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I want to predict bonding in molecules and solids, not to fit it.
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Abstract

The main topics of this thesis are efficient quantum chemical methods, their development, and the
verification using existing and newly devised benchmark sets. The spectrum of quantum chemical
methods discussed here includes wavefunction theory (WFT), (dispersion corrected) density functional
theory (DFT), and semiempirical quantum mechanics (SQM), like density functional tight binding (DFTB)
and extended tight binding (xTB). Special focus is set on the development and testing of dispersion
corrected density functional theory to create widely applicable and robust methods for a broad range of
chemical applications. Recent advances in modern density functional theory provide room for further
improvements in combination with accurate dispersion corrections. For example, the latest generation
of semi-classical D4 dispersion correction provides a more accurate model for describing long-range
correlation effects compared to alternative methods. By extensively testing dispersion corrected density
functionals, insights into the capabilities of the best available methods for computational chemistry can
be obtained. With the general improvements available in density functional theory, the demand for more
diverse and challenging benchmarks is increased to allow for meaningful comparisons between available
methods. Especially, for non-covalent interactions obtaining accurate references is computationally
demanding since the benchmarked energy differences are usually small. Large basis sets and converged
numerical settings for correlated methods are needed to distinguish and rank well-performing methods.

On the other hand, with the increasing capabilities of computers and computational chemistry, real
world applications become more important, including larger systems and longer time scales. This
makes the development and advancement of approximate electronic structure methods another important
aspect investigated here. Composite density functional methods of the “3c” scheme employing tailored
corrections and optimized basis sets allow devising computationally efficient yet accurate methods. While
these methods proved to be a good compromise between accuracy and efficiency, the computational
efficiency needed for even larger applications is only reached with further approximations to the
underlying theory in the context of SQM-based methods.

The first chapter of this thesis deals with the development of dispersion corrections for a recently devised
density functional and its validation on a large collection of diverse benchmark sets for thermochemistry,
reaction barriers, general properties, non-covalent interactions, and structural properties. Furthermore,
state-of-the-art benchmark sets for organo-metallic reactions and lattice energies are employed to check
the transferability of the performance observed for molecular main group chemistry. The comprehensive
validation of density functional methods over a large chemical space is crucial to allow an informed
assessment of the expected quality for a specific chemical application. The devised dispersion corrected
functional, r2SCAN-D4, shows excellent performance over a wide range of the conducted tests. Compared
to other similarly constructed functionals the numerical stability is also greatly enhanced making it a
robust choice for computational chemistry and material science. The individual steps of the functional
construction from the original SCAN-D4 over the regularized variant, rSCAN-D4, to the regularized
and restored one, r2SCAN-D4, provide insight into the effect of the respective changes. While the
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regularization reduces spurious midrange correlation and significantly improves non-covalent interaction,
the violation of the exact constraints negatively impacts thermochemistry and kinetics. The restoration
of the exact constraints retains the improved non-covalent interactions and further improves upon the
thermochemistry and kinetics compared to the original SCAN-D4 functional.

In the second chapter the development and application of the extended tight binding methods is
discussed. The xTB Hamiltonian has recently emerged as a widely applicable solution for approximate
quantum mechanical calculations, with a good cost–accuracy ratio in their geometry, frequency, and
non-covalent interaction (GFN) parametrizations for target properties. In particular, the systematic
extension of tight binding based SQM methods to a wider range of chemical applications in the condensed
phase, like in solvation, is a topic discussed in this work. The wide range of investigated models provides
important tools for computational simulations from exploratory work over large-scale screening to
accurate thermochemistry calculations.

In the third chapter, a new benchmark set is developed to investigate the challenging problem of
computing conformational energies for flexible molecules, for which linear n-alkane chains are chosen
as the most prototypical system. An in-detail investigation is provided about the quality of the available
localized wavefunction theory (WFT) methods to allow an accurate assessment of the small energy
differences between the respective conformations. It must be stressed that the development of benchmark
sets containing larger chemical systems is important to detect deficiencies in the tested methods, which
are not present or have only a minor impact on the predominantly small systems in most of the common
training sets. While for most density functionals with exception of one empirical class of functional an
excellent agreement with WFT can be found, many WFT methods of the Møller–Plesset family (MPn)
show remarkably worse results. This unexpected result can be explained by only few benchmarks
probing MPn for larger systems, leaving their deficiencies for conformational energies largely unexplored.
Besides testing WFT and DFT methods, the comparison of different SQM methods and also force fields
is conducted to evaluate their reliability for describing the conformational ensemble of flexible n-alkane
chains. Careful analysis of the tested methods allows providing insights into potential shortcomings of
the assessed methods.

Finally, the fourth chapter focuses on computing solvation contributions to free energies using SQM
methods. Special focus is put on devising a computationally efficient scheme to not hamper the
performance of the SQM methods while exploiting theoretical and technical advancements to create the
best tailored implicit solvation model for SQM methods as well as general force fields. The proposed
solvation models are extensively validated against experimental values and theoretical methods for
conformational energies, large supramolecular associations of charged complex, or organometallic
compounds. For the solvation models, analytical derivatives with respect to the atom positions were
implemented to allow for efficient geometry optimizations, molecular dynamics, and vibrational frequency
calculations.

While not discussed extensively in this thesis, the implementation, distribution, and integration of
computational chemistry methods in existing and new software packages has been an integral part of this
work. All methods developed in the course of this work were implemented in open-source software
packages to ensure they are widely accessible to the computational chemistry community. To summarize,
this work establishes standards for testing and validating of new methods against extensive benchmark
collections as well as for the provision of packages for the application of those methods.
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Kurzzusammenfassung

Die Hauptthemen dieser Arbeit sind effiziente quantenchemische Methoden, ihre Entwicklung und
Verifikation anhand bestehender und neu entwickelter Benchmark-Sets. Das Spektrum der hier disku-
tierten quantenchemischen Methoden umfasst Wellenfunktionstheorie (WFT), (dispersionskorrigierte)
Dichtefunktionaltheorie (DFT), und semiempirische Quantenmechanik (SQM) wie Dichtefunktionale
Tight-Binding (DFTB) und extended Tight-Binding (xTB). Ein besonderer Schwerpunkt liegt auf der
Entwicklung und Erprobung von dispersionskorrigierter Dichtefunktionaltheorie, um allgemein nutzbare
und robuste Methoden für ein breites Spektrum chemischer Anwendungen zu schaffen. Die aktuellen
Fortschritte in der modernen Dichtefunktionaltheorie bieten Raum für weitere Verbesserungen in Kombi-
nation mit genauen Dispersionskorrekturen. Hier bietet die semiklassische D4-Dispersionskorrektur der
letzten Generation ein genaueres Modell für die Beschreibung von langreichweitigen Korrelationseffekten
als vergleichbare Alternative. Umfassende Tests moderner Funktionale mit den neuesten Dispersionskor-
rekturen bieten Einblicke in die Möglichkeiten, die mit den besten Methoden der computergestützten
Chemie zur Verfügung stehen. Mit den allgemeinen Verbesserungen in der Dichtefunktionaltheorie steigt
der Bedarf an vielfältigeren und anspruchsvolleren Benchmarks, um aussagekräftige Vergleiche zwischen
den verfügbaren Methoden zu ermöglichen. Insbesondere bei nicht-kovalenten Wechselwirkungen
ist die Ermittlung genauer Referenzen rechnerisch anspruchsvoll, da die Energieunterschiede bei den
Benchmarks in der Regel gering sind. Große Basissätze und konvergierte numerische Einstellungen
für korrelierte Ansätze sind erforderlich, um gut funktionierende Methoden zu unterscheiden und zu
bewerten.

Auf der anderen Seite, ist mit dem zunehmenden Interesse an rechnerischen Simulationen größerer
Systeme oder längerer Zeitskalen die Entwicklung und Verbesserung approximativer elektronischer
Strukturmethoden ein weiterer wichtiger Aspekt, der hier untersucht wird. Dichtefunktionalmethoden des

”3c“-Schemas, die maßgeschneiderte Korrekturen und optimierte Basissätze verwenden, ermöglichen die
Entwicklung rechnerisch effizienter und dennoch genauer Methoden. Trotz der Genauigkeit dieser, wird
die für noch umfangreichere Anwendungen erforderliche Recheneffizienz nur durch weitere Näherungen
an der zugrundeliegenden Theorie im Rahmen von SQM-basierten Methoden erreicht.

Das erste Kapitel dieser Arbeit befasst sich mit der Entwicklung von Dispersionskorrekturen für
ein kürzlich entwickeltes Dichtefunktional und dessen Validierung anhand einer großen Sammlung
verschiedener Benchmark-Sätze für Thermochemie, Reaktionsbarrieren, allgemeine Eigenschaften, nicht-
kovalente Wechselwirkungen und strukturelle Eigenschaften. Darüber hinaus werden Benchmark-Sets
für metallorganische Reaktionen und Gitterenergien verwendet, um die Übertragbarkeit der für die
molekulare Hauptgruppenchemie beobachteten Leistung zu überprüfen. Die umfassende Validierung
von Dichtefunktionalmethoden über einen großen chemischen Raum ist von entscheidender Bedeutung,
um eine fundierte Bewertung der erwarteten Qualität für eine bestimmte chemische Anwendung zu
ermöglichen. Das entwickelte dispersionskorrigierte Funktional, r2SCAN-D4, zeigt ausgezeichnete Leis-
tung über einen weiten Bereich der durchgeführten Tests. Im Vergleich zu anderen, ähnlich konstruierten
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Funktionalen ist auch die numerische Stabilität stark verbessert, was es zu einer robusten Wahl für die
Computer-Chemie und Materialwissenschaft macht. Die einzelnen Schritte der Funktionskonstruktion
vom ursprünglichen SCAN-D4 über die regularisierte Variante rSCAN-D4 bis hin zum regularisierten
und wiederhergestellten r2SCAN-D4 geben Aufschluss über die Wirkung der jeweiligen Änderungen.
Während die Regularisierung die unerwünschte Korrelation im mittelreichweitigen Bereich reduziert
und die nicht-kovalente Wechselwirkung deutlich verbessert, wirkt sich die Verletzung der exakten
Beschränkungen negativ auf die Thermochemie und Kinetik aus. Durch die Wiederherstellung der
exakten Beschränkungen bleiben die verbesserten nicht-kovalenten Wechselwirkungen erhalten und
die Thermochemie und Kinetik werden im Vergleich zum ursprünglichen SCAN-D4-Funktional weiter
verbessert.

Im zweiten Kaptel wird die Entwicklung und Anwendung der extended tight binding Methoden
diskutiert. Der xTB-Hamiltonian hat sich als anwendbare Lösung für approximative quantenmechanische
Berechnungen erwiesen, wobei die Parametrisierung für Geometrien, Frequenzen und nicht-kovalenten
Wechselwirkungen (GFN) ein gutes Kosten-Genauigkeits-Verhältnis zeigt. Insbesondere die systemati-
sche Erweiterung von SQM-Methoden auf der Grundlage von Tight-Binding auf eine breitere Palette
chemischer Anwendungen in der kondensierten Phase, wie z. B. bei der Solvatation, ist ein Thema dieser
Arbeit. Das weite Spektrum der untersuchten Modelle bietet wichtige Werkzeuge für Computersimu-
lationen, von der Erkundung über groß angelegte Screenings bis hin zu genauen thermochemischen
Berechnungen.

Im dritten Kapitel wird ein neuer Benchmark-Satz entwickelt, um das schwierige Problem der
Berechnung von Konformationsenergien für flexible Moleküle zu untersuchen, für die lineare n-Alkan-
Ketten als das prototypischste System ausgewählt wurden. Es wird eine detaillierte Untersuchung der
Qualität der verfügbaren Methoden der lokalisierten Wellenfunktionstheorie (WFT) durchgeführt, um
eine genaue Bewertung der geringen Energieunterschiede zwischen den jeweiligen Konformationen zu
ermöglichen. Es muss betont werden, dass die Entwicklung von Benchmark-Sets, die größere chemische
Systeme enthalten, wichtig ist, um Defizite in den getesteten Methoden zu erkennen, die bei den
überwiegend kleinen Systemen in den meisten gängigen Benchmark-Sets nicht vorhanden sind oder
nur eine geringe Auswirkung haben. Während für die meisten Dichtefunktionale mit Ausnahme einer
empirischen Klasse von Funktionalen eine ausgezeichnete Übereinstimmung mit der WFT gefunden
werden kann, zeigen viele WFT-Methoden der Møller-Plesset-Familie (MPn) deutlich schlechtere
Ergebnisse. Neben dem Testen von WFT- und DFT-Methoden werden auch verschiedene SQM-Methoden
und Kraftfelder verglichen, um ihre Zuverlässigkeit bei der Beschreibung des Konformationsensembles
von flexiblen n-Alkan-Ketten zu bewerten. Eine sorgfältige Analyse der getesteten Methoden ermöglicht
es, Einblicke in mögliche Schwächen diser zu erhalten.

Das vierte Kapitel schließlich konzentriert sich auf die Berechnung von Solvatationsbeiträgen zu
freien Energien mit SQM-Methoden. Besonderes Augenmerk wird auf die Entwicklung eines rechne-
risch effizienten Schemas gelegt, um die Leistung der SQM-Methoden nicht zu beeinträchtigen und
gleichzeitig theoretische und technische Fortschritte zu nutzen, um das beste maßgeschneiderte implizite
Solvatationsmodell für SQM-Methoden sowie allgemeine Kraftfelder zu erstellen. Die vorgeschlage-
nen Solvatationsmodelle werden anhand von experimentellen Werten und theoretischen Methoden
für Konformationsenergien, große supramolekulare Assoziationen von geladenen Komplexen oder
metallorganischen Verbindungen umfassend validiert. Für die Solvatationsmodelle wurden analytische
Ableitungen in Bezug auf die Atompositionen implementiert, um effiziente Geometrieoptimierungen,
Molekulardynamik- und Schwingungsfrequenzberechnungen zu ermöglichen.
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Die Implementierung, Verbreitung und Integration von Methoden der computergestützten Chemie
in bestehende und neue Softwarepakete war ein wesentlicher Bestandteil dieser Arbeit, auch wenn
sie in dieser Arbeit nicht ausführlich behandelt wird. Alle Methoden, die im Rahmen dieser Arbeit
entwickelt wurden, wurden in Open-Source-Softwarepaketen implementiert, um sicherzustellen, dass sie
für die Gemeinschaft der computergestützten Chemie allgemein zugänglich sind. Zusammenfassend
lässt sich sagen, dass diese Arbeit Standards für die Prüfung und Validierung neuer Methoden anhand
umfangreicher Benchmark-Sammlungen sowie für die Bereitstellung von Softwarepaketen, die die
Anwendung dieser Methoden ermöglichen, geschaffen hat.
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CHAPTER 1

Introduction and theoretical background

1.1 Introduction

For the theoretical description of chemical processes and systems, the application of computational
simulations has become an indispensable tool. Computational chemistry offers an approach to the
fundamental understanding where experimental realizations are difficult due to toxicological hazards,
resource constraints, or time limitations. The advent of computational simulations in chemistry, like
in other fields of modern science, was transformative in the way chemical and physical properties are
validated and even predicted. The application of computational chemistry in drug discovery, catalyst
design, and material science has significantly advanced productivity in the respective research fields.

Especially chemical reactivity is of central interest for computational modeling, which requires an
accurate description of the free energy of the chemical system. Free energy accounts for both the
energy of the system itself and its degrees of freedom. Experimental measurements of this quantity are
challenging, even more for reactions with multiple or short-lived intermediates. To answer the question
of whether a chemical reaction takes place in an experiment or a new drug is pharmaceutical active, a
computational model for assessing the difference in free energy of the reaction is required. The first task
for the model is to select the relevant structures for the reactants and the products as well as the relevant
experimental conditions, like solvents or temperature. Especially for flexible molecules acquiring an input
structure for the model can be challenging. While experimental input for the three-dimensional structure
can be provided from X-ray crystallography, the measurement conditions are usually vastly different in
terms of temperature and environment, furthermore the resolution for light atoms like hydrogens can add
additional uncertainty. Sampling the conformational degrees of freedom for the reactant and product
structures is therefore usually the first step of creating a computational model.19,20 In this process several
thousand candidate structures for a single flexible compound must be considered to allow a reliable
sampling and discovery of the relevant conformations. Using a computational model to describe the
potential energy surface of the reaction allows finding the stationary points, local minima and first-order
saddle points, to compute the thermodynamic and kinetic properties of the reaction and provide insight
into the mechanism unavailable by experimental means. Developing methods for computing the potential
energy surface consistently is a key challenge for computational chemistry. While computing the full
energy of the system is a challenging task, computing the relative differences between structures or along
trajectories is more important than predicting the total energy to its full accuracy.

Quantum chemical methods provide approximate yet consistent solutions for computing relative
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Chapter 1 Introduction and theoretical background

Figure 1.1: Detailed view on chemical system representations ranging from coarse and incomplete representations
like two-dimensional graphs to the complete many-particle wavefunction. Graph or string based low dimensional
representations find usage in chemoinformatics while sophisticated methods like coupled cluster theory employ
the high dimensional many-particle wavefunction to represent a chemical system. Quantum mechanical methods
use representations accounting at least for the electrons, like the electron density.
energy changes in chemical systems. The resolution used to describe the chemical system largely varies
in the spectrum of available quantum chemical methods as sketched in Fig. 1.1. With the many-particle
wavefunction, on the one hand, a complete description of the electronic structure is available for a given
three-dimensional molecular geometry. However, the computational effort to obtain and work with
the complete wavefunction makes it feasible for small systems of only a few atoms. While systematic
approximations are available in the context of wavefunction theory (WFT), like coupled cluster (CC)
theory, a more feasible representation is available with the electron density. Using the electron density
to find a mapping toward other quantities is the central objective of density functional theory (DFT),
which has become the most common approach to computational modeling in chemistry. With no exact
functional known describing this mapping, the development of density functional approximations is an
active field of research. The development of new approximate functionals, as well as their validation on
different chemical problems, is a central research topic in quantum chemistry. Different strategies in the
development, like satisfying exact constraints on the functional21 or data-driven approaches to optimize
functional parameters,22 give rise to several possible functional choices for computational applications.
Testing and validating functional approximations for different chemical problems motivated the creation
and curation of diverse benchmark collections23,24 and extensive comparison and ranking of functionals.
Problems like the absence of London-dispersion in semi-local functionals have been well understood25

and mended either by additive correction schemes9,26,27 or non-local functional components.28,29 On
the other hand the self-interaction error in semi-local functionals is still an unsolved issue and actively
investigated in the context of density-corrected functionals,30 multiconfigurational DFT,31 and local
hybrid functionals.32,33

With computational simulations targeting larger chemical systems or screening a multitude of
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compounds, the computational effort for the quantum chemical evaluation becomes a significant and
prohibitive factor for the effectiveness of the simulation or workflow. Computationally more efficient
models, which retain most of the favorable properties of density functionals, are required to support
contemporary applications in chemistry. Optimization and acceleration of existing methods, by using
highly optimized performance libraries or dedicated hardware acceleration provide a possible avenue.
However, making use of highly optimized programs on dedicated hardware becomes technically involved
both in the deployment and usage, leaving such programs only accessible to technical experts. On
the other hand, simplified theories can provide an intrinsic advantage in computational efficiency. A
successful example of such are composite density functional methods14,34 targeted at describing a wide
range of general thermochemistry and reaction barriers well and providing an efficient approach to
explore the potential energy surface for structural properties or molecular dynamics.

Another alternative to full quantum mechanical calculations is semiempirical molecular orbital
theories, which were predominant in the advent of quantum chemistry35 and now see renewed interest
due to their favorable computational cost.36 The two main approaches are based on the neglect of
diatomic differential overlap (NDDO)37 or density functional tight binding (DFTB).38 Semiempirical
methods can yield a speed-up of two to three orders of magnitude compared to their parent methods, like
density functional theory. Furthermore, most techniques for optimization like linear scaling methods39 or
acceleration by using dedicated hardware40 can be used for semiempirical methods as well. The drawback
of the approximations used for semiempirical methods is that they usually cannot provide the same
global accuracy compared to density functional theory. Rather, the parametrization of the semiempirical
methods is necessarily limited to a set of target properties that were part of their optimization or training
set. Larger errors can be expected for off-target properties or systems which are chemically different
from the ones used for parametrization. However, a well-informed choice taking into account those
shortcomings can yield a significant speed-up for computational simulations enabling to investigate
larger problems or to screen more candidates.

A promising candidate for future applications of semiempirical quantum mechanic (SQM) methods
were recently introduced with the extended tight binding (xTB) Hamiltonian.1 While DFTB methods have
been present for more than two decades, they found only slow adoption due to the involved computation
of the reference wavefunctions as well as the difficult parametrization of the pairwise repulsive potentials.
In contrast to this, the xTB methods follow an element-specific parametrization strategy without the
need to precalculate wavefunctions and integrals as in DFTB. Rather than aiming for a general method,
the xTB methods focus on a limited scope of target properties including geometries, frequencies, and
non-covalent interactions, dubbed GFN parametrization. While unintuitive, the approximations made in
the derivation of DFTB and xTB impact the generality of the resulting methods, which are difficult to
mend by parametrization, instead selecting a limited scope allows for creating a special purpose method
describing the selected target properties well. The resulting methods, GFN1-xTB41 and GFN2-xTB,8

have found wide adoption in the computational chemistry community42,43 and are part of several
screening workflows.19,44 Generally, SQM methods require extensive testing and validation to ensure
that the proposed parametrization is robust. This holds true for all semiempirical methods, independent
of how rigorous they were derived in the first place, as the introduced approximations can have a severe
impact on the overall accuracy and robustness. The development of new SQM methods has spawned
an interest in developing more diverse benchmark sets to provide the necessary coverage of chemical
diverse systems.17
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This work aims to provide improved methods in the spectrum from DFT, SQM, and also FF methods.
For this purpose a dispersion corrected density functional is introduced in Chapter 2, based on the
recently proposed r2SCAN functional.21 Together with the development of composite electronic structure
method of the “3c” kind,14,34 and its hybrid variants,5 the r2SCAN family of functionals provide reliable
performance at the DFT level of theory. The xTB Hamiltonian and the methods of the GFN family
are discussed in Chapter 3. Especially the GFN methods, including the parametrizations of the xTB
Hamiltonian and the GFN-FF, provide a computationally efficient yet accurate way for simulating
structural properties in large scale screening applications. To take upon the challenging problem of
conformational energies, the seemingly easiest system of long, unbranched alkane chains is investigated in
Chapter 4. Unbranched alkanes provide flexible molecules with a large conformer ensemble while having
a simple electronic structure, making them a prime example to investigate intramolecular non-covalent
interactions. The r2SCAN family of functionals provides excellent performance for conformational
energies compared to several established methods. The study is further extended to include SQM and FF
methods, which are commonly used for generating conformer ensembles. Methods of the GFN family
like GFN-FF45 and GFN2-xTB, are identified for providing the best cost–accuracy ratio for these flexible
conformer ensembles. Furthermore, this work investigates the computation of solvation free energies in
Chapter 5 with SQM and FF methods. The description of chemical systems in the condensed phase, like
solvation, provides a cornerstone for computational simulation. Especially, the impact of the proposed
solvation model on the structural properties and conformational energies is part of the validation and
testing. A new implicit solvation model is proposed leveraging developments in the field of generalized
Born (GB) theory including effects of finite dielectric constants or a revised interaction kernel for the
Coulombic screening. Finally, the impact of this thesis is summarized in Chapter 6 and put into the
perspective with the field of computational chemistry.
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1.2 Theoretical background

In this chapter the fundamental theories used or developed in the course of this work will be introduced.
Atomic units will be used throughout the thesis for clarity.

1.2.1 Electronic structure theory

The foundation for electronic structure methods in quantum chemistry is the time-independent, non-
relativistic Schrödinger equation46 given as

ĤΨ = EΨ (1.1)

where Ĥ is the Hamiltonian operator, Ψ is the wavefunction and E is the energy. The Hamiltonian
operator Ĥ for a Coulombic system is formed from the kinetic energy of the nuclei T̂n and electrons T̂e as
well as the potential energy between the nuclei V̂nn, the electrons V̂ee, and the electron and nuclei V̂ne
(Eq. 1.2)

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne (1.2)

The Born–Oppenheimer approximation47 is commonly employed to simplify the Hamiltonian operator,
by accounting for the relative time-scales on which the heavier nuclei move compared to the lighter
electrons. Treating the nuclei as classical particles allows to neglect their kinetic energy T̂n and the
potential energy between the nuclei V̂nn becomes a constant, the resulting electronic Hamiltonian Ĥe is
given as

Ĥe = T̂e + V̂ee + V̂ne + Vnn (1.3)

The electronic kinetic energy operator for an N-electron system is given as

T̂e = −
1

2

N∑︁
i

∆̂i (1.4)

where i is the index referring to the individual particle in the system and ∆̂i is the Laplace operator ∇̂2i .
The electron repulsion energy V̂ee and nuclear–electron attraction energy V̂ne are given as the Coulombic
interaction between all particles.

V̂ee =
N∑︁
i

N∑︁
j
j<i

1

|ri − rj|
(1.5)

V̂ne = −
N∑︁
i

K∑︁
A

ZA
|ri − RA|

(1.6)

here ri are the coordinates of the electron i, RA are the coordinates of the nucleus A of the K nuclei and
ZA are their nuclear charge. The operators can be grouped in one-electron and two-electron operators,
depending on the number of electron indices the Hamiltonian operator is rewritten as

Ĥe = ĥ+ V̂ee + Vnn with ĥ = T̂e + V̂ne (1.7)

5
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For a given wavefunction the expectation value of any operator Ô can be evaluated by the integral

O =

∫
Ψ
∗
Ô Ψ dr = ⟨Ψ|Ô|Ψ⟩ (1.8)

over the electron coordinate r. For example the energy E can be obtained from the Hamiltonian
operator Ĥe (cf. Eq. 1.1).

The many-particle wavefunction Ψ can be parametrized using simpler mathematical functions,
which retain the antisymmetry of the wavefunction and the indistinguishability of the electrons. The
simplest of such parametrizations is given with a Slater-determinant Φ of orthonormal one-particle
wavefunctions ψi(j)

Ψ ≈ Φ(1, 2, . . . ,N) =
1

√
N!

���������
ψ1(1) ψ2(1) · · · ψN(1)
ψ1(2) ψ2(2) · · · ψN(2)
...

...
. . .

...

ψ1(N) ψ2(N) · · · ψN(N)

��������� (1.9)

abbreviated as |ψ1ψ2 · · ·ψN⟩. Evaluating the expectation value of the Slater determinant for the
Hamiltonian operator results in the Hartree–Fock energy expression48,49

E =
N∑︁
i

⟨ψi|ĥ|ψi⟩︸        ︷︷        ︸
hi

+
1

2

N∑︁
i

N∑︁
j

(
⟨ψiψj|r

−1
ij |ψiψj⟩︸                  ︷︷                  ︸
Jij

− ⟨ψiψj|r
−1
ij |ψjψi⟩︸                  ︷︷                  ︸
Kij

)
+ Vnn (1.10)

with the one-particle energies hi and the two-particle energies from Coulomb Jij and exchange
interactions Kij, and the nuclear repulsion energy Vnn. Since the Hartree–Fock energy expression is a
variational functional of the Slater determinant, the wavefunction can be obtained by minimization. To
preserve the orthonormality of the one-particle wavefunctions a Lagrangian constraint is included as
shown in the following equation.

L =
⟨ψ1 · · ·ψN|Ĥe|ψ1 · · ·ψN⟩
⟨ψ1 · · ·ψN|ψ1 · · ·ψN⟩

+
N∑︁
i

N∑︁
j

εij

(
⟨ψi|ψj⟩ − δij

)
(1.11)

By introducing a variation to the Lagrangian a set ofN coupled integro-differential equations is obtained(
ĥi +

N∑︁
j

(̂
Jj − K̂j

) )
ψi =

N∑︁
j

εijψi (1.12)

where Ĵj and K̂j are the effective one-particle operators for Coulomb and exchange interactions with the
mean-field of the electrons, respectively. For a diagonal εij matrix the solution are the canonical orbital
energies εi. Due to the mean-field treatment of the electrons their instantaneous Coulomb correlation,
also known as dynamic correlation, is not captured with this wavefunction parametrization. The missing
energy between Hartree–Fock and the exact solution is termed therefore correlation energy.
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A systematic approach to include correlation is to augment the Hartree–Fock solution with additional
determinants generated by excitions of particles from the occupied one-particle wavefunctions to virtual
ones. The main contribution to the correlation energy is given by the doubly excited determinants

Ecorr =
1

4

N∑︁
i

N∑︁
j

Nvirt∑︁
a

Nvirt∑︁
b

(
⟨ψiψj|ψaψb⟩ − ⟨ψiψj|ψbψa⟩

)
t
ab
ij (1.13)

where tabij are the amplitudes of the doubly excited determinants. An approximation to the double
amplitudes provided by second order Møller–Plesset (MP2)50 perturbation theory is

t
ab
ij =

⟨ψaψb|ψiψj⟩ − ⟨ψaψb|ψjψi⟩
εi + εj − εa − εb

(1.14)

The resulting MP2 energy is given by

EMP2 = EHF +
1

4

N∑︁
i

N∑︁
j

Nvirt∑︁
a

Nvirt∑︁
b

(
⟨ψiψj|ψaψb⟩ − ⟨ψiψj|ψbψa⟩

)2
εi + εj − εa − εb

. (1.15)

The correlation energy as defined by MP2 is commonly applied in the context of double hybrid density
functionals as discussed in the next section. Further discussion of correlation methods is beyond the
scope of this thesis.

1.2.2 Density functional theory

Another approach for including electron correlation is to modify the Hamiltonian rather than improving
the Hartree–Fock wavefunction.51 Density functional theory (DFT) is based on a functional mapping the
ground-state density to the external potential52–54 and describing the interactions between electrons by
an observable in 3D space. Starting from the density ρ given as

ρ =
N∑︁
i

ni|ψi|
2 (1.16)

where ni is the occupation number of the molecular orbital i and an external potential v(r) =
−

∑
A(ZA/|r − RA|), the ground state energy expression of Kohn–Sham DFT can be expressed as a

functional of the electron density by

E[ρ] = Ts[ρ] + Vne[ρ] + J[ρ] + Exc[ρ] (1.17)

where Ts is the Kohn–Sham (KS) kinetic energy, Vne the nuclear–electron energy, J the Coulomb energy,
and Exc the exchange-correlation functional. The first three terms have analogous expressions in the
Hartree–Fock energy (cf. Eq. 1.10). KS-DFT connects the functional expression with the wavefunction
by the electronic density and the KS kinetic energy Ts defined from the molecular orbitals as

Ts[ρ] =
N∑︁
i

ni⟨ψi|−
1

2
∆̂|ψi⟩ . (1.18)
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The nuclear–electron potential energy Vne can be expressed by

Vne[ρ] =

∫
ρ(r)v(r)dr (1.19)

where v is the external potential by the nuclei, v(r) = −
∑

A(ZA/|r − RA|). The Coulomb energy J is
given by the classical electron–electron repulsion energy

J[ρ] =
1

2

∬
ρ(r)ρ(r ′

)

|r − r ′
|
drdr ′

. (1.20)

The crucial difference in KS-DFT however is the exchange-correlation energy Exc, which captures the
antisymmetry of the wavefunction as well as the correlation effects. For the exchange-correlation energy
no exact expression is known, however several approximation have been proposed since the advent of
KS-DFT. The approximate exchange-correlation functional is commonly partitioned into the exchange
and correlation functional, here a further partition into semi-local (SL) and non-local (NL) components
will be introduced. An important NL contribution is the long-range London-dispersion interaction.
However, it should be noted that this partitioning is arbitrary.

Exc[ρ] = E
SL
x [ρ] + E

NL
x [ρ] + E

SL
c [ρ] + E

NL
c [ρ] . (1.21)

While interrelated, for each of the contributions individual approximations are available. Using a
complete description including semi-local and non-local components offers the best theoretical model,
however especially the non-local components introduce a significant computational demand. Therefore,
most exchange-correlation functional approximations at most include expressions for the semi-local
contributions. A commonly used categorization of density functional approximations is to group
exchange-correlation functional approximations in rungs as proposed by Perdew.55 The respective rungs
are grouped by the information they use, such as the local density, its gradient or higher derivatives or
non-local components in exchange or correlation as shown schematically in Fig. 1.2. With additional
components the computational cost as well as the expected accuracy of the approximation is increated.

Figure 1.2: Schematic representation of the density functional rungs and the used information.
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Starting from the lowest rung of exchange-correlation functionals which is the local density approxi-
mation (LDA), the exchange functional for the uniform electron gas56 is known by the expression

E
LDA
x [ρ] = −

3

4

(
3

π

)1/3 ∫
ρ
4/3
dr . (1.22)

LDA-type functionals are a suitable approximation for metallic systems, however not suitable for chemical
relevant systems, which show strongly varying densities especially for the exponential decay of the
electron density away from the atoms. The next rung of functionals addresses this by including the
density gradient ∇ρ additionally to the density. Functionals of this rung are termed generalized gradient
approximation (GGA). For example the PBE exchange functional57,58 is given by

E
PBE
x [ρ] = −

∫
ρ
4/3

[
3

4

(
3

π

)1/3
+

µs
2

1+ µs
2/κ

]
dr (1.23)

where µ and κ are functional specific parameters and s = |∇ρ|/(2kFρ) is the reduced density gradient.
GGA functionals can provide a suitable description for many chemical systems in the ground state, but
usually insufficient at reaction barriers or thermochemistry, which can be partly remedied by advancing
to the third rung including second derivatives of the density and is represented by meta-GGAs. An
example for an exchange functional of the meta-GGA family is the r2SCAN functional21 given as

E
r2SCAN
x [ρ] = −

3

4

(
3

π

)1/3 ∫
ρ
4/3

{
gx(p)

(
h
1
x(p) + fx(ᾱ)

[
h
0
x − h

1
x(p)

] )}
dr (1.24)

where the dimensionless kinetic energy variable ᾱ =
τ−τw
τu+ητw

introduces the dependency on the Laplacian

of the density with the kinetic energy density τ, here τw = |∇ρ|2/(8ρ) and τu = 3(3π
2
)
2/3 are the von

Weizsäcker and uniform electron gas kinetic energy, respectively, and η is a regularization parameter. The
functions gx(p), h

0
x, h

1
x(p) and fx(ᾱ) provide the meta-GGA enhancement factors from the square of the

reduced density gradient p = s
2 or the iso-orbital indicator ᾱ. Functionals of the meta-GGA category

use the most information available for a semi-local approximation which allows for a computational
efficient functional while missing most effects which are not available from the semi-local description
of the electron density. To further improve upon the available functional approximations the usage of
non-local components provides the necessary descriptors to account for information not available in a
purely semi-local picture. However, the introduction of non-local contributions in many cases leads to a
significant increased computational cost of the functional.

The inclusion of non-local exchange ENL
x by using HF-like exchange contributions (cf. Eq. 1.10)

advances a functional to the fourth rung, called hybrids. Including non-local exchange at a constant
fraction results in global hybrids, like PBE0.59,60 Other strategies include but are not limited to range-
separated hybrids using non-local exchange at large inter-electron distances, like ωB97M,61–63 screened
exchange hybrids removing non-local exchange at large distances, like MN12-SX,64 or local hybrids with
spacial dependent non-local exchange fraction, like Lh20t.32 The advantage of hybrid functionals is the
vastly improved description of thermochemistry and barrier heights compared to semi-local functionals.
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Chapter 1 Introduction and theoretical background

Similar to the exchange functional, non-local correlation ENL
c can be introduced in the correlation

functional. Non-local correlation, especially long-range London-dispersion, is crucial for the description
of any medium-sized or larger chemically relevant system.25 Most semi-local functionals up to the
forth rung do not include London-dispersion or can only partially account for it by parametrization.
One mean for this is the inclusion of virtual orbitals using second-order Görling–Levy perturbation
theory (GL2), which is analogous to MP2 in the context of HF (cf. Eq. 1.15), leading to fifth rung double
hybrid functionals. Functionals of the double hybrid category provide especially accurate computational
methods but are computationally very demanding due to the evaluation of the wavefunction based
correlation energy expression. An alternative approach for inclusion of long-range correlation is the
usage of van-der-Waals functionals like the VV10 functional28 which introduce a non-local correlation
kernel at the GGA level.

E
NL
c [ρ] =

∬
ρ(r)Φ(ρ, ρ

′
, |∇ρ|, |∇ρ ′|, |r − r ′

|)ρ(r ′
)drdr ′ (1.25)

here Φ is the correlation kernel for describing the long-range correlation of the densities and their
gradients. In the limit of long electron distances most van-der-Waals functionals65,66 can be described by

E
NL
c [ρ] =

3

32π
2

∬
1

|r − r ′
|
6

ωpω
′
p

ωp +ω
′
p

drdr ′ (1.26)

whereωp =
√︁
4πρ is the plasmon frequency, yielding the typical distance dependence of the leading

term in London-dispersion. The distance dependence of the long-range correlation energy can be
described in a simplified way using the distance RAB of interacting systems

E
NL
c (RAB) ∝

C
AB
6

R
6
AB

(1.27)

where the CAB
6 coefficient describes the strength of the dispersion interactions between the two charge

densities A/B.
Since the asymptotic behavior of the dispersion energy is known, it can be included by adding

a semi-classical energy expression to the DFT total energy. This scheme is known as dispersion
correction and is common for modern computational chemistry. The most widely used scheme to
obtain C6 coefficients are the D3 model26,27 and its successor D4,7,9 where the atomic C6 coefficients
are interpolated from precalculated dynamic polarizabilities by a geometric descriptor of the chemical
environment of the atom, like the coordination number (CN) or the atomic partial charge. Central to the
determination of the CAB

6 coefficients is the information of the local environment of the atomic side,
which is captured via the coordination number in D3 and additionally the partial charge in D4. The
computation of the coordination numbers employs a short-range counting function fCN to determine the
number of neighbors as differentiable quantity given by

CNA =

Nat∑︁
B
B≠A

fCN(RAB) (1.28)

10



Chapter 1 Introduction and theoretical background

D3 and D4 differ in the choice of the counting function. While D4 uses an error function, a smoother
exponential function is used in D3. The coordination number is used to interpolate among a set of
dynamic polarizabilities which are precalculated by time-dependent DFT for compounds with the
respective atom species in different chemical environments. Partial charges in D4 are calculated by a
charge equilibration procedure by minimizing an auxiliary energy expression for the electrostatic energy
of fluctuation charges.

JEEQ =
1

2

Nat∑︁
AB
qAqB

erf
[
RAB/

√︃
R
2
A, 0 + R

2
B, 0

]
RAB

+

Nat∑︁
A

(
q
2
AU

EEQ
A + qA

(
χA − k

CN
A

√︁
CNA

)) (1.29)

where qA/B are the partial charges, UEEQ
A the Hubbard parameters for the charge model which are a

measure for the chemical hardness of an atom, χA the electronegativities, kCN
A the scaling factor for

the environment dependency of the electronegativities, and RA/B, 0 the widths of the Gaussian charge
distributions on each atom. By minimizing this energy expression under the constraint of the total charge
of the system a set of partial charges is obtained, which are employed in the D4 dispersion model to
scale the atomic polarizabilities. The resulting dynamic polarizabilities α(iu) are integrated using the
Casimir–Polder scheme for set of predefined frequencies

C
AB
6 =

π

3

Nref∑︁
A, ref

Nref∑︁
B, ref

23∑︁
u

wuw
CN
A w

CN
B w

q
Aw

q
BαA, ref(iu)αB, ref(iu) (1.30)

withwu being the weight of the frequency integration grid,wCN
A/B the weight of the interpolation over the

coordination number of atom A/B, and wqA/B the extrapolation based on the partial charge of atom A/B.
The charge scaling function is given as

w
q
A = exp

[
βmax

(
1− exp

[
2U

D4
A

(
1−

ZA + q
ref
A

ZA + qA

)])]
(1.31)

where βmax defines the maximum charge scaling by large negative charges, UD4
A are Hubbard parameters

for each atom in D4, ZA are the nuclear charges of the atoms accounting for effective core potentials
used in reference calculation, and qref

A are the partial charges obtained for the reference calculation. The
semi-classical correlation energy is calculated from the pairwise sum of the dispersion coefficients using

E
NL
c = −

1

2

Nat∑︁
AB

6,8,...∑︁
n

sn · fn(RAB) ·
C

AB
n

R
n
AB

(1.32)

where sn are scaling parameters usually fixed to unity and fn is a damping function to remove the
dispersion energy in the short-range regime already covered by the semi-local correlation functional.
One possible choice is the rational damping function proposed by Becke and Johnson67,68
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fn(RAB) =
R
n
AB

R
n
AB + R

n
AB, crit

(1.33)

with the critical radiusRAB crit calculated bya1 ·(C
AB
8 /CAB

6 )
1/2

+a2 with the functional specific parameters
a1 and a2. For D3 and D4 the series is truncated at the CAB

8 coefficient and the s8 parameter is made
functional specific to implicitly account for higher order terms. Furthermore the leading contribution for
the non-additive many-body dispersion energy is evaluated by the Axilrod–Teller–Muto69,70 formula

E
NL
c,ATM = −

1

6

Nat∑︁
ABC

s9 · f9(RAB, RBC, RAC) ·
C

ABC
9 (1+ 3 cos[ϑA] cos[ϑB] cos[ϑC])

(RABRBCRAC)
3

(1.34)

where ϑA/B/C are the angles for the respective triple A,B,C. For an extensive discussion on the D4
dispersion model, it is referred to Ref. [9].

1.2.3 Basis set expansion

Until now the functional form of the one-particle wavefunctions, also known as molecular orbitals (MOs),
has not been discussed in detail. Since the exact mathematical shape is only known for limiting cases like
the free hydrogen atom, the molecular orbitals are usually expanded in a basis set. While different choices
of basis sets are possible, this discussion will focus on the linear combination of atomic orbital (LCAO)
approach48,49 here. Atom-centered orbitals have the advantage of being well-defined for both molecular
and periodic systems. For the latter basis set expansion the Bloch theorem is satisfied as

ψjσ(r + L,k) = ψjσ(r,k) exp[ik · L] (1.35)

where k is a point in momentum space, L a multiple of the lattice vectors, j is the orbital/band index, and
σ the spin channel, i. e., α or β. A suitable choice for the basis set expansion is the Bloch function

ψjσ(r,k) =
∑︁
µ

Cµjσ(k)
1√︁
NL

NL∑︁
L
φ

L
µ(r) exp[ik · L] (1.36)

where φL
µ is the atomic orbital in cell L normalized over the number of included image cells NL. A

common choice for the atomic orbital are contracted Gaussian type basis functions

φ
L
µ =

1

N

Nprim∑︁
m

cm exp
[
−αm

(
r − (Rµ + L)

)2]
(1.37)

where N is the normalization constant such that ⟨φµ|φµ⟩ = 1, cm are the contraction coefficients and
αm are the exponents for the Nprim primitive Gaussian type basis functions. Inserting the expanded
molecular orbitals in the Schrödinger equation results in a set of general eigenvalue equations∑︁

L
exp[ik · L]

NL∑︁
µ

(
H0L
µν − εjσ(k) · S0L

µν

)
Cµjσ(k) = 0 (1.38)

using the orthogonality between the different points in k-space, the resulting full matrices are block-
diagonal. For each of the k-points the resulting Roothaan–Hall equation can be solved

H(k)C(k) = ε(k)S(k)C(k) (1.39)
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Chapter 1 Introduction and theoretical background

due to the dependence of the Hamiltonian matrix H on the density and orbitals the solution of the
eigenvalue problem is iterated until self-consistency is reached. The density matrix P can be evaluated
from the orbital coefficients and the occupation numbers n as

P(k) = C(k)n(k)CT (k) (1.40)

The occupation numbers are usually chosen by the aufbau principle, however for metallic systems or
systems with small band gap a finite electronic-temperature distribution is preferred. A possible choice
is the Fermi-distribution71 given as

njσ(k) =
(
exp[(εjσ(k) − εFermi, σ)/(kBTel)] − 1

)−1
(1.41)

where εFermi, σ is the Fermi level and kBTel is the Boltzmann constant times the temperature. Since
the Fermi-distribution represents an ensemble of electronic structures, the electronic entropy of this
ensemble must be accounted for in the total energy using the Fermi free energy defined as

GFermi = kBTel

∑︁
k

α,β∑︁
σ

NAO∑︁
j

(
njσ(k) ln[njσ(k)] + (1− njσ(k)) ln[1− njσ(k)]

)
. (1.42)

The finite-temperature treatment provides an efficient way to approximately handle static correlation
effects without sacrificing computational efficiency for a method.72

1.3 Semiempirical molecular orbital methods

While density functional theory, especially in the framework of composite electronic structure methods34,
has become a crucial tool for computational chemistry, it is still too computationally expensive for
explorative work or screening application. Semiempirical methods however provide a pragmatic approach
to reduce the computational complexity by directly parametrizing the Hamiltonian for a given basis set
expansion.

The tight-binding approach is based on a semiempirical approximation to KS-DFT, where the energy
function from Eq. 1.17 is expanded around a known reference density ρ0 as

E[ρ] = E
(0)
[ρ0] + E

(1)
[ρ0, δρ] + E

(2)
[ρ0, (δρ)

2
] + E

(3)
[ρ0, (δρ)

3
] +O((δρ)

4
) . (1.43)

The reference density ρ0 is set here to the superposition of atomic densities and the energy expressed
in terms of charge fluctuations δρ. The energy contributions are grouped by the order of the charge
fluctuation with the series expansion being truncated at third order.
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Chapter 1 Introduction and theoretical background

The zeroth order contributions to the energy are independent of the charge density but include geometry
dependent contributions like the Coulomb repulsion energy from screened nuclei given by

E
(0)
rep =

1

2

Nat∑︁
AB

Z
eff
A Z

eff
B

RAB
exp

[
−
√
aAaB · Rkrep

AB

]
(1.44)

where Zeff
A/B are the effective nuclear charges, aA/B are the atomic radii, and krep is an element-pair

specific parameter mostly kept constant. Similarly, the D3 dispersion energy is part of the zeroth order
contribution to the energy being independent of the charge-fluctuation (cf. Eq. 1.32).

The contribution from the core Hamiltonian is the main contribution of the first order energy

E
(1)
EHT =

1

2

∑︁
κλ

PκλHλκ (1.45)

where Hλκ is the effective one-electron Hamiltonian describing the interaction of neutral atoms. The
density matrix is obtained by solving the Roothaan–Hall equation (cf. Eq. 1.39) and constructing the
density matrix (cf. Eq. 1.40). The Hamiltonian matrix elements Hκλ are obtained by scaling the average
of the on-site level energies Hκκ/λλ with the overlap matrix Sκλ and a shell-pair and distant dependent
polynomial Πκλ

Hκλ =
Hκκ +Hλλ

2
· Sκλ · Πκλ (1.46)

where the polynomial term takes the form of

Πκλ = kκλ ·
(
1+ pκ

√︄
Rκλ

R
vdw
κλ

)
·
(
1+ pλ

√︄
Rκλ

R
vdw
κλ

)
·
(
2
√︁
ζκζλ

ζκ + ζλ

)wexp

(1.47)

with kκλ being a scaling for the respective atoms κ/λ are centered on, ζκ/λ the Slater exponents of the
basis functions, wexp is the weight of the Slater exponent dependent term, pκ/λ are the scaling factors
for the distant dependent scaling, and Rvdw

κλ are the van-der-Waals radii between the respective atoms.
Overall the construction of the Hamiltonian hopping elements is the most sophisticated term in the xTB
method with respect to the number of parameters used. The atomic level energies Hκκ/λλ are further
dependent on their local environment by

Hκκ = hκ + k
CN
κ CNκ (1.48)

where CNκ is the coordination number defined as in Eq. 1.28, kCN
κ the local level shift factor, and hκ the

self energy the orbital in the isolated atom.
Contributions from second and higher order require the self-consistent solution of the Roothaan–Hall

equations. Rather than working with the full density matrix, the density fluctuations are expanded in
multipole moments

δρ = −
∑︁
κ

qκ −
∑︁
κ

µκ −
∑︁
κ

Θκ +O(ξ
(3)
) (1.49)

with qκ being the partial charges for each atomic orbital, µκ the orbital dipole moment and Θκ the
traceless orbital quadrupole moment. The partial charges are obtained by Mulliken population analysis
using the overlap matrix S

qκ = n
ref
κ −

∑︁
λ

PκλSλκ (1.50)
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where nref
κ is the population of the neutral atom reference for the orbital κ. The orbital dipole moments

are obtained in a similar way using

µκ = −
∑︁
λ

Pκλ ⟨φλ|r − Rκ|φκ⟩︸                ︷︷                ︸
Dλκ,κ

(1.51)

using the dipole moment integral elementDλκ,κ evaluated with the dipole operator on the center of basis
function Rκ. The (traceless) quadrupole moments are computed from

Θκ = −
∑︁
λ

PκλQλκ,κ (1.52)

with the quadrupole moment integral elements Qλκ,κ being defined as for the dipole moment integrals.
The resulting multipole moments are used to define the electrostatic energy. Most notably, the isotropic
contribution to the Coulomb electrostatic is given by

E
(2)
ies =

1

2

∑︁
κλ

qκTκλqλ (1.53)

and the anisotropic contributions to the electrostatic energy collected up to the distance dependency of
R
−3 is provided by

E
(2)
aes =

∑︁
κλ

µ
i
κT
i
κλqλ +

1

2

∑︁
κλ

µ
i
κT
ij
κλµ

j
λ +

∑︁
κλ

Θ
ij
κT

ij
κλqλ +O(R

−4
κλ ) (1.54)

where Tκλ, T
i
κλ, T

ij
κλ are the interaction tensors for the respective multipole moments qκ/λ, µ

i
κ/λ, Θ

ij
κ/λ,

Einstein summation convention for the Cartesian indices i, j, . . . is assumed. The interaction tensor for
the charge–charge interaction is defined by

Tκλ =
(
R
2
κλ + fav(Uκ, Uλ)

−2
)− 1

2 (1.55)

where Uκ/λ are the Hubbard parameters of the respective orbitals, also known as chemical hardnesses,
and fav is an averaging function like the arithmetic or harmonic average. Due to the spherical atomic
reference the chemical hardness is unique for each angular momentum ℓ and chemical species, allowing
to the use of the same value for orbitals from the same shell. Shell-resolved partial charge qA,ℓ are
defined by accumulating the orbital partial charges with

qA,ℓ =
∑︁
κ∈A,ℓ

qκ . (1.56)

The shell-resolved partial charges are used in the third-order on-site contributions to the electrostatic
energy

E
(3)

ies,ℓ =
1

3

∑︁
A

∑︁
ℓ∈A
ΓA,ℓq

3
A,ℓ (1.57)

where ΓA,ℓ is the shell-resolved derivative of the chemical hardness, known as Hubbard derivative. The
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multipole interactions are given by the charge–dipole interaction tensor

T
i
κλ = −f(Rκλ)

Rκλ,i

R
3
κλ

(1.58)

and the dipole–dipole, charge–quadrupole interaction tensor

T
ij
κλ = f(Rκλ)

3Rκλ,iRκλ,j − δijR
2
κλ

R
5
κλ

(1.59)

where f(Rκλ) is a function to remove the interaction at short distances. The damping function is given as

f(Rκλ) =

(
1+ 6

(
Rκ,0 + Rλ,0
2Rκλ

)k)−1
(1.60)

with Rκ/λ,0 as the radii of the respective atoms and k the exponent for the damping. Since the interaction
kernel for the higher multipole moments does not contain parameters dependent on the angular momentum,
the expressions are unique for each atom and can define atomic partial charges and multipole moments.
The atomic partial charges qA, atomic dipole moments µA, and atomic quadrupole moments ΘA are
obtained by summing the orbital resolved quantities from the respective atoms.

qA =
∑︁
κ∈A

qκ , µA =
∑︁
κ∈A

µκ , ΘA =
∑︁
κ∈A

Θκ . (1.61)

A special contribution is the self-consistent dispersion, which is due to the non-linear dependency on the
partial charges in Eq. 1.31 not clearly associated with a single order in the density fluctuation. Instead,
the series expansion of Eq. 1.31 includes all orders of density fluctuations in the self-consistent dispersion
energy, if the CAB

6 coefficients depend on the Mulliken partial charges. In summary, the final energy
expression for GFN2-xTB8 is given as

EGFN2 = E
(0)
rep + E

(1)
EHT + E

(2)
ies + E

(2)
aes + E

(3)

ies,ℓ + E
(∞)
D4 (1.62)

In comparison, the GFN1-xTB41 energy is given by

EGFN1 = E
(0)
rep + E

(0)
D3 + E

(0)
XB + E

(1)
EHT + E

(2)
ies + E

(3)
ies (1.63)

with the most notable differences are in the dispersion correction, using D3, requiring an additional
force-field-like correction E(0)XB for describing halogen bonding and using only atom-resolved partial
charges in the third-order onsite electrostatic E(3)ies . Notable is that GFN2-xTB in comparison to GFN1-
xTB does not require additional corrections for describing hydrogen and halogen bonding due to the
anisotropic electrostatic capturing those interactions naturally. For a more in-depth discussion of the
xTB methods Ref. [1] is recommended.
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1.4 Free energy

To compare with experimental data, which is usually a free energy difference ∆G the computed energies
by electronic structure methods are incomplete. The theoretical obtained energies are computed without
considering finite temperature effects so far, neglecting contributions arising from the kinetics of the
nuclei which were kept fix by the Born–Oppenheimer approximation. Within the Born–Oppenheimer
approximation the kinetics of the nuclei can be added by evaluating the partition function of the system.
The Gibbs free energy G for a given temperature T is obtained by

G = E+ EZPV +H(0K → T) + PV︸                                      ︷︷                                      ︸
H

−TS (1.64)

where E is the energy recovered in the electronic Hamiltonian, EZPV is the zero point vibrational
energy arising from the quantum mechanical motions at 0 K, H(0K → T) is the temperature dependent
contribution from the motion of the system in translation, rotation and vibration, and PV is the volume
work contribution. These contributions together form the enthalpyH, which combined with the ensemble
entropy TS yields the Gibbs free energy.

The enthalpy and ensemble entropy can be obtained from the system’s partition function Z by
evaluating

G =
V

β

(
∂ lnZ
∂V

)
T

−
1

β
lnZ (1.65)

for convenience β−1 will be used to express the dependency on the thermal energy kBT , with kB being
the Boltzmann constant. Furthermore, the partition function will be considered in its logarithmic
form lnZ in the following equations. The total partition function can be calculated from the individual
contributions by

lnZ = lnZel + lnZtr + lnZrot + lnZvib (1.66)

where Zel is the electronic partition function, Ztr the translational one, Zrot the rotational one, and Zvib
the vibrational one. The electronic partition function is calculated from the electronic states {I} as

lnZel = ln

[∑︁
I

gI exp[−βEI]

]
(1.67)

with gI being the degeneracy of the electronic state degeneracy, and EI its energy. For most applications
only the ground state is relevant as the excitation energy to the first excited state is usually larger than
β
−1. The translational partition function of an ideal gas is given by

lnZtr = ln

(
1

h

√︄
2πM

β

)3
V

 (1.68)

whereM is the mass of the particle. For the rotational partition function a rigid rotor approximation is
chosen

lnZrot = ln

1

σ

√︄
πT

3

IAIBIC

 (1.69)

17



Chapter 1 Introduction and theoretical background

with σ being the rotational symmetry number and IA/B/C as the principal moments of inertia. Both the
translational and rotational partition function are most important if the number of particles changes and
translational and rotational degrees of freedom of the individual compounds become vibrational modes
of the complex. Finally, the vibrational partition function is commonly approximated by an ensemble of
m uncoupled harmonic oscillators (HO) as in

lnZHO
vib =

Nvib∑︁
m

ln
[

exp[−h̄ωmβ]
1− exp[−h̄ωmβ]

]
(1.70)

whereωm are the reduced frequencies of the respective harmonic oscillator. However, this approximation
is insufficient for large systems with soft modes and internal rotations. A modification scheme to account
for the entropic contribution of the low-lying modes as hindered rotor (HR) has been proposed.73 The
modified partition function6 is using a hindered rotor for low frequencies and a harmonic oscillator for
high ones given by

lnZvib =

Nvib∑︁
m

f(ωm) ln
[
Z

HO
vib (ωm)

]
+ (1− f(ωm)) ln

[
Z

HR
vib (ωm)

]
(1.71)

where the hindered rotor partition function is calculated as

lnZvib
HR(ωm) =

1

2
ln

[
2µ

′
(ωm)

πh̄
2
β

]
with µ

′
(ωm) =

µ(ωm)Ī

µ(ωm) + Ī

and µ(ωm) =
h̄

4πωm
,

(1.72)

with Ī being the average moment of inertia of the molecule and µ as the moment of inertia corresponding
to the normal mode. For the switching function f(ωm) the Chai–Head-Gordon damping function74 is
chosen, which is defined by

f(ωm) =
(
1+ (ω0/ωm)

4
)−1

(1.73)

whereω0 is an predefined rotor cutoff value typically between 20 to 100 cm−1.

1.4.1 Solvation free energy

Since chemistry mostly takes place in solution, accounting for solvent effects in computational simulations
is crucial. The contribution to the solvation free energy arising from the transfer of the chemical system
from the gas phase to the condensed phase can be accounted for by assuming an additive contribution to
the total free energy:

G = Gelec, vac + δGsolv (1.74)

where δGsolv is the free energy difference required to bring the solute from the gas phase into solvation.
The contribution can be calculated in a straight-forward way

δGsolv = Gelec, sol −Gelec, vac + δGstate (1.75)
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where Gelec, solv/vac is the system energy in solution or gas phase, respectively, the δGstate arises from
the volume work of bringing the solute from the gas phase into the condensed phase. This approach is
shown schematically in Fig. 1.3.

A computational efficient strategy for computing solvation free energies is the usage of implicit
solvation models. In an implicit solvation model the ensemble averaged solvent molecules are replaced
by a polarizable dielectric continuum surrounding the solute. The interaction of the solute with the
continuum can be described by the Poisson–Boltzmann (PB) equation

ε∆ψ = −4πρ (1.76)

where ε is the dielectric constant of the continuum, ψ the electrochemical potential and the ρ the electron
density. A common approach to approximately solve the (linearized) PB equation is based on a set of
spheres with different internal and external dielectric constants, this approach and the resulting solvation
models are described in Ch. 5.

Figure 1.3: Schematic representation of the calculation of the solvation free energy δGsolv from a gas phase and an
implicitly solvated calculation.
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Chapter 2 Dispersion corrected meta-GGA for general chemical applications

From the recently developed new density functional approximations the strongly constrained and
appropriately normed (SCAN) functional75 is a promising candidate for broad chemical applications due
to its rigorous physical construction. As a meta-general gradient approximation (meta-GGA) the SCAN
functional is in a favorable spot following Perdew’s classification in Jacob’s ladder55 as it retains the
favorable computational efficiency of formal cubic scaling with the system size similar to other pure
functionals. While many meta-GGAs have been proposed so far, few functionals of this category can
actually leverage their potential. The SCAN functional especially exhibits a strong sensitivity to the
numerical integration grid,76 which hampers its applicability for computational simulations. With the
regularization of the SCAN functional and subsequent restoration of the exact constraints, the r2SCAN21

functional promises the same physically rigorous foundation while reducing the numerical instabilities.
The state-of-the-art semi-classical London dispersion correction7,9 is combined with the semi-local

functional to capture crucial long-range correlation effects. For the resulting r2SCAN-D4 functional
we find an overall accuracy approaching those of hybrid functionals for a wide range of chemical
systems. Notably, the2SCAN-D4 remains numerical robust for molecular geometries, general main
group, and organo-metallic thermochemistry as well as for non-covalent interactions in molecular crystals
and supramolecular complexes. Additionally to r2SCAN-D4, we also introduce r2SCAN-D3(BJ) and
r2SCAN-V based on the established DFT-D326,27 and VV1028,29,62 dispersion corrections, respectively.

For the large GMTKN55 benchmark collection23 of about 1500 data points, the weighted mean
absolute deviation (WTMAD2) is exceptionally small with 7.5 kcal/mol compared to other meta-GGA
functionals, which are in a range of 8–9 kcal/mol.23 This accuracy can of r2SCAN-D4 is moreover
transferable to chemically distinct systems like organo-metallic reactions. The performance is especially
remarkable for the mindless benchmark (MB16-43) which tests the robustness of a method for dealing
with unusual chemistry in artificial molecules. While generally lower errors are found for r2SCAN-D4
and other non-empirical functionals in this test set, their empirical counterparts, like the dispersion
corrected B97M functional,22,63 show significantly larger errors. Bond lengths of main group compounds
and transition metal ones show errors of only 0.8% making the functional competitive with hybrid
functionals for main group molecules and even outperforming them for transition metal complexes. Also,
for condensed systems the r2SCAN-D4 method provides accurate lattice energies of molecular crystals
with errors below 1 kcal/mol.

While non-covalent interactions are a weak spot for SCAN-D4, leading to overbinding in molecular
crystals and difficulties with hydrogen and halogen bonded systems, r2SCAN-D4 can significantly
improve for those categories. We find a systematic improvement over the original SCAN-D4 functional
keeping the already good performance and improving the weak spots of the method while improving the
numerical stability. Furthermore, we can provide insights into the improvements, as we can attribute
the improved descriptions of non-covalent interactions to the regularization going from SCAN-D4 to
rSCAN-D4, while the improved thermochemistry and barrier heights result from the exact constraint
restoration when going from rSCAN-D4 to r2SCAN-D4. The overall performance of r2SCAN-D4 makes
it a consistently accurate density functional approximation for a large variety of chemical problems.
Remarkably, since neither SCAN nor r2SCAN were fitted to molecules, their accuracy and predictive
power results from the rigorous construction following the exact constraints and appropriate norms.
This makes r2SCAN-D4 the first meta-GGA truly accessing its full potential while retaining numerical
stability and favorable computational efficiency of a pure functional.
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Chapter 3 Extended Tight-Binding (xTB) Quantum Chemistry Methods

Semiempirical methods provide computational efficient and reasonably accurate atomistic models for
the description of large chemical systems in the gas or condensed phase. From the family of semiempirical
quantum mechanics (SQM) the density functional derived density functional tight binding (DFTB) and
extended tight binding (xTB) methods offer a framework for consistent parametrizations over a broad
range of elements. Designed from the very beginning as special-purpose tools with a focus on structural
properties, the geometry, frequency, and non-covalent interaction (GFN) parametrizations of the xTB
Hamiltonian provide a physically sound description at the SQM level of theory. The general applicability
together and the high robustness make the GFN family of methods, including the xTB parametrizations
and the GFN-FF method, very attractive for many fields of chemical research employing computational
simulations. All GFN methods share the availability for a very large part of the periodic table (up to
radon, Z ≤ 86) and are obtained by a consistent optimization against accurate gas-phase theoretical
references. While the GFN methods are currently mostly applied for molecular systems, the extension
to periodic boundary conditions, at least for molecular crystals is well within scope for the available
parametrizations.

Furthermore, the GFN2-xTB method introduces improvements in the underlying tight binding theory
by using anisotropic electrostatics and charge-dependent dispersion contributions.8 GFN2-xTB provides
the first model of multipole electrostatic for a chemically diverse range of elements in the context of
tight binding theory. It resolves the long-standing issues of describing noncovalent interactions (NCIs),
like hydrogen bonding or halogen bonding, which are especially difficult to capture in the minimal
valence atomic orbital basis set usually employed with tight binding Hamiltonians. The inclusion of
charge-dependent dispersion in the Hamiltonian provides an additional edge for accurately capturing
non-additive effects relevant to NCIs in large systems. For this purpose, the D4 dispersion model is
introduced selfconsistently in the tight binding formalism allowing to vary the dispersion contributions
dependent on the local charge of the atomic centers. Together with the xTB Hamiltonian also a quantum
mechanical charge model for the D4 model is devised which can provide a more accurate description
of the local electronic structure than any classical charge model as used with D4 by default. Overall,
the GFN2-xTB provides a tight binding method free from any pairwise parameters and force-field-like
contributions.

Important for the wide adoption of the GFN methods is the freely available xtb program package,
which provides an efficient and user-friendly implementation of the GFN methods. Central point in the
development of xtb was the possibility to integrate with workflow drivers, like CREST,19 or existing
community-developed frameworks, like QCEngine11 or ASE,77 and was quickly adapted there. This
enables full geometry optimizations, frequency calculations, or conformational searches on standard
workstations or even laptop computers for systems composed of hundreds to about a thousand atoms in
minutes to a few hours. The xTB methods also found interest in massively parallel applications like
the recent exascale computation of a several million atom system based on the GFN1-xTB method.40

Another relevant application is the large-scale screening of medium-sized compounds with several
thousand and more candidates,20 where the computational efficiency of the SQM method is of most
importance.

In summary, the xTB Hamiltonian provides a good framework for developing new SQM methods
due to its flexibility and strict global and element-specific parametrization. Especially, avoiding the
tedious pairwise parametrization which has seriously hampered the creation of SQM methods widely
applicable for the chemical space, provides an intrinsic advantage for xTB-based methods over other SQM
approaches like PMx or DFTB. Finally, the GFN methods provide access to free energy computations as
further discussed in Chapter 5.
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Chapter 4 Conformational Energy Benchmark for Longer n-Alkane Chains

Evaluating conformational energies is a unique challenge for every ensemble, especially for flexible
systems with lots of conformers and nearly contiguous ensembles. Long, unbranched alkane chains
provide a prototypical example of a highly flexible system and form the basis for the construction of
the ACONFL benchmark set. Due to the small energy differences in the nearly contiguous conformer
ensemble, very accurate reference values by DLPNO-CCSD(T1)/CBS are required to allow a statistically
meaningful comparison of even the best available density functional approximations. ACONFL comprises
three conformational ensembles with 53 conformers and 50 relative energies up to about 8 kcal/mol. The
three subsets are build from the conformers of n-dodecane C12H24, n-hexadecane C16H34, and n-icosane
C20H42 covering the transition from linear to hairpin structures as energetically lowest conformers.
Compared to the ACONF test set78 the conformers used in the ACONFL benchmark make the use
of dispersion corrected methods indispensable, while on the ACONF benchmark even dispersion
uncorrected functionals could yield small errors.

The spectrum of assessed methods includes established and modern density functional approximations
as well as wavefunction theory methods like second-order Møller–Plesset (MP2) or Hartree–Fock (HF).
For the majority of assessed density functionals we find that the best dispersion corrected methods
are using the D4 dispersion correction,9 providing on average smaller errors compared to D326,27

and VV10.28,29,62 Among the overall best performing methods are the recently introduced functionals
r2SCAN-V4 and its hybrid variant r2SCAN0-V.5 The overall impact of exact exchange for alkane chain
conformers is for the tested methods minor, only double hybrids like the DSD-BLYP-D3(BJ) can
further improve on the already excellent performance of many (meta-)GGAs. However, we find that
already composite methods like B97-3c79 and r2SCAN-3c14 can provide an accurate description of the
conformational energy. The “3c” composite methods can maintain an excellent cost–accuracy ratio
compared to computationally demanding hybrid or double hybrid functionals in large atomic orbital basis
sets for comparable results with 2–3 orders of magnitude reduced cost. Surprisingly good performance
was observed with HF-D4 while the perturbation-based wavefunction methods, like MP2, perform rather
badly. The failure of MP2 can be attributed to the uncorrelated HF-based dispersion coefficients and
missing higher-order contributions which can be efficiently included with the D4 dispersion correction.
Attempts to remedy this issue by introducing correlated dispersion coefficients or higher-order correlation
effects are only partially successful compared to the excellent HF-D4 performance.

Furthermore, we investigate commonly used semiempirical and force field methods, which are used in
the generation of conformation ensembles or large-scale molecular dynamics simulations. Although it
should be a seemingly straightforward problem due to the simple electronic structure of alkanes, only a
few of the tested methods performed convincingly. Among the tested methods providing reliable results,
GFN2-xTB8 and PM6-D3H480 show good performance at the semiempirical quantum mechanical level
of theory. An outstanding cost–accuracy ratio is available at the force field level with the recently
introduced general force field, GFN-FF.81 However, for several commonly used force field methods like
the universal force field82 or the MMFF9483,84 too shallow potential energy surfaces and larger errors
were observed. Therefore, the ACONFL provides a meaningful validation set for testing existing and
new semiempirical and force field methods for the description of conformational energies.
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Chapter 5 A robust and efficient implicit solvation model for fast semiempirical methods

Describing solvation effects at a semiempirical or force field level of theory is essential for generating
conformational ensembles correctly accounting for environment effects. The solvation can impact the
conformational ordering as well as the most stable structures. To account for solvation effects in the
conformer generation process robust and computationally efficient solvation models are needed.

We propose an implicit solvation model based on the analytical linearized Poisson–Boltzmann (ALPB)
model85 and parametrize it for extended tight binding (xTB),1 density functional tight binding (DFTB),
and the general force field, GFN-FF.81 By using an extension to generalized Born (GB) theory86,87 to
account for finite dielectric constants,85 a newer interaction kernel for the Born matrix,88 and a smooth
surface area (SA) integration for the non-polar contribution,89 the developed solvation model combines
recent advances for reaction field implicit solvation models.

We parametrize the models for a broad range of different nonpolar and polar as well as protic and
aprotic solvents covering a wide range of dielectric constants. For the parametrization, we optimize
against reference solvation free energies either obtained by experiment as collected in the MNSOL
database90–92 or calculated at the COSMO-RS93 level of theory. The parametrization also includes
references from charged compounds to obtain a consistent parametrization for neutral and ionic solutes.
For the xTB and GFN-FF methods, a complete parametrization of all elements of the periodic table up
to Radon (Z ≤ 86) is available. While for Slater–Koster based DFTB the inherently available number
of elements is much smaller, we can exploit the implicit nature of the solvation model to enable the
description of solvents that would be unavailable with the respective parametrization in an explicitly
solvated approach.

The combination of the new ALPB and established GBSA methods with xTB, DFTB and GFN-
FF are tested on a broad range of systems and applications, from conformational energies over
transition-metal complexes to large supramolecular association reactions of charged species. In our
tests GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches for
calculating hydration free energies of small molecules on the FreeSolv database,94,95 yielding a mean
absolute deviation of only 1.4 kcal/mol compared to experiment. For logarithmic octanol–water partition
coefficients (logKow) we find good agreement between GFN2-xTB(ALPB) and experiment with a
mean absolute deviation of 0.65, which emphasizes the consistent description of different solvents.
Furthermore, we propose a set of reaction solvation free energies for the supramolecular S30L benchmark
set,96 which can be well reproduced by the best available solvation model, like COSMO-RS.97–99 The
ALPB-based solvation models provide a reasonably well accuracy even for such large complexes.

Due to the ready availability of analytical gradients, the proposed ALPB and GBSA solvation models
routinely allow for energy calculations, geometry optimizations, molecular dynamics, and vibrational
frequency computations. We further check the influence of the solvation models on the geometry
relaxation in a qualitative and semi-quantitative benchmark set by comparing the difference in geometry
parameters like bond lengths and angles between gas phase and implicitly solvated structures using
DCOSMO-RS.93 Especially for medium-sized charged solutes, we find noticeable changes which can be
reproduced by the ALPB solvation model. For the investigated systems we also find that the solvation
contributions have only a minor impact on the magnitude of the thermostatistical contributions and
vibrational frequencies. Overall, the combination of tailored implicit solvation models with semiempirical
methods opens a wide range of chemical applications.
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CHAPTER 6

Summary and Outlook

The development and discovery of chemical compounds provide the drive for creating new experimental
techniques to synthesize or measure these compounds as well as theoretical models to verify or predict
their properties. With the experimental possibilities of investigating larger or chemically more diverse
systems, the demand for theory to provide methods able to efficiently handle more atoms and more
elements steadily increases. On the other hand, the predictive power of theoretical models has been
steadily improving and can, for certain system sizes, compete with or even outperform experimental
accuracy. This trend leads to computational simulations targeting more challenging cases, following
or even setting the research directions for larger and chemically more diverse systems in the field of
chemistry. Here the development of the extended tight binding (xTB) methods provides new possibilities
from exploratory computational chemistry and early-stage research up to large-scale screening and
long-running simulations. Of importance is the readily availability for the majority of chemical
elements providing the freedom to explore many branches of chemical applications. While the xTB
methods introduced new possibilities, they are by no means the solution to all computational chemistry
problems. For many computational simulations, a reranking or verification at a higher level of theory is
required, which is usually found with dispersion corrected density functional theory (DFT). Also for
the development of DFT the ongoing challenge is to devise new and better density functionals or mend
known deficiencies like the absence of long-range correlation effects or the infamous self-interaction in
semi-local functionals. Having access and knowledge to the best possible density functional is crucial
for the success of a computational study. Benchmarking of density functional methods is a crucial step
toward providing reliable measures for selecting the best method for the task at hand.

This work shows the importance of employing dispersion corrections together with newly developed
density functionals to accurately assess their performance over a wide range of chemical applications.
State-of-the-art dispersion corrections like the charge-dependent D4 model provide a consistent and
robust performance for non-covalent interactions or medium-to-large-sized systems where long-range
correlation effects are crucial. With extensive benchmarking on the now established GMTKN55
benchmark collection, a good measure for the performance of a newly proposed method for general
main group thermochemistry and reaction barriers as well as non-covalent interactions can be provided.
Furthermore, testing for transferability to organometallic systems or structural properties allows for
assessing the overall robustness of a method. It could be shown that the proposed r2SCAN-D4 provides
one of the best non-empirical meta-GGA functionals for a wide range of chemical applications as
captured by the GMTKN55 database. The additionally investigated D3 and VV10 corrected functional
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Chapter 6 Summary and Outlook

variants provide mostly comparable if somewhat worse results. For the mindless molecule benchmark
in particular the performance of non-empirical functionals adhering to exact constraints was found
to be superior to empirically optimized ones. The r2SCAN-D4 functional and its derivatives like the
composite r2SCAN-3c or its hybrid variants will provide a solid foundation for computational simulation.
Together with its variants r2SCAN-based methods cover many relevant applications and provide a reliable
default for theoretical modeling. It is expected that many applications currently relying on established
non-empirical functionals will adopt r2SCAN based methods in the future. Also, the comprehensive
benchmarking of r2SCAN-D4 is hopefully setting a standard for the testing and verification of future new
functional developments to provide reliable statistical measures over a broad spectrum of chemical tasks.

Another central topic of this thesis is the development of benchmark sets and their application to
computational methods. Benchmark studies try to answer a spectrum of questions, ranging from which
methods are sufficient for solving a specific problem to which category of methods provides better or
worse results on average. Furthermore, the investigation of exceptional performance, both better and
worse, provides valuable insights for the general choice of computational methods. An example provided
in this thesis is the failure of MP2-based methods for saturated hydrocarbons due to the inaccurate
description of long-range correlation effects as a result of uncoupled HF-based dispersion coefficients
and missing higher-order contributions. Such a benchmark for prototypical flexible molecules like
unbranched alkane chains is presented in this work together with accurate local coupled-cluster references
allowing the assessment of even small energy differences as found in large conformer ensembles. A
special topic of interest is the choice of dispersion corrections with a particular functional for such
electronically simple systems, as the influence of density changes and charges is small. The D4 dispersion
correction for this class of non-covalent interaction performs surprisingly better than the D3 or VV10
models. However, the better performance of D4 corrected functionals compared to D3 and VV10 can
be found in the updated reference polarizabilities compared to D3 and the inclusion of many-body
dispersion effects compared to VV10, additionally the overall more consistent parametrizations give
the D4 dispersion correciton an edge over the other models mentioned here. While usual benchmark
studies limit themselves to a single method category, like density functional theory, a wider range of
tested methods is investigated to provide insights for semiempirical quantum mechanics (SQM) and force
field (FF) methods. This is of special importance since SQM and FF methods become more widely used
in the generation of conformer ensembles, which are further processed in a multilevel workflow. The
selection of a suitable method for the conformer generation step is important as it determines the safe
energy threshold for including candidate structures by the accuracy of the used method. Furthermore,
the possible sampling length is determined by the intrinsic computational cost of the SQM and FF
methods and determines whether it is feasible to use them for ensemble generation. With the criterium
of ensemble completeness the cost–accuracy ratio of a method is central to the successful and efficient
development of conformational sampling tools. This work for one aims to provide a new and helpful
conformer benchmark, which can be used for testing SQM and FF methods. Also, it tries to provide an
example for future benchmark studies for the comprehensive coverage of a wide range of methods going
beyond a single method category while still providing detailed insights into the exceptional cases for all
categories.

While the development of new methods for the computation of the electronic energy is important, it
provides only a partial solution to real-life chemical problems. For many if not most chemical problems
the knowledge about the free energy is crucial where the electronic contribution is only one part of the full
picture. The thermostatistical contributions to the free energy are well understood and accessible through
evaluating higher derivatives of the electronic energy, where especially the GFN parametrizations excel.
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Chapter 6 Summary and Outlook

More fundamental is the influence of the environment in the condensed phase, like solvation, which
impacts the electronic structure as well as the molecular geometry and is challenging to sample in
an explicit approach using free energy perturbation theory or thermodynamic integration techniques,
or enhanced sampling techniques like metadynamics or replica exchange. A simple yet cost-efficient
solution is proposed to handle solvation effects in the framework of SQM methods without sacrificing the
computational efficiency of the methods using implicit solvation models of the generalized Born (GB)
type. The proposed analytical linearized Poisson–Boltzmann (ALPB) solvation model is based on the
best available theories to approximate the Poisson–Boltzmann equation in the context of GB theory. This
includes additional terms arising from finite dielectric constants, like the electrostatic shape-dependent
contribution for ionic compounds, the P16 interaction kernel for the evaluation of the dielectric screening
of the Coulomb interactions, or a smooth surface integration technique for the surface area contribution.
While primarily designed for FF methods, the implicit solvation model was introduced self-consistently
for the tight binding methods to allow for the efficient evaluation of gradients. The resulting model
was parameterized for the extended tight binding and density functional tight binding Hamiltonians as
well as for general FF methods, like the GFN-FF. Polarizable continuum models (PCMs) have been
proposed for tight binding in the past, however their adoption has been hampered by the relative high
computational cost in the self-consistent evaluation of the tight binding Hamiltonian, which is even
more impactful in combination with general FFs. The ALPB solvation model will provide the go-to
solution for handling environment effects for a wide range of applications with tight binding methods
as it provides a computationally efficient and quite natural integration within the framework of tight
binding theory. Partition coefficients to calculate environmental relevant distribution properties become
accessible at the SQM level of theory and open the possibility for large-scale screening in combination
with conformational ensemble sampling techniques. Additionally, for linear-response and time-dependent
tight binding calculation, the ALPB opens a new avenue for including solvation effects.

Most if not all work in this thesis is tied to the development and implementation of appropriate software
packages enabling the usage of the newly devised methods in computational chemistry workflows. While
the success of most of the methods here is tied to their theoretical soundness backed by extensive
testing, the availability of implementations in program packages and distributions has been crucial
for accelerating their adoption in the community. Here, the spectrum is as diverse and heterogeneous
as the computational methods themselves, ranging from standalone programs to libraries in large
distribution channels like conda-forge. Special focus is set on the long-term maintainability as well as
easy accessibility in form of open-source software. For several of the major program packages like xtb
or dftd4 an active community developed along with this thesis.

To summarize, the work presented in this thesis provides a solid foundation for computational
chemistry, starting from the conception and exploratory work over the screening and sampling to the
actual research and production stage of a computational simulation workflow. The methods developed
here are well tested, providing a guide and standard for new developments in the field of computational
chemistry to benchmark against. Most importantly, the connection from accurate theory to approximate
models has been highlighted in several aspects of this work providing an integral view on the toolbox for
theoretical modeling.
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†Biovia, Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
‡Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
§Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
¶Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
∥Enterprise Data Office, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
∗∗Permission requests to reuse material from this chapter should be directed to AIP Publishing.

35

https://doi.org/10.1063/5.0041008


Appendix A r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general
chemical applications

Abstract We combine a regularized variant of the strongly constrained and appropriately normed
semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402
(2015)] with the latest generation semi-classical London dispersion correction. The resulting density
functional approximation r2SCAN-D4 has the speed of generalized gradient approximations while
approaching the accuracy of hybrid functionals for general chemical applications. We demonstrate its
numerical robustness in real-life settings and benchmark molecular geometries, general main group and
organo-metallic thermochemistry, as well as non-covalent interactions in supramolecular complexes and
molecular crystals. Main group and transition metal bond lengths have errors of just 0.8%, which is
competitive with hybrid functionals for main group molecules and outperforms them for transition metal
complexes. The weighted mean absolute deviation (WTMAD2) on the large GMTKN55 database of
chemical properties is exceptionally small at 7.5 kcal/mol. This also holds for metal organic reactions
with an MAD of 3.3 kcal/mol. The versatile applicability to organic and metal-organic systems transfers
to condensed systems, where lattice energies of molecular crystals are within chemical accuracy (errors
<1 kcal/mol).

A.1 Introduction

The quantum mechanical description of physical and chemical materials at electronic resolution is an
increasingly important task for in silico simulations. Here, density functional theory (DFT) has emerged
in the past decades as one of the most versatile methodological frameworks.53,54 This leading position in
both materials and chemical applications is largely due to the excellent accuracy over computational cost
ratio, as well as the broad applicability across system classes of today’s density functional approximations
(DFAs).100–102

The Jacob’s ladder hierarchy55 is commonly used to classify DFAs. In this hierarchy, DFAs are
systematically improved by ascending rungs of different approximations: the local density approximation
(LDA), generalized gradient approximations (GGAs), meta-GGAs, hybrid functionals (including a
fraction of nonlocal exact exchange), and double-hybrid functionals (including nonlocal correlation). In
terms of efficiency, meta-GGAs are in a favorable spot, as they have the same cubic scaling with system
size as LDA. Yet, many of the meta-GGAs proposed so far cannot truly leverage the full potential of their
rung. Some shortcomings of existing functionals are increased sensitivity to the numeric integration
grid, as observed in the strongly constrained and appropriately normed (SCAN) functional75 or several
Minnesota type functionals,103–105 purely empirical parameters, as present in the B97M functional22,
and sensitivity to the kinetic energy density.106,107 Recent developments of semi-local DFAs combine
exact constraints with various degrees of parametrization to improve descriptions of short- to medium-
range electron correlation75,108,109.

The SCAN functional75 is constructed to rigorously satisfy all known exact constraints suitable for
a meta-GGA. While the functional itself has shown excellent performance in previous studies, the
severe numerical instabilities inherent to the functional impeded its adoption for many computational
studies. With the recently proposed regularized SCAN (rSCAN)76 and the subsequent restoration
of exact constraints in r2SCAN21, the main drawback of the SCAN functional seems to be resolved.
Shortcomings of the SCAN functional might still be present in its successors, rSCAN and r2SCAN.
Notably, the description of water clusters (H2O)n (2 ≤ n ≤ 8) show the overbinding tendency of
SCAN110. A recent work by Sharkas et al.110 however demonstrates that this can be mended by the
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Perdew–Zunger self-interaction correction (PZ-SIC). SCAN and r2SCAN show similar behaviors for
self-interaction error prone systems, which may make r2SCAN amenable to a PZ-SIC correction as well.
However, r2SCAN is often more accurate than SCAN, as in the extensive benchmarking here, in the
atomization energies of molecules21, and in the spin-crossover energies of molecules111.

Nevertheless, semilocal functionals cannot include long-range correlation effects like London disper-
sion interactions.25 To truly judge its applicability, we extensively tested r2SCAN combined with the
state-of-the-art D4 dispersion correction9, which shows unprecedented performance for a range of diverse
chemical and physical properties. To investigate the development of the SCAN-type functionals we
include both SCAN-D4 and rSCAN-D4 in the comparison to r2SCAN-D4, and can attribute improvements
in non-covalent interactions mainly to the regularization and improvements for thermochemistry and
barrier heights to the restoration of the exact constraints.

We give a concise methodological overview (Section A.2) on r2SCAN and D4 before testing the full
method against established DFAs over a wide range of benchmarks (Section A.3), with particular focus
on molecular geometries, thermochemistry, kinetics, and non-covalent interactions in small and large
complexes.

A.2 Methods

The rSCAN76 functional regularizes the severe numerical instability or inefficiency of the otherwise
successful SCAN75 functional at the expense of breaking exact constraints SCAN was constructed to
obey. This problem arises in many codes that employ localized basis sets, and is less problematic in
many codes that employ plane-wave basis sets. While numerical challenges are indeed resolved, a
rigorous adherence to exact constraints is core to the design of the SCAN functional and likely important
for transferable accuracy across domains of applicability.111 This seems to be reflected in rSCAN’s
relatively poor performance for molecular atomization energies compared to other tests.112,113 The
r2SCAN functional21 combines the good accuracy of SCAN with the numerical efficiency of rSCAN by
directly restoring exact constraint satisfaction to the rSCAN regularizations.

The SCAN functional is constructed as an interpolation between single orbital and slowly-varying
energy densities designed to maximize exact constraint satisfaction.75 The interpolation is controlled by
an iso-orbital indicator

α =
τ− τW
τU

, (A.1)

where τW = |∇ρ|2/(8ρ) and τU = 3(3π
2
)
2/3
ρ
5/3/10 are the von-Weizsäcker and uniform electron

gas kinetic energy densities respectively.114 In subsequent studies, α has been shown to contribute to
numerical instability.115,116 To remove these effects, a regularized α′ was used in rSCAN that removes
single orbital divergences at the expense of breaking exact coordinate scaling conditions117–119 and the
uniform density limit. These conditions are restored in r2SCAN by adopting a different regularization:

ᾱ =
τ− τW
τU + ητW

, (A.2)

where η = 10
−3 is a regularization parameter.

The second regularization made in the rSCAN functional is to substitute the twisted piece-wise
exponential interpolation of the original SCAN with a smooth polynomial function. This removes
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problematic oscillations in the exchange-correlation potential, but introduces spurious terms in the
slowly-varying density gradient expansion that deviate from the exact expansion120,121 recovered by
SCAN. A corrected gradient expansion term is used in r2SCAN that cancels these spurious terms so the
functional recovers the slowly-varying density gradient expansion to second order. A recent modification
of SCAN for improved band gap accuracy from Aschebrock and Kümmel named “TASK”122 is able
to enforce the fourth-order gradient expansion for the exchange energy without apparent numerical
problems123, resolving the dominant source of numerical inefficiency. The importance of the fourth-order
exchange terms is not established however, and we are thus satisfied using one less exact constraint
compared to SCAN. TASK uses an LSDA for correlation however and consequently violates many
important exact constraints for correlation, e.g. the second order gradient expansion, that are obeyed by
SCAN and r2SCAN.

A.2.1 Numerical stability

Figure A.1: Errors for FeCp2 with SCAN/def2-QZVP and r2SCAN/def2-QZVP using different radial gridsizes. For both
methods, grid 4 and SCF convergence criteria of 10−7 Hartree were used and the radial gridsize was varied. The reference has
a radsize of 100 or radial gridsize of 515/520/535 for hydrogen/carbon/iron, respectively. The gradient error is the sum of the
absolute errors of all gradient components. For further explanation, see the end of Section A.2.1.

Numerical instabilities are revealed by SCAN’s sensitivity to the choice of numerical integration grid,
often requiring dense, computationally costly grids.76,115,124 This issue has been addressed with the
rSCAN and r2SCAN functionals. Fig. A.1 shows that the regularization indeed leads to two orders of
magnitude error reduction when comparing r2SCAN with SCAN. This holds for both total energy and
nuclear gradients for all chosen numerical settings. In practice, this allows for more computationally
favorable settings. To give a rough estimate of the computational cost of r2SCAN compared to SCAN,
we consider system 10 of the S30L96 with 158 atoms and 8250 atomic orbitals in a def2-QZVP basis
set. A SCAN calculation using Turbomole’s grid 4 and radsize 50 (8.5 million grid points) would
take approximately 10 hours, while an r2SCAN calculation with Turbomole grid m4 and radsize 6 (1.6
million grid points) takes only three and a half hours for the same numerical accuracy, resulting in a
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computational saving of a factor of three to five.†† We recommend using r2SCAN with radsize 6 and
potentially increasing it to 10 for problematic geometry optimizations.‡‡ We also compared SCAN and
r2SCAN with different energy cutoffs in a PAW expansion, and found that r2SCAN is not as sensitive as
SCAN, i.e. the total energy converges significantly faster.§§

A.2.2 Training of damping functions

As London dispersion interactions arise from nonlocal electron correlations, they cannot be captured by
any meta-GGA. In the past years, a range of schemes have been developed to capture these interactions
in the DFT framework.25,28,125–128 Here, we combine r2SCAN with the semi-classical D4 dispersion
correction.9 Its energy contribution is calculated by

E
D4
disp = −

1

2

∑︁
n=6,8

atoms∑︁
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sn
C

AB
n

R
n
AB

· fBJ
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−
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9

R
9
ABC

· fBJ
9 (RABC, θABC),

(A.3)

where RAB is the atomic distance, CAB
n is the nth-order dispersion coefficient, and fBJ

n (RAB) is the
Becke–Johnson damping function68,129. RABC and CABC

9 denote the geometrically averaged distance
and dispersion coefficient, respectively, and θABC is the angle dependent term of the triple-dipole
contribution.69,70 The s8 parameter for the two-body dispersion and the a1 and a2 parameter entering

Table A.1: D3(BJ) and D4 damping parameter for rSCAN and r2SCAN functionals.

model s8 a1 a2/Bohr RMS∗

rSCAN D3(BJ)-ATM 1.0886 0.4702 5.7341 0.31
D4(EEQ)-ATM 0.8773 0.4911 5.7586 0.30

r2SCAN D3(BJ)-ATM 0.7898 0.4948 5.7308 0.28
D4(EEQ)-ATM 0.6019 0.5156 5.7734 0.28

the critical radius in the damping function are adjusted to match the local description of a specific DFA.
Damping parameters are fitted using a Levenberg–Marquardt least-squares minimization to reference
interaction energies as described in Ref. [9]. Optimized parameters are given in Table A.1. The b
parameters for rSCAN-VV10 and r2SCAN-VV10 were determined to be 10.8 and 12.3, respectively, on
the same set.28,29

A.2.3 Computational details

All ground state molecular DFT calculations were performed with a development version of Turbo-
mole.133,134 The resolution of identity (RI) approximation135,136 was applied in all calculations for the

††Wall time running on Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60GHz using four cores.
‡‡The 6 radial points correspond to the default settings of Turbomole’s grid m4.
§§This work will be published in an upcoming paper.
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electronic Coulomb energy contributions. For all functionals except SCAN, Turbomole’s modified grids
of type m4 were used. For all SCAN calculations, grid 4 with increased radial integration size of 50 was
used instead. Self-consistent field convergence criteria of 10−7 Hartree were applied. Ahlrichs’ type
quadruple-zeta basis sets, def2-QZVP,137 were used throughout if not stated otherwise.

The periodic electronic structure calculations were conducted with Vasp 6.1138,139 with projector-
augmented plane waves with an energy cutoff of 800 or 1000 eV (hard PAWs140,141). Tight self-consistent
field settings and large integration (and fine FFT) grids are used. The Brillouin zone sampling has been
increased to converge the interaction energy to 0.1 kcal/mol. The non-periodic directions use a vacuum
spacing of 12 Å.

A.3 Results

A.3.1 Bond length and molecular geometries

Figure A.2: Errors in bond length from r2SCAN-D4 and other DFAs separated into light main group bonds (LGMB35142),
heavy main group bonds (HMGB11142), transition metal complexes (TMC32143) and semi-experimental organic molecules
(CCse21144). PBE0-D4, TPSS-D4 and PBE-D4 results for the first three sets are taken from Ref. [9].

To evaluate the description of covalent bond distances, we compare experimental and calculated
ground-state equilibrium distances Re (in pm) for 35 light main group bonds (LMGB35142), 11 heavy
main group bonds (HMGB11142), and 50 bonds in 32 3d transition metal complexes (TMC32143).
Additionally, we investigate the bond distances and angles for a set of simple organic molecules against
accurate semi-experimental references.144,145 Extended statistics and optimized geometries are made
freely available.¶¶

We include r2SCAN-D4, PBE0-D459, TPSS-D4146, and PBE-D457 in the comparison shown in
Fig. A.2. For organic molecules, we find exceptional performance for all functionals, with errors smaller

¶¶Optimized r2SCAN-D4/def2-QZVP geometries of the LMGB35, HMGB11,and TMC32 sets, statistical perfor-
mance of the LMGB35, HMGB11, TMC32, CCse21144,145, GMTKN55, S30L, L7, C40x10 sets are provided at
https://github.com/awvwgk/r2scan-d4-paper
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than 1 pm in the bond distances and half a degree in the bond angles. While all methods reproduce the
reference values closely, we observe the best agreement from r2SCAN-D4 with a mean absolute deviation
(MAD) of 0.4 pm and 0.3 degree for the bond distances and angles, respectively. For light main group
elements, all methods give a mean absolute deviation of less than 1 pm as well, which was also observed
in previous studies9,115. In comparison with the other methods tested here, r2SCAN-D4 also yields the
lowest MAD of only 0.7 pm. Finally, for transition metal complexes r2SCAN-D4 performs reasonably
well with an MAD of 1.9 pm. Overall, the performance of r2SCAN is similar to, and sometimes even
better than, the hybrid PBE0-D4, which in turn is one of the best performing hybrid functionals for
molecular geometries.142

Figure A.3: Weighted mean absolute deviations of r2SCAN-D4 compared to other DFAs for the large database of general
main group thermochemistry, kinetics, and non-covalent interactions GMTKN5523. On the left-hand graphic, r2SCAN-D4 is
compared against functionals representative of their respective rungs. On the right-hand graphic, r2SCAN-D4 is compared to
other members of the SCAN family, namely rSCAN-D4 and SCAN-D4.

A.3.2 General main group thermochemistry and non-covalent interactions

To investigate the performance of r2SCAN-D4 for general main group chemistry, we use the main
group thermochemistry, kinetics and non-covalent interactions (GMTKN55) database.23 The GMTKN55
database is a compilation of 55 benchmark sets to assess the performance of DFAs and allows a
comprehensive comparison of DFAs. It contains five categories, namely basic properties, barrier heights,
isomerisations and reactions, intermolecular, and intramolecular non-covalent interactions (NCIs).
Usual weighted total MADs (WTMAD2s) range from 2–3 kcal/mol for double hybrid functionals,
over 3–4 kcal/mol for hybrid functionals to 8–9 kcal/mol for (meta-)GGAs, while the lowest rung
functionals like PWLDA yield WTMADs of 17 kcal/mol on the GMTKN55. With the exception of the
semi-empirical B97M-V22 (and its B97M-D4 variant63), r2SCAN-D4 is the best non-hybrid functional on
the GMTKN55 so far with a WTMAD2 of 7.5 kcal/mol, compared to other meta-GGAs like SCAN-D4
(8.61 kcal/mol) or TPSS-D4 (9.36 kcal/mol). For the isomerization and reactions category as well as for
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the intramolecular NCIs, r2SCAN-D4 can even compete with the performance of the hybrid PBE0-D4
(WTMAD2 6.66 kcal/mol).

We additionally evaluated rSCAN-D4 and SCAN-D4147 on the GMTKN55 set to monitor the
development in the SCAN-family of functionals. The main difference between SCAN-D4 and rSCAN-
D4 is the general improvement in the description of non-covalent interactions, while both functionals
perform similarly well in all other categories. Here rSCAN-D4 improves for both NCI categories with a
weighted MAD of 6.8 kcal/mol over SCAN-D4, which yields a weighted MAD of 7.6 kcal/mol. This
improvement in rSCAN-D4 is mainly responsible for the smaller WTMAD2 of 8.3 kcal/mol compared
to the WTMAD2 of 8.6 kcal/mol for SCAN-D4. For r2SCAN-D4, the improved description of NCI
in rSCAN-D4 is preserved (weighted MAD of 6.6 kcal/mol) but r2SCAN-D4 bests its predecessor in
all three remaining categories, resulting in its exceptional WTMAD2 of 7.5 kcal/mol. The mindless
benchmark (MB16-43 subset of GMTKN55) is specifically useful for testing a methods robustness to
deal with unusual chemistry in artificial molecules. Here, we see that enforcing exact constraints in
non-empirical DFAs yields generally lower errors for artificial molecules than their empirical counterparts
(see Table A.2).

To stress the importance of including a dispersion correction we test the plain dispersion-uncorrected
r2SCAN which yields a significantly worse WTMAD2 of 8.8 kcal/mol, a difference similar in magnitude
to the improvement from SCAN-D4 to r2SCAN-D4. In summary, r2SCAN-D4 shows a systematic
improvement over its predecessor SCAN-D4 in all categories of GMTKN55 and can preserve improve-
ments present in rSCAN-D4. This makes r2SCAN-D4 one of the best non-empirical meta-GGAs that
have been broadly benchmarked so far.

Table A.2: Comparison of a few non-empirical and empirical dispersion corrected DFAs for the MB16-43 subset
(artificial molecules) of GMTKN55. The non-empirical DFAs yield generally lower MADs (in kcal/mol) indicating
better transferability across diverse systems.

Non-empirical DFA MAD Empirical DFA MAD
r2SCAN-D4 14.6 MN15L 20.5
SCAN-D4 17.3 M06L 63.9
TPSS-D4 25.8 M06L-D4 62.6
PBE-D4 25.1 B97M-D4 37.5
PBE0-D4 16.0 B3LYP-D4 28.4

A.3.3 Beyond main group chemistry

Metal organic chemistry is one of the major application areas of non-hybrid DFAs. Here, we use the
MOR41 benchmark set that contains 41 closed-shell metal-organic reactions representing common
chemical reactions relevant in transition-metal chemistry and catalysis148. We compare the statistical
deviations from high-level references of r2SCAN-D4 to PBE0-D4, TPSS-D4, and PBE-D4 in Tab. A.3.
The r2SCAN-D4 functional is one of the best meta-GGAs tested so far on the MOR41 benchmark set,
with an MAD of 3.3 kcal/mol. While the SCAN-D4 method provides a slightly lower MAD, the analysis
of other statistical quantities, like the standard deviation (SD) and the maximum absolute error (AMAX),
suggest less systematic results compared to r2SCAN-D4. This is confirmed by the Gini coefficient149,
which is 0.44 for r2SCAN-D4 and 0.50 for SCAN-D4. Compare this to B97M-D4, one of the best
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meta-GGAs tested on the GMKTN55 set, which yields a larger MAD of 3.8 kcal/mol63.

Table A.3: Reaction energies of 41 metal-organic reactions compared to high-level references.148 The MD, MAD,
SD and AMAX are given in kcal/mol, while the GINI coefficient is dimensionless.149

MD MAD SD AMAX GINI
r2SCAN 2.1 4.4 5.6 17.3 0.46

r2SCAN-D4 −0.2 3.3 4.3 14.0 0.44

SCAN-D4 −0.8 3.2 4.5 14.1 0.50

TPSS-D4 −1.5 3.5 4.4 22.6 0.39

PBE0-D4 −0.3 2.3 3.1 14.2 0.46

PBE-D4 −0.1 3.5 4.8 22.7 0.45

A.3.4 Non-covalent interactions in large complexes and molecular crystals

With the improved description of non-covalent interactions (NCIs), while retaining the computational
efficiency of a meta-GGA, r2SCAN-D4 is a promising choice for interaction and association energies of
large complexes. The results for the S30L96, L7150 and X40×10151 benchmark set are shown in Fig. A.4.

We choose the recently revised L7 benchmark150 set to assess the performance of r2SCAN-D4 against
converged LNO-CCSD(T)/CBS interaction energies152. Close agreement with an MAD of 0.9 kcal/mol
is reached for r2SCAN-D4. This is a significant improvement over other meta-GGAs like SCAN-D4 and
TPSS-D4 with MADs of 1.3 and 1.4 kcal/mol, respectively.

Figure A.4: Non-covalent interaction energies of host–guest systems, large systems and halogen-bonded systems from
r2SCAN-D4 compared to high-level references as well as other DFAs.

We also investigated the description of association energies for large supramolecular complexes using
the S30L benchmark set96. SCAN-D4 proved to be one of most accurate meta-GGAs in the previous
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benchmarks9, giving a remarkable MAD of 2.0 kcal/mol, close to the uncertainty of the provided
reference interactions; r2SCAN-D4 further improves upon this.

In particular, the association energies of the halogen-bonded complexes (15 and 16) are improved
with r2SCAN-D4. The same trend can be observed in the HAL59 benchmark set of the GMTKN55,
which shows an MAD of 1.0 kcal/mol with SCAN-D4 and improves with r2SCAN-D4 to an MAD of
0.8 kcal/mol. To confirm this trend we additionally evaluated the X40×10 benchmark151 containing 40
halogen bond dissociation curves with SCAN-D4 and r2SCAN-D4. Again, r2SCAN-D4 gives the lowest
MAD of 0.36 kcal/mol, showcasing on overall improved description of this kind of NCIs.

To evaluate if the good performance for non-covalent interactions transfers from the gas phase to solids,
molecular crystals and their polymorphic forms provide useful test cases.153–155 Here, we investigate the
lattice energy benchmark DMC8156 shown in Table A.4. The DMC8 benchmark contains a subset of the
X23154,157–159 and ICE10160 benchmark sets with accurate structures and corresponding highly-accurate
fixed node diffusion Monte Carlo (FN-DMC) results. Due to SCAN’s tendency to overbind hydrogen
bonded systems, like ice polymorphs or hydrogen bonded molecular crystals, dispersion corrected
SCAN was problematic for these systems. With the improved description of non-covalent interactions in
r2SCAN-D4, this issue is mitigated and we find an overall improved MAD of 0.7 kcal/mol. This MAD is
only half of the SCAN-D4 error of 1.5 kcal/mol for these systems and close to the very good performance
of the hybrid PBE0-D4 of 0.5 kcal/mol.7 Only the ice polymorphs are systematically overbound by
r2SCAN-D4, which is, however, a problem of many functionals,161,162 and may be a self-interaction
error.110 Both r2SCAN-D4 and SCAN-D4 yield similar results for the self-interaction subset (SIE4x4) of
the GMTKN55, therefore a recent work investigating self-interaction corrections for SCAN might also
be transferable to r2SCAN as well.163 In contrast, the relative stability of the ice polymorph is reproduced
correctly. The energy difference of ice II and ice VIII with respect to ice Ih is 0.03 kcal/mol and 0.70
kcal/mol, respectively, agreeing well with the reference of 0.05 kcal/mol and 0.41 kcal/mol.

Table A.4: Lattice energies (kcal/mol) of eight diverse molecular crystals compared to high-level references.156

Note the significant improvement from r2SCAN to r2SCAN-D4 for the dispersion-bound solids.

ref. TPSS-D4 r2SCAN r2SCAN-D4

Ice Ih -14.2 -15.6 -14.6 -15.4
Ice II -14.1 -14.6 -14.3 -15.4
Ice VIII -13.7 -12.5 -13.4 -14.7
CO2 -6.7 -5.5 -4.7 -6.9
Ammonia -8.9 -8.6 -8.1 -9.5
Benzene -12.7 -12.0 -5.6 -12.3
Naphthalene -18.8 -18.5 -7.5 -18.6
Anthracene -25.2 -24.8 -9.9 -24.7

MD 0.3 4.6 -0.4
MAD 0.8 5.7 0.7
SD 0.9 6.0 0.8
AMAX 1.4 15.4 1.3

The benzene crystal has been frequently used for electronic benchmark purposes.164–166 Here, we
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evaluated the equation of state (EOS) to compare with experimental measurements and the Murnaghan
EOS fit to the FN-DMC from Ref. [156]. The resulting EOS is shown in Fig. A.5 and agrees excellently
with the high-level method as well as the experimental estimate. A slight underestimation of the unit cell
volume by 2.6% and overestimation of the bulk modulus by 6.4% can be seen. To highlight once again
the importance of London dispersion on properties beyond the mere energy, we report plain r2SCAN
results as well. The r2SCAN EOS has a significant offset equilibrium volume that is overestimated by
5.4% and a bulk modulus underestimated by 34.0%.

Figure A.5: Equation of state for the benzene crystal from r2SCAN-D4 compared to experimental measurements and high-level
references taken from Ref. [156], the gray area highlights the 1σ confidence interval.

A.4 Conclusions

We have presented an accurate and robust combination of the non-empirical r2SCAN DFA with the
state-of-the-art D4 dispersion correction. The resulting r2SCAN-D4 electronic structure method shows
exceptional performance across several diverse categories of chemical problems assessed by thousands
of high-level data-points in a number of comprehensive benchmark sets. Included in the assessment
were molecular thermochemistry for both main group and transition metal compounds, barrier heights,
structure optimizations, lattice energies of molecular crystals, as well as both inter- and intramolecular
non-covalent interactions of small to large systems, creating an extensive coverage of chemically relevant
problems.

For the large GMTKN55 benchmark collection of about 1500 data points, r2SCAN-D4 is one of
the most accurate meta-GGAs tested so far. Unlike the best meta-GGA on this set, the dispersion
corrected B97M functional, r2SCAN-D4 can transfer this accuracy to chemically distinct systems like
metalorganic reactions. We find significant improvements in NCIs, which were one of the weak-spots of
SCAN based methods. More detailed analysis showed that improvements can mainly be found in the
description of hydrogen and halogen bonded systems. The same trend is found for molecular crystals,
where SCAN-D4’s tendency to overbind is mostly resolved in r2SCAN-D4, giving close to hybrid DFT
results for lattice energies.

We found r2SCAN-D4 to be an accurate and (more importantly) consistent DFA for a large variety
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of problems and chemical systems. The already good performance of the original SCAN functional
is kept and systematically improved in r2SCAN, while the numeric stability is almost on par with
established GGA functionals. We were able to gain some insight in the improvement from SCAN over
rSCAN to r2SCAN, where we can attribute the improved description of non-covalent interactions to the
regularization in the step from SCAN to rSCAN, and the improved thermochemistry and barrier heights
to the constraint restoration in the step from rSCAN to r2SCAN. Like SCAN, r2SCAN is not fitted to
molecules, so its accuracy in extensive molecular tests demonstrates the predictive power of its exact
constraints and appropriate norms.

With r2SCAN-D4, a meta-GGA method is finally available that truly leverages the advantages of
its rung in Jacob’s ladder, while retaining favorable numerical properties and fulfilling important
exact constraints. We anticipate r2SCAN-D4 to be a valuable electronic structure method with broad
applications in computational chemistry and material science.

A.5 Data Availability

The data that supports the findings of this study are available within this article or are openly available in
https://github.com/awvwgk/r2scan-d4-paper. Further details are available upon request.
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Abstract This review covers a family of atomistic, mostly quantum chemistry (QC) based semiempirical
methods for the fast and reasonably accurate description of large molecules in gas and condensed phase.
The theory is derived from a density functional (DFT) perturbation expansion of the electron density in
fluctuation terms to various order similar to the original DFTB model. The term ’eXtended’ in their name
(xTB) emphasizes the parameter availability for almost the entire periodic table of elements (Z ≤ 86)
and improvements of the underlying theory regarding, e.g., the AO basis set, the level of multipole
approximation and the treatment of the important electrostatic and dispersion interactions. A common
feature of most members is their consistent parameterization on accurate gas phase theoretical reference
data for Geometries, vibrational Frequencies and Non-covalent interactions (GFN), which are the primary
properties of interest in typical applications to systems composed of up to a few thousand atoms. Further
specialized versions were developed for the description of electronic spectra and corresponding response
properties. Besides a provided common theoretical background with some important implementation
details in the efficient and free xtb program, various benchmarks for structural and thermochemical
properties including (transition-)metal systems are discussed. The review is completed by recent
extensions of the model to the force-field (FF) level as well as its application to solids under periodic
boundary conditions. The general applicability together with the excellent cost-accuracy ratio and the
high robustness make the xTB family of methods very attractive for various fields of computer-aided
chemical research.

B.1 Introduction

Computational modeling at an atomistic scale is now an essential tool in natural science and has become
a vital ingredient also in today’s research in industry. While the field of quantum chemistry (QC) was for
a long time dominated by a few experts who were using complicated software requiring super-computer
resources to solve some special chemical problems, the situation has changed tremendously in the last
2-3 decades. Nowadays, routine density functional theory (DFT) calculations101,167,168 can be conducted
by experimentally working chemists on common desktop computers with user-friendly standard software
for various properties and problems like structure determination, reaction mechanism exploration, or
computing spectral signatures of molecules or even solids. The theories and computational tools, i.e., the
“machine under the hood” should 1. provide reasonable results, 2. in short time, 3. for various systems and
physical-chemical properties. This at least for larger systems difficult to achieve compromise between
accuracy/robustness and computational speed can often be obtained only by applying a hierarchy of
different levels of sophistication (multi-level modeling) as sketched in Figure B.1.

Here, the extraordinarily complex potential energy surface (PES) of a larger molecule is initially
investigated (screened) at a relatively low theoretical level which is subsequently increased to the accurate
DFT or wave function theory (WFT) level. Previously, the starting point in typical applications were
classical force-fields (FFs), e.g., for initial conformation search. The drawbacks of FF approaches are
manifold and in particular, missing parameterization for many elements (e.g., metals) has hampered
further development of the field. At this entry point, low-level quantum chemistry methods come into
play, i.e., they are proposed to replace FFs in many cases (about to a systems size of 500–1000 atoms) as
the lowest theory level. Quantum chemistry approaches have many advantages but one has to keep the
computational cost under control. Successful attempts to develop fast but yet reasonably efficient ab
initio type procedures have been made.169–172 We mention here our own HF-3c173, PBEh-3c142, and
B97-3c79 small atomic orbital (AO) basis set methods that are meanwhile applied routinely by many
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Figure B.1: This schematically depicts the proposed multi-level modeling scheme based on the GFN family of
methods (1st bubble), which are described in this review. These methods are generally used at the initial stages of
the multi-level workflow, where a large number of of calculations need to be carried out. This typically includes
screening over numerous potential candidate molecules (visualized by the diameter of the cone) or extensive
structural sampling of different molecular conformations. In subsequent steps (2nd bubble), the theory level
(accuracy) is increased (electronic structure as well as including thermostatistical (RRHO) and solvation (solv)
free energies (G)) while the number of considered candidate structures is reduced. At the end of this workflow,
only very few structures need to be treated by high-level theory levels (3rd bubble) to accurately determine the
thermodynamic state (at equilibrium) and the respective property. The latter is often a spectroscopic property and
is usually obtained as a thermostatistical Boltzmann ensemble average over all remaining candidates, based on free
energies computed at the high-level of theory.

groups world-wide. However, they are still too slow for larger screening purposes (e.g., thousands of
energy evaluations for 50-100 atom systems) or in applications for typical biochemical structures, e.g.,
protein-ligand interactions174, where often long molecular dynamics (MD) runs have to be conducted.

This situation sparked renewed interest in semiempirical QC methods which have a long history dating
back to the 70s with the famous MNDO type approximations175 or even to the Hückel Hamiltonians
from the very early days of quantum mechanics. The renaissance of semiempirical methods in the last
20 years was mainly caused by the development of density functional tight binding (DFTB)36,38,176–178

methods by Seifert, Elstner, Frauenheim and co-workers. The DFTB methods combine the efficiency
of the old NDDO type minimal basis set methods with the higher (compared to a Hartree–Fock, HF)
accuracy of DFT as the underlying machinery. For more details on their derivation and properties in
comparison with HF and even FFs see section “Theory”.

The major drawback of DFTB in its current state is (similar to FFs) the parameterization because the
Hamiltonian matrix elements are formulated in an atom(element) pair-wise fashion leading to thousands
of empirical values that have to be determined. This makes it already very difficult to cover consistently
only a small (upper) part of the periodic table of elements and hence limits their applicability, in particular
for the chemically important metals. Another issue is the design strategy of the method regarding the
target properties. Although DFTB in principle approximates DFT which in turn should be able to
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describe any chemical system with uniformly high accuracy, the true situation is more complicated.
Mainly due to the use of a small minimal AO basis set to express the simplified Kohn-Sham (KS)
equations analytically, not all desired properties can be described at a similar target accuracy. The
computation of accurate chemical bond or reaction energies is particularly difficult at any semiempirical
level. Hence, if the parameterization procedure is forced to describe chemical (interaction) energies well,
other, also important features like the computation of molecular structures necessarily deteriorate. This
problem of non-generality with low-level methods is difficult to solve and has been in a certain sense
just circumvented with the development of the eXtended TB (xTB) methods which are the topic of this
review.

The GFNn-xTB methods (n = 0, 1, 2, see below) are designed from the very beginning as special
purpose tools focusing on molecular properties which can relatively easily and in a physically sound
manner be described at low-level, namely Geometries, (vibrational) Frequencies, and Non-covalent
interactions (NCIs) leading to the acronym GFN. Chemical energies (stronger interactions) are not used
as primary training data but merely define important cross-checks. Their application to solids under
periodic boundary conditions (PBC) was originally not intended but is now possible with good accuracy.
The first version originally termed GFN-xTB (now for better distinguishability dubbed GFN1-xTB)
employs basically the same (mostly second order with some terms up to third order) approximations
for the Hamiltonian and electrostatic energy as DFTB3178 but does not rely on an atom pair-wise
parameterization. Instead, as in the old NDDO type methods, mainly element specific empirical fitting
is used enabling a consistent (but still tedious) parameterization covering a large part of the periodic
table up to Z=86 (radon). In this respect, in 2017 GFN1-xTB filled a gap in the market of off-the-shelf
atomistic models as it is fast, robust, reasonably accurate, and works for many metallic systems. It was
quickly adapted by the community and implemented in various QC programs like AMS,179 CP2K,180

Cuby4,181 DFTB+,13 entos,182 ORCA,183,184 and TeraChem.185,186

For a few prototypical applications of GFN1-xTB by us and other groups see references187–191.
Probably the most serious deficiency of GFN1-xTB/DFTB3 also regarding one of the central properties

(i.e., NCI) is the monopole-type, spherically symmetric description of the atom pair-wise electrostatic
interactions. This led in 2019 to the development of the successor GFN2-xTB featuring a multipole
electrostatic treatment up to quadrupole terms. GFN2-xTB is built and parameterized along the same
lines as the GFN1 version but incorporates better physics, the latest D4 dispersion model9 and is
completely pair-parameter-free.

Further extensions of the GFNn-xTB family of methods are also described here briefly (see Figure B.2
for a general overview).

In 2019, we tried to roughly keep the accuracy level of the successful GFN1/GFN2 versions but
making them significantly faster. The key idea was to avoid the self-consistent-charge (SCC) iterations
involving repeated matrix diagonalization which represents the computational bottleneck in almost
all semiempirical quantum mechanical (SQM) methods. This could be achieved by formulation of a
non-iterative first order variant termed GFN0-xTB192 where the electrostatics are treated classically and
only change the electronic structure to first order. In this approach only a single extended Hückel-type
Hamiltonian matrix eigenvalue problem is solved, while the electrostatic terms are treated semi-classically
within a so-called electronegativity equilibration (EEQ) atomic charge model.193–196 This proposed
GFN0-xTB method as all other considered GFN approaches has been implemented in the freely available
xtb program for testing and is also briefly described here. However, because we think that the GFN0
Hamiltonian can still be substantially improved, we consider it here as a preliminary, proof-of-principle
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Figure B.2: Overview of the GFN family of methods with main components and classification of the most important
terms. Dark grey shaded areas denote a quantum mechanical description while light grey parts indicate a classical
or semi-classical description. The parts surrounded by the arrows are treated in an iterative, self-consistent fashion.
For a more detailed discussion including the definition of the acronyms see text.

version.
Another non-self-consistent xTB version was developed for the computation of excitation energies

and optical spectra of huge systems. In 2013 one of us proposed a simplified Tamm-Dancoff density
functional approach (sTDA) for such problems.197 It employs a regular KS determinant as input,
i.e., requires a self-consistent DFT calculation with a standard Gaussian AO basis (e.g., augmented
DZ or TZ level). Although the sTDA approximations are reasonably accurate and speed-up UV- or
CD-spectra computations enormously, for large systems with thousands of atoms the electronic ground
state calculation of the orbitals and orbital eigenvalues still remains the bottleneck. In the so-called
sTDA-xTB method,25 this crucial DFT step is replaced by a single-shot TB calculation with an extended
AO basis set including diffuse (low-exponent) functions. This approach was proposed as a very fast
single-point electronic structure method already in 2016, i.e., one year before the release of GFN1-xTB
and in fact was our first published xTB scheme. Meanwhile, parameters are available for almost all
elements198 and extensions to other response type properties have been reported.199–203 The success and
computational speed of sTDA-xTB motivated the development of the general GFN versions which allow
full exploration of molecular and solid state PES.

Very recently, the main concepts of the GFN approach have been transferred into a non-electronic,
force-field version termed GFN-FF.81 The main point of this generic, just coordinate input-based
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semi-classical potential is its generality meaning that it is as the other GFN family members applicable
with reasonable accuracy and robustly to almost any system with elements up to Z=86. This very fast
method is also briefly mentioned here and some very large cases, for which even GFN0-xTB would be
computationally too demanding, are shown.

Beside example applications and benchmarking of molecular structures and thermochemistry, transition
state localization, chemical space exploration, proteins, and molecular crystals, this review covers general
TB theory as well as the methodical aspects of the periodic implementation, the geometry optimization of
large systems and compares some computation times. In this review, we mostly restrict details regarding
implementation to the standalone xtb program.204

B.2 Theory

B.2.1 Tight-binding theory and comparison of variants

Origin and connection to other methods

Just like the closely related density functional tight-binding (DFTB) methods,38,178,205 the extended tight-
binding (xTB) methods are rooted in KS-DFT, and formally, represent a semiempirical approximation to
the latter. In the following, the connection of the xTB methods to DFT, DFTB, and classical force-fields
is outlined, then we will discuss the energy expressions for the individual generations of xTB methods.

It is common practice to start the derivation from a semilocal DFT energy expression,36,38 however, we
have found it more useful to use DFT that includes nonlocal correlation (dispersion) as starting point:8

Etot = Enn

+

NMO∑︁
i

ni

∫
ψ

∗
i (r)

[
T̂(r) + Vn(r) + ε

LDA
XC [ρ(r)] +

1

2

∫ (
1��r − r′

�� +ΦNL
C (r, r′)

)
ρ(r′)dr′

]
ψi(r)dr

(B.1)

Here, ψi are molecular spatial orbitals with occupation ni, T̂(r) is the kinetic energy operator and V̂n(r)
is the Coulomb operator due to the interaction with the clamped nuclei. εLDA

XC [ρ(r)] is the semilocal
exchange-correlation (XC) energy per particle. The inner integral over r′ contains the interelectronic
Coulomb and nonlocal (NL) correlation via the kernel ΦNL

C (r, r′). By including the latter term, we
find that dispersion interactions naturally occur and establish the connection between tight-binding and
intermolecular force-field methods (see below). Since we are working with a KS system of formally
independent particles, the density is obtained as

ρ(r) =
NMO∑︁
i

ni

∫
ψ

∗
i (r)ψi(r)dr . (B.2)

Next, we reformulate the total energy in terms of a reference density ρ0, which ideally is close to the
final converged density ρ, and a density difference ∆ρ, with ρ = ρ0 + ∆ρ. Typically, a superposition of
spherical, neutral atomic reference densities (SADs) ρ0 =

∑
A
ρ
A
0 is used.36,38 This allows us to decompose

the energy in form of a Hartree energy at the reference density, the Hartree energy difference arising
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from ∆ρ, as well as the nonseparable exchange-correlation (local and nonlocal) energies.

Etot = E
H
0 + ∆E

H
+ E

LDA
XC [ρ] + E

NL
C [ρ, ρ

′
] (B.3)

The reason that the XC and nonlocal correlation energy are treated separately is rooted in the nonpolyno-
mial dependency on the electron density. If we had started from a functional that includes Fock-exchange,
the Hartree energy terms would correspond to Hartree–Fock-like energy expressions (cf. Ref. [206]).
This is just mentioned for the sake of completeness, but not discussed further at this point.

The energy at the reference density EH
0 is given by

E
H
0 = Enn +
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ψi(r)dr , (B.4)

while the Hartree energy difference due to ∆ρ is given as

∆E
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The reference potential V̂0(r) is given as

V0(r) =Ve,0 + Vn(r) =
∫
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(B.6)

Eq. B.3 is completely equivalent to Eq. B.1, just reformulated in terms of the difference density ∆ρ,
and consequently, the energy can self-consistently be minimized by solving for the optimum ∆ρ (see
Ref. [206]). If ∆ρ is not determined self-consistently, Eq. B.3 corresponds to a dispersion-corrected
expression of the non-self-consistent Harris-Foulkes functional.207,208

In density functional tight-binding methods, the total energy is Taylor expanded around ∆ρ = 0.

E [ρ] = E
(0)

[ρ0] + E
(1)

[ρ0, δρ] + E
(2)

[
ρ0, (δρ)

2
]
+ E

(3)
[
ρ0, (δρ)

3
]
+ · · · (B.7)

These fluctuations are typically restricted to the valence orbitals only. The most sophisticated variants
truncate this expansion after the third order term.178,205 The same is true for the GFN1-xTB41 and
GFN2-xTB8 approaches, while GFN0-xTB corresponds to truncation after the first order term (see
below). We will shortly identify terms occurring at the different orders and then outline the various
GFNn-xTB methods in a self-contained manner with the latter being presented in chronological order.

An overview over the respective tight-binding orders contained in the various GFN schemes (i.e.,
in the GFNn-xTB and GFN-FF methods) is given in Table B.1. We emphasize at this point that all
xTB methods incorporate terms, which have a physical basis in the aforementioned Taylor expansion.
Nevertheless, the semiempirical parameters are not precomputed by first principles methods as in DFTB,
but optimized on a large fit set to provide the best working parameter combination for the desired GFN
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Table B.1: Overview of the terms included in the different GFN-type methods. Always the highest order considered
is shown.

method/order in TB expansion E
(0)

E
(1)

E
(2)

E
(3)

GFN2-xTB Erep EEHT Eγ + EAES + EAXC + E
D4
disp

(a)
EΓ

GFN1-xTB Erep + E
D3
disp + EXB EEHT Eγ EΓ

GFN0-xTB Erep + E
D4
disp + Esrb + EEEQ EEHT(+Eγ) – –

GFN-FF Ecov
(b)

+ ENCI
(c) – – –

(a) A self-consistent version of D4 based on GFN2-xTB Mulliken charges is used. (b) The classical potential energy term denoted
as Ecov contains bonding and further short-ranged interactions usually accounted for as bending and torsion in common force-fields.
(c)
Erep + E

D4
disp + EIES + EXB + EHB. A simplified version of D4 is used for dispersion. Here, dispersion coefficients instead of the

atomic polarizabilities are scaled. The isotropic electrostatics (IES) are described by two separate electronegativity equilibration (EEQ)
charge models, while XB and HB refer to halogen and hydrogen bond corrections, respectively. Details are found in the main text.

target properties. So in that sense, the xTB-type methods employ physically motivated energy terms, but
follow a “top-down” parameterization procedure aiming for sophisticated accuracy.

Zeroth order energy. A system of non-interacting (i.e., infinitely separated) atoms with spherical,
neutral atomic reference densities is chosen as zeroth order reference. This way, the externally experienced
electrostatic potentials due to the electrons and nuclei of an atom cancel exactly and the Coulomb terms
in Eqs. B.4 and B.6 are reduced to on-site terms only. ∆EH is then equal to zero and the total energy
can be decomposed into noninteracting atomic total energies (EA) and orbital energies, which can be
precomputed for ρ0, as well as interatomic repulsion and London dispersion interaction terms:

E
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=
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disp

)
︸             ︷︷             ︸

Lennard-Jones/Buckingham-type potential

(B.8)

Here, the dispersion contribution Edisp results exclusively from the long-range – in a DFT sense “nonlocal”
– correlation effects. The pairwise repulsion energy Erep originates from overlap of the atomic reference
densities ρA0 , which leads to changes in the Coulomb, exchange, and short-range (local) correlation
energy. At zeroth order, we have hence established the connection between tight-binding methods and
well-known intermolecular force-field potentials of Lennard-Jones209 or Buckingham210 type. In all
schemes, the total energy is given relative to the energy of the free, noninteracting atoms, which is why
we formally subtracted it from the zeroth order energy in the second line of Eq.B.8. If we had not
included a nonlocal correlation functional to capture dispersion from the very beginning (as, e.g., in
Ref. [38] and [36]), the formal equivalence of zeroth order tight-binding and intermolecular force-fields
would be missing.
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First order energy At first order, the following energy changes are entering:

E
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[ρ0, δρ] =∆E
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1
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(
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LDA
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NL
C [ρ0, ρ

′
0]
)
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≈E(1)EHT + E
(1)
disp

(B.9)

Since first order density fluctuations are enabling changes in the energy, but not in the electrostatic
potential, no interatomic Coulomb terms occur, i.e., the now charged atoms still experience the zero field
from the other atoms. This is different for the dispersion energy, where the nonzero potential due to
long-range correlation with ρ0 is experienced by the fluctuation δρ. Apart from this, only changes of
the on-site energies due to reoccupation of the atomic orbital levels occur. In tight-binding methods,
this is absorbed in an extended Hückel-type term, which essentially is responsible for covalent bonding.
Particularly this term is different in the xTB from the DFTB methods in that it includes more empirical
but chemically motivated features, which enable a sophisticated electronic structure method with only
global and element-specific parameters.

Second order energy. At second order, the energy is changed by

E
(2)

[ρ0, δρ] =∆E
H
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δρ δρ
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disp .

(B.10)

Due to the second-order density changes, the net electrostatic (ES) energy between two atoms becomes
nonvanishing. Additionally, the (semi-)local XC energy changes in the short-range interatomic region.
Both effects are typically described in form of a short-range damped Coulomb energy in tight-binding
methods. The dispersion energy is corrected at second order as well. With second or higher order terms
(as in GFN1- and GFN2-xTB), the tight-binding energies require a self-consistent solution.

Third order energy. At third and higher orders, no contributions from ∆E
H occur, because this term

is no more than quadratic in the difference density. Only the nonpolynomial XC (local and nonlocal)
terms lead to energy changes at third order.
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While the third order dispersion changes are never explicitly considered in tight-binding methods, the
(semi-)local effects are included in DFTB3, as well as in GFN1- and GFN2-xTB Hamiltonians. They
typically serve the purpose to stabilize relatively highly charged atoms, e.g., electronegative elements
like oxygen.

Common ingredients in the GFNn-xTB methods.

Before describing the individual xTB schemes separately, we will outline common aspects of the GFN1-,
GFN2-, and GFN0-xTB methods, such as common energy terms and the employed wavefunction ansatz.
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This refers solely to the mathematical form and the explicit parameters are naturally different in these
schemes.

The wavefunction choice in GFNn-xTB methods. The GFN1-, GFN2-, and GFN0-xTB wavefunc-
tions are all formulated in terms of a partially polarized, mostly minimal valence basis set, consisting
of spherical Gaussian-type atomic orbital (GTO) basis functions. Each contracted GTO ϕµ therein
approximates a Slater-type orbital (STO) ϕSTO

µ as in Ref. [211]

ϕ
STO
µ (r) ≈ ϕµ(r) =

N
µ
prim∑︁
z

dzµχ
µ
z (r) (B.12)

Here, the χµz are primitive GTOs that contribute to the contracted GTO ϕµ and dzµ are the corresponding
contraction coefficients.

Depending on the atomic orbital (and GFNn-xTB Hamiltonian), the number of primitives varies
from three to six (see Refs.8,41,192 for details). The AO basis set (Slater exponents) has been optimized
simultaneously during the xTB parameterization and hence, is tied to a specific GFNn-xTB version.
The molecular orbitals ψj are expanded as a linear combination in this basis of AOs (LCAO).

ψj(r) =
NAO∑︁
µ

Cµjϕµ(r) (B.13)

By derivation of the respective energy expressions (see below) with respect to the orbital coefficients,
Roothaan–Hall-type48,49 generalized eigenvalue equation is obtained.

FC = SCε (B.14)

Here, C is the matrix of orbital coefficients from Eq.B.13, ε is a diagonal matrix with orbital energies on
the diagonal, F is the respective xTB Hamiltonian matrix, and S is the AO overlap matrix. In GFN1-xTB
and GFN2-xTB, these equations are solved self-consistently. Just like in DFTB, the xTB methods employ
a nonorthogonal basis, i.e., different from typical Hartree–Fock-based semiempirical methods, no zero
differential overlap (ZDO) approximation is applied in xTB methods.

The above wavefunction ansatz can be generalized to periodic systems where ψj then corresponds to a
crystal orbital. The Bloch function equivalent for the one-particle functions is then given by

ψj(r + L,k) = ψj(r,k) exp[ikL] (B.15)

with the Born–von-Kármán cyclic boundary conditions ψj(r + L,k) = ψj(r,k). Expanded in the
aforementioned AOs, the crystal orbitals are then expressed as:

ψj(r,k) =
∑︁
µ

Cµj(k)
1

√
NL

NL∑︁
L
ϕ

L
µ(r) exp[ikL] (B.16)

Here the summation, in principle, goes over all NL cells (or identical images), which are related by the
translation vector L. In the cyclic cluster model (CCM), which is employed in the xtb implementation,
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we only consider nearest-neighbors (NL → N
CCM
L ) with corresponding weights212 for the expansion

of the Bloch function. The CCM assumes that all interactions beyond the Wigner–Seitz cell vanish.
This condition is usually not fulfilled for electrostatic and dispersion interactions which must be treated
differently, e.g., by lattice summation. Given this, we can re-write the Roothaan–Hall-type equations for
the crystal orbitals as

N
CCM
L∑︁

L=0
exp[ikL]

∑︁
µ

(
F

0L
µν − εj(k)S

0L
µν

)
Cµj(k)wµν = 0 , (B.17)

where F0L
µν is the element of the Hamiltonian matrix (Kohn-Sham/Fock matrix in ab initio theories), εj(k)

is the energy of the jth crystal orbital and S0L
µν is the overlap matrix element. The lattice translations L

here denote the images in the Wigner–Seitz cell. Thewµν are their pairwise weights of the AOs µ and ν
to preserve the spacial symmetry of the crystal and to avoid double counting. This has been suggested
by Bredow et al.212 to describe crystal wavefunctions, while including only a minimum number of
images compared to other approaches. In our implementation inside the xtb code, we only evaluate the
electronic structure at the Γ -point.

To enable covalent bond dissociations, a finite electronic temperature treatment at typically low
temperatures (Tel = 300K) is used.71 This way, fractional orbital occupations are introduced and
static electron correlation effects can be incorporated with formally a single-reference treatment. For
a variational solution, the GFNn-xTB energy expressions given below are then augmented with an
electronic entropy term:

GFermi = kBTel

∑︁
σ=α,β

∑︁
i

[niσ ln (niσ) + (1− niσ) ln (1− niσ)] . (B.18)

Tel is the electronic temperature, kB the Boltzmann constant and niσ refers to the (fractional) occupation
number of the spin-MO ψiσ. These are given by the Fermi-distribution.

niσ =
1

exp[(εi − ε
σ
F)/(kBTel)] + 1

. (B.19)

εi is the orbital energy of the orbital ψi and εσ is the Fermi level within the respective spin orbital space
(α or β). The occupation ni for the spatial molecular orbital ψi is given as

ni = niα + niβ . (B.20)

All GFNn-xTB methods are formulated in a spin-restricted way, i.e., the spatial molecular orbitals
are identical for α and β electrons. This treatment (also for open-shell systems) is rooted in the fact
that no spin-dependent terms are present in the GFNn-xTB Hamiltonians. As a consequence, it is
computationally efficient (only one Hamiltonian matrix diagonalization per SCF cycle) and also adds
some robustness to the methods. This is beneficial in the context of extensive structural sampling,
which these methods are often used for. It should, however, be clear that this treatment provides bad
and even qualitatively incorrect energetic splittings for states of different multiplicity, i.e., GFNn-xTB
Hamiltonians will always favor low-spin configurations.
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The classical repulsion energy. The repulsion energy in all GFN-type methods is given as an
atom-pairwise expression:

Erep =
1

2

∑︁
A,B

Z
eff
A Z

eff
B

RAB
e
−
√
αAαB(RAB)

kf (B.21)

Here, Zeff are element-specific constants that define the magnitude for the repulsion energy, and may
coarsely correspond to effective nuclear charges (screened by the core reference density ρA,core

0 ). Though
these parameters are somewhat agreeing with the latter in GFN1-xTB, they are fitted parameters in all
GFN methods. Furthermore, kf = 3

2 is a global parameter, while the α exponents are element-specific
parameters. There exists one exception to the value of kf in GFN2-xTB, i.e., repulsion energies between
first row (H,He) elements are using kH,He

f = 1.

The extended Hückel energy. As mentioned above, typical tight-binding methods allow covalent
bond formation through an extended Hückel (EHT)-type energy given as:

EEHT =
∑︁
µν

PµνH
EHT
νµ (B.22)

Here, Pµν = P
0
µν + δPµν is the valence electron density matrix in the nonorthogonal AO basis. In a

generalized form, the EHT matrix elements read:

H
EHT
µν =

1

2
K
ll

′

ABSµν

(
Hµµ +Hνν

)
X(ENA, ENB)Π(RAB, l, l

′
)Y(ζ

A
l , ζ

B
l
′) , ∀µ ∈ l(A), ν ∈ l ′(B)

(B.23)
Here, Kll

′

AB is a shell-specific scaling constant. For a few element combinations in GFN1-xTB and in
GFN0-xTB, an element pair-specific scaling parameter enters Kll

′

AB as well (hence the atom labels A
and B). Sµν is the overlap matrix element of the AOs ϕµ and ϕν. Hµµ/Hνν are the diagonal elements,
which themselves are dependent on the chemical environment in all xTB methods (see below). The
last three terms are absent in standard EHT or Wolfsberg-Helmholtz type expressions. These terms are
system-specific and involve flexible scaling functions.

A common mathematical form in all GFNn-xTB schemes is found in the distance-dependent
polynomial scaling function Π(RAB, l, l

′
):

Π(RAB,l,l ′) =

(
1+ k

poly
A,l

(
RAB
Rcov,AB

) 1
2

) (
1+ k

poly
B,l

′

(
RAB
Rcov,AB

) 1
2

)
(B.24)

Here, the RAB is the distance between the atoms on which the functions µ and ν are located. Rcov,AB
are the summed covalent radii and taken from Ref. [213] without refitting. kpoly

A,l
are element- and

shell-specific parameters.
This term allows a distance-dependent adjustment of the EHT energy in addition to the distance-

dependence encoded in the overlap matrix elements Sµν. The electronegativity dependent term
X(ENA, ENB) and the basis function-dependent scaling are either not present or of non-unique
mathematical form in the different GFNn-xTB Hamiltonians. The additional terms (i.e., the last three
ones) rely only on global and element-specific parameters. It is clear that the EHT term in Eq. B.23
is fairly complex, but this way, the required flexibility to describe different covalent bonds is provided

58



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

without resorting to an element pair-specific parameterization procedure. It is therefore not surprising
that the dominant part of the GFNn-xTB methods’ parameters (> 50%) is incorporated here.

The isotropic electrostatic and XC energy. GFN1-xTB and GFN2-xTB share a formally equivalent
isotropic electrostatic and XC energy, which originates from the second order term in the tight-binding
expansion.

Eγ =
1

2

Natoms∑︁
A,B

∑︁
l∈A

∑︁
l
′∈B

qlql ′γAB,l l ′ (B.25)

Here, ql/ql ′ are partial Mulliken shell charges and γAB,l l ′ are short-ranged damped Coulomb interac-
tions.214–216

γAB,l l ′ =
1√︃

R
2
AB + η

−2

AB,l l
′

(B.26)

The form of the short-range damping term ηAB,l l ′ is not identical in GFN1-xTB and GFN2-xTB and is
given below.

The GFN1-xTB Hamiltonian

The GFN1-xTB41 method is the first xTB version presented with a focus on the GFN properties.
Here, the energy expression is given by:

EGFN1-xTB =E
(0)
rep + E

(0)
disp + E

(0)
XB + E

(1)
EHT + E

(2)
IES+IXC + E

(3)
IES+IXC

=Erep + E
D3
disp + E

GFN1
XB + EEHT + Eγ + E

GFN1
Γ

(B.27)

In the first line of Eq. B.27, the superscript indicates the origin of the respective term in the tight-binding
expansion. The repulsion energy in GFN1-xTB takes the form of Eq. B.21, while the EHT energy
corresponds to Eq. B.22. In GFN1-xTB, the term Y(ζAl , ζ

B
l
′) = 1 for all cases, while the electronegativity

dependent part is given by.
X(ENA, ENB) = (1+ kEN∆EN

2
AB) (B.28)

Here, ∆EN is the difference of the electronegativities (standard Pauling values) and kEN = −0.007 is a
global parameter.

The diagonal EHT matrix elements are atomic environment-dependent:

Hµµ = h
l
A(1+ kCN,lCNA), ∀µ ∈ l ∈ A (B.29)

h
l
A is a shell- and element-specific parameter, while kCN,l are global angular momentum-specific

parameters. CNA is the geometric atomic fractional coordination number, which is taken from the D3
dispersion model.26

As shown in Eq. B.27, GFN1-xTB includes the isotropic energy term Eγ as given in Eq. B.25. In
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GFN1-xTB, the short-range damping term is given as:

ηAB,l l ′ = 2
©«

1

ηA

(
1+ κ

l
A

) +
1

ηB

(
1+ κ

l
′

B

) ª®®¬
−1

(B.30)

This is the harmonic mean of the effective shell hardness values, which in turn are products of the
element-specific atomic hardness and a shell-dependent scaling parameter. The last term in Eq. B.27 is
an on-site third order electrostatic/XC correction:

E
GFN1
Γ =

1

3

Natoms∑︁
A

(qA)
3
ΓA (B.31)

qA =
∑
l∈A ql are atomic Mulliken partial charges and the ΓA are element-specific atomwise parameters.

This term typically enables stabilization of high partial charges, particularly for electronegative elements
like O and F.

The dispersion energy is computed by means of the D3 dispersion model.26,27

E
D3
disp = −

1

2

∑︁
A,B

∑︁
n=6,8

sn
Cn(CNA, CNB)

R
n
AB

f
(n)
damp,BJ(RAB) (B.32)

Here, the Cn refer to the standard D3 dipole-dipole (n = 6) and dipole-quadrupole (n = 8) dispersion
coefficients. These are environment-dependent by means of the geometric atomic fractional coordination
numbers CNA/CNB. The individual scaling factors are s6 = 1.0 and s8 = 2.4. The Becke-Johnson
(BJ) damping function is given as

f
(n)
damp,BJ(RAB) =

R
n
AB

R
n
AB +

(
a1R

0
AB + a2

)n . (B.33)

As in the regular BJ-damped D3 model, the damping constant is given by the ratio R0AB =

√︃
C
AB
8 /CAB6

and the global damping parameters, which in GFN1-XTB are a1 = 0.63 and a2 = 5.0.
Mainly due to the monopole approximation in GFN1-xTB, weak halogen bonds are not described

well. Hence, a purely geometry dependent halogen-bond (XB) correction is added.

E
GFN1
XB =

NXB∑︁
AXB

fdamp,AXBkX

[(
kXRRcov,AX
RAX

)12
− kX2

(
kXRRcov,AX
RAX

)6] [(
kXRRcov,AX
RAX

)12
+ 1

]−1
(B.34)

Here kXR = 1.3 and kX2 = 0.44 are global parameters, while kX is a halogen-dependent parameter.
fdamp,AXB is a damping function, which depends on the angle of the atoms involved in the halogen bond,
i.e., the halogen X, its covalently bonded neighboring atom B, and the halogen-bond acceptor atom A.

fdamp,AXB =
1

2

(
1−

1

2

R
2
XA + R

2
XB − R

2
AB

|RXA||RXB|

)6
(B.35)
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The typically stronger hydrogen bonds are also not well described by a minimal basis, monopole
approximated tight-binding Hamiltonian, and geometry dependent hydrogen bond corrections have been
used in some SQM methods.217 In GFN1-xTB no extra term to describe hydrogen bonds is introduced.
Instead, an additional s-AO function on hydrogen is used, which leads to extra stabilization of hydrogen
bonds with a formally unmodified xTB Hamiltonian.

The GFN2-xTB Hamiltonian

The GFN2-xTB8 method is the second version in the GFN framework. It is the first off-the-shelf
tight-binding method with multipole electrostatics, anisotropic XC contributions and charge-dependent
(D4) dispersion interactions. The energy expression is given by:

EGFN2−xTB =E
(0)
rep + E

(0),(1),(2)
disp + E

(1)
EHT + E

(2)
IES+IXC + E

(2)
AES+AXC + E

(3)
IES+IXC

=Erep + E
D4′
disp + EEHT + Eγ + EAES + EAXC + E

GFN2
Γ

(B.36)

The repulsion energy takes the form in Eq. B.21 in GFN2-xTB. The EHT energy term (Eq. B.22) in GFN2-
xTB also includes the electronegativity dependent term as in GFN1-xTB (Eq. B.28) with kEN = 0.02 and
unmodified Pauling electronegativities are used for the difference ∆EN. The shell-exponent dependent
term is

Y(ζ
A
l , ζ

B
l
′) =

©«
2

√︃
ζ
A
l ζ

B
l
′

ζ
A
l + ζ

B
l
′

ª®®¬
1
2

. (B.37)

Here, ζAl are the STO exponents of the GFN2-xTB AO basis.211 The exponent-dependency introduces
effects similar to the kinetic energy integrals in ab initio theories. Also in GFN2-xTB, the diagonal EHT
matrix elements are atomic environment-dependent:

Hκκ = h
l
A − δh

l
CN

′
A
CN

′
A (B.38)

h
l
A is a shell- and element-specific parameter just like δhlCN ′

A
. The latter is the proportionality constant

for the dependency on the modified GFN2-type coordination number CN ′
A, which is more long-ranged

than the D3 variant (see Ref. [8] for details).
The isotropic second order electrostatic energy Eγ is given in Eq. B.25 with the following expression

for the short-range damping:

ηAB,l l ′ =
1

2

[
ηA

(
1+ κ

l
A

)
+ ηB

(
1+ κ

l
′

B

)]
(B.39)

ηA and ηB are element-specific fit parameters, while κlA and κl
′

B are element-specific scaling factors for
the individual shells (with κlA = 0 for l = 0).
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The dispersion energy is described by a modified D4 dispersion model

E
D4′
disp =−

∑︁
A>B

∑︁
n=6,8

sn
C
AB
n (qA, CN

A
cov, qB, CN

B
cov)

R
n
AB

f
(n)
damp,BJ(RAB)

− s9

∑︁
A>B>C

(3 cos(θABC) cos(θBCA) cos(θCAB) + 1)C
ABC
9 (CN

A
cov, CN

B
cov, CN

C
cov)

(RABRACRBC)
3

× f(9)damp,zero(RAB, RAC, RBC)

(B.40)

Here, f(n)damp,BJ(RAB) is the damping function from Eq. B.33. The term in the second line is the three-body
Axilrod-Teller-Muto (ATM) term and the last line is the corresponding zero-damping function for this
term. The two-body London dispersion energy is depending on the covalent coordination number CNAcov
and the atomic charges qA. Different from the regular D4 model,9 the atomic partial charges are taken
from a Mulliken population in GFN2-xTB and are solved self-consistently. The three-body term is
environment-dependent through the covalent coordination numbers, but does not depend on the partial
atomic charges in the D4 model. The damping and scaling parameters in the dispersion model are
a1 = 0.52, a2 = 5.0, s6 = 1.0, s8 = 2.7, and s9 = 5.0. The third order term in GFN2-xTB is also an
on-site term, which is formulated in a shell-specific form:

E
GFN2
Γ =

1

3

Natoms∑︁
A

∑︁
l∈A

(ql)
3
K
Γ
l ΓA (B.41)

Here, ql is the partial shell charge and ΓA is an element-specific parameter. KΓl is a global shell-specific
parameter (see Ref. [8]).

GFN2-xTB includes anisotropic electrostatic and XC terms. These are given as:

EAES =Eqµ + EqΘ + Eµµ

=
1

2

∑︁
A,B

{
f3(RAB)

[
qA

(
µ
T
BRBA
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− 3
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ARAB

) (
µ
T
BRAB

)
+
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µ
T
AµB

)
R
2
AB

]}
.

(B.42)

Here, µA is the cumulative atomic dipole moment of atom A and ΘA is the corresponding traceless
quadrupole moment. These cumulative atomic multipole moments (CAMM)218 describe the local
atomic multipole moment contribution in a Mulliken approximation scheme. The distance dependence
including damping is given by

fn(RAB) =
fdamp(an, RAB)

R
n
AB

=
1

R
n
AB

· 1

1+ 6

(
R
AB
0

RAB

)an (B.43)

The damping function is related to the one in the original D3 dispersion model.26
an are adjusted
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global parameters, whereas RAB0 = 0.5
(
R
A′
0 + R

B′
0

)
determines the damping of the AES interaction.

R
A′
0 is made dependent on the GFN2-type coordination number (see above) for many lighter elements.

GFN2-xTB includes all multipole contributions up to second order for the electrostatic energy.
The second order anisotropic XC energy in GFN2-xTB is given by

EAXC =
∑︁
A

(
f
µA
XC |µA|

2
+ f

ΘA

XC ||ΘA||
2
)
. (B.44)

Again, µA and ΘA are the cumulative atomic multipole moments mentioned above. fµAXC and fΘA

XC are
fitted element-specific parameters. These terms capture changes due the anisotropic deformation of the
electron density around an atom A. To some extent, shortcomings of the small AO basis set, i.e., the
lack of polarization functions, may be compensated by this term.

Due to the anisotropic electrostatic and XC terms, GFN2-xTB does not require any additional hydrogen
or halogen bond corrections.

The GFN0-xTB Hamiltonian

The most recent member in the family of xTB methods is GFN0-xTB. Since no terms from the tight-
binding expansion beyond first order are included, no self-consistent field procedure is necessary, making
the method about 5 − 20 times faster compared to GFN2-xTB. The tradeoff is less flexibility in the
electronic structure, similar as in the Harris-Foulkes functional207,208 mentioned above in comparison to
KS-DFT. Consequently, the formal choice of the reference system or its corresponding parameterization
becomes more important. GFN0-xTB includes two essential types of correction procedures to recover
a transferability comparable to the self-consistent xTB variants: one is a classical pairwise potential
to correct for covalent bonds of heteroatoms (srb, short-range bond correction). The other, even
more important one is incorporating semi-classical atomic charges determined variationally from an
electronegativity equilibration model (EEQ). The latter describes the atomwise isotropic electrostatic
energy (in place of the Eγ energy in GFN1- and GFN2-xTB) in form of a purely classical energy. The
charges furthermore serve the purpose of modifying some of the EHT parameters. This can be regarded
as a system-specific ad hoc re-definition of the reference system parameters (i.e., of ρ0 in Eq. B.7). In
other words, GFN0-xTB works with a system-specific reference system of spherical, but in general,
partially charged atoms. The GFN0-xTB energy is then given as:

EGFN0−xTB =E
(0)
rep + E

(0)
disp + E

(1)
EHT + ∆E

(0)

=Erep + E
D4
disp + EEEQ + EEHT + Esrb

(B.45)

The term ∆E
(0) in the first line of Eq. B.45 formally contains all the changes in the Hamiltonian due to

the effective change of the zeroth order reference. The repulsion energy Erep has the established form as
in Eq. B.21. The dispersion energy is computed via the D4 dispersion model (ED4

disp)

E
D4
disp =−

∑︁
A>B

∑︁
n=6,8

sn
C
AB
n (qA, CN

A
cov, qB, CN

B
cov)

R
n
AB

f
(n)
damp,BJ(RAB) . (B.46)
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Different from the default D4 dispersion model as well as its GFN2-xTB variant, the three-body term (cf.
Eq. B.40) is dropped, as it would noticeably increase the computational cost of the method. As in the
default D4 model, the partial charges are taken from the aforementioned EEQ model. These charges
result from self-consistently solving for the EEEQ energy in Eq. B.45 with the constraint that the total
charge is preserved:

EEEQ =
∑︁
A

[
χA qA +

1

2

(
JAA +

2
√
π
γAA

)
q
2
A

]
+
1

2

∑︁
A,B

qAqB
erf(γABRAB)

RAB
(B.47)

Here, χA is the electronegativity of atom A, which is made dependent on the atomic environment via a
modified coordination number (mCNA):

χA = ENA − κA
√︁
mCNA (B.48)

κA is an element-specific fitted parameter and ENA the Pauling electronegativity. The modified
coordination number is defined as:

mCNA =
1

2

∑︁
B≠A

[
1+ erf

(
−7.5

(
RAB

R
cov
AB

+ 1

))]
(B.49)

R
cov
AB are the summed covalent radii from Ref. [219]. JAA is an element-specific parameter related to the

atomic hardness, and γAB is related to the inverse root mean square of the atomic radii of atoms A and B
(see Ref. [192] for details). This term provides a description of the electrostatic energy at zeroth order in
the tight-binding model.

The EHT energy in GFN0-xTB is given by the expressions in Eqs. B.22 and B.23. In the EHT
part, the shell-exponent dependent term takes the same form as in GFN2-xTB (see Eq.B.37), while the
electronegativity dependent term is shell-dependent in GFN0-xTB:

X(ENA, ENB) → X
l l

′
(ENA, ENB) = 1+ k

l l
′

EN∆EN
2
AB + k

l l
′

ENbEN∆EN
4
AB (B.50)

Compared to GFN1- and GFN2-xTB, a higher power term of the electronegativity is included. Modified
Pauling values for the electronegativity are used, while kl l

′

EN is a shell-specific and bEN is a global
parameter. The diagonals of the EHT Hamiltonian are made flexible with respect to the modified
coordination number as well as the atomic partial charges:

Hκκ = h
l
A − δh

l
mCNA

mCNA − δh
l
qA
qA − Γ

l
qA
q
2
A (B.51)

While the first part of this equation is formally identical to GFN2-xTB, the last two terms describe the
effective modification of the reference atom due to the charged state, which is derived from the EEQ
model. The parameters δhlqA and Γ lqA are formally related to the chemical hardness and its derivative with
respect to the particle number, respectively, but are simply fitted shell- and element-specific parameters
in GFN0-xTB. We note at this point, that first order electrostatic effects due to neighboring atoms are
currently not incorporated in the GFN0-xTB model, but might be added in a future revision.

The last term in Eq. B.45 is the short-range bond correction, similar to the “short-range basis”

64



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

corrections in the HF-3c and B97-3c methods.79,173

Esrb = ksrb

∑︁
A,B

exp
[
−ηsrb

(
1+ gscal∆EN

2
AB

) (
RAB − R

srb
AB

)2]
(B.52)

This correction is only applied for heteroatomic pairs with atomic number ZA ∈ [5, 9]. Here, ksrb,
ηsrb, and gscal are global fit parameters, The summed covalent bond radii Rsrb

AB are modified by the
electronegativities as:

R
srb
AB =

(
R
0
A + R

0
B

) (
1− c1|∆ENAB|− c2∆EN

2
AB

)
(B.53)

where R0A are the damping radii from the D3 model26, which are modified by the coordination number
and c1 and c2 are global parameters. Esrb essentially corrects the energies and bond lengths for polar
bonds of second period elements.

The GFN0-xTB variant obviously contains more empiricism in the Hamiltonian compared to GFN1-
and GFN2-xTB, but still avoids pairwise parameterization. While the non-self-consistent treatment
obviously makes the method less costly, it has also a practical advantage: due to the lack of Fock
exchange, self-consistent tight-binding methods also suffer from self-interaction error related phenomena,
which become particularly pronounced in polar systems like proteins, where the SCF calculations might
not converge anymore. These problems can be remedied by including an implicit solvation model,41

however, GFN0-xTB does not suffer from these defects and typically yields larger HOMO-LUMO gaps,
as a result from the non-self-consistent treatment.

Treatment of Lanthanide Elements

In the GFNn-xTB Hamiltonians, the “f-in-core” approximation is used throughout for lanthanide elements.
That is, they are treated as 4d transition metals with three valence electrons and no explicit consideration
of the f-electrons. This treatment is motivated by ab initio calculations indicating that the f-electron
shell lies below the valence shell and their implicit handling, e.g., in form of a pseudopotential or by
appropriate parameterization (GFNn-xTB) is reasonable.220 This is different, if spectroscopic properties
are of interest, and these elements have been neglected in the simplified time-dependent xTB model for
excited states for this reason (see next subsection).

B.2.2 Simplified time-dependent xTB for excited states

The computational bottleneck of calculating electronic spectra with the simplified versions of full221 and
Tamm-Dancoff approximated197 (TDA) time-dependent (TD)-DFT (i.e., sTD-DFT or sTDA-DFT) is the
calculation of the ground state orbital coefficients and energies. The very fast semiempirical ground
state tight-binding method sTDA-xTB aims at eliminating this bottleneck.25 The general work-flow of
this approach is shown in Figure B.3.

The xTB ground state calculation consists of two parts: a valence tight-binding (VTB) part and an
extended tight-binding (XTB) part. Note that the two parts are denoted in this chapter as XTB and VTB,
respectively, to distinguish them from the other xTB methods. First, atomic charges are determined in a
truncated SCC procedure by VTB. The second, single-diagonalization XTB step is using these VTB
charges. The VTB part applies a minimal valence and partially polarized AO basis set as in GFN2-xTB,
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ΔEN charges

FC = SCε

Mulliken charges

CM5 charges

FC = SCε

At = tω

structure

VTB
basis

XTB
basis

VTB

XTB

VTB

sTDA

1st time
2nd time

Figure B.3: Computational workflow of the sTDA-xTB method. The VTB (valence tight-binding) part uses
geometry-dependent electronegativity difference-based charges as input and generates Mulliken charge-based
CM5 charges in a trunctated SCC procedure. The XTB (extended tight-binding) step then uses these charges
as input and generates orbitals in a minimal+diffuse basis set for a subsequent excited state calculation at the
simplified Tamm-Dancoff approximated TD-DFT (sTDA) level.

whereas the second XTB part uses an augmented minimal valence expansion including diffuse functions
for the treatment of states with Rydberg excitation character. The XTB Hamiltonian matrix elements
have the standard GFN1 form and read

Fµν = H
0
µν + kq

1

2
Sµν

∑︁
C

(γAC + γBC)q
VTB
C (µ ∈ A,ν ∈ B). (B.54)

Their diagonalization yields the orbital energies and coefficients used in the sTDA or sTD formalism.
γAC denotes the inter-electronic repulsion function in the Mataga-Nishimoto formulation214 that reads
as:

γAC =
1

RAC + 2
η(A)+η(B)

, (B.55)

where RAC is the interatomic distance and η the chemical hardness. The applied basis functions in the
different parts are summarized in Table B.2. Virtual orbitals are shifted to resemble hybrid functional
energy gaps. Apart from a local excitation correction (see Ref. [25]), the sTDA/sTD part is not modified
in sTDA-xTB compared with sTDA-DFT.

The method has been parameterized to reproduce accurate theoretical reference vertical excitation
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Table B.2: Description of the AO basis sets used. n denotes the principal quantum number of the valence shell of
the respective element.

part
element VTB XTB
H-He ns ns, (n+1)sp
group I/II nsp nsp
B-Ne nsp nsp, (n+1)sp
Al,Ga,In,Zn,Cd,Hg nsp nsp
remaining group
IV-VII non-metals nsp, (n+1)d nsp, (n+1)sp
d-block elements nd, (n+1)sp nd, (n+1)sp

energies only, and hence, it is not suited for describing ground state energetics or PES regions far away
from the Franck-Condon point. Opposed to the GFNn-xTB methods, it is a single-point method without
a gradient implementation. Therefore, its application for photochemistry and related MD studies is rather
limited. The comparison of the fitted properties – atomic charges (VTB) and vertical excitation energies
(sTDA-XTB) – with the theoretical reference is shown in Figure B.4. An excellent agreement between
the xTB and reference data is observed.
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B.2.3 Non-electronic variants (GFN-FF)

The evolution of GFN1-, GFN2- and GFN0-xTB inspired the development of a generic force-field.
We have already established the connection between atomistic, intermolecular Lennard-Jones-type
force-fields and zeroth order tight-binding methods in Eq. B.8. Furthermore, the experience with
GFN0-xTB has shown that the approach of ad hoc adjustment of the reference system (following the
picture of Eq. B.7) by adding more flexibility and more reasonably chosen parameters has some prospects
for success. The development of the so-called GFN force-field (GFN-FF) approach can be regarded as in
line with these findings.

From the practical point of view, the main focus of GFN-FF is directed towards the description of
very large bio-macromolecular systems such as (metallo-)proteins224, supramolecular assemblies225 and
metal-organic frameworks.226 Screening of very many structures or treating molecules with more than
a few thousand atoms routinely is impractical at any electronic GFNn-xTB level. It is intended as a
versatile tool for drug design in life sciences and structure screening in various fields of chemistry.227–229

Therefore, GFN-FF introduces an approximation to the remaining quantum mechanics in GFN0-xTB by
replacing the zeroth order TB terms with classical bond, bending angle, and torsion angle potentials. To
remain accurate in the description of conjugated systems, GFN-FF retains an iterative Hückel scheme for
a selected set of π-atoms. The resulting bond orders affect the force constants and other energy relevant
parameters of the system. To yield accurate results, the FF parameters are fitted to reproduce B97-3c79

equilibrium geometries and frequencies. Thereby, a strictly global and element specific parameter
strategy is applied and no element pair specific parameters are employed. This approach is a unique
feature of all GFN methods and differs strongly from the parameterization strategies of other FFs (e.g.,
see Refs.230–233). Special attention is paid to the simple application of GFN-FF. As input only Cartesian
coordinates and elemental composition are required from which fully automatically all potential energy
terms are constructed.

The total GFN-FF energy expression is given by

EGFN−FF = Ecov + ENCI, (B.56)

where Ecov refers to the bonded FF energy and ENCI describes the non-covalent interactions. In the
covalent part, interactions are described by asymptotically correct (dissociative) bonding, angular,
and torsional terms. Repulsive terms are added for bonded and non-bonded interactions separately.
Additionally, a three-body correction to the bonded part is added (abc), that extends beyond the sum of
pair-wise interactions

Ecov = Ebond + Ebend + Etors + E
bond
rep + E

bond
abc . (B.57)

In the non-covalent part, electrostatic interactions are described by the EEQ model as in GFN0-xTB.
Overall, two sets of EEQ charges are used. One depends as usual on the actual geometry, whereas
another set of charges is exclusively covalent topology based, introducing further polarizability and
leading to large simplifications in terms of gradient computations. Dispersion interactions are taken into
account by a simplified version of the D4 scheme,9 in which the dispersion coefficients are scaled by
atomic charges. Without any detailed electronic information, the correct description of hydrogen and
halogen bonds is challenging. Therefore, additional charge-scaled corrections (denoted HB and XB,
respectively) are applied to the non-covalent energy:

ENCI = EIES + Edisp + EHB + EXB + E
NCI
rep . (B.58)
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GFN-FF reaches quadratic scaling O(N
2
) of the computation time for energy and forces, whereas all

GFNn-xTB methods show cubic scaling with respect to the number of atoms. It is the computationally
most efficient member of the GFN family. For illustration, a comparison between total CPU times for
single point and gradient calculations for all GFN methods is given in Figure B.5 for small to medium
sized proteins (from 300 up to 6000 atoms).
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Figure B.5: CPU times (given in seconds on a logarithmic scale) for single point energy plus gradient calculations
of 14 proteins. Computations were performed using a quad-core desktop machine with 4.20 GHz Intel i7-7700K
CPUs. The PDB identifiers are given on the abscissa, the corresponding number of atoms is given on top.

To achieve SCC convergence, the GBSA(H2O) solvation model (see next subsection) had to be
employed for GFN1- and GFN2-xTB. With GFN0-xTB, a speed-up factor of 2-20 is achieved while
GFN-FF improves on this even further. It is about two orders and three orders of magnitude faster than
GFN0-xTB and GFN1-/GFN2-xTB, respectively.

B.2.4 Continuum solvation model (GBSA)

To create realistic computational models, solvent effects have to be accounted for, either by explicitly
including solvent molecules (and dynamical sampling) or by a parameterized implicit solvent model.
Due to its favorable computational cost the latter approach is pursued in the framework of xTB methods
including GFN-FF.

Two kinds of polar implicit solvation models are suitable for xTB, either a polarizable continuum
model (PCM) or a generalized Born (GB) model, where the former has the disadvantage of introducing
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an integration grid, which can introduce a significant overhead for large scale calculations. Therefore,
we will only discuss the implementation of the GB model present in the xtb program.

In the GB model, a molecule is considered as a continuous region with a dielectric constant ϵin
surrounded by infinite solvent with a dielectric constant ϵout.

87 The electrostatic interaction in the
presence of a polarized solvent can then be expressed as the solvation energy

∆GGB = −
1

2

(
1

ϵin
−

1

ϵout

) N∑︁
A=1

N∑︁
B=1

qAqB(
R
2
AB + aAaB exp

[
−

R
2
AB

4aAaB

] ) 1
2

, (B.59)

where aA/B are the effective Born radii of the atoms A/B. The GB model is introduced in the xTB
Hamiltonian as a second order fluctuation in the charge density and described by the atomic potential VGB

given as

V
GB
A = −

(
1

ϵin
−

1

ϵout

) N∑︁
B=1

qB(
R
2
AB + aAaB exp

[
R
2
AB

4aAaB

] ) 1
2

. (B.60)

The Born radii are evaluated by an Onufriev–Bashford–Case (OBC) corrected pairwise approximation
to the molecular volume given as

1

aA
=

1

ascale

(
1

R
cov
A − Roffset

−
1

R
cov
A

· tanh
[
bΨA − cΨ

2
A + dΨ

3
A

] )
, (B.61)

where Rcov
A is the covalent radius of atom A, ascale and Roffset are global parameters and b = 1.0, c = 0.8

and d = 4.85 are the parameters for the OBC correction, which correspond to the GBOBCII model.234

The OBC correction increases the Born radii for atoms buried deep inside a molecular cavity, which
would usually be underestimated. ΨA is the pairwise approximation to the volume integral given by

ΨA =
R

cov
A − Roffset

2

∑︁
B
Ω(RAB, R

cov
A , sBR

cov
B ), (B.62)

withΩ being the pairwise function used to approximate the volume integral, which is only dependent on
the distance and the covalent radii. Note that the covalent radius of the second atom is scaled by the
element-specific descreening value sB to compensate the systematic overestimation of the volume by
this approach.

In addition to this polar contribution to the solvation energy, a non-polar surface area contribution
depending on the solvent accessible surface area (SASA) is given by

∆GSASA =
N∑︁

A=1

γAσA, (B.63)

where γA is the surface tension and σA is the SASA of atom A. To evaluate the latter we resort to the
smoothly differentiable numerical approach introduced from Ref. [89] and integrate the surface area on
an angular Lebedev grid.
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The SASA is also used in an empirical hydrogen-bond correction to the generalized Born energy as

∆GGB+HB = ∆GGB −
∑︁

A
g

HB
A q

2
A
σA
AA
, (B.64)

where gHB
A is the strength of the hydrogen bonds between this atom and the solvent molecules and AA

is the surface area of the free atom. This simplified form has been chosen since the hydrogen-bond
correction should enter the Hamiltonian as a potential due to the charge dependency.

The total solvation free energy is given by

∆Gsolv = ∆GGB+HB + ∆GSASA + ∆Gshift, (B.65)

where an additional shift is included depending on the chosen reference state of the solution. This
solvation free energy is fitted with four global parameters, the Born radius offset, the Born radius scaling,
the probe radius of the solvent molecule, and the value of ∆Gshift as well as three element specific
parameters, the descreening value, the surface tension, and the hydrogen bond strength to reproduce
COSMO-RS16 solvation free energies.99

B.3 Implementation

The GFN methods are implemented in the open-source software xtb, which provides a framework to use
them on their own or together with other algorithms. xtb provides a userfriendly interface for performing
geometry optimizations, vibrational frequency calculations, and molecular dynamics simulations. Usual
workflows like geometry optimization, vibrational (harmonic) frequency calculation, and evaluation
of thermodynamic functions are easily available as composite keywords. Thus, an additional input
file, besides the input geometry, is not necessary to perform calculations with xtb. The usual obstacle
of learning a new input format and adjusting numerical thresholds is minimized as much as possible,
making it fairly straightforward to start running calculations with xtb. Through its unique design, the
xtb program has become an integral part in a number of algorithms and programs, developed in our
group or other groups. One of the early users of the xtb program is the quantum chemistry electron
ionization mass spectrometry (QCEIMS) method implemented in the program of the same name.235

qceims is accessing the self-consistent xTB methods to provide electronic structure information, like
ionization potentials or to drive high-temperature molecular dynamics simulation to allow for first
principles predictions of electron ionization mass spectra, which provides fundamental insights into
the fragmentation process not available with standard machine learning-based algorithms. While not
tailor-made for the prediction of transition states or reaction paths, the GFNn-xTB methods are suitable
to provide a fast initial path when coupled with an appropriate algorithm. One such interface exists
for the growing string method (GSM) program by the Zimmermann group implemented in the mGSM
program.236,237 To avoid introducing an additional interface in an established software package, the xtb
program is wrapped in a flexible way to mimic output for an already existing and tested interface to mGSM.
We find that this approach is most sustainable and particularly advantageous for users already familiar
with the mGSM program, such that they can quickly integrate the GFNn-xTB methods and any future
extension of the xtb program to their already existing workflows. In a recent publication of our group,
we have highlighted this particular combination of mGSM and xtb.238 The most prominent use of xtb is in
the conformer-rotamer ensemble search tool crest,19,239 which acts as a driver to perform and schedule
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calculations with xtb. A robust file-based input and output communication between the programs is
established by using shared memory parallelization to allow for multiple xtb instances being driven by
the scheduler provided with crest. Starting from an input structure, xtb will be used to generate the
distorted structures by (biased) molecular dynamics simulations. From the generated trajectories crest
is selecting structures for relaxations performed in parallel with multiple xtb instances. Each instance
regularly reports back its optimization progress, such that crest can re-rank, filter, and prioritize the
calculations most efficiently. Finally, we want to highlight the usage of both xtb and crest within the
computational chemistry framework for energetic sorting of conformer-rotamer ensembles, named enso.
The enso framework is designed to automate the re-ranking of conformer-rotamer ensembles at DFT
level.188 It relies implicitly on xtb-via-crest, but also directly for the calculation of thermostatistical
corrections with the modified rigid-rotor-harmonic-oscillator (mRRHO) partition functions73 or of
solvation free energy contributions using the GBSA solvation models available for the GFNn-xTB
methods. Those contributions to free energy are then used to refine conformer-rotamer ensembles
produced by crest in an initial stage together with low-cost DFT methods like PBEh-3c142 or B97-3c79

before starting more expensive hybrid-functional calculations or property calculation like, e.g., NMR
shifts (see Fig. B.1).

Besides this selection of applications and algorithms developed in the recent years by our group, the
GFNn-xTB methods were quickly adopted in many existing quantum chemistry program packages, like
AMS,179 CP2K,180 DFTB+,13 entos,182 Orca,183,184 and TeraChem.185,186 Moreover, interfaces to the
xtb program are already available in large frameworks like ASE77 or Cuby4.181

To facilitate the usability ofxtb, an in-depth documentation is available covering all of the possible work-
flows.240 This documentation is managed by established software documentation tools, namely sphinx241

and asciidoctor,242 which are used to automatically generate, among others, Linux manual pages, a
printable PDF manual, and the static HTML code for the online-documentation. The latter is hosted by the
read-the-docs project to be easily accessible to all users (see https://xtb-docs.readthedocs.io).
Additionally, we dedicated the development of the xtb program to the open-source idea and hence
published it under the Lesser General Public License (v3+) with the source code publicly available
on GitHub (see Ref.204). One of the greatest burdens of quantum chemistry programs is the proper
installation, which can be especially tricky in high-performance computing (HPC) environments. To
actively support system operators in their efforts to make xtb available to their users, we make xtb
available with the conda cross-platform package manager via an official conda-forge channel and also
together with the easy build toolchain allowing to install xtb in an existing module system in HPC
environments. For developers, we decided to offer dual support of both the established CMake build
system and the relatively new but promising meson build system. A solid unit testing framework is also
available and readily coupled to continuous integration services of Travis-CI and GitHub-Actions.

B.3.1 Geometry optimization of large systems

Due to the inherent computational efficiency of the underlying electronic structure method, a similarly
fast and robust geometry optimization procedure had to be developed along with the GFNn-xTB methods.
Otherwise, the geometry relaxation steps can amount to a significant fraction of the overall computation
time, in particular at the GFN-FF level.

Special constraints on the optimization algorithm are the choice of a general and robust coordinate
system, which is inexpensive in the generation, and a fast and reliable geometry displacement step with a
better formal scaling and prefactor than the fastest available GFNn-xTB method. A model Hessian based
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on the work of Lindh et al.243 is used for the generation of an Approximate Normal mode Coordinate
(ANC) system. With an efficient screening, the calculation of this Hessian can be performed with a
quadratically scaling algorithm. However, its diagonalization to obtain the transformation matrices
scales cubically with the number of atoms. To reduce this bottleneck the coordinate system is generated
from the actual Cartesian coordinates only every 20 to 40 optimization steps. For the calculation of the
coordinate displacement we established a combination of the rational function algorithm244 together
with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Hessian update step.245

For systems with several thousands of atoms even this setup can become too slow when combined
with faster methods than GFN0-xTB, i.e., GFN-FF. Even if both displacement and update are evaluated
by a L-BFGS algorithm,246 additionally a faster diagonalization strategy had to be designed based on a
Hessian fragmentation scheme (see Figure B.6).
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Figure B.6: Schematic representation of the fragmented Hessian algorithm. A complex molecular structure
with Nc atoms is divided into several chemically reasonable fragments (of size Nfrag) and the Hessian of each
fragment Hfrag is diagonalized individually. The diagonalized Hessian Hdiag is constructed from the fragments,
instead of diagonalizing the Hessian of the entire system Hc, thus reducing the overall computational costs.

With the covalent topology at hand, a fragmentation scheme identifies in a first step non-covalently
bound fragments. For explicit solvent molecules, this number can be rather large. Therefore, the volume
occupied by the system of interest is divided in cubic boxes and all NCI fragments of small size within
such a box are collected together in a cubic cluster approach. On the other hand, large NCI fragments
are further divided in smaller chemically reasonable fragments upon the application of the Dijkstra
algorithm.247 This algorithm based on graph theory finds the shortest paths between two nodes in a
graph. For each resulting chemical fragment, a fragmented Hessian matrix is set up and diagonalized
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separately. The problem of diagonalizing one large matrix is thus broken down to the diagonalization of a
few much smaller matrices (divide-and-conquer type algorithm). To achieve high efficiency, this process
is performed in parallel. With the fragmented Hessian scheme, the xtb optimizer, termed ANCopt, is
capable of performing geometry optimization of large and complex macromolecular structures.

B.4 Example applications and benchmarking

B.4.1 Molecular Structures

The geometry optimization of molecular structures is a common application for SQM methods, specifically
for large systems, where DFT and other first-principles methods become computationally infeasible. The
GFN1- and GFN2-xTB methods already proved to be fast and robust semiempirical optimization tools for
computing reasonably accurate molecular structures with elements up to radon.8,17,41,248 To substantiate
this statement, we summarize their performance for well-established and recently published benchmark
sets including organic and main group molecules, non-covalent interactions, and transition-metal as well
as organometallic and lanthanide complexes.

With respect to organic and main group molecules, we will first focus on the established ROT34249,250

set of 12 small to medium-sized organic gas phase structures and only briefly mention the results for other
benchmarks (for details, see Refs.8,41). The ROT34 set comprises 34 equilibrium rotational constants Be
derived from accurate spectroscopically measured rotational constants B0 which were back-corrected by
calculated nuclear vibrational effects, such that they can be directly compared to (local) clamped-nuclei
Born-Oppenheimer minimum structure values computed with the electronic structure methods, which
are to be assessed. It is a sensitive test for the accuracy of calculated molecular structures since small
changes in the geometry can already lead to significant deviations from the back-corrected experimental
reference values. As long as conformational changes can be excluded, too large theoretical Be values
indicate shortened covalent bonds (or overall shrinked molecule size) w.r.t. the experimental reference.

The performance in terms of relative deviations for the GFNn-xTB methods is compared to the
dispersion-corrected DFTB3-D3(BJ) and PM6-D3H4X251,252 SQM methods as well as to the low-
cost composite DFT method B97-3c and accurate B3LYP253-D3(BJ)/def2-QZVPP254 structures (see
Figure B.7a)). Well-performing DFT methods such as the two latter show mean unsigned relative
deviations (MURDs) and standard relative deviation (SRDs) below 0.5%,79,249 while SQM methods
expectedly yield larger deviations. The ZDO-based PM6-D3H4X method yields SRDs and MURDs of
≤2.5% and, generally, less reliable geometries are predicted compared to DFTB3-D3(BJ), GFN1-xTB,
and GFN2-xTB (one molecule (isoamyl-acetate) was excluded from the benchmark due to problematic
conformational changes). The latter ranks second among the tested methods and is only slightly
outperformed by GFN1-xTB. This could be due to the fact that the relative weight of geometries during
the fitting procedure has been larger than for GFN2-xTB. The GFN1-xTB method yields an SRD of
1.1% and a mean relative deviation (MRD) of only 0.5% thus providing only slightly too small molecules
on average, which is an excellent result for a SQM method. A comparably small SRD is obtained with
DFTB3-D3(BJ) but at the expense of a systematic shift towards too long bonds bonds, which is common
for DFTB as well as for (semi)local density functionals.249

GFN0-xTB and GFN-FF yield an SRD that is approximately halfway between PM6-D3H4X and
DFTB3-D3(BJ). In contrast to GFN0-xTB, which shows a clear shift towards too small molecules, the
MRD of GFN-FF is close to zero and, hence, the geometries calculated with this universally applicable
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force-field do not show a systematic error on average, though the scatter is somewhat larger compared
with GFN1- and GFN2-xTB.

In addition, two benchmark sets were assessed which contain more unusual and challenging structures:
the HMGB11142 covering heavy main group molecules and the LB12142 testing particularly long bonds.
Here, PM6-D3H4X with a mean absolute deviation (MAD) of 10.1 pm for the HMGB11 set is clearly
outperformed by GFN1-xTB and GFN2-xTB with MADs ≤ 3 pm. Particularly the latter predicts the
long bond lengths of the LB12 fairly well with an MAD of 12.6 pm (excluding S2+8 from the statistics),
while PM6-D3H4X yields an MAD of 20.5 pm (excluding HAPPOD and KAMDOR from the statistics).
The good performance of GFN1- and GFN2-xTB for these “unusual” cases may be attributed to their
element-specific parameterization.

Furthermore, molecular structures with dominating non-covalent interactions were assessed com-
prehensively employing center-of-mass (CMA) distance deviations for the fully optimized S22131,255

complexes and relative deviations w.r.t. extrapolated CMA distances for the S22x5256, S66x8130, and
X40x10257 benchmark sets. Even though all tested methods delivered comparably good results for
the S22 with an MAD of ≈14 pm, GFN2-xTB represents a clear improvement especially for X40x10.
The MRD for the latter approaches zero and the MURD is with 2.5% only about half as large as
that of PM6-D3H4X. This also indicates that the (anisotropic) electrostatic terms are well balanced
with repulsive and dispersion interactions and, therefore, particularly GFN2-xTB is well suited for the
optimization of non-covalent complexes and supramolecular assemblies. In contrast to organic and
main group molecules, the geometry optimization of the chemically important transition-metal and
organometallic complexes with SQM methods is much less common. This is due to the fact that these
structures often already pose a challenge for single reference QM methods and because there are hardly
any SQM methods that are parameterized for the whole (Z ≤ 86) periodic table. With the development
of the GFNn-xTB methods this situation has improved significantly, as a promising alternative to the
ZDO-based PM methods has been made available.

To substantiate and to quantify this statement we demonstrate the performance of GFN1- and GFN2-
xTB for the well-established TMC32143 3d transition-metal structures benchmark set comparing 50
bond lengths, as well as for two recently published comprehensive molecular structure benchmark
sets, the TMG14517 including 145 transition-metal complexes and a set of 80 challenging lanthanide
complexes.248 The complexes in both sets are treated as low-spin systems.

For the TMC32 set, GFN1-xTB is the most accurate of all investigated SQM methods (MAD =
5.0 pm), closely followed by its successor GFN2-xTB (MAD = 5.7 pm). On average, GFN1-xTB
yields more systematic deviations and slightly shorter bonds compared with PM6-D3H4X. Still, all
transition-metal complex structures were reproduced by all three methods without dissociation or
significant chemical reorganization. The TMG145 benchmark set was compiled from 145 challenging
“real-life” transition-metal complexes (25-200 atoms) up to Hg (Z = 80) with high-quality hybrid DFT
(TPSSh258-D3(BJ)-ATM/def2-TZVPP254) structures as reference. In total, 941 bond lengths and 2846
bond angles are compared.

GFN1- and GFN2-xTB both predict distinctive bond angles around the metal atom as well as
metal-ligand bond lengths with good accuracy (bond angles/ bond lengths : MAD = 4.0 degrees/7.5 pm
and 3.9 degrees/8.3 pm for GFN1- and GFN2-xTB, respectively; cf. Figure B.7b) for the individual
deviations for the subset with DFT reference structures) with high efficiency (typically below one minute
computation time compared with days to weeks for the reference calculations). This is also reflected
in the Cartesian heavy-atom (all elements except H) root-mean-square deviation (hRMSD), which is
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Figure B.7: In part a), normal distribution plots of deviations in calculated equilibrium rotational constants Be

for the ROT34 set249,250 (see inset for the respective structures) are shown. In part b), structure overlays and
corresponding heavy-atom RMSDs (hRMSD) in Å w.r.t. the crystal structure or DFT reference structures of
four exemplary complexes from the lanthanide set248 are depicted (GFN2-xTB-optimized structures are shown
in transparent blue, carbon bound hydrogen atoms are omitted for better visibility). Part c) shows correlation
plots for bond lengths and angles in pm and degree, respectively, calculated with GFN1- and GFN2-xTB for the
subset of the TMG145 set.17 In part d), structure overlays and hRMSD in Å w.r.t. DFT reference structures of four
exemplary complexes from the TMG145 set17 are shown. The respective Cambridge Structural Database (CSD)
codes are placed below each structure: Crabtree catalyst (JAFFOL), Brintzinger-Kaminsky catalyst (QAJGOY),
Grubbs-Hoveyda I catalyst (CEBHEW), and Karstedt’s catalyst variant (YECXUA).

76



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

on average only 0.34 Å and 0.33 Å for GFN1- and GFN2-xTB, respectively. The tested ZDO-based
methods PM6-D,251 PM6-D3H4,251,252 and PM7259 perform clearly inferior with MADs of about 30 pm
and 9 degrees for bond lengths and angles, respectively, as well as twice as large hRMSD on average,
mainly due to about 40% of the complexes for which these methods predicted qualitatively incorrect
molecular structures. In contrast, only ≈ 11% and ≈ 7% of the complexes could not be optimized to the
chemically correct structure with GFN1- and GFN2-xTB, respectively, thus underlining their robustness
even for such challenging systems. Four representative structure overlays together with the respective
hRMSD are shown in Figure B.7d).

The applicability of the GFNn-xTB methods for all elements up to Z=86 also allows the optimization of
molecular structures with rather unusual elements important for special applications such as luminescent
lanthanide-based metal-organic frameworks.260 Thus, the correct computation of such lanthanide-
containing structures is of practical relevance. For GFN1-xTB, this was assessed on a challenging and
comprehensive test set of 80 lanthanide structures. Except for three promethium complexes, for which
accurate PBE0-D3(BJ)/ZORA-def2-TZVP261 (SARC2-ZORA-QZV262 basis for Pr) reference structures
were calculated, the optimized geometries are benchmarked w.r.t. high-quality X-ray structures. For
more than half of the complexes, the structures optimized with GFN1-xTB yield a hRMSD < 0.6 Å.
Only for a few larger multi-nuclear lanthanide clusters bridged by anionic ligands, it was more difficult
to reach the default convergence criteria.

However, this would be also the expected behavior of higher-level QM methods for such challenging
systems. Considering the uncertainty due to the neglect of crystal field and crystal packing effects, this
means that most reference structures could be reproduced qualitatively correct and 44 out of 80 structures
even show a good quantitative agreement with the reference structures. Compared to the Sparkle/PM6
method, which is the only semiempirical competitor for lanthanide chemistry, the mean hRMSD of
0.65 Å obtained with GFN1-xTB for all complexes is significantly smaller, even slightly outperforming
the low-cost composite QM method HF-3c (0.68 Å). This is a very good result keeping in mind that the
lanthanide atoms are treated in an “f-in-core” approximation by the GFN1-xTB method (see “Treatment
of Lanthanoide Elements” part of the theory section). GFN1-xTB also clearly outperforms Sparkle/PM6
in terms of computational wall times mainly due to the fact that significantly fewer SCF and optimization
cycles are required on average.

Together with the promising results for the TMG145 and TMC32 benchmark sets, GFN1-xTB and
GFN2-xTB proved to describe organometallic bonding motifs significantly better compared with the
ZDO-based PM methods, which are currently the only other SQM methods applicable to such systems.
This is a particularly remarkable result since no specific modifications for the treatment of organometallic
complexes were introduced in the development of the GFNn-xTB methods and they are also clearly
superior in terms of computational speed. Moreover, the finite electronic temperature (Fermi smearing)
along with the Hamiltonian, which is devoid of exchange/spin density terms, also enables the robust
optimization of molecules with small HOMO-LUMO gaps or open shells, which are challenging for
many single reference QM and most other SQM methods. The excellent accuracy/computational cost
ratio of the GFN1- and GFN2-xTB methods together with their robustness enables the fast and reliable
geometry optimization of typical transition-metal complexes as well as the routine application, e.g.,
for semi-automated conformational search procedures for larger organometallic complexes and the
optimization of very large systems with several thousands of atoms such as extended metal-organic
polyhedra at a SQM level of theory (see Figure B.8 for three representative examples taken from Ref. [17]).
GFN2-xTB fully optimizes the structures of medium-sized polyhedra (≈ 1100–1400 atoms) in about
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one hour (≈ 200 optimization cycles). The relatively small hRMSD (0.68 Å and 0.80 Å respectively)
for such large systems show impressively how robust, efficient, and accurate such optimizations with
GFN2-xTB in combination with a GBSA solvation model are. Even the Pd30L60(BF4)60 polyhedron with
almost 2500 atoms could be optimized in a few days yielding a qualitatively correct molecular structure.

{[Pd2L4]@[Pd4L8]}
12+

PIJMED
GFN2-xTB(GBSA(MeCN))
1122 Atoms
hRMSD = 0.68 Å
0h:55m:33s (221 opt.-cycles)

Zn48L18L26

NIHWIN
GFN2-xTB(GBSA(MeOH))
1392 Atoms
hRMSD = 0.80 Å
1h:32m:26s (193 opt.-cycles)

Pd30L60(BF4)60

SICHUK
GFN2-xTB(GBSA(THF))
2430 Atoms
hRMSD = 1.12 Å
87h:24m:54s (2395 opt.-cycles)

Figure B.8: Structure overlays of the GFN2-xTB optimized (transparent blue; the GBSA solvation model was
applied) and X-ray reference structures (color code; the respective CSD code is given) for three metal-organic
polyhedra (carbon bound hydrogen atoms are omitted for better visibility). The heavy-atom RMSDs (hRMSD) are
given and the timings were obtained with normalopt settings on 14 CPU Intel® Xeon® E5-2660 v4 2.00 GHz CPU
cores.

In summary, it can be stated that the general applicability for almost all elements of the periodic table,
the efficient and robust treatment even of very large and complicated electronic structures, a reliable
description of the major part of the PES, especially for the non-covalent interactions, as well as the
coupled implicit GBSA solvent model are strong points of the methods. Hence, GFN1- and GFN2-xTB
methods are perfectly suited for optimizing molecular structures for various chemical applications. Since
only comparatively low computational resources are required for this purpose, these methods provide an
unprecedented quantum-mechanical tool which can be of great benefit for chemical research, e.g., for
the calculation of large organometallic structures. GFN0-xTB performs slightly worse, but may be of
great interest in a revised form for optimizations under periodic boundary conditions. First assessments
of the new universal force field GFN-FF yielded promising results81 for geometry optimizations of
proteins. This is remarkable, since GFN-FF was not specifically adjusted to proteins. In Figure B.9, the
performance of GFN-FF along with the universal (UFF82) and highly specialized FFs (OPLS2005263,
AMBER*264,265), respectively, is assessed for geometry optimizations of 70 protein structures.266 For
the dihedral angles ϕ, ψ, and χ, which act as soft descriptors for local displacements in the respective
protein backbone, GFN-FF provides similar or even better accuracy than the specialized FFs OPLS2005
and AMBER*, respectively. Only for ω, significant deviations in the larger protein structures were
observed with GFN-FF, indicating that the barrier for rotation around the respective C-N bonds was
underestimated. For both the hRMSD and the Cα RMSD, GFN-FF provides comparably accurate

78



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

0

5

10

15

20

φ ψ χ ω Cα ha
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
M

A
D

/°

M
A

D
 / 

Å

UFF

AMBER*

GFN2−xTB

OPLS2005

GFN−FF

Figure B.9: Performance of GFN-FF in comparison to the universal (UFF) and highly specialized FFs (OPLS2005
and AMBER*) for a set of 70 protein structures266. Average hRMSD, Cα RSMD, and average deviations of four
distinctive dihedral angles w.r.t. the corresponding crystal structure given in Å and degree, respectively.

results to the computationally much more demanding SQM method GFN2-xTB. UFF, on the other hand,
performes clearly worse than GFN-FF for all statistical measures and is therefore, in contrast to the latter,
not recommended for protein structure optimizations. Furthermore, the parameterization up to Z = 86
allows the optimization of metalloprotein structures with GFN-FF.

B.4.2 Thermochemistry and Kinetics

The GFNn-xTB family of methods does not reach the aforementioned accuracy level for the calculation
of (covalent) thermochemical and kinetic properties. However, this is typical for SQM methods in
general,267,268 which are therefore not generally recommended for accurate routine calculations of, e.g.,
covalent reaction energies and barrier heights. However, particularly for the latter, GFN2-xTB performs
surprisingly well for a SQM method (vide infra, cf. Figure B.10d)). Nonetheless, the semiempirical
approximations on which the GFNn-xTB methods are based have the clearest implications for covalent
bonds and hence, they (and other SQM methods) should only be used for qualitative estimates of
covalent thermochemistry. However, there are many applications where the GFNn-xTB methods, due
to their high efficiency combined with the general parameterization and high robustness, prove to be
very useful, e.g., as a starting point for multi-level, large-scale screening applications (see subsection
“Chemical Space Exploration”) or the semi-automatic localization of transition states presented in the next
subsection. Moreover, the performance for non-covalent interactions is very good, as will be summarized
in the following for eight intermolecular non-covalent interaction energies benchmark sets from the
comprehensive GMTKN5523 database. They are composed of various small molecules including also
heavier elements and more unusual interaction motifs. Specifically, the interaction energies in rare gas
complexes (RG18), n-alkane (ADIM6) and various other non-covalently bound dimers (S22 and S66) as
well as between heavy element hydrides (HEAVY28) were assessed. Furthermore, hydrogen-bonded
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complexes between H2O, NH3, or HCl and carbene analogues (CARBHB12), pnicogen-containing
dimers (PNICO23), and halogenated dimers including also halogen bonds (HAL59) were tested (for
original references to the used subsets of the GMTKN55 database, see Ref. [23]). The respective MADs
obtained for the GFNn-xTB methods, GFN-FF, and PM7 with respect to the very accurate coupled
cluster reference values are shown in Figure B.10a) together with average MADs over all tested sets.
Values for PM6-D3H4X as well as low cost composite and large basis set DFT methods are also shown.

Except for the ADIM set, for which GFN2-xTB is the worst of all tested methods and the CARBHB12,
for which GFN1-xTB slightly outperforms GFN2-xTB, the latter is the most accurate method in all
other considered benchmark sets. This is also reflected in its remarkably small average MAD of only
0.9 kcal/mol, which is slightly better than that of the composite methods HF-3c and B97-3c and even
comparable to some large basis dispersion corrected GGAs. This is especially true for the rather special
HEAVY28 and RG18 test sets, where GFN2-xTB achieves excellent results (MAD = 0.6 kcal/mol and
0.2 kcal/mol, respectively), most likely due to a more advanced treatment of dispersion interactions
within the D4 scheme compared to D3(BJ). In contrast, PM7 shows much larger MADs for both sets
(HEAVY28: 2.9 kcal/mol, RG18: 0.6 kcal/mol).

The benefit of the AES (see subsection “The GFN2-xTB Hamiltonian”) is already visible for the
commonly applied S22 and S66 test sets, which are also often used for fitting purposes. For example, the
MAD for S66 obtained with GFN2-xTB (0.7 kcal/mol)) is 0.6 kcal/mol lower than that of the monopole
based GFN1-xTB method, which illustrates the importance of AES for such systems. Moreover,
GFN2-xTB does not show any larger deviations for the hydrogen bonded systems, although in contrast
to GFN1-xTB, no special terms for hydrogen bonds are included. PM7 performs comparably well as
GFN2-xTB for the S22 and S66 sets and is with an MAD of only 0.2 kcal/mol clearly the most accurate
SQM method for the ADIM6 test set. However, for CARBHB12 and especially for the PNICO23
and HAL59 sets, the errors for PM7 are much larger (up to five times higher MAD than GFN2-xTB)
and significant outliers occurred. The good performance of the GFN2-xTB method for the PNICO23
and HAL59 sets can be attributed to the inclusion of higher multipole electrostatic terms, since in
these molecules a good description of the anisotropic electron density of the bound pnicogen and
halogen atoms is crucial for the accuracy of the respective interaction energies. The GFN1-xTB method,
despite its monopole approximation, gives comparably good results for HAL59 and still reasonably
accurate interaction energies for the PNICO23 systems which can be explained by its well balanced
parameterization and special halogen bond correction.

GFN0-xTB and GFN-FF perform similar to GFN1-xTB (average MAD = 1.1 kcal/mol) with slightly
larger average MADs of 1.4 kcal/mol and 1.1 kcal/mol, respectively. Only for the CARBHB12 test set,
significantly larger deviations were observed for both methods. Considering its very low computational
cost, the performance of GFN-FF for intermolecular NCIs is outstanding.

The excellent performance of GFN2-xTB, in comparison to other SQM methods, for non-covalent
interactions of smaller molecules is also observed for larger and more difficult supramolecular complexes,
as could be shown with the S30L96 benchmark set. It tests 30 association energies of non-covalently bound
neutral and charged complexes with up to 200 atoms for which accurate DLPNO-CCSD(T)269,270/CBS*271

reference values are available.79 With an MAD of only 4.0 kcal/mol, GFN2-xTB can compete with
some large basis set dispersion-corrected DFT methods, which is an outstanding result for an SQM
method for such a challenging benchmark. Especially the very small errors for the charged systems
are striking, whereas PM6-D3H4X, among others, shows up to 20% deviation from the corresponding
reference association energies. This again confirms that electrostatic and polarization interactions are
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described much more accurately in GFN2-xTB than with other SQM methods. Larger deviations for
GFN2-xTB were only found for complexes 7-12 with conjugated π systems and dominant van der
Waals interactions, for which the respective association energies were overestimated, probably due to
non-additive dispersion interactions that are not yet described accurately enough with the ATM term (see
subsection “The GFN2-xTB Hamiltonian”). The universal force-field GFN-FF yield similarly accurate
results (MAD = 4.1 kcal/mol) as GFN2-xTB and even deviates less from the reference values for van der
Waals interaction-dominated conjugated π systems, although only a simplified version of the D4 scheme
is applied9, thus, indicating a good and well balanced parameter fit. For the charged systems, however,
the errors are, as expected, somewhat larger compared to GFN2-xTB. GFN1-xTB yields a MAD (6.1
kcal/mol) between that of PM6-D3H4X (5.1 kcal/mol) and DFTB3-D3(BJ) (6.9 kcal/mol) and hence
does not reach the accuracy of GFN2-xTB and GFN-FF.

Overall it can be stated that the GFN methods, especially GFN2-xTB and GFN-FF, are well-suited
to investigate non-covalently bound systems and, due to their very low computational effort compared
to dispersion-corrected DFT methods with large basis sets, reliable calculation of such systems with
several thousand of atoms becomes feasible.

Next, we discuss the performance of the GFNn-xTB and other SQM methods for eight conformational
energy benchmark sets taken from the GMTKN55 database, specifically relative energies of alkane
(ACONF), amino acid (Amino20x4), butane-1,4-diol (BUT14DIOL), inorganic (ICONF), melatonin
(MCONF), tri- and tetrapeptide (PCONF21) and sugar conformers (SCONF) as well as energy differences
between RNA-backbone conformers (UPU23271) and one additional test set (MALT205272) comprising
205 conformers of α-maltose (for original references to the used subsets of the GMTKN55 database, see
Ref. [23]). This is a challenging test for SQM methods since the accurate description of these small
relative energies requires a well balanced accuracy for both intramolecular non-covalent and covalent
interactions. Figure B.10b) shows the MADs for the tested methods and the average MADs over all nine
sets in comparison with low-cost composite QM methods and larger basis set DFT results. Among the
SQM methods tested, GFN2-xTB is on average the most accurate, closely followed by GFN1-xTB and
GFN-FF. Especially the significant improvement compared to GFN1-xTB for more polar and hydrogen
bonded systems, with the exception of the UPU23 set, led to an excellent performance of GFN2-xTB for
the Amino20x4 (MAD = 0.9 kcal/mol), PCONF21 (MAD = 1.8 kcal/mol), and SCONF (MAD = 1.6
kcal/mol) test sets. For the BUT14DIOL and MCONF test sets, similarly good results for all assessed
SQM methods were observed, with GFN-FF performing best for the latter (MAD = 0.5 kcal/mol). For
the MALT205 set, which is challenging due to the many involved intramolecular hydrogen bonded,
GFN0-xTB and PM6-D3H4X (MAD = 5.2 kcal/mol and 5.1 kcal/mol, respectively) showed significantly
larger deviations than GFN1-xTB, GFN2-xTB, and GFN-FF with the latter yielding the lowest MAD of
2.8 kcal/mol. Except for the PCONF and UPU23 benchmark sets, the mean deviations (MD) obtained
with GFN1- and GFN2-xTB are negative for all tested conformer energy sets. In general, all tested SQM
methods and also GFN-FF tend to underestimate the high-level coupled-cluster conformational energies
that serve as a reference values, especially for the higher-energy conformers. Furthermore, the MADs of
the SQM methods are on average 3–4 times larger than those of DFT methods.

Nevertheless, the investigated conformational energy benchmarks clearly show that GFN2-xTB
provides more reliable conformational energies than PM6-D3H4X, PM7, and even the computationally
more expensive HF-3c method. For polar and hydrogen bonded systems, GFN2-xTB also outperforms
GFN0-xTB, GFN1-xTB, and GFN-FF, potentially due to the inclusion of the AES term (see subsection
“The GFN2-xTB Hamiltonian”). The universal force-field GFN-FF performs on average similar to
GFN0-xTB and GFN1-xTB, which is particularly remarkable and offers a valuable alternative to
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GFN2-xTB for the conformer search of large molecules with several hundreds of atoms. The proper
energy ranking of conformers is an important application field for SQM methods (see subsection
“Chemical Space Exploration”) and the results for the conformational energy benchmarks suggest that
particularly GFN2-xTB and GFN-FF should be well-suited for this purpose.
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Figure B.10: (Caption next page.)
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Figure B.10: (Previous page.) Mean absolute deviations (MADs) in kcal/mol of GFNn-xTB methods, GFN-FF,
PM6-D3H4, and PM7 for various benchmarks sets comprising non-covalent interaction energies (part a) and
conformational energies (part b). The respective inset shows the average MAD over all tested sets compared to the
low-cost composite QM methods HF-3c and B97-3c as well as a few large basis DFT results taken from Ref. [23].
Part c) shows the association energies for 30 large supramolecular complexes (S30L96 test set) computed with
GFN2-xTB, GFN-FF, and PM6-D3H4 together with the respective DLPNO-CCSD(T)269,270/CBS*271 reference
values. The inset depicts the MADs for the GFNn-xTB methods and GFN-FF as well as further SQM, low-cost
composite, and large basis set DFT methods. Part d): MADs in kcal/mol of GFN1-xTB, GFN2-xTB, PM6-D3H4,
and DFTB3-D3(BJ) for five reaction barrier height test sets. Except for the S30L and MALT205272 sets, the
geometries and reference values are taken from the GMTKN5523 database.

Finally, we turn to five of the barrier height oriented benchmark sets of the GMTKN55 database (for
original references to the used subsets, see Ref. [23]). The MADs of the assessed methods (GFN1-
and GFN2-xTB, PM6-D3H4, and DFTB3-D3(BJ) for the five test sets are shown in Figure B.10d)).
Among all methods considered, GFN2-xTB clearly performs best with the lowest MAD for the diverse
reaction barriers set (BHDIV10: MAD = 8.1 kcal/mol), the barrier heights for rotations around single
bonds (BHROT27: MAD = 1.2 kcal/mol), and inversions (INV24: MAD = 3.5 kcal/mol) as well as for
barriers in proton transfer reactions. (PX13: MAD = 2.7 kcal/mol). Only for barriers of tautomerization
reactions (WCPT18), GFN2-xTB (MAD = 3.8 kcal/mol) is slightly outperformed by PM6-D3H4 (MAD
= 3.5 kcal/mol). This performance of GFN2-xTB is remarkable for an SQM method, since no barrier
heights were included in the fitting procedure.

Especially for PX13, for which PM6-D3H4 gives quite large deviations (MAD = 16.0 kcal/mol), and
for BHDIV10, for which DFTB3-D3(BJ) performs relatively poorly (MAD = 13.3 kcal/mol), GFN2-xTB
even yields slightly smaller MADs than PBE0 with a large basis set, which is an outstanding result for
SQM methods. GFN1-xTB, although slightly worse than GFN2-xTB in all considered benchmark sets,
still predicts reasonably accurate barrier heights.

Overall, the GFNn-xTB methods, particularly GFN2-xTB, yield acceptable to good (for non-covalent
interactions and barrier heights) accuracy for thermochemistry applications, even though this was not
the main focus (except for non-covalent systems) in the development of the GFNn-xTB methods.

B.4.3 Reaction Mechanism Exploration

Reliable SQM methods also offer new perspectives for the fast screening of reaction mechanisms
and transition states (TS) for transition-metal and organometallic systems, if they are interfaced with
state-of-the-art transition state localization algorithm such as, e.g., the double-ended growing string
algorithm236,237 (see subsection “Implementation”). However, this necessitates that the corresponding
SQM method yields not only reliable transition state geometries but also a sufficiently accurate
thermochemistry for such systems. In a recent study,238 this was assessed employing two organometallic
reaction energy benchmark sets, the MOR41148 and the WCCR10.273 Although the development of the
GFNn-xTB methods was not specifically targeted to predict accurate reaction energies, GFN1-xTB
(MOR41: MAD = 13.2 kcal/mol, WCCR10: MAD = 10.9 kcal/mol) and GFN2-xTB (MOR41: MAD
= 11.8 kcal, WCCR10: MAD = 10.7 kcal/mol) achieve reasonably accurate relative energies for these
challenging reactions (with GFN2-xTB performing slightly better), comparable to dispersion uncorrected
DFT methods and not so much worse than, e.g., M06-2X64/def2-QZVPP with an MAD = 7.3 kcal/mol
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for the MOR41 reactions. The PMx methods are the only other SQM approach that can currently be
employed for the calculation of such systems, but they yield substantially larger deviations (PM6-D3H4:
MAD = 21.7 kcal/mol, PM7: MAD = 22.7 kcal/mol).

The performance of the GFNn-xTB methods for barrier heights of organometallic reactions was
assessed with a similarly encouraging result for a slightly modified version238 of the MOBH35274,275

benchmark set comprising 29 backward and forward barriers. The GFN1- and GFN2-xTB methods in
combination with mGSM localized the correct transition states in 89.7% and 86.2% of all investigated
reactions, respectively and predicted the barrier heights with reasonable accuracy (GFN1-xTB: MAD
= 8.8 kcal/mol, GFN2-xTB: MAD = 8.2 kcal/mol). The PMx methods are significantly less robust
(only 72.4% and 69.0% of the transition states were correctly localized with PM6-D3H4 and PM7,
respectively) and they are also clearly outperformed by the GFNn-xTB methods in terms of accuracy
for the barrier heights (PM6-D3H4: MAD = 17.1 kcal/mol, PM7: MAD = 19.6 kcal/mol), while their
computational costs are more than twice as high.

In addition, the GFNn-xTB methods provide reasonably accurate TS geometries17 (cf. also subsection
“Molecular Structure”) thus allowing for an efficient reoptimization on a higher level of theory. The
computationally involved initial reaction path generation could be significantly accelerated with reliable
SQM methods until a certain residual gradient is reached. Further computational savings can be achieved
by avoiding superfluous reaction path searches at the significantly more expensive DFT level, because
the GFNn-xTB methods allow a reliable and efficient chemical plausibility check of the possible paths.

Averaged over all 29 reactions, the tested GFNn-xTB methods need about five minutes to obtain a
converged reaction path compared to several hours at low-cost DFT level (TPSS146-D3(BJ)/SVP276),
which clearly demonstrates the great benefit of this workflow for investigating organometallic reactions.
An example reaction is shown in Figure B.11. Although the GFN2-xTB reaction barrier of the rate
determining TS is significantly underestimated compared to TPSS-D3(BJ) and the coupled-cluster
reference values, the predicted reaction energy is clearly more accurate than that calculated with the
significantly more computationally expensive DFT method. Furthermore, if a rough estimate of an
upper limit for the respective barrier height is sufficient, the RMSD-push-pull path optimizer, which
is described in Ref.277 and implemented in the xtb code, provides an even faster alternative for this
purpose. In summary, this workflow opens up new perspectives for the fast and sufficiently accurate
theoretical investigation of challenging organometallic reaction mechanisms. Only minimal user input is
required which offers a wide range of possible applications, e.g., in hybrid multi-level schemes aiming at
the fully automated exploration of the reaction space.

B.4.4 Chemical Space Exploration

The exploration of the chemical space is an important task in computational chemistry. Macroscopic
properties of physical observables (e.g., pKa values, NMR, CD, or IR spectra) can be well approximated
as a thermostatistical average of the respective properties of low-energy chemical species under thermal
equilibrium conditions. This implies that the underlying compound space (i.e., the three-dimensional
structures of the molecules) is known, leading to a sampling problem in a space of huge dimensionality.
A good balance between computational cost and accuracy is thus required.

The prerequisite for sampling is a continuous, well-behaved PES which has to be explored by the
underlying computational method involving typically several thousand to millions of energy and gradient
evaluations. Therefore, carrying out this initial exploration step with QM methods is only possible
for very small molecules at a DFT or WFT level and other methods have to be chosen for larger
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Figure B.11: Exemplary transition state (TS) localization with GFN2-xTB driven mGSM for reaction 15 (the Lewis
structures are given) of the MOBH35274,275 test set. The mGSM reaction path along the reaction coordinate (RC)
is depicted in blue whereas the relevant TS, whose structure is shown as inset, is marked with a red circle. The
respective reaction energies ∆ER and reaction barriers ∆E‡ predicted by GFN2-xTB (blue) and TPSS-D3(BJ)/SVP
(green) as well as the corresponding coupled-cluster reference values (grey) are also shown.

molecules. As shown in the previous sections, the methods of the GFNn-xTB family provide an excellent
cost-to-accuracy ratio and should enable extensive sampling procedures. In fact, the exploration of the
low-energy chemical space is one of the main application fields for the GFNn-xTB level of theory.

In the following, we discuss two practically important examples: finding molecular conformations and
preferred protonation sites. These and several other screening algorithms have been implemented in a
standalone program called crest,19 that acts as a driver for the xtb program.

B.4.5 Conformations

Molecular conformations are the primary example for the low-energy chemical space. Conformations
are defined by minima on the PES with the same covalent bonding topology, obtained by rotation
around bonds or inversion-type processes. Because of the huge number of possible conformations
already for medium-sized molecules, finding those minima is a challenge for any exploration algorithm.
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Furthermore, the description of the PES, i.e., basically the conformational energies, has to be qualitatively
correct. From recent benchmark studies it is known8,41 that this is difficult to achieve and that one
has to apply a relatively large error margin (energy window) for the SQM pre-selected structures such
that important conformations are not sorted out by mistake. This further increases the space of the
considered structures. In recent publications,19,277 GFNn-xTB was successfully combined with Cartesian
RMSD-based meta-dynamics (MTD) simulations into an efficient, automated workflow for the task of
finding molecular conformations. Note that the generation of conformers by rotation around all dihedral
angles becomes impractical already for small systems and furthermore requires the a priori definition of
conformational coordinates, which is avoided entirely by the general MTD sampling procedure.

As an example the well known pain-relieving medication drug 2-(4-isobutylphenyl)propanoic acid,
also known as ibuprofen, is shown in Figure B.12.

Figure B.12: The ibuprofen molecule: a) most populated conformers of ibuprofen in the gas phase obtained at
the GFN2-xTB level, b) Lewis structure of the molecule including highlighted dihedral angles, c) highest lying
conformer of ibuprofen in the gas phase obtained at the GFN2-xTB level. Relative energies below the structures
correspond to the GFN2-xTB level, energies in parenthesis refer to PBE0-D3/def2-TZVPP results obtained for the
fully optimized DFT structures.

Here, all relevant conformations are generated with the above mentioned MTD approach, but without
the need to define and rotate any of the four dihedral angles shown in Figure B.12b) explicitly. From
chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy,278 four ibuprofen conformations
are observable in the gas-phase. These four conformers coincide with the four lowest conformers found at
the GFN2-xTB, as well as at the DFT (PBE0-D3(BJ)/def2-TZVPP) level (cf. Figure B.12a)). Furthermore,
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for the low-lying (i.e., populated) conformers of ibuprofen, the GFN2-xTB and DFT PES seem to be
almost perfectly parallel as there is only a minor change (≪1 kcal/mol) between the relative energies of
the structures at the two levels. Only for higher lying conformations (Figure B.12c)), the difference in
relative energy becomes more pronounced. It is a typical observation that conformational energies for
organic molecules at the GFNn-xTB level are underestimated (see subsection “Thermochemistry and
Kinetics”), i.e., the PES appears to be too flat.

As a larger much more complicated example, the protonated polypeptide Ac-Ala19-Lys-H+ is taken
from Ref. [19]. The gas-phase conformations of this peptide were previously studied in a combined
theoretical and experimental effort.279 In Ref. [19] it was shown that the conformational screening at
GFN2-xTB level is able to correctly predict important conformational features, such as the change from
an α-helical structure into a folded 310-helical structure depicted in Figure B.13a) by protonation.

Furthermore, by re-ranking the GFN2-xTB ensemble at the
PBE0-D4/def2-TZVPD//PBEh-3c level of theory even slightly better conformations than the pre-
viously known ones could be found. By visualization of the conformational energies at the GFN2-xTB
and DFT level (see Figure B.13b)), the aforementioned issue of too flat SQM method PES becomes
clear. Noticeably, the narrowly spaced conformational energy levels of GFN2-xTB are spread out over a
much larger energy window at the DFT level. However, low-energy conformers on the GFN2-xTB PES
are often also among the low-energy conformers at higher theoretical levels and vice versa. This relation
is essential for a practically useful muli-level approach.

A great advantage of the GFNn-xTB methods in combination with automated screening procedures
is their computational robustness and parameterization for almost all elements of the periodic table.
This makes it possible to investigate also systems that would normally pose problems for either the
applied theoretical method or the screening algorithm. As an example, Figure B.14 shows a macrocyclic
molecule containing a Pd2+-ion taken from Ref. [280].

Finding conformations for this metallomacrocyclic molecule is highly challenging for three reasons: 1)
the chemical composition (i.e., the metal ion), 2) interdependent dihedral angles in the macrocyclic part
of the molecule, and 3) the rigid NNN pincer-backbone of the molecule. While point 1) will most likely
prevent the usage of, e.g., standard FFs for the conformational screening, the combination of 2) and 3) will
make it nearly impossible to obtain conformations from simple conformer generators based on dihedral
angles rotation. In contrast, the automated MTD based screening at GFN2-xTB[GBSA(acetonitrile)]
level is able to provide a global minimum conformer closely resembling the crystal structure (cf.
Figure B.14b)), as well as a rather diverse conformational ensemble (cf. Figure B.14c)) for the complex.

In summary, automatized conformational screening at the GFNn-xTB level can be applied over a
broad range of chemical systems. The main advantage lies in the robustness and overall well performance
of the methods, but also in the computational speed. The computation of several thousand of energies
is impractical at DFT or WFT with the current technological limitations, but becomes feasible at the
SQM level. The implementation in the xtb program also allows for some special applications, such
as constrained conformational sampling, which extends the capabilities of this screening procedures
even further, e.g., to adsorption problems or transition states. For a more detailed discussion and more
examples see Ref. [19].

B.4.6 Protonation Sites

From recently published studies it is known that TB methods reasonably accurately describe relative
proton affinities (PA),36,41,187 e.g., for the PArel subset of the GMTKN55 data base. The description
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Figure B.13: The Ac-Ala19-Lys-H+ molecule. a) Most stable α-helical and folded conformations of Ac-Ala19-
Lys-H+ in the gas phase at GFN2-xTB level. As indicated by the arrow, both forms can interchange depending
on the protonation site (Ac-H+ vs. Lys-H+). b) Comparison of corresponding conformational energies at the
GFN2-xTB and PBE0-D4/def2-TZVPD//PBEh-3c levels in the gas phase.

of relative proton affinities is important, i.e., to rank different protonation sites of a molecule (also
referred to as protomers). The first automated protomer screening procedure at the GFN1-xTB level
was discussed in Ref. [187]. Here, the idea was to generate all protomers of a molecule automatically
and rank them based on their energy, i.e., the relative PA, to obtain estimated preferred protonation
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Figure B.14: Pd-pincer metallomacrocycle: a) Lewis structure of the metallomacrocycle, b) overlay between the
crystal structure (transparent blue) and the lowest conformer generated at the GFN2-xTB[GBSA(acetonitrile)]
level, c) overlay of the 10 lowest energy conformers.

sites. For an automation this requires the generation of initial protonated candidate structures. Common
protonation sites are typically π- and lone pair (LP) centers, which can be obtained easily from an SQM
calculation. In Ref. [187], it was demonstrated that this procedure works reasonably well for almost
arbitrary chemical systems. As an electronically rather complicated example, the (PCP)Ir(N2) complex
and its protomers generated at the GFN2-xTB[GBSA(THF)] level are shown in Figure B.15.

This complex is known to be able to activate N2 upon protonation, which was studied by combined
NMR and cyclic voltammetry experiments.281 It was concluded that the protonation selectively occurs at
the metal center of the complex and no protonation at the dinitrogen group is observed. In a completely
automatized fashion this can be validated at the GFN2-xTB level, where the protonation occurs either in
a three-center-two-electron (3c-2e) bond between the metal and the pincer, or directly at the metal (cf.
Figure B.15b) and B.15c)). All other possible protomers of the complex, including protonation at the
dinitrogen ligand are significantly higher in energy (see Figure B.15c) and B.15e)).

The automatized protonation site identification at the GFNn-xTB level was extended in Ref. [19] to
other (mononuclear) ions. The resulting capability, e.g., to screen for alkalization sites is a further proof
of the robustness of GFNn-xTB methods. Note, that the automated generation of protomers (or similar
ion adducts) is only possible due to the QM nature of the approach: starting structures are generated
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Figure B.15: The (PCP)Ir(N2) pincer complex and its protomers: a) Lewis structure of (PCP)Ir(N2) in the
unprotonated state, b-e) most stable protomers of [(PCP)Ir(N2)H]+. The proton position is highlighted for better
visibility. Relative energies below the structures correspond to the GFN2-xTB[GBSA(THF)] level.

from localized molecular orbital (LMO) centers without other prior information and new bonds can be
formed freely during a structure optimization, which is both impossible at FF or chemoinformatical level.
From the examples above and the previous publications19,187,277,282 it is concluded that the automation
of GFNn-xTB-based screening procedures provide reliable workflows for the generation and ranking of
various low-energy structures. Typically, they require further treatment at higher DFT or WFT levels of
theory as discussed in the introduction (cf. Figure B.1). Furthermore, the protonation feature described
here has been extended in Ref. [19] to an automatized procedure for generating low-energy tautomers as
well.

B.4.7 Electron Impact Mass Spectra Simulations

One of the important special features of TB methods at finite electronic temperature is that covalent
bonds can be dissociated properly into atoms (for some example potential energy curves see Ref. [8]).

91



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

This was exploited already in 2013 (originally with DFTB3-D3(BJ)) for the first principles computation
of electron impact mass spectra (EI-MS) of molecules283 by combination of QC with stochastically
initiated MD simulations. Since in this approach, a large chemical space resulting from fragmentations
is automatically explored, we consider it as an example here. Actually, the long term idea to be able to
simulate EI-MS was one of the reasons that led to the development of the GFNn-xTB methods and very
recently, GFN1- and GFN2-xTB was employed on a large scale for this purpose.235,284 Note, that the
whole procedure termed QCEIMS would hardly be technically and computationally feasible without
the herein described robust SQM methods. The principle and main features of QCEIMS are briefly
described in the following paragraph and depicted in Figure B.16.

time

time (ps)

Electron Ionization
Mass Spectrum

Production runs
(GFNn - xTB)

Equilibration/Sampling
(GFNn - xTB)

Input generation

Figure B.16: Automatic workflow for GFNn-xTB based EI-MS calculations (modified from Ref. [284]). The
hexafluorobenzene molecule is taken as an example.

In the first step, the (neutral) input molecular structure is equilibrated in an MD run from which a
predefined number (typically a few hundred) snapshots are randomly selected and saved as starting
coordinates. For complicated cases, a preceding detailed conformational analysis could be conducted
and the entire procedure is started separately for the found conformers.

For each snapshot, the molecular orbital spectrum is calculated and a Mulliken population analysis is
performed. With this information, the internal excess energy (IEE) and internal conversion (IC) time are
estimated for proper initial (randomized) conditions. Then, the snap-shots are instantaneously (valence)
ionized and independently propagated in time on the cationic GFNn-xTB PES until a reaction occurs
in the simulation. The ionization potential (IP) of the (neutral) fragments is calculated and used to
determine their statistical charge. The fragment with the highest charge is selected for propagation in
a cascade fashion. It can undergo further fragmentation until either no internal energy is left, or the
fragment is getting too small. All charged fragments are counted, stored, and, by gathering data from
all production runs, the mass spectrum is obtained as shown on the right part of the Figure B.16 in
comparison with the respective experimental data (inverted for better visibility). At a typical electron
impact energy of 70 eV, the IEE of the target molecule is several eV so that very high reaction rates in the
few ps regime are initiated. Hence, although one has to sample over hundreds to thousand of trajectories,
each of them can be computed rather fast such that the overall computational effort is manageable at an
SQM (but not at DFT) level.

The calculations carried out in this way are basically following first principles and fully theoretical,
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i.e., not based upon any experimental results and represent a viable, “black-box” type alternative to
rule-based, chemoinformatical approaches. Typically, a very reasonable (semi-quantitative) agreement
between theory and experiment is observed.285 This is somewhat surprising since barriers and reaction
thermodynamics (for which the GFN methods are not parameterized) strongly influence the sampled
relative reaction rates. Overall, GFN1- and GFN2-xTB (and also DFTB3-D3(BJ) for organic molecules)
perform rather similar for a broad set of molecules. In addition to the spectrum, the reactive MD
trajectories yield detailed chemical information on the reaction mechanisms leading to specific fragments
(spectral peaks). Because overall millions of energy/force evaluations are required in this approach, this
is only possible with fast, robustly converging, and dissociative QC methods like GFNn-xTB.

B.4.8 Further Applications

Thermostatistical Corrections

The computation of harmonic vibrational frequencies by quantum chemistry methods is a common
application mostly conducted to obtain thermostatistical corrections from energy to enthalpy (H) or free
energy (G). This requires knowledge of the equilibrium molecular structure (and atomic masses) as
well as (at least) the second derivatives of the energy with respect to all nuclear displacements (Hessian
matrix), both of which are provided rather accurately by the GFN methods.

Here, GFN2-xTB-computed zero-point vibrational energies (ZPVE, which contribute dominantly
to H) and total molecular free energies at 298 K (G298) are compared to corresponding values at the
low-cost B97-3c DFT theoretical level. Because such standard DFT calculations are roughly two orders
of magnitude slower, a very substantial reduction of the needed computational resources may be achieved
if they could routinely be replaced by SQM. The B97-3c vibrational frequencies are on average close
to experimental fundamental ones and normally require no scaling to be comparable to experimental
data.286 They are here taken as a reasonable reference to benchmark GFN2-xTB (the GFN1-xTB variant
performs similar but slightly worse and is therefore not discussed here).

Figure B.17 shows a comparison of ZPVE values at B97-3c and GFN2-xTB values for a set of 39
medium sized organic molecules taken from a benchmark study of Li et al.,287 which was originally
employed to establish computational procedures for computing molecular entropies. The corresponding
free energy values are also depicted in Figure B.17 which (compared to the ZPVE) emphasize more
structural aspects as well as the low frequency part of the vibrational spectrum. The G298 values refer
to the modified rigid-rotor-harmonic-oscillator (mRRHO) treatment from Ref. [73] with a rotor-cutoff
of 20 cm−1. As can be clearly seen from the graph, there is a very good reproduction of the DFT
reference thermostatistical properties by GFN2-xTB. The MAD for the ZPVE data is only 0.34 kcal/mol
(MD = 0.29 kcal/mol) with a maximum error of 1.6 kcal/mol. In actual applications where normally
differences of the values for reactants and products are taken, the effective error may be even smaller
because of cancellation. The performance for the free energies is similar with an MAD of 0.5 kcal/mol
and a maximum error of 2.0 kcal/mol. These deviations are small compared to other sources of
error in typical thermochemical studies for larger systems like the intrinsic error of the DFT/WFT
electronic energies23,288 or an inaccurate treatment of solvation effects.289,290 Tab. B.3 shows that this
also applies to larger or electronically more complex cases. Here, the absolute values (and hence also
the absolute deviations) are larger than for the previous benchmark set but nevertheless, still small and
rather systematic deviations of less than 5 % (< 2 % for the two anti-viral drugs) are obtained with
GFN2-xTB. Typically, the predicted values are too small which could be remedied by a simple scaling
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Figure B.17: Comparison of GFN2-xTB thermostatistical data with corresponding B97-3c DFT reference values
for 39 organic molecules ranging from ethane (smallest) to n-octane (largest). The solid line shows the one-to-one
correspondence and the dashed ones indicate a common error range for chemical accuracy, i.e., ±1 kcal/mol.

Table B.3: Comparison of GFN2-xTB thermostatistical data (in kcal/mol) with corresponding B97-3c DFT
reference values for a set of six molecules (two antiviral drugs, one large conjugated π-system with a coordinated
metal atom, and two transition-metal complexes).

ZPVE G298
molecule GFN2-xTB B97-3c GFN2-xTB B97-3c
lopinavir 491.3 500.4 441.1 451.3
remdesivir 377.8 385.1 330.0 338.3
Mg-porphine 165.9 169.2 138.5 143.1
ferrocene 100.5 104.8 79.1 85.1
Cr(CO)6 29.7 31.7 1.9 7.0

procedure. Note that for the largest system with 94 atoms (lopinavir) the frequency calculation took
about 7.5 and 0.03 hours, respectively, at the DFT and SQM levels showing the tremendous speed-up
at very little loss of accuracy. Furthermore, the severe sensitivity of DFT-computed thermostatistical
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data (vibrational partition function) on the numerical integration grid for low-frequency modes has
been pointed out recently.291 Eliminating this issue would require the use of very large, computationally
costly integration grids in the calculation of the nuclear Hessians with DFT methods. The GFNn-xTB
energy expressions are fully analytic, and hence, represent a robust electronic structure scheme for
the calculation of harmonic frequencies to be used in free energy calculations. For these reasons, the
application of GFN2-xTB is highly recommended instead of costly and numerically sensitive DFT
methods in the computation of vibrational frequencies in large scale computational projects or early
stages of extensive mechanistic studies.

Protein Examples

The accurate simulation of large biomolecular systems like proteins remains one of the “holy grails” in
computational chemistry.167 Efficient theoretical models can be applied in tandem with the experiment,
e.g., to elucidate molecular mechanisms in vivo292, to compute target-drug interactions174,293 or to
simulate secondary structure rearrangements.294–296 The GFNn-xTB family of methods is a promising
candidate for such tasks and has already been successfully applied multiple times in the context of
biomolecular systems.189,266,297 One example is the comprehensive study of Schmitz et al.266 that
evaluates the performance of GFN1/2-xTB variants on structure optimizations of 90 protein structures
(of which 20 contain metal atoms). The experimentally derived X-ray structures serve as reference in this
study. GFN2-xTB performs for various standard geometrical descriptors very similar to special-purpose
force-fields (OPLS2005 and AMBER*) and outperforms even the wave function-based HF-3c method.
For the subset of metalloproteins – for which standard FFs and HF-3c could not be applied – GFN2-xTB
shows remarkable performance in reproducing the secondary structure motifs and the coordination
sphere around the metal centers.

Figure B.18: Structural overlay of experimental crystal (grey) and GFN2-xTB/GBSA(H2O)-optimized metallo-
protein structures (blue). 1NX2 and 1QJJ were computed as closed-shell systems with charges equal to +1 and
−11, respectively. 5FTZ was treated as a doublet with a net charge of +6 (see Ref.266 for details).

Figure B.18a) depicts the structural overlay of the calcium-containing hydrolase 1NX2 shown as
a first example. The secondary structure and metal sites are preserved during optimization. The Cα
RMSD of 0.89 Å is reasonably small and the structures differ mainly in the unstructured loop regions.

95



Appendix B Extended Tight-Binding (xTB) Quantum Chemistry Methods

Figure B.18c) depicts the Cu-containing lyase protein (5FTZ). The overlay of the X-ray and GFN2-xTB
optimized structure shows a remarkable agreement in the secondary structure. The RMSD of only
0.48 Å is one of the smallest within the whole metalloprotein subset. GFN2-xTB reproduces – also
for this protein – all hydrogen bond stabilized structural motifs like helices and sheets very well. The
reason for the structural differences in the unstructured regions remains elusive. Figure B.18b) depicts
the coordination sphere of the zinc metal center of the hydrolase 1QJJ. The mean absolute error of all
metal-ligand bond lengths is 0.07 Å. GFN2-xTB perfectly reproduces the coordination sphere with
respect to the experimental X-ray structure.

The combination of GFNn-xTB variants for structural problems with the sTDA-xTB method for
excited states opens interesting possibilities for investigation of large biomolecular systems. Some of us
have presented the applicability and performance of the sTDA-xTB method for electronic excitation
spectra like ECD and UV-vis for proteins and DNA fragments.189 Figure B.19 shows the ECD spectrum
of cytochrome c computed with sTDA-xTB on a GFN2-xTB optimized structure as an example.

Figure B.19: Calculated ECD spectrum of cytochrome c (blue solid line). The individual transition strengths are
broadened by Gaussian functions with a full width at 1/e maximum of 0.5 eV and the spectrum is red-shifted by
0.5 eV. The experimental spectrum in water (gray solid line) is taken from Ref. [298].

The characteristic ECD bands of the α-helical secondary protein structure are reproduced very well.
This is remarkable, considering that no molecular fragmentation procedure is applied, i.e., the entire
protein is computed fully quantum mechanically. The computation takes 5 h for the optimization and
33 h for the spectrum calculation (involving 30405 excited electronic states) on a standard compute node
with four Intel® Xeon® CPU E3-1270 v5 @ 3.6GHz cores.

Previous studies have shown that for some optical properties, MD sampling is essential.189,198,202,299–301

Here, an MD simulation is performed, and snapshots are taken equidistantly from the resulting trajectory.
The desired property is then computed for each snapshot and averaged. The MD simulation at the
tight-binding level is not feasible for systems with more than 1000 atoms and for the necessary simulation
lengths of several nanoseconds. Figure B.5 shows the timings for single-point plus gradient calculations
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for the different GFN methods for 14 proteins. The GFN-FF method, with a three orders of magnitude
lower computational cost compared to GFN2-xTB, enables MD simulations of biomolecular systems
with up to 5000-10000 atoms. Even the inclusion of explicit solvent molecules for structure optimization
and MD simulation is now possible. Figure B.20 shows the structure of hemocyanin (PDB: 1JS8) with
an explicit water shell of 6 Å distance to the protein surface (10074 atoms). The structure of this system
is optimized on loose thresholds within 1058 cycles and in 9 hours and 33 minutes at the GFN-FF
level of theory (31 seconds per optimization cycle). The heavy atom and Cα-RMSD are 1.0 and 0.9 Å,
respectively, compared to the experimental crystal structure.

Figure B.20: Cartoon representation of the GFN-FF optimized (blue) structure of hemocyanin (PDB: 1JS8),
including an explicit water solvent shell of 6 Å (red).

Periodic systems

Recently, the GFN0- and GFN1-xTB methods were extended to periodic boundary conditions (PBC) in
two program packages302,303 enabling the routine computation of solids and surfaces. As examples for
application to periodic systems, we describe the computation of lattice energies for various molecular
crystals in the common X23 benchmark set,154,157 as well as structural data of 222 zeolite frameworks
taken from a standard database.304,305

Molecular crystals are an important research area for material science as well as in pharmaceutical
chemistry.306,307 Their perhaps most important property is the lattice energy, Elat, which reflects how
much energy is released per molecule upon sublimation. It is defined as

Elat =
1

n
Ecrystal − Egas, (B.66)

where Ecrystal is the total energy of the crystal including overall n molecules within the primitive cell
and Egas is the energy of the isolated molecule in its lowest energy conformation. A commonly used
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benchmark set for lattice energies, which comprises a diverse set of experimentally well-determined
organic molecular crystals, is the X23 dataset.154 Reference values are experimental sublimation
enthalpies, which have been back-corrected for vibrational contributions in the harmonic approximation.
It includes various intermolecular binding motifs as, e.g., hydrogen bonding, electrostatic interactions,
as well as London-dispersion dominated unsaturated hydrocarbons and is therefore ideally suited to
assess how well the underlying theoretical method is able to describe non-covalent interactions in a
dense environment.

The error of the applied Γ -point only approximation applied in the periodic GFN1-xTB method can
become quite large for small cells. Therefore, we constructed different supercells (2x2x2 and 3x3x3)
for every molecular crystal to minimize this error and noted that the best results are obtained within
the largest supercells which are reported here. Furthermore, we employ the low-cost DFT composite
HSE-3c method308 for comparison. The average experimental value of Elat over the whole test set is 20.3
kcal/mol.

Table B.4: Errors in lattice energies for the X23 benchmark set. All statistical measures are given in kcal/mol.
GFN1-xTB values are obtained using the ADF program,302 DFTB3 values are obtained using the DFTB+ program309

(excluding the ammonia and cytosine systems which did not converge). HSE-3c values were taken from Ref. [308].

Measure HSE-3c GFN1-xTB DFTB3-(3ob)-D3(BJ)
MD 0.3 −1.0 2.4
MAD 1.3 2.7 3.3
RMSD 1.6 3.5 3.4
AMAX 3.8 8.6 8.8

As expected, the overall best performance is obtained by HSE-3c with a mean absolute deviation
of 1.3 kcal/mol. GFN1-xTB doubles the MAD of HSE-3c but outperforms its direct competitor
DFTB3-(3ob)-D3(BJ) by more than 0.5 kcal/mol. Since the GFN1-xTB method is orders of magnitudes
faster than HSE-3c, this result is especially promising for future screening studies, e.g., in crystal
structure prediction. Further enhancements have to be developed, especially the proper inclusion of a
k-point sampling is necessary for smaller cell sizes. Nevertheless, the applicability of the GFN1-xTB
method is superior to the DFTB methods enabling the calculation of systems with almost every element
combination.

With this in mind, we discuss how cell volumes of small- to large-sized zeolite frameworks are
reproduced in comparison to higher-level theoretical reference data. Overall, 222 zeolite frameworks
were considered,304,305 for which the number of atoms inside the primitive cells range from 15 atoms
(IZA code: EDI) to the biggest with 4320 atoms (IZA code: MWF).

All structures have been optimized by Baerlocher and co-workers using the distance least squares
(DLS-76) level of theory,310 which we use for comparison. Due to the large size of some systems, we
apply the cost-effective periodic GFN0-xTB method as implemented under PBC in the xtb program.
Note that the DLS-76 method has been fitted to reproduce experimental data thereby incorporating
thermal effects implicitly.

Figure B.21 depicts a correlation plot between GFN0-xTB-computed and DLS-76 reference volumes,
which shows that GFN0-xTB is able to accurately reproduce most of the DLS-76 structures rather
accurately. Overall, the GFN0-xTB method slightly underestimates the cell volumes, which can be
explained by missing zero-point vibrational and thermal contributions. For molecular crystals this
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contribution amounts to approximately 2%.34 The reference cell angles are mostly conserved in the
optimizations. The MAD values of cell lengths, angles, and volumes for GFN0-xTB with respect to the
DLS-76 structures are given in Figure B.21, where one significant outlier (PAR) is shown as inset (cell
volume decreased by approximately 14 %).

PAR

15 20 25 30 35

15

20

25

30

35

VDLS76 / Å
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Figure B.21: Comparison between GFN0-xTB and DLS-76 volumes for 222 experimentally known zeolite
framework structures. The inset shows a structure overlay of the only significant outlier (see text).

B.5 Conclusions

In this review, the theory, development, and implementation as well as prototypical applications of
the GFN family of atomistic, mostly quantum chemistry-based semiempirical methods is described.
Their main purpose is the fast, robust and reasonably accurate calculation of large molecules in
gas and condensed phase with an emphasis on a good description of ground state structures, non-
covalent interactions, low-energy chemical transformations like molecular conformations and vibrational
frequencies. A common feature and strong point consistent among the methods (including the recently
developed GFN-FF universal force field) is that practically any chemically interesting species can be
treated, since parameters exist for a very large part of the periodic table (up to radon). Opposed to
the only existing competing family of semiempirical methods with broad parameterization (PMx), the
theory is derived from a density functional theory background, which makes the methods applicable also
in electronically more complicated cases like transition metal compounds or other systems involving
stronger electron correlation effects. Although we currently have less experience with the methods
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applied under periodic boundary conditions, it is indicated that due to their consistent design strategy
and physically very reasonable energy terms, they should be also applicable to solids, surfaces or dense
materials in general. The theoretically weakest point of the xTB methods in their current formulation
(but also an essential reason for their high efficiency) is the use of an (almost) minimal atomic orbital
basis set for the expansion of the Kohn-Sham-type electronic eigenvalue equations.

Overall, the xTB methods, especially the most sophisticated GFN2-xTB version, provide an excep-
tionally good accuracy-performance/computational cost ratio for the target properties. On standard
workstations or even laptop computers, full geometry optimizations, frequency calculations or conforma-
tional searches can be conducted in minutes to a few hours for systems composed of hundreds to about a
1000 atoms. Although the xTB methods can be applied in principle also to much larger systems composed
of about 5000-10000 atoms, in this regime force-fields like GFN-FF are more appropriate. Alternatively,
they allow fast and robust screening of compound libraries in about the same computation time, e.g.,
thousands of candidate species with 50-100 atoms. This applies even to other interesting chemical
(off-target) properties not discussed here like, e.g., polarity (dipole moments), gaps (electrochemistry),
vibrational anharmonicity or bonding (electron density) information. Calculations can be carried out in
a user-friendly black-box style as implemented in the efficient xtb program, which is freely available204

and accompanied by a continuously updated online documentation.240

Not part of the GFN family is another xTB-based scheme, which is discussed in this review: in
the sTDA-xTB method, a non-self-consistent xTB approach is combined with a subsequent simplified
Tamm-Dancoff-approximated time-dependent linear response treatment. This is a single-point method,
which is suited for the computation of excitation energies and optical spectra of huge systems, such as
full proteins without resorting to a QM/MM or fragment approach.

We are confident that the described methods will form the basis for many successful studies in various
fields of computational science. Application in automated workflows may open up new perspectives for
molecular property design or chemical reaction space exploration. Combination with modern machine
learning techniques, e.g., as input or data generator, also seems to be a promising research direction and
first attempts based on the xTB methods have already been made.311
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B.7.1 Further reading

The xtb and crest programs can be obtained free of charge from GitHub (see Ref. [204] and [239],
respectively). Instructions for both programs can be found in Ref. [240].
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Appendix C Conformational Energy Benchmark for Longer n-Alkane Chains

Abstract We present the first benchmark set focusing on the conformational energies of highly flexible,
long n-alkane chains, termed ACONFL. Unbranched alkanes are ubiquitous building blocks in nature, so
the goal is to be able to calculate their properties most accurately to improve the modeling of, e.g, complex
(biological) systems. Very accurate DLPNO-CCSD(T1)/CBS reference values are provided, which
allow for a statistical meaningful evaluation of even the best available density functional methods. The
performance of established and modern (dispersion corrected) density functionals is comprehensively
assessed. The recently introduced r2SCAN-V functional shows excellent performance, similar to efficient
composite DFT methods like B97-3c and r2SCAN-3c, which provide an even better cost-accuracy ratio,
while almost reaching the accuracy of much more computationally demanding hybrid or double hybrid
functionals with large QZ AO basis sets. In addition, we investigated the performance of common
wavefunction methods, where MP2/CBS surprisingly performs worse compared to simple D4 dispersion
corrected Hartree–Fock. Furthermore, we investigate the performance of several semiempirical and
force field methods, which are commonly used for the generation of conformational ensembles in
multilevel workflows or in large scale molecular dynamics studies. Outstanding performance is obtained
by the recently introduced general force field, GFN-FF, while other commonly applied methods like the
universal force field yield large errors. We recommend the ACONFL as a helpful benchmark set for
parameterization of new semiempirical or force field methods and machine learning potentials as well as
a meaningful validation set for newly developed DFT or dispersion methods.

C.1 Introduction

Conformers are defined as distinct minima on a molecular potential energy surface with fixed covalent
topology and can be converted into each other by rotations about formally single bonds. Their structure
and relative (conformational) energies are of great importance in organic molecules312 and for biological
activity.313 This is especially true for open-chain compounds, as they usually feature many possible
internal rotation axes. Such flexible molecules are key for targeting compounds with specific spatial
properties and understanding how folding of biological polymers and peptides is controlled.314 Often,
many conformers cover a rather narrow energy range, so that these systems exist as a thermally populated
mixture of conformers at room or physiological temperature. Since measured equilibrium properties
correspond to the Boltzmann average of the microstates, representing all relevant molecular structures is
essential for a reliable prediction of molecular properties.20,315

Unbranched n-alkanes, which are ubiquitous in nature, are the simplest examples of this class of
molecules, so the goal is to be able to calculate their properties most accurately to improve the modeling
of complex (biological) systems such as membrane proteins316 and to allow for more reliable protein
ligand docking libraries.317 n-alkanes and aliphatic chains in general are of particular importance, not
only as basic building blocks of organic chemistry and part of fossil fuels, but also as components of
lipids and polymers.

The existence of multiple conformers for n-alkanes for n > 3 has been known since the seminal work
of Pitzer published 85 years ago.318 Since then, a number of experimental and theoretical studies have
been carried out with the aim of determining conformation energies, i. e. the energy difference between
two different conformers, of n-alkanes as accurately as possible. Shorter n-alkanes are typical subjects
of experimental studies investigating conformational enthalpies319 or low-energy conformers.320,321

Also theoretical investigations of torsional and conformational energies feature mainly short alkane
chains.322–324 For longer alkane chains (n> 10), previous theoretical studies focus mainly on the lowest
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lying conformer,325–328 investigating the balance between repulsive hydrogen contacts and attractive
London-dispersion to predict the change from the linear zig-zag conformation to a hairpin like, closed
conformer.

The most comprehensive theoretical studies on conformational energies of n-alkanes up to n-hexane
were carried out by Gruzman et al.,78 augmented in a later by Martin with a detailed potential energy
surface investigation of n-pentane beyond equilibrium structures.329 However, the conformational
ensemble of short n-alkanes chain is not fully representative for longer n-alkanes, which have particular
relevance for modeling biological systems, e. g. in lipids, due to the much stronger attractive London-
dispersion.326–328

While n-alkanes are seemingly simple systems for wavefunction theory (WFT) due to the large
HOMO-LUMO gap and absence of static correlation, the need for large and diffuse basis sets to
accurately capture long-range dynamic correlation effects, i. e. London dispersion, and to reduce the
residual intramolecular basis set superposition error (BSSE), which cannot be removed by standard
counterpoise correction schemes, posed a computational challenge. Moreover, since the differences in
conformational energies should be described with an accuracy of at least 0.1 kcal/mol to allow a correct
assessment of the conformational order or to calculate the Boltzmann populations reasonably well at
room temperature,20 sophisticated WFT methods such as CCSD(T) are essential for a reliable theoretical
reference.

To provide this level of accuracy, the cumulative medium and long range intramolecular nonconvalent
interactions (NCI) in long saturated chains need to be described accurately at the same footings.78,330–332

This balance is problematic for density functional theory (DFT) as has been, e.g., shown for 1,3
interactions in branched alkanes by one the present authors333 even if London dispersion is captured by a
suitable dispersion correction. To assess the description of intramolecular NCIs in semilocal density
functionals and semiempirical methods, various related conformational benchmarks sets were devised,
e.g., for melatonin,334 butane-1,4-diol,335 RNA backbone models,271 amino acids,336 and many more,
for example composed in the GMTKN55 database.23 The latter also includes the ACONF set, which
comprises 15 relative energies of n-butane, n-pentane and n-hexane conformers taken from the work of
Gruzman at al.78

Nowadays, the long-range NCI problem for DFT, semiempirical quantum mechanics (SQM) and also
force fields methods is largely solved,9,25,28 but this has not yet been extensively assessed for conformer
ensembles of longer n-alkane chains. Moreover, especially in folded n-alkane chains, many NCI contacts
of H atoms due to Pauli repulsion become important and existing theoretical studies focusing on shorter
n-alkanes or just equilibrium conformer structures could not evaluate these interactions comprehensively.
The recently introduced combined tools GFN-FF,337 GFNn-xTB,1,8,41 CREST,19 and CENSO20 have
filled a gap in the field of quantum chemical modeling, specifically for generating conformer ensembles
of larger molecules. Here, we make use of these new capabilities to generate suitable conformer
ensembles of longer n-alkanes, which we have combined into a new benchmark set termed ACONFL
(see C.3. Recent developments of accurate low-order scaling local coupled cluster methods184 enabled
us to generate high level theoretical reference values close to the basis set limit suitable for a statistical
meaningful evaluation of much more approximate methods.

After summarizing the computational details in the next section, the generation of our new benchmark
set and its reference values will be described followed by an extensive evaluation of various FF, SQM,
DFT and WFT methods. Finally, general conclusions and method recommendations will be given.
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C.2 Computational details

Conformer ensembles were obtained with the advanced conformer rotamer ensemble sampling tool19,20,239

(crest, version 4) employing the GFN-FF81 method and default settings. Subsequently, selected
conformers (see C.3.1) were re-optimized at the B97-3c79 level of theory utilizing the Turbomole
program package version 7.5.1.133,338

The ORCA program package version 5.0.1184,339 was used to perform the calculations with double
hybrid functionals, MP3, DLPNO-CCSD and the meta-GGA B97M, while the Hartree-Fock (HF),
second order Møller-Plesset perturbation theory (MP2) and local coupled cluster and calculations were
carried out employing ORCA 4.2.1340. All other DFT calculations were executed with Turbomole
7.5.1. MP2D341 calculations were conducted with Psi4.342

κOO-MP2 (κ = 1.1)343 and MP2.5344 were
evaluated with QChem 5.4.2.12 The resolution of identity (RI) method was employed to accelerate the
evaluation of Coulomb (RIJ) and exchange integrals (RIJK).345,346 Except for the ”3c” methods, which
use the respective stripped and optimized basis sets, Ahlrichs’ type quadruple-ζ def2-QZVPP347 basis
sets with matching auxiliary basis sets for RIJ and RIJK136,348 were applied in the DFT calculations.
The numerical quadrature grid option DefGrid3 and TightSCF convergence criteria were applied as
implemented in ORCA 5.0.1, while the m4 grid was used in the Turbomole calculations.

The RI and frozen core approximations for the correlation part as well as TightSCF convergence
criteria for the HF part as implemented in ORCA 4.2.1 were employed. The domain based, local pair
natural orbital coupled cluster method269 in its ORCA 4.2.1 closed-shell, sparse maps270 iterative triples349

implementation (DLPNO-CCSD(T1)) together with VeryTightPNO threshold settings (i.e. ORCA 4.2.1
TightPNO settings with TCutMKN, TCutPNO, and TCutPairs tightened to 10−4, 10−8, and 10−6,
respectively) was applied. An aug-cc-pVTZ/aug-cc-pVQZ350 complete basis set (CBS) extrapolation
according to the scheme introduced by Helgaker and Klopper351 was carried out separately for the HF
and correlation energy for all MP2 and parts of DLPNO-CCSD(T1) energies. The same extrapolation
scheme was used for the MP2/CBS and PWPB95-D4/CBS energies. For all other DLPNO-CCSD(T)
energies, a special CBS extrapolation scheme (see Section C.3.2) was employed.

DFTB calculations were conducted with the DFTB+ program package (version 21.1),13,352 the 3ob
parameterization353–356 was used for the third-order DFTB Hamiltonian, while the mio parameter-
ization38,178,357 was used with the second-order DFTB Hamiltonian. The LC-DFTB Hamiltonian
was applied with the ob2-base parameterization.358 The GFN1-xTB,41 GFN2-xTB,8 and GFN-FF81

calculations were carried out using the xtb program (version 6.4.1)1,204. The MOPAC program (version
2016)359 was used to perform PM6-D3H480 and PM7 calculations.360 The SMIRKS Native Open
Force Field (SMIRNOFF) based methods361 were used to evaluate the SMIRNOFF99Frosst-1.1.0362,
OpenFF-1.0.0363 and OpenFF-2.0.0364 as implemented in the OpenFF toolkit.365 The UFF82 and the
MMFF9483,84 were evaluated with RDKit.366 Calculations with the OpenFF toolkit and RDKit were
driven via QCEngine.11

All tested DFT methods were evaluated in combination with one out of the following three London
dispersion corrections, D3,26,27 D4,7,9 or VV1028,29,62 (also called NL or V). The two former were
applied together with the rational (Becke–Johnson) damping function,67,68,129 except for the M06-L
functional, where zero (Chai–Head-Gordon) damping367 was employed. Furthermore, revised damping
parameters proposed by Smith et al.368 and the optimized power damping function369 were tested if
available for the respective functionals. D3 and D4 corrections were calculated with the s-dftd3
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(version 0.5.1)370 and dftd4 (version 3.3.0)371 standalone programs and consistently include three-body
Axilrod–Teller–Muto (ATM)69,70 dispersion contributions. The non-local density-dependent VV10
dispersion correction was calculated non-selfconsistently as implemented in Turbomole 7.5.1 or in
case of B97M-V, ORCA 5.0.1.

Table C.1: Tested semi-empirical and force field methods

method dispersion reference

FF
smirnoff99Frosst-1.1.0 LJ [361, 362]
OpenFF-1.0.0 LJ [361, 363]
OpenFF-2.0.0 LJ [361, 364]
UFF LJ [82]
MMFF94 Buf-14-7 [83, 84]
GFN-FF D4 [81]
SQM
GFN1-xTB D3(BJ) [41]
GFN2-xTB D4 [8]
PM7 D2 [360]
PM6 D3(BJ) [80]
DFTB3 D3(BJ), D4 [353–356]
DFTB2 D4 [38, 178, 357]
LC-DFTB2 D3(BJ), D4 [358]

C.3 The ACONFL test set

We present a new benchmark set termed ACONFL (Alkane CONFormers Large) to evaluate QC, SQM,
and FF methods concerning their performance in predicting alkane conformer energies. It extends the
well-established and commonly used ACONF benchmark set by employing longer n-alkanes and more
diverse conformer ensembles. While the largest alkane used in the ACONF benchmark is n-hexane, the
ACONFL set is composed of n-dodecane (ACONF12 subset), n-hexadecane (ACONF16 subset), and
n-icosane conformers (ACONF20 subset), including 50 conformational energies in total.

C.3.1 Construction of the test set

The conformer potential energy surface of an unbranched alkane is characterized by torsional twists that
lead from linear chains to highly deformed structures dominated by intramolecular dispersion forces. At
temperatures less than 300 K, short alkanes (n = 4− 8) in the gas phase are well-known to prefer the
linear all-trans conformation. However, as the length of the alkane grows, there is a point where the
attractive NCIs will cause the chain to ”self-solvate” into a folded conformer.325 A cross-gauche-cross
rotation combination introduces an energetically unfavorable syn-pentane-like conformation. In addition,
the chain ends are not parallel in this conformation, thus reducing the possible stabilization due to van
der Waals attraction. A hairpin conformation with four gauche rotations minimizes the number of
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Table C.2: Tested methods and dispersion corrections

method D3 D4 VV10 reference

Composite (”3c”)
HF-3c ✓ — — [173]
PBEh-3c ✓ — — [142]
B97-3c ✓ — — [79]
r2SCAN-3c — ✓ — [14]
(meta-)GGA
PBE ✓ ✓ ✓ [57, 58]
TPSS ✓ ✓ ✓ [146, 372]
B97M ✓ ✓ ✓ [22, 62, 63]
r2SCAN ✓ ✓ ✓ [4, 21, 373]
M06L ✓ ✓ — [103]
(rs-)(meta-)Hybrid
B3LYP ✓ ✓ ✓ [253, 374]
PBE0 ✓ ✓ ✓ [59, 60]
PW6B95 ✓ ✓ ✓ [375]
M06-2X ✓ — — [64]
MN12-SX — ✓ — [376]
ωB97M ✓ ✓ ✓ [61–63]
ωB97X ✓ ✓ ✓ [74, 108, 367]
Lh20t — ✓ — [32]
Double-hybrid
B2PLYP ✓ ✓ ✓ [333]
PWPB95 ✓ ✓ ✓ [377]
DSD-BLYP ✓ ✓ — [377]
revDSD-BLYP — ✓ — [378]
WFT
HF ✓ ✓ ✓
MP2 — — —
MP3 — — —
MP2D ✓ — — [341]
κOO-MP2 — — — [343, 379]
MP2.5 — — — [344]
DLPNO-CCSD — — —

strained bonds. This allows an energetically favorable parallel arrangement of the chain ends, yielding
the suggested global minimum for longer alkanes.326–328 The zig-zag-hairpin stability turning point
appears to be around hexadecane.

Since the conformational ensembles become nearly continuous in energy for longer alkanes, compiling
a benchmark set out of the lowest conformers up to a certain energy threshold is not practicable since
even with the CCSD(T) at the estimated basis set limit to reliably predict conformational energies smaller
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than about 0.1 kcal/mol. Therefore, we created a conformational ensemble at the GFN-FF level of
theory using the version four conformer search as implemented in CREST and selected conformers in a
5–6 kcal/mol energy window with a decent (i.e., clearly distinguishable at the CCSD(T) level of theory
(vide infra)) equidistant spacing of the conformational energies. This approach keeps the total number
of conformers in the ACONFL set reasonably small while still including as much of the diversity of
the complete conformational ensemble as possible. Those conformers were re-optimized at the B97-3c
level of theory and used as the starting point for performing the reference calculations. B97-3c provides
sufficiently accurate geometries for our purpose, although the overall accuracy of the geometries is
secondary due to the de facto continuum of structures in the conformers for these highly flexible systems
and the use of the same structures also for the reference CC calculations. In total, 53 single point
calculations are required to evaluate the complete ACONFL, and 50 conformational energies with respect
to the respective energetically lowest conformers are overall assessed for the three subsets, ACONF12,
ACONF16, and ACONF20. Compared to the ACONF set with an mean absolute conformational energy
of 1.83 kcal/mol the complete ACONFL set has a higher mean of 4.62 kcal/mol.

The ACONF12 subset shown in Fig. C.1 contains twelve relative conformational energies, with the
lowest conformer being the linear n-dodecane molecule and the mean absolute conformational energy
being 4.28 kcal/mol. This set was already successfully used in several studies to test the performance of
new DFT methods5,14 as well as in a recent perspective on the description of conformational ensembles.20

The numbering of the conformers results from the initial conformational search rather than the final
energetic ordering.

Figure C.1: The 13 n-dodecane conformers of the ACONF12 subset. The conformer 0 is the lowest conformer, the
numbering of the conformers does not necessarily correspond to their energetic order.

For the ACONF16 subset in Fig. C.2 17 relative conformational energies are included with the folded
n-hexadecane as the energetically lowest conformer, which is in line with previous studies,327,328,380 but
the linear conformation being the second lowest is only slightly higher energy by 0.09 kcal/mol. The
mean absolute conformational energy of ACONF16 is 3.98 kcal/mol. Finally, the ACONF20 subset
contains 21 relative conformational energies (cf. Fig. C.3). For this set, the hairpin-like conformer of
n-icosane is with 1.31 kcal/mol already significantly more stable the linear conformation. Here, the
mean absolute conformational energy is 5.32 kcal/mol. These subsets allow for assessing a balanced
description of dispersion and repulsion by the tested methods, since the shorter n-dodecane features
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Figure C.2: The 18 n-hexadecane conformers of the ACONF16 subset. The conformer 0 is the lowest conformer,
the numbering of the conformers does not necessarily correspond to their energetic order.

incomplete attractive intramolecular NCIs to favor a closed form, while the longer n-icosane chains
with favor a closed hairpin-like conformation due to cummulated effect of intramolecular NCIs, and the
intermediate n-hexadecane set refers to the point, where both forms are very close in energy. It should be
noted that the mean signed error (MSE) statistical descriptor depends on whether the lowest conformer
is the linear or folded structure. Therefore, it is more meaningful to analyse the MSE, e.g. looking for a
systematic of the linear form, for each subset separately rather than for the complete ACONFL as the
MSEs of the subsets could inevitably cancel each other due to different signs.

C.3.2 Generation of the reference values

Previous studies of alkane conformers proved that effects beyond CCSD(T) are not important for
the accurate description of conformational energies.78 Since canonical CCSD(T) is computationally
prohibitive for the target systems, the DLPNO-CCSD(T1) method with very tight PNO thresholds is
used to approximate the canonical result as close as possible. For the extrapolation to the complete basis
set limit351,381 the aug-cc-pVTZ and aug-cc-pVQZ basis sets were used, dubbed aT and aQ respectively
in the following paragraphs. This level of theory was shown to serve as reliable reference in various NCI
benchmarks.131,337,382 To also verify the accuracy the suggested reference protocol for the ACONFL set,
we evaluate ACONF and compare to the highly accurate W1hval78,383,384 reference values of the latter.
The deviation of DLPNO-CCSD(T1)/CBS(aTaQ) from the W1hval conformational energies is shown in
Fig. C.4 on the left. With an negligible MSE of 0.04 kcal/mol and an error range of only 0.10 kcal/mol,
sufficient accuracy for ACONFL can be expected with our reference protocol.

However, the full basis set extrapolation is still too expensive to be applicable for the ACONF16 and
ACONF20 subsets. Therefore, we resort to a CBS extrapolation scheme based on focal-point analysis385
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Figure C.3: The 22 n-icosane conformers of the ACONF20 subset. The conformer 00 is the lowest conformer, the
numbering of the conformers does not necessarily correspond to their energetic order.

for the latter. Following Marshall et al.,131 the respective “δCBS” basis set extrapolation scheme is given
by

δCBS = E(MP2/CBS(aTaQ)) + Ec(DLPNO-CCSD(T1)/aT) − Ec(MP2/aT) , (C.1)

where Ec is the correlation energy part of the total energy E. Additionally, we introduce a similar but
multiplicative scheme dubbed xCBS, which represents a refined variant of the multiplicative CBS*
scheme,79,271 and is defined in the following way:

xCBS = E(HF/CBS(aTaQ)) + Ec(MP2/CBS(aTaQ)) ·
(
Ec(DLPNO-CCSD(T1)/aT)

Ec(MP2/aT)

)
. (C.2)

The xCBS protocol is typically less sensitive to more severe MP2 errors compared to the δCBS protocol.
To estimate the additional error introduced by the more approximate basis set extrapolation, we compared
the two schemes with the full CBS(aTaQ) conformational energies for the ACONF12 subset (see Fig. C.4,
on the right). While the xCBS(aTaQ) yields a slightly positive MSE of 0.05 kcal/mol, the δCBS(aTaQ)
a slightly negative MSE of −0.08 kcal/mol. Hence, we find that the arithmetic mean of both schemes
agrees exceptionally well with the full CBS(aTaQ) scheme. Therefore, this average was chosen as
reference for the ACONF16 and ACONF20 subsets, for which the full CBS(aTaQ) extrapolation was
computationally unfeasible.

The maximum residual error of the ACONFL reference conformational energies, resulting from the
local DLPNO approximations, the basis set incompleteness and intramolecular superposition errors,
and the additonal error from the focal point analysis for the larger subsets is conservatively estimated
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Figure C.4: Deviation of the reference method DLPNO-CCSD(T1)/CBS(aTaQ) against W1hval for the ACONF
benchmark set as well as deviation of CBS extrapolations on the ACONF12 benchmark set compared to a
CBS(aTaQ) extrapolation scheme. The average conformational energy for the ACONF benchmark is given as
1.83 kcal/mol.

to be 0.35 kcal/mol. This uncertainty of the reference values is largely averaged in the analysis of the
statistical descriptors for the entire ACONFL set. The square root of the sum of the squares of the
estimated maximum error divided by the number of conformational energies, yielding 0.05 kcal/mol
for the ACONFL set, can be used as an estimate for statistically distinguishable values of the analyzed
descriptors (see Sec. C.4). With the given accuracy of the reference values, we are thus able to distinguish
statistically significant errors of any method above 0.05 kcal/mol.

C.4 Results and discussion

In this section, the performance of all tested methods for the ACONFL set is presented and discussed.
Specifically, DFT and the respective dispersion corrections, as well as WFT methods, are assessed in
subsection C.4.1, while SQM and FF methods are evaluated in subsection C.4.2. Finally, a performance
analysis in terms of computation times vs. accuracy is given in subsection C.4.3. To assess the methods
we will mainly discuss the mean absolute error (MAE), the analysis of other statistical quantities, like the
mean signed error (MSE), standard deviation (SD), and the error range were investigated as well, but will
only be discussed if they show deviating trends from the MAE. The consistency of the conformational
ordering is measured by the Pearson rp and Spearman correlation coefficients rs, besides the MAE
for the conformational energies and correctly identifying the lowest-lying conformer. For the precise
definition of the employed statistical measures see the supporting information.
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C.4.1 Assessment of DFT and WFT methods

For the following discussion, we selected five (meta-)GGAs, eight hybrids, and four DHDFs, which
represent either commonly used or best performing members23 of the respective functional rungs.55

Established functionals like PBE,57,58 TPSS,146,372 and B3LYP253,374 are included as well as modern
functionals like B97M,22,62,63 r2SCAN,4,21,373 and revDSD-BLYP.378 In the hybrid class of functionals
we have included global hybrids like PBE0,59,60 range-separated hybrids like ωB97M,61–63 screened
exchange hybrids like MN12-SX,64 as well as local hybrids like Lh20t32 to access a broad range of
different construction strategies in this functional class. We also evaluated wavefunction methods like HF
and MP2 in the overall comparison. Finally, we include several composite electronic structure methods
of the “3c” scheme, namely B97-3c79 (GGA), r2SCAN-3c14 (meta-GGA), PBEh-3c142 (hybrid), and
HF-3c173 (HF), which use a tailored basis set, in combination with D3 or D4 dispersion correction
and the geometrical counter-poise correction (gCP)386,387 or a short-range basis correction (SRB)79 to
allow efficient yet accurate calculations (for a detailed overview on the “3c” type of methods we refer
to Refs. [34] and [14]). All methods tested here were combined with correction schemes to capture
long-range dispersion interactions, which are absent in semi-local DFT.25 We apply the D3 dispersion
correction26,27 with the rational Becke–Johnson (BJ) and zero Chai–Head-Gordon (0) damping schemes,
the recently developed D4 dispersion correction,7,9 and the nonlocal dispersion correction via the VV10
functional in its non-selfconsistent variant.28,29,62 In case D4 damping parameters were not available, we
determined them following the procedure described in Ref. [9].

Before assessing the general performance on the ACONFL, we will investigate the influence of
different London dispersion corrections for a selected number of methods, including those which are
available with D4, D3, and VV10. First, we want to stress that the MAE for all dispersion corrected
methods is well below 1 kcal/mol, while MAEs of non-dispersion corrected functionals are significantly
higher yielding an average MAE larger than 2 kcal/mol. Therefore, we will generally only consider
dispersion corrected functionals in the following discussion. Dispersion interactions are crucial for the
correct description of the investigated alkane conformers and due to their electronically simple structure
semi-classical geometry dependent models should be sufficient. To check the influence of the dispersion
correction we choose twelve methods for which D3, D4 and VV10 are available. For the tested methods
shown in Fig. C.5, we find that in seven cases the D4 corrected variant performs best, while for three
methods D3 results in the best performing method, and only in two cases the VV10 corrected functional
yields the lowest MAE. Similarly, the average MAE for D4 corrected methods is with 0.29 kcal/mol
lowest compared to an average MAE of 0.36 and 0.42 kcal/mol for D3 and VV10 corrected methods,
respectively. We find a generally better performance for D4 compared to D3, which is most likely related
to the improved parameterization strategy introduced together with D4.9 Investigating different damping
functions for D3, we find a worse performance with the zero-damping and usually an on-par performance
with re-parameterized damping functions, for a full comparison see the ESI. This can be seen for a
method like r2SCAN where the same parameterization strategy was employed for all three dispersion
corrections. Notably, the performance of VV10 with r2SCAN is remarkably good and with an MAE
of only 0.18 kcal/mol the best performing method in the (meta-)GGA class while outperforming all
tested hybrid functionals. Further, we find for HF-D4 especially good performance with an MAE of
0.14 kcal/mol compared to its D3 and VV10 variant with larger errors, indicating that the consistent
parameterization of the dispersion correction is crucial. Overall the D4 dispersion correction shows to
be a reliable choice over a wide range of functionals in agreement with previous studies.9,337,388
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Figure C.5: MAE of all twelve methods available with D4, D3, and VV10 dispersion corrections. The methods are
grouped in respective rungs.

To reduce the complexity of the further discussion and focus on the difference in the methods rather
than dispersion corrections, we will select the best dispersion correction in each case for the DFT
methods discussed in the next paragraphs. The complete statistics for all corrected methods are given
in the supporting information. The error spread of all tested DFT, composite DFT and wavefunction
methods is shown in Fig. C.6. Notably, many methods are below an error range of ±1 kcal/mol, with the
best method DSD-BLYP-D3(BJ) even reaching an error range of only ±0.22 kcal/mol approaching the
accuracy of the coupled cluster reference values.

Overall, we find the best performing (meta-)GGA to be the newly developed r2SCAN-V with an MAE
of only 0.18 kcal/mol, the second best is B97M-V with 0.35 kcal/mol MAE. In the hybrid class the best
performing method is r2SCAN0-V with an MAE of 0.17 kcal/mol, which performs as good as the best
(meta-)GGAs. Since the investigated systems are electronically simple, the quality of the base functional
is more important than the admixture of Fock exchange here, and for reasons of computational efficiency,
a good (meta-)GGA like r2SCAN-V is therefore preferable. We can recover the hierarchy of Jacob’s
ladder55 at the highest rung with the DHDFs, where the best-performing method on the entire ACONFL
is DSD-BLYP-D3(BJ) with an MAE of only 0.06 kcal/mol.

Notably, HF-D4 performs very well with an MAE of only 0.14 kcal/mol and thus, as good as the best
tested hybrid functional. However, while dispersion corrected HF performs well, we find that MP2 at
the estimated basis set limit (CBS(aug-TZ/aug-QZ)) results in a large MAE value of 0.59 kcal/mol, i. e.
worse than most of the assessed dispersion corrected DFT methods, except for some Minnesota-type
functionals. The significance of post-MP2 contributions was already observed for n-hexane in the
ACONF set.78 While for MP2 and correlated WFT methods in general, large and diffuse basis sets are
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Figure C.6: Deviations for the ACONFL set for selected DFT and WFT methods.

necessary to fully recover long-range dispersion, the physically correct behaviour at the mean field
HF level is included more conveniently by a suitable dispersion correction. Moreover, in D4 we can
approximately recover three-body dispersion contributions, which would require a higher order treatment
than MP2. To further analyse the rather poor performance of MP2, we compare MP2/def2-QZVPP
with the recently introduced regularized κOO-MP2 (κ=1.1)/def2-QZVPP, MP2.5344/def2-TZVPP, and
MP2D341/def2-QZVPP for the ACONF12 subset. With the κ regularization and orbital-optimization we
only find a small improvement 0.12 kcal/mol in the MAE, as expected for closed-shell systems with large
HOMO–LUMO gaps.343,379 The MAE is reduced to 0.24 kcal/mol by mixing in third-order terms via
the MP2.5 scheme containing 50% MP3 correlation energy. The full MP3/def2-TZVPP method yields
an outstandingly small MAE of 0.02 kcal/mol due to a fortunate compensation of the MP3 overshooting
and the residual BSSE of the triple-ζ basis set. Finally, employing the MP2D approach to correct the
uncoupled HF dispersion treatment by DFT-D3 ones reduces the MAE by 0.33 kcal/mol compared to
the original MP2. The remaining residual BSSE can be estimated by comparing the QZ results with
the CBS result reducing the MAE by 0.17 kcal/mol. Notably, the combination of MP2 and a dispersion
correction contribution to recover the proper long-range dispersion also significantly reduces the error
of DHDFs (vide supra). However, the MAE for ACONF12 with MP2D is still 0.21 kcal/mol higher
than for HF-D4 due to residual basis set incompleteness and superposition errors. Comparable to the
general performance of the series MP2/MP3/MP4 for NCIs,344 DLPNO-CCSD overstabilizes the linear
structure (MSE of 0.60 kcal/mol), verifying that the connected triples correction including contributions
from MP4 and MP5 is essential for accurate coupled cluster results. The comparison of all tested WFT
methods for the ACONF12 subset is shown in Fig. C.7.

To assess the potentially larger residual basis set incompleteness and superposition error in DHDF
functionals we evaluated PWPB95-D4 with CBS(aTaQ) basis extrapolation and compared the results on
the ACONF12 set with the values obtained in the def2-QZVPP basis set. The MAE reduces for this
subset reduces from 0.46 to 0.32 kcal/mol, which is a statistically significant improvement. However,
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Figure C.7: Comparison of wavefunction methods on the ACONF12 using a def2-QZVPP basis set if not noted
otherwise.

DHDFs are usually not extrapolated to the approximated basis set limit (i.e., CBS(aTaQ) due to the
increased (about eight times in this case) computational effort compared to the def2-QZVPP calculation.
Therefore, we primarily investigated the performance with the commonly applied def2-QZVPP basis set.

Compared to the generally good performance of DFT across all functional classes, we note that only
the Minnesota-type functionals tested here show significantly increased deviations, which is rather
unusual. While they incorporate short and medium-range dispersion implicitly via their parameterization,
the semi-local functionals still cannot fully account for long-range dispersion.25 However, we find for
most functionals of this type the combination with long-range London dispersion corrections is not
beneficial for large n-alkanes. For example, for MN12-SX the uncorrected functional yields an MAE of
0.48 kcal/mol while that of the D4 corrected functional is with 0.76 kcal/mol significantly larger.

With the best functionals identified close to their basis set limit, we now want to investigate how
much of their performance can be recovered with more cost-efficient composite electronic structure
methods, namely of the “3c” construction scheme. The “3c” methods are well-suited in a multilevel
model scheme to re-rank or re-optimize an ensemble created at a lower level of theory, like SQM or
force fields. Both B97-3c and r2SCAN-3c provide a very good description of ACONFL with an MAE
of 0.15 and 0.20 kcal/mol, respectively, approaching the accuracy of the best performing methods in a
quadruple-ζ basis set. B97-3c is even the best among the tested GGA functionals for this benchmark
set. PBEh-3c performs somewhat worse with 0.87 kcal/mol, which can mainly be attributed to the
small modified double-ζ basis set and the respective gCP error, while B97-3c and r2SCAN-3c employ a
larger modified triple-ζ basis set. Note that the base functional PBE already performs worse compared
to modern functionals like r2SCAN. Overall, the composite methods r2SCAN-3c and B97-3c prove
to be sufficiently accurate in a very cost-effective way. Therefore we clearly recommend their usage
in multilevel workflows, e. g., for conformer ranking of flexible molecules with n-alkanes as building
blocks.
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C.4.2 Assessment of SQM and FF methods

SQM and FF methods are often employed for large scale screening purposes. Due to their much lower
computational cost the calculation of large conformational ensembles becomes possible, including chal-
lenging tasks like determining the absolute conformational entropy.389 However, due to approximations
inherent to SQM and FF methods the accuracy is often significantly lower and hence a re-ranking
of generated ensembles at a higher level of theory becomes necessary.20 The margin of the energetic
threshold to include structures and therefore the amount of structures from the lower level of theory within
such refinement workflows is crucial for the overall computational efficiency. Especially, the prediction
of the correct energetically most-favorable conformer is important to avoid sorting out structures with
major contributions to the final ensemble. The ACONFL provides the chemically most simple yet most
flexible molecules for assessing the quality of SQM and FF methods in this context. The deviations of
all semiempirical methods and force fields are shown in Fig. C.8 For the three best and the three worst
performing methods of this category we also show their conformational energies in Fig. C.9.

Figure C.8: Comparison of all tested semiempirical quantum mechanical methods and force field methods. The
“3c” composite method are included as point of reference to Fig. C.6.

A widely used method is the universal force field (UFF).82 UFF yields a good correlation (rp = 0.98
and rs = 0.95) but the overall MAE of 2.91 kcal/mol is large given the mean energy of 4.62 kcal/mol.
Furthermore, the UFF conformational energies are systematically too small (MSE of −2.89 kcal/mol),
indicating an overall too shallow potential energy surface. A strong systematic error and too small
conformational energies even with a good correlation results in larger conformational ensembles, which
negatively impact the computational cost of later refinement steps at a higher level of accuracy. A similar
behavior is observed for the MMFF94 force field with an MAE of 3.41 kcal/mol and also a large negative
MSE.

GFN-FF is another general force field which we have tested. It yields very good agreement with the
reference, at least for an FF, with an MAE of 0.55 kcal/mol and a good correlation of the conformer
ordering (rp = 0.97 and rs = 0.96). Most importantly, it correctly identifies all the lowest-lying
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Figure C.9: Conformational energies for the subsets ACONF12, ACONF16, and ACONF20 for three of the best
performing and three (filled dots) of the worst performing (open dots) semiempirical and force field methods tested.
The reference energies are given as black crosses, the connecting line serves only for better visibility.

conformers in the respective subsets while getting close to the performance of some DFT methods.
From all tested force field methods, the OpenFF-1.0.0 performs best with an MAE of only 0.31 kcal/mol.

Also, the SMIRNOFF99Frost and OpenFF-2.0.0 force fields yield small MAEs of 0.76 and 0.56 kcal/mol,
respectively. Moreover, all SMIRNOFF methods yield an excellent Pearson correlation coefficient of
0.99. Most force fields can also correctly identify the linear form of n-hexadecane to be lower in energy
than the lowest-lying folded structure. The individual conformational energies for the OpenFF-1.0.0 and
GFN-FF as well as MMFF94 are shown in Fig. C.9, emphasizing the correct conformational ordering
produced by the former methods and the too shallow potential energy surface produced by the latter
method.

After investigating force fields we will focus on SQM methods as the next more sophisticated
level of theory explicitly including electronic structure effects, like the HF based NDDO methods of
the PMx family and the DFT based tight-binding methods of either the DFTB or xTB flavor. The
PM6-D3H4 method provides with an MAE of 0.55 kcal/mol a reasonably accurate description. This
good performance seems to be in line with the very good results obtained by dispersion-corrected HF
(MAE of 0.14 kcal/mol), on which PM6 is formally based on. However, in contrast its successor PM7
yields with 1.48 kcal/mol a much larger MAE.

From the tested tight binding methods, we find that GFN2-xTB performs best with an MAE of
0.58 kcal/mol. Compared to GFN-FF the GFN2-xTB MAE shows similar performance, however the
error range is with 0.29 kcal/mol smaller than for GFN-FF (1.94 compared to 2.23 kcal/mol). Similarly,
the error range obtained by GFN2-xTB is by 0.59 kcal/mol smaller than with PM6-D3H4. While
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the performance of DFTB2-D4 and DFTB3-D4 is quite similar to each other (MAEs of 1.66 and
1.60 kcal/mol, respectively) the better performance in GFN2-xTB may originate from the improved
description of the anisotropic electrostatics. In contrast, the GFN1-xTB method performs with an MAE
of 2.06 kcal/mol worse, which is could be related to the basis set on hydrogen and the resulting worse
description of repulsive NCI contacts. A remarkably weak performer is the LC-DFTB2-D4 method, which
introduces spurious large errors in the conformational energies and almost no correlation of the energetic
order with the reference (rp = 0.37 and rs = 0.36). Visual inspection of the conformational energies
in Fig. C.9 for LC-DFTB2-D4 shows severe errors for each of the subset, where the conformational
energies are systematically too low (ACONF12, ACONF16) or spread over a wide range (ACONF20).
The large MAE 3.71 kcal/mol results from the distorted potential energy surface. Whether this originates
from the parameterization or is a more fundamental problem remains an open question due to lack of
alternative long-range corrected DFTB methods to compare with.

Although alkanes are thought to be very prototypical, especially SQM and FFs result in a rather
unusual performance order at least for the longer alkane conformers (ACONF16 and ACONF20). Overall,
among the force fields and semiempirical methods tested here, GFN-FF provides the best compromise
between speed and accuracy.

C.4.3 Performance comparison

Besides the accuracy of the method, an important factor for conformational sampling is its computational
cost. For a representative number of methods, we show the computation time to evaluate the whole
ACONFL benchmark set, together with their MAE. The wall times were obtained by parallel calculations
using four CPU cores and are shown in Fig. C.10. The evaluation of single point energies is representative
for a reranking of an ensemble generated by a lower level method in a multilevel workflow, however
less suitable for semiempirical methods as those are usually used in the generation of the ensemble in
geometry optimizations as additional overhead from the restart or program invocation can be already
substantial compared to the total runtime.

Still, the relative time required for the single point evaluation is representative for comparing the
computational efficiency of different semiempirical methods with each other. We find that the evaluation
of the single point energies for SMIRNOFF methods takes 1.1 min on the entire ACONFL, while the
GFN2-xTB method requires less than a second runtime. This difference results from the AM1-BCC
charge calculation performed as part of the setup of the SMIRNOFF parameterization. In practice, this
calculation has to be done only once per structure, subsequent energy and gradient evaluations will be
significantly faster but require proper caching via the compute engine to remain feasible.

Note, the calculation of the reference values at DLPNO-CCSD(T1)/CBS level of theory took about
four months cumulative wall time for the whole set.

C.5 Conclusions

We introduced the first benchmark set focusing on the conformational ensembles of long alkane chains,
which are a prominent structural motif in many technically and biologically relevant molecules. This new
set is termed ACONFL, indicating its relation to the ACONF benchmark introduced by Gruzman et al.
in 2009,78 which only includes alkane conformers up to n-hexane. ACONFL comprises conformational
ensembles (53 conformers and 50 relative energies up to about 8 kcal/mol) of the n-alkanes C12H24,
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Figure C.10: Wall time for evaluation of the complete ACONFL benchmark set on four Intel Core i7-7700K CPU
cores. Due to the vastly different scales present over the wide range of methods assessed here we show the timings
in seconds on a logarithmic scale.

C16H34, and C20H42 that cover the transition from linear to hairpin structures as energetically lowest
conformers thus providing a more realistic picture than the ACONF set. We generated reliable reference
conformational energies employing high level coupled cluster theory close to the basis set limit (DLPNO-
CCSD(T1)/VeryTightPNO/CBS(aug-cc-pVTZ/aug-cc-pVQZ)) allowing for a statistically meaningful
evaluation for lower level methods with MAE differences larger than 0.05 kcal/mol.

Using this highly accurate reference data, we explored the performance of a hierarchy of density
functionals, the “3c” family of density functional theory (DFT) composite methods, the wavefunction-
based approaches HF and MP2, semiempirical approaches (SQM), as well as standard and recent force
field (FF) methods. It bears pointing out that of those methods, only the latter (SQM and FF-based) are
sufficiently efficient to comprehensively explore the conformational space of these flexible molecules,
and are thus indispensable to accurately calculate properties like their absolute entropy.389

Concerning the DFT-based methods, we found that (meta-)GGA and hybrid functionals are similarly
accurate. In other words, the inclusion Fock exchange does not lead to significant improvements which
would justify the increased computational demands. Only DHDFs significantly reduce the error in the
conformational energies further. However, even in this case it is questionable whether the small gain
in accuracy (0.05 kcal/mol on average) satisfies the massively increased computational cost. The best
tested method is DSD-BLYP-D3(BJ) with an MAE of 0.06 kcal/mol while the worst tested functional is
M06L-D4 with an MAE of 1.84 kcal/mol. In the ACONFL benchmark we are able to quantify the impact
of dispersion, while in the smaller ACONF benchmark set, many dispersion uncorrected functionals
perform only slightly worse than their dispersion corrected counterparts. In this respect, the composite
DFT methods B97-3c and r2SCAN-3c provide an outstanding cost/accuracy ratio as they perform on
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part with DFT/QZ methods for a small fraction (about 2–3 orders of magnitude faster compared to
DHDF/QZ) of the computational cost.

Regarding correction-schemes in general, we want to point out that for DFT (and also HF) the
application of a dispersion correction is crucial for conformational energies of longer alkane chains,
which is consistent with previous studies.327,328,380 Especially the influence of dispersion corrections
on the conformational energies cannot be assessed with the smaller ACONF benchmark set78 alone.
Comparing commonly applied dispersion correction schemes, we find that methods with D4 perform on
average slightly better (MAE about 0.1 kcal/mol lower) than D3 or VV10 corrected methods. Further,
we notice a very good performance for HF-D4 (MAE of 0.14 kcal/mol), which can be attributed to
the accurate parameterization of D4 as well as the approximate inclusion of many-body dispersion
effects in the latter. While saturated systems with large gaps are usually well described by MP2, we find
surprisingly poor performance for MP2/CBS, which we largely attribute to the uncoupled HF dispersion
coefficients.390 This shortcoming of the MP2 can be partially overcome by using the MP2D method,
however the performance was found to be still worse compared to computationally less demanding
HF-D4 method. Finally, the combination of MP3 in a triple-ζ basis set profits from fortunate error
compensation, which makes DHDFs using KS-MP3 correlation391 worth exploring in the future.

Moving to SQM and FF methods, we find that the inherent additional approximations of those
methods also increase the overall error (average MAE 1.55 kcal/mol) compared to DFT significantly.
However, GFN2-xTB and PM6-D3H4, the best-performing among the tested SQM methods (0.58
and 0.55 kcal/mol MAE, respectively) are sufficiently accurate to retain the energetic ordering of the
conformer ensemble reasonably well. Older standard FFs like UFF and MMFF94 yield generally too
shallow potential energy surfaces and, in turn, much too large conformer ensembles in a given energy
window. These methods thus require re-ranking and re-optimization at a higher level of theory, which
makes them unsuitable in practice, especially if the global energy minimum conformer is incorrectly
predicted (i. e. preference for the linear over the folded conformer for hexadecane and larger). This
also raises the question of whether these common force fields are able to distinguish lipid side-chain
conformations crucial for modeling biological systems in solution. Significantly higher accuracy is
obtained with the recently introduced GFN-FF and the OpenFF-1.0.0 from the SMIRNOFF FF method,
both outperforming all tested SQM methods, even approaching the accuracy of some hybrid DFT/QZ
methods (with MAEs of 0.55 and 0.31 kcal/mol, respectively). In our experience, however, the freely
available implementation of the SMIRNOFF FFs via QCEngine is not optimal, requiring an overhead
of computer time by two orders of magnitude compared to GFN-FF that render their use impractical.
Hence, GFN-FF provides both, fast and accurately conformational ensembles and outperformed several
SQM methods on this benchmark set, which is quite surprising.

After all, due to its most favorable cost-accuracy ratio, we recommend GFN-FF for conformational
searches of alkane conformers for large scale screening applications or to model extended systems with
long alkyl chains. However, depending on the other details of the system in question, it may be required
to move to a more robust and accurate DFT based method. Here, the efficient composite methods
r2SCAN-3c and B97-3c performed particularly well. Although it should be a seemingly straightforward
problem for SQM and FF methods due to the simple electronic structure of alkanes, only few of the
tested methods performed convincingly and thus we recommend the ACONFL as a helpful fit set for
parameterization of new SQM and FF as well as machine learning potentials. Further, the ACONFL
provides a meaningful validation set for newly developed DFT and MP2-type WFT methods, especially
since the accurate description of conformational energy poses a unique challenge for every investigated
ensemble.
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Abstract We present a robust and efficient method to implicitly account for solvation effects in modern
semiempirical quantum mechanics and force-fields. A computationally efficient yet accurate solvation
model based on the analytical linearized Poisson–Boltzmann (ALPB) model is parameterized for the
extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the
recently proposed GFN-FF general force-field. The proposed methods perform well over a broad range
of systems and applications, from conformational energies over transition-metal complexes to large
supramolecular association reactions of charged species. For hydration free energies of small molecules
GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a
mean absolute deviation of only 1.4 kcal/mol compared to experiment. Logarithmic octanol–water
partition coefficients (logKow) are computed with a mean absolute deviation of about 0.65 using
GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential
solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are
parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse
computational applications.
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D.1 Introduction

Solvation is ubiquitous in biological systems and plays an important role in many aspects of chemistry.
Therefore, any computational method targeting to describe structures or interactions under realistic
conditions must account for solvation effects. Solute–solvent interactions for example in hydration
processes392,393 or binding free energy computation394 can be evaluated explicitly by free energy
methods like thermodynamic integration395–397 or free energy perturbation.398–401 Techniques like
metadynamics,402 umbrella sampling403 or replica exchange404,405 allow to enhance the efficiency
of the configuration space sampling determining the precision in the free energy computation.406

Beside molecular dynamic based sampling techniques, Monte-Carlo methods can be used to effectively
sample the conformational landscape.392,407,408 While those methods are a suitable for accurate free
energy computation, they require significant computational effort, which can be prohibitive for detailed
investigations of chemical reaction mechanisms or high throughput computational workflows.

A practical compromise is usually found in the application of implicit solvation models.99,409–414 In
this approach, the contributions to the solvation free energy are often partitioned into polar (electrostatic)
and non-polar (dispersion and cavity) solvation free energies, which allows devising tailored models
for each contribution separately. The polar contribution is mostly approximated by conductor-like
screening (COSMO)415 or polarizable continuum models (PCM).416–419 Implicit solvation models like
the conductor-like screening model for real solvents (COSMO-RS)97–99,420, the solvent models based
on solute electron density (SMD)421 or the three-dimensional reference interaction side model (3D-
RISM)422–424 enable accurate computation of solvation free energies based on standard (mostly DFT)
electronic structure input data. However, while low-scaling implementations of COSMO/PCM have been
proposed,425 they still yield a noticeable computational overhead for force-field (FF) or semiempirical
quantum mechanical (SQM) methods. For example the PM6 and PM7 methods have been successfully
combined with COSMO426,427 in previous studies using linear scaling algorithms.

A promising alternative are generalized Born (GB) models,86,428,429 which are used in the reaction
field based solvation models (SM), like SM690, SM8430,431 or SM12432 and for FFs as generalized Born
and surface area model (GBSA).85,88,234 These models allow devising computationally efficient but yet
accurate schemes to include solvation effects in large scale simulations.87

For the many SQM methods available, robust solvation models are needed, as this is tightly bound
to the applicability of the respective methods in computational chemistry or biology.433,434 One of the
most promising members of the family of SQM methods are tight binding (TB) approaches, like density
functional tight binding (DFTB)13,36 or extended tight binding (xTB).1 While the xTB methods were
from the very beginning coupled with an implicit solvation model,8,41 only a few DFTB implementations
account for solvation effects.268,435–437

In this work we revisit the implicit solvation models tied with the xTB methods and try to systematically
improve the underlying theory as well as the parametrization. Both experimental data from the MNSOL
database90–92 and theoretical values based on COSMO-RS are used as reference data in the fit. To allow
for a fair comparison with DFTB, we also implemented, parameterized, and tested the implicit solvation
models developed for xTB with three DFTB Hamiltonians. Furthermore, we include the recently devised
general force field GFN-FF45 which is not equipped with a tailored solvation model yet, but employed
the GFN2-xTB solvation model in Ref. [45].

We investigate the accuracy of solvation free energies using the implicit solvation models based on the
curated FreeSolv database94,95 for experimental hydration free energies. Since accurate experimental
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data are usually only available for small compounds, we devise a benchmark set of back-corrected
experimental association solvation free energies for large supramolecular complexes as well, building
upon the established S30L set.96 Furthermore, we employ a set of experimental octanol–water partition
coefficients for 26 organic compounds and investigate the differential description of two solvents by the
new models.

This paper is organized as follows. In section D.2 the theory and algorithms used to implement the
models with the TB methods are presented. Technical details of the parametrization and generation of
reference data are described in section D.3. In section D.4 performance comparisons for a wide range of
systems and benchmarks of the investigated methods are shown. Finally, in section D.5 conclusions and
perspectives are presented.

D.2 Theory

To describe a solute in a given solvent or dielectric medium the solvation free energy ∆Gsolv is
partitioned into a polar contribution ∆Gpolar, which depends on the electrostatic potential, a non-polar
contribution ∆Gnpol, which depends on the shape of the solute cavity and a constant shift ∆Gshift
depending on the reference state for the solvation process. The solvation free energy is therefore given as

∆Gsolv = ∆Gpolar + ∆Gnpol + ∆Gshift. (D.1)

This partitioning is commonly used in many popular solvation models like GBSA86,87 or SMD421

resulting in energy expressions of different complexity for the individual contributions. Changes in the
internal free energy of the molecule (rotation, vibration and conformational partition function) upon
solvation is mostly not accounted for explicitly but absorbed into the empirical parameters of the model
(see section D.4.1).

A suitable form for an efficient evaluation of the polar contributions is the analytical linearized
Poisson–Boltzmann (ALPB) model.85, where the polar contribution is given by

∆G
ALPB
polar = −

1

2

(
1

ϵin
−

1

ϵout

)
1

1+ αβ

N∑︁
A=1

N∑︁
B=1
qAqB

(
1

f(RAB, aA, aB)
+
αβ

Adet

)
, (D.2)

and ϵin is the dielectric constant of the solute, ϵout the dielectric constant of the solvent, qA/B are atomic
partial charges, f is the interaction kernel, aA/B are the atomic Born radii for atoms A and B and Adet is
the electrostatic size of the solute. The value of α is fixed at 0.571214 following the work of Sigalov et
al.85 and β is ϵin/ϵout. The electrostatic size Adet and its derivative with respect to atomic displacement
is calculated from the inertia tensor as proposed in Ref. [85], while for ϵin the dielectric constant of the
vacuum, i. e., one, is chosen. Since GB models are derived in the limit of ϵout → ∞ or β→ 0 we can
effectively cast them into the same energy expression as the ALPB model by setting αβ to zero.

We note that in GFN2-xTB the charge density is expanded up to quadrupoles,8 while Eq. D.2 only
captures the leading term of the polar contribution to the solvation free energy. The solvation model
could be improved for GFN2-xTB by generalizing Eq. D.2 to include higher multipole moments for the
polar solvation contribution.

In this work we will test two different interaction kernels, first the canonical interaction kernel proposed
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by Still86
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and the more recently proposed P16 kernel88
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16
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. (D.4)

The evaluation of the interaction kernel requires the atomic Born radii aA/B, which are obtained by
carrying out an integral over the molecular volume of the solute. For computational efficiency, we employ
a pairwise approximate scheme, namely the Onufriev–Bashford–Case (OBC) corrected integrator termed
GBOBCII234. The Born radius in this integrator is calculated by
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3
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R
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, (D.5)

where Rvdw
A are the D3 van-der-Waals radii26, ascale is a global scaling parameter for the Born radii,

Roffset is a global shift parameter to introduce more flexibility for the van-der-Waals radii and ΨA is the
pairwise approximation to the integral over the molecular volume given by

ΨA =
R

vdw
A − Roffset

2

N∑︁
B≠A

Ω(RAB, R
vdw
A , sB · Rvdw

B ), (D.6)

whereΩ is the pairwise contribution to the approximate volume. To compensate for the overestimation
of the molecular volume in Ω, an element-specific de-screening parameter sB is introduced for the
van-der-Waals radius of the other atoms. Analytical first derivatives with respect to atomic displacements
for all geometry dependent quantities have been derived and implemented.

D.2.1 Non-polar Surface Area Contribution

To account for non-polar contributions to the solvation free energy we include a surface area (SA)
model using the solvent-accessible surface area (SASA) to compute the free energy needed to form the
solute–solvent cavity and to account for solute–solvent dispersion interactions by

∆G
SA
npol =

N∑︁
A
γAσA, (D.7)

where γA is the surface tension of each atom and σA is its SASA. The surface tension is fitted as an
element-specific parameter. To evaluate the complete SASA of the molecule we use

σtotal =

∫
V

����∇(∏
A
HA(|RA − r|)

)����d3r, (D.8)
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where HA(|RA − r|) is the atomic volume exclusion function,89 given by
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(D.9)

The extent of the boundary region is defined by the smoothing parameter w and equals 0.3 Å. The
R

surf
A are the combined van-der-Waals radii Rvdw

A with the solvent probe radius Rprobe, the latter being a
global parameter.

Since the volume exclusion function and its gradient are constant everywhere except for a narrow
region around the surface area, we discretize the integral in Eq. D.8 on an angular Lebedev–Laikov
grid438 for an efficient numerical implementation on a sparse surface grid, as

σA = 4π

Nang∑︁
g

wgwA

N∏
B≠A

HB(RBg), (D.10)

where wg and wA are the angular and radial integration weights, respectively. Analytical derivatives of
the surface area with respect to atomic displacements have been implemented following Ref. [89].

D.2.2 Hydrogen Bonding Correction

Specific interactions due to the molecular structure of the solvent, like hydrogen bonding (HB) between
the solute and solvent molecules are not accounted for due to the implicit description of the solvent as a
dielectric medium. We partition this important interaction component in atom-resolved contributions by

∆G
HB
polar =

N∑︁
A
∆G

HB
A . (D.11)

To approximate the HB interaction we use the Keesom interaction439 of hydrogen-acceptor and donor
dipoles, µAH, and µD, respectively, with an average distance R̄, which is similar to the distance of the
first solvation shell. The final interaction term includes the probability δρHB

solv that a solvent molecule
interaction site is close to the respective atom. This contribution is proportional to the SASA of the
interacting atom and therefore, we parameterize the HB contribution as
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where gHB
A is the HB strength, absorbing most of the constants, which is used as an element-specific

parameter. Since not all methods have the dipole moment readily available we resort to approximate
the quadratic dipole moment by the quadratic site atomic charge instead. Using this formula allows us
to include the HB contribution with the polar electrostatic energy as a potential in the Hamiltonian or
Lagrangian when minimizing the electrostatic energy with no additional cost as we can reuse the already
calculated SASA from the non-polar solvation free energy and its derivative.
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D.3 Computational Details

All DFT calculations were conducted with the Turbomole 7.5.1134 software package. COSMO-RS
calculations were done with COSMOtherm 1997–99 using the BP86440/def-TZVPD347 default level
of theory. We employ the 2015, 2016, 2017, 2018 and 2019 versions of the BP86/def-TZVP and
BP86/def-TZVPD fine parametrization in this work. The presented solvation models were implemented
in the open source software packages xtb1,204 and DFTB+13,352 and subsequently released with xtb
version 6.3.2 and DFTB+ version 20.1, which were used to conduct all xTB and DFTB calculations,
respectively. For the third-order variant of DFTB, the 3ob parametrization is employed353–356 and the
mio parametrization is used for the second-order DFTB variant.38,178,357 The ob2-base parametrization
is used for the LC-DFTB Hamiltonian.358 All DFTB Hamiltonians are combined with the D4(EEQ)
London dispersion model without three-body contributions9 using the parameters published in Ref. [13].
Conformational searches and analysis were conducted with the conformer–rotamer ensemble search tool
(CREST) version 2.10 using the iMTD-GC algorithm.19,441 For high-level reference calculations the
CRENSO workflow version 1.0.0 was used.20,442,443

D.3.1 ALPB Training Set

The training set for the ALPB Solvation model consists of a mixture of experimental and theoretical
solvation free energies. For the experimental part, we chose the Minnesota Solvation Database (MNSOL)
version 201290–92 to serve as reference data. This database includes two types of solvation free energies:
absolute solvation free energies and relative solvation free energies between various organic solvents and
water. For the parametrization of ALPB, only the absolute solvation free energies were taken. In total
the MNSOL Database consists of experimental solvation free energies and optimized geometries for 520
neutral and ionic solutes, including the elements H, C, N, O, F, Si, P, S, Cl, Br, and I. The contained
compounds range from small to medium sized organic solutes with a maximum atom count of 46, as
well as 31 clustered ions containing a single water molecule. These experimental values were used for
the parametrization of the solvents hexadecane, octanol, and water for the mentioned elements, as well
as the global empirical parameters in the ALPB model.

Finding sufficient experimental solvation free energies for other elements of the periodic table and
other solvents proved to be difficult. For this reason, additionally to the compounds in the MNSOL
Database, we used the fit set created for the parametrization of the xTB Hamiltonians as it covers a wide
range of elements.8,41 In total the set used here contains about 2500 compounds for 67 elements. The
geometries were optimized with the functional PBEh-3c142. The δGsolv reference values were obtained
using COSMO-RS with the default version 2016 parametrization.97–99

D.3.2 Parametrization

Other than the physical constants ε, m, and ϕ, which describe the dielectric constant, the mass and the
mass density of the solvent. The solvent mass and mass density are only used when calculating the free
energy shift for infinite dilution. ALPB uses two types of parameters: global parameters and element
specific parameters. The global parameters are Gshift in equation D.1, αscale and Roffset in equation
D.5 and the probe radius RProbe, which is included in RsurfA in equation D.10. The element specific
parameters are sX in equation D.6, γA in equation D.7 and gHBA in equation D.12. The parameterized
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solvents are shown in Tab. D.1. The ALPB solvation model employs the P16 interaction kernel, while
we use the Still interaction kernel for the GBSA solvation model in this work.

Table D.1: Parameterized solvents for ALPB in combination with GFN1-xTB, GFN2-xTB, GFN-FF, DFTB3-D4,
DFTB2-D4, and LC-DFTB2-D4 or GBSA in combination with GFN1-xTB or GFN2-xTB.

solvents

acetone acetonnitrile anilinea

benzaldehydea benzene dichlormethane
chloroform carbondisulfid dioxanea

dimethylformamidea dimethylsulfoxide ether
ethylacetatea furana hexadecanea,c

hexaneb methanol nitromethanea

octanola,c octanol (wet)a,c phenola

toluene tetrahydrofuran water

a: Not parameterized for GFN1-xTB(GBSA) and GFN2-xTB(GBSA),
b: Not parameterized for GFN1-xTB(GBSA),

c: Not parameterized for DFTB3-D4(ALPB), DFTB2-D4(ALPB), LC-DFTB2-D4(ALPB)

For the parameter fit, a fully automated workflow was implemented. Therefore, the compounds
of the ALPB test set were split into several subgroups, depending on the contained elements. The
reference solvation free energies (MNSOL database or COSMO-RS) refer to the process of transferring
the molecule from the gas phase to the liquid phase, and hence, the total molecular energy was first
calculated for the gas phase, using the respective method. Subsequently, another full self-consistent
calculation for the same gas phase geometry was conducted with added implicit solvation yielding
∆E in equation D.1. In the fitting process, first the global parameters for the elements of the organic
subgroup, containing H, C, N, O, F, P, S and Cl, were determined by calculating the difference between
the respective free energies in the two states

δGsolv = Ggas −Gsol. (D.13)

This value was then fitted to the reference data utilizing the Levenberg–Marquardt non-linear least
squares minimization algorithm444,445. The other element-specific parameters were then fitted on a
subset for each specific element with all previously determined parameters kept fixed. When developing
the workflow, care had to be taken to ensure that the element specific subsets contained only the
corresponding element and those that had already been considered. While the structures for the gas
phase and solvation calculation are not necessarily identical, we chose to perform both calculations on
the gas phase structure without relaxing the geometry. This is mainly done to reduce the computational
effort in the parametrization and to avoid potential instability of the fit due to artificial intermediate
parameters in the geometry relaxation with implicit solvation. The influence of the geometry relaxation
will be discussed in detail in Sec. D.4.1.
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D.4 Results

In the following sections, we discuss the performance of the new ALPB solvation models on a broad
range of test sets. We also compare the parametrizations of this work with the originally published
GFN1-xTB(GBSA)41 and GFN2-xTB(GBSA)8 models, which have been shipped with the xtb program
distribution1 but were not thoroughly benchmarked so far. As statistical measures we use the mean
signed deviation (MSD), mean absolute deviation (MAD), and the standard deviation (SD) and the
error range as maximum deviation minus minimum deviation for free (solvation)energies. While the
discussion mainly focuses on the MAD we also investigated the MSD, SD and error range for all sets and
will discuss those measures if they show deviating behavior from the trends in the MAD. We note that
we include the volume work in the solvation free energy when comparing against experimental results
rather than the thermostatistical contributions.

D.4.1 Influence of geometry relaxation

To assess the possible error of neglecting geometry relaxations we evaluate the water subset of the
MNSOL database. The hydration free energy for all systems was evaluated in three variants of the
models. First, by using the gas phase optimized geometry and ignoring geometry relaxations from the
implicit solvation model. Second, by relaxing the geometry with the implicit solvation model. And
third, by explicitly computing the free energy of the molecule thermostatistically in the modified rigid
rotor, harmonic oscillator (mRRHO) approximation73 with a rotor-cutoff of 50 cm−1 to account for
the changes in rotational (structure) and vibrational (frequency) contributions. This requires two full
geometry optimizations and Hessian calculations.

The results with GFN2-xTB using the parametrization for GBSA and ALPB are shown in Tab. D.2.
The overall error range is at 30 kcal/mol for all compounds, while only around 18 kcal/mol for neutral
solutes. To better interpret different error sources the set is split in neutral solutes as well as positive and
negative ions.

First, we find an overall mean MAD for the hydration free energies of 1.95 and 1.88 kcal/mol for the
GBSA and ALPB solvation model, respectively. The account for geometry relaxation only leads to small
changes in the MAD for neutral solutes, slightly deteriorating the MAD by less than 0.1 kcal/mol for
both models.

For the charged solutes we find a larger MAD in the hydration free energies of 10.05 and 7.06 kcal/mol
for GBSA and ALPB solvation models, respectively. While GBSA and ALPB show similar performance
for neutral solutes, ALPB represents a significant improvement for the charged solutes due to additional
charge dependent terms which are absent in GBSA. A notable observation is that GFN2-xTB(ALPB)
reduces the MAD of the hydration free energies by half for cationic solutes compared to GFN2-
xTB(GBSA). Furthermore, we find an overall improvement of the hydration free energies when geometry
relaxations are included for charged solutes by approximately 0.2 kcal/mol for both models.

Including rotational and vibrational contributions deteriorates the performance for hydration free
energies slightly but consistently for both neutral and charged solutes. Tentatively, this slightly diminished
accuracy can be attributed to the translational and rotational partition functions of the ideal gas and the
rigid rotor which are more approximate for the solvated system. Approaches like a harmonic solvation
model446 or heuristic corrections to the partition function447 could improve the description but are
beyond the scope of this work.

To further investigate the influence of geometry relaxation we select 25 neutral solutes which show
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Table D.2: Mean absolute deviation in kcal/mol for the hydration free energies of GFN2-xTB(ALPB) and
GFN2-xTB(GBSA) for different evaluation strategies.

GFN2-xTB(GBSA) GFN2-xTB(ALPB)
subset entries SP only opt. freq. SP only opt. freq.

neutral 390 1.95 2.01 2.08 1.88 1.96 2.07
positive 60 9.49 9.38 9.37 4.65 4.78 4.95
negative 83 11.32 10.92 11.05 9.39 8.98 9.13
all charged 143 10.05 9.78 9.84 7.06 6.85 7.02
all 533 4.26 4.23 4.30 3.36 3.36 3.49

a significant change in the hydration free energy upon optimization in solution. Notable motifs with
larger geometry changes are hydroxy, amid and nitro groups as well as sulfur or phosphorous containing
groups, i. e. especially polar groups. To establish a benchmark set we optimized all 25 compounds
using r2SCAN-3c14 in the gas phase and with DCOSMO-RS93 in water. To minimize the influence of
the underlying electronic structure methods, we compare changes in bond lengths and angles between
the gas phase and solvated structure rather than absolute bond lengths and angles. Since changes in
the hydration free energy due to geometry relaxations are smaller than 0.5 kcal/mol and the root mean
square deviation between the gas phase and the solvated structure is on average only 0.15 Å, small overall
geometry changes are expected. In order to put the SQM results into some perspective and to establish a
lower error bound we compute the geometry changes in addition with r2SCAN-3c(COSMO).

The MAD for the solvent induced geometry changes with GFN1-xTB, GFN2-xTB, DFTB3-D4 and
GFN-FF and the ALPB solvation model as well as PM6-D3H4(COSMO) are shown in Tab. D.3. First,
because of the overall small magnitude of geometry changes upon solvation and correspondingly, the
small errors involved in this test, the assessment of the methods here should be considered of qualitative
nature at most. For the TB methods in combination with ALPB, we find a similar error compared
to r2SCAN-3c(COSMO), which we consider as the lower bound for possible errors on this structures.
PM6-D3H4(COSMO) performs only slightly worse. A notable exception is GFN-FF(ALPB) which
shows doubled errors compared to the SQM methods. From this test we can conclude that the ALPB
solvation model semi-quantitatively computes small geometry changes compared to more sophisticated
models like DFT(DCOSMO-RS).

Table D.3: MAD in geometry differences for 25 neutral solutes.

distances [10−3 Å] angles [°]

r2SCAN-3c(COSMO) 1.6 0.14
GFN1-xTB(ALPB) 2.6 0.29
GFN2-xTB(ALPB) 1.7 0.28
GFN-FF(ALPB) 4.5 0.39
DFTB3-D4(ALPB) 2.0 0.20
PM6-D3H4(COSMO) 2.2 0.33

Solvation effects on bond lengths and bond angles are found to be small but can be much larger
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and chemically relevant when the entire three-dimensional structure of a molecule is considered. For
conformational changes, the solvent accessibility of the polar groups in the solute as well as the SASA
may change drastically and hence solvation effects can be crucial for the relative energetic ordering in
conformational ensembles. As an example, the PES of the antibiotic drug erythromycin was investigated
using the recently developed CRENSO20 workflow with a final conformational energy threshold of
3.0 kcal/mol. The resulting optimized structure ensemble consists of six conformers within this energy
window. The solvation free energies were calculated as the difference in energy between the structure in
the gas phase and in the liquid phase with full geometry relaxations.

Table D.4 shows the deviation between r2SCAN-3c(COSMO-RS) and the tested methods for calculated
free solvation energies for these six conformers. It is apparent, that the solvation free energies, as well

Table D.4: Free solvation energies δGsolv in kcal/mol for the six erythromycin conformers calculated with
r2SCAN-3c(COSMO-RS) and the deviation δGsolv(model)-δGsolv(COSMO-RS) for the GFN methods with ALPB
and GBSA.

δGsolv deviation
r2SCAN-3c GFN2-xTB GFN1-xTB GFN-FF GFN2-xTB GFN1-xTB

(COSMO-RS) (ALPB) (ALPB) (ALPB) (GBSA) (GBSA)

1 −27.7 1.3 −1.5 7.4 5.3 −0.1
2 −27.7 1.3 −1.5 7.3 5.3 −0.1
3 −26.5 2.1 −0.1 7.1 6.1 0.9
4 −26.4 2.2 −0.2 7.0 6.1 0.9
5 −23.9 −1.2 −2.0 6.2 2.9 −0.4
6 −28.3 0.8 −3.5 6.8 5.2 −2.7

MAD 1.5 1.5 7.0 5.2 0.9
SD 1.2 1.2 0.4 1.2 1.3

as the deviations, significantly differ depending on the investigated conformer. Note, that changes of
conformational energies on the order of 1–2 kcal/mol strongly affect thermal populations and average
thermal molecular properties. With an MAD of 1.5 kcal/mol and 1.5 kcal/mol as well as an SD of
1.2 kcal/mol, GFN2-xTB(ALPB) and GFN1-xTB(ALPB) perform reasonably well. GFN-FF(ALPB)
and GFN2-xTB(GBSA) produce significantly too positive solvation free energies with an MAD of
7.0 kcal/mol and 5.2 kcal/mol. However, the small SD of 0.4 kcal/mol and 1.2 kcal/mol, respectively,
indicates rather systematic errors. While GFN1-xTB(GBSA) yields slightly smaller deviations than
GFN2-xTB(ALPB) and GFN1-xTB(ALPB) with an MAD of 0.9 kcal/mol, the SD is a bit larger for the
latter (1.3 kcal/mol) indicating a slightly lower robustness.

We have quantified the impact of geometry relaxations on the hydration free energies and observed
only a minor influence for small to medium sized solutes. While we can verify that excluding geometry
relaxations in the ALPB parametrization to reduce the computational effort and enhance the stability of
the fit is reasonable, we also note that already for medium-sized charged solutes, neglecting geometry
relaxations can increase the error in the calculated solvation free energies substantially. This also holds
even more for solvation effects on conformational ensembles for flexible molecules, where we refer the
reader to Ref. [20] for a more detailed discussion. Thus, for general consistency we recommend to
always include geometry relaxation when calculating solvation free energies. Unless noted otherwise
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all solvation free energies discussed from here on include full geometry relaxations in the respective
solvents.

D.4.2 Hydration Free Energies for the FreeSolv database

Water is one of the most commonly used solvents in (bio)chemistry. Yet the description of water is
difficult for implicit solvation models due to its high polarity and the importance of HB as well as
many-body (polarization) effects. To model chemistry in aqueous solution, an accurate description of
the hydration free energies is an important test. We assessed the performance of the solvation models for
hydration free energies by comparing our methods on the curated FreeSolv database, which contains
currently 642 experimental values for neutral molecules.94,95 About 250 of these molecules are also
contained in the Minnesota Solvation Database, which was used in the fitting process. Starting from the
provided geometries the structures were optimized with the respective methods, once with the implicit
solvation model, and once in gas phase. We also evaluated the contributions of rotational and vibrational
thermostatistical functions to the solvation energies by Hessian calculations for both, the optimized gas
phase structure, and the optimized structure in implicit solvation. Yet, only minor effects on the overall
statistics were obtained.

Figure D.1: Statistical analysis of hydration free energies for the neutral species of the FreeSolv database. The
values of the GAFF method in explicit water are taken from Ref. [94].

Fig. D.1 shows the deviation of the calculated hydration free energies from the experimental values.
Besides the models presented here, we include the explicit solvation approach (GAFF) from Ref. [94],
which yields an MAD of 1.1 kcal/mol. In comparison, GFN1-xTB(ALPB) provides only a slightly
larger MAD of 1.4 kcal/mol, which is encouraging considering the implicit nature of the solvation model
and the parametric treatment of hydrogen-bonding. GFN1-xTB(GBSA) performs best from tested TB
methods with an MAD of 1.3 kcal/mol, while GFN2-xTB(ALPB) performs slightly worse with an MAD
of 1.8 kcal/mol, which is still reasonably accurate. Overall, the hydration free energies are slightly
underestimated with an MSD of −0.5 kcal/mol for GFN2-xTB(ALPB). The GFN2-xTB(GBSA) method
performs slightly worse than the ALPB variant with an MAD of 1.9 kcal/mol. The smaller standard
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deviation of ALPB compared to GBSA for GFN2-xTB with 2.3 kcal/mol and 2.5 kcal/mol, respectively,
indicates higher robustness and less outliers. DFTB(3ob)-D4(ALPB) yields an MAD of 1.7 kcal/mol
and an MSD of −0.3 kcal/mol, similar to the xTB variants.

With GFN-FF(ALPB) a respectable MAD of 2.2 kcal/mol is obtained, which is larger than for any of
the tested SQM methods but still acceptable considering the about hundred-fold speed-up in typical
applications. Evaluating the complete database with GFN-FF, including full geometry optimizations for
solution and gas phase, takes about 36 s on one core of an Intel Xeon E5-4620 CPU, while the same
calculation with GFN2-xTB takes 11 min.

D.4.3 Partition coefficients

An important property to characterize the distribution and accumulation of organic compounds and
contaminants in the environment are n-octanol/water (KOW) partition coefficients, which correlate with
observed biochemical and toxic effects448 and are related to internal partitioning between biological
tissues and body fluids.449 While it may be used as a single descriptor in a linear free energy relationship
(LFER), different logK relationships are also of interest to form poly-parameter LFERs. Experimental
partition coefficients for octanol–water are mostly determined for the transition of a compound from a wet
octanol (30% water) phase to a water phase. Partition coefficients can be calculated thermodynamically
from the difference in molecular free energy between these two phases. Including thermostatistical
contributions (see Section D.4.1), the value is obtained by

logKOW =
1

kBT log e

(
Gwater + ∆G

T
mRRHO, water − (Goctanol + ∆G

T
mRRHO, octanol)

)
, (D.14)

where G is the total energy including solvation effects, GTmRRHO is the thermostatistical contribution, kB
is Boltzmann’s constant, T is the temperature, and e Euler’s number.

Fig. D.2 shows calculated octanol–water partition coefficients with reference to experimental values
for 26 typical organic compounds. The calculations for the GFN methods were performed for dry octanol
and wet octanol (30% water). For such a complicated property, GFN2-xTB(GBSA) shows reasonably
small MAD values of 0.61 and 0.66, for dry and wet octanol, respectively. With an MAD of 0.88 and
0.67, GFN2-xTB(ALPB) performs slightly worse than GFN1-xTB(ALPB) which is in line with the
results for the hydration free energy benchmark in section D.4.2. Both methods show the expected slight
overestimation of the logKow values for dry compared to wet octanol.

To classify the results, we also included calculated logKOW values with r2SCAN-3c(COSMO-RS)
with the ‘19 parametrization. Although r2SCAN-3c(COSMO-RS) shows an outlier for cytosin, it yields
overall more consistent results with an SD of 0.60 units and a very good MAD of 0.54 units, compared to
the GFN methods coupled with the ALPB and GBSA solvation models. While the GFN methods are not
able to reach the accuracy of the more sophisticated DFT based solvation model, given the semi-empirical
nature of these methods, the results are reasonable and useful for screening or high-throughput studies.

D.4.4 Supramolecular host–guest binding reactions

To assess the accuracy of the TB methods in combination with our parameterized solvation models for
larger systems, which are the main target application, we propose a benchmark set of experimental,
back-corrected solvation free energies for realistic host–guest binding reactions based on the existing
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Figure D.2: logKOW partition coefficients of 26 organic compounds ordered according to increasing values. The
values are once calculated using wet octanol parameters and once using dry octanol. Statistical measures are given
in kcal/mol.

S30L benchmark set.96 For each of the 30 association reactions host + guest → guest@host an
experimental binding free energy ∆Ga, exp was taken from the original work. The reference solvation
free energies ∆δGsolv are obtained according to

∆δGsolv = ∆Ga, exp − ∆Ea − ∆G
T
mRRHO, (D.15)

where ∆Ea are accurate DLPNO-CCSD(T) reference values from Ref. [79] and ∆GRRHO are ther-
mostatistical corrections taken from Ref.450. The volume work is included in the solvation free
energy. The resulting backcorrected association solvation free energies range from +90 kcal/mol for
[Ad2(NMe3)2@CB7]2+ (24) to −2.7 kcal/mol for AdOH@CB7 (21). The estimated accuracy of the
reference values is about 3–4 kcal/mol. For the association reactions studied here, too strong solvation of
the individual compounds will result in a too large association solvation energy and therefore a positive
MSD. Similarly, too weak solvation of the individual compounds will result in an overall negative MSD.
For comparison, results are presented for the COSMO-RS parametrization based on BP86/def2-TZVP
densities from 2016 and the more recent 2019 parametrization for BP86/def2-TZVP densities (for both
the BP86/def2-TZVPD fine parametrization was employed for water), and the SMD solvation model.
The SMD values are based on BP86/def2-SVP calculations and were extracted from the original S30L
publication.96 The solvation free energy contribution to the association free energy for each complex of
the S30L is plotted in Fig. D.3.

For the S30L set COSMO-RS(2016) yields an MAD of 2.83 kcal/mol and a small MSD of 0.54 kcal/mol
indicating somewhat too strong solvation of the reactants (guest and empty host). Nevertheless, this
relatively small MAD (considering the huge range of values) indicates the reliability of the reference
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Figure D.3: Deviation of COSMO-RS with 2016 and 2019 parametrization, GFN2-xTB with GBSA and ALPB,
GFN1-xTB with GBSA and ALPB and GFN-FF(ALPB) to the back-corrected, experimental association solvation
free energies. The statistical measures are given in kcal/mol for each of the selected methods.

values. The results over the whole set differ only slightly compared to the 2015, 2017 and 2018
parametrizations while the 2019 version in contrast shows an increased MAD of 3.2 kcal/mol. The worse
performance of the latest COSMO-RS parametrization is mainly caused by the underestimation of the
reaction solvation free energies for water with the fine parametrization. For this variant, the MSD is
shifted to −0.1 kcal/mol. For SMD an MAD of 3.4 kcal/mol and an MSD close to zero (0.1 kcal/mol) is
obtained.

With the GFN2-xTB(ALPB) solvation model a very good MAD of 5.1 kcal/mol is achieved for an
SQM method. GFN2-xTB(ALPB) slightly overestimates (MSD of 0.4 kcal/mol) the association solvation
free energy. The DFTB(3ob)-D4(ALPB) model shows a rather poor performance with an overall MAD of
7.2 kcal/mol, which can be attributed to the poor description of the mainly dispersion bound complex 1–14,
while the remaining systems are described sufficiently well. We also evaluate the DFTB(mio)-D4(ALPB)
model for the 27 systems, which can be described with the base mio-parametrization, excluding systems
4, 15 and 16 because of missing parameters for halogens. With an MAD of 7.4 kcal/mol it performs
similar to the 3ob-parametrization. Both versions significantly underestimate the values with an MSD of
−4.5 kcal/mol and −5.1 kcal/mol, respectively. The LC-DFTB(ob2)-D4(ALPB) model was excluded
from this test set due to missing parameters.

The GFN2-xTB(GBSA) model yields an MAD of 5.4 kcal/mol and is slightly worse compared to
the new GFN2-xTB(ALPB) model. The trend of overestimating the association solvation energies
is also present in the GFN2-xTB(GBSA) model as seen from the MSD of 0.8 kcal/mol. We note
that GFN2-xTB(ALPB) reduces the error range significantly compared to GFN2-xTB(GBSA) from
38.8 kcal/mol to only 25.3 kcal/mol.

For GFN1-xTB(GBSA) we exclude systems 15 and 16 due to missing parametrization data for
the solvent cyclohexane, for the remaining 28 systems the MAD is 6.4 kcal/mol. GFN1-xTB(ALPB)
preforms slightly better with an MAD of 6.2 kcal/mol on the 28 systems and somewhat worse with an

136



Appendix D A robust and efficient implicit solvation model for fast semiempirical methods

MAD of 6.2 kcal/mol on the complete set compared to GFN2-xTB. Both ALPB and GBSA employed
together with GFN1-xTB yield a systematic overestimation of the association solvation free energies with
an MSD of 3.4 and 3.8 kcal/mol, respectively. Again, we find that the error range with GFN1-xTB(ALPB)
is significantly reduced compared to its GBSA variant from 60.3 to 47.1 kcal/mol. GFN-FF(ALPB)
performs with an MAD of 5.4 kcal/mol almost as good as GFN2-xTB(ALPB) on this set. Even the error
range for GFN-FF(ALPB) is similarly small with a value of 26.0 kcal/mol compared to the SQM method.

Overall, the the ALPB solvation model together with the GFN methods yields a good description for
the solvation contributions for this challenging supramolecular reactions.

D.4.5 Transition Metal Chemistry

The here presented solvation models have been thoroughly investigated for neutral and charged solutes
comprised of main group elements. Here we extend the investigation to neutral and charged solutes
containing transition metal elements as well.

We evaluate all reaction solvation free energies for the reactions in the MOR41 benchmark set148 using
COSMO-RS for the three representative solvents, water, acetonitrile (ACN) and tetrahydrofuran (THF).
The MOR41 benchmark set consists of metal-organic reactions featuring 3d and late transition metals
and covers a wide range of possible d-block elements. Since we are comparing with COSMO-RS, we
neglect geometry relaxations consistently in the reference method and in the tested solvation models.
Due to missing parametrization data the DFTB methods cannot be considered here.

Figure D.4: Left: deviation in the MOR41 reaction solvation free energies from the COSMO-RS reference for
water. Center: deviation in the MOR41 reaction solvation free energies from the COSMO-RS reference for
acetonitrile (ACN). Right: deviation in the MOR41 reaction solvation free energies from the DCOSMO-RS
reference for tetrahydrofuran (THF). PM6-D3H4(COSMO) and PM7(COSMO) were not included in the graphic
due the large error range of 25 and 48 kcal/mol, respectively.

The deviation of the tested methods for each of the 41 reaction solvation free energies is shown in
Fig. D.4 (left panel). Overall, we find MAD values in the range of 2.3 to 3.0 kcal/mol for the tested
solvation models. The best performing methods are GFN2-xTB, with both ALPB and GBSA, and
GFN1-xTB(GBSA) all with an MAD of 2.3 kcal/mol. Only the ALPB solvation model for GFN1-xTB
gives a slightly larger MAD of 2.5 kcal/mol. The GFN-FF(ALPB) method yields a slightly worse MAD
of 3.0 kcal/mol. For comparison we included PM6-D3H4(COSMO) and PM7(COSMO), which perform
badly for this kind of systems with an MAD of 3.7 and 5.3 kcal/mol, respectively.

Additionally, we have investigated the same systems for ACN and THF with COSMO-RS and the
statistical data are shown in Fig. D.4 (center and right panel). The overall trend of the deviation in the
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reaction solvation free energies is similar compared to the reaction hydration free energies, while the
magnitude of the overall deviation is reduced with the polarity of the solvent. For ACN we find an
MAD ranging from 1.6 to 2.1 kcal/mol. GFN2-xTB(ALPB) is performing best for this solvent with an
MAD of 1.6 kcal/mol, while the GBSA variant yields a larger MAD of 1.8 kcal/mol. For GFN1-xTB we
find a similar good agreement using the GBSA solvation model with an MAD of 1.7 kcal/mol and a
slightly deteriorated performance with GFN1-xTB(ALPB) (MAD 1.9 kcal/mol. PM6-D3H4(COSMO)
and PM7(COSMO) yield a rather large MAD compared to this of 3.4 and 5.1 kcal/mol. In case of THF
as solvent deviations are further reduced with MADs ranging from 1.5 to 1.8 kcal/mol for the presented
methods.

The overall performance of the semiempirical methods is reasonable, considering that they inherently
yield a much larger error for the reaction energies, as seen in the MAD for the MOR41 set with is
13.2 kcal/mol and 11.8 kcal/mol for GFN1-xTB and GFN2-xTB, respectively, compared to <5 kcal/mol
for well performing DFT methods.

Furthermore, we investigated the tetrakis(isonitrile)rhodium(I) cation,451 which has been previously
analyzed under different aspects in theoretical studies.9,17,452 Due to its relatively high charge it is an
interesting and challenging example for the computation of solvation free energies. Here, we focus on
the formation of the dication complex from two (mono)cations as shown in Fig. D.5.

Figure D.5: Formation of the Rhodium dication complex. The experimental association energy is backcorrected
using the electronic association energy ∆Eelec at the DLPNO-CCSD(T)/CBS* level of theory and thermostatistical
correction to the reaction free energy ∆GT

mRRHO at the r2SCAN-3c level of theory.

To obtain a backcorrected reaction solvation free energy ∆δGsolv we use the DLPNO-CCSD(T)/CBS*
electronic reaction energy ∆Eelec of 8.8 kcal/mol taken from Ref. [9] and calculate the reaction at
the r2SCAN-3c level to obtain a thermostatistical correction to the reaction free energy ∆GTmRRHO of
16.3 kcal/mol. With the experimental association free energy ∆Ga of −2.1 kcal/mol451,452 we obtain a
backcorrected reaction solvation free energy ∆δGsolv of −27.2 kcal/mol as our benchmark value. The
results are shown in Tab. D.5.

For this example, clear differences are observed between the GBSA and ALPB solvation models. In
general, we find that ALPB provides generally less negative reaction solvation free energies compared to
GBSA. GFN2-xTB(ALPB) yields a reaction solvation free energy of −26.2 kcal/mol very close to the
reference value, while GBSA is slightly over-shooting with −29.8 kcal/mol. A similar trend between
GBSA and ALPB is observed for GFN1-xTB, which results in more positive values compared to GFN2-
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Table D.5: Reaction solvation free energies in kcal/mol for the formation of the rhodium dication complex.

method ∆δGsolv

reference −27.2
GFN1-xTB(GBSA) −28.3
GFN2-xTB(GBSA) −29.8
GFN1-xTB(ALPB) −23.8
GFN2-xTB(ALPB) −26.2
GFN-FF(ALPB) −24.5
PM6-D3H4(COSMO) −33.3
PM7(COSMO) −34.0

xTB. GFN1-xTB with GBSA solvation model also reaches a quite good agreement of −28.3 kcal/mol,
while the ALPB model is gives an overall to positive reaction solvation free energy of −23.8 kcal/mol.
We mainly attribute this difference of 4–5 kcal/mol to the additional charge dependent contributions in
the ALPB solvation model, which are absent in most other implicit solvation models. Furthermore,
GFN-FF(ALPB) yields a very reasonable value of −24.5 kcal/mol while PM6-D3H4(COSMO) as well
as PM7(COSMO) perform rather badly. Overall, the ALPB based solvation models provide a decent
description of the solvation effects in this challenging transition metal reaction.

D.5 Conclusion

We presented a fast and computationally efficient solvation model suitable for combination with various
tight binding Hamiltonians and even general force fields. A broad range of twenty nonpolar and polar as
well as protic and aprotic solvents are readily available. In combination with the GFN family of methods
all elements of the periodic table up to Radon (Z ≤ 86) are covered. For Slater–Koster based DFTB the
implicit nature of the solvation model enables the description of systems which are unavailable with the
respective parametrizations in an explicit approach.

The resulting methods yield consistent and reasonably accurate solvation free energies for small and
large molecules with various solvents. Hydration free energies for a wide range of solutes from the
FreeSolv database are in good agreement to the experimental values and close to the accuracy of explicitly
solvated approaches which are clearly more elaborate and computationally expensive. Additionally,
the consistent description of different solvents has been demonstrated for the accurate computation of
partition coefficients, e. g., Kow for octanol and water. For the association energies in the supramolecular
S30L benchmark set, also good results close to the backcorrected experimental values were obtained
with the xTB models.

The effect of geometry relaxations with implicit solvation models was investigated qualitatively and
semi-quantitatively and their importance for medium-sized charged solutes was evaluated. For properties
depending on the description of a structural ensemble of flexible solutes such as conformational free
energies, the inclusion of solvation effects is indispensable.

The ALPB and GBSA models parameterized here are implemented in the freely available xtb
and dftb+ program packages. Based on our tests we can recommend the ALPB solvation model in
combination with GFN2-xTB as well as the GBSA solvation model in conjunction with GFN1-xTB
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as routinely and consistently applicable methods for energy calculations, geometry optimizations,
molecular dynamics simulations, and vibrational frequency calculations. Furthermore, we are planning
to investigate the generalization of the polar contribution in the solvation model to capture the anisotropic
electrostatic of tight-binding models like GFN2-xTB. We are optimistic that the presented solvation
models will, together with current and future SQM methods, be valuable in many computational
chemistry studies and workflows.

Acknowledgement

The authors thank P. Shushkov for the initial implementation of the GBSA model in xtb and A. Hansen
for proofreading the manuscript. S. E. thanks B. Hourahine for helpful discussions and code review
on the DFTB+ implementations. S. S. thanks the “Fond der chemischen Industrie” (FCI) for financial
support. This work was supported by the DFG in the framework of the “Gottfried Wilhelm Leibniz
Prize” awarded to S. G.

140



Bibliography

[1] C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, and
S. Grimme, Extended tight-binding quantum chemistry methods,
WIREs Comput. Mol. Sci. 11 (2021) e1493, doi: 10.1002/wcms.1493.

[2] S. Ehlert, U. Huniar, J. Ning, J. W. Furness, J. Sun, A. D. Kaplan, J. P. Perdew, and
J. G. Brandenburg, r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation
for general chemical applications, J. Chem. Phys. 154 (2021) 061101,
doi: 10.1063/5.0041008.

[3] S. Ehlert, S. Grimme, and A. Hansen,
Conformational Energy Benchmark for Longer n-Alkane Chains,
J. Phys. Chem. A 126 (2022) 3521, doi: 10.1021/acs.jpca.2c02439.

[4] S. Ehlert, M. Stahn, S. Spicher, and S. Grimme,
Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods,
J. Chem. Theory Comput. 17 (2021) 4250, doi: 10.1021/acs.jctc.1c00471.

[5] M. Bursch, H. Neugebauer, S. Ehlert, and S. Grimme, Dispersion corrected r2SCAN based
global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50,
J. Chem. Phys. 156 (2022) 134105, doi: 10.1063/5.0086040.

[6] P. Zaby, J. Ingenmey, B. Kirchner, S. Grimme, and S. Ehlert,
Calculation of improved enthalpy and entropy of vaporization by a modified partition function in
quantum cluster equilibrium theory, J. Chem. Phys. 155 (2021) 104101,
doi: 10.1063/5.0061187.

[7] E. Caldeweyher, J.-M. Mewes, S. Ehlert, and S. Grimme,
Extension and evaluation of the D4 London-dispersion model for periodic systems,
Phys. Chem. Chem. Phys. 22 (2020) 8499, doi: 10.1039/D0CP00502A.

[8] C. Bannwarth, S. Ehlert, and S. Grimme, GFN2-xTB—An Accurate and Broadly Parametrized
Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and
Density-Dependent Dispersion Contributions, J. Chem. Theory Comput. 15 (2019) 1652,
doi: 10.1021/acs.jctc.8b01176.

[9] E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme,
A generally applicable atomic-charge dependent London dispersion correction,
J. Chem. Phys. 150 (2019) 154122, doi: 10.1063/1.5090222.

[10] L. Kedward, B. Aradi, O. Certik, M. Curcic, S. Ehlert, P. Engel, R. Goswami, M. Hirsch,
A. Lozada-Blanco, V. Magnin, A. Markus, E. Pagone, I. Pribec, B. Richardson, H. Snyder,
J. Urban, and J. Vandenplas, The State of Fortran, Comput. Sci. Eng. 24 (2022) 63,
doi: 10.1109/MCSE.2022.3159862.

141

https://doi.org/10.1002/wcms.1493
https://doi.org/10.1063/5.0041008
https://doi.org/10.1021/acs.jpca.2c02439
https://doi.org/10.1021/acs.jctc.1c00471
https://doi.org/10.1063/5.0086040
https://doi.org/10.1063/5.0061187
https://doi.org/10.1039/D0CP00502A
https://doi.org/10.1021/acs.jctc.8b01176
https://doi.org/10.1063/1.5090222
https://doi.org/10.1109/MCSE.2022.3159862


Bibliography

[11] D. G. A. Smith, A. T. Lolinco, Z. L. Glick, J. Lee, A. Alenaizan, T. A. Barnes, C. H. Borca,
R. Di Remigio, D. L. Dotson, S. Ehlert, A. G. Heide, M. F. Herbst, J. Hermann, C. B. Hicks,
J. T. Horton, A. G. Hurtado, P. Kraus, H. Kruse, S. J. R. Lee, J. P. Misiewicz, L. N. Naden,
F. Ramezanghorbani, M. Scheurer, J. B. Schriber, A. C. Simmonett, J. Steinmetzer, J. R. Wagner,
L. Ward, M. Welborn, D. Altarawy, J. Anwar, J. D. Chodera, A. Dreuw, H. J. Kulik, F. Liu,
T. J. Martı́nez, D. A. Matthews, H. F. Schaefer, J. Šponer, J. M. Turney, L.-P. Wang, N. De Silva,
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[193] A. K. Rappé and W. A. Goddard III, Charge Equilibration for Molecular Dynamics Simulation,
J. Chem. Phys. 95 (1991) 3358.

[194] C. E. Wilmer, K. Chul Kim, and R. Q. Snurr, An Extended Charge Equilibration Method,
J. Phys. Chem. Lett. 3 (2012) 2056.

[195] Z.-T. Cheng, T.-R. Shan, T. Liang, R. K. Behera, S. R. Phillpot, and S. B. Sinnott,
A charge optimized many-body (comb) potential for titanium and titania,
J. Phys.: Condens. Matter 26 (2014) 315007, doi: 10.1088/0953-8984/26/31/315007.

[196] S. A. Ghasemi, A. Hofstetter, S. Saha, and S. Goedecker,
Interatomic potentials for ionic systems with density functional accuracy based on charge
densities obtained by a neural network, Phys. Rev. B 92 (4 2015) 045131,
doi: 10.1103/PhysRevB.92.045131.

[197] S. Grimme, A simplified Tamm–Dancoff density functional approach for the electronic
excitation spectra of very large molecules, J. Chem. Phys. 138 (2013) 244104,
doi: 10.1063/1.4811331.

155

https://doi.org/10.1021/ct9003004
https://doi.org/10.1021/ct100701w
https://doi.org/10.1002/jcc.24922
https://doi.org/10.1002/anie.201708266
https://doi.org/10.1021/jacs.7b05833
https://doi.org/10.1021/acs.jcim.8b00256
https://doi.org/10.1002/minf.201800115
https://doi.org/10.26434/chemrxiv.8326202
https://doi.org/10.26434/chemrxiv.8326202
https://doi.org/10.1088/0953-8984/26/31/315007
https://doi.org/10.1103/PhysRevB.92.045131
https://doi.org/10.1063/1.4811331


Bibliography

[198] J. Seibert, J. Pisarek, S. Schmitz, C. Bannwarth, and S. Grimme,
Extension of the element parameter set for ultra-fast excitation spectra calculation (sTDA-xTB),
Mol. Phys. 117 (2019) 1104, issn: 13623028, doi: 10.1080/00268976.2018.1510141.

[199] M. de Wergifosse and S. Grimme, Nonlinear-response properties in a simplified time-dependent
density functional theory (sTD-DFT) framework: Evaluation of the first hyperpolarizability,
J. Chem. Phys. 149 (2018) 024108, doi: 10.1063/1.5037665,
eprint: https://doi.org/10.1063/1.5037665.

[200] M. de Wergifosse and S. Grimme, Nonlinear-response properties in a simplified time-dependent
density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra,
J. Chem. Phys. 150 (2019) 094112, doi: 10.1063/1.5080199,
eprint: https://doi.org/10.1063/1.5080199.

[201] M. de Wergifosse, C. Bannwarth, and S. Grimme,
A Simplified Spin-Flip Time-Dependent Density Functional Theory Approach for the Electronic
Excitation Spectra of Very Large Diradicals,
J. Phys. Chem. A 123 (2019), PMID: 31199632 5815, doi: 10.1021/acs.jpca.9b03176,
eprint: https://doi.org/10.1021/acs.jpca.9b03176.

[202] M. de Wergifosse, J. Seibert, B. Champagne, and S. Grimme, Are Fully Conjugated Expanded
Indenofluorenes Analogues and Diindeno[ n]thiophene Derivatives Diradicals? A Simplified
(Spin-Flip) Time-Dependent Density Functional Theory [(SF-)sTD-DFT] Study,
J. Phys. Chem. A 123 (2019) 9828, issn: 15205215, doi: 10.1021/acs.jpca.9b08474.

[203] J. Seibert, B. Champagne, S. Grimme, and M. de Wergifosse, Dynamic Structural Effects on the
Second-Harmonic Generation of Tryptophane-Rich Peptides and Gramicidin A,
J. Phys. Chem. B 124 (2020), PMID: 32148035 2568, doi: 10.1021/acs.jpcb.0c00643,
eprint: https://doi.org/10.1021/acs.jpcb.0c00643.

[204] “Semiempirical Extended Tight-Binding Program Package xtb”,
https://github.com/grimme-lab/xtb. Accessed: 2021-05-03.

[205] Y. Yang, H. Yu, D. York, Q. Cui, and M. Elstner, Extension of the Self-Consistent-Charge
Density-Functional Tight-Binding Method: Third-Order Expansion of the Density Functional
Theory Total Energy and Introduction of a Modified Effective Coulomb Interaction,
J. Phys. Chem. A 111 (2007) 10861, doi: 10.1021/jp074167r.

[206] R. M. Parrish, F. Liu, and T. J. Martinez,
Communication: A difference density picture for the self-consistent field ansatz,
J. Chem. Phys. 144 (2016) 131101, doi: 10.1063/1.4945277.

[207] J. Harris, Simplified method for calculating the energy of weakly interacting fragments,
Phys. Rev. B 31 (1985) 1770, doi: 10.1103/PhysRevB.31.1770.

[208] W. M. C. Foulkes and R. Haydock, Tight-binding models and density-functional theory,
Phys. Rev. B 39 (1989) 12520, doi: 10.1103/PhysRevB.39.12520.

[209] J. E. Jones, On the determination of molecular fields. –II. From the equation of state of a gas,
Proc. R. Soc. A 106 (1924) 463, doi: 10.1098/rspa.1924.0082.

[210] R. A. Buckingham, The classical equation of state of gaseous helium, neon and argon,
Proc. R. Soc. A 168 (1938) 264, doi: 10.1098/rspa.1938.0173.

156

https://doi.org/10.1080/00268976.2018.1510141
https://doi.org/10.1063/1.5037665
https://doi.org/10.1063/1.5037665
https://doi.org/10.1063/1.5080199
https://doi.org/10.1063/1.5080199
https://doi.org/10.1021/acs.jpca.9b03176
https://doi.org/10.1021/acs.jpca.9b03176
https://doi.org/10.1021/acs.jpca.9b08474
https://doi.org/10.1021/acs.jpcb.0c00643
https://doi.org/10.1021/acs.jpcb.0c00643
https://doi.org/10.1021/jp074167r
https://doi.org/10.1063/1.4945277
https://doi.org/10.1103/PhysRevB.31.1770
https://doi.org/10.1103/PhysRevB.39.12520
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1938.0173


Bibliography

[211] W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-Consistent Molecular-Orbital Methods. I. Use of
Gaussian Expansions of Slater-Type Atomic Orbitals, J. Chem. Phys. 51 (1969) 2657,
doi: 10.1063/1.1672392.

[212] T. Bredow, G. Geudtner, and K. Jug,
Development of the cyclic cluster approach for ionic systems, J. Comput. Chem. 22 (2001) 89,
doi: 10.1002/1096-987X(20010115)22:1<89::AID-JCC9>3.0.CO;2-7.

[213] M. Mantina, R. Valero, C. J. Cramer, and D. G. Truhlar, “Atomic Radii of the Elements”,
CRC Handbook of Chemistry and Physics, 91nd edition, ed. by W. M. Haynes,
Boca Raton, FL: CRC Press, 2010 9-49.

[214] K. Nishimoto and N. Mataga, Electronic Structure and Spectra of Some Nitrogen Heterocycles,
Z. Phys. Chem. 12 (1957) 335, doi: 10.1524/zpch.1957.12.5_6.335.

[215] K. Ohno, Some Remarks on the Pariser-Parr-Pople Method, Theor. Chim. Act. 2 (1964) 219,
doi: 10.1007/BF00528281.

[216] G. Klopman, A Semiempirical Treatment of Molecular Structures. II. Molecular Terms and
Application to Diatomic Molecules, J. Am. Chem. Soc. 86 (1964) 4450,
doi: 10.1021/ja01075a008.

[217] M. Korth, Empirical Hydrogen-Bond Potential Functions—An Old Hat Reconditioned,
Chem. Phys. Chem. 12 (2011) 3131, doi: 10.1002/cphc.201100540.
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[326] N. O. Lüttschwager, T. N. Wassermann, R. A. Mata, and M. A. Suhm,
The last globally stable extended alkane, Angew. Chem. Int. Ed. 52 (2013) 463,
doi: 10.1002/anie.201202894.

[327] J. N. Byrd, R. J. Bartlett, and J. A. Montgomery Jr,
At what chain length do unbranched alkanes prefer folded conformations?,
J. Phys. Chem. A 118 (2014) 1706, doi: 10.1021/jp4121854.

[328] D. G. Liakos and F. Neese,
Domain based pair natural orbital coupled cluster studies on linear and folded alkane chains,
J. Chem. Theory Comput. 11 (2015) 2137, doi: 10.1021/acs.jctc.5b00265.

[329] J. M. Martin, What can we learn about dispersion from the conformer surface of n-pentane?,
J. Phys. Chem. A 117 (2013) 3118.

165

https://doi.org/10.1021/j100002a020
https://doi.org/10.1021/acs.jpcb.1c10786
https://doi.org/10.1002/anie.201202894
https://doi.org/10.1021/jp4121854
https://doi.org/10.1021/acs.jctc.5b00265


Bibliography

[330] P. v. R. Schleyer, J. E. Williams Jr, and K. Blanchard,
Evaluation of strain in hydrocarbons. The strain in adamantane and its origin,
J. Am. Chem. Soc. 92 (1970) 2377.

[331] M. D. Wodrich, C. Corminboeuf, and P. v. R. Schleyer,
Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals,
Organic letters 8 (2006) 3631.

[332] A. Karton, D. Gruzman, and J. M. Martin,
Benchmark Thermochemistry of the C n H2 n+ 2 Alkane Isomers (n= 2- 8) and Performance of
DFT and Composite Ab Initio Methods for Dispersion-Driven Isomeric Equilibria,
J. Phys. Chem. A 113 (2009) 8434.

[333] S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation,
J. Chem. Phys. 124 (2006) 034108, doi: 10.1063/1.2148954.

[334] U. R. Fogueri, S. Kozuch, A. Karton, and J. M. Martin,
The melatonin conformer space: Benchmark and assessment of wave function and DFT methods
for a paradigmatic biological and pharmacological molecule,
J. Phys. Chem. A 117 (2013) 2269, doi: 10.1021/jp312644t.

[335] S. Kozuch, S. M. Bachrach, and J. M. Martin, Conformational equilibria in butane-1, 4-diol: a
benchmark of a prototypical system with strong intramolecular H-bonds,
J. Phys. Chem. A 118 (2014) 293, doi: 10.1021/jp410723v.

[336] M. K. Kesharwani, A. Karton, and J. M. Martin,
Benchmark ab initio conformational energies for the proteinogenic amino acids through
explicitly correlated methods. Assessment of density functional methods,
J. Chem. Theory Comput. 12 (2016) 444, doi: 10.1021/acs.jctc.5b01066.

[337] S. Spicher, E. Caldeweyher, A. Hansen, and S. Grimme, Benchmarking London dispersion
corrected density functional theory for noncovalent ion–π interactions,
Phys. Chem. Chem. Phys. 23 (2021) 11635, doi: 10.1039/D1CP01333E.

[338] S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke,
F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, et al., TURBOMOLE: Modular program suite
for ab initio quantum-chemical and condensed-matter simulations,
J. Chem. Phys. 152 (2020) 184107.

[339] ORCA – an ab initio, density functional and semiempirical program package, V. 5.0.1, F. Neese,
MPI für Kohlenforschung, Mülheim a. d. Ruhr (Germany), 2021.

[340] ORCA – an ab initio, density functional and semiempirical program package, V. 4.2.1, F. Neese,
MPI für Kohlenforschung, Mülheim a. d. Ruhr (Germany), 2020.

[341] J. Rezac, C. Greenwell, and G. J. Beran, Accurate noncovalent interactions via
dispersion-corrected second-order Møller–Plesset perturbation theory,
J. Chem. Theory Comput. 14 (2018) 4711, doi: 10.1021/acs.jctc.8b00548.

[342] D. G. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus,
H. Kruse, R. Di Remigio, A. Alenaizan, et al.,
PSI4 1.4: Open-source software for high-throughput quantum chemistry,
J. Chem. Phys. 152 (2020) 184108, doi: 10.1063/5.0006002.

166

https://doi.org/10.1063/1.2148954
https://doi.org/10.1021/jp312644t
https://doi.org/10.1021/jp410723v
https://doi.org/10.1021/acs.jctc.5b01066
https://doi.org/10.1039/D1CP01333E
https://doi.org/10.1021/acs.jctc.8b00548
https://doi.org/10.1063/5.0006002


Bibliography

[343] J. Lee and M. Head-Gordon,
Regularized orbital-optimized second-order Møller–Plesset perturbation theory: A reliable
fifth-order-scaling electron correlation model with orbital energy dependent regularizers,
J. Chem. Theory Comput. 14 (2018) 5203, doi: 10.1021/acs.jctc.8b00731.
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[345] O. Vahtras, J. Almlöf, and M. W. Feyereisen,
Integral approximations for LCAO-SCF calculations, Chem. Phys. Lett. 213 (1993) 514.
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structures of four exemplary complexes from the TMG145 set17 are shown. The respective
Cambridge Structural Database (CSD) codes are placed below each structure: Crabtree catalyst
(JAFFOL), Brintzinger-Kaminsky catalyst (QAJGOY), Grubbs-Hoveyda I catalyst (CEBHEW),
and Karstedt’s catalyst variant (YECXUA). . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.8 Structure overlays of the GFN2-xTB optimized (transparent blue; the GBSA solvation model
was applied) and X-ray reference structures (color code; the respective CSD code is given) for
three metal-organic polyhedra (carbon bound hydrogen atoms are omitted for better visibility).
The heavy-atom RMSDs (hRMSD) are given and the timings were obtained with normalopt
settings on 14 CPU Intel® Xeon® E5-2660 v4 2.00 GHz CPU cores. . . . . . . . . . . . . . 78

B.9 Performance of GFN-FF in comparison to the universal (UFF) and highly specialized FFs
(OPLS2005 and AMBER*) for a set of 70 protein structures266. Average hRMSD, Cα RSMD,
and average deviations of four distinctive dihedral angles w.r.t. the corresponding crystal structure
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