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Abtract
In this PhD thesis, the Feynman integrals are evaluated using an algebraic geometry approach
known in string theory. The GKZ description of periods and certain classes of relative periods
on Calabi-Yau (l− 1)-folds has been used in order to solve the l-loop banana amplitudes with
their general mass dependence.

There are different ways of computing Feynman integrals. These integrals satisfy a set of
differential equations whose solutions give the answer of the integral. One of the approaches
to derive a system of differential equations for Feynman integrals is the integration by part
(IBP) identity. There is also an alternative approach to obtain these differential equations for
a Feynman integral using the geometric interpretation of the Feynman integrals.

From the algebro-geometric point of view, Feynman integrals are the periods of the mixed
Hodge structure on the relative cohomology groups. Varying physical parameters leads to a
variation of the Hodge structure. The geometric interpretation comes from the polar locus
of the integrand. The poles of the integrand define a Calabi-Yau manifold, which is often
in a toric variety. These period integrals satisfy a system of linear homogeneous differential
equations, so-called Picard-Fuchs differential ideal (PFDI). With toric geometry we can derive
a finite set of differential operators, so-called GKZ hypergeometric system and extract PFDI.
We obtain GKZ system from the variation of the Hodge structure and we benefit from the
symmetries of the graphs more efficiently. GKZ systems are generalization of hypergeometric
system and use the symmetries of the integrand, i.e. symmetries in its parameter space. As
examples we compute the mass dependencies of the banana amplitudes up to the four-loop
case.

For the two-loop banana Feynman integral, the so-called sunset diagram, the polar locus of
the integrand is a special family of elliptic curves E , i.e. a Calabi-Yau one-fold. The integral is
related to the period integral of the local mirror M of the non-compact Calabi-Yau three-fold
W , defined as the total space of the anti-canonical line bundle over the degree three del Pezzo
surface S, which is P2 blown up in three generic points. For the three-loop case, the vanishing
locus of denominator of the GKZ integral defines a K3 surface and obviously, it defines a
Calabi-Yau (l − 1)-fold for the l-loop case.

Later, we show that the coefficients of the linear combination of the solutions, which leads
to the Banana Feynman integral, have geometrical interpretation and can be obtained by the
so-called Γ̂-class evaluation in the ambient space of the mirror. We explain that in the equal
mass case the relevant physical subslices in series of the Calabi-Yau manifolds are complete
intersections of two constrains in (P)l+1. We calculate the Γ̂-class for this case which happens
to match perfectly with the coefficients that we obtain numerically.
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Chapter 1

Introduction

In this PhD thesis, the Feynman integrals are evaluated using an algebro-geometric approach
known in string theory. This work is mainly based on two papers [1, 2] as a joint work in
collaboration with Kilian Bönisch, Fabian Fischbach, Albrecht Klemm and Christoph Nega.

Quantum field theoretic amplitudes are among the most fundamental quantities in physics
that are crucial for understanding the fundamental interactions. To calculate these quantities,
one needs to evaluate the Feynman integrals. Feynman integrals are multivalued functions
of physical parameters that are defined by external momenta and internal masses. With
higher energy colliders coming to the operation, for more accurate theoretical predictions of
amplitudes, it needs to calculate higher loop orders in the perturbative expansions.

From theoretical point of view, there are different methods compute Feynman integrals.
These integrals satisfy a set of differential equations whose solutions give the answer of the
integral. There are different approaches to obtain these differential equations. One of them
is by integration by part (IBP) identity. By defining a family of Feynman integral, one can
find IBP identities between different members of this family. Members of a family of Feynman
integral are different Feynman integrals with the same propagator structure but different
integer exponents for each propagator. Having IBP identities in a family, one can obtain a
basis, so-called master integrals, whose linear combinations result in the other members of
the family. At the end, one can find a differential equation system which is satisfied by the
master integrals and by solving those differential equations one can get the result of the master
integrals [3–6]. There are different approaches of deriving a differential equation system for a
Feynman integral using the geometric interpretation of them.

From the algebro-geometric point of view, Feynman integrals are the periods of the mixed
Hodge structure on the relative cohomology groups. Varying physical parameters leads to a
variation of the Hodge structure. The geometric interpretation comes from the polar locus of
the integrand. The poles of the integrand define a Calabi-Yau manifold, which is often in a
toric variety. These period integrals, which are over closed cycles, satisfy a system of linear
homogeneous differential equations, so-called Picard-Fuchs differential ideal (PFDI). Then, by
Griffiths-Dwork reduction method, PFDI can be derived from the cohomology of a smooth
projective hyperspace [3,7]. For the higher loop Feynman integrals, using the Griffiths-Dwork
reduction method gets much more complicated. But, there is another approach which also
benefits from the geometrical interpretation of Feynman integrals. With toric geometry, one

1



2 CHAPTER 1. INTRODUCTION

can derive a finite set of differential operators, so-called GKZ hypergeometric system.
It was observed already in [8] by Gelfand, Kapranov and Zelevinsky (GKZ) that practically

all integrals that arise in perturbative quantum field theory have the form of residuum integrals
of rational functions defined in a toric variety P∆. We will call these GKZ period integrals.
In dimensional regularization, e.g. in (4 − 2ε) dimensions, the coefficients of the Laurent
expansion of the Feynman integral in ε, are such period integrals [9]. In this approach,
we derive a system of differential equations, GKZ system, from the variation of the Hodge
structure and we benefit from the symmetries of the graphs more efficiently. GKZ systems
are the generalization of hypergeometric systems that use the symmetries of the integrand,
i.e. symmetries in its parameter space [10,11]. GKZ period integrals with holomorphic forms
integrated over closed cycles satisfy homogeneous systems of differential equations. But, there
are GKZ integrals that are, unessentially holomorphic forms which are integrated over chains.
It means the integration domain has non-trivial boundary and this yields inhomogeneities in
the differential equation system. Such integrals are called relative periods [12]. In general,
Feynman integrals have chains as their integration domains, in other words, the integration
domains of the Feynman integrals have boundaries, therefore, they are related to relative
periods. But, the maximal cut integrals of Feynman integrals are integrals with closed cycles
as their integration domain and they satisfy homogeneous GKZ system.

We consider particular Feynman integrals that correspond to a class of l-loop Feynman
diagrams in two space-time dimensions with two vertices of valence l + 1, one invariant mo-
mentum K2 and l + 1 different masses M i for each propagator, known as Banana diagrams.
Banana Feynman integrals with different numbers of loops appear in various perturbation
theory calculations. For instance, five-loop banana diagram in the Standard Model represents
the spectral function for the process q → qlνlgZH, see Figure 1.0.1 [13]. They arise as master
integrals in the two-loop electroweak computations or in the two-loop Higgs+jet production
cross section [14,15].

Figure 1.0.1: A half cut of five-loop banana diagram in the Standard Model representing the spectral function
for the process q → qlνlgZH [13].

After representing the banana Feynman integral by Feynman parametrization, in two
space-time dimensions, the numerator of the integrand is trivial. The polar locus of the
integrand in the l-loop banana Feynman integral defines a Calabi-Yau (l−1)-fold hypersurface.
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The polynomial that defines the hypersurface corresponds to a Newton polytope, which is a
reflexive integral polytope. After triangulating the corresponding Newton polytope, defining
the ambient toric variety and obtaining the Mori cone generators, we derived the GKZ systems
of differential equation for the banana Feynman integrals and solved them with the Frobenius
method. Banana Feynman integrals, like most of the Feynman integrals, are relative periods,
i.e. their integration domains have non-trivial boundaries. Therefore, together with solutions
to the homogeneous equations, we need special solutions to the inhomogeneous equations.

In mirror symmetry a very important fact is that Calabi-Yau manifolds are expected to
have at least one point of maximal unipotent monodromy in their moduli space. For Calabi-
Yau hypersurfaces and complete intersections in toric ambient spaces, the location of these
points can be calculated purely combinatorial from the triangulations of the toric polyhedron.
At such a point the local exponents for the solutions of the Picard-Fuchs differential ideal are
completely degenerate. This means that there exists a unique analytic solution, while all the
other solutions are logarithmic at this point. There is also a unique solution with the highest
power of logarithms which equals the dimension l − 1. Moreover, the maximal cut integral
corresponds to the unique holomorphic period and can be evaluated directly by a residuum
integral over a l-dimensional torus in P∆. All logarithmic closed periods can be obtained by
the Frobenius method. The solutions of the GKZ system are, however, redundant. It means
it has more solutions than the Picard-Fuchs equations and not all of them are the answers
of the Feynman integral. And also, we have to consider the inhomogeneous solution which
cannot be obtained by the Frobenius method. By deriving the full differential ideal from the
solutions, we reduce the number of logarithmic solutions and develop a method which yields to
a smaller set of functions describing the l-loop banana Feynman integrals for generic internal
masses. These functions are governed by a set of inhomogeneous differential equations. The
inhomogeneity is determined at the point of maximal unipotent monodromy by integrating
the banana Feynman integral directly after applying full differential ideal on its integrand.

For the two-loop banana Feynman integral, the so-called sunset diagram, the polar locus of
the integrand is a special family of elliptic curves E , i.e. a Calabi-Yau one-fold. The integral is
related to the period integral of the local mirror M of the non-compact Calabi-Yau three-fold
W defined as the total space of the anti-canonical line bundle over the degree three del Pezzo
surface S, which is P2 blown up in three generic points. The masses are related in a simple
way to the three new Kähler parameters in the blown up geometry. For the three-loop case,
the vanishing locus of denominator of the GKZ integral defines a K3 surface and obviously,
it defines a Calabi-Yau (l − 1)-fold for the l-loop case.

Further, we showed that the coefficients of the linear combination of the solutions, which
leads to the Banana Feynman integral, have geometrical interpretation and can be obtained
by the so-called Γ̂-class evaluation in the ambient space of the mirror. We explain that in
the equal mass case, the relevant physical subslices in series of the Calabi-Yau manifolds are
complete intersections of two constraints in (P)l+1. We calculate the Γ̂-class for this case which
happens to match perfectly with the coefficients that we obtain numerically.

The full set of solutions to the Picard-Fuchs differential ideal and many aspects of their
monodromies and analytic continuations have been intensively studied using the GKZ system
in the context of mirror symmetry for period integrals of the holomorphic (n, 0)-form for
Calabi-Yau n-folds. For compact Calabi-Yau three-folds realized as hypersurfaces embedded
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in toric ambient spaces, this was done in [16, 11, 10] for complete intersections embedded in
such spaces in [17–19]. Higher dimensional Calabi-Yau spaces have been studied in [20–24].
A review of the subject can be found in [25].

To summarize, we clarify and extend the geometrical interpretation of the l-loop banana
Feynman graphs. The new insights give important information about the analytic structure
of the banana Feynman graphs.



Chapter 2

Algebraic geometry and toric
geometry
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2.1 Periods
Feynman integrals are interesting both for physicists and mathematicians. In this section, an
overview on the concept of periods in mathematics is provided and then the approaches to
obtain them are introduced.
As Zagier and Kontsevich explain in [26], first, we need to define algebraic numbers. Algebraic
numbers are the set of all numbers x ∈ C that satisfy an algebraic equation with rational
coefficients.

√
2 is the simplest irrational real algebraic number. All the numbers, that are

not included in the algebraic numbers set, are transcendental.
A complex number is called a period if its real and imaginary parts are values of absolutely
convergent integrals of rational functions with rational coefficients . Periods are in general
transcendental numbers. One of the most famous non-algebraic example of a period is π, with,

π =

∫∫
x2+y2≤1

dx dy. (2.1.1)

Logarithms of natural numbers, all values of Riemann zeta function and special values at
algebraic arguments of hypergeometric functions are other examples of periods.

On the other hand, one can define periods as the values of integrals of algebraically defined
differential forms over certain chains in algebraic varieties. In case these integrals depend on
some parameters, i.e. the forms and the chains are functions of the parameters, one can ex-
pect the integrals satisfy linear differential equations with algebraic coefficients. Now that we
are equipped with another approach to obtain periods, we have to find the linear differential
equations which those integrals satisfy and solve them for the special values. These differential
equations are called (generalized) Picard-Fuchs differential equations or Gauss-Manin systems.
To obtain Picard-Fuchs equations, there are few approaches. GKZ and Griffiths-Dwork re-
duction are two of them. In this thesis, we have used mostly the GKZ method and provide
three examples where we explain completely the GKZ method. Here, we only explain a bit
the Griffiths-Dwork reduction method and postpone explaining the GKZ method to section
4.1.3.

2.2 Griffiths-Dwork reduction
As mentioned before Griffiths-Dwork reduction is an alternative method to derive a differential
equation for a period in terms of its moduli. For a detailed explanation about Griffiths-Dwork
reduction refer to [27].

First, let’s define the mathematical concept of a period Πi(a),

Πi(a) =

∫
Γi

Ω(a), (2.2.1)

where Γi ∈ Hn(M) is a n-cycle and the nowhere vanishing (n, 0)-form is given by,

Ω(a) =

∫
γ

a0µ

P
, (2.2.2)
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here P is the Laurent polynomial, ai is i-th monomial coefficient, a0 the coefficient of mono-
mial with degree 0 and µ is the top form. P = 0 is the hypersurface constraint with γ being
the contour around it.

Let us consider the hypersurface case and define the graded ring by the Jacobian ideal
J = {∂xiP} which is generated by partial derivatives of the weighted homogeneous polynomial
P (x) of degree d =

∑
iwi. Now, we take derivatives of the period Π(a) w.r.t. the complex

structure moduli parameterized by the coefficients a’s, until the numerator contains elements
that are reducible w.r.t. to the ideal J . One has to first emerge expressions in the numerator
using the Buchbinders algorithm for a Groeber basis, and then use integration by parts.
This leads to the emerging expressions with lower powers of P in the denominator and lower
homogeneous degree polynomials in x in the numerators. Finally, one can manipulate all the
emergent terms into the form of moduli dependent rational functions times lower derivatives
of Π(z) w.r.t. to the moduli a. The relation derived in this way is one Picard-Fuchs operator.
Let us clear this with an example.
Smooth quintic hypersurfaces in P are simple examples to show how Griffiths-Dwork reduction
works. A quintic hypersurface in P, which is a Calabi-Yau 3-fold, is define by the following
polynomial constraint,

P =
5∑

i=1

1

5
x5i − a

5∏
i=1

xi, (2.2.3)

with xi being homogeneous coordinates and a the moduli parameter. We take the derivative

four times w.r.t. the moduli parameters from Π(a)

a
= Π̃(a) =

∫
γ

µ

P
and get:

∂4

∂a4
Π̃(a) =

∫
γ

4!
∏5

i=1 x
4
i µ

P 5
=

4!(a4x4
1(x2x3x4x5)3∂x1P+a3x7

1x
3
2(x3x4x5)2∂x2P+a2(x1x2)6x2

3x4x5∂x3P+a(x1x2x3)5x4∂x4P+(x1x2x3x4)4∂x5P )

(1− a5)P 5
.

(2.2.4)

Now we have to obtain the third, second and first order derivative of the period in the ideal
of [∂xiP ]. For this aim, repeatedly one needs to use the integration by part identities and
represent the result by the derivatives of P w.r.t. ai’s. This leads to,

(a5 − 1)
∂4

∂a4
Π̃(a) + 10a4

∂3

∂a3
Π̃(a) + 25a3

∂2

∂a2
Π̃(a) + 15a2

∂

∂a
Π̃(a) + aΠ̃(a) = 0 (2.2.5)

or by introducing the logarithmic derivative a∂a = θ it looks like,

[a5θ4 − a
5∏

i=1

(θ +
i

5
)]Π̃(a) = 0. (2.2.6)

The detailed derivation of the Picard-Fuchs equation for a quintic hypersurface is shown in
the Appendix.
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2.3 Toric geometry

In this section, we will provide a brief introduction to toric geometry and algebraic geometry.
Later we will show how to define a polytope associated to a toric geometry. For more details
about the toric geometry, we refer to lectures on toric varieties by David A. Cox.
To warming up, let us first introduce affine varieties. For given polynomials f1, · · · , fr ∈
C[x1, · · · , xn], affine varieties are defined as,

V (f1, · · · , fr) = {a ∈ Cn|f1(a) = · · · = fr(a) = 0}. (2.3.1)

We define projective varieties, but one needs to know what are projective spaces, first.
A n-dimensional projective space P is defined with the following relation,

Pn = (Cn+1 \ {0})/C∗, (2.3.2)

where by applying the group C∗, we create equivalence. It can be shown like following as well,

Pn = (Cn+1 \ {0})/ ∼, (2.3.3)

where ∼ shows equivalence relation which means (x1, · · · , xn+1) ∼ (y1, · · · , yn+1) iff there is
a non-zero coefficient λ ∈ C∗ which (x1, · · · , xn+1) = λ(y1, · · · , yn+1). This means that all
points on a line through the origin in Cn+1 are equivalent, or in the other word, Pn+1 is the
space of all lines which pass through the origin in Cn+1. The coordinate of a point p in a
projective space is given by homogeneous coordinates, p = (x1, · · · , xn+1) ≡ (x1 : · · · : xn+1).
Now we can define projective varieties. We know that if a polynomial f ∈ C[x1, · · · , xn+1] is
called homogeneous of degree d it means that all monomials this polynomial has total degree
of d, or,

f(λx1, · · · , λxn+1) = λdf(x1, · · · , xn+1), λ ∈ C∗. (2.3.4)

Then, given homogeneous polynomials f1, · · · , fr ∈ C[x1, · · · , xn+1], we can define the pro-
jective variety by,

V (f1, · · · , fr) = {a ∈ Pn|f1(a) = · · · = fr(a) = 0} ⊂ Pn. (2.3.5)

It is also useful to introduce weighted projective space. Given positive integers d1, · · · , dn+1

which each two of them are relatively prime, gcd(d1, · · · , dn+1) = 1, the weighted projective
space is defined as,

P(d1, · · · , dn+1) = (Cn+1 \ {0})/ ∼, (2.3.6)

and ∼ means (x1, · · · , xn+1) ∼ (y1, · · · , yn+1) ⇔ ∃λ ∈ C∗ such that (x1, · · · , xn+1) = (λd1y1, · · · ,
λdn+1yn+1). This implies P(1, · · · , 1) = Pn.
A toric variety P, is a generalization of projective space. For an ambient space Cn we act
an algebraic torus (C∗)m for m < n and instead of excluding the origin for defining projective
space, we exclude a subset U which is fixed by a continuous subgroup of (C∗)m. It yields to,

P = (Cn \ U)/(C∗)n. (2.3.7)
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2.4 Mirror symmetry and Batyrev construction

Around mid-1980s a great discovery happened in the theoretical physics and algebraic geom-
etry. It was triggered by an observation that string theory propagation on a target spaces of
a circle of radius R and 1/R are equivalent [28, 29]. This is a modular group, the so-called
T -duality. In the meanwhile, it has been also found out that Calabi-Yau manifolds are very
appropriate candidates for expressing the geometry of string propagation [30]. Later Vafa,
Lerche and Warner have been noticed that a topologically distinct pair of Calabi-Yau mani-
folds yield the same string propagation theory and they discovered the Mirror Symmetry
between that two Calabi-Yau manifold [31]. A mirror pair of Calabi-Yau manifold have the
following relation between their Hodge numbers,

hq,pM = hd−p,q
W , (2.4.1)

where d is the complex dimension of the Calabi-Yau manifolds M and W . We gave a brief
story of one of the most beautiful discoveries in the theoretical physics and mathematics, we
refer the interested reader to [32,33] for more details.
In 1993, Batyrev introduced an algebro-geometric approach to mirror symmetry [34]. He con-
structed mirror pair of hypersurfaces in toric ambient spaces by reflexive polyhedra. A year
after, Batyrev and Borisov generalized it to complete intersections in Fano toric varieties by
reflexive polyhedra with Neff partitions [35]. The main idea is that they found a correspon-
dence between a toric variety and a polytope and relate the mirror pair of the toric Calabi-Yau
manifold to the dual of that polytope.
For understanding the Batyrev construction of mirror symmetry we have to get familiar with
few notions. First we start with the definition of a lattice polytope.
Consider N ' Zn be a lattice whose dual is M , then a lattice polytope ∆ ⊂MR =M ⊗ R is
the convex hull of a finite set of points in M . A facet of a polytope is codimension 1 face of a
polytope and obviously the vertices of a polytope are dimension 0 faces. The dual polytope
of a polytope is defined by,

∆̂ = {v ∈ NR|〈v,m〉 ≥ −1, for all m ∈ ∆} ⊂ NR. (2.4.2)

It follows ˆ̂
∆ = ∆. A reflexive polytope ∆ is a lattice polytope with origin in its interior and

whose dual ∆̂ is also a lattice polytope. One can derive from Eq. (2.4.2) the relation between
the faces of the dual pairs of polytope. Each n-dimensional face of polytope ∆ corresponds to
a (d− n− 1)-dimensional face of ∆̂. Now let’s get familiar with concept of cones and fans.
Consider M ' Zn to be a free Abelian group of rank n and N = Hom(M,Z) is its dual, i.e.
〈m, v〉 ∈ Z, for m ∈ M and v ∈ N . Then, a rational polyhedral cone σ ⊂ NR is a subset
which defined by,

σ = {
r∑

i=1

λiui | λi ≥ 0}, (2.4.3)

for u1, . . . , ur ∈ N . And the dual cone is given by,

σ̌ = {m ∈MR | 〈m, v〉 ≥ 0, ∀v ∈ σ}. (2.4.4)
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A cone is strongly convex if σ ∩ (−σ) = {0}. A face of a cone σ is,

τ = { v ∈ σ| 〈m, v〉 = 0} ⊂ σ. (2.4.5)

Obviously, every face of a cone σ is a rational polyhedral cone as well. The intersection of two
faces of a cone is again a face of that cone. As in the case of polytopes, a facet of a convex
polyhedral is a face of codimension 1. Faces of a cone range from (dimσ − 1)-dimensional to
0-dimensional. This means a face of a face of a cone is again a face of that cone. Trivially,
{0} is a face of a cone. A ray is a 1-dimensional face of a cone.
We define a fan Σ as a finite collection of cones in NR which has following properties:

• Each cone σ ∈ Σ is a strongly convex polyhedral cone.

• If σ ∈ Σ and τ is a face of the cone σ, then τ ∈ Σ

• If σ, τ ∈ Σ, then σ ∩ τ is a face of each.

Consider a fan Σ ∈ NR, with Σ(1) be the set of one-dimensional cones or rays of Σ. For
each ρ ∈ Σ(1) we denote vρ ∈ N as the the unique primitive generator of ρ∩N . we associate
a coordinate xρ to each ray ρ ∈ Σ(1). Now, if S be any subset of Σ(1) which does not span
a cone of Σ, then V (S) ⊂ Cn is the linear subspace defined by setting xρ = 0 for all ρ ∈ S. If
Z(Σ) ⊂ Cn be the union of all V (S), the toric variety is constructed as a quotient of Cn−Z(Σ)
by a group G, which defined as follows [32].
Let’s consider the map φ : Hom(Σ(1),C∗) → Hom(M,C∗). Where Hom(Σ(1),C∗) is a map of
sets f : Σ → C∗ and Hom(M,C∗) is a map of groups m 7→

∏
v∈Σ(1) f(v)

〈m,v〉. We can represent
this map φ as,

φ : (C∗)n → (C∗)r, (t1, . . . , tn) 7→ (

n∏
j=1

t
vj1
j , . . . ,

n∏
j=1

t
vjr
j ), (2.4.6)

(vj1, . . . , vjr) is coordinates of vj and n = |Σ(1)|. Now we can define the group G as the kernel
of φ:

G = Ker(Hom(Σ(1),C∗)
φ−→ Hom(M,C∗)). (2.4.7)

This means G ⊂ Hom(Σ(1),C∗), therefore g(vρ) ∈ C∗ for each g ∈ G and ρ ∈ Σ(1). An action
of G on Cn looks like,

g · (x1, . . . , xn) = (g(v1)x1, . . . , g(vn)xn). (2.4.8)

Finally, a toric variety XΣ is defined as,

XΣ = (Cn − Z(Σ))/G. (2.4.9)

A toric variety XΣ is compact if and only if the union of the cones σ ∈ Σ is equal to all of NR

and an incomplete fan defines a non-compact toric variety.
Let us clear the steps of deriving a toric variety from a fan by an example. Consider the fan
shown by Figure 2.4.1.
The three rays {(1, 0), (0, 1), (−1,−1)} span this fan Σ. The cones of this fan are given by,
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Figure 2.4.1: The corresponding fan of P2

• {0} as the trivial 0-dimensional cone,

• the three 1-dimensional cones spanned by the vectors {(1, 0)}, {(0, 1)} and {(−1,−1)},

• the three 2-dimensional cones spanned by {(1, 0), (0, 1)}, {(1, 0), (−1,−1)} and {(0, 1), (−1,−1)}.

For the next step, we need to find Z(S). S = {(1, 0), (0, 1), (−1,−1)} is the only set of rays
that does not span a cone in the fan Σ. This means we have Z(S) = {(0, 0, 0)} ⊂ C3.
For the next step we need the kernel of the following map,

φ : (C∗)3 → (C∗)2, (t1, t2, t3) 7→ (t−1
1 t2, t

−1
1 t3). (2.4.10)

The kernel of the this map is the diagonal group G = {(t, t, t)|t ∈ C∗} ' C∗. Now we can
obtain the toric geometry by,

(C3 − {(0, 0, 0)})/C∗, (2.4.11)

which is the definition of P2.
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3.1 Introduction
To evaluate Feynman integrals, there are different approaches. It mostly depends on the type of
considered integral. From the mathematical point of view, if we can find an algebro-geometric
interpretation for the integrand, we can benefit from the methods explained in the previous
chapter. There are some Feynman integrals, e.g. banana Feynman integrals, whose polar
loci define hypersurfaces, hence using methods known in algebraic geometry one can obtain
the corresponding periods. As mentioned before, these periods satisfy a system of differential
equations and their solutions give the result of the integral. Griffiths-Dwork reduction is one
the methods to derive the system of differential equations which was explained in the previous
chapter with an example. GKZ is another method to get the system of differential equations
and will be explained in the next chapter.

In this chapter, we focus on the other methods to obtain the result of the Feynman integrals.
There are relations between the members of the so-called Feynman integrals family. By finding
those relations, which are linear identities, one can derive basis integrals by which one can
calculate the other integrals of the family. The basis are called Master Integrals. In the
following sections we will explain what exactly are the relations between different integrals of
a family and how to obtain them.

3.2 Integral families and basis
In 1981, Chetyrkin and Tkachov in [5] proposed a technique which could compute some of the
Feynman integrals in a much easier way. By applying integration by parts (IBP) on a Feynman
integral, they found an identity by which one can reduce the original integral to few simpler
ones, the so-called Master Integrals (MIs). By evaluating MIs one can get the result of the
original Feynman integrals. Nowadays, there are some computer programs which can calculate
the IBP reductions and give the MIs, such as FIRE, LiteRed, REDUZE, AIR, KIRA [36–38].
In the following, we will show that MIs form a basis in the linear space of a family of Feyn-
man integrals [39,40]. A family of Feynman integrals is the one where each Feynman integral
has the same propagator structure, but each of them has propagators with arbitrary integer
powers. Now, we will review the steps of obtaining the MIs with the one loop box Feynman
integral as an example [40].

The one-loop box integral in D-dimension, depicted in Fig. 3.2.1, is given by,

Ibox =

∫
dDk

iπD/2

1

k2(k + p1)2(k + p1 + p2)2(k − p4)2
, (3.2.1)

with k the loop momentum and pi the external momentum that satisfy the momentum con-
servation

∑4
i=1 pi = 0 and the on-shell conditions p2i = 0. By applying a change of variables

and using the so-called dual coordinates, which is often employed in planar integrals like box
integral, the previous integral is transformed to,

Ibox =

∫
dDy

iπD/2

1

(y − y1)2(y − y2)2(y − y3)2(y − y4)2
. (3.2.2)
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Figure 3.2.1: One-loop box integral

Now we want to derive the integral family of the one loop box integral. For this goal, we need
to generalize this integral by assigning a general integer power to each propagator,

Ia1,a2,a3,a4 =

∫
dDy

iπD/2

4∏
i=1

1

[(y − yi)2]ai
. (3.2.3)

The on-shell condition still holds, (y1 − y2)
2 = (y2 − y3)

2 = (y3 − y4)
2 = (y4 − y1)

2 = 0.
This integral is associated to the box Feynman graph with propagators up to a general powers
if ai > 0 for all i. By omitting one of the propagators, or in other words, annihilating one of
the powers, i.e. ai = 0 for the ith-power, it yields a triangle integral and for ai < 0 we have
factors in the numerator. Ia1,a2,a3,a4 with different integer value of ai, as the arbitrary power
of propagators, defines the integral family of the box diagram.
In principal, the integrals which are members of a family are not independent and one can find
some relations between the members of this family. By integration by part (IBP) technique
one can find linear relations which can relate different integrals of the family. In the following
we will show how one can derive these relations.
One derives identities by knowing that total derivatives vanish in dimensional regularization,
it means, ∫

dDy

iπD/2

∂

∂yµ
ξµ

4∏
i=1

1

[(y − yi)2]ai
= 0, (3.2.4)

where ξ can be ξ = y− y1, as an example and it is a given vector. If we apply the differential
operator on the rest of the integrand and expand the terms, we can obtain the linear relation
between different integrals of the family, which have different powers a1, ..., a4. To show these
relations in a more clear way, Henn in [40] introduced Y ±

i operators as follows,

Y ±
1 Ia1,a2,a3,a4 = Ia1±1,a2,a3,a4 , (3.2.5)
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and it operates in the same way for other integer values of i ∈ {1, . . . , 4} in Yi. The operator Y ±
i

does not have a deep mathematical meaning, it has been introduced just to simplify showing
the relations between different integrals with different powers. Then the IBP relations looks
like,

[(D−2a1−a2−a3−a4)−(y1−y3)2a3Y +
3 +(−a2Y +

2 −a3Y +
3 −a4Y +

4 )Y −
1 ]Ia1,a2,a3,a4 = 0. (3.2.6)

For getting the basis, i.e. Master integrals, one has to continue applying this relation to reach
integrals with minimum possible value of a =

∑
ai, where some of ai’s are possibly zero. For

the box integral case there are three Master Integrals. They can be chosen to be the s- and
t-channel1 bubble integrals and the box integral itself, I0,1,0,1, I1,0,1,0 and I1,1,1,1, respectively.
As examples we have,

I2,1,1,1 =
D − 5

s
I1,1,1,1 −

4(D − 5)(D − 3)

(D − 6)st2
I0,1,0,1 (3.2.7)

I1,1,0,1 =
2(D − 3)

(D − 4)t
I0,1,0,1 (3.2.8)

or schematically it can be shown like,

=
D − 5

s
− 4(D − 5)(D − 3)

(D − 6)st2
, (3.2.9)

=
2(D − 3)

(D − 4)t
, (3.2.10)

where dot shows a doubled propagator (a squared propagator).
Mainly if we can find IBP relations for a family integrals, it means that the master integrals
are finite. Here, we showed a box integral as an example, but this approach for finding the
basis of a family can be applied for other general cases, too.

3.2.1 Differential equations

So far we have shown that there is a finite-dimensional basis for a given family of Feynman
integrals. By computing the basis, one can get the result of other members of the family by
linear combinations of the basis. It means one just need to know the result of the Master Inte-
grals. As it has been already outlined, one can calculate an integral by solving the differential

1In the dual coordinations it is s = (y1 − y3)
2, t = (y2 − y4)

2.
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equations it satisfies. A family of Feynman integral is closed under the differentiating w.r.t
the external momenta, therefore, one can represent the result of the differentiation by a linear
combination of basis integrals.
In the case of family of one-loop box Feynman integrals, the kinematic variables are s and t
and with the change of variables was done, they depend to vectors yi only. We note that the
differential operators, here ∂s and ∂t, have to commute with the on-shell and momentum con-
servation constraints. By applying some algebraic manipulations similar to the IBP process,
one can see that the result of the differentiation on a member of the family have to be a linear
combination of the basis ~f , it means it looks like,

∂s ~f(s, t; ε) = As(s, t, ε)~f(s, t; ε) (3.2.11)

∂t ~f(s, t; ε) = At(s, t, ε)~f(s, t; ε), (3.2.12)

As and At are N ×N rational function-valued matrices with N being the number of basis and
D = 4− 2ε. For the one-loop box family integral, we have already mentioned the three basis
integrals and we have,

As =

 0 0 0
0 −ε/s 0

−2(1−2ε)
st(s+t)

2(1−2ε)
s2(s+t)

−s+t+εt
s(s+t)



At =

 −ε/t 0 0
0 0 0

−2(1−2ε)
t2(s+t)

−2(1−2ε)
st(s+t) − s+t+εs

t(s+t)

 .

3.2.2 Banana integrals as master integrals

Since this thesis is mostly about the banana Feynman integrals and how to evaluate them, in
this subsection their importance as master integrals for other Feynman integrals is discussed.
One-loop case First we want to show the bubble integral which appears as inhomogeneous
part of differential equation for the one-loop four-point function [41].
Fig.3.2.1 shows a one-loop four point function, the so-called box integral, with pi as the
external momenta. By taking logarithmic derivatives with respect to the external momenta
we have,

pµ1
∂

∂pµ1
= − + , (3.2.13)

where the right Feynman graph at the right hand side has a doubled propagator (a squared
propagator) and a propagator has been canceled. Using IBP relations it yields,
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=
D − 3

p2 · (p1 + p3)
[

1

(p1 + p2 + p3)2

− 1

(p1 + p3)2
] (3.2.14)

where pijk ≡ p1 + p2 + p3. Upon inserting relation 3.2.14 in relation 3.2.13, one obtains
an inhomogeneous first order differential equation. The bubble integral is not reducible to
simpler subtopologies, therefore by knowing the result of bubble integral, it is possible to
solve equation 3.2.13 and get the result of the one-loop box integral. In [41], one can find
much more relations between the integrals of one-loop box Feynman integral.

Two-Loop case There are also interesting examples of sunset integral as master integrals for
two-loop four-point functions in [41], like,

=
3D − 8

(D − 4)p2
(3.2.15)

=
3(D − 3)(3D − 10)

(D − 4)2(p1 − p2)2

+
4(D − 3)2

(D − 4)2(p1 − p2)2

− 6(D − 3)(3D − 8)(3D − 10)

(D − 4)3(p1 − p2)3
(3.2.16)

Three-Loop case Finally we want to show an example where three-loop banana integrals
appears as the master integral for more complicated Feynman integrals. For this, we have to
introduce the triangle with two massive loops shown in Fig. 3.2.2.
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Figure 3.2.2: Triangle with two massive loops. Dashed lines present massless propagators.

The Family of this Feynman integral is given by [42]:

I(a1, . . . , a5) =
e3εγ

(iπD/2)3

∫
dDk1dDk2dDk3

(1− k23)
a1(1− (k2 + k3)2)a2(1− (k1 + k2)2)a3(1− (k1 + p)2)a4(−k21)a5

(3.2.17)
and D = 4− 2ε. As mentioned before, by the help of IBP relations one can get seven master
integrals for the family associated to the triangle with two massive loops,

I(0, 2, 2, 2, 0), I(0, 2, 2, 2, 1), I(1, 1, 1, 0, 1), I(1, 1, 1, 1),

I(2, 1, 1, 1), I(2, 1, 2, 1), I(2, 2, 1, 1, 1). (3.2.18)

Here I(1, 1, 1, 1) is three-loop banana integral and I(2, 1, 1, 1) and I(2, 1, 2, 1) are three-loop
banana integral with one and two squared propagators, respectively. Figure 3.2.3 shows these
diagrams.

Figure 3.2.3: From left to right, I(1, 1, 1, 1), three-loop banana integral and I(2, 1, 1, 1) and I(2, 1, 2, 1) three-
loop banana integral with one and two squared propagators, respectively.
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4.1 l-loop banana diagram in the toric approach

The l-loop banana diagrams have a geometric interpretation that lets us to use toric geom-
etry to evaluate them. This geometric interpretation originates from the graph polynomial
representation of a Feynman diagram which is obtained after Feynman parametrization and
evaluation of many Gaussian integrals1. First, we will show how to get to the Feynman
parametrization. Later, we will show that for the banana type diagrams in two space-time
dimensions, the exponent of the first Symanzik polynomial vanishes and the exponent of the
second Symanzik polynomial is one. This simplifies the form of these integrals and offers an
algebro-geometric approach, known in string theory, to evaluate them. The denominator of
the integrand as a Newton polynomial defines a Calabi-Yau hypersurface. The corresponding
banana diagram is viewed as a relative period of this Calabi-Yau hypersurface. Employing the
GKZ system of differential equations, we can construct a basis of periods on the Calabi-Yau
variety at the maximal unipotent monodromy point. Extending the GKZ system to inhomo-
geneous differential operators we can write down a complete set of functions parametrizing
the full banana amplitude.

4.1.1 Feynman parametrization

Figure 4.1.1: A two loop Feynman diagram

In this subsection we introduce Feynman parametrization which helps us to present Feyn-
man integrals in a simpler form which is more suitable to extract the algebro-geometric inter-
pretation.
Figure 4.1.1 shows a two loop graph with three external momenta and six internal momenta.
All three external momenta are given to be outwards, therefore we have,

p1 + p2 + p3 = 0. (4.1.1)

In l-loop Feynman graphs, from n internal momenta only l number of them, the so-called
loop momenta, are independent2 and the other (n− l) ones are fixed by the external and loop

1For a review of the graph theoretical representation of Feynman diagrams we refer to [4].
2l is the first Betti number of the graph, as well.
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momenta. If ki’s are loop momenta, then the internal momenta qi’s, in our example, are given
by,

q1 = k1, q2 = p2 + k1, q3 = p1 − k1 (4.1.2)
q5 = k2, q4 = p1 + p3 − k1 − k2, q6 = p3 − k2. (4.1.3)

Each internal momentum in general can be presented by a linear combination of the external
momenta pi’s and the loop momenta ki’s [4],

qi =
l∑

j=1

αijkj +
m∑
j=1

βijpj , αij , βij ∈ {−1, 0, 1}. (4.1.4)

Now, let’s start with the process of Feynman parametrization. We already know that a
scalar Feynman l-loop integral in D dimensions with n propagators is given by [43,44]:

I = (µ2)ν−lD/2

∫ l∏
r=1

dDkr

iπ
D
2

n∏
j=1

1

(−q2j +m2
j )

νj
(4.1.5)

where µ is an arbitrary mass scale and qj are linear combinations of the external and l loop
momenta with an arbitrary power of νj . Also, kr’s are loop momenta. For applying the Feyn-
man parametrization formula, we use an integral representation of the free scalar propagator
as follows,

i

q2 −m2
=

∫ ∞

0
dα eiα(q

2−m2) (4.1.6)

or for our case we have,

n∏
j=1

1

(−q2j +m2
j )

νj
=

Γ(ν)∏n
j=1 Γ(νj)

∫
xj≥0

dnxδ(1−
n∑

j=1

xj)

∏n
j=1 x

νj−1
j

(
∑n

j=1 xj(−q2j +m2
j ))

ν
(4.1.7)

for ν =
∑n

j=1 νj . Also there is the following identity,

1

l1l2
=

∫ 1

0
dx

1

(xl1 + (1− x)l2)2
. (4.1.8)

Then, we insert them into (4.1.5) and by the help of translational invariance of the loop
integral, the Feynman integral looks like:

I =
Γ(ν − lD/2)∏n

j=1 Γ(νj)

∫ ∞

0

 n∏
j=1

dxjx
νj−1
j

 δ(1−
n∑

i=1

xi)
Uν−(l+1)D/2

Fν−lD/2
, (4.1.9)

xi are Feynman parameters and obviously they are functions of loop momenta. U and F , which
are homogeneous functions of Feynman parameters, are called first and second Symanzik



24 CHAPTER 4. BANANA FEYNMAN INTEGRALS

polynomials, respectively. And they are derived from the following steps. We can present
the denominator of the integrand in (4.1.7) by,

n∑
j=1

xj(−q2j +m2
j ) = −

l∑
r=1

l∑
s=1

krMrsks +
l∑

r=1

2kr ·Qr + J, (4.1.10)

with M , a l× l matrix with scalars as entries and Q as a l-dimensional vector with four-vector
as entries. Then Symanzik polynomials are3,

U = det(M), F = det(M)(J +QM−1Q). (4.1.11)

U is linear in each Feynman parameter and it is of degree l. But F is linear only for the
massless case, i.e. when all internal masses are zero and it is of degree l + 1. For the shown
example we have,

M =

(
x1 + x2 + x3 + x4 x4

x4 x4 + x5 + x6

)
(4.1.12)

Q =

(
(x3 + x4)p1 − x2p2 + x4p3

x4p1 + (x4 + x6)p3

)
(4.1.13)

J = −2x4(p1 · p3), (4.1.14)

and we can derive easily U and F from them. But, there is a much easier way to get the
Symanzik polynomials.

As it has been well explained in [4], one can obtain the Symanzik polynomials from the
so-called spanning trees and spanning forests defined in the graph theory. For a given
l-loop Feynman graph G a spanning tree T is a connected sub-graph that contains all vertices.
We get a spanning tree by deleting l internal edges in a way that the graph remains connected
and there would be no loop. Obviously, there could be more than one spanning tree for a
graph. Figure 4.1.2 shows three examples of five possible spanning trees of the graph shown
in Fig. 4.1.1. Those sub-graphs have been obtained by deleting two edges of the graph.

Figure 4.1.2: Three possible spanning trees of the graph shown in Fig. 4.1.1.

A spanning forest F of a given graph G is a generalization of spanning tree by omitting the
3For µ = 1



4.1. L-LOOP BANANA DIAGRAM IN THE TORIC APPROACH 25

requirement that the graph should be connected; but like spanning tree it has to contain all
the vertices of G. A k-forest Tk, has k connected trees Ti for i = 1, . . . , k and it is derived by
deleting l + k − 1 edges. Figure 4.1.3 shows two examples of eleven possible 2-forests of the
graph shown in Fig. 4.1.1.

Figure 4.1.3: Two examples of eleven possible 2-forests of the graph shown in Fig. 4.1.1.

Now that we got familiar with the concept of spanning trees and spanning forests, we can
show that the Symanzik polynomials can also be obtained by the following equations,

U =
∑
T∈T1

∏
qi /∈T

xi, (4.1.15)

F =

 ∑
(T1,T2)∈T2

∏
qi /∈(T1,T2)

xi

 ∑
pj∈PT1

∑
pk∈PT2

pj · pk

+ U
n∑

i=1

xim
2
i , (4.1.16)

with qi /∈ T it means the edge which has been cut to get the corresponding spanning tree T
and PTi is the set of external momentum of Ti. For example, for the graph on the right in
Figure 4.1.3 it is,

PT1 = {p1}, PT2 = {p2, p3} (4.1.17)

For the banana graph, obtaining the spanning trees and spanning forests is straightforward.
As it can be seen in Figure 4.1.4, in the general case of banana Feynman graph, to get a
spanning tree one has to remove all the internal edges but one and to obtain the only possible
spanning forest, one has to cut all edges. Then for a l-loop banana diagram we have,

U =

l+1∑
i

∏
j 6=i

xj , (4.1.18)

F = x1x2 · xl+1p
2 + U

n∑
i=1

xim
2
i , (4.1.19)

where p is the only external momentum.
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Figure 4.1.4: Respectively, the spanning tree and spanning forest of a general l-loop banana diagram

4.1.2 l-loop banana diagram

Now that we know how to do the Feynman parametrizations and to obtain the first and second
Symanzik polynomials, we apply the same steps for the banana Feynman integrals to extract
the geometric interpretation and benefit the method known in algebraic geometry to solve
them.
The Feynman integral related to a l-loop banana diagram of a scalar field in 2d QFT with the
corresponding interactions is shown in Figure 4.1.5. After a Feynman parametrization, it is
given by:

Fσl
(t, ξi) =

∫
σl

µl
Pl(t, ξi;x)

=

∫
σl

µl(
t−
(∑l+1

i=1 ξ
2
i xi

)(∑l+1
i=1 x

−1
i

))∏l+1
i=1 xi

. (4.1.20)

Here, xi are the homogeneous coordinates of the projective space Pl and the l real dimensional
integration domain σl is defined as

σl = {(x1 : . . . : xl+1) ∈ Pl|xi ∈ R with xi ≥ 0, ∀i} . (4.1.21)

With a holomorphic l measure µl,

µl =

l+1∑
k=1

(−1)k+1xkdx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxl+1 . (4.1.22)

The parameters or moduli in (4.1.20), t and ξ, are dimensionless parameters which are defined
as t = K2

µ2 and ξ = Mi
µ for i = 1, . . . l+1, where K is the external momentum, Mi are the l+1

masses and µ is an infrared scale.
Later we will show that (4.1.20) is the GKZ period integral for a Calabi-Yau hypersurface

in a toric ambient space.

4.1.3 Geometry associated to l-loop banana diagram

The zero locus of the denominator of the integral defines a singular family of (l − 1)-fold
Calabi-Yau hypersurfaces Ms as,

Ms =
{
Pl(t, ξi;x) = 0|(x1 : . . . : xl+1) ∈ Pl

}
. (4.1.23)
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K K

M1

M2

M3

Ml+1

Figure 4.1.5: The l-loop banana diagram

Due to the standard arguments, see e.g. [45], Ms is a complex Kähler manifold with trivial
canonical class K = 0, hence a Calabi-Yau space. The first fact follows by the definition of
Ms as hypersurface in projective space Pl and the second as for a homogeneous polynomial
Pl of degree deg(P ) in Pl the canonical class is given in terms of the hyperplane class H of Pl

as [45] −K = c1(TMs) = [(l+1)−deg(P )]H and deg(P ) = (l+1). Note that given the scaling
of (4.1.22) this degree makes the integrand of (4.1.20) well defined under the C∗ scaling of the
homogenous coordinates defining Pl. Embedded in Pl the hypersurface is a singular Calabi-Yau
space. Due to the Batyrev construction there is a canonical resolution of these singularities to
define a smooth Calabi-Yau family, which we discuss next following [16, 11,18, 25]. A Calabi-
Yau manifold M of complex dimension n = l − 1 has two characteristic global differential
forms. Since it is Kähler it has a Kähler (1, 1)-form ω defining its Kähler– or symplectic
structure deformations space. The triviality of the canonical class implies the existence of a
nowhere vanishing unique holomorphic (n, 0)-form that plays a crucial role in the description
of the complex structure deformations space of M .

Calabi-Yau hypersurfaces in toric ambient spaces

The so-called Newton polynomial, noted as P∆l
, is defined by,

Pl(t, ξi;x) =: P∆l

l+1∏
i

xi . (4.1.24)

The exponents of each monomial of P∆l
, w.r.t. the coordinates xi, i = 1, . . . , l+1, corresponds

to a point in a lattice Zl+1. The convex hull of all these points in the natural embedding of
Zl+1 ⊂ Rl+1 defines an l-dimensional lattice polyhedron. The dimension is reduced due to the
homogeneity of P∆l

and we denote the polyhedron4 that lies in the induced lattice Zl ⊂ Rl by
∆l.

We considered a canonical basis ei for Λ = Zl ⊂ Rl = ΛR. The l(l + 1) vertices defined by
(4.1.20) and (4.1.24) which span the polytope ∆l

5, are,

∆l = Conv
(
{±ei}li=1 ∪ {±(ei − ej)}1≤i<j≤l

)
. (4.1.25)

4One calls P∆l the Newton polynomial of ∆l and ∆l the Newton polyhedron of P∆l .
5For l = 1, 2, 3 these polytopes are depicted in Figures 4.2.1, 4.2.2 and 4.2.3.
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Note that ∆l contains beside these vertices no further integral point other then the origen
ν0 = (0, . . . , 0). These mean ∆l is integral and reflexive, which implies that the dual polytope
∆̂l ⊂ Λ̂R,

∆̂l = {y ∈ Λ̂R|〈y, x〉 ≥ −1, ∀ x ∈ ∆l}, (4.1.26)

is also an integral and reflexive lattice polyhedron. Note that ̂̂∆l = ∆l and concretely ∆̂l is
given by

∆̂l = Conv

 l⋃
k=1

(
l
k

)⋃
r=1

l∑
i=1

I
(k),r
i êi ∪

l⋃
k=1

(
l
k

)⋃
r=1

l∑
i=1

(−I(k),ri êi)

 , (4.1.27)

where êi is a basis of the lattice Λ̂R and the I(k),r for r = 1, . . . ,
(

l
k

)
are the sets of all distinct

permutations of k-number of ones and (l − k)-number of zeros. Indeed the 2(2l − 1) points
listed in (4.1.27) are all integral points of ∆̂l beside the origin. For the polytope ∆l itself it
means that it has 2(2l − 1) faces. From the structure of the vertices of ∆l it can be proven
that there is no integral point in the facets of the dual polytope. The combinatorics of all
facets of ∆̂ are equal, in particular they all have 2l−1 vertices.

A central theorem in the toric mirror construction of Batyrev [16] says that a smooth
resolution M of Ms with trivial canonical class is given by the constraint

P∆l
=
Pl(a;x)∏p

i=0 xi
=

∑
ν(i)∈∆l

ai
∏

ν̂(k)∈∆̂l

x
〈νi,ν̂k〉
k = 0 (4.1.28)

in the coordinate ring xi of P∆̂l
, where νi, i = 1, . . . , p and ν̂k, i = 1, . . . , p̂ run over all

integer points in ∆l and ∆̂l respectively6. Here I(∆l) is the number of lattice points in ∆l and
p = I(∆l) − 1. Analogous definitions apply for ∆̂l. Note that (4.1.28) defines an embedding
of the physical parameters t and ξi, i = 1, . . . , l + 1 into convenient but redundant complex
structure variables ai ∈ C, i = 0, . . . , l− 1. Both the physical as well as the ai parameters are
only defined up to scale. Note that we are a little cavaliar with the notations: The coordinate
rings xi, i = 1, . . . , l+1 in the definition (4.1.20) and the one xi, i = 1, . . . , p̂ in (4.1.28) are of
course different. However, we can get the former by blowing down the latter. This is achieved
by setting a suitable subset of p̂ − (l + 1) of the latter xi variables to one. Likewise given
P∆l

in xi, i = 1, . . . , l + 1 as in (4.1.24) and all C∗ action (4.1.30) we can uniquely extend it
to p̂ variables xi by requiring that the extended polynomial (or strictly speaking the proper
transform of (4.1.24)) is homogeneous, w.r.t. to all C∗ rescalings in (4.1.30).

The space P∆l
is a l-dimensional projective toric variety that can be associated to any

reflexive lattice polyhedra ∆l given a star triangulation 7 T of ∆l as

P∆l
=
Cp[x1, . . . , xp] \ ZT

(C∗)p−l
. (4.1.29)

6P∆l is a Laurent polynomial in which the minimal degree of the xi is −1, while Pl(a;x) = 0 is a polynomial
constraint, which also defines a smooth manifold in the coordinate ring .

7In a star triangulation all l-dimensional simplices of the triangulation covering the reflexive polyhedron
share the inner point, as one of their vertices.
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Here the C∗ actions that are divided out are generated by

xi 7→ xi(µ
(k))l

(k)
i , for i = 1, . . . , p , (4.1.30)

where µ(k) ∈ C∗ and the l(k) vectors span the (p− l)-dimensional space of all linear relations

L = {(l∗0, l∗1, ..., l∗p) ∈ Zp+1|l∗0ν̄0 + l∗1ν̄1 + ...+ l∗pν̄p = 0} (4.1.31)

among the points

A = {ν̄0, ν̄1, ..., ν̄p|ν̄i = (1, νi), νi ∈ ∆l ∩ Zl} . (4.1.32)

The triangulation 8 T determine the set of generators l(k) of L and the Stanley-Reisner ideal
ZT . The latter describes loci in Cp[x1, . . . , xp], which have to be excluded so that the orbits
of the C∗ action (4.1.30) have a well defined dimension. Positive linear combinations of l(k),
k = 1, . . . , n span the Mori cone, which is not necessary simplicial if n > p − l. It is dual
to the Kähler cone of P∆l

and all cones corresponding to all triangulations T of Σ∆l
form

the secondary fan, see [46] for a review how to calculate the l(k) vectors and the Stanley-
Reisner ideal combinatorial from a triangulation T . This combinatorics is implemented in
the computer package SageMath [47], which calculates the possible triangulations T and from
them the generators l(k) and the Stanley Reisner ideal ZT .

The Calabi-Yau (l − 1)-fold family defined as section of the canonical bundle P∆̂l
= 0 of

P∆l
is by Batryrev [16] conjectured to be the mirror manifold W = X∆̂l

of the manifold M ,
i.e. (M,W ) form a mirror pair with dual properties. A main implication of this proposal is
that the complex structure deformation space of M denoted by MCS(M) is identified with
the complexified Kähler or stringy Kähler moduli space MKCS(W )

MKCS(W ) = MCS(M) (4.1.33)

and vice versa. Note that the real Kähler moduli space is parametrized by the Kähler param-
eters tRk =

∫
Ck ω, where ω ∈ H1,1(M) and Ck span a basis of holomorphic curves in H1,1(M,Z).

In string theory the complexification is due to the Neveu-Schwarz two-form field b also in
H1,1(M). The complex variables tk =

∫
Ck ω + ib, k = 1, . . . , h1,1(M) parametrize locally the

complexified moduli space MKCS(W ) of W .
We will next discuss the space Mcs(M) of complex structure deformations of M . This

space is redundantly parametrized by the complex coefficients ai, i = 0, . . . , l(∆l) − 1 in
(4.1.28). The ai are identified by l+1 scaling relations on the coordinates of P∆̂l

and the au-
tomorphism of P∆̂l

that leaves M invariant but acts on the parametrizations of the polynomial
constraint P (a;x). The latter one parameter families of identifications of the deformation pa-
rameters are in an one-to-one correspondence to the points inside codimension one faces of ∆l.
Let us denote by Θj

k all faces of codimension k in ∆l labeled by j. I(Θj
k) denotes the number

of lattice points contained in Θj
k, while I ′(Θj

k) denotes the number of lattice points that lie in
the interior of Θ(j)

k . With this notation M has I(∆l)−(l+1)−
∑

j I
′(Θj

1) independent complex
8∆l defines canonically a fan Σ∆l and the definition of a smooth P∆l may require to add integer points

outside ∆l and to triangulate the fan Σ∆l . Such cases are discussed in [11,10].
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structure deformations. They correspond to elements in H1(M,TM) and are unobstructed on
a Calabi-Yau manifold M . The cohomology group H1(M,TM) is related to the cohomology
group H l−2,1(M) via the contraction with the unique holomorphic (l − 1, 0)-form.

Equation (4.1.33) implies that in particular the complex dimensions of these spaces have to
match, i.e. h1,1(X∆̂l

) = hl−2,1(X∆l
) and h1,1(X∆l

) = hl−2,1(X∆̂l
). From theses facts it follows

that the dimensions of these important cohomology groups are given by counting integral
points in the polytops9

h1,1(X∆l
) = I(∆̂l)− (l + 1)−

∑
j

I ′(Θ̂j
1) +

∑
j

I ′(Θ̂i
2)I

′(Θi
l−2)) = 2l+1 − l − 2

hl−2,1(X∆l
) = I(∆l)− (l + 1)−

∑
i

I ′(Θi
1) +

∑
i

I ′(Θi
2)I

′(Θ̂i
l−2)) = l2 .

(4.1.34)

For l = 3 the Calabi-Yau manifold M will be a nine-parameter family of polarized K3
surfaces. In this case the transversal cycles in h11 are counted hT11 = I(∆l)− (l + 1) = 9, i.e.
in total one has eleven transcendental and eleven algebraic two-cycles, which are counted by
hA11 = I(∆̂l) − (l + 1) = 11. For l = 4 the 16-parameter family of Calabi-Yau three-fold has
h11 = 26 and h21 = 16 and hence Euler number χ = 20. For l = 5 the Calabi-Yau four-fold
has h31 = 25, h11 = 57, h21 = 0 and χ = 540. Using an index theorem [22] one gets h22 = 422.

Since our polytope (4.1.25) has only
∑

i I(Θ
i
l) = l(l + 1) corners and one inner points the

manifold M has l2 complex structure deformations, which have to be eventually mapped to
our physical parameters t and ξi. Since the latter are equivalent up to scaling by µ we have
l + 1 independent physical parameters. Therefore, the map to the physical parameter space
has a huge kernel for high l and special effort has to be made to specify the relevant physical
subspace of Mphys(M) ⊂ Mcs(M) as described concretely in the example sections 4.2.1, 4.2.2
and 4.2.3.

Actual properties of the smooth canonical resolution of Ms, in particular its Kähler cone,
depend on the choice of the star triangulation T̂ of ∆̂l. However, these detailed properties of
the Kähler moduli space MKS(M) of M do not affect the complex moduli space MCS(M) and
the integral (4.1.20) over closed cycles, like FT l , the integral over the T l torus. This maximal
cut integral depends only on the complex structure parameters. The blow up coordinate ring
allows however a useful description of the boundary contribution to Fσl

, see [48]. Moreover,
the identification (4.1.33) turns out to be very useful to introduce suitable coordinates on
MCS(M) to obtain solutions for the integral (4.1.20). Different star triangulations T of
the polyhedra ∆l correspond to different Kähler cones of the ambient space P∆l

of W and
correspond eventually10 to different Kähler cones of W . Each choice of the Kähler cone of
W , defines by mirror symmetry and the identification (4.1.33) canonical so called Batyrev
coordinates zi, i = 1, . . . , hl−2,1(M) = h1,1(W ) on MCS(M), at whose origin zi = 0 for all i

9The last terms after the first equal sign in the formulas in each line of (4.1.34) correspond to Kähler—
or complex structure deformations, which are frozen by the toric realization of the manifolds, respectively.
Likewise the third terms are absent in our case. The last equality holds only for the polyhedra given in (4.1.25)
and (4.1.27).

10If all curves that bound the Kähler cone of P∆l descend to the hypersurface W .
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there is a point of maximal unipotent monodromy in MCS(M). The coordinates zi are ratios
of the coefficients ai of P∆l

given for each triangulation by

zk = (−a0)l
(k)
0

∏
i

a
l
(k)
i
i , k = 1, . . . , p− l . (4.1.35)

The definition of the zk eliminates the scaling relation. Since in our case we have no codimen-
sion one points, i.e. no automorphism of P∆̂ leaving the hypersurface invariant and further
identifying the ai deformations, the zk are actual coordinates on MCS(M). In other simple
cases one can restrict in the definition of L (4.1.31) to linear relations of points, which are not
in codimensions one, the general case is discussed in [11,10]. In the moduli space of MCS(M)
as parametrized by the independent ai, the zk are blow up coordinates resolving singular loci
in discriminant components of the hypersurface P∆l

= 0 in MCS(M), so that these become
in the resolved model of the complex moduli space M̂CS(M) intersection points of normal
crossing divisors Di = {zi = 0}, i = 1, . . . , hl−2,1(M).

Of particular significance in the geometric toric construction of the differentials on M is
the coefficient a0 of the monomial

∏l+1
i xi in P (t, ξ;x) corresponding to the inner point in ∆l,

which is given in the physical parameters by

u := a0 = t−
l+1∑
i=1

ξ2i . (4.1.36)

The families that are just parametrized by u with the coefficients of all other points set
to one, i.e. in particular ξ2 = 1 for all i = 1, . . . , l + 1 is particularly symmetric. For l = 4,
i.e. Calabi-Yau three-folds, the family is known as the Barth-Nieto quintic. The form of this
family is conveniently given by a complete intersection in Pl+1 that can be readily generalized
to the ones

l+2∑
i=1

xi = 0 and
l+1∑
i=1

1

xi
+

1

uxl+2
= 0 . (4.1.37)

By solving for xl+2 and homogenizing one gets P∆l
= 0 in the equal mass case parametrized

by u and for equal masses ξ2i = 1 for all i = 1, . . . , l + 1.

Period integrals on M and maximal cut amplitude

For the discussion of the period integrals, which are very close to the integral of interest
(4.1.20), we start with a residue definition of the holomorphic (n, 0)-form Ω of the Calabi-Yau
manifold M of complex dimension n = l − 1 defined as hypersurface in a toric ambient space

Ω =

∮
γ

a0µl
Pl(a;x)

, (4.1.38)

where γ encircles the locus Pl = 0 in the toric ambient space and µl was defined in (4.1.22).
Given a basis Γi of the cycles in the middle dimensional homology Hn(M,Z) we can define
closed string period integrals

Π(Γ) =

∫
Γ
Ω . (4.1.39)
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The closed string periods are directly relevant as one of them describes the maximal cut inte-
gral. Moreover, by the local Torelli theorem hn−1,1 of them can serve as projective coordinates
of MCS and by Griffiths transversality the periods fulfill differential relations for odd n > 1,
algebraic relations for n = 2 and algebraic as well as differential relations for even n > 2.

At the point of maximal unipotent monodromy that is specified as the origin of the Batyrev
coordinates zi, i = 1, . . . h from (4.1.35), which are simply defined by the Mori cone l(k) vectors
of the mirror W , the Picard-Fuchs differential ideal is maximally degenerate. This point is
a point of maximal unipotent monodromy or short MUM-point. As a consequence that near
the MUM-point there is exactly one holomorphic period, and for k = 1, . . . , n there are hn−k,k

hor

periods whose leading multi-degree in log(zi), i = 1, . . . , hn−1,1 is of order k. For Calabi-
Yau n-folds with n > 2 the full cohomology groups Hn,0,Hn−1,1 are horizontal. By complex
conjugation this holds also for H1,n−1 and H0,n. In particular, for Calabi-Yau three-folds the
whole middle cohomology is horizontal. Beside this general structure an additional bonus in
the case of Calabi-Yau spaces given by hypersurfaces in toric ambient spaces is that there
is a n-cycle with the topology of a n-torus Tn ∈ Hn(M,Z) which yields that holomorphic
period $ := Π(Tn) explicitly. With the definitions (4.1.38) and (4.1.39) this integral yields an
(n+1)-times iterated residue integral over an Tn+1 in the ambient space, that can be readily
evaluated in terms of the l(k) vectors as

$ =

∮
|x1|=0

dx1
2πi

. . .

∮
|xn+1|=0

dxn+1

2πi

a0
Pl(a;x)

=
∑
{k}

Γ
(
−
∑h

α=1 l
(α)
0 kα + 1

)
∏p

l=1 Γ
(∑h

α=1 l
(α)
l kα + 1

) h∏
α=1

zkαα .

(4.1.40)
Here we use the coordinate ring x as in (4.1.20) and set xn+2 = 1. In the tuple {k} =
{k1, . . . , kh} each ki runs over non negative integers ki ∈ N0 and p is defined in (4.1.31).
Note that by definition the sum of the integer entries in each l(k) is zero, therefore they have
negative entries. For hypersurfaces and complete intersections the l(k)0 entry is non-positive
l
(k)
0 ≤ 0 for all k. However, for i > 0 the l(k)i can have either sign. Poles of the Γ-function at

negative integers in the denominator make the summand vanishing. This effectively restricts
the range of the {k1, . . . , kh} to a positive cone

h∑
α=1

l
(α)
j kα ≥ 0 . (4.1.41)

Restricting to the physical slice, i.e. to z(t, ξi) of the l-loop graph, means to parametrize
the ai, i = 0, . . . , h = l2 by the physical variables t, ξi. Due to the definition of (4.1.35) one
can find a splitting of the set of indices {α1, . . . , αh} into {α1, . . . , αl+1} and {αl+2, . . . , αh}
so that the variables {zαl+2

, . . . , zαh
} are either set to constant values or identified with the

variables zαj (t, ξ), i = 1, . . . , l + 1. A key observation in the examples is that the range
(4.1.41) is such that the contribution from the summation over the kαj , j = l+2, . . . h to each
monomial

∏l+1
i=1 z

ki
αi

is finite. This implies in that (4.1.40) can also be given non-redundantly
in l + 1 physical parameters zαj (t, ξ), i = 1, . . . , l + 1 exactly to arbitrary order. The range
(4.1.41) and (4.1.40) can also be calculated directly as follows: Expanding in the integrand
a0/Pl(x, a) = [1/

∏
i xi] [1/(1− 1/a0(. . .))] the second factor as a geometric series and noticing
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that only the constant terms of it contribute to the integral yields the result. Applying this
to the Pl in (4.1.20) yields the all (l = n+ 1)-loop maximal cut integrals

FT l(t, ξi) =
$ (z(t, ξi))

t−
∑l+1

i=1 ξ
2
i

(4.1.42)

as an exact series expansion with finite radius of convergence for regions in the physical
parameters in which zk(t, ξi) are all small.

In principal, one can analytically continue this to all regions in the physical parameter
space. This task can greatly aided if one knows the Picard differential ideal that annihilates
$ and all other periods. The derivation of the latter will be discussed in the next section. It
certainly helps if one knows all other periods near zk = 0. Because of the structure of the
logarithmic solutions at the MUM-point these can by easily given by the Frobenius method.
This is done by introducing h auxiliary deformation parameters ρα in

$(z, ρ) =
∑
{k}

c(k, ρ)zk+ρ, (4.1.43)

where zk+ρ :=
∏h

α=1 z
kα+ρα
α and

c(k, ρ) =
Γ
(
−
∑h

α=1 l
(α)
0 (kα + ρα) + 1

)
∏p

l=1 Γ
(∑h

α=1 l
(α)
l (kα + ρα + 1

) . (4.1.44)

With this definition $(z) = $(z, ρ)|ρ=0 the hn−1,1 linear logarithmic solutions are given by

Π(Γα) = [(1/(2πi)∂ρα$(z, ρ)]|ρ=0 = 1/(2πi)Π(Tn) log(zα) +O(z) . (4.1.45)

It can be shown that Γα ∈ Hm(M,Z). All other solutions corresponding to the rest of the
cycles Γβ ∈ Hn(M,Z) are of order 2 ≤ k ≤ n in the logarithms and of the form

Π(Γβ) = [cα1...αk
β ∂ρα1

. . . ∂ραk
$(z, ρ)]|ρ=0 , (4.1.46)

where the tensors cα1...αk
β contain transcendental numbers fixed by the Γ̂-class conjecture and

classical intersection theory on W , see [25] for a review.

GKZ systems and Picard Fuchs differential ideal

Gel′fand, Kapranov and Zelevinskĭ [49] investigated integrals of the from

FGKZ
σ =

∫
σ

r∏
i=1

P (x1, . . . , xk)
αixβ1

1 · · ·xβk
k dx1 · · · dxk , (4.1.47)

which can be specialized to (4.1.20), which is in turn similiar to (4.1.40), even though in
(4.1.40) we took the integration domain to be a closed cycle Tn+1, while [49] just speek of
cycles σ.
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In (4.1.20) σ is a closed cycle only for the maximal cut case which leads to (4.1.40), oth-
erwise σ is a chain. In this case the corresponding differential ideal, which is fulfilled by the
integral (4.1.47) is inhomogeneous. The GKZ integrals can be viewed as systematic multivari-
able generalization of the Euler integral 2F1(a, b, c; z) =

∑∞
n=0

(a)n(b)n
n!(c)n

= Γ(c)
Γ(b)Γ(b−c)

∫ 1
0 t

(b−1)(1−
t)(b−c−1)(1 − zt)−a, which solves Gauss hypergeometric systems and $ as a specially simple
generalized multivariable hypergeometric series.

As mentioned at the end of the introduction to subsection (4.1.3) at least for integer
exponents the requirement that these higher dimensional integrals are well defined under the
scaling symmetries of the parameters, that appear in physical Feynman integrals, is equivalent
to the vanishing of the first Chern class and hence these Feynman integrals with r = 1,
α1 = −1 = −n1 are closely related to period integrals over the holomorphic (n, 0)-form in
the cohomology group Hn,0 of the Calabi-Yau manifolds M defined as hypersurfaces in toric
varieties [11, 50, 10]. The same argument relates integrals with r > 1 and αi = −1 = −ni to
complete intersection Calabi-Yau spaces [17–19].

More general integrals are related to the former by taking derivatives w.r.t. to the in-
dependent complex moduli parameters say a. In particular, such derivatives change the
Hodge type of the integrand as follows. Let F p(M) =

⊕
l≥pH

l,n−l(M) a Hodge filtration
Hn = F 0 ⊃ F 1 ⊃ . . . ⊃ (Fn = Hn,0) ⊃ Fn+1 = 0, then Hp,q(M) = F p(M) ∩ F q(M), and
the F p(M) can be extended to holomorphic bundles Fp(M) over the complex family M over
MCS(M), with

∂kaFn(M) ∈ Fn−k(M) . (4.1.48)

Since the bundles Fp(M) are of finite rank, there will be differential relations among finite
derivatives w.r.t. to the moduli, which implies that the period integrals over closed cycles are
annihilated by finite order linear differential operators Dk, where the derivations are w.r.t. the
moduli and the coefficients are rational functions in the moduli. In particular, one can specify
a differential ideal, called the Picard-Fuchs differential ideal, Dk, k = 1, . . . , d that determines
the periods as finite linear combination of its system of solutions.

One key tool to find the differential relations between these integrals is the Griffiths re-
duction method, which relies on the following partial integration formula, that is valid up to
exact terms, i.e. holds under the integration over closed cycles [51]∑

k 6=j

nk
nj − 1

Pj

Pk

Q∂xiPk∏r
l=1 P

nl
l

µ =
1

nj − 1

Pj∂xiQ∏r
l=1 P

nl
l

µ− Q∂xiPj∏r
l=1 P

nl
l

µ , (4.1.49)

where Q(x) are polynomials of the appropriate degree to ensure the scale invariances and µ is
straightforward generalization of the measure (4.1.22). Such Q(x) arise automatically, when
partial derivative w.r.t. the moduli are taken. Using these equations and Gröber basis calculus
one can reduce higher derivatives w.r.t. to the moduli to lower ones and find eventually the
complete differential ideal. These relations between rational functions are also used in the
literature not only to compute differential equations for Feynman integrals but also for finding
so called master integrals. If these master integrals are known with the partial integration
relations (4.1.49) the whole Feynman integral is evaluated. For a review on master integrals
in Feynman graph computation we refer to [52].
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However, this method is computationally very expensive in multi moduli cases. Therefore,
we employ as far as possible a different derivation of differential relations which follow from
scaling symmetries that follow from the combinatorics of the Newton polytope, known as GKZ
differential system. For this purpose we define

Ω̂ =

∮
γ

µl
Pl(a;x)

and Π̂σ =

∫
σ

µl
Pl(a;x)

. (4.1.50)

Now each linear relation among the points in the Newton polytope as expressed by the
l(k)-vectors, k = 1, . . . , l2 yields a differential operator Dl(k) in the redundant moduli a. More-
over, the infinitesimal invariance under the (C∗)n+2 scaling relations yields further differential
operators Zj , j = 1, . . . , n+ 2. Together they constitute an resonant GKZ system [8,53]:

D̂l(k)Π̂σ =

 ∏
l
(k)
i >0

(
∂

∂ai

)l
(k)
i

−
∏

l
(k)
i <0

(
∂

∂ai

)−l
(k)
i

 Π̂σ = 0 and (4.1.51)

ZjΠ̂σ =

(
p∑

i=0

ν̄i,jθai − βj

)
Π̂σ = 0 (4.1.52)

with β = (−1, 0, ..., 0) ∈ Rn+2 for the hypersurface case and θa = a∂a, in the form that applies
to the integrals in Calabi-Yau hypersurfaces in toric varieties [16,11], for which the integration
domain σ is also scale invariant. In this case we can use the relations ZjΠ̂σ = 0 to eliminate
the ai in favour of the scale invariant zi defined in (4.1.35) using ai∂ai =

∑l2

k=1 l
(k)
i zk∂zk and by

the commutation relation [θa, a
r] = rar applied previously to a0 we obtain operators Dl(k)(z)

that annihilate Π(Γ). As it turns out these operators do not determine the Π(Γ) as they admit
further solutions [11]. To obtain the actual Picard-Fuchs differential ideal one can factorize the
Dl(k)(z) and disregard trivial factors that allow for additional solutions which have the wrong
asymptotic to be periods [11, 17]. In practice the most efficient way to get the Picard-Fuchs
differential ideal is often to make an ansatz for additional minimal order differential operators
that annihilate (4.1.40) and check that the total system of differential operators allows no
additional solutions then the ones specified in (4.1.45) and (4.1.46).

One of our main results is that we give the general strategy to derive the Picard-Fuchs
differential ideal in the physical parameters zi(t, ξ), i = 1, . . . , l + 1 and give it explicitly
for one, two and three loops in equations (4.2.5), (4.2.25) and in (A.1)-(A.4) for the three-
loop banana graph. These operators determine the maximal cut integral everywhere in the
parameter space. By applying these operators to the geometrical chain integral

Πσl
=

∫
σl

a0µl
Pl(a;x)

(4.1.53)

and integrating explicitly over the boundary of the chain we can find the inhomogeneous
differential equations and the corresponding special solutions describing the full l-loop banana
graphs explicitly up to three loops.

Let us end this section with some remarks on additional structures for the periods of
Calabi-Yau n-folds, which are relevant to understand the differential ideal that determines
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the maximal cut integral better. For a given basis of transcendental n-cycles Γi ∈ Hn(M,Z)
one can find dual elements γj ∈ Hn

hor(M,C) so that
∫
Γi
γj = δji and expand the holomorphic

(n, 0)-form Ω =
∑

iΠ(Γi)γ
i. Let us define for each set A of indices of order r the order r

differential operator ∂rA := ∂za1 . . . ∂zar . Then by (4.1.48) and consideration of type one gets
the transversality conditions [54]

∫
M

Ω ∧ ∂rAΩ = Π(Γi)Σ
ij∂rAΠ(Γj) =

{
0 if r < n

CA(z) if r = n ,
(4.1.54)

where CA are rational functions in the zi, known as Yukawa couplings for n = 3. The form
Σij =

∫
M γi ∧ γj is integer and symmetric for n even and antisymmetric for n odd. In the

latter case one can chose a symplectic basis for the γi. For the K3 or more generally n ≥ 2
and n even it implies that the solutions to the Picard-Fuchs differential ideal fulfill nontrivial
quadratic relations

Π(Γi)Σ
ijΠ(Γj) = 0 and Π(Γi)Σ

ij∂zkΠ(Γj) = 0 , ∀k . (4.1.55)

We will discuss the consequences at the level of the differential operator more in section 4.2.3.
For n = 3 it implies special geometry, see [25] for a review.

Geometrical and physical periods

The physical moduli space of the banana Feynman diagrams is parametrized by the l +
2 parameters (t, ξ1, ξ2, . . . , ξl+1), where additionally one of these can be scaled away. As
mentioned, compared to the moduli space parametrized by all Batyrev coordinates zi, the
physical moduli space gets much smaller as l grows. In the following we explain how one can
make a restriction onto the physical moduli space.

Besides this restriction there is another difficulty I have to mention. For the description
of the large moduli space through the Batyrev coordinates zi it is crucial to have a minimal
number of Mori cone generators. They are determined from the triangulation T of the poly-
tope11 ∆l. And from 4.1.34 we know that the minimum number of the Mori cone generators
(l-vectors) is l2. But there are few (and sometime no) fine and simplicial star-triangulations
which yield l2 Mori cone generators. Actually, for the sunset graph there is no triangulation
which gives us 4 Mori cone generators. In such a situation one starts with a triangulation
yielding a non-minimal number of Mori cone generators. We claim that one can still take out
l2 l-vectors describing the Feynman graph geometry appropriately. The choice of l2 vectors is
neither arbitrary nor unique but we can give some criteria12 for choosing them correctly. Dif-
ferent proper selections of l-vectors should at the end yield the same results for the Feynman
graph.

First of all the l2 vectors should be all linear independent over the real numbers. Secondly,
we want l + 1 l-vectors having a non-vanishing entry for the inner point which are important

11For l = 3 one can easily get all 26 star triangulations but for l = 4 there is an extremely large number of
different star triangulations, which is 620. Listing all of them cannot be done by a desktop computer.

12We do not claim that these criteria are necessary or sufficient.
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in the physical limit. Furthermore, we want that in the i-th components of all l-vectors there
is at least a positive entry. This should be true for all components i without the one for the
inner point. From the last condition we hope that it guarantees that the structure of solutions
is as we explained in section 4.1.3. This one can check by analyzing that the GKZ operators
defined in (4.1.52) do indeed annihilate the Frobenius solutions with positive powers (4.1.43).

We think that these conditions give a strategy to take out the required l2 mori cone
generators. For the sunset graph we have to follow this strategy and we give the results
in section 4.2.2. Although there exist fine and star-triangulations with nine l-vectors for the
three-loop banana diagram, we nevertheless applied our criteria on a non-simplicial cone. Also
in the three-loop case the criteria select a proper set of nine l-vectors yielding the same results
as presented in section 4.2.3 computed from a triangulation with minimal number of mori
cone generators.

Now the restriction onto the physical moduli space starts with using the inequalities
(4.1.41) such that the holomorphic solution (4.1.40) is evaluated exactly in the physical relevant
Batyrev coordinates. Having found this period on the physical slice we search for operators
annihilating it such that the set of common solutions to these operators form a basis of the
periods on the physical slice. This finally yields a basis of periods on the physical moduli
space. It is quite hard to give a universal description of these operators. In general they form
a differential operator ideal of linear, homogeneous differential operators and their explicit
form as for example their degree depend on the representation of the ideal. For our discussion
we write down an ansatz for a differential operator in terms of logarithmic derivatives of the
remaining Batyrev coordinates. Thereby, we start with second order operators with polyno-
mial coefficients which we make of smallest degree as possible. Typically, this ansatz yields a
large number of possible operators from which we have to take a generating set of the differen-
tial ideal. From cohomology arguments we expect as many single logarithmic solutions as the
number of interesting physical parameters, which strongly depends on the concrete banana
diagram. Therefore, we take as many operators until their number of logarithmic solutions
fits to the cohomological prediction. If the resulting solutions do still not satisfy all expecta-
tions, e.g. the number of higher logarithmic solutions, one has to extend the set of operators
with higher degree ones until all expected solutions are determined. In this way one finds a
generating set of operators for the differential ideal describing the physical periods. This part
of our method depends strongly on the given form of the physical holomorphic period which
is why we refer to our examples. We only remark that later it is crucial that the operators
and the physical solutions are expressed in the remaining physical Batyrev coordinates.

4.1.4 The complete banana diagram and inhomogeneous differential equa-
tions

So far, we have found a complete differential ideal with solutions spanning a basis of the
physical periods. Or said differently, these functions after dividing by the inner point describe
the maximal cut integral FT l . Now we extend our method to find the missing functions which
complete the function space for the full banana Feynman diagram Fσl

. By function space we
mean a set of functions which suitably combined yield the complete banana Feynman integral
(4.1.20). It turns out that for the banana graphs there is only a single additional function we
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have to compute.
Basically, we extend the homogeneous differential ideal to a set of inhomogeneous differen-

tial operators such that its solutions describe the full Feynman graph. These inhomogeneities
are found from the appropriate homogeneous operator by the following process: We let an op-
erator directly act on the geometric differential, which is given as the integrand of (4.1.53), and
perform then the integration over the domain σl. In this way we obtain for every homogeneous
operator a corresponding inhomogeneous one.

For this task the original parametrization of the differential is changed to the Batyrev
coordinates (4.1.35). This has a major advantage in the following. After applying the operators
on the differential we can integrate over the simplex σl. In contrast to a period integral the
integration range of the complete Feynman graph is not closed and such we get non zero after
integration. Unfortunately, these integrals can not be carried out analytically with generic
parameters. But they can be performed easily numerically. The advantage of including the
inner point and using the Batyrev coordinates is now that the numerical results can simply
be guessed. We claim that for the l-loop banana integrals they are only given as linear
combinations of logarithms in the Batyrev coordinates. In our calculated examples given in
section 4.2 we could always guess the inhomogeneities yielding a full set of inhomogeneous
operators.

In the literature there are already some methods known for computing relative periods
in a way that homogeneous differential equations describing usual periods are extended to
inhomogeneous ones. For examples in [12] a method for general toric varieties is explained how
to extend the GKZ method to relative periods. The key point for this method is the l-vector
description of the variety and its relative cohomology. The l-loop banana diagrams are not
entirely described through l-vectors and therefore this method can not be applied. Moreover,
there is the Dwork-Griffith reduction to obtain the homogeneous differential equations which
then can analogously be extended to inhomogeneous ones as in our method [3]. Although
Dwork-Griffith reduction can in principle be applied in any situation as explained before, for
computational reasons only the sunset graph can explicitly be done. Compared with known
methods our strategy uses the structure of the l-loop banana diagrams more efficiently and
produces results also for high loop orders.

Having found the inhomogeneous operators its solutions are given by the solutions of the
homogeneous operators together with a single special solution of the inhomogeneous system.
A special solution is found by an ansatz which has a similar logarithmic structure as the
homogeneous solutions. Only the power of the highest appearing logarithm is increased by
one compared to the other solutions. This closes the set of functions describing the l-loop
banana Feynman graph.

Our method gives a relatively small set of functions necessary to compute the banana
graphs. For example, with numerical computations the correct linear combination of these
functions evaluating to the Feynman graph can be fixed. We exemplify this on the sunset graph
in section 4.2.2. Moreover, a detailed analysis of the analytic structure of these functions based
on the inhomogeneous differential equations can be elaborated and produce new insights of the
Feynman graph, for instance branch cuts or singularities representing particle productions.
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4.2 Examples

In this chapter we apply the GKZ method on three different examples, the one-, two- and
three-loop banana diagram. This demonstrates how our general method is applied on explicit
Feynman integrals and moreover shows the power of our method. For the reader the difficulty
of our examples increases with the loop order and new appearing issues are highlighted and
discussed case by case.

4.2.1 Example 1: The bubble graph

As the first example we discuss the one-loop banana diagram which is also called the bubble
graph. This Feynman diagram can also be calculated directly with usual Feynman graph
techniques [43]. Nevertheless, we will use this simple example to introduce our method.

In the Feynman parametrization the bubble integral is given by

Fσ1(t, ξ1, ξ2) =

∫
x,y≥0

xdy − ydx

xy
(
t− (ξ21x+ ξ2y2)(

1
x + 1

y )
)

= −ξ1ξ2
∫
x,y≥0

xdy − ydx

x2 + uxy + y2
,

(4.2.1)

where in the second line the coordinates are rescaled and u =
ξ21+ξ22−t

ξ1ξ2
is introduced.

Following our method we associate to the bubble graph (4.2.1) the polynomial constrain

P1 = x2 + uxy + y2 (4.2.2)

in projective space P. For generic values of the parameter u this defines two different points in
P. It looks a bit artificial but we can give a toric description of this algebraic variety consisting
of two points. We take the Newton polytope of (4.2.2) which is shown in Figure 4.2.1.

u

Figure 4.2.1: The toric diagram for the bubble graph

It has a single l-vector and Batyrev coordinate

l = (−2; 1, 1) and z =
1

u2
. (4.2.3)

As explained in section 4.1 we expect two functions spanning the function space of the bub-
ble graph. One is coming from the maximal cut integral and the other one is a special solution
of the inhomogeneous differential equation corresponding to the bubble graph. Furthermore,
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there is only a single true parameter for which we take naturally the Batyrev coordinate z
from (4.2.3).

The holomorphic period can be computed directly from the integral or from the l-vector
(4.2.3)

$ =
1

2πi

∫
S1

xdy − ydx√
z(x2 + y2) + xy

= − 1

2πi

∫
S1

1

1 +
√
z(v + 1

v )

dv

v

= − 1

2πi

∫
S1

∞∑
n=0

n∑
m=0

(−1)n
(
n

m

)
zn/2v2m−ndv

v
= −

∞∑
n=0

(2n)!

(n!)2
zn = − 1√

1− 4z
,

(4.2.4)

where we have introduced the variable v = x
y . Moreover, $ satisfies the first order differential

equation
D$ = (1− 4z)θ$ − 2z$ = 0 (4.2.5)

with the logarithmic derivative θ = z∂z.
Now we apply the operator D from (4.2.5) on the integrand of the geometrical chain integral

(4.1.53) containing the inner point of the polytope u expressed through the Batyrev coordinate
z. At the end we relate this expression to the bubble graph simply by dividing through the
inner point. Fortunately, the integral in the bubble case can be computed analytically

DΠσ1 = D
∫
x,y≥0

u
xdy − ydx

x2 + uxy + y2
=

∫
x,y≥0

D xdy − ydx√
z(x2 + y2) + xy

= 1 . (4.2.6)

This extends the homogeneous differential equation (4.2.5) to an inhomogeneous one

(1− 4z)θ Πσ1(z)− 2z Πσ1(z) = 1 . (4.2.7)

A special solution to this inhomogeneous differential equation is given by

$S = $ log(z) + 2z + 7z2 + 74
3 z

3 + 533
3 z

4 + · · · . (4.2.8)

Then the general solution to the inhomogeneous differential equation (4.2.7) is given by
Πσ1 = $S +λ$ with λ ∈ C. We can relate this solution to the bubble graph by dividing with
the inner point u and rescaling it by −ξ1ξ2. The parameter λ can be fixed by calculating the
bubble graph (4.2.1) at a special point in moduli space, for example u = 1.

In the literature [55] the l-loop banana diagrams were analyzed in the equal mass case, i.e.
ξi = 1 for i = 1, . . . l+1. The one-loop bubble diagram satisfies the inhomogeneous first order
equation

t(t− 4)f ′1(t) + (t− 2)f1(t) = −2! . (4.2.9)

After dividing Πσ1 by the inner point this is exactly the differential equation it satisfies.
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4.2.2 Example 2: The sunset graph

Our second example deals with the two-loop Banana diagram also known as the sunset graph.
A different discussion of the sunset graph is given in [3] from which we adopt parts of our
notation.

The sunset Feynman graph is defined by

Fσ2(t, ξ1, ξ2, ξ3) =

∫
σ2

µ2
P2(t, ξ1, ξ2, ξ3;x)

=

∫
σ2

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

xyz
(
t− (ξ21x+ ξ22y + ξ23z)(

1
x + 1

y + 1
z )
) ,

(4.2.10)

with the integration domain defined in (4.1.21). It can be interpreted as a relative period on
an elliptic curve defined by the polynomial constraint

P2 = txyz − ξ21x
2y − ξ21x

2z − ξ21xyz − ξ22xy
2 − ξ22xyz − ξ22y

2z − ξ23xyz − ξ23xz
2 − ξ23yz

2

(4.2.11)

in an ambient space given by two-dimensional projective space P2 as explained in section 4.1.3.
Our approach is strongly based on this geometric interpretation. For convenience we rescale
the coordinates and introduce a simpler parametrization of the elliptic curve. The polynomial
is then given as

P2 = xy2 + yz2 + x2z +m1xz
2 +m2x

2y +m3y
2z + uxyz . (4.2.12)

u
m1

m2

m3

Figure 4.2.2: Toric diagram for the sunset graph

We notice that the polynomial (4.2.12) describes the blow up of P2 in three points which
we call in the following EB3. In [56] a nice analysis of the different blow ups of P2 is carried
out from which we can extract same information for the toric description. In Figure 4.2.2 the
polyhedron corresponding to (4.2.12) is shown. The polyhedron’s vertices are given by

ν2 = {(0,−1), (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0, 0)} . (4.2.13)
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The corresponding Mori cone generators are given by

l̃1 = (1,−1, 1, 0, 0, 0,−1) , l̃2 = (0, 1,−1, 1, 0, 0,−1)

l̃3 = (0, 0, 1,−1, 1, 0,−1) , l̃4 = (0, 0, 0, 1,−1, 1,−1)

l̃5 = (1, 0, 0, 0, 1,−1,−1) , l̃6 = (−1, 1, 0, 0, 0, 1,−1)

(4.2.14)

generating a non-simplicial cone. From the general discussion in section 4.1.3 we only need
four independent l-vectors and also that in all columns of (4.2.14) except the one corresponding
to the inner point there is at least one positive entry. This does still not yield a distinct choice
of four l-vectors but all of them can be used. We take for our collection of four l-vectors the
ones which restrict to the Mori cone generators of the cubic in P2 and the other blow ups of
P2 in one and two points. So we take in the following the four l-vectors

l1 = l̃1 , l2 = l̃2 , l3 = l̃3 and l4 = l̃4 . (4.2.15)

Toric geometry singles out a natural choice of parametrization of the algebraic variety given
by the Batyrev coordinates (4.1.35). These parameters are related to the ones in (4.2.11) and
(4.2.12) by

z1 = −m2m3
u = − ξ21

ξ21+ξ22+ξ23−t
, z2 = − 1

um3
=− ξ23

ξ21+ξ22+ξ23−t

z3 = −m1m3
u = − ξ22

ξ21+ξ22+ξ23−t
, z4 = − 1

um1
=− ξ21

ξ21+ξ22+ξ23−t
.

(4.2.16)

Upon collecting the main toric information of our problem we can start with our strategy.
The first part of our strategy will be the computation of the periods corresponding to the
maximal cut integral.

Let us note here in passing that in the elliptic curve case it is not necessary to solve
any differential equation to obtain the period integrals and hence the mass dependence of
the maximal cut integral. The periods are completely determined by modular functions as
follows from [56]: We can bring the constraint P2 = 0 (4.2.12) defining the elliptic curve into
Weierstrass form y2 = 4x3−xg2(u,m)−g3(u,m). This defines the modular parameter τ(u,m)
from the definition of the Hauptmodul j of PSL(2,Z) as

1728g23(u,m)

g32(u,m)− 27g23(u,m)
= j =

1

q
+ 744 + 192688q + 21493760q2 +O(q3) , (4.2.17)

where q = exp(2πiτ). Then the period
∫
aΩ/u which yields the maximal cut integral is given

in terms of the Eisenstein series as

∂ut(u) =

∫
a
Ω =

√
E6(τ(u,m))g2(u,m)

E4(τ(u,m))g3(u,m)
. (4.2.18)
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Moreover, the dual period
∫
bΩ can be obtained by special geometry of non-compact three-

folds as ∂t
∫
bΩ = − 1

2πiτ(u,m)) = ∂2t F (t), where F is the prepotential that features in local
mirror symmetry as generating function for the genus zero BPS invariants nβ0 , which is given
by

F (Q) = −c
ijk

3!
titjtk +

cij

2
titj + citi + c

∑
β∈H2(W,Z)

nβ0Li3(Q
β) . (4.2.19)

Here ti are the flat coordinates, Qi = exp(ti/2πi) and the c∗ are classical intersection numbers
on the mirror W . In [56] the Kähler classes ti for i = 1, . . . , 4 of the mirror have been identified.
These are linearly related to the Batyrev coordinates (4.2.16). With Qi = exp(ti/2πi) they
relate to the physical parameters as

Q = (Q1Q2Q3Q4)
1
3 , m1 =

(Q1Q3Q4)
1
3

Q
2
3
2

, m2 =
(Q1Q2Q4)

1
3

Q
2
3
3

, m3 =
(Q1Q2Q3)

1
3

Q
2
3
4

.

(4.2.20)
This allows to relate the full integer genus zero BPS expansion nβ0 in the four Kähler parame-
ters [56]

F = cl.+ L0,0,0,1 + L1,0,0,1 − 2L1,0,1,1 + 3L1,1,1,1 + 3L2,1,1,1 − 4L2,1,1,2 + 5L2,1,2,2

−6L2,2,2,2 + 5L3,1,2,2 − 6L3,1,2,3 + 7L3,1,3,3 − 36L3,2,2,2 + 35L3,2,2,3 − 32L3,2,3,3

+27L3,3,3,3 + 7L4,1,3,3 − 8L4,1,3,4 + 9L4,1,4,4 − 6L4,2,2,2 + 35L4,2,2,3

−32L4,2,2,4 − 160L4,2,3,3 + 135L4,2,3,4 − 110L4,2,4,4 + 531L4,3,3,3

−400L4,3,3,4 + 286L4,3,4,4 − 192L4,4,4,4 + Symijk(La,i,j,k) + · · ·

(4.2.21)

to the full set of physical parameters. Here Lβ := Li3(
∏4

i=1Q
βi
i ). In [48] BPS invariants are

given for the projective parametrization nijk. The relation to the geometrical BPS invariants
is
∑

a n
aijk
0 = nijk. It is clear from (4.2.20) and the symmetries of the polytop that the last

formula is symmetric in the ijk indices. Moreover, the one parameter specialization also noted
in [48] is given by nd =

∑
a,i+j+k=d n

aijk
0 . While we think that in the elliptic two-loop case

this relation of the BPS expansion to the Feynman graph is remarkable but not very useful,
it becomes more useful for the higher loop banana graphs as we explain in section 4.2.3.

The sunset maximal cut integral

The maximal cut integral of the sunset graph FT 2(t, ξ1, ξ2, ξ3) is defined by replacing the
simplex σ2 by a torus T 2. Instead of focusing on the maximal cut Feynman graph we rather
deal with the related geometrical period which includes additionally the inner point u of the
toric diagram. The expression

Π(T 2)(u,m1,m2,m3) =

∫
T 2

u
xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

xy2 + yz2 + x2z +m1xz2 +m2x2y +m3y2z + uxyz
(4.2.22)

describes a “usual” period on the elliptic curve EB3 and it is easily related to the maximal cut
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integral FT 2 by dividing with u. At the point of maximal unipotent monodromy the geomet-
rical period Π(T 2) = $ is given by a single holomorphic power series (4.1.40). Evaluating the
period (4.2.22) at a generic point in moduli space requires the knowledge of a period basis.
Such a period basis can be found as follows: Homology theory of a generic elliptic curve tells
us that there exists only a pair of one-cycles, i.e. H2(T

2) = Z2. So if we take the (1, 0)-form
a0µ2

P2
with a0 the inner point of the polytope and P2 the hypersurface constraint defining the

elliptic curve there are only two independent periods. Here it is important to remark that for
elliptic curves this statement is independent of the parametrization, in particular, independent
of the number of moduli. For the geometrical period Π(T 2) and therefore also for the maximal
cut integral FT 2 this means that there are two independent functions which linearly combined
yield (4.2.22) at a generic point in moduli space.

In our toric analysis it is convenient to use the Batyrev parameters defined in (4.2.16).
Later we will see that the usage of this particular choice of parametrization enables us to fully
determine the sunset graph. Moreover, it simplifies many of the subsequent results.

From the Mori cone generators (4.2.15) one can directly write down the holomorphic period
at the point of maximal unipotent monodromy given by

$(z) =
∑
m≥0

Γ (1 +m1 +m2 +m3 +m4)

Γ (1 +m1) Γ (1−m1 +m2) Γ (1 +m1 −m2 +m3) Γ (1 +m3 −m4)

· 1

Γ (1 +m4) Γ (1 +m2 −m3 +m4)
zm1
1 zm2

2 zm3
3 zm4

4

(4.2.23)

with the abbreviations z = (z1, z2, z3, z4) and m = (m1,m2,m3,m4). This is the most generic
four-parameter holomorphic period of EB3. The geometrical period (4.2.22) has one less pa-
rameter since one-parameter can be scaled away. Therefore, we have to specialize the four-
parameter solution (4.2.23) to a three-parameter one. We remark that from (4.2.16) the
parameters z1 and z4 have the same value if expressed in the physical parameters. This means
that the four-parameter solution (4.2.23) specialized on the subslice with z1 = z4 corresponds
to the holomorphic solution of the geometrical period (4.2.22) at the maximal unipotent mon-
odromy point.

This subslice is not as problematic as for the higher loop banana graphs because the sum
over m4 still contains a parameter, here z1. But still we can use the Γ-functions in (4.2.23) to
bound the summation over the index m4 by m3 −m4 ≥ 0. We obtain for the first few orders

$(z1, z2, z3) = 1 + 2z1z2 + 2z1z3 + 2z2z3 + 12z1z2z3

+ 6z21z
2
2 + 24z21z2z3 + 24z1z

2
2z3 + 6z21z

2
3 + 24z1z2z

2
3 + 6z22z

2
3 + · · · .

(4.2.24)

Now our strategy is as follows: We compute the holomorphic solution to high order such
that we can find a set of differential operators annihilating it. This set of differential operators
has to be complete in a sense that its solutions form a basis of period integrals on the elliptic
curve EB3. Therefore, a suitable ansatz for these operators is crucial. Again homology theory
of the elliptic curve tells us what kind of solutions we expect and so the rare form of the
operators. For EB3 only two solutions exist. At the point of maximal unipotent monodromy
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the analytic structure of them is also known. One is a holomorphic function in the parameters
and the other contains single logarithms of the parameters. For the differential operator ideal
this implies that we are searching for first order operators in the parameters (z1, z2, z3). Having
found the first few operators one has to increase the number of operators until they are enough
to fully determine the two different periods. As a possible generating set of the ideal we find

D1 = θ1 − θ2 + z2 (θ1 − θ2 + θ3 + 2z3 (θ1 + θ2 + θ3 + 1))

− z1 (−θ1 + θ2 + θ3 + 2z3 (θ1 + θ2 + θ3 + 1))

D2 = θ2 − θ3 + z3 (θ1 + θ2 − θ3)− z2 (θ1 − θ2 + θ3)− 2z1 (z2 − z3) (θ1 + θ2 + θ3 + 1)

D3 = (θ1 − θ2) (θ1 + θ2 − θ3) + z1 (θ1 − θ2 − θ3) (θ1 + θ2 + θ3 + 1)

+ z2 (θ1 − θ2 + θ3) (θ1 + θ2 + θ3 + 1)
(4.2.25)

with θi = zi∂zi for i = 1, 2, 3. The missing period is then given by

Π(Γ1)(z1, z2, z3) = $ (log(z1) + log(z2) + log(z3)) + Σ1 (4.2.26)

with

Σ1 = z1 + z2 + z3 −
z21
2 + 7z1z2 + 7z1z3 −

z22
2 + 7z2z3 −

z23
2

+
z31
3 + 3z21z2 + 3z21z3 + 3z1z

2
2 + 3z1z

2
3 + 48z1z2z3 +

z32
3 +

z33
3 + 3z2z

2
3 + 3z22z3 + · · · .

(4.2.27)

These two solutions (4.2.24) and (4.2.26) form a basis of the periods for the elliptic curve EB3.
Using the relations (4.2.16) we can divide by the inner point and transform this basis to the
necessary point in moduli space such that they can be linearly combined to yield the maximal
cut integral FT 2 .

In the next section we extend the differential operator ideal (4.2.25) such that it governs
all functions describing the full geometrical sunset Feynman graph Πσ2 . By dividing with the
inner point we can transfer these results to the actual Feynman integral (4.2.10).

Extension to inhomogeneous differential operators

As explained in section 4.1.4 we find as the first step the inhomogeneities of the operators
(4.2.25). Again we use the Batyrev coordinates (z1, z2, z3) which is crucial for the applicabil-
ity of our method. We apply the operators (4.2.25) on the geometrical differential uµ2

P2
and

integrate afterwards over the two-dimensional simplex σ2. These chain integrals can not in
general be computed analytically with generic parameters but numerical evaluations of these
integrals for fixed values of the parameters are possible. Now the advantage of the Batyrev
coordinates is that we can guess the exact values of the numerical results. We claim that
the differential operator ideal only produces simple logarithmic expressions in the Batyrev
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coordinates (z1, z2, z3). For (4.2.25) we find the following inhomogeneities13

D1Πσ2 = − log(z2) + log(z3)

D2Πσ2 = − log(z1) + log(z2)

D3Πσ2 = 0 .

(4.2.28)

We think that in another parametrization, for instance the physical parameters (t, ξ1, ξ2, ξ3),
and without the inner point these integrals can neither be computed analytically nor their nu-
merical values can be guessed. Only the geometrical differential in the special parametrization
with the Batyrev parameters guarantees the feasibility of our method.

Having found the complete set of inhomogeneous differential operators their solutions can
be computed easily. One has to extend the solutions of the homogeneous system (4.2.25) by
a special solution satisfying (4.2.28). As an ansatz for this solution we increase the power of
logarithms in (z1, z2, z3) up to two. Then we find as a possible choice of special solution

$S(z1, z2, z3) = (log(z1) log(z2) + log(z1) log(z3) + log(z2) log(z3))$0

+ 2 log(z1) + 2 log(z2) + 2 log(z3) + 2z1 log(z1) + 2z2 log(z2) + 2z3 log(z3)

− z21
2 + 10z1z2 −

z22
2 + 10z1z3 −

z23
2 − z21 log(z1) + 10z1z2 log(z1)

+ 10z1z3 log(z1) + 6z2z3 log(z1) + 10z1z2 log(z2)− z22 log(z2) + 6z1z3 log(z2)

+ 10z2z3 log(z2) + 6z1z3 log(z3) + 10z1z3 log(z3) + 10z2z3 log(z3)− z23 log(z3) + · · · .
(4.2.29)

The general solution is then a linear combination of the form Πσ2 = $S + λ0$+ λ1Π(Γ1)
with λ0, λ1 ∈ C. We can express Πσ2 through the physical parameters (t, ξ1, ξ2, ξ3) and divide
it by the inner point to find the full sunset Feynman graph Fσ2 (4.2.10).

Comparison with the equal mass case and other known results

Many results about the sunset graph are already known in the literature [4,57]. In particular,
the equal mass case meaning ξi = 1 for i = 1, 2, 3 was analyzed many times. In this case, the
maximal cut integral is up to a factor of u = t − 3 (4.1.36) the holomorphic period of the
Barth-Nieto elliptic curve that can be represented as in (4.1.37). The equal mass sunset graph
has to satisfy an inhomogeneous second order differential equation [55] in the momentum
variable t

t(t− 1)(t− 9)f ′′2 (t) + (3t2 − 20t+ 9)f ′2(t) + (t− 3)f2(t) = −3! . (4.2.30)

Our three-parameter solutions (4.2.24), (4.2.26) and (4.2.29) break down in the equal mass

13We checked this numerically up to more than 15 digits and for different values of the variables zi for
i = 1, 2, 3.
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case14 to the solutions of (4.2.30). This shows that they reproduces the well established equal
mass results.

For the sunset graph a second test is possible since in [3] an inhomogeneous differential
equation in all physical parameters is given which the sunset graph has to satisfy. Here
we notice that our holomorphic and single logarithmic solutions expressed in the physical
parameters fulfill this equation. The special solution (4.2.29) does not. A direct comparison
between our special solution and the solutions to the inhomogeneous differential equation
in [3] shows that the discrepancy between them is only in the terms having no logarithm in
the variable s = 1/t. Such a small difference can be a result of a typo in the polynomials given
in [3] but a general mistake in their derivation of the inhomogeneous differential equation can
not be excluded.

Πσ2 = λS$S + λ0$0 + λ1Π(Γ1) λS λ0 λ1

order 5 0.9998 −29.6275 + 42.7536i −13.6122− 18.8466i
order 10 1.0000 −29.6088 + 42.7407i −13.6048− 18.8496i

order 5 1.0004 + 0.0007i 70.0913 + 109.3340i −34.7859− 18.8389i
order 10 1.0004 + 0.0007i 70.0913 + 109.3340i −34.7859− 18.8389i

Table 4.2.1: Linear combination of solutions for the sunset graph. In the first two rows are the values for our
solutions whereas the last two give the ones for the solutions from [3].

To demonstrate the correctness of our solutions we made some numerical checks. We
evaluated the sunset Feynman graph (4.2.10) at three different points15 to fix the linear com-
bination of our three solutions16. Having found the right combination of solutions given in
Table 4.2.1 we checked for further values of the parameters and compare the precision for
different expansion orders of $,Π(Γ1) and $S . Our results are listed in Table 4.2.2. Notice,
that it is important that the value of one ξi is fixed since there are only three physical degrees
of freedom after rescaling. We choose ξ3 to be fixed. With increasing expansion order our
solutions fit better and better to the sunset graph which we could not observe for the solutions
of [3]. Moreover, the factor λS of the special solution $S tends to the value one as expected.

14Notice that before one can apply the differential equation (4.2.30) on our solutions they have to be trans-
formed at the same point in moduli space, which is here t 7→ 1

t
.

15We took for the three points the values (s, ξ1, ξ2, ξ3) = (s1+i/10, 1/10, 1/20, 1/30), for s1 = 1/10, s2 = 1/20
and s3 = 1/30.

16We fixed our basis of solutions such that the holomorphic solution starts with one and the constant piece
in the single logarithmic solution is zero. Moreover, we fixed the special solution by requiring that the constant
term and the constant term multiplied by log s is vanishing.
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s, ξ1, ξ2, ξ3 order 5 order 10 order 5 order 10

1/27 + i/20, 1/10, 1/20, 1/30 9 · 10−5 5 · 10−9 2 · 10−4 2 · 10−4

1/21+i/10, 1/10, 1/50, 1/30 4 · 10−4 6 · 10−9 30 30
1/24+i/10, 1/10+i/15,1/20,1/30 6 · 10−4 5 · 10−9 22 22

Table 4.2.2: The table shows how precise the relative periods combined as listed in Table 4.2.1 describe the
Feynman graph. We show the absolute value of the difference between the numerical computation of the sunset
graph and the evaluation of the linear combination of solutions. Increasing the expansion order increases the
precision of our results given as the second and third column. The last columns give the results from [3] which
do not increase their precision.

4.2.3 Example 3: The three-loop banana graph

As our last and most complicated example we demonstrate the applicability of our approach
for the three-loop banana diagram

Fσ3(t, ξ1, ξ2, ξ3, ξ4) =

∫
σ3

xdy ∧ dz ∧ dw − ydx ∧ dz ∧ dw + zdx ∧ dy ∧ dw − wdx ∧ dy ∧ dz

xyzw
(
t− (ξ21x+ ξ22y + ξ23z + ξ24w)(

1
x + 1

y + 1
z + 1

w )
) .

(4.2.31)

The three-loop banana Feynman graph (4.2.31) can again be interpreted as a relative period
now on a K3 surface. This K3 surface is defined by the constraint P3 from the denominator
in (4.2.31). After a rescaling of the coordinates we obtain

P3 = x2yz + xyw2 + xzw2 + yzw2 +m1xy
2w +m2x

2zw +m3yz
2w +m4x

2yw

+m5xz
2w +m6y

2zw +m7xy
2z +m8xyz

2 + uxyzw .
(4.2.32)

The polytope P∆3 corresponding to the banana graph together with a triangulation is
shown in Figure 4.2.3. Its vertices are given by

ν3 ={(−1, 1, 0), (1, 0, 0), (0,−1, 1), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 0,−1), (−1, 0, 1),

(0,−1, 0), (−1, 0, 0), (0, 1, 0), (0, 1,−1), (0, 0, 0)} .
(4.2.33)

Furthermore, the Mori cone generators corresponding to the triangulation drawn in the poly-
tope in Figure 4.2.3 are given by

l1 = (0, 0,−1, 0, 1, 0, 0, 1, 0, 0, 0, 0,−1) , l2 = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,−1)

l3 = (0,−1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,−1) , l4 = (0, 0,−1, 1, 0, 0, 0, 0, 1, 0, 0, 0,−1)

l5 = (−1, 0, 0,−1, 0, 0, 0, 1, 0, 0, 1, 0, 0) , l6 = (0, 0, 0, 0,−1, 1,−1, 0, 1, 0, 0, 0, 0)

l7 = (0, 0, 1, 0, 0, 0, 0,−1,−1, 1, 0, 0, 0) , l8 = (0, 1, 0, 0, 0,−1, 0, 0, 0, 0,−1, 1, 0)

l9 = (1, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0,−1, 0) .

(4.2.34)

They form a simplicial Mori cone generated by 32 vectors. For the subsequent discussion we
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Figure 4.2.3: Toric diagram for the three-loop banana graph

need the Batyrev coordinates together with their relations to the physical paramters

z1 = −m2m3
m5u

= − ξ21
ξ21+ξ22+ξ23+ξ24−t

, z5 =
m3m7
m6m8

= 1

z2 = −m2m7
u = − ξ22

ξ21+ξ22+ξ23+ξ24−t
, z6 =

m4
m2

= 1

z3 = −m4m8
u = − ξ23

ξ21+ξ22+ξ23+ξ24−t
, z7 =

m5
m3

= 1

z4 = − m8
m5u

= − ξ24
ξ21+ξ22+ξ23+ξ24−t

, z8 =
m1

m4m7
= 1

z4= − m8
m5u

= − ξ24
ξ21+ξ22+ξ23+ξ24−t

, z9 =
m6
m1

= 1 .

(4.2.35)

Having defined the most important information about the three-loop banana graph we
want to find a set of functions describing it. We follow our general strategy but there are some
subtleties which have not popped up for the sunset graph.

Maximal cut integral

As before, the maximal cut integral FT 3(t, ξ1, ξ2, ξ3, ξ4) is related through the inner point to
the K3 period integral

Π(T 3)(u,m1,m2,m3,m4) =

∫
T 3

uµ3
P3

. (4.2.36)

We want to compute a basis for the periods on the K3 surface. Cohomology theory of the
K3 surface can tell us again how many independent periods we expect. Differently as for
elliptic curves the number of independent two-cycles depends on the number of moduli. For
a r parameter model we expect r+ 2 independent two-cycles and similarly r+ 2 independent
periods. Moreover, the analytic structure of these periods can be specified further. There
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is exactly one holomorphic and one double logarithmic period on the K3. The remaining r
periods are single logarithmic ones.

The starting point of our method is the holomorphic period expressed through the Batyrev
parameters which are much more as the physical parameters. From (4.2.35) five Batyrev
parameters are set to one after identification with the physical parameters. The remaining
four coordinates (z1, z2, z3, z4) are related to the physical parameters and are such the only
ones important in the following. From the Mori cone generators it is always possible to write
down the general form of the holomorphic period but in all nine Batyrev parameters. We can
expand this holomorphic solution in the “unphysical” parameters (z5, z6, z7, z8, z9) exactly and
set them afterwards to one. This yields the holomorphic solution in the physically relevant
four parameters. To insure that our expansion is exact in the unphysical parameters we use
the particular form of the holomorphic periods in terms of Γ-functions. Since the numerator
does never diverge for positive values of the index parameters mi, i = 1, . . . 9 the Γ-functions
in the denominator give bounds on the index parameters mi. Concretely we obtain

$(z1, z2, z3, z4) =
∑
M

Γ(1+m1+m2+m3+m4)
Γ(1+m3+m4−m5)Γ(1+m1+m2−m6)Γ(1+m1+m5−m7)Γ(1+m4+m6−m7)

· z
m2
2 z

m3
3 z

m4
4 z

m5
5

Γ(1−m1−m4+m7)Γ(1+m2+m5−m8)Γ(1+m3+m6−m8)Γ(1−m2−m3+m8)

· 1
Γ(1+m7−m9)Γ(1+m8−m9)Γ(1−m5+m9)Γ(1−m6+m9)

(4.2.37)

with the summation range given by

M = {0 ≤ m1 ≤ ∞, 0 ≤ m2 ≤ ∞, 0 ≤ m3 ≤ ∞, 0 ≤ m4 ≤ ∞, 0 ≤ m5 ≤ m3 +m4,

m2 +m3 ≤ m8 ≤ m2 +m5, 0 ≤ m6 ≤ m1 +m2, m1 +m4 ≤ m7 ≤ m1 +m5,

m6 ≤ m9 ≤ m7} .
(4.2.38)

We find

$(z1, z2, z3, z4) = 1 + 2 (z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4)

+ 12 (z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4) + · · · .
(4.2.39)

Then our strategy is the same as before. We expand the holomorphic solution (4.2.39) high
enough that we can find a set of operators annihilating it. This time we are looking for second
order operators in such a way that their solutions are given by a single holomorphic and a
single double logarithmic solution and further four single logarithmic solutions. As a choice
we take the operators D1, . . . ,D4 as generators for the differential operator ideal. They are
listed in appendix C. Then a period basis is given by four single logarithmic solutions

Π(Γ1
1) = $ log(z1) + Σ1

1

Π(Γ2
1) = $ log(z2) + Σ2

1

Π(Γ3
1) = $ log(z3) + Σ3

1

Π(Γ4
1) = $ log(z4) + Σ4

1 ,

(4.2.40)



4.2. EXAMPLES 51

with

Σ1
1 = −z1 + z2 + z3 + z4 +

z21
2 + z1z2 + z1z3 + z1z4 −

z22
2 + z2z3 + 5z2z4 −

z23
2 + 5z3z4 −

z24
2

− z31
3 − 3z21z2 − 3z21z3 − 3z21z4 + 3z1z

2
2 + 3z1z

2
3 + 3z1z

2
4 + 16z1z2z3 + 16z1z2z4

+ 16z1z3z4 +
z32
3 + 3z22z3 + 3z22z4 + 3z2z

2
3 + 3z2z

2
4 + 52z2z3z4 +

z33
3 + 3z23z4

+ 3z3z
2
4 +

z34
3 + · · · .

(4.2.41)

The other Σi
1 for i = 2, 3, 4 are given as permutations, namely Σ2

1 = Σ1
1(z1 ↔ z2), Σ3

1 =
Σ1
1(z1 ↔ z3) and Σ4

1 = Σ1
1(z1 ↔ z4). Additionally, there is a double logarithmic solution

Π(Γ2) = $ [log(z1) log(z2) + log(z1) log(z3) + log(z1) log(z4) + log(z2) log(z3)

+ log(z2) log(z4) + log(z3) log(z4)] +
(
Σ2
1 +Σ3

1 +Σ4
1

)
log(z1)

+
(
Σ1
1 +Σ3

1 +Σ4
1

)
log(z2) +

(
Σ1
1 +Σ2

1 +Σ4
1

)
log(z3)

+
(
Σ1
1 +Σ2

1 +Σ3
1

)
log(z4) + Σ2

(4.2.42)

with

Σ2 = 4 (z1z2 + z3z2 + z4z2 + z1z3 + z1z4 + z3z4) + 6
(
2z21z2 + 2z21z3 + 2z21z4 + 2z1z

2
2

+2z1z
2
3 + 2z1z

2
4 + 11z2z3z1 + 11z1z2z4 + 11z1z3z4 + 2z2z

2
3

+2z2z
2
4 + 2z3z

2
4 + 2z22z3 + 2z22z4 + 2z23z4 + 11z2z3z4

)
+ · · · .

(4.2.43)

Together with the holomorphic period (4.2.39) this completes the period basis.
There is another very compact way of expressing the double logarithmic solution. We

define the so called mirror maps

ti =
Π(Γi

1)
2πi$ for i = 1, . . . , 4 . (4.2.44)

Now we can express the double logarithmic solution Π(Γ2) in terms of the mirror maps ti for
i = 1, . . . , 4. For this one has to solve equation (4.2.44) for the variables zi and plug it into
Π(Γ2). One obtains

Π(Γ2) = $(t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4) , (4.2.45)

which is so simple since on a K3 surface there are no instanton corrections, see also the
discussion in section 4.2.3.

Again after dividing by the inner point and a transformation into the physical parameters
(4.2.35) these six basis solutions can be linearly combined to give the maximal cut integral
FT 3 at all points in moduli space.



52 CHAPTER 4. BANANA FEYNMAN INTEGRALS

Extension to inhomogeneous differential operators

For the full three-loop banana graph we have to extend the differential operator ideal to an
inhomogeneous set of operators. We find these inhomogeneities again when we apply the
homogeneous system D1, . . . ,D4 on the geometrical differential uµ3

P3
and perform afterwards

an integration over the simplex σ3. These integrals can only be performed numerically in all
four Batyrev coordinates, but fortunately we can guess their exact values. They are17

D1Πσ3 = 0

D2Πσ3 = 5 log(z1)− 5 log(z2)

D3Πσ3 = log(z1) + log(z2) + log(z3)− 3 log(z4)

D4Πσ3 = −5 log(z3) + 5 log(z4) .

(4.2.46)

These inhomogeneous differential equations describe all the functions appearing in the
Feynman graph (4.2.31). The missing special solution can be computed with a triple logarith-
mic ansatz. For example we can take the following function

$S =−$ [log (z1) log (z2) log (z3) + log (z1) log (z3) log (z4) + log (z1) log (z3) log (z4)

+ log (z2) log (z3) log (z4)]− 2 [(z1 + z2) (log(z1) + log(z2)) + (z1 + z3) (log(z1) + log(z3))

+ (z1 + z4) (log(z1) + log(z4)) + (z2 + z3) (log(z2) + log(z3))

+(z2 + z4) (log(z2) + log(z4)) + (z3 + z4) (log(z2) + log(z4))]

+ 2 [(−3z1 + z2 + z3 + z4) log(z1) + (z1 − 3z2 + z3 + z4) log(z2)

+(z1 + z2 − 3z3 + z4) log(z3) + (z1 + z2 + z3 − 3z4) log(z4)]

+ 12(z1 + z2 + z3 + z4) + · · · .
(4.2.47)

Again, the general solution is then a linear combination of the form Πσ3 = $S + λ0$ +∑4
i=1 λ

i
1Π(Γi

1)+λ2Π(Γ2) with λ0, λi1, λ2 ∈ C for i = 1, 2, 3, 4. We can express Πσ3 through the
physical parameters (t, ξ1, ξ2, ξ3, ξ4) and divide it by the inner point to yield the full three-loop
banana Feynman graph (4.2.31).

The equal mass case and general properties of the ideal of differential operators

For the three-loop banana graph not too many results are known in the literature18. In the
equal mass case there is an inhomogeneous differential equation

t2(t− 4)(t− 16)f ′′′3 (t) + (6t3 − 90t2 + 192t)f ′′3 (t) + (7t2 − 68t+ 64)f ′3(t) + (t− 4)f3(t) = −4!
(4.2.48)

17Also here we checked this numerically up to more than 15 digits and for different values of the variables zi
for i = 1, 2, 3.

18For a discussion on the maximal cut integral in the equal mass case we refere to [58].
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computed in [55]. Restricting our solutions (4.2.39), (4.2.40), (4.2.42) and (4.2.47) to the equal
mass case, dividing by the inner point and transform them to the point at infinity in moduli
space they satisfy equation (4.2.48) showing consistency in this limit.

Let us make some general remarks on the properties of the homogeneous part of the
differential operators for periods on K3. We first highlight the structure, which is related to
the vanishing string world sheet instantons or unreduced Gromov-Witten invariants on K3
manifolds [59, 60], which is expected to hold more generally for hyperkähler manifolds. This
together with (4.1.54) for n = 2 and r = 0, 1 implies a structure for the solutions which is
reflected also in the classical W invariants of the homogeneous operator DK3 in DK3f(t) = −4!
of (4.2.48) that determines the Feynman graph. To explore the consequences of the vanishing
instantons we have to transform the operator for the periods

∫
ΓΩ with Ω as in (4.1.38) to

the point of maximal unipotent monodromy, where the instantons are calculated by mirror
symmetry in the B-model. That amounts to change the variable from t to z = −1/u by
(4.1.36) and change the dependent function to f(z) = f3(z)/z which yields the operator

[θ3+2zθ(1+3θ+2θ2)−16z2(6+θ(16+15θ+5θ2)+96z3(6+θ(13+9θ+2θ2))]f(z) = 0 . (4.2.49)

At z = 0 the unique holomorphic solution is $ = Π(T 2) = 1+ 12z2 − 48z3 +O(z3), while the
single logarithmic solution starts with Π(Γ1) =

1
2πi [$ log(z)− 2z+17z2 +O(z3)]. The mirror

map is defined as τ(z) = Π(Γ1)/Π(T 2) and with q = exp(2πiτ) one realises that its inverse is
1

z(q)
=

1

q
− 2 + 15q − 32q2 + 87q3 − 192q4 + 343q5 − 672q6 + 1290q7 +O(q8) . (4.2.50)

This was identified19 as 1/z(q) =
(

η(τ)η(3τ)
η(2τ)η(6τ)

)6
+4 the total modular invariant or Hauptmodul

of the group Γ0(6)
+3 [61]. Such identifications have been made for many one-parameter K3

families [62] based on tables for invariants of Hauptmodules for modular groups that features
in the monstrous moonshine conjecture [63].

Let Π(Γ2) be the double logarithmic solution. Because mirror symmetry maps the period
vector ΠT = (Π(T 2),Π(Γ1),Π(Γ2)) to the central charges of branes in integer vertical classes
(H00,H

vert
11 ,H22) of the mirror K3, we can calculate Σij on the mirror and infer that the n = 2

and r = 0 relation in (4.1.54) reads 2Π(T 2)Π(Γ2) +mΠ(Γ1)
2 = 0, where m is the self inter-

section of the primitive holomorphic curve spanning Hvert
11 (M,Z). One finds that the period

vector can be written as ΠT = Π(T 2)(1, τ,−m
2 τ

2). There is also a modular parametrization
of Π(T 2) namely zΠ(T 2) = (η(2τ)η(6τ))4

(η(τ)η(3τ))2
is the square of periods of a family of elliptic curves

associated to Γ1(6). The term m
2 encodes the classical intersection of the mirror K3 and the

absence of qn terms indicates the vanishing of all instanton corrections.
The classical theory see e.g. [64] that goes back to Hermann Schwarz, that was applied

already to the one-parameter K3 in [65], relates the latter fact to the vanishing of the W3

invariant of the K3 operator written generically as

Df = f ′′′ + 3p(v)f ′′ + 3q(v)f ′ + r(v)f = 0 . (4.2.51)
19Today such identifications of the group and the η quotient for a wide class of groups are given by the

Webpage of the “On-line Encylopedia of Integer Sequences” at www//oeis.org given enough coefficients of
series as in (4.2.50).
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By a change of the dependent function g(v) = f(v) exp(
∫
pdv) one eliminates the second

derivative
g′′′ + 3Q(v)g′ +R(v)g = 0 (4.2.52)

with R = r − 3pq + 2p3 − p′′ and Q = q − p2 − p′. Here Q is an invariant of the differential
equation, which can be used to introduce a new variable τ , determined as a solution of the
Schwarzian equation

{τ, v} =
3

2
Q . (4.2.53)

If the second invariant W3 = R − 3
2Q

′ = 0 vanishes, the function h = dτ
dv g satisfies the

differential equation 20

d3

d3τ
h(τ) = 0 (4.2.54)

with the solution space C⊕ τC⊕ τ2C. Schwarz theory determines also the second order linear
differential equation

Df = f′′ + 2q(v)f′ + qf(v) = 0 , (4.2.55)
whose ratio of solutions τ = f1/f2 fulfills (4.2.53) and which has the property D = Sym2(D),
which means that the solutions to Df = 0 are f21, f1f2, f

2
2. It can be found by inverting the

following steps: After the trivial observation that g = fe
∫
pdv fulfills g′′ + Qg = 0, where

Q = q−p2−p′, Schwarz noted that with {τ, v} = 2Q defining h =
√

dτ
dvg the function h fulfills

d2

dτ2
h(τ) = 0 and hence has solution space C⊕ τC.
If Q = 3

4Q then the two τ(v) above are identified. Obviously, the solutions h and g are
a symmetric square of the solutions h and g respectively and one can arrange p so that also
the solutions f are a symmetric square of the ones of f. Verrill [61] gives this second order
equation for (4.2.48)21 and [57] relates this by changes of the dependent and the independent
variable to the differential equation for the equal mass sunset graph (4.2.30).

Four our solutions of the three-loop banana graph with general masses the analogous
structures are the equations (4.1.55). The first equation together with the vanishing of the
genus one worldsheet instantons on K3 [59, 60], implies the simple form in (4.2.45). The
coefficients of the double logarithmic terms are fixed by the intersection theory of the dual
curve classes on the mirror K3. The second equation (4.1.55) becomes more powerful in the
multi moduli case and restricts the structure of the solutions as well as the differential ideal in
(C.0.1) – (C.0.4). One of the strongest hints that automorphic forms also gover the maximal
cut graph as solution to (C.0.1) – (C.0.4) is the mirror map. The analog of (4.2.50) given as the
multi parameter inversion of (4.2.40) leads to 1/zi(q1, . . . , q4) for i = 1, . . . , 4, which have also
integer expansions in the qi = exp(2πiti), where ti = Π(Γi

1)/(2πi$) are the Kähler parameters
of the mirror K3. The natural candidate for these automorphic forms are Borcherds lifts of
the type discussed in [66] and applied to lattice polarized K3 as in [67, 68]. As can be seen
from the last two papers the automorphic forms are written naturally in terms of the Kähler
parameters ti of the mirror. The relations to the physical parameters are given by the mirror
map defined by (4.2.40) and by (4.2.35).

20To prove this one uses the property {x, y} = −
(

dx
dy

)2

{y, x}.
21Here λ is related to t in (4.2.48) by λ = t− 4.
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Finally, let us comment on the higher loop Banana graphs. For example the analog of the
differential operator (4.2.49) at suitable large volume coordinates derives analogously from the
n = 5 entry of Table 1 in [55] as (4.2.49) from (4.2.48). It also appears in the Web database
explained in [69,70] as AESZ34 and is given by

D = θ4 − z(35θ4 + 70θ3 + 63θ2 + 28θ + 5) + z2(θ + 1)2(259θ2 + 518θ + 285)

− 225z3(θ + 1)2(θ + 2)2 .
(4.2.56)

One advantage of the solutions at the MUM point is that because of the log structure, in case
a factorization of the solutions exist, the analytic solution $ must be a pure power of solutions
of the lower system 22. If one tries to factorize in this way it will not work. The reason can
be again understood from (4.1.54), see [25] for a review. Special geometry implies that the
solutions will be ΠT = Π(T 3)(1, τ, 102 τ

2 + O(q),−10
6 τ

3 + O(q)) and that Π3 = −∂tΠ4. The
reason that this cannot be a symmetric cube are the genus zero world sheet instantons encoded
in the higher series in q. For this geometry of the one-parameter family of Barth-Nieto quintics
they are not vanishing to all degrees. Subtracting the multi-covering contributions the first
n
(0)
d ∈ Z are given for degree d = 1, . . . , 7 by 24, 48, 224, 1248, 8400, 62816, 516336. Despite the

integer structures in the n(0)d and the mirror map 1/z = 1/q+8+28q+104q2+654q3+O(q4)
it will be much more complicated to give closed automorphic expressions for the equal mass
four-loop graph then for the general mass three-loop graph.

There are however interesting relations of the periods to modular forms of Γ0(N) and
algebraic extensions at the rank two attractor points that (4.2.56) as studied in [71]. At
these points the numerator of the Hasse Weil factorises and the exact values of maximal cut
integral are given by L-function values of holomorphic Hecke Eigenforms forms of weight two
and four of Γ0(N) [71] or extensions and the quasi-periods of the corresponding meromorphic
forms [72].

22The easiest way to find the operator (4.2.55) on a computer might be indeed to take the square root of the
unique holomorphic solution $ and search for a second order operator that annihilates it.
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In this chapter, we use a different approach to solve general banana Feynman integrals.
We give a representation of the Feynman integral in terms of Bessel functions valid for small
momenta and solve them in the large momenta regime where we calculate the maximal cut
integral.

5.1 The l-loop banana amplitude and its geometrical realiza-
tion

A key observation is that (4.1.20) can be understood as a (relative-) period integral for a
smooth family of Calabi-Yau hypersurfaces M l2

l−1 with generically dimH1(M l2

l−1, TMl−1) =

hl−2,1 = l2 complex structure deformations1

M l2

l−1 = {P∆l
(y) = 0 | y ∈ P∆̂l

} , (5.1.1)

defined as vanishing locus of the Laurent polynomial P∆l
= Pl(t, ξi;x)/

∏l+1
i=1 xi in the coor-

dinate ring of the toric ambient space P∆̂l
, where ∆l is the l-dimensional reflexive Newton

polytope of the polynomial P∆l
and ∆̂l is its dual. By Batyrev’s mirror construction [16] the

mirror Wl−1 is given as in (5.1.1) but with the rôle of ∆l and ∆̂l exchanged.
We note that a single residuum integral Ωl−1 = ResPl(t,ξi;x)=0 (µl/Pl(t, ξi;x)) yields an

expression for the holomorphic (l − 1, 0)-form on the Calabi-Yau manifolds M l2

l−1. This was
used in [1] to derive from the Gelfand-Kapranov-Zelevinskĭ (GKZ) differential system up to
three loops the differential D-module describing those geometrical integrals over Ωl−1 that
yield the physical Feynman amplitude (4.1.20) in all regions of their physical parameter space
in t and ξi for i = 1, . . . , l + 1.

We extend this program [1] to banana Feynman diagrams of all loop orders l. As in [1]
a key technical step is to reduce the solutions of the l2 parameter GKZ system to the subset
of solutions that describe the physical periods in the l + 1 physical parameters, which we
achieved starting from the GKZ system of M l2

l−1. Even though the full differential D-module
Dl is lengthy to write down and will be made explicit only up to l = 4, we can provide a
complete analytic description for the amplitude for the l-loop banana graph Fσl

(t, ξi) in all
regions of the moduli space. The latter is based on the identification of certain universal
operators in Dl and systematic analytic continuation formulas valid for all l, which involves a
systematic occurrence of products of zeta values with highest transcendentality l. It is natural
to expect that the latter are related to the Γ̂-class of the mirror Fano threefold P∆̂l

. Due to
the very high co-dimension of the Kähler subslice dual to the (l+1)-dimensional physical slice
of parameters of M l2

l−1 this is an increasingly complicated task. However, Matt Kerr pointed
out to us that for the Fano variety that is associated to the equal mass three-loop banana
diagram there is a realization of its Hodge structure that is an alternative to the redundantly
parametrized one of P∆̂l

and is simply a degree (1, 1, 1, 1) hypersurface in (P1)4. This key
observation was made by identifying the holomorphic solution associated to the differential

1See [1] for a more detailed description of the reflexive pair of lattice polyhedra (∆l, ∆̂l) and the associated
almost Fano– (P∆l ,P∆̂l

) and Calabi-Yau (mirror) geometries (Ml−1, M̂l−1).
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system of this amplitude with the one that appears in an example2 in the list [73] and has the
same description. This suggests that the relevant physical subslices in the series of the Calabi-
Yau manifolds M l2

l−1 (5.1.1) are complete intersections of two degree (1, . . . , 1) constraints in
(P1)l+1. The GKZ systems of complete intersections have been studied in [17] under the aspect
of mirror symmetry. So a good model for the Calabi-Yau (l − 1)-fold Wl−1 is the complete
intersection of two degree (1, . . . , 1) constraints in (P1)l+1 that reads in the notation of [17]

W l
l−1 =

 P1
1
...

P1
l+1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1 1
...

...
1 1

 l + 1

 ⊂

 P1
1
...

P1
l+1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1
...
1

 l + 1

 = Fl , (5.1.2)

which is here suitably embedded3 in the Fano l-fold Fl. According to [17] the mirror manifold
M l+1

l−1 is given by a resolved quotient of (5.1.2) Ml−1 = Ŵl−1/G and the period geometry of
M l+1

l−1 is defined by the invariant periods of Wl−1/G depending on the G invariant l-dimensional
deformation space. This construction is a special case of the construction of Batyrev and
Borisov [35].

This suggests that the physical mass and momentum parameters should be identified in
the high energy regime with the complexified Kähler parameters

tk =
1

2πi

∫
P
1
k

(iω − b) (5.1.3)

controlling the area4 Ak = 1
2π

∫
P
1
k
ω of the kth P1 in (5.1.2) as

tk ' 1

2πi
log

(
M2

k

K2

)
=

1

2πi
log(zk) for k = 1, . . . , l + 1 . (5.1.4)

If this is true we expect that the large energy behaviour of the Feynman amplitude is ex-
actly determined by the quantum cohomology of Wl−1 ⊂ Fl in the large volume limit of the
geometry. In particular, if this beautiful picture holds we can infer the entire leading loga-
rithmic structure of the Feynman graph from the central charge of the corresponding object
in the derived category of coherent sheafs which can be described by the Γ̂-class conjecture
in terms of the topological data of Wl−1 as well as of Fl, which can be easily controlled for
all l. Here zk are the canonical complex structure variables of Ml−1, chosen so [17] that the
point of maximal unipotent monodromy of the Picard-Fuchs– (or Gauss-Manin) system of
Ml−1 is at zk = 0. We establish the equivalence of the two geometric descriptions, by first
deriving the Picard-Fuchs equations of the Feynman graph geometry (4.1.20) and (5.1.1) as
Calabi-Yau hypersurface in a toric variety by reduction of its GKZ system to the physical
parameters and finding their solutions. These data can be compared to the GKZ system for
the complete intersection (5.1.2) and its solutions given in [17] after a change of variables.

2This example is given in the link http://coates.ma.ic.ac.uk/fanosearch/?page_id=277#4-1.
3The lower index on the manifolds (apart from P

1
k of course) indicates their complex dimension in terms of

the number of loops l of the Feyman diagram.
4Here ω is Kähler form and the complexification is by the expectation value of the Neveu-Schwarz (1, 1)-form

field b.



60 CHAPTER 5. DIFFERENT APPROACH TO SOLVE BANANA INTEGRALS

Note, however, that the GKZ systems given in [17] in generality do not yield immediately
the complete Picard-Fuchs differential ideal for closed Calabi-Yau periods which entirely the
maximal cut case. We solved this problem for the homogenous system for the Calabi-Yau
periods and the extension to the inhomogenous system for the three-loop graph in [1] and for
the four-loop graph in this work. In the general loop case we can check that the holomorphic
solutions (5.1.9) and (5.2.37) that can be in both geometries derived from a simple residuum
integral near the MUM point agree with a suitable identification of the variables.

5.1.1 Bessel function representation of l-loop banana integrals

Besides the parametric representation (4.1.20), we also recall a representation of the Feynman
amplitude in terms of an integral over Bessel functions, which in its regime of validity,

t <

(
l+1∑
i=1

ξi

)2

, (5.1.5)

is well suited for numerical evaluation. Relegating a short derivation to appendix B, the
Feynman integral (4.1.20) can be rewritten as

Fσl
= 2l

∫ ∞

0
z I0(

√
tz)

l+1∏
i=1

K0(ξiz) dz . (5.1.6)

In particular, in the equal mass case the expression (5.1.6) contains the (l + 1)th symmetric
power of the Bessel function K0.

As a side remark, in the on-shell case (defined via t = ξi = 1 for all i) the integral (5.1.6)
becomes a special instance of a Bessel moment. Bessel moments differ in their powers of z,
I0(z) and K0(z) in the integrand. The massive vacuum banana integrals also yield Bessel
moments [74,75]. Such Bessel moments have also caught the interest of number theorists, one
reason being that they, in some cases, evaluate to critical values of L-series of certain modular
forms. They satify many interesting relations [76–79] and are closely related to L-functions
built from symmetric power moments of Kloosterman sums [80–82].

5.1.2 The maximal cut integral for large momentum

One goal our study is to analyze the l-loop banana graph in the regime t >
(∑l+1

i=1 ξi

)2
where

the expression (5.1.6) becomes invalid. It turns out that there is an elegant expression for
the so-called maximal cut integral associated with the banana graph, which still contains
substantial information about the full Feynman integral Fσl

.
The maximal cut integral is obtained by replacing all5 propagators by delta functions.

As derived in [83] there is again a parametric representation of the maximal cut integral in
5One can also consider non-maximal cuts where only some propagators are replaced by delta functions. For

our purpose these cut integrals are not relevant.
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terms of the Symanzik polynomials. To get the maximal cut integral one simply changes the
integration range from the simplex σl to the l-torus T l. So for the banana integrals we obtain

FT l(t, ξi) =

∫
T l

µl(
t−
(∑l+1

i=1 ξ
2
i xi

)(∑l+1
i=1 x

−1
i

))∏l+1
i=1 xi

. (5.1.7)

Now, for large momenta t, the maximal cut integral FT l can be obtained explicitly by
a simple residue calculation. Introduce the variable s = 1/t, then for small s subsequent
geometric series and multinomial expansion yields

FT l(t, ξi) =

∫
T l

s

1− s
(∑l+1

i=1 ξ
2
i xi

)(∑l+1
i=1 x

−1
i

) µl∏l+1
i=1 xi

=

∫
T l

∞∑
n=0

sn+1
∑
|k|=n

(
n

k1, . . . , kl+1

) l+1∏
i=1

(ξ2i xi)
ki

·
∑
|k̃|=n

(
n

k̃1, . . . , k̃l+1

) l+1∏
i=1

x−k̃i
i

µl∏l+1
i=1 xi

= (2πi)l
∞∑
n=0

sn+1
∑
|k|=n

(
n

k1, . . . , kl+1

)2 l+1∏
i=1

ξ2kii .

(5.1.8)

Here we used the short hand notation |k| =
∑l+1

i=1 ki and evaluated a multidimensional residue
in the last step. So up to normalization the maximal cut integral is for large momentum given
by

$0(s, ξi) =
∞∑
n=0

sn+1
∑
|k|=n

(
n

k1, . . . , kl+1

)2 l+1∏
i=1

ξ2kii . (5.1.9)

When expressed in terms of the variable t = 1/s, one recovers [83, eq. (123)].
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5.2 The l-loop equal mass banana Feynman integral
In this section we focus on the equal mass case, i.e. ξi = 1 for i = 1, . . . l + 1. We first
derive an inhomogeneous differential equation for the equal mass Feynman integral. This
equation is already known in the literature [84, 85], however, the derivation presented here is
somewhat different. It is based on the observation that the maximal cut integral in the large
momentum regime is given by the double Borel sum of a certain function for which one can
easily construct an operator that annihilates it. This relation makes the computation of the
desired differential equation conceptually clear and easy. For each l the differential equation
thus obtained is related to the one in [85] by simply transforming it to the small momentum
regime. We subquently explain the analytic properties of its solutions and compare to the
actual Feynman integral. Coefficients relating local solutions in the large momentum regime
to the Feynman integral are given. A conjectural relation for these coefficients to the so-called
Γ̂-class is proposed. Moreover, these coefficients are linked to the Frobenius κ-constants as
we explain before ending the section with some remarks about special points of the Feynman
amplitude.

5.2.1 Inhomogeneous differential equation for the l-loop equal mass banana
Feynman integral

In this subsection we give an elegant description for the l-loop banana Feynman integral which
easily leads to its inhomogeneous differential equation.

First consider the maximal cut integral FT l for large momenta t, i.e. near s = 0, as given
in equation (5.1.9). In the equal mass case, i.e. ξi = 1, the expression $0/s can be seen as
the double Borel sum6 of the (l + 1)th symmetric power of the series

∞∑
k=0

1

(k!)2
xk = I0(2

√
x) . (5.2.1)

Note that the double Borel sum resides, simply speaking, in the additional factor of (n!)2 in
the coefficients of (5.1.9), relative to those of the symmetric power of the Bessel function.

Hence, the differential equation annihilating the maximal cut integral (5.1.9) can be derived
by three steps: First calculate the differential equation for the (l + 1)th symmetric power of
(5.2.1). Second, by a simple analysis of the (double) Borel sum we can infer the differential
operator of the function $0/s from the operator of the symmetric power. Third, the additional
factor of s is commuted into the differential operator to obtain the Picard-Fuchs equation for
$0.

Step 1. The function I0(2
√
x) is annihilated by the operator

D = θ2 − x (5.2.2)

with the logarithmic derivative θ = x ∂x. For the (l + 1)th symmetric power of this function
we use a result from [86,87]:

6Or in other words, the (l + 1)th symmetric power of I0 is the Borel transform of the Borel transform of
$/s.
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Lemma: Let D = θ2 + a(x)θ + b(x) be a linear differential operator whose coefficients
a(x) and b(x) are rational functions. Let L0 = 1, L1 = θ and for k = 1, 2, . . . , n define
the operator Lk+1 by

Lk+1 = (θ + ka(x))Lk + kb(x)(n− k + 1)Lk−1 . (5.2.3)

Then the symmetric power yn of any solution to Dy = 0 is annihilated by Ln+1.

In the case at hand we have a(x) = 0 and b(x) = −x while n = l + 1.
Step 2. For the Borel summation we notice the following properties: Given a power series

Ψ(x) =
∑

n anx
n, its Borel transform is defined by BΨ(z) =

∑
n an

zn

n! . The original series
Ψ(x) is obtained from the Borel transform BΨ(z) by the back-transformation

Ψ(x) =

∫ ∞

0
e−z BΨ(zx) dz , (5.2.4)

which is similar to a Laplace transformation, the right hand side now being referred to as
the Borel sum of Ψ(x). Given a differential operator annihilating the Borel transform BΨ(z)
we can infer the corresponding operator annihilating the original function Ψ(x), simply by
analyzing the relation (5.2.4). The rules

θnzBΨ(z) −→ θnxΨ(x)

znBΨ(z) −→ (x(1 + θx))
nΨ(x) = θx

(
xn

n−1∏
k=1

(θx + k)

)
Ψ(x)

(5.2.5)

are useful in this respect, where θx,z are the logarithmic derivatives in x and z, respectively.
After each back-transformation, i.e., application of the rules (5.2.5), we can factor out a
logarithmic derivative θx since it turns out that the degree of the differential operator for the
Borel transform of $0/s is increased by one compared to the original function $0/s.

Step 3. Finally, we remark that given a function f(x) and an operator D with Df = 0
the function φ(x) = xf(x) is annihilated by the operator D̃, which is obtained from D by
replacing θ → θ − 1.

Putting all together we obtain the homogeneous degree l operator Ll annihilating the equal
mass maximal cut integral FT l . It turns out that this operator is of Fuchsian type for any
l. Using a computer algebra program such as mathematica it is not hard to write a small
program7 to generate the differential operators. The first few are listed in Table 5.2.1.

For the full equal mass banana Feynman integral Fσl
we have to extend these differential

equations to inhomogeneous ones. By numerical evaluation of the integral LlFσl
one finds for

the inhomogeneity
LlFσl

(s, 1) = Sl := −(l + 1)! s . (5.2.6)

7On the webpage http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php we upload a small
mathematica file including a program to generate these operators. They are normalized that they start with
one.
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#Loops l Differential operator Ll

1 1− 2s+ (−1 + 4s)θ

2 1− 3s+ (−2 + 10s)θ + (−1 + s)(−1 + 9s)θ2

3 1− 4s+ (−3 + 18s)θ + (3− 30s)θ2 − (−1 + 4s)(−1 + 16s)θ3

4 1− 5s+ (−4 + 28s)θ +
(
6− 63s+ 26s2 − 225s3

)
θ2 +

(
−4 + 70s− 450s3

)
θ3

− (−1 + s)(−1 + 9s)(−1 + 25s)θ4

5 1− 6s+ (−5 + 40s)θ +
(
10− 112s+ 1152s3

)
θ2

+
(
−10 + 168s− 236s2 + 4608s3

)
θ3 +

(
5− 140s+ 5760s3

)
θ4

+ (−1 + 4s)(−1 + 16s)(−1 + 36s)θ5

Table 5.2.1: Homogeneous differential operators for maximal cut integrals

5.2.2 Analytic properties of the l-loop equal mass banana graph Feynman
integral

In this subsection we study the analytic properties of the Frobenius basis corresponding to
the (in-)homogeneous differential equaion (5.2.6) derived in the previous subsection. These
properties partially descend to the actual Feynman integral, which is given by an appropriate
linear combination. The coefficients of this linear combination will be computed in the next
subsection.

We reserve the indices k = 0, . . . , l − 1 to the homogeneous solutions of Ll$k = 0, while
the index k = l refers to the special solution of the inhomogeneous equation Ll$l = Sl. In
this notation the Feynman amplitude Fσl

is a linear combination of the $k with a non-zero
contribution of the special solution $l. On the other hand, the maximal cut FT l of the
Feynman amplitude only involves the homogeneous solutions $k with k = 0, . . . , l − 1.

First, we discuss the singular points of the differential equation. At s = 1/t = 0 we have
a point of maximal unipotent monodromy, in short a MUM point. This means that the local
exponents (i.e. the roots of the indicial equation) of Ll$k = 0 are all degenerate. In the case
at hand they are all equal to one, which can be derived from the fact that Ll = (1−θ)l+O(s).
Moreover, in the s coordinate the singular loci are the roots of the discriminant ∆(Ll), given
by

∆(Ll) = s

b l+1
2

c∏
j=0

(
1− s(l + 1− 2j)2

)
. (5.2.7)

So in general, we have a moduli space

P1 \

d l−1
2

e⋃
j=0

{
1

(l + 1− 2j)2

}
∪ {0,∞}

 . (5.2.8)

The actual Feynman integral Fσl
is not singular at all of these points. From the Bessel

function representation (5.1.6) of Fσl
, valid in a neighbourhood of the point s = ∞ (i.e. t = 0)

we know that it converges for |s| > 1
(l+1)2

. In particular, this implies that the amplitude can
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only be singular at s = 0 and s = 1
(l+1)2

. This is also expected from the optical theorem since
the latter point is a threshold for the l+1 particles in the loops (all of which have unit mass).
At the other singular points of Ll the Feynman integral stays regular. In Figure 5.2.1 this
behavior is shown.

s = 0

MUM point
s = 1

(l+1)2

sing. point
s = 1

(l−1)2

sing. point

· · ·
s = ∞

sing. point

rBI

Figure 5.2.1: Singularities of the Fuchsian operator Ll. The radius of convergence of the Bessel integral
representation (5.1.6) of Fσl is denoted by rBI.

5.2.3 Frobenius basis at the MUM point

Around the MUM point the Frobenius basis takes a particularly nice form. The holomorphic
solution $0 is given by (5.1.9) at ξi = 1 for i = 1, . . . , l+1. The other solutions are given by8

$k =

k∑
j=0

(
k

j

)
log(s)j Σk−j for k = 1, . . . , l − 1 , (5.2.9)

where Σ0 = $0 = s +O(s2) and the power series Σk are determined by the operator Ll and
the condition that they start as Σk = O(s2) for k ≥ 1. For example, the four-loop operator
L4 has

$0 = s+ 5s2 ++45s3 + 545s4 + 7885s5 + · · ·

Σ1 = 8s2 + 100s3 +
4148

3
s4 +

64198

3
s5 + · · ·

Σ2 = 2s2 +
197

2
s3 +

33637

18
s4 +

2402477

72
s5 + · · ·

Σ3 = −12s2 − 267

2
s3 − 19295

18
s4 − 933155

144
s5 + · · · .

(5.2.10)

The special solution $l has one more logarithm and takes the form

$l =
l∑

j=0

(
l

j

)
log(s)j Σl−j , (5.2.11)

which, after multiplication with the constant (−1)l+1(l + 1), satisfies (5.2.6). Again for the
four-loop example we find

Σ4 = 1830s3 +
112720

3
s4 +

47200115

72
s5 + · · · (5.2.12)

8Note that the dependence on the loop order l is kept implicit in our notation for $k and Σk.
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in the special solution $4.
The power series Σk can also be obtained from a generating function approach starting

from the holomorphic solution $0. To this end rewrite (5.1.9) in the form

$0 =
∑

k1,...,kl+1≥0

(
|k|

k1, . . . , kl+1

)2

s|k|+1 , (5.2.13)

where the summation is over all non-negative integers k1, . . . , kl+1. Introduce formal parame-
ters εi by replacing ki → ki+εi in (5.2.13). Taking derivatives with respect to these parameters
and subsequently putting the parameters to zero yields other Frobenius solutions9

∑
{i1,...,ik}∈T

(l+1)
k

∂k

∂εi1 · · · ∂εik
$0(εi)

∣∣∣∣
all εi=0

for k = 1, . . . , l , (5.2.14)

where T (l+1)
k denotes the set of all subsets of length k of the set T (l+1) = {1, . . . , l + 1}.

5.2.4 Banana Feynman integral in terms of the MUM-Frobenius basis

Recall that in a local Frobenius basis (for us the region around the MUM point is most
interesting) the l-loop banana Feynman amplitude is given by a linear combination

Fσl
=

l∑
k=0

λ
(l)
k $k . (5.2.15)

In the following we explain how to obtain the coefficients λ(l)k .
The equal mass banana Feynman integrals Fσl

can be evaluated numerically for fixed
value of the variable s. For l = 2, 3, 4 this can directly be done with the form given in
(4.1.20), say using a numerical integration routine of mathematica or pari. Unfortunately,
the multidimensional numerical integration gets too cumbersome for higher loop integrals
due to the increase of the numerical error. On the other side, numerical integration is less
problematic for the integral over Bessel functions (5.1.6), which can almost be computed for
any loop order with any desired precision. However, around the MUM point s = 0 the Bessel
expression is not valid and analytic continuation is needed. As seen from Figure 5.2.1 we
therefore have to analytically continue the solutions from s = 1

(l+1)2
to s = 0. For this, the

Bessel representation of Fσl
is used to first fix the linear combination with respect to the local

Frobenius basis10 around s = 1
(l+1)2

. Then, by subsequent numerical analytic continuation,

9The functions produced here may be linear combinations of the previously considered solutions to the ho-
mogeneous differential equation. In other words, by forming appropriate linear combinations of the expressions
in (5.2.14) one in turn obtains the Σk as defined before.

10These are obtained by shifting the variable s to η = s− 1
(l+1)2

and solving the differential equation around
η = 0. It turns out that one obtains square root or logarithmic brunch cuts depending on whether l is odd or
even, respectively.
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the local Frobenius basis around s = 1
(l+1)2

is related to the local Frobenius basis at the MUM

point s = 0. This numerically yields the desired coefficients λ(l)k around s = 0.
In order to guess the exact analytic expression of the coefficient λ(l)k we take as an ansatz11

all possible products of zeta values and π that lead to a homogeneous transcendental weight
of l − k and linearly combine these products with rational coefficients to be determined. The
latter are fitted by comparing the ansatz to the numerical values for λ(l)k obtained in the
previous paragraph.12 We checked these fits with 300 digits precision up to the loop order
l = 17 and with lower precision until l = 20. For example, in the four-loop case we thus find
(see also Table 5.2.2)

λ
(4)
0 = −450ζ(4)− iπ · 80ζ(3) λ

(4)
1 = 80ζ(3)− iπ · 120ζ(2)

λ
(4)
2 = 180ζ(2) λ

(4)
3 = iπ · 20 λ

(4)
4 = −5 .

(5.2.16)

In all examples considered we observe that the imaginary part factors into π and a sum of
homogeneous transcendental weight l − k − 1.

Moreover, all empirical results for λ(l)k fit into the following combinatorial pattern: Let
P(l) be the set of integer partitions of l. From P(l) we take only the set of partitions P (l)
with the property that any partition p ∈ P (l) is given by a single even integer g, possibly zero,
and s odd integers13 oi with 1 < o1 < o2 < · · · < os such that

l = g +

s∑
i=1

mioi , (5.2.17)

so mi is the multiplicity of oi in the respective partition of l. In this case we may write
p = (g, omi

1 , . . . , oms
s ). With this notation the combinatorial pattern of the coefficients λ(l)k ,

where k = 0, . . . , l, now reads14

λ
(l)
k = (−1)k+1 (l + 1)!

k!

∑
p∈P (l−k)

(−1)
g
2 (π)g

g!

s∏
i=1

2mi

(oi)mi mi!
ζ(oi)

mi

+iπ (−1)k+1 (l + 1)!

k!

∑
p∈P (l−k−1)

(−1)
g
2 (π)g

(g + 1)!

s∏
i=1

2mi

(oi)mi mi!
ζ(oi)

mi .

(5.2.18)

Indeed, we can give a generating function for the values λ(l)0 by
∞∑
l=0

λ
(l)
0

xl

(l + 1)!
= −eiπx+

∑∞
k=1

2ζ(2k+1)
2k+1

x2k+1

= −Γ(1− x)

Γ(1 + x)
e−2γx+iπx , (5.2.19)

11This ansatz is inspired by the Γ̂-conjecture, which will be addressed in the next subsection.
12If we write down the ansatz with even powers of π instead of even zeta values the coefficients in the ansatz

turn out to be integers.
13Here s stands for any appropriate non-negative integer, that is of course not to be confused with the

momentum parameter s = 1/t.
14With (πi)2n

(2n)!
= − ζ(2n)

22n−1B2n
we could also write the whole expression (5.2.18) in terms of zeta values and

Bernoulli numbers.
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where γ is the Euler-Mascheroni constant. The other coefficients are related to λ(l)0 by

λ
(l)
k = (−1)k

(
l + 1

k

)
λ
(l−k)
0 . (5.2.20)

Finally, we remark that
∑l

k=0 Im(λ
(l)
k )$k is proportional to the vanishing period at s = 1

(l+1)2
.

5.2.5 Euler numbers of Calabi-Yau hypersurfaces

In this section, we want to study Euler and Chern number of the ambient space and Calabi-
Yau hypersurfaces.
First, we need to introduce a few definitions about polytopes. If the vertices of a polytope are
primitive lattice points that polytope is a Fano polytope and if the only inner lattice point
is the origin, it is called a canonical Fano polytope [88]. Some of the topological quanti-
ties of the toric varieties as the ambient space has been computed from the reflexive lattice
polytope [89]. It is worth to note that, the number of the cones or in a star triangulation, the
number of simplices gives the Euler number of the smooth (Fano) toric varieties.

For toric ambient space

Euler numbers: First we start with 16 reflexive 2 dimensional polytopes, including del Pezzo
surfaces. The Euler number of the smooth toric variety is equal to the number of perimeter
lattice points p, i.e. the number of all points on the edges or faces,

χ(X(∆2)) = p = (∆2 ∩ Z2)− 1, (5.2.21)

which means for our case, for the sunset diagram, the Euler number of the ambient space is
χ(dP3) = 6.
For all 4319 three-dimensional reflexive polytopes, the Euler number is given by:

χ(X(∆3)) = 2#(∆3 ∩ Z3)− 6 = 2p− 4. (5.2.22)

For the three loop banana case, where in [89] the corresponding reflexive polytope is X1530,
we have χ = 20.

Chern numbers: For two dimensional reflexive polytopes one gets two Chern numbers by
integration over the toric 2-fold,

(C(M2), χ(M2)) = (p∗, p)

where C(M2) =
∫
M2 c1(M2)

2 and p and p∗ are the number of lattice points for ∆ and its dual ∆̂.
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For the three dimensional case, the smooth Fano varieties, obtained from a fine regular star
triangulation of a reflexive polytope ∆3, have three natural integrals from the Chern classes
ci(M3) ∈ H2i(M3;Z),

C :=

∫
M3

c1(M3)
3

C ′ :=

∫
M3

c1(M3)c2(M3)

χ =

∫
M3

c3(M3), (5.2.23)

where all of them are integers. The second integral is equal to 24 for all 4319 reflexive three-
dimensional polytopes and C and χ are related (check Fig.4. in [89]). C is given by,

C(X(∆3)) = 2#(∆̂3 ∩ Z3)− 6 = 2p∗ − 4, (5.2.24)

where for our case, i.e. three loop banana diagram, it is C(X(∆3)) = 24.
These results have been cross checked by Sage. In dim = 4, the equivalence of the number

of simplices in a star triangulation and Euler characteristic number, being χ = 70 for both of
our cases, has been tested by Sage, as well.

For Calabi-Yau hypersurfaces in the toric ambient space

Till now, we have computed the Euler number of the ambient space, but we need the topo-
logical numbers of the Calabi-Yau hypersurface in the toric varieties as the ambient space.
In [90] the so-called stringy Euler number has been calculated and it is given by,

χ(P∆) = cd−1(P∆) =

d−2∑
k=1

(−1)k+1
∑
θ�∆

dimθ=k

v(θ) · v(θ∗),

where θ is a face of the reflexive polytope ∆ and θ∗ is its dual, where they satisfy dim θ +
dim θ∗ = d− 1. And also we have,

v(θ) := k! · volk(Θθ), (5.2.25)

where volk(Θθ) is the k-dimensional volume of the lattice polytope Θθ which is the convex
hull of the origin and the primitive lattice generators of all 1-dimensional faces of θ [90].
For each of the polytopes one can define the so-called Ehrhart polynomial Λ(t) which for
any non-negative integer k we have Λ(k) = l(k∆) where l(k∆) is the number of integral points
in the interior of k∆ [90]. For example the Ehrhart polynomial of the 5-dimensional polytope
under the study looks like:

Λ∆5(t) = (21/10) t5 + (21/4) t4 + (28/3) t3 + (35/4) t2 + (137/30) t+ 1. (5.2.26)
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Now, we can define Hilbert-Poincare series by,

P∆(t) =
∑
k≥0

Λ(k)tk, (5.2.27)

and
Ψ∆(t) =

∑
i≥0

ψi(∆)ti := (1− t)d+1P∆(t). (5.2.28)

This polynomial has some nice property and one of them is:

Ψ∆(1) =
∑
i≥0

ψi(∆) = v(∆), (5.2.29)

where v(∆) is equal to the Euler number of the ambient space up to a sign. And ψ1(∆) =
l(∆)− d− 1.
We have also Libgober-Wood identity for the Gorenstein toric Fano variety X corresponding
to ∆, ∑

i≤d

ψi(∆)(i− d

2
)2 =

d

12
v(∆) +

1

6

∑
θ�∆

dimθ=d−2

v(θ) · v(θ∗). (5.2.30)

5.2.6 The Γ̂-class and zeta values at the point of maximal unipotent mon-
odromy

In this subsection we will discuss those aspects, in particular the importance of the number of
moduli, of the Calabi-Yau geometries15 Ml−1 shortly introduced in subsection 5.1, which are
most relevant to discuss the Γ̂-class formalism. The latter fixes the coefficients of the expansion
of the Feynman amplitude (4.1.20) in terms of a canonical Frobenius basis of solutions near
the point of maximal unipotent monodromy. Eventually, this Frobenius basis can be related
to period integrals over an integral basis of cycles in the middle dimensional cohomology of
the Calabi-Yau geometry Ml−1 and a single chain integral extension.

Recall that upon numerical analytic continuation from the region 1/s < (
∑l+1

i=1 ξi)
2, where

the amplitude can be calculated using the Bessel function realization (5.1.6), to the region
s < 1/(

∑l+1
i=1 ξi)

2 we got in the equal mass case and for the first few loop orders l ≤ 6 the
coefficients λ(l)k displayed in Table 5.2.2. Using further results up to l = 15 we could guess
the pattern summarized in (5.2.18) or (5.2.19) combined with (5.2.20). This conjecturally
determines all l-loop banana Feynman amplitudes in all regions of their physical parameter
space, since the linear combinations for the non-equal mass case follow by a simple symmetric
splitting (see Table 5.3.2 below).

Generally, the occurrence of powers of zeta values and of some special numbers in Ta-
ble 5.2.2 that can be identified with Euler number integrals over combinations of top Chern
classes, as well as equation (5.2.20), suggest that the coefficients come from a Γ̂-expansion
integrated against the exponential etω of a suitable Kähler form ω. Here we want to use the

15We drop from now on the superscript expressing the number of moduli.
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l $0 $1 $2 $3 $4 $5

1 −2πi

2 18ζ(2) 6πi

3 −16ζ(3) + 24iπζ(2) −72ζ(2) −12πi

4 −450ζ(4)− 80iπζ(3) 80ζ(3)− 120πiζ(2) 180ζ(2) 20πi

5
−288ζ(5) + 1440ζ(2)ζ(3)−

540iπζ(4)
2700ζ(4)+
480iπζ(3)

−240ζ(3)+
360πiζ(2)

−360ζ(2) −30πi

6
6615ζ(6)− 1120ζ(3)2+

πi(3360ζ(2)ζ(3)− 2016ζ(5))
2016ζ(5)− 10080ζ(2)ζ(3)+

3780iπζ(4)
−9450ζ(4)−
1680iπζ(3)

560ζ(3)−
840πiζ(2)

630ζ(2) 42πi

Table 5.2.2: Numerically determined coefficients λ
(l)
k for the equal mass Feynman integral w.r.t. the Frobenius

basis $k at the MUM point for l ≤ 6.

relevant Calabi-Yau varieties Ml−1 and Wl−1 together with a Fano geometry Fl to prove the
equations (5.2.18) or (5.2.19) using the Γ̂-class formalism.

We start with the imaginary part of the numbers in (5.2.18) or Table 5.2.2. The analytic
continuation as well as the monodromy worked out in section 5.2.7 reveals that this combina-
tion of periods corresponds to the one that vanishes at the nearest conifold s = 1/(

∑l+1
i=1 ξi)

2.
Geometrically here a sphere Sl−1 vanishes. The latter is in the integral middle cohomology
of Ml−1 and by Seidel-Thomas twist it corresponds to the Dl−1 brane that wraps the full
(l− 1)-dimensional mirror Calabi-Yau space Wl−1 in the derived category of coherent sheaves
on Wl−1.

The Γ̂-class formalism16 [92–95] allows to calculate the K-theory charge ZDk
of any D-

brane Dk via

ZDk
(t) =

∫
Wl−1

eω·t Γ̂(TWl−1)Ch(Dk) +O(et) . (5.2.31)

Here ω is the Kähler form of Wl−1 and ω · t =
∑h1,1

i=1 ωit
i refers to an expansion of the latter

in terms of Kähler parameters ti w.r.t. a basis ωi of the Kähler cone of Wl−1. Ch(Dk) defines
a cohomology class that specifies the Dk brane. In particular, for the top dimensional Dl−1

brane Ch(Dl−1) = 1. The mirror map at the point of maximal unipotent monodromy17

tk =
1

2πi

$k
1

$0
=

1

2πi
log(zk) + Σ̃k(z) (5.2.32)

allows to relate the latter to the corresponding period in the Frobenius basis. More precisely,
the central charge ZDl−1

is identified with the period in question and the tk-expansion can be
identified with the logarithmic expansion in the Frobenius basis. In particular, to prove the
occurence of the imaginary terms in the first column of Table 5.2.2, we only need to expand
the Γ̂-class of the tangent sheaf TWl−1 of Wl−1. More generally, we consider the regularised

16First explanations of the ζ(3)χ/(2(2πi))3 and the
∫
W

c2 ∧ ωk/24 values in the periods of three-folds as
coming from derivates of the gamma function were made in [17]. See also [91].

17By $k
1 , k = 1, . . . , hl−2,1(Ml−1) we denote all single logarithmic periods. If hl−2,1(Ml−1) = 1 we omit the

upper index.
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Γ̂-class of a sheaf F . For a sheaf of rank n the latter is defined as the symmetric expansion
Γ̂(F) =

∏n
i=1 e

γδiΓ(1 + δi) in terms of the eigenvalues δi of F which in turn is re-expressed
in terms of its Chern classes ck = sk(δ1, . . . , δn). Here γ is the Euler-Mascheroni constant
and the eγδi factors are introduced to cancel e−γc1(F) terms that would arise from the first
derivative of just the Γ(1+ δi) factors. For practical purposes it is faster to first write a closed
formula in terms of the Chern characters chk(F) of F . That yields the regularized Γ̂(F)-class
as

Γ̂(F) = exp

∑
k≥2

(−1)k(k − 1)! ζ(k) chk(F)

 . (5.2.33)

The transition to the Chern classes ck can be made by Newton’s formula

chk = (−1)(k+1)k

[
log

(
1 +

∞∑
i=1

ci x
i

)]
k

, (5.2.34)

where [·]k means to take the kth coefficient (in x) of the expansion of the expression in the
[·]-bracket.

Let us now apply this to the geometry Wl−1 in (5.1.2), the Fano variety Fl and its mirror
Ml−1 using the mirror symmetry formalism developed in [17]. Here a canonical subfamily
with l + 1 complex structure deformations of (5.1.2) is identified with the mirror manifold
Ml−1 to Wl−1. We first want to establish that the Picard-Fuchs equations and their so-
lutions in the canonical Frobenius basis of Ml−1 are the same as the one that we derived
for the Feynman graph in the physical parametrization (5.1.7). According to [17] the pe-
riod solutions of complete intersections in toric ambient spaces are specified by `-vectors18

`(k) = (`
(k)
01 , . . . , `

(k)
0h ; `

(k)
1 , . . . , `

(k)
c ) for k = 1, . . . , hl−2,1(Ml−1). Here h is the number of com-

plete intersection constraints, c is the number of homogenous coordinates of the ambient space
and the `(k)l for l = 1, . . . , c, are the degrees of the constraints. In the case of Ml−1 we have
h = 2 , c = 2(l + 1) and the `(k) read

`(1) = (−1,−1; 1, 1, 0, 0, · · · , 0, 0, 0, 0)
`(2) = (−1,−1; 0, 0, 1, 1, · · · , 0, 0, 0, 0)
...
`(l) = (−1,−1; 0, 0, 0, 0, · · · , 1, 1, 0, 0)

`(l+1) = (−1,−1; 0, 0, 0, 0, · · · , 0, 0, 1, 1) .

(5.2.35)

From these `-vectors one obtains a generalized Gelfand-Kapranov-Zelevinskĭ differential sys-
tem with holomorphic solution

ω0(z; ε) =
∑

n1,...,nl+1≥0

c(n+ ε) zn+ε . (5.2.36)

18The terminology of `-vectors employed here is of course not be confused with vectors that have l components
or the like, which is why have chosen a different symbol `.
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Here the underlined quantities are (l+1)-tuples and the series coefficients c(n) are determined
by the l + 1 `-vectors via

c(n) =

∏2
j=1

(
−
∑l+1

k=1 l
(k)
0j nk

)
!∏2l+2

i=1

(∑l+1
k=1 l

(k)
i nk

)
!
. (5.2.37)

The c(n + ε) are as usual defined by promoting all factorials ∗! in (5.2.37) to Γ(∗ + 1) and
deforming each integer nk to nk + εk. In particular, the unique holomorphic solution at the
point of maximal unipotent monodromy is given by

$0(z) = ω0(z; ε)|ε=0 =
∑

n1,...,nl+1≥0

(
|n|

n1, . . . , nl+1

)2 l+1∏
k=1

znk
k . (5.2.38)

Comparing with (5.1.9) we see that the coordinates19 zk are related to the physical coordinates
by

zk = sξ2k for k = 1, . . . , l + 1 . (5.2.39)
The point here is that the period of Ml−1 given in (5.2.38) is up to the simple parame-
ter redefinition (5.2.39) equivalent to (5.1.9) after multiplying with the physical variable
s. The other periods for both systems can be obtained by the Frobenius method as de-
scribed in section 5.2.3 for the Feynman graph period and in [17] for the periods of Ml−1.
The basic idea is to take certain combinations of derivatives w.r.t the deformations pa-
rameters Lr

c =
∑

j1,...,jr
cj1,...,jr∂εj1 . . . ∂εjrω0(z; ε)|ε=0. In particular, the $k = L

(1)
δk,j

/2πi,
k = 1, . . . , hl−2,1(Ml−1) = l + 1 are the single logarithmic solutions, which together with
$0 determine the mirror map (5.2.32). The higher logarithmic solutions are fixed by the
topological data of Wl−1 and their numbers inferred by the differential ideal reported in Table
5.3.1 matches the primitive vertical Hodge numbers of Wl−1 and primitive horizontal middle
dimensional Hodge numbers of Ml−1 discussed in [22,23] for four-folds.

These identifications suggest that (5.1.2) is the right mirror Wl−1 to the Calabi-Yau (l−1)-
fold family Ml−1 whose periods, together with the single chain integral extension, in the
parametrization in (5.2.39) describe non-redundantly the Feyman graphs exactly in the phys-
ical parameters.

As we explained in the beginning of this subsection this implies that the evaluation of the
Γ̂-class for Wl−1 must reproduce the imaginary parts of (5.2.18). It follows by the adjunction
formula that the Chern classes ck of Wl−1 are given by the degree k part of

ck(Wl−1) =

[ ∏l+1
i=1(1 +Hi)

2

(1 +
∑l+1

i=1Hi)2

]
deg(H)=k

. (5.2.40)

More precisely, since the hyperplane classes in each P1 fulfill H2
i = 0 we can express ck in

terms of elementary symmetric polynomials sk(H) =
∑

i1<...<ik
Hi1 · · ·Hik as

ck(Wl−1) = (−1)kk!

k∑
j=0

(−2)j(k + 1− j)

j!
sk(H) =: NWl−1

k sk(H) . (5.2.41)

19These coordinates are also related to the redundant parameters multiplying the generic monomials of the
Newton polytope associated to the complete intersection Calabi-Yau, see [17] for a definition.
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Similarly, considering the power one of the normal bundle in the denominator of (5.2.40)
(instead of two) we can write for the Chern classes of the ambient space

ck(Fl) = (−1)kk!

k∑
j=0

(−2)j

j!
sk(H) =: NFl

k sk(H) . (5.2.42)

Moreover, we notice that the integral of a top degree product of Chern classes ckn over X =
Wl−1 or X = Fl is given by ∫

X

∏
n

ckn = (l + 1)!
∏
n

NX
kn

kn!
. (5.2.43)

Let us comment some more on primitive vertical homology of Wl−1 and well as Fl and
establish that Wl−1 is the mirror of Ml−1 for the three-fold case. Let us denote the homogenous
coordinates of the kth P1

k by [xk : yk]. Then in general the independent divisor classes of Wl−1

and as well as of Fl are the restrictions of the hyperplane classes20 Dk = {axk + byk =
0} in (P1)

l+1 with topology (P1)
l for Fl or Wl−1, where they have topology Fl−1 or Wl−2,

respectively. We have D2
k = 0, k = 1, . . . , l + 1, and the top intersections are encoded in the

coefficients of the rings

RWl−1 = 2
∑

i1<...<il−1

Di1 . . . Dil−1
and RFl =

∑
i1<...<il

Di1 . . . Dil . (5.2.44)

The Dk generate the primitive part of the vertical cohomology of (P1)l+1, for which it is the
full vertical cohomology with dimensions hk,k

((
P1
)l+1

)
=
(
l+1
k

)
, as well as for Fl and Wl−1,

for which it is

hk,kprim(Fl) =


(
l+1
k

)
if k <

⌈
l
2

⌉(
l+1
l−k

)
otherwise

and hk,kprim(Wl−1) =


(
l+1
k

)
if k <

⌈
l
2

⌉
− 1(

l+1
l−1−k

)
otherwise

.

(5.2.45)
For high dimensions the primitive part is much smaller than the full vertical cohomology. The
latter fact can be easily seen by calculating via the Hirzebruch-Riemann-Roch index theorem
the elliptic genera χk =

∑
(−1)qhq,k(X) by evaluating instead of the Γ̂-class the Todd class

against Ch(∧kTX).
According to [22, 23] this primitive part of the vertical cohomology should be mirror dual

to the primitive horizontal middle cohomology which corresponds to solutions of those Picard-
Fuchs equations as discussed in subsection 5.3.2. Luckily, it is only those solutions we need
to describe the banana diagrams. The actual vertical– and horizontal cohomology groups are
much bigger. For example for the differently polarized K3 surfaces called M2 and W2 we have
h1,1vert prim(W2) = h1,1hor prim(M2) = 4 inside the twenty-dimensional group H1,1(K3).

The Dk are dual to the rational curves Ck = P1
k which span the Mori cone. The latter

pair by integration
∫
Cj
ωi = δij with the Kähler forms ωk of the P1

k, which span the Kähler

20To ease the notation we denote the divisor classes on Wl−1 and Fl again by Dk.
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cone. To see e.g. that M3 is really the mirror to W3 we can check the mirror symmetry
predictions at the level of the instantons. Using equations (5.2.35) and (5.2.44) we apply21

the formalism of [17] for the prepotential of the case at hand and get up to order O(q11) and
up to permutations

Fprep = 2
∑

i<j<k

titjtk +
5∑

i=k

24

24
tk − 80

ζ(3)

2(2πi)3
+ 24Li3(q1) + 24Li3(q1q2) + 112Li3(q1q2q3)

+1104Li3(q1q2q3q4) + 19200Li3(q1q2q3q4q5) + 24Li3(q
2
1q2q3) + 1104Li3(q

2
1q2q3q4)

+45408Li3(q
2
1q3q4q5) + 24Li3(q

2
1q

2
2q3) + 2800Li3(q

2
1q

2
2q3q4)+

+212880Li3(q
2
1q

2
2q3q4q5) + 80Li3(q

2
1q

2
2q

2
3) + 14496Li3(q

2
1q

2
2q

2
3q4)

+1691856Li3(q
2
1q

2
2q

2
3q4q5) + 122352Li3(q

2
1q

2
2q

2
3q4) .

Here the qk = exp(2πitk) keeps track of the (multi-) degree of a rational instanton contribu-
tion. Lik(x) =

∑
n=1

xn

nk denotes the polylogarithm and Li3(x) subtracts the multi covering
contributions to the g = 0 curves. The integral coefficients of Li3(qd) are denoted by n

d
0. If

the curves are smooth n
d
0 = (−1)dim(Md)e(Md) is up to sign the Euler number of the mod-

uli space Md of the rational curves of degree d. We see that these instanton numbers are
indeed as expected for W3. For example each single degree one curve gives a contribution as
24Li3(q1). Since the moduli space of such a curve is the K3 over which the P1 is fibered we get
indeed n

(1,0,0,0,0)
0 = (−1)2χ(K3) = 24. The geometry Wl−1 has an intriguing nested fibration

structure. For example the K3 called W2 is in four ways fibred by the elliptic curve W1 over
P1
k for k = 1, . . . , 4. While the Calabi-Yau three-fold W3 for l = 4 is in five ways fibered22

with a K3 fiber of topology W2, etc.
Now we can come to the main point and can use the mirror picture, the Γ̂-class conjecture

and evaluation of the Chern classes to show that the leading logarithms (or t powers) in the
evaluation of the Γ̂-class

ZDl−1
(t) =

∫
Wl−1

eω·t Γ̂(TWl−1) +O(et) (5.2.46)

yield precisely the imaginary parts of Table 5.2.2 or more generally of (5.2.18).
Furthermore, we checked23 that the leading logarithms (or t powers) in the evaluation of

ZFσl
(t) =

∫
Fl

eω·t
1

Γ̂2(TFl)
Â(TFl) +O(et) =

∫
Fl

eω·t
Γ(1− c1)

Γ(1 + c1)
cos(πc1) +O(et) (5.2.47)

yield precisely the real part of Table 5.2.2 or more generally of (5.2.18). Here Â(TFl) is
the Â-genus of the tangent sheaf TFl which is generally defined for a rank n sheaf F as the

21This can be done with the program Instanton distributed with [17].
22The latter fact can be checked using the criterium of Oguiso [96] from the topological data that appears in

the classical part of Fprep.
23A few days after this preprint appeared in the arXiv, we received detailed e-mails from Hiroshi Iritani [97]

indicating that the formula can be proven using the formalism [93,95].
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symmetric expansion Â(F) =
∏n

i=1
2πiδi

sinh(2πiδi)
in terms of the eigenvalues δi of F and rewritten

in terms of the Chern classes ck.
Some remarks about (5.2.47) have to be said. First of all the two equalities in (5.2.47) were

found by fitting an ansatz of a generalization of the Γ̂-class to the analytically computed values
in (5.2.18). By this we observed that ansatze as in (5.2.47) reproduce the correct λ-coefficients.
Notice that we are pretty sure that our ansatze are very special to the Fano variety Fl we are
considering here. We do not believe that the relations in (5.2.47) are generally true. We leave
it to future work to geometrically interpret and prove our modified Γ̂-class conjecture, see [98].
Secondly, we remark that the expected usual Γ̂-class ansatz as in (5.2.46) does not work even
when ambiguities in the λ-coefficients are taken into account. These ambiguities arise due to
analytic continuation of the Feynman amplitude around the MUM point. The monodromy
of the Feynman amplitude is given by shifting each logarithm by 2πi such that λ-coefficients
which contain even zeta values are shifted or in other words are ambiguous. Due to this
ambiguity contributions containing only odd zeta values are ambiguity free and can naively
be matched to the Γ̂-class. But also these terms are not correctly reproduced by a simple
Γ̂-class24. Therefore, we take into account the more general form as given in (5.2.47) fitting to
all even and odd zeta values in the λ-coefficients. Moreover, notice that the second equality
in (5.2.47) is very useful since from it the real part of (5.2.20) follows trivially because the
integral over Fl yields simply a contribution of (l+ 1)! for cl1. But this term is again canceled
in the generating series (5.2.20).

5.2.7 Monodromy

To each singular point s′ of Ll (recall equation (5.2.7)) we can associate a monodromy matrix
M

(l)
s′ acting on the Frobenius basis $0, . . . , $l around the MUM point s = 0 by $0

...
$l

 7−→M
(l)
s′

 $0
...
$l

 , (5.2.48)

where we choose the analytic continuation along the upper half plane and encircle the singular
point s′ counterclockwise. For the MUM point s′ = 0 one can directly read off M

(l)
0 from the

structure of the Frobenius basis. At the singular points
1

(l + 1)2
, ... ,

1

(l + 1− 2b l+1
2 c)2

(5.2.49)

the local Frobenius basis can in each case be chosen so that only one solution is singular, i.e.
for these points the monodromy satisifies

dim
(

image(M (l)
s′ − 1)

)
= 1 . (5.2.50)

This motivates the definition of the Frobenius constants κ(l,s
′)

k by

(M
(l)
s′ − 1)$k = κ

(l,s′)
k (M

(l)
s′ − 1)$0 , (5.2.51)

24For example for l = 9 the contribution of ζ(3)3 or for l = 11 the contribution of ζ(5)ζ(3)2.
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i.e. we choose the normalization such that κ(l,s
′)

0 = 1. Note that this only works when $0 is
not invariant under M (l)

s′ .
The Feynman amplitude Fσl

is only singular at s′ = 0 and s′ = 1
(l+1)2

. For all other singular
points s′ satsifying (5.2.50) this implies25 that the Frobenius constants are constrained by

l∑
k=0

λ
(l)
k κ

(l,s′)
k = 0 . (5.2.52)

This can not hold for s′ = 1
(l+1)2

. However, numerically we find even stronger conditions for
this point, i.e. we observe that the Frobenius constants do not depend on the loop order,

κ
(l,1/(l+1)2)
k = κ

(l′,1/(l′+1)2)
k for k ≤ l, l′ , (5.2.53)

and that
l∑

k=0

κ
(l,1/(l+1)2)
k λ

(l)
k = −(2πi)l . (5.2.54)

Thus, restricting to the singular point s′ = 1
(l+1)2

, there is a series κk of Frobenius constants
determined by

∞∑
k=0

κk
k!
xk =

1

Γ(1 + x)2
e−2γx . (5.2.55)

In terms of these Frobenius constants we can write the associated monodromy matrix as

M
(l)
1/(l+1)2

= 1+

 κ0
...
κl

(δ(l)0 , ..., δ
(l)
l

)
(5.2.56)

for some constants δ(l)k . These constants can now be determined using the fact26

M
(l)
0 M

(l)
1/(l+1)2

Fσl
= Fσl

, (5.2.57)

which gives
∞∑
l=1

δ
(l)
0

(l + 1)!
xl = − x

Γ(1− x
2πi)

2
eγ

x
iπ (5.2.58)

and the relation

δ
(l)
k =

1

(2πi)k

(
l + 1

k

)
δ
(l−k)
0 . (5.2.59)

25Insert the definitions (5.2.15) and (5.2.51) in the trivial monodromy condition (M
(l)

s′ − 1)Fσl = 0.
26The combined path of analytic continuation corresponding to the left hand side of (5.2.57) is contractible

in P
1, as Fσl picks up no non-trivial monodromies at the other singular points.
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5.3 The l-loop non-equal mass banana Feynman integrals

Having discussed the equal mass banana Feynman graph, we want to focus in this section on
the full non-equal mass case. We give a general description and method how to compute the
l-loop non-equal mass banana Feynman graph, exemplified by the four-loop non-equal mass
case. In [1] we have already discussed the two- and three-loop case.

5.3.1 Batyrev coordinates and the maximal cut integral

As in [1] we use Batyrev coordinates27 zk, defined by

zk =
ξ2k

t−
∑l+1

i=1 ξ
2
i

for k = 1, . . . , l + 1 . (5.3.1)

Furthermore, we include in the Feynman integral Fσl
(t, ξi) the additional factor

a0 = t−
l+1∑
i=1

ξ2i =
ξ2l+1

zl+1
, (5.3.2)

which is related to the inner point of the polytope described by the polynomial constraint
Pl(t, ξi;x) = 0. Then the expression we want to determine is

F̂σl
=

∫
σl

a0µl
Pl(t, ξi;x)

, (5.3.3)

and will F̂T l be defined by analogy. For large momenta we can use the expression (5.1.9) to
find the non-equal mass maximal cut Feynman integral28 including the inner point

$̂0(zi) =
∑

k1,...,kl+1≥0

(
|k|

k1, . . . , kl+1

)2
(

1

1 +
∑l+1

i=1 zi

)1+|k| l+1∏
i=1

zkii . (5.3.4)

Geometric series expansion gives a power series in the zi with non-negative exponents, valid if
all zk are sufficiently small. The radius of convergence can be determined by the discriminant
of the polynomial constraint Pl(t, ξ;x) or later also from the differential operators annihilating
(5.3.4). We claim that the discriminant29 for the generic mass banana Feynman graph is given
by

∆(Dl)(t, ξi) = t
∏

{T1,T2}∈T

t−
∑

i∈T1

ξi −
∑
i∈T2

ξi

2 , (5.3.5)

27Notice that these are not the same Batyrev coordinates as defined in (5.2.39) which correspond to the
complete intersection model. Here now we consider the hypersurface model with other Batyrev coordinates.

28Again up to normalization.
29Or at least the discriminant factors up to multiplicities.
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where the set

T =
{
{T1, T2}

∣∣∣T1, T2 ⊆ T (l+1) disjoint and T1 ∪ T2 = T (l+1)
}

(5.3.6)

gives all possibilities to distribute the l + 1 indices among two subsets (identifying swaps of
the two sets). We have explicitly checked ∆(Dl)(t, ξi) for l = 2, 3, 4. The discriminant in the
four-loop case is for instance given by

∆(D4)(t, ξi) = t
(
t− (−ξ1 + ξ2 + ξ3 + ξ4)

2
) (
t− (+ξ1 − ξ2 + ξ3 + ξ4)

2
)(

t− (+ξ1 + ξ2 − ξ3 + ξ4)
2
) (
t− (+ξ1 + ξ2 + ξ3 − ξ4)

2
)(

t− (−ξ1 − ξ2 + ξ3 + ξ4)
2
) (
t− (−ξ1 + ξ2 − ξ3 + ξ4)

2
)(

t− (−ξ1 + ξ2 + ξ3 − ξ4)
2
) (
t− (+ξ1 + ξ2 + ξ3 + ξ4)

2
)
.

(5.3.7)

In the equal mass case the discriminant ∆(Dl)(t, ξi) reproduces the correct factors as stated
in (5.2.7).

5.3.2 Differential equations for the non-equal mass case

Having found the holomorphic power series (5.3.4) describing the maximal cut Feynman inte-
gral for small values of zk, as in [1] we now want to find a set of (in)homogeneous differential
equations for it. With the help of (5.3.4) it can be checked that the second order operators30

Dk = θ2k − zk

(
l+1∑
i=1

θi − 2θk

)(
1 +

l+1∑
i=1

θi

)
− zk

(
l+1∑
i=1

zi − zk

)(
1 +

l+1∑
i=1

θi

)(
1 +

l+1∑
i=1

θi

)
(5.3.8)

for k = 1, . . . , l+1 annihilate $̂0(zi). Applying these operators to the full Feynman integral F̂σl

and performing a numerical integration we find that the operators Dk are indeed homogeneous
operators annihilating the full Feynman integral F̂σl

, see also section 2.3 in [1].
It turns out that these operators are enough to determine all solutions needed for the

Feynman integral F̂σl
— including those from integrals over closed cycles as well as the ad-

ditional solution arising due to the chain integral — once the correct structure of solutions
is imposed. Recall that the zi are local coordinates around a MUM-point (zi = 0 for all
i = 1, . . . , l + 1), so there is a unique holomorphic solution up to normalization and the rest
of the local Frobenius basis is spanned by solutions with increasing degree of the leading log-
arithms.31 For periods coming from closed cycles the highest degree in logarithms of the l+1

30At this point we want to mention that it is also possible the obtain differential operators from the complete
intersection model in 5.1. They follow directly from the `-vector description, see [17], and are closely related to
the ones in (5.3.8). The following discussion could have similarly been made also starting from these operators
and analyzing the complete intersection model. Nevertheless, we focus in our discussion on the hypersurface
model since this is how we originally invented our method.

31Here the notion of degree or better multidegree is such that for instance the periods $̂r
k in eqs. (5.3.11)

have degree r, i.e. the arguments of the logs are irrelevant for this notion. Alternatively we call those r-fold
logarithmic.
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variables zi is given by l − 1, the (complex) dimension of the Calabi-Yau variety. Since in an
algebraically realized Calabi-Yau variety, which fixes a polarization, only the primitive part of
the horizontal subspace of the middle cohomology can be described by period integrals satis-
fying Picard-Fuchs equations [25], the number of r-fold logarithmic solutions corresponds to
the dimension h(l−1−r, r)

hor prim of the respective piece in that subspace. Since the Feynman integral,
i.e. the parametrization of the underlying Calabi-Yau variety, is completely symmetric in the
zi variables, solutions always come in complete orbits under permutations of the zi.32 On
these grounds it is already possible to propose a generalization of the l = 2, 3, 4 results that
we explicitly calculated. The number of periods over closed cycles is given by

#hol #log1

#hol #log1 #log2

#hol #log1 #log2 #log3

#hol #log1 #log2 #log3 #log4

#hol #log1 #log2 #log3 #log4 #log5

1 1
1 4 1

1 5 5 1
1 6 15 6 1

1 7 21 21 7 1

Table 5.3.1: The number of logarithmic solution for the non equal mass case for l = 2, . . . , 6.

Here the entries in the nth row correspond to the number d(l)r of basis elements at loop order
l = n+1 that have the indicated degree r in logarithms, coinciding with the length of an orbit
under permutations of the zi. The left side is Pascal’s triangle and the right side is fixed by
the invariance of the primitive part of the horizontal Hodge numbers33 of our variety under
complex conjugation.

We shall further illucidate the combinatorial pattern that allows for a complete determation
of a Frobenius basis and gives rise to the above numbers. After suitable normalization the
holomorphic power series starts with unity

$̂0(zi) = 1 +O(z2i ) . (5.3.9)

For l > 2 there are l + 1 single logarithmic solutions of the form

$̂k
1(zi) = log(zk) +O(zi) . (5.3.10)

Solutions of higher logarithmic degree r ≤ d l
2e − 1 are of the form

$̂k
r (zi) =

r∏
i=1

log(z
j
(k)
i

) +O(zi) for some {j(k)1 , . . . , j(k)r } ∈ T (l+1)
r , (5.3.11)

where k = 1, . . . ,
(
l+1
r

)
now labels the elements of T (l+1)

r , which we recall is the set of all
subsets of {1, . . . , l + 1} of length r.

32Similarly, the differential equations satisfied by the Feynman integrals always come in complete orbits.
33At that point we want to mention that Fernando Rodriguez Villegas told us that he actually found a motive

from which one can directly calculate the horizontal Hodge numbers agreeing with our primitive horizontal
Hodge numbers (5.2.45). We thank him for telling us this fact. Furthermore, we think that with some effort it
is also possible to compute the full horizontal Hodge numbers from the complete intersection model described
in section 5.1.
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Further logarithmic solutions for r > d l
2e − 1 are obtained as follows. Label the

(
l+1

l−r−1

)
subsets of {1, ..., l + 1} having exactly l − r − 1 elements by k. For each k, i.e. a choice
N (k) = {n(k)1 , . . . , n

(k)
l−r−1} ⊆ {1, ..., l + 1}, the solution $̂k

r only involves r-fold logarithms in
the remaining r + 2 variables and we have

$̂k
r (zi) =

∑
{j1,...,jr}∈{1,...,l+1}\N(k)

r∏
i=1

log(zji) +O(zi) . (5.3.12)

As a consequence of these formulae, the total number of solutions (that correspond to integrals
over closed cycles) is given by

l−1∑
r=0

d(l)r = 2l+1 −
(
l + 2

b l+2
2 c

)
. (5.3.13)

The additional (special) solution can be chosen to start as

$̂l(zi) =

l+1∏
i=1

log(zi)

l+1∑
i=1

1

log(zi)
+O(zi) . (5.3.14)

A generating function. As in the equal mass case we can define a generating function for
a set of solutions by shifting ki → ki + εi in the series (5.3.4). Derivatives with respect to the
formal parameters εi then yield the higher logarithmic solutions. One has to take care that
if the degree of the logarithms is larger than one, appropriate linear combinations of various
derivatives have to be taken to get a correct solution. That is, these linear combinations
should have the same combinatorial structure as the logarithmic solutions in (5.3.11), (5.3.12)
and (5.3.14).

Loop reduction. An interesting feature of the solutions presented here is the following
reduction property. Starting from those solutions for the l-loop banana integral which have
no contribution from log(zl+1), those solutions of the (l − 1)-loop integral which correspond
to closed cycles are obtained from the former by setting zl+1 to zero. In this limit some
l-loop solutions vanish and the number of non-zero logarithmic solutions of the (l − 1)-loop
geometry thus obtained nicely matches the number one expects according to the structure
(5.3.9)-(5.3.12).

A four-loop example. To illustrate the structure of the solutions we consider the four-loop
case, which is the lowest loop order that, to our knowledge, has not been treated analytically
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in the non-equal mass case in the literature. Solutions start with

$̂0(zi) = 1 + 2 (z1z2 + z1z3 + z2z3 + z1z4 + z2z4 + z3z4 + z1z5 + z2z5

+z3z5 + z4z5) +O(zi)
3

$̂1
1(zi) = log (z1)− z1 + z2 + z3 + z4 + z5 +O(zi)

2

$̂1
2(zi) = log (z2) log (z3) + log (z2) log (z4) + log (z3) log (z4) + log (z2) log (z5)

+ log (z3) log (z5) + log (z4) log (z5) +O(zi)

$̂3(zi) = log (z1) log (z2) log (z3) + log (z1) log (z2) log (z4) + log (z1) log (z3) log (z4)

+ log (z2) log (z3) log (z4) + log (z1) log (z2) log (z5) + log (z1) log (z3) log (z5)

+ log (z2) log (z3) log (z5) + log (z1) log (z4) log (z5) + log (z2) log (z4) log (z5)

+ log (z3) log (z4) log (z5) +O(zi)

$̂4(zi) = log (z1) log (z2) log (z3) log (z4) + log (z1) log (z2) log (z3) log (z5) +O(zi)

+ log (z1) log (z2) log (z4) log (z5) + log (z1) log (z3) log (z4) log (z5)

+ log (z2) log (z3) log (z4) log (z5) +O(zi) ,
(5.3.15)

where the other single- and double-logarithmic solutions are obtained by replacing z1 ↔ zi by
i = 2, . . . , 5.

Analytic continuation by completing the differential ideal. To extend the solutions
$̂n(zi) for n = 0, . . . , l to other domains of the zi-parameter space analytic continuation is
needed. To this end it is necessary to have a complete set of differential equations. By these
we mean a set of differential equations such that the number of corresponding solutions is
equal to the number of solutions given in (5.3.13) plus the additional special solution. Notice
that in general only the total number of solutions stays the same upon analytic continuation
to other points. The precise logarithmic structure of the solutions changes, in particular for
analytic continuation to non-singular points of the differential equations. With this (or these)
additional differential equation(s) one can transform the local solutions of the MUM point
to domains beyond the original domain of convergence by matching local Frobenius bases on
overlapping regions.34

As we have explicitly seen in the two- and three-loop case35 some differential equations
get even extended with inhomogeneities if the whole Feynman integral F̂σl

should satisfy
them instead of just the maximal cut F̂T l . For the four-loop case we have found a second
order operator with coefficients being polynomials of multidegree three in the five variables
zi, leading to an inhomogeneous differential equation given in appendix D. It is hard to give
a general formula for the additional and perhaps inhomogeneous differential equation(s). In
fact, it is not even clear whether one has to extend the operators Dk just by a single differential

34Of course, if one had again sufficient information about the analytic structure of a local Frobenius basis in
the new region, one could construct a basis despite only knowing an incomplete set of differential equations, as
was the case for the MUM point.

35For the two- and three-loop case these (inhomogeneous) differential equations are listed in [1] and for
mathematica-file, see http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php.
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equation with or without an inhomogeneity. The general strategy to get a complete system of
(inhomogeneous) differential equations is simply that one searches for new ones until only the
expected number of solutions is determined by these operators. We suggest to search for second
order operators by systematically increasing the multidegree of the coefficient polynomials
multiplying the derivatives. At some point these are expected to yield a complete set of
differential equations, as we checked for l ≤ 4. If not, one has to go to higher degree equations
in the ansatz.

5.3.3 Linear combination for the non-equal mass Feynman integral

Next we fix the linear combination of the previously constructed solutions that gives the full
non-equal mass Feynman integral

F̂σl
=

l∑
r=0

d
(l)
r∑

s=1

λ(l)r,s $̂
s
r . (5.3.16)

As in the equal mass case we numerically compute F̂σl
to fix the coefficients λ(l)r,s. These

again turn out to be appropriate combinations of zeta values, closely related to the equal mass
ones λ(l)r . For l = 2, 3, 4 and with respect to the basis of solutions given by (5.3.9), (5.3.10),
(5.3.11),(5.3.12) and (5.3.14) we find the explicit values shown in Table 5.3.2. We see that

l λ0,s
(l) λ1,s

(l) λ2,s
(l) λ3,s

(l) λ4,s
(l)

2 18ζ(2) 2πi 1

3 −16ζ(3)+24πζ(2)i

−18ζ(2)
−18ζ(2)
−18ζ(2)
−18ζ(2)

−2πi 1

4 −450ζ(4)-80πζ(3)i

16ζ(3)-24πζ(2)i
16ζ(3)-24πζ(2)i
16ζ(3)-24πζ(2)i
16ζ(3)-24πζ(2)i
16ζ(3)-24πζ(2)i

6ζ(2)
6ζ(2)
6ζ(2)
6ζ(2)
6ζ(2)

2πi 1

Table 5.3.2: Coefficients giving the non-equal mass Feynman integral in the MUM point Frobenius basis of
subsection 5.3.2.

with our choice of basis the equal mass values for λ(l)r split symmetrically into the values λ(l)r,s.
In general we claim that the non-equal mass values satisy

λ(l)r,s =


λ
(l)
r ·

(
l+1
r

)−1 for r ≤ d l
2e − 1 and s = 1, . . . ,

(
l+1
r

)
λ
(l)
r ·

((
l+1

l−r−1

)(
r+2
r

))−1
for r > d l

2e − 1 and s = 1, . . . ,
(

l+1
l−r−1

)
1 for r = l and s = 1 .

(5.3.17)
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We remark that the factor
(
r+2
r

)
results from the

(
r+2
r

)
terms in the sum of (5.3.12).

5.3.4 Remarks about master integrals for generalized banana Feynman in-
tegrals

Finally, we want to connect our results to certain master integrals for a (different kind of)
family of banana type Feynman integrals. The latter family not only includes the Feynman
integral Fσl

with fixed loop order l, but also all integrals obtained by raising the propagators in
the denominator to some non-negative powers νi and/or including polynomials in dot products
of (external or loop) momenta in the numerator of the momentum space integrand. This
constitutes a generalization of the kind of integrals considered so far in this work. By master
integrals we then mean a finite subset of these integrals, i.e., a set of choices for the powers
of propagators and powers of dot products, such that all other integrals in the family are
obtained by linearly combining the master integrals, where the coefficients in general are
rational functions36 in the kinematic parameters (external momenta and masses).

For the two- and three-loop equal mass banana integrals sets of master integrals are known
(see for instance [99] and [58]). In the non-equal mass case less is known. To the best of our
knowledge only in the two-loop case all master integrals and their relations to the other
integrals where found [100]. At least results for the number of higher loop master integrals
are available in [101,102].

Given our solution for Fσl
we can at least construct a (sub-)set of master integrals which

is possibly neither complete nor linearly independent37, namely those integrals with trivial
dot products in the numerator (of the standard momentum space represenation) but positive
powers of the propagators in the denominator. For this note that raising the kth propagator
to the power νk means taking the (νk − 1)th derivative of the original Feynman integral Fσl

(where all νi = 1) with respect to the mass parameter ξ2k, i.e.

Fσl
(t, ξi; ν1, . . . , νl+1) =

l+1∏
k=1

∂νk−1
ξ2k

Fσl
(t, ξi; 1, . . . , 1) =

l+1∏
k=1

∂νk−1
ξ2k

Fσl
(t, ξi) . (5.3.18)

Since we have fixed the linear combination of the MUM-point Frobenius basis yielding the
original Feynman integral Fσl

, we also have the correct linear combination for the mentioned
(master) integrals Fσl

(t, ξi; ν1, . . . , νl+1) by the relation (5.3.18). As a consequence, expansions
in the masses ξ2i and the momentum t are readily available.

For the master integrals in the equal mass case we expect less independent functions. Of
course, one can first construct the non-equal mass banana master integrals and at the end
restrict to the equal mass case by setting all masses to unity. However, it is actually much
simpler to consider only the derivatives

1

r!

[
r∏

k=1

(θt + k)

]
Fσl

(t, 1) , (5.3.19)

36The precise definition of master integrals is immaterial at this points, as the only claims made will concern
a set of integrals that, as we believe, should be amongst the master integrals in any reasonable defintion.

37Here again linear dependence refers to coefficients being rational functions in the kinematic parameters.
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for at least r ≤ l − 1. These derivatives correspond to the integrals∫
σl

Ur

Fr+1

(
l+1∑
k=1

xi

)r

µl , (5.3.20)

where

U =

l+1∏
k=1

xk

l+1∑
k=1

1
xk

and F = U
l+1∑
k=1

xkξ
2
k − t

l+1∏
k=1

xk (5.3.21)

are the two Symanzik polynomials for the banana graphs. We expect that these integrals form
part38 of the basis for the equal mass l-loop family of banana integrals.

38At least one has to extend this set of master integrals by the constant function corresponding to the tadpole
integral, which arises as a subtopology of the banana graph.





Chapter 6

Inhomogeneous Picard-Fuchs
equation

By studying the variation of relative cohomology of a smooth projective hypersurface, one can
construct an inhomogeneous Picard-Fuchs equation [12].
Let Dx be a Picard-Fuchs operator and Ωx a family of nonzero holomorphic n-form on an n-
dimensional projective variety parameterized by variable x. Then there exists a (n− 1)-form
βx such that:

DxΩx = −dβx, (6.0.1)

when it is integrated over a closed cycle, the exact term dβx does not contribute. It is related
to closed string periods which satisfy homogeneous Picard-Fuchs equations. But in the open
string period integrals, we integrate over a chain which has non-trivial boundary. This leads
to have inhomogeneous Picard-Fuchs equations,∫

Γ
DxΩx = −

∫
∂Γ
βx, (6.0.2)

where Γ is the chain and ∂Γ is its boundary. Let’s give an example; consider Xx is a family of
Calabi-Yau three-fold parameterized by variable x and Ωx is a family of nonzero holomorphic
3-forms on Xx. By introducing a family of divisors Y x,u with an extra parameter u which
deform in Xx, we can define a relative homology class Γ ∈ H3(Xx, Yx,u). Now We obtain the
relative period by, ∫

Γ
Ωx, (6.0.3)

and it is called a relative period for B-brane. There are two approaches to compute relative
periods. One of them is similar to Griffiths-Dwork reduction [103], but the other approach is
similar to GKZ approach and they propose an enlarged polytope to encode both the geometry
of the toric variety, e.g. the Calabi-Yau Xx and the B-brane geometry [104]. The GKZ for
relative periods yields a special solution at a critical point in u which give us a solution to the
original inhomogeneous Picard-Fuchs equation.

We define the family of relative cohomology class Hn(Xt, Yt), where Y is a family of
smooth subvariety of X and t a closed point, by the cohomology of the complex of pairs
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Γ(Ωn(Xt)) ⊕ Γ(Ωn−1(Yt)). Where Ωn(Xt) and Ωn−1(Yt) are sheaves of De Rahm differential
n-forms on Xt and (n− 1)-forms on Yt and Γ is the smooth global section.
Let P∆ to denote the toric variety corresponding to the polytope ∆ and define a Calabi-Yau
hypersurface in the toric variety by following equation,

f∆̂(X) =
∑
v̂i∈∆̂

aiX
v̂i , (6.0.4)

where Xi are toric coordinates. Each toric coordinate represent a corresponding monomial in
the polynomial that defines the hypersurface, therefore one can easily find the relation between
the homogeneous coordinates and toric coordinates. Now we can have a relevant rational form
with pole of order one along the hypersurface by:

Ω(a) =
1

f∆̂(X)

n∏
j=1

dXj

Xj
, (6.0.5)

we also define a 1-parameter family of automorphisms as:

φ : Xi →
a0
ai
Xi, (6.0.6)

which transform the form that is parameterized by the Batyrev coordinate. Using this au-
tomorphism to reform our rational form and get Π̃(z) = a0φ

∗Π(a), we redefine GKZ system
as,

D̃ =

l0>0∏
j=1

(a0∂a0 − j)
∏

i 6=0,li>0

li−1∏
j=0

(ai∂ai − j)− al
−l0>0∏
j=1

(a0∂a0 − j)
∏

i 6=0,−li>0

−li−1∏
j=0

(ai∂ai − j).

(6.0.7)

Now if we replace following operators in D̃, the new differential equation annihilates Π̃(z),

a0∂a0 7→ a0∂a0 − L∑n
j=1 Xj∂Xj

aj∂aj 7→ aj∂aj + LXj∂Xj
, for 1 ≤ j ≤ n

aj∂aj 7→ aj∂aj , for j > n. (6.0.8)

then it leads to,

(

l0>0∏
j=1

(a0∂a0 − j)
∏

i 6=0,li>0

li−1∏
j=0

(ai∂ai − j + δ1≤i≤n+1LXj∂Xj
)

− al
−l0>0∏
j=1

(a0∂a0 − j)
∏

i 6=0,−li>0

−li−1∏
j=0

(ai∂ai − j + δ1≤i≤n+1LXj∂Xj
))Π̃(z) = 0, (6.0.9)

LXj∂Xj
is the Lie derivative and commutes with all the logarithmic derivatives in the equation.

For a vector V by the Cartan-Lie formula we have LV = dιV + ιV d. Here ιV is a interior
product which is the contraction of a differential form with a vector field on the manifold M ,

ιV : Ωp(M) → Ωp−1(M), (6.0.10)



89

it maps a p-form ω ∈ Ωp(M) to the (p − 1)-form ιV ω ∈ Ωp−1(M). then the inhomogeneous
GKZ system looks like,

D̃Π̃(z) = −dβl. (6.0.11)

We can use this method to derive the inhomogeneous GKZ system for banana Feynman inte-
grals. For this aim, we need to define the boundary of the integration domain by a correspond-
ing divisor in the related Calabi-Yau manifold. After obtaining the divisor we can construct
the enhanced polytope and from the enhanced polytope we obtain the inhomogeneous GKZ
system.





Chapter 7

Conclusion

The geometric interpretation of Feynman integrals enables us to relate Feynman integrals
to Calabi-Yau chain integrals and provides new and powerful methods to compute them.
The new method is the resonant GKZ differential system that was used previously in the
context of mirror symmetry to obtain the period integrals of Calabi-Yau hypersurfaces in
toric varieties [16, 11, 10]. By applying this method, it becomes straightforward to compute
the maximal cut integral at the point of maximal unipotent monodromy. The GKZ differential
system benefits the symmetries of the Newton polytopes associated to the banana graphs very
efficiently. But, as expected, it results in redundant solutions and variables which are more
than the actual Calabi-Yau periods and Feynman integrals. The extra solutions are eliminated
using methods from the mirror symmetry application of the GKZ system [16, 11, 10]. The
intersection numbers allow us to derive the complete homogeneous Picard-Fuchs differential
ideal in the physical parameters and its solutions characterize the analytic form of the maximal
cut integral everywhere in the physical parameter space. It turns out that taking the advantage
of the symmetries in this approach is more efficient than the multi parameter Griffiths-Dwork
reduction method. One can find the relations which lead to master integrals and are derived
by using Griffiths-Dwork reduction method for different classes of Feynman graphs in the
physics literature like in [105–107].

We determined the inhomogeneity at the point of maximal unipotent monodromy by in-
tegrating the geometrical chain integral directly after applying the generators of the homo-
geneous Picard-Fuchs differential ideal on its integrand. It results in very simple form of
functions as the corresponding inhomogeneities and that helps us to find an inhomogeneous
solution. This leads to expressing the full mass dependence of the three-loop banana graph
analytically, for the first time. By deriving the inhomogeneous Picard-Fuchs system of differ-
ential equations, we can relate the result of the Feynman integral to the relative periods that
appear in the calculation of open topological string amplitudes [12].

After relating GKZ integrals to Calabi-Yau geometries by using the scaling invariance in
Feynman integrals, we benefited a straightforward desingularizations of the hypersurfaces in
toric varieties. But, this can be much more complicated for different geometries, like complete
intersections in toric varieties or more interesting cases like Paffian Calabi-Yau spaces in
Grassmanians or flag manifolds. Nevertheless, we expect that many aspects of the general
approach outlined in our work can be applied further, as it has been done for example in
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application of the GKZ to the complete intersection three-fold case [17–19], and to higher
dimensional Calabi-Yau manifolds in [20–23].

After using GKZ method for banana integrals by relating them to the Calabi-Yau hy-
persurfaces, we got familiar with techniques developed in the interface of algebraic geometry
and algebraic number theory with mathematical physics mostly in the context of string the-
ory. We employed those techniques to describe the complete analytic structure of the l-loop
banana integrals. In [48] for low energy region t < (

∑l+1
i=1 ξi)

2, the Bessel function integrals
have been used to compute the banana integrals. As an extension of this work to the region
t ≥ (

∑l+1
i=1 ξi)

2 and into the high energy regime, we noted the realization of the Feynman
amplitudes as periods of very symmetric complete intersection Calabi-Yau (l − 1)-folds and
their extension.

A geometrical interpretation was also observed for the coefficients of solutions of GKZ
system in the large energy limit. These coefficients which are products of zeta values, have
been explained by the Γ̂-class evaluation. Our application of the Γ̂-class to the Fano variety
has been proved numerically, but it is still conjectural and poses an interesting challenge to
prove it in mathematical rigor. Further studies might show that at special points, interesting
(conjecturally transcendental) numbers, such as multiple zeta values (MZV) or critical values
of modular L-functions appear as the evaluation of Feynman integrals.

To sum up, by understanding the geometrical structure of some special Feynman integral,
we achieved to use GKZ methods to calculate those integrals very fast with a very high nu-
merical precision. We are interested in applying our method to the other types of integrals.
The GKZ method can be extended, as mentioned in [8], to more general rational integrals to
find the same or a similar analytic structure like at the point of maximally unipotent mon-
odromy. We have noticed that the evaluated Γ̂-class is proportional to the number of different
dimensional faces of the corresponding Newton polytopes. Since the Γ̂-class evaluation is not
always straightforward to compute, with further studies, one might be able to obtain them
from the Newton polytope of the ambient space.

Moreover, it is worth to study the solution of the inhomogeneous Picard-Fuchs equation
by the help of an enlarged polytope and use this method to solve the Feynman integrals
totally by encoding the geometry of the integrand and the boundaries of the integral [12].
We applied the general theory of periods to the closed string mirror symmetry, but, it is also
possible to use it in the open string case. By defining the so-called B-brane as the divisor, one
can obtain the boundary terms and derive the solutions of the inhomogeneous Picard-Fuchs
equation. Since computational efforts for triangulating polytopes in higher dimensions grows
exponentially and it is crucial to get the Mori cone generators from a triangulation, one needs
to investigate a general method for triangulating reflexive polytopes more precisely.
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Appendix A

Griffiths-Dwork reduction for a
quintic hypersurface

Here we want to show step by step the Griffiths-Dwork reduction for a smooth quintic hyper-
surface in a projective space P.
As we already mentioned in chapter 2, a quintic hypersurface in P is a Calabi-Yau 3-fold and
it is defined by,

P =

5∑
i=1

1

5
x5i − a

5∏
i=1

xi (A.0.1)

where xi are homogeneous coordinates and a is the moduli parameter. From the degree of the
polynomial constraint we know that for the first step we have to take the derivative four times

w.r.t. the moduli parameters from Π(a)

a
= Π̃(a) =

∫
γ

µ

P
and that leads to as shown already:

∂4

∂a4
Π̃(a) =

∫
γ

4!
∏5

i=1 x
4
i µ

P 5
=

4!(a4x4
1(x2x3x4x5)3∂x1P+a3x7

1x
3
2(x3x4x5)2∂x2P+a2(x1x2)6x2

3x4x5∂x3P+a(x1x2x3)5x4∂x4P+(x1x2x3x4)4∂x5P )

(1− a5)P 5

(A.0.2)

now we have to obtain the third, second and first order derivative of the period in the ideal of
[∂xiP ]. For this aim we use the integration by part relations to express the denominator with
monomials without the partial derivatives. We can use following relation [27],

arQ(x, a)∂kP

P r+1
=
a∂kQ(x, a)

P r
, (A.0.3)
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after applying it on equation A.0.2 and denoting ∂xiP = ∂iP , it looks like,

∂4

∂a4
Π̃(a) =

3!(4a4
∏5

i=1 x
3
i + 3a3x71(x2x3x4x5)

2 + 2a2(x1x2)
6x3x4x5 + a(x1x2x3)

5)

(1− a5)P 4

=
3!(4a4

∏5
i=1 x

3
i + 3a3x71(x2x3x4x5)

2 + 3a2(x1x2)
6x3x4x5 + a(x1x2)

5x3∂3P )

(1− a5)P 4

=
3!(4a4

∏5
i=1 x

3
i + 6a3x71(x2x3x4x5)

2 + 3a2x61x
2
2x3x4x5∂2P + a(x1x2)

5x3∂3P )

(1− a5)P 4

=
3!(10a4

∏5
i=1 x

3
i + 6a3x31(x2x3x4x5)

2∂1P + 3a2x61x
2
2x3x4x5∂2P + a(x1x2)

5x3∂3P )

(1− a5)P 4

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

3!(6a3x31(x2x3x4x5)
2∂1P + 3a2x61x

2
2x3x4x5∂2P + a(x1x2)

5x3∂3P )

(1− a5)P 4

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

3!(6a3
∏5

i=1 x
2
i + 2a2x61x2x3x4x5) + 2a(x1x2)

5

(1− a5)P 3

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

36a3
∏5

i=1 x
2
i + 14a2x61x2x3x4x5 + 2ax51x2∂2P

(1− a5)P 3

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

50a3
∏5

i=1 x
2
i + 14a2x21x2x3x4x5∂1P + 2ax51x2∂2P

(1− a5)P 3

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

25a3

(1− a5)

∂2

∂a2
Π̃(a) +

14a2x1x2x3x4x5 + ax51
(1− a5)P 2

=
10a4

(1− a5)

∂3

∂a3
Π̃(a) +

25a3

(1− a5)

∂2

∂a2
Π̃(a) +

15a2

(1− a5)

∂

∂a
Π̃(a) +

a

(1− a5)
Π̃(a)

(A.0.4)

and we have,

(a5 − 1)
∂4

∂a4
Π̃(a) + 10a4

∂3

∂a3
Π̃(a) + 25a3

∂2

∂a2
Π̃(a) + 15a2

∂

∂a
Π̃(a) + aΠ̃(a) = 0 (A.0.5)

and after replacing t = a−5 and the logarithmic derivative t∂t = θ, we have it in a generalized
hypergeometric form, [

θ4 − t(θ +
1

5
)(θ +

2

5
)(θ +

3

5
)(θ +

4

5
)
]
aΠ̃(a) = 0. (A.0.6)



Appendix B

Derivation of the Bessel function
representation

In this appendix we rewrite the Feynman integral (4.1.20) in terms of an integral over Bessel
functions, closely follow the discussion in [85].

Starting from (4.1.20) one expands a factor in the denominator in terms of a geometric
series,

Fσl
= −

∞∑
k=0

tk
∫
σl

(
1(∑

i ξ
2
i xi
) (∑

i x
−1
i

))k+1
µl∏
i xi

, (B.0.1)

converging if t <
(∑

i ξ
2
i xi
) (∑

i
1
xi

)
. Since xi ≥ 0 we require

t <

(
l+1∑
i=1

ξi

)2

(B.0.2)

for equation (B.0.1) to hold. Furthermore, we can use the identity(
1

a

)k+1

=
1

k!

∫ ∞

0
e−axxk dx , (B.0.3)

which is valid for Re(a) > 0 and k > −1, to rewrite the denominator in (B.0.1) introducing
two new integrations

Fσl
= −

∞∑
k=0

tk

(k!)2

∫
σl

∫ ∞

0

∫ ∞

0
e
−u

∑
i ξ

2
i xi−v

∑
i

1
xi

dudv

u−kv−k

µl∏
i xi

. (B.0.4)

The projective integral over σl can be performed using the identity∫ ∞

0
e−um2x− v

x
dx

x
= 2K0(2m

√
uv) (B.0.5)
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involving the Bessel function of the second kind K0. We obtain

Fσl
= −2l

∞∑
k=0

tk

(k!)2

∫ ∞

0

∫ ∞

0

l∏
i=1

K0

(
2ξi

√
uv
)
e−u ξ2l+1−v dudv

u−kv−k
. (B.0.6)

Introducing new variables y = v and z = 2
√
uv with dudv = z

2y dydz and integrating subse-
quently over y we find

Fσl
= −2l+1

∞∑
k=0

tk

(k!)2

∫ ∞

0

l+1∏
i=1

K0(2ξi)
(z
2

)2k+1
dz . (B.0.7)

The Bessel function of the first kind I0 has a series representation given by

I0(x) =

∞∑
k=0

(x
2

)2k 1

(k!)2
, (B.0.8)

which simplifies Fσl
to the final expression

Fσl
= 2l

∫ ∞

0
z I0(

√
tz)

l+1∏
i=1

K0(ξiz) dz . (B.0.9)



Appendix C

Differential operator ideal of the
banana graph

Here we list a generating set of differential operators which describes the three-loop banana
graph in all four physically important Batyrev coordinates.

D1 = (θ1 − θ2) (θ3 − θ4)

+ z1(θ3 − θ4)(θ1 − θ2 − θ3 − θ4) + z2(θ3 − θ4)(θ1 − θ2 + θ3 + θ4)

− 2(z1 − z2) (z3(θ3 + 1)− z4(θ4 + 1)) (θ1 + θ2 + θ3 + θ4 + 1)

(C.0.1)

D2 = 5(θ1 − θ2)θ4 − 6θ22

+ z1
(
2θ21 − 8θ1θ2 + 6θ22 − 6θ23 − 11θ24 + 4 (θ1 + θ2) θ3 + (9θ1 − θ2 − 13θ3) θ4

)
+ z2

(
17θ24 + (13θ1 − 9θ2 + 25θ3 + 6) θ4 − 2 (θ2 − θ3) (4θ2 + 6θ3 + 3) + θ1 (8θ2 + 8θ3 + 6)

)
+ 2

[
5z3z4(θ2 − θ1) + z21(θ1 − θ2 − θ3 − θ4) + z22(θ1 − θ2 + θ3 + θ4)

+z1z4(3θ1 + 3θ2 − 2θ3 − 8θ4 − 5) + z1z3(3 (θ1 + θ2 − θ3)− 2θ4)

+3z1z2(−θ1 + 3θ2 + θ3 + θ4 + 2) + z2z3(6θ3 + 5θ4 + 6)

+z2z4(5θ3 + 11θ4 + 11)] (θ1 + θ2 + θ3 + θ4 + 1)

(C.0.2)

D3 = −3θ22 − 2θ2θ4 + θ1 (3θ2 − 2θ4) + θ4 (θ3 + θ4)

− 3z1θ2 (−θ1 + θ2 + θ3)− z1θ4(2θ1 + θ2 − 2θ3)− z3θ4(θ1 + θ2 − θ3) + (2z1 − z3)θ
2
4

− z4 (θ1 + θ2 + θ3 − θ4) (θ4 + 1) + z2 (θ1 − θ2 + θ3 + θ4) (3θ2 + 8θ4 + 3)

+ 2 [−2z3z4(θ4 + 1) + z1z4 − 3z1z3θ2 + z1(z3 + z4)θ4 + z2z3(3θ2 + 4θ4 + 3)

+4z2z4 + 4z2(z1 + z4)θ4] (θ1 + θ2 + θ3 + θ4 + 1)

(C.0.3)
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D4 = −θ2 (θ2 + 5θ3 − 5θ4)

+ z1(2θ
2
1 − (3θ2 + θ3 − 4θ4) θ1 + θ22 − θ23 − 6θ24 + 4θ2θ3 − (θ2 + 3θ3) θ4)

+ 5z4 (θ1 − θ2 − θ3) (θ1 + θ2 + θ3 − θ4) + 5z3θ4 (θ1 + θ2 − θ3 + θ4)

+ z2
[
−3θ22 + (−14θ3 + 11θ4 − 1) θ2 + 17θ23 − 8θ24 + θ3 + θ1 (3θ2 + 13θ3 − 12θ4 + 1)

+5θ3θ4 + θ4]

+
[
2z21(θ1 − θ2 − θ3 − θ4) + z1z4(11θ1 − 9θ2 + θ3 − 11θ4)

+z1z2(−θ1 + 3θ2 + 11θ3 − 9θ4 + 2) + z1z3(θ1 + 11θ2 − θ3 + θ4)

+2z2z3(−5θ2 + 11θ3 − 5θ4 + 6) + 2z2z4(5θ3 − 4θ4 − 4) + 10z3z4(θ4 − θ3)

+2z22(θ1 − θ2 + θ3 + θ4)
]
(θ1 + θ2 + θ3 + θ4 + 1)

(C.0.4)



Appendix D

Inhomogeneous differential equation
for the four-loop case

In this appendix we give an inhomogeneous differential equation

DF̂σ4 = S, (D.0.1)

satisfied by the four-loop banana Feynman integral F̂σ4 (which includes the extra factor (5.3.2)
in the numerator) in the case of generic masses. Operators Dk leading to homogeneous differ-
ential equations for F̂σ4 have already been given in (5.3.8). Indeed, here we only present the
leading contribution in zi to D, which reads

D = −63 θ22 − 416 θ1θ3 − 13 θ2θ3 + 206 θ23 − 180 θ1θ4 + 102 θ2θ4 + 507 θ3θ4 + 180 θ24

+ 596 θ1θ5 − 89 θ2θ5 − 78 θ3θ5 − 429 θ4θ5 − 323 θ25 +O(zi) .
(D.0.2)

The complete expression of this second-order operator D can be found in a supplementary
mathematica-file on our web page1. Furthermore, the inhomogeneity to D is given by
S = (−42z1 + 168z2 − 101z3 + 282z4 − 139z5) log (z1) log (z2)

+ (−416− 556z1 + 283z2 + 105z3 − 15z4 − 128z5) log (z1) log (z3)

+ (−180− 180z1 − 345z2 − 195z3 + 540z5) log (z1) log (z4)

+ (596 + 778z1 − 106z2 + 191z3 − 267z4 − 273z5) log (z1) log (z5)

+ (−13 + 533z1 + 203z2 − 21z3 − 15z4 − 128z5) log (z2) log (z3)

+ (102 + 123z1 + 168z2 − 195z3 − 6z5) log (z2) log (z4)

+ (−89− 614z1 − 539z2 + 317z3 − 267z4 + 273z5) log (z2) log (z5)

+ (507 + 122z1 − 477z2 + 407z3 − 252z4 − 139z5) log (z3) log (z4)

+ (−78− 99z1 − 9z2 − 491z3 + 282z4 + 395z5) log (z3) log (z5)

+ (−429− 65z1 + 654z2 − 17z3 + 252z4 − 395z5) log (z4) log (z5) .
(D.0.3)

1http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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