@gu‘s) =0, t>0,x€9,
Opu® = 03ud =0, t>0, z €0, (6.4.10)
ué(ovx) = ’U,O(.%'), r €,

and satisfies the energy-dissipation equality

1 ¢ 1
/laxuf|2dx—|—/ /m(g(ui)mguﬂaﬂ dxdT:/ ~|0pud|? da (6.4.11)
02 s Jo 02

forall0 < s <t < oo. Furthermore, ifa = 1, i.e. if the fluid is Newtonian, there is exactly
one accumulation point u’ of the sequence (i) and u’ is the unique weak solution to

(6.4.10).
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Proof. (i) The convergence results and the regularity of the limit function «° have been

proved in Lemma .

(ii) The energy-dissipation equality is satisfied in view of Proposition and Propo-

sition 6.4.1l.

(iii) That u’ satisfies the thin-film equation has been shown in Proposition .
(iv) Uniqueness of weak solutions — and thus of the limit point — follows from standard
parabolic theory [Paz83], using that ms(s) > ¢ forall s € R. O

UNIQUENESS AND NON-NEGATIVITY IN THE NEWTONIAN CASE

Next, we show that the region where ud is negative is small. To this end, we define an

entropy as in [BF90]. Let A > max(; ,)c(0,00)x0 |u’| for all § € (0,1). Then we define

4 A
gs5(s) = —/ m;(r)dr and Gs(s) = _/ gs(r) dr.

We also define

A A
g(s) = —/ mb) dr and G(s)= —/ g(r)dr.

Testing the regularised thin-film equation with gs(u’), one can show that (cf. [BF90, eq.

(4.17)])
t
/Gg(uf)dx—!—/ / azqudxds:/G(;(uo)dm. (6.4.12)
Q 0 JQ Q

Lemma 6.4.3. Givenug € H'(Q2), leru® € Cy([0,00); H'(Q)) N Lo ((0,00); HE(2)) N
H ([0, 00); H5'(Q)) be the unique solution to the regularised thin-film equation as ob-
tained in Theorem 6.4.2. Then v’ satisfies

[

/ o5 dz < / Gs(up)dx < / G(up) dzx
{us<0} Q Q

forallt > 0.

Proof. For s < 0 we have that ms(s) = J. This implies gs(s) > s/d and hence Gs(s) >
52/(26). Together with (6.4.19) this yields the first inequality. The second inequality follows
since mg(s) > m(s) forall s € R. O

6.5 Thelimit) — 0: weak solutions to the thin-film equation

Now we investigate the limit as 6 — 0. We show that, for a positive initial datum vy €
H'(Q),ug > 0, every accumulation point v of the family u? is a weak solution to the power-
law thin-film equation

Ou + div (m(u)[03u|*~192u) =0, te (0,
Opu = m(u)|02u|*"1o3u = 0, t e (0,
u(0) = wo, x €

Tu075], T € Q,
T 5], © € 0L, (6.5.1)
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in the sense of [BF90]. Here, typically m(u) = u" for some n > 1. Note that in the
non-Newtonian case, the existence time of a physical, that is non-negative, solution is ob-
structed as the solution might become negative. In the Newtonian case, we can obtain
non-negativity as long as we have control over the entropy for the initial value.

By the generic choice of mg; in the previous sections, we already obtain the gradient
flow structure of positive solutions to (). Therefore, letug € H'(Q) satisfy ug > 1 > 0
for some 7 > 0. Also choose ¢ very small and mgs such that ms(u) = u" for every u > 24.
If 20 < 7 and by continuity of the solutions %’ found in Theorem - there is a time
Tyy,5 > 0 such that min )¢, T el X0 U 3(t,x) > 26. In particular, u’ is a weak solution to
(6.5.1) for t € (0, Ty 5)-

We extend this result and show that every accumulation point « of the sequence u
a solution to the thin-film equation () on the positivity set

{u >0} :={(t,x) € [0,00) x Q:u(t,z) >0}

9 s

To pass to the limit, we rely on uniform bounds. First, we show that from the energy-

1 1
dissipation equality (6.4.11) for u’, we obtain a uniform Holder bound in C'5a+3°2 ([0, T
Q). The proof follows an argument given by [GR00] or [Ott00]. By the Arzela-Ascoli the-
orem, this will guarantee uniform convergence of mg(u°) to m(u). This also guarantees
that, if the initial datum ug € H'(Q) is strictly positive ug > 0, there is a maximal time
7(up) > 0 such that [0, 7(ug)] x Q C {u > 0}. We will show that 7(ug) = -+oo for Newto-
nian fluids.

Lemma 6.5.1. Given an initial datumuy € H'(Q), let
0 € Ch((0,50) ) 1 L (0,000 W 1 5(D) 1 Wi (10,50 WEar ()

and
3% € Lat1([0,00) x Q)

satisfy the energy-dissipation equality

1 1 1 t ) 83 d|a+1
/yax 2 do +O‘+ // Y gedr / ms(Ur)|0z =" gy
Q2 Q 2ms( u5 o a+1 /g 2

1
= [ Z|0,uo|? dz

forallt > 0. Thenu® is uniformly bounded in Cﬁ’%([O,T} x Q) forall T > 0.

Proof. We already know that u’ € Cj ([0, 00); H!(9)). In view of the Sobolev embedding
theorem, we thus find that u® € Cy,([0, 00); C1/2(Q)).

It remains to prove the Hélder continuity in time. The proof follows the lines of [GR0O,
Lemma 4.2] or [Ott00, Lemma 3.1]. There the result is proven for Newtonian fluids. Con-
sider (U?, J?) such that U? is the even extension of u° and .J° is the odd extension of ;°
about 0. Moreover, let 7. be a standard mollifier in space and consider for x € Q and
0<s<t<T

W (t) = ¥ (s,2)| < |U (@) —nex UO(8,2)| 4 |ne VP (8 2) = me 5 U5, )

+ 7. * U‘S(s,aj) - U‘S(s,:v)‘
=(I)+ (II)+ (III).
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Since u’(t,-) € ok (€2), we find that (1) and (I11) satisfy

(1) + (IT1) < £'/2 ([U%x Y guragey + 1076 ~>}Cm@) < 262,010

Testing the continuity equation with ¢(7,y) = 1,4 (7)n:(y — z) , the second term may
be estimated as follows using the bound ||n.|| fa+1(q) < Ce~2eT/(@+D) ogether with the
Holder inequality

Ne * U‘S(t x) — 1me * Ué(s,x)‘

775 J‘S (r,y)dydr

< 06—(2a+1)/ O“*‘1)| s|1/ (a+1) ||J6||La+1 ((0,7)xQ)

a+1 ail
o . N 1/(a+1)
< CemCatD/lat))y _ g1/(at) </ /Q dxdt) s ()1 o ey
me(ud

< e QatD)/(at1))y

— sV 0,u0] 1,0

where we use that m; (1) is uniformly bounded. Combining the two estimates, we obtain
u(t,2) — i (5,2)] < 262 sl ey + O™V |1 — D 0,00, 0

for every ¢ > 0. Optimising in ¢, we may choose ¢ = |t — s|%/(®*+3) and obtain

¥ t.) (s, )| < 222 0su0l gy + 2t 5|20 gy < Clt—of O

Note that the generic constant C' > 0 depends only on the initial datum ug. This concludes
the proof. O

Applying the Arzela—Ascoli theorem, Lemma implies that there exists an accumu-
lation point u € C Sata ([0,00) x Q) of the sequence (u’);s such that a (non-relabeled)
subsequence satisfies

' — u  inC7P(]0,00) x Q)

forevery 0 <o < ﬁ and0 < p < %

Fix ug € H'(Q) with ug > 0. For everyn > 0, denote by {u > n} = {(t,z) €
[0,00) x Q:u(t,z) > n}.

In order to prove that u is a weak solution to () on the set {u > 0}, we need further
uniform bounds at least locally on the positivity set.

Proposition 6.5.2. Letuy € H'(Q) withuy > 0 in Q. Let (u’)s be the sequence of weak
solutions to the regularised thin-film equation obtained in Theorem . Then thereiség >
0 small enough such that we have the following uniform bounds for every0 < 6 < dp:

(i) (u®)s is uniformly bounded in Lo ((0, 00); H(2));
(i) (92u®)s is uniformly bounded in Lo 1({u > n}) foranyn > 0 withug > n;

(iii) (Oyu®) is uniformly bounded in Lo ([0,00); Way 1 5(0));
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(iv) (8,;0,u°) is uniformly bounded in Lo (10,00); (Wai1,0(2) N w2, ().

Proof Fix n > 0. Given an accumulation point u of the sequence 1%, we know that

ud(t, x) > 1 for every (¢, ) € {u > n} forevery § < do, where g is chosen small enough.
Since u° satlsﬁes the energy-dissipation identity (m), we obtain with the choice s = 0

1
/ =~ |0pul|? da:—l—/ /m(; )|O3u 5\a+1dxd7':/ §|8xu0|2dx. (6.5.2)
Q

(i) From (b.5.4), we directly obtain

1 1
/2]81uf|2dx§/2\3xu0|2dm
Q Q

for every 0 < § < &y and every ¢t > 0. We conclude that (u?); is uniformly bounded in
Lo ((0, 50); HY()).

(i) Since u® > I on the set {u > n} and m4 converges to m(u) locally uniformly, there is a
constant ¢, > 0 independent of § such that ms(u®) > ¢, on the set {u > 1}. We conclude

// |2l |ot de dt < — // ud) |93 |9 da dt
{u>n} {u>n}
§/Q2]8$u0\ dz.

Hence, we obtain the desired uniform bound.
(iii) Since u’ is a weak solution to (), we have

T T
| @by, d= [ maud)iotdiodutonen o e
0 0

forallp € La41([0,T); W2,1(€2)) andall T > 0. Applying the Holder inequality and using
that (u®); is uniformly bounded in Lo ([0, 00) x €2), we conclude

T
/ <8tuf,ga>w1 dt‘ / /mg u)|82u0||0p| da dt
0 OC

T 1
<o ([T [mtiyamde) ™ ([ o)
0

< C(uo) 1020 Lo i1 ((0,1)x02)-

This proves that (9,u’ )5 is uniformly bounded in Lo ([0, 00); (W2, ().
(iv) This follows similarly as in (iii) by the same dualiaty argument. O

With these uniform bounds, we are now in the position to show the convergence to a
weak solution to the power-law thin-film equation on the set {u > 0}.

Proposition 6.5.3. Given an initial datumuy € H'(Q2), uy > 0, the following holds true.
There exists a subsequence of (u®); (not relabeled) and a limit

u € Loo([0,00); H'()) N Cara (10, 0] x )

with &u € Lot1joc({u > 0}) and dyu € Los1([0,00); (W 1(Q))) such that we have
convergence in the following sense:
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(i) u® — u strongly in C*([0,00) x Q) forall0 < o < g2tz and0 < p < 3;
(ii) O2ud — 93u weakly in Lo 1 10c({u > 0});
(i) ms(u®)|03ul|*~103u — m(u)|93u|*193u weakly in Las1 ([0, 00) x );

(iv) Opu’ — Byu weakly in La+1([0,00); (W21 ().

Proof. The proofis divided into several steps.

(i) This follows directly from Lemma () combined with the Arzela—Ascoli theorem.
(ii) Let K C {u > 0} a compact set. Since u is continuous, there is n > 0 such that
K C {u > 1/n}. By Proposition (i), we find a subsequence which converges weakly
tovin Loy1({u > 1/n}). By the convergence from (i), we may identify v = 93 and obtain
O3u® — 93uin Loy1(K)asd — 0.

(iii) Since the sequence v is uniformly bounded in Lo, ([O, 00) X Q), (i) and the local uni-
form convergence of m; to m imply that ms(u®) converges uniformly to m () in [0, 00) x §2.
To obtain the desired weak convergence, let ¢ € Ly ([O, 00) X Q) . We may then split the
integral

/ /mg(u5)|8§u6|a_18§u6<pdxdt:// ms(u®) |03l | 193U p da dt
0o Ja {u>n}

+ // mes(u®)|02ud|* 193l p dz dt.
{u<n}

For the first integral, we use that ms(u’) — m(u) uniformly and that |93u°|*~192u® —
|03u|*~193u weakly in La11 ({u > n}) by (ii) to obtain convergence

// ms(u)|@2u®|*193u’ o d dt — // m(w)|03u|* 193 up dx dt
{u>n} {u>n}

as 0 — 0 for every n > 0. We now show that the second integral is small. By the Holder
inequality we find that

// ms(u®)|92ud| 21 03ud o dx dt
{u<n}

<l (@ sy llms @ T ( /0 ms (u®)| 93’ da dt)

@
a-+1

< C”mcS(ué)Hg{ugn})H‘P||La+1((0,oo)><9)a

where C' depends only on |[ug|| 1 (). Furthermore, we may estimate

s ey < € (Ims(u) = I gy + 1m0 iy )

a+1
Lo ({un})

convergence ||ms(u’) — m(u )|]z“({u<n} — 0,as 6 — 0, we obtain

/ /m(; N 183u5g0dxdt—>// (w)|03u|* 1 D2up dx dt
{u>0}

= / / m(u)|02u|* " 93up dx dt,
0 Q

By continuity of m it holds ||[m(u)|| — 0, as 7 — 0. Combining this with the
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as 0 — 0, where we used that m(s) = 0 for every s < 0.
(iv) This is an immediate consequence of the corresponding uniform bound obtained in

Proposition . g

We now combine the convergence results obtained in the previous proposition to state
the main result of this section.

Theorem 6.5.4. Fix a positive initial datumuo € H*(Q), ug > 0. Letu be any accumula-
tion point of the sequence (u°)s, as obtained in Proposition . Thenw is a weak solution
to the thin-film equation on the set {u > 0}

Opu + div (m(w)|03u|*~103u) =0, (t,z) € {u> 0},
Opu = m(u)|03u|*103u = 0, t>0,ze09Q,
u(0,2) = up(x), x €

in the sense that u satisfies the equation

/ (Oyu, go)v[/l+1 dt — // m(u)|02u|* L3 - Oy dzdt =0
0 @ {u>0}

forallp € Lay1([0,00); Wi, () and the energy-dissipation inequality

«

1
/ ~ |0 uq|? da:—{—/ / (u)|93u| >t dxds</|8xu0\2 dz, te[0,00).
{’lLs>0} Q 2

The concept of weak solutions obtained in Theorem is 'very weak’. It is the same
concept of weak solutions that is used in [BF90] and, if 2 = (0, 1), it allows for steady-state
solutions of the form u(x) = [1/4 — 2?]y + [1/4 — (x — 1)?],.

Observe that we do not claim that the solutions obtained remain non-negative. In fact,
in the case of non-Newtonian fluids, we will show that, for positive initial data, there is a
maximal time 7(up) > 0 up to which u is a solution to the thin-film equation in [0, 7(ug)) X
2. We do not obtain the non-negativity results on solutions in the shear-thinning case
«a > 1 that are shown in [AG04], since the additional regularisation needed there to use
entropy arguments breaks the gradient flow scheme. In the Newtonian case a = 1 though,
we obtain non-negative solutions for initial data with finite entropy.

Corollary 6.5.5. Fix a positive initial datumuy € H' (), ug > 0. Letu be any accumu-
lation point of the sequence (u’)s as obtained in Proposition[6.5.3. Then there is T(ug) > 0
such that u is a weak solution to the thin-film equation

Oyu + div (m(w)|03u|*t03u) =0, t € (0,7(u)), v € Q,
Opu = m(u)|03u|* 103u = 0, t>0, ze 09,
u(0,z) = up(z), x €

in the sense that

7(uo) 7(uo)
/ (Opu, )y dt — / / m(u)|03u|* 13 - Oppdrdt =0
0 ot 0 Q

forallp € Lat1((0,7(uo)); W,

«

1
/ L2 d:v+// ()] B2ufot! dxds</!8mu0|2dx, £ 0,7 (up)).
ué>0} Q2

+1(Q)) and the energy-dissipation inequality
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holds. Moreover, it holds

lim minu(t,z) = 0.
t,/7(uo) zeQ

Furthermore, ifo = 1 and uy € H'(Q) withuy > 0 satisfies [, G(ug) < oo, thenu is a
global-in-time weak solution to the Newtonian thin-film equation

dpu + div (m(u)du) =0, te(0,00), z €Q,
Opu = m(u)03u = 0, t>0, z €0,
u(0,x) = up(x), x € €.

Proof of Theorem 6.5.4. In Theorem we showed that 19 is a weak solution to the mod-
ified thin-film equation, that is u® satisfies

/ (B, @)y dt — / / ms(u)|02ud |27 103u? - B, dzdt = 0
0 att 0o Jo

forallp € L1 ([O, 00); W1+1(Q)). Using Proposition (iii) and (iv), we obtain

«

/ (B, o)y 1, dt—)/ (Oru, )y 1 L dt,

/ /mg )03 |4 1a3u° - xgodxdt—>//{ o (w)|03u|* 1020 - Dy du dt,
u>

asd — Oforall p € Lat1([0,00); W2, (€)). This proves that u is a weak solution to (6.5.1)
on {u > 0}.

To obtain the energy—dissipation inequality, note that from Proposition - () and (iv)
it follows that 9, u®(t) — d,u(t) in Lo(£2). Hence, by lower semicontinuity, we obtain

/ |0y | dx+/ / (u)|03u|*Tt dz ds
{us>0}
gliminf[/ ~|0pul|? d:1:+/ /m5 )@3ul |2 dz dr
6—0

1
< / —|0,up?dz, t € [0,7(up)).
Q2
This completes the proof. O

We now prove Corollary .

Proof of Corollary}6.5.4. Define 7(up) = min{t > 0 : thereisz € Qwithu(t,z) = 0}.
Then, since u is continuous and ug > 0, it holds 7(ug) > 0. The other assertions follow
directly from Theorem .

For a = 1, we showed in Lemma p.4.3 that

/{ }25 dx</G5u0dx</Guo
us<0

This shows that if [, G(ug) < oo, we have

limsup/ [u0)? dz = 0.
6—0 {us<0}

Combining this with the uniform convergence of u’ — u, we may conclude that |{u <
0}| = 0and hence v > 0in [0, 00) x €. O
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Remark 6.5.6. (i) Leta =1,m(s) = s"withn > 4anduy > 0. Thenu > 0in [0, 00) X
€. This follows from the Holder continuity of u and the fact that [, G(u(t,z)) dz <
oo forall ¢ > 0; cf. [BF90].

(i) Letaw = 1, ug € H'(Q) withug > 0, and let (ups)s C H'(2) be a sequence with
ugs > 0and ugs — up in H 1 (€2). Using the above scheme with initial datum v g,
the corresponding sequence (u’, j°); converges to a non-negative weak solution «

to () in the sense of Proposition .
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A | CONVERGENCE RATES AND
FLUCTUATIONS FOR THE STOKES—
BRINKMAN EQUATIONS AS
HOMOGENISATION LIMIT IN
PERFORATED DOMAINS

Abstract

We study the homogenization of the Dirichlet problem for the Stokes equations
in R? perforated by m spherical particles. We assume the positions and velocities of
the particles to be identically and independently distributed random variables. In the
critical regime, when the radii of the particles are of order m !, the homogenization
limit u is given as the solution to the Brinkman equations. We provide optimal rates
for the convergence u,,, — u in L3, namely m~P for all B < 1/2. Moreover, we con-
sider the fluctuations. In the central limit scaling, we show that these converge to a
Gaussian field, locally in L?(R?), with an explicit covariance.

Our analysis is based on explicit approximations for the solutions u,, in terms of
u as well as the particle positions and their velocities. These are shown to be accurate
in A! (R?) to order m ™" forall 8 < 1. Our results also apply to the analogous problem
regarding the homogenization of the Poisson equations.

A.1 Introduction

Numerous applications regarding the dynamics of suspensions and aerosols call for
macro- and mesoscopic models which couple the particle evolution to the fluid. One of
the most well-known models are the so-called Vlasov-Navier-Stokes equations for spher-
ical, non-Brownian inertial particles. If the fluid inertia is neglected, they reduce to the
so-called Vlasov-Stokes equations which take the dimensionless form

Of+v-Vof+div((u—wv)f) =0,
—Au+Vp+pu—j=h, divu=0, (A.1.1)
p=[fdv, j=[vfdo,

where f(t,z,v) is the particle density and & is some external force acting on the fluid.
For questions regarding modeling and applications of this system, we refer the reader to
[Bou+15] and the references therein.

The rigorous derivation of these equations from a microscopic system is a wide open
problem. The main difficulty lies in the nature of the interaction of the particles which is
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only implicitly given through the fluid. Moreover it is singular and long range. A natural
preliminary step towards the rigorous derivation of the Vlasov(-Navier)-Stokes equations
consists in the derivation of the limit fluid equations in () without taking into account
the particle evolution. These are the so-called Brinkman equations. The additional term
pu — j describes the effective drag force that the particles exert on the fluid: The drag force
of a single particle in a Stokes flow is given by

F; = 6nR(V; — u;),

where R is the particle radius, V; its velocity and u; is the unperturbed fluid velocity at
the position of the particle. Therefore, the total drag will be of order one if the number
of particles m (in a finite volume) times their radius R,, is of order one. By making the
convenient choice

Ry = —, (A.1.2)
6mm
the Brinkman equations in the form above arise based on a superposition principle for the
drag forces.

The rigorous derivation of the Brinkman equations has attracted increasing attention
over the last years, with results both in the cases of zero and non-zero particle velocities,
see e.g. [All90b; GH19a; Gér22] and [DGR08; HMS19; CH20], respectively. The most recent
results focus on the derivation under very mild assumptions for (random) particle config-
urations. Such investigations seem compulsory in order to eventually accomplish the rig-
orous derivation of the Vlasov(-Navier)-Stokes equations. In this regard, it is also desirable
to develop very accurate explicit approximations for the microscopic solution u,, and to
characterize its convergence rate to the limit « as well as the associated fluctuations. In
our paper, we focus on these aspects.

STATEMENT OF THE MAIN RESULT

We consider the perforated domain
m
QO =R\ | J B,
i=1

where the particles are given by B; = Bp, (X;) with R,, as in (A.L.4). The particle po-
sition_s X1,...,X,, as well as their velocities Vi, . .., V,, are random variables in R3. For
h € H-1(R3; R3), we study the solution u,, to the Stokes equations

{ — Aty + Vpm =h,  divig, =0 inQy, (A.13)

Uy =V, inB;,1=1,...,m.

We consider the case when Z; = (X;,V;) are i.i.d. accordingto f € P(R3 x R3). We
impose the following hypotheses on f:

(HD) [fgsygs [v[*f(dz, dv) < oo;

(H2) the distribution of the centers p(-) := [z, f(-,dv) € WH(R3) is compactly sup-
ported;

(H3) j(-) := [gsvf(-,dv) € H'(R®).
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We remark that we in particular allow to choose f(dx, dv) = p(x) dxd,—o which means
that all particle velocities are zero.

We note that the Stokes equations () are only well-posed if the particles do not
overlap. However, in our setting, overlapping does not occur with probability approaching
lasm — oo. This follows from the following standard result that can for example be found
in [Hau09, Proposition A.3].

LemmaA.l1.1. Forv >0,L > 0 let
Omose = { (20121 = (X VD)L min X~ X > LR, .

Then, for all0 < v < 1/3 and all L > 0, there exists mg > 0 such that for allm > my
P(Oppz) < CLm? /3,
where C' depends only on p.

For overcoming the problem of the ill-posedness of () for overlapping particles,
we could restrict ourselves to configurations of non-overlapping particles. However, this
results in the loss of the independence of the particle positions. Thus, for technical reasons,
we prefer to define u,, to be the solution to (A.1.3) for (Z;), € O,,02 and u,, = u for
(Z)) & Omoa. |

For the statement of our main result, we introduce v € H'(R?) as the unique weak
solution to the Brinkman equations

—Au+(pu—j)+Vp=h, divu=0 inR3. (A.1.4)

Moreover, we introduce the solution operator A for the Brinkman equations with vanish-

ing flux j. More precisely, A, which depends on p, maps g to to the solution w of the equa-
tion

—Aw+pw+Vp=g, divw=0 inR> (A.1.5)

TheoremA.1.2. Leth € H™'(R?;R?) and letu,, andu be defined asin (A.1.3) and (A.1.4).

(i) Foranyf3 < 1/2 and any compact set K C R?

mP ||ty — ullp2(xy — 0 in probability.

(ii) Foreveryg € L*(R®) with compact support,

Emlg) = m2(g, um — u) — &[g]

in distribution, where ¢ is a Gaussian field with mean zero and covariance

El¢lg1]¢lga]] = / ((u(z) —v) - (Ag1)(2)) ((u(z) = v) - (Aga)(@)) f (da, dv

R3 xR3 (A.1.6)
— (pu—7,Aq1) 2 (pu— 7, Ag2) 2

forall gy, go € L?(R?) with compact support.
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Remark A.1.3. (i) The analogous result holds when the Stokes equations are re-
placed by the Poisson equation. In this case, the quantities V; are scalars as well
as um, u, h, j, etc. Moreover, reflecting that the capacity of a ball of radius R is 47 R,

one should replace () by

1
R, =—. A.1.7)
4dmm

(ii) Formally, we can write £ = A(, where ¢ accounts for the fluctuations of the drag
force j — pu. The appearance of the second term on the right-hand side of (1)
is classical for the fluctuations in m-particle systems, see e.g. [BH77], and is sup-
posed to disappear if we modeled the particles by a Poisson Point Process instead.
In particular, one can expect in this case, at least formally, £ = A{ with

= ([e- U)Qf(-,dv)fW,

where W is space white noise.

(iii) The rate of convergence in part (i) of Theorem is optimal in view of part (ii). By
interpolating the estimate in part (i) with the energy bound, one obtains a conver-
gence in H}  for any s < 1 with rate m~P+5/2 for any B < 1/2, though. This might
not be optimal, though. Indeed, we will show that the fluctuations &,, are bounded

in Hy , s < 1/2 (cf. Proposition h.3.3.

Possible generalizations

We briefly comment on three aspects of possible generalizations and improvements of our
main result. The first aspect addresses random radii of the particles and the second space
dimensions different from d = 3. Finally, we comment in better notions of probabilistic
convergence in part (i) of the theorem.

Indeed, it is not difficult to extend the above result to the case where the radii of the
particles are also random. More precisely, assume that the radius of each particle is R} =
r; R, with R,,, asin (), respectively. Assume that the radiir; are independent bounded
random variables, also independent of the positions, with expectation Er = 1. Then, the
assertions of Theorem still hold with an additional factor Er? in front of the first term
on the right-hand side of the covariance. In order not to further burden the presentation,
we restrict our attention to the case of identical radii.

Regarding the space dimension, our analysis is restricted to the physically most rele-
vant three-dimensional case. Applying the same techniques in dimension d = 2 seems
possible with additional technicalities due the usual issues regarding the capacity of a set
ind = 2.

We emphasize though that, for d > 4, we do not expect Theorem to continue
to hold. One reason for this is that the volume occupied by the particles becomes too
big. Indeed, the critical scaling of the radius of m spherical particles in dimension d > 3
is R, ~ m~/(2=2)_ The results cited above ensure that under this scaling we still have
Uy, — u weakly in H! (Rd). However, in the case when the particle velocities are all zero,
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2

i.e. f = p® dg, we obtain as a trivial upper bound for the rate of convergence in L;

1

m 2
d —_——
[|wm — UHLIQOC(HW) > [Jum — U||L2(u;ngi) = ||U”L2(uy;13i) ~ (ﬁ <U Bz)) ~m -2,
i=1

This shows that Theorem cannot hold in this form for d > 5. Moreover, in dimension
d = 4, this error is of critical order, which suggests that the analysis of the fluctuations is
much more delicate.

Our techniques are restricted to dimension d = 3 for another reason. Namely, we
will several times use the fact that the fundamental solution to the Stokes equations is in

L} (R?) which is no longer true in higher dimensions.

Instead of convergence in probability, one could aim for convergence in L?. Following
the proof of the theorem reveals that we actually prove

Em[l@ﬁn,o,snum - U||il2oc] <Cm™L.

This implies Eyp [[|um — ul|z2 ] < Cm~Y/¢ by Lemma [A.1.1], provided an a priori bound
Ep [l tem — uH%2 ] < C. Such a bound has been obtained in [CH20]. Although different
loc

particle distributions are considerd in [CH20], one readily checks that [CH20, Lemma 3.4]
also implies such an a priori estimate in our setting. Again, the power m !/ is presumably
not optimal and one could aim for an estimate E,,[|[u, — ul/3, ] < Cm™'. Following
our present approach, one would need to adapt the approximelf’fion that we use for u,
in the set O,, 5. The adaptation needs to take into account in a more precise way the
geometry of the particle configuration and one could take inspiration from the proof of
[CH20, Lemma 3.4]. However, it seems unavoidable that this approach would drastically
increase the technical part of our proof.

Comments on assumption

The second moment bound in the first assumption, , isvery natural. It ensures that the
solution u,, is bounded in L?(Q; H'(R?)), where € denotes the probability space. More-
over, the covariance of the fluctuations provided in Theorem involve this second mo-
ment.

The regularity assumptions on p and j, , are of more technical nature: they
ensure that both j and pu, which appear in the Brinkman equations (A.1.4), liein H'(R3)N
H ~1(R?). The H~! property will be very useful to treat those terms as source terms of
the Stokes equations. On the other hand, the H!-regularity allows us to quantify the dif-
ferences of those terms to some discrete and averaged versions involved in the setup of
appropriate approximations for u,,, that we detail in Section @

DI1SCUSSION OF RELATED RESULTS

Previous results on the derivation of the Brinkman equations

As indicated at the beginning of this introduction, there is a huge literature on the deriva-
tion of the Brinkman equations and corresponding results for the Poisson equation where
one could mention for instance [MK74; CM824a; PV80; 0za83; DG94; GHV18]. For a more
complete list and discussion of this literature, we refer the reader to [GHV18; GH194].
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In [GH19a; CH20], the Brinkman equations have been derived under very mild as-
sumptions on the particle configurations. In [GH194], the authors considered zero particle
veolcities. The particle positions can be distributed to rather general stationary processes,
and the radii are i.i.d. with only a (1 + ) moment bound. This allows for many clusters of
overlapping particles. A corresponding result for the Poisson equation has been obtained
in [GHV18].

On the other hand, in [CH20], the particle radii are identical but their velocities are
not necessarily zero. The authors consider more general particle distributions than i.i.d.
configurations. The Brinkman equations are derived in this setting under assumptions
including a 5th moment bound of the velocities. The result in [CH20] comes with an es-
timate of the convergence rate w,, — u in Ll20(:' However, this does not allow to deduce
convergence faster than m " with 8 < 1/95.

Results about explicit approximations for w,,

A widespread approach to homogenization of the Poisson and Stokes equations in perfo-
rated domains with homogeneous Dirichlet boundary conditions is the so-called method
of oscillating testfunctions which is used for instance in [CM824a; All90b]. An oscillating
testfunction w,, is constructed in such a way that it vanishes in the particles and converges
to 1 weakly in Hﬁ)c. This function w, carries the information of the capacity (or resis-
tance) of the particles. A natural question is then, how well w,,,u approximates u,,. Since
the function wy, is usually constructed explicitly, this allows for an explicit approximation
for u,,. In [KM89; AlI90b] it is shown that for periodic configurations |[u,;, — wyul 5 <
Cm~1/3, This error is of the order of the particle distance and thus the optimal error that
one can expect due to the discretization. Similar results have been obtained in [Giu21b] for
the random configurations studied in [GHV18], with a larger error due to particle clusters.

In the recent papers [Fep22; FJ21], higher order approximations for the Poisson and
the Stokes equations in periodically perforated domains are analyzed.

In the present paper, we do not work with oscillating test functions. However, we de-
rive equally explicit approximations for u,,, which we will denote by ,, (see Section @).
Aswe will show in Theorem A.3.1], we have ||, — i | i1 < Cm~Pforall 3 < 1. Thiserroris
much smaller than the one obtained in [KM89; All90b]. The reason for that is twofold. First,
we take into account the leading order discretization error in terms of fluctuations. Sec-
ond, we benefit from the randomness which reduces the higher order dicretization errors
on average. We believe that Theorem could be of independent interest. In particular
concerning the rigorous derivation of the Vlasov-Stokes equations (A.1.1)), such explicit ac-
curate approximations of u,,, in good norms seem essential. Indeed, for the related deriva-
tion of the transport-Stokes system for inertialess suspensions in [H6f18], corresponding
approximations have been crucial.

Related results concerning fluctuations and preliminary comments on our proof

In the classical theory of stochastic homogenization of elliptic equations with oscillating
coefficients, the study of fluctuations has been a very active research field in recent years.
Of the vast literature, one could mention for example [AKM17; DGO20].

Regarding the homogenization in perforated domains, the literature is much more
sparse. In the recent paper [DG21], the authors were able to adapt some of the tech-
niques of quantitative stochastic homogenization of elliptic equations with oscillating co-
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efficients to the Stokes equations in perforated domains with sedimentation boundary
conditions which are different from the ones considered here.

Related results to Theorem have been obtained in [FOT85] for the Poisson equa-
tion and in [Rub86] for the Stokes equations. However, in these papers, the authors were
only able to treat the Poisson and the Stokes equations corresponding to (A.1.3) with an ad-
ditional large massive term Au,,: they obtained a result corresponding to Theorem
provided that ) is sufficiently large (depending on p).

The approach in [FOT85; Rub86] follows the approximation of the solution u,, by the
so-called method of reflections. The idea behind this method is to express the solution
operator of the problem in the perforated domain in terms of the solutions operators when
only one of the particles is present. More precisely, let vg be the solution of the problem in
the whole space without any particles. Then, define v; = vg + ), v1; in such a way that
vg + v1,; solves the problem if ¢ was the only particle. Since v ; induces an error in B; for
J # 1, one adds further functions vy ;, this time starting from v;. Iterating this procedure
yields a sequence vi. In general, v is not convergent. With the additional massive term
though, one can show that the method of reflections does converge, provided that X is
sufficiently large.

In [HV18], the first author and Veldzquez showed how the method of reflections can be
modified to ensure convergence without a massive term and how this modified method
can be used to obtain convergence results for the homogenization of the Poisson and
Stokes equations. In order to study the fluctuations, a high accuracy of the approxima-
tion of u,, is needed. This would make it necessary to analyze many of the terms arising
from the modified method of reflections which we were allowed to disregard for the qual-
itative convergence result of u,, in [HV18]. It seems very hard to control sufficiently well
these additional terms which either do not arise or are of higher order for the (unmodified)
method of reflections used in [FOT85; Rub8§].

Thus, in the present paper, we do not use the method of reflections but follow an al-
ternative approach to obtain an approximation for u,,. Again, we approximate u,, by
Um = wo + ), w;, where w; solves the homogeneous Stokes equations outside of B,.
However, we do not take w; as in the method of reflections, where it is expressed in terms
of wy. Instead w; will depend on u, exploiting that we already know that u,,, converges to
u. In contrast to the approximation obtained from the method of reflections, we will be
able to choose w; in such a way that the approximation u,, = wo + ), w; is sufficient to
capture the fluctuations.

Arelated approach has recently been used in a parallel work by Gérard-Varet in [Gér22]
to give a very short proof of the homogenization result u,,, — u weakly in H'! under rather
mild assumptions on the positions of the particles. However, since we study the fluctua-
tions in this paper, we need a more refined approximation than the one used in [Gér22].
More precisely, to leading order, the function w; will only depend on V; and the value of u
at B;. However, w; will also include a lower-order term which is still relevant for the fluc-
tuations. As we will see, this lower-order term will depend in some way on the fluctuations
of the positions of all the other particles.

ORGANIZATION OF THE PAPER

The rest of the paper is devoted to the proof of the main result, Theorem .
In Section @, we give a precise definition of the approximation @,, = wo + >, w;,
outlined in the paragraph above, as well as a heuristic explanation for this choice.
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In Section @, we state three key estimates regarding this approximation and show
how the proof of Theorem follows from these estimates.

The proof of these key estimates contains a purely analytic part as well as a stochastic
part which are given in Sections @ and @, respectively.

A.2 The approximation for the microscopic solution u,,

NOTATION

We introduce the following notation that is used throughout the paper.

We denote by G: H~'(R?) — H'(R?) the solution operator for the Stokes equations.
This operator is explicitly given as a convolution operator with kernel g, the fundamental
solution to the Stokes equations, i.e.,

9(z) = L (Id +2 ®x> : (A.2.1)

8T m |z|3

We recall from Theorem that A: H~'(R3) — H'(R?) is the solution operator for
the limit problem (). We observe the identities

(1+Gp)A =G, A(l+ pG) =G, A=G—-ApG. (A22)

We remark that multiplication by p maps from H!(R3) to H'(R?) N H~(R?). Indeed, this
follows from p € W1°°(R3) with compact support and the fact that H'(R3) ¢ L5(R?)
which implies L%/5(R3) ¢ H~'(R®). Furthermore, observe that A and G are bounded
operators from L*(R3) N H1(R?) to C*%(R3), o < 1/2, and from H'(R?) N H~}(R3)
to WH°°(R?). In particular, Ap and Gp are bounded operators from L?(supp p) (and in
particular from H'(R?)) to L>°(R?) and from H*(R?) to W1 (R3).

We denote G~! = —A. Thenwehave GG~! = G~'G = P,, where P, is the projection
to the divergence free functions. In fact, we will use G~! in the expression AG~ only. We
observe that A = AP, and thus

AG™IG = A.

We denote by B™(z) = Bp,, (z) and the normalized Hausdorff measure on the sphere
8B™(z) by

5 H2[opm (2)
¢ H2(0B™(x))’

and write 9;" := 0'%¢..
Moreover, we denote for any function ¢ € L'(B™(z)) the average on B™(x) by (¢)q,
ie.
1

(©)e := ]ém(x) p(y)dy == @) Jome ¢(y) dy,

and we abbreviate (¢); := (¢)x,.
We will need a cut-off version of the fundamental solution. To this end, let n €
Ceo(B3(0)) with 1,9y < 1 < 1p, () and ny(x) = n(xr/R;). Now consider g, =
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(1 — nm)g. We need an additional term in order to make §™ divergence free. This is ob-
tained through the classical Bogovski operator (see e.g. [Galll, Theorem 3.1]) which pro-
vides the existence of a sequence v, € C>°(Bsg,, \ Bar,,) such that divi,, = div (7,9)
and

IV U Lo rzy < C(p, k) IV iV (nmg) || o (re) (A.2.3)

forall1 < p < coandall £ > 1. By scaling considerations, the constant C' is independent
of m. Then, we define G'™ as the convolution operator with kernel

9" =1 —=nm)g+ Ym. (A.2.4)

APPROXIMATION OF 1, USING MONOPOLES INDUCED BY 1

To find a good approximation for u,,, we observe that w,, satisfies

—Auy + Vp=hlg, + Y hi, inR? (A.2.5)

for some functions h; € H ~1(R?), each supported in B;, which are the charge distribu-
tions induced in the particles due to the Dirichlet boundary conditions.

We begin by observing that for most of the configurations of particles, the particles are
sufficiently separated which allows us to determine good approximations for /; by ignor-
ing its direct interaction with another particle. As we will see, our approximation for £; will
only incorporate the effect of the other particles through the limit w.

To be more precise, let 0 < v < 1/3. Then, by Lemma , we know that, for most of
the particles, B,,»r,, (X;) only contains the particle B;. In this case, h; is uniquely deter-
mined by the problem

—Av; +Vp=nh inBywg, (Xi)\ Bi,
V; = ‘/z in Bi, (A.2.6)
Vi = Uy, 0N 8BmVRm (Xz)

We simplify this problem to derive an approximation for h;. First, we drop the right-
hand side h in (). Its contribution is expected to be negligible, since the volume of
Buwr,, (X;) \ B; is small compared to the difference of the boundary data at 9B; and
OBy R, (X;) which is typically of order 1. Next, we know that typically 0B,,»r,, (X;) is
very far from any particle. Since u,, — win H' (R3), we therefore replace () by

~Av; +Vp=0 R3\ B,
v; =V; inB;, (A.2.7)
vi(x) = (u); as|z— X;| — oc.

Here, we could also have chosen u(X;) instead of (u);. The precise choice that we make
will turn out to be convenient later. By our choice of R,, in (), the explicit solution of
(A.2.7) is given by v; which solves —Awv; + Vp = h; in R3 with

Vi — (u)

i em
.

hi =
m

Therefore, resorting to (), we are led to approximate u,, by
1 m
i =G [h——> ((u); — Vi)&}"| . (A.2.8)

m <
=1
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We emphasize that for this approximation it is not important to know the function u. We
only used that u,, — uin H L(R3) which is always true for a subsequence by standard
energy estimates. On the contrary, we can now identify the limit v. Indeed, if we believe
that u,, approximates u,,, sufficiently well,
1 m
U Uy R Ty = G |h— =Y ((u)i = V))& | = Glh+ j — pu] (A.2.9)
mi=
which shows that v indeed solves ().

This approximation %, cannot fully capture the fluctuations, though. In the next sub-
section we thus show how to refine this approximation.

We end this subsection by comparing this approximation to the one used in [FOT85;
Rub86] through the method of reflections. The first order approximation of the method of
reflections is given by 4, as defined in () but with Gh instead of u on the right-hand
side. Since this is a much cruder approximation, one needs to iterate the approximation
scheme. This only yields a convergent series in [FOT85; Rub86] due to the additional large
massive term. On the other hand, this series then approximates u,,, sufficiently well with-
out the refinement that we introduce in the next subsection.

REFINED APPROXIMATION TO CAPTURE THE FLUCTUATIONS

We make the ansatz that, macroscopically,
Uy, = U + m_%gm + o(m_%), (A.2.10)

where &,,, is a random function which needs to be determined. We assume that the fluc-
tuations &, are in some sense macroscopic, just as u, such that we can follow the same
approximation scheme as in the previous subsection.

More precisely, we adjust the Dirichlet problem () by adding mo2 (&m)i on the
right-hand side of the third line. This leads to the definition

U =G

1 & 1 m
h — m;(u—Vi—i—m 2&m)i0; ] . (A.2.11)

We have not defined &,,, yet. To make a good choice for ,,, the idea is to use a similar
argument as in () but only to take the limit m — oo in terms which are of lower order.
More precisely, we observe, again taking for granted that @,,, approximates u,,, sufficiently
well and usingu = G(h + j — pu),

U+m_1/2§mwum%am:G m

1 m
h=—> (u—Vi+ m—%fmw]

i=1
—ut G pu—j- S ()i - V)i | -6 ;im zsmmz"]
i=1 =1
(A.2.12)
We expect
-1 .
< Wa;ﬂ = G(pm™ &) + O(m™Y). (A.2.13)

JF
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Inserting this into (), leads to

m

1 1
~1/2 3V~ il R VAP L
m~ % + G(pm™26,) = G |pu — j — g ((w); — V)0l | . (A.2.14)

i=1

This equation could be used as a definition of &,,. Although this turns out to be a good
approximation on the level of equation (), we will now argue that this is not the case
for the definition of %, in (). Indeed, the right-hand side of () isequal to (u); —
V;in B; toleading order. Hence, (mil/ 2§m)i would be of the same order which would yield
a contribution to @, through &, of order 1 instead of order m=1/2,

Therefore, we need to be more careful and go back to microscopic considerations:
Since u,, = V; in B; and 4,, ~ u,,, we want to define £, in such a way that u,,, =~ V;
in B;. Thus we want to compute ,, in B; in order to find a good definition of &,,. Since
we expect i, = U, (X;) + O(m~1) in B; (at least on average), we only compute i, (X;),
and by the same reasoning, we replace any average (&, ); by &,,(X;) at will. Then, we find,
using again u = G(h + j — pu),

o (X;) = u(X) + (Glpu = ))(Xi) = u(Xy) + Vi = m™ 26 (X5)

1 —5 m
—G EZ(u—Vj—l—m 260);00 | (X))
j#i

1 . 1 _1 m
= Vi m 3 n(Xi) + G |pu—j = — ((u); = Vj+m 26m);)0" | (X0).
J#i
(A.2.15)

Requiring @, (X;) = V; yields

1 1 _1 1
M3 (X 4G | ST m (G0 | (X)) =G fpu—j = — 3 ((w); ~ V)| (X0)
J# J#
(A.2.16)
In order to define &, from this equation, we want the sum on the right-hand side to include
1 such that the function is the same for every . To this end, we notice that by Lemma ,
with high probability, we have for all i and all W € R3

G"6"W =0 in B;, G(S;”W = Gmagﬂw inB; forallj #1i, (A.2.17)

where G™ is the operator introduced at the end of Section [A.7. Hence, we replace the
right-hand side of () by

m 20, == G(pu — j) — — ZG’” Vi)om) . (A.2.18)

We expect O,, ~ 1 since the right-hand side of () represents the fluctuations of the
discrete approximation of G(pu — j). As before, we replace the sum on the left-hand side
of () by p&,,. Combining these approximations leads to

m~2(1 4 Gp)ém = m 20, (A.2.19)
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In view of (A.2.), it holds (1+Gp)AG~! = P,. Since, ©,, is divergence free, (A.2.19) leads
to define &,,, to be the solution of

Em = AG1O,,. (A.2.20)

Note that the only difference between this definition of &,,, and () is the replacement
of G by G™. As mentioned above, we expect that, on a macroscopic scale, the operators
G and G™ are almost the same (we will make this argument rigorous in Lemma ).
Therefore, in equation (A.2.10), we expect, that it does not play a role (in L% (R3?)) whether
we take G or G™. Consequently, as an approximation for &,,,, we introduce

T = AGT1O,,, (A.2.21)
- 1 &
m_1/2@m = G(pu - ]) - E Zl G((U(Xl) - V;)(SXZ)
1=
This function bears the advantage that it is the sum of i.i.d. random variables. Hence, it
is straightforward to study the limit properties of 7,,[g] := (g, 7). Notice that we both
replaced the average (u); by the value in the center of the ball u(X;) and 6" by d,. Since
ue H! (R3), Tm is not defined for every realization of particles. However, as we will see, it
is well-defined as an L?-function on the probability space with values in L2 _(R?).

A.3 Proof of the main result

The first step of the proofis to rigorously justify the approximation of u,, by %,,, defined in

() with &,, and ©,, as in (A.2.2() and (A.2.18).

Theorem A.3.1. Foralle > 0andallp < 1

i Py [ — on 1 sy > 2| 0,

The next step is to show that we actually have
m = u +m~ Y2, + o(m_l/Q)

which was the starting point of our heuristics, i.e. £, indeed describes the fluctuations of
U, around u. In contrast to Theorem , we can only expect local L?-estimates since
not even u,, — u is small in the strong topology of H!(R?).

Proposition A.3.2. Foralle > 0, all bounded sets K' C R® and all 3 < 1
lim P, [mﬁHﬁm —u— m_l/QﬁmHLz(K/) > 8] — 0.
m—0oQ

Combining Proposition A3l and , we observe that we only have to prove the
statements of Theorem B.I.Z with u,, — u replaced by m~—1/2¢,,. We postpone the proofs

of Theorem and Proposition to Section @

The next proposition shows that, instead of &,,,, we can actually consider 7,,, introduced
in the previous section.

Proposition A.3.3. For any bounded set K' C R3 and every( < s < % there is a constant
Cs(K') > 0 independent of m such that

By [l 2] < ColK7).
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Let 1,, be defined by (). Then,
lim sup '~ Eyy [[|€n — 7l 3yoa0) | < ColK).

m—00

We postpone the proof of Proposition to Section @

Note that for s = 0, these estimates include the case L?(K') which we will use now in
order to prove Theorem . Indeed, Theorem is a direct consequence of the above
results together with the classical Central Limit Theorem.

Proof of Theorem[A.1.3. Due to the uniform bound on E,, |||, |? 12(K ] from Proposition
3.3, assertion . of the main theorem follows immediately from Theorem h.3.1 and
Proposmon A.3.3since H'(R?) embeds into L (R?).

Since convergence in probability implies convergence in distribution, Theorem
and Propositions and imply that it suffices to prove assertion (ii) of Theorem
with &, [g] replaced by 7., [g] := (g, 7in) 12(rs), i.e we need to prove that

Tmlg] — €[9]

in distribution for any g € L?(IR?) with compact support. Since 7,,,[g] is a sum of indepen-
dent random variables, this is a direct consequence of the Central Limit Theorem and the
following computation for covariances: let g1, g» € L?(R?) with compact support, then

E, [Tm[g1]7m[g2]]

i=1

= m'E, (gl, S Alpu —j— (u(Xs) - v»axi))
L2(R3)

g2, ZA (pu—j = (u(X;) = V;)dx;)
= L2(R3)

= /Rsst (91, A(pu — j — (u(x) = 0)62)) 2 (g -
(g2, A(pu — j — (w(x) = 0)62)) 2 (gs) f(dz, dv)
_ /R oy (91 AL() = 0)8)g2(eo) (2 A((u(@) = 0)02)) e F(r, )
— (Ag1, pu — j) L2(m3) (Aga, pu — J) 12(r3)
= [, () = o) () @){(ule) — 0) - (Aga)) (. o)

= (pu =7, Ag1) 2y (Pu = Ag2) 2 (ms) -

Here we used that A5, € L2 _(R?) (see Lemma ]A.5.3) and that A is a symmetric operator
on L?(IR?). This finishes the proof. O

A.4 Proofs of Theorem and Proposition

In this section, we will reduce the proof of Theorem and Proposition to proving
the following single probabilistic lemma. The proof of this lemma, which is given in Sec-
tion @, is the main technical part of this paper. It makes rigorous the heuristic equation

(213
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As we discussed in the heuristic arguments, we will exploit in the following that the
probability of having very close particles is vanishing as stated in Lemma . In the
notation of this lemma, we abbreviate

Om = Om,O,B .

LemmaA.4.l. LetA,,,[,,, =, and=,, be defined by

Ap = (G™ - G) (1 > ((w)i — %)@’-") ;

Then,
lim sup m*E,, [lom IV(Gh+Ty, +En) ||%’2(UiBi) < 0,
m—0o0 J

lim sup m*E,, |:]-Om||Em||%2(UiBi) < 09,
m—00 _

lim sup m?’E,, [lomHém =+ Am”%? ®3)| < ©
s o0 loc i

The proof of this lemma is the main technical work of the present paper. We postpone
it to Section @

Proof of Proposition . Recall the definition of @, from (). We compute using
u=Gh—pu+j)and &, = AG10,, = 0,, — Gp&, (cf. (A.2.79)) and the definition of
0,, from ()

Uy, — U — m_l/zé’m

1 _ . _
:G<h‘m2<u—%+m 12¢,)00 > —u—m %,

(2

_ L V26 ysm ) 12 172
- <pu J m Z(u Vz +m fm)z(si ) m @m +m prm

=m12G (pém - % Z(fm)iézm> +(G™ = G) (; > (i - Vi)é;n>

7

Pp, [mﬁllﬂm —u—m 2|20y > 5}
< Pp[Or] + Ce*m*’E,, [lomHém + Am”%%}(')}

and we now conclude by Lemmas and . O
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Proof of Theorem . We observe that the assertion follows from the following claim:
There exists a universal constant C' such that for all (X1,...,X,,) € O,, and all m suf-
ficiently large

it =t gy < CUIV (- Glow = ) + VEmllfa, 5 + [ VEm 2,5 fA4D
+ Cm2||Em||%2(UiBz’)'

Indeed, accepting the claim for the moment, let 5 < 1 and ¢ > 0. Then, using again
=G((h—pu+j)

Pm m'B”’Ilm — U’mHHl(]RS) > 5:|
< Pp[Or] + Ce*m* By, |1 { (HV (Gh+Tm +En) HL2(U1 B) T mZH_mHLQ ulBl))} :

Thus, the assertion follows again from Lemmas [A.1.1 and A.4.1]

It remains to prove the claim above. It follows from the fact that u,, — @, solves the
homogeneous Stokes equations outside of the particles.

Let (X1,... X;) € Op,. Then, by definition of this set, the balls Bag,, (X;) are disjoint
for m sufficiently large and we may assume in the following that this is satisfied.

By definition of u,,, and i, we have —A (i, — u,,) + Vp = 0in R?\ U; B;. By classical
arguments which we include for convenience, this implies

. - 1 -
[ — umHHl (R3) <C <Hvum”%2(ui3i) + m Z(um - Vz)z2> . (A.4.2)

i

Indeed, i, — u,, minimizes the H'(R?)-norm among all divergence free functions
w with w = 4y, — wy = Uy — V; in U; B;. Thus, to show (-), it suffices to construct a
divergence free function w with w = 4, —V; in U; B; such that || w|| 1 (r3) is bounded by the
right-hand side of (A.4.9). Since the balls By, , (X;) are disjoint as (X1,..., X,) € Oy,
we only need to construct divergence free functions w; such that w; € H}(Bag,, (X)),
w; = Uy, — Vi in B; and

- 1
sy < € (19l + i — V02)

It is not difficult to see that such functions w; exist. For the convenience of the reader, we
state this result in Lemma below. Thus, the estimate () holds.

It remains to prove that the right-hand side of () is bounded by the right-hand side
of (). To this end, let x € B; for some 1 < 7 < m. We resort to the definition of %,, in

() to deduce, analogously as in (), that
_1 .
U (7) = (@) — (W)i + Vi —=m=2(&m)i + Glpu — j)(z)

1
U'—V'm m_agm'm
~a | ”Jmfaj () - G erb)fdj ().
i i
The definitions of &,,, and ©,, from (A.2.20) and (A.2.18), the identity &, = ©,, — Gp,,
implies that forally € B;

m3n) =G )0) ~ & |3V () — GlomHen) ),
i
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where we used that (X,..., X,,) € O,, toreplace G™ by G. Thus,

Um(x) = V;
— _ . _ 4 _ —N). (u)J ‘/J m
= u(z) — (w)i + Gpu — j) (@) = (Glpu — )i + G | Y p—
J#i i
el Z (U)] V}(%m (:L‘) + (G(pm_%ém))' e, Z m_§(§m)J 5;71 (m)
JFi jF#i

— (u+ Glpu— j))(@) = (u+ Glpu— )i + L) = (T)i + Eun @),

To conclude the proof, we again use (X7, . . ., X;,,) € O,, toreplace G by G appropriately.
Finally, we combine this identity with (A.4.2) and the estimate (Z,,)? < Cm?||Z,, H%z( By

LemmaA.4.2. Letx € R3 R > 0andw € H'(Bg(z)) be divergence free. Then, there
exists a divergence free function ¢ € Hi(Bag(x)) with ¢ = w in Br(z) and

10122 oy < € (IV0 132501 + B) )
where (0)e,r = fp_ ) wdx and C' is a universal constant.

Proof. We write w = w — (w)z,r + (w)z,r. By a classical extension result for Sobolev
function, there exists 1 € H}(B2gr(z)) such that o1 = w — (w), g in Br(z) and

Vol r2ms) < ClIVwl r2(By(a))-

By scaling, the constant C' does not depend on R.
Furthermore, we take o = (w), r0r Where 6 € C°(Bag(z)) is a cut-off function
with r = 1in Bg(z) and | VOg||.c < CR™!. Then,

IV 2l2 gy < CRw)? 5.

Finally, applying a standard Bogovski operator, there exists a function g3 € HE (Ba,(7)\
Bpr(x)) such that div p3 = —div (1 + ¢2) and

Vsl 2s) < Clldiv (o1 + @2)ll 22 ms)-

Again, the constant C' is independent of R by scaling considerations.
Choosing ¢ = 1 + @2 + 3 finishes the proof. O

A.5 Proof of probabilistic statements

This section contains the main technical part of the proof of our main result, the probabilis-
tic estimates stated in Proposition and Lemma . The strategy that we will use to
estimate all these terms is to expand the square of sums over the particles and then to use
independence of the positions of the particles to calculate the expectations, distinguishing
between terms where different particles appear and where one or more particles appear
more than once. Then, it will remain to observe that combinatorially relevant terms cancel
and that the remaining terms can be bounded sufficiently well, uniformly in m. This proof
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is quite lengthy. Indeed, expanding the square will lead to terms with up to 5 indices, thus
giving rise to a huge number of cases that need to be distinguished.

However, there are only relatively few and basic analytic tools that we will rely on to
obtain these cancellations and estimates. These are collected in the following subsection.
Their proofs are postponed to the appendix.

Some of those estimates concern expressions that will recurrently appear when we take
expectations. Indeed, since many of the terms in Lemma contain L?-norms in the
particles B;, we will often deal with terms of the form

B [1op@] = [ 1op@f(dy.dv) = [ 1ap(@p(e)dy = m~p)..

Another term that recurrently appears due to the definitions of @,, and &, is

(Rw)(z) := Epp, [(w);6F"] (x) = /

p) (W), @) dy = | ply)(w)y dy. A5
R3

aBm

To justify this formal computation one tests the expression with a function ¢ € C°(R3?)
and performs some changes of variables.
For the sake of a more compact notation, we introduce

Wi = (u)z — Vi, (A.5.2)
F = pu—j, (A.5.3)

F(@) =B W) (@) = [ (), = 005 (2) ()

- ][ o) (w)y — §(y) dH2(y). (A5.4)
oBm

SOME ANALYTIC ESTIMATES

In this subsection, we collect some auxiliary observations and estimates for future refer-
ence. All the proofs of the results in this subsection can be found in subsection @ of the
appendix.

In the following, we denote by K the bounded set defined by

K :={z € R3 : dist(z, supp p) < 1}. (A.5.5)
Note that B; C K almostsurelyforalll <: < mandallm > 1.
LemmaA.5.1. (i) Foralll < p < coandallw € LP(R3)
[(w)-ll Lo ms) < llwllLe(rs)- (A.5.6)
(i) Foralla > 0,alll < p < oo, and allw € LP(K), we have
[p*(w)- |3y < Cllwl| ek, (A.5.7)
where the constant C' depends only on p, p and c.
(iii) Forallw € H'(R?)

[w = (W) L2@sy < M7 Hwl| 1 sy (A.5.8)
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(iv) The operator R defined in (A.5.1) is a bounded operator from L2(K) to L*(R3) N
H=Y(R?) and from H'(K) to H'(R3). Moreover, there is a constant C' depending
only on p such that

(R = p)wllp2(rsy < Cm~Hwl g k), (A.5.9)
I(R = p)wll -1 gsy < Cm™H w2 (x)- (A.5.10)

(v) We have
sup [I1F -1 sy + 171 ) (A5.11)

HIF |2 @s) + 1 Fl z2es) + Em[WE]] < oo,
and there is a constant C' depending only on p and j such that
|F = Fll ooy + IF = Fllr sy < Cm™ (lull ) + 1l mes)  (A5.12)

LemmaA.5.2. Thereexists a constant C' such that forallx,y € R? and allm > 1, we have

1
9, <C—r——— A.5.13
\Gyl(w)_C|I_y|+m_l, ( )
1
A" < 14— A5.14
A5 < 0 (14 ). (451
1
Go," <C——m—. A.5.15
IVG6,'|(z) < P — ( )
In particular, for any bounded set K’
su]é)3 (||G5;”HL2(K,) + ||A5;”||L2(K/)) < C(K"). (A.5.16)
ye
Moreover, forallm > 1 andy € R3, it holds
165 -1 gy < O3, (A5.17)
with a constant independent of y and m.
LemmaA.5.3. Forevery0 <s < % and every bounded set K’
supg ”A(SyHHS(K’) + ”G(SyHH*(K/) < CS(KI) (A.5.18)
yeR
Furthermore, for every(Q < ¢ < %
10" = Oyl gr-s/2—e (gery < C(K)m™". (A.5.19)

Lemma A.5.4. Foranyk € N, G™ is a bounded operator from H*(R?) to H**2(R?).
Moreover, there is a constant C that depends only on k such that

G = G™ || g gy v sy < Cm ™2, (A.5.20)
HG — Gm”H’“(R3)—)H’€+1(R3) S Cm_l. (A.5.21)
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PROOF OF PROPOSITION

For the proof of Proposition , we first introduce another function, ,,, intermediate
between 7,,, and ,,,. We first show that &, is close to o,, in the following lemma, which we
will also use in the proof of Lemma .

From now on, we will use the notation A < B for scalar quantities A and B whenever
there is a constant C' > 0 such that A < C'B and where C depends neither directly nor
indirectly on m.

Lemma A.5.5. Using the notation from () and (), let oy, be defined by
Om = AGT1O,,, (A.5.22)

X 1 m
120, = GF - =Y G(WisT).
m O,, =G m 2 G(W;0.™)

Then, for every bounded K' C R3
En |[6n — omllizgey| < Cm™!
and
E,, [HV{m — va—m||%2(R3):| < Cm.

Proof. Let K be the set defined in (). We argue that AG~! satisfies

IAG™ w25y S lwll 2 (A.5.23)
for any K’ O K and any (divergence free) w € L?(K'). Indeed, by (), we observe that

AG™ = (1 - Ap)F,

and therefore (A.5.23) follows from the regularity of Ap discussed after (A.2.9).
We recall that both G and G™ (cf. ()) map to divergence free functions. Thus, by
(A.5.23), we have for any bounded set K’ D K

Em |6m = om |32

1 2

=_—FE,
m

Z AGHG — G™)(Wis™)

I L2(K")
g, 3% / (AcTH @ —amywiem ) (AGHG = ™) (W)

1 jFEi

1 2
7Em -G" 7 &
= [;/K,KG ] ]
=1 + bs.
Recalling the notation () and using (), we deduce
Iy = (m = DAGTHG = G™)F 2y S (m = DG — G™)F 1)

~
-3

N

+

S migHFH%Q(Riﬂ) Sm
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due to (A.5.11). It remains to bound I,. By combining (A.5.21) with (A.5.17), we obtain
1(G — G™) ) Baqasy < m 2101 1 sy S
Thus, by (A.5.11)

L Sm 'E, W] Sm!

For the gradient estimate, we can argue similarly: Since AG~! is bounded from H! (R3) to
HY(R)

B [I9(6n = om)les |

2
= —E,, ZVAG (G — G™)(Wi™)
mn L2(R3)
géEm ZZ/ VAG em Gm)(Wém)>(VAG (G — Gm)(Wj(s;ﬁ))
| =1 j#

[Z V(G — G™)(W;0™)] ]
=11 + 5.
Using (), we deduce
Iy = (m = 1)|[VAGTHG = G™)Fllf2 sy < (m = DIV(G = G™)F s
-1

S m_IHJ:H%%RS) Sm

~

I§ remains to bound /». Using that both G and G are bounded operators from H ~1to
H?', we find with (A.5.17)

IV(G — G™) () By S 15712,

(g S M-
Thus,
Iy S mEp[WE] S m
This finishes the proof. O

Corollary A.5.6. Forevery0 < s < % and every K' C R? bounded, there is a constant
Cs(K') > 0 independent of m such that

B [16m — oml3srer| < ColBym=12

Proof. This follows from Lemma and the interpolation inequality

Em ||§m - UmHJ%IS(K’)] SEn [Hgm Um”L21(KS/) vam - VUmH%SQ(K’)}

B [16m = O Begr] B [196m = VomBague |

5 m—1+25.

This finishes the proof. O
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Proof of Proposition . By Lemma , it suffices to prove

E,, [||am — Tl K,)} < Om 142 (A.5.24)
Em[HTmHZ s(K/)] < CS(K/)
forevery0 < s < . We introduce W; == u(X;)—V;. Itis easily seen that E,,, [IW?] < C'and

Em[|[W1 — W1 ] < L uniformly in m. Since W;dx, are independent identically distributed
random variables, we obtain

m 2
1 ~
1=1 Hs(K')
~ 2
—En “ AF — AWy, || ]
Hs(K")
< Cs(K')

by (A.5.18).

Finally, have to estimate o,,, — 7,:

B [Ham - TmHQ' S(K/)]

m 2

m =1 HS(K’)
1 & m T m T

< mz-;lEm U‘A(Wiai — Widy,) \HS(K,) (W87~ Widx,) HS(K/)]
1 - m T m 1

) mj;fEm [HA(W@ = Wilx) | e e HA(Wﬁj - Widx)) Hs(K')]

1 — < 2

T ;Em [HA(Wiéi - Widxi) HS(K'J

=11 + 1.

For I, notice that by ()

I =

—

m — DIIAF = F)[3

For I5, we estimate

AW = Wi ) ey < || AW: = W)

AW, (87" — 6x,

Hs(K") * H Wiloi" = 0x:) Hs(K")
< Wi = WilllAG* || grs ey + WGl A(ST™ = ) s (1)
< Wi = Wil + m* =2 [
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by () and by combining () with the fact that A is a bounded operator from
H*2(K’) to H*(K"). Inserting this above, we find that

E,, [\Wi Wi } +m R, [|V~Vi|2)}
< m—1+25.

~

Combining the estimates for /; and I yields () which finishes the proof. O

PROOF OF LEMMA

We begin the proof of Lemma by observing that we have actually already proved the
required estimate for A”. Indeed, A™ = m~/2(@" — ©™) with ©,, as in Lemma h.5.5.

Moreover, in the proof of Lemma 5.5, we showed ||©™ — @mH (@ S <mL

We divide the rest of proof of Lemma - into three steps correspondlng to the three
terms

I i=Epn 10,V (e + Glou = )72, |
I :=E,, [lomHVFmH%Q U'B-)} ’

I3 = TTLQ]E |:1(9m”~—4m||L2 Uz 7'):| +E |:1(’)m‘|ém||%2(K/)j| +Em [l(’)mHVEmH%ﬂ(UlBl) 9
(A.5.25)

where K’ is a bounded set. We need to prove I, < Cm~2 for k = 1,2, 3, uniformly in m
with a constant depending only on h, p and K'.

Step 1: Estimate of I;.

Since VGh € L?(R3) is deterministic, and the positions of the particles B; are indepen-
dent, we estimate

~

< m72|VGh|[Faggsy S m™>
Here we used (A.5.6) together with p € L°(R3).

Step 2: Estimate of I,.

Since I';,, depends on m, the computation is more involved. According to the definition of
T", we split I» again. More precisely, it suffices to estimate

2
by =, |[ve |3 Wi =Yg ,

J

_1
Loz = Ep [[VG(pm ™3 6m) 20,5,
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In the first term, we used that for (71, ..., Z,,) € O,, we can replace G™ by G according

to (A.2.17).

We first consider /5 1. We expand the square to obtain for any fixed ¢

_ I~ W) =V I o Wi = Vi o
Iy = mE,, /B VG m; gl | (2) | VG mg ——o| | (=)

We distinguish the cases j # k and j = k. In the case j # k, we apply a similar reasoning
as for I;: due to the independence of Z;, Z;, Z;, we have with F as in 5.4

. 2
Bi=wt [ o ([ VG, -0 @) a

=m~* | (0)e (VGIFI@)” do § m ™ VOIF fa(ge)

where we used again (). Since by (), F is bounded in A ~1(R?), we therefore
conclude that

S Y Hiswt

J#i kg{ik}
It remains to estimate /. éjl We compute
g B . )
B=mt [ o [ (V6,057 @) fdy.dv) do
R3 R3 xR3
St [ )y~ 0 VG R (s o)
R3xR3

By (A.5.17)
HVG(;ZALH%Q(R% Sm

Combining this with (), we conclude

D BhEm? [ ((wy—v) f(dy, dv)
J#z %

< m2 (||p1/2<u>.||%2<R3) + [ s dv>)
R3 xR3
< m2 (nun%m s [ Wi dv>) <m?,
R3xR3

by assumption .

We now turn to I3 2. We estimate

_1 _1
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with o, from Lemma l.5.5. Using this lemma and the fact that G is a bounded operator
from H'(R3) to W1>°(R?), we find

_1 _ _1 _
o [IVG (o™ 3 (6 — o)) 22| 0 2m™ En — o) [y gy S 772

Recalling the definition of 7,,, from Lemma , we have
2

_1 S 1 & m
- [HVG(pm zam)\@?(ui&)] <Y B ||VG (oA |F = — > Wi
i=1 Jj=1 L2(B;)

<3 B [IVG (0AF) (5,

2
m

(W 5m
7j=1

S\M

-~ -
+ZEm pA

=191+ I229.

L2(B;)

This is a very rough estimate, since we actually expect cancellations from the difference.
However, these cancellations are not needed here for the desired bound. Indeed, since
GpA is a bounded operators from H~(R?) to H'(R?), Iy 5 ; is controlled analogously as
L.

It remains to estimate /5 5 o. We expand the square again and write

S Wkag])) a
m
k=1

We have to distinguish the cases where all ¢, j, k are distinct, the case where j = k but
j # i, the case where i = j ori = k but j # k, and, ﬁnally, the case wherei = j = k.

In the first case, we can proceed analogously as for I% 1- In particular, we use the defi-
nition of F to deduce

ZZ Sk - —amim —;)Q(m—2) /Ra(p)z(VGpA}')de

i=1 j#i kg{ij}

I>99

- Zm: / va | pa ;iwjagn . (va (pA
i1 B; j=
DIP PNt

=1 j=1 k=1

S m_ZHVGpAIH%Q(R3) ~ m_QH‘FHZ 1(R3) ~ m_27

since GpA is also bounded from H~!(R3) to H!(R?).

Next, we estimate 12’72’72 Analogously as for I3, we obtain

ZZIQ%: *3m /R ) (VGpA((u)y — v)5(x))? f(dy, dv) do

3
i=1 j#i R

_ -
<m™3 RS((U)y = 0)?[|VGPpAS; (@)[| 5 s £ (dy, dv).
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Since VGV is abounded operator from ' (R?) to L2(R?), we obtain by (A.5.17) combined

with () and using
>SS gt (102 e + [ P fanan) S mo?

i=1 j#i

The third estimate concerns _72’2’ 5. By symmetry, 2’]2 12 is dealt with analogously. We

have, using (A.5.17), (A.5.11)), and (IK .7 together with (),
PPN e

i=1 k#i
_mm—1) /Rg Ep (15, VG (pA [Wis7"))] VG (pA[F)) da

m

S IVGpAF| 2 (ws)

~

[ Ao VG (pA[((0), ~ 0187 Fldy. o)
R3xR3

L2(R?)

Z/\

sup [VGpAT) o= | [ () = )L (o)
yeR3 R3 xR3

S mPm7 | (p(w). = ).\l sy S m 2.

L2(R3)

We also used that the operator VG pA maps H~!(R?) into L>(R?), as well as j € L?(R?)
by assumption . o
Finally, we estimate I;ZQZQ Using (A.5.17) and (A.5.7), we obtain

S nt = 2 [ B [15VG (pA W) >} da
=1
mN 12
m/Rg/R3 ” Lpm(y ‘VG(,OA[ 5y])’ f(dy,dv) dz
< sup [VGPAT | ) / / 1y ((w)y — ) f(dy, dv) da
M RS R3 JR3xR3

S [ g (@ + [oP) £(dy,dv) da
R3 JR3xR3
-3 2 2
< ([ ol ayas [P say.a)

Sm™

This finishes the estimate of I3 2 2. Therefore, the estimate of /5 5 is complete, which
also finishes the estimate of /.

Step 3: Estimate of I3.

We recall from (A.5.25) that I3 consists of three terms, which we denote by .J;, .J, and Js.
We will focus on the proof on .J; as this is the most difficult term. We will comment on the
adjustments needed to treat J; and J3 along the estimates for J;. Roughly speaking, the
main difference between .J; and .J is that one considers L?(U; B;) for .J; and LZ .(R3) for
Jo. Naively, J; should therefore be better by a factor | U; B;| ~ m~ 2 which is exactly the
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estimate we obtain. Moreover, J3 concerns the gradient of the terms in J;. Since we may
loose a factor m 2 going from J; to J3, it will not be difficult to adapt the estimates for J;
to J3 using the gradient estimates in Section @ For the sake of completeness we detail
the estimates for J3 in the appendix.

Step 3.1: Expansion of the terms

As in the previous step, we first want to replace all occurrences of G by GG. Note that G™
is present both explicitly in the definition of Z"* and also implicitly through &,,,. By ()
and independence of the position of the particles, it holds

B (10, 1l
2

[ m _1

< mE, |10, / Glom 36— 6 | "l g
i i=17Bi i

- 2

N

B i
I 2
S5 | [ |otom 26— o) ac]
_ B 9
+m’E,, |10, / G(Vm_%am) -G Z mQTSm)J@“ dz |,
g J#i

where on the right-hand side, ¢ is any of the m identically distributed particles. We use that
Gp is a bounded operator from L?(K) to L°°(B;) and Lemma A.5.5 to deduce

B [/B ‘G(Pm‘”?(fm - "m))ﬂ S B |:HG(pm_1/2(§m - Um))H;(Bi)]
S [ o)

<m72

2
-

This implies, that for the estimate of J1, it suffices to show that

2

J1:=Ep, lom/ G(pm_%am) -G Z M@m dz 5 mo.
B; T

By the definitions of m_%ﬁm and m~ 2 pm (cf. () and ()) together with
(), we have in O,

_1 m m
G(pm_%am)—G ZW(ST Z%ZZ‘I’J‘M

i k=1 j=1

U () == G [pA (F — W) — (1 — 6;))G [(A (F — (1 8;)Wid), 5;’1}1;.5.26)

(Strictly speaking ¥ ; ;. depends on ¢, but we omit this dependence for the ease of notation.)
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Thus,

7wiiiiﬂw

k=1n=1/¢=1

J
[orknt . — g, V U p(2) U0 (x )dx]
B;

Similarly, we have the estimate

—_

J3:=m3 Z 3 f: Emj Epm [/B VU, o (2)VT,, o(2) dx] : (A.5.27)

with the same proof as before using that VG is a bounded operator from H L(R3) to
W1 (R3) and the second part of Lemma A.5.5.
Furthermore,

where U ;. denotes the function that is obtained by omitting the factor (1 —d;;) in ().

Relying on this structure enables us to make more precise the argument why the esti-
mate for Jj; is most difficult compared to J2 and J3. Indeed, for the estimate for Jj3, one
just follows the same argument as for ;. The relevant estimates in Section @ show that
whenever VG instead of G appears, we loose (at most) a factor m~!. For completeness,
we provide the proof of the estimates regarding 3 in the appendix.

On the other hand, for J2, we can use the estimates that we will prove for the terms
of J; in the case when the index i is different from all the other indices. Indeed, in those
cases, ¥, = ¥, ;, and we will always estimate

1,7,k,m, ¢ — —
’I3] | = ‘m 3/Rs(p)xEm [\Ilj,kq/n,é] dz| Sm 3 IEm [\I"j,k(x)\l’n,ﬁ(x)]HLlloc(]RB)‘

Thus, the bound for J, is a direct consequence of the estimates we will derive to bound ;.

Recall that we need to prove |Ji| < m~2. We will split the sum into the cases

#{i,j,k,n,¢} = o, a = 1,...,5. Then, since i is fixed, there will be m®~! summands
for the case #{i, j, k,n, £} = «. Thus, it is enough to show that in each of these cases
|I§’j’k’n’£| Sm™%,  a=#{i,j kn,tl}.

To prove this estimate, we have to rely on cancellations between the terms that ¥ ;. is
composed of. To this end, we denote the first part of ¥ ;. by

v = 0D 4 0 = G [pAF — p AW,
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and the second part by

2 ._
Ve =Y ik

We observe that

E,[@hV] = GpAF,

Em[lyl(gLQ)] = G,OA.F, (A5.28)
En[0PY] = (1 - 6,;)GRAF, -
En[057] = (1-65)(1 = 0;5)GRAF

Step 3.2: The cases in which at most 2 indices are equal

In many cases, we can rely on cancellations within \Il,(:) and \I!ﬂ

the following lemma:

. Indeed, we will prove

LemmaA.5.7. Let K' C R? be bounded. Then,

HEm[\PS)]’ <mh (A.5.29)
L2(K')
HE’"[‘I’ﬁz]‘ L2(K7) SmTtoifj#k (A.5.30)

There are only three cases (up to symmetry), where we have to rely on cancellations
between \Ifl(C ) and \Ifg ) to estimate I bkt These are the cross terms, when either j=n,
ork = /¢, or j = ¢, and all the other 1nd1ces are different. In these cases, we will rely on the

following lemma:

LemmaA.5.8. Let K' C R3 be bounded. Then,

B (9500 0] I pa ey Sm™2 if #{i, 4.k, 0} =4, (A.5.31)
B 1950 U] |1y Sm™2 if #{i, 5, k,n} =4, (A.5.32)
B (W56 W] L1 iy S ™2 if #{i, 4, k,n} = 4. (A.5.33)

Finally, we obtain the following estimates, useful in particular for the cases in which
i=k.

LemmaA.5.9. Let K' C R3 be bounded. Then, for anyi, j, k,

Em[\y(lvl)]‘ L2(K") + H m| (1 2)]’ L2(K") + HE (2 1)]’ L2(K')
¥ Em[qff,f)]‘ prn 51 (A.5.34)
| P | B L
+|E.n qu;(?f)]‘ o m=3, (A.5.35)
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. . RARN.
Combining these lemmas allows us to estimate /57"

#{i,j, k,n, 0} > 4.

in all the cases when a =

Corollary A.5.10. The following estimates hold true where the implicit constants are in-
dependent of m:

L. If#{i,j,k,n,l} =5, then
‘I§7j7k7n7€| < m75.

2. If#{i, j, k,n,l} =4, then
‘I§7j7k7n7€‘ < m_4.

~

Proof. If#{i, j, k,n, ¢} = 5, thenbyindependence, the Holder inequality and Lemma

1,7,k,n, L
595 < [Bn [t ) ng) B (95400 ) o [l

<mB3m7imt =m5.

If #{i, j, k,n,¢} = 4, we need to distinguish all the possible combinations of two in-
dices being equal. Depending on which indices coincide, we split the product by indepen-
dence of the other indices. If j = n, k = £ or j = ¢ (or kK = n which is the same), we rely
on Lemma and gain an additional factor m 3 from the expectation of 1 B

If j = k (or analogously n = /), the expectation completely factorizes into
Em 157 |Em [V j;]E,[¥,,] and we can apply (A.5.34) for the second factor and LemmaA.5.7
for the third factor.

Finally, in all the other cases we can, without loss of generality, split the expectation
into E,,[15m V jx|Eq, [V,,] and apply (A.5.35) for the first factor and Lemma for the
second factor. O

We finish this step by giving the proofs of Lemmas A.5.7,A.5.8 and A.5.9.

Proof of Lemma lA.5.7. By (A.5.28), we have

En[0}"] = GpA(F - F),
and using () yields (). Similarly, for j # k, i # j,
En[¥)] = GRA(F - F).

Using again () and recalling from Lemma that R is a bounded operator from
L?(K) to H(R?) yields (A.5.30). Fori = j, \Il§2,2 = 0 and there is nothing to prove. [

Proof of Lemma . Regarding (), we have
En jk‘lljf]
- ] (@ = g | (41— (i) ) 1]
Y1
(G 0 (5 — (0 = )58)] - | (415~ (= 153) ) ] )

f(dy1, dv1) f(dya, dvz) f(dys, dvs)
— [ o) (GoA(F = F) ~ (A(F = F)),,GE)*
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We obtain

I (9096 |1 57y S IGPA(E — F)l[2 01 +/ﬂ(y)(A(Ff))§||G5T|!%2(K) dy
Sm2 +JAF = F)|f2gen Sm 7%

~

where we used () for both terms and () and () for the second term.
Regarding (), we compute

E ]k\I/n k]

- ] (et @ -0 - | (4= (- i) ) 2] )

(G (5 = (e i) -6 | (47 (- i) ) 53]
Y3
f(dy1, dvr) f(dye, dv) f(dys, dvs)
= [ plae) (Glo = RIAF = (), = 02)Glp ~ R)ATE)’ (i, o)

Thus, we obtain
1Em [V Wkl 21y S NG(p— R)AF”%P(K’)

+5up G~ R)A gy [ (). — 0 F(dz. )

—2
SmT

where we used () for both terms and () and for the second term.

Finally, to prove (), we just apply Young’s inequality to reduce to the previous two
estimates. Indeed,

B [V, 00,,] = / (GoA(F — F) — (A(F — Fyu), G5
(G(p = R)AF — ((u)y —v)G(p — R)ASy") f(dy, dv)
< [ oto) (Goa(F ~ F) = (A(F ~ Py, G57') "y
+ / (Glp — R)AF — ((w), — v)G(p — R)AS™)” f(dy, dv).
These two terms are exactly the ones we have estimated in the previous two steps. O

Proof of Lemma . The first estimate () follows directly from () and ()
together with the fact that the operators GpA, GpA, GR A and GR A are all bounded from
H'(R?) to L2 _(R?).

loc
Regarding (), we first observe that these estimates follow directly from () in
the cases, when i # k. Indeed, ifi is different from both j and k, the expectation factorizes.
Moreover, the case ¢ = j is trivial, since the terms with index j vanish for i = j.
If i = k, we only need to consider those terms, where k appears, i.e. \I!S’Q) and \I/f,f).

Again, we only need to consider the case j # k = i.
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We have for \IJI(:Q)

1B 1 0] 2 ) = H [ 1y Goa () — )57 S0

L2(R?)
< sup [GoAT e | [ () = o) 1m0 1)
y€R3 L2(R3)
Sm7|(p(w). = ) ll2@sy S m~,
where we used (A.5.16), (A.5.6) and (A.5.7). Since for j # i,
Ep[lp 0'%%] = / 15m () GRA [((u), —v)é™] f(dy, dv),
the estimate of this term is analogous. O

Step 3.3: The cases in which the number of different indices is 3 or less.

It remains to estimate \Ié’j’k’”’el, when #{1, j, k,n, ¢} < 3. We will show that ]I;j’k’"’[\ <

m =3 for #{i, j, k,n, ¢} = 3, and \Ié’j’k’"’l] < m~2for #{i, j, k,n, ¢} < 2. Formally, a factor
m~3 can be expected to come from the term 1 B, SO that cancellations are not needed for
the estimates of those term. We will see that this strategy works for all the terms except for
157598 with 4, j, ¢ mutually distinct.

Thus, in all cases except I L3434 with i, j, £ mutually distinct, we just brutally estimate

the product ¥; ¥, , via the trlangle inequality

< Z /‘E le\I, ,ﬁ)\l,( )}

a,B,7,6=1

i7j7k7n7€
3

with the convention that \Pglél) = (LD and similarly for gl ik ?) and \If(

We now consider all possible cases of («, 3,7,d) € {1 2}4 and #{z Jyk,n, 0} < 3.
Since ¥'1) does not depend on any index and both \IJ,(:’Q) and \115-2’1) only depend on one

index (not taking into account the dependence of i since \1122’1) =
of cases to be considered considerably reduces for these terms.

In order to exploit this in the sequel, we introduce the following slightly abusive no-
tation. When considering the term E,, [1 Bm\IJ(a’B g, 5)} for fixed «, 3,7, §, we define the
notion of relevant indices to be the subset of 1ndlces {z Jj, k,n,(} appearing in this product
after replacing \IJ( b by U(11) and similarly for \li(le), g ik Y and for the indices n, L.

To further reduce the number of cases that we have to consider, we next argue that we
do not have to consider the cases {j, k, n, £} with J N {j, k} N {n, £} = (), where J is the set
of relevant indices. Indeed, in all these cases, the expectation factorizes, and we conclude
by the bounds provided by Lemma . In particular, we do not have to consider any
case where U(11) appears.

Moreover, if j is a relevant index and 7 = j, then 1'(2’2) = \11(2’1) = 0, and therefore,

there is nothing to estimate. If j and k are both relevant indices and j = k, then \11(2 2 =0,
and therefore, there is nothing to estimate either. The same reasoning applies to the cases
where i = n and n = /, respectively.

We now list all the cases that are left to consider. Cases that are equivalent by symmetry
we list only once. We use the convention here, that we only specify which relevant indices

21)

0 anyway), the number
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coincide; relevant indices which are not explicitly denoted as equal are assumed to be dif-
ferent. The indices which are not relevant may take any number, in particular coinciding
with each other or with relevant indices.

1. (o, B,7,d) = (2,2,2,2): Relevant indices: {i, j, k,n,¢}. Since all the indices are
relevant, we only have to consider cases where at least two pairs or three indices
coincide. All the other cases are already covered when we have estimated 7%
with #{1, j, k,n, £} > 4. The cases left to consider are

a) i=k j=n,
b) i=k j=1{¢
oi=k=4{

d j=nk=4¢,
e) j=4k=n,

f)i=k=1(j=n.

2. (a,8,7,9) = (2,1,2,2): Relevantindices: {i,j,n,¢}. Cases to consider:

a) j=mn,
o i=4L7j=n.

3. (a,8,7,9) = (2,1,2,1): Relevantindices: {i,j,n}. Only case to consider: j = n.

4. (a, B,7,9) = (1,2,2,2): Relevantindices: {i, k,n,¢}. Cases to consider:

a i=k=1V,
b) i=/¢k=n,
c) k=n.

5. (o, 8,7,0) = (1,2,2,1): Relevantindices: {i, k, n}. Only case to consider: k = n.
6. (o, 3,7,0) = (1,2,1,2): Relevantindices: {7, k, ¢}. Cases to consider:

a) k=1¢,

b) i=k=~/.

In order to conclude the proof of the lemma, it now remains to give estimates for the
cases listed above.

The case (): As mentioned at the beginning of Step 3.3, this is the case, where we rely
on cancellations with ¥(21) coming from case (2d). We estimate

En |1y (0)9 57 @)(w7 " - 07 (@)]
= ] 15 @G [(A (@5~ e)3]),, 53] @
G [(A(F = F)),,, 0] (@)F(dys, dv1) f(dyz, dvs)

— ] o)1 @) (A LWy = 02)31),, (GO o) (ACF = 7)), Fldyn, o)
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Hence, since A maps LQ(R3) N H—l(R3) to Loo(Rg) and by ()
[ [t w22 @ - 2]
sme ///P<y2)13m<y1>(w) (A (W), = 01)a32),,,| (GO (@) fdy, don) dys .
By (A.5.13)

1
ly2 — y1]% + m—2

/ 15m () (2) (G612 ) (z) do S m™> (A.5.36)

Combining this with the pointwise estimate () yields

o4

_ 1 1
Sm ﬂp(y2)‘(u>y1 _U1‘|y2 _y1|2+m_2 <1+ ‘yQ _yl‘ +m_1> f(dylvdvl)dy2

< m*logm / (), — w1l f(dyn, dvy) S m-—tlogm,

where we used () and .

The case () is similar. However, it turns out to be easier, since the singularity is sub-
critical, so we do not need to take into account cancellations. Indeed,

E,, [lgm(ﬂc)\li(?’z)(x)\IJ(z’z)(x)}

= [ 15mw@ [(A L — o)), 53] @)
G| [ (A1 = 02)33),, 05 s o] () o) (i )
— ] (@ = ) (@ = e2) L ) (453, (G o)
- (GRAGY) () f(dyr, dvr) f(dya, dup).

Thus, since GR maps L?(K) to L>°(R3) and by (A.5.16)

e w2795

< // (s = o) (e = 02) Uy (@) | (4571 | [(GO32)] (@) £ (dyr, don) (g, dvs).

(A.5.37)
Now we proceed as in the previous case to estimate
/‘Em |:lBln\If§-?’2)\If$l2j’2)” dx
< -3 2 1+ \yz—y11|+m—1 dui . d duo. d
m _vl + ((U)y2 _UQ) |y2_y1‘+m,1f( Y1, dvr) f(dyz, dv2)

m
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The case (): We have
By |1 ()03 (2)0 37 (2)]
— [y @ (6| [ o) (A0 ~ 053], 05 ] ) (02, aon)
= / ((w)yy — 1) 1gm(y (@) (GRAST) ()2 f(dyr, dvy).
Thus, using first that | GR Ad; || . r3) S 1asabove, and (A.5.6) together with (A.5.7).
/ ‘IE qu, (2.2) g2 2 ) dar < // o — 1) L g (g (@) £ (dyr, dvy) dar < .
The case (): We compute
En |1y (@) 057 ()05 (@)
=7 [ (p)aptve) (G [(A (W —00)32]),, 53] (2)) () e
=7 [ (P)apue) (why — 00)? (A5})?, (GO (a) (o, o) i

Using (-) twice, (-) together with m and n, we can successively estimate the
integral in z, y2 and (y1, v1) to deduce

/‘Em R el )dx<m / p(2) (), = v1)* (A [532])2 F(dyn, dv) dyo

Sm7 [ ((w)y, — Ul) f(dyr,dvr) Sm™>.

The case (): We just observe that by Young’s inequality

] [En (15?7 v < [ B [IB:" ((\Ifﬁ’”)2+ (\11532’)2” da.

Thus, this case is reduced to case (E).

The case (@. Note that #{i, j, k,n, £} = 2. Hence, we only need a bound m 2. We have

En |Lop (@) 057 () 953 ()|
— ] o tmmun @) (& [ (AL — 0)330),,, 53] @) £ dor) e
= ] o) (@ = ) L ) (AT, (G2 ), o) e

We can estimate the integral in z using again (A.5.36)
/‘E B 22)\1122)”(133
m 2 m
> /P( )((U)y - Ul) le(yl)(x) (A(Syl)yQ (G5y2)2($)f(dy1, dvy) dy2 dz

S [ o) (W = 00)? (A5,

v2 lyg — 12 +m

— f(dy1, dvy) dys.
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Moreover, using (), we find
/‘Em |:lem\I]§%2)\I]§%2)H dx

S 77”6_3/0(@/2)((U)y1 — )’ < 1 1

+
ly2 =12 +m=2 " |yo —y1|* +m~4

) f(dy1,dvr) dy2

<m72 [ ((w)y, —v1)* F(dyr, dvr) S m~2,

where we used () and |(H1) in the last estimate. Note that this estimate is sufficient,
since the number of different indices in this case is only 2.

The cases (@) and (@) arereduced to the cases (H) and () by Young’s inequality, anal-
ogously as in the case ().

The case (@) was estimated together with the case () if k is different from the other
indices.

If k coincides with one of the other indices, the number of different indices is 2 and we
can reduce the case to the cases (E) and ( by Young’s inequality.

The case (E): In this case we get a factor m 3 from 1 pr and thus the desired estimate
follows from

NEm [ 211 ey < / P (AF)y, PG 32 ) dun < 1,

where we used (A.5.16) and (A.5.7).

The case (@) is estimated by an analogous computation as the one at the end of the
proof of Lemma [A.5.9, relying on the fact that

\|‘I’;(:’2)||Loo(R3) S (w)k — Vi, (A.5.38)
which is a direct consequence of () and the fact that Gp is bounded from L?(K) to

(2,2)

L>°(R3). Since the index n is free, a similar bound can be used for ¥,

. More precisely,

B [150 02 w22

n,i

< [ Vi [GRA (W)~ o0) 3] |G (s~ 1)55]] £ )

S [ ol @ = o Fldyn, o),

since GR and Gp map L2(K) to L°°(R?) and using again (A.5.16). As before, integrating

in x yields a factor m 3.

The case (#H): Using (A.5.39) yields

1,2) (2,2
B [1pm w2 02|

S [ ol @ = 01l 0) — walGILI ATy, o) (e, o),

which is the same as () which we have already estimated.
The case (@) is reduced to the cases (@) and () by Young’s inequality.
The case (E) is reduced to the cases (@) and (E) by Young’s inequality.

The cases (@) and (@) are estimated by an analogous computation as the one at the

end of the proof of Lemma , relying on () again.
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A.6 Appendix

PROOFS OF THE AUXILIARY ESTIMATES FROM SECTION @

Proof of Lemma . (i) Define
W)= f  wl) ).
B

We observe that for w € W1P(R3),1 < p <

w]||F, :/ ][ w(y) dH(y
e = [ |, w0
< [ N o) @0 (0) do
:/ ][ 1|y/|:m_1|w(y'+a:)|pd?-[2(y’)daz
R3 JR3

= /R3 ]f@ Ly =1 |w ()P dH?(y') da’

= HwHip(R?))'

p
dx

By density, the operator [-] is defined on L?(R?). Using an analogous argument also for the
average (-) over the full ball yields (A.5.6).

(ii) If w € LP(K), the fact that p € L° has compact support in K implies .5.9.

(iii) To prove (A.5.8), we first establish the following inequality:
~ LetR > 0and ¢ € L'(R?) with ¢ > 0, suppp C Bg(0) and [¢|/1 = 1. Letw €
H'(R?), then

ng*w—wHL2(R3) < RvaHL2(R3)- (A.6.1)

There are several ways to prove this. By scaling, it is enough to consider the case R = 1.
We can use the Fourier transform: observe that » € C*°(R?) with

V3| = |Flap)| € L=(R).

Since ¢(0) = 1, this shows that there is a constant C' > 0 such that |(1 — ¢)(k)| < C|k|.
Hence,

o % w —wllfagms) = 11 = )il F2gms) < Cllkid|Faes) < ClIVellZas.

Now, (A.5.8) follows by choosing ¢(z) = 1 Bm(0)()-

(iv) We note that Rw = [p(w).]. Thus, R is a bounded operator from L*(K) to L*(R?) N
H~(R?) and from H'(K) to H'(R?) by the previous estimates, together with the assump-
tion that p € W1 with compact support and L%/ (R3) ¢ H~1(R?).
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For the estimate (A.5.9), we compute, for w € H*(R?),
1R — puol e

- ][ py) (w), dH2(y) — pla)w(a)
dB™ ()

L2(R3)

IA

f (oY) — p(a)) (w), dH2(y)
OB™(x)

L2(R3)
f p(x) (w)y — w(z)) dH2(y)
OB™(x)

=:J; + Jo.

_l’_

L2(R3)

Further, it is by Jensen’s inequality

)

/ ][ — (@) | (w)y 2 dH2 () da
R3 JOB™( x)

=m 2||VP||L°°(R3)||w”%2(R3)7

2

f (0(y) — p()) (w)y dH(y)| da
9B™ ()

where we used (). Moreover,

B[ e 2@, e o) =]
<ol [, A wEaay—u
=ttt [ | [ (7@3% B i, dy) (1(2)) d= — w(z)

2
=l [ | [ pla =2 ds - wio)

dz,
with the choice

dx

2
dx

2
dx

o) =] B Myen, dy
OB™(x)
Using Fubini, we easily see that ¢ satisfies the assumptions to apply (). Hence
I3 < O™ pl|F oo oy IVl T2y -
This proves (A.5.9). Finally, estimate (A.5.10) follows from testing with ¢y € F*(R3)

(pw — Rw, ) = (w, pyp — Rap) < miluwHL?(R?’)H/’”WI»OO(R?’)Hwap(H@)'
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To justify the first line, observe that

/RS(Rw)(:v)ﬂ)(x) da = /p(az)(w)I][ W(y) dH2(y) da

dB™ (z)

= [ p(z) 1|:c—z|§1/mw(z) dz Y(y) dH’ (y) dz

/ <]I[R3 ) ]{937"(1)

= ’LU(Z) 1|mfz|§1/mp(x) 1/’(?/) dHQ(y) dz | dz
/R3 (ﬁ@ faBm(a:) )

- / w(z) (Rap)(2) dz
RS

(v) Recall that F' = pu — j. Since p € L has compact supportand u € H L(R3), we have
pu € L2(R?). Furthermore, from hypotheses|[H3)we have j € L2(R?). Since F = Ru—]j]
and u € L?(K), we have F € L?(R3). Finally, we have with W; = (u); — V1

B2 = [ e = ol r@edn) <2 [ plaPdorz [P sdndo)

R3xR3

< Cllull o) +2 / [o[2 £ (dz, dv)
R3 xR3

which is uniformly bounded by () and (HL).
To prove (), we first focus on estimating the L?-norm. Note that

F—F=pu—j—(Ru—1j]).
Hence, itis
IF = Flirzms) < llou — Rull p2gsy + 17 — Ul 2 (s -
Using (), it is enough to see
lw — [l sy S M ol g1 sy forallw € HH(RP).

First, let w € S(R?). Then

lw — [w]l|Z2 @) = dz

2
(z) — w(y) dH>(y)
Bm(az

/ ]([937,%36 (2) —w(y)[® dH*(y) do

/ ][ / V(e + t(y — o)z — v dt dH2(y) da
oB™ (2)
gm—Q][ / Vw2 g dt AH ()

oB™ 0

- m72HwHH1 RS)

where we used Jensen’s inequality twice and the fundamental theorem of calculus. Now by
density of S(R?) in H' (R?), we obtain the estimate of the L?-norm in (A.5.19). To estimate
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the /~!-norm in (A.5.17), we again argue by testing with ¢y € H*(R?3). By (A.5.10), it is
enough to see

G = UL =160 = WD < illes) 19 — [l 2@y < m 9l g sy
This finishes the proof. O
Proof of LemmalA.5.3. Recalling the definition of B™(y) = B, (y) and (A.1.7), it is well-
known that
mld x € B™(y)

2

glx —y) — ‘@ Ag(z —y) @RS\ B™(y),
with g as in (A.2.1). Then (A.5.13), (A.5.15) and (A.5.16) follow immediately. (A.5.15) implies
that [| G| j1 (gsy < m!/? and, since G is an isometry from H~!(R?) to H'(R?), this proves

(A.5.17). The bounds for A follow by using the identity A = G — ApG and that Ap maps
L2 (R3) to L= (R3) O

loc

Go)'(z) = {

Proof of Lemma . To deduce the bound for G§, in Hj (R?), note for example that
e~ PGS, = el*=Yl /(4|2 —y|) € H*(R?) (e.g. by Fourier). The corresponding estimate
for A follows from the identity A = G — ApG (cf. ()) and the fact that Ap maps H] .
to Hyj .
For the second estimate, observe that F/3/2+¢(K’) embeds into the space of e-Holder

continuous functions on K’. Hence, we may estimate, for every w € H?%/?>*¢(K")
(6" — by, w) < ]i w lw(z) —w(y)| dH?(z) < m=E|wllcexry < Cm=F|wl| grssae gy
™ (y

This concludes the proof. O

Proof of Lemma . By (), G — G is a convolution operator with convolution ker-
nel

Gm = NMmg — Vm.

Thus, to prove (A.5.20) and (A.5.21)) it suffices to show

IV Gl 11 m3y < 2! (A.6.2)

for! = 0, 1. Moreover, () for! = 2implies that G™ is a bounded operator from H! (R3)
to H!*2(R?) since we know that G is a bounded operator from H'(R?) to H!*2(R?).
By definition of 7,,, we have forall/ € N

IV (1mg)] S m' gy (0)\Ban,, (0)-
In particular, forall1 <p < occandalll € N
IV () | Loy S 377, (A.6.3)
In view of (), this implies
IV ()| 2o sy S m! T3P, (A.6.4)

forall! > landall1 < p < oo. By the Holder inequality, this bound also holds for
p = 1 and by the Poicaré inequality also for [ = 0. Combining (A.6.3) and (A.6.4) yields

(A.6.9). O
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ESTIMATES FOR 3

In this part of the appendix, we detail the estimates of J3 from () We follow the same
strategy as for J; described in Steps 3.2 and 3.3 of the proof of Lemma [A.4.1. Therefore,
we just name and prove the relevant lemmas. Observe that we need weaker bounds. If we
want to show |J3| < m ™2, this requires

LY =Em [/B VU (2) VU () dx] Sm P a=#{i,j,k,n, ().

As before, we write VU, ; = V\I/,(;) + V\Ilfl), where
vl .= v 4 voll? .= va [pA (F - W),

and

2 2,1 2,2
Vo) = vel) e vel? = (1 - 5)ve

J

(A (F - Wk(s,gn)) 5;1 .

J
Recall that Wy, = (u) — Vyand F = pu — j.
We observe that

]
J

v = (1 - 6,,)VGRAF,
]

(A.6.5)
J
En[VO52] = (1-65)(1 - 0;4) VGRAF.

Furthermore, we observe that the only difference to the discussion of J; is that the out-
most G is replaced by VG. Hence, we we will apply the same strategy as before using the
analogous auxiliary estimates for the gradient.

We start by giving the corresponding lemmas in the case #{i, j, k,n, {} > 4.

Lemma A.6.1.
HEm [W}j’]( <mL (A6.6)
L2(R3)
(2) < o1 s
“Em[ij’k]‘LQ(R3) <m=' ifj £k (A.6.7)
Lemma A.6.2.
B [V VY] 2y S m™ if#{i, .k, £} = 4, (A6.8)
B V6V i) irsy Sm™ if#{i, g, k,n} =4, (A.6.9)
1B [V VU] sy Sm™" if#{i,j,k,n} = 4. (A.6.10)
LemmaA.6.3. We have for anysi, j, k
En Vo] 4 [Env el
L2(R3) L2(R3)
M T
E,,| V¥ E,,| V¥ . A.6.11
+ (V=] L2(R3)+ V7] Loy (A.6.11)
owLl) g1
Emllpp VY ]‘ e@e) ‘Em[lBi V¥ ]‘ L2(R3)

<m~ %2 (A6.12)
L2(R3)

(2,1)
+ [|Em[15m VY, ]‘

. H]Em[l B;nvq:f,;”](
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Proof of Lemma . By (), we have
En[0\V] = VGpA(F — F).
Using () yields ().
Similarly, for j # k, i # j,
En[V)] = VGRA(F — F).
Using again () yields (). O
Proof of Lemma . Regarding (), we have
B [V59%5] = [ plun) (VGPA(F = F) = (A(F — F)),, VG53) dun,

and hence

1B [V V0] | 11 3y

S IVGPA(F = gy + [ o) (A = 7)), IVGE sy

<m21m!

S,
where we used () for both terms and () for the second term.

Regarding (), we compute
Ep [VU; VT, 4]
— [ ) (V6o = RIAF = (), ~ v2) V(o — R)AT)” Fldys o)
Hence, we obtain
1B V56V k]l 11 3
S IV G = R) Al e + 59D [V G(p = RIAT sy [ (1), = 12)”F (i i)

-1
Smo

where we used (A.5.10) for both terms and (A.5.16) and [H1) for the second term. Finally,

(A.6.10) follows from (A.6.8) and (A.6.9) via Young’s inequality.

O]

Proof of LemmalA.6.3. The first estimate, (A.6.11)), follows directly from (A.6.5) and (A.5.11)

together with the fact that the operators VGpA, VGpA, VGRA and VGRA are all

bounded operators from H~!(R3) to H'(R?).

Regarding (), these estimates follow from () ifi # k. If i = k, we only need
to consider those terms, in which & appears, i.e. V\I/g’Q) and V\Ilﬁf). Again, we only need

to consider the case j # k = i.
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Then

HEm [IBZmV\II%’Q)}H - H/leVGpA W)y, — v1)67] f(dy1, dor)

IN

sup [|[VGpAd,; || r w3
y1 ER3

/((U)y1 —v1) gy f(dyr, doy)

L2 (&)

< m~5/2,

Here, we used (A.5.17) and that Gp maps H'(R?) to W1°(R?) for the first term, and
as well as (A.5.6) followed by (A.5.7) for the second. Since for j # i,

Ep[1pp VU] = /1Bm(yl)vc;7z,4[((u)yl—vl)ag;] f(dyr, duy),

the estimate of this term is analogous. O

This finishes the cases in which at most 2 indices are equal. For the remaining cases, we
can again follow the same strategy as for ;j;. We provide here only the necessary estimates.
All the other estimates follow by applying Young’s inequality and reducing the proofs to the
estimates given here, just as in the proof for ;.

Lemma A.6.4. The corresponding estimates in the case (o, 3,7,9) = (2,2,2,2) are:

i=kj=mn: / ’Em [1 sV (et v\pfﬁ): de < m=2. (A.6.13)
i=kj=t: / [ [15p VOG0l de s w72 (a6.14)
i=k=10: / ‘Em 1Bmv\1/(?f)vqffff>: dz <m~2. (A6.15)
j=nk=10: /’ [1Bm(v\p 22)|? dz <m™2. (A.6.16)
i=k=0j=n: /’ [1Bm(v\y22) dr <1, (A6.17)

The corresponding estimate in the case (o, 3,7,0) = (2,1,2,1) is:

j=n: /‘Em [lem ‘V\IJE»Q’D‘Q} ‘ dz < m”2. (A.6.18)

The corresponding estimates in the case (o, 3,7v,9) = (1,2,2,2) are:
i=k=10; / ‘Em 1 Vet ve )] ‘ dr <m™2 (A6.19)
i=lk=n: / [ |15 VOO0 ]| do s m (4620

Proof of LemmalA.6.4. For (A.6.13), it is

Em [lggnv\llg.i’Q)(v\Iffé v 2))]

= ﬂp(yg)lBﬁ (.Z‘) (A [((u)yl — vl)dm)w (VG5$)2(33) (A(F — }-))yz f(dyl, dUl)dyQ.



Appendix 147

By (A.5.15), it holds

/ Ly () (VGI)2(2) do S m™ !

ly2 — y1|* + m—4

(A.6.21)
and thus analogously as in the corresponding term for J; using (A.5.14)

/ ’Em [IB:"V‘Pf;z)(vwfﬁ —Wfé?))” e

)

1 1
<Sm™? - 1+ dy1,dv) d
St [ sl — ol (14 ) o) diy

Regarding (), we compute

B [le<x>w<~?”<x>W£3’2><xﬂ

= [ (@0 =00 (@ = ) 1y @) (483),, (VG )
VGRA(Sm) (z) f(dy1, dvy) f(dya, dvs).

Now we use that GR maps H'(R?) to W°°(R3) to deduce as in the previous case

/ ‘Em [1B¢ (a;)V\Ifﬁ’Q)(x)V\I/gfz)(x)}‘ do

_ 2 2 ly2—y1|+m—1
S 2m = [ (G = 00)*+ (@ = 1)) (=5 S (A, don) (dye, o)

< m~%/? logm.

For (), we get

En 157 (1) VO3 () V52 (@)
_ / (), — v1) 1 () (VGRAS) ()7 f (dys, dvy).

Thus by (A.5.16), (A.5.7) and [(H1), it is

/ (Em [1 o (1) V2D () Vw2 (:C)” dr < m-?

The case ():

E,, [1]3;” (2)V e (@) v ? (x)}
=7 [ (P)aptve) (s — 1) (A53)?, (VGO () (dyn, o) i
Using (A.5.17),(A.5.16), (A.5.7) and [H1), we get
/ o (159520602 | do

< mQ/p(yQ)((U)yl - U1)2 (Aé;’}); f(dy1,dvy) dys Sm ™2
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For the next estimate (), we get
E., [1 B (2) VT () v () (x)}
2 m\2 m
= [ o) (@~ )L (@) (4532, (VGO () (o) e

By using again (A.6.21) and (A.5.14)), we get

/ B [15p VOV | da

S [ ot (@ - o) (

1 1
+
ly2 =1t +m=1  Jyo — 3]0+ m=6

) f(dy1, dvr) dys

S [t —0)Fdn o) S 1.
To estimate (), observe
E,, [IB;n ]wgmﬂ S [ (hoplon) (AP VG din
and hence by (), it holds
/]Em |:lBlm ‘V\I,§2,1)‘2] dz <m™? /P(yl)(AVU)zl dyr Sm>.

For (A.6.19), it holds

[ [1gp VoD vul?]|
< / 1y
N m/ 1 ((u)y, —v1)”F(dyy, dvy),
where we used (). Thus
/ B |15 VO V02D do 2.
Finally for (), itis

B [15p VO VO]

VGRA [((u)y, — vl)éﬁ]} [VGpA [((u)y, — v1)0y1] | f(dy1, dvy)

< [ ool ), = v [VGpAT (AT}, VG| iy F )
S ml/Q/lB;;; p(y) | (w)y, — o] (AT, | |VGOR | dy1 f(dys, dus),
where we used (A.5.16). This is estimated as in (A.6.14) to get
/ B [15p VO 00E || do g m

This finishes the proof. O



B | LONG-TIME BEHAVIOUR AND
STABILITY FOR QUASILINEAR
DoOUBLY DEGENERATE-PARABOLIC
EQUATIONS OF HIGHER ORDER

Abstract

We study the long-time behaviour of solutions to quasilinear doubly degenerate
parabolic problems of fourth order. The equations model for instance the dynamic
behaviour of a non-Newtonian thin-film flow on a flat impermeable bottom and with
zero contact angle. We consider a shear-rate dependent fluid the rheology of which
is described by a constitutive power-law or Ellis-law for the fluid viscosity. In all three
cases, positive constants (i.e. positive flat films) are the only positive steady-state so-
lutions. Moreover, we can give a detailed picture of the long-time behaviour of solu-
tions with respect to the H'(Q2)-norm. In the case of shear-thickening power-law flu-
ids, one observes that solutions which are initially close to a steady state, converge to
equilibrium in finite time. In the shear-thinning power-law case, we find that steady
states are polynomially stable in the sense that, as time tends to infinity, solutions
which are initially close to a steady state, converge to equilibrium at rate 1/t'/? for
some > 0. Finally, in the case of an Ellis-fluid, steady states are exponentially stable
in H1(Q).

B.1 Introduction

AIM OF THE PAPER

The present paper is concerned with the asymptotic behaviour of positive weak solutions
to fourth-order quasilinear (doubly) degenerate parabolic problems as they arise in the
modelling of non-Newtonian thin-film flows. It turns out that, for large times, fluids with
a shear-rate dependent viscosity exhibit a specific asymptotic behaviour, depending on
their shear-thickening or shear-thinning nature, respectively.

We consider a thin layer of a viscous, non-Newtonian and incompressible fluid on an
impermeable flat bottom, as sketched in Figure @

In addition to the non-Newtonian fluid rheology, the following modelling assump-
tions are crucial for the analysis of the resulting partial differential equations. First, the
fluid flow is assumed to be uniform in one horizontal direction (in y-direction in Figure
El]), such that we obtain a (spatially) one-dimensional problem. Moreover, we assume

149
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<K

Figure B.1: Cross section of fluid film on impermeable solid bottom.

that the characteristic height of the fluid layer is rather thin compared to its characteris-
tic length and consider the asymptotic limit of a vanishing aspect ratio. Based on a non-
Newtonian Navier—Stokes system, we use the so-called lubrication approximation [GOO03;
GP08; 0095] in order to derive an evolution equation for the height v = (¢, z) > 0 of the
fluid film at time ¢ > 0 and spatial position z € €2, where 2 C R is a bounded interval.
We neglect gravitational effects and assume that the dynamics of the flow is driven by cap-
illarity only. Finally, we prescribe a no-slip condition on the lower boundary of the fluid
film. However, the mathematical analysis of the present paper does also apply to the case
of Navier-slip conditions.

As constitutive laws for the non-Newtonian shear-dependent fluid we consider so-
called power-law fluids, also called Ostwald-de Waele fluids, and so-called Ellis-fluids;
see below for more details on these material laws. In the case of power-law fluids, when
prescribing a no-slip condition on the lower boundary, the resulting evolution problem
reads

ug + (ua+2]umx|°‘_1um$)x =0, t>0,x€9,
Ug(t, ) = Ugga(t,x) =0, t>0, x €09, (B.1.1)
u(0,x) = ug(x), x €.

Note that ()1 is a fourth-order quasilinear parabolic equation that is doubly degen-
erate in the sense that the degeneracy occurs both with respect to the unknown « and
with respect to its third spatial derivative u,,,. The Neumann-type boundary conditions
Uy = Ugee = 0 on O reflect the zero-contact angle condition and the no-flux condition
at the lateral boundary, respectively. Finally, ug > 0 denotes the given positive initial film
height. Note that for 0 < a < 1, the coefficients of the highest-order term depend only
Hélder continuously on the unknown and lower-order derivatives.
In the case of Ellis-fluids, we obtain the evolution equation

up + a(u3 [1 + b]uumx|°‘_1]uxm)x =0, t>0,x€q,
uz(twr) = ua:a:ac<t7x) =0, t>0,z¢€ 8(2, (B.1.2)
u(0,z) = up(z), x € Q.

Here, a,b > 0 are positive physical parameters, depending on the constant surface ten-
sion, the flow-behaviour exponent o and the characteristic viscosity of the fluid. However,
for clarity of presentation, we drop these parameters in our analysis since they do not af-
fect our arguments. This equation has for instance been studied in [AG02; LM20] in the
context of self-similar solutions and local strong solutions, respectively.

The main difference in the classification of (B.1.1) and (B.1.2) is that () is doubly
degenerate in the sense that we loose parabolicity if either the unknown w or its third spa-




Appendix 151

tial derivative u,,, become zero. In contrast, () is degenerate only in the unknown u
itself.

For o« = 1 we recover in both equations (B.1.1) and (B.1.2) the well-known Newtonian
thin-film equation

us + (u3umx)x =0, t>0,zeq. (B.1.3)

This equation is studied extensively in the mathematical literature. For results concern-
ing existence, uniqueness and stability of weak solutions to () we refer the reader for
instance to the works [BF90; BBD95; BP96].

MAIN RESULTS OF THE PAPER — STABILITY OF STEADY STATES AND LONG-TIME
BEHAVIOUR OF POSITIVE WEAK SOLUTIONS

In the present paper we study the behaviour of positive weak solutions to () and
(), respectively, for large times. Note that we consider only the case of strictly positive
initial values ug > 0 since these allow us to find a positive time up to which solutions
remain strictly positive.

The main results of the paper are the following: We prove local existence of positive
weak solutions to the power-law thin-film equation () for all flow-behaviour expo-
nents o > 0, see Theorem below. In the case o > 1 of shear-thinning power-law flu-
ids, even global existence of non-negative weak solutions has been established in [AG04],
using a two-step regularisation scheme, Galerkin approximation and energy/entropy
methods. Since the present paper is concerned with stability of positive steady states,
we are only interested in positive weak solutions. Therefore, we use a simpler regulari-
sation method that allows us (only) to construct local positive weak solutions, but for all
flow-behaviour exponents o > 0. These solutions can then be extended to global weak
solutions as long as they are close to steady states.

Moreover, again for all & > 0, we can characterise positive steady states of the power-
law thin-film equation by positive constants, cf. Theorem below. As already men-
tioned, the long-time behaviour of solutions that are initially close to a steady state @y =
fQ ug dr depends strongly on the choice of the flow-behaviour exponent ¢, i.e., on the
shear-thinning, respectively shear-thickening nature of the fluid. The main result con-
cerning global existence and stability properties of steady states is the following:

Theorem.
Fix o > 0. Then there exists an € > 0 such that, for all positive initial values ug € H'(Q)
with||uo—1ol| g1 () < €, problem (B.1.1) possesses at least one global positive weak solution

u € C([0,00); H'(2)) N Lag1,10c((0, 00); W11 (€2))

with
Ut € LQTH’ZOC((Oa OO); (Wolz—i-l,B(Q))/)’

satisfying the boundary condition u, = 0 on 052 pointwise for almost everyt > 0. Moreover,
this global solution has the following asymptotic behaviour:

(i) In the shear-thickening case() < o < 1, there exists a positive but finite time( < t* <
oo such that

u(t,”) — g in HX(Q), ast — t*, and wu(t,z) =y, t>t* z€Q.
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(ii) In the shear-thinning casel < a < 0o, there exists a constant C' > 0 such that

Ce
[u(t) — ol g1 () < —, 0<t<oo.

(1+ Cea—lt)et

(iii) In the Newtonian case o = 1, there exist positive constants C,y > 0 such that

Ju(t) — ol i) < Ce™ ™, 0<t< oo,

Note that statement (iii) of this theorem is already well-known [BBD95; BP96] and can
even be proved in ‘better’ function spaces with standard theory, see for instance the text
books [HI11; Lunl2]. Moreover, in the shear-thinning case (ii), convergence to steady
states has already been proved in [AG04] but without rate of convergence. In the cylin-
drical Taylor-Couette setting, statement (iii) has first been shown in [PV20] in the frame-
work of stable center manifolds. Similarly, the results in (i) and (ii) have been obtained in
[LPV22] and [LV22], also in the cylindrical Taylor—Couette geometry.

Finally, we prove global existence of positive weak solutions to the Ellis-law thin-film
equation (@) and provide a description of their asymptotic behaviour. For o > 2, sta-
bility and exponential decay to equilibrium can again be obtained by standard techniques
[Lunl2; HI11]. However, for 1 < o < 2, these techniques are not applicable since the
coefficients of the differential operator are merely Holder continuous. For this range of
flow-behaviour exponents we use energy methods to prove exponential asymptotic sta-
bility of steady states in H!((2).

SHEAR-DEPENDENT NON-NEWTONIAN FLUIDS

Many common liquids and gases, such as water and air, may reasonably be consid-
ered Newtonian. However, there is still a multitude of real fluids which are in fact non-
Newtonian. Newtonian fluids are characterised by a perfectly linear dependence of the
shear stress o (¢) on the local strain rate ¢, the constant fluid viscosity ;z > 0 being the fac-
tor of proportionality. In contrast to that, shear-dependent non-Newtonian fluids feature
a non-linear relation between the shear-rate and the viscous stress, o(¢) = p(|e|)e, where
1(|e]) is the shear-dependent viscosity. That is, these fluids become more solid or more
liquid under shear force. In the case in which the fluid viscosity increases with increasing
shear rate, the corresponding fluids are called shear-thickening. On the contrary, fluids
are called shear-thinning if their viscosity decreases with increasing shear-rate. In this
paper, we are concerned with two classes of non-Newtonian fluids, so-called power-law
fluids or Ostwald-de Waele fluids and Ellis-fluids.

PowEeR-Law FLuips. For power-law fluids or Ostwald-de Waele fluids the constitutive
law for the effective fluid viscosity reads

1 _
p(le]) = polela™t, (B.1.4)

with a characteristic viscosity o > 0 and a flow-behaviour exponent o > 0. For these
fluids, the relation between the local strain and the viscous stress is

1_
o(€) = pole|a L.
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Note that the corresponding fluid is shear-thickening for flow-behaviour exponents 0 <
a < 1, while it is shear-thinning for « > 1. In the case & = 1, we recover the Newtonian
regime y(|e|) = pp > 0 of a constant viscosity.

However, it is observed in real-world applications (e.g. in polymeric systems) that, at
‘intermediate’ shear rates, fluids behave according to (), while the at rather low and/or
rather high shear rates, the viscosity approaches a Newtonian plateau. This is obviously not

reflected by ().

E1L1s FLUIDS. As a second class of shear-dependent non-Newtonian fluids we consider
fluids the rheology of which is described by the so-called Ellis constitutive law [WS94]

IR N ARTIC
alle) ~ o (”

01/2
where o(€) = u(|e|)e is the viscous shear stress. Here, 1y > 0 denotes the viscosity at zero
shear stress and o/, > 0 is the viscous shear stress at which the viscosity is reduced to
to/2. Thus, fora > land 0 < oy s2 < oo the Ellis constitutive law describes a shear-
thinning behaviour, i.e., the fluid viscosity decreases with increasing shear rate. Fora = 1
or for a?‘zl — 00, we recover a Newtonian behaviour. As an advantage over (), the
Ellis law (B.1.5) has the ability to describe a shear-thinning behaviour for ‘moderate’ shear

rates and a Newtonian plateau for rather low shear stresses, since for all o € R,

1)o@
u(lel) ~ o (1 *

01/2
For the majority of polymers and polymer solutions the flow-behaviour exponent « in
() varies in a range between 1 and 2, see e.g. [BAH87; MB65].
A plot of the different constitutive laws for the fluid viscosity (Newtonian fluids, shear-
thickening and shear-thinning power-law fluids and Ellis fluids) is offered in Figure @

a—1
> y aZl, O<O'1/2<OO7 (B.1.5)

Ho

a—1 1
— = as o' >
) 1/2 .

viscosity p(|e|)
4 power-law, o < 1
power-law, o > 1

---------------------------- Newtonian

\

Figure B.2: Constitutive viscosity laws: Newtonian fluid (dashed), shear-thinning power-
law fluid (pink), shear-thickening power-law fluid (green) and Ellis-fluid (blue).

Ellis

% shear rate |¢|

OUTLINE OF THE PAPER

The structure of the paper is as follows: In Section @ we introduce the functional setting
we will work in.
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In Section @ we prove local existence of positive weak solutions to the power-law thin-
film equation and characterise positive steady states by positive constants.

In Section @ we derive regularity estimates for weak solutions that are valid as long
as the solution stays bounded away from zero. More precisely, we prove a Lojasiewicz—
Simon-type inequality that estimates the dissipation functional in terms of powers of the
energy functional. Moreover, we provide a local L;-in-time estimate for the dissipation
functional in terms of the energy at a slightly earlier time.

Section @ is concerned with the dynamic behaviour of solutions to the shear-
thickening power-law problem. First, we prove global existence of positive weak solutions
for initial film heights that are initially close to a constant in H'({2). Moreover, we show
that these solutions converge to a positive constant in finite time and stay constant for all
later times.

Section @ is concerned with the stability properties of solutions to the shear-thinning
power-law thin-film equation. As in the shear-thickening case, it is shown that weak solu-
tions exist globally time and stay positive if they are initially close to a steady state. More-
over, these positive global weak solutions are polynomially stable in H!(f2) in the sense
that they converge to a steady state (positive constant) at rate 1/t'/(*~1), as time tends to
infinity.

In Section [B.7 we study the non-Newtonian thin-film equation that arises when the
constitutive law for the fluid viscosity is the Ellis-law. The corresponding Ellis fluids have a
Newtonian plateau for small shear rates and behave like a shear-thinning power-law fluid
for high shear rates. We observe exponential asymptotic stability of steady states in the
H!(Q)-norm.

B.2 Functional framework

In this section we provide the functional setting that will be needed for the study of both
the power-law () and Ellis-law () thin-film equations.

Throughout this paper, we assume that {2 C R is a bounded interval. For £ € N and
p € [1,00) we denote by Wf(Q) the usual Sobolev spaces with norm

1/p

k
HUHWZ?(Q) = Z HaijI[),p(Q)
j=0

We then define the seminorm

[U]W;(Q):/Q demd'z 1<p<oo, 0<s<1,

and introduce the fractional Sobolev spaces by

WE(Q) = {v e WIQ): o llws () < oo} , 1<p<oo, seR,\N,

where

oz = (101, + 0710 SM) 1<p<oo s€R\N,

with [s] denoting the largest integer such that [s] < s
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We now recall some important properties of these spaces. It is well-known (see, for
instance, [[Iri78]) that, for 0 < sg < s1 < 00,1 < p < 00, and 0 < p < 1, the space WPS(Q)
with s = (1—p)so+ ps1, is the complex interpolation space between W' (2) and W;° (),
in symbols

Wy (Q) = [W,° (), Wit ()] .
In order to take the Neumann-type boundary conditions into account, we further intro-
duce the Banach spaces

{v € WpP(Q);0r = vawe = 00000}, 341 <dp<d,
4
W, 5(Q) = {v € W,”(Q); v, = 00n 8N}, 143 <4p<3+41,
W, (), 0<dp<1+d.

For 4p € (0,4) \ {1+ 1/p,3 + 1/p}, the spaces W;’%(Q) are closed linear subspaces of
I/V;l ?(Q) and satisfy the interpolation property [[Iri78, Theorem 4.3.3]

W) = (Lyp(Q), W, 5(9)) 1< p< 0.

p.p’

Lastly, we use Wplyo(Q) to denote the space of functions belonging to W, (2) with zero
boundary condition.

B.3 Local existence for the power-law thin-film equation
In this section we prove local existence of positive weak solutions to the evolution problem

up + (u‘““|umm|"‘_1ugm,;):C =0, t>0,z¢€,
Uy (t,2) = Ugg(t, ) =0, t>0, z €09, (B.3.1)
U(O,JZ’) = U0($), T € Qa

for flow-behaviour exponents « > 0, i.e., for both shear-thinning (o« > 1) and shear-
thickening (o < 1) power-law fluids. Moreover, we characterise the positive steady states
of (B.3.1) by positive constants (flat films of positive height).

Our analysis strongly relies on an energy-dissipation estimate for the energy func-

tional )
Elu] = / g |* da.
2 Ja

Formally testing the equation with the second derivative u,,, one finds that E{u|(¢) de-
creases along solutions to (). More precisely, solutions « to () satisfy

iE[u](t) = —D[ul(t) = — / U2 U | .
dt Q
We call D]-] the dissipation functional.

For the purpose of local existence, we introduce in Section @ aregularised version of
() that removes the degeneracy in the third derivative ... For the regularised prob-
lem we apply standard parabolic theory in order to prove existence of positive strong so-
lutions, emanating from positive initial values. In Section @ we provide uniform a-priori
bounds for the solutions to the regularised problem and pass to the limit of a vanishing
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regularisation parameter in order to obtain local existence of positive weak solutions to
the original problem ().

Note that for o > 1 (shear-thinning fluids) existence of global non-negative weak so-
lutions is already proved in [AG04], where the authors use a more involved regularisation
scheme. However, in the present paper we are only interested in positive solutions, but
for all flow-behaviour exponents o > 0.

In order to simplify notation, we introduce, for a fixed o > 0, the function

V:R =R, s ap(s)=|s|¥ s,
and rewrite the partial differential equation ()1 as
ur + (uO‘Hw(uxm))x =0, t>0,ze.

Note thatif o > 1, then ) € C*(R) with ¢(s) = a|s|*~!. For a < 1 the function v is only
«a-Hoélder-continuous.

Definition B.3.1. For a given T > 0 and initial value vy € H'(2), a weak solution to

(B.3.1) is defined as a function
u € C([0,T]; HY () 0 Lot ((0,7); W1, ()

with
uy € LaTJrl ((07 T); (Wa1+1,B(Q))/)

that has the following properties:

(i) (Weak formulation) u satisfies the differential equation ()1 in the weak sense, i.e.,

T T
/0 (ut, ¢>W§+1(Q) dt = /0 /QuaJrzw(uxm) g dx dt

for all test functions ¢ € Lo11((0,T); Wa,, 5()).

o7

(ii) (Initial and boundary values) u satisfies the contact angle condition u,, = 0 on 0f2
and the initial condition () 3 pointwise.

The following theorem contains the main result of this section.

Theorem B.3.2 (Local existence of positive weak solutions). Given a positive initial
value vy € W;lil 5(), 4p > 3 +1/(a + 1), withug(x) > 0, x € ), there exists a time
T > 0 such that problem () admits at least one positive weak solution

uwe C([0,T); H'(Q) N Lat1 ((0,T); Wi, ()

«

with
up € LaTH ((0,7); (Way1 5(€)))

on (0,T) in the sense of Definition . Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero

0<Cr<u(t,z), 0<t<T,ze.
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(i) (Conservation of mass) u conserves its mass in the sense that
lu@)lz, @ = lwollL, @, 0<t<T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions

ER() + /O " Dlul(s) ds = Elug] (83.2)

for almost everyt € [0,T].

Observe that due to the positivity of a solution u to () we have
/QU(WU) dr = |lu(t)ll 2, = lluollz, @), 0<t<T.

Remark B.3.3. In fact, the above theorem holds true for initial values ug € H*(£2). We
choose ug in the smaller space W§i1 (€2) since the solutions u to the original problem are
constructed as accumulation points of strong solutions u“ to a regularised problem, not
only as functions satisfying a suitable weak formulation. In order to apply semigroup the-
ory, we require the initial value to satisfy ug € Wéil (Q). Thatug € H'() is enough can
be seen by replacing ug by u§ € W,”, (Q) with

uf(x) >0, 2 €Q, uf =1y = ][ uopdr and uf — ug stronglyin H'(Q), aso \, 0.
Q

This can for instance be obtained by a symmetric extension of the initial value ug € H*(Q)
at the lateral boundaries and mollification.

Remark B.3.4. Given a positive weak solution

we C(0, 71 HY(Q)) N Loy ((0,T): W4y ()

«

to () as obtained in Theorem , we may extend it beyond time 7" by restarting the
equation with initial datum «(7") and using that u(T’, z) > Oforallz €  and RemarkB.3.3.
In fact, in this way we can construct a weak solution to () in the sense of Definition
up to a time 7, > 0 at which u(T},x) = 0 for some 2 € Q. Note though, that the
solutions in Theorem are not unique, so that the ‘maximal’ time 7 of existence of
positive solutions is not unique.

POSITIVE STEADY STATES OF () . Weare interested in the stability properties of steady-
state solutions to (B.3.1), i.e., in functions u* € W2, 5(€) that solve the ordinary differ-
ential equation ’

ety =0, xeq. (B.3.3)

In physical parlance, () says that there is no flux of the fluid through the boundaries of
the interval. Positive steady states of () may be easily characterised by the following
theorem.

Theorem B.3.5 (Characterisation of positive steady states). A functionu € Wa3 1.8(9)
is a positive steady-state solution of () ifand only ifu = u* € Ry is given by a positive
constant.
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Proof. (i) Letu = u* € Rq. Thenu* € W3 +1,5(Q) clearly satisfies the ODE (B.3.3).
(i) Letu = u* € W3, () be an arbitrary positive steady-state solution of (B.3.1),i.e.,a
solution to the ODE ( ). Then u* satisfies

0= iE[u*} — _D[’LL*] — _/ |U*|a+2|u;zx|a+l de.
dt 0

Since the integrand on right-hand side of this equation is non-negativeand u*(z) > 0, = €
Q, itfollows that u*,, = 0 on Q. Consequently, u}, is constant and this in turn implies that
uy is linear. Taking the Neumann boundary conditions into account, we find that «* must
be constant. O

LocAL EXISTENCE OF POSITIVE SOLUTIONS TO THE REGULARISED PROBLEM AND
UNIFORM A-PRIORI BOUNDS

In order to handle the difficulties caused by the doubly nonlinear and doubly degenerate
nature of the evolution problem (B.3.1)), we introduce, for a fixed regularisation parameter
o € (0,1) and all s € R, the smooth function

a—1

1/’0(3):(324“72) s, sER,

and substitute the nonlinear term (4, in () accordingly. The regularised prob-
lem corresponding to () then reads

uf + ((u)* g (ug,,)), =0, t>0,ze,

ul(t,x) = ul,, (t,x) =0, t>0,z€0Q, (Py)

u?(0,x) = up(x), x €.
It follows from standard parabolic theory [Ama93; Eid69; LM20] that the regularised prob-
lem ([Z]) possesses, for each fixed o € (0, 1) and suitable initial data, a unique maximal
strong solution u?. This is the content of Theorem below. Moreover, in Lemma
below, we provide a-priori bounds for the strong solution that are uniform in the regu-

larisation parameter o > 0. First, though, we define what we mean by a maximal strong
solution to (&]).

Definition B.3.6. Fixa > Oando € (0,1). Letl < p < oo. Given a positive initial
value ug € Ly(Q2), we call a functionw: [0,T,) — L,(Q) withu(t,z) > 0 fort € [0,T,,)
and z € Q) a maximal positive strong solution to (F3) on [0,T,) in L,(?) if the following
conditions are satisfied:
0 we C(10,T,); L) N CH((0,T); Ly(9);
(i) u(0) = up € Ly(Q) andu(t) € W;{B(Q) forallt € (0,T,);
(iii) (Positivity) u(t,z) > 0 fort € [0,T,) andz € ;

(iv) u satisfies the differential equation (PJ]), pointwise;

(v) (Maximality) There is no other solutionv on[0,T,) withT,, < T,,.
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Clearly, solutions to (7)), as obtained in the following theorem, do also dissipate en-
ergy. We therefore introduce the notation

Dofu)(t) = [ (w2 da
Q
for the dissipation functional corresponding to the energy functional E[-] and the regu-
larised equation (7).

Theorem B.3.7 (Local existence for (F])). Fixa > Oando € (0,1). Let1/(a+ 1) <
s < r < 1. Moreover, let) = 1% and p = *1”. Then, given an initial film height u €

WéiLB(Q) such that ug(x) > 0 forallz € , problem (ZJ) possesses a unique maximal
solution

u? € C([0,T5); Woly 5(2)) N C?([0,T0); Lat1(2)) N C((0,T4); Wty 5(9))
NCY((0,T5); Lat1(5)).
Moreover, the solution enjoys the following properties.
(i) (Positivity) u® is positive

u’(t,z) >0, 0<t<T,, z¢cq.

(ii) (Conservation of mass) u® conserves its mass in the sense that

[u? (Ol L) = luollLy @), 0<t<T5. (B.3.4)
(iii) (Energy-dissipation identity) u® satisfies the energy-dissipation identity

E[u](t) + /O "D )(s) = Elug], 0<t<T, (B.3.5)

(iv) (Maximal time of existence) Suppose that'l, < co. Then

1
lim inf ————— + [[u” (t)] 4+

=00
t/ T, mingequd(t) at1,5(9)

forall~ € (0,1].

Proof. (i) Local existence, uniqueness and positivity. In order to prove local existence
and uniqueness of a strong solution we apply [LM20, Theorem 4.2]. To this end, we verify
that ([]) fits into the corresponding abstract functional setting. Moreover, after rewriting
(FJ) in non-divergence form, we define for v(¢) € W;‘_gkl’ 5(Q) with § = (3 + s)/4 such
thatv(z) > 0, 2 € Q, the linear differential operator A(v(t)) € L(W5, p(Q); Lat1(Q))
of fourth order by

AW®)u’ = A(v(t)d*u® with  A(v(t)) = v 29, (vg0a),

where

W(s) = (a—1) (s> +0%) T 82+ (s2 + 02)°T

:a(s2+02)aT_1—02(a—1)(82+02) 2, seR.
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Note that for positive o € (0, 1) we have ¢/ (s) > C, o > Oforall s € Rand all fixed o > 0.
Moreover, we introduce the right-hand side

'F(’U(t)) = _(a + 2)Ua+1vx wo(vx:m:)
and perceive ([Z]) as an abstract quasilinear Cauchy problem

u” + A(u)u® = F(u?), t>0,
u?(0) = ug.

Note that the Neumann-type boundary conditions ([F]), are incorporated in the domain
wi +1,5(€) of the operator A(v(t)). Due to the smoothness of ¢, the maps
A: W2 5(Q) — LW 5(Q); Lay1(2)) and  F: WIE 5(Q) — Lat1(9)

are, for all « > 0, locally Lipschitz continuous. In order to guarantee parabolicity, we
extend the differential operator A to the differential operator

A (v()) € L(Way15(2); Las1 (),  A(v(t)u” = Ac(v(t))dzu,

where B
Ac(v(t)) = max {vﬁf”i/};(vmm), 5/2}

and vy = max{v,0}. Following the lines of [LM20, Chapter 5], we study the extended
parabolic problem with A. instead of A and show that the corresponding local positive
solution u” = u?(¢) also solves the non-extended problem () for a short but strictly
positive time. More precisely, the extended regularised problem is, for each fixed o,¢ €
(0,1), parabolic in the sense that A, (v(t)) generates an analytic semigroup on L, 1(€2).
Indeed, due to the embedding W21 () — C?*(Q) and the positivity of o,e > 0, we
have that A.(v(t,-)) € C(Q2). Moreover, the principal symbol a.(z, £) satisfies

Re(ac (@, E)nln) 2 Coac(i)n* >0, (2,€) € @ x {~1,1}, n € R\ {0},

for a positive constant C, . > 0. Consequently, A.(v(t)), together with the Neumann-
type boundary conditions, is normally elliptic in the sense of [Ama93, Example 4.3(d)] and
we can apply [Ama93, Theorem 4.1 and Remark 4.2(b)] to conclude that A, (v(t)) gener-
ates an analytic semigroup on L,11(2). Thus, we are in the abstract setting of [LM20,
Theorem 4.2] which yields existence and uniqueness of a local positive strong solution to
the extended problem in L,41(2). On a potentially smaller time interval, this solution
u? = u?(¢e) is, for € small enough, also a local positive strong solution to ([73), see step (iii)
in the proof of [LM20, Theorem 5.1].
(ii) Conservation of mass. This follows by testing the regularised partial differential equa-
tion ([ZJ); with the constant function ¢ = 1, integration by parts and using the Neumann
boundary conditions ([ZJ)s.
(iii) Energy-dissipation identity. Since the solution obtained in step (i) enjoys the regu-
larity

ug € C((0,T); Wiy o() N CH(0.T); (Why10())),

we may apply [LM20, Proposition 6.1] in order to guarantee that the expression

d

a—1
? Bluo)(t) = / WSl dz = / |72 (T 2+ 02) T ug, P d = — Dylu? (1)
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is well-defined for all ¢ € (0,7). Integrating with respect to time gives the energy-
dissipation identity.

(iv) Maximal time of existence. Using the notation introduced in step (i), this resultis a
minor adaptation of [LM20, Theorem 7.1].

O

In order to prove the local-existence result for the original problem (Theorem B.3.9),
we need suitable uniform (in o) a-priori estimates for the solution to ([Z]) as given in the
following lemma.

Lemma B.3.8 (Uniform bounds). Let u° be the maximal solution to (P]) for a fixed
o € (0,1) and an initial valueug € Wiﬁ’rLB(Q) such thatuo(z) > 0 forallx € ). Then the
following holds true. ThereisT > 0 such that the family (u”), has the following properties:

(i) (u”)g is uniformly bounded in Lo ((0,T); H(2));

i) (|u?|*"* Vo (ul,,)), is uniformly bounded in Los ((0,T) x Q);
(iti) (uf)o is uniformly bounded in L o1 ((0,7); (Way1 5(0)));
(iv) (ul,,)s is uniformly bounded in L1 ((0,T) x Q);

@) (u?)y is uniformly bounded in Loy1((0, T); W3, | 5(Q));

[0}

[0}

i) ((u2)¢)s is uniformly bounded in Lox ((0,T); (Way10(Q) N W2, ().

Proof. Note that once we have proved items (i) and (iii), the Aubin-Lions-Simon lemma
[Sim86] implies that the family (u”), is equicontinuous. Hence, we may choose 7' > 0
such that «“ is bounded away uniformly from zero on the interval [0, 7).

Within this proof, C' > 0 denotes a positive constant, possibly depending on ¢, €2, and
l|ol[ 4y @ but independent of o.
a+1

(i) Since
Dy [u](t) = / (W) 2 (S, Vul, de > 0, € [0,T)),
Q

we have

ag 1 ag
B?)(t) = 3 1uZ(0) 3,0 < Bluol, ¢ € 0,T,). (B.3.6)
Using Poincaré’s inequality and (B.3.4), we obtain for ¢ € [0, 7})
[u” ()l o) < 1u”(@) = a7 ()l Ly + 107 (O o) < Cllug (D)l La@) + ol Ly,
which, together with (), yields

sup [u” (8|1 () < C(lluol| o) + Eluo]"/?).
0<t<T,

Hence, (u”), is uniformly bounded in Lo ((0,75,); H'(R2)).
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(ii) First we consider the case 0 < « < 1. Observe that

112200 (1) | o7
o\ Pxxx) || L oy ((0,1T5)%Q)
«

a—1

Ty +1
[ e g P o) T g deds
0 Q
To atl a—1atl 17
- /O /Q o [ (jug 2 4 0?) T g, | ug 2 de dt.

j e 1-a
Using that 12 > 0, we get the pointwise estimate |uf,,| = < (|ug,,|*> + 0?) 2 . Fur-
thermore, in View of (i) and H(Q) < Loo(Q), we find that (u%), is uniformly bounded in
Lo ((0,T,); Loo(€2)). Combining this, we obtain the estimate

Ty a=la+l
P R (A R e AT
Ts
</ / |4 (2 0%) T g der

<c | " Dyuo)(t) dt
0

SCE[UOL

where the last step is due to (). Inthe case 1 < a < oo, we have to use a different
argument. Note that by (i) and (), we have

o|a+2 o QT-H
H|u | ¢U(U:ca:x)“LL-H((O’T")XQ)
[e3

To N a-lail N
—/0 /Q\uf’%a*”f(rugm%a) W g drdt

—1atl
<C ([ugaal® +02) T | 5 (g
a—1a+1 a+1

atl 1
+/{ D g o2) T W g, | du dt
UG e >0

dz dt

‘ 2
TTT

T
<CT,o* +C D, [u?](t)dt
0

<C (T, + Elug)).

(iii) Since u? is a weak solution to ([Z]), we have

Ty Ty
| o o= [ [ @ o) ¢ dedr



Appendix 163

forall p € Lat1((0,75); W2 4B (Q)). Applying Holder’s inequality and (i), we obtain
Ty T 5
|t oh, o dt‘ < [ W ) o] dode
0 0o Ja

T, oL
S </ / ‘ua‘a+2’(p$‘a+l d.%'dt) .
0 Q
TO‘ a—1 i « %H
( J A N (A s e T e dxdt)
0 Q

o ola+2 o |2 2 ailLH atl
SCHSOHLaJrl((0’T0)§W(1+1(Q)) (/0 /Q|u | (|uxxac‘ +U) 2 | wxx| a d%dt) :

For 0 < @ < 1, we obtain similar as in step (ii) that

—1a+t

Ts
//|u”|a+2(|ugm|2+a)2| ada:dt</ D [u")(¢) dt < Eluy).
0 Q

For 1 < a < o0, we get, similarly as in step (ii),
T

To 9 9 2 a—1atl a+1 1
/ / ’U’U’OH_ (‘ugmc‘ to ) : “ ‘ugmc’T dx di S CTUUOH_ +C DO’[UU](t) dt
0 Q 0

< C(T,0* + Elug)) -

(iv) We prove that (uZ,, ), is uniformly bounded in La1,0c((0,7,) % ). Note that by

definition of 7, and continuity of «?, we have u? (t,z) > ¢s > Oforall (¢,z) € [0,T, —
9) x Q, for every o > 0.
Inthecase 1 < a < oo, we get

Toe—6 To—6 a-1
|7 [ aptsa < | / (200 +0%) " 02 o

T 6
<C/ 1(t)dt
<CEUO

where the constant C' depends also on d, and where in the last step we used ().
Now we consider the case 0 < a < 1. We have

Ty—6
/ / g2 i dt = / U2 i dt + / T da dt
0 Q {lugpz|<o} {|ugzz|>0}

< C(T, — 6ot +/ |uZ,. |t dx dt.
{lugze>0}
Using the inequality

a—1 a—1
2 = (L + L) 7 22 < (2)7 (leP+02) 7 22, Jol >0, 2 ER,
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we obtain

Ts—6
/ / ]ugm|0‘+1 dx dt
0 Q

T5—0 a—1
< O(T, — 8o +C / / (WSl + 02) T u | dedt
0 Q

Ts—0
< (T, — 8)o™ L 4 C / Dy [u](¢) dt
0
< C (T, — &)™ + Eluo))

with C' depending also on 6. In the last step we used again ().

(v) As observed in (i), u° is uniformly bounded in Lo ((0,7,); Lo(2)), and hence
also in La11((0,7,) x ). From (iv), we also know that uZ,, is uniformly bounded
in La+1,10c((0,TU) X Q).Combining this, we find that «° is uniformly bounded in
La+110c((0,T5); W3+173(Q)) by interpolation.

(vi) This follows as in (iii) using a duality argument. O

PrOOF OF THEOREM : LocAL EXISTENCE OF POSITIVE WEAK SOLUTIONS TO
THE ORIGINAL PROBLEM

In this section we pass to the limit of a vanishing regularisation parameter ¢ ~\, 0. Using
the uniform bounds provided in Lemma , we show that the family (u7), admits an
accumulation point that is a positive weak solution to the original problem (B.3.1). As
usual, we use Minty’s trick in order to identify the (nonlinear) limit flux.

Lemma B.3.9 (Convergence of approximations). Let u® be the maximal solution to
(E)for_aﬁxeda € (0, 1) and a positive initial value vy € W;%(Q) such thatug(z) > 0 for
allx € Q. Then the following holds true. There are a positive timeT > 0 and a subsequence
(u?), (not relabelled) such that, as o ™\, 0, we have convergence in the following sense:

(i) u” — w strongly in C([0,T); C*(2));
(i) [u|*? Y (ug,,) — x weaklyin Lasi ((0,T) x Q) for some limit function x;

(iid) uf — u, weakly in Loz ((0,7); Wi 5());

(0%

(iv) ugyy — Upae weaklyin Loy1((0,T) x );

@) (ug)r — uge weakly in LQTH ((07 T); (Wéﬂ,o(m N WC%H(Q)),)-

Since the proof of this lemma differs only very slightly from that in [AG04; LPV22; LV22],
we shift it to the appendix.

We are left to prove the convergence of the nonlinear flux term (|u”|**? 9, (uZ,,)) —
(|u]**? 4 (tzgy)) in Lata ((0,T) x Q). This is done in the next lemma the proof of which
is based on the monotonicity of the regularisation and Minty’s trick.



Appendix 165

Lemma B.3.10. Giveno € (0,1), let u” be the maximal solution to (E]), corresponding
to an initial value ug < W;Lil (). Then there exists a subsequence (u” ), (not relabelled)
such that

w17 o (4

) = |ul* P (ugey)  weaklyin La+i ((0,7) x Q)
aso N\ 0.

The proof of the above stated lemma uses the same arguments as the one in [LPV22].
For the sake of completeness, we include it in the appendix.

Remark B.3.11. Note that the limit u is bounded in C([0,7]; H'(Q2)). Indeed, from
Lemma (i) we already know that

u e C([0,T];C*()) < C([0,T]; Lo(€2)).
Furthermore,
Uy € Lay1((0,T); Way10(2) "W, ()
and
Ugt € LaTJrl ((0,T); (Wa1+1,0(9) N Wa2+1(m)/)

due to Lemma (iv) and (v) and lower semicontinuity of the norm. Using [Ber88, Re-
mark 3.4], this yields that u, € C ([0, T]; L2(€2)). Therefore, u € C([0,T]; H'(2)).

Proof of Theorem . (i) We first show that the limit u is bounded away from zero on
[0,T] x Q. This follows immediately from the positivity of u” on [0, T},) x 2 and the con-

vergence in Lemma () (1).
(ii) Thanks to Lemma (iii) and (iv) and Remark above, we obtain the regularity
properties

we C([0.T): () N Lot (0.7): Wi, 5(2)

«

and
up € Lot ((0,7); Warr,5(9))).

(iii) We now prove that u satisfies the weak integral formulation in Definition . To do
so, note that for solutions to the regularised problem ([Z]) we have that

T T
| o odi= [ [ e ) o do de
0 0 Q

for all test functions ¢ € La41((0,T7); W, 4 5(2)). On the one hand, since p, €

[0

La+1((0,T) x Q)), it follows from Lemma that
T T
| ot — [ [ ) o do
On the other hand, Lemma (iii) gives
T T
/0 (uf, e)wi, (o dt — /0 (ut, O)w1 () dt-

Combining both, we then find that « satisfies the desired integral identity

T T
/ <ut7 ()0> WoltJrl(Q) dt = / / ua+2w(ugxz> Pz dadl
0 0 Q
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forallp € Loyq ( (0, T); Wa1+1,B(Q))‘

(iv) By Lemma (i) the initial condition is satisfied in the limit. That the first boundary
condition in ()2 is fulfilled by u follows from Lemma (v).
(v) This follows from the conservation of mass property

/u”(t)dzrz/uod:v, t€[0,75),
Q Q

for the approximation u” (see Theorem (ii)) and the convergence in Lemma ().
(vi) In Lemma we have already shown that the solution u to the original problem
(B.3.1)) satisfies the energy-dissipation identity for almost every ¢ € [0,T7]. O

B.4 Differential inequality for the energy and regularity
estimates

The content of this section is twofold. First, we derive a differential inequality of Lojasiewicz—
Simon type for the energy functional £ which is valid as long as the weak solution to ()
remains bounded away from zero. Then, we derive L;-in-time regularity estimates for the
weak solution to (). The results are the same as in the cylindrical Taylor-Couette set-
ting in [LPV22; [V22]. However, since the present paper deals with the flat case, the proofs
cannot rely on Fourier analysis.

Proposition B.4.1. Fixa > 0 and a positive initial value ug € H*(Q) withuo(z) > 0 for
x € Q. Let

ue C([0,T]; H' () N Lat1 ((0,T); W31, ()
with
€ L ((0.7): (Wt 5(2))

be a weak solution to () with initial value ug, as obtained in Theorem . Letm =
ming ;) co.r1x0 W(t, ) > 0. Then there is a constant C = Cy,q,m > 0 such that

%E[u](t) = —D[u)(t) < —C(E[u](t))

a+1
2

for almost everyt € [0,T].

The proof of Proposition is based on the following crucial Poincaré estimate. It
is worthwhile to emphasise that this estimate is valid in both the shear-thinning case and
the shear-thickening case.

LemmaB.4.2. Fixa > 0andletv € H'(Q) N W3, 5(Q) witht = 0 and v,(z) = 0 for
x € 0N2. Then there exists a constant C' = C o > 0 such that

Elv] < CH”J»‘MH%QH(Q)'

Proof. We distinguish the casesa =1, > land o < 1.
The case o« = 1. This is just a direct application of Poincaré’s inequality.
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The case o > 1. Define w = vy, € W2, 1(€2) C Ly(€2). Observe that v is a weak solution
to the Neumann boundary-value problem given by

Vge = W, T E €,
vy =0, x €.

Hence, we obtain the estimate ||v,|| 1, () < Cl|w| 1,(q). Furthermore, note thatw = 0. Us-
ing this, applying Poincaré’s inequality and then Jensen’s inequality for the concave func-
tion s — s2/(@+1) 5 € (0, 00), we find that

a _2
Blo] = 3 0el30) < Cllwlld ) < Clhull g0 cAwmﬁ+%ﬂm

2
at+l
<C (/ [Vgge| T daz) i
Q

The case « < 1. In this case we have 2/(a + 1) > 1 and we cannot use Jensen’s inequality
anymore. Instead, we rely on the Sobolev embedding and a-priori estimates for the Bi-
Laplace equation. Define w = vy, € Lo+1(£2). Then v is a weak solution to

VUgrxx = Wy, WS Q)
Vp = Vgge = 0, x € 0N,

in the sense that
/ Vpz P AT = —/ wep, dr forall p € I/Va+1 B(Q)
Q Q

Since v € C?(Q) by the Sobolev embedding, we may use v € Wa+1 B (€2) as a test function
and find that

2
[vaell 7, @) < /Q [w|[vs] dz < HwHLaH(Q)HU:EHLﬁI(Q) < Clwllg oy @) llvzzll 2o @)

DiYiding by [[vzz | £,(), we conclude that [z, |7, ) < Cllwl7, | q)- Finally, the desired
estimate

1

Elv] = S lveli,0) < CllvselT,) < Cllwl = Cllvaaell?, ., (@)
(

a+1 )
follows by Poincaré’s inequality. O

Proof of Proposition . From Theorem we know that weak solutions to ()
satisfy the energy-dissipation identity (). Taking the derivative in time, we find that

d
SB[u)(t) + Dlul() = 0

for almost every ¢ € [0, T]. Furthermore, since m = min ,)c(o7)x0 u(t,z) > 0 and by

Lemma , we obtain
a+1

D[u] / |u|a+2|uwm|a+1 dr > ma+2||umm( )H%+il Q) > Cm®*? (E[u](t)) ?

for almost every ¢ € [0, T']. This concludes the proof. O
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Next, we turn to L;-in-time bounds for the dissipation functional in terms of the en-
ergy. The proofis a simplified version of the one in [LV22] for general degenerate parabolic
problems of fourth order. In our case, it relies on testing the partial differential equation
with a time cut-off of the second spatial derivative.

Theorem B.4.3. Fix o > 0 and a positive initial value ug € H'(Q)) withug(x) > 0 for
z € Q. Let
ue C([0,T) HY(Q)) N Las1((0,T); Wa iy 5(92))

with
Up € LaTH ((07 T); (WalJrl,B(Q))/)

be a positive weak solution to () on (0,T), as obtained in Theorem . Then there
exists a constant C > 0, independent of t, such that the dissipation functional D[u] enjoys
the L -in-time bound

t t/2
plls)ds < & [ Blu(s) s < § Bl ().
t/2 t/4

Proof. We choose a cut-off function y € C*°(R) in time such that0 < x < 1, x(s) =1
fors > t/2, x(s) = 0fors < t/4 and x'(s) < C/t for some constant C, independent of
t. Now we define the test function ¢ (s, ) = X(8)tzz(s, %) € Lay1((0,T); Wa,, p(9)).
Since u is a weak solution to (B.3.1) on the time interval [0, ], we obtain

t t
/ <Uta X(S)umc>W1 ds = / / ua+2¢(u:c:r::r)uxxx>((s) dx ds (B.4.1)
0 ot 0 /o

t
:Ax@mm@w
Moreover, since x(0) = 0 and x(¢) = 1, we have the inequality
td
0 < E[u](t) = / (M) Bu](s)) ds (B.4.2)
0

:/OtX/(S)E[U](S)dS_/OtX(S)<US7u:vac>Wa1+l ds.

Combining (B.4.1) and (B.4.4) and using that Y = 1 on [t/2,t] and DJu](s) > 0 for all
0 < s <t, we conclude that

t t/2

Dlul(s)ds < /0 X(8)D[u](s)ds < /0 X' (s)E[u](s) ds < % Elu](s) ds.

t/2 t/4

Finally, since F'[u]| decreases along solutions, we may estimate

c 12 C .
" » Elul(s)ds < ZE[U](Z)

This completes the proof. O
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B.5 Shear-thickening power-law fluids (o < 1) - Global
existence and convergence to steady states in finite time

This section deals with the long-time asymptotics of shear-thickening power-law fluids,
i.e. we consider flow-behaviour exponents o < 1 in (B.3.1). We prove that for positive
initial values ug € H'(f2) that are close to a steady state in the sense that

1 _
§ﬂ0 < UQ(.T) < 2ug, x €S, where g = ][ ug dz,
Q

problem () with @ < 1 possesses a globally-in-time defined positive weak solution
that converges to a steady state in finite time. As in the circular Taylor-Couette setting
[LPV22], the corresponding proof relies mainly on the differential inequality derived in
Proposition . This differential inequality guarantees that the energy becomes zero in
finite time 0 < ¢* < co. We construct a globally-in-time defined positive weak solution by
constant extension at time t*.

By Theorem and Remark [B.3.3 there exists aweak solution u € C([0,T]; H! Q)N
Lat1((0,7); W3, 5(9)) withu; € Lo ((0,7); (Wa,, 5(€))) to (B.3.1). We define the
time

T = sup {T > 0; 3aweak solution  to (B.3.1) on [0, 7] (B.5.1)
with 319 < u(t,z) < 2u V0 <t < :f’},

up to which solutions are bounded away from zero and bounded above. Note that by con-
tinuity of weak solutions, we have 0 < 7. By Remark we may also assume that 7 < 7.
In particular, we can apply the results of Section @ up to time 7.

Theorem B.5.1 (Global existence and convergencein finite time). Fix0 < o < 1. There
existse > 0 such that, for all positive initial values ug € H' () with |luo — to| 1) < &
there is a positive global weak solution

u € C'([O, 00); Hl(Q)) N La+1,lOC((O’ 0); W2+1,B(Q)>
with
ut € LQT“,ZOC((Oa 00); (W(iJrl,B(Q))/)-
Moreover, there exists a time (0 < t* < oo such that
u(t,”) — 1 in HY(Q), ast — t*, and wu(t,z) =1y, t>t* zecQ.

Proof. Letu € C([0,T]; H'(Q)) N Lat1((0,T); W3, 5(2)) the solution to (B.3.1) pro-
vided by Theorem and Remark with initial datum uy > /2 in Q. Write
u(t,z) = ap+v(t,x)for (t,z) € [0, T] x 2, where due to conservation of mass [, vdz =0
forallt € [0,7] x Q. Then, by continuity and the definition of 7, we have |v(t, z)| < @/2
for (t,z) € [0,7] x Q. Thus, there exists a constant C' > 0 such that for almost every
t € [0, 7] itholds

/ ]fug[;m|°“r1 dx < C/ |u]°‘+2|vmm\a+1 dx.
Q Q

Hence, using the energy-dissipation identity () and Lemma , we obtain

FERO = B0 = [ [l sl da

a+1
2

< —CllosaaOF ) < ~C(B[](1))
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for almost every ¢t € [0, 7]. This inequality implies that the energy E[v](-) = E[u](-) is
decreasing and hence 7 = T'. Furthermore, it follows that

< ((E0) ) < ~Ca,

aslongas E'[v](t) > 0, and integration from 0 to ¢ yields

e -«

(ER)(1) 2 < (Elwl) 2 —Cat, tel[0,T], if E[v](t) > 0.

Thus, we conclude that

2
11—«

ER](t) < ((E[vo]) 2 —cat)ﬁ, te[0,7], if EP](t) > 0,

which implies the existence of a finite time ¢* > 0 with t* < (E[vo])kTa /Cq such that

We may choose ¢ > 0 small enough so that we obtain ¢* < 7. Finally, note that E[v](t) = 0
fort > t*and v(¢) = Oimplies that v(¢,z) = Oforallt > ¢* and = € 2. Hence, the solution
u may be extended by the constant solution @ for times ¢ > t* to a global-in-time weak
solution u € C([0,00); H'(2)) N Lay1,10¢((0,00); W2, | 5(€2)) and we have

u(t,z) — dp in H'(Q)

and uniformly as ¢ — ¢* in finite time. O

B.6 Shear-thinning power-law fluids (o« > 1) — Global existence
and polynomial stability of steady states

In this section we study the long-time behaviour of solutions to the shear-thinning power-
law equation. More precisely, we fix a flow-behaviour exponent o > 1 in () and con-
sider positive initial values ug € H'(f2) that are close to a steady state in the sense that

1 _
5’110 < uo(:c) < 2ug, x€Q,

where g = fﬂ ug dz. We show that there exist global positive weak solutions u to ()

with o > 1 that remain e-close to the steady state for all times and converge at rate 1/ ta-1
to equilibrium, as ¢ — co. Note that convergence to equilibrium has already been proved
for the global non-negative weak solutions constructed in [AG04], but with no rate of con-
vergence. The result on the rate of convergence is the same as in [LV22] for the cylindri-
cal Taylor-Couette setting. The proof relies again on the differential inequality for the en-
ergy, derived in Proposition . However, in the shear-thinning case also the L;-in-time
bound of Theorem E is crucial.

Theorem B.6.1 (Global existence and polynomial stability). Fix1 < a < oo. There
existse > 0 such that for all positive initial values ug € H'(Q) with ||ug — ol 1) < &,
there is a global positive weak solution

u € C’([O, 00); Hl(Q)) N La+1,lo€((07 0); W3+1,B(Q))
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with
Ut S LO‘THJO(;((O? 00)7 (WOL1+1,B<Q))/)
Moreover, there is a constant C' > 0 such that
_ Ce
[u(t) = wollr (o) < ——, 0<t<oo
(1+ Cea—lt)ot

Furthermore, the dissipation decreases polynomially along the solution in the following L -

in-time sense . )
C
Du(s) ds < <

3 (B.6.1)
t/2 (1 + Cé-a—lt)ﬁ

forall) <t < oc.
Remark B.6.2. Note that the weak solution
(AS C([O, oo); Hl(Q)) N La—l—l,loc((O) OO); Wc%-i—l,B(Q))

obtained in Theorem B.6.1 satisfies u(t, z) > /2 forall (t,z) € [0, 00) x Q. Hence, (B.6.1)
implies that the W32, (€2)-norm is also controlled in the L1 -in-time sense by

t
/ / |umx(s)|"”rl dxds < Ce :
t/2JQ (1 4 C&-a—lt>ﬁ

forall0 <t < oo.

Proof of Theorem . First, we show that there exists an € > 0 such that for all initial
values ug € H'(Q) with g = 0 and ||up — || < ¢, there is a constant C' > 0 independent
of e such that

2
Elu)(t) < O <t<o

(1+ea-lt)et
Letu € C([0,T]; H(Q)) N La1((0,T); W, 5(€2)) the solution to (B.3.1) provided by

6
Theorem and Remark with initial datum ug € H'(Q) satisfying ug > /2 in
Q. As in the proof of Theorem B.5.1|, we write u(t, z) = 1y + v(t, z) for (t,z) € [0,T] x Q,
where due to conservation of mass [, vdxz = 0 forallt € [0, 7). Then, by continuity and
the definition of 7 (see (B.5.1))), we have |v(t, )| < /2 for (t,z) € [0,7] x . By Lemma
we then conclude that

Elul(t) = Ev|(t) < C </Q [0gga |, da:) el

2
<C (/ ] 2 [0 | dm) AT
Q

for almost every ¢ € [0, 7]. Inserting this into the energy-dissipation identity (), we
find that

%E[u] (t) = —Dlul(t) < —C(Eul(t)) (B.6.2)

for almost every ¢ € [0, 7]. This implies that the energy E[u](-) is decreasing and hence
7 = T. Furthermore, we can rewrite estimate (B.6.2) as

2 d 1o
_ 2 < — <t<
l—adt(E[u](t)) <-C, 0<t<m,
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so that, after integration, we obtain

2 (Blt) T < —Ct+ %(E[uo])%, 0<t<r

Since a > 1, we can rearrange this inequality to

2
e C(a—l)t)l—ﬂ_ Elug] 0<i<s
2 - 2 -

(1 + C(J_@[uo])aT_lt)E -

$ _—isincreasingon [0, 00) and E[ug] < &% by assump-

(1+Cs%t) a=1

Since the function s —

tion, we infer that

Now, we choose € > 0 such that
1
l[uo — ol L) < C(Eluo])? <

where the first estimate is due to the embedding H!(Q) < L. () and the Poincaré in-
equality. This, together with the fact that E'{u|(-) is decreasing, guarantees that

[NIES

() — 110 < C(E[(1)? < C(Eluo])? <

0<t<T.

Hence, solutions u to () on [0, 7] remain strictly bounded away from zero and by boot-
strapping as in Remark [B.3.4, we may extend it beyond time 7 to a global-in-time weak
solution u € C ([0, 00); H'(Q2))

NLa+1,10c((0,00); WSJFLB(Q)) that satisfies

2
Elu](t) < e <i<m

1+ Cea-lt)at
( )

Since by Poincaré’s inequality we have

Ce
|u(t) — wollgr o) < Cv Elul(t) < —, 0<t< o0,
(1+ Ceaflt) a1

we conclude the polynomial stability in H'(2). For the L;-in-time estimate, we apply

Theorem and obtain

t Dlu](s)ds < CE[u](%) < ce’ —, 0<t<oo.

t/2 (1+ Cea—lt)ot

This completes the proof. O
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B.7 Global existence and exponential stability for the Ellis-law
thin-film equations

Now we turn to fluids with Ellis-law rheology. These are fluids whose viscosity approaches
a Newtonian plateau for low shear rates, while for big shear rates the viscosity is shear-
thinning. The corresponding thin-film equation is given by

U + (u3(1 + |uumx|a_1)uxm)x =0, t>0,x2€9,
uw(t,x) = ummx(tax) =0, t>0, x €09, (B.7.1)
U(O,JJ) = UO((L'), x €9,

for flow-behaviour exponents a > 1. Here {2 C R denotes, as before, a bounded interval.

Definition B.7.1. Leta > 1. Fora givenT > 0 a weak solution to () is defined as a
function

we C([0,7): HYQ) N Lot (0,7); W1 ()
with

ut € Lat ((O,T); (W1+1,B(Q))/)

«
@

that has the following properties:

(i) (Weak formulation) u satisfies the differential equation ()1 in the weak sense, i.e.,

T T
/ <Ut, gO)WDthl(Q) dt = / / ug(l + ”U/LL:U;EJ;|O‘71)UI$I$ O dx dt
0 0 Q

for all test functions ¢ € Lay1((0,T); Wa,, p(9)).

«

(ii) (Initial and boundary values) u satisfies the contact angle condition u, = 0 on 0f2
and the initial condition () 3 pointwise.

In the case of Ellis fluids we naturally obtain the dissipation functional
Dlu] = / 0 (1 + [ttt |2 thagal? da
Q

For general positive initial data in H'({)) we can show existence of local-in-time posi-
tive weak solutions.

Theorem B.7.2 (Local existence of positive weak solutions). Leta > 1. Givena positive
initial value vy € H'(Q) with ug(z) > 0, x € ), there exists a time T > 0 such that
problem () admits at least one positive weak solution

w e C([0.T); HND) N Lo ((0,7): W4y ()

«

with
ur € L%l ((0,7); (Wolc—l—l,B(Q))/)

on (0,T) in the sense of Definition . Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero

0<COr<u(t,r), 0<t<T,zcq
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(i) (Conservation of mass) u conserves its mass in the sense that
lu@)llz, @) = llvollz, @), 0<t<T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions
t
Elu](t) + / Dlu)(s) ds = Elug) (B.7.2)
0

for almost everyt € [0,T].

Remark B.7.3. For positive initial datum vy € Wiil 5(Q), 4p > 3+ 1/(a + 1) with

up(z) > 0,z € Q, the problem () actually possesses a unique maximal strong solution
[LM20]

u €C([0, Tinax); Wity 5(2)) N CP([0, Timax); Lat1(82))
N C((0, Timax); Wa11.8(2)) N CH((0, Timax); La+1(€)).

Moreover, the solution enjoys the following properties:
(i) (Positivity) w is positive

u(t,z) >0, 0<t< Tha, =€ Q.
(i) (Conservation of mass) u conserves its mass in the sense that

[u@lly@) = luollLy@), 0 <t < Tmax.

(iii) (Energy-dissipation identity) u satisfies the energy-dissipation identity
t
Eul(t) + / D[ul(s) = Elug], 0 <t < Tomas. (B.7.3)
0

(iv) (Maximal time of existence) Suppose that Ti,x < oo. Then

lim inf —— lu()] -
T min, g u(t) Tlelwiy, po) =

forally € (0,1].

Proof of Theorem . For initial data ug € W2/

o158, 4p > 3 + 1/(a + 1) with

(k)

uo(x) > 0 we obtain local-in-time strong solutions. Choosing a sequence (uo with

)keN
uék)(x) > 0,z € Q, and ﬂ(()k) = 19 such that uék) — wg strongly in H'(Q)) guaran-
tees, together with the energy-dissipation identity () and similar a-priori bounds
as in Lemma that the corresponding strong solutions u(*) converge weakly in
Lo ((0,7); H'(2)) N Lay1((0,T); W2, 5(Q)) toaweak solutionu € C([0,T]; H(2)) N
Lat1((0,T); W2, 5(2)). Positivity, conservation of mass and the energy-dissipation
identity for almost every ¢ € [0, T'] are preserved under taking the weak limit. O

STEADY STATES OF (). We now turn to stability. First, we find that the same charac-
terisation of positive steady states as before holds true. This is the content of the following
theorem which has already been proved in [LM20, Corollary 6.3].
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Theorem B.7.4 (Characterisation of positive steady states). A functionu € W2, ()
is a positive steady-state solution of () ifand only ifu = u, € Ry is given by positive
constant.

GLOBAL EXISTENCE AND EXPONENTIAL STABILITY FOR (). It is well-known that for
the Newtonian thin-film equation

ur + (Utges) , = 0, t>0, z €,
Uy (6, 2) = Ugge(t,x) =0, >0, x € 00,
U(O,ZL‘) = Uo(l'), T €,

solutions close to positive steady states converge exponentially fast to equilibrium [BP96].
We now prove that the same behaviour can be found for Ellis-law thin films.

Theorem B.7.5 (Global existence and exponential stability). Fix1 < o < co. There
existse > 0 such that, for all positive initial values ug € H'(Q) with |luo — to|| 1) < &
there is a global positive weak solution

u € C([0,00); H'(2)) N Las,10c ((0, 00); W1 5(2))
with
up € Latt joo((0,00); (Wap 5(9))')-

Moreover, there is A > 0 and a constant C > 0 such that
_ Y
Ju(t) — ol 1) < Ce™ [luoll r(q)-

Furthermore, we find that the dissipation decreases exponentially along the solution in the
following L1 -in-time sense:

t
Dlu)(s)ds < e ug 21 g,
t/2

Proof. Letug € H'(Q) with 4p/2 < ug(z) < 2tp, € Qandu € C([0,T]; H'(2)) N
Lat1((0,T); W2, 5(52)) thesolution to (B.7.1) provided by Theorem . We also define

e

T = sup {T > 0; 3aweak solution u to (B.7.1) on [0, T]

with Lo < u(t, ) < 2 V0 < t < T}

Then 7 < T because otherwise we can extend weak solutions beyond time 7.

Next, write u(t, z) = ug + v(t, z) for (¢,x) € [0,T] x €, where due to conservation of
mass [, v(t,x)dx = 0forallt € [0,7]. Then, by continuity and the definition of 7, we
have |v(t,z)| < up/2for0 <t <.

We then find, by the energy-dissipation identity () and the definition of 7, that

%E[u](t) = —Dlu|(t) = —/Qu?’(t,a:)(l + |u(t, x)uzm(t,xﬂo‘_l)|uxm(t,x)]2d:v

— U3 X)lu x2x — u $2.T — u
< /Q (b 2) [t ()2 i < c/Q\ raalt, 2)[2 dz < —CEJu)(t)
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for almost every ¢ € [0, 7], where in the last step we have applied Lemma B.4.4. This yields
that E'u|(t) is decreasing and so 7 = T'. Applying Gronwall’s inequality, we deduce that

E[u)(t) < Blugle™ "

forall¢ € [0, 7]. Now choose ¢ > 0 small enough so that

o
luo — ol ooy < CElug)? < —

2 b
where in the first estimate we have used the embedding H' () < L. (£2) and Poincaré’s
inequality. Using this and the fact that E[u](t) is decreasing, we get

D=
N

[u(t) — tol| L= () < CE[u](t)> < CElug]> <

NJES

forall¢ € [0, T]. We can then extend the solution beyond time 7’ to a global-in-time weak
solution u € C([0,00); H*(€)) N Lat1,10¢ ((0,00); W3, | 5(€)) to (B.7.1) that satisfies

Elu)(t) < Elugle™®t, 0<t < 0.
By Poincaré’s inequality, we then conclude that
Ju(t) = woll (@) < CELu(t)]? < Cl|Vugll 2(aye ™,

for some A > 0 and allt € (0, ).
The L;-in-time estimate follows from adapting Theorem to the new dissipation
functional. O

B.8 Appendix: Proofs of Lemma and Lemma

Here we give precise proofs of the auxiliary results needed to establish local existence of
positive weak solutions to the original problem () in Section @

Proof of Lemma . (i) In Lemma (i) and (iii) we have shown that

(u?), is uniformly bounded in Lo ((0,T); H*(£2))
(47 ) is uniformly bounded in Lot ((0,7); (Wi 5()).

Moreover, in view of the Rellich-Kondrachov theorem, see e.g. [AF03, Thm. 6.3], we have
HY Q) 5 CP(Q) = (W (), pe[0,1/2),

where <% indicates compactness of the embedding. This enables us to use [Sim86, Cor. 4],
which gives that the sequence

(u”), is relatively compact in C ([0, T]; C*(2))

with p € [0,1/2) as above.
(ii) This is an immediate consequence of Lemma (ii).
(iii) By Lemma (iii), we can extract a subsequence (uy ), such that

uf = v weaklyin Los ((0.7); (Whiy 5(2))) = D'((0,7): (Wiiy ()
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for some limit function v € Loy ((0,7); (W2, 5(22))'). Since, in addition,

u” —u inC([0,T];CP(Q)) < D'((0,T); War15(9)) pe0,1/2),

(e}

we conclude that
uf — u; inD'((0,7); (W$+1,B(Q))/)),

and thus, v = u; € Lons ((0,7); W,y 5(9)).

(iv) Note that the strong convergence v’ — u in C([0,T];C*(2)), p € [0,1/2), in ()
implies uniform convergence

uw —u inC([0,T] x Q). (B.8.1)

Moreover, by Lemma (v), there exists some @ € La+1((0,T); W2, | 5(€)) such that

u” =4 inLay1((0,7); W3, 5(Q)). (B.8.2)
Because of the uniqueness of the limit function, we infer from () and () that

u” = u inLay1((0,7); Wi, 5(Q)).

«

In virtue of the weak lower-semicontinuity of the norm and Lemma (iv) and (v), we
finally obtain

el Loy ((0,7)x0) < Hminfoo [[ug,. L, (0,r)x0) < C
[elloiromymws,, oy < liminfo—o [[wlln, . 0 myws,, o) <€

[e3

for some generic constant C' > 0 that is independent of o.
(v) This follows by reasoning similarly to (iii) and the proof is complete. O

Proof of LemmalB.3.10. The proof is divided into several steps. Throughout the proof,
when there is no fear of ambiguity, we pass to a subsequence without relabelling it.

(i) First, by Lemma (ii), we know that [u?|**%¢), (uZ,, ) is weakly sequentially com-
pact, i.e, there is an element x € La+1 ((0,7) x ©)) such that

0 i (T

) = x weaklyin Lot ((0,7) x Q)).

It remains to identify the limit flux x.
(ii) Next, in view of Lemma (v) and the lower semicontinuity of the norm,

Uz € Lag1((0,T); Wayy o(Q) N W34 ().

Thus, we can take ¢ = Uzz € Loy1((0,T); Wi, () as a test function in the equation
([7Z3) for w°. This gives

T T
/ / U gy dox dt + / / U |22 4hy (UG 4 ) U da dt = 0.
0 Q 0 Q

Using Lemma (iii), the first term satisfies

/UT/Qufumdmdt—>/OT/Qutumdxdt—E[u](T)—E[u](())
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as 0 N\, 0. For the second term, we infer from Lemma (i) that

T T
/ / ]u"]‘”zwg (U 0 ) Uz d dt — / / XUzzz dx dt,
0 Q 0 Q

as o ~\, 0. Consequently, we obtain the identity

Eu](t) + (x|uzza), ,, = Eluo)

for almost every ¢ € [0, 7.
(iii) We now use Minty’s trick to identify the limit flux . Note that the operator

{%: Lot1((0,T) x Q) — LQTJ,;((O,T) x ),
Go(v) = (o +02) T v

is monotone, i.e. for all v, w € La41((0,T) x ) with v # w it holds that

(6 (0) = Yo(w)lo =), = //w o () (v — w) dadt > 0.

This follows immediately from the monotonicity of the function

a—1

Yo: R—=R : s (s2+0°%) 2 s.

From now on, we simply write (v|w) for the dual pairing (v |w> s (0T )XQ) between v €
Las1((0,T) x Q) andw € La41((0,T) x Q). Letnow ¢ € W2, ((0,T) x Q). In view of
the monotonicity of ¢,, we have

0 < <|ua|a+2wa( zx:p) |uo‘a+2w0((p$xx)‘(uo - ¢)$$w>
= (|71 (ug ) [uGa) — ([0 Y0 (uTgy )| Praa)
- <‘ua‘a+2wa(@zm |umx$> + <’ua|a+2wo(@mx)|¢xm> .

We consider the four dual pairings on the right-hand side separately.
First, we rewrite the energy-dissipation identity for the problem ([Z]) as

(uT |2 2y (U0 ) [ugs ) = Efug] — E[u](t) for almost every t € [0, 7.

Txrxr

Thanks to Lemma (i) we know that u° (t) — u(t) in H'(Q) for almost every ¢t € [0, 7],
and hence, as o N\ 0, we have

(w29 (UG ) [UTyy ) — Elug] — Efu](t) foralmosteveryt € [0,7].  (B.8.3)
For the second dual pairing, we get from Lemma (i) that
(a1 20 (U )| Orza) — (X 6wa), @S0 N0,
For the third pairing, we use Lemma (i) and (iv) to obtain

u

u” — u strongly in C'([0,T] x Q)
Tow — Uszz Weaklyin Loy1((0,T) x Q),

TTT
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and this implies

([0 (Paae) [ufag) — ([ul**Y(Poes) tiaes) ,  aso N\ 0.
Clearly, for the fourth pairing, we have

{0 |* o (Paza) [ Paze) — (Ul TV (Pooe)|Pra), aso N\, 0. (B.8.4)

Combining ()—() yields the inequality

0 < Eluo] — E[u](t) — {x|aze) — ([ul* ¥ (0raa)|(t = ¢)saa) ,
and taking into account the identity

Elu](t) + (X[taza) = E[uo]

proved in step (ii), for almost every ¢ € [0, 7], we get that

0< <X - |U|a+2¢(9@xm)|(u - 90)$”> .

Choosing ¢ = u — Av for some arbitrary v € W2,,((0,T) x Q) and A > 0, gives the
inequality
<X - |u|o¢+2,¢((u - )\v)mzx>|vxxz> >0

and thus in the limit A X\, 0 we deduce

<X - ‘u|a+2w(u$$$)’1)x$a:> >0, ve W2+1 ((O,T) X Q),
for almost every ¢ € [0, T]. Now taking ¢ = u + Av, we see that

<X - ‘u|a+2¢(um:x)’vm:x> <0, ve Wa3+1 ((O,T) X Q)
Hence, we have shown that

<X - |u|a+2¢(u:mx)|vxxx> =0, ve Wa3+1 ((O,T) X Q),
from which, since v € W2, ((0,T) x ) is arbitrary, we are able to identify

X = [ul* P (Uggs) € Lata ((0,T) x Q).

This completes the proof. O
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