
Deconstructing and Approaching
Heterogeneities in the Biomedical
Field via Computational Modeling

Kumulative Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

SEPEHR GOLRIZ KHATAMI

aus Esfahan, Iran

Bonn, 2022





Angefertigt mit Genehmigung
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Univ.-Prof. Dr. rer. nat. Martin Hofmann-Apitius
2. Gutachter: Univ.-Prof. Dr. rer. nat. Thomas Schultz
Tag der Promotion: 22.11.2022
Erscheinungsjahr: 2022





Abstract

Natural variation between human characteristics as well as differences across
collected datasets in disparate medical or research centers on various levels (e.g.,
semantical and technical) lead to high heterogeneity in terms of patients and data
in the biomedical field. These heterogeneities not only impede understanding of
disease pathology and clinical diagnosis but also their implications in the treatment
of disease are substantial. Moreover, these heterogeneities limit the impact of
computational solutions on clinical practice in spite of their high potential in
bringing significant advances in the biomedical domain.

In this thesis, we address the aforementioned issues in the context of complex
diseases, namely Alzheimer’s disease (AD) and multiple types of cancers. First, in
an in-depth study, we shed light on hurdles derived from heterogeneities and out-
line how they can restrict the impact of computational models in clinical practice
with special focus in AD. Then, to demonstrate the findings of the preceding work,
we present a comparative study on characterizing the order of pathological mark-
ers by applying a computational model, more specifically a data-driven one, to
multiple independent datasets collected in different research centers. In this work,
we investigate how heterogeneity across datasets can result in disparities among
the ordering of changes in AD biomarkers and influence the models’ impact on
clinical practices. Further, to provide a more meaningful biological context into
AD pathology, we use a pure knowledge-driven approach to showcase different
mechanisms of disease development and progression that genetic variants may
cause. Finally, we conclude this thesis by proposing a novel methodology to ad-
dress heterogeneity among cancer patients in the context of disease treatment. In
this publication, with the help of highly predictive machine learning models and
an innovative scoring algorithm, we evaluate whether a given sample that was
formerly classified as diseased could be predicted as normal after treatment with
a given drug taking into account the corresponding molecular signatures of that
particular sample.



In summary, this thesis presents the challenges and their implications brought
on by heterogeneities in the biomedical domain in order to understand disease
pathology and possible treatments, and attempt to uncover avenues to tackle the
hindrances. Such advances have numerous applications in the biomedical field,
ranging from patient stratification to drug discovery and achieving the ideal of
precision medicine.
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1 Introduction

Heterogeneity is formally defined as ‘diversity in character or content’ [1].
Extrapolating this definition to the biomedical domain, heterogeneity appears as
two main categories: i) diversity of patients, known as “patient heterogeneity”,
and ii) disparities across collected datasets of different medical or research centers
on various levels including semantical, statistical, technical, and clinical [2]. While
the former category (i.e., patient heterogeneity) originates from the complexity
of the human body and natural variation between certain characteristics of pa-
tients such as age, sex, beliefs, attitudes, disease pathology, and genetic profile [3,
4], the latter category is derived from varied factors including differences in the
distribution of measured variables and recording methods (e.g., using inconsis-
tent units and labels), study-specific patient recruitment processes (e.g., different
inclusion and exclusion criteria defined based on study goal), data measurement
tools (e.g., use of different machines from different manufacturers), and medical
practices across countries [5]. On the one hand, the two types of heterogeneity
are appreciated, each of which for a different reason. First, heterogeneity among
humans makes individuals unique in which heeding to this uniqueness helps to
identify subpopulations, base medical decisions on individual sample characteris-
tics and lay the fundaments for precision medicine. Further, individual datasets
with different characteristics can potentially provide exclusive, additional, and
complementary information, and their combination may help to gain more com-
prehensive insights into the investigated study. On the other hand, disregarding
or mishandling any of these types of heterogeneities poses unique challenges in
the biomedical field. First, not heeding to differences among individuals may lead
to poor biological resolution, inaccurate clinical conclusions in diagnosis, and
ineffective diseases treatments that all ultimately add to disease burdens [6]. This
challenge is becoming especially relevant with respect to large heterogeneities
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which are known to exist in complex disorders (e.g., neurodegenerative diseases
and cancers). Second, the characteristics of individual datasets can propagate into
their signals and bias the models derived from that particular dataset. This, in
turn, impedes validation, reproducibility, and generalizability of the models which
are crucial to make a model trustworthy, ensure robust scientific insights, and
applicable in clinical practice [7]. This challenge is becoming particularly pertinent
with reference to increasing popularity of computational-driven approaches, more
specifically data-driven-based solutions during recent years.

The publications in this thesis are centered around the aforementioned Hetero-
geneity - driven issues by focusing on three major topics, i) explanation of how
disparities across datasets limit the impact of computational models on clinical
practice, ii) advocating for heterogeneity handling across datasets in the context
of validation, reproducibility, and generalizability crises in parallel with utilizing
this heterogeneity to provide more comprehensive insights into disease pathology,
and iii) developing a methodology to contend with heterogeneity among patients
in the context of disease treatment in order to customize treatment of individuals
based on their specific disease characteristics and bring the concept of precision
medicine into reality.

Before presenting the publications contained in this thesis, the background is
given on several topics, including the complex diseases investigated in the course
of heterogeneity analyses, their respective biomarkers, heterogeneities and related
causes in them, the need for taking into account the heterogeneities, and finally,
the state-of-the-art of computational models utilized for the comprehension of
disease pathologies and treatment.

1.1 Neurodegenerative and cancer disorders

Neurodegenerative disease (NDD) and cancers are among the top five causes of
death in the world [8]. NDDs are a class of disorders characterized by the progres-
sive degeneration of neurons and associated cell types in the nervous system [9].
On the other hand, cancers are a group of conditions that are characterized by the
uncontrolled proliferation of cells and boosted resistance to cell death [10]. These
two groups of diseases impose immense social and economic burdens by not only
impacting the patients but also affecting their families, caregivers, and healthcare
systems. For example, dementia, an age-associated condition, alone affects over 55
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million individuals worldwide, necessitating the annual investment of 18 billion
hours of care by more than 17 million healthcare personnel at a cost of more than
one trillion dollars to address dementia-related issues [11]. Extrapolating these
statistics into the coming decades, an immeasurable socio-economic impact of
dementia worldwide is expected, given the societal ageing trend. The following
subsections introduce the most common types of dementia (i.e., Alzheimer’s dis-
ease) and four of the most deadliest cancers (i.e., kidney, liver, breast, and prostate)
which this thesis focuses on.

1.1.1 Alzheimer’s Disease

Alzheimer’s disease (AD), the most common form of neurodegenerative dis-
ease, is a multifaceted complex disease, characterized by progressive decline of
thinking, remembering, reasoning, and behavioral abilities to such an extent that it
can disrupt a person’s daily activities. While many hypotheses have been proposed
about the disease etiology, amyloid-beta (Aβ) and neurofibrillary tangles (NFTs)
are the two most widely known pathological hallmarks of AD and are considered
as major causes for neurodegeneration in AD. It has been demonstrated that these
neuropathological changes, which start to occur up to 10 to 20 years before the
onset of symptoms, impede the proper function of neurons by restricting their
communication, which ultimately leads to neuronal death [12, 13]. It has been
shown that neuronal deterioration first starts in the hippocampus, the primary
brain region for learning and memory, and later expands to the cerebral cortex,
which plays a major role in language processes and social behaviors [14]. Over
time, neuronal degeneration spreads to other parts of the brain, and loss of daily
living skills is gradually experienced by the patient [12, 15].

1.1.2 Kidney Cancer

Kidney cancer also called renal cancer, is the most common urological disease
with an estimated incidence of more than 400,000 cases annually [16]. Kidney
cancer has different types including, renal cell carcinoma (RCC), renal transitional
cell carcinoma, Wilms tumor, and renal sarcoma. RCC is the most common type
of kidney cancer, accounting for 90% of all cases, whereas renal sarcoma is rare
and accounts only for approximately 1% of all kidney cancers [17]. RCC arises
from the renal tubular epithelial cells and a range of risk factors from genetics to
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hypertension and lifestyle (e.g., smoking and obesity) contribute to the disease
initiation and progression [18]. It has been revealed that mutation in multiple genes,
including VHL, MET, FLCN, BAP1, FLCN, TSC1, TSC2, TFE3, TFEB, MITF, and
PTEN increases the risk of RCC [19]. These genes are involved in pathways that
respond to metabolic stress or nutrient stimulation (e.g., changes in oxygen, iron,
nutrients, or energy) and thus, kidney cancer can be fundamentally considered as
a metabolic disorder [20]. Similarly, it has been established that tobacco use and
excess body weight can also predispose persons to the development of RCC [21,
22]. Patients with renal cancer have no symptoms in the early stages, however as
the tumor grows larger, different symptoms such as blood in urine, lump in the
abdomen, and anemia may appear.

1.1.3 Liver Cancer

Liver cancer is the sixth most commonly diagnosed cancer with an estimated
incidence of more than one million cases annually [23]. Typically, liver cancer is
classified into primary and secondary types, each of which incorporates several
subtypes. While in the primary types, such as hepatocellular carcinoma (HCC)
and hepatoblastoma, cancer initiates in the liver, in the secondary class, such as
hemangioma and hepatic adenoma, the tumors are not liver cancers, but rather,
have spread to the liver from other parts of the body, e.g., the pancreas, colon, or
stomach [24]. HCC is the main form of liver cancer that accounts for 90% of all
liver cancers [25, 26]. During the last few years, extensive research for unraveling
the risk factors and molecular profiles of HCC has been conducted. It has been
discovered that HCC develops from chronic liver disease caused by various risk
factors such as chronic hepatitis B and C virus [27, 28]. Moreover, it has been
described that mutation and unexpected activity of genes such as TP53, CTNNB1,
ARID1A, and FGF also contribute to HCC development [24]. HCC patients usually
experience no symptoms and thus, diagnosis of HCC is often made with advanced
disease when patients already have some degree of liver impairment. This, in
turn, results in no effective treatments that would improve the survival of HCC
patients.
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1.1.4 Breast Cancer

Breast cancer is the most common cancer type and the second leading cause of
cancer death in females, worldwide [29]. In general, breast cancer is classified into
invasive and non-invasive types, each of which includes different subtypes. In
non-invasive types, such as lobular carcinoma in situ and ductal carcinoma in situ,
the abnormal cells have not spread beyond the lobule or ducts where it is located.
In contrast, in invasive types such as infiltrating lobular carcinoma and infiltrating
ductal carcinoma, the abnormal cells spread from lobules or ducts to close prox-
imity with breast tissue [29]. Invasive breast cancer, more specifically, infiltrating
ductal carcinoma is the most common type — accounting for approximately 80% of
all cases. A wide range of risk factors from sex, age, lifestyle, and family history to
estrogen and gene mutations increase the possibility of initiation and progression
of breast cancer. For example, it has been observed that mutation and abnormal
activity of BRCA1, BRCA2, HER2, EGFR, and c-Myc genes contribute to breast
cancer development. Similarly, it has been shown that undue alcohol drinking
and excessive dietary fat intake can increase the risk of breast cancer [30]. While
different symptoms such as change in size or shape of the breast, nipple discharge,
and change in breast skin texture are defined as early indications of breast cancer,
the majority of patients with breast cancer do not have any symptoms when they
are first diagnosed with the disease.

1.1.5 Prostate Cancer

Prostate cancer is the most common cancer type and the fourth leading cause
of cancer death in males, worldwide [31, 32]. Prostate cancer has different sub-
types including, adenocarcinomas, interstitial cell carcinoma, and neuroendocrine
carcinomas in which adenocarcinomas is by far the most common type of prostate
cancer, diagnosed in up to 95 percent of cases [33]. Although the exact cause of
prostate cancer has not yet been fully discovered, a broad range of risk factors
from endogenous (e.g., genetics and ethnicity) to exogenous ones (e.g., diet and
occupation) have been established contributing to the initiation and progression
of the disease [34, 35]. For example, evidence has been shown that over 100 single
nucleotide polymorphisms and genes such as HPC1, PMS2, HPCX, CAPB, and
BRIP1 have been associated with an increased risk of prostate cancer [36, 37].
Similarly, it is believed that a higher saturated fat intake and a higher vitamin
A level may contribute to prostate cancer [38, 39]. Unlike the other cancer types,
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prostate cancer grows very slowly and does not expand to other body organs
rapidly. This not only explains why prostate cancer may not cause any symptoms
for a long time but also justifies why it can often be managed well even after it has
spread to other parts of the body. Nevertheless, the most common prostate cancer
symptoms are frequent urination, weak or interrupted urine flow or the need to
strain to empty the bladder, an urge to urinate at night, and blood in the urine are
the most common prostate cancer symptoms.

1.2 Biomarkers in Alzheimer’s disease and cancers

Biomarker, an amalgamation of “biological marker”, is an indicator of biolog-
ical or pathological processes, or a response to a therapeutic intervention that
could be objectively measured and evaluated [40]. Biomarkers can be classified
based on different parameters including their characteristics or their application.
For example, based on characteristics, biomarkers can be categorized as non-
molecular biomarkers (e.g., imaging biomarkers) or molecular biomarkers (e.g.,
lipids metabolites). Similarly, based on applications, biomarkers can be grouped
including diagnostic, and prognostic, as well as biomarkers for investigation of
the response to a therapeutic intervention. While various biomarkers have been
established for the five aforementioned disorders, the commonly used biomarkers
are explored for each of them in the following.

• Alzheimer’s disease: a wide range of biomarkers throughout different bio-
logical scales has been established in AD, including, i) fluid-based biomark-
ers which are either extracted from the blood,such as glial fibrillary acidic
protein [41] or from cerebrospinal fluids (CSF), such as Aβ and hyperphos-
phorylated tau protein [42], ii) imaging-based biomarkers, including mag-
netic resonance imaging (MRI)-based biomarkers which measure the volume
of different brain regions as well as the structural integrity of the brain [43],
and positron emission tomography-based biomarkers which can be used
to investigate and monitor various brain systems such as neurotransmitter
systems [44], iii) cognitive-based biomarkers which are used to measures
mental performances such as quantifying attention or episodic memory [45],
and iv) genetic-based biomarkers such as amyloid precursor protein (APP),
presenilin 1 (PSEN1), and Apolipoprotein E (APOE) [46, 47].

• Cancers: Various biomarker types especially genetic ones have been es-
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tablished in breast [48], prostate [49], kidney [50], and liver [51] cancers.
Although these gene-based biomarkers improve our understanding of the
underlying molecular disease mechanisms, they are highly unstable and
their clinical usage is limited due to multiple reasons, the first being the
heterogeneity among patients as well as tumors. Second, genes, do not act in
isolation, but through complex biological pathways. Therefore, it has been
suggested to map the data at the genetic level to functional modules i.e.,
pathways, which are not only interpretable but also more stable and optimize
patient-specific therapeutic strategies. Different pathway-based biomarkers
have been realized in these cancers. As an illustration, lectin-induced comple-
ment pathway, peptide ligand-binding receptors, immune-related pathways
including the inflammatory response, and metabolic-related pathways such
as oxidative phosphorylation signaling pathways are known pathway-based
biomarkers to recognize patients with breast cancers [52, 53]. Furthermore,
the growth hormone receptor signaling pathway, and the JAK-STAT cas-
cade involved in the growth hormone signaling pathway are widely-known
biomarkers in liver cancer [54]. Changes in the cell cycle and the p53 sig-
naling pathway are two major signatures that are known in patients with
prostate cancer [55]. Finally, glycolysis, propanoate metabolism, pyruvate
metabolism, urea cycle, and arginine/proline metabolism, as well as the non-
metabolic p53 and FAS pathways have been established for early diagnosis
and treatment in kidney cancer [51].

1.3 Heterogeneity in Alzheimer’s disease and cancers

AD and cancers are notoriously heterogeneous — each of which is present in
a variety of subgroups and has its unique set of histopathological and biological
characteristics. The subtypes, corresponding characteristics, and the related causes
are explored in the following subsections within the frame of each disease.

1.3.1 Heterogeneity in Alzheimer’s disease

Evidences indicate that there are variances between individual patients with
AD in terms of genetics, neuropathology and pattern of brain atrophy, pathways
of disease development and progression, clinical manifestation, and the rate of
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disease progression. For example, studies on genetics of AD patient revealed that
there are two main subtypes namely early-onset (early-onset familial AD) and late-
onset (late-onset AD). While the former type presents in young patients (before age
65), the latter type manifests at divergent ages (usually after age 65) [56]. Based on
neuroimaging and neuropathological studies, there are three different patterns of
brain atrophy, namely typical (balanced NFT counts in the hippocampus and cor-
tex with balanced atrophy in both regions), limbic-predominant (more NFTs in the
hippocampus with more atrophy in the hippocampus), and hippocampal-sparing
(more NFTs in the cortex and more atrophy in cortical) [57, 58]. Recently, in the ex-
tension of previous studies, the fourth subtype called “minimal atrophy” has been
identified which is characterized by a lower level of atrophy and higher frequency
of NFTs distribution compared to other subtypes [59, 60]. Furthermore, given the
well-established association of AD with various pathophysiologic mechanisms
including tau-mediated neurodegeneration, Aβ, neuroinflammation, synaptic sig-
naling, and immune activity [61, 62], molecular-based subtyping studies have
identified different subtypes — each of which corresponds to dysregulation of one
mechanism (e.g., tau-predominant or Aβ-predominant subtype) or combinations
of multiple mechanisms in parallel such as decreased synaptic signaling and in-
creased immune response [63, 64]. Moreover, based on the clinical manifestation,
there exist two AD subtypes, namely amnestic and non-amnestic ones. While in the
amnestic subtype episodic memory loss is more prominent, in the non-amnestic
subtype, difficulties with language or visuospatial/perception deficits are more
predominant [65]. Additionally, it has been observed that the disease progresses at
different rates among patients with AD. while the slow progression form of AD
proceeds slowly, with an average survival time of 8 years and a mean cognitive
reduction of 3 Mini-Mental State Examination (MMSE) points per year, the rapid
form progresses fast with survival shorter than 4 years and MMSE score decreases
of more than 5 points per year [66].

The heterogeneity between patients with AD is attributed to different deter-
minants including, 1) risk factors such as age, sex, genetics and family history, 2)
protective factors such as education as a proxy of cognitive reserve, and 3) con-
comitant non-AD pathologies such as different forms of cerebrovascular disease
[67, 68]. For instance, it has been explained that heritability for AD is up to 80% and
genetic influences on timing of the disease [69]. Gatz et al. [69] have demonstrated
that early-onset familial type usually characterized by mendelian inheritance and
rare mutations in three autosomal dominant causal genes (i.e., amyloid precursor
protein, presenilin1, and presenilin 2), while there is no consistent mode of trans-
mission in late-onset type and APOE is considered to be the main responsible gene
in this type. Similarly, it has been revealed that the hippocampal-sparing subtype
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is more frequent in non-amnestic, males, APOE ϵ4 noncarriers, and younger age
patients, while the limbic-predominant subtype is more frequent in amnestic,
female, APOE ϵ4 carriers, and older age patients. On the other hand, it has been
shown that the patients with hippocampal-sparing subtype have the highest level
of education and disease-related clinical symptoms are not manifested as early as
patients with minimal atrophy subtype which have the lowest level of education.
It has been explained that patients with a higher level of education have a more
pathology-robust brain network which avoids aggregation of NFTs compared to
patients with a lower level of education [70]. This explains why patients with less
education develop symptoms earlier in the minimal atrophy subtype when the
NFTs start to form and before atrophy can be identified on MRI. In addition, it
has been demonstrated that cerebral amyloid angiopathy, a form of cerebrovas-
cular disease, makes a stronger contribution to hippocampal-sparing, whereas
hypertensive arteriopathy, another form of cerebrovascular disease, may make
a stronger contribution to limbic-predominant AD [71]. However, how non-AD
coexisting pathologies contribute to AD heterogeneity remains unanswered.

Heterogeneity in AD is not merely limited to variations between patients but
extends to cohort datasets that have been collected by different research centers
as well. This type of heterogeneity can be attributed to different factors including
study-specific inclusion and exclusion criteria that are specified in light of the
study’s objectives and could lead to a disparate distribution of biomarkers or
distinct statistical distributions of equivalent biomarkers. For example, the depart-
ment of defense Alzheimer’s Disease Neuroimaging Initiative sites [72] recruited
Vietnam veterans aged 60 to 80 years with a documented history of traumatic brain
injury (TBI) with or without posttraumatic stress disorder (PTSD) to investigate
the associations between a history of TBI and/or current PTSD and brain AD
pathology and thus comorbidity variables are the most accentual measurements.
However, presymptomatic evaluation of novel or experimental treatments for
AD [73] recruited individuals aged 60 years or older with a parental or multiple-
sibling history of AD to pursue innovative studies of pre-symptomatic AD and
prevention trials in which genetics and family variables are the most highlighted
ones. These disparities in key characteristics of cohort datasets impose flaws with
regard to interoperability between existing datasets both from a semantical and
statistical perspective which further hamper the robustness and reproducibility
of results achieved in the course of computational modeling. This together with
heterogeneity among patients explains why despite many years of research and
investment into AD, only a few computational models can be found that have an
impact on contemporary clinical practice and there is still no cure for AD [74] .
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Figure 1: Heterogeneity in cancer. The characteristics of cancers vary between patients
(i.e., interpatient heterogeneity), between primary and metastatic tumours in a single
patient (i.e., intertumor intrapatient heterogeneity), and between the individual cells of a
tumour (i.e., intratumor heterogeneity). This figure was adapted from [76].

1.3.2 Heterogeneity in Cancers

Cancer is a dynamic disease whose development and progression does not
follow a fixed course and continues to evolve even after malignant transformation.
This ongoing evolution produces a molecularly heterogeneous bulk tumor includ-
ing cancer cells with distinct molecular, morphological, phenotypic, and particular
degrees of sensitivity to antitumor treatment profiles [75]. These heterogeneities
are not only observed between different patients (intertumor/interpatient), but
also between distinct tumors within an individual patient (intersite/intertumor
intrapatient heterogeneity), and within a tumor in one patient (intratumor) (Figure
1).

Each of the heterogeneity types (i.e., intertumor, intersite, intratumor) can be
attributed to various factors [77, 78]. For example, it has been shown that inter-
patient heterogeneity generally results from specific factors of patients such as
genomic variations of germline, differences in somatic mutation profiles, and envi-
ronmental factors [75, 79]. This genetic variation can be passed from generation
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to generation and accumulation of multiple variation over many years not only
adds to heterogeneity but also increase the chance for developing certain cancers
(e.g., breast and prostate) in individual lifetime [80]. It has been estimate that up
to 10% of cancers are hereditary[81]. Furthermore, among various factors that give
rise to intratumor heterogeneity, genomic instability is the most prominent factor
[79]. Genomic instability refers to the high frequency of mutation in the genome
during the life cycle of cells which is attributed to various factors such as hypoxia
and therapeutic intervention [82–84]. It has been described that hypoxia promotes
genomic instability by disrupting genomic integrity through impeding replica-
tion errors correction (i.e., it downregulates DNA mismatch repair system) [85].
Similarly, it has been revealed that therapeutic intervention (e.g., chemotherapy)
contributes to genomic instability by increasing the tumor mutational burden and
selective pressure towards resistant cancerous cells populations [86, 87].

Heterogeneity has been observed in many cancers including prostate, breast,
kidney, and liver cancers, each of which is classified into various subtypes based
on genomic profiling. For example, based on specific gene fusions and mutations,
prostate cancer is categorized into seven subgroups including ERG, ETV, ETV4,
FLI1 SPOP, FOXA1, and IDH1 [88]. Similarly, breast cancer based on genomic
and transcriptomic profiling, expression pattern of hormone receptors (estrogen
and/or progesterone receptors; ER/PR), and epidermal growth factor receptor 2
(HER2/Neu) is subtyped into six different types namely: normal breast-like, lumi-
nal A (ER+/PR+ and Ki67-low), luminal B (ER+/PR+ and HER2+ or HER2–, and
Ki67-high), HER2-enriched (HER2+), basal-like and claudin-low [89]. Furthermore,
there are well-established genetic mutations that cause the four subtypes of kid-
ney cancer, including clear cell kidney cancer (mutations of VHL gene), papillary
kidney cancer (mutation of MET and fumarate hydratase), chromophobe kidney
cancer (mutations in folliculin), and translocation kidney cancer (translocation in
TFEB/TFE3 genes) [90]. Additionally, investigations on the mutational landscape
of liver cancer recognized five subtypes including mutation in TERT, CTNNB1,
TP53, ARID1A/2, and AXIN1 genes.

Despite considerable progress in tumor heterogeneity research, its origin and
consequences remain poorly understood and heterogeneity is still a great barrier
to the successful treatment of cancer. Moreover, according to current medication
approval requirements in Europe and the United States, the experimental treat-
ment group must show a clear statistically significant benefit as compared to the
control group for a medicine to be approved instead of its approval based on a
subpopulation of responders in a clinical trial [91]. These imply that it could be
the right time to take a step back, heed the heterogeneity and propose avenues to
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approach it before starting yet another (destined to fail?) study.

1.4 Need for addressing the heterogeneities

Heeding the two types of heterogeneities in the biomedical domain is of utmost
importance, each for a different reason(s) which are explored in the following
subsections within the frame of heterogeneity type.

• Heterogeneity among patients: There exist two important reasons to address
patient heterogeneity. First, it enhances the accuracy of disease diagnosis. For
example, it has been evidenced that memory problems are the most common
first cognitive symptom experienced at any age in patients with AD, while
non-memory symptoms (e.g., visuospatial problems) are more prevalent in
younger patients (roughly one of three patients with the disease onset before
the age of 65 years represents atypical indication of AD) [92, 93]. Neverthe-
less, diagnosis is frequently missed in young AD patients who experience
visuospatial problems or behavioral phenotypes, as many clinicians do not
think of AD when they examine a young patient with non-memory cognitive
symptoms. However, taking this heterogeneity into account can improve the
accuracy of disease diagnosis and help to identify individuals at risk of de-
veloping symptoms which ultimately leads to better individualized disease
management. Second, it helps to prescribe a more effective treatment as it
has been shown that a response triggered by a drug in a given patient may
differ if administered in another patient. For instance, it has been shown that
the luminal subtypes of breast cancer benefit from treatment with hormones.
However, the HER2 subtype not only does not experience any benefit from
hormone therapy but also cancer cells become resistant to treatment [94].
This drug resistance remains the primary stumbling block to cancer therapies
[95]. Therefore, gaining insight into molecular makeup of individuals and
prescribing treatment based on their characteristics, rather than base treat-
ment on the prevailing clinical diagnosis alone improves treatment efficacy
and eliminates the misuse of ineffective and potentially harmful treatment
[96].

• Disparities across the datasets: Given the high dependency of computa-
tional solutions, specifically data-driven ones, on data, approaching dispari-
ties across datasets strengthens the impact of these approaches on clinical
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practices and further supports clinical decision-making. It has been demon-
strated that being generalizable and reproducible is one of the criteria that a
data-driven model should have to be able to impact clinical practices [97].
However, disparities across datasets on different levels (e.g., semantical and
statistical) impede the interoperability of datasets which further hamper
the validation, generalizability, and reproducibility of the derived results.
Considering heterogeneity across datasets ensures the transferability of mod-
els and results across disease (sub)populations and enhances the potential
impact of models and cutting-edge technologies on clinical practices.

1.5 Translational research: applying computational mod-

els to the clinic

The emergence of big biodata and its generated knowledge, machine learning,
and artificial intelligence brings steep hopes that these cutting-edge technologies
lead to considerable progress in the biomedical field [98]. Computational methods
enable us to provide a holistic view of the biological system and better insights
into diseases by employing high throughput omics (e.g., genome, proteome, tran-
scriptome) as well as personalized clinical data (e.g., imaging, digital device data),
and capturing complex relationships among them. Computational methods can
be placed in two primary categories namely, knowledge-driven and data-driven
methods — each of which is explored in the following subsections within the
frame of each disease.

1.5.1 Knowledge-based modeling

The advent of big data in the biomedical field generates an enormous amount
of information and knowledge which offers us the opportunity to investigate
biological systems at a high degree of granularity. However, leveraging existing
knowledge and information requires the formalization and assembly of these in a
computable form which ultimately leads to the construction of the biological sys-
tem models. These models not only facilitate the explanation of relevant biological
mechanisms and how components of biological systems, interact but also predict
the system’s behavior perturbed by internal factors (e.g., mutations) or external
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ones (e.g., therapeutic interventions or environmental changes) [99].

While different biological knowledge-based modeling approaches such as sys-
tems biology graphical notation and proteomics standards initiative-molecular
interaction are available, we only survey conceptual modeling ones as these
approaches organize biological complexity that we aimed for in this thesis by
capturing the important characteristics of a biological system and structuring
our conceptualizations into the relevant entities and their relationships. Resource
Description Framework (RDF), Systems Biology Markup Language (SBML), Bio-
logical Pathways Exchange (BioPax), and Biological Expression Language (BEL)
are the most common conceptual knowledge formats in the biomedical domain,
each of which is briefly discussed in the following.

• Resource Description Framework (RDF): is a standard format derived from
a semantic web domain to represent resources and the relations that connect
them and is used for storing, managing, and modeling knowledge. RDF
consists of triples, each includes a subject, a predicate, and an object. The
subject is the acting resource, the predicate is the linking relationship, and the
object is the resource that is affected by the subject. RDF allows the subject
and object to be represented as a Uniform Resource Identifier (URI) which
is the string of characters used to identify subject and object. This flexibility
enables data merging, although the structures which form their basis may
differ as opposed to other formats including Extensible Markup Language
(XML). Additionally, the use of triples as semantic units prompts linking
data across different resources.

• Systems Biology Markup Language (SBML): is an XML-based format that
was originally designed to represent biochemical reaction networks; how-
ever, it can be used to describe other biological processes such as metabolic
pathways, gene regulatory networks, cell signaling pathways, and disease
models [100]. Furthermore, SBML enables users to incorporate quantitative
information appearing as equations such as chemical interactions. Real enti-
ties are designated species and processes are denoted reactions. They can be
ciphered as models that, when deciphered, firmly simulate chemical reaction
equations. This capability of SBML not only makes it suitable for simula-
tions of stochastic kinetic models, considering the dynamics of multiscale
interactions of biological systems but also endorses the trade of biochemical
networks’ quantitative models between different simulation tools [101].

• Biological Pathways Exchange (BioPAX): is a standard language that uses
web ontology language formats to describe biological pathways at the cel-
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lular and molecular levels. BioPax can capture and index a broad range
of metabolic, signaling, molecular, and gene regulatory networks. BioPAX
specifies five top-level classes (i.e., entities, genes, physical entities, interac-
tions, and pathways) to endorse the pathways representation. BioPAX has
been exploited by different databases to illustrate pathways interactions in
various organisms in a computable form which facilitates the exchange of
information between pathway users and databases and promotes integra-
tion, visualization, analysis, and interpretation of pathway data. However, in
contrast to SBML, BioPAX is unable to simulate the dynamic and quantitative
components of biological processes [102].

• Biological Expression Language (BEL): is a high-level knowledge-based
systems biology modeling language that enables users to describe causal
and correlative relations between biological entities. BEL can function as a se-
mantic platform that facilitates capturing, integrating, and analyzing a wide
range of mechanistic details of biological phenomena, from the molecular
to organism scale, and thus it is a perfect candidate for modeling complex
disease biology. Similar to RDF, BEL describes the relationship between
biological components in the form of triple (subject-predicate-object) in a
context-specific manner across multi-scales. Objects in a BEL triple can be the
subject of one or multiple other triples which help to develop a knowledge
assembly in the form of a conceptual graph [103]. This knowledge assembly
further can be subjected to graph algorithms for analyses and reasoning such
as network perturbation amplitudes [104] and reverse causal reasoning [105].
A simple example of a BEL statement capturing BDNF infusion increases
phosphorylation of the mitogen-activated protein (MAP) kinases [106] is
depicted in Figure 2.

1.5.2 Data-based modeling

In coincident with the advent of big biodata, data-based modeling using
cutting-edge technologies such as artificial intelligence and machine learning
has grown rapidly as well. The data-based modeling can be largely classified into
two categories: i) models that utilize more traditional approaches such as linear
regression and ii) models that employ more advanced artificial intelligence and
machine learning (ML) approaches [107]. Traditional models have the advantage
of being simple to comprehend and tend to include a small number of clinically
relevant variables [107]. However, the latter property may lead to overlooking the
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Figure 2: Biological Expression Language. The triple represents that BDNF protein
increases the phosphorylation of the MAPK. ’BDNF’ is a subject, ’increases’ is a predicate,
and ’phosphorylation’ is an object. A molecular entity (e.g.,genes, proteins,an abstract class
such as biological processes, disorders, biochemical events) can be used for the subject
and object. The type of relationship between the subject and the object is represented by
the predicate. External namespaces, such as the HUGO Gene Nomenclature Committee
(HGNC) utilized in this example, are allowed to be used in BEL for the formal description
of concepts.

interdependency among the involved features within or across the various biolog-
ical scale participating in diseases, specifically complex diseases such as AD and
cancers. Furthermore, traditional-based models rely on a priori assumptions which
do not often match clinical practice [107]. On the other hand, advanced ML-based
models have a high degree of flexibility, are devoid of a priori assumptions, and
allow inference and conclusions to be made directly from samples. Moreover, more
advanced ML-based models are able to integrate data from various modalities
(e.g., omics, imaging) which helps us to improve our understanding of disease
pathology through capturing complex relationships between the features which
are contributing to the diseases.

While potentially such models provide us valuable insights into the research
areas where they are exploited, for example, biomarker discovery [108], disease di-
agnosis [109], and drug repurposing [110] , a remarkable number of contemporary
models either discount heterogeneity or employ ad hoc methods to account for
heterogeneity. In the following, different types of models (i.e., those that account
for heterogeneity as well as those that discount it) are explored in the context of
disease progression modeling, drug repurposing, and predicting drug response,
the applications that this thesis focuses on.

• Disease progression models: are data-driven models that can be categorized
into two main classes: i) the models that help to identify subjects who are at
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higher risk of converting to patients (e.g., normal or mild cognitive impair-
ment subjects convert to AD), and ii) the models that serve to understand
the temporal evolution of multimodal disease-related measurements (i.e.,
biomarkers). Both classes can take advantage of cross-sectional or longitu-
dinal observations (i.e., repeatedly measured biomarkers over a period of
time), traditional or advanced ML methods, and a single or combination
of biomarkers. In the last decade, numerous disease progression models
in each class have been developed by utilizing different types of data and
data-based approaches. For example, [111, 112] exploited cross-sectional
data and traditional approaches while in contrast [113, 114] applied a more
complicated ML approach on longitudinal data to determine subjects with
a higher risk of conversion to AD patients. Similarly, [115, 116], employed
cross-sectional data and traditional approaches, whereas [117, 118] utilized
longitudinal data and more advanced ML approaches to model the temporal
evolution of biomarker trajectories in AD. Furthermore, [119, 120] used dif-
ferent biomarkers (i.e., neuroimaging, lab results, and neuropsychological)
while, [121, 122] employed only neuropsychological biomarkers to detect
subjects who are at high risk of developing AD. In contrast to previous
models in which heterogeneity among patients was disregarded, [123, 124]
developed a model with the capability of handling patient heterogeneity to
represent distinct temporal progression patterns using cross-sectional pa-
tient studies. Despite the establishment of different AD disease progression
models with the capability of handling heterogeneity among patients, none
of them have reached the level of clinical accuracy that allows researchers to
develop targeted clinical trials and facilitate personalized health care.

• Drug repurposing and response prediction: a wide range of data-driven
drug repurposing models have been developed. These models can be classi-
fied into different categories based on the input data including i) transcrip-
tomics - based ii) electronic health record-based (EHR-based), iii) structure-
based models, and iv) phenotype-based [125, 126]. As an example, transcrip-
tomics - based models take advantage of large-scale transcriptomics data
in which together with machine learning approaches suggest new disease
targets and next-generation treatments. [127] combined cancer-specific gene
expression data and related them to drug response using the deep neural
network method and found a novel use for the chemotherapeutic drug
vinorelbine in titin-mutated tumors. Furthermore, EHR-based approaches
leverage real-world patient data to identify new applications for approved
drugs, outside the scope of the original medical indication. For instance,
[128] improved cancer survival rates by linking two large EHR databases
and developing a machine learning framework that showed metformin, an
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anti-diabetic medication, reduced mortality following a cancer diagnosis.
Moreover, structure-based methods use target protein-derived information
to find new targets for drugs. These approaches anticipate binding poses
and drug activity by virtual screening current medications against a wide
number of clinically relevant targets. [129] developed a convolutional neural
network that takes the 3D representation of a protein-ligand interaction as
input, learns key features of the interactions and discriminates correct and
incorrect binding poses as well as known binders and non-binders. Addi-
tionally, phenotype-based models use the data yielded from studying the
phenotypic effects of drugs on cells, complex tissues with dose-response, cell
death, and apoptosis assays. [130] investigated the effect of kinase inhibition
data on neurite growth, a vital process for neural regeneration in central
nervous system injury by utilizing support vector machines. Using support
vector, they could find both kinase targets whose inhibition promoted neurite
growth, as well as kinase “anti-targets” whose inhibition blocked growth.

Besides, in recent years, various models have been established to predict
drug response, each of which utilized different types of data-driven ap-
proaches and input data. For example, [131] used cohort genomic, chemical
structure, and target information together with a network-based method,
named HNMDRP, to accurately predict cell line-drug associations through
incorporating relationships among cell lines, drug, and target. In another
study, [132] developed a deep learning model that predicts anticancer drug
responsiveness based on genomic profiles of human cancer cell lines and
drug structural profiles. [133] used pathway signatures derived from cell
lines as input to kernelized Bayesian matrix factorization. While different
drug response prediction models have been developed, these methods thus
far fail to account for heterogeneity among patients and until now the preci-
sion medicine concept is far from becoming reality.

1.6 Outline of the thesis

This thesis focuses on multiple important questions raised by the two types of
heterogeneities (i.e., heterogeneity among patients and disparities across cohort
datasets) including, i) how can heterogeneities limit the impact of computational
models (i.e., data-driven models) on clinical practices, ii) in light of the need for
reproducibility and generalizability of data-driven models how can cohort-specific
models be comparable despite existing disparities across cohort datasets, iii) how
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can exclusive and additional information provided by individual cohort datasets
be harnessed to deliver a more comprehensive picture of disease development
and progression, and iv) how can heterogeneity among patients be addressed in
the context of disease treatment and to bring the concept of precision medicine
into reality. To approach these questions, the thesis is structured as follows:

Chapter 2 investigates the heterogeneity-driven flaws which we encounter
in the course of developing computational models to further our understanding
of disease pathophysiology. We inspect a wide range of computational models
developed in the context of AD, compare their strengths and weaknesses, and
discuss how the heterogeneities-based bottlenecks limit the clinical impact of these
models. This work can serve as a checklist of bottlenecks for researchers which
have to be taken into account while initiating a study or establishing computational
models.

Chapter 3 presents the utilization of a data-driven model to explore how
the pattern of biomarker changes vary not only among different patients but
also between plentiful cohort datasets with reference to AD. This empowers us
to approach reproducibility and generalizability as we also discuss in the last
chapter. Additionally, we develop a novel algorithm that exploits the exclusive
and additional information available in cohort datasets unique to each study
and provides more complete insight into disease development and progression
than insights brought by single datasets. These two aspects of heterogeneities are
important to address both the transferability of models across AD (sub)populations
and to improve our understanding of disease progression.

Chapter 4 introduces disease-specific knowledge assembly building and its
applications in decoding biologically interesting problems in that disease. We have
curated the AD knowledge assembly [134] to enrich it with multiscale informa-
tion (genetic to neuroimaging) from scientific literature and different biological
databases such as DisGeNET [135]. Using this multiscale enriched AD knowledge
assembly, we prioritize multiple critical mechanisms in AD where the genetic
layer may have an impact on the neuroimaging layer. We show such a knowl-
edge assembly does help us to characterize how different biological scales interact
through diverse biological processes as well as empowers us to establish druggable
mechanisms in AD.

Chapter 5 demonstrates how, with the help of highly predictive machine
learning models and an innovative scoring algorithm that calibrates a samples’
pathway activity scores we can simulates a drug response in individual cancer
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patients. In other words, we examine whether a given sample that was formerly
classified as a patient could be predicted as normal after treatment with a given
drug. This technique works as a proxy for the identification of potential drug
candidates for a particular sample and addresses the heterogeneity among patients
which help to prevent drug resistance as well as brings the precision medicine
concept into reality.

The final chapter summarizes the core message of ’heterogeneities in the
biomedical field’, presents the limitations, and discusses possible future directions
of this work, serving as a conclusion of the thesis.
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2 Challenges of Integrative Disease
Modeling in Alzheimer’s Disease

This section presents the following publication (see Appendix 7.1):

Sepehr Golriz Khatami, Christine Robinson, Colin Birkenbihl, Daniel Domingo-
Fernández, Charles Tapley Hoyt and Martin Hofmann-Apitius. "Challenges of
Integrative Disease Modeling in Alzheimer’s Disease". Front Mol Biosci, 6:158,
(2020).

Sepehr Golriz Khatami’s contributions in this chapter is writing the manuscript.
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Summary

Given the exponential advances of technologies during the last decades, numer-
ous clinical studies have been conducted by different medical or research centers.
Large amount of data(sets) have been collected and a wide range of computa-
tional models have been developed utilizing these collected data(sets). While these
state-of-the-art models have prompted great breakthroughs in exploring many
uncharted territories in biomedicine (e.g., understanding disease pathophysiology)
and have generated significant insights, there exist only a few examples that im-
pact current clinical practice. Given the high dependency of computational models
on data, this limited number of impactful models can be largely attributed to one
of the two main types of heterogeneity in the biomedical field, namely data(sets)
heterogeneity, which is observed across data(sets) on various levels including
semantical, statistical, and clinical. This heterogeneity imposes multiple challenges
in the deployment of these state-of-the-art models and can be summarized into
three main aspects including, i) insufficient performance of developed models, ii)
difficulties in interpretation, and iii) difficulties in validation and reproducibility.

In this study, we mainly discussed these challenges and explained how data
deficiency and disparities across data(sets) result in these challenges through the
investigation of recently developed computational models in the context of AD.
First, we placed the models into two main categories, namely hypothetical models
(i.e., those which relied on reasoning over findings of previously published studies)
and data-driven models (i.e., those which were informed directly by patient-level
data), the latter of which is divided into two main classes. The first contains tra-
ditional statistical methods of generally lower complexity, such as linear models,
and the second covers advanced AI/ML models. Then, we compared the dedi-
cated models of each group together, enumerated their strengths and weaknesses,
and discussed how imperfect data and heterogeneties across data(sets) lead to
the challenges that limit the impact of these models on clinical practice. As an
illustration, we have discussed how given that most observational cohorts are not
representative of the general AD population, to corroborate findings it is impor-
tant to validate the resulting models with an independent cohort study. However,
due to disparities across cohort studies (e.g., different inclusion and exclusion
criteria defined based on study goal), interoperability between datasets is limited
and thus validating the resulting models with an independent cohort study is a
non-trivial task. We thus recommended the annotation of datasets using controlled
vocabularies to address the challenges associated with dataset interoperability,
among other possible solutions. Furthermore, we proposed avenues to address
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several of the other challenges discussed in this work.

In summary, this study enumerated various challenges that limit the influence
of computational models on clinical practice by reviewing developed models that
utilize biodata and state-of-the-art technologies. The challenges were explained
in the context of a specific disease (i.e., AD), however, they can potentially be
extrapolated to other diseases such as cancers. Essentially, this work can be con-
sidered as an inventory of hindrances for researchers which have to be taken into
consideration whilst initiating a clinical study or developing a computational
model.
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3 Comparison and aggregation of
event sequences across ten cohorts to
describe the consensus biomarker
evolution in Alzheimer’s disease

This section presents the following publication (see Appendix 7.2):

Sepehr Golriz Khatami, Yasamin Salimi, Martin Hofmann-Apitius, Neil Ox-
toby, and Colin Birkenbihl. "Comparison and aggregation of event sequences
across ten cohorts to describe the consensus biomarker evolution in Alzheimer’s
disease". Alz Res Therapy, 14(1), 55, (2022).

Sepehr Golriz Khatami’s contributions in this chapter are: conceptualization,
implementing the methodology, preprocessing the data, running experiments, and
writing the manuscript.
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Summary

The publication presented in the previous chapter mainly enumerated the
challenges (e.g., difficulties in validation and reproducibility) that are imposed by
data(set) heterogeneity in the context of AD. In line with the previous study, in
this chapter, we showed how disparities across data(sets) may limit validation,
reproducibility and generalizability of computational models in the context of the
same disease in more detail by investigating two scenarios. First, we examined
whether the results obtained from a dataset are consistent across the other cohort
datasets despite their disparities. In other words, we tested whether the results
obtained by a model from a cohort dataset are robust and reproducible if fitted to
an independent cohort dataset. Second, we analyzed whether a fitted model on a
cohort dataset learns potential cohort-specific characteristics that could hamper
the reproducibility and generalizability of results.

Alongside the challenges that disparities across data(sets) present in different
contexts, such as reproducibility, in theory, they allow for developing unique mod-
els from individual data(sets) which, when aggregated, may help to gain more
comprehensive insights into the investigated study as individual datasets poten-
tially provide exclusive, additional, and complementary information. In another
endeavour in this chapter, we explored whether aggregating results across datasets
can harness this complementary information and provide a more complete picture
of the disease.

So far, only limited studies in the AD domain, such as [136–138], have applied
their models to data from other cohorts besides the discovery cohort, although they
were mostly to diagnose and predict patient outcome. Furthermore, to the best
of our knowledge, only a single study [139] focused on integrating information
from individual studies while addressing the same biological question to arrive at
a more reliable and comprehensive picture of the disease specifically, to identify
and rank potential driver genes of AD.

In light of this shortcoming, we first conducted a systematic, in-depth investiga-
tion concerning the validation, robustness, and reproducibility of results obtained
from different independent AD landmark cohort studies in the context of se-
quences of pathological marker (i.e., biomarker) changes. To do so, a probabilistic
generative model called an event-based model [116] was deployed. We fit the
model to ten independent AD cohort datasets and compared the results. While we
observed general consistency over the changes of biomarkers across all cohorts
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(i.e., changes start with abnormality in Aβ, followed by tauopathy, memory impair-
ment, and ultimately brain deterioration), slight variation in the position of these
core features was identified. We explained that this variation could be caused
by i) distinct statistical biases of the cohorts, for example introduced through
specific recruitment criteria, ii) distinct prevalence of AD disease progression
subtypes that follow different disease mechanisms, or iii) mixed neuropathologies.
Furthermore, we developed a novel rank aggregation method to combine the
obtained sequences of biomarkers in the previous step which enabled us to utilize
exclusive and complementary information unique to each study. By doing so, we
could generate a sequence of biomarker changes that is highly multimodal and
more comprehensive than sequences built from individual datasets. Similar to the
sequence of biomarker changes obtained from individual cohorts, the changes of
biomarkers in the aggregated sequence started with abnormality in cerebrospinal
fluid biomarkers (i.e., Aβ and tauopathy), followed by memory impairment, and
ultimately brain atrophy.

Essentially, in this study, we demonstrated that in light of the challenges in
model validity and reproducibility, it is critical to explore beyond single data
sources, validate obtained results across different cohort studies, and continu-
ously develop and assess data-driven methodologies. To that end, we identified
general consistency across data-driven sequences of biomarker changes derived
from multiple independent cohorts using the event-based model and only minor
differences in the position of the main biomarkers that were available in all cohorts
were observed. In addition, the novel aggregation method developed harnesses
the heterogeneity in cohort study designs and measurements and generates a
meta-sequence that provides a more complete, and robust, picture of the sequence
of biomarker changes to improve our understanding of disease progression.
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4 A Systems Biology Approach for
Hypothesizing the Effect of Genetic
Variants on Neuroimaging Features in
Alzheimer’s Disease

This section presents the following publication (see Appendix 7.3):

Sepehr Golriz Khatami, Daniel Domingo-Fernández, Sarah Mubeen, Charles
Tapley Hoyt, Christine Robinson, Reagon Karki, Anandhi Iyappan, Alpha Tom
Kodamullil, Martin Hofmann-Apitius. "A Systems Biology Approach for Hypoth-
esizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer’s
Disease". J Alzheimers Dis, 80(2), pp.831-840, (2021).

Sepehr Golriz Khatami’s contributions in this chapter are: conceptualization,
implementing the methodology, interpreting the results, and writing the manuscript.
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Summary

Ever-growing data in the biomedical field, including imaging and genetics, set
the stage for new opportunities to understand disease pathophysiology, specifi-
cally in complex disorders such as AD. Given the effect that the genetic layer (e.g.,
genes and genetic variants) has on brain structure and function, linking these two
disparate layers is one of the main avenues that pave the way to accomplish this
feat (i.e., unravel disease pathophysiology). While linking molecular mechanisms
to clinical readouts is non-trivial, various initiative such as Enhancing NeuroImag-
ing Genetics through Meta Analysis (ENIGMA) [140] as well as numerous studies
have been carried out to examine the association of the genetic layer with brain
structure and function by utilizing a wide range of methods from genome-wide
association studies (GWAS) [141], to imaging genetics [142], differential equa-
tions [143], and the development of an an innovative data-driven framework
[144]. However, these studies either only calculate statistical associations between
genotype-phenotype and lack mechanistic insight into interaction between these
two layers [141, 142] or fail to deal with the multitude of variables that are needed
to represent the pathophysiological phenomenon involved in a multifactorial
disorder, such as AD [143]. The inadequacies of these methodologies prompted us
to develop a new method for interpreting how a certain genetic variant may affect
neuroimaging feature changes through sequences of molecular causalities in AD.

This work explores the potential of knowledge assembly as a consolidated
and computable collection of domain-specific knowledge, in investigating bio-
logical phenomena in AD. It leverages the semi-automatically curated domain
knowledge around the disorder to investigate how genetic polymorphisms can
cause functional changes in intermediate molecular features, which can then affect
neuroimaging markers over a series of biological processes at many scales. First,
we extract knowledge pertaining to single nucleotide polymorphisms (SNPs) and
imaging readouts from the literature using natural language processing. Then, the
genes corresponding to or associated with the SNPs are identified. Accordingly,
a gene was selected for further study, and a corpus covering its role in AD was
enriched with knowledge about multiscale biological processes. As the next step,
manually extracted relations from this corpus were encoded in BEL to enable
computer-aided reasoning. We demonstrated our method in a case study that
suggests KANSL1 as a potential gene for the clinically observed link between
genetic variations and hippocampus shrinkage. We discovered that the work-
flow prioritizes multiple mechanisms documented in the literature by which the
gene may influence hippocampus atrophy, including cell proliferation, synaptic
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plasticity, and metabolic processes.

Essentially, this study enabled us to explore the association of genotype to
phenotype from a disease biology perspective instead of solely investigating their
statistical associations (i.e., GWAS). Furthermore, this study manifested that in-
tegration of different biological entities throughout all modalities (i.e., from the
molecular level to tissue and organ level) to knowledge assemblies helps to en-
hance the understanding of disease etiology and may shed light on heterogneity of
pathways of disease development and progression — each of which can potentially
be posited as attractive therapeutic targets for pharmaceutical intervention (see
chapter 5). Moreover, the semi-automatic curation workflow developed during
the course of this work has the potential to act as an instruction to enrich the
knowledge assemblies for capturing and representing knowledge. Additionally,
this study has indicated that formalization and capturing of knowledge in a com-
putable form facilitates the development of tools for understanding, mapping, and
representing the existing knowledge about a particular domain, and subsequently
enables novel interpretation of biomedical data. Eventually, while the method has
been used to demonstrate the mechanism behind the associations between geno-
type and phenotype in the context of neurodegenerative diseases, other diseases
can also benefit from the approach.
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5 Using predictive machine
learning models for drug response
simulation by calibrating
patient-specific pathway signatures

This section presents the following publication (see Appendix 7.4):

Sepehr Golriz Khatami, Sarah Mubeen, Vinay Srinivas Bharadhwaj, Alpha
Tom Kodamullil, Martin Hofmann-Apitius, and Daniel Domingo-Fernández. "Us-
ing predictive machine learning models for drug response simulation by calibrat-
ing patient-specific pathway signatures". npj Syst Biol Appl 7(1), 40, (2021).

Sepehr Golriz Khatami’s contributions in this chapter are: conceptualization,
implementing the methodology, running the experiments, interpreting the results,
and writing the manuscript.
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Summary

The two preceding chapters (i.e., chapter 2 and 3), deconstructed data(set)
heterogeneity, one of the two main classes of heterogeneity which exists in the
biomedical domain. This chapter, however, approaches the other major hetero-
geneity class, namely heterogeneity between patients. This type of heterogeneity
is not only observed between individual patients in their different characteristics,
such as genetics and pathways of disease development and progression, but also
is widely seen in their response to treatment. In other words, individuals differ in
their response to therapies and a response triggered by a drug in a given patient
differs if administered in another. This in turn leads to low efficacy or the failure
of therapies and further resistance to medications [145]. This becomes even more
evident in cancers where patients show different levels of sensitivity to treatment
due to their heterogeneity and distinct molecular signatures [75]. Indeed, failure of
therapies and resistance to treatments are the two major causes of death in cancer
[146]. Therefore, cancer therapy needs to become more personalized, particular
drugs against specific targets for the disorder must be established and more accu-
rate tailoring of remedies to the target populations are needed [147]. To facilitate
achieving this goal, accurate prediction of therapy responses in patients based
on their molecular and clinical profiles is beneficial. Clinical trials are a means by
which investigational therapies can be evaluated for efficacy and safety. However,
they are time-consuming and expensive. One path to overcome these costs mani-
fests in the utilization of state-of-the-art technologies (i.e., ML) and patient-specific
molecular and clinical profiles (e.g., omics). Various studies have been performed
in this non-trivial direction. For example, [148] utilized gene-expression profiles
along with combination of the genetic algorithm and the k-Nearest Neighbor to
predict potential therapeutic drugs in breast cancer. Similarly, [149] employed an
established ML approach to build models of drug response based on transcrip-
tomic data from breast cancer samples. Furthermore, [150] deployed epigenomics
and three different ML algorithms to predict drug response in different cancers.

While a wide range of omics data has been utilized for drug response prediction
in cancer research, it has been shown that gene-expression profiling is the most
informative data for this purpose [151], Nevertheless, the validity of results based
on individual gene markers has been questioned in several recent studies [152,
153]. These studies have enumerated different reasons including, i) small sample
size of typical clinical data, ii) inherent noise in high-throughput measurements,
and iii) that genes do not act in isolation. To resolve these complications, it has been
suggested to interpret omics data at the level of functional modules, i.e., pathways,
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which are not only more easy to interpret but also more stable and optimize patient-
specific therapeutic approaches. In addition, by mapping measured omics data to
the pathway-level, their dimensional complexity is reduced, thus facilitating their
utilization by ML models and enhancing interpretive power. Various studies such
as [133, 154] used pathway signatures to predict drug response by applying varied
ML models, however, the models thus far rarely address heterogeneity among
patients.

Inspired by the above-mentioned observations, this work leverages highly
predictive machine learning models and pathway signatures to simulate drug re-
sponse and predict whether a candidate drug could be effective for a given patient.
First, we calculated patient-specific pathway activity scores using single-sample
gene set enrichment analysis [155]. We then used these scores to train a machine
learning model that can accurately classify samples (i.e., disease vs normal). Next,
we developed an intuitive scoring algorithm that calibrates the calculated pathway
activity scores following the application of a drug. The modified pathway activity
scores are then used as an input in the trained model to evaluate whether a sample
that was previously labeled as "diseased" now could be predicted as "normal"
following drug treatment. This is used as a proxy for the identification of drug
candidates for patients. Ultimately, the method was evaluated against several
comparable methods to analyze the model performance.

The methodology has been demonstrated on four different cancer datasets
(i.e., breast, liver, prostate, kidney) and two independent drug-target datasets (i.e.,
DrugBank and DrugCentral). The method could successfully prioritize a drug
intervention for patients based on their specific pathway scores. For example, given
the fact that the Ras/Raf/MAPK pathway is one of the most important pathways
that play a role in the development of liver cancer, the method prioritized a tyrosine
kinase inhibitor from a class of JAK inhibitors (i.e., sorafenib), an already FDA-
approved drug to treat patients with dysregulation of this pathway. Moreover, in
addition to the prioritization of FDA-approved medications and drugs in clinical
trials, the method was able to prioritize other drugs, suggesting that the drugs may
represent promising candidates for repurposing. Additionally, in the evaluation
of the approach against several comparable methods, our developed method
outperformed similar studies, more specifically yielding a higher proportion of
true positives.

Essentially, this study underscores the importance of considering heterogeneity
among patients by simulating a drug’s effect on an individual patient and offer-
ing a method that aims at proposing the most likely beneficial treatment for a
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given patient. This method could eventually be a valuable tool to support clinical
decision-making in personalized medicine.
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6 Conclusion and outlook

Heterogeneity is a fundamental property in the biomedical field which is not
only observed among patients but also detected across collected data(sets) of
different medical or research centers. On one hand, differences among individuals
limits biological resolution, clinical conclusions, and efficacy of treatment. On
the other hand disparities across collected data(sets) leads to low performance,
interpretation, validity, and reproducibility of findings obtained from utilization of
cutting-edge technologies (i.e., AI/ML models). Therefore, heeding and handling
these heterogeneities is of utmost importance and this becomes especially relevant
with respect to large heterogeneities which are known to exist in complex disorders
such as AD and cancers.

During the last decades, a wide range of studies from handling the disparities
across datasets [156, 157] to addressing heterogeneity among patients in the context
of understaing disease pathophysiology [158, 159] and disease treatment [160, 161]
have been conducted. However, only a few are free of limitations and have impact
on clinical practices. Inspired by these observations, this dissertation demonstrates
a set of studies and computational models that were exploited and developed to
heed disparities across the data(sets) and address existing heterogeneity among
patients.

This dissertation, first, has investigated a wide range of computational models
which have been developed for different analytic purposes, enumerated their
strengths and limitation, and discussed major heterogeneities-based constraints
which limited the impact of computational models on clinical practices. This work
has not only explained why current models are incapable of directly benefiting
clinical practice but has also proposed avenues to address several of the constraints
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in order to bring the models closer to their translation into clinical practice. We
believe that this work can serve as a checklist of bottlenecks for researchers which
have to be taken into account while initiating a study or developing computa-
tional models. Another endeavor of this thesis focused on the generalizability
and reproducibility crises that are derived from disparities across the clinical
studies and their collected data. This work has shown that it is crucial to look
beyond single data resources, validate achieved results across multiple clinical
studies, and constantly develop and evaluate data-driven methods to ensure
robust scientific insights. In addition, this work has described that despite the
limitations that disparities across clinical studies bring, how can the additional
available information unique to each clinical study be used to further provide a
more comprehensive intuition over the investigated study. Besides the two previ-
ous endeavors, this thesis addressed another crucial subject in the biomedical field
by describing the need for having organized domain knowledge in the field of AD
to increase the understanding and explanation capability of biological systems.
The enrichment of an AD knowledge assembly [134] with information from dif-
ferent modalities revealed that computable organized knowledge can undeniably
demonstrate different biological phenomena in complex disorders such as AD and
this explanatory competence can further be utilized to propose mechanism-based
drug target candidates. Beyond the capability of the work in explaining biologi-
cal processes spanning across several diverse biological scales, the work is part
of NeuroMMSig [162] which represents the knowledge around well-established
disease-specific mechanisms involved in AD and has a wide range of applications
from drug discovery [163] to precision medicine [164]. Finally, given that a drug’s
response in one patient may differ from what it elicits in another as well as drug
resistance driven by this heterogeneity are the biggest impediments in cancer
treatment, our predictive machine learning model could effectively simulate the
response triggered by a drug in a given sample and evaluate whether the sample
that was previously labeled as diseased could be projected to be normal follow-
ing drug treatment. This work enables us to prioritize drugs and set up medical
decisions for individual patients based on their respective biological signatures
which not only paves the way for precision medicine but also leads to the early
detection of ineffective or dangerous off-target effects in medications which in
turn reduce the cost of research and development spent on establishing new thera-
peutic medication. Moreover, this work allows us to not merely uncover sets of
dysregulated pathways, but deconvolute a drugs’ mechanism of action as well
which subsequently allows for better determination of the correct therapeutic
dosage by keeping track of the drug’s impact on the patient’s targeted pathway.

In order to address the described challenges, multiple new algorithmic ap-
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proaches were developed in this dissertation. First, we have designed and applied
a novel rank aggregation algorithm that combined exclusive, but complementary
pathological marker changes derived from individual cohort datasets to provide a
more complete insight into disease development and progression than an insight
that is brought by single datasets. This robust and flexible algorithm enables users
to include other changes of pathological markers coming from any new public or
proprietary clinical study without requiring any substantial efforts for adaptation.
This is crucial for guaranteeing model transferability and results across disease
(sub)populations, and for providing a more comprehensive overview of disease
progression. Second, we have developed an algorithm that simulates the effect of
a given drug at the pathway level by modifying pathway activity scores of disease
samples through an intuitive scoring algorithm. While the developed algorithm in
this work has been applied in the cancer domain, in principle it can be employed
to any disease domain with little (e.g., fine-tuning the weights for other datasets)
or no further adaptations to yield promising results. Above all, all generated
scripts, pipelines, and resources in the framework of this thesis are made openly
accessible through online web tools and GitHub repositories in compliance with
open and reproducible science, allowing more researchers to replicate the works
and perform their analyses.

While this dissertation presented thriving implementation and promising re-
sults, it is not without limitations. First, in order to build a robust meta-model for
changes of pathological marker in the course of disease progression and devel-
opment, the designed rank aggregation algorithm needs to have the information
which is presented in at least some of the individual order of biomarker changes
to allow for meaningful distance calculations. Furthermore, the high amounts of
missing data occurring when multiple data modalities were considered in each
clinical study led to a substantial decrease in the number of available participants
per study. This could have led to more noise in the order of biomarker changes
distributions. Second, knowledge assemblies are prone to bias, and they may only
represent data that has been deliberately selected. This is because researchers may
tend to draw more heavily from authors or subfields with which they are more
familiar or established well enough [165]. This could provoke a decisive problem
in hypothesis-driven investigations of the data owing to knowledge unbalance
among different subdomains while data interpretation. Third, the developed
methodology for simulating drug response relies on pathway signatures derived
from transcriptomics data. This indicates that this methodology is inherently
limited to conditions where pathway activity score is highly predictive. In other
words, pathway activity scores must effectively discriminate between disease and
normal samples in the disease we analyze. This is because the methodology needs
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a highly predictive model to assure that the change in the predicted class label
is solely caused by the drug simulation step and not by the model inaccuracy.
Thus, it would be less practical in conditions where pathway activity score has
restricted prediction power to separate between normal and disease samples, such
as Parkinson’s disease [166].

Finally, this thesis could serve as a good starting point for future efforts. As
an illustration, given the increasing number of clinical studies in AD — each of
which contains exclusive measurements, a larger number of such studies could be
incorporated into the rank aggregation algorithms which in turn can potentially
provide a more comprehensive insight into disease development and progression.
Moreover, within a project context, the expanded AD knowledge assembly with
knowledge relating to multiple biological scales and speculated mechanisms might
be proposed as therapeutic target candidates and tested experimentally in-situ
and in-vitro. Furthermore, the utilized predictive machine learning model for drug
response simulation doesn’t take time into consideration. As a future effort, drug
administration could be simulated in an ML model that takes into consideration
temporal dimensions (e.g., survival analysis [167]). As an additional future effort,
the presented drug response simulation approach can be customized towards
drug discovery by combining brute-force and reverse engineering approaches to
identify the most effective pathway score that should be targeted by a drug for any
given indication. In addition, while in the initial effort of drug response simulation
the analysis was restricted to a single pathway database since it was enough
to exploit a predictive ML model for the particular classification task, in future
efforts pathway information from other databases or drug-target information from
different databases such as ExCAPE-DB43 [168] could be incorporated into the ML
model. Such incorporation not only can increase the total number and coverage of
pathways to potentially reveal additional pathway targets but also broaden the
chemical space which may lead to the identification of new candidates. Looking
forward, translation of these efforts into clinical practice would pave the way to
bring the precision medicine concept into reality.
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Chapter 7

7.1 Challenges of Integrative Disease Modeling in Alzheimer’s

Disease

Reprinted with permission from "Golriz Khatami, S. et al.. "Challenges of Integra-
tive Disease Modeling in Alzheimer’s Disease". Front Mol Biosci, 6:158, (2020).
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Dementia-related diseases like Alzheimer’s Disease (AD) have a tremendous social and

economic cost. A deeper understanding of its underlying pathophysiologies may provide

an opportunity for earlier detection and therapeutic intervention. Previous approaches

for characterizing AD were targeted at single aspects of the disease. Yet, due to the

complex nature of AD, the success of these approaches was limited. However, in recent

years, advancements in integrative disease modeling, built on a wide range of AD

biomarkers, have taken a global view on the disease, facilitating more comprehensive

analysis and interpretation. Integrative AD models can be sorted in two primary types,

namely hypothetical models and data-driven models. The latter group split into two

subgroups: (i) Models that use traditional statistical methods such as linear models, (ii)

Models that take advantage of more advanced artificial intelligence approaches such as

machine learning. While many integrative AD models have been published over the last

decade, their impact on clinical practice is limited. There exist major challenges in the

course of integrative AD modeling, namely data missingness and censoring, imprecise

human-involved priori knowledge, model reproducibility, dataset interoperability, dataset

integration, and model interpretability. In this review, we highlight recent advancements

and future possibilities of integrative modeling in the field of AD research, showcase and

discuss the limitations and challenges involved, and finally, propose avenues to address

several of these challenges.

Keywords: Alzheimer’s disease, challenges, integrative disease modeling, hypothetical, data-driven

INTRODUCTION

Alzheimer’s Disease (AD) manifests in a collection of symptoms including the deterioration of
cognition, memory, and behavior which often leads to interference with activities of daily living.
In 2017, AD ranked among the top five causes of death worldwide, with 2.44 million (4.5%) deaths
from AD1,2. Worldwide, there are currently around 50 million people living with AD, and every
3 s a person develops this condition. It is estimated that only a quarter of those living with AD are
diagnosed, and more than 17 million healthcare workers annually invest 18 billion hours of care, at
a cost of more than one trillion US dollars to tackle AD-associated problems3,4. Extrapolating these
statistics to the coming decades suggests the immense socioeconomic impact of AD on all involved

1https://ourworldindata.org/causes-of-death
2https://www.thestreet.com/world/leading-causes-of-death-world-14869811
3https://www.alz.co.uk/research/statistics
4https://ourworldindata.org/causes-of-death
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parties: patients, caregivers, healthcare systems, and indirectly,
the economy. Thus, strategies to reduce the global emotional
and financial burden of AD are of great importance. To develop
such strategies, a deeper understanding of the pathophysiology
underlying AD is necessary and may lead to opportunities for
earlier detection and therapeutic interventions.

In general, AD progression is categorized into three clinical
disease stages: (i) During the pre-symptomatic phase, individuals
may have already developed pathological changes that underlie
AD, but remain cognitively normal, (ii) in the prodromal phase,
often referred to as mild cognitive impairment (MCI), the
first cognitive symptoms, commonly episodic memory deficits,
appear. These symptoms can be acute, but they do not yet meet
the criteria for dementia, (iii) in the dementia stage, impairments
are severe enough to interfere with daily life (Jack et al., 2010).

Understanding of the etiology of AD is complicated due to the
existence of dysregulations at different biological scales, ranging
from genetic mutations to structural and functional alterations
of the brain (Aisen et al., 2017). For this reason, significant efforts
have been made in recent years to discover candidate markers for
disease-related pathological changes throughout all modalities,
including neuro-imaging, cerebrospinal fluid (CSF) samples
and a broad variety of -omics data. Studies have successfully
identified multiple biomarkers for neurodegeneration and AD
(Blennow and Zetterberg, 2018). However, effectively translating
extensive biomarker screenings into clinical application remains
a challenging task, because individual biomarkers can only
provide a highly incomplete view on such a multifactorial
disease (Younesi and Hofmann-Apitius, 2013). For instance,
whilemultiple associations between genetic variants andADhave
been established (Jansen et al., 2019; Kunkle et al., 2019), none of
these associations fully describe disease pathogenesis. As a result,
one of the major challenges in AD research is translating diverse
biomarker signals available into multimodal, multiscale models
of disease pathogenesis.

In recent years, a new translational research paradigm
called “integrative disease modeling” has emerged, to address
this challenge (Younesi and Hofmann-Apitius, 2013). It aims
at modeling heterogeneous measurements across different
biological scales, in order to provide a holistic picture of
biomarker intercorrelations in the disease of study. To this
end, advanced high-throughput technologies and neuroimaging
procedures are being used to collect data from multiple
modalities. These diverse data need to be integrated, that is,
combined in a way that preserves the structure and meaning
in the data, using computational algorithms. Only then
can they provide a solid basis for further analysis such as
reasoning, simulation, and visualization. In order to contribute
to understanding of the complex pathophysiology of the disease,
the results should be actionable and thus must be interpretable.
Integrative disease modeling, by collecting, integrating,
analyzing, and ultimately interpreting the measurements,
facilitates the understanding of the pathophysiology of complex
diseases like AD (Hampel et al., 2017).

Existing integrative models in the context of AD can be
placed in two primary categories, namely hypothetical models
and data-driven models (Table 1). Hypothetical models are

TABLE 1 | Organization of and references for data-driven integrative AD models.

Data-driven integrative AD models References

Traditional Caroli and Frisoni, 2010; Jack

et al., 2011, 2012

Machine

learning

Generative Fonteijn et al., 2012; Chen et al.,

2016; Khanna et al., 2018;

Oxtoby et al., 2018; Basu et al.,

2019; De Jong et al., 2019;

Gootjes-Dreesbach et al., 2019;

Martinez-Murcia et al., 2019

Discriminative
Supervised Hinrichs et al., 2010; Magnin

et al., 2010; Rao et al., 2011;

Zhang et al., 2011; Da et al.,

2013; Li et al., 2013

Unsupervised Nettiksimmons et al., 2014;

Gamberger et al., 2017; Toschi

et al., 2019

We subdivide data-driven integrative AD models which into two subgroups. While the first

group uses simple statistical approaches (e.g., simple linear models), the second group

uses more advanced techniques (e.g., machine learning). The advanced machine learning

models include generative and discriminative models, the latter of which can be classified

as either supervised or unsupervised models.

non-numerical and rely on reasoning over findings of previously
published studies (Jack et al., 2010), rather than large amounts of
data. By including this prior knowledge, these models try to detail
the temporal changes of AD biomarkers relative to each other as
well as to clinical disease stages and trial endpoints.

By contrast, data-driven integrative models take advantage
of developments in computational approaches and big data.
For the sake of this review, we will distinguish between two
subcategories of data-driven models. The first covers traditional
statistical methods of generally lower complexity, such as linear
models. Often, these models are used to estimate biomarker
trajectories by regressing measured data against a prespecified
dependent variable, such as a clinical readout or the disease
stage (Bateman et al., 2012). The second subtype exploits more
advanced artificial intelligence approaches such as machine
learning. Within this subtype, models can be characterized as
discriminative or generative. Discriminative models are designed
to discriminate between groups (e.g., cases and controls)
and can be further described as supervised or unsupervised,
depending on whether they rely on labeled (Hinrichs et al.,
2011; Da et al., 2013) or unlabeled (Toschi et al., 2019)
data. Generative models contribute to disease understanding by
automatically learning the inherent distribution of a dataset and
its feature interdependencies (Oxtoby et al., 2018). An exemplary
application is the extraction of disease progression signatures as
demonstrated by the ensemble of Bayesian networks developed
by Khanna et al. (2018).

Integrative AD modeling faces many challenges. Hypothetical
models, by their nature, are time-intensive to construct and
require specialist knowledge. Their primary role in AD research
is to provide ideas for future experiments. Likewise in data-
driven modeling, several challenges at each step of the
process (i.e., collection, integration, analysis, and interpretation)
must be addressed. Data missingness and data censoring are
significant bottlenecks in data collection as well as analysis and
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interpretation. Meanwhile, the heterogeneity and complexity of
biological data are major impediments to data integration, which
forms the basis for all data-driven approaches. Furthermore, data
mapping, data labels, and biased data are additional barriers
to robust data analysis and interpretation. Finally, insufficient
numbers of subjects restrict the statistical power of data-driven
integrative AD models. These fundamental challenges explain
why, at this point in time, although many integrative AD models
have been published over the last decade, their impact on clinical
practice is limited.

In this review, we highlight recent advancements and future
possibilities of integrative modeling, discuss the limitations and
challenges involved, and finally, propose avenues to address
several of these challenges, in the context of AD research.

INTEGRATIVE AD MODELS

As already mentioned, integrative AD models can be
characterized as either hypothetical or data-driven, each of
which has strengths and weaknesses. In the following, we
compare different models of each type and discuss their
benefits and limitations. Finally, we elaborate on how associated
limitations and challenges could be handled.

Hypothetical Models
In hypothetical modeling, a model is generated about an object
of study, direct knowledge of which is difficult to obtain.
These models provide hypotheses about the object (Gladun,
1997). In integrative AD modeling, researchers develop so-called
cascade models, in which the measurements of a set of
biomarkers are normalized and their trajectories are plotted on
a common time scale, aligned to disease stages (Jack et al.,
2010, 2013). These models are typically developed by reviewing
the available knowledge and reasoning over observations from
previously published studies. They are not directly informed by
measured data.

One of the first hypothetical integrative AD models was
developed by Jack et al. (2013) [revised from a previous
model (Jack et al., 2010)]. This model hypothesized the
temporal changes of the five most studied biomarkers of
AD pathology in relation to estimated years from expected
symptom onset and in relation to other biomarkers. These
biomarkers are CSF amyloid-beta protein (CSF Aβ1−42) and
tau protein (CSF tau) levels, amyloid-beta PET imaging (PET
Aβ), Fluorodeoxyglucose-PET imaging, and structural MRI
readouts. In this cascade model, the authors presumed that
biomarker trajectories should exhibit a sigmoid-shaped curve.
This imposition is a direct result of the limited sensitivity of
measurements at time extremes, which the authors addressed
by taking the floor of the measurements at early timepoints,
and the ceiling of the measurements at late timepoints. The
authors hypothesized that the two amyloid-beta (Aβ) biomarkers
(i.e., CSF Aβ1−42 and PET Aβ imaging) gradually approach an
abnormal state while the subject remains in a cognitively normal
state. After a lag period, the length of which varies from patient to
patient, and in later disease stages, CSF tau, Fluorodeoxyglucose-
PET, and structural MRI biomarkers follow the same pattern

and begin the transition to an abnormal state. Similarly, Frisoni
et al. (2010) established a theoretical progression of cognitive and
biological markers (primarily imaging features) based not only
on the clinical disease stages, but also patient age at AD diagnosis
and time since diagnosis. Although both models captured earliest
detectable changes in amyloid markers, Frisoni et al. (2010)
additionally theorized that these changes plateau by the MCI
stage, when the individuals are no longer cognitively normal.
Furthermore, they suggested that F-fluorodeoxyglucose PET is
abnormal by the MCI stage and continues to change well into
the dementia stage. Structural changes appear later, following
a temporal pattern mirroring tau pathology deposition, which
slightly differs from the Jack et al. models (Jack et al., 2010,
2013).

While hypothetical models cannot be directly applied, they
can be used to suggest directions for future experiments that
themselves would address diagnosis, prediction, or decision
making tasks (Gladun, 1997). However, there are a number of
challenges relating to the construction of hypothetical models. In
the following, we discuss these challenges and propose ways to
address some of them.

Challenges of Hypothetical Models
The exclusive reliance of hypothetical models on literature
presents several challenges. First, relevant literature must be
identified. Second, the scientific knowledge contained in the
literature must be extracted in a meaningful form. Finally, the
knowledge has to be modeled.

In order to build a hypothetical model, a researcher must
identify a set of relevant publications, called a literature corpus,
which accurately reflects AD knowledge. This corpus should
be representative of the relevant aspects of AD, contain the
most up-to-date publications, and not be biased toward subfields
or trends. However, the number of new AD publications has
increased each year since 2005, and there were nearly 15,000
such publications in 2017 alone (Dong et al., 2019). With
such publication rates, it is challenging for researchers to
manually create high quality corpora (Rodriguez-Esteban, 2015),
Moreover, manual generation of these corpora is susceptible to
bias, because researchers may tend to draw more heavily from
authors or subfields with which they are more familiar (Atkins
et al., 1992). The size of a corpus will also be limited by the
time and resources available to the researchers. However, text
mining has been used effectively to automatically classify relevant
literature, based on titles and abstracts (e.g., see Simon et al.,
2018), and to prioritize texts (Singh et al., 2015). Publications
identified by this classification can be directly taken as the corpus
or used as a more manageable set of publications from which
the domain experts can appropriately select. Hypothetical models
are susceptible to biases present in the literature (Boutron and
Ravaud, 2018), but a well-designed, computationally selected
corpus can mitigate the effects of those biases.

Once the corpus has been identified, the challenge of
knowledge extraction remains. The goal here is to recover the
knowledge contained in the publications in a meaningful way.
Conducting this task manually is a time-consuming process that
requires a high degree of domain knowledge. Here, text mining

Frontiers in Molecular Biosciences | www.frontiersin.org 3 January 2020 | Volume 6 | Article 158



Golriz Khatami et al. Challenges of Integrative AD Modeling

poses the opportunity to extract knowledge in a computable
form (Gyori et al., 2017; Lamurias and Couto, 2019). Moreover,
it significantly reduces the amount of time required to read
publications, which enables significantly larger corpora to be used
in the building of hypothetical models.

Finally, in order to build hypothetical models, the information
gleaned from the literature corpus must be organized in a
coherent way. The entities and the relationships between them
should all be represented. Mind maps provide a non-automated
way of generating a knowledge model, driven by domain-
expert knowledge (Kudelic et al., 2011). However, if automated
information extraction strategies were used on the literature
corpus, then knowledge graphs are well-suited for storing the
extracted knowledge (Gyori et al., 2017). A major advantage
of this strategy is that the knowledge graph is computable,
meaning downstream machine learning tasks can be carried
out for knowledge discovery. Furthermore, knowledge graphs
support hypothesis generation by enabling researchers to assess
whether their hypotheses are compatible with existing knowledge
(Humayun et al., 2019).

Automated methods of corpus identification, knowledge
extraction, and knowledge modeling provide a means of
mitigating the challenges of hypothetical modeling. They reduce
the time burden, mitigate the risk of bias in manual methods, and
generate computable knowledge representations. This can yield
more reliable hypothetical AD models.

Hypothetical models are non-numerical and rely exclusively
on qualitative information, gleaned from a review of previous
findings. This limits their usability solely to eliciting hypotheses
for future experiments. They are neither predictive nor can they
be used for analysis of any kind of data. They are meant to
represent a kind of “typical” AD progression, without reflecting
individual deviations from that. Given the broad biological
heterogeneity observed among AD subjects, and the increasing
relevance of personalized medicine (Reitz, 2016), there is a need
for models that are capable of achieving this.

Data-driven models built on data collected in longitudinal
cohort studies can serve to support or challenge hypotheses
generated by hypothetical models (Petrella et al., 2019). Data-
driven models are appropriate for a wide range of tasks that lie
beyond the scope of what hypothetical models are designed for.
For example, using data models can capture individual subject
particularities that hypothetical models cannot (see e.g., Young
et al., 2015). In the following, we discuss data-driven models and
their challenges in depth.

Data-Driven Models
In contrast to hypothetical models, data-driven integrative
models are directly derived from datasets comprising readouts
of multiple biomarkers. Such models can be applied to a broad
variety of tasks ranging from predictive modeling e.g., predicting
patient diagnosis (Ding et al., 2018) or age at disease onset
(Chuang et al., 2016; Peng et al., 2016) to discovering patterns
in the data that shed light on biomarker interdependencies and
disease underlying mechanisms. Since these models use extensive
data, they are not limited by preconceived notions in the way that
hypothetical integrative models are.

Data-driven AD models can be classified into two
primary subtypes based on the statistical approaches and
algorithms applied (Table 1). The first subtype use traditional
statistical methods such as linear modeling, and the second
employs artificial intelligence and more specifically machine
learning approaches.

Traditional Statistical Models
In AD modeling, traditional statistical approaches, such as linear
mixed-effects models, are often used to estimate biomarker
trajectories (Caroli and Frisoni, 2010; Jack et al., 2011, 2012). In
these models, measured data, are regressed against a prespecified
variable, such as disease stage, to detail the temporal changes
of AD biomarkers during the course of disease. Essentially,
these models provide empirical testing of hypothetical multiple
biomarker trajectory plots.

Jack et al. (2012) used linear mixed-effects models to
investigate the shape of five important AD biomarker trajectories
(i.e., Aβ42, tau, amyloid, fluorodeoxyglucose PET, and structural
MRI) as a function of a cognitive test score, the Mini-Mental
State Exam (MMSE). This model parameterization enabled them
to assess within-subject rates of biomarker changes with respect
to changes of the MMSE score. They found that lower baseline
MMSE scores are correlated with worse baseline biomarker
values and that higher rates of biomarker change were associated
with worsening MMSE score. This model constructed the
biomarker trajectories without making any assumptions about
the shapes of the trajectories. This contrasts with the authors’
earlier hypothetical biomarker cascade model, which imposed a
sigmoid trajectory curve.

While the shapes of the trajectories in this data-driven model
agree with the assumptions made in the hypothetical exemplar,
the model has several limitations, pertaining to model design
choices and deficiencies in the data. The authors chose to use the
MMSE score as the independent variable. This choice was made
because the MMSE score provides a linear measure of disease
progression that was available across all datasets. However, this
introduces challenges in the estimation of trajectories in early
disease stages, because MMSE scores in cognitively normal
patients are relatively stable over time (Tombaugh, 2005),
yielding only a narrow range of values. Moreover, especially when
studying early disease stages, the model additionally suffers from
possible absence of information on future disease developments
of a subject. This absence of data on future disease outcome
is related to data censoring, which will be addressed in more
detail later.

In their data-driven model (Jack et al., 2011), Jack et al.
aimed to unravel the temporal order of biomarker trajectories
becoming abnormal, rather than only describing the shape
of their trajectories. They used the prevalence of biomarker
abnormalities at different disease stages to empirically assess
the temporal ordering of their trajectories. They employed
generalized estimating equations, a generalized linear model for
longitudinal data that can deal with correlated observations, to
evaluate and compare the proportion of abnormal observations
per biomarker. The proper choice of a cut-off defining when
biomarker measures are considered to be abnormal is a point
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of debate and making this choice requires critical judgement.
To differentiate between normal and abnormal biomarkers, Jack
et al. (2011) determined a cut-off by looking at an independent
post-mortem cohort. However, since, by construction, results
were highly sensitive to the selected cut-off for each biomarker,
the temporal resolution of the model is limited.

While the proportion of patients with abnormal biomarker
values might seem an unnatural choice for comparing
biomarkers, alternative strategies also have drawbacks. Caroli
and Frisoni (2010) computed Z-scores based on values of
each biomarker and fitted them against Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-cog) scores,
comparing linear and sigmoidal fits. Their investigation showed
that a sigmoid curve fit the observed data significantly better
than a linear one for most of the biomarkers, and thereby might
be able to characterize the time course of those biomarkers.
These results were consistent with the hypothetical model
proposed by Jack et al. (2010) and Jack et al. (2013). However,
the biomarker trajectories cannot be directly compared with the
data-driven model developed by Jack et al. (2011), since different
scales were employed in both studies. While standardization of
values by converting them into Z-scores resolves this problem,
it introduces a new one: by definition, the arithmetic mean of
each biomarker will be 0. This makes it impossible to reasonably
compare biomarker distributions based on their means using
standard statistical procedures like, for example, t-tests (Jack
et al., 2011; Moeller, 2015).

The arbitrariness of defining a cut-off for abnormality
of a biomarker will always pose a limitation on statistical
approaches relying on biomarkers. While such cut-offs simplify
the interpretation of the biomarker, there is no universally correct
cut-off for a given biomarker. Rather, appropriate cut-offs heavily
depend on the population, and even the individual, on which
a biomarker will be used. Covariates such as an individual’s
age, genetic risk factors, and family history of AD must be
considered. For these reasons, there is no single optimal cut-
off for any given biomarker (Bartlett et al., 2012; Anne and
Fagan, 2014). To address this, a less rigid technique has been
developed, that designates an intermediate range using two cut-
offs, one permissive and the other conservative (Klunk et al.,
2012; Jack et al., 2016a,b; Bzdok, 2017). The permissive point
can be used for earliest detectable evidence of AD pathologic
changes and the conservative one for high diagnostic certainty.
Moreover, different statistical approaches, like Youden’s index
and the receiver operating characteristic (ROC) curve, can be
applied to help determine an appropriate cut-off.

Linear traditional models are ill-equipped to handle the
increasingly high-dimensional data being collected in AD
studies. Thanks to recent technological advancements, the
granularity of AD datasets with respect to information resolution,
feature size, and complexity of meta-information have increased.
For example, improved neuro-imaging techniques generate
datasets with higher resolution than previously available. This
information distributed over voxels, a 3D imaging unit, is hard
to capture using linear models (Bzdok, 2017). Therefore, more
advanced data-driven models have been developed based on
machine learning. These models are generally more flexible and

compatible with the complex datasets encountered in biology
research (Bzdok, 2017).

Machine Learning Models
Machine learning models can be characterized as generative
or discriminative. As previously mentioned, discriminative
models are designed to differentiate between groups, while
generative models provide better disease understanding
by learning inherent properties from datasets, such as
feature interdependencies.

Generative models
Generative modeling relies on the use of statistics and probability
to extract patterns from data and learn the underlying
distribution. In the following, three types of generative
integrative AD models are reviewed: event-based models,
Bayesian network learning, and autoencoders.

Event-based models. Event-based models estimate the most
probable sequence of events based on the assessment of a
probability density function for a particular event order. Fonteijn
et al. (2012), Chen et al. (2016), and Oxtoby et al. (2018), used this
method to learn the sequence of AD events based on imaging and
non-imaging measurements from a clinical study. The authors
first fitted simple mixture models (e.g., gaussian mixture models)
to individual biomarkers in order to calculate the likelihood of
the normality or abnormality status per biomarker. Given these
likelihoods, by multiplication of the probabilities, the likelihoods
for each possible order of events was calculated. The order
with the highest probability was then selected using a greedy
Markov Chain Monte Carlo algorithm to describe the temporal
correlation of the biomarker trajectories over the course of
AD progression.

The models developed by Fonteijn et al. (2012) and
Chen et al. (2016) simplified the sequence of biomarker
abnormalities over the course of the disease progression by
relying on the assumption that all subjects follow a single
event sequence. However, AD is highly heterogeneous and
includes distinct subgroups (Ferreira et al., 2018). To account
for this, Young et al. (2015) established their event-based
models with two extensions: a Mallows model and a Dirichlet
process mixture of generalized Mallows models. The first
extension allows subjects to deviate from the main event
sequence, and the latter clusters subjects according to different
event sequences.

In principle, the event sequence proposed in the hypothetical
model is similar to that observed using traditional and event-
based models. Changes in CSF measures are the earliest events,
followed by regional brain atrophies and finally succeeded by
diminished cognitive scores. However, the event sequence in
the hypothetical and traditional models is constructed based on
predefined clinical assessments and often imprecise or subjective
cut-offs. By contrast, in generative models, the sequence of
events, as well as the clustering of biomarkers into normal and
abnormal classes, is directly extracted from the data (e.g., the
onset of a new symptom, like memory performance decline).
Thus, event-based models explain the changes without a priori
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biases. Moreover, generative models are able to characterize
uncertainty in the event ordering arising from heterogeneity in
the population and thus, can address individual deviations from
the generic model.

Bayesian network learning. Extensive research efforts have
been made to uncover the relationships between individual
biomarkers and AD. Yet the number of studies that investigated
the interplay between multiple biomarkers themselves is
comparably limited. Khanna et al. (2018) and Ding et al. (2018)
built Bayesian network models covering different biological
scales and time points to uncover the interplay amongst sets
of biomarkers. Ding et al. (2018) considered the ApoE allele,
PET and MRI imaging data, scores from psychological and
functional tests, and the medical history of patients with respect
to neurological diseases. Using a variety of feature selection
metrics, they determined the most relevant features with respect
to the clinical dementia rating and modeled these heterogeneous
measurements using a Bayesian network to determine their
probabilistic interdependencies. However, these models only
capture conditional probabilities between predictor variables
and clinical outcomes. They are unable to provide a causal
mechanistic understanding of an observed phenomenon. Such
hypothesized pathophysiological mechanisms are important
for making reliable predictions and having confidence in
the practical application of data-driven models. To this end,
Khanna et al. (2018) employed a combination of data-driven
probabilistic and knowledge-driven mechanistic approaches.
They modeled clinical variables, genetic variants, pathways,
and neuro-imaging readouts using Bayesian network learning
to estimate dependencies between disease relevant features.
Together with a cause-and-effect knowledge model derived
from scientific literature, they partially reconstructed biological
mechanisms that could play a role in the conversion of
normal/MCI into AD pathology.

Autoencoders. The last type of generative model discussed in
this review is autoencoders. In essence, an autoencoder is a
neural network that aims to encode the input data into a
lower dimensional representation and from that decode it again,
reconstructing the original input. It has successfully been applied
for different tasks on AD cohorts (Basu et al., 2019; Martinez-
Murcia et al., 2019). The two main applications of this approach
in the field consist of classifying patients based on AD diagnosis
(Basu et al., 2019) and clustering of patient trajectories into
subgroups (De Jong et al., 2019). These strategies are especially
interesting for patient classification and stratification tasks in
datasets where information is sparse. However, another novel and
promising task for autoencoders is the generation of synthetic
data from real patient level data (Gootjes-Dreesbach et al., 2019).
This, in turn, could be used to circumvent legal and ethical
constraints that restrict data sharing.

Discriminative models
Discriminative models are a class of models generally used for
classification. Discriminative models that rely on labeled data

are called supervised models, while unsupervised models use
unlabeled data.

Supervised discriminative models. Diverse supervised
discriminative methods such as support vector machines
(SVM; Magnin et al., 2010), and multiple-kernel SVM (MKL;
Hinrichs et al., 2010; Zhang et al., 2011) have been used to classify
AD patients, MCI subjects, and controls. However, studies that
used multiple-kernel SVM reported superior classification
performance, because the use of multiple kernels facilitates
the integration of multimodal biomarker data (Zhang et al.,
2011). Additionally, MKL are well-suited for dealing with very
high dimensional data (Young et al., 2013). MKL also enable
individual weighting of biomarker modalities. This offers more
flexibility for kernel combination and thus, a better integration
of the data. For example Hinrichs et al. (2010), applied MKL
in combination with MRI and PET imaging to differentiate
between AD subjects and controls. Their method showed high
classification performance, achieving 92.4% accuracy. Similarly,
Zhang et al. (2018) combined MRI, PET, and CSF biomarkers
to discriminate between healthy controls and AD/MCI. After
integrating all biomarker data using a MKL, they deployed a
linear SVM for the actual classification task, which resulted in
93.2% accuracy for classifying AD and healthy controls and
76.4% for discriminating between MCI and healthy controls.
Both studies applied a similar method for classification, yet the
latter one achieved a slightly higher accuracy. Comparing the
approaches applied in Zhang et al. (2018) and Hinrichs et al.
(2010) it becomes clear that the major reason for the difference
in performance is the feature selection process. Depending on
the available sample size, other methods might prove more
promising (Liu et al., 2012). Moreover, Zhang et al. (2018)
benefits from employing three biomarker modalities, namely,
CSF measurements and two imaging modalities, compared to
Hinrichs et al. (2010) who only use the two imaging modalities.

While the above kernel-based pattern recognition approaches
yield categorical class decisions, Young et al. (2013) used
gaussian process classification, which is a probabilistic
classification algorithm. This study integrated imaging, CSF,
neuropsychological, and genetic biomarkers to classify MCI
subjects who remained stable and MCI patients who converted
to AD within 3 years. In contrast to MKL, the probabilistic
classification afforded by the gaussian process approach provides
the opportunity to position the subjects according to disease
stage, to stratify patients, and to model the sequence order of
biomarker abnormality.

Another type of discriminative model is disease risk models.
This type of supervised model can be used to predict the time
to AD diagnosis for normal/MCI patients. Multiple approaches
have been used to develop risk models for AD (Da et al.,
2013; Li et al., 2013). Li et al. (2013) used a combination of
cox regression analyses and time-dependent ROC approaches to
evaluate prognostic utility and performance stability of candidate
biomarkers. The authors deduced that both baseline volumetric
MRI and cognitive measures can predict progression from MCI
to AD. However, in participants’ follow-up visits, only cognitive
measurements remained predictive. Da et al. (2013) employed
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the cox proportional hazards models to compare the magnitudes
of the relative association between predictors (patterns of brain
atrophy, cognitive assessments, genetics, and CSF biomarkers)
and time to conversion from MCI to AD. They concluded that
brain atrophy and cognitive assessments in combination offer the
highest predictive power of conversion fromMCI to AD.

Although the results in both studies were similar, the time-
dependent ROC curve used by Li et al. (2013) enabled them
to predict disease risk as a function of time. Thus, this method
provides clear benefit for a progressive disease such as AD,
in which both the disease status and biomarker measurements
change over time (Kamarudin et al., 2017).

The data labeling which enables supervised discriminative
models to determine decision boundaries for distinguishing
classes of interest can also introduce errors. Inaccurate labels
will negatively affect the performance of the classifier. Such
mislabeling is not uncommon in AD, due to the absence of
a clear diagnostic biomarker (Fischer et al., 2017). Instead,
diagnosis is currently made based on symptoms (Schott and
Petersen, 2015) Furthermore, integrative data analysis is further
complicated by the fact that the diagnostic criteria for MCI have
changed over the years, and MCI is not consistently defined
across clinical studies. While one study relies on assessing only
a single cognitive domain for MCI diagnosis, such as speech
or memory, others base their diagnoses on performance on
cognitive tests for multiple domains. Apart from that, there
are multiple pathologies for MCI; AD is just one of them.
Thus, unified clear disease definitions are crucial, since the MCI
classification accuracy can influence outcomes of research and
clinical practice (Jak et al., 2010).

Unsupervised Discriminative Models. Unsupervised
discriminative models use a variety of clustering techniques
on unlabeled data, avoiding the challenges of data label
accuracy. These techniques use properties of each data point
to iteratively form groups, called clusters. This ultimately leads
to a discrimination of the data into several clusters of highly
similar data points. Given the observed biological heterogeneity
among normal control subjects, Nettiksimmons et al. (2014)
hypothesized that different subgroups may also be found among
the MCI subjects. Using agglomerative hierarchical clustering,
they sorted subjects based on MRI volumes, CSF measurements,
and cognitive tests. Next, the resulting clusters were explored
with regard to longitudinal atrophy, conversion time, and
cognitive trajectories. Four clusters with unique biomarker
patterns resulted: (i) a cluster biologically similar to normal
controls. MCI patients from that cluster rarely converted to AD,
(ii) one cluster with early AD pathology characteristics, (iii)
another cluster of subjects with hardly any tau abnormality,
but a high proportion of AD converters, and (iv) and finally
one cluster with pre-AD symptoms wherein almost all subjects
converted to AD. Based on these findings, they hypothesized
that clusters ii and iv reflected the amyloid cascade pattern
(Ricciarelli and Fedele, 2017) since both clusters presented lower
CSF Aβ levels and elevated tau proteins. However, the tau level
in cluster iv was higher, and more severe atrophy as well as
cognitive impairment were detected. The authors concluded that

more tau accumulation may lead to more cognitive decline. One
of the intrinsic limitations of their clustering approach is that
the number of clusters must be predefined. The maximum gap
statistic is one approach to determine this number (Tibshirani
et al., 2001). However, specifying the number of clusters
beforehand will always bias the clustering to some extent, and
choosing a reasonable number is no trivial task given the broad
variety of subtypes found among AD subjects.

Toschi et al. (2019) used Density-Based Spatial Clustering of
Applications with Noise (DBSCAN; Thanh et al., 2013), which
does not require pre-specifying the number of clusters. They
integrated five validated CSF biomarkers in order to cluster a
cohort where symptomatic patients presented diagnoses ranging
from self-perceived cognitive decline (Zhang et al., 2011) to MCI
to AD. In contrast to the previous study, Toschi et al. (2019)
adjusted all biomarker values for age, sex and their interactions
to exclude them as confounders (Pourhoseingholi et al., 2012).
Moreover, Toschi et al. (2019) used t-Distributed Stochastic
Neighbor Embedding (t-SNE) to reduce the dimensionality of
biomarkers space, since defining the distance between the data
points in a high dimensional space of biomarkers is notoriously
difficult (Domingos, 2012). Finally, they applied DBSCANon this
lower dimensional representation. DBSCAN defines a high data
density region based on two parameters: (i) the radius of the
neighborhood, and (ii) the minimum number of points within
the radius. These values are determined by a nearest neighbor
method, in which the distance of each point to their nearest n
points is calculated. Afterwards, results are sorted, plotted and
the value with most pronounced change is selected as the optimal
value. Using DBSCAN, Toschi et al. (2019) characterized five
biological clusters which were not significantly bound to the
original distinct clinically phenotyped diagnostic groups. They
explained that the clusters included all phenotypic groups and
were not homogeneous enough to be considered as a specific
AD pathophysiology. Moreover, contrary to general belief that
Aβ1−42 is linearly associated with the progression of AD and
cognitive decline (Sperling et al., 2011a; Samtani et al., 2013),
their findings suggest that Aβ1−42 is less likely to contribute to
phenotypic discrimination.

The dimensionality reduction technique, t-SNE, used by
Toschi et al. (2019) enabled them to better separate the data and
hence, to enhance cluster identification, in comparison to directly
running a clustering algorithm on a high dimensional data as
Nettiksimmons et al. (2014). However, their main limitation is
that clustering results are highly sensitive to two parameters
necessary for DBSCAN. Moreover, they did not include other
biomarkers, such as imaging and genetics biomarkers, which
could enhance their clustering, as previously reported by Young
et al. (2013, 2018).

Unsupervised clustering algorithms are ideal for identifying
subgroups and non-linear associations between individuals based
on a multidimensional profile, regardless of the individual
labels, in contrast to supervised algorithms. This allows the
grouping of individuals based on shared pathophysiological
drivers and triggers and, possibly, similar longitudinal disease
trajectories. This is an advantage in the AD field due to the
prevalence of unreliable labels stemming from misdiagnosis

Frontiers in Molecular Biosciences | www.frontiersin.org 7 January 2020 | Volume 6 | Article 158



Golriz Khatami et al. Challenges of Integrative AD Modeling

and to the biological heterogeneity of AD subjects. On the
other hand, most unsupervised clustering algorithms perform
better with a larger sample size than is often obtainable in
AD studies (Oxtoby and Alexander, 2017). Therefore, the smaller
size inherent to AD cohorts may lead to clustering instability.

To this point, we have reviewed a broad variety of data-driven
integrative AD models and elaborated on their associated
limitations and challenges. In the following, we enumerate
more general challenges researchers encounter in the course
of data-driven integrative AD modeling and suggest how these
could be addressed.

Challenges of Data-Driven Modeling
Although there exists a wide range of data-driven integrative
modeling approaches, not all of them are well-suited for every
analytic task and each has its own strengths and weaknesses. Still,
there are some challenges which affect all data-driven approaches
to some degree: data collection, reproducibility of findings, and
interpretability of models and results.

Data Collection
Collecting patient level data, the basis for all data-driven
modeling, is a time-consuming and costly process. Additionally,
it is a source of major challenges and limitations of these
models. In particular, data “censoring” and “missingness,” can
impede modeling, bias models, or even make certain modeling
techniques unfeasible.

Data censoring describes the condition in which a particular
event (here AD diagnosis) is not observed for certain study
participants during the study runtime. This censoring can occur
in two ways: if AD diagnosis occurred before the start of
the study; or if the patient drops out of the study, or the
study ends without occurrence of the AD diagnosis event.
A significant number of patients enrolled in clinical studies
have already received a diagnosis before the beginning of the
study, indicating that they are in a progressed stage of the
disease (Ellis et al., 2009). It is therefore not possible to obtain
indications of early disease onset in such patients. The second
form of censoring arises from two sources. First, all observational
cohort studies experience participant dropout for a variety of
reasons, including the participation burden on caregivers or
medical problems (Coley et al., 2008). Second, subjects that
remain healthy throughout study runtime could still develop
the disease after the study ended, meaning they were in a
prodromal disease stage. It is thus impossible to know if or
when the patient would eventually receive an AD diagnosis.
This form of censoring is common in longitudinal AD studies,
because AD is a slow-progressing disease, while the studies are
typically quite short (Lawrence et al., 2017), due to limited
funding (Prabhakaran and Bakshi, 2018).

Disease onset is a critical point for clinical intervention
(Sperling et al., 2011b), so it is subject to extensive research
efforts. It is here, however, where data censoring impedes data
analysis the most. Data censoring can result in over- or under-
sampling of early and advanced disease stages. This, in turn,
leads to models biased toward specific disease stages (Ning et al.,
2010). Various methods, such as complete data analysis (Xiang

et al., 2013), imputation (Fisher et al., 2019), or analysis based on
dichotomized data (Donohue et al., 2011), have been established
to address censored data. Yet all of these methods may introduce
error and impose complexities and biases on other integrative
modeling steps, such as model interpretation, and thus need to
be used with care (Prinja et al., 2010).

The complete absence of a value for variables in the
observation of interest likewise poses a significant challenge to
data-driven modeling. This missing data in AD cohort studies
occurs for several reasons, including unwillingness of patients
to undergo invasive tests like lumbar punctures, and the high
cost of measuring a particular variable, such as imaging scans
(Engelborghs et al., 2017). The implications of such a scenario
include a loss of statistical power of the study and may bias the
conclusions that can be drawn (Hughes et al., 2019). Over the
past decades, novel statistical methods (Molenberghs et al., 2014)
and software (Quartagno and Carpenter, 2016;Moreno-Betancur
et al., 2017) have been developed for analyzing data with missing
values. However, analysis restricted to individuals with complete
data is generally preferred, if feasible.

Despite the challenges in collecting complete and uncensored
data, the value of data in strengthening disease understanding is
clear. Several large-scale AD patient datasets have been collected
for use in a variety of studies (Lawrence et al., 2017) including, for
example, Alzheimer’s Disease Neuroimaging Initiative (ADNI;
Mueller et al., 2005), Australian Imaging Biomarkers and
Lifestyle Study of Aging (AIBL; Ellis et al., 2009), the Dominantly
Inherited Alzheimer Network (DIAN; Moulder et al., 2013), and
European Prevention of Alzheimer’s Dementia (EPAD; Vermunt
et al., 2018). However, these classical observational studies are
subject to bias, resulting from the inclusion and exclusion criteria
used to select participants (Miksad and Abernethy, 2018).

The use of electronic medical records (EMRs) has been
proposed as a potential solution to reduce the bias of classical
clinical trials. They provide an alternative view on patient
measurements (Fröhlich et al., 2018), so, a collection of EMRs
can provide amore representative view on patientmeasurements.
However, EMRs are largely phenotypic: molecular phenomena
such as genomic variants are not reflected in the data. Moreover,
extracting information from EMRs requires natural language
preprocessing, which itself currently remains a difficult and
error-prone process.

Reproducibility
The ability to reproduce the findings of a study using different
subjects is an important part of scientific research. This is
particularly the case in integrative AD modeling, since the
tendency of AD datasets is not to fully reflect the diversity of
AD patients. Inclusion-exclusion criteria in clinical studies can
lead to significant under-representation of some populations. For
example, the landscape of data-driven AD models is currently
dominated by only a few cohorts which are made up largely
of White Caucasians, and, to a lesser extent, are constrained
by geographic location (Lawrence et al., 2017). Since most
observational cohorts are not representative of the general AD
population (Ferreira et al., 2017), it is important to validate the
resulting models with an independent cohort study. While this
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external validation is a necessary step to corroborate findings, it
is complicated by data interoperability and sample size.

Interoperability
The ability to map the data coming from one study to
data from another study is known as data interoperability5.
Each of the major AD clinical studies was established with a
specific sample and feature characterization. Since they might
not be directly interoperable, extensive curation is needed
before the external validation of a model can be carried out.
Otherwise, the training cohort and the validation cohort would
be based on different populations, and would contain different
measurements. Thus, before validation, researchers must map
and assess the “comparability” of both features and subjects.

Feature mapping requires specifying relationships between
data elements from different data models and standardizing the
terms used to represent the features in the two datasets. This
is due to the fact that controlled vocabularies are not used to
annotate the datasets. Thus, even if the same biomarker has been
collected in two studies, it is usually referred to by different terms,
impeding a direct comparison of the datasets. For example,
the hippocampus is one of the earliest sites of AD pathology,
and hippocampal volume is measured in ADNI and EPAD.
However, ADNI identifies this biomarker as “Hippocampus,”
while EPAD refers to it as “lhvr” (right hemisphere) and “lhvl”
(left hemisphere).

Moreover, the subject populations in each study must be
comparable. For instance, if the biological sex distributions in
twoAD studies differ significantly, then the cognitive impairment
scores of the cohorts cannot be directly compared, because
female AD patients have been shown to have greater cognitive
impairment than men in comparable stages of the disease
(Laws et al., 2016).

There are several strategies to overcome the lack of
interoperability between datasets at both feature and subject level.
At the feature level, interoperability can be attained by annotating
datasets according to a standard controlled vocabulary. Several
such vocabularies (e.g., NIFT Iyappan et al., 2017 and PTS
Iyappan et al., 2016) have been established, but significant
improvements in interoperability will only comewith widespread
adoption (Neu et al., 2012). The most prominent example might
be the AD specific standard developed by the Clinical Data
Interchange Standards Consortium (CDISC; Neville et al., 2017).
At the subject level, mapping between training and validation
cohorts can be accomplished by identifying, in the validation
cohort, a subset of subjects that is statistically comparable to
the training cohort. Finally, in order to assess the comparability
of subjects from different studies, techniques such as statistical
matching can be used (Austin, 2011).

Sample size
The relatively small sample sizes of AD clinical studies also
contributes to the challenge of reproducibility in AD integrative
modeling. Many AD studies contain fewer than a thousand
patients, and the longitudinal follow-up is limited. In addition,

5https://library.ahima.org/doc?oid=65895#.Xdl-iZPYrOQ

typically not all of the subjects were screened for the complete
biomarker set, leading to sparse subsets of patients for whom
the study contains complete data. As a result, models generated
from these studies have a high margin of error and low statistical
power, meaning they struggle to detect small effects.

The integration of different datasets into a larger dataset
can overcome some of the challenges related to small sample
sizes (Gomez-Cabrero et al., 2014). Integrated datasets provide
more comprehensive data, and the resulting models have
greater statistical power. However, current approaches for data
integration were developed for the analysis of single-data-type
datasets, and only subsequently adapted to handle datasets
with multiple data types. For this reason, data integration
methodologies can be ill-suited to manage the computational
challenges arising from the variety of different data sizes, formats,
and dimensionalities present in AD datasets, as well as their
noisiness, complexity, and the level of agreement between
datasets (Gomez-Cabrero et al., 2014; Gligorijević et al., 2015).
Furthermore, even data acquired by analogous technologies
are not necessarily integrable. For example, neuroimaging data
acquired from similar scanners and similar modalities may still
be stored in different formats and have differentmetadata content
(Goble and Stevens, 2008).

Several strategies could be applied to address the
interoperability challenges arising from data integration.
The first strategy is to normalize and standardize data across
all platforms (O’Bryant et al., 2015). However, scientific
independency and freedom for innovation, as well as uniqueness
of databases, must be respected. The second strategy is to
collect a standardized set of biomarkers across different studies.
Finally, the ideal solution would be performing a systematic
longitudinal clinical and -omics follow-up of each individual
in a large and rigorously characterized cohort since this would
provide a statistically sufficient number of measurements in
the context of subjects and variables. The Deep and Frequent
Phenotyping study from Lawson et al. (2017) showed that such
a cohort, in theory, is feasible. Yet, including a sufficient number
of participants in such an ambitious study is costly.

Interpretability
In order for an AD model to have clinical impact, its findings
must be interpretable. There are several barriers to AD model
interpretability. Machine learning models often act as “black
boxes”; it may be impossible to uncover the reasons for the
predictions made by the model (Rudin, 2019). Indeed, as the
number of features and the complexity of the computational
processes used in models increases, this interpretability problem
will worsen. Moreover, data-driven models are not causal and
typically capture non-linear correlations between predictor and
explanatory variables. While prior understanding of cause–effect
relationships and detailed mechanisms might prove helpful to
well-performing models, it is not necessarily required. Lack of
mechanistic explanations for model prediction complicates the
interpretation of data-driven findings and reduces acceptance by
physicians (Fröhlich et al., 2018). Thus, the translation of data-
driven models into a biomedical knowledge context is a major
challenge in integrative AD modeling.
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Combining available mechanistic knowledge with machine
learning-based sub-models, so-called hybrid modeling
could bridge the gap between experimental biological and
computational research by improving interpretability (Fröhlich
et al., 2018). For example, Bayesian networks which built
on causal knowledge graphs constitute such a hybrid model
(Arora et al., 2019). They shed light on interdependencies
across features, which can be on different scales (e.g., clinical,
genetic, and molecular), and allow for predicting the outcome of
purely hypothetical clinical interventions. Similarly, other recent
deep learning methodologies use knowledge-derived biological
networks to define the layers of neural networks in order to
improve interpretability (Fortelny and Bock, 2019).

CONCLUSION

In the era of extensive biomarker profiling, big data, and artificial
intelligence, integrative AD modeling comes with high promises.
By integrating multi-scale, multimodal, and longitudinal patient
data, such modeling approaches aim to provide a holistic picture
of disease pathophysiology and progression. However, as we
have discussed in this review, while integrative models have
generated significant insights, and thus proved to be valuable
in research, existing models do not yet fully describe critical
aspects of AD.

The construction of hypothetical models simultaneously
benefits and suffers from the vast amount of published
knowledge. Prioritization of articles and computational text
mining of literature corpora are reasonable approaches to
identify a greater quantity of relevant knowledge while designing
hypothetical models. In the field of data-driven integrative
AD modeling, we highlighted several major ongoing challenges
throughout the whole modeling process of data collection,
integration of disparate data sources, data analysis, and
model interpretation. Data missingness and data censoring are
major bottlenecks in data collection as well as analysis and
interpretation. Heterogeneity and complexity in biological data
are major impediments to data integration, which is central to
data-driven integrative modeling and validation. Data mapping,

imprecise diagnostic stages, and biased data are barriers that
hamper data analysis and interpretation. Furthermore, there is

an insufficient number of subjects in studies, which restricts the
statistical power of data-driven integrative AD models. Because
of these challenges, to the best of our knowledge, at this point in
time, there are no integrative AD models which have been used
in clinical practice.

While in theory, certain existing integrative models are
capable of predicting AD diagnosis and progression, they are
not used in clinical practice. We see a number of steps
that could bring us closer to the goal of precision medicine
and that could enable patient diagnosis through integrative
disease models in a clinical context. First, we, the AD research
community, need to establish valid, informative biomarkers and
clear criteria for AD diagnosis. This would result in reliable
predictors that could be included in modeling approaches,
as well as fewer diagnostic errors, which in turn reduce the
effect of mislabeled data. Second, a global data schema that
could support the normalization and standardization of data
across measurements would ultimately facilitate improved data
integration. If future cohort studies would adhere to such a
schema, data integration would be straightforward and the
cumulative time saved for researchers working with it would
be enormous. Finally, innovative modeling approaches, such
as causal inference techniques and hybrid modeling, which
go beyond current state-of-the-art data-driven models by
linking prior knowledge with data-driven models, need to be
developed and made more robust. Overall, novel computational
modeling approaches that surmount the current integrative
AD modeling challenges may hold the potential to play
an increasing role in the planning of medical interventions
and practice.
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Background
Alzheimer’s disease, in combination with its clinical 
manifestation/syndrome (AD) [1], is a progressive, mul-
tifaceted disease whose cognitive symptoms surface years 
after disease onset [2]. In order to identify crucial oppor-
tunities for medical interventions that could potentially 
prevent or delay symptoms, it is vital to understand the 
temporal relationship of pathological changes underly-
ing the progressive nature of AD. To this end, cognitive 
assessments and a wide range of biomarkers, including 
cerebrospinal fluid (CSF) markers and neuroimaging-
derived measures, have been established to monitor the 
disease’s progression. Measuring these markers enables 
the observation of biochemical, structural, functional, 
and cognitive changes that occur as the disease pro-
gresses [3] and the resulting data can build the basis for 
data-driven approaches that aim to determine the relative 
temporal dependencies between biomarkers and cogni-
tive symptoms [4]. Previously, a variety of data-driven 
models have been developed with the aim of accomplish-
ing this task [5–10].

One model archetype that has found wide success in 
the context of neurodegenerative diseases [11–14] and 
AD specifically [15] is the event-based model (EBM) 
[13]. It is a data-driven probabilistic generative model 
that characterizes the progression of a disease in the 
form of a single sequence of events which describes the 
relative order of measured markers turning from a nor-
mal state to a diseased state (i.e., abnormal state). Such 
event sequences carry the benefit that they are highly 
interpretable and, although describing disease progres-
sion, can already be learned from cross-sectional cohort 
study data. Previously, EBMs have been used to derive 

event sequences [13], stage subjects in their disease pro-
gression [15], predict conversion from one clinical stage 
to the other (i.e., cognitively unimpaired (CU) to mild 
cognitive impairment (MCI), or MCI to AD) [16], and 
uncover disease phenotypes with distinct temporal pro-
gression patterns.

To build an EBM, patient-level data are needed on 
which the model can be fit. In recent decades, an increas-
ing number of observational cohort studies have released 
their collected data for research purposes, including the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[17], the European Prevention of Alzheimer’s Dementia 
(EPAD) [18], and AddNeuroMed [4]. So far, however, only 
a few studies in the AD domain have applied EBMs to 
data from other cohorts besides ADNI [19, 20]. Previous 
work evaluating data-driven progression modeling based 
on cohort datasets has shown that the participant recruit-
ment procedures can introduce cohort-specific system-
atic statistical biases into the collected data [21], which, in 
turn, can bias the estimation of disease progression [22]. 
Therefore, it is necessary to replicate and validate data-
driven results in independent cohorts to ensure robust 
conclusions. Consequently, it remains unclear whether 
event sequences determined from one cohort dataset 
would generalize beyond the discovery cohort itself and, 
further, if sequences generated across several cohorts 
were concordant among each other. Simultaneously, 
gaining a comprehensive event sequence combining all 
relevant AD biomarkers, cognitive assessments, and func-
tional scores is infeasible, since cohort studies can only 
measure a limited set of variables that are often only par-
tially overlapping between them [23]. In theory, however, 
this allows for an estimation of individual event sequences 

estimated progression patterns must be understood, and complementary information contained in cohort datasets 
be leveraged.

Methods: We compared ten event‑based models that we fit to ten independent AD cohort datasets. Additionally, 
we designed and applied a novel rank aggregation algorithm that combines partially overlapping, individual event 
sequences into a meta‑sequence containing the complementary information from each cohort.

Results: We observed overall consistency across the ten event‑based model sequences (average pairwise Kend‑
all’s tau correlation coefficient of 0.69 ± 0.28), despite variance in the positioning of mainly imaging variables. The 
changes described in the aggregated meta‑sequence are broadly consistent with the current understanding of AD 
progression, starting with cerebrospinal fluid amyloid beta, followed by tauopathy, memory impairment, FDG‑PET, 
and ultimately brain deterioration and impairment of visual memory.

Conclusion: Overall, the event‑based models demonstrated similar and robust disease cascades across independent 
AD cohorts. Aggregation of data‑driven results can combine complementary strengths and information of patient‑
level datasets. Accordingly, the derived meta‑sequence draws a more complete picture of AD pathology compared to 
models relying on single cohorts.

Keywords: Alzheimer’s disease, Event‑based models, Biomarker ordering, Disease progression, External validation, 
Meta‑sequence



Page 3 of 14Golriz Khatami et al. Alzheimer’s Research & Therapy           (2022) 14:55  

from distinct cohorts which cover complementary sets of 
markers. Aggregating results across cohorts would har-
ness this complementary information by assembling a 
meta-sequence that provides a more complete picture of 
the development and progression of AD.

In this work, we present a systematic, in-depth com-
parison of AD event sequences derived from ten inde-
pendent landmark cohort studies to investigate the 
generalizability and robustness of EBM-derived AD 
progression patterns. Furthermore, we designed a novel 
rank aggregation algorithm which we used to aggregate 
the event sequences into a single meta-sequence, thereby 
fusing the complementary information in all variables 
assessed across the studies. Our work harnesses the het-
erogeneity in cohort study designs and measurements to 
produce a meta-sequence providing a more complete, 
and robust, picture of the temporal order of pathological 
marker changes in AD progression.

Methods
Investigated cohort datasets
We selected ten independent AD cohort studies for our 
analysis by systematically exploring suitable datasets 
using the ADataViewer [23]. The prerequisite for includ-
ing a cohort into our analysis was that (1) diagnostic 
staging into CU, MCI, and AD was performed [24]; (2) 
cross-sectional data was available for at least 10 patients 
per diagnostic group; and (3) multiple data modali-
ties were collected. The cohorts that were ultimately 
selected are presented in Table  1. All cohorts followed 
the NINCDS-ADRDA diagnostic criteria [24].

Variable selection
We aimed at including a wide spectrum of variables to 
uncover the temporal relationship across multimodal 

markers of AD pathology that capture, for example, dif-
ferent biochemical, cognitive, or structural changes. In 
order to include a specific variable, it must have been 
measured in at least the CU and AD groups of the 
respective study to allow for later modeling. Further-
more, only a minimal amount of missing values was tol-
erable, as participants with missing values in any of the 
ultimately selected variables had to be excluded from the 
analysis. This led to a trade-off between the inclusion of 
an increasing number of variables and the amount of par-
ticipants available for analysis. We present an example 
of variable inclusion and the effect on sample size in the 
supplementary material (Table  S1). In total, 36 unique 
variables were selected from different data modalities 
covering neuropsychological and cognitive tests, CSF 
markers, and MRI-derived brain region volumes. The 
complete list of selected biomarkers and their corre-
sponding modality are presented in Table 2. The number 
of variables per cohort is given in Table 1.

Participants
An available diagnosis of a participant as either CU, MCI, 
or AD was a prerequisite for inclusion. Furthermore, any 
participant with a diagnosis of cognitive impairment that 
was not linked to AD by the respective study’s clinicians 
was excluded. Furthermore, only participants with com-
plete data across all selected biomarkers could be used in 
our modeling approach. The number of participants per 
cohort and diagnostic group is described in Table 1.

Progression modeling via event‑based models
The EBM derives a probabilistic sequence from patient-
level data that describes the temporal order in which 
measured values of variables turn from a normal to an 
abnormal state. Each of these transitions is called an 

Table 1 Selected cohorts, their number of participants per disease stage, and their number of considered variables

Cohort Consortium CU MCI AD Total Number 
of CSF, 
PET, and 
imaging 
biomarkers

Number of 
cognitive 
tests

ADNI [17] The Alzheimer’s Disease Neuroimaging Initiative 38 63 35 136 9 9

JADNI [25] Japanese Alzheimer’s Disease Neuroimaging Initiative 17 87 10 114 9 9

AIBL [26] The Australian Imaging, Biomarker Lifestyle Flagship 
Study of Ageing

92 23 13 128 0 10

NACC [27] The National Alzheimer’s Coordinating Center 24 42 24 90 9 7

ANM [28] AddNeuroMed 120 161 103 384 6 1

EMIF‑1000 [29] European Medical Information Framework 47 229 53 329 4 5

EDSD [30] European DTI Study on Dementia 26 34 32 92 5 7

ARWIBO [31] Alzheimer’s Disease Repository Without Borders 214 115 38 367 7 3

OASIS‑1 [32], OASIS‑2 [33] Open Access Series of Imaging Studies 135 70 30 235 6 1

WMHAD [34] White Matter Hyperintensities in Alzheimer’s Disease 19 27 42 88 6 7
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event. In this context, normality or abnormality are 
defined non-parametrically using kernel density esti-
mation mixture modeling on the empirical values of 
the modeled cohort’s CU and AD populations, respec-
tively [35]. This probabilistic allocation of measurements 
into two groups allows study participants (in particular, 
patients) to have a mix of occurred and non-occurred 
events across all measurements which lays the founda-
tion to estimate the most likely event sequence. Here, the 
EBM assumes that the biomarkers monotonically change 
towards abnormality as the disease progresses and that 
this process is irreversible. Furthermore, there are no a 
priori assumptions regarding predefined disease stages, 

cut points determining the abnormality of biomarkers, or 
the temporal relationship between them. The most likely 
sequence of events S is then estimated by maximizing the 
likelihood (𝑋|𝑆) (Eq. 1), where variable measurements are 
denoted by x ∈ X for i ∈ M markers and j ∈ N indicates the 
individual samples.

Here, Pr(xij| Ei) and Pr(xij ∣  ¬ Ei) describe the probability 
of observing the value of x given that the event Ei (i.e., 

(1)

Pr(X |S) =

N∏

j=1

[
M∑

m=0

{
m∏

i=1

Pr
(
xij|Ei

) M∏

i=m+1

Pr

(
xij|¬Ei

)}]

Table 2 The selected biomarkers and their corresponding abbreviations

Modality Biomarker Abbreviation Number of cohorts 
containing variable

Clinical assessments Neuropsychiatric Inventory NPI 2

Logical Memory ‑ Delayed Recall Total Number of Story Units Recalled LDEL 5

Alzheimer’s Disease Assessment Scale (13‑items) ADAS13 2

Alzheimer’s Disease Assessment Scale (11‑items) ADAS11 2

Logical Memory ‑ Immediate Recall Total Number of Story Units Recalled LIMM 6

Trail Making Test‑B TRABS 2

Digit‑Symbol Coding Test DIGITS 2

California Verbal Learning Test Delayed Raw Score LIDE 1

Category Fluency (animals ‑ fruits/vegetables) CATFLU 3

Figure Copy FIGC 3

California Verbal Learning Test Recall Raw Score LIRE 2

Figure recall FIGR 2

C/D Stroop Test Raw STROOP 1

Short Term Memory STM 1

Language LANGU 1

Perceptual Orientation ORIENT 2

Mental Manipulation MENMA 1

Attention ATTEN 1

Clock Drawing Test Total Score CLKS 2

Executive Memory EXECUTIVE 1

Word List Learning Trial LICOR 1

Boston Naming Test Score BNTS 2

Digit Symbol Substitution Test WAIS 2

CSF markers Amyloid‑β ABETA 4

Total tau TAU 4

Phosphorylated tau (p‑Tau) PTAU 4

Imaging markers Entorhinal volume ENTOR 8

Hippocampal volume HIPPO 8

Fusiform volume FUSIF 8

Ventricles volume VENT 8

Middle temporal volume MIDTEPM 8

Accumulated CSF in the brain CSFVOL 5

Fluorodeoxyglucose positron emission tomography (FDG PET) FDG 2
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variable x turning abnormal) has, or has not, occurred, 
respectively. For more details, we refer to the Supple-
mentary Material and the original publication of the KDE 
EBM by Firth et al. [35]. The derived mixture models per 
cohort and measurement are presented in Fig. S3.

To quantify the similarity of distinct event sequences, 
we calculated the pairwise Kendall’s tau rank correla-
tion coefficient (KTC) across sequences and the Bhat-
tacharrya coefficient (BC) for specific events as explained 
in Oxtoby et  al. [12]. The KTCs were calculated pair-
wise across all cohorts while considering only the rela-
tive ranks of variables which were common among the 
respective two cohorts’ sequences. An average KTC that 
is close to 1 and shows low standard deviation across the 
cohorts would indicate high concordance. An average BC 
close to 1 implies high similarity in the positional vari-
ance of ranks while the BC amounts to 0 for completely 
different patterns.

Generating a meta‑sequence based on event sequences 
derived from multiple cohort studies
To generate a meta-sequence, we propose a method 
that combines individual event sequences (called “base 
sequences”) stemming from independent datasets. We 
assemble a meta-sequence in a two-step procedure: first, 
building on the ideas presented in [36] and [37], we gen-
erate all possible sequences comprising k variables that 
are randomly drawn from the union of variables encoun-
tered in the base sequences (with k < total number of 
variables). The generated sequence with the minimum 
average distance to all base sequences is selected as a 
starting sequence for the next step. In step 2, this starting 
sequence is extended by iteratively adding the remaining 
variables to it (i.e., those not in the k variables of the start-
ing sequence), such that the average distance between 
the altered sequence and all base sequences remains 
minimal. Here, the new variable is not necessarily added 
to the end of the sequence but all possible positions are 
considered. This process is repeated until all variables 
have been included into the sequence which finally forms 
the aggregated meta-sequence. Therefore, the algorithm 
is deterministic once the base sequences are calculated. 
Splitting the algorithm in two steps (an exhaustive search 
for the first k variables followed by the greedy insertions) 
was necessary, as the search space (i.e., all possible meta-
sequences) grows exponentially with the number of vari-
ables in the base sequences. Further explanations about 
the algorithm, the handling of partially overlapping lists, 
and access to the corresponding python code are pro-
vided in the Supplementary Material and Fig. S1.

We designed and applied two algorithms for generating 
a meta-sequence: one based on the maximum likelihood 
(ML) sequences presented by EBMs and one relying on 

bootstrapping. In the former, only the ML base sequences 
of each cohort were used as an input to our algorithm. 
Therefore, however, solely the rank of each event is con-
sidered while its positional variance within a sequence is 
not taken into account.

During the bootstrapping approach, all base sequences 
are resampled b-times with replacement. This means that 
a new base sequence is generated per cohort based on a 
sample of that cohort’s participants that was randomly 
drawn with replacement and is of equal size to the orig-
inal cohort. For each of these b sets of base sequences, 
one meta-sequence is generated. The resulting consensus 
over the b meta-sequences is visualized using a positional 
variance diagram which displays the variation in event 
ranks exhibited across the generated meta-sequences.

For this work, we generated a meta-sequence consid-
ering only variables which were present in at least three 
cohorts (Table  2) and set k equal to eight. In our boot-
strapped version, we drew 500 bootstrap samples. The 
distance metric chosen was Spearman’s footrule distance 
which takes the absolute difference in positions of vari-
ables into account.

Patient staging according to the determined 
meta‑sequence
Once a meta-sequence was determined, one possible way 
to evaluate its plausibility across cohorts was to evaluate 
the assignment of subjects of the respective cohorts to 
the disease stages defined by the meta-sequence. In this 
process, each participant of a study was assigned to a dis-
ease stage which represents the current step in the meta-
sequence at which the participant most likely resides. 
Therefore, stage 0 refers to the absence of any abnormal 
markers, while the farthest progressed stage m (with m 
being equal to the length of the sequence) implies that 
all events occurred for that particular subject. The corre-
sponding equation underlying the patient staging is pro-
vided in the Supplemental Material.

Here, we staged only participants from cohorts that 
contained measurements of all investigated modalities 
(i.e., ADNI, JADNI, EMIF, and NACC) and were bound 
to consider only those variables of the meta-sequence 
that were found in the respectively staged cohort.

Results
Comparing event sequences derived from multiple cohort 
studies
We observed broad consistency with respect to the 
position of events across all cohorts’ sequences which 
resulted in an average KTC of 0.69 ± 0.28 (pairwise KTCs 
are presented in Table S4; sequence similarity is also indi-
cated visually through an approximately diagonal line of 
the event ranks from top-left to bottom-right in Fig. 1). 
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In most cohorts’ sequences, CSF markers ranked highly, 
before cognitive impairments, which were again followed 
by MRI-derived brain volumes in the lower ranks.

The relative order among clinical assessments meas-
uring different cognitive domains (e.g., memory, lan-
guage, visuospatial, executive) was consistent across 
most cohorts (see Table  S2 for a mapping of tests to 
cognitive domains). The cognitive impairment in all 
investigated cohorts started with memory dysfunc-
tion detected by logical memory tests (e.g., LDEL and 
LIMM), proceeded with language impairments exposed 
by tests such as the BNT and CATFLU. Thereafter, in 
most cohorts, visual dysfunction identified through the 
CLKS or FIGC followed, and finally, executive dysfunc-
tion recognized by, for example, the DIGIT and WAIS, 
occurred.

Among the cohorts where CSF biomarkers had been 
measured (ADNI, JADNI, EMIF, NACC), the relative 
positions of these biomarkers, in particular of tau (TAU) 
and phosphorylated tau (PTAU), varied. ABETA consist-
ently placed first in all of these cohorts’ sequences, and 
TAU and PTAU were mainly found in early positions as 
well (ADNI, JADNI, and EMIF), with the exception of 
NACC where they placed in the middle of the sequence. 
However, in all cases except JADNI, PTAU and TAU were 
direct neighbors, indicating the consistent, direct link 
between them.

The relative order of the MRI-derived brain volume 
events was consistent across cohorts, albeit with some 
variance (average KTC of 0.64 ± 0.29 for MRI varia-
bles only). While the volume changes in ADNI, JADNI, 
ARWIBO, and WMHAD started with ventricular expan-
sion and were then followed by atrophy of the temporal 
lobe (here, hippocampus, entorhinal, middle temporal, 
and fusiform gyrus), in other cohorts (ANM, OASIS, 
NACC, EDSD), atrophy of the temporal lobe regions was 
the first detected variables of the MRI modality. The posi-
tion that was taken by each respective brain region varied 
again among the cohorts. However, in many cases, the 
probabilistic nature of the EBMs indicated that the order 
of MRI events could be interchangeable among them-
selves (average BC of 0.17 ± 0.13 for MRI variables only) 
and events occurred most probably in close temporal 
proximity or even simultaneously (Fig. S2), as far as the 
model could discern from the data.

The position of FDG-PET, another well-established 
imaging biomarker measuring brain hypometabo-
lism, was consistent in both cohorts it was measured in 
(ADNI, JADNI). It preceded the MRI marker changes 
and occurred concurrently with clinical symptoms, being 
placed after logical memory tests such as the LIMM and 
LDEL. However, its positioning of FDG-PET related to 
assessments of executive function differed between the 
two cohorts.

A multimodal meta‑sequence of AD progression
To aggregate and investigate the complementary infor-
mation from the base sequences in each cohort, we 
combined them into a single meta-sequence. Here, the 
position of a variable was determined based on its rela-
tive positions in all cohort sequences. Both versions of 
our algorithm (i.e., ML sequence-based and bootstrap-
ping) were applied.

In the meta-sequence generated based on each cohort’s 
ML sequence (Fig. 2), ABETA was ranked first, followed 
by PTAU and TAU. The latter were again closely linked 
and seemingly interchangeable given their ambiguous 
positioning across the base sequences. In positions four 
and five, LDEL and LIMM followed respectively, two 
clinical assessments measuring memory impairment. 
Next, the volume of CSF in the brain was positioned in 
the meta-sequence. The later event ranks were covered by 
MRI markers of brain volume, starting with the temporal 
lobe (e.g., hippocampus and entorhinal cortex) and ending 
with the ventricles. The previously described ambiguity 
in the order of MRI regions is not reflected in the ML-
based meta-sequence because the algorithm considers 
only the ranks, and not the uncertainty estimated by the 
individual EBMs. However, it seems sensible to consider 
MRI events as fairly interchangeable in the meta-model. 
FIGC, an assessment of visual function, positioned before 
FUSIF and MIDTEMP near the end of the sequence, yet 
its position with respect to those two variables remained 
rather indefinite across the base sequences in which it was 
assessed (ARWIBO, AIBL, EDSD).

The consensus meta-sequence generated using the boot-
strapping approach resembled the ML meta-sequence 
closely (KTC between both meta-sequences: 0.79; Fig. 3). 
Again, CSF markers placed first in the meta-sequence, 
were followed by cognitive assessments, and MRI events 

(See figure on next page.)
Fig. 1 Individual event sequences estimated from the ten investigated cohorts. To facilitate the comparison of relative event positions, the 
y‑axes follow the ADNI sequence. Common events between ADNI and the other cohorts are presented above a dashed green line. The closer 
the sequences are to the ADNI sequence, the more diagonal the probabilistic position (colored squares) will align from top‑left to bottom‑right. 
Lateral shifts due to additional events which were not available in ADNI have to be disregarded (as for example observed in WMHAD and EDSD). 
Event order 1 corresponds to the first position in the sequence. The shading of squares indicates the positional probability with darker shades 
corresponding to higher probabilities. The relative sizes of the squares do not encode any information. The event sequences in their original form 
are presented in Fig. S2
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Fig. 1 (See legend on previous page.)
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started with the temporal lobe and further progressed with 
the ventricles. The main difference to the ML-based meta-
sequence, as well as the major region of model uncertainty, 
was again found among the MRI variables. This further 
underlined the impression that the MRI events were fairly 
interchangeable and probably occurred in close temporal 
proximity. The highest ambiguity was in the positioning 
of FIGC which showed a slight tendency towards the last 
ranks. The average KTC across all bootstrapped meta-
sequences was 0.5 ± 0.20, with the highest discordance 
found among the MRI modality.

Staging the patients of cohorts with available CSF, MRI, 
and cognitive scores (i.e., ADNI, JADI, NACC, EMIF) 
revealed a consistent pattern across them (Fig. 4). For all 
cohorts, the vast majority of CU subjects were assigned to 
the first stage which corresponds to no event occurrences. 
As expected, MCI patients were largely staged between 
CU subjects and AD patients with some overlap in both 
directions. This suggests that these subjects experienced 
CSF marker abnormalities and some cognitive symptoms. 
Finally, the majority of AD patients were assigned to the 
last stages, indicating their abnormality along CSF mark-
ers, cognitive performance, and brain region atrophy.

Discussion
In this work, we used EBMs to investigate AD progression 
across ten independent cohort studies by evaluating the 
concurrence of their individually derived event sequences. 

Furthermore, we proposed an algorithm to combine event 
sequences estimated from partially overlapping, and thus 
complementary, sets of variables into a single meta-sequence 
describing AD progression more comprehensively. Finally, 
we applied said algorithm on the ten event sequences to esti-
mate a meta-sequence comprising 13 AD variables spanning 
CSF biomarkers, MRI measures, and clinical assessments of 
cognitive and functional performance.

Consistent trends across cohorts’ event sequences
The derived event sequences proved to be broadly con-
sistent across cohorts, with the most notable variability 
in the ordering of MRI brain volume events. This could 
be caused by (1) distinct statistical biases of the cohorts 
for example introduced through specific recruitment cri-
teria [21], (2) distinct prevalence of AD disease progres-
sion subtypes that follow different disease mechanisms 
[38–40], or (3) mixed neuropathologies.

Inclusion and exclusion criteria of a study shape the 
demographic compositions of its cohort and thus can 
directly affect the data-driven disease progression pat-
terns (Table S3). For instance, ADNI held a higher pro-
portion of APOE4 carriers compared to JADNI. Given 
that it has been repeatedly reported that early TAU depo-
sitioning is more prominent in APOE4 carriers [41–43], 
this difference might explain the earlier positioning of 
TAU in ADNI’s sequence opposed to its relatively lower 
rank in JADNI’s.

Fig. 2 All ML base sequences from the ten investigated cohorts and the resulting meta‑sequence. Due to only partially overlapping lists, the 
determining factor for an event’s position in the meta‑sequence was not its absolute position in each base sequence (i.e., rank 1, 2, …, 11), but its 
relative position to other biomarkers in the same sequence (e.g., ABETA commonly places before MMSE when they were assessed together; thus, it 
appears before MMSE in the meta‑sequence)
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Previously, for example, two empirically determined 
AD progression subtypes called “hippocampal-sparing” 
and “limbic-predominant” were described and associated 
with distinct patterns of brain atrophy [38, 44]. While 
structural changes in the brain start with atrophy in the 
medial temporal lobe (e.g., entorhinal and hippocampus) 
for the limbic-predominant subtype, the brain deterio-
ration in the hippocampal-sparing subtype begins with 
atrophy of the frontal cortex and with the enlargement of 
ventricles [44]. Given their respective event sequences, 
this could indicate that OASIS, ADNI, and NACC might 
have included more patients expressing the limbic-pre-
dominant subtype, while the hippocampal-sparing sub-
type was more dominant among patients from ARWIBO 
and JADNI.

We observed that CSF biomarkers placed first in all 
cohorts which measured them. This finding is in con-
cordance with previous biomarker studies that observed 
the occurrence of both ABETA accumulation and brain 
atrophy before global cognitive decline [45–48].

Autopsies of AD patients have shown that AD 
pathology hardly appears in isolation and that patients 
often suffer from a mixture of brain pathologies [49]. 
While most studies aim to exclude patients affected 
by other cognitive diseases, an AD clinical diagnosis 
is still mainly symptom driven and misclassification 
errors are possible.

Meta‑sequence combines heterogeneous event sequences 
from multiple cohorts
A particular strength of our meta-sequence algorithm is 
that it works agnostic towards the differences in variable 
value representations exhibited across cohorts. A direct 
comparison of the provided data values often remains chal-
lenging without introducing statistical biases since stud-
ies differ, for example, in their data collection procedures, 
employed imaging machinery, and used assays. Using our 
approach, such semantically equivalent but statistically het-
erogeneous information can be combined as all computa-
tions are performed solely on the base sequences and thus 

Fig. 3 Bootstrapped meta‑sequence generated from 500 samples of the base sequences of the 10 cohorts. Event order 1 corresponds to the first 
position in the sequence. The shading of squares indicates the positional probability with darker shades corresponding to higher probabilities
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potential across-cohort-biases due to value representations 
are avoided.

The biggest advantage of the bootstrapping approach 
compared to ML sequence-based one is that it allows for 
uncertainty quantification. However, bootstrapped EBM 
sequences tend to display a substantially higher posi-
tional variance (i.e., “fuzziness”) than ML derived ones 
(for an example, see Firth  et al. Figures  1 and 2 [35]). 
Comparing our ML-based meta-sequence to the boot-
strapping-based meta-sequence revealed high similarity 
between them. Observed differences seemed to be within 
variational limits expressed in the bootstrapped meta-
sequence and mainly affected MRI variables.

Generated meta‑sequence resembles AD pathology
One possibility to validate the derived meta-sequence 
was to evaluate its concordance with previous findings 
describing the temporal relationship between smaller 
subgroups of variables.

The ordering of CSF biomarkers discovered in previ-
ous EBM studies supported our observations in the meta-
sequence (ABETA followed by PTAU and TAU) [15]. Our 
findings were also in line with a recent study [50] which 
demonstrated that TAU and PTAU become abnormal after 
ABETA and that their abnormality occurred in close tem-
poral relationship with cognitive decline. The latter was also 
in concordance with our findings; however, the cognitive 

Fig. 4 Number of subjects from each diagnostic group per meta‑sequence stage. Each step along the x‑axis corresponds to the occurrence of a 
new biomarker abnormality event. Stage 0 corresponds to no event occurrence while the last stage implies abnormality of all variables. Events are 
ordered according to the bootstrapped meta‑sequence, always considering only variables in common between the measurements available in the 
respective cohort and the meta‑sequence
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assessments we investigated (i.e., LDEL and LIMM) were 
not directly included in the referenced study. Furthermore, 
there is a well-established association between cognitive 
decline and ABETA abnormality and abundant evidence 
that changes in cognition typically occur after abnormali-
ties related to CSF biomarkers [45, 50, 51].

Our observation that memory function showed abnor-
mality before brain volumes agrees with previous studies 
which suggested that individual-level brain atrophy rates 
(not assessed in our study) precede cognitive events; 
however, MRI-derived brain volumes become abnormal 
afterwards [15].

In our meta-sequences, changes in MRI biomarkers 
were ranked after cognitive decline. In agreement with 
this, for example, Hadjichrysanthou et  al. reported that 
changes in MRI markers appear in close succession with 
memory decline [52]. Also, the positioning of MRI vari-
ables with respect to CSF markers was concordant with 
previous observations where significant correlations 
between CSF biomarkers and temporal lobe atrophy were 
found [53–55]. These studies argue that increases of TAU 
and PTAU are attributable to the deposition of neurofi-
brillary tangles in the temporal lobe, including the hip-
pocampus and entorhinal cortex, which we found to be 
the first brain region volumes turning abnormal. Further-
more, elevated CSF  biomarkers predicted future brain 
atrophy in these regions (i.e., CSF  biomarkers became 
abnormal before brain volumes).

In concordance with the relative positioning of MRI 
biomarkers in the meta-sequence, various studies have 
shown that volumetric changes start with the temporal 
lobe areas, including the hippocampus which preceded 
the abnormality of the entorhinal cortex, fusiform, and 
middle temporal, and further proceed to other brain 
regions such as the ventricles [56–59].

Finally, in agreement with a previous study [60–63] in 
which visual memory dysfunction was identified as one 
of the last stages in AD progression, the FIGC test was 
ranked among the end of the sequences. The fact that it 
was positioned after the enlargement of ventricles is in 
agreement with experimental evidence that changes in 
the ventricles may precede a deficit in visual memory 
function [64, 65]. Another EBM study [35] also suggested 
that visual processing becomes impaired after episodic 
memory in typical AD.

The conducted patient staging provided further evi-
dence that the generated meta-sequence described a sen-
sible cascade of AD progression: participants from the 
three diagnostic groups were distributed according to 
their disease severity with CU subjects being staged first, 
MCI patients spreading around the intermediate stages, 
and AD cases occupying the later stages of the sequence. 
Observing MCI subjects at stage 0 could be explained 

by CSF biomarker values and cognitive scores that were 
close to the probabilistic event threshold but did not yet 
exceed it and, consequently, the model considered them 
to be normal. The few AD cases that were staged early 
in the sequence were amyloid-negative subjects which 
potentially indicated their misclassification.

Limitations
To build a robust meta-sequence, each variable had to be 
present in at least some of the base sequences to allow for 
meaningful distance calculations. Furthermore, the high 
amounts of missing data occurring when multiple data 
modalities are combined led to a substantial decrease of 
the number of available participants per study. This could 
have led to more noise in the EBM’s reference distribu-
tions. Additionally, modeling signals from heterogeneous 
data sources, such as AD cohort data, as some form of 
average bears the potential risk that the resulting aver-
age will resemble a rather artificial construct that cannot 
be observed in its specific form in the real world. How-
ever, the similarity among the base sequences as well as 
between base sequences and the final meta-sequence was 
quite high and our identified meta-sequences were highly 
concordant with results from both data-driven and 
experimental studies. Furthermore, the patient staging 
along the meta-sequence displayed a sensible distribution 
of CU, MCI, and AD subjects along the disease stages. 
Consequently, it is improbable that the presented meta-
sequence represents such an artificial average. Finally, we 
want to highlight again that AD was considered primar-
ily from a clinical perspective in all of our investigated 
cohort studies. As such, there is a chance that misdiag-
nosed patients were present in the cohorts and therefore 
included in this analysis as well.

Conclusion
In the light of the reproducibility crisis, it becomes 
especially important that we look beyond single data 
resources, validate achieved results across multiple 
cohort studies, and constantly develop and evaluate data-
driven methods. To this end, we revealed general consist-
ency across data-driven event sequences derived from 
ten independent cohorts using EBMs. Here, only rela-
tively minor differences in the ranking of the core features 
that were available in all ten cohorts were observed. In 
addition, our novel algorithm estimated a meta-sequence 
that exploits the additional information available in other 
variables unique to each study and thus could assemble 
an event sequence that is highly multimodal and more 
comprehensive than sequences built from single data-
sets. This is important for ensuring the transferability of 
models and results across AD (sub)populations and for 
improving our understanding of disease progression.
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Supplementary File

Data preprocessing

While in some of the cohorts brain volumes were calculated as a sum of the two respective

hemispheres, in others they were measured individually per hemisphere and thus we had to sum

them up to make the measurements consistent across all cohorts. In addition, the brain region

volumes of individual cohorts were normalized across the subjects based on their whole brain

volume to correct the variations of head size among individuals by dividing the regional volumes

through the intracranial volume.

Example of variable inclusion and relation to diminishing number of patients

Below we provide an example to illustrate the decrease in sample size when integrating

multimodal AD cohort data and considering only complete cases (ie. no missing data in any

variable). We also excluded MCI patients in this example, as only CU and AD were the crucial

diagnostic groups for fitting our EBMs. The example is based on a potential inclusion of amyloid

PET. Table S1 provides an overview about the stepwise decrease in participants available for

analysis.

Out of the 10 cohorts we analyzed, only ADNI, EMIF, AIBL, and NACC reported measures

of amyloid PET, already reducing the number of potentially analyzable cohorts to 4 out of 10.

NACC only reported binary values (0, 1) which could not be modeled using our approach.

Focusing only on our selected cognitive variables at baseline, ADNI had complete measurements

for 229 CU and 183 AD participants, EMIF for 140 CU, 114 AD, and AIBL for 92 CU, 13 AD.

Now, combining this data with MRI variables available in each cohort reduced the number of

CU/AD to 204 / 130, 67 / 87, and no remaining participants, respectively. Further adding CSF

measurements again decreased the sample size to 38 CU and 35 AD for ADNI, 47 CU and 53

AD for EMIF, and no remaining participants for AIBL.



Cohort ADNI EMIF AIBL

Diagnosis CU AD CU AD CU AD

Total 813 389 230 184 803 181

Cognitive Scores 229 183 140 114 92 13

+ MRI 204 130 67 87 0 0

+ CSF 38 35 47 53 0 0

+ Amyloid PET 0 0 47 53 0 0

Table S1: Decrease in sample size when aiming for a multimodel analysis of amyloid PET

measurements and stepwise adding additional modalities while recording only complete cases

(ie. no missing values in any selected variable).

Event-based models

While prior versions of event-based models (EBMs) mainly integrated parametric mixture

models (i.e. Gaussian mixture models; GMM) [1-3], we leveraged its latest installment which

incorporates nonparametric mixture models by employing a kernel density estimation (KDE) to

determine the probability density function [4]. KDE estimates the probability density of

independent and identically distributed samples (x1, x2, …, xn) drawn from a distribution with an

unknown density by

Equation 2𝑓(𝑥) = 1
𝑁ℎ

𝑗 = 1

𝑁

∑ 𝐾(
𝑥−𝑥

𝑗

ℎ )

where K and h are kernel function and bandwidth, respectively [5]. The kernel we used was

Gaussian and the bandwidth for estimating the components of the mixture models was

determined by Scott's normal reference rule [6].

Meta-sequence generating algorithm

Our proposed method for generating a meta-sequence from multiple, complementary base

sequences represents an algorithm addressing the rank aggregation of partial lists [7]. It



essentially solves an optimization problem (i.e., finding the meta-sequence with the smallest

distance to all base-sequences) by combining an exhaustive search for the initial -length starting𝑘

sequence with a greedy search procedure adding missing variables into the respective position in

the sequence where the average distance of the altered sequence to all base-sequences remains

minimal. The reason for combining these two steps lies in the combinatorial explosion of the

search space (i.e., the set of all theoretically possible meta-sequences) when including an

increasing number of variables. Therefore, an exhaustive search is often computationally

infeasible and heuristic approaches have to be considered instead. In such cases, rank

aggregation approaches often rely on Monte Carlo sampling to test a set of random

meta-sequences and then opt for the one with the lowest distance [8]. However, we found that

these approaches often end with suboptimal meta-sequences for large search spaces and that the

proposed approach mixing an exhaustive search for a starting sequence with subsequent greedy

refinements leads to more robust and plausible results, both biologically and in comparison to the

base sequences. In theory, multiple meta-sequences could be identified that share the minimum

distance to the base sequences (Figure S1). The python code for running this algorithm can be

found under (https://github.com/sepehrgolriz/EBM-MultiCohort).

The bootstrapping-based version of our algorithm follows the same logic, however, the process is

repeated b times, where the base sequences are determined based on a bootstrap sample of each

respective cohort (ie. a sampling with replacement of the cohort of equal size as the original

data).



Figure S1. Proposed algorithm for determining a meta-sequence from multiple potentially only partially

overlapping base sequences. Line 23: All possible orderings in which to add the remaining events are tested.



Handling partially overlapping lists

Distance calculations have to be performed in the same mathematical space which, in this

case, is defined by the variables in the sequences to be compared. Calculating the distance

between two sequences which share the same variables is therefore straight forward. However,

since individual base-sequences are often only partially overlapping, such distance calculations

are impeded. There are two solutions for this problem: 1) penalizing the absence of variables in

either sequence such that the distance increases with a higher number of uncommon variables, or

2) ignore variables that are only present in one of the sequences when calculating the distance. In

the context of clinical cohort data, whether a specific variable was assessed depends on the

study’s goals and funding and, as such, its absence does seldomly hold biological meaning.

Therefore, in this case, penalizing the absence of variables would bias the constructed

meta-sequence.

Distance metrics

Depending on the focus of the study, different distance metrics can be used in the proposed

algorithm. Intuitive choices are Spearman’s footrule distance or Kendall's tau. The former takes

the magnitude of the rank differences into account, while the latter is only counting how many

rank discrepancies are found between two compared sequences, ignoring their specific position.

A decision on which metric should be used depends on the emphasis of the study. In this study,

we used Spearman’s footrule distance because it takes the absolute difference in positions of

variables into account which should be informative in our biomedical context.

Patient staging

Equation 3𝑎𝑟𝑔𝑚𝑎𝑥
𝑗
 𝑃𝑟(𝑋

𝑗
|𝑀𝑆, 𝑑) = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑗
 𝑃(𝑑)

𝑚 = 0

𝑀

∑ {
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Pr and Pr( ) denote the probability of observing the value of given that event(𝑥
𝑖𝑗

|𝐸
𝑖
) 𝑥

𝑖𝑗
|¬𝐸

𝑖
𝑥

did, or did not, occurred, respectively. It is assumed that the probability of being at stage d is𝐸
𝑖

uniform. The final assignment of a particular subject to a certain stage d remains a probabilistic

assignment and is not a definite description that this participant is exactly at that stage in the

disease cascade.
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Cohort Memory Executive Language Visuospatial Global cognitive

ADNI LIMM

LDEL

DIGIT

TRABS

- - ADAS11

ADAS13

JADNI LIMM

LDEL

DIGIT

TRABS

- - ADAS11

ADAS13

NACC LIMM WAIS BNTS

CATFLU

- -

AILB

LIMM

LDEL

WAIS

STROOP

LIRE

LIDE

LICOR

CATFLU

FIGC

FIGR

-

EMIF LIMM

LDEL

EXECUTIVE LANG - -

ANM - - - - -

ARWIBO LIMM

LDEL

- - FIGC -

OASIS - - - - -

EDSD

- - LIRE

LICOR

BNTS

FIGC

FIGR

CLKS

-

WMAHD STM - CATFLU CLKS -

Table S2. Cohort-specific cognitive tests composing each cognitive domain.



Cohort Variables Years of education

(mean std)±

Age (mean std)± APOE4% (at

least one e4

allele)

Female%

ADNI

CU 16 ± 2 74 ± 5 31 32

MCI 16 ± 2 73 ± 7 62 32

AD 15 ± 2 75 ± 7 79 40

Total 15 ± 2 74 ± 6 58 33

JADNI

CU 14 ± 4 69 ± 6 30 56

MCI 13 ± 4 73 ± 5 51 54

AD 12 ± 2 74 ± 3 62 55

Total 13 ± 3 72 ± 6 47 55

ARWIBO

CU 8 ± 2 52 ± 7 20 57

MCI 6 ± 4 71 ± 7 39 64

AD 5 ± 3 71 ± 8 42 81

Total 6 ± 2 64 ± 7 33 67

OASIS

CU 6 ± 2 52 ± 12 - 71

MCI 5 ± 2 74 ± 6 - 55



AD 3 ± 2 78 ± 4 - 66

Total 5 ± 1 68 ± 9 - 64

EMIF

CU 13 ± 5 69 ± 7 48 51

MCI 11 ± 5 68 ± 7 51 49

AD 10 ± 5 66 ± 7 52 50

Total 11 ± 7 67 ± 7 51 50

ANM

CU 10 ± 3 75 ± 4 24 59

MCI 7 ± 3 78 ± 7 38 54

AD 7 ± 3 79 ± 5 57 62

Total 8 ± 3 77 ± 6 39 58

AIBL

CU 12 ± 3 - 23 59

MCI 12 ± 7 - 52 48

AD 12 ± 2 - 52 48

Total 12 ± 2 - 42 51

EDSD

CU 13 ± 5 69 ± 3 31 51

MCI 11 ± 3 71 ± 5 47 43

AD 11 ± 5 73 ± 5 56 51

Total 12 ± 3 72 ± 6 44 48



WMHAD

CU 8 ± 2 73 ± 4 40 35

MCI 8 ± 2 77 ± 6 60 50

AD 8 ± 2 77 ± 6 50 80

Total 8 ± 2 75 ± 6 50 55

NACC

CU 16 ± 5 75 ± 4 38 71

MCI 16 ± 4 73 ± 4 47 40

AD 13 ± 5 73 ± 4 61 42

Total 16 ± 2 63 ± 4 48 51

Table S3. The table above summarizes the demographic characteristics as well as the total number of participants

in each diagnostic group for the investigated cohort datasets. CU: Cognitively unimpaired. MCI: Mild cognitive

impairment. AD: Alzheimer’s disease. Age: The average age of participants in each dataset. Years of Education: The

average years of education of participants in each dataset. Female %: The percentage of female participants within

each dataset. APOE4 Positive %: the percentage of participants with at least 1 APOE e4 allele. SD: Standard

deviation. The years of education listed for OASIS participants seems irritatingly low, however, we found those

values listed in the data.



AIBL JADNI ANM WMHAD ARWIBO EMIF OASIS ADNI EDSD NACC

AIBL 1 - - - 0.81 - - - 0.81 0.71

JADNI - 1 0.78 0.73 0.60 0.801 0.73 0.72 0.78 0.86

ANM - 0.78 1 0.82 0.85 - 0.70 0.90 0.90 0.62

WMHAD - 0.73 0.82 1 0.81 - 0.73 0.90 0.91 0.67

ARWIBO 0.81 0.60 0.85 0.81 1 1 0.72 0.78 0.62 0.55

EMIF - 0.80 - - 1 1 - 0.85 - 0.90

OASIS - 0.73 0.70 0.73 0.72 - 1 0.69 0.76 0.87

ADNI - 0.72 0.90 0.90 0.78 0.84 0.69 1 0.90 0.73

EDSD 0.81 0.78 0.90 0.91 0.62 - 0.76 0.90 1 0.81

NACC 0.71 0.86 0.62 0.68 0.55 0.91 0.87 0.73 0.81 1

Table S4. Pairwise Kendall’s tau rank correlation coefficients



Supplementary Figure

Figure S2. The original individual event sequences (independent y-axes) derived from the ten investigated

cohorts. Event order 1 corresponds to the first position in the sequence. The shading of squares indicates the

positional probability with darker shades corresponding to higher probabilities. The relative sizes of the squares do

not encode any information.



a)

b)



c)

d)



e)

f)



g)

h)



i)

j)

Figure S3. The derived mixture models for each cohort (a-j).
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Abstract.
Background: Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative
diseases, such as Alzheimer’s disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms
are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies.
Linking these two disparate layers (i.e., imaging and genetic variation) through causal relationships between biological
entities involved in the disease’s etiology would pave the way to large-scale mechanistic reasoning and interpretation.
Objective: We explore how genetic variants may lead to functional alterations of intermediate molecular traits, which can
further impact neuroimaging hallmarks over a series of biological processes across multiple scales.
Methods: We present an approach in which knowledge pertaining to single nucleotide polymorphisms and imaging readouts
is extracted from the literature, encoded in Biological Expression Language, and used in a novel workflow to assist in the
functional interpretation of SNPs in a clinical context.
Results: We demonstrate our approach in a case scenario which proposes KANSL1 as a candidate gene that accounts for
the clinically reported correlation between the incidence of the genetic variants and hippocampal atrophy. We find that
the workflow prioritizes multiple mechanisms reported in the literature through which KANSL1 may have an impact on
hippocampal atrophy such as through the dysregulation of cell proliferation, synaptic plasticity, and metabolic processes.
Conclusion: We have presented an approach that enables pinpointing relevant genetic variants as well as investigating their
functional role in biological processes spanning across several, diverse biological scales.

Keywords: Alzheimer’s disease, genetic variants, knowledge graph, neuroimaging, systems biology
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INTRODUCTION

As aging populations continue to grow, age-ass-
ociated disorders such as Alzheimer’s disease (AD)
have become increasingly prevalent [1, 2]. AD is a
slow-progressing, complex, idiopathic disorder in
which early diagnosis is challenging because patients

ISSN 1387-2877 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).
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do not initially present symptoms [3]. Emerging neu-
roimaging techniques are a versatile, non-invasive
approach for the high-resolution, in vivo investiga-
tion of the underlying pathophysiology of AD that
may provide an opportunity for earlier detection and
therapeutic intervention.

Neuroimaging techniques quantitatively measure
markers of brain structure and function that are con-
sidered as endophenotypes, measurable intermediate
phenotypes that link molecular changes to organ-spe-
cific pathophysiological contexts [4]. One of the num-
erous neuroanatomical markers considered as an
endophenotype is medial temporal atrophy. This
well-established AD marker is an intermediate phe-
notype that implicates the aggregation of hyperph-
osphorylated tau protein (a well-known molecular
change) as a causative biological process of mem-
ory decline [5]. The diversity of markers prompted
the cataloging and organizing of their information in
order to better link clinical readouts to underlying
molecular changes. As a first attempt in addressing
this need, Iyappan et al. curated the terms used in the
literature to describe structural and functional brain
information in the Neuroimaging Feature Terminol-
ogy (NIFT) [6].

Elucidating the effect of genes and genetic varia-
tions (e.g., single nucleotide polymorphisms (SNPs))
on brain structure and function often begins with
genome-wide association studies (GWASs). How-
ever, this type of study only calculates statistical
associations between SNPs and traits and ignores
mechanistic insights. More robust approaches aimed
at addressing the mechanistic shortcomings of GWAS
are referred to as imaging genetics [7]. For exam-
ple, Wachinger et al. [8] studied genetic influences
on neuroanatomical shape asymmetries associated
with AD progression. Although their findings on the
association of genetic variants (i.e., BIN1, CD2AP,
ZCWPW1, and ABCA7 genes) to neuroanatomi-
cal structures had been reported in previous studies
[9–12], here the authors were able to provide an
explanation for the observed effect, specifically that
alterations in the expression level of the aforemen-
tioned genes can affect cellular homeostasis, thus
leading to changes in brain symmetry. A common
issue facing many imaging genetics approaches is
small sample size, which leads to a lack of statis-
tical power, limited replicability, and stratification
effects [13, 14]. Alternatively, Stefanovski et al. [15]
studied the connection between molecular changes
and neuronal population dynamics using differen-
tial equations. For example, this study provided a

possible mechanistic explanation of how local amy-
loid beta-mediated synaptic function disinhibition
leads to diminishing neural signaling. However, such
mathematical models thus far fail to handle the num-
ber of variables that are necessary to represent the
pathophysiological phenomenon involved in a multi-
factorial disorder such as AD.

The limitations and lack of mechanistic insights
provided by these previously mentioned techniques
prompted us to develop a new approach to interpret
how a particular genetic variant may have an impact
on neuroimaging feature changes through sequences
of molecular causalities in the context of AD. Our
approach captures knowledge from the literature per-
taining to SNPs and imaging readouts in a causal
model encoded in Biological Expression Language
(BEL) [16] to support the functional interpretation
of SNPs in a clinical context. In a case scenario, we
propose KANSL1 as a candidate gene mediating the
connection between the genetic variants and hip-
pocampal atrophy. We then hypothesized that variants
of this gene dysregulate biological processes related
to cell proliferation, synaptic plasticity, and energy
metabolism that ultimately leads to hippocampal
atrophy. These dysregulated biological processes are
early events in AD, and they have been posited
as attractive therapeutic targets for pharmaceutical
intervention [17, 18]. Thus, by garnering these mech-
anistic insights, it may be possible to reveal novel
therapeutic options in the future.

MATERIALS AND METHODS

In order to support the interpretation of the fun-
ctional impact of SNPs on the alteration of neu-
roimaging features, associations between SNPs and
imaging readouts were extracted using natural lan-
guage processing. Linkage disequilibrium (LD)
analysis was used to identify co-occurring SNPs and
their corresponding or associated genes. These genes
were then ranked by how often they appear in the liter-
ature in the context of AD. This workflow is described
in Fig. 1A.

Based on this analysis, one gene (KANSL1)
was selected for further investigation and a corpus
explaining its role in AD was enriched with knowl-
edge pertaining to multi-scale biological processes.
To enable computer-aided reasoning, manually-
extracted relations from this corpus were encoded in
BEL. The resulting KANSL1 knowledge assembly
was validated using PyBEL [19] and integrated into
NeuroMMSig [20]. Finally, NeuroMMSig was then
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Fig. 1. The two workflows developed for (A) gene prioritiza-
tion and for (B) generating the mechanistic knowledge assembly
around the effect of genetic variants on neuroimaging features in
AD. In workflow A, the first step involves the selection of a corpus
of relevant scientific literature. Next, the SNPs extracted from this
corpus were subjected to LD block analysis and the subsequently
obtained SNPs were mapped to their corresponding or associated
genes. KANSL1, a novel AD gene, was selected from this pool of
mapped genes for further investigation. In workflow B, corpus for
the selected gene is extracted and translated into BEL to generate
a knowledge assembly model for hypothesis generation.

used to investigate the putative role of KANSL1
in neuroimaging feature alteration, namely hippoc-
ampal atrophy. For the sake of reproducibility, we
have made the workflow publicly available through
GitHub (https://github.com/sepehrgolriz/GeVa NeIF)
under the MIT License. This workflow is described in
Fig. 1B. Additionally, to investigate the concordance
of knowledge around the KANSL1 gene, pathways
from three well-known pathway databases were
queried to determine those in which the gene is
implicated.

Generation of a SNP-neuroimaging corpus

A corpus enriched with neuroimaging features and
SNPs in the context of AD was generated using
SCAIView v0.3.3 (https://academia.scaiview.com)

on MEDLINE using the following query: “(([MeSH
Disease: “Alzheimer Disease”]) AND [Neuroimag-
ing Feature]) AND [SNP]))”. The corpus comprised
568 documents with a total of 2215 SNP-neuroima-
ging feature associations (Supplementary Table 1),
including 126 unique neuroimaging features (Sup-
plementary Table 2) and 745 unique SNPs (Supple-
mentary Table 3).

Identification of related SNPs via linkage
disequilibrium blocks

Over time, dependencies between genetic variants
are developed across populations [21]. This phe-
nomenon, described as LD, implies that correlations
between genetic variants and traits are caused by the
aggregated effect of multiple variants [22, 23]. How-
ever, SNP-trait associations identified in the literature
are obtained by analyzing thousands of SNPs individ-
ually (the “single-marker” approach). Therefore, we
performed LD block analysis using HaploReg v4.1
[24] to identify a total of 6,070 SNPs that occur with
the SNPs extracted from the literature and further
mapped them to their corresponding or associated
genes (Supplementary Table 4).

Gene selection

DisGeNET [25] was used to identify diseases asso-
ciated with the genes obtained from HaploReg v4.1.
After filtering out genes not associated with AD,
the remaining genes were categorized as either well-
known risk variants (supported by a minimum of 5
literature evidence which are enriched with obser-
vational studies, such as case-control studies) or as
emerging genetic biomarkers (those supported by few
or no published evidence) (Supplementary Table 5).
Since the involvement of well-known risk variants
has been sufficiently described in the literature, this
study investigated novel genes which may contribute
to AD development.

The study of genetics in the context of multiple
phenotypes, such as physiological traits or diseases,
can provide a holistic overview of gene functions
in a biological system. For this reason, DisGeNET
was used to investigate gene-disease associations of
genes that are not clearly linked to AD [26]. Although
the genes are associated with a broad range of dis-
eases, from autoimmune disorders to different types
of cancer, we focused on enriching the mechanistic
context surrounding genes linked to conditions, such
as Parkinson’s disease (PD), which have substantial
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Fig. 2. This figure shows the results obtained from the LD block analysis and gene mapping. The generation of the SNP-Neuroimaging
corpus yielded 745 SNPs. Following LD block analysis, 6,070 SNPs that occur with the SNPs extracted from the literature were identified
and located on 136 unique AD associated genes. These genes were then classified according to the number of evidences which are available in
the scientific literature. The first group, incorporating 78 AD associated genes, comprises well-known genes characterized by a high number
of publications in the AD context. The second group, that includes 58 AD associated genes, comprises emerging genes in the context of AD.
From the latter group, KANSL1 was selected.

genetic, pathological, and clinical overlap with AD
[27]. While it is believed that cancer and autoimmune
diseases are less prevalent in AD patients, 25 to 33
percent of AD patients show concomitant PD pathol-
ogy [28, 29]. Of the 25 PD-associated genes acquired,
we selected KANSL1 for further study of its putative
pathogenic role in AD as it had the highest number of
literature evidence and its functionality can thus be
better understood [30, 31] (Supplementary Table 6).

Corpus generation, relation extraction, and
mechanism enrichment for KANSL1

Using the same strategy and resources as the pre-
vious corpus, a new corpus describing the role of
KANSL1 in the context of AD was generated using
the following SCAIView query: “(([Human Genes/
Proteins:“KANSL1”]) AND [MeSH Disease: “Alz-
heimer Disease”]) AND [Neuroimaging Features]”.
The resulting gene-neuroimaging interaction infor-
mation was then enriched with further causal relations
from the literature using manual relation extraction in
order to bridge the knowledge gap between genetics
and clinical endpoints.

Knowledge modeling

Manually generating mechanistic hypotheses by
linking genetic variants to neuroimaging markers is
a daunting task. Therefore, in order to empower com-
puter-aided reasoning, the extracted knowledge ass-
embly was encoded in BEL. Both the syntax and
semantics of BEL encoded in the knowledge assem-
bly were validated using the PyBEL framework.

Knowledge was extracted from the selected cor-
pus using the official BEL curation guidelines from
https://biological-expression-language.github.io as
well as additional guidelines from https://github.com/
pharmacome/curation.

Evidence from the selected corpus was manually
translated into BEL statements together with their

contextual information (e.g., brain regions, brain cell
types). For instance, the evidence “BDNF infusion
led to rapid phosphorylation of the mitogen-activated
protein (MAP) in the adult hippocampus” corre-
sponds to the following BEL statement:

SET MeSHAnatomy = “Hippocampus”
p(HGNC:BDNF) - - p(HGNCGENEFAMILY:
“Mitogen-activated protein kinases”, pmod(Ph))

The resulting knowledge assembly was then int-
egrated into NeuroMMSig, a web server for mech-
anism enrichment that allows querying over genes,
SNPs, and neuroimaging features in the context of
a specific disease. Finally, NeuroMMSig was used
to identify the mechanistic model representing the
putative role of KANSL1 in hippocampal atrophy.

Comparison of the mechanistic model to pathway
knowledge

Several manually curated and highly-cited path-
way databases are available to deduce biologically
relevant pathways. We used three major ones, namely
KEGG [32], Reactome, [33] and WikiPathways [34],
in order to determine whether knowledge on the
KANSL1 gene has yet to be integrated into these
resources. Hence, we queried KANSL1 as well as all
other proteins from our mechanistic model in path-
ways from the three databases.

RESULTS

While KANSL1 has been associated with changes
in gene expression levels in the hippocampus [35],
its mechanism of action remains elusive. In order
to better understand KANSL1’s involvement in hip-
pocampal dysfunction, we queried NeuroMMSig to
investigate the downstream effects of this gene. Then,
reasoning over the knowledge assembly led us to the
interpretation described below. Finally, we report the
results of querying KANSL1 and other genes from
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our mechanistic model in pathways from three major
pathway databases to determine which pathways the
gene may be implicated in.

The putative role of KANSL1 in hippocampal
atrophy

The transcription and expression of the genes pro-
moting cell proliferation (e.g., BTG2) and synaptic
plasticity (e.g., BDNF) as well as metabolic proces-
ses (e.g., cell energy production) are both of para-
mount importance for hippocampal function [36]
(Fig. 3). KANSL1 is a protein-coding gene involved
in chromatin modification through histone acetyla-
tion [37, 38], one of the mechanisms orchestrating
gene transcription and expression [39–44]. While
histone acetylation transforms the condensed struc-
ture of the chromatin into a relaxed architecture
enhancing RNA transcription and gene expression,
its hypoacetylation causes it to behave adversely
[45–47].

KANSL1 and hippocampal neurogenesis

KANSL1 is required for the acetylation of
p53 [41], a transcription factor modulating BTG2

expression and a vital protein for hippocampal
neurogenesis (i.e., while KANSL1-dependent p53
acetylation induces BTG2 expression, p53 hyper-
acetylation leads to the overexpression of BTG2) [42,
48, 49]. BTG2 negatively controls the cell cycle since
its overexpression results in cell growth rate decline
[42, 50]. Through BTG2 binding to Ras (the signaling
event mediator), the Ras/MAPK signaling cascade is
activated, leading to tau hyperphosphorylation [48].
Tau is a microtubule-associated protein that pro-
motes the assembly and stabilization of cytoskeleton
microtubules, both of which are required for cell di-
vision (i.e., mitosis). However, tau hyperphosphoryl-
ation reduces its capability to bind the microtubules,
giving rise to dynamic instability, mitosis impair-
ment, cell cycle deterioration, elimination of proli-
ferating newborn neurons, and ultimately to apoptotic
processes [51]. In summary, KANSL1 dysfunction
disturbs the expression of cell cycle regulatory genes,
leading to the perturbation of cell proliferation pro-
cesses [46, 50] (Fig. 3A).

KANSL1 and hippocampal metabolic processes

The functional crosstalk between KANSL1 and the
metabolic processes occurring in the mitochondria

Fig. 3. The putative role of KANSL1 in hippocampal atrophy. A) KANSL1 role in hippocampal neurogenesis. B) KANSL1 function
in hippocampal metabolic processes. C) KANSL1 role in hippocampal synaptic plasticity. [https://nbviewer.jupyter.org/github/sep
ehrgolriz/GeVa NeIF/blob/master/Semi automatic developed pipeline/Exploring%20KANSL1%20putative%20role%20graph%20in%20
hippocampal%20atrophy.ipynb].
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(e.g., oxidative phosphorylation) is key for the reg-
ulation of hippocampal synaptic plasticity [52–55].
KANSL1 is highly expressed in the mitochondria,
where it regulates mitochondrial DNA (mtDNA)
transcription and the subsequent translation of genes
involved in Oxidative phosphorylation—a set of
complex mechanistic processes that form adeno-
sine triphosphate (cell energy currency) by oxidizing
nutrients [36, 55, 56]. Oxidative phosphorylation pro-
duces potentially harmful reactive oxygen species
whose production and detoxification are balanced
in normal mitochondria [57]. However, KANSL1
deficiency promotes the downregulation of mtDNA
transcription and translation of genes involved in
Oxidative phosphorylation, causing reactive oxy-
gen species accumulation. Oxidative stress then
occurs, leading to cholesterol metabolism pertur-
bation [58]. Cholesterol homeostasis dysregulation
increases cholesterol concentration in cells, leading
to synaptic plasticity impairment and ultimately hip-
pocampal shrinkage [59–63] (Fig. 3C).

KANSL1 and hippocampal synaptic plasticity

Long-term potentiation (LTP) is one of the major
cellular processes involved in memory formation
[64]. BDNF, a member of the neurotrophin family
of growth factors, plays a role in LTP [65–67]. One
of the mechanisms governing the regulation of BDNF
expression is histone acetylation, where KANSL1
contributes significantly as a histone acetyltrans-
ferase complex. KANSL1 deficiency might severely
affect BDNF expression, which further promotes
long-term potentiation impairment and synaptic plas-
ticity. Both are considered to play an important role
in memory formation [68] (Fig. 3B).

Pathways implicating genes from mechanistic
model

The investigation on the presence, or lack thereof,
of KANSL1 in pathways from KEGG, Reactome,
and WikiPathways revealed that the KANSL1 gene is
largely absent in the major pathway databases. While
KANSL1 does participate in the “Chromatin Organi-
zation (Homo Sapiens)” and “Pathways Affected in
Adenoid Cystic Carcinoma (Homo sapiens)” path-
ways from WikiPathways, no interaction information
for this gene is provided. Moreover, KANSL1 is
altogether absent in pathways from KEGG and Reac-

tome. Similarly, we queried pathways from the three
databases for all other genes from our mechanistic
model (Supplementary Table 7). Unsurprisingly,
well-studied genes yielded a higher number of path-
ways which they participate in (e.g., BDNF was
found in 33 pathways across KEGG, Reactome,
and WikiPathways), while genes with fewer liter-
ature evidence were scarcely present (e.g., KAT8
was found in one pathway across KEGG, Reactome
and WikiPathways, however lacked interaction infor-
mation). Furthermore, these pathway resources do
not yet capture SNPs nor image features. Accord-
ingly, the mechanism by which KANSL1 may be
implicated in hippocampal atrophy can thus far only
be inferred through dedicated modeling approaches,
such as the one we have presented in this work.

Assessment of putative KANSL1-mediated
mechanism with experimental databases

The putative KANSL1-dependent hippocampal
atrophy mechanisms identified through systemati-
cally harvested knowledge is based on qualitative
information. To further support the mechanisms of
action exerted by KANSL1 in the nervous system,
we screened evidence from experimental databases
containing data sets on knockout mouse models in
the Mouse Genome Informatics database [69]. In
this database, we queried for KANSL1 and ner-
vous system and found two knockout mice studies
which investigated how KANSL1/MAPT dysregu-
lation may cause hippocampal shrinkage [70, 71].
These studies associated tau hyperphosphorylation
coupled with impaired microtubule binding of tau
with reduction in synaptic transmission and altered
synaptic plasticity. Furthermore, the authors argue
that these mechanisms may lead to neuronal apop-
tosis and hippocampal shrinkage (Fig. 3A).

Additionally, with respect to SNPs that occur in
the non-coding regions of the gene, we used Reg-
ulomeDB [72] to functionally annotate the 60 SNPs
associated with KANSL1. RegulomeDB scores SNPs
based on transcription factor binding sites, position
weight matrix for transcription factor binding, DNase
footprinting, open chromatin and chromatin states,
expression quantitative trait loci (eQTL), and val-
idated functional SNPs. Moreover, it calculates a
score that represents the probability of being a regu-
latory variant based on functional genomics features
along with continuous values such as ChIP-seq sig-
nal, DNase-seq signal, information content change,
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and DeepSEA scores for each SNPs [73]. From the
60 SNPs, our analysis suggested that 11 of them are
located in the functional region of KANSL1 (Supple-
mentary Table 8).

DISCUSSION

While the exact mechanism of action of KANSL1
remains obscure, the proposed methodology was able
to identify the mechanisms through which it may
have an impact on hippocampal atrophy. This demon-
strates how the mechanism enrichment approach
offers improved interpretation of molecular mecha-
nisms involved in disease pathobiology. Ultimately,
the hypotheses derived from such approaches can fos-
ter research by identifying unexplored links that have
not been validated in the laboratory.

We observed that the information pertaining to
different biological scales is not equally distributed
in the literature. For example, there is a paucity of
results reported at the phenotypic level, compared to
those at the molecular or organ level. Shortcomings in
knowledge representation at different scales are also
reflected in pathway databases which currently do not
contain information on SNPs or neuroimaging fea-
tures. Consequently, linking molecular mechanisms
to clinical readouts is one of the great challenges in
biomedical informatics.

The results presented in this work are hypotheses
that require further investigation. We have shown that
despite the scarcity of knowledge from the literature
around KANSL1, our approach was able to reveal
interesting hypotheses. This sparsity of information
surrounding KANSL1 combined with its manifesta-
tion as a novel AD associated gene motivates future
updates of the knowledge assembly as new informa-
tion becomes available. Furthermore, in our attempt
to validate our hypothesis, we did not find any of the
genetic variations of KANSL1 in major AD cohorts,
such as Alzheimer’s Disease Neuroimaging Initia-
tive and AddNeuroMed [74, 75]. Thus, future work
can include measurements of these genetic varia-
tions as well as their expression in these and other
independent cohorts. Using these quantitative mea-
surements, if available, several tools can be employed
to elucidate pathway signatures in disease as well
drug-perturbed states, which can then be used to
prioritize drug candidates relevant to the particular
disease under investigation when these signatures are
anti-correlated [76]. Similarly, gene expression mea-
surements paired with a network containing prior

knowledge on drug-disease data can also be used
for drug candidate identification [77]. Finally, look-
ing ahead, the presented strategy can be applied to
other AD genes or across disease domains such as
psychiatric diseases.
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Maier W, Boada M, Ramı́rez A (2014) Follow-up of loci
from the International Genomics of Alzheimer’s Disease
Project identifies TRIP4 as a novel susceptibility gene.
Transl Psychiatry 4, e358.

[12] Chan S L, Kim W S, Kwok J B, Hill A F, Cappai R, Rye
K A, Garner B (2008) ATP binding cassette transporter A7
regulates processing of amyloid precursor protein in vitro.
J Neurochem 106, 793-804.

[13] Casey BJ, Soliman F, Bath KG, Glatt CE (2010) Imaging
genetics and development: Challenges and promises. Hum
Brain Mapp 31, 838-851.

[14] Turner BO, Paul EJ, Miller MB, Barbey AK (2018) Small
sample sizes reduce the replicability of task-based fMRI
studies. Commun Biol 1, 62.

[15] Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA,
Solodkin A, Jirsa V, McIntosh AR, Ritter P; Alzheimer’s
Disease Neuroimaging Initiative (2019) Linking molecular
pathways and large-scale computational modeling to assess
candidate disease mechanisms and pharmacodynamics in
Alzheimer’s Disease. Front Comput Neurosci 13, 54.

[16] Slater T (2014) Recent advances in modeling languages for
pathway maps and computable biological networks. Drug
Discov Today 19, 193-198.

[17] Neve RL, McPhie DL (2006) The cell cycle as a therapeutic
target for Alzheimer’s disease. Pharmacol Ther 111, 99-
113.

[18] Cenini G, Voos W (2019) Mitochondria as potential targets
in Alzheimer’s disease therapy: An Update. Front Pharma-
col 10, 192.

[19] Hoyt CT, Konotopez A, Ebeling C (2018) PyBEL: A com-
putational framework for Biological Expression Language.
Bioinformatics 34, 703-704.

[20] Domingo-Fernández D, Kodamullil AT, Iyappan A, Naz M,
Emon MA, Raschka T, Karki R, Springstubbe S, Ebeling C,
Hofmann-Apitius M (2017) Multimodal mechanistic sig-
natures for neurodegenerative diseases (NeuroMMSig): A
web server for mechanism enrichment. Bioinformatics 33,
3679-3681.

[21] Li H, Roossinck MJ (2004) Genetic bottlenecks reduce pop-
ulation variation in an experimental RNA virus population.
J Virol 78, 10582-10587.

[22] Lewis C M, Knight J (2012) Introduction to genetic
association studies. Cold Spring Harb Protoc 2012, 297-
306.

[23] Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR
(2012) Estimation of pleiotropy between complex diseases
using single-nucleotide polymorphism-derived genomic
relationships and restricted maximum likelihood. Bioinfor-
matics 28, 2540-2542.

[24] Ward LD, Kellis M (2012) HaploReg: A resource for explor-
ing chromatin states, conservation, and regulatory motif
alterations within sets of genetically linked variants. Nucleic
Acids Res 40, 930-934.
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Ciná I, Micheli L, Nutini M, Longone P, Oh SP, Cestari
V, Tirone F (2009) Impaired terminal differentiation of hip-
pocampal granule neurons and defective contextual memory
in PC3/Tis21 knockout mice. PLoS One 4, e8339.

[43] Leal G, Bramham CR, Duarte CB (2017) BDNF and hip-
pocampal synaptic plasticity. Vitam Horm 104, 153-195.

[44] Myers KA, McGlade A, Neubauer BA, Lal D, Berkovic SF,
Scheffer IE, Hildebrand MS (2018) KANSL1 variation is
not a major contributing factor in self-limited focal epilepsy
syndromes of childhood. PLoS One 13, e0191546.

[45] Soliman ML, Smith MD, Houdek HM, Rosenberger TA
(2012) Acetate supplementation modulates brain histone
acetylation and decreases interleukin-1� expression in a rat
model of neuroinflammation. J Neuroinflammation 9, 51.

[46] Vadnal J, Houston S, Bhatta S, Freeman E, McDonough
J (2012) Transcriptional signatures mediated by acetylation
overlap with early-stage Alzheimer’s disease. Exp Brain Res
221, 287-297.

[47] Kim S, Kaang BK (2017) Epigenetic regulation and chro-
matin remodeling in learning and memory. Exp Mol Med
49, e281.

[48] Moreno-Igoa M, Hernández-Charro B, Bengoa-Alonso
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The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is
dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of
applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML
models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using
these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that
was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique
as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to
successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-
the-art methods. We also show how this approach can deconvolute a drugs’ mechanism of action and propose combination
therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by
simulating a drugs’ effect on a given patient.

npj Systems Biology and Applications            (2021) 7:40 ; https://doi.org/10.1038/s41540-021-00199-1

INTRODUCTION
Applying machine learning (ML) methods to biomedical data has
enormous potential for the development of personalized thera-
pies,1 drug repurposing,2 and drug discovery.3 The data exploited
by these methods can comprise multiple modalities including
imaging data,4 chemical structure information,5 and natural
language data.6 However, the widespread availability of transcrip-
tomics data (e.g., RNA-Sequencing (RNA-Seq), microarrays, etc.)
along with its capacity to provide a comprehensive overview of
biological systems have made this particular modality a popular
choice for various computational methods. Although this modality
can reveal both molecular signatures as well as phenotypic
changes that occur in altered states, pathway analyses are often
performed to map measured transcripts to the pathway level due
to high dimensionality and correlations present in transcriptomics
datasets.7,8 This transformation facilitates the training of ML/AI
models by reducing dimensional complexity whilst enhancing
interpretive power.9 However, such a transformation implicates
the use of prior pathway knowledge10 from databases such as
KEGG11 and Reactome.12,13

The transformation of data from the transcriptomics to the
pathway level can be used to generate pathway features (i.e., sets
of genes involved in a given pathway that are coordinately up or
down-regulated), the latter of which have broad applications in
drug discovery and drug response prediction.14 For instance,15–17

exploited the concept of anti-similarity between drugs and
disease-specific pathway signatures to identify therapeutic candi-
date drugs that can potentially revert disease pathophysiology.
Furthermore,18 shows how pathway signatures derived from cell
lines using kernelized Bayesian matrix factorization can be used
for drug response prediction.

Alternatively, other methods can generate individualized
pathway features from a population of patients or cell lines.19

These features, or pathway activity scores, can subsequently be
used for several downstream ML applications including classifica-
tion tasks and survival prediction.8,20 In addition,21 showed how
ML models can be used to predict drug response using pathway
activity scores derived from cell lines. Furthermore, another
example from22 demonstrated how modeling individualized
pathway activity scores from Fanconi anemia patients can reveal
potential targets for therapeutic interventions. Finally, similar
approaches have been used to prioritize drug treatments in the
cancer context.23,24

While these methods have shown how pathway signatures can
be used for drug discovery and drug response prediction, existing
methods thus far fail to account for two important factors. First, as
the response triggered by a drug in a given patient may differ if
administered in another, these methods should account for
patient heterogeneity which is crucial in designing individualized
therapies. Second, specific indications may be improved or
corrected by a drug combination approach or through the
administration of multi-target drugs.
In this work, we present an intuitive methodology that exploits

the predictive power of ML models to simulate drug response by
calibrating pathway signatures of patients. We first trained an ML
model (i.e., elastic net penalized logistic regression model) to
discriminate between disease samples and controls based on
sample-specific pathway activity scores. Next, we simulate drug
responses in patients using a scoring algorithm that modifies a
patient’s pathway signatures using existing knowledge on drug-
target interactions. We hypothesize that promising drug candi-
dates for a given condition would modify pathway activity scores
of patients in such a way that they closely resemble scores of
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controls. Thus, using the previously trained ML model, we then
evaluate whether patients with modified pathway scores are now
classified as normal as a proxy for promising drug candidates. We
demonstrate the scalability and generalizability of our methodol-
ogy by simulating over one thousand drugs from two indepen-
dent drug-target datasets on four cancer indications. Furthermore,
we show how our methodology is able to recover a large
proportion of clinically investigated drugs on these four indica-
tions, outperforming six comparable state-of-the-art methods.
Finally, we show how the most relevant pathways identified by
our methodology can be used to better understand the biology
pertaining to a given condition.

RESULTS
We present a workflow designed to approximate a drug’s effect
on a patient by intentional modifications to patient-specific
features, specifically, pathway activity scores, by employing highly
predictive ML models trained to differentiate between normal and
disease samples (Fig. 1). In the first subsection, we validate our
approach by (i) evaluating its capability in retrieving FDA-
approved drugs and those in clinical trials for multiple cancer
datasets and, (ii) comparing the results yielded by our approach
against several equivalent methods. Then, in the following two
subsections, we investigate the drug candidates prioritized by our
approach and the specific pathways targeted by these prioritized
drugs, respectively. Finally, we show the utility of our approach in
predicting the effects of a combination of drugs for applications in

combination therapy and for the identification of potential
adverse events associated with drug combinations.

Validation of the methodology and comparison against
equivalent approaches
In this subsection, we investigate the drug candidates prioritized
by our methodology in four different cancers and evaluate the
ability of our approach to identify approved and clinically
investigated drugs (i.e., true positives). Table 1 shows that only a
minority of the drugs present in both drug-target datasets were
prioritized by our methodology given that a stringent threshold
was employed which required that prioritized drugs change the
predictions of at least 80% of the patients (see “Materials and
Methods” and Supplementary Figs. 7, and 8 for details on the
selection of this threshold). Overall, our methodology is able to
recover a large proportion of true positives (ranging from 13% to
32%) in all four cancers as well as in both drug-target datasets
(Table 1). This wide range may be attributable to a disproportion
in the number of true positives that exist for each of the cancer
datasets (e.g., BRCA has more than twice as many FDA-approved
drugs and drugs in clinical trials than LIHC) as well as to the size of
the drug-target datasets (i.e., DrugBank contains twice as many
drugs as DrugCentral).
As a comparison, the methodology proposed by25 reported

lower proportions of true positives than our approach for the
BRCA and PRAD datasets with 21.42% and 15.94%, respectively
(Supplementary Table 1). Furthermore, four additional methods
present that were benchmarked by25 yielded even lower results

Fig. 1 Conceptual overview of the drug simulation workflow and case scenario on multiple datasets. (a) Pathway activity scores are used
to train a highly predictive ML model that differentiates between normal and disease samples, labeled green and red on the heatmap,
respectively. (b) Next, pathway scores of disease samples are modified by using drug-target information and applying a scoring algorithm that
simulates the effect of a given drug at the pathway-level. Using the modified pathway scores of disease samples, the trained ML classifier is
then used to evaluate whether these modified disease samples that were previously classified as “diseased” could now be classified as
“normal”. (c) Finally, we use the proportion of disease samples now classified as normal (i.e., % responders) as a proxy to identify candidate
drugs and propose combination therapies. (d) To demonstrate the methodology in a case scenario, we first performed ssGSEA using pathways
from KEGG and the BRCA, LIHC, PRAD, and KIRC TCGA datasets to acquire sample-wise pathway activity scores. (e) Next, we obtained known
drug-target interactions from DrugBank and DrugCentral and drug-disease pairs (i.e., FDA-approved drugs and drugs under clinical trials for a
given condition) from Clinicaltrials.gov and FDA-approved drugs, of which, the latter two were used as a ground-truth list of true positives
(TP). (f) To simulate drug treatments of patients from the aforementioned TCGA datasets using their pathway activity scores (i.e., Fig. 1d), we
applied the methodology described in Fig. 1a–c to acquire a ranking of drugs based on the proportion of disease samples that were treated.
Finally, we identified the proportion of drugs ranked by our methodology that were true positives for the four TCGA datasets and compared
this proportion to random chance.
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on the same two cancer datasets (Supplementary Tables 2–8).
Similarly,26 also reported a lower proportion of true positives than
our approach for the BRCA and PRAD datasets with 0.8% and
0.4%, respectively (Supplementary Table 9). Overall, the perfor-
mance across all six methods varied from 0% to 11.53% for BRCA,
and from 0.50% to 22.22% for PRAD and is summarized in
Supplementary Table 10.
In addition, the proportion of true positives yielded by our

methodology is significantly higher than what one would expect
by chance (see “Materials and Methods”). Furthermore, we
compared the number of prioritized drugs found in the original
DrugBank and DrugCentral datasets to the number of prioritized
drugs obtained in the robustness experiments in which we
applied our methodology to drugs with randomly generated
targets and target interactions (Supplementary Fig. 1). We found
that all permutation experiments yielded a significantly lower
number of prioritized drugs. Because our methodology can
capture a much greater number of prioritized drugs on a real
dataset, this validation highlights the capability of our approach to
prioritize drugs with targets in relevant pathways that are key to
change the predictions of patients.
As a final remark, we explored the performance of our

methodology when varying one of the weights while keeping
the other two constant to better understand how sensitive the
results are to the selected weights (Supplementary Tables 11, 12).
We have observed that the proportions of true positives recovered
mainly vary between 15% and 35% in the three test disease
datasets for both drug-target datasets when W1 (i.e., the weight
assigned to the quartile that contains the most dysregulated
pathways) is in the range of 10–20. There are multiple cases where
we found sets of weights yielding better results than the ones
presented in Table 1 if exclusively looking at a single or two
specific disease datasets (Supplementary Table 13). In contrast, we
observed that when weights are low (e.g., W1= 1), our approach
often does not yield any prioritized drugs (Supplementary Table
14), as in these cases, the modified pathway activity scores are not
sufficient enough to change the predictions of the ML model.

In-depth investigation of the prioritized candidate drugs
Apart from the previous quantitative evaluation of our methodology,
we conducted an in-depth analysis of the prioritized drugs to better
understand the predictions made by our approach. Below, we focus
on drugs prioritized using the DrugCentral dataset as this dataset
contains a fewer number of prioritized drugs than DrugBank.
In the breast cancer dataset (BRCA), we identified a major class of

drugs based on their mechanisms of action (Fig. 2a). This class
targeted DNA and RNA metabolism and included commonly used
anti-tumor drugs. One example of this group of drugs is fluorouracil,

which targets thymidylate synthase, thereby inhibiting the forma-
tion of thymidylate from uracil.27 This drug is a chemotherapy
medication commonly used to treat several cancers.
In the prostate cancer dataset (PRAD), we found that the

majority of drugs were related to hormone metabolism and
regulation (Fig. 2c). Due to the key role of sex steroid hormones in
its initiation and progression,26 this cancer is classified as
hormone-dependent. Thus, current treatments are often directly
targeted towards these hormones, such as androgen deprivation
therapy, which represents the major therapeutic option for
treatment of advanced stages of this cancer.28–30

The third dataset, LIHC, corresponds to hepatocarcinoma.
Interestingly, the vast majority of the candidate drugs in this
dataset (14/19) are tyrosine kinase inhibitors (TKI) corresponding
to anti-tumor drugs already FDA-approved for other cancers31

(Fig. 2b). Since these kinases act as regulatory players in several
cancer signaling pathways that can be hyperactivated, TKIs are
used to “switch-off” these pathways, indirectly inhibiting cell
growth.32 One of the predicted drugs is sorafenib, which was the
first TKI to be approved for the treatment of liver carcinoma and
still remains as a first-line therapy. Similarly, another predicted
drug, trametinib, is a dual-kinase inhibitor that is used in the
treatment of advanced liver cancer. Finally, two of the remaining
non-TKIs are also employed as chemotherapy drugs as they inhibit
the synthesis of nucleotides.

Investigation of pathways targeted by the prioritized drugs
Here, we interpret and analyze the results yielded by our
methodology for multiple datasets by investigating the pathways
targeted by the drugs prioritized through our approach. We
identified clusters of pathways belonging to several distinct
classes (Fig. 2). Not surprisingly, we found that various metabolic
pathways appeared in all three test datasets as the regulation of
metabolism plays an important role in numerous cancers. Given
that each of the three test datasets were cancer subtypes,
intuitively, we also observed several disease-relevant pathways
targeted by the prioritized drugs, among which were ~30 cancer-
related pathways from KEGG (e.g., prostate cancer, pancreatic
cancer, bladder cancer, and breast cancer).
Drugs that were prioritized by our approach (Fig. 2) were

likewise clustered based on the pathways they targeted to assess
whether drugs that targeted the same pathway fell within the
same class of drugs. Prioritized drugs for liver cancer could be
clustered into four different classes of tyrosine kinase inhibitors: (i)
JAK inhibitors (i.e., sorafenib, vandetanib, erlotinib, and lapatinib),
(ii) ALK inhibitors (i.e., lorlatinib), (iii) BCR–Abl (i.e., nilotinib,
dasatinib, and imatinib), and (iv) and EGFR inhibitors (i.e.,
afatinib).33 In addition, we found MEK kinase inhibitors, specifically

Table 1. Number of FDA-approved and clinically tested drugs recovered for both drug-target datasets (i.e., DrugBank (DB) and DrugCentral (DC))
across the four investigated cancers.

Dataset DB Prioritized DB Approved
(total)

DB Clinical
trials (total)

DB Proportion of true
positives (%)

DC Prioritized DC Approved
(total)

DC Clinical
trials (total)

DC Proportion of
true positives (%)

BRCA 129 8 (26) 23 (182) 31/129 (24.03%) 19 2 (14) 4 (115) 6/19 (31.57%)

LIHC 74 2 (5) 11 (50) 13/74 (17.56%) 19 1 (1) 2 (35) 3/19 (15.78%)

PRAD 68 2 (13) 18 (134) 20/68 (29.41%) 19 1 (7) 3 (84) 4/19 (21.05%)

KIRC 88 2 (8) 10 (44) 12/88 (13.63%) 26 3 (3) 2 (25) 5/26 (19.2%)

In the first column for each drug-target dataset (“Prioritized”), we report the number of drugs that changed the predictions for at least 80% of the patients for
each cancer type. The second column (“Approved”) reports the number of FDA-approved drugs among these prioritized drugs as well as the total number of
FDA-approved/clinically tested drugs present in each dataset between parentheses. Similarly, the third column (“Clinical trials”) reports the number of drugs
tested in clinical trials among the prioritized drugs and the total number of FDA-approved/clinically tested drugs between parentheses. Finally, the last column
(“Proportion of true positives”) reports the proportion of true positives (both FDA-approved and clinically tested drugs) among the prioritized drugs.
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Fig. 2 Pathways targeted by prioritized drugs in DrugCentral for each of the three cancer test datasets. The X axis corresponds to
pathways targeted by any of the prioritized drugs (i.e., pathways not targeted by any prioritized drug are omitted for better visualization).
Prioritized drugs for each cancer dataset have been clustered based on the pathways they target and are reported on the Y axis. Of the
prioritized drugs, those that correspond to true positives are highlighted in bold. If a set of three or more similar pathways was clustered
together, we manually assigned these pathways into distinct classes (Y axis) Pathway names and cluster information are available as a
Supplementary File and the equivalent figures for DrugBank are available as Supplementary Figs. 2–4.
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trametinib and cobimetinib. Finally, we found that while some
drugs were able to change the predictions by targeting only a
limited number of pathways (e.g., fludarabine in breast cancer and
liver cancer), other drugs could change predictions by targeting
several pathways (e.g., tretinoin in prostate cancer and trametinib
in liver cancer).
Among the most commonly targeted pathways by the

prioritized drugs in liver carcinoma, we found Ras/Raf/MAPK and
PI3K/AKT/mTOR signaling, both of which have been reported to
play important roles in the development of this type of cancer.34

One of the prioritized drugs, sorafenib, is a multi-kinase inhibitor
that targets several kinases including RFA1, PDGFR, and FLT3,
which are involved in both tumor proliferation and angiogen-
esis.35,36 Sorafenib has been shown to inhibit tumor cell
proliferation by blocking the Ras/Raf/MAPK pathway and to
inhibit angiogenesis by blocking PDGFR signaling37 (Supplemen-
tary Table 15).

Prioritizing combination therapies
Combination therapies are widely used for treating indications
like cancer as they can often lead to the inhibition of the
compensatory signaling pathways that maintain the growth and
survival of tumor cells. Here, we demonstrate how our
methodology can be extended to predict the effects of a
combination of drugs. To reduce the computational complexity
associated with running our methodology on all possible
combinations of drug pairs from both drug-target datasets (i.e.,
DrugBank and DrugCentral), we exclusively applied our method
on all possible pairs from the set of prioritized drugs. Table 2 lists
a subset of combinations of prioritized drugs, alongside the
proportion of patients that they reclassify as normal (i.e.,
proportion of treated patients).
For two of the three test datasets (i.e, LIHC and PRAD), nearly all

drug pairs yielded better results (i.e., larger proportion of disease
samples predicted as normal) than the use of a single drug alone.
In the BRCA dataset, however, multiple combinations yielded
worse results than those observed with single drug therapy. For
example, the combination of bromocriptine with valproic acid
decreased the proportion of treated patients from 80% to <10%.
Specifically, bromocriptine is an adrenergic receptor agonist that
stimulates the beta-adrenergic signaling pathway, which in turn
prompts tumor angiogenesis and cancer development.38 Similarly,
valproic acid is a histone deacetylase which also induces beta-
adrenergic signaling, thus promoting cancer progression.39 There-
fore, the combination of these two drugs not only fails to treat the
cancer, but may in fact lead to the worsening of the condition.

DISCUSSION
Here, we have presented a powerful machine learning framework
to simulate drug responses for applications in drug discovery and
precision medicine. We demonstrate our methodology on four
different cancer datasets and two independent drug-target
datasets by using patient-specific pathway signatures to train
highly predictive models which we use as a proxy for drug
candidate identification. Across all datasets, our results yielded a
larger proportion of FDA-approved drugs as well as drugs

investigated in clinical trials than six comparable approaches for
the indications we studied, suggesting that other drugs prioritized
by our methodology may also represent promising candidates for
repurposing. In addition, in contrast to the other methodologies,
our approach is able to prioritize drugs for individual patients,
making it suitable for precision medicine applications. Finally, we
also show how our methodology can be applied to propose drug
combinations as well as to reveal sets of dysregulated pathways
that could be used as possible targets.
Currently, there exist several limitations to this study; first,

although our scoring algorithm used to simulate drug response
has been shown to yield promising results in the four datasets
analyzed, other scoring algorithms may be better suited for
different datasets and/or applications. For instance, we could tailor
the current scoring algorithm for drug discovery to learn pathway
signatures from approved drugs and use these drugs to prioritize
candidates that exhibit similar patterns of activity. Second,
although we recommend the selection of weights following a
similar logic to the one we have presented here (i.e., assigning
larger weights to the quartile containing the most dysregulated
pathways and lower weights for others), it may be the case that
weights must be tuned for other datasets to yield promising
candidates. Third, since our methodology relies on pathway
signatures derived from transcriptomics data, it is inherently
limited to indications where this modality is highly predictive. In
other words, pathway activity scores must be readily separable
between disease and normal samples in the disease we
investigate as we require highly predictive models that can
guarantee the change in the predicted class label is exclusively
caused by the drug simulation step and not by the lack of
accuracy of the model. Thus, it would be less effective in
indications where transcriptomics have limited prediction power
to discriminate between normal and disease samples, such as
Parkinson’s disease.40 Finally, while we have demonstrated our
approach with a commonly used sample-wise enrichment
method, ssGSEA does not take network topology into considera-
tion. Thus, in the future, other enrichment methods that leverage
the topological information of pathways can be used to generate
the pathway activity scores used by our algorithm.
Beyond this proof-of-concept, our methodology can be

extended to include several additional functionalities. For instance,
drug administration could be simulated in an ML model that takes
into consideration temporal dimensions (e.g., event-based mod-
els,41 survival analysis42). Furthermore, in this paper we trained a
simple ML model, nonetheless, the same strategy could be applied
to more complex ML or AI models. Since the elastic net penalty
encourages sparsity, one may also use the coefficients of an ML
model as a preliminary method of filtering for significant features.
To save time, the total set of drug candidates can be subset to only
those which directly affect the features that significantly affect the
prediction capabilities of the model. In addition, we restricted our
analysis to a single pathway database as it was sufficient to deploy
a predictive ML model for the specific classification task we
presented. However, by incorporating pathway information from
other databases into the ML model, we can increase the total
number and coverage of pathways to potentially reveal additional
pathway targets. Similarly, the use of different drug-target
databases such as ExCAPE-DB43 could broaden the chemical space
and lead to the identification of new candidates. By combining
brute-force and reverse engineering approaches, one can also
identify the most effective pathway scores a drug should target for
any given indication; thus, tailoring the presented methodology
towards drug discovery. Finally, due to limited data for all possible
responses a given patient could have to a particular drug in large
cohorts, we relied upon classic drug repurposing validation
strategies to demonstrate the efficacy of our approach. However,
with enough training data, our methodology could be deployed to

Table 2. Examples of predicted combination therapies.

Cancer type Drug 1 Drug 2 Proportion of
responders (%)

Reference

Liver cancer Sorafenib Trametinib 87% 53

Liver cancer Erlotinib Sorafenib 87% 54

Breast cancer Vorinostat Capecitabine 88% 55
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support clinical decision-making in personalized medicine by
simulating the effect of drugs on individual patients.

MATERIALS AND METHODS
The initial step of our methodology consists of generating patient-specific
features that can be used for model training. Although in this work, we
employed pathway activity scores (see subsection “Calculating individua-
lized pathway activity scores”), other features could also be used for the
same purpose. Using these scores, we trained an ML model (subsection
“Building a predictive classifier”) that can accurately discriminate between
sample classes (e.g., disease vs normal). Next, we developed a scoring
algorithm aimed to simulate the effect of a drug intervention at the
pathway-level by modifying the pathway activity scores of disease samples
(subsection “Scoring algorithm”). Then, the method uses the modified
pathway activity scores as an input in the trained model to assess whether
samples that were previously classified as “diseased” could now be
classified as “normal” as a proxy for drug candidates (Subsection “Drug
response prediction and prioritization”). Then we validate and evaluate our
approach by presenting the datasets used for our case scenario and
comparing our methodology against six equivalent approaches. Finally, we
provide details on the implementation.

Datasets
Datasets from The Cancer Genome Atlas (TCGA)44 were retrieved from the
Genomic Data Commons (GDC; https://gdc.cancer.gov) portal through the
R/Bioconductor package, TCGAbiolinks (version 2.16.3;45) on 04-08-2020
(Fig. 1d). Gene expression data from RNA-Seq was quantified using the
HTSeq and raw read counts were normalized using Fragments Per Kilobase
of transcript per Million mapped reads upper quartile (FPKM-UQ). Gene
identifiers were mapped to HUGO Gene Nomenclature Committee (HGNC)
symbols where possible. The datasets downloaded include The Cancer
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA), The Cancer
Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD), The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC), and The
Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)
(Supplementary Table 16). We would like to note that due to the design of
our methodology, we required the datasets to have a large sample size to
conduct the hyperparameter optimization of the ML model and the cross
validation strategy described below.

Calculating individualized pathway activity scores
We used single-sample GSEA (ssGSEA),46 a commonly used tool to
generate patient-specific pathway activity scores. Normalized gene
expression (FPKM-UQ) and pathway definitions (i.e., gene sets) were
provided as input and were converted to scores through ssGSEA
(Supplementary Table 17; Supplementary Fig. 5). As a reference database,
we used 337 pathways from KEGG (downloaded on 01-04-2020) as it is the
most widely used pathway database and a standard for the most
commonly used pathway activity scoring methods18 (Fig. 1d).

Building a predictive classifier
Patient-specific pathway activity scores generated by ssGSEA were used to
generate a ML classifier to distinguish between normal and tumor sample
labels for each of the four datasets. The classification was conducted using
an elastic net penalized logistic regression model47 as regularized models
have been shown to be generally well suited for -omics data which
typically contains a disproportionate number of features to samples, and
specifically well suited for these datasets.21 Furthermore, we previously
used this ML model on the same TCGA datasets,19 yielding AUC-ROC and
AUC-PR values close to 1 (Supplementary Fig. 6), in line with Mubeen et al.
(2019). Prediction performance was evaluated via 10 times repeated 10-
fold stratified cross-validation and tuning of elastic net hyper-parameters
(i.e., l1, l2 regularization parameters) via grid search was performed within
the cross-validation loop to avoid over-optimism.48

Scoring algorithm
To modify the pathway activity scores for disease samples, we developed
a scoring algorithm to replicate the effect of a drug at the pathway-level.
The scoring algorithm exploits interactions from drug-target datasets to
modify the activity scores of pathways containing the target(s) of a drug

(see example in Supplementary Fig. 10). We describe the scoring
algorithm in Box 1.
For each drug-pathway association, the pathway is assigned an effect

score ES which is equivalent to a drug’s effect on a protein target coming
from drug-target datasets (i.e., activation and inhibition relationships given
+1 and −1 labels, respectively). For pathways that contain multiple protein
targets, the ES is equivalent to the mean of these effects (e.g., if a drug
activates a protein in a pathway but also inhibits a second protein in the
same pathway, the overall effect of the drug on the pathway (ES) would be
0). The absolute values of the mean differences between healthy and
disease groups are calculated for each pathway μH-D(p) while their quartiles
are then computed on line 2. Then, from lines 3–12, for each disease sample,
if the ES of a pathway p is less than or greater than 0, the scoring algorithm
calculates a calibration score CS as the product of the absolute value of the
original pathway activity score PAS, the weight w, and the effect of the drug
on the pathway sgn(p) (i.e., −1, 0 or 1). We assign w based on the quartile
μH-D(p) pathway p falls into. For pathways with larger mean differences
between groups, weights are assigned greater values, while pathways with
smaller differences are weighted less (see example in Supplementary Text 1).
On lines 13–14, if the ES of a pathway p is 0, the CS is assigned the value of
the original PAS. Finally, on line 15, the CS is returned as a score that
simulates the effect of a drug on a pathway for a disease sample.

Drug response prediction and prioritization
The methodology then aims at identifying drug candidates based on the
predicted response of a patient to the simulated drug treatment. To do so,
we input the modified features generated by the scoring algorithm
in the trained ML model and re-evaluate the new class assignment
of the patient.
Since the ML model has learnt to accurately differentiate between

normal and disease samples, we expect that if a drug fails to affect a set of
relevant pathways, the labels of the disease samples would remain
unchanged. However, if the drug were to target a set of pathways
dysregulated in a disease, we expect that the scoring algorithm could
modify the scores so that they resemble those observed in control

Box 1 Scoring algorithm pseudocode. The pseudocode
outlines the scoring algorithm used to modify the pathway
activity scores of a given patient

Scoring Algorithm
Require:

Set of pathways containing the protein target(s) of the drug, Pjp 2 Pf g
Set of samples, Sjs 2 Sf g
Set of healthy and disease samples, H;DjH;D 2 Sj8h 2 H; d 2 Df g
Set of target labels, T jt 2 Tf g
Array consisting of effect scores for all pathways,

fESjES pð Þ 2 ES; ES pð Þ ¼ 1
N

XN

j¼0

tj pð Þg

Where, N is the number of targets that are affected by a drug in pathway p
Matrix consisting of original pathway activity scores for disease samples, PAS
Array consisting of the absolute values of mean differences between
sample groups for each p, μH�D ¼ μH � μDj j

1: function SCORING_FUNCTION D; P; ES; PAS; μH�Dð Þ
2: Compute quartiles, Q1;Q2;Q3, for all values of μH�D
3: for all d 2 D do
4: for all p 2 P do

5: sgn pð Þ :¼
�1 if ES pð Þ< 0;
0 if ES pð Þ ¼ 0;
1 if ES pð Þ> 0:

8
<

:

6: if ES≠ 0 then
7: if μH�D pð Þ 2 Q3;þ1ð Þ then
8: CS p; dð Þ ¼ PAS p; dð Þj j � w1 � sgn pð Þð Þ
9: else if μH�D pð Þ 2 jQ2;Q3j then
10: CS p; dð Þ ¼ jPAS p; dð Þj � w2 � sgn pð Þð Þ
11: else
12: CS p; dð Þ ¼ jPAS p; dð Þj � w3 � sgn pð Þð Þ
13: else
14: CS p; dð Þ ¼ PAS p; dð Þ

) CS, Matrix consisting of calibrated pathway scores after drug treatment
15: return CS
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samples. Thus, by inputting these modified scores into the trained ML
model, we can assess whether disease samples can now be classified as
normal. Finally, after re-evaluating the predictions made by the ML model,
we can rank promising drugs by the proportion of disease samples that are
classified as normal as a proxy of the effectiveness of the drug.

Validation and robustness analysis
Here, we outline the robustness experiments conducted to assess the
ability of our methodology to identify drugs which are already FDA-
approved or have been tested in clinical trials for each of the four cancer
types (i.e., TCGA datasets).
First, to simulate drug treatment using the scoring algorithm described

in Box 1, we used two different drug-target datasets: DrugBank (version
5.1.6)49 and DrugCentral (version 9.18.2020).50 For each of the datasets, we
mapped drugs to DrugBank identifiers and protein targets to HGNC
symbols. In total, we retrieved 1346 unique drugs and 4673 drug-target
interactions from DrugBank and 638 unique drugs and 1481 drug-target
interactions from DrugCentral. Here, we would like to note that both
datasets are largely overlapping (Supplementary Fig. 11). We then used
these drug-target interactions as the input to our methodology to simulate
patient treatments (Fig. 1e).
For validation purposes, we used two ground-truth lists containing drug-

disease pairs as true positives to verify the predictions made by our
methodology (Fig. 1f). The first ground-truth list contained FDA-approved
drugs for the four cancer types manually retrieved from the National
Cancer Institute (https://www.cancer.gov/about-cancer/treatment/drugs/
cancer-type) which we mapped to the two drug-target datasets previously
described. The second ground-truth list contained drugs investigated in
clinical trials for the four cancer datasets retrieved from the ClinicalTrials.
gov website (downloaded on 16.04.2020). Table 3 lists the number of
approved and clinically tested drugs present in both drug-target datasets
across the four investigated cancers.
As validation, both ground-truth lists were compared against the list

of prioritized drugs that, according to our methodology, changed the
predictions of 80% of the patients and subsequently classified them as
normal. This threshold was selected as there were no drugs that
changed the prediction for 90% or more of the patients with the
parameters used by our scoring algorithm (Supplementary Figs. 7, 8). In
addition, we would like to note that the vast majority of the drugs do
not change the predictions for most patients. Thus, we were exclusively
interested in assessing the ability of our approach to recover true
positives (i.e., positive predictive value) from the list of prioritized drugs.
However, since our methodology aims to prioritize drug candidates, it
suffers from an early retrieval problem.51 Furthermore, only a small
minority of drugs from the drug-target datasets can be used as positive
labels for each of the indications, while the majority of drugs are not
known to have therapeutic benefits for them, thus, creating a large
imbalance between positive and negative labels. Due to these
reasons, we maintain that the evaluation strategy we present is
more suitable than other conventional metrics such as the receiver
operating characteristic (ROC) curves.
To identify a set of weights for the three quartiles (i.e., Q1, Q2 and Q3 (see

Box 1)) that perform well in three cancer test datasets, we followed a
similar strategy to26 where we tested different weight combinations with
the intention of assigning larger weights to pathways with significantly
higher dysregulations between disease and normal samples. We would like
to note that the purpose of using weights in the algorithm was to modify
the pathway activity scores of the few but relevant pathways targeted by
the drug while maintaining the underlying distribution of pathway scores

(Supplementary Fig. 9). We performed the drug simulation and conducted
this parameter optimization independently on the three cancer test
datasets on DrugBank, the first of two drug-target datasets. Consequently,
we found a set of weights (i.e., W1= 20, W2= 5, and W3= 10 for Q3 (the
upper quartile representing the most dysregulated pathways), Q2 (middle
quartile), and Q1 (lower quartile), respectively), that yielded both a large
proportion of true positives among the prioritized drugs and also
performed better than any of the six methods we compared our
methodology against, as described below. Finally, we validated whether
this same set of weights could also yield a large proportion of true
positives on the second drug-target dataset (i.e., DrugCentral) as well as
the fourth cancer dataset (i.e, KIRC).
To test the robustness of our methodology, we replicated our

experiments by generating one hundred sets of 1346 drugs (the size of
the DrugBank dataset) where each drug was assigned to a randomly
selected protein target (from the set of all HGNC symbols) with a random
causal effect following the same distribution as the original dataset (i.e.,
activation or inhibition). Next, we compared the number of drugs prioritized
by these permutation experiments against the number of drugs prioritized
by our methodology for the DrugBank dataset in the three cancer test
datasets. Since we use a method to generate pathway activity scores that
ignores network topology (i.e., ssGSEA), we did not conduct a robustness
analysis that focused on perturbing pathway networks.

Performance comparison against equivalent drug-
repurposing approaches
To evaluate our methodology, we compared it to six similar approaches
that also employ transcriptomics data and pathway information to
repurpose drugs on the BRCA and PRAD datasets25,26 (note that the LIHC
dataset is not included in their analyses). In the first of the two studies,25

evaluated the ability of their methodology and four additional approaches
to predict known drugs (i.e., FDA-approved or in advanced clinical trials)
for breast and prostate cancer. Similarly,26 reported the ability of their
approach to identify FDA-approved drugs on the same datasets. We were
thus able to directly compare the proportion of true positives that were
recovered by other approaches as reported in the aforementioned studies
against the proportion recovered by our approach.

Implementation
We performed ssGSEA with the Python package, GSEApy (version 0.9.12;
https://github.com/zqfang/gseapy) and generated the ML models using
scikit-learn.52 We would like to note that ssGSEA does not take the
topology of the pathways into account.

DATA AVAILABILITY
Data used in this manuscript are available at https://github.com/sepehrgolriz/
simdrugs under the Apache 2.0 License.

CODE AVAILABILITY
Source code used in this manuscript is available at https://github.com/sepehrgolriz/
simdrugs under the Apache 2.0 License.
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Table 3. Number of FDA-approved and clinically tested drugs present in both drug-target datasets across the four investigated cancers.

Dataset DrugBank Approved DrugBank Clinical trials DrugCentral Approved DrugCentral Clinical trials

BRCA 26/1346 (1.93%) 182/1346 (13.52%) 14/638 (2.19%) 115/638 (18.02%)

LIHC 5/1346 (0.37%) 50/1346 (3.71%) 1/638 (0.16%) 35/638 (5.49%)

PRAD 13/1346 (0.97%) 134/1346 (9.96%) 7/638 (1.10%) 84/638 (13.17%)

KIRC 8/1346 (0.60%) 44/1346 (3.26%) 3/638 (0.47%) 25/638 (3.91%)

The percentage for the number of FDA-approved/clinically investigated drugs for each cancer type over the total number of drugs present in the drug-target
dataset is reported between parentheses.
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Supplementary File
Supplementary Tables

Dr. Insight Performance

Dataset TCGA BRCA TCGA PRAD

# of proposed drug treatments 70 69

# identified ground-truth drug treatments 15 11

Proportion of true positives (%) 21.42 15.94

Supplementary Table 1. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
Dr. Insight on the BRCA and PRAD datasets. See the Supplementary Text for a detailed description of the information reported in each
of the rows. The results of this table are reported in Chan et al. (2019) (Table S5.11) https://doi.org/10.1093/bioinformatics/btz006.

CMap performance on BRCA

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 56 52 55 67 74 74 71 56

# identified ground-truth drug
treatments

5 6 3 6 5 6 6 5

Proportion of true positives (%) 8.92 11.53 5.45 8.92 6.75 8.1 8.45 8.92

Supplementary Table 2. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
CMap on the BRCA dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all parameters
(i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the rows. The
results of this table are reported by Chan et al. (2019) (Table S5.1) https://doi.org/10.1093/bioinformatics/btz006.

CMap performance on PRAD

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 52 83 65 66 80 73 76 71

# identified ground-truth drug
treatments

8 11 7 7 9 10 8 9

Proportion of true positives (%) 15.38 13.25 10.76 10.60 11.25 13.69 10.52 12.67

Supplementary Table 3. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
CMap on the PRAD dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all parameters
(i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the rows. The
results of this table are reported by Chan et al. (2019) (Table S5.2) https://doi.org/10.1093/bioinformatics/btz006.



sscMap performance on BRCA

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 6 19 659 998 1185 1316 1404 1436

# identified ground-truth drug
treatments

0 1 31 45 61 63 72 77

Proportion of true positives (%) 0 5.26 4.70 4.50 5.14 4.78 5.12 5.36

Supplementary Table 4. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
sscMap on the BRCA dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all parameters
(i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the rows. The
results of this table are reported by Chan et al. (2019) (Table S5.4) https://doi.org/10.1093/bioinformatics/btz006.

sscMap performance on PRAD

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 8 18 100 177 202 381 653 810

# identified ground-truth drug
treatments

1 4 9 11 14 17 21 25

Proportion of true positives (%) 12.5 22.22 9 6.21 6.93 4.46 3.21 3.08

Supplementary Table 5. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
sscMap on the PRAD dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all parameters
(i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the rows. The
results of this table are reported by Chan et al. (2019) (Table S5.5) https://doi.org/10.1093/bioinformatics/btz006.

NFFinder performance on BRCA

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 329 285 623 782 651 854 1007 1069

# identified ground-truth drug
treatments

26 24 40 45 43 54 66 62

Proportion of true positives (%) 7.90 8.42 6.42 5.75 6.60 6.32 6.65 5.59

Supplementary Table 6. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
NFFinder on the BRCA dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all
parameters (i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the
rows. The results of this table are reported by Chan et al. (2019) (Table S5.7) https://doi.org/10.1093/bioinformatics/btz006.

NFFinder performance on PRAD

Gene signature sizes (threshold) 50 100 200 300 400 600 800 1000

# of proposed drug treatments 347 592 548 717 529 719 842 783

# identified ground-truth drug
treatments

18 28 32 34 32 38 42 38

Proportion of true positives (%) 5.18 4.72 5.83 4.50 4.74 5.28 4.98 4.85

Supplementary Table 7. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
NFFinder on the PRAD dataset. The proportion of true positives highlighted in bold indicates the highest percentage amongst all
parameters (i.e., threshold gene set size). See the Supplementary Text for a detailed description of the information reported in each of the
rows. The results of this table are reported by Chan et al. (2019) (Table S5.8) https://doi.org/10.1093/bioinformatics/btz006.
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Cogena

Cogena TCGA BRCA TCGA PRAD

# of proposed drug treatments 335 982

# identified ground-truth drug treatments 30 5

Proportion of true positives (%) 8.95 0.50

Supplementary Table 8. Number of approved drugs or drugs in clinical trials (i.e., ground-truth drug treatments) recovered using
Cogena on the BRCA and PRAD datasets. See the Supplementary Text for a detailed description of the information reported in each of
the rows. The results of this table are reported by Chan et al. (2019) (Table S5.10) https://doi.org/10.1093/bioinformatics/btz006.

Chen et al. (2016) study performance

Dataset Prioritized Approved (total) Proportion of true positives (%)

BRCA 2435 20 (20) 20/2435 (0.81%)

PRAD 2500 10 (11) 10/2500 (0.40%)

Supplementary Table 9. Number of approved drugs recovered reported by Chen et al. (2016) on the BRCA and PRAD datasets. The
results from this table are reported in Table 1 of the paper (https://doi.org/10.1186/s12920-016-0212-7).

Method BRCA PRAD

Dr. Insight 21.42 (%) 15.94 (%)

CMap 6.75 - 11.53 (%) 10.52 - 15.38 (%)

sscMap 0 - 5.36 (%) 3.08 - 22.22 (%)

NFFinder 5.59 - 8.42 (%) 4.5 - 5.83 (%)

Cogena 8.95 (%) 0.50 (%)

Chen et al. (2016) 0.81 (%) 0.40 (%)

Supplementary Table 10. Summary of performance for all methods benchmarked on the BRCA and PRAD datasets. Performances
are measured as % of approved drugs or drugs in clinical trials recovered and are taken from Supplementary Tables 1-9.

DrugCentral (638 drugs)

TCGA dataset Replaced weight
Weight sets

(W1_W2_W3) # Prioritized
# Clinical trials

(total) # Approved (total) Proportion of true positives (%)

BRCA

W1

1_5_10 0 - - -

5_5_10 0 - - -

10_5_10 3 1(115) - 1/3(33%)

15_5_10 7 2(115) - 2/7(28%)

W2

20_1_10 17 4(115) 1(14) 5/17(29%)

20_10_10 29 5(115) 1(14) 6/29(20%)

20_15_10 31 5(115) 1(14) 6/31(19%)

20_20_10 46 6(115) 1(14) 7/46(15%)

W3

20_5_1 16 4(115) 1(14) 5/16(31%)

20_5_5 17 4(115) 1(14) 5/17(29%)

20_5_15 18 4(115) 1(14) 5/18(27%)

20_5_20 19 4(115) 1(14) 5/18(27%)

LIHC

W1

1_5_10 14 1(35) 1(1) 2/14(14%)

5_5_10 16 1(35) 1(1) 2/16(12%)

10_5_10 19 2(35) 1(1) 3/19(15%)

15_5_10 19 2(35) 1(1) 3/19(15%)

W2
20_1_10 19 2(35) 1(1) 3/19(15%)

20_10_10 20 2(35) 1(1) 3/20(15%)
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20_15_10 21 2(35) 1(1) 3/21(14%)

20_20_10 22 2(35) 1(1) 3/22(13%)

W3

20_5_1 9 1(35) - 1/9(11%)

20_5_5 10 1(35) 1(1) 2/10(20%)

20_5_15 20 2(35) 1(1) 3/20(15%)

20_5_20 20 2(35) 1(1) 3/20(15%)

PRAD

W1

1_5_10 1 1(84) - 1/1(100%)

5_5_10 1 1(84) - 1/1(100%)

10_5_10 1 1(84) - 1/1(100%)

15_5_10 9 3(84) - 3/9(33%)

W2

20_1_10 11 2(84) - 2/11(18%)

20_10_10 19 3(84) 1(7) 4/19(21%)

20_15_10 40 7(84) 1(7) 8/40(20%)

20_20_10 41 8(84) 1(7) 9/41(21%)

W3

20_5_1 16 3(84) - 3/16(18%)

20_5_5 16 3(84) - 3/16(18%)

20_5_15 32 7(84) 1(7) 8/32(25%)

20_5_20 32 7(84) 1(7) 8/32(25%)

Supplementary Table 11. Number of FDA-approved and clinically tested drugs recovered across the three investigated cancers using
different weights in the DrugCentral dataset. In the fourth column (i.e., # Prioritized), we report the number of drugs that changed the
predictions for at least 80% of the patients for each cancer type.

DrugBank (1346 drugs)

TCGA dataset Replaced weight Weight sets (W1_W2_W3) # Prioritized
# Clinical trials

(total) # Approved (total) Proportion of true positives (%)

BRCA

W1

1_5_10 22 4(182) 0(26) 4/22(18%)

5_5_10 55 8(182) 2(26) 10/55(18%)

10_5_10 81 12(182) 2(26) 14/81(17%)

15_5_10 92 14(182) 2(26) 16/92(17%)

W2

20_1_10 124 21(182) 3(26) 24/124(19%)

20_10_10 142 24(182) 3(26) 27/142(19%)

20_15_10 148 24(182) 3(26) 27/148(18%)

20_20_10 172 27(182) 3(26) 30/172(14%)

W3

20_5_1 85 16(182) 3(26) 19/85(22%)

20_5_5 89 18(182) 3(26) 21/89(23%)

20_5_15 142 25(182) 3(26) 28/142(19%)

20_5_20 143 25(182) 3(26) 28/142(19%)

LIHC

W1

1_5_10 67 9(50) 2(5) 11/67(16%)

5_5_10 70 10(50) 2(5) 12/70(17%)

10_5_10 70 9(50) 2(5) 11/70(16%)

15_5_10 73 10(50) 2(5) 12/73(16%)

W2

20_1_10 71 11(50) 2(5) 13/71(18%)

20_10_10 81 13(50) 2(5) 15/81(18%)

20_15_10 89 14(50) 2(5) 16/89(18%)

20_20_10 93 14(50) 2(5) 16/93(18%)

W3

20_5_1 36 8(50) 1(5) 9/36(25%)

20_5_5 46 8(50) 2(5) 10/46(21%)

20_5_15 101 13(50) 3(5) 16/101(19%)

20_5_20 117 13(50) 3(5) 16/101(19%)

PRAD W1

1_5_10 3 - - -

5_5_10 7 - - -

10_5_10 19 1(134) - 1/19(5%)
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15_5_10 27 2(134) - 2/27(7%)

W2

20_1_10 46 10(134) - 10/46(22%)

20_10_10 82 19(134) 2(13) 21/82(25%)

20_15_10 59 8(134) 2(13) 10/59(16%)

20_20_10 94 19(134) 2(13) 21/94(22%)

W3

20_5_1 66 16(134) - 16/66(24%)

20_5_5 64 15(134) - 15/64(23%)

20_5_15 59 8(134) 2(13) 10/59(17%)

20_5_20 63 8(134) 0(13) 8/59(14%)

Supplementary Table 12. Number of FDA-approved and clinically tested drugs recovered across the three investigated cancers using
different weights in the DrugBank dataset. In the fourth column (i.e., # Prioritized), we report the number of drugs that changed the
predictions for at least 80% of the patients for each cancer type.

Weights 10(Q3), 5(Q2), 2(Q1)
- DrugBank DrugCentral

Dataset Prioritized Approved
(total)

Clinical trials
(total)

Proportion of
true positives

(%)

Prioritized Approved
(total)

Clinical trials
(total)

Proportion of
true positives

(%)

BRCA 20 3(26) 2(182) 5/20(25%) 2 0(14) 1(115) 1/2(50%)

LIHC 27 1(5) 6(50) 7/27(25.95%) 4 0(1) 1(35) 1/4(25%)

PRAD 17 0(13) 0(134) 0/17(0%) 0 0(7) 0(84) 0

Supplementary Table 13. Number of FDA-approved and clinically tested drugs recovered for both drug-target datasets across the
three investigated cancers. In the columns labelled “Prioritized”, we report the number of drugs that changed the predictions for at least
80% of the patients for each cancer type. A different set of weights were used than the ones used to generate the results of Table 2, leading to
comparatively better results for the BRCA and LIHC datasets, but resulting in no true positives recovered for PRAD.

- Weights 1(Q3), 1(Q2), 1(Q1)
- DrugBank DrugCentral

Dataset Prioritized Approved
(total)

Clinical trials
(total

Proportion of
true positives

(%)

Prioritized Approved
(total)

Clinical trials
(total

Proportion of
true positives

(%)

BRCA 0 0(26) 0(182) 0 0 0(14) 0(115) 0

LIHC 0 0(5) 0(50) 0 0 0(1) 0(35) 0

PRAD 0 0(13) 0(134) 0 0 0(7) 0(84) 0

Supplementary Table 14. Number of FDA-approved and clinically tested drugs recovered for both drug-target datasets across the
three investigated cancers. In the columns labelled “Prioritized”, we report the number of drugs that changed the predictions for at least
80% of the patients for each cancer type. Here, we set all weights equal to one and find that there are no prioritized drugs for any of the three
cancer datasets.

Pathway Target Pathway- level
drug effect

Pathway activity in patients
relative to controls

Gap junction PDGFRB, RAF1 Inhibition Upregulated

Fc gamma R mediated phagocytosis RAF1 Inhibition Upregulated

Phospholipase D signaling pathway INSR, PDGFRB, KIT, RAF1 Inhibition Upregulated

Thyroid hormone signaling pathway RAF1 Inhibition Upregulated

Thyroid cancer BRAF, RET Inhibition Upregulated
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Hepatitis B BRAF, RAF1 Inhibition Upregulated

Human papillomavirus infection PDGFRB, RAF1 Inhibition Upregulated

Focal adhesion
BRAF, FLT4, KDR, PDGFRB,
RAF1, FLT1 Inhibition Upregulated

Renal cell carcinoma BRAF, RAF1 Inhibition Upregulated

Glioma BRAF, PDGFRB, RAF1 Inhibition Upregulated

Axon guidance RAF1 Inhibition Upregulated

Endocrine resistance BRAF, RAF1 Inhibition Upregulated

Breast cancer BRAF, FLT4, KIT, RAF1 Inhibition Upregulated

Sphingolipid signaling pathway RAF1 Inhibition Upregulated

Autophagy animal RAF1 Inhibition Upregulated

mTOR signaling pathway INSR, BRAF, RAF1 Inhibition Upregulated

GnRH signaling pathway RAF1 Inhibition Upregulated

Pathways in cancer
FLT3, BRAF, FLT4, PDGFRB,
KIT, RAF1, RET Inhibition Upregulated

Chronic myeloid leukemia BRAF, RAF1 Inhibition Upregulated

Choline metabolism in cancer PDGFRB, RAF1 Inhibition Upregulated

Bladder cancer BRAF, RAF1 Inhibition Upregulated

Non small cell lung cancer BRAF, RAF1 Inhibition Upregulated

Gastric cancer BRAF, RAF1 Inhibition Upregulated

Cushing syndrome BRAF Inhibition Upregulated

VEGF signaling pathway KDR, RAF1 Inhibition Upregulated

Hepatocellular carcinoma BRAF, RAF1 Inhibition Upregulated

MAPK signaling pathway
INSR,FLT3,BRAF,FLT4,KDR,PD
GFRB,KIT,RAF1, Inhibition Upregulated

Regulation of actin cytoskeleton BRAF, PDGFRB, RAF1 Inhibition Upregulated

Human immunodeficiency virus 1 infection RAF1 Inhibition Upregulated

Relaxin signaling pathway RAF1 Inhibition Upregulated

Estrogen signaling pathway RAF1 Inhibition Upregulated

Progesterone mediated oocyte maturation BRAF, RAF1 Inhibition Upregulated

MicroRNAs in cancer PDGFRB, RAF1 Inhibition Upregulated

Neurotrophin signaling pathway BRAF, RAF1 Inhibition Upregulated

Alcoholism BRAF, RAF1 Inhibition Upregulated

Fc epsilon RI signaling pathway RAF1 Inhibition Upregulated

Apoptosis RAF1 Inhibition Upregulated

Cellular senescence RAF1 Inhibition Upregulated

Colorectal cancer BRAF, RAF1 Inhibition Upregulated

Long term depression BRAF, RAF1 Inhibition Upregulated

Melanogenesis KIT, RAF1 Inhibition Upregulated

Supplementary Table 15. Effect of Sorafenib on pathway targets in the LIHC dataset. The first column corresponds to the pathways
that contain protein targets of Sorafenib while the second column corresponds to the specific protein targets of the drug. The third column
corresponds to the effect of the drug on the pathway based on its effect on the target. In this case, all pathways are inhibited as all protein
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targets are inhibited by Sorafenib. Finally, the last column presents a relative comparison between the pathway activity observed in patients
vs. controls: downregulated corresponds to lower pathway activity and upregulated corresponds to the opposite.

Dataset Normal samples Tumor samples Reference DOI

BRCA 113 1102 (The Cancer Genome Atlas
Network, 2012)

https://doi.org/10.1038/nature11412

LIHC 50 371 (The Cancer Genome Atlas
Research Network, 2017)

https://doi.org/10.1016/j.cell.2017.05.0
46

PRAD 52 498 (The Cancer Genome Atlas
Research Network, 2015)

https://doi.org/10.1016/j.cell.2015.10.0
25

KIRC 72 538 (The Cancer Genome Atlas
Research Network, 2013)

https://doi.org/10.1038/nature12222

Supplementary Table 16. Number of normal and tumor samples in the TCGA datasets used in this work.

Parameter Configuration

Method rank

Minimum size of gene set 15

Maximum size of gene set 3000

Supplementary Table 17. Parameter configuration settings for running ssGSEA with GSEApy (version 0.9.12).

Dr. Insight (Chan et al. (2019))

Dataset Normal samples Tumor samples Reference DOI

BRCA 111 1099 (The Cancer Genome Atlas
Network, 2012)

https://doi.org/10.1038/nature11412

PRAD 52 498 (The Cancer Genome Atlas
Research Network, 2015)

https://doi.org/10.1016/j.cell.2015.10.0
25

Supplementary Table 18. Number of normal and tumor samples in the TCGA datasets used in the Chan et al. (2019) study. Datasets
were retrieved through the Genomic Data Commons (GDC; https://gdc.cancer.gov) by Chan et al. (2019). Log transformed TCGA level-3
normalized count data was used in their study. Study details can be found at https://doi.org/10.1093/bioinformatics/btz006.

Chen et al. (2016)

Breast Cancer Prostate Cancer

Total compounds 3678 4228

Compounds that are FDA-approved drugs 632 676

Compounds that are FDA-approved drugs for target disease 20 11

Compounds that are in clinical trial for target disease 154 106

Total number of pathways 287

Supplementary Table 19. Information about the chemicals used by Chen et al. (2016). Details of the approach can be found at
https://doi.org/10.1186/s12920-016-0212-7.

6/17



Dr. Insight (Chan et al. (2019))

PRAD BRCA

FDA-approved drugs 7 9

Clinical trials drugs 47 63

Total number of drugs 54 72

Total number of pathways 222

Supplementary Table 20. Information about the chemicals used by Chan et al. (2019) study. Study details can be found at
https://doi.org/10.1093/bioinformatics/btz006.

Supplementary Text
1. Drug simulation scenario

Suppose you have a score of 0.2 for patient A on pathway X. If a drug is activating the pathway and the mean

difference between healthy and disease groups is large, this pathway will be in the first quartile and the initial

pathway score will be multiplied by a higher weight, (e.g., 3). Thus, the modified score for patient A on pathway

X (originally 0.2) will be 0.6. However, if the mean difference between healthy and disease groups is not large,

the weight will be smaller (e.g., 2) and the modified score for the patient on pathway X will be 0.4. These steps

are repeated for all pathways which contain protein targets of a particular drug for a given patient. Finally, all

modified scores are then passed to the classifier to determine whether the patient is subsequently classified as

normal.

2. Measurements reported by equivalent approaches

Below, we describe each of the measurements reported by studies on similar drug-repurposing approaches that

can be found in Supplementary Tables 1-8.

Gene signature sizes (threshold): This refers to the size of the list of query gene signatures used to evaluate the

drug repurposing performance of CMap, sscMap and NFFinder. Specifically, the gene signatures were

composed of the top- and bottom-ranked most differentially expressed genes of varying sizes. As the CMap,

sscMap and NFFinder methods did not provide specific recommendations for the size of query gene signatures

in their original work, the developers of the Dr. Insight method used gene lists of varying sizes (50, 100, 200,

300, 400, 600, 800 and 1000 Affymetrix probes) to evaluate the drug repurposing performance of CMap,

sscMap and NFFinder and compare them with their method.

Number of identified drug treatments: This number refers to the drugs which were prioritized by different

methods (i.e., NFFinder, CMap, sscMap, cogena, Dr. Insight).

Number of identified ground-truth drug treatments: This number refers to the number of FDA-approved

drugs and clinical-trial drugs from the “# Identified drug treatments”.
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Proportion of true positives (%): This proportion refers to the “# identified ground-truth drug treatments” over

the “# Identified drug treatments”.

Supplementary Figures

Supplementary Figure 1. Comparison of the results of the permutation experiments against the number of prioritized drugs in
DrugBank for the three cancer test datasets. While the three boxplots correspond to the number of prioritized drugs in the 100
permutation experiments for each of the three datasets, the number of prioritized drugs in the original DrugBank dataset has been indicated
with a red circle. The number of prioritized drugs from DrugBank is significantly higher than for any of the permutations experiments.
p-values have been omitted as all permutation experiments yielded a lower number of prioritized drugs compared to the original dataset and
thus, p-values would be dominated by the number of experiments (i.e., 100 experiments would yield a p-value of 0.01, and 1,000
experiments would yield a p-value of 0.001). We would like to note that we compare the permutation experiments against DrugBank as the
number of simulated drugs is equal to the size of this dataset (1,346 drugs). Furthermore, a comparison to the DrugCentral dataset would
yield an even greater difference in the number of prioritized drugs as DrugCentral is smaller in size (638 drugs).
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Supplementary Figure 2. Pathways targeted by the prioritized drugs in DrugBank for BRCA. The X-axis corresponds to the pathways
targeted by any of the prioritized drugs (KEGG pathways not targeted by any prioritized drug have been omitted for better visualization).
Drugs (Y-axis) have been clustered based on the pathways they target. Due to the large number of pathways, we have clustered pathway
groups together for visualization purposes. Black cells correspond to pathways targeted for each drug. Details about each pathway are
displayed in the following Jupyter notebook https://github.com/sepehrgolriz/simdrugs/blob/main/scripts_and_notebooks/heatmaps.ipynb.
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Supplementary Figure 3. Pathways targeted by the prioritized drugs in DrugBank for LIHC. The X-axis corresponds to the pathways
targeted by any of the prioritized drugs (KEGG pathways not targeted by any prioritized drug have been omitted for better visualization).
Drugs (Y-axis) have been clustered based on the pathways they target. Due to the large number of pathways, we have clustered pathway
groups together for visualization purposes. Black cells correspond to pathways targeted for each drug. Details about each pathway are
displayed in the following Jupyter notebook https://github.com/sepehrgolriz/simdrugs/blob/main/scripts_and_notebooks/heatmaps.ipynb.
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Supplementary Figure 4. Pathways targeted by the prioritized drugs in DrugBank for PRAD. The X-axis corresponds to the pathways
targeted by any of the prioritized drugs (KEGG pathways not targeted by any prioritized drug have been omitted for better visualization).
Drugs (Y-axis) have been clustered based on the pathways they target. Due to the large number of pathways, we have clustered pathway
groups together for visualization purposes. Black cells correspond to pathways targeted for each drug. Details about each pathway are
displayed in the following Jupyter notebook https://github.com/sepehrgolriz/simdrugs/blob/main/scripts_and_notebooks/heatmaps.ipynb.
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Supplementary Figure 5. Distribution of pathway activity scores for each of the three test datasets.

Supplementary Figure 6. Prediction performance measured as AUC-ROC values of an elastic net classifier (tumor vs. normal
samples) trained on the three test TCGA datasets using pathway activity scores from ssGSEA run on KEGG. Each boxplot shows the
distribution of the AUCs over 10 repeats of the 10-fold cross-validation procedure. The same classifiers yielded equivalent AUC-PR values
(data not shown). Similar results were obtained in the KIRC dataset (see https://doi.org/10.3389/fgene.2019.0120 Figure 4).
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Supplementary Figure 7. Proportion of patients predicted as normal for each cancer test dataset using DrugBank. Only a fraction of
all drugs in DrugBank changed the predictions of 10% of the patients to normal. As the proportion of the samples changed increases, the
number of prioritized drugs decreases to 19 for all three datasets.
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Supplementary Figure 8. Proportion of patients predicted as normal for each cancer test dataset using DrugCentral. Only a fraction
of all drugs in DrugCentral changed the predictions of 10% of the patients to normal. As the proportion of the samples changed increases,
the number of prioritized drugs decreases to a shortlist of drugs for all three datasets.
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Supplementary Figure 9. Comparison of the distributions of pathway activity scores before and after the simulated treatment of
three approved drugs prioritized by our approach in each cancer test dataset. In the three cases, we can see that only a minority of the
pathway activity scores are modified after the simulated treatment (i.e., outliers that appear on each end of the distribution depending on the
effect of the drug).
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Supplementary Figure 10. Illustration of how the mechanism of action of a drug is simulated by the algorithm.

Supplementary Figure 11. Overlap of drugs present in DrugCental and DrugBank.
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