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Par vardar dentro ai cieli sereni
là su sconti da nuvoli neri
go lasà le me vali e i me orti
par salir su le cime de i monti.

So rivà su le cime de i monti
go vardà dentro ai cieli sereni
vedarò le me vali e i me orti
là zo sconti da nuvoli neri?

Giacomo Noventa

Di quel che udire e che parlar vi piace,
noi udiremo e parleremo a voi,
mentre che ’l vento, come fa, ci tace.

Dante

[...] not because they are easy, but because they are hard.
John F. Kennedy
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Abstract

The theory of Lp spaces for outer measures, or outer Lp spaces, was introduced by Do and
Thiele. Their main interest was its application to the study of the boundedness properties
of some multilinear forms satisfying certain invariances arising in the context of Calderón-
Zygmund theory and time-frequency analysis.

However, the theory can be developed in a broader generality of settings. It requires a set
X, an outer measure µ to evaluate the magnitude of subsets of X, and a size S to evaluate
the magnitude of functions on X when localized to the elements of a certain collection A
of subsets of X. Then, the outer LpµpSq quasi-norms are defined by the interplay between µ
and S via a layer cake integral. For every p P p0,8q and every function f on X, we define

‖f‖L8µ pSq “ sup
!

SpfqpAq : A P A
)

,

‖f‖LpµpSq “
´

ˆ 8
0

pλp inf
!

µpBq : B Ď X, ‖f1Bc‖L8µ pSq ď λ
)dλ

λ

¯
1
p
,

and the outer L8µ pSq and L
p
µpSq spaces to be the sets of functions on X for which ‖f‖L8µ pSq,

and ‖f‖LpµpSq are finite respectively. For example, the mixed Lp spaces on the Cartesian
product of σ-finite measure spaces can be exhibited as outer Lp spaces for an appropriate
choice of pX,µ, Sq.

Do and Thiele developed the theory of outer Lp spaces in the direction of their real
interpolation properties, such as Hölder’s inequality and Marcinkiewicz interpolation. This
thesis is concerned with further developing the theory of these spaces. The focus is towards
the Banach space properties analogous to those of the mixed Lp spaces, such as Köthe
duality, triangle inequality for countably many summands, and Minkowski’s inequality.

The thesis consists of four chapters.
Chapter 1 is an introduction. We recall definitions and properties of outer Lp spaces

from the article of Do and Thiele and we introduce a list of examples. We also comment on
the results about the Banach space properties of outer Lp spaces appearing in the following
chapters.

In Chapter 2, we study single iterated outer Lp spaces, when the size is a suitably
averaged local classical Lr quasi-norm associated with a measure ω on X. For p, r P p1,8q
we prove that the outer Lp quasi-norms are equivalent to norms up to a constant uniform in
the setting pX,µ, ωq. We also focus on the setting on Rdˆp0,8q associated with Calderón-
Zygmund theory.

In Chapter 3, we study double iterated outer Lp spaces, when the size is a suitably
averaged local single iterated outer Lq quasi-norm on the setting pX, ν, ωq. Under addi-
tional assumptions on µ and ν, for p, q, r P p1,8q we prove that the outer Lp quasi-norms
are equivalent to norms up to a constant uniform in the setting pX,µ, ν, ωq. We provide
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counterexamples showing the necessity of additional assumptions. We also focus on the
setting on R2 ˆ p0,8q associated with time-frequency analysis.

In Chapter 4, we address additional questions about outer Lp spaces. For example,
we prove a version of Minkowski’s inequality for single iterated outer Lp quasi-norms. We
conclude with some open conjectures.
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Chapter 1

Introduction

The Lp theory for outer measure spaces, or theory of outer Lp spaces, was introduced by
Do an Thiele in [DT15] in the study of the boundedness properties of linear and multilinear
operators satisfying certain symmetries. This is the case for many important operators
in harmonic analysis. For example, operators with translation and dilation invariances
in Calderón-Zygmund theory (paraproducts, singular integral operators, T p1q theorem)
and operators with additional modulation invariances in time-frequency analysis (Carleson
operator, bilinear Hilbert transform). We refer to the books of Grafakos [Gra08, Gra09],
Muscalu and Schlag [MS13a, MS13b], Stein [Ste70, Ste93], and Thiele [Thi06] for a thorough
treatment of the study of these operators in harmonic analysis. In this Introduction, we
are satisfied with considering two prototypical examples, one in the context of Calderón-
Zygmund theory and the other in the context of time-frequency analysis.

The example for the first case is the form associated with the Hilbert transform. For
all Schwartz functions f, g P SpRq, we define the form ΛH by

ΛHpf, gq “ p. v.

ˆ
RˆR

1

t
fpx´ tqgpxqdt dx.

It satisfies translation and dilation invariances.
The example for the second case is the form associated with the bilinear Hilbert trans-

form. For all Schwartz functions f1, f2, f3 P SpRq, we define the form ΛBH by

ΛBHpf, g, hq “ p. v.

ˆ
RˆR

1

t
f1px´ tqf2pxqf3px` tqdt dx.

It satisfies translation, dilation, and modulation invariances.
We can prove the boundedness of these forms on the Cartesian product of classical Lp

spaces, namely

|ΛHpf, gq| ď CHpp, qq‖f‖LppRq‖g‖LqpRq,

|ΛBHpf1, f2, f3q| ď CBHpp1, p2, p3q‖f1‖Lp1 pRq‖f2‖Lp2 pRq‖f3‖Lp3 pRq,
(1.0.1)

1



2 CHAPTER 1. INTRODUCTION

where the exponents p, q, pi P p1,8q satisfy the Hölder type condition, namely

1

p
`

1

q
“ 1,

1

p1
`

1

p2
`

1

p3
“ 1.

Moreover, in both cases we can express the forms in terms of an integral over the set of
invariances, namely

ΛHpf, gq “ AH

ˆ
Rˆp0,8q

F px, sqGpx, sq dx
ds

s
,

ΛBHpf, g, hq “ ABH

ˆ
RˆRˆp0,8q

F1px, ξ, sqF2px, ξ, sqF3px, ξ, sq dx dξ ds.

(1.0.2)

In the previous display, F “ F pfq, G “ Gpgq, and Fi “ Fipfiq are functions obtained
sampling f , g, and fi with appropriately translated, dilated and modulated copies of certain
wave-packets. We refer to the article of Do and Thiele [DT15] and the book of Thiele
[Thi06] for the details of the equalities in (1.0.2). Informally speaking, the singular kernel
is decomposed along the set of invariances and absorbed in the samplings of the functions.

In particular, the left hand sides of the inequalities in (1.0.1) become similar to the left
hand side of Hölder’s inequality. This suggests a strategy to prove the inequalities in (1.0.1)
based on the following two-step programme. First, we would apply a version of Hölder’s
inequality to the integrals in (1.0.2), namely

|ΛHpf, gq| ď B‖F‖Lp‖G‖Lq ,
|ΛBHpf, g, hq| ď B‖F1‖Lp1‖F2‖Lp2‖F3‖Lp3 ,

for appropriate abstract Lp quasi-norms on the sets Rˆ p0,8q and Rˆ Rˆ p0,8q. Next,
we would prove the boundedness of the maps from f to F , namely

‖F‖Lp ď C‖f‖LppRq, ‖Fi‖Lpi ď C‖fi‖Lpi pRq.

In the case of the form ΛH, this proof strategy is not essentially different from the
classical one, passing through the maximal and square functions. The major novelty is that
the new approach encodes the classical one in the case of forms satisfying translation and
dilation invariances, and generalizes it to the case of forms satisfying additional modulation
invariances. As a matter of fact, such a proof strategy is a cornerstone in the context of time-
frequency analysis tracing back to the seminal works of Lacey and Thiele [LT97, LT99, LT00]
and Thiele [Thi00, Thi02] on the bilinear Hilbert transform and the Carleson operator.
Among the more recent applications of the two-step programme outlined above, we point
out the following works. The articles of Do and Thiele [DT15], Di Plinio and Ou [DPO18b],
Amenta and Uraltsev [AU20b], and the Ph.D. thesis of Warchalski [War18] on the bilinear
Hilbert transform. The articles of Uraltsev [Ura16], Di Plinio, Do and Uraltsev [DPDU18],
Amenta and Uraltsev [AU22] on the Carleson operator. The article of Do, Muscalu and
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Thiele [DMT17] on the bilinear iterated Fourier inversion operator. Further references can
be found in the introductions of [Fra21] and [Fra22], namely Chapter 2 and Chapter 3 of
this thesis, and we direct the interested reader to them. We briefly comment that also the
proof of the boundedness of the forms associated with a sparse family of dyadic cubes can
be interpreted as a variant of the two-step programme outlined above.

The theory of outer Lp spaces provides a framework to formalize the proof strategy
outlined above. In fact, it turns out that the right structure on the sets of invariances is
that of an outer measure space, and the abstract Lp spaces to evaluate the magnitude of
the embedding function sending f to F are the outer Lp spaces.

An outer measure µ on a set X is a monotone, subadditive function on the collection
of subsets of X, attaining value zero on the empty set. It provides a way to evaluate the
magnitude of subsets of X. On one hand, the lack of additivity on disjoint subsets prevents
the development of a linear theory of integrals. On the other, there is no restriction on the
subsets on which the outer measure is defined. We could always restrict to the collection of
Carathéodory measurable subsets, hence recovering a measure, and consider the Lp theory
associated with the new measure space. This is the classical use of outer measures in the
introduction of measures, the main example being the Lebesgue measure, see for example
the book of Rudin [Rud74]. However, in the cases of interest, there would be very few
Carathéodory measurable subsets, sometimes only the trivial ones, the empty set and the
whole set itself.

Nevertheless, there is still hope to develop a quasi-subadditive theory of Lp spaces.
For every set X endowed with an outer measure µ, lacking a theory of integrals for outer
measure spaces, we use the layer cake integral and we measure the super level sets via
µ to define the outer Lp quasi-norms. For example, for every outer measure µ on a set
X, for every p P p0,8s, we can define the outer Lp spaces associated with the following
quasi-norms. For every function f on X, we define

‖f‖L8pX,µq “ sup
!

λ P r0,8q : µ
´!

x P X : |fpxq| ą λ
)¯

ą 0
)

,

‖f‖LppX,µq “
´

ˆ 8
0

pλpµ
´!

x P X : |fpxq| ą λ
)¯dλ

λ

¯
1
p
.

(1.0.3)

Actually, these are the definitions of the Lp quasi-norms and spaces appearing in the context
of the well-developed theory of capacities and Choquet integrals, see for example the articles
of Choquet [Cho54] and Adams [Ada98].

In fact, in the previous display we used implicitly an additional ingredient, the collection
of functionals associated with the point evaluation at each point of X. Its role can be played
by other collections of functionals, leading to the introduction of sizes. A size S on a set
X is a collection of functionals, one for each element of a collection A of subsets of X.
For each element of A, the associated functional is defined on the same vector spaceM of
functions on X, and it is homogeneous, monotone, and subadditive in the variable in M.
The size provides a way to evaluate the magnitude of functions. In (1.0.3), this is achieved
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by the point evaluations, namely the size is the L8 norm with respect to the counting
measure. Another example of a size is the functional associated with the property defining
the Carleson measures on the upper half space Rd ˆ p0,8q, see for example the book of
Stein [Ste93]. For the purpose of this introduction, we restrict to the case of measures on
the upper half space defined by densities with respect to the Lebesgue measure. Then, the
functional has the form of a suitably averaged local classical L1 norm of such densities on
specific subsets of the upper half space. Such a functional is the prototype of the sizes we
are interested in throughout this thesis.

Then, the outer Lp quasi-norms with respect to S are defined by an interplay between
the outer measure and the size. This interplay is analogous to that between the measure ω
and the classical L8pX,ωq norm appearing in the layer cake representation of the classical
LppX,ωq quasi-norms on the measure space pX,ωq.

In view of its application to the two-step programme outlined above, in their arti-
cle [DT15], Do and Thiele developed the theory of outer Lp spaces mainly in the direc-
tion of the real interpolation properties. These include versions of Hölder’s inequality and
Marcinkiewicz interpolation for the outer Lp spaces.

In this thesis we are mostly concerned with investigating the Banach space properties of
the outer Lp spaces. For example, whether or not the outer Lp quasi-norms are equivalent
to norms, namely whether or not they satisfy a quasi-triangle inequality with constant
uniform in the number of summands. We postpone the description of the other Banach
space properties we are interested in to the final section of this Introduction.

1.1 Definition and properties of outer Lp spaces

We proceed with the formal definition of the outer Lp spaces and the statement of relevant
properties, following the article of Do and Thiele [DT15]. We postpone the examples to
Subsections 1.2.1 – 1.2.13, after the introduction of the whole formal framework.

The first ingredient in the definition of outer Lp spaces is that of an outer measure.

Definition 1.1.1 (Outer measure). Let X be a set. Let PpXq be the collection of all the
subsets of X. An outer measure µ on X is a function

µ : PpXq Ñ r0,8s,

satisfying the following properties.

(i) µp∅q “ 0.

(ii) For all subsets A,B Ď X, A Ď B, we have µpAq ď µpBq.

(iii) For every collection tAn : n P Nu Ď PpXq of subsets of X, we have

µ
´

ď

nPN
An

¯

ď
ÿ

nPN
µpAnq.
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A standard way to define an outer measure µ on a set X is to start with a function,
called pre-measure, defined on a particular collection of subsets of X, and to generate µ via
minimal coverings. We briefly recall the construction.

Definition 1.1.2 (Pre-measure). Let X be a set. Let E Ď PpXq be a collection of subsets
of X. A pre-measure pσ, Eq on X is a function

σ : E Ñ r0,8s.

To simplify the notation, we will often avoid to mention E , as it is implicitly determined
by σ as its domain.

We define the outer measure µ “ µpσ, Eq on X as follows. For every subset A Ď X,

µpAq “ inf
!

ÿ

EPE 1
σpEq : E 1 Ď E , A Ď

ď

EPE 1
E
)

, (1.1.1)

where the infimum is taken over all the countable subcollections of E covering A. Moreover,
the sum over an empty collection is understood to be 0. Furthermore, if there exists no
countable subcollection of E covering A, then the infimum is understood to be 8. We refer
to Proposition 2.1 in [DT15] for a proof that µ is indeed an outer measure. We point out
that, for every subset E P E , we have

µpEq ď σpEq,

but in general the inequality in the opposite direction need not hold true.
The second ingredient in the definition of outer Lp spaces is that of a size.

Definition 1.1.3 (Size). Let X be a set. Let A Ď PpXq be a collection of subsets of X. Let
MpX,Aq be a vector space of functions on X. A size pS,A,MpX,Aqq on X is a function

S : MpX,Aq Ñ r0,8sA,

satisfying the following properties.

(i) For every λ P R, for every function f PMpX,Aq, for every subset A P A, we have

SpλfqpAq “ |λ|SpfqpAq.

(ii) For all functions f, g PMpX,Aq such that |f | ď |g|, for every subset A P A, we have

SpfqpAq ď SpgqpAq.

(iii) There exists a constant C ą 0 such that, for all functions f, g PMpX,Aq, for every
subset A P A, we have

Spf ` gqpAq ď CpSpfqpAq ` SpgqpAqq.
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To simplify the notation, we will often avoid to mention MpX,Aq or both A and
MpX,Aq, as they are implicitly determined by S as its domain.

We are now ready to define the outer Lp quasi-norms and spaces with respect to a size
on a set endowed with an outer measure. We start with the outer L8 quasi-norm of a
function. It is the maximal magnitude achieved by the function in terms of the size.

Definition 1.1.4 (Outer L8µ pSq quasi-norm and space). Let X be a set, let µ be an outer
measure on X, and let pS,A,MpX,Aqq be a size. For every function f P MpX,Aq, we
define the outer L8µ pSq quasi-norm of the function f by

‖f‖L8µ pSq “ ‖f‖L8,8µ pSq – sup
!

SpfqpAq : A P A
)

, (1.1.2)

and the outer L8µ pSq space to be the set of functions in MpX,Aq for which ‖f‖L8µ pSq is
finite.

The outer L8 quasi-norm allows us to introduce the super level measure of a function
with respect to the size. It is the magnitude of a minimal set outside of which the outer
L8 quasi-norm of the function is controlled by λ, minimal in terms of the outer measure.

Definition 1.1.5 (Super level measure). Let X be a set, let µ be an outer measure on X,
and let pS,A,MpX,Aqq be a size. For every function f PMpX,Aq, for every λ P p0,8q,
we define the super level measure of the function f at level λ with respect to the size S by

µpSpfq ą λq– inf
!

µpBq : B Ď X, f1Bc PMpX,Aq, ‖f1Bc‖L8µ pSq ď λ
)

.

The super level measure allows us to define the outer Lp and Lp,8 quasi-norms and
spaces with respect to a size on a set endowed with an outer measure for p P p0,8q.

Definition 1.1.6 (Outer LpµpSq and Lp,8µ pSq quasi-norms and spaces). Let X be a set, let
µ be an outer measure on X, and let pS,A,MpX,Aqq be a size. For every p P p0,8q, for
every function f P MpX,Aq, we define the outer LpµpSq and Lp,8µ pSq quasi-norms of the
function f by

‖f‖LpµpSq –
´

ˆ 8
0

pλpµpSpfq ą λq
dλ

λ

¯
1
p
,

‖f‖Lp,8µ pSq – sup
!

λµpSpfq ą λq
1
p : λ ą 0

)

,

(1.1.3)

and the outer LpµpSq and Lp,8µ pSq spaces to be the sets of functions in MpX,Aq for which
‖f‖LpµpSq and ‖f‖Lp,8µ pSq are finite respectively.

The outer Lp and Lp,8 quasi-norms and spaces described in Definition 1.1.4 and Defi-
nition 1.1.6 satisfy some expected properties for a meaningful Lp theory.
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• The quantities defined in (1.1.2) and (1.1.3) are indeed monotone quasi-norms, see
Proposition 3.1 in [DT15]. Therefore, they can be used to define recursively new sizes,
hence iterated outer Lp quasi-norms and spaces. The recursive definition of outer Lp

spaces is described in details in the introduction of [Fra22], namely Chapter 3 of this
thesis.

• The outer Lp and Lp,8 quasi-norms and spaces are well-behaved with respect to the
pull-back of a map Φ between different settings pX1, µ1, S1q and pX2, µ2, S2q, provided
Φ is well-behaved with respect to the outer measures and the sizes, see Proposition 3.2
in [DT15].

• The outer Lp and Lp,8 quasi-norms and spaces are well-behaved with respect to
the real interpolation properties of Lp spaces, such as logarithmic convexity of the
outer Lp quasi-norms, outer Hölder’s inequality, and Marcinkiewicz interpolation, see
Propositions 3.3 – 3.5 in [DT15].

• The outer Lp quasi-norms satisfy a Radon-Nikodym type property, see Proposition 3.6
in [DT15].

Before moving to the next section, we recall the statements of outer Hölder’s inequality
and the Radon-Nikodym type property.

Theorem 1.1.7 (Outer Hölder’s inequality, Proposition 3.4 in [DT15]). Let X be a set,
A a collection of subsets of X. Let µ, µ1, µ2 be three outer measures on X such that, for
every subset A Ď X, we have

µpAq ď µ1pAq, µpAq ď µ2pAq.

Let pS,A,MpX,Aqq, pS1,A,MpX,Aqq, pS,A,MpX,Aqq be three sizes satisfying the fol-
lowing three properties.

(i) For all functions f1, f2 PMpX,Aq, we have f1f2 PMpX,Aq.

(ii) For every subset A P A, there exist A1 P A and A2 P A such that, for all functions
f1, f2 PMpX,Aq, we have

Spf1f2qpAq ď S1pf1qpA1qS2pf2qpA2q.

Then, for all p, p1, p2 P p0,8s satisfying

1

p
“

1

p1
`

1

p2
,

there exists a constant C “ Cpp, p1, p2q such that, for all functions f1 P MpX,A1q and
f2 PMpX,A2q, we have

‖f1f2‖LpµpSq ď C‖f1‖Lp1µ1
pS1q
‖f2‖Lp2µ2

pS2q
.
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Theorem 1.1.8 (Radon-Nikodym, Proposition 3.6 in [DT15]). Let pX,Σ, ωq be a σ-finite
measure space, µ an outer measure, and pS,A,MpX,Σqq a size with A Ď Σ andMpX,Σq
the vector space of measurable functions. If either, for every measurable subset A P A, we
have

µpAq “ 0 ñ ωpAq “ 0,

or if there exists a constant rC such that, for every measurable subset A P A, for every
measurable function f PMpX,Σq, we have

µpAq´1‖f1A‖L1pX,ωq ď
rC‖f‖L8µ pSq,

then, there exists a constant C such that, for every measurable function f P L8µ pSq, we have

‖f‖L1pX,ωq ď C‖f‖L1
µpSq

.

1.2 Examples

We proceed with the description of some relevant examples of outer measures and sizes. In
particular, we point out that throughout this thesis, we will be concerned with sizes of the
form of suitably averaged local classical and outer Lr quasi-norms. Therefore, our examples
are triples of quadruples made of a set, one or two outer measures, and a measure.

We start by introducing σ-finite settings in Subsection 1.2.1, which satisfy some reason-
able additional assumptions. First, an assumption on the absolute continuity between the
outer measures and the measure. Next, an assumption on the σ-finiteness of the set with
respect to the outer measures and the measure. A particular case of such settings is that
of the finite ones we define in Subsection 1.2.2. Next, in Subsection 1.2.3, we have general
settings, where we drop the additional assumptions made on σ-finite settings. However, in
this case we reduce the collection of sizes to that associated with the classical L8 norm.
After that, in Subsection 1.2.4, we define the settings on the Cartesian product of σ-finite
measure spaces exhibiting the mixed Lp spaces as outer Lp ones. These settings are our
point of reference in the analysis of the Banach space properties of the outer Lp spaces.
Then, in Subsections 1.2.5 – 1.2.7, we introduce some finite settings where the outer mea-
sure satisfies particular subadditivity properties, providing sources for counterexamples.
Finally, we conclude with the settings involved in the study of Calderón-Zygmund theory
and time-frequency analysis. The former ones, defined on the upper half space Rd ˆ p0,8q
or its discrete model in Subsections 1.2.8 – 1.2.10. The latter ones defined on the upper
half 3-space R2 ˆ p0,8q or its discrete model in Subsections 1.2.11 – 1.2.13.

Upon first reading, it is enough to focus on the examples described in Subsection 1.2.1,
the standard setting of the results presented in this thesis, in Subsection 1.2.4, the point of
reference in the analysis of the properties of the outer Lp spaces, and in Subsection 1.2.8
and Subsection 1.2.11.
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Before introducing the examples, we briefly comment on the use of the notation `r

throughout this thesis. Usually, this symbol denotes the sequence spaces with r-integrability
and the quasi-norms associated with them, namely the classical Lr spaces and quasi-norms
on the measure space N with the counting measure. Instead, throughout this thesis, this
symbol will denote certain sizes defined by suitably averaged local classical and outer Lr

quasi-norms. In this regard, keeping in mind the symbol Lr, the symbol `r is chosen to
imitate the relation between the symbols

´
and
ffl
.

1.2.1 σ-finite setting

Let pX,Σq be a measurable space, where Σ is the σ-algebra of measurable subsets of X.
Let E ,U Ď Σ be two collections of measurable subsets of X. Let σ and τ be pre-measures
defined on E and U respectively, and we assume them to attain only strictly positive finite
values. Let µ and ν be the outer measures on X generated via minimal coverings as in
(1.1.1) by the pre-measures σ and τ on the collections E and U respectively. Let ω be a
measure on pX,Σq. To guarantee that the sizes we are interested in are well-defined, we
make two additional assumptions. First, we assume a certain absolute continuity between
the outer measures and the measure. Namely, in case we consider only µ and ω, we assume
that, for every measurable subset A P Σ, we have

µpAq “ 0 ñ ωpAq “ 0. (1.2.1)

In case we consider µ, ν and ω, we assume that, for every measurable subset A P Σ, we
have

µpAq “ 0 ñ νpAq “ 0, νpAq “ 0 ñ ωpAq “ 0.

Next, we assume that the set is σ-finite with respect to the outer measures and the measure.
Namely, there exist three collections tAn : n P Nu, tBn : n P Nu, tCn : n P Nu Ď Σ of
measurable subsets of X such that

µpAnq ă 8, νpBnq ă 8, ωpCnq ă 8, for every n P N,

X “
ď

nPN
An “

ď

nPN
Bn “

ď

nPN
Cn.

(1.2.2)

Under these assumptions, we define pX,µ, ωq and pX,µ, ν, ωq σ-finite settings.
Before defining the sizes, we introduce some auxiliary notation. We defineMpX,Σq to

be the collection of Σ-measurable functions on X with values in R. We define the collection
rΣ Ď Σ of measurable subsets of X by

rΣ –

!

A P Σ: µpAq ‰ 8
)

,

and, for every measurable subset A P Σ, we define the collection Σ1ωpAq Ď Σ of measurable
subsets of A by

Σ1ωpAq–
!

B P Σ: B Ď A,ωpAzBq “ 0
)

.
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First, we define the size p`8ω ,Σ,MpX,Σqq as follows. For every measurable function f
on X, for every measurable subset A P Σ,

`8ω pfqpAq– ‖f1A‖L8pX,ωq. (1.2.3)

Moreover, for every r P p0,8q, we define the size p`rω, rΣ,MpX,Σqq as follows. For every
measurable function f on X, for every subset A P rΣ,

`rωpfqpAq–

#

0, if µpAq “ 0,
µpAq´

1
r ‖f1A‖LrpX,ωq, if µpAq ‰ 0.

(1.2.4)

Then, for all p, r P p0,8s, we define the single iterated outer Lpµp`rωq and L
p,8
µ p`rωq quasi-

norms and spaces on the setting pX,µ, ωq with respect to each of the sizes appearing in the
previous two displays as in Definition 1.1.4 and Definition 1.1.6.

In particular, for every measurable function f on X, we have

‖f‖L8µ p`8ω q “ ‖f‖L8pX,ωq. (1.2.5)

Moreover, for every p P p0,8q, for every measurable function f on X, we have

‖f‖Lpµp`8ω q “
´

ˆ 8
0

pλp inf
!

µpBλq : Bλ P Σ1ωpAλq
)dλ

λ

¯
1
p
,

‖f‖Lp,8µ p`8ω q
“ sup

!

λ inf
!

µpBλq : Bλ P Σ1ωpAλq
)

1
p

: λ ą 0
)

,

(1.2.6)

where, for every λ P p0,8q, we define the measurable subset Aλ Ď X by

Aλ “
!

x P X : |fpxq| ą λ
)

.

Therefore, for every measurable subset A P Σ, we have

‖1A‖Lpµp`8ω q “ ‖1A‖Lp,8µ p`8ω q
“ inf

!

µpBq : B P Σ1ωpAq
)

1
p
. (1.2.7)

Finally, if µ is the outer measure generated via minimal coverings as in (1.1.1) by ω con-
sidered as a pre-measure on the collection Σ of measurable subsets, for all p, r P p0,8s, for
every measurable function f on X, we have

‖f‖Lpωp`rωq “ ‖f‖LppX,ωq, ‖f‖Lp,8ω p`rωq
“ ‖f‖Lp,8pX,ωq.

This concludes our observations about single iterated outer Lp quasi-norms and spaces.
Next, for every r P p0,8s, we define the size p`8ν p`rωq,Σ,MpX,Σqq as follows. For every

measurable function f on X, for every subset A P Σ,

`8ν p`
r
ωqpfqpAq– ‖f1A‖L8ν p`rωq.
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Moreover, for all q P p0,8q, r P p0,8s, we define the size p`qνp`rωq, rΣ,MpX,Σqq as follows.
For every measurable function f on X, for every subset A P rΣ,

`qνp`
r
ωqpfqpAq–

#

0, if µpAq “ 0,

µpAq
´ 1
q ‖f1A‖Lqνp`rωq, if µpAq ‰ 0.

Then, for every p, q, r P p0,8s, we define the double iterated outer Lpµp`qνp`rωqq and
Lp,8µ p`qνp`rωqq quasi-norms and spaces on the setting pX,µ, ν, ωq with respect to each of the
sizes appearing in the previous two displays as in Definition 1.1.4 and Definition 1.1.6.

Remark 1.2.1. If the outer measure µ is generated via minimal coverings by the pre-
measure σ on the collection E, we can define additional sizes. Before defining them, we
introduce some auxiliary notation. We define the collection rE Ď E by

rE “
!

E P E : σpEq ‰ 8
)

.

First, we define the size p`8ω,σ, E ,MpX,Σqq as follows. For every measurable function f
on X, for every measurable subset E P E,

`8ω,σpfqpEq– ‖f1E‖L8pX,ωq.

Moreover, for every r P p0,8q, we define the size p`rω,σ, rE ,MpX,Σqq as follows. For every
measurable function f on X, for every measurable subset E P rE,

`rω,σpfqpEq–

#

0, if σpEq “ 0,
σpEq´

1
r ‖f1E‖LrpX,ωq, if σpEq ‰ 0.

For r P p0,8q, the sizes `rω and `rω,σ need not be equal on the subsets in rE.
However, in Lemma 2.A.3 in Chapter 2, we prove that, for all p, r P p0,8s, for every

measurable function f on X, we have

‖f‖Lpµp`rω,σq “ ‖f‖Lpµp`rωq,

therefore the single iterated outer Lp quasi-norms and spaces with respect to the two sizes
are equal.

Analogously, for every r P p0,8s, we define the size p`8ν,σp`rωq, E ,MpX,Σqq as follows.
For every measurable function f on X, for every measurable subset E P E,

`8ν,σp`
r
ωqpfqpEq– ‖f1E‖L8ν p`rωq.

Moreover, for all q P p0,8q, r P p0,8s, we define the size p`qν,σp`rωq, rE ,MpX,Σqq as follows.
For every measurable function f on X, for every subset E P rE,

`qν,σp`
r
ωqpfqpEq–

#

0, if σpEq “ 0,

σpEq
´ 1
q ‖f1E‖Lqνp`rωq, if σpEq ‰ 0.
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Once again, for q P p0,8q, r P p0,8s, the sizes `qνp`rωq and `
q
ν,σp`rωq need not be equal on the

subsets in rE.
However, for q ď r or q “ 8, by an argument analogous to that in Lemma 2.A.3 in

Chapter 2 together with Lemma 3.3.1 in Chapter 3, we can prove that the double iterated
outer Lp quasi-norms with respect to the two sizes are equivalent, and the double iterated
outer Lp spaces are equal.

Instead, for q ą r, for every p P p0,8s, in general we only have that, for every measur-
able function f on X,

‖f‖Lpµp`qν,σp`rωqq ď ‖f‖Lpµp`qνp`rωqq.

However, we can use an argument analogous to that in the case q ď r to recover the
equivalence in the case q ą r as long as the subsets in E satisfy good enough compatibility
conditions with respect to the outer measure ν. One sufficient compatibility condition is that
there exists two constants Φ,K ě 1 such that the following properties hold true. For every
subset A Ď X, there exists a collection A Ď E of pairwise disjoint elements such that

A Ď
ď

EPA
E,

ÿ

EPA
σpEq ď ΦµpAq, (1.2.8)

and, for every subset U Ď X, we have
ÿ

EPA
νpE X Uq ď KνpUq. (1.2.9)

1.2.2 Finite setting

Let X be a finite set, and let ω be a measure on pX,PpXqq. Since we assumed that every
subset of X is measurable, then all the functions on X are measurable. Moreover, we
assume that, for every x P X, we have ωpxq “ ωptxuq P p0,8q. Let µ and ν be outer
measures on X. We assume that, for every subset A Ď X, we have µpAq, νpAq P p0,8q.
These assumptions are reasonable, as subsets of X of zero or infinite measure or outer
measure contribute only trivially to any Lp theory on X. Under these assumptions, we
define pX,µ, ωq and pX,µ, ν, ωq finite settings. In particular, all finite settings pX,µ, ωq
and pX,µ, ν, ωq are σ-finite settings with Σ “ E “ U “ PpXq, σ “ µ, and τ “ ν.

In particular, for every p P p0,8q, for every function f on X, we have

‖f‖Lpµp`8ω q “
´

ˆ 8
0

pλpµ
´!

x P X : |fpxq| ą λ
)¯dλ

λ

¯
1
p
,

‖f‖Lp,8µ p`8ω q
“ sup

!

λµptx P X : |fpxq| ą λuq
1
p : λ ą 0

)

.

Therefore, for every subset A Ď X, we have

‖1A‖Lpµp`8ω q “ ‖1A‖Lp,8µ p`8ω q
“ µpAq

1
p . (1.2.10)
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1.2.3 General setting

Let pX,Σq be a measurable space, where Σ is the σ-algebra of measurable subsets of X.
Let µ and ν be outer measures on X, and let ω be a measure on pX,Σq. We define pX,µ, ωq
a general setting.

Since we dropped any additional assumption on the setting, we only restrict to the
`8ω size. We define it as in (1.2.3) and, for every p P p0,8s, we define the outer Lpµp`8ω q
and Lp,8µ p`8ω q quasi-norms and spaces on the setting pX,µ, ωq as in Definition 1.1.4 and
Definition 1.1.6. In particular, for every measurable function f on X, we have the same
properties described in the equalities in (1.2.5), (1.2.6), and (1.2.7).

1.2.4 Cartesian product of σ-finite measure spaces

For all σ-finite measure spaces pY,ΣY , ωY q and pZ,ΣZ , ωZq, let

X “ Y ˆ Z,

E “
!

Y 1 ˆ Z : Y 1 P ΣY

)

,

σpY 1 ˆ Zq “ ωY pY
1q, for every Y 1 P ΣY ,

let µ be the outer measure on X generated via minimal coverings as in (1.1.1) by the pre-
measure σ on the collection E , and let ω the canonical product measure on X associated
with ωY and ωZ , see for example the book of Rudin [Rud74]. In particular, we have
µ “ ωY ˝ πY , where πY : X Ñ Y is the projection onto Y . The setting pX,µ, ωq is σ-finite.

For all p, r P p0,8s, for every measurable function f on X, we have

‖f‖Lpµp`rωq “ ‖‖fp¨, ¨q‖LrpZ,ωZq‖LppY,ωY q.

Next, for all σ-finite measure spaces pY,ΣY , ωY q, pZ,ΣZ , ωZq, and pW,ΣW , ωW q, let

X “ Y ˆ Z ˆW,

E “
!

Y 1 ˆ Z ˆW : Y 1 P ΣY

)

,

σpY 1 ˆ Z ˆW q “ ωY pY
1q, for every Y 1 P ΣY ,

U “
!

Y 1 ˆ Z 1 ˆW : Y 1 P ΣY , Z
1 P ΣZ

)

,

τpY 1 ˆ Z 1 ˆW q “ ωY pY
1qωZpZ

1q, for all Y 1 P ΣY , Z 1 P ΣZ ,

let µ and ν be the outer measures on X generated via minimal coverings as in (1.1.1) by
the pre-measures σ and τ on the collections E and U respectively, and let ω the canonical
product measure on X associated with ωY , ωZ , and ωW . As above, we have µ “ ωY ˝ πY
and ν “ ρ ˝ πYˆZ , where ρ is the canonical product measure on Y ˆZ associated with ωY
and ωZ . The settings pX,µ, ωq, pX, ν, ωq, and pX,µ, ν, ωq are σ-finite.
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For all p, q, r P p0,8s, for every measurable function f on X, we have

‖f‖Lpµp`qνp`rωqq “ ‖‖‖fp¨, ¨, ¨q‖LrpW,ωW q‖LqpZ,ωZq‖LppY,ωY q.

We can iterate the definitions above in the case of the Cartesian product of arbitrarily
many σ-finite measure spaces, reproducing the mixed Lp spaces as iterated outer Lp ones.

This class of examples exhibits the paradigmatic comparability of the additive be-
haviours between the different outer measures.

Remark 1.2.2. In the setting on the Cartesian product of σ-finite measure spaces just
described, the elements of E satisfy the sufficient compatibility condition with respect to the
outer measure ν stated in Remark 1.2.1. In fact, for every subset A Ď X, the collection
tπY pAq ˆ Z ˆW u Ď E satisfies the properties in (1.2.8) and (1.2.9). Therefore, we can
prove that, for all p, q, r P p0,8s, for every measurable function f on X, we have

‖f‖Lpµp`qν,σp`rωqq “ ‖f‖Lpµp`qνp`rωqq,

and the double iterated outer Lp quasi-norms and spaces with respect to the two sizes are
equal.

1.2.5 Constant outer measure

Let pX,Σ, ωq be a σ-finite measure space. Let µ be the outer measure on X defined as
follows. For every subset A Ď X, A ‰ ∅,

µpAq “ 1.

We define such an outer measure to be the constant outer measure. The setting pX,µ, ωq
is σ-finite, and we observe that there are no Carathéodory measurable subsets of X with
respect to µ other than t∅, Xu. Next, let pX, ν, ωq be a σ-finite setting on X. Then the
setting pX,µ, ν, ωq is σ-finite as well.

For all p, r P p0,8s, for every measurable function f on X, we have

‖f‖Lpµp`rωq “ ‖f‖Lp,8µ p`rωq
“ ‖f‖L8µ p`rωq “ ‖f‖LrpX,ωq.

Moreover, for all p, q, r P p0,8s, for every measurable function f on X, we have

‖f‖Lpµp`qνp`rωqq “ ‖f‖Lp,8µ p`qνp`rωqq
“ ‖f‖L8µ p`qνp`rωqq “ ‖f‖Lqνp`rωq,

‖f‖Lpνp`qµp`rωqq “ ‖f‖LpνpSq,rω q,

‖f‖Lp,8ν p`qµp`rωqq
“ ‖f‖Lp,8ν pSq,rω q,

where, for every r P p0,8s, the size pS8,rω ,Σ,MpX,Σqq is defined by, for every measurable
function f on X, for every measurable subset A P Σ,

S8,rω pfqpAq– ‖f1A‖LrpX,ωq,
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and, for all q P p0,8q, r P p0,8s, the size pSq,rω , rΣ,MpX,Σqq is defined by, for every
measurable function f on X, for every measurable subset A P Σ, νpAq ‰ 8,

Sq,rω pfqpAq–

#

0, if νpAq “ 0,

νpAq
´ 1
q ‖f1A‖LrpX,ωq, if νpAq ‰ 0.

This class of examples exploit the strong subadditivity properties of the constant outer
measure, namely the failure of additivity on any collection of disjoint subsets. In the case
of double iterated outer Lp spaces, this class provides a source of counterexamples to the
uniformity of the constants in the quasi-triangle inequality for countably many summands,
see Subsection 3.3.4 in Chapter 3.

1.2.6 Hypercube packing

For every m P N, we define the subset Sm Ď pZ{mZqm by

Sm – t1, . . . ,m´ 1um.

Moreover, for every x P pZ{mZqm, we define the subset Epxq Ď pZ{mZqm by

Epxq– px` Smq{pmZqm.

Next, for every m P N, let

Xm “ pZ{mZqm “ Zm{pmZqm,

Em “
!

Epxq : x P Xm

)

,

σmpEpxqq “ 1, for every x P Xm,
ωmpxq “ 1, for every x P Xm,

and let µm be the outer measure on Xm generated via minimal coverings as in (1.1.1) by the
pre-measure σm on the collection Em. The setting pXm, µm, ωmq is finite, and we observe
that there are no Carathéodory measurable subsets of Xm with respect to µm other than
t∅, Xmu.

This class of examples, suggested by the articles of Herer and Christensen [HC75], and
Topsøe [Top76], exploits the weak subadditivity properties of the outer measures, namely
the failure of uniform subadditivity with multiplicity, see Remark 4.2.9. In the case of the
outer Lpµp`8ω q spaces, this class provides a source of counterexamples to the uniformity of
the constant in the quasi-triangle inequality for countably many summands.

The outer measure space pXm, µmq can be understood as follows. Let Ym be the col-
lection of m-dimensional hypercubes in Rm with sidelength 1 and vertices in Zm. Let Zm
be the collection of m-dimensional hypercubes in Rm with sidelength m ´ 1 and vertices
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in Zm. Let „m be the equivalence between elements of Ym defined by the grid pmZqm,
namely, for all y, y1 P Ym, we say y „m y1 if and only if there exists ~a P Zm such that

y1 “
!

~s`m~a : ~s P y Ď Rm
)

.

Then, we haveXm ” Ym{ „m, and the outer measure µm is generated via minimal coverings
as in (1.1.1) by the pre-measure σm attaining value 1 on each element of the collection
tz{ „m : z P Zmu Ď PpXmq.

x

Epxq

Figure 1.1: Subset Epxq associated with x P Xm in the representation of the setting as a
hypercube.

1.2.7 Dyadic trees of arbitrary depth

For all n, l P Z, we define the dyadic interval Ipn, lq in R by

Ipn, lq “ p2ln, 2lpn` 1qs,

and the collection I of dyadic intervals in R by

I “
!

Ipn, lq : n, l P Z
)

.

Moreover, for every m P t0u Y N, for every dyadic interval I P I such that

I Ď p0, 1s, |I| “ 2´m,

where |I| is the Lebesgue measure of I, we define the subset EpIq Ď I by

EpIq–
!

J P I : I Ď J Ď p0, 1s
)

.

Next, for every m P t0u Y N, let

Xm “

!

I P I : I Ď p0, 1s, |I| ě 2´m
)

,

Em “
!

EpIq : I P Xm, |I| “ 2´m
)

,

σmpEpIqq “ 1, for every I P Xm, |I| “ 2´m,
ωmpJq “ 1, for every J P Xm,
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and let µm be the outer measure on Xm generated via minimal coverings as in (1.1.1) by the
pre-measure σm on the collection Em. The setting pXm, µm, ωmq is finite, and we observe
that there are no Carathéodory measurable subsets of Xm with respect to µm other than
t∅, Xmu.

This class of examples exploits the weak subadditivity properties of the outer measures.
In the case of the outer L1

µp`
r
ωq spaces, this class provides a source of counterexamples to the

uniformity of the constant in the quasi-triangle inequality for countably many summands.
The outer measure spaces pXm, µmq can be understood as follows. Let Y be a rooted tree

with a bifurcation at each level of depth, where the level of depth of the root is assumed to be
the 0-th level. Let Z be the collection of branches in Y , namely the subsets of Y obtained
by starting from the root of the tree and subsequently choosing one possibility for each
bifurcation at every level of depth. Let „m be the equivalence between subsets of Y defined
by the identity when restricted to the first m levels of depth. Then, we have Xm ” Y { „m,
and the outer measure µm is generated via minimal coverings as in (1.1.1) by the pre-
measure σm attaining value 1 on each element of the collection tz{ „m : z P Zu Ď PpYmq.

0

1

2

. . . . . .

m

0

1

2

. . .

m

I

EpIq

. . .

. . . . . .

I

EpIq

Figure 1.2: Subset EpIq associated with the dyadic interval I Ď p0, 1s, |I| “ 2´m in both
of the representations of the setting, as a collection of dyadic intervals and as a tree.

1.2.8 Discrete model of the upper half space: dyadic cubes

For every d P N, for all ~m P Zd, l P Z, we define the dyadic cube Qp~m, lq in Rd by

Qp~m, lq–
d
ź

i“1

p2lmi, 2
lpmi ` 1qs,

and the collection Qd of dyadic cubes in Rd by

Qd –
!

Qp~m, lq : ~m P Zd, l P Z
)

.
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Moreover, for all ~m P Zd, l P Z, we define the upper half dyadic cubic box Bp~m, lq in the
upper half space Rd ˆ p0,8q by

Bp~m, lq “ BpQp~m, lqq– Qp~m, lq ˆ p2l´1, 2ls,

and the collection Bd of upper half dyadic cubic boxes in the upper half space Rd ˆ p0,8q
by

Bd –
!

Bp~m, lq : ~m P Zd, l P Z
)

.

Furthermore, for all ~m P Zd, l P Z, we define the subset Ep~m, lq Ď Bd by

Ep~m, lq “ EpQp~m, lqq “ EpBp~m, lqq–
!

B P Bd : B Ď Qp~m, lq ˆ p0, 2ls
)

.

Next, for every d P N, let

Xd “ Bd,

Ed “
!

Ep~m, lq : ~m P Zd, l P Z
)

,

σdpEp~m, lqq “ 2dl, for all ~m P Zd, l P Z,
ωdpBp~m, lqq “ 2dl, for all ~m P Zd, l P Z,

and let µd be the outer measure on Xd generated via minimal coverings as in (1.1.1) by the
pre-measure σd on the collection Ed. The setting pXd, µd, ωdq is σ-finite, and we observe
that the σ-algebra of the Carathéodory measurable subsets of Xd with respect to µd is
generated by the subsets in the collection

!

X~a : ~a P t´1, 1ud
)

.

For every ~a P t´1, 1ud, we define the subset X~a Ď Xd by

X~a “
!

B P Bd : B Ď
´

d
ź

i“1

Xai

¯

ˆ p0,8q
)

,

where we define the subsets X`1, X´1 Ď R by

X`1 “ p0,8q, X´1 “ XzX`1 “ p´8, 0s. (1.2.11)

1.2.9 Dyadic upper half space

For every d P N, for all ~m P Zd, l P Z, we define the dyadic tent or dyadic cubic box Ep~m, lq
in the upper half space Rd ˆ p0,8q by

Ep~m, lq “ EpQp~m, lqq “ EpBp~m, lqq– Qp~m, lq ˆ p0, 2ls.
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Next, for every d P N, let

Xd “ Rd ˆ p0,8q,

Ed “
!

Ep~m, lq : ~m P Zd, l P Z
)

,

σdpEp~m, lqq “ 2dl, for all ~m P Zd, l P Z,

dωdp~y, tq “ d~y
dt

t
, for all ~y P Rd, t P p0,8q,

and let µd be the outer measure on Xd generated via minimal coverings as in (1.1.1) by the
pre-measure σd on the collection Ed. The setting pXd, µd, ωdq is σ-finite, and we observe
that the σ-algebra of the Carathéodory measurable subsets of Xd with respect to µd is
generated by the subsets in the collection

!

X~a : ~a P t´1, 1ud
)

,

For every ~a P t´1, 1ud, we define the subset X~a Ď Xd by

X~a “
´

d
ź

i“1

Xai

¯

ˆ p0,8q,

where the subsets X`1, X´1 Ď R are defined in (1.2.11).

~y

t

Bp~m, lq

Ep~m, lq

Qp~m, lq

Figure 1.3: Dyadic cube Qp~m, lq, upper half dyadic cubic box Bp~m, lq, and dyadic tent
Ep~m, lq in the upper half space with coordinates p~y, tq.
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1.2.10 Continuous upper half space

For every d P N, for all ~x P Rd, s P p0,8q, we define the continuous tent or continuous
cubic box Ep~x, sq in the upper half space Rd ˆ p0,8q by

Ep~x, sq–
d
ź

i“1

pxi, xi ` ss ˆ p0, ss.

Next, for every d P N, let

Xd “ Rd ˆ p0,8q,

Ed “
!

Ep~x, sq : ~x P Rd, s P p0,8q
)

,

σdpEp~x, sqq “ sd, for all ~x P Rd, s P p0,8q,

dωdp~y, tq “ d~y
dt

t
, for all ~y P Rd, t P p0,8q,

and let µd be the outer measure on Xd generated via minimal coverings as in (1.1.1) by the
pre-measure σd on the collection Ed. The setting pXd, µd, ωdq is σ-finite, and we observe
that there are no Carathéodory measurable subsets of Xd with respect to µd other than
t∅, Xdu.

1.2.11 Discrete model of the upper half 3-space: Heisenberg dyadic tiles

For all m, l P Z, we define the dyadic interval Ipm, lq in R by

Ipm, lq– p2lm, 2lpm` 1qs,

and the collection I of dyadic intervals in R by

I –

!

Ipm, lq : m, l P Z
)

.

Moreover, for all m,n, l P Z, we define the dyadic rectangle of area 1 Rpm,n, lq in R2 by

Rpm,n, lq– Ipm, lq ˆ Ipn,´lq,

and the collection R of dyadic rectangles of area 1 in R2 by

R–

!

Rpm,n, lq : m,n, l P Z
)

.

Furthermore, for all m,n, l P Z, we define the Heisenberg upper half dyadic tile Hpm,n, lq
in the upper half 3-space R2 ˆ p0,8q by

Hpm,n, lq– HpIpm, lq, Ipn,´lqq “ Rpm,n, lq ˆ p2l´1, 2ls,
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and the collection H of Heisenberg upper half dyadic tiles in the upper half 3-space R2 ˆ

p0,8q by
H –

!

Hpm,n, lq : m,n, l P Z
)

.

Finally, for all n, l, l1 P Z, l1 ď l, we define Npn, l1q P Z by the condition

Ipn,´lq Ď IpNpn, l1q,´l1q.

Then, for all m, l P Z, we define the subset Epm, lq Ď H by

Epm, lq “ EpIpm, lqq–
!

H P H : H Ď Ipm, lq ˆ Rˆ p0, 2ls
)

,

and, for all m,n, l P Z, we define the subset T pm,n, lq Ď H by

T pm,n, lq “ T pIpm, lq, Ipn,´lqq “ T pHpm,n, lqq

–

!

H P H : H Ď
ď

l1PZ,l1ďl

´

Ipm, lq ˆ IpNpn, l1q,´l1q ˆ p0, 2l
1

s

¯)

.

Next, let

X “ H,

E “
!

Epm, lq : m, l P Z
)

,

σpEpm, lqq “ 2l, for all m, l P Z,

T “
!

T pm,n, lq : m,n, l P Z
)

,

τpT pm,n, lqq “ 2l, for all m,n, l P Z,
ωpHpm,n, lqq “ 2l, for all m,n, l P Z,

and let µ and ν be the outer measures on X generated via minimal coverings as in (1.1.1)
by the pre-measures σ and τ on the collections E and T respectively. The settings pX,µ, ωq,
pX, ν, ωq, and pX,µ, ν, ωq are σ-finite. Moreover, we observe that there are no Carathéodory
measurable subsets of X with respect to µ other than t∅, X`, X´, Xu, where the subsets
X`, X´ Ď X are defined by

X` “
!

H P H : H Ď p0,8q ˆ Rˆ p0,8q
)

, X´ “ XzX`.

Furthermore, the σ-algebra of the Carathéodory measurable subsets of X with respect to
ν is generated by the subsets tX`,`, X`,´, X´,`, X´,´u defined by

X`,` “
!

H P H : H Ď p0,8q ˆ p0,8q ˆ p0,8q
)

, X`,´ “ X`zX`,`,

X´,` “
!

H P H : H Ď p´8, 0s ˆ p0,8q ˆ p0,8q
)

, X´,´ “ X´zX´,`.
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1.2.12 Dyadic upper half 3-space

For all n, l, l1 P Z, l1 ď l, we define Npn, l1q P Z by the condition

Ipn,´lq Ď IpNpn, l1q,´l1q.

For all m, l P Z, we define the dyadic stripe Epm, lq in the upper half 3-space R2ˆp0,8q
by

Epm, lq “ EpIpm, lqq– Ipm, lq ˆ Rˆ p0, 2ls,

and, for all m,n, l P Z, we define the dyadic tree T pm,n, lq in the upper half 3-space
R2 ˆ p0,8q by

T pm,n, lq “ T pIpm, lq, Ipn,´lqq “ T pHpm,n, lqq

–
ď

l1PZ,l1ďl

´

Ipm, lq ˆ IpNpn, l1q,´l1q ˆ p0, 2l
1

s

¯

.

Next, let

X “ Rˆ Rˆ p0,8q,

E “
!

Epm, lq : m, l P Z
)

,

σpEpm, lqq “ 2l, for all m, l P Z,

T “
!

T pm,n, lq : m,n, l P Z
)

,

τpT pm,n, lqq “ 2l, for all m,n, l P Z,
dωpy, η, tq “ dy dη dt, for all y, η P R, t P p0,8q,

and let µ and ν be the outer measures on X generated via minimal coverings as in (1.1.1)
by the pre-measures σ and τ on the collections E and T respectively. The settings pX,µ, ωq,
pX, ν, ωq, and pX,µ, ν, ωq are σ-finite. Moreover, we observe that there are no Carathéodory
measurable subsets of X with respect to µ other than t∅, X`, X´, Xu, where the subsets
X`, X´ Ď X are defined by

X` “ p0,8q ˆ Rˆ p0,8q, X´ “ XzX`.

Furthermore, the σ-algebra of the Carathéodory measurable subsets of X with respect to
ν is generated by the subsets tX`,`, X`,´, X´,`, X´,´u defined by

X`,` “ p0,8q ˆ p0,8q ˆ p0,8q, X`,´ “ X`zX`,`,

X´,` “ p´8, 0s ˆ p0,8q ˆ p0,8q, X´,´ “ X´zX´,`.
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y

t

T pm,n, lq

Hpm,n, lq

η

t

Ipm, lq Ipn,´lq

Figure 1.4: Dyadic intervals Ipm, lq, Ipn,´lq, Heisenberg upper half dyadic tile Hpm,n, lq,
and dyadic tree T pm,n, lq in the upper half 3-space with coordinates py, η, tq projected onto
the upper half planes with coordinates py, tq and pη, tq respectively.

For every Heisenberg upper half dyadic tile H P H, we define the dyadic intervals
IH , rIH P I by

IH – πpHq, rIH – rπpHq,

where π : X Ñ R is the projection onto the first coordinate and rπ : X Ñ R onto the second.
Moreover, we define the dyadic tree TH P T by

TH – T pIH , rIHq “ T pHq.

For every dyadic tree T P T , we define the dyadic intervals IT , rIT P I by

IT – πpT q, |rIT |– |IT |´1, HpIT , rIT q Ď T,

where π : X Ñ R is the projection onto the first coordinate. Moreover, we define the
Heisenberg upper half dyadic tile HT P H by

HT – HpIT , rIT q.

1.2.13 Continuous upper half 3-space

For all x P R, s P p0,8q, we define the continuous stripe Epx, sq in the upper half 3-space
R2 ˆ p0,8q by

Epx, sq– px, x` ss ˆ Rˆ p0, ss,
and, for all x, ξ P R, s P p0,8q, we define the continuous tree T px, ξ, sq in the upper half
3-space R2 ˆ p0,8q by

T px, ξ, sq–
ď

s1Pp0,ss

´

px, x` ss ˆ
´

ξ ´
1

s1
, ξ `

1

s1

ı

ˆ p0, s1s
¯

.
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Next, let

X “ Rˆ Rˆ p0,8q,

E “
!

Epx, sq : x P R, s P p0,8q
)

,

σpEpx, sqq “ s, for all x P R, s P p0,8q,

T “
!

T px, ξ, sq : x, ξ P R, s P p0,8q
)

,

τpT px, ξ, sqq “ s, for all x, ξ P R, s P p0,8q,
dωpy, η, tq “ dy dη dt, for all y, η P R, t P p0,8q,

and let µ and ν be the outer measures on X generated via minimal coverings as in (1.1.1) by
the pre-measures σ and τ on the collections E and T respectively. The settings pX,µ, ωq,
pX, ν, ωq, and pX,µ, ν, ωq are σ-finite, and we observe that there are no Carathéodory
measurable subsets of X with respect to µ or ν other than t∅, Xu.

y

t

T px, ξ, sq

px, ξ, sq

px, x` ss

x

s s

η

t

ξ

pξ ´ s´1, x` s´1s

Figure 1.5: Continuous tree T px, ξ, sq in the upper half 3-space with coordinates py, η, tq
projected onto the two upper half planes with coordinates py, tq and pη, tq respectively.

Remark 1.2.3. In the settings on the upper half 3-space or its discrete model described in
Subsections 1.2.11 – 1.2.13, the elements of E satisfy the sufficient compatibility condition
with respect to the outer measure ν stated in Remark 1.2.1. Therefore, we can prove that,
for all p, q, r P p0,8s, there exists a constant C “ Cpp, q, rq such that, for every measurable
function f on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď ‖f‖Lpµp`qν,σp`rωqq ď C‖f‖Lpµp`qνp`rωqq,

the double iterated outer Lp quasi-norms with respect to the two sizes are equivalent, and
the double iterated outer Lp spaces with respect to the two sizes are equal.
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1.3 Main results: further properties of outer Lp spaces

We turn to the study of the Banach space properties of the outer Lp spaces. In our
investigation, we keep as a point of reference the properties of the mixed Lp quasi-norms
and spaces on the Cartesian product of σ-finite measure spaces. As we saw in the description
of the setting on the Cartesian product of σ-finite measure spaces in Subsection 1.2.4, they
can be exhibited as outer Lp quasi-norms and spaces.

The mixed Lp quasi-norms and spaces on the Cartesian product of σ-finite measure
spaces are well-studied mathematical objects, see for example the article of Benedek and
Panzone [BP61]. They satisfy many properties, other than those already listed in the
previous sections, for example the following ones.

(i) Collapsing of exponents. For every p P p0,8s, for every measurable function f on
Y ˆ Z, we have

‖‖f‖LppZ,ωZq‖LppY,ωY q “ ‖f‖LppYˆZ,ωq,
where ω is the canonical product measure on Y ˆ Z associated with ωY and ωZ .
This property is Fubini’s Theorem, more precisely the Fubini-Tonelli Theorem, see
for example the book of Rudin [Rud74].

(ii) Köthe duality. For all p, r P r1,8s, for every measurable function f on Y ˆ Z, we
have

‖‖f‖LrpZ,ωZq‖LppY,ωY q “ sup
!

‖fg‖L1pYˆZ,ωq : ‖‖g‖Lr1 pZ,ωZq‖Lp1 pY,ωY q “ 1
)

,

where ω is the canonical product measure on Y ˆ Z associated with ωY and ωZ .

(iii) Triangle inequality. For all p, r P r1,8s, for every collection tfn : n P Nu of mea-
surable functions on Y ˆ Z, we have∥∥∥∥∥∥ÿ

nPN
fn

∥∥∥
LrpZ,ωZq

∥∥∥
LppY,ωY q

ď
ÿ

nPN
‖‖fn‖LrpZ,ωZq‖LppY,ωY q.

(iv) Minkowski’s inequality. For all p, r P p0,8s, p ě r, for every measurable function
f on Y ˆ Z, we have

‖‖f‖LrpZ,ωZq‖LppY,ωY q ď ‖‖f‖LppY,ωY q‖LrpZ,ωZq.

It is then natural to ask whether these properties hold true also for the outer Lp quasi-
norms and spaces on more general settings. In particular, we allow for the equalities and
inequalities with constant 1 in the previous four displays to be replaced by equivalences and
inequalities up to constants that may depend on the exponents p, r, but not on the setting
pX,µ, ωq. Namely, we ask whether, for all p, r P p0,8s, there exists a constant C “ Cpp, rq
such that, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following
properties hold true.
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(i) Collapsing of exponents. For every p P p0,8s, for every measurable function f on
X, we have

C´1‖f‖Lpµp`pωq ď ‖f‖LppX,ωq ď C‖f‖Lpµp`pωq. (CoE)

(ii) Köthe duality. For all p, r P r1,8s, for every measurable function f on X, we have

C´1‖f‖Lpµp`rωq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`r1ω q “ 1
)

ď C‖f‖Lpµp`rωq. (KD)

(iii) Quasi-triangle inequality for countably many summands. For all p, r P r1,8s,
for every collection tfn : n P Nu of measurable functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
Lpµp`rωq

ď C
ÿ

nPN
‖fn‖Lpµp`rωq. (qTI)

(iv) Minkowski’s inequality. There exists an outer measure υ on X such that, for all
p, r P p0,8s, p ě r, for every measurable function f on X, we have

‖f‖Lpµp`rωq ď C‖f‖Lrυp`pωq, ‖f‖Lpυp`rωq ď C‖f‖Lrµp`pωq. (MI)

The use of the term Köthe duality in this context is a slight abuse. In general, the Köthe
dual space is a notion defined with respect to Banach function spaces on a measure space, see
for example the books of Bennett and Sharpley [BS88], Lindenstrauss and Tzafriri [LT79].
A Banach function space pL, ‖¨‖Lq on a σ-finite measure space pX,ωq is defined by three
conditions. First, it is a normed space. Next, for all measurable functions f and g on X, if g
belongs to L and f is bounded by g in absolute value ω-almost everywhere, then f belongs
to L and ‖f‖L ď ‖g‖L. Moreover, for every measurable subset E Ď X such that ωpEq is
finite, then its characteristic function 1E belongs to L. Now, the outer Lpµp`rωq quasi-norms
are not norms, a priori. However, the second property defining a Banach function space is
satisfied by the outer Lpµp`rωq spaces. Finally, the collection t1E : E Ď X,ωpEq ă 8u may
not be contained in the outer Lpµp`rωq spaces. Nevertheless, in the case of σ-finite settings we
can prove that there exists a countable subcollection of t1E : E Ď X,ωpEq ă 8, µpEq ă 8u
contained in the outer Lpµp`rωq spaces, and whose corresponding subsets cover X.

We point out that the properties listed above are ordered. Collapsing of exponents
in (CoE) implies Köthe duality in (KD) for the exponents p “ r P r1,8s. Moreover,
collapsing of exponents in (CoE) for p “ 1 and Köthe duality in (KD) for a couple of
exponents p, r P r1,8s imply the quasi-triangle inequality in (qTI) for the same exponents.
Finally, the quasi-triangle inequality in (qTI) for a couple of exponents p, r P r1,8s is a
special case of Minkowski’s inequality in (MI) for certain double iterated outer Lp spaces.
Namely, the quasi-triangle inequality for the single iterated outer Lpµp`rωq spaces on the
setting pX,µ, ωq is a form of Minkowski’s inequality for the double iterated outer Lp

rµp`
r
rωp`

1
ρqq

spaces on the setting pX ˆN, rµ “ µ ˝ πX , rω “ ω ˝ πX , ρq, where ρ is the canonical product
measure on X ˆ N associated with ω and the counting measure on N.
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Properties analogous to those in (CoE) – (MI) can be investigated in the case of
iterated outer Lp quasi-norms and spaces for any arbitrary degree of iteration. We point
out that, as the degree of iterations increases, multiple different phenomena of collapsing of
exponents and Minkowski’s inequality are possible. Given a collection tpn P p0,8s : n P Nu
of exponents and a collection tµn : n P t0u Y Nu of outer measures on a measure space
pX,ωq such that µ0 “ ω, we list some properties that can be investigated.

(i’) Collapsing of exponents. Fix i, j P N, i ą j. There exist an outer measure υ on
X such that, for every p P p0,8s, for every measurable function f on X, we have

C´1‖f‖
Lpnµn p...`

pi`1
µi`1

p`pµi p`
p
µi´1

p...`pµj p`
pj´1
µj´1

p...`
p0
ω qqqqqq

ď ‖f‖
Lpnµn p...p`

pi`1
µi`1

p`pυp`
pj´1
µj´1

p...`
p0
ω qqqqq

,

‖f‖
Lpnµn p...p`

pi`1
µi`1

p`pυp`
pj´1
µj´1

p...`
p0
ω qqqqq

ď C‖f‖
Lpnµn p...`

pi`1
µi`1

p`pµi p`
p
µi´1

p...`pµj p`
pj´1
µj´1

p...`
p0
ω qqqqqq

.

(iv’) Minkowski’s inequality. Fix i, j P N, i ą j. There exist a collection tυk : j ď k ď iu
of outer measures on X such that, for all pi, pi´1, . . . , pj P p0,8s, pi ě pi´1, . . . , pj ,
for every measurable function f on X, we have

‖f‖
Lpnµn p...`

pi`1
µi`1

p`
pi
µi
p...`

pj
µj
p`
pj´1
µj´1

p...`
p0
ω qqqqq

ď

ď C‖f‖
Lpnµn p...`

pi`1
µi`1

p`
pi´1
υi

p...`
pj
υj`1

p`
pi
υj
p`
pj´1
µj´1

p...`
p0
ω qqqqqq

,

‖f‖
Lpnµn p...`

pi`1
µi`1

p`
pi
υi
p...`

pj
υj
p`
pj´1
µj´1

p...`
p0
ω qqqqq

ď

ď C‖f‖
Lpnµn p...`

pi`1
µi`1

p`
pi´1
µi

p...`
pj
µj`1

p`
pi
µj
p`
pj´1
µj´1

p...`
p0
ω qqqqqq

.

Some partial results about the properties in (CoE) – (MI) in the case of single iterated
outer Lp spaces follow from the propositions proved by Do and Thiele in [DT15]. In
particular, the second inequality in (CoE) follows from the Radon-Nikodym type result for
the outer Lp quasi-norms (Theorem 1.1.8), while the second inequality in (KD) follows from
the Radon-Nikodym type result for the outer L1 quasi-norms and outer Hölder’s inequality
(Theorem 1.1.7).

In the remaining part of the Introduction, we discuss the original results contained in
this thesis.

For single iterated outer Lp spaces, we have the following result, whose main point
is the uniformity in the setting pX,µ, ωq of the constants associated with collapsing of
exponents, Köthe duality, quasi-triangle inequality, and Minkowski’s inequality. The first
three properties of this result are discussed in the case of a finite setting in Theorem 2.1.1
in Chapter 2, and extended to the case of a σ-finite setting in Theorem 4.2.1 in Chapter 4.
The fourth property is discussed in Theorem 4.3.9 in Chapter 4.
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Theorem 1.3.1. For all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for
every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following properties hold
true.

(i) For every p P p0,8s, for every measurable function f on X, we have (CoE).

(ii) For all p P p1,8s, r P r1,8q or p “ r P t1,8u, for every measurable function f on
X, we have (KD).

(iii) For all p P p1,8s, r P r1,8q or p “ r P t1,8u, for every collection tfn : n P Nu of
measurable functions on X, we have (qTI).

(iv) There exists an outer measure υ “ υpµ, ωq on X such that, for all p, r P p0,8s, p ě r,
for every measurable function f on X, we have (MI).

It is worth noting that the outer measure υ associated with (MI) has a better subad-
ditivity behaviour than general outer measures, as proved in Lemma 4.3.12 in Chapter 4.

The main ingredient in the proof of Theorem 1.3.1 is a recursive greedy selection algo-
rithm providing a sequence of disjoint subsets of X satisfying the following properties. For
every level λ P p0,8q, they exhaust the subsets where the size is bigger than λ, but at the
same time they guarantee a lower bound on the super level measure associated with Cλ.

In general, in the remaining cases for the exponents p, r we have counterexamples to
the existence of a constant in (KD) and (qTI) that is uniform in the setting pX,µ, ωq.
This is showed in Lemma 2.3.4 in Chapter 2 for all p “ 1, r P p1,8s, and in Lemma 4.2.5
in Chapter 4 for all p P r1,8q, r “ 8. In fact, uniformity in the setting of the constant in
a weak version of (qTI) for p “ 1, r “ 8 is equivalent to a certain subadditivity condition
on the outer measure µ, as proved in Lemma 4.2.7 in Chapter 4.

However, not all the counterexamples can be reproduced on the settings on the upper
half space and upper half 3-space or their discrete models described in Subsections 1.2.8
– 1.2.13. Therefore, we recover (KD) and (qTI) for the single iterated outer Lp spaces
in at least some of the endpoint cases for the exponents p, r. These results are discussed
in Theorem 2.1.2 in Chapter 2 in the case of the upper half space setting and its discrete
model, and in Theorem 4.4.1 in Chapter 4 in the case of the upper half 3-space setting and
its discrete model.

Theorem 1.3.2. Let pXd, µd, ωdq be any setting on the upper half space or its discrete
model described in Subsections 1.2.8 – 1.2.10. Then, for all p, r P r1,8s, there exists a
constant C “ Cpp, rq such that we have (KD) and (qTI).

Let pX, ν, ωq be any setting on the upper half 3-space or its discrete model described in
Subsections 1.2.11 – 1.2.13. Then, for all p P p1,8s, r P r1,8s or p “ r “ 1, there exists
a constant C “ Cpp, rq such that we have (KD) and (qTI). For all p “ 1, r P p1,8s, we
have a counterexample to the existence of a constant in (KD) and (qTI).
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The result for the single iterated outer Lp spaces on the upper half space settings allows
us to relate them with the more classical notion of tent spaces introduced by Coifman,
Meyer, and Stein in [CMS83, CMS85]. The latter are spaces of functions on the upper
half space defined by quasi-norms that are akin to mixed Lp, although strictly speaking
they are not mixed Lp quasi-norms. We refer to the original papers or the introduction
of Chapter 2 for their definition. The Köthe duality result for outer Lpµp`rωq and tent T pr
spaces, together with easy comparability between the quasi-norms for certain exponents
p, r, implies the equivalence between the two notions for all p, r P p0,8s. This result is
discussed in Theorem 2.1.3 in Chapter 2.

Theorem 1.3.3. For all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for
every setting pXd, µd, ωdq on the upper half space described in Subsections 1.2.9 – 1.2.10,
for every measurable function f on Xd, we have

C´1‖f‖T pr ď ‖f‖Lpµd p`rωd q ď C‖f‖T pr ,

hence Lpµdp`rωdq “ T pr .

The result for the outer Lp spaces on the upper half 3-space settings in the case of a
size `rω leads us to consider the case of the size S with variable exponent appearing in the
article of Do and Thiele [DT15]. The size S is of the form of a sum of sizes `8ω and `2ω
restricted to certain subsets of each tree in the upper half 3-space. The proof strategy used
for Theorem 1.3.1 cannot be adapted to the case of the outer Lp spaces with respect to S
or any of its components. In fact, for the outer LpνpSq spaces we exhibit counterexamples to
the existence of a constant in a version of Köthe duality with an appropriate dual size S1, see
Lemma 4.5.2 in Chapter 4. For the outer Lp spaces with respect to each of the components
of S, we could still prove a version of Köthe duality, but we would have to substitute the
classical L1pX,ωq norm used to measure the product of functions. In particular, we would
substitute it with a quasi-norm that does not satisfy quasi-triangle inequality for countably
many summands, see Lemma 4.5.1. Therefore, the outer Lp spaces would not inherit such
property.

For arbitrary iterated outer Lp spaces, one would hope to be able to apply the same
arguments used to prove Theorem 1.3.1 recursively to obtain the desired uniform results.
For example, let tµi : i P Nu be a collection of outer measures on a measure space pX,ωq
such that, for every i P N, the setting pX,µi, ωq is σ-finite. Moreover, let p P p0,8s.
Applying the result in (CoE) to the setting pX,µ1, ωq, then, for every n P N, for every
measurable function f on X, we have

Cppq´1‖f‖Lpµn p...`pµ2
p`pµ1

p`pωqqq
ď ‖f‖Lpµn p...`pµ2

p`pωqq
ď Cppq‖f‖Lpµn p...`pµ2

p`pµ1
p`pωqqq

,

and iterating the application of the same result changing recursively the setting pX,µi, ωq,
we obtain

Cppq´n‖f‖Lpµn p...`pµi p...`pωqq ď ‖f‖LppX,ωq ď Cppqn‖f‖Lpµn p...`pµi p...`pωqq,
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where the constant Cppq is independent of f , n, X, ω, and tµi : i P Nu. However, in general
the iteration of the same arguments is not going to be possible, and we have to be more
careful in our analysis.

Already in the case of double iterated outer Lp spaces, to recover uniform results at
least in a class of settings, we need to require additional conditions. Trying to replicate
the same arguments used to prove Theorem 1.3.1, we face a problem given by the lack
of q-orthogonality between the outer Lqνp`rωq quasi-norms of functions with arbitrary dis-
joint supports. For single iterated outer Lp spaces, the corresponding property is the
r-orthogonality between the classical LrpX,ωq quasi-norms of functions with arbitrary dis-
joint supports. This property is easily verified by the additivity of the integral associated
with the measure ω.

Instead, for double iterated outer Lp spaces, according to the cases q ą r or q ă r,
only one between a sub- and super-q-orthogonality results still holds true. However, to
replicate the arguments used to prove Theorem 1.3.1 to a complete extent, we need the full
q-orthogonality. Such a property depends on the compatibility between the (sub)additive
behaviours of the outer measures µ and ν, and the compatibility is the subject of the
additional conditions. In fact, the necessity of some additional conditions, at least in a
certain open range of exponents p, q, r P p1,8q, is not an artefact of the proof strategy we
pursue, as exhibited by a collection of counterexamples in Chapter 3.

To state the additional conditions, we need to introduce some auxiliary definitions.
They depend on two parameters Φ,K ě 1. First, given a subset A Ď X, we say that a
subset B Ď X is a µ-parent set of A (with parameter Φ) if A Ď B and we have

µpBq ď ΦµpAq.

A µ-parent function B (with parameter Φ) is then a monotone function from PpXq to itself,
associating every subset A Ď X with a µ-parent set (with parameter Φ) BpAq.

Moreover, given a collection E of subsets of X, we say that a function C from PpXq to
the set of subcollections of pairwise disjoint elements in E is a µ-covering function (with
parameter Φ) if the function BC from PpXq to itself defined by

BCpAq “
ď

EPCpAq
E,

is a µ-parent function (with parameter Φ).
Next, we say that a collection A of pairwise disjoint subsets of X is ν-Carathéodory

(with parameter K) if, for every subset U Ď X, we have
ÿ

APA
νpU XAq ď Kν

´

U X
ď

APA
A
¯

.

In particular, we observe that the classical Carathéodory measurability test for a subset
E with respect to an outer measure µ corresponds to checking that the couple of disjoint
subsets tE,Ecu is µ-Carathéodory with parameter K “ 1.
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Finally, we define two conditions for the quadruple pX,µ, ν, Cq.

Condition 1.3.4 (Canopy). We say that pX,µ, ν, Cq satisfies the canopy condition (with
parameters Φ, K) if C is a µ-covering function with parameter Φ, and, for every collection
A that is a ν-Carathéodory collection with parameter K, for every subset D Ď X disjoint
from BCp

Ť

APAAq, the collection AY tDu is still ν-Carathéodory with the same parameter
K.

Condition 1.3.5 (Crop). We say that pX,µ, ν, Cq satisfies the crop condition (with param-
eters Φ, K) if C is a µ-covering function with parameter Φ, and, for every collection A Ď E,
there exists a subcollection D Ď A that is a ν-Carathéodory collection with parameter K
and such that, for every subset F Ď X disjoint from

Ť

DPDD, we have

BCpF q “ B
rCpF q,

where
rCpF q “ CpF qzA.

In particular, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the
quadruple pX,µ, ω, Idq satisfies the canopy and crop conditions with parameters Φ “ K “ 1.

For double iterated outer Lp spaces, we have the following result, whose main point,
once again, is the dependence of the constants on the setting and their uniformity up to
additional conditions. This result is discussed in Theorem 3.1.3 and Theorem 3.1.4 in
Chapter 3, and Theorem 4.6.1 in Chapter 4.

Theorem 1.3.6. For all p, q, r P p0,8s, Φ,K ě 1, there exist constants C1 “ C1pq, r,Φ,Kq
, C2 “ C2pq, r,Φ,Kq, C “ Cpp, q, r,Φ,Kq such that, for every finite setting pX,µ, ν, ωq
described in Subsection 1.2.2, for every µ-covering function C, the following properties hold
true.

(i) If pX,µ, ν, Cq satisfies the canopy condition 1.3.4, then for every function f on X, we
have

C´1
1 ‖f‖Lqνp`rωq ď ‖f‖Lqµp`qνp`rωqq ď C2‖f‖Lqνp`rωq.

If q ă r or q “ 8, the constant C1 does not depend on Φ, K. If q ą r, the constant
C2 does not depend on Φ, K.

If q “ r P p0,8s, the constants C1, C2 do not depend on Φ, K.

(ii) If pX,µ, ν, Cq satisfies the canopy condition 1.3.4, then for all p, q, r P p1,8q, q ď r,
for every function f on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`q1ν p`r1ω qq “ 1
)

ď C‖f‖Lpµp`qνp`rωqq.

If pX,µ, ν, Cq satisfies the crop condition 1.3.5, then for all p, q, r P p1,8q, q ě r, the
same inequality holds true.
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Moreover, if p, q, r P r1,8s satisfy one of the following conditions

p “ 8, q P p1,8q, r P pq,8q,

p P p1,8s, q “ r P r1,8q,

p “ q “ r P t1,8u,

the constant C does not depend on Φ, K.

(iii) If pX,µ, ν, Cq satisfies the canopy condition 1.3.4, then for all p, q, r P p1,8q, q ď r,
for every collection tfn : n P Nu of functions on X, we have

‖
ÿ

nPN
fn‖Lpµp`qνp`rωqq ď C

ÿ

nPN
‖fn‖Lpµp`qνp`rωqq.

If pX,µ, ν, Cq satisfies the crop condition 1.3.5, then for all p, q, r P p1,8q, q ě r, the
same inequality holds true.

Moreover, if p, q, r P r1,8s satisfy one of the following conditions

p “ 8, q P p1,8s, r P r1,8q,

p P p1,8s, q “ r P r1,8q,

p “ q “ r P t1,8u,

the constant C does not depend on Φ, K.

We point out the dichotomy between the cases q ą r and q ă r and its relation with
the canopy and crop conditions. For collapsing of exponents, the distinction between the
cases is clarified by counterexamples exhibiting the failure of the uniformity in Φ, K of
either of the two constants C1 and C2. We refer to Subsection 3.3.4 in Chapter 3 for these
counterexamples. For Köthe duality, the distinction could be just an artefact of the proof
strategy. It would be interesting to understand more clearly the nature of necessary and
sufficient conditions to obtain uniformity of the constants in collapsing of exponents and
Köthe duality.

In particular, for every σ-finite setting on the upper half 3-space or its discrete model
described in Subsections 1.2.11 – 1.2.13, both the canopy and crop conditions are satisfied,
and the properties stated in Theorem 1.3.6 still hold true. This result is discussed in
Theorem 3.1.5 in Chapter 3.

The remaining part of this thesis is organized into three Chapters.
In Chapter 2, we report the article [Fra21].

Marco Fraccaroli. Duality for outer Lpµp`rq spaces and relation to tent spaces. J. Fourier
Anal. Appl., 27(4):Paper No. 67, 48, 2021.
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In Chapter3, we report the article [Fra22].

Marco Fraccaroli. Duality for double iterated outer Lp spaces.

in the revised version accepted for forthcoming publication in Studia Mathematica.
In Chapter 4, we prove additional properties of outer Lp spaces and we collect some open
conjectures.

Notation

For every measure space pX,ωq, for every p P p0,8s, the notation ‖f‖LppX,ωq stands for the
classical Lp quasi-norm.

For every p P r1,8s, the notation p1 stands for the Hölder’s conjugate exponent, namely
p1 P r1,8s such that

1

p
`

1

p1
“ 1.

Unless explicitly stated otherwise, a constant C is a finite strictly positive real number,
namely C P p0,8q.

Unless explicitly stated otherwise, the notation A „p B means that there exists a
constant C “ Cppq such that A ď CB and B ď CA.

We denote by N the set of strictly positive integer numbers, namely

N “ t1, 2, . . . , n, n` 1, . . . u.

In particular, the number 0 does not belong to N.
Unless explicitly stated otherwise, the elements of a double sequence are parametrized

by pairs pk, nq with k P Z, n P Nk, where Nk is either N or a finite initial string of it, possibly
empty. On the set of couples we consider the lexicographic order as follows: pl,mq ă pk, nq
if either l ą k, or l “ k, m ă n.





Chapter 2

Single iterated outer Lp space

In this chapter, we report the article [Fra21].

Marco Fraccaroli. Duality for outer Lpµp`rq spaces and relation to tent spaces. J. Fourier
Anal. Appl., 27(4):Paper No. 67, 48, 2021.

At the end of the chapter, we collect some typos discovered after the publication.

Abstract

We study the outer Lp spaces introduced by Do and Thiele on sets endowed with a measure
and an outer measure. We prove that, in the case of finite sets, for 1 ă p ď 8, 1 ď
r ă 8 or p “ r P t1,8u, the outer Lpµp`rq quasi-norms are equivalent to norms up to
multiplicative constants uniformly in the cardinality of the set. This is obtained by showing
the expected duality properties between the corresponding outer Lpµp`rq spaces uniformly
in the cardinality of the set. Moreover, for p “ 1, 1 ă r ď 8, we exhibit a counterexample
to the uniformity in the cardinality of the finite set. We also show that in the upper
half space setting the desired properties hold true in the full range 1 ď p, r ď 8. These
results are obtained via greedy decompositions of functions in the outer Lpµp`rq spaces. As
a consequence, we establish the equivalence between the classical tent spaces T pr and the
outer Lpµp`rq spaces in the upper half space. Finally, we give a full classification of weak
and strong type estimates for a class of embedding maps to the upper half space with a
fractional scale factor for functions on Rd.

2.1 Introduction

A classical research topic in harmonic analysis is the study of linear and multilinear op-
erators defined on functions on Rd and satisfying certain symmetries. It is the case of
Calderón-Zygmund theory, when the symmetries are given by translations and dilations,
and time-frequency analysis, when additional modulation symmetries are included. The

35
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symmetries are parametrized by the upper half space Rd ˆ p0,8q in the first case, and
the upper half 3-space R ˆ p0,8q ˆ R in the second. In fact, in both cases we can use
a wave packet decomposition to encode the information of a function on Rd in the space
parametrizing the specific symmetries.

In [DT15], the authors introduced in both the previous settings a new type of function
spaces, the so called outer Lp spaces. These spaces were defined via quasi-norms with
a structure reminiscent of the iteration of classical Lebesgue norms. The purpose was to
formalize a paradigm in proving the boundedness of operators in time-frequency analysis by
a two-step program. In particular, the program consisted of a version of Hölder inequality
for outer Lp spaces followed by estimates from classical to outer Lp spaces on the embedding
maps associated with wave packet decompositions. This is for example the case of the
bilinear Hilbert transform in [AU20b, DPO18b, DT15], the variational Carleson operator
in [DPDU18, Ura16], the variational bilinear iterated Fourier inversion operator in [DMT17],
a family of trilinear multiplier forms with singularity over a one-dimensional subspace in
[CDPO18], and the uniform bilinear Hilbert transform in [War18]. Analogous applications
of the outer Lp spaces framework in other settings with different geometries can be found
in [AU20a], [DPGTZK18], [DPO18a], [DT15], [MT17], [TTV15].

Moreover, in [DT15] the authors pointed out that the two-step program outlined above,
when applied to the outer Lp spaces on Rd ˆ p0,8q, recovers some results of classical
Calderón-Zygmund theory, as detailed for example in [Ste70, Ste93]. In fact, in this partic-
ular setting, the outer Lp spaces are competing with the more classical tent spaces intro-
duced in [CMS83, CMS85]. The tent spaces are defined by iterated Lebesgue norms, and
they have been thoroughly studied and used in the literature. Due to the many analogies
in their definition and use, the equivalence between the outer Lp spaces and the tent ones
has been conjectured since the publication of [DT15] but never formally established. We
prove the equivalence in Theorem 2.1.3.

In order to formalize the two-step program described above, in [DT15], the authors
developed the framework of the outer Lp spaces focusing on their real interpolation features,
such as Marcinkiewicz interpolation and Hölder’s inequality, while other aspects of the
theory of these spaces remained untouched. For example, whether the outer Lp quasi-
norms are equivalent to norms, or whether they can be recovered as a supremum of a
pairing with functions in another appropriate outer Lp1 space.

Already these simple questions turn out to be difficult. We begin their study in this
paper from the case of the outer Lp spaces of functions on Rdˆp0,8q described in [DT15].
We provide a positive answer to both of the questions in Theorem 2.1.2. The study of the
same questions in the case of the outer Lp spaces on R ˆ p0,8q ˆ R described in [DT15]
is beyond the purpose of the paper, and it will be addressed in future work. We briefly
comment on the difference with the previous case. The geometry of the outer measure on
the upper half 3-space can be addressed substantially analogously to that on the upper half
space. The source of difficulty is the so called size, the object corresponding to the inner
Lebesgue norm of the iterated Lp nature of the outer Lp spaces. While on Rd ˆ p0,8q the
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size is given by a single Lebesgue norm, on Rˆ p0,8q ˆ R the size is given by the sum of
different Lebesgue norms instead. As a consequence, it is more complicated to treat and
requires further investigation.

We turn now to a more detailed introduction of the outer Lp spaces. Differently from
[DT15], we specialize the sizes to be themselves Lebesgue norms, so that we can view
the Lp theory for outer measure spaces as a generalization of the classical product, or
iteration, of Lp quasi-norms. We first focus on the finite setting. This allows us to introduce
meaningful outer Lp spaces while at the same time dealing with the least possible amount
of technicalities possible. For a more general setting, we refer the interested reader to
Appendix 2.A.

We start recalling that on the Cartesian product X of two finite sets equipped with
strictly positive weights pY, µq, pZ, νq, we can define the classical product, or iterated,
L8Lr, LpLr spaces for 0 ă p, r ă 8 by the quasi-norms

‖f‖L8ppY,µq,LrpZ,νqq “ sup
yPY

´

ÿ

zPZ

νpzq|fpy, zq|r
¯

1
r

“ sup
yPY

´

µpyq´1
ÿ

zPZ

ωpy, zq|fpy, zq|r
¯

1
r
,

‖f‖LpppY,µq,LrpZ,νqq “
´

ÿ

yPY

µpyq
´

ÿ

zPZ

νpzq|fpy, zq|r
¯

p
r
¯

1
p
,

(2.1.1)

where we denote by ω “ µ b ν the induced weight on X. In both cases, the inner Lr

quasi-norm may be replaced by an L8 norm as well. For 1 ď p, r ď 8, the objects defined
in the display are in fact norms.

The Lp spaces associated with an outer measure space pX,µq, or outer Lp spaces,
generalize this construction. An outer measure µ on X is a monotone, subadditive function
from PpXq, the power set of X, to the extended positive half-line, attaining the value 0
on the empty set. In general, an outer measure need not generate an interesting measure
by restriction to the Carathéodory measurable sets. For instance, when µ is constantly 1
on every nonempty element of PpXq, the Carathéodory σ-algebra is trivial. A standard
way to generate an outer measure is via a pre-measure σ, a function from a collection of
subsets E Ď PpXq to the positive half-line, by means of covering an arbitrary subset of X
by elements of E . Namely, for every A Ď X, we define

µpAq “ inf
!

ÿ

EPE 1
σpEq : E 1 Ď E , A Ď

ď

EPE 1
E
)

, (2.1.2)

with the understanding that an empty sum is 0 and that if A is not covered by E , then the
infimum is 8. In fact, this is the way the authors introduced the outer measures in the
upper half space and in the upper half 3-space in [DT15].

For the purpose of defining the outer Lp spaces in the most streamlined fashion, we
make the reasonable assumption on µ to be strictly positive and finite on every singleton
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in PpXq. Next, for a strictly positive weight ω on X, 0 ă r ă 8, let `8, `r be the functions
from the set of functions on X to r0,8sPpXq defined by

`8pfqpAq “ sup
xPA
|fpxq|,

`rpfqpAq “
´

µpAq´1
ÿ

xPA

ωpxq|fpxq|r
¯

1
r
.

(2.1.3)

The reader familiar with the theory of outer Lp spaces developed in [DT15] can recognize
that `8, `r are sizes.

For 0 ă p ă 8, 0 ă r ď 8, we define the outer L8µ p`rq, L
p
µp`rq, L

p,8
µ p`rq spaces by the

quasi-norms

‖f‖L8µ p`rq “ ‖f‖L8,8µ p`rq “ sup
AĎX

`rpfqpAq, (2.1.4)

‖f‖Lpµp`rq “
´

ˆ 8
0

pλp inftµpAq : A Ď X, ‖f1Ac‖L8p`rq ď λu
dλ

λ

¯
1
p
, (2.1.5)

‖f‖Lp,8µ p`rq “

´

sup
λą0

λp inftµpAq : A Ď X, ‖f1Ac‖L8p`rq ď λu
¯

1
p
. (2.1.6)

The integral in (2.1.5) is reminiscent of the layer-cake representation for the classical
Lp norm on a measure space. The novelty and the subtle point of the theory of outer Lp

spaces discussed in [DT15] we want to stress is the different way to evaluate the magnitude
of a function to define the level sets. This is done through Lr averages rather than L8

norm. As a consequence, due to the Lr averaging interplay between µ and ω, the infima
in (2.1.5) and (2.1.6) do not stand for outer measures of super level sets tf ą λu of the
function f . In general, this happens only when r “ 8, and the Lp quasi-norm becomes a
Choquet integral. To shorten the notation, we drop the subscript µ in Lpµp`rq and we refer
to the outer Lp spaces with the symbol Lpp`rq. Moreover, we denote the infima in (2.1.5)
and (2.1.6) associated with f, λ by

µp`rpfq ą λq, (2.1.7)

and we refer to it as the super level measure.
As a side remark, we comment on the definition of the outer Lp quasi-norms in the case

of an outer measure µ generated by a pre-measure. Let σ be a pre-measure attaining only
strictly positive values on a collection of sets E covering X, so that µ is strictly positive and
finite on every singleton in PpXq. In this case, in (2.1.4), and hence in (2.1.5) and (2.1.6),
we can equivalently take the supremum over the elements of E of the following quantity

`8σ pfqpEq “ `8pfqpEq,

`rσpfqpEq “
´

σpEq´1
ÿ

xPE

ωpxq|fpxq|r
¯

1
r
,

(2.1.8)
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as we will see in Lemma 2.A.3 in Appendix 2.A.
An example of the setting just described is the realisation of the classical iterated

L8Lr, LpLr spaces discussed above as outer Lp spaces. Let X be the set Y ˆ Z, ω be
the strictly positive weight µ b ν, σ be the pre-measure defined on the collection E “
ttyu ˆ Z : y P Y u of subsets of X by

σptyu ˆ Zq “ µpyq,

and consider the outer measure generated by σ as in (2.1.2). Then, the quasi-norms in
(2.1.1) are the same of those in (2.1.4) and (2.1.5) in this setting. In particular, the outer
Lp quasi-norms are in fact norms, at least in a certain range of exponents.

In the first part of this paper, we develop the theory of outer Lp spaces addressing the
question of the equivalence of the corresponding quasi-norms to norms. The first novelty is
to provide a positive answer in the case of the outer Lpp`rq spaces on finite sets. It follows
by the sharpness of the Hölder’s inequality in the sense of the following inequality,

‖f‖Lpp`rq ď C sup
‖g‖

Lp
1
p`r
1
q
“1
‖fg‖L1pX,ωq, (2.1.9)

where the constant C is independent of f P Lpp`rq, and L1pX,ωq stands for the classical
L1 space on X with the measure associated with the weight ω.

Theorem 2.1.1. Let 0 ă p, r ď 8. There exists a constant C “ Cpp, rq such that, for
every finite set X, finite outer measure µ strictly positive on every singleton in PpXq, and
strictly positive weight ω, the following properties hold true.

(i) For 0 ă p “ r ď 8, for every f P Lpp`pq,

1

C
‖f‖LppX,ωq ď ‖f‖Lpp`pq ď C‖f‖LppX,ωq.

(ii) For 1 ă p ď 8, 1 ď r ă 8 or p “ r P t1,8u, for every f P Lpp`rq,

1

C
sup

‖g‖
Lp
1
p`r
1
q
“1
‖fg‖L1pX,ωq ď ‖f‖Lpp`rq ď C sup

‖g‖
Lp
1
p`r
1
q
“1
‖fg‖L1pX,ωq.

(iii) For 1 ă p ď 8, 1 ď r ă 8 or p “ r P t1,8u, for every tfnunPN Ď Lpp`rq,∥∥∥ ÿ

nPN
fn

∥∥∥
Lpp`rq

ď C
ÿ

nPN
‖fn‖Lpp`rq.

Therefore, for 1 ă p ď 8, 1 ď r ă 8 or p “ r P t1,8u, the outer Lpp`rq quasi-norm
is equivalent to a norm, and the outer Lpp`rq space is the Köthe dual space of the outer
Lp

1

p`r
1

q space.
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The main point of the theorem is the uniformity of the constant in pX,µ, ωq. In fact,
for every fixed finite setting, both statements in piiq, piiiq are verified by a certain constant
also for p “ 1, 1 ă r ď 8 or 1 ă p ă 8, r “ 8, and hence the final considerations of the
theorem hold true as well. However, for p “ 1, 1 ă r ď 8, the constant is not uniform
in pX,µ, ωq, and we exhibit a counterexample in Lemma 2.3.4. For 1 ă p ă 8, r “ 8,
the question about uniformity remains open. The uniformity of the constant suggests that
if an infinite setting is suitably approximated by finite restrictions, the same results could
possibly be obtained through a limiting process.

There is a slight abuse in the use of the term Köthe dual space in the statement of
Theorem 2.1.1, since this object is in general defined for Banach function spaces. A Banach
function space, or Köthe function space, pL, ‖¨‖Lq on a σ-finite measure space pX, rωq is a
Banach space of measurable functions containing all the simple functions and such that if
f is a measurable function with absolute value bounded rω-almost everywhere by g P L,
then f P L with norm bounded by that of g. The Köthe dual space, or associate space,
of L is then defined as the space of measurable functions such that the L1pX, rωq pairing
with every element of L is finite, endowed with the norm of the dual space, see for example
[BS88, LT79]. In our setting, we have both a measure associated with the weight ω and an
outer measure µ on X. Although it is not clear whether a priori the simple functions with
respect to ω belong to the outer Lpp`rq space, it is straight-forward to check that the simple
functions with respect to µ belong to Lpp`rq. Therefore, with a slight abuse of terminology,
we extend the definition of the Köthe duality to the outer Lpp`rq spaces with respect to the
L1pX,ωq pairing.

The first inequalities of both statements in piq, piiq were already proved as consequences
of more general results obtained in [DT15, Ura17], see Proposition 2.A.7 and Proposition
2.A.5 in Appendix 2.A of the present paper. It would be interesting to investigate whether,
for example, the outer Lp quasi-norms are equivalent to norms in the generality of sizes
discussed in [DT15] and recalled in Appendix 2.A.

We further develop our research in the case of the outer Lp spaces with size defined by
an Lr norm on the infinite setting associated with Calderón-Zygmund theory. We address
the question of the equivalence to norms of the outer Lp quasi-norms on functions on the
upper half space described in [DT15]. In particular, let X be Rdˆp0,8q with the topology
inherited from Rd`1, D be the collection of the open dyadic cubic boxes with sides parallel
to the axes and base on Rd. Let σ be the function on D given by the classical volume of the
base of the box, µ be the outer measure on X generated by σ on D as in (2.1.2). Finally,
let ω be the measure defined by the density ωpy, tq “ t´1 with respect to the Lebesgue
measure on Rdˆp0,8q, where y P Rd, t P p0,8q. For 0 ă r ă 8, let `8σ , `rσ be the functions
from BpXq, the set of Borel measurable functions on X, to r0,8sD defined by

`8σ pfqpDq “ ‖f1D‖L8pX,ωpy,tq dy dtq,

`rσpfqpDq “
´

σpDq´1

ˆ
D
|fpy, tq|r dy

dt

t

¯
1
r
“ σpDq´

1
r ‖f1D‖LrpX,ωpy,tq dy dtq.

(2.1.10)
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For 0 ă p, r ď 8, let the outer Lpp`rσq, Lp,8p`rσq spaces be defined as in (2.1.4), (2.1.5) and
(2.1.6), taking the supremum of the quantity in the previous display over the elements of
D in (2.1.4). In analogy with the remark concerning the quantities in (2.1.8), we drop the
subscript σ in Lpp`rσq.

In this infinite setting, we prove the analogous statement of Theorem 2.1.1. The proper-
ties piiq, piiiq hold true even in the endpoint cases p “ 1, 1 ă r ď 8 and 1 ď p ă 8, r “ 8.

Theorem 2.1.2. Let pX,µ, ωq be the upper half space setting just described, 0 ă p, r ď 8.
There exists a constant C “ Cpp, rq such that the analogous properties stated in Theorem
2.1.1 hold true in the following ranges, property piq for 0 ă p “ r ď 8, properties piiq, piiiq
for 1 ď p, r ď 8.

Therefore, for 1 ď p, r ď 8, the outer Lpp`rq quasi-norm is equivalent to a norm, and
the outer Lpp`rq space is the Köthe dual space of the outer Lp1p`r1q space.

As we recalled in the first part of the introduction, in the upper half space setting there
are already classical spaces with a different iterated LpLr structure, namely the tent spaces.
Let Γpxq be the cone with vertex in x P Rd, T px, sq be the tent over the ball in Rd centred
in x with radius s,

Γpxq “ tpy, tq P Rd ˆ p0,8q : |x´ y| ă tu,

T px, sq “ tpy, tq P Rd ˆ p0,8q : |x´ y| ă s´ tu.

For 0 ă p ă 8, 0 ă r ď 8, let

Arpfqpxq “ ‖f‖LrpΓpxq,dy dt

td`1 q
,

‖f‖T pr “ ‖Arpfq‖LppRd,dxq.
(2.1.11)

For p “ 8, 0 ă r ď 8, let

Crpfqpxq “ sup
sPp0,8q

‖f‖LrpT px,sq,ωq,

‖f‖T8r “ ‖Crpfq‖L8pRd,dxq.
(2.1.12)

For 0 ă p, r ď 8, the tent space T pr is defined by the T pr quasi-norm. Sometimes in the
literature an additional continuity condition is assumed on functions in T p8, see for example
[CMS85], but we do not, in order to preserve a uniformity in the definition of the spaces.
For 1 ď p, r ď 8, the quasi-norms defined in the last two displays are in fact norms.

The third result of this paper is to establish the equivalence between the outer Lpp`rq
spaces and the tent spaces T pr .

Theorem 2.1.3. For 0 ă p, r ď 8, there exists a constant C “ Cpp, rq such that, for every
f P Lpp`rq,

1

C
‖f‖T pr ď ‖f‖Lpp`rq ď C‖f‖T pr .

Moreover, we have Lpp`rq “ T pr .
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It is worth noting that while the tent spaces require to pass from cones to tents in
order to define T8r , the definition of the outer Lpp`rq spaces always relies on the boxes, or
equivalently on the tents.

In the second part of the paper, we turn our focus to embedding maps of functions
on Rd to the upper half space Rd ˆ p0,8q. These embeddings are obtained by pairing a
function on Rd with translated and dilated versions of a given test function. More precisely,
given a test function φ satisfying certain boundedness and decay properties, we define, for
every locally integrable function f on Rd, the embedded function Fφpfq on Rd ˆ p0,8q by

Fφpfqpy, tq “

ˆ
Rd
fpxqt´dφpt´1py ´ xqqdx. (2.1.13)

A prominent example of such an embedding is the harmonic extension of a function on Rd
to the upper half space, where φ is the Poisson kernel. The interest in embedding maps
is part of the aforementioned two-step program to prove the boundedness of operators in
Calderón-Zygmund theory.

We study continuous inclusions between outer Lp spaces in the upper half space and
continuous embeddings from classical Lp spaces on Rd to outer Lp spaces in this setting. We
start with an improvement over a previous result on Hardy-Littlewood-Sobolev inclusions
between tent spaces in [Ame18]. We obtain the boundedness of the map

T pr1 ãÑ T qr2 , f ÞÑ t
d
p
´ d
q f,

for 0 ă p ă q ď 8, 0 ă r2 ď r1 ď 8, or equivalently the same statement for outer Lpp`rq
spaces. The improvement over the result in [Ame18] consists of allowing for r1 to be strictly
greater than r2.

These inclusions allow to recover strong type pp, qq estimates for the embedding maps
with a fractional scale factor

LppRdq ãÑ Lqp`rq, f ÞÑ t
d
p
´ d
qFφpfq,

for 0 ă p ă q ď 8, 0 ă r ď 8 from the ones for p “ q, r “ 8. The fourth result of the paper
is then the full classification of all positive and negative results regarding strong and weak
type estimates for a family of embedding maps with a fractional scale factor in Theorem
2.6.1. More precisely, for ε ą 0, f P SpRdq, let the embedded function Fεpfq “ F pfq be
defined by

F pfqpy, tq “ sup
φ
Fφpfqpy, tq,

where the supremum is taken over the set of functions φ such that

|φpzq| ď p1` |z|q´d´ε. (2.1.14)

With respect to the strong type estimates, we extract the following statement from
Theorem 2.6.1.
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Theorem 2.1.4. Let
1 ď p, q ď 8, 0 ă r ď 8. (2.1.15)

Then, for pp, q, rq satisfying one of the following conditions

1 ă p ă q ď 8, 0 ă r ď 8,

1 ă p “ q ď 8, r “ 8,

p “ 1, q “ 8, 0 ă r ď 8,

(2.1.16)

there exists a constant C “ Cpp, q, r, d, εq such that, for every f P LppRdq,

‖t
d
p
´ d
qF pfq‖Lqp`rq ď C‖f‖LppRdq.

For all the triples pp, q, rq satisfying (2.1.15) but none of the conditions in (2.1.16), no
strong type pp, qq estimate holds true.

It is worth noting that the strong type p1,8q estimates hold true for 0 ă r ď 8, even
if for r “ 8 only the weak type p1, 1q estimate holds true. Moreover, in the endpoint
p “ q “ 1, r “ 8, we prove in Proposition 2.6.2 a substitute of the strong type p1, 1q
estimate, namely the boundedness of the embedding map

H1pRdq ãÑ L1p`8q, f ÞÑ Fϕpfq,

for ϕ P SpRdq.
We conclude the paper with some applications of these embedding theorems yielding

alternative proofs of classical results such as the Hardy-Littlewood-Sobolev inequality, and
the Gagliardo-Nirenberg-Sobolev inequality up to the endpoint in the spirit of the afore-
mentioned two-step program.

Guide to the paper

In Section 2 we start with two decomposition results for functions in the outer Lpp`rq spaces
in both finite and upper half space settings. We use them to prove Theorem 2.1.2 and
Theorem 2.1.1 in Section 3. Moreover, in Lemma 2.3.4, we provide a counterexample to the
uniformity of the statements in piiq, piiiq in Theorem 2.1.1 for p “ 1, 1 ă r ď 8. In Section 4
we prove Theorem 2.1.3. In Section 5, Theorem 2.5.1, we improve over the result of Amenta
on Hardy-Littlewood-Sobolev inclusions between tent spaces. In Section 6, Theorem 2.6.1,
we prove a full classification of all positive and negative results regarding strong and weak
type estimates for a family of embedding maps with a fractional scale factor from classical Lp

spaces on Rd to outer Lpp`rq spaces on Rdˆp0,8q. Moreover, in Proposition 2.6.2 we prove
the boundedness of the embedding map defined by a test function ϕ P SpRdq from H1pRdq
to the outer L1p`8q space. We use the strong type estimates from both results to prove the
Hardy-Littlewood-Sobolev inequality, and the Gagliardo-Nirenberg-Sobolev inequality up
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to the endpoint in the spirit of the aforementioned two-step program in Section 7. Finally,
in Appendix 2.A, we review the definitions and recall some results of the theory of outer
Lp spaces in the level of generality discussed in [DT15]. In Appendix 2.B, we prove some
properties of the outer measure µ on the upper half space described above.
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2.2 Decompositions for outer Lpp`rq spaces

In this section we state and prove two crucial preparatory decomposition results for func-
tions in the outer Lpp`rq spaces in both finite and upper half space settings, used in proving
Theorem 2.1.1 and Theorem 2.1.2, respectively. Both consist of a recursive greedy selec-
tion algorithm that provides a sequence of maximal disjoint subsets of X exhausting the
elements of PpXq where the quantity defined in (2.1.3) is in the interval r2k, 2k`1q, k P Z.
This property guarantees not only an upper bound but also a lower bound on the super
level measure in (2.1.7) at level λ “ 2k, k P Z, in terms of the outer measures of the se-
lected subsets, thus providing a concrete substitute for it. Without loss of generality, we
can restrict our attention only to these levels. In fact, we can replace the integral in (2.1.5)
with an equivalent discrete version, namely

´

ÿ

kPZ
2kpµp`rpfq ą 2kq

¯
1
p
,

due to the monotonicity in λ of the super level measure of a fixed function. This quantity is
no longer homogeneous in f , hence it is not a quasi-norm, but the discrete levels fit better
the recursive process we want to describe.

The decompositions in the two cases are analogous. We could state and prove a unified
result in the general setting described in Appendix 2.A, at least in the range of exponents
0 ă p, r ă 8. It would require some adjustments to address the technicalities due to the
non-finiteness of the selection process and the generation of the outer measure by a pre-
measure. In this exposition, we prefer to focus separately on the two specific settings for
the following reasons.

The finite setting offers a full view on the mechanism of the recursive selection algorithm
and the proof of the decomposition properties. Moreover, we do not have to worry about
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our selection process being well-defined, since at each step only finitely many choices are
available, and we can choose any subset of X. Again, we stress that the main point in this
case is the uniformity of constants in pX,µ, ωq.

The upper half space setting serves two purposes. On one hand, as a privileged case
of the general setting described in Appendix 2.A, it provides an example of addressing the
technicalities we referred to above. On the other hand, due to the geometry of the outer
measure, it allows for an improved version of the decomposition result. First, we can extend
it to the case r “ 8, which is not included in the finite setting. Second, the decomposition
of a function in the outer L1p`rq space, for 1 ă r ď 8, is subtly more efficient for our
purpose, as will be clarified in Remark 2.3.2. We could state sufficient conditions on the
geometry of the outer measure to ensure this refined decomposition in a broader generality,
but these considerations are beyond the purpose of the paper, and they will be developed
in future work.

We start with the finite setting. Let X be a finite set, µ an outer measure strictly
positive and finite on every singleton in PpXq, ω a strictly positive weight. We have the
following uniform decomposition result for functions in the outer Lpp`rq spaces defined by
(2.1.5).

Proposition 2.2.1. Let 0 ă p, r ă 8. There exists a constant C “ Cpp, rq such that, for
every finite set X, finite outer measure µ strictly positive on every singleton in PpXq, and
strictly positive weight ω, the following property holds true. For f P Lpp`rq, there exists a
sequence of sets tEk : k P Zu Ď PpXq such that if

Fk “
ď

lěk

El,

then, for every k P Z,

`rpf1F ck`1
qpEkq ą 2k, when Ek ‰ H, (2.2.1)

‖f1F ck‖L8p`rq ď 2k, (2.2.2)

µp`rpfq ą 2kq ď
ÿ

lěk

µpElq, (2.2.3)

µpEkq ď Cµp`rpfq ą 2k´1q. (2.2.4)

Proof. First, we observe qualitatively that by outer Hölder’s inequality, Proposition 2.A.5
in Appendix 2.A, we have Lpp`rq Ď L8p`rq, because µpXq is finite.

We define Ek by backward recursion on k P Z. For k large enough such that

‖f‖L8p`rq ď 2k,

we set Ek to be empty. Now fix k and assume we have selected El for l ą k. In particular,
Fk`1 is already well-defined. If there exists a set A Ď X such that

`rpf1F ck`1
qpAq ą 2k, (2.2.5)
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then we choose such a set A to be Ek, making sure that

‖f1pAYFk`1q
c‖L8p`rq ď 2k. (2.2.6)

In fact, if there exists a set B Ď X such that

`rpf1pAYFk`1q
cqpBq ą 2k,

then by the subadditivity of the outer measure, we have

`rpf1F ck`1
qpAYBq ą 2k.

Due to the finiteness of X, the condition (2.2.6) can be achieved in finitely many steps. If
no A satisfying (2.2.5) exists, we set Ek to be empty, and proceed the recursion with k´ 1.

By construction, we have (2.2.1) for every nonempty selected set Ek, (2.2.2) and (2.2.3)
for every k P Z.

We observe that for every k such that 2k is greater than the L8p`rq quasi-norm of f ,
the statement (2.2.4) is true. To prove (2.2.4) for any other k, let Ak´1 be a set witnessing
the super level measure at level 2k´1. In particular,

‖f1Ack´1
‖L8p`rq ď 2k´1,

µp`rpfq ą 2k´1q “ µpAk´1q.

By (2.2.2) for k ` 1, we have

µpAk´1q ě 2´rpk`1q
ÿ

xPAk´1zFk`1

ωpxq|fpxq|r. (2.2.7)

By the definition of Ak´1 and Ek, we have
ÿ

xPEkzAk´1

ωpxq|fpxq|r ď 2rpk´1qµpEkq,

ÿ

xPEkzFk`1

ωpxq|fpxq|r ą 2rkµpEkq,

hence
ÿ

xPpAk´1XEkqzFk`1

ωpxq|fpxq|r ą C2rpk´1qµpEkq.

Combining this with (2.2.7) gives

µp`rpfq ą 2k´1q ě CµpEkq,

concluding the proof of (2.2.4) for the given k.
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Now we move to the upper half space setting. Let X be the upper half space and µ
the outer measure generated by the pre-measure σ on D, the collection of the open dyadic
cubic boxes in the upper half space, as in (2.1.2). In particular,

X “ Rd ˆ p0,8q,
D “ tpx, 0q ` p0, 2jqd`1 : x P 2jZd, j P Zu,

σpEq “ |BpEq|, for every E P D,
ωpy, tq “ t´1,

(2.2.8)

where BpEq is the base in Rd of the dyadic box E P D, and |BpEq| its volume. Moreover,
for every dyadic box E “ px, 0q ` p0, sqd`1 P D, we define E` by

E` “ px, 0q ` pp0, sqd ˆ ps{2, sqq.

Finally, let ω be the measure defined by the density ωpy, tq with respect to the Lebesgue
measure on Rdˆp0,8q, where y P Rd, t P p0,8q, and for every 0 ă r ď 8 let `r be the size
defined in (2.1.10).

We make the following observations involving the geometry of the elements of D and
the values of σ, µ on them. We postpone the proofs to Appendix 2.B.

Lemma 2.2.2. For every two dyadic boxes E1, E2 P D with nonempty intersection, we have
either E1 Ď E2 or E2 Ď E1.

Lemma 2.2.3. Let tEn : n P Nu be a collection of pairwise disjoint dyadic boxes in D, and
let tDn : n P Nu be a collection of subsets of X such that, for every n P N, we have Dn Ď En
and Dn X E

`
n ‰ ∅. Then we have

µ
´

ď

nPN
Dn

¯

“
ÿ

nPN
σpEnq.

In the following statement, the elements of a double sequence are parametrized by a pair
pk, nq, for k P Z, n P Nk, where Nk is either the set of positive natural numbers or a possibly
empty finite initial string of positive natural numbers. We consider the lexicographic order
of such pairs as follows: pl,mq ă pk, nq if either l ą k, or l “ k and m ă n.

We have the following decomposition result for functions in the intersection between
the outer Lpp`rq and L8p`rq spaces defined by (2.1.5) and (2.1.4), respectively.

Proposition 2.2.4. Let 0 ă p ă 8, 0 ă r ď 8. There exists a constant C “ Cpp, rq
such that the following property holds true. For f P Lpp`rq X L8p`rq, there exists a double
sequence of dyadic boxes tEk,n : k P Z, n P Nku Ď D such that if

Fk “
ď

nPNk

Fk,n,

Fk,n “ Fk,n´1 Y Ek,n,

Fk,0 “
ď

iPIk

Qi,
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where tQi : i P Iku Ď D is the collection of maximal dyadic boxes such that

|BpQiq| ď 2
∣∣BpQiq X ď

pl,mq : ląk

BpEl,mq
∣∣, (2.2.9)

then, for every k P Z, n P Nk,

`rpf1F ck,n´1
qpEk,nq ą 2k, when Ek,n ‰ H, (2.2.10)

‖f1F ck‖L8p`rq ď 2k, (2.2.11)

µp`rpfq ą 2kq ď C
ÿ

pl,mq : lěk

σpEl,mq, (2.2.12)

ÿ

nPNk

σpEk,nq ď Cµp`rpfq ą 2k´1q. (2.2.13)

Moreover, the collection tBpEk,nq : k P Z, n P Nku of the bases of the chosen boxes is 2-
Carleson, i.e. for every dyadic box E P D

ÿ

pk,nq : Ek,nĎE

σpEk,nq ď 2σpEq. (2.2.14)

For the definition of the Λ-Carleson condition and, later in the proof, of the η-sparse
condition for collections of cubes, as well as for their equivalence, we refer for example to
[LN19].

Before starting the proof, we briefly comment that a dyadic box satisfies the condition
in (2.2.9) for a certain k P Z when at least half of its base is covered by the bases of the
elements of the double sequence selected up to the level k ` 1.

Proof. Case I: 0 ă r ă 8. The selection algorithm is analogous to that described in the
previous proof. We define Ek,n by a double recursion, backward on k P Z, and, for every
fixed k, forward on n P Nk. In parallel, we prove the properties in (2.2.10) – (2.2.13) by
backward induction on k P Z.

For k large enough such that
‖f‖L8p`rq ď 2k,

we set Nk empty. The properties in (2.2.10) – (2.2.13) are trivially satisfied.
Now fix pk, nq and assume we have selected El,m for pl,mq ă pk, nq, and that the

properties in (2.2.10) – (2.2.13) are satisfied for every l ą k. In particular, Fk`1 is already
well-defined and satisfies (2.2.11), and Fk,n´1 is already well-defined. If there exists a dyadic
box A P D such that

`rpf1F ck,n´1
qpAq ą 2k, (2.2.15)

then we choose such a dyadic box A to be Ek,n, making sure that σpAq is maximal. The
maximality of σpAq is achieved because the set of values of σ is discrete and doubling,
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namely it is t2id : i P Zu, and we have an upper bound on σpAq when A satisfies the
condition (2.2.15). In fact, we have

σpAq ď Cµp`rpfq ą 2k´1q ď C2´kp‖f‖pLpp`rq ă 8. (2.2.16)

To prove the first inequality, we use an argument analogous to that used to prove (2.2.4)
above. For every ε ą 0, let Ak´1pεq be an optimal set witnessing the super level measure
at level 2k´1 up to the multiplicative constant p1 ` εq. Next, let Ek´1pεq be an optimal
covering of Ak´1pεq witnessing its outer measure up to the multiplicative constant p1` εq.
In particular,

‖f1Ak´1pεqc‖L8p`rq ď 2k´1,

Ak´1pεq Ď
ď

EPEk´1pεq

E,

p1` εq2µp`rpfq ą 2k´1q ě p1` εqµpAk´1pεqq ě
ÿ

EPEk´1pεq

σpEq.

By (2.2.11) for k ` 1, we have, for every E P Ek´1pεq,

σpEq ě 2´rpk`1q‖f1EzFk`1
‖rLrpX,ωq,

which yields, together with the covering of Ak´1pεq by the elements of Ek´1pεq,
ÿ

EPEk´1pεq

σpEq ě
ÿ

EPEk´1pεq

2´rpk`1q‖f1EzFk`1
‖rLrpX,ωq

ě 2´rpk`1q‖f1p
Ť

EPEk´1pεq
EqzFk`1

‖rLrpX,ωq

ě 2´rpk`1q‖f1Ak´1pεqzFk`1
‖rLrpX,ωq.

(2.2.17)

By the definition of Ak´1pεq and A, we have

‖f1AzAk´1pεq‖
r
LrpX,ωq ď 2rpk´1qσpAq,

‖f1AzFk`1
‖rLrpX,ωq ě ‖f1AzFk,n´1

‖rLrpX,ωq ą 2rkσpAq,

hence
‖f1pAk´1pεqXAqzFk`1

‖rLrpX,ωq ą C2rpk´1qσpAq.

Combining this with (2.2.17) and taking ε arbitrarily small give the desired inequality

µp`rpfq ą 2k´1q ě CσpAq.

If no A satisfying (2.2.15) exists, we set Nk “ t1, . . . , n´ 1u, Nk empty if n “ 1. If we
are able to choose Ek,n for all n P N, we fix such Ek,n. Before proceeding the recursion with
pk ´ 1, 1q, we prove the properties in (2.2.10) – (2.2.13) for k.
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By construction, we have (2.2.10) for every nonempty selected dyadic box Ek,n.
The proof of (2.2.13) for k assuming (2.2.11) for k` 1, which we have by the induction

hypothesis, is analogous to that of the first inequality in (2.2.16). In fact, we have

‖f1Ť
nPNk

Ek,nzAk´1pεq‖
r
LrpX,ωq ď

ÿ

nPNk

‖f1Ek,nzAk´1pεq‖
r
LrpX,ωq ď 2rpk´1q

ÿ

nPNk

σpEk,nq,

‖f1Ť
nPNk

Ek,nzFk`1
‖rLrpX,ωq ě

ÿ

nPNk

‖f1Ek,nzFk,n´1
‖rLrpX,ωq ą 2rk

ÿ

nPNk

σpEk,nq,

hence
‖f1pAk´1pεqX

Ť

nPNk
Ek,nqzFk`1

‖rLrpX,ωq ą C2rpk´1q
ÿ

nPNk

σpEk,nq,

where Ak´1pεq is defined as above. We conclude as above
Now we prove (2.2.11) for k. If Nk is finite, then by construction there is no dyadic box

A P D such that
`rpf1F ck qpAq ą 2k.

If Nk is infinite, we observe by (2.2.13) for this k, that
ÿ

nPNk

σpEk,nq ă 8,

since f P Lpp`rq. Therefore, σpEk,nq tends to zero as n tends to 8. Since each Ek,n is
chosen to maximize σpEk,nq, there exists no dyadic box A P D which can violate (2.2.11)
as such A would contradict the choice of Ek,n for sufficiently large n. This concludes the
proof of (2.2.11) for the given k.

With (2.2.11), we also have (2.2.12). In fact, we have

µpFkq ď µpFk´1,0q

ď
ÿ

iPIk´1

|BpQiq|

ď 2
∣∣ ď

iPIk´1

BpQiq X
ď

pl,mq : lěk

BpEl,mq
∣∣

ď C
ÿ

pl,mq : lěk

σpEl,mq,

where we used (2.2.9) and the disjointness of the elements of tQi : i P Ik´1u in the third
inequality.

Case II: r “ 8. The only difference is in the selection of Ek,n. Fix pk, nq and assume
we have selected El,m for pl,mq ă pk, nq, and that the properties in (2.2.10) – (2.2.13) are
satisfied for every l ą k. If there exists a dyadic box A P D such that

`8pf1F ck,n´1
1A`qpAq ą 2k, (2.2.18)
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then we choose such a dyadic box A to be Ek,n, making sure that σpAq is maximal.
As in the previous case, the maximality of σpAq is achieved because the set of values

of σ is discrete and doubling, and we have an upper bound on σpAq when A satisfies the
condition (2.2.18). In fact, we have

σpAq ď µp`8pfq ą 2k´1q ď C2´kp‖f‖pLpp`8q ă 8. (2.2.19)

To prove the first inequality, we observe that for E “ A` X t|f | ě 2ku, we have ωpEq ą 0,
hence

µpEq ď µp`8pfq ą 2k´1q.

We conclude by Lemma 2.2.3.
The proof of (2.2.10) – (2.2.13) for k then follows in a straight-forward way. As in the

previous case, the proof of (2.2.13) is analogous to that of the first inequality in (2.2.19).
In fact, we observe that for Dk,n “ E`k,n X t|f | ě 2ku, we have ωpDk,nq ą 0, hence

µ
´

ď

nPNk

Dk,n

¯

ď µp`8pfq ą 2k´1q.

We conclude by Lemma 2.2.3 upon observing that for fixed k, the selected dyadic boxes
Ek,n are pairwise disjoint, by Lemma 2.2.2 and the definition of Ek,n.

To conclude, for every 0 ă r ď 8, we observe that the collection tBpEk,nq : k P Z, n P
Nku is 1{2-sparse, i.e. one can choose pairwise disjoint measurable sets rBk,n Ď BpEk,nq

with | rBk,n| ě |BpEk,nq|{2. This follows by (2.2.9) and the maximality in the choice of Ek,n.
Therefore, the collection is 2-Carleson.

2.3 Equivalence with norms

In this section we prove Theorem 2.1.2 and Theorem 2.1.1. We start with the upper half
space setting. First, we prove property piq. After that, for every f P Lpp`rq X L8p`rq, for
1 ď p, r ď 8, we provide a candidate function g to realize (2.1.9), up to normalization of its
outer Lp1p`r1q quasi-norm. Upon showing an upper bound on the outer Lp1p`r1q quasi-norm
of g and a lower bound on the L1pX,ωq norm of fg, properties piiq, piiiq follow. Then
we turn to the finite setting and when possible we follow analogous arguments to prove
properties piq, piiq, and piiiq. In almost all the definitions and proofs we make use of the
decompositions provided by Proposition 2.2.4 and Proposition 2.2.1. Finally, in Lemma
2.3.4 we exhibit a counterexample to the uniformity in every finite setting pX,µ, ωq of both
statements in piiq, piiiq for p “ 1, 1 ă r ď 8.

We start with the upper half space setting, where pX,µ, ωq is the setting described in
(2.2.8).
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Proof of Theorem 2.1.2, property piq. The case p “ 8 follows by definition.
Therefore, we can assume without loss of generality p “ 1, since

‖f‖pLpp`pq “ ‖f
p‖L1p`1q.

For f P L1p`1q X L8p`1q, let tEk,nu be the collection of the dyadic boxes from Proposition
2.2.4. We have

‖f‖L1p`1q ď C
ÿ

kPZ
2kµp`1pfq ą 2kq

ď C
ÿ

kPZ
2k

ÿ

pl,mq : lěk

σpEl,mq

ď C
ÿ

lPZ

ÿ

mPNl

2lσpEl,mq

ď C
ÿ

lPZ

ÿ

mPNl

‖f‖L1pEl,mzFl,m´1,ωq

ď C‖f‖L1pX,ωq,

where we used (2.2.12) in the second inequality, Fubini and the bounds on the geometric
series in the third, (2.2.10) in the fourth, and disjointness of the sets in the fifth.

We note that f vanishes ω-almost everywhere outside the union of all the selected dyadic
boxes tEk,nu, since D covers all of X. We have

‖f‖L1pX,ωq “
ÿ

kPZ

ÿ

nPNk

‖f1Ek,nzFk,n´1
‖L1pX,ωq `

ÿ

kPZ
‖f1Fk,0zFk`1

‖L1pX,ωq

ď
ÿ

kPZ

ÿ

nPNk

‖f1Ek,nzFk`1
‖L1pX,ωq `

ÿ

kPZ

ÿ

iPIk

‖f1QizFk`1
‖L1pX,ωq

ď
ÿ

kPZ
2k`1

ÿ

nPNk

σpEk,nq `
ÿ

kPZ
2k`1

ÿ

iPIk

σpQiq

ď
ÿ

kPZ
2k`1

ÿ

nPNk

σpEk,nq `
ÿ

kPZ
2k`1

ÿ

pl,mq : ląk

σpEl,mq

ď
ÿ

kPZ
2k`1

ÿ

nPNk

σpEk,nq ` C
ÿ

lPZ
2l`1

ÿ

mPNl

σpEl,mq

ď C
ÿ

kPZ
2k´1µp`1pfq ą 2k´1q

ď C‖f‖L1p`1q,

where we used (2.2.11) in the second inequality, (2.2.9) and the disjointness of the dyadic
boxes tQiu in the third, Fubini and the bounds on the geometric series in the fourth, and
(2.2.13) in the fifth.

A standard approximation argument yields the result for arbitrary f P L1p`1q.
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Now we provide the candidate function g for f P Lpp`rqXL8p`rq, for 1 ď p, r ď 8. We
separate the definition into four cases depending on p and r.

Case 1: 1 ď p, r ă 8. For f P Lpp`rq X L8p`rq, let tEk,nu be the collection from
Proposition 2.2.4, and define

gpx, sq “
ÿ

kPZ

ÿ

nPNk

2kpp´rq1Ek,nzFk,n´1
px, sq|fpx, sq|r´1.

Case 2: 1 ď p ă 8 and r “ 8. For f P Lpp`8qXL8p`8q, let tEk,nu be the collection
from Proposition 2.2.4, and define

gpx, sq “
ÿ

kPZ

ÿ

nPNk

2kpp´1q1
rEk,n
px, sqp`1p1

rEk,n
qpEk,nqq

´1,

where
rEk,n “ E`k,n X t|f | ą 2ku,

and E`k,n is the upper half of Ek,n.
Case 3: p “ 8 and 1 ď r ă 8. For f P L8p`rq, let the dyadic box E P D witness the

outer L8p`rq quasi-norm of f up to a factor 2, and define

gpx, sq “ 1Epx, sq|fpx, sq|r´1.

Case 4: p “ r “ 8. For f P L8p`8q, let the dyadic box E P D witness the outer
L8p`8q quasi-norm of f up to a factor 2 in a subset of strictly positive measure in E`, and
define

gpx, sq “ 1
rE
px, sqp`1p1

rE
qpEqq´1,

where
rE “ E` X t|f | ą ‖f‖L8p`8q{2u.

We have the following upper bounds on the outer Lp1p`r1q quasi-norm of g, where g is
defined according to the four pp, rq-dependent cases.

Lemma 2.3.1. Case I: p “ 1 and 1 ď r ď 8. We have

‖g‖L8p`r1 q ď C.

Case II: 1 ă p ă 8 and 1 ď r ď 8. We have

‖g‖p
1

Lp1 p`r1 q
ď C‖f‖pLpp`rq.

Case III: p “ 8 and 1 ď r ă 8. We have

‖g‖L1p`r1 q ď ‖f‖
r´1
L8p`rqσpEq.

Case IV: p “ r “ 8. We have

‖g‖L1p`1q ď σpEq.
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Proof. Case I: p “ 1 and 1 ď r ď 8. Let 1 ă r ă 8. For every dyadic box A P D, we
have

p`r
1

pgqpAqqr
1

“
1

σpAq

ÿ

kPZ

ÿ

nPNk

2´kr
ˆ
AXpEk,nzFk,n´1q

|fpy, tq|rωpy, tq dy dt

ď
1

σpAq

ÿ

kPZ

ÿ

nPNk

2´kr
ˆ
AXpEk,nzFk`1q

|fpy, tq|rωpy, tq dy dt

ď C
1

σpAq

´

σpAq `
ÿ

pk,nq : Ek,nĎA

σpEk,nq
¯

ď C,

(2.3.1)

where we used (2.2.11) and the nested structure of D, namely the fact that for A,B P

D, AX B ‰ H, then either A Ď B or B Ď A, in the second inequality, and (2.2.14) in the
third.

In an analogous way, for every dyadic box A P D, for r “ 8, we have

`1pgqpAq ď C,

and it is easy to see that, for r “ 1, we have

`8pgqpAq ď 1.

Therefore, for 1 ď r ď 8, we have

‖g‖L8p`r1 q ď C.

Case II: 1 ă p ă 8 and 1 ď r ď 8. Let 1 ă r ă 8. For a fixed k and every dyadic
box A P D, we have

p`r
1

pg1F ck qpAqq
r1 “

1

σpAq

ÿ

pl,mq : lăk

2lpp´rqr
1

ˆ
AXpEl,mzFl,m´1q

|fpy, tq|rωpy, tq dy dt

ď
ÿ

lăk

2lpp´rqr
1 1

σpAq

ˆ
AzFl`1

|fpy, tq|rωpy, tq dy dt

ď c
ÿ

lăk

2lpp´r`r´1qr1

ď c2kpp´1qr1 ,

(2.3.2)

where we used (2.2.11) in the second inequality, and the bounds on the geometric series in
the third.
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In an analogous way, for every dyadic box A P D, for r “ 8, we have

`1pg1F ck qpAq “
1

σpAq

ÿ

lăk

ÿ

mPNl

2lpp´1q

ˆ
AX rEl,m

p`1p1
rEl.m
qpEl.mqq

´1ωpy, tq dy dt

ď
ÿ

lăk

2lpp´1q 1

σpAq

ÿ

m : El,mĎA

σpEl,mq

ď c2kpp´1q,

(2.3.3)

where we used the disjointness of the elements of tEl,m : m P Nlu due to the maximality in
their choice, and the bounds on the geometric series in the second inequality.

It is easy to see that, for every dyadic box A P D, for r “ 1, we have

`8pg1F ck qpAq ď 2kpp´1q.

As a consequence, for 1 ď r ď 8, for every dyadic box A P D, we have

`r
1

pg1F ck qpAq ď c2kpp´1q,

hence
µp`r

1

pgq ą c2kpp´1qq ď µpFkq ď C
ÿ

pl,mq : lěk

σpEl,mq. (2.3.4)

Therefore, we have

‖g‖p
1

Lp1 p`r1 q
ď C

ÿ

kPZ
2kpµp`r

1

pgq ą c2kpp´1qq

ď C
ÿ

kPZ
2kp

ÿ

pl,mq : lěk

σpEl,mq

ď C
ÿ

lPZ
2lp

ÿ

mPNl

σpEl,mq

ď C
ÿ

lPZ
2lpµp`rpfq ą 2l´1q

ď C‖f‖pLpp`rq,

where we used (2.3.4) in the second inequality, Fubini and the bounds on the geometric
series in the third, and (2.2.13) in the fourth.

Case III: p “ 8 and 1 ď r ă 8. By construction we have

‖g‖L8p`r1 q ď ‖f‖
r´1
L8p`rq,

therefore, by outer Hölder’s inequality, Proposition 2.A.5, we have

‖g‖L1p`r1 q ď ‖g‖L8p`r1 q‖1E‖L1p`8q ď ‖f‖
r´1
L8p`rqσpEq.
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Case IV: p “ r “ 8. In an analogous way, we have

‖g‖L1p`1q ď σpEq,

since by construction ‖g‖L8p`1q “ 1.

Remark 2.3.2. Without the crucial property of the decomposition established by (2.2.14),
the argument in (2.3.1) above produces the empty upper bound

p`r
1

pgqpEqqr
1

ď
ÿ

kPZ
1.

Nevertheless, when 1 ă p ă 8, in (2.3.2) and in (2.3.3) we can already get a summable
decay in l ă k for the upper bound on the `r1 size of g over the sets A X pFlzFl`1q, and it
is not necessary to invoke (2.2.14).

We have the following lower bounds on the L1pX,ωq norm of fg, where as above g is
defined according to the four pp, rq-dependent cases.

Lemma 2.3.3. Case I: 1 ď p ă 8 and 1 ď r ď 8. We have

‖fg‖L1pX,ωq ě C‖f‖pLpp`rq.

Case II: p “ 8 and 1 ď r ă 8. We have

‖fg‖L1pX,ωq ě C‖f‖rL8p`rqσpEq.

Case III: p “ r “ 8. We have

‖fg‖L1pX,ωq ě C‖f‖L8p`rqσpEq.

Proof. Case I: 1 ď p ă 8 and 1 ď r ď 8. Let 1 ď r ă 8. For every fixed pk, nq such
that Ek,n is not empty, we have

`1pfg1F ck,n´1
qpEk,nq “ 2kpp´rqp`rpf1F ck,n´1

qpEk,nqq
r ą 2kp, (2.3.5)

where we used (2.2.10) in the inequality.
For r “ 8, by the definition of g, we have the same inequality.
Therefore, for 1 ď r ď 8, we have

‖fg‖L1pX,ωq ě
ÿ

kPZ

ÿ

nPNk

‖fg‖L1pEk,nzFk,n´1,ωq

ě
ÿ

kPZ

ÿ

nPNk

2kpσpEk,nq

ě C
ÿ

lPZ
2lp

ÿ

pk,nq : lďk

σpEk,nq

ě C
ÿ

lPZ
2lpµp`rpfq ą 2lq

ě C‖f‖pLpp`rq,
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where we used (2.3.5) in the second inequality, the bounds on the geometric series and
Fubini in the third, and (2.2.12) in the fourth.

Case II: p “ 8 and 1 ď r ă 8. Let E P D be the dyadic box associated with g, in
particular

`rpfqpEq ě C‖f‖L8p`rq.
Therefore, we have

‖fg‖L1pX,ωq “ ‖f1E‖rLrpX,ωq
“ `rpfqpEqrσpEq

ě C‖f‖rL8p`rqσpEq.

Case III: p “ r “ 8. In an analogous way, we have

‖fg‖L1pX,ωq ě C‖f‖L8p`rqσpEq.

Proof of Theorem 2.1.2, properties piiq, piiiq. The first inequality in piiq is given by outer
Hölder’s inequality, Proposition 2.A.5.

The second inequality in piiq is a corollary of the previous Lemmata for f P Lpp`rq X
L8p`rq. A standard approximation argument yields the case of an arbitrary f P Lpp`rq.

The statement in piiiq is a corollary of the triangle inequality for the L1pX,ωq norm
and property piiq.

We conclude the part of the section about the upper half space with the following
observation.

Let X be the upper half space and ν the outer measure generated by the pre-measure
σ on E , the collection of all the open cubic boxes in the upper half space, as in (2.1.2). In
particular,

X “ Rd ˆ p0,8q,
E “ tpx, 0q ` p0, sqd`1 : x P Rd, s P p0,8qu,

σpEq “ |BpEq|, for every E P E ,
ωpy, tq “ t´1,

(2.3.6)

where BpEq is the base in Rd of the box E, and |BpEq| its volume. We observe that D Ď E ,
and every box in E can be covered up to a set of measure zero by finitely many dyadic
boxes in D of comparable pre-measure. Therefore, the outer Lpp`rq space quasi-norms in
the settings (2.2.8) and (2.3.6) are equivalent by Proposition 2.A.4. As a consequence,
all the previous results obtained in the setting (2.2.8) extend to the setting (2.3.6). An
analogous argument applies to the outer measure structure generated by triangular tents
in place of cubic boxes.

We turn now to the finite setting.
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Proof of Theorem 2.1.1. The proof of property piq and, for 1 ă p ď 8, 1 ď r ă 8, of
property piiq follows by arguments analogous to those in the previous proofs, using the
decomposition in Proposition 2.2.1.

For p “ r P t1,8u, the statement in piiq follows by the equivalence between Lpp`pq and
LppX,ωq by property piq.

The statement in piiiq is again a corollary of the triangle inequality for the L1pX,ωq
norm and property piiq.

Lemma 2.3.4. Let 1 ă r ď 8. For every M ą 0, there exist a finite set X, a finite
outer measure µ strictly positive on every singleton in PpXq, a strictly positive weight ω,
functions f, fn P L1p`rq such that

‖f‖L1p`rq ěM sup
‖g‖

L8p`r
1
q
“1
‖fg‖L1p`1q,∥∥∥ ÿ

nPN
fn

∥∥∥
L1p`rq

ěM
ÿ

nPN
‖fn‖L1p`rq.

Proof. Let D be the set of dyadic intervals. For every m P N, let

Xm “ tI P D : I Ď r0, 1s, |I| ě 2´mu,

Em “ tEI “ tJ P D : I Ď J Ď r0, 1su : I P Xm, |I| “ 2´mu,

σmpEIq “ 1, for every I P Xm, |I| “ 2´m,
ωmpJq “ 1, for every J P Xm,
fmpJq “ 2m|J |,
fIpJq “ 1EI pJq, for every I P Xm, |I| “ 2´m.

We have ∥∥∥ ÿ

IPXm,|I|“2´m

fI

∥∥∥
L1p`rq

“ ‖fm‖L1p`rq ě 2m
m` 1

2
,

ÿ

IPXm,|I|“2´m

‖fI‖L1p`rq “
ÿ

IPXm,|I|“2´m

pm` 1q
1
r “ 2mpm` 1q

1
r .

For m big enough, we get the second statement. In particular, this yields a counterexample
to the uniformity of the constant in the statement of Theorem 2.1.1, property piiiq. There-
fore, also the uniformity of the constant in the statement of Theorem 2.1.1, property piiq
does not hold true.

2.4 Equivalence with tent spaces

In this section we prove the equivalence between the outer Lpp`rq spaces in the upper half
space setting (2.3.6) and the tent spaces T pr stated in Theorem 2.1.3. First, in Lemma 2.4.1
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we prove the equivalence for certain exponents p, r. After that, we extend it to the full
range 0 ă p, r ď 8 via the Köthe duality result for the outer Lpp`rq spaces, equivalent to
that stated in Theorem 2.1.2, property piiq, and the analogous result for tent spaces T pr ,
stated in Proposition 2.4.2.

Lemma 2.4.1. For p “ 8, 0 ă r ă 8 or 0 ă p ă 8, r “ 8, there exists a constant
C “ Cpp, rq such that, for every f P Lpp`rq,

1

C
‖f‖T pr ď ‖f‖Lpp`rq ď C‖f‖T pr .

Proof. Without loss of generality, it is enough to consider the cases

p “ 8, r “ 1,

p “ 1, r “ 8.
(2.4.1)

In fact, let q ă 8 be the minimum of p and r. We have

‖f‖q
T pr
“ ‖f q‖

T
p{q
r{q

,

‖f‖qLpp`rq “ ‖f
q‖Lp{qp`r{qq,

where 8{q “ 8, thus recovering one of the cases in (2.4.1).
Case I: p “ 8, r “ 1. The quantities associated with the spaces L8p`1q, T81 are

equivalent by definition, up to a constant determined by a simple covering argument between
boxes and tents.

Case II: p “ 1, r “ 8. Let f P L1p`8q. For every λ ą 0, let Eλ Ď E be a covering
witnessing the super level measure at level λ up to a factor 2. In particular, we have

2µp`8pfq ą λq ě
ÿ

EPEλ

σpEq.

For
Bλ “

ď

Eλ

10BpEq Ď Rd,

where 10B is the cube in Rd with the same centre of B and 10 times its side length, we
have

|Bλ| ď C
ÿ

EPEλ

σpEq ď Cµp`8pfq ą λq.

Moreover, for every x P Bc
λ, we have

A8pfqpxq ď λ,

otherwise we get a contradiction with the definition of Eλ. Therefore, we have

|tx P Rd : A8pfqpxq ą λu| ď Cµp`8pfq ą λq. (2.4.2)
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Now let f P T p8. For every λ ą 0, let Dλ be

Dλ “ tx P Rd : A8pfqpxq ą λu,

and define
Eλ “

ď

iPIλ

10Qi Ď X,

where tBpQiqu is a Whitney decomposition of Dλ, and 10Q is the box whose base Bp10Qq
has the same centre of BpQq and 10 times its side length. In particular, we have

µpEλq ď C|Dλ|.

Moreover, for every E P E , we have

`8pf1EcλqpEq ď λ,

otherwise we get a contradiction with the definition of Dλ. Therefore, we have

µp`8pfq ą λq ď C|tx P Rd : A8pfqpxq ą λu|. (2.4.3)

The desired equivalence follows by integrating the inequalities (2.4.2), (2.4.3) over all
levels λ ą 0.

For the tent spaces T pr we have the following Köthe duality result, see for example
Theorem 5.2 in [Hua16].

Proposition 2.4.2. For 1 ď p, r ď 8, for every f P T pr ,

sup
‖g‖

T
p1

r1

“1
‖fg‖L1pX,ωq ď ‖f‖T pr ď sup

‖g‖
T
p1

r1

“1
‖fg‖L1pX,ωq.

Proof of Theorem 2.1.3. Without loss of generality, it is enough to consider the cases

p “ r “ 8,

1 ă p ď 8, r “ 1,

p “ 1, 1 ď r ď 8,

due to an argument analogous to that in the previous proof.
Case I: p “ r “ 8. The equivalence between L8p`8q, T88 follows by definition.
Case II: 1 ă p ď 8, r “ 1. For p “ 8 the quantities associated with the spaces

L8p`1q, T81 are equivalent by Lemma 2.4.1.
For 1 ă p ă 8, let f P Lpp`1q. By Theorem 2.1.2, property piiq, we have

1

C
sup

‖g‖
Lp
1
p`8q

ď1
‖fg‖L1pX,ωq ď ‖f‖Lpp`1q ď C sup

‖g‖
Lp
1
p`8q

ď1
‖fg‖L1pX,ωq.
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Applying Lemma 2.4.1 to g, we have

1

C
sup

‖g‖
T
p1
8

ď1
‖fg‖L1pX,ωq ď ‖f‖Lpp`1q ď C sup

‖g‖
T
p1
8

ď1
‖fg‖L1pX,ωq.

Finally, by Proposition 2.4.2, we conclude

1

C
‖f‖T p1 ď ‖f‖Lpp`1q ď C‖f‖T p1 .

Case III: p “ 1, 1 ď r ď 8. For p “ 1, r “ 8, the quantities associated with the
spaces L1p`8q, T 1

8 are equivalent by Lemma 2.4.1.
For p “ 1, 1 ď r ă 8, an argument analogous to that used to prove Case II yields the

desired equivalence. If p “ r “ 1, we use Case I in place of Lemma 2.4.1.
To conclude, we observe that the set of bounded functions with compact support in X

is dense in T pr for 1 ď p ă 8, r “ 1 and p “ 1, 1 ď r ă 8. However, these functions are
also in Lpp`rq. Therefore, the two spaces coincide.

2.5 Hardy-Littlewood-Sobolev inclusions for tent spaces

In this section we improve over a result of Amenta on continuous inclusions between tent
spaces T pr , see Theorem 2.19 and Lemma 2.20 in [Ame18]. In his notation, we have the
weighted tent spaces T p,rs defined, for 0 ă p, r ď 8, s P R, by

T p,rs “ tf : t´dsf P T pr u, ‖f‖T p,rs “ ‖t´dsf‖T pr ,

where T pr is defined in (2.1.11) and (2.1.12), and the continuous inclusions

T p,r0 ãÑ T q,r1
q
´ 1
p

, f ÞÑ f,

for 0 ă p ă q ď 8, 0 ă r ď 8. The improvement consists of allowing for two different
values of r, under certain conditions, in each of the two spaces in the last display.

Due to the equivalence proved in the previous section, we get an analogous result for
the outer Lpp`rq spaces in the upper half space setting (2.3.6). This result is auxiliary in
proving strong type estimates in the following section.

Theorem 2.5.1. For 0 ă p ă q ď 8, 0 ă r2 ď r1 ď 8, there exists a constant C “

Cpp, q, r1, r2q such that, for every f P T pr1,

‖t
d
p
´ d
q f‖T qr2 ď C‖f‖T pr1 .

Equivalently, for every f P Lpp`r1q,

‖t
d
p
´ d
q f‖Lqp`r2 q ď C‖f‖Lpp`r1 q.
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The main ingredient is the following. We define a function a to be a T pr -atom associated
with the ball B Ď Rd if a is essentially supported in T pBq and

‖a‖T rr ď |B|
1
r
´ 1
p . (2.5.1)

Lemma 2.5.2. Let 1 ă q ď r2 ď r1 ď 8. Suppose that a is a T 1
r1-atom. Then a is in T qr2

with norm smaller than 1.

Proof. For q ă 8, let 0 ă r, s ď 8 be such that

1

r
`

1

r1
“

1

r2
,

1

s
`

1

r1
“

1

q
.

We have

‖td´
d
q a‖T qr2 “ ‖Ar2pt

d´ d
q aq‖LqpBq

ď ‖Arptd´
d
q 1T pBqqAr1paq‖LqpBq

ď ‖Arptd´
d
q 1T pBqq‖LspBq‖Ar1paq‖Lr1 pBq

ď |B|1´
1
r1 ‖a‖T r1r1

ď 1,

where we used Hölder’s inequality in the first and in the second inequality, and (2.5.1) in
the fourth.

For q “ r2 “ r1 “ 8, the statement follows directly from (2.5.1).

Proof of Theorem 2.5.1. The proof of the first statement follows along the lines of that of
Theorem 2.19 in [Ame18], using Lemma 2.5.2 above in place of Lemma 2.20.

The second statement then follows by Theorem 2.1.3.

2.6 Embedding into outer Lpp`rq spaces with a fractional scale
factor

In this section we state and prove a full classification of all positive and negative results
regarding strong and weak type estimates for a family of embedding maps with a fractional
scale factor from classical Lp spaces on Rd to outer Lpp`rq spaces in the upper half space
setting.

The positive results for d “ 1, 1 ď p “ q ď 8, r “ 8 were already proved in [DT15], see
Theorem 4.1. Although there φ was assumed to be smooth and compactly supported, the
same argument can be extended with minor adjustments to the test functions satisfying
the boundedness and decay condition (2.1.14) and to all dimensions.
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We conclude the section by stating and proving an embedding theorem with a fractional
scale factor for functions in the Hardy space H1pRdq into the outer L1p`8q space. The
embedded function in this case is that defined in (2.1.13) for a smooth test function φ P
SpRdq.

Theorem 2.6.1. Let
1 ď p, q ď 8, 0 ă r ď 8. (2.6.1)

Then, for pp, q, rq satisfying one of the following conditions, which are also displayed in Fig.
1 below,

1 ă p ă q ď 8, 0 ă r ď 8,

1 ă p “ q ď 8, r “ 8,

p “ 1, q “ 8, 0 ă r ď 8,

(2.6.2)

there exists a constant C “ Cpp, q, r, d, εq such that, for every f P LppRdq,

‖t
d
p
´ d
qF pfq‖Lqp`rq ď C‖f‖LppRdq.

For all the triples pp, q, rq satisfying (2.6.1) but none of the conditions in (2.6.2), no strong
type pp, qq estimate holds true.

Moreover, for pp, q, rq satisfying one of the following conditions, which are also displayed
in Fig. 1 below,

1 “ p ă q ă 8, 0 ă r ď 8,

p “ q “ 1, r “ 8,
(2.6.3)

there exists a constant C “ Cpq, r, d, εq such that, for every f P L1pRdq,

‖F pfq‖Lq,8p`rq ď C‖f‖L1pRdq.

For all the triples pp, q, rq satisfying (2.6.1) but none of the conditions in (2.6.2),(2.6.3), no
weak type pp, qq estimate holds true.

1
p

1
q

r “ 8
weak type pp, qq

• •

•

1
p

1
q

•

•‚

r “ 8
strong type pp, qq

•
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1
p

1
q

•

•

0 ă r ă 8
weak type pp, qq

•‚

‚

‚
1
p

1
q

•

•

0 ă r ă 8
strong type pp, qq

•‚

‚

‚

Figure 1: range of exponents p, q, r and weak/strong type estimates.

In the next proof, the constants c, C are allowed to depend on d, ε, p, q, r but not on f .

Proof of Theorem 2.6.1. Without loss of generality, we can assume f to be nonnegative. In
fact, by definition (2.1.13), we have the pointwise bound

|Fφpfqpy, tq| ď F|φ|p|f |qpy, tq ď F p|f |qpy, tq.

In particular, we have

F pfqpy, tq “

ˆ
Rd
fpzqt´dp1` t´1|y ´ z|q´d´ε dz.

This expression can be bounded either by means of the centred maximal function

F pfqpy, tq ď CMfpyq, (2.6.4)

or by Young’s convolution inequality

F pfqpy, tq ď Ct
´ d
p ‖f‖LppRdq. (2.6.5)

2.6.1 Strong type pp, qq estimates for 0 ă r ď 8 in the range for p ‰ 1, q
displayed in Fig. 1

The strong type pp, qq estimates in the range 1 ă p ă q ď 8, 0 ă r ď 8 follow by the
already known strong type pp, pq estimate for 1 ă p ď 8, r “ 8 and Theorem 2.5.1.

2.6.2 Strong type p1,8q estimates for 0 ă r ď 8

We aim to prove that, for every E P E ,

`rptdF pfqqpEq ď C‖f‖L1pRdq. (2.6.6)

If r “ 8, the claim follows by (2.6.5).
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Now let 0 ă r ă 8. By Theorem 2.1.2, property piiiq, the decay property of φ, and
the translation invariance of the L8p`rq quasi-norm, it is enough to prove the inequality
assuming that f is supported in p´1, 1qd and φ “ 1p´1,1qd . In this case, we have

Fφpfqpy, tq ď Ct´d‖f1y`p´t,tqd‖L1pRdq1tp´1´s,1`sqdˆtsu,są0upy, tq,

and it is enough to prove (2.6.6) for the elements of E of the form

Ex,u “ px` p´u, uq
dq ˆ p0, 2uq P E ,

for every u ą 0, x P p´1´ u, 1` uqd. We distinguish two cases, r ě 1 and 0 ă r ă 1.
Case I: r ě 1. Let r “ 1. We have

`1ptdFφpfqqpEx,uq ď
C

ud

ˆ 2u

0

ˆ
x`p´u,uqd

ˆ
p´1,1qd

fpzq1y`p´t,tqdpzqdz dy
dt

t

ď
C

ud

ˆ
p´1,1qd

fpzq

ˆ 2u

0

ˆ
x`p´u,uqd

1z`p´t,tqdpyqdy
dt

t
dz

ď
C

ud
‖f‖L1pRdq

ˆ 2u

0
td

dt

t

ď C‖f‖L1pRdq,

where we used Fubini in the second inequality.
If 1 ă r ă 8, Proposition 2.A.8 implies the strong type p1,8q estimate for L8p`rq from

those for L8p`1q, L8p`8q.
Case II: 0 ă r ă 1. We have

`rptdFφpfqqpEx,uq ď `1ptd´
1
2FφpfqqpEx,uq`

r
1´r pt

1
2 qpEx,uq

ď C
´ 1

ud

ˆ 2u

0

ˆ
x`p´u,uqd

t´
1
2

ˆ
p´1,1qd

fpzq1y`p´t,tqdpzqdz dy
dt

t

¯

ˆ

ˆ

´ 1

ud

ˆ 2u

0

ˆ
x`p´u,uqd

t
r

2p1´rq dy
dt

t

¯
1´r
r

ď C‖f‖L1pRdq

´ 1

ud

ˆ 2u

0
td´

1
2

dt

t

¯´

ˆ 2u

0
t

r
2p1´rq

dt

t

¯
1´r
r

ď C‖f‖L1pRdq,

where we used Hölder’s inequality with exponents p1, r
1´r q in the first inequality, and then

we proceeded as in the previous case.

2.6.3 Weak type p1, qq estimates for 0 ă r ď 8 in the range for q ‰ 8

displayed in Fig. 1

We aim to prove that, for every λ ą 0,

λqµp`rpt
d´ d

qF pfqq ą λq ď C‖f‖q
L1pRdq.
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This requires to construct, for every λ ą 0, a set with appropriate outer measure approxi-
mating the super level measure at level λ.

For fixed f and λ ą 0, let Dλ be the set

Dλ “ tx P Rd : Mfpxq ą λq‖f‖1´q
L1pRdqu.

We have
|Dλ| ď Cλ´q‖f‖q

L1pRdq,

because of the weak type p1, 1q estimate for the maximal function operator on Rd.
Let tBi : i P Iλu be a Whitney covering of Dλ up to a set of measure 0 by pairwise

disjoint open dyadic cubes in Rd, and denote by xi and si the centre and the side length of
Bi, respectively. Let QpBiq “ Qi P D be the open dyadic box over the cube Bi, and define

Eλ “
ď

iPIλ

Qi Ď X.

In particular, we have

µpEλq ď |Dλ| ď Cλ´q‖f‖q
L1pRdq.

We are left with proving that for every E P E ,

`rpt
d´ d

qF pfq1EcλqpEq ď Cλ.

If px, sq P Ecλ, x P Dλ, then x P Qi for some i P Iλ, s ą si, and there exists u P Sd´1

such that x` s1u P Dc
λ, for csi ď s1 ď Csi. As a consequence, for t ě s, we have

t
d´ d

qF pfqpx, tq ď Cpt` s1q
d´ d

qF pfqpx` s1u, t` s1q.

Therefore, we have

`rpt
d´ d

qF pfq1EcλqpEq ď C sup
xPDcλ

‖td´
d
qF pfq‖Lrptxuˆp0,8q,dt

t
q
,

and it is enough to show that for every x P Dc
λ, we have

‖td´
d
qF pfq‖Lrptxuˆp0,8q,dt

t
q
ď Cλ.

We split the norm on the left hand side at height 0 ă Rpxq ă 8 soon to be fixed

‖td´
d
qF pfq‖Lrptxuˆp0,Rpxqq,dt

t
q
` ‖td´

d
qF pfq‖LrptxuˆpRpxq,8q,dt

t
q
. (2.6.7)
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We bound F pfq by (2.6.4) in the first summand obtaining

CMfpxqRpxq
d´ d

q ,

and by (2.6.5) in the second summand obtaining

C‖f‖L1pRdqRpxq
´ d
q .

If 0 ă r ă 8, we require the additional hypothesis q ą 1 to guarantee the Lr-integrability
at 0 of the estimate for the first summand.

Optimizing the choice of Rpxq with

Rpxq “ CMfpxq´
1
d ‖f‖

1
d

L1pRdq,

we get the bound for (2.6.7)

CMfpxq
1
q ‖f‖

1´ 1
q

L1pRdq.

We conclude by the estimate for every x P Dc
λ,

Mfpxq ď λq‖f‖1´q
L1pRdq.

2.6.4 Counterexample to the strong type p1, qq estimates for 1 ď q ă
8, 0 ă r ď 8

In the following counterexamples we are going to use test functions φ satisfying the condition
(2.1.14) with a multiplicative factor different from 1. While it does not effect the nature of
the counterexamples, it spares us the definition of other appropriate constants.

For f “ 1p´1,1qd , φ “ 1p´1,1qd , we have

Fφpfqpy, tq ě t´d1tp´s,sqdˆtsu,sě1upy, tq.

For every u ě 1, let
Eu “ p0, uq

d`1 P E .

Then, for 0 ă r ă 8, we have

`rpt
d´ d

qF pfq1pRdˆp0,uqqcqpE2uq ě

´ 1

p2uqd

ˆ 2u

u

ˆ
p0,uqd

t
´ dr
q dy

dt

t

¯
1
r
ě Cu

´ d
q ,

and it is easy to see that, for r “ 8, we have

`8pt
d´ d

qF pfq1pRdˆp0,uqqcqpE2uq “ u
´ d
q .
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Therefore, for every fixed u ě 1, if A Ď X is such that

`rpt
d´ d

qF pfq1AcqpE2uq ď Cu
´ d
q ,

then AzpRd ˆ p0, uqq ‰ H, hence we have

µp`rpt
d´ d

qF pfqq ą Cu
´ d
q q ě ud.

As a consequence, we have

‖td´
d
qFφpfq‖qLqp`rq ě C

ˆ C

0
u´dµp`rpt

d´ d
qF pfqq ą Cu

´ d
q q

du

u
“ 8.

2.6.5 Counterexample to the weak type pp, qq estimates for 1 ď q ď p ď
8, 0 ă r ă 8 and 1 ď q ă p ď 8, r “ 8

For f, φ as above, we have

Fφpfqpy, tq ě 1tp´1`s,1´sqdˆtsu,sď1upy, tq.

For every x P p0, 1
4q
d, u ď 1

4 , let

Ex,u “ px` p´u, uq
dq ˆ p0, 2uq P E .

Then, for 1 ď q ď p ď 8, 0 ă r ă 8, we have

`rpt
d
p
´ d
qFφpfqqpEx,uq ě

´ 1

p2uqd

ˆ 2u

0

ˆ
x`p´u,uqd

t
dr
p
´ dr
q dy

dt

t

¯
1
r
“ 8,

thus exhibiting a counterexample in the case p “ q “ 8. Moreover, it is easy to see that,
for 1 ď q ă p ď 8, r “ 8, we have

`8pt
d
p
´ d
qFφpfqqpEx,uq “ 8.

Let A Ď p´1, 1qd ˆ p0,8q be such that, for every x P p0, 1
4q
d, u ď 1

4 ,

`rpt
d
p
´ d
qF pfq1AcqpEx,uq ă 8. (2.6.8)

For every finite collection E 1 Ď E covering A, let

AE 1 “
ď

EPE 1
BpEq,
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where BpEq is the base in Rd of E, and B is the closure of B in Rd. If AE 1 X r0,
1
4 s
d ‰ H,

there would exist x, u such that Ex,u XA “ H, hence contradicting (2.6.8). Therefore, for
every λ ą 0, we have

µp`rpt
d
p
´ d
qFφpfqq ą λq ě C,

where C does not depend on λ.
As a consequence, for q ‰ 8, we have

‖t
d
p
´ d
qFφpfq‖qLq,8p`rq ě C sup

λą0
λq “ 8.

Before stating and proving the embedding result for functions in H1pRdq, we recall the
definition of H1-atom. A function f is a H1-atom associated with the cube B Ď Rd if f is
essentially supported in B andˆ

B
fpxq dx “ 0, ‖f‖L8pRdq ď |B|

´1.

Proposition 2.6.2. Let ϕ P SpRdq. Then there exists a constant C “ Cpd, ϕq such that,
for every f P H1pRdq,

‖Fϕpfq‖L1p`8q ď C‖f‖H1pRdq.

Proof. By Theorem 2.1.2, property piiiq, the decay properties of ϕ and its derivatives, and
the definition of the Hardy space pH1pRdq, ‖¨‖H1pRdqq, it is enough to prove the inequality
assuming that ϕ is a smooth function compactly supported in a cube of side length 2 and
f is a H1-atom associated with a cube B. Moreover, due to the translation invariance of
the L1p`8q quasi-norm, we can assume that both f, ϕ are supported in cubes centred in
the origin. Therefore it is enough to show that

‖Fϕpfq‖L1p`8q ď C.

Let 2B be the cube with the same centre of B and double the side length. For 0 ă t ă

|B|
1
d , y P 2B, we have

|Fϕpfqpy, tq| ď C|B|´1,

where we used the L8 bounds for f .
For t ě |B|

1
d , y P p´|B|

1
d ´ t, |B|

1
d ` tqd, we have

|Fϕpfqpy, tq| “ Ct´d
∣∣∣ˆ

B
fpzqϕpt´1py ´ zqqdz

∣∣∣
“ Ct´d

∣∣∣ˆ
B
fpzqpϕpt´1py ´ zqq ´ ϕpt´1yqqdz

∣∣∣
ď Ct´d

ˆ
B
|fpzq|t´1|z| dz

ď C|B|
1
d t´pd`1q,
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where we used the L8 bounds, the localized support and the cancellation property of f
together with the smoothness of ϕ.

For all the others py, tq, we have Fϕpfq is 0, since the supports of f and the dilated
version of ϕ are disjoint.

As a consequence, for λ ą C|B|´1, we have

µp`8pFϕpfqq ą λq “ 0,

and for 0 ă λ ď C|B|´1, we have

µp`8pFϕpfqq ą λq ď C|B|
1
d`1λ´

d
d`1 .

Therefore, we have

‖Fϕpfq‖L1p`8q ď C

ˆ C|B|´1

0
µp`8pFϕpfqq ą λqdλ ď C.

2.7 Applications

In this section we show some applications of the strong type estimates in Theorem 2.6.1 and
Proposition 2.6.2. We use them to give alternative proofs of the Hardy-Littlewood-Sobolev
inequality, and the Gagliardo-Nirenberg-Sobolev inequality up to the endpoint in the spirit
of the two-step program outlined in the introduction.

Theorem 2.7.1 (HLS inequality). For 1 ă p, q ă 8, 0 ă α ă d such that

1

p
`

1

q
`
α

d
“ 2,

there exists a constant C “ Cpp, q, dq such that, for every f P LppRdq, g P LqpRdq,

∣∣∣ ˆ
R2d

fpxqgpyq

|x´ y|α
dx dy

∣∣∣ ď C‖f‖LppRdq‖g‖LqpRdq.

Proof. Let ψ P SpRq be such that supp ψ̂ Ď r12 , 2s,
´8

0 ψ̂2ptqdt
t “ 1, and define Ψ,Φ P SpRdq

by
Ψ̂pξq “ ψ̂p|ξ|q, Φ̂pξq “ |ξ|α´dψ̂p|ξ|q.
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Let f, g P SpRdq. By a frequency localization argument, we have∣∣∣ˆ
R2d

fpxqgpyq

|x´ y|α
dx dy

∣∣∣ ď C
∣∣∣ ˆ

R2d

f̂pξqĝpηq|ξ ´ η|α´dδpξ ` ηqdξ dη
∣∣∣

ď C
∣∣∣ ˆ

R2dˆp0,8q
f̂pξqĝpηq|ξ ´ η|α´dδpξ ` ηqψ̂2ptq dξ dη

dt

t

∣∣∣
ď C

∣∣∣ ˆ
Rdˆp0,8q

td´αf̂pξqψ̂p|ξ|tqĝp´ξqpt|ξ|qα´dψ̂p|ξ|tqdξ
dt

t

∣∣∣
ď C

∣∣∣ ˆ
Rdˆp0,8q

td´αFΨpfqpy, tqGΦpgqpy, tqdy
dt

t

∣∣∣.
By Theorem 2.1.2, property piq, the integral in the last display is bounded by

‖td´αFΨpfqGΦpgq‖L1p`1q.

Applying outer Hölder’s inequality, Proposition 2.A.5, we estimate it in terms of

‖td´αFΨpfq‖Lq1 p`1q‖GΦpgq‖Lqp`8q,

which by the strong type estimates in Theorem 2.6.1 is bounded by

‖f‖LppRdq‖g‖LqpRdq.

A standard approximation argument yields the result for arbitrary f P LppRdq, g P LqpRdq.

Theorem 2.7.2 (GNS inequality). For 1 ď p ă d, there exists a constant C “ Cpp, dq
such that, for every f PW 1,ppRdq,

‖f‖Lp˚ pRdq ď C‖∇f‖LppRdq,

where p˚ “ dp
d´p .

Moreover, there exists a constant C “ Cpdq such that, for every f PW 1,dpRdq,

‖f‖BMOpRdq ď C‖∇f‖LdpRdq.

Proof. Let tϕiudi“1 be a smooth partition of the unity on the set t1
2 ď |ξ| ď 2u such that

suppϕi Ď t|ξi| ą 1
4du X t

1
4 ď |ξ| ď 4u.

For ψ P SpRq as above, let Ψi P SpRdq be defined by

Ψ̂ipξq “
ψ̂p|ξ|q
ξi

ϕipξq.
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For 1 ă p ă d, let f, g P SpRdq. By a frequency localization argument, we have

|xf, gy| ď C
∣∣∣ ˆ

R2d

f̂pξqĝpηqδpξ ` ηq dξ dη
∣∣∣

ď C
∣∣∣ ˆ

R2dˆp0,8q
f̂pξqĝpηqδpξ ` ηqψ̂2ptqdξ dη

dt

t

∣∣∣
ď C

d
ÿ

i“1

∣∣∣ˆ
Rdˆp0,8q

tξif̂pξq
ψ̂p|ξ|tq
tξi

ϕipξqĝp´ξqψ̂p|ξ|tqdξ
dt

t

∣∣∣
ď C

d
ÿ

i“1

∣∣∣ˆ
Rdˆp0,8q

tFΨipBifqpy, tqGΨpgqpy, tqdy
dt

t

∣∣∣.
By Theorem 2.1.2, property piq, the integral in the last display is bounded by

d
ÿ

i“1

‖tFΨipBifqGΨpgq‖L1p`1q.

Applying outer Hölder’s inequality, Proposition 2.A.5, we estimate it in terms of
d
ÿ

i“1

‖tFΨipBifq‖Lp˚ p`1q‖GΨpgq‖Lp˚1 p`8q,

which by the strong type estimates in Theorem 2.6.1 is bounded by
d
ÿ

i“1

‖Bif‖LppRdq‖g‖Lp˚1 pRdq.

The duality between LppRdq spaces and the density of Schwartz functions in LppRdq yield
the desired inequality. A standard approximation argument yields the result for arbitrary
f PW 1,ppRdq.

For p “ d, we proceed in the same way with f P SpRdq and g P H1pRdqXSpRdq, getting

|xf, gy| ď
d
ÿ

i“1

‖tFΨipBifq‖L8p`1q‖GΨpgq‖L1p`8q,

which by the strong type estimates in Theorem 2.6.1 and by Proposition 2.6.2 is bounded
by

d
ÿ

i“1

‖Bif‖LdpRdq‖g‖H1pRdq.

The duality between the spaces BMOpRdq and H1pRdq and the density of Schwartz func-
tions in H1pRdq yield the desired inequality. A standard approximation argument yields
the result for arbitrary f PW 1,dpRdq.

For p “ 1, d ą 1, the statement can be classically proved by the Loomis-Whitney
inequality.
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2.A Outer Lp spaces theory

In this Appendix we review the theory of outer Lp spaces in the level of generality discussed
in [DT15].

Definition 2.A.1 (Outer measure, pre-measure). Let X be a set. An outer measure µ
on X is a function from PpXq, the power set of X, to r0,8s that satisfies the following
properties.

(1) µpHq “ 0.

(2) If E Ď F for two subsets of X, then µpEq ď µpF q.

(3) If tEiu is a countable collection of sets in X, then

µ
´

8
ď

i“1

Ei

¯

ď

8
ÿ

i“1

µpEiq.

A pre-measure pσ, Eq on X is defined by a collection E of subsets of X and a function
σ from E to r0,8q.

Since E is implicit in the definition of σ, we drop it in the notation pσ, Eq, and we refer
to the pre-measure with the symbol σ.

Definition 2.A.2 (Size). Let pX,Σq be a measurable space. A size pS,Aq on X is defined
by a collection A of measurable subsets of X and a function S from MpXq, the set of
measurable functions on X, to r0,8sA, that satisfies, for every f, g P MpXq, for every
A P A, the following properties.

(1) If |f | ď |g|, then SpfqpAq ď SpgqpAq.

(2) SpλfqpAq “ |λ|SpfqpAq for every λ P C.

(3) There exists a constant C depending only on S but not on f, g, A such that

Spf ` gqpAq ď CrSpfqpAq ` SpgqpAqs.

Since A is implicit in the definition of S, we drop it in the notation pS,Aq, and we refer
to the size with the symbol S.

Now, let pX,Σq be a measurable space, and let E be a countable collection of measurable
subsets of X such that

X “
ď

EPE
E.

Let σ be a pre-measure defined on E attaining only strictly positive values, and let µ be
the outer measure generated by σ as in (2.1.2). Let pS,Aq be a size on X.
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In particular, let ω be a measure on pX,Σq, and assume that for all A P Σ

µpAq “ 0 ñ ωpAq “ 0.

For 0 ă r ă 8, we can define the following sizes. First, let `8σ , `rσ be the sizes defined by,
for every function f PMpXq, for every E P E ,

`8σ pfqpEq “ ‖f1E‖L8pX,ωq,

`rσpfqpEq “ σpEq´
1
r ‖f1E‖LrpX,ωq.

(2.A.1)

Next, for rΣ defined by
rΣ “ tA P Σ: µpAq P p0,8qu,

let `8, `r be the sizes defined by, for every function f PMpXq, for every A P rΣ,

`8pfqpAq “ ‖f1A‖L8pX,ωq,

`rpfqpAq “ µpAq´
1
r ‖f1A‖LrpX,ωq.

(2.A.2)

For every function f PMpXq, we define

‖f‖L8pSq “ sup
APA

SpfqpAq,

and the outer L8pSq space to be the set of functions in MpXq for which this quantity is
finite.

For λ ą 0, we define the super level measure

µpSpfq ą λq “ inftµpAq : A P Σ, ‖f1Ac‖L8pSq ď λu.

For 0 ă p ă 8, for every function f PMpXq, we define

‖f‖LppSq “
´

ˆ 8
0

pλpµpSpfq ą λq
dλ

λ

¯
1
p
,

‖f‖Lp,8pSq “
´

sup
λą0

λpµpSpfq ą λq
¯

1
p
,

and the outer LppSq, Lp,8pSq spaces to be the sets of functions in MpXq for which these
quantities are finite, respectively.

We have the following equality between the outer Lp spaces associated with the `rσ sizes
and the `r ones under some reasonable assumptions.

Lemma 2.A.3. Let pX,Σq be a measurable space, and let E be a countable collection of
measurable subsets of X such that

X “
ď

EPE
E.
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Let σ be a pre-measure defined on E attaining only strictly positive values, and let µ be the
outer measure generated by σ as in (2.1.2). Let ω be a measure on pX,Σq, and assume that
for all A P Σ

µpAq “ 0 ñ ωpAq “ 0.

Let `rσ, `r be the sizes defined in (2.A.1), (2.A.2). Then, for 0 ă p, r ď 8, for every function
f PMpXq, we have

‖f‖Lpp`rσq “ ‖f‖Lpp`rq.

Proof. It is enough to prove the equality for p “ 8. The case 0 ă p ă 8 follows by this
particular case and the definition of the outer Lp quasi-norm.

Case I: r “ 8. For every E P E , we have

µpEq ď σpEq ă 8. (2.A.3)

Now, if µpEq “ 0, then ωpEq “ 0, hence

`8σ pfqpEq “ 0 ď ‖f‖L8p`8q.

If µpEq ‰ 0, then E P rΣ, hence

`8σ pfqpEq “ `8pfqpEq ď ‖f‖L8p`8q.

Next, for every A P rΣ, there exists a countable collection EA Ď E such that

A Ď
ď

EPEA

E,

hence
`8pfqpAq ď sup

EPEA
`8σ pfqpEq ď ‖f‖L8p`8σ q.

Therefore, we have

‖f‖L8p`8σ q “ sup
EPE

`8σ pfqpEq ď ‖f‖L8p`8q “ sup
APrΣ

`8pfqpAq ď ‖f‖L8p`8σ q.

Case II: 0 ă r ă 8. Let E P E . If µpEq “ 0, then ωpEq “ 0, hence

`rσpfqpEq “ 0 ď ‖f‖L8p`rq.

If µpEq ‰ 0, then E P rΣ, hence we have, by (2.A.3),

`rσpfqpEq “
´

σpEq´1
ÿ

xPE

ωpxq|fpxq|r
¯

1
r
ď

´

µpEq´1
ÿ

xPE

ωpxq|fpxq|r
¯

1
r
ď `rpfqpEq.
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Next, let A P rΣ. For every ε ą 0, there exists a countable collection EApεq Ď E such
that

A Ď
ď

EPEApεq
E,

µpAq ď
ÿ

EPEApεq
σpEq ď p1` εqµpAq,

hence

`rpfqpAq ď µpAq´
1
r

´

ÿ

EPEA

‖f1E‖r
¯

1
r

ď µpAq´
1
r sup
EPEA

`rσpfqpEq
´

ÿ

EPEA

σpEq
¯

1
r

ď p1` εq‖f‖L8p`rσq,

By taking ε arbitrarily small, we obtain the desired inequality.
Therefore, we have

‖f‖L8p`rσq “ sup
EPE

`rσpfqpEq ď ‖f‖L8p`rq “ sup
APrΣ

`rpfqpAq ď ‖f‖L8p`rσq.

Finally, we recall some important results in a setting satisfying the properties stated
above with the additional assumption E “ A.

Proposition 2.A.4 (Pull back, Proposition 3.2 in [DT15]). For i “ 1, 2, let pXi,Σiq be
a measurable space, pσi,Aiq be a pre-measure satisfying the properties stated above, and
pSi,Aiq be a size. Let Φ: X1 Ñ X2 be a measurable map. Assume that for every E2 P A2

we have
µ1pΦ

´1E2q ď Aµ2pE2q.

Further assume that for each E1 P A1, there exists E2 P A2 such that for every f PMpX2q

we have
S1pf ˝ ΦqpE1q ď BS2pfqpE2q.

Then we have for every f PMpX2q and 0 ă p ď 8 and some universal constant C

‖f ˝ Φ‖LppS1q
ď A1{pBC‖f‖LppS2q

,

‖f ˝ Φ‖Lp,8pS1q
ď A1{pBC‖f‖Lp,8pS2q

.
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Proposition 2.A.5 (outer Hölder’s inequality, Proposition 3.4 in [DT15]). Let pX,Σq be
a measurable space. Let pσ,Aq, pσ1,A1q, pσ2,A2q be three pre-measures on X satisfying
the properties stated above and such that the generated outer measures satisfy µ ď µi, for
i “ 1, 2. Let pS,Aq, pS1,A1q, pS2,A2q be three sizes on X such that for any A P A, there
exist A1 P A1, A2 P A2 such that for all f1, f2 PMpXq we have

Spf1f2qpAq ď S1pf1qpA1qS2pf2qpA2q.

Let p, p1, p2 P p0,8s such that 1{p “ 1{p1 ` 1{p2. Then, for every f1, f2 PMpXq,

‖f1f2‖LppSq ď 2‖f1‖Lp1 pS1q
‖f2‖Lp2 pS2q

.

Proposition 2.A.6 (Marcinkiewicz interpolation). Let pX,Σq be a measurable space, pσ,Aq
be a pre-measure satisfying the properties stated above, and pS,Aq be a size. Let pY, νq be a
measure space. Let 1 ď p1 ă p2 ď 8, 1 ď q1 ‰ q2 ď 8 such that pi ď qi, for i “ 1, 2. Let T
be a homogeneous quasi-subadditive operator that maps Lp1pY, νq and Lp2pY, νq to the space
MpXq such that

‖T pfq‖Lq1,8pSq ď A1‖f‖Lp1 pY,νq,

‖T pfq‖Lq2,8pSq ď A2‖f‖Lp2 pY,νq.

Then we also have
‖T pfq‖LqpSq ď Aθ1A

1´θ
2 Cp,p1,p2‖f‖LppY,νq,

where 0 ă θ ă 1 is such that

1

p
“

θ

p1
`

1´ θ

p2
,

1

p
“

θ

q1
`

1´ θ

q2
.

Proof. See Appendix B in [Ste70]. It is enough, for a function h on X, to replace the quan-
tity µpth ą λuq with the super level measure at level λ in the definition of the non-increasing
rearrangement h˚. In particular, for a function h : X Ñ R, the function h˚ : p0,8q Ñ p0,8q
is defined by

h˚ptq “ inftλ : µpSphq ą λq ď tu.

Proposition 2.A.7 (Radon-Nikodym measure differentiation, Proposition 3.6 in [DT15],
Proposition 1.9 in [Ura17]). Let pX,ωq be a measure space, pσ,Aq be a pre-measure satisfying
the properties stated above, and pS,Aq be a size. Then, if either for all A P A

µpAq “ 0 ñ ωpAq “ 0,

or for all A P A
µpAq´1

ˆ
A
|fpxq| dωpxq ď C‖f‖L8pSq,
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we have, for every f P L8pSq,∣∣∣ ˆ
X
fpxq dωpxq

∣∣∣ ď C‖f‖L1pSq,

where the implicit constant C is independent of ‖f‖L8pSq.

Proposition 2.A.8. Let pX,ωq be a measure space, and pσ,Aq be a pre-measure satisfying
the properties stated above. For 0 ă r1 ă r2 ď 8, let `r1σ , `r2σ be the sizes defined in (2.A.1).
Then, for every 0 ă p ď 8, r1 ă r ă r2, there exists a constant C “ Cpp, r, r1, r2q such
that, for every f PMpXq,

‖f‖Lpp`rσq ď Cp‖f‖Lpp`r1σ q ` ‖f‖Lpp`r2σ qq,

‖f‖Lp,8p`rσq ď Cp‖f‖Lp,8p`r1σ q ` ‖f‖Lp,8p`r2σ qq.

Proof. It is enough to prove that there exists a constant c “ cpr, r1, r2q such that, for every
λ ą 0,

µp`rσpfq ą cλq ď Cpµp`r1σ pfq ą λq ` µp`r2σ pfq ą λqq.

The desired inequalities follow by multiplying the last display by λp and either integrating
or taking the supremum over all levels λ ą 0 .

Let E1, E2 Ď X be two sets witnessing the super level measure at λ up to a factor 2
with respect to the sizes `r1σ and `r2σ , respectively. In particular, we have

2µp`r1σ pfq ą λq ě µpE1q, 2µp`r2σ pfq ą λq ě µpE2q.

Now let E1 “ E1 Y E2. Then, for every A Ď X, we have

`rσpf1pE1qcqpAq ď cp`r1σ pf1pE1qcqpAqq
θp`r1σ pf1pE2qcqpAqq

1´θ ď cλ,

by logarithmic convexity of the Lr spaces, where 0 ă θ ă 1 satisfies

1

r
“

θ

r1
`

1´ θ

r2
.

To conclude, we observe that µpE1q ď µpE1q ` µpE2q.

2.B Geometry of the dyadic upper half space

In this Appendix we prove Lemma 2.2.2 and Lemma 2.2.3.

Proof of Lemma 2.2.2. For every dyadic box E P D, we have

E “ BpEq ˆ p0, |BpEq|q,

where BpEq is its base in Rd, and |BpEq| the volume of the base.
Therefore, the desired property follows from the analogous one for the dyadic cubes

BpE1q, BpE2q.
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We state and prove an auxiliary result.

Lemma 2.B.1. For every dyadic box E P D and for every collection of pairwise disjoint
dyadic boxes tEn : n P Nu such that En Ď E for every n P N, we have

ÿ

nPN
σpEnq ď σpEq.

Proof. The dyadic cubes in the collection tBpEnq : n P Nu are pairwise disjoint and such
that BpEnq Ď BpEq for every n P N. Therefore, we have

ÿ

nPN
σpEnq “

ÿ

nPN
|BpEnq| “

∣∣∣ ď
nPN

BpEnq
∣∣∣ ď |BpEq| “ σpEq.

Proof of Lemma 2.2.3. The inequality

µ
´

ď

nPN
Dn

¯

ď
ÿ

nPN
σpEnq

is trivially satisfied by the definition of µ.
If the left hand side is infinite, there is nothing else to prove. If it is finite, for every

ε ą 0, let Epεq Ď D be an optimal covering of the union of the elements of tDn : n P Nu
witnessing its outer measure up to the multiplicative constant p1` εq. In particular,

ď

nPN
Dn Ď

ď

EPEpεq
E,

µ
´

ď

nPN
Dn

¯

ď
ÿ

EPEpεq
σpEq ď p1` εqµ

´

ď

nPN
Dn

¯

ă 8.
(2.B.1)

Without loss of generality, we can assume the elements of Epεq to be pairwise disjoint.
In fact, given two elements of Epεq with nonempty intersection, by Lemma 2.2.2 one is
contained in the other, and we can discard the smaller from the collection. The upper
bound on σpEq for every E P Epεq by (2.B.1) guarantees that we still end up with a
collection.

Next, we observe that for every En, there exists an element of Epεq such that E`n XE ‰
∅, hence En Ď E by Lemma 2.2.2. Since the elements of Epεq are pairwise disjoint, the
element E is unique, hence we can split the collection tEn : n P Nu into pairwise disjoint
subcollections DpEq “ tEn : n P N, En Ď Eu, one for each E P Epεq.

By Lemma 2.B.1, we have
ÿ

nPN
σpEnq “

ÿ

EPEpεq

ÿ

EnPDpEq
σpEnq ď

ÿ

EPEpεq
σpEq.

Combining this with (2.B.1) and taking ε arbitrarily small give the desired inequality.



Typos

• The fourth display in the proof of Lemma 2.4.1 should be

Bλ “
ď

EPEλ

10BpEq Ď Rd.

• The statement of Lemma 2.5.2 should be

Lemma. Let 1 ă q ď r2 ď r1 ď 8. Suppose that a is a T 1
r1-atom. Then td´

d
q a is in

T qr2 with norm smaller than 1.

• The first line of the pre-last display in the proof of Lemma 2.A.3 should be

`rpfqpAq ď µpAq´
1
r

´

ÿ

EPEA

‖f1E‖rLrpωq
¯

1
r
.

• The second part of the last display in the statement of Proposition 2.A.6 should be

1

q
“

θ

q1
`

1´ θ

q2
.
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Chapter 3

Double iterated outer Lp space

In this chapter, we report the article [Fra22].

Marco Fraccaroli. Duality for double iterated outer Lp spaces.

in the revised version accepted for forthcoming publication in Studia Mathematica. An
earlier version is available on arXiv

Marco Fraccaroli. Duality for double iterated outer Lp spaces. arXiv e-prints, page
arXiv:2104.09472, Apr 2021.

Abstract

We study the double iterated outer Lp spaces, namely the outer Lp spaces associated with
three exponents and defined on sets endowed with a measure and two outer measures. We
prove that in the case of finite sets, under certain conditions between the outer measures,
the double iterated outer Lp spaces are isomorphic to Banach spaces uniformly in the set,
the measure, and the outer measures. We achieve this by showing the expected duality
properties between them. We also provide counterexamples demonstrating that the uni-
formity does not hold in arbitrary settings on finite sets without further assumptions, at
least in a certain range of exponents. We prove the isomorphism to Banach spaces and
the duality properties between the double iterated outer Lp spaces also in the upper half
3-space infinite setting described by Uraltsev, going beyond the case of finite sets.

3.1 Introduction

The theory of Lp spaces for outer measures, or outer Lp spaces, was introduced by Do
and Thiele in [DT15] in the context of time-frequency analysis. It provides a framework to
encode the boundedness of linear and multilinear operators satisfying certain symmetries in
a two-step programme. The programme consists of a version of Hölder’s inequality for outer

81
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Lp spaces together with the boundedness of certain embedding maps between classical and
outer Lp spaces associated with wave packet decompositions. This scheme of proof turns
out to be applicable not only in time-frequency analysis, see for example [AU20a], [AU20b],
[AU22], [CDPO18], [DPDU18], [DMT17], [Ura16], [Ura17], [War18], but in other contexts
too, see for example [DPGTZK18], [DPO18a], [DT15], [Fra21], [MT17], [TTV15].

Although the theory of outer Lp spaces comes in a broad generality of settings, the outer
Lp spaces used in [DT15] are specifically defined by quasi-norms reminiscent in nature of
iterated Lebesgue norms. In particular, the two Lebesgue norms involved in the definition of
outer Lp quasi-norms are associated with the two structures on a set provided by a measure
and an outer measure. We recall that an outer measure µ on a set X is a monotone,
subadditive function from PpXq, the power set of X, to the extended positive half line,
attaining the value 0 on the empty set. Similarly, in [Ura16] Uraltsev considered outer Lp

spaces associated with three structures on a set, namely a measure and two outer measures,
once again in the context of time-frequency analysis and in the spirit of the aforementioned
two-step programme. Outer Lp spaces associated with three structures where used in
[AU20a], [AU20b], [AU22], [DPDU18], [Ura16], [Ura17], [War18].

As a matter of fact, one can define outer Lp spaces associated with arbitrary pn ` 1q
structures on a set, namely a measure and n outer measures. We refer to these spaces as
iterated outer Lp spaces, and we provide a definition in detail. We start recalling the classical
product of Lp spaces on a set with a Cartesian product structure. Given a collection of
couples of finite sets with strictly positive weights pXi, ωiq, we define recursively the product
Lp quasi-norms for functions on their Cartesian product as follows. For any n P N, let

Y n “

n
ź

i“1

Xi,

where, for n “ 0, the empty Cartesian product is intended to be t∅u. Note that, for
any x P Xn, a function f on Y n defines a function fp¨, xq on Y n´1. Given a collection of
exponents pi P p0,8s, we define the classical product Ln quasi-norm of a function f on Y n,
where

Ln “ LpnωnpL
pn´1
ωn´1

p. . . Lp1
ω1
qq,

by the recursion

‖fpxq‖L0
“ |fpxq|, (3.1.1)

‖f‖Ln “ ‖‖fp¨, xq‖Ln´1
‖Lpn pXn,ωnq. (3.1.2)

The theory of outer Lp spaces allows for a generalization of this definition to settings
where the underlying set has no Cartesian product structure. For the purpose of this paper,
we provide the definition of the iterated outer Lp quasi-norms in the form of a recursion
analogous to that in (3.1.1), (3.1.2).
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Let X be a finite set together with a collection of outer measures µi on it. To avoid
cumbersome details, we make the harmless assumption that every µi is finite and strictly
positive on every nonempty element of PpXq. In fact, it is reasonable that subsets of X
on which either of the outer measures is 0 or 8 should contribute only trivially to the
iterated outer Lp spaces on X, and we ignore them altogether. Throughout the paper, we
avoid recalling this assumption, but the reader should always consider it implicitly stated
whenever we refer to outer measures.

Given a collection of exponents pi P p0,8s, we define the iterated outer Ln quasi-norm
of a function f on X, where

Ln “ Lpnµnp`
pn´1
µn´1

p. . . `p1
µ1
qq,

by the recursion

‖f‖L0
“ sup

xPX
|fpxq|, (3.1.3)

Inpfq “ sup
∅‰AĎX

µnpAq
´ppn´1q

´1‖f1A‖Ln´1
, (3.1.4)

‖f‖Ln “

$

’

&

’

%

Inpfq, if pn “ 8,
”

ˆ 8
0

pnλ
pn inftµnpBq : Inpf1Bcq ď λu

dλ

λ

ı
1
pn , if pn ‰ 8,

(3.1.5)

where p0 “ 8, and the exponent 8´1 is intended to be 0. We refer to the space defined by
the quantity in (3.1.5) as the iterated outer Lp space Ln or Lpnµnp`

pn´1
µn´1p. . . `

p1
µ1qq, where we

denote the argument of the supremum in (3.1.4) as

`pn´1
µn´1

p. . . `p1
µ1
qpfqpAq “ µnpAq

´ppn´1q
´1‖f1A‖Ln´1

, (3.1.6)

and the infimum in (3.1.5) as

µnp`
pn´1
µn´1

p. . . `p1
µ1
qpfq ą λq “ inftµnpBq : Inpf1Bcq ď λu. (3.1.7)

In the language of the Lp theory for outer measure spaces, the quantity in (3.1.6) defines
a size, and that in (3.1.7) defines the super level measure of a function f at level λ with
respect to the size.

If the outer measure µ1 is a measure ω, then we have, for every p1 P p0,8s,

‖f‖L1
“ ‖f‖Lp1 pX,ωq,

hence we can begin the recursion in (3.1.3), (3.1.4), (3.1.5) from L1. In fact, the general case
already had this form. The quasi-norm defined by the collections of outer measures µi and
exponents pi is the same one defined by the collections of outer measures rµi and exponents
rpi, where rµ1 is the counting measure, rp1 “ 8, and rµi`1 “ µi, rpi`1 “ pi for every i P N.
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Therefore, without loss of generality, we always assume that µ1 is a measure ω associated
with a finite and strictly positive weight that we denote by ω as well, with a slight abuse
of notation. As before, throughout the paper, we avoid recalling this assumption, but the
reader should always consider it implicitly stated whenever we refer to measures.

The classical product Ln quasi-norms defined in (3.1.2) are a special case of the iterated
outer Ln ones defined in (3.1.5), with the same collection of exponents and the following
collection of outer measures µi. For any 1 ď j ď n, we define

Y n
j “

n
ź

i“j

Xi,

and we observe that the set Y n has a canonical partition Zj , namely

Zj “ tY j´1
1 ˆ z : z P Y n

j u.

where the set Y 0
1 ˆ z is intended to be the singleton tzu. For every A Ď Y n, let

µipAq “ inf
Z
t
ÿ

zPZ

n
ź

j“i

ωj
`

πjpzq
˘

u, (3.1.8)

where πj is the projection in the coordinate in Xj , and the infimum is taken over all subsets
Z of Y n

i such that A is covered by the elements of Zi associated with Z.
The theory of classical product of Lp spaces is well-developed, see for example [BP61].

In the range of exponents pi P r1,8s, the quantities defined in (3.1.2) are norms, and they
satisfy the expected duality properties. On the other hand, the theory of outer Lp spaces is a
theory of quasi-norms, mainly developed in [DT15] towards the real interpolation features
of these quantities like Radon–Nikodym results, Hölder’s inequality, and Marcinkiewicz
interpolation, due to the aforementioned two-step programme.

However, as showed in [DT15], the iterated outer Lp spaces satisfy some properties
analogous to those of the iterated classical ones. In particular, a one-direction "collapsing
effect" and a version of Hölder’s inequality up to a uniform constant, namely

‖f‖L1pX,ωq ď C‖f‖L1
µn
p`1µn´1

p...`1ωqq
, (3.1.9)

sup
g
t‖fg‖L1

µn
p...`1ωq

: ‖g‖
L
p1n
µn p...`

p11
ω q
ď 1u ď C‖f‖Lpnµn p...`p1ω q, (3.1.10)

where, for every 1 ď i ď n, the exponent p1i is the Hölder conjugate of pi, satisfying

1

pi
`

1

p1i
“ 1.

In [Fra21], we studied the opposite inequalities in (3.1.9) and in (3.1.10) in the single
iterated case, namely when n “ 2. We proved the equivalence in both cases up to constants
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depending on pi P p1,8q but independent of the measure ω, the outer measure µ “ µ2, and
the set X, as long as X is finite. These in turn imply the equivalence of the outer Lp2

µ p`
p1
ω q

quasi-norms to the norms defined by the supremum in (3.1.10). The endpoint cases p1 “ 8

and p2 “ 1 exhibit a different behaviour, and we refer to [Fra21] for more details.
In the present paper, we focus on the analogous opposite inequalities in (3.1.9) and

in (3.1.10) in the double iterated case, namely when n “ 3. Already in this case, the
study of the opposite inequalities becomes substantially more difficult due to the interplay
between the subadditivity of the two outer measures and the exponents. We start recalling
the setting. Let X be a finite set, µ, ν outer measures, and ω a measure. Given three
exponents p, q, r P p0,8s, we define the double iterated outer Lp space Lpµp`qνp`rωqq through
the quasi-norm in (3.1.5), with µ1 “ ω, µ2 “ ν, µ3 “ µ, and p1 “ r, p2 “ q, p3 “ p.

Before stating our main results, we introduce some auxiliary definitions. They depend
on parameters Φ,K ě 1 that we are going to avoid recalling every time.

Given a subset A of X, we say that a subset B of X is a µ-parent set of A (with
parameter Φ) if A Ď B and we have

µpBq ď ΦµpAq. (3.1.11)

A µ-parent function B (with parameter Φ) is then a monotone function from PpXq to itself,
associating every subset A of X with a µ-parent set (with parameter Φ) BpAq.

Moreover, given a collection E of subsets of X, we say that a function C from PpXq to
the set of subcollections of pairwise disjoint elements in E is a µ-covering function (with
parameter Φ) if the function BC from PpXq to itself defined by

BCpAq “
ď

EPCpAq
E,

is a µ-parent function (with parameter Φ).
Next, we say that a collection A of pairwise disjoint subsets of X is ν-Carathéodory

(with parameter K) if, for every subset U of X, we have
ÿ

APA
νpU XAq ď Kν

`

U X
ď

APA
A
˘

. (3.1.12)

Finally, we define two conditions for the quadruple pX,µ, ν, Cq.

Condition 3.1.1 (Canopy). We say that pX,µ, ν, Cq satisfies the canopy condition (with
parameters Φ,K) if C is a µ-covering function (with parameter Φ), and for every ν-
Carathéodory collection (with parameter K) A, for every subset D of X disjoint from
BC

`
Ť

APAA
˘

, the collection AY tDu is still ν-Carathéodory (with parameter K).

Condition 3.1.2 (Crop). We say that pX,µ, ν, Cq satisfies the crop condition (with pa-
rameters Φ,K) if C is a µ-covering function (with parameter Φ), and for every collection
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A in E, there exists a ν-Carathéodory subcollection (with parameter K) D of A such that,
for every subset F of X disjoint from

Ť

DPDD, we have

BCpF q “ B
rCpF q,

where
rCpF q “ CpF qzA.

We are now ready to state our main results.

Theorem 3.1.3. For all q, r P p0,8s, Φ,K ě 1, there exist constants C1 “ C1pq, r,Φ,Kq,
C2 “ C2pq, r,Φ,Kq such that the following property holds true.

Let X be a finite set, µ, ν outer measures, ω a measure, and C a µ-covering function such
that pX,µ, ν, Cq satisfies the canopy condition 3.1.1. Then, for every function f P Lqµp`qνp`rωqq
on X, we have

C´1
1 ‖f‖Lqνp`rωq ď ‖f‖Lqµp`qνp`rωqq ď C2‖f‖Lqνp`rωq. (3.1.13)

If q ď r or q “ 8, the constant C1 does not depend on Φ,K.
If q ě r, the constant C2 does not depend on Φ,K.

Theorem 3.1.4. For all p, q P p1,8q, r P rq,8q, Φ,K ě 1, there exists a constant
C “ Cpp, q, r,Φ,Kq such that the following property holds true.

Let X be a finite set, µ, ν outer measures, ω a measure, and C a µ-covering function
such that pX,µ, ν, Cq satisfies the canopy condition 3.1.1. Then

(i) For every function f P Lpµp`qνp`rωqq on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď sup
‖g‖

L
p1
µ p`

q1
ν p`

r1
ω qq
“1
‖fg‖L1pX,ωq ď C‖f‖Lpµp`qνp`rωqq. (3.1.14)

(ii) For every collection of functions tfn : n P Nu Ď Lpµp`
q
νp`rωqq on X, we have

‖
ÿ

nPN
fn‖Lpµp`qνp`rωqq ď C

ÿ

nPN
‖fn‖Lpµp`qνp`rωqq. (3.1.15)

For all p, q P p1,8q, r P p1, qs, Φ,K ě 1, there exists a constant C “ Cpp, q, r,Φ,Kq such
that the analogous property holds true for every finite set X, outer measures µ, ν, measure
ω, and µ-covering function C such that pX,µ, ν, Cq satisfies the crop condition 3.1.2.

If q “ r, the constant C does not depend on Φ,K.

The first result describes one instance of the "collapsing effect". When we have two
consecutive outer Lp space structures associated with the same exponent, under certain
conditions, the "exterior" one can be disregarded. We recall that, as a consequence of the
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"collapsing effect" in the single iterated case, property piq of Theorem 1.1 in [Fra21], for all
p, r P p0,8s, we have

C´1‖f‖Lpµp`rωq ď ‖f‖Lpµp`rνp`rωqq ď C‖f‖Lpµp`rωq,

where the constant C “ Cpp, rq does not depend on Φ,K, and it is uniform in X,µ, ν, ω.
Hence, the double iterated outer Lp spaces are reduced to single iterated ones. In particular,
when p “ q “ r P p0,8s, we have the full "collapsing effect"

C´1‖f‖LrpX,ωq ď ‖f‖Lrµp`rνp`rωqq ď C‖f‖LrpX,ωq, (3.1.16)

with constant C “ Cprq uniform in X,µ, ν, ω.
The second result yields the sharpness of outer Hölder’s inequality. As a consequence,

the iterated outer Lpµp`qνp`rωqq quasi-norm inherits from the L1pX,ωq-pairing a quasi-triangle
inequality up to a constant uniform in the number of the summands, which is stated in the
second property. Therefore, in the prescribed range of exponents, the double iterated outer
Lp space is uniformly isomorphic to a Banach space with norm defined by the supremum
in (3.1.14). Moreover, it is the Köthe dual space of the outer Lp

1

µ p`
q1
ν p`r

1

ω qq space, and we
refer to [Fra21] for an explanation of the use of the term Köthe duality in this context.

The main focus of both of the theorems is on the dependence of the constants in (3.1.13),
(3.1.14), and (3.1.15). A priori, for every fixed finite setting pX,µ, ν, ωq the constants are
finite, but they depend on pX,µ, ν, ωq. The theorems state that the constants depend on
pX,µ, ν, ωq only through the parameters Φ,K associated with the canopy condition 3.1.1
or the crop condition 3.1.2. Moreover, we can exhibit counterexamples showing that, at
least for the exponents p, q, r in a certain range, the constants cannot be chosen uniformly
in Φ,K. We present the counterexamples in Subsection 3.3.4. It might be of interest to
provide conditions weaker than the canopy condition 3.1.1 and the crop condition 3.1.2
that would still give a control on the constants. However, this line of research is beyond
the scope of the paper. We also comment that the range of exponents p, q, r interested by
the aforementioned counterexamples points out a substantial difference between the cases
of single iterated and double iterated outer Lp spaces. In the former case, there are no
pathological behaviours of the outer Lp spaces in the range of exponents p1,8q2. In the
latter case, as we describe in Subsection 3.3.4, the range of exponents interested by the
counterexamples contains an open subset of p1,8q3. Finally, we mention the dichotomy
between the cases q ą r and q ă r in the statement of the two theorems, in particular in view
of the reduction to the single iterated outer Lp spaces in the case q “ r. In Theorem 3.1.3
the dichotomy is in part explained by the counterexamples we exhibit in Subsection 3.3.4.
It would be interesting to clarify whether in Theorem 3.1.4 the dichotomy is an intrinsic
feature of the problem or it is just an artefact of the argument used in the proof. If the
former case were true, it would be interesting to clarify how the dichotomy relates to the
conditions guaranteeing a control on the constants.
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Before moving on, we comment on the definition of ν-Carathéodory collections and the
conditions we stated before the results. We start observing that the Carathéodory measur-
ability test with respect to an outer measure µ˚ corresponds to checking that the couple
tE,Ecu is µ˚-Carathéodory with parameter 1. In particular, when ν is a measure, every
collection of pairwise disjoint measurable subsets of X is ν-Carathéodory with parameter
K “ 1. This fact implies that, in the single iterated case, we can always deal with ν-
Carathéodory collections, which come with desirable properties. In particular, for every
set X, outer measure µ, measure ω, the quadruple pX,µ, ω, Idq satisfies both the canopy
condition 3.1.1 and the crop condition 3.1.2 with parameters Φ “ K “ 1.

The extension of the results stated in Theorem 3.1.3 and Theorem 3.1.4 to infinite
settings under reasonable assumptions should not be a surprise. However, this level of
generality is beyond the scope of the paper. We concern ourselves only with two specific
infinite settings, namely the one described by Uraltsev in [Ura16] and a slight variation of
it, both of them defined on the upper half 3-space. Although not equivalent, these settings
exhibit similar geometric properties. We focus mainly on the latter, which allows for a
better exploitation of them.

We briefly recall the setting that we describe in detail in Subsection 3.4.3. Let X be the
upper half 3-space Rˆp0,8qˆR, and ω the measure induced on it by the Lebesgue measure
dy dt dη on R3. On X, we define two outer measures by means of the following covering
construction. Given a collection S of subsets of X and a pre-measure σ : S Ñ p0,8q, we
define the outer measure µ : PpXq Ñ r0,8s on an arbitrary subset A of X by

µpAq “ inft
ÿ

SPS1
σpSq : S 1 Ď S, A Ď

ď

SPS1
Su. (3.1.17)

First, for any dyadic interval I Ď R, let DpIq be the dyadic strip given by the Cartesian
product between I, the interval p0, |I|s and R. Let D be the collection of all the dyadic
strips, and, for every DpIq P D, let σ be the length of the base I.

Second, for any couple of dyadic intervals I, rI Ď R with inverse lengths, let T pI, rIq be
the dyadic tree given by the union of the Cartesian products between a dyadic interval
J Ď I, the interval p0, |J |s, and the dyadic interval rJ Ě rI with inverse length of J . Let T
be the collection of all the dyadic trees, and, for every T pI, rIq P T , let τ be the length of
the base I.

Now, let µ, ν be the outer measures on X associated with pD, σq, pT , τq respectively as
in (3.1.17). As we will see in Appendix 3.A, for every dyadic strip D in D and every dyadic
tree T in T , we have

µpDq “ σpDq, νpT q “ τpT q.

We define the double iterated outer Lp space Lpµp`qνp`rωqq in the upper half 3-space setting
through the quasi-norm in (3.1.5) for ω-measurable functions. We use µ1 “ ω, µ2 “ ν,
µ3 “ µ, and we restrict the supremum in I1 to the ω-measurable sets, that in I2 to the
dyadic trees in T , and that in I3 to the dyadic strips in D.
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In this setting, we have both the "collapsing effect" and the sharpness of outer Hölder’s
inequality described in the finite setting in the previous theorems.

Theorem 3.1.5. Let pX,µ, ν, ωq be the dyadic upper half 3-space setting just described,
p, q, r P p0,8s. There exists a constant C “ Cpp, q, rq such that the following properties
hold true.

(i) For all q, r P p0,8q, for every function f P Lqµp`qνp`rωqq on X, we have

C´1‖f‖Lqνp`rωq ď ‖f‖Lqµp`qνp`rωqq ď C‖f‖Lqνp`rωq. (3.1.18)

(ii) For all p, q, r P p1,8q, for every function f P Lpµp`qνp`rωqq on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď sup
‖g‖

L
p1
µ p`

q1
ν p`

r1
ω qq
“1
‖fg‖L1pX,ωq ď C‖f‖Lpµp`qνp`rωqq. (3.1.19)

(iii) For all p, q, r P p1,8q, for every collection of functions tfn : n P Nu Ď Lpµp`
q
νp`rωqq on

X, we have
‖
ÿ

nPN
fn‖Lpµp`qνp`rωqq ď C

ÿ

nPN
‖fn‖Lpµp`qνp`rωqq. (3.1.20)

The result analogous to Theorem 3.1.5 holds true even in the upper half 3-space setting
with arbitrary strips and trees originally considered in [Ura16] that we describe in detail in
Subsection 3.5.3.

We conclude pointing out that the outer Lp spaces used by Uraltsev are different from
those defined in (3.1.5). In [Ura16], the innermost size, namely the quantity in (3.1.6) for
n “ 2, is not defined by a single Lebesgue norm with respect to the measure ω, but by a
sum of an L2 and an L8 norms, making it more complicated to treat. The first step in the
study of these spaces would be to extend the results stated in Theorem 3.1.5 to the case
r “ 8. This is likely to be achieved exploiting the geometric properties of the strips and
trees in the upper half 3-space in the same fashion of the boxes in the upper half space in
[Fra21]. The second step, the one requiring new considerations, would be to address the
issue of the variable exponent Lebesgue norm.

Guide to the paper

In Section 3.2, we review some preliminaries about outer Lp quasi-norms and, more specifi-
cally, single iterated outer Lp ones from [Fra21]. In Section 3.3, we prove Theorem 3.1.3 and
Theorem 3.1.4. Moreover, at least in a certain range of exponents p, q, r P p0,8s, we present
the counterexamples showing that the constants appearing in the statements of these the-
orems are not independent of the setting pX,µ, ν, ωq, as discussed in the Introduction. In
Section 3.4, we describe some settings in which we define a µ-covering function satisfying
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the canopy condition 3.1.1 and the crop condition 3.1.2. In Section 3.5, we prove Theo-
rem 3.1.5 in the dyadic upper half 3-space setting reducing the problem to an equivalent
one in a finite setting via an approximation argument. The proof relies on the geometric
properties of the outer measures and the approximation properties of functions in iterated
outer Lp spaces that we will prove in Appendix 3.A and Appendix 3.B, respectively.

3.2 Preliminaries

In this section, we make some observations about the outer Lp quasi-norms. Moreover, we
review the decomposition result for functions in a single iterated outer Lp space, which is the
main ingredient in proving the results corresponding to Theorem 3.1.3 and Theorem 3.1.4
in [Fra21]. It provides a model for the decomposition in the case of double iterated outer
Lp spaces that we perform in Section 3.3.

First, for every p P p0,8q, we observe that we can replace the integral defining the outer
Lp quasi-norm in (3.1.5) by a discrete version of it. For every Ψ ą 1, we have

‖f‖p
LpµpSq

„Ψ,p

ÿ

kPZ
ΨkpµpSpfq ą Ψkq „Ψ,p

ÿ

kPZ
Ψkp

ÿ

lěk

µpSpfq ą Ψlq, (3.2.1)

where S is a size of the form `rω or `qνp`rωq, and more generally an arbitrary size in the
definition in [DT15]. The equivalences in (3.2.1) follow by the monotonicity of the super
level measure, Fubini and the bounds on the geometric series.

Next, letX be a finite set, µ, ν outer measures, and ω a measure. Since µ, ν are finite and
strictly positive on every nonempty subset of X, by outer Hölder’s inequality, Proposition
3.4 in [DT15], we have

Lqνp`
r
ωq Ď L8ν p`

r
ωq,

Lpµp`
q
νp`

r
ωqq Ď L8µ p`

q
νp`

r
ωqq X L

8
µ p`

8
ν p`

r
ωqq.

(3.2.2)

Finally, we recall two results for single iterated outer Lp spaces already appearing,
explicitly or implicitly stated, in Proposition 2.1 in [Fra21], with their proofs.

Lemma 3.2.1. For all r P p0,8q, N ě 1, there exist constants C “ Cpr,Nq, c “ cpNq
such that the following property holds true.

Let X be a set, ν an outer measure, and ω a measure. Let f P L8ν p`rωq be a function on
X, let k P Z satisfy

‖f‖L8ν p`rωq P p2
k, 2k`1s, (3.2.3)

and let A be a subset of X such that

‖f1A‖rLrpX,ωq ą 2pk´NqrνpAq. (3.2.4)

Then we have
νpAq ď Cνp`rωpfq ą c2kq. (3.2.5)
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Proof. Let ε ą 0. Let V pc2k, εq be an optimal set associated with the super level measure
νp`rωpfq ą c2kq up to the multiplicative constant p1` εq, namely

‖f1V pc2k,εqc‖L8ν p`rωq ď c2k, (3.2.6)

p1` εqνp`rωpfq ą c2kq ě ν
`

V pc2k, εq
˘

, (3.2.7)

where c will be fixed later. We have

ν
`

V pc2k, εq
˘

ě 2´pk`1qr‖f1V pc2k,εq1A‖
r
LrpX,ωq

ě 2´pk`1qr
`

‖f1A‖rLrpX,ωq ´ ‖f1AzV pc2k,εq‖
r
LrpX,ωq

˘

ě 2´pk`1qr
`

2pk´Nqr ´ cr2kr
˘

νpAq,

where we used the monotonicity of ν and (3.2.3) in the first inequality, the r-orthogonality
of the classical Lr quasi-norms of functions supported on disjoint sets in the second, (3.2.4)
and (3.2.6) in the third. By choosing

c “ 2´N´1,

and taking ε arbitrarily small, the previous chain of inequalities together with (3.2.7) yields
the desired inequality in (3.2.5).

Proposition 3.2.2. For all q, r P p0,8q, there exist constants C “ Cpq, rq, c “ cpq, rq
such that the following decomposition properties hold true.

Let X be a finite set, ν an outer measure, ω a measure. For every function f P Lqνp`rωq
on X, there exists a collection tUj : j P Zu of pairwise disjoint subsets of X such that, if we
set

Vj “
ď

lěj

Ul,

then, for every j P Z, we have

`rωpf1V cj`1
qpUjq ą 2j , when Uj ‰ ∅, (3.2.8)

‖f1V cj ‖L8ν p`rωq ď 2j , (3.2.9)

νp`rωpfq ą 2jq ď νpVjq, (3.2.10)

νpUjq ď Cνp`rωpfq ą c2jq. (3.2.11)

In particular, we have

‖f‖q
Lqνp`rωq

„r,q

ÿ

jPZ
2jqνpUjq „r,q

ÿ

jPZ
2jq

ÿ

lěj

νpUlq. (3.2.12)

Proof. The first four statements and their proof appeared already in Proposition 2.1 in
[Fra21]. The equivalences in (3.2.12) follow by (3.2.1), (3.2.10), the definition of Vj , (3.2.11),
Fubini, and the bounds for the geometric series.
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Throughout the paper, we use the observations made in this section without necessarily
further referring to them. For example, the reader should always have in mind the equiv-
alences in (3.2.1) whenever we consider an outer Lp quasi-norm, and the list of properties
(3.2.8)–(3.2.12) whenever we perform such a decomposition.

3.3 Equivalence with norms

In this section, we study the equivalence of double iterated outer Lp quasi-norms with
norms uniformly in the finite setting.

First, for all q, r P p0,8q, we study the q-orthogonality behaviour of the outer Lqνp`rωq
quasi-norms of functions supported on disjoint sets. Accordingly, we show decomposition
results for functions in the double iterated outer Lp space with respect to a size of the form
`qνp`rωq. We use them to prove Theorem 3.1.3.

After that, for all p, q, r P p1,8q, we produce a function g for which we have a good
lower bound on the L1pX,ωq-pairing with f and a good upper bound on the Lp

1

µ p`
q1
ν p`r

1

ω qq

quasi-norm of g. We use it to prove Theorem 3.1.4.
Finally, we conclude the section with the promised class of counterexamples.

3.3.1 q-orthogonality of the Lqνp`rωq quasi-norm

We start with a result about the sub- and q-superorthogonality of the Lqνp`rωq quasi-norms
of functions supported on arbitrary disjoint sets according to the case distinction q ě r
or q ď r. We present counterexamples to the validity of the inequality in the opposite
directions in both cases q ą r or q ă r in Subsection 3.3.4.

Lemma 3.3.1. For all q P p0,8q, r P p0,8s, there exists a constant C “ Cpq, rq such that
the following properties hold true.

Let X be a finite set, ν an outer measure, ω a measure. Let A be a collection of pairwise
disjoint subsets of X. Then, for every function f on X, we have

ÿ

APA
‖f1A‖qLqνp`rωq ď C‖f1B‖qLqνp`rωq, for q ě r, (3.3.1)

‖f1B‖qLqνp`rωq ď C
ÿ

APA
‖f1A‖qLqνp`rωq, for q ď r, (3.3.2)

where B “
Ť

APAA.

Proof. Without loss of generality, we assume q “ 1. In fact, for r
q P p0,8s, we have

‖f‖q
Lqνp`rωq

“ ‖f q‖
L1
νp`

r{q
ω q

.

Case I: q “ 1, r “ 8. We have

νp`8ω pfq ą λq “ νptx P X : |fpxq| ą λuq. (3.3.3)
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Together with the subadditivity of ν, this yields

νp`8ω pf1Bq ą λq ď
ÿ

APA
νp`8ω pf1Aq ą λq.

By integrating in p0,8q on both sides, we obtain the desired inequality in (3.3.2).
Case II: q “ 1, r P p0, 1s. We start with the following observation. Let E be a collection

of pairwise disjoint nonempty subsets of X such that, for every E P E , we have

`rωpfqpEq P p2
j , 2j`1s. (3.3.4)

Together with the r-orthogonality of the classical Lr quasi-norms of functions supported
on disjoint sets and the subadditivity of ν, this yields

`rωpfq
`

ď

EPE
E
˘

ą
`

ν
`

ď

EPE
E
˘´1

ÿ

EPE
2jrνpEq

˘
1
r ě 2j . (3.3.5)

Next, we have

ν
`

ď

EPE
E
˘´1

ÿ

EPE
`rωpfqpEqνpEq ď 2j`1ν

`

ď

EPE
E
˘´1

ÿ

EPE
νpEq

ď 2j`1
`

ν
`

ď

EPE
E
˘´1

ÿ

EPE
νpEq

˘
1
r

ď 2
`

ν
`

ď

EPE
E
˘´1

ÿ

EPE
‖f1E‖rLrpX,ωq

˘
1
r

ď 2`rωpfq
`

ď

EPE
E
˘

,

where we used the upper bound on `rωpfqpEq in (3.3.4) for every E P E in the first inequality,
the subadditivity of ν and r ď 1 in the second, the lower bound on `rωpfqpEq in (3.3.4) for
every E P E in the third, and the r-orthogonality of the classical Lr quasi-norms of functions
supported on disjoint sets in the fourth. The previous chain of inequalities yields

ÿ

EPE
`rωpfqpEqνpEq ď 2`rωpfq

`

ď

EPE
E
˘

ν
`

ď

EPE
E
˘

. (3.3.6)

Moreover, let j P Z and, for every k P Z, k ď j, let Ek be a collection of pairwise disjoint
subsets of X such that, for every nonempty E P Ek, we have

`rωpfqpEq P p2
k, 2k`1s,

and, for every nonempty
Ť

EPEk E, we have

`rωpfq
`

ď

EPEk

E
˘

P p2j , 2j`1s.
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By (3.3.6) applied twice, we have
ÿ

kďj

ÿ

EPEk

`rωpfqpEqνpEq ď 2
ÿ

kďj

`rωpfq
`

ď

EPEk

˘

ν
`

ď

EPEk

˘

ď 4`rωpfq
`

ď

kďj

ď

EPEk

˘

ν
`

ď

kďj

ď

EPEk

˘

,
(3.3.7)

where the sums run only over the nonempty subsets E and
Ť

EPEk E.
Now, let tAj : j P Zu, tBj : j P Zu be the collections associated with the decomposition

in Proposition 3.2.2 of the functions f1A, f1B, respectively. By (3.3.5) and (3.3.7), we can
pass from the collection tAj : A P A, j P Zu of pairwise disjoint subsets of X to a collection
E “ tEl : l P Zu of pairwise disjoint subsets of X with strictly fewer elements such that

`rωpfqpElq P p2
l, 2l`1s, when El ‰ ∅, (3.3.8)

ÿ

APA

ÿ

jPZ
2jνpAjq ď C

ÿ

lPZ
2lνpElq. (3.3.9)

By the monotonicity of ν, we have

‖f1
ElX

`

Ť

kěl´1Bk

˘c‖rLrpX,ωq ď 2pl´1qrν
`

El X
`

ď

kěl´1

Bk
˘c˘

ď 2pl´1qrνpElq.

Together with (3.3.8), this yields
ÿ

kěl´1

‖f1ElXBk‖
r
LrpX,ωq “ ‖f1ElX

Ť

kěl´1Bk
‖rLrpX,ωq

“ ‖f1El‖
r
LrpX,ωq ´ ‖f1ElXp

Ť

kěl´1 Bkq
c‖rLrpX,ωq

ě c2lrνpElq.

(3.3.10)

Therefore, we have
ÿ

lPZ
2lνpElq ď C

ÿ

lPZ
2lp1´rq

ÿ

kěl´1

‖f1ElXBk‖
r
LrpX,ωq

ď C
ÿ

kPZ
2kp1´rq

ÿ

lďk`1

‖f1ElXBk‖
r
LrpX,ωq

ď C
ÿ

kPZ
2kp1´rq‖f1Bk‖

r
LrpX,ωq

ď C
ÿ

kPZ
2kνpBkq,

where we used (3.3.10) in the first inequality, r ď 1 in the second, and the r-orthogonality
of the classical Lr quasi-norms of functions supported on disjoint sets in the third. Together
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with (3.2.12) for the collections tAj : j P Zu, tBj : j P Zu, and (3.3.9), the previous chain of
inequalities yields the desired inequality in (3.3.1).

Case III: q “ 1, r P r1,8q. Let Aj , Bj be defined as before. We have

ÿ

jPZ
2jνpBjq ď

ÿ

jPZ
2jp1´rq‖f1Bj‖

r
LrpX,ωq

ď
ÿ

APA

ÿ

kPZ

ÿ

jPZ
2jp1´rq‖f1AkXBj‖

r
LrpX,ωq

ď
ÿ

APA

ÿ

kPZ

`

2kp1´rq
ÿ

jěk

‖f1AkXBj‖
r
LrpX,ωq `

ÿ

jăk

2jp1´rq‖f1AkXBj‖
r
LrpX,ωq

˘

ď C
ÿ

APA

ÿ

kPZ

`

2kp1´rq‖f1Ak‖
r
LrpX,ωq `

ÿ

jăk

2jp1´rq2jrνpAk XBjq
˘

ď C
ÿ

APA

ÿ

kPZ

`

2kνpAkq `
ÿ

jăk

2jνpAkq
˘

,

where we used the r-orthogonality of the classical Lr quasi-norms for functions with disjoint
supports in the second and in the fourth inequality, and r ě 1 in the third. Together with
(3.2.12) for the collections tAj : j P Zu, tBj : j P Zu, the previous chain of inequalities yields
the desired inequality in (3.3.2).

We continue with a result about the full q-orthogonality of the Lqνp`rωq quasi-norms of
functions supported on disjoint sets forming a ν-Carathéodory collection.

Lemma 3.3.2. For all q P p0,8q, r P p0,8s, K ě 1, there exist constants C1 “ C1pq, r,Kq,
C2 “ C2pq, r,Kq such that the following property holds true.

Let X be a set, ν an outer measure, ω a measure. Let A be a ν-Carathéodory collection
of pairwise disjoint subsets of X. Then, for every function f on X, we have

C´1
1 ‖f1B‖qLqνp`rωq ď

ÿ

APA
‖f1A‖qLqνp`rωq ď C2‖f1B‖qLqνp`rωq, (3.3.11)

where B “
Ť

APAA.

Proof. As before, without loss of generality, we assume q “ 1.
Expanding the definition of the outer L1

νp`
r
ωq quasi-norms in (3.3.11), we have

‖f1B‖L1
νp`

r
ωq
“

ˆ 8
0

νp`rωpf1Bq ą λqdλ,

ÿ

APA
‖f1A‖L1

νp`
r
ωq
“

ˆ 8
0

ÿ

APA
νp`rωpf1Aq ą λqdλ.
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To show the desired inequalities, it is enough to prove that there exist constants c “ cpr,Kq,
C “ Cpr,Kq such that, for every λ ą 0, we have

νp`rωpf1Bq ą cλq ď
ÿ

APA
νp`rωpf1Aq ą λq ď Cνp`rωpf1Bq ą λq. (3.3.12)

By integrating in p0,8q on both sides, we obtain the desired inequalities in (3.3.11).
Case I: r “ 8. By the subadditivity of ν and the ν-Carathéodory condition (3.1.12),

we have

νptx P B : fpxq ą λuq ď
ÿ

APA
νptx P A : fpxq ą λuq

ď Kνptx P B : fpxq ą λuq.

Together with (3.3.3), this yields the desired inequalities in (3.3.12).
Case II: r P p0,8q. We start with the first inequality in (3.3.12). Let ε ą 0. For

every A P A, let V pA, λ, εq be an optimal set associated with the super level measure
νp`rωpf1Aq ą λq up to the multiplicative constant p1` εq, namely

‖f1A1V pA,λ,εqc‖L8ν p`rωq ď λ, (3.3.13)

p1` εqνp`rωpf1Aq ą λq ě ν
`

V pA, λ, εq
˘

, (3.3.14)

and set
V “

ď

APA
V pA, λ, εq.

For every U Ď X, we have
`

`rωpf1B1V cqpUq
˘r
ď νpUq´1

ÿ

APA
‖f1A1V pA,λ,εqc1U‖rLrpX,ωq

ď νpUq´1
ÿ

APA
λrνpU XAq

ď Kλr,

where we used the r-orthogonality of the classical Lr quasi-norms of functions with disjoint
support in the first inequality, (3.3.13) in the second, and the ν-Carathéodory condition
(3.1.12) in the third. Together with the subadditivity of ν and (3.3.14), the previous chain
of inequalities yields

νp`rωpf1Bq ą K1{rλq ď p1` εq
ÿ

APA
νp`rωpf1Aq ą λq.

By taking ε arbitrarily small, we obtain the desired first inequality in (3.3.12).
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We turn to the second inequality in (3.3.12). Let ε ą 0. Let V pλ, εq be an optimal set
associated with the super level measure νp`rωpf1Bq ą λq up to the multiplicative constant
p1` εq, namely

‖f1V pλ,εqc‖L8ν p`rωq ď λ, (3.3.15)

p1` εqνp`rωpf1Bq ą λq ě ν
`

V pλ, εq
˘

. (3.3.16)

For every U Ď X, we have
`

`rωpf1A1V pλ,εqcqpUq
˘r
ď νpUq´1‖f1B1V pλ,εqc1U‖rLrpX,ωq ď λr,

where we used the monotonicity of the classical Lr quasi-norms in the first inequality, and
(3.3.15) in the second. Together with the ν-Carathéodory condition (3.1.12) and (3.3.16),
the previous chain of inequalities yields

ÿ

APA
νp`rωpf1Aq ą λq ď

ÿ

APA
νpV pλ, εq XAq ď p1` εqKνp`rωpf1Bq ą λq.

By taking ε arbitrarily small, we obtain the desired second inequality in (3.3.12).

3.3.2 Decomposition for double iterated outer Lp spaces.

We start with the result corresponding to Lemma 3.2.1 in the case of sizes given by single
iterated outer Lp quasi-norms. The proof relies on the q-suborthogonality of the Lqνp`rωq
quasi-norms of functions with disjoint supports as stated in (3.3.1) or in the second inequal-
ity in (3.3.11). Therefore, according to the relation between the exponents q, r, we allow
the constants to depend on the parameter associated with the ν-Carathéodory collection
formed by the disjoint sets.

Lemma 3.3.3. For all q P p0,8q, r P p0,8s, K ě 1, N ě 1, there exist constants
C “ Cpq, r,K,Nq, c “ cpq, r,K,Nq such that the following property holds true.

Let X be a set, µ, ν outer measures, and ω a measure. Let f P L8µ p`
q
νp`rωqq be a function

on X, let k P Z satisfy
‖f‖L8µ p`qνp`rωqq P p2

k, 2k`1s, (3.3.17)

and let A be a ν-Carathéodory collection of subsets of X such that, for every A P A,

‖f1A‖qLqνp`rωq ą 2pk´NqqµpAq. (3.3.18)

Then we have
ÿ

APA
µpAq ď Cµp`qνp`

r
ωqpfq ą c2kq. (3.3.19)

If q ě r and X is finite, the constants C, c do not depend on K.
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Proof. Case I: arbitrary q, r. Let ε ą 0. Let F pc2k, εq be an optimal set associated with
the super level measure µp`qνp`rωqpfq ą c2kq up to the multiplicative constant p1`εq, namely

‖f1F pc2k,εqc‖L8µ p`qνp`rωqq ď c2k, (3.3.20)

p1` εqµp`qνp`
r
ωqpfq ą c2kq ě µ

`

F pc2k, εq
˘

, (3.3.21)

where c will be fixed later. For B “
Ť

APAA, we have

µ
`

F pc2k, εq
˘

ě 2´pk`1qq‖f1F pc2k,εq1B‖
q
Lqνp`rωq

ě C2´pk`1qq
ÿ

APA
‖f1F pc2k,εq1A‖

q
Lqνp`rωq

ě C2´pk`1qq
ÿ

APA
pC´1

∆ ‖f1A‖Lqνp`rωq ´ ‖f1AzF pc2k,εq‖Lqνp`rωqq
q

ě C2´pk`1qq
ÿ

APA
pC´1

∆ 2k´N ´ c2kqqµpAq,

where we used the monotonicity of µ and (3.3.17) in the first inequality, Lemma 3.3.2
applied to the ν-Carathéodory collection A in the second, the quasi-triangle inequality for
the outer Lp quasi-norm of two summands in the third, and (3.3.18) and (3.3.20) in the
fourth. By choosing

c “ p2N`1C∆q
´1,

and taking ε arbitrarily small, the previous chain of inequalities together with (3.3.21) yields
the desired inequality in (3.3.19).

Case II: q ě r. We use (3.3.1) from Lemma 3.3.1 applied to every arbitrary collection
A of pairwise disjoint subsets of X in place of Lemma 3.3.2.

We are now ready to state and prove a series of decomposition results for functions in the
outer Lp space with respect to a size of the form `qνp`rωq. Although the statements, as well
as the proofs, are similar, we provide them separately in order to highlight the differences.
The proofs rely on the selection of disjoint subsets where the size achieves the levels Ψk,
for a certain Ψ ą 1. The key ingredient in order to perform such a selection exhaustively
at each step is the q-suborthogonality of the Lqνp`rωq quasi-norms of functions supported on
certain disjoint sets. Therefore, according to the relation between the exponents q, r, we
require the canopy condition 3.1.1, and we allow the constants to depend on the parameters
associated with it.

We start with a decomposition result in the full range of exponents under the assumption
of the canopy condition 3.1.1 on the setting.

Proposition 3.3.4. For all p, q, r P p0,8q, Φ,K ě 1, there exist constants C “ Cpp, q, r,Φ,Kq,
c “ cpp, q, r,Φ,Kq such that the following property holds true.
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Let X be a finite set, µ, ν outer measures, ω a measure, and C a µ-covering function
such that pX,µ, ν, Cq satisfies the canopy condition 3.1.1. For every function f P Lpµp`qνp`rωqq
on X, there exists a collection tEk : k P Zu of pairwise disjoint subsets of X such that, if
we set

Fk “ BC
`

ď

lěk

El
˘

,

then, for every k P Z, we have

`qνp`
r
ωqpf1F ck`1

qpEkq ą c2k, when Ek ‰ ∅, (3.3.22)

‖f1F ck‖L8µ p`qνp`rωqq ď 2k, (3.3.23)

µp`qνp`
r
ωqpfq ą 2kq ď µpFkq, (3.3.24)

µpEkq ď Cµp`qνp`
r
ωqpfq ą c2kq. (3.3.25)

In particular, we have

‖f‖p
Lpµp`

q
νp`rωqq

„p,q,r,Φ,K

ÿ

kPZ
2kpµpEkq „p,q,r,Φ,K

ÿ

kPZ
2kp

ÿ

lěk

µpElq. (3.3.26)

Proof. By (3.2.2), we have f P L8µ p`
q
νp`rωqq. We define the collection tEk : k P Zu by a

backward recursion on k P Z. For k large enough such that

‖f‖L8µ p`qνp`rωqq ď 2k,

we set Ek to be empty. Now, we fix k and assume to have selected El for every l ą k. In
particular, Fk`1 is already well-defined. If there exists no subset A of X disjoint from Fk`1

such that
`qνp`

r
ωqpfqpAq ą 2k, (3.3.27)

then we set Ek to be empty, and proceed the recursion with k ´ 1.
If there exists a subset A of X disjoint from Fk`1 satisfying (3.3.27), we define an

auxiliary ν-Carathéodory collection tEk,n : n P Nku of subsets of X by a forward recursion
on n P Nk. The existence of A provides the starting point Ek,1 for the recursion. Now,
we fix n, assume to have selected Ek,m for every m P N,m ă n forming a ν-Carathéodory
collection, and set

Fk,n´1 “ Fk`1 YBC
`

ď

măn

Ek,m
˘

.

If there exists a subset A of X disjoint from Fk,n´1 satisfying (3.3.27), then we choose such a
set A to be Ek,n. By the canopy condition 3.1.1, we have that the collection tEk,m : m ď nu
is still ν-Carathéodory. If no A satisfying (3.3.27) exists, we set Nk to be t1, . . . , n ´ 1u,
stop the forward recursion, set

Ek “
ď

nPNk

Ek,n,
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and proceed the backward recursion with k ´ 1.
By construction, we have (3.3.23) and (3.3.24) for every k P Z. By construction and

Lemma 3.3.2 applied to the ν-Carathéodory collection tEk,n : n P Nku, we have (3.3.22) for
every nonempty Ek. To prove (3.3.25), we observe that for every k such that 2k is greater
than the L8µ p`

q
νp`rωqq quasi-norm of f , the statement is true. For every other k, the proof

follows by construction and Lemma 3.3.3.
The equivalences in (3.3.26) follow by (3.3.24), the definition of Fk, (3.3.25), Fubini,

and the bounds for the geometric series.

Under the assumption q ě r on the exponents, we can drop the assumption of the canopy
condition 3.1.1 on the setting. Moreover, for every function f , the collection tEk : k P Zu
produced by the decomposition forms a partition of the support of f .

Proposition 3.3.5. For all p, q P p0,8q, r P p0, qs, there exist constants C “ Cpp, q, rq,
c “ cpp, q, rq such that the following property holds true.

Let X be a finite set, µ, ν outer measures, ω a measure. For every function f P

Lpµp`
q
νp`rωqq on X, there exists a collection tEk : k P Zu of pairwise disjoint subsets of X

forming a partition of the support of f such that, if we set

Fk “
ď

lěk

El.

then we have the same properties stated in (3.3.22)–(3.3.26).

Proof. The argument is analogous to that in the previous proof. The only difference is in
the definition of Ek, for which we do not need a second forward recursion.

In fact, we fix k and assume to have selected El for every l ą k. In particular, Fk`1 is
already well-defined. We set Ek to be the collection of nonempty subsets of X disjoint from
Fk`1 satisfying (3.3.27). If Ek is empty, we set Ek to be empty, and proceed the recursion
with k ´ 1. If Ek is not empty, we choose a subcollection E 1k of Ek satisfying the following
conditions. First, the elements of E 1k are pairwise disjoint. Moreover, every element of Ek
intersects at least one element of E 1k. We can fulfil these conditions in finitely many steps,
due to the finiteness of X. In fact, if there exists an element of Ek pairwise disjoint from
every element of E 1k, we add it to E 1k. Then, we set Ek to be the union of the subsets of X
in E 1k, so that the subset Fk satisfies the property in (3.3.23) by construction. By (3.3.1) in
Lemma 3.3.1 and the subadditivity of ν, the subset Ek satisfies the property in (3.3.22).

Due to the definition of Fk, the collection tEk : k P Zu forms a partition of the support
of f .

In fact, under the assumption of the canopy condition 3.1.1 on the setting, we can obtain
a slightly different decomposition result improving that in Proposition 3.3.4 in the full range
of exponents. The refinement we obtain is that we produce a partition of the support of
the function f in terms of two ν-Carathéodory collections t rE1

k : k P Zu, t rE2
k : k P Zu. These
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collections are associated with tEk : k P Zu, the collection of pairwise disjoint subsets of
X we define by backward recursion according to the values of the size `qνp`rωq, and the
collections are involved in an equivalence analogous to (3.3.26). The improvement over
Proposition 3.3.4 is clarified by the following observations. First, the collection tEk : k P Zu
in Proposition 3.3.4 is a ν-Carathéodory collection, but in general it is not a partition of
the support of the function f . Next, the collection tFkzFk`1 : k P Zu in Proposition 3.3.4
is a partition of the support of the function f , but in general it is not a ν-Carathéodory
collection. Obtaining a partition of the support of the function f in terms of ν-Carathéodory
collections is important in order to prove Theorem 3.1.3. The minor price we have to pay
to obtain the refinement described before is to change the levels from t2k : k P Zu to
tΨk : k P Zu, for a certain Ψ ą 1 depending on the exponents and the parameters.

Proposition 3.3.6. For all p, q, r P p0,8q, Φ,K ě 1, there exist constants C “ Cpp, q, r,Φ,Kq,
c “ cpp, q, r,Φ,Kq, Ψ “ ΨpΦ, pq such that the following property holds true.

Let X be a set, µ, ν outer measures, ω a measure, and C a µ-covering function such that
pX,µ, ν, Cq satisfies the canopy condition 3.1.1. For every function f P Lpµp`

q
νp`rωqq on X,

there exists a collection tEk : k P Zu of pairwise disjoint subsets of X such that, if we set

Fk “ BC
`

BCpFk`1 Y Ekq
˘

,

then we have the same properties stated in (3.3.22)–(3.3.25) with 2k replaced by Ψk.
In particular, the ν-Carathéodory collections t rE1

k : k P Zu, t rE2
k : k P Zu defined by

rE1
k “ BCpFk`1 Y EkqzFk`1, rE2

k “ FkzBCpFk`1 Y Ekq, (3.3.28)

form a partition of the support of f , and we have

‖f‖p
Lpµp`

q
νp`rωqq

„p,q,r,Φ,K

ÿ

kPZ
ΨkpµpEkq

„p,q,r,Φ,K

ÿ

kPZ
Ψkp

`

µp rE1
kq ` µp

rE2
kq
˘

.
(3.3.29)

Proof. The argument is analogous to that in the proof of Proposition 3.3.4. The only
difference is that we replace the levels 2k with the levels Ψk, where

Ψ “ Φ
3
p .

In fact, we define Ek by a double recursion as before, and rE1
k ,

rE2
k as in (3.3.28). Due

to their definition, the collections t rE1
k : k P Zu, t rE2

k : k P Zu are ν-Carathéodory and they
form a partition of the support of f .
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We turn now to the proof of the desired equivalences in (3.3.29). By the properties
corresponding to (3.3.25) and (3.3.24) in this setting, and the definition of Fk, we have

ÿ

kPZ
ΨkpµpEkq ď C

ÿ

kPZ
Ψkpµp`qνp`

r
ωqpfq ą cΨkq

ď C‖f‖p
Lpµp`

q
νp`rωqq

ď C
ÿ

kPZ
Ψkpµp`qνp`

r
ωqpfq ą Ψkq

ď C
ÿ

kPZ
Ψkp

ÿ

lěk

`

µp rE1
l q ` µp

rE2
l q
˘

.

Moreover, by (3.3.28), C being a µ-covering function, and the definition of Ψ, we have

ÿ

kPZ
Ψkp

ÿ

lěk

`

µp rE1
l q ` µp

rE2
l q
˘

ď C
ÿ

kPZ
Ψkp

ÿ

lěk

ÿ

jěl

Φ2pj´lqµpEjq

ď C
ÿ

kPZ
Ψkp

ÿ

jěk

Φ2pj´kqµpEjq

ď C
ÿ

kPZ

ÿ

jěk

Φk´jΨjpµpEjq

ď C
ÿ

jPZ
ΨjpµpEjq.

We are now ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. The case q “ 8 follows by definition. Therefore, without loss of
generality, we assume q “ 1.

Case I: arbitrary r P p0,8s. For a function f P L1
µp`

1
νp`

r
ωqq, let tEk : k P Zu, t rE1

k : k P

Zu, t rE2
k : k P Zu be the collections of pairwise disjoint subsets of X as in Proposition 3.3.6.

By (3.3.29), the property corresponding to (3.3.22), and Lemma 3.3.2, we have

‖f‖L1
µp`

1
νp`

r
ωqq
ď C

ÿ

kPZ
ΨkµpEkq ď C

ÿ

kPZ
‖f1Ek‖L1

νp`
r
ωq
ď C‖

ÿ

kPZ
f1Ek‖L1

νp`
r
ωq

ď C‖f‖L1
νp`

r
ωq
.

Moreover, by the quasi-triangle inequality for the outer Lp quasi-norm of two summands,
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Lemma 3.3.2, the property corresponding to (3.3.23), and (3.3.29), we have

‖f‖L1
νp`

r
ωq
ď Cp‖

ÿ

kPZ
f1

rE1
k
‖L1

νp`
r
ωq
` ‖

ÿ

kPZ
f1

rE2
k
‖L1

νp`
r
ωq
q

ď Cp
ÿ

kPZ
‖f1

rE1
k
‖L1

νp`
r
ωq
`

ÿ

kPZ
‖f1

rE2
k
‖L1

νp`
r
ωq
q

ď C
ÿ

kPZ
Ψk

`

µp rE1
kq ` µp

rE2
kq
˘

ď C‖f‖L1
µp`

1
νp`

r
ωqq
.

Case II: q ě r. For a function f P L1
µp`

1
νp`

r
ωqq, let tEk : k P Zu be the collection of

pairwise disjoint subsets of X as in Proposition 3.3.5. By the properties corresponding to
(3.3.26) and (3.3.22), and (3.3.1) in Lemma 3.3.1, we have

‖f‖L1
µp`

1
νp`

r
ωqq
ď C

ÿ

kPZ
2kµpEkq ď C

ÿ

kPZ
‖f1Ek‖L1

νp`
r
ωq
ď C‖

ÿ

kPZ
f1Ek‖L1

νp`
r
ωq

ď C‖f‖L1
νp`

r
ωq
.

Case III: q ď r. For a function f P L1
µp`

1
νp`

r
ωqq, let tAk : k P Zu be the collection of

optimal sets associated with the super level measures µp`1νp`rωqpfq ą 2kq, namely

‖f1Ack‖L8µ p`1νp`rωqq ď 2k, (3.3.30)

µp`1νp`
r
ωqpfq ą 2kq “ µpAkq. (3.3.31)

By (3.3.2) in Lemma 3.3.1, (3.3.30), the monotonicity of µ, and (3.3.31), we have

‖f‖L1
νp`

r
ωq
ď C

ÿ

kPZ
‖f1AkzAk`1

‖L1
νp`

r
ωq
ď C

ÿ

kPZ
2k`1µpAkzAk`1q ď C

ÿ

kPZ
2kµpAkq

ď C‖f‖L1
µp`

1
νp`

r
ωqq
.

3.3.3 Dualizing function candidate

We start recalling the setting. Let p, q, r P p1,8q, Φ,K ě 1. Let X be a finite set, µ, ν
outer measures, ω a measure, and C a µ-covering function. For q ă r, we assume pX,µ, ν, Cq
to satisfy the canopy condition 3.1.1. For q ą r, we assume pX,µ, ν, Cq to satisfy the crop
condition 3.1.2.

When q “ r, the double iterated outer Lp quasi-norm is isomorphic to a single iterated
one, and the results stated in Theorem 3.1.4 correspond to properties piiq, piiiq of Theorem
1.1 in [Fra21].
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When q ‰ r, for a function f P Lpµp`qνp`rωqq on X, we provide the candidate dualizing
function g on X. We distinguish two cases.

Case 1: q ą r. Let tEk : k P Zu be the collection of pairwise disjoint subsets of X
associated with the function f and the size `qνp`rωq as in Proposition 3.3.5.

Case 2: q ă r. Let tEk : k P Zu be the collection of pairwise disjoint subsets of X
associated with the function f and the size `qνp`rωq as in Proposition 3.3.4.

In both cases, let tUkj : j P Zu be the collection of pairwise disjoint subsets of Ek
associated with the function f1Ek and the size `rω as in Proposition 3.2.2. We define

fk,jpxq “fpxq1Ukj
pxq,

fkpxq “
ÿ

jPZ
fk,jpxq “ fpxq

ÿ

jPZ
1Ukj

pxq.

When q ą r, let

M “ 2`
Y log2K

r

]

,

where txu is the largest integer smaller than or equal to x. For

Fkj “ tF P E : `rωpfk,jqpF q ď 2j´Mu,

let Gkj be its ν-Carathéodory subcollection as in the crop condition 3.1.2, and set

rUkj “ Ukj z
ď

GPGkj

G.

We set

W k
j “

#

rUkj , for q ą r,

Ukj , for q ă r.

and we define

gk,jpxq “fpxq
r´11Wk

j
pxq,

gkpxq “
ÿ

jPZ
2jpq´rqgk,jpxq “ fpxqr´1

ÿ

jPZ
2jpq´rq1Wk

j
pxq,

gpxq “
ÿ

kPZ
2kpp´qqgkpxq “ fpxqr´1

ÿ

kPZ
2kpp´qq

ÿ

jPZ
2jpq´rq1Wk

j
pxq.

(3.3.32)

Lemma 3.3.7. Let p, q, r P p1,8q, q ‰ r, Φ,K ě 1. There exists a constant c “ cpr,Kq
such that, for every function f P Lpµp`qνp`rωqq on X, we have

‖f rk,j1Wk
j
‖L1pX,ωq ě c2jrνpUkj q. (3.3.33)
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Proof. Case I: q ą r. We have

‖f rk,j1Wk
j
‖L1pX,ωq ě ‖f

r
k,j‖L1pX,ωq ´

ÿ

GPGkj

‖f rk,j1G‖L1pX,ωq

ě 2jrνpUkj q ´
ÿ

GPGkj

2pj´MqrνpUkj XGq

ě 2jrνpUkj q ´K2pj´MqrνpUkj q

ě c2jrνpUkj q,

where we used (3.2.8) and the control on the size `rω defining the elements of Fkj in the
second inequality, the ν-Carathéodory condition (3.1.12) for the collection Gkj in the third,
and the definition of M in the fourth.

Case II: q ă r. The desired inequality follows by (3.2.8).

The definition of g guarantees the following good lower bound on the classical L1 norm
of fg, and good upper bound on the outer Lp

1

µ p`
q1
ν p`r

1

ω qq quasi-norm of g.

Lemma 3.3.8. Let p, q, r P p1,8q, q ‰ r, Φ,K ě 1. There exists a constant c “
cpp, q, r,Φ,Kq such that, for every function f P Lpµp`qνp`rωqq on X, for g defined by (3.3.32),
then

‖fg‖L1pX,ωq ě c‖f‖p
Lpµp`

q
νp`rωqq

.

Proof. By (3.3.33) and (3.2.12), we have

‖fg‖L1pX,ωq “
ÿ

kPZ
2kpp´qq

ÿ

jPZ
2jpq´rq‖f rk,j1Wk

j
‖L1pX,ωq

ě c
ÿ

kPZ
2kpp´qq

ÿ

jPZ
2jqνpUkj q

ě c
ÿ

kPZ
2kpp´qq‖fk‖qLqνp`rωq.

For q ă r, by (3.3.22) and (3.3.26), we have
ÿ

kPZ
2kpp´qq‖fk‖qLqνp`rωq ě c

ÿ

kPZ
2kpµpEkq ě c‖f‖p

Lpµp`
q
νp`rωqq

.

For q ą r, the properties in Proposition 3.3.5 corresponding to (3.3.22) and (3.3.26) yield
the analogous chain of inequalities.

Lemma 3.3.9. Let p, q, r P p1,8q, q ‰ r, Φ,K ě 1. There exists a constant C “

Cpp, q, r,Φ,Kq such that, for every function f P Lpµp`qνp`rωqq on X, for g defined by (3.3.32),
then

‖g‖p
1

Lp
1

µ p`
q1
ν p`r

1
ω qq
ď C‖f‖p

Lpµp`
q
νp`rωqq

. (3.3.34)
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Proof. Case I: q > r. Let rk, j be fixed. For every subset F of X, for every subset U of
F , we have

`r
1

ω pgrk1F 1
pV

rk
j q
cqpUq ď

ÿ

rjăj

2
rjpq´rqpνpUq´1‖g

rk,rj
1
UzV

rk
rj`1

‖r
1

Lr1 pX,ωq
q

1
r1

ď
ÿ

rjăj

2
rjpq´rqpνpUq´1‖f

rk,rj
1
UzV

rk
rj`1

‖rLrpX,ωqq
1
r1

ď c2jpq´1q,

where we used the triangle inequality for the classical Lr1 norm in the first inequality, and
(3.2.9) in the third. The previous chain of inequalities yields

νp`r
1

ω pgrk1F q ą c2jpq´1qq ď
ÿ

rjěj

νpW
rk
rj
X F q. (3.3.35)

Moreover, for every fixed rj P Z, for E “ BCpF q, we have

νpW
rk
rj
X F q ď Cνp`rωpfrk1Eq ą rc2

rjq. (3.3.36)

In fact, we have two cases.

(i) If W rk
rj
X F “ ∅, the left hand side in (3.3.36) is 0, and the inequality holds true.

(ii) If W rk
rj
X F ‰ ∅, by the crop condition 3.1.2, we have that E1 “ BCpW

rk
rj
X F q Ď E is

covered by a collection of disjoint subsets that are not in Frk
rj
, so that

`rωpfrk,rj1EqpU
rk
rj
X E1q ě rc2

rj ,

hence, by Lemma 3.2.1, we obtain (3.3.36).

Therefore, by (3.3.35) and (3.3.36), we have

‖g
rk
1F ‖q

1

Lq
1

ν p`r
1
ω q
ď C

ÿ

jPZ
2jqνp`r

1

ω pgrk1F q ą c2jpq´1qq

ď C
ÿ

jPZ
2jq

ÿ

rjěj

νp`rωpfrk1Eq ą rc2
rjq

ď C‖f
rk
1E‖qLqνp`rωq.

(3.3.37)
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Hence, we have

`q
1

ν p`
r1

ω qpg1F ck qpF q ď C
ÿ

rkăk

2
rkpp´qqpµpF q´1‖g

rk
1F ‖q

1

Lq
1

ν p`r
1
ω q
q

1
q1

ď C
ÿ

rkăk

2
rkpp´qqpµpF q´1‖f

rk
1E‖Lqνp`rωqq

1
q1

ď C2kpp´1q,

where we used the quasi-triangle inequality for the outer Lq
1

ν p`r
1

ω q quasi-norm proved in
[Fra21] in the first inequality, (3.3.37) in the second, the property in Proposition 3.3.5
corresponding to (3.3.23) and (3.1.11) in the third. The previous chain of inequalities
yields

µp`q
1

ν p`
r1

ω qpgq ą C2kpp´1qq ď µpFkq ď rC
ÿ

rkěk

µpE
rk
q.

Together with the property in Proposition 3.3.5 corresponding to (3.3.26), this yields

‖g‖p
1

Lp
1

µ p`
q1
ν p`r

1
ω qq
ď rC

ÿ

kPZ
2kpµp`q

1

ν p`
r1

ω qpgq ą C2kpp´1qq

ď rC
ÿ

kPZ
2kp

ÿ

rkěk

µpE
rk
q

ď rC‖f‖p
Lpµp`

q
νp`rωqq

.

Case II: q ă r. Let rk be fixed. It is enough to prove that, for every subset F of X, we
have

‖g
rk
1F ‖q

1

Lq
1

ν p`r
1
ω q
ď C‖f

rk
1F ‖qLqνp`rωq. (3.3.38)

The desired inequality in (3.3.34) then follows as in the previous case.
Let j be fixed. Let V p2jq be an optimal set associated with the super level measure

νp`rωpfrk1F q ą 2jq, namely

‖f
rk
1F 1V p2jqc‖L8ν p`rωq ď 2j , (3.3.39)

νp`rωpfrk1F q ą 2jq “ ν
`

V p2jq
˘

. (3.3.40)
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For every subset U of F , we have

`r
1

ω pgrk1F 1V p2jqcqpUq ď
ÿ

rjăj

2
rjpq´rqpνpUq´1‖g

rk,rj
1
UzV

rk
rj`1

‖r
1

Lr1 pX,ωq
q

1
r1`

` pνpUq´1‖
ÿ

rjěj

2
rjpq´rqg

rk,rj
1F 1UzV p2jq‖

r1

Lr1 pX,ωq
q

1
r1

ď
ÿ

rjăj

2
rjpq´rqpνpUq´1‖f

rk,rj
1
UzV

rk
rj`1

‖rLrpX,ωqq
1
r1`

` 2jpq´rqpνpUq´1‖
ÿ

rjěj

f
rk,rj

1F 1UzV p2jq‖
r1

Lr1 pX,ωq
q

1
r1

ď c2jpq´1q,

where we used the triangle inequality for the classical Lr1 norm in the first inequality, the
condition q ă r in the second, (3.3.23) and (3.3.39) in the third. Together with (3.3.40),
the previous chain of inequalities yields, for every j P Z,

νp`r
1

ω pgrk1F q ą c2jpq´1qq ď νp`rωpfrk1F q ą 2jq.

The inequality in (3.3.38) follows multiplying by 2jq and summing in j P Z on both sides.

We are now ready to prove Theorem 3.1.4.

Proof of Theorem 3.1.4. When q “ r, the double iterated outer Lp quasi-norm is isomorphic
to a single iterated one, and the proof corresponds to the one of properties piiq, piiiq of
Theorem 1.1 in [Fra21].

When q ‰ r, we proceed as follows.
Property (i). By (3.1.16), the L1pX,ωq-pairing of two functions f, g is equivalent to

the outer L1
µp`

1
νp`

1
ωqq quasi-norm of the product fg. The second inequality in (3.1.14) is

then given by outer Hölder’s inequality, Proposition 3.4 in [DT15]. The first inequality in
(3.1.14) is a corollary of Lemma 3.3.8 and Lemma 3.3.9 for f P Lpµp`qνp`rωqq.

Property (ii). The inequality in (3.1.15) is a corollary of the triangle inequality for
the L1pX,ωq norm and property piq.

3.3.4 Counterexamples

For every m P N, we introduce the finite setting

Xm “ txi : 1 ď i ď mu,

ωmpAq “ µmpAq “ |A|, for every A Ď Xm,
νmpAq “ 1, for every ∅ ‰ A Ď Xm,

fi “ 1xi , for every 1 ď i ď m,
f “ 1Xm .
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In particular, the collection of singletons ttxiu : 1 ď i ď mu satisfies the νm-Carathéodory
condition with parameter Km ě m.

First, we observe that, for every exponent r P p0,8s, for every function g, for every
nonempty subset A of Xm, we have

`rωmpgqpAq “ ‖g1A‖LrpXm,ωmq.

Therefore, for every exponent r P p0,8s, for every function g, we have

νmp`
r
ωmpgq ą λq “

#

νmpXmq “ 1, for λ P r0, ‖g‖L8νm p`rωm qq,

νmp∅q “ 0, for λ P r‖g‖L8νm p`rωm q,8q,

where, here and later as well, for every level λ, we provide a subset of Xm realizing the
infimum in the definition of the super level measure in (3.1.7).

Hence, for all exponents q, r P p0,8s, we have

‖g‖Lqνm p`rωm q “ ‖g‖L8νm p`rωm q “ ‖g‖LrpXm,ωmq.

In particular, for every exponent r P p0,8s, we have
m
ÿ

i“1

‖fi‖L1
νm p`

r
ωm q

“

m
ÿ

i“1

1 “ m,

‖
m
ÿ

i“1

fi‖L1
νm p`

r
ωm q

“ ‖f‖L1
νm p`

r
ωm q

“ m
1
r .

When r P p0,8s, r ‰ 1, one of the constants C1, C2 of q-super- or suborthogonality in
(3.3.11) blows up as m grows to infinity.

Next, we observe that, for all exponents q, r P p0,8s, for every function g, for every
nonempty subset A of Xm, we have

`qνmp`
r
ωmqpgqpAq “ µmpAq

´ 1
q ‖g1A‖Lqνm p`rωm q “ |A|

´ 1
q ‖g1A‖LrpXm,ωmq,

hence, for every exponent r P r1,8s, for every strict subset B of Xm, we have

‖f1Bc‖L8µm p`1νm p`rωm qq “ 1 “ `1νmp`
r
ωmqpf1Bcqptxiuq, for every xi R B.

Therefore, for every exponent r P r1,8s, we have

µmp`
1
νmp`

r
ωmqpfq ą λq “

#

µmpXmq “ m, for λ P r0, 1q,
µmp∅q “ 0, for λ P r1,8q.

In particular, for every exponent r P r1,8s, we have

‖f‖L1
µm
p`1νm p`

r
ωm
qq “ m.
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When r P p1,8s, the constant C2 of the "collapsing effect" in (3.1.13) blows up as m grows
to infinity.

Finally, we observe that, for all exponents q P p1,8q, r P p1, qs, for every strict subset
B of Xm, we have

‖f1Bc‖L8µm p`qνm p`rωm qq “ |XmzB|α “ `qνmp`
r
ωmqpf1BcqpB

cq,

where α “ αpr, qq “ 1
r ´

1
q . Therefore, for all exponents q P p1,8q, r P p1, qs, we have, for

1 ď i ď m,

µmp`
q
νmp`

r
ωmqpfq ą λq “

#

µmpX
m´i`1
m q “ m´ i` 1, for λ P rpi´ 1qα, iαq,

µmp∅q “ 0, for λ P rmα,8q,

where Xj
m is any arbitrary subset of Xm of cardinality j.

In particular, for all exponents p, q P p1,8q, r P p1, qs, there exists a constant c “
cpp, q, rq such that, for every m P N big enough, we have

m
ÿ

i“1

‖fi‖Lpµm p`qνm p`rωm qq “
m
ÿ

i“1

1 “ m,

‖
m
ÿ

i“1

fi‖Lpµm p`qνm p`rωm qq “ ‖f‖Lpµm p`qνm p`rωm qq ě cm
1
p
´ 1
q
` 1
r .

Therefore, the constants of the sharpness of outer Hölder’s inequality in (3.1.14) and the
triangle inequality in (3.1.15) blow up as m grows to infinity when

p, q, r P p1,8q,
1

p
´

1

q
`

1

r
ą 1.

Now, for every m P N, we slightly modify the previous finite setting

Xm “ txi : 1 ď i ď mu,

ωmpAq “ |A|, for every A Ď Xm,
νmpAq “ 1, for every A Ď Xm,

σmptxiuq “ 2βpi´1q, for every 1 ď i ď m,
f “ 1Xm ,

where β “ βprq “ 2
r , and let µm be the measure generated via (3.1.17) from σm. As

in the previous setting, the collection of singletons ttxiu : 1 ď i ď mu satisfies the νm-
Carathéodory condition with parameter Km ě m.

As in the previous setting, for all exponents q, r P p0,8s, for every function g, for every
nonempty subset A of Xm, we have

`qνmp`
r
ωmqpgqpAq “ µmpAq

´ 1
q ‖g1A‖Lqνm p`rωm q “ µmpAq

´ 1
q ‖g1A‖LrpXm,ωmq,



3.4. EXAMPLES 111

hence, for every exponent r P p0, 1s, for every strict subset B of Xm, we have

‖f1Bc‖L8µm p`1νm p`rωm qq “ 2´βpj´1q “ `1νmp`
r
ωmqpf1Bcqptxjuq,

where j “ minti : 1 ď i ď m,xi R Bu. Therefore, for every exponent r P p0, 1s, we have, for
1 ď j ă m,

µmp`
1
νmp`

r
ωmqpfq ą λq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

µmpXmq “

m
ÿ

i“1

2βpi´1q, for λ P r0, 2´βpm´1qq,

µmpX
j
mq “

j
ÿ

i“1

2βpi´1q, for λ P r2´βj , 2´βpj´1qq,

µmp∅q “ 0, for λ P r1,8q,

where Xj
m “ txi : 1 ď i ď ju Ď Xm.

In particular, for every exponent r P p0, 1s, there exists a constant C “ Cprq such that
we have

‖f‖L1
νm p`

r
ωm q

“ m
1
r ,

‖f‖L1
µm
p`1νm p`

r
ωm
qq ď Cm.

When r P p0, 1q, the constant C1 of the "collapsing effect" in (3.1.13) blows up as m grows
to infinity.

3.4 Examples

In this section we present three settings in which we provide a µ-covering function C satis-
fying the canopy condition 3.1.1 and the crop condition 3.1.2.

3.4.1 Finite set with three measures

Let X be a finite set, µ, ν, ω be three measures on it. The function C defined by

E “ ttxu : x P Xu, CpAq “ ttxu : x P Au,

is a µ-covering function with parameter Φ “ 1. The canopy and the crop conditions with
parameters Φ “ K “ 1 are satisfied because every collection of pairwise disjoint subsets of
X is ν-Carathéodory with parameter K “ 1, since ν is a measure, and the very definition
of C. The same conditions are satisfied by

E 1 “ PpXq, C1pAq “ A.
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3.4.2 Cartesian product of three finite sets with measures

Let X1, X2, X3 be finite sets with measures ω1, ω2, ω3. Let µ, ν, ω be the outer measures
µ1, µ2, µ3 defined on X as in (3.1.8). The function C defined by

E “ tX1 ˆX2 ˆ tzu : z P X3u, CpAq “ tX1 ˆX2 ˆ tzu : z P π3pAqu,

where π3 is the projection in X3, is a µ-covering function with parameter Φ “ 1. The
canopy and the crop conditions with parameters Φ “ K “ 1 are satisfied because every
collection of disjoint subsets ofX of the formX1ˆX2ˆZ is ν-Carathéodory with parameter
K “ 1, since on these sets ν behaves like the measure ω2 b ω3, and the very definition of
C. The same conditions are satisfied by

E 1 “ tX1 ˆX2 ˆ Z : Z P PpX3qu, C1pAq “ X1 ˆX2 ˆ π3pAq.

3.4.3 Upper half 3-space with dyadic strips and trees

Let X be the upper half 3-space, together with the measure induced by the Lebesgue
measure on R3,

X “ R3
` “ R2

` ˆ R “ Rˆ p0,8q ˆ R,
dωpy, t, ηq “ dy dt dη.

(3.4.1)

To define the outer measures, we start recalling the set I of dyadic intervals in R,

Ipm, lq “ p2lm, 2lpm` 1qs,

I “ tIpm, lq : m, l P Zu.

Moreover, for all m, l, n P Z, we define the dyadic upper half tile Hpm, l, nq by

Hpm, l, nq “ Ipm, lq ˆ p2l´1, 2ls ˆ Ipn,´lq. (3.4.2)

Now, let µ be the outer measure generated by the pre-measure σ on D, the collection
of dyadic strips, as in (3.1.17), namely

Dpm, lq “ D
`

Ipm, lq
˘

“
ď

l1ďl

2l´l
1
pm`1q´1
ď

m1“2l´l1m

ď

n1PZ
Hpm1, l1, n1q,

D “ tDpm, lq : m, l P Zu “ tDpIq : I P Iu,
σ
`

Dpm, lq
˘

“ |Ipm, lq| “ 2l, for all m, l P Z.

(3.4.3)



3.4. EXAMPLES 113

Analogously, let ν be the outer measure generated by the pre-measure τ on T , the collection
of dyadic trees, as in (3.1.17), namely

T pm, l, nq “ T
`

Ipm, lq, Ipn,´lq
˘

“
ď

l1ďl

2l´l
1
pm`1q´1
ď

m1“2l´l1m

H
`

m1, l1, Npn, l1q
˘

,

T “ tT pm, l, nq : m, l, n P Zu “ tT pI, rIq : I, rI P I, |I||rI| “ 1u,

τ
`

T pm, l, nq
˘

“ |Ipm, lq| “ 2l, for all m, l, n P Z,

(3.4.4)

where Npn, l1q is defined by the condition

Ipn,´lq Ď IpNpn, l1q,´l1q. (3.4.5)

From now on, we assume all the strips and trees in this subsection to be dyadic, and we
avoid repeating it.

Next, for every L P Z, we define

YL “ Rˆ p0, 2Ls ˆ R, (3.4.6)

On YL, we have the measure ωL and the outer measures µL, νL induced by ω, µ, ν. In
particular, the outer measures µL, νL are equivalently generated as in (3.1.17) by the pre-
measures σ, τ restricting the collections of dyadic strips and trees to those contained in YL,
namely

DL “ tDpm, lq : m, l P Z, l ď Lu,

TL “ tT pm, l, nq : m, l, n P Z, l ď Lu.

Moreover, we drop the subscript L in all the notation, as the definitions are consistent with
the inclusion YL1 Ď YL2 for L1 ď L2.

To define the function C and check that it satisfies the conditions, we recall some prop-
erties of the geometry of dyadic strips and trees and introduce some auxiliary functions and
state their properties. We postpone the proofs to Appendix 3.A.

To make the notation more compact in the following definitions, we introduce a new
symbol for the union of the elements of a collection of subsets of X,

L : PpPpXqq Ñ PpXq,

LpAq “
ď

APA
A.

We start with two observations about the geometry of the intersections between strips,
and between a strip and a tree.

Lemma 3.4.1. Given two strips D1, D2 in D, their intersection is again a strip in D,
possibly empty. If it is nonempty, we have either D1 Ď D2 or D2 Ď D1.
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Lemma 3.4.2. Given a strip D in D and a tree T in T , their intersection is again a tree
T 1 in T , possibly empty.

After that, we follow up with some observations about the behaviour of the outer mea-
sures µ, ν on strips, trees, their unions and their intersections.

Lemma 3.4.3. For every strip D in D and for every tree T in T , we have

µpDq “ σpDq “ |πpDq|, (3.4.7)
νpT q “ τpT q “ |πpT q|, (3.4.8)

where π is the projection in the first coordinate.
Moreover, for every tree T in T , we have

νpT q “ |πpT q| “ |π
`

DpT q
˘

| “ µ
`

DpT q
˘

, (3.4.9)

where DpT q is the strip in D containing T defined by

DpT q “ πpT q ˆ p0, |πpT q|s ˆ R.

Lemma 3.4.4. For every collection D1 of pairwise disjoint strips in D, we have

µ
`

LpD1q
˘

“
ÿ

D1PD1

µpD1q “
ÿ

D1PD1

|πpD1q|. (3.4.10)

Analogously, for every collection T1 of pairwise disjoint trees in T , we have

ν
`

LpT1q
˘

“
ÿ

T1PT1

νpT1q “
ÿ

T1PT1

|πpT1q|. (3.4.11)

Moreover, for every collection D1 of pairwise disjoint strips in D, for every tree T in T , we
have

ν
`

T X LpD1q
˘

“
ÿ

D1PD1

νpT XD1q. (3.4.12)

Finally, we introduce the auxiliary functions. First, we define the function Q by

Q : PpXq Ñ PpDq,
QpAq “ tE : E P D, E` XA ‰ ∅u,

where E` is the upper half part of the strip E,

E` “ tpx, s, ξq P E : s ą σpEq{2u.
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It satisfies the following properties

A Ď LpQpAqq, (3.4.13)
A1 Ď A2 ñ LpQpA1qq Ď LpQpA2qq, (3.4.14)

µpLpQpAqqq “ µpAq. (3.4.15)

After that, we define the function N by

N : PpDq Ñ PpDq,
N pD1q “ tE : E P D, |πpEq X πpLpD1qq| ě |πpEq|{2u.

It associates a collection of strips D1 to the collection of strips whose associated space
interval is at least half covered by the space intervals associated with the elements of D1.
It satisfies the following properties

LpD1q Ď LpN pD1qq, (3.4.16)
LpD1q Ď LpD2q ñ LpN pD1qq Ď LpN pD2qq, (3.4.17)

µpLpN pD1qqq ď 2µpLpD1qq. (3.4.18)

Finally, we define the functionM by

M : PpDq Ñ PpDq,
MpD1q “ tE : E P D1,@D1 P D1ztEu we have E Ę D1u.

It associates a collection of strips D1 to the subcollection of maximal elements with respect
to inclusion. In particular, it is well-defined because, for every L P Z, the space YL is
bounded in the second variable. In fact, by Lemma 3.4.1, the function M maps into the
subset of collections of pairwise disjoint strips in D. Moreover, it satisfies the following
properties

LpD1q “ LpMpD1qq, (3.4.19)
LpD1q Ď LpD2q ñ LpMpD1qq Ď LpMpD2qq, (3.4.20)

µpLpD1qq “ µpLpMpD1qqq “
ÿ

EPMpD1q

µpEq. (3.4.21)

We define the function C : PpXq Ñ 9PpEq by

E “ D, CpAq “MpN pQpAqqq,

where 9PpEq stands for the set of subcollections of pairwise disjoint elements in E .
We prove now that the function C is a µ-covering function and that the setting pX,µ, ν, Cq

satisfies the canopy condition 3.1.1 and the crop condition 3.1.2.



116 CHAPTER 3. DOUBLE ITERATED OUTER LP SPACE

Lemma 3.4.5. The function C is a µ-covering function for every choice of the parameter
Φ ě 2.

Proof. We recall that
BCpAq “ LpMpN pQpAqqqq.

By (3.4.13), (3.4.16) and (3.4.19), we have

A Ď BCpAq.

By (3.4.14), (3.4.17) and (3.4.20), we have

A1 Ď A2 ñ BCpA1q Ď BCpA2q.

Moreover, by (3.4.21), (3.4.18) and (3.4.15), we have

µ
`

BCpAq
˘

ď 2µpAq.

Lemma 3.4.6. The setting pX,µ, ν, Cq satisfies the canopy condition 3.1.1 for every choice
of parameters Φ,K ě 2.

Proof. Let A be a ν-Carathéodory collection of subsets of X with parameter K, and rD
a subset of X disjoint from BC

`

LpAq
˘

. We claim that the collection A Y t rDu is still ν-
Carathéodory with the same parameter K. In particular, we want to prove that for every
subset U of X, we have

ÿ

APA
νpU XAq ` νpU X rDq ď KνpUq. (3.4.22)

Without loss of generality, we assume U X rD ‰ ∅, otherwise the inequality follows by the
ν-Carathéodory property for the collection A. In particular, we have rD ‰ ∅.

First, we prove (3.4.22) under some additional assumptions on rD and U . After that,
we obtain the general case in a series of generalization steps.

Step 1. Let rD be a nonempty set of the form

DzBC
`

LpAq
˘

, (3.4.23)

where D is a strip in D, and BC
`

LpAq
˘

Ĺ D. We claim that, for every tree T in T , we have
ÿ

APA
νpT XAq ` νpT XDq ď KνpT q. (3.4.24)

The version of (3.4.22) for the particular choices of T and rD follows by the monotonicity
of ν.
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Without loss of generality, we assume T to be contained in D. The result for an
arbitrary tree T follows by that for T XD, which by Lemma 3.4.2 is a tree as well, and the
monotonicity of ν.

For every tree T contained in D with nonempty intersection with rD, we have

DpT q R N pQpLpAqqq.

Together with (3.4.9), this yields

νpT q “ |π
`

DpT q
˘

| ě 2|πpDpT q X LpQpLpAqqqq|.

By (3.4.19) and the disjointness of the elements of a collection MpD1q for every D1 Ď D,
we have

|πpDpT q X LpQpLpAqqqq| “ |πpDpT q X LpMpQpLpAqqqqq|

“
ÿ

EPMpQpLpAqqq
|πpDpT q X Eq|.

By the monotonicity of the Lebesgue measure, Lemma 3.4.2, and (3.4.9), we have
ÿ

EPMpQpLpAqqq
|πpDpT q X Eq| ě

ÿ

EPMpQpLpAqqq
|πpT X Eq|

ě
ÿ

EPMpQpLpAqqq
νpT X Eq.

By (3.4.12) and the monotonicity of ν, we have
ÿ

EPMpQpLpAqqq
νpT X Eq ě νpT X LpMpQpLpAqqqqq ě νpT X LpAqq.

Together with the condition K ě 2 and the ν-Carathéodory property for the collection A,
the previous chains of inequalities yield

KνpT q ě νpT XDq ` 2pK ´ 1qνpT X LpAqq
ě νpT XDq `KνpT X LpAqq

ě νpT XDq `
ÿ

APA
νpT XAq.

Step 2. Let rD be a nonempty set of the form

rD “
ď

D1PD1
rD1 “

ď

D1PD1

`

D1zBCpLpAqq
˘

,

where D1 is a collection of pairwise disjoint strips. We claim that, for every tree T in T ,
we have (3.4.22) for the particular choices of T and rD.
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By definition, for every strip D1, we have

D1 Ę BCpLpAqq.

Therefore, by Lemma 3.4.1, we have

CpLpAqq “ C1 Y
ď

D1PD1
CD1 ,

where the elements of C1 are disjoint from LpD1q, while, for every D1 in D1, the elements of
CD1 are contained in D1. In particular, we have

A “ A1 Y
ď

D1PD1
AD1

“ tA : A P A, A Ď LpC1qu Y
ď

D1PD1
tA : A P A, A Ď LpCD1qu.

Then

KνpT q ě Kν
`

T X pLpCpLpAqqq Y
ď

D1PD1
D1q

˘

ě Kν
`

T X LpC1q
˘

`K
ÿ

D1PD1
νpT XD1q

ě
ÿ

APA1

νpT XAq `
ÿ

D1PD1

`

ÿ

APAD1
νpT XAq ` νpT XD1q

˘

ě
ÿ

APA
νpT XAq ` νpT X LpD1qq

ě
ÿ

APA
νpT XAq ` νpT X rDq.

(3.4.25)

where we used the monotonicity of ν in the first and in the fifth inequality, (3.4.12) in the
second, the ν-Carathéodory property for the collection tA : A P A, A Ď LpC1qu and (3.4.24)
for each D1 in D1 in the third, Fubini and (3.4.12) in the fourth.

Step 3. Let rD be an arbitrary nonempty set disjoint from BC
`

LpAq
˘

. We claim that,
for every tree T in T , we have (3.4.22) for the particular choices of T and rD.

For D1 “MpQp rDqq, we define

rD1 “
ď

D1PD1

`

D1zBCpLpAqq
˘

.

By (3.4.25) and the monotonicity of ν, we have

KνpT q ě
ÿ

APA
νpT XAq ` νpT X rD1q ě

ÿ

APA
νpT XAq ` νpT X rDq. (3.4.26)
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Step 4. Let rD be an arbitrary nonempty set disjoint from BC
`

LpAq
˘

. We claim that,
for every subset U of X, we have (3.4.22).

In fact, there exists a collection T 1 Ď T covering U ν-optimally, namely

U Ď
ď

TPT 1
T, (3.4.27)

ÿ

TPT 1
τpT q “ νpUq. (3.4.28)

By (3.4.26) for every tree T in T 1, the subadditivity of ν, and (3.4.27), we have

K
ÿ

TPT 1
νpT q ě

ÿ

TPT 1

`

ÿ

APA
νpT XAq ` νpT X rDq

˘

ě
ÿ

APA

ÿ

TPT 1
νpT XAq `

ÿ

TPT 1
νpT X rDq

ě
ÿ

APA
νpU XAq ` νpU X rDq.

Together with (3.4.28), this yields the desired inequality in (3.4.22).

Lemma 3.4.7. The setting pX,µ, ν, Cq satisfies the crop condition 3.1.2 for every choice
of parameters Φ ě 2,K ě 1.

Proof. For every collection A of strips in D, let B “ MpAq. The subcollection B is ν-
Carathéodory with parameter K “ 1. Moreover, for every subset F of X disjoint from
LpBq “ LpAq, we have

CpF q XA “ QpF q XA “ ∅,

and this yields
BCpF q “ B

rCpF q.

3.5 Double iterated outer Lp spaces on the upper half 3-space

In this section we prove Theorem 3.1.5 in the dyadic upper half 3-space setting described
in (3.4.1), (3.4.3) and (3.4.4), reducing the problem to an equivalent one in a finite setting
via an approximation argument.

We start stating some auxiliary results about the approximation of functions in outer
Lp spaces. We use them to prove the approximation of functions in outer Lp spaces on the
upper half 3-space X by functions with support in XJ for a certain J P N, where

XJ “ p´2JJ, 2JJs ˆ p2´J , 2J s ˆ p´2JJ, 2JJs. (3.5.1)
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On XJ , we have the measure ωJ and the outer measures µJ , νJ induced by ω, µ, ν. In
particular, this setting inherits the definition of the function C on YJ , for YJ defined in
(3.4.6), and its properties (Lemma 3.4.5, Lemma 3.4.6, Lemma 3.4.7).

Next, for any J P N, we introduce a finite setting X 1J and exhibit a map between
functions on XJ and on X 1J preserving the double iterated outer Lp quasi-norms. We use
Theorem 3.1.3, Theorem 3.1.4 in the finite settings to prove Theorem 3.1.5.

Finally, we conclude the section with some observations about the result analogous to
Theorem 3.1.5 for double iterated outer Lp spaces in the upper half 3-space setting where
the outer measures are defined by arbitrary strips and trees originally considered in [Ura16].

3.5.1 Approximation results

First, we state a result about the approximation of functions in LpµpSq by functions in
LpµpSq X L8µ pSq, for a size S of the form `rω or `qνp`rωq, and more generally an arbitrary size
in the definition in [DT15].

Lemma 3.5.1. For every p P p0,8q, there exists a constant C “ Cppq such that the
following property holds true.

Let X be a set, µ an outer measure, and S a size. For every f P LpµpSq, there exists a
subset A of X such that f1A is in LpµpSq X L8µ pSq and we have

‖f‖LpµpSq ď C‖f1A‖LpµpSq.

Next, we state a result about the behaviour of the super level measures for single iterated
outer Lp spaces for monotonically increasing cut offs of a function in a general setting.

Lemma 3.5.2 (Monotonic convergence I). For every r P p0,8q, there exist constants
C “ Cprq, c “ cprq such that the following property holds true.

Let X be a set, ν an outer measure, and ω a measure. Let tXJ : J P Nu be a monoton-
ically increasing sequence of subsets of X such that

X “
ď

JPN
XJ ,

and let f P L8ν p`rωq be a function on X. Then, for every k P Z, there exists J “ Jpr, f, kq P N
such that

νp`rωpfq ą 2kq ď C
ÿ

lěk

νp`rωpf1XJ q ą c2lq.

Finally, we state a result about the behaviour of the super level measures for double
iterated outer Lp spaces for monotonically increasing cut offs of a function in the dyadic
upper half 3-space setting.
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Lemma 3.5.3 (Monotonic convergence II). For all q, r P p0,8q, there exist constants
C “ Cpq, rq, c “ cpq, rq such that the following property holds true.

Let f P L8µ p`
q
νp`rωqq be a function on X “ R ˆ p0,8q ˆ R, and let tXJ : J P Nu be the

monotonically increasing sequence of subsets of X defined in (3.5.1). Then, for every k P Z,
there exists J “ Jpq, r, f, kq P Z such that

µp`qνp`
r
ωqpfq ą 2kq ď C

ÿ

lěk

µp`qνp`
r
ωqpf1XJ q ą c2lq.

We postpone the proofs of the previous three results to Appendix 3.B. We use them to
prove the following results about the approximation of functions in Lqνp`rωq and L

p
µp`

q
νp`rωqq

by functions with support in Xj for a certain j P N.

Lemma 3.5.4. For all q, r P p0,8q, there exists a constant C “ Cpq, rq such that the
following property holds true.

For every function f P Lqνp`rωq, there exists J “ Jpq, r, fq P N such that

‖f1XJ‖Lqνp`rωq ď ‖f‖Lqνp`rωq ď C‖f1XJ‖Lqνp`rωq.

Proof. The first inequality follows by the monotonicity of the outer Lp quasi-norms.
To prove the second inequality, by Lemma 3.5.1, we assume f to be in Lqνp`rωqXL8ν p`rωq.

Next, we observe that there exists K “ Kpq, r, fq P N such that

‖f‖q
Lqνp`rωq

ď C
ÿ

kPZ
2kqνp`rωpfq ą 2kq ď C

ÿ

kPr´K,Ks

2kqνp`rωpfq ą 2kq.

By Lemma 3.5.2, for every k P r´K,Ks, there exists a rJ “ rJpr, f, kq P N such that

νp`rωpfq ą 2kq ď C
ÿ

lěk

νp`rωpf1X
rJ
q ą c2lq.

By taking J “ maxkPr´K,Ks rJpk, f, rq, the previous inequalities yield

‖f‖q
Lqνp`rωq

ď C
ÿ

kPr´K,Ks

2kq
ÿ

lěk

νp`rωpf1XJ q ą c2lq ď C‖f1XJ‖
q
Lqνp`rωq

.

Lemma 3.5.5. For all p, q, r P p0,8q. There exists a constant C “ Cpp, q, rq such that the
following property holds true.

For every function f P Lpµp`qνp`rωqq, there exists J “ Jpp, q, r, fq P N such that

‖f1XJ‖Lpµp`qνp`rωqq ď ‖f‖Lpµp`qνp`rωqq ď C‖f1XJ‖Lpµp`qνp`rωqq.

Proof. The inequalities follow via the same argument used in the previous proof, with
Lemma 3.5.2 replaced by Lemma 3.5.3.
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3.5.2 Equivalence with finite settings

We introduce the following finite setting,

X 1 “ Z3,

ω1pm, l, nq “ 1,

D1pm, lq “ tpm1, l1, n1q : m1 P r2l´l
1

m, 2l´l
1

pm` 1qq, l1 ď l, n1 P Zu,
D1 “ tD1pm, lq : m, l P Zu,
σ1
`

D1pm, lq
˘

“ 2l, for all m, l P Z,

T 1pm, l, nq “ tpm1, l1, n1q : m1 P r2l´l
1

m, 2l´l
1

pm` 1qq, l1 ď l, n1 “ Npn, l1qu,

T 1 “ tT 1pm, l, nq : m, l, n P Zu,
τ 1
`

T 1pm, l, nq
˘

“ 2l, for all m, l, n P Z,

where Npn, l1q is defined by the condition (3.4.5), and µ1, ν1 are defined by σ1, τ 1 as in
(3.1.17). Moreover, for every J P N, we define

X 1J “ tpm, l, nq P X
1 : l P p´J, Js,m P r´J2J´l, J2J´lq, n P r´J2J`l, J2J`lqu,

On XJ , we have the measure ω1J and the outer measures µ1J , ν
1
J induced by ω1, µ1, ν1. In

fact, the outer measure µ1J is equivalently generated by the pre-measure σ1J on D1J as in
(3.1.17), namely

D1Jpm, lq “ D1pm, lq XX 1J ,

D1J “ tD1Jpm, lq : m, l P Z, D1Jpm, lq ‰ ∅u,
σJ

`

D1Jpm, lq
˘

“ 2l, for all m, l P Z, D1Jpm, lq ‰ ∅,

and the outer measure ν 1J by the pre-measure τ 1J on T 1J as in (3.1.17), namely

T 1Jpm, l, nq “ T 1pm, l, nq XX 1J ,

T 1J “ tT 1Jpm, l, nq : m, l, n P Z, T 1Jpm, l, nq ‰ ∅u,
τ 1J
`

T 1Jpm, l, nq
˘

“ 2l, for all m, l, n P Z, T 1Jpm, l, nq ‰ ∅.

The setting on X 1J inherits the definition of the function C on XJ and its properties
(Lemma 3.4.5, Lemma 3.4.6, Lemma 3.4.7) via the map associating every triple pm, l, nq P
X 1 to Hpm, l, nq, the pairwise disjoint subsets of X defined in (3.4.2).

Moreover, every function f on X that is in LrlocpX,ωq for some r P p0,8s defines a
function F pf, rq on X 1 by

F pf, rqpm, l, nq “ ‖f1Hpm,l,nq‖LrpX,ωq.

For every fixed r P p0,8s, the map between functions on X and on X 1 just described
preserves the iterated outer Lp quasi-norms.
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Lemma 3.5.6. Let p, q, r P p0,8q. For every f supported in XJ for any J P N, we have

‖f‖Lqνp`rωq “ ‖F pf, rq‖Lqν1 p`rω1 q,

‖f‖Lpµp`qνp`rωqq “ ‖F pf, rq‖Lpµ1 p`
q

ν1
p`r
ω1
qq.

Proof. Let J P N be fixed, and assume that f is supported in XJ .
We start observing that F pf, rq is supported in X 1J . Moreover, in both cases, we can

restrict to consider only the elements of DJ , TJ and D1J , T 1J , since we have

‖f‖Lpµp`qνp`rωqq “ ‖f‖LpµJ p`qνJ p`rωJ qq,

‖F pf, rq‖Lp
µ1
p`q
ν1
p`r
ω1
qq “ ‖F pf, rq‖Lp

µ1
J
p`q
ν1
J
p`r
ω1
J
qq.

In particular, for any U P TJ , we have U “ TJpm, l, nq, and we define U 1 P T 1J by
U 1 “ T 1Jpm, l, nq, hence satisfying

νJpUq “ τJpUq “ τ 1JpU
1q “ ν 1JpU

1q. (3.5.2)

Now, for any two collections U1,U2 of elements in TJ , we define, for i “ 1, 2,

Ui “ LpUiq, U 1i “ LpU 1iq,

and we have
F pf1U1zU2

, rq “ F pf, rq1U 11zU 12 . (3.5.3)

Next, by the definition of F pf, rq, we have

‖f‖LrpXJ ,ωJ q “ ‖F pf, rq‖LrpX 1J ,ω1J q. (3.5.4)

Therefore, for any element U in TJ , we have

‖f1U‖LrpXJ ,ωJ q “ ‖F pf1U , rq‖LrpX 1J ,ω1J q “ ‖F pf, rq1U 1‖LrpX 1J ,ω1J q, (3.5.5)

where we used (3.5.4) in the first equality, and (3.5.3) in the second. Moreover, for any
A Ď XJ , there exists a finite subcollection U of TJ such that A Ď LpUq and

νJpAq “
ÿ

UPU
τJpUq “

ÿ

UPU
νJpUq. (3.5.6)

In particular, we have

νJpAq
´1‖f1A‖rLrpXJ ,ωJ q ď νJpAq

´1
ÿ

UPU
‖f1U‖rLrpXJ ,ωJ q

ď νJpAq
´1 max

V PU
νJpV q

´1‖f1V ‖rLrpXJ ,ωJ q
ÿ

UPU
νJpUq

ď max
V PU

νJpV q
´1‖f1V ‖rLrpXJ ,ωJ q,

(3.5.7)
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where we used the monotonicity and the r-orthogonality of the classical Lr quasi-norm
in the first inequality, Hölder’s inequality in the second, and (3.5.6) in the third. The
analogous properties hold true for any F supported in X 1J .

Therefore, for any λ ą 0, we have, for F “ F pf, rq,

νJp`
r
ωJ
pfq ą λq “

“ inftνJpAq : A Ď XJ , suptνJpBq
´1{r‖f1B1Ac‖LrpXJ ,ωJ q : B Ď XJu ď λu

“ inftνJpLpUqq : U Ď TJ , suptνJpV q
´1{r‖f1V 1LpUqc‖LrpXJ ,ωJ q : V P TJu ď λu

“ inftν 1JpLpU 1qq : U 1 Ď T 1J ,
suptν 1JpV

1q´1{r‖F1V 11LpU 1qc‖LrpX 1J ,ω1J q : V
1 P T 1Ju ď λu

“ inftν 1JpA
1q : A1 Ď X 1J ,

suptν 1JpB
1q´1{r‖F1B11pA1qc‖LrpX 1J ,ω1J q : B

1 Ď X 1Ju ď λu

“ ν 1Jp`
r
ω1J
pF q ą λq,

where we used (3.5.6) and (3.5.7) in the second equality, (3.5.2) and (3.5.5) in the third,
the analogous of (3.5.6) and (3.5.7) in the fourth. Hence

‖f‖LqνJ p`rωJ q “ ‖F pf, rq‖L
q

ν1
J
p`r
ω1
J
q.

Applying an analogous argument to the "exterior" level of definition of the double
iterated outer Lp space, we obtain

‖f‖LpµJ p`qνJ p`rωJ qq “ ‖F pf, rq‖L
p

µ1
J
p`q
ν1
J
p`r
ω1
J
qq.

We are now ready to prove Theorem 3.1.5.

Proof of Theorem 3.1.5. Let p, q, r P p0,8s. By Lemma 3.5.4 and Lemma 3.5.5, for every
f P Lpµp`

q
νp`rωqq, there exists J “ Jpf, p, q, rq P N such that

‖f1XJ‖Lqνp`rωq ď ‖f‖Lqνp`rωq ď C‖f1XJ‖Lqνp`rωq,

‖f1XJ‖Lpµp`qνp`rωqq ď ‖f‖Lpµp`qνp`rωqq ď C‖f1XJ‖Lpµp`qνp`rωqq,
(3.5.8)

where C is independent of f and J . By Lemma 3.5.6, we have

‖f1XJ‖Lqνp`rωq “ ‖F pf1XJ , rq‖Lq
ν1
p`r
ω1
q “ ‖F pf, rq1X 1J‖Lqν1

J
p`r
ω1
J
q,

‖f1XJ‖Lpµp`qνp`rωqq “ ‖F pf1XJ , rq‖Lp
µ1
p`q
ν1
p`r
ω1
qq “ ‖F pf, rq1X 1J‖Lpµ1

J
p`q
ν1
J
p`r
ω1
J
qq.

(3.5.9)



3.5. DOUBLE ITERATED OUTER LP SPACES ON THE UPPER HALF 3-SPACE125

Property (i). Let q, r P p0,8q. By Theorem 3.1.3, we have

C´1‖F pf, rq1X 1J‖Lqν1
J
p`r
ω1
J
q ď ‖F pf, rq1X 1J‖Lqµ1

J
p`q
ν1
J
p`r
ω1
J
qq

ď C‖F pf, rq1X 1J‖Lqν1
J
p`r
ω1
J
q,

where C is independent of f and J . Together with (3.5.8) and (3.5.9), the previous chain
of inequalities yields the desired equivalence in (3.1.18).

Property (ii). Let p, q, r P p1,8q. By Theorem 3.1.4, for every f P Lpµp`qνp`rωqq, there
exists a function G on X 1J with unitary outer Lp

1

µ1J
p`q

1

ν1J
p`r

1

ω1J
qq quasi-norm such that

C´1‖F pf, rq1X 1J‖Lpµ1
J
p`p
ν1
J
p`r
ω1
J
qq ď ‖F pf, rq1X 1JG‖L1pX 1J ,ω

1
J q

ď C‖F pf, rq1X 1J‖Lpµ1
J
p`p
ν1
J
p`r
ω1
J
qq,

(3.5.10)

where C is independent of f and J . We define a function g on X by

gpx, s, ξq “ |fpx, s, ξq|r´1
ÿ

m,l,nPZ
F pf, rqpm, l, nq1´rGpm, l, nq1Hpm,l,nqpx, s, ξq.

By construction, we have

F pg, r1q “ G.

Together with Lemma 3.5.6, this yields

‖g‖
Lp
1

µ p`
q1
ν p`r

1
ω qq
“ ‖G‖

Lp
1

µ1
p`q
1

ν1
p`r
1

ω1
qq
“ ‖G‖

Lp
1

µ1
J
p`q
1

ν1
J
p`r
1

ω1
J
qq
“ 1.

Moreover, by construction we have

‖fg‖L1
ω
“ ‖F pf, rqG‖L1pX 1J ,ω

1
J q
“ ‖F pf, rqG‖L1pX 1J ,ω

1
J q

“ ‖F pf, rq1X 1JG‖L1pX 1J ,ω
1
J q
.

Together with (3.5.8), (3.5.9), and (3.5.10), the last two chains of equalities yield the desired
equivalence in (3.1.19).

Property (iii). The inequality in (3.1.20) is a corollary of the triangle inequality for
the L1pX,ωq norm and property piiq.
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3.5.3 Upper half 3-space with arbitrary strips and trees

We turn to the case of double iterated outer Lp spaces on the upper half 3-space setting
where the outer measures are defined by arbitrary strips and trees. In particular, let

X “ R3
` “ R2

` ˆ R “ Rˆ p0,8q ˆ R,
dωpy, t, ηq “ dy dt dη,

rDpx, sq “ tpy, t, ηq : y P x` p0, ss, t P p0, ss, η P Ru,
rD “ t rDpx, sq : x P R, s P p0,8qu,

rσ
`

rDpx, sq
˘

“ s, for all x P R, s P p0,8q,
rT px, s, ξq “ tpy, t, ηq : y P x` p0, ss, t P p0, ss, η P ξ ` p´t´1, t´1su,

rT “ t rT px, s, ξq : x P R, s P p0,8q, ξ P Ru,

rτ
`

rT px, s, ξq
˘

“ s, for all x P R, s P p0,8q, ξ P R,

(3.5.11)

where rµ, rν are defined by rσ, rτ as in (3.1.17).
On one hand, the outer measures generated by dyadic strips and arbitrary ones are

equivalent and we can substitute the outer measure rµ with µ. In particular, we have
D Ď rD, and every element of rD is covered by at most two elements of D with comparable
pre-measure.

On the other hand, the outer measures generated by dyadic trees and arbitrary ones
are not equivalent. In fact, while for every dyadic tree T in T we have

rνpT q ď νpT q,

instead for every arbitrary tree rT in rT we have

νp rT q “ 8, (3.5.12)

and we postpone the proof to Appendix 3.A. Therefore, we can not trivially deduce the
same result stated in Theorem 3.1.5 in the setting described in (3.5.11) from Theorem 3.1.5
itself.

However, a reduction of the problem to an equivalent one in a finite setting via an
approximation argument analogous to that described in the previous subsections still yields
the desired result. We briefly comment on some additional observations, providing guidance
to the readers interested in a complete proof.

First, we observe that the outer measure rν is equivalent to rνd, the outer measure defined
as in (3.1.17) by the pre-measure rτ restricting the collection rT of trees to those associated
with dyadic intervals, namely

rTd “ t rT p2lm, 2l, 2´lnq : m, l, n P Zu Ď rT .
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The geometry of the elements of D, rTd and their intersections is analogous to that of the
elements of D, T . Therefore, for every function f in a double iterated outer Lp space in
the setting pX,µ, rνd, ωq, we can pass to a cut off f1XJ approximating the double iterated
outer Lp quasi-norm of f , for XJ defined in (3.5.1).

Next, for every fixed J P N, we consider the outer measure rνd,J induced on YJ by rνd,
where YJ is defined in (3.4.6). We observe that rνd,J is equivalent to the outer measure
generated as in (3.1.17) by the pre-measure rτ restricting the collection rTd of trees to those
contained in YJ , namely

rTd,J “ t rT p2lm, 2l, 2´lnq : m, l, n P Z, l ď Ju Ď rTd.

In the setting pYJ , µJ , rTd,J , ωJq, we can state definitions and prove results based on the
geometry of the elements of DJ , rTd,J analogous to those in Section 3.4. Therefore, for every
J P N, we can define a µJ -covering function rC satisfying the canopy condition 3.1.1 and the
crop condition 3.1.2. In particular, this definition is inherited by XJ Ď YJ .

After that, for every fixed J P N, we observe that the elements of DJ , rTd,J with nonempty
intersection with XJ are finitely many. Therefore, we can introduce a finite setting with
a point for every intersection and the induced measure and outer measures. In particular,
we conclude the result corresponding to that stated in Theorem 3.1.5 via an argument
analogous to that of the previous subsection.

3.A Geometry of the dyadic upper half 3-space setting

In this appendix, we present the postponed proofs of the results involving the geometry of
the dyadic strips and trees in the upper half 3-space stated in Section 3.4, and in (3.5.12)
in Section 3.5.

We start recalling that every dyadic strip D in D is determined by a dyadic interval ID
in I, and has the form

D “ ID ˆ p0, |ID|s ˆ R “ πpDq ˆ p0, |πpDq|s ˆ R, (3.A.1)

and every dyadic tree T in T is determined by two dyadic intervals IT , rIT in I such that
|IT ||rIT | “ 1 and has the form

T “
ď

JPI,JĎIT

J ˆ p0, |J |s ˆ rJpT, Jq “
ď

JPI,JĎπpT q
J ˆ p0, |J |s ˆ rJpT, Jq, (3.A.2)

where the dyadic interval rJpT, Jq in I is defined by the conditions

| rJpT, Jq| “ |J |´1,

rIT “ rJ
`

T, πpT q
˘

Ď rJpT, Jq.
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Proof of Lemma 3.4.1. If D1 XD2 is empty, the statement is trivially verified. Therefore,
we assume that the strips D1, D2 have a nonempty intersection. Hence the dyadic intervals
πpD1q, πpD2q have a nonempty intersection as well. Therefore, we have either πpD1q Ď

πpD2q or πpD2q Ď πpD1q. Without loss of generality, we can restrict to the first case, the
second being analogous. We have |πpD1q| ď |πpD2q|, hence by (3.A.1)

D1 Ď D2.

Proof of Lemma 3.4.2. If D X T is empty, the statement is trivially verified. Therefore,
we assume that the strip D and the tree T have a nonempty intersection. Hence the
dyadic intervals πpDq, πpT q have a nonempty intersection as well. Therefore, we have
either πpDq Ď πpT q or πpT q Ď πpDq. In the first case, we have |πpDq| ď |πpT q|, hence by
(3.A.1) and (3.A.2)

D X T “ T
´

πpDq, rJ
`

T, πpDq
˘

¯

.

In the second case, we have |πpT q| ď |πpDq|, hence by (3.A.1) and (3.A.2)

D X T “ T.

Proof of Lemma 3.4.3. Let D be a strip in D. Then

µpDq “ inft
ÿ

D1PD1

σpD1q : D1 Ď D, D Ď LpD1qu.

Therefore, the inequality
µpDq ď σpDq

follows trivially. To prove the opposite inequality, we observe that for every covering D1 of
D by means of strips in D, there exists a strip E in D1 such that

pxD, |πpDq|, 0q P E,

where xD is the middle point of the dyadic interval πpDq. In particular, this implies

σpEq ě |πpDq|.

Therefore, we have
ÿ

D1PD1

σpD1q ě σpDq,

By taking the infimum among all the possible coverings of D, we obtain the desired equality
in (3.4.7).
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The statement for a tree T in T in (3.4.8) follows by an analogous argument considering
the point

pxT , |πpT q|, ξT q,

where xT is the middle point of the dyadic interval πpT q, and ξT is the middle point of the
dyadic interval rJ

`

T, πpT q
˘

.
The statement in (3.4.9) follows by the definition of DpT q, (3.4.7), and (3.4.8).

Proof of Lemma 3.4.4. LetD1 be a collection of pairwise disjoint strips inD. The inequality

µpLpD1qq ď
ÿ

D1PD1

µpD1q,

follows by the subadditivity of µ. To prove the opposite inequality, we consider a covering
D2 of LpD1q. Without loss of generality, we assume that every E in D2 is not strictly
contained in any element of D1, otherwise it would be useless to the purpose of covering.
Therefore, we have E Ć LpD1q, and, by Lemma 3.4.1, we have

D1 “ D1,E Y rD1,

where every element of D1,E is contained in E, and every element of the other collection is
disjoint from E. In particular,

LpD1,Eq Ď E. (3.A.3)

As a consequence, we have

σpEq “ |πpEq| ě |π
`

LpD1,Eq
˘

| “
ÿ

D1PD1,E

|πpD1q| “
ÿ

D1PD1,E

µpD1q,

where we used (3.4.7) in the first and in the third equality, (3.A.3) and the monotonicity
of π and the Lebesgue measure in the inequality, the distributivity of the projection over
set union and the additivity of the Lebesgue measure on the disjoint intervals in πpD1q in
the second equality. Together with the observation that for every element D1 of D1 there
exists at least one E in D2 such that D1 P D1,E , we obtain

ÿ

EPD2

σpEq ě
ÿ

EPD2

ÿ

D1PD1,E

µpD1q ě
ÿ

D1PD1

µpD1q.

By taking the infimum among all the possible coverings of LpD1q, we obtain the desired
equality in (3.4.10).

The statement for a collection T1 of pairwise disjoint trees in (3.4.11) follows by an
analogous argument. The additional observation is that the collection of trees T splits into
two families

T “ T` Y T´,
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where the elements of T` are all contained in Rˆ p0,8qˆ p0,8q, while the elements of T´
are all contained in Rˆ p0,8qˆ p´8, 0s. In particular, every element of the first family is
disjoint from every element of the second one.

The statement in (3.4.12) follows by Lemma 3.4.2 and (3.4.11).

Proof of (3.4.13), (3.4.14). Let A be a subset of X. For every point px, s, ξq in A, there
exist l P Z such that s P p2l´1, 2ls, and m P Z such that x P Ipm, lq. Hence, we have

px, s, ξq P Dpm, lq`,

proving (3.4.13).
Next, let A1, A2 be two subsets of X such that A1 Ď A2. By the definition of Q, we

have QpA1q Ď QpA2q. Taking the union of the elements of the collection in both cases, we
obtained the desired inclusion, proving (3.4.14).

Proof of (3.4.16), (3.4.17). Let D1 be a collection of strips. By the definition of N , we have
D1 Ď N pD1q. Taking the union of the elements of the collection in both cases, we obtained
the desired inclusion, proving (3.4.16).

Next, let D1,D2 be two collections of strips such that LpD1q Ď LpD2q. In particular,
πpLpD1qq Ď πpLpD2qq. By the definition of N , we have N pD1q Ď N pD1q. Taking the union
of the elements of the collection in both cases, we obtained the desired inclusion, proving
(3.4.17).

Proof of (3.4.19), (3.4.20). Let D1 be a collection of strips. Since MpD1q Ď D1, we have
the inclusion LpMpD1qq Ď LpD1q.

To prove the inclusion in the opposite direction, we observe that for every strip D1 in
D1zMpD1q, there exists a finite collection of strips in D strictly containingD1. In particular,
there exists a maximal one in D1, which then belongs toMpD1q and is unique by definition.
Taking the union of the elements of the collection in both cases, we obtained the desired
inclusion, proving (3.4.19).

The monotonicity property in (3.4.20) follows trivially.

Proof of (3.4.21), (3.4.18), (3.4.15). The equalities in (3.4.21) follow by (3.4.19) and (3.4.10).
Now, we turn to the proof of the inequality in (3.4.18). By (3.4.19), we have

N ˝M “ N ,

hence
µpLpN pD1qqq “ µpLpN pMpD1qqqq.

By (3.4.19) and (3.4.10), we have

µpLpN pMpD1qqqq “ µpLpMpN pMpD1qqqqq “
ÿ

EPMpN pMpD1qqq

|πpEq|,

µpLpD1qq “ µpLpMpD1qqq “
ÿ

EPMpD1q

|πpEq|.
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By the disjointness of the elements in MpD1q and Lemma 3.4.1, we can partition the
collectionMpD1q into pairwise disjoint subcollectionsMpD1qE , one for each element E P
MpN pMpD1qqq, so that

LpMpD1qEq Ď E.

By the definition of N , we have
ÿ

EPMpN pMpD1qqq

|πpEq| ď 2
ÿ

EPMpN pMpD1qqq

ÿ

FPMpD1qE

|πpF q| ď 2
ÿ

FPMpD1q

|πpF q|.

Together with the previous chains of equalities, this yields the desired inequality in (3.4.18).
Finally, we turn to the proof of the equality in (3.4.15). The inequality

µpAq ď µpLpQpAqqq,

follows by (3.4.13) and the monotonicity of µ. The inequality

µpLpQpAqqq “ µpLpMpQpAqqqq ď µpAq,

follows by an argument analogous to the one used to prove (3.4.10) upon observing that
for every E inMpQpAqq, the intersection between E` and A is nonempty.

Proof of (3.5.12). Without loss of generality, we assume the arbitrary tree rT P rT to be of
the form rT p0, 1, 1q, namely

rT p0, 1, 1q “ tpy, t, ηq : y P p0, 1s, t P p0, 1s, η P 1` p´t´1, t´1su.

Next, let rT0 be the subset of rT defined by

rT0 “ rT p0, 1, 1q X p0, 1s ˆ p0, 1s ˆ p0,8q.

Due to the monotonicity of ν, it is enough to show that

νp rT0q “ 8.

Now, let U0 Ď T be a covering of rT0 by dyadic trees. For every l P N, let Vl be the subset
of rT0 defined by

Vl “ p0, 1s ˆ p2
´l´1, 2´ls ˆ p2l, 2l ` 1s,

and let U0plq be the subcollection of U0 defined by its dyadic tree with nonempty intersection
with Vl. In particular, we have

Vl Ď LpU0plqq,

and, for every l1 P N, l1 ‰ l, for every U P U0plq, we claim that

U X Vl1 “ ∅.
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In particular, the dyadic tree U has the form T
`

m,´j, npl, jq
˘

, where j P Z, j ď l, m P

Z, 0 ď m ă 2j , and npl, jq P Z is defined by the condition

Ipnpl, jq, jq Ď Ip1, lq.

If j ą l1, we have

U Ď Rˆ p0, 2l
1´1s ˆ R,

Vl1 Ď Rˆ p2l
1´1, 2l

1

s ˆ R,

yielding the desired disjointness.
If j ă l1, we distinguish two cases.
Case I: l ă l1. We have

Ipnpl, jq, jq Ď Ip1, lq Ď Ip0, l1q,

p2l
1

, 2l
1

` 1s Ď Ip1, l1q,

yielding the desired disjointness.
Case II: l ą l1. We have

Ipnpl, jq, jq Ď Ip1, lq,

p2l
1

, 2l
1

` 1s Ď Ip1, l1q Ď Ip0, lq,

yielding the desired disjointness.
Therefore, the subcollections U0plq are pairwise disjoint, and we have

ÿ

TPU0

τpT q ě
ÿ

lPN

ÿ

TPU0plq

τpT q ě
ÿ

lPN
νpVlq.

It is enough to observe that, for every l P N, we have

νpVlq “ 1.

In fact, for every covering Vl of Vl by dyadic trees in T , we have

πpVlq Ď π
`

ď

V PVl

V
˘

Ď
ď

V PVl

πpV q,

hence
1 “ |πpVlq| ď

ÿ

V PVl

|πpV q| “
ÿ

V PVl

τpV q.
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3.B Approximation for outer Lp spaces

In this appendix, we present the postponed proofs of the approximation results stated in
Section 3.5.

Proof of Lemma 3.5.1. We have

‖f‖p
LpµpSq

ď C
ÿ

kPZ
2kpµpSpfq ą 2kq.

In particular, there exists k0 P N such that, for every rk P N,rk ě k0, we have

‖f‖p
LpµpSq

ď C
ÿ

kďrk

2kpµpSpfq ą 2kq. (3.B.1)

If µpSpfq ą 2k0q “ 0, we have that f P L8µ pSq, and we can take A “ X.
Otherwise, we claim that there exists k1 P N, k1 ą k0 such that

µpSpfq ą 2k1´1q ą 2pµpSpfq ą 2k1q. (3.B.2)

If not, for every k P N, k ą k0, we would have

2kpµpSpfq ą 2kq ě 2k0pµpSpfq ą 2k0q ą 0,

yielding the contradiction

‖f‖p
LpµpSq

ě C
8
ÿ

k“k0`1

2kpµpSpfq ą 2kq ě C
8
ÿ

k“k0`1

2k0pµpSpfq ą 2k0q “ 8.

Now, let B be an optimal set associated with µp`rpfq ą 2k1q up to a factor 2´1p1` 2pq,
namely

‖f1Bc‖L8µ pSq ď 2k1 , (3.B.3)

µpSpfq ą 2k1q ď µpBq ď
1` 2p

2
µpSpfq ą 2k1q, (3.B.4)

and define A “ Bc, so that f1A P L
8
µ pSq.

We claim that for every k P N, k ă k1, we have

µpSpf1Aq ą 2kq ě
1´ 2´p

2
µpSpfq ą 2kq. (3.B.5)

If not, there would exist rk P N,rk ă k1 such that

µpSpf1Aq ą 2
rkq ă

1´ 2´p

2
µpSpfq ą 2

rkq,



134 CHAPTER 3. DOUBLE ITERATED OUTER LP SPACE

yielding the contradiction

µpSpfq ą 2
rkq ď µpSpf1Aq ą 2

rkq ` µpBq

ă
1´ 2´p

2
µpSpfq ą 2

rkq `
1` 2p

2
2´pµpSpfq ą 2k1´1q

ď µpSpfq ą 2
rkq,

where we used (3.B.3) and the subadditivity of µ in the first inequality, (3.B.4) and (3.B.2)
in the second, and the monotonicity of the super level measure µpSpfq ą λq in λ in the
third.

Therefore, by (3.B.1) and (3.B.5), we have

‖f‖p
LpµpSq

ď C
ÿ

kăk1

2kpµpSpfq ą 2kq ď C
ÿ

kăk1

2kpµpSpf1Aq ą 2kq

ď C‖f1A‖pLpµpSq.

Proof of Lemma 3.5.2. Without loss of generality, upon normalization of f , we assume that

1 ă ‖f‖L8ν p`rωq ď 2.

For every k P Z, k ą 0, the super level measure of f associated with the level 2k is zero,
and the desired inequality is trivially satisfied.

For the remaining k P Z, k ď 0, we prove the desired inequality by induction. In
particular, we prove that there exist constants C “ Cprq, c “ cprq, and a bounded sequence
tCk : Ck ă C, k P Z, k ď 0u such that

νp`rωpfq ą 2kq ď Ck
ÿ

lěk

νp`rωpf1Xj q ą c2lq.

Case I: k “ 0. By the r-orthogonality of the classical Lr quasi-norm on sets with
disjoint supports, there exists a set B0 such that

`rωpfqpB0q ą 1, (3.B.6)
νp`rωpfq ą 1q ď νpB0q. (3.B.7)

By the monotonicity of the classical Lr quasi-norm and (3.B.6), there exists j P N such
that

`rωpf1Xj qpB0q ą 1.

Since we have
‖f1Xj‖L8ν p`rωq ď ‖f‖L8ν p`rωq ď 2,
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we obtain, by Lemma 3.2.1,

νpB0q ď C0νp`
r
ωpf1Xj q ą cq.

Together with (3.B.7), this yields the desired inequality.
Case II: k ă 0. We assume that there exists j “ jpr, f, k ` 1q P N such that

νp`rωpfq ą 2k`1q ď Ck`1

ÿ

lěk`1

νp`rωpf1Xj q ą c2lq. (3.B.8)

Now, for every ε ą 0, there exists a set Ak`1 such that

‖f1Ack`1
‖L8ν p`rωq ď 2k`1, (3.B.9)

νp`rωpfq ą 2k`1q ď νpAk`1q ď p1` εqνp`
r
ωpfq ą 2k`1q. (3.B.10)

We will fix ε later. In particular, we have

νp`rωpfq ą 2kq ď νpAk`1q ` νp`
r
ωpf1Ack`1

q ą 2kq. (3.B.11)

If we have
‖f1Ack`1

‖L8ν p`rωq ď 2k,

we obtain

νp`rωpfq ą 2kq ď νpAk`1q ď p1` εqCk`1

ÿ

lěk`1

νp`rωpf1Xj q ą c2lq.

Otherwise, we have
2k ă ‖f1Ack`1

‖L8ν p`rωq ď 2k`1.

Applying to the function f1Ack`1
an argument analogous to that of the previous case, we

obtain j “ jpr, f, kq P N, without loss of generality greater than jpr, f, k ` 1q, such that

νp`rωpf1Ack`1
q ą 2kq ď C0νp`

r
ωpf1Ack`1

1Xj q ą c2kq ď C0νp`
r
ωpf1Xj q ą c2kq.

Together with (3.B.11), (3.B.10), and (3.B.8), the previous chain of inequalities yields

νp`rωpfq ą 2kq ď p1` εqCk`1

ÿ

lěk`1

νp`rωpf1Xj q ą c2lq ` C0νp`
r
ωpf1Xj q ą c2kq.

By choosing ε “ εpkq “ 22k ´1 and defining Ck “ 21´2kC0, C “ 2C0, we obtain the desired
inequality.
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Proof of Lemma 3.5.3. The proof is analogous to that of Lemma 3.5.2 upon the following
observation. Without loss of generality, it is enough to comment in the case

1 ă ‖f‖L8µ p`qνp`rωqq ď 2.

Therefore, for every dyadic strip E P D, we have f1E P L
q
νp`rωq. Moreover, there exists a

collection of maximal dyadic strips tEn : En P D, n P Nu such that

`qνp`
r
ωqpfqpEnq ą 1,

µp`qνp`
r
ωqpfq ą 1q ď

ÿ

nPN
µpEnq.

In particular, there exists a finite subcollection such that

µp`qνp`
r
ωqpfq ą 1q ď 2

N
ÿ

n“1

µpEnq.

Since the dyadic strips are maximal, then they are disjoint, hence, by Lemma 3.4.4, they
are ν-Carathéodory with parameter 1.

Now we apply an argument analogous to that used to prove Lemma 3.5.2 with the
monotonicity of the classical Lr quasi-norms replaced by Lemma 3.5.4, and Lemma 3.2.1
replaced by Lemma 3.3.3.
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Chapter 4

Further results

4.1 Introduction

In this chapter, we collect some statements and proofs of additional properties in the context
of the Lp theory for outer measures, as well as some open conjectures.

In Section 4.2, we focus on the properties of single iterated outer Lp quasi-norms and
spaces on σ-finite and finite settings described in Subsections 1.2.1 – 1.2.2.

Next, in Section 4.3, we study Minkowski’s inequality and the relative embeddings in
the case of single iterated outer Lp quasi-norms and spaces on σ-finite settings described in
Subsection 1.2.1.

In the following two sections, we investigate the Banach space properties of outer Lp

quasi-norms and spaces on the settings on the upper half 3-space or its discrete model
described in Subsections 1.2.11 – 1.2.13. First, in Section 4.4, we study the case of the sizes
`rω. Then, in Section 4.5, we pass to the case of the size with variable exponent appearing
in the article of Do and Thiele [DT15].

After that, in Section 4.6, we make an observation about the Banach space properties of
the double iterated outer L8µ p`

q
νp`rωqq spaces on finite settings described in Subsections 1.2.2.

In Section 4.7, we consider the embedding maps via cancellative wavelets from classical
Lp spaces to single iterated outer Lp spaces on the settings on the upper half space or its
discrete model described in Subsections 1.2.8 – 1.2.10. We comment on some positive and
negative results about their boundedness.

We conclude by collecting some conjectures about the Lp theory of outer measure spaces
in Section 4.8.

4.2 Outer Lpµp`rωq quasi-norms and spaces

In this section, we further investigate the properties of the single iterated outer Lp quasi-
norms and spaces.
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First, in Theorem 4.2.1 in Subsection 4.2.1, we extend the results about the Banach
space properties of the single iterated outer Lp spaces obtained in Chapter 2 in the case
of finite settings described in Subsection 1.2.2 to the case of σ-finite settings described
in Subsection 1.2.1. In this regard, we recall that all the finite settings are also σ-finite
settings.

Next, in Lemma 4.2.4 in Subsection 4.2.2, we prove that, given two outer measures on
the same measure space, an inequality between them implies certain embeddings between
the respective single iterated outer Lp spaces.

After that, in Lemma 4.2.5 in Subsection 4.2.3, we provide a counterexample to the
uniformity in the finite setting pX,µ, ωq of the constant in the weak quasi-triangle inequality
for countably many summands for the outer Lpµp`8ω q spaces, clarifying the remaining case
of the analysis begun in Chapter 2.

Finally, in Lemma 4.2.7 and Lemma 4.2.10 in Subsection 4.2.4, we exhibit necessary
and sufficient conditions on the outer measure µ to recover the uniformity in the setting
pX,µ, ωq of the constant in the weak and strong quasi-triangle inequality for countably
many summands for the outer L1

µp`
8
ω q spaces.

4.2.1 Banach space properties of the outer Lpµp`rωq spaces on σ-finite set-
tings

We prove the uniformity in the σ-finite setting pX,µ, ωq of the constants in collapsing of
exponents, Köthe duality, and quasi-triangle inequality for countably many summands for
the single iterated outer Lp spaces.

Theorem 4.2.1. For all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for
every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following properties hold
true.

(i) For every p P p0,8s, for every measurable function f P Lpµp`pωq on X, we have

C´1‖f‖Lpµp`pωq ď ‖f‖LppX,ωq ď C‖f‖Lpµp`pωq.

(ii) For all p P p1,8s, r P r1,8q or p “ r P t1,8u, for every measurable function
f P Lpµp`rωq on X, we have

C´1‖f‖Lpµp`rωq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`r1ω q “ 1
)

ď C‖f‖Lpµp`rωq.

(iii) For all p P p1,8s, r P r1,8q or p “ r P t1,8u, for every collection tfn : n P Nu Ď
Lpµp`rωq of measurable functions on X, we have∥∥∥ ÿ

nPN
fn

∥∥∥
Lpµp`rωq

ď C
ÿ

nPN
‖fn‖Lpµp`rωq.
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The proof of the previous statement follows from an argument analogous to that used
to prove Theorem 2.1.1 in Chapter 2 in the case of finite settings. The main ingredient in
the latter case is a decomposition result stated in Proposition 2.2.1 in Chapter 2. The same
role in the former case is played by Proposition 4.2.2 stated below. This is a decomposition
result with respect to the size `rω for measurable functions on X in the intersection between
the outer Lpµp`rωq and L8µ p`rωq spaces. We point out that, in the case of finite settings, the
outer Lpµp`rωq space is contained in the outer L8µ p`rωq space. However, in the case of σ-finite
settings, in general the inclusion does not hold true.

Therefore, we need an additional ingredient to reduce the study of functions in the outer
Lpµp`rωq space to that of functions in the outer Lpµp`rωqXL8µ p`rωq space in the case of σ-finite
settings. The approximation results needed are stated in Lemma 3.5.1 and Lemma 3.5.2 in
Chapter 3. In particular, in Lemma 3.5.2, we use the monotone convergence theorem for
the classical LppX,ωq spaces, see for example the book of Rudin [Rud74].

We refer to the end of Chapter 1 for the notation of a double sequence parametrized by
pairs pk, nq with k P Z, n P Nk appearing in the following statement.

Proposition 4.2.2. For all p, r P p0,8q, there exists a constant C “ Cpp, rq such that, for
every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following property holds
true.

For every measurable function f P Lpµp`rωq X L8µ p`
r
ωq on X, there exist k0 P Z and a

double sequence tEk,n : k P Z, n P Nku Ď Σ of measurable subsets of X such that

• For every k P Z, k ą k0, we have Nk “ ∅.

• If we set

Fk “ ∅, for every k P Z, k ą k0,
Fk,0 “ Fk`1, for every k P Z, k ď k0,
Fk,n “ Fk,n´1 Y Ek,n, for every k P Z, k ď k0, for every n P Nk,

Fk “ Fk`1 Y
ď

nPNk

Fk,n, for every k P Z, k ď k0,

then, for all k P Z, n P Nk, we have

`rωpf1F ck,n´1
qpEk,nq ą 2k, when Ek,n ‰ H, (4.2.1)

‖f1F ck‖L8µ p`rωq ď 2k, (4.2.2)

µp`rωpfq ą 2kq ď µpFkq, (4.2.3)
ÿ

nPNk

µpEk,nq ď Cµp`rωpfq ą 2k´1q. (4.2.4)

In particular, we have

‖f‖p
Lpµp`rωq

„p,r

ÿ

kPZ
2kp

ÿ

nPNk

µpEk,nq „p,r
ÿ

kPZ
2kp

ÿ

lPZ,lěk

ÿ

mPNl

µpEl,mq.
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Proof. The selection algorithm is analogous to that described in Case I in the proof of
Proposition 2.2.4 in Chapter 2. We define the collection tEk,n : k P Z, n P Nku Ď Σ of
measurable subsets of X by a double recursion, backward on k P Z, and, for every fixed k,
forward on n P Nk. In parallel, we prove the properties in (4.2.1) – (4.2.4) by backward
induction on k P Z.

We briefly comment on the modification needed. For all rk P Z, rk ď k0, rn P N
rk
, we

define the collection E
rk,rn
Ď Σ of measurable subsets of X by

E
rk,rn
“

!

E P Σ: `rωpf1F c
rk,rn´1

qpEq ą 2
rk
)

.

If E
rk,rn

is empty, we define N
rk
Ď N by

N
rk
“

#

∅, if rn “ 1,
t1, . . . , rn´ 1u, if rn P N, rn ą 1.

If E
rk,rn

is not empty, by an argument analogous to that used to prove the first inequality in
(2.16) in Chapter 2, we can prove that, for every measurable subset E P E

rk,rn
, we have

µpEq `
ÿ

nPN
rk
,nărn

µpE
rk,n
q ď Cµp`rωpfq ą 2

rk´1q ď C2´
rkp‖f‖p

Lpµp`rωq
ă 8, (4.2.5)

hence there exists j0 “ j0prk, rnq P Z such that

sup
!

µpEq : E P E
rk,rn

)

P p2j0 , 2j0`1s.

We choose E
rk,rn
P E

rk,rn
such that

µpE
rk,rn
q P p2j0 , 2j0`1s.

By the inequality in (4.2.5), we have

j0prk, rn` 1q ď j0prk, rnq ´ 1,

hence, for every rk P Z, the sequence tµpE
rk,n
q : n P N

rk
u is strictly decreasing.

4.2.2 Domination between outer measures and embeddings between outer
Lp spaces

We start with the definition of domination between outer measures.

Definition 4.2.3. Let µ and ν be two outer measures on a set X. We say that ν dominates
µ or equivalently µ is dominated by ν if, for every subset A Ď X, we have

µpAq ď νpAq. (4.2.6)
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Given two outer measures µ and ν on the same measure space pX,ωq such that ν
dominates µ, we obtain certain embeddings between the single iterated outer Lp spaces
associated with them.

Lemma 4.2.4. For all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for
all σ-finite settings pX,µ, ωq and pX, ν, ωq described in Subsection 1.2.1, if ν dominates µ,
then, for every measurable function f on X, we have

if p ě r, ‖f‖Lpνp`rωq ď C‖f‖Lpµp`rωq,

if p ď r, ‖f‖Lpµp`rωq ď C‖f‖Lpνp`rωq.

Proof. We split the proof into four cases according to the values of p and r.
Case I: p “ r P p0,8s. The desired inequalities follow from collapsing of exponents,

property piq in Theorem 4.2.1, for the σ-finite settings pX,µ, ωq and pX, ν, ωq.
Case II: r ă p “ 8 or p ă r “ 8. The desired inequalities follow from the definition

of the outer Lp quasi-norms in Definition 1.1.4 and Definition 1.1.6, the definition of the
sizes `rω in (1.2.3) and (1.2.4), and the domination between the outer measures.

Case III: r ă p ă 8. Without loss of generality, we assume r “ 1, since, for every
setting pX,µ, ωq, we have

‖f‖rLpµp`rωq “ ‖f
r‖
L
p
r
µ p`1ωq

.

In particular, we have p ą 1, hence

‖f‖Lpνp`1ωq ď C sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1ν p`8ω q “ 1
)

ď C sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`8ω q “ 1
)

ď C sup
!

‖fg‖L1
µp`

1
ωq

: ‖g‖
Lp
1

µ p`8ω q
“ 1

)

ď C‖f‖Lpµp`1ωq,

where we used Köthe duality, property piiq in Theorem 4.2.1, for the σ-finite setting pX, ν, ωq
in the first inequality, the inequality proved in Case II in the second, the Radon-Nikodym
type result for the outer L1 quasi-norms (Theorem 1.1.8) for the σ-finite setting pX,µ, ωq
in the third, and outer Hölder’s inequality (Theorem 1.1.7) for the σ-finite setting pX,µ, ωq
in the fourth.

Case IV: p ă r ă 8. Without loss of generality, we assume p “ 2. In particular, we
have 1 ă r1 ă p1 “ 2, hence

‖f‖L2
µp`

r
ωq
ď C sup

!

‖fg‖L1pX,ωq : ‖g‖L2
µp`

r1
ω q
“ 1

)

ď C sup
!

‖fg‖L1pX,ωq : ‖g‖L2
νp`

r1
ω q
“ 1

)

ď C sup
!

‖fg‖L1
νp`

1
ωq

: ‖g‖L2
νp`

r1
ω q
“ 1

)

ď C‖f‖L2
νp`

r
ωq
,



142 CHAPTER 4. FURTHER RESULTS

where we used Köthe duality, property piiq in Theorem 4.2.1, for the σ-finite setting pX,µ, ωq
in the first inequality, the inequality proved in Case III in the second, the Radon-Nikodym
type result for the outer L1 quasi-norms (Theorem 1.1.8) for the σ-finite setting pX, ν, ωq
in the third, and outer Hölder’s inequality (Theorem 1.1.7) for the σ-finite setting pX, ν, ωq
in the fourth.

4.2.3 Counterexample to uniform weak quasi-triangle inequality for the
outer Lpµp`8ω q spaces

For p P r1,8q, we consider the dependence on the finite setting pX,µ, ωq of the constant in
the inequality ∥∥∥ÿ

nPN
fn

∥∥∥
Lp,8µ p`8ω q

ď CpX,µ, ωq
ÿ

nPN
‖fn‖Lpµp`8ω q,

where tfn : n P Nu is any arbitrary collection of functions on X. For every p P r1,8q, we
exhibit a counterexample to the uniformity of the constant in the finite setting pX,µ, ωq.
This failure implies the existence of counterexamples to the uniformity in the finite setting
pX,µ, ωq of the constant in Köthe duality for the outer Lpµp`8ω q spaces with p P r1,8q as
well.

The counterexample is suggested by the articles of Herer and Christensen [HC75] and
Topsøe [Top76], where the authors studied the existence of pathological submeasures. A
pathological submeasure µ on a set X is a non-zero outer measure such that the only
measure on X dominated by µ as in Definition 4.2.3 is the zero measure.

Lemma 4.2.5. Let p P r1,8q. For every M ą 0, there exist a finite setting pX,µ, ωq and
a collection tfn : n P Nu Ď Lpµp`8ω q of functions on X such that∥∥∥ÿ

nPN
fn

∥∥∥
Lp,8µ p`8ω q

ěM
ÿ

nPN
‖fn‖Lpµp`8ω q.

Proof. For every m P N, let pXm, µm, ωmq be the setting on the m-dimensional hypercube
of sidelength m described in Subsection 1.2.6. We refer to that subsection for the definition
of the subset Epxq.

For every x P Xm, we define the function fx on Xm by

fx “ 1Epxq.

Summing over all the elements of Xm, we obtain
ÿ

xPXm

fx “ pm´ 1qm1Xm .

Next, for every n P N, n ď m, for every collection tx1, . . . , xnu Ď Xm, we define x P Xm by

x “ pπ1px1q, . . . , πnpxnq, 0, . . . , 0q,
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where πi : Xm Ñ Z{mZ is the projection onto the i-th coordinate. Hence, for every n P N,
n ď m, we have

x R
n
ď

i“1

Epxiq.

Therefore, since the outer measure µm is generated via minimal coverings as in (1.1.1) by
the pre-measure σm on the collection tEpxq : x P Xmu and σmpEpxqq “ 1 for every x P Xm,
we have

µmpXmq ą m.

Moreover, for every x P Xm, we have

µmpEpxqq “ 1.

Together with the equality for the outer Lp and Lp,8 quasi-norms of a characteristic function
in finite settings in (1.2.10), the previous two displays yield∥∥∥ ÿ

xPXm

fx

∥∥∥
Lp,8µ p`8ω q

“ pm´ 1qm‖1Xm‖Lp,8µ p`8ω q
ą pm´ 1qmm

1
p ,

ÿ

xPXm

‖fx‖Lpµp`8ω q “
ÿ

xPXm

1 “ mm.

Taking m P N big enough, we obtain the desired inequality.

4.2.4 Necessary and sufficient conditions for strong and weak quasi-
triangle inequalities for the outer L1

µp`
8
ω q space

We start by recalling an already known necessary and sufficient condition on the outer
measure µ to recover the strong triangle inequality for countably many summands for the
outer L1

µp`
8
ω q space on general settings. The condition on µ is called strong subadditivity in

the article of Choquet [Cho54], and submodularity in the book of Denneberg [Den94]. We
refer to [Cho54] and [Den94] for the proof of the following statement. We point out that
the constant in the triangle inequality in (4.2.8) is 1.

Lemma 4.2.6 (Theorem in Subsection 54.2 in [Cho54], Theorem 6.3 in [Den94]). For every
general setting pX,µ, ωq described in Subsection 1.2.3 where, for every x P X, we have

ωptxuq P p0,8q, (4.2.7)

the following properties are equivalent.

(i) For every collection tfn : n P Nu Ď L1
µp`

8
ω q of functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1
µp`

8
ω q
ď

ÿ

nPN
‖fn‖L1

µp`
8
ω q
. (4.2.8)
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(ii) For all subsets A,B Ď X, we have

µpAYBq ` µpAXBq ď µpAq ` µpBq.

Next, we provide new necessary and sufficient conditions on the outer measure µ to
recover the uniformity in the general setting pX,µ, ωq of the constant in the weak and
strong quasi-triangle inequalities for countably many summands for the outer L1

µp`
8
ω q space.

In particular, we allow the constants appearing in the quasi-triangle inequalities in (4.2.9)
and (4.2.16) to be different from 1. We start with the weak quasi-triangle inequality. We
recall that, in the case of general settings, for every measurable function f on X, we have
the same properties described in the equalities in (1.2.6) and (1.2.7) in the case of σ-finite
settings.

Lemma 4.2.7. Let C ě 1. For every general setting pX,µ, ωq described in Subsection 1.2.3,
the following properties are equivalent.

(i) For every collection tfn : n P Nu Ď L1
µp`

8
ω q of measurable functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1,8
µ p`8ω q

ď C
ÿ

nPN
‖fn‖L1

µp`
8
ω q
. (4.2.9)

(ii) For every collection tAn : n P Nu of measurable subsets of X, we have∥∥∥ÿ
nPN

1An

∥∥∥
L1,8
µ p`8ω q

ď C
ÿ

nPN
‖1An‖L1

µp`
8
ω q
. (4.2.10)

Moreover, if ω satisfies the condition in (4.2.7), the properties are equivalent to the following
one.

(iii) For every collection tAn : n P Nu of subsets of X, we have

min
!

ÿ

nPN
1Anpxq : x P

ď

nPN
An

)

µ
´

ď

nPN
An

¯

ď C
ÿ

nPN
µpAnq. (4.2.11)

Proof. Case I: piq ñ piiq. Let tAn : n P Nu be a collection of measurable subsets of X.
For every n P N, we define the measurable function fn on X by

fn “ 1An .

The inequality in (4.2.9) for the collection tfn : n P Nu of measurable functions on X yields
the inequality in (4.2.10).

Case II: piiq ñ piiiq. We define j P N by

j “ min
!

ÿ

nPN
1Anpxq : x P

ď

nPN
An

)

.
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By the definition of j P N, the condition on ω in (4.2.7), and the equality for the outer L1,8

quasi-norm in (1.2.6), we have

jµ
´

ď

nPN
An

¯

“ sup
!

λµ
´

`8ω

´

ÿ

nPN
1An

¯

ą λ
¯

: λ P p0, jq
)

ď

∥∥∥ÿ
nPN

1An

∥∥∥
L1,8
µ p`8ω q

.

Moreover, by the equality for the outer L1 quasi-norm of a characteristic function in (1.2.7)
and the condition on ω in (4.2.7), for every n P N, we have

‖1An‖L1
µp`

8
ω q
“ µpAnq.

Together with the inequality in (4.2.10), the previous three displays yield the desired in-
equality in (4.2.11).

Case III: piiq ñ piq. Let tfn : n P Nu Ď L1
µp`

8
ω q be a collection of measurable functions

on X. Without loss of generality, we assume that all the functions tfn : n P Nu are non-
negative. We start by considering functions on X with values in NY t0u.

For every j P N, we define the measurable subset Aj Ď X by

Aj “
!

x P X :
ÿ

nPN
fnpxq ě j

)

,

and, for all n,m P N, we define the measurable subset An,m Ď X by

An,m “
!

x P X : fnpxq ě m
)

.

By the equalities for the outer L1,8 and L1 quasi-norms in (1.2.6) and (1.2.7), since the
functions in the collection tfn : n P Nu have values in NY t0u, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1,8
µ p`8ω q

“ sup
!

‖j1Aj‖L1,8
µ p`8ω q

: j P N
)

,

and, for every n P N, we have

‖fn‖L1
µp`

8
ω q
“

ÿ

mPN
‖1An,m‖L1

µp`
8
ω q
. (4.2.12)

Moreover, for every j P N, by the definition of the measurable subsets Aj and An,m, we
have

j1Aj ď
ÿ

nPN

ÿ

mPN
1An,m .

For every j P N, together with the inequality in (4.2.10) for the collection tAn,m : n,m P Nu
of measurable subsets of X, the previous two displays yield the inequality

‖j1Aj‖L1,8
µ p`8ω q

ď
ÿ

nPN
‖fn‖L1

µp`
8
ω q
.
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Taking the supremum over j P N, together with the equality in (4.2.12), the previous display
yields the desired inequality in (4.2.9).

By standard homogeneity and approximation arguments, we extend the result to func-
tions on X with values first in Q and then in R.

Case IV: piiiq ñ piiq. Let tAn : n P Nu be a collection of subsets of X. For every
j P N, we define the subset Bj Ď X by

Bj “
!

x P X :
ÿ

nPN
1Anpxq ě j

)

.

Therefore, we have
j1Bj ď

ÿ

nPN
1BjXAn . (4.2.13)

By the equality for the outer L1,8 quasi-norm in (1.2.6) and the condition on ω in (4.2.7),
we have ∥∥∥ÿ

nPN
1An

∥∥∥
L1,8
µ p`8ω q

“ sup
!

jµpBjq : j P N
)

, (4.2.14)

and, by the equality for the outer L1 quasi-norm of a characteristic function in (1.2.7) and
the condition on ω in (4.2.7), for every n P N, we have

‖1An‖L1
µp`

8
ω q
“ µpAnq. (4.2.15)

For every j P N, together with the inequality in (4.2.11) for the collection tBjXAn : n P Nu
of subsets of X, the equality in (4.2.15) and the inequality in (4.2.13) yield the inequality

jµpBjq ď C
ÿ

nPN
‖1An‖L1

µp`
8
ω q
.

Taking the supremum over j P N, together with the equality in (4.2.14), the previous display
yields the desired inequality in (4.2.10).

Remark 4.2.8. Every finite setting described in Subsection 1.2.2 is an example of a general
setting pX,µ, ωq where, for every x P X, we have ωptxuq P p0,8q.

Remark 4.2.9. The condition associated with the inequality in (4.2.11) is called quasi-
subadditivity of order infinity in [AL85], and it can be understood as follows.

For every subset A Ď X, for every function φ : X Ñ N, we define the subset rEpA, φq Ď
X ˆ N by

rEpA, φq “
!

px, φpxqq P X ˆ N : x P A
)

.

Next, let
rX “ X ˆ N,
rE “

!

rEpA, φq : A Ď X,φ : AÑ N
)

,

rσp rEpA, φqq “ µpAq, for all A Ď X, φ : AÑ N,
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and let rµ be the outer measure generated via minimal coverings as in (1.1.1) by the pre-
measure rσ on the collection rE. The condition associated with the inequality in (4.2.11)
states that, up to a bounded multiplicative constant C, for every j P N, for every subset
A Ď X, we have

jµpAq ď CrµpAˆ t1, 2, . . . , juq.

Therefore, the collection tA ˆ tiu : i P N, i ď ju of subsets of rX provides a covering of the
set Aˆ t1, 2, . . . , ju defining the value of the outer measure rµ via rσ, up to a multiplicative
factor C. We point out that, by the definition of rµ, we have

rµpAˆ t1, 2, . . . , juq ď jµpAq.

We follow up with the strong quasi-triangle inequality.

Lemma 4.2.10. Let C ě 1. For every general setting pX,µ, ωq described in Subsec-
tion 1.2.3 where ω satisfies the condition in (4.2.7), the following properties are equivalent.

(i) For every collection tfn : n P Nu Ď L1
µp`

8
ω q of functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1
µp`

8
ω q
ď C

ÿ

nPN
‖fn‖L1

µp`
8
ω q
. (4.2.16)

(ii) For every collection tAn : n P Nu of subsets of X such that

A1 Ě A2 Ě ¨ ¨ ¨ Ě An Ě An`1 Ě ¨ ¨ ¨ , (4.2.17)

we have, for the outer measure rµ defined in Remark 4.2.9,
ÿ

nPN
µpAnq ď Crµ

´

ď

nPN
pAn ˆ tnuq

¯

. (4.2.18)

Proof. Case I: piq ñ piiq. Let tAn : n P Nu be a collection of subsets of X. For
the collection rE of subsets of X ˆ N of the form rEpA, φq defined in Remark 4.2.9, let
t rEpBi, φiq : i P Nu Ď rE be a collection such that

ď

nPN
pAn ˆ tnuq Ď

ď

iPN

rEpBi, φiq. (4.2.19)

Then, for every i P N, we define the function fi on X by

fi “ 1Bi .

By the equality for the outer L1 quasi-norm of a characteristic function in (1.2.7) and the
condition on ω in (4.2.7), we have

‖fi‖L1
µp`

8
ω q
“ µpBiq “ rσp rEpBi, φiqq.
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Next, by the inclusions in (4.2.17) and (4.2.19), we have
ÿ

nPN
1An ď

ÿ

iPN
fi.

Moreover, by the equality for the outer L1 quasi-norm in (1.2.6) and the condition on ω in
(4.2.7), we have ∥∥∥ÿ

nPN
1An

∥∥∥
L1
µp`

8
ω q
“

ÿ

jPN
µ
´!

x P X :
ÿ

nPN
1Anpxq ě j

)¯

,

and, by the inclusion in (4.2.17), for every j P N, we have

µ
´!

x P X :
ÿ

nPN
1Anpxq ě j

)¯

“ µpAjq.

Together with the monotonicity of the outer Lp quasi-norms and the inequality in (4.2.16)
for the collection tfi : i P Nu of functions onX, the previous four displays yield the inequality

ÿ

nPN
µpAnq ď C

ÿ

iPN
rσp rEpBi, φiqq.

Taking the infimum over the coverings of
Ť

nPNpAn ˆ tnuq by countable subcollections of
rE , by the definition of rµ, we obtain the desired inequality in (4.2.18).

Case II: piiq ñ piq. Let tfn : n P Nu Ď L1
µp`

8
ω q be a collection of functions on X.

Without loss of generality, we assume that all the functions tfn : n P Nu are non-negative.
We start by considering functions on X with values in NY t0u.

For every j P N, we define the subset Aj Ď X by

Aj “
!

x P X :
ÿ

nPN
fnpxq ě j

)

.

Therefore, we have
A1 Ě A2 Ě ¨ ¨ ¨ Ě Aj Ě Aj`1 Ě ¨ ¨ ¨ .

Moreover, for all n,m P N, we define the subset Bn,m Ď X by

Bn,m “
!

x P X : fnpxq ě m
)

,

and we define the function φn,m by

φn,m : Bn,m Ñ N, φn,mpxq “ 1`
ÿ

lPN,lăn

ÿ

kPN
1Bl,kpxq `

ÿ

kPN,kăm
1Bn,kpxq.
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For the subsets of X ˆ N of the form rEpA, φq defined in Remark 4.2.9, we have
ď

jPN
pAj ˆ tjuq Ď

ď

nPN

ď

mPN

rEpBn,m, φn,mq.

By the equality for the outer L1 quasi-norm in (1.2.6) and the condition on ω in (4.2.7),
we have ∥∥∥ÿ

nPN
fn

∥∥∥
L1
µp`

8
ω q
“

ÿ

jPN
µpAjq,

and, for every n P N, we have

‖fn‖L1
µp`

8
ω q
“

ÿ

mPN
µpBn,mq “

ÿ

mPN
rσp rEpBn,m, φn,mqq.

Together with the inequality in (4.2.18) for the collection tAj : j P Nu of subsets of X and
the definition of the outer measure rµ, the previous three displays yield the desired inequality
in (4.2.16).

By standard homogeneity and approximation arguments, we extend the result to func-
tions on X with values first in Q and then in R.

4.3 Minkowski’s inequality for the outer Lpµp`rωq quasi-norms

In this section, we extend the classical Minkowski’s inequality in the case of mixed Lp spaces
on the Cartesian product of σ-finite measure spaces to the case of single iterated outer Lp

spaces on σ-finite settings described in Subsection 1.2.1.
This extension requires the definition of an additional outer measure υ associated with

every σ-finite setting pX,µ, ωq. To define υ, we introduce a canonical construction in Sub-
section 4.3.1. Iterating the canonical construction updating recursively the setting, we
obtain a collection of new outer measures on X which are related between themselves, as
we show in Subsection 4.3.2. As an example, in Subsections 4.3.3 – 4.3.4, we study this col-
lection in the finite settings described in Subsections 1.2.6 – 1.2.7. Next, in Theorem 4.3.9,
we state and prove the desired Minkowski’s inequality between the outer Lpµp`rωq and Lrυp`

p
ωq

quasi-norms on σ-finite settings, and the embeddings between the respective single iterated
outer Lp spaces.

After that, in Subsection 4.3.6, we comment on the outer measures generated by the
iterations of the canonical construction in all the remaining settings described in Subsec-
tions 1.2.1 – 1.2.13.

In Subsection 4.3.7, we conclude the section by showing that the canonical construction
defining the outer measure υ guarantees some additional regularity in terms of the subad-
ditivity behaviour of υ. In particular, the outer measure υ satisfies the condition associated
with the inequality in (4.2.10) with constant 1, and it behaves nicely in terms of the Banach
space properties of the outer Lpυp`8ω q spaces with p P p1,8s.
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4.3.1 Recursive construction of canonical outer measures

We start by observing that, for every r P r1,8s, for every σ-finite setting pX,µ, ωq, the
outer L8µ p`rωq quasi-norm with r P r1,8s inherits the triangle inequality from the classical
LrpX,ωq norm.

Lemma 4.3.1. For every r P r1,8s, for every σ-finite setting pX,µ, ωq described in Sub-
section 1.2.1, the outer L8µ p`rωq quasi-norm is a norm.

Proof. We claim that, for all measurable functions f, g P L8µ p`rωq on X, we have

‖f ` g‖L8µ p`rωq ď ‖f‖L8µ p`rωq ` ‖g‖L8µ p`rωq. (4.3.1)

In fact, for every measurable subset A P Σ, µpAq “ 0, by the definition of the size `rω in
(1.2.3) and (1.2.4), we have

`rωpf ` gqpAq “ 0 ď ‖f‖L8µ p`rωq ` ‖g‖L8µ p`rωq.

Moreover, for every measurable subset A P Σ, µpAq R t0,8u, we have

`rωpf ` gqpAq “ µpAq´
1
r ‖pf ` gq1A‖LrpX,ωq

ď µpAq´
1
r p‖f1A‖LrpX,ωq ` ‖g1A‖LrpX,ωqq

ď ‖f‖L8µ p`rωq ` ‖g‖L8µ p`rωq,

where we used the triangle inequality for the classical LrpX,ωq norm in the first inequality.
Taking the supremum over the measurable subsets A P Σ, µpAq ‰ 8, the previous two
displays yield the desired inequality in (4.3.1).

For every σ-finite setting pX,µ, ωq, we define the pre-measure συ “ συpµ, ωq on the
collection Σ of all the measurable subsets of X by

συpAq–

#

0, if µpAq “ 0,
‖1A‖L8µ p`1ωq, if µpAq ‰ 0.

(4.3.2)

Next, we define υ “ υpµ, ωq to be the outer measure on X generated via minimal cover-
ings as in (1.1.1) by the pre-measure συ on the collection Σ. By Lemma 4.3.1, for every
measurable subset A P Σ, we have

υpAq “ συpAq. (4.3.3)

In particular, for every measurable subset A P Σ, if we define the collection ΣµpAq Ď Σ
of measurable subsets by

ΣµpAq “
!

B P Σ: B Ď A,µpBq R t0,8u
)

,
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then, we have

υpAq “ sup
!ωpBq

µpBq
: B P ΣµpAq

)

, (4.3.4)

where the supremum over an empty collection is understood to be 0. Moreover, if the
outer measure µ is generated via minimal coverings as in (1.1.1) by a pre-measure σ on a
collection E , by Lemma 2.A.3 in Chapter 2, for every measurable subset A P Σ, we have

υpAq “ sup
!ωpAX Eq

σpEq
: E P E , σpEq R t0,8u

)

. (4.3.5)

We observe that, starting with a σ-finite setting pX,µ, ωq, the construction described
in (4.3.2) defines another σ-finite setting pX, υ, ωq.

Lemma 4.3.2. For every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the setting
pX, υ, ωq is σ-finite as well.

Proof. We split the proof into two parts, the absolute continuity of the measure ω with
respect to the outer measure υ, and the σ-finiteness of X with respect to the outer measure
υ.

Part I: absolute continuity. We claim that, for every measurable subset A P Σ, we
have

υpAq “ 0 ñ ωpAq “ 0.

Let A Ď X be a measurable subset such that υpAq “ 0.
We distinguish three cases.
Case I: µpAq “ 0. By the absolute continuity of the measure ω with respect to the

outer measure µ assumed for the σ-finite setting pX,µ, ωq, we have ωpAq “ 0.
Case II: µpAq R t0,8u. By the equality in (4.3.4) for υ, we have ωpAq “ 0.
Case III: µpAq “ 8. By the σ-finiteness of X with respect to the outer measure µ,

there exists a collection tAn : n P Nu of disjoint measurable subsets of A such that

µpAnq ă 8, for every n P N,

A “
ď

nPN
An,

hence, by Case I and Case II for every n P N and the subadditivity of the measure ω, we
have ωpAq “ 0.

Part II: σ-finiteness. We claim that there exists a collection tAn : n P Nu Ď Σ of
measurable subsets of X such that

υpAnq ă 8, for every n P N,

X “
ď

nPN
An.
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By the σ-finiteness of X with respect to the outer measure µ and the measure ω assumed
for the σ-finite setting pX,µ, ωq, the set X is covered by a countable collection of subsets
with finite outer measure µ and measure ω. Therefore, without loss of generality, we assume
that

µpXq P r0,8q, ωpXq P r0,8q.

By collapsing of exponents, property piq in Theorem 4.2.1, for the σ-finite setting
pX,µ, ωq, we have

C´1‖1X‖L1
µp`

1
ωq
ď ‖1X‖L1pX,ωq “ ωpXq ď C‖1X‖L1

µp`
1
ωq
. (4.3.6)

We define the collection tBj : j P t0u Y NXu Ď Σ of measurable subsets of X such that

B0 “ X,

Bj Ď Bj´1, for every j P NX ,
µpBjq ď C21´jωpXq, for every j P NX ,

by a forward recursion on j P t0u YNX , where NX is either N or a finite initial string of it,
possibly empty. In particular, we set

X1 “ B0 “ X,

Xj “ Bj´1, for every j P N.

Fix j P N and assume we have selected Bl for every l P t0u Y N, l ă j. In particular,
Bj´1 is already well-defined. By the definition of the super level measure in Definition 1.1.5,
for every j P N, there exists a measurable subset Bj Ď Xj such that

‖1Bcj ‖L8µ p`1ωq ď 2j , µpBjq ď 2µp`1ωp1Xj q ą 2jq.

Together with the monotonicity of the size `1ω, Chebyshev’s inequality for the outer L1

quasi-norm, and the second inequality in (4.3.6), the previous display yields

µpBjq ď 2µp`1ωp1Xj q ą 2jq ď 2µp`1ωp1Xq ą 2jq ď 21´j‖1X‖L1
µp`

1
ωq
ď C21´jωpXq.

and proceed the recursion with j ` 1. In particular, if there exists j0 P N such that

µpXj0q “ 0, or ωpXj0q “ 0,

then, by the equality in (4.3.4) for υ, we have

υpXj0q “ 0,

and we stop the recursion.
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Next, we define the measurable subset B Ď X by

B “
č

jPN
Bj .

We have
µpBq “ lim

jÑ8
µpBjq “ 0,

hence, by the equality in (4.3.4) for υ, we have

υpBq “ 0.

Finally, for every j P N, let tEj,k,n : j P N, k P Z, n P Nku Ď Σ be the collection
of measurable subsets of X produced by the decomposition of 1Bj´1zBj P L

1
µp`

1
ωq X L

8
µ p`

1
ωq

with respect to the size `1ω at levels t2k : k P Zu provided by Proposition 4.2.2. In particular,
we have

υpEj,k,nq “ `1µp1XqpEj,k,nq P p2
k, 2k`1s,

υ
´

pBj´1zBjqz
ď

kPZ

ď

nPNk

Ej,k,n

¯

“ 0.

The countable collection of measurable subsets of X defined by

tBu Y
!

Ej,k,n : j P N, k P Z, n P Nk
)

Y

!

pBj´1zBjqz
ď

kPZ

ď

nPNk

Ej,k,n : j P N
)

,

prove that X is σ-finite with respect to the outer measure υ.

4.3.2 Iterations of the canonical construction

Iterating the construction described in (4.3.2) starting with the setting pX, υ, ωq, we gen-
erate another outer measure rµ “ rµpυ, ωq “ rµpµ, ωq on X.

Lemma 4.3.3. For every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the outer
measure µ dominates the outer measure rµ as in Definition 4.2.3.

Proof. It is enough to prove that, for every measurable subset A P Σ, we have

rµpAq ď µpAq.

Then, by the equality in (4.3.3) for rµ, for every measurable subset A P Σ, we have

σ
rµpAq ď µpAq,

and the outer measure rµ generated via minimal coverings as in (1.1.1) by the pre-measure
σ
rµ on the collection Σ inherits the domination.
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We distinguish three cases.
Case I: µpAq “ 0. By the equality in (4.3.4) for υ, we have υpAq “ 0. By the equality

in (4.3.4) for rµ, we have rµpAq “ 0.
Case II: µpAq “ 8. The desired inequality is trivially satisfied.
Case III: µpAq R t0,8u. By the equality in (4.3.4) for rµ and υ, we have

rµpAq “ sup
!ωpBq

υpBq
: B P ΣυpAq

)

“ sup
!

inf
!ωpBq

ωpCq
µpCq : C P ΣµpBq

)

: B P ΣυpAq
)

.

If the collection ΣυpAq is empty, then we have rµpAq “ 0, and the desired inequality is
trivially satisfied. Otherwise, there exists a measurable subset B P ΣυpAq, and we claim
that

µpBq R t0,8u.

In fact, if µpBq “ 0, then υpBq “ 0, yielding a contradiction. If µpBq “ 8, then µpAq “ 8,
yielding a contradiction. Therefore, we have B P ΣµpBq, hence

rµpAq ď sup
!ωpBq

ωpBq
µpBq : B P ΣυpAq

)

ď µpAq.

Further iterating the construction described in (4.3.2) starting with the setting pX, rµ, ωq,
we generate another outer measure rυ “ rυprµ, ωq “ rυpµ, ωq on X.

Lemma 4.3.4. For every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, let υ,
rµ, and rυ be the outer measures defined via the recursive application of the construction
described in (4.3.2). Then, we have υ “ rυ.

Proof. The domination of rυ by υ follows from Lemma 4.3.3 for the σ-finite setting pX, υ, ωq.
We prove the domination of υ by rυ. It is enough to prove that, for every measurable subset
A P Σ, we have

υpAq ď rυpAq.

Then, by the equality in (4.3.3) for rµ, for every measurable subset A P Σ, we have

συpAq ď σ
rυpAq,

and the outer measures υ and rυ generated via minimal coverings as in (1.1.1) by the pre-
measures συ and σ

rυ on the collection Σ respectively inherit the domination.
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By the equality in (4.3.4) for rυ and υ, for every measurable subset A P Σ, we have

rυpAq “ sup
!ωpDq

rµpDq
: D P Σ

rµpAq
)

,

υpAq “ sup
!ωpBq

µpBq
: B P ΣµpAq

)

“ sup
!ωpBq

µpBq
: B P ΣµpAq, ωpBq ‰ 0

)

.

We claim that, for every measurable subset B P Σ, if B Ď A, µpBq R t0,8u, and ωpBq ‰ 0,
then

rµpBq R t0,8u.

In fact, by Lemma 4.3.3, we have rµpBq ă 8. Next, since ωpBq ‰ 0, if rµpBq “ 0, then
υpBq “ 0, yielding a contradiction with the absolute continuity of the measure ω with
respect to the outer measure µ proved in Lemma 4.3.2. Therefore, we have B P Σ

rµpAq,
hence, by the domination of rµ by µ, we have

υpAq ď sup
!ωpBq

µpBq
: B P Σ

rµpAq
)

ď sup
!ωpBq

rµpBq
: B P Σ

rµpAq
)

“ rυpAq.

Corollary 4.3.5. For every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the
recursive application of the construction described in (4.3.2) produces at most two outer
measures on X different from µ, namely υ and rµ.

No further a priori relation between the outer measures µ and rµ can be established, as
the examples studied in the following two subsections show.

4.3.3 First example: no uniform equivalence

Neither the equality nor the uniform equivalence between µ and rµ are guaranteed.

Lemma 4.3.6. For every M ą 0, there exist a finite setting pX,µ, ωq and a subset A Ď X
such that

µpAq ěMrµpAq.

Proof. For everym P N, let pXm, µm, ωmq be the setting on them-dimensional hypercube of
sidelength m described in Subsection 1.2.6. We refer to that subsection for the definition of
the subset Epxq. Let υm and rµm be the outer measures defined via the recursive application
of the construction described in (4.3.2). Then, by the equality in (4.3.5) for υm, for every
subset A Ď Xm, we have

υmpAq “ sup
!

ωmpAX Epxqq : x P Xm

)

. (4.3.7)
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Next, from the proof of Lemma 4.2.5, we recall that

µmpXmq ą m.

Moreover, we observe that every y P Xm belongs to pm ´ 1qm many subsets of the form
Epxq with x P Xm. Therefore, for every subset B Ď Xm, B ‰ ∅, we have

pm´ 1qmωmpBq “
ÿ

xPXm

ωmpB X Epxqq ď mm sup
!

ωmpB X Epxqq : x P Xm

)

.

Together with the equality in (4.3.7), the previous display yields

rµmpXmq “ sup
!ωmpBq

υmpBq
: B Ď Xm, B ‰ ∅

)

ď
mm

pm´ 1qm
.

Taking m P N big enough, for A “ Xm, we obtain the desired inequality.

4.3.4 Second example: equality

The equality between µ and rµ may be achieved in certain setting. For every m P t0u Y N,
let pXm, µm, ωmq be the setting on the dyadic tree of depth m described in Subsection 1.2.7.
We refer to that subsection for the definitions of the subset EpIq and the collection Em. Let
υm and rµm be the outer measures defined via the recursive application of the construction
described in (4.3.2). Then by the equality in (4.3.5) for υm, for every subset A Ď Xm, we
have

υmpAq “ sup
!

ωmpAX EpIqq : I P Xm, |I| “ 2´m
)

.

We claim the equality between µm and rµm in this setting.

Lemma 4.3.7. For every m P t0u Y N, for every subset A Ď Xm, we have

µmpAq “ rµmpAq. (4.3.8)

Before proving the lemma, we describe an auxiliary construction, associating every
subset A Ď Xm, A ‰ ∅ to a subset B “ BpAq Ď A of its own. First, we define a collection
A Ď Em such that

A Ď
ď

EPA
E,

as follows. We set

A0 “ AXX0,

Ak “ AX pXkzXk´1q, for every k P t1, . . . ,mu.
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We define the elements of A by backward recursion on k. For k “ m, we define the collection
Am Ď Em by

Am “
!

Epaq : a P Am

)

,

allowing Am to be empty. Next, fix k ă m and suppose we have defined Aj Ď Em for every
j P tk ` 1, . . . ,mu. We define the collection rAk Ď Ek by

rAk “
!

rEpaq : a P Akz
m
ď

j“k`1

ď

EPAj

E
)

.

If rAk is empty, we define Ak to be empty as well. Otherwise, for every rEpaq P rAk, we define
Epaq “ Ep rEpaqq P Em to be any arbitrary element of Em such that Epaq XXk “ rEpaq, and
we define the collection Ak Ď Em by

Ak “
!

Epaq “ Ep rEpaqq : rEpaq P rAk
)

.

After that, we define the collection A Ď Em by

A “
m
ď

k“0

Ak.

Finally, we define the subset B “ BpAq Ď A by

B “
m
ď

k“0

´

Akz
m
ď

j“k`1

ď

EPAj

E
¯

.

Lemma 4.3.8. For every m P t0u Y N, for every subset A Ď Xm, A ‰ ∅, let the subset
B Ď A be defined by the previous construction. Then, we have

ωmpBq “ µmpAq, υmpBq “ 1.

Proof. By construction, we have

ωmpBq “ |A| ě µmpAq, υmpBq “ 1,

where |A| is the cardinality of A. To prove that µmpAq “ |A|, we distinguish two cases.
Case I: ωmpBq “ 1. The desired equality is trivially satisfied.
Case II ωmpBq ą 1. We argue by contradiction and we suppose that µmpAq ă |A|,

hence µmpBq ă |A|. In particular, there exists a collection B Ď Em such that |B| ă |A| and

B Ď
ď

EPB
E.



158 CHAPTER 4. FURTHER RESULTS

Therefore, there exists E P B such that |E X B| ě 2. As a consequence, there exist
a, b P E XB, a ‰ b, such that

µmpta, buq “ 1.

To prove that this equality yields a contradiction, we distinguish two cases.
Case II.i. There exists k P t1, . . . ,mu such that

a, b P Akz
m
ď

j“k`1

ď

EPAj

E.

The contradiction follows noting that, for every E P Em, the set E X pXkzXk´1q has only
one element.

Case II.ii. There exist k, k1 P t1, . . . ,mu, k ‰ k1, such that

a P Akz
m
ď

j“k`1

ď

EPAj

E, b P Ak1z
m
ď

j“k1`1

ď

EPAj

E,

and, without loss of generality, we assume k ą k1. We argue by contradiction and we suppose
that µmpta, buq “ 1. Therefore, there exists E P Em such that a, b P E. In particular, we
have E XXk “ rEpaq, hence b P Ep rEpaqq P Ak, thus b R B, yielding a contradiction.

We are ready to prove the equality between µm and rµm in the case of the setting
pXm, µm, ωmq with m P t0u Y N.

Proof of Lemma 4.3.7. By Lemma 4.3.3, the outer measure µm dominates the outer mea-
sure rµm. By Lemma 4.3.8, for every m P t0uYN, for every subset A Ď Xm, A ‰ ∅, for the
subset B Ď A defined by the previous construction, we have

rµmpAq ě
ωmpBq

υmpBq
“ µmpAq.

4.3.5 Outer Minkowski’s inequality for σ-finite settings

We turn to the proof of Minkowski’s inequality between the single iterated outer Lp quasi-
norms on σ-finite settings and the embeddings between the respective single iterated outer
Lp spaces.

Theorem 4.3.9. For all p, r P p0,8s, p ě r, there exists a constant C “ Cpp, rq such that,
for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, for the outer measure υ
defined via the construction described in (4.3.2), for every measurable function f on X, we
have

‖f‖Lpµp`rωq ď C‖f‖Lrυp`pωq, ‖f‖Lpυp`rωq ď C‖f‖Lrµp`pωq.
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Proof. We split the proof into three cases according to the values of p and r.
Case I: p “ r P p0,8s. The desired inequalities follow from collapsing of exponents,

property piq in Theorem 4.2.1, for the σ-finite settings pX,µ, ωq and pX, ν, ωq.
Case II: r ă p “ 8. We define the collections ΣµpXq,ΣυpXq Ď Σ of measurable

subsets of X by

ΣµpXq “
!

A P Σ: µpAq R t0,8u
)

,

ΣυpXq “
!

A P Σ: υpAq R t0,8u
)

.

Moreover, for every measurable subset A P Σ, we define the collection Σ1ωpAq Ď Σ of
measurable subsets of A by

Σ1ωpAq “
!

B P Σ: B Ď A,ωpAzBq “ 0
)

.

Next, for every measurable subset A P Σ, for every λ P p0,8q, we define the measurable
subset Aλ Ď A by

Aλ “
!

x P A : |fpxq| ą λ
)

.

We claim that, for every measurable subset A P ΣµpXq, for every λ P p0,8q, for every
subset Bλ P Σ1ωpAλq, we have

ωpAλq

µpAq
ď υpBλq. (4.3.9)

To prove the claim, we distinguish two cases.
If µpBλq “ 0, then ωpBλq “ 0 by the absolute continuity of the measure ω with respect

to the outer measure µ assumed for the σ-finite setting pX,µ, ωq, and ωpAλq “ 0 by the
assumption Bλ P Σ1ωpAλq. Then, the inequality in (4.3.9) is trivially satisfied.

If µpBλq ‰ 0, we have
ωpAλq

µpAq
ď
ωpBλq

µpBλq
ď υpBλq,

where we used the assumption Bλ P Σ1ωpAλq and the monotonicity of the outer measure
µ in the first inequality, the assumptions Bλ Ď Aλ Ď A, µpAq ă 8, µpBλq ‰ 0, and the
equality in (4.3.4) for υ in the second.

By the same argument and Lemma 4.3.3, for every measurable subset A P ΣυpXq, for
every λ P p0,8q, for every subset Bλ P Σ1ωpAλq, we have

ωpAλq

υpAq
ď rµpBλq ď µpBλq. (4.3.10)
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By the inequality in (4.3.9), we have

‖f‖rL8µ p`rωq “ sup
!

µpAq´1‖f1A‖rLrpX,ωq : A P ΣµpXq
)

“ sup
!

µpAq´1

ˆ 8
0

rλrωpAλq
dλ

λ
: A P ΣµpXq

)

ď sup
!

ˆ 8
0

rλr inf
!

υpBλq : Bλ P Σ1ωpAλq
)dλ

λ
: A P ΣµpXq

)

“ sup
!

‖f1A‖rLrυp`8ω q : A P ΣµpXq
)

“ ‖f‖rLrυp`8ω q.

By the same chain of inequalities, exchanging the roles of µ and υ, replacing the inequality
in (4.3.9) by that in (4.3.10), we have

‖f‖rL8υ p`rωq ď ‖f‖
r
Lrµp`

8
ω q
.

Case III: r ă p ă 8. Without loss of generality, we assume r “ 1, since, for every
setting pX,µ, ωq, we have

‖f‖rLpµp`rωq “ ‖f
r‖
L
p
r
µ p`1ωq

.

In particular, we have p ą 1, hence

‖f‖Lpµp`1ωq ď C sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`8ω q “ 1
)

ď C sup
!

‖fg‖L1
υp`

1
ωq

: ‖g‖
Lp
1

µ p`8ω q
“ 1

)

ď C sup
!

‖f‖L1
υp`

p
ωq
‖g‖

L8υ p`
p1
ω q

: ‖g‖
Lp
1

µ p`8ω q
“ 1

)

ď C‖f‖L1
υp`

p
ωq
,

where we used Köthe duality, property piiq in Theorem 4.2.1, for the σ-finite setting pX,µ, ωq
in the first inequality, the Radon-Nikodym type result for the outer L1 quasi-norms (Theo-
rem 1.1.8) for the σ-finite setting pX, υ, ωq in the second, outer Hölder’s inequality (Theo-
rem 1.1.7) for the σ-finite setting pX, υ, ωq in the third, and the inequality proved in Case
II in the fourth. We prove the remaining inequality analogously, exchanging the roles of µ
and υ.

Corollary 4.3.10. For all p, r P p0,8s, p ě r, there exists a constant C “ Cpp, rq such
that, for every σ-finite setting pX,µ, ωq, for the outer measures υ and rµ defined via the
recursive application of the construction described in (4.3.2), for every measurable function
f on X, we have

‖f‖Lpµp`rωq ď C‖f‖Lp
rµ
p`rωq

ď C2‖f‖Lrυp`pωq,

‖f‖Lpυp`rωq ď C‖f‖Lr
rµ
p`pωq

ď C2‖f‖Lrµp`pωq.
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Proof. The desired inequalities follow from Lemma 4.2.4, Lemma 4.3.3, Lemma 4.3.4, and
Theorem 4.3.9.

4.3.6 Examples

We comment on the outer measures υ and rµ defined via the recursive application of the
construction described in (4.3.2) in the remaining settings described in Chapter 1.

• Let pX,µ, ωq be a σ-finite setting described in Subsection 1.2.1 such that µ is the
outer measure generated via minimal coverings as in (1.1.1) by ω considered as a
pre-measure on the collection Σ of measurable subsets. In particular, µ coincide with
ω on the measurable subsets. Then υ is the constant outer measure attaining the
value 1 on every non-empty subset of X, and rµ “ µ. Moreover, if pX,µ, ωq is a finite
setting described in Subsection 1.2.2, then rµ “ µ “ ω.

• Let pX,µ, ωq be the setting on the Cartesian product of σ-finite measure spaces de-
scribed in Subsection 1.2.4. Then, for every measurable subset A Ď X, we have

υpAq ě sup
!

ωZpZ
1q : Z 1 P ΣZ , DY

1 P ΣY , ωY pY
1q ‰ 0, Y 1 ˆ Z 1 Ď A

)

,

rµpAq ě sup
!

ωY pY
1q : Y 1 P ΣY , DZ

1 P ΣZ , ωZpZ
1q ‰ 0, Y 1 ˆ Z 1 Ď A

)

,

where ΣY is the collection of measurable subsets of Y , and ΣZ of Z. In general the
equality between µ and rµ is not guaranteed. For example, for all measurable subsets
Y 1 P ΣY , Z 1 P ΣZ such that

ωY pY
1q ‰ 0, ωZpZ

1q “ 0, Z 1 ‰ ∅,

we have

µpY 1 ˆ Z 1q “ ωY pY
1q, rµpY 1 ˆ Z 1q “ ωpY 1 ˆ Z 1q “ 0.

However, for all measurable subsets Y 1 P ΣY , Z 1 P ΣZ , we have

υpY ˆ Z 1q “ ωZpZ
1q,

rµpY 1 ˆ Zq “ ωY pY
1q “ µpY 1 ˆ Zq.

In particular, if the measure spaces are finite sets, for every subset A Ď X, we have

υpAq “ sup
!

ωZpπZpAX tyu ˆ Zqq : y P Y
)

,

rµpAq ě sup
!

ωY ptyuq : y P πY pAq
)

.
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• Let pX,µ, ωq be the setting described in Subsection 1.2.5, where the outer measure
attains the constant value 1 on every non-empty subset of X. Then υ is the outer
measure generated via minimal coverings as in (1.1.1) by ω considered as a pre-
measure on the collection Σ of measurable subsets, and rµ “ µ.

• Let pXd, µd, ωdq be the setting on the collection of dyadic cubes described in Subsec-
tion 1.2.8. Then, for every subset A Ď Xd, we have

υdpAq “ sup
!ωdpAX Ep~m, lqq

µdpEp~m, lqq
: ~m P Zd, l P Z

)

,

namely υdpAq is the minimal Carleson constant associated with the collectionQdpAq Ď
Qd of dyadic cubes given by the bases of the elements in A, and

rµdpAq “ µdpAq. (4.3.11)

In fact, let B Ď A be the collection of upper half dyadic boxes associated with the
maximal dyadic cubes in QdpAq, maximal in terms of set inclusion. Then ωdpBq “
µdpAq and υdpBq “ 1.

• Let pXd, µd, ωdq be the setting on the upper half space described in Subsection 1.2.9,
where the outer measure µd is generated via minimal coverings by the collection of
dyadic tents. Then, for every measurable subset A Ď Xd, we have

υdpAq “ sup
!ωdpAX Ep~m, lqq

µdpEp~m, lqq
: ~m P Zd, l P Z

)

,

namely υdpAq is the dyadic Carleson constant associated with the measure 1Aω. Next,
we claim that, for every measurable subset A Ď Xd, we have

rµdpAq “ rµdp rAq “ µdp rAq, (4.3.12)

where the measurable subset rA “ rApAq Ď A is defined by the following auxiliary
construction. We refer to Subsection 1.2.8 for the definitions of the dyadic cube
Qp~m, lq, the collection of dyadic cubes Qd, and the upper half dyadic cubic box
Bp~m, lq.

For all ~m P Zd, l P Z, we define the measurable subset Ap~m, lq Ď A by

Ap~m, lq “ AXBp~m, lq.

Moreover, for all ~m P Zd, l P Z, for every measurable subset A Ď Xd, for every
collection Q Ď Qd, we define the subset Bp~m, l, A,Qq Ď Ap~m, lq by

Bp~m, l, A,Qq “

#

∅, if Qp~m, lq R Q,
Ap~m, lq, if Qp~m, lq P Q,
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and we define the measurable subset BpA,Qq Ď A by

BpA,Qq “
ď

~mPZd

ď

lPZ
Bp~m, l, A,Qq.

Finally, for every measurable subset A Ď Xd, we define the collection QpAq Ď Qd by

QpAq “
!

Qp~m, lq P Qd : ωdpAp~m, lqq ą 0
)

, (4.3.13)

and we define the measurable subset rA Ď A by

rA “ BpA,QpAqq. (4.3.14)

In particular, by construction we have

ωpAz rAq “ 0. (4.3.15)

We turn to the proof of the inequalities in (4.3.12).

The first equality in (4.3.12) claims

rµdpAq ě rµdp rAq “ sup
! ωp rBq

υdp rBq
: rB P Σ, rB Ď rA, υp rBq ‰ t0,8u

)

ě

ě sup
! ωpBq

υdpBq
: B P Σ, B Ď A, υpBq ‰ t0,8u

)

“ rµdpAq,

where we used the equality in (4.3.4) for rµd. The first inequality in the previous
display follows from the monotonicity of the outer measure rµd. The second inequality
follows from the monotonicity of the outer measure υd and the equality in (4.3.15).

The second equality in (4.3.12) follows from the domination of rµd by µd, and the
following observation.

For every subset A Ď Xd, we define the collection QpAq Ď Qd as in (4.3.13), and we
define rQpAq to be the collection of maximal dyadic cubes in QpAq, maximal in terms
of set inclusion. By Lemma 2.2.3 in Chapter 2, we have

µdpBpA, rQpAqqq “
ÿ

~mPZd

ÿ

lPZ
µdpBp~m, lqq1 rQpAqpQp~m, lqq “ µdp rAq.

Next, we distinguish two cases.

Case I: µdp rAq ă 8. For every ε ą 0, there exists a finite collection rQpA, εq Ď rQpAq
such that

µdpBpA, rQpA, εqqq ě µdpBpA, rQpAqqq ´ ε.



164 CHAPTER 4. FURTHER RESULTS

We define ρpεq ą 0 by

ρpεq “ min
!ωdpAp~m, lqq

µdpBp~m, lqq
: Qp~m, lq P rQpA, εq

)

,

therefore, for every dyadic cubeQp~m, lq P rQpA, εq, there exists a subsetBp~m, l, A, εq Ď
Ap~m, lq such that

ωdpBp~m, l, A, εqq “ ρpεqµdpBp~m, lqq.

We define the subset BpA, εq Ď rA by

BpA, εq “
ď

~mPZd

ď

lPZ
Bp~m, l, A, εq,

hence
ωdpBpA, εqq ě ρpεqpµdp rAq ´ εq, υdpBpA, εqq “ ρpεq.

Therefore, we have

rµdp rAq ě
ωdpBpA, εqq

υdpBpA, εqq
ě µdp rAq ´ ε.

Taking ε arbitrarily small, the previous display yields the desired inequality.

Case II: µdp rAq “ 8. For every M ą 0, there exists a finite collection rQpA,Mq Ď
rQpAq such that

µdpBpA, rQpA,Mqqq ěM.

By the same argument used in Case I, we have

rµdp rAq ěM.

Taking M ą 0 arbitrarily big, the previous display yields the desired inequality.

• Let pXd, µd, ωdq be the setting on the upper half space described in Subsection 1.2.10,
where the outer measure µd is generated via minimal coverings by the collection of
continuous tents. Then, for every measurable subset A Ď Xd, we have

υdpAq “ sup
!ωdpAX Epx, sqq

µdpEpx, sqq
: x P Rd, s P p0,8q

)

,

namely υdpAq is the minimal Carleson constant associated with the measure 1Aω.
Next, we claim that, for every measurable subset A Ď Xd, we have

rµdpAq “ rµdp rAq “ µdp rAq. (4.3.16)

where the measurable subset rA “ rApAq Ď A is defined by the following auxiliary
construction. We refer to Subsection 1.2.10 for the definitions of the continuous cubic
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box Ep~x, sq and the collection of continuous cubic boxes Ed. Next, for every ~x P Rd,
s P p0,8q, we define the upper half cubic box Bp~x, sq in the upper half space Rdˆp0,8q
by

Bp~x, sq “ Ep~x, sq X
´

Rd ˆ
´s

2
, s
ı¯

,

and we define the collection Ed,Q Ď Ed of continuous tents with rational coordinates
by

Ed,Q “
!

Ep~q, sq P Ed : ~q P Qd, s P QX p0,8q
)

.

For all ~q P Qd, s P QX p0,8q, we define the measurable subset Ap~q, sq Ď A by

Ap~q, sq “ AXBp~q, sq,

we define the collection A Ď PpAq by

A “
!

Ap~q, sq Ď A : ~q P Qd, s P QX p0,8q, ωdpAp~q, sqq “ 0
)

,

and we define the measurable subset rA Ď A by

rA “ Az
č

A1PA
A1. (4.3.17)

In particular, by construction we have

ωpAz rAq “ 0.

The equalities in (4.3.16) follow by arguments analogous to those used to prove the
equalities in (4.3.12). We briefly comment on the modifications needed. We can
no longer rely on the dyadic structure to define the collection rQpAq, nor to use
Lemma 2.2.3 in Chapter 2 as in the previous setting. We distinguish two cases.

Case I: µdp rAq ă 8. For every δ ą 0, there exists a collection Edp rA, δq Ď Ed,Q of
continuous tents with rational coordinates such that

rA Ď
ď

EPEdp rA,δq

E,

µdp rAq ě
ÿ

EPEdp rA,δq

µdpEq ´ δ,

and, for every Ep~q, sq P Edp rA, δq, we have

ωd

´

pAXBp~q, sqqz
ď

EPEdp rA,δq,E‰Ep~q,sq

E
¯

‰ 0.
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The collection Edp rA, δq replace the collection rQpAq, and, by the same argument used
in Case I in the previous setting, we can prove

rµdp rAq ě µdp rAq ´ δ.

Taking δ arbitrarily small, the previous display yields the desired inequality.

Case II: µdp rAq “ 8. For every M ą 0, there exists a collection Edp rA,Mq Ď Ed,Q of
continuous tents with rational coordinates such that

ÿ

EPEdp rA,δq

µdpEq ěM,

and, for every Ep~q, sq P Edp rA, δq, we have

ωd

´

pAXBp~q, sqqz
ď

EPEdp rA,δq,E‰Ep~q,sq

E
¯

‰ 0.

By the same argument used in Case II in the previous setting, we can prove

rµdp rAq ěM.

Taking M ą 0 arbitrarily big, the previous display yields the desired inequality.

• Let pX, ν, ωq be the setting on the collection of Heisenberg upper half dyadic tiles
described in Subsection 1.2.11. Then, for every subset A Ď X, we have

υpAq “ sup
!ωpAX T pm,n, lqq

νpT pm,n, lqq
: m,n, l P Z

)

,

rνpAq “ νpAq.

(4.3.18)

The second equality follows from combining the arguments used to prove the equalities
in (4.3.8) and (4.3.11) for d “ 1.

• Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.12,
where the outer measure ν is generated via minimal coverings by the collection of
dyadic trees. Then, for every measurable subset A Ď X, we have

υpAq “ sup
!ωpAX T pm,n, lqq

νpT pm,n, lqq
: m,n, l P Z

)

,

rνpAq “ rνp rAq “ νp rAq,

(4.3.19)

where rA Ď A is defined by an auxiliary construction analogous to that in (4.3.14) as
in the case of the setting described in Subsection 1.2.9, with the collection of upper
half dyadic cubic boxes Bd replaced by the collection of Heisenberg upper half dyadic
tiles H. The equalities in the second line in the previous display follow by arguments
analogous to those used to prove the equalities in (4.3.8) and (4.3.12) for d “ 1, with
Lemma 2.2.3 in Chapter 2 replaced by Lemma 4.4.5 stated below.
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• Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.13,
where the outer measure ν is generated via minimal coverings by the collection of
continuous trees. Then, for every measurable subset A Ď X, we have

υpAq “ sup
!ωpAX T px, ξ, sqq

νpT px, ξ, sqq
: x, ξ P R, s P p0,8q

)

,

rνpAq “ rνp rAq “ νp rAq,

(4.3.20)

where rA Ď A is defined by an auxiliary construction analogous to that in (4.3.17) in
the case of the setting described in Subsection 1.2.10, with the continuous tents with
rational coordinates replaced by the continuous trees with rational coordinates. The
equalities in the second line in the previous display follow by arguments analogous to
those used to prove the equalities in (4.3.8) and (4.3.16) for d “ 1.

We point out that in the case of the settings on the upper half space described in
Subsections 1.2.9 – 1.2.10, the outer measures rµd and µd are not equivalent. For example,
for every ~x P Rd, we have

µdpt~x, 1uq “ 1, rµdpt~x, 1uq “ 0.

However, the single iterated outer Lp quasi-norms and spaces associated with them are
equal. We have the same properties for the outer measures rν and ν in the case of the
settings on the upper half 3-space described in Subsections 1.2.12 – 1.2.13.

Lemma 4.3.11. For all p, r P p0,8s, p ě r, for every setting pXd, µd, ωdq on the upper half
space described in Subsections 1.2.9 – 1.2.10, for the outer measure rµd “ rµdpµd, ωdq defined
via the construction described in (4.3.2), for every measurable function f on Xd, we have

‖f‖Lpµd p`rωq “ ‖f‖Lprµd p`rωq
, ‖f‖Lp,8µd p`rωq “ ‖f‖Lp,8rµd p`rωq

.

For every setting pX, ν, ωq on the upper half 3-space described in Subsections 1.2.12 –
1.2.13, for the outer measure rν “ rνpν, ωq defined via the construction described in (4.3.2),
we have the same statement for the outer Lpνp`rωq and L

p,8
ν p`rωq spaces.

Proof. In the case of the settings pXd, µd, ωdq on the upper half space, for every measurable
subset A Ď Xd, we have

ωdpAz rAq “ 0,

where rA Ď A is the subset defined by the auxiliary construction.
Analogously, in the settings pX, ν, ωq on the upper half 3-space, for every measurable

subset A Ď X, we have
ωdpAz rAq “ 0,

where rA Ď A is the subset defined by the auxiliary construction.
Therefore, the desired equalities follow from the equalities for the outer Lp and Lp,8

quasi-norms in (1.2.6), and the definition of the sizes `rω in (1.2.3) and (1.2.4).
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4.3.7 Banach space properties of the outer Lpυp`8ω q spaces

The outer measures defined via the construction described in (4.3.2) have a better subaddi-
tivity behaviour than general outer measures. In particular, they guarantee the uniformity
of the constants in Köthe duality and quasi-triangle inequality for countably many sum-
mands for the outer Lpυp`8ω q spaces with p P p1,8q, as well as in the weak quasi-triangle
inequality for countably many summands for the outer L1

υp`
8
ω q space.

Lemma 4.3.12. For every p P r1,8s, there exists a constant C “ Cppq such that, for every
σ-finite setting pX,µ, ωq described in Subsection 1.2.1, for the outer measure υ defined via
the construction described in (4.3.2), the following properties hold true.

(i) For every p P p1,8s, for every measurable function f P Lpυp`8ω q on X, we have

C´1‖f‖Lpυp`8ω q ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1υ p`1ωq “ 1
)

ď C‖f‖Lpυp`8ω q.

(ii) For every p P p1,8s, for every collection of measurable functions tfn : n P Nu Ď
Lpυp`8ω q on X, we have ∥∥∥ÿ

nPN
fn

∥∥∥
Lpυp`8ω q

ď C
ÿ

nPN
‖fn‖Lpυp`8ω q.

(iii) For every collection tfn : n P Nu Ď L1
υp`

8
ω q of measurable functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1,8
υ p`8ω q

ď
ÿ

nPN
‖fn‖L1

υp`
8
ω q
.

Proof. Proof of property piq. For p “ 8, the inequalities follow from collapsing of
exponents, properties piq in Theorem 4.2.1, for the σ-finite setting pX, υ, ωq.

For p P p1,8q, let f P Lpυp`8ω q. The second inequality follows from the Radon-Nikodym
type result for the outer L1 quasi-norms (Theorem 1.1.8) and outer Hölder’s inequality
(Theorem 1.1.7) for the σ-finite setting pX, υ, ωq.

To prove the first inequality, for every k P Z, we define the measurable subset Ak Ď X
by

Ak “
!

x P X : |fpxq| ą 2k
)

.

By the assumption f P Lpυp`8ω q, we have

inf
!

υpBkq : Bk P Σ, Bk Ď Ak, ωpAkzBkq “ 0
)

ď 2´kp‖f‖Lpυp`8ω q ă 8.

We define a collection tDk : k P Zu of measurable subsets of X as follows.
We distinguish two cases.
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If

inf
!

υpBkq : Bk P Σ, Bk Ď Ak, ωpAkzBkq “ 0
)

“ 0,

then we define the subset Dk to be the empty set.
If

inf
!

υpBkq : Bk P Σ, Bk Ď Ak, ωpAkzBkq “ 0
)

P p0,8q,

then, for every ε ą 0, we define the subset rBk “ rBkpεq P Σ such that rBk Ď Ak, ωpAkz rBkq “
0, and

inf
!

υpBkq : Bk P Σ, Bk Ď Ak, ωpAkzBkq “ 0
)

ď υp rBkq,

υp rBkq ď p1` εq inf
!

υpBkq : Bk P Σ, Bk Ď Ak, ωpAkzBkq “ 0
)

,

and the measurable subset Dk Ď rBk such that

ωpDkq

µpDkq
ď υp rBkq ď p1` εq

ωpDkq

µpDkq
.

In particular, we have µpDkq ‰ 0.
We define the measurable function g on X by

gpxq “
ÿ

kPZ
2kpp´1qρk1Dkpxq,

where, for every k P Z, we define ρk P r0,8q by

ρk “

#

0, if Dk “ ∅,
µpDkq

´1, if Dk ‰ ∅.

There exists a constant c “ cpp, εq such that

‖fg‖L1pX,ωq ě c
ÿ

kPZ
2kpυp rBkq ě c‖f‖p

Lpυp`8ω q
,

where we used the definitions of g, Dk and rBk in the first inequality, and the definition of
the outer Lpυp`8ω q quasi-norm in the second.

Moreover, there exists a constant C1 “ C1ppq such that, for every j P Z, for every subset
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E Ď X, we have

υpEq´1‖g1
p
Ť

kPZ,kěj
rBkqc

1E‖L1pX,ωq “
ÿ

kPZ,kăj : ωpDkXEq‰0

2kpp´1q ωpDk X Eq

υpEqµpDkq

ď
ÿ

kPZ,kăj : ωpDkXEq‰0

2kpp´1q ωpDk X Eq

υpEqµpDk X Eq

ď
ÿ

kPZ,kăj
2kpp´1qυpDk X Eq

υpEq

ď C12jpp´1q,

where we used the monotonicity of the outer measure υ in the first inequality, the absolute
continuity of the measure ω with respect to the outer measure µ thus

ωpDk X Eq ‰ 0 ñ µpDk X Eq ‰ 0,

and the equality in (4.3.4) for υ in the second, the monotonicity of the outer measure υ and
the bounds on the geometric series in the third. Hence, by the subadditivity of the outer
measure υ, we have

υp`1ωpgq ą C12jpp´1qq ď υ
´

ď

kPZ,kěj

rBk

¯

ď
ÿ

kPZ,kěj
υp rBkq,

and, by Fubini and the bounds on the geometric series, there exists a constant C2 “ C2ppq
such that we have

‖g‖p
1

Lp
1

υ p`1ωq
ď C2

ÿ

jPZ
2jp

ÿ

kPZ,kěj
υp rBkq ď C2

2

ÿ

kPZ
2kpυp rBkq ď C3

2‖f‖
p
Lpυp`8q

.

Proof of property piiq. The desired inequality is a corollary of the triangle inequality
for the classical L1pX,ωq norm and the previous property.

Proof of property piiiq. Let tAn : n P Nu be a collection of measurable subsets of X.
For every j P N, we define the measurable subset Bj Ď X by

Bj “
!

x P X :
∣∣∣ÿ
nPN

1Anpxq
∣∣∣ ě j

)

.

Therefore, we have
j1Bj ď

ÿ

nPN
1An .

Next, for every measurable subset A P Σ, by Theorem 4.3.9, we have

‖1A‖L8µ p`1ωq ď ‖1A‖L1
υp`

8
ω q
,
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and, by the equality for the outer L1 quasi-norm of a characteristic function in (1.2.7), we
have

‖1A‖L1
υp`

8
ω q
“ inf

!

υpBq : B P Σ, B Ď A,ωpAzBq “ 0
)

ď υpAq “ ‖1A‖L8µ p`1ωq.

Moreover, by the equalities for the outer L1 and L1,8 quasi-norms in (1.2.6), we have∥∥∥ÿ
nPN

1An

∥∥∥
L1,8
υ p`8ω q

“ sup
!

‖j1Bj‖L1
υp`

8
ω q

: j P N
)

.

Together with Lemma 4.3.1, the previous four displays yield the inequality∥∥∥ÿ
nPN

1An

∥∥∥
L1,8
υ p`8ω q

ď
ÿ

nPN
‖1An‖L1

υp`
8
ω q
.

The desired inequality follows from Lemma 4.2.7.

Remark 4.3.13. We point out that, a priori, the outer measure υ does not guarantee
the uniformity of the constants in Köthe duality and quasi-triangle inequality for countably
many summands for the outer L1

υp`
r
ωq spaces with r P p1,8s. This is clarified by the equality

between rµm and µm showed for every m P t0u Y N in Subsection 4.3.4 in the case of the
setting on the dyadic tree of depth m described in Subsection 1.2.7. In fact, in this collection
of settings we exhibited counterexamples to the uniformity in the finite setting of the constant
in the quasi-triangle inequality for countably many summands for the outer L1

µp`
r
ωq spaces

with r P p1,8s, see Lemma 2.3.4 in Chapter 2.

4.4 Outer Lp spaces on the upper half 3-space settings

In this section, we study the Banach space properties of the single iterated outer Lp spaces
on the settings on the upper half 3-space or its discrete model, with a particular focus on
the case of the outer Lpνp`8ω q and L1

νp`
r
ωq spaces.

Theorem 4.4.1. For all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for
every setting pX, ν, ωq on the upper half 3-space or its discrete model described in Subsec-
tions 1.2.11 – 1.2.13, the following properties hold true.

(i) For every p P p0,8s, for every measurable function f P Lpνp`pωq on X, we have

C´1‖f‖Lpνp`pωq ď ‖f‖LppX,ωq ď C‖f‖Lpνp`pωq.

(ii) For all p P p1,8s, r P r1,8s or p “ r “ 1, for every measurable function f P Lpνp`rωq
on X, we have

C´1‖f‖Lpνp`rωq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1ν p`r1ω q “ 1
)

ď C‖f‖Lpνp`rωq.
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(iii) For all p P p1,8s, r P r1,8s or p “ r “ 1, for every collection tfn : n P Nu Ď Lpνp`8ω q
of measurable functions on X, we have∥∥∥ ÿ

nPN
fn

∥∥∥
Lpνp`rωq

ď C
ÿ

nPN
‖fn‖Lpνp`rωq.

(iv) For every collection tfn : n P Nu Ď L1
νp`

8
ω q of measurable functions on X, we have∥∥∥ ÿ

nPN
fn

∥∥∥
L1,8
ν p`8ω q

ď C
ÿ

nPN
‖fn‖L1

νp`
8
ω q
.

(v) For every r P p1,8s, for every M ą 0, there exists a collection tfn : n P Nu Ď L1
νp`

r
ωq

of measurable functions on X such that∥∥∥ÿ
nPN

fn

∥∥∥
L1
νp`

r
ωq
ěM

ÿ

nPN
‖fn‖L1

νp`
r
ωq
.

Property piq and, for all p P p1,8s, r P r1,8q or p “ r P t1,8u, properties piiq and
piiiq are a corollary of Theorem 4.2.1. Moreover, for all p P p1,8q, r “ 8, properties piiq
and piiiq, and property pivq are a corollary of Lemma 4.3.11 and Lemma 4.3.12, as well as
the equalities in (4.3.18), (4.3.19), and (4.3.20). Since we only sketched the proof of those
equalities, in this section we provide an alternative proof of properties piiq and piiiq in the
remaining cases, as well as properties pivq and pvq.

In Subsection 4.4.2, we start with the case of the setting pX, ν, ωq on the upper half
3-space described in Subsection 1.2.12, where we denote by ν the outer measure generated
via minimal coverings by the collection of dyadic trees. Then the case of the setting on
the collection of Heisenberg upper half dyadic tiles described in Subsection 1.2.11 follows
straight-forwardly.

After that, in Subsection 4.4.3, we comment on how to adjust the arguments in the
case of the setting pX, sν, ωq on the upper half 3-space described in Subsection 1.2.13, where
we denote by sν the outer measure generated via minimal coverings by the collection of
continuous trees.

The separate analysis of the two cases is due to the fact that the outer measures ν and
sν are not equivalent. Moreover, also the single iterated outer Lp quasi-norms associated
with the two outer measures are not equivalent. In fact, in Subsection 4.4.4, we prove the
following result.

Theorem 4.4.2. For all p, r P p0,8s, p ą r, we have

Lrνp`
p
ωq ãÑ Lr

sνp`
p
ωq Lrνp`

p
ωq ‰ Lr

sνp`
p
ωq,

Lp
sνp`

r
ωq ãÑ Lpνp`

r
ωq Lp

sνp`
r
ωq ‰ Lpνp`

r
ωq.
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We recall that, instead, in the case of the settings on the upper half space described
in Subsections 1.2.9 – 1.2.10, the outer measures generated via minimal coverings by the
collections of dyadic and continuous tents respectively are equivalent. As a consequence,
also the single iterated outer Lp quasi-norms associated with the two outer measures are
equivalent, and we refer to Section 2.3 in Chapter 2 for the details.

4.4.1 Geometry of the dyadic trees in the upper half 3-space

Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.12. We
recall that the outer measure ν is generated via minimal coverings by the pre-measure τ on
the collection T of dyadic trees, and each dyadic tree is denoted by T pm,n, lq for certain
m,n, l P Z.

We start with some auxiliary observations about the geometry of dyadic trees and their
intersections, and the values of the outer measure ν on them.

We refer to Subsection 1.2.12 for the definitions of the dyadic tree TH P T associated
with a Heisenberg upper half dyadic tile H P H, and the Heisenberg upper half dyadic tile
HT P H associated with a dyadic tree T P T .

Lemma 4.4.3. Let T be a dyadic tree in T , let H be a Heisenberg upper half dyadic tile in
H such that T XH ‰ ∅. Then, we have TH Ď T .

Proof. The statement is a straight-forward consequence of the definition of dyadic trees in
T and the pairwise disjointness between different elements in H.

Lemma 4.4.4. Let T be a dyadic tree in T and let tTn : n P Nu Ď T be a collection of
dyadic trees such that, for every n P N, we have

Tn Ď T, (4.4.1)

Tn Ę
ď

mPN,m‰n
Tm. (4.4.2)

Then, we have
ÿ

nPN
τpTnq ď τpT q.

Proof. For every n P N, we define the Heisenberg upper half dyadic tiles H,Hn P H by

H “ HT Ď T, Hn “ HTn Ď Tn.

We claim that the dyadic intervals in the collection tπpHnq : n P Nu are pairwise disjoint,
where π : X Ñ R is the projection onto the first coordinate.

In fact, by the definition of dyadic trees in T and (4.4.1), for every n P N, we have

rπpHq Ď rπpHnq, (4.4.3)
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where rπ : X Ñ R is the projection onto the second coordinate. Next suppose there exist
n, n1 P N such that the dyadic intervals πpHnq and πpHn1q have non-empty intersection.
Therefore, they are contained one in the other and, without loss of generality, we assume
πpHn1q Ď πpHnq. Then, we have |πpHn1q| ď |πpHnq|, hence |rπpHn1q| ě |rπpHnq|. Moreover,
by the inclusion in (4.4.3), the dyadic intervals rπpHnq and rπpHn1q have non-empty intersec-
tion, hence rπpHnq Ď rπpHn1q. As a consequence, we have Hn1 Ď Tn. Hence, by Lemma 4.4.3,
we have Tn1 Ď Tn, yielding a contradiction with the condition in (4.4.2).

By the inclusion in (4.4.1), for every n P N, the dyadic interval πpHnq is contained in
πpT q. Therefore, we have

ÿ

nPN
τpTnq “

ÿ

nPN
|πpHnq| “

∣∣∣ď
nPN

πpHnq

∣∣∣ ď |πpT q| “ τpT q,

where we used the fact that the dyadic intervals in the collection tπpHnq : n P Nu are
pairwise disjoint in the second equality.

Lemma 4.4.5. Let tHn : n P Nu Ď H be a collection of Heisenberg upper half dyadic tiles
such that, for every n P N, we have

Hn Ę
ď

mPN,m‰n
THm . (4.4.4)

Let tWn : n P Nu be a collection of measurable subsets of X such that, for every n P N, we
have

Wn Ď THn , Wn XHn ‰ ∅. (4.4.5)

Then, we have
ÿ

nPN
τpTHnq “ ν

´

ď

nPN
Wn

¯

.

In particular, for every dyadic tree T in T , we have

τpT q “ νpT q.

Proof. Since the outer measure ν is generated via minimal coverings by the pre-measure τ
on the collection T of dyadic trees, by the inclusion in (4.4.5), we have

ν
´

ď

nPN
Wn

¯

ď
ÿ

nPN
τpTHnq.

Therefore, if the left hand side in the previous display is infinite, then the right hand side is
infinite as well, yielding the desired equality. If the left hand side is finite, for every ε ą 0,
there exists a collection Upεq Ď T of dyadic trees such that

ď

nPN
Wn Ď

ď

UPUpεq
U, (4.4.6)

ÿ

UPUpεq
τpUq ď p1` εqν

´

ď

nPN
Wn

¯

ă 8. (4.4.7)
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Without loss of generality, we assume that, for every U P Upεq, we have

U Ę
ď

V PUpεq,V‰U
V,

otherwise we would drop U from the collection Upεq, preserving the inclusion in (4.4.6)
and decreasing the left hand side in the inequality in (4.4.7). Next, by the inclusion in
(4.4.6), for every n P N, there exists an element U P Upεq such that Wn X U ‰ ∅, hence
Hn X U ‰ ∅. In particular, by Lemma 4.4.3, we have THn Ď U . Then, for every U P Upεq,
we define the subcollection T pUq Ď tTHn : n P Nu by

T pUq “
!

THn : n P N, THn Ď U
)

.

We have
!

THn : n P N
)

“
ď

UPUpεq
T pUq.

The condition in (4.4.4) on the collection tHn : n P Nu implies the condition in (4.4.2) on
each of the collections T pUq. By Lemma 4.4.4, we have

ÿ

nPN
τpTHnq ď

ÿ

UPUpεq

ÿ

THnĎT pUq
τpTHnq ď

ÿ

UPUpεq
τpUq.

Taking ε arbitrarily small, together with the inequality in (4.4.7), the previous display yields
the desired inequality.

4.4.2 Outer Lpνp`8ω q and L1
νp`

r
ωq spaces on the upper half 3-space setting

with dyadic trees

Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.12. We
recall that the outer measure ν is generated via minimal coverings by the pre-measure
τ on the collection T of dyadic trees, and each dyadic tree is denoted by T pm,n, lq for
certain m,n, l P Z. We have the following decomposition result with respect to the size `8ω
for measurable functions on X in the intersection between the outer Lpµp`8ω q and L8µ p`8ω q
spaces.

We refer to the end of Chapter 1 for the notation of a double sequence parametrized by
pairs pk, nq with k P Z, n P Nk appearing in the following statement.

Proposition 4.4.6. For every p P p0,8q, there exists a constant C “ Cppq such that the
following property holds true.

For every measurable function f P Lpνp`8ω q X L8ν p`
8
ω q on X, there exist k0 P Z and a

double sequence tTk,n : k P Z, n P Nku Ď T of dyadic trees such that

• For every k P Z, k ą k0, we have Nk “ ∅.
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• If we set

Uk “ ∅, for every k P Z, k ą k0,
Uk,0 “ Uk`1, for every k P Z, k ď k0,
Uk,n “ Uk,n´1 Y Tk,n, for every k P Z, k ď k0, for every n P Nk,

Uk “ Uk`1 Y
ď

nPNk

Uk,n, for every k P Z, k ď k0,

then, for all k P Z, n P Nk, we have

`8ω pf1Uck,n´1
qpTk,nq ą 2k, when Tk,n ‰ H, (4.4.8)

‖f1Uck‖L8p`8ω q ď 2k, (4.4.9)

νp`8ω pfq ą 2kq ď νpUkq, (4.4.10)
ÿ

nPNk

νpTk,nq ď νp`8ω pfq ą 2kq. (4.4.11)

In particular, we have

‖f‖p
Lpνp`8ω q

„p

ÿ

kPZ
2kp

ÿ

nPNk

νpTk,nq „p
ÿ

kPZ
2kp

ÿ

lPZ,lěk

ÿ

mPNl

νpTl,mq.

Moreover, for every k P Z, the Heisenberg upper half dyadic tiles in the collection
!

Hk,n “ HTk,n : n P Nk
)

Ď H, (4.4.12)

satisfy the geometric property in (4.4.4).

Proof. The selection algorithm is analogous to that described in Case II in the proof of
Proposition 2.2.4 in Chapter 2. We define the collection tTk,n : k P Z, n P Nku Ď T by a
double recursion, backward on k P Z, and, for every fixed k, forward on n P Nk. In parallel,
we prove the properties in (4.4.8) – (4.4.11) by backward induction on k P Z.

We briefly comment on the modifications needed. Dyadic cubic boxes, namely dyadic
tents, are replaced by dyadic trees. The upper half dyadic cubic box E` associated with a
dyadic cubic box E is replaced by the Heisenberg upper half dyadic tile HT associated with
a dyadic tree T . The geometric properties of dyadic tents observed in Lemma 2.2.2 and
Lemma 2.2.3 in Chapter 2 are replaced by those of the dyadic trees observed in Lemma 4.4.3
and Lemma 4.4.5 respectively.

The geometric property of the collection defined in (4.4.12) follows from making the
maximal choice for the dyadic tree Tk,n at each step of the selection algorithm, maximal in
terms of the outer measure ν.
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We are ready to prove the remaining properties stated in Theorem 4.4.1 in the case
of the setting on the upper half 3-space described in Subsection 1.2.12, where the outer
measure is generated via minimal coverings by the collection of dyadic trees.

Proof of Theorem 4.4.1 for the setting described in Subsection 1.2.12. We prove the prop-
erties that do not follow as a corollary of Theorem 4.2.1.

Proof of property piiq for all p P p1,8q, r “ 8. Let f P Lpνp`8ω q. The second
inequality follows from the Radon-Nikodym type result for the outer L1 quasi-norms (The-
orem 1.1.8) and outer Hölder’s inequality (Theorem 1.1.7) for the setting pX, ν, ωq. To prove
the first inequality, by the approximation result stated in Lemma 3.5.1 in Chapter 3 for func-
tions in the outer Lpνp`8ω q spaces, without loss of generality, we assume f P Lpνp`8ω qXL8ν p`8ω q.
Let tTk,n : k P Z, n P Nku Ď T be the collection of dyadic trees produced by the decomposi-
tion of f with respect to the size `8ω at levels t2k : k P Zu provided by Proposition 4.4.6. In
particular, for every fixed k P Z, the collection tTk,n : n P Nku Ď T of dyadic trees satisfies
the geometric property in (4.4.2), and the Heisenberg upper half dyadic tiles in the collec-
tion tHk,n “ HTk,n : n P Nku Ď H satisfy the geometric property in (4.4.4). Moreover, there
exists a collection tWk,n Ď Hk,n : k P Z, n P Nku of pairwise disjoint measurable subsets of
X such that, for all k P Z, n P Nk, we have ωpWk,nq ą 0 and

|fpx, ξ, sq| P p2k, 2k`1s, for every px, ξ, sq PWk,n.

We define the measurable function g on X by

gpx, ξ, sq “
ÿ

kPZ
2kpp´1q

ÿ

nPNk

νpTk,nq

ωpWk,nq
1Wk,n

px, ξ, sq.

There exist constants c “ cppq and C “ Cppq such that

‖fg‖L1pX,ωq ě c‖f‖p
Lpνp`8ω q

, ‖g‖
Lp
1

ν p`1ωq
ď C‖f‖p´1

Lpνp`8ω q
.

The proof of the first inequality in the previous display is straight-forward. The proof
of the second is analogous to that of Case II with r “ 8 in the proof of Lemma 2.3.1
in Chapter 2. We briefly comment on the modifications needed. Dyadic cubic boxes,
namely dyadic tents, are replaced by dyadic trees. The geometric properties of dyadic tents
observed in Lemma 2.B.1 and Lemma 2.2.3 in Chapter 2 and implicitly used are replaced
by those of the dyadic trees observed in Lemma 4.4.4 for subcollections of tTk,n : n P Nku
and Lemma 4.4.5 for subcollections of tHk,n : n P Nku respectively.

Proof of property piiiq for all p P p1,8q, r “ 8. The desired inequality is a corollary
of the triangle inequality for the classical L1pX,ωq norm and the previous property.

Proof of property pivq. We define the measurable function f on X by

f “
ÿ

nPN
fn.
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For every λ P p0,8q, we define the collection Hλ Ď H of Heisenberg upper half dyadic tiles
by

Hλ “
!

H P H : ‖f1H‖L8pX,ωq ą λ
)

.

First, we assume f P L1,8
ν p`8ω q. Therefore, for every λ P p0,8q, we have

sup
!

|πpHq| : H P Hλ
)

ď ν
´

ď

HPHλ

H
¯

ă 8,

where π : X Ñ R is the projection onto the first coordinate. Hence, the collection Hλ has
maximal elements, namely we define the collection rHλ Ď Hλ by

rHλ “
!

H P Hλ : EH 1 P Hλ, H 1 ‰ H,πpHq Ď πpH 1q, rπpH 1q Ď rπpHq
)

,

where rπ : X Ñ R is the projection onto the second coordinate. In particular, we have
ď

HPHλ

H “
ď

HP rHλ

H,

and the Heisenberg upper half dyadic tiles in the collection rHλ satisfy the geometric property
in (4.4.4). Since f P L1,8

ν p`8ω q, there exists Λ P p0,8q such that

‖f‖
L1,8
ν p`8ω q

ď 2Λνp`8ω pfq ą Λq ď 2
ÿ

HP rHΛ

‖f1H‖L8pX,ωqνpHq. (4.4.13)

Next, for every n P N, we split rHΛ into the subcollections rHΛ,k “ rHΛ,kpnq, one for each
k P Z, defined by

rHΛ,k “

!

H P rHΛ, ‖fn1H‖L8pX,ωq P p2
k, 2k`1s

)

,

hence, by Lemma 4.4.5 for the collection rHΛ,k, we have

ÿ

HP rHΛ,k

νpHq “ ν
´

ď

HP rHΛ,k

H
¯

ď νp`8ω pfnq ą 2kq.

Therefore, we have
ÿ

HP rHΛ

‖fn1H‖L8pX,ωqνpHq ď 2
ÿ

kPZ
2k

ÿ

HP rHΛ,k

νpHq

ď 2
ÿ

kPZ
2kνp`8ω pfnq ą 2kq

ď C‖fn‖L1
νp`

8
ω q
.

(4.4.14)
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Together with the triangle inequality for the classical L8pX,ωq norm, the inequalities in
(4.4.13) and (4.4.14) yield the desired inequality.

Next, we assume f R L1,8
ν p`8ω q. Therefore, for every M ą 0, there exists Λ P p0,8q and

U Ď X such that
M ď ‖f1U‖L1,8

ν p`8ω q
ă 8.

By the same argument used in the previous case, we have

M ď C
ÿ

nPN
‖fn‖L1

νp`
8
ω q
.

Taking M ą 0 arbitrarily big, the previous display yields the desired inequality.
Proof of property pvq. Fix j P N. For all n, l P Z, 0 ď l ď j, we define rNpn, lq P Z by

the condition
Ipn,´jq Ď Ip rNpn, lq,´lq.

For all n, l P Z, 0 ď l ď j, we define the measurable subset rHpn, lq Ď X by

rHpn, lq “
2j´l´1
ď

m“0

Hpm,n, lq “ Ip0, jq ˆ Ipn,´lq ˆ p2l´1, 2ls, (4.4.15)

and, for every n1 P Z, 0 ď n1 ă 2j , we define the measurable subset Epn1q Ď X by

Epn1q “

j
ď

l“0

rHp rNpn1, lq, lq.

In particular, for every n1 P Z, 0 ď n1 ă 2j , we have

Hp0, n1, jq Ď Epn1q Ď T p0, n1, jq,

hence, by Lemma 4.4.5, we have
νpEpn1qq “ 2j .

Next, we define the measurable functions fn1 and f on X by

fn1px, ξ, sq “ 1Epn1qpx, ξ, sq,

fpx, ξ, sq “
2j´1
ÿ

n1“0

fn1px, ξ, sq “

j
ÿ

l“0

2l´1
ÿ

n“0

2j´l1
rHpn,lq

px, ξ, sq.

There exist constants c “ cprq and C “ Cprq such that

‖f‖L1
νp`

r
ωq
ě c22jpj ` 1q,

2j´1
ÿ

n1“0

‖fn1‖L1
νp`

r
ωq
ď C

2j´1
ÿ

n1“0

‖fn1‖L1
νp`

8
ω q
‖fn1‖L8ν p`rωq “ C2j2jpj ` 1q

1
r .

Taking j P N big enough, we obtain the desired inequality.
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Remark 4.4.7. The counterexample is analogous to that in Lemma 2.3.4 in Chapter 2.
We point out the similarities between the figure on the left in Figure 1.2 and that on the
right in Figure 1.4, seen upside down.

Remark 4.4.8. The existence of counterexamples to the quasi-triangle inequality for count-
ably many summands for the outer L1

νp`
r
ωq spaces exhibited in property pvq implies the exis-

tence of counterexamples to Köthe duality for the same spaces.

Proof of Theorem 4.4.1 for the setting described in Subsection 1.2.11. Let pX, ν, ωq be the
setting on the collection of Heisenberg upper half dyadic tiles described in Subsection 1.2.11,
let p sX, sν, sωq be the setting on the upper half 3-space described in Subsection 1.2.12.

We reduce the proof in the case of the setting pX, ν, ωq to that in the case of the
setting p sX, sν, sωq upon the following observation. For every function f on X, we define the
measurable function F pfq on sX by

F pfqpx, ξ, sq “
ÿ

mPZ

ÿ

nPZ

ÿ

lPZ
fpHpm,n, lqq1Hpm,n,lqpx, ξ, sq.

Then, for all p, r P p0,8s, we have

‖f‖Lpνp`rωq “ ‖F pfq‖Lp
sνp`

r
sωq
.

4.4.3 Outer Lpνp`8ω q and L1
νp`

r
ωq spaces on the upper half 3-space setting

with continuous trees

Let pX, sν, ωq be the setting on the upper half 3-space described in Subsection 1.2.13. We
recall that the outer measure sν is generated via minimal coverings by the pre-measure sτ
on the collection sT of continuous trees, and each continuous tree is denoted by sT px, ξ, sq
for certain x, ξ P R, s P p0,8q. Moreover, let ν be the outer measure on the upper half
3-space described in Subsection 1.2.12. We recall that the outer measure ν is generated
via minimal coverings by the pre-measure τ on the collection T of dyadic trees, and each
dyadic tree is denoted by T pm,n, lq for certain m,n, l P Z.

The outer measure sν is equivalent to sνdya, the outer measure on the upper half 3-space
X generated via minimal coverings by the pre-measure sτdya on the collection sTdya Ď sT of
continuous trees associated with dyadic intervals, namely

sTdya “

!

sT p2lm, 2´ln, 2lq : m,n, l P Z
)

,

sτdyap sT p2
lm, 2´ln, 2lqq “ 2l, for all m,n, l P Z.

In fact, for every x P R, ξ P R, s P p0,8q, there exist m,n, l P Z such that

x P p2lm, 2lpm` 1qs, ξ P p2´ln, 2´lpn` 1qs, s P p2l´1, 2ls,
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hence

sT px, ξ, sq Ď sT p2lm, 2´ln, 2lq Y sT p2lpm` 1q, 2´ln, 2lqY

Y sT p2lm, 2´lpn` 1q, 2lq Y sT p2lpm` 1q, 2´lpn` 1q, 2lq.

Therefore, for every subset A Ď X, we have

sνpAq ď sνdyapAq ď 8sνpAq,

hence, for all p, r P p0,8s, there exists a constant C “ Cpp, rq such that, for every measur-
able function f on X, we have

C´1‖f‖Lp
sνp`

r
ωq
ď ‖f‖Lp

sνdya
p`rωq

ď C‖f‖Lp
sνp`

r
ωq
. (4.4.16)

Next, for all m,n, l P Z, we define the Heisenberg upper half continuous tile sHpm,n, lq
in X by

sHpm,n, lq– sT p2lm, 2´ln, 2lq X pR2 ˆ p2l´1, 2lsq,

and we define the collection sH of Heisenberg upper half continuous tiles in X by

sH –

!

sHpm,n, lq : m,n, l P Z
)

.

We observe that at least two and at most four elements of sH can overlap at the same time.

sHp0, 0, 1q
sHp0, 1, 1q
sHp0, 2, 1q

sHp0, 4, 1q
sHp0, 5, 1q
sHp0, 6, 1q

sHp0, 3, 1q

η

t

2

3

4

sHp0, 3, 1q

Figure 4.1: Heisenberg upper half continuous tiles in the upper half 3-space with coordinates
py, η, tq projected onto the upper half plane with coordinates pη, tq, and multiplicity of their
overlapping.

Finally, for every Heisenberg upper half continuous tile sH “ sHpm,n, lq P sH, we define
the continuous tree sT

sH P
sT by

sT
sH “

sT
sHpm,n,lq –

sT p2lm, 2´lp2n` 1q, 2lq.
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The setting pX, sνdya, ωq satisfies geometric properties analogous to those of the setting
pX, ν, ωq described in Lemma 4.4.3, Lemma 4.4.4, and Lemma 4.4.5. In fact, we can prove
the following results.

Lemma 4.4.9. Let sT be a continuous tree in sTdya, let sH be a Heisenberg upper half dyadic
tile in sH such that sT X sH ‰ ∅. Then, there exists a continuous tree sT 1 P sTdya such that

sτdyap sT
1q “ sτdyap sT q, sT

sH Ď
sT Y sT 1.

Lemma 4.4.10. Let sT be a continuous tree in sTdya and let t sTn : n P Nu Ď sTdya be a
collection of continuous trees such that, for every n P N, we have

sTn Ď sT ,

sTn Ę
ď

mPN,m‰n

sTm.

Then, we have
ÿ

nPN
sτdyap sTnq ď sτdyap sT q.

Lemma 4.4.11. Let t sHn : n P Nu Ď sH be a collection of Heisenberg upper half dyadic tiles
such that, for every n P N, we have

sHn Ę
ď

mPN,m‰n

sT
sHm .

Let tĎWn : n P Nu be a collection of measurable subsets of X such that, for every n P N, we
have

ĎWn Ď sT
sHn ,

ĎWn X sHn ‰ ∅.

Then, we have
sνdya

´

ď

nPN

ĎWn

¯

ď
ÿ

nPN
sτdyap sT sHnq ď 4sνdya

´

ď

nPN

ĎWn

¯

.

In particular, replacing the setting pX, ν, ωq with the setting pX, sνdya, ωq, we can prove
a decomposition result for the outer Lp

sνdya
p`8ω q spaces analogous to that stated in Proposi-

tion 4.4.6. We briefly comment on the modifications needed. Dyadic trees in T are replaced
by continuous trees in sTdya. The Heisenberg upper half dyadic tile HT associated with a
dyadic tree T P T is replaced by the Heisenberg upper half continuous tile sH

sT associated
with a continuous tree sT P sTdya. The geometric properties of dyadic trees in T observed in
Lemma 4.4.3, Lemma 4.4.4, and Lemma 4.4.5 are replaced by those of the continuous trees
in sTdya observed in Lemma 4.4.9, Lemma 4.4.10 and Lemma 4.4.11 respectively.

As a consequence, we can prove Theorem 4.4.1 in the case of the setting on the upper half
3-space described in Subsection 1.2.13, where the outer measure is generated via minimal
coverings by the collection of continuous trees.
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Proof of Theorem 4.4.1 for the setting described in Subsection 1.2.13. We prove the prop-
erties that do not follow as a corollary of Theorem 4.2.1.

Proof of properties piiq and piiiq for all p P p1,8q, r “ 8, and property pivq. The
proof follows from the equivalence in (4.4.16) and the decomposition result for the outer
Lp
sνdya
p`8ω q spaces on the setting pX, sνdya, ωq analogous to that stated in Proposition 4.4.6.

Proof of property pvq. For fixed j P N, ε P p0, 2´j´10s, for all n, l P Z, 0 ď l ď j, let

rI´pn, lq “ p2
´lp2n` 1q ´ 2´j´1 ´ ε, 2´lp2n` 1q ´ 2´j´1 ` εs,

rI`pn, lq “ p2
´lp2n` 1q ` 2´j´1 ´ ε, 2´lp2n` 1q ` 2´j´1 ` εs,

rHpn, lq “ p0, 2js ˆ prI´pn, lq Y rI`pn, lqq ˆ p2
l ´ ε, 2ls.

The construction of the counterexamples proceeds as in the previous proof in the case of
the setting on the upper half 3-space described in Subsection 1.2.12.

4.4.4 Outer Lp spaces on the upper half 3-space settings with dyadic and
continuous trees

Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.12. We
recall that the outer measure ν is generated via minimal coverings by the pre-measure τ on
the collection T of dyadic trees, and each dyadic tree is denoted by T pm,n, lq for certain
m,n, l P Z. Moreover, let sν be the outer measure on the upper half 3-space described in
Subsection 1.2.13. We recall that the outer measure sν is generated via minimal coverings
by the pre-measure sτ on the collection sT of continuous trees, and each continuous tree is
denoted by T px, ξ, sq for certain x, ξ P R, s P p0,8q.

The outer measures ν and sν are not equivalent. In fact, for every subset A Ď X, we
have

sνpAq ď νpAq, (4.4.17)

but, for every continuous tree sT P sT , we have

sνp sT q ă νp sT q “ 8, (4.4.18)

and we refer to Appendix 3.A in Chapter 3 for the details. Moreover, the single iterated
outer Lp spaces associated with the outer measures ν and sν are different, as stated in
Theorem 4.4.2.

Before proving the theorem, we state and prove two auxiliary geometric observations
about the following setting. We recall the definition of the dyadic tree T p0, 0, 0q P T and
the continuous tree sT “ sT p0, 0, 1q P sT

T p0, 0, 0q “
!

py, η, tq P X : y P p0, 1s, η P p0, 2´rlog2 tss, t P p0, 1s
)

,

sT “ sT p0, 0, 1q “
!

py, η, tq P X : y P p0, 1s, η P p´t´1, t´1s, t P p0, 1s
)

,
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where, for every x P R, we define rxs P Z to be the smallest integer number greater than or
equal to x. Next, let

rU “ p sT X pRˆ p0,8q ˆ p0,8qqqzT p0, 0, 0q,
rHj “ Ip0, 0q ˆ Ip1,´jq ˆ p2j´1, 2js, for every j P Z, j ď 0,
rUj “ rU X rHj , for every j P Z, j ď 0.

sT p0, 0, 1q

T p0, 0, 0q

rU

η

t

Figure 4.2: Continuous tree sT p0, 0, 1q, dyadic tree T p0, 0, 0q, and subset rU in the upper
half 3-space with coordinates py, η, tq projected onto the upper half plane with coordinates
pη, tq. The area covered by the line pattern corresponds to subset rU´1.

Lemma 4.4.12. For every dyadic tree T P T , its intersection with rU is either empty or
contained in at most one set rHj, and we have

ωpT X rUq ď νpT q. (4.4.19)

Moreover, for every j P Z, j ď 0, for the dyadic tree T p0, 1, jq P T , we have T p0, 1, jqX rU Ď
rUj and

ωpT p0, 1, jq X rUq ě
νpT p0, 1, jqq

12
. (4.4.20)

Proof. For all l, l1 P Z, we have

Ip1,´lq X Ip1,´l1q “ ∅,

therefore, for all m,m1, l, l1 P Z, we have

Hpm, 1, lq X T pm1, 1, l1q “ ∅.

Therefore, for all M,N,L P Z, there exists at most one value lpLq P Z such that, for some
m P Z, we have Hpm, 1, lpLqq Ď T pM,N,Lq.
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Next, we observe
rU Ď

ď

lPZ,lď0

´

ď

mPt0,...,2´l´1u

Hpm, 1, lq
¯

.

Every dyadic tree T P T is of the form T pM,N,Lq for certain M,N,L P Z. We distinguish
two cases.

Case I: lpLq ą 0. We have T pM,N,Lq X rU “ ∅, and the desired inequality in (4.4.19)
is trivially satisfied.

Case II: lpLq ď 0. We have

ωpT pM,N,Lq X rUq ď ω
´

ď

mPM
Hpm, 1, lpLqq

¯

ď 2L “ νpT pM,N,Lqq,

where the subsetM Ď Z is defined by

M “ t0, . . . , 2´lpLq ´ 1u X t2L´lpLqM, . . . , 2L´lpLqpM ` 1q ´ 1u,

yielding the desired inequality in (4.4.19).
This concludes the proof of the first part of the statement, and we pass to the second.

For every j P Z, j ď 0, we have

T p0, 1, jq X rU “ Hp0, 1, jq X rU Ď rUj ,

and we have

ωpT p0, 1, jq X rUq “ ωpHp0, 1, jq X rUjq

ě ω
´

p0, 2js ˆ
´

2´j ,
3

2
2´j

ı

ˆ

´

2j´1,
2

3
2j
ı¯

ě
2j

12
,

yielding the desired inequality in (4.4.20).

Lemma 4.4.13. For every collection sT 1 Ď sT of continuous trees such that
ÿ

sT 1P sT 1
sτp sT 1q ă 1, (4.4.21)

there exists a continuous tree sV P sT contained in sT and pairwise disjoint from every element
of sT 1.

Proof. By the inequality in (4.4.21), we have∣∣∣π´ ď

sT 1P sT 1

sT 1
¯∣∣∣ ď ÿ

sT 1P sT 1
|πp sT 1q| “

ÿ

sT 1P sT 1
sτp sT 1q ă 1 “ |p0, 1s|,



186 CHAPTER 4. FURTHER RESULTS

where π : X Ñ R is the projection onto the first coordinate. Therefore, there exists an
interval J “ pxJ , xJ ` |J |s contained in p0, 1s and pairwise disjoint from every interval in
the collection tπp sT 1q : sT 1 Ď sT 1u. Then sV “ sT pxJ , 0, |J |q P sT is a continuous tree satisfying
the desired properties.

Proof of Theorem 4.4.2. Without loss of generality, we assume r “ 1, since, for every setting
pX,µ, ωq, we have

‖f‖rLpµp`rωq “ ‖f
r‖
L
p
r
µ p`1ωq

.

In particular, we have p ą 1.
The embeddings between single iterated outer Lp spaces follow from Lemma 4.2.4 and

the domination of outer measures stated in (4.4.17). To prove that the single iterated outer
Lp spaces are different, for every p P p1,8s, we define the measurable function u on X by

u “
8
ÿ

j“0

pj ` 1q
´
p`1
2p 1

rU´j
,

where the exponent for p “ 8 is understood to be ´1
2 . We claim that, for every p P p1,8s,

we have
u P L1

sνp`
p
ωqzL

1
νp`

p
ωq, u P Lpνp`

1
ωqzL

p
sνp`

1
ωq.

Case I: u P L1
sνp`

p
ωqzL1

νp`
p
ωq. By outer Hölder’s inequality (Theorem 1.1.7) and collapsing

of exponents, property piq in Theorem 4.4.1, for the setting pX, sν, ωq, there exists a constant
C “ Cppq ě 1 such that

‖u‖L1
sνp`

p
ωq
ď C‖1

rU
‖
Lp
1

sν p`
8
ω q
‖u‖Lp

sνp`
p
ωq
ď C2

sνp sT q
1
p1 ‖u‖LppX,ωq ă 8.

Moreover, there exists a constant c “ cppq ď 1 such that, for every j P Z, j ď 0, we
have

`pω,τ puqpT p0, 1, jqq “ τpT p0, 1, jqq
´ 1
p ‖u1T p0,1,jq‖LppX,ωq

“ pj ` 1q
´
p`1
2p τpT p0, 1, jqq

´ 1
pωpT p0, 1, jq X rUq

1
p

ě cpj ` 1q
´
p`1
2p τpT p0, 1, jqq´1ωpT p0, 1, jq X rUq

“ c`1ω,τ puqpT p0, 1, jqq,

(4.4.22)

where we refer to Remark 1.2.1 for the notation `rω,τ , and we used the inequality in (4.4.20)
and the observation that u is constant on the subset rHj for every j P Z, j ď 0, in the
second.

Therefore, there exists a constant c “ cppq ď 1 such that

‖u‖L1
νp`

p
ωq
“ ‖u‖L1

νp`
p
ω,τ q

ě c‖u‖L1
νp`

1
ω,τ q

“ c‖u‖L1
νp`

1
ωq
ě c2‖u‖L1pX,ωq “ 8,
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where we used Lemma 2.A.3 in Chapter 2 in the first and the second equality, the inequal-
ity in (4.4.22) and the definition of the outer Lp quasi-norms in Definition 1.1.6 in the
first inequality, and collapsing of exponents, property piq in Theorem 4.4.1, for the setting
pX, ν, ωq in the second inequality.

Case II: u P Lpνp`1ωqzL
p
sνp`

1
ωq. For every subset A Ď X such that sνpAq ă 1, there exists

a collection sA Ď sT of continuous trees such that

A Ď
ď

sT 1P sA

sT 1,
ÿ

sT 1P sA

sτp sT 1q ă 1.

By Lemma 4.4.13, there exists a continuous tree sV “ sV p sAq P sT pairwise disjoint from every
element of sA. Then, we have

‖u1Ac‖L8
sν p`

1
ωq
ě `1ωpuqp

sV q “ 8.

Therefore, for every λ P p0,8q, we have

sνp`1ωpuq ą λq “ 1,

hence
‖u‖Lp

sνp`
1
ωq
“ 8.

Moreover, by the same argument used to prove the last chain of inequalities in Case I,
there exists a constant C “ Cppq ě 1 such that

‖u‖Lpνp`1ωq “ ‖u‖Lpνp`1ω,τ q ď C‖u‖Lpνp`pω,τ q “ C‖u‖Lpνp`pωq ď C2‖u‖LppX,ωq ă 8,

and we refer to Remark 1.2.1 for the notation `rω,τ .

Remark 4.4.14. Consider the following variant of the setting pX, ν, ωq on the upper half
3-space described in Subsection 1.2.12. For all n, l, l1 P Z, l1 ď l, we define Npn, l1q P Z by
the condition

Ipn,´lq Ď IpNpn, l1q,´l1q,

and, for every x P R, we define txu P Z to be the biggest integer number smaller than or
equal to x.

For all m,n, l P Z, we define the dyadic tree of bitiles T2pm,n, lq in the upper half
3-space R2 ˆ p0,8q by

T2pm,n, lq “ T2pIpm, lq, Ipn,´lqq “ T2pHpm,n, lqq

–
ď

l1ďl

´

Ipm, lq ˆ I
´YNpn, l1q

2

]

, 1´ l1
¯

ˆ p0, 2l
1

s

¯

.
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Next, let

X “ Rˆ Rˆ p0,8q,

T2 “

!

T2pm,n, lq : m,n, l P Z
)

,

τ2pT2pm,n, lqq “ 2l, for all m,n, l P Z,
dωpy, η, tq “ dy dη dt, for all y, η P R, t P p0,8q,

and let ν2 be the outer measure generated via minimal coverings as in (1.1.1) by the pre-
measure τ2 on the collection T2 of dyadic trees of bitiles.

The outer measures ν2 and sν are not equivalent. In fact, we can prove that, for every
subset A Ď X, we have

ν2pAq ď 6sνpAq,

but, for every dyadic tree of bitiles T2 P T2, we have

ν2pT2q ă sνpT2q “ 8.

Moreover, the single iterated outer Lp spaces associated with the outer measures ν2 and sν
are different, and we can prove a result analogous to Theorem 4.4.2.

Theorem 4.4.15. For all p, r P p0,8s, p ą r, we have

Lr
sνp`

p
ωq ãÑ Lrν2

p`pωq Lr
sνp`

p
ωq ‰ Lrν2

p`pωq,

Lpν2
p`rωq ãÑ Lp

sνp`
r
ωq Lpν2

p`rωq ‰ Lp
sνp`

r
ωq.

4.5 Outer Lp spaces with respect to a size with variable ex-
ponent on the upper half 3-space

In this section, we study the Banach space properties of the outer Lp spaces with respect
to the size S on the upper half 3-space appearing in the article of Do and Thiele [DT15].
The size S is of the form of a sum of sizes `8ω and `2ω restricted to certain subsets of each
tree in the upper half 3-space. In Subsection 4.5.1, we recall the definition of S in details in
the case of the settings on the upper half 3-space described in Subsections 1.2.12 – 1.2.13.
In particular, we prove that the outer Lp quasi-norms with respect to the size S appearing
in [DT15] do not satisfy a result analogous to Köthe duality for an appropriate dual size,
see Lemma 4.5.2.

In Subsection 4.5.2, we start our analysis by the Banach space properties of the outer
Lp spaces with respect to a single size `rω restricted to a certain subset of each tree in the
upper half 3-space. We comment on why we cannot replicate the same argument we used
in the cases studied in the previous section, where the size `rω is not restricted to certain
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subsets of each tree. After that, in Subsection 4.5.3, we pass to the case of the size with
variable exponent appearing in [DT15].

Throughout this section, we focus on the case of the setting on the upper half 3-space
described in Subsection 1.2.12, where the outer measure is generated via minimal coverings
by the collection of dyadic trees. With the appropriate modifications in the spirit of those
appearing in Subsection 4.4.3, we can adapt every argument we use to the case of the setting
described in Subsection 1.2.13, where the outer measure is generated via minimal coverings
by the collection of continuous trees.

In Subsection 4.5.4, we conclude the section by studying the case of the setting on the
collection of Heisenberg upper half dyadic tiles described in Subsection 1.2.11. First, we
define the size S2 analogous to that appearing in [DT15], namely of the form of a sum of
sizes `8ω and `2ω restricted to certain subsets of each tree. Next, we prove that, contrary to
the case of the settings on the upper half 3-space, the outer Lp spaces with respect to S2

are equivalent to those with respect to just the `2ω part of it.

4.5.1 Sizes on the inner and outer parts of trees, and sizes with variable
exponent

Let pX, ν, ωq be the setting on the upper half 3-space described in Subsection 1.2.12. We
recall that the outer measure ν is generated via minimal coverings by the pre-measure τ on
the collection T of dyadic trees, and each dyadic tree is denoted by T pm,n, lq for certain
m,n, l P Z. We define the collection T2 of dyadic trees by

T2 –

!

T, rT : T, rT P T
)

,

namely T2 contains two copies of every dyadic tree in T .
For every Heisenberg upper half dyadic tile Hpm,n, lq P H, we define its lower and

upper children Hlowpm,n, lq and Hupppm,n, lq by

Hlowpm,n, lq “ HlowpIpm, lq, Ipn,´lqq– Ipm, lq ˆ Ip2n,´l ´ 1q ˆ p2l´1, 2ls,

Hupppm,n, lq “ HupppIpm, lq, Ipn,´lqq– Hpm,n, lqzHlowpm,n, lq.

For every dyadic tree T pm,n, lq P T2, we define its inner and outer parts Tinnpm,n, lq and
Toutpm,n, lq by

Tinnpm,n, lq– Hlowpm,n, lq Y
ď

l1ăl

´

2l´l
1
pm`1q´1
ď

m1“2l´l1m

H˚pm
1, Npn, l1q, l1q

¯

,

Toutpm,n, lq– T pm,n, lqzTinnpm,n, lq,
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and for every dyadic tree rT pm,n, lq P T2, we define its inner and outer parts rT pm,n, lqinn

and rT pm,n, lqout by

rTinnpm,n, lq– Hupppm,n, lq Y
ď

l1ăl

´

2l´l
1
pm`1q´1
ď

m1“2l´l1m

H˚pm
1, Npn, l1q, l1q

¯

,

rToutpm,n, lq– rT pm,n, lqz rTinnpm,n, lq,

where, for every l1 P Z, l1 ď l, we define Npn, l1q P Z by the condition

Ipn,´lq Ď IpNpn, l1q,´l1q,

and

H˚ “

#

Hlow, if 2Npn, l1q “ Npn, l1 ` 1q,
Hupp, if 2Npn, l1q ` 1 “ Npn, l1 ` 1q.

For every r P p0,8s, we define the sizes p`rω,inn, T2q and p`rω,out, T2q. For every dyadic
tree T P T2, for every measurable function f on X, we define

`rω,innpfqpT q– νpT q´
1
r ‖f1Tinn‖LrpX,ωq,

`rω,outpfqpT q– νpT q´
1
r ‖f1Tout‖LrpX,ωq,

(4.5.1)

where the exponent 8´1 is understood to be 0. Moreover, we recall the definition of two
variants pS, T2q, prS, T2q of the size appearing in [DT15]. For every dyadic tree T P T2, for
every measurable function f on X, we define

SpfqpT q– `8ω,innpfqpT q ` `
2
ω,outpfqpT q,

rSpfqpT q– `8ω pfqpT q ` `
2
ω,outpfqpT q.

(4.5.2)

For every p P p0,8s, we define the outer Lp quasi-norms and spaces with respect to each of
the sizes appearing in the previous two displays as in Definition 1.1.4 and Definition 1.1.6.
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Tinn

Tout

T “ Tinn Y Tout T “ Tinn Y Tout

η

t

rIT

Figure 4.3: Inner and outer parts Tinn, Tout of a dyadic tree T P T2 in the upper half 3-space
with coordinates py, η, tq projected onto the upper half plane with coordinates pη, tq.

Next, let pX, sν, ωq be the setting on the upper half 3-space described in Subsection 1.2.13.
We recall that the outer measure sν is generated via minimal coverings by the pre-measure
sτ on the collection sT of continuous trees, and each continuous tree is denoted by sT px, ξ, sq
for certain x, ξ P R, s P p0,8q.

For every continuous tree sT “ sT px, ξ, sq P sT , we define its inner and outer parts sTinn

and sTout by

sTinn –
ď

s1ďs

´

px, x` ss ˆ
´

ξ ´
1

2s1
, ξ `

1

2s1

ı

ˆ p0, s1s
¯

,

sTout – sT z sTinn.

For every r P p0,8s, we define the sizes p`rω,inn,
sT q, p`rω,out,

sT q, pS, sT q, and prS, sT q anal-
ogously to those in (4.5.1) and (4.5.2), replacing the dyadic trees in T2 with the continuous
trees in sT . For every p P p0,8s, we define the outer Lp quasi-norms and spaces with respect
to these sizes as in Definition 1.1.4 and Definition 1.1.6.
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sTinn
sTout

sT “ sTinn Y sTout
sT “ sTinn Y sTout

pξ ´ s´1, x` s´1s

η

t

Figure 4.4: Inner and outer parts sTinn, sTout of a continuous tree sT P sT in the upper half
3-space with coordinates py, η, tq projected onto the upper half plane with coordinates pη, tq.

4.5.2 Outer Lp spaces with respect to the sizes in (4.5.1)

In this subsection, we consider the Banach space properties of the outer Lp spaces with
respect to a size `rω restricted to a certain subset of each dyadic tree. We comment on why
proving positive results about them is more complicated than in the cases studied in the
previous section. In the proof of Theorem 4.4.1, we showed the quasi-triangle inequality for
the single iterated outer Lp spaces on the upper half 3-space as a corollary of Köthe duality
for them and the triangle inequality for the classical L1pX,ωq space. Following the same
argument, we would start by proving a version of Köthe duality for the outer Lpνp`rω,innq

spaces. In particular, we would show that there exists a constant C “ Cpp, rq such that,
for every measurable function f P Lpνp`rω,innq on X, we have

C´1‖f‖Lpνp`rω,innq
ď sup

!

‖fg‖L1p`1ω,innq
: ‖g‖

Lp
1

ν p`
r1
ω,innq

“ 1
)

ď C‖f‖Lpνp`rω,innq
.

We point out that we substituted the classical L1pX,ωq norm with the outer L1
νp`

1
ω,innq

quasi-norm to measure the product of the functions. This substitution is dictated by the
outer Hölder inequality we would apply to obtain the second inequality in the previous
display. However, the outer L1

νp`
1
ω,innq space does not satisfy the quasi-triangle inequality

for countably many summands, as exhibited in the following result. In fact, we can comment
in an analogous way also in the case of the outer Lpνp`rω,outq spaces.

Lemma 4.5.1. For every M ą 0, there exists a collection tfn : n P Nu Ď L1
νp`

1
ω,innq of

measurable functions on X such that∥∥∥ ÿ

nPN
fn

∥∥∥
L1
νp`

1
ω,innq

ěM
ÿ

nPN
‖fn‖L1

νp`
1
ω,innq

.
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Replacing `1ω,inn with `1ω,out, we have the same statement for the outer L1
νp`

1
ω,outq spaces.

Proof. Fix j P N. For all n, l P Z, 0 ď l ď j, we define rNpn, lq P Z by the condition

Ipn,´jq Ď Ip rNpn, lq,´lq.

Moreover, for all n, l P Z, 0 ď l ď j, we refer to (4.4.15) for the definition of the measurable
subset rHpn, lq. Next, for every n1 P Z, 0 ď n1 ă 2j , we define the measurable subset
Epn1q, rEpn1q Ď X by

Epn1q “

j
ď

l“0

rHp rNpn1, lq, lq X Toutp0, n
1, jq,

rEpn1q “

j
ď

l“0

rHp rNpn1, lq, lq X rToutp0, n
1, jq.

Next, we define the measurable functions fn1 , rfn1 , and f on X by

fn1px, ξ, sq “ 1Epn1qpx, ξ, sq,

rfn1px, ξ, sq “ 1
rEpn1q

px, ξ, sq,

fpx, ξ, sq “
2j´1
ÿ

n1“0

´

fn1px, ξ, sq ` rfn1px, ξ, sq
¯

“

j
ÿ

l“0

2l´1
ÿ

n“0

2j´l1
rHpn,lq

px, ξ, sq.

There exist constants c and C such that

‖f‖L1
νp`

1
ω,innq

ě c22jpj ` 1q,

2j´1
ÿ

n1“0

‖fn1‖L1
νp`

1
ω,innq

“

2j´1
ÿ

n1“0

‖ rfn1‖L1
νp`

1
ω,innq

“ 2j2j .

Taking j P N big enough, we obtain the desired inequality.

4.5.3 Outer Lp spaces with respect to sizes in (4.5.2)

We exhibit a counterexample to Köthe duality for the outer LpνpSq and LpνprSq spaces with
p P r1,8q.

First, we define the auxiliary size pS1, T2q as follows. For every dyadic tree T P T2, for
every measurable function f on X,

S1pfqpT q– `1ω,innpfqpT q ` `
2
ω,outpfqpT q.
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Therefore, for every dyadic tree T P T2, we have

`1ωpfgqpT q „ sup
!

SpfqpT qS1pgqpT q : S1pgqpT q “ 1
)

.

By the Radon-Nikodym type result for the outer L1 quasi-norms (Theorem 1.1.8) for the
setting pX, ν, ωq and outer Hölder’s inequality (Theorem 1.1.7) for the sizes S and S1, we
have

‖fg‖L1pX,ωq ď C‖fg‖L1
νp`

1
ωq
ď C‖f‖LpνpSq‖g‖Lp1ν pS1q.

Next, we define the auxiliary size prS1, T2q as follows. For every dyadic tree T P T2, for
every measurable function f on X,

rS1pfqpT q– `1ωpfqpT q ` `
2
ω,outpfqpT q.

Therefore, for every dyadic tree T P T2, for every measurable function g on X, we have

`1ωpfgqpT q ď
rSpfqpT qrS1pgqpT q.

By the Radon-Nikodym type result for the outer L1 quasi-norms (Theorem 1.1.8) for the
setting pX, ν, ωq and outer Hölder’s inequality (Theorem 1.1.7) for the sizes rS and rS1, we
have

‖fg‖L1pX,ωq ď C‖fg‖L1
νp`

1
ωq
ď C‖f‖

LpνprSq
‖g‖

Lp
1

ν prS1q
.

Lemma 4.5.2. Let p P r1,8s. For every M ą 0, there exists a measurable function
f P LpνpSq on X such that

‖f‖LpνpSq ěM sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1ν pS1q “ 1
)

.

Replacing S with rS, we have the same statement for the outer LpνprSq spaces.

Proof. For every ε P p0, 1s, we define the measurable subset Aε Ď X by

Aε “
´1´ ε

2
,
1` ε

2

ı

ˆ

´3´ ε

4
,
3` ε

4

ı

ˆ

´3´ ε

4
,
3` ε

4

ı

.

In particular, we have
Aε Ď Huppp0, 0, 0q Ď Hp0, 0, 0q P H.

We have
‖1Aε‖LpνpSq “ ‖1Aε‖LpνprSq “ ‖1Aε‖Lpνp`8ω,innq

“ νpAεq
1
p “ 1.

Moreover, for every measurable function g on X, we have

‖1Aεg‖L1pX,ωq “ ‖1Aεg‖L1pX,ωq ď ωpAεq
1
2 ‖1Aεg‖L2pX,ωq “

ε
?
ε

2
‖1Aεg‖L2pX,ωq,

‖g‖
Lp
1

ν pS1q
“ ‖g‖

Lp
1

ν prS1q
ě `2ω,outp1AεgqpT p0, 0, 0qq “ ‖1Aεg‖L2pX,ωq.

Taking ε P p0, 1s small enough, we obtain the desired inequality.
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In fact, we have the following equivalence between outer Lp quasi-norms with respect
to the sizes with variable exponent defined in (4.5.2).

Lemma 4.5.3. For every p P p0,8s, there exists a constant C “ Cppq such that, for every
measurable function f on X, we have

‖f‖LpνpSq ď ‖f‖LpνprSq ď C‖f‖LpνpSq.

Proof. For every tree T P T2, for every function f on X, we have

SpfqpT q ď rSpfqpT q.

Moreover, for every function f on X, we have

‖f‖
L8ν p

rSq
ď ‖f‖L8ν p`2ω,outq

` ‖f‖L8ν p`8ω q
“ ‖f‖L8ν p`2ω,outq

` ‖f‖L8pX,ωq
ď 2‖f‖L8ν pSq,

where we used the fact that, for all m,n, l P Z, we have

‖f1Hpm,n,lq‖L8pX,ωq ď ‖f1Hlowpm,n,lq‖L8pX,ωq ` ‖f1Hupppm,n,lq‖L8pX,ωq
ď `8ω,innpfqpT pm,n, lqq ` `

8
ω,innpfqp

rT pm,n, lqq,

where T pm,n, lq, rT pm,n, lq P T2. Together with the definition of the outer Lp quasi-norms
in Definition 1.1.4 and Definition 1.1.6, the previous two displays yield the desired chain of
inequalities.

4.5.4 Sizes with variable exponent on the discrete model of the upper
half 3-space

We start by defining a variant of the setting pX, ν, ωq on the collection of Heisenberg upper
half dyadic tiles described in Subsection 1.2.11. For all n, l, l1 P Z, l1 ď l, we define
Npn, l1q P Z by the condition

Ipn,´lq Ď IpNpn, l1q,´l1q,

and, for every x P R, we define txu P Z to be the biggest integer number smaller than or
equal to x.

For all m,n, l P Z, we recall the definition of the subset T pm,n, lq Ď H by

T pm,n, lq “ T pIpm, lq, Ipn,´lqq “ T pHpm,n, lqq

–

!

H P H : H Ď
ď

l1ďl

´

Ipm, lq ˆ IpNpn, l1q,´l1q ˆ p0, 2l
1

s

¯)

,
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and we define the subset T2pm,n, lq Ď H by

T2pm,n, lq “ T2pIpm, lq, Ipn,´lqq “ T2pHpm,n, lqq

–

!

H P H : H Ď
ď

l1ďl

´

Ipm, lq ˆ I
´YNpn, l1q

2

]

, 1´ l1
¯

ˆ p0, 2l
1

s

¯)

.

Next, let

X “ H,

T2 “

!

T2pm,n, lq : m,n, l P Z
)

,

τ2pT2pm,n, lqq “ 2l, for all m,n, l P Z,
ωpHpm,n, lqq “ 2l, for all m,n, l P Z,

and let ν2 be the outer measure generated via minimal coverings as in (1.1.1) by the pre-
measure τ2 on the collection T2 of subsets of X.

For every subset T2 “ T2pm,n, lq P T2, we define its inner and outer parts T2,inn and
T2,out by

T2,inn – T pm,n, lq, T2,out – T2zT2,inn.

For every r P p0,8s, we define the sizes p`r2,ω,inn, T2q and p`r2,ω,out, T2q. For every subset
T2 “ T2pm,n, lq P T2, for every function f on X, we define

`r2,ω,innpfqpT2q– ν2pT2q
´ 1
r ‖f1T2,inn‖LrpX,ωq,

`r2,ω,outpfqpT2q– ν2pT2q
´ 1
r ‖f1T2,out‖LrpX,ωq,

(4.5.3)

where the exponent 8´1 is understood to be 0. Moreover, we define two additional sizes
pS2, T2q, prS2, T2q analogous to those appearing in [DT15]. For every subset T2 P T2, for
every function f on X, we define

S2pfqpT2q– `82,ω,innpfqpT2q ` `
2
2,ω,outpfqpT2q,

rS2pfqpT2q– `82,ωpfqpT2q ` `
2
2,ω,outpfqpT2q.

For every p P p0,8s, we define the outer Lp quasi-norms and spaces with respect to the
sizes appearing in the previous two displays as in Definition 1.1.4 and Definition 1.1.6.

On the setting pX, ν2, ωq, we have the following equivalence between outer Lp quasi-
norms with respect to the different sizes `22,ω,out, S2, and rS2.

Lemma 4.5.4. For every p P p0,8s, there exists a constant C “ Cppq such that, for every
function f on X, we have

‖f‖Lpν2 p`22,ω,outq
ď ‖f‖Lpν2 pS2q

ď ‖f‖
Lpν2 p

rS2q
ď C‖f‖Lpν2 p`22,ω,outq

.
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Proof. For every subset T2 P T2, for every function f on X, we have

`22,ω,outpfqpT2q ď S2pfqpT2q ď rS2pfqpT2q.

Moreover, for every function f on X, we have

‖f‖
L8ν2 p

rS2q
ď ‖f‖L8ν2 p`22,ω,outq

` ‖f‖L8ν2 p`82,ωq
“ ‖f‖L8ν2 p`22,ω,outq

` ‖f‖L8pX,ωq
ď 2‖f‖L8ν2 p`22,ω,outq

,

where we used the fact that, for every H P X, we have

|fpHq| “ ν2pT2pHqq
´ 1

2 ‖f1H‖L2pX,ωq ď `22,ω,outpfqpT2pH
1qq.

In the previous display, for every H “ Hpm,n, lq P X, we define H 1 P X by

H 1 “ Hpm,n˚, lq,

and

n˚ “

#

n` 1, if n is even,
n´ 1, if n is odd.

Together with the definition of the outer Lp quasi-norms in Definition 1.1.4 and Defini-
tion 1.1.6, the previous two displays yield the desired chain of inequalities.

Remark 4.5.5. We point out that the outer Lp quasi-norms with respect to the sizes `2ω,out,
S, and rS in the case of the settings on the upper half 3-spaces described in Subsections 1.2.12
– 1.2.13 are not equivalent. In fact, for every measurable function f on X, we only have
the inequalities

‖f‖Lpνp`2ω,outq
ď C‖f‖LpνpSq „p C‖f‖LpνprSq,

where we used the inequalities between the sizes. In general, the first inequality in the
previous display is strict, for example for the measurable subset Aε Ď X defined in the proof
of Lemma 4.5.2, we have

‖1Aε‖Lpνp`2ω,outq
“
ε
?
ε

2
, ‖1Aε‖LpνpSq “ ‖1Aε‖LpνprSq “ 1.

4.6 Double iterated outer L8µ p`qνp`rωqq spaces on finite settings

In this section, we study the uniformity in the finite setting pX,µ, ν, ωq of the constants
appearing in the Banach space properties of the outer L8µ p`

q
νp`rωqq spaces. We prove a result

about Köthe duality in a partial range of exponents q, r P p1,8q, and a result about quasi-
triangle inequality for countably many summands in the full range of exponents q, r P p1,8q.
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Theorem 4.6.1. For all q, r P r1,8s, there exists a constant C “ Cpq, rq such that, for
every finite setting pX,µ, ν, ωq, the following properties hold true.

(i) For all q, r P p1,8q, q ă r or q “ r P r1,8s, for every function f P L8µ p`
q
νp`rωqq on X,

we have
C´1‖f‖L8µ p`qνp`rωqq ď sup

!

‖fg‖L1pX,ωq : ‖g‖L1
µp`

q1
ν p`r

1
ω qq
“ 1

)

,

sup
!

‖fg‖L1pX,ωq : ‖g‖L1
µp`

q1
ν p`r

1
ω qq
“ 1

)

ď C‖f‖L8µ p`qνp`rωqq.
(4.6.1)

(ii) For all q P p1,8s, r P r1,8q or q “ r P t1,8u, for every collection tfn : n P Nu Ď
L8µ p`

q
νp`rωqq of functions on X, we have∥∥∥ ÿ

nPN
fn

∥∥∥
L8µ p`

q
νp`rωqq

ď C
ÿ

nPN
‖fn‖L8µ p`qνp`rωqq. (4.6.2)

Proof. Proof of property piq. If q “ r P r1,8s, by collapsing of exponents, property piq
in Theorem 4.2.1, for the setting pX, ν, ωq, then we reduce to the case of the single iterated
outer L8µ p`rωq quasi-norms on the setting pX,µ, ωq.

Therefore, without loss of generality, we assume q, r P p1,8q, q ă r. Let f P L8µ p`
q
νp`rωqq,

f ‰ 0. The second inequality in (4.6.1) follows from the Radon-Nikodym type result for
the outer L1 quasi-norms (Theorem 1.1.8) and outer Hölder’s inequality (Theorem 1.1.7)
for the finite setting pX,µ, ν, ωq. To prove the first inequality in (4.6.1), let A be a subset
of X such that

`qνp`
r
ωqpfqpAq “ ‖f‖L8µ p`qνp`rωqq ą 0.

Let tAk : k P Zu be the partition of A produced by the decomposition of f1A with respect
to the size `rω at levels t2k : k P Zu provided by Proposition 2.2.1 in Chapter 2. We define
the function g on X by

gpxq “
ÿ

kPZ
2kpq´rq1Akpxq|fpxq|

r´1.

There exists a constant c “ cpq, rq such that

‖fg‖L1pX,ωq “
ÿ

kPZ
2kqνpAkq ě c‖f1A‖qLqνp`rωq “ cµpAq‖f‖q

L8µ p`
q
νp`rωqq

.

Next, by outer Hölder’s inequality (Theorem 1.1.7) for the finite setting pX,µ, ν, ωq, we
have

‖g‖
L1
µp`

q1
ν p`r

1
ω qq
ď ‖1A‖L1

µp`
8
ν p`

8
ω qq
‖g‖

L8µ p`
q1
ν p`r

1
ω qq
“ µpAq‖g‖

L8µ p`
q1
ν p`r

1
ω qq
.

Moreover, there exists a constant C “ Cpq, rq such that, for every subset B Ď X, we have

‖g1B‖q
1

Lq
1

ν p`r
1
ω q
ď C‖f1B‖qLqνp`rωq.



4.7. EMBEDDING MAPS VIA CANCELLATIVE WAVELETS 199

The proof of the inequality in the previous display is the same of that of Case II in the
proof of Lemma 3.3.9 in Chapter 3, and we refer to it for the details. Therefore, we have

‖g‖
L8µ p`

q1
ν p`r

1
ω qq
“ sup

!´

µpBq´1‖g1B‖q
1

Lq
1

ν p`r
1
ω q

¯
1
q1

: B Ď A,B ‰ ∅
)

ď C
´

sup
!

µpBq´1‖f1B‖qLqνp`rωq : B Ď A,B ‰ ∅
)¯

1
q1

“ CµpAq
´ 1
q1 ‖f1A‖q´1

Lqνp`rωq

“ C‖f‖q´1
L8µ p`

q
νp`rωqq

,

yielding the inequality
‖g‖

L1
µp`

q1
ν p`r

1
ω qq
ď CµpAq‖f‖q´1

L8µ p`
q
νp`rωqq

.

Proof of property piiq. The inequality in (4.6.2) follows from the chain of inequalities∥∥∥ÿ
nPN

fn1A

∥∥∥
L8µ p`

q
νp`rωqq

“ sup
!

µpAq
´ 1
q

∥∥∥ÿ
nPN

fn1A

∥∥∥
Lqνp`rωq

: A Ď X,A ‰ ∅
)

ď C
ÿ

nPN
sup

!

µpAq
´ 1
q ‖fn1A‖Lqνp`rωq : A Ď X,A ‰ ∅

)

“ C
ÿ

nPN
‖fn‖L8µ p`qνp`rωqq,

where we used the quasi-triangle inequality for the single iterated outer Lqνp`rωq quasi-norm,
property piiiq in Theorem 2.1.1 in Chapter 2, for the finite setting pX, ν, ωq in the inequality.

4.7 Embedding maps in the upper half space via cancellative
wavelets

In this section, we study embedding maps from the classical LppRd,dxq spaces to the outer
Lpµdp`

r
ωd
q spaces with r P p0,8s on the settings on the upper half space or its discrete model

described in Subsections 1.2.8 – 1.2.10. In particular, the embedding maps are defined by
convolving a function on Rd with dilated and translated copies of a wavelet with additional
hypotheses of cancellation and Hölder continuity. We recall a classical result about the
boundedness of the embedding maps for r P r2,8s, and we exhibit counterexamples to it
for r P p0, 2q.

Fix a function φ P L1pRd, dxq. For every function f P L8pRd,dxq, we define the
embedded function Fφpfq on the upper half space Rd ˆ p0,8q by

Fφpfqpy, tq “

ˆ
Rd
fpxqt´dφ

´y ´ x

t

¯

dx.
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We have the following boundedness properties of the embedding maps.

Theorem 4.7.1. For all d P N, p P r1,8s, r P r2,8s, K ě 0, ε ą 0, there exists a constant
C “ Cpd, p, r,K, εq such that, for every function φ P L1pRd, dxq satisfying the conditions

ˆ
Rd
φpxq dx “ 0,

|φpxq ´ φpyq| ď K|x´ y|εp1` |x|q´d´ε, for all x, y P Rd, |x´ y| ď 1,
(4.7.1)

the following properties hold true.

(i) For all p P p1,8s, r P r2,8s, for every measurable function f P LppRd, dxq on Rd, we
have

‖Fφpfq‖Lpµd p`rωd q ď C‖f‖LppRd,dxq.

(ii) For every r P r2,8s, for every measurable function f P L1pRd, dxq on Rd, we have

‖Fφpfq‖L1,8
µd
p`rωd

q
ď C‖f‖L1pRd,dxq.

(iii) For every r P r2,8s, for every measurable function f P H1pRd, dxq on Rd, we have

‖Fφpfq‖L1
µd
p`rωd

q ď C‖f‖H1pRd,dxq.

(iv) For every r P r2,8s, for every measurable function f P BMOpRd,dxq on Rd, we have

‖Fφpfq‖L8µd p`r
1
ωd
q
ď C‖f‖BMOpRd,dxq.

We briefly comment on the proof. First, we recall the equivalence between the outer
Lpµdp`

r
ωd
q spaces and tent T pr spaces stated in Theorem 2.1.3 in Chapter 2. Next, we recall

the interpretation of the tent T p2 and T p8 norms of the embedded function Fφpfq as the
classical Lp norms of the square and maximal functions associated with f respectively.
Then, for r P t2,8u, the statements in the previous theorem are classical results, see for
example the book of Grafakos [Gra09] and Stein [Ste93]. By the logarithmic convexity of
the sizes (Proposition 2.A.8 in Chapter 2), the extension to the case r P p2,8q follows.

We pass to the case r P p0, 2q. We exhibit counterexamples to the boundedness of the
embedding maps via a bounded cancellative wavelet with compact support from LppRd,dxq
to the outer Lp,8µd p`rωdq spaces. We make two additional assumptions. First, we restrict to
the case of dimension d “ 1. Next, we restrict to the case of the setting pX,µ, ωq on
the discrete model of the upper half plane. The counterexamples we exhibit provide a
prototype to extend the result about the unboundedness of the embedding maps in the
following directions. First, to the case of the settings on the upper half plane described
in Subsections 1.2.9 – 1.2.10. Next, to the case of the settings on the upper half space of
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arbitrary dimension d P N. Finally, to the case of embedding maps via wavelets satisfying
the conditions in (4.7.1).

Let I be the collection of all the dyadic intervals in R. For every dyadic interval I P I,
let Il, Ir Ď I be the left and right dyadic sibling of I respectively. We define the Haar
function hI associated with I and normalized in L8pR,dxq by

hI “ χIl ´ χIr ,

and the Haar function }I associated with I and normalized in L1pR,dxq by

}I “ |I|´1hI .

The function } “ }p0,1s is the prototype of the cancellative wavelet.
Next, let pX,µ, ωq be the setting on the collection of upper half dyadic cubic boxes

in the upper half plane R ˆ p0,8q described in Subsection 1.2.8. There exists a bijective
correspondence between the elements of X and I defined as follows. For every B P X,
there exists a unique dyadic interval IpBq P I such that

B “ IpBq ˆ
´ |IpBq|

2
, |IpBq|

ı

.

Then, for every measurable function f P L8pR,dxq, we define the function F}pfq on X by

F}pfqpBq “

ˆ
R
fpxq}IpBqpxq dx.

Lemma 4.7.2. Let p P r1,8s, r P p0, 2q. For every M ą 0, there exists a measurable
function f P LppR, dxq on R such that

‖F}pfq‖Lp,8µ p`rωq
ěM‖f‖LppR,dxq.

Proof. Case I: p ‰ 8. For every L P N, we define the collection IL Ď I of dyadic intervals
by

IL “
!

Ipm,´lq P I : l P Z, 0 ď l ă L,m P Z, 0 ď m ă 2l
)

,

and the measurable function fL on R by

fL “
ÿ

IPIL

hI .

Therefore, we have
F}pfLqpBq “ 1ILpIpBqq.

For every p P r1,8q, by Khintchin’s inequality, see for example the book of Grafakos
[Gra08], there exists a constant C “ Cppq such that

‖fL‖LppR,dxq ď CL
1
2 . (4.7.2)
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Next, for every collection J Ď I of dyadic intervals, we define the measurable subset
A “ ApJ q Ď R by

A “
ď

JPJ
J,

and the measurable subset K “ KpJ q Ď X by

K “
ď

JPJ
EpJq.

Moreover, we define rJ Ď I to be the collection of maximal dyadic intervals contained in
p0, 1szA, maximal in terms of set inclusion. Furthermore, we define the measurable subsets
D “ DpJ q, rD “ rDpJ q Ď p0, 1s by

D “ AX p0, 1s, rD “ p0, 1szA “
ď

rJP rJ

rJ.

Finally, we define L Ď I to be the collection of dyadic intervals defined by

L “
!

I P I : I Ď p0, 1s, I Ę D, I Ę rD
)

.

In particular, for every rJ P rJ , for every I P I, I Ď p0, 1s such that rJ Ď I, rJ ‰ I, we have
I P L. Hence, for every l P Z, 0 ď l ă L, we have

ÿ

IPIL,|I|“2´l,IĘD

|I| “
ÿ

IPIL,|I|“2´l,IĎ rD

|I|`
ÿ

IPIL,|I|“2´l,IPL

|I|

ě
ÿ

IPIL,|I|“2´l,IĎ rD

|I|`
ÿ

IPIL,|I|ă2´l,IP rJ

|I|

“ | rD|.

(4.7.3)

For every α P r0, 1s, for every collection J Ď I of pairwise disjoint dyadic intervals such
that

|A| “
ÿ

JPJ
|J | “ α,

we have
ÿ

rJP rJ

| rJ | “ | rD| “ 1´ |D| ě 1´ |A| “ 1´ α.

Therefore, by the inequality in (4.7.3), we have

`rωpF}pfLq1KcqpEpp0, 1sqq “
´

ÿ

IPIL,IĘD
|I|

¯
1
r
ě L

1
r p1´ αq

1
r .
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Hence, for all p P r1,8q, r P p0, 2q, there exists a constant c “ cpp, rq such that

‖F}pfLq‖Lp,8µ p`rωq
ě sup

!

L
1
r p1´ αq

1
rα

1
p : α P r0, 1s

)

ě cL
1
r .

Taking L P N big enough, the inequalities in (4.7.2) and (4.7) yield the desired inequality.
Case II: p “ 8. For every dyadic interval I “ Ipm, lq P I, we define its centre cI P I

by
cI “ m2l ` 2l´1.

For every L P N, we define the collection JL Ď I of dyadic intervals by

JL “
!

Ipm,´lq P I : l P Z, 0 ď l ă 100L2,m P Z, 0 ď m ă 2l
)

,

and the measurable function fL on R by

fL “
ÿ

IPJL

apIqhI ,

where, for every I P JL, we define

apIq “

$

’

&

’

%

0, if
∣∣∣ ÿ

JPJLztIu,IĎJ
apJq sgnphJpcIqq

∣∣∣ “ L,

1, otherwise,

and sgn is the signum function. Therefore, we have

F}pfLqpBq “ 1JLpIpBqqapIpBqq.

By definition, the function fL is constant on the elements of LL Ď I, the collection of
dyadic intervals defined by

LL “
!

I P I : I Ď p0, 1s, |I| “ 2´100L2
)

.

Moreover, there exists a bijective correspondence between the dyadic intervals in LL and
the sequences in the collection

AL “
!

~a “ pa1, . . . , a100L2q : ai P t´1, 1u
)

,

defined as follows. For every sequence ~a P AL, we define the dyadic interval Ip~aq P LL by

Ip~aq “ I
´

100L2
ÿ

l“1

p1´ alq2
100L2´l´1,´100L2

¯

“

´

100L2
ÿ

l“1

p1´ alq2
´l´1, 2´100L2

`

100L2
ÿ

l“1

p1´ alq2
´l´1

ı

.
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Next, for every sequence ~a P AL, we define a` to be the number of coordinates attaining
the value 1, and a´ the number of coordinates attaining the value ´1. In particular, for a
fixed sequence ~a P AL, if |a` ´ a´| ě L, then the function |fL| attains the constant value
L on Ip~aq. Therefore, we have

!

x P p0, 1s : |fLpxq| ă L
)

Ď rAL,

where the subset rAL Ď p0, 1s is defined by

rAL “
ď

~AP rAL

Ip ~Aq,

and the collection rAL Ď AL is defined by

rAL “
!

~a P AL : |a` ´ a´| ă L
)

.

By the upper and lower bounds for the factorials provided by Stirling’s approximation, we
have

| rAL| “
tL{2u
ÿ

l“´tL{2u

ˆ

100L2

50L2 ` l

˙

ď 2L
100L2!

p50L2!q2

ď 2L

?
2π100L2p100L2{eq100L2

e1{p1200L2q

p
?

2π50L2p50L2{eq50L2e1{p600L2`1qq2

ď 2100L2´1,

where, for every x P R, we define txu P Z to be the biggest integer number smaller than or
equal to x. Therefore, we have∣∣∣!x P p0, 1s : |fLpxq| “ L

)∣∣∣ ě 1´
∣∣∣!x P p0, 1s : |fLpxq| ă L

)∣∣∣
ě 1´ | rAL|

“ 1´ 2´100L2 | rAL|
ě 2´1,

hence, for every p P r1,8s, we have

2
´ 1
pL ď ‖fL‖LppR,dxq ď L, (4.7.4)

where the exponent 8´1 is understood to be 0.
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Moreover, since the function a attains only values in t0, 1u, we have

‖F}pfLq‖L8µ p`rωq ě `rωpF}pfLqqpEp0, 1sq

“

´

ÿ

IPJL

apIqr|I|
¯

1
r

“

´

ÿ

IPJL

apIq2|I|
¯

1
r

“ ‖fL‖
2
r

L2pR,dxq

ě 2´
1
rL

2
r ,

(4.7.5)

where we used the L2pR,dxq orthogonality between Haar functions associated with different
dyadic intervals in the third equality, and the inequality in (4.7.4) in the second inequality.

Taking L P N big enough, the inequalities in (4.7.4) for p “ 8 and (4.7.5) yield desired
inequality.

Analogous counterexamples in the case of the settings on the upper half space described
in Subsections 1.2.9 – 1.2.10 are obtained by considering a Hölder continuous version of the
Haar function }, namely, for d “ 1, the function

φpxq “ 8x1r0, 1
8
qpxq ` 1r 1

8
, 3
8
qpxq ` p4´ 8xq1r 3

8
, 5
8
qpxq´

´ 1r 5
8
, 7
8
qpxq ` p´8` 8xq1r 7

8
,1qpxq,

and its appropriate generalizations for arbitrary dimension d P N.

4.8 Conjectures

We split the collection of conjectures into two subsections, the first about the single iterated
outer Lp quasi-norms and spaces, the second about the double iterated outer ones.

4.8.1 Conjectures for single iterated outer Lp spaces

First, we start with three conjectures about conditions on the setting pX,µ, ωq to recover the
uniformity of the constant in Köthe duality for certain single iterated outer Lp spaces. As
a corollary, we would recover the uniformity of the constant in the quasi-triangle inequality
for countably many summands for the respective spaces. We consider the following cases.

• Sufficient conditions for the outer Lpµp`8ω q and L1
µp`

r
ωq spaces.

• Necessary and sufficient condition for the outer L1,8
µ p`8ω q spaces.
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Conjecture 4.8.1. For all p P p1,8s, K ě 1, there exists a constant C “ Cpp,Kq such
that, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1 satisfying the condition
associated with the inequality in (4.2.10) with constant K, for every measurable function
f P Lpµp`8ω q on X, we have

C´1‖f‖Lpµp`8ω q ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`1ωq “ 1
)

ď C‖f‖Lpµp`8ω q.

Conjecture 4.8.2. For all r P r1,8s, K ě 1, there exists a constant C “ Cpr,Kq such
that, for every finite setting pX,µ, ωq described in Subsection 1.2.2 and satisfying the condi-
tion associated with the inequality in (4.2.18) with constant K, for every measurable function
f P L1

µp`
r
ωq on X, we have

C´1‖f‖L1
µp`

r
ωq
ď sup

!

‖fg‖L1pX,ωq : ‖g‖L8µ p`r1ω q “ 1
)

ď C‖f‖L1
µp`

r
ωq
.

Conjecture 4.8.3. There exist two maps c,rc : p0,8q Ñ p0,8q such that, for every σ-finite
setting pX,µ, ωq described in Subsection 1.2.1, the following properties hold true.

(i) If there exists a constant rC such that, for every measurable function f P L1,8
µ p`8ω q on

X, we have

rC´1‖f‖
L1,8
µ p`8ω q

ď sup
!

inf
!

‖f1E1‖L1pX,ωq‖1E1‖
´1
L8µ p`

1
ωq

: E1 P Υpµ,Eq
)

: E P Σ
)

,

sup
!

inf
!

‖f1E1‖L1pX,ωq‖1E1‖
´1
L8µ p`

1
ωq

: E1 P Υpµ,Eq
)

: E P Σ
)

ď rC‖f‖
L1,8
µ p`8ω q

,

where, for every measurable subset E P Σ, we define the collection Υpµ,Eq Ď Σ of
measurable subsets of E by

Υpµ,Eq “
!

E1 P Σ: E1 Ď E,µpE1q ě
µpEq

2

)

,

then pX,µ, ωq satisfies the condition associated with the inequality in (4.2.10) with
constant C “ cp rCq.

(ii) If pX,µ, ωq satisfies the condition associated with the inequality in (4.2.10) with con-
stant C, then there exists a constant rC “ rcpCq such that, for every measurable function
f P L1,8

µ p`8ω q on X, we have the inequalities in the previous display with constant rC.

Next, we have a conjecture about the uniformity of the constant in a weak version of
the quasi-triangle inequality for countably many summands for the outer L1

µp`
r
ωq space.

Conjecture 4.8.4. For every r P r1,8q, there exists a constant C “ Cprq such that, for
every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, for every collection tfn : n P
Nu Ď L1

µp`
r
ωq of measurable functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
L1,8
µ p`rωq

ď C
ÿ

nPN
‖fn‖L1

µp`
r
ωq
.
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When the uniformity of the constant in the quasi-triangle inequality for countably many
summands fails, we have a conjecture about the dependence of the constant on the number
of summands.

Conjecture 4.8.5. For all p P r1,8q, r P p1,8s, there exist two constants C1 “ C1ppq and
C2 “ C2prq such that, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, for
every N P N, for every collection tfn : 1 ď n ď Nu of measurable functions on X, we have∥∥∥ N

ÿ

n“1

fn

∥∥∥
Lpµp`8ω q

ď C1p1` lnpNqq
1
p

N
ÿ

n“1

‖fn‖Lpµp`8ω q,∥∥∥ N
ÿ

n“1

fn

∥∥∥
L1
µp`

r
ωq
ď C2p1` lnpNqq1´

1
r

N
ÿ

n“1

‖fn‖L1
µp`

r
ωq
.

Then, we have a conjecture about a condition equivalent to the uniformity of the con-
stant in the quasi-triangle inequality for countably many summands for the outer L1

µp`
8q

space.

Conjecture 4.8.6. There exist three maps φ, k : p0,8q Ñ p1,8q, and c : p1,8q2 Ñ p0,8q
such that, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following
properties hold true.

(i) If the outer L1
µp`

8
ω q quasi-norm satisfies the quasi-triangle inequality for countably

many summands with constant C, then the quadruple pX,µ, µ, Idq satisfies the canopy
and the crop conditions 1.3.4 – 1.3.5 with parameters Φ “ φpCq, K “ kpCq.

(ii) If the quadruple pX,µ, µ, Idq satisfies the canopy and the crop conditions 1.3.4 – 1.3.5
with parameters Φ, K, then the outer L1

µp`
8
ω q quasi-norm satisfies the quasi-triangle

inequality for countably many summands with constant C “ cpΦ,Kq.

After that, we have a conjecture about the atomic decompositions of the outer Lpµp`rωq
spaces. In the statement, ρ denotes the counting measure on N. Moreover, for every
measurable function f on X, we define µpsupppfqq P r0,8s by

µpsupppfqq “ inf
!

µpAq : A Ď X, ‖f1Ac‖L8pX,ωq “ 0
)

.

Conjecture 4.8.7. For all p0, p, r P p0,8s, there exists a constant C “ Cpp0, p, rq such
that, for every σ-finite setting pX,µ, ωq described in Subsection 1.2.1, the following proper-
ties hold true.

(i) If p ě r, p ě p0, then, for every measurable function f P Lpµp`rωq on X, we have

C´1‖f‖Lpµp`rωq ď sup
!

‖an‖LppN,ρq : Dtfn : n P Nu Ď Ap,r, |f | “ ‖anfn‖Lp0 pN,ρq
)

,

sup
!

‖an‖LppN,ρq : Dtfn : n P Nu Ď Ap,r, |f | “ ‖anfn‖Lp0 pN,ρq
)

ď C‖f‖Lpµp`rωq,
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where a is an outer Lpµp`rωq atom in Ap,r with p ě r if

‖f‖LrpX,ωq ě µpsupppfqq
1
r
´ 1
p .

(ii) If p ď r, p ď p0, then, for every measurable function f P Lpµp`rωq on X, we have

C´1‖f‖Lpµp`rωq ď inf
!

‖an‖LppN,ρq : Dtfn : n P Nu Ď Ap,r, |f | “ ‖anfn‖Lp0 pN,ρq
)

,

inf
!

‖an‖LppN,ρq : Dtfn : n P Nu Ď Ap,r, |f | “ ‖anfn‖Lp0 pN,ρq
)

ď C‖f‖Lpµp`rωq,

where a is an outer Lpµp`rωq atom in Ap,r with p ď r if

‖f‖LrpX,ωq ď µpsupppfqq
1
r
´ 1
p .

Moreover, we have a conjecture about the quasi-triangle inequality for countably many
summands for the outer Lp spaces with respect to the sizes `rω,inn, `

r
ω,out, S, and rS on the

settings on the upper half 3-space defined in Subsection 4.5.1.

Conjecture 4.8.8. For all p P p1,8s, r P r1,8s, there exists a constant C “ Cpp, rq such
that, for every setting pX, ν, ωq on the upper half 3-space described in Subsections 1.2.12 –
1.2.13, the following properties hold true.

For every collection tfn : n P Nu Ď Lpνp`rω,innq of measurable functions on X, we have∥∥∥ ÿ

nPN
fn

∥∥∥
Lpνp`

r
ω,innq

ď C
ÿ

nPN
‖fn‖Lpνp`rω,innq

.

Replacing `rω,inn with `rω,out, S, and rS, we have the same statements for the outer Lpνp`rω,outq,
LpνpSq, and LpνprSq spaces respectively.

Finally, we have a conjecture about the equivalence of the outer Lp spaces with respect
to different sizes for embedded function in the case of the setting pX, ν2, ωq on the collection
of Heisenberg upper half dyadic tiles described in Subsection 4.5.4.

Conjecture 4.8.9. LetM,N P N. Let Φ “ ΦpM,Nq be the collection of Schwartz functions
φ on R such that

1r´1,1s ď
pφ ď 1r´2,2s,

and, for every k P N, k ď N , we have

|Bk pφpξq| ďM.

For every p P p0,8s, there exists a constant C “ CpΦ, pq such that, for every Schwartz
function f on R, we have

‖FΦpfq‖Lpν2 p`82,ωq ď ‖FΦpfq‖Lpν2 p`22,ω,outq
ď C‖FΦpfq‖Lpν2 p`82,ωq,

where FΦpfq is the function on X defined by

FΦpfqpHq “ sup
φPΦ

sup
py,η,tqPH

∣∣∣ˆ
R
fpzq

1

t
e2πipy´zqηφ

´y ´ z

t

¯

dz
∣∣∣.
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4.8.2 Conjectures for double iterated outer Lp spaces

First, we start with a conjecture about the exchange between the canopy and the crop
conditions in the statement of Theorem 1.3.6.

Conjecture 4.8.10. For all p, q, r P p0,8s, Φ,K ě 1, there exist three constants C1 “

C1pq, r,Φ,Kq, C2 “ C2pq, r,Φ,Kq, and C “ Cpp, q, r,Φ,Kq such that, for every finite set-
ting pX,µ, ν, ωq described in Subsection 1.2.2, for every µ-covering function C, the following
property holds true.

(i) If pX,µ, ν, Cq satisfies the crop condition 1.3.5, then for every function f on X, we
have

C´1
1 ‖f‖Lqνp`rωq ď ‖f‖Lqµp`qνp`rωqq ď C2‖f‖Lqνp`rωq.

(ii) If pX,µ, ν, Cq satisfies the crop condition 1.3.5, then for all p, q, r P p1,8q, q ď r, for
every function f on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`q1ν p`r1ω qq “ 1
)

ď C‖f‖Lpµp`qνp`rωqq.

If pX,µ, ν, Cq satisfies the canopy condition 1.3.4, then for all p, q, r P p1,8q, q ě r,
the same inequalities hold true.

(iii) If pX,µ, ν, Cq satisfies the crop condition 1.3.5, then for all p, q, r P p1,8q, q ď r, for
every collection tfn : n P Nu of functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
Lpµp`

q
νp`rωqq

ď C
ÿ

nPN
‖fn‖Lpµp`qνp`rωqq.

If pX,µ, ν, Cq satisfies the canopy condition 1.3.4, then for all p, q, r P p1,8q, q ě r,
the same inequality holds true.

Next, we have a conjecture about the Banach space properties of the double iterated
outer Lp spaces with at least one exponent in t1,8u in the case of the settings on the upper
half 3-space or its discrete model described in Subsections 1.2.11 – 1.2.13. To make the
statement of the conjecture cleaner, we include the whole range of exponents p, q, r. The
actual conjectured results are those in the cases not already covered by Theorem 3.1.5 in
Chapter 3.

Conjecture 4.8.11. For all p, q, r P p0,8s, there exists a constant C “ Cpp, q, rq such
that, for every setting pX,µ, ν, ωq on the upper half 3-space or its discrete model described
in Subsections 1.2.11 – 1.2.13, the following property holds true.

(i) For all q, r P p0,8s, for every measurable function f P Lqµp`qνp`rωqq on X, we have

C´1‖f‖Lqνp`rωq ď ‖f‖Lqµp`qνp`rωqq ď C‖f‖Lqνp`rωq.
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(ii) For all p, r P r1,8s, q P p1,8s or p P r1,8s, q “ r “ 1, for every measurable function
f P Lpµp`

q
νp`rωqq on X, we have

C´1‖f‖Lpµp`qνp`rωqq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1µ p`q1ν p`r1ω qq “ 1
)

ď C‖f‖Lpµp`qνp`rωqq.

(iii) For all p, r P r1,8s, q P p1,8s or p P r1,8s, q “ r “ 1, for every collection tfn : n P
Nu Ď Lpµp`

q
νp`rωqq of measurable functions on X, we have∥∥∥ÿ

nPN
fn

∥∥∥
Lpµp`

q
νp`rωqq

ď C
ÿ

nPN
‖fn‖Lpµp`qνp`rωqq.

(iv) Let p P r1,8s, q “ 1, r P p1,8s. For every M ą 0, there exists a collection tfn : n P
Nu Ď Lpµp`1νp`

r
ωqq of measurable functions on X such that∥∥∥ÿ

nPN
fn

∥∥∥
Lpµp`1νp`

r
ωqq
ěM

ÿ

nPN
‖fn‖Lpµp`1νp`rωqq.

Then, we have a conjecture about the failure of the uniformity of the constant in Köthe
duality for outer L8µ p`

q
νp`rωqq spaces with q ą r, addressing the remaining case in property

piq in Theorem 4.6.1.

Conjecture 4.8.12. Let q, r P r1,8s, q ą r. For every M ą 0, there exist a finite setting
pX,µ, ν, ωq and a function f P L8µ p`

q
νp`rωqq on X such that

‖f‖L8µ p`qνp`rωqq ěM sup
!

‖fg‖L1pX,ωq : ‖g‖L1
µp`

q1
ν p`r

1
ω qq
“ 1

)

.

After that, we have a conjecture about Minkowski’s inequality for double iterated outer
Lp spaces. Before stating the conjecture, we introduce some auxiliary definitions.

For every finite setting pX,µ, ν, ωq, let υ “ υpµ, νq be the outer measure on X defined
by

υ : PpXq Ñ p0,8q, υpAq “ ‖1A‖L8µ p`1νp`8ω qq,

let ρ “ ρpµ, ωq be the outer measure on X defined by

ρ : PpXq Ñ p0,8q, ρpAq “ ‖1A‖L8µ p`1ωq,

let ζ “ ζpµ, ν, ωq be the outer measure on X defined by

ζ : PpXq Ñ p0,8q, ζpAq “ ‖1A‖L8υ p`1ωq,

and let κ “ κpν, ωq be the outer measure on X defined by

κ : PpXq Ñ p0,8q, κpAq “ ‖1A‖L8ν p`1ωq.
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Conjecture 4.8.13. For all p, q, r P p0,8s, there exists a constant C “ Cpp, q, rq such
that, for every finite setting pX,µ, ν, ωq, for every measurable function f on X, the following
properties hold true.

(i) If p ě q, we have

‖f‖Lpµp`qνp`rωqq ď C‖f‖Lqυp`pνp`rωqq, ‖f‖Lpυp`qνp`rωqq ď C‖f‖Lqµp`pνp`rωqq.

(ii) If p ě q, r, we have

‖f‖Lpµp`qνp`rωqq ď C‖f‖Lqυp`rρp`pωqq, ‖f‖Lpυp`qρp`rωqq ď C‖f‖Lqµp`rνp`pωqq.

(iii) If q ě r, we have

‖f‖Lpµp`qνp`rωqq ď C‖f‖Lpµp`rζp`qωqq, ‖f‖Lpµp`qζp`rωqq ď C‖f‖Lpµp`rνp`qωqq.

(iv) If p, q ě r, we have

‖f‖Lpµp`qνp`rωqq ď C‖f‖Lrκp`pζp`qωqq, ‖f‖Lpκp`qζp`rωqq ď C‖f‖Lrµp`pνp`qωqq.

(v) If p ě q ě r, we have

‖f‖Lpµp`qνp`rωqq ď C‖f‖Lrκp`qρp`pωqq, ‖f‖Lpκp`qρp`rωqq ď C‖f‖Lrµp`qνp`pωqq.

Finally, we have a conjecture about the improved regularity of the outer measures
associated with Minkowski’s inequality in terms of the Banach space properties of the
double iterated outer Lp spaces.

Conjecture 4.8.14. For all p, q, r P p0,8s, there exists a constant C “ Cpp, q, rq such
that, for every finite setting pX,µ, ν, ωq described in Subsection 1.2.2, the following prop-
erties hold true for the finite setting pX, υ, ν, ωq and for the outer measure υ defined as in
Conjecture 4.8.13.

(i) For all q, r P p0,8s, for every function f P Lqυp`qνp`rωqq on X, we have

C´1‖f‖Lqνp`rωq ď ‖f‖Lqυp`qνp`rωqq ď C‖f‖Lqνp`rωq.

(ii) For all p, q, r P p1,8q, for every function f P Lpυp`qνp`rωqq on X, we have

C´1‖f‖Lpυp`qνp`rωqq ď sup
!

‖fg‖L1pX,ωq : ‖g‖Lp1υ p`q1ν p`r1ω qq “ 1
)

ď C‖f‖Lpυp`qνp`rωqq.

(iii) For all p, q, r P p1,8q, for every collection tfn : n P Nu ĎP Lpυp`qνp`rωqq of functions on
X, we have ∥∥∥ÿ

nPN
fn

∥∥∥
Lpυp`

q
νp`rωqq

ď C
ÿ

nPN
‖fn‖Lpυp`qνp`rωqq.

We have the same statements replacing the finite setting pX, υ, ν, ωq with the finite set-
tings pX, υ, ρ, ωq, pX,µ, ζ, ωq, pX,κ, ζ, ωq, and pX,κ, ρ, ωq, for the outer measures υ, ρ, ζ,
and κ defined as in Conjecture 4.8.13.
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r
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r
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