
Conversational Question Answering over
Knowledge Graphs with Answer Verbalization

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Endri Kacupaj

aus
Vlore, Albanien

Bonn, 03.2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Jens Lehmann
2. Gutachterin: Prof. Dr. Maria Maleshkova

Tag der Promotion: 22.11.2022
Erscheinungsjahr: 2022

Abstract

In recent years, publicly available knowledge graphs (KG) have been broadly adopted as a source
of knowledge in several tasks such as entity linking, relation extraction, and question answering.
Question answering (QA) over knowledge graphs (KG) is an essential task that maps a user’s utterance
to a query over a KG to retrieve the correct answer. The initial knowledge graph question answering
(KGQA) systems were mostly template or rule-based systems with limited learnable modules. Existing
research on KGQA has accomplished outstanding results over simple questions, and lately, we have
seen a successful effort to improve KGQA for complex questions. However, information needs are not
always satisfied in one-shot processing. Either cause the first request is not well-formed, or the user
requires more information for a particular topic and issues a series of follow-up questions. In such a
conversational scenario, the follow-up questions are often incomplete since they co-reference entities
and/or relations from previous interactions. Furthermore, existing KGQA resources and systems do
not support answer verbalization. They provide nondescriptive answers extracted from KGs without
verbalizing them in natural language utterances.
In this thesis, Conversational Question Answering over Knowledge Graphs with Answer Verbaliza-

tion, we address conversational question answering and answer verbalization tasks while employing
knowledge from structured graph data such as knowledge graphs. We present novel approaches based
on deep neural network architectures and the multi-task learning paradigm, which allows for improved
generalization. First, we propose extending question-answering resources with multiple verbalized
answers to study whether the answer verbalization performance can be improved. In this work, we
release the first question answering dataset with up to eight paraphrased responses for each question.
We provide evaluation baselines to determine our dataset’s quality and analyze the performance of
various models when trained with one or more paraphrased answers. Next, we explore whether an
additional source of information can be incorporated to generate better verbalized answers. Here, we
develop a multi-task learning framework that comprises logical forms as auxiliary context alongside
the questions. We evaluate on three QA datasets with answer verbalization where results establish a
new baseline for the task. Afterward, we continue with the conversational question answering task,
where we propose two multi-task neural semantic parsing approaches that construct logical forms
and execute them in a knowledge graph to retrieve answers. We present an architecture of stacked
pointer networks and we propose employing a Transformer model with Graph Attention Networks for
consolidating knowledge graph information. We empirically study the proposed architectural design
choices through an extensive evaluation and multiple analyses. Finally, we investigate the impact
of incorporating answer verbalization in the conversational question answering task. We present
an approach that jointly models the conversational context (entire dialog history with verbalized
answers) and knowledge graph paths in a common space for learning joint embedding representations
to improve path ranking. Results on standard datasets show a considerable improvement over previous
baselines. Our contributions target a broader research agenda by providing efficient, conversational
question answering and answer verbalization approaches. All the proposed approaches and resources
presented in this thesis are publicly available.

iii

Acknowledgements

This work would not have been possible without the support and guidance of many individuals. First,
I would like to thank my supervisor, Prof. Dr. Jens Lehmann, for his constant guidance and support
throughout my PhD studies. His insightful feedback pushed me to sharpen my thinking and brought
my work to a higher level. Similarly, I would like to express my gratitude and appreciation for Prof.
Dr. Maria Maleshkova, whose support and encouragement has been invaluable throughout this thesis.
Her motivation, enthusiasm, patience, and insightful guidance helped me see new ideas when tackling
the research problem.

I want to extend my sincere thanks to Dr. Kuldeep Singh for co-authoring the majority of research
papers and providing support and constructive criticism to improve my research work. I also had great
pleasure of working with Joan Plepi, where our collaboration resulted in a core part of this thesis.

I am grateful to the Smart Data Analytics (SDA) group members at the University of Bonn for our
great time. I would like to thank my colleagues for their profound and thoughtful discussions: Afshin
Sadeghi, Carsten Draschner, Denis Lukovnikov, Dr. Fathoni A. Musyaffa, Firas Kassawat, Dr. Gezim
Sejdiu, Dr. Giulio Napolitano, Dr. Günther Kniesel, Dr. Harsh Thakkar, Lars Reimann, Mehdi Ali,
Dr. Mohnish Dubey, Mojtaba Nayyeri, and Sebastian Bader. Special thanks to Dr. Hamid Zafar
for our wonderful collaboration. I am also grateful to all the ESRs from CLEOPATRA Project for
the wonderful time we had during the project meetings. Many thanks to Jason Armitage, Golsa
Tahmasebzadeh, Swati, Elisavet Koutsiana, Gullal Singh Cheema, Sara Abdollahi, Sahar Tahmasebi,
Gabriel Amaral, Simon Gottschalk, Eric Müller-Budack, and Dr. Sherzod Hakimov, with whom I
worked more closely. I also want to thank Shyanmath Premnadh, Barshana Banerjee, Aynur Guluzade,
Rishi Tripathi, and Deepansh Pandey, who contributed to my thesis at various stages.

Thanks should also go to Sirma AI, trading as Ontotext, particularly Vladimir Alexiev, Nikola
Tulechki, Andrey Tagarev, and Nikola Rusinov, enabling me to visit their offices and observe their
daily operations and learn through their projects.

I want to recognize the support in the form of PhD research scholarship that I received from the
European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie
grant agreement no. 812997 (CLEOPATRA), which enabled me to perform my research.

Last but not least, I wish to thank my parents for their support and encouragement throughout my
study.

This thesis is dedicated to my parents, Violeta and Agim.

v

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement and Challenges . 5

1.2.1 Answer Verbalization Challenges . 5
1.2.2 ConvQA Challenges . 5
1.2.3 Multi-Task Learning Challenges . 6

1.3 Research Questions . 7
1.4 Thesis Overview . 9

1.4.1 Contributions . 9
1.4.2 Publications . 11

1.5 Thesis Outline . 13

2 Background 15
2.1 Knowledge Graph . 15
2.2 Question Answering over Knowledge Graph . 16

2.2.1 Semantic Parsing . 16
2.2.2 Information Retrieval . 16

2.3 Deep Neural Network Architectures . 18
2.3.1 Sequence to Sequence Networks . 18
2.3.2 Pointer Networks . 19
2.3.3 Transformer Networks . 20
2.3.4 Graph Attention Networks . 24

2.4 Multi-Task Learning . 26
2.4.1 Approaches . 26
2.4.2 Mechanisms . 27

3 Extending Question Answering Resources to Support Answer Verbalization 29
3.1 Introduction . 30
3.2 Related Work . 31
3.3 ParaQA: A Question Answering Dataset with Paraphrase Responses 33

3.3.1 Generation Workflow . 34
3.3.2 Dataset Statistics . 37

3.4 Availability and Sustainability . 37
3.5 Experimental Setup . 38
3.6 Results . 39
3.7 Reusability and Impact . 40

vii

3.8 Summary . 41

4 Answer Verbalization via Multi-Task Learning 43
4.1 Introduction . 44
4.2 Related Work . 45
4.3 Task Definition . 46
4.4 Verbalization Through Multi-Task Learning . 47

4.4.1 Dual Encoder . 47
4.4.2 Similarity Threshold . 48
4.4.3 Cross Attention . 49
4.4.4 Hybrid Decoder . 50

4.5 Mutli-Task Learning . 50
4.6 Experimental Setup . 51
4.7 Results . 54
4.8 Ablation Study . 55
4.9 Error Analysis . 57
4.10 Case Study . 59
4.11 Summary . 59

5 Conversational Question Answering via Multi-Task Learning 61
5.1 Introduction . 62
5.2 Related Work . 64
5.3 Context Transformer with Stacked Pointer Networks 65

5.3.1 Approach . 66
5.3.2 Multi-Task Learning . 71
5.3.3 Experimental Setup . 71
5.3.4 Results . 73
5.3.5 Ablation Study . 74
5.3.6 Error Analysis . 75
5.3.7 Synopsis . 76

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks 76
5.4.1 Approach . 77
5.4.2 Multi-Task Learning . 82
5.4.3 Experimental Setup . 83
5.4.4 Results . 84
5.4.5 Ablation Study . 85
5.4.6 Task Analysis . 85
5.4.7 Error Analysis . 86
5.4.8 Synopsis . 87

5.5 Summary . 87

6 Conversational Question Answering with Answer Verbalization 89
6.1 Introduction . 90
6.2 Related Work . 92
6.3 Concepts, Notation and Problem Formulation . 93

viii

6.4 Path Ranking for Conversational Question Answering 94
6.4.1 Encoder . 94
6.4.2 Domain Identification Pointer . 95
6.4.3 KG-path Ranking . 96
6.4.4 Verbalization Decoder . 96

6.5 Multi-Task Learning . 97
6.6 Benchmark with Answer Verbalization . 99
6.7 Experimental Setup . 101
6.8 Results . 102
6.9 Ablation Study . 104
6.10 Task Analysis . 106
6.11 Error Analysis . 107
6.12 Summary . 108

7 Conclusion and Future Directions 109
7.1 Review of the Contributions . 109
7.2 Limitations and Future Directions . 112

Bibliography 115

A List of Publications 133

List of Figures 135

List of Tables 139

ix

CHAPTER 1

Introduction

Question answering (QA) interfaces provide a way of querying the information available in various
formats, including unstructured (e.g., news articles) and structured (e.g., Knowledge Graphs) data in
natural languages. Knowledge Graphs (KGs) have recently garnered significant attention from industry
and academia. They are commonly used to curate and connect facts from various information sources
available on the web. Existing publicly available large-scale KGs (e.g., DBpedia [1], Wikidata [2], and
Yago [3]) have been widely adopted as a reference source of information and knowledge in several
fields such as information retrieval and question answering. Knowledge Graph Question Answering
(KGQA) systems aim to map a user’s natural language question to a query over a KG to retrieve the
correct answer. In recent years, a large number of KGQA approaches have been developed [4, 5].
With the increasing popularity of intelligent personal assistants (e.g., Alexa1, Siri2, Google

Assistant3, Cortana4, and others), the research focus has been shifted to conversational question
answering (ConvQA) or multi-turn QA. These systems aim to understand the given context and engage
users in multi-turn QA to satisfy their information needs. ConvQA over KGs has grasped attention
and prominence in recent years owing to the availability of large-scale, multi-turn QA datasets and the
advancement of the deep learning field.
While existing KGQA systems provide key technology to facilitate users to query knowledge graphs

using natural language, they do not consider interpreting the answer in a more readily comprehended
format. In other words, these systems deliver answers as extracted from the knowledge graphs
without supporting any answer interpretability method such as verbalizing them into natural language
sentences. A recent work [6] has examined different answer interpretation strategies for KGQA
systems, such as query representation, graph representation, controlled language representation, and
answer verbalization representation. They concluded that verbalizing KGQA answers into natural
language is more convenient for the users to understand the answer and its correlation with the question,
especially for complex queries. Hence, answer verbalization is an essential element that existing
KGQA systems lack and, therefore, a research gap we address in this thesis.
This thesis explores the fields of conversational question answering over knowledge graphs and

answer verbalization to introduce novel solutions for advancing the state-of-the-art.

1 https://developer.amazon.com/en-US/alexa
2 https://www.apple.com/siri/
3 https://assistant.google.com/
4 https://www.microsoft.com/en-us/cortana

1

https://developer.amazon.com/en-US/alexa
https://www.apple.com/siri/
https://assistant.google.com/
https://www.microsoft.com/en-us/cortana
Endri Kacupaj

Chapter 1 Introduction

Like single-turn QA, multi-turn QA or ConvQA systems comprise multiple components that handle
different sub-tasks. Together, these sub-tasks are coordinated to achieve the decisive task of retrieving
answers for a given natural language question. The most common sub-tasks include Natural Language
Understanding (NLU), Named Entity Recognition (NER), Entity Linking (EL), Relation Linking
(RL), and Query Builder (QB). Typically, the NLU module is employed to understand the structure
of the input and exploit the semantics of the question. The NER module identifies all entities in the
input question, while the EL module links them with KG entities. Besides, the RL module links the
relations mentioned in the question with the KG. Finally, the QB module utilizes all this information
to identify the most suitable KG path for answering the question. Most approaches employ the QB
module to generate a formal query representation of the question and execute it in the underlying KG
for extracting the answers. In the end, the retrieved answer is presented to the user. Nowadays, with
the emerging of the deep learning field, all these sub-tasks are built using various deep neural network
architectures and trained through the availability of large-scale corpora.
Several works [6–10] target the KGQA task by implementing stand-alone components. However,

in this way, there is no information shared between the components, and each one is performed
individually. While this can generally achieve adequate performance, being more focused on single
tasks, we risk ignoring information that might help us improve the overall QA performance. To avoid
this, we can share information (e.g., representations) between related tasks by jointly training them. In
this way, we enable the broader QA architecture to generalize better on the overall task. This approach
is called Multi-Task Learning (MTL) and has emerged in multiple fields in recent years [11]. MTL is
our primary learning paradigm for all the proposed models in this thesis.

1.1 Motivation

In recent years, there has been a trend shift from single-turn QA to conversational QA. Most of
the existing KGQA approaches refer to single-turn QA, where the users ask a single question and
receive answers extracted from the underlying KG. However, in a real-world scenario, users tend to
ask complex questions that require multi-turn interaction with the KG. Furthermore, users also pose
questions that refer to information from previous interactions with the system. These cases refer to the
ConvQA task, where we have to incorporate and analyze the conversational history in order to answer
follow-up questions. Figure 1.1 illustrates an example of ConvQA over KGs.
Some common scenarios of follow-up questions are the “incomplete” or “indirect” cases since they

require co-reference or ellipsis resolution to handle them. Considering the examples in Figure 1.1, we
see the first question “Where was the President of the United States born?”. This is a direct question
similar to the single-turn QA. The system here is expected to answer “Scranton, Pennsylvania”. On
the second turn, the user asks, “Where did he graduate from?”. As we can see, the question does not
contain any entity itself, but it refers to the entity from the previous question (Q1). Interestingly the
entity in the first turn is not directly mentioned in the question but instead referred to as the “President
of the United States”. For this example, the entity is “Joe Biden”. Therefore, to answer the second
question, the system requires performing co-reference resolution employing the conversational context
available (question, answer, and entities) from the previous turn. We can see that using only the
question is insufficient since we require the entities. Next, in the third turn, we see a similar type of
question. The question here, “What year was it established?” refers to the answer entity from the
previous turn (“Syracuse University”). Again co-reference resolution is required here for accurately

2

1.1 Motivation

Figure 1.1: A conversational question answering example with answers derived from knowledge graphs.

answering the question. Finally, in the last turn, we can see a different type of question. The user
asks “How about Harvard university?”. As we can observe, the question contains an entity (“Harvard
university”); however, no other information is given. The intent of this question is extracted from
the previous interaction (Q3), and to answer such types of questions, we need to perform ellipsis
resolution. For single-turn QA systems, the user would have to ask the complete question such as
“What year was Harvard University established?” ignoring previous interactions with the system.
In ConvQA, incomplete and indirect questions contain various difficulties. Above, we described two

of them that require co-reference and ellipsis resolution. However, there can exist more complicated
scenarios where the systemmust ask so-called “clarification” questions for collecting more information.
With clarification questions, we can clarify part of the question with the user in order to provide an
answer. The system often chooses to ask a clarification question after a co-reference resolution step is
not successful or clear. We can envision a scenario where the user’s question refers to entities from
the previous turn where multiple entities of the same type exist. Here, the system must clarify for
which entity the user desires an answer. For example, if for the question “Where did he graduate
from?” the system would answer with both alma maters that Joe Biden graduated (e.g., University of
Delaware and Syracuse University). Then for the following question, “What year was it established?”
the system would first have to clarify whether the user wants an answer for the University of Delaware
or Syracuse University or even both.
Similar to single-turn KGQA, ConvQA over KGs can also be performed via semantic parsing

[12–15] or information retrieval-based approaches [16, 17]. The main difference between single-turn
KGQA and ConvQA is how we identify all the relevant context required to answer a question. For the
ConvQA task, we can obtain the relevant context by incorporating the existing conversational history.

3

Chapter 1 Introduction

Figure 1.2: A conversational question answering example with verbalized answers.

The work in this thesis mainly focuses on the ConvQA over KGs task, and therefore the mentioned
scenarios are addressed in various approaches we propose [14, 15, 18].
Existing KGQA (including ConvQA) systems are only capable of retrieving answers for given

questions. However, these answer responses might leave the end-user unsatisfied with their represen-
tation. For instance, assuming that the answer from the question “Where was the President of the
United States born?” (cf. Figure 1.1) is not known by the user. When the QA system only provides a
name with no further explanation, the user might refer to an external source to verify the answer. In
an attempt to allow the users to verify the response provided by a QA system, researchers employ
various techniques such as (i) graphically visualizing the formal query [19], (ii) exposing the generated
formal query [20], and (iii) verbalizing the formal query [21–23]. However, a more sophisticated
approach to allow users to validate the answers given by the QA system would be to verbalize the
answer to convey the information requested by the user and include additional characteristics that
indicate how it was determined. For instance, the answer verbalization for the example question can be
“The president of the United States, Joe Biden, was born in Scranton, Pennsylvania.” and given this
verbalization, the user can better verify that the system is retrieving a location that is the birthplace of
“Joe Biden” who is the “President of the United States”. At the same time, verbalizing the answers
could also be helpful for the ConvQA system’s performance. For example, in Figure 1.2, we can see
the same conversation as in Figure 1.1 extended with verbalized answers. We can observe that for
the question in the second turn (Q2) “Where did he graduate from?”, the system can more naturally
perform co-reference resolution and identify that the pronoun “he” refers to “Joe Biden” since the
verbalized answer reveals him as the “President of the United States”.
To this end, we distinguish three advantages that verbalized answers provide compared to coarse

4

1.2 Problem Statement and Challenges

answers extracted from KGs: i) express and present better and more natural responses to users,
engaging them in conversation. ii) Allow users to validate the answers since they provide additional
textual context relevant to the question. iii) They can be helpful for ConvQA systems by supporting
them in particular conversational scenarios where the co-reference resolution is not straightforward
(cf. Figure 1.2).
Therefore, the work in this thesis addresses the answer verbalization task, which can be correlated

with building better ConvQA systems.

1.2 Problem Statement and Challenges

In this section, we define the problem definition for this thesis work, and we look into various
challenges that we have to address.

Research Problem Definition

How can we employ multi-task learning to improve the performance of conversational question
answering over knowledge graphs and answer verbalization?

We identify several fundamental challenges to be tackled while working towards our research
problem. We divide the challenges in three main categories: Answer Verbalization, ConvQA andMTL
Challenges.

1.2.1 Answer Verbalization Challenges

Challenge 1: Lack of KGQA resources that support answer verbalization

Currently, an insufficient number of KGQA datasets support answer verbalization. Furthermore,
existing datasets [24, 25] are restricted to only one verbalized answer. However, an answer can be
formulated differently using various paraphrases and still containing the same semantic meaning.
Having more paraphrased answers can introduce more flexibility and intuitiveness in the conversations.

Challenge 2: Additional context for improving answer verbalization performance

The answer verbalization task aims to generate fluent, natural language answers to a user questions.
Currently, only the question is utilized as a source of information to generate verbalized responses.
However, a question can have different reformulations that might affect the learning process of the
underlying model, especially if no designated patterns are identified for generating the verbalized
answers. Therefore, an additional context is required to allow the model to determine that questions
with the same meaning posed differently can be satisfied with the same or similar responses.

1.2.2 ConvQA Challenges

Challenge 3: Semantic parsing grammar for ConvQA

Semantic parsing is one of the main methodologies for approaching KGQA. For semantic parsing, we
require a grammar of actions to build executable queries over the KG. These actions can vary based on
the types of questions and their complexity. While for KGQA, various grammars have been proposed

5

Chapter 1 Introduction

for semantic parsing, they cannot be directly applied to the ConvQA task since they do not address
conversational scenarios such as clarification questions. Hence, it is challenging to build a grammar
with efficient actions that can be employed for ConvQA.

Challenge 4: Comprise KG information in ConvQA

We perform ConvQA by retrieving answers from KGs. Therefore, incorporating KG information such
as entities, relations, and types is crucial for our task. We need to discover methods that determine
the relevant information in the KG and incorporate it effectively in our model. Since KG facts are
connected, the challenge will also be to exploit correlations for more satisfactory performance.

Challenge 5: Incorporate all available conversational contexts

As stated in our motivation, conversational context plays a vital role in improving ConvQA performance.
In particular, the entire dialog history is required to answer conversational questions. Moreover,
verbalized answers can provide context that might be helpful for particular scenarios (cf. Figure 1.2).
Therefore, we want to recognize all the available conversational contexts (e.g., dialog history, answer
verbalization, and possibly more) that are valuable and effectively incorporate them.

Challenge 6: Consolidate answer verbalization into overall ConvQA architecture

Yet, another challenge is to integrate the answer verbalization task with the ConvQA task. Our goal is
to merge answer verbalization sub-tasks with ConvQA sub-tasks under a unified framework. However,
the outputs of the tasks are different and identifying solutions for MTL training challenges, like the
two we describe below, is not clear. We must determine how to establish a connection between the
sub-tasks for effectively sharing training signals and controlling the learning process of each sub-task
for optimal performance on both primary tasks (Answer Verbalization and ConvQA).

1.2.3 Multi-Task Learning Challenges

Challenge 7: Identify information to share among sub-tasks

The ConvQA task consists of multiple sub-tasks (e.g., NLU, NER, QB) that need to be coordinated for
answering questions from KGs. For MTL, the goal is to share training signals of related sub-tasks
to improve generalization for the overall ConvQA task. Here, the challenge is identifying what
information (i.e., representations) to share between the sub-tasks for improving the QA task’s overall
performance.

Challenge 8: Coordinate training of multiple diverse sub-tasks

Another challenge related to MTL is the coordination of training multiple QA sub-tasks. The
complexity of each sub-task has to be identified and, accordingly, control the model’s learning process.
For instance, we can imagine that the model will require multiple iterations over the training data for
more complicated sub-tasks to achieve the best performance. While for less complicated sub-tasks,
fewer iterations might be sufficient. In such cases, we endanger overfitting training data in less
complicated sub-tasks. Here, we desire to recognize the complexity of each task and depict this in the
learning process for achieving a more promising overall generalization for the QA task.

6

1.3 Research Questions

1.3 Research Questions

In order to investigate the challenges mentioned above, we break down the main research question into
four more concrete and specific questions. Figure 1.3 illustrates the connections between the four
research questions and the main research question.

Research Question 1 (RQ1)

How do multiple paraphrased answers affect the performance of answer verbalization?

As a first step, we want to address the lack of KGQA resources that support answer verbalization.
This would allow us to focus on building better answer verbalization systems. While constructing the
resource, we want to provide paraphrases of generated verbalizations to introduce more flexibility and
see whether the models can leverage this for improving their performance. To develop such a resource,
we require building a semi-automated framework with numerous steps that assures the grammatical
correctness of the generated natural language answers. By working with RQ1, we are addressing the
first challenge described above.

Research Question 2 (RQ2)

How can we incorporate logical forms to improve the performance of answer verbalization via
multi-task learning?

Here, we aim to advance the state-of-the-art for verbalizing answers of KGQA systems. In order to
do that, we want to build a multi-task learning framework for answer verbalization. As mentioned in
the second challenge, we must further identify an additional context to support the verbalization task.
Our goal is to employ logical forms as a supplementary context of the question and develop sub-tasks
that can be jointly trained to produce the final verbalized answer. Therefore, we must also assess the
MTL challenges for developing the framework.

Research Question 3 (RQ3)

How can we develop better and more efficient multi-task semantic parsing approaches for
conversational question answering?

Semantic parsing is a key methodology for several state-of-the-art QA systems. Here, we want to
perform semantic parsing for ConvQA via MTL. For this, we need to develop multi-task frameworks
and semantic grammars from which we generate logical forms and execute them in a KG for retrieving
the answers. With this research question, we address the ConvQA challenges regarding the semantic
parsing grammar and comprising KG information in the task. At the same time, both MTL challenges
are addressed.

7

Chapter 1 Introduction

Figure 1.3: Demonstrating the connection of the four research questions to the main research question.

Research Question 4 (RQ4)

How can answer verbalization be leveraged to improve the performance of conversational
question answering?

Finally, we want to investigate the possibility of including the answer verbalization task into the
ConvQA architecture. In this way, we can leverage answer verbalization information as part of the
conversational context for improving ConvQA performance. This research question is inspired by the
motivational example we described (cf. Figure 1.2), where answer verbalization presents more natural
responses to users and can also be helpful for seeking answers for the ConvQA task where additional
context might be required. In order to answer RQ4, we trigger several challenges mentioned above,
such as the fifth and sixth challenges regarding the available conversational context and consolidating
the answer verbalization task in ConvQA. Similar to the two previous research questions, both MTL
challenges are addressed here.

8

1.4 Thesis Overview

1.4 Thesis Overview

This section highlights the main contributions to the dissertation and the research areas investigated.
We refer to the scientific publications published during the research period covering those contributions.

1.4.1 Contributions

Our contributions cover a spectrum of research areas in the scope of answer verbalization and
conversational question answering over knowledge graphs via multi-task learning paradigm, as
depicted in Figure 1.4.

Contributions for RQ1

A question answering resource extended with multiple paraphrased answers and empirical
analysis to measure the effectiveness.

Corresponding work: Kacupaj et.al [26]

To address the research question RQ1, we first develop a KGQA resource that supports answer
verbalization. We provide a semi-automated framework for generating multiple paraphrase responses
for a question by utilizing methods such as back-translation. Furthermore, we release the first KGQA
dataset with multiple paraphrased verbalized responses. In particular, the dataset consists of up to
eight unique paraphrased answers for each question and employs DBpedia [1] as the underlying KG.
Moreover, we provide evaluation baselines that serve to confine our dataset’s quality and define a
benchmark for future research. Finally, we examine the performance of various models when trained
with one or more paraphrased responses to determine the impact of multiple verbalized answers on
the answer verbalization performance.

Contributions for RQ2

A multi-task learning framework for verbalizing answers using questions and logical forms as
inputs.

Corresponding work: Kacupaj et.al [27]

For the second research question, RQ2, we present the first multi-task-based answer verbalization
framework that employs questions and logical forms as inputs and simultaneously trains four modules
for generating natural language answers. Furthermore, in this framework, we propose a novel
similarity threshold and cross attention modules to determine the relevance between the inputs and
fuse information. We validate the framework capabilities by providing an extensive evaluation and
ablation study on three QA datasets with answer verbalization, including the generated resource for
RQ1. Evaluation results establish a new baseline for the answer verbalization task that will drive
future research in a newly studied problem.

9

Chapter 1 Introduction

Figure 1.4: Illustrating the contributions to the research questions and the scope they address. Next to
contributions, we indicate associated works.

Contributions for RQ3

Multi-task semantic parsing systems comprised of state-of-the-art deep neural architectures.

Corresponding works: Plepi, Kacupaj et.al [14] & Kacupaj et.al [15]

For the third research question, RQ3, we develop two multi-task neural semantic parsing approaches
for (complex) conversational question answering over knowledge graphs. We distinguish the works
from the number of sub-tasks they perform and the different deep neural architectural modules they
utilize. Furthermore, in the first work, we present a reusable grammar for neural semantic parsing that
defines various actions that can be combined to develop logical forms and execute them on a KG to fetch

10

1.4 Thesis Overview

answers. We also propose an architecture of stacked pointer networks for incorporating knowledge
graph information on the task. In the second work, we modify certain grammar actions for optimal
performance, and we employ a Transformer model supplemented with Graph Attention Networks
to exploit the correlations between (entity) types and predicates due to its message-passing ability
between the nodes. We further propose a novel entity recognition module that detects, links, filters,
and permutes all relevant entities. We empirically study the proposed architectural design choices
through extensive evaluations, ablation studies, and multiple analyses. Overall, both approaches have
achieved state-of-the-art results on several question types from a large-scale conversational question
answering dataset.

Contributions for RQ4

An approach that jointly models the conversational context (dialog history and verbalized
answers) and knowledge graphs paths.

Corresponding work: Kacupaj et.al [18]

For the last research question, RQ4, we study whether the availability of entire dialog history,
domain information, and verbalized answers can act as context sources in determining the ranking of
KG paths while retrieving correct answers. We propose an approach that models conversational context
and KG paths in a shared space by jointly learning the embeddings for homogeneous representation.
For evaluation, we extend standard ConvQA datasets to support answer verbalization using a similar
approach with the contribution in RQ1. We systematically study the impact of incorporating additional
context on the performance. Results indicate that our method outperforms existing baselines on all
domains and overall, where in particular cases, the margin of ranking metrics is even more significant
compared to the state-of-the-art performance. Our evaluation results establish a new baseline, which
we believe will drive future research in a new way of developing such frameworks.

The contributions we present in this thesis identify solutions for all the challenges mentioned and
supply answers to our main research question. Overall, two of the contributions directly address the
answer verbalization task, while the other two the conversational question answering task. We employ
multi-task learning in three of the contributions as our primary learning paradigm. Finally, each
contribution significantly advances the state-of-the-art in the respective field.

1.4.2 Publications

The following publications contribute a scientific basis to this thesis and serve as a reference point for
numerous figures, tables, and ideas presented in the later chapters.

• Conference Papers (peer reviewed)

1. Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann, and Maria
Maleshkova. “Conversational Question Answering over Knowledge Graphs with Trans-
former and Graph Attention Networks.” In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pp.
850-862. 2021. DOI: 10.18653/v1/2021.eacl-main.72

11

http://dx.doi.org/10.18653/v1/2021.eacl-main.72

Chapter 1 Introduction

2. Endri Kacupaj, Shyamnath Premnadh, Kuldeep Singh, Jens Lehmann, and Maria
Maleshkova. “VOGUE: Answer Verbalization Through Multi-Task Learning.” In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
563-579. Springer, Cham, 2021. DOI: 10.1007/978-3-030-86523-8_34

3. Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh Thakkar, and Jens Lehmann. “Context
Transformer with Stacked Pointer Networks for Conversational Question Answering over
Knowledge Graphs.” In European Semantic Web Conference, pp. 356-371. Springer,
Cham, 2021. DOI: 10.1007/978-3-030-77385-4_21

4. Endri Kacupaj, Barshana Banerjee, Kuldeep Singh, and Jens Lehmann. “ParaQA: A
Question Answering Dataset with Paraphrase Responses for Single-Turn Conversation.”
In European Semantic Web Conference, pp. 598-613. Springer, Cham, 2021. DOI:
10.1007/978-3-030-77385-4_36

5. Endri Kacupaj, Hamid Zafar, Jens Lehmann, and Maria Maleshkova. “VQuAnDa:
Verbalization question answering dataset.” In European Semantic Web Conference, pp.
531-547. Springer, Cham, 2020. DOI: 10.1007/978-3-030-49461-2_31

6. Endri Kacupaj, Kuldeep Singh, Maria Maleshkova, and Jens Lehmann. “Contrastive
Representation Learning for Conversational Question Answering over Knowledge Graphs.”
In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pp. 925-934. 2022. DOI: 10.1145/3511808.3557267

7. Jason Armitage, Endri Kacupaj, Golsa Tahmasebzadeh, Maria Maleshkova, Ralph
Ewerth, and Jens Lehmann. “MLM: A benchmark dataset for multitask learning with
multiple languages and modalities.” In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 2967-2974. 2020. DOI:
10.1145/3340531.3412783

• Demo Papers (peer reviewed)

8. Golsa Tahmasebzadeh, Endri Kacupaj, Eric Müller-Budack, Sherzod Hakimov, Jens
Lehmann, and Ralph Ewerth. 2021. “GeoWINE: Geolocation based Wiki, Image, News
and Event Retrieval.” In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’21). Association for
ComputingMachinery, NewYork, NY,USA, 2565–2569. DOI: 10.1145/3404835.3462786

• Workshop Articles (peer reviewed)

9. Simon Gottschalk, Endri Kacupaj, Sara Abdollahi, Diego Alves, Gabriel Amaral,
Elisavet Koutsiana, Tin Kuculo et al. “OEKG: The Open Event Knowledge Graph.” In
CLEOPATRA@WWW, pp. 61-75. 2021. DOI: Vol-2829/paper5

• Miscellaneous Papers (peer reviewed)
Following publication originated during the thesis but is not part of the thesis itself.
10. Aynur Guluzade, Endri Kacupaj, and Maria Maleshkova. “Demographic Aware Prob-
abilistic Medical Knowledge Graph Embeddings of Electronic Medical Records.” In
International Conference on Artificial Intelligence in Medicine, pp. 408-417. Springer,
Cham, 2021. DOI: 10.1007/978-3-030-77211-6_48

The list of publications completed during the PhD term is available in Appendix A.

12

https://doi.org/10.1007/978-3-030-86523-8_34
https://doi.org/10.1007/978-3-030-77385-4_21
https://doi.org/10.1007/978-3-030-77385-4_36
https://doi.org/10.1007/978-3-030-49461-2_31
https://dl.acm.org/doi/10.1145/3511808.3557267
https://doi.org/10.1145/3340531.3412783
https://doi.org/10.1145/3404835.3462786
http://ceur-ws.org/Vol-2829/paper5.pdf
https://doi.org/10.1007/978-3-030-77211-6_48

1.5 Thesis Outline

1.5 Thesis Outline

The structure of the thesis consists of the following seven chapters:

Chapter 1 – Introduction: Introduces the thesis describing the motivation, main research problem,
challenges, and contributions that address the four research questions. It further lists the scientific
publications that constitute the scientific basis of this dissertation.

Chapter 2 – Background: Presents the background covering the broad fields of Knowledge Graphs
and Question Answering. It further describes multiple deep neural architectures and the primary
learning paradigm (Multi-Task Learning) employed in this thesis to align the context and provide a
holistic overview of the research problem.

Chapter 3 – Extending Question Answering Resources to Support Answer Verbalization: Ad-
dresses the first research question (RQ1) concerned with question answering resources supporting
answer verbalization by proposing a framework that extends an existing question answering dataset to
support answer verbalization via multiple verbalized answers. It also provides a new resource named
“ParaQA” and illustrates experiments with various deep learning models.

Chapter 4 – Answer Verbalization through Multi-Task Learning: Addresses the second research
question (RQ2) concernedwith improving answer verbalization by proposing the “VOGUE” framework,
which attempts to generate a verbalized answer using a hybrid approach (questions and queries as
inputs concurrently) through a multi-task learning paradigm. It presents results on existing datasets
for answer verbalization, where “VOGUE” outperforms all baselines on both BLEU and METEOR
metrics.

Chapter 5 – Conversational Question Answering through Multi-Task Learning: Addresses the
third research question (RQ3) concerned with developing improved and efficient multi-task semantic
parsers for conversational question answering over knowledge graphs by presenting two frameworks,
“CARTON” and “LASAGNE,” which consists of multiple modules that parse the input conversation and
generate grammar-based logical forms for retrieving the answer from the underlying knowledge graph.

Chapter 6 – Conversational Question Answering with Answer Verbalization: Addresses the fourth
and last research question (RQ4) concerned with improving path ranking for conversational question
answering by proposing “PRALINE”, an approach that jointly models the conversational context (entire
dialog history, domain information, and verbalized answers) and KG paths to learn homogeneous
embedding representations for improving the path ranking. It further provides experiments on a
ConvQA dataset extended with answer verbalization, on which “PRALINE” outperforms baselines on
all domains and overall.

Chapter 7 – Conclusion and Future Directions: Concludes the work of this dissertation by
summarizing the core contributions and their impact on the community and lays out the direction of
future work.

13

CHAPTER 2

Background

This chapter provides the principles and concepts that lay the foundations for addressing the research
problem defined in Chapter 1. We will first look into the Knowledge Graph as a well-structured source
of information. Following, we continue with Question Answering over Knowledge Graph, where we
describe the two most common methods. Next, we will look at Deep Neural Network Architectures
that we employ across different approaches in this thesis. In the end, we describe the Multi-Task
Learning paradigm and present existing approaches and mechanisms.

2.1 Knowledge Graph

A knowledge graph can be described as a structured representation of entities, relations, and semantic
descriptions. Entities are real-world objects and abstract concepts, and relations describe the relation
between entities. Semantic descriptions of entities and their relations contain types and properties
with a well-defined meaning. Google introduced the term knowledge graph in 2012 [28]. According
to [29], the term knowledge graph is synonymous with a knowledge base with a minor difference. A
knowledge graph is a graph when considering its graph structure [30]. While, when it includes formal
semantics, it can be considered a knowledge base for interpretation and inference over facts [31]. The
knowledge is expressed in the form of a triple (subject, predicate, object) or (head, relation, tail) under
the resource description framework (RDF) [32], which is also interpreted as a directed graph with
entities as nodes and relations as edges. As of a definition, Paulheim [33] stated:

Definition 2.1.1 (Knowledge Graph). A knowledge graph, 1) mainly describes real-world entities and
their interrelations, organized in a structured graph; 2) defines possible classes and relations of entities
in a schema; 3) allows for potentially interrelating arbitrary entities with each other and 4) covers
various topical domains.

Another work [34], stated that a knowledge graph acquires and integrates information into an
ontology and employs a reasoner to derive new knowledge. A work from Wang et al. [35] proposed a
knowledge graph as a multi-relational graph composed of entities and relations that are perceived as
nodes and different types of edges, respectively. Today knowledge graphs are used in various domains
and applications [36–38].

15

Chapter 2 Background

2.2 Question Answering over Knowledge Graph

Large-scale KGs have been constructed to serve many downstream tasks. Applications for KGs
include semantic search [39–43], recommendations [44–46], chatbots [47–50], information extraction
[51–55], etc. [36–38, 56]. Based on available KGs, Knowledge Graph Question Answering (KGQA)
is a task that aims to answer natural language questions with KGs as its knowledge source. Early
approaches to KGQA [57–61] focus on answering simple questions involving only a single fact. For
example, the simple question “Where was Albert Einstein born?” can be answered using only the fact
“(Albert Einstein, BornIn, German Empire)”. Recently, researchers have started paying more attention
to answering complex questions over KGs [62, 63]. Complex questions involve multiple entities,
expressing compound relations and including numerical operations. There exist two mainstream
methods for performing question answering. First, both methods identify the topic entity in a question
and link it to an entity in the KG. Then they obtain the answers within the neighborhood of the topic
entity by either executing a parsed logical form or reasoning in a question-specific graph extracted
from the KG (the “sub”-graph is usually extracted with the topic entity). The two approaches are
known as semantic parsing and information retrieval. Figure-2.1 provides an abstract illustration of
how they function. We further describe how the two approaches operate in the following subsections.

2.2.1 Semantic Parsing

The semantic parsing-based approaches represent a question by a symbolic logical form and then
execute it against the knowledge graph to obtain the final answers. Overall, these methods aim at
parsing a natural language utterance into a logical form [65–67]. They usually operate in the following
steps:

1. A natural language understanding (NLU)module is employed to comprehend parts of the question
by conducting a semantic and syntactic analysis and obtaining the encoded representation.

2. A parsing module is used to transform the encoded representation into an uninstantiated logical
form. The logical form is usually only a syntactic representation of the question without any KG
information (e.g., entities, relations). A pre-defined grammar with several actions is required to
generate the logical forms, which vary based on the requirements.

3. The logical form is instantiated and validated by conducting semantic alignments via KG
grounding.

4. The final generated logical form is executed against the KG to retrieve the predicted answer.

Semantic parsing-based methods provide an interpretable reasoning process since they generate
expressive logical forms. The performance heavily relies on the vocabulary design and the selected
modules for the parsing algorithm.

2.2.2 Information Retrieval

The information retrieval-based approaches construct a question-specific graph that contains compre-
hensive information related to the question and ranks all the paths in the extracted graph based on
their relevance. Fundamentally, the information retrieval-based approaches directly retrieve and rank
answers from the KG, considering the information conveyed in the question [57, 58]. They operate in
the following steps:

16

2.2 Question Answering over Knowledge Graph

Figure 2.1: An abstract illustration of how semantic parsing and information retrieval based KGQA systems
operate (Source [64]).

1. Given the topic entity, extract a question-specific graph from the KG. Usually, this graph includes
all question-related entities and relations as nodes and edges, respectively.

2. An encoder module encodes the input question.

3. A graph-based module conducts semantic matching through a vector-based computation to
propagate and aggregate the neighboring entities’ information within the graph. The reasoning
status, which can vary (e.g., entity distribution, relation representations), is updated based
on reasoning instructions. Steps two and three are also performed multiple times to improve
reasoning [68, 69].

4. Finally, a ranking module is employed to rank the entities in the graph based on the reasoning
status. The top-ranked entities are considered as the predicted answers to the question.

Information retrieval-based approaches perform complex reasoning on graph structure and semantic
matching. Such a paradigm naturally fits into end-to-end training and makes these methods easier to
train. However, the style of reasoning here is less interpretable compared to semantic parsing-based
methods.

17

Chapter 2 Background

2.3 Deep Neural Network Architectures

Deep learning is a subset of a larger family of machine learning techniques based on representation
learning and artificial neural networks. Deep learning architectures like deep neural networks, deep
reinforcement learning, recurrent neural networks, and convolutional neural networks have been
used in domains like computer vision, speech recognition, and natural language processing. Natural
Language Processing (NLP) is one of the popular branches of artificial intelligence that allows
machines to understand, manipulate or respond to a human in their natural language. With the hype
of deep learning, most NLP tasks have been performed through various neural architectures. In
particular, Question Answering (QA) is a discipline within the field of NLP. In this thesis, we build
conversational QA systems by employing or building such neural architectures. In this section, we
describe various neural architectures we used.

2.3.1 Sequence to Sequence Networks

Sequence to sequence (seq2seq) is a method of encoder-decoder-based language processing approaches
that maps an input sequence to an output sequence with independent length. Seq2seq models are
currently used for several NLP tasks, such as machine translation [70, 71], question answering [72,
73], text summarization [74, 75], speech recognition [76, 77], etc. Here we describe the seq2seq
model from [78].
The most common seq2seq models employ a Recurrent Neural Network (RNN) to encode the input

(source) sentence into a single vector, also referred a context vector. The context vector is an abstract
representation of the entire input sentence. Next, a second RNN receives as input the context vector
and learns to produce the output (target) sentence by generating it one word at a time.
The objective of the encoder-decodermodel is to estimate the conditional probability 𝑝(𝑦1, ..., 𝑦𝑇′ |𝑥1,

..., 𝑥𝑇) where 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑇 } is an input sequence and 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑇′} is the corresponding
target sequence whose length 𝑇 ′ may differ from T. The seq2seq model computes this conditional
probability by first obtaining the fixed dimensional representation 𝑧 of the input sequence {𝑥1, 𝑥2, ..., 𝑥𝑇 }
given by the last hidden state of the encoder, and then computing the probability of {𝑦1, 𝑦2, ..., 𝑦𝑇′}
with a standard decoder whose initial hidden state is set to the representation 𝑧 of {𝑥1, 𝑥2, ..., 𝑥𝑇 }:

𝑝(𝑦1, ..., 𝑦𝑇′ |𝑥1, ..., 𝑥𝑇) =
𝑇
′∏

𝑡=1
𝑝(𝑦𝑡 |𝑧, 𝑦1, ..., 𝑦𝑡−1).

Figure 2.2 shows how seq2seq models operate. Here, the input sequence, “a b c”, is first passed
through an embedding layer and then into the encoder. Helper tokens indicating the beginning (e.g.
<SOS>) or end (e.g. <EOS>) of the sequence are frequently used. For each time-step, the encoder’s
input is the embedding 𝑒, of the current word, 𝑒(𝑥𝑡), as well as the hidden state from the previous
time-step/word, ℎ𝑡−1. At the end of the sequence, the encoder outputs a new hidden state ℎ𝑡 . This
hidden state can be used as a vector representation of the sentence so far. We can represent the encoder
as a function of 𝑒(𝑥𝑡) and ℎ𝑡−1:

ℎ𝑡 = encoder(𝑒(𝑥𝑡), ℎ𝑡−1).

The input sequence can be denoted as 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑇 }, where 𝑥1 = a, 𝑥2 = b, etc. The initial
hidden state, ℎ0, is usually initialized to zeros. After the final word of the sequence is encoded, the

18

2.3 Deep Neural Network Architectures

Figure 2.2: A sequence to sequence (seq2seq)/encoder-decoder model example. It reads an input sentence “a b
c” and produces “w x y z” as the output sentence.

final hidden state ℎ𝑇 is used as the context vector, i.e. ℎ𝑇 = 𝑧 and hence is the vector representation of
the entire input sequence.
With the context vector 𝑧, the decoding process is initiated in order to get the target sequence (“w x

y z”). For each time-step, the decoder’s input is the embedding 𝑑 of the current word 𝑑 (𝑦𝑡) alongside
the hidden state from the previous time-step 𝑠𝑡−1. The initial hidden state 𝑠0 is the context vector,
𝑠0 = 𝑧 = ℎ𝑇 , from the encoder. Therefore, similar to the encoder, we define the decoder as:

𝑠𝑡 = decoder(𝑑 (𝑦𝑡), 𝑠𝑡−1).

The two embedding layers used 𝑒, 𝑑 for the encoder and the decoder, respectively, are different
layers without sharing parameters.
As the last step, for predicting a word at each time-step, a linear layer 𝑓 is trained to receive an

input 𝑠𝑡 and predict �̂�𝑡 as the next word. This can be denoted as:

�̂�𝑡 = 𝑓 (𝑠𝑡).

The decoder always generates words one after another, where for each word, the decoder uses 𝑦𝑡>1
previous predictions. Here, a technique called “teacher forcing” is often used, wherewith a probability
𝑝 the decoder input can be the ground truth next word (𝑦𝑡) in the sequence. Otherwise, the word
predicted by the decoder, �̂�𝑡−1 is used. At this stage, the predicted target sequence𝑌 = {�̂�1, �̂�2, ..., �̂�𝑇′},
is compared against the actual target sentence, 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑇′}, to calculate our loss and proceed
with training of the model.
The seq2seq process mentioned above can be operated with any recurrent architecture, such as an

RNN, an LSTM (Long Short-Term Memory) [79], or a GRU (Gated Recurrent Unit) [80].

2.3.2 Pointer Networks

Pointer networks operate as a seq2seq model by addressing the case where the sequential output data
contain discrete elements that depend on the variable input size, specifically when the length of the
input data is undetermined. Overall, a pointer network learns the conditional probability of a target
sequence with discrete element tokens corresponding to positions in the source sequence (cf. Figure
2.3). The issue of variable vocabulary size is tackled by employing additive attention [70]. While the

19

Chapter 2 Background

Figure 2.3: A pointer network model example. It reads an input sentence “a b c” and each decoder step selects
an input element as the output sequence.

authors [70] propose attention to combine hidden states of the encoder to a context vector for each
decoder step, pointer networks utilize the same attention as a pointer to choose an element from the
input sequence.
More precisely, a simple adjustment of the additive attention model allows applying the method in

cases where the output vocabulary depends on the elements in the input sequence. Typically, a seq2seq
model employs a softmax over the fixed-sized vocabulary to compute 𝑝(𝑦1, ..., 𝑦𝑇′ |𝑥1, ..., 𝑥𝑇). There-
fore it cannot handle a variable vocabulary size. For pointer networks, to compute 𝑝(𝑦1, ..., 𝑦𝑇′ |𝑥1, ..., 𝑥𝑇),
the additive attention is modified as:

𝜔
𝑖
𝑗 = 𝑣

⊺
𝑡𝑎ℎ𝑛(𝑾1ℎ 𝑗 +𝑾2𝑠𝑖)

𝑝(𝑦1, ..., 𝑦𝑇′ |𝑥1, ..., 𝑥𝑇) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝜔
𝑖
𝑗)

(2.1)

where 𝑣,𝑾1, and𝑾2 are learnable parameters, ℎ 𝑗 and 𝑠𝑖 are the encoder and decoder hidden states,
respectively. The softmax normalizes 𝜔𝑖𝑗 to produce the output distribution over the vocabulary of the
input sequence. Here, the encoder hidden state ℎ 𝑗 is not combined to propagate further information to
the decoder; it rather uses 𝜔𝑖𝑗 as pointers to the input tokens.
While original pointer networks where proposed to only select elements from the input sequence,

the attention modification they perform is adopted in different tasks where the vocabulary size is not
pre-defined.

2.3.3 Transformer Networks

A Transformer is an encoder-decoder (seq2seq) neural architecture that avoids recurrence and relies
entirely on an attention mechanism to represent dependencies between input and output. Before, the
seq2seq models were based on recurrent [79, 80] or convolutional [81] neural networks extended
with attention mechanisms [70, 71]. The Transformer employs only attention mechanisms, allowing
significantly more parallelization compared to RNNs and CNNs.

20

2.3 Deep Neural Network Architectures

Figure 2.4: Transformer architecture (Source [82]).

Figure 2.4 illustrates the transformer architecture. In the Transformer, the encoder consists of
multiple blocks that process the input sequence iteratively one after another. The decoder consists of
blocks that do the same to the encoder’s output. Each encoder block aims to generate representations
that describe which input tokens are relevant to each other. In comparison, the decoder block receives
all the encoder representations and the embedded output (shifted to the right by one position) to
generate the output sequence. For achieving this, each encoder and decoder block employs attention
mechanisms. For each input token, the attention mechanism weighs the relevance and correlation
with every other input token to produce the output. A decoder block contains an additional attention
mechanism layer used to process the outputs information from the previous block and before receiving
the representations from the encoder. Both encoder and decoder blocks contain feed-forward layers
for additional processing and include residual connections and normalization layers.

21

Chapter 2 Background

Figure 2.5: Scaled Dot-Product Attention and Multi-Head Attention utilized in Transformer (Source [82]).

Scaled Dot-Product Attention

Each Transformer block contains a so called “Scaled Dot-Product Attention” (cf. Figure 2.5). The
inputs in this attention mechanism consist of a set of queries 𝑄 and keys 𝐾 of dimension 𝑑𝑘 , and a set
of values 𝑉 of dimension 𝑑𝑣 . First are computed the dot products of the query 𝑄 with all keys 𝐾 and
divided by

√︁
𝑑𝑘 , after a softmax function is applied to obtain the weights on the values 𝑉 . Formally,

the matrix output is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
⊺√︁
𝑑𝑘

)𝑉. (2.2)

Here, considering that 𝑞 ∈ R𝑑𝑘 and 𝑘 ∈ R𝑑𝑘 are vectors of dimension 𝑑𝑘 with components as
independent random variables with mean 0 and variance 1, then the dot product, 𝑞 · 𝑘 =

∑𝑑𝑘
𝑖=1 𝑢𝑖𝑣𝑖,

has mean 0 and variance 𝑑𝑘 . Since a variance of 1 is preferred, they are divided by 𝑑𝑘 .

Multi-head Attention

This module that runs through a Scaled Dot-Product Attention several times in parallel (cf. Figure
2.5). The attention outputs are concatenated and linearly transformed into the desired dimension.
Intuitively, multiple attention heads allow focusing on different parts of the sequence (e.g., shorter-term
dependencies vs. longer-term dependencies). The multi-head attention is defined as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = [ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ]𝑾
𝑂
,

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑾
𝑄

𝑖
, 𝐾𝑾𝐾

𝑖 , 𝑉𝑾
𝑉
𝑖),

(2.3)

where 𝑾𝑄

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑾𝐾

𝑖 ∈ R
𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑾𝑉

𝑖 ∈ R
𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , and 𝑾𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 and are

learnable matrices. 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimension of the model.

22

2.3 Deep Neural Network Architectures

Applications

Nowadays, the Transformer model is considered a breakthrough in the NLP field. It has been gradually
applied to tasks such as machine translation [83] and time series prediction [84]. Other NLP tasks that
use Transformers include summarization [85], question answering [86], named entity recognition [87],
and many more. It is already utilized in various tasks with different input and output modalities, such
as text↔image [88], text↔audio [89], video understanding [90], and biological sequence analysis
[91]. Besides, in this thesis, we mainly employ a Transformer model as a base of our approaches.

Language Models

An essential component of modern natural language processing is a language model. Language
modeling is a statistical method for predicting words based on human language patterns. Language
models are used in NLP-based applications for several tasks, including spell correction, speech
recognition, question answering, sentiment analysis, summarization, etc.
The Transformer architecture we described above is commonly used for building state-of-the-art

language models such as BERT [92], BART [93], and GPT [94]. These models employ the encoder
part of the Transformer (e.g., BERT) or the decoder part (e.g., GPT), or even both (e.g., BART), and
are pre-trained on a huge amount of corpora for various tasks. After pre-training, the models are
fine-tuned for any specific task and dataset.

Figure 2.6: Pre-training and fine-tuning procedures for BERT (Source [92]).

BERT. The BERT (Bidirectional Encoder Representations from Transformers) [92] model consists
of Transformers bidirectional encoder, and it was pre-trained with BookCorpus [95] and English
Wikipedia1 (2,5 billion words) on two tasks: i) a language modeling task where 15% of the input
tokens were masked, and BERT had to predict them from the surrounding context, ii) a next sentence
prediction binary task, where BERT was trained to predict if a chosen B sentence is the actual one
that comes after an A sentence. BERT is fine-tuned for different tasks such as Natural Language
Understanding, Reading Comprehension Question Answering, and Multiple Choice, showing new
state-of-the-art results. Figure 2.6 illustrates the pre-training and fine-tuning process of BERT model.
1 https://en.wikipedia.org/

23

https://en.wikipedia.org/

Chapter 2 Background

Figure 2.7: (left) BERT bidirectional encoder. (right) GPT autoregressive decoder (Source [93]).

Figure 2.8: BART architecture with BERT bidirectional encoder and GPT autoregressive decoder (Source [93]).

GPT. Another model, GPT (Generative Pre-Training) [94], consists of a Transformer autoregressive
decoder allowing it to handle also natural language generation tasks. While BERT encodes the
input bidirectionally, GPT can only condition on leftward context, so it can not learn bidirectional
interactions (cf. Figure 2.7). Like BERT, GPT operates in two steps: i) pre-train on a standard
language modeling objective, ii) supervised fine-tuning on a dataset and task-specific objective.

BART. Another state-of-the-art Transformer-based model is BART [93], a denoising autoencoder for
pre-training seq2seq models. BART is pre-trained by corrupting the input sequence with an arbitrary
noising function, and it learns to reconstruct the original text. It consists of a BERT bidirectional
encoder with a fully visible attention mask and a GPT left-to-right decoder with a casual attention
mask (cf. Figure 2.8).

With the success of BERT, pre-trained Transformer-based language models became a standard
method for approaching and solving a majority of NLP tasks. This thesis uses the BERT model in
different approaches for extracting initial representations [14, 15, 18]. We further employ BART as
the base module of a broader architecture for conversational QA with answer verbalization [18].

2.3.4 Graph Attention Networks

Graphs can model sets of objects, also referred to as nodes in the graph, and their relationships
referred to as edges between the nodes. Research on graph data tasks with machine learning has
gained increased popularity in the last few years due to the expressive power of graphs. They have
been used in different fields such as natural science for physical systems [96, 97], protein-protein
interaction networks [98], social science for social networks [99], citation networks [100], knowledge
graphs [101], and many others [102]. As a non-Euclidean data structure for machine learning,

24

2.3 Deep Neural Network Architectures

Figure 2.9: (left) The attention mechanism employed by GAT. (right) Multi-head attention in GAT (Source
[107]).

analyzing graphs includes node classification, link prediction, and clustering tasks. Recently, deep
learning-based approaches employ Graph Neural Networks (GNNs) [103] that operate on the graph
domain to handle those tasks. Several GNN architectures have been proposed to work with graph data
and employ different learning modules such as convolutional neural networks [104–106] and attention
networks [107, 108]. From the attention-based approaches, a model called Graph Attention Network
(GAT) [107] aims to generalize the attention mechanism [70, 82] on graphs and incorporate it into
the propagation step. A GAT module (cf. Figure 2.9) stacks layers in which nodes can attend over
their neighborhoods’ features. It implicitly allows defining different weights to different nodes in a
neighborhood without requiring costly matrix operation (e.g., inversion) or depending on knowing the
graph structure upfront.
Formally, a GAT computes the hidden states of each node by attending to its neighbors via a

self-attention strategy. For a node 𝑣, the hidden state is obtained by:

h𝑡+1𝑣 = 𝜌
©«
∑︁
𝑢∈N𝑣

𝛼𝑣𝑢𝑾h𝑡𝑢
ª®¬ , 𝛼𝑣𝑢 =

𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [𝑾h𝑣 ∥𝑾h𝑢]))∑
𝑘∈N𝑣

𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [𝑾h𝑣 ∥𝑾h𝑘]))
, (2.4)

where 𝜌 is an alternative non-linear function, N𝑣 is the neighborhood set of node 𝑣, h
𝑡
𝑢 is the hidden

state of neighborhood node 𝑢 at time step 𝑡, 𝑾 is the weight matrix associated with the linear
transformation applied to each node, and 𝑎 is the weight vector of a multi-layer perceptron (MLP).
Furthermore, the GAT model employs multi-head attention [82] to stabilize the learning process. It

utilizes 𝐾 independent attention head matrices to calculate the hidden states and then concatenates
their features or computes the average, resulting in the representations:

Concatenation: h𝑡+1𝑣 = ∥𝐾𝑘=1𝜎
©«
∑︁
𝑢∈N𝑣

𝛼
𝑘
𝑣𝑢𝑾𝑘h

𝑡
𝑢

ª®¬ , Average: h𝑡+1𝑣 = 𝜎
©« 1
𝐾

𝐾∑︁
𝑘=1

∑︁
𝑢∈N𝑣

𝛼
𝑘
𝑣𝑢𝑾𝑘h

𝑡
𝑢

ª®¬ . (2.5)

Here 𝛼𝑘𝑣𝑢 is the normalized attention coefficient computed by the 𝑘-th attention head. ∥ is the vector
concatenation operation, and 𝜎 the logistic sigmoid function. Overall, the attention architecture has
several characteristics: i) the calculation of the neighbor node pairs is parallelizable and therefore,
the operation is efficient; ii) it can be employed to graph nodes with different degrees by specifying
arbitrary weights to neighbors; iii) it is also suitable for inductive learning problems.
In this thesis, we employ a GAT model for ConvQA [15], where we aim to identify several KG

elements (i.e., entity types and relations) relevant to the input conversation.

25

Chapter 2 Background

2.4 Multi-Task Learning

With machine learning, we generally train models to perform single tasks. However, for complex
tasks that consist of several steps or sub-tasks, using models that focus only on one task, we endanger
ignoring essential and relevant information that might help us with overall performance. Alternatively,
sharing information between the related tasks enables the model to generalize better on the primary
task. This approach is also known as “Multi-Task Learning” (MTL). Formally we define multi-task
learning as:

Definition 2.4.1 (Multi-Task Learning). Given 𝑚 learning tasks {𝑇𝑖}
𝑚
𝑖=1 where all the tasks or a subset

are related, multi-task learning aims to learn the 𝑚 tasks simultaneously to improve the performance
of a model for each task 𝑇𝑖 by utilizing the training signals contained in all or some of the tasks.

According to Caruana [109], “Multi-task learning is an inductive transfer mechanism whose
principal goal is to improve generalization performance.”. Essentially, multi-task learning employs
information contained in the training signals of related tasks to enhance generalization. This is
achieved via parallelly training several tasks while using shared representations. Furthermore, the
training signals between the tasks can serve as an inductive bias. Overall, we perform multi-task
learning as soon as we aim to optimize more than one loss function and whether or not we use shared
representations.

2.4.1 Approaches

Nowadays, multi-task learning is also referred to as joint learning and has been successfully employed
in different fields and areas [110–113]. In the deep learning era, multi-task learning is commonly
performed in two ways.

Figure 2.10: Parameter sharing techniques for multi-task learning in deep neural networks (Source [11]).

26

2.4 Multi-Task Learning

Hard Parameter Sharing. The first one, named hard parameter sharing, is the most commonly
used and was first mentioned in [114]. On this one, we generally share the hidden layers between all
tasks while reserving several task-specific output layers (cf. Figure 2.10). This approach reduces the
risk of overfitting, which intuitively makes sense since the more tasks we jointly learn, the more the
model has to identify representations that satisfy and capture all the tasks, which yields less chance of
overfitting the original task [11].

Soft Parameter Sharing. The second way is soft parameter sharing, where for each task, we have
independent models with their parameters. Part of the models (i.e., module or layers) are regularized
to encourage having similar parameters (cf. Figure 2.10).

2.4.2 Mechanisms

Multi-task learning provides better performance due to additional training signals for related tasks.
Caruana [109] defined several mechanisms that help multi-task learning generalize better, Ruder [11]
further simplified and expanded them. Below, we discuss different examples where we assume we
have two related tasks, 𝑇 and 𝑇 ′ relying on hidden layer feature 𝐹.

Implicit Data Augmentation. Multi-task learning implicitly augments the data size that we are using
for training the model. As all tasks are somewhat noisy, the aim is to learn a good representation for
task 𝑇 that ideally ignores the data-dependent noise and generalizes well when training a model on
task 𝑇 . Different tasks have different noise patterns. A model that learns two tasks simultaneously
can learn a more general representation. Learning task 𝑇 bears the risk of overfitting task 𝑇 , while
learning 𝑇 and 𝑇 ′ enables the model to average noise patterns and better represent 𝐹.

Attention Focusing. It is hard for the model to distinguish relevant features from irrelevant ones
with limited or noisy data. Here, multi-task learning can support the model to focus only on relevant
features since multiple tasks will provide additional evidence for them.

Eavesdropping. In some cases, a number of features are easy to learn through task 𝑇 ′ while being
challenging to learn through task 𝑇 . This might be because task 𝑇 interacts with the features more
complexly, or other features prevent the model’s learning ability. Multi-task learning allows the model
to eavesdrop, i.e., learn these features through task 𝑇 ′. This is usually done by directly training the
model to predict the features.

Representation Bias. Multi-task learning forces themodel to favor representations that are beneficial
for other tasks also. It further helps the model to better generalize in new future tasks.

Regularization. As the last one, multi-task learning serves as a regularizer by introducing an
inductive bias. In this way, it reduces the risk of overfitting and its ability to fit random noise.

For the models presented in this thesis [14, 15, 18, 27], we employ multi-task learning via hard
parameter sharing where a Transformer-based encoder architecture is simultaneously trained to
generate representations that are shared across all the tasks.

27

CHAPTER 3

Extending Question Answering Resources to
Support Answer Verbalization

Answer verbalization task enables QA systems to express and present more natural responses to users
while engaging them in a conversation. As a relatively new task, answer verbalization has not been
extensively explored with deep learning approaches to observe the possibilities and limits. With the
advancement of the deep learning field, the demand for resources has significantly grown. A first step
to approach the task with deep learning architectures would be to develop resources that allow training
such models. Existing answer verbalization resources [24, 25] comprise only one natural language
answer per question, and they also provide the first set of experiments with prominent deep neural
models. Considering these works, we observe that a single verbalized answer might not be sufficient
for the models to learn diverse patterns for generating the responses. Also, we can think of it from
the human point of view, where, given a question, multiple individuals will formulate the answer in
different ways. Responses will vary from person to person, but they retain the same meaning.
In this chapter, we address the lack of answer verbalization resources in the KGQA community.

More importantly, we want to investigate whether multiple paraphrased answers can improve the
performance of machine learning models. The primary objective is to build a new resource upon
existing work by generating numerous responses for each question.
We address the following research question in this chapter:

RQ1: How do multiple paraphrased answers affect the performance of answer verbalization?

Contributions of this chapter are summarized as follows:

• We provide a semi-automated framework for generating multiple paraphrase responses for each
question using techniques such as back-translation.

• We present the first question answering dataset with multiple paraphrased responses. In
particular, the dataset consists of up to eight unique paraphrased responses for each dataset
question that can be answered using DBpedia as the underlying KG.

• We provide evaluation baselines that serve to determine our dataset’s quality and define a
benchmark for future research.

29

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

• We analyze the performance of various models when trained with one or more paraphrased
answers.

This chapter is based on the following publication ([26]):

• Endri Kacupaj, Barshana Banerjee, Kuldeep Singh, and Jens Lehmann. “ParaQA: A Question
Answering Dataset with Paraphrase Responses for Single-Turn Conversation.” In European
Semantic Web Conference, pp. 598-613. Springer, Cham, 2021. DOI: 10.1007/978-3-030-
77385-4_36

The rest of the chapter is structured as follows: Section 3.1 introduces the work. In Section 3.2,
we describe the related work. We introduce the details of our dataset and the generation workflow
in Section 3.3. Section 3.4 describes the availability of the dataset, followed by the experiments in
Section 3.5. Section 3.6 provides the experiment results. The reusability study and impact is reported
in Section 3.7. Finally, Section 3.8 provides the summary.

3.1 Introduction

In dialog systems research, we can distinguish between single-turn and multi-turn conversations [115,
116]. In single-turn conversations, a user provides all the required information (e.g., slots/values) at
once, in one utterance. Conversely, a multi-turn conversation involves anaphora and ellipses to fetch
more information from the user as an additional conversation context. The existing ConvQA [16, 117]
datasets provide multi-turn dialogues for question answering. In a real-world setting, user will not
always require multi-turn dialogues. Therefore, single-turn conversation is a common phenomenon
in voice assistants1. Some public datasets focus on paraphrasing the questions to provide real-world
settings, such as LC-QuAD 2.0 [118] and ComQA [119]. The existing single-turn KGQA datasets
provide only up to one verbalization of the response (cf. Table 3.1). In both dataset categories
(single-turn or multi-turn), we are not aware of any dataset providing paraphrases of the various answer
utterances. For instance, given the question “How many shows does HBO have?”, on a KGQA dataset
(LC-QuAD [120]), we only find the entity as an answer (e.g. “38”). While on a verbalized KGQA
dataset [24], the answer is verbalized as “There are 38 television shows owned by HBO.” Given
this context, the user can better verify that the system is indeed retrieving the total number of shows
owned by HBO. However, the answer can be formulated differently using various paraphrases such as
“There are 38 TV shows whose owner is HBO.”, “There are 38 television programs owned by that
organization” with the same semantic meaning. Hence, paraphrasing the answers can introduce more
flexibility and intuitiveness in the conversations. Here, we argue that multiple paraphrased responses
improve the machine learning models’ performance for answer verbalization on standard empirical
metrics.
In this chapter, we introduce ParaQA, a question-answering dataset with multiple paraphrase

responses for KGQA. The ParaQA dataset was built using a semi-automated framework that employs
advanced paraphrasing techniques such as back-translation. The dataset contains a minimum of two
and a maximum of eight unique paraphrased responses per question. We supplement the dataset with
several evaluation settings to measure the effectiveness of having multiple paraphrased answers.

1 https://docs.microsoft.com/en-us/cortana/skills/mva31-understanding-conversations

30

https://doi.org/10.1007/978-3-030-77385-4_36
https://doi.org/10.1007/978-3-030-77385-4_36
https://docs.microsoft.com/en-us/cortana/skills/mva31-understanding-conversations

3.2 Related Work

Dataset Large scale(>=5K) Complex Questions SPARQL Verbalized Answer Paraphrased Answer

ParaQA (This work) ✓ ✓ ✓ ✓ ✓

Free917 [121] ✗ ✓ ✗ ✗ ✗

WebQuestions [122] ✓ ✗ ✗ ✗ ✗

SimpleQuestions [57] ✓ ✗ ✓ ✗ ✗

QALD (1-9)2 ✗ ✓ ✓ ✗ ✗

LC-QuAD 1.0 [120] ✓ ✓ ✓ ✗ ✗

LC-QuAD 2.0 [118] ✓ ✓ ✓ ✗ ✗

ComplexQuestions [123] ✗ ✓ ✗ ✗ ✗

ComQA [119] ✓ ✓ ✗ ✗ ✗

GraphQuestions [124] ✓ ✓ ✓ ✗ ✗

ComplexWebQuestions [125] ✓ ✓ ✓ ✗ ✗

VQuAnDa [24] ✓ ✓ ✓ ✓ ✗

CSQA [117] ✓ ✓ ✗ ✗ ✗

ConvQuestions [16] ✓ ✓ ✗ ✗ ✗

Table 3.1: Comparison of ParaQA with existing QA datasets over various dimensions. Lack of paraphrased
utterances of answers remains a key gap in literature.

3.2 Related Work

Our work lies at the intersection of single-turn KGQA and conversational QA datasets. We describe
previous efforts and refer to different dataset construction techniques.

KGQA Datasets

The datasets such as SimpleQuestions [57], WebQuestions [126], and the QALD challenge3 have been
inspirational for the evolution of the field. SimpleQuestions [57] dataset is one of the most commonly
used large-scale benchmarks for studying single-relation factoid questions over Freebase [127].
LC-QuAD 1.0 [120] was the first large-scale dataset providing complex questions and their SPARQL
queries over DBpedia. The dataset has been created using pre-defined templates and a peer-reviewed
process to improve those templates. Other datasets such as ComQA [119] and LC-QuAD 2.0 [118]
are large-scale QA datasets with complex paraphrased questions without verbalized answers. It is
important to note that the answers of most KGQA datasets are non-verbalized. VQuAnDa [24] is the
only QA dataset with complex questions containing a single verbalized answer for each question.

Conversational QA Datasets

There has been extensive research for single-turn and multi-turn conversations for open-domain [115,
128, 129]. The research community has recently shifted focus to provide multi-turn conversation
datasets for question answering over KGs. CSQA [117] is a large-scale dataset consisting of multi-
turn conversations over linked QA pairs. The dataset contained 200K dialogues with 1.6M turns
and was collected through a manually intensive semi-automated process. The dataset comprises
complex questions that require logical, quantitative, and comparative reasoning over Wikidata KG.
ConvQuestions [16] is a crowdsourced benchmark with 11K distinct multi-turn conversations from
five different domains (“Books”, “Movies”, “Soccer”, “Music”, and “TV Series”). While both datasets
cover multi-turn conversations, none of them contains verbalized answers. Hence, there is a clear gap
3 http://qald.aksw.org/

31

http://qald.aksw.org/

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

in the literature for the datasets focusing on single-turn/multi-turn conversations involving question
answering over KGs. In this chapter, we focus on single-turn KGQA to provide ParaQA with multiple
paraphrased answers for more expressive conversations.

Dataset Construction Techniques

While some KGQA datasets are automatically generated [130], most of them are manually created
either by (i) using in-house workers [120] or crowd-sourcing [118], (ii) or extract questions from
online question answering platforms such as search engines, online forum, etc [122]. Most (single-
turn/multi-turn) conversational QA datasets are generated using semi-automated approaches [16, 117].
First, conversations are created through predefined templates. Second, the automatically generated
conversations are polished by in-house workers or crowd-sourcing techniques. CSQA [117] dataset
contains a series of linked QA pairs forming a coherent conversation. Further, these questions are
answerable from a KG using logical, comparative, and quantitative reasoning. For generating the
dataset, authors first asked pairs of in-house workers to converse with each other. One annotator in a
pair acted as a user whose job was to ask questions, and the other annotator worked as the system
whose job was to answer the questions or ask for clarifications if required. The annotators’ results were
abstracted to templates and used to instantiate more questions involving different relations, subjects,
and objects. The same process was repeated for different question types such as co-references and
ellipses. ConvQuestions [16] dataset was created by posing the conversation generation task on
Amazon Mechanical Turk (AMT)4. Each crowd worker was asked to build a conversation by asking
five sequential questions starting from any seed entity of his/her choice. Humans may have an intuitive
model when satisfying their real information needs via their search assistants. Crowd workers were
also asked to provide paraphrases for each question. Similar to [117], the crowd workers’ results were
abstracted to templates and used to create more examples. While both conversational QA datasets
use a relatively similar construction approach, none of them considers verbalizing the answers and
providing paraphrases for them.

Paraphrasing

In the early years, various traditional techniques have been developed to solve the paraphrase generation
problem. McKeown [131] makes use of manually defined rules. Quirk et al. [132] train Statistical
Machine Translation (SMT) tools on a large number of sentence pairs collected from newspapers.
Wubben et al. [133] propose a phrase-based SMT model trained on aligned news headlines. Recent
approaches perform neural paraphrase generation, which is often formalized as a sequence to sequence
(seq2seq) learning. Prakash et al. [134] employ a stacked residual LSTM network in the seq2seq
model to enlarge the model capacity. Hasan et al. [135] incorporate the attention mechanism to
generate paraphrases. Work in [136] integrates the Transformer model and recurrent neural network
to learn long-range dependencies in the input sequence.

4 https://www.mturk.com/

32

https://www.mturk.com/

3.3 ParaQA: A Question Answering Dataset with Paraphrase Responses

Question What is the television show whose judges is Randy Jackson?

Answer Verbalizations
1) American Idol is the television show with judge Randy Jackson.
2) The television show whose judge Randy Jackson is American Idol.
3) The TV show he’s a judge on is American Idol.

Question How many shows does HBO have?

Answer Verbalizations

1) There are 38 television shows owned by HBO.
2) There are 38 TV shows whose owner is HBO.
3) There are 38 television shows whose owner is that organisation.
4) There are 38 television programs owned by that organization.

Question From which country is Lawrence Okoye’s nationality?

Answer Verbalizations

1) Great Britain is the nationality of Lawrence Okoye.
2) Great Britain is Lawrence Okoye’s citizenship.
3) The nationality of Lawrence Okoye is Great Britain.
4) Lawrence Okoye is a Great British citizen.
5) Lawrence Okoye’s nationality is Great Britain.

Question Does Sonny Bill Williams belong in the Canterbury Bankstown Bulldogs club?

Answer Verbalizations

1) Yes, Canterbury-Bankstown Bulldogs is the club of Sonny Bill Williams.
2) Yes, the Canterbury-Bankstown Bulldogs is Bill Williams’s club.
3) Yes, the Canterbury-Bankstown Bulldogs is his club.
4) Yes, Canterbury-Bankstown Bulldogs is the club of the person.
5) Yes, the club of Sonny Bill Williams is Canterbury-Bankstown Bulldogs.
6) Yes, Bill Williams’s club is the Canterbury-Bankstone Bulldogs.

Table 3.2: Examples from ParaQA.

3.3 ParaQA: A Question Answering Dataset with Paraphrase Responses

The inspiration for generating paraphrased answers originates from the need to provide a context of
the question to assure that the query was correctly understood. In that way, the user would verify that
the received answer correlates with the question.
For illustration, in our dataset, the question “What is the commonplace of study for jack McGregor

and Philip W. Pillsbury?” is translated to the corresponding SPARQL query, which retrieves the result
“Yale University” from the KG. In this case, a full natural language response of the result is “Yale
University is the study place of Jack McGregor and Philip W. Pillsbury.”. As we can see, this form of
answer provides us with the query result and details about the query’s intention. At the same time,
we also provide alternative paraphrased responses such as, “Yale University is the place where both
Jack McGregor and Philip W. Pillsbury studied.”, “Yale is where both of them studied.”. All those
responses affirm that the QA system thoroughly comprehended the question context and provided a
related answer. The user can further verify that the system retrieves a place where “Jack McGregor”
and “Philip W. Pillsbury” went for their studies. Table 3.2 illustrates examples from our dataset.

33

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

Figure 3.1: Overview of dataset generation workflow. Our proposed generation workflow consists of six modules
in total. The first module is “Input & Initial Verbalization”, which is responsible for producing the initial
verbalized results for each input question. The next three modules (“Entity-Type Identification though Named
Entity Recognition”, “Gender Identification”, and “New Verification Template”) are applied simultaneously and
provide new verbalized sentences based on the initial ones. Subsequently, the paraphrasing module, named
“Paraphrase through Back-Translation”, applies back translation to generated answers. Finally, in the last step
(“Rectify Verbalization”), we rectify all the paraphrased results through a peer-review process.

3.3.1 Generation Workflow

For generating ParaQA, we decided not to reinvent the wheel to create new questions. Hence, we
inherit questions from LC-QuAD [120] and single answer verbalization of these question provided
by VQuAnDa [24]. We followed a semi-automated approach to generate the dataset. The overall
architecture of the approach is depicted in Figure 3.1.

Input & Initial Verbalization

Our framework requires at least one available verbalized answer per question to build upon it and
extend it into multiple diverse paraphrased responses. Therefore, the generation workflow from [24] is
adopted as a first step and used to generate the initial responses. This step’s inputs are the questions,
the SPARQL queries, and the hand-crafted natural language answer templates.

Entity-Type Identification though Named Entity Recognition

The Named Entity Recognition (NER) step recognizes and classifies named entities into predefined
categories, for instance, persons, organizations, locations, etc. Here, we aim to identify the entity
category (or entity-type) and span and replace it with a predefined value in the response. This stage
allows us to accomplish general verbalizations since question entities are swapped with their type
categories. The whole process is performed in two steps: 1) A pre-trained NER [137] model is
employed to locate entities in the initial generated responses. Discovered entities are replaced with
their type category such as “ORG, PRODUCT, LOC, PERSON, GPE”. 2) A predefined dictionary is
used to substitute the type categories with different words such as “the organization, the person, the
country”. Table 3.3 presents a generated example from the entity-type identification step.

34

3.3 ParaQA: A Question Answering Dataset with Paraphrase Responses

Question Count the key people of the Clinton Foundation?

Entity-Type Initial There are 8 key people in the Clinton Foundation.

Generated There are 8 key people in the organisation.

Question Which planet was first discovered by Johann Gottfried Galle?

Gender Verbalized Answer The planet discovered by Johann Gottfried Galle is Neptune.

Generated The planet he discovered is Neptune.

Question Does the River Shannon originate from Dowra?

Verification Initial Yes, Dowra is the source mountain of River Shannon.

Generated Yes, River Shannon starts from Dowra.

Paraphrase

Question Who first ascended a mountain of Cathedral Peak (California)?

Initial The person that first ascended Cathedral Peak (California) is John Muir.

Generated (en-de) The first person to climb Cathedral Peak (California) is John Muir.

Generated (en-ru) The person who first climbed Mount Katty Peak (California) is John Muir.

Table 3.3: Examples generated from each automatic step/module of our proposed generation framework. The
presented responses are the outputs from the corresponding modules before they undergo the final peer-review
step. The bold text of the initial answer indicates the part of the sentence where the corresponding module is
focusing. The underlined text on the generated results reveals the changes made from the module.

Gender Identification

In this step, we create new responses by replacing the question entities with their corresponding
pronouns, e.g. “he, she, him, her”. This is done by identifying the entity’s gender. In particular, we
query the KG with a predefined SPARQL query that extracts the gender of the given entity. Based on
the position of the entity in the answer, we replace it with the appropriate pronoun. Table 3.3 illustrates
a generated example from the gender identification step. In the peer-review process, we verify the
dataset to avoid bias in the genders, considering we extract gender information from DBpedia, and
sometimes KG data quality is not perfect.

New Verification Template

Considering that, on verification questions, all triple data is given (subject, predicate, object). We
introduce a verbalization template that interchanges the head and tail triple information and generate
more diverse responses. Table 3.3 provides a generated example from this process.

Paraphrase through Back-Translation

After having assembled sufficient answers for each question, we employ a paraphrasing strategy
through a back-translation approach. In general, back-translation is when a translator (or team of
translators) interprets or re-translate a document that was previously translated into another language

35

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

back to the original language. In our case, the two translators are independent models, and the second
model has no knowledge or contact with the original text.
In particular, inspired by [138, 139], our initial responses alongside the new proposed answer

templates are paraphrased using Transformer-based models [82] as translators. The model is evaluated
successfully on the WMT’185 dataset that includes translations between different languages. In our
case, we perform back-translation with two different sets of languages: 1) Two Transformer models are
used to translate the responses between English and German language (en→de→en). 2) Another two
models are used to translate between English and Russian language (en→ru→en). Here it is worth
mentioning that we also forwarded output responses from one translation stack into the other (e.g.,
en→de→en→ru→en). In this way, we generate as many as possible different paraphrased responses.
Please note that the selection of languages for back translation was done considering our inherited
underlying model’s accuracy in machine translation tasks on WMT’18. Table 3.3 illustrates some
examples from our back-translation approach.

Rectify Verbalization

After collecting multiple paraphrased versions of the initial responses, the last step is to rectify and
rephrase them to sound more natural and fluent. The rectification step of our framework is done
through a peer-review process to ensure the answers’ grammatical correctness. Finally, by the end
of this step, we will have at least two and at most eight diverse paraphrased responses per question,
including the initial answer.

Figure 3.2: Total paraphrased responses per question.

5 http://www.statmt.org/wmt18/translation-task.html

36

http://www.statmt.org/wmt18/translation-task.html

3.4 Availability and Sustainability

3.3.2 Dataset Statistics

We provide dataset insights regarding its total paraphrased results for each question and the percentage
of generated answers from each module on our framework. Figure 3.2 illustrates the distribution of
5000 questions of ParaQA based on a total number of paraphrased responses per question. As seen
from the figure, more than 2500 questions contain at most two paraphrased results. A bit less than
2000 questions include at most four answers, while around 500 have no less than six paraphrased
answers. Finally, less than 100 examples contain at most eight paraphrased results. Figure 3.3 depicts
the percentage of generated answers for each step from our generation workflow. The first step (input
and initial verbalization) provides approximately 30% of our total results, while the next three steps
(entity type identification, gender identification, and new verification templates) produce roughly
20% of responses. Finally, the back-translation module generates no less than 50% of the complete
paraphrased answers in ParaQA.

Figure 3.3: Percentage of generated results from each step.

3.4 Availability and Sustainability

The dataset is available at a GitHub repository6 under the Attribution 4.0 International (CC BY
4.0)7 license. As a permanent URL, we also provide our dataset through figshare at https:
//figshare.com/projects/ParaQA/94010. The generation framework is also available at a
GitHub repository8 under the MIT License9. Please note, the dataset and the experiments reported in
the chapter are in two different repositories due to the free distributed license agreement.
6 https://github.com/barshana-banerjee/ParaQA
7 https://creativecommons.org/licenses/by/4.0/
8 https://github.com/barshana-banerjee/ParaQA_Experiments
9 https://opensource.org/licenses/MIT

37

https://figshare.com/projects/ParaQA/94010
https://figshare.com/projects/ParaQA/94010
https://github.com/barshana-banerjee/ParaQA
https://creativecommons.org/licenses/by/4.0/
https://github.com/barshana-banerjee/ParaQA_Experiments
https://opensource.org/licenses/MIT

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

The maintenance is ensured through the CLEOPATRA10 project till 2022. After that, the
maintenance of the resource will be handled by the question and answering team of the Smart Data
Analytics (SDA)11 research group at the University of Bonn and at Fraunhofer IAIS12.

3.5 Experimental Setup

To assure the quality of the dataset and the advantage of having multiple paraphrased responses, we
perform experiments and provide baseline models, which researchers can use as a reference point for
future research.

Baseline Models

For the baselines, we employ three sequence to sequence models. Sequence to sequence is a family
of machine learning approaches used for language processing and often used for natural language
generation tasks. The first model consists of an RNN [71] based architecture, the second uses a
convolutional network [140], while the third employs a Transformer network [82].

Evaluation Metrics

BLEU (Bilingual Evaluation Understudy). BLEU score introduced by [141] is so far the most
popularly used machine translation metric to evaluate the quality of the model generated text compared
to human translation. It aims to count the n-gram overlaps in the reference by taking the maximum
count of each n-gram, and it clips the count of the n-grams in the candidate translation to the maximum
count in the reference. Essentially, BLEU is a modified version of precision to compare a candidate
with a reference. However, candidates with a shorter length than the reference tend to give a higher
score, while the modified n-gram precision already penalizes longer candidates. Brevity penalty (BP)
was introduced to rectify this issue and defined as:

𝐵𝑃 =

{
1, 𝑐 ≥ 𝑟,
𝑒𝑥𝑝(1 − 𝑟

𝑐
), 𝑐 < 𝑟.

(3.1)

Where it gets the value of 1 if the candidate length 𝑐 is larger or equal to the reference length 𝑟.
Otherwise, is set to exp(1 − 𝑟/𝑐). Finally, a set of positive weights {𝑤1, ..., 𝑤𝑁 } is determined to
compute the geometric mean of the modified n-gram precision. The BLEU score is calculated by:

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · 𝑒𝑥𝑝(
𝑁∑︁
𝑛=1

𝑤𝑛𝑙𝑜𝑔(𝑃𝑛)), (3.2)

where 𝑁 is the number of different n-grams. In our experiments, we employ 𝑁 = 4 (which is a default
value) and uniform weights 𝑤𝑛 = 1/𝑁 .

10 http://cleopatra-project.eu/
11 https://sda.tech/
12 https://www.iais.fraunhofer.de/

38

http://cleopatra-project.eu/
https://sda.tech/
https://www.iais.fraunhofer.de/

3.6 Results

METEOR (Metric for Evaluation of Translation with Explicit ORdering). METEOR score, intro-
duced by [142], is a metric for the evaluation of machine-translation output. METEOR is based on the
harmonic mean of unigram precision and recall, with recall weighted higher than precision.
BLEU score suffers from the issue that the BP value uses lengths that are averaged over the entire

corpus level, leading to having individual sentences a hit. In contrast, METEOR modifies the precision
at sentence or segment level, replacing them with a weighted F-score based on mapping uni-grams
and a penalty function that solves the existing problem. Similar to BLEU, METEOR score can be in
the range of 0.0 and 100, with 100 being the best score. Formally we define it as:

𝐹𝑚𝑒𝑎𝑛 =
𝑃 · 𝑅

𝛼 · 𝑃 + (1 − 𝛼) · 𝑅 ,

𝑃𝑒𝑛 = 𝛾 ·
(
𝑐ℎ

𝑚

)𝛽
,

𝑀𝐸𝑇𝐸𝑂𝑅 = (1 − 𝑃𝑒𝑛) · 𝐹𝑚𝑒𝑎𝑛

(3.3)

where 𝑃 and 𝑅 are the uni-gram precision and recall respectively, and are used to compute the
parametrized harmonic mean 𝐹𝑚𝑒𝑎𝑛. 𝑃𝑒𝑛 is the penalty value and is calculated using the counts of
chunks 𝑐ℎ and the matches 𝑚. 𝛼, 𝛽 and 𝛾 are free parameters used to calculate the final score. For our
experiments we employ the common values of 𝛼 = 0.9, 𝛽 = 3.0 and 𝛾 = 0.5.

Training and Configurations

The experiments are performed to test how easy it is for a standard sequence to sequence model to
generate the verbalized response using as input only the question or the SPARQL query. Inspired
by [24], during our experiments, we prefer to hide the query answer from the responses by replacing it
with a general answer token. In this way, we simplify the model task to predict only the query answer’s
position in the final verbalized response.
Furthermore, we perform experiments with three different dataset settings. We intend to illustrate

the advantage of having multiple paraphrased responses compared to one or even two. Therefore, we
run individual experiments by using one response, two responses, and finally, multiple paraphrased
responses per question. To conduct the experiments for the last two settings, we forward the responses
associated with their question into our model. We calculate the scores for each generated response by
comparing them with all the existing references. For the sake of simplicity, and as done by [143], the
final score is the maximum value achieved for each generated response.
For fair comparison across the models, we employ similar hyperparameters for all. We utilize an

embeddings dimension of 512, and all models consist of 2 layers. We apply dropout with probability
0.1. We use a batch size of 128, and we train for 50 epochs. Across all experiments, we use Adam
optimizer and cross-entropy as a loss function. To facilitate reproducibility and reuse, our baseline
implementations and results are publicly available13.

3.6 Results

Table 3.4 and Table 3.5 illustrate the experiment results for BLEU and METEOR scores, respectively.
For both metrics, the convolutional model performs the best. It outperforms the RNN and Transformer
models in different inputs and responses. Here, it is more interesting to notice that all models perform
better with multiple paraphrased answers than one or two responses. At the same time, the scores
with two answers are better than those with a single response. Hence, we can assume that the more
13 https://github.com/barshana-banerjee/ParaQA_Experiments 39

https://github.com/barshana-banerjee/ParaQA_Experiments

Chapter 3 Extending Question Answering Resources to Support Answer Verbalization

Model Input One Response Two Responses Multiple Paraphrased

RNN [71] Question 15.43 18.8 22.4
SPARQL 20.1 21.33 26.3

Transformer [82] Question 18.3 21.2 23.6
SPARQL 23.1 24.7 28.0

Convolutional [140] Question 21.3 25.1 25.9
SPARQL 26.02 28.4 31.8

Table 3.4: BLEU score experiment results.

Model Input One Response Two Responses Multiple Paraphrased

RNN [71] Question 53.1 56.2 58.4
SPARQL 57.0 59.3 61.8

Transformer [82] Question 56.8 58.8 59.6
SPARQL 60.1 63.0 63.7

Convolutional [140] Question 57.5 58.4 60.8
SPARQL 64.3 65.1 65.8

Table 3.5: METEOR score experiment results.

paraphrased responses we have, the better the model performance. Concerning the experiment inputs
(Question, SPARQL), as indicated by both metrics, we obtain improved results with SPARQL on
all models and responses. As expected, this is due to the constant input pattern templates that the
SPARQL queries have. While with questions, we end up having a different reworded version for the
same template. We expect the research community to use these models as baselines to develop more
advanced approaches targeting either single-turn conversations for QA or answer verbalization.

3.7 Reusability and Impact

ParaQA dataset can fit in different research areas. Undoubtedly, the most suitable one is in the
single-turn question answering over KGs for supporting a more expressive QA experience. The dataset
offers the opportunity to build end-to-end machine learning frameworks to handle both tasks of query
construction and natural language response generation. Simultaneously, the dataset remains useful for
any QA sub-task, such as entity/relation recognition, linking, and disambiguation.
Besides the QA research area, the dataset is also suitable for Natural Language Generation (NLG)

tasks. As we accomplish in our experiments, using as input the question or the query, the NLG
task will generate the best possible response. We also find ParaQA suitable for the NLP area of
paraphrasing. Since we provide more than one paraphrased example for each answer, researchers can
experiment with the dataset for building paraphrasing systems for short texts. Furthermore, our dataset
can also be used for the research involving SPARQL verbalization, which has been a long-studied
topic in the Semantic Web community [22, 23, 144].

40

3.8 Summary

3.8 Summary

In this chapter, we present ParaQA – the first single-turn question answering dataset with multiple
paraphrased responses. Alongside the dataset, we provide a semi-automated framework for generating
various paraphrase responses using back-translation techniques. Finally, we also share a set of
evaluation baselines and illustrate the advantage of multiple paraphrased answers through commonly
used metrics such as BLEU and METEOR. Evaluation results indicate improved performance when
employing more than one verbalized answer. The dataset offers a worthwhile contribution to the
community, providing the foundation for numerous research lines in the single-turn KGQA domain
and others.

41

CHAPTER 4

Answer Verbalization via Multi-Task Learning

In Chapter 3, we focused on generating a KGQA resource with multiple paraphrased answers. At the
same time, we investigated the advantage of having multiple answers instead of one by hypothesizing
the positive impact on machine learning models. Existing answer verbalization approaches involve
sequence to sequence methods that employ only the input question to generate natural language
answers. However, relying only on one source of information for verbalizing answers can often yield
wrong results due to the varying format of the questions. A source of information with more consistent
patterns will allow the model to be more accurate in verbalizing answers. In the previous chapter’s
experiments, we noticed that providing the queries instead of the question as input produces better
results due to the constant template patterns that the queries have.
In an attempt to improve the performance of answer verbalization, we dedicate this chapter to setting

up a framework that incorporates logical forms as additional context. The framework contains several
sub-tasks which we coordinate and train via multi-task learning. For ascertaining the novelty of the
proposed approach and to encourage a broader usage, we provide an evaluation where we extend a
basic QA system with the answer verbalization task.
We address the following research question in this chapter:

RQ2: How can we incorporate logical forms to improve the performance of answer verbalization
via multi-task learning?

Contributions of this chapter are summarized as follows:

• We introduce a multi-task-based hybrid answer verbalization framework that consists of four
modules trained simultaneously.

• We propose a similarity threshold and cross attention modules to determine the relevance
between the inputs and fuse information to employ a hybrid strategy.

• We provide an extensive evaluation and ablation study of the proposed framework on three
QA datasets with answer verbalization. Our evaluation results establish a new baseline for
the answer verbalization task, which we believe will drive future research in a newly studied
problem.

43

Chapter 4 Answer Verbalization via Multi-Task Learning

This chapter is based on the following publication ([26]):

• Endri Kacupaj, Shyamnath Premnadh, Kuldeep Singh, Jens Lehmann, and Maria Maleshkova.
“VOGUE: Answer Verbalization Through Multi-Task Learning.” In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 563-579. Springer, Cham,
2021. DOI: 10.1007/978-3-030-86523-8_34

The structure of the chapter is as follows: Section 4.1 introduces the work. Section 4.2 presents the
related work. Section 4.3 provides the task definition. Section 4.4 presents the proposed framework.
Section 4.5 describes the multi-task learning process. Section 4.6 describes the experimental setup,
while Section 4.7 the experiments results. Section 4.8 provides a detailed ablation study. An error
analysis is on Section 4.9 and a case study on Section 4.10. We summarize in Section 4.11.

4.1 Introduction

Existing open-source KGQA systems are restricted to only generating or producing answers without
verbalizing them in natural language [145, 146]. The lack of verbalization makes the interaction with
the user not natural in contrast to voice assistants such as Siri and Alexa. Figure 4.1 depicts an ideal
integration of a QA pipeline with answer verbalization. For instance, assuming that the answer to the
exemplary question, “How many shows does HBO have?” is not known by the user. Suppose the QA
system only responds with a number (e.g., 38) as an answer (similar to open-source KGQA systems),
with no further explanation. In that case, the user might need to refer to an external data source to
verify the answer. In an effort to enable the users to verify the answer provided by a QA system,
researchers employed techniques such as (i) revealing the generated formal query [20], (ii) graphical
visualizations of the formal query [19] and (iii) verbalizing the formal query [22]. Understanding the
necessity of verbalized answers in the KGQA domain, recently, several datasets have been proposed
[24, 25]. For the answer verbalization task, the system has to verbalize the answer to convey not only
the information requested by the user but also additional characteristics that indicate how the answer
was determined. In our exemplary question (from dataset [26]), a verbalized response would look
like, “HBO owns 38 television shows.” or “There are 38 TV shows whose owner is HBO.”. Both
answers allow the user to verify that the system retrieved the total number of TV shows owned by HBO.
In the literature, there exist empirical results showing that answer verbalization quantitatively and
qualitatively improves the ability to understand the answer [6, 24, 26]. Furthermore, in the previous
chapter, we saw how multiple answers could positively impact the models’ performance by running
experiments with the question or the query (logical form) as inputs. However, it remains an open
challenge – how can we verbalize an answer, given a logical form and an input question. In this
chapter, we address precisely this open and highly relevant research challenge with our work.
We propose VOGUE (Verbalization thrOuGh mUlti-task lEarning), the first approach dedicated

to verbalize answers for KGQA. Our idea is to employ the question (user utterance) and the QA
system-generated query as inputs. We refer to this strategy as “hybrid”, since the final verbalized
answer is produced using both the question and query concurrently. This work argues that leveraging
content from both sources allows the model for better convergence and provides new, improved results.
Furthermore, we complement our hypothesis by utilizing a multi-task learning paradigm since it has
been quite efficient for different system architectures [147], including question answering systems [14,
15].

44

https://doi.org/10.1007/978-3-030-86523-8_34

4.2 Related Work

Figure 4.1: A QA pipeline with integrated answer verbalization module. Our focus is the answer verbalization
task as we assume logical form is generated by a QA system using the input question.

Our proposed framework can receive two (e.g., question & query) or even one (e.g., question) input.
It consists of four modules that are trained simultaneously to generate the verbalized answer. The
first module employs a dual Transformer-based encoder architecture for encoding the inputs. The
second module determines whether the encoded inputs are relevant and decides if both will be used
for verbalization. The third module consists of a cross-attention network that performs question and
query matching by jointly modeling the relationships of question words and query actions. Finally,
the last module employs a Transformer decoder that is used to generate the final verbalization. To
facilitate reproducibility and reuse, our framework implementation is publicly available1.

4.2 Related Work

As part of the related work we describe previous efforts and refer to different approaches from research
fields, including task-oriented dialog systems, WebNLG, and KGQA systems.

Task-oriented Dialog Systems

A task-oriented dialogue system aims to help the user complete certain tasks in a specific domain
(e.g. restaurant booking, weather query, or flight booking), making it valuable for real-world business.
Typically, task-oriented dialogue systems are built on top of a structured ontology, which defines
the tasks’ domain knowledge. Wen et al. [148] proposed a modular architecture in which each
component is formed of neural networks, making the model end-to-end differentiable. Bordes et
al. [149] formalized the task-oriented dialogue as a reading comprehension task regarding the dialogue
history as context, user utterance as the question, and system response as the answer. In their work,
authors utilized end-to-end memory networks for multi-turn inference. Madotto et al. [150] took a
similar approach and further feed the knowledge base information into the memory networks. Eric et
al. [151] introduced a new memory network structure named key-value memory networks to extract

1 https://github.com/endrikacupaj/VOGUE

45

https://github.com/endrikacupaj/VOGUE

Chapter 4 Answer Verbalization via Multi-Task Learning

relevant information from KB through key-value retrieval. In [152], authors proposed a two-step
seq2seq generation model, which bypassed the structured dialogue act representation and only retain
the dialogue state representation. In their method, the model first encodes the dialogue history and
then generates a dialogue state using LSTM and CopyNet [153]. Given the state, the model then
generates the final natural language response. Kassawat et al. [154] proposed RNN-based end-to-end
encoder-decoder architecture, which employs joint embeddings of the knowledge graph and the corpus
as input. The model provides an additional integration of user intent and text generation, trained
through a multi-task learning paradigm.

WebNLG

The WebNLG is a challenge that consists of mapping structured data to a textual representation. The
dataset [155] contains data/text pairs where the data is a set of triples extracted from DBpedia, and
the text is the verbalization of these triples. The dataset has been promoted for the development of
(i) RDF verbalizers and (ii) microplanners to handle a wide range of linguistic constructions. In
our case, we focus on related works that concentrate on RDF verbalizers. Gao et al. [156] proposes
an RDF-to-text model that jointly learn local and global structure information via combining two
graph-augmented structural neural encoders for the input triples. Zhao et al. [157] propose DualEnc, a
dual encoding model that can incorporate the graph structure and cater to the linear structure of the
output text. Song et al. [158] proposes a graph-to-text approach that leverages richer training signals
to guide the model for preserving input information. They introduce two types of autoencoding losses,
each individually focusing on different aspects of input graphs. The losses are then back-propagated
to calibrate the model via multi-task training. Liu et al. [159] propose an attention-based model,
which mainly contains an entity extraction module and a relation detection module. The model
devises a supervised multi-head self-attention mechanism as the relation detection module to learn the
token-level correlation for each relation type separately. Shen et al. [160] propose an approach to
explicitly segment target text into fragment units and aligning them with their data correspondences.
The segmentation and correspondence are jointly learned as latent variables without any human
annotations. They further impose a soft statistical constraint to regularize the segmental granularity.
Ngonga Ngomo et al. [23] present SPARQL2NL, a generic approach that allows verbalizing SPARQL
queries; besides, the approach can describe the output of queries by providing a natural-language
description that led to the result. Work from [21] present SPARQLtoUser, a multilingual method to
produce a user understandable version of a SPARQL that can operate on multiple knowledge bases.

The fields of task-oriented dialogue systems andWebNLG contain various approaches for generating
text; nevertheless, none of them can be applied directly to solve answer verbalization for KGQA
systems. Most task-oriented dialogue systems are designed and implemented to fit their corresponding
task, and therefore they would not be suitable for open-domain knowledge graphs (e.g. Wikidata,
DBpedia). Regarding WebNLG, the task only considers triples or graph structure data as input. In
answer verbalization, the model input can be the question and/or the query. While the query can be
translated into a graph structure, there is no support for textual information such as the question.

4.3 Task Definition

In this work, we target the problem of answer verbalization for KGQA. A semantic parsing-based QA
system maps a question to a logical form and executes it on a KG to produce the answer. For our task,

46

4.4 Verbalization Through Multi-Task Learning

given the question, the generated logical form, and the extracted answer, we aim to generate a natural
language sentence, with the requirements that it is grammatically sound and correctly represents all the
information in the question, logical form, and answer. Formally, let 𝑋,𝑌 denote the source-target pair.
𝑋 contains the set of questions, logical forms, answers, and 𝑌 corresponds to 𝑦1, 𝑦2, ..., 𝑦𝑚, which is
the verbalized answer of 𝑋 . The goal of the answer verbalization is to learn a distribution 𝑝(𝑌 |𝑋) to
generate natural language text describing the answer automatically.

4.4 Verbalization Through Multi-Task Learning

In question answering, the input data consists of question 𝑞 and its answer 𝑎, extracted from the
knowledge graph. The QA system will map the question to a logical form 𝑙 depending on the context.
For answer verbalization, VOGUE maps the question, logical form, and answer to natural language
sentence 𝑠. Figure 4.2 shows the architecture of VOGUE.

4.4.1 Dual Encoder

To encode both the question and logical form, we employ a dual encoder architecture. Our dual
encoder consists of two instances of the Transformer encoder [82].
First, as a preprocessing, we use a previous competitive pre-trained named entity recognition

model [161] to identify and replace all entities in the question with a more general entity token [𝐸𝑁𝑇].
In this way, we allow our model to focus on the sentence structure and relations between words.
Furthermore, our model learns the positions of entities in the question. It also allows VOGUE to
predict the respective entity positions in the verbalized answer. The same preprocessing step applies
to the logical form. At the end of each input, we append a context token [𝐶𝑇𝑋], which is used later as
a semantic representation.
Next, given the question utterance 𝑞 containing 𝑛 words {𝑤1, . . . , 𝑤𝑛} and the logical form 𝑙

containing𝑚 actions {𝑎1, . . . , 𝑎𝑚}, we tokenize the contexts and use the pre-trainedmodel GloVe [162]
to embed the words into a vector representation space of dimension 𝑑 2. Our word embedding model
provides us with the sequences 𝑥 (𝑞) = {𝑥 (𝑞)1 , . . . , 𝑥

(𝑞)
𝑛 }, 𝑥

(𝑙 𝑓)
= {𝑥 (𝑙 𝑓)1 , . . . , 𝑥

(𝑙 𝑓)
𝑚 } where 𝑥 (𝑞)

𝑖
, 𝑥 (𝑙 𝑓)
𝑖

are given by,

𝑥
(𝑞)
𝑖

= 𝐺𝑙𝑜𝑉𝑒(𝑤𝑖),
𝑥
(𝑙 𝑓)
𝑖

= 𝐺𝑙𝑜𝑉𝑒(𝑎𝑖),
(4.1)

and 𝑥 (𝑞)
𝑖
, 𝑥
(𝑙 𝑓)
𝑖
∈ R𝑑 . Afterwards, both sequences are forwarded through the Transformer encoders.

The two encoders here output the contextual embeddings ℎ (𝑞) = {ℎ (𝑞)1 , . . . , ℎ
(𝑞)
𝑛 } and ℎ

(𝑙 𝑓)
=

{ℎ (𝑙 𝑓)1 , . . . , ℎ
(𝑙 𝑓)
𝑚 }, where ℎ (𝑞)

𝑖
, ℎ
(𝑙 𝑓)
𝑖
∈ R𝑑 . We define this as:

ℎ
(𝑞)

= 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑞 (𝑥𝑞; \ (𝑒𝑛𝑐𝑞)),
ℎ
(𝑙 𝑓)

= 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑙 𝑓 (𝑥𝑙 𝑓 ; \
(𝑒𝑛𝑐𝑙 𝑓)),

(4.2)

where \ (𝑒𝑛𝑐𝑞) , \ (𝑒𝑛𝑐𝑙 𝑓) are the encoders trainable parameters.
2 We employ the same dimension 𝑑 for all the representations, unless it is explicitly mentioned.

47

Chapter 4 Answer Verbalization via Multi-Task Learning

Figure 4.2: VOGUE (Verbalization thrOuGh mUlti-task lEarning) architecture. It consists of four modules: 1) A
dual encoder that is responsible to encode both inputs (question, logical form). 2) A similarity threshold module
that determines whether the encoded inputs are relevant and determines if both will be used for verbalization.
3) A cross-attention module that performs question and query matching by jointly modeling the relationships
of question words and query actions. 4) A hybrid decoder that generates the verbalized answer using the
information of both question and logical form representations from the cross-attention module.

4.4.2 Similarity Threshold

Given the encoded question utterance and logical form, VOGUE’s second module is responsible
for learning the relevance between the inputs and determining whether we will employ both for
verbalization. This module is necessary when we want to utilize our framework alongside a question
answering system. If we assume that the QA system is perfect and always produces correct logical
forms, this module can be skipped. However, in a real-world scenario, QA systems are far from
perfect. Therefore, we employ this module, which intends to identify the threshold for determining if
two inputs are similar or not. The input here is the concatenation of the hidden states of the encoded
question utterance ℎ (𝑞) and logical form ℎ (𝑙 𝑓) . The module will perform binary classification on the
vocabulary 𝑉 (𝑠𝑡) = {0, 1}, where 0 indicates that there is no high relevance between the inputs, and
only the question will be used for verbalization. While 1 allows us to use both and continue with the

48

4.4 Verbalization Through Multi-Task Learning

next module. Overall, our similarity threshold module is implemented using two linear layers, a Leaky
ReLU activation function and a softmax for the predictions. Formally we define the module as:

ℎ
(𝑠𝑡)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑾 (𝑠𝑡1) [ℎ (𝑞) ; ℎ (𝑙 𝑓)]),
𝑝
(𝑠𝑡)

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑠𝑡2)ℎ (𝑠𝑡)),
(4.3)

where𝑾 (𝑠𝑡1) ∈ R𝑑×2𝑑 are the weights of the first linear layer and ℎ (𝑠𝑡) is the hidden state of the module.
𝑾 (𝑠𝑡2) ∈ R |𝑉

(𝑠𝑡) |×𝑑 are the weights of the second linear layer, |𝑉 (𝑠𝑡) | is the size of the vocabulary and
𝑝
(𝑠𝑡) denotes the probability distribution over the vocabulary indices.

4.4.3 Cross Attention

Inspired by recent computer vision research [163, 164], we employ a cross-attention module that
exploits relationships between the inputs and fuses information. The module here performs question
and logical form matching by jointly modeling the relationships of question words and logical form
actions. Our cross-attention approach is a variation of the self-attention mechanism [82]. In the
self-attention mechanism the output is determined by a query and a set of key-value pairs. Given
the stacked encoded question and logical form, ℎ (𝑞𝑙 𝑓) =

(ℎ (𝑞)
ℎ
(𝑙 𝑓)

)
= {ℎ (𝑞)1 , . . . , ℎ

(𝑞)
𝑛 ; ℎ (𝑙 𝑓)1 , . . . , ℎ

(𝑙 𝑓)
𝑚 },

where ℎ (𝑞𝑙 𝑓) ∈ R2×𝑑 we calculate the query and key-value pairs using three linear projections:

𝑸 (𝑞𝑙 𝑓) = 𝑾 (𝑄)ℎ (𝑞𝑙 𝑓) =

(
𝑾 (𝑄)ℎ (𝑞)

𝑾 (𝑄)ℎ (𝑙 𝑓)

)
=

(
𝑸 (𝑞)

𝑸 (𝑙 𝑓)

)
,

𝑲 (𝑞𝑙 𝑓) = 𝑾 (𝐾)ℎ (𝑞𝑙 𝑓) =

(
𝑾 (𝐾)ℎ (𝑞)

𝑾 (𝐾)ℎ (𝑙 𝑓)

)
=

(
𝑲 (𝑞)

𝑲 (𝑙 𝑓)

)
,

𝑽 (𝑞𝑙 𝑓) = 𝑾 (𝑉)ℎ (𝑞𝑙 𝑓) =

(
𝑾 (𝑉)ℎ (𝑞)

𝑾 (𝑉)ℎ (𝑙 𝑓)

)
=

(
𝑽 (𝑞)

𝑽 (𝑙 𝑓)

)
,

(4.4)

where 𝑾 (𝑄) ,𝑾 (𝐾) ,𝑾 (𝑉) ∈ R𝑑×𝑑 are the weights of the linear layers and 𝑸 (𝑞𝑙 𝑓) , 𝑲 (𝑞𝑙 𝑓) ,𝑽 (𝑞𝑙 𝑓)

are the query, key and value of the stacked question and logical form. Next, for calculating the
cross-attention we simplify the “Scaled Dot-Product Attention” [82] step by removing the scaling
factor and softmax. We end-up calculating the attention of our input as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸 (𝑞𝑙 𝑓) , 𝑲 (𝑞𝑙 𝑓) ,𝑽 (𝑞𝑙 𝑓)) = 𝑸 (𝑞𝑙 𝑓)𝑲 (𝑞𝑙 𝑓)𝑇 · 𝑽 (𝑞𝑙 𝑓)

=

(
𝑸 (𝑞)

𝑸 (𝑙 𝑓)

)
(𝑲 (𝑞)𝑇𝑲 (𝑙 𝑓)𝑇) ·

(
𝑽 (𝑞)

𝑽 (𝑙 𝑓)

)
=

(
𝑸 (𝑞)𝑲 (𝑞)𝑇 𝑸 (𝑞)𝑲 (𝑙 𝑓)𝑇

𝑸 (𝑙 𝑓)𝑲 (𝑞)𝑇 𝑸 (𝑙 𝑓)𝑲 (𝑙 𝑓)𝑇

)
·
(
𝑽 (𝑞)

𝑽 (𝑙 𝑓)

)
=

(
𝑸 (𝑞)𝑲 (𝑞)𝑇𝑽 (𝑞) + 𝑸 (𝑞)𝑲 (𝑙 𝑓)𝑇𝑽 (𝑙 𝑓)

𝑸 (𝑙 𝑓)𝑲 (𝑙 𝑓)𝑇𝑽 (𝑙 𝑓) + 𝑸 (𝑙 𝑓)𝑲 (𝑞)𝑇𝑽 (𝑞)

)
.

(4.5)

When we calculate the cross-attention for the question, we also use the key-value pair from the logical
form (𝑲 (𝑙 𝑓) ,𝑽 (𝑙 𝑓)), the same applies when calculating the cross-attention for the logical form. After

49

Chapter 4 Answer Verbalization via Multi-Task Learning

calculating the cross-attentions, we use the same steps as in the Transformer to produce the new
representations for our inputs. Finally, considering ℎ (𝑞𝑐𝑎) , ℎ (𝑙 𝑓 𝑐𝑎) the output representations of the
cross-attention module for the question and logical form respectively, we concatenate them and forward
them to the hybrid decoder module.

4.4.4 Hybrid Decoder

To translate the input question and logical form into a sequence of words (verbalized answer), we
utilize a Transformer decoder architecture [82], which employs the multi-head attention mechanism.
The decoder will generate the final natural language answer. The output here is dependent on the
cross-attention embedding ℎ (𝑐𝑎) . Here we define the decoder vocabulary as

𝑉
(𝑑𝑒𝑐)

= 𝑉
(𝑣𝑡) ∪ { [𝑆𝑇 𝐴𝑅𝑇], [𝐸𝑁𝐷], [𝐸𝑁𝑇], [𝐴𝑁𝑆] }, (4.6)

where 𝑉 (𝑣𝑡) is the vocabulary with all the distinct tokens from our verbalizations. As we can see, the
decoder vocabulary contains four additional helper tokens, where two of them ([𝑆𝑇 𝐴𝑅𝑇], [𝐸𝑁𝐷])
indicate when the decoding process starts and ends, while the other two ([𝐸𝑁𝑇], [𝐴𝑁𝑆]) are used to
specify the position of the entities and the answer on the final verbalized sequence. On top of the
decoder stack, we employ a linear layer alongside a softmax to calculate each token’s probability
scores in the vocabulary. We define the decoder stack output as follows:

ℎ
(𝑑𝑒𝑐)

= 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑐𝑎) ; \ (𝑑𝑒𝑐)),
𝑝
(𝑑𝑒𝑐)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑑𝑒𝑐)ℎ (𝑑𝑒𝑐)𝑡),

(4.7)

where ℎ (𝑑𝑒𝑐)𝑡 is the hidden state in time step 𝑡, \ (𝑑𝑒𝑐) are the decoder trainable parameters,𝑾 (𝑑𝑒𝑐) ∈
R |𝑉

(𝑑𝑒𝑐) |×2𝑑 are the linear layer weights, and 𝑝 (𝑑𝑒𝑐)𝑡 ∈ R |𝑉
(𝑑𝑒𝑐) | is the probability distribution over the

decoder vocabulary in time step 𝑡. |𝑉 (𝑑𝑒𝑐) | denotes the decoder’s vocabulary size.

4.5 Mutli-Task Learning

The framework consists of four trainable modules. However, we apply a loss function only on two of
them (similarity threshold and hybrid decoder). The dual encoder and cross-attention modules are
trained based on the similarity threshold and hybrid decoder’s signal. To account for multi-tasking,
we perform a weighted average of all the single losses:

𝐿 = _1𝐿
𝑠𝑡 + _2𝐿

𝑑𝑒𝑐
, (4.8)

where _1, _2 are the relative weights learned during training considering the difference in magnitude
between losses by consolidating the log standard deviation [147, 165]. 𝐿𝑠𝑡 and 𝐿𝑑𝑒𝑐 are the respective
negative log-likelihood losses of the similarity threshold and hybrid decoder modules. These losses

50

4.6 Experimental Setup

are defined as:

𝐿
𝑠𝑡
= −

2𝑑∑︁
𝑗=1
𝑙𝑜𝑔𝑝(𝑦 (𝑠𝑡)

𝑗
|𝑥),

𝐿
𝑑𝑒𝑐

= −
𝑚∑︁
𝑘=1

𝑙𝑜𝑔𝑝(𝑦 (𝑑𝑒𝑐)
𝑘
|𝑥),

(4.9)

where 𝑚 is the length of the gold logical form. 𝑦 (𝑠𝑡)
𝑗
∈ 𝑉 (𝑠𝑡) are the gold labels for the similarity

threshold and 𝑦 (𝑑𝑒𝑐)
𝑘

∈ 𝑉 (𝑑𝑒𝑐) are the gold labels for the decoder. The model benefits from each
module’s supervision signals, which improves the performance in the given task.

4.6 Experimental Setup

In this section, we provide the setup for the experiments. We further describe the resources and
metrics we employ.

Datasets

We perform experiments on three answer verbalization datasets (cf. Table 4.1). Below we provide a
brief description of these:

• VQuAnDa [24] is the first QA dataset, which provides the verbalization of the answer in natural
language. It contains 5000 “complex” questions with their SPARQL queries and answers
verbalization. The dataset consists of 5042 entities and 615 relations.

• ParaQA (Chapter 3) [26] is a QA dataset with multiple paraphrased responses. The dataset
was created using a semi-automated framework for generating diverse paraphrasing of the
answers using techniques such as back-translation. It contains 5000 “complex” question-answer
pairs with a minimum of two and a maximum of eight unique paraphrased responses for each
question.

• VANiLLa [25] is a QA dataset that offers answers in natural language sentences. The answer
sentences in this dataset are syntactically and semantically closer to the question than the triple
fact. The dataset consists of over 100𝑘 “simple” questions.

Dataset Train Test Question len. Answer len. Vocabulary

VQuAnDa 4000 1000 12.27 16.95 10431
ParaQA 12637 3177 12.27 17.06 12755
VANiLLa 85729 21433 8.96 8.98 50505

Table 4.1: Dataset statistics, including the (average) number of tokens per question sentence, the (average)
number of tokens per answer sentence and the vocabulary list size.

51

Chapter 4 Answer Verbalization via Multi-Task Learning

Model Configurations

For simplicity, to represent the logical forms, we employ a similar grammar as in [15]. Our approach
can be used with any other grammar or even directly with SPARQL queries. However, we believe
it is better to employ semantic grammar from a state-of-the-art QA model. To properly train the
similarity threshold module, we had to introduce negative logical forms for each question. We did that
by corrupting the gold logical forms, either by replacing a random action or finding another “similar”
logical form from the dataset based on the Levenshtein distance.
For hyperparameters, we employ a batch size of 256, a learning rate of 0.001 and we train for 100

epochs. For the optimization, we use the Noam optimizer proposed by [82], where authors use an
Adam optimizer [166] with several warmup steps for the learning rate. In our case, the number of
warmup steps is 4000. During optimization, we clip the gradients with a max norm of 5. We apply a
dropout with a probability of 0.1 across our framework and use an embedding dimension of 𝑑 = 300.
All our modules operate under the same embedding dimension. We apply the GloVe word embedding
model to our input tokens with a word embedding dimension of 300. For the Transformer encoder and
decoder, we use similar configurations with [82], where 𝐻 = 6 heads and 𝐿 = 2 layers. The inner
feed-forward linear layers have dimension 𝑑 𝑓 𝑓 = 600, (2 * 300). Following the base Transformer
parameters, we apply residual dropout [167] to the summation of the embeddings and the positional
encodings in both encoder and decoder stacks with a rate of 0.1. The similarity threshold module
receives an input of dimension 600 where here a linear layer is responsible for reducing it to 300,
which is the framework dimension. Finally, for the cross attention module, we apply hyperparameters
similar to the Transformer model. Our dimension remains of size 𝑑 = 300 and again the number of
heads is 𝐻 = 6. However, we do not apply multiple layers here. Likewise, dropout is applied with
probability 0.1. The number of model training parameters for VQuAnDa, ParaQA, and VANiLLa
datasets are 12.9M, 14.9M, and 46.8M, respectively. The number varies due to different vocabularies
for each dataset.

Grammar

For the logical forms, we employ a grammar that can be used to capture the entire context of the
question with the minimum number of actions. We prefer not to reinvent the wheel, and therefore we
adopted the grammar from existing state-of-the-art question answering systems [14, 15]. However,
we do not employ all the actions from these works; Table 4.2 illustrates the complete grammar with
all the defined actions that we used for all three answer verbalization datasets. As we can see, for a
couple of actions, we also have their reverse occurrence (e.g. find, find_reverse). This is done to match
the knowledge graph triple direction (subject-predicate-object). In some questions, we might have
the subject or the object entity. Having both normal and reverse actions helps us identify the correct
answer directly based on the model’s predicted action. In Table 4.3, we illustrate how the actions
can be used to annotate questions from all three datasets. For instance, for the VQuAnDa question
“Which sports are played in schools affiliated with the Harvest Christian Center?” the gold logical
form does include three different actions from our grammar (find, filter_type and find_reverse). Where
the “find_reverse” is used to identify all the subject entities of the triple (?subject, religiousAffiliation,
Harvest_Christian_Center). Another interesting example is the ParaQA question “Name the office
holder whose alma mater is Harvard-Westlake School and resting place is Alta Mesa Memorial
Park?” where the gold logical form contains the action “intersection” which allows us to identify

52

4.6 Experimental Setup

Action Description

set→ find(e, p) set of objects part of the triples with subject e and predicate p
set→ find_reverse(e, p) set of subjects part of the triples with object e and predicate p
set→ filter_type(set, tp) filter the given set of entities based on the given type
boolean→ is_in(entity, set) check if the entity is part of the set
number→ count(set) count the number of elements in the set
set→ union(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) union of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2
set→ intersection(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) intersection of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2

Table 4.2: Predefined grammar with respective actions to generate logical forms.

Dataset Question Logical Form

VQuAnDa

In which team did Dave Bing and
Ron Reed started their basketball career?

union(find(Dave_Bing, draftteam),
find(Ron_Reed, draftteam))

Does the white river flow into
the connecticut river?

is_in(find(Connecticut_River, rightTributary),
White_River_(Vermont))

Which sports are played in schools affiliated
with the Harvest Christian Center?

find(filter_type(find_reverse(Harvest_Christian_Center,
religiousAffiliation), School), sport)

ParaQA

How many people have been part of
Chicago Bulls team?

count(find_reverse(Chicago_Bulls, team))

Name the office holder whose alma mater
is Harvard-Westlake School and resting place
is Alta Mesa Memorial Park?

intersection(filter_type(find_reverse(
Harvard-Westlake_School, almamater), officeholder),
find_reverse(Alta_Mesa_Memorial_Park, restingplace))

Name all the broadcast area of the TV stations
which has Rodrigues as one of the broadcast area?

find(filter_type(find_reverse(Rodrigues, broadcastArea),
TelevisionStation), broadcastArea)

VANiLLa

What is the nonprofit organization
where Bruce Bochy was educated?

filter_type(find(Q586449, P69), Q163740)

Which language can Paolo Brera
understand?

find(Q2423068, P1412)

Which administrative territory is Shaun
Cunnington an inhabitant of ?

filter_type(find(Q7490823, P27))

Table 4.3: Dataset examples annotated with gold logical forms.

the intersection between two sets of entities. Similarly, we also use the “union” action. Next, for the
quantitative questions, we employ the action “count” which returns the length of the entity set. Finally,
for verification questions, we have the “is_in” action, which checks whether an entity exists in a set.

Model for Comparison

We compare our framework with four baselines that have been evaluated on the considered datasets.
All baselines consist of sequence to sequence architectures, a family of machine learning approaches
used for language processing and often used for natural language generation tasks. The first model

53

Chapter 4 Answer Verbalization via Multi-Task Learning

consists of an RNN [71] based architecture, the second uses a convolutional network [140], the third
employs a Transformer network [82], while the last one is a BERT [92] model. For a fair comparison
with our framework, we report the baselines’ results using the question and the logical form as separate
inputs considering that baselines are limited to accept both inputs together.

Evaluation Metrics

We use the same metrics as employed by the authors of the three existing datasets [24–26] on the
previously mentioned baselines. The BLEU score, as defined by [141], analyzes the co-occurrences of
n-grams in the reference and the proposed responses. It computes the n-gram precision for the whole
dataset, which is then multiplied by a brevity penalty to penalize short translations. We report results
for BLEU-4. The METEOR score introduced by [142] is based on the harmonic mean of uni-gram
precision and recall, with recall weighted higher than precision. Both metrics can be in the range of
0.0 and 100, with 100 being the best score.

4.7 Results

Table 4.4 summarizes the results comparing the VOGUE framework to the previous baselines for
answer verbalization. VOGUE significantly outperforms the earlier baselines for both the BLEU and
METEOR scores. While for the other baselines, we perform experiments with two different inputs
(Question, gold Logical Form), VOGUE is the only one that directly uses both inputs (Hybrid). As we
can see, for both datasets VQuAnDa and ParaQA, all baselines perform slightly worse when receiving
the question as input compared to the gold logical form. This is due to the constant input pattern
templates that the logical forms have. However, this does not apply to the VANiLLa dataset since it
only contains simple questions. VOGUE achieves a BLEU score of 28.76 on VQuAnDa, which is 2

BLEU METEOR

Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

RNN [71] (Q) 15.43 22.45 16.66 53.15 58.41 58.67
RNN [71] (LF) 20.19 26.36 16.45 57.06 61.87 55.34
Convolutional [140] (Q) 21.32 25.94 15.42 57.54 60.82 61.14
Convolutional [140] (LF) 26.02 31.89 16.89 64.30 65.85 58.72
Transformer [82] (Q) 18.37 23.61 30.80 56.83 59.63 62.16
Transformer [82] (LF) 23.18 28.01 28.12 60.17 63.75 59.01
BERT [92] (Q) 22.78 26.12 31.32 59.28 62.59 62.96
BERT [92] (LF) 26.48 30.31 30.11 65.92 65.92 59.27

VOGUE (Ours) (H) 28.76 32.05 35.46 67.21 68.85 65.04

Table 4.4: Results on answer verbalization. VOGUE outperforms all existing baselines and achieves the new
state of the art for both the BLEU and METEOR scores. The baseline experiment results are reported with two
inputs: Question (Q) and gold Logical Form (LF), while VOGUE employs a Hybrid (H) approach.

54

4.8 Ablation Study

points higher than the second-best BERT (LF). The same applies to the METEOR score. Regarding
ParaQA, VOGUE performs slightly better than the second Convolutional (LF) on BLEU score, while
on METEOR score, the margin increases to 3 points. Finally, for the VANiLLa dataset, VOGUE
performs considerably better compared to other baselines.

4.8 Ablation Study

We perform several ablation studies to understand and validate the performance of our approach.

BLEU METEOR

Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

RNN [71] 15.43 22.45 16.66 53.15 58.41 58.67
Convolutional [140] 21.32 25.94 15.42 57.54 60.82 61.14
Transformer [82] 18.37 23.61 30.80 56.83 59.63 62.16
BERT [92] 22.78 26.12 31.32 59.28 62.59 62.96

VOGUE (Ours) 25.76 28.42 33.14 64.61 67.52 63.69

Table 4.5: Results of the answer verbalization with a semantic parsing QA system. VOGUE still outperforms all
baselines. For the baselines we employ only the question as input, while our framework employs the similarity
threshold module to determine whether a hybrid verbalization can be performed.

Integration with Semantic Parsing based QA system

The logical forms used for the results in Table 4.4 are the gold ones, and therefore the performance of
all baselines, including our framework, is boosted. In our first ablation study, we want to perform
experiments in an end-to-end manner with a semantic parsing QA system, alongside the models, to
understand our framework’s superior performance. In this experiment, we train a simple, sequence
to sequence-based semantic parser system to generate the logical forms by using the questions. As
expected, the generated logical forms are not all correct, and therefore this affects the verbalization
results. However, in Table 4.5, we can see that VOGUE still outperforms all baselines in this setting.
An important role here plays the similarity threshold module, enabling a hybrid approach even in a
real-world scenario. We can only use the question as input for the baselines since we do not have the
gold logical forms. Here, it is also interesting that in two of the datasets, our framework outperforms
the baselines with a more significant margin than before (cf. Table 4.5, METEOR-VQuAnDa,
METEOR-ParaQA). Finally, Figure 4.3 illustrates the perplexity results, which show how well a
probability distribution predicts a sample. A low perplexity indicates the probability distribution is
good at predicting the sample. As we can see, our framework achieves the lowest perplexity values on
all three datasets compared to other the baselines.

55

Chapter 4 Answer Verbalization via Multi-Task Learning

Figure 4.3: Perplexity curves for all three answer verbalization datasets.

BLEU METEOR

Ablation VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

Ours 28.76 32.05 35.46 67.21 68.85 65.04
w/o Cross Attention 26.24 30.59 30.94 64.93 66.16 62.12
w/o Multi-Task Learning 25.74 28.15 29.07 62.31 63.84 61.49

Table 4.6: Ablation study results that indicate the effectiveness of cross attention and multi-task learning. The
first row contains the results of the VOGUE framework when training all four modules with multi-task learning.
The second and third rows selectively remove the cross attention and the multi-task learning from VOGUE.
Best values in bold.

Impact of Cross Attention and Multi-Task Learning

Our second ablation experiment demonstrates the vitality of the cross-attention module and multi-task
learning strategy. We first remove the cross-attention module from our framework. Instead, we only
concatenate the question and logical form to generate the verbalization. As observed in Table 4.6, we
obtain worse results compared to the original configuration of VOGUE. A simple concatenation does
not interchange any information between the question and the logical form, and therefore the results are
expected to be lower. The cross-attention module is intentionally built to determine relevance between
inputs by jointly modeling the relationship between the question words and logical form actions. Next,
we train all modules independently and join them on inference to understand the multi-task learning
efficacy. As observed, our results have a negative impact when a multi-task learning strategy is not
employed.

Similarity Threshold Task Analysis

Table 4.7 illustrates the performance of similarity threshold module. We observe that the module
performs fairly well on VQuAnDa and ParaQA with F1-scores of 64.73 and 58.55, respectively. Both
datasets contain complex questions. Hence, predicting the similarity between the question and the
logical form is not easy. However, as long as the module’s score is beyond 50, we are confident that
using the similarity threshold module can improve our frameworks’ answer verbalization results. For

56

4.9 Error Analysis

F1-Score

Module VQuAnDa ParaQA VANiLLa

Similarity Threshold 64.73 58.55 98.76

Table 4.7: Similarity threshold f1-score results for each dataset.

the VANiLLa dataset, the performance is incredibly high, with a score of 98.76. This is because the
dataset contains only simple questions. Consequently, a single template pattern is employed for this
dataset, and the module here has to predict if the logical form contains the correct triple relation. The
task is much easier to perform compared to complex questions. Overall, the module results are pretty
accurate and encourage us to apply them in our task.

4.9 Error Analysis

For the error analysis, we randomly sampled 100 incorrect predictions for human evaluation. We
detail the reasons for two types of errors observed in the analysis:

Words Mischoose. A common error of VOGUE is mischoosing a word in the answer verbalization
sentence. For instance, for the question “Give me a count of everything owned by the network whose
sister name is The CW?” our framework generated the answer “There are 156 television shows whose
network’s sister station is The CW.”. However, the gold reference here is “There are 156 things whose
network’s sister name is The CW.” As we can see, our framework misselected words in two parts of
the sentence. The first one is the word “things”, where it predicted “television shows”. The second
one is the word “name”, where our model predicted “station”. Both model predictions (“television
shows”, “station”) are correlated, since they belong with the same context. Such errors do not heavily
penalize the overall performance. For the example mentioned above, the BLEU and METEOR scores
are positive, with 35.74 and 81.52, respectively.

Factual Errors. Another type of error observed is when VOGUE misses the semantic meaning and
produces irrelevant results. It contributes to a major chunk of overall errors. There are two cases that
can cause observed errors. The first one is the lack of reasoning for similar context data. When facing
examples with the limited context in the dataset, the model would most definitely fail to reproduce
the same context in the answer sentence. One can solve the issue by enriching the training data with
other examples containing similar contexts. The second reason for having factual errors is when
similarity threshold module fails to determine the inputs’ relevance. As illustrated before, using the
similarity threshold allows to successfully adopt a hybrid approach in a real-world scenario (QA +
Answer Verbalization) and exceed any previous baseline performance.

57

Chapter 4 Answer Verbalization via Multi-Task Learning

Question
How many other home stadium are there of the soccer club
whose home stadium is Luzhniki Stadium?

Logical Form
count(find_reverse(find_reverse(Luzhniki_Stadium, homeStadium),
homeStadium))

Reference
There are 9 home stadiums of the soccer club
whose home stadium is Luzhniki Stadium.

VOGUE
There are 9 home stadiums of the soccer club
whose home stadium is Luzhniki Stadium.

Question Who is the scientist whose academic advisor was Karl Ewald Hasse?

Logical Form
filter_type(find_reverse(Karl_Ewald_Hasse, academicAdvisor),
Scientist)

Reference
The scientist whose academic advisor is Karl Ewald Hasse
is Robert Koch.

VOGUE
The scientist whose doctoral advisor is Karl Ewald Hasse
is Robert Koch.

Question What are the movies with Daniel Waters as screenwriter?
Logical Form filter_type(find_reverse(Daniel_Waters, screenplay), Film)

Reference
The films with the screenplay written by Daniel Waters are Batman Returns,
Demolition Man (film), Hudson Hawk, The Adventures of Ford Fairlane.

VOGUE
The movies whose director is Daniel Waters are Batman Returns,
Demolition Man (film), Hudson Hawk, The Adventures of Ford Fairlane.

Question
Which person designed the cars which has been designed by
ASC Creative Services?

Logical Form
find(filter_type(find_reverse(ASC_Creative_Services, designCompany),
Automobile), designer)

Reference
The designers of the cars whose designer company is ASC Creative
Services are Warren, Michigan, Michigan, ASC Creative Services.

VOGUE
The things which have been designed by ASC Creative Services are
Warren, Michigan, Michigan, ASC Creative Services.

Table 4.8: Sample output of our framework.

58

4.10 Case Study

4.10 Case Study

We further manually inspect our framework VOGUE outputs for conducting a case study to understand
the performance better. As shown in Table 4.8, we find that in the first example, VOGUE can produce
the exact verbalization with the reference. Here the logical form contains three actions (count and
two find_reverse), and is not a simple question. Such results indicate the superb performance of our
framework. Next, we can see the question “Who is the scientist whose academic advisor was Karl
Ewald Hasse?” here, VOGUE manages to generate almost the exact verbalization. In particular, it only
mischoses a single word, which is still relevant to the context, and the generated result could be easily
considered correct. Our framework here generated the answer “The scientist whose doctoral advisor is
Karl Ewald Hasse is Robert Koch.” and the word it missed was “academic” where it replaced it with
“doctoral”. The following example illustrates the robustness of our framework. Here the question
is “What are the movies with Daniel Waters as screenwriter?” and our model produces a flawless
verbalization and it only complicates the words “screenwriter” and “director”. It also replaces the
word “films” with “movies” which can be considered synonyms and make no significant difference in
verbalization. The generated response here is grammatically sound and adequately represent all the
information in the question and logical form. Finally, in the last example, we can see that VOGUE
has generalized in the answer verbalization compared to the reference. More precisely, the question
here refers to cars designed by a company, and the reference also mentions it. However, our model
produces a more general but at the same time fluent verbalization that refers to “things” instead of
“cars”, which again can be considered a valid response.

4.11 Summary

In this chapter, we studied the impact of jointly utilizing the question and logical form on the answer
verbalization task. We empirically observed that the proposed “hybrid” approach implemented in the
VOGUE framework provides a flexibility to be deployed in a real world scenario where a QA system
not always will produce the correct logical form. We systematically studied the impact of our choices in
the proposed architecture. For instance, the ablation study demonstrates the effectiveness of multi-task
learning (for jointly training similarly threshold and answer verbalization) and cross-attention module.

59

CHAPTER 5

Conversational Question Answering via Multi-Task
Learning

The previous two chapters (Chapter 3 & 4) contributed to the answer verbalization task, which is
vital for providing more fluent answers and engaging the user in a conversation with the system. In
particular, we advanced the state-of-the-art in terms of resources and approaches. We presented a
dataset with multiple verbalized responses that offer flexibility to the learning process of machine
learning models. We further developed a framework that leverages logical forms for improving
performance. Additionally, we integrated the proposed approach with a basic QA semantic parsing
system to illustrate its superior performance. Now we switch the focus to multi-turn QA systems,
which contain challenging conversational scenarios. One of the primary methodologies for handling
KGQA is semantic parsing, where a grammar of actions is required to build executable queries over
the KG. The number of actions depends on the complexity and type of questions. While for single-turn
KGQA, there have been proposed various grammars, we cannot directly apply them to the ConvQA
task since they do not address conversational scenarios (e.g., clarification, co-reference, ellipsis).
Moreover, it is an essential yet open challenge to effectively identify and incorporate relevant KG
information such as entities, relations, and types for the ConvQA task.
In this chapter, we target the problem of conversational (complex) question answering over a

large-scale knowledge graph. We explore existing related work and propose novel approaches for
semantic parsing by employing state-of-the-art deep neural architectures. We divide the task into
several sub-tasks and incorporate knowledge graph information. All the sub-tasks are trained via a
multi-task learning paradigm.
We address the following research question in this chapter:

RQ3: How can we develop better and more efficient multi-task semantic parsing approaches
for conversational question answering?

Contributions of this chapter are summarized as follows:
• We introduce two multi-task learning frameworks for conversational question answering over
large scale knowledge graph.

• We propose an architecture of stacked pointer networks for incorporating knowledge graph
information on conversational question answering task.

61

Chapter 5 Conversational Question Answering via Multi-Task Learning

• We employ a Transformer model supplemented with a Graph Attention Network to exploit the
correlations between (entity) types and predicates due to its message-passing ability between
the nodes.

• We propose a novel entity recognition module that detects, links, filters, and permutes all
relevant entities.

• We propose a reusable grammar for neural semantic parsing to define various logical forms that
can be executed on a KG for fetching answers to conversational questions.

• We empirically study the proposed architectural design choices through an extensive evaluation,
ablation study, and multiple analyses.

This chapter is based on the following publications [14, 15]:

• Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh Thakkar, and Jens Lehmann. “Context
Transformer with Stacked Pointer Networks for Conversational Question Answering over
Knowledge Graphs.” In European Semantic Web Conference, pp. 356-371. Springer, Cham,
2021. DOI: 10.1007/978-3-030-77385-4_21

• Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann, and Maria
Maleshkova. “Conversational Question Answering over Knowledge Graphs with Transformer
and Graph Attention Networks.” In Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, pp. 850-862. 2021. DOI:
10.18653/v1/2021.eacl-main.72

The structure of the chapter is as follows: Section 5.1 introduces the work. Section 5.2 presents the
related work. Section 5.3 describes the first approach, while Section 5.4 presents the second approach.
We summarize in Section 5.5.

5.1 Introduction

Recently, there has been an increased demand for chatbots and voice assistants to communicate and
assist humans in different domains such as chitchat, medical, news, enterprise, etc ([168]). Question
answering is a common phenomenon in chatbot conversations to seek specific information. While
such questions inherit a conversational context, humans also tend to ask questions that require complex
reasoning to answer in a real-world scenario. The complexity of questions may differ at various
granularity (e.g., simple, logical, quantitative, and comparative). Figure 5.1 presents a few examples
from a complex question answering dataset with a conversational context [117]. The example dialogue
has several question types and challenges. For instance, in the first turn, the user asks a simple direct
question, and in the following turn, addresses a question that refers to the context from the previous
interaction. Furthermore, in the last turn, the question requires ellipsis resolution to offer a multitude
of complexity. Given that these questions are from the general knowledge domain, the answer can be
extracted from publicly available large-scale Knowledge Graphs (KGs) such as DBpedia [1], Freebase
[169], and Wikidata [2].
Neural semantic parsing approaches for question answering over KGs have been widely studied in

the research community [12, 170–172]. In a given question, these approaches use a semantic parsing

62

https://doi.org/10.1007/978-3-030-77385-4_21
http://dx.doi.org/10.18653/v1/2021.eacl-main.72

5.1 Introduction

Figure 5.1: Conversational Question Answering task with examples similar to CSQA dataset [117].

model to produce a logical form which is then executed on the KG to retrieve an answer. While
traditional methods tend to work on small KGs [173], more recent approaches also work well on
large-scale KGs [12, 13]. Often, researchers targeting large scale KGs focus on a stepwise method by
first performing entity linking and then train a model to learn the corresponding logical form for each
question type [12, 174].

The state-of-the-art for semantic parsing approaches decomposes the semantic parsing process into
two stages [13]. First, a logical form is generated based on low-level features and then the missing
details are filled by considering both the question and the template. Other approaches [12, 171, 174]
first employ an entity linking model to identify entities in the question and subsequently use another
model to map the question to a logical form. Recent works [13, 175] point out that the modular
approaches suffer from the common issue of error propagation along the QA pipeline, resulting in
accumulated errors. Work in [13] argues that the stepwise approaches have two significant issues. First,
errors in upstream sub-tasks (e.g., entity detection and linking, relation classification) are propagated
to downstream ones (e.g., semantic parsing), resulting in accumulated errors. For example, case
studies in previous works [12, 174, 176] show that entity linking error is one of the significant errors
leading to the wrong results in the question-answering task. Second, when models for the sub-tasks are
learned independently, the supervision signals cannot be shared among the models for mutual benefits.
To mitigate the limitations of the stepwise approach, work in [13] proposed a multi-task learning
framework where a pointer-equipped semantic parsing model is designed to resolve co-reference in
conversations, and intuitively, empower joint learning with a type-aware entity detection model. The
ConvQA approaches we propose in this chapter handle various limitations of existing works and
introduce solutions that advance the state-of-the-art.

63

Chapter 5 Conversational Question Answering via Multi-Task Learning

5.2 Related Work

We point to the survey by Gao et al. [177] that provides a holistic overview of neural approaches in
conversational AI. In this chapter, we stick to our closely related work, i.e., semantic parsing and
multi-task learning approaches in conversations. We also briefly refer to other approaches.

Semantic Parsing and Multi-Task Learning Approaches

Our work lies in the areas of semantic parsing and neural approaches for question answering over KGs.
Works in [58, 63, 175, 178] use neural approaches to solve the task of QA.
Lukovnikov et al. [178] introduces an approach that splits the question into spans of tokens to

match the tokens to their respective entities and predicates in the KG. The authors merge the word
and character-level representation to discover better matching in entities and predicates. Candidate
subjects are generated based on n-grams matching with words in the question, and then pruned based
on predicted predicates. However, their experiments are focused on simple questions.
Zhang et al. [175] propose a probabilistic framework for QA systems and experiment on a new

benchmark dataset. The framework consists of two modules. The first one model the probability of the
topic entity 𝑦, constrained on the question. The second module reasons over the KG to find the answer
𝑎, given the topic entity 𝑦, which is found in the first step and question 𝑞. Graph embeddings are used
to model the subgraph related to the question and calculate the answer’s distribution depending on the
question 𝑞 and the topic 𝑦.
Liang et al. [171] introduce neural symbolic machine (NSM), which contains a neural sequence

to sequence network referred also as the “programmer”, and a symbolic non-differentiable LISP
interpreter (“computer”). The model is extended with a key-value memory network, where keys
and values are the output of the sequence model in different encoding or decoding steps. The NSM
model is trained using the REINFORCE algorithm with weak supervision and evaluated on the
WebQuestionsSP dataset [126].
Saha et al. [117] propose a hybrid model of the HRED model [179] and the key-value memory

network model [180]. The model consists of three components. The first one is the Hierarchical
Encoder, which computes a representation for each utterance. The following module is a higher-level
encoder that computes a representation for the context. The second component is the Key-Value
Memory Network which stores each candidate tuples as a key-value pair. The key contains the
concatenated embedding of the relation and the subject. In contrast, the value includes the embedding
of the object. The last component is the decoder used to create an end-to-end solution and produce
various answers.
Guo et al. [12] also present an approach that maps utterances to logical forms. Their model consists

of a sequence to sequence network, where the encoder produces the embedding of the utterance, and
the decoder generates the sequence of actions. Authors introduce a dialogue memory management to
handle the entities, predicates, and logical forms that are referred from a previous interaction. The
dialogue memory aims to solve the problem of interaction history when an entity, predicate, or type is
needed to be instantiated in a specific step of the action sequence.
Shen et al. [13] proposed a multi-task learning framework that learns type-aware entity detection

and pointer-equipped logical form generation simultaneously. The multi-task learning framework
takes advantage of the supervision from the sub-tasks.
Marion et al. [181] addressed the problem of weakly-supervised ConvQA over KGs and proposed

an object aware Transformer model that can receive structured input (i.e., JSON format) that allows it

64

5.3 Context Transformer with Stacked Pointer Networks

to process KG contextual information. They also present a KG grammar for semantic parsing QA.
Thirukovalluru et al. [182] present a neural semantic parsing decoder that employs additional

KG information for ConvQA. The authors propose a knowledge injection layer that combines KG
embeddings into the state at each decoding step. For informing the decoder regarding the expected
structure of the KG, they include an attention layer on random, k-hops knowledge walks from
encountered entities at each decoding step.

Other Approaches

There has been extensive research for task-oriented dialog systems such as [154] that induces joint text
and knowledge graph embeddings to improve task-oriented dialogues in the domains such as restaurant
and flight booking. Work present in [16] proposes another dataset, “ConvQuestions” for conversations
over KGs along with an unsupervised model. Some other datasets include CANARD and TREC CAsT
[183]. Overall, several approaches are proposed for conversational QA, and in this work, we closely
stick to semantic parsing and multi-task learning for our approaches comparison and contributions.

5.3 Context Transformer with Stacked Pointer Networks

The first approach we present is CARTON (Context trAnsformeR sTacked pOinter Networks), a
multi-task learning framework consisting of a context Transformer model extended with a stack of
pointer networks for multi-task neural semantic parsing. Our framework handles semantic parsing
using the context Transformer model while the stacked pointer networks handle the remaining tasks
such as type prediction, predicate prediction, and entity detection. Our proposed framework is inspired
by [13]; however, we differ considerably on the following points: 1) CARTON’s stacked pointer
networks incorporate knowledge graph information for performing reasoning and do not rely only
on the conversational context as MaSP does. 2) The stacked pointer network architecture is used
intentionally to provide the flexibility for handling out-of-vocabulary [184] entities, predicates, and
types that are unseen during training. Our ablation study 5.3.5 further supports our choices. The
MaSP model does not cover out-of-vocabulary knowledge since the model was not intended to have
this flexibility. 3) CARTON’s supervision signals are propagated in sequential order, and all the
components use the signal forwarded from the previous component. 4) We employ semantic grammar
with new actions for generating logical forms. While [13] operates nearly with the same grammar as
[12].
CARTON achieves new state of the art results on eight out of ten question types from a large-scale

conversational question answering dataset. We evaluate CARTON on the Complex Sequential
Question Answering (CSQA) [117] dataset consisting of conversations over linked QA pairs. The
dataset contains 200K dialogues with 1.6M turns, and over 12.8M entities. Our implementation, the
annotated dataset with proposed grammar, and results are on a public github1.
The structure of the section is as follows: Subsection 5.3.1 presents the proposed framework.

Subsection 5.3.2 describes the multi-task learning process. Subsection 5.3.3 describes the experimental
setup, while Subsection 5.3.4 the experiments results. Subsection 5.3.5 provides a detailed ablation
study. An error analysis is on Subsection 5.3.6. We provide a brief summary in Subsection 5.3.7.

1 https://github.com/endrikacupaj/CARTON

65

https://github.com/endrikacupaj/CARTON

Chapter 5 Conversational Question Answering via Multi-Task Learning

5.3.1 Approach

Our focus is on conversations containing complex questions that can be answered by reasoning over
a large-scale KG. The training data consists of utterances 𝑢 and the answer label 𝑎. We propose a
semantic parsing approach, where the goal is to map the utterance 𝑢 into a logical form 𝑧, depending
on the conversation context. A stack of three pointer networks is used to fill information extracted
from the KG. The final generated logical form aims to fetch the correct answer once executed on the
KG. Figure 5.2 illustrates the overall architecture of CARTON framework.

Figure 5.2: CARTON (Context trAnsformeR sTacked pOinter Networks) architecture. It consists of three
modules: 1) A Transformer-based contextual encoder finds the representation of the current context of the
dialogue. 2) A logical form decoder generates the pattern of the logical forms defined in Table 5.1. 3) The
stacked pointer network initializes the KG items to fetch the correct answer.

66

5.3 Context Transformer with Stacked Pointer Networks

Grammar

We propose a grammar with various actions as shown in Table 5.1 which can result in different logical
forms that can be executed on the KG. Our grammar definition is inspired by [12] which MaSP [13]
also employs. However, we differ in many semantics of the actions and we even defined completely
new actions. For example, find action is split into find(e, p) that corresponds to finding an edge with
predicate p and subject e; and find_reverse(e, p) finds an edge with predicate p and object e. Moreover,
per_type is not defined by [12] in their grammar. Table 5.2 indicates some (complex) examples from
CSQA dataset [117] with gold logical form annotations using our predefined grammar. Following
[185], each action definition is represented by a function that is executed on the KG, a list of input
parameters, and a semantic category that corresponds to the output of the function. For example, set
→ find(e, p), it has a set as a semantic category, and a function find with input parameters e, p. We
believe that the defined actions are sufficient for creating sequences that cover complex questions and
we provide empirical evidences in Section 5.3.4. Every action sequence can be parsed into a tree,
where the model recursively writes the leftmost non-terminal node until the whole tree is complete.
The same approach is followed to execute the action sequence, except that the starting point is the tree
leaves.

Action Description
set→ find(e, p) set of objects (entities) with subject e and predicate p
set→ find_reverse(e, p) set of subjects (entities) with object e and predicate p
set→ filter_by_type(set, tp) filter the given set of entities based on the given type
set→ filter_mult_types(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) filter the given set of entities based on the given set of types
boolean→ is_in(set, entity) check if the entity is part of the set
boolean→ is_subset(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) check if 𝑠𝑒𝑡2 is subset of 𝑠𝑒𝑡1
number→ count(set) count the number of elements in the set

dict→ per_type(p, 𝑡 𝑝1, 𝑡 𝑝2)
extracts a dictionary, where keys are entities of 𝑡𝑦𝑝𝑒1 and
values are the number of objects of 𝑡𝑦𝑝𝑒2 related with p

dict→ per_type_rev(p, 𝑡 𝑝1, 𝑡 𝑝2)
extracts a dictionary, where keys are entities of 𝑡𝑦𝑝𝑒1 and
values are the number of subjects of 𝑡𝑦𝑝𝑒2 related with p

set→ greater(num, dict) set of entities that have greater count than num
set→ lesser(num, dict) set of entities that have lesser count than num
set→ equal(num, dict) set of entities that have equal count with num
set→ approx(num, dict) set of entities that have approximately same count with num
set→ argmin(dict) set of entities that have the most count
set→ argmax(dict) set of entities that have the least count
set→ union(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) union of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2
set→ intersection(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) intersection of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2
set→ difference(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) difference of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2

Table 5.1: Predefined grammar with respective actions to generate logical forms.

67

Chapter 5 Conversational Question Answering via Multi-Task Learning

Question Type Question Logical Forms

Simple
Question
(Direct)

Q1: Which administrative territory
is the birthplace of Antonio Reguero ?

filter_type(
find(Antonio Reguero,
place of birth),

administrative territorial entity)

Simple
Question
(Ellipsis)

Q1: Which administrative territories are
twin towns of Madrid ?
A1: Prague, Moscow, Budapest
Q2: And what about Urban
Community of Brest?

filter_type(
find(Urban Community of Brest,
twinned administrative body),

administrative territorial entity)

Simple
Question
(Coreferenced)

Q1: What was the sport that
Marie Pyko was a part of ?
A1: Association football
Q2: Which political territory
does that person belong to ?

filter_type(
find(Marie Pyko,
country of citizenship),

political territorial entity)

Quantitative
Reasoning
(Count) (All)

Q1: How many beauty contests and bus-
iness enterprises are located at that city ?
A1: Did you mean Caracas?
Q2: Yes

count(union(
filter_type(
find_reverse(Caracas, located in),
beauty contest),

filter_type(
find_reverse(Caracas, located in),
business enterprises)))

Quantitative
Reasoning
(All)

Q1; Which political territories are
known to have diplomatic connections
with max number of political territories ?

argmax(
per_type(
diplomatic relation,
political territorial entity,
political territorial entity))

Comparative
Reasoning
(Count) (All)

Q1: How many alphabets are used as
the scripts for more number of languages
than Jawi alphabet ?

count(greater(count(
filter_type(find(Jawi alphabet,
writing system), language)),
per_type(writing system,
alphabet, language)))

Comparative
Reasoning
(All)

Q1: Which occupations were more nu-
mber of publications and works mainly
about than composer ?

greater(union(
per_type(main subject, occupation,
publication),
per_type(main subject, occupation,
work)),
count(filter_multi_types(
find_reverse(composer, main subject),
{publication, work})))

Verification Q1: Was Geir Rasmussen born at that
administrative territory ?

is_in(
find(Geir Rasmussen,
place of birth),

Chicago)

Table 5.2: Examples from the CSQA dataset [117], annotated with gold logical forms.

68

5.3 Context Transformer with Stacked Pointer Networks

Context Transformer

Here we describe the semantic parsing part of CARTON, which is a context Transformer. The
Transformer receives input a conversation turn that contains the context of the interaction and generates
a sequence of actions. Formally, an interaction 𝐼 consists of the question 𝑞 that is a sequence
𝑥 = {𝑥1, . . . , 𝑥𝑛}, and a label 𝑙 that is a sequence 𝑦 = {𝑦1, . . . , 𝑦𝑚}. The network aims to model the
conditional probability 𝑝(𝑦 |𝑥).

Contextual Encoder. In order to cope with co-reference and ellipsis phenomena, we require to
include the context from the previous interaction in the conversation turn. To accomplish that, the
input to the contextual encoder is the concatenation of three utterances from the dialog turn: 1) the
previous question, 2) the previous answer, and 3) the current question. Every utterance is separated
from one another using a < 𝑆𝐸𝑃 > token. A special context token < 𝐶𝑇𝑋 > is appended at the
end where the embedding of this utterance is used as the semantic representation for the entire input
question. Given an utterance 𝑞 containing 𝑛 words {𝑤1, . . . , 𝑤𝑛}, we use GloVe [162] to embed the
words into a vector representation space of dimension 𝑑𝑒𝑚𝑏. More specifically, we get a sequence
𝑥 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 is given by,

𝑥𝑖 = 𝐺𝑙𝑜𝑉𝑒(𝑤𝑖), (5.1)

and 𝑥𝑖 ∈ R
𝑑𝑒𝑚𝑏 . Next, the word embeddings 𝑥, are forwarded as input to the contextual encoder, that

uses the multi-head attention mechanism from the Transformer network [82]. The encoder outputs the
contextual embeddings ℎ = {ℎ1, . . . , ℎ𝑛}, where ℎ𝑖 ∈ R

𝑑𝑒𝑚𝑏 , and it can be written as:

ℎ = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥; \ (𝑒𝑛𝑐)), (5.2)

where \ (𝑒𝑛𝑐) are the trainable parameters of the contextual encoder.

Logical Form Decoder. For the decoder, we likewise utilize the Transformer architecture with
a multi-head attention mechanism. The decoder output is dependent on contextual embeddings ℎ
originated from the encoder. The decoder detects each action and general semantic category from
the KG, i.e., the decoder predicts the correct logical form, without specifying the entity, predicate,
or type. Here, the decoder vocabulary consists of 𝑉 = {𝐴0, 𝐴1, . . . , 𝐴18, 𝑒𝑛𝑡𝑖𝑡𝑦, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑡𝑦𝑝𝑒}
where 𝐴0, 𝐴1, . . . , 𝐴18 are the short names of actions in Table 5.1. The goal is to produce a correct
logical form sequence. The decoder stack is supported by a linear and a softmax layer to estimate the
probability scores, i.e., we can define it as:

𝑠
(𝑑𝑒𝑐)

= 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ; \ (𝑑𝑒𝑐)),
𝑝𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾

(𝑑𝑒𝑐)
𝑠
(𝑑𝑒𝑐)
𝑡),

(5.3)

where 𝑠 (𝑑𝑒𝑐)𝑡 is the hidden state of the decoder in time step 𝑡, \ (𝑑𝑒𝑐) are the model parameters,
𝑾 (𝑑𝑒𝑐) ∈ R |𝑉 |×𝑑𝑒𝑚𝑏 are the weights of the feed-forward linear layer, and 𝑝𝑡 ∈ R

|𝑉 | is the probability
distribution over the decoder vocabulary for the output token in time step 𝑡.

69

Chapter 5 Conversational Question Answering via Multi-Task Learning

Stacked Pointer Networks

As we mentioned, the decoder only outputs the actions without specifying any KG items. To complete
the logical form with instantiated semantic categories, we extend our model with an architecture of
stacked pointer networks [184]. The architecture consists of three-pointer networks and each one of
them is responsible for covering one of the major semantic categories (types, predicates, and entities)
required for completing the final executable logical form against the KG.
The first two pointer networks of the stack are used for predicates and types semantic category and

follow a similar approach. The vocabulary and the inputs are the entire predicates and types of the KG.
We define the vocabularies, 𝑉 (𝑝𝑑) = {𝑟1, . . . , 𝑟𝑛𝑝𝑑 } and 𝑉

(𝑡 𝑝)
= {𝜏1, . . . , 𝜏𝑛𝑡 𝑝 }, where 𝑛𝑝𝑑 and 𝑛𝑡 𝑝

is the total number of predicates and types in the KG, respectively. To compute the pointer scores
for each predicate or type candidate, we use the current hidden state of the decoder and the context
representation. We model the pointer networks with a feed-forward linear network and a softmax
layer. We can define the type and predicate pointers as:

𝑝
(𝑝𝑑)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑝𝑑)1 𝑣

(𝑝𝑑)
𝑡),

𝑝
(𝑡 𝑝)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑡 𝑝)1 𝑣

(𝑡 𝑝)
𝑡),

(5.4)

where 𝑝 (𝑝𝑑)𝑡 ∈ R |𝑉
(𝑝𝑑) | and 𝑝 (𝑡 𝑝)𝑡 ∈ R |𝑉

(𝑡 𝑝) | are the probability distributions over the predicate and
type vocabularies respectively. The weight matrices 𝑾 (𝑝𝑑)1 , 𝑾 (𝑡 𝑝)1 ∈ R1×𝑑𝑘𝑔 . Also, 𝑣𝑡 is a joint
representation that includes the knowledge graph embeddings, the context and the current decoder
state, computed as:

𝑣
(𝑝𝑑)
𝑡 = 𝑡𝑎𝑛ℎ(𝑾 (𝑝𝑑)2 [𝑠𝑡 ; ℎ𝑐𝑡 𝑥] + 𝑟),
𝑣
(𝑡 𝑝)
𝑡 = 𝑡𝑎𝑛ℎ(𝑾 (𝑡 𝑝)2 [𝑠𝑡 ; ℎ𝑐𝑡 𝑥] + 𝜏),

(5.5)

where the weight matrices𝑾 (𝑝𝑑)2 ,𝑾 (𝑡 𝑝)2 ∈ R𝑑𝑘𝑔×2𝑑𝑒𝑚𝑏 , transform the concatenation of the current
decoder state 𝑠𝑡 with the context representation ℎ𝑐𝑡 𝑥 . We denote with 𝑑𝑘𝑔 the dimension used for

knowledge graph embeddings. 𝑟 ∈ R𝑑𝑘𝑔×|𝑉
(𝑝𝑑) | are the predicate embeddings and 𝜏 ∈ R𝑑𝑘𝑔×|𝑉

(𝑡 𝑝) |

are the type embeddings. 𝑡𝑎𝑛ℎ is the non-linear layer. Please note, that the vocabulary of predicates
and types can be updated during evaluation, hence the choice of pointer networks.
The third pointer network of the stack is responsible for the entity prediction task. Here we follow

a slightly different approach due to the massive number of KG entities. Predicting a probability
distribution over KG with a considerable number of entities is not computationally feasible. For
that reason, we decrease the size of entity vocabulary during each logical form prediction. In each
conversation, we predict a probability distribution only for the entities that are part of the context. For
each conversation turn, our entity “memory” involves entities from the previous question, previous
answer, and current question. The probability distribution over the entities is then calculated in the
same way as for predicates and types, where the softmax is:

𝑝
(𝑒𝑛𝑡)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑒𝑛𝑡)1 𝑣

(𝑒𝑛𝑡)
𝑡), (5.6)

70

5.3 Context Transformer with Stacked Pointer Networks

where 𝑝 (𝑒𝑛𝑡)𝑡 ∈ R |𝑉
(𝑒𝑛𝑡)
𝑘

|, and 𝑉 (𝑒𝑛𝑡)
𝑘

is the set of entities for the 𝑘 𝑡ℎ conversation turn. The weight
matrix𝑾 (𝑒𝑛𝑡)1 ∈ R1×𝑑𝑘𝑔 and the vector 𝑣𝑡 is then computed following the same equations as before:

𝑣
(𝑒𝑛𝑡)
𝑡 = 𝑡𝑎𝑛ℎ(𝑾 (𝑒𝑛𝑡)2 ([𝑠𝑡 ; ℎ𝑐𝑡 𝑥]) + 𝑒𝑘) (5.7)

where 𝑒𝑘 is the sequence of entities for the 𝑘
𝑡ℎ conversation turn. In general, the pointer networks are

robust to handle a different vocabulary size for each time step [184]. Moreover, given the knowledge
graph embeddings, our stacked pointer networks select the relevant items from the knowledge graph
depending on the conversational context. In this way, we incorporate knowledge graph embeddings
in order to perform any reasoning and do not rely only on utterance features. Furthermore, the [13]
utilizes a single pointer network that only operates on the input utterance to select the already identified
entities. Our stacked pointer networks do not use the input utterance but rather directly rely on the
knowledge graph semantic categories (types, predicates, and entities).

5.3.2 Multi-Task Learning

For each time step, we have four different predicted probability distributions. The first is the decoder
output over the logical form’s vocabulary. The three others are from the stacked pointer networks for
each semantic category (entity, predicate, and type). Finally, we define CARTON loss function as:

𝐿𝑜𝑠𝑠𝑡 = −
1
𝑚

𝑚∑︁
𝑖=1

©«𝑙𝑜𝑔 𝑝𝑖 [𝑖=𝑦 (𝑡)𝑖
] +

∑︁
𝑐∈{𝑒𝑛𝑡, 𝑝𝑑,𝑡 𝑝}

𝐼 [𝑦 (𝑡)
𝑖

=𝑐] 𝑙𝑜𝑔𝑝
(𝑐)
𝑖 [𝑖=𝑦 (𝑐𝑡)

𝑖
]

ª®¬ , (5.8)

where 𝐿𝑜𝑠𝑠𝑡 is the loss function computed for the sequence in time step 𝑡, 𝑚 is the length of the logical
form, 𝑦 (𝑡) is the gold sequence of logical form, and 𝑦 (𝑐𝑡) is the gold label for one of the semantic
categories 𝑐 ∈ {𝑒𝑛𝑡, 𝑝𝑑, 𝑡 𝑝}.

5.3.3 Experimental Setup

In this subsection, we provide the setup for the experiments. We further describe the resources and
metrics we employ.

Dataset and Experiment Settings

We conduct our experiments on the Complex Sequential Question Answering (CSQA) dataset2 [117].
CSQA was built on the Wikidata KG. The CSQA dataset consists of around 200K dialogues where
each partition, train, valid, and test contains 153K, 16K, 28K dialogues, respectively. The questions
in the CSQA dataset involve complex reasoning on Wikidata to determine the correct answer. The
different question types in the dataset are simple questions, logical reasoning, verification, quantitative
reasoning, comparative reasoning, and clarification. We can have different subtypes for each one
of them, such as direct, indirect, coreference, and ellipsis questions. We stick to one dataset in
experiments for the following reasons: 1) all the baseline approaches have been trained and tested
only on the CSQA dataset. Hence, for a fair evaluation and comparison of our approach inheriting the
2 https://amritasaha1812.github.io/CSQA

71

https://amritasaha1812.github.io/CSQA

Chapter 5 Conversational Question Answering via Multi-Task Learning

evaluation settings same as [13, 117], we stick to the CSQA dataset. 2) other approaches [16, 183] on
datasets such as ConvQuestions, and TREC CAsT, are not compatible with semantic parsing methods
and, therefore, we cannot retrain existing ConvQA works [12, 13, 117] on these datasets due to their
missing logical forms employed by each of these models.
We incorporate a semi-automated preprocessing step to annotate the CSQA dataset with gold

logical forms. For each question type and subtype in the dataset, we create a general template with a
pattern sequence that the actions should follow. Thereafter, for each question, we follow a set of rules
to create the specific gold logical form that extracts the gold sequence of actions based on the type of
the question. The actions used for this process are the ones in Table 5.1.

Model Configurations
For the Transformer network, we use the configurations from [82]. Our model dimension is
𝑑𝑚𝑜𝑑𝑒𝑙 = 512, with a total number of 𝐻 = 8 heads and layers 𝐿 = 4. The inner feed-forward linear
layers have dimension 𝑑 𝑓 𝑓 = 2048, (4 × 512). Following the base Transformer parameters, we apply
residual dropout to the summation of the embeddings and the positional encodings in both encoder
and decoder stacks with a rate of 0.1. On the other hand, the pointer networks also use a dropout layer
for the linear projection of the knowledge graph embeddings. We randomly initialize the embeddings
for predicates and types, and we jointly learn them during training. The KG embeddings dimension of
predicate and types match the Transformer model dimension, 𝑑𝑘𝑔 = 512. However, for the entities, we
follow a different initialization. Due to a significantly high number of the entities, learning the entity
embeddings from scratch was inefficient and resulted in poor performance. Therefore, to address this
issue, we initialized the entity embeddings using sentence embeddings that implicitly use underlying
hidden states from BERT network [92]. For each entity, we treat the tokens that it contains as a
sentence, and we feed that as an input. We receive as output the entity representation with a dimension
𝑑𝑒𝑛𝑡 = 768. Next, we feed this into a linear layer that learns, during training, to embed the entity
into the same dimension as the predicates and types. We did not perform any hyperparameter tuning
through third libraries to impact the results; hence, the performance is purely due to the underlying
model’s efficacy.

Models for Comparison
To compare the CARTON framework, we use the last three baselines that have been evaluated on the
employed dataset. The authors of the CSQA dataset introduce the first baseline: HRED+KVmem
[117] model. HRED+KVmem employs a seq2seq [78] model extended with memory networks [186,
187]. The model uses HRED model [179] to extract dialog representations and extends it with a
Key-Value memory network [180] for extracting information from KG. Next, D2A [12] uses a semantic
parsing approach based on a seq2seq model, extended with dialog memory manager to handle different
linguistic problems in conversations such as ellipsis and co-reference. Finally, MaSP [13] is also a
semantic parsing approach. It is important to note that CARTON’s number of training parameters is
10.7M, compared to MaSP (vanilla) with 15M.

Evaluation Metrics
To evaluate CARTON, we use the same metrics as employed by the authors of the CSQA dataset
[117] and previous baselines. We use the F1-score for questions that have an answer composed by a
set of entities. Accuracy is used for the question types whose answer is a number or a boolean value
(YES/NO).

72

5.3 Context Transformer with Stacked Pointer Networks

Methods HRED-KV D2A MaSP CARTON (ours) Δ

Train Param - - 15M 10.7M
Question Type (QT) F1 Score

Overall 9.39% 66.70% 79.26% 81.35% +2.09%
Clarification 16.35% 35.53% 80.79% 47.31% -33.48%

Comparative Reasoning (All) 2.96% 48.85% 68.90% 62.00% -6.90%
Logical Reasoning (All) 8.33% 67.31% 69.04% 80.80% +11.76%

Quantitative Reasoning (All) 0.96% 56.41% 73.75% 80.62% +6.87%
Simple Question (Coreferenced) 7.26% 57.69% 76.47% 87.09% +10.62%
Simple Question (Direct) 13.64% 78.42% 85.18% 85.92% +0.74%
Simple Question (Ellipsis) 9.95% 81.14% 83.73% 85.07% +1.34%

Question Type (QT) Accuracy
Overall 14.95% 37.33% 45.56% 61.28% +15.72%

Verification (Boolean) 21.04% 45.05% 60.63% 77.82% +17.19%
Quantitative Reasoning (Count) 12.13% 40.94% 43.39% 57.04% +13.65%
Comparative Reasoning (Count) 8.67% 17.78% 22.26% 38.31% +16.05%

Table 5.3: Comparisons among baseline models on the CSQA dataset having 200K dialogues with 1.6M turns,
and over 12.8M entities.

5.3.4 Results

We report our empirical results in Table 5.3, and conclude that CARTON outperforms baselines
average on all question types (row “overall” in the table). We dig deeper into the accuracy per
question type to understand the overall performance. Compared to the previous state-of-the-art
(MaSP), CARTON performs better on eight out of ten question types. CARTON is leading MaSP
in question type categories such as Logical Reasoning (All), Quantitative Reasoning (All), Simple
Question (Coreferenced), Simple Question (Direct), Simple Question (Ellipsis), Verification (Boolean),
Quantitative Reasoning (Count), and Comparative Reasoning (Count). Whereas, MaSP retains the
state of the art for the categories ofClarification andComparative Reasoning (All). The main reason for
weak results in Comparative Reasoning (All) is that our preprocessing step finds limitation in covering
this question type and is one of the shortcoming of our proposed grammar3. We investigated several
reasonable ways to cover Comparative Reasoning (All) question type. However, it was challenging to
produce a final answer set identical to the gold answer set. For instance, consider the question “Which
administrative territories have diplomatic relations with around the same number of administrative
territories than Albania?” that includes logic operators like “around the same number”, which is
ambiguous because CARTON needs to look for the correct answer in a range of the numbers. Whereas,
MaSP uses a BFS method to search the gold logical forms and performance is superior to CARTON.
The limitation with Comparative Reasoning question type also affects CARTON’s performance in the
Clarification question type where a considerable number of questions correspond to Comparative
3 When we applied the preprocessing step over the test set, we could not annotate the majority of the examples for the
Comparative Reasoning (All) question type.

73

Chapter 5 Conversational Question Answering via Multi-Task Learning

Reasoning. Based on analysis, we outline the following two reasons for CARTON’s outperformance
over MaSP: First, the MaSP model requires to perform entity recognition and linking to generate the
correct entity candidate. Even though MaSP is a multi-task model, errors at entity recognition step
will still be propagated to the underlying network. CARTON is agnostic of such a scenario since
the candidate entity set considered for each conversation turn is related to the entire relevant context
(the previous question, answer, and current question). In CARTON, entity detection is performed
only by stacked pointer networks. Hence no error propagation related to entities affects previous
steps of the framework. Second, CARTON uses better supervision signals than MaSP. As mentioned
earlier, CARTON supervision signals propagate in sequential order, and all components use the signal
forwarded from the previous components. In contrast, the MaSP model co-trains entity detection and
semantic parsing with different supervision signals.

5.3.5 Ablation Study

An ablation study is conducted to support our architectural choices of CARTON. To do so, we replace
the stacked pointer networks module with simple classifiers. In particular, predicates and types are
predicted using two linear classifiers and the representations from the contextual encoder. Table 5.4
illustrates that the modified setting (w/o St. Pointers) significantly under-performs compared to
CARTON in all question types. The stacked pointer networks generalize better in the test set due to
their ability to learn meaningful representations for the KG items and align learned representations
with the conversational context. While classifiers thoroughly learn to identify common patterns
between examples without incorporating any information from the KG. Furthermore, our framework’s
improved results are implied from the ability of stacked pointer networks to handle out-of-vocabulary
entities, predicates, and types that are unseen during training.

Question Type (QT) CARTON W/o St. Pointers
Clarification 47.31% 42.47%

Comparative Reasoning (All) 62.00% 55.82%
Logical Reasoning (All) 80.80% 68.23%

Quantitative Reasoning (All) 80.62% 71.59%
Simple Question (Coreferenced) 87.09% 85.28%
Simple Question (Direct) 85.92% 83.64%
Simple Question (Ellipsis) 85.07% 82.11%

Verification (Boolean) 77.82% 70.38%
Quantitative Reasoning (Count) 57.04% 51.73%
Comparative Reasoning (Count) 38.31% 30.87%

Table 5.4: CARTON ablation study. “W/o St. Pointer” column shows results when stacked pointers in CARTON
is replaced by classifiers.

74

5.3 Context Transformer with Stacked Pointer Networks

5.3.6 Error Analysis

We now present a detailed analysis of CARTON by reporting some additional metrics. Table 5.5
reports the accuracy of predicting the KG items such as entity, predicate, or type using CARTON.
The prediction accuracy of KG items is closely related to the performance of our model, as shown
in Table 5.3. For example, in the Quantitative (All) question type (Table 5.3), predicting the correct
type has an accuracy of 73.46% which is lowest compared to other question types. The type
prediction is essential in such category of questions, where a typical logical form possibly is: “argmin,
find_tuple_counts, predicate, type1, type2”. Filtering with the wrong type fetches erroneous results.
Please note, there is no “entity” involved in the logical forms of Quantitative (All) question type.
Hence, no entity accuracy is reported.

Question Type (QT) Entity Predicate Type
Clarification 36.71% 94.76% 80.79%

Comparative Reasoning (All) 67.63% 97.92% 77.57%
Logical Reasoning (All) 64.7% 83.18% 91.56%

Quantitative Reasoning (All) - 98.46% 73.46%
Simple Question (Coreferenced) 81.13% 91.09% 80.13%
Simple Question (Direct) 86.07% 91% 82.19%
Simple Question (Ellipsis) 98.87% 92.49% 80.31%

Verification (Boolean) 43.01% 94.72% -
Quantitative Reasoning (Count) 79.60% 94.46% 79.51%
Comparative Reasoning (Count) 70.29% 98.05% 78.38%

Table 5.5: CARTON stacked pointer networks results for each question type. We report CARTON’s accuracy in
predicting the KG items such as entity, predicate, or type.

Another interesting result is the high accuracy of the entities and predicates in Comparative (Count)
questions. Also, the accuracy of type detection is 78.38%. However, these questions’ accuracy
was relatively low, only 38.31%, as reported in Table 5.3. We believe that improved accuracy is
mainly affected due to the mapping process of entities, predicates, and types to the logical forms that
is followed to reach the correct answer. Another insightful result is on Simple Question (Ellipsis),
where CARTON has a high entity accuracy compared with Simple Question (Direct/Coreferenced).
A possible reason is the short length of the question, making it easier for the model to focus on the
right entity. Some example of this question type is “And what about Bonn?”, where the predicate is
extracted from the previous utterance of the question.
We compute the accuracy of the decoder which is used to find the correct patterns of the logical

forms. We also calculate the accuracy of the logical forms after the pointer networks initialize the KG
items. We report an average accuracy across question types for generating logical form (by decoder) as
97.24%, and after initializing the KG items, the average accuracy drops to 75.61%. Higher accuracy
of logical form generation shows the decoder’s effectiveness and how the Transformer network can
extract the correct patterns given the conversational context. Furthermore, it also justifies that the
higher error percentage is generated while initializing the items from the KG. When sampling some
of the wrong logical forms, we found out that most of the errors were generated from initializing a
similar predicate or incorrect order of the types in the logical actions.

75

Chapter 5 Conversational Question Answering via Multi-Task Learning

5.3.7 Synopsis

In this work, we used a Transformer-based model to generate logical forms. The decoder was extended
with a stack of pointer networks in order to include information from the large-scale KG associated
with the dataset. Given the conversational context, the stacked pointer networks predict the exact KG
item required in a particular position of the action sequence. We empirically demonstrate that our
model performs the best in several question types and how entity and type detection accuracy affect
the performance. In the next section, we describe the second proposed approach for ConvQA.

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention
Networks

Wepresent LASAGNE (muLti-task semAntic parSingwith trAnsformer andGraph atteNtion nEtworks)
- a multi-task learning framework consisting of a Transformer model extended with Graph Attention
Networks (GATs) [107] for multi-task neural semantic parsing. Our framework handles semantic
parsing using the Transformer [82] model similar to previous approaches. However, in LASAGNE
we introduce the following two novel contributions: 1) the Transformer model is supplemented with
a Graph Attention Network to exploit the correlations between (entity) types and predicates due to
its message-passing ability between the nodes. 2) We propose a novel entity recognition module
that detects, links, filters, and permutes all relevant entities. Shen et al. [13] uses a pointer equipped
decoder that learns and identifies the relevant entities for the logical form using only the encoder’s
information. In contrast, we use both sources of information, i.e., the entity detection module and the
encoder, to filter and permute the relevant entities for a logical form. This avoids re-learning entity
information in the current question context and relies on the entity detection module’s information.
Our empirical results show that the proposed novel contributions lead to substantial performance
improvements.
LASAGNE achieves state-of-the-art results in eight out of ten question types on the Complex

Sequential Question Answering (CSQA) [117] dataset consisting of conversations over linked QA
pairs. The dataset contains 200K dialogues with 1.6M turns, and over 12.8M entities from Wikidata4.
Our implementation, the annotated dataset with the proposed grammar, and the results are publicly
available to facilitate reproducibility and reuse5.
The structure of the section is as follows: Subsection 5.4.1 presents the proposed framework.

Subsection 5.4.2 describes the multi-task learning process. Subsection 5.4.3 describes the experimental
setup, while Subsection 5.4.4 the experiments results. Subsection 5.4.5 provides a detailed ablation
study. A task analysis is on Subsection 5.4.7, and an error analysis on Subsection 5.4.7. We provide a
brief summary in Subsection 5.4.8.

4 https://www.wikidata.org/
5 https://github.com/endrikacupaj/LASAGNE

76

https://www.wikidata.org/
https://github.com/endrikacupaj/LASAGNE

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks

5.4.1 Approach

In a conversation, the input data consists of utterances 𝑢 and their answers 𝑎, extracted from the
knowledge graph. Our framework LASAGNE employs a multi-task semantic parsing approach. In
particular, it maps the utterance 𝑢 to a logical form 𝑧, depending on the conversation context. Figure 5.3
shows the architecture of LASAGNE.

Figure 5.3: LASAGNE (Multi-task Semantic Parsing with Transformer and Graph Attention Networks)
architecture. It consists of three modules: 1) A semantic parsing-based Transformer model, containing a
contextual encoder and a grammar-guided decoder using the grammar defined in Table 5.6. 2) An entity
recognition module identifies all the entities in the context together with their types and links them to the
knowledge graph. It filters them based on the context and permutes them, in case of more than one required
entity. Finally, 3) a graph attention-based module that uses a GAT network initialised with BERT embeddings
to incorporate and exploit correlations between (entity) types and predicates. The resulting node embeddings,
together with the context hidden state (ℎ (𝑒𝑛𝑐)𝑐𝑡 𝑥) and decoder hidden state (ℎ

(𝑑𝑒𝑐)), are used to score the nodes
and predict the corresponding type and predicate.

77

Chapter 5 Conversational Question Answering via Multi-Task Learning

Action Description
set→ find(e, p) set of objects part of the triples with subject e and predicate p
set→ find_reverse(e, p) set of subjects part of the triples with object e and predicate p
set→ filter_type(set, tp) filter the given set of entities based on the given type
set→ filter_multi_types(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) filter the given set of entities based on the given set of types
dict→ find_tuple_counts(p, 𝑡 𝑝1, 𝑡 𝑝2) extracts a dictionary, where keys are entities of 𝑡𝑦𝑝𝑒1 and values are the

number of objects of 𝑡𝑦𝑝𝑒2 related with p
dict→ find_reverse_tuple_counts(p, 𝑡 𝑝1, 𝑡 𝑝2) extracts a dictionary, where keys are entities of 𝑡𝑦𝑝𝑒1 and values are the

number of subjects of 𝑡𝑦𝑝𝑒2 related with p
set→ greater(dict, num) set of those entities that have greater count than num
set→ lesser(dict, num) set of those entities that have lesser count than num
set→ equal(dict, num) set of those entities that have equal count with num
set→ approx(dict, num) set of those entities that have approximately same count with num
set→ atmost(dict, num) set of those entities that have at most same count with num
set→ atleast(dict, num) set of those entities that have at least same count with num
set→ argmin(dict) set of those entities that have the most count
set→ argmax(dict) set of those entities that have the least count
boolean→ is_in(entity, set) check if the entity is part of the set
number→ count(set) count the number of elements in the set
set→ union(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) union of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2
set→ intersection(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) intersection of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2
set→ difference(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) difference of 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2

Table 5.6: Predefined grammar with respective actions to generate logical forms.

Grammar

For the semantic parsing task, we employ a grammar that can be used to capture the entire context of
the input utterance with the minimum number of actions. Table 5.6 illustrates the complete grammar
with all the defined actions. We integrated most actions from our previous work (Section 5.3) [14];
however, we have updated particular actions for optimal performance. For instance, we removed the
action “is_subset” and introduced two new actions such as “atleast” and “atmost” for handling more
complicated scenarios of comparative and quantitative question types.

Transformer

To translate the input conversation into a sequence of actions (logical form), we utilise a Transformer
model [82]. Specifically, the Transformer here aims to map a question 𝑞, that is a sequence
𝑥 = {𝑥1, . . . , 𝑥𝑛}, to the label 𝑙, that can be also defined as a sequence 𝑦 = {𝑦1, . . . , 𝑦𝑚}, by modelling
the conditional probability 𝑝(𝑦 |𝑥).

Input and Word Embedding. We have to incorporate the dialog history from previous interactions
as an additional input to our model for handling co-reference and ellipsis. To do so, we consider the
following utterances for each turn: 1) the previous question, 2) the previous answer, and 3) the current
question. Utterances are separated from one another by using a [𝑆𝐸𝑃] token. At the end of the last
utterance, we append a context token [𝐶𝑇𝑋], which is used as the semantic representation for the
entire input question. In the next step, given an utterance 𝑞 containing 𝑛 words {𝑤1, . . . , 𝑤𝑛} we
first tokenise the conversation context using WordPiece tokenization [188], and after that, we use the
pre-trained model GloVe [162] to embed the words into a vector representation space of dimension
𝑑. Our word embedding model provides us with a sequence 𝑥 = {𝑥1, . . . , 𝑥𝑛} where 𝑥𝑖 is given by,
𝑥𝑖 = 𝐺𝑙𝑜𝑉𝑒(𝑤𝑖) and 𝑥𝑖 ∈ R

𝑑 .

78

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks

Contextual Encoder. The word embeddings 𝑥, are forwarded as input to the contextual encoder,
which uses the multi-head attention mechanism described by [82]. The encoder here outputs the
contextual embeddings ℎ (𝑒𝑛𝑐) = {ℎ (𝑒𝑛𝑐)1 , . . . , ℎ

(𝑒𝑛𝑐)
𝑛 }, where ℎ (𝑒𝑛𝑐)

𝑖
∈ R𝑑 and it can be defined as:

ℎ
(𝑒𝑛𝑐)

= 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥; \ (𝑒𝑛𝑐)), (5.9)

where \ (𝑒𝑛𝑐) are the encoder’s trainable parameters.

Grammar-Guided Decoder. We use a grammar-guided decoder for generating the logical forms.
The decoder also employs the multi-head attention mechanism. The decoder output is dependent on the
encoder contextual embeddings ℎ (𝑒𝑛𝑐) . The main task of the decoder is to generate each corresponding
action, based on Table 5.6, alongside with the general semantic category from the knowledge graph
(entity, type, predicate). In other words, the decoder will predict the main logical form without using or
initialising any specific information from the knowledge graph. Here we define the decoder vocabulary
as 𝑉 (𝑑𝑒𝑐) = { 𝑓 𝑖𝑛𝑑, 𝑓 𝑖𝑛𝑑_𝑟𝑒𝑣𝑒𝑟𝑠𝑒, . . . , 𝑒𝑛𝑡𝑖𝑡𝑦, 𝑡𝑦𝑝𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒}, where all the actions from
Table 5.6 are included. On top of the decoder stack, we employ a linear layer alongside a softmax to
calculate each token’s probability scores in the vocabulary. We define the decoder stack output as
follows:

ℎ
(𝑑𝑒𝑐)

= 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑒𝑛𝑐) ; \ (𝑑𝑒𝑐)),

𝑝
(𝑑𝑒𝑐)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑑𝑒𝑐)ℎ (𝑑𝑒𝑐)𝑡),

(5.10)

where ℎ (𝑑𝑒𝑐)𝑡 is the hidden state in time step 𝑡, \ (𝑑𝑒𝑐) are the decoder trainable parameters,𝑾 (𝑑𝑒𝑐) ∈
R |𝑉

(𝑑𝑒𝑐) |×𝑑 are the linear layer weights, and 𝑝 (𝑑𝑒𝑐)𝑡 ∈ R |𝑉
(𝑑𝑒𝑐) | is the probability distribution over the

decoder vocabulary in time step 𝑡. |𝑉 (𝑑𝑒𝑐) | denotes the decoder’s vocabulary size.

Entity Recognition Module

The entity recognition module is composed of two sub-modules, where each module is trained using a
different objective.

Entity Detection and Linking

Entity Detection. It aims to detect and link the entities to the KG. The module is inspired by [13]
and performs type-aware entity detection by using BIO sequence tagging jointly with entity type
tagging. Specifically, the entity detection vocabulary is defined as 𝑉 (𝑒𝑑) = {𝑂, {𝐵, 𝐼} × {𝑇𝑃𝑖}

𝑁
(𝑡 𝑝)

𝑖=1 },
where 𝑇𝑃𝑖 denotes the i-th entity type label, 𝑁

(𝑡 𝑝) stands for the number of the distinct entity types in
the knowledge graph and |𝑉 (𝑒𝑑) | = 2 × 𝑁 (𝑡 𝑝) + 1. For performing the sequence tagging task we use
an LSTM [79] and the module is defined as:

ℎ
(𝑙)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝐿𝑆𝑇𝑀 (ℎ (𝑒𝑛𝑐) ; \ (𝑙))),

𝑝
(𝑒𝑑)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑙)ℎ (𝑙)𝑡),

(5.11)

79

Chapter 5 Conversational Question Answering via Multi-Task Learning

where ℎ (𝑒𝑛𝑐) is the encoder hidden state, \ (𝑙) are the LSTM layer trainable parameters, ℎ (𝑙)𝑡 is the
LSTM hidden state for time step 𝑡,𝑾 (𝑙) ∈ R |𝑉

(𝑒𝑑) |×𝑑 are the linear layer weights and 𝑝 (𝑒𝑑)𝑡 are the
entity detection module prediction for time step 𝑡. |𝑉 (𝑒𝑑) | denotes the entity detection vocabulary size.

Entity Linking. Once the entity BIO labels and their types are recognised, the next steps for the
entity linking are: 1) the BIO labels are used to locate the entity spans from the input utterances. 2) An
inverted index built for the knowledge graph entities is used to retrieve candidates for each predicted
entity span. Finally, 3) the candidate lists are filtered using the predicted (entity) types. From the
filtered candidates, the first entity is considered as correct.

Filtering and Permutation

After finding all the input utterances’ entities, we perform two additional tasks in order to use entities
in the generated logical form. First, we filter the relevant entities, and then we need to permute the
entities in the order required for the logical form. The module receives as an input the concatenation
of the hidden states of the encoder ℎ (𝑒𝑛𝑐) and the hidden states of the LSTM ℎ

(𝑙) from the entity
detection model. The module here learns to assign index tags to each input token. We define the
module vocabulary as 𝑉 (𝑒 𝑓) = {0, 1, . . . , 𝑚} where 0 is the index assigned to the context entities that
are not considered. The remaining values are indices that permute our entities based on the logical
form. Here, 𝑚 is the total number of indices based on the maximum number of entities from all logical
forms. Overall, our filtering and permutation module is modelled using a feed-forward network with
two linear layers separated with a Leaky ReLU activation function and appended with a softmax.
Formally we define the module as:

ℎ
(𝑒 𝑓)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑾 (𝑒 𝑓1) [ℎ (𝑒𝑛𝑐) ; ℎ (𝑙)]),
𝑝
(𝑒 𝑓)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑒 𝑓2)ℎ (𝑒 𝑓)𝑡),

(5.12)

where 𝑾 (𝑒 𝑓1) ∈ R𝑑×2𝑑 are the weights of the first linear layer and ℎ (𝑒 𝑓)𝑡 is the hidden state of the
module in time step 𝑡. 𝑾 (𝑒 𝑓2) ∈ R |𝑉

(𝑒 𝑓) |×𝑑 are the weights of the second linear layer, |𝑉 (𝑒 𝑓) | is the
size of the vocabulary and 𝑝 (𝑒 𝑓)𝑡 denotes the probability distribution over the tag indices for the time
step 𝑡.

Graph Attention-Based Module

A knowledge graph (KG) can be denoted as a set of triples K ⊆ E × R × E where E and R are the set
of entities and relations respectively. To build the (local) graph, we consider the relations and the
types of entities that are linked with these relations in the knowledge graph K. We define a graph
G = {T ∪ R,L} where T is the set of types, R is the set of relations and L is a set of links (𝑡 𝑝1, 𝑟)
and (𝑟, 𝑡 𝑝2), such that ∃(𝑒1, 𝑟, 𝑒2) ∈ K where 𝑒1 is of type 𝑡 𝑝1 and 𝑒2 is of type 𝑡 𝑝2.
To propagate information in the graph and to project prior KG information into the embedding

space, we use the Graph Attention Networks (GATs) [107].
Figure 5.4 shows the aggregation process of graph attention layer between the (entity) types and

predicates from Wikidata. The KG types and predicates are the nodes of the graph, and there exist an

80

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks

Figure 5.4: The aggregation process of graph attention layer between the (entity) types and predicates from
Wikidata knowledge graph. The dashed lines represent an auxiliary edge, while 𝑎𝑖 𝑗 represents relative attention
values of the edge. We also incorporate the predicates (relations) as nodes of the graph instead of edges.

edge only between types and predicates with the condition that there exist a triple which involved the
predicate and an entity of that type. We use GATs [107] to capture different level of information for
a node, based on the neighborhood in the graph. We denote with ℎ (𝑔) = {ℎ (𝑔)1 , . . . , ℎ

(𝑔)
𝑛 } the initial

representations of the nodes, which will also be the input features for the GAT layer. To denote the
influence of node 𝑗 to the node 𝑖, an attention score 𝑒𝑖 𝑗 is computed as 𝑒𝑖 𝑗 = 𝑎(Wℎ

(𝑔)
𝑖
,Wℎ

(𝑔)
𝑗
), where

W is a parameterized linear transformation, and 𝑎 is an attention function. In our case, we follow the
GAT work [107], and compute 𝑒𝑖 𝑗 score as follows,

𝑒𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a
𝑇 [Wℎ

(𝑔)
𝑖
| |Wℎ

(𝑔)
𝑗
]), (5.13)

where a ∈ R2𝑑 is a single-layer feedforward network, and | | denotes concatenation. This attention
scores are normalized using a softmax function and producing the 𝛼𝑖 𝑗 scores for all the edges in a

neighborhood. These normalized attention scores are used to compute the output features ℎ
(𝑔)
𝑖 of a

node in a graph, by applying a linear combination of all the nodes in the neighborhood as below,

ℎ
(𝑔)
𝑖 = 𝜎(

∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗Wℎ
(𝑔)
𝑗
), (5.14)

where 𝜎 is a non-linear function. Following [107] and [82] we also apply a multi-head attention
mechanism and compute the final output features as,

ℎ
(𝑔)
𝑖 = 𝜎(1

𝐾

𝐾∑︁
𝑘=1

∑︁
𝑗∈N𝑖

𝛼
𝑘
𝑖 𝑗W

𝑘
ℎ
(𝑔)
𝑗
), (5.15)

where 𝐾 is equal to the number of heads, and 𝛼𝑘𝑖 𝑗 ,W
𝑘 are the corresponding attention scores and

linear transformation by the 𝑘-th attention mechanism. During our experiments, we found out that
𝐾 = 2 was sufficient for our model.
For our task, we initialise each node embedding ℎ (𝑔) = {ℎ (𝑔)1 , . . . , ℎ

(𝑔)
𝑛 } using pretrained BERT

embeddings, and 𝑛 = |T ∪ R|. A GAT layer uses a parameter weight matrix, and self-attention, to

81

Chapter 5 Conversational Question Answering via Multi-Task Learning

produce a transformation of input representations ℎ
(𝑔)

= {ℎ (𝑔)1 , . . . , ℎ
(𝑔)
𝑛 }, where ℎ

(𝑔)
𝑖 ∈ R𝑑 as shown

below:

ℎ
(𝑔)

= 𝑔(ℎ (𝑔) ; \ (𝑔)), 6 (5.16)

where 𝑔(·) performs the GAT process described above and \ (𝑔) are the trainable parameters. We
model the task of predicting the correct type or predicate in the logical form as a classification task
over the nodes in graph G, given the current conversational context and decoder hidden state. For
each time step 𝑡 in the decoder, we calculate the probability distribution 𝑝 (𝑔)𝑡 over the graph nodes as:

𝑝
(𝑔)
𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(ℎ (𝑔)𝑇ℎ (𝑐)𝑡), (5.17)

where ℎ
(𝑔) ∈ R𝑑×𝑛 and ℎ (𝑐)𝑡 is a linear projection of the concatenation of the context representation

and the decoder hidden state, given as follows,

ℎ
(𝑐)
𝑡 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑾 (𝑔) [ℎ (𝑒𝑛𝑐)𝑐𝑡 𝑥 ; ℎ (𝑑𝑒𝑐)𝑡]), (5.18)

and𝑾 (𝑔) ∈ R𝑑×2𝑑 .

5.4.2 Multi-Task Learning

The framework consists of four trainable modules, the grammar-guided decoder, entity detection,
filtering and permutation, and GAT-based module for types and predicates. Every module consists of
a loss function that contributes to the overall performance of the framework, as shown in Section 5.4.5.
To account for multi-tasking, we perform a weighted average of all the single losses:

𝐿 = _1𝐿
𝑑𝑒𝑐 + _2𝐿

𝑒𝑑 + _3𝐿
𝑒 𝑓 + _4𝐿

𝑔
, (5.19)

where _1, _2, _3, _4 are the relative weights, which are learned during training by taking into account
the difference in magnitude between losses by incorporating the log standard deviation [147, 165].
𝐿
𝑑𝑒𝑐
, 𝐿
𝑒𝑑
, 𝐿
𝑒 𝑓
, and 𝐿𝑔 are the respective negative log-likelihood losses of the grammar-guided

decoder, entity detection, filtering and permutation, and GAT-based modules. These losses are defined
as follows:

𝐿
𝑑𝑒𝑐

= −
𝑚∑︁
𝑘=1

𝑙𝑜𝑔𝑝(𝑦 (𝑑𝑒𝑐)
𝑘
|𝑥),

𝐿
𝑒𝑑

= −
𝑛∑︁
𝑗=1
𝑙𝑜𝑔𝑝(𝑦 (𝑒𝑑)

𝑗
|𝑥),

𝐿
𝑒 𝑓

= −
𝑛∑︁
𝑖=1

𝑙𝑜𝑔𝑝(𝑦 (𝑒 𝑓)
𝑖
|𝑥),

𝐿
𝑔
= −

𝑚∑︁
𝑘=1

𝐼 (𝑦 (𝑑𝑒𝑐)
𝑘

∈{𝑡 𝑦 𝑝𝑒, 𝑝𝑟𝑒𝑑 }) 𝑙𝑜𝑔𝑝(𝑦
(𝑔)
𝑘
|𝑥),

(5.20)

6 For more details about GAT please refer to the appendix.

82

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks

where 𝑛 and 𝑚 are the length of the input utterance 𝑥 and the gold logical form, respectively.
𝑦
(𝑑𝑒𝑐)
𝑘

∈ 𝑉 (𝑑𝑒𝑐) are the gold labels for the decoder, 𝑦 (𝑒𝑑)
𝑗
∈ 𝑉 (𝑒𝑑) are the gold labels for entity

detection, 𝑦 (𝑒 𝑓)
𝑗
∈ 𝑉 (𝑒 𝑓) are the gold labels for filtering and permutation, and 𝑦 (𝑔)

𝑘
∈ {T ∪ R} are the

gold labels for the GAT-based module. The model benefits from multiple supervision signals from
each module, and this improves the performance in the given task.

5.4.3 Experimental Setup

In this subsection, we provide the setup for the experiments. We further describe the resources and
metrics we employ.

Datasets

We use the Complex Sequential Question Answering (CSQA) dataset7 [117]. CSQA was built on the
large-scale knowledge graph Wikidata. Wikidata consists of 21.2M triples with over 12.8M entities,
3,054 entity types, and 567 predicates. The CSQA dataset consists of around 200K dialogues where
each partition – train, valid, test contains 153K, 16K, 28K dialogues, respectively. The questions
involve complex reasoning to determine the correct answers.

Model Configurations

We follow a similar approach to our previous work (Section 5.3) to annotate the CSQA dataset with
gold logical forms. For the Transformer module, we use the configurations from [82]. Our model
dimension is 𝑑 = 300, with a total number of 𝐻 = 6 heads and 𝐿 = 2 layers. The inner feed-forward
linear layers have dimension 𝑑 𝑓 𝑓 = 600. Following the base Transformer parameters, we apply
residual dropout [167] to the summation of the embeddings and the positional encodings in both
encoder and decoder stacks with a rate of 0.1. The entity detection module has a dimension of 300.
The filtering and permutation module receives an input of dimension 600 where here a linear layer is
responsible to reduce it to 300 which is the framework dimension. For the GAT-based module, as
mentioned above, we use pre-trained BERT embeddings for type and predicate labels. Hence the input
dimension on this module is 30728. The GAT layer will produce representations with an embedding
size of 300. For the optimisation, we use the Noam optimiser proposed by [82], where authors use an
Adam optimiser [166] with several warmup steps for the learning rate.

Models for Comparison

We compare the LASAGNE framework with the last three baselines that have been evaluated on
the employed dataset. The first baseline is a HRED+KVmem model [117]. The second baseline is
D2A [12], which uses a semantic parsing approach based on a seq2seq model. Finally, the previous
state-of-the-art is MaSP [13], which is also a semantic parsing approach. Please note, the number of
parameters for LASAGNE were 14.7M compared to MaSP with 15M. Our base Transformer model can
be replaced with larger models like BERT with extremely large number of parameters for performance
gain, however, that was not the focus of this work.
7 https://amritasaha1812.github.io/CSQA
8 We concatenate the last four layers of BERT where each layer has a dimension of 768.

83

https://amritasaha1812.github.io/CSQA

Chapter 5 Conversational Question Answering via Multi-Task Learning

Evaluation Metrics

We use the same metrics as employed by the authors of the CSQA dataset [117] as well as the previous
baselines. The F1-score is used for questions that have an answer composed of a set of entities.
The Accuracy metric is used for the question types whose answer is a number or a boolean value
(YES/NO). We also provide an overall score for each evaluation metric and their corresponding
question categories.

5.4.4 Results

Table 5.7 summarises the results comparing the LASAGNE framework against the previous baselines.
LASAGNE outperforms the previous baselines weighted average on all question types (The row
“overall” in the Table 5.7). Furthermore, LASAGNE is a new SotA in 8 out of 10 question types, and
in some cases, the improvement is up to 31 percent.

Methods HRED-KVM D2A MaSP LASAGNE (ours) Δ

Train Param - - 15M 14.7M
Question Type #Examples F1 Score
Overall 206k 9.39% 66.70% 79.26% 82.91% +3.65%

Clarification 12k 16.35% 35.53% 80.79% 69.46% -11.33%
Comparative Reasoning (All) 15k 2.96% 48.85% 68.90% 69.77% +0.87%
Logical Reasoning (All) 22k 8.33% 67.31% 69.04% 89.83% +20.79%

Quantitative Reasoning (All) 9k 0.96% 56.41% 73.75% 86.67% +12.92%
Simple Question (Coreferenced) 55k 7.26% 57.69% 76.47% 79.06% +2.59%
Simple Question (Direct) 82k 13.64% 78.42% 85.18% 87.95% +2.77%
Simple Question (Ellipsis) 10k 9.95% 81.14% 83.73% 80.09% -3.64%

Question Type #Examples Accuracy
Overall 66k 14.95% 37.33% 45.56% 64.34% +18.78%

Verification (Boolean) 27k 21.04% 45.05% 60.63% 78.86% +18.23%
Quantitative Reasoning (Count) 24k 12.13% 40.94% 43.39% 55.18% +11.79%
Comparative Reasoning (Count) 15k 8.67% 17.78% 22.26% 53.34% +31.08%

Table 5.7: LASAGNE’s performance comparison on the CSQA dataset having 200K dialogues with 1.6M
turns and over 12.8M entities. LASAGNE achieves “overall” (weighted average on all question types) new
state-of-the-art for both the F1 score and the question type results’ accuracy metric.

What worked in our case? For question types that require more than two entities for reasoning,
such as Logical Reasoning (All) and Verification (Boolean), LASAGNE performs considerably better
(+20.79% and +18.23% respectively). This is mainly due to the proposed entity recognition module.
Furthermore, for question types that require two or more (entity) types and predicates, such as
Quantitative Reasoning (All), Quantitative Reasoning (Count) and Comparative Reasoning (Count)
LASAGNE also outperforms MaSP (+12.92%, +11.79% and +31.08% respectively). Here, the
improvement is due to the graph attention-based module, which is responsible for predicting the
relevant (entity) types and predicates. Another interesting result is that LASAGNE also performs
better in two out of three Simple Question involving one entity and one predicate categories. The
performance shows the robustness of LASAGNE.

84

5.4 Multi-Task Semantic Parsing with Transformer and Graph Attention Networks

What did not work in our case? LASAGNE noticeably under-performs on theClarification question
type, where MaSP retains the state-of-the-art. The main reason is the spurious logical forms during
the annotation process which has further impacted the Simple Questions (Ellipsis) performance.

5.4.5 Ablation Study

Effect of GAT and Multi-task Learning. Table 5.8 summarises the effectiveness of the GAT-based
module and the multi-task learning. We can observe the advantage of using them together in
LASAGNE. To show the effectiveness of GAT-based module, we replace it with two simple classifiers,
one for each predicate and type categories. We can observe that the performance drops significantly
for the question types that require multiple entity types and predicates (e.g. Quantitative Reasoning
(All), Quantitative Reasoning (Count) and Comparative Reasoning (Count)). When we exclude the
multi-task learning and train all the modules independently, there is a negative impact on all question
types. In LASAGNE, the filtering and permutation module, along with the GAT-based module, is
heavily dependent on the supervision signals received from the previous modules. Therefore it is
expected that without the multi-task learning, LASAGNE will underperform on all question types,
since each module has to re-learn inherited information.

Methods Ours w/o GATs w/o MTL
Question Type F1 Score
Clarification 66.94% 57.33% 59.43%
Comparative 69.77% 57.72% 66.41%
Logical 89.83% 78.52% 86.75%

Quantitative 86.67% 75.26% 82.18%
Simple (Coref) 79.06% 76.46% 77.23%
Simple (Direct) 87.95% 83.59% 85.39%
Simple (Ellipsis) 80.09% 77.19% 78.47%
Question Type Accuracy
Verification 78.86% 63.38% 75.24%
Quantitative 55.18% 40.87% 46.27%
Comparative 53.34% 41.73% 45.90%

Table 5.8: The effectiveness of the GAT and the multi-task learning. The first column contains the results of
the LASAGNE framework, where all the modules are trained simultaneously. The second and third columns
selectively remove the GAT and the multi-task learning from LASAGNE.

5.4.6 Task Analysis

Table 5.9 illustrates the task accuracy of LASAGNE. The Entity Detection task has the lowest accuracy
(86.75%). The main reason here is the errors in the entity type prediction. On the other hand, for all
other tasks, we have accuracy above 90%.

Effect of Filtering and Permutation. For justifying the effectiveness and superior performance of
LASAGNE’s filtering and permutation module, we compare the overall performance of the entity

85

Chapter 5 Conversational Question Answering via Multi-Task Learning

Tasks Accuracy
Entity Detection 86.75%

Filtering & Permutation 97.49%
Grammar-Guided Decoder for Logical Forms 98.61%
GAT-Based Module for Type/Predicate 92.28%

Table 5.9: Tasks accuracy of the LASAGNE framework.

Model Entity Recognition Accuracy
MaSP 79.8%

LASAGNE 92.1%

Table 5.10: Comparing MaSP [13] and LASAGNE for entity recognition performance.

recognition module to the corresponding module from MaSP. Please note, entity detection modules in
both frameworks adopt a similar approach as defined in subsection 5.4.1. In Table 5.10 we can see
that the MaSP entity recognition module provides an overall accuracy of 79.8% on test data, while our
module outperforms it with an accuracy of 92.1%. The main reason for the under-performance of
MaSP is that it uses only token embeddings without any entity information. In contrast, our approach
avoids re-learning entity information in the question context and relies on the entity detection module’s
information.

5.4.7 Error Analysis

For the error analysis, we randomly sampled 100 incorrect predictions. We detail the reasons for two
types of errors observed in the analysis:

Entity Ambiguity. Even though our entity detection module assigns (entity) types to each predicted
span, entity ambiguity remains the biggest challenge for our framework. For instance, for the question,
“Who is associated with Jeff Smith ?” LASAGNE entity detection module correctly identifies “Jeff
Smith” as an entity surface form and correctly assigns the (entity) type “common name”. However,
the Wikidata knowledge graph contains more than ten entities with exactly the same label and type.
Our entity linking module has difficulties in such cases. Wikidata entity linking is a newly emerging
research domain that has its specific challenges such as entities sharing the same labels, user-created
non-standard entity labels and multi-word entity labels (up to 62 words) [189]. Additional entity
contexts, such as entity descriptions and other KG contexts, could help resolve the Wikidata entity
ambiguity [40].

Spurious Logical Form. For specific question categories, we could not identify gold actions for all
utterances. Therefore spurious logical form is a standard error that affects LASAGNE. Specifically,
we have spurious logical forms for categories such as “Comparative, Quantitative, and Clarification”
but still can achieve SotA in the comparative and quantitative categories.

86

5.5 Summary

5.4.8 Synopsis

In this work, we provide a Transformer-based framework to handle the conversational question
answering task in a multi-task semantic parsing manner. At the same time, we propose a named entity
recognition module for entity detection, filtering, and permutation. Furthermore, we also introduce a
graph attention-based module, which exploits correlations between (entity) types and predicates for
identifying the gold ones for each particular context. We empirically show that our model achieves the
best results for numerous question types and overall. Our ablation study demonstrates the effectiveness
of multi-task learning and our graph-based module. We also present an error analysis on a random
sample of “wrong examples” to discuss our model’s weaknesses.

5.5 Summary

In this chapter, we proposed two approaches, CARTON and LASAGNE, for conversational question
answering over knowledge graphs. They both handle the task vie multi-task neural semantic parsing,
where they aim to generate a logical form and execute it over a KG to retrieve answers. They employ a
Transformer model for generating the ground logical form and operate with similar grammars.
The first one (CARTON) uses stacked pointer networks to identify relevant KG information and

fill the logical form. The stacked pointer networks consist of three-pointer networks where each one
is responsible for each semantic category in the KG (i.e., entities, relations, and types). However,
CARTON requires the list of mentioned KG entities in the conversation to operate since the model
will only handle identifying which of those entities are relevant and where should be placed in the
logical form. Therefore, CARTON does not perform entity detection and entity linking tasks. The
model’s novelty is found in the semantic grammar, the stacked pointer networks, and the sequential
order of the modules in the overall architecture.
The second approach (LASAGNE) is architecturally more complex than CARTON (also a higher

number of training parameters). However, it is complete since it performs all the required tasks to
answer conversational questions without relying on external information (e.g., the list of KG entities).
This model fills the logical forms using two novel sub-modules: i) an entity recognition module that,
given the input conversation, detects all the entities and links them with the underlying KG. Next,
it filters the entities to identify only the relevant ones required for the logical form. In the end, it
permutes the filtered list to match the order of the logical form positions (avoiding misplacing entities).
ii) A graph attention-based module that exploits the correlations between (entity) types and predicates
due to its message-passing ability between the nodes. Motivated from the idea that all selected (entity)
types and relations should be connected in the KG.
To conclude, both approaches are novel in their way and achieve state-of-the-art results in one of

the most challenging and competitive conversational QA resources.

87

CHAPTER 6

Conversational Question Answering with Answer
Verbalization

In the previous chapter (Chapter 5), we developed multi-task neural semantic parsing systems for
conversational question answering. We introduced a new semantic grammar and leveraged state-of-the-
art deep neural architectures to incorporate relevant KG information for addressing and overcoming
various weaknesses identified in baseline approaches. For the approaches in the previous chapter, we
employed conversational context only from the last interaction with the user. However, the entire dialog
history may be required to answer conversational questions since the user might refer to information
from any previous interaction. Therefore, conversational context plays a vital role in enhancing
ConvQA performance. Here, we aim to identify the available context and effectively incorporate it to
improve the performance. On the grounds of this, verbalized answers can provide context that might
be helpful for particular conversational scenarios. However, it is challenging to incorporate the answer
verbalization task into the ConvQA task since we have to determine how to establish a connection
between the sub-tasks for sharing training signals and controlling the learning process for optimal
performance.
In this chapter, we aim to go a step further and incorporate answer verbalization in the ConvQA

task. More precisely, we address two relatively unexplored tasks—first, the ranking-based ConvQA
task for answering conversational questions posed against a knowledge graph. Second, the answer
verbalization task for generating fluent answer responses while maintaining grammatical correctness.
We believe that answer verbalization provides fluent and unambiguous responses to users and supplies
additional textual context for improving the ConvQA task performance. For jointly learning the tasks,
we utilize multi-task learning.
We address the following research question in this chapter:

RQ4: How can answer verbalization be leveraged to improve the performance of conversational
question answering?

Contributions of this chapter are summarized as follows:
• We propose a ConvQA over KGs approach that jointly models the available conversational
context (full dialog history with verbalized answers) and KG paths in a common space for
learning joint embedding representations to improve KG path ranking.

89

Chapter 6 Conversational Question Answering with Answer Verbalization

• We extend the existing ConvQA datasets [16, 17] with verbalized answers.

• We systematically study the impact of incorporating additional context on the ConvQA
performance. Results on standard datasets show a considerable improvement over previous
baselines. Our evaluation results establish a new baseline, which we believe will drive future
research in a new way of developing such frameworks.

This chapter is based on the following publication:

• Endri Kacupaj, Kuldeep Singh, Maria Maleshkova, and Jens Lehmann. “Contrastive Rep-
resentation Learning for Conversational Question Answering over Knowledge Graphs.” In
Proceedings of the 31st ACM International Conference on Information & Knowledge Manage-
ment, pp. 925-934. 2022. DOI: 10.1145/3511808.3557267

The structure of the chapter is as follows: Section 6.1 introduces the work. Section 6.2 presents the
related work. Section 6.3 provides the concepts, notations and formulates the task. Section 6.4 presents
the proposed approach. Section 6.5 describes the multi-task learning process. Section 6.6 shows
how we extended existing ConvQA datasets with answer verbalization. Section 6.7 illustrates the
experimental setup, while Section 6.8 the experiments results. Section 6.9 provides a detailed ablation
study. A task analysis is on Section 6.10. An error analysis for ConvQA and answer verbalization
tasks is on Section 6.11. We summarize in Section 6.12.

6.1 Introduction

For the KGQA setup, the existing scientific-literature can be broadly classified into two categories
[145, 190, 191]: i) semantic parsing approaches, where the goal is to map questions into a logical
form, which is then executed over the knowledge graph to extract the correct answers. ii) Information
retrieval approaches aim to retrieve a question-specific graph and apply ranking algorithms to select
entities for top positions. The two approaches follow either a parse-then execute paradigm or a
retrieval-and-rank paradigm. For ConvQA over KGs, there has been significant progress on semantic
parsing-based approaches [13–15]. However, collecting training data for semantic parsing approaches
is challenging, and time-consuming [5] since each question must be associated with a gold logical
form. While for the information-retrieval/ranking-based approaches, only the correct answers (e.g.,
entities) are required for each question.
Existing ranking-based ConvQA techniques are restricted to only generating or producing answers

without verbalizing them in natural language [190]. The lack of verbalization makes the interaction
with the user unnatural and often leaves the users with ambiguity [192]. For example, for the first
question in Figure 6.1, “What countries did the main character travel in the book Eat, Pray, Love?”
existing ConvQA systems [13–17] will respond with the countries as an answer with no further
explanation. In such cases, the user might need to refer to external data sources to verify the answer.
A verbalized answer, as common in task-oriented dialogues [193], would allow the user to confirm
that the answer is related to the context since it also includes additional characteristics that indicate
how it was determined. Furthermore, in contrast to task-oriented dialog systems [193, 194], existing
ranking-based ConvQA approaches [16, 17] do not consider the entire dialog history while seeking an
answer of a given question in the specific turn of the dialog for a particular domain (cf. Figure 6.1).

90

https://dl.acm.org/doi/10.1145/3511808.3557267

6.1 Introduction

Figure 6.1: Motivating example illustrating a sample conversation [16]. For conversational question answering
over KGs, availability of entire dialog history, domain information, and verbalized answers may act as sources of
context in determining the ranking of KG paths while retrieving correct answers. Our proposed approach models
conversational context and KG paths in a common space by jointly learning the embeddings for homogeneous
representation.

Hence, we hypothesize that incorporating the available conversational context, i.e. (1) the entire
dialog history with (2) verbalized answers and (3) domain information, may positively impact the
overall performance of a ConvQA approach while retrieving answers from the underlying KG.
Combination of these three sources of context has not been exploited in the literature to improve
ConvQA. Our rationale for this is: 1) Current ConvQA approaches only incorporate context from
the previous turn without verbalized answers [15–17]. 2) Considering conversational context plays
a vital role in human understanding [195] and question answering [196], verbalized answers in
the conversational history provide more textual context than the simple retrieved answers. This
supplementary knowledge may play a crucial role in learning more efficient joint embeddings of
conversation context and KG-paths to impact the final ranking results. 3) Domain information will
filter less relevant KG paths for a given conversation. It is due to the fact that some KG relations are
more likely to occur in particular domains.

In this context, we propose PRALINE (Path Ranking for conversAtionaL questIon aNswEring),
the first ConvQA over KGs approach that tackles the QA task through a path ranking approach and
at the same time fluently verbalizes answer responses. PRALINE consists of four modules trained
simultaneously. The first module encodes the input conversation, while the next two modules jointly
learn to embed conversations and KG paths in a common space, which is semantically regularized by
adding the domain identification task. The last module is responsible for verbalizing the retrieved
answers to provide additional textual context for the KG-path ranking. To facilitate reproducibility and
reuse, our framework implementation, and the extended dataset with verbalized answers are publicly
available1.

1 https://github.com/endrikacupaj/PRALINE

91

https://github.com/endrikacupaj/PRALINE

Chapter 6 Conversational Question Answering with Answer Verbalization

6.2 Related Work

Considering KGQA is a widely studied research topic, we stick to the work closely related to our
proposed approach (detailed surveys are in [4, 190]).

Single-shot KGQA

Several KGQA works handle the task as a semantic graph generation and re-ranking. Bast et al. [197]
compare a set of manually defined query templates against the natural language question and generate
a set of query graph candidates by enriching the templates with potential relations. Yih et al. [198]
creates grounded query graph candidates using a staged heuristic search algorithm and employs a
neural ranking model to score and find the optimal semantic graph. Yu et al. [199] use a hierarchical
representation of KG relations in a neural query graph ranking model. Authors compare the results
against a local sub-sequence alignment model with cross attention [200]. Maheshwari et al. [201]
conduct an empirical investigation of neural query graph ranking approaches by experimenting with
six different ranking models. The proposed approach is a self-attention-based slot matching model
that exploits the inherent structure of query graphs.

ConvQA over KGs

Most recent works on ConvQA [13–15] employ the semantic parsing approach to answer conversational
questions. The first work in this area [117] propose a hybrid model of the HRED model [179] and
the key-value memory network model [180]. The model consists of three components; where the
first one is the hierarchical encoder, which computes the utterance representation. The next module
is a higher-level encoder that computes the context representation. The second component is the
Key-Value Memory Network that stores each candidate tuples as a key-value pair. The key contains
the concatenated embedding of the relation and the subject. The last component is the decoder used to
create an end-to-end solution and produce multiple types of answers. Christmann et al. [16] proposes
an approach that answers conversational questions over a knowledge graph (KG) by maintaining
conversation context using entities and predicates seen so far and automatically inferring missing or
ambiguous pieces for follow-up questions. The core of this method is a graph exploration algorithm
that judiciously expands a frontier to find and rank candidate answers for the given question. Kaiser
et al. [17] present a reinforcement learning model that can learn from a conversational stream of
questions and reformulations. Authors model the answering process as multiple agents walking in
parallel on the KG, where the walks are determined by actions sampled using a policy network. The
policy network takes the question and the conversational context as inputs and is trained via noisy
rewards obtained from the reformulation likelihood. Our work lies closely with [16, 17]. However,
these approaches ignore the full dialog history and do not consider verbalized answers as the contextual
sources. Our focus is to explore the impact of full conversational context on KG path ranking to
retrieve final answers.

92

6.3 Concepts, Notation and Problem Formulation

6.3 Concepts, Notation and Problem Formulation

We define a KG as a tupleK = (E,R,T +) where E denotes the set of entities (vertices), R is the set of
relations (edges), and T + ⊆ E × R × E is a set of all triples. A triple 𝜏 = (𝑒ℎ, 𝑟ℎ,𝑡 , 𝑒𝑡) ∈ T

+ indicates
that, for the relation 𝑟ℎ,𝑡 ∈ R, 𝑒ℎ is the head entity (origin of the relation) while 𝑒𝑡 is the tail entity. For
a KG, a conversation C with T turns is composed from a set of a sequence of questions Q = {𝑞𝑡 } and
corresponding answersA = {𝑎𝑡 }, where 𝑡 = 0, 1, ...,T, such that C = ⟨(𝑞0

, 𝑎
0), (𝑞1

, 𝑎
1), ..., (𝑞T

, 𝑎
T)⟩.

Furthermore, each question 𝑞𝑡 is a sequence of tokens 𝑞𝑡𝑖 , such that ⟨𝑞
𝑡
1, ..., 𝑞

𝑡

|𝑞𝑡 |⟩, where |𝑞
𝑡 | is the

number of tokens in 𝑞𝑡 . For each question 𝑞𝑡 we have a conversation history C𝑡 , where for question
𝑞

0 the conversation history is ∅. We define as 𝑎𝑡 the answer for each question 𝑞𝑡 which is a set of
entities or literals in K. We define verbalized answer as 𝑣𝑡 , which is a sequence of tokens 𝑣𝑡𝑖 , where
𝑎
𝑡 ∈ 𝑣𝑡 . Similar to question 𝑞𝑡 we have ⟨𝑣𝑡1, ..., 𝑣

𝑡

|𝑣𝑡 |⟩, where |𝑣
𝑡 | is the number of tokens in 𝑣𝑡 . With

verbalized answers the conversation C can be illustrated as C = ⟨(𝑞0
, 𝑣

0), (𝑞1
, 𝑣

1), ..., (𝑞T
, 𝑣

T)⟩. A
notation overview is in Table 6.1.

Notation Concept

K, E,R,T + Knowledge Graph, entities, relations, triples
C, 𝑡 Conversation, turn
𝑞
𝑡
, 𝑎
𝑡 Question and answer at turn t

𝑣
𝑡 Verbalized answer at turn t
𝜏
𝑡 Domain information at turn t
C𝑡 Conversation history at turn t
E𝑐,P𝑐 Context entities, context KG paths
D𝑡+,D𝑡− Set of positive and negative context paths for 𝑞𝑡

𝑠
𝑡 Input sequence (contains C𝑡 and 𝑞𝑡)
𝑑 Space dimension
ℎ
(·) Contextual embeddings
\
(·) Trainable parameters

𝑾 (·) Weight matrix for linear layer
𝜔
(·) Probability distribution over vocabulary

𝜙
𝑐
, 𝜙

𝑝 Joint embeddings for conversation and path

Table 6.1: Notation for concepts in PRALINE.

Context Entities

The set of context entities E𝑐 ⊆ E contains entities mentioned in question 𝑞
𝑡 , answer 𝑎𝑡 (or verbalized

answer 𝑣𝑡) and conversation C𝑡 .

Context Paths

Context KG paths P𝑐 are extracted given the context entities E𝑐, where P𝑐 ⊆ {E𝑐 × R × E} + {E𝑐 ×
R × E × R × E} + {E𝑐 × R × E × R × E × R × E}. This means that extracted KG paths P𝑐 will be
either 1-hop, 2-hop or 3-hop paths where all of them start with context entities E𝑐. For a question 𝑞

𝑡 ,
we define D𝑡+ ⊆ P𝑡𝑐 and D

𝑡− ⊆ P𝑡𝑐 the set of positive/correct and negative/incorrect context paths,
respectively. Where, D𝑡+ ∪ D𝑡− = P𝑡𝑐.

93

Chapter 6 Conversational Question Answering with Answer Verbalization

Answer Verbalization

For the answer verbalization task, given the question 𝑞𝑡 , the conversation history C𝑡 , and the answer
𝑎
𝑡 , we aim to generate a natural language sentence 𝑣𝑡 , with the requirements that it is grammatically
sound and correctly represents all the information in the question 𝑞𝑡 , conversation C𝑡 , and answer 𝑎𝑡 .
Formally, let 𝑋,𝑌 denote the source-target pair. 𝑋 contains the set of questions Q, conversations C,
answers A, and 𝑌 corresponds to set of verbalized answers 𝑉 . The goal of the answer verbalization is
to learn a distribution 𝑝(𝑌 |𝑋) to generate natural language text describing the answer automatically.

Problem Formulation

For the ConvQA task, given a knowledge graph K, a natural language question 𝑞𝑡 , the conversation
history C𝑡 , and the set of context entities E𝑡𝑐, we first to extract all the potential KG paths P

𝑡
𝑐 correlated

to context entities. We formulate the task as a ranking problem where we score and rank the KG paths
P𝑡𝑐 in order to select the top context paths 𝑝

𝑡
𝑐 ∈ P

𝑡
𝑐 that leads us to entities or literals that belong to the

gold answer 𝑎𝑡 , which is also the answer of the question 𝑞𝑡 .

6.4 Path Ranking for Conversational Question Answering

In a conversation, the input data consists of questions 𝑞𝑡 and their answers 𝑎𝑡 , extracted from
the knowledge graph. We propose a path ranking based approach implemented in the PRALINE
framework. In particular, it ranks (KG) context paths P𝑡𝑐 depending on the conversation context.
Figure 6.2 shows the architecture of PRALINE.

6.4.1 Encoder

As the first step of our framework, we utilize a BART [93] Transformer-based encoder [82] in order to
encode both the conversation history C𝑡 and current question 𝑞𝑡 at turn 𝑡. The conversation history
also contains verbalized answers from previous turns (e.g. 𝑣𝑡−1

, 𝑣
𝑡−2
, ...). Here we concatenate

the conversation history C𝑡 and current question 𝑞𝑡 using a helper token [𝑆𝐸𝑃] to create the input
sequence 𝑠𝑡 = C𝑡 ⊕ [𝑆𝐸𝑃] ⊕ 𝑞

𝑡 , where ⊕ is the operation of sequence concatenation.2 Next, we
tokenize the input sequence 𝑠𝑡 into |𝑠𝑡 | tokens {𝑠𝑡1, ..., 𝑠

𝑡

|𝑠𝑡 |}, where |𝑠
𝑡 | = |C𝑡 | + |𝑞𝑡 | + 1, using a

byte-level Byte-Pair-Encoding tokenizer [202]. Then, we forward the tokenized sequence into the
encoder and it outputs the contextual embeddings ℎ (𝑒𝑛𝑐) = {ℎ (𝑒𝑛𝑐)1 , . . . , ℎ

(𝑒𝑛𝑐)
𝑛 }, where ℎ (𝑒𝑛𝑐)

𝑖
∈ R𝑑 ,

𝑑 is the space dimension, 𝑖 ∈ {1, ..., 𝑛} and 𝑛 = |𝑠𝑡 |. We define the encoder as:

ℎ
(𝑒𝑛𝑐)

= 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥; \ (𝑒𝑛𝑐)), (6.1)

where \ (𝑒𝑛𝑐) are the encoder’s trainable parameters.

2 With the same [𝑆𝐸𝑃] token, the questions and verbalized answers are separated inside the conversation history.

94

6.4 Path Ranking for Conversational Question Answering

Figure 6.2: PRALINE (Path Ranking for conversAtionaL questIon aNswEring) architecture. It consists of four
modules: 1) A Transformer-based encoder that encodes the input question 𝑞𝑡 and conversational history 𝐶𝑡

to produce the encoder contextual embeddings ℎ (𝑒𝑛𝑐) . 2) A domain identification pointer-based network to
identify the domain of the input conversation given the contextual embeddings ℎ (𝑒𝑛𝑐) . 3) A ranking module
that learns a joint embedding space 𝜙𝑐, 𝜙𝑝 for the conversation (contextual embeddings ℎ (𝑒𝑛𝑐) concatenated
with selected domain KG embeddings ℎ (𝑑𝑚)) and the context path 𝑃𝑡𝑐. 4) A GPT-based verbalization decoder
that generates fluent answer responses while maintaining grammatical correctness.

6.4.2 Domain Identification Pointer

The second step of our framework is a domain identification pointer network. This module is
responsible for identifying the KG domain of the input sequence 𝑠𝑡 and employs a pointer architecture
inspired from [184]. In general, pointer networks are robust to handle different vocabulary sizes for
each time step [184] which was our rationale for their integration in PRALINE. Another advantage of
using pointer networks compared to simple classifiers is that the vocabulary of the domains can be
updated during evaluation or inference.
We define the vocabulary as 𝑉 (𝑑𝑚) = {𝜏1, . . . , 𝜏𝑛𝑑𝑚}, where 𝑛𝑑𝑚 is the total number of domains

in the KG. To compute the pointer scores for each domain candidate, we use the encoder contextual
embeddings ℎ (𝑒𝑛𝑐) . We model the pointer networks with a feed-forward linear network followed by a
softmax layer. We can define the domain pointer as:

𝜔
(𝑑𝑚)
𝑖

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑑𝑚)1 𝑢
(𝑑𝑚)
𝑡), (6.2)

where 𝜔 (𝑑𝑚)
𝑖

∈ R |𝑉
(𝑑𝑚) | is the probability distribution over the domain vocabulary. The weight matrix

𝑾 (𝑑𝑚)1 ∈ R1×𝑑𝑘𝑔 . Also, 𝑢 (𝑑𝑚)𝑡 is a joint representation that includes the domain embeddings and the
contextual embeddings, computed as:

𝑢
(𝑑𝑚)
𝑡 = 𝑡𝑎𝑛ℎ(𝑾 (𝑑𝑚)2 𝜏 + ℎ (𝑒𝑛𝑐)), (6.3)

where the weight matrix𝑾 (𝑑𝑚)2 ∈ R𝑑×𝑑𝑘𝑔 . We denote with 𝑑𝑘𝑔 the dimension used for domain (KG)

95

Chapter 6 Conversational Question Answering with Answer Verbalization

embeddings.3 𝜏 ∈ R𝑑𝑘𝑔×|𝑉
(𝑑𝑚) | are the domain embeddings. 𝑡𝑎𝑛ℎ is the non-linear layer. Here, the

contextual embeddings ℎ (𝑒𝑛𝑐) is expanded by the size of the domain vocabulary |𝑉 (𝑑𝑚) | in order to
match the dimensions.

6.4.3 KG-path Ranking

For our approach, we identify context entities E𝑐 and extract potential candidates for KG paths similar
to [17] and is not part of our overall architecture. Hence, as our contribution in this module is to
rank these KG paths effectively. We propose a ranking module by employing two identical sequential
networks in order to generate joint embeddings for a conversation (input sequence 𝑠𝑡) and a context
path 𝑝𝑡𝑐 at turn 𝑡. Each sequential network contains two linear layers separated with a 𝑅𝑒𝐿𝑈 activation
function, and appended with a 𝑡𝑎𝑛ℎ non-linear layer. Here, as input we consider the concatenation
of the encoder contextual embeddings ℎ (𝑒𝑛𝑐) together with the domain selected from the domain
identification pointer (cf. Equation 6.2). In particular we employ BERT [92] embeddings to embed
the selected domain and generate the representation ℎ (𝑑𝑚) . In this way we incorporate also the
domain information when we create the joint embeddings. For a conversation, the encoder contextual
embeddings are ℎ (𝑒𝑛𝑐) where ℎ (𝑒𝑛𝑐) ∈ R |𝑠

𝑡 |×𝑑 . The contextual embeddings contain representations
of dimension space 𝑑 for each token of the input sequence 𝑠𝑡 . While, for the domain embedding
ℎ
(𝑑𝑚) and for each context path embedding ℎ (𝑝) (both initialized using BERT embeddings), we have
ℎ
(𝑑𝑚) ∈ R𝑑𝑘𝑔 and ℎ (𝑝) ∈ R𝑑𝑘𝑔 , respectively (implementation details explained in 6.7). In order to
match the space dimensions R |𝑠

𝑡 |×𝑑 and R𝑑 , we apply a 𝑚𝑎𝑥 pooling layer to the encoder contextual
embeddings ℎ (𝑒𝑛𝑐) before forwarding it to the sequential network of the module. We define this as:

ℎ
(𝑒𝑛𝑐)
𝑚𝑎𝑥 = 𝑚𝑎𝑥0ℎ

(𝑒𝑛𝑐)
, (6.4)

where 𝑚𝑎𝑥0 indicates the max operation performed in dimension 𝑧𝑒𝑟𝑜, and ℎ
(𝑒𝑛𝑐)
𝑚𝑎𝑥 ∈ R

𝑑 . Overall, we
define the module sequential networks as:

𝜙
𝑐
= 𝑡𝑎𝑛ℎ(𝑾 (𝑐𝑟𝑘)2 𝑅𝑒𝐿𝑈 (𝑾 (𝑐𝑟𝑘)1 [ℎ (𝑒𝑛𝑐)𝑚𝑎𝑥 ; ℎ (𝑑𝑚)])),

𝜙
𝑝
= 𝑡𝑎𝑛ℎ(𝑾 (𝑝𝑟𝑘)2 𝑅𝑒𝐿𝑈 (𝑾 (𝑝𝑟𝑘)1 ℎ

(𝑝))),
(6.5)

where𝑾 (𝑐𝑟𝑘)1 ∈ R𝑑×2𝑑 ,𝑾 (𝑝𝑟𝑘)1 ∈ R𝑑×𝑑 are the weight matrices for the first linear layers. 𝑾 (𝑐𝑟𝑘)2 ∈
R𝑑×𝑑 ,𝑾 (𝑝𝑟𝑘)2 ∈ R𝑑×𝑑 are the weight matrices for the second linear layers. 𝜙𝑐 ∈ R𝑑 and 𝜙𝑝 ∈ R𝑑 are
the final joint embeddings on space dimension 𝑑 of the conversation and context path, respectively.
During training, PRALINE aims to maximize the cosine similarity between the conversation 𝜙𝑐 and
gold context paths 𝜙𝑝 ∈ D𝑡+ and minimize it for incorrect paths (D𝑡−). On inference, PRALINE
jointly embeds the conversation with all context paths and ranks them based on cosine similarity.

6.4.4 Verbalization Decoder

The last module of PRALINE generates the verbalized answer 𝑣𝑡 using the encoder contextual
embeddings ℎ (𝑒𝑛𝑐) of the input sequence 𝑠𝑡 . Here, we utilize a BART [93] GPT-based [203] decoder

3 For our experiments we employ 𝑑𝑘𝑔 = 𝑑

96

6.5 Multi-Task Learning

for generating the final natural language answer. The decoder vocabulary is defined as:

𝑉
(𝑑𝑒𝑐)

= 𝑉
(𝑣) ∪ { [𝐴𝑁𝑆] }, (6.6)

where 𝑉 (𝑣) is the vocabulary with all the distinct tokens from the conversations. We also employ an
additional helper token to to specify the position of the answer 𝑎𝑡 on the final verbalized sequence. A
linear layer and a softmax follow the decoder in order to calculate each token’s probability score in the
vocabulary. We define the decoder stack output as follows:

ℎ
(𝑑𝑒𝑐)

= 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑒𝑛𝑐) ; \ (𝑑𝑒𝑐)),
𝜔
(𝑑𝑒𝑐)
𝑖

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑾 (𝑑𝑒𝑐)ℎ (𝑑𝑒𝑐)
𝑖
),

(6.7)

where ℎ (𝑑𝑒𝑐)
𝑖

is the hidden state in time step 𝑖, \ (𝑑𝑒𝑐) are the decoder trainable parameters,𝑾 (𝑑𝑒𝑐) ∈
R |𝑉

(𝑑𝑒𝑐) |×𝑑 are the linear layer weights, and 𝜔 (𝑑𝑒𝑐)
𝑖

∈ R |𝑉
(𝑑𝑒𝑐) | is the probability distribution over the

decoder vocabulary in time step 𝑖. |𝑉 (𝑑𝑒𝑐) | denotes the decoder’s vocabulary size.

6.5 Multi-Task Learning

PRALINE consists of three modules for which a loss function is applied. The encoder is trained
based on the signal received from the domain identification pointer, ranking module, and verbalization
decoder. For training simultaneously all the modules/tasks, we perform a weighted average of all the
single losses as follows:

𝐿 = _1𝐿
𝑑𝑚 + _2𝐿

𝑟𝑘 + _3𝐿
𝑑𝑒𝑐
, (6.8)

where _1, _2, _3 are the relative weights learned during training to consider the difference in magnitude
between losses. 𝐿𝑑𝑚 and 𝐿𝑑𝑒𝑐 are the respective negative log-likelihood losses of the domain
identification pointer and verbalization decoder modules. While 𝐿𝑟𝑘 is the cosine embedding loss for
the ranking module. These losses are defined as:

𝐿
𝑑𝑚

= −
𝑚∑︁
𝑗=1
𝑙𝑜𝑔𝑝(𝑦 (𝑑𝑚)

𝑗
|𝑥),

𝐿
𝑟𝑘

=

{
1 − 𝑐𝑜𝑠(𝜙𝑐, 𝜙𝑝), if 𝑦 (𝑟𝑘) = 1
𝑚𝑎𝑥(0, 𝑐𝑜𝑠(𝜙𝑐, 𝜙𝑝) − 𝛼), if 𝑦 (𝑟𝑘) = −1

,

𝐿
𝑑𝑒𝑐

= −
𝑛∑︁
𝑙=1

𝑙𝑜𝑔𝑝(𝑦 (𝑑𝑒𝑐)
𝑙
|𝑥),

(6.9)

where 𝑛 is the length of the gold answer verbalization. 𝑦 (𝑑𝑚)
𝑗
∈ 𝑉 (𝑑𝑚) are the gold labels for the

domain identification pointer and 𝑦 (𝑑𝑒𝑐)
𝑙

∈ 𝑉 (𝑑𝑒𝑐) are the gold labels for the verbalization decoder.
𝑦
(𝑟𝑘) ∈ {1,−1} are the gold labels for the ranking module. 𝑐𝑜𝑠(·) is the normalized cosine similarity
and 𝛼 is the margin. The model benefits from each module’s supervision signals, which improves the
performance in the given task (cf. Section 6.8). Algorithm 1 illustrates high-level pseudo-code for
PRALINE’s learning process.

97

Chapter 6 Conversational Question Answering with Answer Verbalization

Algorithmus 1 : Learning Algorithm of PRALINE
Input : Training set 𝑆𝑡𝑟𝑎𝑖𝑛 = {(𝑞

𝑡
, 𝐶

𝑡
, 𝑣
𝑡
, 𝜏
𝑡
,D𝑡+𝑐 ,D

𝑡−
𝑐)}

1 for 𝑆𝑏𝑎𝑡𝑐ℎ ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 do
2 𝑞𝑏 ← 𝑔𝑒𝑡𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠(𝑆𝑏𝑎𝑡𝑐ℎ)
3 𝐶𝑏 ← 𝑔𝑒𝑡𝐶𝑜𝑛𝑣𝐻𝑖𝑠𝑡𝑜𝑟𝑦(𝑆𝑏𝑎𝑡𝑐ℎ)
4 𝑣𝑏 ← 𝑔𝑒𝑡𝑉𝑒𝑟𝑏𝑎𝑙𝑖𝑧𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟𝑠(𝑆𝑏𝑎𝑡𝑐ℎ)
5 𝜏𝑏 ← 𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑠(𝑆𝑏𝑎𝑡𝑐ℎ)
6 D+ ← 𝑔𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠(𝑆𝑏𝑎𝑡𝑐ℎ)
7 D− ← 𝑔𝑒𝑡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠(𝑆𝑏𝑎𝑡𝑐ℎ)
8 𝑦

(𝑟𝑘)
𝑏
: 𝑦 (𝑟𝑘)

𝑏
∈ R{1,−1}×𝑏

9 for 𝑦 (𝑟𝑘)
𝑖
∈ 𝑦 (𝑟𝑘)

𝑏
do

10 if 𝑦 (𝑟𝑘)
𝑖

= 1 then
11 𝑝𝑖 ∼ 𝑠𝑎𝑚𝑝𝑙𝑒𝑃𝑎𝑡ℎ(D

+)
12 else
13 𝑝𝑖 ∼ 𝑠𝑎𝑚𝑝𝑙𝑒𝑃𝑎𝑡ℎ(D

−)
14 end
15 end
16 begin PRALINE forward
17 ℎ

(𝑒𝑛𝑐)
𝑏

← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑞𝑏, 𝐶𝑏)
18 𝜔

(𝑑𝑚)
𝑏
← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑑𝑜𝑚𝑎𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑒𝑟 (ℎ (𝑒𝑛𝑐)

𝑏
)

19 ℎ
(𝑝)
𝑏
← 𝑒𝑚𝑏𝑒𝑑𝑃𝑎𝑡ℎ𝑠(𝑝𝑏)

20 ℎ
(𝑑𝑚)
𝑏
← 𝑒𝑚𝑏𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛𝑠(𝜏𝑏)

21 𝜙
𝑐
𝑏, 𝜙

𝑝

𝑏
← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑟𝑎𝑛𝑘𝑖𝑛𝑔(ℎ (𝑒𝑛𝑐)

𝑏
, ℎ
(𝑑𝑚)
𝑏

, ℎ
(𝑝)
𝑏
)

22 𝜔
(𝑑𝑒𝑐)
𝑏

← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑒𝑛𝑐)
𝑏

, 𝑣𝑏)
23 end
24 𝐿

𝑑𝑚
𝑏 = 1

𝑏

∑𝑏
𝑖=1 −

∑𝑚
𝑗=1 𝑙𝑜𝑔𝑝(𝑦

(𝑑𝑚)
𝑗
|𝜔 (𝑑𝑚)
𝑖
)

25 𝐿
𝑟𝑘
𝑏 = 1

𝑏

∑𝑏
𝑖=1

1 − 𝑐𝑜𝑠(𝜙𝑐𝑖 , 𝜙

𝑝

𝑖
), if 𝑦 (𝑟𝑘)

𝑖
= 1

𝑚𝑎𝑥(0, 𝑐𝑜𝑠(𝜙𝑐𝑖 , 𝜙
𝑝

𝑖
) − 𝛼), if 𝑦 (𝑟𝑘)

𝑖
= −1

26 𝐿
𝑑𝑒𝑐
𝑏 = 1

𝑏

∑𝑏
𝑖=1 −

∑𝑛
𝑘=1 𝑙𝑜𝑔𝑝(𝑦

(𝑑𝑒𝑐)
𝑙
|𝜔 (𝑑𝑒𝑐)
𝑖
)

27 Update PRALINE weights w.r.t. _1𝐿
𝑑𝑚
𝑏 + _2𝐿

𝑟𝑘
𝑏 + _3𝐿

𝑑𝑒𝑐
𝑏

28 end

98

6.6 Benchmark with Answer Verbalization

6.6 Benchmark with Answer Verbalization

The existing ConvQA datasets [16, 17, 117] lack verbalized answers (cf. Table 6.2). Hence, we
extended ConvQuestions [16] and ConvRef [17] dataset with answer verbalization by employing a
generation procedure similar to Chapter 3. We describe the process below [204].

Dataset Large-scale (>=10k) Complex Ques. Reformulated Ques. Verbalized Ans. Reformulated Ans.

CSQA [117] ✓ ✓ ✗ ✗ ✗

ConvQuestion [16] ✓ ✓ ✗ ✗ ✗

ConvRef [17] ✓ ✓ ✓ ✗ ✗

“Verbal”-ConvQuestions (ours) ✓ ✓ ✓ ✓ ✗

“Verbal”-ConvRef (ours) ✓ ✓ ✓ ✓ ✓

Table 6.2: Comparison of “Verbal”-ConvQuestions and “Verbal”-ConvRef with existing conversational KGQA
datasets in different dimensions. The lack of answer verbalization and reformulated utterances remains a key
gap in the literature.

Data-Generation and Augmentation

We inherit questions from ConvQuestions [16] and ConvRef [17] datasets, which are high quality and
large-scale benchmark for conversational QA over Wikidata KG [2]. The datasets were compiled from
inputs of crowd workers with conversations from domains such as music, soccer, TV series, books, and
movies. The questions incorporate challenging phenomena such as aggregations, compositionality,
temporal reasoning, and comparisons.

Initial Answer Verbalization

The first step is to generate the initial answer verbalization from the seed answers given in the original
datasets. We group all similar questions or question templates and reword them using a rule-based
approach. To maintain consistency across all answers, we cover the question and answer entities using
the general tokens 𝐸𝑁𝑇 , and 𝐴𝑁𝑆. We substitute the tokens back to the original position after the
first version is generated. Similarly to other works [192], we use box brackets to distinguish the seed
answer from the remaining sentence; this is helpful when experimenting with the verbalized answers.
For example, for the question “What countries did the main character travel in the book Eat, Pray,
Love?” the step would provide an initial verbalized answer: “The main character travels in the book
Eat, Pray, Love to [Italy, India, and Indonesia].” Here, the answer is mainly a paraphrased version of
the question that includes the seed answers.

Verbalized Answer Reformulations

Once we generate the first verbalized answer, inspired by [26, 138, 139], we employ back translation
to produce multiple reformulated instances for the verbalized answer. In particular, as in Chapter 3,
the back translation is performed using a Transformer-based model [82] as translators. We produce
reformulations using translators for two languages (English-Russian, English-German). For the
selection, we considered the models’ performance on theWMT’18 dataset [205], including translations
between different languages.

99

Chapter 6 Conversational Question Answering with Answer Verbalization

Result Validation via Human Annotators

Finally, to ensure the grammatical correctness of all the generated answers, we include two rounds of
a peer-review process. Similar to [192], the first round included a set of in-house workers where we
asked them to assert the produced results and rephrase them if needed. This step ensures more natural
and fluent dialogues. Next, another set of in-house workers were asked to validate the previous step
and rephrase if needed. In particular, for the initial verbalization, over 55% required some human
interventions for ConvQuestions and 47% for ConvRef. While for reformulated utterances, over 45%
required corrections during the peer-reviewed process for both datasets.

Generated Dataset Examples

Recent efforts introduce answer verbalization in a QA dataset [25, 26]. The associated empirical
results indicate the effectiveness of answer verbalization [26]. Albeit effective, answer verbalization
for ConvQA is an open research direction due to unavailability of dataset(s) (cf. Table 6.2). Here, we
manually examine some examples from the ConvQA datasets we extended with verbalized answers
and discuss the intentions behind their construction.

Domain Conversations

Soccer

𝑞
1: What was the birth city of Lionel Messi?
𝑣

1: The birth city of Lionel Messi was
Rosario, Santa Fe.
𝑞

2: Is he a member of the Colombian
National soccer team?
𝑣

2: No, Lionel Messi does not represent Colombia
at the international level.
𝑞

3: Which national team is he a member of?
𝑣

3: He is an Argentina national team player.
𝑞

4: Which of their goalkeepers is youngest?
𝑣

4: Juan Musso is the youngest goalkeeper.
𝑞

5: When did he join the team?
𝑣

5: He joined the team in 2019.

TV Series

𝑞
1: What network was Dexter on?
𝑣

1: Dexter aired on Showtime.
𝑞

2: What year did the show debut?
𝑣

2: The show debuted in 2007.
𝑞

3: Who starred in it?
𝑣

3: Michael C. Hall was the show’s star.
𝑞

4: And how many seasons did the show last?
𝑣

4: Dexter is an 8 season television series.
𝑞

5: What was the main location of it?
𝑣

5: The show was set in Miami.

Table 6.3: Conversation examples from ConvQuestions dataset extended with verbalized answers. Each
conversation in the dataset consists of five turns.

100

6.7 Experimental Setup

Regularly, all the required information is provided with the question/query for the question answering
task. Therefore, to generate verbalized answers in such scenarios, we have to concentrate only on
the question context, considering that the seed answer is given. However, in conversational question
answering, we have scenarios such as anaphora and ellipsis [16, 117], where the context from previous
turns has to be incorporated in order to answer the given question. Hence, we had to consider all these
cases when extending the dataset. Table 6.3 illustrates such examples from the ConvQuestions dataset,
where conversational context was incorporated to generate the verbalized answers. For instance, in the
first conversational example, the user asks the question “What was the birth city of Lionel Messi?”;
the dataset here includes the verbalized answer “The birth city of Lionel Messi was Rosario, Santa
Fe.”. In the next turn, we have the question “Is he a member of the Colombian National soccer
team?” where “he” refers to “Lionel Messi”. For such examples, we either provide verbalized answers
using the relevant pronoun (e.g “No, he is not a member of the Colombian National soccer team.”)
or even the entity itself, (e.g. “No, Lionel Messi does not represent Colombia at the international
level.”). Similarly, on the next conversation, which belongs to the “TV Series” domain, we provide
such answers. More precisely, on turn four, the user asks the question “And how many seasons did the
show last?” referring to the seed entity “Dexter” from first turn. Even in such scenarios, we construct
answers that also contain the entity (e.g. “Dexter is an 8 season television series.”).

6.7 Experimental Setup

In this section, we provide the setup for the experiments. We further describe the resources and
metrics we employ.

Model Configurations

For all the modules in the PRALINE framework, we employ a space dimension 𝑑 = 768. We
apply residual dropout in different parts and modules of our framework (such as domain pointer
and ranking) with a rate of 0.1. For the domains, we initialized the domain KG embeddings using
sentence embeddings that implicitly use underlying hidden states from BERT network [92]. We treat
each domain as a sentence and feed that as an input to BERT. We receive as output the domain KG
representation with a dimension 𝑑𝑘𝑔 = 768. This representation is used for the domain identification
task and also for the ranking task. Similar representations have been created for context path candidates.
For training, we employ a batch size of 32, a learning rate of 1𝑒 − 4, and we train for 120 epochs and
store the models’ checkpoints. For the optimization, we use the AdamW algorithm with weight decay
fix as introduced in [206]. We restrict verbalized answers 𝑣𝑡 length to 50 tokens, while PRALINE’s
input sequence (𝐶𝑡 + 𝑞𝑡) is restricted to 150 tokens. For the domain pointer and verbalization decoder
cross-entropy loss, we apply relative weights _1 and _2 of 0.25. Finally, for the KG-path ranking
cosine embedding loss, we use a margin 𝛼 of 0.1 and relative weight _3 of 1.0.

Models for Comparison

For ConvQA over KGs, we compare our framework with two baselines that have been evaluated on
both ConvQuestions and ConvRef datasets. The first baseline is CONVEX [16] which detects answers
to conversational utterances over KGs in a two-stage process based on judicious graph expansion.
First, it detects frontier nodes that define the context at a given turn. Then, it finds high-scoring

101

Chapter 6 Conversational Question Answering with Answer Verbalization

candidate answers in the vicinity of the frontier nodes. The second baseline and current state-of-the-art
is CONQUER [17], an RL-based method for conversational QA over KGs, which leverages implicit
negative feedback when users reformulate previously failed questions. A recently proposed model
OAT [181] reports values on ConvQuestions that proposes a semantic parsing-based approach. Again,
we inherit baseline values from original publications. Furthermore, we cannot compare the answer
verbalization performance against these baselines since they do not generate verbalized natural
language answers. Hence we compare against existing sequence to sequence architectures such as
RNN [71], convolutional [140] and Transformer model [82] to illustrate verbalization task accuracy
during datasets extension.

Evaluation Metrics

For evaluating the ConvQA performance, we use the following ranking metrics which are also
employed by the previous baselines: 1) Precision at the top rank (P@1) 2) Mean Reciprocal Rank
(MRR) is the average across the reciprocal of the rank at which the first context path was retrieved. 3)
Hits at 5 (H@5) is the fraction of times a correct answer was retrieved within the top-5 positions. We
report precision, recall, and F1-score for the domain identification task, while for answer verbalization,
we employ BLEU-4 and METEOR.

6.8 Results

We conduct our experiments and analysis to evaluate the efficacy of PRALINE in ranking the KG
paths for extracting answers to the questions asked during a conversation. For achieving that, we
want to assess the effect of conversational context on the efficiency of PRALINE and the task-specific
(domain identification, verbalization, etc.) performance in the PRALINE framework.

Dataset ConvQues. ConvRef

Model P@1 H@5 MRR P@1 H@5 MRR

CONVEX [16] 0.184 0.219 0.200 0.225 0.257 0.241
CONQUER [17] 0.263 0.343 0.298 0.358 0.439 0.395
OAT [181] 0.250 - 0.260 - - -

PRALINE 0.292 0.529 0.398 0.335 0.599 0.441

Table 6.4: Overall results on employed datasets. The effect of incorporating conversational context in PRALINE
has positively impacted empirical results, achieving better results than baselines. Best values are in bold.

Overall Performance on ConvQA datasets

Table 6.4 summarizes the results comparing PRALINE against the previous baselines. PRALINE
outperforms previous baselines in all metrics on the ConvQuestions dataset. Specifically, for P@1,
PRALINE performs by 0.029 points better than CONQUER, 0.108 points compared to CONVEX,
and 0.042 points against OAT. For H@5 and MRR, the margin is even more prominent, with 0.186
and 0.100 total points, respectively, compared against CONQUER. While for CONVEX, the margins

102

6.8 Results

Dataset ConvQuestions

Domain Movies TV Series Music Books Soccer
Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR

CONVEX [16] 0.355 0.305 0.269 0.218 0.293 0.237 0.303 0.246 0.284 0.234
CONQUER [17] 0.357 0.316 0.382 0.325 0.320 0.263 0.464 0.417 0.310 0.268

PRALINE 0.561 0.426 0.457 0.378 0.405 0.279 0.739 0.599 0.492 0.344

Dataset ConvRef

Domain Movies TV Series Music Books Soccer
Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR

CONQUER [17] 0.436 0.405 0.442 0.392 0.398 0.357 0.554 0.502 0.360 0.316

PRALINE 0.567 0.429 0.545 0.466 0.495 0.329 0.835 0.659 0.564 0.378

Table 6.5: To compare the KG path ranking performance, we report fine-grained results across different domains
of both benchmarks on ranking metrics. CONVEX does not report domain-specific values on ConvRef dataset,
hence omitted from the respective table. PRALINE maintains an empirical edge on baselines while ranking the
KG paths. Best values are in bold.

increase to 0.310 for H@5 and 0.198 for MRR. For OAT, only the MRR is available, and PRALINE
outperforms it by 0.138. For the ConvRef dataset, PRALINE performs better in all metrics compared
to CONVEX, where the margin for all metrics is more than 0.100 absolute points. Moreover, it
surpasses CONQUER on ranking metrics H@5 and MRR with 0.160 and 0.046 points. ConvRef
is an extended version of ConvQuestions with multiple question reformulations. CONQUER was
sophisticatedly designed to leverage those reformulations and boost the results [17]. On the other
hand, PRALINE treats the reformulated questions in the same manner as it does with the original
questions from the ConvQuestions benchmark. Therefore the increase for P@1 is not that significant.
The effect of reformulated questions as the additional context has not been extensively studied in the
scope of the work, and we leave it for future work.

Ranking Performance Across Domains

We further investigate the ranking performance of PRALINE across different domains for both
benchmarks considering this is the main focus of our work. Table 6.5 illustrates detailed ranking
results for H@5 and MRR as both are ranking metrics. As shown, for the ConvQuestions benchmark,
PRALINE superiority is evident in all five domains against the baselines. However, we obtain the
lowest ranking results in the Music domain with 0.405 for H@5 and 0.279 for MRR. Analyzing some
of the conversational examples in that domain indicated that we did not have gold positive KG paths
for all the instances in the dataset. Therefore, PRALINE could not have a complete training process
for all possible conversations and paths. Such issues have also impacted the baselines. Next, we can
see that the highest-ranking results are obtained in the Books domain, where PRALINE achieves
the impressive 0.739 for H@5, which is almost 0.300 points higher than CONQUER. Furthermore,
the highest MRR (0.599) is achieved in this domain. The results in these two domain are heavily
impacted because we had gold-standard paths for most dataset instances. Also, the number of KG

103

Chapter 6 Conversational Question Answering with Answer Verbalization

M
ov
ie
s ConvQuestions ConvRef

H@5 H@10 MR MRR H@5 H@10 MR MRR
0.561 0.578 21.04 0.426 0.567 0.625 23.77 0.429

TV
Se
rie
s ConvQuestions ConvRef

H@5 H@10 MR MRR H@5 H@10 MR MRR
0.457 0.621 54.89 0.378 0.545 0.659 50.10 0.466

M
us
ic ConvQuestions ConvRef

H@5 H@10 MR MRR H@5 H@10 MR MRR
0.405 0.467 124.34 0.279 0.495 0.566 96.19 0.329

B
oo
ks ConvQuestions ConvRef

H@5 H@10 MR MRR H@5 H@10 MR MRR
0.739 0.815 7.00 0.599 0.835 0.871 4.99 0.659

So
cc
er ConvQuestions ConvRef

H@5 H@10 MR MRR H@5 H@10 MR MRR
0.492 0.546 126.92 0.344 0.564 0.596 115.76 0.378

Table 6.6: PRALINE detailed ranking results across different domains. We additionally report results for
Hits@10 and Mean Rank (MR). For MR lower is better.

relations used in positive paths is proportionately smaller than other domains, positively impacting the
ranking task for all models. On the ConvRef benchmark, PRALINE still outperforms CONQUER on
all domains. Here, PRALINE shows substantially improved results in two domains (TV series, Books)
compared to results in ConvQuestions. We conclude that incorporating the entire conversational
history extended with additional context (verbalized answers and domain information) for the ranking
task has a positive impact on overall empirical performance of PRALINE.
Table 6.6 presents PRALINE’s detailed ranking results for Hits@5, Hits@10, Mean Rank (MR)

and Mean Reciprocal Rank (MRR) ranking metrics. We achieve the highest scores in the “Books”
domain, where we also have the lowest MR with only 4.99 on the ConvRef benchmark. On the other
hand, we have the lowest scores in “Music” and “Soccer” domains.

6.9 Ablation Study

We perform various ablation studies on PRALINE to illustrate the effectiveness of the proposed
approach and related architecture choices. Table 6.7 summarizes the results of the ablation studies.

Effect of Verbalized Answers

To show the effectiveness of using verbalized answers in conversational history, we perform an ablation
experiment where we remove and replace them with non-verbalized answers extracted from the KG
(e.g. entities, literals). We can observe that the ranking performance drops significantly. In particular,
we obtain a drop between 0.060 − 0.080 for H@5 and MRR ranking metrics and 0.027 for P@1.
Verbalized answers provide additional context in the conversational history and, therefore, support
PRALINE to create more accurate representations for the ranking task. Such context is crucial for our
results.

104

6.9 Ablation Study

Dataset ConvQues. ConvRef

Model P@1 H@5 MRR P@1 H@5 MRR

PRALINE 0.292 0.529 0.398 0.335 0.599 0.441

w/o verb. ans. 0.265 0.441 0.324 0.279 0.503 0.397
w/o domain 0.247 0.436 0.296 0.266 0.472 0.356
w/o full conv. 0.214 0.375 0.299 0.247 0.449 0.324
train separately 0.255 0.413 0.328 0.304 0.529 0.408

Table 6.7: The effectiveness of including verbalized answers, entire dialog history, and domain information.
The first row (from top) contains the results of PRALINE with all available contexts. The second and
third-row selectively remove the verbalized answers and domain information respectively. 4th row omits the
full conversational history and includes only the previous turn. In the last row, we show results when we train
modules independently, illustrating the advantage of joint training of PRALINE modules.

Effect of Domain Information

For the second ablation experiment, we remove the domain information (domain pointer module)
from PRALINE. We can see the importance of such information in our approach. All metrics results
have dropped, indicating the effect of it. In PRALINE, domain information is used to improve the
conversation representation and indirectly filter KG paths that are not relevant. Usually, such paths
contain KG relations that are not used in the particular domain and add noise while ranking the correct
paths.

Effect of Full Conversational History

We study the empirical advantage of incorporating the entire dialog history. Hence, we configured
PRALINE to consider dialog history from the previous turn, disregarding full history (w/o full conv).
As a result, there is a drop in the performance for PRALINE (w/o full conv.), illustrated in Table 6.7.
Consequently, we conclude that conversational contexts (full dialog history with answer verbalization
and domain information) positively impact the KG path ranking.

Effect of Joint Training

As a last ablation experiment, we study the effectiveness of jointly training PRALINE modules. We
do that by training each module independently without sharing any sub-module information (e.g.,
encoder). Ablation results indicate lower scores for all metrics. Furthermore, we observed that all
modules were overfitting much faster during this experiment than PRALINE’s joint training. The
observed behavior is reasonable since the more correlated tasks we are jointly learning, PRALINE
generates better embedding representations that capture all the tasks, yielding a lower chance of
overfitting.

105

Chapter 6 Conversational Question Answering with Answer Verbalization

6.10 Task Analysis

We calculated the task-specific performance of different modules in our framework to justify choosing
variousmodules. Table 6.8 illustrates performance of domain identification pointer on both benchmarks.
The robust results justify the use of pointer network, which also complement the ablation study in
Table 6.7 for PRALINE (w/o domain) configuration.
Table 6.9 presents the results of PRALINE’s verbalization decoder. We obtain a BLEU-4 score of

0.289 on ConvQuestions and 0.327 on ConvRef, while for METEOR, the scores are 0.626 and 0.684,
respectively. Here, the score margins between the benchmarks are larger than the domain pointer task.
The additional questions in ConvRef further support PRALINE to avoid overfitting for the answer
verbalization task. We conclude that the scores are considered appropriate and support PRALINE’s
performance as reported in Tables 6.7 and 6.4.
Table 6.10 summarizes the results for the answer verbalization task and compares them with other

sequence to sequence baseline models. We perceive that PRALINE outperforms the other baselines
on all five domains for both BLEU-4 and METEOR metrics. Interestingly, all models perform poorly
in the “Movies” and “Soccer” domains. This occurs due to similar KG relations (e.g. “plays for”) they
share with other domains (e.g. “Movies”, “Soccer” and “Books”). Furthermore, all models perform
relatively well on domains such as “Music” and “Books.”

Dataset ConvQuestions ConvRef

Task Pres. Rec. F1 Pres. Rec. F1

Domain Pointer 0.951 0.946 0.947 0.958 0.959 0.952

Table 6.8: Domain identification results.

Dataset ConvQuestions ConvRef

Task BLEU-4 METEOR BLEU-4 METEOR

Verbaliz. Decoder 0.289 0.626 0.327 0.684

Table 6.9: Answer verbalization results.

Domain Movies TV Series Music Books Soccer
Models BLEU-4 METEOR BLEU-4 METEOR BLEU-4 METEOR BLEU-4 METEOR BLEU-4 METEOR

RNNSeq2seq [71] 0.125 0.441 0.108 0.463 0.206 0.499 0.149 0.391 0.103 0.456
CNNSeq2seq [140] 0.117 0.453 0.115 0.459 0.238 0.519 0.133 0.330 0.055 0.404
Transformer [82] 0.263 0.549 0.230 0.511 0.359 0.639 0.375 0.626 0.199 0.570

PRALINE 0.297 0.585 0.271 0.625 0.386 0.667 0.404 0.693 0.236 0.608

Table 6.10: Detailed answer verbalization results on “Verbal”-ConvQuestions dataset across different domains.

106

6.11 Error Analysis

6.11 Error Analysis

ConvQA

For the error analysis, we randomly sampled 250 incorrect predictions (with equal predictions from
each domain). We detail the reasons for two types of errors observed in the analysis:

Incorrect Ranking of Paths with Semantically Similar KG Relations. PRALINE often wrongly-
ranks paths when they contain semantically similar relations. For instance, given the question “What
kind of book is it?” and its entire conversation history: 𝑞1) “What is the name of the writer of The
Secret Garden?” 𝑣1) “The name of the writer of The Secret Garden is Frances Eliza Hodgson Burnett.”
𝑞

2) “Where does the story take place?” 𝑣2) “The story takes place in Yorkshire.” 𝑞3) “When was the
book published?” 𝑣3) “The book was published in 1910.”. PRALINE is required to find the gold path
that contains the KG relation “main subject (P921)” since this one points to the correct answer, which
is “adventure (Q1436734)”. However, PRALINE here ranks higher paths that contain the KG relation
“genre (P136)”. For the example mentioned above, there are three KG paths with relation “genre”,
and all of them are ranked in the top three positions. As we can see, the relations “main subject” and
“genre” are semantically similar and, therefore, hard to distinguish which one to rank higher. For the
particular example, the relation “genre” is ranked higher since it is used more across the gold KG
paths in training data. In this work, we focused on context derived from the conversation and have not
considered widely available KG context such as entity/relation aliases, types, etc.

Absence of Gold KG Paths. Several examples (over 25%) with missing gold paths in training
datasets significantly affect the learning process. For the test sets, there were 19% of conversational
turns without gold KG paths. These examples are directly counted as wrong instances and negatively
affect our results. With a more sophisticated annotation process for gold KG paths, PRALINE results
would have been improved.

Answer Verbalization

We randomly sampled 200 incorrect verbalized answers generated from PRALINE. We detail the error
rates for three categories and compare them with those from sequence to sequence models. The first
one, “Grammatical”, refers to examples where the verbalized answer can be understood but contain
some grammatical errors such as a mismatch between the noun and verb forms. Next, the “Semantic”
error class refers to the cases where the primary meaning of the answer has changed; this can occur by
introducing new content (e.g., entities) or by omitting essential parts of the content. The last error

Models Grammatical Semantic Entity Related

RNNSeq2seq 85% 88% 79%
CNNSeq2seq 86% 91% 77%
Transformer 41% 48% 35%

PRALINE 18% 29% 24%

Table 6.11: Error rates of PRALINE answer verbalization compared to other baseline models.

107

Chapter 6 Conversational Question Answering with Answer Verbalization

class is the “Entity Related”, which refers to generated answers where PRALINE failed to copy the
correct entities from the input utterance or replace them with pronouns. Table 6.11 presents the error
rates for the three categories. We can observe that PRALINE contains the lowest error rates and,
therefore, validates its superior performance. Interestingly, PRALINE’s error rates are lower than
30% for all classes. In particular, for the first class (“Grammatical”), the error rate is 18%, indicating
that grammatical errors are rare in the generated answers. For the second class (“Semantic”), we see
the error rate increasing to 29%, which usually happens when the results do not focus only on the
primary meaning of the question but rather on less related details from the conversational history. For
the last class (“Entity Related”), the rate is 24%; here, errors are observed when the verbalized answer
contains other entities from the conversational history. Such errors occur when the question refers to
an entity in conversational history, and the model fails to determine which one. Our empirical study
provides a glance at the different types of errors that may arise while targeting the tasks of ConvQA
over KGs with verbalized answers.

6.12 Summary

In this chapter, our objective was to study if conversational context (entire dialog history with verbalized
answers) positively impacts the ranking of KG paths for retrieving answers to a question. The multi-task
learning approach implemented and its associated empirical advantage over baselines established the
necessity of incorporating such context for the ConvQA task. We also conclude that a joint embedding
of conversation and KG-paths in a homogeneous space positively impacts the overall ranking metrics.
Furthermore, our systematic ablation studies illustrate each conversation context’s impact (entire
conversation history, verbalized answer, and domain information) on PRALINE’s performance. It
also justifies our rationale to extend existing ConvQA datasets with verbalized answers.

108

CHAPTER 7

Conclusion and Future Directions

In this thesis, we follow the scientific method for improving the state-of-the-art of Conversational
Question Answering over Knowledge Graphs and Answer Verbalization via the Multi-Task Learning
paradigm. First, we defined the research problem in Chapter 1 and discussed the significant challenges
that we require to overcome to achieve the research objective. Chapter 2 discussed all the fundamentals
and necessary background concepts needed for this thesis. We have broken down the main research
problem into four questions to achieve our research objective and overcome the challenges. We tackled
these research questions in the subsequent four chapters of the thesis.
The following sections summarize our contributions, elaborating the main findings that validate our

research questions.

7.1 Review of the Contributions

This section summarizes the contributions provided in the thesis from Chapters 3, 4, 5, and 6. With
this thesis, we advance the fields of conversational question answering over knowledge graphs and
answer verbalization by providing novel approaches and resources that address the main challenges.
In this respect, our contributions answer four research questions which we review below. We state the
research question and then the contributions towards them.

First, we investigated the impact of multiple diverse responses in the answer verbalization task.

RQ1: How do multiple paraphrased answers affect the performance of answer verbalization?

Answer verbalization plays a vital role in providing fluent responses to the users. Currently, there is
a lack of KGQA datasets that support answer verbalization. Existing datasets [24, 25] only provide
one verbalized response per question. However, an answer can be phrased in various ways while
maintaining the same semantic meaning. Multiple paraphrased responses can help conversations
become more flexible and intuitive. Motivated by the idea that not all humans interpret an answer the
same way, while all interpretations retain the same meaning, we developed a resource with multiple
paraphrased answers for each question. However, our main objective was to study whether machine
learning models’ performance can be positively affected by them. Since intuitively supplying multiple
gold samples to a model instead of one can have a positive impact. Our empirical analysis indicated

109

Chapter 7 Conclusion and Future Directions

higher scores for generation metrics when employed multiple paraphrased answers compared to one
or even two. We obtained the same in three different deep neural approaches, each tested with two
different inputs (question or SPARQL queries).
Contributions to Research Question RQ1 are summarized as follows:

• We provide a semi-automated framework for generating multiple paraphrase responses for each
question using techniques such as back-translation.

• We present the first question answering dataset with multiple paraphrased responses. In
particular, the dataset consists of up to eight unique paraphrased responses for each dataset
question that can be answered using DBpedia as the underlying KG.

• We provide evaluation baselines that serve to determine our dataset’s quality and define a
benchmark for future research.

• We analyze the performance of various models when trained with one or more paraphrased
answers.

Second, we explore integrating logical forms as an additional context for improving answer
verbalization performance via multi-task learning.

RQ2: How can we incorporate logical forms to improve the performance of answer verbalization
via multi-task learning?

The goal of the answer verbalization task is to produce fluent, natural language responses to a
user question. Existing baselines utilize only the question as a source of information for generating
verbalized responses. Yet, a question can be reformulated in numerous ways that might affect the
underlying model’s learning process since there are no constant patterns to generate the verbalized
answers. Hence, an additional context with more prominent patterns will enable the model to determine
similar questions and satisfy them with similar responses. Our objective here is to improve answer
verbalization performance further. On the experiments we had for the previous research question
(RQ1), we noticed that providing the queries instead of the question as input to the models delivers
better results due to the constant input pattern templates that the queries have. Usually, with questions,
we have a different reworded version for the same template. In an attempt to leverage that, we proposed
to employ logical form queries as an additional context alongside the questions. In this way, the model
can learn from both sources and generate better verbalizations. We supplemented this with multi-task
learning, where our approach will learn multiple sub-tasks jointly for verbalizing answers. Our results
indicated that combining logical form and question information performs better compared to utilizing
one at a time.
Contributions to Research Question RQ2 are summarized as follows:

• We introduce a multi-task-based hybrid answer verbalization framework that consists of four
modules trained simultaneously.

• We propose a similarity threshold and cross attention modules to determine the relevance
between the inputs and fuse information to employ a hybrid strategy.

110

7.1 Review of the Contributions

• We provide an extensive evaluation and ablation study of the proposed framework on three
QA datasets with answer verbalization. Our evaluation results establish a new baseline for
the answer verbalization task, which we believe will drive future research in a newly studied
problem.

Third, we intend to improve conversational question answering over knowledge graphs via multi-task
learning.

RQ3: How can we develop better and more efficient multi-task semantic parsing approaches
for conversational question answering?

One of the main methodologies for approaching KGQA is semantic parsing, which requires a
grammar of actions to build executable queries over the KG. These actions can vary based on the
complexity and type of questions. While for KGQA, there exist numerous grammars, they cannot
be directly applied to the ConvQA task since they do not address conversational scenarios (e.g.,
clarification questions). Furthermore, incorporating KG information such as entities, relations, and
types is crucial for particular conversational scenarios and the ConvQA task in general. Therefore,
one of the open challenges is discovering methods that specify the relevant information in the KG
and incorporate it. Here, we targeted the task of conversational (complex) question answering over a
large-scale knowledge graph. We reviewed existing related works in the domain and proposed two
approaches that employ state-of-the-art deep neural architectures. In particular, we identified possible
drawbacks or space for improvement. We developed new novel multi-task neural semantic parsing
approaches that surpass the baselines in most question types and overall. We found the necessity to
introduce a new semantic grammar for ConvQA and proposed solutions that can better determine the
KG information required. Our experiments validate the proposed architectural choices and all our
assumptions.
Contributions to Research Question RQ3 are summarized as follows:

• We introduce two multi-task learning frameworks for conversational question answering over
large scale knowledge graph.

• We propose an architecture of stacked pointer networks for incorporating knowledge graph
information on conversational question answering task.

• We employ a Transformer model supplemented with a Graph Attention Network to exploit the
correlations between (entity) types and predicates due to its message-passing ability between
the nodes.

• We propose a novel entity recognition module that detects, links, filters, and permutes all
relevant entities.

• We propose a reusable grammar for neural semantic parsing to define various logical forms that
can be executed on a KG for fetching answers to conversational questions.

• We empirically study the proposed architectural design choices through an extensive evaluation,
ablation study, and multiple analyses.

111

Chapter 7 Conclusion and Future Directions

Fourth and last, we comprise answer verbalization into conversational question answering to improve
the performance.

RQ4: How can answer verbalization be leveraged to improve the performance of conversational
question answering?

Conversational context plays a vital role in improving ConvQA performance. In particular, we
require the entire dialog history to answer conversational questions. Therefore, available contexts
have to be identified and effectively incorporated to improve performance. Consequently, verbalized
answers can provide context that might be helpful for particular conversational scenarios. However, it
is challenging to integrate the answer verbalization task into the ConvQA task. Since in a multi-task
learning framework, we must determine how to establish a connection between the sub-tasks for
effectively sharing training signals and controlling the learning process of each sub-task for optimal
performance. With the previous research questions, we individually targeted the tasks of ConvQA
and answer verbalization while utilizing multi-task learning. Here, we wanted to observe whether
answer verbalization textual context can support the ConvQA task for improving the performance.
We persisted with the multi-task learning paradigm and proposed an approach that utilizes the
entire conversational history with verbalized answers when seeking to rank KG paths for identifying
the answer to a given conversational question. Our systematic experiments indicated that answer
verbalization and multi-task learning positively impact the ranking task, and therefore we obtained
improved scores compared to baselines.
Contributions to Research Question RQ4 are summarized as follows:

• We propose a ConvQA over KGs approach that jointly models the available conversational
context (full dialog history with verbalized answers) and KG paths in a common space for
learning joint embedding representations to improve KG path ranking.

• We extend the existing ConvQA datasets with verbalized answers.

• We systematically study the impact of incorporating additional context on the ConvQA
performance. Results on standard datasets show a considerable improvement over previous
baselines. Our evaluation results establish a new baseline, which we believe will drive future
research in a new way of developing such frameworks.

7.2 Limitations and Future Directions

This thesis presented our findings for advancing the fields of conversational question answering over
knowledge graph and answer verbalization with the power exposed by deep learning algorithms and
the multi-task learning paradigm. Although we achieved adequate results to validate our research
questions, these contributions are meant to ignite a new research conversation. Likewise, a few
limitations of this research have not been covered in the scope of the thesis. We list the following:

• Our work on the answer verbalization task focuses on improving the overall performance. The
presented methods aim to provide improved performance via multiple paraphrased responses
(Chapter 3) and additional context to support the model learning process (Chapter 4). It would

112

7.2 Limitations and Future Directions

be interesting to investigate any possible bias in the task. For instance, to study whether the
model favors generating particular responses and how they are provoked. We can connect this
with the explainability part of the model, where we aim to understand how and why it makes
certain decisions.

• The main pitfall of the semantic parsing-based ConvQA approaches (Chapter 5) is the error
propagated from the annotation and preprocessing step since we require the gold logical forms
to train the models in a supervised way. The models focus on learning the correct logical
forms during training, but there is no feedback signal from the resulting answer from the KG.
Reinforcement learning might be a way to address this. Furthermore, improving the performance
of challenging question types (e.g., “Clarification”) remains an open question.

• For the ranking-based ConvQA task (Chapter 6), heavy preprocessing is generally required for
the approach since we need to identify the context entities and candidate KG paths for each
conversational turn and embed them in order to have a quicker and more efficient training
process. The preprocessing might not be an option in a real-world application, and without
it, concerns are raised regarding the overall run time of the model. We believe that the whole
process can be optimized and performed relatively quickly; however, it was not our focus to
perform such experiments.

The contributions in this thesis pave the way for a more extensive research agenda that will foster
further research. A few of such directions are enumerated below:

Answer Verbalization:

• Currently, the task heavily relies on the user query and information produced by the underlying
model (e.g., logical forms). Recently, knowledge graphs have been used as a source of external
knowledge in tasks such as entity and relation linking, which are also prominent for question
answering. It is yet to be studied if external knowledge from KGs may positively impact the
answer verbalization.

• There are empirical evaluations that for AI systems, the explanations regarding the retrieved
answers improve trustworthiness, especially in wrong prediction [207, 208]. Hence, how an
answer verbalization can be explained remains an important open research direction.

• Our work focused on English as the underlying language, partly because of the availability of
datasets. Despite the contributions made, the field still lacks large-scale resources, especially
multilingual ones. It would even be more plausible if the new resources were built using qualifier
information from KGs to provide informative answer verbalization.

Conversational Question Answering over Knowledge Graphs:

• The proposed semantic parsing systems perform exceptionally well on an open domain large-
scale dataset for conversational question answering. The systems answer complex question types
such as “Comparative” and “Quantitative” which yet cannot be handled with other non-KGs
approaches (e.g., Machine Reading Comprehension), this further encourages the use of KGs for
the QA task. Nevertheless, these systems are restrictive to the question types shown during
training, and we do not know how they can reason unseen question types on inference. Inductive
learning might be a solution and, therefore, a possible direction for the task.

113

Chapter 7 Conclusion and Future Directions

• Path ranking is a relatively new method for approaching the task. While it is more difficult
to comprehend the predictions compared to semantic parsing models, path ranking will be
favored since it does not depend on any annotation process or data. We see an emergence of
future ConvQA systems towards that direction; however, the explainability of ranking strategies
remains a tough challenge and is eventually to be addressed.

• We presented the first ConvQA approach that performs answer verbalization for improving
performance. We envision this as the future for those systems. Answer verbalization is essential
for expressing and supplying better and more natural responses and can be helpful by providing
additional context for particular conversational scenarios. ConvQA systems can further leverage
answer verbalization to establish interactive communication and employ possible user feedback
to clarify ambiguous requests. In particular, Interactive ConvQA is a beneficial research
direction for further improving these systems, and we see answer verbalization as a critical
aspect of them.

Multi-Task Learning:

• For the approaches presented in this thesis, we employ multi-task learning via hard parameter
sharing as the default learning paradigm where a Transformer encoder is simultaneously trained
to generate representations that are shared across all the tasks. Multi-task learning can be crucial
for approaching complicated tasks such as question answering. We expect the development of
massive and flexible multi-task learners able to perform numerous tasks. Question answering
will be achieved by combining parts of them, and for any new knowledge learned, the model
will update a comparatively small number of parameters. Likewise, we believe that multi-task
learning is essential in developing artificial intelligence with more human-like qualities.

In summary, research on knowledge graph question answering is continuously evolving. Fields such
as conversational question answering and answer verbalization are getting more attention and will keep
evolving in the future. During this thesis, we advanced the state of the art in conversational question
answering and answer verbalization on several facades by setting up benchmarks and developing
approaches dedicated for them. More precisely, we proposed: i) an efficient and scalable approach
to extend a KGQA dataset with multiple paraphrased answers, ii) a multi-task learning framework
dedicated to verbalizing answers given multiple sources, iii) multi-task neural semantic parsing
approaches for ConvQA, and iv) an approach that leverages answer verbalization for improving
ConvQA task via KG path ranking.
Future research work can build upon the resources and approaches developed as contributions

presented during this thesis. These contributions could provide a foundation for future conversational
AI systems.

114

Bibliography

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al.,
Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia,
Semantic web 6 (2015) 167 (cit. on pp. 1, 9, 62).

[2] D. Vrandečić and M. Krötzsch,Wikidata: a free collaborative knowledgebase,
Communications of the ACM 57 (2014) 78 (cit. on pp. 1, 62, 99).

[3] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,”
Proceedings of the 16th international conference on World Wide Web, 2007 697 (cit. on p. 1).

[4] D. Diefenbach, V. Lopez, K. Singh, and P. Maret,
Core techniques of question answering systems over knowledge bases: a survey,
Knowledge and Information systems 55 (2018) 529 (cit. on pp. 1, 92).

[5] Y. Lan, G. He, J. Jiang, J. Jiang, W. X. Zhao, and J.-R. Wen, “A Survey on Complex
Knowledge Base Question Answering: Methods, Challenges and Solutions,” Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, Survey Track,
International Joint Conferences on Artificial Intelligence Organization, 2021 4483
(cit. on pp. 1, 90).

[6] H. Zafartavanaelmi,
Semantic Question Answering Over Knowledge Graphs: Pitfalls and Pearls, (2021)
(cit. on pp. 1, 2, 44).

[7] K. Singh, Towards dynamic composition of question answering pipelines, (2019) (cit. on p. 2).
[8] K. Singh, A. Both, A. Sethupat, and S. Shekarpour,

“Frankenstein: A platform enabling reuse of question answering components,”
European Semantic Web Conference, Springer, 2018 624 (cit. on p. 2).

[9] K. Singh, A. Both, D. Diefenbach, S. Shekarpour, D. Cherix, and C. Lange,
“Qanary–the fast track to creating a question answering system with linked data technology,”
European Semantic Web Conference, Springer, 2016 183 (cit. on p. 2).

[10] M. Dubey, Towards Complex Question Answering over Knowledge Graphs, (2021)
(cit. on p. 2).

[11] S. Ruder, An overview of multi-task learning in deep neural networks,
arXiv preprint arXiv:1706.05098 (2017) (cit. on pp. 2, 26, 27).

[12] D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin,
“Dialog-to-action: Conversational question answering over a large-scale knowledge base,”
Advances in Neural Information Processing Systems, 2018 2942
(cit. on pp. 3, 62–65, 67, 72, 83).

115

Bibliography

[13] T. Shen, X. Geng, T. Qin, D. Guo, D. Tang, N. Duan, G. Long, and D. Jiang, “Multi-Task
Learning for Conversational Question Answering over a Large-Scale Knowledge Base,”
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019 2442 (cit. on pp. 3, 63–65, 67, 71, 72, 76, 79, 83, 86, 90, 92).

[14] J. Plepi, E. Kacupaj, K. Singh, H. Thakkar, and J. Lehmann, “Context Transformer with
Stacked Pointer Networks for Conversational Question Answering over Knowledge Graphs,”
European Semantic Web Conference, Springer, 2021 356
(cit. on pp. 3, 4, 10, 24, 27, 44, 52, 62, 78, 90, 92).

[15] E. Kacupaj, J. Plepi, K. Singh, H. Thakkar, J. Lehmann, and M. Maleshkova,
“Conversational Question Answering over Knowledge Graphs with Transformer and Graph
Attention Networks,” Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, 2021 850
(cit. on pp. 3, 4, 10, 24, 25, 27, 44, 52, 62, 90–92).

[16] P. Christmann, R. Saha Roy, A. Abujabal, J. Singh, and G. Weikum,
“Look before you hop: Conversational question answering over knowledge graphs using
judicious context expansion,” Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 2019 729
(cit. on pp. 3, 30–32, 65, 72, 90–92, 99, 101–103).

[17] M. Kaiser, R. Saha Roy, and G. Weikum, “Reinforcement Learning from Reformulations in
Conversational Question Answering over Knowledge Graphs,” 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, 2021
(cit. on pp. 3, 90–92, 96, 99, 102, 103).

[18] E. Kacupaj, K. Singh, M. Maleshkova, and J. Lehmann, “Contrastive Representation Learning
for Conversational Question Answering over Knowledge Graphs,” Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, 2022 925
(cit. on pp. 4, 11, 24, 27).

[19] W. Zheng, H. Cheng, L. Zou, J. X. Yu, and K. Zhao,
“Natural language question/answering: Let users talk with the knowledge graph,”
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,
2017 217 (cit. on pp. 4, 44).

[20] S. Ferré, Sparklis: An expressive query builder for SPARQL endpoints with guidance in
natural language, Semantic Web 8 (2017) 405 (cit. on pp. 4, 44).

[21] D. Diefenbach, Y. Dridi, K. Singh, and P. Maret,
“SPARQLtoUser: Did the question answering system understand me?” ISWC 2017, 2017
(cit. on pp. 4, 46).

[22] B. Ell, A. Harth, and E. Simperl,
“SPARQL query verbalization for explaining semantic search engine queries,”
European Semantic Web Conference, Springer, 2014 426 (cit. on pp. 4, 40, 44).

116

[23] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber,
“SPARQL2NL: verbalizing SPARQL queries,”
Proceedings of the 22nd International Conference on World Wide Web, 2013 329
(cit. on pp. 4, 40, 46).

[24] E. Kacupaj, H. Zafar, J. Lehmann, and M. Maleshkova,
“Vquanda: Verbalization question answering dataset,” European Semantic Web Conference,
Springer, 2020 531 (cit. on pp. 5, 29–31, 34, 39, 44, 51, 54, 109).

[25] D. Biswas, M. Dubey, M. R. A. H. Rony, and J. Lehmann,
VANiLLa: Verbalized Answers in Natural Language at Large Scale,
arXiv preprint arXiv:2105.11407 (2021) (cit. on pp. 5, 29, 44, 51, 54, 100, 109).

[26] E. Kacupaj, B. Banerjee, K. Singh, and J. Lehmann, “ParaQA: A Question Answering Dataset
with Paraphrase Responses for Single-Turn Conversation,”
European Semantic Web Conference, Springer, 2021 598
(cit. on pp. 9, 30, 44, 51, 54, 99, 100).

[27] E. Kacupaj, S. Premnadh, K. Singh, J. Lehmann, and M. Maleshkova,
“VOGUE: Answer Verbalization Through Multi-Task Learning,”
Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2021 563 (cit. on pp. 9, 27).

[28] A. Singhal, Introducing the knowledge graph: things, not strings,
Official google blog 5 (2012) 16 (cit. on p. 15).

[29] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. Yu,
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications.,
IEEE Transactions on Neural Networks and Learning Systems (2021) (cit. on p. 15).

[30] F. N. Stokman and P. H. de Vries, “Structuring knowledge in a graph,”
Human-computer interaction, Springer, 1988 186 (cit. on p. 15).

[31] A. Bordes, J. Weston, R. Collobert, and Y. Bengio,
“Learning structured embeddings of knowledge bases,”
Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011 (cit. on p. 15).

[32] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride,
RDF 1.1 concepts and abstract syntax, W3C recommendation 25 (2014) 1 (cit. on p. 15).

[33] H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation methods,
Semantic web 8 (2017) 489 (cit. on p. 15).

[34] L. Ehrlinger and W. Wöß, Towards a Definition of Knowledge Graphs.,
SEMANTiCS (Posters, Demos, SuCCESS) 48 (2016) 2 (cit. on p. 15).

[35] Q. Wang, Z. Mao, B. Wang, and L. Guo,
Knowledge graph embedding: A survey of approaches and applications,
IEEE Transactions on Knowledge and Data Engineering 29 (2017) 2724 (cit. on p. 15).

[36] S. Gottschalk, E. Kacupaj, S. Abdollahi, D. Alves, G. Amaral, E. Koutsiana, T. Kuculo,
D. Major, C. Mello, G. S. Cheema, et al., “OEKG: The Open Event Knowledge Graph.,”
CLEOPATRA@ WWW, 2021 61 (cit. on pp. 15, 16).

117

Bibliography

[37] G. Tahmasebzadeh, E. Kacupaj, E. Müller-Budack, S. Hakimov, J. Lehmann, and R. Ewerth,
“GeoWINE: Geolocation based Wiki, Image, News and Event Retrieval,”
Proceedings of the 44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2021 2565 (cit. on pp. 15, 16).

[38] A. Guluzade, E. Kacupaj, and M. Maleshkova, “Demographic Aware Probabilistic Medical
Knowledge Graph Embeddings of Electronic Medical Records,”
International Conference on Artificial Intelligence in Medicine, Springer, 2021 408
(cit. on pp. 15, 16).

[39] G. Zhu and C. A. Iglesias, “Sematch: Semantic Entity Search from Knowledge Graph.,”
SumPre-HSWI@ ESWC, 2015 (cit. on p. 16).

[40] I. O. Mulang’, K. Singh, C. Prabhu, A. Nadgeri, J. Hoffart, and J. Lehmann,
“Evaluating the impact of knowledge graph context on entity disambiguation models,”
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, 2020 2157 (cit. on pp. 16, 86).

[41] A. Sakor, I. O. Mulang, K. Singh, S. Shekarpour, M. E. Vidal, J. Lehmann, and S. Auer,
“Old is gold: linguistic driven approach for entity and relation linking of short text,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019 2336 (cit. on p. 16).

[42] A. Sakor, K. Singh, A. Patel, and M.-E. Vidal,
“Falcon 2.0: An entity and relation linking tool over Wikidata,” Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, 2020 3141
(cit. on p. 16).

[43] K. Singh, I. O. Mulang’, I. Lytra, M. Y. Jaradeh, A. Sakor, M.-E. Vidal, C. Lange, and S. Auer,
“Capturing knowledge in semantically-typed relational patterns to enhance relation linking,”
Proceedings of the Knowledge Capture Conference, 2017 1 (cit. on p. 16).

[44] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua,
“Kgat: Knowledge graph attention network for recommendation,” Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019 950
(cit. on p. 16).

[45] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, and C. Xu,
“Recurrent knowledge graph embedding for effective recommendation,”
Proceedings of the 12th ACM Conference on Recommender Systems, 2018 297 (cit. on p. 16).

[46] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo,
“Multi-task feature learning for knowledge graph enhanced recommendation,”
The World Wide Web Conference, 2019 2000 (cit. on p. 16).

[47] A. Ait-Mlouk and L. Jiang,
KBot: a Knowledge graph based chatBot for natural language understanding over linked data,
IEEE Access 8 (2020) 149220 (cit. on p. 16).

[48] S. Yoo and O. Jeong, An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph,
Journal of Society for e-Business Studies 24 (2020) (cit. on p. 16).

118

[49] Q. Bao, L. Ni, and J. Liu, “HHH: an online medical chatbot system based on knowledge graph
and hierarchical bi-directional attention,”
Proceedings of the Australasian Computer Science Week Multiconference, 2020 1
(cit. on p. 16).

[50] R. G. Athreya, A.-C. Ngonga Ngomo, and R. Usbeck,
“Enhancing Community Interactions with Data-Driven Chatbots–The DBpedia Chatbot,”
Companion Proceedings of the The Web Conference 2018, 2018 143 (cit. on p. 16).

[51] H. ter Horst and P. Cimiano, “Incorporating Semantic Dependencies Extracted from
Knowledge Graphs into Joint Inference Template-Based Information Extraction,” ECAI 2020,
IOS Press, 2020 2180 (cit. on p. 16).

[52] M. Zhou and V. Nastase,
Using patterns in knowledge graphs for targeted information extraction,
Proc. KBCOM (2018) (cit. on p. 16).

[53] T. Al-Moslmi, M. G. Ocaña, A. L. Opdahl, and C. Veres,
Named entity extraction for knowledge graphs: A literature overview,
IEEE Access 8 (2020) 32862 (cit. on p. 16).

[54] A. Nadgeri, A. Bastos, K. Singh, I. O. Mulang, J. Hoffart, S. Shekarpour, and V. Saraswat,
KGPool: Dynamic Knowledge Graph Context Selection for Relation Extraction,
arXiv preprint arXiv:2106.00459 (2021) (cit. on p. 16).

[55] M. P. K. Ravi, K. Singh, I. O. Mulang, S. Shekarpour, J. Hoffart, and J. Lehmann,
“CHOLAN: A Modular Approach for Neural Entity Linking on Wikipedia and Wikidata,”
Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021 504 (cit. on p. 16).

[56] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier, et al., Knowledge graphs,
ACM Computing Surveys (CSUR) 54 (2021) 1 (cit. on p. 16).

[57] A. Bordes, N. Usunier, S. Chopra, and J. Weston,
Large-scale simple question answering with memory networks,
arXiv preprint arXiv:1506.02075 (2015) (cit. on pp. 16, 31).

[58] L. Dong, F. Wei, M. Zhou, and K. Xu,
“Question answering over freebase with multi-column convolutional neural networks,”
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2015 260 (cit. on pp. 16, 64).

[59] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao,
Answering natural language questions by subgraph matching over knowledge graphs,
IEEE Transactions on Knowledge and Data Engineering 30 (2017) 824 (cit. on p. 16).

[60] Y. Lan, S. Wang, and J. Jiang, Knowledge base question answering with topic units, (2019)
(cit. on p. 16).

119

Bibliography

[61] Y. Lan, S. Wang, and J. Jiang, Knowledge base question answering with a
matching-aggregation model and question-specific contextual relations,
IEEE/ACM Transactions on Audio, Speech, and Language Processing 27 (2019) 1629
(cit. on p. 16).

[62] S. Hu, L. Zou, and X. Zhang,
“A state-transition framework to answer complex questions over knowledge base,”
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
2018 2098 (cit. on p. 16).

[63] K. Luo, F. Lin, X. Luo, and K. Zhu,
“Knowledge base question answering via encoding of complex query graphs,”
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
2018 2185 (cit. on pp. 16, 64).

[64] Y. Lan, G. He, J. Jiang, J. Jiang, W. X. Zhao, and J.-R. Wen,
Complex Knowledge Base Question Answering: A Survey,
arXiv preprint arXiv:2108.06688 (2021) (cit. on p. 17).

[65] J. Berant and P. Liang, “Semantic parsing via paraphrasing,” Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2014
1415 (cit. on p. 16).

[66] S. Reddy, M. Lapata, and M. Steedman,
Large-scale semantic parsing without question-answer pairs,
Transactions of the Association for Computational Linguistics 2 (2014) 377 (cit. on p. 16).

[67] K. Singh, M. Saleem, A. Nadgeri, F. Conrads, J. Z. Pan, A.-C. N. Ngomo, and J. Lehmann,
“Qaldgen: Towards microbenchmarking of question answering systems over knowledge
graphs,” International Semantic Web Conference, Springer, 2019 277 (cit. on p. 16).

[68] S. Jain, “Question answering over knowledge base using factual memory networks,”
Proceedings of the NAACL student research workshop, 2016 109 (cit. on p. 17).

[69] Z.-Y. Chen, C.-H. Chang, Y.-P. Chen, J. Nayak, and L.-W. Ku, “UHop: An Unrestricted-Hop
Relation Extraction Framework for Knowledge-Based Question Answering,” Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019 345
(cit. on p. 17).

[70] D. Bahdanau, K. Cho, and Y. Bengio,
Neural machine translation by jointly learning to align and translate,
arXiv preprint arXiv:1409.0473 (2014) (cit. on pp. 18–20, 25).

[71] T. Luong, H. Pham, and C. D. Manning,
“Effective Approaches to Attention-based Neural Machine Translation,” EMNLP, 2015
(cit. on pp. 18, 20, 38, 40, 54, 55, 102, 106).

[72] S. Srivastava, M. Patidar, S. Chowdhury, P. Agarwal, I. Bhattacharya, and G. Shroff,
“Complex Question Answering on knowledge graphs using machine translation and multi-task
learning,” Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021 3428 (cit. on p. 18).

120

[73] J. Bao, N. Duan, M. Zhou, and T. Zhao,
“Knowledge-based question answering as machine translation,” Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2014 967 (cit. on p. 18).

[74] Y. Liu and M. Lapata, “Text Summarization with Pretrained Encoders,” Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019
3730 (cit. on p. 18).

[75] D. Aksenov, J. M. Schneider, P. Bourgonje, R. Schwarzenberg, L. Hennig, and G. Rehm,
“Abstractive Text Summarization based on Language Model Conditioning and Locality
Modeling,” Proceedings of the 12th Language Resources and Evaluation Conference, 2020
6680 (cit. on p. 18).

[76] C. Huber, J. Hussain, T.-N. Nguyen, K. Song, S. Stüker, and A. Waibel, “Supervised
Adaptation of Sequence-to-Sequence Speech Recognition Systems using Batch-Weighting,”
Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems, 2020
9 (cit. on p. 18).

[77] S. Kim, S. Dalmia, and F. Metze,
“Gated Embeddings in End-to-End Speech Recognition for Conversational-Context Fusion,”
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
2019 1131 (cit. on p. 18).

[78] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to Sequence Learning with Neural Networks,
Advances in Neural Information Processing Systems 27 (2014) 3104 (cit. on pp. 18, 72).

[79] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural computation 9 (1997) 1735 (cit. on pp. 19, 20, 79).

[80] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation,” Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014 1724 (cit. on pp. 19, 20).

[81] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition,” Competition and cooperation in neural nets,
Springer, 1982 267 (cit. on p. 20).

[82] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
2017 5998 (cit. on pp. 21, 22, 25, 36, 38, 40, 47, 49, 50, 52, 54, 55, 69, 72, 76, 78, 79, 81, 83,
94, 99, 102, 106).

[83] X. Liu, K. Duh, L. Liu, and J. Gao, Very deep transformers for neural machine translation,
arXiv preprint arXiv:2008.07772 (2020) (cit. on p. 23).

[84] J. Xu, J. Wang, M. Long, et al., Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting,
Advances in Neural Information Processing Systems 34 (2021) (cit. on p. 23).

121

Bibliography

[85] Y. Liu and M. Lapata, “Hierarchical Transformers for Multi-Document Summarization,”
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
2019 5070 (cit. on p. 23).

[86] D. Lukovnikov, A. Fischer, and J. Lehmann,
“Pretrained transformers for simple question answering over knowledge graphs,”
International Semantic Web Conference, Springer, 2019 470 (cit. on p. 23).

[87] M. Arkhipov, M. Trofimova, Y. Kuratov, and A. Sorokin,
“Tuning multilingual transformers for language-specific named entity recognition,”
Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing, 2019 89
(cit. on p. 23).

[88] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao, H. Yang,
et al., CogView: Mastering Text-to-Image Generation via Transformers,
arXiv preprint arXiv:2105.13290 (2021) (cit. on p. 23).

[89] J.-S. Bae, T.-J. Bak, Y.-S. Joo, and H.-Y. Cho,
Hierarchical Context-Aware Transformers for Non-Autoregressive Text to Speech,
arXiv preprint arXiv:2106.15144 (2021) (cit. on p. 23).

[90] Y. Wang, Z. Xu, X. Wang, C. Shen, B. Cheng, H. Shen, and H. Xia,
“End-to-end video instance segmentation with transformers,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021
8741 (cit. on p. 23).

[91] H. Iuchi, T. Matsutani, K. Yamada, N. Iwano, S. Sumi, S. Hosoda, S. Zhao, T. Fukunaga, and
M. Hamada, Representation learning applications in biological sequence analysis,
Computational and Structural Biotechnology Journal 19 (2021) 3198 (cit. on p. 23).

[92] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019 4171 (cit. on pp. 23, 54, 55, 72, 96, 101).

[93] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer, “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
2020 7871 (cit. on pp. 23, 24, 94, 96).

[94] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
Improving language understanding by generative pre-training, (2018) (cit. on pp. 23, 24).

[95] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler,
“Aligning books and movies: Towards story-like visual explanations by watching movies and
reading books,” Proceedings of the IEEE international conference on computer vision, 2015
19 (cit. on p. 23).

122

[96] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. kavukcuoglu,
“Interaction networks for learning about objects, relations and physics,”
Proceedings of the 30th International Conference on Neural Information Processing Systems,
2016 4509 (cit. on p. 24).

[97] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and
P. Battaglia, “Graph networks as learnable physics engines for inference and control,”
International Conference on Machine Learning, PMLR, 2018 4470 (cit. on p. 24).

[98] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur,
“Protein interface prediction using graph convolutional networks,”
Proceedings of the 31st International Conference on Neural Information Processing Systems,
2017 6533 (cit. on p. 24).

[99] Y. Wu, D. Lian, Y. Xu, L. Wu, and E. Chen, “Graph convolutional networks with markov
random field reasoning for social spammer detection,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 01, 2020 1054
(cit. on p. 24).

[100] Z. Yang, W. Cohen, and R. Salakhudinov,
“Revisiting semi-supervised learning with graph embeddings,”
International conference on machine learning, PMLR, 2016 40 (cit. on p. 24).

[101] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto,
“Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach,”
Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017 1802
(cit. on p. 24).

[102] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song,
“Learning combinatorial optimization algorithms over graphs,”
Proceedings of the 31st International Conference on Neural Information Processing Systems,
2017 6351 (cit. on p. 24).

[103] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
Graph neural networks: A review of methods and applications, AI Open 1 (2020) 57
(cit. on p. 25).

[104] T. N. Kipf and M. Welling,
“Semi-supervised classification with graph convolutional networks,”
International Conference on Learning Representations, 2017 (cit. on p. 25).

[105] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive Graph Convolutional Neural Networks,”
Thirty-Second AAAI Conference on Artificial Intelligence, 2018 (cit. on p. 25).

[106] C. Zhuang and Q. Ma,
“Dual graph convolutional networks for graph-based semi-supervised classification,”
Proceedings of the 2018 World Wide Web Conference, 2018 499 (cit. on p. 25).

[107] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph Attention Networks,” International Conference on Learning Representations, 2018
(cit. on pp. 25, 76, 80, 81).

123

Bibliography

[108] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. Y. Yeung,
“GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs,”
34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, 2018 (cit. on p. 25).

[109] R. Caruana, Multitask learning, Machine learning 28 (1997) 41 (cit. on pp. 26, 27).
[110] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep

neural networks with multitask learning,”
Proceedings of the 25th international conference on Machine learning, 2008 160
(cit. on p. 26).

[111] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for
speech recognition and related applications: An overview,”
2013 IEEE international conference on acoustics, speech and signal processing, IEEE, 2013
8599 (cit. on p. 26).

[112] R. Girshick, “Fast r-cnn,”
Proceedings of the IEEE international conference on computer vision, 2015 1440
(cit. on p. 26).

[113] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande,
Massively Multitask Networks for Drug Discovery, (2015) (cit. on p. 26).

[114] R. Caruana, “Multitask Learning: A Knowledge-Based Source of Inductive Bias,”
Proceedings of the Tenth International Conference on Machine Learning,
Morgan Kaufmann, 1993 41 (cit. on p. 27).

[115] B. E. A. Boussaha, N. Hernandez, C. Jacquin, and E. Morin,
Deep retrieval-based dialogue systems: a short review,
arXiv preprint arXiv:1907.12878 (2019) (cit. on pp. 30, 31).

[116] M. Huang, X. Zhu, and J. Gao, Challenges in building intelligent open-domain dialog systems,
ACM Transactions on Information Systems (TOIS) 38 (2020) 1 (cit. on p. 30).

[117] A. Saha, V. Pahuja, M. M. Khapra, K. Sankaranarayanan, and S. Chandar,
“Complex sequential question answering: Towards learning to converse over linked question
answer pairs with a knowledge graph,”
Thirty-Second AAAI Conference on Artificial Intelligence, 2018
(cit. on pp. 30–32, 62–65, 67, 68, 71, 72, 76, 83, 84, 92, 99, 101).

[118] M. Dubey, D. Banerjee, A. Abdelkawi, and J. Lehmann,
“Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia,”
International semantic web conference, Springer, 2019 69 (cit. on pp. 30–32).

[119] A. Abujabal, R. S. Roy, M. Yahya, and G. Weikum, “ComQA: A Community-sourced Dataset
for Complex Factoid Question Answering with Paraphrase Clusters,” Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), 2019 307
(cit. on pp. 30, 31).

[120] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann,
“Lc-quad: A corpus for complex question answering over knowledge graphs,”
International Semantic Web Conference, Springer, 2017 210 (cit. on pp. 30–32, 34).

124

[121] Q. Cai and A. Yates,
“Large-scale semantic parsing via schema matching and lexicon extension,”
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2013 423 (cit. on p. 31).

[122] J. Berant, A. Chou, R. Frostig, and P. Liang,
“Semantic parsing on freebase from question-answer pairs,”
Proceedings of the 2013 conference on empirical methods in natural language processing,
2013 1533 (cit. on pp. 31, 32).

[123] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao,
“Constraint-based question answering with knowledge graph,” Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers, 2016
2503 (cit. on p. 31).

[124] Y. Su, H. Sun, B. Sadler, M. Srivatsa, I. Gür, Z. Yan, and X. Yan,
“On generating characteristic-rich question sets for qa evaluation,”
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
2016 562 (cit. on p. 31).

[125] A. Talmor and J. Berant,
“The Web as a Knowledge-Base for Answering Complex Questions,”
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018
641 (cit. on p. 31).

[126] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh,
“The value of semantic parse labeling for knowledge base question answering,”
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2016 201 (cit. on pp. 31, 64).

[127] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor,
“Freebase: a collaboratively created graph database for structuring human knowledge,”
Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
2008 1247 (cit. on p. 31).

[128] R. Lowe, N. Pow, I. V. Serban, and J. Pineau, “The Ubuntu Dialogue Corpus: A Large Dataset
for Research in Unstructured Multi-Turn Dialogue Systems,” Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, 2015 285 (cit. on p. 31).

[129] S. Zamanirad, B. Benatallah, C. Rodriguez, M. Yaghoubzadehfard, S. Bouguelia, and
H. Brabra, “State machine based human-bot conversation model and services,”
International Conference on Advanced Information Systems Engineering, Springer, 2020 199
(cit. on p. 31).

[130] I. V. Serban, A. Garcia-Duran, C. Gulcehre, S. Ahn, S. Chandar, A. Courville, and Y. Bengio,
“Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid
Question-Answer Corpus,” Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2016 588 (cit. on p. 32).

[131] K. McKeown, Paraphrasing questions using given and new information,
American Journal of Computational Linguistics 9 (1983) 1 (cit. on p. 32).

125

Bibliography

[132] C. Quirk, C. Brockett, and W. B. Dolan,
“Monolingual machine translation for paraphrase generation,”
Proceedings of the 2004 conference on empirical methods in natural language processing,
2004 142 (cit. on p. 32).

[133] S. Wubben, A. Van Den Bosch, and E. Krahmer,
“Paraphrase generation as monolingual translation: Data and evaluation,”
Proceedings of the 6th International Natural Language Generation Conference, 2010
(cit. on p. 32).

[134] A. Prakash, S. A. Hasan, K. Lee, V. Datla, A. Qadir, J. Liu, and O. Farri,
“Neural Paraphrase Generation with Stacked Residual LSTM Networks,”
Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, 2016 2923 (cit. on p. 32).

[135] S. A. Hasan, B. Liu, J. Liu, A. Qadir, K. Lee, V. Datla, A. Prakash, and O. Farri,
“Neural clinical paraphrase generation with attention,”
Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP), 2016 42
(cit. on p. 32).

[136] E. Egonmwan and Y. Chali, “Transformer and seq2seq model for paraphrase generation,”
Proceedings of the 3rd Workshop on Neural Generation and Translation, 2019 249
(cit. on p. 32).

[137] M. Honnibal and I. Montani, Natural language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing,
Unpublished software application. https://spacy. io (2017) (cit. on p. 34).

[138] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding Back-Translation at Scale,”
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
2018 489 (cit. on pp. 36, 99).

[139] C. Federmann, O. Elachqar, and C. Quirk,
“Multilingual whispers: Generating paraphrases with translation,”
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), 2019 17
(cit. on pp. 36, 99).

[140] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,”
International Conference on Machine Learning, PMLR, 2017 1243
(cit. on pp. 38, 40, 54, 55, 102, 106).

[141] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“Bleu: a method for automatic evaluation of machine translation,”
Proceedings of the 40th annual meeting of the Association for Computational Linguistics,
2002 311 (cit. on pp. 38, 54).

[142] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evaluation with improved
correlation with human judgments,” Proceedings of the acl workshop on intrinsic and
extrinsic evaluation measures for machine translation and/or summarization, 2005 65
(cit. on pp. 39, 54).

126

[143] P. Gupta, S. Mehri, T. Zhao, A. Pavel, M. Eskenazi, and J. P. Bigham, “Investigating
Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References,”
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue, 2019 379
(cit. on p. 39).

[144] A.-C. Ngonga Ngomo, L. Bühmann, C. Unger, J. Lehmann, and D. Gerber,
“Sorry, i don’t speak SPARQL: translating SPARQL queries into natural language,”
Proceedings of the 22nd international conference on World Wide Web, 2013 977
(cit. on p. 40).

[145] B. Fu, Y. Qiu, C. Tang, Y. Li, H. Yu, and J. Sun, A survey on complex question answering
over knowledge base: Recent advances and challenges,
arXiv preprint arXiv:2007.13069 (2020) (cit. on pp. 44, 90).

[146] K. Singh, I. Lytra, A. S. Radhakrishna, S. Shekarpour, M.-E. Vidal, and J. Lehmann,
No one is perfect: Analysing the performance of question answering components over the
dbpedia knowledge graph, Journal of Web Semantics 65 (2020) 100594 (cit. on p. 44).

[147] A. Kendall, Y. Gal, and R. Cipolla,
“Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,”
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018 7482
(cit. on pp. 44, 50, 82).

[148] T.-H. Wen, D. Vandyke, N. Mrkšić, M. Gasic, L. M. R. Barahona, P.-H. Su, S. Ultes, and
S. Young, “A Network-based End-to-End Trainable Task-oriented Dialogue System,”
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, 2017 438 (cit. on p. 45).

[149] A. Bordes, Y.-L. Boureau, and J. Weston, Learning End-to-End Goal-Oriented Dialog, (2016)
(cit. on p. 45).

[150] A. Madotto, C.-S. Wu, and P. Fung, “Mem2Seq: Effectively Incorporating Knowledge Bases
into End-to-End Task-Oriented Dialog Systems,” Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 2018 1468
(cit. on p. 45).

[151] M. Eric, L. Krishnan, F. Charette, and C. D. Manning,
“Key-Value Retrieval Networks for Task-Oriented Dialogue,”
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, 2017 37
(cit. on p. 45).

[152] W. Lei, X. Jin, M.-Y. Kan, Z. Ren, X. He, and D. Yin, “Sequicity: Simplifying task-oriented
dialogue systems with single sequence-to-sequence architectures,” Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2018 1437 (cit. on p. 46).

[153] J. Gu, Z. Lu, H. Li, and V. O. Li,
“Incorporating Copying Mechanism in Sequence-to-Sequence Learning,”
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016 1631 (cit. on p. 46).

127

Bibliography

[154] F. Kassawat, D. Chaudhuri, and J. Lehmann,
“Incorporating joint embeddings into goal-oriented dialogues with multi-task learning,”
European Semantic Web Conference, Springer, 2019 225 (cit. on pp. 46, 65).

[155] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini,
“Creating Training Corpora for NLG Micro-Planners,” Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017 179
(cit. on p. 46).

[156] H. Gao, L. Wu, P. Hu, and F. Xu,
“RDF-to-Text Generation with Graph-augmented Structural Neural Encoders.,” IJCAI, 2020
3030 (cit. on p. 46).

[157] C. Zhao, M. Walker, and S. Chaturvedi,
“Bridging the structural gap between encoding and decoding for data-to-text generation,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
2020 2481 (cit. on p. 46).

[158] L. Song, A. Wang, J. Su, Y. Zhang, K. Xu, Y. Ge, and D. Yu,
“Structural Information Preserving for Graph-to-Text Generation,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
2020 7987 (cit. on p. 46).

[159] J. Liu, S. Chen, B. Wang, J. Zhang, N. Li, and T. Xu, “Attention as Relation: Learning
Supervised Multi-head Self-Attention for Relation Extraction.,” IJCAI, 2020 3787
(cit. on p. 46).

[160] X. Shen, E. Chang, H. Su, C. Niu, and D. Klakow,
“Neural Data-to-Text Generation via Jointly Learning the Segmentation and Correspondence,”
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
2020 7155 (cit. on p. 46).

[161] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
“LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention,”
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020 6442 (cit. on p. 47).

[162] J. Pennington, R. Socher, and C. D. Manning,
“Glove: Global vectors for word representation,” Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014 1532
(cit. on pp. 47, 69, 78).

[163] X. Wei, T. Zhang, Y. Li, Y. Zhang, and F. Wu,
“Multi-modality cross attention network for image and sentence matching,”
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020
10941 (cit. on p. 49).

[164] S. Mohla, S. Pande, B. Banerjee, and S. Chaudhuri, “Fusatnet: Dual attention based
spectrospatial multimodal fusion network for hyperspectral and lidar classification,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020 92 (cit. on p. 49).

128

[165] J. Armitage, E. Kacupaj, G. Tahmasebzadeh, M. Maleshkova, R. Ewerth, and J. Lehmann,
“Mlm: A benchmark dataset for multitask learning with multiple languages and modalities,”
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, 2020 2967 (cit. on pp. 50, 82).

[166] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ICLR (Poster), 2015
(cit. on pp. 52, 83).

[167] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting,
The journal of machine learning research 15 (2014) 1929 (cit. on pp. 52, 83).

[168] D. Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. Panasiuk, I. Toma, J. Umbrich, and
A. Wahler, “Why we need knowledge graphs: Applications,” Knowledge Graphs,
Springer, 2020 95 (cit. on p. 62).

[169] K. Bollacker, R. Cook, and P. Tufts,
“Freebase: A shared database of structured general human knowledge,” AAAI, vol. 7, 2007
1962 (cit. on p. 62).

[170] R. Jia and P. Liang, “Data Recombination for Neural Semantic Parsing,”
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016 12 (cit. on p. 62).

[171] C. Liang, J. Berant, Q. Le, K. Forbus, and N. Lao,
“Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision,”
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017 23 (cit. on pp. 62–64).

[172] L. Dong and M. Lapata, “Coarse-to-Fine Decoding for Neural Semantic Parsing,”
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018 731 (cit. on p. 62).

[173] C. Xiao, M. Dymetman, and C. Gardent,
“Sequence-based structured prediction for semantic parsing,” Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2016
1341 (cit. on p. 63).

[174] L. Dong and M. Lapata, “Language to Logical Form with Neural Attention,”
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016 33 (cit. on p. 63).

[175] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song,
“Variational reasoning for question answering with knowledge graph,”
Thirty-Second AAAI Conference on Artificial Intelligence, 2018 (cit. on pp. 63, 64).

[176] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao,
“Question Answering on Freebase via Relation Extraction and Textual Evidence,”
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016 2326 (cit. on p. 63).

129

Bibliography

[177] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational ai,” The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, 2018 1371
(cit. on p. 64).

[178] D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer, “Neural network-based question
answering over knowledge graphs on word and character level,”
Proceedings of the 26th international conference on World Wide Web, 2017 1211
(cit. on p. 64).

[179] I. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau,
“Building end-to-end dialogue systems using generative hierarchical neural network models,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 1, 2016
(cit. on pp. 64, 72, 92).

[180] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston,
“Key-Value Memory Networks for Directly Reading Documents,”
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
2016 1400 (cit. on pp. 64, 72, 92).

[181] P. Marion, P. K. Nowak, and F. Piccinno, Structured Context and High-Coverage Grammar
for Conversational Question Answering over Knowledge Graphs,
arXiv preprint arXiv:2109.00269 (2021) (cit. on pp. 64, 102).

[182] R. Thirukovalluru, M. Sridhar, D. Thai, S. Chanumolu, N. Monath, S. Ananthakrishnan, and
A. McCallum,
“Knowledge Informed Semantic Parsing for Conversational Question Answering,”
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021),
2021 231 (cit. on p. 65).

[183] S. Vakulenko, S. Longpre, Z. Tu, and R. Anantha,
“Question rewriting for conversational question answering,”
Proceedings of the 14th ACM International Conference on Web Search and Data Mining,
2021 355 (cit. on pp. 65, 72).

[184] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Proceedings of the 28th
International Conference on Neural Information Processing Systems-Volume 2, 2015 2692
(cit. on pp. 65, 70, 71, 95).

[185] W. Lu, H. T. Ng, W. S. Lee, and L. Zettlemoyer,
“A generative model for parsing natural language to meaning representations,”
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
2008 783 (cit. on p. 67).

[186] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory networks,”
Proceedings of the 28th International Conference on Neural Information Processing
Systems-Volume 2, 2015 2440 (cit. on p. 72).

[187] Z. Li, Y. Zhang, Y. Wei, Y. Wu, and Q. Yang,
“End-to-End Adversarial Memory Network for Cross-domain Sentiment Classification.,”
IJCAI, 2017 2237 (cit. on p. 72).

130

[188] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al., Google’s neural machine translation system: Bridging the gap
between human and machine translation, arXiv preprint arXiv:1609.08144 (2016)
(cit. on p. 78).

[189] I. O. Mulang, K. Singh, A. Vyas, S. Shekarpour, M.-E. Vidal, J. Lehmann, and S. Auer,
“Encoding knowledge graph entity aliases in attentive neural network for wikidata entity
linking,” International Conference on Web Information Systems Engineering, Springer, 2020
328 (cit. on p. 86).

[190] M. Zaib, W. E. Zhang, Q. Z. Sheng, A. Mahmood, and Y. Zhang,
Conversational Question Answering: A Survey, arXiv preprint arXiv:2106.00874 (2021)
(cit. on pp. 90, 92).

[191] K. Singh, A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas,
A. Khikmatullaev, D. Punjani, C. Lange, et al.,
“Why reinvent the wheel: Let’s build question answering systems together,”
Proceedings of the 2018 World Wide Web Conference, 2018 1247 (cit. on p. 90).

[192] A. Einolghozati, A. Gupta, K. Diedrick, and S. Gupta,
“Sound Natural: Content Rephrasing in Dialog Systems,” Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2020 5101
(cit. on pp. 90, 99, 100).

[193] D. Peskov, N. Clarke, J. Krone, B. Fodor, Y. Zhang, A. Youssef, and M. Diab,
“Multi-domain goal-oriented dialogues (multidogo): Strategies toward curating and
annotating large scale dialogue data,” Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019 4526 (cit. on p. 90).

[194] A. Acharya, S. Adhikari, S. Agarwal, V. Auvray, N. Belgamwar, A. Biswas, S. Chandra,
T. Chung, M. Fazel-Zarandi, R. Gabriel, et al., “Alexa Conversations: An Extensible
Data-driven Approach for Building Task-oriented Dialogue Systems,”
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies: Demonstrations, 2021 125
(cit. on p. 90).

[195] T. F. Doyle, The role of context in meaning and understanding,
PhD thesis: Universitaet Potsdam, 2007 (cit. on p. 91).

[196] J. J. Lin, D. Quan, V. Sinha, K. Bakshi, D. Huynh, B. Katz, and D. R. Karger,
“What Makes a Good Answer? The Role of Context in Question Answering.,” INTERACT,
vol. 3, Citeseer, 2003 25 (cit. on p. 91).

[197] H. Bast and E. Haussmann, “More accurate question answering on freebase,” Proceedings of
the 24th ACM International on Conference on Information and Knowledge Management,
2015 1431 (cit. on p. 92).

131

Bibliography

[198] W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic Parsing via Staged Query Graph
Generation: Question Answering with Knowledge Base,” Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), 2015 1321
(cit. on p. 92).

[199] M. Yu, W. Yin, K. S. Hasan, C. dos Santos, B. Xiang, and B. Zhou,
“Improved Neural Relation Detection for Knowledge Base Question Answering,”
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017 571 (cit. on p. 92).

[200] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit,
“A Decomposable Attention Model for Natural Language Inference,”
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
2016 2249 (cit. on p. 92).

[201] G. Maheshwari, P. Trivedi, D. Lukovnikov, N. Chakraborty, A. Fischer, and J. Lehmann,
“Learning to rank query graphs for complex question answering over knowledge graphs,”
International semantic web conference, Springer, 2019 487 (cit. on p. 92).

[202] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
Language models are unsupervised multitask learners, OpenAI blog 1 (2019) 9 (cit. on p. 94).

[203] A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever,
Better language models and their implications,
OpenAI Blog https://openai. com/blog/better-language-models 1 (2019) 2 (cit. on p. 96).

[204] E. Kacupaj, K. Singh, M. Maleshkova, and J. Lehmann, An Answer Verbalization Dataset for
Conversational Question Answerings over Knowledge Graphs,
arXiv preprint arXiv:2208.06734 (2022) (cit. on p. 99).

[205] O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck,
A. J. Yepes, P. Koehn, C. Monz, et al.,
“Proceedings of the Third Conference on Machine Translation,”
Proceedings of the Third Conference on Machine Translation: Research Papers, 2018
(cit. on p. 99).

[206] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
International Conference on Learning Representations, 2018 (cit. on p. 101).

[207] P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, and L. Getoor,
“User preferences for hybrid explanations,”
Proceedings of the Eleventh ACM Conference on Recommender Systems, 2017 84
(cit. on p. 113).

[208] S. Shekarpour, A. Nadgeri, and K. Singh, QA2Explanation: Generating and Evaluating
Explanations for Question Answering Systems over Knowledge Graph,
arXiv preprint arXiv:2010.08323 (2020) (cit. on p. 113).

132

APPENDIX A

List of Publications

• Conference Papers (peer reviewed)

1. Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh Thakkar, Jens Lehmann, and Maria
Maleshkova. “Conversational Question Answering over Knowledge Graphs with Trans-
former and Graph Attention Networks.” In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pp.
850-862. 2021. DOI: 10.18653/v1/2021.eacl-main.72 (part of the dissertation)

2. Endri Kacupaj, Shyamnath Premnadh, Kuldeep Singh, Jens Lehmann, and Maria
Maleshkova. “VOGUE: Answer Verbalization Through Multi-Task Learning.” In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 563-579. Springer, Cham, 2021. DOI: 10.1007/978-3-030-86523-8_34 (part of the
dissertation)

3. Joan Plepi, Endri Kacupaj, Kuldeep Singh, Harsh Thakkar, and Jens Lehmann. “Context
Transformer with Stacked Pointer Networks for Conversational Question Answering over
Knowledge Graphs.” In European Semantic Web Conference, pp. 356-371. Springer,
Cham, 2021. DOI: 10.1007/978-3-030-77385-4_21 (part of the dissertation)

4. Endri Kacupaj, Barshana Banerjee, Kuldeep Singh, and Jens Lehmann. “ParaQA: A
Question Answering Dataset with Paraphrase Responses for Single-Turn Conversation.”
In European Semantic Web Conference, pp. 598-613. Springer, Cham, 2021. DOI:
10.1007/978-3-030-77385-4_36 (part of the dissertation)

5. Endri Kacupaj, Hamid Zafar, Jens Lehmann, and Maria Maleshkova. “VQuAnDa:
Verbalization question answering dataset.” In European Semantic Web Conference, pp.
531-547. Springer, Cham, 2020. DOI: 10.1007/978-3-030-49461-2_31

6. Endri Kacupaj, Kuldeep Singh, Maria Maleshkova, and Jens Lehmann. “Contrastive
Representation Learning for Conversational Question Answering over Knowledge Graphs.”
In Proceedings of the 31st ACM International Conference on Information & Knowl-
edge Management, pp. 925-934. 2022. DOI: 10.1145/3511808.3557267 (part of the
dissertation)

7. Jason Armitage, Endri Kacupaj, Golsa Tahmasebzadeh, Maria Maleshkova, Ralph
Ewerth, and Jens Lehmann. “MLM: A benchmark dataset for multitask learning with

133

http://dx.doi.org/10.18653/v1/2021.eacl-main.72
https://doi.org/10.1007/978-3-030-86523-8_34
https://doi.org/10.1007/978-3-030-77385-4_21
https://doi.org/10.1007/978-3-030-77385-4_36
https://doi.org/10.1007/978-3-030-49461-2_31
https://dl.acm.org/doi/10.1145/3511808.3557267

Appendix A List of Publications

multiple languages and modalities.” In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 2967-2974. 2020. DOI:
10.1145/3340531.3412783

• Demo Papers (peer reviewed)

8. Golsa Tahmasebzadeh, Endri Kacupaj, Eric Müller-Budack, Sherzod Hakimov, Jens
Lehmann, and Ralph Ewerth. 2021. “GeoWINE: Geolocation based Wiki, Image, News
and Event Retrieval.” In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’21). Association for
ComputingMachinery, NewYork, NY,USA, 2565–2569. DOI: 10.1145/3404835.3462786

• Workshop Articles (peer reviewed)

9. Simon Gottschalk, Endri Kacupaj, Sara Abdollahi, Diego Alves, Gabriel Amaral,
Elisavet Koutsiana, Tin Kuculo et al. “OEKG: The Open Event Knowledge Graph.” In
CLEOPATRA@WWW, pp. 61-75. 2021. DOI: Vol-2829/paper5

• Miscellaneous Papers (peer reviewed)
Following publication originated during the thesis but is not part of the thesis itself.
10. Aynur Guluzade, Endri Kacupaj, and Maria Maleshkova. “Demographic Aware Prob-
abilistic Medical Knowledge Graph Embeddings of Electronic Medical Records.” In
International Conference on Artificial Intelligence in Medicine, pp. 408-417. Springer,
Cham, 2021. DOI: 10.1007/978-3-030-77211-6_48

134

https://doi.org/10.1145/3340531.3412783
https://doi.org/10.1145/3404835.3462786
http://ceur-ws.org/Vol-2829/paper5.pdf
https://doi.org/10.1007/978-3-030-77211-6_48

List of Figures

1.1 A conversational question answering example with answers derived from knowledge
graphs. 3

1.2 A conversational question answering example with verbalized answers. 4
1.3 Demonstrating the connection of the four research questions to the main research

question. 8
1.4 Illustrating the contributions to the research questions and the scope they address.

Next to contributions, we indicate associated works. 10

2.1 An abstract illustration of how semantic parsing and information retrieval based
KGQA systems operate (Source [64]). 17

2.2 A sequence to sequence (seq2seq)/encoder-decoder model example. It reads an input
sentence “a b c” and produces “w x y z” as the output sentence. 19

2.3 A pointer network model example. It reads an input sentence “a b c” and each decoder
step selects an input element as the output sequence. 20

2.4 Transformer architecture (Source [82]). 21
2.5 Scaled Dot-Product Attention and Multi-Head Attention utilized in Transformer

(Source [82]). 22
2.6 Pre-training and fine-tuning procedures for BERT (Source [92]). 23
2.7 (left) BERT bidirectional encoder. (right) GPT autoregressive decoder (Source [93]). 24
2.8 BART architecture with BERT bidirectional encoder and GPT autoregressive decoder

(Source [93]). 24
2.9 (left) The attention mechanism employed by GAT. (right) Multi-head attention in GAT

(Source [107]). 25
2.10 Parameter sharing techniques for multi-task learning in deep neural networks (Source

[11]). 26

3.1 Overview of dataset generation workflow. Our proposed generation workflow consists
of six modules in total. The first module is “Input & Initial Verbalization”, which is
responsible for producing the initial verbalized results for each input question. The
next three modules (“Entity-Type Identification though Named Entity Recognition”,
“Gender Identification”, and “New Verification Template”) are applied simultaneously
and provide new verbalized sentences based on the initial ones. Subsequently, the
paraphrasing module, named “Paraphrase through Back-Translation”, applies back
translation to generated answers. Finally, in the last step (“Rectify Verbalization”), we
rectify all the paraphrased results through a peer-review process. 34

3.2 Total paraphrased responses per question. 36

135

List of Figures

3.3 Percentage of generated results from each step. 37

4.1 A QA pipeline with integrated answer verbalization module. Our focus is the answer
verbalization task as we assume logical form is generated by a QA system using the
input question. 45

4.2 VOGUE (Verbalization thrOuGh mUlti-task lEarning) architecture. It consists of
four modules: 1) A dual encoder that is responsible to encode both inputs (question,
logical form). 2) A similarity threshold module that determines whether the encoded
inputs are relevant and determines if both will be used for verbalization. 3) A
cross-attention module that performs question and query matching by jointly modeling
the relationships of question words and query actions. 4) A hybrid decoder that
generates the verbalized answer using the information of both question and logical
form representations from the cross-attention module. 48

4.3 Perplexity curves for all three answer verbalization datasets. 56

5.1 Conversational Question Answering task with examples similar to CSQA dataset [117]. 63

5.2 CARTON (Context trAnsformeR sTacked pOinter Networks) architecture. It consists
of three modules: 1) A Transformer-based contextual encoder finds the representation
of the current context of the dialogue. 2) A logical form decoder generates the pattern
of the logical forms defined in Table 5.1. 3) The stacked pointer network initializes
the KG items to fetch the correct answer. 66

5.3 LASAGNE (Multi-task Semantic Parsing with Transformer and Graph Attention
Networks) architecture. It consists of three modules: 1) A semantic parsing-based
Transformer model, containing a contextual encoder and a grammar-guided decoder
using the grammar defined in Table 5.6. 2) An entity recognition module identifies all
the entities in the context together with their types and links them to the knowledge
graph. It filters them based on the context and permutes them, in case of more than
one required entity. Finally, 3) a graph attention-based module that uses a GAT
network initialised with BERT embeddings to incorporate and exploit correlations
between (entity) types and predicates. The resulting node embeddings, together with
the context hidden state (ℎ (𝑒𝑛𝑐)𝑐𝑡 𝑥) and decoder hidden state (ℎ

(𝑑𝑒𝑐)), are used to score
the nodes and predict the corresponding type and predicate. 77

5.4 The aggregation process of graph attention layer between the (entity) types and
predicates from Wikidata knowledge graph. The dashed lines represent an auxiliary
edge, while 𝑎𝑖 𝑗 represents relative attention values of the edge. We also incorporate
the predicates (relations) as nodes of the graph instead of edges. 81

6.1 Motivating example illustrating a sample conversation [16]. For conversational
question answering over KGs, availability of entire dialog history, domain information,
and verbalized answers may act as sources of context in determining the ranking of KG
paths while retrieving correct answers. Our proposed approach models conversational
context and KG paths in a common space by jointly learning the embeddings for
homogeneous representation. 91

136

List of Figures

6.2 PRALINE (Path Ranking for conversAtionaL questIon aNswEring) architecture.
It consists of four modules: 1) A Transformer-based encoder that encodes the
input question 𝑞𝑡 and conversational history 𝐶𝑡 to produce the encoder contextual
embeddings ℎ (𝑒𝑛𝑐) . 2) A domain identification pointer-based network to identify
the domain of the input conversation given the contextual embeddings ℎ (𝑒𝑛𝑐) . 3)
A ranking module that learns a joint embedding space 𝜙𝑐, 𝜙𝑝 for the conversation
(contextual embeddings ℎ (𝑒𝑛𝑐) concatenated with selected domain KG embeddings
ℎ
(𝑑𝑚)) and the context path 𝑃𝑡𝑐. 4) A GPT-based verbalization decoder that generates
fluent answer responses while maintaining grammatical correctness. 95

137

List of Tables

3.1 Comparison of ParaQA with existing QA datasets over various dimensions. Lack of
paraphrased utterances of answers remains a key gap in literature. 31

3.2 Examples from ParaQA. 33
3.3 Examples generated from each automatic step/module of our proposed generation

framework. The presented responses are the outputs from the corresponding modules
before they undergo the final peer-review step. The bold text of the initial answer
indicates the part of the sentence where the corresponding module is focusing. The
underlined text on the generated results reveals the changes made from the module. . 35

3.4 BLEU score experiment results. 40
3.5 METEOR score experiment results. 40

4.1 Dataset statistics, including the (average) number of tokens per question sentence, the
(average) number of tokens per answer sentence and the vocabulary list size. 51

4.2 Predefined grammar with respective actions to generate logical forms. 53
4.3 Dataset examples annotated with gold logical forms. 53
4.4 Results on answer verbalization. VOGUE outperforms all existing baselines and

achieves the new state of the art for both the BLEU andMETEOR scores. The baseline
experiment results are reported with two inputs: Question (Q) and gold Logical Form
(LF), while VOGUE employs a Hybrid (H) approach. 54

4.5 Results of the answer verbalization with a semantic parsing QA system. VOGUE still
outperforms all baselines. For the baselines we employ only the question as input,
while our framework employs the similarity threshold module to determine whether a
hybrid verbalization can be performed. 55

4.6 Ablation study results that indicate the effectiveness of cross attention and multi-task
learning. The first row contains the results of the VOGUE framework when training
all four modules with multi-task learning. The second and third rows selectively
remove the cross attention and the multi-task learning from VOGUE. Best values in bold. 56

4.7 Similarity threshold f1-score results for each dataset. 57
4.8 Sample output of our framework. 58

5.1 Predefined grammar with respective actions to generate logical forms. 67
5.2 Examples from the CSQA dataset [117], annotated with gold logical forms. 68
5.3 Comparisons among baseline models on the CSQA dataset having 200K dialogues

with 1.6M turns, and over 12.8M entities. 73
5.4 CARTON ablation study. “W/o St. Pointer” column shows results when stacked

pointers in CARTON is replaced by classifiers. 74

139

List of Tables

5.5 CARTON stacked pointer networks results for each question type. We report
CARTON’s accuracy in predicting the KG items such as entity, predicate, or type. . . 75

5.6 Predefined grammar with respective actions to generate logical forms. 78
5.7 LASAGNE’s performance comparison on the CSQA dataset having 200K dialogues

with 1.6M turns and over 12.8M entities. LASAGNE achieves “overall” (weighted
average on all question types) new state-of-the-art for both the F1 score and the
question type results’ accuracy metric. 84

5.8 The effectiveness of the GAT and the multi-task learning. The first column contains the
results of the LASAGNE framework, where all the modules are trained simultaneously.
The second and third columns selectively remove the GAT and the multi-task learning
from LASAGNE. 85

5.9 Tasks accuracy of the LASAGNE framework. 86
5.10 Comparing MaSP [13] and LASAGNE for entity recognition performance. 86

6.1 Notation for concepts in PRALINE. 93
6.2 Comparison of “Verbal”-ConvQuestions and “Verbal”-ConvRef with existing conver-

sational KGQA datasets in different dimensions. The lack of answer verbalization and
reformulated utterances remains a key gap in the literature. 99

6.3 Conversation examples from ConvQuestions dataset extended with verbalized answers.
Each conversation in the dataset consists of five turns. 100

6.4 Overall results on employed datasets. The effect of incorporating conversational
context in PRALINE has positively impacted empirical results, achieving better results
than baselines. Best values are in bold. 102

6.5 To compare the KG path ranking performance, we report fine-grained results across
different domains of both benchmarks on ranking metrics. CONVEX does not report
domain-specific values on ConvRef dataset, hence omitted from the respective table.
PRALINE maintains an empirical edge on baselines while ranking the KG paths. Best
values are in bold. 103

6.6 PRALINE detailed ranking results across different domains. We additionally report
results for Hits@10 and Mean Rank (MR). For MR lower is better. 104

6.7 The effectiveness of including verbalized answers, entire dialog history, and domain
information. The first row (from top) contains the results of PRALINE with all
available contexts. The second and third-row selectively remove the verbalized
answers and domain information respectively. 4th row omits the full conversational
history and includes only the previous turn. In the last row, we show results when we
train modules independently, illustrating the advantage of joint training of PRALINE
modules. 105

6.8 Domain identification results. 106
6.9 Answer verbalization results. 106
6.10 Detailed answer verbalization results on “Verbal”-ConvQuestions dataset across

different domains. 106
6.11 Error rates of PRALINE answer verbalization compared to other baseline models. . . 107

140

	Introduction
	Motivation
	Problem Statement and Challenges
	Answer Verbalization Challenges
	ConvQA Challenges
	Multi-Task Learning Challenges

	Research Questions
	Thesis Overview
	Contributions
	Publications

	Thesis Outline

	Background
	Knowledge Graph
	Question Answering over Knowledge Graph
	Semantic Parsing
	Information Retrieval

	Deep Neural Network Architectures
	Sequence to Sequence Networks
	Pointer Networks
	Transformer Networks
	Graph Attention Networks

	Multi-Task Learning
	Approaches
	Mechanisms

	Extending Question Answering Resources to Support Answer Verbalization
	Introduction
	Related Work
	ParaQA: A Question Answering Dataset with Paraphrase Responses
	Generation Workflow
	Dataset Statistics

	Availability and Sustainability
	Experimental Setup
	Results
	Reusability and Impact
	Summary

	Answer Verbalization via Multi-Task Learning
	Introduction
	Related Work
	Task Definition
	Verbalization Through Multi-Task Learning
	Dual Encoder
	Similarity Threshold
	Cross Attention
	Hybrid Decoder

	Mutli-Task Learning
	Experimental Setup
	Results
	Ablation Study
	Error Analysis
	Case Study
	Summary

	Conversational Question Answering via Multi-Task Learning
	Introduction
	Related Work
	Context Transformer with Stacked Pointer Networks
	Approach
	Multi-Task Learning
	Experimental Setup
	Results
	Ablation Study
	Error Analysis
	Synopsis

	Multi-Task Semantic Parsing with Transformer and Graph Attention Networks
	Approach
	Multi-Task Learning
	Experimental Setup
	Results
	Ablation Study
	Task Analysis
	Error Analysis
	Synopsis

	Summary

	Conversational Question Answering with Answer Verbalization
	Introduction
	Related Work
	Concepts, Notation and Problem Formulation
	Path Ranking for Conversational Question Answering
	Encoder
	Domain Identification Pointer
	KG-path Ranking
	Verbalization Decoder

	Multi-Task Learning
	Benchmark with Answer Verbalization
	Experimental Setup
	Results
	Ablation Study
	Task Analysis
	Error Analysis
	Summary

	Conclusion and Future Directions
	Review of the Contributions
	Limitations and Future Directions

	Bibliography
	List of Publications
	List of Figures
	List of Tables

