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Abstract

Machine learning or multivariate statistical modeling is frequently applied in
the chemical informatics domain to analyze the relationships between molecular
structures and their target activities/properties. Structure-activity relationship (SAR)
properties and key determinants have been vastly investigated with the help of simple
linear to complex 2D graphs, 2D molecular fingerprints, and 3D conformation repre-
sentations. SAR characteristics can be graphically visualized and analyzed with the
help of 3D activity landscape (AL) models. 3D AL models help in a straightforward
interpretation of SARs by characterizing them into smooth valleys and rugged moun-
tainous regions, reminiscing SARs as a geographical map. 3D ALs graphical nature
makes them readily convertible to image data, thus amenable for image analysis.
3D AL models graphical representation of important SAR characteristics, and their
readily convertibility into image formats permit SAR analysis based on image pro-
cessing approaches. However, 3D ALs representation has thus far been qualitatively
analyzed and limited to very few quantitative and predictive analyses. Convolutional
neural networks (CNNs) are currently gaining increasing attention in chemical in-
formatics domain to learn key structural features and derive predictions based on
compound image representations. CNNs have the potential to automatically extract
distinct spatial and temporal features from images, audio, and video data, which
is preferable as compared to classical machine learning modeling. The ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) gave birth to many complex
and deep CNN model architectures that have solved several other complex image
analysis problems afterward. This dissertation presents contributions that advance
the application of CNN modeling for SAR and activity cliff analysis and the appli-
cation of recent image processing approaches to develop methodologies to quantify
SAR characteristics numerically.
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Dr. Swarit Jasial, Dr. Filip Miljković, Dr. Dagmar Stumpfe, Dr. Dimitar Yonchev,
Dr. Raquel Rodríguez Pérez, Dr. Kosuke Takeuchi, Dr. Erik Gilberg, Christian
Feldmann, Thomas Blaschke and Tiago Janela at B-IT for unconditional support and
valueable scientific discussion that further improved my scientific thinking. Special
thanks to Dr. Martin Vogt for providing many scientific suggestions and fruitful
discussions.

Finally, I owe my deepest gratitude to my parents, my family, Pari Gul and little
angels Muhammad Usman and Abdul Rehman for providing everlasting support and
encouragements.



 



Contents

1 Introduction 1
1.1 Structure-Activity Relationship . . . . . . . . . . . . . . . . . . . . 1
1.2 SAR Characterization and Visualization . . . . . . . . . . . . . . . 2
1.3 Activity/Property Landscapes . . . . . . . . . . . . . . . . . . . . . 3
1.4 Molecular Representations . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Molecular Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Molecular Similarity Assessment . . . . . . . . . . . . . . . . . . . 6

1.6.1 Fingerprint based Molecular Similarity . . . . . . . . . . . 7
1.6.2 Matched Molecular Pair Formalism . . . . . . . . . . . . . 7

1.7 Activity Cliffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 Machine Learning in Chemical Informatics . . . . . . . . . . . . . 9

1.8.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . 9
1.8.2 Random Forest Classifier . . . . . . . . . . . . . . . . . . . 11
1.8.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8.4 Convolutional Neural Networks . . . . . . . . . . . . . . . 13
1.8.5 Deep CNN Architectures . . . . . . . . . . . . . . . . . . . 14
1.8.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Image Analysis in Chemical Informatics . . . . . . . . . . . . . . . 16
1.9.1 Helping Computers Read Edge Features . . . . . . . . . . . 16
1.9.2 Helping Computers Read Topographical Features . . . . . . 17

1.10 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Activity Landscape Image Analysis Using Convolutional Neural Net-
works 19
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Computational Method for Quantitative Comparison of Activity Land-
scapes on the Basis of Image Data 41
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



4 Quantitative Comparison of Three-Dimensional Activity Landscapes of
Compound Data Sets Based upon Topological Features 59
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 From Qualitative to Quantitative Analysis of Activity and Property
Landscapes 71
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Prediction of Activity Cliffs on the basis of Images Using Convolutional
Neural Networks 83
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Learning Functional Group Chemistry from Molecular Images Leads to
Accurate Prediction of Activity Cliffs 95
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusion 107

Bibliography 111



Chapter 1

Introduction

1.1 Structure-Activity Relationship

Structure-Activity Relationship (SAR) analysis is considered an essential medic-
inal chemistry task.1 SAR exploration facilitates the precise understanding of rela-
tionship between a molecule’s chemical structure and its bioactivity. SAR analysis
assists in identifying fundamental structural features of compounds that can help de-
termine compounds bioactivity. Identifying key structural features can further aid
in the design of novel molecules. SAR information can be conventionally collected
and analyzed with the help of an “R-group table” . The “R-group table” represents
the core and analogs together in a table and is applicable for SAR analysis with a
limited number of analogs. However, the technique becomes more impracticable
with increasing number of analogs (thousand or even more). Developments in mod-
ern computational approaches have paved the path to analyze large-scale SARs of
compound datasets. Some commonly practiced computational approaches for quali-
tative SAR analysis include 2D activity landscape,2 3D activity landscape,3 scaffold
tree,4 SAR matrix,5 numerical SAR index,6 network-like similarity graph (NSG),7

and LASSO graph.8 In addition to qualitative SAR analysis, numerical estimation
of the relationship between the molecular structure and its bioactivity is also highly
important. Discovery of numerical relationship between molecular structure and its
experimentally measured property or bioactivity can be efficiently estimated with
the help of quantitative structure-activity relationship (QSAR) models. QSAR mod-
eling numerically attempts to quantify any linear or non-linear relationship between
numerical molecular descriptors and bioactivity in an SAR with the application of
latest state-of-the-art machine learning and artificial intelligence algorithms. Precise
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relationship estimation allows accurate bioactivity prediction leading to novel drug
designs with the desired properties.9

1.2 SAR Characterization and Visualization

SAR exploration is commonly employed to understand the relationship of struc-
tural features of active compounds to their biological activity or potency.10 SAR
is commonly classified into continuous, discontinuous and, heterogeneous classes
based on compound structural similarity and observed changes in bioactivity associ-
ated with structural modifications.11 Small changes in compound structures resulting
in minor to moderate potency changes form a continuous SAR. In contrast, minor
structural changes that drastically alter potency values are categorized as discontin-
uous SARs.

Figure 1: SAR Characterization. Exemplary SAR characterization of thrombin inhibitors with con-
tinuity (horizontal) and discontinuity (vertical) is demonstrated. Compound structures with activity
values are shown and structural differences are highlighted in red.

Compound data sets sharing specific biological activity may often contain a com-
bination of both continuous and discontinuous SAR types.11 Accordingly, SARs
with combined continuous and discontinuous components are known as heteroge-
neous SARs. Figure 1 demonstrates an exemplary SAR characterization of thrombin
inhibitors.
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1.3 Activity/Property Landscapes

Understanding structural similarity and potency relationships can help in ratio-
nalizing SAR information and identification of distinct SAR phenotypes. Activity
landscape (AL) models aid in assessment of compound structural relationship with
its bioactivity and facilitate SAR graphical visualization in biological target activity
classes. Property landscape (PL) generalizes the AL concept by extending it with
any numerically measureable experimental molecular structure-dependent property
(i.e., toxicity, physicochemical properties, etc.). AL/PL of varying design and com-
plexity are available, like two-dimensional (2D) and three-dimensional (3D) activ-
ity/property landscape representations. Structure-activity similarity (SAS) maps are
commonly applied to understand relations between compound structural similarity
with its bioactivity in a 2D graphical representation12 whereas, 3D AL/PL models
integrate compound structural similarity and its bioactivity in a 3D graphical illus-
tration allowing intuitive visualization of global and local structure-activity/property
relationships.13,14 3D ALs/PLs are generated following a generally applicable mod-
eling protocol.12 In the first step, compound data sets are projected within a given
chemical feature space. A linear or non-linear reductional approach is applied to con-
vert the chemical feature space into a 2D projection. Finally, the bioactivity/property
values are interpolated, generating a coherent activity/property surface, colored using
a continuous spectrum for the potency range in the data set. 3D ALs construct SAR
characteristics in an easily interpretable manner by representing SAR characteristics
in the nature of geographical maps, where the differences in landscape topographies
can be viewed as smooth valleys or rugged mountains that mirror different SAR char-
acteristics. Smooth or gently sloped regions correspond to a continuous SAR where
small structural changes lead to gradual potency changes. The second prominent fea-
ture of ALs are rugged/mountainous regions which reflect SAR discontinuity, where
small chemical changes cause large potency effects, resulting in the formation of ac-
tivity peaks. 3D ALs representations often combine smooth and rugged/mountainous
regions and form heterogeneous surfaces. Exemplary 2D SAS map and 3D AL are
shown in Figure 2.

1.4 Molecular Representations

QSAR model performance strongly depends upon the provided molecular repre-
sentation. Simple to advanced representations have been developed and extensively
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Figure 2: SAR visualization of Muscarinic acetylcholine receptor M3. SAR visualization with
SAS map (top) and 3D AL topographical and corresponding heatmap (bottom) is shown. In SAS
map, compound pairs are colored with the highest activity.

tested for various prediction tasks. A molecule can be generally represented in a lin-
ear or one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) data
structure. The linear representation is simple and easily readable/writeable by hu-
mans or machines. The Simplified Molecular Input Line Entry System (SMILES),15

IUPAC international chemical identifier (InChI),16 Wiswesser Line-Formula Nota-
tion (WLN),17 representation of structure diagram arranged linearly (ROSDAL)18

and, Sybyl Line Notation (SLN)19 are some examples of linear molecular struc-
ture representation. SMILES and InChI are the most widely used linear notations.20

SMILES representation linearly encodes atom types, bond types, branching, stereo-
chemistry, cyclic, aromaticity, charges, and many other structural properties present
in a compound. Whereas InChI encodes the compound structural details in layers
and sublayers with addition of tautomeric information. These linear representations
are commonly used for searching and storage of compounds in databases preserv-
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ing the graph structure of the molecule. The 2D and 3D representations encode the
molecular structure in an advanced manner using graph data structures to retain a
compound’s structural and topology information. 2D Molecular graphs are com-
monly used to generate 2D fingerprints, 2D structural drawings and are favorable by
latest state-of-the-art graph based machine learning models. 3D structural represen-
tation extends 2D structural representation by additionally encoding the conforma-
tional information (if any). Examples of 1D, 2D and 3D molecular representations
are shown in Figure 3.

Figure 3: Molecular Representations. Exemplary 1D, 2D, and 3D molecular representations of a
small molecule menthol are shown.

1.5 Molecular Fingerprints

Molecular fingerprints are special data structures that transform structural char-
acteristics of a given compound into a vector.21,22 In chemical informatics, finger-
prints are extensively used for similarity comparisons, virtual screening, and the
construction of chemical space maps.23–26 The most commonly used molecular fin-
gerprints are the Morgan fingerprints27 also known as extended-connectivity finger-
prints (ECFP)28 and Molecular ACCESS System (MACCS).29 ECFP fingerprints
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derive specific circular sub-structures within a given diameter around each atom in
a molecule (Figure 4). Derived circular sub-structures are then hashed into a vector
representing the absence or presence of the corresponding sub-structure in off or on
bits. ECFP fingerprints with large dimensions can be optionally folded into fixed-
length vectors to decrease feature dimensions. In contrast MACCS fingerprints only
encode the absence or presence of a predefined set of 166 structural patterns in off or
on bits. Recent experiments based on modern state-of-the-art machine learning mod-
els using MACCS and ECFP fingerprints have shown superior performance of ECFP
fingerprints over MACCS fingerprints suggesting preferability of ECFP fingerprints
over MACCS fingerprints for several predictive tasks.30–34

Figure 4: Circular Molecular Fingerprints. Molecular circular fingerprints along with atom en-
vironment (dashed bonds) for only a single atom (highlighted) in two analogs are shown. Circular
features a-b, c-d, and e-f are generated from the radius of 0, 1, and 2, respectively.

1.6 Molecular Similarity Assessment

Molecular similarity is an important concept in medicinal chemistry and one
of the utmost frequently investigated concepts in chemical informatics. Molecular
similarity mainly focuses on the quantification of structural similarity (i.e., shared
substructures, topologies, ring systems, etc.) between different compounds. Vari-
ous computational methods have been introduced to assess the molecular similarity
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between chemical compounds. Measurement of molecular similarity depends on
the chemical representation, potential weighting of features representation, and the
applied similarity coefficient/function.35

1.6.1 Fingerprint based Molecular Similarity

In chemical informatics, molecular similarity analysis based on fingerprints re-
quires vectors of fingerprints to encode the molecular structural properties and a
similarity measure to quantify the molecular similarity. The similarity measure is
applied on fingerprints to usually yield a value between zero and one, where one
indicates the highest similarity or identical fingerprints and zero indicates lowest or
no-similarity.35 Tanimoto coefficient (Tc),36 also known as Jaccard index is one of
the most frequently applied similarity measure to quantify fingerprint based molec-
ular similarity. Tc similarity value for a given pair of compounds quantifies the
percentage of structural features shared between the compounds. The Tc formulae
can be defined as:

T c(A,B) =
c

a+b− c
Where a and b denotes the number of chemical features present in compound A

and B, respectively, and c denotes the number of common features shared by both
compound A and B.

1.6.2 Matched Molecular Pair Formalism

A matched molecular pair (MMP), also referred to as a single-site analog pair
is defined as a pair of compounds that share a common core structure and the com-
pounds, are only distinguished by an R-group replacement or a chemical modifi-
cation at a single site (chemical transformation).37,38 Figure 5 shows an exemplary
analog pair according to the MMP formalism. The easy interpretability and intuitive
nature of the MMP formalism makes the MMP concept highly attractive for medici-
nal chemists and increases its applicability in chemical informatics for understanding
SAR key features in a chemical perspective.

1.7 Activity Cliffs

Activity cliffs (ACs) characterize the most prominent features of SAR discon-
tinuity, giving rise to activity peaks or deep valleys in a 3D AL model. Medicinal
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Figure 5: MMP Formalism. MMP formalism based on two compounds are shown (top). A shared
core and two fragments that only differ by a chemical transformation are shown (bottom).

chemists often encounter ACs during the chemical optimization of individual com-
pound series.39 ACs are defined as structurally similar compound pairs with a sig-
nificant change in potency values.40,41 The identification of small structural changes
that result in a significant potency difference or render compounds inactive is of
high consideration. ACs frequently exist in discontinuous SARs and are consid-
ered highly explanatory for SAR analysis.42 ACs characterization requires a clear
definition of structural similarity and potency difference criteria.39 The potency dif-
ference criterion defines a statistically significant and sufficiently large potency dif-
ference for AC formation. A compound potency difference of 100-fold change is
frequently applied regardless of target activity class. In addition to the 100-fold po-
tency difference criterion, alternative reasonable criteria based on the significance
of target-dependent potency differences can also be applied for defining ACs.43 The
compound pair similarity criterion requires assessing similarity based on molecular
fingerprints or, alternatively, the MMP formalism concept. Similarity criteria based
on MMP formalism concept are highly suitable for defining ACs.40 ACs that follow
the MMP formalism concept and have statistically significant potency differences
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are termed as MMP-cliffs.44 The MMP formalism concept permits the limitation
of MMP-cliff transformation size to obtain relatively small replacements, permitting
interpretation of transformation in a chemically meaningful way.44 MMP-cliffs have
been intensely investigated for potency difference prediction using regression mod-
els and classification prediction of MMP-cliffs using fingerprint and the condensed
graph of reaction formalism.45,46

1.8 Machine Learning in Chemical Informatics

In chemical informatics, machine learning or multivariate statistical modeling
are frequently applied to estimate the relationship between descriptors encoding the
chemical structure and a target property, such as molecular bioactivity. Machine
learning models universally process the input data of any domain irrespective of the
nature of data type.9 For example, machine learning modeling has been successfully
applied on the basis of various molecular representations such as SMILES,47 2D
graphs,48 2D molecular fingerprints,30–34,49 3D conformations,50 and molecular im-
ages.51,52 The commonly applied machine learning methods in the domain of chem-
ical informatics include support vector machines (SVM), random forests, K- nearest
neighbors, and deep learning models. Application of machine learning methods has
yielded robust virtual screening, accurate compound classification, and precise com-
pound property/activity prediction compared to classical statistical methods.30–34,49

1.8.1 Support Vector Machines

Support Vector Machines (SVM)53 are among the most widely applied machine
learning techniques for compound classification and compound property/activity
prediction tasks. SVM modeling is found to be exceptionally compatible and pre-
dictive with fingerprint-based compound representations.30,31,34 An SVM classi-
fier projects molecular fingerprints or features of different class labels into a high-
dimensional space and attempts to find a hyperplane H that separates the binary
labeled classes for the projected data points.

Figure 6 demonstrates an SVM model separating different class labels with an
hyperplane. SVM can easily find infinite hyperplanes to classify the linearly separa-
ble projected data points. However, an SVM chooses the unique H that maximizes
the margin between the closest points of each label (support vectors). Then, SVM
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Figure 6: SVM. SVM classifer separating positive (blue triangle) and negative (red triangle) classes
by finding an hyperplane H with a maximum margin is shown.

assigns labels to the test data based on which side of H the instance is present. The
hyperplane H can be defined as below:

H = {x|⟨w,x⟩+b = 0}

Where w is the normal vector, b is the bias and ⟨., .⟩ is a scalar product. SVM
requires that, the following conditions must be satisfied to ensure the correct classi-
fication of all training instances:

yi(⟨xi,w⟩+b)≥ 1 ∀i

Here xi are the training instances and yi ∈ −1,1 is the binary class label (negative or
positive) for each training instance. The distance between the support vectors and H

is given by 1
∥w∥ , which is maximized margin to find an optimal hyperplane. For non-

linearly separable data points the “kernel trick” can be applied. A strength of SVMs
is that the scalar function can be replaced with a kernel function K ⟨., .⟩. In SVM,
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the kernel function replaces the ordinary scalar product yielding a scalar product in
an the implicit high-dimensional space improving the separability of data points.

1.8.2 Random Forest Classifier

The random forest classifier,54 as illustrated in Figure 7, is a meta-algorithm that
uses an ensemble of decision trees to to solve a classification problem using bagging
and boosting approaches.

Figure 7: Random Forest Classifier. Random forest classifier processing the data using an ensemble
of two decision trees is shown and the outcome of each leaf node is colored either blue or green,
depending on the predicted class.

A random forest classifier consists of a number of decision trees, where each
decision tree contributes a single vote to resolve the problem. As each tree may
explore a different part of the solution space, the random forest classifier must ulti-
mately determine the overall solution to the problem, which is done by considering
the majority of votes. Random forest classifier has been widely applied in various
fingerprint representation based classification tasks in the chemical informatics do-
main and achieved impressive results.30–34
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1.8.3 Deep Learning

Deep learning algorithms are based on a neural network architecture. An artifi-
cial neuron or simply as neuron is a small set of computations that forms the basic
unit of an artifical neural network. The artificial neuron processes information sim-
ilar to a human neuron, which are the nerve cells and act as biological information
processing machines. An artificial neuron is basically composed of three basic lay-
ers: an input layer, an output layer and one or multiple hidden layers. The input
unit takes the input data which is then processed by hidden layers and finally output
unit provides the output values of the processed data. An artificial neuron's output is
usually transformed via a non-linear activation function to yield an output value. For
a node i the output value Yi is calculated as follows:

Yi = g(∑
j

Wi j ∗a j)

Where g is generally a nonlinear function, Wi j is the weight of the input node j on
node i and a j refers to input variables. Stacking of artificial neurons like multilayer
perceptron (MLP) and organizing networks in multiple possible ways by placing
them in a series of layers has proven to be highly flexible and extremely powerful.
An example of a deep learning network involving an input layer, several hidden
layers, and an output layer is shown in Figure 8.

Figure 8: Deep Neural Network. An exemplary deep neural network with an input, output and three
hidden layers is demonstrated. Nodes are shown in circles and each node represent a neuron.
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Deep learning has recently gained increasing attention from researchers of differ-
ent domains and has been successfully applied to solve numerous real-world prob-
lems. Deep learning models automatically learn high-level features from data with
the help of unsupervised or semi-supervised feature learning algorithms and hier-
archical feature extraction, which transcends the limited feature representations of
traditional machine learning. Deep learning modeling has been successfully ap-
plied in the chemical informatics domain for various analyses, including compound
bioactivity prediction,55 compound physicochemical property prediction,56,57 multi-
task property prediction,58,59 drug design,60–62 reaction prediction and retrosynthetic
analysis,63,64 and, ligand-protein interactions.65

1.8.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep neural networks that comprise
convolutional layers to encode the locality information in the network structure.66,67

CNNs are the most commonly applied algorithms for image-based analysis tasks.68

The CNN structure was inspired by neurons in human and animal brains. CNNs pri-
marily simulate the sequence of cells that forms the visual cortex in a cat’s brain.69

The commonly used CNN structure is similar to the MLP. CNN architecture com-
monly consists of at least one or more convolution layers, preceding sub-sampling
(pooling) layers and fully connected layers as ending layers (Figure 9). In a CNN
model architecture, input x of each convolutional layer is organized in height, width,
and depth. Depth is the number of channels of input data. For example, an image
using the RGB color model consists of red, green and blue color channels; therefore,
the depth of an RGB image will be 3. Each convolutional layer can apply several fil-
ters (kernels) denoted by k with dimensions similar to the input image. The kernels
form the basis to estimate the local connections between pixels, and share similar
parameters (bias bk and weight W k) for generating k feature maps hk. The convolu-
tion layer computes a dot product between the input and the weights and finally, by
applying the nonlinearity or an activation function g to the convolution-layer output,
we obtain the following:

hk = g(W k ∗ x+bk)

In order to accelerate the training process, CNNs network parameters are reduced
by down-sampling every feature map into sub-sampling layers with the help of a
pooling function (e.g., max or average). The fully connected layers create the high-
level abstraction of mid-and low-level features and represent the last-stage layers as
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a typical neural network. Finally, the ending layer applies an activation function to
generate the scores (e.g., softmax for a binary label classification). The computed
scores can be treated as probability distributions of a specific class.

Figure 9: CNN Architecture. An exemplary CNN architecture with an input, output, and hidden
layers is demonstrated.

1.8.5 Deep CNN Architectures

Over the years, a variety of fundamental CNN architecture have been developed
to solve complex image analysis problems. ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC)70 paved the path for introducing complex deep CNN
architectures to successfully discriminate and annotate different objects belonging
to one thousand categories in image representation. The birth of numerous CNN
architectures along with award-winning deep CNN architectures AlexNet71(2012),
GoogLeNet72 (2014), and ResNet73 (2015), dramatically reduced the top-5 classifi-
cation error rate from 26% to less than 3% and rapidly evolved the CNN architec-
tures depth and complexity. LeNet-574 is one of the earliest deep CNN architectures,
commonly applied to recognize handwritten digits (MNIST)75 promoted the fur-
ther development of deep and complex CNN architectures. AlexNet, the winner of
ILSVRC 2012, extended LeNet-5 architecture further larger, deeper, and introduced
stacking of convolutional layers directly on top of each other, instead of stacking
a pooling layer on top of each convolutional layer.71 GoogLeNet architecture, also
known as Inception, developed by Christian Szegedy et al. from Google Research,
reached another milestone by pushing the top-5 error rate below 7% and winning
ILSVRC 2014 challenge.72 GoogLeNet architecture was considerably deeper than
AlexNet with the introduction of sub-networks termed as inception modules. The
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introduction of sub-networks dramatically reduced the network parameters (from
60 million to roughly 6 million) and resulted into an optimized CNN architecture
with reduced training complexity. ResNet, the winner of 2015 challenge, introduced
another extremely deep CNN architecture consisting of 152 layers which further im-
proved the top-5 error rate by pushing it to under 3.6%.73 Many of the deep CNN
architectures were improved over time to increase the model efficiency for better
performance and lower computational costs. For example, Inception v2,76 v3,77 and
v478 are improved versions of the GoogLeNet’s initial architecture.

1.8.6 Transfer Learning

A deep learning model requires a large amount of data to understand the latent
patterns of data. Hence, the deep learning model performance depends on the train-
ing data size. Training a deep learning model on large-enough data allows the pre-
order layers of the model to discover and identify high-level features of the training.
However, building a large-scale dataset from manual data curation with high-quality
annotation is a complex and expensive task. For example, ChEMBL79 (version 27)
is a large-scale database that is manually compiled using published literature and
annotates around two million distinct compounds with activity values against more
than 13,000 targets. However, the limited availibility of tested compounds against
some targets often presents machine learning algorithms with insufficient training
data. Transfer learning attempts to solve the fundamental problem of insufficient
training data by transferring the knowledge from the one domain to another domain.
In addition, transfer learning significantly reduces the training time by training only
a part of the complete network. Tan et al.,80 defines transfer learning as:

“Given a learning task Tt based on Dt , and we can get the help from Ds for the
learning task Ts. Transfer learning aims to improve the performance of predictive
function fT (.) for learning task Tt by Ts ̸= Tt . In addition, in the most case, the size
of Ds is much larger than the size of Dt , Ns >> Nt . ”

In various studies, deep learning has demonstrated its capabilities to learn fea-
tures from one task and transfer the knowledge to many other prediction analysis
tasks.62,81
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1.9 Image Analysis in Chemical Informatics

Machine learning models take features as input and attempt to fit a mathemati-
cal model to derive insights or make predictions from data. A feature is a numer-
ical value that represents an aspect of raw data.82 In digital image processing, the
images are treated as picture elements (pixels) organized as an array of numbers.
The very basic features in an image are the image pixels, which can be extracted
quickly and compared in a meaningful way. In chemical informatics, very different
objects ranging from a basic molecular structure to a complex QSAR visualization
(e.g., 3D AL) can be easily exported into a high-quality graphical format. Graphi-
cal formats can then be further processed and analyzed using contemporary image
processing techniques. In recent years image-based modeling has gained increased
attention in chemical informatics and drug discovery. For example, CNN modeling
on 2D images was applied to analyze bioactivity profiles,83,84 compound toxicity
prediction,52 and cancer cell line sensitivity and compound potency prediction.51

An image often contains a large number of pixels and requires large computational
resources. CNNs can automatically identify and extract relevant features without any
human supervision.85 However traditional machine learning models require digital
image processing techniques that help in detection and extraction of features from
an image. The detected features can be quickly assembled into a feature vector and
fed to classical machine learning models. Image features including edge detection,
shape detection, corner and boundary detection, histograms, Scale Invariant Feature
Transform (SIFT),86 or Speeded-Up Robust Features(SURF)87 have shown remark-
able milestones for various image analysis tasks using image processing approaches.
As 3D AL models are reminiscent of real-world geographical landscapes, image
processing approaches can be employed on 3D ALs to detect edge or topographical
features for the quantification of elevation-based SAR characteristics.

1.9.1 Helping Computers Read Edge Features

The objects in an image often contain different intensities compared to their sur-
roundings, especially the boundary of an object shows a step-change in the intensity
levels. The step-change in intensity level allows humans to perceive the perimeter of
an object. Edge detector operators detect step-change in the intensity levels and de-
tect objects similar to natural human vision. Edge detection operators apply the first-
order differentiation or second-order differentiation in an image to detect the edge

16



features.88 Some commonly used examples of first-order differentiation operators
include Roberts,89 Prewitt,90 Canny edge detection operator,91 and Sobel.92 Lapla-
cian,93 Zero-crossing detection and Laplacian of Gaussian are some examples of
second-order differentiation operators. A step-change in intensity can be revealed by
differencing adjacent points. Differentiating horizontally adjacent points will detect
vertical changes in intensity and is often applied to detect horizontal edges. Whereas
differencing vertically adjacent points detects horizontal changes in intensity and is
often applied to detect vertical edges. Edge detection can detect important features
from almost all graphical representations. For example, vertical edge detection can
be applied on 3D AL images to extract elevation-based features of topographical
features.

1.9.2 Helping Computers Read Topographical Features

Edges are automatically detected and require significantly less computational re-
sources. However, edges can not take the shape information into account. The shape
information is also of high importance in images. For example, in real-world geo-
graphical images topographical characteristics are localized into different shapes and
contain different information based on color profiles/textures. Intensity thresholding
based contouring of a real-world geographical based top-down map allows the identi-
fication of topographical characteristics (i.e., mountains, peaks, trees, rivers, valleys,
etc.). 3D ALs are reminiscent to real-world geographical maps, therefore, intensity
thresholding based contouring can be applied to extract topographical characteristics
and transform them into a feature vector for further analysis.

1.10 Thesis Outline

This PhD thesis focuses on the applicability of state-of-the-art machine learn-
ing models and recent image processing approaches for classification prediction, and
feature analysis of various SARs and ACs. The analysis attempts to investigate SARs
for the existence and detection of spatial features that help machine learning models
to discriminate between different SAR surfaces and attempts to extract and quantify
spatial features for further analysis. Moreover, ACs, considered as the prominent
features of a SAR, are investigated for classification prediction using molecular im-
age representations. Furthermore, the influence and impact of knowledge transfer
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of specific structural features (i.e., R-groups, functional groups) using deep CNN
models for AC prediction analysis was also investigated.

• Chapter 2 discusses the applicability of CNN and other machine learning mod-
eling for successful discrimination of different SARs based on 3D AL image
data.

• Chapter 3 aims to discover, extract and numerically quantify activity profiles
and textures embedded in 3D ALs image data leading to a successful compar-
ison of various 3D ALs with varying SAR contents.

• Chapter 4 extends Chapter 3 by identifying 3D AL topographical features and
quantifying bioactivity distribution localized in topographical regions. More-
over, the chapter discusses numerical quantification of topographical features
based on spatial bioactivity distribution for similarity comparision of different
SARs based on 3D AL image data.

• Chapter 5 reviews the different designs and complexities of 3D ALs/PLs.
Moreover, the chapter discusses recent advances in 3D ALs, and applicabil-
ity of 3D ALs from qualitative to quantitative SAR analysis in detail.

• Chapter 6 investigates the applicability of CNN modeling on compound im-
ages for AC prediction analysis. Furthermore, the chapter offers approaches to
interpret the model predictions from a chemical perspective.

• Chapter 7 establishes a proof of principle and investigates deep CNN model-
ing potential to learn functional group chemistry from compound images and
transfer the acquired functional group knowledge to classify ACs successfully.

• The final chapter (Chapter 8) summarizes and discusses the main findings of
this work.

18



Chapter 2

Activity Landscape Image Analysis
Using Convolutional Neural Networks

Introduction

3D ALs are AL/PL models integrating compound similarity and activity data into
a 3D graphical representation. They are reminiscent of geographical maps where 3D
ALs preserve diverse SAR characteristics by encoding them into landscape topol-
ogy. SAR attributes embedded in a 3D AL model can be effortlessly captured and
exported into various image formats, which are acquiescent to image analysis and
image processing approaches. This chapter aims to analyze 3D ALs through im-
age processing approaches. The analysis investigates modern state-of-the-art ma-
chine learning models (i.e., CNNs, random forests, and SVM) to determine whether
machine learning models distinguish different SAR characteristics from each other
through image processing. To analyze different SAR characteristics, multiple view-
points from 3D AL models generated from 38 different target-based compound data
sets were captured and exported as high-quality PNG images. In addition to original
3D AL models that naturally tend to combine smooth and rugged surfaces, refer-
ence 3D AL models with predominantly rugged and predominantly smooth surfaces
were also created. CNN and machine learning models were trained on different
color-codings (i.e., RGB, monochrome, and binary) of generated 3D AL images to
distinguish the original heterogeneous 3D AL models from reference 3D AL mod-
els. Moreover, the CNNs and machine learning models were trained on extracted
edge features of 3D ALs image variants to compare the contribution of the topo-
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graphical features in classification prediction. The obtained results of the analysis
are discussed.
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Reprinted with permission from “Iqbal, J.; Vogt, M.; Bajorath, J. Activity Land-
scape Image Analysis Using Convolutional Neural Networks. Journal of Chemical

Information and Modeling 2020, 12, 34” . Copyright 2020 Springer Nature
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Activity landscape image analysis using 
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Abstract 

Activity landscapes (ALs) are graphical representations that combine compound similarity and activity data. ALs are 
constructed for visualizing local and global structure–activity relationships (SARs) contained in compound data sets. 
Three-dimensional (3D) ALs are reminiscent of geographical maps where differences in landscape topology mirror 
different SAR characteristics. 3D AL models can be stored as differently formatted images and are thus amenable to 
image analysis approaches, which have thus far not been considered in the context of graphical SAR analysis. In this 
proof-of-concept study, 3D ALs were constructed for a variety of compound activity classes and 3D AL image vari-
ants of varying topology and information content were generated and classified. To these ends, convolutional neural 
networks (CNNs) were initially applied to images of original 3D AL models with color-coding reflecting compound 
potency information that were taken from different viewpoints. Images of 3D AL models were transformed into vari-
ants from which one-dimensional features were extracted. Other machine learning approaches including support 
vector machine (SVM) and random forest (RF) algorithms were applied to derive models on the basis of such features. 
In addition, SVM and RF models were trained using other features obtained from images through edge filtering. 
Machine learning was able to accurately distinguish between 3D AL image variants with different topology and infor-
mation content. Overall, CNNs which directly learned feature representations from 3D AL images achieved highest 
classification accuracy. Predictive performance for CNN, SVM, and RF models was highest for image variants empha-
sizing topological elevation. In addition, SVM models trained on rudimentary images from edge filtering classified 
such images with high accuracy, which further supported the critical role of altitude-dependent topological features 
for image analysis and predictions. Taken together, the findings of our proof-of-concept investigation indicate that 
image analysis has considerable potential for graphical SAR exploration to systematically infer different SAR character-
istics from topological features of 3D ALs.

Keywords: Activity landscape, Structure–activity relationships, Image processing, Image classification, Machine 
learning, Convolutional neural network, Landscape topology, Feature extraction
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Introduction
Activity landscapes (ALs) are defined as graphical rep-
resentations that integrate compound similarity and 
activity relationships [1, 2]. ALs graphically represent 
active compounds in biologically relevant chemical 
space, making it possible to visualize structure–activity 

relationships (SARs) and identify key compounds and 
SAR determinants [1–8]. A variety of AL representa-
tions of different design and complexity have been 
introduced to visualize SARs. These include struc-
ture–activity similarity maps, other two-dimensional 
(2D) ALs, three-dimensional (3D) AL models, and 
molecular network representations [1–8]. 3D ALs can 
be rationalized to result from a two-dimensional (2D) 
projection of chemical feature space, producing a 
plane where compounds are separated by varying dis-
tances, to which compound potency is added as a third 

Open Access

Journal of Cheminformatics

*Correspondence:  bajorath@bit.uni-bonn.de
Department of Life Science Informatics, B-IT, LIMES Program Unit 
Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-
Wilhelms-Universität, Endenicher Allee 19c, 53115 Bonn, Germany

23



Page 2 of 15Iqbal et al. J Cheminform           (2020) 12:34 

dimension. From sparsely distributed potency meas-
urements, an activity hyper-surface is interpolated 
[3, 8]. Compounds that are similar to each other and 
neighbors in chemical space but have large differences 
in potency form activity cliffs (ACs) [1–3], which are 
prominent features of 3D AL models. Such 3D ALs are 
reminiscent of geographical maps with varying land-
scape topologies [3, 8]. In 3D ALs, the activity hyper-
surface can be color-coded by compound potency using 
a color gradient, which further emphasizes different 
topologies. In gently sloped or smooth regions, grad-
ual changes in chemical structure are accompanied by 
moderated changes in potency, which corresponds to 
SAR continuity [1–3]. By contrast, in rugged regions, 
small chemical changes lead to significant potency vari-
ations, corresponding to SAR discontinuity [1–3]. Here, 
ACs represent the apex of SAR discontinuity. By design, 
3D ALs are descriptive in nature and are typically quali-
tatively analyzed. Only very few studies have thus far 
attempted to use AL models for compound potency 
predictions [4, 8].

3D AL models can be visualized and analyzed from dif-
ferent viewpoints and perspectives. Hence, visualization 
yields images with different characteristics that can be 
subjected to image processing methods. Thus far, how-
ever, AL visualizations have not been analyzed and com-
pared using such approaches. Therefore, we have asked 
the question if 3D ALs with different topological features 
representing different SAR characteristics could be dis-
tinguished from each other and classified through image 
processing; the major topic of this study.

In recent years, deep learning has made a large 
impact on image processing. In particular, convolu-
tional neural networks (CNNs) have become one of 
the preferred machine learning approaches for image 
analysis due to their ability to extract patterns from 
low-resolution data representations in so-called convo-
lutional layers [9, 10]. CNNs are deep neural networks 
with one or more convolutional layers encoding locality 
information in the network structure [9, 10]. The design 
of CNNs renders them well-suited for processing of 
spatial and temporal data such as images, audio, or 
video signals. CNNs achieved higher performance level 
than other computational approaches in recognizing 
histopathological [11], magnetic resonance [12], medi-
cal X-ray [13], computer tomography, [14] and fundus 
images [15]. CNNs are also gaining increasing atten-
tion in chemical informatics and drug discovery, albeit 
in different contexts. For example, CNNs and random 
forest (RF) [16] models have been applied to predict 
cancer cell line sensitivity and compound potency 
[17] or compound toxicity [18] using 2D structural 

representations in image formats. CNNs have also 
been employed to model bioactivity profiles using 2D 
images [19, 20]. Other studies investigated molecular 
mechanism of action based on bioactivity profiles using 
images from high-content screening [21–23].

In addition to CNNs, various studies have shown that 
other machine learning approaches like support vector 
machine (SVM) [24] modeling can also classify images 
using raw pixel intensities or extracted image features 
[25–30]. In addition, RF can also accurately classify 
high-dimensional image data [31, 32].

However, the application of CNNs or other machine 
learning-based image processing methods to ALs for 
SAR visualization and analysis has thus far not been 
investigated. For machine learning methods, suitable 
representations are required to represent data sets 
of varying size in a unified and standardized format 
to enable direct comparison. Images generated from 
3D ALs are well suited because they retain the pair-
wise similarity relationships between compounds and 
account for potency values as topographical features 
and/or using color gradients. Images can be generated 
from different viewpoints ranging from top-down views 
of ALs to elevated or profile views where SARs become 
visible as peaks and valleys. Top-down views essentially 
yield heatmap representations if color gradients are 
used, as further discussed below.

In our current study, 3D AL images have been ana-
lyzed and classified using CNNs, RF, and SVM. Differ-
ent projection methods and image encodings of varying 
resolution and information content have been gener-
ated to capture 3D AL topology in different ways and 
determine which factors are responsible for accurate 
image classification. Therefore, image variants with 
successively reduced information content have also 
been generated and investigated.

CNN, RF, and SVM models were found to be capable 
of correctly classifying AL image variants with different 
topology on the basis of structure and pixel intensity 
information. CNNs learning feature representations 
yielded overall most accurate predictions. However, RF 
and SVM models trained on pre-defined lower-level 
feature representations were also predictive. The analy-
sis identified topological features that were of critical 
relevance for image classification. Taken together, our 
findings revealed that images of 3D ALs for SAR visu-
alization can be distinguished through machine learn-
ing on the basis of characteristic topological features, 
which provides a new methodological framework for 
direct comparison of AL models of compound data sets 
of different composition and comparative SAR analysis 
of large data sets.
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Concepts and methods
Compound activity classes
For 3D AL image analysis, 38 compound activity classes 
were selected from ChEMBL version 23 [33]. For each 
class, more than 500 compounds with  pKi potency 
measurements were available. Intra-class potency 
variations spanned several orders of magnitude. In 

addition, the potency value distribution of each class 
had an interquartile range covering at least one order 
of magnitude [34]. Table 1 summarizes the composition 
of each activity class and provides potency range statis-
tics. Reported are final compound numbers after simi-
larity filtering, as further described below.

Table 1 Activity classes

The table summarizes the composition of 38 activity classes used for 3D AL modeling. IQR represents the interquartile range of the potency value distribution of each 
data set

ChEMBL target ID Target name No. compounds Potency  [pKi] IQR (Q1–Q3)

Min Max

CHEMBL204 Coagulation factor II 1099 1.00 12.19 5.30–7.47

CHEMBL205 Carbonic anhydrase 2 2701 0.60 11.10 6.24–8.04

CHEMBL214 Serotonin receptor 1A 1936 0.36 10.85 6.74–8.29

CHEMBL217 Dopamine D2 receptor 3427 2.85 10.57 6.29–7.49

CHEMBL218 Cannabinoid receptor 1 1938 3.79 10.10 5.95–7.62

CHEMBL219 Dopamine D4 receptor 1086 4.74 10.52 6.43–7.87

CHEMBL222 Sodium-dependent noradrenaline transporter 1000 2.26 9.52 5.86–7.54

CHEMBL224 Serotonin receptor 2A 1967 3.51 11.00 6.56–8.12

CHEMBL225 Serotonin receptor 2C 1085 3.51 9.70 6.23–7.70

CHEMBL226 Adenosine receptor A1 2829 4.12 12.23 5.87–7.14

CHEMBL229 Alpha-1A adrenergic receptor 594 4.04 10.44 6.90–8.40

CHEMBL233 Mu-type opioid receptor 2009 4.20 11.80 6.37–8.33

CHEMBL234 Dopamine D3 receptor 2518 4.17 10.00 6.79–8.40

CHEMBL236 Delta-type opioid receptor 1604 3.72 10.68 6.00–8.08

CHEMBL237 Kappa-type opioid receptor 1853 4.09 11.52 6.45–8.49

CHEMBL238 Sodium-dependent dopamine transporter 850 2.14 9.40 5.60–7.37

CHEMBL240 Potassium voltage-gated channel subfamily H_2 1053 3.89 9.55 5.29–6.44

CHEMBL245 Muscarinic acetylcholine receptor M3 609 4.11 10.30 6.70–9.10

CHEMBL251 Adenosine receptor A2a 3305 3.92 11.38 6.05–7.67

CHEMBL253 Cannabinoid receptor 2 2605 0.63 10.72 6.24–7.99

CHEMBL255 Adenosine receptor A2b 1265 3.37 9.80 6.30–7.82

CHEMBL256 Adenosine receptor A3 2567 1.32 11.00 6.16–7.84

CHEMBL261 Carbonic anhydrase 1 2657 0.56 11.00 5.34–7.09

CHEMBL264 Histamine H3 receptor 2323 4.07 10.60 7.21–8.70

CHEMBL344 Melanin-concentrating hormone receptor 1 1187 3.57 9.77 6.90–8.01

CHEMBL1800 Corticotropin-releasing factor receptor 1 673 4.26 9.66 6.58–8.14

CHEMBL1833 5-hydroxytryptamine receptor 2B 695 5.00 9.96 6.13–7.40

CHEMBL2014 Nociceptin receptor 839 4.40 10.70 7.09–8.52

CHEMBL3155 5-hydroxytryptamine receptor 7 1111 3.30 10.00 6.53–7.95

CHEMBL3242 Carbonic anhydrase 12 2008 3.08 9.62 6.92–8.23

CHEMBL3371 5-hydroxytryptamine receptor 6 2134 1.38 10.40 7.03–8.52

CHEMBL3594 Carbonic anhydrase 9 2347 1.34 9.92 6.61–8.04

CHEMBL3759 Histamine H4 receptor 887 2.85 10.40 5.98–7.59

CHEMBL4005 Serine/threonine protein kinase PIK3CA 882 4.65 10.52 7.01–8.46

CHEMBL4550 Arachidonate 5-lipoxygenase-activating protein 1318 5.60 9.40 6.75–8.21

CHEMBL4792 Orexin receptor type 2 1444 4.96 10.15 6.13–7.57

CHEMBL5071 Prostaglandin D2 receptor 2 794 4.48 10.00 6.49–8.41

CHEMBL5113 Orexin receptor type 1 1249 4.19 9.80 5.47–7.19
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Molecular representation and similarity assessment
For similarity assessment, the extended-connectivity 
fingerprint with bond diameter 4 (ECFP4) [35] was 
calculated for each compound. ECFP4 is a topological 
feature set fingerprint comprising layered atom envi-
ronments and represents a gold standard in the field. 
ECFP4 feature sets were folded into a fixed-length 
1024-bit representation [35]. As a similarity metric, the 
Tanimoto coefficient (Tc) was used to quantify pairwise 
compound similarity [36]. The Tc is defined as:

where A , B are fingerprints of compounds A and B, 
respectively. Corresponding Tanimoto distance was 
obtained by calculating the complement 1− Tc(A,B).

Initially assembled activity classes were subjected to 
similarity filtering and only compounds were retained 
that possessed an ECFP4 Tc similarity of at least 0.4 
to at least one other compound from the same activity 
class. Filtering was applied to eliminate singletons from 
the data sets that had no or only very weak structural 
relationships with other compounds (and hence did not 
contribute to SARs). Fingerprint and similarity calcu-
lations were performed using in-house Python scripts 
and the OpenEye chemistry toolkit [37].

3D activity landscapes
For generating 3D AL models, ECFP4 space was pro-
jected on a 2D plane, compound potency values were 
added as the third dimension and from these values, 
a coherent potency hyper-surface was interpolated. 
Different projection methods for 3D AL design have 
previously been investigated [8] and two methods, 
multi-dimensional scaling (MDS) [38] and Neuroscale 
[39], were found to be preferred for retaining original 
similarity relationships for SAR visualization. There-
fore, these approaches were used herein. For projec-
tion, both MDS and Neuroscale apply stress functions 
based on pairwise Tanimoto distances between com-
pounds. Neuroscale projects compounds using a radial 
basis function (RBF) neural network. For each Neuro-
scale model, the number of RBFs was optimized using 
sevenfold cross validation.

Hyper-surface interpolation was carried out using 
Gaussian process regression (GPR) [40, 41]. The resulting 
surface was colored according to the compound potency 
using a color gradient from green over yellow to red. For 
all images, the same color gradient was applied according 
to which a  pKi value of 5.75 (and below) corresponded to 
green, the  pKi range 5.76–8.74  pKi to yellow, and a  pKi of 
8.75 (or above) to red.

Tc(A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|

Reference landscapes
Smooth and rugged regions represent major topologi-
cal features of 3D ALs that correspond to different SAR 
phenotypes [3]. In smooth regions, gradual changes 
in molecular structure are accompanied by moderate 
changes in potency, which represents SAR continuity. 
By contrast, in rugged regions, small structural changes 
lead to large potency variations. This corresponds to 
SAR discontinuity and leads to the formation of ACs. In 
many activity classes, continuous and discontinuous SAR 
components co-exist and are combined in different ways, 
giving rise to globally heterogeneous SARs [42, 43]. Such 
SAR heterogeneity is quantitatively accounted for using 
numerical SAR analysis functions such as the SAR Index 
[42]. In 3D AL models, SAR heterogeneity is represented 
by co-occurrence of smooth and rugged regions in differ-
ent topological constellations.

To establish proof-of-concept for image classification, 
two reference AL models were generated for the 3D AL 
of each activity class in which SAR continuity/smooth-
ness and discontinuity/ruggedness were increased, 
respectively, relative to the original 3D AL. Accordingly, 
these 3D AL variants were termed smooth and rugged 
reference (Ref-)ALs, respectively.

Smooth Ref-ALs were generated by selecting com-
pounds that fell into the 2nd and 3rd quartile, i.e. the 
interquartile range, of the potency distribution of each 
activity class. Rugged Ref-ALs were obtained by consid-
ering septiles of the potency distribution and selecting 
compounds falling into the 1st, 3rd, 5th, and 7th septile. 
The resulting Ref-ALs contained about half and 4/7th 
the original number of compounds per class, respec-
tively, which consistently amounted to more than 250 
compounds per Ref-AL. Rugged Ref-ALs retained the 
potency range of the original ALs, whereas the potency of 
smooth Ref-ALs was reduced to the interquartile range, 
as reported in Table  1. It varied from ten- to 100-fold 
differences for most data sets while five sets had a larger 
than 100-fold interquartile range. As further discussed 
below, original 3D ALs of all 38 activity classes were 
generally heterogeneous in nature and were designated 
accordingly. Hence, for the generation of classification 
models, smooth and rugged Ref-ALs were distinguished 
from heterogeneous 3D ALs of original compound data 
sets, hence yielding three categories of 3D AL models for 
image generation.

Activity landscape images
For each original 3D AL and Ref-AL, images providing 
different views were generated by systematically vary-
ing azimuth (0°, 90°, 180° 270°) and elevation angles (0°, 
35°, 65°,90°), as illustrated in Fig.  1. For the elevation 
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angle of 0°, most of the 2D projection information is 
lost but altitude is accounted for as a topological fea-
ture. By contrast, for the elevation angle of 90°, eleva-
tion information is only retained through potency 
coloring. Furthermore, original color images were con-
verted into image variants with reduced information 
content including grayscale and black and white (b/w) 
versions as well as images generated from edge detec-
tion filters (see below). Exemplary images are shown in 
Fig. 2.

Convolutional neural networks
CNNs are deep neural networks characterized by one 
or more initial convolutional layers. CNNs are popu-
lar for image-based analysis tasks [10]. Convolutional 
layers only connect local neighborhoods of input neu-
rons and perform learnable convolutions on the input 
data that are identical for each neuron. The output 
of the convolution layer is passed through a stand-
ard rectified linear unit activation (ReLU) layer. This 
is followed by pooling that combines outputs from 
local neuron clusters and reduces the dimensions and 
computational complexity [44]. Multiple convolutional 
layers can be connected to each other leading to suc-
cessive reduction of layer sizes. The output of the final 
convolutional layer is followed by one or more fully 
connected neuron layers. Dropout layers that ran-
domly deactivate a proportion of neurons are inserted 
between layers in order to avoid overfitting [45]. A 
schematic of a CNN is shown in Fig. 3.

Network architecture
The CNN architecture used herein consisted of con-
volutional, rectified linear unit (ReLU), max-pooling, 
dropout, and dense layers, as illustrated in Fig. 3. Three 
convolutional layers with filter size of 3 × 3 with respect 
to kernel sizes of 32, 64 and 128 were added to extract 
image features. Each convolution layer was followed by a 
rectified linear unit (ReLU), a max-pooling, and a drop-
out layer. After “flattening” the weights, two intermedi-
ate dense layers were added followed by dropout layers. 
As output, a softmax layer was used to normalize learned 
weights as a probability distribution. CNN layers were 
implemented using TensorFlow (version 1.4.1) and Keras 
(version 2.2.4) [46, 47]. Training data were assembled 
from 19 randomly selected activity classes. As test sets, 
all images from the remaining 19 classes were used. CNN 
hyper-parameters were optimized using internal valida-
tion on the basis of an 80% versus 20% split of the train-
ing data. Parameter optimization included ReLU alpha 
over the range 0.0–0.5, dropout rates with values 0.0, 0.1, 
0.3, intermediate dense layer sizes of 16, 32, 64, and 128 
output neurons, and Adam optimizer learning rates of 
100, 10, 1, 0.1, 0.01, 0.001, 0.005, 0.00005, and 0.000005. 
Each CNN model was trained until convergence was 
reached, which typically required ~ 20 epochs.

Alternative machine learning approaches
Support Vector Machine
Support vector machine (SVM) is a supervised machine 
learning algorithm that constructs a hyper-plane H in a 

Fig. 1 Different activity landscape views. For all activity classes, multiple 3D AL images were generated with varying azimuth and elevations 
settings. As an example, images with different views of a 3D AL are shown for activity class ChEMBL204 on the basis of Neuroscale projection. a 
illustrates that modification of the azimuth and elevation angle provide different views of a 3D AL. b shows 3D AL images with elevation angles of 
0°, 35°, 65° and 90° and c images with azimuth angles of 0°, 90°, 180° and 270°
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given feature space to best separate different classes of 
objects by maximizing the distance (margin of the hyper-
plane) between objects having different class labels [24]. 
The hyper-plane for an n-dimensional feature space is 
defined as:

Here, w ∈ Rn w is the weight vector and b ∈ Rn is the 
bias. If linear separation of objects with different class 
labels is not possible in a given feature space, the data 

H = {x ∈ Rn|w, x + b = 0}

Fig. 2 Image variants. From original color-coded 3D ALs, image variants with reduced information content were generated. Shown are examples 
for activity class ChEMBL2014. Rectangles in the original images delineate cropped images
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are projected into a higher dimensional space variant 
where linear separation might become feasible. There-
fore, the scalar product w, x is replaced by a non-linear 
kernel function, thereby circumventing explicit map-
ping to higher dimensional space. SVM classifiers are 
trained using a regularization parameter that permits 
certain misclassification events and penalizes them with 
a cost factor C , which supports model generalization. 
For multi-class image analysis, multiple one-against-one 
binary SVM models were trained and the results were 
combined to yield a final classifier. SVM meta-parame-
ters were optimized using tenfold cross validation includ-
ing cost factor C with values of 0.01, 0.1, 1 and the kernel 
(linear, polynomial, or RBF). For SVM training, a total of 
79,200 features extracted from images were used.

Random forest
RF is a decision tree ensemble classifier that is trained 
using randomized feature subsets on sub-sampled train-
ing data [16]. Herein, RF models were constructed from 
the subset of 79,200 image features. RF meta-param-
eters including the number of trees (50 or 100), mini-
mum number of samples (2 or 5), and minimum sample 
leaf nodes (1 or 3) were optimized using tenfold cross 
validation.

Image pre‑processing and feature extraction
Original 3D AL images were generated with a resolu-
tion of 1200 × 800 pixels. Images were cropped to reduce 
non-colored areas and outer boundary regions. Cropped 
images were resized to a resolution of 360 × 220. Gray-
scale images were obtained as the weighted sum of the 
red, green and blue channels using weights of 0.299, 
0.587, and 0.114, respectively. These calculations were 
performed using the openCV library version 3 [48–51]. 
In addition, grayscale images were converted into b/w 
images by applying binary Otsu’s thresholding [52]. The 

pixel values of all image matrices were converted into 
32-bit floating point format and normalized.

Convolution layers of neural networks can detect fea-
ture representations from given image pixel values. How-
ever, machine learning approaches such as SVM and RF 
are not capable of doing so. Therefore, image filters for 
feature extraction were applied to generate feature sets 
for SVM and RF calculations.

The Sobel edge operator is a convolution filter for edge 
detection given by the two convolution matrices:

It introduces an average factor for smoothing ran-
dom noise of an image and extracts enhanced (thick and 
bright) edges [53]. Herein, the vertical improved Sobel 
filter Gy of Gao et  al. [53] was used. In addition, the 
Canny edge detector was applied, representing a widely 
used method for edge detection [54]. The openCV imple-
mentation of the Canny edge filter was applied to obtain 
Canny edges [49]. The resulting row-wise flattened pixel 
values of edge filters were used as a feature vector. Fig-
ure 2 illustrates image variants obtained using the Sobel 
edge and Canny edge filters. Furthermore, two other fil-
ters were used including ORB [55] and Harris boundary 
features [56] that are less frequently considered for topo-
logical features.

Deriving and evaluating models on image collections
Machine learning models were trained and tested on 
images viewed from different angles and image variants 
with different information content generated on the basis 
of MDS or Neuroscale projections. Images were grouped 
into different collections, as reported in Table 2. Collec-
tions 1–3 included all viewpoints and were distinguished 
only by the projection method. Collection 1 combined 
MDS and Neuroscale images while collection 2 and 3 

Gx =




−1 0 1
−2 0 2
−1 0 1


, Gy =




−1 −2 −1
0 0 0
1 2 1




Fig. 3 Convolutional neural network architecture. CNN design 
combining convolution, rectified linear unit, max-pooling, dropout, 
and dense layers is schematically illustrated

Table 2 Image collections

Different image collections were generated to provide alternative conditions for 
training and testing of classification models

No. Projection Elevation Azimuth Number 
of images

1 MDS, Neuroscale 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 3648

2 MDS 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 1824

3 Neuroscale 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 1824

4 MDS, Neuroscale 90° 0°, 90°, 180°, 270° 912

5 MDS, Neuroscale 65° 0°, 90°, 180°, 270° 912

6 MDS, Neuroscale 35° 0°, 90°, 180°, 270° 912

7 MDS, Neuroscale 0° 0°, 90°, 180°, 270° 912
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only included MDS and Neuroscale images, respectively. 
Collections 4–7 focused on different elevation viewpoints 
combining MDS and Neuroscale projections. As train-
ing data, the heterogeneous (original 3D AL), smooth 
(Ref-AL), and rugged (Ref-AL) variants for all 38 activity 
classes were used yielding 114 images for each for spe-
cific viewpoint and projection. Training was performed 
on cropped full color, grayscale, and b/w images. Addi-
tionally, image variants from Sobel edge or Canny edge 
filters were used in some settings. For each elevation, four 
images were generated for azimuth angle of 0°, 90°, 180° 
and 270°. Depending on the collection, eight to 32 image 
variants per target were used for model derivation. Train-
ing data for all models were extracted features with nor-
malized values obtained from pre-processed images. For 
training SVM and RF models, pre-processed images were 
represented as one-dimensional feature vectors without 
locality information, which was retained in CNNs via the 
convolutional layers. Training data were assembled from 
19 of 38 randomly selected activity classes. As test sets, 
all images from the remaining 19 activity classes were 
used.

Performance evaluation
Classification performance was evaluated based on 
receiver-operator characteristic (ROC) curves, the area 
under the ROC curve (AUC), and the confusion matrix. 
Three standard performance measures were applied 
including the subset accuracy [57], Matthew’s correlation 
coefficient (MCC) [58], and the weighted mean F1 score 
[59]. Subset accuracy is defined as:

where n denotes the number of samples in the test set, Zi 
is the predicted and Yi is the true label for sample i and 
[[·]] is the Iverson bracket taking the value of 1 for a true 
and 0 for a false predicate [57].

Results and discussion
Analysis concept
Our study was designed to investigate image analysis 
for distinguishing between 3D AL models with different 
topological features reflecting different SAR character-
istics. Graphical SAR analysis has thus far mostly been 
qualitative and subjective in nature. Therefore, we rea-
soned that successful classification of 3D AL images 
according to different topological features via ML would 
provide a sound foundation for systematically compar-
ing 3D ALs going beyond subjective interpretation of 
AL models and qualitative analysis of SAR characteris-
tics. We emphasize that AL images do not only provide 

Accuracy =
1

n

n
∑

i

�Zi = Yi�

an attractive representation for SAR visualization, but 
also a preferred data format for ML-based image classi-
fication. AL images are preferred because the underlying 
AL data matrices are difficult, if not infeasible to use for 
ML directly. This is the case because the AL data struc-
ture consists of an exhaustive pairwise compound simi-
larity matrix and an array of compound potency values 
that must be combined. For ML, a potency-augmented 
similarity data matrix would need to be transformed into 
a fixed-format feature vector or an equivalent represen-
tation to enable direct comparison of different AL data 
matrices for model derivation. This is intrinsically dif-
ficult to accomplish for compound data sets of different 
composition and size for which ALs are usually gener-
ated. Challenging data transformations can be circum-
vented by using standardized images of ALs directly for 
ML, which also motivated ML image classification from a 
methodological perspective, in addition to its attractive-
ness for graphical SAR exploration. Standardizing images 
inevitably involves investigating different orientations 
and image views.

In order to assess how different AL features influence 
the classification performance of ML methods, we did 
not only study model performance based on different 
image viewpoints, but also applied two defined image 
processing strategies. First, for each AL, we generated 
reference models with increased SAR continuity/smooth-
ness and discontinuity/ruggedness, respectively. This 
made it possible to determine which topological char-
acteristics were primarily responsible for accurate image 
classification. Second, for each AL image, variants with 
successively reduced information content were generated 
including grayscale, b/w, and edge-filtered image vari-
ants, which were also used for training and model build-
ing. This made it possible to determine how different 
image encodings of topological features affect classifica-
tion performance, in which form distinguishing features 
were detected by ML models, and which level of image 
information content was minimally required for classifi-
cation of images capturing different AL topologies. Using 
images as direct encodings of ALs for classification and 
investigating the two image pre-processing strategies via 
ML represented key components of our proof-of-concept 
study.

Activity landscape topology
The top right image in Fig. 2 shows a representative 3D 
AL. For all 38 activity classes, heterogeneous ALs were 
obtained that combined smooth and rugged sections in 
different ways (further examples are provided below). 
Therefore, to provide topological reference states for 
assessing the suitability of 3D AL classification, the con-
cept of smooth and rugged Ref-ALs was introduced. For 
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each original 3D AL, Ref-ALs were generated to increase 
either smooth or rugged AL character through consist-
ently applied potency-based data set modification, as 
detailed above. For an exemplary 3D AL, the smooth and 
rugged Ref-AL is shown in Fig. 2 (top). The generation of 

these 3D AL variants made it possible to formulate well-
defined classification tasks to distinguish heterogeneous 
3D ALs from smooth and rugged AL reference states and 
explore features driving machine learning. Feature rele-
vance was further assessed using other AL variants with 
reduced information content, as also illustrated in Fig. 2.

Classification of color‑coded activity landscape images
First, 3D AL images of 38 activity classes with differ-
ent combinations of projection and elevation angles and 
color gradients accounting for compound potency infor-
mation were investigated. CNN classification models 
were built for all image collections according to Table 2. 
SVM and RF modeling were not applicable for this pre-
diction task due to difficulties in algorithmically handling 
3D color features. By contrast, CNN models preserved 
the dimensionality of color gradients. CNN classification 
performance is summarized in Table 3. CNNs reached a 
mean accuracy of 0.74 ± 0.1 (mean ± standard deviation) 
for combined projections and elevations. In addition, 
MCC values of ~ 0.6 or greater were obtained indicating 
globally accurate predictions.

When classification performance was separately con-
sidered for the different image classes, smooth Ref-ALs, 
rugged Ref-ALs, and heterogeneous 3D ALs from collec-
tion 1 achieved ROC AUC values of 1.00, 0.86, and 0.86, 
respectively, as shown in Fig.  4. In addition, the confu-
sion matrix for all images revealed that CNNs were able 
to classify images of smooth, rugged and heterogene-
ous 3D AL variants with a true positive rate of 96%, 60% 
and 73%, respectively (Fig. 4), reflecting overall accurate 
predictions.

Probabilities for class predictions using the best per-
forming CNN model for collection 1 with images taken 

Table 3 Classification of  color-coded images using 
convolutional neural networks

The table reports classification results for CNN models trained and tested on 
color-coded images. All values reported are averages ± standard deviations over 
10 independent trials

Collection CNN Metric

1 0.74 ± 0.01 Accuracy

0.74 ± 0.01 F1

0.61 ± 0.01 MCC

2 0.72 ± 0.02 Accuracy

0.72 ± 0.02 F1

0.58 ± 0.03 MCC

3 0.71 ± 0.02 Accuracy

0.71 ± 0.03 F1

0.56 ± 0.04 MCC

4 0.73 ± 0.04 Accuracy

0.73 ± 0.04 F1

0.60 ± 0.06 MCC

5 0.70 ± 0.04 Accuracy

0.70 ± 0.04 F1

0.55 ± 0.06 MCC

6 0.72 ± 0.03 Accuracy

0.72 ± 0.03 F1

0.58 ± 0.04 MCC

7 0.75 ± 0.03 Accuracy

0.75 ± 0.03 F1

0.62 ± 0.04 MCC

Fig. 4 ROC AUC results and confusion matrix for CNN models and image collection 1. On the left, ROC curves for predictions of one versus other 
classes are shown (yielding a micro average value of 0.93 for all classes). On the right, the confusion matrix is shown for collection 1 color-coded by 
true positive rates

31



Page 10 of 15Iqbal et al. J Cheminform           (2020) 12:34 

from the 90° azimuth and 65° elevation angles are shown 
in Fig. 5.

Predicted class probabilities displayed the general 
trend that smooth Ref-ALs were consistently predicted 
with high accuracy, whereas distinguishing between 

heterogeneous 3D ALs and rugged Ref-ALs often rep-
resented a more challenging prediction tasks, resulting 
in at least slightly reduced accuracy. These observations 
indicated that the absence of cliffs and associated features 
in smooth Ref-ALs was a major determinant for correctly 

Fig. 5 Top CNN prediction probabilities for image collection 1. Results are shown for color-coded images on the basis of Neuroscale projection with 
azimuth and elevation angle of 90° and 65°, respectively, and three representative activity classes. Correct class labels are shown in green. “Hetero” 
stands for heterogeneous
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distinguishing them from rugged Ref-ALs and heteroge-
neous 3D ALs.

When comparing different projection methods (collec-
tions 1–3), only small differences in performance were 
observed with only a slight decrease average accuracy of 
0.01–0.02 for the individual projections (collection 2 and 
3) compared to the collection with combined projections 
(collection 1). Hence, MDS and Neuroscale projections 
were readily comparable for classification. CNN models 
trained separately on different elevations (collection 4–7) 
performed consistently well. Interestingly, the perfor-
mance was overall best using 0° elevation angle images 
(collection 7), with an average accuracy of 0.75 ± 0.03. 
These projections only visualized altitude profiles of the 
3D ALs. These findings also indicated that features asso-
ciated with cliffs and their absence in smooth Ref-ALs 
had a major influence on the classifications. By contrast, 
varying image viewpoints originating from different azi-
muth and elevation angle combinations were not signifi-
cantly affecting prediction accuracy, which alleviated the 
need to establish constant reference frames for 3D AL 
comparisons.

Collection 4 consisted of top-down views of ALs where 
potency differences were only distinguished by the color 
gradient. These views corresponded to 2D heatmap rep-
resentations of ALs given in four different rotations. In 
this case, the accuracy of the CNN model was 0.73 ± 0.04 
and thus only slightly reduced compared to the profile 
views of collection 7. This observation was of interest 
since heatmap views contained the complete information 
of the AL captured by the color gradient while profile 
views provided color information and topology. How-
ever, in contrast to lower elevation views where some 
topographical details might be hidden, in heatmaps, no 
AL features were concealed. Hence, 2D heatmaps and 3D 
profile views were suitable AL representations for clas-
sification of color-coded ALs. This was an encouraging 
finding in 3D image analysis.

Models trained on grayscale and black/white image 
variants
Different from color-coded 3D ALs, it was possible to 
train SVM and RF models on grayscale and b/w image 
variants, in addition to CNNs. Classification results for 
models trained on grayscale image variants are reported 
in Table 4.

As expected, for CNNs, the loss in color informa-
tion slightly reduced global classification performance. 
However, for the combined collection 1, the reduction 
in accuracy from 0.74 ± 0.01 to 0.71 ± 0.02 was less than 
one might anticipate. Reduction in performance was 
largest for high elevation viewpoints (collection 4 and 
5) that retained the least altitude information in their 

projections. Thus, under these conditions, heatmap views 
from collection 4 were no longer a suitable AL represen-
tation, emphasizing the need for applying the color gra-
dient for heatmaps. Moreover, observed differences in 
model performance between grayscale and color-coded 
images could be more generally explained. The color gra-
dient used red for low, yellow for intermediate, and green 
for high potency values while the grayscale was deter-
mined as a weighted sum of the red, green and blue chan-
nels with weights of 0.299, 0.587, and 0.114, respectively. 
Thus, yellow resulting from combining red and green 
appeared brightest, followed by green and red, which 
yielded darker gray tones representing both high and low 
high potencies. Hence, dark gray tones did not distin-
guish between high and low potency values, correspond-
ing to a loss of information. This explained why model 
performance reduction was largest for the top-down ele-
vation view (0.67 ± 0.03 compared to 0.73 ± 0.04), which 
exclusively relied on color to differentiate topographical 
features. By contrast, lower elevation views profited from 
the presence of topographically detectable peaks and val-
leys that were retained in the grayscale images, thus con-
firming relevance of these features for ML.

Table 4 Classification of  models trained on  grayscale 
images

The table summarizes classification performance for color-coded 3D AL and 
Ref-AL images using RF, SVM, and CNN models trained on grayscale images. All 
values reported are averages and standard deviations over 10 independent trials

Collection RF SVM CNN Metric

1 0.57 ± 0.01 0.53 ± 0.01 0.71 ± 0.02 Accuracy

0.57 ± 0.01 0.54 ± 0.01 0.71 ± 0.02 F1

0.35 ± 0.01 0.30 ± 0.01 0.56 ± 0.03 MCC

2 0.54 ± 0.01 0.53 ± 0.01 0.70 ± 0.03 Accuracy

0.55 ± 0.01 0.54 ± 0.01 0.70 ± 0.03 F1

0.32 ± 0.02 0.29 ± 0.02 0.55 ± 0.04 MCC

3 0.55 ± 0.02 0.53 ± 0.01 0.70 ± 0.03 Accuracy

0.56 ± 0.01 0.54 ± 0.02 0.70 ± 0.03 F1

0.33 ± 0.02 0.30 ± 0.02 0.55 ± 0.04 MCC

4 0.54 ± 0.02 0.57 ± 0.03 0.67 ± 0.03 Accuracy

0.54 ± 0.02 0.58 ± 0.04 0.67 ± 0.03 F1

0.31 ± 0.03 0.36 ± 0.05 0.51 ± 0.05 MCC

5 0.55 ± 0.03 0.50 ± 0.01 0.68 ± 0.02 Accuracy

0.56 ± 0.03 0.51 ± 0.02 0.68 ± 0.02 F1

0.33 ± 0.04 0.25 ± 0.02 0.52 ± 0.03 MCC

6 0.58 ± 0.01 0.53 ± 0.02 0.72 ± 0.03 Accuracy

0.58 ± 0.02 0.55 ± 0.02 0.72 ± 0.03 F1

0.37 ± 0.02 0.30 ± 0.03 0.59 ± 0.04 MCC

7 0.69 ± 0.02 0.68 ± 0.01 0.74 ± 0.04 Accuracy

0.69 ± 0.02 0.68 ± 0.01 0.74 ± 0.04 F1

0.53 ± 0.03 0.52 ± 0.02 0.62 ± 0.06 MCC

33



Page 12 of 15Iqbal et al. J Cheminform           (2020) 12:34 

Furthermore, CNN model performance on collection 1 
was superior to RF and SVM models. However, RF and 
SVM were also able to distinguish between smooth, rug-
ged and heterogeneous 3D AL variants on the basis of 
grayscale encodings, with a mean prediction accuracy of 
0.57 ± 0.01 and 0.53 ± 0.01, respectively. Here, random 
predictions would correspond to an accuracy of 0.33. 
CNNs outperformed SVM and RF models for the other 
collections, with a relative increase in accuracy of 10% 
or more and consistently higher F1 and MCC values. 
However, prediction accuracy of all methods improved 
significantly for the 0° elevation angle images (collec-
tion 7) where SVM and RF models reached an accuracy 
of 0.68 ± 0.03 and 0.69 ± 0.02, respectively, and CNNs of 
0.74 ± 0.04. Taken together, the results for models trained 
on grayscale images revealed that (i) features learned by 
CNNs from 3D AL images color-coded by potency con-
tributed to the predictions but were not essential and (ii) 
elevation (peak) information, as emphasized by images 
from collection 7, was of critical relevance for accurate 
classifications.

Next, SVM, RF, and CNN models trained on b/w 
images were investigated. As illustrated in Fig.  2, com-
pared to original 3D AL images, b/w image variants 

(resulting from binarization of pixel intensities) had 
drastically reduced information content. Consequently, 
prediction accuracy of all models trained on b/w image 
variants was further reduced compared to models trained 
on grayscale images  (Table  5). CNNs retained limited 
predictive ability for collection 1, with a mean accuracy 
of 0.62 ± 0.02, but mostly retrained classification perfor-
mance for images with decreasing elevation angles (65°, 
35°, and 0°; collection 5–7). For 0° elevation (collection 7), 
classification accuracy of SVM and RF models was high-
est, with 0.68 ± 0.01 and 0.69 ± 0.02, respectively. These 
observations again emphasized the critical importance 
of capturing 3D AL altitude information for meaningful 
image classification.

Edge detection in pre‑processed images
Unlike CNN models, SVM and RF models cannot 
directly learn image feature representations from pixel 
values. Thus, to further evaluate the predictive ability 
of SVM and RF models to classify 3D AL images on the 
basis of topological features, Sobel operators and Canny 
edge filters were applied to all grayscale images. SVM 
and RF models were then derived using edge-filtered 
images from half of the activity classes and tested on 
edge-filtered images of the remaining half of the classes. 

Table 5 Classification of  models trained on  black 
and white images

The table summarizes classification performance for color-coded 3D AL and 
Ref-AL images using RF, SVM, and CNN models trained on b/w images. All values 
reported are averages and standard deviations over 10 independent trials

Collection RF SVM CNN Metric

1 0.48 ± 0.01 0.44 ± 0.01 0.62 ± 0.02 Accuracy

0.47 ± 0.01 0.45 ± 0.01 0.62 ± 0.02 F1

0.21 ± 0.02 0.16 ± 0.01 0.43 ± 0.04 MCC

2 0.46 ± 0.01 0.43 ± 0.01 0.61 ± 0.03 Accuracy

0.46 ± 0.01 0.44 ± 0.01 0.61 ± 0.03 F1

0.20 ± 0.02 0.15 ± 0.02 0.42 ± 0.04 MCC

3 0.47 ± 0.01 0.46 ± 0.02 0.60 ± 0.02 Accuracy

0.47 ± 0.01 0.46 ± 0.02 0.60 ± 0.02 F1

0.20 ± 0.02 0.19 ± 0.03 0.41 ± 0.03 MCC

4 0.45 ± 0.02 0.47 ± 0.03 0.54 ± 0.05 Accuracy

0.45 ± 0.02 0.48 ± 0.03 0.54 ± 0.04 F1

0.17 ± 0.03 0.21 ± 0.04 0.32 ± 0.07 MCC

5 0.41 ± 0.03 0.39 ± 0.01 0.70 ± 0.05 Accuracy

0.41 ± 0.03 0.39 ± 0.01 0.69 ± 0.04 F1

0.12 ± 0.05 0.09 ± 0.02 0.54 ± 0.07 MCC

6 0.52 ± 0.03 0.51 ± 0.02 0.69 ± 0.07 Accuracy

0.52 ± 0.04 0.51 ± 0.03 0.69 ± 0.07 F1

0.29 ± 0.05 0.26 ± 0.03 0.53 ± 0.10 MCC

7 0.69 ± 0.02 0.68 ± 0.01 0.73 ± 0.02 Accuracy

0.69 ± 0.02 0.68 ± 0.01 0.73 ± 0.02 F1

0.53 ± 0.03 0.52 ± 0.02 0.59 ± 0.04 MCC

Table 6 Classification of  pre-processed models 
on the basis of edge detection

Collection RF SVM Metric

Canny Sobel Canny Sobel

1 0.48 ± 0.00 0.50 ± 0.01 0.52 ± 0.01 0.57 ± 0.01 Accuracy

0.48 ± 0.01 0.50 ± 0.01 0.52 ± 0.01 0.58 ± 0.01 F1

0.23 ± 0.01 0.26 ± 0.01 0.28 ± 0.02 0.36 ± 0.02 MCC

2 0.44 ± 0.01 0.50 ± 0.01 0.50 ± 0.02 0.56 ± 0.01 Accuracy

0.45 ± 0.01 0.50 ± 0.01 0.50 ± 0.02 0.56 ± 0.01 F1

0.16 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 0.34 ± 0.02 MCC

3 0.45 ± 0.01 0.49 ± 0.02 0.51 ± 0.02 0.56 ± 0.01 Accuracy

0.46 ± 0.01 0.49 ± 0.02 0.52 ± 0.02 0.57 ± 0.01 F1

0.18 ± 0.01 0.24 ± 0.02 0.27 ± 0.03 0.35 ± 0.02 MCC

4 0.43 ± 0.01 0.54 ± 0.03 0.53 ± 0.04 0.60 ± 0.03 Accuracy

0.44 ± 0.02 0.54 ± 0.03 0.54 ± 0.04 0.60 ± 0.03 F1

0.16 ± 0.02 0.31 ± 0.05 0.30 ± 0.06 0.40 ± 0.04 MCC

5 0.44 ± 0.02 0.50 ± 0.02 0.47 ± 0.03 0.55 ± 0.02 Accuracy

0.44 ± 0.02 0.51 ± 0.02 0.49 ± 0.03 0.57 ± 0.02 F1

0.16 ± 0.03 0.26 ± 0.04 0.21 ± 0.05 0.33 ± 0.03 MCC

6 0.42 ± 0.01 0.50 ± 0.02 0.52 ± 0.03 0.56 ± 0.02 Accuracy

0.42 ± 0.01 0.51 ± 0.03 0.52 ± 0.02 0.58 ± 0.02 F1

0.13 ± 0.02 0.25 ± 0.04 0.28 ± 0.04 0.35 ± 0.03 MCC

7 0.61 ± 0.01 0.66 ± 0.03 0.73 ± 0.02 0.74 ± 0.01 Accuracy

0.63 ± 0.01 0.66 ± 0.03 0.73 ± 0.02 0.74 ± 0.01 F1

0.42 ± 0.02 0.50 ± 0.04 0.59 ± 0.03 0.61 ± 0.01 MCC
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The classification results for these SVM and RF models 
are reported in Table  6. For the most part, no further 
improvements relative to the performance of RF and 
SVM trained on grayscale or b/w images were observed. 
In addition, SVM and RF performance did not improve 
when applying the ORB and Harris boundary feature 
filters. Overall, the combination of SVM and the Sobel 
operator was overall preferred but confined in accuracy 
to 0.60; however, with a notable exception for collection 
7. In this case, these SVM models achieved an accuracy 
of 0.73 ± 0.02 and 0.74 ± 0.01 for the Canny and Sobel 
filters, respectively. Interestingly, this level of classifica-
tion accuracy was comparable to the one achieved by 
CNNs trained on original color-coded 3D AL and Ref-AL 
images.

Results are reported for RF and SVM models trained 
on edge-filtered images and applied to classify such 
images originating from different activity classes. All val-
ues reported are averages and standard deviations over 
10 independent trials.

Importantly, edges in pre-processed images resulted 
from data peaks in rugged regions of 3D ALs. Hence, 
the classification performance of SVM model on these 
filtered image variants clearly indicated the critical 
importance of altitude-dependent topological features 
for image classification. The sparseness of such features 
in smooth Ref-ALs rationalized the ability of classifica-
tion models to distinguish these image variants with very 
high accuracy from rugged Ref-ALs and heterogeneous 
3D ALs. In these two image categories, altitude-depend-
ent topological feature accounting for peaks in 3D ALs 
were prevalent. Accordingly, rugged and heterogeneous 
AL variants were more difficult to distinguish from each 
other. However, even for this classification task, over-
all accurate predictions were obtained, indicating that 
machine learning correctly detected differences in rela-
tive feature density and feature combinations.

Conclusions
In this work, we have investigated classification of 3D 
AL images using machine learning. The study was moti-
vated by the need to complement SAR visualization and 
graphical SAR analysis with systematic computational 
assessment of different 3D AL representations. The 
study concept took into consideration that images also 
represented a preferred data format for machine learn-
ing using 3D AL models of compound data set of diverse 
composition. Therefore, for 38 different activity classes 
with significant compound potency variations, we have 
generated a variety of 3D AL image variants including 
Ref-ALs designed to emphasize different topological 
features in a consistent way. These sets of images were 
classified using ML on the basis of topological features 

accounting for different SAR characteristics. Original 
color-coded 3D AL models and corresponding heat-
map views were accurately classified using CNN models 
trained on learned representations, lending credence to 
the use of such representations. In addition, CNN, SVM, 
and RF models produced meaningful classification of 3D 
AL images with models trained on image variants hav-
ing lower information content. Furthermore, SVM mod-
els were able to accurately predict pre-processed images 
on the basis of edge information representing altitude-
dependent features. Thus, investigating a hierarchy of AL 
representations with successively reduced information 
content revealed factors that were critical for classifica-
tion. Taken together, classification of images of different 
design representing 3D ALs from different viewpoints 
revealed a pivotal role of elevation-dependent features for 
accurate image classification, hence providing a diagnos-
tic for the predictions. These features were decisive for 
distinguishing images of smooth 3D ALs with very high 
accuracy from images of rugged and heterogeneous 3D 
ALs. In addition, images of rugged and heterogeneous 3D 
ALs were also differentiated with meaningful accuracy. 
Accordingly, on the basis of our proof-of-concept inves-
tigation, image analysis is thought to have considerable 
potential for distinguishing between 3D ALs with differ-
ent topologies and hence for classifying them on the basis 
of SAR information they contain. Accordingly, future 
work will focus on differentiating heterogeneous 3D ALs 
on the basis of the relative content of SAR continuity ver-
sus discontinuity. Classification of such 3D ALs might be 
attempted on the basis of images capturing differential 
density of elevation-dependent topological features.
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Summary

For the first time 3D AL models image representations with varying SAR con-
tents were investigated using machine learning and image processing approaches for
classification prediction. The overall analysis demonstrated that the 3D ALs image
snapshots of multiple viewpoints of 3D ALs of different SAR characteristics were
successfully classified based on color-profiles and elevation-dependent features. The
CNN and machine learning models successfully distinguished original heteroge-
neous 3D ALs from reference predominantly smooth 3D ALs. Furthermore, the
models distinguished original heterogeneous 3D ALs from reference predominantly
rugged 3D ALs with meaningful accuracy. The conceptual investigation provided ev-
idence of the contribution of elevation-based SAR topographical features in 3D AL
classification analysis. Image formats obtained from 3D ALs with different topolo-
gies have considerable potential for distinguishing between 3D ALs with different
SAR contents. The obtained results encourage further investigation of SARs for
detection and analysis of topographical features with the application of image pro-
cessing techniques based on image data.
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Chapter 3

Computational Method for
Quantitative Comparison of Activity
Landscapes on the Basis of Image
Data

Introduction

SAR types represented in a 3D AL model resemble real-world geographical
topologies. For example, SAR characteristics in 3D ALs can be visually perceived
as the combination of mountains and valleys where discontinuous surfaces tend to
form mountains or peaks and continuous surfaces can be viewed as valleys. Chapter

2 establishes proof of concept where machine learning models can discriminate be-
tween different 3D AL models accurately and successfully classify original 3D AL
surfaces from pre-dominantly smooth and rugged surface types. However, the find-
ings in chapter 2 are limited to 3D AL variants and reference states with intentionally
modified topologies. Therefore, it remained unclear whether image analysis might
also be applicable to discern between actual 3D ALs with original data sets. Accord-
ingly, the current chapter investigates 3D ALs for quantitative comparison of SARs
based on actual unmodified data sets. In this conceptual analysis, 3D AL models
were generated for four target activity classes and the heatmap (top-down) represen-
tations were quantitatively compared to discern the SAR (dis)-similarity in 3D ALs.
Furthermore, the current chapter introduces a numerical methodology to computa-
tionally extract distributed potency features from 3D ALs images corresponding to
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different SAR topological features and provides a robust 3D AL comparison based
on the feature vector that reflects varying SAR information content.

42



Reprinted with permission from “Iqbal, J.; Vogt, M.; Bajorath, J. Computational
Method for Quantitative Comparison of Activity Landscapes on the Basis of Image
Data. Molecules 2020, 25, e3952” . Copyright 2020 MDPI, Basel, Switzerland

43



44



molecules

Article

Computational Method for Quantitative Comparison
of Activity Landscapes on the Basis of Image Data

Javed Iqbal, Martin Vogt and Jürgen Bajorath *

Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry,
Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany;
jiqbal@bit.uni-bonn.de (J.I.); martin.vogt@bit.uni-bonn.de (M.V.)
* Correspondence: bajorath@bit.uni-bonn.de; Tel.: +49-228-7369-100

Academic Editor: Giosuè Costa
Received: 20 July 2020; Accepted: 27 August 2020; Published: 29 August 2020

����������
�������

Abstract: Activity landscape (AL) models are used for visualizing and interpreting structure–activity
relationships (SARs) in compound datasets. Therefore, ALs are designed to present chemical similarity
and compound potency information in context. Different two- or three-dimensional (2D or 3D) AL
representations have been introduced. For SAR analysis, 3D AL models are particularly intuitive.
In these models, an interpolated potency surface is added as a third dimension to a 2D projection of
chemical space. Accordingly, AL topology can be associated with characteristic SAR features. Going
beyond visualization and a qualitative assessment of SARs, it would be very helpful to compare
3D ALs of different datasets in more quantitative terms. However, quantitative AL analysis is still
in its infancy. Recently, it has been shown that 3D AL models with pre-defined topologies can be
correctly classified using machine learning. Classification was facilitated on the basis of AL image
feature representations learned with convolutional neural networks. Therefore, we have further
investigated image analysis for quantitative comparison of 3D ALs and devised an approach to
determine (dis)similarity relationships for ALs representing different compound datasets. Herein,
we report this approach and demonstrate proof-of-principle. The methodology makes it possible
to computationally compare 3D ALs and quantify topological differences reflecting varying SAR
information content. For SAR exploration in drug design, this adds a quantitative measure of AL
(dis)similarity to graphical analysis.

Keywords: active compounds; three-dimensional activity landscapes; topological features;
structure–activity relationships; image analysis; grid representations; landscape comparison;
similarity measures

1. Introduction

Graphical representations are desirable to support the analysis of structure–activity relationships
(SARs), especially when large sets of active compounds are investigated [1,2]. SARs are determined by
chemical similarity and potency relationships between compounds active against a given target [3].
If sequential structural modifications of compounds lead to small or moderate changes in potency,
SARs are continuous in nature. By contrast, if small structural changes cause potency alterations
of large magnitude, SARs are discontinuous. Activity cliffs (ACs), i.e., pairs of structural analogs
with large potency differences, are centers of SAR discontinuity in datasets [3,4]. Activity landscape
(AL) representations were introduced to combine the analysis of similarity and potency information
in various ways [5–7]. AL representations differ substantially in their design and complexity [5].
They range from plots and graphs such as the structure–activity similarity map [8,9], SAR map [10],
or ligand-target differentiation map [11] and annotated molecular networks such as network-like
similarity graphs [12] to multi-dimensional representations [13]. Formally, in an n-dimensional AL
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model, n-1 dimensions represent a chemical descriptor/feature space and the nth dimension represents
activity space [13]. In other words, a multi-dimensional AL can be rationalized as a chemical feature
space containing a biological activity hypersurface [5]. For SAR visualization and interpretation,
three-dimensional (3D) AL views are particularly attractive because they are akin to geographical maps,
with topologies accounting for the presence of characteristic local SARs [13–15]. Accordingly, smooth
regions in 3D ALs mirror SAR continuity, whereas rugged regions are indicative of SAR discontinuity
and contain ACs. For different compound datasets, 3D AL models can be constructed by combining a
two-dimensional (2D) projection of (n-1)-dimensional chemical space with compound potency values
subsequently added as a third dimension [14,15]. From distributed potency values, a coherent potency
surface is interpolated and color-coded by potency, resulting in a 3D view reminiscent of a geographical
map [14,15]. In many compound datasets, both continuous and discontinuous SARs are found to
coexist that are formed by different compound subsets [16]. The coexistence of locally continuous and
discontinuous SARs gives rise to global SAR heterogeneity [16] and 3D ALs containing both smooth
and rugged regions, termed variable ALs [14,15]. Of note, a 3D AL principally represents a non-linear
quantitative SAR (QSAR) model, given its interpolated potency hypersurface to which descriptor
coordinates of test compounds can be mapped. As such, the 3D AL is suitable for mapping of active
compounds to regions of high or low potency, but not for actual potency prediction in lieu of machine
learning [15]. This typically is a consequence of intrinsic overfitting of a 3D AL model to a given
dataset, which yields a high-resolution SAR visualization, but prohibits generalization of the model for
the prediction of numerical potency values [15]. Hence, while numerical SAR analysis functions are
applicable to account for SAR continuity [16], discontinuity [16–18], or heterogeneity [16] in datasets,
3D AL models have thus far only been qualitatively analyzed and compared [19].

While SAR visualization is a key task of 3D AL modeling, one would clearly benefit from a more
quantitative comparison of 3D ALs. Qualitative analysis of 3D ALs typically aims at relating topological
features to SAR characteristics such as the relative content of continuous vs. discontinuous SAR
components. One of the key tasks in SAR exploration of compound datasets is revealing differences
in SAR information between different sets [5]. For example, for practical compound optimization,
one often would like to assess which sets of compounds with activity against related targets have
similar SAR characteristics and are rich in SAR discontinuity. Such datasets would be preferentially
selected as compound source to guide optimization efforts. On the other hand, for computational SAR
modeling and QSAR, one would like to give preference to datasets that contain more SAR continuity.
Estimating and comparing relative SAR information content goes beyond the opportunities of SAR
visualization and qualitative AL comparison. For example, large-scale SAR analysis would greatly
benefit from identifying datasets that have similar SAR characteristics to a given compound set of
interest, which is impossible on the basis of visual inspection. Hence, the ability to systematically
relate topological differences to varying SAR information content and quantify SAR similarity of
different datasets would complement SAR visualization and further extend the utility of 3D ALs,
beyond intuitive analysis and comparison. Quantitative assessment would also aid in differentiating
between datasets with heterogeneous 3D ALs displaying subtle topological differences that are difficult
to appreciate on the basis of visual inspection. This is of practical relevance when evaluating the
potential of further advancing SARs for compounds with activity against related targets. In such
cases, one would favor focusing on compound sources capturing more SAR discontinuity than others,
similar to the application scenario described above. Hence, there are multiple reasons motivating the
development of methods for quantitative comparison of ALs.

However, from a computational point of view, the development of quantitative 3D AL methods
is far from being a trivial task. Recently, it has been attempted to classify 3D ALs using machine
learning (ML) based on features extracted from color-coded AL images using convolutional neural
networks [20]. For a given 3D AL, variants with altered topologies were generated by either increasing
the smoothness (continuity) or ruggedness (discontinuity) of the original AL. These topologically
modified reference states were then distinguished from original 3D ALs by binary class label prediction
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using various ML approaches including deep learning [20]. These studies provided first evidence that
3D AL models with different topological features can be correctly classified on the basis of image data.
However, the findings were limited to 3D AL variants and reference states with deliberately modified
topologies. Accordingly, it remained unclear whether image processing might also be applicable to
differentiate between original heterogeneous 3D ALs. Therefore, we have investigated a conceptually
different image-based computational approach to determine (dis)similarity relationships between
original 3D ALs of different compound datasets.

2. Results and Discussion

2.1. Activity Landscape Images

Images generated from 3D ALs preserve pairwise compound similarity relationships and
their potency data as topographical features. Topology and color codes account for different SAR
characteristics of compound datasets. Of note, SARs are determined by potency differences between
compounds with varying degrees of similarity and are thus largely independent of absolute potency
values. The interpolated potency surface of a 3D AL yields color gradients that can be represented in
heatmaps without significant information loss (see Methods) [20]. Such heatmaps represent a top-down
view of the 3D AL and the encoded color gradients implicitly—but comprehensively—account for the
spatial distribution of topological features. Hence, 3D ALs and corresponding heatmaps are in principle
well suited for image analysis. Given the aim of our method development effort, we have reasoned
that comparing AL image features in a well-defined way should have the potential to discriminate
between different 3D ALs in quantitative terms.

2.2. Image Similarity Analysis

Three-dimensional AL images embed topological features and color profiles, which are
characterized by different color gradients resulting from potency value and compound similarity
distributions (the combination of which determines AL topology). In heatmaps derived from 3D
ALs, topological features and ensuing color gradients are encoded by color pixel intensities that can
be algorithmically extracted. The basic premise underlying similarity-based comparison of 3D AL
images, as introduced herein, is that scaled color pixel intensities can be quantitatively compared
across different heatmaps. To this end, a common grid representation of heatmaps plays a central
role. Using an evenly spaced grid, the heatmap is divided into a constant number of cells, which are
assigned to different categories based upon color intensity threshold values. The distribution of cells
over different categories is then quantitatively compared as a measure of AL (dis)similarity. Figure 1
illustrates the approach. Methodological and calculation details are provided in the Methods Section.

2.3. Heatmaps and Grid Representations

Conversion of 3D AL images into heatmaps established a reference frame for quantitative AL
comparison. The heatmap corresponded to a top-down view of the color-coded 3D AL. Heatmaps were
mapped onto an evenly spaced grid of dimensionality 56 × 60. Accordingly, each heatmap was divided
into total 3360 cells. Figure 2 shows a 3D AL representation for a set of 673 corticotropin-releasing
factor receptor 1 ligands, the corresponding heatmap, and its grid representation.
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Figure 2. Activity landscape and heatmap representations. In (a), the 3D AL of a set of
corticotropin-releasing factor receptor 1 ligands taken from ChEMBL version 23 [21] is shown (generated
as detailed in the Methods Section). The surface is color-coded according to compound potency using a
continuous spectrum ranking from red (high potency) over yellow to green (low potency). In (b), the
corresponding heatmap is displayed. In (c), the heatmap is represented on an evenly spaced grid.
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In Figure 3 below, the heatmap of the of corticotropin-releasing factor receptor 1 ligands is enlarged,
and positions of exemplary weakly or highly potent compounds are mapped. These compounds
originated from two different analog series and occupy distant regions in the heatmap. The weakly
potent compounds are found in a green region (corresponding to a valley) and the highly potent in a
red region (formed by peaks). The representation illustrates color intensity-based encoding of 3D AL
topology resulting from different compound potency levels.Molecules 2020, 25, x FOR PEER REVIEW  6 of 12 
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Figure 3. Heatmap with compound positions. The heatmap from Figure 2b is enlarged and positions
of different compounds are indicated using black triangles. Exemplary weakly potent (top) and
highly potent compounds (bottom) belong to two different analog series and map to green regions
(valleys) and red regions, respectively. For each compound, its potency value is reported, and structural
modifications distinguishing analogs from each series are highlighted in red.

For heatmaps, red and green channel pixel intensity values were combined into a single intensity
value ranging from -1 to 1 (see Methods). To identify peaks using color intensities, positive threshold
value intervals of (0, 0.25), (0.25, 0.5), (0.5, 0.75), and (0.75, 1.0) were applied. To identify smooth regions
(valleys), negative threshold intervals of (0, −0.25), (−0.25, −0.5), (−0.50, −0.75), and (−0.75, −1.0) were
used. Thus, different threshold intervals represented highest elevations (peaks), deepest valleys, and
intermediate peak-to-valley and valley-to-peak regions. It should be noted that pixel intensities do not
only encode potencies of individual molecules. Because intensities are obtained by interpolating a
color gradient reflecting potencies of neighboring compounds, pixel intensities also implicitly account
for locality information.

2.4. Grid-Based Similarity Analysis

Heatmap cells were assigned to eight different categories on the basis of the threshold value
intervals specified above. The assignment yielded an AL-dependent distribution of categorized
cells. Grid-based partitioning of a heatmap and categorization of the resulting cell population
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provided two fundamental advantages for subsequent similarity analysis. First, a constant number
of cells was obtained; second, the distribution of cells over different threshold categories was image
orientation-invariant. While grid locality information is not preserved in the global cell distribution,
SAR information from neighboring molecules is retained by interpolated intensities and hence implicitly
included in the comparison. As a measure of AL (dis)similarity, cell distributions of different heatmaps
were quantitatively compared by calculating symmetric relational entropy and cosine distances (see
Methods).

2.5. Activity Landscape Comparison

Figure 4 shows heatmaps for 3D ALs of four exemplary compound datasets from ChEMBL
version 23 [21] that are reported in Table 1. The datasets consisted of 673–887 compounds with activity
against different targets covering different potency ranges. All four sets were characterized by SAR
heterogeneity, i.e., their 3D ALs contained both smooth and rugged regions, corresponding to SAR
continuity and discontinuity, respectively. However, on the basis of visual inspection, there also were
apparent differences between these ALs, reflecting varying SAR information content. For example, the
heatmap of compound dataset CHEMBL1800 (C1800) contained more and more widely distributed
peak regions than the others, and C1800 and CHEMBL238 (C238) appeared to be overall the most
dissimilar pair. Other relationships involving CHEMBL3759 (C3759) CHEMBL1833 (C1833) were
difficult to judge, illustrating the limitations of visual inspection.
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Table 1. Datasets. The table summarizes the composition of four exemplary compound datasets
(different activity classes) used for 3D AL analysis.

ChEMBL Target ID Target Name Number of Compounds
Potency (pKi)

Min Max

1800 Corticotropin-Releasing Factor Receptor 1 673 4.3 9.7

3759 Histamine H4 receptor 887 2.9 10.4

1833 5-hydroxytryptamine receptor 2B 695 5.0 10.0

238 Sodium-dependent dopamine transporter 850 2.1 9.4

For the heatmaps, we then determined the grid-based cell intensity distributions over the eight
threshold intervals. Figure 5 compares these distributions.
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Figure 5. Cell intensity distributions. For the four compound datasets, cell distributions over eight
threshold intervals are reported and color-coded as indicated. From left to right, valleys (interval 1–3),
intermediate regions (interval 4,5), and peaks (interval 6–8) are accounted for.

Large differences between these distributions were found in smooth regions. Here, C238 (green
curve in Figure 5) had by far the largest number of cells accounting for valleys and C1800 (red)
the smallest. Furthermore, C1800 and C238 had the largest and smallest number of cells covering
intermediate regions, respectively. In peak regions, the distributions of three of the four datasets were
similar, except C1800, which had a larger number of cells accounting for peaks than the others. These
findings were consistent with conclusions that could be drawn from visual inspection. Going beyond
what could be concluded on the basis of visual inspection, the profiles of C1833 (orange) and C3759
(magenta) were found to be overall similar. While C1833 had more cells accounting for smooth regions
than C3759, the traces of the distributions closely followed each other in intermediate and peak regions.
Taken together, comparison of cell intensity distributions revealed quantifiable differences between AL
images of different datasets and thus provided a sound basis for (dis)similarity analysis.

To quantify differences between cell distributions in a pairwise manner and provide a numerical
measure of AL (dis)similarity, relative entropy (RE) was determined by calculating the Kullback–Leibler
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divergences (KLD) [22] between feature vectors of cell distributions (see Methods). In addition, cosine
distance (CD) values were determined for pairwise comparison of distribution feature vectors,
a standard dissimilarity measure [23]. Increasing RE and CD values indicate increasing dissimilarity
between ALs. Table 2 reports the results of pairwise comparisons of the cell intensity profiles.

Table 2. Similarity calculations. Relative entropy (RE) and cosine distance (CD) values for comparison
of cell distribution feature vectors are reported.

AL Comparison RE CD

C1800/C3759 0.19 0.10

C1833/C238 0.28 0.24

C1800/C1833 0.22 0.12

C1800/C238 0.53 0.33

C3759/C1833 0.08 0.05

C3759/C238 0.09 0.09

As expected, largest RE (0.53) and CD (0.33) values were obtained for the C1800/C238 comparison,
confirming that the ALs of these datasets were most dissimilar. By contrast, smallest RE and CD values
were calculated for the C3759/C1833 (0.08 and 0.05, respectively) and the C3759/C238 comparison
(0.09 in both instances). As discussed above, C3759 and C1833 yielded the overall most similar
cell distributions. Furthermore, for the C1833/C238 comparison, intermediate RE (0.28) and CD
(0.24) values were obtained, which were also reconcilable on the basis of the observed distribution
traces. The comparisons revealed that RE and CD calculations were suitable for comparing cell
distribution feature vectors. Since RE values covered a larger value range for the reported comparisons
than CD values, we would assign preference to the former, at least in these cases. Regardless,
the calculations reported herein are generally applicable and provide a first quantitative measure of 3D
AL (dis)similarity.

2.6. Conclusions

The AL concept was introduced for graphical analysis of SARs contained in compound datasets.
For SAR visualization, 3D AL representations are particularly intuitive since they are akin to
geographical maps and their topological features mirror SAR characteristics. Three-dimensional
ALs of most compound datasets are variable in nature, reflecting different degrees of SAR heterogeneity.
Going beyond visual inspection and qualitative comparison of 3D ALs, the ability to quantitatively
account for topological differences between 3D ALs would provide substantial support for SAR
exploration of compound datasets and various practical applications. In this work, we have introduced
a computational methodology to quantify (dis)similarity relationships between 3D ALs on the
basis of image data. Three-dimensional AL images can be converted into heatmaps representing a
top-down view of the ALs with very little loss in information such that color intensities and textures
represent topological features. Heatmaps are then mapped onto evenly spaced grids with constant
dimensions, which yields a constant number of cells, providing a basis for AL comparison. These
cells are then categorized on the basis of color intensities, which implicitly account for the spatial
distribution of corresponding topological features they represent. Differences in the distribution
of cells over different threshold intervals are then quantified as a measure of 3D AL (dis)similarity.
Importantly, cell-based comparison of ALs is image-orientation invariant and thus generally applicable.
As shown in our proof-of-concept investigation, comparison of categorized cell distributions provides
a meaningful quantitative readout for comparison of 3D ALs and, thus, further extends the utility of
AL representations for SAR exploration.
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3. Methods

3.1. Three-Dimensional Activity Landscapes

Three-dimensional AL models of compound datasets (Figure 2) were generated following
the protocol reported in [20]. Briefly, chemical reference space was generated on the basis of
extended connectivity fingerprint with bond diameter 4 (ECFP4) [24] Tanimoto distances [25] for
pairwise compound comparisons. The 2D projection of chemical reference space was computed using
multi-dimensional scaling (MDS) [26], applying a stress function based on pairwise Tanimoto distances.
The potency surface was interpolated via Gaussian process regression (GPR) [27] and color-coded
by compound potency applying a continuous color gradient from red (highest potency in a dataset)
over yellow to green (lowest potency). Intermediate potency values were computed using a Gaussian
process based on prior covariances of experimental potency values. The “Sum of Matern and White”
kernel [27] was used assuming a mean of zero to derive relationships between experimental data
points (potency values). Gaussian noise factors were applied to permit minor variations of z-values for
points on the x-y plane and optimize the global fit of the surface to experimental data points. Noise
factors were adjusted for each target activity class by optimizing the kernel’s alpha parameter between
10−1 and 10−7 over 10 iterations. The gradient was applied to a limited pKi range from 3.72 (green)
over 5.75 (yellow) to 8.75 (red). Potencies outside this range were assigned to green (less than 3.72) or
red (larger than 8.75).

3.2. Image Processing and Analysis

For each 3D AL, a heatmap was initially obtained using the RGB color model of OpenCV version
3.0 with eight bits per channel [28,29]. Heatmaps were cropped to dimensions of 280 × 300 pixels
(starting from the original 600 × 400 pixels including white excess areas). Because 3D AL models were
created by interpolating potency values using the color gradient from red over yellow to green, without
using the blue channel, the red and green (RG) channel pixel values were extracted by subtracting
green channel intensity values from red channel intensity values and combined into a single intensity
value ranging from −255 to 255. Accordingly, the dataset compound with lowest potency (brightest
green pixels), intermediate (yellow pixels), and highest potency (brightest red pixels) corresponded to
values of −255, 0, and +255, respectively. RG pixel values were then normalized to the range of −1 to
+1. The RG color model preserved more than 95% of the RGB colors, except for shades of white (i.e.,
interpolated surface area without experimental potency), which were accounted for by yellow hues
using the RG model.

3.3. Grid Representation

Each heatmap was mapped to an evenly spaced grid of dimensionality 56 × 60, forming total 3360
square cells. Color intensity values were divided into eight different threshold intervals (categories), as
specified above. Average pixel intensity values from the 25 pixels of each cell were assigned to the cell,
and the distribution of cells over the eight threshold intervals was determined. For comparison, cell
intensity distributions were encoded as individual feature vectors.

3.4. Similarity Analysis

To quantify (dis)similarity between any two 3D ALs images based upon their heatmaps, relative
information entropy and cosine distances were calculated for cell distribution feature vectors. Relative
entropy (RE), also known as the Kullback−Leibler divergence (KLD), is calculated between two
probability distributions P(x), P(y). These were obtained from the feature vectors x and y by converting
the distributions to relative frequencies. KLD is defined as [22]:

KLD(P(x)
∣∣∣∣∣∣P(y)) =

∑
P(x) log

(
P(x)
P(y)

)
(1)
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Given the intrinsic asymmetry of KLD, symmetric relative entropy values for comparison of feature
vector probability distributions P(x) and P(y) were obtained by taking the average of KLD(P(x)

∣∣∣∣∣∣P(y))
and KLD(P(y)

∣∣∣∣∣∣P(x)):
RE(P(x), P(y)) =

∑
P(x) log

(
P(x)
P(y)

)
+

∑
P(y) log

(
P(y)
P(x)

)
2

(2)

In addition, cosine distances between feature vectors were calculated. The cosine coefficient is
widely used to measure the relationship between any two given feature vectors by calculating the
cosine of the angle between the two vectors [23]. It is defined as the inner product of two vectors
divided by the product of their lengths. The cosine distance CD is obtained by subtracting the cosine
similarity value from 1 and given by:

CD(x, y) = 1−
(

x·y
‖x‖‖y‖

)
(3)
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Summary

The analysis goes beyond the visual inspection and qualitative comparison of
3D ALs by assessing the ability to compare topological differences between 3D
ALs quantitatively. A novel computational methodology is introduced to quantify
(dis)similarity relationships between 3D ALs of varying SAR contents. The method-
ology maps the heatmap image representations of 3D ALs of target compound data
sets onto evenly spaced grids with constant dimensions, which yields a constant
number of cells. The features from each cell are then extracted based on color in-
tensities and categorized on the basis of activity thresholds. The color intensities
directly reflect the corresponding potency distribution that implicitly accounts for
the spatial distribution of corresponding topographical features. Extracted features
from 3D AL heatmaps can be quantified to measure (dis)similarity between different
3D ALs. The results obtained in the proof-of-concept investigating the compari-
son of categorized cell distributions based on 3D ALs of four target activity classes
provided conceivable and meaningful quantitative dis(similarity) comparisons of 3D
ALs with varying SARs . The methodology allows the numerical feature extrac-
tion of complex 3D ALs and further extends the utility of AL image representations
for quantitative SAR exploration. 3D ALs successful quantification and conceivable
quantitative comparison based on image data highly motivate the further investiga-
tion of 3D ALs to detect SAR topographical features.
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Chapter 4

Quantitative Comparison of
Three-Dimensional Activity
Landscapes of Compound Data Sets
Based upon Topological Features

Introduction

3D ALs are readily convertible to heatmaps representing a top-down view with
color profiles and topographical features conservation. Therefore, 3D AL heatmap
representations are particularly intuitive for image-based SAR analysis. SAR topo-
logical features in 3D ALs resemble real-world geographical features. For exam-
ple, small structural changes with small or gradual potency changes give rise to the
formation of a smooth valley, whereas small structural changes with high potency
differences form peaks or mountains. 3D ALs of most compound datasets are het-
erogeneous; therefore, smooth valleys and rugged regions often co-occur in 3D ALs
that represent a heterogeneous SAR with the combination of continuous and dis-
continuous regions. The chapter presents a novel methodology to analyze 3D ALs
based on topographical characteristics. The methodology seeks to identify different
SAR characteristics based on 3D ALs topographical features (i.e., valleys, peaks)
and quantifies the activity distribution localized within the identified topographical
characteristics. The methodology, proof of concept and findings are discussed.
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ABSTRACT: Visualization of structure−activity relationships (SARs) in compound data sets
substantially contributes to their systematic analysis. For SAR visualization, different types of
activity landscape (AL) representations have been introduced. Three-dimensional (3D) AL
models in which an activity hypersurface is constructed in chemical space are particularly
intuitive because these 3D ALs are reminiscent of “true” (geographical) landscapes.
Accordingly, the topologies of 3D AL representations can be immediately associated with
different SAR characteristics of compound data sets. However, the comparison of 3D ALs has
thus far been confined to visual inspection and qualitative analysis. We have focused on image
analysis as a possible approach to facilitate a quantitative comparison of 3D ALs, which would
further increase their utility for SAR exploration. Herein, we introduce a new computational
methodology for quantifying topological relationships between 3D ALs. Images of color-coded
3D ALs were converted into top-down views of these ALs. From transformed images, different
categories of shape features were systematically extracted, and multilevel shape
correspondence was determined as a measure of AL similarity. This made it possible to differentiate between 3D ALs in
quantitative terms.

1. INTRODUCTION

Activity landscapes (ALs) are graphical representations that are
designed to integrate structural and potency relationships
between compounds sharing the same specific activity.1,2 AL
modeling enables the visualization and graphical analysis of
structure−activity relationships (SARs) for different data sets.2
Over the years, a variety of AL representations of different

designs and complexities have been introduced.1−8 These
include two-dimensional (2D) representations such as plots of
pairwise compound similarity versus potency relationships1,4 or
annotated similarity-based compound networks.2,9 In addition,
three-dimensional (3D) AL views such as pairwise compound
activity−property−similarity distributions4 or maps reminding
us of geographical landscapes3,8,10 have been studied.
These maps, in the following referred to as 3D ALs, are

particularly intuitive because they can be interpreted in the
same way as geographical landscapes. In 3D ALs, topological
features such as mountains, plains, or valleys are associated
with different SAR characteristics. For example, plains and
gently sloped valleys in a 3D AL result from a series of
chemical modifications (“walks” in chemical space) that are
accompanied by small to moderate changes in potency, a
phenotype referred to as SAR continuity.2 By contrast,
mountainous regions and peaks in a 3D AL are a consequence
of small compound modifications (small steps in chemical
space) that cause large potency alterations, which represent
SAR discontinuity.2 Most prominent peaks in discontinuous
regions are termed activity cliffs10,11 and formed by pairs or

groups of structural analogues with largest potency differences
in compound data sets.11

For SAR visualization, 3D AL models are obtained by
adding compound potency values as third dimension to a 2D
projection of a chemical feature (descriptor) space, for which
computational approaches and parameters have been estab-
lished in previous studies.3,8 From experimental potency
values, a coherent surface is interpolated and color-coded by
potency, representing an activity surface.3,8 The major features
of the geographical landscape like topologies of different
activity surfaces, as discussed above, can vary significantly, and
different topological features reflect different SAR character-
istics.
SAR visualization using 3D ALs represents a qualitative

approach. Although 3D AL analysis can be complemented with
the application of numerical SAR analysis functions to quantify
SAR continuity and/or discontinuity for compound data
sets,12,13 subjective graphical assessment has principal limi-
tations when comparing different ALs. This is the case because
most compound data sets exhibit SAR heterogeneity, resulting
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from different combinations of locally continuous and
discontinuous SARs that originate from different compound
subsets.12 As a consequence, in corresponding 3D ALs, smooth
and rugged regions are interspersed. When comparing 3D AL
models, it is generally difficult to judge differences in SAR
information content on the basis of visual inspection.
Therefore, the ability to compare 3D ALs in quantitative
terms would be highly desirable to complement graphical
analysis.
We have reasoned that a quantitative comparison of 3D ALs

might become feasible by focusing on quantitative analysis of
images of 3D ALs. The first evidence in support of this

conjecture was provided by successful classification of 3D AL
image variants based upon features learned using convolutional
neural networks.14 For 3D ALs, reference representations with
specifically altered topologies were generated, either signifi-
cantly increasing or decreasing the proportion of valleys to
peaks. From images of original and modified ALs, distinguish-
ing features were learned and used for class label predictions
using machine learning, leading to overall successful classi-
fication of these AL variants.14

In light of these initial findings, we have investigated 3D AL
image analysis to quantitatively compare 3D ALs and the SAR
information they capture. Herein, we represent a new

Figure 1. Activity landscape views and topological features. (a) At the top, an exemplary original 3D AL (left) and the corresponding heatmap
(right) are shown. The heatmap conveys a top-down view of the AL. At the bottom, topological features extracted from the heatmap are depicted.
For peaks and valleys, contours are drawn covering eight threshold levels (±0.25, ±0.5, ±0.75, and ±0.9). (b) The generation of a feature vector is
illustrated that records the cumulative area of shape features for any contour threshold levels. For clarity, only individual contours with an area
greater than 3 are shown and labeled with respective thresholds.
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computational approach to quantitatively account for feature
relationships between 3D ALs, indicating varying SAR
information content and quantify similarity relationships
between 3D ALs.

2. RESULTS AND DISCUSSION

2.1. Study Concept. Images of 3D ALs provide a data
source for algorithmic extraction of features that account for
topological characteristics representing SARs contained in
compound data sets. Our analysis was based on the premise
that similarity relationships between different 3D ALs might be
quantifiable if such image features could be canonicalized and
formally compared. Therefore, we have recorded 3D AL
images and converted them into representations, in which
landscape topologies were defined by varying color pixel
intensities and from which features suitable for 3D AL
comparison could be systematically extracted. On the basis
of the resulting feature sets, 3D AL similarity analysis was
performed, and different comparisons were carried out. In the
following, our computational approach is presented and
applied to establish proof of concept.
2.2. Activity Landscape Image Processing. The

potency surface of 3D ALs is determined by three variables
capturing structural and potency relationships between
compounds: distance, elevation, and color gradients. While
distance accounts for structural relationships (walks in
chemical space), both elevation and color gradients account
for potency relationships. This inherent redundancy in
representing potency relationships makes it possible to replace
elevation with color profiles that capture AL topology by

varying color pixel intensities. This idea is central to 3D AL
image processing and comparison. Accordingly, original 3D AL
images are converted into color-coded heatmaps that represent
top-down views of the landscapes preserving distance and
potency relationships, as illustrated in Figure 1. Furthermore,
in Figure 2, an original 3D AL and the corresponding heatmap
are compared in greater detail by mapping corresponding
positions of exemplary active compounds participating in the
formation of different activity cliffs within the same region.

2.3. Activity Landscape Features. The resulting
heatmaps embed unique topological features as color profiles
and color intensity-based textures. By well-defined contouring
(see Section 3), shape features are defined, as shown in Figure
1a. Contours are derived based on the potency value
distributions and thus capture different shape features on a
relative scale, with corresponding threshold values distinguish-
ing different contour levels. Characteristic features are then
extracted and represented as AL-specific feature vectors for
quantitative comparison. The generation of a feature vector
accounting for the different shape features of an activity class is
illustrated in Figure 1b. The feature extraction approach
presented herein focuses on the detection of borders in
heatmaps that encompass regions of different topologies and
enclose valleys or peaks. Accordingly, different topological
features yield different shapes. Feature extraction is facilitated
using the marching squares algorithm (MSA)15 (see Section
3). Two main characteristics of shape features include the area
that is covered and the color intensity range, for which
thresholds are defined. Shapes representing peaks or valleys in
3D ALs are compared across different threshold levels and the

Figure 2. Compound mapping on activity landscape representations. Corresponding positions of highly and weakly potent orexin receptor type 2
antagonists belonging to different analogue series are mapped on the original 3D AL of the data set (top left) and the heatmap representation (top
right), respectively. The pair of highly potent analogues and the pair of weakly potent analogues contribute to the formation of different activity
cliffs within the same region of the AL. At the bottom, the structures of these compounds are shown with their logarithmic potency values.
Chemical modifications distinguishing highly potent analogues (top) and weakly potent analogues (bottom) are highlighted (red).
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AL similarity is quantified in different ways using a suitable
similarity metric.16

2.4. Exemplary Activity Landscapes. For our proof-of-
concept studies, 3D ALs were generated for eight compound
data sets (different activity classes) taken from release 23 of
ChEMBL,17 as reported in Table 1. The compounds were

active against diverse targets and covered varying potency
ranges. A general cutoff value of 10 μM potency was applied to
exclude borderline active compounds from 3D AL modeling.
From 3D AL images, heatmaps were derived for further
analysis. Figure 3 shows the heatmaps of these activity classes.
The comparison reveals topological similarities and differences.
All heatmaps combine mountainous and smooth regions
containing peaks and valleys, respectively. These topological
features mirror SAR heterogeneity. Within these variable
landscapes, differences are observed. For example, the heatmap
of ChEMBL data set 204 displays most prominent peaks and
cliffs (characterized by sharp borders between peaks and
valleys). Based upon visual inspection, the heatmap of data set
4792 appears to resemble this topological phenotype most
closely among the others. Other topological similarities or
differences are more difficult to judge on the basis of visual
inspection. For example, it would hardly be possible to
confidently predict whether the AL of set 3155 might be more
similar to that of set 219 or 4550. Despite apparent data set-

dependent topological differences captured by these heatmaps,
it would generally be very difficult to judge (dis)similarity
relationships between them, illustrating limitations of our
perception. Accordingly, any consistently applicable quantita-
tive measure of AL similarity would provide a substantial
advance for AL-assisted SAR exploration.

2.5. Activity Landscape Comparison. On the basis of
extracted image features, as discussed above, different types of
comparisons were carried out, attempting to discern
topological characteristics and relate topology to SAR
information content.
First, we applied the weighted Jaccard coefficient (Jw) to

compare feature vectors recording fractional heatmap areas
contoured at different threshold levels (corresponding to
different topological features). The formalism is presented in
section 3.4. Importantly, the comparison of feature vectors did
not depend on establishing correspondences between individ-
ual shapes. To avoid “averaging” over distinct topological
features accounting for different SARs, comparisons were
separately carried out for valleys (negative threshold levels)
and peaks (positive thresholds), corresponding to SAR
continuity and discontinuity, respectively. Feature vectors of
activity classes were compared in a pairwise manner, and the
ALs were then ranked separately for valleys and peaks in the
order of descending similarity to set 204, which served as a
reference AL. The results are reported in Table 2. As can be

seen, feature vector comparison yielded meaningful rankings of
landscapes with a significant spread of pairwise similarity values

Table 1. Compound Data Setsa

potency
[pKi]

ChEMBL
target ID target name compounds min max

204 coagulation factor II 915 5 12.2
344 melanin-concentrating

hormone receptor 1
1175 5 9.8

3155 5-hydroxytryptamine receptor 7 1094 5 10
4792 orexin receptor type 2 1443 5 10.1
255 adenosine receptor A2b 1237 5 9.8
219 dopamine D4 receptor 1082 5 10.5
4550 arachidonate 5-lipoxygenase-

activating protein
1318 5.6 9.4

225 serotonin receptor 2C 1079 5 9.7
aThe composition of eight compound activity classes used for 3D AL
analysis is summarized.

Figure 3. Heatmaps: for the eight activity classes, heatmaps derived from 3D AL images are shown. ChEMBL target IDs are reported according to
Table 1.

Table 2. Similarity-Based Ranking of Activity Landscapesa

rank valley-based similarity JwV peak-based similarity JwP

1 204 1 204 1
2 225 0.89 4792 0.58
3 219 0.87 3155 0.46
4 3155 0.85 219 0.31
5 255 0.78 255 0.28
6 344 0.69 225 0.15
7 4792 0.63 4550 0.14
8 4550 0.45 344 0.13

a3D ALs of activity classes were ranked in the order of decreasing
similarity using the AL of data set 204 as a reference. IDs are used
according to Table 1. Separate rankings are reported on the basis of
features accounting for valleys and peaks, respectively.
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(Jw ranges from 0 to 1). As expected, the relative ranking on
the basis of valleys and peaks changed. Similarity values were
generally higher for comparison of valleys than of peaks. This
was expected, given the generally larger area covered by valleys
in heatmaps. To the (limited) extent we were able to
subjectively judge such similarity relationships, the rankings
were reconcilable and intuitive. For example, in peak-based
ranking, the AL of set 4792 (rank 2) was most similar to
reference set 204, followed by set 3155 (rank 3), consistent
with visual inspection. In valley-based ranking, the AL of set
4550 (rank 8) was most dissimilar to reference 204, which was
also intuitive. On the other hand, on the basis of visual
inspection, it was more difficult to understand why set 219
(rank 2) was more similar to 204 than set 225. Clearly, the
similarity calculations numerically distinguished between
pairwise relationships that were essentially impossible for us
to judge, which we had aimed for. Successful ranking of
different ALs according to topological features on the basis of
calculated similarity values was considered an encouraging
finding.
To assess the SAR information contained in shapes

identified for specific thresholds, structure−activity similarity
(SAS) maps1,4 were calculated for exemplary contours
obtained at decreasing threshold levels, as shown in Figure 4
for a representative data set. SAS maps are scatter plots of
compound pairs, in which the x-axis reports pairwise similarity

and the y-axis pairwise potency differences. Here, the extended
connectivity fingerprint with bond diameter 4 (ECFP4)18 was
used as a molecular representation to calculate Tanimoto
similarity.19 As can be seen, the contour of the highest
threshold 0.75 (corresponding to a pKi value of 8.5) comprises
only very few, but very similar, compounds, with pairs formed
by these compounds displaying potency differences of up to
around two orders of magnitude. For the lower threshold of
0.5 (corresponding to a pKi of 8.0), more diverse compounds
are contained in the contoured region. The majority of
compound pairs still share a Tanimoto similarity of 0.4 or
higher, which is significant for ECFP4. Thus, given the wide
spread of potency differences, this region of the 3D AL is rich
in SAR information. For the threshold of 0.25 (corresponding
to a pKi of 7.5), the contour comprises many compounds with
pairwise similarities of, on average, less than 0.4, which, by
definition, do not yield meaningful SARs. Taken together,
these findings demonstrate that by comparing only the highest
threshold peak contours and lowest threshold valley contours
(see Section 3), AL similarity analysis focuses on the most
relevant regions with respect to SAR information content. This
is the case because comparison of these features leads to the
identification of similar compounds with largest potency
differences in data sets that determine SARs.

2.6. Conclusions. Activity landscape representations are
used for SAR visualization and aid in the exploration of SARs

Figure 4. Feature-based structure−activity relationship information. In the heatmap of activity class 204, an exemplary peak region is contoured at
different threshold levels of 0.75 (yellow), 0.50 (blue), and 0.25 (green) and a close-up view is shown. For compounds associated with the shapes
detected at each contour level, structure−activity similarity (SAS) maps are shown capturing associated SAR information.
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contained in compound data sets. Among these representa-
tions, 3D AL models are particularly intuitive. So far,
comparisons of 3D ALs have been confined to the qualitative
level. However, quantitative comparisons of 3D ALs would
greatly help in assessing differences in SAR information
content beyond of what can be appreciated on the basis of
visual inspection. In this work, we have presented a
computational methodology to facilitate quantitative compar-
isons of 3D ALs on the basis of topological features extracted
from AL image data. As we have shown, numerical analysis
discerns similarity relationships between 3D ALs in a
meaningful way and enables ranking of ALs according to
relative differences in the SAR information they capture. In
addition, we have demonstrated that compound subsets
associated with different contoured areas representing defined
topological features convey varying SAR information, as one
would expect. Taken together, our findings suggest that the
approach introduced complements to SAR visualization and
further increases the potential of 3D ALs for large-scale SAR
analysis.

3. MATERIALS AND METHODS
3.1. Three-Dimensional Activity Landscapes. Three-

dimensional AL models of compound data sets were
constructed as described.14 For 3D AL modeling, preferred
approaches for dimensionality reduction of original chemical
reference spaces, molecular representations, and similarity/
distance calculations have been identified in earlier studies.3,8

Accordingly, chemical reference space was generated on the
basis of ECFP418 as a molecular representation and calculation
of pairwise compound Tanimoto distances.19 The 2D
projection of chemical reference space was then computed
using multidimensional scaling (MDS)20 applying a stress
function based upon pairwise Tanimoto distances. MDS was
previously found to be a preferred dimensionality reduction
approach for retaining compound distances in original
chemical reference (fingerprint) spaces. For the data sets
used herein, the 2D projections preserved original ECFP4
Tanimoto distance relationships between compounds, with
correlation coefficients between Tanimoto distances in finger-
print space and Euclidean distances in 2D projections of ∼0.7.
The potency surface was interpolated via Gaussian process
regression.21 This approach interpolates intermediate values by
a Gaussian process based upon prior covariances of
experimental potency values. The “Sum of Matern and
White” kernel21 was used assuming a mean of zero to derive
relationships between experimental data points (potency
values), and Gaussian noise factors were applied to permit
minor variations of z-values for points on the x−y plane and
optimize the global fit of the surface to experimental data
points. Noise factors were regularized by optimizing the
kernel’s α parameter between 10−1 and 10−7 over 10 iterations.
The potency gradient was applied to a limited pKi range from
5.0 (green) over 7.0 (yellow) to 9.0 (red). Potency values
larger than 9.0 were assigned to red.
3.2. Image Preprocessing. For each 3D AL, a heatmap

was initially computed using the red, green, and blue (RGB)
color model of openCV version 3.0 with eight bits per
channel.22 Because the original 3D AL models were created by
interpolating potency values using a color gradient from red
over yellow to green, without using the blue channel, the red
and green (RG) channel pixel values were extracted by
subtracting green channel intensity values from red channel

intensity values and combined into a single intensity value
ranging from −255 to 255. Hence, the least potent (brightest
green), moderately potent (yellow), and highest potent
(brightest red) compounds/pixels corresponded to values of
−255, 0, and +255, respectively. RG pixel values were then
normalized to the range of −1 to +1. The RG color model
preserved more than 95% of the RGB colors, except for white
regions (i.e., interpolated surface area without experimental
potency backup), which was accounted for by yellow using the
RG model. However, these regions only accounted for less
than 5% of the surface.

3.3. Feature Extraction: Contours and Shapes. Feature
extraction was performed on the basis of heatmaps of original
size 543 × 543 pixels that were rescaled to 300 × 300 pixels.
This representation corresponded to a top-down view of the
original 3D AL color-coded as described above. Extraction of
features proceeded in two steps. First, contour lines (i.e., lines
of equal intensity in the image) were used to identify regions
encompassing valleys and peaks in 3D ALs. The canonical
heatmap representation was thus segmented into different
regions using contour lines. The scikit-image implementation
of MSA15,23 was applied to extract the contours. MSA
represents the 2D version of the marching cubes algorithm,15

which creates a contour line segment by mapping an image
onto a square grid.
For contour extraction, each heatmap was initially binarized

using threshold values of 0.25, 0.5, 0.75, and 0.9, respectively,
to delineate shapes representing peaks, while inversely
binarized negative thresholds of −0.25, −0.5, −0.75, and
−0.9 were used to identify smooth regions (valleys). The
following MSA parameter settings were used: high con-
nectivity, high positive orientation, and iso-line of level 7. The
resulting contour lines represented nonintersecting closed
curves. Shapes were subsequently characterized as groups of
contour levels of increasing threshold magnitude, with higher-
threshold contours being enclosed by lower-threshold contour
lines. Contour areas were calculated on the basis of Green’s
theorem using computed image moments.24 Threshold
contours identified individual peaks of the AL for highest
positive thresholds and valleys for lowest negative thresholds of
individual shapes. Peak and valley contours were only
considered if they were contained in at least one contour of
a lower-magnitude threshold. Each peak and valley was then
defined by its area and its threshold level.

3.4. Activity Landscape Similarity Analysis. To
quantify the similarity of two 3D ALs images based upon
their heatmaps, peaks and valleys were generated and
compared. For each AL and threshold, the total areas of the
peak and valley contours corresponding to the given threshold
were determined, resulting in a feature vector comprising eight
values

= − − − −a a a a a a a a a( , , , , , , , )0.9 0.75 0.5 0.25 0.25 0.5 0.75 0.9

This vector represents the total area of the peaks/valleys at
each threshold level. For each pair of landscapes A, B (with
corresponding feature vectors a, b), a similarity coefficient was
established by calculating the weighted Jaccard index or
Ruzǐcǩa similarity16

=
∑

∑
J

a b

a b

min( , )

max( , )
i i

i i
w
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The resulting coefficients for peaks and valleys were termed JwP
(A,B) and JwV (A,B), respectively.
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Bonn, Germany; orcid.org/0000-0002-0557-5714;
Phone: 49-228-7369-100; Email: bajorath@bit.uni-bonn.de

Authors
Javed Iqbal − Department of Life Science Informatics, B-IT,
LIMES Program Unit Chemical Biology and Medicinal
Chemistry, Rheinische Friedrich-Wilhelms-Universitaẗ, D-
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Summary

3D ALs visualize SAR characteristics as easily-comparable topographical fea-
tures and benefit from their intuitive nature. The chapter introduced a novel method-
ology for a fast and robust quantitative comparison of 3D ALs based on topograph-
ical SAR characteristics. The methodology attempts to identify topographical fea-
tures with the help of recent image processing approaches and demonstrates a suc-
cessful comparison of a template 3D AL to a set of reference 3D ALs and provides
a similarity ranking among them. The methodology detects the topographical fea-
tures in 3D ALs that characterize varying SAR contents with the help of intensity-
based thresholding and contouring of the thresholded image pixels. Furthermore, the
methodology quantifies the localization of bioactivity distribution in identified topo-
graphical features numerically. The numerical analysis captures relative differences
in the SAR information and discerns the similarity relationship between 3D ALs in
a meaningful way. The finding complements quantitative SAR analysis and further
increases the potential of 3D ALs for large-scale numerical SAR analysis.
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Chapter 5

From Qualitative to Quantitative
Analysis of Activity and Property
Landscapes

Introduction

3D AL models provide an attractive way to visualize and explore SAR infor-
mation in large chemical compound data sets. A variety of AL/PL representations
are available for SAR analysis. 3D ALs were initially confined to qualitative SAR
assessment, focusing on a better understanding of SAR characteristics and identi-
fication of key active compounds. However, in Chapters 2-4 of this thesis, new
analysis concepts have been introduced that focus on a quantitative SAR analysis.
This chapter reviews the different design and complexity of ALs/PLs, the qualitative
progression in analyzing ALs/PLs, and recent quantitative advancements in AL/PL
analysis. Chapters 2-4 of this thesis contributes to the review and discusses recent
quantitative advancements focusing on numerical similarity quantification and com-
parison of distinct SARs based on 3D AL image data.
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ABSTRACT: Activity or, more generally, property landscapes
(PLs) have been considered as an attractive way to visualize and
explore structure−property relationships (SPRs) contained in large
data sets of chemical compounds. For graphical analysis, three-
dimensional representations reminiscent of natural landscapes are
particularly intuitive. So far, the use of such landscape models has
essentially been confined to qualitative assessment. We describe
recent efforts to analyze PLs in a more quantitative manner, which
make it possible to calculate topographical similarity values for
comparison of landscape models as a measure of relative SPR
information content.

■ INTRODUCTION

Activity landscape (AL) models were originally introduced to

aid in the analysis of structure−activity relationships (SARs) in
compound data sets. AL representations complement the

assessment of structural relationships with potency information

and facilitate SAR visualization. As a compound structure-

dependent feature, any numerically quantifiable experimental

molecular property (such as, for example, physicochemical

properties, metabolic stability, or toxicity) can be considered in

lieu of biological activity. Accordingly, although ALs were

introduced first, the underlying concept can be generalized and

extended to property landscapes (PLs) of any type. In 1991,

Lajiness, Maggiora, and colleagues proposed three-dimensional

(3D) AL views reminiscent of geographical maps in which

structural relationships between active compounds were

represented as distances in a plane and potency values were

added as a third dimension.1,2 In 2001, Shanmugasundaram and

Maggiora introduced a 2D representation comparing structure

and activity relationships, the structure-activity similarity (SAS)

map, which spawned a number of further AL/PL develop-

ments.3 Then, in a seminal contribution published in 2006,

Maggiora discussed multidimensional ALs to rationalize activity

cliffs:4

A typical N-dimensional activity landscape is composed of
an (N − 1)-dimensional chemical space; each dimension is
described by a coordinate, which is generally defined by a
single molecular descriptor or combination of descriptors.
The Nth dimension is defined by the activity space that is
derived from the measured activity of each of the assayed
compounds. In three dimensions activity landscapes are
closely akin to Nature’s landscapes. For many years it has
been assumed that similar molecules tend to have similar
activities, leading to activity landscapes comparable to the
gently rolling hills found on the Kansas prairie. Mounting
evidence suggests, however, that this picture is not as
universal as once thought but is in many cases rather more
like the rugged landscapes of Utah’s Bryce Canyon. This
new topographical metaphor clearly implies that very
similar molecules may in some cases possess very different
activities leading to what can be called activity cliffs.

Maggiora
Such intuitive 3D ALs can be calculated for any given

compound data sets employing a protocol involving chemical
space projection and hypersurface interpolation from sparsely
distributed compound potency values,5 as further discussed
below. Spatial features of 3D ALs, i.e., their topography or
topology reflect SAR characteristics of compound data sets.
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To describe AL features, the word topology is often formally
incorrectly used, where the correct term is topography. Although
topography describes geographical landscapes, it is a metaphor
for other entities, such as the ALs and PLs described in this work.
By contrast, topology is a field of mathematics (sometimes called
“rubber sheet” geometry) that is concerned with the spatial
properties of objects that are preserved under continuous
deformations. Hence, in geography, topographically distinct
landscapes may inmany cases be topologically identical. In other
fields such as landscape architecture, the term topology is used
to describe spatial features.
Considering alternative design concepts, ALs were generally

defined “... as any representation that integrates the analysis of
the structural similarity of and potency differences between
compounds sharing the same biological activity”6 and this
definition also applies to PLs accounting for other molecular
properties. Recently, AL/PL analysis has been further extended
through machine learning and image analysis. In the following,
the evolution of the AL/PL concept and recent developments
are discussed and key aspects of AL/PL modeling are
highlighted.

■ DISCUSSION

Activity/Property Landscapes of Different Design and
Complexity. A variety of AL/PL representations have been
introduced including distinct 2D and 3D representations, as
illustrated in Figures 1−3.
In the SAS map in Figure 1, structural similarity typically

represents conventional (fingerprint-based) Tanimoto similar-
ity while activity similarity between compound i and j is defined
as follows:

i j
P P

P P
sim ( , ) 1 i j

act
max min

= −
| − |

−

Pi and Pj give the potency of compounds i and j, respectively, and
the term Pmax − Pmin represents the difference between the
maximum and minimum potency of the compound data set.
The upper-left section of the map contains compound pairs

with low structural and high activity similarity (hence
delineating a scaffold hopping region), whereas the upper-
right section contains compound pairs with high structural and
activity similarity (representing structural analogs conveying
little SAR information). Similarly, compound pairs in the lower-
left section share low structural and low activity similarity and
are thus not SAR-informative. By contrast, compound pairs in
the lower-right section have high structural similarity and low
activity similarity (the latter corresponds to large potency
differences); thus, they represent activity cliffs. The SASmap has
been proven useful for many applications. Notably, Medina-
Franco and colleagues have designed various extensions of the
SAS map,7−10 generalized the format for PL modeling,8,9 for
example, by generating SAS maps for exploring structure−cell
permeability relationships,8 and provided publicly available
implementations.10 Among others, specialized extensions of the
SAS map include molecular representation (descriptor)
invariant consensus AL models7 and dual-activity difference
(DAD) maps, in which differences for two specific activities are
plotted and data points representing compound pairs are color-
coded by similarity or target selectivity.10 In addition, a 3D
extension was introduced where similarity relationships for
another molecular property was added as a third dimension to
the SAS map.7 Furthermore, Medina-Franco et al. also
integrated AL analysis with other molecular modeling
techniques to rationalize SARs.11

Figure 2 shows an annotated similarity-based compound
network providing an alternative 2DALmodel that is focused on
individual compounds rather than pairs. This AL representation
is useful for visualizing both global and local SAR characteristics
of compound data sets. As illustrated, local SARs are centered on
compound subsets that emerge as clusters in network-based AL
models. Their analysis enables the identification and selection of
SAR-informative compounds. SAR information content can be
quantified globally and locally (on a per-compound basis)
through the inclusion of numerical SAR analysis functions.6 For
example, Guha and Van Drie developed the structure−activity
landscape index (SALI) and integrated the formalism with AL
modeling.12,13 SALI is a compound pair-based score defined as:

i j
P P

i j
SALI( , )

1 sim( , )
i j=
−

−

Pi and Pj represent the potency of compound i and j, respectively,
and sim(i, j) is the Tanimoto similarity of these compounds. The
SALI score was designed to account for SAR discontinuity and
identify activity cliffs at given score threshold levels. It can be
used to construct an alternative network-based AL view in which
compounds are represented as nodes that are connected by a
directed edge (indicating increasing compound potency) if their
pairwise SALI score exceeds a pre-defined threshold.12,13 By
increasing SALI threshold levels, the network is successively
reduced and only limited numbers of edges remain that
ultimately focus on largest-magnitude activity cliffs.
Maps of compound distributions in chemical features spaces

can also be generated using generative topographic mapping

Figure 1. Alternative activity landscape views: SAS map. Structural and
activity similarity are compared in a pairwise manner. Each dot
corresponds to a pairwise compound comparison. Dots are color-coded
to indicate whether the more active compound in a pair is highly (blue),
intermediately (yellow), or weakly (red) potent [Reproduced from ref
6. Copyright 2010 American Chemical Society].
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(GTM), a dimension reduction technique related to self-
organizing maps, which has been intensely investigated by
Varnek and colleagues.14,15 Such maps can be annotated with
compound activity information or other molecular properties,
yielding another variant of 2D PLs.15 GTM-derived ALs can be
generated for exceedingly large compound data sets, providing
global low-resolution views of biologically relevant chemical
space.
“Geographical” 3D ALs illustrated in Figure 3 are generated

on the basis of a generally applicable modeling protocol.5

Accordingly, compound data sets are placed within a given
chemical feature space that is then subjected to dimensionality
reduction. This yields a 2D projection in which inter-compound
distances represent dissimilarities. Compound potency values
are then added as a third dimension. A coherent activity surface
is obtained by interpolating between these sparsely distributed
values. The resulting surface is colored by potency using a
continuous spectrum accounting for the potency range in the
data set. Areas of the interpolated surface that lack compounds
and associated potency values remain white. In the 3D AL
model, smooth and gently sloped regions correspond to SAR
continuity. Hence, in these regions, chemical modifications (i.e.,
“walks” in chemical space) lead to gradual potency changes,
rendering corresponding compound subsets suitable for QSAR
modeling and predictions. By contrast, rugged regions reflect
SAR continuity where small chemical changes cause large
potency effects, resulting in the formation of activity cliffs. While
all of the AL/PL variants discussed above are informative, as well

as others not discussed herein, the especially intuitive nature of
3D models akin to natural landscapes renders them particularly
attractive for SAR visualization and exploration, as so well
expressed by Maggiora’s “topographical metaphor” quoted
above. Therefore, current studies have increasingly focused on
3D AL models, resulting in different types of applications and
new analysis concepts.

Comparison of Corresponding Property Landscapes.
The intuitive access to 3Dmodels can be exploited, for example,
by comparing different PLs, as illustrated in Figure 4.
Landscapes accounting for various molecular properties can be
generated on the basis of the same chemical space projection,
thus enabling direct comparison. In the example presented
below, a 3D AL is shown for a data set combining known ligase
inhibitors with virtual candidate compounds having predicted
potency values and compared to a corresponding 3D PL model
with calculated ClogP values as an indicator of hydro-
phobicity.16 The topography of the 3D AL is heterogeneous
and reveals a number of activity cliffs. By contrast, the ClogP
surface is overall smooth and reflects generally high compound
hydrophobicity (as is often observed). However, small regions
of low hydrophobicity are also detected. Corresponding regions
in these models can be screened for candidate compounds
having high potency and comparably low hydrophobicity.
For example, the compound displayed in Figure 4 maps to an

activity cliff region and is predicted to have high potency. It also
maps to a small cavity of low hydrophobicity in the 3D PLmodel
on the right-hand side of the figure. Hence, this compound

Figure 2. Alternative activity landscape views: SAR network. Annotated similarity-based compound network in which nodes represent individual
compounds and edges pairwise similarity relationships (with respect to a Tanimoto coefficient threshold). Nodes are color-coded by compound
potency and scaled in size according to a numerical SAR discontinuity score to account for the degree of local SAR discontinuity introduced by a
compound, i.e., the discontinuity score component of the SAR index (SARI).6 Accordingly, pairs of large red and green nodes represent activity cliffs.
Distances between compounds and network components (clusters) are determined by a graphical layout algorithm (and thus have no chemical
meaning) [Reproduced from ref 6. Copyright 2010 American Chemical Society].
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would represent an attractive candidate for identifying new

inhibitors. Generating PL representations for combined sets of

known active and virtual compounds also illustrates benefits of

analyzing and prioritizing virtual candidates within the PL

context of existing active compounds, for which 3D PLs provide

a nearly ideal framework.

From Qualitative to Quantitative Assessment. Land-
scape modeling was intensely investigated about a decade ago,
but over the past few years, only a limited number of new
developments have been reported including various SAS map
variants and GTM-based chemical space views, as discussed
above. Numerical SAR functions have been applied in the
context of AL analysis and used to design activity cliff-centric

Figure 3. Alternative activity landscape views: three-dimensional representation. An exemplary 3D AL is shown (top left) and its generation is
illustrated. Compounds are mapped into a chemical feature space and a 2D projection is generated (top right) in which decreasing Euclidean or
Tanimoto distances between compounds (dots color-coded by potency) indicate increasing similarity. Compound potency values are added as a third
dimension to the projection (bottom right). From sparsely distributed “potency points”, a coherent “activity surface” is interpolated (bottom left) and
color-coded according to compound potency values to yield the final 3D ALmodel. White surface areas are algorithmically interpolated in regions that
do not contain compounds and hence lack potency information.

Figure 4. Application of 3D AL/PL models: different property landscapes. On the left, a 3D AL model is shown for known E3 ubiquitin-protein ligase
inhibitors and newly designed candidate compounds. On the right, a corresponding ClogP landscape model is displayed. The position of a candidate
compound is mapped [Reproduced from ref 16. Copyright 2019 American Chemical Society].
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representations. On the other hand, 3DAL/PL representation-
shave mostly been analyzed and compared in a qualitative
manner, the primary aim of which is gaining a better
understanding of the characteristic features of data sets and
the identification of key active compounds.6 Recently, new
analysis concepts have been introduced that provide a more
quantitative assessment of 3D ALs.
Activity Landscapes and QSAR. Although not often

considered, by design a 3D AL represents a nonlinear QSAR
model for a given data set. In principle, this model should enable
compound potency predictions. However, if a 3D AL
representation is highly resolved, the model is, by its very
nature, strongly overfit to the “training” data set it represents,
calling into question whether 3D ALs could be used for potency
predictions of external test compounds. Recently, the potential
of 3D ALs for potency predictions has been investigated.17 In
this study, different dimensionality reduction and interpolation
methods were evaluated for their ability to reproduce compound
distances in the original fingerprint-based feature space in 2D
projections of the original space and to accurately account for
the potency distributions of the data set on the basis of the
interpolated activity surface. The best overall results were
obtained for 2D projections generated with Neuroscale, a neural
network-based adaptation of multidimensional scaling, in
combination with Gaussian process regression for surface
interpolation.17 The resulting 3D ALs had well-resolved
topographies. Exemplary landscapes are shown in Figure 5.
Projectionmethods including explicit mapping functions such

as Neuroscale generate compound coordinates in the 2D
representations. This makes it possible to map test compounds
from the original features space onto an interpolated surface.
Moreover, Gaussian process regression predicts potency values

represented by the surface from coordinates in the 2D
projections, providing a framework for QSAR. Accordingly,
the mapping of compounds at different potency levels onto 3D
ALs, representing a semi-quantitative exercise, and actual
compound potency predictions were both investigated. Three-
dimensional AL-based compound potency predictions were
found to be, at best, comparable in overall accuracy to
conventional regression models, but also failed in some
instances, depending on the projection methods and data sets.
These findings underscored the effect that intrinsic activity
surface overfitting in 3D ALs with highly resolved topographies
had on predicted activities. However, both highly and weakly
potent test compounds were generally accurately mapped to the
corresponding 3D AL regions of high and low potency,
respectively,17 as illustrated in Figure 5.
Thus, rather promising predictions were obtained at the semi-

quantitative level. In practical applications, test compounds can
be mapped to 3D ALs, and it can then be determined whether
they fall into regions of high or low potency, smooth areas or
activity cliff regions, thus integrating SAR visualization and
qualitative assessment with comparison and prioritization of
candidate compounds. Semi-quantitative compound mapping
further extends the utility of 3D ALs. Although these pilot
studies were confined to ALs, from a methodological point of
view, the analysis can be readily extended to 3D PLs accounting
for a variety of molecular properties, provided available
experimental data are of sufficient quality.
Conceptually, 3D ALs are low-dimensional projections from

an abstract high-dimensional chemical space that depend on the
chosen feature representation and similarity metric. To further
improve the predictive capabilities of 3D ALs, molecular feature
representations should be optimized.18 For instance, feature

Figure 5.Application of 3DALmodels: compoundmapping. On the left and center of the figure, a 3DAL and its 2D projection are shown for a data set
of acetylcholinesterase inhibitors to which five potent test inhibitors (A−E) were mapped. The positions of these inhibitors are indicated on the 2D
map in the center of the figure and shown as blue circles on the 3D AL on the left-hand side. On the right-hand side of the figure, a 3D AL of Bcl-2
inhibitors is displayed. Many highly and weakly potent test compounds (indicated as black dots) were accurately mapped to corresponding landscape
regions. In addition, two exemplary training set inhibitors (A and B) are shown that form a prominent activity cliff. Their positions in the 3D AL are
indicated using red circles.
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selection methods have been successfully used in ligand-based
virtual screening.19 However, the typically heterogeneous nature
of 3D ALs due to the presence of smooth as well as rugged
regions including steep activity cliffs indicates that the
underlying feature space for assessing chemical similarity
accommodates potency effects in rather different ways, depend-
ing on the local neighborhood. Thus, while efforts to optimize
molecular representations of 3D ALs are principally meaningful,
the presence of SAR discontinuities and activity cliffs is a reality
that cannot be avoided and fundamentally limits the capability of
quantitative non-local models for potency predictions. Finding
representations that render molecules dissimilar by increasing
the resolution of features has a “smoothing” effect on 3D AL
models due to a loss of SAR discontinuity information, thus
leading to a departure from “SAR reality”.
Landscape Image Analysis. Another recently introduced

approach to 3D AL analysis involves the quantification of
differences in topography between landscapes as a measure of
varying SAR information content, which goes beyond of what
can be learned by visual inspection. A key question is how amore
quantitative assessment of topographical differences might be
facilitated; a non-trivial task. We have reasoned that quantifying
these differences might become feasible on the basis of AL image
data. In principle, color-coded 3D ALs should be well suited for
image processing and analysis. A proof-of-concept was
established in an initial study where ensembles of 3D AL
variants with defined topographical differences were generated,
i.e., reference landscapes with either increased smoothness or
ruggedness compared to an original model.20 From these
different variants, AL images with constant resolution (pixel
density) were recorded from different perspectives (i.e., by
varying azimuth and elevation angles). From standardized
images, training and test sets of 3D ALs belonging to different
topographical categories (i.e., original landscapes, smooth
variants, or rugged variants) were assembled. Image feature
representations were learned from pixel intensity values using a
convolutional neural network (CNN) architecture withmultiple
convolutional layers for feature extraction. The CNN models
preserved the dimensionality of color gradients and the
extracted feature representations were found to yield generally
accurate classifications of test images of the 3D AL variants.20

Topography-based classification of the 3D ALs was carried
out using a form of numerical similarity analysis. Importantly,
the topographical characteristics of 3D ALs are comprehensively
accounted for by three variables including distance between
points (i.e., compounds), elevation, and color gradients. Distance
captures structural relationships and elevation as well as color
gradients account for potency relationships. While elevation
information, i.e., the third dimension of 3D ALs, is critical for
their intuitive nature and interpretability, landscape topography
is numerically captured in images by varying pixel intensities of
color gradients, the presence of which plays into the strengths of
image analysis. Moreover, pixel intensities also implicitly
account for locality information because they result from the
interpolation of color gradients accounting for potency
variations among compounds that are close to each other in
chemical space. Given this intrinsic redundancy in representing
potency relationships, original 3D AL images were transformed
into standardized heatmaps representing a top-down view of the
3D AL capturing color gradients, without detectable loss in
topographical information These heatmaps provided the basis
for different feature extraction approaches enabling the

generation of feature vectors for numerical similarity calcu-
lations,21,22 as summarized in Figure 6.

Color intensity features were extracted after superimposing
heatmaps on a canonical grid (with 25 pixels per cell).21 On the
basis of a red−green (RG) color model accounting for the
potency color code, cells were categorized based upon color
intensity threshold intervals reflecting the spatial distribution of
landscape features. For a given heatmap, mean pixel intensities
per cell were determined and cells were assigned to different
color intensity intervals. The distribution of cells over eight
intensity intervals was then captured in feature vectors reporting
the count of cells per category.21 Of note, cell-based comparison
of ALs images is orientation invariant (because neighborhood
information is required in this case).
Alternatively, color shape features were extracted from

contoured heatmaps following a two-step approach.22 First,
the canonical heatmap image was segmented into different
regions by contouring lines of equal color intensity according to
different threshold levels covering the entire range of lowest
elevation (“valleys”) to highest elevation (“peaks”). These
contour lines represented non-intersecting closed curves that
enclosed discrete sections (areas) of the landscape. Hence,
higher-threshold contours were fully enclosed by lower-
threshold contours. For feature definition, the heatmap was
partitioned using positive threshold values representing peaks
and numerically corresponding negative thresholds representing
valleys. Shapes were then defined as groups of contours at
increasing threshold levels. Accordingly, each shape represented

Figure 6. Application of 3D AL/PL models: image analysis and feature
extraction. At the top, an image of an original 3D AL for a set of
corticotropin-releasing factor receptor 1 ligands and the corresponding
heatmap representing a top-down view of a landscape are shown. From
the heatmap, different types of features are extracted including grid-
based color intensity features or contour-based shape features, which
are encoded in feature vectors for use in similarity calculations.
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a threshold-specific contoured area. These shapes were then
encoded feature vector representing different threshold
intervals.22

Cell- or shape-based feature vectors were compared using
different similarity measures. These calculations enabled the
assessment of pairwise 3D AL similarity21 or similarity-based
ranking of 3D ALs relative to reference landscapes.22 Similarity
calculations on the basis of feature vectors produced generally
meaningful results in instances where topographical differences
could be well appreciated on the basis of visual inspection.21,22

Of course, topographical similarity calculations become
particularly informative when differences are increasingly
difficult to appreciate.

■ CONCLUSIONS
Herein, we have briefly reviewed the AL/PL concept and its
evolution and discussed recent scientific activities in this area.
Over the years, much of the work has been focused on ALs, SAR
visualization, and qualitative SAR assessment. However, at least
a few studies have generalized these approaches to the study of
PLs, taking different compound properties into consideration.
Among alternative representations, 3D ALs/PLs reminiscent of
natural landscapes are probably most intuitive and suitable for
SAR visualization. While new developments in the area of PL
design and analysis have been scarce for a number of years,
recent research activities have concentrated on integrating PL
assessment with other computational modeling methods and on
applying or comparing 3D ALs in a more quantitative manner.
For example, semi-quantitative mapping of active compounds to
3D ALs complements QSAR modeling and adds a visualization
component. Furthermore, on the basis of image analysis,
topographical similarity of 3D AL models can be quantified as
an indicator of relative SAR content. The latter approach is albeit
intellectually stimulating but still in its infancy. While a proof-of-
concept has been established, practical utility still needs to be
explored on a larger scale. For example, ranking large ensembles
of 3D ALs according to their topographical similarity to
reference landscapes and identifying compound data sets with
similar SAR characteristics would create a bridge between SAR/
SPR visualization and numerical analysis that would further
extend the applicability domain and utility of AL/PL modeling.
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Summary

3D AL/PL models of heterogeneous SARs resemble real-world geographical
landscapes with a combination of smooth and rugged regions. The intuitive nature of
3D AL/PL models makes them highly suitable for SAR visualization, and therefore
3D ALs have primarily been analyzed and compared qualitatively to analyze dif-
ferent SARs for the identification of key active compounds. The semi-quantitative
investigation of 3D ALs for the prediction of potency values by mapping test com-
pounds onto an interpolated 3D AL surface provided the first insights into 3D AL-
based bioactivity prediction. In 3D AL models, continuous regions can be viewed as
smooth and gently sloped regions, and discontinuous regions form as rugged regions.
ACs are prominent features of SARs, and their presence in a SAR gives rise to the
formation of steep activity peaks or deep activity valleys in a 3D AL model. In Chap-

ter 2 the successful discrimination of original 3D ALs from referenced ALs variants
with increased smoothness and ruggedness provided the first clue to detecting unique
elevation-based features from 3D AL image data. Chapters 3-4 introduced further
image analysis concepts that extract features from 3D AL based on texture and topo-
graphical features for the assessment of numerical similarity/dis-similarity between
different 3D AL models. The applicability of new analysis concepts pushes the AL
analysis beyond the visual inspection in a more robust and quantitatively meaningful
way.

Having characterized activity landscape models, the focus of the subsequent
chapters is on activity cliffs, which represent the most informative and striking fea-
tures of ALs.
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Chapter 6

Prediction of Activity Cliffs on the
basis of Images Using Convolutional
Neural Networks

Introduction

ACs are the prominent features of SARs. ACs tend to form deep valleys, steep
peaks or rugged mountains in 3D ALs mirroring discontinuous SAR topological
characteristics. Chapter 3-4 have introduced novel methods to quantify the different
SAR characteristics based on 3D AL image data. However, the application of image
processing to learn structural context to distinguish compound pairs forming MMP-
cliffs from non-ACs is still undefined. Therefore, the current chapter investigates ap-
plicability of image processing and CNNs to learn structural features from compound
pairs forming MMP-cliffs and distinguish MMP-cliffs from non-ACs. Furthermore,
the chapter discusses CNN modeling applicability for MMP-cliff analysis based on
combined compound-pair image representation. Finally, the methodological details
and analysis results are discussed.
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Abstract
An activity cliff (AC) is formed by a pair of structurally similar compounds with a large difference in potency. Accordingly, 
ACs reveal structure–activity relationship (SAR) discontinuity and provide SAR information for compound optimization. 
Herein, we have investigated the question if ACs could be predicted from image data. Therefore, pairs of structural analogs 
were extracted from different compound activity classes that formed or did not form ACs. From these compound pairs, 
consistently formatted images were generated. Image sets were used to train and test convolutional neural network (CNN) 
models to systematically distinguish between ACs and non-ACs. The CNN models were found to predict ACs with overall 
high accuracy, as assessed using alternative performance measures, hence establishing proof-of-principle. Moreover, gradient 
weights from convolutional layers were mapped to test compounds and identified characteristic structural features that con-
tributed to successful predictions. Weight-based feature visualization revealed the ability of CNN models to learn chemistry 
from images at a high level of resolution and aided in the interpretation of model decisions with intrinsic black box character.

Keywords Activity cliffs · Matched molecular pairs · Image analysis · Convolutional neural networks · Convolutional 
feature visualization

Introduction

In recent years, convolutional neural networks (CNNs) have 
gained increasing attention in chemical informatics and 
pharmaceutical research. For example, two-dimensional 
(2D) images of molecular graphs [1–5] and three-dimen-
sional (3D) images of activity landscapes [6] have been used 
for deriving CNN models and extracting specific features 
from image data. For example, the Inception-ResNet v2 
architecture was used to train CNN models on images from a 
large data set comprising 1.7 million compounds and predict 
physicochemical properties such as logP [1]. In addition, 
quantitative property predictions on the basis of compound 
images were reported using Chemception [2] and ChemNet 
[3]. Furthermore, the Toxic Colors approach [4] added 
atom labels, colored dots, and partial charge maps to image 

representations for compound toxicity predictions while 
Kekulescope [5] only used Kekulé structures as input for 
compound potency and cell line toxicity predictions. Taken 
together, these investigations have indicated the potential 
of various CNN architectures to extract specified molecu-
lar features from 2D image representations and use these 
features for property predictions. Different from molecular 
structure-based approaches, 3D images of activity landscape 
variants were used for feature extraction and classification of 
landscape models according to structure–activity relation-
ship (SAR) characteristics of the corresponding compound 
data sets [6].

While CNNs have thus far mostly been trained on 
2D compound images, to our knowledge, they have not 
been used to process images of pairs of closely related 
compounds and predict differences in properties at the 
level of pairs. Activity cliffs (ACs) represent a promi-
nent paradigm for compound pair-encoded property dif-
ferences [7]. ACs are defined as pairs or groups of similar 
compounds or structural analogs with large differences 
in activity (potency) [7, 8]. Accordingly, ACs embody 
the pinnacle of SAR discontinuity, i.e., small chemical 
modifications leading to large potency alterations, and 
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are a major source of SAR information [8]. An elegant 
formalism for the systematic identification of pairs of 
structural analogs is the matched molecular pair (MMP) 
concept and its algorithmic implementation [9]. An MMP 
is defined as a pair of compounds that share a common 
core structure and are only distinguished by a chemical 
modification at a single site (termed a chemical transfor-
mation) [9]. As such, MMPs are well suited for represent-
ing ACs, which has led to the introduction of MMP-cliffs 
[10]. An MMP-cliff is defined as an MMP formed by two 
compounds that are active against the same target and 
have a statistically significant difference in potency [10].

As a consistent molecular representation, MMP-cliffs 
have been used for predicting ACs at different levels. 
First, MMP-cliffs have been systematically distinguished 
from MMPs with only small or no potency differences 
using support vector machine classification on the basis 
of fingerprint representations and specialized compound 
pair-based kernel functions [11]. Subsequently, MMP-
cliffs have also been successfully predicted in a meth-
odologically simpler manner applying the condensed 
graph of reaction formalism [12]. In addition, potency 
differences encoded by MMPs have been quantitatively 
predicted using support vector regression [13]. To aid in 
the interpretation of machine learning models, fingerprint 
features determining correct AC predictions have been 
mapped back to the original compounds to delineate criti-
cally important substructures distinguishing MMP-cliffs 
from other MMPs [11].

Herein, we have attempted to predict MMP-cliffs from 
image data using CNNs. In addition to assessing classi-
fication performance, we have made use of recent devel-
opments in convolutional layer visualization [14–17] to 
identify and display key features contributing to correct 
AC predictions. Our proof-of-concept investigation fur-
ther extends the current spectrum of molecular image-
based modeling in chemical informatics.

Material and methods

Compound activity classes

From ChEMBL (version 26) [18], three compound activity 
classes with available high-confidence activity data were 
extracted. Compounds were tested against single human tar-
gets in direct interaction assays at highest assay confidence 
(ChEMBL confidence score 9). As potency measurements, 
assay-independent equilibrium constants  (pKi values) were 
required. Multiple measurements for the same compound 
were averaged, provided all values fell within the same order 
of magnitude; otherwise, the compound was disregarded. 
Table 1 reports the targets and composition of these activity 
classes.

Matched molecular pairs and activity cliffs

For activity classes, all possible MMPs were generated 
by systematically fragmenting individual exocyclic single 
bonds and sampling core structures and substituents in index 
tables [9]. For substituents, size restrictions were applied 
to limit MMP formation to typically observed structural 
analogs [10]. Accordingly, a substituent was permitted to 
contain at most 13 non-hydrogen atoms and the core had to 
be at least twice as large as the substituent. Additionally, for 
MMP compounds, the maximum difference in non-hydrogen 
atoms between the substituents was set to eight, yielding 
transformation size-restricted MMPs [10].

An MMP qualified as an MMP-cliff if the two struc-
tural analogs had an at least 100-fold difference in potency 
(ΔpKi ≥ 2.0) [10]. To avoid potency difference-dependent 
boundary effects in AC prediction, compounds forming a 
non-AC MMP were restricted to an at most tenfold difference 
in potency. Furthermore, to balance structural heterogeneity 
of large activity classes originating from different sources, 
MMPs were only retained if their compounds and core struc-
tures were found in multiple MMPs. Table 1 reports MMP 
and MMP-cliff statistics for the activity classes.

Table 1  Activity classes

For each activity class, the total number of compounds, MMP-cliffs, non-AC MMPs, unique core struc-
tures, and substituents are reported

Target name ChEMBL 
target ID

MMP-cliffs Non-AC MMPs

MMPs Unique cores Unique 
substitu-
ents

MMPs Unique cores Unique 
substitu-
ents

Thrombin 204 456 61 168 3595 554 567
Tyrosine kinase Abl 1862 1122 37 251 6143 322 419
Mu opioid receptor 233 466 114 286 9712 1230 959
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Molecular image representations

Each MMP core and the associated substituents were 
treated as separate molecular objects using the RDKit 
application programming interface (API) [19]. For each 
unique core and substituent, high-resolution portable net-
work graphics (PNG) compound images with 500 × 500 
pixels were generated using the RDkit Chem.Draw pack-
age  (version 2020.03.5) [19]. In images, substituent 
attachment sites were replaced with an asterisk symbol. 
To represent an MMP core and the two substituents defin-
ing the transformation in combined form, core and sub-
stituent images were resized to 300 × 300 pixels and then 
horizontally concatenated in a single image of dimensions 
300 × 900 × 3 (height × width × color-channels). Figure 1 
illustrates MMP image generation. The pixel values of all 
image matrices were converted into 32-bit floating point 
format and normalized. Images were processed using 
openCV (version 4.4.0) [20–22].

Convolutional neural network architecture

Figure 2 shows the CNN architecture designed for image 
analysis, consisting of convolutional, pooling, dropout, and 
dense layers. Two convolutional layers with kernel size of 
32 and respective filter sizes of 3 × 3 and 5 × 5 were used to 
extract key features from MMP images. The convolutional 
layers were followed by a pooling, dropout, and dense layer. 
Max-pooling was used as pooling layer to compute the maxi-
mum value in each patch of each convolved feature map. A 
dropout layer was added to avoid overfitting. After ‘flatten-
ing’ the weights, the softmax function was applied to nor-
malize learned weights and yield a probability distribution. 
CNN layers were implemented using TensorFlow (version 
2.2.0) [23] and Keras (version 2.2.4) [24].

Performance measures

CNN models were trained to systematically distinguish 
between MMP-cliffs and corresponding non-AC MMPs. 
The classification performance of CNN models was eval-
uated using receiver-operator characteristic (ROC) curves 

Fig. 1  Generation of MMP images. i Two compounds forming an MMP are shown. ii The common core and the two substituents defining the 
chemical transformation are displayed. iii Separate core and substituent images are horizontally concatenated yielding a single image
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and the area under the ROC curve (AUC). In addition, 
model performance was assessed with four performance 
measures including overall accuracy (A), balanced accu-
racy (BA), weighted mean F1 score [25], and Mathews 
correlation coefficient (MCC) [26], defined as:

TP, TN, FP, and FN denote true positives, true nega-
tives, false positives, and false negatives respectively.

Convolutional layer feature visualization

Spatial information from the convolutional layers of 
trained models was extracted using the Grad-Cam algo-
rithm [17]. Channel-based mean values of the result-
ing convolutional feature map activation weights were 
mapped to the original image for feature visualization.

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F1 = 2 ×
TP

2TP + FP + FN
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Results and discussion

Convolutional neural network models

CNN models were derived to distinguish between MMP-
cliffs and non-AC MMPs on the basis of molecular images 
generated for three distinct activity classes including throm-
bin inhibitors (target/activity class ID 204), tyrosine kinase 
Abl inhibitors (class 1862), and mu opioid receptor ligands 
(class 233). As shown in Fig. 1, MMP images for CNNs 
combined the shared core structure with the pair of sub-
stituents representing the chemical transformation. Images 
of the three structures constituting an MMP were concat-
enated horizontally to obtain a single image. In contrast to 
displaying two compounds forming an MMP side-by-side, 
this image format contained no redundant substructure 
(duplicated core).

CNN models were separately trained in 10 independent 
trials on a set of 4050–10,178 images, dependent on the 
activity class. Training images were obtained by randomly 
selecting half of the MMP-cliffs per class (228–561; 
Table 1) and half of the non-AC MMPs (1797–4856). 
The resulting models were then tested on the remaining 
half of the MMP-cliff and non-AC MMP images. ROC 
curves for the best performing individual classification 
models are shown in Fig. 3. These CNN models yielded 
accurate AC predictions, with ROC-AUC values of 0.97 
(204), 0.93 (233), and 0.92 (1862). In addition, Table 2 
reports the mean prediction accuracy of the CNN models 
for each activity class on the basis of alternative perfor-
mance measures. Although training and test sets were 
imbalanced, i.e., they containing many more non-AC 

Fig. 2  The CNN model architecture used for MMP image analysis is shown
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MMPs than MMP-cliffs, the predictions were generally 
stable (i.e., yielding very low standard deviations) and 
consistently successful on the basis of all performance 
measures. Overall, CNN classification accuracy was high-
est for thrombin inhibitors (class 204), with mean AUC 
of 0.97 (AUC = 0.97), F1 = 0.85, MCC = 0.83, A = 0.97, 
and BA = 0.90, followed by class 1862 and 233. Although 
AUC and A values were also high for class 233 (0.92 
and 0.96, respectively), predictions for this class yielded 
lowest F1 = 0.36, MCC = 0.39, and BA = 0.63 values, 
indicating that the majority class (non-AC MMPs) was 
predicted here more accurately than the minority class 
(MMP-cliffs). In this case, only < 5% of all MMPs rep-
resented MMP-cliffs. Thus, these results were expected. 
The use of balanced training sets would likely further 
increase prediction accuracy, which is meaningful from 
a machine learning perspective. However, for AC predic-
tions, balancing MMP-cliff and non-AC MMP training 
sets would represent an unrealistic scenario because ACs 
are generally rare among qualifying compound pairs [8]. 
Regardless, even in the presence of class label imbal-
ance, image-based classification of MMP-cliffs vs. non-
AC MMPs was overall surprisingly accurate, more so than 
we anticipated.

Image feature visualization

Convolutional features naturally retain spatial information, 
which is lost in fully-connected layers. Therefore, the Grad-
Cam algorithm was applied to visualize convolutional layer 
activation weights [17]. Figures 4, 5 and 6 show examples 
of original images onto which channel-based mean values of 
activation weights of the corresponding convolutional fea-
ture map were superimposed. All MMPs shown in Figs. 4 
and 5 were correctly predicted while Fig. 6 also shows a 
false positive prediction. Visualization of convolutional lay-
ers revealed that most of the key image features were cap-
tured by the first convolutional layer. However, in a number 
of instances, the second convolutional layer was also capa-
ble of extracting and emphasizing key features, as shown in 
Fig. 7. Accordingly, addition of the second convolution layer 
typically further improved classification accuracy.   

Learning structural features from compound images

The convolutional layer weights of the best performing 
CNN model (class 204) for MMP images from the test set 
were systematically extracted and visualized. A compelling 
observation was that weights from the CNN models detected 
specific structural features in MMP images. For example, 
convolutional layers were capable of recognizing primary, 
secondary, and tertiary amines as well as various ring struc-
tures. Moreover, the model was able to differentiate between 
substituents with different structures. In Fig. 4, the model 
distinguished between ring and aliphatic substituents, which 
is clearly evident by comparing mapped convolutional layer 
weights. Different weight distributions led to accurate pre-
dictions of MMP-cliffs and non-AC MMPs with very high 
probabilities of at least 94%. Furthermore, the model learned 
to differentiate between alternative cyclic structures, hence 
accounting for molecular topology.

In Fig. 5, the CNN model assigned high weights to sec-
ondary and tertiary amines in rings of substituents of cor-
rectly predicted MMP-cliffs and non-AC MMPs. Notably, 
the presence of different amines was a characteristic feature 
of all MMPs originating from class 204. However, by com-
paring the MMP-cliff and non-AC MMP in Fig. 5b and c, 
respectively, it becomes clear that detecting a tertiary amine 

Fig. 3  ROC curves. The performance of the best CNN prediction 
models is monitored in ROC curves. For each curve (activity class, 
indicated by target ID), the resulting AUC is reported

Table 2  Mean prediction 
accuracy

For MMP-cliff/non-AC MMP classification models, the mean AUC, F1, MCC, global accuracy (A) and 
balanced accuracy (BA) values ± standard deviations over 10 independent trials are reported

Target AUC F1 MCC Accuracy

A BA

204 0.97 ± 0 0.85 ± 0.02 0.83 ± 0.02 0.97 ± 0 0.90 ± 0.02
1862 0.92 ± 0.01 0.54 ± 0.08 0.50 ± 0.07 0.88 ± 0.01 0.70 ± 0.05
233 0.92 ± 0.02 0.36 ± 0.10 0.39 ± 0.08 0.96 ± 0 0.63 ± 0.05
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alone was not sufficient to distinguish between the MMP-
cliff and non-AC MMP because this feature was shared 
by both. In this case, the core structures of these MMPs 
were distinct and different core features were detected and 
assigned high weights, hence illustrating core contributions 
to accurate predictions. In the MMPs shown in Fig. 6a and 
b, primary and secondary amines were also detected as dis-
tinguishing features in aliphatic substructures. Furthermore, 
Fig. 6c reports a false positive MMP-cliff prediction. On 
the basis of the MMP alone, this prediction error cannot 
be rationalized. To these ends, weights in similar MMPs 
with different class labels must be compared, as illustrated 
in Fig. 5. Nonetheless, this example was interesting because 

Fig. 4  Mapping of activation weights. For four exemplary MMPs 
from class 204, mean gradient weights of the first convolutional layer 
are displayed on the respective structures and color-coded according 
to the given continuous color spectrum. Classification probabilities 
for each class (AC, non-AC) are given (%) and the correct class label 
of each MMP is colored in yellow. Shown are a a non-AC MMP with 
phenyl and cyclohexyl substituents, b and c MMP-cliffs with similar 
core structures and substituents, and d a non-AC MMP with different 
aliphatic ring substituents

Fig. 5  Mapping of activation weights. For three similar MMPs from 
class 204, mean gradient weights of the first convolutional layer 
are displayed. The representation is according to Fig.  4. a and b 
show MMP-cliffs and c shows a non-AC MMP. Highly weighted sec-
ondary or tertiary amines are encircled

Fig. 6  Mapping of activation weights. For three MMPs from class 
204, mean gradient weights of the first convolutional layer are dis-
played. The representation is according to Fig. 4. a and b show a cor-
rectly predicted MMP-cliff and non-AC MMP, respectively. Highly 
weighted primary or secondary amines are encircled. c shows a false 
positive MMP-cliff prediction. Highly weighted primary and second-
ary amines are shared by the substituents. The distinguishing single 
and double bonds were detected with medium weights and are encir-
cled
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the replacement of a single bond with a double bond, i.e., a 
change in bond order representing a minute chemical modi-
fication at the level of images, was detected with medium 
weights as a distinguishing substituent feature.

Taken together, these convolutional layer weight-based 
visualizations demonstrated the capacity of the CNN model 
to detect signature features of compounds from a given 
activity class (such as the presence of various amines) as 
well as specific chemical features that distinguished cores 
and/or substituents of MMPs, including different ring struc-
tures, individual functional groups, or bond orders. Map-
ping weights from different convolutional layers often fur-
ther emphasized such features or identified additional ones, 
as illustrated in Fig. 7. The correct detection of specific 
features distinguishing MMPs with different class labels 

provided a rationale for the overall accuracy of the AC pre-
dictions. Differences between substituents detected by the 
CNN model can be analyzed at the level of individual MMP 
images, while understanding differently weighted core fea-
tures requires comparisons of multiple MMPs. Visualization 
of key features in MMP cores and substituents aids in the 
interpretation of CNN model decisions that typically have 
black box character, hence improving model accessibility.

Conclusion

In the work, we have attempted the prediction of MMP-
cliffs, which are an intuitive AC representation, on the basis 
of MMP image data using CNN models. To our knowledge, 
these are the first molecular image-based property predic-
tions at the level of compound pairs. In our proof-of-concept 
investigation, encouraging accuracy was achieved in sys-
tematically distinguishing between MMP-cliffs and non-AC 
MMPs. While ACs were successfully predicted before using 
other machine learning approaches, we have been particu-
larly interested in the question whether CNNs are capable 
of extracting chemical features and small feature differences 
from images of pairs of structural analogs that correctly dis-
tinguish between SAR continuity (embodied by non-ACs) 
and discontinuity (ACs). Mapping of convolutional layer 
weights to test compounds and visualizing corresponding 
structural features put the analysis on a level beyond statisti-
cal assessment of prediction accuracy. Visualization revealed 
the ability of CNN models to detect specific chemical fea-
tures including distinct substructures and individual func-
tional groups that distinguished structural analogs or MMPs 
with different properties. Thus, the models were capable to 
learn chemistry from MMP images, which resulted in suc-
cessful AC predictions.
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Fig. 7  Mapping of first and second layer activation weights. a and b 
show the MMPs from Figs. 5c and 6c, respectively, with mean gradi-
ent weights of the first and second convolutional layer. Here, weights 
from the second convolution layer reinforced structural features 
detected by first layer weights and also identified additional features
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Summary

The CNN modeling applicability for the MMP-cliff classification prediction
based on compound-pair image data was investigated. The CNN modeling potential
to automatically learn essential chemical structural features from pairs of structural
analogs (MMP-cliffs) and the correct classification prediction of MMP-cliffs based
on chemical structural features was analyzed. CNN models demonstrated their capa-
bility to learn chemical structural features from compound images and successfully
classify MMP-cliffs with encouraging accuracy. Furthermore, the mapping anal-
ysis of the convolutional layer weights onto test compounds confirmed the ability
of CNN models to detect specific chemical features. CNN models revealed their
potential to learn distinct substructures and individual functional groups to distin-
guish MMP-cliffs from non-ACs. The discrimination of MMP-cliffs from non-ACs
based on image representations indicated CNNs classification prediction capability
by learning chemistry from compound images.
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Chapter 7

Learning Functional Group
Chemistry from Molecular Images
Leads to Accurate Prediction of
Activity Cliffs

Introduction

Successful learning of specific chemical structural information from images, as
discussed in Chapter 7, was an encouraging finding. Therefore this chapter fur-
ther investigates CNN models to discover whether they have the potential to learn
functional group chemistry from compound images and discriminate between MMP-
cliffs from non-ACs with the help of functional group knowledge. Deep CNN
models often require large amounts of data in order to learn structural features and
patterns, whereas compound target data sets lack the availability of information of
untested compounds; hence often encounter the problem of data insufficiency. The
current chapter applies the transfer learning approach to functional group chemistry
for MMP-cliff classification prediction. CNN models were trained using condensed
graph of reaction (CGR) image representations of compound pairs. Calculations and
results are discussed.
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a b s t r a c t 

Advances in image analysis through deep learning have catalyzed the recent use of molecular images in chemoin- 

formatics and drug design for predictive modeling of compound properties and other applications. For image 

analysis and representation learning from molecular graphs, convolutional neural networks (CNNs) represent a 

preferred computational architecture. In this work, we have investigated the questions whether functional groups 

(FGs) and their distinguishing chemical features can be learned from compound images using CNNs of different 

complexity and whether such knowledge might be transferable to other prediction tasks. We have shown that 

frequently occurring FGs were comprehensively learned, leading to highly accurate multi-label FG predictions. 

Furthermore, we have determined that the FG knowledge acquired by CNNs was sufficient for accurate prediction 

of compound activity cliffs (ACs) via transfer learning. Re-training of FG prediction models on AC data optimized 

convolutional layer weights and further improved prediction accuracy. Through feature weight analysis and vi- 

sualization, a rationale was provided for the ability of CNNs to learn FG chemistry and transfer this knowledge 

for effective AC prediction. 

Introduction 

Deep learning has significantly advanced image analysis in different 

areas including biology and medicine [1–3] . In addition to natural lan- 

guage processing, image analysis has in recent years been one of the 

growth areas for deep learning, which has contributed much to its in- 

creasing popularity across different fields. Among deep learning archi- 

tectures used for image processing and classification as well as learning 

from graph representations, convolutional neural networks (CNNs) play 

a major role [ 1 , 4-6 ]. Progress in image and graph analysis has also be- 

gun to impact chemistry, where molecular images have recently been 

used for representation learning and the prediction of various compound 

properties [7–13] . Although it remains to be determined whether image- 

based approaches might further improve the performance level of ma- 

chine learning based upon conventional chemical descriptors, proof-of- 

Abbreviations: A, accuracy; AC, activity cliff; API, application programing interface; AUC, area under curve; BA, balanced accuracy; CGR, condensed graph of 

reaction; CNN, convolutional neural network; EA, multi-label example based average; E-F1, multi-label example based average F1; EMR, exact match ratio; EP, 

multi-label example based average precision; ER, multi-label example based average recall; FG, functional group; IV-3, Inception-V3 model; I-FG, pre-trained IV-3 

with ChEMBL compounds; I-FG(F), fine-tuned I-FG; I-FG(R), re-trained I-FG; I-IN, IV-3 pre-trained with ImageNet; I-IN(F), fine-tuned I-INI-IN(R): re-trained I-IN; 

MCC, Matthews correlation coefficient; MMP, matched molecular pair; P, precision; R, recall; ROC, receiver operating characteristic; SCNN, simple CNN model; 

I-IN(F)/(R), I-IN fine-tuned/ re-trained. 
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∗ Corresponding author. 
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concept has been established for the use of molecular image data and 

some promising results have been obtained. In image-based chemical 

applications as well as representation learning from molecular graphs, 

CNN architectures have preferentially been used. 

In another proof-of-concept study, we have recently predicted activ- 

ity cliffs (ACs), which are formed by pairs of active structural analogues 

with significant potency differences [14] , on the basis of image data 

[15] . ACs are of particular interest in medicinal chemistry because they 

capture small chemical modifications having large biological effects and 

are thus rich in structure-activity relationship information [14] . For 

image-based AC prediction, a CNN architecture was also used [15] . AC 

prediction represents a special task because in this case, test instances 

are compound pairs, rather than individual molecules. Accordingly, in 

AC prediction, the negative class consists of pairs of active structural 

analogs with small or no differences in potency. ACs were first correctly 
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Fig. 1. Convolutional neural networks. The SCNN (top) and IV-3 (bottom) architectures are illustrated. 

predicted using support vector machines with newly designed kernel 

functions for descriptor vectors representing compound pairs [16] and 

image-based predictions yielded comparable accuracy [15] . 

In this work, we use AC prediction as a test case to investigate 

whether functional group chemistry can be learned from molecular im- 

ages and transferred to other prediction tasks. Therefore, a two-step 

learning approach was devised, as detailed in the following. 

Study concept 

Compounds forming an AC as defined herein (see below) share their 

core structure and are distinguished by the replacement of a substituent 

(R-group, functional group). Accordingly, if it were possible to learn dif- 

ferent functional groups (FGs) from images and recognize them in com- 

pounds, FGs distinguishing compounds in ACs and non-AC compound 

pairs might be detected, hence providing a basis for AC prediction. For 

our analysis, frequently occurring FGs were identified. It was first at- 

tempted to learn FGs from molecular images using CNNs and then to 

apply this knowledge for predicting ACs via transfer learning. Hence, 

following this analysis scheme, successful prediction of ACs would con- 

firm the ability to learn FG chemistry from compound images. 

Transfer learning [ 17 , 18 ] refers to the process of learning a new task 

by transfer of knowledge from a related task for which models have 

already been derived. Transfer learning is applied in machine learning to 

derive models in the presence of related predictions tasks, in particular, 

when limited amounts of training data are available for individual tasks. 

To facilitate the analysis, a deep CNN architecture was pre-trained 

and fine-tuned in different ways. Pre-training was carried out using com- 

pound images to learn FG chemistry and accurately classify compounds 

based on the presence or absence of FGs. Only the final layers of these 

CNN models were then fine-tuned for the complex task of AC predic- 

tion based on transfer learning. Alternatively, all layers of CNN models 

pre-trained on compound images or general image data were re-trained 

using AC data. As a control, models initialized with randomized weights 

were trained only on AC data. 

Methods and materials 

Definition of functional groups 

Substructures representing commonly observed FGs were extracted 

from compounds using the FG identification algorithm introduced by 

Ertl [19] . The method identifies all heteroatoms in a molecule together 

with carbon atoms connected by non-aromatic double or triple bonds to 

other carbons or any heteroatom, acetal carbons, and oxirane, aziridine 

and thiirane rings, and combines subsets of connected marked atoms 

into FGs [19] . FGs are then extracted together with atom environment 

information (i.e., bonded carbon or hydrogen atoms) and assigned to 

different classes following a generalization scheme associated with the 

FG identification algorithm [19] . 

Molecular image representations 

Each compound was represented as a molecular object using the RD- 

Kit application programming interface (API) [20] . For each compound, 

high-resolution portable network graphics images with 500 × 500 

pixels were generated using the RDkit Chem.Draw package (version 

2020.03.5) [20] . The images were re-sized to 300 × 300 pixels and 

each pixel value from each channel was subtracted from the maximum 

pixel value of 255 to invert the colors and generate a black background. 

Supplementary Figure S1 shows exemplary molecular image represen- 

tations. Pixel values of all image matrices were converted into 32-bit 

floating point format and normalized to the range of 0–1. Images were 

processed using openCV (version 4.5.0) [21–23] . 

Convolutional neural network architectures 

Two distinct CNN architectures were assembled for multi-label clas- 

sification of FGs and prediction of ACs and compared. 

Simple architecture 

A basic/simple CNN architecture (termed SCNN) shown in Fig. 1 a 

was previously used for proof-of-concept image-based AC prediction 

[15] . This CNN architecture comprised two convolutional layers with 

32 kernels and respective filter sizes of 3 × 3 and 5 × 5 to extract 

key image features. The convolutional layers were followed by a pool- 

ing, dropout, and dense layer. Max-pooling was used as pooling layer to 

compute the maximum value in each patch of each convolved feature 

map. A dropout layer was added to avoid overfitting. To train the SCNN 

model on compound images or condensed graph of reaction (CGR) rep- 

resentations (see below), the input layer was modified to accept images 

with 300 × 300 resolution. As final layer activation functions, sigmoid 

and softmax were used for FG multi-label classification and AC predic- 

tion, respectively. Models were trained using the Adam optimizer to 

minimize binary cross entropy loss with initial learning rates of 10 − 3 

and 10 − 5 for FG multi-label classification and AC prediction, respec- 

tively. CNN layers were implemented using TensorFlow (version 2.2.0) 

[24] and Keras (version 2.4.3) [25] . 

Complex architecture 

As a complex CNN architecture, Inception-V3 (IV-3) [26] with a 

depth of 42 layers was used, as shown in Fig. 2 b. IV-3 represents a 

further improved version of the GoogleNet [27] architecture. The IV- 

3 model was previously used for classification analysis of ImageNet’s 

Large Visual Recognition Challenge data [28] . To train the IV-3 model 

on the compound and CGR representations, the receptive field for the in- 

put layer was modified to accept images with 300 × 300 resolution and 

2 

98



J. Iqbal, M. Vogt and J. Bajorath Artificial Intelligence in the Life Sciences 1 (2021) 100022 

Fig. 2. Condensed graph of reaction. For an MMP consisting of a pair of com- 

pounds with a shared core and two exchanged fragments (top), the correspond- 

ing CGR representation is shown (bottom). The zero-order bond is indicated by 

a dashed line. 

stride 2. For transfer learning, the IV-3 architecture was slightly modi- 

fied by replacing the last fully connected layer with three fully connected 

layers of output dimensions of 500, 1000, and 2000 neurons, respec- 

tively. As final layer activation functions, sigmoid and softmax were used 

for FG multi-label classification and AC prediction, respectively. Models 

were trained using the Adam optimizer to minimize binary cross en- 

tropy loss with initial learning rates of 10 − 3 and 10 − 5 for FG multi-label 

classification and AC prediction, respectively. The model architecture 

was implemented using TensorFlow (version 2.2.0) and Keras (version 

2.4.3). 

Matched molecular pairs and activity cliffs 

A matched molecular pair (MMP) is defined as a pair of compounds 

that are only distinguished by a chemical modification at a single site 

[29] . As such, MMPs are highly suitable for the representation of ACs 

[30] . From compounds, MMPs were generated by systematically frag- 

menting individual exocyclic single bonds and organizing core struc- 

tures and substituents in index tables [29] . For substituents, size restric- 

tions for distinguishing fragments were applied to limit MMPs to pairs 

of typical structural analogs [30] . Accordingly, a substituent was per- 

mitted to contain at most 13 non-hydrogen atoms and the core had to 

be at least twice as large as the substituent. Additionally, for MMP com- 

pounds, the maximum difference in non-hydrogen atoms between the 

substituents was set to eight [30] . Furthermore, MMPs from a compound 

activity class were only retained if their core structures were found in 

multiple MMPs. 

An MMP formed by two compounds sharing the same activity was 

classified as an AC if the two structural analogs had an at least 100-fold 

difference in potency ( ΔpK i ≥ 2.0) [30] . To avoid potency difference- 

dependent boundary effects in AC prediction, compounds forming a 

non-AC MMP were permitted to have an at most 10-fold difference in 

potency. 

Condensed graph of reaction image representations 

MMPs can be represented in a single graph using the condensed 

graph of reaction (CGR) approach [31] . The CGR formalism was origi- 

nally conceived to combine reactants and products graphs based upon a 

superposition of invariant parts [31] . The resulting CGR is a completely 

connected graph in which each node represents an atom and each edge 

a bond. In a CGR, the shared core of an MMP and the two exchanged 

substituent fragments are represented as a single pseudo-molecule. 

MMP CGRs were generated using an in-house Python script and con- 

verted into a pseudo-molecule using the RDKit API. The larger fragment 

was connected with the core via a single bond and the smaller frag- 

ment a hypothetical zero-order bond [32] . For each pseudo-molecule, 

high-resolution portable network graphics images with 500 × 500 

pixels were generated using the RDkit Chem.Draw package (version 

2020.03.5) [20] as illustrated in Fig. 2 . 

The images were re-sized to 300 × 300 pixels. Each pixel value was 

subtracted from the maximum pixel value of 255 to invert the colors and 

convert the white to a black background. Pixel values of all image ma- 

trices were converted into 32-bit floating point format and normalized 

to the range of 0–1. CGR images were processed using openCV (version 

4.5.0) [21–23] . MMP CGR images were generated using 12 CGR rota- 

tions with differences of 30° including default (0°), ± 30°, ± 60°, ± 90°, 

± 120°, ± 150°, and 180° Image rotations are illustrated in Supplemen- 

tary Figure S2. 

Feature visualization 

The Grad-Cam algorithm [33] was used to extract spatial information 

from the convolutional layers of the trained CNN models. Channel-based 

mean pixel values of the resulting convolutional feature map activation 

weights were mapped to the original image for visualization. 

Performance measures 

Functional group multi-label classification 

FG multi-label classification performance of CNN models was eval- 

uated using five different performance measures including multi-label 

example based average accuracy (EA), exact match ratio (EMR), average 

precision (EP), average recall (ER), and average F1 score(E-F1) [ 34 , 35 ]. 

Definitions are provided as Supplementary Methods. 

Activity cliff prediction 

CNN models were trained to systematically distinguish between ACs 

and non-AC MMPs. The classification performance of CNN models was 

evaluated using receiver-operator characteristic (ROC) curves and the 

area under the ROC curve (AUC). In addition, model performance was 

assessed with six performance measures including overall accuracy (A), 

balanced accuracy (BA), precision (P), recall (R), weighted mean F1 

score [36] , and Matthews correlation coefficient (MCC) [37] . Defini- 

tions are provided as Supplementary Methods. 

Compound activity classes 

From ChEMBL (version 26) [38] , five compound activity classes 

with available high-confidence activity data were extracted. Compounds 

were tested against single human targets in direct interaction assays at 

highest assay confidence (ChEMBL confidence score 9). As potency mea- 

surements, assay-independent equilibrium constants (pK i values) were 

required. Multiple measurements for the same compound were aver- 

aged, provided all values fell within one order of magnitude; otherwise, 

the compound was disregarded. Table 1 reports the compounds activity 

classes and MMP/AC statistics. 

Identification of functional groups 

From 80,641 unique ChEMBL compounds belonging to 992 activ- 

ity classes with available pK i values for human targets, 46,671 com- 

pounds with a size range of 25–35 non-hydrogen atoms were selected 

such that images of these compounds generated for the subsequent anal- 

ysis were of comparable size. From these compounds, a total of 257,663 

FGs were algorithmically extracted [19] and the 100 most frequently oc- 

curring FGs were selected. Only 110 compounds did not contain any of 

these FGs, leaving 46,561 unique compounds for subsequent modeling. 
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Table 1 

Compound activity classes, matched molecular pairs and activity cliffs. 

Target name Compounds 

ACs Non-AC MMPs 

MMPs 

Unique 

cores 

Unique 

substituents MMPs 

Unique 

cores 

Unique 

substituents 

Thrombin (CHEMBL204) 332 149 13 65 979 96 251 

Tyrosine kinase ABL (CHEMBL1862) 345 378 21 152 2655 106 332 

5-Lipoxygenase activating protein (CHEMBL4550) 883 4227 57 556 23,720 216 783 

Adenosine A3 receptor (CHEMBL256) 1378 531 83 246 5116 497 596 

Cannabinoid CB2 receptor (CHEMBL253) 1698 518 124 302 5425 528 800 

The composition of target-based compound activity classes is summarized and MMP/AC statistics are provided for each class. Target names are reported and 

ChEMBL target IDs are given in parentheses. 

Table 2 

Multi-label functional group classifica- 

tion. 

Metric IV-3 model SCNN model 

EA 0.96 ( ± 0.01) 0.44 ( ± 0.02) 

EMR 0.89 ( ± 0.01) 0.07 ( ± 0.01) 

EP 0.97 ( ± 0.01) 0.51 ( ± 0.01) 

ER 0.99 ( ± 0.01) 0.68 ( ± 0.02) 

E-F1 0.98 ( ± 0.01) 0.56 ( ± 0.02) 

SMILES representations of the top 100 FGs are provided as Supplemen- 

tary Methods. 

Results and discussion 

Multi-label classification of functional groups 

SCNN and IV-3 models were trained to learn the 100 most frequent 

FGs from images of the 46,561 compounds. The models were designed 

to learn key features from each compound and map the output to a 

100-dimensional FG vector, in which each value represented a proba- 

bility distribution for the presence of the corresponding FG according 

to its rank. For model training and testing, the compounds and their 

images were divided with FG multi-label stratification using a previ- 

ously reported technique [ 39 , 40 ] into training (70%) and test (30%) 

sets for three independent trials. Table 2 reports test results as mean 

values and standard deviations of different performance measures. IV-3 

models yielded an EA of 0.96, EMR 0.89, EP 0.97, ER 0.99, and E-F1 

0.98, whereas SCNN models were much less accurate, with an EA of 

0.44, EMR 0.07, EP 0.51, ER 0.68, and E-F1 0.56. 

For the IV-3 and SCNN model, mean values of different performance 

measures and standard deviations (in parentheses) over three indepen- 

dent prediction trials are reported. 

The EMR value demonstrated that IV-3 models comprehensively 

learned the 100 FGs and accurately classified 89% of the test com- 

pounds. By contrast, SCNN model only classified 7% of the compounds 

correctly. Hence, only the complex IV-3 models were able to learn key 

image features corresponding to the most frequent 100 FGs with high 

precision. Therefore, the IV-3 model with the highest EMR value was 

selected with FG weights from pre-training with ChEMBL compounds 

for transfer learning (termed I-FG model). 

Prediction of activity cliffs via transfer learning 

To investigate the transferability of the acquired FG knowledge, 

the I-FG model with pre-trained weights was used to predict ACs. For 

comparison, the IV-3 model with pre-calculated weights for ImageNet 

[28] was also used (termed I-IN model). For each transfer learning 

model, all pre-trained layer weights were kept constant, with the ex- 

ception of the last three fully connected layers, which were allowed to 

optimize weights during fine-tuning. For AC prediction, the models were 

fine-tuned using CGR image representations of ACs identified in five dif- 

ferent compound activity classes according to Table 1 . Fine-tuning was 

carried out over 10 independent trials by randomly sampling 70% of the 

AC and non-AC MMP images from the sets of 149 – 4227 ACs and 979 –

23,720 non-AC MMPs, depending upon the activity class. The resulting 

models were then tested on the remaining 30% of AC and non-AC MMP 

images. The performance of the I-FG and I-IN models is summarized in 

Table 3 and Fig. 3 (left column). Both models were found to be pre- 

dictive, but I-FG with specifically derived FG weights was consistently 

more accurate than I-IN with general image weights. The I-FG models 

reached mean BA values of 0.63–0.86, MCC values of 0.31–0.73, and 

F1 values of 0.35–0.76 for the different activity classes. In addition, I- 

FG yielded ROC AUC values of 0.87, 0.90, 0.82, 0.82, and 0.96 for the 

different classes, while I-IN produced values of 0.75, 0.86, 0.77, 0.85 

and 0.91, respectively. Furthermore, transfer learning using fine-tuned 

I-FG models was stable for all activity classes, as indicated by very low 

standard deviations. Taken together, these results reflected overall suc- 

Table 3 

Transfer learning performance. 

Target Model A BA MCC F1 P R 

4550 I-FG 0.88 ( ± 0.01) 0.73 ( ± 0.03) 0.49 ( ± 0.02) 0.55 ( ± 0.04) 0.63 ( ± 0.07) 0.51 ( ± 0.09) 

I-IN 0.80 ( ± 0.04) 0.65 ( ± 0.05) 0.28 ( ± 0.03) 0.38 ( ± 0.08) 0.40 ( ± 0.09) 0.43 ( ± 0.17) 

256 I-FG 0.92 ( ± 0.01) 0.76 ( ± 0.05) 0.52 ( ± 0.05) 0.55 ( ± 0.05) 0.57 ( ± 0.08) 0.57 ( ± 0.12) 

I-IN 0.90 ( ± 0.04) 0.70 ( ± 0.08) 0.42 ( ± 0.06) 0.43 ( ± 0.10) 0.58 ( ± 0.19) 0.44 ( ± 0.21) 

253 I-FG 0.91 ( ± 0.01) 0.63 ( ± 0.04) 0.31 ( ± 0.04) 0.35 ( ± 0.05) 0.44 ( ± 0.08) 0.31 ( ± 0.09) 

I-IN 0.88 ( ± 0.03) 0.62 ( ± 0.05) 0.24 ( ± 0.05) 0.28 ( ± 0.07) 0.34 ( ± 0.08) 0.30 ( ± 0.14) 

204 I-FG 0.94 ( ± 0.01) 0.86 ( ± 0.03) 0.73 ( ± 0.04) 0.76 ( ± 0.04) 0.77 ( ± 0.06) 0.76 ( ± 0.07) 

I-IN 0.91 ( ± 0.02) 0.75 ( ± 0.05) 0.57 ( ± 0.06) 0.60 ( ± 0.06) 0.72 ( ± 0.12) 0.54 ( ± 0.12) 

1862 I-FG 0.88 ( ± 0.01) 0.70 ( ± 0.03) 0.42 ( ± 0.04) 0.48 ( ± 0.04) 0.53 ( ± 0.07) 0.45 ( ± 0.07) 

I-IN 0.87 ( ± 0.03) 0.66 ( ± 0.11) 0.34 ( ± 0.15) 0.36 ( ± 0.20) 0.56 ( ± 0.18) 0.37 ( ± 0.27) 

For each model, mean A, BA, MCC, F1, P, and R values and standard deviations (in parentheses) over 10 

independent trials are reported for the different activity classes (identified by CHEMBL target IDs according to 

Table 1 ). 
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Fig. 3. Receiver operating characteristic curves. 

The performance of the best CNN models from 

an individual AC prediction trial is monitored 

in ROC curves for the different activity classes 

after fine-tuning (left column) and re-training 

(right). For each curve, AUC values are reported 

in parentheses. 
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Fig. 4. Mapping of convolutional layer activation weights. Mean gradient weights of the fifth convolutional layer of different models are mapped to a CGR image 

of an exemplary MMP and displayed. The continuous color code from blue (0) over green (0.5) to red (1) indicates weights from 0 to 1. In (a), weights from the 

fine-tuned I-FG and I-IN AC prediction models are compared. In (b), the fine-tuned and re-trained I-FG model are compared. Observed changes in the optimized 

convolutional layer weights are circled red. 
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cessful AC predictions, hence providing proof-of-concept for the ability 

to learn FG chemistry and the transfer learning approach. 

Activity cliff prediction with re-trained models 

In addition to transfer learning, the I-FG and I-IN models pre-trained 

with different weight initializations were also re-trained. During re- 

training on 70% of the AC and non-AC MMP images, weights were 

optimized across all CNN layers. In addition to I-FG and I-IN, the IV- 

3 and SCNN architectures initialized with random weights were also 

re-trained. The four models were then used for AC prediction and com- 

pared. Re-training produced predictive models in most cases, as reported 

in Supplementary Table S1 and shown in Fig. 3 (right column). After 

re-training the mean performance of I-FG and I-IN was comparable or 

slightly superior for I-IN, but I-FG predictions were more stable than I-IN 

predictions. Compared to I-FG models, the performance of I-IN models 

was partly improved based upon re-training with AC data. During re- 

training of I-FG and I-IN, the models learned specific local structural 

features and further optimized pre-trained weights accordingly, which 

slightly improved classification performance. Furthermore, prediction 

accuracy of the IV-3 and SCNN with random weight initialization was 

generally lower. For example, for activity class 4550, mean BA values 

of I-FG: 0.88 ( ± 0.02), I-IN: 0.81 ( ± 0.17), IV-3: 0.74 ( ± 0.02), and SCNN: 

0.72 ( ± 0.08) were obtained and mean MCC values of 0.77 ( ± 0.02), 

0.65 ( ± 0.35), 0.56 ( ± 0.02), and 0.47 ( ± 0.17), respectively. For activ- 

ity class 253, prediction accuracy of the models generally decreased 

and approached the level of random predictions for the IV-3 and SCNN 

models. In this case, mean BA values of I-FG: 0.67 ( ± 0.04), I-IN: 0.70 

( ± 0.03), IV-3: 0.56 ( ± 0.02), and SCNN: 0.54 ( ± 0.05) were obtained and 

mean MCC values of 0.38 ( ± 0.03), 0.43 ( ± 0.03), 0.19 ( ± 0.05), and 0.12 

( ± 0.13), respectively. Overall, re-training of I-FG and I-IN on AC and 

non-AC MMP images also yielded meaningful AC predictions. 

Model performance with rotated image variants 

FGs are easily recognizable by a chemist in an image regardless 

of the orientation of the molecule. However, for image analysis using 

CNNs, orientation-independence is not ensured and should be evalu- 

ated. Therefore, to assess the influence of the molecular orientation on 

model performance, a test set of rotated CGR images of ACs and non- 

AC MMPs was generated. The fine-tuned and re-trained I-FG, I-IN, IV-3, 

and SCNN models were tested again using 11 rotated image variants of 

each MMP. For each MMP CGR representation, 11 different rotations 

were generated in increments of 30° as described in the Methods and 

materials section and illustrated in Supplementary Figure S2. The re- 

sults are summarized in Supplementary Figure S3. Interestingly, both 

fine-tuned and re-trained I-FG models essentially retained their original 

performance in a rotation-invariant manner with only slight reduction 

for three activity classes (1862, 204 and 256), as shown in Figure S3a. 

By contrast, I-IN models displayed significant reductions in performance 

or failed for rotational image variants and the IV-3 and SCNN models 

consistently failed. For the two remaining activity classes (4550 and 

253), all models consistently failed (Figure S3b). Hence, learning of FG 

chemistry by I-FG led to image rotation invariance in AC prediction for 

some (but not all) compound classes. 

Rationalization of learned functional group chemistry 

The analysis of feature weights of convolutional layers of different 

CNN models might help to better understand how FG chemistry was 

learned. Therefore, convolutional layer weights were extracted from dif- 

ferent AC prediction models for MMP CGR images. The weights were 

then mapped on the images and visualized. Fig. 4 shows a representa- 

tive example. In Fig. 4 a, feature weights from the fine-tuned I-FG and 

I-IN models are compared. A compelling observation was that the fine- 

tuned I-FG model detected heteroatoms as specific chemical features 

that were involved in the formation of most FGs. On the other hand, 

the I-IN model detected more general chemical features covering both 

the core structure and FGs. These observations provided a rationale for 

successful transfer learning by the I-FG model, given its ability to specif- 

ically recognize FGs that distinguished between compound forming ACs 

and non-AC MMPs. 

Fig. 4 b compares feature weights from the fine-tuned and re-trained 

I-FG models, which were initially subjected to the same FG learning pro- 

cess. Re-training based on AC and non-AC MMP images then optimized 

the weights, leading to slightly improved accuracy of the re-trained 

model in AC prediction, as discussed above. The comparison shows that 

re-training in this case selectively optimized weights on nitrogen atoms 

and de-prioritized oxygen atoms. Hence, the model clearly distinguished 

between specific chemical features that were initially learned from com- 

pound images and frequently occurring FGs. 

Conclusion 

In this work, we have addressed the question whether FGs can be 

learned from compound images using different CNN architectures and 

if this knowledge would be sufficient for compound pair-based predic- 

tion of ACs, which largely relies on detecting FG replacements leading 

to varying compound potency differences. Therefore, a transfer learning 

scheme was investigated, which confirming that CNN models learned 

sufficient R-group chemistry from images of individual compounds to 

accurately predict ACs on the basis of CGR images. We also demon- 

strated that transfer learning could be replaced by re-training CNN mod- 

els on AC and non-AC MMP images. Re-training optimized convolu- 

tional layer weights from FG-oriented pre-training, leading to further 

improved AC prediction accuracy. Finally, a rationale for learning FG 

chemistry and transferring this knowledge was provided by the analy- 

sis and visualization of CNN model-internal feature weights. Taken to- 

gether, the results of our analysis confirm the ability of CNNs to learn 

FG chemistry from compound images and further expand the method- 

ological framework for AC predictions. 
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Summary

This chapter investigated the application of different CNN architectures to learn
functional group chemistry from compound image representations, and estimated the
impact of acquired functional group chemistry knowledge for ACs classification pre-
diction. The transfer learning scheme confirmed the potential of deep CNN models
to learn sufficient functional group chemistry from images of individual compounds
leading to accurate ACs prediction based on CGR images. Furthermore, CNN mod-
els were allowed to learn structural features from CGR images in re-training process
and compared. Finally, the convolutional feature analysis was used to identify sig-
nificant features in original images, which confirmed the potential of CNNs to learn
functional groups chemistry. Overall, CNN modeling performance confirmed the
ability of CNNs to learn functional group chemistry from compound images and
thus further expands the methodological framework for AC predictions.

105



106



Chapter 8

Conclusion

Recent image processing approaches and state-of-the-art machine learning mod-
els have rapidly progressed in multiple scientific domains. Predictive image analy-
sis of different SAR contents from different compound datasets based on 3D ALs
image representations was carried out in Chapter 2 for the first time. CNNs and
machine learning models have the potential to distinguish different 3D AL surfaces
based on elevation-dependent topographical features that mirror SAR characteris-
tics. Image processing approaches can be applied to detect, segment, and extract
3D AL topographical features to compare different SARs. 3D AL images in 8-
bit RGB color models with better color contents improve the classification perfor-
mance, whereas the standard conversion of the image from RGB model to two-
dimensional monochrome and binary colors reduces the model performance. Binary
images are preferable for learning elevation-based topographical features from 3D
AL images, which helps classify different SARs on elevation-based SAR topolo-
gies. 3D AL heatmaps are appropriate to capture the complete top-down view of
the AL/PL by preserving spatial features, color profiles, and topographical charac-
ters. Heatmap representations in image formats allow extraction and quantification
of activity/property distributions as 3D ALs/PLs topographical features (i.e., valleys
and mountains). The introduction of a novel methodology in Chapter 3 that evenly
divides 3D AL heatmaps into fixed-sized cells successfully extracted and quantified
the color features that directly reflect compound activity values. Extracted color fea-
tures quantifying different topographies obtained by thresholding color values can be
represented as a single feature vector for further comparison. 3D AL comparisons
based on extracted feature vectors with standard metrics provided conceivable and
robust results and confirmed that 3D AL topographical features characterizing SAR
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contents are quantifiable by applying image processing approaches. Topographi-
cal characteristics (i.e., valleys, peaks, or mountains) in a 3D AL are detectable,
segment-able, and quantifiable. The novel methodology introduced in Chapter 4

quantifies prominent topographical features of 3D ALs and has the potential to seg-
ment activity peaks and deep valleys from 3D AL heatmap representations. Each
segmented region allows the quantification of activity distributions and makes it pos-
sible to discern a similarity between different 3D ALs on topographical character-
istics. Furthermore, the methodology allows numerical comparison and established
successful similarity ranking of different 3D ALs to a template 3D AL based on
topographical features using image representations. CNN modeling and image anal-
ysis help in the identification of textures, color profiles, and topographical features
from 3D ALs, allowing AL/PL quantitative comparison in a meaningful way.

The successful application of image processing approaches in 3D ALs quanti-
tative analysis discussed in Chapters 2-4 provided evidence that image processing
can be applied to analyze 3D ALs in image-representable data structures. There-
fore, follow up Chapters 6-7 investigated CNN modeling to analyze prominent fea-
tures of SARs known as ACs. CNN modeling and image analysis can be employed
to further investigate ACs, which localize mainly in rugged regions. Pair of com-
pounds in molecular graph data structures can be converted into 2D images and,
therefore, amenable for image analysis. In Chapter 6 CNN modeling was found
to successfully discriminate MMP-cliffs from non-ACs by learning structural fea-
tures systematically from pair of compound image representations (MMPs). In addi-
tion, CNN modeling learned unique structural representations, such as nitrogen and
nitrogen-related functional groups, which helped accurate classification prediction.
Classification of MMP-cliffs and non-ACs based on learning structural chemistry
aided the model prediction interpretation from a chemistry perspective. The poten-
tial of CNNs to learn structural features precisely to distinguish MMP-cliffs from
non-ACs in Chapter 6 was an encouraging finding. However, it was unclear whether
CNNs can learn the functional group chemistry from compound images and distin-
guish ACs from non-ACs based on acquired functional group knowledge. Successful
learning of functional groups and precise classification of MMP-cliffs and non-ACs,
as discussed in Chapter 7, clearly indicates the power of deep CNN models such
as Inception to learn and distinguish between MMP-cliffs and non-ACs by transfer-
ring the functional group knowledge. Furthermore, visualization of convolutional
features demonstrated CNNs consistently focused heavy-atoms by giving them high
weightage. The focus on heavy-atoms confirms the CNN modeling ability to learn
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functional groups and successful discrimination of ACs from non-ACs by transfer-
ring the learned functional group chemistry knowledge.

From 3D AL analysis (Chapters 2-4) to AC analysis(Chapters 6-7) based on
image representations, the CNN modeling and incorporation of image analysis con-
cepts has proven to be very successful and thus highly applicable for image analysis
in the chemical informatics domain. The application of image processing approaches
has the potential to learn structural features and patterns from various data structures
representable as image formats (i.a., ALs, molecular graphs, etc.). Image-based deep
CNN modeling can be employed to learn structural chemistry for a particular pre-
diction task using molecular image representations. The prediction analysis of tasks
based on the learned chemistry could help in the interpretation of the results from a
chemical perspective.

Future work includes the application of image processing approaches to inves-
tigate the applicability of image vision approaches to interpret CNN models in a
chemically meaningful way.
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