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SUMMARY

This thesis concerns problems arising in the study of flows of viscous fluids. In the first
part, we discuss the interaction of the flowof a viscous fluidwith a randomarray ofmoving
particles in the limit ofmanyparticles and a total Stokes drag of order one. The secondpart
of this thesis analyses the dynamics of thin liquid films of non-Newtonian fluids driven by
capillary forces.

Thedescriptionof an effective theory of a randomarray ofmovingparticles in a viscous
fluid is known as stochastic homogenisation in perforated domains. If the particles move
slowly, inertial effects can be neglected and the fluid flow can be described as a Stokes
flow in a perforated domain. Due to the viscous nature of the fluid, the interaction of the
particles through the fluid is of long range. The Brinkman equations describe the effective
theory for the fluid flow in the limit of many particles so that the collective Stokes drag is
of order one. The rigorous derivation of the Brinkman equations from a Stokes flow in a
perforated domain has been an active area of research.

This thesis addresses the quantitative study of the homogenisation result for the Stokes
flow in perforated domains. For a random configuration of particles and velocities, the
fluctuations around the limit are analysed. In the physical setting of three space dimen-
sions, the fluctuation field is derived explicitly, and convergence rates for an approxima-
tion of the velocity fields in the perforated domains are shown. Furthermore, this thesis
takes a first glance at a connection between stochastic homogenisation in perforated do-
mains and stochastic partial differential equations.

The dynamic behaviour of thin liquid films of viscous fluids is derived from an asymp-
totic expansion in terms of the film height of a free-boundary Navier–Stokes system in
the lubrication approximation. If the dynamics of the thin film are determined only from
viscous forces and surface tension, the evolution of the film height is, to leading order,
described by a fourth-order nonlinear degenerate-parabolic partial differential equation.
In the second part of this thesis, the long-time behaviour and stability of this thin-film
equation is studied for different non-Newtonian rheologies. That the evolution of the film
height only depends on viscous and capillary forces points towards a gradient-flow struc-
ture of the dynamics. Thedecay rates depend on the fluid rheology. This topic is addressed
in the final chapter of this thesis, where the gradient-flow structure of thin films of non-
Newtonian power-law fluids with general mobilities is studied.
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Part I

Fluctuations for Homogenisation in
Perforated Domains





1 INTRODUCTION

Abstract

Homogenisation theory in perforated domains strives to derive effective equa-
tions for the interaction of particles in different media such as viscous fluids. One
model describing the velocity of a viscous fluid containing many particles is given by
the Dirichlet problem for the Stokes equations in a perforated domain. In the case
of charged inclusions in a material, the electrostatic potential of this material is de-
scribed by the Dirichlet problem for the Poisson equation in a perforated domain.

If the size of the particles is scaled inversely to the number of particles such that
the total Stokes drag (or total capacitance) remains of order one, one obtains conver-
gence to a solution to a limit equation involving a ‘strange term’. Different techniques
for the derivation of this effective theory are described heuristically in this chapter. It
is explained how the resulting approximation can be modified to capture higher or-
ders of the homogenisation, giving an outlook on the main results of the first part.
Moreover, it is illustrated how this is connected with stochastic partial differential
equations. The chapter concludes with an overview of the mathematical literature
on the homogenisation problem for electrostatic and hydrostatic equations in perfo-
rated domains.

The study of the interaction of moving particles with a viscous fluid constitutes an im-
portant area of modern mathematics. Such systems of (small) particles moving in a fluid
have many essential applications in technology and physics and can be observed every-
where in nature.

While the effect of one single particle on the fluid is, by Newton’s third law, propor-
tional to itsmass and therefore relatively small, many small particles can have a significant
and complex influence on the (dynamical) behaviour of the viscous fluid. The complexity
of this effect is not only due to the number of particles but also due to their long-range
interactions.

There is a similar effect in the electrostatics of materials with small charged inclu-
sions. As in the case of the fluid, one small inclusion only affects the electrostatic potential
slightly. Many inclusions induce similar complex effects.

In both cases, the analysis and numerics of the fluid flow with many particles or the
electrostatic potential of a material with many inclusions becomes mathematically inac-
cessible when the number of particles or inclusions is large. In many applications, only
themacroscopic effect of the particles on the fluid or the inclusions on thematerial are of
interest. This results in the study of the effective average velocity of the fluid or the effective
electrostatic potential of the material.

This macroscopic description, i.e. an effective theory for the fluid flow or for the elec-
trostatic potential, can be derived in the limit of many particles or inclusions. For this
limiting process which is called homogenisation, only a few physical parameters turn out
to be relevant: the viscosity and the mass density of the fluid or the conductivity of the
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6 Fluctuations for Homogenisation in Perforated Domains

material, as well as the average mass density of the particles or inclusions, their volume
fraction and their average velocity or charge.

The first part of this thesis deals with a particular effect induced by particles in a fluid
or by inclusions in a material: we consider the critical scaling for the Dirichlet problem
of the Poisson and Stokes equations in a domain Ωm ⊂ Rd, d ≥ 2, perforated bym tiny
(spherical) holes, described for example in [CM82a] and [All90a].

This critical scaling is characterised by the emergence of a ‘strange’ term signifying the
collective effects of the particles. It can be explained as the collective effect of the Stokes
drag given by each particle or the capacity of each inclusion. Consider a single spherical
particle with radiusR > 0. Then the Stokes dragFd or the effect of viscosity on the particle
(or vice versa, the effect of the particle on the viscous fluid) is of order Fd ∼ Rd−2(V − u),
[Sto51]. Here, V denotes the velocity of the particle and u the velocity of the undisturbed
fluid. In a system with m particles, the total Stokes drag is of order one if the product
mRd−2

m , with the number of particlesm and the particle radius Rm, is of order one. Note
that the limit of the particle numberm→ ∞ also leads to a vanishing volume fraction.

For the description of the electrostatic potential in materials with small inclusions the
same effect can be observed by considering the capacitance. The capacitance describes
the amount of electric charge of the inclusion compared to the electric potential in the
material surrounding it [Max73].

We study the limiting behaviour for both the Poisson equation (for the electrostatic
case) and Stokes equations (for fluid flows) in this scaling regime described by inclusions
with a collective effect of the capacitance or Stokes drag of order one. While the behaviour
of the corresponding equations in perforated domains in the limit ofmany (randomly dis-
tributed) small particles has been studied since the pioneering works [Hru79], [CM82a]
and [All90a], there are fewer and more restricted results on the quantitative behaviour of
the limiting process, [FOT85] and [Rub86].

In the critical scaling, the collective effect of all particles results in the appearance of
an additional term in the equation obtained in the limit of particle numberm→ ∞. If the
radius of the particles were much smaller than the critical radius, i.e. ifRd−2

m m � 1, then
this collective effect disappears and one recovers the original equation in the limit.

On theother hand, if theparticles aremuch larger, i.e. Rd−2
m m� 1, the collective effect

of the particles dominates. Then the limiting equations are solely described by the (static)
evolution of the particles. In this case, a rescaled version of the homogenisation problem
converges to Darcy’s law (see e.g. [All90b] or [Giu21a]). The remainder of this thesis will
only be concerned with the case of the critical scaling for the radii of the particles.

This introductory chapter of the first part continues with a concrete formulation of the
problem for the Poisson and Stokes equations in Section 1.1. Section 1.2 consists of a phe-
nomenological treatise of differentmathematicalmethods to study the limiting behaviour
for the Poisson equation in the simple geometry of spherical particles distributed on a lat-
tice. Using a blow-up argument, we derive an explicit approximation which is modified
in Section 1.3 to include the corrections due to the fluctuations. A characterisation of the
fluctuations for the Poisson and Stokes equations in three dimensions for randomly dis-
tributed spheres with random velocities has been obtained in [HJ22]. A reprint of this pa-
per can be found in Appendix A. The fluctuations field can be described as a solution to a
linear stochastic partial differential equation. This link will be explored further in Section
1.4. Finally, in Section 1.5, we give a general overview of the literature on homogenisation
results in perforated domains.
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Chapter 2 consists of a summary of the main result of the first part of this thesis. It
concerns the study of fluctuations for the homogenisation of the Stokes equations in R3,
perforated by particles with random positions and velocities. A reprint of the whole paper
can be found in Appendix A.

In Chapter 3, the link between the stochastic homogenisation problem and stochastic
partial differential equations is investigated in more detail. As preliminary steps, the ho-
mogenisation result is extended to the semilinear Poisson equation, and the solution to
the stochastic Helmholtz equation is derived as a homogenisation limit. These observa-
tions lead to the conjecture that one can obtain the elliptic Φ4

d-theory from the theory of
stochastic homogenisation in perforated domains.

1.1 Formulation of the problem
Wewill now give the precise formulation of the homogenisation problem in a domainΩ ⊂
Rd for general space dimension d ≥ 2. We consider a fixed number of spherical particles
m ∈ N with a fixed radius Rm > 0 and centresX1, . . . , Xm ∈ Ω. Note that the positions
Xi = X

(m)
i also depend on m, but we suppress the corresponding index for simplicity

of notation. For the remainder of this thesis, we will restrict the analysis to the case of
spherical particles. In the case of non-spherical particles, additional effects might occur
depending on the geometry and corresponding dynamics. For results for non-spherical
holes see for example [CM82a] and [HMS19].

Furthermore, we denote by dm the minimal distance between the particles

dm = min
i ̸=j∈{1,...,m}

|Xi −Xj |.

We will assume that m−1/d ∼ dm � Rm ∼ m−1. To avoid technicalities with particles
very close to the boundary, we assume that dist

(
(Xi)i=1,...,m, ∂Ω

)
> 2Rm. With these

preliminaries, we denote the perforated domain by

Ωm = Ω \
m⋃
i=1

BRm(Xi).

For the description of the electrostatic potential in the domainΩm, we choose charges
Q1, . . . , Qm ∈ R on each of the inclusions. Given a source term f ∈ H−1(Ω) (or f ∈
Ḣ−1(Ω) in the case where Ω is unbounded), the electrostatic potential um : Ω → R with
isotropic conductivity matrix a = Id in the domain with inclusions BRm(Xi) and corre-
sponding chargesQi, i = 1, . . . ,m, is described by the Poisson equation

−∆um = f inΩm,

um = Qi inBRm(Xi), i = 1, . . . ,m,

um = 0 on ∂Ω.
(1.1.1)

Then, equation (1.1.1) has a unique weak solution um ∈ H1(Ω) (or um ∈ Ḣ1(Ω) for un-
boundedΩ) by the standard theory of elliptic partial differential equations.

To obtain a macroscopic description, we now assume that the distribution of charges
is given by a macroscopic object. In the simplest (non-trivial) case, we may assume that
there is a functionQ ∈ H1(Ω) such that

Qi =

 
BRm (Xi)

Q(x)dx :=
1

|BRm(Xi)|

ˆ
BRm (Xi)

Q(x)dx =: [Q]m(Xi).
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(We could also give up on the charges being constant and just assign um = Q inBRm(Xi),
i = 1, . . . ,m. This particular choice of charges will play a role in Chapter 3 though.)

Using the newly introduced functions [Q]m ∈ H1(Ω) (which we may modify close to
the boundary so that [Q] ∈ H1

0 (Ω)bymultiplicationwith a cut-off), wefind thatum−[Q]m
solves the Poisson equation in the perforated domainΩm given by

−∆(um − [Q]m) = f +∆[Q]m inΩm,

um − [Q]m = 0 inBRm(Xi), i = 1, . . . ,m,

um − [Q]m = 0 on ∂Ω.

By the standard a priori estimate, we conclude that

‖um − [Q]m‖H1 ≲ ‖f‖H−1(Ω) + ‖[Q]m‖H1(Ω) ≲ ‖f‖H−1(Ω) + ‖Q‖H1(Ω),

and hence um is uniformly bounded inH1
0 (Ω). We conclude that um has a weak accumu-

lation point u ∈ H1
0 (Ω).

For the case of the static description of a fluid flow aroundmoving particles, we choose
velocities V1, . . . , Vm ∈ Rd. Then, the Stokes flow vm : Ω → Rd around the particles
BRm(Xi) with velocities Vi is given, if we neglect inertial effects, by the Stokes equations
in the perforated domain

−∆vm +∇pm = f inΩm,

div vm = 0 inΩm,

vm = Vi inBRm(Xi), i = 1, . . . ,m,

vm = 0 on ∂Ω.

Here, pm : Ω → R denotes the pressure and f ∈ H1(Ω;Rd) is a force term (or f ∈
Ḣ1(Ω;Rd) for the case of unbounded Ω). Again, by the standard theory, 1.1 has a unique
weak solution vm ∈ H1(Ω;Rd) (vm ∈ Ḣ1(Ω;Rd) for unboundedΩ).

If we assume that the velocities are given by a macroscopic function V ∈ H1(Ω;Rd)
such that

Vi =

 
BRm (Xi)

V (x)dx =: [V ]m(Xi),

then the sequence (vm)m is uniformly bounded inH1
0 (Ω;Rd) and has a weak accumula-

tion point v ∈ H1
0 (Ω;Rd).

The task at hand is to understand these accumulation points. This is achieved by show-
ing that the accumulation points satisfy a screened (macroscopic) version of the original
equation. The following section will explain different variants of the identification of the
limit equation. Before we can get there, we need to fix some more assumptions on the
distribution of the inclusions or particles, cf. [NV04b].

Definition 1.1.1. We call a set of configurations for the centres of the holes (or particles)
(Xm

i )i∈Im} ⊂ Rd, d ≥ 3, with a finite or countable index set Im ⊂ N andm ∈ N admissible
if there is a constantC0 > 0 such that

(i) The number of particles in a cubeQ ⊂ Rd does not exceedC0m|Q|.

(ii) Particles are well separated:

min
i ̸=j

|Xi −Xj | ≥
1

C0
m−1/d.
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(iii) Particles are homogeneously distributed on average:

max
|Q|≤

max
Xi∈Q

1

m

∑
Xj∈Q
j ̸=i

1

|Xi −Xj |d−2
≤ δ|Q|,

with δ|Q| → 0 as |Q| → 0.

(iv) collective capacity of order one: there is a measure µ such that∑
i∈Im

1

m
1

d−2

Hd−1|∂BRm (Xi) −→ µ

in an appropriate sense.

Theseassumptions are satisfied for theparticular case of the centres givenby the lattice
m−1/dZd ⊂ Rd (for the construction of the measure µ see below). We will analyse this
case phenomenologically in the following section. They are also satisfied with probability
converging to one in the case of particles that are randomly distributed either by a Poisson
point process or independently and identically with respect to a continuous density.

1.2 Homogenisation in perforated domains
We now study different techniques for the analysis of the limiting problem of equation
(1.1.1) phenomenologically. The study for the Stokes equations is similar. To do this, we
assume that Ω = Rd and that the holes are given on a latticem−1/dZd. Notice that in an
open domain U ⊂ Rd of order one there are roughlym holes so that we set

Rm = m− 1
d−2

to guarantee thatRd−2
m m = 1.

∼ m− 1
d

∼ m
− 1

d−2

Figure 1.1: Particle configuration on the lattice.

Wealso choose chargesQi on theholeBRm(Xi) andassume that these aremacroscop-
ically given by a function Q ∈ H1(Rd) with Qi = [Q]m(X) =

ffl
BRm (X)Qdx in BRm(X),

X ∈ m−1/dZd. Then, as discussed previously, the electrostatic potential um is described
by the Poisson equation
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{
−∆um = f inRd \

⋃
X∈m−1/dZd BRm(X),

um = [Q]m(X) inBRm(X) for everyX ∈ m−1/dZd.

We consider vm = um − [Q]m, then vm solves the equation{
−∆vm = f +∆[Q]m = f̃ inRd \

⋃
X∈m−1/dZd BRm(X),

um = 0 inBRm(X) for everyX ∈ m−1/dZd.
(1.2.1)

As discussed before, we know that there is a weak solution vm ∈ Ḣ1(Rd) to (1.2.1)
and, by standard energy methods, we know that there is a weak accumulation point v ∈
Ḣ1(Rd).

There are several different methods to derive the corresponding equation for the limit
point. Thefirstmethod, whichwas developed in [CM82a; CM97] and applied to fluid flows
in [All90a], is based on the work of Tartar [Tar76] on so-called correctors. Here a suitable
test function vanishing in the particle is constructed that converges weakly in Ḣ1(Rd) to
the constant function 1. This function wm carries the information on the capacity of the
holes.

Since the early work of Smoluchowski [Smo11], a secondmethod devised for studying
the limit is the method of reflections. This method constructs an approximation of the
solutions um iteratively in terms of a series starting from −∆v = f̃ and correcting the
errors made in each particle from the previous approximation. The method of reflection
has been rigorously studied in [HV18].

A third method is to derive a monopole approximation for um. Since −∆um − f
is supported on ∂BRm(X), we can try to approximate −∆um − f as a sum ûm =∑

X∈m−1/dZd qXδ
m
X over each monopole, taking the contribution of every single parti-

cle into account. The additional ingredient is to assume that the approximation is good
on each particle. This is achieved by choosing the corresponding charges qX so thatffl
BRm (X) ûm dHd−1 = QX for everyX ∈ m−1/dZd.
Finally, the limit equation can also be derived utilising a blow-upmethod as in [Gér22]

and [HJ22]. Here, one uses the accumulation point of the sequence um to describe the
behaviour far away from each particle. This gives an explicit approximation for the charge
in each hole only in terms of the accumulation point and the position and charge of each
hole. In [HJ22] a refined version of this method has been used to study the fluctuations.

We now givemore details on each of thesemethods in the case of the Poisson equation
(1.2.1) onRd with particles on the lattice.

METHOD OF OSCILLATING TEST FUNCTIONS
The first method we introduce here is the method of oscillating test functions. In order
to be able to test the Poisson equation (1.2.1) on a perforated domain, we want to use
test functions of the form wmϕ for ϕ ∈ C∞

c (Rd), where wm ≡ 0 in BRm(X) for every
X ∈ m−1/dZd. Then the weak formulation becomesˆ

Rd

∇vm∇(wmϕ)dx =

ˆ
Rd

f̃wmϕdx.

Wemake the following assumptions for the sequence (wm)m, cf. [CM82a]:

(A1) wm ∈ H1
loc(Rd);
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(A2) wm = 0 inBRm(X) for everyX ∈ m−1/dZd;

(A3) wm ⇀ 1weakly inH1
loc(Rd);

(A4) there is a measure µ ∈ W−1,∞
loc (Rd) on Rd such that for every sequence ṽm with

ṽm = 0 inBRm(X) for everyX ∈ m−1/dZd and ṽm ⇀ ṽ weakly inH1(Ω), it holds

〈−∆wm, ϕṽm〉 −→ 〈µ, ϕṽ〉

for all ϕ ∈ C∞
c (Rd).

Observe that µ is explicitly given by the formula

〈µ, ϕ〉 = lim
m→∞

ˆ
Rd

|∇wm|2ϕdx,

for every ϕ ∈ C∞
c (Rd), cf. [CM82a, Proposition 1.1].

With these assumptions, we may conclude that
ˆ
Rd

f̃wmϕdx −→
ˆ
Rd

f̃ϕdx

and
ˆ
Rd

∇vm∇(wmϕ)dx = 〈−∆wm, ϕwm〉 −
ˆ
Ω
vm∇wm∇ϕdx−

ˆ
Ω
vmwm∆ϕdx

−→ 〈µ, ϕv〉 −
ˆ
Ω
v∆ϕdx.

Here, we used (A4) and (A3), which also implies that∇wm ⇀ 0 in L2
loc(Rd). We conclude

that v is a weak solution to the equation

−∆v + µv = f inRd,

provided such a sequence of oscillating test functions exists.
The construction of the sequencewm uses the specific geometry of the positions of the

centre of the balls. Here, the geometry of the lattice comes in useful for this phenomeno-
logical discussion. Themethod has been used for more general (random) distributions of
particles for example in [DG94] [CM09a], [CCL15], [CCL16], [GHV18] and [GH19a].

In our setting of the lattice, it suffices to constructwm on a fundamental domain given
by the cubeC with sidelengthm−1/d and centre 0.

We define the functionwm then by the periodic continuation of the solution to
−∆wm = 0 inBm−1/d/2(0) \BRm(0),

wm = 0 inBRm(0),

wm = 1 inC \Bm−1/d/2(0).

Since the volume of the ballBRm(0) is very small compared to the volume of the cube
C, one can show thatwm ⇀ 1 inH1(C). Recall the definition of the capacity of a set

Cap(K) :=

ˆ
Rd\K

|∇w|2 dx,
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m−1/d

BRm(X)

Figure 1.2: Fundamental domain of one particle.

wherew = 0 onK andw → 1 as |x| → ∞. We observe by rescaling the ballBRm(0) to the
ball with radius one and then sendingm→ ∞ that

ˆ
Rd

|∇wm|2ϕdx −→ Cap(B1(0))

ˆ
Rd

ϕdx = (d− 2)Hd−1(∂B1(0))

ˆ
Rd

ϕdx. (1.2.2)

Hence, µ = (d− 2)H(B1(0)) and the limit equation is given by

−∆v + (d− 2)ωdv = f̃ inRd,

withωd = Hd−1(∂B1(0)). Since [Q]m → Q inH1
loc(Rd), we conclude thatum = vm+[Q]m

converges weakly inH1
loc(Rd) to the function u, which solves

−∆u+ (d− 2)ωd(u−Q) = f inRd.

METHOD OF REFLECTIONS
Themethod of reflections was first used by Smoluchowski [Smo11] to calculate the inter-
action of particles in a Stokes flow. There are many historical and recent results, most of
them numerical, using the method of reflections. For an overview, we refer the reader to
[LLS21]. In the context of homogenisation inperforateddomains, itwas rigorously applied
in [HV18].

We again study the equation (1.2.1)

{
−∆vm = f̃ inRd \

⋃
X∈m−1/dZd BRm(X),

um = 0 inBRm(X) for everyX ∈ m−1/dZd.

If we neglect the particles, a first approximation could be given by

−∆Φ0 = f̃ inRd.

We consequently need to correct Φ0 at each particle. This is known as reflection, and for
X ∈ m−1/dZd we defineΦ1,X via{

−∆Φ1,X = 0 inRd \BRm(X),

Φ1,X = −Φ0 inBRm(X).
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We then defineΦ1 =
∑

X∈m−1/dZd Φ1,X and considerΦ0 +Φ1. NowΦ0 +Φ1,X solves
(1.2.1) if there was only one particle. Since there are many particles, we have to continue
correcting and define{

−∆Φk,X = 0 inRd \BRm(X),

Φk,X = −
∑

Y ̸=X Φk−1,Y inBRm(X),

and Φk =
∑

X∈m−1/dZd Φk,X . To make this method rigorous, one now has to prove con-
vergence of the sequence

∑N
k=0Φk. Two main problems stand out: even Φk consists of

infinitely many terms, and to obtain convergence a good decay rate of Φk,X is needed.
Next, the convergence as N → ∞ has to be shown. We will not discuss this further here
since we will not use the method of reflections in this thesis. Note though, that one way
out is to replace −∆ with −∆ + λ for λ > 0, which guarantees exponential decay of the
fundamental solution. Using a version of the method of reflections, Figari, Orlandi and
Teta [FOT85] (for the Poisson equation) and Rubinstein [Rub86] (for the Stokes equations)
analysed the fluctuations for the stochastic homogenisation in a perforated domain with
finitely many particles with zero Dirichlet boundary conditions and under the technical
assumption that λ is very big. They assumed the particles to be independent and identi-
cally distributed given a continuous density.

The complete characterisation of the fluctuations for the Poisson and Stokes equations
with random Dirichlet boundary conditions will be discussed in Chapter 2 and Appendix
A with a different approximation using the blow-upmethod introduced below.

THE MONOPOLE METHOD
Next, we introduce the monopole method to find an approximation. This approximation
was first used in [NV04b] and[NV04a]. For the case of a single particle and f̃ = 0 for sim-
plicity {

−∆u0 = 0 inRd \B1(0),

u0 = Q0 onB1(0),

the solution is explicitly given by

u0 = (−∆)−1
(
q0δ∂B1(0)

)
,

where δ∂B1(0) denotes the normalised Hausdorff measure on ∂B1(0) and q0 is a charge
depending only on Q0. Now we turn to the case of many particles and again study the
equation (1.2.1)

{
−∆um = 0 inRd \

⋃
X∈m−1/dZd BRm(X),

um = [Q]mX inBRm(X) for everyX ∈ m−1/dZd.

Now, we make the ansatz that the solution is well-approximated by the sum of the
(rescaled) monopole solutions over all holes

um ≈ ûm = (−∆)−1

 ∑
X∈m−1/dZd

RmqXδX

 =
1

(d− 2)ωd

∑
X∈m−1/dZd

RmqX
|x−X|d−2

,
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for some charges qX ∈ R to be determined. Since um = [Q]X and ûm is supposed to
approximate um, it makes sense to assume that 

∂BRm (X)
ûm dHd−1 = [Q]m(X).

Now assume that the charges are macroscopic so that they are given by a field q : Rd → R
with qX = q(X). Then, on the one hand,

ûm(x) =
1

(d− 2)ωd

1

m

∑
X∈m−1/dZd

qX
|x−X|d−2

=
1

(d− 2)ωd

1

m

∑
X∈m−1/dZd

q(X)

|x−X|d−2

≈ 1

(d− 2)ωd

ˆ
Rd

q(y)

|x− y|d−2
dy

= (−∆)−1q(x),

by interpreting 1
m

∑
X∈m−1/dZd as a Riemann sum, since there are of orderm particles in

a domain of order one. On the other hand, evaluating ûm on ∂BRm(X) for a givenX , it is
 
∂BRm (X)

ûm dHd−1 =
1

(d− 2)ωd
q(X) +

∑
Y ̸=X

 
∂BRm (X)

1

(d− 2)ωd

1

m

q(Y )

|x− Y |d−2
dHd−1

≈ 1

(d− 2)ωd
q(X) +

 
∂BRm (X)

(−∆)−1q dHd−1

≈ 1

(d− 2)ωd
q(X) + (−∆)−1q(X).

But this implies that

[Q]m(X) ≈ 1

(d− 2)ωd
q(X) + (−∆)−1q(X).

Assuming this equation to hold true everywhere inRd and using that q ≈ −∆u, [Q]m ≈ Q,
we find

(d− 2)ωdQ = −∆u+ (d− 2)ωdu inRd.

THE BLOW-UPMETHOD
Very recently, a fourth method to study the limiting behaviour was discovered in [Gér22]
and [HJ22]. The critical observation is that from −∆um = f outside of the balls and
−∆um = 0 inside the balls, we may write

−∆um = f1Rd\
∪

X∈m−1/dZd BRm (X) +
∑

X∈m−1/dZd

qX ,

for charges qX that are supported on ∂BRm(X). The charge qX is uniquely determined by
the problem 

−∆vX = f inBm−1/d/2(X) \BRm(X),

vX = [Q](X) inBRm(X),

vX = um on ∂Bm−1/d/2(X)
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for everyX ∈ m−1/dZd.
Then, sincem−1/d/2 is much larger thanRm, we approximate this equation by

−∆vX = 0 inRd \BRm(X),

vX = [Q](X) inBRm(X),

vX → u(Xi) as |x−X| → ∞,

where v is the accumulation point of vm. This is the blow-up argument at the core
of this method. The approximation makes sense because, macroscopically speaking,
Bm−1/d/2(X) is still very small. So we can assume that vm ≈ u(X) is a good approxi-
mation on ∂Bm−1/d/2(X), and the source term f does not play a role in determining the
corresponding charge. The solution to 1.2 then solves

−∆vx = qX inRd,

where qX is given by
qX = Rm([Q](X)− v(X))δmX ,

with δmX denoting the normalised Hausdorff measure on ∂BRm(X).
Combining this, we get the ansatz

ũm = (−∆)−1

f −
∑

X∈m−1/dZd

Rm

(
u(X)− [Q](X)

)
δmX

 . (1.2.3)

If we believe that ũm ≈ um, we can conclude that

um ≈ ũm = (−∆)−1

f −
∑

X∈m−1/dZd

Rm

(
u(X)− [Q](X)

)
δmX

⇀ G[f − ωd(v −Q)],

by observing that ∑
X∈m−1/dZd

Rm

(
u(X)− [Q](X)

)
δmX ⇀ (d− 2)ωd(u−Q)

by the same argument as in (1.2.2). Since um ⇀ u, we find that u solves

u = G[f − (d− 2)ωd(u−Q)],

or equivalently
−∆u+ (d− 2)ωd(u−Q) = f.

THE STOKES EQUATIONS
In this section, we have introduced four formal derivations of the limit system for the Pois-
son equation. In the case of the Stokes equations in three dimensions

−∆um +∇pm = f inR3 \
⋃

X∈ 1

m
1
3

Z3 BRm(X),

divum = 0 inR3 \
⋃

X∈ 1

m
1
3

Z3 BRm(X),

um = [V ]m(X) inBRm(X) for everyX ∈ 1

m
1
3
Z3,
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the same methods can be applied to show that the corresponding limit equations are the
Brinkman equations {

−∆u+ 6π(u− V ) +∇p = f inR3,

divu = 0 inR3.

This equation was first derived in [Bri49].

1.3 Fluctuations around the limit

All the approximations introduced in theprevious sectionallowderiving the limit equation
for the homogenisation problem (1.2.1) withmore or less technical efforts and potentially
additional assumptions in the case of randomly distributed particles.

In the case ofm holes being independently and identically distributed given a contin-
uous distribution ρ, the screening effect of the limit equation depends on ρ, i.e. the limit
equation is given almost surely by

−∆u+ (d− 2)ωdρ(u−Q) = f inRd.

This equation is deterministic, and so the limiting process can be interpreted as a law of
large number. If one also assumes that both the holes and charges are independently and
identically distributed according to f ∈ P(Rd × R), then with the definitions

ρ :=

ˆ
R
f(x,dq),

j :=

ˆ
R
qf(x,dq)

the limiting equation has the form

−∆u+ (d− 2)ωd(ρu− j) = f inRd.

Understanding the limiting process raises the natural question of higher orders of con-
vergence. In the stochastic setting, this is directly linked to the understanding of the fluc-
tuations around the limit. The approximations derived in the previous setting are not fine
enough to see the fluctuations.

It turns out that the approximation ũm obtained from the blow-up method can be re-
fined to cover the fluctuations. This refined approximation will be used in Chapter 2 and
Appendix A to derive the central limit theorem scaling for the fluctuations and an explicit
formula for the covariance of the Gaussian field describing the fluctuations in three di-
mensions and underminor technical assumptions on the distribution f . This result holds
true both for the Poisson and Stokes equations. Since this result will only be obtained in
three dimensions, we continue with the discussion only for d = 3 and Rm = 1

4πm . We
have rescaled the radius to avoid the factor ω3 = 4π in the limiting equation.

The crucial idea to obtain the refined approximation is the observation that the fluctu-
ations are still given by a macroscopic object ξm, i.e.

um = u+m−1/2ξm + o(m−1/2),
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where ξm is a random function. Inserting this in the approximation ũm derived in (1.2.3)
and adapting this to the case of n particles and charges (Xi, Qi)i=1,...,m ∼ f , we obtain

ũm := (−∆)−1

[
f − 1

m

m∑
i=1

(u(Xi)−Qi +m−1/2ξm(Xi))δ
m
Xi

]
.

We need to define ξm. Assuming that we already know that

(−∆)−1

[
f − 1

m

m∑
i=1

(u(Xi)−Qi)

]
≈ u = (−∆)−1 [f + j − ρu] ,

we get

u+m−1/2ξm ≈ um ≈ ũm = (−∆)−1

[
f − 1

m

m∑
i=1

(u(Xi)−Qi +m−1/2ξm(Xi))δ
m
Xi

]

≈ u+ (−∆)−1

[
ρu− j − 1

m

m∑
i=1

(u(Xi)−Qi)

]

− (−∆)−1

[
1

m

m∑
i=1

m−1/2ξm(Xi)δ
m
Xi

]
.

We cannot use the interpretation of 1
m

∑m
i=1m

−1/2ξm(Xi)δ
m
Xi

since the resulting approx-
imation is not fine enough. Instead, we may use that ũm(Xi) = Qi inBRm(Xi) to obtain

ũm(Xi) ≈ u(Xi) + (−∆)−1 [ρu− j] (Xi)− u(Xi) +Qi −m−1/2ξm(Xi)

− (−∆)−1

 1

m

∑
j ̸=i

(u−Qj + ξm(Xj))δ
m
Xj

 (Xi).

After requiring ũm(Xi) = Qi, this leads to

m−1/2ξm(Xi) + (−∆)−1
[
m−1/2ρξm

]
(Xi)

≈ m−1/2ξm(Xi) + (−∆)−1

 1

m

∑
j ̸=i

m−1/2ξm(Xj)δ
m
Xj

 (Xi)

= (−∆)−1

ρu− j − 1

m

∑
j ̸=i

(u(Xj)−Qj)δ
m
Xj

 (Xi).

Assuming that equality between the first and last term holds in Rd, leads us to the defini-
tion of ξm by

ξm = (−∆+ ρ)−1

ρu− j − 1

m

∑
j ̸=i

(u(Xj)−Qj)δXj

 .
Note that we have replaced δmXi

formally by δXi and that u(Xi) is generally not defined
since u ∈ H1

loc(R3) only. In Appendix A, where these technicalities will be addressed, we
will replace u(Xi) by the mean of u overBRm(Xi) to get a well-defined approximation.
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We will show in Appendix A that indeed a well-defined version ξm is a good approxi-
mation for the fluctuation field. Then the fluctuations can be computed by noting that for
ϕ1, ϕ2 ∈ C∞

c (Rd), it holds

E [ξm(ϕ1)ξm(ϕ2)]

= m−1Em

(ϕ1,

m∑
i=1

(−∆+ ρ)−1 (ρu− j − (u(Xi)−Qi)δXi)

)
L2(R3)ϕ2,

m∑
j=1

(−∆+ ρ)−1
(
ρu− j − (u(Xj)−Qj)δXj

)
L2(R3)


=

ˆ
R3×R3

((u(x)− v) · ((−∆+ ρ)−1ϕ1)(x))((u(x)− v) · ((−∆+ ρ)−1ϕ2)(x))f(dx,dv)

−
(
ρu− j, (−∆+ ρ)−1ϕ1

)
L2(R3)

(
ρu− j, (−∆+ ρ)−1ϕ2

)
L2(R3)

.

1.4 A link to singular stochastic PDEs
The study of fluctuations for the stochastic homogenisation problem of the Poisson or
Stokes equations in a perforated domain is linked to stochastic partial differential equa-
tions. The fluctuation field for the stochastic homogenisation of the Poisson equation,
derived in [HJ22], is the solution to the stochastic partial differential equation

−∆u+ ρu = ζ,

where ζ is given by
ζ =

(ˆ
(v − u)2f(·,dv)

)
W

andW is a type of white noise.
In Chapter 3, we show that the solution to the linear stochastic PDE

(−∆+ 1)u = Ξ in T3

can be obtained as the homogenisation limit of the Poisson equation in a perforated do-
main with large random charges on the holes. Wemotivate this by the following heuristic:
consider holes {X1, . . . , Xm} = m−1/dZd∩Td, the radiusRm = 1

dωd
m− 1

d−2 and the equa-
tion {

−∆um = 0 in Td \
⋃d

i=1BRm(Xi),

um = m1/2Qi inBRm(Xi).

Assume that the random charges Qi are given independently and identically distributed
by a normal Gaussian. Then, it holds

1

m

m∑
i=1

m1/2QiδXi −→ Ξ (1.4.1)

in law in distributions, whereΞ denotes white noise inTd. So,Ξ is the isonormal Gaussian
process on L2(Td)with mean zero and covariance given by

E[Ξ[ϕ1]Ξ[ϕ2]] =

ˆ
Td

ϕ1ϕ2 dx.
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To derive the limit formally, we again make the ansatz

um ≈ 1

m

m∑
i=1

(−∆)−1 [qiδXi ]

inspiredby themonopole andblow-upmethod. Theblow-upmethod suggests that if there
exists a limit u, then qi ≈ m1/2Qi − (u)i. By (1.4.1), wemay then formally conclude that u
is a solution to

(−∆+ 1)u = Ξ in Td.

1.5 Previous results and further literature

HOMOGENISATION IN PERFORATED DOMAINS
Themathematical theory of homogenisation in perforated domains can be traced back to
the 1940s. Then, for elliptic equations andfluidflows, the collective effect of rarefied sets of
inclusions or particles became an area of heuristic and rigorous study. As seminal works
in this area, one has to regard the derivation of the Brinkman equations as an effective
equation for a swarm of particles in the Stokes flow with a collective effect coming from
the Stokes drag by Brinkman [Bri49]. The spectrum of the Laplace operator in a domain
with tiny inclusions has been studied as early as in [Sam48].

Building on these seminal results, both the electro- and hydrostatic problem are anal-
ysed mathematically at least since the 1970s. Different methods to study the limiting be-
haviour of the homogenisation problem have been developed and applied in both cases.

For the homogenisation of the Poisson equation, the first rigorous results were ob-
tained in [Hru72], [MK74], [Hru77] and [Hru79] for elliptic equations of higher order. In
[MK74] (see [MK08] for an English version), the authors allow for particles randomly dis-
tributed without overlapping and with random sizes. The homogenisation limit is then
derived by using projection operators in Hilbert spaces.

In [PV80] the correspondingproblem for the linear heat equation is studiedfirst. There,
probabilistic tools such as the survival time of a Brownian path are used to derive the limit.

Buildingon theenergy introducedbyTartar [Tar09], themethodofoscillating test func-
tion is derived and used in [CM82a], [CM82b] (see [CM97] for an English version). An ear-
lier version in a special case was already studied in [CP79]. This method is used in many
extensions of the results obtained in [CM82a]: see [DG94], [CCL15], [CCL16] and [GHV18]
for applications to the homogenisation problemunder different assumptions of the distri-
bution of the holes, radii and charges. In [CM09a], themethod of oscillating test functions
is applied to an obstacle problemon the lattice with obstacles of random shapes. A similar
limit of the corresponding obstacle problems involving a collective term is derived.

Themethod of reflections is applied rigorously to the Poisson equation in [HV18].
Similar screeningphenomenaarealsoobtained in the seriesofpapers [Nie99], [NV04b],

[NV04a] and [NV06]. There, a dynamical versionof thehomogenisationproblem is consid-
ered. Thedynamical behaviour of the holes is given in termsof the solutionum. In [NV04b]
and [NV04a], the monopole approximation is introduced to obtain a good approximation
employing the maximum principle. In unbounded domains, additional (exponential)
screening properties have to be derived [NV06] to obtain the limit.

From the suggestion of the Brinkman equations as an effective equation for the flow
around a swarm of particles [Bri49], the first rigorous results in the case of particles with
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zero velocity on a cubic lattice are obtained in [Bri86], [Lév83] and [San82]. Themethod of
oscillating test functions is applied in different regimes to the Stokes and Navier-Stokes
equations with stationary particles in [All90a] and [All90b]. The case of randomly dis-
tributed particles with random radii but zero velocity is studied in [Rub86] and [GH19a].
This was also studied via the method of reflections in [Höf21].

The case of particles with non-zero velocity was studied first in [DGR08] for the sta-
tionary Stokes and Navier-Stokes equations under a minimal distance condition for the
particles. Physically, this corresponds to particles moving very slowly through a fluid. The
minimal distance condition is weakened in [Hil18]. The case of particles being randomly
distributed is studied in [CH20].

In [HMS19], the more general case of particles of different shapes that are translating
and rotating is discussed. In this case, additional terms appear in the homogenisation
limit. In [FNN16], the homogenisation problem for the evolutionary Navier-Stokes equa-
tions is studied. There, it is assumed that the distance of the particles is still much larger
than their diameter. The blow-up method in the case of the Stokes equations is first dis-
cussed in [Gér22] and [HJ22].

Besides the qualitative study and somewhat inspired by similar results for the case of
homogenisation in randommedia (see [AKM17] and [DGO20] for two seminal results and
the references therein), the quantitative analysis of the limiting process is an important
area of interest. A good understanding of convergence rates and approximations might
play an essential role in the rigorous derivation of the Vlasov-(Navier)-Stokes equations
(see [Bou+15] and the references therein for themodelling of theVlasov-Stokes equations).

Theearliest results onquantitative analysis go back to the study of fluctuations for both
the Poisson [FOT85] and Stokes equations [Rub86] via the method of reflections. In both
cases, an additional large mass has to be added from the start to obtain the convergence
of themethod of reflections. Error estimates for the oscillating-test-functionmethodwere
first obtained in [KM89]. More recently, results on convergence rates and higher-order
estimates for homogenisation both of the Poisson and Stokes equations were obtained in
[Giu21b], [Fep22], [FJ21] and [Fep21]. The study of fluctuations of the Poisson and Stokes
equations with randomly distributed particles and random velocities is obtained as part
of this thesis and can be found in [HJ22] or Appendix A.

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
Singular stochastic partial differential equations have recognised a lot of attention in
recent years. The seminal papers that deal with the (parabolic) Φ4

3-model are [Hai14],
[GIP15], [Kup16] and [OW19]. In all these papers, different perturbative renormalisation
techniques are used to find a non-Gaussian limit as universality class of the parabolic
Φ4
3-model. The elliptic Φ4

d-model for dimensions d = 4, 5 is studied in [GH19b]. The con-
nection between stochastic homogenisation and stochastic PDEs is, as of yet, unexplored
territory.



2 CONVERGENCE RATES AND
FLUCTUATIONS FOR THE STOKES–
BRINKMAN EQUATIONS AS
HOMOGENISATION LIMIT IN
PERFORATED DOMAINS

In this chapter, the results obtained in the paper

[HJ22] R. M. Höfer and J. Jansen. “Convergence rates and fluctuations for the Stokes-
Brinkman equations as homogenization limit in perforated domains”. In:
arXiv:2004.04111 [math] (2022)

will be summarised. A reprint of the paper can be found in Appendix A.
The research undertaken in the article in question is a collaboration with R. Höfer. All

authors and, in particular, the author of this thesis, have contributed significant parts to
each section of the work.

2.1 Introduction
Manymathematicalmodels deal with the study of the interaction ofmoving particles with
the flow of a viscous, incompressible fluid. One of the general mathematical goals is the
rigorous derivation of a macroscopic model describing the effective dynamics of the sys-
tem in the limit of many small particles. A special case, neglecting the particle evolution
in time and studying the static picture, is the derivation of the Brinkman equations

−∆u+ (ρu− j) +∇p = h, divu = 0 inR3. (2.1.1)

from a Stokes flow aroundmany small spherical particles{
−∆um +∇pm = h, divum = 0 inΩm,

um = Vi inBRm(Xi), i = 1, . . . ,m,

where
Ωm = R3 \

m⋃
i=1

BRm(Xi).

Here, the particle radius adheres to the critical scalingRm = 1
6πm in which the total Stokes

drag exerted from the particles is of order one. Furthermore, we assume that the pairs
of centres and velocities of the particles (Xi, Vi) are independently and identically dis-
tributed according to f ∈ P(R3 × R3) satisfying the assumptions
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(H1)
´
R3×R3 |v|2f(dx,dv) <∞;

(H2) the distribution of the centres ρ(·) :=
´
R3 f(·,dv) ∈ W 1,∞(R3) is compactly sup-

ported;

(H3) the flux is given by j(·) :=
´
R3 vf(·,dv) ∈ H1(R3).

The additional term ρu − j appearing in (2.1.1) accounts precisely for the collective,
macroscopic effect of the drag force of the particles on the fluid. It is well-known from the
theory of stochastic homogenisation that um ⇀ uweakly in Ḣ1(R3), see e.g. [Hil18].

While this can be interpreted as a law-of-large-number-type result, the study of the
fluctuations for this limiting problem is a natural question since this also corresponds to
a sharper understanding of convergence rates for the limiting process.

2.2 Main results
Themain result of the paper gives the complete characterisation of the fluctuations under
the assumptions given above in three dimensions. The fluctuations are described by a
Gaussian field with explicit covariance.

Theorem 2.2.1 (=Theorem A.1.2). Let h ∈ Ḣ−1(R3) and let um and u be defined as in
(A.1.3) and (A.1.4).

(i) For any β < 1/2 and any compact setK ⊂ R3

mβ‖um − u‖L2(K) −→ 0 in probability.

(ii) For every g ∈ L2(R3)with compact support,

ξm[g] := m1/2(g, um − u) −→ ξ[g]

in distribution, where ξ is a Gaussian field with mean zero and covariance

E[ξ[g1]ξ[g2]] =
ˆ
R3×R3

(
(u(x)− v) · (Ag1)(x)

)(
(u(x)− v) · (Ag2)(x)

)
f(dx,dv)

− (ρu− j, Ag1)L2 (ρu− j, Ag2)L2

for all g1, g2 ∈ L2(R3)with compact support.

The convergence rate in part (i) of the theorem is optimal in view of part (ii). By in-
terpolating the convergence in L2

loc(R3) with the a-priori energy estimates, one obtains
convergence inHs

loc(R3) for any s < 1with ratem−β+s/2.
The proof of this result relies on a new approximation for the sequence (um)m. This

approximation is obtained by a refinement of the blow-up argument discussed in Section
1.2 also capturing the fluctuations. Therefore, define the approximation ũm by

ũm := G

[
h− 1

m

m∑
i=1

(u− Vi +m− 1
2 ξm)iδ

m
i

]
,
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whereG denotes the solution operator to the Stokes equations in R3 and δmi denotes the
normalised Hausdorff measure on the sphere ∂BRm(Xi). We derive that a natural candi-
date for the approximation of the fluctuation field is given by

ξm = AG−1Θm

m− 1
2Θm := G(ρu− j)− 1

m

m∑
i=1

Gm (((u)i − Vi)δ
m
i ) .

HereA denotes the solution operator to the Brinkman equations (2.1.1). With this explicit
approximation ũm, it is now possible to derive the fluctuation field ξ by the standard cen-
tral limit theorem. Note that ũm only relies on the homogenised solution u to (2.1.1), the
particle positions and their velocities.

As a first step in the proof, we show that ũm is a good approximation for u in the sense
of the following theorem.

Theorem 2.2.2 (=Theorem A.3.1). For all ε > 0 and all β < 1

lim
m→∞

Pm

[
mβ‖um − ũm‖Ḣ1(R3) > ε

]
→ 0.

This theoremmight be ofmore general interest regarding the rigorous derivation of the
Vlasov-Stokes equations.

The method of the paper is restricted to the case of three and possibly two space di-
mensions since in four or more space dimensions the error ‖um − u‖L2

loc(Rd) turns out to
be of critical or supercritical order. This is reflected by the regularity of the fluctuation field
which is only a distribution in dimensions larger or equal than four. Furthermore, the re-
sult can be extended to the case of random radiiRm

i = riRm provided the ri are indepen-
dent bounded random variables that are also independent of (Zi)i=1,...,m with E[ri] = 1.

While the above is framed in the context of the Stokes equations, the same result is
valid in the case of the Poisson equation{

−∆um+ = h inΩm,
um = Qi inBRm(Xi), i = 1, . . . ,m,

under the same conditions for the random distribution of chargesQi on the spherical in-
clusionsBRm(Xi)with

Rm =
1

4πm
.

In this case, the corresponding homogenised equation is given by

−∆u+ ρu− j = h inR3.





3 STOCHASTIC PDES AS
HOMOGENISATION LIMITS IN
PERFORATED DOMAINS

Abstract

In this chapter, the link between stochastic homogenisation in perforated do-
mains and stochastic partial differential equations is investigated. The study of the
fluctuation field suggests that solutions to linear elliptic stochastic partial differential
equations can be obtained as limits of the corresponding homogenisation problems
with large boundary values. This hints at a possible connection also for the nonlinear
Φ4

d-model.
In the first part of this section, we give a sketch of the homogenisation of the semi-

linear Poisson equation in a perforated domain with deterministic boundary condi-
tions in the torus Td, d ≥ 3. Furthermore, we prove that the solution to the linear
stochasticpartial differential equation (−∆+λ)u = Ξ inT3 is the limit of ahomogeni-
sation problem in perforated domains with charges of orderm1/2. In the second part,
we conjecture that under a specific choice of the probability space, this convergence
can be improved to pathwise convergence in the space of optimal regularity in any di-
mension. Building on this, it is conjectured that the ellipticΦ4

d-model canbeobtained
as a homogenisation limit.

3.1 Introduction
In this chapter, we explore the link from stochastic homogenisation in perforated domains
to stochastic partial differential equations. The fluctuation field obtained in [HJ22] for the
homogenisation of the Poisson equation in a randomly perforated domain is the solution
to the homogenised equation including a white Gaussian noise ζ coming from the inter-
actions of particles.

−∆+ λu = ζ, (3.1.1)

λ > 0. One can also take the opposite perspective and find that solutions to elliptic
stochastic partial differential equations can be obtained as homogenisation limits with
large charges on the inclusions.

We explore this and explain the rigorous results available so far. A general theory is, as
of yet, undiscovered, but the available heuristics point out a path into this new territory.
While the studyof fluctuations gives first results on thedescriptionof the linear theory, one
of the main areas of interest are nonlinear (singular) stochastic partial differential equa-
tions such as the elliptic Φ4

d-model, see [GH19b]. Due to the long-range interactions of
the particles in the perforated medium, it is a natural conjecture that these non-Gaussian
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universality classes can be obtained from stochastic homogenisation. Unfortunately, a
rigorous argument is at the moment not available.

This introductory section now proceeds with a discussion of semilinear elliptic equa-
tions in perforated domains with deterministic boundary data. It is argued that the non-
linear structure remains untouched in the critical scaling of the perforated domain. Fur-
thermore, we explain the known results on the linear elliptic stochastic PDE that one can
obtain from the study of fluctuations in [HJ22].

In Section3.2, weexplain the key ideas that arenecessary toobtain apathwise theoryof
the convergence to the linear elliptic stochastic equation (3.1.1). We close the sectionwith
themain conjectures andpresent an idea of a proof. These conjectures are also the starting
point for the development of the corresponding nonlinear Φ4

d-theory from perturbative
arguments. The key features of the Φ4

d-model are discussed in Section 3.3. This section
closes with the main conjecture of the construction of a solution to the elliptic Φ4

d-model
via stochastic homogenisation in perforated domains.

SEMILINEAR ELLIPTIC EQUATIONS WITH DETERMINISTIC BOUNDARY DATA
The results obtained in this thesis for the problem of homogenisation in perforated do-
mains have considered linear equations. The derivation of an effective theory transfers to
the case of semilinear equations as wewill demonstrate in the following. We discuss these
semilinear equations on the d-dimensional torus to allow for general charge distributions
on the holes and to avoid the technical problem of the holes intersecting the boundary of
the domain.

Fix d ≥ 3 and let Td = Rd/Zd the d-dimensional torus. We identify Td with [0, 1]d.
We consider a deterministic and countable set Φ ⊂ Rd of particles so that Definition

1.1.1 is satisfied, e.g. Φ = Zd. More generally, as in [GHV18],Φ could be given by a generic
configuration of a stationary point process for which the average number of points in a
domain of order one is bounded and which is strongly mixing (see the assumptions of
[GHV18] for more details).

Define the perforated domain

Ωm = Td \
⋃

X∈m−1/dΦ∩[0,1)d
BRm(X),

where the radius of the holes is given as before by the critical scaling

Rm =
1

(d− 2)ωd
m− 1

d−2 ,

and ωd = Hd−1(∂B1(0)) is the surface area of the unit sphere.
Let p < d+2

d−2 = 2∗ − 1, where 2∗ = 2d
d−2 denotes the critical Sobolev exponent. Fix a

distribution of charges q ∈ H1(Td). We study the equation
−∆um + |um|p−1um = 0 inΩm,

um is periodic ,
um = q inBRm(X) for everyX ∈ m−1/dΦ.

(3.1.2)

There is no obstruction in also adding a source term f ∈ H1(Td)′. We omit this source
term to focus on the main novelty. Note that (3.1.2) is the Euler–Lagrange equation of the
functional

Fm(u) :=

ˆ
Td

|∇u|2 + |u|p+1 dx,
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defined on the set

Xm =
{
u ∈ H1(Td) : u = q inBRm(X) for everyX ∈ m−1Φ

}
.

Since p ≤ 2∗ − 1 and using u = q as a competitor, this implies the uniform bound

‖um‖H1(Td) ≲ Fm(um) = min
u∈Xm

≤ Fm(q) ≲ ‖q‖H1(Td).

This uniform bound implies that there is uh ∈ H1(Td) a weak accumulation point
of the sequence (um)m∈N. To study the limit behaviour via the method of oscillating test
functions, we introduced the definitions g(s) = |s|p−1s and vm = um − q. Then, the
semilinear homogenisation problem (3.1.2) is equivalent to the equation


−∆vm + g(vm + q) = ∆q inΩm,

vm is periodic ,
vm = 0 inBRm(X) for everyX ∈ m−1/dΦ.

Since the sequence (vm)m is also uniformly bounded in H1(Td), it also has a weak
accumulation point vh.

By the assumptions on the set of centres of the holes Φ, there exists a sequence of os-
cillating test functions (wm)m ⊂ H1(Td). Recall that (wm)m has the following properties

(A1) wm ∈ H1(Td);

(A2) wm = 0 inBRm(X) for everyX ∈ m− 1
dΦ;

(A3) wm ⇀ 1weakly inH1(Td);

(A4) there is ameasureµ ∈W−1,∞(Td) onTd such that for every sequence ṽm with ṽm =
0 inBRm(X) for everyX ∈ m−1/dΦ and ṽm ⇀ ṽ weakly inH1(Td), it holds

〈−∆wm, ϕṽm〉 −→ 〈µ, ϕṽ〉

for all ϕ ∈ C∞(Td).

For the proof of these properties for the case ofΦ = Zd, we refer the reader to [CM82a].
For the case of a generic configuration of certain point processes, see [GHV18]. In both
cases, it holds µ = 1 due to the explicit choice of the radii Rm and the stationarity of the
point process.

Now, choose ϕ ∈ C∞(Td). We usewmϕ ∈ H1
0 (Ωm) as a test function to obtain

ˆ
Td

∇vm · ∇(wmϕ) + g(vm + q)wmϕdx = −
ˆ
Td

∇(wmϕ) · ∇q dx.

We now take the limit: as in the linear case, it holds
ˆ
Td

∇vm · ∇(wmϕ)dx −→
ˆ

∇vh · ∇ϕ+ vhϕdx andˆ
Td

∇(wmϕ) · ∇q dx −→
ˆ
Td

∇ϕ · ∇q dx
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as m → ∞. For the nonlinear term, we may use the compactness of the Sobolev em-
bedding H1(Td) ↪→ Lq(Td) for q < 2∗ and the continuity of g to obtain that g(vm + q)

converges strongly to g(vh + q) inL
2∗

2∗−1 (Td) = L
2d
d+2 (Td). With this, we directly conclude

that
ˆ
Td

g(vm + q)wmϕdx −→
ˆ
Td

g(vh + q)ϕdx

asm→ ∞, sincewm ⇀ 1 inH1(Td) implies thatwm ⇀ 1 in L2∗(Td) and 1
2∗ + 2∗−1

2∗ = 1.
We conclude that vh is a weak solution to

−∆vh + vh + g(vh + q) = ∆q in Td.

Writing uh = vh + q, we find that uh is a weak solution to

−∆uh + (uh − q) + |uh|p−1uh = 0 in Td.

We summarise this result in the following theorem.

Theorem 3.1.1. Let d ≥ 3, Φ = Zd, q ∈ H1(Td) and f ∈ L2(Td). Let p < d+2
d−2 . Then, the

weak solution um ∈ H1(Td) to the semilinear Poisson equation in the perforated domain
−∆um + |um|p−1um = f in Td \

⋃
X∈m−1/dZd BRm(X),

um is periodic ,
um = q inBRm(X) for everyX ∈ m−1/dZd

(3.1.3)

converges weakly inH1(Td) to a solution uh ∈ H1(Td) of the semilinear Poisson equation

−∆uh + (uh − q) + |uh|p−quh = f in Td.

The same result holds true almost surely for the choice of holes given by a stationary
point process with additional assumptions as in [GHV18].

In the last sectionof this chapter, we conjecture that thefluctuations for thehomogeni-
sation limit of the semilinear equation (3.1.3) in a randomly perforated domain in dimen-
sion 3 ≤ d ≤ 5 are non-Gaussian and there is a link to the study of elliptic singular stochas-
tic partial differential equations.

THE LINEAR ELLIPTIC STOCHASTIC PDE
In [HJ22], the fluctuations of the linear homogenisation problem for the Poisson equation
in a randomly perforated domain are studied. The explicit form of the fluctuation field
implies that, formally, the fluctuation field is given by the solution to the stochastic partial
differential equation

−∆u+ ρu = ζ inR3,

where ζ is given by

ζ =

(ˆ
(v − u)2f(·,dv)

)
W,

whereW is a type of white Gaussian noise.
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Thesamemethod thatwasdeveloped in [HJ22] canbeapplied in the settingof the torus
T3 = R3/Z3. Assume that Zi = (Xi, Qi) are independently and identically distributed
according to f = ρ⊗ η ∈ P(Td × R). For simplicity, we assume that

ρ =

ˆ
R
f(·,dv) = 1,

i.e. the centres of the holes are uniformly distributed. Furthermore, assume that

j =

ˆ
R
qf(·,dq) = 0

and ˆ
T3×R

|q|2f(dx,dq) = 1.

We set the radius of the holes to
Rm =

1

4πm
,

and consider the equation given by{
(−∆+ 1)um = 0 in T3 \

⋃m
i=1BRm(Xi),

um = m1/2Qi inBRm(Xi), i = 1, . . . ,m.

By the standard theory of homogenisation in perforated domains, we know that vm =
m−1/2um converges to a weak solution to the equation

(−∆+ 2)v = 0 in T3.

Then, v = 0. ByTheorem A.1.2 and for every ϕ ∈ L2(Td), we obtain that
ˆ
Td

umϕdx = m1/2

ˆ
Td

(vm − v)ϕdx −→ ξ[ϕ],

converges in law to the fluctuation field ξ. Furthermore, ξ is the Gaussian field with mean
zero and covariance given by

E[ξ[ϕ1]ξ[ϕ2]] =

ˆ
Td×R

|v|2(−∆+ 2)−1ϕ1(x)(−∆+ 2)−1ϕ2(x)f(dx,dq)

=

ˆ
Td

(−∆+ 2)−1ϕ1(x)(−∆+ 2)−1ϕ2(x)dx.

But then, ξ is the solution to the equation

(−∆+ 2)ξ = Ξ in T3,

where Ξ denotes the standard white noise on T3, that is the Gaussian isonormal process
on L2(T3)with mean zero and variance given by

E[Ξ(ϕ1)Ξ(ϕ2)] =

ˆ
T3

ϕ1ϕ2 dx.
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3.2 The linear stochastic Poisson equation as homogenisation
limit

In the introductionwe proved that we can obtain solutions to the stochastic Poisson equa-
tion

(−∆+ 2)u = Ξ in T3,

where Ξ denotes white noise on T3, as the homogenisation limit of the Poisson equation
in a perforated domain with large charges on each inclusion given by{

(−∆+ 1)um = 0 in T3 \
⋃m

i=1BRm(Xi),

um = m1/2Qi inBRm(Xi), i = 1, . . . ,m

from the study of the fluctuation field in [HJ22]. Given the heuristical discussion of the
problem in Section 1.4, the restriction to three dimensions seems unnatural. Secondly,
the convergence is very weak: we only argued that um converges in law weakly in L2(Td),
that is we have the convergence

〈um, ϕ〉L2(T d) → 〈u, ϕ〉L2(Td)

in law for every ϕ ∈ L2(Td)
To achieve the goal of constructing solutions to singular stochastic partial differental

equations as homogenisation limits, this convergence for the linear problem is not strong
enough to use a perturbative approach as in [GH19b]. It is desirable to achieve a path-
wise description. Therefore, recall that white noise satisfies Ξ ∈ H− d

2
−(Td) almost

surely [Ver10]. Hence, since (−∆ + 2)−1 maps Hs(Td) to Hs+2(Td), we find that u ∈
H(− d

2
+2)−(Td) almost surely. To obtain a pathwise theory, we would like to show that

um −→ u inHs(Td) almost surely

for every s < −d
2 + 2. This is natural in view of Proposition A.3.3. Crucially, −d

2 + 2 > 0
only if d ≤ 3. This is the main obstruction for the result in [HJ22] to work in dimensions
larger or equal than four, since the fluctuations are not in L2

loc(Rd) any longer.
The work on the pathwise theory is not entirely completed. The following discussion

leads to two conjectures. The first conjecture concerns the pathwise theory for the linear
case. We discuss briefly the obstructions and give a sketch of an approach. In the follow-
ing section, we introduce the corresponding nonlinear Φ4

d-theory and conjecture that we
obtain the non-Gaussian limit via a homogenisation scheme.

To obtain a pathwise theory, one needs tomake additional assumptions. For once, the
convergence in law is natural when choosing the charges on different probability spaces
for a different number of particles m. To upgrade to a pathwise convergence result, we
must work on a common probability space, which is naturally the probability space of
white noise. Secondly, even there, we have tomake a careful choice of the charges to even
have hope of getting the convergence almost surely.

We restrict this discussion to the case of three space dimensions. We denote by

Λm = m−1/3Z3 ∩ [0, 1)d

the lattice inside the torus consisting ofm centres for the holesX1, . . . , Xm. ForXi ∈ Λm,
we denote by

Bm
i = BRm(Xi)
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the ball with radius
Rm =

1

4πm

and centreXi. Furthermore, wedenote, forXi ∈ Λm byCm
i the fundamental domainwith

centre xi ⊂ Cm
i , i.e.

Cm
i = xi + Cm and Cm =

(
− 1

2m1/3
,

1

2m1/3

)
.

While the assumption of the particles lying on the lattice ismerely to simplify the com-
putations, we need to choose the charges more carefully: let η ∈ C∞

c (B1/2(0)) a standard
mollifier, that is 0 ≤ η ≤ 1 and

´
B1/2(0)

η dx = 1. Then, define

ηm(x) = mη(m1/3x),

so that ηm(· −Xi) is supported inCm
i and satisfies

´
Cm

i
ηm(x−Xi)dx = 1. Let

Ξm = ηm ∗ Ξ

themollification of white noise. Then, for almost all realisations ofΞ,Ξm is a smooth func-
tion.

We define the charge on the hole by

σ
(m)
i =

1√
m

ˆ
C

(m)
i

Ξm dx.

Note that σ(m)
i is a normal Gaussian field: E[σ(m)

i ] = 0 and

E[σ(m)
i σ

(m)
j ] =

{
1
m

´
R3 |ηm(x)|2 dx = 1 if i = j,

0 if |Xi −Xj | ≥ m−4/d.

Note that we allow for short range correlations of the charges to simplify the notation.
Define um ∈ H1(T3) as the unique weak solution to{

(−∆+ 1)um = 0 inΩm := T3 \
⋃m

i=1B
m
i ,

um = m
1
2σ

(m)
i inBm

i .

For a fixed realisation of the noise Ξ, we define u ∈ Hs(T3), s < 1
2 , to be the solution

to
(−∆+ 2)u = Ξ in T3

and ûm ∈ C∞(Td) to be the solution to

(−∆+ 2)ûm = Ξm in T3.

We conjecture that um converges to u almost surely inHs(Td) for every s < −d
2 + 2.

Conjecture 3.2.1. There exists a subsequence of um (not relabelled) such that for every s <
1
2 it holds

um −→ u almost surely inHs(T3).
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To prove this conjecture, we will need to obtain a new approximation ũm for um.
We will demonstrate here that the natural approximation ũm obtained via the blow-up
method gives a good approximation for ûm. This approximation does not seem suitable
to obtain the necessary bounds for um − ũm since the methods introduced in [HJ22] are
giving information on the level of H1(Td), where we do not expect convergence. To ob-
tain bounds in weaker spaces such asL∞(Td), a natural strategy is to apply themaximum
principle and use a similar argument as in [NV04b]. This fine-scale approximation has not
been obtained as part of this thesis but is a future direction of research.

Inspired by the blow-upmethod, we define

ũm = G

[
1√
m

m∑
i=1

σ
(m)
i δXi −

(ˆ
Cm

i

ûm dx
)
δXi

]
.

Here, we denoteA = (−∆+2)−1 the solution operator to the homogenised equation and
G = (−∆+ 1)−1 the solution operator to the Poisson equation in T3.

Furthermore, as an intermediate candidate, we also introduce

ṽm = A

[
1√
m

m∑
i=1

σ
(m)
i δXi

]
. (3.2.1)

We prove the following first step for a proof of the conjecture.

Proposition 3.2.2. For every 0 ≤ s < 1
2 it holds

E
[
‖ũm − u‖Hs(Td)

]
−→ 0

asm→ ∞.

Proof. In [GH19b], it is shown that

E
[
‖ûm − u‖2Hs(Td)

]
−→ 0

asm→ ∞ for every 0 ≤ s < 1
2 . It now suffices to control ũm − ûm in L2((Ω,P);Hs(T3)).

First, we use the operator identity

A = G−GA

to observe that

ũm = ṽm +
1

m

m∑
i=1

G

[
√
mσmi AδXi −

(ˆ
Cm

i

AΞm dx
)
δXi

]
.

In a first step, we estimate ṽm − ûm. We may use that A is a bounded operator from
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Hs(T3) toHs−2(T3) for every s ∈ [0, 1/2).

E
[
‖ṽm − ûm‖2Hs(T3)

]
= E

∥∥∥∥∥A
(

1√
m

m∑
i=1

σ
(m)
i δXi − Ξm

)∥∥∥∥∥
2

Hs(T3)


≲ E

∥∥∥∥∥ 1√
m

m∑
i=1

σ
(m)
i δXi − Ξm

∥∥∥∥∥
2

Hs−2(T3)


= E

 sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣ 1√
m

m∑
i=1

σ
(m)
i ϕ(Xi)−

ˆ
Td

Ξmϕdx
∣∣∣∣∣
2

= E

 sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣ 1m
[

m∑
i=1

ˆ
C

(m)
i

Ξm (ϕ(Xi)− ϕ) dx
]∣∣∣∣∣
2 .

For almost every realisation of the noise, we get the estimate

sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣ 1m
[

m∑
i=1

ˆ
C

(m)
i

Ξm (ϕ(Xi)− ϕ) dx
]∣∣∣∣∣

≲ 1

m

m∑
i=1

sup
∥φ∥H2−s(T3)=1

ˆ
C

(m)
i

|Ξm| |ϕ(Xi)− ϕ| dx.

SinceH2−s(T3) ↪→ C
1
2
−s(T3) for every 0 ≤ s < 1

2 , it holds

sup
∥φ∥H2−s(T3)=1

ˆ
C

(m)
i

|Ξm| |ϕ(Xi)− ϕ| dx ≤
ˆ
C

(m)
i

|Ξm||x−Xi|
1
2
−s dx

≲ m− 1
d(

1
2
−s)

ˆ
C

(m)
i

|Ξm|dx.

We conclude that

E

 sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣∣ 1m
 ∑
Xi∈Λm

ˆ
C

(m)
i

Ξm (ϕ(Xi)− ϕ) dx

∣∣∣∣∣∣
2

≤ E

m− 1
d
(1−2s)

 1

m

∑
Xi∈Λm

ˆ
C

(m)
i

|Ξm|dx

2
≲ m− 1

d
(1−2s) 1

m2
E

[(ˆ
Td

|Ξm|dx
)2
]

≲ m− 1
d
(1−2s) 1

m2
E
[ˆ

Td

|Ξm|2 dx
]

≲ m− 1
d
(1−2s) 1

m
,

where in the final step we have used

E
[
|Ξm|2(x)

]
=

ˆ
|ηm(x)|2 dx = m

ˆ
|η|2 dx.
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We also have to estimate the remainder. Wemay use that alsoG is a bounded linear oper-
ator fromHs−2(Td) toHs(Td) and use a similar strategy as before.

E

∥∥∥∥∥ 1

m

m∑
i=1

G

[
√
mσmi AδXi −

(ˆ
Cm

i

AΞm dx
)
δXi

]∥∥∥∥∥
2

Hs(T3)


= E

 sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣ 1m
m∑
i=1

[ˆ
Cm

i

Ξm(Aϕ)(Xi)dx−
ˆ
Cm

i

(AΞm)ϕ(Xi)dx
]∣∣∣∣∣
2 .

Now, wemay use that, for almost every realisation of white noise, it holds

sup
∥φ∥H2−s(T3)=1

∣∣∣∣∣ 1m
m∑
i=1

[ˆ
Cm

i

Ξm(Aϕ)(Xi)dx−
ˆ
Cm

i

(AΞm)ϕ(Xi)dx
]∣∣∣∣∣

≤ sup
∥φ∥H2−s(T3)=1

(∣∣∣∣∣ 1m
m∑
i=1

[ˆ
Cm

i

Ξm(Aϕ)(Xi)dx−
ˆ
Cm

i

ΞmAϕ

]∣∣∣∣∣
+

∣∣∣∣∣
m∑
i=1

[ˆ
Cm

i

(AΞm)ϕdx−
ˆ
Cm

i

(AΞm)ϕ(Xi)

]∣∣∣∣∣
)
.

We conclude as before, using thatAϕ is Hölder continuous, that

E

∥∥∥∥∥ 1

m

m∑
i=1

G

[
√
mσmi AδXi −

(ˆ
Cm

i

AΞm dx
)
δXi

]∥∥∥∥∥
2

Hs(T3)


≤ m− 1

d
(1−2s) 1

m2
E
[ˆ

Td

|Ξm|2 + |AΞm|2 dx
]

≤ m− 1
d
(1−2s)−1.

This concludes the proof.

As discussed, both approximations appearing in the previous proof are not good
enough in L∞ (

⋃m
i=1 ∂BRm(Xi)) to use the maximum principle and obtain the miss-

ing bounds. While the previous discussion was restricted to the case d = 3, the preceding
proposition can easily be adapted to the case of general dimensions d ≥ 3. This leads us
to the following conjecture.

Conjecture 3.2.3. Let d ≥ 3 andRm = 1
(d−2)ωd

m− 1
d−2 . Consider the solution to{

−∆um = 0 in Td \
⋃

Xi∈m−1/dZd BRm(Xi),

um = m1/2σmi inBRm(Xi), Xi ∈ m−1/dZd,

where σmi = 1√
m

´
Cm

i
Ξm dx as before. Then

um −→ u inHs(Td) almost surely

for every s < −d
2 + 2.
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3.3 The ellipticΦ4
d-model via stochastic homogenisation

The study of singular stochastic partial differential equations has been an area of intensive
study in recent years. One model equation is the Φ4

d-model. While usually considered
in its parabolic form, the elliptic model shares most of the interesting features but in 2
more space dimensions. The ellipticΦ4

d-model on the torusTd consists of the study of the
equation

(−∆+ 2)v + v3 = Ξ in Td.

In dimensions d ≤ 5, a rescaling argument hints that solutions look locally as the solution
to the linear equation

(−∆+ 2)Φ = Ξ in Td.

Themain difficulty arises from the low regularity ofΦ ∈ H(− d
2
+2)−(Td). Hence, in dimen-

sion d = 4, 5 it is only a distribution and a perturbative approach around the solution to
the linear problem fails since there is no canonical interpretation of the nonlinear terms.
To regularise the equation, consider Ξm = ηm ∗ Ξ as before,

(−∆+ 2)Φm = Ξm in Td,

and
(−∆+ 2)vm + v3m = Ξm in Td.

These functions are well-defined, but the natural approach vm = Φm + ψm fails at first
sight, since the covariance of Φ3

m diverges as m → ∞ in dimensions d = 4, 5. This is
the reason for the renormalisation argument: if we replace u3m by u3m − rmum and send
rm → +∞ asm → ∞ in the correct way, one finds convergence of the sequence um to a
non-Gaussian limit u ∈ D′(Td) in distributions for almost every realisation of the noise,
see [GH19b]. Formally, u then solves

(−∆+ 2)u+ u3 −∞u = Ξ in Td (3.3.1)

in dimensions d = 4, 5 and, in dimension d = 3,

(−∆+ 2)u+ u3 = Ξ in T3. (3.3.2)

In Section 3.2 we have conjectured a pathwise approximation forΦ via solutions to the
homogenisation problem{

(−∆+ 1)um = 0 in Td \
⋃m

i=1BRm(Xi),

um = m1/2σmi inBRm(Xi), i = 1, . . . ,m.

It is a natural question to study the limiting behaviour of the semilinear homogenisa-
tion problem {

(−∆+ 1)um + u3m = 0 in Td \
⋃m

i=1BRm(Xi),

um = m1/2σmi inBRm(Xi).

We conjecture that one can obtain the renormalised solutions to (3.3.2) and (3.3.1) as
a limit to a renormalised sequence um for almost every realisation of white noise in distri-
butions. There are twomain reasons for the conjecture: one can show that for the approx-
imation ṽm obtained in (3.2.1) it holds

Var
[
ṽm(x)3

]
−→ +∞
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in dimensions d = 4, 5 for every x ∈ Td with the same divergence rate as for Var
[
Φm(x)3

]
.

In dimension d = 3, this variance remains bounded.
The second reason to believe that the sequence (um)m has a non-Gaussian limit comes

from the long-range interactions of the holes which is an indicator for a non-Gaussian
universality class.

We finish this short discussion with the main conjecture.

Conjecture 3.3.1. Let d ∈ {3, 4, 5}. Then there is a sequence rm ≥ 0 with rm → +∞ if
d = 4, 5 such that, for almost every realisation of white noise, the solutions um to{

(−∆+ 1)um + u3m − rmum = 0 in Td \
⋃m

i=1BRm(Xi),

um = m1/2σmi inBRm(Xi).

converge in distributions to a distribution u ∈ D′(Td)which formally solves{
(−∆+ 2)u+ u3 −∞u = 0 in Td.
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4 INTRODUCTION

Abstract

Thin films of incompressible, non-Newtonian, viscous fluids are ubiquitous in
nature and technology. Mathematically they are described by degenerate-parabolic
equations of second- or fourth-order depending on the influence of gravitational or
capillary forces. These equations are derived froma free-boundaryNavier–Stokes sys-
tem via the lubrication approximation. In this chapter, the underlying physical and
mathematical effects are described, starting from the role of fluid rheology over a de-
scription of the lubrication approximation to the role of the contact angle between
fluid and solid and the slip conditions on the fluid-solid interface. The chapter con-
cludes with an outlook on the main results of this part and gives an overview of the
mathematical literature on Newtonian and non-Newtonian thin-film equations.

In the study of the dynamical behaviour of fluids, free-boundary problems arise natu-
rally in the description of physical phenomena observed in nature or applied in engineer-
ing. These free-boundary problems are usually constituted by coupled systems of partial
differential equations in a bulk domain filled by a fluid and equations on amoving bound-
ary. The dynamical behaviour of the boundary is then described by the interaction of the
fluidwith themedia surrounding it. Due to the complex processes that determine the cou-
pling, the resulting equations are inherently nonlinear and have a usually rich dynamical
and geometrical structure.

Thin fluid films are a famous example of such free-boundary problems. These are films
of incompressible, viscous fluids with a thickness ranging from nanometres to a few mi-
crometres spread on a solid. Both the interface between the fluid filmand the surrounding
air and the contact line between fluid, solid and air are free boundaries.

Thin fluid films arise naturally in physics, chemistry and biophysics, geology and engi-
neering. The tearfilm in thehumaneyeand thefluidon the insideof thealveoli inmammal
lungs are examples of thin liquid films. Film coating processes like the application of paint
or adhesives are used inmany technological applications. Thinfilms of lubricants are used
in engineering to protect surfaces or reduce friction. Given the enormous length scales,
even lava flows above and underwater can be considered thin films. The ubiquity of thin
films in nature and technology also reflects the number of different dynamics and mod-
els in physics and mathematics. Typically, the resulting equations depend on the fluid’s
viscosity, the relation between the acting forces, and additional effects such as thermal ef-
fects or the presence of surfactants (see [CM09b] for a review of lubrication theory under
the influence of different effects).

Mathematically, thin fluid films are modelled via an asymptotic expansion. The start-
ing point of this expansion is the description of the free-boundary problem via theNavier–
Stokes equations in the fluid bulk combined with additional boundary conditions. In the
limit of high viscosity (or rather in the limit of a low Reynolds number) and using the lu-
brication approximation, a closed equation for the height of the thin film can be derived.

39
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The idea of this expansion dates back to Reynolds [Rey86]. Depending on the dominance
of gravitational or capillary forces, the resulting equation that describes the film height
dynamics is usually quasilinear, degenerate-parabolic and of second- or fourth-order.

In this part of the thesis, we investigate the dynamical behaviour of capillary-driven
thin films for fluids with non-Newtonian rheology. In this introductory Chapter 4, we con-
tinuewith themathematicalmodelling of such fluid films on domains with lateral bound-
aries in Section 4.1. We will discuss the typical constitutive laws for the viscosity in Sec-
tion 4.2 and give insight into the lubrication approximation in Section 4.3. In Section 4.4,
we focus on the behaviour of the triple junction between fluid, solid and air. The move-
ment of this contact point also depends on the boundary condition at the fluid-solid inter-
face. Wediscuss several slip conditions and the no-slip paradox forNewtonian and certain
non-Newtonian fluids in Section 4.5. In Section 4.6, we introduce the energy-dissipation
mechanism for the thin-filmequation. Thismechanism is vital both for the constructionof
weak solutions and the study of long-time behaviour. The natural energy is also the start-
ing point for studying the gradient-flow structure of thin films. We explore this in Section
4.7. Finally, we give an overview of the literature in Section 4.8.

Chapter 5 consists of a summary of the first main result of this part of the thesis. It
concerns the stability and long-time behaviour of power-law and Ellis-law thin films close
to a steady state. A reprint of the whole paper can be found in Appendix B.

Finally, in Chapter 6 the gradient-flow structure of power-law thin films for general
mobilities is studied. Via a minimising movement scheme, it is shown that positive solu-
tions to the power-law thin-film equation are given by a gradient flow. General weak solu-
tions can then be approximated as limits of gradient-flow solutions to amodified thin-film
equation.

4.1 Formulation of the problem
Thin-film models arise in many different forms depending on which forces, effects, and
geometries are taken into account. The underlying principle for the derivation of the thin-
film model is an asymptotic expansion starting from a full free-boundary Navier–Stokes
system. For the sake of clarity of presentation, we focus on the case of one incompress-
ible, viscous, non-Newtonian fluid confined between lateral boundaries and located on
top of a flat solid bottomwith no-slip condition. Furthermore, we assume the dominance
of capillary over gravitational forces and ignore the latter altogether. We ignore thermal
effects during the modelling. Finally, we assume that the fluid is homogeneous in one
spatial direction.

solid
x

z

Figure 4.1: Homogeneous (one-dimensional) thin fluid film on solid bottom.
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Fix an interval Ω = (a, b) ⊂ R. Denote the domain occupied by the fluid at time t by
Ω(t) ⊂ R2. We will assume that the free interface is modelled as the graph of a function
h(t, x) > 0, so that

Ω(t) = {(x, z) ∈ Ω× R≥0 : 0 < z < h(t, x)} .

The velocity field of the fluid is denoted by u = (u, v) : Ω(t) → R2, the fluid pressure by
p : Ω(t) → R and the Cauchy stress tensor of the fluid by S(p,u) : Ω(t) → R2×2

sym . The
dynamics of the fluid are described by non-Newtonian Navier–Stokes equations{

ρ (∂tu+ (u · ∇)u) = divS(p,u) inΩ(t),

divu = 0 inΩ(t).
(4.1.1)

Here, ρ denotes the constant density of the fluid. We assume that S(p,u) = −pId +
σ(ε) = −pId + 2µ(|ε|)ε, where µ(|ε|) denotes the dynamic viscosity of the fluid, ε =
Eu = 1

2

(
∇u+ (∇u)T

)
the rate-of-strain tensor and |ε| =

√
2Tr(|Eu|2). Then we have

divS(p,u) = −∇p+divµ(|Eu|)Eu. TheCauchy stress tensor and the rheology of the fluid
are discussed in more detail in Section 4.2.

The equation for the behaviour of the fluid in the bulk is complemented by boundary
conditions both on the solid bottom {(x, z) ∈ Ω̄(t) : z = 0} and on the free boundary that
is described by the graphof the functionhdenoted byΓ(t) = {(x, z) ∈ Ω̄(t) : z = h(t, x)}.

First, on the solid bottom, we prescribe a slip condition describing how fluid particles
move with respect to the solid. If adhesive forces dominate cohesive forces on the fluid-
solid interface, there is no slip between the fluid and the solid. In this case, we have

u = 0 on {(x, z) ∈ Ω̄(t) : z = 0}. (4.1.2)

Different slip conditions and their effect on the dynamics of the contact line are discussed
in Section 4.5.

We prescribe twomore boundary conditions on the free surface Γ(t). Denote by

t = 1√
1 + |∂xh(t, x)|2

(1, ∂xh(t, x))

the unit tangent of the free surface Γ(t) and by

n =
1√

1 + |∂xh(t, x)|2
(−∂xh(t, x), 1)

its outer unit normal. The first one, the so-called kinematic boundary condition, guaran-
tees that particles that are on the boundary remain at the boundary. Let Vn denote the
normal velocity of the interface Γ(t). We require

u · n = Vn on Γ(t).

Observing thatVn = (∂t(x, h(t, x)))·n = ∂th(t,x)√
1+|∂xh(t,x)|2

, this equation canbeexpressed
explicitly as

∂th(t, x) + u∂xh(t, x) = v on Γ(t).
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The forces exerted on the boundaryΓ(t) are solely given by the capillary effects coming
from surface tension. We assume that the surface tension γ > 0 of the fluid is constant.
Denote by κ the mean curvature of Γ. Then the stress-balance condition at the boundary
reads

S(p,u)n = γκn on Γ(t). (4.1.3)

Observe that this implies in particular that there are no tangential forces at the boundary,
since t · S(p,u)n = 0 on Γ(t). The equations (4.1.1)–(4.1.3) constitute the complete free-
boundary Navier–Stokes system describing the dynamics of the fluid.

Finally, there are two additional constraints for the film height h. Observe that by in-
compressibility, themass of the fluid is conserved, i.e. |Ω(t)| = |Ω(0)| for every t > 0. This
implies that the typical (average) film height

h̄ :=

ˆ
Ω
h(t, x)dx, t ≥ 0,

is constant. Furthermore, the contact angle of the fluid with the lateral wall is another
free parameter. This contact angle depends on the thermodynamic equilibrium between
the three phases – liquid, solid and air – at the triple junction ∂Γ(t). For convenience, we
assume that the contact angle is zero, i.e.

∂xh(t, x) = 0 for x ∈ ∂Ω,

and comment on the underlying physics and mathematical consequences in Section 4.4.

4.2 Fluid rheology
Aviscous fluid, as opposed to an ideal fluid, is a fluid inwhich the internal friction between
the molecules significantly affects the fluid motion. Internal friction is the force the fluid
exerts on itself to resist deformation. Hence, viscous fluids can resist distortion within a
characteristic time scale. Themechanical energy exerted on the system is dissipated in the
form of heat and cannot be recovered like in elastic materials [Rao14; She18].

A Newtonian fluid is a fluid where the stress σ(ε) depends linearly on the strain rate
ε = Eu. The constant of proportionality µ0 > 0 between the stress and strain rate is
the viscosity of the fluid. Typical fluids with a Newtonian behaviour are water or usual
lubrication oils.

Manyfluids have adifferent behaviour, though. Thesefluids are callednon-Newtonian
fluids, andmanydifferent effects canoccur. We focus on suchfluids forwhich the viscosity
µ = µ(|ε|) is solely dependent on the strain rate.

Classically, two classes of non-Newtonian fluids with this behaviour can be distin-
guished: dilatant or shear-thickening fluids, where the fluid becomesmore viscous under
the exertion of a higher strain. For these fluids, the viscosity is increasing in |ε|. A typical
dilatant fluid is the mixture of corn starch in water. The second class consists of pseu-
doplastic or shear-thinning fluids that become less viscous under higher shear rates. The
viscosity decreases in |ε|. For example, a shear-thinning behaviour can be found in many
paints. For the mathematical modelling, constitutive laws on the relation between strain
and viscosity are needed. These can, for example, be derived empirically from experimen-
tal data. Two important examples in modelling and applications are Ostwald–de Waele
fluids and Ellis fluids.
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Ostwald–deWaele or power-lawfluids are fluids forwhich the viscosity depends on the
rate of strain via a power law relation

µ(|ε|) = K|ε|
1
α
−1, α ∈ (0,∞).

K > 0 is the consistency index. Such fluids have first been described in [Ost25] and
[Wae23]. For flow-behaviour exponents α > 1, the fluid is shear-thinning since then
µ′(|ε|) < 0. If 0 < α < 1, the fluid is shear-thickening, and for α = 1 the case of a
Newtonian fluid is included in this model. In this case, K is equal to the viscosity µ0 of
the Newtonian fluid. The power-lawmodel is widely used in fluid dynamics, albeit it does
not cover the observation of constant viscosities at low or high strain rates in (real world)
applications.

A model that remedies the issue of the lack of description of such constant viscosities
for low strain rates for shear-thinning fluids is the Ellis constitutive law, [MB65],

1

µ(|ε|)
=

1

µ0

(
1 +

∣∣∣∣σ(ε)σ1/2

∣∣∣∣α−1
)
, α ≥ 1.

Here, µ0 > 0 denotes the constant viscosity for small strain rates, and 0 < σ1/2 < ∞
denotes the characteristic stress at which the viscosity is reduced to µ0/2. For α = 1 or
σ1/2 → ∞, we recover again the case of Newtonian fluid rheology.

There aremanymoremodels of non-Newtonian fluids. For examplemight the viscous
behaviour only appear beyond a certain yield stress. This behaviour is found for example
in molten chocolate. The Herschel–Bulkley and the Cassonmodel are typical examples of
constitutive laws for yield stress non-Newtonian rheologies [Rao14].

To continue with the lubrication approximation, we assume that

σ(ε) = µ(|ε|)ε

and that the function s 7→ µ(|s|)s, s ∈ R, is monotonically increasing. The relevance of
this assumption becomes clear in the lubrication approximation. Note that this property
holds true both for power-law and Ellis fluids.

4.3 Lubrication approximation
If the height of the fluid film is very small, then the dynamics of the system can be sim-
plified via an asymptotic expansion with respect to the aspect ratio ε = h̄

L . The limit of
vanishing aspect ratio was first studied in 1886 by Reynolds in [Rey86]. We first transform
the systemof equations (4.1.1)–(4.1.3) into a systemof dimensionless equations in dimen-
sionless variables.

DIMENSIONLESS VARIABLES AND THE LEADING-ORDER SYSTEM
In order to apply asymptotic analysis, we have to non-dimensionalise the system of equa-
tions. We will denote by L the characteristic length scale, by h̄ the characteristic height of
the film. Moreover, u0 denotes the characteristic horizontal velocity, v0 the characteristic
vertical velocity and p0 the characteristic pressure. By t0, we denote themacroscopic time
scale of the system and by tchar the characteristic time scale of the non-Newtonian fluid.
The parameter

ε =
h̄

L
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denotes the aspect ratio of the film. We now introduce the dimensionless variables and
unknowns

x̃ =
x

L
, z̃ =

z

h̄
, t̃ = ε3

t

t0
, h̃ =

h

h̄
,

ũ =
u

u0
, ṽ =

v

v0
, p̃ =

p

p0
, ρ̃ = 1,

Re = ρu0L

µ0
, γ̃ = γ

1

u0µ0
, µ̃(τ |ε̃|) = 1

µ0
µ(tchar|ε|) τ =

tchar
t0

ε3.

Consider the conservation of mass equation divu = 0. After rescaling, this equation
is given by

u0
L
∂x̃ũ+

w0

h̄
∂z̃ ṽ = 0 in Ω̃(t̃).

The conservation of mass equation balances if we assume that
u0
L

=
w0

h̄
.

This means that the vertical velocity is very small compared to the velocity in horizontal
direction,which implies that the thinfilmremains thin in timesof order one. Furthermore,
we make the assumptions

u0 =
Lε3

t0
, v0 =

h̄ε3

t0
=
Lε4

t0
.

Then, we obtain the Reynolds number and the fluid pressure

Re = ρL2ε3

t0µ0
and p0 =

µ0u0L

h̄2
=
µ0ε

t0
.

Note that since the fluid occupies a very thin layer, we are in the regime of laminar flows so
that the assumption of a small Reynolds number is formally justified. First, we compute

tcharE(u) = τ

(
ε∂x̃ũ

1
2

(
∂z̃ũ+ ε2∂x̃ṽ

)
1
2

(
∂z̃ũ+ ε2∂x̃ṽ

)
ε∂z̃ ṽ

)
=: τ Ẽ(ũ).

With these choices, the system of equations in the bulk can be rewritten as
ε6 L

t20
(∂t̃ũ+ ũ∂x̃ũ+ ṽ∂z̃ũ) = µ0

Lt0

(
−ε∂x̃p̃+ 2ε3∂x̃ [µ̃∂x̃ũ] + ε∂z̃ [µ̃∂z̃ũ] + ε3∂z̃ [µ̃∂x̃ṽ]

)
,

ε7 L
t20
(∂t̃ṽ + ũ∂x̃ṽ + ṽ∂z̃ ṽ) = µ0

Lt0

(
−∂z̃ p̃+ 2ε2∂z̃ [µ̃∂z̃ ṽ] + ε2∂x̃ [µ̃∂z̃ũ] + ε4∂x̃ [µ̃∂x̃ṽ]

)
,

∂x̃ũ+ ∂z̃ ṽ = 0.

in Ω̃(t̃). Sinceweareonly interested in the leading-order system, dividing thefirst equation
by ε and then sending ε→ 0, we obtain the system of equations


∂x̃p̃ = ∂z̃ [µ̃(τ |∂z̃ũ|)∂z̃ũ] ,
∂z̃ p̃ = 0,

∂x̃ũ+ ∂z̃ ṽ = 0.

(4.3.1)
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Observe thatweusedhere that, as ε→ 0, |Ẽ ũ| → |∂z̃ũ|. While (4.3.1) describes the leading-
order system in the bulk, we have to non-dimensionalise the boundary conditions and
pass to the limit. For the no-slip condition (4.1.2) we obtain

ũ = 0 on {(x̃, z̃) : z̃ = 0}.

Note that the kinematic boundary condition remains invariant under rescaling since
its rescaled version is given by

ε3
h̄

t0

(
∂t̃h̃+ ũ∂x̃h̃

)
= ε3

h̄

t0
ṽ on Γ̃(t̃).

Finally, the stress-balance condition (4.1.3) becomes{
∂z̃ũ = 0 on Γ̃(t̃),

p̃ = −γ̃∂2x̃h̃ on Γ̃(t̃).

DERIVATION OF THE THIN-FILM EQUATION FROM THE LEADING-ORDER SYSTEM
Now that we obtained the complete leading-order system, we can resolve this system to
derive a closed equation for the film height h. In the following, we drop the tildes intro-
duced in the previous subsection.



∂xp = ∂z[µ(τ |∂zu|)∂zu] inΩ(t),

∂zp = 0 inΩ(t),

∂xu+ ∂zv = 0 inΩ(t),

u = v = 0 on z = 0,

∂th+ u∂xh = v on z = h,

∂zu = 0 on z = h,

p = −γ∂2xh on z = h.

(4.3.2)

First, wenote that, using the incompressibility condition, thekinematicboundary con-
dition can be rewritten as

∂th(t, x) + ∂x

[ˆ h(t,x)

0
u(t, x, z)dz

]
= 0.

Hence, it suffices todetermineu in termsofh. Since thepressure is constant in z-direction,
we obtain that

p = −γ∂2xh inΩ(t).

Together with the first equation of (4.3.2), this leads to

−γ∂3xh = ∂z[µ(τ |∂zu|)∂zu] inΩ(t).

Since ∂zu vanishes at z = 0, we may integrate from z to h to find

µ(τ |∂zu|)∂zu = γ(h− z)∂3xh inΩ(t).
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Since the function s 7→ µ(|s|)s is monotonically increasing, we may find a left-inverse
Ψ: R → R such thatΨ(µ(|s|)s) = s. So, we can resolve the equation for ∂zu to obtain

∂zu =
1

τ
Ψ
(
τγ(h− z)∂3xh

)
inΩ(t).

Using that u vanishes on the solid bottom, we obtain

u =
1

τ

ˆ z

0
Ψ
(
τγ(h− ζ)∂3xh

)
dζ inΩ(t).

Using that
ˆ h(t,x)

0

ˆ z

0
Ψ
(
τγ(h− ζ)∂3xh

)
dζ =

ˆ h(t,x)

0
ζΨ(τγζ∂3xh)dζ inΩ(t)

and inserting this into the kinematic boundary condition, we obtain a closed equation for
the film height given by

∂th+ ∂x

[
1

τ

ˆ h(t,x)

0
ζΨ(τγζ∂3xh)dζ

]
= 0.

On ∂Ω, we have already required that

∂xh = 0 on ∂Ω.

Furthermore, the condition that the mass of the fluid is conserved over time leads to the
condition

∂t

ˆ
Ω
h(t, x)dx = 0, t > 0.

Using the divergence theorem, this leads to
ˆ
∂Ω

ˆ h(t,x)

0
ζΨ(τγζ∂3xh)dζ dH0 = 0, t ≥ 0.

We assume that there is no fluid flow through the lateral boundary. So we require that
ˆ h(t,x)

0
ζΨ(τγζ∂3xh)dζ on ∂Ω.

Observe that the resulting equation is of fourth-order, degenerate-parabolic, nonlinear
and complementedby twoboundary conditions, so that the resulting system is a complete
description for the dynamics of the free surface at leading order.

In the case of power-lawandEllis-lawfluids,Ψ is explicitly given. Recall that for power-
law fluids, we have µ(|s|)s = K|s|1/α−1s, so that

Ψ =
1

Kα
|s|α−1s.

Then, for power-lawfluids, the thin-film equationwith a no-slip condition at the solid bot-
tom is given by (after rescaling in time){

∂th+ ∂x
[
hα+2|∂3xh|α−1∂3xh

]
= 0 inΩ,

∂xh = hα+2|∂3xh|α−1∂3xh = 0 on ∂Ω.
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For Ellis fluids with a no-slip condition, we obtain the thin-film equation{
∂th+ ∂x

[
h3
(
γE + |h∂3xh|α−1

)
∂3xh

]
= 0 inΩ,

∂xh = h3
(
γE + |h∂3xh|α−1

)
∂3x = 0 on ∂Ω.

Here γE > 0 denotes a physical parameter that depends on the constant surface tension,
the flow-behaviour exponent α > 1 and the characteristic stress τ1/2.

This thesis dealswith capillary-driven thin fluid films, i.e. filmswhere the dynamics are
governed by the capillary forces on the free surface. If the dynamics are governed instead
by gravitational forces, the resulting equations are of second order. For more complicated
dynamics, we refer the reader to the review article [ODB97].

A rigorous derivation for the thin-film equation from the Navier–Stokes systems has
been obtained in the special case of the Hele-Shaw flow in [GO03].

4.4 Young’s law and the contact angle
We have assumed so far that the thin liquid film is enclosed between two lateral walls.
Additionally, we have assumed that the angle between the fluid and the lateral wall is±π

2 ,
that is ∂xh(t, x) = 0 for x ∈ ∂Ω.

Typically though, thin films are not restricted between lateral boundaries but move
freely on ideal surfaces. In this case, the boundary of the thin film is given by ∂{h > 0},
and the dynamics of this contact line between fluid and solid is part of the problem.

solid∂{h > 0}
x

Figure 4.2: Thin droplet on a solid bottom.

The speed V of the contact line is given by the equation, since, if s(t) denotes the con-
tact point at time t and V (t) = ṡ(t), it holds

0 =
d

dt
h(t, s(t)) = ∂th(t, s(t)) + V (t)h(t, s(t)),

and hence
V (t) = lim

x→s(t)
x∈{h>0}

1

h(t, x)

1

τ

ˆ h(t,x)

0
ζΨ(τγζ∂3xh)dζ.

The contact angle between the fluid and the solid is then given by Young’s law [Bon+09;
Gen85]. Young’s law states that the contact angle θ is given by the equilibrium of the three
surface tensions at the triple junction

γgs = γls + cos(θ)γgl. (4.4.1)
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γgl

θ

solid
x

γlsγgs

Figure 4.3: Surface tension equilibrium at the contact point.

Here, γgs denotes the surface tension between gas and solid, γls denotes the surface
tension between liquid and solid and γgl denotes the surface tension between gas and liq-
uid. Note that (4.4.1) only has a solution θ > 0 if γgs < γls + γgl. In this case, the contact
angle is strictly positive, and the corresponding regime is called partial wetting. If, on the
other hand, γgs ≥ γls + γgl, then θ = 0. A global equilibrium configuration between the
surface tensions is not attained. This forces the liquid to spread and cover the solid bottom
eventually. This regime is hence called complete wetting.

Defining k = arctan(θ), the complete free-boundary thin-film equation is then given
by the system



∂th+ ∂x

[
1
τ

´ h
0 ζΨ(τγζ∂3xh)dζ

]
= 0 in {(t, x) : h(t, x) > 0},

h = 0 on ∂{(t, x) : h(t, x) > 0},
∂xh = k on ∂{(t, x) : h(t, x) > 0},

lim
x→∂{h>0}

1
h
1
τ

´ h
0 ζΨ(τγζ∂3xh)dζ = V (t) for t > 0

for the unknowns (h, V ), where h is again the film height and V denotes the speed of the
interface ∂{(t, x) : h(t, x) > 0}.

It should be noted that Young’s law describes an asymptotic regime very close to the
contact point. Thus, θ is often called themicroscopic contact angle. This microscopic con-
tact angle is stationary since it is described by an equilibrium configuration via the capil-
lary forces of the fluid.

In contrast to the microscopic contact angle, at larger scales, one observes a different,
dynamic contact angle. In recent years, thismacroscopic contact angle has been studied
in the partial and complete wetting regime. Using a travelling-wave ansatz, the adherence
of the macroscopic contact angle to the Cox–Voinov law (see [Cox86; Voi77]) to leading
order has been shown in the case of Newtonian thin-films with general slip length (see
below), [GW22] . In the case of complete wetting, it has been shown that the macroscopic
contact angle to leadingorder followsTanner’s law (see [Tan79]), [GGO16]. For aderivation
of the thin-film equation with a dynamic contact angle following Shikmurzaev’s approach
[Shi93], we refer the reader to [GNV22].

4.5 Slip conditions and the no-slip paradox
In the modelling, we have so far assumed the special case of the no-slip condition, that is

u = 0 on z = 0.
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The fluid molecules are stuck to the surface of the solid. For Newtonian and shear-
thickening fluids, the no-slip condition leads to the so-called no-slip paradox. Thismeans
that infinite energy would be needed for the contact line between fluid and solid to move,
cf. [DD74], [HS71]. To remedy the no-slip paradox, the Navier-slip model [Nav23] is used.
In this case, one allows for a free slippage between the solid and the fluid, proportional to
the vertical change of the horizontal velocity. This new boundary condition at the solid
bottom is

u = λ∂zu, v = 0 on z = 0.

The constant of proportionality λ > 0 is called the slip length. Reviewing the lubrication
approximation, one arrives at a slightly changed equation for non-Newtonian thin-films.
In the case of Navier-slip, the equation reads

∂th+
1

τ
∂x

[
λhΨ(τγh∂3xh) +

ˆ h(t,x)

0
ζΨ(τγζ∂3xh(t, x))dζ

]
= 0.

In the case of the power-law thin-film equation, this reduces to

∂th+ ∂x
[(
λhα+1 + hα+2

)
|∂3xh|α−1∂3xh

]
= 0.

Usually, the film height is assumed to be much smaller than the slip length, so that
λhα+1 � hα+2, and one drops the term with hα+2 from the equation. For a rigorous
justification of the Navier-slip condition, see [JM01].

A generalised version, see e.g. [Gen85] and [Bon+09], of the Navier-slip condition is
given by

u = λ3−nhn−2∂zu on z = 0.

In this case and for fluids with non-Newtonian power-law rheology, one obtains the thin-
film equation

∂th+ ∂x
[(
λ3−nhα−1+n + hα+2

)
|∂3xh|α−1∂3xh

]
= 0.

4.6 Energy-dissipationmechanism, steady states and
long-time asymptotics

The results of this thesis deal with the case of a thin fluid film confined between two lat-
eral walls. In the case of power-law fluids and a no-slip condition at the solid bottom, the
corresponding thin-film equation has the form

∂th+ ∂x
[
hα+2|∂3xh|α−1∂3xh

]
= 0 inΩ,

∂xh = hα+2|∂3xh|α−1∂3xh = 0 on ∂Ω,
h(0, x) = h0(x) inΩ,

(4.6.1)

where h : (0, T )× Ω → R≥0. Note that the average height of the film is conserved
ˆ
Ω
h(t, x)dx =

ˆ
Ω
h0(x)dx

for all t ∈ (0, T ). Testing the equation with ∂2xh, we obtain an energy-dissipation formula
for strong solutions to (4.6.1)

1

2

ˆ
Ω
|∂xh(t, x)|2 dx+

ˆ t

0

ˆ
Ω
hα+2|∂3xh|α+1 dxds = 1

2

ˆ
Ω
|∂xh0|2 dx.
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For weak solutions obtained from a regularisation scheme, the energy-dissipation for-
mula continues to hold as an inequality. The energy-dissipation mechanism also directly
implies that the only non-negative steady-state solutions to (4.6.1) are given by positive
constants h(t, x) = h̄0 :=

ffl
Ω h0(x)dx (see Theorem B.3.5). If the thin film is strictly

bounded below, cf. Proposition B.4.1, explicit decay rates of the energy can be deduced
from the energy-dissipation and a Łojasiewicz–Simon-type inequality. While in [AG04]
only thequalitative result of convergence to the steady state for thinfilmsof shear-thinning
power-law fluids is proved,Theorem B.6.1 provides a polynomial decay rate of the form

‖h(t, x)− h̄0‖H1(Ω) ≤
Cε(

1 + Cεα−1t
) 1

α−1

,

provided h0 is initially close to h̄0 in H1(Ω). In the case of shear-thickening power-law
fluids, it is shown in Theorem B.5.1 that thin films convergence in finite time in H1(Ω)
to the steady state, assuming that, initially, the profile is close to the equilibrium. Similar
results have also been obtained recently for thin films in the cylindrical Taylor–Couette
setting in [LV22] and [LPV22].

In the case of Ellis fluids, which are by their nature shear-thinning, the thin-film equa-
tion contains an additional Newtonian summand

∂th+ ∂x
[
h3
(
γE + |h∂3xh|α−1

)
∂3xh

]
= 0 inΩ,

∂xh = h3
(
γE + |h∂3xh|α−1

)
∂3xh = 0 on ∂Ω,

h(0, x) = h0(x) onΩ,

and the equation only degenerates in the film height but not in the third spatial derivative.
The corresponding energy-dissipation formula is given by

1

2

ˆ
Ω
|∂xh(t, x)|2 dx+

ˆ t

0

ˆ
Ω
γEh

3|∂3xh|2 + hα+2|∂3xh|α+2 dxds = 1

2

ˆ
Ω
|∂xh0|2 dx.

Again, the only non-negative steady states to the Ellis-law thin-film equation are positive
constants [LM20]. Close to the equilibrium, theNewtonian effects dominate the dynamics
so that the long-timebehaviour follows that of theNewtonian thin-filmequation forwhich
exponential stability has been observed in [BP96]. In Theorem B.7.5 it is proved that the
same exponential stability holds for Ellis fluids, that is

‖h(t, x)− h̄0‖H1(Ω) ≤ Ce−λt,

provided h0 is close to h̄0 inH1(Ω).

4.7 Thin-film equations via gradient flows
The physically dominant forces for the thin fluid films investigated in this thesis are cap-
illary forces, i.e. the surface forces given by the surface tension of the fluid. Recall that in
the modelling they were introduced via the stress-balance condition at the free surface of
the thin film

τ(p,u)n = γκn on Γ(t),

where γ > 0 denotes the surface tension and κ the mean curvature. Themore the surface
is bent locally, the bigger become the local stresses on the surface. These stresses govern
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the dynamics of the thin film. Surface tension forces the fluid into an equilibrium config-
uration which is described as a minimum of the length of the thin film (or surface area in
two spatial dimensions) ˆ

Ω

√
1 + |∂xh(t, x)|2 dx,

under the constraints given by the contact angle with the lateral boundary or the solid
bottom. Note that up to first-order, the length of the film is given byˆ

Ω

√
1 + |∂xh(t, x)|2 dx ∼ |Ω|+ 1

2

ˆ
Ω
|∂xh(t, x)|2 dx.

This also gives a natural interpretation of the energy used in the previous Section 4.6 as an
approximationof the lengthof thefilm. It iswell-known since theworkof Almgren [Alm96]
that the Newtonian Hele-Shaw flow

∂th+ ∂x
[
h∂3xh

]
= 0 inΩ,

∂xh = h∂3xh = 0 on ∂Ω,
h(0, x) = h0(x) inΩ

is given by a gradient flow with respect to the surface energyˆ
Ω

√
1 + |∂xh(t, x)|2 dx.

In [GO01] it is shown that theHele-Shawflow is a gradient flowwith respect to theDirichlet
energy and the metric tensor given by

gh(v1, v2) =

ˆ
Ω
hj1j2 dx,

where v1 + ∂x(hj1) = 0 and v1 + ∂x(hj2) = 0 with j1 = j2 = 0 on ∂Ω. v1, v2 : Ω → R are
tangent to the film height, that is

´
Ω v1 dx =

´
Ω v2 dx = 0.

Formally, the Newtonian thin-film equation
∂th+ ∂x

[
hn∂3xh

]
= 0 inΩ,

∂xh = hn∂3xh = 0 on ∂Ω,
h(0, x) = h0(x) inΩ

with a general mobility m(h) = hn should then be a gradient flow with respect to the
Dirichlet energy and the metric tensor

gh(v1, v2) =

ˆ
Ω

j1j2
hn

dx,

where v1 + ∂xj1 = 0, j1 = 0 on ∂Ω and v2 + ∂xj2 = 0, j2 = 0 in ∂Ω hold. This metric
tensor degenerates for superlinear mobilities, cf. Proposition 6.2.1.

Changing the correspondingdissipationby introducinga regularisationof themobility
mδ(h) ≥ δ, we construct solutions to the regularised thin-film equation

∂th+ ∂x
[
mδ(h)|∂3xh|α−1∂3xh

]
= 0 inΩ,

∂xh = mδ(h)|∂3xh|α−1∂3xh = 0 on ∂Ω,
h(0, x) = h0(x) inΩ,

in Chapter 6, even in the case of non-Newtonian power-law fluids via aminimisingmove-
ment scheme for the Dirichlet energy with a dissipation functional given by

inf
∂tu+div j=0
j·n=0 in ∂Ω

ˆ
Ω

|j|
α+1
α

mδ(u)
1
α

dx.
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4.8 Previous results and further literature
Since the seminal work of Reynolds on lubrication theory [Rey86], thin-film equations
have become an important area of mathematical study. In the case of dominance of
gravitational forces, the dynamics of the thin film are described by the porous-medium
equation (or variances thereof in the case of power-law and Ellis fluids). For this nonlin-
ear degenerate-parabolic equation of second-order, the theory of existence of solutions
is seminally studied in [ZK50], [OKJ58] and [Sab61] (see also the monograph [Vaz06] for
more references).

NEWTONIAN THIN-FILM EQUATIONS
While the porous-mediumequation is a degenerate-parabolic second-order equation, the
dynamics of the thin film under the dominance of capillary forces are given by the nonlin-
ear degenerate-parabolic fourth-order equation

∂th+ ∂x
[
m(h)∂3xh

]
= 0,

as we have seen in the introduction. While for the porous-medium equation the non-
negativity of solutions follows from the maximum principle, such tools are not available
for fourth-order equations. Besides the existence ofweak solutions to theNewtonian thin-
film equation on a domain enclosed by lateral boundaries with general mobility function
m(u) = |u|n, n ≥ 1, the problem of non-negativity is addressed in the seminal paper
[BF90] via the introduction of a notion of entropy that guarantees control of certain norms
of second derivatives via what is now known as Bernis’ estimates. Furthermore, for n ≥ 4
the uniqueness of non-negative weak solutions is established.

The seminal result of Bernis and Friedman sparked an intensified study of the prop-
erties of such solutions. Source-type solutions are studied in [BPW92] and [FB97] for the
higher-dimensional case. The finite speed of propagation of the contact line is studied
in [Ber96b] and [Ber96a]. Moreover, [BBD95] and [BP96] study regularity, the behaviour
of the support and long-time behaviour. In [BBD95] non-uniqueness of non-negative
solutions is proved in the case of mobility exponent n < 3. A mechanism for non-
uniqueness by the self-similar lifting of isolated zeros of the thin-film equation is de-
scribed in [CKV18]. A waiting-time phenomenon for solutions to the thin-film equation is
observed in [DGG01]. Optimal bounds for waiting times are obtained in [Fis14].

Theexistence of solutions in the case of higher space dimensions is studied in [Ber+98],
[PGG98] and [Grü05]. Note that the concept of solutions in higher dimensions is even
weaker due to the more limited compactness. In [PGG98], a concept of strong solutions
for the higher-dimensional thin-film equation is introduced that is linked to the Bernis’
estimates obtained in [BF90] and [Ber96c] for theone-dimensional thin-filmequation. For
convex domains, strong solutions are shown to exist.

The case of two stratified thin films of immiscible Newtonian fluids is studied in
[EMM13], [EM14] and [BG19]. The more involved geometry of a thin film in the setting of
Taylor–Couette flows for Newtonian fluids is investigated in [PV20].

A rigorous theory of the lubrication approximation for the Hele-Shaw flow with mo-
bility exponent n = 1 is established in the series of papers [Ott00], [GO01] and [GO03].
In [KM15] the lubrication approximation for the Hele-Shaw flow is performed rigorously
fromDarcy’s flow. A rigorous justification of theHele-Shawflow in thin threads is obtained
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in [MP12]. The case of the no-slip boundary condition is rigorously studied in [GP08] from
a Stokes flow with surface tension.

These rigorous derivation results formed one entry point into the mathematical study
of the full free-boundaryproblem forNewtonian thinfilms. In this case, the corresponding
system of equations for the film height h : (0, T ) × R → R≥0 and the speed V : (0, T ) ×
∂{h > 0} → R of the interface ∂{h > 0} is given by


∂th+ ∂x

[
hn∂3xh(t, x)

]
= 0 in {(t, x) : h(t, x) > 0},

h = 0 on ∂{(t, x) : h(t, x) > 0},
∂xh = k on ∂{(t, x) : h(t, x) > 0},

lim
x→∂{h>0}

hn−1∂3xh(t, x) = V (t) for t > 0.

The case k 6= 0 of non-zero contact angle is referred to as partial wetting, while the case
of zero contact angle k = 0 is the complete wetting regime. Travelling-wave solutions
in different slippage and contact-angle regimes for the Newtonian thin-film equation are
studied in [BKO93], [BSB03] and [CG11], as well as in [GKK18] for the case of spin-coating.

From this starting point of travelling-wave solutions, there is a large amount of liter-
ature on classical solutions both in the partial and complete wetting regime for different
mobility exponents. In theone-dimensional case andusing aboundary-layer analysis, this
includes the articles [Knü08], [GKO08; Bri+16], [GK10], [GGO13], [Gia+14], [Gna15] and
[Gna16] for the case of complete wetting. Here, the contact line dynamics are described
asymptotically via a travelling-wave ansatz and then matched to the parabolic behaviour
in the bulk. The partial wetting regime is discussed in [Knü11], [Knü15]. The case of two
spatial dimensions has so far beenmostly studied perturbatively around special solutions
[Joh15], [GP18], [Deg17] and [Sei18].

A rigorous investigation of the behaviour of the macroscopic contact angle is con-
ducted in [GGO16], where it is shown that, in the complete wetting regime, the macro-
scopic contact angle follows Tanner’s law to leading order. Similarly, in [GW22], the adher-
ence of the macroscopic contact angle to the Cox–Voinov law to leading order is shown.

The gradient-flow structure of the Hele-Shaw flow has already been observed by Alm-
gren [Alm96]. More recently, a mathematical study of the gradient-flow structure of the
Newtonian thin-film equation with mobility exponents n ≤ 1 has been conducted in
[LMS12], using a regularisation and a minimising movement scheme. While in this case
the dissipation functional is convex simultaneously in the film height h and the flux j,
this fails in the case of superlinear mobility m. This case is studied in detail in Chapter
6 of this work, even in the non-Newtonian power-law case for all flow-behaviour expo-
nents α > 0. Furthermore, numerical schemes for the gradient-flow structure for general
mobilities in the Newtonian case and on different geometries are investigated in[GR00],
[RV13] and [Van+17]. The study of the thin-film equationwith a dynamic contact angle via
discretisations is studied in [PH21].

In [DMS05], it is observed that, taking thermal fluctuations into account, the spread-
ing of thin droplets does not follow Tanner’s law and a stochastic version of the thin-film
equation is derived. Inspired by the effects of thermal fluctuations in film rupture [ASL04],
Grün, Mecke and Rauscher [GMR06] derive a different stochastic thin-film equation with
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an additional interface potential. Results on existence and positivity of solutions in dif-
ferent stochastic frameworks, such asmartingale solutions, are studied in [FG18], [Cor18],
[GG20], [Dar+21], [Sau21], [MG21] and [GK21].

Finally, thin filmswith surfactants acting on the surface tension of the fluids have been
an area of mathematical investigation. The corresponding dynamics change due to the
Marangoni effect, and the resultingmodel consists of a coupled systemof a thin-filmequa-
tion with the concentration of the surfactant. This coupled model is studied in [GW06],
[Esc+12], [EL18], [Bru17] , [BG20] and [Bru16].

NON-NEWTONIAN THIN-FILM EQUATIONS
The literature on non-Newtonian thin-film equations is sparser, and few phenomena have
yet been studied in detail. Since [WS94] and [AG02] it has been known that shear-thinning
Ellis fluids do not exhibit the contact line paradox for fluids with no-slip boundary condi-
tion. General asymptotical regimes of the doubly nonlinear power-law thin-film equation
are studied in [Kin01a] and [Kin01b].

The seminal rigorous work on shear-thinning power-law thin-film equations in one
dimension {

∂th+ ∂x
[
hn|∂3xh|α−1∂3xh

]
= 0, inΩ,

∂xh = hn|∂3xh|α−1∂3xh = 0, on ∂Ω,

for α > 1, is the work by Ansini and Giacomelli [AG04]. Note that this equation is doubly-
degenerate since it degenerates both in the film height h and the third spatial derivative of
h. They use a Galerkin approximation with a double regularisation scheme to guarantee
both global-in-time existence of weak solutions and non-negativity via a refined entropy
approach. Furthermore, many qualitative properties such as long-time behaviour, finite
speed of propagation and a waiting-time phenomenon are studied, and it is shown that
many results from the Newtonian case transfer to the case of shear-thinning power-law
fluids.

Local-in-time strong solutions for the Ellis-law thin-film equation are studied in the
framework of semigroups in [LM20]. Furthermore, the thin-film equation for power-law
fluids in the setting of a two-phase Taylor–Couette geometry is studied in [LPV22] for
shear-thickening rheology and in [LV22] for shear-thinning rheology. Besides existence of
weak solutions, the long-time asymptotics of solutions close to a steady state are analysed
using the energy-dissipation inequality.

The literature on gradient flows for non-Newtonian thin-filmequations is even sparser.
Wemention [BB20] and [BB22] forworksonasymptotic profiles in gradientflowsof fourth-
order evolution equations.



5 LONG-TIME BEHAVIOUR AND
STABILITY FOR QUASILINEAR
DOUBLY DEGENERATE-PARABOLIC
EQUATIONS OF HIGHER ORDER

This chapter is a summary of the results obtained in the paper

[JLN22] J. Jansen, C. Lienstromberg, and K. Nik. “Long-time behaviour and stability
for quasilinear doubly degenerate parabolic equations of higher order”. In:
arXiv:2204.08231 [math] (2022)

A reprint of the paper can be found in Appendix B.
The research undertaken in the paper in question is a collaboration with C. Lien-

stromberg and K. Nik. All authors and, in particular, the author of this thesis have con-
tributed significant parts to each section of the work.

5.1 Introduction
As discussed in Section 4.7, the capillary forces implemented in thin-film model compel
the length of the thin-film to equilibrate under the constraints given by the contact angle
at the lateral boundary. This effect is regardless of the rheology of the fluid. Since [AG04,
Theorem 1] it has been known that for the shear-thinning power-law thin-film equation

∂tu+ ∂x
[
uα+2|∂3xu|α−1∂3xu

]
= 0, t > 0, x ∈ Ω,

∂xu = uα+2|∂3xu|α−1∂3xu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(5.1.1)

with α > 1, solutions converge uniformly to their average ū0 =
ffl
Ω u(t, x)dx for non-

negative initial data u0 ∈ H1(Ω)with |x|3/2(α+1)∂xu0 ∈ L2(Ω). Note that the average film
height is conserved by the equation, so ū0 does not depend on time.

For theNewtonian thin-film equation, the long-time behaviour is studied qualitatively
in [BF90] and quantitatively in [BP96]. In the latter paper, exponential decay to the equi-
librium configuration ū0 inH1(Ω) is shown. Using semigroup theory, see e.g. [Lun12] or
[HI11], in the Newtonian case, the exponential decay can even be shown in smaller func-
tion spaces.

While in the shear-thinning case at least the qualitative theory has been studiedbefore,
in the shear-thickening case α < 1, no results have been obtained previously.
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56 Non-NewtonianThin-Film Equations

Due to the Newtonian plateau at low stresses, Ellis-law fluids close to equilibrium are
expected to behave like Newtonian fluids. The corresponding thin-film equation with the
flow-behaviour exponent α > 1 is given by

∂tu+ ∂x
[
u3
[
1 + |u∂3xu|α−1

]
∂3xu

]
= 0, t > 0, x ∈ Ω,

∂xu = u3
[
1 + |u∂3xu|α−1

]
∂3xu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

5.2 Main results

POWER-LAW FLUIDS
Now we turn to the main results. Weak solutions had previously been only studied for
shear-thinning power-law fluids using a Galerkin approximation. Since we are inter-
ested in the behaviour close to steady states, the first result concerns the existence of
positive weak solutions also for shear-thickening fluids. Via regularisation of the nonlin-
earity involving ∂3xh, standard semigroup theory for the regularised equation, the energy-
dissipation mechanism andMinty’s trick, positive weak solutions are constructed.

Theorem 5.2.1 (=B.3.2). Fix α > 0. Given a positive initial value u0 ∈W 4ρ
α+1,B(Ω), 4ρ >

3 + 1/(α + 1), with u0(x) > 0, x ∈ Ω̄, there exists a time T > 0 such that problem (5.1.1)
admits at least one positive weak solution

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

on (0, T ) in the sense of Definition B.3.1. Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero, i.e. there is a constantCT > 0 such that

0 < CT ≤ u(t, x), 0 ≤ t ≤ T, x ∈ Ω̄.

(ii) (Conservation of mass) u conserves its mass in the sense that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t ≤ T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions

E[u](t) +

ˆ t

0
D[u](s) ds = E[u0]

for almost every t ∈ [0, T ].

Here
E[u](t) =

1

2

ˆ
Ω
|∂xu(t, x)|2 dx

denotes the energy and

D[u](t) =

ˆ
Ω
u(t, x)α+2|∂3xu(t, x)|α+1 dx
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the dissipation functional at time t. Using bootstrapping, such local solutions can be ex-
tended to maximal positive solutions. Due to the degeneracy of the equation, solutions
cannot be expected to be unique, though.

Starting from the energy-dissipation mechanism, a Łojasiewicz–Simon-type inequal-
ity is derived for strictly positive solutions, implying that

d

dt
E[u](t) = −D[u](t) ≤ −C

(
E[u](t)

)α+1
2 .

Using this and a bootstrapping arguments, global solutions and explicit convergence
rates to the equilibrium are proved, provided the initial datum is close to equilibrium.

Theorem 5.2.2 (=Theorems B.5.1 and B.6.1). Fix α > 0. Then there exists an ε > 0 such
that, for all positive initial values u0 ∈ H1(Ω) with ‖u0 − ū0‖H1(Ω) ≤ ε, problem (B.1.1)
possesses at least one global positive weak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′),

satisfying the boundary condition ux = 0 on ∂Ω pointwise for almost every t ≥ 0. Moreover,
this global solution has the following asymptotic behaviour:

(i) In the shear-thickening case 0 < α < 1, there exists a positive but finite time 0 < t∗ <
∞ such that

u(t, ·) −→ ū0 inH1(Ω), as t→ t∗, and u(t, x) = ū0, t ≥ t∗, x ∈ Ω.

(ii) In the shear-thinning case 1 < α <∞, there exists a constantC > 0 such that

‖u(t)− ū0‖H1(Ω) ≤
Cε(

1 + Cεα−1t
) 1

α−1

, 0 ≤ t <∞.

(iii) In the Newtonian case α = 1, there exist positive constantsC, γ > 0 such that

‖u(t)− ū0‖H1(Ω) ≤ Ce−γt, 0 ≤ t <∞.

ELLIS FLUIDS
Finally, the asymptotic behaviour of Ellis-law fluids are investigated. It is found that close
to equilibrium the Newtonian behaviour dominates, and the exponential convergence
rate to equilibrium present in Newtonian fluids is replicated for Ellis fluids.

Theorem 5.2.3 (=Theorem B.7.5). Fix 1 < α < ∞. There exists ε > 0 such that, for all
positive initial values u0 ∈ H1(Ω)with ‖u0 − ū0‖H1(Ω) < ε, there is a global positive weak
solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′).
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Moreover, there are λ > 0 and a constantC > 0 such that

‖u(t)− ū0‖H1(Ω) ≤ Ce−λt‖u0‖H1(Ω).

Furthermore, we find that the dissipation decreases exponentially along the solution in the
following L1-in-time sense:

ˆ t

t/2
D[u](s) ds ≤ Ce−2λt‖u0‖2H1(Ω).



6 THE GRADIENT-FLOW STRUCTURE
OF THE THIN-FILM EQUATION

Abstract

We study the gradient-flow structure of doubly-degenerate parabolic problems
of fourth-order in one spatial dimension, describing, for instance, the dynamics of
capillary-driven thin fluid films with non-Newtonian power-law rheology. We con-
struct a formal gradient system and show that the corresponding weighted Wasser-
stein distance degenerates for physical mobilities. We then set up a minimising
movement schemewith amodifiedmobility function. Using the Aubin–Lions–Simon
lemma to gain compactness, we show that the time-discrete flow of the minimising
movement scheme converges to a solution to the corresponding modified thin-film
equation that satisfies an energy-dissipation equality. Finally, we show that solu-
tions to the modified equation converge, for all flow-behaviour exponents, to a weak
solution to the thin-film equation. In the case of Newtonian fluids, we use entropy
methods to show that, under mild additional conditions, these weak solutions are
non-negative for all times.

The research undertaken in this chapter is a collaboration with P. Gladbach and C.
Lienstromberg. All authors and, in particular, the author of this thesis have contributed
significant parts to each section of the work.

6.1 Introduction

Weconsider a thinfluidfilm inaboundeddomainΩ ⊂ Rd, d ≥ 1, withLipschitz boundary.
Furthermore, we assume the fluid to be Non-Newtonian with power-law rheology, that is,
the constitutive law for the viscosity of the fluid is given by

µ(|ε|) = µ0|ε|
1
α
−1,

(see also Section 4.2). Here ε denotes the strain rate, µ0 > 0 is the characteristic viscosity,
and α > 0 is the flow-behaviour exponent. The local viscous stress of the fluid is given by

σ(ε) = µ(|ε|)ε = µ0|ε|
1
α
−1ε.

The fluid is shear-thickening if the flow-behaviour exponent satisfies α < 1. It is Newto-
nian if α = 1, and it is shear-thinning if α > 1.

For such fluids, after lubrication approximation, a generalised thin-film equation in
the domainΩwith initial condition u0 ≥ 0 for thin filmswith zero boundary angle is given
by
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60 Non-NewtonianThin-Film Equations


∂tu+ div

(
un|∇∆u|α−1∇∆u

)
= 0, t > 0, x ∈ Ω,

∇u · n = un|∇∆u|α−1∇∆u · n = 0, t > 0, x ∈ ∂Ω,

u(0) = u0, x ∈ Ω.

(6.1.1)

Here m(u) = un is the mobility of the thin film. Physically, the mobility is explicitly
given once one specifies slippage conditions at the solid-fluid interface. For example, if
we prescribe a no-slip condition, we obtainm(u) = uα+2. Recall from Section 4.5 that in
the case of the Navier-slip condition, we obtainm(u) = λuα+1 + uα+2, where λ > 0 is the
characteristic slip length. Note that, in both cases, the mobility is superlinear regardless
of the flow-behaviour exponent α > 0 since the mobility exponent n is greater than one.

By testing the equation with the function that is constantly equal to one, we find that
solutions to (6.1.1) conserve their mass:

ū(t) :=

 
Ω
u(t, x)dx =

 
Ω
u0(x)dx, t ≥ 0.

It is well-known (see [Alm96], [Ott00], [GO03], where the latter two assume that d =
1) that for Newtonian fluids in the setting of Hele-Shaw flows, given by flow-behaviour
exponent α = 1 and mobility exponent n = 1, the thin-film equation is a gradient flow
with respect to the energy given by

E[u](t) =

ˆ
Ω
|∇u(t, x)|2 dx.

A numerical gradient flow scheme — discrete both in time and space — for the New-
tonian thin-film equation with general mobility exponents in one and two space dimen-
sions is studied in [GR00]. Numerical schemes for more advanced geometries are studied
in [RV13] and [Van+17].

In [LMS12], the Newtonian thin-film equation with mobility exponents n ∈ (0, 1] in
dimension d = 1 is studied as a gradient flow in weighted Wasserstein spaces. All these
results have in common that the dissipation potential turns out to be jointly convex in the
film height and the flux, as we will see later.

The problem of lack of convexity for physical mobility exponents n ≥ 1 can be over-
come considering first a modified mobility functionmδ withmδ ≥ δ in R. Using a min-
imising movement scheme in the space {u ∈ H1(Ω) : ū = ū0}, solutions to the modified
thin-film equation will be constructed for general flow-behaviour exponents α > 0 in one
space dimension. In particular, this shows that positive solutions to the one-dimensional
power-law thin-film equation are given by a gradient flow. Furthermore, as one sends
mδ → m, these solutions converge to a weak solution of (6.1.1) in the sense of [BF90].

GRADIENT SYSTEMS

InRd, d ≥ 1, a gradient flow of a convex energyE : Rd → R is given by a solution to

d

dt
x(t) = −∇E[x](t). (6.1.2)

Gradient flows are curves of steepest descent for the energy since

d

dt
E[x](t) = ∇E[x](t)∂tx(t) = −|∇E[x](t)|2.
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Under the assumption of sufficient convexity of E, solutions to (6.1.2) can then be char-
acterised in terms of an energy-dissipation equality: an absolutely continuous curve
x : [0,∞) → Rd is a solution to (6.1.2) with initial value x(0) = x0 ∈ Rd if and only if

E[x](t) +
1

2

ˆ t

0

∣∣∣∣ ddtx(s)
∣∣∣∣2 ds+ 1

2

ˆ t

0
|∇E[x](s)|2 ds = E[x0]

holds for every t > 0, [ABS21].
A more general approach to gradient flows is provided by the theory of gradient sys-

tems. To recall the basic notions in a formal manner, we mainly follow [Mie16].
LetX be a space in which there are notions of a formal tangent space TX and formal

cotangent space T ∗X and a dual pairing 〈·, ·〉 between TX and T ∗X . For example, X
could be a Riemannian manifold or a Banach manifold.

Definition 6.1.1 (Gradient system). A gradient system on a space X consists of a tuple
(E,Ψ), where E : X → R ∪ {+∞} is an energy functional andΨ: X × TX → [0,∞] is a
dissipation potential that is assumed to be lower semicontinuous, proper and convex with
Ψ(u, 0) = 0 for every u ∈ X .

We formally define the dual dissipation potential to be

Ψ∗(u, ξ) = sup{〈ξ, v〉 −Ψ(v) : v ∈ TuX}

as the formal Legendre transform ofΨ. Then formally

Ψ(u, v) + Ψ∗(u, ξ) ≥ 〈u, v〉 for all u ∈ X, v ∈ TuX and ξ ∈ T ∗
uX. (6.1.3)

Definition6.1.2 (Gradientflow). Given a gradient system (E,Ψ) ona spaceX , a solution
to a gradient flow is an absolutely continous curve u : [0,∞) → X such that one of the
following three equivalent formulations are satisfied

(i) ∂tu = ∂ξΨ
∗(u,−DE[u]);

(ii) 0 = ∂vΨ(u, ∂tu) +DE[u];

(iii) Ψ(u, ∂tu) + Ψ∗(u,−DE[u]) = 〈−DE[u], ∂tu〉.

Note that it is immediate from (iii) that formally gradient flows in gradient systems
satisfy the energy-dissipation equality

E[u(t)] +

ˆ t

0
Ψ(u, ∂tu) + Ψ∗(u,−DE[u])ds = E[u(0)].

Note that formally (assuming that the chain rule is applicable) by (6.1.3), the energy-
dissipation equality is equivalent to the energy-dissipation inequality

E[u(t)] +

ˆ t

0
Ψ(u, ∂tu) + Ψ∗(u,−DE[u])ds ≤ E[u(0)].
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HEURISTIC FOR THE DISSIPATION POTENTIAL
LetΩ ⊂ Rd, d ≥ 1, be open, bounded and connectedwith smooth boundary. The concrete
setting for the power-law thin-film equation is the following. As discussed previously, the
first-order approximation of the length of the surface

E[u] =
1

2

ˆ
Ω
|∇u|2 dx

is a natural energy. Since the mass is conserved, a natural choice for the spaceX is given
by

X :=

{
u ∈ H1(Ω) :

 
Ω
udx = ū0, u ≥ 0

}
for a fixedmass ū0 > 0. Elements of the formal tangent spaceTX toX then have the form

TX :=

{
v ∈ H1(Ω) :

 
Ω
v dx = 0

}
.

There is a natural representation of such vector functions in terms of vector fields, that is

TX ' {div j : j · n = 0 on ∂Ω},

where n denotes the outer unit normal to ∂Ω. To derive an explicit form ofΨ, note that by
convexity, the condition in Definition 6.1.2 (ii) is equivalent to

∂tu ∈ argmin
v∈TX

Ψ(u, v) + 〈DE[u], v〉 = argmin
j : divj=v,
j·n=0 on ∂Ω

Ψ(u,div j) + 〈DE[u],div j〉.

Wenowmake the ansatz that the dissipation potential is given by a local objectψ(u, j)
so that

Ψ(u, v) = inf
j : v+div j=0,
j·n=0 on ∂Ω

ˆ
Ω
ψ(u, j)dx.

Then it holds

min
v∈TX

inf
j : v+div j=0,
j·n=0 on ∂Ω

ˆ
Ω
ψ(u, j)dx+ 〈DE[u],−div j〉

= min
j : v+div j=0,
j·n=0 on ∂Ω

ˆ
Ω
ψ(u, j)dx+ 〈DE[u],−div j〉,

since we can exchange both infima.
Wemake the ansatz that

ψ(u, j) =
|j|p

m(u)q

for some p > 1, q > 0 to be determined. Then

div j ∈ argmin
v+div j=0,
j·n=0 on ∂Ω

ˆ
Ω

|j|p

m(u)q
dx+ 〈∇DE[u], j〉

if and only if j minimises ˆ
Ω

|j|p

m(u)q
dx+ 〈∇DE[u], j〉
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under the constraint j · n = 0 in ∂Ω. SinceDE[u] = −∆u, we conclude that

|j|p−2j

m(u)q
= ∇∆u,

and hence
j = m(u)

q
p−1 |∇∆u|

1
p−1

−1∇∆u.

Since ∂tu + div j = 0, we choose p = α+1
α and q = 1

α to obtain that the pair (u, j) solves
the thin-film equation

∂tu+ div
(
m(u)|∇∆u|α−1∇∆u

)
= 0.

To summarise, we conclude that we choose the dissipation potential

Ψ(u, ∂tu) = inf
∂tu+div j=0
j·n=0 on ∂Ω

ˆ
Ω

|j|
α+1
α

m(u)
1
α

dx. (6.1.4)

This approach of gradient flows would fit in the context of gradient flows on metric
spaces [AGS08] and the Otto calculus [JKO98] if

d
α+1
α

m (u0, u1) := inf
{ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

m(u(t, x))
1
α

dxdt : ∂tu+ div j = 0,

j · n = 0 on ∂Ω, u ≥ 0, u(0, x) = u0(x), u(1, x) = u1(x)

}
were ametric. We prove in Proposition 6.2.1 that, for the physically relevant case of super-
linearmobilities, dm degenerates. In the case of concavemobilitiesm(s) = sα, 0 < α ≤ 1,
thismetric is used in [LMS12] towrite theNewtonian thin-filmequation as a gradient flow.
In the latter case, the integrand is convex as a function of (u, j), while the integrand lacks
this convexity in the case of superlinear mobilities.

MAIN RESULTS
After we prove in Proposition 6.2.1 that with the Dirichlet energy and the dissipation po-
tential

Ψ(u, ∂tu) = inf
∂tu+div j=0
j·n=0 on ∂Ω

ˆ
Ω

|j|
α+1
α

m(u)
1
α

dx,

the correspondingmetricdegenerates, andwecannotfindagradientflowviaOtto calculus
in metric spaces, we regularise the mobility m. We introduce mδ : R → [δ, 1/δ] so that
mδ(s) ≥ δ for s ∈ R andmδ(s) = δ for s ≤ 0. We set up a minimising movement scheme
onH1(Ω) × Lα+1

α
(Ω;Rd). Therefore, if at time t we are in the state u∗, we determine u at

time t+ h and the flux to be the minimiser of the functional

Fh,δ
u∗ (u, j) =

1

2

ˆ
Ω
|∇u|2 dx+ h

α

α+ 1

ˆ
Ω

|j|
α+1
α

mδ(u∗)
1
α

dx,

where the minimisation runs over pairs (u, j) ∈ H1(Ω)× Lα+1
α

(Ω;Rd) that satisfy{
u−u∗

h + div j = 0 inΩ,

j · n = 0 on ∂Ω,
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and we choose an initial datum u0 ∈ H1(Ω)with u0 ≥ 0.
In the case of one space dimension Ω ⊂ R, to gain enough compactness, we prove

that a subsequence of the corresponding linear interpolation ûh,δ converges, as h→ 0, to
a weak solution

uδ ∈ Cb

(
[0,∞);H1(Ω)

)
∩ Lα+1

(
(0,∞);W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0,∞);

(
W 1

α+1(Ω)
)′)

to the modified thin-film equation
∂tu

δ + div
(
mδ(u

δ)∂3xu
δ
)
= 0, t > 0, x ∈ Ω,

∂xu
δ = ∂3xu

δ = 0, t > 0, x ∈ ∂Ω,

uδ(0, x) = u0(x), x ∈ Ω,

which satisfies the energy-dissipation equality
ˆ
Ω

1

2
|∂xuδt |2 dx+

ˆ t

s

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ =

ˆ
Ω

1

2
|∂xuδs|2 dx.

This already implies that positive solutions to the thin-film equation are given by the
corresponding gradient flow. We then show that every accumulation point

u ∈ L∞([0,∞);H1(Ω)
)
∩ C

1
5α+3

, 1
2
(
[0,∞]× Ω̄

)
with ∂3xu ∈ Lα+1,loc({u > 0}) and ∂tu ∈ Lα+1

(
[0,∞);

(
W 1

α+1(Ω)
)′) of the sequence uδ,

as δ → 0, is a weak solution to the thin-film equation
∂tu

δ + div
(
m(uδ)∂3xu

δ
)
= 0, t > 0, x ∈ Ω,

∂xu
δ = m(u)∂3xu

δ = 0, t > 0, x ∈ ∂Ω,

uδ(0, x) = u0(x), x ∈ Ω,

in the sense thatˆ ∞

0
〈∂tu, ϕ〉W 1

α+1
dt−

¨
{u>0}

m(u)|∂3xu|α−1∂3xu · ∂xϕdxdt = 0

holds for all ϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
. Furthermore, u satisfies the energy-dissipation

inequality
ˆ
Ω

1

2
|∂xut|2 dx+

ˆ t

0

ˆ
{us>0}

m(u)|∂3xu|α+1 dxds ≤
ˆ
Ω

1

2
|∂xu0|2 dx, t ∈ [0,∞).

These solutionsmay not be non-negative for all times. Using the entropymethod used
in [BF90], we deduce that in the case of Newtonian fluids and initial datum with finite
entropy, the weak solutions are non-negative for all times.

NOTATION
Throughout this chapter, we assume thatΩ ⊂ Rd, d ≥ 1, is an open and bounded domain
with Lipschitz boundary. Mostly, Ω ⊂ R will be an interval. We use, for k ∈ N and p ∈
[1,∞], the notationW k

p (Ω) for the standard Sobolev space with norm

‖v‖Wk
p (Ω) =

 ∑
0≤|α|≤k

‖∂αv‖pLp(Ω)

1/p

.
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Let Ω ⊂ R an interval. To account for the Neumann-type boundary conditions of the
solutions to the thin-film equation, we further introduce the notation

W k
p,B(Ω) =


{
v ∈W k

p (Ω); vx = vxxx = 0 on ∂Ω
}
, k = 4,{

v ∈W k
p (Ω); vx = 0 on ∂Ω

}
, 2 ≤ k ≤ 3,

W k
p (Ω), 0 ≤ k ≤ 1.

The spacesW k
p,B(Ω), k ∈ {0, . . . , 4}, are closed linear subspaces ofW k

p (Ω).

OUTLINE OF THIS CHAPTER
The structure of this chapter is as follows: in Section 6.2, we study the Benamou–Brenier
action functional derived previously and show that the corresponding distance degener-
ates in the (physically relevant) case of superlinear mobility functionals.

Due to the need to take a different approach to the gradient-flow structure, we set up a
minimising movement scheme for a modified thin-film equation in Section 6.3 and study
the properties of the interpolations of the time-discrete flow. Using the De Giorgi tech-
nique, we derive an optimal discrete energy-dissipation inequality and use this to prove
a-priori bounds and show convergence to a limit.

In Section 6.4, we investigate the limit obtained in Section 6.3. We show that it satisfies
the energy-dissipation equality and solves the modified thin-film equation.

While from the results of Section 6.4 it can already be deduced that positive solutions
to the power-law thin-filmequation have a gradient-flow structure, in Section 6.5we study
the limit of δ → 0 andprove that the solutions to themodified thin-filmequation converge
to weak solutions to the power-law thin-film equation. In the Newtonian case, we further
show that these solutions are non-negative for all times.

6.2 Benamou–Brenier action with superlinear mobility

In this section, we define for two non-negative functions u0, u1 ∈ L1(Ω), u0, u1 ≥ 0, with´
Ω u0 dx =

´
Ω u1 dx, the Benamou–Brenier action functional depending on a continuous

mobility functionm : [0,∞) → [0,∞),

d
α+1
α

m (u0, u1) := inf
{ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

m(u(t, x))
1
α

dxdt : ∂tu+ div j = 0,

j · n = 0 on ∂Ω, u ≥ 0, u(0, x) = u0(x), u(1, x) = u1(x)

}
If themobilitym(u) = un is superlinear, we show that, since this functional lacks con-

vexity simultaneously in (u, j), dm ≡ 0. So, the natural distance for the setting of gradient
flows inmetric spaces degenerates, andwe have to resort to a different approach to obtain
a gradient-flow scheme.

Proposition 6.2.1. Let Ω ⊂ Rd be open, bounded, and connected, with Lipschitz bound-
ary. Assume thatm : [0,∞) → [0,∞) satisfies

lim
u→∞

m(u)

u
= ∞ and m−1(0) = {0}.
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Then
d

α+1
α

m (u0, u1) = 0

for all pairs u0, u1 ∈ L1(Ω)with
´
Ω u0 dx =

´
Ω u1 dx and infΩ u0, infΩ u1 > 0.

Remark 6.2.2. The proof uses a construction that first concentrates mass locally to
achieve a very high density, allowing it to be transported very effectively over large dis-
tances, and then dissipates the mass to meet the terminal values. A similar effect occurs
in [San07].

The opposite effect occurs in dynamic entropic optimal transport and certain mean
field games, where at intermediate times the mass is more spread out than at the end
points, see e.g. [BCS17].

Recall the Benamou–Brenier formula for the Wasserstein distance, cf. [BB00],

W
α+1
α

α+1
α

(u0, u1) = inf
{ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

u(t, x)
1
α

dxdt : ∂tu+ div j = 0,

j · n = 0 on ∂Ω, u ≥ 0, u(0, x) = u0(x), u(1, x) = u1(x)

}
.

Proof. Define δ := 1
2 min(ess infΩ u0, ess infΩ u1). For η > 0 define the grid

Zη := {z ∈ ηZd ∩ Ω : dist(x, ∂Ω) ≥ η}.

Also define lη > 0 as the longest length of a shortest curve in Ω̄ connecting any pointx ∈ Ω
with some z ∈ Zη, that is

lη := sup
x∈Ω

inf
z∈Zη

inf{L(γ) : γ ⊂ Ω is aC1-curve connecting x and z}.

By a compactness argument we then have limη→0 lη = 0.
Define ũ0 := u0 − δ ≥ δ, ũ1 := u1 − δ ≥ δ. Then there are measures µ0,η, µ1,η ∈

M+(Zη) of the form
µ0,η =

∑
z∈Zη

αzδz, µ1,η =
∑
z∈Zη

βzδz

that satisfy

W
α+1
α

α+1
α

(µ0,η, ũ0) ≤ l
α+1
α

η

ˆ
Ω
ũ0 dx and W

α+1
α

α+1
α

(µ1,η, ũ1) ≤ l
α+1
α

η

ˆ
Ω
ũ1 dx.

Now choose a coupling Γ ∈ M+(Zη × Zη) of µ0,η and µ1,η, e.g. the product measure
µ0,η ⊗ µ1,η. Define cη := minz,z′∈Zη : Γ(z,z′)>0 Γ(z, z

′) > 0 since the infimum ranges only
over finitely many points.

Also for any z, z′ ∈ Zη there exists a C1-curve γz,z′ : [0, 1] → Ω connecting z and z′.
Let Lη > 0 be the maximal length of such a curve and dη > 0 the minimal distance from
any point on any such curve to ∂Ω.

Finally, we define forM > 0

u0,η,M := δ +
∑
z∈Zη

Mdαz

ωdηd
1B(z, η

M
) and u0,η,M := δ +

∑
z∈Zη

Mdβz
ωdηd

1B(z, η
M

).
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We now wish to estimate d
α+1
α

m (u0, u1). Since dm satisfies the triangle inequality, it is
enough to estimate d

α+1
α

m (u0, u0,η,M ), d
α+1
α

m (u0,η,M , u1,η,M ) and d
α+1
α

m (u1,η,M , u1). We start
with the first and last term since they can be treated analogously. To do so, we note that
for any pair (u, j)we have
ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

m(u(t, x))
1
α

dxdt ≤
[
ess sup

(t,x)∈supp j

u(t, x)
1
α

m(u(t, x))
1
α

]ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

u(t, x)
1
α

dxdt. (6.2.1)

Observe that by construction it holds

Wα+1
α

(µ0,η, u0,η,M − δ) ≤ η

M

ˆ
Ω
ũ0 dx.

Combining this with the triangle inequality, we obtain

W
α+1
α

α+1
α

(ũ0, u0,η,M − δ) ≤
(
Wα+1

α
(ũ0, µ0,η) +Wα+1

α
(µ0,η, u0,η,M − δ)

)α+1
α

≤ (lη +
η

M
)
α+1
α

ˆ
Ω
ũ0 dx.

Hence, for any ε > 0, there is a distributional solution j ∈ Lα+1
α

([0, 1] × Ω;Rd) to the
continuity equation 

∂tũ+ div j = 0, t > 0, x ∈ Ω,

j · n = 0, t > 0, x ∈ ∂Ω,

ũ(0, x) = ũ0(x), x ∈ Ω,

ũ(1, x) = u0,η,M (x)− δ, x ∈ Ω,

with
ˆ 1

0

ˆ
Ω

|j|
α+1
α

ũ
1
α

dxdt ≤W
α+1
α

α+1
α

(ũ0, u0,η,M − δ) + ε ≤ (lη +
η

M
)
α+1
α

ˆ
Ω
ũ0 dx+ ε.

We see that u(t, x) := ũ(t, x) + δ and j together solve the continuity equation with
initial and terminal values u(0, x) = u0(x) and u(1, x) = u0,η,M (x). Moreover, by (6.2.1),
we have

ˆ 1

0

ˆ
Ω

|j(t, x)|
α+1
α

m(u(t, x))
1
α

dxdt ≤ sup
s≥δ

s
1
α

m(s)
1
α

[(
lη +

η

M

)α+1
α

ˆ
Ω
ũ0 dx+ ε

]
,

so that
lim sup

η→0
sup
M≥1

d
α+1
α

m (u0, u0,η,M ) ≤ ε,

for every ε > 0 arbitrary. We conclude that

lim sup
η→0

sup
M≥1

d
α+1
α

m (u0, u0,η,M ) = 0

and likewise
lim sup

η→0
sup
M≥1

d
α+1
α

m (u1, u1,η,M ) = 0.
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Next, we estimate d
α+1
α

m (u0,η,M , u1,η,M ). To this end, we define forM ≥ η
dη

u(t, x) := δ +
∑
z,z′

Γ(z, z′)
Md

ωdηd
1B(γz,z′ (t),

η
M

)(x),

and
j(t, x) :=

∑
z,z′

Γ(z, z′)
Md

ωdηd
1B(γz,z′ (t),

η
M

)(x)γ̇z,z′(t).

This is clearly a curve connecting u0,η,M and u1,η,M , and

ess inf
(x,t)∈supp j

u(t, x) ≥ cη
Md

ωdηd
−→ ∞

asM → ∞, for every fixed η > 0. By the superlinear growth condition onm, it follows
that

ess sup
(x,t)∈supp j

u(t, x)
1
α

m(u(t, x))
1
α

−→ 0

asM → ∞, for every fixed η > 0. By (6.2.1), we have that

d
α+1
α

m (u0,η,M , u1,η,M ) ≤

[
ess sup

(x,t)∈supp j

u(t, x)
1
α

m(u(t, x))
1
α

]
L

α+1
α

η

ˆ
Ω
ũ0(x)dx −→ 0

asM → ∞, for every fixed η > 0.
Finally, we concatenate the curves connecting u0 with u0,η,M , u0,η,M with u1,η,M and

u1,η,M with u1, and estimate

d
α+1
α

m (u0, u1)

≤ lim sup
η→0

lim
M→∞

C

(
d

α+1
α

m (u0, u0,η,M ) + d
α+1
α

m (u0,η,M , u1,η,M ) + d
α+1
α

m (u1,η,M , u1)

)
= 0.

This concludes the proof.

Remark6.2.3. Ifu0 andu1 are smooth, the connecting curve (u, j) canbechosen smooth
in space-time via mollification and the dominated convergence theorem.

6.3 Minimisingmovement scheme for themodified thin-film
equation

In the previous section, we studied the distance we obtained heuristically for a gradient
flow approach for the thin-film equation. Since this distance degenerates, we now mod-
ify the mobility of the thin film to obtain a non-degenerate distance function and use a
minimising movement scheme in order to show that this modified thin-film equation is
indeed a gradient flow. We also fix the space dimension d = 1 and for simplicity only
consider thin films that are homogeneous in y-direction.

We fix a uniformly continuous mobility functionm : R → [0,∞) such thatm(s) = 0
for all s ≤ 0. Moreover, wefix δ > 0 andconsider auniformly continuousmδ : R → [δ, 1/δ]
with the following properties
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(i) mδ(s) ≥ δ, s ∈ R, andmδ(s) = δ, s ≤ 0,

(ii) mδ(s) ≥ m(s), s ∈ R,

(iii) mδ → m locally uniformly onR.

Fix δ > 0. We start setting up the minimising movement scheme. That is, we fix a
time step size h > 0. If at a time t, we are at u∗, we define the next iteration, that is the
approximation at time t+ h, to be a minimiser of the functional

Fh,δ
u∗ (u, j) =

1

2

ˆ
Ω
|∂xu|2 dx+ h

α

α+ 1

ˆ
Ω

|j|
α+1
α

mδ(u∗)
1
α

dx, (6.3.1)

where the minimisation runs over pairs (u, j) ∈ H1(Ω)× Lα+1
α

(Ω) that satisfy{
div j + u−u∗

h = 0 inΩ,

j = 0 on ∂Ω.

Note that we sligthly changed the dissipation potential that we obtained in (6.1.4): we
fix u∗ in the second integral. This avoids problems with the lack of convexity. Heuristi-
cally, this is nomajor change since solutions turn out to be continuous in time, and hence
mδ(u(t+ h)) andmδ(u(t)) are very close.

Before we set up the minimising movement scheme, we first show existence, unique-
ness and regularity properties of a minimiser of the corresponding functional.

Definition 6.3.1. Let Ω ⊂ R a bounded interval, u∗ ∈ H1(Ω) and h > 0. We say that a
pair (u, j) ∈ H1(Ω)× Lα+1

α
(Ω) solves the flow equation{

div j + u−u∗

h = 0 inΩ,

j = 0 on ∂Ω.
(6.3.2)

if the equation

−
ˆ
Ω
j · ∂xϕdx+

1

h

ˆ
Ω

(
u− u∗

)
ϕdx = 0 (6.3.3)

is satisfied for all ϕ ∈ C1(Ω̄).

Remark 6.3.2 (Conservation ofmass and Poincaré inequality). For every u∗ ∈ H1(Ω)
a solution (u, j) ∈ H1(Ω)×Lα+1

α
(Ω;Rd) to the flow equation (6.3.2) conserves its mass in

the sense that
ū :=

 
Ω
udx =

 
Ω
u∗ dx,

where ū denotes the average of u. Indeed, this follows immediately from (6.3.3) with the
choice ϕ ≡ 1. In particular, u satisfies the Poincaré inequality

‖u− ū‖L2(Ω) ≤ C ‖∂xu‖L2(Ω) , (6.3.4)

whereC > 0 is a positive constant that depends only onΩ and ū = ū∗.

The following proposition guarantees existence and uniqueness of minimisers of the
functionalFh,δ

u∗ for a given initial datum u∗ ∈ H1(Ω).
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Proposition 6.3.3. Let Ω ⊂ R a bounded interval, u∗ ∈ H1(Ω). Fix h, δ > 0. There
exists a uniqueminimiser (uh,δ, jh,δ) ∈ H1(Ω)×Lα+1

α
(Ω) of the functionalFh,δ

u∗ defined in
(6.3.1), where the minimisation runs over all pairs u ∈ H1(Ω), j ∈ Lα+1

α
(Ω) that solve the

flow equation (6.3.2) in the sense of Definition 6.3.1.
If the mobilitymδ is Lipschitz continuous, then the minimiser has the additional regularity
(uh,δ, jh,δ) ∈W 3

α+1,B(Ω)× Lα+1
α

(Ω) and solves the elliptic boundary-value problem
uh,δ−u∗

h + div jh,δ = 0 inΩ,

jh,δ = mδ(u
∗)|∂3xuh,δ|α−1∂3xu

h,δ inΩ,

∂xu
h,δ = 0 on ∂Ω,

jh,δ = 0 on ∂Ω.

(6.3.5)

In other words, Proposition 6.3.3 characterises the minimiser of (6.3.1) as a solution
(uh,δ, jh,δ) ∈W 3

α+1,B(Ω)× Lα+1
α

(Ω) to the degenerate-elliptic boundary-value problem
u−u∗

h + div (mδ(u
∗)|∂3xu|α−1∂3xu) = 0 inΩ,

∂xu · n = 0 on ∂Ω,
∂3xu · n = 0 on ∂Ω,

where we use thatmδ(u
∗) ≥ δ > 0.

Proof. This is a strictly convexminimisation problemwith a linear constraint. Existence of
a unique minimiser follows from the direct method of the calculus of variations. Indeed,
sinceH1(Ω)× Lα+1

α
(Ω) is a reflexive Banach space and the set of all pairs

(u, j) ∈ H1(Ω)× Lα+1
α

(Ω) satisfying
{
div j + u−u∗

h = 0 inΩ,

j = 0 on ∂Ω

is a closed, non-empty and affine subspace, containing the point (u∗, 0), and the func-
tional in (6.3.1) is non-negative, there exists a minimising sequence. In view of the
Poincaré inequality (6.3.4) and the fact that mδ(u

∗) ≥ δ > 0, we may extract a subse-
quence that converges weakly in H1(Ω) × Lα+1

α
(Ω). The functional is strictly convex in

(u, j) ∈ H1(Ω) × Lα+1
α

(Ω), whence we obtain weak lower semicontinuity and therewith
the existence of a minimiser (uh,δ, jh,δ) ∈ H1(Ω)× Lα+1

α
(Ω) solving the flow equation.

We are left with proving uniqueness. To this end, assume that (u1, j1) and (u2, j2) are
two minimisers of (6.3.1). By the strict convexity of v 7→ |v|2 , v ∈ R, and k 7→ |k|

α+1
α ,

k ∈ R, we deduce that

∂xu1 = ∂xu2 and j1 = j2 a.e. inΩ.

Since ū2 = ū2, it follows that (u1, j1) = (u2, j2).
To derive the Euler–Lagrange equation for the minimiser (uh,δ, jh,δ) ∈ H1(Ω) ×

Lα+1
α

(Ω), we first consider a solenoidal vector field k ∈ Lα+1
α

(Ω) with 〈k, ∂xϕ〉 = 0 for all
ϕ ∈ C1(Ω̄). Then, we take the first variation

0 =
d

dε
Fh,δ
u∗
(
uh,δ, jh,δ + εk

)
|ε=0

= h

ˆ
Ω

|j|
1−α
α jk

mδ(u∗)
1
α

dx,
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for all solenoidal vector fields k ∈ Lα+1
α

(Ω;Rd). Using the Helmholtz decomposition
[Sol77], this implies that

|j|
1−α
α j = mδ(u

∗)
1
α∂xψ

for some ψ ∈W 1
α+1(Ω).

Now, pickw ∈ C1(Ω̄)with average w̄ = 0 and let k = ∂xΦ, whereΦ ∈W 1
α+1(Ω) solves

the Neumann problem {
−∂2xΦ = w

h inΩ,

∂xΦ · n = 0 on ∂Ω.
(6.3.6)

Since then
uh,δ + εw − u∗

h
+ div

(
jh,δ + εk

)
= 0,

wemay take the first variation

0 =
d

dε
Fh,δ
u∗
(
uh,δ + εw, jh,δ + εk

)
|ε=0

=

ˆ
Ω
∂xu

h,δ∂xw dx+ h

ˆ
Ω
∂xψk dx

=

ˆ
Ω
∂xu

h,δ∂xw dx+

ˆ
Ω
ψw dx.

In the last step, we have used (6.3.6) and the fact thatψ ∈W 1
α+1(Ω) is a valid test function.

Since this equation holds true for arbitrary w ∈ C1(Ω̄) with average w̄ = 0, we obtain in
particular that

ψ = ∂2xu
h,δ + C,

for some constantC, in the sense of distributions. This shows that uh,δ ∈ H1(Ω) satisfies

〈∂xuh,δ, ∂xv〉 = −〈(ψ − C), v〉 for all v ∈ H1(Ω).

Using [ADN59,Theorem 3.3] yields

uh,δ ∈W 3
α+1,B(Ω) and ∂xu

h,δ = 0 a.e. on ∂Ω.

Summarising, we find that uh,δ ∈W 3
α+1,B(Ω) satisfies the boundary-value problem{

ψ = ∂2xu
h,δ + C inΩ,

∂xu
h,δ · n = 0 on ∂Ω.

Consequently, the minimiser (uh,δ, jh,δ) solves j 1−α
α jh,δ = mδ(u

∗)
1
α∂3xu

h,δ. Hence, since
the function s 7→ s

1−α
α s is invertible, we obtain

jh,δ = mδ(u
∗)|∂3xuh,δ|α−1∂3xu

h,δ.

Inserting this in the Euler–Lagrange equation, we obtain

u− u∗

h
+ div

(
mδ(u

∗)∂3xu
h,δ
)
= 0.

This completes the proof.
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The Euler–Lagrange equation (6.3.5) of the functionalFh,δ
u∗ is in fact a time-discretised

version of the modified thin-film equation. We can exploit this and define a minimising
movement scheme with step size h > 0 as follows. We pick an initial value u0 ∈ H1(Ω)

and define recursively uh,δ0 := u0, and(
uh,δ(k+1)h, j

h,δ
(k+1)h

)
:= argmin

(u,j)

F
uh,δ
k

(u, j),

where theminimisation runs over all pairsu ∈ H1(Ω), j ∈ Lα+1
α

(Ω;Rd) that solve the flow
equation (6.3.2) with u∗ = uh,δkh .

Comparing
(
uh,δ(k+1)h, j

h,δ
(k+1)h

)
to (uh,δkh , 0), we get the weak energy-dissipation inequal-

ity

Fh,δ

uh,δ
k

(uh,δk , 0) =

ˆ
Ω

1

2

∣∣∣∂xuh,δkh

∣∣∣2 dx (6.3.7)

≥
ˆ
Ω

1

2

∣∣∣∂xuh,δ(k+1)h

∣∣∣2 dx+ h
α

α+ 1

ˆ
Ω

∣∣∣jh,δ(k+1)h

∣∣∣α+1
α

mδ

(
uh,δkh

) 1
α

dx

= Fh,δ

uh,δ
k

(
uh,δ(k+1)h, j

h,δ
(k+1)h

)
.

This inequality may even be improved. Indeed, using the elementary identity

|x|2 − |y|2 = 2y · (x− y) + |x− y|2 , x, y ∈ Rd,

we deduce the energy-dissipation formula
ˆ
Ω

1

2

∣∣∣∂xuh,δkh

∣∣∣2 dx
=

ˆ
Ω

1

2

∣∣∣∂xuh,δ(k+1)h

∣∣∣2 dx−
ˆ
Ω
∂2xu

h,δ
(k+1)h

(
uh,δkh − uh,δ(k+1)h

)
dx

+

ˆ
Ω

1

2

∣∣∣∂x(uh,δkh − uh,δ(k+1)h

)∣∣∣2 dx
=

ˆ
Ω

1

2

∣∣∣∂xuh,δ(k+1)h

∣∣∣2 dx+ h

ˆ
Ω
∂3xu

h,δ
(k+1)h · j

h,δ
(k+1)h dx+

ˆ
Ω

1

2

∣∣∣∂x(uh,δkh − uh,δ(k+1)h

)∣∣∣2 dx
=

ˆ
Ω

1

2

∣∣∣∂xuh,δ(k+1)h

∣∣∣2 dx+ h

ˆ
Ω

∣∣∣jh,δ(k+1)h

∣∣∣α+1
α

mδ

(
uh,δkh

) 1
α

dx+

ˆ
Ω

1

2

∣∣∣∂x(uh,δkh − uh,δ(k+1)h

)∣∣∣2 dx.
This implies

ˆ
Ω

1

2

∣∣∣∂xuh,δkh

∣∣∣2 dx ≥
ˆ
Ω

1

2

∣∣∣∂xuh,δ(k+1)h

∣∣∣2 dx+ h

ˆ
Ω

∣∣∣jh,δ(k+1)h

∣∣∣α+1
α

mδ

(
uh,δkh

) 1
α

dx. (6.3.8)

Now, we define the different interpolations of the minimising movement scheme
which are used in the following. First, the piecewise constant interpolation

(
ūh,δ, j̄h,δ

)
is

given by {
ūh,δt = uh,δkh , t ∈ [kh, (k + 1)h)

j̄h,δt = jh,δ(k+1)h, t ∈ (kh, (k + 1)h).
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Note that ūh,δt takes the value of uh,δ at the current time, while j̄h,δ takes the value of jh,δ
after one time step in the future. Moreover, the piecewise affine interpolation ûh,δ is given
by

ûh,δ(k+s)h = (1− s)uh,δkh + suh,δ(k+1)h, k ∈ N, s ∈ [0, 1).

Lemma 6.3.4 (Discrete energy-dissipation inequality). (i) The pair
(
ūh,δt , j̄h,δt

)
sat-

isfies the energy-dissipation inequality

ˆ
Ω

1

2

∣∣∣∂xūh,δt

∣∣∣2 dx+
α

α+ 1

ˆ t

s

ˆ
Ω

∣∣∣j̄h,δτ

∣∣∣α+1
α

2mδ

(
ūh,δτ

) 1
α

dxdτ (6.3.9)

+
1

α+ 1

ˆ t

s

ˆ
Ω
mδ

(
ūh,δτ

) ∣∣∣∂3xūh,δτ+h

∣∣∣α+1
dxdτ ≤

ˆ
Ω

1

2

∣∣∣∂xūh,δs

∣∣∣2 dx
for all kh = s < t = lh and k, l ∈ N0.

(ii) The pair
(
ûh,δt , j̄h,δt

)
solves the continuity equation

∂tû
h,δ
t + div j̄h,δt = 0, t > 0, x ∈ Ω,

∂xū
h,δ
t = 0, t > 0, x ∈ ∂Ω,

j̄h,δt = 0, t > 0, x ∈ ∂Ω,

in sense of distributions, that is, the equation
ˆ T

0

ˆ
Ω
∂tû

h,δ
t ϕ− j̄h,δt · ∂xϕdxdt = 0

holds true for all ϕ ∈ C∞([0, T ]× Ω̄
)
and all T > 0.

Proof. (i)The energy-dissipation inequality may be derived from (6.3.8), using that

h

ˆ
Ω

∣∣∣jh,δ(k+1)h

∣∣∣α+1
α

mδ

(
uh,δkh

) 1
α

dx =
α

α+ 1

ˆ (k+1)h

kh

ˆ
Ω

∣∣∣j̄h,δτ

∣∣∣α+1
α

mδ

(
ūh,δτ

) 1
α

dxdτ

+
1

α+ 1

ˆ (k+1)h

kh

ˆ
Ω
mδ

(
ūh,δτ

) ∣∣∣∂3xūh,δτ+h

∣∣∣α+1
dxdτ.

Here we used that from (6.3.5) we know that

j̄h,δτ = mδ

(
ūh,δτ

)∣∣∂3xūh,δτ+h

∣∣α−1
∂3xū

h,δ
τ+h.

(ii)This follows immediately from

∂tû
h,δ
t = uh,δ(k+1)h − uh,δkh , t ∈ (kh, (k + 1)h), x ∈ Ω,

and the constraints 
uh,δ
(k+1)h

−uh,δ
kh

h + div jh,δ(k+1)h = 0 inΩ

∂xu
h,δ
kh = 0 on ∂Ω

jh,δ(k+1)h = 0 on ∂Ω,

cf. (6.3.5).
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The previous result holds true in general dimension d ≥ 1 on bounded Lipschitz do-
mains, replacing ∂3x by∇∂2x and ∂x by∇ and interpreting the boundary conditions to hold
true in normal direction and in the sense of traces. However, in order to evaluate the limit
h → 0 for j̄h,δ, we have to guarantee thatmδ(ū

h,δ
t ) converges strongly. This requires that

the sequence ūh,δ converges uniformly to a continuous function which is only valid in di-
mension d = 1.

Lemma 6.3.5 (Uniform a-priori estimates). Let d = 1. For each δ > 0 and each T >
h > 0, the families

(
ūh,δ, j̄h,δ

)
h
and

(
ûh,δ

)
h
satisfy the regularity properties

(i) ūh,δ ∈ L∞
(
[0, T ];H1(Ω)

)
;

(ii) ūh,δ ∈ Lα+1

(
[h, T ];W 3

α+1,B(Ω)
)
;

(iii) j̄h,δ ∈ Lα+1
α

(
[0, T ]× Ω

)
;

(iv) ∂tûh,δ ∈ Lα+1
α

(
[0, T ];

(
W 1

α+1(Ω)
)′);

(v) ûh,δ ∈ Lα+1

(
[h, T ];W 3

α+1,B(Ω)
)
∩ L∞([0, T ];H1(Ω)),

with bounds that are uniform in h. That is, there exists a constant C > 0, independent
of h such that the families

(
ūh,δ, j̄h,δ

)
h
and

(
ûh,δ

)
h
are, for each h > 0, bounded by C in

the respective norms. In particular, there exist subsequences
(
ūh,δ, j̄h,δ

)
h
and

(
ûh,δ

)
h
(not

relabeled) and a limit function(
uδ, jδ

)
∈
[
L2

(
(0, T ];H3

N (Ω)
)
∩H1

(
[0, T ];H−1

N (Ω)
)]

× L2

(
[0, T ];L2(Ω;TΩ)

)
such that 

ūh,δ −−⇀ uδ weakly in Lα+1

(
[ε, T ];W 3

α+1,B(Ω)
)
;

j̄h,δ −−⇀ jδ weakly in Lα+1
α

(
[0, T ]× Ω

)
;

ûh,δ −−⇀ uδ weakly in Lα+1

(
[ε, T ];W 3

α+1,B(Ω)
)
;

∂tû
h,δ −−⇀ uδ weakly in Lα+1

α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)

;

ûh,δ −→ uδ strongly inC
(
[0, T ];Cρ(Ω̄)

)
for all 0 < ε < T and all 0 < ρ < 1

2 . Furthermore, it holds that uδ ∈ C([0, T ];H1(Ω)).

The proof strongly relies on the energy-dissipation equality (6.3.9).

Proof. Step 1: Uniform a-priori estimates.
(i) and (ii) First, the energy-dissipation equality (6.3.9) immediately implies that

ˆ
Ω

∣∣∣∂xūh,δt

∣∣∣2 dx ≤
ˆ
Ω

∣∣∣∂xuh,δ0

∣∣∣2 dx, t ∈ [0, T ],

where the right-hand side is bounded due to the regularity of the initial value. That is,

∂xū
h,δ ∈ L∞

(
[0, T ];L2(Ω)

)
.

Moreover, since the mobilitymδ is bounded below, there exists a constant Cδ,α > 0 such
that ˆ T

h

ˆ
Ω

∣∣∣∂3xūh,δt

∣∣∣α+1
dtdx ≤ Cδ,α

ˆ
Ω

∣∣∣∂xuh,δ0

∣∣∣2 dx,
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that is ∂3xūh,δ ∈ Lα+1

(
[h, T ];Lα+1(Ω)

)
and, consequently,

ūh,δ ∈ Lα+1

(
[h, T ];W 3

α+1,B(Ω)
)

with a uniform bound only dependent on ‖u0‖H1(Ω).
(iii)This follows from the energy-dissipation equality (6.3.9), using the upper bound on
the mobilitymδ.
(iv) The regularity of the flux j̄h,δ obtained in (iii) implies in particular that div j̄h,δ ∈
Lα+1

α

(
[0, T ];

(
W 1

α+1(Ω)
)′). Therefore, the continuity equation ∂tûh,δ = −div j̄h,δ, ob-

tained in Lemma 6.3.4 (ii), yields
∂tû

h,δ ∈ Lα+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)
,

where the corresponding uniform bound follows by (iii).
(v) By definition of the piecewise affine interpolation ûh,δ we have that∥∥ûh,δt

∥∥α+1

W 3
α+1,B(Ω)

≤ C

(∥∥ūh,δt

∥∥α+1

W 3
α+1,B(Ω)

+
∥∥ūh,δt+h

∥∥α+1

W 3
α+1,B(Ω)

)
, t > 0.

Integrationwith respect to t and the a-priori boundobtained in (i) yield the desiredbound.
The same argument applies to theH1-bound.

Step 2: Compactness.
Combining the uniform bounds proved in step 1, an application of the Eberlein–Šmulian
theorem provides the existence of the subsequences and weak accumulation points

ūh,δ −⇀ uδ weakly in Lα+1

(
[ε, T ];W 3

α+1,B(Ω)
)
;

j̄h,δ −⇀ jδ weakly in Lα+1
α

(
(0, T )× Ω

)
;

ûh,δ −⇀ uδ weakly in Lα+1

(
[ε, T ];W 3

α+1,B(Ω)
)

∂tû
h,δ −⇀ ∂tu

δ weakly in Lα+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)
.

By the Aubin–Lions–Simon lemma [Sim86], we find that ûh,δ converges strongly
(up to a subsequence) in C([ε, T ];Cρ(Ω̄)) for every ε > 0 and 0 < ρ < 1

2 . More-
over, by [Ber88, Remark 3.4], every function uδ ∈ Lα+1

(
(0, T ];W 3

α+1,B(Ω)
)
with ∂tûδ ∈

Lα+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′
) satisfies uδ ∈ C([0;T ];H1(Ω)) and we also conclude uδ(0) =

u0.
Step 3: Uniqueness of the limit function.

We have claimed above that both ûh,δ and ūh,δ converge to the same limit uδ. Indeed, we
observe that

ûh,δ(k+s)h − ūh,δ(k+s)h = (1− s)uh,δkh + suh,δ(k+1)h − uh,δkh

= s
(
uh,δ(k+1)h − uh,δkh

)
= shdiv jh,δ(k+1)h

= s hdiv j̄h,δ(k+s)h, k ∈ N, s ∈ [0, 1).

This implies∥∥∥ûh,δ(k+s)h − ūh,δ(k+s)h

∥∥∥
Lα+1

α
((0,T ];(W 1

α+1,B(Ω)′))
≤ h

∥∥∥div j̄h,δ∥∥∥
Lα+1

α
((0,T ];(W 1

α+1,B(Ω)′))

≤ h
∥∥∥j̄h,δ∥∥∥

Lα+1
α

((0,T )×Ω)
≤ C h.

This proves that the limit functions coincide.
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Proposition 6.3.6 (Uniform convergence of the energy). Fix δ > 0. There is a subse-
quence (not relabelled) of (ūh,δ)h such that

ūh,δ −→ uδ strongly in Lα+1,loc
(
[0,∞);H1(Ω)

)
and

E[ūh,δ] −→ E[uδ] uniformly on compact subsets of [0,∞).

The proof of the second part of Proposition 6.3.6 relies on the following result from
basic calculus which we prove here for the convenience of the reader.

Lemma 6.3.7. Let fk : [0, T ] → R be a sequence of non-increasing real-valued functions.
Assume that fk(t) → f(t) pointwise for t ∈ [0, T ], where f : [0, T ] → R is a continuous
function. Then fk → f uniformly.

Proof. Fix ε > 0. Since f is continuous on the compact interval [0, T ], f is uniformly
continuous. So there is δ > 0 and a subdivision 0 = t0 < t1 < . . . < tn = T with
ti+1 − ti < δ for every i = 0, . . . , n− 1, such that

|f(t)− f(s)| < ε

2
for all t, s ∈ [ti, ti+1] and all i = 0, . . . , n− 1.

Since fn(ti) → f(ti), we findN ∈ N such that

|fn(ti)− f(ti)| ≤
ε

2
for all n ≥ N and i = 0, . . . , n.

We claim that |fn(t) − f(t)| ≤ ε for all n ≥ N and t ∈ [0, T ]. Fix t ∈ [0, T ], then there is
i ∈ {1, . . . , n} such that t ∈ [ti, ti+1]. Since fn is non-increasing, we know that

fn(ti+1) ≤ fn(t) ≤ fn(ti)

and hence

|fn(t)− f(t)| ≤ max{|fn(ti+1)− f(t)|, |fn(ti)− f(t)|}
≤ max{|fn(ti+1)− f(ti+1)|, |fn(ti)− f(ti)|}
+max{|f(ti+1)− f(t)|, |f(ti)− f(t)|}

≤ ε

for every n ≥ N . This proves the lemma.

Now we turn to the proof of the uniform convergence of the energy. The compactness
result follows fromamodificationof theAubin–Lions–Simon lemma topiecewise constant
functions which can be found in [DJ12].

Proof of Proposition 6.3.6. ūh,δ is a sequence of piecewise constant functions. In order
to obtain compactness in Lα+1,loc

(
[0,∞];H1(Ω)

)
, we apply [DJ12, Theorem 1]. Note

that W 3
α+1,B(Ω) embeds compactly in H1(Ω) and that the embedding of H1(Ω) into(

W 1
α+1,B(Ω)

)′ is continuous. Furthermore, by Lemma 6.3.5, we know that (ūh,δ)h is uni-
formly bounded in Lα+1

(
[ε, T ];W 3

α+1,B(Ω)
)
and that

1

h
‖ūh,δt+h − ūh,δt ‖Lα+1

α
([0,T ];(W 1

α+1(Ω))′) = ‖div jh,δt+h‖Lα+1
α

([0,T ];(W 1
α+1(Ω))′)

≤ C‖jh,δt+h‖Lα+1
α

([0,T ]×Ω) ≤ C
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is also uniformly bounded in h. Hence, there is a subsequence (not relabelled) which con-
verges in Lα+1

(
[0, T ];H1(Ω)). Taking T = Tn = n and a diagonal subsequence ensures

that ūh,δ → uh,δ in Lα+1,loc
(
[0,∞);H1(Ω)

)
.

For the uniform convergence of the energy, we apply Lemma 6.3.7. By the strong con-
vergence in Lα+1,loc

(
[0,∞);H1(Ω)

)
we know that there is a subsequence (not relabelled)

such that
ūh,δ(t) −→ uδ(t) inH1(Ω) for almost every t ∈ [0,∞).

Since uδ ∈ C
(
[0,∞);H1(Ω)

)
and hence the limit function is defined for every t ∈ [0,∞),

wemay assume (after potentially modifying ūh,δ on a set of measure zero that ūh,δ(t) con-
verges to uδ(t) for every t ∈ [0,∞). This guarantees that E[uh,δ](t) → E[u](t) for every
t ∈ [0,∞). By continuity of the limit function, we also obtain that t 7→ E[uδ](t) is con-
tinuous. Finally, monotonicity of t 7→ E[ūh,δ](t) follows from the construction of ūh,δ as
minimising movement scheme via the weak energy-dissipation inequality (6.3.7). Hence,
we may apply Lemma 6.3.7 to obtain uniform convergence on compact subsets.

Thanks to Lemma 6.3.5, Proposition 6.3.6, and by the uniform continuity of themobil-
itymδ, we are able to preserve the energy-dissipation inequality (6.3.9) in the limit h → 0
for every 0 ≤ s, t <∞ based on lower semicontinuity of the dissipation.

Proposition 6.3.8 (Energy dissipation inequality). Any weak limit point

(uδ, jδ) ∈
[
Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];W 1

α+1,B(Ω)
′)]× Lα+1

α

(
[0, T ]× Ω

)
of the family (ûh,δ, j̄h,δ)h has the following properties.

(i) For all 0 ≤ s < t ≤ T , the energy-dissipation inequality
ˆ
Ω

1

2
|∂xuδt |2 dx+

α

α+ 1

ˆ t

s

ˆ
Ω

|jδτ |
α+1
α

mδ(uδτ )
1
α

dxdτ (6.3.10)

+
1

α+ 1

ˆ t

s

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ ≤

ˆ
Ω

1

2
|∂xuδs|2 dx

is satisfied.

(ii) The pair
(
uδ, jδ

)
solves the continuity equation

∂tu
δ + div jδ = 0, t > 0, x ∈ Ω,

∂xu
δ = 0, t > 0, x ∈ ∂Ω,

jδ = 0, t > 0, x ∈ ∂Ω,

in sense of distributions, that is, the equation
ˆ T

0
〈∂tuδt , ϕ〉W 1

α+1
dt−

ˆ T

0

ˆ
Ω
jδt · ∂xϕdxdt = 0

holds true for all ϕ ∈ Lα+1

(
[0, T ];W 1

α+1(Ω)
)
and all T > 0.

Proof. (i) From the uniform convergence of E[ūh,δ] to E[uδ] proved in Proposition 6.3.6
and continuity of t 7→ E[uδ](t), we obtain

ˆ
Ω

1

2

∣∣∣∂xūh,δth

∣∣∣2 dx −→
ˆ
Ω

1

2

∣∣∣∂xuδt ∣∣∣2 dx as h→ 0 and th → t (6.3.11)
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for any 0 ≤ t ≤ T . Let now sh = bs/hch and th = dt/heh. Then, in view of (6.3.9) we know
that

ˆ
Ω

1

2

∣∣∣∂xūh,δth

∣∣∣2 dx+
α

α+ 1

ˆ th

sh

ˆ
Ω

∣∣∣j̄h,δτ

∣∣∣α+1
α

2mδ

(
ūh,δτ

) 1
α

dxdτ

+
1

α+ 1

ˆ t

s

ˆ
Ω
mδ

(
ūh,δτ

) ∣∣∣∂3xūh,δτ+h

∣∣∣α+1
dxdτ ≤

ˆ
Ω

1

2

∣∣∣∂xūh,δsh

∣∣∣2 dx.
Taking the lim inf on both sides and using (6.3.11) which guarantees convergence of

the energy, we obtain
ˆ
Ω

1

2

∣∣∣∂xuδt ∣∣∣2 dx
+ lim inf

h→0

 α

α+ 1

ˆ th

sh

ˆ
Ω

∣∣∣jh,δτ

∣∣∣α+1
α

mδ(u
h,δ
τ )

1
α

dxdτ + 1

α+ 1

ˆ th

sh

ˆ
Ω
mδ(u

h,δ
τ )|∂3xuh,δτ |α+1 dxdτ


≤
ˆ
Ω

1

2

∣∣∣∂xuδs∣∣∣2 dx.
It remains to show

ˆ t

s

ˆ
Ω

|jδτ |2

2mδ(uδτ )
+
mδ

(
uδτ
)
|∂3xuδτ |2

2
dxdτ

≤ lim inf
h→0

 α

α+ 1

ˆ th

sh

ˆ
Ω

∣∣∣j̄h,δτ

∣∣∣α+1
α

mδ(u
h,δ
τ )

1
α

dxdτ + 1

α+ 1

ˆ th

sh

ˆ
Ω
mδ(u

h,δ
τ )|∂3xuh,δτ |α+1 dxdτ

 .
Since sh ≤ s < t ≤ th for every h > 0 and by non-negativity of the integrand, it suffices to
prove

ˆ t

s

ˆ
Ω

|jδτ |2

2mδ(uδτ )
+
mδ

(
uδτ
)
|∂3xuδτ |2

2
dxdτ (6.3.12)

≤ lim inf
h→0

 α

α+ 1

ˆ t

s

ˆ
Ω

∣∣∣j̄h,δτ

∣∣∣α+1
α

mδ(u
h,δ
τ )

1
α

dxdτ + 1

α+ 1

ˆ t

s

ˆ
Ω
mδ(u

h,δ
τ )|∂3xuh,δτ |α+1 dxdτ

 .
In Lemma 6.3.5 we showed that

ûh,δ −→ uδ strongly inC
(
[0, T ]× Ω̄

)
.

In virtue of the Arzelà–Ascoli theorem, this implies equicontinuity and thus also the uni-
form convergence

ūh,δ −→ uδ as h→ 0,

since ūh,δ is a piecewise constant approximation of ûh,δ. Using the uniform continuity of
the mobility functionmδ, we find that

mδ(ū
h,δ) −→ mδ(u

δ) uniformly as h→ 0.
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Sincemδ(s) ≥ δ, s ∈ R, by assumption, and since

j̄h,δ −⇀ jδ weakly in Lα+1
α

(
[0, T ]× Ω

)
by Lemma 6.3.5, this implies by weak lower semicontinuity of the norm

ˆ t

s

ˆ
Ω

|jδτ |
α+1
α

mδ(uδτ )
1
α

dxdτ ≤ lim inf
h→0

ˆ t

s

ˆ
Ω

|jh,δτ |
α+1
α

mδ(u
h,δ
τ )

1
α

dxdτ.

For the second term in (6.3.12) we use that

∂3xū
h,δ
·+h −⇀ ∂3xu

δ weakly in Lα+1

(
[0, T ]× Ω

)
,

since ∂3xū
h,δ
·+h is uniformly bounded inLα+1

(
[0, T ]×Ω

)
and converges to ∂3xuδ in the sense

of distributions. Combining this with the uniform convergence ofmδ(ū
h,δ) tomδ(u

δ) and
by weak lower semicontinuity of the norm, we deduce that

ˆ t

s

ˆ
Ω
mδ

(
uδτ
)
|∂3xuδτ |α+1 dxdτ ≤ lim inf

h→0

ˆ t

s

ˆ
Ω
mδ

(
ūh,δτ

) ∣∣∣∂3xūh,δτ+h

∣∣∣α+1
dxdτ.

(ii)That the continuity equation is satisfied for all ϕ ∈ C∞([0, T ] × Ω̄
)
in the limit

h→ 0 follows from Lemma 6.3.4 (ii) and the weak convergence results of Lemma 6.3.5. By
density, we may extend this to ϕ ∈ Lα+1

(
[0, T ];W 1

α+1(Ω)
)
. This completes the proof.

6.4 Energy-dissipation equality and themodified thin-film
equation

In this section, we want to study the limiting equation in the case δ > 0. We want to prove
that if a pair

(uδ, jδ) ∈
[
Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)]× Lα+1

α

(
[0, T ]× Ω

)
satisfies the energy-dissipation inequality (6.3.10) and the continuity equation

∂tu
δ + div jδ = 0, t > 0, x ∈ Ω,

∂xu
δ = 0, t > 0, x ∈ ∂Ω,

jδ = 0, t > 0, x ∈ ∂Ω,

then, uδ is a solution to the regularised power-law thin-film equation
∂tu

δ + div
(
mδ(u

δ)|∂3xuδ|α−1∂3xu
δ
)
= 0, t > 0, x ∈ Ω,

∂xu
δ · n = 0, t > 0, x ∈ ∂Ω,

∂3xu
δ · n = 0, t > 0, x ∈ ∂Ω

(6.4.1)

which satsifies the energy-dissipation equality
ˆ
Ω

1

2
|∂xuδt |2 dx+

ˆ t

s

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ =

ˆ
Ω

1

2
|∂xuδs|2 dx.
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To this end, note first that every smooth solution (v, k) to the continuity equation
∂tv + div k = 0, t > 0, x ∈ Ω,

∂xv = 0, t > 0, x ∈ ∂Ω,

k = 0, t > 0, x ∈ ∂Ω

(6.4.2)

satisfies the reverse of inequality (6.3.10). Indeed, integrating by parts twice yields

d

dt

ˆ
Ω

1

2
|∂xvt|2 dx = −

ˆ
Ω
kt · ∂3xvt dx = −

ˆ
Ω

kt

mδ(vt)
1

α+1

·mδ(vt)
1

α+1∂3xvt dx.

Applying Young’s inequality a · b ≤ α
α+1 |a|

α+1
α + 1

α+1 |b|
α+1 and integrating with respect to

time, we obtain
ˆ
Ω

1

2
|∂xvt|2 dx+

α

α+ 1

ˆ t

s

ˆ
Ω

|kτ |
α+1
α

mδ(vτ )
1
α

dxdτ (6.4.3)

+
1

α+ 1

ˆ t

s

ˆ
Ω
mδ(vτ )|∂3xvτ |α+1 dxdτ ≥

ˆ
Ω

1

2
|∂xvs|2 dx.

We have equality in (6.4.3) if and only if Young’s inequality holds with equality, i.e. if and
only if

|kτ |
α+1
α

mδ(vτ )
1
α

= mδ(vτ )|∂3xvτ |α+1 a.e. in (0,∞)× Ω.

The following proposition shows that the reverse energy-dissipation inequality is al-
ready satisfied for solutions (v, k) to (6.4.2) in the regularity class[

Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)]× Lα+1

(
[0, T ]× Ω

)
.

In addition, we prove that weak solutions to the regularised thin-film equation (6.4.1) are
characterised by equality in (6.4.3).

Proposition 6.4.1. If

(v, k) ∈
[
Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′)]× Lα+1

(
[0, T ]× Ω

)
satisfies the continuity equation (6.4.2) in the sense that

ˆ ∞

0
〈∂tvt, ϕ〉W 1

α+1
dt−

ˆ ∞

0

ˆ
Ω
kt · ∂xϕdxdt = 0 (6.4.4)

for all ϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
, then

ˆ
Ω

1

2
|∂xvt|2 dx+

α

α+ 1

ˆ t

s

ˆ
Ω

|kτ |
α+1
α

mδ(vτ )
1
α

dxdτ (6.4.5)

+
1

α+ 1

ˆ t

s

ˆ
Ω
mδ(vτ )|∂3xvτ |α+1 dxdτ ≥

ˆ
Ω

1

2
|∂xvs|2 dx
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holds for all 0 ≤ s < t < ∞. Moreover, equality holds if and only if v is a weak solution to
the regularised thin-film equation

∂tv + ∂x
(
mδ(v)|∂3xv|α−1∂3xv

)
= 0, t > 0, x ∈ Ω,

∂xv = 0, t > 0, x ∈ ∂Ω,

∂3xv = 0, t > 0, x ∈ ∂Ω,

in the sense that v ∈ Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′) satisfies the

equation
ˆ ∞

0
〈∂tv, ϕ〉W 1

α+1
dt−

ˆ ∞

0

ˆ
Ω
mδ(v)|∂3xv|α−1∂3xv · ∂xϕdxdt = 0 (6.4.6)

for all ϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
.

Proof. We prove that the Dirichlet energy is absolutely continuous in time, i.e. that for all
0 ≤ s < t <∞, we have

ˆ
Ω

1

2
|∂xvt|2 dx−

ˆ
Ω

1

2
|∂xvs|2 dx = −

ˆ t

s

ˆ
Ω
kτ · ∂3xvτ dxdτ. (6.4.7)

As a first step, we show that
ˆ
Ω

1

2
|∂xvt|2 dx−

ˆ
Ω

1

2
|∂xvs|2 dx = −

ˆ t

s
〈∂τvτ , ∂2xvτ 〉W 1

α+1
dτ (6.4.8)

for all v ∈ Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];

(
W 1

α+1,B(Ω)
)′) and 0 ≤ s < t < ∞.

To this end, we mollify in time by introducing, for ε > 0,

vε = ηε ∗ v ∈ C∞([ε,∞);W 3
α+1,B(Ω)

)
.

Then, vε satisfies
ˆ
Ω

1

2
|∂xvεt |

2 dx−
ˆ
Ω

1

2
|∂xvεs|

2 dx = −
ˆ t

s
〈∂τvετ , ∂2xvετ 〉W 1

α+1
dτ (6.4.9)

for all 0 < ε ≤ s < t <∞. Moreover, we know that, for every s > 0,
vε −→ v strongly inC

(
[s,∞);H1(Ω)

)
∂2xv

ε −→ ∂2xv strongly in Lα+1

(
[s,∞);W 1

α+1(Ω)
)

∂tv
ε −→ ∂tv strongly in Lα+1

α

(
[s,∞);W 1

α+1(Ω)
′)

as ε → 0. Here, the first convergence stated follows again from the generalised Lions–
Magenes theorem, [Ber88, Remark 3.4], that is

v ∈ Lα+1

(
[0, T ];W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0, T ];W 1

α+1
α

,B
(Ω)′

)
implies that v has a continuous representative

ṽ ∈ C([0, T ];H1(Ω))

with ṽ = v almost everywhere. Hence, wemay take the limit in (6.4.9) to obtain (6.4.8) for
0 < s < t <∞. The case s = 0 follows by taking the limit s↘ 0.



82 Non-NewtonianThin-Film Equations

Now we note thatˆ t

s
〈∂τvτ , ∂2xvτ 〉W 1

α+1
dτ =

ˆ t

s

ˆ
Ω
kτ · ∂3xvτ dxdτ

by testing the continuity equation (6.4.4) with ∂2xvτχ[s,t] ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
, where

χ[s,t] denotes the characteristic function of the interval [s, t]. By an application of Young’s
inequality, we have

−kτ · ∂3xvτ ≥ − α

α+ 1

|kτ |
α+1
α

mδ(vτ )
1
α

− 1

α+ 1
mδ(vτ )|∂3xvτ |α+1 a.e. in [0,∞)× Ω,

which, together with (6.4.7), proves (6.4.5). Finally, equality in (6.4.5) holds for all 0 ≤ s <
t <∞ if and only if

kτ = −mδ(vτ )|∂3xvτ |α−1∂3xvτ a.e. in [0,∞)× Ω.

Inserting this in the continuity equation (6.4.4) proves (6.4.6).

Since by Proposition 6.3.8 any accumulation point (uδ, jδ) of the family (ûh,δ, j̄h,δ)h
satisfies the conditions of Proposition 6.4.1, we find that uδ is a weak solution to the reg-
ularised thin-film equation (6.4.1). For flow-behaviour exponents α 6= 1, this equations
degenerates in the third derivative and hence we cannot claim uniqueness of solutions.
For the Newtonian case α = 1 though, uniqueness of solutions is well-known by standard
parabolic theory.

Theorem 6.4.2. Given u0 ∈ H1(Ω), there exists

uδ ∈ Cb

(
[0,∞);H1(Ω)

)
∩ Lα+1

(
(0,∞);W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0,∞);W 1

α+1(Ω)
′)

such that a subsequence of (ûh,δ, j̄h,δ)h converges as follows:
ûh,δ −−⇀ uδ weakly in Lα+1

(
[0,∞);W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0,∞);

(
W 1

α+1(Ω)
)′)
,

ûh,δ −→ uδ strongly inCloc
(
[0,∞);Cρ(Ω̄)

)
for every 0 ≤ ρ < 1

2 ,

j̄h,δ −−⇀ jδ weakly in Lα+1
α

(
[0,∞)× Ω

)
.

Furthermore, it holds

jδ = mδ(u
δ)∂3xu

δ a.e. in [0,∞)× Ω.

Moreover, uδ is the weak solution to the initial-boundary-value problem
∂tu

δ + div
(
mδ(u

δ)∂3xu
δ
)
= 0, t > 0, x ∈ Ω,

∂xu
δ = ∂3xu

δ = 0, t > 0, x ∈ ∂Ω,

uδ(0, x) = u0(x), x ∈ Ω,

(6.4.10)

and satisfies the energy-dissipation equality
ˆ
Ω

1

2
|∂xuδt |2 dx+

ˆ t

s

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ =

ˆ
Ω

1

2
|∂xuδs|2 dx (6.4.11)

for all 0 ≤ s < t < ∞. Furthermore, if α = 1, i.e. if the fluid is Newtonian, there is exactly
one accumulation point uδ of the sequence (ûh,δ) and uδ is the unique weak solution to
(6.4.10).
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Proof. (i) The convergence results and the regularity of the limit function uδ have been
proved in Lemma 6.3.5.

(ii)The energy-dissipation equality is satisfied in view of Proposition 6.3.8 and Propo-
sition 6.4.1.

(iii)That uδ satisfies the thin-film equation has been shown in Proposition 6.4.1.
(iv)Uniqueness of weak solutions – and thus of the limit point – follows from standard

parabolic theory [Paz83], using thatmδ(s) ≥ δ for all s ∈ R.

UNIQUENESS AND NON-NEGATIVITY IN THE NEWTONIAN CASE

Next, we show that the region where uδ is negative is small. To this end, we define an
entropy as in [BF90]. LetA > max(t,x)∈[0,∞)×Ω̄ |uδ| for all δ ∈ (0, 1). Then we define

gδ(s) = −
ˆ A

s

1

mδ(r)
dr and Gδ(s) = −

ˆ A

s
gδ(r)dr.

We also define

g(s) = −
ˆ A

s

1

m(r)
dr and G(s) = −

ˆ A

s
g(r)dr.

Testing the regularised thin-film equation with gδ(uδ), one can show that (cf. [BF90, eq.
(4.17)]) ˆ

Ω
Gδ(u

δ
t )dx+

ˆ t

0

ˆ
Ω
|∂2xuδs|2 dxds =

ˆ
Ω
Gδ(u0)dx. (6.4.12)

Lemma 6.4.3. Given u0 ∈ H1(Ω), let uδ ∈ Cb

(
[0,∞);H1(Ω)

)
∩ L2

(
(0,∞);H3

B(Ω)
)
∩

H1
(
[0,∞);H−1

B (Ω)
)
be the unique solution to the regularised thin-film equation as ob-

tained inTheorem 6.4.2. Then uδ satisfies
ˆ
{uδ<0}

|uδ|2

2δ
dx ≤

ˆ
Ω
Gδ(u0)dx ≤

ˆ
Ω
G(u0)dx

for all t > 0.

Proof. For s < 0 we have thatmδ(s) = δ. This implies gδ(s) ≥ s/δ and hence Gδ(s) ≥
s2/(2δ). Togetherwith (6.4.12) this yields thefirst inequality. The second inequality follows
sincemδ(s) ≥ m(s) for all s ∈ R.

6.5 The limit δ → 0: weak solutions to the thin-film equation
Now we investigate the limit as δ → 0. We show that, for a positive initial datum u0 ∈
H1(Ω),u0 > 0, every accumulationpointuof the familyuδ is aweak solution to thepower-
law thin-film equation

∂tu+ div
(
m(u)|∂3xu|α−1∂3xu

)
= 0, t ∈ (0, T̃u0,δ], x ∈ Ω,

∂xu = m(u)|∂3xu|α−1∂3xu = 0, t ∈ (0, T̃u0,δ], x ∈ ∂Ω,

u(0) = u0, x ∈ Ω

(6.5.1)
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in the sense of [BF90]. Here, typically m(u) = un for some n > 1. Note that in the
non-Newtonian case, the existence time of a physical, that is non-negative, solution is ob-
structed as the solution might become negative. In the Newtonian case, we can obtain
non-negativity as long as we have control over the entropy for the initial value.

By the generic choice of mδ in the previous sections, we already obtain the gradient
flow structure of positive solutions to (6.5.1). Therefore, let u0 ∈ H1(Ω) satisfy u0 > η > 0
for some η > 0. Also choose δ very small andmδ such thatmδ(u) = un for every u > 2δ.
If 2δ < η and by continuity of the solutions uδ found in Theorem 6.4.2, there is a time
Tu0,δ > 0 such that min(t,x)∈[0,Tu0,c]×Ω̄ u

δ(t, x) > 2δ. In particular, uδ is a weak solution to
(6.5.1) for t ∈ (0, Tu0,δ).

We extend this result and show that every accumulation point u of the sequence uδ is
a solution to the thin-film equation (6.5.1) on the positivity set

{u > 0} := {(t, x) ∈ [0,∞)× Ω : u(t, x) > 0}

.
To pass to the limit, we rely on uniform bounds. First, we show that from the energy-

dissipation equality (6.4.11) for uδ, we obtain a uniformHölder bound inC
1

5α+3
, 1
2 ([0, T ]×

Ω̄). The proof follows an argument given by [GR00] or [Ott00]. By the Arzelà–Ascoli the-
orem, this will guarantee uniform convergence of mδ(u

δ) to m(u). This also guarantees
that, if the initial datum u0 ∈ H1(Ω) is strictly positive u0 > 0, there is a maximal time
τ(u0) > 0 such that [0, τ(u0)]× Ω̄ ⊂ {u > 0}. We will show that τ(u0) = +∞ for Newto-
nian fluids.

Lemma 6.5.1. Given an initial datum u0 ∈ H1(Ω), let

uδ ∈ Cb

(
[0,∞);H1(Ω)

)
∩ Lα+1

(
(0,∞);W 3

α+1,B(Ω)
)
∩W 1

α+1
α

(
[0,∞);W 1

α+1(Ω)
′)

and
jδ ∈ Lα+1

α

(
[0,∞)× Ω

)
satisfy the energy-dissipation equality
ˆ
Ω

1

2
|∂xuδt |2 dx+

α+ 1

α

ˆ t

0

ˆ
Ω

|jδ|
α+1
α

2mδ(uδτ )
1
α

dxdτ + 1

α+ 1

ˆ t

0

mδ(u
δ
τ )|∂3xuδτ |α+1

2
dxdτ

=

ˆ
Ω

1

2
|∂xu0|2 dx

for all t > 0. Then uδ is uniformly bounded inC
1

5α+3
, 1
2 ([0, T ]× Ω̄) for all T > 0.

Proof. We already know that uδ ∈ Cb

(
[0,∞);H1(Ω)

)
. In view of the Sobolev embedding

theorem, we thus find that uδ ∈ Cb

(
[0,∞);C1/2(Ω̄)

)
.

It remains to prove the Hölder continuity in time. The proof follows the lines of [GR00,
Lemma 4.2] or [Ott00, Lemma 3.1]. There the result is proven for Newtonian fluids. Con-
sider (U δ, Jδ) such that U δ is the even extension of uδ and Jδ is the odd extension of jδ
about ∂Ω. Moreover, let ηε be a standard mollifier in space and consider for x ∈ Ω̄ and
0 ≤ s < t ≤ T∣∣∣uδ(t, x)− uδ(s, x)

∣∣∣ ≤ ∣∣∣U δ(t, x)− ηε ∗ U δ(t, x)
∣∣∣+ ∣∣∣ηε ∗ U δ(t, x)− ηε ∗ U δ(s, x)

∣∣∣
+
∣∣∣ηε ∗ U δ(s, x)− U δ(s, x)

∣∣∣
= (I) + (II) + (III).
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Since uδ(t, ·) ∈ C
1
2 (Ω̄), we find that (I) and (III) satisfy

(I) + (III) ≤ ε1/2
([
U δ(t, ·)

]
C1/2(Ω̄)

+
[
U δ(s, ·)

]
C1/2(Ω̄)

)
≤ 2ε1/2‖∂xu0‖L2(Ω).

Testing the continuity equation with ϕ(τ, y) = 1[s,t](τ)ηε(y − x) , the second term may
be estimated as follows using the bound ‖η′ε‖Lα+1(Ω) ≤ Cε−(2α+1)/(α+1) together with the
Hölder inequality∣∣∣ηε ∗ U δ(t, x)− ηε ∗ U δ(s, x)

∣∣∣
=

∣∣∣∣ˆ t

s

ˆ
R
η′ε(x− y)Jδ(τ, y)dy dτ

∣∣∣∣
≤ Cε−(2α+1)/(α+1)|t− s|1/(α+1)‖Jδ‖Lα+1

α
((0,T )×Ω)

≤ Cε−(2α+1)/(α+1)|t− s|1/(α+1)

(ˆ T

0

ˆ
Ω

|jδ|
α+1
α

mδ(uδ)
1
α

dxdt
) α

α+1

‖mδ(u
δ)‖1/(α+1)

L∞((0,T )×Ω)

≤ Cε−(2α+1)/(α+1)|t− s|1/(α+1)‖∂xu0‖L2(Ω),

where we use thatmδ(u
δ) is uniformly bounded. Combining the two estimates, we obtain∣∣∣uδ(t, x)− uδ(s, x)

∣∣∣ ≤ 2ε1/2‖∂xu0‖L2(Ω) + Cε−(2α+1)/(α+1)|t− s|1/(α+1)‖∂xu0‖L2(Ω)

for every ε > 0. Optimising in ε, we may choose ε = |t− s|2/(5α+3) and obtain∣∣∣uδ(t, x)− uδ(s, x)
∣∣∣ ≤ 2ε1/2‖∂xu0‖L2(Ω)+Cε

−3/2|t−s|1/2‖∂xu0‖L2(Ω) ≤ C|t−s|1/(5α+3).

Note that the generic constantC > 0depends only on the initial datumu0. This concludes
the proof.

Applying the Arzelà–Ascoli theorem, Lemma6.5.1 implies that there exists an accumu-
lation point u ∈ C

1
5α+3

, 1
2 ([0,∞) × Ω̄) of the sequence (uδ)δ such that a (non-relabeled)

subsequence satisfies
uδ −→ u inCσ,ρ([0,∞)× Ω̄)

for every 0 ≤ σ < 1
5α+3 and 0 ≤ ρ < 1

2 .
Fix u0 ∈ H1(Ω) with u0 > 0. For every η > 0, denote by {u > η} := {(t, x) ∈

[0,∞)× Ω̄ : u(t, x) > η}.
In order to prove that u is a weak solution to (6.5.1) on the set {u ≥ 0}, we need further

uniform bounds at least locally on the positivity set.

Proposition 6.5.2. Let u0 ∈ H1(Ω) with u0 > 0 in Ω̄. Let (uδ)δ be the sequence of weak
solutions to the regularised thin-film equation obtained inTheorem6.4.2. Then there is δ0 >
0 small enough such that we have the following uniform bounds for every 0 < δ < δ0:

(i) (uδ)δ is uniformly bounded in L∞
(
(0,∞);H1(Ω)

)
;

(ii) (∂3xu
δ)δ is uniformly bounded in Lα+1({u > η}) for any η > 0with u0 > η;

(iii) (∂tu
δ) is uniformly bounded in Lα+1

α

(
[0,∞);W 1

α+1,B(Ω)
′);
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(iv) (∂t∂xu
δ) is uniformly bounded in Lα+1

α

(
[0,∞);

(
W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)′).
Proof. Fix η > 0. Given an accumulation point u of the sequence uδ, we know that
uδ(t, x) ≥ η

2 for every (t, x) ∈ {u > η} for every δ < δ0, where δ0 is chosen small enough.
Since uδ satisfies the energy-dissipation identity (6.4.11), we obtain with the choice s = 0

ˆ
Ω

1

2
|∂xuδt |2 dx+

ˆ t

0

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ =

ˆ
Ω

1

2
|∂xu0|2 dx. (6.5.2)

(i) From (6.5.2), we directly obtain
ˆ
Ω

1

2
|∂xuδt |2 dx ≤

ˆ
Ω

1

2
|∂xu0|2 dx

for every 0 < δ < δ0 and every t ≥ 0. We conclude that (uδ)δ is uniformly bounded in
L∞
(
(0,∞);H1(Ω)

)
.

(ii) Since uδ > η
2 on the set {u > η} andmδ converges tom(u) locally uniformly, there is a

constant cη > 0 independent of δ such thatmδ(u
δ) > cη on the set {u > η}. We conclude

¨
{u>η}

|∂3xuδ|α+1 dxdt ≤ 1

cη

¨
{u>η}

mδ(u
δ
τ )|∂3xuδ|α+1 dxdt

≤
ˆ
Ω

1

2
|∂xu0|2 dx.

Hence, we obtain the desired uniform bound.
(iii) Since uδ is a weak solution to (6.4.10), we have

ˆ T

0
〈∂tuδt , ϕ〉W 1

α+1
dt =

ˆ T

0

ˆ
Ω
mδ(u

δ
t )|∂3xuδt |α−1∂3xu

δ
t∂xϕt dxdt

for allϕ ∈ Lα+1

(
[0, T ];W 1

α+1(Ω)
)
and allT > 0. Applying theHölder inequality andusing

that (uδ)δ is uniformly bounded in L∞
(
[0,∞)× Ω

)
, we conclude∣∣∣∣ˆ T

0
〈∂tuδt , ϕ〉W 1

α+1
dt
∣∣∣∣ ≤ ˆ T

0

ˆ
Ω
mδ(u

δ
t )|∂3xuδ|α|∂xϕ|dxdt

≤ C

(ˆ ∞

0

ˆ
Ω
mδ(u

δ
t )|∂3xuδt |α+1

) α
α+1

(ˆ T

0
|∂xϕ|α+1

) 1
α+1

≤ C(u0)‖∂xϕ‖Lα+1((0,T )×Ω).

This proves that (∂tuδ)δ is uniformly bounded in Lα+1
α

(
[0,∞);

(
W 1

α+1,B(Ω)
)′).

(iv)This follows similarly as in (iii) by the same duality argument.

With these uniform bounds, we are now in the position to show the convergence to a
weak solution to the power-law thin-film equation on the set {u ≥ 0}.

Proposition 6.5.3. Given an initial datum u0 ∈ H1(Ω), u0 > 0, the following holds true.
There exists a subsequence of (uδ)δ (not relabeled) and a limit

u ∈ L∞
(
[0,∞);H1(Ω)

)
∩ C

1
5α+3

, 1
2
(
[0,∞]× Ω̄

)
with ∂3xu ∈ Lα+1,loc({u > 0}) and ∂tu ∈ Lα+1

(
[0,∞);

(
W 1

α+1(Ω)
)′) such that we have

convergence in the following sense:
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(i) uδ → u strongly inCσ,ρ
(
[0,∞)× Ω̄

)
for all 0 ≤ σ < 1

5α+3 and 0 ≤ ρ < 1
2 ;

(ii) ∂3xuδ ⇀ ∂3xuweakly in Lα+1,loc({u > 0});

(iii) mδ(u
δ)|∂3xuδ|α−1∂3xu ⇀ m(u)|∂3xu|α−1∂3xuweakly in Lα+1

α

(
[0,∞)× Ω

)
;

(iv) ∂tuδ ⇀ ∂tuweakly in Lα+1

(
[0,∞);

(
W 1

α+1(Ω)
)′).

Proof. The proof is divided into several steps.
(i)This follows directly from Lemma (6.5.1) combined with the Arzelà–Ascoli theorem.
(ii) Let K ⊂ {u > 0} a compact set. Since u is continuous, there is n > 0 such that
K ⊂ {u > 1/n}. By Proposition 6.5.2 (ii), we find a subsequence which converges weakly
to v inLα+1({u > 1/n}). By the convergence from (i), wemay identify v = ∂3xu andobtain
∂3xu

δ ⇀ ∂3xu in Lα+1(K) as δ → 0.
(iii) Since the sequence uδ is uniformly bounded inL∞

(
[0,∞)×Ω

)
, (i) and the local uni-

formconvergenceofmδ tom imply thatmδ(u
δ) converges uniformly tom(u) in [0,∞)×Ω.

To obtain the desired weak convergence, letϕ ∈ Lα+1

(
[0,∞)×Ω

)
. Wemay then split the

integralˆ ∞

0

ˆ
Ω
mδ(u

δ)|∂3xuδ|α−1∂3xu
δϕdxdt =

¨
{u>η}

mδ(u
δ)|∂3xuδ|α−1∂3xu

δϕdxdt

+

¨
{u≤η}

mδ(u
δ)|∂3xuδ|α−1∂3xu

δϕdxdt.

For the first integral, we use that mδ(u
δ) → m(u) uniformly and that |∂3xuδ|α−1∂3xu

δ ⇀
|∂3xu|α−1∂3xuweakly in Lα+1

α
({u > η}) by (ii) to obtain convergence

¨
{u>η}

mδ(u
δ)|∂3xuδ|α−1∂3xu

δϕdxdt −→
¨

{u>η}
m(u)|∂3xu|α−1∂3xuϕdxdt

as δ → 0 for every η > 0. We now show that the second integral is small. By the Hölder
inequality we find that¨

{u≤η}
mδ(u

δ)|∂3xuδ|α−1∂3xu
δϕdxdt

≤ ‖ϕ‖Lα+1((0,∞)×Ω)‖mδ(u
δ)‖

1
α+1

L∞({u≤η})

(ˆ ∞

0
mδ(u

δ)|∂3xuδ|α+1 dxdt
) α

α+1

≤ C‖mδ(u
δ)‖

1
α+1

L∞({u≤η})‖ϕ‖Lα+1((0,∞)×Ω),

whereC depends only on ‖u0‖H1(Ω). Furthermore, we may estimate

‖mδ(u
δ)‖

1
α+1

L∞({u≤η}) ≤ C

(
‖mδ(u

δ)−m(u)‖
1

α+1

L∞({u≤η}) + ‖m(u)‖
1

α+1

L∞({u≤η})

)
.

By continuity of m it holds ‖m(u)‖
1

α+1

L∞({u≤η}) → 0, as η → 0. Combining this with the

convergence ‖mδ(u
δ)−m(u)‖

1
α+1

L∞({u≤η}) → 0, as δ → 0, we obtain
ˆ ∞

0

ˆ
Ω
mδ(u

δ)|∂3xuδ|α−1∂3xu
δϕdxdt −→

¨
{u>0}

m(u)|∂3xu|α−1∂3xuϕdxdt

=

ˆ ∞

0

ˆ
Ω
m(u)|∂3xu|α−1∂3xuϕdxdt,
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as δ → 0, where we used thatm(s) = 0 for every s ≤ 0.
(iv)This is an immediate consequence of the corresponding uniform bound obtained in
Proposition 6.5.2.

Wenow combine the convergence results obtained in the previous proposition to state
the main result of this section.

Theorem6.5.4. Fix a positive initial datum u0 ∈ H1(Ω), u0 > 0. Let u be any accumula-
tion point of the sequence (uδ)δ, as obtained in Proposition 6.5.3. Then u is a weak solution
to the thin-film equation on the set {u > 0}

∂tu+ div
(
m(u)|∂3xu|α−1∂3xu

)
= 0, (t, x) ∈ {u > 0},

∂xu = m(u)|∂3xu|α−1∂3xu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω

in the sense that u satisfies the equation
ˆ ∞

0
〈∂tu, ϕ〉W 1

α+1
dt−

¨
{u>0}

m(u)|∂3xu|α−1∂3xu · ∂xϕdxdt = 0

for all ϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
and the energy-dissipation inequality

ˆ
Ω

1

2
|∂xut|2 dx+

ˆ t

0

ˆ
{us>0}

m(u)|∂3xu|α+1 dxds ≤
ˆ
Ω

1

2
|∂xu0|2 dx, t ∈ [0,∞).

The concept of weak solutions obtained inTheorem 6.5.4 is ’very weak’. It is the same
concept of weak solutions that is used in [BF90] and, ifΩ = (0, 1), it allows for steady-state
solutions of the form u(x) = [1/4− x2]+ + [1/4− (x− 1)2]+.

Observe that we do not claim that the solutions obtained remain non-negative. In fact,
in the case of non-Newtonian fluids, we will show that, for positive initial data, there is a
maximal time τ(u0) > 0up towhichu is a solution to the thin-filmequation in [0, τ(u0))×
Ω. We do not obtain the non-negativity results on solutions in the shear-thinning case
α > 1 that are shown in [AG04], since the additional regularisation needed there to use
entropy arguments breaks the gradient flow scheme. In theNewtonian caseα = 1 though,
we obtain non-negative solutions for initial data with finite entropy.

Corollary 6.5.5. Fix a positive initial datum u0 ∈ H1(Ω), u0 > 0. Let u be any accumu-
lation point of the sequence (uδ)δ as obtained in Proposition 6.5.3. Then there is τ(u0) > 0
such that u is a weak solution to the thin-film equation

∂tu+ div
(
m(u)|∂3xu|α−1∂3xu

)
= 0, t ∈ (0, τ(u0)), x ∈ Ω,

∂xu = m(u)|∂3xu|α−1∂3xu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω

in the sense that
ˆ τ(u0)

0
〈∂tu, ϕ〉W 1

α+1
dt−

ˆ τ(u0)

0

ˆ
Ω
m(u)|∂3xu|α−1∂3xu · ∂xϕdxdt = 0

for all ϕ ∈ Lα+1((0, τ(u0));W
1
α+1(Ω)) and the energy-dissipation inequalityˆ

Ω

1

2
|∂xut|2 dx+

ˆ t

0

ˆ
{us>0}

m(u)|∂3xu|α+1 dxds ≤
ˆ
Ω

1

2
|∂xu0|2 dx, t ∈ [0, τ(u0)).
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holds. Moreover, it holds
lim

t↗τ(u0)
min
x∈Ω̄

u(t, x) = 0.

Furthermore, if α = 1 and u0 ∈ H1(Ω) with u0 ≥ 0 satisfies
´
ΩG(u0) < ∞, then u is a

global-in-time weak solution to the Newtonian thin-film equation
∂tu+ div

(
m(u)∂3xu

)
= 0, t ∈ (0,∞), x ∈ Ω,

∂xu = m(u)∂3xu = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

Proof of Theorem 6.5.4. InTheorem 6.4.2 we showed that uδ is a weak solution to themod-
ified thin-film equation, that is uδ satisfiesˆ ∞

0
〈∂tuδ, ϕ〉W 1

α+1
dt−

ˆ ∞

0

ˆ
Ω
mδ(u

δ)|∂3xuδ|α−1∂3xu
δ · ∂xϕdxdt = 0

for all ϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
. Using Proposition 6.5.3 (iii) and (iv), we obtain

ˆ ∞

0
〈∂tuδ, ϕ〉W 1

α+1
dt −→

ˆ ∞

0
〈∂tu, ϕ〉W 1

α+1
dt,

ˆ ∞

0

ˆ
Ω
mδ(u

δ)|∂3xuδ|α−1∂3xu
δ · ∂xϕdxdt −→

¨
{u>0}

m(u)|∂3xu|α−1∂3xu · ∂xϕdxdt,

as δ → 0 for allϕ ∈ Lα+1

(
[0,∞);W 1

α+1(Ω)
)
. This proves thatu is a weak solution to (6.5.1)

on {u > 0}.
To obtain the energy-dissipation inequality, note that fromProposition 6.5.2 (i) and (iv)

it follows that ∂xuδ(t)⇀ ∂xu(t) in L2(Ω). Hence, by lower semicontinuity, we obtain
ˆ
Ω

1

2
|∂xut|2 dx+

ˆ t

0

ˆ
{us>0}

m(u)|∂3xu|α+1 dxds

≤ lim inf
δ→0

[ˆ
Ω

1

2
|∂xuδt |2 dx+

ˆ t

s

ˆ
Ω
mδ(u

δ
τ )|∂3xuδτ |α+1 dxdτ

]
≤
ˆ
Ω

1

2
|∂xu0|2 dx, t ∈ [0, τ(u0)).

This completes the proof.

We now prove Corollary 6.5.5.

Proof of Corollary 6.5.5. Define τ(u0) = min{t > 0 : there is x ∈ Ωwith u(t, x) = 0}.
Then, since u is continuous and u0 > 0, it holds τ(u0) > 0. The other assertions follow
directly fromTheorem 6.5.4.

For α = 1, we showed in Lemma 6.4.3 thatˆ
{uδ<0}

|uδ|2

2δ
dx ≤

ˆ
Ω
Gδ(u0)dx ≤

ˆ
Ω
G(u0)dx.

This shows that if
´
ΩG(u0) <∞, we have

lim sup
δ→0

ˆ
{uδ<0}

|uδ|2 dx = 0.

Combining this with the uniform convergence of uδ → u, we may conclude that |{u <
0}| = 0 and hence u ≥ 0 in [0,∞)× Ω.
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Remark 6.5.6. (i) Letα = 1,m(s) = snwithn ≥ 4 andu0 > 0. Thenu > 0 in [0,∞)×
Ω. This follows from the Hölder continuity of u and the fact that

´
ΩG(u(t, x))dx <

∞ for all t ≥ 0; cf. [BF90].

(ii) Let α = 1, u0 ∈ H1(Ω) with u0 ≥ 0, and let (u0,δ)δ ⊂ H1(Ω) be a sequence with
u0,δ > 0 and u0,δ → u0 inH1(Ω). Using the above scheme with initial datum u0,δ,
the corresponding sequence (uδ, jδ)δ converges to a non-negative weak solution u
to (6.5.1) in the sense of Proposition 6.5.4.
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A CONVERGENCE RATES AND
FLUCTUATIONS FOR THE STOKES–
BRINKMAN EQUATIONS AS
HOMOGENISATION LIMIT IN
PERFORATED DOMAINS

Abstract

We study the homogenization of the Dirichlet problem for the Stokes equations
in R3 perforated bym spherical particles. We assume the positions and velocities of
the particles to be identically and independently distributed random variables. In the
critical regime, when the radii of the particles are of orderm−1, the homogenization
limit u is given as the solution to the Brinkman equations. We provide optimal rates
for the convergence um → u in L2, namelym−β for all β < 1/2. Moreover, we con-
sider the fluctuations. In the central limit scaling, we show that these converge to a
Gaussian field, locally in L2(R3), with an explicit covariance.

Our analysis is based on explicit approximations for the solutions um in terms of
u as well as the particle positions and their velocities. These are shown to be accurate
in Ḣ1(R3) to orderm−β for all β < 1. Our results also apply to the analogous problem
regarding the homogenization of the Poisson equations.

A.1 Introduction
Numerous applications regarding the dynamics of suspensions and aerosols call for
macro- and mesoscopic models which couple the particle evolution to the fluid. One of
the most well-known models are the so-called Vlasov-Navier-Stokes equations for spher-
ical, non-Brownian inertial particles. If the fluid inertia is neglected, they reduce to the
so-called Vlasov-Stokes equations which take the dimensionless form

∂tf + v · ∇xf + div ((u− v)f) = 0,
−∆u+∇p+ ρu− j = h, divu = 0,

ρ =
´
f dv, j =

´
vf dv,

(A.1.1)

where f(t, x, v) is the particle density and h is some external force acting on the fluid.
For questions regarding modeling and applications of this system, we refer the reader to
[Bou+15] and the references therein.

The rigorous derivation of these equations from a microscopic system is a wide open
problem. The main difficulty lies in the nature of the interaction of the particles which is
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only implicitly given through the fluid. Moreover it is singular and long range. A natural
preliminary step towards the rigorous derivation of the Vlasov(-Navier)-Stokes equations
consists in the derivation of the limit fluid equations in (A.1.1) without taking into account
the particle evolution. These are the so-called Brinkman equations. The additional term
ρu− j describes the effective drag force that the particles exert on the fluid: The drag force
of a single particle in a Stokes flow is given by

Fi = 6πR(Vi − ui),

where R is the particle radius, Vi its velocity and ui is the unperturbed fluid velocity at
the position of the particle. Therefore, the total drag will be of order one if the number
of particles m (in a finite volume) times their radius Rm is of order one. By making the
convenient choice

Rm =
1

6πm
, (A.1.2)

the Brinkman equations in the form above arise based on a superposition principle for the
drag forces.

The rigorous derivation of the Brinkman equations has attracted increasing attention
over the last years, with results both in the cases of zero and non-zero particle velocities,
see e.g. [All90b; GH19a; Gér22] and [DGR08; HMS19; CH20], respectively. Themost recent
results focus on the derivation under very mild assumptions for (random) particle config-
urations. Such investigations seem compulsory in order to eventually accomplish the rig-
orous derivation of the Vlasov(-Navier)-Stokes equations. In this regard, it is also desirable
to develop very accurate explicit approximations for the microscopic solution um and to
characterize its convergence rate to the limit u as well as the associated fluctuations. In
our paper, we focus on these aspects.

STATEMENT OF THE MAIN RESULT
We consider the perforated domain

Ωm = R3 \
m⋃
i=1

Bi,

where the particles are given by Bi = BRm(Xi) with Rm as in (A.1.2). The particle po-
sitions X1, . . . , Xm as well as their velocities V1, . . . , Vm are random variables in R3. For
h ∈ Ḣ−1(R3;R3), we study the solution um to the Stokes equations{

−∆um +∇pm = h, divum = 0 inΩm,
um = Vi inBi, i = 1, . . . ,m.

(A.1.3)

We consider the case when Zi = (Xi, Vi) are i.i.d. according to f ∈ P(R3 × R3). We
impose the following hypotheses on f :

(H1)
´
R3×R3 |v|2f(dx,dv) <∞;

(H2) the distribution of the centers ρ(·) :=
´
R3 f(·,dv) ∈ W 1,∞(R3) is compactly sup-

ported;

(H3) j(·) :=
´
R3 vf(·,dv) ∈ H1(R3).
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We remark thatwe in particular allow to choose f(dx,dv) = ρ(x)dxδv=0whichmeans
that all particle velocities are zero.

We note that the Stokes equations (A.1.3) are only well-posed if the particles do not
overlap. However, in our setting, overlapping does not occurwith probability approaching
1 asm→ ∞. This follows from the following standard result that can for example be found
in [Hau09, Proposition A.3].

Lemma A.1.1. For ν ≥ 0, L > 0 let

Om,ν,L =

{
(Zi)

m
i=1 = ((Xi, Vi))

m
i=1 : min

i ̸=j
|Xi −Xj | > LmνRm

}
.

Then, for all 0 ≤ ν < 1/3 and all L > 0, there existsm0 > 0 such that for allm ≥ m0

P(Om,ν,L) ≤ CLmν−1/3,

whereC depends only on ρ.

For overcoming the problem of the ill-posedness of (A.1.3) for overlapping particles,
we could restrict ourselves to configurations of non-overlapping particles. However, this
results in the lossof the independenceof theparticlepositions. Thus, for technical reasons,
we prefer to define um to be the solution to (A.1.3) for (Zi)

m
i=1 ∈ Om,0,2 and um = u for

(Zi)
m
i=1 /∈ Om,0,2.
For the statement of our main result, we introduce u ∈ Ḣ1(R3) as the unique weak

solution to the Brinkman equations

−∆u+ (ρu− j) +∇p = h, divu = 0 inR3. (A.1.4)

Moreover, we introduce the solution operatorA for the Brinkman equations with vanish-
ing flux j. More precisely,A, which depends on ρ, maps g to to the solutionw of the equa-
tion

−∆w + ρw +∇p = g, divw = 0 inR3. (A.1.5)

TheoremA.1.2. Leth ∈ Ḣ−1(R3;R3) and letum andu be defined as in (A.1.3) and (A.1.4).

(i) For any β < 1/2 and any compact setK ⊂ R3

mβ‖um − u‖L2(K) −→ 0 in probability.

(ii) For every g ∈ L2(R3)with compact support,

ξm[g] := m1/2(g, um − u) −→ ξ[g]

in distribution, where ξ is a Gaussian field with mean zero and covariance

E[ξ[g1]ξ[g2]] =
ˆ
R3×R3

(
(u(x)− v) · (Ag1)(x)

)(
(u(x)− v) · (Ag2)(x)

)
f(dx,dv)

− (ρu− j, Ag1)L2 (ρu− j, Ag2)L2

(A.1.6)

for all g1, g2 ∈ L2(R3)with compact support.
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Remark A.1.3. (i) The analogous result holds when the Stokes equations are re-
placed by the Poisson equation. In this case, the quantities Vi are scalars as well
as um, u, h, j, etc. Moreover, reflecting that the capacity of a ball of radiusR is 4πR,
one should replace (A.1.2) by

Rm =
1

4πm
. (A.1.7)

(ii) Formally, we can write ξ = Aζ, where ζ accounts for the fluctuations of the drag
force j − ρu. The appearance of the second term on the right-hand side of (A.1.6)
is classical for the fluctuations in m-particle systems, see e.g. [BH77], and is sup-
posed to disappear if we modeled the particles by a Poisson Point Process instead.
In particular, one can expect in this case, at least formally, ξ = Aζ with

ζ =

(ˆ
(v − u)2f(·,dv)

) 1
2

W,

whereW is space white noise.

(iii) The rate of convergence in part (i) ofTheorem A.1.2 is optimal in view of part (ii). By
interpolating the estimate in part (i) with the energy bound, one obtains a conver-
gence inHs

loc for any s < 1 with ratem−β+s/2 for any β < 1/2, though. This might
not be optimal, though. Indeed, we will show that the fluctuations ξm are bounded
inHs

loc, s < 1/2 (cf. Proposition A.3.3).

Possible generalizations

Webriefly comment on three aspects of possible generalizations and improvements of our
main result. The first aspect addresses random radii of the particles and the second space
dimensions different from d = 3. Finally, we comment in better notions of probabilistic
convergence in part (i) of the theorem.

Indeed, it is not difficult to extend the above result to the case where the radii of the
particles are also random. More precisely, assume that the radius of each particle isRm

i =
riRmwithRm as in (A.1.2), respectively. Assume that the radii ri are independent bounded
random variables, also independent of the positions, with expectation Er = 1. Then, the
assertions ofTheoremA.1.2 still hold with an additional factorEr2 in front of the first term
on the right-hand side of the covariance. In order not to further burden the presentation,
we restrict our attention to the case of identical radii.

Regarding the space dimension, our analysis is restricted to the physically most rele-
vant three-dimensional case. Applying the same techniques in dimension d = 2 seems
possible with additional technicalities due the usual issues regarding the capacity of a set
in d = 2.

We emphasize though that, for d ≥ 4, we do not expect Theorem A.1.2 to continue
to hold. One reason for this is that the volume occupied by the particles becomes too
big. Indeed, the critical scaling of the radius ofm spherical particles in dimension d ≥ 3
is Rm ∼ m−1/(d−2). The results cited above ensure that under this scaling we still have
um ⇀ u weakly in Ḣ1(Rd). However, in the case when the particle velocities are all zero,
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i.e. f = ρ⊗ δ0, we obtain as a trivial upper bound for the rate of convergence in L2
loc

‖um − u‖L2
loc(Rd) ≥ ‖um − u‖L2(∪m

i=1Bi) = ‖u‖L2(∪m
i=1Bi) ∼

(
Ld

(
m⋃
i=1

Bi

)) 1
2

∼ m− 1
d−2 .

This shows thatTheorem A.1.2 cannot hold in this form for d ≥ 5. Moreover, in dimension
d = 4, this error is of critical order, which suggests that the analysis of the fluctuations is
muchmore delicate.

Our techniques are restricted to dimension d = 3 for another reason. Namely, we
will several times use the fact that the fundamental solution to the Stokes equations is in
L2
loc(R3)which is no longer true in higher dimensions.
Instead of convergence in probability, one could aim for convergence inLp. Following

the proof of the theorem reveals that we actually prove

Em[1Oc
m,0,5

‖um − u‖2L2
loc
] ≤ Cm−1.

This implies Em[‖um − u‖L2
loc
] ≤ Cm−1/6 by Lemma A.1.1, provided an a priori bound

Em[‖um − u‖2
L2
loc
] ≤ C. Such a bound has been obtained in [CH20]. Although different

particle distributions are considerd in [CH20], one readily checks that [CH20, Lemma 3.4]
also implies such an a priori estimate in our setting. Again, the powerm−1/6 is presumably
not optimal and one could aim for an estimate Em[‖um − u‖2

L2
loc
] ≤ Cm−1. Following

our present approach, one would need to adapt the approximation that we use for um
in the set Om,0,5. The adaptation needs to take into account in a more precise way the
geometry of the particle configuration and one could take inspiration from the proof of
[CH20, Lemma 3.4]. However, it seems unavoidable that this approach would drastically
increase the technical part of our proof.

Comments on assumption (H1)–(H3)

Thesecondmomentbound in thefirst assumption, (H1), is verynatural. It ensures that the
solution um is bounded in L2(Ω; Ḣ1(R3)), where Ω denotes the probability space. More-
over, the covariance of the fluctuations provided inTheoremA.1.2 involve this secondmo-
ment.

The regularity assumptions on ρ and j, (H2)–(H3), are of more technical nature: they
ensure that both j and ρu, which appear in theBrinkman equations (A.1.4), lie in Ḣ1(R3)∩
Ḣ−1(R3). The Ḣ−1 property will be very useful to treat those terms as source terms of
the Stokes equations. On the other hand, theH1-regularity allows us to quantify the dif-
ferences of those terms to some discrete and averaged versions involved in the setup of
appropriate approximations for um that we detail in Section A.2.

DISCUSSION OF RELATED RESULTS
Previous results on the derivation of the Brinkman equations

As indicated at the beginning of this introduction, there is a huge literature on the deriva-
tion of the Brinkman equations and corresponding results for the Poisson equation where
one could mention for instance [MK74; CM82a; PV80; Oza83; DG94; GHV18]. For a more
complete list and discussion of this literature, we refer the reader to [GHV18; GH19a].



110 Fluctuations for Stokes-Brinkman equations

In [GH19a; CH20], the Brinkman equations have been derived under very mild as-
sumptions on theparticle configurations. In [GH19a], the authors considered zeroparticle
veolcities. The particle positions can be distributed to rather general stationary processes,
and the radii are i.i.d. with only a (1 + β)moment bound. This allows for many clusters of
overlapping particles. A corresponding result for the Poisson equation has been obtained
in [GHV18].

On the other hand, in [CH20], the particle radii are identical but their velocities are
not necessarily zero. The authors consider more general particle distributions than i.i.d.
configurations. The Brinkman equations are derived in this setting under assumptions
including a 5th moment bound of the velocities. The result in [CH20] comes with an es-
timate of the convergence rate um → u in L2

loc. However, this does not allow to deduce
convergence faster thanm−β with β < 1/95.

Results about explicit approximations for um

A widespread approach to homogenization of the Poisson and Stokes equations in perfo-
rated domains with homogeneous Dirichlet boundary conditions is the so-calledmethod
of oscillating testfunctions which is used for instance in [CM82a; All90b]. An oscillating
testfunctionwm is constructed in such away that it vanishes in the particles and converges
to 1 weakly in H1

loc. This function wm carries the information of the capacity (or resis-
tance) of the particles. A natural question is then, how well wmu approximates um. Since
the functionwm is usually constructed explicitly, this allows for an explicit approximation
for um. In [KM89; All90b] it is shown that for periodic configurations ‖um − wmu‖Ḣ1 ≤
Cm−1/3. This error is of the order of the particle distance and thus the optimal error that
one can expect due to thediscretization. Similar results havebeenobtained in [Giu21b] for
the random configurations studied in [GHV18], with a larger error due to particle clusters.

In the recent papers [Fep22; FJ21], higher order approximations for the Poisson and
the Stokes equations in periodically perforated domains are analyzed.

In the present paper, we do not work with oscillating test functions. However, we de-
rive equally explicit approximations for um which we will denote by ũm (see Section A.2).
Aswewill show inTheoremA.3.1 ,wehave‖um−ũm‖Ḣ1 ≤ Cm−β for allβ < 1. This error is
much smaller than theoneobtained in [KM89; All90b]. The reason for that is twofold. First,
we take into account the leading order discretization error in terms of fluctuations. Sec-
ond, we benefit from the randomness which reduces the higher order dicretization errors
on average. We believe thatTheorem A.3.1 could be of independent interest. In particular
concerning the rigorous derivation of the Vlasov-Stokes equations (A.1.1), such explicit ac-
curate approximations ofum in good norms seemessential. Indeed, for the related deriva-
tion of the transport-Stokes system for inertialess suspensions in [Höf18], corresponding
approximations have been crucial.

Related results concerning fluctuations and preliminary comments on our proof

In the classical theory of stochastic homogenization of elliptic equations with oscillating
coefficients, the study of fluctuations has been a very active research field in recent years.
Of the vast literature, one could mention for example [AKM17; DGO20].

Regarding the homogenization in perforated domains, the literature is much more
sparse. In the recent paper [DG21], the authors were able to adapt some of the tech-
niques of quantitative stochastic homogenization of elliptic equations with oscillating co-
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efficients to the Stokes equations in perforated domains with sedimentation boundary
conditions which are different from the ones considered here.

Related results toTheorem A.1.2 have been obtained in [FOT85] for the Poisson equa-
tion and in [Rub86] for the Stokes equations. However, in these papers, the authors were
only able to treat thePoissonand the Stokes equations corresponding to (A.1.3)with anad-
ditional large massive term λum: they obtained a result corresponding to Theorem A.1.2
provided that λ is sufficiently large (depending on ρ).

The approach in [FOT85; Rub86] follows the approximation of the solution um by the
so-called method of reflections. The idea behind this method is to express the solution
operator of theproblem in theperforateddomain in termsof the solutions operatorswhen
only one of the particles is present. More precisely, let v0 be the solution of the problem in
the whole space without any particles. Then, define v1 = v0 +

∑
i v1,i in such a way that

v0 + v1,i solves the problem if i was the only particle. Since v1,i induces an error inBj for
j 6= i, one adds further functions v2,i, this time starting from v1. Iterating this procedure
yields a sequence vk. In general, vk is not convergent. With the additional massive term
though, one can show that the method of reflections does converge, provided that λ is
sufficiently large.

In [HV18], the first author and Velázquez showed how themethod of reflections can be
modified to ensure convergence without a massive term and how this modified method
can be used to obtain convergence results for the homogenization of the Poisson and
Stokes equations. In order to study the fluctuations, a high accuracy of the approxima-
tion of um is needed. This would make it necessary to analyze many of the terms arising
from themodifiedmethod of reflections which we were allowed to disregard for the qual-
itative convergence result of um in [HV18]. It seems very hard to control sufficiently well
these additional termswhich either do not arise or are of higher order for the (unmodified)
method of reflections used in [FOT85; Rub86].

Thus, in the present paper, we do not use the method of reflections but follow an al-
ternative approach to obtain an approximation for um. Again, we approximate um by
ũm = w0 +

∑
iwi, where wi solves the homogeneous Stokes equations outside of Bi.

However, we do not take wi as in the method of reflections, where it is expressed in terms
of w0. Instead wi will depend on u, exploiting that we already know that um converges to
u. In contrast to the approximation obtained from the method of reflections, we will be
able to choose wi in such a way that the approximation ũm = w0 +

∑
iwi is sufficient to

capture the fluctuations.
A related approachhas recently beenused in a parallel work byGérard-Varet in [Gér22]

to give a very short proof of the homogenization result um ⇀ uweakly in Ḣ1 under rather
mild assumptions on the positions of the particles. However, since we study the fluctua-
tions in this paper, we need a more refined approximation than the one used in [Gér22].
More precisely, to leading order, the functionwi will only depend on Vi and the value of u
at Bi. However, wi will also include a lower-order term which is still relevant for the fluc-
tuations. As wewill see, this lower-order termwill depend in someway on the fluctuations
of the positions of all the other particles.

ORGANIZATION OF THE PAPER

The rest of the paper is devoted to the proof of the main result, Theorem A.1.2.
In Section A.2, we give a precise definition of the approximation ũm = w0 +

∑
iwi,

outlined in the paragraph above, as well as a heuristic explanation for this choice.
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In Section A.3, we state three key estimates regarding this approximation and show
how the proof ofTheorem A.1.2 follows from these estimates.

The proof of these key estimates contains a purely analytic part as well as a stochastic
part which are given in Sections A.4 and A.5, respectively.

A.2 The approximation for themicroscopic solution um

NOTATION
We introduce the following notation that is used throughout the paper.

We denote byG : Ḣ−1(R3) → Ḣ1(R3) the solution operator for the Stokes equations.
This operator is explicitly given as a convolution operator with kernel g, the fundamental
solution to the Stokes equations, i.e.,

g(x) =
1

8π

(
Id
|x|

+
x⊗ x

|x|3

)
. (A.2.1)

We recall fromTheorem A.1.2 thatA : Ḣ−1(R3) → Ḣ1(R3) is the solution operator for
the limit problem (A.1.5). We observe the identities

(1 +Gρ)A = G, A(1 + ρG) = G, A = G−AρG. (A.2.2)

We remark thatmultiplication by ρmaps from Ḣ1(R3) toH1(R3)∩ Ḣ−1(R3). Indeed, this
follows from ρ ∈ W 1,∞(R3) with compact support and the fact that Ḣ1(R3) ⊂ L6(R3)
which implies L6/5(R3) ⊂ Ḣ−1(R3). Furthermore, observe that A and G are bounded
operators from L2(R3) ∩ H−1(R3) to C0,α(R3), α ≤ 1/2, and from H1(R3) ∩ H−1(R3)
toW 1,∞(R3). In particular, Aρ and Gρ are bounded operators from L2(supp ρ) (and in
particular from Ḣ1(R3)) to L∞(R3) and from Ḣ1(R3) toW 1,∞(R3).

We denoteG−1 = −∆. ThenwehaveGG−1 = G−1G = Pσ, wherePσ is the projection
to the divergence free functions. In fact, we will useG−1 in the expressionAG−1 only. We
observe thatA = APσ and thus

AG−1G = A.

Wedenote byBm(x) = BRm(x) and the normalizedHausdorffmeasure on the sphere
∂Bm(x) by

δmx :=
H2|∂Bm(x)

H2(∂Bm(x))
,

and write δmi := δmXi
.

Moreover, we denote for any function ϕ ∈ L1(Bm(x)) the average onBm(x) by (ϕ)x,
i.e.

(ϕ)x :=

 
Bm(x)

ϕ(y)dy :=
1

|Bm(x)|

ˆ
Bm(x)

ϕ(y)dy,

and we abbreviate (ϕ)i := (ϕ)Xi .
We will need a cut-off version of the fundamental solution. To this end, let η ∈

C∞
c (B3(0)) with 1B2(0) ≤ η ≤ 1B3(0) and ηm(x) := η(x/Rm). Now consider g̃m =



Appendix 113

(1 − ηm)g. We need an additional term in order to make g̃m divergence free. This is ob-
tained through the classical Bogovski operator (see e.g. [Gal11, Theorem 3.1]) which pro-
vides the existence of a sequence ψm ∈ C∞

c (B3Rm \ B2Rm) such that divψm = div (ηmg)
and

‖∇kψm‖Lp(R3) ≤ C(p, k)‖∇k−1div (ηmg)‖Lp(R3) (A.2.3)

for all 1 < p <∞ and all k ≥ 1. By scaling considerations, the constantC is independent
ofm. Then, we defineGm as the convolution operator with kernel

gm = (1− ηm)g + ψm. (A.2.4)

APPROXIMATION OF um USING MONOPOLES INDUCED BY u
To find a good approximation for um, we observe that um satisfies

−∆um +∇p = h1Ωm +
∑
i

hi, inR3 (A.2.5)

for some functions hi ∈ Ḣ−1(R3), each supported in Bi, which are the charge distribu-
tions induced in the particles due to the Dirichlet boundary conditions.

We begin by observing that formost of the configurations of particles, the particles are
sufficiently separated which allows us to determine good approximations for hi by ignor-
ing its direct interactionwith another particle. Aswewill see, our approximation forhi will
only incorporate the effect of the other particles through the limit u.

To be more precise, let 0 < ν < 1/3. Then, by Lemma A.1.1, we know that, for most of
the particles, BmνRm(Xi) only contains the particle Bi. In this case, hi is uniquely deter-
mined by the problem 

−∆vi +∇p = h inBmνRm(Xi) \Bi,

vi = Vi inBi,
vi = um on ∂BmνRm(Xi).

(A.2.6)

We simplify this problem to derive an approximation for hi. First, we drop the right-
hand side h in (A.2.6). Its contribution is expected to be negligible, since the volume of
BmνRm(Xi) \ Bi is small compared to the difference of the boundary data at ∂Bi and
∂BmνRm(Xi) which is typically of order 1. Next, we know that typically ∂BmνRm(Xi) is
very far from any particle. Since um ⇀ u in Ḣ1(R3), we therefore replace (A.2.6) by

−∆vi +∇p = 0 R3 \Bi,

vi = Vi inBi,
vi(x) → (u)i as |x−Xi| → ∞.

(A.2.7)

Here, we could also have chosen u(Xi) instead of (u)i. The precise choice that we make
will turn out to be convenient later. By our choice ofRm in (A.1.2), the explicit solution of
(A.2.7) is given by vi which solves−∆vi +∇p = hi inR3 with

hi =
Vi − (u)i

m
δmi .

Therefore, resorting to (A.2.5), we are led to approximate um by

ũm := G

[
h− 1

m

m∑
i=1

((u)i − Vi)δ
m
i

]
. (A.2.8)
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We emphasize that for this approximation it is not important to know the function u. We
only used that um ⇀ u in Ḣ1(R3) which is always true for a subsequence by standard
energy estimates. On the contrary, we can now identify the limit u. Indeed, if we believe
that ũm approximates um sufficiently well,

u ↼ um ≈ ũm = G

[
h− 1

m

m∑
i=1

((u)i − Vi)δ
m
i

]
⇀ G[h+ j − ρu] (A.2.9)

which shows that u indeed solves (A.1.4).
This approximation ũm cannot fully capture the fluctuations, though. In the next sub-

section we thus show how to refine this approximation.
We end this subsection by comparing this approximation to the one used in [FOT85;

Rub86] through themethod of reflections. The first order approximation of themethod of
reflections is given by ũm as defined in (A.2.8) but withGh instead of u on the right-hand
side. Since this is a much cruder approximation, one needs to iterate the approximation
scheme. This only yields a convergent series in [FOT85; Rub86] due to the additional large
massive term. On the other hand, this series then approximates um sufficiently well with-
out the refinement that we introduce in the next subsection.

REFINED APPROXIMATION TO CAPTURE THE FLUCTUATIONS
Wemake the ansatz that, macroscopically,

um = u+m− 1
2 ξm + o(m− 1

2 ), (A.2.10)

where ξm is a random function which needs to be determined. We assume that the fluc-
tuations ξm are in some sense macroscopic, just as u, such that we can follow the same
approximation scheme as in the previous subsection.

More precisely, we adjust the Dirichlet problem (A.2.7) by adding m− 1
2 (ξm)i on the

right-hand side of the third line. This leads to the definition

ũm := G

[
h− 1

m

m∑
i=1

(u− Vi +m− 1
2 ξm)iδ

m
i

]
. (A.2.11)

We have not defined ξm yet. To make a good choice for ξm, the idea is to use a similar
argument as in (A.2.9) but only to take the limitm→ ∞ in terms which are of lower order.
More precisely, we observe, again taking for granted that ũm approximates um sufficiently
well and using u = G(h+ j − ρu),

u+m−1/2ξm ≈ um ≈ ũm = G

[
h− 1

m

m∑
i=1

(u− Vi +m− 1
2 ξm)iδ

m
i

]

= u+G

[
ρu− j − 1

m

m∑
i=1

((u)i − Vi)δ
m
i

]
−G

[
1

m

m∑
i=1

(m− 1
2 ξm)iδ

m
i

]
.

(A.2.12)
We expect

G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

 = G(ρm− 1
2 ξm) +O(m−1). (A.2.13)
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Inserting this into (A.2.12), leads to

m−1/2ξm +G(ρm− 1
2 ξm) ≈ G

[
ρu− j − 1

m

m∑
i=1

((u)i − Vi)δ
m
i

]
. (A.2.14)

This equation could be used as a definition of ξm. Although this turns out to be a good
approximation on the level of equation (A.2.10), we will now argue that this is not the case
for the definition of ũm in (A.2.11). Indeed, the right-hand side of (A.2.14) is equal to (u)i−
Vi inBi to leading order. Hence, (m−1/2ξm)iwouldbeof the sameorderwhichwould yield
a contribution to ũm through ξm of order 1 instead of orderm−1/2.

Therefore, we need to be more careful and go back to microscopic considerations:
Since um = Vi in Bi and ũm ≈ um, we want to define ξm in such a way that ũm ≈ Vi
in Bi. Thus we want to compute ũm in Bi in order to find a good definition of ξm. Since
we expect ũm = ũm(Xi) + O(m−1) inBi (at least on average), we only compute ũm(Xi),
and by the same reasoning, we replace any average (ξm)i by ξm(Xi) at will. Then, we find,
using again u = G(h+ j − ρu),

ũm(Xi) ≈ u(Xi) + (G(ρu− j))(Xi)− u(Xi) + Vi −m− 1
2 ξm(Xi)

−G

 1

m

∑
j ̸=i

(u− Vj +m− 1
2 ξm)jδ

m
j

 (Xi)

= Vi −m− 1
2 ξm(Xi) +G

ρu− j − 1

m

∑
j ̸=i

((u)j − Vj +m− 1
2 ξm)j)δ

m
j

 (Xi).

(A.2.15)

Requiring ũm(Xi) = Vi yields

m− 1
2 ξm(Xi)+G

 1

m

∑
j ̸=i

m− 1
2 (ξm)jδ

m
j

 (Xi) = G

ρu− j − 1

m

∑
j ̸=i

((u)j − Vj)δ
m
j

 (Xi).

(A.2.16)
Inorder todefine ξm from this equation,wewant the sumon the right-hand side to include
i such that the function is the same for every i. To this end, we notice that by LemmaA.1.1,
with high probability, we have for all i and allW ∈ R3

Gmδmi W = 0 inBi, Gδmj W = Gmδmj W inBi for all j 6= i, (A.2.17)

where Gm is the operator introduced at the end of Section A.2. Hence, we replace the
right-hand side of (A.2.16) by

m− 1
2Θm := G(ρu− j)− 1

m

m∑
i=1

Gm (((u)i − Vi)δ
m
i ) . (A.2.18)

We expectΘm ∼ 1 since the right-hand side of (A.2.18) represents the fluctuations of the
discrete approximation ofG(ρu− j). As before, we replace the sum on the left-hand side
of (A.2.16) by ρξm. Combining these approximations leads to

m− 1
2 (1 +Gρ)ξm = m− 1

2Θm. (A.2.19)
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In view of (A.2.2), it holds (1+Gρ)AG−1 = Pσ. Since,Θm is divergence free, (A.2.19) leads
to define ξm to be the solution of

ξm = AG−1Θm. (A.2.20)

Note that the only difference between this definition of ξm and (A.2.14) is the replacement
of G by Gm. As mentioned above, we expect that, on a macroscopic scale, the operators
G and Gm are almost the same (we will make this argument rigorous in Lemma A.5.4).
Therefore, in equation (A.2.10), we expect, that it does not play a role (inL2

loc(R3)) whether
we takeG orGm. Consequently, as an approximation for ξm, we introduce

τm := AG−1Θ̃m, (A.2.21)

m−1/2Θ̃m := G(ρu− j)− 1

m

m∑
i=1

G((u(Xi)− Vi)δXi).

This function bears the advantage that it is the sum of i.i.d. random variables. Hence, it
is straightforward to study the limit properties of τm[g] := (g, τm). Notice that we both
replaced the average (u)i by the value in the center of the ball u(Xi) and δmi by δXi . Since
u ∈ Ḣ1(R3), τm is not defined for every realization of particles. However, as we will see, it
is well-defined as an L2-function on the probability space with values in L2

loc(R3).

A.3 Proof of themain result
Thefirst step of the proof is to rigorously justify the approximation of um by ũm, defined in
(A.2.11) with ξm andΘm as in (A.2.20) and (A.2.18).

Theorem A.3.1. For all ε > 0 and all β < 1

lim
m→∞

Pm

[
mβ‖um − ũm‖Ḣ1(R3) > ε

]
→ 0.

The next step is to show that we actually have

ũm = u+m−1/2ξm + o(m−1/2)

which was the starting point of our heuristics, i.e. ξm indeed describes the fluctuations of
ũm around u. In contrast to Theorem A.3.1, we can only expect local L2-estimates since
not even um − u is small in the strong topology of Ḣ1(R3).

Proposition A.3.2. For all ε > 0, all bounded setsK ′ ⊂ R3 and all β < 1

lim
m→∞

Pm

[
mβ‖ũm − u−m−1/2ξm‖L2(K′) > ε

]
→ 0.

Combining Proposition A.3.1 and A.3.2, we observe that we only have to prove the
statements of Theorem A.1.2 with um − u replaced bym−1/2ξm. We postpone the proofs
ofTheorem A.3.1 and Proposition A.3.2 to Section A.4.

Thenext proposition shows that, instead of ξm, we can actually consider τm introduced
in the previous section.

Proposition A.3.3. For any bounded setK ′ ⊂ R3 and every 0 ≤ s < 1
2 there is a constant

Cs(K
′) > 0 independent ofm such that

Em[‖ξm‖2Hs(K′)] ≤ Cs(K
′).
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Let τm be defined by (A.2.21). Then,

lim sup
m→∞

m1−2sEm

[
‖ξm − τm‖2Hs(K′)

]
≤ Cs(K

′).

We postpone the proof of Proposition A.3.3 to Section A.5.
Note that for s = 0, these estimates include the case L2(K ′) which we will use now in

order to proveTheorem A.1.2. Indeed,Theorem A.1.2 is a direct consequence of the above
results together with the classical Central LimitTheorem.

Proof of Theorem A.1.2. Due to the uniform bound on Em[‖ξm‖2L2(K)] from Proposition
A.3.3, assertion (i) of the main theorem follows immediately from Theorem A.3.1 and
Proposition A.3.2 since Ḣ1(R3) embeds into L2

loc(R3).
Since convergence in probability implies convergence in distribution, Theorem A.3.1

and Propositions A.3.2 and A.3.3 imply that it suffices to prove assertion (ii) of Theorem
A.1.2 with ξm[g] replaced by τm[g] := (g, τm)L2(R3), i.e we need to prove that

τm[g] → ξ[g]

in distribution for any g ∈ L2(R3)with compact support. Since τm[g] is a sum of indepen-
dent random variables, this is a direct consequence of the Central Limit Theorem and the
following computation for covariances: let g1, g2 ∈ L2(R3)with compact support, then

Em [τm[g1]τm[g2]]

= m−1Em

(g1, m∑
i=1

A (ρu− j − (u(Xi)− Vi)δXi)

)
L2(R3)g2, m∑

j=1

A
(
ρu− j − (u(Xj)− Vj)δXj

)
L2(R3)


=

ˆ
R3×R3

(g1, A(ρu− j − (u(x)− v)δx))L2(R3) ·

· (g2, A(ρu− j − (u(x)− v)δx))L2(R3) f(dx,dv)

=

ˆ
R3×R3

(g1, A((u(x)− v)δx))L2(R3) (g2, A((u(x)− v)δx))L2(R3) f(dx,dv)

− (Ag1, ρu− j)L2(R3)(Ag2, ρu− j)L2(R3)

=

ˆ
R3×R3

((u(x)− v) · (Ag1)(x))((u(x)− v) · (Ag2)(x))f(dx,dv)

− (ρu− j, Ag1)L2(R3) (ρu− j, Ag2)L2(R3) .

Here we used that Aδx ∈ L2
loc(R3) (see Lemma A.5.3) and that A is a symmetric operator

on L2(R3). This finishes the proof.

A.4 Proofs ofTheorem A.3.1 and Proposition A.3.2
In this section, we will reduce the proof ofTheorem A.3.1 and Proposition A.3.2 to proving
the following single probabilistic lemma. The proof of this lemma, which is given in Sec-
tion A.5, is the main technical part of this paper. It makes rigorous the heuristic equation
(A.2.13).
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As we discussed in the heuristic arguments, we will exploit in the following that the
probability of having very close particles is vanishing as stated in Lemma A.1.1. In the
notation of this lemma, we abbreviate

Om = Om,0,5.

Lemma A.4.1. Let Λm,Γm, Ξm and Ξ̃m be defined by

Λm := (Gm −G)

(
1

m

∑
i

((u)i − Vi)δ
m
i

)
,

Γm := Gm

[∑
i

(u)i − Vi
m

δmi

]
+G(ρm− 1

2 ξm),

Ξm := G(ρm− 1
2 ξm)−Gm

[∑
i

m− 1
2 (ξm)i
m

δmi

]
,

Ξ̃m := G(ρm− 1
2 ξm)−G

[∑
i

m− 1
2 (ξm)i
m

δmi

]
.

Then,

lim sup
m→∞

m2Em

[
1Om‖∇ (Gh+ Γm + Ξm) ‖2L2(∪iBi)

]
<∞,

lim sup
m→∞

m4Em

[
1Om‖Ξm‖2L2(∪iBi)

]
<∞,

lim sup
m→∞

m2Em

[
1Om‖Ξ̃m + Λm‖2L2

loc(R3)

]
<∞.

The proof of this lemma is the main technical work of the present paper. We postpone
it to Section A.5.

Proof of Proposition A.3.2. Recall the definition of ũm from (A.2.11). We compute using
u = G(h − ρu + j) and ξm = AG−1Θm = Θm − Gρξm (cf. (A.2.2)) and the definition of
Θm from (A.2.18)

ũm − u−m−1/2ξm

= G

(
h− 1

m

∑
i

(u− Vi +m−1/2ξm)iδ
m
i

)
− u−m−1/2ξm

= G

(
ρu− j − 1

m

∑
i

(u− Vi +m−1/2ξm)iδ
m
i

)
−m−1/2Θm +m−1/2Gρξm

= m−1/2G

(
ρξm − 1

m

∑
i

(ξm)iδ
m
i

)
+ (Gm −G)

(
1

m

∑
i

((u)i − Vi)δ
m
i

)
= Ξ̃m + Λm.

Hence,

Pm

[
mβ‖ũm − u−m−1/2ξm‖L2(K′) > ε

]
≤ Pm[Oc

m] + Cε−2m2βEm

[
1Om‖Ξ̃m + Λm‖2L2(K′)

]
and we now conclude by Lemmas A.1.1 and A.4.1.
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Proof of Theorem A.3.1. We observe that the assertion follows from the following claim:
There exists a universal constant C such that for all (X1, . . . , Xm) ∈ Om and all m suf-
ficiently large

‖ũm − um‖2
Ḣ1(R3)

≤ C‖∇(u+G(ρu− j)) +∇Γm‖2L2(∪iBi)
+ ‖∇Ξm‖2L2(∪iBi)

(A.4.1)

+ Cm2‖Ξm‖2L2(∪iBi)
.

Indeed, accepting the claim for the moment, let β < 1 and ε > 0. Then, using again
u = G(h− ρu+ j)

Pm

[
mβ‖ũm − um‖Ḣ1(R3) > ε

]
≤ Pm[Oc

m] + Cε−2m2βEm

[
1Om

(
‖∇ (Gh+ Γm + Ξm) ‖2L2(∪iBi)

+m2‖Ξm‖2L2(∪iBi)

)]
.

Thus, the assertion follows again from Lemmas A.1.1 and A.4.1.
It remains to prove the claim above. It follows from the fact that um − ũm solves the

homogeneous Stokes equations outside of the particles.
Let (X1, . . . Xm) ∈ Om. Then, by definition of this set, the ballsB2Rm(Xi) are disjoint

form sufficiently large and wemay assume in the following that this is satisfied.
By definition of um and ũm, we have−∆(ũm−um)+∇p = 0 inR3 \∪iBi. By classical

arguments which we include for convenience, this implies

‖ũm − um‖2
Ḣ1(R3)

≤ C

(
‖∇ũm‖2L2(∪iBi)

+
1

m

∑
i

(ũm − Vi)
2
i

)
. (A.4.2)

Indeed, ũm − um minimizes the Ḣ1(R3)-norm among all divergence free functions
w with w = ũm − um = ũm − Vi in ∪iBi. Thus, to show (A.4.2), it suffices to construct a
divergence free functionwwithw = ũm−Vi in∪iBi such that‖w‖Ḣ1(R3) is boundedby the
right-hand side of (A.4.2). Since the balls B2Rm(Xi) are disjoint as (X1, . . . , Xm) ∈ Om,
we only need to construct divergence free functions wi such that wi ∈ H1

0 (B2Rm(Xi)),
wi = ũm − Vi inBi and

‖wi‖2Ḣ1(R3)
≤ C

(
‖∇ũm‖2L2(Bi)

+
1

m
(ũm − Vi)

2
i

)
.

It is not difficult to see that such functions wi exist. For the convenience of the reader, we
state this result in Lemma A.4.2 below. Thus, the estimate (A.4.2) holds.

It remains to prove that the right-hand side of (A.4.2) is boundedby the right-hand side
of (A.4.1). To this end, let x ∈ Bi for some 1 ≤ i ≤ m. We resort to the definition of ũm in
(A.2.11) to deduce, analogously as in (A.2.15), that

ũm(x) = u(x)− (u)i + Vi −m− 1
2 (ξm)i +G(ρu− j)(x)

−G

∑
j ̸=i

(u)j − Vj
m

δmj

 (x)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

 (x).

The definitions of ξm and Θm from (A.2.20) and (A.2.18), the identity ξm = Θm − Gρξm
implies that for all y ∈ Bi

m− 1
2 ξm(y) =G(ρu− j)(y)−G

∑
j ̸=i

(u)j − Vj
m

δmj

 (y)−G(ρm− 1
2 ξm)(y),
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where we used that (X1, . . . , Xm) ∈ Om to replaceGm byG. Thus,

ũm(x)− Vi

= u(x)− (u)i +G(ρu− j)(x)− (G(ρu− j))i +G

∑
j ̸=i

(u)j − Vj
m

δmj


i

−G

∑
j ̸=i

(u)j − Vj
m

δmj

 (x) + (G(ρm− 1
2 ξm))i −G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

 (x)

= (u+G(ρu− j))(x)− (u+G(ρu− j))i + Γm(x)− (Γm)i + Ξm(x).

Toconclude theproof, weagainuse (X1, . . . , Xm) ∈ Om to replaceGbyGm appropriately.
Finally, we combine this identity with (A.4.2) and the estimate (Ξm)2i ≤ Cm3‖Ξm‖2L2(Bi)

.

Lemma A.4.2. Let x ∈ R3, R > 0 and w ∈ H1(BR(x)) be divergence free. Then, there
exists a divergence free function ϕ ∈ H1

0 (B2R(x))with ϕ = w inBR(x) and

‖ϕ‖2
Ḣ1(R3)

≤ C
(
‖∇w‖2L2(BR(x)) +R(w)2x,R

)
,

where (w)x,R =
ffl
BR(x)w dx andC is a universal constant.

Proof. We write w = w − (w)x,R + (w)x,R. By a classical extension result for Sobolev
function, there exists ϕ1 ∈ H1

0 (B2R(x)) such that ϕ1 = w − (w)x,R inBR(x) and

‖∇ϕ1‖L2(R3) ≤ C‖∇w‖L2(BR(x)).

By scaling, the constantC does not depend onR.
Furthermore, we take ϕ2 = (w)x,RθR where θR ∈ C∞

c (B2R(x)) is a cut-off function
with θR = 1 inBR(x) and ‖∇θR‖∞ ≤ CR−1. Then,

‖∇ϕ2‖2L2(R3) ≤ CR(w)2x,R.

Finally, applyinga standardBogovski operator, thereexists a functionϕ3 ∈ H1
0 (B2r(x)\

BR(x)) such that divϕ3 = −div (ϕ1 + ϕ2) and

‖∇ϕ3‖L2(R3) ≤ C‖div (ϕ1 + ϕ2)‖L2(R3).

Again, the constantC is independent ofR by scaling considerations.
Choosing ϕ = ϕ1 + ϕ2 + ϕ3 finishes the proof.

A.5 Proof of probabilistic statements
Thissectioncontains themain technical part of theproofof ourmain result, theprobabilis-
tic estimates stated in Proposition A.3.3 and Lemma A.4.1. The strategy that we will use to
estimate all these terms is to expand the square of sums over the particles and then to use
independence of the positions of the particles to calculate the expectations, distinguishing
between terms where different particles appear and where one or more particles appear
more than once. Then, it will remain to observe that combinatorially relevant terms cancel
and that the remaining terms can be bounded sufficiently well, uniformly inm. This proof
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is quite lengthy. Indeed, expanding the square will lead to terms with up to 5 indices, thus
giving rise to a huge number of cases that need to be distinguished.

However, there are only relatively few and basic analytic tools that we will rely on to
obtain these cancellations and estimates. These are collected in the following subsection.
Their proofs are postponed to the appendix.

Someof those estimates concernexpressions thatwill recurrently appearwhenwe take
expectations. Indeed, since many of the terms in Lemma A.4.1 contain L2-norms in the
particlesBi, we will often deal with terms of the form

Em

[
1Bm

i
(x)
]
=

ˆ
R3×R3

1Bm
y
(x)f(dy,dv) =

ˆ
R3

1Bm
y
(x)ρ(y)dy = m−3(ρ)x.

Another term that recurrently appears due to the definitions of ũm and ξm is

(Rw)(x) := Em [(w)iδ
m
i ] (x) =

ˆ
R3

ρ(y)(w)yδ
m
y (x)dy =

 
∂Bm

x

ρ(y)(w)y dy. (A.5.1)

To justify this formal computation one tests the expression with a function ϕ ∈ C∞
c (R3)

and performs some changes of variables.
For the sake of a more compact notation, we introduce

Wi := (u)i − Vi, (A.5.2)
F := ρu− j, (A.5.3)

F(x) := Em [Wiδ
m
i ] (x) =

ˆ
R3×R3

((u)y − v)δmy (x)f(dy,dv)

=

 
∂Bm

x

ρ(y)(u)y − j(y)dH2(y). (A.5.4)

SOME ANALYTIC ESTIMATES
In this subsection, we collect some auxiliary observations and estimates for future refer-
ence. All the proofs of the results in this subsection can be found in subsection A.6 of the
appendix.

In the following, we denote byK the bounded set defined by

K := {x ∈ R3 : dist(x, supp ρ) ≤ 1}. (A.5.5)

Note thatBi ⊂ K almost surely for all 1 ≤ i ≤ m and allm ≥ 1.

Lemma A.5.1. (i) For all 1 ≤ p ≤ ∞ and allw ∈ Lp(R3)

‖(w)·‖Lp(R3) ≤ ‖w‖Lp(R3). (A.5.6)

(ii) For all α > 0, all 1 ≤ p ≤ ∞, and allw ∈ Lp(K), we have

‖ρα(w)·‖Lp(R3) ≤ C‖w‖Lp(K), (A.5.7)

where the constantC depends only on ρ, p and α.

(iii) For allw ∈ Ḣ1(R3)

‖w − (w)‖L2(R3) ≤ m−1‖w‖Ḣ1(R3). (A.5.8)
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(iv) The operator R defined in (A.5.1) is a bounded operator from L2(K) to L2(R3) ∩
Ḣ−1(R3) and from H1(K) to H1(R3). Moreover, there is a constant C depending
only on ρ such that

‖(R− ρ)w‖L2(R3) ≤ Cm−1‖w‖H1(K), (A.5.9)
‖(R− ρ)w‖Ḣ−1(R3) ≤ Cm−1‖w‖L2(K). (A.5.10)

(v) We have

sup
m

[
‖F‖Ḣ−1(R3) + ‖F‖Ḣ−1(R3) (A.5.11)

+‖F‖L2(R3) + ‖F‖L2(R3) + Em[W 2
1 ]
]
<∞,

and there is a constantC depending only on ρ and j such that

‖F −F‖L2(R3) + ‖F −F‖Ḣ−1(R3) ≤ Cm−1
(
‖u‖H1(K) + ‖j‖H1(R3)

)
.(A.5.12)

LemmaA.5.2. There exists a constantC such that for all x, y ∈ R3 and allm ≥ 1, we have

|Gδmy |(x) ≤ C
1

|x− y|+m−1
, (A.5.13)

|Aδmy |(x) ≤ C

(
1 +

1

|x− y|+m−1

)
, (A.5.14)

|∇Gδmy |(x) ≤ C
1

|x− y|2 +m−2
. (A.5.15)

In particular, for any bounded setK ′

sup
y∈R3

(
‖Gδmy ‖L2(K′) + ‖Aδmy ‖L2(K′)

)
≤ C(K ′). (A.5.16)

Moreover, for allm ≥ 1 and y ∈ R3, it holds

‖δmy ‖Ḣ−1(R3) ≤ Cm1/2, (A.5.17)

with a constant independent of y andm.

Lemma A.5.3. For every 0 ≤ s < 1
2 and every bounded setK

′

sup
y∈R3

‖Aδy‖Hs(K′) + ‖Gδy‖Hs(K′) ≤ Cs(K
′). (A.5.18)

Furthermore, for every 0 < ε ≤ 1
2

‖δmy − δy‖H−3/2−ε(K′) ≤ C(K ′)m−ε. (A.5.19)

Lemma A.5.4. For any k ∈ N, Gm is a bounded operator from Ḣk(R3) to Ḣk+2(R3).
Moreover, there is a constantC that depends only on k such that

‖G−Gm‖Ḣk(R3)→Ḣk(R3) ≤ Cm−2, (A.5.20)
‖G−Gm‖Ḣk(R3)→Ḣk+1(R3) ≤ Cm−1. (A.5.21)
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PROOF OF PROPOSITION A.3.3
For the proof of Proposition A.3.3, we first introduce another function, σm, intermediate
between τm and ξm. We first show that ξm is close to σm in the following lemma, which we
will also use in the proof of Lemma A.4.1.

From now on, we will use the notationA ≲ B for scalar quantitiesA andB whenever
there is a constant C > 0 such that A ≤ CB and where C depends neither directly nor
indirectly onm.

Lemma A.5.5. Using the notation from (A.5.2) and (A.5.3), let σm be defined by

σm := AG−1Θ̂m, (A.5.22)

m−1/2Θ̂m := GF − 1

m

m∑
i=1

G(Wiδ
m
i ).

Then, for every boundedK ′ ⊂ R3

Em

[
‖ξm − σm‖2L2(K′)

]
≤ Cm−1

and

Em

[
‖∇ξm −∇σm‖2L2(R3)

]
≤ Cm.

Proof. LetK be the set defined in (A.5.5). We argue thatAG−1 satisfies

‖AG−1w‖L2(K′) ≲ ‖w‖L2(K′) (A.5.23)

for anyK ′ ⊃ K and any (divergence free)w ∈ L2(K ′). Indeed, by (A.2.2), we observe that

AG−1 = (1−Aρ)Pσ,

and therefore (A.5.23) follows from the regularity ofAρ discussed after (A.2.2).
We recall that both G and Gm (cf. (A.2.4)) map to divergence free functions. Thus, by

(A.5.23), we have for any bounded setK ′ ⊃ K

Em

[
‖ξm − σm‖2L2(K′)

]
=

1

m
Em

∥∥∥∥∥∑
i

AG−1(G−Gm)(Wiδ
m
i )

∥∥∥∥∥
2

L2(K′)


≲ 1

m
Em

∑
i

∑
j ̸=i

ˆ
K′

(
AG−1(G−Gm)(Wiδ

m
i )
)(
AG−1(G−Gm)(Wjδ

m
j )
)

+
1

m
Em

[∑
i

ˆ
K′

|(G−Gm)(Wiδ
m
i )|2

]
=: I1 + I2.

Recalling the notation (A.5.4) and using (A.5.20), we deduce

I1 = (m− 1)‖AG−1(G−Gm)F‖2L2(K′) ≲ (m− 1)‖(G−Gm)F‖2L2(K′)

≲ m−3‖F‖2L2(R3) ≲ m−3
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due to (A.5.11). It remains to bound I2. By combining (A.5.21) with (A.5.17), we obtain

‖(G−Gm)(δmy )‖2L2(R3) ≲ m−2‖δmy ‖2
Ḣ−1(R3)

≲ m−1.

Thus, by (A.5.11)

I2 ≲ m−1Em[W1]
2 ≲ m−1.

For the gradient estimate, we can argue similarly: SinceAG−1 is bounded from Ḣ1(R3) to
Ḣ1(R3)

Em

[
‖∇(ξm − σm)‖2L2(R3)

]
=

1

m
Em

∥∥∥∥∥
m∑
i=1

∇AG−1(G−Gm)(Wiδ
m
i )

∥∥∥∥∥
2

L2(R3)


≲ 1

m
Em

 m∑
i=1

∑
j ̸=i

ˆ
R3

(
∇AG−1(G−Gm)(Wiδ

m
i )
)(

∇AG−1(G−Gm)(Wjδ
m
j )
)

+
1

m
Em

[
m∑
i=1

ˆ
R3

|∇(G−Gm)(Wiδ
m
i )|2

]
=: I1 + I2.

Using (A.5.21), we deduce

I1 = (m− 1)‖∇AG−1(G−Gm)F‖2L2(R3) ≲ (m− 1)‖∇(G−Gm)F‖2L2(R3)

≲ m−1‖F‖2L2(R3) ≲ m−1.

It remains to bound I2. Using that both Gm and G are bounded operators from H−1 to
Ḣ1, we find with (A.5.17)

‖∇(G−Gm)(δmy )‖2L2(R3) ≲ ‖δmy ‖2
Ḣ−1(R3)

≲ m.

Thus,

I2 ≲ mEm[W 2
1 ] ≲ m.

This finishes the proof.

Corollary A.5.6. For every 0 ≤ s < 1
2 and every K

′ ⊂ R3 bounded, there is a constant
Cs(K

′) > 0 independent ofm such that

Em

[
‖ξm − σm‖2Hs(K′)

]
≤ Cs(K

′)m−1+2s.

Proof. This follows from Lemma A.5.5 and the interpolation inequality

Em

[
‖ξm − σm‖2Hs(K′)

]
≲ Em

[
‖ξm − σm‖2(1−s)

L2(K′)
‖∇ξm −∇σm‖2sL2(K′)

]
≤ Em

[
‖ξm − σm‖2L2(K′)

]1−s
Em

[
‖∇ξm −∇σm‖2L2(K′)

]s
≲ m−1+2s.

This finishes the proof.
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Proof of Proposition A.3.3. By Lemma A.5.5, it suffices to prove

Em

[
‖σm − τm‖2Hs(K′)

]
≤ Cm−1+2s (A.5.24)

Em[‖τm‖2
Ḣs(K′)

] ≤ Cs(K
′)

for every 0 ≤ s < 1
2 . We introduce W̃i := u(Xi)−Vi. It is easily seen thatEm[W̃ 2

1 ] ≤ C and
Em[|W1 − W̃1|] ≲ 1

m uniformly inm. Since W̃iδXi are independent identically distributed
random variables, we obtain

Em

[
‖τm‖Ḣs(K′)

]
=

1

m
Em

∥∥∥∥∥
m∑
i=1

AF −AW̃iδXi

∥∥∥∥∥
2

Ḣs(K′)


= Em

[∥∥∥AF −AW̃1δX1

∥∥∥2
Ḣs(K′)

]
≤ Cs(K

′)

by (A.5.18).
Finally, have to estimate σm − τm:

Em

[
‖σm − τm‖2

Ḣs(K′)

]
=

1

m
Em

∥∥∥∥∥
m∑
i=1

A
(
Wiδ

m
i − W̃iδXi

)∥∥∥∥∥
2

Ḣs(K′)


≤ 1

m

m∑
i,j=1

Em

[∥∥∥A(Wiδ
m
i − W̃iδXi

)∥∥∥
Ḣs(K′)

∥∥∥A(Wjδ
m
j − W̃jδXj

)∥∥∥
Ḣs(K′)

]

=
1

m

m∑
j ̸=i=1

Em

[∥∥∥A(Wiδ
m
i − W̃iδXi

)∥∥∥
Ḣs(K′)

∥∥∥A(Wjδ
m
j − W̃jδXj

)∥∥∥
Ḣs(K′)

]

+
1

m

m∑
i=1

Em

[∥∥∥A(Wiδ
m
i − W̃iδXi

)∥∥∥2
Ḣs(K′)

]
= I1 + I2.

For I1, notice that by (A.5.12)

I1 = (m− 1)‖A(F − F̃ )‖2Hs(K′)

≤ (m− 1)‖A(F − F̃ )‖2
Ḣ1(K′)

≤ m−1.

For I2, we estimate

‖A(Wiδ
m
i − W̃iδXi)‖Ḣs(K′) ≤

∥∥∥A(Wi − W̃i)δ
m
i

∥∥∥
Ḣs(K′)

+
∥∥∥AW̃i(δ

m
i − δXi)

∥∥∥
Ḣs(K′)

≤ |Wi − W̃i|‖Aδmi ‖Ḣs(K′) + |W̃i|‖A(δmi − δXi)‖Ḣs(K′)

≲ |Wi − W̃i|+ms− 1
2 |W̃i|
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by (A.5.18) and by combining (A.5.19) with the fact that A is a bounded operator from
Ḣs−2(K ′) to Ḣs(K ′). Inserting this above, we find that

I2 ≲
1

m

m∑
i=1

Em

[(
Wi − W̃i|+ms− 1

2 |W̃i|
)2)]

≲ Em

[
|Wi − W̃i|2

]
+m−1+2sEm

[
|W̃i|2

)]
≲ m−1+2s.

Combining the estimates for I1 and I2 yields (A.5.24) which finishes the proof.

PROOF OF LEMMA A.4.1
We begin the proof of Lemma A.4.1 by observing that we have actually already proved the
required estimate for Λm. Indeed, Λm = m−1/2(Θm − Θ̂m) with Θ̂m as in Lemma A.5.5.
Moreover, in the proof of Lemma A.5.5, we showed ‖Θm − Θ̂m‖2

L2
loc(R3)

≲ m−1.
We divide the rest of proof of Lemma A.4.1 into three steps corresponding to the three

terms

I1 := Em

[
1Om‖∇(u+G(ρu− j))‖2L2(∪iBi)

]
,

I2 := Em

[
1Om‖∇Γm‖2L2(∪iBi)

]
,

I3 := m2Em

[
1Om‖Ξm‖2L2(∪iBi)

]
+ Em

[
1Om‖Ξ̃m‖2L2(K′)

]
+ Em

[
1Om‖∇Ξm‖2L2(∪iBi)

]
,

(A.5.25)

whereK ′ is a bounded set. We need to prove Ik ≤ Cm−2 for k = 1, 2, 3, uniformly inm
with a constant depending only on h, ρ andK ′.

Step 1: Estimate of I1.

Since∇Gh ∈ L2(R3) is deterministic, and the positions of the particles Bi are indepen-
dent, we estimate

I1 = Em

[
1Om‖∇Gh‖2L2(∪iBi)

]
≤ Em

[
‖∇Gh‖2L2(∪iBi)

]
= m−2

ˆ
R3

(ρ)x|∇Gh|2 dx

≲ m−2‖∇Gh‖2L2(R3) ≲ m−2.

Here we used (A.5.6) together with ρ ∈ L∞(R3).

Step 2: Estimate of I2.

Since Γm depends onm, the computation is more involved. According to the definition of
Γ, we split I2 again. More precisely, it suffices to estimate

I2,1 := Em


∥∥∥∥∥∥∇G

∑
j ̸=i

(u)j − Vj
m

δmj

∥∥∥∥∥∥
2

L2(∪iBi)

 ,
I2,2 := Em

[
‖∇G(ρm− 1

2 ξm)‖2L2(∪iBi)

]
.
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In the first term, we used that for (Z1, . . . , Zm) ∈ Om we can replaceGm byG according
to (A.2.17).

We first consider I2,1. We expand the square to obtain for any fixed i

I2,1 = mEm

ˆ
Bi

∇G

 1

m

∑
j ̸=i

(u)j − Vj
m

δmj

 (x)

∇G

 1

m

∑
k ̸=i

(u)k − Vk
m

δmk

 (x)



=:
1

m

∑
j ̸=i

∑
k ̸=i

Ij,k2,1 .

We distinguish the cases j 6= k and j = k. In the case j 6= k, we apply a similar reasoning
as for I1: due to the independence of Zi, Zj , Zk, we have withF as in (A.5.4)

Ijk2,1 = m−4

ˆ
R3

(ρ)x

(ˆ
R3×R3

∇G
[
((u)y − v) δmy

]
(x)f(dy,dv)

)2

dx

= m−4

ˆ
R3

(ρ)x (∇G[F ](x))2 dx ≲ m−4‖∇G[F ]‖2L2(R3),

where we used again (A.5.6). Since by (A.5.11), F is bounded in Ḣ−1(R3), we therefore
conclude that ∑

j ̸=i

∑
k ̸∈{i,k}

Ijk2,1 ≲ m−2.

It remains to estimate Ijj2,1. We compute

Ijj2,1 = m−4

ˆ
R3

(ρ)x

ˆ
R3×R3

(
∇G

[
((u)y − v) δmy

]
(x)
)2
f(dy,dv)dx

≲ m−4

ˆ
R3×R3

((u)y − v)2 ‖∇Gδmy ‖2L2(R3)f(dy,dv).

By (A.5.17)

‖∇Gδmy ‖2L2(R3) ≲ m.

Combining this with (A.5.7), we conclude∑
j ̸=i

Ijj2,1 ≲ m−2

ˆ
R3×R3

((u)y − v)2 f(dy, dv)

≲ m−2

(
‖ρ1/2(u)·‖2L2(R3) +

ˆ
R3×R3

|v|2f(dy,dv)
)

≲ m−2

(
‖u‖2L2(K) +

ˆ
R3×R3

|v|2f(dy,dv)
)

≲ m−2,

by assumption (H1).
We now turn to I2,2. We estimate

I2,2 ≤ Em

[
‖∇G(ρm− 1

2σm)‖2L2(∪iBi)

]
+ Em

[
‖∇G(ρm− 1

2 (ξm − σm)‖2L2(∪iBi)

]
,
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with σm from Lemma A.5.5. Using this lemma and the fact thatGρ is a bounded operator
from Ḣ1(R3) toW 1,∞(R3), we find

Em

[
‖∇G(ρm− 1

2 (ξm − σm))‖2L2(∪iBi)

]
≲ m−2‖m− 1

2 (ξm − σm)‖2
Ḣ1(R3)

≲ m−2.

Recalling the definition of σm from Lemma A.5.5, we have

Em

[
‖∇G(ρm− 1

2σm)‖2L2(∪iBi)

]
≤

m∑
i=1

Em


∥∥∥∥∥∥∇G

ρA
F − 1

m

m∑
j=1

Wjδ
m
j

∥∥∥∥∥∥
2

L2(Bi)


≲

m∑
i=1

Em

[
‖∇G (ρAF )‖2L2(Bi)

]

+

m∑
i=1

Em


∥∥∥∥∥∥∇G

ρA
 1

m

m∑
j=1

[Wjδ
m
j ]

∥∥∥∥∥∥
2

L2(Bi)


=: I2,2,1 + I2,2,2.

This is a very rough estimate, since we actually expect cancellations from the difference.
However, these cancellations are not needed here for the desired bound. Indeed, since
GρA is a bounded operators from Ḣ−1(R3) to Ḣ1(R3), I2,2,1 is controlled analogously as
I1.

It remains to estimate I2,2,2. We expand the square again and write

I2,2,2

=
m∑
i=1

Em

ˆ
Bi

∇G

ρA
 1

m

m∑
j=1

Wjδ
m
j

 ·

(
∇G

(
ρA

[
1

m

m∑
k=1

Wkδ
m
k

]))
dx


=:

m∑
i=1

m∑
j=1

m∑
k=1

Ii,j,k2,2,2.

We have to distinguish the cases where all i, j, k are distinct, the case where j = k but
j 6= i, the case where i = j or i = k but j 6= k, and, finally, the case where i = j = k.

In the first case, we can proceed analogously as for Ij,k2,1 . In particular, we use the defi-
nition ofF to deduce

m∑
i=1

∑
j ̸=i

∑
k ̸∈{i,j}

Ii,j,k2,2,2 = m−3m(m− 1)(m− 2)

m2

ˆ
R3

(ρ)x(∇GρAF)2 dx

≲ m−2‖∇GρAF‖2L2(R3) ≲ m−2‖F‖2
Ḣ−1(R3)

≲ m−2,

sinceGρA is also bounded from Ḣ−1(R3) to Ḣ1(R3).
Next, we estimate Ii,j,j2,2,2. Analogously as for I

j,j
2,1, we obtain

m∑
i=1

∑
j ̸=i

Ii,j,j2,2,2 = m−3m(m− 1)

m2

ˆ
R3

(ρ)x

ˆ
R3

(
∇GρA((u)y − v)δmy (x)

)2
f(dy,dv)dx

≲ m−3

ˆ
R3

((u)y − v)2
∥∥∇GρAδmy (x)

∥∥2
L2
x(R3)

f(dy,dv).
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Since∇GV is a boundedoperator from Ḣ1(R3) toL2(R3), weobtainby (A.5.17) combined
with (A.5.7) and using (H1)

m∑
i=1

∑
j ̸=i

Ii,j,j2,2,2 ≲ m−2

(
‖ρ1/2(u)‖2L2(R3) +

ˆ
R3×R3

|v|2f(dy,dv)
)

≲ m−2.

The third estimate concerns Ii,i,k2,2,2. By symmetry, Ii,j,i2,2,2 is dealt with analogously. We
have, using (A.5.17), (A.5.11), and (A.5.7) together with (A.5.6),

m∑
i=1

∑
k ̸=i

Ii,i,k2,2,2

=
m(m− 1)

m2

ˆ
R3

Em [1Bi∇G (ρA [Wiδ
m
i ])]∇G (ρA [F ]) dx

≲ ‖∇GρAF‖L2(R3)

∥∥∥∥ˆ
R3×R3

1Bm(y)∇G
(
ρA
[
((u)y − v)δmy

])
f(dy,dv)

∥∥∥∥
L2(R3)

≲ sup
y∈R3

‖∇GρAδmy ‖L∞

∥∥∥∥ˆ
R3×R3

((u)y − v)1Bm(y)f(dy,dv)
∥∥∥∥
L2(R3)

≲ m1/2m−3‖(ρ(u)· − j)·‖L2(R3) ≲ m−5/2.

We also used that the operator∇GρAmaps Ḣ−1(R3) into L∞(R3), as well as j ∈ L2(R3)
by assumption (H3).

Finally, we estimate Ii,i,i2,2,2. Using (A.5.17) and (A.5.7), we obtain

m∑
i=1

Ii,i,i2,2,2 =
m

m2

ˆ
R3

Em

[
1Bi |∇G (ρA [Wiδ

m
i ])|2)

]
dx

=
1

m

ˆ
R3

ˆ
R3×R3

1Bm(y)

∣∣∇G (ρA [((u)y − v)δmy
])∣∣2 f(dy,dv)dx

≲ 1

m
sup
y∈R3

‖∇GρAδmy ‖2L∞(R3)

ˆ
R3

ˆ
R3×R3

1Bm(y) ((u)y − v)2 f(dy,dv)dx

≲
ˆ
R3

ˆ
R3×R3

1Bm(y)

(
|(u)y|2 +  |v|2

)
f(dy,dv)dx

≲ m−3

(ˆ
R3

ρ(y)|(u)y|2 dy dx+

ˆ
R3×R3

|v|2f(dy,dv)
)

≲ m−3.

This finishes the estimate of I2,2,2. Therefore, the estimate of I2,2 is complete, which
also finishes the estimate of I2.

Step 3: Estimate of I3.

We recall from (A.5.25) that I3 consists of three terms, which we denote by J1, J2 and J3.
We will focus on the proof on J1 as this is themost difficult term. We will comment on the
adjustments needed to treat J2 and J3 along the estimates for J1. Roughly speaking, the
main difference between J1 and J2 is that one considers L2(∪iBi) for J1 and L2

loc(R3) for
J2. Naively, J1 should therefore be better by a factor | ∪i Bi| ∼ m−2, which is exactly the
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estimate we obtain. Moreover, J3 concerns the gradient of the terms in J1. Since we may
loose a factorm−2 going from J1 to J3, it will not be difficult to adapt the estimates for J1
to J3 using the gradient estimates in Section A.5. For the sake of completeness we detail
the estimates for J3 in the appendix.

Step 3.1: Expansion of the terms

As in the previous step, we first want to replace all occurrences ofGm byG. Note thatGm

is present both explicitly in the definition ofΞm and also implicitly through ξm. By (A.2.17)
and independence of the position of the particles, it holds

m2Em

[
1Om‖Ξm‖2L2(∪iBi)

]
≤ m2Em

1Om

m∑
i=1

ˆ
Bi

∣∣∣∣∣∣G(ρm− 1
2 ξm)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

∣∣∣∣∣∣
2

dx


= m3Em

1Om

ˆ
Bi

∣∣∣∣∣∣G(ρm− 1
2 ξm)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

∣∣∣∣∣∣
2

dx


≲ m3Em

[ˆ
Bi

∣∣∣G(ρm−1/2(ξm − σm))
∣∣∣2 dx]

+m3Em

1Om

ˆ
Bi

∣∣∣∣∣∣G(V m− 1
2σm)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

∣∣∣∣∣∣
2

dx

 ,
where on the right-hand side, i is any of them identically distributed particles. Weuse that
Gρ is a bounded operator from L2(K) to L∞(Bi) and Lemma A.5.5 to deduce

m3Em

[ˆ
Bi

∣∣∣G(ρm−1/2(ξm − σm))
∣∣∣2] ≲ Em

[∥∥∥G(ρm−1/2(ξm − σm))
∥∥∥2
L∞(Bi)

]
≲ mEm

[∥∥∥m−1/2(ξm − σm)
∥∥∥2
L2(K)

]
≲ m−2.

This implies, that for the estimate of J1, it suffices to show that

J1 := Em

1Om

ˆ
Bi

∣∣∣∣∣∣G(ρm− 1
2σm)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

∣∣∣∣∣∣
2

dx

 ≲ m−5.

By the definitions of m− 1
2 ξm and m− 1

2 ρm (cf. (A.2.20) and (A.5.22)) together with
(A.2.17), we have inOm

G(ρm− 1
2σm)−G

∑
j ̸=i

m− 1
2 (ξm)j
m

δmj

 =
1

m

m∑
k=1

m∑
j=1

Ψjk,

Ψj,k(x) := G [ρA (F −Wkδ
m
k )]− (1− δij)G

[
(A (F − (1− δjk)Wkδ

m
k ))j δ

m
j

]
.(A.5.26)

(Strictly speakingΨj,k depends on i, butweomit this dependence for the ease of notation.)
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Thus,

J1 ≤ m−1
m∑
j=1

m∑
k=1

m∑
n=1

m∑
ℓ=1

Ii,j,k,n,ℓ3 ,

Ii,j,k,n,ℓ3 := Em

[ˆ
Bi

Ψj,k(x)Ψn,ℓ(x)dx
]
.

Similarly, we have the estimate

J3 ≲ Em

[ˆ
∪iBi

∣∣∣∇G(ρm− 1
2 (ξm − σm))

∣∣∣2]+ J3 ≲ m−2 + J3,

J3 := m−3
m∑
j=1

m∑
k=1

m∑
n=1

m∑
ℓ=1

Em

[ˆ
Bi

∇Ψj,k(x)∇Ψn,ℓ(x)dx
]
, (A.5.27)

with the same proof as before using that ∇Gρ is a bounded operator from Ḣ1(R3) to
W 1,∞(R3) and the second part of Lemma A.5.5.

Furthermore,

J2 ≲ Em

[∥∥∥G(ρm− 1
2 (ξm − σm))

∥∥∥2
L2(K′)

]
+ J2 ≲ m−2 + J2,

J2 := m−4
m∑
j=1

m∑
k=1

m∑
n=1

m∑
ℓ=1

ˆ
K′

Em

[
Ψ̃j,k(x)Ψ̃n,ℓ(x)

]
dx,

where Ψ̃j,k denotes the function that is obtained by omitting the factor (1−δij) in (A.5.26).

Relying on this structure enables us to make more precise the argument why the esti-
mate for J1 is most difficult compared to J2 and J3. Indeed, for the estimate for J3, one
just follows the same argument as for J1. The relevant estimates in Section A.5 show that
whenever ∇G instead of G appears, we loose (at most) a factorm−1. For completeness,
we provide the proof of the estimates regarding J3 in the appendix.

On the other hand, for J2, we can use the estimates that we will prove for the terms
of J1 in the case when the index i is different from all the other indices. Indeed, in those
cases,Ψj,k = Ψ̃j,k, and we will always estimate

|Ii,j,k,n,ℓ3 | =
∣∣∣∣m−3

ˆ
R3

(ρ)xEm [Ψj,kΨn,ℓ] dx
∣∣∣∣ ≲ m−3 ‖Em [Ψj,k(x)Ψn,ℓ(x)]‖L1

loc(R3) .

Thus, the bound for J2 is a direct consequence of the estimates wewill derive to bound J1.

Recall that we need to prove |J1| ≲ m−2. We will split the sum into the cases
#{i, j, k, n, `} = α, α = 1, . . . , 5. Then, since i is fixed, there will be mα−1 summands
for the case #{i, j, k, n, `} = α. Thus, it is enough to show that in each of these cases

|Ii,j,k,n,ℓ3 | ≲ m−α, α = #{i, j, k, n, `}.

To prove this estimate, we have to rely on cancellations between the terms thatΨj,k is
composed of. To this end, we denote the first part ofΨj,k by

Ψ
(1)
k := Ψ(1,1) +Ψ

(1,2)
k := G [ρAF − ρA[Wkδ

m
k ]] ,
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and the second part by

Ψ
(2)
j,k := Ψ

(2,1)
j +Ψ

(2,2)
j,k := (1− δij)G

[
(A (F − (1− δjk)Wkδ

m
k ))j δ

m
j

]
.

We observe that
Em[Ψ(1,1)] = GρAF,

Em[Ψ
(1,2)
k ] = GρAF ,

Em[Ψ
(2,1)
j ] = (1− δij)GRAF,

Em[Ψ
(2,2)
j,k ] = (1− δij)(1− δjk)GRAF .

(A.5.28)

Step 3.2: The cases in which at most 2 indices are equal

In many cases, we can rely on cancellations within Ψ
(1)
k and Ψ

(2)
j,k . Indeed, we will prove

the following lemma:

Lemma A.5.7. LetK ′ ⊂ R3 be bounded. Then,∥∥∥Em[Ψ
(1)
k ]
∥∥∥
L2(K′)

≲ m−1, (A.5.29)∥∥∥Em[Ψ
(2)
j,k ]
∥∥∥
L2(K′)

≲ m−1 if j 6= k. (A.5.30)

There are only three cases (up to symmetry), where we have to rely on cancellations
betweenΨ

(1)
k andΨ

(2)
j,k to estimate Ii,j,k,n,ℓ3 . These are the cross terms, when either j = n,

or k = `, or j = `, and all the other indices are different. In these cases, we will rely on the
following lemma:

Lemma A.5.8. LetK ′ ⊂ R3 be bounded. Then,

‖Em [Ψj,kΨj,ℓ] ‖L1(K′) ≲ m−2 if #{i, j, k, `} = 4, (A.5.31)
‖Em [Ψj,kΨn,k] ‖L1(K′) ≲ m−2 if #{i, j, k, n} = 4, (A.5.32)
‖Em [Ψj,kΨn,j ] ‖L1(K′) ≲ m−2 if #{i, j, k, n} = 4. (A.5.33)

Finally, we obtain the following estimates, useful in particular for the cases in which
i = k.

Lemma A.5.9. LetK ′ ⊂ R3 be bounded. Then, for any i, j, k,∥∥∥Em[Ψ(1,1)]
∥∥∥
L2(K′)

+
∥∥∥Em[Ψ

(1,2)
k ]

∥∥∥
L2(K′)

+
∥∥∥Em[Ψ

(2,1)
j ]

∥∥∥
L2(K′)

+
∥∥∥Em[Ψ

(2,2)
j,k ]

∥∥∥
L2(K′)

≲ 1. (A.5.34)∥∥∥Em[1Bm
i
Ψ(1,1)]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
Ψ

(1,2)
k ]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
Ψ

(2,1)
j ]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
Ψ

(2,2)
k,j ]

∥∥∥
L2(R3)

≲ m−3. (A.5.35)
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Combining these lemmas allows us to estimate Ii,j,k,n,ℓ3 in all the cases when α =
#{i, j, k, n, `} ≥ 4.

Corollary A.5.10. The following estimates hold true where the implicit constants are in-
dependent ofm:

1. If #{i, j, k, n, `} = 5, then
|Ii,j,k,n,ℓ3 | ≲ m−5.

2. If #{i, j, k, n, `} = 4, then

|Ii,j,k,n,ℓ3 | ≲ m−4.

Proof. If #{i, j, k, n, `} = 5, thenby independence, theHölder inequality andLemmaA.5.7

|Ii,j,k,n,ℓ3 | ≤
∥∥∥∥Em

[
1B 1

m
(wi)

]∥∥∥∥
L∞(R3)

‖Em [Ψj,k]‖L2(K) ‖Em [Ψn,ℓ]‖L2(K)

≲ m−3m−1m−1 = m−5.

If #{i, j, k, n, `} = 4, we need to distinguish all the possible combinations of two in-
dices being equal. Depending onwhich indices coincide, we split the product by indepen-
dence of the other indices. If j = n, k = ` or j = ` (or k = n which is the same), we rely
on Lemma A.5.8 and gain an additional factorm−3 from the expectation of 1Bm

i
.

If j = k (or analogously n = `), the expectation completely factorizes into
Em[1Bm

i
]Em[Ψjj ]Em[Ψnℓ]andwecanapply (A.5.34) for the second factor andLemmaA.5.7

for the third factor.
Finally, in all the other cases we can, without loss of generality, split the expectation

into Em[1Bm
i
Ψjk]Em[Ψnℓ] and apply (A.5.35) for the first factor and Lemma A.5.7 for the

second factor.

We finish this step by giving the proofs of Lemmas A.5.7, A.5.8 and A.5.9.

Proof of Lemma A.5.7. By (A.5.28), we have

Em[Ψ
(1)
k ] = GρA(F −F),

and using (A.5.12) yields (A.5.29). Similarly, for j 6= k, i 6= j,

Em[Ψ
(2)
j,k ] = GRA(F −F).

Using again (A.5.12) and recalling from Lemma A.5.1 that R is a bounded operator from
L2(K) to Ḣ−1(R3) yields (A.5.30). For i = j,Ψ(2)

j,k = 0 and there is nothing to prove.

Proof of Lemma A.5.8. Regarding (A.5.31), we have
Em [Ψj,kΨj,ℓ]

=

˚ (
G
[
ρA
(
F −

(
(u)y2 − v2

)
δmy2
)]

−G

[(
A
(
F −

(
(u)y2 − v2

)
δmy2
))

y1

δmy1

])
(
G
[
ρA
(
F −

(
(u)y3 − v3

)
δmy3
)]

−G

[(
A
(
F −

(
(u)y3 − v3

)
δmy3
))

y1

δmy1

])
f(dy1,dv1)f(dy2,dv2)f(dy3,dv3)

=

ˆ
ρ(y1)

(
GρA(F −F)− (A(F −F))y1Gδ

m
y1

)2 dy1.
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We obtain

‖Em [Ψj,kΨj,ℓ] ‖L1(K′) ≲ ‖GρA(F −F)‖2L2(K′) +

ˆ
ρ(y)(A(F −F))2y‖Gδmy ‖2L2(K) dy

≲ m−2 + ‖A(F −F)‖2L2(K′) ≲ m−2,

where we used (A.5.12) for both terms and (A.5.16) and (A.5.7) for the second term.
Regarding (A.5.32), we compute

Em [Ψj,kΨn,k]

=

˚ (
G
[
ρA
(
F −

(
(u)y2 − v2

)
δmy2
)]

−G

[(
A
(
F −

(
(u)y2 − v2

)
δmy2
))

y1

δmy1

])
(
G
[
ρA
(
F −

(
(u)y2 − v2

)
δmy2
)]

−G

[(
A
(
F −

(
(u)y2 − v2

)
δmy2
))

y3

δmy3

])
f(dy1,dv1)f(dy2,dv2)f(dy3,dv3)

=

ˆ
ρ(y2)

(
G(ρ−R)AF −

(
(u)y2 − v2

)
G(ρ−R)Aδmy2

)2
f(dy2,dv2).

Thus, we obtain

‖Em [Ψj,kΨn,k] ‖L1(K′) ≲ ‖G(ρ−R)AF‖2L2(K′)

+ sup
z

‖G(ρ−R)Aδmz ‖2L2(K′)

ˆ
((u)z − v)2f(dz,dv)

≲ m−2,

where we used (A.5.16) for both terms and (A.5.7) and (H1) for the second term.
Finally, to prove (A.5.33), we just apply Young’s inequality to reduce to the previous two

estimates. Indeed,

Em [Ψj,kΨn,j ] =

ˆ (
GρA(F −F)− (A(F −F)u)y Gδ

m
y

)
(
G(ρ−R)AF −

(
(u)y − v

)
G(ρ−R)Aδmy

)
f(dy,dv)

≤
ˆ
ρ(y)

(
GρA(F −F)− (A(F −F)u)y Gδ

m
y

)2
dy

+

ˆ (
G(ρ−R)AF −

(
(u)y − v

)
G(ρ−R)Aδm

)2
f(dy,dv).

These two terms are exactly the ones we have estimated in the previous two steps.

Proof of Lemma A.5.9. Thefirst estimate (A.5.34) follows directly from (A.5.28) and (A.5.11)
together with the fact that the operatorsGρA,GρA,GRA andGRA are all bounded from
Ḣ1(R3) to L2

loc(R3).
Regarding (A.5.35), we first observe that these estimates follow directly from (A.5.34) in

the cases, when i 6= k. Indeed, if i is different fromboth j and k, the expectation factorizes.
Moreover, the case i = j is trivial, since the terms with index j vanish for i = j.

If i = k, we only need to consider those terms, where k appears, i.e. Ψ(1,2)
k andΨ

(2,2)
j,k .

Again, we only need to consider the case j 6= k = i.
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We have forΨ(1,2)
k

‖Em[1Bm
i
Ψ

(1,2)
i ]‖L2(R3) =

∥∥∥∥ˆ 1Bm(y)GρA
[(
(u)y − v

)
δmy
]
f(dy,dv)

∥∥∥∥
L2(R3)

≤ sup
y∈R3

‖GρAδmy ‖L∞(R3)

∥∥∥∥ˆ ((u)y − v
)
1Bm(y)f(dy,dv)

∥∥∥∥
L2(R3)

≲ m−3‖(ρ(u)· − j)·‖L2(R3) ≲ m−3,

where we used (A.5.16), (A.5.6) and (A.5.7). Since for j 6= i,

Em[1Bm
i
Ψ

(2,2)
j,i ] =

ˆ
1Bm(y)GRA

[(
(u)y − v

)
δmy
]
f(dy,dv),

the estimate of this term is analogous.

Step 3.3: The cases in which the number of different indices is 3 or less.

It remains to estimate |Ii,j,k,n,ℓ3 |, when #{i, j, k, n, `} ≤ 3. We will show that |Ii,j,k,n,ℓ3 | ≲
m−3 for #{i, j, k, n, `} = 3, and |Ii,j,k,n,l3 | ≲ m−2 for #{i, j, k, n, `} ≤ 2. Formally, a factor
m−3 can be expected to come from the term 1Bm

i
, so that cancellations are not needed for

the estimates of those term. Wewill see that this strategy works for all the terms except for
Ii,j,i,j,ℓ3 with i, j, `mutually distinct.

Thus, in all cases except Ii,j,i,j,ℓ3 with i, j, `mutually distinct, we just brutally estimate
the productΨj,kΨn,ℓ via the triangle inequality∣∣∣Ii,j,k,n,ℓ3

∣∣∣ ≤ 2∑
α,β,γ,δ=1

ˆ ∣∣∣Em

[
1Bm

i
Ψ

(α,β)
j,k Ψ

(γ,δ)
n,ℓ

]∣∣∣ ,
with the convention thatΨ(1,1)

j,k = Ψ(1,1), and similarly forΨ(1,2)
j,k andΨ

(2,1)
j,k .

We now consider all possible cases of (α, β, γ, δ) ∈ {1, 2}4 and #{i, j, k, n, `} ≤ 3.
SinceΨ(1,1) does not depend on any index and bothΨ

(1,2)
k andΨ(2,1)

j only depend on one
index (not taking into account the dependence of i sinceΨ(2,1)

i = 0 anyway), the number
of cases to be considered considerably reduces for these terms.

In order to exploit this in the sequel, we introduce the following slightly abusive no-
tation. When considering the term Em[1Bm

i
Ψ

(α,β)
j,k Ψ

(γ,δ)
n,ℓ ] for fixed α, β, γ, δ, we define the

notion of relevant indices to be the subset of indices {i, j, k, n, `} appearing in this product
after replacingΨ(1,1)

j,k byΨ(1,1) and similarly forΨ(1,2)
j,k ,Ψ(2,1)

j,k and for the indices n, `.
To further reduce the number of cases that we have to consider, we next argue that we

do not have to consider the cases {j, k, n, `}with J ∩{j, k}∩{n, `} = ∅, where J is the set
of relevant indices. Indeed, in all these cases, the expectation factorizes, and we conclude
by the bounds provided by Lemma A.5.9. In particular, we do not have to consider any
case whereΨ(1,1) appears.

Moreover, if j is a relevant index and i = j, then Ψ
(2,2)
j,k = Ψ

(2,1)
j = 0, and therefore,

there is nothing to estimate. If j and k are both relevant indices and j = k, thenΨ(2,2)
j,j = 0,

and therefore, there is nothing to estimate either. The same reasoning applies to the cases
where i = n and n = `, respectively.

Wenow list all the cases that are left to consider. Cases that are equivalent by symmetry
we list only once. We use the convention here, that we only specify which relevant indices
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coincide; relevant indices which are not explicitly denoted as equal are assumed to be dif-
ferent. The indices which are not relevant may take any number, in particular coinciding
with each other or with relevant indices.

1. (α, β, γ, δ) = (2, 2, 2, 2): Relevant indices: {i, j, k, n, `}. Since all the indices are
relevant, we only have to consider cases where at least two pairs or three indices
coincide. All the other cases are already covered when we have estimated Ii,j,k,n,ℓ
with #{i, j, k, n, `} ≥ 4. The cases left to consider are

a) i = k, j = n,
b) i = k, j = `,
c) i = k = `,
d) j = n, k = `,
e) j = `, k = n,
f ) i = k = `, j = n.

2. (α, β, γ, δ) = (2, 1, 2, 2): Relevant indices: {i, j, n, `}. Cases to consider:

a) j = n,
b) j = `,
c) i = `, j = n.

3. (α, β, γ, δ) = (2, 1, 2, 1): Relevant indices: {i, j, n}. Only case to consider: j = n.

4. (α, β, γ, δ) = (1, 2, 2, 2): Relevant indices: {i, k, n, `}. Cases to consider:

a) i = k = `,
b) i = `, k = n,
c) k = n.

5. (α, β, γ, δ) = (1, 2, 2, 1): Relevant indices: {i, k, n}. Only case to consider: k = n.

6. (α, β, γ, δ) = (1, 2, 1, 2): Relevant indices: {i, k, `}. Cases to consider:

a) k = `,
b) i = k = `.

In order to conclude the proof of the lemma, it now remains to give estimates for the
cases listed above.

The case (1a): Asmentioned at the beginning of Step 3.3, this is the case, where we rely
on cancellations withΨ(2,1) coming from case (2c). We estimate

Em

[
1Bm

i
(x)Ψ

(2,2)
j,i (x)(Ψ

(2,1)
jℓ −Ψ

(2,2)
jℓ )(x)

]
=

¨
1Bm(y1)(x)G

[(
A
[(
(u)y1 − v1

)
δmy1
])

y2
δmy2

]
(x)·

·G
[
(A (F −F))y2 δ

m
y2

]
(x)f(dy1,dv1)f(dy2,dv2)

=

¨
ρ(y2)1Bm(y1)(x)

(
A
[(
(u)y1 − v1

)
δmy1
])

y2
(Gδmy2)

2(x) (A(F −F))y2 f(dy1,dv1)dy2.
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Hence, sinceAmaps L2(R3) ∩ Ḣ−1(R3) to L∞(R3) and by (A.5.12)
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji (Ψ

(2,1)
jℓ −Ψ

(2,2)
jℓ )

]∣∣∣ dx
≲ m−1

˚
ρ(y2)1Bm(y1)(x)

∣∣∣(A [((u)y1 − v1
)
δmy1
])

y2

∣∣∣ (Gδmy2)2(x)f(dy1,dv1)dy2 dx.
By (A.5.13)

ˆ
1Bm(y1)(x)(Gδ

m
y2)

2(x)dx ≲ m−3 1

|y2 − y1|2 +m−2
. (A.5.36)

Combining this with the pointwise estimate (A.5.14) yields
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji (Ψ

(2,1)
jℓ −Ψ

(2,2)
jℓ )

]∣∣∣ dx
≲ m−4

¨
ρ(y2)|(u)y1 − v1|

1

|y2 − y1|2 +m−2

(
1 +

1

|y2 − y1|+m−1

)
f(dy1,dv1)dy2

≲ m−4 logm
ˆ

|(u)y1 − v1|f(dy1,dv1) ≲ m−4 logm,

where we used (A.5.7) and (H1).

The case (1b) is similar. However, it turns out to be easier, since the singularity is sub-
critical, so we do not need to take into account cancellations. Indeed,

Em

[
1Bm

i
(x)Ψ

(2,2)
ji (x)Ψ

(2,2)
nj (x)

]
=

¨
1Bm(y1)(x)G

[(
A
[(
(u)y1 − v1

)
δmy1
])

y2
δmy2

]
(x)

·G
[ˆ (

A
[(
(u)y2 − v2

)
δmy2
])

y3
δmy3f(dy3,dv3)]

]
(x)f(dy1,dv1)f(dy2,dv2)

=

¨ (
(u)y1 − v1

)(
(u)y2 − v2

)
1Bm(y1)(x)

(
Aδmy1

)
y2
(Gδmy2)(x)·

·
(
GRAδmy2

)
(x)f(dy1,dv1)f(dy2,dv2).

Thus, sinceGRmaps L2(K) to L∞(R3) and by (A.5.16)
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji Ψ

(2,2)
nj

]∣∣∣ dx
≲
¨ (

(u)y1 − v1
)(
(u)y2 − v2

)
1Bm(y1)(x)

∣∣∣(Aδmy1)y2∣∣∣ ∣∣(Gδmy2)∣∣ (x)f(dy1,dv1)f(dy2,dv2).
(A.5.37)

Now we proceed as in the previous case to estimate
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji Ψ

(2,2)
nj

]∣∣∣ dx
≲ m−3

¨ ((
(u)y1 − v1

)2
+
(
(u)y2 − v2

)2) 1 + 1
|y2−y1|+m−1

|y2 − y1|+m−1
f(dy1,dv1)f(dy2,dv2)

≲ m−3.
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The case (1c): We have

Em

[
1Bm

i
(x)Ψ

(2,2)
ji (x)Ψ

(2,2)
ni (x)

]
=

ˆ
1Bm(y1)(x)

(
G

[ˆ
ρ(y2)

(
A
[(
(u)y1 − v1

)
δmy1
])

y2
δmy2 dz

])
(x)2f(dy1,dv1)

=

ˆ (
(u)y1 − v1

)21Bm(y1)(x)
(
GRAδmy1

)
(x)2f(dy1,dv1).

Thus, using first that ‖GRAδmy1‖L∞(R3) ≲ 1 as above, (H1) and (A.5.6) togetherwith (A.5.7).
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji Ψ

(2,2)
ni

]∣∣∣ dx ≲
ˆ ˆ (

(u)y1 − v1
)21Bm(y1)(x)f(dy1,dv1)dx ≲ m−3.

The case (1d): We compute

Em

[
1Bm

i
(x)Ψ

(2,2)
jk (x)Ψ

(2,2)
jk (x)

]
= m−3

¨
(ρ)xρ(y2)

(
G
[(
A
[(
(u)y1 − v1

)
δmy1
])

y2
δmy2

]
(x)
)2
f(dy1,dv1)dy2

= m−3

¨
(ρ)xρ(y2)

(
(u)y1 − v1

)2 (
Aδmy1

)2
y2
(Gδmy2)

2(x)f(dy1,dv1)dy2.

Using (A.5.16) twice, (A.5.7) together with (H2) and (H1), we can successively estimate the
integral in x, y2 and (y1, v1) to deduceˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
jk Ψ

(2,2)
jk

]∣∣∣ dx ≲ m−3

ˆ
ρ(y2)

(
(u)y1 − v1

)2 (
A
[
δmy1
])2

y2
f(dy1,dv1)dy2

≲ m−3

ˆ (
(u)y1 − v1

)2
f(dy1,dv1) ≲ m−3.

The case (1e): We just observe that by Young’s inequality
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
jk Ψ

(2,2)
kj

]∣∣∣ dx ≤
ˆ

Em

[
1Bm

i

((
Ψ

(2,2)
jk

)2
+
(
Ψ

(2,2)
kj

)2)]
dx.

Thus, this case is reduced to case (1d).
The case (1f). Note that #{i, j, k, n, `} = 2. Hence, we only need a boundm−2. Wehave

Em

[
1Bm

i
(x)Ψ

(2,2)
ji (x)Ψ

(2,2)
ji (x)

]
=

¨
ρ(y2)1Bm(y1)(x)

(
G
[(
A
[(
(u)y1 − v1

)
δmy1
])

y2
δmy2

]
(x)
)2
f(dy1,dv1)dy2

=

¨
ρ(y2)

(
(u)y1 − v1

)21Bm(y1)(x)
(
Aδmy1

)2
y2
(Gδmy2)

2(x)f(dy1,dv1)dy2.

We can estimate the integral in x using again (A.5.36)
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji Ψ

(2,2)
ji

]∣∣∣ dx
≤
ˆ
ρ(y2)

(
(u)y1 − v1

)21Bm(y1)(x)
(
Aδmy1

)2
y2
(Gδmy2)

2(x)f(dy1,dv1)dy2 dx

≲ m−3

ˆ
ρ(y2)

(
(u)y1 − v1

)2 (
Aδmy1

)2
y2

1

|y2 − y1|2 +m−2
f(dy1,dv1)dy2.
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Moreover, using (A.5.14), we findˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
ji Ψ

(2,2)
ji

]∣∣∣ dx
≲ m−3

ˆ
ρ(y2)

(
(u)y1 − v1

)2( 1

|y2 − y1|2 +m−2
+

1

|y2 − y1|4 +m−4

)
f(dy1,dv1)dy2

≲ m−2

ˆ (
(u)y1 − v1

)2
f(dy1,dv1) ≲ m−2,

where we used (A.5.7) and (H1) in the last estimate. Note that this estimate is sufficient,
since the number of different indices in this case is only 2.

The cases (2a) and (2b) are reduced to the cases (3) and (1d) by Young’s inequality, anal-
ogously as in the case (1e).

The case (2c) was estimated together with the case (1a) if k is different from the other
indices.

If k coincides with one of the other indices, the number of different indices is 2 andwe
can reduce the case to the cases (3) and (1f) by Young’s inequality.

The case (3): In this case we get a factorm−3 from 1Bm
i
and thus the desired estimate

follows from

‖Em[|Ψ(2,1)
j |2]‖L1(K) ≲

ˆ
ρ(y1)|(AF )y1 |2‖Gδmy1‖

2
L2(K) dy1 ≲ 1,

where we used (A.5.16) and (A.5.7).
The case (4a) is estimated by an analogous computation as the one at the end of the

proof of Lemma A.5.9, relying on the fact that

‖Ψ(1,2)
k ‖L∞(R3) ≲ |(u)k − Vk|, (A.5.38)

which is a direct consequence of (A.5.16) and the fact that Gρ is bounded from L2(K) to
L∞(R3). Since the index n is free, a similar bound can be used forΨ(2,2)

n,ℓ . More precisely,

|Em[1Bm
i
Ψ

(1,2)
i Ψ

(2,2)
n,i ]|

≤
ˆ
1Bm(y1)

∣∣GRA [((u)y1 − v1
)
δmy1
]∣∣ ∣∣GρA [((u)y1 − v1

)
δmy1
]∣∣ f(dy1,dv1)

≲
ˆ
1Bm(y1)|(u)y1 − v1|2f(dy1,dv1),

sinceGR andGρmap L2(K) to L∞(R3) and using again (A.5.16). As before, integrating
in x yields a factorm−3.

The case (4b): Using (A.5.38) yields

|Em[1Bm
i
Ψ

(1,2)
k Ψ

(2,2)
k,i ]|

≲
ˆ
1Bm(y1)|(u)y1 − v1||(u)y2 − v2|G[δmy2 ]|(Aδ

m
y1)y2 |f(dy1,dv1)f(dy2,dv2),

which is the same as (A.5.37) which we have already estimated.
The case (4c) is reduced to the cases (6a) and (1d) by Young’s inequality.
The case (5) is reduced to the cases (6a) and (3) by Young’s inequality.
The cases (6a) and (6b) are estimated by an analogous computation as the one at the

end of the proof of Lemma A.5.9, relying on (A.5.38) again.
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A.6 Appendix

PROOFS OF THE AUXILIARY ESTIMATES FROM SECTION A.5

Proof of Lemma A.5.1. (i)Define

[w](x) =

 
∂Bm

x

w(y)dH2(y).

We observe that forw ∈W 1,p(R3), 1 ≤ p <∞

‖[w]‖p
Lp(R3)

=

ˆ
R3

∣∣∣∣∣
 
∂Bm(x)

w(y)dH2(y)

∣∣∣∣∣
p

dx

≤
ˆ
R3

 
R3

1|x−y|=m−1 |w(y)|p dH2(y)dx

=

ˆ
R3

 
R3

1|y′|=m−1 |w(y′ + x)|p dH2(y′)dx

=

ˆ
R3

 
R3

1|y′|=m−1 |w(x′)|p dH2(y′)dx′

= ‖w‖p
Lp(R3)

.

By density, the operator [·] is defined onLp(R3). Using an analogous argument also for the
average (·) over the full ball yields (A.5.6).

(ii) Ifw ∈ Lp(K), the fact that ρ ∈ L∞ has compact support inK implies (A.5.7).

(iii) To prove (A.5.8), we first establish the following inequality:
Let R > 0 and ϕ ∈ L1(R3) with ϕ ≥ 0, suppϕ ⊂ BR(0) and ‖ϕ‖L1 = 1. Let w ∈

Ḣ1(R3), then

‖ϕ ∗ w − w‖L2(R3) ≲ R‖∇w‖L2(R3). (A.6.1)

There are several ways to prove this. By scaling, it is enough to consider the caseR = 1.
We can use the Fourier transform: observe that ϕ̂ ∈ C∞(R3)with

|∇ϕ̂| = |F(xϕ)| ∈ L∞(R3).

Since ϕ̂(0) = 1, this shows that there is a constant C > 0 such that |(1 − ϕ̂)(k)| ≤ C|k|.
Hence,

‖ϕ ∗ w − w‖2L2(R3) = ‖(1− ϕ̂)ŵ‖2L2(R3) ≤ C‖kŵ‖2L2(R3) ≤ C‖∇w‖2L2(R3).

Now, (A.5.8) follows by choosing ϕ(x) = 1Bm(0)(x).

(iv)We note thatRw = [ρ(w)·]. Thus,R is a bounded operator from L2(K) to L2(R3) ∩
Ḣ−1(R3) and fromH1(K) toH1(R3)by theprevious estimates, togetherwith the assump-
tion that ρ ∈W 1,∞ with compact support and L6/5(R3) ⊂ Ḣ−1(R3).
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For the estimate (A.5.9), we compute, forw ∈ Ḣ1(R3),

‖Rw − ρw‖L2(R3)

=

∥∥∥∥∥
 
∂Bm(x)

ρ(y)(w)y dH2(y)− ρ(x)w(x)

∥∥∥∥∥
L2(R3)

≤

∥∥∥∥∥
 
∂Bm(x)

(ρ(y)− ρ(x)) (w)y dH2(y)

∥∥∥∥∥
L2(R3)

+

∥∥∥∥∥
 
∂Bm(x)

ρ(x) ((w)y − w(x)) dH2(y)

∥∥∥∥∥
L2(R3)

=: J1 + J2.

Further, it is by Jensen’s inequality

J2
1 =

ˆ
R3

∣∣∣∣∣
 
∂Bm(x)

(ρ(y)− ρ(x)) (w)y dH2(y)

∣∣∣∣∣
2

dx

≤
ˆ
R3

 
∂Bm(x)

|ρ(y)− ρ(x)|2 |(w)y|2 dH2(y)dx

≤ m−2‖∇ρ‖2L∞(R3)‖w‖
2
L2(R3),

where we used (A.5.6). Moreover,

J2
2 =

ˆ
R3

∣∣∣∣∣
 
∂Bm(x)

ρ(x)

 
Bm(y)

w(z)− w(x)dz dy
∣∣∣∣∣
2

dx

≤ ‖ρ‖2L∞

ˆ
R3

∣∣∣∣∣
 
∂Bm(x)

 
Bm(y)

w(z)dz dy − w(x)

∣∣∣∣∣
2

dx

= ‖ρ‖2L∞

ˆ
R3

∣∣∣∣∣
ˆ
R3

( 
∂Bm(x)

|Bm|−11|y−z|≤Rm
dy
)
(w(z))dz − w(x)

∣∣∣∣∣
2

dx

= ‖ρ‖2L∞

ˆ
R3

∣∣∣∣ˆ
R3

ϕ(x− z)w(z)dz − w(x)

∣∣∣∣2 dx,
with the choice

ϕ(x) =

 
∂Bm(x)

|Bm|−11|y|≤Rm
dy.

Using Fubini, we easily see that ϕ satisfies the assumptions to apply (A.6.1). Hence

J2
2 ≤ Cm−2‖ρ‖2L∞(R3)‖∇w‖

2
L2(R3).

This proves (A.5.9). Finally, estimate (A.5.10) follows from testing with ψ ∈ Ḣ1(R3)

〈ρw −Rw,ψ〉 = 〈w, ρψ −Rψ〉 ≤ m−1‖w‖L2(R3)‖ρ‖W 1,∞(R3)‖ψ‖Ḣ1(R3).
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To justify the first line, observe that
ˆ
R3

(Rw)(x)ψ(x)dx =

ˆ
ρ(x)(w)x

 
∂Bm(x)

ψ(y)dH2(y)dx

=

ˆ
ρ(x)

( 
R3

1|x−z|≤1/mw(z)dz
) 

∂Bm(x)
ψ(y)dH2(y)dx

=

ˆ
R3

w(z)

( 
R3

1|x−z|≤1/mρ(x)

 
∂Bm(x)

ψ(y)dH2(y)dx
)
dz

=

ˆ
R3

w(z)(Rψ)(z)dz.

(v) Recall that F = ρu− j. Since ρ ∈ L∞ has compact support and u ∈ Ḣ1(R3), we have
ρu ∈ L2(R3). Furthermore, fromhypotheses (H3)wehave j ∈ L2(R3). SinceF = Ru−[j]
and u ∈ L2(K), we haveF ∈ L2(R3). Finally, we have withW1 = (u)1 − V1

Em[W 2
1 ] =

ˆ
R3×R3

|(u)x − v|2f(dx,dv) ≤ 2

ˆ
R3

ρ(x)|(u)x|2 dx+ 2

ˆ
R3×R3

|v|2f(dx,dv)

≤ C‖u‖L2(K) + 2

ˆ
R3×R3

|v|2f(dx,dv)

which is uniformly bounded by (A.5.7) and (H1).
To prove (A.5.12), we first focus on estimating the L2-norm. Note that

F −F = ρu− j − (Ru− [j]) .

Hence, it is

‖F −F‖L2(R3) ≤ ‖ρu−Ru‖L2(R3) + ‖j − [j]‖L2(R3) .

Using (A.5.9), it is enough to see

‖w − [w]‖L2(R3) ≲ m−1 ‖w‖Ḣ1(R3) for allw ∈ Ḣ1(R3).

First, letw ∈ S(R3). Then

‖w − [w]‖2L2(R3) =

ˆ
R3

∣∣∣∣∣
 
∂Bm(x)

w(x)− w(y)dH2(y)

∣∣∣∣∣
2

dx

≤
ˆ
R3

 
∂Bm(x)

|w(x)− w(y)|2 dH2(y)dx

≤
ˆ
R3

 
∂Bm(x)

ˆ 1

0
|∇w(x+ t(y − x))|2|x− y|2 dtdH2(y)dx

≲ m−2

 
∂Bm(x)

ˆ 1

0
‖∇w‖2L2(R3) dtdH2(y)

= m−2‖w‖2
Ḣ1(R3)

,

whereweused Jensen’s inequality twice and the fundamental theoremof calculus. Nowby
density ofS(R3) in Ḣ1(R3), we obtain the estimate of theL2-norm in (A.5.12). To estimate
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the Ḣ−1-norm in (A.5.12), we again argue by testing with ψ ∈ Ḣ1(R3). By (A.5.10), it is
enough to see

|〈j − [j], ψ〉| = |〈j, ψ − [ψ]〉| ≤ ‖j‖L2(R3)‖ψ − [ψ]‖L2(R3) ≤ m−1‖ψ‖Ḣ1(R3).

This finishes the proof.

Proof of Lemma A.5.2. Recalling the definition ofBm(y) = BRm(y) and (A.1.7), it is well-
known that

Gδmy (x) =

{
mId x ∈ Bm(y)

g(x− y)− R2
m
6 ∆g(x− y) x ∈ R3 \Bm(y),

with g as in (A.2.1). Then (A.5.13), (A.5.15) and (A.5.16) follow immediately. (A.5.15) implies
that ‖Gδ‖Ḣ1(R3) ≲ m1/2 and, sinceG is an isometry from Ḣ−1(R3) to Ḣ1(R3), this proves
(A.5.17). The bounds for A follow by using the identity A = G − AρG and that Aρmaps
L2
loc(R3) to L∞(R3)

Proof of Lemma A.5.3. To deduce the bound for Gδy in Hs
loc(R3), note for example that

e−|x−y|Gδy = e−|x−y|/(4π|x−y|) ∈ Hs(R3) (e.g. by Fourier). The corresponding estimate
for A follows from the identity A = G − AρG (cf. (A.2.2)) and the fact that AρmapsHs

loc
toHs

loc.
For the second estimate, observe thatH3/2+ε(K ′) embeds into the space of ε-Hölder

continuous functions onK ′. Hence, we may estimate, for everyw ∈ H3/2+ε(K ′)

〈δmy − δy, w〉 ≤
 
Bm(y)

|w(x)− w(y)|dH2(x) ≤ m−ε‖w‖Cε(K′) ≤ Cm−ε‖w‖H3/2+ε(K′).

This concludes the proof.

Proof of Lemma A.5.4. By (A.2.4),G−Gm is a convolution operator with convolution ker-
nel

ḡm := ηmg − ψm.

Thus, to prove (A.5.20) and (A.5.21) it suffices to show

‖∇lḡm‖L1(R3) ≤ m−2+l (A.6.2)

for l = 0, 1. Moreover, (A.6.2) for l = 2 implies thatGm is a bounded operator from Ḣ l(R3)
to Ḣ l+2(R3) since we know thatG is a bounded operator from Ḣ l(R3) to Ḣ l+2(R3).

By definition of ηm, we have for all l ∈ N

|∇l(ηmg)| ≲ m1+l1B3Rm (0)\B2Rm (0).

In particular, for all 1 ≤ p ≤ ∞ and all l ∈ N

‖∇l(ηmg)‖Lp(R3) ≲ m1+l−3/p. (A.6.3)

In view of (A.2.3), this implies

‖∇l(ηmg)‖Lp(R3) ≲ m1+l−3/p, (A.6.4)

for all l ≥ 1 and all 1 < p < ∞. By the Hölder inequality, this bound also holds for
p = 1 and by the Poicaré inequality also for l = 0. Combining (A.6.3) and (A.6.4) yields
(A.6.2).
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ESTIMATES FOR J3
In this part of the appendix, we detail the estimates of J3 from (A.5.27)We follow the same
strategy as for J1 described in Steps 3.2 and 3.3 of the proof of Lemma A.4.1. Therefore,
we just name and prove the relevant lemmas. Observe that we need weaker bounds. If we
want to show |J3| ≲ m−2, this requires

Ii,j,k,l3,∇ = Em

[ˆ
Bi

∇Ψj,k(x)∇Ψn,ℓ(x)dx
]
≲ m−α+2, α = #{i, j, k, n, `}.

As before, we write∇Ψj,l = ∇Ψ
(1)
k +∇Ψ

(2)
j,l , where

∇Ψ
(1)
k := ∇Ψ(1,1) +∇Ψ

(1,2)
k := ∇G [ρA (F −Wkδ

m
k )] ,

and

∇Ψ
(2)
j,k := ∇Ψ

(2,1)
j +∇Ψ

(2,2)
j,k := (1− δij)∇G

[(
A (F −Wkδ

m
k )

)
j

δmj

]
.

Recall thatWk = (u)k − Vk and F = ρu− j.
We observe that

Em[∇Ψ(1,1)] = ∇GρAF,

Em[∇Ψ
(1,2)
k ] = ∇GρAF ,

Em[∇Ψ
(2,1)
j ] = (1− δij)∇GRAF,

Em[∇Ψ
(2,2)
j,k ] = (1− δij)(1− δjk)∇GRAF .

(A.6.5)

Furthermore, we observe that the only difference to the discussion of J1 is that the out-
mostG is replaced by∇G. Hence, we we will apply the same strategy as before using the
analogous auxiliary estimates for the gradient.

We start by giving the corresponding lemmas in the case #{i, j, k, n, `} ≥ 4.

Lemma A.6.1. ∥∥∥Em[∇Ψ
(1)
k ]
∥∥∥
L2(R3)

≲ m−1, (A.6.6)∥∥∥Em[∇Ψ
(2)
j,k ]
∥∥∥
L2(R3)

≲ m−1 if j 6= k. (A.6.7)

Lemma A.6.2.
‖Em [∇Ψj,k∇Ψj,ℓ] ‖L1(R3) ≲ m−1 if #{i, j, k, `} = 4, (A.6.8)
‖Em [∇Ψj,k∇Ψn,k] ‖L1(R3) ≲ m−1 if #{i, j, k, n} = 4, (A.6.9)
‖Em [∇Ψj,k∇Ψn,j ] ‖L1(R3) ≲ m−1 if #{i, j, k, n} = 4. (A.6.10)

Lemma A.6.3. We have for any i, j, k∥∥∥Em[∇Ψ(1,1)]
∥∥∥
L2(R3)

+
∥∥∥Em[∇Ψ

(1,2)
k ]

∥∥∥
L2(R3)

+
∥∥∥Em[∇Ψ

(2,1)
j ]

∥∥∥
L2(R3)

+
∥∥∥Em[∇Ψ

(2,2)
j,k ]

∥∥∥
L2(R3)

≲ m. (A.6.11)∥∥∥Em[1Bm
i
∇Ψ(1,1)]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
∇Ψ

(1,2)
k ]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
∇Ψ

(2,1)
j ]

∥∥∥
L2(R3)

+
∥∥∥Em[1Bm

i
∇Ψ

(2,2)
j,k ]

∥∥∥
L2(R3)

≲ m−5/2.(A.6.12)
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Proof of Lemma A.6.1. By (A.6.5), we have

Em[Ψ
(1)
k ] = ∇GρA(F −F).

Using (A.5.12) yields (A.6.6).
Similarly, for j 6= k, i 6= j,

Em[Ψ
(2)
j,k ] = ∇GRA(F −F).

Using again (A.5.12) yields (A.6.7).

Proof of Lemma A.6.2. Regarding (A.6.8), we have

Em [∇Ψj,k∇Ψj,ℓ] =

ˆ
ρ(y1)

(
∇GρA(F −F)− (A(F −F))y1 ∇Gδ

m
y1

)2
dy1,

and hence

‖Em [∇Ψj,k∇Ψj,ℓ]‖L1(R3)

≲ ‖∇GρA(F −F)‖2L2(R3) +

ˆ
ρ(y1) (A(F −F))y1 ‖∇Gδ

m
y1‖

2
L2(K) dy1

≲ m−2 +m−1

≲ m−1,

where we used (A.5.12) for both terms and (A.5.17) for the second term.
Regarding (A.6.9), we compute

Em [∇Ψj,k∇Ψn,k]

=

ˆ
ρ(y1)

(
∇G(ρ−R)AF −

(
(u)y2 − v2

)
∇G(ρ−R)Aδmy2

)2
f(dy2,dv2).

Hence, we obtain

‖Em [∇Ψj,k∇Ψn,k]‖L1(R3)

≲ ‖∇G(ρ−R)Aρu‖2L2(R3) + sup
y1

‖∇G(ρ−R)Aδmy1‖
2
L2(R3)

ˆ (
(u)y2 − v2

)2
f(dy2,dv2)

≲ m−1,

where we used (A.5.10) for both terms and (A.5.16) and (H1) for the second term. Finally,
(A.6.10) follows from (A.6.8) and (A.6.9) via Young’s inequality.

Proof of Lemma A.6.3. Thefirst estimate, (A.6.11), follows directly from (A.6.5) and (A.5.11)
together with the fact that the operators ∇GρA, ∇GρA, ∇GRA and ∇GRA are all
bounded operators from Ḣ−1(R3) to Ḣ1(R3).

Regarding (A.6.12), these estimates follow from (A.6.11) if i 6= k. If i = k, we only need
to consider those terms, in which k appears, i.e. ∇Ψ

(1,2)
k and∇Ψ

(2,2)
j,k . Again, we only need

to consider the case j 6= k = i.
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Then∥∥∥Em

[
1Bm

i
∇Ψ

(1,2)
j,i

]∥∥∥ =

∥∥∥∥ˆ 1Bm
y1
∇GρA[

(
(u)y1 − v1

)
δmy1 ]f(dy1,dv1)

∥∥∥∥
≤ sup

y1∈R3

‖∇GρAδmy1‖L∞(R3)

∥∥∥∥ˆ ((u)y1 − v1
)
1Bm

y1
f(dy1,dv1)

∥∥∥∥
L2(R3)

≲ m−5/2.

Here, we used (A.5.17) and thatGρmaps Ḣ1(R3) toW 1,∞(R3) for the first term, and (H1)
as well as (A.5.6) followed by (A.5.7) for the second. Since for j 6= i,

Em[1Bm
i
∇Ψ

(2,2)
j,i ] =

ˆ
1Bm(y1)∇GRA

[(
(u)y1 − v1

)
δmy1
]
f(dy1,dv1),

the estimate of this term is analogous.

This finishes the cases inwhich atmost 2 indices are equal. For the remaining cases, we
can again follow the same strategy as for J1. We provide here only the necessary estimates.
All the other estimates followby applying Young’s inequality and reducing the proofs to the
estimates given here, just as in the proof for J1.

Lemma A.6.4. The corresponding estimates in the case (α, β, γ, δ) = (2, 2, 2, 2) are:

i = k, j = n :

ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(2,2)
j,i (∇Ψ

(2,1)
j −∇Ψ

(2,2)
j,ℓ )

]∣∣∣ dx ≲ m−2. (A.6.13)

i = k, j = ` :

ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(2,2)
j,i ∇Ψ

(2,2)
n,j

]∣∣∣ dx ≲ m−2. (A.6.14)

i = k = ` :

ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(2,2)
j,i ∇Ψ

(2,2)
n,i

]∣∣∣ dx ≲ m−2. (A.6.15)

j = n, k = ` :

ˆ ∣∣∣∣Em

[
1Bm

i

∣∣∣∇Ψ
(2,2)
j,k

∣∣∣2]∣∣∣∣ dx ≲ m−2. (A.6.16)

i = k = `, j = n :

ˆ ∣∣∣∣Em

[
1Bm

i

∣∣∣∇Ψ
(2,2)
j,i

∣∣∣2]∣∣∣∣ dx ≲ 1. (A.6.17)

The corresponding estimate in the case (α, β, γ, δ) = (2, 1, 2, 1) is:

j = n :

ˆ ∣∣∣∣Em

[
1Bm

i

∣∣∣∇Ψ
(2,1)
j

∣∣∣2]∣∣∣∣ dx ≲ m−2. (A.6.18)

The corresponding estimates in the case (α, β, γ, δ) = (1, 2, 2, 2) are:

i = k = ` :

ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(1,2)
i ∇Ψ

(2,2)
n,i

]∣∣∣ dx ≲ m−2. (A.6.19)

i = `, k = n :

ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(1,2)
k ∇Ψ

(2,2)
k,i

]∣∣∣ dx ≲ m−1. (A.6.20)

Proof of Lemma A.6.4. For (A.6.13), it is

Em

[
1Bm

i
∇Ψ

(2,2)
j,i (∇Ψ

(2,1)
j,ℓ −∇Ψ

(2,2)
j,ℓ )

]
=

¨
ρ(y2)1Bm

y1
(x)
(
A
[(
(u)y1 − v1

)
δmy1
])

y2
(∇Gδmy2)

2(x) (A(F −F))y2 f(dy1,dv1)dy2.
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By (A.5.15), it holds
ˆ
1Bm

y1
(x)(∇Gδmy2)

2(x)dx ≲ m−3 1

|y2 − y1|4 +m−4
, (A.6.21)

and thus analogously as in the corresponding term for J1 using (A.5.14)ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(2,2)
j,i (∇Ψ

(2,1)
j,ℓ −∇Ψ

(2,2)
j,ℓ )

]∣∣∣ dx
≲ m−4

¨
ρ(y2)|(u)y1 − v1|

1

|y2 − y1|4 +m−4

(
1 +

1

|y2 − y1|+m−1

)
f(dy1,dv1)dy2

≲ m−2.

Regarding (A.6.14), we compute

Em

[
1Bm

i
(x)∇Ψ

(2,2)
ji (x)∇Ψ

(2,2)
nj (x)

]
=

¨ (
(u)y1 − v1

)(
(u)y2 − v2

)
1Bm(y1)(x)

(
Aδmy1

)
y2
(∇Gδmy2)(x)·

·
(
∇GRAδmy2

)
(x)f(dy1,dv1)f(dy2,dv2).

Nowwe use thatGRmaps Ḣ1(R3) toW 1,∞(R3) to deduce as in the previous case
ˆ ∣∣∣Em

[
1Bm

i
(x)∇Ψ

(2,2)
ji (x)∇Ψ

(2,2)
nj (x)

]∣∣∣ dx
≲ m1/2m−3

ˆ ((
(u)y1 − v1

)2
+
(
(u)y1 − v1

)2) 1 + 1
|y2−y1|+m−1

|y2 − y1|2 +m−2
f(dy1,dv1)f(dy2,dv2)

≲ m−5/2 logm.

For (A.6.15), we get

Em

[
1Bm

i
(x)∇Ψ

(2,2)
ji (x)∇Ψ

(2,2)
ni (x)

]
=

ˆ (
(u)y1 − v1

)21Bm
y1
(x)
(
∇GRAδmy1

)
(x)2f(dy1,dv1).

Thus by (A.5.16), (A.5.7) and (H1), it is
ˆ ∣∣∣Em

[
1Bm

i
(x)∇Ψ

(2,2)
ji (x)∇Ψ

(2,2)
ni (x)

]∣∣∣ dx ≲ m−2.

The case (A.6.16):

Em

[
1Bm

i
(x)∇Ψ

(2,2)
jk (x)∇Ψ

(2,2)
jk (x)

]
= m−3

¨
(ρ)xρ(y2)

(
(u)y1 − v1

)2 (
Aδmy1

)2
y2
(∇Gδmy2)

2(x)f(dy1,dv1)dy2.

Using (A.5.17),(A.5.16), (A.5.7) and (H1), we get
ˆ ∣∣∣Em

[
1Bm

i
Ψ

(2,2)
jk Ψ

(2,2)
jk

]∣∣∣ dx
≲ m−2

ˆ
ρ(y2)

(
(u)y1 − v1

)2 (
Aδmy1

)2
y2
f(dy1,dv1)dy2 ≲ m−2.
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For the next estimate (A.6.17), we get

Em

[
1Bm

i
(x)∇Ψ

(2,2)
ji (x)∇Ψ

(2,2)
ji (x)

]
=

¨
ρ(y2)

(
(u)y1 − v1

)21Bm
y1
(x)
(
Aδmy1

)2
y2
(∇Gδmy2)

2(x)f(dy1,dv1)dy2.

By using again (A.6.21) and (A.5.14), we get
ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(2,2)
ji ∇Ψ

(2,2)
ji

]∣∣∣ dx
≲ m−3

ˆ
ρ(y2)

(
(u)y1 − v1

)2( 1

|y2 − y1|4 +m−4
+

1

|y2 − y1|6 +m−6

)
f(dy1,dv1)dy2

≲
ˆ (

(u)y1 − v1
)2
f(dy1,dv1) ≲ 1.

To estimate (A.6.18), observe

Em

[
1Bm

i

∣∣∣∇Ψ
(2,1)
j

∣∣∣2] ≲ m−3

ˆ
(ρ)xρ(y1)(AF )

2
y1 |∇Gδ

m
y1 |(x)

2 dy1,

and hence by (A.5.17), it holds
ˆ

Em

[
1Bm

i

∣∣∣∇Ψ
(2,1)
j

∣∣∣2] dx ≲ m−2

ˆ
ρ(y1)(AV u)

2
y1 dy1 ≲ m−2.

For (A.6.19), it holds∣∣∣Em

[
1Bm

i
∇Ψ

(1,2)
i ∇Ψ

(2,2)
n,i

]∣∣∣
≤
ˆ
1Bm

y1

∣∣∇GRA [((u)y1 − v1
)
δmy1
]∣∣ ∣∣∇GρA [((u)y1 − v1

)
δmy1
]∣∣ f(dy1,dv1)

≲ m

ˆ
1Bm

y1

(
(u)y1 − v1

)2
f(dy1,dv1),

where we used (A.5.17). Thusˆ
|Em

[
1Bm

i
∇Ψ

(1,2)
i ∇Ψ

(2,2)
n,i

]
|dx ≲ m−2.

Finally for (A.6.20), it is∣∣∣Em

[
1Bm

i
∇Ψ

(1,2)
k ∇Ψ

(2,2)
k,i

]∣∣∣
≤
ˆ
1Bm

y1
ρ(y1)

∣∣(u)y2 − v2
∣∣2 ∣∣∇GρAδmy2∣∣ ∣∣(Aδmy1)y2∣∣ ∣∣∇Gδmy2∣∣ dy1f(dy2,dv2)

≲ m1/2

ˆ
1Bm

y1
ρ(y1)

∣∣(u)y1 − v1
∣∣2∣∣(Aδmy1)y2∣∣ ∣∣∇Gδmy2∣∣ dy1f(dy2,dv2),

where we used (A.5.16). This is estimated as in (A.6.14) to get
ˆ ∣∣∣Em

[
1Bm

i
∇Ψ

(1,2)
k ∇Ψ

(2,2)
k,i

]∣∣∣ dx ≲ m−1.

This finishes the proof.



B LONG-TIME BEHAVIOUR AND
STABILITY FOR QUASILINEAR
DOUBLY DEGENERATE-PARABOLIC
EQUATIONS OF HIGHER ORDER

Abstract

We study the long-time behaviour of solutions to quasilinear doubly degenerate
parabolic problems of fourth order. The equations model for instance the dynamic
behaviour of a non-Newtonian thin-film flow on a flat impermeable bottom andwith
zero contact angle. We consider a shear-rate dependent fluid the rheology of which
is described by a constitutive power-law or Ellis-law for the fluid viscosity. In all three
cases, positive constants (i.e. positive flat films) are the only positive steady-state so-
lutions. Moreover, we can give a detailed picture of the long-time behaviour of solu-
tions with respect to theH1(Ω)-norm. In the case of shear-thickening power-law flu-
ids, one observes that solutions which are initially close to a steady state, converge to
equilibrium in finite time. In the shear-thinning power-law case, we find that steady
states are polynomially stable in the sense that, as time tends to infinity, solutions
which are initially close to a steady state, converge to equilibrium at rate 1/t1/β for
some β > 0. Finally, in the case of an Ellis-fluid, steady states are exponentially stable
inH1(Ω).

B.1 Introduction

AIM OF THE PAPER
The present paper is concerned with the asymptotic behaviour of positive weak solutions
to fourth-order quasilinear (doubly) degenerate parabolic problems as they arise in the
modelling of non-Newtonian thin-film flows. It turns out that, for large times, fluids with
a shear-rate dependent viscosity exhibit a specific asymptotic behaviour, depending on
their shear-thickening or shear-thinning nature, respectively.

We consider a thin layer of a viscous, non-Newtonian and incompressible fluid on an
impermeable flat bottom, as sketched in Figure B.1.

In addition to the non-Newtonian fluid rheology, the following modelling assump-
tions are crucial for the analysis of the resulting partial differential equations. First, the
fluid flow is assumed to be uniform in one horizontal direction (in y-direction in Figure
B.1), such that we obtain a (spatially) one-dimensional problem. Moreover, we assume
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x

z

y

Figure B.1: Cross section of fluid film on impermeable solid bottom.

that the characteristic height of the fluid layer is rather thin compared to its characteris-
tic length and consider the asymptotic limit of a vanishing aspect ratio. Based on a non-
Newtonian Navier–Stokes system, we use the so-called lubrication approximation [GO03;
GP08; OO95] in order to derive an evolution equation for the height u = u(t, x) ≥ 0 of the
fluid film at time t > 0 and spatial position x ∈ Ω, where Ω ⊂ R is a bounded interval.
We neglect gravitational effects and assume that the dynamics of the flow is driven by cap-
illarity only. Finally, we prescribe a no-slip condition on the lower boundary of the fluid
film. However, the mathematical analysis of the present paper does also apply to the case
of Navier-slip conditions.

As constitutive laws for the non-Newtonian shear-dependent fluid we consider so-
called power-law fluids, also called Ostwald-de Waele fluids, and so-called Ellis-fluids;
see below for more details on these material laws. In the case of power-law fluids, when
prescribing a no-slip condition on the lower boundary, the resulting evolution problem
reads 

ut +
(
uα+2|uxxx|α−1uxxx

)
x
= 0, t > 0, x ∈ Ω,

ux(t, x) = uxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(B.1.1)

Note that (B.1.1)1 is a fourth-order quasilinear parabolic equation that is doubly degen-
erate in the sense that the degeneracy occurs both with respect to the unknown u and
with respect to its third spatial derivative uxxx. The Neumann-type boundary conditions
ux = uxxx = 0 on ∂Ω reflect the zero-contact angle condition and the no-flux condition
at the lateral boundary, respectively. Finally, u0 > 0 denotes the given positive initial film
height. Note that for 0 < α < 1, the coefficients of the highest-order term depend only
Hölder continuously on the unknown and lower-order derivatives.

In the case of Ellis-fluids, we obtain the evolution equation
ut + a

(
u3
[
1 + b|uuxxx|α−1

]
uxxx

)
x
= 0, t > 0, x ∈ Ω,

ux(t, x) = uxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(B.1.2)

Here, a, b > 0 are positive physical parameters, depending on the constant surface ten-
sion, the flow-behaviour exponentα and the characteristic viscosity of the fluid. However,
for clarity of presentation, we drop these parameters in our analysis since they do not af-
fect our arguments. This equation has for instance been studied in [AG02; LM20] in the
context of self-similar solutions and local strong solutions, respectively.

The main difference in the classification of (B.1.1) and (B.1.2) is that (B.1.1) is doubly
degenerate in the sense that we loose parabolicity if either the unknown u or its third spa-
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tial derivative uxxx become zero. In contrast, (B.1.2) is degenerate only in the unknown u
itself.

For α = 1 we recover in both equations (B.1.1) and (B.1.2) the well-known Newtonian
thin-film equation

ut +
(
u3uxxx

)
x
= 0, t > 0, x ∈ Ω. (B.1.3)

This equation is studied extensively in the mathematical literature. For results concern-
ing existence, uniqueness and stability of weak solutions to (B.1.3) we refer the reader for
instance to the works [BF90; BBD95; BP96].

MAIN RESULTS OF THE PAPER – STABILITY OF STEADY STATES AND LONG-TIME
BEHAVIOUR OF POSITIVE WEAK SOLUTIONS

In the present paper we study the behaviour of positive weak solutions to (B.1.1) and
(B.1.2), respectively, for large times. Note that we consider only the case of strictly positive
initial values u0 > 0 since these allow us to find a positive time up to which solutions
remain strictly positive.

The main results of the paper are the following: We prove local existence of positive
weak solutions to the power-law thin-film equation (B.1.1) for all flow-behaviour expo-
nents α > 0, seeTheorem B.3.2 below. In the case α > 1 of shear-thinning power-law flu-
ids, even global existence of non-negative weak solutions has been established in [AG04],
using a two-step regularisation scheme, Galerkin approximation and energy/entropy
methods. Since the present paper is concerned with stability of positive steady states,
we are only interested in positive weak solutions. Therefore, we use a simpler regulari-
sation method that allows us (only) to construct local positive weak solutions, but for all
flow-behaviour exponents α > 0. These solutions can then be extended to global weak
solutions as long as they are close to steady states.

Moreover, again for all α > 0, we can characterise positive steady states of the power-
law thin-film equation by positive constants, cf. Theorem B.3.5 below. As already men-
tioned, the long-time behaviour of solutions that are initially close to a steady state ū0 =ffl
Ω u0 dx depends strongly on the choice of the flow-behaviour exponent α, i.e., on the
shear-thinning, respectively shear-thickening nature of the fluid. The main result con-
cerning global existence and stability properties of steady states is the following:

Theorem.
Fix α > 0. Then there exists an ε > 0 such that, for all positive initial values u0 ∈ H1(Ω)
with ‖u0−ū0‖H1(Ω) ≤ ε, problem (B.1.1)possesses at least one global positiveweak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′),

satisfying the boundary condition ux = 0 on ∂Ω pointwise for almost every t ≥ 0. Moreover,
this global solution has the following asymptotic behaviour:

(i) In the shear-thickening case 0 < α < 1, there exists a positive but finite time 0 < t∗ <
∞ such that

u(t, ·) −→ ū0 inH1(Ω), as t→ t∗, and u(t, x) = ū0, t ≥ t∗, x ∈ Ω.
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(ii) In the shear-thinning case 1 < α <∞, there exists a constantC > 0 such that

‖u(t)− ū0‖H1(Ω) ≤
Cε(

1 + Cεα−1t
) 1

α−1

, 0 ≤ t <∞.

(iii) In the Newtonian case α = 1, there exist positive constantsC, γ > 0 such that

‖u(t)− ū0‖H1(Ω) ≤ Ce−γt, 0 ≤ t <∞.

Note that statement (iii) of this theorem is already well-known [BBD95; BP96] and can
even be proved in ‘better’ function spaces with standard theory, see for instance the text
books [HI11; Lun12]. Moreover, in the shear-thinning case (ii), convergence to steady
states has already been proved in [AG04] but without rate of convergence. In the cylin-
drical Taylor–Couette setting, statement (iii) has first been shown in [PV20] in the frame-
work of stable center manifolds. Similarly, the results in (i) and (ii) have been obtained in
[LPV22] and [LV22], also in the cylindrical Taylor–Couette geometry.

Finally, we prove global existence of positive weak solutions to the Ellis-law thin-film
equation (B.1.2) and provide a description of their asymptotic behaviour. For α ≥ 2, sta-
bility and exponential decay to equilibrium can again be obtained by standard techniques
[Lun12; HI11]. However, for 1 < α < 2, these techniques are not applicable since the
coefficients of the differential operator are merely Hölder continuous. For this range of
flow-behaviour exponents we use energy methods to prove exponential asymptotic sta-
bility of steady states inH1(Ω).

SHEAR-DEPENDENT NON-NEWTONIAN FLUIDS
Many common liquids and gases, such as water and air, may reasonably be consid-
ered Newtonian. However, there is still a multitude of real fluids which are in fact non-
Newtonian. Newtonian fluids are characterised by a perfectly linear dependence of the
shear stress σ(ε) on the local strain rate ε, the constant fluid viscosity µ > 0 being the fac-
tor of proportionality. In contrast to that, shear-dependent non-Newtonian fluids feature
a non-linear relation between the shear-rate and the viscous stress, σ(ε) = µ(|ε|)ε, where
µ(|ε|) is the shear-dependent viscosity. That is, these fluids become more solid or more
liquid under shear force. In the case in which the fluid viscosity increases with increasing
shear rate, the corresponding fluids are called shear-thickening. On the contrary, fluids
are called shear-thinning if their viscosity decreases with increasing shear-rate. In this
paper, we are concerned with two classes of non-Newtonian fluids, so-called power-law
fluids orOstwald–deWaele fluids and Ellis-fluids.

Power-Law Fluids. For power-law fluids orOstwald–de Waele fluids the constitutive
law for the effective fluid viscosity reads

µ(|ε|) = µ0|ε|
1
α
−1, (B.1.4)

with a characteristic viscosity µ0 > 0 and a flow-behaviour exponent α > 0. For these
fluids, the relation between the local strain and the viscous stress is

σ(ε) = µ0|ε|
1
α
−1ε.
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Note that the corresponding fluid is shear-thickening for flow-behaviour exponents 0 <
α < 1, while it is shear-thinning for α > 1. In the case α = 1, we recover the Newtonian
regime µ(|ε|) ≡ µ0 > 0 of a constant viscosity.

However, it is observed in real-world applications (e.g. in polymeric systems) that, at
‘intermediate’ shear rates, fluidsbehave according to (B.1.4), while the at rather lowand/or
ratherhigh shear rates, the viscosity approachesaNewtonianplateau. This is obviouslynot
reflected by (B.1.4).
Ellis fluids. As a second class of shear-dependent non-Newtonian fluids we consider
fluids the rheology of which is described by the so-called Ellis constitutive law [WS94]

1

µ(|ε|)
=

1

µ0

(
1 +

∣∣∣∣σ(ε)σ1/2

∣∣∣∣α−1
)
, α ≥ 1, 0 < σ1/2 <∞, (B.1.5)

where σ(ε) = µ(|ε|)ε is the viscous shear stress. Here, µ0 > 0 denotes the viscosity at zero
shear stress and σ1/2 > 0 is the viscous shear stress at which the viscosity is reduced to
µ0/2. Thus, for α > 1 and 0 < σ1/2 < ∞ the Ellis constitutive law describes a shear-
thinning behaviour, i.e., the fluid viscosity decreases with increasing shear rate. For α = 1
or for σα−1

1/2 → ∞, we recover a Newtonian behaviour. As an advantage over (B.1.4), the
Ellis law (B.1.5) has the ability to describe a shear-thinning behaviour for ‘moderate’ shear
rates and a Newtonian plateau for rather low shear stresses, since for all σ ∈ R,

1

µ(|ε|)
=

1

µ0

(
1 +

∣∣∣∣σ(ε)σ1/2

∣∣∣∣α−1
)

−→ 1

µ0
, as σα−1

1/2 → ∞.

For the majority of polymers and polymer solutions the flow-behaviour exponent α in
(B.1.5) varies in a range between 1 and 2, see e.g. [BAH87; MB65].

A plot of the different constitutive laws for the fluid viscosity (Newtonian fluids, shear-
thickening and shear-thinning power-law fluids and Ellis fluids) is offered in Figure B.2.

shear rate |ε|

viscosity µ(|ε|)

Newtonian

power-law, α < 1
power-law, α > 1

Ellis

Figure B.2: Constitutive viscosity laws: Newtonian fluid (dashed), shear-thinning power-
law fluid (pink), shear-thickening power-law fluid (green) and Ellis-fluid (blue).

OUTLINE OF THE PAPER
The structure of the paper is as follows: In Section B.2 we introduce the functional setting
we will work in.
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InSectionB.3weprove local existenceofpositiveweak solutions to thepower-law thin-
film equation and characterise positive steady states by positive constants.

In Section B.4 we derive regularity estimates for weak solutions that are valid as long
as the solution stays bounded away from zero. More precisely, we prove a Łojasiewicz–
Simon-type inequality that estimates the dissipation functional in terms of powers of the
energy functional. Moreover, we provide a local L1-in-time estimate for the dissipation
functional in terms of the energy at a slightly earlier time.

Section B.5 is concerned with the dynamic behaviour of solutions to the shear-
thickening power-law problem. First, we prove global existence of positive weak solutions
for initial film heights that are initially close to a constant in H1(Ω). Moreover, we show
that these solutions converge to a positive constant in finite time and stay constant for all
later times.

SectionB.6 is concernedwith the stability properties of solutions to the shear-thinning
power-law thin-film equation. As in the shear-thickening case, it is shown that weak solu-
tions exist globally time and stay positive if they are initially close to a steady state. More-
over, these positive global weak solutions are polynomially stable in H1(Ω) in the sense
that they converge to a steady state (positive constant) at rate 1/t1/(α−1), as time tends to
infinity.

In Section B.7 we study the non-Newtonian thin-film equation that arises when the
constitutive law for the fluid viscosity is the Ellis-law. The corresponding Ellis fluids have a
Newtonian plateau for small shear rates and behave like a shear-thinning power-law fluid
for high shear rates. We observe exponential asymptotic stability of steady states in the
H1(Ω)-norm.

B.2 Functional framework
In this section we provide the functional setting that will be needed for the study of both
the power-law (B.1.1) and Ellis-law (B.1.2) thin-film equations.

Throughout this paper, we assume that Ω ⊂ R is a bounded interval. For k ∈ N and
p ∈ [1,∞)we denote byW k

p (Ω) the usual Sobolev spaces with norm

‖v‖Wk
p (Ω) =

 k∑
j=0

‖∂jv‖pLp(Ω)

1/p

.

We then define the seminorm

[v]W s
p (Ω) =

ˆ
Ω

ˆ
Ω

|v(x)− v(z)|p

|x− z|1+sp
dx dz, 1 ≤ p <∞, 0 < s < 1,

and introduce the fractional Sobolev spaces by

W s
p (Ω) =

{
v ∈W [s]

p (Ω); ‖v‖W s
p (Ω) <∞

}
, 1 ≤ p <∞, s ∈ R+ \ N,

where

‖v‖W s
p (Ω) =

(
‖v‖p

W
[s]
p (Ω)

+ [∂[s]v]p
W

s−[s]
p (Ω)

)1/p

, 1 ≤ p <∞, s ∈ R+ \ N,

with [s] denoting the largest integer such that [s] ≤ s.
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We now recall some important properties of these spaces. It is well-known (see, for
instance, [Tri78]) that, for 0 ≤ s0 < s1 <∞, 1 < p <∞, and 0 < ρ < 1, the spaceW s

p (Ω)
with s = (1−ρ)s0+ρs1, is the complex interpolation space betweenW s1

p (Ω) andW s0
p (Ω),

in symbols
W s

p (Ω) = [W s0
p (Ω),W s1

p (Ω)]ρ.

In order to take the Neumann-type boundary conditions into account, we further intro-
duce the Banach spaces

W 4ρ
p,B(Ω) =


{
v ∈W 4ρ

p (Ω); vx = vxxx = 0 on ∂Ω
}
, 3 + 1

p < 4ρ ≤ 4,{
v ∈W 4ρ

p (Ω); vx = 0 on ∂Ω
}
, 1 + 1

p < 4ρ ≤ 3 + 1
p ,

W 4ρ
p (Ω), 0 ≤ 4ρ ≤ 1 + 1

p .

For 4ρ ∈ (0, 4) \ {1 + 1/p, 3 + 1/p}, the spacesW 4ρ
p,B(Ω) are closed linear subspaces of

W 4ρ
p (Ω) and satisfy the interpolation property [Tri78, Theorem 4.3.3]

W 4ρ
p,B(Ω) =

(
Lp(Ω),W

4
p,B(Ω)

)
ρ,p
, 1 < p <∞.

Lastly, we use W 1
p,0(Ω) to denote the space of functions belonging to W 1

p (Ω) with zero
boundary condition.

B.3 Local existence for the power-law thin-film equation
In this sectionweprove local existence of positiveweak solutions to the evolution problem

ut +
(
uα+2|uxxx|α−1uxxx

)
x
= 0, t > 0, x ∈ Ω,

ux(t, x) = uxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(B.3.1)

for flow-behaviour exponents α > 0, i.e., for both shear-thinning (α > 1) and shear-
thickening (α < 1) power-law fluids. Moreover, we characterise the positive steady states
of (B.3.1) by positive constants (flat films of positive height).

Our analysis strongly relies on an energy-dissipation estimate for the energy func-
tional

E[u] =
1

2

ˆ
Ω
|ux|2 dx.

Formally testing the equation with the second derivative uxx, one finds that E[u](t) de-
creases along solutions to (B.3.1). More precisely, solutions u to (B.3.1) satisfy

d

dt
E[u](t) = −D[u](t) = −

ˆ
Ω
uα+2|uxxx|α+1 dx.

We callD[·] the dissipation functional.
For the purpose of local existence, we introduce in Section B.3 a regularised version of

(B.3.1) that removes the degeneracy in the third derivative uxxx. For the regularised prob-
lem we apply standard parabolic theory in order to prove existence of positive strong so-
lutions, emanating from positive initial values. In Section B.3 we provide uniform a-priori
bounds for the solutions to the regularised problem and pass to the limit of a vanishing
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regularisation parameter in order to obtain local existence of positive weak solutions to
the original problem (B.3.1).

Note that for α > 1 (shear-thinning fluids) existence of global non-negative weak so-
lutions is already proved in [AG04], where the authors use a more involved regularisation
scheme. However, in the present paper we are only interested in positive solutions, but
for all flow-behaviour exponents α > 0.

In order to simplify notation, we introduce, for a fixed α > 0, the function

ψ : R → R, s 7→ ψ(s) = |s|α−1s,

and rewrite the partial differential equation (B.3.1)1 as

ut +
(
uα+2ψ(uxxx)

)
x
= 0, t > 0, x ∈ Ω.

Note that if α ≥ 1, then ψ ∈ C1(R)with ψ′(s) = α|s|α−1. For α < 1 the function ψ is only
α-Hölder-continuous.

Definition B.3.1. For a given T > 0 and initial value u0 ∈ H1(Ω), a weak solution to
(B.3.1) is defined as a function

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

that has the following properties:

(i) (Weak formulation)u satisfies the differential equation (B.3.1)1 in theweak sense, i.e.,
ˆ T

0
〈ut, ϕ〉W 1

α+1(Ω) dt =

ˆ T

0

ˆ
Ω
uα+2ψ(uxxx)ϕx dx dt

for all test functions ϕ ∈ Lα+1

(
(0, T );W 1

α+1,B(Ω)
)
.

(ii) (Initial and boundary values) u satisfies the contact angle condition ux = 0 on ∂Ω
and the initial condition (B.3.1)3 pointwise.

The following theorem contains the main result of this section.

Theorem B.3.2 (Local existence of positive weak solutions). Given a positive initial
value u0 ∈ W 4ρ

α+1,B(Ω), 4ρ > 3 + 1/(α + 1), with u0(x) > 0, x ∈ Ω̄, there exists a time
T > 0 such that problem (B.3.1) admits at least one positive weak solution

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

on (0, T ) in the sense of Definition B.3.1. Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero

0 < CT ≤ u(t, x), 0 ≤ t ≤ T, x ∈ Ω̄.
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(ii) (Conservation of mass) u conserves its mass in the sense that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t ≤ T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions

E[u](t) +

ˆ t

0
D[u](s) ds = E[u0] (B.3.2)

for almost every t ∈ [0, T ].

Observe that due to the positivity of a solution u to (B.3.1) we have
ˆ
Ω
u(t, x) dx = ‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t ≤ T.

Remark B.3.3. In fact, the above theorem holds true for initial values u0 ∈ H1(Ω). We
choose u0 in the smaller spaceW 4ρ

α+1(Ω) since the solutions u to the original problem are
constructed as accumulation points of strong solutions uσ to a regularised problem, not
only as functions satisfying a suitable weak formulation. In order to apply semigroup the-
ory, we require the initial value to satisfy u0 ∈ W 4ρ

α+1(Ω). That u0 ∈ H1(Ω) is enough can
be seen by replacing u0 by uσ0 ∈W 4ρ

α+1(Ω)with

uσ0 (x) > 0, x ∈ Ω̄, ūσ0 = ū0 =

 
Ω
u0 dx and uσ0 −→ u0 strongly inH1(Ω), as σ ↘ 0.

This can for instance be obtained by a symmetric extension of the initial value u0 ∈ H1(Ω)
at the lateral boundaries and mollification.

Remark B.3.4. Given a positive weak solution

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

to (B.3.1) as obtained inTheorem B.3.2, we may extend it beyond time T by restarting the
equationwith initial datumu(T )andusing thatu(T, x) > 0 for allx ∈ Ω̄andRemarkB.3.3.
In fact, in this way we can construct a weak solution to (B.3.1) in the sense of Definition
B.3.1 up to a time T∗ > 0 at which u(T∗, x) = 0 for some x ∈ Ω̄. Note though, that the
solutions in Theorem B.3.2 are not unique, so that the ‘maximal’ time T∗ of existence of
positive solutions is not unique.

PositiveSteadystatesof (B.3.1). Weare interested in the stability properties of steady-
state solutions to (B.3.1), i.e., in functions u∗ ∈ W 3

α+1,B(Ω) that solve the ordinary differ-
ential equation

Uα+2|U ′′′|α−1U ′′′ = 0, x ∈ Ω. (B.3.3)
In physical parlance, (B.3.3) says that there is no flux of the fluid through the boundaries of
the interval. Positive steady states of (B.3.1) may be easily characterised by the following
theorem.

TheoremB.3.5 (Characterisationof positive steady states). A functionu ∈W 3
α+1,B(Ω)

is a positive steady-state solution of (B.3.1) if and only if u ≡ u∗ ∈ R>0 is given by a positive
constant.
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Proof. (i) Let u ≡ u∗ ∈ R>0. Then u∗ ∈W 3
α+1,B(Ω) clearly satisfies the ODE (B.3.3).

(ii) Let u = u∗ ∈W 3
α+1,B(Ω) be an arbitrary positive steady-state solution of (B.3.1), i.e., a

solution to the ODE (B.3.3). Then u∗ satisfies

0 =
d

dt
E[u∗] = −D[u∗] = −

ˆ
Ω
|u∗|α+2|u∗xxx|α+1 dx.

Since the integrandon right-hand side of this equation is non-negative andu∗(x) > 0, x ∈
Ω̄, it follows thatu∗xxx ≡ 0 on Ω̄. Consequently, u∗xx is constant and this in turn implies that
u∗x is linear. Taking the Neumann boundary conditions into account, we find that u∗ must
be constant.

LOCAL EXISTENCE OF POSITIVE SOLUTIONS TO THE REGULARISED PROBLEM AND
UNIFORM A-PRIORI BOUNDS

In order to handle the difficulties caused by the doubly nonlinear and doubly degenerate
nature of the evolution problem (B.3.1), we introduce, for a fixed regularisation parameter
σ ∈ (0, 1) and all s ∈ R, the smooth function

ψσ(s) = (s2 + σ2)
α−1
2 s, s ∈ R,

and substitute the nonlinear term ψ(uxxx) in (B.3.1) accordingly. The regularised prob-
lem corresponding to (B.3.1) then reads

uσt +
(
(uσ)α+2ψσ(u

σ
xxx)

)
x
= 0, t > 0, x ∈ Ω,

uσx(t, x) = uσxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

uσ(0, x) = u0(x), x ∈ Ω.

(Pσ)

It follows from standard parabolic theory [Ama93; Eid69; LM20] that the regularised prob-
lem (Pσ) possesses, for each fixed σ ∈ (0, 1) and suitable initial data, a unique maximal
strong solution uσ. This is the content ofTheorem B.3.7 below. Moreover, in Lemma B.3.8
below, we provide a-priori bounds for the strong solution that are uniform in the regu-
larisation parameter σ > 0. First, though, we define what we mean by a maximal strong
solution to (Pσ).

Definition B.3.6. Fix α > 0 and σ ∈ (0, 1). Let 1 < p < ∞. Given a positive initial
value u0 ∈ Lp(Ω), we call a function u : [0, Tu) → Lp(Ω) with u(t, x) > 0 for t ∈ [0, Tu)
and x ∈ Ω̄ amaximal positive strong solution to (Pσ) on [0, Tu) in Lp(Ω) if the following
conditions are satisfied:

(i) u ∈ C
(
[0, Tu);Lp(Ω)

)
∩ C1

(
(0, Tu);Lp(Ω)

)
;

(ii) u(0) = u0 ∈ Lp(Ω) and u(t) ∈W 4
p,B(Ω) for all t ∈ (0, Tu);

(iii) (Positivity) u(t, x) > 0 for t ∈ [0, Tu) and x ∈ Ω̄;

(iv) u satisfies the differential equation (Pσ)1 pointwise;

(v) (Maximality) There is no other solution v on [0, Tv)with Tu < Tv.
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Clearly, solutions to (Pσ), as obtained in the following theorem, do also dissipate en-
ergy. We therefore introduce the notation

Dσ[u
σ](t) =

ˆ
Ω
(uσ)α+2|uσxxx|α+1 dx

for the dissipation functional corresponding to the energy functional E[·] and the regu-
larised equation (Pσ).

Theorem B.3.7 (Local existence for (Pσ)). Fix α > 0 and σ ∈ (0, 1). Let 1/(α + 1) <
s < r < 1. Moreover, let θ = 3+s

4 and ρ = 3+r
4 . Then, given an initial film height u0 ∈

W 4ρ
α+1,B(Ω) such that u0(x) > 0 for all x ∈ Ω̄, problem (Pσ) possesses a unique maximal

solution

uσ ∈ C
(
[0, Tσ);W

4ρ
α+1,B(Ω)

)
∩ Cρ

(
[0, Tσ);Lα+1(Ω)

)
∩ C

(
(0, Tσ);W

4
α+1,B(Ω)

)
∩ C1

(
(0, Tσ);Lα+1(Ω)

)
.

Moreover, the solution enjoys the following properties.

(i) (Positivity) uσ is positive

uσ(t, x) > 0, 0 ≤ t < Tσ, x ∈ Ω̄.

(ii) (Conservation of mass) uσ conserves its mass in the sense that

‖uσ(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t < Tσ. (B.3.4)

(iii) (Energy-dissipation identity) uσ satisfies the energy-dissipation identity

E[uσ](t) +

ˆ t

0
Dσ[u

σ](s) = E[u0], 0 ≤ t < Tσ. (B.3.5)

(iv) (Maximal time of existence) Suppose that Tσ <∞. Then

lim inf
t↗Tσ

1

minx∈Ω̄ uσ(t)
+ ‖uσ(t)‖

W 4γ
α+1,B(Ω)

= ∞

for all γ ∈ (θ, 1].

Proof. (i) Local existence, uniqueness and positivity. In order to prove local existence
and uniqueness of a strong solution we apply [LM20, Theorem 4.2]. To this end, we verify
that (Pσ) fits into the corresponding abstract functional setting. Moreover, after rewriting
(Pσ) in non-divergence form, we define for v(t) ∈ W 4θ

α+1,B(Ω) with θ = (3 + s)/4 such
that v(x) > 0, x ∈ Ω̄, the linear differential operatorA(v(t)) ∈ L

(
W 4

α+1,B(Ω);Lα+1(Ω)
)

of fourth order by

A(v(t))uσ = A(v(t))∂4xu
σ with A(v(t)) = vα+2ψ′

σ(vxxx),

where

ψ′
σ(s) = (α− 1)(s2 + σ2)

α−3
2 s2 + (s2 + σ2)

α−1
2

= α(s2 + σ2)
α−1
2 − σ2(α− 1)(s2 + σ2)

α−3
2 , s ∈ R.
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Note that for positive σ ∈ (0, 1)we haveψ′
σ(s) > Cσ,α > 0 for all s ∈ R and all fixedα > 0.

Moreover, we introduce the right-hand side

F(v(t)) = −(α+ 2)vα+1vx ψσ(vxxx)

and perceive (Pσ) as an abstract quasilinear Cauchy problem{
u̇σ +A(uσ)uσ = F(uσ), t > 0,

uσ(0) = u0.

Note that the Neumann-type boundary conditions (Pσ)2 are incorporated in the domain
W 4

α+1,B(Ω) of the operatorA(v(t)). Due to the smoothness of ψσ the maps

A : W 3+s
α+1,B(Ω) −→ L

(
W 4

α+1,B(Ω);Lα+1(Ω)
)

and F : W 3+s
α+1,B(Ω) −→ Lα+1(Ω)

are, for all α > 0, locally Lipschitz continuous. In order to guarantee parabolicity, we
extend the differential operatorA to the differential operator

Āε(v(t)) ∈ L
(
W 4

α+1,B(Ω);Lα+1(Ω)
)
, Āε(v(t))u

σ = Āε(v(t))∂
4
xu

σ,

where
Āε(v(t)) = max

{
vα+2
+ ψ′

σ(vxxx), ε/2
}

and v+ = max{v, 0}. Following the lines of [LM20, Chapter 5], we study the extended
parabolic problem with Āε instead of A and show that the corresponding local positive
solution uσ = uσ(ε) also solves the non-extended problem (Pσ) for a short but strictly
positive time. More precisely, the extended regularised problem is, for each fixed σ, ε ∈
(0, 1), parabolic in the sense that Āε(v(t)) generates an analytic semigroup on Lα+1(Ω).
Indeed, due to the embedding W 3+s

α+1,B(Ω) ↪→ C3(Ω̄) and the positivity of σ, ε > 0, we
have that Āε(v(t, ·)) ∈ C(Ω̄). Moreover, the principal symbol aε(x, ξ) satisfies

Re(aε(x, ξ)η|η) ≥ Cσ,α,ε(iξ)
4η2 > 0, (x, ξ) ∈ Ω̄× {−1, 1}, η ∈ R \ {0},

for a positive constant Cσ,α,ε > 0. Consequently, Āε(v(t)), together with the Neumann-
type boundary conditions, is normally elliptic in the sense of [Ama93, Example 4.3(d)] and
we can apply [Ama93, Theorem 4.1 and Remark 4.2(b)] to conclude that Āε(v(t)) gener-
ates an analytic semigroup on Lα+1(Ω). Thus, we are in the abstract setting of [LM20,
Theorem 4.2] which yields existence and uniqueness of a local positive strong solution to
the extended problem in Lα+1(Ω). On a potentially smaller time interval, this solution
uσ = uσ(ε) is, for ε small enough, also a local positive strong solution to (Pσ), see step (iii)
in the proof of [LM20,Theorem 5.1].
(ii)Conservationofmass. This followsby testing the regularisedpartial differential equa-
tion (Pσ)1 with the constant function ϕ ≡ 1, integration by parts and using the Neumann
boundary conditions (Pσ)2.
(iii) Energy-dissipation identity. Since the solution obtained in step (i) enjoys the regu-
larity

uσx ∈ C
(
(0, T );W 1

α+1,0(Ω)
)
∩ C1

(
(0, T ); (W 1

α+1,0(Ω))
′),

wemay apply [LM20, Proposition 6.1] in order to guarantee that the expression

d

dt
E[uσ](t) =

ˆ
Ω
uσxtu

σ
x dx = −

ˆ
Ω
|uσ|α+2

(
|uσxxx|2 + σ2

)α−1
2 |uσxxx|2 dx = −Dσ[u

σ](t)
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is well-defined for all t ∈ (0, T ). Integrating with respect to time gives the energy-
dissipation identity.
(iv) Maximal time of existence. Using the notation introduced in step (i), this result is a
minor adaptation of [LM20,Theorem 7.1].

In order to prove the local-existence result for the original problem (Theorem B.3.2),
we need suitable uniform (in σ) a-priori estimates for the solution to (Pσ) as given in the
following lemma.

Lemma B.3.8 (Uniform bounds). Let uσ be the maximal solution to (Pσ) for a fixed
σ ∈ (0, 1) and an initial value u0 ∈W 4ρ

α+1,B(Ω) such that u0(x) > 0 for all x ∈ Ω̄. Then the
following holds true. There is T > 0 such that the family (uσ)σ has the following properties:

(i) (uσ)σ is uniformly bounded in L∞
(
(0, T );H1(Ω)

)
;

(ii)
(
|uσ|α+2 ψσ(u

σ
xxx)

)
σ
is uniformly bounded in Lα+1

α

(
(0, T )× Ω

)
;

(iii) (uσt )σ is uniformly bounded in Lα+1
α

(
(0, T ); (W 1

α+1,B(Ω))
′);

(iv) (uσxxx)σ is uniformly bounded in Lα+1

(
(0, T )× Ω

)
;

(v) (uσ)σ is uniformly bounded in Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
;

(vi) ((uσx)t)σ is uniformly bounded in Lα+1
α

(
(0, T );

(
W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)′).
Proof. Note that once we have proved items (i) and (iii), the Aubin–Lions–Simon lemma
[Sim86] implies that the family (uσ)σ is equicontinuous. Hence, we may choose T > 0
such that uσ is bounded away uniformly from zero on the interval [0, T ].

Within this proof,C > 0 denotes a positive constant, possibly depending on α,Ω, and
‖u0‖W 4ρ

α+1(Ω)
, but independent of σ.

(i) Since
Dσ[u

σ](t) =

ˆ
Ω
(uσ)α+2ψσ(u

σ
xxx)u

σ
xxx dx ≥ 0, t ∈ [0, Tσ),

we have
E[uσ](t) =

1

2
‖uσx(t)‖2L2(Ω) ≤ E[u0], t ∈ [0, Tσ). (B.3.6)

Using Poincaré’s inequality and (B.3.4), we obtain for t ∈ [0, Tσ)

‖uσ(t)‖L2(Ω) ≤ ‖uσ(t)− ūσ(t)‖L2(Ω + ‖ūσ(t)‖L2(Ω) ≤ C‖uσx(t)‖L2(Ω) + ‖ū0‖L2(Ω),

which, together with (B.3.6), yields

sup
0≤t≤Tσ

‖uσ(t)‖H1(Ω) ≤ C
(
‖ū0‖L2(Ω) + E[u0]

1/2
)
.

Hence, (uσ)σ is uniformly bounded in L∞
(
(0, Tσ);H

1(Ω)
)
.
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(ii) First we consider the case 0 < α < 1. Observe that

∥∥|uσ|α+2ψσ(u
σ
xxx)

∥∥α+1
α

Lα+1
α

((0,Tσ)×Ω)

=

ˆ Tσ

0

ˆ
Ω
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt

=

ˆ Tσ

0

ˆ
Ω
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

1−α
α |uσxxx|2 dx dt.

Using that 1−α
α > 0, we get the pointwise estimate |uσxxx|

1−α
α ≤

(
|uσxxx|2 + σ2

) 1−α
2α . Fur-

thermore, in view of (i) andH1(Ω) ↪→ L∞(Ω), we find that (uσ)σ is uniformly bounded in
L∞
(
(0, Tσ);L∞(Ω)

)
. Combining this, we obtain the estimate

ˆ Tσ

0

ˆ
Ω
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

1−α
α |uσxxx|2 dx dt

≤
ˆ Tσ

0

ˆ
Ω
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2 |uσxxx|2 dx dt

≤C
ˆ Tσ

0
Dσ[u

σ](t) dt

≤CE[u0],

where the last step is due to (B.3.5). In the case 1 < α < ∞, we have to use a different
argument. Note that by (i) and (B.3.5), we have

∥∥|uσ|α+2ψσ(u
σ
xxx)

∥∥α+1
α

Lα+1
α

((0,Tσ)×Ω)

=

ˆ Tσ

0

ˆ
Ω
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt

≤C
ˆ
{|uσ

xxx|≤σ}

(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

1−α
α |uσxxx|2 dx dt

+

ˆ
{|uσ

xxx|>σ}
|uσ|(α+2)α+1

α
(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt

≤CTσσα+1 + C

ˆ Tσ

0
Dσ[u

σ](t) dt

≤C
(
Tσσ

α+1 + E[u0]
)
.

(iii) Since uσ is a weak solution to (Pσ), we have

ˆ Tσ

0
〈uσt , ϕ〉W 1

α+1(Ω) dt =

ˆ Tσ

0

ˆ
Ω
(uσ)α+2 ψσ(u

σ
xxx)ϕx dx dt
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for all ϕ ∈ Lα+1

(
(0, Tσ);W

1
α+1,B(Ω)

)
. Applying Hölder’s inequality and (i), we obtain

∣∣∣∣ˆ Tσ

0
〈uσt , ϕ〉W 1

α+1(Ω) dt

∣∣∣∣ ≤ ˆ Tσ

0

ˆ
Ω
|uσ|α+2 |ψσ(u

σ
xxx)| |ϕx| dx dt

≤
(ˆ Tσ

0

ˆ
Ω
|uσ|α+2|ϕx|α+1 dx dt

) 1
α+1

·

·
(ˆ Tσ

0

ˆ
Ω
|uσ|α+2

(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt

) α
α+1

≤ C‖ϕ‖Lα+1((0,Tσ);W 1
α+1(Ω))

(ˆ Tσ

0

ˆ
Ω
|uσ|α+2

(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt

) α
α+1

.

For 0 < α < 1, we obtain similar as in step (ii) that

ˆ Tσ

0

ˆ
Ω
|uσ|α+2

(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt ≤

ˆ Tσ

0
Dσ[u

σ](t) dt ≤ E[u0].

For 1 < α <∞, we get, similarly as in step (ii),

ˆ Tσ

0

ˆ
Ω
|uσ|α+2

(
|uσxxx|2 + σ2

)α−1
2

α+1
α |uσxxx|

α+1
α dx dt ≤ CTσσ

α+1 + C

ˆ Tσ

0
Dσ[u

σ](t) dt

≤ C
(
Tσσ

α+1 + E[u0]
)
.

(iv) We prove that (uσxxx)σ is uniformly bounded in Lα+1,loc
(
(0, Tσ) × Ω

)
. Note that by

definition of Tσ and continuity of uσ, we have uσ(t, x) > cδ > 0 for all (t, x) ∈ [0, Tσ −
δ)× Ω, for every δ > 0.

In the case 1 < α <∞, we get

ˆ Tσ−δ

0

ˆ
Ω
|uσxxx|α+1 dx dt ≤

ˆ Tσ−δ

0

ˆ
Ω

(
|uσxxx|2 + σ2

)α−1
2 |uσxxx|2 dx dt

≤ C

ˆ Tσ−δ

0
Dσ[u

σ](t) dt

≤ CE[u0],

where the constantC depends also on δ, and where in the last step we used (B.3.5).
Now we consider the case 0 < α < 1. We have
ˆ Tσ−δ

0

ˆ
Ω
|uσxxx|α+1 dx dt =

ˆ
{|uσ

xxx|≤σ}
|uσxxx|α+1 dx dt+

ˆ
{|uσ

xxx|>σ}
|uσxxx|α+1 dx dt

≤ C(Tσ − δ)σα+1 +

ˆ
{|uσ

xxx|>σ}
|uσxxx|α+1 dx dt.

Using the inequality

|x|α+1 =
(
1
2 |x|

2 + 1
2 |x|

2
)α−1

2 |x|2 ≤
(
1
2

)α−1
2
(
|x|2 + σ2

)α−1
2 |x|2, |x| > σ, x ∈ R,
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we obtain
ˆ Tσ−δ

0

ˆ
Ω
|uσxxx|α+1 dx dt

≤ C(Tσ − δ)σα+1 + C

ˆ Tσ−δ

0

ˆ
Ω

(
|uσxxx|2 + σ2

)α−1
2 |uσxxx|2 dx dt

≤ C(Tσ − δ)σα+1 + C

ˆ Tσ−δ

0
Dσ[u

σ](t) dt

≤ C
(
(Tσ − δ)σα+1 + E[u0]

)
withC depending also on δ. In the last step we used again (B.3.5).
(v) As observed in (i), uσ is uniformly bounded in L∞

(
(0, Tσ);L∞(Ω)

)
, and hence

also in Lα+1

(
(0, Tσ) × Ω

)
. From (iv), we also know that uσxxx is uniformly bounded

in Lα+1,loc
(
(0, Tσ) × Ω

)
.Combining this, we find that uσ is uniformly bounded in

Lα+1,loc
(
(0, Tσ);W

3
α+1,B(Ω)

)
by interpolation.

(vi)This follows as in (iii) using a duality argument.

PROOF OF THEOREM B.3.2: LOCAL EXISTENCE OF POSITIVE WEAK SOLUTIONS TO
THE ORIGINAL PROBLEM

In this section we pass to the limit of a vanishing regularisation parameter σ ↘ 0. Using
the uniform bounds provided in Lemma B.3.8, we show that the family (uσ)σ admits an
accumulation point that is a positive weak solution to the original problem (B.3.1). As
usual, we use Minty’s trick in order to identify the (nonlinear) limit flux.

Lemma B.3.9 (Convergence of approximations). Let uσ be the maximal solution to
(Pσ) for a fixed σ ∈ (0, 1) and a positive initial value u0 ∈W 4ρ

p,B(Ω) such that u0(x) > 0 for
all x ∈ Ω̄. Then the following holds true. There are a positive time T > 0 and a subsequence
(uσ)σ (not relabelled) such that, as σ ↘ 0, we have convergence in the following sense:

(i) uσ → u strongly inC
(
[0, T ];Cρ(Ω̄)

)
;

(ii) |uσ|α+2 ψσ(u
σ
xxx)⇀ χweakly in Lα+1

α

(
(0, T )× Ω

)
for some limit function χ;

(iii) uσt ⇀ ut weakly in Lα+1
α

(
(0, T ); (W 1

α+1,B(Ω))
′);

(iv) uσxxx ⇀ uxxx weakly in Lα+1

(
(0, T )× Ω

)
;

(v) (uσx)t ⇀ uxt weakly in Lα+1
α

(
(0, T );

(
W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)′).
Since theproof of this lemmadiffers only very slightly from that in [AG04; LPV22; LV22],

we shift it to the appendix.
We are left to prove the convergence of the nonlinear flux term

(
|uσ|α+2 ψσ(u

σ
xxx

))
⇀(

|u|α+2 ψ(uxxx)
)
in Lα+1

α

(
(0, T ) × Ω

)
. This is done in the next lemma the proof of which

is based on the monotonicity of the regularisation andMinty’s trick.



Appendix 165

Lemma B.3.10. Given σ ∈ (0, 1), let uσ be the maximal solution to (Pσ), corresponding
to an initial value u0 ∈ W 4ρ

α+1,B(Ω). Then there exists a subsequence (uσ)σ (not relabelled)
such that

|uσ|α+2 ψσ(u
σ
xxx) ⇀ |u|α+2ψ(uxxx) weakly in Lα+1

α

(
(0, T )× Ω

)
as σ ↘ 0.

The proof of the above stated lemma uses the same arguments as the one in [LPV22].
For the sake of completeness, we include it in the appendix.

Remark B.3.11. Note that the limit u is bounded in C
(
[0, T ];H1(Ω)

)
. Indeed, from

Lemma B.3.9 (i) we already know that

u ∈ C
(
[0, T ];Cρ(Ω̄)

)
↪→ C

(
[0, T ];L2(Ω)

)
.

Furthermore,
ux ∈ Lα+1

(
(0, T );W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)
and

uxt ∈ Lα+1
α

(
(0, T );

(
W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)′)
due to Lemma B.3.9 (iv) and (v) and lower semicontinuity of the norm. Using [Ber88, Re-
mark 3.4], this yields that ux ∈ C

(
[0, T ];L2(Ω)

)
. Therefore, u ∈ C

(
[0, T ];H1(Ω)

)
.

Proof ofTheorem B.3.2. (i) We first show that the limit u is bounded away from zero on
[0, T ] × Ω̄. This follows immediately from the positivity of uσ on [0, Tσ) × Ω̄ and the con-
vergence in Lemma (B.3.9) (i).
(ii)Thanks to Lemma B.3.8 (iii) and (iv) and Remark B.3.11 above, we obtain the regularity
properties

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

and
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′).

(iii)We now prove that u satisfies the weak integral formulation in Definition B.3.1. To do
so, note that for solutions to the regularised problem (Pσ) we have that

ˆ T

0
〈uσt , ϕ〉W 1

α+1(Ω) dt =

ˆ T

0

ˆ
Ω
|uσ|α+2ψσ(u

σ
xxx)ϕx dx dt

for all test functions ϕ ∈ Lα+1

(
(0, T );W 1

α+1,B(Ω)
)
. On the one hand, since ϕx ∈

Lα+1

(
(0, T )× Ω)

)
, it follows from Lemma B.3.10 that

ˆ T

0
〈uσt , ϕ〉W 1

α+1(Ω) dt −→
ˆ T

0

ˆ
Ω
|u|α+2ψ(uxxx)ϕx dx dt.

On the other hand, Lemma B.3.8 (iii) gives
ˆ T

0
〈uσt , ϕ〉W 1

α+1(Ω) dt −→
ˆ T

0
〈ut, ϕ〉W 1

α+1(Ω) dt.

Combining both, we then find that u satisfies the desired integral identity
ˆ T

0
〈ut, ϕ〉W 1

α+1(Ω) dt =

ˆ T

0

ˆ
Ω
uα+2ψ(uσxxx)ϕx dx dt
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for all ϕ ∈ Lα+1

(
(0, T );W 1

α+1,B(Ω)
)
.

(iv) By LemmaB.3.9 (i) the initial condition is satisfied in the limit. That the first boundary
condition in (B.3.1)2 is fulfilled by u follows from Lemma B.3.9 (v).
(v)This follows from the conservation of mass property

ˆ
Ω
uσ(t) dx =

ˆ
Ω
u0 dx, t ∈ [0, Tσ),

for the approximation uσ (seeTheorem B.3.7 (ii)) and the convergence in Lemma B.3.9 (i).
(vi) In Lemma B.3.10 we have already shown that the solution u to the original problem
(B.3.1) satisfies the energy-dissipation identity for almost every t ∈ [0, T ].

B.4 Differential inequality for the energy and regularity
estimates

Thecontentof this section is twofold. First, wederiveadifferential inequalityof Łojasiewicz–
Simon type for the energy functionalE which is valid as long as theweak solution to (B.3.1)
remains bounded away from zero. Then, we deriveL1-in-time regularity estimates for the
weak solution to (B.3.1). The results are the same as in the cylindrical Taylor–Couette set-
ting in [LPV22; LV22]. However, since the present paper deals with the flat case, the proofs
cannot rely on Fourier analysis.

Proposition B.4.1. Fix α > 0 and a positive initial value u0 ∈ H1(Ω)with u0(x) > 0 for
x ∈ Ω̄. Let

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

be a weak solution to (B.3.1) with initial value u0, as obtained in Theorem B.3.2. Letm =
min(t,x)∈[0,T ]×Ω̄ u(t, x) > 0. Then there is a constantC = Cα,Ω,m > 0 such that

d

dt
E[u](t) = −D[u](t) ≤ −C

(
E[u](t)

)α+1
2

for almost every t ∈ [0, T ].

The proof of Proposition B.4.1 is based on the following crucial Poincaré estimate. It
is worthwhile to emphasise that this estimate is valid in both the shear-thinning case and
the shear-thickening case.

Lemma B.4.2. Fix α > 0 and let v ∈ H1(Ω) ∩W 3
α+1,B(Ω) with v̄ = 0 and vx(x) = 0 for

x ∈ ∂Ω. Then there exists a constantC = Cα,Ω > 0 such that

E[v] ≤ C‖vxxx‖2Lα+1(Ω).

Proof. We distinguish the cases α = 1, α > 1 and α < 1.
The case α = 1.This is just a direct application of Poincaré’s inequality.
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The case α > 1. Define w = vxx ∈ W 1
α+1(Ω) ⊂ L2(Ω). Observe that v is a weak solution

to the Neumann boundary-value problem given by{
vxx = w, x ∈ Ω,

vx = 0, x ∈ ∂Ω.

Hence,weobtain theestimate‖vx‖L2(Ω) ≤ C‖w‖L2(Ω). Furthermore, note that w̄ = 0. Us-
ing this, applying Poincaré’s inequality and then Jensen’s inequality for the concave func-
tion s 7→ s2/(α+1), s ∈ (0,∞), we find that

E[v] =
1

2
‖vx‖2L2(Ω) ≤ C‖w‖2L2(Ω) ≤ C‖wx‖2L2(Ω) = C

ˆ
Ω
|vxxx|(α+1) 2

α+1 dx

≤ C

(ˆ
Ω
|vxxx|α+1 dx

) 2
α+1

.

The case α < 1. In this case we have 2/(α+ 1) > 1 and we cannot use Jensen’s inequality
anymore. Instead, we rely on the Sobolev embedding and a-priori estimates for the Bi-
Laplace equation. Definew = vxxx ∈ Lα+1(Ω). Then v is a weak solution to{

vxxxx = wx, x ∈ Ω,

vx = vxxx = 0, x ∈ ∂Ω,

in the sense that ˆ
Ω
vxxϕxx dx = −

ˆ
Ω
wϕx dx for all ϕ ∈W 2

α+1
α

,B
(Ω).

Since v ∈ C2(Ω̄) by the Sobolev embedding, wemay use v ∈W 2
α+1
α

,B
(Ω) as a test function

and find that

‖vxx‖2L2(Ω) ≤
ˆ
Ω
|w||vx| dx ≤ ‖w‖Lα+1(Ω)‖vx‖L α

α+1
(Ω) ≤ C‖w‖Lα+1(Ω)‖vxx‖L2(Ω).

Dividing by ‖vxx‖L2(Ω), we conclude that ‖vxx‖2L2(Ω) ≤ C‖w‖2Lα+1(Ω). Finally, the desired
estimate

E[v] =
1

2
‖vx‖2L2(Ω) ≤ C‖vxx‖2L2(Ω) ≤ C‖w‖2Lα+1(Ω) = C‖vxxx‖2Lα+1(Ω)

follows by Poincaré’s inequality.

Proof of Proposition B.4.1. From Theorem B.3.2 we know that weak solutions to (B.3.1)
satisfy the energy-dissipation identity (B.3.2). Taking the derivative in time, we find that

d

dt
E[u](t) +D[u](t) = 0

for almost every t ∈ [0, T ]. Furthermore, since m = min(t,x)∈[0,T ]×Ω̄ u(t, x) > 0 and by
Lemma B.4.2, we obtain

D[u](t) =

ˆ
Ω
|u|α+2|uxxx|α+1 dx ≥ mα+2‖uxxx(t)‖α+1

Lα+1(Ω) ≥ Cmα+2
(
E[u](t)

)α+1
2

for almost every t ∈ [0, T ]. This concludes the proof.
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Next, we turn to L1-in-time bounds for the dissipation functional in terms of the en-
ergy. The proof is a simplified version of the one in [LV22] for general degenerate parabolic
problems of fourth order. In our case, it relies on testing the partial differential equation
with a time cut-off of the second spatial derivative.

Theorem B.4.3. Fix α > 0 and a positive initial value u0 ∈ H1(Ω) with u0(x) > 0 for
x ∈ Ω̄. Let

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

be a positive weak solution to (B.3.1) on (0, T ), as obtained in Theorem B.3.2. Then there
exists a constant C > 0, independent of t, such that the dissipation functionalD[u] enjoys
the L1-in-time bound

ˆ t

t/2
D[u](s) ds ≤ C

t

ˆ t/2

t/4
E[u](s) ds ≤ C

4
E[u]

(
t
4

)
.

Proof. We choose a cut-off function χ ∈ C∞(R) in time such that 0 ≤ χ ≤ 1, χ(s) = 1
for s ≥ t/2, χ(s) = 0 for s ≤ t/4 and χ′(s) ≤ C/t for some constant C, independent of
t. Now we define the test function ϕ(s, x) = χ(s)uxx(s, x) ∈ Lα+1

(
(0, T );W 1

α+1,B(Ω)
)
.

Since u is a weak solution to (B.3.1) on the time interval [0, t], we obtain
ˆ t

0
〈ut, χ(s)uxx〉W 1

α+1
ds =

ˆ t

0

ˆ
Ω
uα+2ψ(uxxx)uxxxχ(s) dx ds (B.4.1)

=

ˆ t

0
χ(s)D[u](s) ds.

Moreover, since χ(0) = 0 and χ(t) = 1, we have the inequality

0 ≤ E[u](t) =

ˆ t

0

d

ds

(
χ(s)E[u](s)

)
ds (B.4.2)

=

ˆ t

0
χ′(s)E[u](s) ds−

ˆ t

0
χ(s)〈us, uxx〉W 1

α+1
ds.

Combining (B.4.1) and (B.4.2) and using that χ ≡ 1 on [t/2, t] and D[u](s) ≥ 0 for all
0 ≤ s ≤ t, we conclude that

ˆ t

t/2
D[u](s) ds ≤

ˆ t

0
χ(s)D[u](s) ds ≤

ˆ t

0
χ′(s)E[u](s) ds ≤ C

t

ˆ t/2

t/4
E[u](s) ds.

Finally, sinceE[u] decreases along solutions, we may estimate

C

t

ˆ t/2

t/4
E[u](s) ds ≤ C

4
E[u]

(
t
4

)
.

This completes the proof.
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B.5 Shear-thickening power-law fluids (α < 1) – Global
existence and convergence to steady states in finite time

This section deals with the long-time asymptotics of shear-thickening power-law fluids,
i.e. we consider flow-behaviour exponents α < 1 in (B.3.1). We prove that for positive
initial values u0 ∈ H1(Ω) that are close to a steady state in the sense that

1

2
ū0 < u0(x) < 2ū0, x ∈ Ω̄, where ū0 =

 
Ω
u0 dx,

problem (B.3.1) with α < 1 possesses a globally-in-time defined positive weak solution
that converges to a steady state in finite time. As in the circular Taylor–Couette setting
[LPV22], the corresponding proof relies mainly on the differential inequality derived in
Proposition B.4.1. This differential inequality guarantees that the energy becomes zero in
finite time 0 < t∗ <∞. We construct a globally-in-time defined positive weak solution by
constant extension at time t∗.

ByTheoremB.3.2 andRemarkB.3.3 there exists aweak solutionu ∈ C
(
[0, T ];H1(Ω)

)
∩

Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
with ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′) to (B.3.1). We define the

time
τ = sup

{
T̃ > 0; ∃ a weak solution u to (B.3.1) on [0, T̃ ] (B.5.1)

with 1
2 ū0 ≤ u(t, x) ≤ 2ū0 ∀ 0 ≤ t ≤ T̃

}
,

up to which solutions are bounded away from zero and bounded above. Note that by con-
tinuity of weak solutions, we have 0 < τ . By Remark B.3.4 wemay also assume that τ ≤ T .
In particular, we can apply the results of Section B.4 up to time τ .

TheoremB.5.1 (Global existenceandconvergence infinite time). Fix 0 < α < 1. There
exists ε > 0 such that, for all positive initial values u0 ∈ H1(Ω) with ‖u0 − ū0‖H1(Ω) < ε,
there is a positive global weak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′).

Moreover, there exists a time 0 < t∗ <∞ such that

u(t, ·) −→ ū0 inH1(Ω), as t→ t∗, and u(t, x) = ū0, t ≥ t∗, x ∈ Ω̄.

Proof. Let u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
the solution to (B.3.1) pro-

vided by Theorem B.3.2 and Remark B.3.3 with initial datum u0 > ū0/2 in Ω̄. Write
u(t, x) = ū0+v(t, x) for (t, x) ∈ [0, T ]×Ω, where due to conservation ofmass

´
Ω v dx = 0

for all t ∈ [0, T ]× Ω̄. Then, by continuity and the definition of τ , we have |v(t, x)| ≤ ū0/2
for (t, x) ∈ [0, τ ] × Ω̄. Thus, there exists a constant C > 0 such that for almost every
t ∈ [0, τ ] it holds ˆ

Ω
|vxxx|α+1 dx ≤ C

ˆ
Ω
|u|α+2|vxxx|α+1 dx.

Hence, using the energy-dissipation identity (B.3.2) and Lemma B.4.2, we obtain
d

dt
E[v](t) =

d

dt
E[u](t) = −

ˆ
Ω
|u|α+2|vxxx|α+1 dx

≤ −C‖vxxx(t)‖α+1
Lα+1(Ω) ≤ −C

(
E[v](t)

)α+1
2
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for almost every t ∈ [0, τ ]. This inequality implies that the energy E[v](·) = E[u](·) is
decreasing and hence τ = T . Furthermore, it follows that

d

dt

((
E[v](t)

) 1−α
2

)
≤ −Cα,

as long asE[v](t) > 0, and integration from 0 to t yields(
E[v](t)

) 1−α
2 ≤

(
E[v0]

) 1−α
2 − Cαt, t ∈ [0, T ], ifE[v](t) > 0.

Thus, we conclude that

E[v](t) ≤
((
E[v0]

) 1−α
2 − Cαt

) 2
1−α

, t ∈ [0, T ], ifE[v](t) > 0,

which implies the existence of a finite time t∗ ≥ 0with t∗ ≤ (E[v0])
1−α
2 /Cα such that

E[v](t) = 0, t ≥ t∗.

Wemay choose ε > 0 small enough so thatwe obtain t∗ < T . Finally, note thatE[v](t) = 0
for t ≥ t∗ and v̄(t) = 0 implies that v(t, x) = 0 for all t ≥ t∗ andx ∈ Ω. Hence, the solution
umay be extended by the constant solution ū0 for times t ≥ t∗ to a global-in-time weak
solution u ∈ C

(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)
and we have

u(t, x) −→ ū0 inH1(Ω)

and uniformly as t→ t∗ in finite time.

B.6 Shear-thinning power-law fluids (α > 1) – Global existence
and polynomial stability of steady states

In this sectionwe study the long-time behaviour of solutions to the shear-thinning power-
law equation. More precisely, we fix a flow-behaviour exponent α > 1 in (B.3.1) and con-
sider positive initial values u0 ∈ H1(Ω) that are close to a steady state in the sense that

1

2
ū0 < u0(x) < 2ū0, x ∈ Ω̄,

where ū0 =
ffl
Ω u0 dx. We show that there exist global positive weak solutions u to (B.3.1)

withα > 1 that remain ε-close to the steady state for all times and converge at rate 1/t
1

α−1

to equilibrium, as t→ ∞. Note that convergence to equilibrium has already been proved
for the global non-negative weak solutions constructed in [AG04], but with no rate of con-
vergence. The result on the rate of convergence is the same as in [LV22] for the cylindri-
cal Taylor–Couette setting. The proof relies again on the differential inequality for the en-
ergy, derived in Proposition B.4.1. However, in the shear-thinning case also theL1-in-time
bound ofTheorem B.4.3 is crucial.

Theorem B.6.1 (Global existence and polynomial stability). Fix 1 < α < ∞. There
exists ε > 0 such that for all positive initial values u0 ∈ H1(Ω) with ‖u0 − ū0‖H1(Ω) < ε,
there is a global positive weak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)
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with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′).

Moreover, there is a constantC > 0 such that

‖u(t)− ū0‖H1(Ω) ≤
Cε(

1 + Cεα−1t
) 1

α−1

, 0 ≤ t <∞.

Furthermore, the dissipation decreases polynomially along the solution in the followingL1-
in-time sense ˆ t

t/2
D[u](s) ds ≤ Cε2(

1 + Cεα−1t
) 2

α−1

(B.6.1)

for all 0 ≤ t <∞.

Remark B.6.2. Note that the weak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

obtained inTheoremB.6.1 satisfies u(t, x) ≥ ū0/2 for all (t, x) ∈ [0,∞)×Ω̄. Hence, (B.6.1)
implies that theW 3

α+1(Ω)-norm is also controlled in the L1-in-time sense by
ˆ t

t/2

ˆ
Ω
|uxxx(s)|α+1 dx ds ≤ Cε(

1 + Cεα−1t
) 1

α−1

for all 0 ≤ t <∞.

Proof ofTheorem B.6.1. First, we show that there exists an ε > 0 such that for all initial
values u0 ∈ H1(Ω)with ū0 = 0 and ‖u0− ū0‖ < ε, there is a constantC > 0 independent
of ε such that

E[u](t) ≤ Cε2(
1 + εα−1t

) 2
α−1

, 0 ≤ t <∞.

Let u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
the solution to (B.3.1) provided by

Theorem B.3.2 and Remark B.3.3 with initial datum u0 ∈ H1(Ω) satisfying u0 > ū0/2 in
Ω̄. As in the proof of Theorem B.5.1, we write u(t, x) = ū0 + v(t, x) for (t, x) ∈ [0, T ]× Ω̄,
where due to conservation of mass

´
Ω v dx = 0 for all t ∈ [0, T ]. Then, by continuity and

the definition of τ (see (B.5.1)), we have |v(t, x)| ≤ ū0/2 for (t, x) ∈ [0, τ ]× Ω̄. By Lemma
B.4.2 we then conclude that

E[u](t) = E[v](t) ≤ C

(ˆ
Ω
|vxxx|α+1 dx

) 2
α+1

≤ C

(ˆ
Ω
|u|α+2|vxxx|α+1 dx

) 2
α+1

= C
(
D[u](t)

) 2
α+1

for almost every t ∈ [0, τ ]. Inserting this into the energy-dissipation identity (B.3.2), we
find that

d

dt
E[u](t) = −D[u](t) ≤ −C

(
E[u](t)

)α+1
2 (B.6.2)

for almost every t ∈ [0, τ ]. This implies that the energy E[u](·) is decreasing and hence
τ = T . Furthermore, we can rewrite estimate (B.6.2) as

2

1− α

d

dt

(
E[u](t)

) 1−α
2 ≤ −C, 0 ≤ t ≤ τ,
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so that, after integration, we obtain

2

1− α

(
E[u](t)

) 1−α
2 ≤ −Ct+ 2

1− α

(
E[u0]

) 1−α
2 , 0 ≤ t ≤ τ.

Since α > 1, we can rearrange this inequality to

E[u](t) ≤
((
E[u0]

) 1−α
2 +

C(α− 1)

2
t

) 2
1−α

=
E[u0](

1 + C
(
E[u0]

)α−1
2 t
) 2

α−1

, 0 ≤ t ≤ τ.

Since the function s 7→ s(
1+Cs

α−1
2 t
) 2

α−1
is increasing on [0,∞) andE[u0] ≤ ε2 by assump-

tion, we infer that

E[u](t) ≤ Cε2(
1 + Cεα−1t

) 2
α−1

, 0 ≤ t ≤ τ.

Now, we choose ε > 0 such that

‖u0 − ū0‖L∞(Ω) ≤ C
(
E[u0]

) 1
2 ≤ ū0

2
,

where the first estimate is due to the embedding H1(Ω) ↪→ L∞(Ω) and the Poincaré in-
equality. This, together with the fact thatE[u](·) is decreasing, guarantees that

‖u(t)− ū0‖L∞(Ω) ≤ C
(
E[u](t)

) 1
2 ≤ C

(
E[u0]

) 1
2 ≤ ū0

2
, 0 ≤ t ≤ τ.

Hence, solutionsu to (B.3.1) on [0, τ ] remain strictly bounded away from zero and by boot-
strapping as in Remark B.3.4, we may extend it beyond time τ to a global-in-time weak
solution u ∈ C

(
[0,∞);H1(Ω)

)
∩Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)
that satisfies

E[u](t) ≤ Cε2(
1 + Cεα−1t

) 2
α−1

, 0 ≤ t <∞.

Since by Poincaré’s inequality we have

‖u(t)− ū0‖H1(Ω) ≤ C
√
E[u](t) ≤ Cε(

1 + Cεα−1t
) 1

α−1

, 0 ≤ t <∞,

we conclude the polynomial stability in H1(Ω). For the L1-in-time estimate, we apply
Theorem B.4.3 and obtain

ˆ t

t/2
D[u](s) ds ≤ CE[u]

(
t
4

)
≤ Cε2(

1 + Cεα−1t
) 2

α−1

, 0 ≤ t <∞.

This completes the proof.
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B.7 Global existence and exponential stability for the Ellis-law
thin-film equations

Nowwe turn to fluids with Ellis-law rheology. These are fluids whose viscosity approaches
a Newtonian plateau for low shear rates, while for big shear rates the viscosity is shear-
thinning. The corresponding thin-film equation is given by

ut +
(
u3(1 + |uuxxx|α−1)uxxx

)
x
= 0, t > 0, x ∈ Ω,

ux(t, x) = uxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(B.7.1)

for flow-behaviour exponents α ≥ 1. HereΩ ⊂ R denotes, as before, a bounded interval.

Definition B.7.1. Let α > 1. For a given T > 0 a weak solution to (B.7.1) is defined as a
function

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

that has the following properties:

(i) (Weak formulation)u satisfies the differential equation (B.7.1)1 in theweak sense, i.e.,
ˆ T

0
〈ut, ϕ〉W 1

α+1(Ω) dt =

ˆ T

0

ˆ
Ω
u3
(
1 + |uuxxx|α−1

)
uxxx ϕx dx dt

for all test functions ϕ ∈ Lα+1

(
(0, T );W 1

α+1,B(Ω)
)
.

(ii) (Initial and boundary values) u satisfies the contact angle condition ux = 0 on ∂Ω
and the initial condition (B.7.1)3 pointwise.

In the case of Ellis fluids we naturally obtain the dissipation functional

D[u] =

ˆ
Ω
u3
(
1 + |uuxxx|α−1

)
|uxxx|2 dx.

For general positive initial data inH1(Ω)we can show existence of local-in-time posi-
tive weak solutions.

TheoremB.7.2 (Local existence of positiveweak solutions). Letα > 1. Given a positive
initial value u0 ∈ H1(Ω) with u0(x) > 0, x ∈ Ω̄, there exists a time T > 0 such that
problem (B.7.1) admits at least one positive weak solution

u ∈ C
(
[0, T ];H1(Ω)

)
∩ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′)

on (0, T ) in the sense of Definition B.7.1. Moreover, such a solution has the following prop-
erties:

(i) (Positivity) u is bounded away from zero

0 < CT ≤ u(t, x), 0 ≤ t ≤ T, x ∈ Ω̄.
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(ii) (Conservation of mass) u conserves its mass in the sense that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t ≤ T.

(iii) (Energy-dissipation identity) Energy is dissipated along solutions

E[u](t) +

ˆ t

0
D[u](s) ds = E[u0] (B.7.2)

for almost every t ∈ [0, T ].

Remark B.7.3. For positive initial datum u0 ∈ W 4ρ
α+1,B(Ω), 4ρ > 3 + 1/(α + 1) with

u0(x) > 0,x ∈ Ω̄, the problem (B.7.1) actually possesses a uniquemaximal strong solution
[LM20]

u ∈C
(
[0, Tmax);W

4ρ
α+1,B(Ω)

)
∩ Cρ

(
[0, Tmax);Lα+1(Ω)

)
∩ C

(
(0, Tmax);W

4
α+1,B(Ω)

)
∩ C1

(
(0, Tmax);Lα+1(Ω)

)
.

Moreover, the solution enjoys the following properties:

(i) (Positivity) u is positive

u(t, x) > 0, 0 ≤ t < Tmax, x ∈ Ω̄.

(ii) (Conservation of mass) u conserves its mass in the sense that

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), 0 ≤ t < Tmax.

(iii) (Energy-dissipation identity) u satisfies the energy-dissipation identity

E[u](t) +

ˆ t

0
D[u](s) = E[u0], 0 ≤ t < Tmax. (B.7.3)

(iv) (Maximal time of existence) Suppose that Tmax <∞. Then

lim inf
t↗Tmax

1

minx∈Ω̄ u(t)
+ ‖u(t)‖

W 4γ
α+1,B(Ω)

= ∞

for all γ ∈ (θ, 1].

Proof ofTheorem B.7.2. For initial data u0 ∈ W 4ρ
α+1,B(Ω), 4ρ > 3 + 1/(α + 1) with

u0(x) > 0 we obtain local-in-time strong solutions. Choosing a sequence
(
u
(k)
0

)
k∈N with

u
(k)
0 (x) > 0, x ∈ Ω̄, and ū(k)0 = ū0 such that u(k)0 → u0 strongly in H1(Ω) guaran-

tees, together with the energy-dissipation identity (B.7.3) and similar a-priori bounds
as in Lemma B.3.8 that the corresponding strong solutions u(k) converge weakly in
L∞
(
(0, T );H1(Ω)

)
∩Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
to a weak solution u ∈ C

(
[0, T ];H1(Ω)

)
∩

Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
. Positivity, conservation of mass and the energy-dissipation

identity for almost every t ∈ [0, T ] are preserved under taking the weak limit.

Steady states of (B.7.1). We now turn to stability. First, we find that the same charac-
terisation of positive steady states as before holds true. This is the content of the following
theorem which has already been proved in [LM20, Corollary 6.3].
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TheoremB.7.4 (Characterisationof positive steady states). A functionu ∈W 3
α+1,B(Ω)

is a positive steady-state solution of (B.7.1) if and only if u ≡ u∗ ∈ R>0 is given by positive
constant.

Global existence and exponential stability for (B.7.1). It is well-known that for
the Newtonian thin-film equation

ut +
(
u3uxxx

)
x
= 0, t > 0, x ∈ Ω,

ux(t, x) = uxxx(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

solutions close to positive steady states converge exponentially fast to equilibrium [BP96].
We now prove that the same behaviour can be found for Ellis-law thin films.

Theorem B.7.5 (Global existence and exponential stability). Fix 1 < α < ∞. There
exists ε > 0 such that, for all positive initial values u0 ∈ H1(Ω) with ‖u0 − ū0‖H1(Ω) < ε,
there is a global positive weak solution

u ∈ C
(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)

with
ut ∈ Lα+1

α
,loc
(
(0,∞); (W 1

α+1,B(Ω))
′).

Moreover, there is λ > 0 and a constantC > 0 such that

‖u(t)− ū0‖H1(Ω) ≤ Ce−λt‖u0‖H1(Ω).

Furthermore, we find that the dissipation decreases exponentially along the solution in the
following L1-in-time sense:

ˆ t

t/2
D[u](s) ds ≤ Ce−2λt‖u0‖2H1(Ω).

Proof. Let u0 ∈ H1(Ω) with ū0/2 < u0(x) < 2ū0, x ∈ Ω̄ and u ∈ C
(
[0, T ];H1(Ω)

)
∩

Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
the solution to (B.7.1) providedbyTheoremB.7.2. Wealsodefine

τ = sup
{
T̃ > 0; ∃ a weak solution u to (B.7.1) on [0, T̃ ]

with 1
2 ū0 ≤ u(t, x) ≤ 2ū0 ∀ 0 ≤ t ≤ T̃

}
.

Then τ ≤ T because otherwise we can extend weak solutions beyond time τ .
Next, write u(t, x) = ū0 + v(t, x) for (t, x) ∈ [0, T ] × Ω, where due to conservation of

mass
´
Ω v(t, x) dx = 0 for all t ∈ [0, T ]. Then, by continuity and the definition of τ , we

have |v(t, x)| ≤ ū0/2 for 0 ≤ t ≤ τ .
We then find, by the energy-dissipation identity (B.7.2) and the definition of τ , that

d

dt
E[u](t) = −D[u](t) = −

ˆ
Ω
u3(t, x)

(
1 + |u(t, x)uxxx(t, x)|α−1

)
|uxxx(t, x)|2 dx

≤ −
ˆ
Ω
u3(t, x)|uxxx(t, x)|2 dx ≤ −C

ˆ
Ω
|uxxx(t, x)|2 dx ≤ −CE[u](t)
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for almost every t ∈ [0, τ ], where in the last step we have applied Lemma B.4.2. This yields
thatE[u](t) is decreasing and so τ = T . Applying Gronwall’s inequality, we deduce that

E[u](t) ≤ E[u0]e
−Ct

for all t ∈ [0, τ ]. Now choose ε > 0 small enough so that

‖u0 − ū0‖L∞(Ω) ≤ CE[u0]
1
2 ≤ ū0

2
,

where in the first estimate we have used the embeddingH1(Ω) ↪→ L∞(Ω) and Poincaré’s
inequality. Using this and the fact thatE[u](t) is decreasing, we get

‖u(t)− ū0‖L∞(Ω) ≤ CE[u](t)
1
2 ≤ CE[u0]

1
2 ≤ ū0

2

for all t ∈ [0, T ]. We can then extend the solution beyond time T to a global-in-time weak
solution u ∈ C

(
[0,∞);H1(Ω)

)
∩ Lα+1,loc

(
(0,∞);W 3

α+1,B(Ω)
)
to (B.7.1) that satisfies

E[u](t) ≤ E[u0]e
−Ct, 0 ≤ t <∞.

By Poincaré’s inequality, we then conclude that

‖u(t)− u0‖H1(Ω) ≤ CE[u(t)]1/2 ≤ C‖∇u0‖L2(Ω)e
−λt,

for some λ > 0 and all t ∈ (0,∞).
The L1-in-time estimate follows from adapting Theorem B.4.3 to the new dissipation

functional.

B.8 Appendix: Proofs of Lemma B.3.9 and Lemma B.3.10
Here we give precise proofs of the auxiliary results needed to establish local existence of
positive weak solutions to the original problem (B.3.1) in Section B.3.

Proof of Lemma B.3.9. (i) In Lemma B.3.8 (i) and (iii) we have shown that{
(uσ)σ is uniformly bounded in L∞

(
(0, T );H1(Ω)

)
(uσt )σ is uniformly bounded in Lα+1

α

(
(0, T ); (W 1

α+1,B(Ω))
′).

Moreover, in view of the Rellich-Kondrachov theorem, see e.g. [AF03,Thm. 6.3], we have

H1(Ω)
c
↪−→ Cρ(Ω̄) ↪→ (W 1

α+1(Ω))
′, ρ ∈ [0, 1/2),

where c
↪−→ indicates compactness of the embedding. This enables us to use [Sim86, Cor. 4],

which gives that the sequence

(uσ)σ is relatively compact inC
(
[0, T ];Cρ(Ω̄)

)
with ρ ∈ [0, 1/2) as above.
(ii)This is an immediate consequence of Lemma B.3.8 (ii).
(iii) By Lemma B.3.8 (iii), we can extract a subsequence (uσt )σ such that

uσt ⇀ v weakly in Lα+1
α

(
(0, T ); (W 1

α+1,B(Ω))
′) ↪→ D′((0, T ); (W 1

α+1,B(Ω))
′)
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for some limit function v ∈ Lα+1
α

(
(0, T ); (W 1

α+1,B(Ω))
′). Since, in addition,

uσ −→ u inC
(
[0, T ];Cρ(Ω̄)

)
↪→ D′((0, T ); (W 1

α+1,B(Ω))
′) ρ ∈ [0, 1/2),

we conclude that
uσt −→ ut inD′((0, T ); (W 1

α+1,B(Ω))
′)),

and thus, v = ut ∈ Lα+1
α

(
(0, T ); (W 1

α+1,B(Ω))
′).

(iv) Note that the strong convergence uσ → u in C
(
[0, T ];Cρ(Ω̄)

)
, ρ ∈ [0, 1/2), in (i)

implies uniform convergence

uσ −→ u inC
(
[0, T ]× Ω̄

)
. (B.8.1)

Moreover, by Lemma B.3.8 (v), there exists some û ∈ Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
such that

uσ ⇀ û in Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
. (B.8.2)

Because of the uniqueness of the limit function, we infer from (B.8.1) and (B.8.2) that

uσ ⇀ u in Lα+1

(
(0, T );W 3

α+1,B(Ω)
)
.

In virtue of the weak lower-semicontinuity of the norm and Lemma B.3.8 (iv) and (v), we
finally obtain{

‖uxxx‖Lα+1((0,T )×Ω) ≤ lim infσ→0 ‖uσxxx‖Lα+1((0,T )×Ω) ≤ C

‖u‖Lα+1((0,T );W 3
α+1,B(Ω)) ≤ lim infσ→0 ‖uσ‖Lα+1((0,T );W 3

α+1,B(Ω)) ≤ C

for some generic constantC > 0 that is independent of σ.
(v)This follows by reasoning similarly to (iii) and the proof is complete.

Proof of Lemma B.3.10. The proof is divided into several steps. Throughout the proof,
when there is no fear of ambiguity, we pass to a subsequence without relabelling it.
(i) First, by Lemma B.3.9 (ii), we know that |uσ|α+2ψσ(u

σ
xxx

)
is weakly sequentially com-

pact, i.e., there is an element χ ∈ Lα+1
α

(
(0, T )× Ω)

)
such that

|uσ|α+2ψσ(u
σ
xxx)⇀ χ weakly in Lα+1

α

(
(0, T )× Ω)

)
.

It remains to identify the limit flux χ.
(ii)Next, in view of Lemma B.3.8 (v) and the lower semicontinuity of the norm,

ux ∈ Lα+1

(
(0, T );W 1

α+1,0(Ω) ∩W 2
α+1(Ω)

)
.

Thus, we can take ϕ = uxx ∈ Lα+1

(
(0, T );W 1

α+1(Ω)
)
as a test function in the equation

(Pσ) for uσ. This gives
ˆ T

0

ˆ
Ω
uσt uxx dx dt+

ˆ T

0

ˆ
Ω
|uσ|α+2ψσ(u

σ
xxx)uxxx dx dt = 0.

Using Lemma B.3.9 (iii), the first term satisfies
ˆ T

0

ˆ
Ω
uσt uxx dx dt −→

ˆ T

0

ˆ
Ω
ut uxx dx dt = E[u](T )− E[u](0)
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as σ ↘ 0. For the second term, we infer from Lemma B.3.9 (ii) that
ˆ T

0

ˆ
Ω
|uσ|α+2ψσ(u

σ
xxx)uxxx dx dt −→

ˆ T

0

ˆ
Ω
χuxxx dx dt,

as σ ↘ 0. Consequently, we obtain the identity

E[u](t) + 〈χ|uxxx〉Lα+1
= E[u0]

for almost every t ∈ [0, T ].
(iii)We now use Minty’s trick to identify the limit flux χ. Note that the operator{

ψσ : Lα+1

(
(0, T )× Ω

)
−→ Lα+1

α

(
(0, T )× Ω

)
,

ψσ(v) =
(
|v|2 + σ2

)α−1
2 v

is monotone, i.e. for all v, w ∈ Lα+1

(
(0, T )× Ω

)
with v 6= w it holds that

〈ψσ(v)− ψσ(w)|v − w〉Lα+1 =

ˆ T

0

ˆ
Ω

(
ψσ(v)− ψσ(w)

)
(v − w) dx dt > 0.

This follows immediately from the monotonicity of the function

ψσ : R → R : s 7→ (s2 + σ2)
α−1
2 s.

From now on, we simply write 〈v|w〉 for the dual pairing 〈v|w〉Lα+1((0,T )×Ω) between v ∈
Lα+1

α

(
(0, T )× Ω

)
and w ∈ Lα+1

(
(0, T )× Ω

)
. Let now ϕ ∈ W 3

α+1

(
(0, T )× Ω

)
. In view of

the monotonicity of ψσ, we have

0 ≤
〈
|uσ|α+2ψσ(u

σ
xxx)− |uσ|α+2ψσ(ϕxxx)|(uσ − ϕ)xxx

〉
=
〈
|uσ|α+2ψσ(u

σ
xxx)|uσxxx

〉
−
〈
|uσ|α+2ψσ(u

σ
xxx)|ϕxxx

〉
−
〈
|uσ|α+2ψσ(ϕxxx)|uσxxx

〉
+
〈
|uσ|α+2ψσ(ϕxxx)|ϕxxx

〉
.

We consider the four dual pairings on the right-hand side separately.
First, we rewrite the energy-dissipation identity for the problem (Pσ) as〈

|uσ|α+2ψσ(u
σ
xxx)|uσxxx

〉
= E[u0]− E[uσ](t) for almost every t ∈ [0, T ].

Thanks to Lemma B.3.9 (i) we know that uσ(t) → u(t) inH1(Ω) for almost every t ∈ [0, T ],
and hence, as σ ↘ 0, we have〈

|uσ|α+2ψσ(u
σ
xxx)|uσxxx

〉
−→ E[u0]− E[u](t) for almost every t ∈ [0, T ]. (B.8.3)

For the second dual pairing, we get from Lemma B.3.9 (ii) that〈
|uσ|α+2ψσ(u

σ
xxx)|ϕxxx

〉
−→ 〈χ|ϕxxx〉 , as σ ↘ 0.

For the third pairing, we use Lemma B.3.9 (i) and (iv) to obtain{
uσ −→ u strongly inC

(
[0, T ]× Ω̄

)
uσxxx ⇀ uxxx weakly in Lα+1

(
(0, T )× Ω

)
,
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and this implies〈
|uσ|α+2ψσ(ϕxxx)|uσxxx

〉
−→

〈
|u|α+2ψ(ϕxxx)|uxxx

〉
, as σ ↘ 0.

Clearly, for the fourth pairing, we have〈
|uσ|α+2ψσ(ϕxxx)|ϕxxx

〉
−→

〈
|u|α+2ψ(ϕxxx)|ϕxxx

〉
, as σ ↘ 0. (B.8.4)

Combining (B.8.3)–(B.8.4) yields the inequality

0 ≤ E[u0]− E[u](t)− 〈χ|ϕxxx〉 −
〈
|u|α+2ψ(ϕxxx)|(u− ϕ)xxx

〉
,

and taking into account the identity

E[u](t) + 〈χ|uxxx〉 = E[u0]

proved in step (ii), for almost every t ∈ [0, T ], we get that

0 ≤
〈
χ− |u|α+2ψ(ϕxxx)|(u− ϕ)xxx

〉
.

Choosing ϕ = u − λv for some arbitrary v ∈ W 3
α+1

(
(0, T ) × Ω

)
and λ > 0, gives the

inequality 〈
χ− |u|α+2ψ

(
(u− λv)xxx

)
|vxxx

〉
≥ 0

and thus in the limit λ↘ 0we deduce〈
χ− |u|α+2ψ(uxxx)|vxxx

〉
≥ 0, v ∈W 3

α+1

(
(0, T )× Ω

)
,

for almost every t ∈ [0, T ]. Now taking ϕ = u+ λv, we see that〈
χ− |u|α+2ψ(uxxx)|vxxx

〉
≤ 0, v ∈W 3

α+1

(
(0, T )× Ω

)
.

Hence, we have shown that〈
χ− |u|α+2ψ(uxxx)|vxxx

〉
= 0, v ∈W 3

α+1

(
(0, T )× Ω

)
,

from which, since v ∈W 3
α+1

(
(0, T )× Ω

)
is arbitrary, we are able to identify

χ = |u|α+2ψ(uxxx) ∈ Lα+1
α

(
(0, T )× Ω

)
.

This completes the proof.
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