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Par vardar dentro ai cieli sereni
14 su sconti da nuvoli neri

go lasa le me vali e i me orti
par salir su le cime de i monti.

So riva su le cime de i monti

go varda dentro ai cieli sereni
vedaro le me vali e i me orti

14 zo sconti da nuvoli neri?

Di quel che udire e che parlar vi piace,
noi udiremo e parleremo a voi,
mentre che 'l vento, come fa, ci tace.

[...] not because they are easy, but because they are hard.

Giacomo Noventa

Dante

John F. Kennedy
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Abstract

The theory of LP spaces for outer measures, or outer LP spaces, was introduced by Do and
Thiele. Their main interest was its application to the study of the boundedness properties
of some multilinear forms satisfying certain invariances arising in the context of Calderén-
Zygmund theory and time-frequency analysis.

However, the theory can be developed in a broader generality of settings. It requires a set
X, an outer measure pu to evaluate the magnitude of subsets of X, and a size S to evaluate
the magnitude of functions on X when localized to the elements of a certain collection A
of subsets of X. Then, the outer L},(S) quasi-norms are defined by the interplay between p
and S via a layer cake integral. For every p € (0,00) and every function f on X, we define

1 lz(s) = sup { S(F)(A): Ae Af,

PR dAy b
1£llzgs) = ( /0 pAinf {u(B): B S X, el p(s) < A} )

and the outer Li?(S) and Lj;(S) spaces to be the sets of functions on X for which HfHL;C(S)v

and || f]| Lr(s) are finite respectively. For example, the mixed LP spaces on the Cartesian
product of o-finite measure spaces can be exhibited as outer LP spaces for an appropriate
choice of (X, i, S).

Do and Thiele developed the theory of outer LP spaces in the direction of their real
interpolation properties, such as Holder’s inequality and Marcinkiewicz interpolation. This
thesis is concerned with further developing the theory of these spaces. The focus is towards
the Banach space properties analogous to those of the mixed LP spaces, such as Koéthe
duality, triangle inequality for countably many summands, and Minkowski’s inequality.

The thesis consists of four chapters.

Chapter [1] is an introduction. We recall definitions and properties of outer LP spaces
from the article of Do and Thiele and we introduce a list of examples. We also comment on
the results about the Banach space properties of outer LP spaces appearing in the following
chapters.

In Chapter [2| we study single iterated outer LP spaces, when the size is a suitably
averaged local classical L" quasi-norm associated with a measure w on X. For p,r € (1, 00)
we prove that the outer LP quasi-norms are equivalent to norms up to a constant uniform in
the setting (X, u,w). We also focus on the setting on R x (0, c0) associated with Calderén-
Zygmund theory.

In Chapter [3] we study double iterated outer LP spaces, when the size is a suitably
averaged local single iterated outer L? quasi-norm on the setting (X, v, w). Under addi-
tional assumptions on p and v, for p,q,r € (1,00) we prove that the outer LP quasi-norms
are equivalent to norms up to a constant uniform in the setting (X, u, v,w). We provide
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counterexamples showing the necessity of additional assumptions. We also focus on the
setting on R? x (0,0) associated with time-frequency analysis.

In Chapter [d] we address additional questions about outer LP spaces. For example,
we prove a version of Minkowski’s inequality for single iterated outer LP quasi-norms. We
conclude with some open conjectures.
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Chapter 1

Introduction

The LP? theory for outer measure spaces, or theory of outer LP spaces, was introduced by
Do an Thiele in [DT15] in the study of the boundedness properties of linear and multilinear
operators satisfying certain symmetries. This is the case for many important operators
in harmonic analysis. For example, operators with translation and dilation invariances
in Calderon-Zygmund theory (paraproducts, singular integral operators, T'(1) theorem)
and operators with additional modulation invariances in time-frequency analysis (Carleson
operator, bilinear Hilbert transform). We refer to the books of Grafakos [Gra08|, [Gra09],
Muscalu and Schlag [MS13al, MS13b], Stein [Ste70, [Ste93], and Thiele [Thi06] for a thorough
treatment of the study of these operators in harmonic analysis. In this Introduction, we
are satisfied with considering two prototypical examples, one in the context of Calderén-
Zygmund theory and the other in the context of time-frequency analysis.

The example for the first case is the form associated with the Hilbert transform. For
all Schwartz functions f, g € S(R), we define the form Ay by

1
Aulfg) =pv. [ 7la = g deds,
RxR
It satisfies translation and dilation invariances.
The example for the second case is the form associated with the bilinear Hilbert trans-
form. For all Schwartz functions f1, fo, f3 € S(R), we define the form Ay by

Apu(f,g,h) = p.v./ %fl(:z: —t) fa(x) f3(x + t) dt d.

RxR

It satisfies translation, dilation, and modulation invariances.
We can prove the boundedness of these forms on the Cartesian product of classical L?
spaces, namely

|Au(f1, f2, f3)

< Cu(p, Dl o) 19/l Loy

|
(1.0.1)
| < Ceu(p1, p2, P3) | f1ll or () | f2ll o2 ) 1 31| Los )

1
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where the exponents p, ¢, p; € (1, 00) satisfy the Holder type condition, namely
1 1 1 1 1
+ —+—+—=1
p g b1 P2 P3
Moreover, in both cases we can express the forms in terms of an integral over the set of

invariances, namely

d
Aufig) = An [ Flo,9)Gs
o) (1.0.2)
ABH(f7ga h) = ABH/ Fl(CU, 57 S)FQ(xa 55 S)Fg(.T, 57 S) dz dé ds.
RxRx(0,00)

In the previous display, F = F(f), G = G(g), and F; = F;(f;) are functions obtained
sampling f, g, and f; with appropriately translated, dilated and modulated copies of certain
wave-packets. We refer to the article of Do and Thiele [DT15] and the book of Thiele
[Thi06] for the details of the equalities in (1.0.2). Informally speaking, the singular kernel
is decomposed along the set of invariances and absorbed in the samplings of the functions.

In particular, the left hand sides of the inequalities in become similar to the left
hand side of Holder’s inequality. This suggests a strategy to prove the inequalities in
based on the following two-step programme. First, we would apply a version of Holder’s

inequality to the integrals in ((1.0.2)), namely

|ABH(faga h)‘

for appropriate abstract LP quasi-norms on the sets R x (0,00) and R x R x (0, 0). Next,
we would prove the boundedness of the maps from f to F', namely

B||F|[ s IGll Lo
B F| oy 12l oo [ 3] s

NN

1E e < ClF Loy 1Eill o: < Clfill o )

In the case of the form Ay, this proof strategy is not essentially different from the
classical one, passing through the maximal and square functions. The major novelty is that
the new approach encodes the classical one in the case of forms satisfying translation and
dilation invariances, and generalizes it to the case of forms satisfying additional modulation
invariances. As a matter of fact, such a proof strategy is a cornerstone in the context of time-
frequency analysis tracing back to the seminal works of Lacey and Thiele [LT97, [LT99, [LT00]
and Thiele [Thi00, [Thi02] on the bilinear Hilbert transform and the Carleson operator.
Among the more recent applications of the two-step programme outlined above, we point
out the following works. The articles of Do and Thiele [DT15], Di Plinio and Ou [DPO18D],
Amenta and Uraltsev [AU20b|, and the Ph.D. thesis of Warchalski [Warl8| on the bilinear
Hilbert transform. The articles of Uraltsev [Ural6|, Di Plinio, Do and Uraltsev [DPDU1S§],
Amenta and Uraltsev [AU22| on the Carleson operator. The article of Do, Muscalu and



Thiele [DMT17] on the bilinear iterated Fourier inversion operator. Further references can
be found in the introductions of [Fra2l] and [EFra22|], namely Chapter [2| and Chapter |3 of
this thesis, and we direct the interested reader to them. We briefly comment that also the
proof of the boundedness of the forms associated with a sparse family of dyadic cubes can
be interpreted as a variant of the two-step programme outlined above.

The theory of outer LP spaces provides a framework to formalize the proof strategy
outlined above. In fact, it turns out that the right structure on the sets of invariances is
that of an outer measure space, and the abstract LP spaces to evaluate the magnitude of
the embedding function sending f to I’ are the outer LP spaces.

An outer measure g on a set X is a monotone, subadditive function on the collection
of subsets of X, attaining value zero on the empty set. It provides a way to evaluate the
magnitude of subsets of X. On one hand, the lack of additivity on disjoint subsets prevents
the development of a linear theory of integrals. On the other, there is no restriction on the
subsets on which the outer measure is defined. We could always restrict to the collection of
Carathéodory measurable subsets, hence recovering a measure, and consider the LP theory
associated with the new measure space. This is the classical use of outer measures in the
introduction of measures, the main example being the Lebesgue measure, see for example
the book of Rudin [Rud74]. However, in the cases of interest, there would be very few
Carathéodory measurable subsets, sometimes only the trivial ones, the empty set and the
whole set itself.

Nevertheless, there is still hope to develop a quasi-subadditive theory of LP spaces.
For every set X endowed with an outer measure pu, lacking a theory of integrals for outer
measure spaces, we use the layer cake integral and we measure the super level sets via
1 to define the outer LP quasi-norms. For example, for every outer measure p on a set
X, for every p € (0,00], we can define the outer LP spaces associated with the following
quasi-norms. For every function f on X, we define

£l oo ) = SUD {/\ e [0, 0): u({x e X:|f(x) > A}) > o}
1 (1.0.3)

s = ([ ovn({oe x: 150> 0) )"

Actually, these are the definitions of the LP quasi-norms and spaces appearing in the context
of the well-developed theory of capacities and Choquet integrals, see for example the articles
of Choquet [Cho54] and Adams [Ada98].

In fact, in the previous display we used implicitly an additional ingredient, the collection
of functionals associated with the point evaluation at each point of X. Its role can be played
by other collections of functionals, leading to the introduction of sizes. A size S on a set
X is a collection of functionals, one for each element of a collection A of subsets of X.
For each element of A, the associated functional is defined on the same vector space M of
functions on X, and it is homogeneous, monotone, and subadditive in the variable in M.
The size provides a way to evaluate the magnitude of functions. In , this is achieved
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by the point evaluations, namely the size is the L® norm with respect to the counting
measure. Another example of a size is the functional associated with the property defining
the Carleson measures on the upper half space R¢ x (0,00), see for example the book of
Stein [Ste93|. For the purpose of this introduction, we restrict to the case of measures on
the upper half space defined by densities with respect to the Lebesgue measure. Then, the
functional has the form of a suitably averaged local classical L' norm of such densities on
specific subsets of the upper half space. Such a functional is the prototype of the sizes we
are interested in throughout this thesis.

Then, the outer LP quasi-norms with respect to .S are defined by an interplay between
the outer measure and the size. This interplay is analogous to that between the measure w
and the classical L*(X,w) norm appearing in the layer cake representation of the classical
LP(X,w) quasi-norms on the measure space (X, w).

In view of its application to the two-step programme outlined above, in their arti-
cle [DT15], Do and Thiele developed the theory of outer LP spaces mainly in the direc-
tion of the real interpolation properties. These include versions of Holder’s inequality and
Marcinkiewicz interpolation for the outer LP spaces.

In this thesis we are mostly concerned with investigating the Banach space properties of
the outer LP spaces. For example, whether or not the outer LP quasi-norms are equivalent
to norms, namely whether or not they satisfy a quasi-triangle inequality with constant
uniform in the number of summands. We postpone the description of the other Banach
space properties we are interested in to the final section of this Introduction.

1.1 Definition and properties of outer L? spaces

We proceed with the formal definition of the outer LP spaces and the statement of relevant
properties, following the article of Do and Thiele [DT15]. We postpone the examples to
Subsections [[.2.1] - [I.2.13] after the introduction of the whole formal framework.

The first ingredient in the definition of outer L? spaces is that of an outer measure.

Definition 1.1.1 (Outer measure). Let X be a set. Let P(X) be the collection of all the
subsets of X. An outer measure u on X is a function

p: P(X) — [0, 0],
satisfying the following properties.
(1) u(2) = 0.
(11) For all subsets A,B < X, A< B, we have u(A) < u(B).

(iii) For every collection {A,: n € N} € P(X) of subsets of X, we have

,u( U An> < Z wu(Ay).

neN neN
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A standard way to define an outer measure p on a set X is to start with a function,
called pre-measure, defined on a particular collection of subsets of X, and to generate p via
minimal coverings. We briefly recall the construction.

Definition 1.1.2 (Pre-measure). Let X be a set. Let £ < P(X) be a collection of subsets
of X. A pre-measure (0,&) on X is a function

o: & — [0,0].

To simplify the notation, we will often avoid to mention &, as it is implicitly determined
by o as its domain.
We define the outer measure p = (o, €) on X as follows. For every subset A € X,

w(A) = inf{ Z o(E): &' c & Ac U E}, (1.1.1)
Ee&’ Ee&’

where the infimum is taken over all the countable subcollections of £ covering A. Moreover,
the sum over an empty collection is understood to be 0. Furthermore, if there exists no
countable subcollection of £ covering A, then the infimum is understood to be c0. We refer
to Proposition 2.1 in [DT15] for a proof that u is indeed an outer measure. We point out
that, for every subset E € £, we have

u(E) < o(E),

but in general the inequality in the opposite direction need not hold true.
The second ingredient in the definition of outer LP spaces is that of a size.

Definition 1.1.3 (Size). Let X be a set. Let A < P(X) be a collection of subsets of X. Let
M(X, A) be a vector space of functions on X. A size (S, A, M(X,A)) on X is a function

S: M(X,A) — [0,00]4,
satisfying the following properties.
(i) For every X € R, for every function f € M(X,A), for every subset A € A, we have

SAfIA) = [AIS(f)(A).
(ii) For all functions f,ge M(X,A) such that |f| < |g|, for every subset A € A, we have
S(f)(A) < 5(g)(4).

(i1i) There exists a constant C > 0 such that, for all functions f,g € M(X,.A), for every
subset A e A, we have

S(f +9)(A) < C(S(f)(A) + 5(9)(A))-
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To simplify the notation, we will often avoid to mention M(X, A) or both A and
M(X, A), as they are implicitly determined by S as its domain.

We are now ready to define the outer LP quasi-norms and spaces with respect to a size
on a set endowed with an outer measure. We start with the outer L quasi-norm of a
function. It is the maximal magnitude achieved by the function in terms of the size.

Definition 1.1.4 (Outer L;7(S) quasi-norm and space). Let X be a set, let pn be an outer
measure on X, and let (S, A, M(X,.A)) be a size. For every function f € M(X,A), we
define the outer L}7(S) quasi-norm of the function f by

11l sy = IfllLee(s) = sup {S(f)(A)f Ae A}7 (1.1.2)

and the outer L7 (S) space to be the set of functions in M(X,A) for which ||f| po(s) is
"
finite.

The outer L* quasi-norm allows us to introduce the super level measure of a function
with respect to the size. It is the magnitude of a minimal set outside of which the outer
L* quasi-norm of the function is controlled by A, minimal in terms of the outer measure.

Definition 1.1.5 (Super level measure). Let X be a set, let 1 be an outer measure on X,
and let (S, A, M(X,A)) be a size. For every function f € M(X,A), for every X € (0,0),

we define the super level measure of the function f at level A with respect to the size S by
W(S(F) > V) = inf {u(B): BE X, flpe e MOX.A).[|F1pel s < A}

The super level measure allows us to define the outer LP and LP* quasi-norms and
spaces with respect to a size on a set endowed with an outer measure for p € (0, 00).

Definition 1.1.6 (Outer L},(S) and L;*(S) quasi-norms and spaces). Let X be a set, let
w be an outer measure on X, and let (S, A, M(X,A)) be a size. For every p € (0,00), for
every function f € M(X,A), we define the outer L},(S) and Ly (S) quasi-norms of the
function f by

* d\\ 5
s = ([ poutstn > 5)"
HfHLﬁ’OO(S) = sup {AM(S(f) > )\)%: A > 0},

and the outer L%,(S) and LL,™(S) spaces to be the sets of functions in M(X,.A) for which
”fHLﬁ(s) and ”fHLZ"’O(S) are finite respectively.

(1.1.3)

The outer LP and LP® quasi-norms and spaces described in Definition and Defi-
nition satisfy some expected properties for a meaningful LP theory.
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e The quantities defined in (1.1.2]) and (1.1.3) are indeed monotone quasi-norms, see
Proposition 3.1 in [DT15]. Therefore, they can be used to define recursively new sizes,
hence iterated outer LP quasi-norms and spaces. The recursive definition of outer LP
spaces is described in details in the introduction of [Fra22], namely Chapter |3|of this
thesis.

e The outer LP and LP** quasi-norms and spaces are well-behaved with respect to the
pull-back of a map ® between different settings (X1, p1,S1) and (Xo, po, S2), provided
® is well-behaved with respect to the outer measures and the sizes, see Proposition 3.2
in [DTT5].

e The outer LP and LP® quasi-norms and spaces are well-behaved with respect to
the real interpolation properties of LP spaces, such as logarithmic convexity of the
outer LP quasi-norms, outer Hélder’s inequality, and Marcinkiewicz interpolation, see
Propositions 3.3 — 3.5 in [DT15].

e The outer LP quasi-norms satisfy a Radon-Nikodym type property, see Proposition 3.6
in [DT15].

Before moving to the next section, we recall the statements of outer Hélder’s inequality
and the Radon-Nikodym type property.

Theorem 1.1.7 (Outer Holder’s inequality, Proposition 3.4 in [DT15]). Let X be a set,
A a collection of subsets of X. Let u, p1, po be three outer measures on X such that, for
every subset A < X, we have

1(A) < i (A4), n(A) < pa(A).
Let (S, A, M(X,A)), (S1, A, M(X,A)), (S, A, M(X,A)) be three sizes satisfying the fol-
lowing three properties.

(i) For all functions fi, fa € M(X,.A), we have f1f2 € M(X,A).

(ii) For every subset A € A, there exist Ay € A and Az € A such that, for all functions
f1, f2 € M(X, A), we have

S(f1f2)(A) < S1(f1)(A1)S2(f2)(A2).

Then, for all p,p1,p2 € (0,00] satisfying

111

p p p2
there exists a constant C = C(p,p1,p2) such that, for all functions fi € M(X, A1) and
fo e M(X, Az), we have

11 fallze sy < Cllfilliz s 20l 2z s,)-
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Theorem 1.1.8 (Radon-Nikodym, Proposition 3.6 in [DT15]). Let (X,¥,w) be a o-finite
measure space, p an outer measure, and (S, A, M(X,¥)) a size with A < ¥ and M(X,X)
the vector space of measurable functions. If either, for every measurable subset A € A, we
have

p(4) = 0= w(4) =0,

or if there exists a constant C such that, for every measurable subset A € A, for every
measurable function f e M(X,X), we have

() LAl ey < O L)
then, there exists a constant C' such that, for every measurable function f € LZO(S), we have

£ 2 (x ) < C Il s)-

1.2 Examples

We proceed with the description of some relevant examples of outer measures and sizes. In
particular, we point out that throughout this thesis, we will be concerned with sizes of the
form of suitably averaged local classical and outer L" quasi-norms. Therefore, our examples
are triples of quadruples made of a set, one or two outer measures, and a measure.

We start by introducing o-finite settings in Subsection [1.2.1] which satisfy some reason-
able additional assumptions. First, an assumption on the absolute continuity between the
outer measures and the measure. Next, an assumption on the o-finiteness of the set with
respect to the outer measures and the measure. A particular case of such settings is that
of the finite ones we define in Subsection [[.2.2] Next, in Subsection [[.2.3] we have general
settings, where we drop the additional assumptions made on o-finite settings. However, in
this case we reduce the collection of sizes to that associated with the classical L® norm.
After that, in Subsection [I.2.4] we define the settings on the Cartesian product of o-finite
measure spaces exhibiting the mixed LP spaces as outer LP ones. These settings are our
point of reference in the analysis of the Banach space properties of the outer LP spaces.
Then, in Subsections —[I:2.7 we introduce some finite settings where the outer mea-
sure satisfies particular subadditivity properties, providing sources for counterexamples.
Finally, we conclude with the settings involved in the study of Calderén-Zygmund theory
and time-frequency analysis. The former ones, defined on the upper half space R% x (0,00)
or its discrete model in Subsections —~ The latter ones defined on the upper
half 3-space R? x (0, o0) or its discrete model in Subsections f

Upon first reading, it is enough to focus on the examples described in Subsection [T.2.1]
the standard setting of the results presented in this thesis, in Subsection the point of
reference in the analysis of the properties of the outer LP spaces, and in Subsection [[.2.8]
and Subsection [.2.11]
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Before introducing the examples, we briefly comment on the use of the notation ¢"
throughout this thesis. Usually, this symbol denotes the sequence spaces with r-integrability
and the quasi-norms associated with them, namely the classical L" spaces and quasi-norms
on the measure space N with the counting measure. Instead, throughout this thesis, this
symbol will denote certain sizes defined by suitably averaged local classical and outer L"
quasi-norms. In this regard, keeping in mind the symbol L", the symbol ¢" is chosen to
imitate the relation between the symbols [ and f.

1.2.1 o-finite setting

Let (X,) be a measurable space, where ¥ is the o-algebra of measurable subsets of X.
Let £,U < ¥ be two collections of measurable subsets of X. Let o and 7 be pre-measures
defined on £ and U respectively, and we assume them to attain only strictly positive finite
values. Let p and v be the outer measures on X generated via minimal coverings as in
by the pre-measures o and 7 on the collections €& and U respectively. Let w be a
measure on (X,Y). To guarantee that the sizes we are interested in are well-defined, we
make two additional assumptions. First, we assume a certain absolute continuity between
the outer measures and the measure. Namely, in case we consider only 4 and w, we assume
that, for every measurable subset A € ¥, we have

w(A) =0= w(A4) =0. (1.2.1)

In case we consider u, v and w, we assume that, for every measurable subset A € 3, we
have
w(A) =0=v(A) =0, v(A) =0=w(A)=0.

Next, we assume that the set is o-finite with respect to the outer measures and the measure.
Namely, there exist three collections {A,: n € N}, {B,: n € N},{C,,: n € N} € ¥ of
measurable subsets of X such that

w(Ay) < oo, v(By) < o, w(Cy) < 0, for every n € N,
X=JA=JB.=JCu (1.2.2)
neN neN neN

Under these assumptions, we define (X, u,w) and (X, u, v,w) o-finite settings.

Before defining the sizes, we introduce some auxiliary notation. We define M (X, X) to
be the collection of ¥-measurable functions on X with values in R. We define the collection
3 € ¥ of measurable subsets of X by

S = {AGZ: u(A) 7500},

and, for every measurable subset A € 3, we define the collection X/ (A4) € ¥ of measurable
subsets of A by

S (A) = {B €Y: BC A,w(A\B) = o}.
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First, we define the size (£,3, M(X,3)) as follows. For every measurable function f
on X, for every measurable subset A € X,

5 (NIA) = 1L all pon x )- (1.2.3)

Moreover, for every r € (0,00), we define the size (¢7,, 5, M(X, X)) as follows. For every

~

measurable function f on X, for every subset A € 3,

0, if pu(A)

. ) =0, (1.24)
WA 1Al i u(4) # 0.

to()(A) = {

Then, for all p,r € (0, 0], we define the single iterated outer LL,((7) and L™ (£1) quasi-
norms and spaces on the setting (X, u, w) with respect to each of the sizes appearing in the

previous two displays as in Definition and Definition
In particular, for every measurable function f on X, we have

1 llzpe) = 1l (1.2.5)

Moreover, for every p € (0,0), for every measurable function f on X, we have

0 dx 1
. . / p
gy = (| pwint {u(B): By e mL(an} )

1 (1.2.6)
171l 5 e = sup {)\inf {M(BA): By e E;(AA)}E: A> o},
where, for every A € (0,00), we define the measurable subset Ay < X by
Ay = {:p e X: |f(x)| > )\}.
Therefore, for every measurable subset A € 3, we have
1
1Lallzgez) = Iallpen(ep) = int {u(B): B e T4} (1.27)

Finally, if p is the outer measure generated via minimal coverings as in (1.1.1)) by w con-
sidered as a pre-measure on the collection ¥ of measurable subsets, for all p,r € (0, ], for
every measurable function f on X, we have

HfHLg(ﬁ;) = ||f||LP(X,w)’ ||f||L£;°°(£;) = Hf“LP»OO(X,w)‘

This concludes our observations about single iterated outer LP quasi-norms and spaces.
Next, for every r € (0, 0], we define the size (¢;°(¢],), %, M(X,3)) as follows. For every
measurable function f on X, for every subset A € 3,

C7 L) (FA) = 1 f1all Lo -
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Moreover, for all g € (0,0), r € (0,0], we define the size (£;((],), 5, M(X,3)) as follows.
For every measurable function f on X, for every subset A € X,

0, if u(A) =0,

(A Ll g i u(4) # 0.

Then, for every p,q,r € (0,0], we define the double iterated outer LL,(¢L((1))) and

LR (L)) quasi-norms and spaces on the setting (X, u, v,w) with respect to each of the
sizes appearing in the previous two displays as in Definition [I.1.4] and Definition [T.1.6]

G (65)(F)(A) = {

Remark 1.2.1. If the outer measure u is generated via minimal coverings by the pre-
measure o on the collection £, we can define additional sizes. Before defining them, we
introduce some auxiliary notation. We define the collection £ < £ by

gz{EGS:J(E);ﬁOO}.

First, we define the size ({X,,E, M(X, X)) as follows. For every measurable function f

w,o?
on X, for every measurable subset E € £,

gc?,a(f)(E) = HflEHLOC(X,w)'

Moreover, for every r € (0,0), we define the size ({7, ,,€, M(X,%)) as follows. For every

w,o

measurable function f on X, for every measurable subset E € g,

0, if o(F) =0,

ET E = 1
we (INE) {a(ErrnflEnmX,w), () #0.

For r € (0,0), the sizes £, and £}, , need not be equal on the subsets in £.

However, in Lemmam n C’hapter@ we prove that, for all p,r € (0,00], for every
measurable function f on X, we have

Il ez er, ) = 1A ez ey

therefore the single iterated outer LP quasi-norms and spaces with respect to the two sizes
are equal.

Analogously, for every r € (0,00], we define the size (£}, (), €, M(X,X)) as follows.
For every measurable function f on X, for every measurable subset E € &,

oo ) (NE) = [ F1El Lz )

Moreover, for all q € (0,0), r € (0,0], we define the size (£1 (L), 5,M(X, Y)) as follows.

~

For every measurable function f on X, for every subset E € &,
0, if o(E) =

e (g = 1
V,a( w)(f)(E) {O‘(E)_q||f1E|L?,(€Z,)’ Zf U(E) #
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Once again, for q € (0,0), r € (0,00], the sizes €L (L,) and £} - (€")) need not be equal on the
subsets in E.

However, for ¢ < r or ¢ = 00, by an argument analogous to that in Lemma [2.A.5 in
Chapter [ together with Lemma [3.3.1] in Chapter[3, we can prove that the double iterated
outer LP quasi-norms with respect to the two sizes are equivalent, and the double iterated
outer LP spaces are equal.

Instead, for q > r, for every p € (0,00], in general we only have that, for every measur-
able function f on X,

11z e o ey < NN 2z gen eryy-
However, we can use an argument analogous to that in the case q < r to recover the
equivalence in the case ¢ > r as long as the subsets in £ satisfy good enough compatibility
conditions with respect to the outer measure v. One sufficient compatibility condition is that

there exists two constants ®, K = 1 such that the following properties hold true. For every
subset A < X, there exists a collection A < € of pairwise disjoint elements such that

Ac | JE, > o(B) < du(A), (1.2.8)
EeA EeA

and, for every subset U € X, we have

Y v(ENU) < Kv(U). (1.2.9)
EeA

1.2.2 Finite setting

Let X be a finite set, and let w be a measure on (X, P(X)). Since we assumed that every
subset of X is measurable, then all the functions on X are measurable. Moreover, we
assume that, for every x € X, we have w(z) = w({z}) € (0,00). Let p and v be outer
measures on X. We assume that, for every subset A € X, we have p(A),v(A) € (0,00).
These assumptions are reasonable, as subsets of X of zero or infinite measure or outer
measure contribute only trivially to any LP theory on X. Under these assumptions, we
define (X, p,w) and (X, u,v,w) finite settings. In particular, all finite settings (X, u,w)
and (X, u, v, w) are o-finite settings with ¥ =& =U = P(X), 0 = u, and 7 = v.
In particular, for every p € (0,0), for every function f on X, we have

iz = ([ ovu(frex: v@i=2})S)",
HfHLﬁ"D(egO) = sup {)\u({x e X:|f(x) > )\})%: A > 0}.

Therefore, for every subset A € X, we have

T =

”1A”L§(zgy) = HlAHLﬁ*m(ng) = u(A)?. (1.2.10)
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1.2.3 General setting

Let (X,X) be a measurable space, where ¥ is the o-algebra of measurable subsets of X.
Let 1 and v be outer measures on X, and let w be a measure on (X, ¥). We define (X, i, w)
a general setting.

Since we dropped any additional assumption on the setting, we only restrict to the
0% size. We define it as in and, for every p € (0,0], we define the outer L} (£2)
and L™ (£%) quasi-norms and spaces on the setting (X, y,w) as in Definition and
Definition In particular, for every measurable function f on X, we have the same

properties described in the equalities in ([1.2.5), (1.2.6]), and (1.2.7).

1.2.4 Cartesian product of o-finite measure spaces

For all o-finite measure spaces (Y, Xy,wy) and (Z,Xz,wyz), let

X=-Yx2Z,
Ez{waAﬂe&},
oY x Z) = wy(Y'), for every Y' € Xy,

let v be the outer measure on X generated via minimal coverings as in by the pre-
measure o on the collection &, and let w the canonical product measure on X associated
with wy and wy, see for example the book of Rudin [Rud74]. In particular, we have
i = wy o7y, where my: X — Y is the projection onto Y. The setting (X, u,w) is o-finite.
For all p,r € (0, 0], for every measurable function f on X, we have
HfHLZ(ZL) = I, ')HL’“(Z,wZ)HLP(Y,wy)'

Next, for all o-finite measure spaces (Y, Xy, wy), (Z,3z,wz), and (W, Xy, ww), let

X=YxZxW
Sz{wxzanwezd,

oY'x Zx W) =wy(Y), for every Y’ € Xy,
uzpﬂxszﬂwezmzeEA,
TV x Z' x W) = wy (Ywz(Z'), for all Y/ € Xy, Z' € ¥z,

let © and v be the outer measures on X generated via minimal coverings as in by
the pre-measures ¢ and 7 on the collections £ and U respectively, and let w the canonical
product measure on X associated with wy, wz, and wy. As above, we have u = wy o my
and v = pomy«z, where p is the canonical product measure on Y x Z associated with wy
and wyz. The settings (X, u,w), (X, v,w), and (X, u, v, w) are o-finite.
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For all p, ¢, € (0, 0], for every measurable function f on X, we have

||f||Lﬁ(£?,(£5)) = [IIfCs - ')HLT(W,wW)||L¢1(Z,wz)||LP(Y,wy)‘

We can iterate the definitions above in the case of the Cartesian product of arbitrarily
many o-finite measure spaces, reproducing the mized LP spaces as iterated outer LP ones.

This class of examples exhibits the paradigmatic comparability of the additive be-
haviours between the different outer measures.

Remark 1.2.2. In the setting on the Cartesian product of o-finite measure spaces just
described, the elements of € satisfy the sufficient compatibility condition with respect to the
outer measure v stated in Remark[1.2.1. In fact, for every subset A € X, the collection

{ry(A) x Z x W} < & satisfies the properties in (1.2.8) and (1.2.9). Therefore, we can

prove that, for all p,q,r € (0,0], for every measurable function f on X, we have

12z ez o enyy = 17N 2z gener

and the double iterated outer LP quasi-norms and spaces with respect to the two sizes are
equal.

1.2.5 Constant outer measure

Let (X,X¥,w) be a o-finite measure space. Let u be the outer measure on X defined as
follows. For every subset A € X, A # &,

n(A) = 1.
We define such an outer measure to be the constant outer measure. The setting (X, p,w)
is o-finite, and we observe that there are no Carathéodory measurable subsets of X with
respect to p other than {&, X}. Next, let (X,v,w) be a o-finite setting on X. Then the
setting (X, u, v,w) is o-finite as well.
For all p,r € (0, 00], for every measurable function f on X, we have
HfHLﬁ(zg) = HfHLZ’DO(ZL) = ”f”Lg)(zg) = Hf”L’"(X,w)'

Moreover, for all p,q,r € (0, 0], for every measurable function f on X, we have

”fHLz(zg(z;)) = HfHLﬁ’”(zg(eg)) = HfHL;c(eg(eg)) = HfHL,‘i(zg;),
I e genceryy = 1l Lpsamys
1Nl oo eryy = 11l e (samy,

where, for every r € (0, 0], the size (S5, %, M(X, X)) is defined by, for every measurable
function f on X, for every measurable subset A € X,

SSTA) = 1 1all L (x )
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and, for all ¢ € (0,00), r € (0,0], the size (Sfjr,iM(X,E)) is defined by, for every
measurable function f on X, for every measurable subset A € ¥, v(A) # oo,

0, if v(A) =0,

SI7(f)(4) = { |
v(A) | fLallprx ) if v(A) # 0.

This class of examples exploit the strong subadditivity properties of the constant outer
measure, namely the failure of additivity on any collection of disjoint subsets. In the case
of double iterated outer LP spaces, this class provides a source of counterexamples to the
uniformity of the constants in the quasi-triangle inequality for countably many summands,

see Subsection in Chapter [3|

1.2.6 Hypercube packing
For every m € N, we define the subset S, € (Z/mZ)™ by

Spmo=A{1,...,m—1}",
Moreover, for every = € (Z/mZ)™, we define the subset E(x) € (Z/mZ)™ by
E(z) = (z + Sy)/(mZ)™.

Next, for every m € N, let

, for every x € X,

, for every = € X,

and let p,, be the outer measure on X,,, generated via minimal coverings as in by the
pre-measure o, on the collection &,,. The setting (X, tim,ws,) is finite, and we observe
that there are no Carathéodory measurable subsets of X,,, with respect to p,, other than
(2, X},

This class of examples, suggested by the articles of Herer and Christensen [HCT5|, and
Topspe [Top76], exploits the weak subadditivity properties of the outer measures, namely
the failure of uniform subadditivity with multiplicity, see Remark In the case of the
outer LI, (¢X) spaces, this class provides a source of counterexamples to the uniformity of
the constant in the quasi-triangle inequality for countably many summands.

The outer measure space (X, ttm) can be understood as follows. Let Y;, be the col-
lection of m-dimensional hypercubes in R™ with sidelength 1 and vertices in Z™. Let Z,,
be the collection of m-dimensional hypercubes in R with sidelength m — 1 and vertices
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in Z™. Let ~,, be the equivalence between elements of Y;, defined by the grid (mZ)™,
namely, for all i, € Y,,, we say y ~,, ¥/ if and only if there exists @ € Z™ such that
y = {§+ ma: Fey C Rm}.

Then, we have X,,, =Y,;,/ ~n,, and the outer measure (i, is generated via minimal coverings
as in (1.1.1)) by the pre-measure o, attaining value 1 on each element of the collection
{2/ ~m: z€ Zn} S P(Xn).

E(x)

Figure 1.1: Subset E(z) associated with x € X,,, in the representation of the setting as a
hypercube.

1.2.7 Dyadic trees of arbitrary depth

For all n,[ € Z, we define the dyadic interval I(n,l) in R by
I(n,1) = (2'n,2"(n + 1)],

and the collection Z of dyadic intervals in R by
7T = {I(n,l): n,l EZ}.

Moreover, for every m € {0} u N, for every dyadic interval I € Z such that

I<(0,1], |[I| =27,
where |I| is the Lebesgue measure of I, we define the subset E(I) € Z by
BE(I) = {J eT:IcJc (0, 1]}.
Next, for every m € {0} U N, let
Xy = {1 eT: 1< (0,1],]1] = 2—m},

for every I € X, |I| =27,
for every J € Xy,

om(E(I))
wm (J)

I

Em = {B(1): T € Xon, [T] =27},
—1
—1

Y
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and let p,, be the outer measure on X,,, generated via minimal coverings as in by the
pre-measure o, on the collection &,,. The setting (X, fim,wn,) is finite, and we observe
that there are no Carathéodory measurable subsets of X, with respect to p,, other than
(2, X},

This class of examples exploits the weak subadditivity properties of the outer measures.
In the case of the outer L}L (£7,) spaces, this class provides a source of counterexamples to the
uniformity of the constant in the quasi-triangle inequality for countably many summands.

The outer measure spaces (X, ) can be understood as follows. Let Y be a rooted tree
with a bifurcation at each level of depth, where the level of depth of the root is assumed to be
the 0-th level. Let Z be the collection of branches in Y, namely the subsets of Y obtained
by starting from the root of the tree and subsequently choosing one possibility for each
bifurcation at every level of depth. Let ~,, be the equivalence between subsets of Y defined
by the identity when restricted to the first m levels of depth. Then, we have X,,, =Y/ ~,,,
and the outer measure ., is generated via minimal coverings as in by the pre-
measure o, attaining value 1 on each element of the collection {z/ ~,: z € Z} € P(Yi).

0 E(I) E(I) 0
1 1
2 2

. W) .

I 1

Figure 1.2: Subset E(I) associated with the dyadic interval I < (0,1], |[I| = 2™ in both
of the representations of the setting, as a collection of dyadic intervals and as a tree.

1.2.8 Discrete model of the upper half space: dyadic cubes
For every d € N, for all 7 € Z¢, | € Z, we define the dyadic cube Q(1,1) in R? by

d

Q(m, 1) = | [(2'ms, 2'(mi + 1)),

=1

and the collection Q4 of dyadic cubes in R¢ by

Q= {Q(m,l): ezl le Z}.
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Moreover, for all m € Z%, | € Z, we define the upper half dyadic cubic box B(i,1) in the
upper half space R? x (0, 00) by

B, 1) = B(Q(1,1)) = Q(ii, 1) x (2", 2'],

and the collection By of upper half dyadic cubic boxes in the upper half space R? x (0, o)
by
By = {B(m, I):mezdle Z}.

Furthermore, for all 77 € Z¢, | € Z, we define the subset E(m,[) < By by
E(m, 1) = B(Q(i,1)) = E(B(m,1)) = {B € By: B < Q(m, 1) x (0, 21]}.

Next, for every d € N, let

Xq = By,

£ = {E(m,w: e 74,1 ez},
oa(E(m, 1)) = 2% for all m e Z%, 1 € Z,
wq(B(m, 1)) = 2%, for all m e Z%, 1 € Z,

and let p4 be the outer measure on X  generated via minimal coverings as in by the
pre-measure o4 on the collection ;. The setting (Xg, ptg, wq) is o-finite, and we observe
that the o-algebra of the Carathéodory measurable subsets of X; with respect to pg is
generated by the subsets in the collection

{Xd: e {1, 1}d}.
For every @ € {—1,1}¢, we define the subset Xz € X, by
d
X, = {B €By: BC (HX%.) x (o,oo)},

i=1

where we define the subsets X1, X_1 € R by
X1 = (0,00), X = X\X+1 = (—OO,O]- (1211)

1.2.9 Dyadic upper half space

For every d € N, for all m € Z%, | € Z, we define the dyadic tent or dyadic cubic box E(m, 1)
in the upper half space R? x (0, 0) by

E(m, 1) = E(Q(m,1)) = E(B(m,1)) = Q(m,1) x (0,2"].
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Next, for every d € N, let

X4 =R% x (0,0),
£y = {E(m,n: ezl e z},

oa(E(m,1)) = 2%, for all m e Z%, [ € Z,

dt
dwa(y,t) = d377, for all 7€ R, t e (0,0),

and let pq be the outer measure on X4 generated via minimal coverings as in by the
pre-measure o4 on the collection £;. The setting (Xg, ptg, wq) is o-finite, and we observe
that the o-algebra of the Carathéodory measurable subsets of Xy with respect to g is
generated by the subsets in the collection

{Xd: e {—1,1}d},

For every @ € {—1,1}%, we define the subset X; € X4 by
d
Xz = ([ Xa) x (0,0),

=1

)

where the subsets X;1, X_1 € R are defined in ((1.2.11]).

t
E(,1)
B, 1)
[ 1 1 1 [ [ 1 1
S eSS E eSS I EE S EEEE S e RS e 0 N
Q(m, 1)

Figure 1.3: Dyadic cube Q(n%,1), upper half dyadic cubic box B(m,!), and dyadic tent
E(m, 1) in the upper half space with coordinates (¥, t).



20 CHAPTER 1. INTRODUCTION

1.2.10 Continuous upper half space

For every d € N, for all ¥ € R? s € (0,0), we define the continuous tent or continuous
cubic box E(Z,s) in the upper half space R? x (0, 0) by

d

E(Z,s) = | [(wi i + 5] x (0, 5],

i=1
Next, for every d € N, let
X4 =R? % (0,00),
&= {E(f, s): ZeRY, s e (0, oo)},
oq(E(Z,s)) = 5%, for all e R?, s € (0,00),

dt
dwa(y,t) = d?j?v for all 7€ R%, t € (0, 0),

and let pg be the outer measure on Xy generated via minimal coverings as in (1.1.1)) by the
pre-measure o4 on the collection £;. The setting (Xg, ptg, wq) is o-finite, and we observe
that there are no Carathéodory measurable subsets of X; with respect to ug other than
{@ , X, d}.

1.2.11 Discrete model of the upper half 3-space: Heisenberg dyadic tiles
For all m,l € Z, we define the dyadic interval I(m,l) in R by
I(m,1) = (2'm, 2 (m + 1)],
and the collection Z of dyadic intervals in R by
7= {I(m,l): m,l € Z}.

Moreover, for all m,n,l € Z, we define the dyadic rectangle of area 1 R(m,n,l) in R? by

R(m,n,l) = I(m,l) x I(n,—1),
and the collection R of dyadic rectangles of area 1 in R? by

R = {R(m,n,l): m,n,l € Z}.

Furthermore, for all m,n,l € Z, we define the Heisenberg upper half dyadic tile H(m,n,!)
in the upper half 3-space R? x (0, 0) by

H(m,n,l) = H(I(m,l),I(n,—1)) = R(m,n,l) x (2l_1,2l],
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and the collection H of Heisenberg upper half dyadic tiles in the upper half 3-space R? x
(0,0) by
H = {H(m,n,l): m,n,l e Z}.

Finally, for all n,l,I' € Z, I' < I, we define N(n,l’) € Z by the condition
I(n,-1) < I(N(n,l'),-1l").
Then, for all m,l € Z, we define the subset F(m,l) € H by
E(m,1) = E(I(m,1)) = {H eH: Hc I(m,l) xR x (0, 2l]},
and, for all m,n,l € Z, we define the subset T'(m,n,l) € H by
T(m,n,l) =T(I(m,l),I(n,—1)) =T(H(m,n,l))
= {HE’H: Hc U (I(m,l) x I(N(n,l'),—1l") x (0,21/])}.

VeZl<l
Next, let
X =H,
&={B(m,1): mile Z},
a(E(m,1)) =2, for all m,l € Z,

, for all m,n,l € Z,

) for all m,n,l € Z,

and let u and v be the outer measures on X generated via minimal coverings as in
by the pre-measures o and 7 on the collections € and T respectively. The settings (X, p, w),
(X,v,w), and (X, p, v,w) are o-finite. Moreover, we observe that there are no Carathéodory
measurable subsets of X with respect to p other than {&, X, X_, X}, where the subsets
X, X_ < X are defined by

X+={H6H:H§(O,oo)xRx(O,oo)}, X_ = X\X,.

Furthermore, the o-algebra of the Carathéodory measurable subsets of X with respect to
v is generated by the subsets {X, ;, X, _, X, X_ _} defined by

Xy = {H eH: H < (0,00) x (0,00) x (0, oo)}, X = X \Xyy,

X_, = {H eH: H < (—0,0] x (0,00) x (0, oo)}, X=X \X_,.
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1.2.12 Dyadic upper half 3-space

For all n,l,l' € Z, I’ <1, we define N(n,l") € Z by the condition
I(n,-1) € I(N(n,l'),-1l").

For all m, [ € Z, we define the dyadic stripe E(m, 1) in the upper half 3-space R? x (0, o)
by
E(m,l) = E(I(m,1)) = I(m,1) x R x (0,2"],

and, for all m,n,l € Z, we define the dyadic tree T(m,n,l) in the upper half 3-space
R? x (0,00) by
T(m’ n, l) = T(I(m> Z)v I(?’L, _l>) = T(H(ma n, l))
- I(m,1) x I(N(n, 1), 1) x (0, 21’]).

rez 'l

Next, let

&= {E(m,l): m,l € Z},
o(E(m,1)) = 2!, for all m,l € Z,
T = {T(m,n,l): m,n,l € Z},
T(T'(m,n,l)) = 2, for all m,n,l € Z,
dw(y,n,t) = dydndt, for all y,n e R, t € (0,00),

and let p and v be the outer measures on X generated via minimal coverings as in
by the pre-measures o and 7 on the collections € and T respectively. The settings (X, p, w),
(X,v,w), and (X, u, v,w) are o-finite. Moreover, we observe that there are no Carathéodory
measurable subsets of X with respect to p other than {&, X, X_, X}, where the subsets
X, X_ < X are defined by

X, = (0,00) x R x (0, 00), X_ = X\X,.

Furthermore, the o-algebra of the Carathéodory measurable subsets of X with respect to
v is generated by the subsets {X; ;, X4 —, X_ 1, X_ _} defined by

X+ = (0,00) x (0,0) x (0,0), Xi— =X\ Xy 4,
X_ 4+ =(—,0] x (0,00) x (0,00), X =X \X_,.
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t t
T(m,n,l)
H(m,n,l)
R - N e e
—— y I\/I T,
I(m,l) I(n,—I)

Figure 1.4: Dyadic intervals I(m,1), I(n,—[), Heisenberg upper half dyadic tile H(m,n,1),
and dyadic tree T'(m,n,[) in the upper half 3-space with coordinates (y,n,t) projected onto
the upper half planes with coordinates (y,t) and (n,t) respectively.

For every Heisenberg upper half dyadic tile H € H, we define the dyadic intervals
IH, IH el by

~

Iy =mn(H), Iy =7(H),
where 7: X — R is the projection onto the first coordinate and 7: X — R onto the second.
Moreover, we define the dyadic tree Ty € T by

TH = T(IH, INH) = T(H)
For every dyadic tree T € T, we define the dyadic intervals Ip, fT €7 by
It = n(T), 7| = |I7| " H(Ir, Ir) = T,

where m: X — R is the projection onto the first coordinate. Moreover, we define the
Heisenberg upper half dyadic tile Hy € H by

Hyp = H(Ip,I7).

1.2.13 Continuous upper half 3-space
For all z € R, s € (0,0), we define the continuous stripe E(x,s) in the upper half 3-space
R? x (0,00) by

E(z,s) = (z,2z + s] x R x (0, 5],
and, for all z,£ € R, s € (0,0), we define the continuous tree T'(z,&,s) in the upper half
3-space R? x (0,0) by

T(z,&,s) = U ((w,:c+s] X (§—§,§+§] X (0,3’]).

s'e€(0,s]
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Next, let
X =R xR x (0,0),
&= {E(a:,s): reR se (0,00)},
o(E(xz,s)) = s, for all x € R, s € (0,0),
T = {T(a:,{,s): z,E€R,s€ (0,00)},
7(T(x,&,8)) = s, for all z,£ e R, s € (0,00),
dw(y,n,t) = dydndt, for all y,n e R, t € (0,00),

and let x and v be the outer measures on X generated via minimal coverings as in by
the pre-measures o and 7 on the collections £ and T respectively. The settings (X, p,w),
(X,v,w), and (X, pu,v,w) are o-finite, and we observe that there are no Carathéodory
measurable subsets of X with respect to p or v other than {&, X}.

t t

T

[ S —;

(x,x + s]

Figure 1.5: Continuous tree T'(x,&, s) in the upper half 3-space with coordinates (y,n,t)
projected onto the two upper half planes with coordinates (y,t) and (), t) respectively.

Remark 1.2.3. In the settings on the upper half 3-space or its discrete model described in
Subsections|1.2.11) —1.2.15, the elements of £ satisfy the sufficient compatibility condition
with respect to the outer measure v stated in Remark[1.2.1 Therefore, we can prove that,
for all p,q,r € (0,0], there exists a constant C = C(p,q,r) such that, for every measurable
function f on X, we have

CileHLZ(zz(e;)) <Ifllze e, ey < ClF e er s

the double iterated outer LP quasi-norms with respect to the two sizes are equivalent, and
the double iterated outer LP spaces with respect to the two sizes are equal.
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1.3 Main results: further properties of outer L” spaces

We turn to the study of the Banach space properties of the outer LP spaces. In our
investigation, we keep as a point of reference the properties of the mixed LP quasi-norms
and spaces on the Cartesian product of o-finite measure spaces. As we saw in the description
of the setting on the Cartesian product of o-finite measure spaces in Subsection [I.2.4] they
can be exhibited as outer LP quasi-norms and spaces.

The mixed LP quasi-norms and spaces on the Cartesian product of o-finite measure
spaces are well-studied mathematical objects, see for example the article of Benedek and
Panzone [BPG1|. They satisfy many properties, other than those already listed in the
previous sections, for example the following ones.

(i) Collapsing of exponents. For every p € (0, ], for every measurable function f on
Y x Z, we have
HHfHLP(Z,wZ)HLP(Y,wy) = HfHLP(YxZ,w)v
where w is the canonical product measure on Y x Z associated with wy and wy.

This property is Fubini’s Theorem, more precisely the Fubini-Tonelli Theorem, see
for example the book of Rudin [Rud74].

(i) Kothe duality. For all p,r € [1, 0], for every measurable function f on Y x Z, we
have

|| ”fHLT(Z,wZ) ||Lp(Y7wy) = sup {HngLl(YXZ,w) : || HgHL’"’(Z,wz) ||Lp/(Y7wY) = 1}a
where w is the canonical product measure on Y x Z associated with wy and wy.

(iii) Triangle inequality. For all p,r € [1,00], for every collection {f,: n € N} of mea-
surable functions on Y x Z, we have

Il5;

(iv) Minkowski’s inequality. For all p,r € (0,00], p = r, for every measurable function
fonY x Z, we have

< Z _
LT(Z"’JZ) LP(Y7wY) N neNHan”LT(Z7wZ)||Lp(Y’WY)

1 2z o vy < M zovs |l zag-

It is then natural to ask whether these properties hold true also for the outer LP quasi-
norms and spaces on more general settings. In particular, we allow for the equalities and
inequalities with constant 1 in the previous four displays to be replaced by equivalences and
inequalities up to constants that may depend on the exponents p,r, but not on the setting
(X, p,w). Namely, we ask whether, for all p,r € (0, 0], there exists a constant C' = C(p, r)
such that, for every o-finite setting (X, u,w) described in Subsection the following
properties hold true.
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(i) Collapsing of exponents. For every p € (0, 0], for every measurable function f on
X, we have

CileHLﬁ(éﬁ) < fllzrxw) < CUF Lz em)- (CoE)

(ii) Kothe duality. For all p,r € [1, 0], for every measurable function f on X, we have
O gy < sup {1 F9lr v N9l oy = 1} < CUflipeeyy: (KD)

(iii) Quasi-triangle inequality for countably many summands. For all p,r € [1, 0],
for every collection {f,: n € N} of measurable functions on X, we have

H%fn LE(er) <C Z}\]Hf"HLﬁ(%)' (qTT)
ne ne

(iv) Minkowski’s inequality. There exists an outer measure v on X such that, for all
p,r € (0,00], p = r, for every measurable function f on X, we have

11z ey < ClUF Ly emys 1l e gery < CHfHLL(EfJ)' (MI)

The use of the term Ko6the duality in this context is a slight abuse. In general, the Kothe
dual space is a notion defined with respect to Banach function spaces on a measure space, see
for example the books of Bennett and Sharpley [BS88|, Lindenstrauss and Tzafriri [LT79].
A Banach function space (£, ||-||,) on a o-finite measure space (X,w) is defined by three
conditions. First, it is a normed space. Next, for all measurable functions f and g on X, if g
belongs to £ and f is bounded by g in absolute value w-almost everywhere, then f belongs
to £ and || f||; < ||g||;- Moreover, for every measurable subset £ < X such that w(FE) is
finite, then its characteristic function 1z belongs to £. Now, the outer L%, (¢/)) quasi-norms
are not norms, a priori. However, the second property defining a Banach function space is
satisfied by the outer L}, (¢])) spaces. Finally, the collection {1g: F < X,w(FE) < 0} may
not be contained in the outer L}, (¢!,) spaces. Nevertheless, in the case of o-finite settings we
can prove that there exists a countable subcollection of {1g: E € X,w(FE) < o0, u(F) < o0}
contained in the outer L}, (¢,) spaces, and whose corresponding subsets cover X.

We point out that the properties listed above are ordered. Collapsing of exponents
in implies Kothe duality in for the exponents p = r € [1,0]. Moreover,
collapsing of exponents in for p = 1 and Ko6the duality in for a couple of
exponents p, r € [1,00] imply the quasi-triangle inequality in for the same exponents.
Finally, the quasi-triangle inequality in for a couple of exponents p,r € [1,00] is a
special case of Minkowski’s inequality in for certain double iterated outer LP spaces.
Namely, the quasi-triangle inequality for the single iterated outer L, (¢) spaces on the
setting (X, p,w) is a form of Minkowski’s inequality for the double iterated outer Lg(ﬁg (£5))
spaces on the setting (X x N, i = ponyx,0 = womx,p), where p is the canonical product
measure on X x N associated with w and the counting measure on N.
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Properties analogous to those in - can be investigated in the case of
iterated outer LP quasi-norms and spaces for any arbitrary degree of iteration. We point
out that, as the degree of iterations increases, multiple different phenomena of collapsing of
exponents and Minkowski’s inequality are possible. Given a collection {p, € (0, 00]: n € N}
of exponents and a collection {u,: n € {0} U N} of outer measures on a measure space
(X,w) such that pup = w, we list some properties that can be investigated.

(i’) Collapsing of exponents. Fix i,j € N, ¢ > j. There exist an outer measure v on
X such that, for every p € (0, 0], for every measurable function f on X, we have

IHfHLPn pz+1 (ep (ep

e (L (€ (o (6275 (L 20)))) < llggnc.. (s (B2 (20

Al g (O (B (0775 (- 20)) )<C||f||Lﬁz(.~€Z’;:i(f (O (el (773 ()N

(iv’) Minkowski’s inequality. Fix i,j € N, ¢ > j. There exist a collection {vg: j < k < i}
of outer measures on X such that, for all p;,pi—1,...,p; € (0,0], p; = pi—1,...,Dpj,
for every measurable function f on X, we have

; ) . - <
Il g g (O (o (657 (tE0))))

C [ — ) 1 j —
Al g G T (0 (T ()Y

HfHLPn( L (O (LTI (L 20))))) <

< Ol gy e i 041 (655 (G5 (0

Some partial results about the properties in - in the case of single iterated
outer LP spaces follow from the propositions proved by Do and Thiele in [DT15]. In
particular, the second inequality in @ follows from the Radon-Nikodym type result for
the outer LP quasi-norms (Theorem@, while the second inequality in follows from
the Radon-Nikodym type result for the outer L' quasi-norms and outer Hélder’s inequality
(Theorem [1.1.7)).

In the remaining part of the Introduction, we discuss the original results contained in
this thesis.

For single iterated outer LP spaces, we have the following result, whose main point
is the uniformity in the setting (X, u,w) of the constants associated with collapsing of
exponents, Kothe duality, quasi-triangle inequality, and Minkowski’s inequality. The first
three properties of this result are discussed in the case of a finite setting in Theorem [2.1.1
in Chapter [2, and extended to the case of a o-finite setting in Theorem [£.2.1] in Chapter [4]
The fourth property is discussed in Theorem in Chapter [4]
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Theorem 1.3.1. For all p,r € (0,00], there exists a constant C = C(p,r) such that, for
every o-finite setting (X, u,w) described in Subsection the following properties hold
true.

(i) For every p € (0,00], for every measurable function f on X, we have (CoE).

(i) For all p € (1,00], r € [1,00) or p = r € {1,0}, for every measurable function f on
X, we have (KD)).

(i1i) For all p € (1,00], r € [1,00) or p = r € {1,00}, for every collection {f,: n € N} of
measurable functions on X, we have (qTI).

(iv) There exists an outer measure v = v(p,w) on X such that, for all p,r € (0,0], p = r,
for every measurable function f on X, we have (MI)).

It is worth noting that the outer measure v associated with has a better subad-
ditivity behaviour than general outer measures, as proved in Lemma in Chapter [4

The main ingredient in the proof of Theorem [1.3.1]is a recursive greedy selection algo-
rithm providing a sequence of disjoint subsets of X satisfying the following properties. For
every level \ € (0,00), they exhaust the subsets where the size is bigger than A, but at the
same time they guarantee a lower bound on the super level measure associated with C'\.

In general, in the remaining cases for the exponents p, r we have counterexamples to
the existence of a constant in and (qTI|) that is uniform in the setting (X, u,w).
This is showed in Lemma in Chapter 2| for all p = 1, r € (1, 0], and in Lemma
in Chapter {4 for all p € [1,00), r = 0. In fact, uniformity in the setting of the constant in
a weak version of for p =1, r = w0 is equivalent to a certain subadditivity condition
on the outer measure yu, as proved in Lemma [£.2.7] in Chapter [4]

However, not all the counterexamples can be reproduced on the settings on the upper
half space and upper half 3-space or their discrete models described in Subsections [1.2.8]
- Therefore, we recover and for the single iterated outer LP spaces
in at least some of the endpoint cases for the exponents p, r. These results are discussed
in Theorem [2.1.2] in Chapter [2] in the case of the upper half space setting and its discrete
model, and in Theorem [£.4.1]in Chapter [f] in the case of the upper half 3-space setting and
its discrete model.

Theorem 1.3.2. Let (Xg, pg,wq) be any setting on the upper half space or its discrete
model described in Subsections - . Then, for all p,r € [1,], there exists a
constant C = C(p,r) such that we have (KD) and (qTI).

Let (X, v,w) be any setting on the upper half 3-space or its discrete model described in
Subsections |1.2.11| —{1.2.15. Then, for all p e (1,0], r € [1,0] or p =r = 1, there exists
a constant C = C(p,r) such that we have and . For allp =1, r e (1,00], we
have a counterexample to the existence of a constant in and .
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The result for the single iterated outer LP spaces on the upper half space settings allows
us to relate them with the more classical notion of tent spaces introduced by Coifman,
Meyer, and Stein in [CMS83, [CMS85|. The latter are spaces of functions on the upper
half space defined by quasi-norms that are akin to mixed L, although strictly speaking
they are not mixed LP quasi-norms. We refer to the original papers or the introduction
of Chapter [2 for their definition. The Kéthe duality result for outer L, (¢7) and tent TF
spaces, together with easy comparability between the quasi-norms for certain exponents
p, 7, implies the equivalence between the two notions for all p,r € (0,00]. This result is

discussed in Theorem in Chapter

Theorem 1.3.3. For all p,r € (0,0], there exists a constant C = C(p,r) such that, for
every setting (Xg, g, wq) on the upper half space described in Subsections -
for every measurable function f on Xy, we have

CHUI e < M llug, o) < CllF
hence Ly, (€,) = T .

The result for the outer LP spaces on the upper half 3-space settings in the case of a
size /], leads us to consider the case of the size S with variable exponent appearing in the
article of Do and Thiele [DT15]. The size S is of the form of a sum of sizes £ and (2
restricted to certain subsets of each tree in the upper half 3-space. The proof strategy used
for Theorem [1.3.1] cannot be adapted to the case of the outer LP spaces with respect to S
or any of its components. In fact, for the outer LV (.S) spaces we exhibit counterexamples to
the existence of a constant in a version of Kéthe duality with an appropriate dual size S’, see
Lemma in Chapter[4] For the outer L spaces with respect to each of the components
of S, we could still prove a version of Kothe duality, but we would have to substitute the
classical L'(X,w) norm used to measure the product of functions. In particular, we would
substitute it with a quasi-norm that does not satisfy quasi-triangle inequality for countably
many summands, see Lemma Therefore, the outer LP spaces would not inherit such
property.

For arbitrary iterated outer LP spaces, one would hope to be able to apply the same
arguments used to prove Theorem [I.3.1] recursively to obtain the desired uniform results.
For example, let {p;: i € N} be a collection of outer measures on a measure space (X,w)
such that, for every i € N, the setting (X, u;,w) is o-finite. Moreover, let p € (0,0].
Applying the result in to the setting (X, p1,w), then, for every n € N, for every
measurable function f on X, we have

CO Nz, e, @y < WFllzz, oo eny) < CONFlLg, e, @)

and iterating the application of the same result changing recursively the setting (X, p;, w),
we obtain

C(p)~ anHLP (o, (L 05)) < HfHLP(Xw <C(p)" Hf”Lp o (o, (L 8))
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where the constant C(p) is independent of f, n, X, w, and {p;: i € N}. However, in general
the iteration of the same arguments is not going to be possible, and we have to be more
careful in our analysis.

Already in the case of double iterated outer LP spaces, to recover uniform results at
least in a class of settings, we need to require additional conditions. Trying to replicate
the same arguments used to prove Theorem [1.3.1] we face a problem given by the lack
of g-orthogonality between the outer Li(¢") quasi-norms of functions with arbitrary dis-
joint supports. For single iterated outer LP spaces, the corresponding property is the
r-orthogonality between the classical L"(X,w) quasi-norms of functions with arbitrary dis-
joint supports. This property is easily verified by the additivity of the integral associated
with the measure w.

Instead, for double iterated outer LP spaces, according to the cases ¢ > r or ¢ < r,
only one between a sub- and super-g-orthogonality results still holds true. However, to
replicate the arguments used to prove Theorem [I.3.1]to a complete extent, we need the full
g-orthogonality. Such a property depends on the compatibility between the (sub)additive
behaviours of the outer measures p and v, and the compatibility is the subject of the
additional conditions. In fact, the necessity of some additional conditions, at least in a
certain open range of exponents p, ¢, € (1,00), is not an artefact of the proof strategy we
pursue, as exhibited by a collection of counterexamples in Chapter

To state the additional conditions, we need to introduce some auxiliary definitions.
They depend on two parameters ®, K > 1. First, given a subset A € X, we say that a
subset B € X is a u-parent set of A (with parameter ®) if A < B and we have

u(B) < Bu(A).

A p-parent function B (with parameter ® ) is then a monotone function from P(X) to itself,
associating every subset A € X with a u-parent set (with parameter ®) B(A).

Moreover, given a collection & of subsets of X, we say that a function C from P(X) to
the set of subcollections of pairwise disjoint elements in £ is a p-covering function (with
parameter ®) if the function B¢ from P(X) to itself defined by

BC(A) = U E7

EeC(A)

is a p-parent function (with parameter ).
Next, we say that a collection A of pairwise disjoint subsets of X is v-Carathéodory
(with parameter K ) if, for every subset U € X, we have

N (U A) < Ku(Um g A).

AeA AeA
In particular, we observe that the classical Carathéodory measurability test for a subset
E with respect to an outer measure p corresponds to checking that the couple of disjoint
subsets {E, E¢} is p-Carathéodory with parameter K = 1.
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Finally, we define two conditions for the quadruple (X, u,v,C).

Condition 1.3.4 (Canopy). We say that (X, p,v,C) satisfies the canopy condition (with
parameters @, K) if C is a p-covering function with parameter ®, and, for every collection
A that is a v-Carathéodory collection with parameter K, for every subset D < X disjoint
from Be(Jgeq A), the collection A U {D} is still v-Carathéodory with the same parameter
K.

Condition 1.3.5 (Crop). We say that (X, u,v,C) satisfies the crop condition (with param-
eters @, K) if C is a p-covering function with parameter ®, and, for every collection A < &,
there exists a subcollection D < A that is a v-Carathéodory collection with parameter K
and such that, for every subset F' < X disjoint from | Jpep D, we have

Be(F) = Bg(F),

where

C(F) = C(F)\A.

In particular, for every o-finite setting (X, pu,w) described in Subsection the
quadruple (X, u,w, Id) satisfies the canopy and crop conditions with parameters ® = K = 1.

For double iterated outer LP spaces, we have the following result, whose main point,
once again, is the dependence of the constants on the setting and their uniformity up to
additional conditions. This result is discussed in Theorem [B.1.3] and Theorem [B.1.4] in
Chapter [3| and Theorem in Chapter [4]
Theorem 1.3.6. For allp,q,r € (0,0], ®, K > 1, there exist constants C; = C1(q,r, P, K)
, Co = Cs(q,r,?,K), C = C(p,q,r,®,K) such that, for every finite setting (X, p,v,w)
described in Subsection[I.2.3, for every p-covering function C, the following properties hold
true.

(i) If (X, p,v,C) satisfies the canopy condition then for every function f on X, we

have
Cr N esgery < N caqenqenyy < Coll Fll g ery-

If ¢ <1 or q = o0, the constant Cy does not depend on ®, K. If ¢ > r, the constant
Cy does not depend on @, K.

If ¢ = r € (0,0:0], the constants C1, Cy do not depend on @, K.

(1) If (X, p,v,C) satisfies the canopy condition then for all p,q,7 € (1,00), ¢ < r,
for every function f on X, we have

C N e enenyy < SUP{HfQHLI(X,w)‘ ol 2 e erry) = 1} < Ol es eryy-

If (X, p,v,C) satisfies the crop condz’tion then for all p,q,r € (1,0), ¢ =, the

same inequality holds true.
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Moreover, if p,q,r € [1,00] satisfy one of the following conditions

p=0®0,q€ (LOO)?TE (ano)a
pEe (1,00],(]:1"6 [1700)7
p=q=’r‘€{1,00},

the constant C does not depend on &, K.

(ii3) If (X, u,v,C) satisfies the canopy condition then for all p,q,7 € (1,00), ¢ < r,
for every collection {f,: n € N} of functions on X, we have

1] Falle ey < C > 1l 2 e e -

neN neN

If (X, p, v,C) satisfies the crop condition[1.3.5, then for all p,q,r € (1,00), ¢ = r, the

same inequality holds true.

Moreover, if p,q,r € [1,00] satisfy one of the following conditions

pZOO,QE(l,OO],TG [1,00),
pEe (1,00],(]:1"6 [1700)7
p=q=TE{1,00},

the constant C does not depend on ¢, K.

We point out the dichotomy between the cases ¢ > r and ¢ < r and its relation with
the canopy and crop conditions. For collapsing of exponents, the distinction between the
cases is clarified by counterexamples exhibiting the failure of the uniformity in ®, K of
either of the two constants C'; and Cy. We refer to Subsection in Chapter 3| for these
counterexamples. For Kéthe duality, the distinction could be just an artefact of the proof
strategy. It would be interesting to understand more clearly the nature of necessary and
sufficient conditions to obtain uniformity of the constants in collapsing of exponents and
Kothe duality.

In particular, for every o-finite setting on the upper half 3-space or its discrete model
described in Subsections — both the canopy and crop conditions are satisfied,
and the properties stated in Theorem still hold true. This result is discussed in

Theorem in Chapter [3]
The remaining part of this thesis is organized into three Chapters.
In Chapter [2| we report the article [EFra21].

Marco Fraccaroli. Duality for outer LE,(¢") spaces and relation to tent spaces. J. Fourier
Anal. Appl., 27(4):Paper No. 67, 48, 2021.
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In Chaptef3| we report the article [Fra22].
Marco Fraccaroli. Duality for double iterated outer LP spaces.

in the revised version accepted for forthcoming publication in Studia Mathematica.
In Chapter [4, we prove additional properties of outer LP spaces and we collect some open
conjectures.

Notation

For every measure space (X,w), for every p € (0, o0], the notation Hf||Lp(X’w) stands for the
classical LP quasi-norm.

For every p € [1, 0], the notation p’ stands for the Holder’s conjugate exponent, namely
p’ € [1, 0] such that

p v
Unless explicitly stated otherwise, a constant C' is a finite strictly positive real number,
namely C € (0, ).
Unless explicitly stated otherwise, the notation A ~, B means that there exists a
constant C' = C(p) such that A < CB and B < CA.
We denote by N the set of strictly positive integer numbers, namely

N={L,2,...,n,n+1,...}.

In particular, the number 0 does not belong to N.

Unless explicitly stated otherwise, the elements of a double sequence are parametrized
by pairs (k,n) with k € Z, n € Ny, where Ny, is either N or a finite initial string of it, possibly
empty. On the set of couples we consider the lexicographic order as follows: (I,m) < (k,n)
if either I > k, or l =k, m < n.






Chapter 2

Single iterated outer LP space

In this chapter, we report the article [Fra21].

Marco Fraccaroli. Duality for outer LE,(¢") spaces and relation to tent spaces. J. Fourier
Anal. Appl., 27(4):Paper No. 67, 48, 2021.

At the end of the chapter, we collect some typos discovered after the publication.

Abstract

We study the outer LP spaces introduced by Do and Thiele on sets endowed with a measure
and an outer measure. We prove that, in the case of finite sets, for 1 < p < 00,1 <
r < o or p=r € {100}, the outer L},(¢") quasi-norms are equivalent to norms up to
multiplicative constants uniformly in the cardinality of the set. This is obtained by showing
the expected duality properties between the corresponding outer Lf,(¢") spaces uniformly
in the cardinality of the set. Moreover, for p = 1,1 < r < 00, we exhibit a counterexample
to the uniformity in the cardinality of the finite set. We also show that in the upper
half space setting the desired properties hold true in the full range 1 < p,r < oo. These
results are obtained via greedy decompositions of functions in the outer L, (¢") spaces. As
a consequence, we establish the equivalence between the classical tent spaces TF and the
outer L, (¢") spaces in the upper half space. Finally, we give a full classification of weak
and strong type estimates for a class of embedding maps to the upper half space with a
fractional scale factor for functions on R

2.1 Introduction

A classical research topic in harmonic analysis is the study of linear and multilinear op-
erators defined on functions on R% and satisfying certain symmetries. It is the case of
Calderén-Zygmund theory, when the symmetries are given by translations and dilations,
and time-frequency analysis, when additional modulation symmetries are included. The

35
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symmetries are parametrized by the upper half space R? x (0,00) in the first case, and
the upper half 3-space R x (0,00) x R in the second. In fact, in both cases we can use
a wave packet decomposition to encode the information of a function on R? in the space
parametrizing the specific symmetries.

In [DT15], the authors introduced in both the previous settings a new type of function
spaces, the so called outer LP spaces. These spaces were defined via quasi-norms with
a structure reminiscent of the iteration of classical Lebesgue norms. The purpose was to
formalize a paradigm in proving the boundedness of operators in time-frequency analysis by
a two-step program. In particular, the program consisted of a version of Hélder inequality
for outer LP spaces followed by estimates from classical to outer LP spaces on the embedding
maps associated with wave packet decompositions. This is for example the case of the
bilinear Hilbert transform in [AU20b, [DPO18bl IDT15], the variational Carleson operator
in [DPDUI1S, [Ural6], the variational bilinear iterated Fourier inversion operator in [DMT17],
a family of trilinear multiplier forms with singularity over a one-dimensional subspace in
[CDPO18]|, and the uniform bilinear Hilbert transform in [Warl8|. Analogous applications
of the outer LP spaces framework in other settings with different geometries can be found
in [AU20a], [DPGTZKIR)|, [DPO18a], [DT15], [MT17], [TTVI5).

Moreover, in [DT15] the authors pointed out that the two-step program outlined above,
when applied to the outer LP spaces on R? x (0,0), recovers some results of classical
Calderén-Zygmund theory, as detailed for example in [Ste70l [Ste93|. In fact, in this partic-
ular setting, the outer LP spaces are competing with the more classical tent spaces intro-
duced in [CMS83, [CMS85|. The tent spaces are defined by iterated Lebesgue norms, and
they have been thoroughly studied and used in the literature. Due to the many analogies
in their definition and use, the equivalence between the outer LP spaces and the tent ones
has been conjectured since the publication of [DTI5] but never formally established. We
prove the equivalence in Theorem [2.1.3

In order to formalize the two-step program described above, in [DT15], the authors
developed the framework of the outer L spaces focusing on their real interpolation features,
such as Marcinkiewicz interpolation and Hoélder’s inequality, while other aspects of the
theory of these spaces remained untouched. For example, whether the outer LP quasi-
norms are equivalent to norms, or whether they can be recovered as a supremum of a
pairing with functions in another appropriate outer v space.

Already these simple questions turn out to be difficult. We begin their study in this
paper from the case of the outer L? spaces of functions on R? x (0, c0) described in [DTT5].
We provide a positive answer to both of the questions in Theorem [2.1.2] The study of the
same questions in the case of the outer LP spaces on R x (0,00) x R described in [DT15]
is beyond the purpose of the paper, and it will be addressed in future work. We briefly
comment on the difference with the previous case. The geometry of the outer measure on
the upper half 3-space can be addressed substantially analogously to that on the upper half
space. The source of difficulty is the so called size, the object corresponding to the inner
Lebesgue norm of the iterated LP nature of the outer LP spaces. While on R? x (0, c0) the
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size is given by a single Lebesgue norm, on R x (0,00) x R the size is given by the sum of
different Lebesgue norms instead. As a consequence, it is more complicated to treat and
requires further investigation.

We turn now to a more detailed introduction of the outer LP spaces. Differently from
[DT15], we specialize the sizes to be themselves Lebesgue norms, so that we can view
the LP theory for outer measure spaces as a generalization of the classical product, or
iteration, of LP quasi-norms. We first focus on the finite setting. This allows us to introduce
meaningful outer LP spaces while at the same time dealing with the least possible amount
of technicalities possible. For a more general setting, we refer the interested reader to
Appendix 2:A]

We start recalling that on the Cartesian product X of two finite sets equipped with
strictly positive weights (Y, u), (Z,v), we can define the classical product, or iterated,
L*®L", LPL" spaces for 0 < p,r < oo by the quasi-norms

1
1oz = 5w (2 w1 2)7)"

yey z€Z

3=

= sup (u<y>—12622w<y,z>|f<y,z>r) , (21.1)

I 2oz zon = (2 00) (2 v @ 2)1)7 )7

yeY zeZ

3=

where we denote by w = p ® v the induced weight on X. In both cases, the inner L"
quasi-norm may be replaced by an L® norm as well. For 1 < p,r < o0, the objects defined
in the display are in fact norms.

The LP spaces associated with an outer measure space (X, p), or outer LP spaces,
generalize this construction. An outer measure p on X is a monotone, subadditive function
from P(X), the power set of X, to the extended positive half-line, attaining the value 0
on the empty set. In general, an outer measure need not generate an interesting measure
by restriction to the Carathéodory measurable sets. For instance, when p is constantly 1
on every nonempty element of P(X), the Carathéodory o-algebra is trivial. A standard
way to generate an outer measure is via a pre-measure ¢, a function from a collection of
subsets £ € P(X) to the positive half-line, by means of covering an arbitrary subset of X
by elements of £. Namely, for every A € X, we define

((A) = inf{ MNoE):eceAc | E} (2.1.2)
Eeg’ Ee&’
with the understanding that an empty sum is 0 and that if A is not covered by &, then the
infimum is co. In fact, this is the way the authors introduced the outer measures in the
upper half space and in the upper half 3-space in [DT15].
For the purpose of defining the outer LP spaces in the most streamlined fashion, we
make the reasonable assumption on p to be strictly positive and finite on every singleton
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in P(X). Next, for a strictly positive weight w on X, 0 < r < o0, let /%, ¢" be the functions
from the set of functions on X to [0, 0]P(X) defined by

(*(f)(A) = sup|f(z)],

€A
) (2.1.3)

C(A)A) = ()™ Y w@) @)

zeA
The reader familiar with the theory of outer LP spaces developed in [DT15] can recognize
that £*,¢" are sizes.
For 0 < p < 0,0 < r < o, we define the outer L (£"), Li(¢"), Liy™ (¢") spaces by the
quasi-norms

1Al oo ery = NNl goom oy = jg{”(f)(fl), (2.1.4)
= oo)\p'f A Ac X, | f1 <)\d)\% 2.1.5
HfHLﬁ(zr) —< o pAinf{u(A): Ac X || f AC||Loo(er) = }7) ’ (2.1.5)
1
£l omy = (i‘”S Ninf{u(A): A€ X, ||l ooy < M) (2.1.6)
>

The integral in is reminiscent of the layer-cake representation for the classical
LP norm on a measure space. The novelty and the subtle point of the theory of outer LP
spaces discussed in [DT15] we want to stress is the different way to evaluate the magnitude
of a function to define the level sets. This is done through L" averages rather than L%
norm. As a consequence, due to the L" averaging interplay between p and w, the infima
in and do not stand for outer measures of super level sets {f > A} of the
function f. In general, this happens only when r = o0, and the LP quasi-norm becomes a
Choquet integral. To shorten the notation, we drop the subscript p in L% (¢") and we refer

to the outer LP spaces with the symbol LP(¢"). Moreover, we denote the infima in (2.1.5)
and ([2.1.6) associated with f, \ by

(e (f) > N, (2.1.7)

and we refer to it as the super level measure.

As a side remark, we comment on the definition of the outer LP quasi-norms in the case
of an outer measure u generated by a pre-measure. Let ¢ be a pre-measure attaining only
strictly positive values on a collection of sets £ covering X, so that p is strictly positive and

finite on every singleton in P(X). In this case, in (2.1.4]), and hence in (2.1.5) and (2.1.6),

we can equivalently take the supremum over the elements of £ of the following quantity
by (FIE) = () (E),
. - P\ 2.1.8
GUE) = (o) Y w@li@r), (218)

zel
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as we will see in Lemma [27A73] in Appendix [2.A]

An example of the setting just described is the realisation of the classical iterated
L*®L" LPL" spaces discussed above as outer LP spaces. Let X be the set Y x Z, w be
the strictly positive weight 4 ® v, o be the pre-measure defined on the collection & =

{{y} x Z: y e Y} of subsets of X by

o({y} x Z) = u(y),

and consider the outer measure generated by ¢ as in . Then, the quasi-norms in
(2.1.1) are the same of those in (2.1.4) and (2.1.5)) in this setting. In particular, the outer
LP quasi-norms are in fact norms, at least in a certain range of exponents.

In the first part of this paper, we develop the theory of outer LP spaces addressing the
question of the equivalence of the corresponding quasi-norms to norms. The first novelty is
to provide a positive answer in the case of the outer LP(¢") spaces on finite sets. It follows
by the sharpness of the Holder’s inequality in the sense of the following inequality,

[fllzo@ery <C  sap [1fallprix ) (2.1.9)

e’ (or'y=

where the constant C' is independent of f € LP(¢"), and L'(X,w) stands for the classical
L' space on X with the measure associated with the weight w.

Theorem 2.1.1. Let 0 < p,r < . There exists a constant C = C(p,r) such that, for
every finite set X, finite outer measure p strictly positive on every singleton in P(X), and
strictly positive weight w, the following properties hold true.

(i) For 0 <p=r <, for every f € LP({P),
1
5”ﬂ|Lp(X,w) < | Fllpoery < CUFI Lo 0)-

(i) For 1 <p<oo,1 <r<ow orp=re{l,n}, for every f e LP({"),

1
C sup ||f9HL1(X,w) < HfHLP(ZT) <C sup HngLl(X,w)'

”gHLp/ (ZT/) ‘g %4 ([r/)

(iii) For 1 <p<oo,1<r <o orp=rec{l,wn}, for every {fn}nen < LP({"),
|2 72, 0y <€ Dl
neN Le(er) neN

Therefore, for 1 < p < 00,1 < r < o orp = r € {1,000}, the outer LP({") quasi-norm
is equivalent to a norm, and the outer LP({") space is the Kothe dual space of the outer
LY (") space.
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The main point of the theorem is the uniformity of the constant in (X, u,w). In fact,
for every fixed finite setting, both statements in (i), (i7i) are verified by a certain constant
alsoforp=1,1<r<oworl < p< o, r =, and hence the final considerations of the
theorem hold true as well. However, for p = 1,1 < r < o0, the constant is not uniform
in (X, p,w), and we exhibit a counterexample in Lemma For 1 < p < oo,r = o0,
the question about uniformity remains open. The uniformity of the constant suggests that
if an infinite setting is suitably approximated by finite restrictions, the same results could
possibly be obtained through a limiting process.

There is a slight abuse in the use of the term K&the dual space in the statement of
Theorem since this object is in general defined for Banach function spaces. A Banach
function space, or Kéthe function space, (L, ||-||) on a o-finite measure space (X,@) is a
Banach space of measurable functions containing all the simple functions and such that if
f is a measurable function with absolute value bounded &-almost everywhere by g € L,
then f € £ with norm bounded by that of g. The Kdéthe dual space, or associate space,
of £ is then defined as the space of measurable functions such that the L'(X,&) pairing
with every element of L is finite, endowed with the norm of the dual space, see for example
[BS88, [LT79]. In our setting, we have both a measure associated with the weight w and an
outer measure u on X. Although it is not clear whether a priori the simple functions with
respect to w belong to the outer LP(¢") space, it is straight-forward to check that the simple
functions with respect to p belong to LP(¢"). Therefore, with a slight abuse of terminology,
we extend the definition of the Kéthe duality to the outer LP(¢") spaces with respect to the
LY(X,w) pairing.

The first inequalities of both statements in (i), (74) were already proved as consequences
of more general results obtained in [DT15] [Ural7|, see Proposition m and Proposition
[2.A75]in Appendix [2.A] of the present paper. It would be interesting to investigate whether,
for example, the outer LP quasi-norms are equivalent to norms in the generality of sizes
discussed in [DT15] and recalled in Appendix

We further develop our research in the case of the outer LP spaces with size defined by
an L” norm on the infinite setting associated with Calderéon-Zygmund theory. We address
the question of the equivalence to norms of the outer LP quasi-norms on functions on the
upper half space described in [DTT15]. In particular, let X be RY x (0, 00) with the topology
inherited from R%*1 D be the collection of the open dyadic cubic boxes with sides parallel
to the axes and base on R?. Let ¢ be the function on D given by the classical volume of the
base of the box, i be the outer measure on X generated by o on D as in (2.1.2)). Finally,
let w be the measure defined by the density w(y,t) = t~! with respect to the Lebesgue
measure on R% x (0, c0), where y € R, ¢ € (0,00). For 0 < r < 0, let £%, /" be the functions

oo

from B(X), the set of Borel measurable functions on X, to [0,00]P defined by
by (FID) = 1Dl Lon (x oyt dy ary:

diy » _1
D) = (o0 [ 1607 ) = oD) U0l ety

=

(2.1.10)
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For 0 < p,r < o, let the outer LP(¢), LP*({7) spaces be defined as in (2.1.4)), and
, taking the supremum of the quantity in the previous display over the elements of
D in . In analogy with the remark concerning the quantities in , we drop the
subscript o in LP(4L).

In this infinite setting, we prove the analogous statement of Theorem [2.1.1] The proper-
ties (i7), (#i7) hold true even in the endpoint cases p=1,1 <r <o and 1 < p < 00,1 = .

Theorem 2.1.2. Let (X, pu,w) be the upper half space setting just described, 0 < p,r < 0.
There exists a constant C' = C(p,r) such that the analogous properties stated in Theorem
hold true in the following ranges, property (i) for 0 < p = r < o0, properties (ii), (iii)
for1 <p,r < oo.

Therefore, for 1 < p,r < o, the outer LP({") quasi-norm is equivalent to a norm, and
the outer LP({") space is the Kothe dual space of the outer LY (") space.

As we recalled in the first part of the introduction, in the upper half space setting there
are already classical spaces with a different iterated LPL" structure, namely the tent spaces.
Let I'(z) be the cone with vertex in x € R?, T(x, s) be the tent over the ball in R? centred
in x with radius s,

D(x) = {(y,1) e R? x (0,00): & —y| < t},
T(x,s) = {(y,t) e R x (0,00): |z —y| < s —t}.
For 0 <p < 00,0 <7 <00, let

Ar(f)(z) = ||f||y(1‘(w),dy dt_y,

wd+1

1l = 1A+ (D) Lo (re aa)-

(2.1.11)

For p = 00,0 < r < o0, let

Cr(N)(@) = sup IfllLr 1) w):
s€(0,00) (2112)

HfHTTOO = HCr(f)HLw(Rd,dx)-

For 0 < p,r < o0, the tent space T} is defined by the T} quasi-norm. Sometimes in the
literature an additional continuity condition is assumed on functions in 7%, see for example
[CMS85], but we do not, in order to preserve a uniformity in the definition of the spaces.
For 1 < p,r < o, the quasi-norms defined in the last two displays are in fact norms.

The third result of this paper is to establish the equivalence between the outer LP(¢")
spaces and the tent spaces TF.

Theorem 2.1.3. For 0 < p,r < o, there exists a constant C' = C(p,r) such that, for every
feLr(lr),

1
oz < 1 fllzeery < Cllfllz-

Moreover, we have LP(¢") = TY.
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It is worth noting that while the tent spaces require to pass from cones to tents in
order to define T,°, the definition of the outer LP(¢") spaces always relies on the boxes, or
equivalently on the tents.

In the second part of the paper, we turn our focus to embedding maps of functions
on R? to the upper half space R% x (0,00). These embeddings are obtained by pairing a
function on R with translated and dilated versions of a given test function. More precisely,
given a test function ¢ satisfying certain boundedness and decay properties, we define, for
every locally integrable function f on R%, the embedded function Fy(f) on R? x (0,0) by

FolNt) = [ 7@ ol =) da. (211

A prominent example of such an embedding is the harmonic extension of a function on R?
to the upper half space, where ¢ is the Poisson kernel. The interest in embedding maps
is part of the aforementioned two-step program to prove the boundedness of operators in
Calderon-Zygmund theory.

We study continuous inclusions between outer LP spaces in the upper half space and
continuous embeddings from classical L? spaces on R to outer LP spaces in this setting. We
start with an improvement over a previous result on Hardy-Littlewood-Sobolev inclusions
between tent spaces in [Amel8|. We obtain the boundedness of the map

d _d
TP > T, frtr af,

for 0 < p < q< 00,0 <ry<r; <o, or equivalently the same statement for outer LP({")
spaces. The improvement over the result in [Amel8]| consists of allowing for r; to be strictly
greater than ro.

These inclusions allow to recover strong type (p, q) estimates for the embedding maps
with a fractional scale factor

LP(RY) < LA(E), f > t3~ 1 Fy(f),

for 0 < p < g < 00,0 <r < oo from the ones for p = ¢q,r = 00. The fourth result of the paper
is then the full classification of all positive and negative results regarding strong and weak
type estimates for a family of embedding maps with a fractional scale factor in Theorem
. More precisely, for ¢ > 0, f € S(R?), let the embedded function F.(f) = F(f) be
defined by

F(f)(y,t) = sup Fy(f)(y,1),
where the supremum is taken over the set of functions ¢ such that
|6(2)] < (L+ o))~ (2.1.14)

With respect to the strong type estimates, we extract the following statement from

Theorem 2.6.11
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Theorem 2.1.4. Let
1<p,g<0,0<r<oo. (2.1.15)

Then, for (p,q,r) satisfying one of the following conditions

l<p<qg<o,0<r <o,
l<p=gq<oo,r=o00, (2.1.16)
p=14g=00,0<r < o0,

there exists a constant C = C(p,q,r,d,e) such that, for every f € LP(R?),

d_d
[t2" 9 F(f ) Lagery < CUF Nl Lo (may-

For all the triples (p,q,r) satisfying (2.1.15) but none of the conditions in (2.1.16]), no
strong type (p,q) estimate holds true.

It is worth noting that the strong type (1,00) estimates hold true for 0 < r < 0, even
if for r = o0 only the weak type (1,1) estimate holds true. Moreover, in the endpoint
p =q = 1,r = 00, we prove in Proposition a substitute of the strong type (1,1)
estimate, namely the boundedness of the embedding map

HY(RY) — L'(®), f — F,(f),

for ¢ € S(RY).

We conclude the paper with some applications of these embedding theorems yielding
alternative proofs of classical results such as the Hardy-Littlewood-Sobolev inequality, and
the Gagliardo-Nirenberg-Sobolev inequality up to the endpoint in the spirit of the afore-
mentioned two-step program.

Guide to the paper

In Section 2 we start with two decomposition results for functions in the outer LP(¢") spaces
in both finite and upper half space settings. We use them to prove Theorem [2.1.2] and
Theorem in Section 3. Moreover, in Lemma we provide a counterexample to the
uniformity of the statements in (i7), (iii) in Theorem[2.1.1]for p = 1,1 < r < c0. In Section 4
we prove Theorem In Section 5, Theorem [2.5.1] we improve over the result of Amenta
on Hardy-Littlewood-Sobolev inclusions between tent spaces. In Section 6, Theorem [2.6.1
we prove a full classification of all positive and negative results regarding strong and weak
type estimates for a family of embedding maps with a fractional scale factor from classical L?
spaces on R to outer LP(¢") spaces on R% x (0, 00). Moreover, in Proposition We prove
the boundedness of the embedding map defined by a test function ¢ € S(R?) from H'(R?)
to the outer L!(¢*) space. We use the strong type estimates from both results to prove the
Hardy-Littlewood-Sobolev inequality, and the Gagliardo-Nirenberg-Sobolev inequality up
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to the endpoint in the spirit of the aforementioned two-step program in Section 7. Finally,
in Appendix we review the definitions and recall some results of the theory of outer
LP spaces in the level of generality discussed in [DT15]. In Appendix we prove some
properties of the outer measure p on the upper half space described above.
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2.2 Decompositions for outer LP({") spaces

In this section we state and prove two crucial preparatory decomposition results for func-
tions in the outer LP(¢") spaces in both finite and upper half space settings, used in proving
Theorem and Theorem [2.1.2] respectively. Both consist of a recursive greedy selec-
tion algorithm that provides a sequence of maximal disjoint subsets of X exhausting the
elements of P(X) where the quantity defined in is in the interval [2%,28+1) k € Z.
This property guarantees not only an upper bound but also a lower bound on the super
level measure in at level A = 2% k € Z, in terms of the outer measures of the se-
lected subsets, thus providing a concrete substitute for it. Without loss of generality, we
can restrict our attention only to these levels. In fact, we can replace the integral in
with an equivalent discrete version, namely

=

(X 27uer () > 29)",
keZ
due to the monotonicity in A of the super level measure of a fixed function. This quantity is
no longer homogeneous in f, hence it is not a quasi-norm, but the discrete levels fit better
the recursive process we want to describe.

The decompositions in the two cases are analogous. We could state and prove a unified
result in the general setting described in Appendix at least in the range of exponents
0 < p,r < oo. It would require some adjustments to address the technicalities due to the
non-finiteness of the selection process and the generation of the outer measure by a pre-
measure. In this exposition, we prefer to focus separately on the two specific settings for
the following reasons.

The finite setting offers a full view on the mechanism of the recursive selection algorithm
and the proof of the decomposition properties. Moreover, we do not have to worry about
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our selection process being well-defined, since at each step only finitely many choices are
available, and we can choose any subset of X. Again, we stress that the main point in this
case is the uniformity of constants in (X, u,w).

The upper half space setting serves two purposes. On one hand, as a privileged case
of the general setting described in Appendix 2.A] it provides an example of addressing the
technicalities we referred to above. On the other hand, due to the geometry of the outer
measure, it allows for an improved version of the decomposition result. First, we can extend
it to the case r = 00, which is not included in the finite setting. Second, the decomposition
of a function in the outer L!(¢") space, for 1 < r < 00, is subtly more efficient for our
purpose, as will be clarified in Remark 2.3:2l We could state sufficient conditions on the
geometry of the outer measure to ensure this refined decomposition in a broader generality,
but these considerations are beyond the purpose of the paper, and they will be developed
in future work.

We start with the finite setting. Let X be a finite set, p an outer measure strictly
positive and finite on every singleton in P(X), w a strictly positive weight. We have the
following uniform decomposition result for functions in the outer LP(¢") spaces defined by
(2.1.5)).

Proposition 2.2.1. Let 0 < p,r < 0. There exists a constant C = C(p,r) such that, for
every finite set X, finite outer measure u strictly positive on every singleton in P(X), and
strictly positive weight w, the following property holds true. For f € LP({"), there exists a
sequence of sets {Ey: k€ Z} < P(X) such that if

Fy, = U Ey,
>k

then, for every k € Z,

C(flpe, )(Er) > 28, when By, # &, (2.2.1)
£ L Eg N oo ery < 2, (2.2.2)
p(l(f) > 2% < X ), (2.2.3)
=k
p(Ey) < Cu(e'(f) > 257h). (2.2.4)

Proof. First, we observe qualitatively that by outer Holder’s inequality, Proposition [2:A5|
in Appendix 2.A] we have LP(¢") = L*(£"), because p(X) is finite.
We define Ej by backward recursion on k € Z. For k large enough such that
1l oo ery < 2%,

we set Ej to be empty. Now fix k and assume we have selected E; for [ > k. In particular,
Fy 14 is already well-defined. If there exists a set A € X such that

O (flre, )(A) > 2%, (2.2.5)
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then we choose such a set A to be Ej, making sure that

Hfl(Aqu_,_l)CHLOO(ZT) <2h. (2.2.6)

In fact, if there exists a set B € X such that
C(flavs, ) (B) > 2,

then by the subadditivity of the outer measure, we have
O (flpe, )AL B) > 2"

Due to the finiteness of X, the condition (2.2.6) can be achieved in finitely many steps. If
no A satisfying (2.2.5)) exists, we set Ej to be empty, and proceed the recursion with k — 1.

By construction, we have for every nonempty selected set Fy, and
for every k € Z.

We observe that for every k such that 2% is greater than the L®(¢") quasi-norm of f,
the statement is true. To prove for any other k, let Ar_1 be a set witnessing
the super level measure at level 281, In particular,

£ ag  lpomgery < 271,

W(E(f) > 271 = (A ).
By for k + 1, we have

p(Ap_1) = 27700 M ()| f ()" (2:2.7)

2€AL_1\Fry1

By the definition of Ay_; and Ej, we have

Y, w@lf@) <2 DBy,

TEER\AR—1
D w@)f @) > 2" u(Ey),
2EER\F 11
hence
> w@)| f(2)]" > C2"* D p(Ey).

2€(Ap—1NEp)\Frt1
Combining this with (2.2.7) gives
pll(f) > 271 = Cu(Ey),

concluding the proof of (2.2.4) for the given k. O
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Now we move to the upper half space setting. Let X be the upper half space and u
the outer measure generated by the pre-measure o on D, the collection of the open dyadic
cubic boxes in the upper half space, as in (2.1.2)). In particular,

X =R4 x (0,00),
D = {(x,0) + (0,204 2 € 297, j € 7},
o(E) = |B(E)|, forevery E €D,
wly,t) =171,

(2.2.8)

where B(FE) is the base in R? of the dyadic box E € D, and |B(E)| its volume. Moreover,
for every dyadic box E = (z,0) + (0, s)%*! € D, we define ET by

E* = (2,0) + ((0,5)? x (5/2,5)).

Finally, let w be the measure defined by the density w(y,t) with respect to the Lebesgue
measure on R? x (0,00), where y € R% ¢ € (0,00), and for every 0 < 7 < oo let £” be the size
defined in .

We make the following observations involving the geometry of the elements of D and
the values of o, u on them. We postpone the proofs to Appendix [2.B]

Lemma 2.2.2. For every two dyadic boxes E1, E5 € D with nonempty intersection, we have
either F1 € FEy or By € Fy.

Lemma 2.2.3. Let {E,: n € N} be a collection of pairwise disjoint dyadic bozxes in D, and
let {D,,: n € N} be a collection of subsets of X such that, for everyn € N, we have D,, € E,
and Dy, n E}f # @. Then we have

u( U Dn) = Z o(Ey).

neN neN
In the following statement, the elements of a double sequence are parametrized by a pair
(k,n), for k € Z,n € Ni, where Ny, is either the set of positive natural numbers or a possibly
empty finite initial string of positive natural numbers. We consider the lexicographic order
of such pairs as follows: (I,m) < (k,n) if either [ > k, or | = k and m < n.
We have the following decomposition result for functions in the intersection between
the outer LP(¢") and L*({") spaces defined by ([2.1.5)) and (2.1.4)), respectively.

Proposition 2.2.4. Let 0 < p < 0,0 < r < 0. There ezists a constant C = C(p,r)
such that the following property holds true. For f € LP({") n L*(¢"), there exists a double
sequence of dyadic bozes {Ej: k € Z,n € Ny} < D such that if

F, = U Fin,

nENk
Fk,n = Fk,nfl o Ek,ny
Fk,O = U Qi7

i€l
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where {Q;: i € I} < D is the collection of mazimal dyadic bozes such that

1B@)| <2|BQ)n | BELm), (2.2.9)

(ILm): I>k

then, for every k € Z,n € N,

C(flrg, )(Ern) > 2% when By # &, (2.2.10)
17 L Egl ponery < 2%, (2.2.11)
pl(f)=>25<C Y o(Bim), (2.2.12)
(Im): 1=k
D o(Ery) < Cu(f(f) > 2571, (2.2.13)
neNg

Moreover, the collection {B(Eyy): k € Z,n € N} of the bases of the chosen boxes is 2-
Carleson, i.e. for every dyadic box E € D

. 0(Ern) <20(E). (2.2.14)
(k,n): Ek,ngE

For the definition of the A-Carleson condition and, later in the proof, of the n-sparse
condition for collections of cubes, as well as for their equivalence, we refer for example to
ILN19].

Before starting the proof, we briefly comment that a dyadic box satisfies the condition
in for a certain k € Z when at least half of its base is covered by the bases of the
elements of the double sequence selected up to the level k& + 1.

Proof. Case I: 0 < r < 0. The selection algorithm is analogous to that described in the
previous proof. We define E},,, by a double recursion, backward on k € Z, and, for every
fixed k, forward on n € Ng. In parallel, we prove the properties in (2.2.10) — (2.2.13]) by
backward induction on k € Z.

For k large enough such that

k
11 oo ery < 27,

we set N empty. The properties in (2.2.10) — (2.2.13) are trivially satisfied.

Now fix (k,n) and assume we have selected Ej,, for (I,m) < (k,n), and that the
properties in (2.2.10) — (2.2.13)) are satisfied for every [ > k. In particular, Fj, 1 is already
well-defined and satisfies , and Fy, ,—1 is already well-defined. If there exists a dyadic
box A € D such that

(e, )(A) > 25, (2.2.15)

then we choose such a dyadic box A to be Ej ,, making sure that o(A) is maximal. The
maximality of o(A) is achieved because the set of values of o is discrete and doubling,
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namely it is {2¢: i € Z}, and we have an upper bound on o(A) when A satisfies the

condition (2.2.15)). In fact, we have

o(A) < Cu((f) > 28 1) < C2"fp||f|y§p(ﬁr) <. (2.2.16)

To prove the first inequality, we use an argument analogous to that used to prove
above. For every € > 0, let A;_1(¢) be an optimal set witnessing the super level measure
at level 2=1 up to the multiplicative constant (1 + ¢). Next, let & _1(¢) be an optimal
covering of Ai_1(e) witnessing its outer measure up to the multiplicative constant (1 + ¢).
In particular,

||f1Ak_1(E)C||LOC([T) < 2k_17

Ak_l(s) - U E,

Ee&,_1(e)

Q4P (f) > 2> 04 uAa @)= Y o).
Ee€,_1(e)

By (2.2.11) for k£ + 1, we have, for every E € &;_1(¢),
o(E) = 27T(k+1)||f1E\Fk+1 1 (X 0

which yields, together with the covering of Ai_1(g) by the elements of &_1(e),

oooE) = )] 27" D Flp g 17 (x )
Eegkfl(é‘) Eegkfl(e)
. , 2.2.17
> 2N s, o BN F T x) (2217
= 27T(k+1)Hf1Ak71(5)\Fk+1 HZT(X,UJ)'

By the definition of A;_;(¢) and A, we have
”flA\Ak71(€)||2T(X,w) < 2T(k71)0’(A))
£ aEs o xey = 1 L 2wy > 2750 (A),

hence
k—
Hfl(Ak—l(a)f‘A)\Fk+1 "ZT(X,w) = 027‘( 1)O(A)
Combining this with (2.2.17) and taking ¢ arbitrarily small give the desired inequality

(O (f) > 257) = Co(A).

If no A satisfying (2.2.15)) exists, we set Ny = {1,...,n — 1}, Ny empty if n = 1. If we
are able to choose E} ,, for all n € N, we fix such E}, ,. Before proceeding the recursion with
(k —1,1), we prove the properties in (2.2.10) — (2.2.13]) for k.
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By construction, we have (2.2.10) for every nonempty selected dyadic box Ej, ,,.

The proof of (2.2.13)) for k£ assuming (2.2.11]) for k + 1, which we have by the induction
hypothesis, is analogous to that of the first inequality in (2.2.16)). In fact, we have

||f1UneNk Ek,n\Ak_l(a)HTLT(X,w) < Z ||f1Ek,n\Ak_1(5)||TLT(X7W) < 2rtk=1) Z 0(Ekn),

neNg neNg
k
||f1UnENk Ek,n\FkHHZT(XvW) > Z ||f1Ek,n\Fk,n—1||zr(X,w) > 2" Z o(Ekn),
neNy neNg

hence
r r(k—1
Hfl(Akfl(s)“UneNk Ek,n)\FkJrlHLT(X,w) > C2 ( ) Z O-(Ekm)a
TLGNk
where Aj_1(¢) is defined as above. We conclude as above
Now we prove ([2.2.11)) for k. If N is finite, then by construction there is no dyadic box
A € D such that
0 (flpe)(A) > 2.

If Ny, is infinite, we observe by ([2.2.13)) for this k, that

Z U(Ek,n) < 90,

TLENk

since f € LP({"). Therefore, o(E},,) tends to zero as n tends to o0. Since each Ej,, is
chosen to maximize o(FE} ), there exists no dyadic box A € D which can violate (2.2.11])
as such A would contradict the choice of Ej ,, for sufficiently large n. This concludes the

proof of (2.2.11)) for the given k.
With (2.2.11]), we also have (2.2.12)). In fact, we have

p(Fy) < p(Fr-10)
< ) IB(@Q)

ie[k,1

<2l |J B@)n |J BEwW)

i€lp_q (lym): =k

<C > o(Em),
(Iym): =k

where we used and the disjointness of the elements of {Q;: i € Ix_1} in the third
inequality.

Case II: r = 0. The only difference is in the selection of Ej,,. Fix (k,n) and assume
we have selected Ej ,, for (I,m) < (k,n), and that the properties in (2.2.10) — (2.2.13) are
satisfied for every [ > k. If there exists a dyadic box A € D such that

(fleg, 1as)(A) > 2, (2.2.18)



2.3. EQUIVALENCE WITH NORMS 51

then we choose such a dyadic box A to be Ej ,,, making sure that o(A) is maximal.
As in the previous case, the maximality of o(A) is achieved because the set of values
of o is discrete and doubling, and we have an upper bound on o(A) when A satisfies the

condition ([2.2.18]). In fact, we have

o(A) < u(t*(f) > 2571 < 27| f|[ gy < 0. (2.2.19)
To prove the first inequality, we observe that for E = A* n {|f| = 2*}, we have w(E) > 0,
hence

W(E) < p(*(f) > 2870,

We conclude by Lemma [2.2.3

The proof of (2.2.10) — (2.2.13)) for k£ then follows in a straight-forward way. As in the
previous case, the proof of is analogous to that of the first inequality in (2.2.19).
In fact, we observe that for Dy, = E,:n N {|f] = 2¥}, we have w(Dy ) > 0, hence

i( | Din) < u(e2(5) > 27,

nENk

We conclude by Lemma [2.2.3| upon observing that for fixed k, the selected dyadic boxes
B}, are pairwise disjoint, by Lemma [2.2.2] and the definition of Ej, ;.

To conclude, for every 0 < r < o0, we observe that the collection {B(Eky,): k € Z,n €
Ny} is 1/2-sparse, i.e. one can choose pairwise disjoint measurable sets Ekn C B(Eyp)
with \Ekn| > |B(E},)|/2. This follows by and the maximality in the choice of Ej, ,.

Therefore, the collection is 2-Carleson. O

2.3 Equivalence with norms

In this section we prove Theorem [2.1.2] and Theorem [2.1.1] We start with the upper half
space setting. First, we prove property (7). After that, for every f e LP(¢") n L*({"), for
1 < p,r < o0, we provide a candidate function g to realize , up to normalization of its
outer L¥' (6’"1) quasi-norm. Upon showing an upper bound on the outer 4 (ET') quasi-norm
of g and a lower bound on the L'(X,w) norm of fg, properties (i), (iii) follow. Then
we turn to the finite setting and when possible we follow analogous arguments to prove
properties (i), (47), and (7i7). In almost all the definitions and proofs we make use of the
decompositions provided by Proposition and Proposition [2.2.1] Finally, in Lemma
2.3.4 we exhibit a counterexample to the uniformity in every finite setting (X, y,w) of both
statements in (i), (797) for p = 1,1 < r < o0.

We start with the upper half space setting, where (X, y,w) is the setting described in
(12.2.8)).
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Proof of Theorem property (i). The case p = o follows by definition.
Therefore, we can assume without loss of generality p = 1, since

”f”ip(zp) = pr”Ll(fl)'

For f e LY(¢Y) n L®(¢Y), let {E},} be the collection of the dyadic boxes from Proposition
2.2.4. We have

11y < C Y 25u(e'(f) > 29)

keZ

<C Z 2k 2 U(El,m)

keZ — (I,m): 1=k

< CZ Z 2l0'(El,m)

leZ meN;

<O 1l e

leZ meN;
<Ol fllp e
where we used (2.2.12)) in the second inequality, Fubini and the bounds on the geometric
series in the third, (2.2.10)) in the fourth, and disjointness of the sets in the fifth.

We note that f vanishes w-almost everywhere outside the union of all the selected dyadic
boxes {E} ,}, since D covers all of X. We have

HfHLl(X,w) = Z Z HflEk’n\Fkynfl”Ll(X,w) + ZHf]'Fk,O\Fk+1HL1(X7w)

keZ neNy, keZ

< Z Z ”flEk77l\Fk+1‘|L1(X,w) + Z Z Hlez‘\Fk+1HL1(X,w)
keZ neNg keZ iely

< Z 2k+1 Z U(Ek,n) + Z 2/€+1 Z J(Qz)
keZ ’I"LENk keZ Z'Elk

< Z 2k+1 Z U(Ek,n) + Z 2]€+1 Z O-(El,m)
keZ neNg keZ (ILm): 1>k

< Y2 N (B +C Y20 D o(Eym)
keZ neNg leZ meN;

<C Y2 lu(er(f) > 2"

keZ

< O fllpr ey

where we used (2.2.11)) in the second inequality, (2.2.9) and the disjointness of the dyadic
boxes {Q;} in the third, Fubini and the bounds on the geometric series in the fourth, and

(2.2.13)) in the fifth.

A standard approximation argument yields the result for arbitrary fe L'(¢'). O
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Now we provide the candidate function g for f € LP(¢") n L* (L"), for 1 < p,r < 0. We
separate the definition into four cases depending on p and r.

Case 1: 1 < p,r < w. For f e LP({") n L*(("), let {E}} be the collection from
Proposition and define

S) = Z Z 2k(pir)1Ek,n\Fk,n71 (33,5)|f(x,5)|T71_

keZ neN

Case 2: 1 <p<wand r =w. For fe LP({*) n L*({*), let {E},} be the collection
from Proposition and define

=3 3 BV, () (0 (1 ) (Er)

keZ neNg

where
Bin = Bf, 0 {If] > 2,

and E’Jr is the upper half of Ej,,,.
Case 3: p=wand 1 <r <oo. For fe L*({"), let the dyadic box E € D witness the
outer L®(¢") quasi-norm of f up to a factor 2, and define

g(m,s) = 1E<x73)|f(x75)‘r_1'

Case 4: p =r = . For f e L*({*), let the dyadic box E € D witness the outer
L*(¢*) quasi-norm of f up to a factor 2 in a subset of strictly positive measure in E*, and
define

g(x,s) = 1z, ) (' (15)(E)
where

E=E" {1 > 1f]l oo gy /2)-

We have the following upper bounds on the outer LPI(ET/) quasi-norm of g, where g is
defined according to the four (p,r)-dependent cases.

Lemma 2.3.1. Case I: p=1 and 1 <r < . We have

ugnLW <c.
Case II: 1l <p< o and 1 <r <ow. We have

p/
gl gy < CUFNLo ey
Case III: p= 0 and 1 <r < . We have

gl L1 ey < IF N pemyo (B)-
Case IV: p=1r = 0. We have

19llL1 ) < o (E).
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Proof. Case I: p=1and 1 <r < . Let 1 <r < o. For every dyadic box A € D, we
have

@A) - =5 ”/ P D) w(y, ) dy dt
Z ZN: AN (B n\Fl,n—1)
(4) ; EZN:k A(Bn\Fitn) (2.3.1)
1

<Cr(a(A)+ > o(Be)

( ) (k,n): EkyngA
< C,
where we used (2.2.11)) and the nested structure of D, namely the fact that for A, B €
D,An B # J, then either A € B or B € A, in the second inequality, and (2.2.14)) in the

third.
In an analogous way, for every dyadic box A € D, for r = 0, we have

tH(g)(4) < C,
and it is easy to see that, for r = 1, we have
*(g)(4) < 1.
Therefore, for 1 < r < o0, we have

||9||L00(gr/) < C.

Case II: 1 <p<owand 1 <r <. Let 1 <r < . For a fixed k£ and every dyadic
box A € D, we have

/ .1 .
(" (glre) (A) = —— Y] ﬂw“/ £y, 0)[ (. £) dy
U( ) l,m) I<k Am(El m\Flm 1)

I( r)r’ 1 r
<2 )/A\Flﬂlf(y,t)\ w(y,t)dydt (2.32)

i<k
<c 2 21(p7r+r71)r
<k
< CQk(P—l)T ,
where we used ([2.2.11)) in the second inequality, and the bounds on the geometric series in
the third.
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In an analogous way, for every dyadic box A € D, for r = 0, we have

Clrr)A) = s 3 020 [ (g B et dyds

l<k meNl ANEym
< 2 2[ p—1) Z U(El,m) (2.3.3)
<k ) m: By, CA
< CQk(P—l)’
where we used the disjointness of the elements of {Ej ,,,: m € N;} due to the maximality in

their choice, and the bounds on the geometric series in the second inequality.
It is easy to see that, for every dyadic box A € D, for r = 1, we have

(gl ) (A) < 2K,
As a consequence, for 1 < r < oo, for every dyadic box A € D, we have
o (glre)(A) < 2D,

hence
u(” (g) > 2PV < u(F) < C o(Epm). (2.3.4)

Therefore, we have

<C Y 2P (g) > c2bY)
keZ

<CY 2% Y o(Em)

keZ — (ILm): 1>k

<CZQZPZ Elm)

leZ meN;
<C Y 2Pu(l(f) > 27

leZ

< Clf Iy

p
||g||Lp/([r/)

where we used (2.3.4]) in the second inequality, Fubini and the bounds on the geometric
series in the third, and (2.2.13]) in the fourth.

Case III: p = o0 and 1 < r < 00. By construction we have

HQHLOO(W HfHLoc o)

therefore, by outer Holder’s inequality, Proposition 2.A.5] we have

g1l 1oty < gl ooy ILEN 21 ey < 11 oy (B
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Case IV: p = r = . In an analogous way, we have
9l L1 ry < o(E),
since by construction HgHwa) =1. O

Remark 2.3.2. Without the crucial property of the decomposition established by (2.2.14]),
the argument in (2.3.1) above produces the empty upper bound

(" (9)(E)" < Y L.

keZ

Nevertheless, when 1 < p < o, in (2.3.2) and in (2.3.3) we can already get a summable
decay in | < k for the upper bound on the (" size of g over the sets A N (E)\Fy+1), and it

s mot necessary to invoke ([2.2.14).

We have the following lower bounds on the L'(X,w) norm of fg, where as above g is
defined according to the four (p,r)-dependent cases.

Lemma 2.3.3. Case I: 1 < p<w and 1 <r <. We have

190l xw) = ClUF o ery-
Case II: p=ow and 1 <r <. We have
191l L1 (x w) = CNF I en oryo (E).
Case III: p =r = 0. We have

ufgnLl(Xw) > O fll o )0 (B):

Proof. Case I: 1 < p< oo and 1 <r <oo. Let 1 <r < oo. For every fixed (k,n) such
that E} , is not empty, we have
C(fgtre, (Brn) = 280700 (flre )(Brn))” > 2, (2.3.5)

where we used (2.2.10)) in the inequality.
For r = o0, by the definition of g, we have the same inequality.
Therefore, for 1 < r < o0, we have

HngLl(X,w) = 19l 1 (B o\ 1 )

keZ neNy,

= Z 2 2kpU(E‘k’,n)

keZ neNy

>CY2% ' o(Epn)
€2 (kn): i<k

>C ) 2Pu(0(f) > 2))
leZ

= Cllf ey
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where we used in the second inequality, the bounds on the geometric series and
Fubini in the third, and in the fourth.

Case II: p =0 and 1 < r < . Let E € D be the dyadic box associated with g, in
particular

C(f)E) = Cllfll o ery-

Therefore, we have

1f 9l x ) = I LENDr (x0)
=0 (f)(E)o(E)
= Cll fl 0 eryo (E).

Case III: p = r = o0. In an analogous way, we have

1f9ll L1 (xw) = Cllf | Loo(eryo (E).
O

Proof of Theorem properties (ii), (7). The first inequality in (i) is given by outer
Holder’s inequality, Proposition [2.A.5
The second inequality in (ii) is a corollary of the previous Lemmata for f € LP(¢") n
L*(¢"). A standard approximation argument yields the case of an arbitrary f e LP({").
The statement in (i44) is a corollary of the triangle inequality for the L'(X,w) norm
and property (7). O]

We conclude the part of the section about the upper half space with the following
observation.
Let X be the upper half space and v the outer measure generated by the pre-measure
o on &, the collection of all the open cubic boxes in the upper half space, as in (2.1.2)). In
particular,
X =R% x (0,00),
E={(z,0)+ (0,9)4: 2 e R% s € (0,0)},
o(E) =|B(E)|, forevery E€E,
wly.t) =t

(2.3.6)

where B(E) is the base in R? of the box E, and |B(E)| its volume. We observe that D < &,
and every box in £ can be covered up to a set of measure zero by finitely many dyadic
boxes in D of comparable pre-measure. Therefore, the outer LP(¢") space quasi-norms in
the settings and are equivalent by Proposition . As a consequence,
all the previous results obtained in the setting extend to the setting . An
analogous argument applies to the outer measure structure generated by triangular tents
in place of cubic boxes.
We turn now to the finite setting.
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Proof of Theorem[2.1.1. The proof of property (i) and, for 1 < p < 0,1 < r < o, of
property (ii) follows by arguments analogous to those in the previous proofs, using the
decomposition in Proposition [2.2.1]

For p = r € {1, 0}, the statement in (i7) follows by the equivalence between LP(¢P) and
LP(X,w) by property (7).

The statement in (i77) is again a corollary of the triangle inequality for the L'(X,w)
norm and property (ii). O

Lemma 2.3.4. Let 1 < r < o0. For every M > 0, there exist a finite set X, a finite
outer measure | strictly positive on every singleton in P(X), a strictly positive weight w,

functions f, f, € L'(¢7) such that

iy =M sap - [[fgll Ly,
HglLOO([FI)

H %fn Ll(gr) = MT;\IHJCHHLI(W).

Proof. Let D be the set of dyadic intervals. For every m € N, let

X ={IeD: I<[0,1],]I] >27™},

Em={E ={JeD: I JC[0,1]}: I€ Xp,|I| =27™},
)=1, forevery I € X, |I| =2"",

w(J) =1, for every J € X,
)
)

fi(J) =1g,(J), forevery I € Xp,|I|=2"".

We have

B mm+1
gy frallprery = 2" ——,

| X #

I€X | I|=2—™

Do Mfrllpe = >, (m+1)

IeXm,|I|=2—m IeXm,|I|=2—™

For m big enough, we get the second statement. In particular, this yields a counterexample
to the uniformity of the constant in the statement of Theorem property (7ii). There-
fore, also the uniformity of the constant in the statement of Theorem property (i7)
does not hold true. 0

2.4 Equivalence with tent spaces

In this section we prove the equivalence between the outer LP(¢") spaces in the upper half
space setting (2-3.6) and the tent spaces T} stated in Theorem[2.1.3] First, in Lemma
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we prove the equivalence for certain exponents p,r. After that, we extend it to the full
range 0 < p,r < o via the Kothe duality result for the outer LP(¢") spaces, equivalent to
that stated in Theorem m, property (ii), and the analogous result for tent spaces T7,
stated in Proposition [2.4.2

Lemma 2.4.1. For p = 0,0 <1 < 0 or 0 < p < oo,r = o, there exists a constant
C = C(p,r) such that, for every f e LP({"),

1
oz < 1fllzeery < Cllfllz-

Proof. Without loss of generality, it is enough to consider the cases

p=oo,r=1,
p=lr—o (2.4.1)

In fact, let ¢ < 00 be the minimum of p and r. We have
£ 117, = (b P
AN Toery = 19 Loragersay

where 00/q = 00, thus recovering one of the cases in (2.4.1)).

Case I: p = w,r = 1. The quantities associated with the spaces L®(¢), T are
equivalent by definition, up to a constant determined by a simple covering argument between
boxes and tents.

Case II: p = 1,7 = . Let f € L'({*). For every A > 0, let £ < & be a covering
witnessing the super level measure at level A up to a factor 2. In particular, we have

2u(t*(f) > A) = Y o(E).

Ee&y

For
By = J10B(E) = R,
Ex
where 10B is the cube in R? with the same centre of B and 10 times its side length, we
have

1B\l < C ) o(E) < Cu(t*(f) > N).
Ee&),

Moreover, for every x € B, we have

Ap(f)(x) < A,
otherwise we get a contradiction with the definition of £,. Therefore, we have

{z e RY: Ay (f)(x) > A < Cu(f®(f) > \). (2.4.2)
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Now let f € T%. For every A > 0, let Dy be
Dy ={z e R%: Ay (f)(z) > A},

and define
E\ = U 10Q; < X,
i€I>\
where {B(Q;)} is a Whitney decomposition of Dy, and 10Q) is the box whose base B(10Q)
has the same centre of B(Q) and 10 times its side length. In particular, we have

1(Ex) < C|Ds|.
Moreover, for every E € £, we have
(2 (fleg)(E) < A,
otherwise we get a contradiction with the definition of D). Therefore, we have
n(fP(f) > A) < Cl{z e R%: Ay (f)(z) > A} (2.4.3)

The desired equivalence follows by integrating the inequalities (2.4.2)), (2.4.3]) over all
levels A > 0. O

For the tent spaces TF we have the following Koéthe duality result, see for example
Theorem 5.2 in [Hual6].

Proposition 2.4.2. For 1 < p,r < o, for every f € T?,

sup  ([f9llpixw) < Ifllze < sup ([ fgllprxw)-
llgll, =1 llgll_pr =1

T‘/ T

Proof of Theorem[2.1.3. Without loss of generality, it is enough to consider the cases

due to an argument analogous to that in the previous proof.

Case I: p = r = 0. The equivalence between L*(¢*), T follows by definition.

Case II: 1 < p < oo,r = 1. For p = oo the quantities associated with the spaces
L*(0Y), T are equivalent by Lemma m

For 1 <p < oo, let f e LP(¢'). By Theorem property (i), we have

1
lel sup ||f9HL1(X,w) < HfHLP(Zl) <C sup HngLl(X,w)'

190 7 o) <1 91 ooy <1
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Applying Lemma to g, we have

sup HfQHLl(X,w) S Hf”Lp(el) <C sup HfQHLl(X,w)-

|T5)/ <1 \glng <1

ol
Finally, by Proposition [2.4.2] we conclude

1
S lzp < 1AL zagery < Cl -

Case III: p = 1,1 < r < . For p = 1,7 = o, the quantities associated with the
spaces L1 (¢*), T4 are equivalent by Lemma m

For p=1,1 < r < o0, an argument analogous to that used to prove Case II yields the
desired equivalence. If p = r = 1, we use Case I in place of Lemma [2.4.1

To conclude, we observe that the set of bounded functions with compact support in X
is dense in T for 1 < p < co,r = 1 and p = 1,1 < r < oo. However, these functions are
also in LP(¢"). Therefore, the two spaces coincide. O

2.5 Hardy-Littlewood-Sobolev inclusions for tent spaces

In this section we improve over a result of Amenta on continuous inclusions between tent
spaces T¢, see Theorem 2.19 and Lemma 2.20 in [AmelS8]. In his notation, we have the
weighted tent spaces T%" defined, for 0 < p,r < 00,5 € R, by

TPr ={f 7 f T f e = 1 Fllgp,
where TY is defined in (2.1.11)) and ([2.1.12)), and the continuous inclusions

Ty" =T f e f,
q P

for 0 < p < g < 0,0 <r < o. The improvement consists of allowing for two different
values of r, under certain conditions, in each of the two spaces in the last display.

Due to the equivalence proved in the previous section, we get an analogous result for
the outer LP(¢") spaces in the upper half space setting . This result is auxiliary in
proving strong type estimates in the following section.

Theorem 2.5.1. For 0 < p < q < 0,0 < ry < r; < ©, there exists a constant C' =
C(p,q,r1,72) such that, for every f € TF,

d_d

14574 Fllzs, < Cll £l

Equivalently, for every f e LP({™),

d_d

[£27 9 fll Lageray < CUS Nl ooy



62 CHAPTER 2. SINGLE ITERATED OUTER L* SPACE

The main ingredient is the following. We define a function a to be a TF-atom associated
with the ball B € RY if @ is essentially supported in 7'(B) and

1 1
lally, < |B|"». (2.5.1)

Lemma 2.5.2. Let1 < g <19 <11 < 00. Suppose that a is a Trll—atom, Then a is in Ty,
with norm smaller than 1.

Proof. For q < o0, let 0 < 7, s < 00 be such that

1 1 1 1 1 1
r T T s r o q
We have

d—4 d—4d
|t qa”Tﬁ2 = || A, (¢ qa)HLCI(B)

_d
<A 5 L) Ay (@) o)
_d
< ”Ar(td ‘11T(B))||LS(B)||AT1(a)HLm(B)

1—L
< 1B 7 lallg

N

L

where we used Holder’s inequality in the first and in the second inequality, and (2.5.1]) in
the fourth.
For ¢ = ro = r; = o0, the statement follows directly from (|2.5.1]). O

Proof of Theorem[2.5.1. The proof of the first statement follows along the lines of that of
Theorem 2.19 in [Amel8§]|, using Lemma above in place of Lemma 2.20.
The second statement then follows by Theorem [2.1.3] O

2.6 Embedding into outer L”({") spaces with a fractional scale
factor

In this section we state and prove a full classification of all positive and negative results
regarding strong and weak type estimates for a family of embedding maps with a fractional
scale factor from classical LP spaces on R? to outer LP(¢") spaces in the upper half space
setting.

The positive results for d = 1,1 < p = ¢ < 00, r = o0 were already proved in [DT15], see
Theorem 4.1. Although there ¢ was assumed to be smooth and compactly supported, the
same argument can be extended with minor adjustments to the test functions satisfying
the boundedness and decay condition (2.1.14) and to all dimensions.
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We conclude the section by stating and proving an embedding theorem with a fractional
scale factor for functions in the Hardy space H'(R?) into the outer L!(¢*°) space. The
embedded function in this case is that defined in (2.1.13) for a smooth test function ¢ €
S(R%).

Theorem 2.6.1. Let
1<p,g<0,0<r<oo. (2.6.1)

Then, for (p,q,r) satisfying one of the following conditions, which are also displayed in Fig.
1 below,
l<p<qg<o,0<r<o,
l<p=gqg<oo,r=owm, (2.6.2)
p=14g=00,0<r < o0,

there exists a constant C = C(p,q,r,d,€) such that, for every f € LP(R?),

d

d_d
2= F(F)l paery < CIF Nl oy

For all the triples (p, q,7) satisfying (2.6.1)) but none of the conditions in (2.6.2), no strong
type (p,q) estimate holds true.

Moreover, for (p,q,r) satisfying one of the following conditions, which are also displayed
in Fig. 1 below,
l=p<qg<o0,0<r<oo,

g Lr— (2.6.3)

there exists a constant C = C(q,r,d,€) such that, for every f € L'(R9),
IE Lo ery < ClFll 1 gay-

For all the triples (p,q,r) satisfying (2.6.1) but none of the conditions in (2.6.2)),(2.6.3), no

weak type (p,q) estimate holds true.

1 r =00 1 r=0ow
q weak type (p,q) q strong type (p, q)

D=
D=
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1 O0<r<ow 1 O0<r<ow

q weak type (p, q) a strong type (p, q)
1 1
p p

Figure 1: range of exponents p,q,r and weak/strong type estimates.

In the next proof, the constants ¢, C' are allowed to depend on d, €, p, ¢, but not on f.

Proof of Theorem [2.6.1. Without loss of generality, we can assume f to be nonnegative. In
fact, by definition (2.1.13]), we have the pointwise bound

[Fo (N, )] < Fg (1 Dy, 8) < F>FD(y, ).

In particular, we have

FUNG.0 = [ F&r 0+ 7y =) e
This expression can be bounded either by means of the centred maximal function

F(f)(y,t) < CMf(y), (2.6.4)

or by Young’s convolution inequality
_d
F(f)(y,t) < Ct || £ o (gay- (2.6.5)

2.6.1 Strong type (p,q) estimates for 0 < r < « in the range for p # 1,¢
displayed in Fig. 1

The strong type (p,q) estimates in the range 1 < p < ¢ < 0,0 < r < o follow by the

already known strong type (p, p) estimate for 1 < p < 00,7 = c0 and Theorem [2.5.1]

2.6.2 Strong type (1,0) estimates for 0 <r < o

We aim to prove that, for every F € &£,
CEF)E) < Cllf |l gy (2.6.6)

If r = o0, the claim follows by (2.6.5)).
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Now let 0 < r < o0. By Theorem property (iii), the decay property of ¢, and
the translation invariance of the L*(¢") quasi-norm, it is enough to prove the inequality
assuming that f is supported in (—1,1)% and ¢ = 1(_1,1y¢- In this case, we have

Fo(£)(y,t) < Ct Y f1yp—epyall pr ey L(—1—s,145)x (s},550} (§5 1)
and it is enough to prove (2.6.6|) for the elements of £ of the form
Epw = (z+ (—u,u)?) x (0,2u) € &,

for every u > 0,z € (—1 —u,1 + u)%. We distinguish two cases, r > 1 and 0 < r < 1.
Case I: » > 1. Let r = 1. We have

2u dt
CF(f)(Epw) < ud/ / ) / L1y f(2)1y+(—t,t)d( )dzdy—

< i

ud —1,1)d fz / / —u,u) )(y)dyt @
C 2udt

< udHf’Ll(Rd)/O e

< Il ey

where we used Fubini in the second inequality.

If 1 < r < o0, Proposition 2.A.8|implies the strong type (1, 00) estimate for L®(¢") from
those for L (¢1), L* (%),

Case II: 0 <r < 1. We have

(P () Baa) < (2 Fy()) (Ba) 077 (7)) (B )

2u 71 &
ud/ / Y 2/ 1J)df(z)lyﬂt,t)ﬂl(fz’)dlzdlyt>><
2u 1er
/ / ¢20-1 dyﬁ) "
ud 0 x+(—u,u)d
1 2u d 1dt r dt 1%’”
T T2 (1—r) —
<cerL1<Rd)(ud/0 " t)(/o i )

< Ol fllr mays

where we used Hélder’s inequality with exponents (1, ) in the first inequality, and then
we proceeded as in the previous case.

2.6.3 Weak type (1,q) estimates for 0 < r < o in the range for ¢ #
displayed in Fig. 1

We aim to prove that, for every A > 0,

(€ (1T F(f)) > A) < Ol 181 gy
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This requires to construct, for every A > 0, a set with appropriate outer measure approxi-
mating the super level measure at level \.
For fixed f and A > 0, let D) be the set

Dy = {weR%: Mf(x) > N||f|| 2 (k)

We have
|D)\| < CXx~ q”f”Ll (Rd)>

because of the weak type (1,1) estimate for the maximal function operator on R

Let {B;: i € I\} be a Whitney covering of Dy up to a set of measure 0 by pairwise
disjoint open dyadic cubes in R?, and denote by z; and s; the centre and the side length of
B, respectively. Let Q(B;) = Q; € D be the open dyadic box over the cube B;, and define

Ey=Ja cx

’L'EI)\
In particular, we have
u(E2) < DAl < CAFI1%, o

We are left with proving that for every F € &,
TR ) (B) < O

If (z,s) € ES,x € D), then x € Q; for some i € I, s > s;, and there exists u € Sé-1
such that z + s'u € D, for ¢s; < s’ < Cs;. As a consequence, for ¢ > s, we have

tdng(f)(a:,t) <CO(t+ s’)dng(f)(x + s'u,t + ).

Therefore, we have

4 4
(TP (f)1gg)(E) < CSHPW TE( L gy x (0,00), 44

zeD )\
and it is enough to show that for every x € DS, we have

_d
I TEDN L (¢ (0.00), ) < CA-

We split the norm on the left hand side at height 0 < R(z) < o0 soon to be fixed

d—4

d,,
11 F (L (g2 ¢ 0,8, 20) 11 T F (Dl 1 (0 ¢ (R(a) o0, 20)- (2.6.7)
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We bound F'(f) by (2.6.4) in the first summand obtaining
d—4d
CMf(z)R(z)" 7,

and by (2.6.5) in the second summand obtaining

d
ClFl g1 ey B() 2.

If 0 < r < o0, we require the additional hypothesis ¢ > 1 to guarantee the L"-integrability
at 0 of the estimate for the first summand.
Optimizing the choice of R(z) with

_1 1
R(z) = CMF@) 171, g
we get the bound for (2.6.7))

1 1-1
OM (@)l ey
We conclude by the estimate for every x € DS,
M f(x) < N1 -
2.6.4 Counterexample to the strong type (1,q) estimates for 1 < ¢ <

0,0<r<w

In the following counterexamples we are going to use test functions ¢ satisfying the condition
(2.1.14) with a multiplicative factor different from 1. While it does not effect the nature of
the counterexamples, it spares us the definition of other appropriate constants.

For f =1y 1ya,¢ = 1(_y,1)a, we have

Fo(f)(yt) =t (g panisyssny (1),

For every u > 1, let
E, = (0,u)dtle&.

Then, for 0 < r < o0, we have

d

r(pd—2 1 2u _dr diy = _d
£ D o) En) > (e / /(0 LRwT) e o,

and it is easy to see that, for r = o0, we have

SYIsY

_d —
foo(td qF(f)l(Rdx(O,u))c)(Ezu) =u .
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Therefore, for every fixed u > 1, if A € X is such that
() L) (Baw) < Cu” s,
then A\(R? x (0,u)) # &, hence we have
rod—< -4 d
pl™ (" aF(f)) > Cu ) = u”.
As a consequence, we have

_d du

d-¢ q Ca et B
”t qF(i)(f)HLq(gr) =>C ; U /,L(f (t qF(f)) > Cu Q)E = 0.

2.6.5 Counterexample to the weak type (p,q) estimates for 1 < ¢ < p <
w,0<r<wand 1 <g<p<ow,r=0w0

For f, ¢ as above, we have
Fd)(f)(yv t) = 1{(—1+s,1—s)d><{5},s<1}(y7 t)-
For every z € (0, %)d,u < %, let

Epu = (x4 (—u,u)?) x (0,2u) € £.

Then, for 1 < ¢ <p<00,0<r < o0, we have

1
T

L d_d 1 2u ar_ar  dt
4 (tp qF¢(f))(Ex,u) = ((Q'LL)d/(; / ( )dtp q dy7> = 00,
T+ (—u,u

thus exhibiting a counterexample in the case p = ¢ = 00. Moreover, it is easy to see that,
for 1 < g <p < oo, r=o00, we have
d_d

(2 (tr 1 Fy(f))(Eau) = .
Let A< (—1,1)% x (0,00) be such that, for every z € (0, %)d,u < %,
d_d
C(tr " aF(f)1ae)(Epy) < 0. (2.6.8)

For every finite collection £ < £ covering A, let

Agr = U B(E),

Ee&’
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where B(E) is the base in R? of E, and B is the closure of B in R?. If Ag/ n[0,1]% # &,
there would exist =, u such that F,, n A = &, hence contradicting (2 . Therefore for
every A > 0, we have

p(E (£ Fy(f)) = \) = C,
where C' does not depend on .
As a consequence, for q # o0, we have

”tp qF¢>( Hquo([r Csup A = 0
A>0
O

Before stating and proving the embedding result for functions in H'(R%), we recall the
definition of H'-atom. A function f is a H'-atom associated with the cube B < R? if f is
essentially supported in B and

/B @) de =0, |fllpeqme < 1B

Proposition 2.6.2. Let ¢ € S(R?). Then there exists a constant C = C(d, ) such that,
for every f e H'(RY),
IE (P L1 ey < CUF Nl ey

Proof. By Theorem property (iii), the decay properties of ¢ and its derivatives, and
the definition of the Hardy space (H'(R?), ||| Hi(ra)); it is enough to prove the inequality
assuming that ¢ is a smooth function compactly supported in a cube of side length 2 and
f is a H'-atom associated with a cube B. Moreover, due to the translation invariance of
the L'(¢*) quasi-norm, we can assume that both f, are supported in cubes centred in
the origin. Therefore it is enough to show that

1Eo (Pl L1 ey < C-
Let 2B be the cube with the same centre of B and double the side length. For 0 < ¢t <
|B|é,y € 2B, we have
[Fo(f)(y:t)] < OB

where we used the L* bounds for f.
1 1 1
For t > |B|d,y € (—|B|d —t,|B|d 4 t)¢, we have

D8] = 0] [ 1@t =) ]
-t [ st =) el )
<ot [ |l sl

< C’Bﬁt_(d—’_l),
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where we used the L® bounds, the localized support and the cancellation property of f
together with the smoothness of (.

For all the others (y,t), we have Fi(f) is 0, since the supports of f and the dilated
version of ¢ are disjoint.

As a consequence, for A > C|B| ™!, we have

P (Fo(f)) > A) = 0,

and for 0 < A < C|B|™", we have
(P (Fo(f)) > ) < C|B|ai A",

Therefore, we have

Cc|B|™?!
IFeNlireny <C [ wE(F)>Nar<C

2.7 Applications

In this section we show some applications of the strong type estimates in Theorem [2.6.1 and
Proposition We use them to give alternative proofs of the Hardy-Littlewood-Sobolev
inequality, and the Gagliardo-Nirenberg-Sobolev inequality up to the endpoint in the spirit
of the two-step program outlined in the introduction.

Theorem 2.7.1 (HLS inequality). For 1 < p,q < 00,0 < a < d such that

1+1+oz_2
p q d

there exists a constant C' = C(p,q,d) such that, for every f € LP(R%), g e LI(RY),

f(x)g(y)
JATIINT) < .
) r2d |z —y|* dxdy‘ CHfHLP(Rd)HQHLq(Rd)

Proof. Let ¢ € S(R) be such that supp ¥ < [%, 2], fooo 1&2(15)% = 1, and define ¥, ® € S(RY)
by

(&) = P(l€]), D(€) = I€]*D(J€]).
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Let f,g e S(RY). By a frequency localization argument, we have

‘/de |g;_y| ar d‘ / F©m)IE —nl**6(& +n) de dny

. A d
<C / FOamle — nl*=5(¢ + n)d*(r) dedn
R2d x (0,00)

<C / td—aﬂs)z@(!at)g(—f)(t|5r>a—%<|s|t)dﬂ
R4 x (0,00)

<c / 4 By (1), )G () (. 1) dy s |
R4 x (0,00)

By Theorem m property (i), the integral in the last display is bounded by
[t Fa ()G (9) | 1 (1)-
Applying outer Holder’s inequality, Proposition [2:A75] we estimate it in terms of
1492 Fa ()L ) G (9) | ey

which by the strong type estimates in Theorem is bounded by

HfHLp(Rd)HgHLQ(Rd)'

A standard approximation argument yields the result for arbitrary f e LP(R?), g € LI(R).
O

Theorem 2.7.2 (GNS inequality). For 1 < p < d, there exists a constant C = C(p,d)
such that, for every f € WIP(R?),

£l o (may < CUVF Lo (ay:

where p, = ddfpp.

Moreover, there exists a constant C = C(d) such that, for every f € WH4(R%),
1l rmowey < CIV I Laray-
Proof. Let {¢;}?_, be a smooth partition of the unity on the set {3 < [¢| < 2} such that

supp @i < {[&] > 34} 0 {3 < €] < 4}
For 1 € S(R) as above, let ¥; € S(R?) be defined by
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For 1 <p <d, let f,g € S(R?). By a frequency localization argument, we have

Krol=c| [ Feamae +ndsar

A - d
<c| [ f©amae+ i dean
R2d x (0,00) t

d
DU it
<C 2\ /R oy (O T PO ds T

: dt
S Ci; ‘ /Rdx(o,oo) thy, (0:f)(y,t)Gw(9)(y,t) dyT‘.

By Theorem property (i), the integral in the last display is bounded by

d

Z [tFw,(0:f)Gw(g) ”Ll(gl)-
i=1

Applying outer Holder’s inequality, Proposition [2.A5] we estimate it in terms of

d
St @) | g 1) |G (9) ]

i=1
which by the strong type estimates in Theorem is bounded by

d
D M0l o aylgll o ey
=1

The duality between LP(R?) spaces and the density of Schwartz functions in LP(R?) yield
the desired inequality. A standard approximation argument yields the result for arbitrary
fe Whp(RY).

For p = d, we proceed in the same way with f € S(R?) and g € H'(R%) n S(R?), getting

d
[l < Dt (i) oo (o) |G (9) ] ooy

i=1
which by the strong type estimates in Theorem [2.6.1] and by Proposition [2.6.2] is bounded
by

d

2HaifHLd(Rd)HgHHl(Rd)'

i=1
The duality between the spaces BMO(R?Y) and H'(R?) and the density of Schwartz func-
tions in H'(R?) yield the desired inequality. A standard approximation argument yields
the result for arbitrary f e W14(R?).

For p = 1,d > 1, the statement can be classically proved by the Loomis-Whitney

inequality. O
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2.A  Outer L? spaces theory
In this Appendix we review the theory of outer LP spaces in the level of generality discussed
in [DTI5].

Definition 2.A.1 (Outer measure, pre-measure). Let X be a set. An outer measure p
on X is a function from P(X), the power set of X, to [0,0] that satisfies the following
properties.

(1) w(&) = 0.

(2) If E S F for two subsets of X, then u(E) < p(F).

(3) If {E;} is a countable collection of sets in X, then

o]

M( U Ez) < i u(E;).
i=1

i=1

A pre-measure (0,E) on X is defined by a collection € of subsets of X and a function
o from & to [0, 0).

Since £ is implicit in the definition of o, we drop it in the notation (o, ), and we refer
to the pre-measure with the symbol o.

Definition 2.A.2 (Size). Let (X, %) be a measurable space. A size (S,.A) on X is defined
by a collection A of measurable subsets of X and a function S from M(X), the set of
measurable functions on X, to [0,00]A, that satisfies, for every f,g € M(X), for every
A€ A, the following properties.

(1) If |fI <lgl, then S(f)(A) < S(g)(A).
(2) S(Af)(A) = [AS(f)(A) for every A e C.
(8) There ezists a constant C depending only on S but not on f,g, A such that

S(f +9)(A) < C[S(H)(A) + S(g)(A)]-

Since A is implicit in the definition of S, we drop it in the notation (.5,.4), and we refer
to the size with the symbol §.
Now, let (X, X)) be a measurable space, and let £ be a countable collection of measurable
subsets of X such that
X=|JE

Ee&

Let o be a pre-measure defined on £ attaining only strictly positive values, and let p be
the outer measure generated by o as in (2.1.2)). Let (S,.4) be a size on X.
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In particular, let w be a measure on (X, Y), and assume that for all A € ¥
u(A) =0= w(A) =0.

For 0 < r < 00, we can define the following sizes. First, let £°, £ be the sizes defined by,
for every function f € M(X), for every E € £,

(7 (IE) = 118l Lo (x )

i n (2.A.1)
(IE) = o(BE) 1Bl L (xw)-
Next, for 3 defined by R
S = {Ae s u(A) e (0,0)},
let £, ¢" be the sizes defined by, for every function f € M(X), for every A € 3,
(A = (1 Lall oo (x,0)
LX) (2.A.2)

_1
C(IA) = w(A) " 1 1allr x 0)-
For every function f € M(X), we define

[Nl Lo () = sup S(f)(A),
AeA

and the outer L*(.S) space to be the set of functions in M(X) for which this quantity is
finite.
For A > 0, we define the super level measure

W(S(f) > ) = nf{u(A): Ae S, [ fLacl ogg) < AL

For 0 < p < oo, for every function f € M(X), we define
@ d\\ 3
sy = ([ o¥utsh>2F)

1

1Fnem() = (supXR(S(f) = X))

and the outer LP(S), LP*(S) spaces to be the sets of functions in M(X) for which these
quantities are finite, respectively.

We have the following equality between the outer L” spaces associated with the ¢ sizes
and the ¢" ones under some reasonable assumptions.

Lemma 2.A.3. Let (X,X) be a measurable space, and let £ be a countable collection of
measurable subsets of X such that
xX=|JE

Ee€
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Let o be a pre-measure defined on £ attaining only strictly positive values, and let p be the
outer measure generated by o as in . Let w be a measure on (X,X), and assume that
forallAe X

w(A) =0= w(A4) =0.

Let £, 0" be the sizes defined in (2.A.1), (2.A.2). Then, for 0 < p,r < o0, for every function
f e M(X), we have

11 oesy = 171 ogery

Proof. 1t is enough to prove the equality for p = o0. The case 0 < p < o follows by this
particular case and the definition of the outer LP quasi-norm.
Case I: r = 0. For every E € £, we have

u(F) < o(E) < . (2.A.3)
Now, if pu(F) = 0, then w(E) = 0, hence
E)E) = 0 < 1 o g
If w(E) # 0, then E € &, hence

Z2(N(E) = E()E) < ||l o ee

Next, for every A € i there exists a countable collection £4 < £ such that

Ac |J E

FEe&p
hence

(2()(A) < Sup by (NE) < Ifll ey

Therefore, we have

11 oo ey = sup £’ (F)(E) < [ f1l oo ooy = sup €7 (f)(A) < 1 f1] oo oy -
Ee& Aes

Case II: 0 <r <oo. Let E€&. If u(E) =0, then w(FE) = 0, hence
o (F)(E) =0 < [fll oo ery-

If w(E) # 0, then E € f], hence we have, by (2.A.3),

S =

GNE) = (a(B) Y w@|f@))" < (B)" Y w@lf @) <)),

zel rel
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Next, let A € 3. For every £ > 0, there exists a countable collection £4(¢) < & such
that

Ac |J E
Eec€al(e)
WA) < Y o(B) < (1+e)u(A),
Ee€4(e)
hence

1
P

CA) < a7 (X I8l

Ee€a
<uA) swp (@) Y o(2)”
€€ Ee€y

< (L+ )1l oo e

By taking e arbitrarily small, we obtain the desired inequality.
Therefore, we have

[l ooy = sup &g (F)E) < [Nl ooy = sup €7 (F)(A) < ] oo -
Ee& AeX

O

Finally, we recall some important results in a setting satisfying the properties stated
above with the additional assumption £ = A.

Proposition 2.A.4 (Pull back, Proposition 3.2 in [DT15]). For i = 1,2, let (X;,%;) be
a measurable space, (0, A;) be a pre-measure satisfying the properties stated above, and
(Si, A;) be a size. Let ®: X1 — Xy be a measurable map. Assume that for every Eo € A
we have

(27 Er) < Apa(Ep).

Further assume that for each Ey € Ay, there exists Eo € Ay such that for every f € M(X3)
we have

S1(f o ®)(Er) < BS2(f)(E2).

Then we have for every f € M(X3) and 0 < p < 00 and some universal constant C

1f © @llzns,) < AVPBC fll sy
£ © @l ooe(syy < AYPBOf oo ()
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Proposition 2.A.5 (outer Holder’s inequality, Proposition 3.4 in [DT15]). Let (X,X) be
a measurable space. Let (0, A), (01, A1), (02, A2) be three pre-measures on X satisfying
the properties stated above and such that the generated outer measures satisfy pu < u;, for
i=1,2. Let (S, A),(S1,A41), (S2,A2) be three sizes on X such that for any A € A, there
exist Ay € A1, A € Ay such that for all fi, fo € M(X) we have

S(f1f2)(A) < S1(f1)(A1)S2(f2)(A2).

Let p,p1,p2 € (0,0] such that 1/p = 1/p1 + 1/pa. Then, for every fi, fo € M(X),

[ f1follpocs) < 2l fillper sy 12l Lr2 (5,)-

Proposition 2.A.6 (Marcinkiewicz interpolation). Let (X, X)) be a measurable space, (o, A)
be a pre-measure satisfying the properties stated above, and (S, A) be a size. Let (Y,v) be a
measure space. Let 1 < p; <po < 0,1 < q1 # qo < 00 such that p; < q;, fori=1,2. LetT
be a homogeneous quasi-subadditive operator that maps LPL(Y,v) and LP2(Y,v) to the space
M(X) such that

1T pare(s) < Al fll s vy
<

1T a2 o5y < A2l Fll o2 (v

Then we also have
1T a5y < ALALCopr i |l oy
where 0 < 0 < 1 is such that

1 6 1-46 1 6 1-40
+ .

P m p P @ @

Proof. See Appendix B in [Ste70]. It is enough, for a function h on X, to replace the quan-
tity u({h > A}) with the super level measure at level A in the definition of the non-increasing
rearrangement h*. In particular, for a function h: X — R, the function h*: (0,00) — (0, 0)
is defined by

R*(t) = inf{\: p(S(h) > \) < t}.

O

Proposition 2.A.7 (Radon-Nikodym measure differentiation, Proposition 3.6 in [DT15],
Proposition 1.9 in [UralT]). Let (X,w) be a measure space, (o, A) be a pre-measure satisfying
the properties stated above, and (S, A) be a size. Then, if either for all Ae A

H(A) = 0= w(4) = 0,
or for all Ae A
p(A) [ 1£@)] (o) < Clfll )
A
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we have, for every f € L*(S)

[ #@)duta)| < €U lusgs)

where the implicit constant C' is independent of || f[| = (g)-

Proposition 2.A.8. Let (X,w) be a measure space, and (o, A) be a pre-measure satisfying
the properties stated above. For 0 < ry <re < 00, let L1, 072 be the sizes defined in (2.A.1)).

g o

Then, for every 0 < p < 00,11 < r < 1o, there exists a constant C = C(p,r,r1,72) Such
that, for every f e M(X),

Hf”LP(gg) < C(||f||Lp(Z£1) + ||f||LP(Z;2))’
”f”me(ég;) < C(”f”Lp,w(z;l) + HfHLILoo(ZZQ)).

Proof. 1t is enough to prove that there exists a constant ¢ = ¢(r, r1,r2) such that, for every
A >0,
n(ly(f) > eX) < C(u(lG (f) > A) + p(l (F) > A)).
The desired inequalities follow by multiplying the last display by AP and either integrating
or taking the supremum over all levels A > 0 .
Let Fq,E5 € X be two sets witnessing the super level measure at A up to a factor 2
with respect to the sizes £! and /2, respectively. In particular, we have

2u(03 (f) > A) = u(Er), 202 (f) > A) = p(Es).
Now let E' = Ey U E5. Then, for every A € X, we have
(P L) (A) < el (Lo (AP (P )(4)10 <

by logarithmic convexity of the L" spaces, where 0 < 6 < 1 satisfies

1 0 1-0
oo ry
To conclude, we observe that u(E") < u(Eq) + u(Es). O

2.B Geometry of the dyadic upper half space

In this Appendix we prove Lemma and Lemma [2.2.3]
Proof of Lemma[2.2.3. For every dyadic box F € D, we have
E = B(E) x (0,|B(E)]),

where B(E) is its base in RY, and |B(E)| the volume of the base.
Therefore, the desired property follows from the analogous one for the dyadic cubes
B(E1), B(E>). O
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We state and prove an auxiliary result.

Lemma 2.B.1. For every dyadic box E € D and for every collection of pairwise disjoint
dyadic boxes {Ey: n € N} such that E, < FE for every n € N, we have

Y o(E,) < o(E).
neN

Proof. The dyadic cubes in the collection {B(FE,): n € N} are pairwise disjoint and such
that B(E,) < B(F) for every n € N. Therefore, we have

> o(E) = Y B = || B(E.

neN neN neN

B(E)| = o(B).

Proof of Lemma[2.2.3. The inequality
u( U Dn) < ) o(Ey)
neN neN

is trivially satisfied by the definition of .

If the left hand side is infinite, there is nothing else to prove. If it is finite, for every
e > 0, let £(g) € D be an optimal covering of the union of the elements of {D,,: n € N}
witnessing its outer measure up to the multiplicative constant (1 + ). In particular,

| Dn s U E,

neN Ee&(e (2 B 1)
p(UDn) < X oB) <+ou(|JDa) < o
neN Ee&(e) neN

Without loss of generality, we can assume the elements of £(¢) to be pairwise disjoint.
In fact, given two elements of £(g) with nonempty intersection, by Lemma one is
contained in the other, and we can discard the smaller from the collection. The upper
bound on o(FE) for every E € £(¢) by (2.B.1) guarantees that we still end up with a
collection.

Next, we observe that for every E,, there exists an element of £(g) such that E;f n E #
&, hence E,, € E by Lemma Since the elements of £(¢) are pairwise disjoint, the
element F is unique, hence we can split the collection {E,: n € N} into pairwise disjoint
subcollections D(E) = {E,,: ne€ N, E,, € E}, one for each E € £(¢).

By Lemma [2.B.1] we have

YoE)= >, D oE)< D a(BE).

neN Eec&(e) EneD(E) Eec&(e)

Combining this with (2.B.1)) and taking ¢ arbitrarily small give the desired inequality. [



Typos
e The fourth display in the proof of Lemma should be

By = | 10B(E) =R
Ee&

e The statement of Lemma [2.5.2] should be

d
Lemma. Let 1 < g <ro <rqp < o0. Suppose that a is a Trll-atom. Then t*" 9a is in
T, with norm smaller than 1.

e The first line of the pre-last display in the proof of Lemma [2.A.3| should be

[un

@A) <@ (X I Elw)

Ee&p

e The second part of the last display in the statement of Proposition [2.A.6] should be

1 0 1-6
- = — 4+ .
q q1 q2
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Chapter 3

Double iterated outer LP space

In this chapter, we report the article [Fra22].
Marco Fraccaroli. Duality for double iterated outer LP spaces.

in the revised version accepted for forthcoming publication in Studia Mathematica. An
earlier version is available on arXiv

Marco Fraccaroli. Duality for double iterated outer LP spaces. arXiv e-prints, page
arXiv:2104.09472, Apr 2021.

Abstract

We study the double iterated outer LP spaces, namely the outer LP spaces associated with
three exponents and defined on sets endowed with a measure and two outer measures. We
prove that in the case of finite sets, under certain conditions between the outer measures,
the double iterated outer LP spaces are isomorphic to Banach spaces uniformly in the set,
the measure, and the outer measures. We achieve this by showing the expected duality
properties between them. We also provide counterexamples demonstrating that the uni-
formity does not hold in arbitrary settings on finite sets without further assumptions, at
least in a certain range of exponents. We prove the isomorphism to Banach spaces and
the duality properties between the double iterated outer LP spaces also in the upper half
3-space infinite setting described by Uraltsev, going beyond the case of finite sets.

3.1 Introduction

The theory of LP spaces for outer measures, or outer LP spaces, was introduced by Do
and Thiele in [DT15] in the context of time-frequency analysis. It provides a framework to
encode the boundedness of linear and multilinear operators satisfying certain symmetries in
a two-step programme. The programme consists of a version of Hélder’s inequality for outer

81
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LP spaces together with the boundedness of certain embedding maps between classical and
outer LP spaces associated with wave packet decompositions. This scheme of proof turns
out to be applicable not only in time-frequency analysis, see for example [AU20al, [AU20b],
[AU22], [CDPO1S|, [DPDU1S]|, [IDMT17], [Ural6|, [Ural7|, [Warlg|, but in other contexts
too, see for example [DPGTZKI1S8|, [DPO18a], [DT15], [Fra2l], [MT17|, [TTV15].

Although the theory of outer LP spaces comes in a broad generality of settings, the outer
LP spaces used in [DT15| are specifically defined by quasi-norms reminiscent in nature of
iterated Lebesgue norms. In particular, the two Lebesgue norms involved in the definition of
outer LP quasi-norms are associated with the two structures on a set provided by a measure
and an outer measure. We recall that an outer measure p on a set X is a monotone,
subadditive function from P(X), the power set of X, to the extended positive half line,
attaining the value 0 on the empty set. Similarly, in [Ural6] Uraltsev considered outer LP
spaces associated with three structures on a set, namely a measure and two outer measures,
once again in the context of time-frequency analysis and in the spirit of the aforementioned
two-step programme. Outer LP spaces associated with three structures where used in
[AU20al, [AU20b|, [AU22|, [DPDUI1S|, [Ural6], [Ural?], [Warl§].

As a matter of fact, one can define outer LP spaces associated with arbitrary (n + 1)
structures on a set, namely a measure and n outer measures. We refer to these spaces as
iterated outer LP spaces, and we provide a definition in detail. We start recalling the classical
product of LP spaces on a set with a Cartesian product structure. Given a collection of
couples of finite sets with strictly positive weights (X, w;), we define recursively the product
LP quasi-norms for functions on their Cartesian product as follows. For any n € N, let

where, for n = 0, the empty Cartesian product is intended to be {&}. Note that, for
any x € X, a function f on Y defines a function f(-,x) on Y"~1. Given a collection of
exponents p; € (0, 0], we define the classical product L,, quasi-norm of a function f on Y,
where

Ly, = LPr (L2 (.. L)),

Wn—1

by the recursion

1@, = £ @) (3.1.1)
1l = HEC e iom oy (3.1.2)

The theory of outer LP spaces allows for a generalization of this definition to settings
where the underlying set has no Cartesian product structure. For the purpose of this paper,
we provide the definition of the iterated outer LP quasi-norms in the form of a recursion

analogous to that in (3.1.1]), (3.1.2).
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Let X be a finite set together with a collection of outer measures u; on it. To avoid
cumbersome details, we make the harmless assumption that every pu; is finite and strictly
positive on every nonempty element of P(X). In fact, it is reasonable that subsets of X
on which either of the outer measures is 0 or oo should contribute only trivially to the
iterated outer LP spaces on X, and we ignore them altogether. Throughout the paper, we
avoid recalling this assumption, but the reader should always consider it implicitly stated
whenever we refer to outer measures.

Given a collection of exponents p; € (0, 0], we define the iterated outer L,, quasi-norm
of a function f on X, where

Ly =L (= (. 00),

1

by the recursion

1L, = Sg;lf(m)l, (3.1.3)

L(f) = sup pn(A)" =07 f1ally, (3.1.4)
I#ACX

1, = L (3.1.5)

* . A\ .
[ pr AP inf{py, (B): L, (f1lpe) < )\}7] , if pp # 0,
0

where py = 00, and the exponent o0~ ! is intended to be 0. We refer to the space defined by
the quantity in (3.1.5) as the iterated outer LP space Ly, or LL" (657" (... (5})), where we
denote the argument of the supremum in (3.1.4)) as

ot (LB ()(A) = i (A)E DT Ll (3.1.6)
and the infimum in as
(2271 (0 () > A) = inf{pin(B): Ln(fLpe) < AJ. (3.1.7)

In the language of the LP theory for outer measure spaces, the quantity in defines
a size, and that in defines the super level measure of a function f at level A with
respect to the size.

If the outer measure p; is a measure w, then we have, for every p; € (0, 0],

HfHL1 = HfHLpl(XW)v

hence we can begin the recursion in (3.1.3), (3.1.4), (3.1.5) from L;. In fact, the general case
already had this form. The quasi-norm defined by the collections of outer measures p; and
exponents p; is the same one defined by the collections of outer measures [i; and exponents
D;, where ji7 is the counting measure, p; = o0, and [i;+1 = i, Di+1 = p; for every i € N.
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Therefore, without loss of generality, we always assume that p; is a measure w associated
with a finite and strictly positive weight that we denote by w as well, with a slight abuse
of notation. As before, throughout the paper, we avoid recalling this assumption, but the
reader should always consider it implicitly stated whenever we refer to measures.

The classical product IL,, quasi-norms defined in are a special case of the iterated
outer L, ones defined in , with the same collection of exponents and the following
collection of outer measures p;. For any 1 < j < n, we define

and we observe that the set Y™ has a canonical partition Z;, namely
Z; = {Ylj_1 xz:ze Y[}

where the set Y{? x z is intended to be the singleton {z}. For every A € Y™, let

pi(A) = nzlf{z [ Jwi(mi(2)}, (3.1.8)

2€Z j=i

where 7; is the projection in the coordinate in X}, and the infimum is taken over all subsets
Z of Y;" such that A is covered by the elements of Z; associated with Z.

The theory of classical product of LP spaces is well-developed, see for example [BP61].
In the range of exponents p; € [1,00], the quantities defined in are norms, and they
satisfy the expected duality properties. On the other hand, the theory of outer LP spaces is a
theory of quasi-norms, mainly developed in [DT15] towards the real interpolation features
of these quantities like Radon—Nikodym results, Holder’s inequality, and Marcinkiewicz
interpolation, due to the aforementioned two-step programme.

However, as showed in [DT15], the iterated outer LP spaces satisfy some properties
analogous to those of the iterated classical ones. In particular, a one-direction "collapsing
effect" and a version of Holder’s inequality up to a uniform constant, namely

1wy < ClFlIEL, e ooy (3.1.9)

En

up{ 19111, (.0 ] <1} < Clfll gy (3.1.10)

/ !
Lo ()

where, for every 1 <i < n, the exponent p) is the Holder conjugate of p;, satisfying

In [Era21], we studied the opposite inequalities in (3.1.9) and in (3.1.10) in the single

iterated case, namely when n = 2. We proved the equivalence in both cases up to constants
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depending on p; € (1,00) but independent of the measure w, the outer measure y = ug, and
the set X, as long as X is finite. These in turn imply the equivalence of the outer L2 (¢')
quasi-norms to the norms defined by the supremum in . The endpoint cases p; = o©
and pa = 1 exhibit a different behaviour, and we refer to [Fra2l] for more details.

In the present paper, we focus on the analogous opposite inequalities in (3.1.9) and
in (3.1.10) in the double iterated case, namely when n = 3. Already in this case, the
study of the opposite inequalities becomes substantially more difficult due to the interplay
between the subadditivity of the two outer measures and the exponents. We start recalling
the setting. Let X be a finite set, u,v outer measures, and w a measure. Given three
exponents p, g, € (0, 0], we define the double iterated outer LP space LL,(¢1(¢7,)) through
the quasi-norm in , with w1 = w, ue = v, u3 = u, and p; =r, ps = q, p3 = P.

Before stating our main results, we introduce some auxiliary definitions. They depend
on parameters ®, K > 1 that we are going to avoid recalling every time.

Given a subset A of X, we say that a subset B of X is a p-parent set of A (with
parameter ®) if A <€ B and we have

W(B) < du(A). (3.1.11)

A p-parent function B (with parameter ®) is then a monotone function from P(X) to itself,
associating every subset A of X with a p-parent set (with parameter ®) B(A).

Moreover, given a collection £ of subsets of X, we say that a function C from P(X) to
the set of subcollections of pairwise disjoint elements in £ is a p-covering function (with
parameter ® ) if the function B¢ from P(X) to itself defined by

BC(A) = U E7
)

EeC(A

is a p-parent function (with parameter ).
Next, we say that a collection A of pairwise disjoint subsets of X is v-Carathéodory
(with parameter K ) if, for every subset U of X, we have

D vUnA) <Kv(Un ] A) (3.1.12)
AeA AeA

Finally, we define two conditions for the quadruple (X, u,v,C).

Condition 3.1.1 (Canopy). We say that (X, p,v,C) satisfies the canopy condition (with
parameters ®, K) if C is a p-covering function (with parameter ®), and for every v-
Carathéodory collection (with parameter K) A, for every subset D of X disjoint from
Be(Uuea A), the collection AU {D} is still v-Carathéodory (with parameter K ).

Condition 3.1.2 (Crop). We say that (X, p,v,C) satisfies the crop condition (with pa-
rameters @, K) if C is a p-covering function (with parameter ® ), and for every collection
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A in £, there ezists a v-Carathéodory subcollection (with parameter K) D of A such that,
for every subset F' of X disjoint from \Jpep D, we have

where

We are now ready to state our main results.

Theorem 3.1.3. For all ¢,r € (0,00], ®, K > 1, there exist constants C; = C1(q,r,®, K),
Cy = Cy(q,r, @, K) such that the following property holds true.

Let X be a finite set, u, v outer measures, w a measure, and C a p-covering function such
that (X, p, v, C) satisfies the canopy conditz'on. Then, for every function f € LE (€4 (L))

on X, we have
O I N eagery < Il paqencenyy < Coll Fllaer)- (3.1.13)

If ¢ < r or q = 0, the constant C1 does not depend on ®, K.
If ¢ = r, the constant Co does not depend on &, K.

Theorem 3.1.4. For all p,q € (1,0), r € [q,0), ®,K > 1, there exists a constant
C =C(p,q,r,®,K) such that the following property holds true.

Let X be a finite set, p,v outer measures, w a measure, and C a p-covering function
such that (X, u,v,C) satisfies the canopy condition . Then

(i) For every function f € LL,(¢L(¢7))) on X, we have

C N e en ey < sup 1f 9l xw) < CUAN Lr o e - (3.1.14)

g / / =
| |L,’1 GRGH)

ii) For every collection of functions {f,: n € N} < LE(¢L(¢")) on X, we have
14 w

1] Falle @y < C > 1l 22 e e y)- (3.1.15)

neN neN

Forallp,q e (1,0),r € (1,q], ®, K = 1, there exists a constant C = C(p,q,r, P, K) such
that the analogous property holds true for every finite set X, outer measures p,v, measure
w, and p-covering function C such that (X, p,v,C) satisfies the crop condition .

If g = r, the constant C' does not depend on @, K.

The first result describes one instance of the "collapsing effect". When we have two
consecutive outer LP space structures associated with the same exponent, under certain
conditions, the "exterior" one can be disregarded. We recall that, as a consequence of the
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"collapsing effect" in the single iterated case, property (i) of Theorem 1.1 in [Fra21], for all
p,r € (0,0], we have

C U ez < Mz < ClFlle ey,

where the constant C' = C(p,r) does not depend on ®, K, and it is uniform in X, y, v, w.
Hence, the double iterated outer L? spaces are reduced to single iterated ones. In particular,
when p = g = r € (0, 0], we have the full "collapsing effect"

CM S prxwy < M pegenyy < Ol (xwys (3.1.16)

with constant C' = C(r) uniform in X, y, v, w.

The second result yields the sharpness of outer Holder’s inequality. As a consequence,
the iterated outer LE,(¢1(¢)) quasi-norm inherits from the L'(X, w)-pairing a quasi-triangle
inequality up to a constant uniform in the number of the summands, which is stated in the
second property. Therefore, in the prescribed range of exponents, the double iterated outer
LP space is uniformly isomorphic to a Banach space with norm defined by the supremum
in (8.1.14). Moreover, it is the Kothe dual space of the outer Lﬁ/ (e‘,l'(e;’)) space, and we
refer to [Fra2l] for an explanation of the use of the term Ko6the duality in this context.

The main focus of both of the theorems is on the dependence of the constants in ,
, and . A priori, for every fixed finite setting (X, u, v,w) the constants are
finite, but they depend on (X, p,v,w). The theorems state that the constants depend on
(X, p, v,w) only through the parameters ®, K associated with the canopy condition
or the crop condition Moreover, we can exhibit counterexamples showing that, at
least for the exponents p, g, in a certain range, the constants cannot be chosen uniformly
in ®, K. We present the counterexamples in Subsection It might be of interest to
provide conditions weaker than the canopy condition and the crop condition [3.1.2]
that would still give a control on the constants. However, this line of research is beyond
the scope of the paper. We also comment that the range of exponents p, ¢, r interested by
the aforementioned counterexamples points out a substantial difference between the cases
of single iterated and double iterated outer LP spaces. In the former case, there are no
pathological behaviours of the outer LP spaces in the range of exponents (1,0)2. In the
latter case, as we describe in Subsection the range of exponents interested by the
counterexamples contains an open subset of (1,00)3. Finally, we mention the dichotomy
between the cases ¢ > r and ¢ < r in the statement of the two theorems, in particular in view
of the reduction to the single iterated outer LP spaces in the case ¢ = r. In Theorem
the dichotomy is in part explained by the counterexamples we exhibit in Subsection [3.3.4
It would be interesting to clarify whether in Theorem [3.1.4] the dichotomy is an intrinsic
feature of the problem or it is just an artefact of the argument used in the proof. If the
former case were true, it would be interesting to clarify how the dichotomy relates to the
conditions guaranteeing a control on the constants.
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Before moving on, we comment on the definition of v-Carathéodory collections and the
conditions we stated before the results. We start observing that the Carathéodory measur-
ability test with respect to an outer measure u* corresponds to checking that the couple
{E, E¢} is p*-Carathéodory with parameter 1. In particular, when v is a measure, every
collection of pairwise disjoint measurable subsets of X is v-Carathéodory with parameter
K = 1. This fact implies that, in the single iterated case, we can always deal with v-
Carathéodory collections, which come with desirable properties. In particular, for every
set X, outer measure p, measure w, the quadruple (X, u,w,Id) satisfies both the canopy
condition and the crop condition with parameters ® = K = 1.

The extension of the results stated in Theorem [B.1.3] and Theorem B.1.4] to infinite
settings under reasonable assumptions should not be a surprise. However, this level of
generality is beyond the scope of the paper. We concern ourselves only with two specific
infinite settings, namely the one described by Uraltsev in [Ural6] and a slight variation of
it, both of them defined on the upper half 3-space. Although not equivalent, these settings
exhibit similar geometric properties. We focus mainly on the latter, which allows for a
better exploitation of them.

We briefly recall the setting that we describe in detail in Subsection [3:4.3] Let X be the
upper half 3-space R x (0,00) xR, and w the measure induced on it by the Lebesgue measure
dydtdn on R3. On X, we define two outer measures by means of the following covering
construction. Given a collection S of subsets of X and a pre-measure o: S — (0,0), we
define the outer measure p: P(X) — [0,00] on an arbitrary subset A of X by

=inf{ )] 0(5): 8’8, A< | ] S} (3.1.17)
Ses’ Ses’

First, for any dyadic interval I < R, let D(I) be the dyadic strip given by the Cartesian
product between I, the interval (0,|I|] and R. Let D be the collection of all the dyadic
strips, and, for every D(I) € D, let o be the length of the base I.

Second, for any couple of dyadic intervals I, I € R with inverse lengths, let T'(I, ) ) be
the dyadic tree given by the union of the Cartesian products between a dyadic interval
J < I, the interval (0, ]J[], and the dyadic interval J 2 I with inverse length of J. Let T
be the collection of all the dyadic trees, and, for every T'(1, ] ) € T, let T be the length of
the base 1.

Now, let i, v be the outer measures on X associated with (D, o), (T, 7) respectively as
in . As we will see in Appendix for every dyadic strip D in D and every dyadic
tree T in T, we have

u(D) = (D), V(T) = 7(T).

We define the double iterated outer LP space Lk, (¢%(¢)) in the upper half 3-space setting
through the quasi-norm in for w-measurable functions. We use p; = w, p2 = v,
p3 = p, and we restrict the supremum in I; to the w-measurable sets, that in Iy to the
dyadic trees in 7, and that in I3 to the dyadic strips in D.
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In this setting, we have both the "collapsing effect" and the sharpness of outer Holder’s
inequality described in the finite setting in the previous theorems.

Theorem 3.1.5. Let (X, p,v,w) be the dyadic upper half 3-space setting just described,
p,q,m € (0,00]. There exists a constant C = C(p,q,r) such that the following properties
hold true.

(i) For all q,r € (0,00), for every function f € LL((L(CL)) on X, we have
C U N esgery < I Neaescenyy < Ol Lagery- (3.1.18)
(i) For all p,q,r € (1,0), for every function f € LL(¢L(L],)) on X, we have

C N s ey < sup 19l (xw) < CNF N Lz e er)y- (3.1.19)

g / / =
| ”LZ g e

(iii) For all p,q,r € (1,00), for every collection of functions {fn: n € N} = L}, (¢L(5)) on
X, we have

122 Foll sy < € 2 Ml uzeneny- (3.1.20)

neN neN

The result analogous to Theorem holds true even in the upper half 3-space setting
with arbitrary strips and trees originally considered in [Ural6] that we describe in detail in
Subsection B.5.3

We conclude pointing out that the outer LP spaces used by Uraltsev are different from
those defined in (3.1.5)). In [Ural6], the innermost size, namely the quantity in for
n = 2, is not defined by a single Lebesgue norm with respect to the measure w, but by a
sum of an L? and an L® norms, making it more complicated to treat. The first step in the
study of these spaces would be to extend the results stated in Theorem [3.1.5] to the case
r = o0. This is likely to be achieved exploiting the geometric properties of the strips and
trees in the upper half 3-space in the same fashion of the boxes in the upper half space in
[Fra21]. The second step, the one requiring new considerations, would be to address the
issue of the variable exponent Lebesgue norm.

Guide to the paper

In Section [3:2] we review some preliminaries about outer LP quasi-norms and, more specifi-
cally, single iterated outer L? ones from [Fra21]. In Section we prove T heorem and
Theorem Moreover, at least in a certain range of exponents p, ¢, € (0, 0], we present
the counterexamples showing that the constants appearing in the statements of these the-
orems are not independent of the setting (X, u, v,w), as discussed in the Introduction. In
Section [3.4] we describe some settings in which we define a pu-covering function satisfying
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the canopy condition and the crop condition In Section [3.5] we prove Theo-
rem [3.1.5 in the dyadic upper half 3-space setting reducing the problem to an equivalent
one in a finite setting via an approximation argument. The proof relies on the geometric
properties of the outer measures and the approximation properties of functions in iterated
outer LP spaces that we will prove in Appendix [3:A] and Appendix [3.B] respectively.

3.2 Preliminaries

In this section, we make some observations about the outer LP quasi-norms. Moreover, we
review the decomposition result for functions in a single iterated outer L? space, which is the
main ingredient in proving the results corresponding to Theorem [3.1.3] and Theorem [3.1.4]
in [Era2i]. It provides a model for the decomposition in the case of double iterated outer
LP spaces that we perform in Section [3.3]

First, for every p € (0,00), we observe that we can replace the integral defining the outer
LP quasi-norm in by a discrete version of it. For every ¥ > 1, we have

11 5~ D, UPR(S(F) > UF) ~up 33U D u(S(f) > B, (3.2.1)

keZ keZ =k

where S is a size of the form £, or ¢}(¢’,), and more generally an arbitrary size in the
definition in [DT15]. The equivalences in follow by the monotonicity of the super
level measure, Fubini and the bounds on the geometric series.

Next, let X be a finite set, u, v outer measures, and w a measure. Since , v are finite and
strictly positive on every nonempty subset of X, by outer Hélder’s inequality, Proposition
3.4 in [DT15], we have

LY(6,) < L7 (6),

LREE) © L) 0 LE (). 322

Finally, we recall two results for single iterated outer LP spaces already appearing,
explicitly or implicitly stated, in Proposition 2.1 in [Fra2l], with their proofs.

Lemma 3.2.1. For all v € (0,00), N = 1, there exist constants C = C(r,N), ¢ = ¢(N)
such that the following property holds true.
Let X be a set, v an outer measure, and w a measure. Let f € LY (l])) be a function on
X, let k € Z satisfy
HfHLf,O(EL) € (2k7 2k+1]7 (3'2'3)

and let A be a subset of X such that
1F1AN e (x> 25770 (A). (3.2.4)

Then we have
v(A) < Cu(L(f) > e28). (3.2.5)



3.2. PRELIMINARIES 91

Proof. Let € > 0. Let V(c2¥ ¢) be an optimal set associated with the super level measure
v(€,(f) > c2¥) up to the multiplicative constant (1 + ¢), namely

||f1V(c2k,s)CHL30(£Z)) < 2, (3.2.6)
(L+ e (lL(f) > e2¥) = v(V (2", ), (3.2.7)

where ¢ will be fixed later. We have

V(V(C2k7€)) = 27(k+1)r||f1V c2k e 1A||2T(X,w)

> 2 (1l ey — 1wt o)

92— (k+1)r (2(k N)r s ZkT)l/(A),

\Y

where we used the monotonicity of v and (3.2.3) in the first inequality, the r-orthogonality
of the classical L™ quasi-norms of functions supported on disjoint sets in the second, (3.2.4))
and (3.2.6)) in the third. By choosing

¢ —9-N-1
and taking e arbitrarily small, the previous chain of inequalities together with (3.2.7) yields
the desired inequality in (3.2.5)). O

Proposition 3.2.2. For all q,r € (0,00), there exist constants C = C(q,r), ¢ = c(q,T)
such that the following decomposition properties hold true.

Let X be a finite set, v an outer measure, w a measure. For every function f € LL((")
on X, there exists a collection {U;: j € Z} of pairwise disjoint subsets of X such that, if we

set
v, = Ju,
=3

then, for every j € Z, we have
o (flve, )U;) > 27, when U; # @, (3.2.8)
1710l ey < 2 (3:29)
v(E(f) > 2) < V), (3.2.10)
v(U;) < Cu(l,(f) > c2%). (3.2.11)

In particular, we have
1 1S oy ~ra 23 2 (UG) ~rg D129 ) v (T0). (3.2.12)
JEZL JEZL =5

Proof. The first four statements and their proof appeared already in Proposition 2.1 in

[Fra21]. The equivalences in (3.2.12)) follow by - m the definition of V7, m,

Fubini, and the bounds for the geometrlc series.
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Throughout the paper, we use the observations made in this section without necessarily
further referring to them. For example, the reader should always have in mind the equiv-
alences in whenever we consider an outer LP quasi-norm, and the list of properties
(13.2.8)—(3.2.12)) whenever we perform such a decomposition.

3.3 Equivalence with norms

In this section, we study the equivalence of double iterated outer LP quasi-norms with
norms uniformly in the finite setting.

First, for all ¢,r € (0,0), we study the g-orthogonality behaviour of the outer LZ(¢")
quasi-norms of functions supported on disjoint sets. Accordingly, we show decomposition
results for functions in the double iterated outer LP space with respect to a size of the form
3,(¢7,). We use them to prove Theorem [3.1.3]

After that, for all p,q,r € (1,00), we produce a function g for which we have a good
lower bound on the L'(X,w)-pairing with f and a good upper bound on the Lﬁ/ (Egl ()
quasi-norm of g. We use it to prove Theorem [3.1.4]

Finally, we conclude the section with the promised class of counterexamples.

3.3.1 g-orthogonality of the L4(¢!) quasi-norm

We start with a result about the sub- and g-superorthogonality of the LZ(¢")) quasi-norms
of functions supported on arbitrary disjoint sets according to the case distinction ¢ > r
or ¢ < r. We present counterexamples to the validity of the inequality in the opposite
directions in both cases ¢ > r or ¢ < r in Subsection

Lemma 3.3.1. For all g € (0,00), r € (0,], there exists a constant C = C(q,r) such that
the following properties hold true.

Let X be a finite set, v an outer measure, w a measure. Let A be a collection of pairwise
disjoint subsets of X. Then, for every function f on X, we have

27 1alfe ) < CllF LBl forg=r, (3.3.1)

Ae A

HleHLq er C Z Hf]‘AHLq fr)’ fO'I" q < r, (332)
AeA

where B = |44 A-

Proof. Without loss of generality, we assume ¢ = 1. In fact, for 2 € (0, 0], we have

1Ly ey = 1720 e
Case I: ¢ =1,r = 0. We have
v(lP(f) >N =v({z e X: |f(z)| > A}). (3.3.3)
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Together with the subadditivity of v, this yields
(U3 (f1p) > X) < D) v(EZ(f1a) > N).
AeA

By integrating in (0,00) on both sides, we obtain the desired inequality in (3.3.2]).
Case II: ¢ = 1, r € (0,1]. We start with the following observation. Let £ be a collection
of pairwise disjoint nonempty subsets of X such that, for every E € £, we have

CL((E) € (27,2741]. (3.3.4)

Together with the r-orthogonality of the classical L™ quasi-norms of functions supported
on disjoint sets and the subadditivity of v, this yields

LHUE) > @B Y 2mm)

Ee& Ee& Ee&

1
T

> 97, (3.3.5)

Next, we have

v(|JE) D an@vE) <2 (| E) Y vE)

Eeg Ee& Eeg et
<2 B Y wm)
EecE Eeg
— r 1
<20(|J E) " Y elr )’
Ee€ Ee&
<2,(NH(J B).
Ee&

where we used the upper bound on £,(f)(E) in for every E € £ in the first inequality,
the subadditivity of v and r < 1 in the second, the lower bound on ¢,(f)(E) in for
every I € £ in the third, and the r-orthogonality of the classical L" quasi-norms of functions
supported on disjoint sets in the fourth. The previous chain of inequalities yields

M EwE) <2050 (| B B). (3.3.6)

Ee& Ee& Ee&

Moreover, let j € Z and, for every k € Z, k < j, let & be a collection of pairwise disjoint
subsets of X such that, for every nonempty F € &, we have

(L(F)(E) € (28,241,

and, for every nonempty | J Fes, FE, we have

N B)e @27

Ee&y
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By (3.3.6) applied twice, we have

PDNAGA RS WAGIAGRIEUD.

k<j E€& k<j Ee&y, Ee&y

<a(n(J Uy U

k<j E€& k<j Ee&

(3.3.7)

where the sums run only over the nonempty subsets E and | ges, E-

Now, let {A;: j € Z}, {B;: j € Z} be the collections associated with the decomposition
in Proposition of the functions f14, f1pg, respectively. By (3.3.5) and (3.3.7]), we can
pass from the collection {A;: A € A, j € Z} of pairwise disjoint subsets of X to a collection
E ={E;: l € Z} of pairwise disjoint subsets of X with strictly fewer elements such that

o (F)(E) e (2,211, when E; # @, (3.3.8)
D) 29u(4)) < C ) 2w(E). (3.3.9)
AeA je leZ

By the monotonicity of v, we have

syl < 2B A (| B <2ru(E)
k=1—-1

1
”f El“(Uk>I—1

Together with (3.3.8)), this yields

D 1 EnB i (xw) = 11 BaU s, Bl (x )
k>1—1
3.3.10
~ 1180y = W LB U, B0 o () (3.3.10)

> 2 u(E)).

Therefore, we have

2 20(E) < 320D S g (xw)

€7, leZ k=l-1
< CZ ok(1-7) Z 1 1EnB T (x 0)
keZ I<k+1
<C Z 2F1="))| 1, 7 (x )
keZ
<O 2u(By),
keZ

where we used (3.3.10)) in the first inequality, » < 1 in the second, and the r-orthogonality
of the classical L™ quasi-norms of functions supported on disjoint sets in the third. Together



3.3. EQUIVALENCE WITH NORMS 95

with (3.2.12)) for the collections {A;: j € Z}, {Bj: j € Z}, and (3.3.9)), the previous chain of
inequalities yields the desired inequality in .
Case III: ¢ =1, re [1,0). Let A;, B; be deﬁned as before. We have

2320u(By) < D 20| £ (x )

JEZ jJEZ
< 3 2 2PN Lages N (x)
Ae A keZ jeZ
< 20 2 T Y e iy + 20 2T s [ (x)
Ae A keZ i=k j<k
<O Y @ f1a Gy + 2 202 (A A B)))
Ae A keZ j<k‘
<C Z 2 (le/(Ak) + Z 2ju(Ak))
Ae A kel j<k

where we used the r-orthogonality of the classical L™ quasi-norms for functions with disjoint
supports in the second and in the fourth inequality, and r > 1 in the third. Together with
(3-2.12) for the collections {A;: j € Z}, {B;: j € Z}, the previous chain of inequalities yields
the desired inequality in (|3.3.2]). O

We continue with a result about the full g-orthogonality of the Lf(¢!)) quasi-norms of
functions supported on disjoint sets forming a v-Carathéodory collection.

Lemma 3.3.2. Forallq e (0,00), r € (0,0], K > 1, there exist constants C; = C1(q,r, K),
Cy = Cs(q, 1, K) such that the following property holds true.

Let X be a set, v an outer measure, w a measure. Let A be a v-Carathéodory collection
of pairwise disjoint subsets of X. Then, for every function f on X, we have

Cr 1B g ) < o If1aly ey < Collf 18T 4 (3.3.11)
AcA

where B = | 4 A-

Proof. As before, without loss of generality, we assume ¢ = 1.
Expanding the definition of the outer L. (")) quasi-norms in (3.3.11)), we have

o0
115l ) = /0 V(0 (f15) > N dA,
Sl e / V(E(F1a) > A)dA.
Ae A

AeA
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To show the desired inequalities, it is enough to prove that there exist constants ¢ = ¢(r, K),
C = C(r, K) such that, for every A\ > 0, we have

V(UL (flp) > eX) < D vl (fla) > A) < Cu(€(f1p) > N). (3.3.12)
AeA

By integrating in (0,00) on both sides, we obtain the desired inequalities in (3.3.11)).
Case I: r = 0. By the subadditivity of v and the v-Carathéodory condition (3.1.12)),
we have

v({re B: f(x) > A\}) < ) v({ze A: f(z) > A})
AcA
< Kv({x e B: f(x) > A}).

Together with (3.3.3), this yields the desired inequalities in (3.3.12).

Case II: r € (0,00). We start with the first inequality in (3.3.12). Let ¢ > 0. For
every A € A, let V(A, \,e) be an optimal set associated with the super level measure
v(€,(f14) > A) up to the multiplicative constant (1 + ¢), namely

1f1alvane)ellim@r) < A (3.3.13)
(L4 ), (fla) > N) = v(V(A, )\ ¢e)), (3.3.14)

and set
V=[] V(4A\e).
AcA

For every U < X, we have

(L (F1B1lve) )" < v(@) 7 D I 1alvapey ol (xw
AeA
<vU)™! 2 AN'v(U n A)
AcA
< KM\,

where we used the r-orthogonality of the classical L™ quasi-norms of functions with disjoint
support in the first inequality, (3.3.13]) in the second, and the v-Carathéodory condition
in the third. Together with the subadditivity of v and , the previous chain
of inequalities yields

v(lL(flp) > KY"A) < (1+¢) D vl (f1a) > A).
AeA

By taking e arbitrarily small, we obtain the desired first inequality in (3.3.12)).
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We turn to the second inequality in (3.3.12). Let ¢ > 0. Let V(A,€) be an optimal set
associated with the super level measure v(¢/,(f1g) > A) up to the multiplicative constant
(1 + ¢), namely

||f1V(>\,a)CHLgc(gL) <A, (3.3.15)
(L+e)v(l,(f1g) > AN) = v(V()e)). (3.3.16)

For every U < X, we have

(6L (fLaly (o))" < v(U) M LBlv e lullr (xw) < A

where we used the monotonicity of the classical L™ quasi-norms in the first inequality, and

(3.3.15)) in the second. Together with the v-Carathéodory condition (3.1.12)) and (3.3.16)),

the previous chain of inequalities yields

DMl (f1a) > N) < > v(V(Ahe) n A) < (1+e)Kv(l(f1p) > A).
AeA AeA

By taking e arbitrarily small, we obtain the desired second inequality in (3.3.12)). O

3.3.2 Decomposition for double iterated outer L” spaces.

We start with the result corresponding to Lemma [3.2.1] in the case of sizes given by single
iterated outer LP quasi-norms. The proof relies on the g-suborthogonality of the L (¢")
quasi-norms of functions with disjoint supports as stated in or in the second inequal-
ity in . Therefore, according to the relation between the exponents q,r, we allow
the constants to depend on the parameter associated with the v-Carathéodory collection
formed by the disjoint sets.

Lemma 3.3.3. For all ¢ € (0,0), r € (0,0], K > 1, N > 1, there exist constants
C=0C(q,r,K,N), ¢ =c(q,r, K, N) such that the following property holds true.

Let X be a set, u,v outer measures, and w a measure. Let f € L;f(ﬁ?,(éfu)) be a function
on X, let k € Z satisfy

£l oo e ey € (27,2541, (3.3.17)
and let A be a v-Carathéodory collection of subsets of X such that, for every A€ A,
1 1alFg ) > 257 00(A). (3.3.18)
Then we have
S (A) < Culea)(f) > 2. (3.3.19)
AeA

If ¢ = r and X is finite, the constants C,c do not depend on K.
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Proof. Case I: arbitrary ¢,r. Let ¢ > 0. Let F(c2¥,¢) be an optimal set associated with
the super level measure (€% (¢7)(f) > ¢2¥) up to the multiplicative constant (1+¢), namely

”le(CQk,e)CHLch(gg(gm) < 2k, (3.3.20)
(1 + (E(E)(f) > ) = p(P(e2¥, ), (3:3.21)

where ¢ will be fixed later. For B = | 4 A, we have

p(F(c2k,e)) = 27(k+1)q||f1F(02k,5)1BH%Z(ZI,)
> 2~ (k+1a Z Hle(czk,a)lAH%Z(e;)

AeA

> C27 "N (CRM Ll pogery — 1 Lo o)z ger )
AeA

> 027 N (R T2R N — oMy 4),
AeA

where we used the monotonicity of p and in the first inequality, Lemma m
applied to the v-Carathéodory collection A in the second, the quasi-triangle inequality for
the outer LP quasi-norm of two summands in the third, and and in the
fourth. By choosing

c = (2N+1CA)_1,

and taking € arbitrarily small, the previous chain of inequalities together with yields
the desired inequality in (3.3.19)).

Case II: ¢ > r. We use from Lemma applied to every arbitrary collection
A of pairwise disjoint subsets of X in place of Lemma [3.3.2] O

We are now ready to state and prove a series of decomposition results for functions in the
outer LP space with respect to a size of the form ¢ (¢"). Although the statements, as well
as the proofs, are similar, we provide them separately in order to highlight the differences.
The proofs rely on the selection of disjoint subsets where the size achieves the levels ¥*,
for a certain W > 1. The key ingredient in order to perform such a selection exhaustively
at each step is the g-suborthogonality of the L (")) quasi-norms of functions supported on
certain disjoint sets. Therefore, according to the relation between the exponents ¢, r, we
require the canopy condition and we allow the constants to depend on the parameters
associated with it.

We start with a decomposition result in the full range of exponents under the assumption
of the canopy condition on the setting.

Proposition 3.3.4. Forallp,q,r € (0,0), ®, K > 1, there exist constants C = C(p,q,r, ®, K),
¢ =c(p,q,r,®, K) such that the following property holds true.
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Let X be a finite set, u,v outer measures, w a measure, and C a p-covering function
such that (X, p,v,C) satisfies the canopy condition|3.1.1. For every function f € LL,(¢L(¢")))
on X, there exists a collection {Ey: k € Z} of pairwise disjoint subsets of X such that, if

we set
Fy, = Be( U E),

=k

then, for every k € Z, we have

) (fLre, ) (EBr) > 2, when Ey, # &, (3.3.22)
1 Ee N o e eryy < 2, (3.3.23)
u(E () (f) > 2%) < u(Fp), (3.3.24)
u(Ex) < Cp(y(en)(f) > 2b). (3.3.25)
In particular, we have
Hf”iﬁ(fﬁ(@g)) ~p,q,r,®,K Z 2kpN(Ek) ~p,q,r,®,K Z 2kp Z N(El)- (3.3.26)

keZ keZ =k

Proof. By (8.2.2), we have f e LY (£((,)). We define the collection {Ey: k € Z} by a
backward recursion on k € Z. For k large enough such that

k
1A 2 qen ey < 25

we set Ej to be empty. Now, we fix k£ and assume to have selected E; for every [ > k. In
particular, Fyq is already well-defined. If there exists no subset A of X disjoint from Fjq
such that

) (F)(A) > 28, (3.3.27)

then we set Fj to be empty, and proceed the recursion with k — 1.

If there exists a subset A of X disjoint from Fj 1 satisfying , we define an
auxiliary v-Carathéodory collection {E}, ,,: n € N} of subsets of X by a forward recursion
on n € Ni. The existence of A provides the starting point Fj; for the recursion. Now,
we fix n, assume to have selected Ej, ,, for every m € N,m < n forming a v-Carathéodory
collection, and set

Frin—1 = Frs1 0 Be( U Eim).

m<n
If there exists a subset A of X disjoint from F}, ,,—; satisfying (3.3.27)), then we choose such a

set A to be Ej,,. By the canopy condition 3.1.1} we have that the collection {Ej ,: m < n}
is still v-Carathéodory. If no A satisfying (3.3.27) exists, we set N to be {1,...,n — 1},

stop the forward recursion, set
Ej, = U Ek n,

neNy
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and proceed the backward recursion with £ — 1.

By construction, we have and for every k € Z. By construction and
Lemma applied to the v-Carathéodory collection {E}, ,,: n € Ny}, we have for
every nonempty Fi. To prove , we observe that for every k such that 2% is greater
than the L7 (€}(¢],)) quasi-norm of f, the statement is true. For every other k, the proof
follows by construction and Lemma [3.3.3

The equivalences in ([3.3.26) follow by (3.3.24)), the definition of Fj, (3.3.25]), Fubini,

and the bounds for the geometric series. O

Under the assumption g > r on the exponents, we can drop the assumption of the canopy
condition on the setting. Moreover, for every function f, the collection {Ejy: k € Z}
produced by the decomposition forms a partition of the support of f.

Proposition 3.3.5. For all p,q € (0,0), r € (0,q], there exist constants C = C(p,q,r),
¢ = c(p,q,r) such that the following property holds true.

Let X be a finite set, p,v outer measures, w a measure. For every function f €
LE(65(er)) on X, there exists a collection {Ey: k € Z} of pairwise disjoint subsets of X
forming a partition of the support of f such that, if we set

ﬂzUﬂ

=k

then we have the same properties stated in (3.3.22))—(3.3.20]).

Proof. The argument is analogous to that in the previous proof. The only difference is in
the definition of Ej, for which we do not need a second forward recursion.

In fact, we fix k and assume to have selected E; for every [ > k. In particular, Fjq is
already well-defined. We set & to be the collection of nonempty subsets of X disjoint from
Fy. 1 satisfying . If & is empty, we set Ej to be empty, and proceed the recursion
with & — 1. If & is not empty, we choose a subcollection & of & satisfying the following
conditions. First, the elements of & are pairwise disjoint. Moreover, every element of &
intersects at least one element of £,. We can fulfil these conditions in finitely many steps,
due to the finiteness of X. In fact, if there exists an element of & pairwise disjoint from
every element of &, we add it to 5’ Then, we set Ek. to be the union of the subsets of X
in &, so that the subset Fj, satlsﬁes the property in (3.3.23) by construction. By (]E in
Lemma and the subadditivity of v, the subset Ek batlsﬁes the property in @ .

Due to the definition of FJ, the collection {E}: k € Z} forms a partition of the support
of f. O

In fact, under the assumption of the canopy condition [3.1.1on the setting, we can obtain
a slightly different decomposition result improving that in Proposition in the full range
of exponents. The refinement we obtain is that we produce a partition of the support of
the function f in terms of two v-Carathéodory collections {E,i kelZ}, {Eg ke Z}. These
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collections are associated with {E}: k € Z}, the collection of pairwise disjoint subsets of
X we define by backward recursion according to the values of the size ¢(¢")), and the
collections are involved in an equivalence analogous to (3.3.26). The improvement over
Proposition is clarified by the following observations. First, the collection {E}: k € Z}
in Proposition [3:3:4] is a v-Carathéodory collection, but in general it is not a partition of
the support of the function f. Next, the collection {Fi\Fji1: k € Z} in Proposition m
is a partition of the support of the function f, but in general it is not a v-Carathéodory
collection. Obtaining a partition of the support of the function f in terms of v-Carathéodory
collections is important in order to prove Theorem The minor price we have to pay
to obtain the refinement described before is to change the levels from {2F: k € Z} to
{UF: ke Z}, for a certain ¥ > 1 depending on the exponents and the parameters.

Proposition 3.3.6. For allp,q,r € (0,00), ®, K > 1, there ezist constants C = C(p,q,r,®, K),
c=c(p,qr,® K), UV =U(D,p) such that the following property holds true.

Let X be a set, p, v outer measures, w a measure, and C a p-covering function such that
(X, u,v,C) satisfies the canopy condition |3.1.1. For every function f € L, ((L(C1)) on X,
there exists a collection {Ey: k € Z} of pairwise disjoint subsets of X such that, if we set

Fy = Be(Be(Fry1 v Ey)),

then we have the same properties stated in (3.3.22)) (3.3.25) with 2% replaced by W*.
In particular, the v-Carathéodory collections {E}: k € Z},{E?: k € Z} defined by

E} = Be(Fig1 U Ep)\Figr, E} = F\Be(Fi1 U Ey), (3.3.28)

form a partition of the support of f, and we have

HfHII)/fL(Zg(fL)) ~p,q,r,®, K Z \Ilkp,u(Ek)
keZ

~parei O VP (u(EL) + p(ER)).
keZ

(3.3.29)

Proof. The argument is analogous to that in the proof of Proposition [3:3.4] The only
difference is that we replace the levels 2F with the levels UF, where

3
U =Pr,
In fact, we define Ej, by a double recursion as before, and Ei, Ez as in (3.3.28). Due

to their definition, the collections {E,% ke 7}, {E’,% k € Z} are v-Carathéodory and they
form a partition of the support of f.
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We turn now to the proof of the desired equivalences in (3.3.29)). By the properties
corresponding to (3.3.25) and (3.3.24)) in this setting, and the definition of F}, we have

D U (ER) < C Y W U(EL(E)(f) > et

keZ keZ
p
< Ol Nzg e

<O Y U u(E(e)(f) > v)

keZ
keZ l>k

Moreover, by (3.3.28)), C being a u-covering function, and the definition of ¥, we have

DTN (B + p(ER)) < C YW YN 92070

keZ =k keZ =k j=l

<C Y U U R u(E

keZ j=k

<C Y)Y I (E))

keZ j>k

< C ) WPu(E)).

JEZ

We are now ready to prove Theorem [3.1.3]

Proof of Theorem[3.1.3 The case ¢ = oo follows by definition. Therefore, without loss of
generality, we assume ¢ = 1.

Case I: arbitrary r € (0,0]. For a function f € L}L(fi(ﬁg)), let {Ey: k € Z}, {E,i ke
7}, {E,% k € Z} be the collections of pairwise disjoint subsets of X as in Proposition
By , the property corresponding to , and Lemma we have

Il ey < © DB < C Y B ey < CIY. Feln e

kEZ keZ keZ
<ClfllLyer)-

Moreover, by the quasi-triangle inequality for the outer LP quasi-norm of two summands,
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Lemma the property corresponding to (3.3.23]), and (3.3.29)), we have

11l 3oy < CUIY, Pl + 1 Mpllryer)
keZ keZ

< C(EHJqEéHL},(QJ) + Z”flﬁzHL},(E;))
keZ keZ

<C Z vk (,U(Eli) + ,U(El%))
< Cllfll e eny-

Case II: ¢ > r. For a function f € Li(f},(ﬁg)), let {Ey: k € Z} be the collection of
pairwise disjoint subsets of X as in Proposition [3:3:5] By the properties corresponding to

(3.3.26) and (3.3.22)), and (3.3.1)) in Lemma we have

11|z e ery) < C Y 2"u(Ey) < C Y Bl ey < CIY, Fleli e
keZ keZ keZ

< Clfllpyery-

Case III: ¢ < r. For a function f € L, (€, (£)), let {Ay: k € Z} be the collection of
optimal sets associated with the super level measures (€L (¢7)(f) > 2¥), namely

HflAiHLff(é}J(ﬂg)) <2, (3.3.30)
p(GE)(F) > 28) = p(Ag). (3.3.31)

By (3.3.2) in Lemma (3.3.30), the monotonicity of x, and (3.3.31]), we have

112z ery < C DM ap i lznien) < C D025 u(AR\AR) < C ) 25 pu(Ay)
keZ keZ keZ

< Ol e eny)-

3.3.3 Dualizing function candidate

We start recalling the setting. Let p,q,r € (1,0), ®, K > 1. Let X be a finite set, p,v
outer measures, w a measure, and C a p-covering function. For ¢ < r, we assume (X, u, v,C)
to satisfy the canopy condition m For ¢ > r, we assume (X, i, v,C) to satisfy the crop
condition B.1.2

When ¢ = r, the double iterated outer LP quasi-norm is isomorphic to a single iterated
one, and the results stated in Theorem correspond to properties (i), (i7i) of Theorem
1.1 in [Fra21].
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When ¢ # r, for a function f € LI, (¢2(¢1)) on X, we provide the candidate dualizing
function g on X. We distinguish two cases.

Case 1: q > r. Let {Ey: k € Z} be the collection of pairwise disjoint subsets of X
associated with the function f and the size ¢%(¢")) as in Proposition m

Case 2: g < r. Let {Ey: k € Z} be the collection of pairwise disjoint subsets of X
associated with the function f and the size ¢%(¢")) as in Proposition m

In both cases, let {Uj'»‘“': Jj € Z} be the collection of pairwise disjoint subsets of Ej
associated with the function f1g, and the size £, as in Proposition [3.2.2 We define

Frj(@) =f(@)1ye (@),
fol@) = frj(@) = f(z) )] Lk (2)-

JEZ JEZ

When q > r, let

logy K J
r )

M=2+ {
where |z] is the largest integer smaller than or equal to x. For
Ff ={F e &: L(fry)(F) <27 M},

let Qf be its v-Carathéodory subcollection as in the crop condition and set

uf=uh |J G

Gegj’.C
We set N
W _ U]l-c, for ¢ > r,
I Uk forg<r
i q<r.

and we define
Gk (T) :f(fﬁ)r_llek (z),
gr(x) = Z 2/ gy () = fz)! Z Qj(q_r)lwf (2),

JEL JEZ (3.3.32)
glz) = Z k=g (2) = f(x) " Z ok(p—q) Z 2@ ().
keZ keZ jez !

Lemma 3.3.7. Let p,q,r € (1,0), q # r, &, K > 1. There exists a constant ¢ = c(r, K)
such that, for every function f € L (¢L(¢1)) on X, we have

”flg,jlelVHLl(XW) = CQjTV(Uf)~ (3.3.33)
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Proof. Case I: ¢ > r. We have

’|f1:,j1W]k||Ll(x,w) = ||f;§,j||L1(X,w) - Z ||flz,j1G||L1(X,w)
Gegj’.c
> 2my(UF) — > 20 Mry(UF A @)
Geg;.c
> 2y(UF) — K20~y (Uk)
= cQj’"V(Uf),

where we used (3.2.8) and the control on the size ¢/, defining the elements of ff in the

second inequality, the v-Carathéodory condition (3.1.12]) for the collection g]’? in the third,
and the definition of M in the fourth.
Case II: ¢ < r. The desired inequality follows by (3.2.8)). O]

The definition of ¢ guarantees the following good lower bound on the classical L' norm
of fg, and good upper bound on the outer L%, (¢4 (£7)) quasi-norm of g.

Lemma 3.3.8. Let p,q,r € (1,0), ¢ # r, ®&,K = 1. There exists a constant ¢ =
c(p,q,r,®, K) such that, for every function f € LL,(¢L(¢7)) on X, for g defined by (3.3.32)),
then

||fg||L1 (X,w) = CHfHLP(g‘Z «r))”
Proof. By (3.3.33)) and (3.2.12), we have

19l xwy = 232570 Y] 2“""’)Hf;l’,jlw;cllp(x,w)
keZ JEZ

>c Z ok(p—q) Z quV(U]l,f)

keZ JEL

> e 2P| filf

keZ

For g < r, by (3.3.22)) and (3.3.26)), we have

Z 2k(p*Q)ka”Lq(Zr) = cC Z Qkp Ek C||f||1£ﬁ(gg(e&)).
keZ ke

For ¢ > r, the properties in Proposition corresponding to (3.3.22)) and (3.3.26)) yield
the analogous chain of inequalities. O

Lemma 3.3.9. Let p,q,r € (1,0), ¢ # r, ®,K > 1. There exists a constant C =
C(p,q,r, ®, K) such that, for every function f € LL,(¢1(¢7))) on X, for g defined by (3.3.32)),

then
||g||pp C||f||LP KLZ ET (3334)
Ly n( )’

CAGS)
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Proof. Case I: q > r. Let %, J be fixed. For every subset F' of X, for every subset U of
F', we have

-1 -
Z, (glel(Vk Z 2j a-) Hgkj U\V’“ ”LT Xw))
.7<.7
j(q—r) —1 L/
< 22 ||fk_7 U\Vk ||LTXw))
.7<]
< CZj(q_l),

where we used the triangle inequality for the classical L norm in the first inequality, and
(3.2.9) in the third. The previous chain of inequalities yields

v(0 (gp1p) > 200y < 3 w(WE A F). (3.3.35)

i=j
Moreover, for every fixed j € Z, for E = B¢(F), we have
v(WE o F) < Cull(fr1p) > 22). (3.3.36)
In fact, we have two cases.

(i) If Wzlz N F = &, the left hand side in (3.3.36)) is 0, and the inequality holds true.

(ii) If W;“ N F # @, by the crop condition [3.1.2) we have that E' = BC(T/V;C NnF)C Eis

covered by a collection of disjoint subsets that are not in .7-"3’;, so that

C(fis1e)(UF 0 B > 22,
hence, by Lemma we obtain ((3.3.36)).

Therefore, by (3.3.35)) and (3.3.36)), we have

”gle”q (” ) <C Z 2JqV(£:;(g%1F) > 62.7'((1*1))
JEZ
<C Q2 ) vt (file) > 227) (3.3.37)
JEL  Gzj

< Cllfi1ellTa gy
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Hence, we have

1
7

’ ’ k -1 q
B (F) < C 3 200 (u(E) M garl T,y . )
k<k
1
<C ), 2hr=a)( F) N filellg @)™
k<k
< C’Qk(?—l),

where we used the quasi-triangle inequality for the outer qu,/ (7)) quasi-norm proved in
[Fra21] in the first inequality, (3.3.37) in the second, the property in Proposition m
corresponding to (3.3.23) and (3.1.11) in the third. The previous chain of inequalities

yields

u(l () (g) > C2K0D) < p(Fr) < C )7
k>k

Together with the property in Proposition corresponding to (3.3.26)), this yields

oy < C D5 2P uEL (0 (g) > 02°07Y)
@) =

<CY 2PN u(Ey)

keZ =k

< 5“f‘|§ﬁ(fﬁ([£))

p/
g
gl

Case II: g < r. Let k be fixed. It is enough to prove that, for every subset F' of X, we

have

lg;:1 Flquq @y S CMR1F Iy (3.3.38)

The desired inequality in (3.3.34) then follows as in the previous case.
Let j be fixed. Let V(27) be an optimal set associated with the super level measure
v(l,(filr) > 27), namely

”f%lFlV(m)cHLgo(e;) <2, (3.3.39)
vl (filr) > 27) = v(V(2)). (3.3.40)
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For every subset U of F', we have

1
o (glelV 24)e ZQj(q ") 1||gk] U\V’“ HLT Xw))rl—’_
J<ij
O Y P g e v e )
Ik POV )L (X w)
i=j
1
< 22]((1 T 1||fk-] U\vk HL’"Xw)) r+
J<ij
1
+2§q T) 1”2 1F1U\V 27 HLr Xw)) ’
7=j
< CQj(q_l)’

where we used the triangle inequality for the classical L™ norm in the first inequality, the

condition ¢ < r in the second, (3.3.23) and (3.3.39)) in the third. Together with (3.3.40)),
the previous chain of inequalities yields, for every j € Z,

vt (gplr) > 2197D) < w(l(fi1p) > 27).
The inequality in (3.3.38)) follows multiplying by 2/ and summing in j € Z on both sides. [

We are now ready to prove Theorem

Proof of Theorem[3.1.J) When ¢ = r, the double iterated outer L? quasi-norm is isomorphic
to a single iterated one, and the proof corresponds to the one of properties (i7), (7ii) of
Theorem 1.1 in [Fra21].

When g # r, we proceed as follows.

Property (i). By (3.1.16), the L' (X, w)-pairing of two functions f, g is equivalent to
the outer L (£}(£})) quasi-norm of the product fg. The second inequality in is
then given by outer Holder’s inequality, Proposition 3.4 in [DT15|. The first inequality in
is a corollary of Lemma and Lemma for f e LE,(¢L(C))).

Property (ii). The inequality in (3.1.15)) is a corollary of the triangle inequality for
the L'(X,w) norm and property (4). O

3.3.4 Counterexamples

For every m € N, we introduce the finite setting

X ={z;i: 1 <i<m},

wm(A) = um(A) = 4], for every A < X,
Um(A) =1, for every @ # A < X,
fi =1z, for every 1 < i < m,

[=1x,,.
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In particular, the collection of singletons {{z;}: 1 < i < m} satisfies the v,,-Carathéodory
condition with parameter K,, = m.

First, we observe that, for every exponent r € (0, 0], for every function g, for every
nonempty subset A of X,,, we have

o (9)(A) = llgLall Lr (X, com)-
Therefore, for every exponent r € (0, o], for every function g, we have
Vm(Xm) =1, for A e [07 HgHLgOm(ZLm))?
vu(2) = 0, for Ae gl i o0

Vm (£, (9) > A) = {

where, here and later as well, for every level A, we provide a subset of X, realizing the
infimum in the definition of the super level measure in (3.1.7]).
Hence, for all exponents ¢, € (0,0], we have

Hg”LZm(ZLm) = HQHngn(é;m) = HgHLT(Xm,wm)'

In particular, for every exponent r € (0, 0], we have

m m
Z”fiHL},m(zgm) = Z L=m,
i=1 i=1

S 1
13 fillzy, e,y = 10z, ey, =m0
=1

When r € (0,00], 7 # 1, one of the constants Cj,Cs of g-super- or suborthogonality in

(13.3.11)) blows up as m grows to infinity.

Next, we observe that, for all exponents ¢,r € (0,], for every function g, for every
nonempty subset A of X,,,, we have

_1 _1
0, (0,)(9)(A) = pm(A) " llglallzy o )= Al 7ll91allLr(x,, wn):
hence, for every exponent r € [1, 0], for every strict subset B of X,,, we have

HleCHLgvm(el () L= Eim (0e,,) (f1pe)({zi}), for every z; ¢ B.

Ym

Therefore, for every exponent r € [1, 0], we have

(X)) = m, for A e [0,1),

Nm(gzlzm@;m)(f) > )‘) = {Hm(g) =0, for X € [1,00).

In particular, for every exponent r € [1, 0], we have

Iz e e,y =
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When r € (1, ], the constant C5 of the "collapsing effect” in blows up as m grows
to infinity.

Finally, we observe that, for all exponents g € (1,0), r € (1,¢], for every strict subset
B of X,,,, we have

1 1ol e o 3 = [Xm\BI" = £, (€, )(f1p)(BY),

where a = a(r,q) = % - é. Therefore, for all exponents ¢ € (1,), r € (1,¢], we have, for
1<e<m,

P (XM7Y = — i+ 1, for Ae [(i —1)%,i%),
s (£, (€5, )(F) > A) =4 o
wm(2) =0, for A € [m®, ),
where X7, is any arbitrary subset of X,,, of cardinality j.
In particular, for all exponents p,q € (1,20), r € (1,q], there exists a constant ¢ =
¢(p,q,r) such that, for every m € N big enough, we have

m m
Dllfilly, e, e, =21 =m
=1 i=1

m
1
125 filleg, e, = Wiz, @, e, = om0
=1

1,1
q T

Therefore, the constants of the sharpness of outer Holder’s inequality in (3.1.14) and the

triangle inequality in (3.1.15)) blow up as m grows to infinity when
1 1 1
p7Q7TE(1700)7 -——+->1
p q T

Now, for every m € N, we slightly modify the previous finite setting

X = {z;: 1 <i<m},

wm(A) = |4], for every A < Xy,
Um(A) =1, for every A € X,
om({x;}) = 28071, for every 1 <i < m,
f=1x.,

where 8 = B(r) = %, and let p,, be the measure generated via from o,,. As
in the previous setting, the collection of singletons {{z;}: 1 < i < m} satisfies the v,-
Carathéodory condition with parameter K,, = m.

As in the previous setting, for all exponents ¢, € (0, o0], for every function g, for every
nonempty subset A of X,,, we have

_1 _1
0 (o, )(9)(A) = 1 (A) allglallng, o ) = Hm(A) 2 llglallLr(x0 wm)s
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hence, for every exponent r € (0, 1], for every strict subset B of X,,,, we have
1 1Belle @ @y =29 =6, (€,)(Fls)({z)}),

where j = min{i: 1 <i < m,z; ¢ B}. Therefore, for every exponent r € (0, 1], we have, for
1<5 <m,

( m
o (Xm) = Z 2I8(2_1)7 for A € [0, 2_ﬁ(m_1))7
i=1
m(0s (e > \) = ¢ I . .
H ( m( wm)(f) ) Mm(Xﬁn) _ Z 2[8(171)’ for \ € [27&]7275(]*1))’
=1
L 1m (2) = 0, for X e [1,0),

where X7, = {xi:1<i<j} < Xp.
In particular, for every exponent r € (0, 1], there exists a constant C' = C(r) such that
we have

1
= r

9

Iz e, )

m
Iz @ e,y < Cme

Ym

When 7 € (0, 1), the constant Cy of the "collapsing effect" in (3.1.13) blows up as m grows
to infinity.

3.4 Examples

In this section we present three settings in which we provide a p-covering function C satis-
fying the canopy condition [3.1.1 and the crop condition [3.1.2]
3.4.1 Finite set with three measures

Let X be a finite set, u, v,w be three measures on it. The function C defined by
E={{z}: x e X}, C(A) = {{z}: v € A},

is a p-covering function with parameter ® = 1. The canopy and the crop conditions with
parameters ® = K = 1 are satisfied because every collection of pairwise disjoint subsets of
X is v-Carathéodory with parameter K = 1, since v is a measure, and the very definition
of C. The same conditions are satisfied by

£ = P(X), C'(A) = A.
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3.4.2 Cartesian product of three finite sets with measures

Let X7, X3, X3 be finite sets with measures wy, w2, ws. Let p, v,w be the outer measures
11, p2, 3 defined on X as in (3.1.8]). The function C defined by

E={X1 x Xo x{z}: 2 € X3}, C(A) ={X1 x Xo x {z}: zem3(A)},

where 73 is the projection in X3, is a p-covering function with parameter ® = 1. The
canopy and the crop conditions with parameters ® = K = 1 are satisfied because every
collection of disjoint subsets of X of the form X7 x X9 x Z is v-Carathéodory with parameter
K =1, since on these sets v behaves like the measure wy ® w3, and the very definition of
C. The same conditions are satisfied by

5, = {Xl X XQ X /. J€ P(Xg)}, C/(A) = X1 X X2 X 773(14).

3.4.3 Upper half 3-space with dyadic strips and trees

Let X be the upper half 3-space, together with the measure induced by the Lebesgue
measure on R3,

X=R=R2 xR=Rx(0,0) xR,

dw(y,t,n) = dydtdn. (84.1)
To define the outer measures, we start recalling the set Z of dyadic intervals in R,
I(m,1) = (2'm, 2 (m + 1)),
Z={I(m,l): m,l€Z}.
Moreover, for all m,l,n € Z, we define the dyadic upper half tile H(m,[,n) by
H(m,l,n) = I(m,1) x (271,21 x I(n, —0). (3.4.2)

Now, let © be the outer measure generated by the pre-measure ¢ on D, the collection

of dyadic strips, as in (3.1.17)), namely

2=t (m41)—1
D(m,l)=D(I(m)) =) |J | Hm0In),
UL el yy n'eZ (3.4.3)

D ={D(m,l): m,leZ} ={D(I): I € I},
o(D(m,1)) = [I(m,1)] = 2, for all m,l € Z.



3.4. EXAMPLES 113

Analogously, let v be the outer measure generated by the pre-measure 7 on 7T, the collection

of dyadic trees, as in (3.1.17)), namely

2=t (m41)—1
T(m,l,n) =T(I(m,0),I(n,=0)) =) |J Hm,I,Nnl)),
VS mr=21=V'm (3.4.4)
T ={T(m,l,n): m,l,neZ} = {T(I,1): I,I e ||| =1},
T(T(m,l,n)) = [I(m,)] =9 for all m,l,n € Z,
where N (n,l’) is defined by the condition
I(n,—1) < I(N(n,l"),=1). (3.4.5)

From now on, we assume all the strips and trees in this subsection to be dyadic, and we
avoid repeating it.
Next, for every L € Z, we define

Yy =R x (0,2 x R, (3.4.6)

On Y7, we have the measure wy and the outer measures ur,vy induced by w,py,v. In
particular, the outer measures ur, vy are equivalently generated as in (3.1.17) by the pre-
measures o, T restricting the collections of dyadic strips and trees to those contained in Y7,
namely

Dr ={D(m,l): m,l € Z,]l < L},
To ={T(m,l,n): m,l,neZ,l <L}

Moreover, we drop the subscript L in all the notation, as the definitions are consistent with
the inclusion Y7, < Y7, for L1 < Ls.

To define the function C and check that it satisfies the conditions, we recall some prop-
erties of the geometry of dyadic strips and trees and introduce some auxiliary functions and
state their properties. We postpone the proofs to Appendix

To make the notation more compact in the following definitions, we introduce a new
symbol for the union of the elements of a collection of subsets of X,

L:P(P(X)) — P(X),
LA =[] A

AeA

We start with two observations about the geometry of the intersections between strips,
and between a strip and a tree.

Lemma 3.4.1. Given two strips D1, Dy in D, their intersection is again a strip in D,
possibly empty. If it is nonempty, we have either D1 € Dy or Dy € Dy.
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Lemma 3.4.2. Given a strip D in D and a tree T in T, their intersection is again a tree
T in T, possibly empty.

After that, we follow up with some observations about the behaviour of the outer mea-
sures [,V on strips, trees, their unions and their intersections.

Lemma 3.4.3. For every strip D in D and for every tree T in T, we have

u(D) = o(D) = [x(D)], (3.4.7)
v(T)=71(T) = |=(T)], (3.4.8)
where w 1s the projection in the first coordinate.
Moreover, for every tree T in T, we have
v(T) = |n(T)| = |7 (D(T))| = p(D(T)), (3.4.9)

where D(T') is the strip in D containing T defined by
D(T) = (T) x (0, [x(T)]] x R.
Lemma 3.4.4. For every collection Dy of pairwise disjoint strips in D, we have

p(LD)) = 3 wD)= 3 In(Dy)] (3.4.10)

D1eDy D1eDy

Analogously, for every collection T1 of pairwise disjoint trees in T, we have

v(L(T)) = D v(T) = ) =(Th). (3.4.11)

TieTh TieT1

Moreover, for every collection D1 of pairwise disjoint strips in D, for every tree T in T, we
have
v(T A L(Dy)) = ), v(T D). (3.4.12)
D1€eDy

Finally, we introduce the auxiliary functions. First, we define the function Q by

Q: P(X)— P(D),
Q(A)={E: E€D,E. n A+ o},

where F is the upper half part of the strip F,

Ei ={(z,s,§) e E: s > o(F)/2}.
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It satisfies the following properties

AC L(O(A)), (3.4.13)
A1 € Ay = L(Q(A1)) € L(Q(Ay)), (3.4.14)
H(L(Q(A))) = u(A). (3.4.15)

After that, we define the function A/ by

N: P(D) - P(D),
N(Dy) ={E: E€D,|n(E)nn(L(D1))| = |r(E)|/2}.
It associates a collection of strips D; to the collection of strips whose associated space

interval is at least half covered by the space intervals associated with the elements of Dj.
It satisfies the following properties

L(Dy) < E(/\/(Dl)), (3.4.16)
L(Dy) € L(Ds) = LIN(Dy)) € LN (D)), (3.4.17)
1(LN (D)) < 2u(L(Dy)). (3.4.18)

Finally, we define the function M by

M: P(D) - P(D),
M(Dl) = {E: Fe Dl,VDl € Dl\{E} we have F $ Dl}.

It associates a collection of strips D; to the subcollection of maximal elements with respect
to inclusion. In particular, it is well-defined because, for every L € Z, the space Y7, is
bounded in the second variable. In fact, by Lemma the function M maps into the
subset of collections of pairwise disjoint strips in D. Moreover, it satisfies the following
properties

L(Dy) = LIM(Dy)), (3.4.19)

L(D1) € L(D3) = LIM(Dy)) < LIM(Dy)), (3.4.20)

p(L(D1)) = p(L(M(D1)) = >, w(E). (3.4.21)
EeM(Dy)

We define the function C: P(X) — P(€) by
&="D, C(A) = M(N(Q(4))),

where 73(5 ) stands for the set of subcollections of pairwise disjoint elements in £.
We prove now that the function C is a p-covering function and that the setting (X, u, v, C)
satisfies the canopy condition and the crop condition [3.1.2
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Lemma 3.4.5. The function C is a p-covering function for every choice of the parameter
® > 2.

Proof. We recall that
Be(4) = LIM(N(Q(4))))-

By (3.4.13), (3.4.16) and (3.4.19), we have

AcC Bc(A)

By (3.4.14)), (3.4.17) and (3.4.20)), we have

A1 € Ay = Bc(Al) c Bc(Ag).

Moreover, by (3.4.21)), (3.4.18) and (3.4.15)), we have

n(Be(A) < 2u(A).

O

Lemma 3.4.6. The setting (X, u,v,C) satisfies the canopy condition for every choice
of parameters ®, K > 2.

Proof. Let A be a v-Carathéodory collection of subsets of X with parameter K, and D
a subset of X disjoint from B¢(L(A)). We claim that the collection A U {D} is still v-
Carathéodory with the same parameter K. In particular, we want to prove that for every
subset U of X, we have

D v(UnA)+v(U n D) < Kv(U). (3.4.22)
AeA

Without loss of generality, we assume U N D+o , otherwise the inequality follows by the
v-Carathéodory property for the collection A. In particular, we have D+#0.

First, we prove under some additional assumptions on D and U. After that,
we obtain the general case in a series of generalization steps.

Step 1. Let D be a nonempty set of the form

D\Bc¢(L(A)), (3.4.23)
where D is a strip in D, and B¢ (£(A)) < D. We claim that, for every tree T in T, we have

DI v(T A A)+ (T D) < Ku(T). (3.4.24)
AcA

The version of (3.4.22)) for the particular choices of T" and D follows by the monotonicity

of v.



3.4. EXAMPLES 117

Without loss of generality, we assume T to be contained in D. The result for an
arbitrary tree T follows by that for T'n D, which by Lemma [3.4.2]is a tree as well, and the
monotonicity of v.

For every tree T contained in D with nonempty intersection with INJ, we have

D(T) ¢ N(Q(L(A))).
Together with , this yields
v(T) = |7 (D(T))| = 2|m(D(T) n L(Q(L(A))))]-

By (3.4.19)) and the disjointness of the elements of a collection M(D;) for every D; < D,
we have

7 (D(T) N LIQL(A))| = [7(D(T) n LIM(Q(L(A)))))]

= ) D@ E)

EeM(Q(L(A)))

By the monotonicity of the Lebesgue measure, Lemma and (3.4.9)), we have
S DT ARz Y W(TAB)
BeM(Q(L(A))) EeM(Q(L(A))
> > V(T N E).

EeM(Q(L(A)))

By (3.4.12) and the monotonicity of v, we have
> V(T A E) = v(T o LIM(QL(A))))) = v(T n L(A)).
EeM(Q(L(A)))
Together with the condition K > 2 and the v-Carathéodory property for the collection A,

the previous chains of inequalities yield

Kv(T)=zv(T n D) +2(K —1v(T n L(A))
v(T n D)+ Kv(T n L(A))
V(T nD)+ > v(T nA).

AcA

\AR\Y%

\%

Step 2. Let D be a nonempty set of the form

b= = (0Be(cy).

D'eD’ D’eD’

where D’ is a collection of pairwise disjoint strips. We claim that, for every tree T in T,
we have (3.4.22) for the particular choices of T and D.



118 CHAPTER 3. DOUBLE ITERATED OUTER L" SPACE

By definition, for every strip D’, we have
D' & Be(L(A)).
Therefore, by Lemma [3.4.1] we have

cL)=cu | o,
D’eD’

where the elements of C; are disjoint from £(D’), while, for every D’ in D', the elements of
Cpr are contained in D’. In particular, we have

A=Av | Ap
D'eD’
—{A:Ae AL AcLC)}u | J{A: Ae 4 Ac L(Cp)}-
D’eD’!
Then

Kv(T) = Kv(T n (LC(L(A) v | ] D))
D’eD’!
>EKv(TnL(C)+K > v(TnD)
D'eD’
> Z v(T'nA)+ Z ( 2 V(T nA)+v(T n D)) (3.4.25)
AeAq D’eD’ AE.AD/
> > u(T nA) +v(T n L(D))
AeA
> Y u(T nA)+v(T D).
AeA
where we used the monotonicity of v in the first and in the fifth inequality, (3.4.12)) in the
second, the v-Carathéodory property for the collection {A: Ae A, A< L(C1)} and (3.4.24))
for each D’ in D’ in the third, Fubini and (3.4.12)) in the fourth.
Step 3. Let D be an arbitrary nonempty set disjoint from B (ﬁ(A)) We claim that,
for every tree T in 7:, we have (3.4.22)) for the particular choices of T and D.
For D' = M(Q(D)), we define

D= J (D\Be(£(A)).
D’eD’

By (3.4.25) and the monotonicity of v, we have

Kv(T) = Z V(T A A)+v(T ~Dy) = Z V(T A A) +v(T n D). (3.4.26)
AeA AeA
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Step 4. Let D be an arbitrary nonempty set disjoint from B¢ (E(A)) We claim that,

for every subset U of X, we have (3.4.22)).
In fact, there exists a collection 7/ < T covering U v-optimally, namely

Uc U T, (3.4.27)
TeT’
(1) = v(U). (3.4.28)
TeT!

By (3.4.26)) for every tree T' in 77, the subadditivity of v, and (3.4.27)), we have
Ky vz Y (Y v(TnA)+u(TnD))

TeT’ TeT' AeA
> Z Z v(TnA)+ Z v(T ~ D)
AeATeT’ TeT’
> > v(UnA) +v(UnD).
AeA

Together with (3.4.28)), this yields the desired inequality in (3.4.22)). O

Lemma 3.4.7. The setting (X, u,v,C) satisfies the crop condition for every choice
of parameters ® =2, K > 1.

Proof. For every collection A of strips in D, let B = M(A). The subcollection B is v-
Carathéodory with parameter K = 1. Moreover, for every subset F' of X disjoint from
L(B) = L(A), we have

CF)NnA=9(F)nA=2,

and this yields
O

3.5 Double iterated outer L? spaces on the upper half 3-space

In this section we prove Theorem [3.1.5|in the dyadic upper half 3-space setting described
in (3.4.1), (3.4.3) and (3.4.4)), reducing the problem to an equivalent one in a finite setting
via an approximation argument.

We start stating some auxiliary results about the approximation of functions in outer
LP spaces. We use them to prove the approximation of functions in outer LP spaces on the
upper half 3-space X by functions with support in X; for a certain J € N, where

Xy = (=270,27J] x (277,27 x (=277,27J]. (3.5.1)
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On X;, we have the measure wy and the outer measures pj,v; induced by w,u,v. In
particular, this setting inherits the definition of the function C on Y}, for Y; defined in
, and its properties (Lemma , Lemma Lemma .

Next, for any J € N, we introduce a finite setting X', and exhibit a map between
functions on X; and on X', preserving the double iterated outer LP quasi-norms. We use
Theorem [3.1.3] Theorem [3.1.4] in the finite settings to prove Theorem [3.1.5]

Finally, we conclude the section with some observations about the result analogous to
Theorem for double iterated outer LP spaces in the upper half 3-space setting where
the outer measures are defined by arbitrary strips and trees originally considered in [Ural6].

3.5.1 Approximation results

First, we state a result about the approximation of functions in L% (S) by functions in
L}i(S) n L (8), for a size S of the form £, or £}(¢],), and more generally an arbitrary size
in the definition in [DT15].

Lemma 3.5.1. For every p € (0,00), there exists a constant C = C(p) such that the
following property holds true.
Let X be a set, u an outer measure, and S a size. For every f € L}(S), there exists a

subset A of X such that f14 is in Lj,(S) n L (S) and we have

Hf”Lﬁ(S) < CHflAHLfL(S)'

Next, we state a result about the behaviour of the super level measures for single iterated
outer LP spaces for monotonically increasing cut offs of a function in a general setting.

Lemma 3.5.2 (Monotonic convergence I). For every r € (0,00), there exist constants
C =C(r), ¢ =c(r) such that the following property holds true.

Let X be a set, v an outer measure, and w a measure. Let {X: J € N} be a monoton-
tcally increasing sequence of subsets of X such that

x=Jxy

JeN

and let f € L°(L])) be a function on X. Then, for every k € Z, there exists J = J(r, f,k) € N
such that
vt (f) > 25) < C Y vt (f1x,) > c2).

=k

Finally, we state a result about the behaviour of the super level measures for double
iterated outer LP spaces for monotonically increasing cut offs of a function in the dyadic
upper half 3-space setting.
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Lemma 3.5.3 (Monotonic convergence II). For all q,r € (0,00), there exist constants
C =C(q,r), c = c(q,r) such that the following property holds true.

Let f e Ly (C5(£,)) be a function on X = R x (0,00) x R, and let {X;: J € N} be the
monotonically increasing sequence of subsets of X defined in . Then, for every k € 7Z,
there exists J = J(q,r, f, k) € Z such that

p(E0)(f) > 28) < C > p(ee(er) (f1x,) > c2').
1>k

We postpone the proofs of the previous three results to Appendix We use them to
prove the following results about the approximation of functions in LE(¢7)) and L¥,(¢3(¢%))
by functions with support in X; for a certain j € N.

Lemma 3.5.4. For all q,r € (0,00), there exists a constant C = C(q,r) such that the
following property holds true.
For every function f € LL(("), there exists J = J(q,r, f) € N such that

1 s ey < ooy < Clf sl er)-

Proof. The first inequality follows by the monotonicity of the outer LP quasi-norms.
To prove the second inequality, by Lemma we assume f to be in L (€7) ~ L2 (L").
Next, we observe that there exists K = K(q,r, f) € N such that

1 15g ) < C D 2"(E() > 25 <O 3] 2Mu(g(f) > 2°).

keZ ke[—K,K]
By Lemma for every k € [-K, K], there exists a J = J(r, f, k) € N such that

V(E(f) > 25) < O Yl (flx,) > 2).

=k
By taking J = maxje[_ g k] J (k, f,r), the previous inequalities yield
1A er 2 2"y (0 (flx,) > ') < Cllf1x, g,
—KK] =k

O

Lemma 3.5.5. For all p,q,r € (0,00). There exists a constant C = C(p, q,r) such that the
following property holds true.
For every function f € LL,(¢L(C)), there exists J = J(p,q,r, f) € N such that

I 1x e s eryy < W lzm ooy < CUF xS e e er -

Proof. The inequalities follow via the same argument used in the previous proof, with
Lemma replaced by Lemma [3.5.3] O
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3.5.2 Equivalence with finite settings
We introduce the following finite setting,
X' =7
W'(m,l,n) =1,
D'(m,l) = {(m',I'.,n'): m/ € [27"m, 2"  (m +1)),I' < 1,0 € Z},
D' = {D'(m,l): m,l € Z},
o' (D'(m,1)) = 2!, for all m,l € Z,
T'(m,l,n) = {(m/,U',n)): m € [27"m, 2"  (m + 1)), <I,n’ = N(n,I')},
T ={T'(m,l,n): m,l,n e Z},
T/(T'(m,l,n)) =2l for all m,l,n € Z,

where N(n,l") is defined by the condition (3.4.5), and p’,v/ are defined by ¢’,7" as in
(3.1.17). Moreover, for every J € N, we define

Xy ={(m,l,n)e X":le (=J,J],me [-J2/71, J2771) ne [—J2/F J2/Th)},

On X, we have the measure w’; and the outer measures p;, 1/ induced by W', p/,v". In
fact, the outer measure 11/, is equivalently generated by the pre-measure ¢’; on D’; as in

(3.1.17)), namely
D’;(m,l) = D'(m,1) n X7,
JJ(Df](m,l)) =2l for all m,l € Z, D’;(m,l) # &,
and the outer measure v/, by the pre-measure 7 on 7 as in (3.1.17)), namely
T)(m,l,n) =T (m,l,n) n X7,
7_1:; = {T/](m,l,n): m7l7n e Z,Tf](m,l,n) # ®}7
(T (m,1,n)) = 2., for all m,l,n € Z,T(m,l,n) # .

The setting on X inherits the definition of the function C on X; and its properties

(Lemma Lemma Lemma [3.4.7)) via the map associating every triple (m,l,n) €
X' to H(m,l,n), the pairwise disjoint subsets of X defined in (3.4.2)).

Moreover, every function f on X that is in L] (X,w) for some r € (0,00] defines a
function F(f,r) on X’ by

F(f, r)(m,l,n) = Hle(m,l,n)HL’“(X,w)‘

For every fixed r € (0, 0], the map between functions on X and on X’ just described
preserves the iterated outer LP quasi-norms.
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Lemma 3.5.6. Let p,q,r € (0,00). For every f supported in Xj for any J € N, we have

1A ey = 1ECF ) s, o s
11 e eaer,yy = I1F(S T)HLZ,(ZZ,(E:,))‘

Proof. Let J € N be fixed, and assume that f is supported in X .
We start observing that F(f,r) is supported in X’;. Moreover, in both cases, we can
restrict to consider only the elements of Dy, Ty and D', T, since we have

1 2s ez ey = W ee e e 0
|F(f, T)HLZ/“Z/“ZLI)) = ||F(f, T’)HLz, (@
J

x

)

-
/

w
J

In particular, for any U € Tj, we have U = T;(m,l,n), and we define U’ € T, by
U' =T’ (m,l,n), hence satisfying

vy(U) = 7,(U) = 7;(U") = vj(U"). (35.2)
Now, for any two collections Ui, Us of elements in T, we define, for i = 1,2,
Ui = L(U;), U] = LU;),

and we have

F(flrpv,er) = F(f,r)lupus- (3.5.3)
Next, by the definition of F(f,r), we have
HfHLr(XJ,wJ) = |l F(f, T)“Lr(xj,,wg)- (3.5.4)
Therefore, for any element U in T;, we have
1 0l ey wyy = IE Lo P e xr wry = IE G )10l r(x o)» (3.5.5)

where we used (3.5.4) in the first equality, and (3.5.3) in the second. Moreover, for any
A € X, there exists a finite subcollection U of T; such that A < L(U) and

vi(A) =) m(U) = > v(U). (3.5.6)
UelU UeU
In particular, we have

vi(A) N LAl (s ) < v (AT D 05 (x w))
Ueld

< vy max vy (V) W x, ) ) va(U) (35.7)
UeU

< max vrWV) W I (x 0)
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where we used the monotonicity and the r-orthogonality of the classical L" quasi-norm
in the first inequality, Holder’s inequality in the second, and in the third. The
analogous properties hold true for any F' supported in X/.

Therefore, for any A > 0, we have, for F' = F(f,r),

vi(ly,,(f) > A) =
= inf{v;(A): A< X;,sup{vy(B)" V| f1placl pr(x, ) B S Xs} <A}
= inf{v; (LWU)): U < Ty, 5up{vs (V) v el e (x oy V € Tr} < A}
= inf{;(LU")): U = Ty,
SuP{V{f(V/)_l/THFlV’lﬁ(u’)cHLT(X’J,W’J): V’ = 7}} < )\}

= inf{1/;(A"): A’ < X/},

sup{v/y(B') ™| FLpL(anell prx wry: B € X7} < A}
= V(g (F) > X),

where we used (3.5.6) and (3.5.7)) in the second equality, (3.5.2) and (3.5.5) in the third,
the analogous of (3.5.6) and (3.5.7)) in the fourth. Hence

Hf”L,‘ZJ(EZ;J) = HF(fﬂ”)HLq, e,
Yio“g

Applying an analogous argument to the "exterior" level of definition of the double
iterated outer LP space, we obtain

102z ez e o)) = = [|F(f, 7“)HLP (€ (€, )

“y

We are now ready to prove Theorem [3.1.5

Proof of Theorem[3.1.5 Let p,q,r € (0,0]. By Lemma and Lemma for every
f e L (6L(L)), there exists J = J(f,p,q,7) € N such that

||f1XJ||Lq (er,) < ||f||L‘1(zr < CHf]‘XJHL?,(K:))7

(3.5.8)
I 1x5 e eneryy < I lem ey < CUAxS I Le g er )y
where C' is independent of f and J. By Lemma [3.5.6] we have
175 ey = 1L i) = LGP g, o,
(3.5.9)

P e enyy = IE (L ) ie, o, er ) = (S )Ly ||LP «, ()"
W
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Property (i). Let ¢,r € (0,00). By Theorem we have

CTHF(f,m)x e e,y < HF(fﬂ“)lXj,HLz, (£

< CIF(f,r)x s, o
v

T
/

w
J

where C is independent of f and J. Together with (3.5.8) and (3.5.9)), the previous chain
of inequalities yields the desired equivalence in (3.1.18]).

Property (ii). Let p,q,r € (1,00). By Theorem [3.1.4] for every f € LL,(¢1(¢)), there
exists a function G on X', with unitary outer Lz . (¢4, (€7, )) quasi-norm such that
J J J

CHE(fr) x| e, @, @,y S I Gllix w)
AR (3.5.10)

< CIFr)x e, @, @r, )y
KWy vy

T
“J

where C' is independent of f and J. We define a function g on X by

g(.%',S,f) = ’f(xa*g?g)‘r_l 2 F(fvr)(mvl?n)l_rG(m’l7n>1H(m,l,n)(x787§)'

m,l,neZ

By construction, we have

F(g,7") = G.

Together with Lemma this yields

HgHLﬂ/(Z?,/(Z:;)) = ”GHLPI,(ZQI,(ZT/,)) = HGHLP’/ (Zq’/ (Er’/ )) =1
p' NN w wyt vyt wy

Moreover, by construction we have

1fallzy = I1E )G b x wyy = )Gl w0
= [1F(f, )L, Gl pr xr )y -

Together with (3.5.8)), (3.5.9)), and (3.5.10), the last two chains of equalities yield the desired
equivalence in .

Property (iii). The inequality in (3.1.20]) is a corollary of the triangle inequality for
the L'(X,w) norm and property (i4). O
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3.5.3 Upper half 3-space with arbitrary strips and trees

We turn to the case of double iterated outer LP spaces on the upper half 3-space setting
where the outer measures are defined by arbitrary strips and trees. In particular, let
X =R} =R2 xR=Rx(0,00) xR,
dw(y,t,n) = dydtdn,
(@,s) ={(y,t,n): yex + (0,s],t € (0,5],n € R},
—{D(z,s): z€R,s € (0,0)},
5(ﬁ(m, s)) = s, for all x € R, s € (0,00),
T(w,5,6) = (g, )i y e+ (0], € (0,s],me & + (—~L, 1]},
T ={T(z,5,&): xR, se(0,0),eR},
F(T(x,5,€)) = s, for all z € R, s € (0,00),£ € R,

QD 0

(3.5.11)

where i, U are defined by &,7 as in (3.1.17]).

On one hand, the outer measures generated by dyadic strips and arbitrary ones are
equivalent and we can substitute the outer measure 1 with p. In particular, we have
D c D and every element of D is covered by at most two elements of D with comparable
pre-measure.

On the other hand, the outer measures generated by dyadic trees and arbitrary ones
are not equivalent. In fact, while for every dyadic tree T in T we have

(T = o, (3.5.12)

and we postpone the proof to Appendix [3-A] Therefore, we can not trivially deduce the
same result stated in Theorem in the setting described in from Theorem
itself.

However, a reduction of the problem to an equivalent one in a finite setting via an
approximation argument analogous to that described in the previous subsections still yields
the desired result. We briefly comment on some additional observations, providing guidance
to the readers interested in a complete proof.

First, we observe that the outer measure v is equivalent to l/d, the outer measure defined
as in m by the pre-measure 7T restricting the collection T of trees to those associated
with dyadic intervals, namely

~ ~

To={T(2'm,2", 27 'n): m,l,neZ} = T.
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The geometry of the elements of D, 7~:1 and their intersections is analogous to that of the
elements of D, 7. Therefore, for every function f in a double iterated outer LP space in
the setting (X, u, Vg, w), we can pass to a cut off flx, approximating the double iterated
outer LP quasi-norm of f, for X; defined in .

Next, for every fixed J € N, we consider the outer measure 74 ; induced on Y; by g,
where Y is defined in . We observe that 7y ; is equivalent to the outer measure
generated as in by the pre-measure T restricting the collection 7~:i of trees to those
contained in Y, namely

’7%1,] = {T(2lm,2l,2_ln): m,l,neZ,l<J} S 7a.

In the setting (YJ,/,LJ,Td’J,(UJ), we can state definitions and prove results based on the
geometry of the elements of D, 72, J analogous to those in Section Therefore, for every
J € N, we can define a u j-covering function c satisfying the canopy condition and the
crop condition In particular, this definition is inherited by X; € Y.

After that, for every fixed J € N, we observe that the elements of Dy, 7~71 7 with nonempty
intersection with X ; are finitely many. Therefore, we can introduce a finite setting with
a point for every intersection and the induced measure and outer measures. In particular,
we conclude the result corresponding to that stated in Theorem [3.1.5] via an argument
analogous to that of the previous subsection.

3.A  Geometry of the dyadic upper half 3-space setting

In this appendix, we present the postponed proofs of the results involving the geometry of
the dyadic strips and trees in the upper half 3-space stated in Section and in
in Section

We start recalling that every dyadic strip D in D is determined by a dyadic interval Ip
in Z, and has the form

D =1Ip x (0,|Ip]] x R = n(D) x (0, |m(D)[] x R, (3.A.1)

and every dyadic tree 7" in T is determined by two dyadic intervals I, fT in Z such that
|I7||Ir| = 1 and has the form

T= |J JxOUIxJTN)= | JTx O] xJT,J), (3.A.2)
JeT,JcIr JeZ,Jjcn(T)

where the dyadic interval J (T, J) in Z is defined by the conditions

(T, =177
Ir = J(T,n(T)) < J(T, J).
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Proof of Lemma[3.4.1. If Dy n Dy is empty, the statement is trivially verified. Therefore,
we assume that the strips D1, D2 have a nonempty intersection. Hence the dyadic intervals
m(D1), m(D2) have a nonempty intersection as well. Therefore, we have either 7(D;) <
m(D3) or w(D2) < w(D1). Without loss of generality, we can restrict to the first case, the
second being analogous. We have |w(D1)| < |7(D2)], hence by

Dy € Ds.
O

Proof of Lemma[3.4.3. If D n T is empty, the statement is trivially verified. Therefore,
we assume that the strip D and the tree T" have a nonempty intersection. Hence the
dyadic intervals (D), (T') have a nonempty intersection as well. Therefore, we have
either (D) < n(T') or n(T") < w(D). In the first case, we have |7 (D)| < |7(T)|, hence by
aud

DAT = T(?T(D), j(T,ﬁ(D))).

In the second case, we have |7(T)| < |7 (D)|, hence by (3.A.1) and (3.A.2)

DnT=T.

Proof of Lemma[3.4.3. Let D be a strip in D. Then

p(D) =inf{ > o(D1): Dy =D,D < L(D1)}.
D1€eDy

Therefore, the inequality
u(D) < #(D)

follows trivially. To prove the opposite inequality, we observe that for every covering D; of
D by means of strips in D, there exists a strip £ in D; such that

(QS'D, |7T(D)|7O) SO
where xp is the middle point of the dyadic interval 7(D). In particular, this implies

o(E) = |x(D)|.

Therefore, we have

Y o(D1) = o(D),

D16D1

By taking the infimum among all the possible coverings of D, we obtain the desired equality

in (17
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The statement for a tree 7" in 7 in (3.4.8)) follows by an analogous argument considering
the point

(@7, [7(T)], &),

where 27 is the middle point of the dyadic interval m(T), and &p is the middle point of the
dyadic interval J (T, 7 (T)).
The statement in (3.4.9)) follows by the definition of D(T'), (3.4.7)), and (3.4.8]). O

Proof of Lemma[3.4.4 Let D be a collection of pairwise disjoint strips in D. The inequality

WLD)) < Y w(Dy).
D1€eDy

follows by the subadditivity of p. To prove the opposite inequality, we consider a covering
Dy of L(D;y). Without loss of generality, we assume that every E in Dy is not strictly
contained in any element of Di, otherwise it would be useless to the purpose of covering.

Therefore, we have E ¢ £(D;), and, by Lemma we have
Dy =Dyp U Dy,

where every element of Dy g is contained in E, and every element of the other collection is
disjoint from E. In particular,

L(D1E) € E. (3.A.3)

As a consequence, we have

o(E) = n(E)| = |n(L(Drp))l = >, I7(D)l= >, w(Dy),

D1€'D17E DIGDI,E

where we used in the first and in the third equality, and the monotonicity
of m and the Lebesgue measure in the inequality, the distributivity of the projection over
set union and the additivity of the Lebesgue measure on the disjoint intervals in 7(D;) in
the second equality. Together with the observation that for every element D of Dy there
exists at least one F in Dy such that Dy € Dy g, we obtain

Nomz Y Y ub)z Y uby).

EEDQ EEDQ D1€'D17E D1€D1

By taking the infimum among all the possible coverings of £(D;), we obtain the desired
equality in (3.4.10)).

The statement for a collection 77 of pairwise disjoint trees in follows by an
analogous argument. The additional observation is that the collection of trees T splits into
two families

T:TJFU’]:,
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where the elements of 7 are all contained in R x (0,0) x (0, 00), while the elements of 7_
are all contained in R x (0,00) x (—0,0]. In particular, every element of the first family is
disjoint from every element of the second one.

The statement in follows by Lemma [3.4.2{ and (3.4.11])). O

Proof of (3.4.13), (3.4.14). Let A be a subset of X. For every point (z,s,&) in A, there
exist | € Z such that s € (2'=1,2'], and m € Z such that x € I(m,1). Hence, we have

(CB, S,f) € D(ma l)+7

proving (|3.4.13).

Next, let Aj, Ao be two subsets of X such that A; © As. By the definition of Q, we
have Q(A;) € Q(As2). Taking the union of the elements of the collection in both cases, we
obtained the desired inclusion, proving (|3.4.14)). O

Proof of (3.4.16), (3.4.17). Let Dy be a collection of strips. By the definition of A/, we have
D1 < N(Dy). Taking the union of the elements of the collection in both cases, we obtained
the desired inclusion, proving .

Next, let D1, Dy be two collections of strips such that £(D;) < L£(Dz). In particular,
7(L(D1)) < w(L(D2)). By the definition of N, we have N (D;) < N (D;). Taking the union
of the elements of the collection in both cases, we obtained the desired inclusion, proving

BA4.17). O

Proof of (3.4.19)), (3.4.20). Let D; be a collection of strips. Since M(D;) < D;, we have
the inclusion L(M(Dy)) < L(Dy).

To prove the inclusion in the opposite direction, we observe that for every strip D’ in
D1\ M (D), there exists a finite collection of strips in D strictly containing D’. In particular,
there exists a maximal one in Dy, which then belongs to M (D7) and is unique by definition.
Taking the union of the elements of the collection in both cases, we obtained the desired
inclusion, proving (3.4.19).

The monotonicity property in follows trivially. O

Proof of (3.4.21)), (3.4.18]), (3.4.15)). The equalities in (3.4.21]) follow by (3.4.19)) and (3.4.10]).
Now, we turn to the proof of the inequality in (3.4.18). By (3.4.19)), we have

NoM=N,

hence
H(LN(Dy))) = p(LN(M(Dr))))-
By (3.4.19) and (3.4.10)), we have

LN (M(D1)))) = (£LMN(M(D1))))) = > 7 (E)l,
Ee M(N(M(D1)))

pL(D1)) = p(LM(D1) = > [=(BE)].

EEM(Dl)
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By the disjointness of the elements in M(D;) and Lemma we can partition the
collection M(D;) into pairwise disjoint subcollections M(D1)g, one for each element E €
M(N(M(Dy))), so that

LM(D1)E) € E.

By the definition of N, we have

> m(E)| <2 > Y, mBEI<2 Y [w(E).

EeM(N (M(Dy))) EeM(N(M(D1))) FEM(D1) g FeM(Dy)

Together with the previous chains of equalities, this yields the desired inequality in (3.4.18]).
Finally, we turn to the proof of the equality in (3.4.15)). The inequality

p(A) < p(L£(Q(A))),

follows by (3.4.13) and the monotonicity of u. The inequality

follows by an argument analogous to the one used to prove (3.4.10) upon observing that
for every E in M(Q(A)), the intersection between E, and A is nonempty. O

Proof of (3.5.12)). Without loss of generality, we assume the arbitrary tree T eT to be of
the form 7°(0,1, 1), namely

T(0,1,1) = {(y,t,n): y € (0,1], € (0,1],p € 1 + (=t *, ¢ ']}
Next, let TZN’O be the subset of 7' defined by
To = T(0,1,1) A (0,1] x (0,1] x (0, ).
Due to the monotonicity of v, it is enough to show that
v(Ty) = oo.

Now, let Uy <= T be a covering of fo by dyadic trees. For every [ € N, let V; be the subset
of Ty defined by
Vi=(0,1] x (27171 27 x (24,28 + 1],

and let Up(1) be the subcollection of Uy defined by its dyadic tree with nonempty intersection
with V;. In particular, we have
Vi s LUu(1)),

and, for every I’ € N, I’ # [, for every U € Uy(l), we claim that

UnVy=a.
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In particular, the dyadic tree U has the form T(m, —j,n(l,j)), where j € Z,7 < I, m €
7,0 <m < 27, and n(l,j) € Z is defined by the condition

I(n(l,j),4) = 1(1,1).
If 7 > I', we have

UcRx (0,21 xR,
Vi < R x (271, 2" x R,

yielding the desired disjointness.
If j <l’, we distinguish two cases.
Case I: | <!’. We have

I(n(l,5),7) < I(1,1) < 1(0,1'),
2", 2" +1] < 1(1,1),

yielding the desired disjointness.
Case II: [ > I'. We have

I(n(l,7),7) < 1(1,1),
2", 2" + 1] < 1(1,1) < 1(0,1),

yielding the desired disjointness.
Therefore, the subcollections Uy (1) are pairwise disjoint, and we have

PILOED WD WG ED WG]

Tely leNTely(l) leN

It is enough to observe that, for every [ € N, we have
y(V}) = 1.
In fact, for every covering V; of V; by dyadic trees in 7, we have

wer(|JVv)e J ),

VGVZ VEVZ
hence
< D W)= ) (V).
VEVL VEV[
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3.B Approximation for outer L? spaces

In this appendix, we present the postponed proofs of the approximation results stated in
Section

Proof of Lemma[3.5.1. We have

1£15, 5 < C 33 252n(S(F) > 2%).
keZ

In particular, there exists kg € N such that, for every ke N,% > kg, we have

15 < C 2, 2Pu(S(f) > 25). (3.B.1)
k<k

If u(S(f) > 2%) = 0, we have that f e L7 (S), and we can take A = X.
Otherwise, we claim that there exists k1 € N, k1 > kg such that

u(S(f) > 2871 > 2 u(S(f) > 2. (3.B.2)
If not, for every k € N, k > kg, we would have
2P u(S(f) > 2) = 25Pu(S(f) > 27) > 0,
yielding the contradiction
o0 e}
1 pe =C D5 2%u(S(f)>252C Y 29Pu(S(f) > 2) = co.
k=ko+1 k=ko+1

Now, let B be an optimal set associated with p(¢"(f) > 2*1) up to a factor 271(1 + 2P),
namely

||leC||LgJ(S) <2k, (3.B.3)
p(S(f) >2") < u(B) < ! ngu(S(f) > 2M), (3.B.4)

and define A = B¢, so that f14 € L7 (95).
We claim that for every k € N, k < k1, we have
1—277P
2

u(S(f1a) > 25) > u(S(f) > 2. (3.B.5)

If not, there would exist ke N, k< k1 such that

H(S(F1a) = ) < S (s = 2,
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yielding the contradiction

n(S(f) > 25) < p(S(f1a) > 2) + w(B)
2R () > 2+ (s () > 2
< u(S(f) > 25,

where we used (3.B.3) and the subadditivity of x in the first inequality, (3.B.4]) and (3.B.2))
in the second, and the monotonicity of the super level measure p(S(f) > A) in A in the

third.
Therefore, by (3.B.1)) and (3.B.5)), we have

11555 < C 25 2Pu(S(f) > 2%) < C 3} 27u(S(f1a) > 2°)

k<kq k<k1
p
< CHflAHLﬁ(S)

<

O

Proof of Lemma[3.5.9. Without loss of generality, upon normalization of f, we assume that
L<[Ifll ooy < 2-

For every k € Z, k > 0, the super level measure of f associated with the level 2% is zero,
and the desired inequality is trivially satisfied.

For the remaining k € Z,k < 0, we prove the desired inequality by induction. In
particular, we prove that there exist constants C' = C(r), ¢ = ¢(r), and a bounded sequence
{Ck: Cr < C,k €Z,k <0} such that

vl (f) > 2F) < Cp D vl (f1x,) > c2)).

=k

Case I: k£ = 0. By the r-orthogonality of the classical L" quasi-norm on sets with
disjoint supports, there exists a set By such that

t,(f)(Bo) > 1 (3.B.6)
v(0"(f) > 1) < v(By). 3.B.7)

By the monotonicity of the classical L" quasi-norm and (3.B.6|), there exists j € N such
that

C(f1x;)(Bo) > 1.
Since we have
Hlej”Lf,O(fg) < ||fHLgO(gZ)) < 2,
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we obtain, by Lemma [3.2.1]
I/(B()) < C()V(ea(flxj) > C).

Together with (3.B.7)), this yields the desired inequality.
Case II: k < 0. We assume that there exists j = j(r, f,k + 1) € N such that

v(lL(f) > 25 < G Y v (f1x,) > c2). (3.B.8)
I=k+1

Now, for every € > 0, there exists a set A1 such that

1 Lag, M peoqery < 2kt (3.B.9)
v(C,(f) > 2" < w(Apgr) < (1 +e)w(E(f) > 28, (3.B.10)

We will fix € later. In particular, we have
v(l"(f) > 28) < v(Apgr) + V(ga(flA“,;H) > 2y, (3.B.11)

If we have
k
”flAiHHLS?(fL) <2

we obtain

V(0L (f) > 2F) S v(Apa) S (L +6)Craa Y, vl (flx,) > c2).
IZk+1

Otherwise, we have
k k+1
25 < lag Mgy <277

Applying to the function f1 Ag,, an argument analogous to that of the previous case, we
obtain j = j(r, f,k) € N, without loss of generality greater than j(r, f, k + 1), such that

v(C(flac, ) > 2%) < Cov(€(flag, 1x;) > 2*) < Cov(€,(f1x;) > 2°).

Together with (3.B.11)), (3.B.10)), and (3.B.8)), the previous chain of inequalities yields

V(U (f) > 2% < (L4 e)Chit ) vl (flx,) > ') + Corl(€(f1x,) > 2¥).
I=k+1

By choosing ¢ = e(k) = 22" _1 and defining Cy, = 21_2kCo, C = 2C), we obtain the desired
inequality. O
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Proof of Lemma[3.5.3. The proof is analogous to that of Lemma [3.5.2] upon the following
observation. Without loss of generality, it is enough to comment in the case

V< llpee e aryy < 2-

Therefore, for every dyadic strip E € D, we have flg € L({],). Moreover, there exists a
collection of maximal dyadic strips {E,,: E,, € D,n € N} such that

() (En) > 1,
W) () > 1) < ) n(E).

neN

In particular, there exists a finite subcollection such that

N
P (F) > 1) <2 ) p(En).
n=1

Since the dyadic strips are maximal, then they are disjoint, hence, by Lemma [3.4.4] they
are v-Carathéodory with parameter 1.

Now we apply an argument analogous to that used to prove Lemma with the
monotonicity of the classical L" quasi-norms replaced by Lemma [3.5.4 and Lemma
replaced by Lemma [3.3.3 O
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Chapter 4

Further results

4.1 Introduction

In this chapter, we collect some statements and proofs of additional properties in the context
of the LP theory for outer measures, as well as some open conjectures.

In Section we focus on the properties of single iterated outer LP quasi-norms and
spaces on o-finite and finite settings described in Subsections [[.2.1] - [1.2.2]

Next, in Section [£.3] we study Minkowski’s inequality and the relative embeddings in
the case of single iterated outer LP quasi-norms and spaces on o-finite settings described in
Subsection .21

In the following two sections, we investigate the Banach space properties of outer LP
quasi-norms and spaces on the settings on the upper half 3-space or its discrete model
described in Subsections[T.2.17] - [I.2.13] First, in Section [£.4] we study the case of the sizes
¢7,. Then, in Section we pass to the case of the size with variable exponent appearing
in the article of Do and Thiele [DT15].

After that, in Section [4.6] we make an observation about the Banach space properties of
the double iterated outer L7 (¢%(£,)) spaces on finite settings described in Subsectionsm

In Section .7, we consider the embedding maps via cancellative wavelets from classical
LP spaces to single iterated outer LP spaces on the settings on the upper half space or its
discrete model described in Subsections - We comment on some positive and
negative results about their boundedness.

We conclude by collecting some conjectures about the LP theory of outer measure spaces
in Section

4.2 Outer L7 (/]) quasi-norms and spaces

In this section, we further investigate the properties of the single iterated outer LP quasi-
norms and spaces.

137
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First, in Theorem [£.2.1] in Subsection [.2.1] we extend the results about the Banach
space properties of the single iterated outer LP spaces obtained in Chapter [2] in the case
of finite settings described in Subsection [I.2.2] to the case of o-finite settings described
in Subsection [[.2.1] In this regard, we recall that all the finite settings are also o-finite
settings.

Next, in Lemma in Subsection we prove that, given two outer measures on
the same measure space, an inequality between them implies certain embeddings between
the respective single iterated outer LP spaces.

After that, in Lemma [4.2.5] in Subsection [4.2.3] we provide a counterexample to the
uniformity in the finite setting (X, p, w) of the constant in the weak quasi-triangle inequality
for countably many summands for the outer L% (£X) spaces, clarifying the remaining case
of the analysis begun in Chapter [2]

Finally, in Lemma and Lemma [4.2.10] in Subsection [4.2.4] we exhibit necessary
and sufficient conditions on the outer measure p to recover the uniformity in the setting
(X, p,w) of the constant in the weak and strong quasi-triangle inequality for countably
many summands for the outer Lb (£2) spaces.

4.2.1 Banach space properties of the outer L (() spaces on o-finite set-
tings

We prove the uniformity in the o-finite setting (X, u,w) of the constants in collapsing of
exponents, Kéthe duality, and quasi-triangle inequality for countably many summands for
the single iterated outer LP spaces.

Theorem 4.2.1. For all p,r € (0,00], there exists a constant C = C(p,r) such that, for
every o-finite setting (X, u,w) described in Subsection the following properties hold
true.

(i) For every p € (0,00], for every measurable function f € L}, (¢,) on X, we have
C_l”f”Lg(zg) < llrxwy < CUAN Lz -

(1) For all p € (1,00], 7 € [1,00) or p = r € {1,00}, for every measurable function
fe L) on X, we have

C N Niggeny <500 {1700z ixan 190y gy = 1} < CFligany:

(11i) For all p € (1,00], r € [1,0) or p = r € {1,00}, for every collection {f,: n € N} <
LE(E) of measurable functions on X, we have

ne
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The proof of the previous statement follows from an argument analogous to that used
to prove Theorem in Chapter [2|in the case of finite settings. The main ingredient in
the latter case is a decomposition result stated in Proposition 2.2.1]in Chapter[2} The same
role in the former case is played by Proposition 4.2.2| stated below. This is a decomposition
result with respect to the size ¢, for measurable functions on X in the intersection between
the outer Lj;(£],) and L}7({],) spaces. We point out that, in the case of finite settings, the
outer Lj,(£],) space is contained in the outer L (£[,) space. However, in the case of o-finite
settings, in general the inclusion does not hold true.

Therefore, we need an additional ingredient to reduce the study of functions in the outer
L}i(£7,) space to that of functions in the outer Lj;(£l,) n L} (£l,) space in the case of o-finite
settings. The approximation results needed are stated in Lemma and Lemma [3.5.2]in
Chapter [3] In particular, in Lemma [3.5.2] we use the monotone convergence theorem for
the classical LP(X,w) spaces, see for example the book of Rudin [Rud74].

We refer to the end of Chapter [I] for the notation of a double sequence parametrized by
pairs (k,n) with k € Z, n € Ny appearing in the following statement.

Proposition 4.2.2. For all p,r € (0,00), there exists a constant C = C(p,r) such that, for
every o-finite setting (X, p,w) described in Subsection the following property holds
true.

For every measurable function f e Ly(0],) n L (£],) on X, there exist ko € Z and a
double sequence {Ey ,,: k € Z,n € Ni} © X of measurable subsets of X such that

o Forevery k eZ, k> kg, we have N = &.

o If we set
F, =02, for every ke Z, k > ko,
Fro = Fi1, for every k e Z, k < ko,
Frn=Fin-1v Epn, for every ke Z, k < kg, for every n € Ny,
Fy,=Fp1 0 U Fyom, for every ke Z, k < ko,

nENk

then, for all k € Z, n € Ny, we have
éz;(lelf,nfﬂ(Ekv") > 2k, when Ek,n # O,
1 Lrgl e o) < 2,
p(L(f) > 2%) < p(Fy),
D H(Brn) < Cu(ly(f) > 27,

nENk

In particular, we have

Hf”lzﬁ(ga) ~p,r Z 2P 2 ,U/(Ek,n) ~pr Z 2P 2 Z ,U/(El,m)'

k€EZ neNy keZ leZ,l=k meN;
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Proof. The selection algorithm is analogous to that described in Case I in the proof of
Proposition in Chapter We define the collection {Ej,: k € Z,n € Ny} < X of
measurable subsets of X by a double recursion, backward on k € Z, and, for every fixed k,

forward on n € Ni. In parallel, we prove the properties in (4.2.1) — (4.2.4) by backward
induction on k € Z.

We briefly comment on the modification needed. For all ke Z, k< ko, 1 € Ny, we
define the collection & ~ < ¥ of measurable subsets of X by

: )(E) > Q’f}.

(c/‘Nﬁ = {EE > EL(lef:ﬁ

If 5@; is empty, we define Nz < N by

Ne — , ifn=1,
k {1,...,7n—1}, if7eNm> 1.
If & .. is not empty, by an argument analogous to that used to prove the first inequality in
(2.16) in Chapter [2, we can prove that, for every measurable subset E € & »» we have

pE + Y (B, < Cul(f) > 2 < e p, <o (12)

neNg,n<n

~

hence there exists jo = jo(k,n) € Z such that
sup {M(E) . Ee S%ﬁ} e (290, 9io+1],
We choose E%ﬁ € 5%,77 such that
(B ;) € (270,207,
By the inequality in , we have
jo(k,7i +1) < jo(k, %) — 1,
hence, for every k € Z, the sequence { “(EEn) : n € Ni} is strictly decreasing. O
4.2.2 Domination between outer measures and embeddings between outer
LP spaces
We start with the definition of domination between outer measures.

Definition 4.2.3. Let i and v be two outer measures on a set X. We say that v dominates
u or equivalently p is dominated by v if, for every subset A € X, we have

1(A) < v(A). (4.2.6)
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Given two outer measures p and v on the same measure space (X,w) such that v
dominates p, we obtain certain embeddings between the single iterated outer LP spaces
associated with them.

Lemma 4.2.4. For all p,r € (0,00], there exists a constant C = C(p,r) such that, for
all o-finite settings (X, p,w) and (X, v,w) described in Subsection if v dominates f,
then, for every measurable function f on X, we have

ifp =, 1l ey < C||f||LfL(£;)a
ifp<r, 11z ey < Cllf MLz er)-

Proof. We split the proof into four cases according to the values of p and r.

Case I: p = r € (0,00]. The desired inequalities follow from collapsing of exponents,
property (i) in Theorem for the o-finite settings (X, p,w) and (X, v,w).

Case II: »r < p = or p < r = . The desired inequalities follow from the definition
of the outer LP quasi-norms in Definition and Definition [I.1.6] the definition of the
sizes ¢, in ((1.2.3]) and (1.2.4)), and the domination between the outer measures.

Case III: r < p < oo. Without loss of generality, we assume r = 1, since, for every
setting (X, u,w), we have

11 ze ey = ”fTHLf(é&,)'

In particular, we have p > 1, hence
112y < Csup {1Fal e 190y ey = 1}
< Csup { £l (xy: l9ll ey = 1}
< Csup {1 £9lly () 19l e = 1

< Cllfllzz ey

where we used Kothe duality, property (i7) in Theorem[4.2.1] for the o-finite setting (X, v, w)
in the first inequality, the inequality proved in Case II in the second, the Radon-Nikodym
type result for the outer L' quasi-norms (Theorem for the o-finite setting (X, u,w)
in the third, and outer Holder’s inequality (Theorem for the o-finite setting (X, u, w)
in the fourth.

Case IV: p < r < 0. Without loss of generality, we assume p = 2. In particular, we
have 1 <1’ < p’ = 2, hence

1£1lz2ez) < Csup {1£9ll s Ny = 1}
< C'sup {HngLl(X,w): ||9||Ll2,(£;’) = 1}
< C'sup {Hf9||L5(ng)3 19112 ey =1
< Clfllzger)
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where we used Kothe duality, property (ii) in Theorem for the o-finite setting (X, p, w)
in the first inequality, the inequality proved in Case III in the second, the Radon-Nikodym
type result for the outer L' quasi-norms (Theorem [I.1.8)) for the o-finite setting (X, v, w)
in the third, and outer Holder’s inequality (Theorem for the o-finite setting (X, v, w)
in the fourth. O

4.2.3 Counterexample to uniform weak quasi-triangle inequality for the
outer LI ((}) spaces

For p € [1,20), we consider the dependence on the finite setting (X, u,w) of the constant in

|3 5
neN

where {f,: n € N} is any arbitrary collection of functions on X. For every p € [1,00), we
exhibit a counterexample to the uniformity of the constant in the finite setting (X, p, w).
This failure implies the existence of counterexamples to the uniformity in the finite setting
(X, p,w) of the constant in Kothe duality for the outer L% (¢X) spaces with p € [1,00) as
well.

The counterexample is suggested by the articles of Herer and Christensen [HCT75| and
Topsge [Top76|, where the authors studied the existence of pathological submeasures. A
pathological submeasure p on a set X is a non-zero outer measure such that the only
measure on X dominated by p as in Definition [4.2.3]is the zero measure.

the inequality

() < C(Xvu’w) Z ”anLﬁ(éZ?)’
neN

Lemma 4.2.5. Let p € [1,00). For every M > 0, there ezist a finite setting (X, p,w) and
a collection {fn: n e N} € LX) of functions on X such that

|3
neN

Proof. For every m € N, let (X, ftm,wm) be the setting on the m-dimensional hypercube
of sidelength m described in Subsection We refer to that subsection for the definition
of the subset E(x).

For every x € X,,, we define the function f, on X,, by

1% (62) =M %‘fn||Lﬁ(Zf)'
@ ne

Summing over all the elements of X,,,, we obtain

D fe=(m—1)"1x,,.

2€EXm

Next, for every n € N, n < m, for every collection {z1,...,x,} S X, we define x € X,,, by

x = (m(x1),...,m(zp),0,...,0),
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where 7;: X,,, = Z/mZ is the projection onto the i-th coordinate. Hence, for every n € N,
n < m, we have

i=1

Therefore, since the outer measure ., is generated via minimal coverings as in by
the pre-measure oy, on the collection {F(z): x € X,,} and o, (E(z)) = 1 for every x € X,,,
we have

o (Xom) > m.

Moreover, for every x € X,,, we have

i (B(2)) = 1.

Together with the equality for the outer LP and LP'® quasi-norms of a characteristic function
in finite settings in (1.2.10)), the previous two displays yield

Hy;m a e
Z ||fx||Lﬁ(g§) = 2 1=m™.

r€Xm r€Xm

1
m —1)"[1x,, [ pe gy > (m —1)"m,

Taking m € N big enough, we obtain the desired inequality. O

4.2.4 Necessary and sufficient conditions for strong and weak quasi-
triangle inequalities for the outer L) () space

We start by recalling an already known necessary and sufficient condition on the outer
measure p to recover the strong triangle inequality for countably many summands for the
outer L}L(Efuo) space on general settings. The condition on p is called strong subadditivity in
the article of Choquet [Chob4], and submodularity in the book of Denneberg [Den94|. We
refer to [Cho54] and [Den94]| for the proof of the following statement. We point out that
the constant in the triangle inequality in is 1.

Lemma 4.2.6 (Theorem in Subsection 54.2 in [Cho54], Theorem 6.3 in [Den94]). For every
general setting (X, u,w) described in Subsectionm where, for every x € X, we have

w({a}) € (0,0), (1.2
the following properties are equivalent.

(i) For every collection {f,: n € N} < L}L(ﬁj‘f) of functions on X, we have

H;an L) S %”f"”%(fe?)' (4.2.8)
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(11) For all subsets A, B < X, we have

(A v B) + u(An B) < p(A) + u(B).

Next, we provide new necessary and sufficient conditions on the outer measure u to
recover the uniformity in the general setting (X, u,w) of the constant in the weak and
strong quasi-triangle inequalities for countably many summands for the outer LL (LX) space.
In particular, we allow the constants appearing in the quasi-triangle inequalities in
and to be different from 1. We start with the weak quasi-triangle inequality. We
recall that, in the case of general settings, for every measurable function f on X, we have
the same properties described in the equalities in (1.2.6)) and ((1.2.7)) in the case of o-finite
settings.

Lemma 4.2.7. Let C' > 1. For every general setting (X, u,w) described in Subsectz’on
the following properties are equivalent.

(i) For every collection {fn: n € N} < L\ (£%) of measurable functions on X, we have
n <C n 0 - 4.2.9
|2 5] oy < € 2y (429)
1) For every collection {A,: n € of measurable subsets of X, we have
F Il A N} of ble subsets of X, we h

I
neN

Moreover, if w satisfies the condition in (4.2.7)), the properties are equivalent to the following
one.

<O, |11 (poon- 4.2.10
s <O Shadiy 1210

(11i) For every collection {Ay,: n € N} of subsets of X, we have
min{ Z la,(x):z€e UA”}M<UA”> <CZM(An)- (4.2.11)
neN neN neN neN

Proof. Case I: (i) = (ii). Let {A,: n € N} be a collection of measurable subsets of X.
For every n € N, we define the measurable function f, on X by

fn=1a4,.

The inequality in (4.2.9)) for the collection {f,: n € N} of measurable functions on X yields
the inequality in (4.2.10)).
Case II: (i) = (iti). We define j € N by

J =min{ 2 la,(z):z€ UA”}

neN neN
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By the definition of j € N, the condition on w in ([#.2.7), and the equality for the outer L1®
quasi-norm in (|1.2.6)), we have

(U 2) = (S 1) > ) 2= 00} 2 3 1

Moreover, by the equality for the outer L' quasi-norm of a characteristic function in (1.2.7))
and the condition on w in (4.2.7)), for every n € N, we have

LIOOZOO

1l ) = (Aw).

Together with the inequality in , the previous three displays yield the desired in-
equality in (4.2.11]).

Case III: (i7) = (i). Let {f,: ne N} < LL(EE?) be a collection of measurable functions
on X. Without loss of generality, we assume that all the functions {f,: n € N} are non-
negative. We start by considering functions on X with values in N u {0}.

For every j € N, we define the measurable subset A; € X by

Aj = {xeX: 3 fula) >j},

neN

and, for all n,m € N, we define the measurable subset A,, ,, & X by

Apm = {1: eX: folz) = m}

By the equalities for the outer L»* and L' quasi-norms in (1.2.6) and (1.2.7), since the
functions in the collection {f,: n € N} have values in N U {0}, we have

|3
neN
and, for every n € N, we have

1 fnll £ ey = > 1 Al 2, 699 (4.2.12)

meN

- 14, ,ww;'eN},
L1 (e2) SUP{”‘] AgllpLoe gyt 7

Moreover, for every j € N, by the definition of the measurable subsets A; and A, ,,, we

have
B4, < 20 D5 Mg

neN meN

For every j € N, together with the inequality in (4.2.10)) for the collection {A,, ,,: n,m € N}
of measurable subsets of X, the previous two displays yield the inequality

1714, HL};OO(ZES) < Z ||anLl1‘(£8§)‘

neN
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Taking the supremum over j € N, together with the equality in (4.2.12)), the previous display

yields the desired inequality in (4.2.9)).
By standard homogeneity and approximation arguments, we extend the result to func-

tions on X with values first in Q and then in R.
Case IV: (iit) = (ii). Let {A,: n € N} be a collection of subsets of X. For every
J € N, we define the subset B; € X by

sz{xeX: ZlAn(x)>j}.

neN

Therefore, we have
jl; < D 1pjna,. (4.2.13)

neN

By the equality for the outer L''® quasi-norm in (1.2.6)) and the condition on w in (4.2.7)),

we have
|3 14,
neN

and, by the equality for the outer L' quasi-norm of a characteristic function in (1.2.7) and
the condition on w in (4.2.7)), for every n € N, we have

s |z ey = 1#(An)- (4.2.15)

For every j € N, together with the inequality in (4.2.11)) for the collection {B; n A, : n € N}
of subsets of X, the equality in (4.2.15) and the inequality in (4.2.13) yield the inequality

jn(Bj) <C Y, sl 2 gesp)-

= w(Bj): g 4.2.14
pio gy = S 3B G €N (4.2.14)

neN
Taking the supremum over j € N, together with the equality in (4.2.14)), the previous display
yields the desired inequality in (4.2.10)). O

Remark 4.2.8. Every finite setting described in Subsection[1.2.9is an example of a general
setting (X, p,w) where, for every x € X, we have w({z}) € (0, 0).

Remark 4.2.9. The condition associated with the inequality in (4.2.11)) is called quasi-
subadditivity of order infinity in [AL85/, and it can be understood as follows. N

For every subset A < X, for every function ¢: X — N, we define the subset E(A, ¢) <
X x N by

E(A,¢) = {(:U,gb(x)) eXxN:ize A}.
Next, let

X X x N,
g = E(A,¢):A§X,¢:A—>N},
F(E(A,$)) = u(A), forallAc X, ¢: A—N,
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and let i be the outer measure generated via minimal coverings as in ) by the pre-
measure & on the collection €. The condition associated with the mequalzty m
states that, up to a bounded multiplicative constant C, for every j € N, for every subset
A c X, we have

Ju(A) < Cu(A x {1,2,...,7}).

Therefore, the collection {A x {i}: i € N,i < j} of subsets of)? provides a covering of the
set A x {1,2,...,7} defining the value of the outer measure i via &, up to a multiplicative
factor C'. We point out that, by the definition of i, we have

PAX {12, j}) < julA).
We follow up with the strong quasi-triangle inequality.

Lemma 4.2.10. Let C > 1. For every general setting (X, p,w) described in Subsec-
tion where w satisfies the condition in (4.2.7), the following properties are equivalent.

(i) For every collection {fn: n e N} < LL(EZ)O) of functions on X, we have
|
neN

(ii) For every collection {A,: n € N} of subsets of X such that

< CZanHL‘IL(ggJOy (4.2.16)
neN

Ly (t2)

AiDA DDA, DA 12, (4.2.17)

we have, for the outer measure i defined in Remark [4.2.9,

3 () < C;z( L (4 {n})). (4.2.18)

neN neN

Proof. Case I: (i) = (ii). Let {A,: n € N} be a collection of subsets of X. For
the collection & of subsets of X x N of the form E(A, $) defined in Remark let
{E(B;, ¢:): i € N} < € be a collection such that

| An x {n}) < | J E(Bi, ¢1). (4.2.19)

neN €N

Then, for every i € N, we define the function f; on X by

By the equality for the outer L' quasi-norm of a characteristic function in (I.2.7) and the
condition on w in (4.2.7), we have

1fill Ly ey = 1(Bi) = F(E(Bi, ¢:))-
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Next, by the inclusions in (4.2.17)) and (4.2.19)), we have
Z 1a, < Z fi

neN €N

Moreover, by the equality for the outer L' quasi-norm in (1.2.6) and the condition on w in

[£27), we have

DIRE
neN
and, by the inclusion in (4.2.17)), for every j € N, we have
p({zex: Y14, = 5}) = n4y).
neN

Together with the monotonicity of the outer LP quasi-norms and the inequality in (4.2.16))
for the collection {f;: i € N} of functions on X, the previous four displays yield the inequality

2, 1(An) < C ) B(E(B;, )

neN €N

o~ Dolleex: Diain>)),

neN

Taklng the infimum over the coverings of | J,.n(An X {n}) by countable subcollections of

nEN

3 , by the definition of fi, we obtain the desired inequality in (4.2.18]).

Case IIL: (ii) = (i). Let {fn,: n € N} © L,(€) be a collection of functions on X.
Without loss of generality, we assume that all the functions {f,,: n € N} are non-negative.
We start by considering functions on X with values in N u {0}.

For every j € N, we define the subset A; € X by

Aj:{a:eX: an(x)ZJ}

neN

Therefore, we have

A1 DA D QA]' QAjJrl 2D
Moreover, for all n,m € N, we define the subset B, ,,, © X by

Bpm = {x €eX: fu(z) = m},

and we define the function ¢, ,, by

(bn,m: Bn,m - N’ ¢n m =1+ Z Z 1Bl k 2 1Bn,k (.Z')

leN,l<n keN keNk<m
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For the subsets of X x N of the form E(A, ¢) defined in Remark [4.2.9, we have

U(Aj x {.7}) = U U E(Bn,m,¢n,m)'

jeN neN meN

By the equality for the outer L' quasi-norm in (1.2.6) and the condition on w in ([.2.7)),

we have
n = A; s
H%f L) ];\]N( J)

and, for every n € N, we have

anHL}L(Ef) = Z 1(Bnm) = Z &<E(Bn,m7¢n,m))-

meN meN

Together with the inequality in (4.2.18)) for the collection {A;: j € N} of subsets of X and
the definition of the outer measure ji, the previous three displays yield the desired inequality

in (4.2.16]).
By standard homogeneity and approximation arguments, we extend the result to func-
tions on X with values first in Q and then in R. O

4.3 Minkowski’s inequality for the outer L/ (/) quasi-norms

In this section, we extend the classical Minkowski’s inequality in the case of mixed LP spaces
on the Cartesian product of o-finite measure spaces to the case of single iterated outer L?
spaces on o-finite settings described in Subsection [1.2.1

This extension requires the definition of an additional outer measure v associated with
every o-finite setting (X, u,w). To define v, we introduce a canonical construction in Sub-
section [£:3.1] Iterating the canonical construction updating recursively the setting, we
obtain a collection of new outer measures on X which are related between themselves, as
we show in Subsection [£.3:2] As an example, in Subsections [1.3.3]-[£.3.4] we study this col-
lection in the finite settings described in Subsections - Next, in Theorem
we state and prove the desired Minkowski’s inequality between the outer L%, (¢7,) and L7 (%))
quasi-norms on o-finite settings, and the embeddings between the respective single iterated
outer LP spaces.

After that, in Subsection [£.3.6] we comment on the outer measures generated by the
iterations of the canonical construction in all the remaining settings described in Subsec-
tions [L2.0] - [L2.13

In Subsection we conclude the section by showing that the canonical construction
defining the outer measure v guarantees some additional regularity in terms of the subad-
ditivity behaviour of v. In particular, the outer measure v satisfies the condition associated
with the inequality in with constant 1, and it behaves nicely in terms of the Banach
space properties of the outer L% (/%) spaces with p € (1, 0].
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4.3.1 Recursive construction of canonical outer measures

We start by observing that, for every r € [1, ], for every o-finite setting (X, u,w), the
outer L7 (¢;,) quasi-norm with r € [1,00] inherits the triangle inequality from the classical
L"(X,w) norm.

Lemma 4.3.1. For every r € [1,], for every o-finite setting (X, p,w) described in Sub-
section the outer L7 ({},) quasi-norm is a norm.

Proof. We claim that, for all measurable functions f, g € L7 (¢;,) on X, we have
1+ 9l ooy < 1 zeoery + N9l Lo ar)- (4.3.1)

In fact, for every measurable subset A € 3, u(A) = 0, by the definition of the size £, in

(I23) and (L23), we have
L(f+9)(A)=0< HfHLfLO(EL) + ‘|9HL3§(£;)'

Moreover, for every measurable subset A € 3, u(A) ¢ {0, 0}, we have

1
Co(f +9)(A) = p(A) "7 (|(f + 9)Lallr(x w)
_1
< (A (I Lall pr ey + l91all e (x0)
< HfHLfg(z;) + ||9||L;C(e;)a

where we used the triangle inequality for the classical L"(X,w) norm in the first inequality.
Taking the supremum over the measurable subsets A € 3, u(A) # oo, the previous two
displays yield the desired inequality in (4.3.1]). O

For every o-finite setting (X, u,w), we define the pre-measure o, = o0, (u,w) on the
collection ¥ of all the measurable subsets of X by

ou(4) = {o, if u(A)

=9 (4.3.2)
allzeo ey if u(A) # 0. -

Next, we define v = v(u,w) to be the outer measure on X generated via minimal cover-
ings as in (1.1.1) by the pre-measure o, on the collection ¥. By Lemma for every
measurable subset A € 3, we have

v(A) = o (A). (4.3.3)

In particular, for every measurable subset A € ¥, if we define the collection ¥,(A) € ¥
of measurable subsets by

Su(4) = {Bex: B A u(B) ¢ (0,0} },
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then, we have
w(B)
v(A) = sup {7: BeX (A)}, (4.3.4)
u(B) g
where the supremum over an empty collection is understood to be 0. Moreover, if the
outer measure j is generated via minimal coverings as in (|1.1.1)) by a pre-measure o on a

collection &, by Lemma [27A73] in Chapter [2] for every measurable subset A € ¥, we have

w(AnE)

v(A) = sup { . Be& o(E)¢ {0, oo}}. (4.3.5)
o(E)
We observe that, starting with a o-finite setting (X, u,w), the construction described

in (4.3.2)) defines another o-finite setting (X, v,w).

Lemma 4.3.2. For every o-finite setting (X, u,w) described in Subsection the setting
(X,v,w) is o-finite as well.

Proof. We split the proof into two parts, the absolute continuity of the measure w with
respect to the outer measure v, and the o-finiteness of X with respect to the outer measure
v.
Part I: absolute continuity. We claim that, for every measurable subset A € X, we
have
v(A) =0= w(A) =0.

Let A < X be a measurable subset such that v(A) = 0.

We distinguish three cases.

Case I: u(A) = 0. By the absolute continuity of the measure w with respect to the
outer measure p assumed for the o-finite setting (X, 1, w), we have w(A) = 0.

Case II: p(A) ¢ {0,00}. By the equality in for v, we have w(A) = 0.

Case III: ju(A) = 0. By the o-finiteness of X with respect to the outer measure p,
there exists a collection {A,,: n € N} of disjoint measurable subsets of A such that

w(Ay) < oo, for every n € N,
A= U Ay,
neN

hence, by Case I and Case II for every n € N and the subadditivity of the measure w, we
have w(A) = 0.

Part II: o-finiteness. We claim that there exists a collection {A,: n € N} € ¥ of
measurable subsets of X such that

v(Ay) < 0, for every n e N,

X:UAn.

neN
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By the o-finiteness of X with respect to the outer measure p and the measure w assumed
for the o-finite setting (X, u,w), the set X is covered by a countable collection of subsets
with finite outer measure p and measure w. Therefore, without loss of generality, we assume
that

w(X) € [0,00), w(X) € [0, 00).

By collapsing of exponents, property (i) in Theorem for the o-finite setting
(X, p,w), we have

C Ml en) < INx Nl (x ) = w(X) < CllLxll gy ) (4.3.6)

We define the collection {B;: j € {0} u Nx} < ¥ of measurable subsets of X such that

BO = Xa
Bj < Bj_l, for every j € Ny,
n(Bj) < C2'w(X), for every j € Ny,

by a forward recursion on j € {0} U Ny, where Nx is either N or a finite initial string of it,
possibly empty. In particular, we set

X1 =By =X,
X;=DBj_1, for every j € N.

Fix j € N and assume we have selected B; for every [ € {0} U N, [ < j. In particular,
Bj_4 is already well-defined. By the definition of the super level measure in Deﬁnitionm7
for every j € N, there exists a measurable subset B; € X; such that

el e <2, u(Bj) < 2u(fy(1x;) > 27).

Together with the monotonicity of the size £}, Chebyshev’s inequality for the outer L!
quasi-norm, and the second inequality in (4.3.6)), the previous display yields

p(Bj) < 2u(,(1x;) > 27) < 2u(f,(1x) > 27) < 2 1xll gy o) < C2'w(X).
and proceed the recursion with j + 1. In particular, if there exists jp € N such that
W) =0, or  w(Xy) =0,
then, by the equality in for v, we have
v(Xje) =0,

and we stop the recursion.
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Next, we define the measurable subset B < X by

B=()B5;

jeN
We have
u(B) = lim pu(B;) =0,

J—©
hence, by the equality in (4.3.4) for v, we have
v(B) = 0.

Finally, for every j € N, let {Ej,:j € Nk € Z,n € Ni} < ¥ be the collection
of measurable subsets of X produced by the decomposition of 15, |\p, € LL(L) A L;‘f(ﬁi)

with respect to the size £}, at levels {2¥: k € Z} provided by Proposition In particular,
we have

V(Bjkn) = £,(1x) (Bjrn) € (28,2571,

U((Bj—l\Bj)\U U Eﬂm) = 0.

keZ neNy
The countable collection of measurable subsets of X defined by
(B} 0 {Bjpn: jeNkeZne Ny U{(B\BM\ | | Bipn: j €N},
keZ nGNk

prove that X is o-finite with respect to the outer measure v. O

4.3.2 Iterations of the canonical construction

Iterating the construction described in (4.3.2)) starting with the setting (X, v,w), we gen-
erate another outer measure i = fi(v,w) = fi(u,w) on X.

Lemma 4.3.3. For every o-finite setting (X, u,w) described in Subsection the outer
measure u dominates the outer measure i as in Definition[{.2.5

Proof. 1t is enough to prove that, for every measurable subset A € ¥, we have
fi(A) < p(A).

Then, by the equality in for 11, for every measurable subset A € X, we have
on(A) < u(A),

and the outer measure [i generated via minimal coverings as in (|1.1.1]) by the pre-measure
oy on the collection ¥ inherits the domination.
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We distinguish three cases.
Case I: y(A) = 0. By the equality in (4.3.4)) for v, we have v(A) = 0. By the equality

in (4.3.4) for g, we have fi(A) = 0.
Case II: ;(A) = oo. The desired inequality is trivially satisfied.
Case III: u(A) ¢ {0,0}. By the equality in (4.3.4) for i and v, we have

w(B)
v(B)

a(A) = sup{ :Be EU(A)}

— sup { inf Z%“(C): Ce EM(B)}: Be EU(A)}.

If the collection ¥, (A) is empty, then we have fi(A) = 0, and the desired inequality is
trivially satisfied. Otherwise, there exists a measurable subset B € 3,(A), and we claim
that

u(B) ¢ {0, o0}

In fact, if u(B) = 0, then v(B) = 0, yielding a contradiction. If u(B) = oo, then pu(A) = oo,
yielding a contradiction. Therefore, we have B € ¥,,(B), hence

w(B)

ji(4) < sup { 5 B) B e Zo(4)} < p(4).

O

Further iterating the construction described in (4.3.2)) starting with the setting (X, i, w),
we generate another outer measure ¥ = 9(f1,w) = U(p,w) on X.

Lemma 4.3.4. For every o-finite setting (X, u,w) described in Subsection let v,
i, and U be the outer measures defined via the recursive application of the construction

described in (4.3.2). Then, we have v = .

Proof. The domination of ¥ by v follows from Lemma for the o-finite setting (X, v, w).
We prove the domination of v by ©. It is enough to prove that, for every measurable subset
A€ X, we have

v(A) < T(A).
Then, by the equality in (4.3.3) for fi, for every measurable subset A € 3, we have

ou(A) < 05(4),

and the outer measures v and v generated via minimal coverings as in ((1.1.1)) by the pre-
measures g, and oy on the collection X respectively inherit the domination.
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By the equality in (4.3.4)) for ¥ and v, for every measurable subset A € 3, we have

H(A) = Sup{gggi : Dez(A)],
v(A) = sup{ijgg: Be EM(A)} = sup{f:ég;: BeX,(A),w(B) +# 0}.

We claim that, for every measurable subset B € X, if B € A, u(B) ¢ {0, 0}, and w(B) # 0,
then

[i(B) ¢ {0, o0}

In fact, by Lemma we have [i(B) < oo. Next, since w(B) # 0, if (B) = 0, then
v(B) = 0, yielding a contradiction with the absolute continuity of the measure w with
respect to the outer measure p proved in Lemma m Therefore, we have B € X;(A),
hence, by the domination of ji by u, we have

v(A) < sup{;jég;: Be Eﬁ(A)} < sup{;;ggi :Be E,;(A)} = v(A).

Corollary 4.3.5. For every o-finite setting (X, u,w) described in Subsection the
recursive application of the construction described in (4.3.2) produces at most two outer
measures on X different from u, namely v and [i.

No further a priori relation between the outer measures p and fi can be established, as
the examples studied in the following two subsections show.

4.3.3 First example: no uniform equivalence

Neither the equality nor the uniform equivalence between p and i are guaranteed.

Lemma 4.3.6. For every M > 0, there exist a finite setting (X, p,w) and a subset A < X
such that

n(A) > MA(A).

Proof. For every m € N, let (X, fim, wm ) be the setting on the m-dimensional hypercube of
sidelength m described in Subsection [I.2.6] We refer to that subsection for the definition of
the subset E(x). Let vy, and [i,, be the outer measures defined via the recursive application
of the construction described in (4.3.2)). Then, by the equality in for vy, for every
subset A € X,,,, we have

Um(A) = sup {wm(A AE(x)): xe Xm}. (4.3.7)
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Next, from the proof of Lemma [£.2.5] we recall that
pom (X)) > m.

Moreover, we observe that every y € X,,, belongs to (m — 1)™ many subsets of the form
E(z) with z € X,,,. Therefore, for every subset B < X,,,, B # &, we have

(m—1)"wn(B) = Z wm (B N E(x)) < m™sup {wm(B N E(x)):xe Xm}.

X m

Together with the equality in (4.3.7]), the previous display yields

~ W (B) m™
X,,) = { m\2). B X, B @} <
Taking m € N big enough, for A = X,,,, we obtain the desired inequality. O

4.3.4 Second example: equality

The equality between p and @ may be achieved in certain setting. For every m € {0} U N,
let (X, fim,wm ) be the setting on the dyadic tree of depth m described in Subsection m
We refer to that subsection for the definitions of the subset E(I) and the collection &,,. Let
U, and I, be the outer measures defined via the recursive application of the construction
described in . Then by the equality in for vy, for every subset A € X,,, we
have

vm(A) = sup {wm(A AE(I): Te Xy, |I| = zfm}.
We claim the equality between p,, and fi,, in this setting.
Lemma 4.3.7. For every m € {0} U N, for every subset A < X,,,, we have
i (A) = fim(4). (438)

Before proving the lemma, we describe an auxiliary construction, associating every
subset A € X,,,, A # @ to a subset B = B(A) < A of its own. First, we define a collection
A < &, such that

Ac | JE,

EeA

as follows. We set

AO =An Xo,
A = An (Xp\Xk—1), for every ke {1,...,m}.
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We define the elements of A by backward recursion on k. For k = m, we define the collection

Apm € &y by
Ay = {E(a): ac€ Am},

allowing A,, to be empty. Next, fix & < m and suppose we have defined A; < &,, for every
je{k+1,...,m}. We define the collection Ay < & by

.Zk={E(a):aeAk\ 6 U E}

j=k+1EecA;

If Ay is empty, we define A to be empty as well. Otherwise, for every E (a) € ./Zk, we define

E(a) = E(E(a)) € &y to be any arbitrary element of &, such that E(a) n X}, = E(a), and
we define the collection A € &, by

Apy = {E(a) — E(E(a)): E(a) ,Zk}.

After that, we define the collection A € &, by
m
A= A
k=0

Finally, we define the subset B = B(A) < A by

m m
B=|J (Ak\ U U E)
k=0 j=k+1EeA;
Lemma 4.3.8. For every m € {0} U N, for every subset A < X,,,, A # &, let the subset
B < A be defined by the previous construction. Then, we have

win(B) = tm(4), un(B) = 1.

Proof. By construction, we have
wm(B) = |A| = um(4), v (B) =1,
where |A| is the cardinality of A. To prove that um,(A) = |A|, we distinguish two cases.

Case I: w,,(B) = 1. The desired equality is trivially satisfied.
Case II w,,(B) > 1. We argue by contradiction and we suppose that p,,(A) < |A],

hence pi,,(B) < |A|. In particular, there exists a collection B < &, such that |B| < |A| and

Bc UE

EeB
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Therefore, there exists £ € B such that |E n B| > 2. As a consequence, there exist
a,be En B, a # b, such that

:um({aﬂ b}) =1

To prove that this equality yields a contradiction, we distinguish two cases.
Case ILi. There exists k € {1,...,m} such that

a,beAk\ 6 U E.

j=k+1 EE.AJ'

The contradiction follows noting that, for every E € &, the set E n (X;\Xx_1) has only
one element.
Case ILii. There exist k, k' € {1,...,m}, k # k', such that

aeAk\ [LJ UE, bGAk/\ Lnj UE,

Jj=k+1 EeA; j=K'+1 EeA;

and, without loss of generality, we assume k > k’. We argue by contradiction and we suppose
that ym({a,b}) = 1. Therefore, there exists E € &, such that a,b € E. In particular, we
have £ n X}, = E(a), hence b e E(FE(a)) € Ag, thus b ¢ B, yielding a contradiction. O

We are ready to prove the equality between u,, and fi,, in the case of the setting
(Xm, b, W) with m e {0} U N.

Proof of Lemmal[{.3.7] By Lemma the outer measure ji,,, dominates the outer mea-
sure [i,. By Lemma for every m € {0} UN, for every subset A € X,,, A # &, for the
subset B € A defined by the previous construction, we have

wn (B)

[im(A) = om(B) = pim(A).

4.3.5 Outer Minkowski’s inequality for o-finite settings

We turn to the proof of Minkowski’s inequality between the single iterated outer LP quasi-
norms on o-finite settings and the embeddings between the respective single iterated outer
LP spaces.

Theorem 4.3.9. For all p,r € (0,00], p = r, there exists a constant C = C(p,r) such that,
for every o-finite setting (X, u,w) described in Subsection for the outer measure v
defined via the construction described in (4.3.2)), for every measurable function f on X, we
have

11z ey < ClF Ly ey 11z ey < ClA Ly eny-
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Proof. We split the proof into three cases according to the values of p and r.

Case I: p = r € (0,00]. The desired inequalities follow from collapsing of exponents,
property (i) in Theorem for the o-finite settings (X, u,w) and (X, v, w).

Case II: r < p = 0. We define the collections ¥,(X),3,(X) < ¥ of measurable
subsets of X by

Bu(X) = {4 € B: u(4) ¢ (0.0} .
S, (X) = {A e v(A) ¢ {o,oo}}.

Moreover, for every measurable subset A € X, we define the collection ¥/ (A4) € X of
measurable subsets of A by

S/ (A) = {B €Y: BC Aw(A\B) = o}.

Next, for every measurable subset A € 3, for every \ € (0,0), we define the measurable
subset Ay € A by

Ay = {xeA: f(2)] > )\}.

We claim that, for every measurable subset A € ¥,(X), for every A € (0,00), for every
subset By € ¥/ (A,), we have
w(Ay)
1(A)

To prove the claim, we distinguish two cases.

< v(By). (4.3.9)

If u(By) = 0, then w(B)) = 0 by the absolute continuity of the measure w with respect
to the outer measure p assumed for the o-finite setting (X, p,w), and w(Ay) = 0 by the
assumption By € ¥/ (A)). Then, the inequality in is trivially satisfied.

If (By) # 0, we have

< <vu(By),

where we used the assumption By € X/ (A4)) and the monotonicity of the outer measure
u in the first inequality, the assumptions By € Ay € A, u(A) < oo, u(B)y) # 0, and the

equality in (4.3.4) for v in the second.
By the same argument and Lemma [4.3.3] for every measurable subset A € ¥,,(X), for
every A € (0,00), for every subset By € X/ (A)), we have

w(Ay)
v(A)

< A(By) < u(By). (4.3.10)
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By the inequality in , we have
| £117 6y = sup {u(ArlelAHzr(X,w): Aex,(X)]

sup {M(A)‘l /OOO r/\Tw(A,\)%: Ae ZM(X)}

IN

Sup{/ooorx\rinf{U(BA): B)\GE:J(A)\)}% Ae ¥, (X )}

sup { | FLall 7 )¢ A € Zu(X)}

= |11 (e

By the same chain of inequalities, exchanging the roles of u and v, replacing the inequality
in (4.3.9) by that in (4.3.10]), we have
1 0z ey < 1z oce)-

Case III: r < p < oo. Without loss of generality, we assume r = 1, since, for every
setting (X, u,w), we have

1 gy = 1771

In particular, we have p > 1, hence

11z geny < € sup {179l N9l ey = 1}
< Csup { £l iy ey l9ll ey = 1}

< Csup {1y 190y 190 ey = 1
< Clfllpsenys

where we used Kothe duality, property (i) in Theorem for the o-finite setting (X, p, w)
in the first inequality, the Radon-Nikodym type result for the outer L' quasi-norms (Theo-
rem [1.1.§) for the o-finite setting (X, v,w) in the second, outer Holder’s inequality (Theo-
rem E for the o-finite setting (X, v,w) in the third, and the inequality proved in Case
IT in the fourth. We prove the remaining inequality analogously, exchanging the roles of u
and v. 0

LT(El

Corollary 4.3.10. For all p,r € (0,0], p = r, there exists a constant C = C(p,r) such
that, for every o-finite setting (X, u,w), for the outer measures v and [i defined via the
recursive application of the construction described in , for every measurable function
f on X, we have

2

11 e gery < CHfHLZ(ZZ;) < C7fllir ey
2

1A e ey < ClAllzyeny < CF N g eny-
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Proof. The desired inequalities follow from Lemma [£.2.4] Lemma [4.3.3] Lemma [£.3.4] and
Theorem [£.3.9] O

4.3.6 Examples

We comment on the outer measures v and i defined via the recursive application of the
construction described in (4.3.2)) in the remaining settings described in Chapter

o Let (X, p,w) be a o-finite setting described in Subsection such that p is the
outer measure generated via minimal coverings as in by w considered as a
pre-measure on the collection 3 of measurable subsets. In particular, u coincide with
w on the measurable subsets. Then v is the constant outer measure attaining the
value 1 on every non-empty subset of X, and i = p. Moreover, if (X, pu,w) is a finite

setting described in Subsection then i = p = w.

e Let (X, u,w) be the setting on the Cartesian product of o-finite measure spaces de-
scribed in Subsection Then, for every measurable subset A < X, we have

v(A) = sup {wZ(Z’): Z'e ¥y, 3V € Sy wy(Y) £0,Y x Z' A},
J(A) = sup {wy(Y/): Y' € %y,32' € Spwp(Z) £0,Y x Z' € A},

where Yy is the collection of measurable subsets of Y, and ¥z of Z. In general the

equality between p and i is not guaranteed. For example, for all measurable subsets
Y' e ¥y, Z' € ¥z such that

wy (Y') #0, wz(Z") =0, 7'+ o,
we have
w(Y' x 2" = wy (Y'), aY'x 2 =wlY'x Z') = 0.
However, for all measurable subsets Y’ € ¥y, Z’ € ¥4, we have

v(Y x Z') = wz(2'),
AY' x Z2) =wy(Y') = uY' x Z).

In particular, if the measure spaces are finite sets, for every subset A € X, we have

v(4) = sup {wz(r7 (A {y} x 2)): ye Y},

ji(4) = sup {wy ({y}): y € Ty ().
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o Let (X, u,w) be the setting described in Subsection [1.2.5] where the outer measure

attains the constant value 1 on every non-empty subset of X. Then v is the outer
measure generated via minimal coverings as in (1.1.1)) by w considered as a pre-
measure on the collection ¥ of measurable subsets, and 1 = p.

Let (Xg, ptq,wq) be the setting on the collection of dyadic cubes described in Subsec-
tion [1.2.8] Then, for every subset A € X4, we have

wd(AmE(ﬁ”L,l))_me d e
(B 0) | TEEN e,

namely vg(A) is the minimal Carleson constant associated with the collection Q4(A) <
Qg4 of dyadic cubes given by the bases of the elements in A, and

fia(A) = pa(A). (4.3.11)

In fact, let B < A be the collection of upper half dyadic boxes associated with the
maximal dyadic cubes in Qg4(A), maximal in terms of set inclusion. Then wy(B) =
uq(A) and vg(B) = 1.

vg(A) = sup {

Let (X4, pa,wq) be the setting on the upper half space described in Subsection m
where the outer measure pg is generated via minimal coverings by the collection of
dyadic tents. Then, for every measurable subset A € X4, we have

wa A0 B(iD) g
BT ez,lez},

namely v4(A) is the dyadic Carleson constant associated with the measure 1 4w. Next,
we claim that, for every measurable subset A € Xy, we have

v4(A) = sup {

~ ~

fia(A) = Fa(A) = pa(A), (4.3.12)

where the measurable subset A = E(A) € A is defined by the following auxiliary
construction. We refer to Subsection for the definitions of the dyadic cube
Q(m, 1), the collection of dyadic cubes Qg, and the upper half dyadic cubic box
B(m,1).

For all m € Z¢, | € Z, we define the measurable subset A(17,1) € A by
A(m,l) = An B(m,l).

Moreover, for all m € Z%, 1 € Z, for every measurable subset A < X, for every
collection Q € Qg, we define the subset B(m, [, A, Q) < A(nm,l) by

a, if Q(m, 1) ¢ Q,

B, 1,4, Q) = {A(m,z), QM1 < O,
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and we define the measurable subset B(A, Q) < A by

B(4,9) = ] [UB®m,1,4,9).

meZd leZ

Finally, for every measurable subset A € X, we define the collection Q(A) € Q4 by
Q(A) = {Q(ﬁi,l) € Qu: wal Al 1)) > o}, (4.3.13)
and we define the measurable subset A € A by
A = B(4,0(4)). (4.3.14)
In particular, by construction we have
w(A\A) = 0. (4.3.15)

We turn to the proof of the inequalities in (4.3.12)).
The first equality in (4.3.12]) claims

. B ~ o~ o~ A
() = (X = sup { 2LV Bewn Be XodB) # (0.0} 2

where we used the equality in (4.3.4) for fig. The first inequality in the previous
display follows from the monotonicity of the outer measure fiy. The second inequality
follows from the monotonicity of the outer measure vy and the equality in (4.3.15)).

The second equality in (4.3.12) follows from the domination of jigy by ug, and the
following observation.

For every subset A < X4, we define the collection Q(A) € Qg as in (4.3.13)), and we
define Q(A) to be the collection of maximal dyadic cubes in Q(A), maximal in terms
of set inclusion. By Lemma in Chapter [2] we have

Ha(B(A, O(A)) = 30 3 pua( B, D)1, QU 1)) = ra(A).

meZd leZ

Next, we distinguish two cases.

Case I: p4(A) < 0. For every € > 0, there exists a finite collection O(4,¢) = O(A)
such that

~

na(B(A, Q(A,€))) = pa(B(A, Q(A))) — .
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We define p(e) > 0 by

wa(A(m, 1)) Ol (A e
m- Q(m, 1) € Q(A, )}7

~

therefore, for every dyadic cube Q(m,1) € Q(A, €), there exists a subset B(m, 1, A,¢) <
A(m, 1) such that

pe) = min{

wd(B(m> L A7 E)) = p(E):U’d(B(m7 l))
We define the subset B(A, &) < A by

B(Ae) = |J (B0, 4,e),

meZd leZ
hence .
wa(B(A,€)) > p(e)(na(A) — ) valB(A,£)) = p(e).
Therefore, we have
pa(h) > MBS o dy e

va(B(4,¢))
Taking € arbitrarily small, the previous display yields the desired inequality.

Case II: pg(A) = 0. For every M > 0, there exists a finite collection Q(A, M)
Q(A) such that N

By the same argument used in Case I, we have
fla(A) = M.
Taking M > 0 arbitrarily big, the previous display yields the desired inequality.

Let (X4, ptq, wq) be the setting on the upper half space described in Subsection [1.2.10
where the outer measure pg is generated via minimal coverings by the collection of
continuous tents. Then, for every measurable subset A € X4, we have

wi(A N E(z,s))
pa(E(z, s))

namely vg(A) is the minimal Carleson constant associated with the measure 14w.
Next, we claim that, for every measurable subset A € X, we have

Ud(A):sup{ :xeRd,se(O,oo)},

fia(A) = fia(A) = pa(A). (4.3.16)

where the measurable subset A = E(A) € A is defined by the following auxiliary
construction. We refer to Subsection [L2.10] for the definitions of the continuous cubic
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box E(Z,s) and the collection of continuous cubic boxes £;. Next, for every & € R?,
s € (0,0), we define the upper half cubic box B(Z, s) in the upper half space R%x (0, o0)
by

B(Z,s) = E(Z, ) n (Rd x (gs])

and we define the collection £; 9 S &; of continuous tents with rational coordinates
by

Eag = {E(q, s)e &y 7eQlseQn (0, oo)}_
For all 7€ Q%, s € Q n (0,0), we define the measurable subset A(g,s) £ A by
A(q,s) = An B(q, 5),

we define the collection A € P(A) by
A={A(@5) € A: 7e Q5 € @ (0,20),wul Al 5)) = 0},

and we define the measurable subset A < A by

A=A\ (4. (4.3.17)
AleA

In particular, by construction we have

w(A\A) = 0.

The equalities in (4.3.16]) follow by arguments analogous to those used to prove the
equalities in (]@ We briefly comment on the modifications needed. We can
no longer rely on the dyadic structure to define the collection é(A), nor to use
Lemma [2:2.3 in Chapter [2] as in the previous setting. We distinguish two cases.

Case I: Md(ﬁ) < o0. For every § > 0, there exists a collection Sd(ﬁ, d) < Eqq of
continuous tents with rational coordinates such that

and, for every E(q,s) € E4(A, §), we have

wd((A A B(T,$))\ U E) £ 0.

EeEq(A8),E+E(q,s)
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The collection £4(A, §) replace the collection Q(A), and, by the same argument used
in Case I in the previous setting, we can prove

~

fia(A) = pa(A) - 6.
Taking § arbitrarily small, the previous display yields the desired inequality.

Case II: p4(A) = 0. For every M > 0, there exists a collection Eg(A, M) < Eaq of
continuous tents with rational coordinates such that

>, na(E) =M,
Ee&q(A,0)

and, for every E(q,s) € E4(A, 5), we have
wa((A 0 B(@ )\ g E) #0.
Eeq(A0),E+E(F,s)

By the same argument used in Case II in the previous setting, we can prove

~

fia(A) = M.
Taking M > 0 arbitrarily big, the previous display yields the desired inequality.

Let (X,v,w) be the setting on the collection of Heisenberg upper half dyadic tiles
described in Subsection [I.2.11] Then, for every subset A € X, we have

o(A) = sup {w(A N T(m,n,l))

v(T(m,n,l))
v(A) =v(A).

The second equality follows from combining the arguments used to prove the equalities
in (4.3.8) and (4.3.11)) for d = 1.

m,n,l € Z},
(4.3.18)

Let (X, v,w) be the setting on the upper half 3-space described in Subsection [1.2.12
where the outer measure v is generated via minimal coverings by the collection of
dyadic trees. Then, for every measurable subset A € X, we have

w(AnT(m,n,l))
v(d) = sup{ v(T(m,n,l))

~ ~

¥(4) = v(A) = v(A),

m,n,le Z}, (4.3.19)

where A € A is defined by an auxiliary construction analogous to that in as
in the case of the setting described in Subsection [1.2.9] with the collection of upper
half dyadic cubic boxes B, replaced by the collection of Heisenberg upper half dyadic
tiles H. The equalities in the second line in the previous display follow by arguments
analogous to those used to prove the equalities in and for d = 1, with
Lemma in Chapter [2| replaced by Lemma stated below.
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e Let (X, v,w) be the setting on the upper half 3-space described in Subsection [1.2.13
where the outer measure v is generated via minimal coverings by the collection of
continuous trees. Then, for every measurable subset A € X, we have

. w(AnT(x,&s))
R T )
(4) = ) = v(A),

:x,{eR,se(O,oo)}, (43.20)

where A € A is defined by an auxiliary construction analogous to that in in
the case of the setting described in Subsection [1.2.10] with the continuous tents with
rational coordinates replaced by the continuous trees with rational coordinates. The
equalities in the second line in the previous display follow by arguments analogous to
those used to prove the equalities in (4.3.8) and (4.3.16|) for d = 1.

We point out that in the case of the settings on the upper half space described in
Subsections - the outer measures jig and ug are not equivalent. For example,
for every # € R%, we have

Md({f7 1}) =1, ﬁd({f’ 1}) = 0.

However, the single iterated outer LP quasi-norms and spaces associated with them are
equal. We have the same properties for the outer measures 7 and v in the case of the

settings on the upper half 3-space described in Subsections [1.2.12[—|1.2.13

Lemma 4.3.11. For all p,r € (0,00], p = r, for every setting (Xg, p1q,wq) on the upper half

space described in Subsections - for the outer measure fig = fig(iq,wq) defined
via the construction described in (4.3.2), for every measurable function f on X4, we have

Hf”Lﬁd(éL) - ||f||L§d(g;)a HfHLﬁvf(z;) = ”fHLg’;O(eg)'

For every setting (X,v,w) on the upper half 3-space described in Subsections -
for the outer measure v = v(v,w) defined via the construction described in (4.3.2),

we have the same statement for the outer LL(C7) and LY (7)) spaces.

Proof. In the case of the settings (X, ttq, wq) on the upper half space, for every measurable
subset A € X4, we have R
wa(A\A) =0,

where A C A is the subset defined by the auxiliary construction.
Analogously, in the settings (X, v, w) on the upper half 3-space, for every measurable
subset A € X, we have
wa(A\4) =0,

where A C A is the subset defined by the auxiliary construction.
Therefore, the desired equalities follow from the equalities for the outer LP and LP>*®

quasi-norms in (|1.2.6)), and the definition of the sizes £/, in (1.2.3) and (1.2.4]). O
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4.3.7 Banach space properties of the outer L?({*) spaces

The outer measures defined via the construction described in have a better subaddi-
tivity behaviour than general outer measures. In particular, they guarantee the uniformity
of the constants in Kothe duality and quasi-triangle inequality for countably many sum-
mands for the outer L} (¢%) spaces with p € (1,00), as well as in the weak quasi-triangle
inequality for countably many summands for the outer L} (¢%) space.

Lemma 4.3.12. For every p € [1, 0], there exists a constant C = C(p) such that, for every
o-finite setting (X, p,w) described in Subsection for the outer measure v defined via
the construction described in (4.3.2)), the following properties hold true.

o0

(i) For every p € (1,0], for every measurable function f € LY (£

) on X, we have
C Mgy <50 {150l 1y 19l ) = 1} < O Lpges

(ii) For every p € (1,00], for every collection of measurable functions {f,: n € N} <
LY (6X) on X, we have

H%fﬂ LY (£%9) < C%anHLﬂ(fi‘?)'

v\ tw

(iii) For every collection {f,: n € N} € LL(¢(*) of measurable functions on X, we have

|3
neN

. < %||an%(4§)-

Proof. Proof of property (i). For p = oo, the inequalities follow from collapsing of
exponents, properties (i) in Theorem for the o-finite setting (X, v, w).

For p e (1,), let f € LE(£X). The second inequality follows from the Radon-Nikodym
type result for the outer L' quasi-norms (Theorem and outer Holder’s inequality
(Theorem for the o-finite setting (X, v,w).

To prove the first inequality, for every k € Z, we define the measurable subset 4, € X
by

Ay = {x e X:|f(z) > 2k}.

By the assumption f € LL(£X), we have
inf{U(Bk)i By € X, By © Ay, w(Ap\By) = 0} <27 fll o ey < 0

We define a collection {Dy: k € Z} of measurable subsets of X as follows.
We distinguish two cases.
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If
inf {U(Bk): By € %, By C Ay, w(As\By) = 0} —0,

then we define the subset Dj to be the empty set.
If

inf {’U(Bk): Bpe X, B, < Ak,w(Ak\Bk) = 0} € (0, OO)7

then, for every € > 0, we define the subset By, = ék(e) € ¥ such that By, < Ayg, w(Ak\f?k) =
0, and

inf {’U(Bk): BpeX, B < Ak,w(Ak\Bk) = 0} < ’U(ék),

v(Br) < (1 +¢)inf {U(Bk): By € S, By © Ay, w(Ap\By) = 0},

and the measurable subset Dy, < Ek such that

w(Dy) ~ w (D)
<v(Bg)<(1+e .
u(Dy) <P ST
In particular, we have p(Dy) # 0.
We define the measurable function g on X by
g(z) = Y. 250~V p1p, (2),
keZ
where, for every k € Z, we define pj, € [0, 00) by
0, if Dy =@,
Pk = . .
u(Dr) ™, if Dy # @.

There exists a constant ¢ = ¢(p, ) such that

1F9ll s (x) = € D 2P0(Br) = ell 175 e
keZ

where we used the definitions of g, Dy, and Ek in the first inequality, and the definition of
the outer L% (/%) quasi-norm in the second.

Moreover, there exists a constant C; = C1(p) such that, for every j € Z, for every subset
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FE < X, we have

D ok(p—1) @Dk 0 E)
keZ,k<j: w(DynE)#0 v(E)p(Dr)

k(p—1) w(Dk M E)
s 2 D~ B

U(E)il Hgl(UkeZ,kzj By)e 1EHLl(X,w) =

keZ,k<j: w(DrnE)#0

< Z 2k(p71) U(Dk M E)
keZ,k<j U(E)

< Cl2j(p_1),

where we used the monotonicity of the outer measure v in the first inequality, the absolute
continuity of the measure w with respect to the outer measure u thus

wDrNE)# 0= pu(DrnE)+#0,

and the equality in (4.3.4)) for v in the second, the monotonicity of the outer measure v and
the bounds on the geometric series in the third. Hence, by the subadditivity of the outer
measure v, we have

(th(e) > 2 <o | B) < Y u(By),
keZ,k>j keZ,k=j

and, by Fubini and the bounds on the geometric series, there exists a constant Cy = Cy(p)
such that we have

ol ) < Co 227 3 w(Bi) < G 3 27u(Bi) < GRSy g
w JeZ keZ,k>j keZ

Proof of property (ii). The desired inequality is a corollary of the triangle inequality
for the classical L'(X,w) norm and the previous property.

Proof of property (iii). Let {A,: n € N} be a collection of measurable subsets of X.
For every j € N, we define the measurable subset B; < X by

B = {xeX: ‘2 1An(x)’ 2]’}.

neN

Therefore, we have
JlB; < Z 1a,.-

neN

Next, for every measurable subset A € ¥, by Theorem [£.3.9] we have

all e ery < 11allp )
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and, by the equality for the outer L' quasi-norm of a characteristic function in (1.2.7), we
have

11all s () = inf {U(B): BeX,Bc A wAB) = o} < 0(A4) = 14l sz
Moreover, by the equalities for the outer L' and L%* quasi-norms in (I.2.6]), we have
|3 1.
neN
Together with Lemma, the previous four displays yield the inequality

|2 1.
neN

The desired inequality follows from Lemma O

o) T {135, I3z 7 € N}

o) S DAl ee)-
v w neN

Remark 4.3.13. We point out that, a priori, the outer measure v does not guarantee
the uniformity of the constants in Kothe duality and quasi-triangle inequality for countably
many summands for the outer LL(¢7) spaces with r € (1,0]. This is clarified by the equality
between iy, and py, showed for every m € {0} U N in Subsection in the case of the
setting on the dyadic tree of depth m described in Subsection[I.2.7. In fact, in this collection
of settings we exhibited counterexamples to the uniformity in the finite setting of the constant
in the quasi-triangle inequality for countably many summands for the outer Li(ﬁ;) spaces

with r € (1,0], see Lemma in Chapter 4

4.4 Outer L? spaces on the upper half 3-space settings

In this section, we study the Banach space properties of the single iterated outer LP spaces
on the settings on the upper half 3-space or its discrete model, with a particular focus on
the case of the outer L} (£*) and LL(¢") spaces.

Theorem 4.4.1. For all p,r € (0,0], there exists a constant C = C(p,r) such that, for
every setting (X, v,w) on the upper half 3-space or its discrete model described in Subsec-
tions [1.2.11) —[1.2.15, the following properties hold true.

(i) For every p € (0,0], for every measurable function f e LY(¢) on X, we have
C_leHLﬁ(Kﬁ’,) < ||f||LP(X,w) S C||f||L5(é£’,)-

(ii) For all p e (1,0], r € [1,00] or p =1 = 1, for every measurable function f € LL({")
on X, we have

O Nazqegy < 59 {19021 (x 191y ) = 1} < O iz



172 CHAPTER 4. FURTHER RESULTS

(iii) For all p e (1,00], r € [1,0] or p =1 = 1, for every collection {f,: n € N} < L} (¢X)
of measurable functions on X, we have

IS
neN

< C Y all g ey
Lo () neN i

(iv) For every collection {f,: n e N} C LL({%) of measurable functions on X, we have

| >
neN

v SC Z 1l Ly ooy
2 v

(v) For every r € (1,00], for every M > 0, there exists a collection {f,: n € N} < LL(¢")
of measurable functions on X such that

(D
neN

> M .
L) %anh;(ew)

Property (i) and, for all p € (1,0], r € [1,00) or p = r € {1,00}, properties (ii) and
(7i1) are a corollary of Theorem Moreover, for all p € (1,00), r = 00, properties (i7)
and (i7i), and property (iv) are a corollary of Lemma and Lemma as well as
the equalities in (1.3.18), (4.3.19), and (4.3.20)). Since we only sketched the proof of those
equalities, in this section we provide an alternative proof of properties (i¢) and (7i7) in the
remaining cases, as well as properties (iv) and (v).

In Subsection , we start with the case of the setting (X, v,w) on the upper half
3-space described in Subsection where we denote by v the outer measure generated
via minimal coverings by the collection of dyadic trees. Then the case of the setting on
the collection of Heisenberg upper half dyadic tiles described in Subsection follows
straight-forwardly.

After that, in Subsection we comment on how to adjust the arguments in the
case of the setting (X, 7,w) on the upper half 3-space described in Subsection where
we denote by v the outer measure generated via minimal coverings by the collection of
continuous trees.

The separate analysis of the two cases is due to the fact that the outer measures v and
v are not equivalent. Moreover, also the single iterated outer LP quasi-norms associated
with the two outer measures are not equivalent. In fact, in Subsection we prove the
following result.

Theorem 4.4.2. For all p,r € (0,0], p > r, we have
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We recall that, instead, in the case of the settings on the upper half space described
in Subsections - the outer measures generated via minimal coverings by the
collections of dyadic and continuous tents respectively are equivalent. As a consequence,
also the single iterated outer LP quasi-norms associated with the two outer measures are
equivalent, and we refer to Section 2.3 in Chapter [2] for the details.

4.4.1 Geometry of the dyadic trees in the upper half 3-space
Let (X,v,w) be the setting on the upper half 3-space described in Subsection [1.2.12} We

recall that the outer measure v is generated via minimal coverings by the pre-measure 7 on
the collection T of dyadic trees, and each dyadic tree is denoted by T'(m,n,1) for certain
m,n,l €.

We start with some auxiliary observations about the geometry of dyadic trees and their
intersections, and the values of the outer measure v on them.

We refer to Subsection [[.2.12] for the definitions of the dyadic tree Ty € T associated
with a Heisenberg upper half dyadic tile H € H, and the Heisenberg upper half dyadic tile
Hp € H associated with a dyadic tree T € T.

Lemma 4.4.3. Let T be a dyadic tree in T, let H be a Heisenberg upper half dyadic tile in
H such that T n H #+ &. Then, we have Ty < T.

Proof. The statement is a straight-forward consequence of the definition of dyadic trees in
T and the pairwise disjointness between different elements in H. O

Lemma 4.4.4. Let T be a dyadic tree in T and let {T,: n € N} < T be a collection of
dyadic trees such that, for every n € N, we have
T,<T,
T.¢ |J Tw (4.4.2)

meNm#n

Then, we have

D7) < 7(T).

neN

Proof. For every n € N, we define the Heisenberg upper half dyadic tiles H, H,, € H by
H=HrcT, HnZHTHETn.

We claim that the dyadic intervals in the collection {7 (H,): n € N} are pairwise disjoint,
where m: X — R is the projection onto the first coordinate.

In fact, by the definition of dyadic trees in 7 and (4.4.1)), for every n € N, we have

®(H) < %(H,), (4.4.3)
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where 7: X — R is the projection onto the second coordinate. Next suppose there exist
n,n’ € N such that the dyadic intervals m(H,) and w(H, ) have non-empty intersection.
Therefore, they are contained one in the other and, without loss of generality, we assume
w(Hy) € n(Hp). Then we have |w(H,)| < |7v(H,)|, hence |7(H,,)| = |7(H,)|. Moreover,
by the inclusion in (4.4.3)), the dyadic intervals % (Hy) and 7(H,,) have non-empty intersec-
tion, hence 7(H,,) < 7T(Hn ). As a consequence, we have H,, < T,. Hence, by Lemma[{.4.3]
we have T,y € T, yielding a contradiction with the condition in (4.4.2]).

By the inclusion in , for every n € N, the dyadic interval 7(H,,) is contained in
7(T). Therefore, we have

M () = Y In(Hy)| = \U (H,

neN neN neN

m(T)| = 7(T),

where we used the fact that the dyadic intervals in the collection {mw(H,): n € N} are
pairwise disjoint in the second equality. O

Lemma 4.4.5. Let {H,: n € N} € H be a collection of Heisenberg upper half dyadic tiles
such that, for every n € N, we have

H,¢ | Tu,. (4.4.4)
meN,m#n

Let {W,,: n € N} be a collection of measurable subsets of X such that, for every n € N, we
have

W, < Ty, W, n H, # &. (4.4.5)
Then, we have
Z T(THn) = V( U Wn>
neN neN

In particular, for every dyadic tree T in T, we have
m(T) = v(T).

Proof. Since the outer measure v is generated via minimal coverings by the pre-measure 7
on the collection T of dyadic trees, by the inclusion in (4.4.5), we have

()< X ir)

Therefore, if the left hand side in the previous display is infinite, then the right hand side is
infinite as well, yielding the desired equality. If the left hand side is finite, for every ¢ > 0,
there exists a collection U(e) < T of dyadic trees such that

Uw.e U © (4.4.6)

neN Ueld(e)

N rU) < (1+¢) (UW) (4.4.7)

Ueld(e) neN
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Without loss of generality, we assume that, for every U € U(e), we have

ve | v
VeU(e),VAU

otherwise we would drop U from the collection U(e), preserving the inclusion in
and decreasing the left hand side in the inequality in . Next, by the inclusion in
, for every n € N, there exists an element U € U(e) such that W, n U # &, hence
H, nU # @. In particular, by Lemma[£.4.3] we have T},  U. Then, for every U € U(e),
we define the subcollection T(U) < {Ty, : n € N} by

TWU) = {THni neN, Ty, < U}.

We have
{THn: neN} = U TU
Ueld(e)

The condition in (4.4.4)) on the collection {H,: n € N} implies the condition in (4.4.2)) on
each of the collections 7 (U). By Lemma we have

Z 7(Th,) < Z Z (THn)< Z T(U).

neN Uel(e) Th,, <T (U Uel(e)

Taking e arbitrarily small, together with the inequality in (4.4.7)), the previous display yields
the desired inequality. O

4.4.2 Outer [2({*) and L.(¢") spaces on the upper half 3-space setting
with dyadic trees

Let (X, v,w) be the setting on the upper half 3-space described in Subsection We
recall that the outer measure v is generated via minimal coverings by the pre-measure
7 on the collection 7 of dyadic trees, and each dyadic tree is denoted by T'(m,n,l) for
certain m,n,l € Z. We have the following decomposition result with respect to the size £
for measurable functions on X in the intersection between the outer Lj;(£7) and L7 (£Z)
spaces.

We refer to the end of Chapter [I] for the notation of a double sequence parametrized by
pairs (k,n) with k € Z, n € Ny appearing in the following statement.

Proposition 4.4.6. For every p € (0,00), there exists a constant C = C(p) such that the
following property holds true.

For every measurable function f € LL((E) n LP(X) on X, there exist ko € Z and a
double sequence {T},,: ke Z,ne Ny} =T of dyadic trees such that

o For every ke Z, k> ko, we have N, = &
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o If we set
Uy =2, for every ke Z, k > ko,
Uko = Uk+1, for every ke Z, k < ko,
Uk = Ukn—1 U Tim, for every k € Z, k < kg, for every n € Ny,
U = Ugq1 U U Uk.n, for every ke Z, k < ko,

neNg

then, for all k € Z, n € Ny, we have

65 (flog, ) (Tn) > 25, when Ty, # &, (4.4.8)
”flUCHLOO(ngO) < 2", (4.4.9)
v(EZ(f) > 2%) < v(Uy), (4.4.10)
D v(Ten) < v(E(F) > 29). (4.4.11)
neNy

In particular, we have

”fHLWOO PZQkPE (Thsn) ~ ZQkp Z Z (Tim)-

keZ neNg keZ leZ,l=k meN;

Moreover, for every k € Z, the Heisenberg upper half dyadic tiles in the collection

{Hk,n = Hp ,:ne Nk} < H, (4.4.12)

satisfy the geometric property in (4.4.4).

Proof. The selection algorithm is analogous to that described in Case II in the proof of
Proposition in Chapter 2, We define the collection {T},: k € Z,n € Ny} < T by a
double recursion, backward on k € Z, and, for every fixed k, forward on n € Ng. In parallel,
we prove the properties in (4.4.8) — (4.4.11) by backward induction on k € Z.

We briefly comment on the modifications needed. Dyadic cubic boxes, namely dyadic
tents, are replaced by dyadic trees. The upper half dyadic cubic box E* associated with a
dyadic cubic box E is replaced by the Heisenberg upper half dyadic tile Hy associated with
a dyadic tree T. The geometric properties of dyadic tents observed in Lemma and
Lemma[2.2.3]in Chapter [2|are replaced by those of the dyadic trees observed in Lemma[4.4.3]
and Lemma, respectively.

The geometric property of the collection defined in follows from making the
maximal choice for the dyadic tree T}, ,, at each step of the selection algorithm, maximal in
terms of the outer measure v. O
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We are ready to prove the remaining properties stated in Theorem in the case
of the setting on the upper half 3-space described in Subsection [1.2.12] where the outer
measure is generated via minimal coverings by the collection of dyadic trees.

Proof of Theorem [{.4.1] for the setting described in Subsection[1.2.13. We prove the prop-
erties that do not follow as a corollary of Theorem [£.21]

Proof of property (ii) for all p € (1,m), r = . Let f € LL({X). The second
inequality follows from the Radon-Nikodym type result for the outer L! quasi-norms (The-
orem|1.1.8) and outer Hélder’s inequality (Theorem[1.1.7)) for the setting (X, v,w). To prove
the first inequality, by the approximation result stated in Lemma[3.5.1]in Chapter [3|for func-
tions in the outer LY (¢X°) spaces, without loss of generality, we assume f € L} (£%)n LE(£X).
Let {T}: k€ Z,n € Ni} < T be the collection of dyadic trees produced by the decomposi-
tion of f with respect to the size £% at levels {2¥: k € Z} provided by Proposition In
particular, for every fixed k € Z, the collection {T},,,: n € Ny} < T of dyadic trees satisfies
the geometric property in , and the Heisenberg upper half dyadic tiles in the collec-
tion {Hy, = Hr,,: n € Ny} € H satisfy the geometric property in . Moreover, there
exists a collection {Wy,,, € Hy,,: k € Z,n € Ni} of pairwise disjoint measurable subsets of
X such that, for all k € Z, n € Ny, we have w(Wj,,,) > 0 and

F(a,&,5)] € (28,21, for every (z,£,5) € Wi

We define the measurable function g on X by

.ZU 57 Zka b Z lek’n(l',f,é’).

keZ neNg ’

There exist constants ¢ = ¢(p) and C' = C(p) such that
17911 (x 0y = CllFITp () gl g1y < CIINTp

The proof of the first inequality in the previous display is straight-forward. The proof
of the second is analogous to that of Case II with » = o0 in the proof of Lemma [2.3.1
in Chapter 2] We briefly comment on the modifications needed. Dyadic cubic boxes,
namely dyadic tents, are replaced by dyadic trees. The geometric properties of dyadic tents
observed in Lemma and Lemma in Chapter [2] and implicitly used are replaced
by those of the dyadlc trees observed in Lemma for subcollections of {7} ,: n € Ni}
and Lemma for subcollections of {H},,,: n € Ny} respectively.

Proof of property (iii) for all p € (1,0), r = c0. The desired inequality is a corollary
of the triangle inequality for the classical L'(X,w) norm and the previous property.

Proof of property (iv). We define the measurable function f on X by

f:an

neN
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For every A € (0,00), we define the collection H) < H of Heisenberg upper half dyadic tiles
by

Hy= {HG He | Lall o (x 0y > )‘}'

First, we assume f € Ly ((%). Therefore, for every A € (0,00), we have

sup{\w(H)\:HeH;}éu( U H) < o,
HeHy

where m: X — R is the projection onto the first coordinate. Hence, the collection H) has
maximal elements, namely we define the collection Hy S H) by

H = {H eHy: BH' € Hy, H' # H,m(H) < m(H'), 7(H') < #(H)},

where 7: X — R is the projection onto the second coordinate. In particular, we have

UH:UH,

HeHy, Heﬁ,\

and the Heisenberg upper half dyadic tiles in the collection H » satisfy the geometric property
in (£.4.4). Since f € Ly (¢%), there exists A € (0, 00) such that

1l emy < 2AVEECF) > 8) <2 3 (1F Ll e (). (1.4.13)
HE?'NI,A

Next, for every n € N, we split 7-[A into the subcollections 7-[A7k = ﬁA,k(n), one for each
k € 7, defined by

Hap = {H € Ha, [ frLill oo x ) € (2k,2k+1]},

hence, by Lemma for the collection H Ak, We have

3 V(H)zy( g H)gy(e;?<fn)>2k).

HEﬁA,k HE?‘NLA,;C

Therefore, we have

S kil e () <2325 3 w(H)

HE?‘N[A keZ HG?T[A’;C
<2 2Ku(0%(f,) > 2F) (4.4.14)
keZ

< Ol fall L1 ggoo)-
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Together with the triangle inequality for the classical L (X,w) norm, the inequalities in
(4.4.13) and (4.4.14)) yield the desired inequality.

Next, we assume f ¢ L™ (£2). Therefore, for every M > 0, there exists A € (0, 0) and
U < X such that

M < (| {1y ooy < .

By the same argument used in the previous case, we have

M < C Y fall ey

neN

Taking M > 0 arbitrarily big, the previous display yields the desired inequality.
Proof of property (v). Fix j € N. For alln,l € Z, 0 <1 < j, we define N(n,l) € Z by
the condition

I(n, —j) < I(N(n,1),=1).
For all n,l € Z, 0 <l < j, we define the measurable subset ﬁ(n, )< X by

2011
H(n,l) = ) H(m,n,0) = 1(0,5) x I(n, 1) x (271,21, (4.4.15)
m=0
and, for every n’ € Z, 0 < n’ < 2/, we define the measurable subset E(n') € X by
j ~ ~
E() = | JHN®,1),1).
=0
In particular, for every n’ € Z, 0 < n’ < 27, we have
H(0,7",j) € E(n') < T(0,7, j),

hence, by Lemma [4.4.5] we have '
v(E(n')) = 27.

Next, we define the measurable functions f,» and f on X by

fn/(x 3 )_ 1E (.T ga )

27 1 j 2t—1 )
.1' 57 2 fn x 57 Z Z j_llf](ml)(xa{? 8)‘
=0 n=0

There exist constants ¢ = ¢(r) and C' = C(r) such that

11 Ly e,y = 2% (j + 1),

271 271

i 1
Z I fwllpsery <C Z 1 ll ooy 1 L Lo oy = €2727 (5 + 1)
n'=0 n'=0

Taking j € N big enough, we obtain the desired inequality. O
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Remark 4.4.7. The counterezample is analogous to that in Lemma in Chapter [3
We point out the similarities between the figure on the left in Figure|1.4 and that on the
right in Figure[1.]], seen upside down.

Remark 4.4.8. The existence of counterexamples to the quasi-triangle inequality for count-
ably many summands for the outer LL(") spaces exhibited in property (v) implies the eis-
tence of counterexamples to Kdthe duality for the same spaces.

Proof of Theorem[{.4.1] for the setting described in Subsection[1.2.11. Let (X,v,w) be the
setting on the collection of Heisenberg upper half dyadic tiles described in Subsection|1.2.11
let (X' ,V,w) be the setting on the upper half 3-space described in Subsection |1.2.12]

We reduce the proof in the case of the setting (X,r,w) to that in the case of the
setting (X, 7, ) upon the following observation. For every function f on X, we define the
measurable function F(f) on X by

.T 57 Z Z Zf m n, l 1H(m,n,l)($7£73)'

meZ neZ e

Then, for all p,r € (0, 0], we have

Iz ery = IF D Lz er)-
O

4.4.3 Outer L2(¢{*) and L.({") spaces on the upper half 3-space setting
with continuous trees

Let (X,7,w) be the setting on the upper half 3-space described in Subsection We
recall that the outer measure v is generated via minimal coverings by the pre-measure 7
on the collection 7 of continuous trees, and each continuous tree is denoted by T(:c, &, s)
for certain x,£ € R, s € (0,00). Moreover, let v be the outer measure on the upper half
3-space described in Subsection [[.2.12] We recall that the outer measure v is generated
via minimal coverings by the pre-measure 7 on the collection T of dyadic trees, and each
dyadic tree is denoted by T'(m,n,l) for certain m,n,l € Z.

The outer measure v is equivalent to Vqy., the outer measure on the upper half 3-space
X generated via minimal coverings by the pre-measure 74y, on the collection ’7}1},a < T of
continuous trees associated with dyadic intervals, namely

Eyaz{ (2'm, 27!, 21): m,n,leZ},
Taya(T(2'm, 270, 2)) = 2, for all m,n,l € Z.
In fact, for every x € R, £ € R, s € (0,0), there exist m,n,l € Z such that

ze@2m,2(m+1)], ¢fe@n,27'n+1)], se(@71 21,
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hence
T(z,&,5) € T(2'm, 27, 2Y) U T (2 (m + 1),27n, 21U
uT(2'm, 27 (n +1),2Y) T2 (m +1),27 (n + 1),2)).
Therefore, for every subset A € X, we have
P(A) < Taya(A) < 87(4),

hence, for all p,r € (0, 0], there exists a constant C' = C(p, r) such that, for every measur-
able function f on X, we have

C N oy < 1Fllze  (ery < CllFllzzger)- (4.4.16)

ya

Next, for all m,n,l € Z, we define the Heisenberg upper half continuous tile H(m,n,1)
in X by - -
H(m,n,l) = T(2'm,27'n,2") n (R? x (2I71,21]),

and we define the collection H of Heisenberg upper half continuous tiles in X by
H = {ﬁ(m,n,l): m,n,l € Z}.

We observe that at least two and at most four elements of H can overlap at the same time.

t
[JH(0,0,1) BH(0,4,1) O 2
FAH(0,1,1) | EH(0,3,1) [EH(0,5,1) O3

0,2,1) FAH(0,6,1) 4

H(0,3,1)

Ui

Figure 4.1: Heisenberg upper half continuous tiles in the upper half 3-space with coordinates
(y,m,t) projected onto the upper half plane with coordinates (7, t), and multiplicity of their
overlapping.

Finally, for every Heisenberg upper half continuous tile H = H(m,n,l) € H, we define
the continuous tree Tz € T by

T = Taimny = T(2'm,27'(2n + 1),2").
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The setting (X, Udqya,w) satisfies geometric properties analogous to those of the setting

(X, v,w) described in Lemma Lemma and Lemma[4.4.5] In fact, we can prove

the following results.

Lemma 4.4.9. Let T be a continuous tree in ﬁya, let H be a Heisenberg upper half dyadic
tile in H such that T ~ H # &. Then, there exists a continuous tree T' € Taya such that

dea(T/) = 7_—dya(T)a "< TuT'.

Lemma 4.4.10. Let T be a continuous tree in 7_E1ya and let {T,: n € N} C '7_aya be a
collection of continuous trees such that, for every n € N, we have

T,<T,
T, < U T
meN,m#n

Then, we have

3 Faya(Tn) < Taya(T).

Lemma 4.4.11. Let {H,: n e N} € H be a collection of Heisenberg upper half dyadic tiles
such that, for every n € N, we have

Let {W,: n € N} be a collection of measurable subsets of X such that, for every n € N, we
have

W, Ty, W, H, + &
Then, we have
l7dy3< U Wn) < Z ?dya(THn) < 477dya( U Wn>
neN neN neN

In particular, replacing the setting (X, v, w) with the setting (X, T4y, w), we can prove
a decomposition result for the outer L sy (£X) spaces analogous to that stated in Proposi-
tion We briefly comment on the modifications needed. Dyadic trees in 7 are replaced
by continuous trees in ﬁya. The Heisenberg upper half dyadic tile Hy associated with a
dyadic tree T' € T is replaced by the Heisenberg upper half continuous tile ET associated
with a continuous tree T € ﬁya. The geometric properties of dyadic trees in 7 observed in
Lemma [£.4.3] Lemma and Lemma [4.4.5| are replaced by those of the continuous trees
in ﬁya observed in Lemma , Lemma and Lemma respectively.

As a consequence, we can prove Theorem [4.4.1]in the case of the setting on the upper half
3-space described in Subsection [I.2.13] where the outer measure is generated via minimal
coverings by the collection of continuous trees.
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Proof of Theorem [{.4.1] for the setting described in Subsection[1.2.13. We prove the prop-
erties that do not follow as a corollary of Theorem 4.2.1

Proof of properties (ii) and (iii) for all p € (1,00), r = o0, and property (iv). The
proof follows from the equivalence in (4.4.16)) and the decomposition result for the outer
rr 1a (L) spaces on the setting (X, Vaya,w) analogous to that stated in Proposition

Proof of property (v). For fixed j € N, e € (0,277719], for all n,l € Z, 0 <1 < j, let

@27l'en+1)—277 1 —e 27l 2n+1) — 2797 ¢,
I (n, D=0"'2n+1)+27 " —g27'@n+1)+ 2777 +¢],
(0,27] x (I_(n,1) U I (n,1)) x (2" —&,21].

The construction of the counterexamples proceeds as in the previous proof in the case of
the setting on the upper half 3-space described in Subsection O

4.4.4 Outer L? spaces on the upper half 3-space settings with dyadic and
continuous trees

Let (X,v,w) be the setting on the upper half 3-space described in Subsection We
recall that the outer measure v is generated via minimal coverings by the pre-measure 7 on
the collection 7 of dyadic trees, and each dyadic tree is denoted by T'(m,n,l) for certain
m,n,l € Z. Moreover, let 7 be the outer measure on the upper half 3-space described in
Subsection We recall that the outer measure ¥ is generated via minimal coverings
by the pre-measure 7 on the collection 7 of continuous trees, and each continuous tree is
denoted by T'(x,&, s) for certain z,£ € R, s € (0, 0).

The outer measures v and v are not equivalent. In fact, for every subset A € X, we

have
v(A) <v(A), (4.4.17)

but, for every continuous tree T € T, we have
(T) < v(T) = o, (4.4.18)

and we refer to Appendix in Chapter [3] for the details. Moreover, the single iterated
outer LP spaces associated with the outer measures v and 7 are different, as stated in

Theorem 4.2

Before proving the theorem, we state and prove two auxiliary geometric observations
about the following setting. We recall the definition of the dyadic tree 7°(0,0,0) € 7 and
the continuous tree T'=T(0,0,1) € T

7(0,0,0) = {(5.m.t) € X: y e (0,1, me (0,271 M, ¢ e (0,1]},

= 7(0,0,1) = {(y,n,t) eX:ye(0,1],n¢e (—t~L, ¢, te (0, 1]},
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where, for every x € R, we define [x] € Z to be the smallest integer number greater than or
equal to x. Next, let

U= (T n (R x (0,00) x (0,0))\T(0,0,0),
Hj; = 1(0,0) x I(1,—j) x (271, 27], for every j € Z, j <0,
szffmf[j, for every je Z, 7 < 0.

Figure 4.2: Continuous tree 7'(0,0,1), dyadic tree 7(0,0,0), and subset U in the upper
half 3-space with coordinates (y,n,t) projected onto the upper half plane with coordinates
(n,t). The area covered by the line pattern corresponds to subset U_j.

Lemma 4.4.12. For every dyadic tree T € T, its intersection with U is either empty or
contained in at most one set H;, and we have

w(T ~U) < v(T). (4.4.19

~—

Moreover, for every j € Z, j < 0, for the dyadic tree T'(0,1, j) € T, we have T'(0,1, j) ~U <
U; and
v(T(0,1,5))

T0,1,) " U) >

(4.4.20)
Proof. For all 1,1' € Z, we have

I(1,-)nI(1,-1") =2,
therefore, for all m,m’,[,l' € Z, we have

H(m,1,1) nT(m/,1,I') = @.

Therefore, for all M, N, L € Z, there exists at most one value I(L) € Z such that, for some
m € Z, we have H(m,1,I(L)) € T(M,N, L).
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Next, we observe

U c U( U H(m,l,l)).

leZ,l<0 me{0,...,2~1—1}

Every dyadic tree T' € T is of the form T'(M, N, L) for certain M, N, L € Z. We distinguish
two cases.

Case I: (L) > 0. We have T(M, N, L) nU = @, and the desired inequality in
is trivially satisfied.

Case II: [(L) < 0. We have

W(T(M, N, L)~ 0) <w( | H(m,1,U(L)) <28 = o(T(M, N, L)),
memM

where the subset M < Z is defined by
M={0,...,270) — 1} ~ (2B UB pp 2B UE) (A 4 1) — 1),

yielding the desired inequality in (4.4.19)).
This concludes the proof of the first part of the statement, and we pass to the second.
For every j € Z, 7 < 0, we have

T(0,1,5) n U = H(0,1,5) n U < Tj,
and we have
w(T(0,1,5) nU) = w(H(0,1,5) n T;)
> w((0,27] x (2—j,§2—j] x (27, g23'])
2 3
27
E)
yielding the desired inequality in (4.4.20)). O

=

Lemma 4.4.13. For every collection T' S T of continuous trees such that

AT <1, (4.4.21)

T'eT!

there exists a continuous tree V€ T contained inT' and pairwise disjoint from every element

of T'.
Proof. By the inequality in (4.4.21]), we have

(U 7)< X Im@= Y #T)<1=]01],

T'eT’ TeT’ T'eT’
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where m: X — R is the projection onto the first coordinate. Therefore, there exists an
interval J = (x 7,27 + |J|] contained in (0,1] and pairwise disjoint from every interval in
the collection {m(T"): T' < T'}. Then V = T(x4,0,|J|) € T is a continuous tree satisfying
the desired properties. O

Proof of Theorem[[.4.3. Without loss of generality, we assume r = 1, since, for every setting
(X, u,w), we have

1y = 171 2

LT(fl

In particular, we have p > 1.

The embeddings between single iterated outer LP spaces follow from Lemma and
the domination of outer measures stated in . To prove that the single iterated outer
LP spaces are different, for every p € (1, 0], we define the measurable function u on X by

where the exponent for p = o0 is understood to be —%. We claim that, for every p € (1, 0],
we have

u € Ly (t)\Ly, (€2), u € LE(E)\LE(L)-

Case I: u € LL(/5)\LL(¢%). By outer Holder’s inequality (Theorem|1.1.7)) and collapsing
of exponents, property (i) in Theoremu for the setting (X, 7,w), there exists a constant
C = C(p) = 1 such that

_ 1
lellaemy < Clgl Ly o 1l iz ey < CHPD)Y ull pox iy < 0

Moreover, there exists a constant ¢ = ¢(p) < 1 such that, for every j € Z, j < 0, we
have

&, (w)(T(0,1,5)) = 7(T(0, 1, 1)) % lulao,ill oo
= (+ 1) P(T(0,1,5)) Pw(T(0,1,5) A O)r
e(j + 1) 7(T(0,1,7)) "' w(T(0,1,5) ~ D)
=, - (u)(T(0,1, ),

where we refer to Remark - for the notation £}, ., and we used the inequality in (4.4.20))

and the observation that u is constant on the subset ﬁj for every j € Z, 7 < 0, in the
second.
Therefore, there exists a constant ¢ = ¢(p) < 1 such that

(4.4.22)

HUHL;(@;) = HUHL;(zg,T) > CH“HL;(@L’T) = CHUHL;(Q) = Cz”“HLl(X,w) = 0,
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where we used Lemma [2:A-3]in Chapter [2]in the first and the second equality, the inequal-
ity in and the definition of the outer LP quasi-norms in Definition in the
first inequality, and collapsing of exponents, property (i) in Theorem for the setting
(X, v,w) in the second inequality.

Case II: u e LY(¢L)\LE(¢L). For every subset A € X such that ¥(A) < 1, there exists
a collection A < T of continuous trees such that

Ac | T, Y AT <1

T'eA T'e A

By Lemma Z17.4.13 there exists a continuous tree V = V(.%T) e T pairwise disjoint from every
element of A. Then, we have

[ulacll oo g1y = o (u)(V) = co.
Therefore, for every A € (0,00), we have
P(ly(u) > A) =1,

hence
[ull Lz 1y = o0

Moreover, by the same argument used to prove the last chain of inequalities in Case I,
there exists a constant C' = C(p) = 1 such that

lull pgery = Nullgper, .y < Cllullpie,,y = Cllullpeny < C2lullpoxw) < ©
and we refer to Remark for the notation £, .. O

Remark 4.4.14. Consider the following variant of the setting (X,v,w) on the upper half
3-space described in Subsection[1.2.18 For all n,l,l' € Z, I < 1, we define N(n,l') € Z by
the condition

I(n,—1) < I(N(n,l"),-1"),

and, for every x € R, we define |x| € Z to be the biggest integer number smaller than or
equal to x.

For all m,n,l € Z, we define the dyadic tree of bitiles Ts(m,n,l) in the upper half
3-space R? x (0,00) by

To(m,n,l) = To(I(m,l), I(n,—1)) = To(H(m,n,1))
- <I(m,l) x I(lN(Z’l,)J,l —z’> x (0,21’]).

<l
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Next, let
X =R xR x (0,0),
T = {Tg(m,n, l): myn,l e Z},
7o (Ta(m, n, 1)) = 2!, for allm,n,l € Z,
dw(y,n,t) = dydndt, forally,neR, te (0,00),

and let vo be the outer measure generated via minimal coverings as in by the pre-
measure o on the collection T of dyadic trees of bitiles.
The outer measures vy and U are not equivalent. In fact, we can prove that, for every
subset A < X, we have
v2(A) < 6v(4),

but, for every dyadic tree of bitiles Ty € To, we have
I/Q(TQ) < D(Tg) = 0.

Moreover, the single iterated outer LP spaces associated with the outer measures vo and U
are different, and we can prove a result analogous to Theorem [{.].2

Theorem 4.4.15. For all p,r € (0,0], p > r, we have

Ly(ty) = Ly, () Ly(€5) # Ly, (60),

w

Ly, (65) = Li(4) Ly, (€;) # Ly(Ly)-

4.5 Outer L? spaces with respect to a size with variable ex-
ponent on the upper half 3-space

In this section, we study the Banach space properties of the outer LP spaces with respect
to the size S on the upper half 3-space appearing in the article of Do and Thiele [DT15].
The size S is of the form of a sum of sizes /% and £2, restricted to certain subsets of each
tree in the upper half 3-space. In Subsection we recall the definition of S in details in
the case of the settings on the upper half 3-space described in Subsections [[.2.12] - [1.2.13]
In particular, we prove that the outer LP quasi-norms with respect to the size S appearing
in [DT15] do not satisfy a result analogous to Kothe duality for an appropriate dual size,
see Lemma [£.5.2

In Subsection [£.5.2] we start our analysis by the Banach space properties of the outer
L? spaces with respect to a single size ¢, restricted to a certain subset of each tree in the
upper half 3-space. We comment on why we cannot replicate the same argument we used
in the cases studied in the previous section, where the size ¢, is not restricted to certain
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subsets of each tree. After that, in Subsection [£.5.3] we pass to the case of the size with
variable exponent appearing in [DT15].

Throughout this section, we focus on the case of the setting on the upper half 3-space
described in Subsection [1.2.12] where the outer measure is generated via minimal coverings
by the collection of dyadic trees. With the appropriate modifications in the spirit of those
appearing in Subsection [£.4.3] we can adapt every argument we use to the case of the setting
described in Subsection [[:2.13] where the outer measure is generated via minimal coverings
by the collection of continuous trees.

In Subsection [£.5.4] we conclude the section by studying the case of the setting on the
collection of Heisenberg upper half dyadic tiles described in Subsection [1.2.11] First, we
define the size Sy analogous to that appearing in [DT15], namely of the form of a sum of
sizes /% and £2 restricted to certain subsets of each tree. Next, we prove that, contrary to
the case of the settings on the upper half 3-space, the outer LP spaces with respect to So
are equivalent to those with respect to just the £2 part of it.

4.5.1 Sizes on the inner and outer parts of trees, and sizes with variable
exponent

Let (X,v,w) be the setting on the upper half 3-space described in Subsection We
recall that the outer measure v is generated via minimal coverings by the pre-measure 7 on
the collection T of dyadic trees, and each dyadic tree is denoted by T'(m,n, 1) for certain
m,n,l € Z. We define the collection 75 of dyadic trees by

Ty = {T,T: T,TeT},
namely 75 contains two copies of every dyadic tree in 7.
For every Heisenberg upper half dyadic tile H(m,n,l) € H, we define its lower and

upper children Hygy(m,n,l) and Hypp(m,n,l) by

Hiow(m,n,1) = Hiow(I(m,1),I(n,—1)) = I(m,1) x I(2n,—1 — 1) x (2!71,21],
Hypp(m,n,l) = Hypp(L(m,1),I(n,—1)) = H(m,n,)\Hiow(m,n,l).

For every dyadic tree T'(m,n,l) € T2, we define its inner and outer parts Tinn(m,n,l) and
Tout (m7 n, l) by

2=V (m+1)—1
Ton(m,n.0) = How(mon, ) o | (| B0 N@,0)D)),
U<l pymol—t

Tout (m, n, l) = T(’I?’L, n, Z)\T‘inn(ma n, l>7
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and for every dyadic tree f(m,n, l) € T2, we define its inner and outer parts T(m, 7, 0)inn
and T'(m,n,)out by

2=V (m+1)—1
Tan(mon 1) = Hup(mon, )0 | J (| B0 N, 1), 1)),
<l m!=21—m

fout(ma n, l) = f(mv n, l)\ﬁnn(my n, l)a
where, for every I’ € Z, I’ < I, we define N(n,l") € Z by the condition
I(n,—1) < I(N(n,l"),-1"),

and

For every r € (0,00], we define the sizes (£, ;,,,72) and (£

outs 12).- For every dyadic
tree T' € 7o, for every measurable function f on X, we define

_1
V(T) T‘Hf]"Tinn||L7‘()<,w)’

_1
V(T [ el o (.0

Ea,inn (f) (T)

e?"

(4.5.1)
w,out (f) (T)

where the exponent co~! is understood to be 0. Moreover, we recall the definition of two

variants (S, 7T2), (§, T2) of the size appearing in [DT15]. For every dyadic tree T € T3, for
every measurable function f on X, we define

ST = 80 (N)(T) + £, 5 ())(T),
8 < , (4.5.2)
S(f)(T) = gw (f)(T) + Ew,out(f)(T)‘

For every p € (0, 0], we define the outer LP quasi-norms and spaces with respect to each of
the sizes appearing in the previous two displays as in Definition and Definition [1.1.6
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Tinn
Tout
T = Tinn U Tout

Figure 4.3: Inner and outer parts Tiy,, Tout of a dyadic tree T' € 75 in the upper half 3-space
with coordinates (y,n,t) projected onto the upper half plane with coordinates (7, t).

Next, let (X, 7,w) be the setting on the upper half 3-space described in Subsection
We recall that the outer measure v is generated via minimal coverings by the pre-measure
7 on the collection T of continuous trees, and each continuous tree is denoted by T'(z, &, s)
for certain x,& € R, s € (0, 00).

For every continuous tree T' = T'(z,£,s) € T, we define its inner and outer parts Tinn
and Toyy by

1
2s’

Tinn = U ((a:,a;+s] X ({—%,54—

s'<s

| % ©.57).

Tout = T\inn-

For every r € (0, o0], we define the sizes (£, ;,,,7), (0, ous» T)s (S,T), and (S,T) anal-
ogously to those in and , replacing the dyadic trees in 75 with the continuous
trees in 7. For every p € (0, 00], we define the outer LP quasi-norms and spaces with respect
to these sizes as in Definition [I.1.4] and Definition [I.1.6
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Figure 4.4: Inner and outer parts Tinn, Tout of a continuous tree T € T in the upper half
3-space with coordinates (y, 7, t) projected onto the upper half plane with coordinates (1, t).

4.5.2 Outer L? spaces with respect to the sizes in (4.5.1)

In this subsection, we consider the Banach space properties of the outer LP spaces with
respect to a size £, restricted to a certain subset of each dyadic tree. We comment on why
proving positive results about them is more complicated than in the cases studied in the
previous section. In the proof of Theorem [£.4.1], we showed the quasi-triangle inequality for
the single iterated outer LP spaces on the upper half 3-space as a corollary of Kéthe duality
for them and the triangle inequality for the classical L'(X,w) space. Following the same
argument, we would start by proving a version of Kéthe duality for the outer Lﬁ(f@»inn)
spaces. In particular, we would show that there exists a constant C' = C(p,r) such that,

for every measurable function f e L3(€],;,,) on X, we have

CileHLﬁ(zQ’im) < sup {||f9HL1(eulJﬂhm)5 gl o (g = 1} < Clifllzeer, .-

We point out that we substituted the classical L'(X,w) norm with the outer LL(¢L, )
quasi-norm to measure the product of the functions. This substitution is dictated byythe
outer Holder inequality we would apply to obtain the second inequality in the previous
display. However, the outer L},(Z(}J’inn) space does not satisfy the quasi-triangle inequality
for countably many summands, as exhibited in the following result. In fact, we can comment

in an analogous way also in the case of the outer L (€], ) spaces.

Lemma 4.5.1. For every M > 0, there exists a collection {f,: n € N} < L,{(ﬁ}%inn) of
measurable functions on X such that

w,inn

>M
ity > M DlFalsze

w,inn
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Replacing ¢} with £}

o inn wouts We have the same statement for the outer L,ﬁ(ﬁ}hom) spaces.

Proof. Fix j € N. For all n,l € Z, 0 <[ < j, we define ﬁ(n,l) € Z by the condition
I(n, —j) € I(N (n,1), -1).

Moreover, for all n,l € Z, 0 < I < j, we refer to (4.4.15)) for the definition of the measurable
subset H(n,l). Next, for every n’ € Z, 0 < n’ < 2/, we define the measurable subset

~

E(n),E(n') € X by

Next, we define the measurable functions f,, fn/, and f on X by

S (2,€,8) = 1E(n’)($7£75)7
fn’(l‘7§’ 8) = 1E‘(n/)<$7€75)’

271 i 2l—1

f(CC,f, S) = Z <fn’(x7§7$) + ﬁz/($,£78)> = Z 2jillﬁ(n7l)<$7£78)'
n’=0

There exist constants ¢ and C' such that

1fllzye )= 2% (j + 1),
271 291 -
2wy = 2wl ) = 22
n'=0 ' n'=0 ’

Taking 5 € N big enough, we obtain the desired inequality. O

4.5.3 Outer L? spaces with respect to sizes in (4.5.2))

We exhibit a counterexample to Kéthe duality for the outer L2(S) and L5(S) spaces with

p € [1,0).
First, we define the auxiliary size (S’,73) as follows. For every dyadic tree T € T3, for
every measurable function f on X,

S (FNT) = Ly un(FIT) + € e (F)(T).
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Therefore, for every dyadic tree T' € T3, we have
EL(F9)(T) ~ sup { S(F)(T)S'(9)(T): §'(9)(T) = 1}.

By the Radon-Nikodym type result for the outer L! quasi-norms (Theorem [1.1.8)) for the
setting (X, v,w) and outer Holder’s inequality (Theorem _ for the sizes S and S’ we
have

179l xwy < CllFalnaen) < Clflzeeslol Ly o

Next, we define the auxiliary size (S’ ,T2) as follows. For every dyadic tree T' € T3, for
every measurable function f on X,

ST = Gy (F)T) + € o ((T).

Therefore, for every dyadic tree T' € Ts, for every measurable function g on X, we have

((f9)(T) < S(FND)S (9)(T)-

By the Radon-Nikodym type result for the outer L! quas& norms (Theorem [1.1.8)) for the
setting (X, v,w) and outer Holder’s inequality (Theorem |1. for the sizes S and S, we
have

1791l xwy < ClFglracery < ClF Nz llall @y

Lemma 4.5.2. Let p € [1,00]|. For every M > 0, there exists a measurable function
feLb(S) on X such that

1£1z2es) = Msup {1£gll e N9l oy = 1}
Replacing S with g, we have the same statement for the outer Lﬁ(g) spaces.
Proof. For every € € (0, 1], we define the measurable subset A. € X by

l1—¢ 1+¢ 3—¢ 3+¢ 3—¢ 3+¢
A= (o G ]
2 2 4 4 4 4

In particular, we have
A. € Hypp(0,0,0) < H(0,0,0) € H.

We have )
acllzeesy = allpps) = Macllppes, ) = v(Ae)P = 1.
Moreover, for every measurable function g on X, we have
1 e+/E
acgllzrxw) = lagllpxw S @Ae)2laglraixw) = 5 I11Agllr2(xw)

gi out(lAag)(T(Ov 0, 0)) = HlAngLQ(X,w)'

Taking ¢ € (0, 1] small enough, we obtain the desired inequality. O

”g”Lﬁl(S’) = ||g||L€/(§’)
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In fact, we have the following equivalence between outer LP quasi-norms with respect
to the sizes with variable exponent defined in (4.5.2)).

Lemma 4.5.3. For every p € (0,0], there exists a constant C = C(p) such that, for every
measurable function f on X, we have

I llzecsy < 1z < Clfllcs):

Proof. For every tree T € Ta, for every function f on X, we have

S(H(T) < S(F)(T).

Moreover, for every function f on X, we have

103 < W lpez o + 1Ny

w,out

= ez ) + Il oo x 0

w,out

< 2[|fll e )

where we used the fact that, for all m,n,l € Z, we have

||f1H(m,n,l)||L00(X,w) < "lelow(m7nvl)||Lw(X,w) + ||f1Hupp(m,n,l)HL00(X,w)

< uoiinn(f)(T(m7 n, l)) + Egj,inn(f)(f(mv n, l))’

~

where T'(m,n,1),T(m,n,l) € Ta. Together with the definition of the outer LP quasi-norms
in Definition and Definition the previous two displays yield the desired chain of
inequalities. O

4.5.4 Sizes with variable exponent on the discrete model of the upper
half 3-space

We start by defining a variant of the setting (X, v,w) on the collection of Heisenberg upper
half dyadic tiles described in Subsection [1.2.11} For all n,l,l' € Z, I < I, we define
N(n,l") € Z by the condition

I(n,—1) < I(N(n,1l"),-1"),

and, for every x € R, we define |x| € Z to be the biggest integer number smaller than or
equal to x.
For all m,n,l € Z, we recall the definition of the subset T'(m,n,l) € H by

T(m,n,l) =T(I(m,l),I(n,—1)) =T(H(m,n,l))
— {H en:Hel (I(m, 1) x I(N(n,1'), ') x (0, zl’]) }

<l



196 CHAPTER 4. FURTHER RESULTS

and we define the subset To(m,n,l) € H by
To(m,n,l) = To(I(m,l), I(n,—1)) = To(H(m,n,1))
- {H en:Hel (I(m,l) x [([N(gl/)J1 - z’) x (0,2”])}.

U<l

Next, let

To(To(m,n,l))
w(H(m,n,1))

for all m,n,l € Z,

H,
{ (m,n,l): mnleZ}
2
2

for all m,n,l € Z,

and let v5 be the outer measure generated via minimal coverings as in by the pre-
measure T on the collection 75 of subsets of X.
For every subset Ty = Th(m,n,l) € Tz, we define its inner and outer parts T, and
T2,out by
T2,inn = T(m7 n, l), T2,out = TZ\TZ,inn-

For every r € (0,0], we define the sizes (3, ;.,,, T2) and (€5, ,¢, T2). For every subset

Ty = To(m,n,l) € Tz, for every function f on X, we define

_1
g,w,inn(f) (T2) = UQ(TZ) " Hf]‘TZ,inn ||LT(X,W)’

B (4.5.3)
g,w,out(f) (TQ) = VQ(TQ) " Hf1T2,out HLT(X,w)’

where the exponent 00! is understood to be 0. Moreover, we define two additional sizes
(S2,T2), (S2,T2) analogous to those appearing in [DT15]. For every subset Th € T3, for
every function f on X, we define

SQ(f)(TZ) = Eg?w,inn(f)( ) + €2wout(f)(T2)7
§2(f)(T2) = Eg?w(f)( )+€2wout(f)(T2)'

For every p € (0,0], we define the outer LP quasi-norms and spaces with respect to the
sizes appearing in the previous two displays as in Definition 4] and Definition [1.1.6]

On the setting (X, v9,w), we have the following equlvalence between outer LP quasi-
norms with respect to the different sizes ¢3 w.outs 92, and S.

Lemma 4.5.4. For every p € (0,0], there exists a constant C' = C(p) such that, for every
function f on X, we have

10, < 1z, es < 1FlLug, 3 < O PNz,

2w, out)
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Proof. For every subset Ts € 75, for every function f on X, we have

G ot (N)(T2) < Sa(f)(T2) < Sa(f)(Th).

Moreover, for every function f on X, we have

171, 8y < oo + W e
= HfHLgé(e? y 1l e (x )

2,w,out

< 2||f||L302(£2 )

2,w,out

where we used the fact that, for every H € X, we have

FCH)| = va(To(HD)) 2 £ a2y < Bavioue () (To(H)).

In the previous display, for every H = H(m,n,l) € X, we define H' € X by

H/ = H(m7 n*? l)?

and
n+1, if n is even,
Ng =
n—1, if n is odd.
Together with the definition of the outer LP quasi-norms in Definition [I.1.4] and Defini-
tion the previous two displays yield the desired chain of inequalities. O

Remark 4.5.5. We point out that the outer LP quasi-norms with respect to the sizes €2, .,

S, and S in the case of the settings on the upper half 3-spaces described in Subsections
- are not equivalent. In fact, for every measurable function f on X, we only have
the inequalities

||f||L€(£3,’out) S C||f||L5(S) ~p C||f||y;(§)a

where we used the inequalities between the sizes. In general, the first inequality in the
previous display is strict, for example for the measurable subset A. € X defined in the proof

of Lemma[].5.3, we have

Mallzpe )= allzees) = lacllpp ) =1

w,out

eve
2 I

4.6 Double iterated outer L7 ((]({,)) spaces on finite settings

In this section, we study the uniformity in the finite setting (X, u, v,w) of the constants
appearing in the Banach space properties of the outer L} (€4(¢7))) spaces. We prove a result
about Kothe duality in a partial range of exponents ¢, € (1,00), and a result about quasi-
triangle inequality for countably many summands in the full range of exponents ¢, r € (1, ).
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Theorem 4.6.1. For all q,r € [1,00], there exists a constant C = C(q,r) such that, for
every finite setting (X, u,v,w), the following properties hold true.

(i) For all g,r € (1,00), ¢ <r orq=r € [1,0], for every function f € L;‘f((%(ﬁa)) on X,
we have

C U pooen oryy < : ey
11 2z e ) S“p{”fg”U(X’w) 91yt ey } (4.6.1)

0D {78111 1903 ey = 1} < Ol

(ii) For all g € (1,0], r € [1,00) or ¢ = r € {1,00}, for every collection {f,: n € N} <
LY (L5(LL)) of functions on X, we have

H %f"HLzo(ezum) =¢ %"f"’Lf<€Z(ea>>- (4.6.2)
ne ne

Proof. Proof of property (i). If ¢ = r € [1, 0], by collapsing of exponents, property (i)
in Theorem for the setting (X, v,w), then we reduce to the case of the single iterated
outer L7 (£;,) quasi-norms on the setting (X, u, w).

Therefore, without loss of generality, we assume g, € (1,00), ¢ < 7. Let f € L} (eLer)),

f # 0. The second inequality in (4.6.1)) follows from the Radon-Nikodym type result for
the outer L' quasi-norms (Theorem [1.1.8)) and outer Holder’s inequality (Theorem [1.1.7)

for the finite setting (X, u, v,w). To prove the first inequality in (4.6.1]), let A be a subset
of X such that

CE) A = 1l e ez geryy > O-

Let {Ay: k € Z} be the partition of A produced by the decomposition of f14 with respect
to the size 7, at levels {2F: k € Z} provided by Proposition in Chapter [2l We define

the function g on X by
= 2 2501y, (@) f(2)]"”

keZ

There exists a constant ¢ = ¢(g, ) such that

19l ey = D0 2" (AR) = el f1all g ) = (A MW eo o5 7))
keZ

Next, by outer Holder’s inequality (Theorem [1.1.7)) for the finite setting (X, u, v, w), we
have

HgHLb(ZZ/(ZLl)) < HlAHL}L(ﬁ,ﬁo(fﬁ?))HgHL%:(ZZ'(ZL')) = M(A)H'gHLZC(Z?,/(ELI))

Moreover, there exists a constant C' = C(q,r) such that, for every subset B € X, we have

lgtal?, . <Clfisllly o)

Ly ()
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The proof of the inequality in the previous display is the same of that of Case II in the
proof of Lemma in Chapter [3] and we refer to it for the details. Therefore, we have

1

, — -1 7 7.
191 5/ = 500 L (0(B) MYy, ) e BE A B 2 2}

LY (€7))
gC’(sup{ (B)~ 1||le”L‘1(zr BCAB#@D
=Cu(A) 7 HflAHLq o)

—CHfHLoo (e5(er)

1
7

yielding the inequality
”g”Ll fq (gv )) ( )”fHLOO(gq gr

Proof of property (ii). The inequality in (4.6.2)) follows from the chain of inequalities

I35 5 g =0 zfnuwm L Acxao)
CZsup{ )7l fulall g e ACXA#@}
neN
=C 2 ||anLf§>(£3(ng)),
neN

where we used the quasi-triangle inequality for the single iterated outer Li(¢") quasi-norm,
property (#iz) in Theorem in Chapter [2] for the finite setting (X, ,w) in the inequality.
O

4.7 Embedding maps in the upper half space via cancellative
wavelets

In this section, we study embedding maps from the classical L?(R%, dz) spaces to the outer
L., (€7,,) spaces with 7 € (0, 00] on the settings on the upper half space or its discrete model
described in Subsections - In particular, the embedding maps are defined by
convolving a function on R? with dilated and translated copies of a wavelet with additional
hypotheses of cancellation and Holder continuity. We recall a classical result about the
boundedness of the embedding maps for r € [2,00], and we exhibit counterexamples to it
for r € (0,2).

Fix a function ¢ € L'(R% dz). For every function f € L®(R? dxz), we define the
embedded function F,(f) on the upper half space R? x (0,0) by

- [t
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We have the following boundedness properties of the embedding maps.

Theorem 4.7.1. For allde N, pe [1,0], re€[2,00], K >0, € > 0, there exists a constant
C = C(d,p,r, K, ) such that, for every function ¢ € L'(R?,dx) satisfying the conditions

/ ¢(x)dx =0,
Rd (4.7.1)
‘(Z)(.’L’) - ¢(y)‘ < K’x - y’E(l + ’x|)7d7€7 fO?” all T,y e Rd; |.’L’ - y‘ < 17

the following properties hold true.

(i) For allpe (1,0], r € [2,0], for every measurable function f € LP(R?, dz) on RY, we
have
1E6 (e e ) < ClAlEr ®e,a0)-

(ii) For every r € [2,0)], for every measurable function f e L'(RY, dx) on R?, we have

1)y ) < Ol o

(i4i) For every r € [2,00], for every measurable function f € H'(RY, dx) on R?, we have

HF‘b(f)HL}Ld(%d) S CHfHHl(Rd,dx)'

(iv) For every r € [2,0], for every measurable function f € BMO(R?, dz) on R, we have
ry < .
HF¢(f)HLzOd(ZLd) CHfHBMO(Rd,dz)

We briefly comment on the proof. First, we recall the equivalence between the outer
L}, (€,)) spaces and tent TF spaces stated in Theorem in Chapter . Next, we recall
the interpretation of the tent 73 and T% norms of the embedded function Fy(f) as the
classical LP norms of the square and maximal functions associated with f respectively.
Then, for r € {2,00}, the statements in the previous theorem are classical results, see for
example the book of Grafakos [Gra09] and Stein [Ste93]. By the logarithmic convexity of
the sizes (Proposition in Chapter , the extension to the case r € (2, 00) follows.

We pass to the case r € (0,2). We exhibit counterexamples to the boundedness of the
embedding maps via a bounded cancellative wavelet with compact support from L?(R?, dz)
to the outer LI (¢, ,) spaces. We make two additional assumptions. First, we restrict to
the case of dimension d = 1. Next, we restrict to the case of the setting (X, u,w) on
the discrete model of the upper half plane. The counterexamples we exhibit provide a
prototype to extend the result about the unboundedness of the embedding maps in the
following directions. First, to the case of the settings on the upper half plane described
in Subsections — Next, to the case of the settings on the upper half space of
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arbitrary dimension d € N. Finally, to the case of embedding maps via wavelets satisfying

the conditions in (4.7.1)).

Let Z be the collection of all the dyadic intervals in R. For every dyadic interval I € Z,
let I;,1, < I be the left and right dyadic sibling of I respectively. We define the Haar
function hj associated with I and normalized in L*(R,dz) by

h[ = Xfl — XI,>
and the Haar function %; associated with I and normalized in L'(R,dz) by
hir = |17 hy.

The function i = fyg 1) is the prototype of the cancellative wavelet.

Next, let (X, u,w) be the setting on the collection of upper half dyadic cubic boxes
in the upper half plane R x (0,00) described in Subsection There exists a bijective
correspondence between the elements of X and Z defined as follows. For every B € X,
there exists a unique dyadic interval I(B) € Z such that

B = I(B) x (1(23” u(B)|].

Then, for every measurable function f € L*(R,dx), we define the function Fj(f) on X by

Fa(f)(B) = /R @)y () da.

Lemma 4.7.2. Let p € [1,0], r € (0,2). For every M > 0, there erxists a measurable
function f e LP(R,dx) on R such that

IER ()| Lo ery = MI|fIl Lo da)-

Proof. Case I: p # c0. For every L € N, we define the collection 7, € 7 of dyadic intervals
by
I = {I(m,—l) eT:1eZ,0<I <L,mez,0<m<2’},

and the measurable function f;, on R by
fr=> hr
IEIL

Therefore, we have
Fy(fr)(B) = 17, (1(B)).

For every p € [1,00), by Khintchin’s inequality, see for example the book of Grafakos
[Gra08], there exists a constant C' = C(p) such that

1
1Ll e ae) < CL2. (4.7.2)
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Next, for every collection J € Z of dyadic intervals, we define the measurable subset
A=ATJ) <R by
A=J

JeJ
and the measurable subset K = K(J) € X by

K:UEJ

JeJ

Moreover, we define j € 7 to be the collection of maximal dyadic intervals contained in
(0,1]\A4, maximal in terms of set inclusion. Furthermore, we define the measurable subsets

D=D(J),D=D(J) < (0,1] by

D=An(0,1], D =(0,1\A = UJ
Jej

Finally, we define £ € 7 to be the collection of dyadic intervals defined by
L= {Iezz Ic (0,1],Iq;D,Ig;f)}.

In particular, for every Je j, for every I € Z, I < (0, 1] such that Jc 1, J # I, we have
I € L. Hence, for every [ € Z, 0 < | < L, we have

Moo oo+ Y

I€Ty, |I|=2"1,I¢D IeTy |I|=2-1,I1cD I€Ty, |I|=27!IeL
> > 11| + > 1| (4.7.3)
IeT; |I|=2-1,IcD IeT; |I|<2-1IeT
= [D|.

For every a € [0, 1], for every collection J < 7T of pairwise disjoint dyadic intervals such

that
Al =) T =a,
JeJ

we have
Y =Dl =1-|D|>1-|A] =1-a.
JeJ

Therefore, by the inequality in , we have

£;<Fﬁ<fL>1Kc><E<<o,1]>>=( > M) =L a)r

IeT; IED
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Hence, for all p € [1,00), r € (0,2), there exists a constant ¢ = ¢(p,r) such that

1 11 1
HFﬁ(fL)HLﬁ,OO(E:)) > sup {Lr(l —a)rar: ac€ |0, 1]} >cLr.

Taking L € N big enough, the inequalities in (4.7.2]) and yield the desired inequality.
Case II: p = o0. For every dyadic interval I = I(m,l) € Z, we define its centre c; € I
by
cr = m2l + 271,

For every L € N, we define the collection J7, € Z of dyadic intervals by
Iy, = {I(m,—l) €T:1€2,0<]<100L%,meZ,0<m< 2’},

and the measurable function f7 on R by

fL = Z a(I)hla
IeJr,
where, for every I € Jr,, we define
0, if ( N a()sga(hs(en)| = L.
a(l) = JeT \{I},IcJ
1, otherwise,

and sgn is the signum function. Therefore, we have

Fu(f)(B) = 17,(I(B))a(I(B)).

By definition, the function fr, is constant on the elements of L5, € Z, the collection of
dyadic intervals defined by

Lr = {I eZ:Ic(0,1],]1] = 2*100L2}.

Moreover, there exists a bijective correspondence between the dyadic intervals in £ and
the sequences in the collection

AL = {5 = (a1,...,ai002): ai € {—1, 1}},
defined as follows. For every sequence @ € Ay, we define the dyadic interval I(@) € L, by
10012

—I( Z 2100L2 - L 100L2)

100L2 100L2

( Z 1—a)2 17127108 4 N (1 g2t 1]

=1 =1



204 CHAPTER 4. FURTHER RESULTS

Next, for every sequence a@ € Ay, we define a4 to be the number of coordinates attaining
the value 1, and a_ the number of coordinates attaining the value —1. In particular, for a
fixed sequence @ € Ar, if |ay —a_| = L, then the function |fr| attains the constant value
L on I(@). Therefore, we have

{ze @1 @] <L} < A,

where the subset Ay < (0,1] is defined by

and the collection A; < A is defined by
.%TL = {EL’EAL: lay —a_| < L}.

By the upper and lower bounds for the factorials provided by Stirling’s approximation, we

| - [LZ/QJ 100L2
L= J 50L2 + 1

have

I=—|L/2
100L2!

<2L——

(50L21)2

I 2710072 (100L2/e)100L2el/(1200L2)

(vV2mr50L2 (50L2/€)50L2 e1/(600L2+1) )2
< 2100L271

where, for every = € R, we define |z| € Z to be the biggest integer number smaller than or
equal to x. Therefore, we have

‘{xe (0,1]: |f(z)| = L}’ >1- ‘{me (0.1]: |fr(z)| < L}‘

>1—|AL
—1_ 2_100L2|«ZL|
>271
hence, for every p € [1, o], we have
_1
2L < HfL”Lp(R,dx) <L, (4.7.4)

1

where the exponent c0™" is understood to be 0.
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Moreover, since the function a attains only values in {0, 1}, we have
VB g g > € (B F)) (0, 1))

= (X atryin)

IeJr,

— ( 3 a(I)Z]I|)i (4.7.5)

IeJr,

S =

2
= ”fL”EQ(R,dz)

1.2
2 rLr’

where we used the L?(R, dz) orthogonality between Haar functions associated with different
dyadic intervals in the third equality, and the inequality in (4.7.4]) in the second inequality.

Taking L € N big enough, the inequalities in (4.7.4)) for p = oo and (4.7.5) yield desired
inequality. O

Analogous counterexamples in the case of the settings on the upper half space described
in Subsections —|1.2.10| are obtained by considering a Holder continuous version of the
Haar function #, namely, for d = 1, the function

() = 8x1[0’é)(x) + 1 sy(2) + (4 - 81’)1[%’%)($)—

ool

1
8

-1 %)(x) + (-8 + 8:6)1[%’1)(3}),

e[S}

and its appropriate generalizations for arbitrary dimension d € N.

4.8 Conjectures

We split the collection of conjectures into two subsections, the first about the single iterated
outer LP quasi-norms and spaces, the second about the double iterated outer ones.

4.8.1 Conjectures for single iterated outer L?P spaces

First, we start with three conjectures about conditions on the setting (X, 4, w) to recover the
uniformity of the constant in Kéthe duality for certain single iterated outer LP spaces. As
a corollary, we would recover the uniformity of the constant in the quasi-triangle inequality
for countably many summands for the respective spaces. We consider the following cases.

e Sufficient conditions for the outer Lj;(¢%) and L} (£],) spaces.

o0

e Necessary and sufficient condition for the outer L};Oo(ﬁw

) spaces.
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Conjecture 4.8.1. For all p € (1,0], K > 1, there exists a constant C = C(p, K) such
that, for every o-finite setting (X, p,w) described in Subsection satisfying the condition
associated with the inequality in with constant K, for every measurable function
feLL(¢X) on X, we have

C7 1 Niggepy < 5w {110y Il oy = 1} < CFiges

Conjecture 4.8.2. For all r € [1,0], K > 1, there exists a constant C = C(r, K) such
that, for every finite setting (X, p,w) described in Subsectz’on and satisfying the condi-

tion associated with the inequality in (4.2.18) with constant K, for every measurable function
feL,(t,) on X, we have

O lyeny <590 {17001 (190 ey = 1} < Cl Lo

Conjecture 4.8.3. There exist two maps ¢, ¢: (0,00) — (0,00) such that, for every o-finite
setting (X, p,w) described in Subsection the following properties hold true.

(i) If there exists a constant C' such that, for every measurable function f € LL’OO(EZD) on
X, we have

CMS N ooy < sup { inf {1F 18l (x 1Ll eyt B € Yo, )2 BB},
sup { it {11121l ) Lo )t B € T B) i B B} < Ol o g

where, for every measurable subset E € %, we define the collection Y (u, E) < X of
measurable subsets of E by

then (X, p,w) satisfies the condition associated with the inequality in (4.2.10) with
constant C = ¢(C).

(11) If (X, p,w) satisfies the condition associated with the inequality in (4.2.10) with con-
stant C, then there ezists a constant C' = ¢(C') such that, for every measurable function
fe L},joo(ﬁff) on X, we have the inequalities in the previous display with constant C.

Next, we have a conjecture about the uniformity of the constant in a weak version of
the quasi-triangle inequality for countably many summands for the outer L}L(EL) space.

Conjecture 4.8.4. For every r € [1,0), there exists a constant C = C(r) such that, for
every o-finite setting (X, p,w) described in Subsection for every collection {f,: n €
N} < LL((;) of measurable functions on X, we have

b
neN

<C n Y-
e T%Hf Iz, er)
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When the uniformity of the constant in the quasi-triangle inequality for countably many
summands fails, we have a conjecture about the dependence of the constant on the number
of summands.

Conjecture 4.8.5. For allp € [1,00), r € (1,0], there exist two constants Cy = C1(p) and
Cy = Cy(r) such that, for every o-finite setting (X, u,w) described in Subsection for

every N € N, for every collection {fn,: 1 <n < N} of measurable functions on X, we have

N
|2 1
"N
|3 5
n=1

Then, we have a conjecture about a condition equivalent to the uniformity of the con-
stant in the quasi-triangle inequality for countably many summands for the outer LL (£*)
space.

N
1
ey S Ci(1 + In(N))» ;nfnum),

N
< Oy(1 + In(N) -7 ol o1 oy
e Ca(1 + In(N)) 7;1“f I3 er)

w

Conjecture 4.8.6. There exist three maps ¢, k: (0,00) — (1,0), and c: (1,00)% — (0, 0)
such that, for every o-finite setting (X, p,w) described in Subsection the following
properties hold true.

(i) If the outer Li(ﬁf) quasi-norm satisfies the quasi-triangle inequality for countably
many summands with constant C, then the quadruple (X, p, p,1d) satisfies the canopy

and the crop conditions ~[1.3.8 with parameters ® = ¢(C), K = k(C).
(i1) If the quadruple (X, u, p,1d) satisfies the canopy and the crop conditions f

with parameters ®, K, then the outer L}L(ﬂj‘uo) quasi-norm satisfies the quasi-triangle
inequality for countably many summands with constant C' = ¢(®, K).

After that, we have a conjecture about the atomic decompositions of the outer L, (¢7))
spaces. In the statement, p denotes the counting measure on N. Moreover, for every
measurable function f on X, we define p(supp(f)) € [0, 0] by

p(supp(f)) = inf {1(A): A€ X, | FLacll o) = 0}

Conjecture 4.8.7. For all po,p,r € (0,0], there exists a constant C = C(pg,p,r) such
that, for every o-finite setting (X, p,w) described in Subsection the following proper-
ties hold true.

(i) If p=r, p = po, then, for every measurable function f € LL({]) on X, we have

C Mgy < 50 {lan o FHfn: 7€ NY S AP, 7] = o full owgu)

50p {lan | o s 3z 7€ NY S AP 11 = lanfull oy} < Ol iz
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where a is an outer LL(¢])) atom in AP" with p = r if

1

11l ) = H(supp(f))7 7.

(ii) If p<r, p < po, then, for every measurable function f € LE(I7) on X, we have
C M g ery < i0f {lanl oy s 7€ N} € AP £] = llan full oo oo -

inf {HanHLP(N,p): Hfn:ne Ny AP |f] = ||anfn||LPO(N,p)} < CHf”Lﬁ(éL)a

where a is an outer LL,(¢7)) atom in AP" with p < r if

1_1
1Nl r (x) < p(supp(f))7 7.

Moreover, we have a conjecture about the quasi-triangle inequality for countably many
summands for the outer LP spaces with respect to the sizes €], ;. £, out, S, and S on the
settings on the upper half 3-space defined in Subsection [£.5.1]

Conjecture 4.8.8. For all p € (1,0], r € [1,0], there exists a constant C' = C(p,r) such
that, for every setting (X,v,w) on the upper half 3-space described in Subsections -
the following properties hold true.

For every collection {f,: ne N} € Lp(fr ) of measurable functions on X, we have

| 2 5
Replacing 07 . with £

LE@er . )

w,inn

<C Y Mfallzpeer )
neN '
.inn wouts O, and S, we have the same statements for the outer LY (€, out)
L2(S), and LE(S) spaces respectively.
Finally, we have a conjecture about the equivalence of the outer LP spaces with respect

to different sizes for embedded function in the case of the setting (X, 2, w) on the collection
of Heisenberg upper half dyadic tiles described in Subsection [4.5.4]

Conjecture 4.8.9. Let M, N € N. Let ® = ®(M, N) be the collection of Schwartz functions
¢ on R such that

~1,1] S(Eél_
and, for every k € N, k < N, we have

(&) < M.

For every p € (0,00], there exists a constant C = C(®,p) such that, for every Schwartz
function f on R, we have

1B (Dl g .y < 1Ps(F)lug, e
where Fg(f) is the function on X defined by

Fo(f)() =sup sup | [ (2) e (L) e,

oe® (y,n,t)eH

< C|[Fo(f )HLEQ(Q?W)»

W, out)
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4.8.2 Conjectures for double iterated outer L” spaces

First, we start with a conjecture about the exchange between the canopy and the crop
conditions in the statement of Theorem [[.3.6l

Conjecture 4.8.10. For all p,q,r € (0,0], ®, K > 1, there exist three constants C; =
Ci(q,r,®,K), Co = Ca(q,r,®,K), and C = C(p,q,r, P, K) such that, for every finite set-
ting (X, p, v,w) described in Subsection for every p-covering function C, the following
property holds true.

(i) If (X, u,v,C) satisfies the crop condition then for every function f on X, we
have

O Nz ey < M llzsqesceny < CallFllzg)-

(i1) If (X, p,v,C) satisfies the crop condz’tz’on then for all p,q,r € (1,0), ¢ <r, for

every function f on X, we have
C N e eneryy < SUP{HfQHLI(X,w)‘ ol o e erry) = 1} < Ol es eryy-

If (X, p,v,C) satisfies the canopy condition then for all p,q,r € (1,00), ¢ =,
the same inequalities hold true.

(1i3) If (X, p,v,C) satisfies the crop condz’tion then for all p,q,r € (1,0), ¢ < r, for
every collection { f,: n € N} of functions on X, we have

I35
neN

If (X, u,v,C) satisfies the canopy condition then for all p,q,r € (1,0), ¢ =,

the same inequality holds true.

sy S C %Hfﬂhzwgw;))-
w ne

Next, we have a conjecture about the Banach space properties of the double iterated
outer LP spaces with at least one exponent in {1, 00} in the case of the settings on the upper
half 3-space or its discrete model described in Subsections —[1.2.13] To make the
statement of the conjecture cleaner, we include the whole range of exponents p, ¢, r. The
actual conjectured results are those in the cases not already covered by Theorem |3.1.5]in

Chapter [3

Conjecture 4.8.11. For all p,q,r € (0,0], there exists a constant C = C(p,q,r) such
that, for every setting (X, u,v,w) on the upper half 3-space or its discrete model described
wn Subsections|1.2.11) —[1.2.18, the following property holds true.

(i) For all q,r € (0,0], for every measurable function f € L} ((L(C1)) on X, we have

C_leHLg(zg;) < llzaeaieryy < CU N agery-
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(i) For allp,r € [1,0], g€ (1,0] orpe [1,:], ¢ =71 =1, for every measurable function
e LE(e(er)) on X, we have

C N e en ey < SUP{HfQHLI(X,w)i ol o e erry) = 1} < Ol es eryy-

(#ii) For all p,r € [1,0], g€ (1,0] orpe [1l,0], ¢ =1 =1, for every collection {f,: n €
N} < LE(6L(47)) of measurable functions on X, we have

i
neN

<C n Y-
LEe ) %Hf Lz s er)

(iv) Let p € [1,00
N} < LL(6 (¢

qg=1,re (1,m]. For every M > 0, there exists a collection {fn: n €
)) of measurable functions on X such that

Then, we have a conjecture about the failure of the uniformity of the constant in Kothe
duality for outer LP(¢%(¢))) spaces with ¢ > r, addressing the remaining case in property

(7) in Theorem 4.6.1}

Conjecture 4.8.12. Let q,r € [1,0], ¢ > r. For every M > 0, there exist a finite setting
(X, 1, v,w) and a function f e L (€5(L,)) on X such that

7
r
w

> M - .
L2 () %”f Iz e ceny)

HfHLfLO(Eg(ZZJ)) = M sup {HngLl(X,w): HgHL}L(EgI(Q,’)) = 1}

After that, we have a conjecture about Minkowski’s inequality for double iterated outer
LP spaces. Before stating the conjecture, we introduce some auxiliary definitions.
For every finite setting (X, u, v, w), let v = v(u,v) be the outer measure on X defined
by
v: P(X) — (0,0), v(A) = [Lall Lz o1 ey

let p = p(p,w) be the outer measure on X defined by

p: P(X) — (0,0), p(4) = Ll e
let ¢ = ((u,v,w) be the outer measure on X defined by

¢: P(X) — (0,00), C(A) = ||1A||Lg;0(z}u),
and let k = Kk(v,w) be the outer measure on X defined by

k: P(X) — (0,00), K(A) = ||1A||L30(£3J)'
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Conjecture 4.8.13. For all p,q,r € (0,00], there exists a constant C = C(p,q,r) such

that, for every finite setting (X, p, v,w), for every measurable function f on X, the following
properties hold true.

(i) If p = q, we have

Iz esen)y < Ol s e, Iz es ey < Cl gy
(ii) If p = q,r, we have

||f”Lﬁ(£?,(£;)) < C||f”Lg(e;(€5))’ HfHL{’,(eZ(é;)) < CHfHLg(eg(ZE))’
(iii) If ¢ = r, we have

1A ez qes ey < Ol er ey 1A ez encernyy < CNF g e ey
() If p,q = r, we have

1A g s ey < O ey 1A e ez ey < Ol e ey
(v) If p = q = r, we have

Iz e ceryy < ClF Lz eaemyys Iz ey < ClF Ly ey

Finally, we have a conjecture about the improved regularity of the outer measures
associated with Minkowski’s inequality in terms of the Banach space properties of the
double iterated outer LP spaces.

Conjecture 4.8.14. For all p,q,r € (0,00], there exists a constant C = C(p,q,r) such

that, for every finite setting (X, u, v,w) described in Subsection the following prop-
erties hold true for the finite setting (X, v,v,w) and for the outer measure v defined as in

Congecture [{.8.13
(i) For all q,r € (0,0], for every function f € LL(¢L({)) on X, we have
C UM Nesgery < I leaqencenyy < Ol eagery-
(ii) For all p,q,r € (1,0), for every function f € LY (LL(4)) on X, we have
CU e en ey < Sup{”ngLl(X,w): 9l o g gy = 1} < CIfllzeesery)-

(iii) For all p,q,r € (1,00), for every collection {f,: n € N} ce LY (LL(4)) of functions on

X, we have
|3 5
neN

We have the same statements replacing the finite setting (X, v,v,w) with the finite set-

tings (X, v, p,w), (X, u,(,w), (X,k,(,w), and (X, K, p,w), for the outer measures v, p, C,
and k defined as in Conjecture [{.8.13

< C Y Il zesenyy-
LY (62 (er)) neN .
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