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ABSTRACT

Time-of-Flight (ToF) imaging, which allows to measure the time that light has
taken to travel from a light source to a camera, is an increasingly relevant sensing
modality. ToF imagers are used, for example, in smartphones, cars, virtual and
augmented reality hardware and robotics, where they usually serve as depth
sensors that allow to capture the shape of a three-dimensional scene or envir-
onment. This thesis explores two types of ToF imagers – Amplitude-Modulated
Continuous-Wave (AMCW) imagers and Single-Photon Avalanche Diode (SPAD)
imagers – and their capabilities to go beyond their designated and conventional
purpose or use cases.
Multiple general difference imaging applications are demonstrated using AMCW
imaging systems by coupling different types of active light sources with the ToF
sensor and employing specific modulation signal patterns. Those applications
include spatial and temporal gradient imaging, direct-global separation, bipolar
color-matching functions and depth edge detection. Due to the implementation in
AMCW ToF hardware, the difference images can be recorded in a single shot, and
the difference between the two signals is taken during the exposure, effectively
eliminating alignment issues in dynamic scenes and improving noise character-
istics.
The spatial resolution of time-resolved SPAD image data is increased by compu-
tational sensor fusion with a CCD camera. An experimental setup using a single
objective lens and beam splitter to image the same scene on both types of sensors
is employed and a computational light transport model is presented that allows
to reconstruct a full high-spatial-resolution transient image for LIDAR and FLIM
applications.
Finally, a very low-cost and low-resolution SPAD sensor device that is commonly
used in smartphones as proximity sensors, is used to demonstrate challenging
computer vision tasks: depth imaging, material classification, and tracking of an
object’s position that is not in the direct line of sight of the sensor.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Imaging in its broadest sense denotes the formation of an image - a visual repres-
entation - of an object, a scene, or really any sort of (physical) reality. Throughout
all of human history, images have played an important role as a means of ex-
pression, communication and documentation. While early human-made images
were mostly drawings and paintings, even technologies that directly image the
physical world have already been studied for centuries. The principle of a simple
pinhole camera, that creates an image of a scene simply by restricting the angles
under which light can travel to a screen, was already described more than 2000
years ago in the Problemata Physica, attributed to Aristotle [1]. Scientific and
technological advances that include the understanding of optical refraction and
the manufacturing of lenses, as well as the discovery of certain materials’ light-
sensitive properties, lead to the development of what we today call photography.
Since then, a variety of imaging technologies and modalities has arisen, not only
improving the visual and factual quality of image data, but also extending the
range of what can be imaged. With better understanding of physics in general,
and the nature of light in particular, new technologies have allowed the imaging
of objects and realities that had previously been concealed from human percep-
tion, like elementary particles [2], black holes [3], the inside of a human body
[4], or simply a room hidden around a corner [5].

Most of the recent advances in imaging technologies were enabled by the
rapidly growing power of computers and their increasing prevalence and avail-
ability. Computational methods allow to compensate constraints in the physical
measurement of an (optical) signal, like deficiencies in optical components or
challenging measurement conditions, often by exploiting prior knowledge about
the signal or its disturbances. They therefore extend the measurement process
from a mere hardware task to a combination of physical signal collection and
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Chapter 1 Introduction and Motivation

computational treatment of the data. In many cases, the computational treat-
ment of imaging data and the conjoined design of optical and sensing hardware
and digital processing of the measured signal not only allows to improve the
measurement quality, but also opens up new types and dimensions of retrievable
information. For example, coupling an imaging sensor with a special pixel design
with an adequate active light source can allow to measure the time that light
takes to travel from the light source through a scene and to the camera for each
image pixel individually. Combined with further computational treatment of
such data, high-quality depth images can be created, and even three-dimensional
reconstructions of objects outside the direct line of the imaging system’s sight
can be acquired.

Imaging systems of this kind are the core subject of this thesis. In particular,
Amplitude-Modulated Continuous-Wave Time-of-Flight (AMCW ToF) imagers
and Single-Photon Avalanche Diode (SPAD) imagers are studied with the aim
to extend their capabilities beyond their designated purpose. In some cases, this
aim is tantamount to - or at least intertwined with - achieving established levels
and qualities of imaging results, but with less “cost” — i.e. by making the imaging
setups cheaper, smaller, or faster. It also involves the demonstration of new
imaging modalities and applications for these types of imagers.

The following section gives an overview of the research presented in this
cumulative thesis, as well as my own contribtution to the individual publications,
and the overall structure of this document.

1.1 THESIS OUTLINE AND CONTRIBUTIONS

This thesis is a cumulative dissertation, meaning it is centered around three
articles that have been published in peer-reviewed journals or conference pro-
ceedings. Each publication is presented in a separate chapter (a brief overview
is given in Fig. 1.1). Since the publications are unaltered, each chapter is self-
contained and features a summarizing abstract, an introduction, and an individual
discussion on the presented work’s background and positioning in the context
of related work. In addition, the concepts and technologies used in these pub-
lications are described more comprehensively and in more detail in a dedicated
chapter. The final, concluding chapter aims at evaluating the presented work
with regard to the body of existing as well as possible future research. Thus, the
structure of this thesis is as follows:
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1.1 Thesis Outline and Contributions

Figure 1.1: Overview of the technologies used in the three main chapters, their conven-

tional usage scenarios, and the types of applications and results demonstrated in this

thesis.

Chapter 1: Introduction and Motivation This introductory chapter motivates
and outlines the work presented in this thesis.

Chapter 2: Background This chapter provides an overview of the foundation
of the scientific work presented in this thesis. The nature of light is explained
from a physical perspective with a special focus on the specific effects that are
exploited in the experimental work presented in the later chapters. The process
of light detection and measurement is discussed and the properties and operation
principles of the types of sensors used in this thesis (AMCW ToF and SPAD
sensors) are described.

Chapter 3: Snapshot Difference Imaging This chapter contains the first pub-
lication presented in this thesis. It uses off-the-shelf AMCW ToF sensors and
exploits their capability of collecting light in two different ‘buckets’ in every
pixel, which can be switched between using an external modulation signal. In
conventional operation of AMCW ToF cameras, this modulation signal is also
used to modulate the intensity of an active light source that illuminates the scene

3



Chapter 1 Introduction and Motivation

which then allows to infer the time of flight of the light measured at each pixel
(for a more detailed description of AMCW ToF cameras see Section 2.3.1). This
process involves calculating the difference between the signals measured in the
two buckets, which happens on the hardware level of the sensor. Exploiting
this functionality, the presented work demonstrates several alternative operating
modes for this sensor type using various types of light sources and modulation
signals. The capability of AMCW ToF sensors to switch between the two buckets
– and, at the same time, two different light sources – with a very high frequency
during the exposure allows to capture the light response of a scene under dif-
ferent illumination conditions virtually simultaneously and in a single snapshot.
When compared to conventional difference images, where lighting conditions
and images must be established and recorded in succession, this approach has
several advantages. Consecutively recorded images suffer from alignment issues
whenever either the camera or a scene element is moving, resulting in ghosting
artefacts in difference images. In the snapshot approach, the modulation between
the illumination scenarios is so much faster than the exposure time that the
resulting difference image contains all relevant image data for both illuminations.
Very fast moving scene elements therefore result in a natural motion blur in the
difference image, instead of a misalignment artefact. Even ‘difference videos’ can
be recorded using this approach, which feature a smooth rendition of moving
objects. Another advantage of the proposed system is the relatively low noise
level since no two images have to be read out before they can be subtracted, but
the subtraction happens on the sensor before the readout, so that read noise is
added only once.
As demonstrated in this chapter, the described functionality can be used with
different kinds of light sources which allows a variety of imaging tasks. Multiple
different setups and applications are described and experimentally demonstrated:
Using two differently polarized but otherwise identical light sources, directly
and indirectly (multiply) reflected light in a scene can be separated and imaged
individually. By employing light sources with different emission spectra, the
scene response difference between these two illumination spectra can be meas-
ured. Using identical light sources in specific locations relative to the camera and
scene, depth edges and directional gradients can be imaged. A birefringent crys-
tal separates light from differently polarized light sources spatially, allowing to
image spatial gradients. Requiring no coupled active light sources at all, another
operation modality shown in this chapter uses asymmetric modulation signals on
the ToF sensor. This way, the resulting difference image shows temporal gradients
of motions that occur during the exposure time in one single shot.
A detailed noise analysis of the proposed difference imaging method is performed,
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and the reconstruction of two separate ‘pre-difference’ images of a scene under
the two different lighting conditions purely from the Skellam noise characteristics
[6] of the difference images is described and demonstrated.
The publication was authored by multiple people (see bibliographical information
in the box below). My own contributions to the project include conceptualizing
application scenarios, experiments and measurements, setting up experimental
hardware and performing the measurements, analyzing and visualizing the meas-
ured data, as well as performing the necessary steps for the noise analysis and
Skellam reconstruction and documenting the procedures and findings for the
final publication.

The content of Chapter 3 has been published as [7]:

Clara Callenberg, Felix Heide, Gordon Wetzstein, and Matthias B.

Hullin. 2017. Snapshot difference imaging using correlation time-of-
flight sensors. ACM Trans. Graph. 36, 6, Article 220 (November

2017), 11 pages. DOI:https://doi.org/10.1145/3130800.3130885.

Chapter 4: Super-Resolution Time-Resolved Imaging Using Computational

Sensor Fusion In this chapter, the limitations of a different kind of time-of-
flight sensor, consisting of an array of Single-Photon Avalanche Diodes, are
challenged. In particular, their low spatial resolution is addressed, as this is a
main disadvantage of current SPAD sensors. In order to gain more spatial in-
formation about the imaged scene, a CCD sensor with a higher resolution than
the SPAD sensor is added to the imaging setup. The optical signal from a single
objective lens is split using a beam splitter and projected on the SPAD as well the
CCD sensor. The conventional intensity image from the CCD is then combined
with the time-resolved, three-dimensional (two spatial, one temporal dimension)
image from the SPAD sensor. To this end, another property of the SPAD sensor,
that is generally a disadvantage – its low fill factor – is exploited. The active
pixel area covers only about 2% of the whole sensor area meaning that most of
the light (and signal information) is lost in inactive sensor area. The sensor is
therefore moved slightly out of focus in order to blur the signal in such a way that
each scene point is blurred over multiple active pixel areas, effectively sparsely
sampling the blurred image. The light transport from the scene to the SPAD
sensor is modeled as a linear transformation from the original high-resolution
signal to the blurred, low-resolution SPAD measurement by modelling the three
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transformation steps – blurring, masking, and downsampling – individually. This
linear image formation model is used to reconstruct a ‘data-cube’ with the spatial
resolution of the CCD sensor and the temporal resolution of the SPAD sensor by
solving a minimization problem regularized with specifically tailored priors that
ensure spatial and temporal coherence of the reconstructed transient image.
The image formation model is furthermore used to produce simulated meas-
urements from synthetic transient images created using a transient renderer.
This allows a detailed study of the reconstruction performance in dependence of
different parameters like scene characteristics, data resolution, reconstruction
parameters, and noise. Such an exploration of the proposed method is given and
differences between scenes with mostly single-reflection signals and those with
complex light response characteristics in each spatial pixel, for example due to
multiple reflections inside the scene, are studied in particular.
Results of real-world measurements are presented for two different application
scenarios:

• “lidar”-like images of objects and scenes of varying sizes ranging from
centimeters to decimeters, from which depth maps of the object or scene
can be constructed,

• and Fluorescence Lifetime Microscopy (FLIM) measurements of ovarian
cancer cells in the order of micrometers.

Especially the latter highlights the ability of the method to not only upsample
two-dimensional depth maps, but the whole three-dimensional ‘transient’ image,
as the temporal light distribution in each pixel is used to infer fluorescence life-
times. Upsampling factors of up to 4 × 4 are shown on real experimental data. In
simulations, the effects and results of upsampling factors up to 12 × 12 as well as
the influence of noise are analyzed.
The publication was authored by multiple people (see bibliographical information
in the box below). While the experimental measurements were performed by
my co-authors in Glasgow, my own contributions to the project consist in the
mathematical construction of the image formation model and the minimization
problem formulation including the specific regularization priors, implementing
the optimization and tuning the parameters for the different data types, producing
the simulated measurements and performing noise and resolution analyses on
the different types of scenes, as well as coordinating the project and visualizing,
documenting, and describing the reconstruction procedures and results.
The original publication consists of a main paper and a supplementary document,
which are both contained in Chapter 4. References to the “main paper” or the
“supplementary document” here therefore simply reference the preceding and
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subsequent sections of this chapter, respectively.

The content of Chapter 4 has been published as [8]:

Clara Callenberg, Ashley Lyons, Dennis den Brok, Areeba Fatima,

Alejandro Turpin, Vytautas Zickus, Laura Machesky, Jamie A.

Whitelaw, Daniele Faccio, und Matthias B. Hullin. Super-
Resolution time-resolved imaging using computational sensor fu-
sion. Scientific Reports 11, Nr. 1 (18. Januar 2021): 1689.

https://doi.org/10.1038/s41598-021-81159-x.

Chapter 5: Low-Cost SPAD Sensing for Non-Line-of-Sight Tracking, Material

Classification and Depth Imaging SPAD systems used for scientific applica-
tions are generally very expensive laboratory equipment. At the same time, they
also exist in very cheap and coarse variants that are used as proximity sensors in
electronic consumer devices. They feature an active light source that emits pulses
of light that are then detected by the SPAD sensor after they have been reflected
by an object. In smartphones, for instance, these sensors are often integrated at
the front side to detect if something is covering the screen in order to switch it
off, for example when it is held to the ear when making a phone call to avoid
accidental touch input. The device used in this publication (STMicroelectronics
VL53L1X) features a 16 × 16 SPAD array and an integrated infrared light source.
Somewhat similarly to the generalized difference imaging approach to AMCW
ToF sensors described in Chapter 3, this chapter contains the demonstration of
multiple computational imaging applications performed with this type of cheap
SPAD sensor device, partly with the assistance of additional (optical) equipment:

• The reconstruction of a target’s position in a volume that is hidden from
the direct line-of-sight of the sensor and light source by illuminating and
observing the reflected signal on a diffuse wall (“non-line-of-sight (NLoS)
tracking”),

• the classification of five different materials (in real time) by holding the
device to the material surface and evaluating the sensor response,

• and the recording of depth images where each pixel corresponds to the
distance of the imaged scene point to the imager.

The utilization of such cheap SPAD devices for the abovementioned tasks involves
several challenges, mostly resulting from the properties that are required for their
intended usage like low cost, small form factor, and eye-safe operation of the light
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source. The low spatial and temporal resolution of the sensor poses limitations
especially on complex tasks like the reconstruction of non-line-of-sight signals.
This is further complicated by the low illumination intensity which makes the
detection of light that has undergone multiple reflections (on the relay wall, the
target, and then again the wall) almost infeasible. In the work presented in this
chapter, these problems are addressed twofoldly. In order to increase the light
efficiency and spatial resolution of the system, hardware additions in the form
of collimating lenses and galvanometer mirrors are added to the system, which
allow the collimation and exact orientation of the illumination and field of view.
On the software side, artificial neural networks are trained to analyze the data in
order to locate very low intensity reflection peaks and to identify material classes.
The collimating lenses and galavanometer mirrors are also used to record data for
the creation of depth images with a much higher resolution than the native spatial
resolution of the VL53L1X’s SPAD array (utilizing different methods, including
fitting Gaussian functions to the temporal distribution of each pixel’s data to
determine the depth), while also the influence of different levels of ambient light
on the depth data is analyzed. The material classification application, on the other
hand, requires no additional hardware and could, in principle, be performed on
a device which already features a SPAD-based proximity sensor, without any
hardware modification.
This publication was authored by multiple people (see bibliographical inform-
ation in the box below). My own contributions include the conceptualization
of the demonstrated application scenarios, building and arranging the experi-
mental hardware and setups, performing the measurements and recording the
data, constructing and implementing the material classification, tuning the NLoS
reconstruction algorithms, implementing the depth image construction, perform-
ing the ambient light study and distance calibration, as well as visualizing and
describing the experimental procedures and findings and coordinating the project.

The content of Chapter 5 has been published as [9]:

Clara Callenberg, Zheng Shi, Felix Heide, and Matthias B.

Hullin. 2021. Low-Cost SPAD Sensing for Non-Line-of-Sight
Tracking, Material Classification and Depth Imaging. ACM

Trans. Graph. 40, 4, Article 61 (August 2021), 12 pages.

DOI:https://doi.org/10.1145/3450626.3459824.
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Chapter 6: Conclusion and Outlook This last chapter examines how the
presented research integrates into related work and the general context of ToF
technology, especially subsequent publications and advances that have emerged
recently. It also explores possible future developments and progressions.
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CHAPTER 2

BACKGROUND

Since the goal of scientific publications like the ones in Chapters 3-5 is the present-
ation of research in a concise manner, some of the concepts and technologies used
in the presented work are introduced only briefly in the respective chapters. In
order to give a thorough exposition of the treated topics, this chapter provides an
introduction and explanation of some of the key aspects of the research projects
that constitute this cumulative thesis. Some general physical and technical found-
ations are discussed, but with the concrete purpose of establishing the specific
concepts used in the later chapters, like the exploitation of polarization angle
conservation, or the technological basis and operating principle of the used ToF
imagers.

2.1 LIGHT AND ITS PHYSICAL PROPERTIES

When an electric field changes over time, it induces a magnetic field in perpen-
dicular direction, and vice versa. Electromagnetic radiation is this mutual
induction of electric and magnetic fields as they propagate through space, creat-
ing an electromagnetic wave. In vacuum, an electromagnetic wave travels with
the speed of light 𝑐 = 299,792,458 m

s and its wavelength 𝜆 is given by 𝜆 = 𝑐/𝑓 ,
where 𝑓 is its oscillation frequency.

The human eye is capable of detecting electromagnetic radiation in the wave-
length range from ∼400-780 nanometers, which we therefore call the visible
spectrum or simply light. Besides brightness, light is also associated with a per-
ception of color, which depends on its wavelength and starts with a purple/blue
impression at the lower end of the visible wavelength range and changes over
green and yellow to red at the higher end (generally known as the colors of
the rainbow). Electromagnetic radiation with higher wavelengths – from about
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Chapter 2 Background

780 nm to 1 mm – is called infrared radiation and sometimes infrared light,
even though it is invisible to the human eye. In imaging applications, infrared
radiation often plays an important role, for example when invisibility is a desired
feature for active illumination of a scene.

Electromagnetic phenomena, particularly the interaction between electric ( ®𝐸)
and magnetic ( ®𝐵) fields, are mostly1 described by Maxwell’s equations:

®∇ × ®𝐸 = −𝜕
®𝐵
𝜕𝑡
, (2.1a)

®∇ × ®𝐵 = 𝜇0®𝑗 +
1
𝑐

2
𝜕 ®𝐸
𝜕𝑡
, (2.1b)

®∇ · ®𝐸 =
𝜌

𝜀0
, (2.1c)

®∇ · ®𝐵 = 0. (2.1d)

Here, 𝜇0 is the vacuum permeability, 𝜀0 is the vacuum permittivity, 𝜌 is the
electric charge density, ®𝑗 is the current density (of moving electric charges),
and 𝑡 is the time. ®∇ is the three-dimensional gradient operator. In particular,
Equations 2.1a-c describe the fact that temporally variable electric and magnetic
fields induce each other, while electric fields are also induced by electric charges,
and magnetic fields are also induced by moving electric charges. Equation 2.1d
indicates that magnetic fields are solenoidal, meaning that they have no sources
or sinks, and there is therefore no such thing as a single magnetic charge. [10]

In a vacuum free of charges and currents, Equations 2.1a and b become

®∇ × ®𝐸 = −𝜕
®𝐵
𝜕𝑡
, (2.2a)

®∇ × ®𝐵 =
1
𝑐

2
𝜕 ®𝐸
𝜕𝑡
. (2.2b)

1 Together with the Lorentz force and Newton’s second law of motion, the Maxwell equations
actually describe all electromagnetic phenomena. [10]
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Applying the curl operator ®∇× to both equations results in

®∇ × ®∇ × ®𝐸 = −®∇ × 𝜕 ®𝐵
𝜕𝑡

= − 𝜕

𝜕𝑡

(
®∇ × ®𝐵

)2.2b
↓
= − 𝜕

𝜕𝑡

(
1
𝑐

2
𝜕 ®𝐸
𝜕𝑡

)
= − 1

𝑐
2
𝜕

2 ®𝐸
𝜕𝑡

2 , (2.3a)

®∇ × ®∇ × ®𝐵 = ®∇ × 1
𝑐

2
𝜕 ®𝐸
𝜕𝑡

=
1
𝑐

2
𝜕

𝜕𝑡

(
®∇ × ®𝐸

)2.2a
↓
=

1
𝑐

2
𝜕

𝜕𝑡

(
−𝜕

®𝐵
𝜕𝑡

)
= − 1

𝑐
2
𝜕

2 ®𝐵
𝜕𝑡

2 . (2.3b)

Using the identity ®∇ × ( ®∇ × ®𝑎) = ®∇( ®∇ · ®𝑎) − ®∇2®𝑎 and the fact that according to
Equation 2.1c, ®∇· ®𝐸 = 0 in empty space (where 𝜌 = 0), one obtains the uncoupled,
homogeneous wave equations(

1
𝑐

2
𝜕

2

𝜕𝑡
2 − ®∇2

)
®𝐸 = 0, (2.4a)(

1
𝑐

2
𝜕

2

𝜕𝑡
2 − ®∇2

)
®𝐵 = 0, (2.4b)

which describe the propagation of electromagnatic waves, and therefore light,
through vacuum. [11]

2.1.1 POLARIZATION

Electromagnetic waves (in vacuum) are transverse waves because the electric
and magnetic fields are perpendicular to the direction of propagation. They can
therefore be polarized.

A periodic plane wave can be described by sine or cosine functions, for example
as

®𝐸 = ®𝐸0 · cos (𝑘𝑧 − 𝜔𝑡) (2.5a)
®𝐵 = ®𝐵0 · cos (𝑘𝑧 − 𝜔𝑡) (2.5b)

which is a possible solution to the wave equations 2.4 and describes the electric
and magnetic fields of a wave that travels in 𝑧 direction. Here, 𝑘 = 2𝜋/𝜆 is the
wave number and 𝜔 = 2𝜋 𝑓 is the wave’s angular frequency. If ®𝐸0 always points
in the same direction, the wave is called linearly polarized. It means that the 𝑥
and 𝑦 components of ®𝐸 are in phase. If these two components are shifted against
each other, the direction of ®𝐸 rotates around the direction of propagation. If the
phase shift is exactly 90◦, and 𝐸0,𝑥 = 𝐸0,𝑦 the wave is called circularly polarized
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Chapter 2 Background

Figure 2.1: Reflection and refraction of light at the surface between two materials with

different refractive indices 𝑛1 and 𝑛2. The amplitudes ®𝐸0 of the incident and reflected ray

are decomposed into components parallel and perpendicular to the plane of incidence

(the plane spanned by the surface normal and the incident ray).

because the tip of the vector ®𝐸 describes a circle around the propagation axis.
[10]

Generally, light waves are unpolarized because they are a superposition of
waves created by statistically oriented oscillating dipoles (i.e. when they are
emitted from excited atoms). Certain physical effects like reflection of light
in certain angles or dichroism and birefringence in crystals, however, allows
separation of a certain polarization direction by absorbing all other components
or deflecting them in a different direction. A corresponding optical element acting
as such a filter is called a polarizer.

When light falls onto a surface between two materials with different refraction
indices 𝑛 in an angle 𝛼 , generally part of the light is reflected in the same angle
𝛼
′
= 𝛼 (law of reflection) and part is refracted as it is transmitted through the

surface into the other medium under a different angle 𝛽 . The relation between
these angles is described by Snell’s law:

𝑛1 sin(𝛼) = 𝑛2 sin(𝛽). (2.6)
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2.1 Light and its Physical Properties

The amplitudes ®𝐸0 of the incident, reflected and refracted waves can be de-
composed into two components: one that is parallel to the plane of incidence
(the plane that is spanned by the incident ray and the surface normal) and one
that is perpendicular, as drawn in Fig. 2.1. The ratio between the perpendicular
and parallel components of the incident (i) and reflected (r) wave is called the
reflection coefficient 𝝆, described by the Fresnel equations

𝜌⊥ =
𝐸
⊥
0,𝑟

𝐸
⊥
0,𝑖

= −sin(𝛼 − 𝛽)
sin(𝛼 + 𝛽) (2.7a)

𝜌∥ =
𝐸
∥
0,𝑟

𝐸
∥
0,𝑖

=
tan(𝛼 − 𝛽)
tan(𝛼 + 𝛽) (2.7b)

for non-magnetic dielectric materials. [10]

Figure 2.2: Illustration of the angle

𝛾𝑖 between the electric field vec-

tor and the plane of incidence. It

can be calculated using the com-

ponents of the incident ray’s amp-

litude ®𝐸0,𝑖 which are parallel (𝐸
∥
0,𝑖 )

and perpendicular (𝐸
⊥
0,𝑖 ) to the

plane of incidence.

When the incident light is linearly po-
larized, there is a fixed angle 𝛾𝑖 between
its electric field vector ®𝐸𝑖 and the plane
of incidence as illustrated in Fig. 2.2. One
can therefore write:

tan(𝛾𝑖) =
𝐸
⊥
0,𝑖

𝐸
∥
0,𝑖

. (2.8)

Similarly, the angle 𝛾𝑟 between the re-
flected light’s ®𝐸 vector and the plane of
incidence is

tan(𝛾𝑟 ) =
𝐸
⊥
0,𝑟

𝐸
∥
0,𝑟

. (2.9)

Using Equations 2.7, it follows that

tan(𝛾𝑟 ) = −cos(𝛼 − 𝛽)
cos(𝛼 + 𝛽) · tan(𝛾𝑖) (2.10)
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which shows that at normal incidence, where 𝛼 = 0◦, the polarization angle is
preserved2. This fact is exploited in Section 3.5.1 by illuminating a scene with
linearly polarized light in two different orientations and observing it with a
camera equipped with an analyzing filter that is parallel to one and perpendicular
to the other light sources’ polarization direction. By placing the camera and
light sources very closely together, light from the light sources that is reflected
only once in the scene and ends up being recorded by the camera must be
reflected approximately at a normal angle and therefore preserves the light
source’s polarization direction. This way, direct reflections can be excluded
for any light that reaches the sensor from the light source which is polarized
perpendicularly to the camera’s analyzing filter allowing to separate direct and
global components of the scene’s light response.

2.1.2 ENERGY AND WAVE-PARTICLE DUALITY

Electromagnetic fields carry energy. This energy’s flux (the amount of energy
transported through a unit area per unit time) is described by the Poynting vector

®𝑆 = 𝜇
−1
0 ®𝐸 × ®𝐵 (2.11)

which, in SI units, is measured in Watts per squaremeter (W/m2). Since the fields
in electromagnetic waves oscillate very fast (around 1015 Hz in the case of visible
light waves), the wave’s irradiance (often also referred to simply as intensity) 𝐼
is given as the time-average of the Poynting vector 𝐼 = ⟨𝑆⟩𝑇 . For a wave as given
in Equations 2.5, this means

𝐼 = ⟨𝑆⟩𝑇 =
1
𝜇0

| ®𝐸0 × ®𝐵0 |⟨cos2(𝑘𝑧 − 𝜔𝑡)⟩𝑇 . (2.12)

Plugging Equations 2.5 into the Maxwell equation 2.1a, it follows that

®∇ × ®𝐸 =
𝜕 ®𝐸
𝜕𝑧

= −𝑘 ®𝐸0 sin(𝑘𝑧 − 𝜔𝑡) = −𝜕
®𝐵
𝜕𝑡

= −𝜔 ®𝐵0 sin(𝑘𝑧 − 𝜔𝑡) (2.13)

®𝐸0 =
𝜔

𝑘
®𝐵0 = 𝑐 ®𝐵0. (2.14)

2 The equation holds for 𝛾𝑟 = −𝛾𝑖 when 𝛼 = 0◦, which describes the same polarization angle in
external coordinates, considering the definition of the parallel component as shown in Fig. 2.1:
When 𝛼 → 0, the parallel component vectors of the incident and the reflected beam point in
opposite directions.
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2.1 Light and its Physical Properties

Using this relation and the fact that ⟨cos2(𝑘𝑧 −𝜔𝑡)⟩𝑇 = 1
2 when𝑇 is much greater

than one oscillation period, it follows that

𝐼 =
1
𝑐𝜇0

𝐸
2
0, (2.15)

meaning that the irradiance is proportional to the square of the electric field’s
amplitude. [10, 12]

In the case of a point light source which emits light isotropically in all directions,
the outgoing light can be described by a spherical wave, which is a solution to the
wave equations 2.4 where the wave’s amplitude is inversely proportional to the
distance 𝑟 to the light source. The irradiance is therefore inversely proportional to
𝑟

2 which is known as the inverse square law [12]. This can easily be understood
by the fact that the total energy flux emitted by the light source is spread over an
increasingly large area (the surface of a sphere with increasing radius) as the wave
travels away from the source. Since the surface area of a sphere is proportional
to the square of its radius and the irradiance is the energy transported through
this area (per time), it follows that 𝐼 ∝ 1/𝑟 2, or

𝐼1
𝐼2

=
𝑟

2
2

𝑟
2
1

(2.16)

for intensities 𝐼1, 𝐼2 at distances 𝑟1, 𝑟2 from the light source. This fact is important to
consider when comparing intensities of light that has travelled different distances
(for example when analyzing light travel time histograms as done in Section 5.5).

While waves explain many properties of light and electromagnetic radiation
in general, certain experimental observations can only be explained by the fact
that electromagnetic energy transfer happens in multiples of a certain minimal
amount of energy (that it is quantized) which is proportional to the radiations’s
frequency 𝑓 :

𝐸 = ℎ𝑓 (2.17)

where ℎ ≈ 6.626 · 10−34 Js is the Planck constant [10]. Such a “package” of energy
is called a photon and can be thought of as a light particle. The quantization of
light is used in the detection and measurement of light in digital imaging sensors
as described in Section 2.2.
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Chapter 2 Background

2.2 DETECTING PHOTONS

The energy carried by photons can be converted into other forms of energy and
thus measured. The relevant technology for computational imaging is based
on semiconductors. A semiconductor is a material with a special electrical
conduction behaviour. In electrical conductors, like metals, electrons can move
freely inside the lattice structure of the material, which is why an applied voltage
induces an electric current of moving electrons in, for example, a cable. Electrical
insulators, on the other hand, do not allow electrons to move easily inside the
material. The electrical conductivity of a material is determined by the energy
levels that electrons can occupy inside it, which are in turn determined by the
atomic structure of the material. Ranges3 of possible energy states for electrons in
a material are called bands. The bands relevant for electrical conduction are called
valence band and conduction band (illustrated in Fig. 2.3). Electrons that reside
in the valence band are bound to the atoms making up the material lattice while
in the conduction band, electrons can move freely inside the lattice. In conductors,
both these bands overlap or are very close, so electrons can easily move from the
valence band to the conduction band. In insulators, there is a large energy gap,
called band gap between the valence and the conduction band. Moving electrons
from the valence band to the conduction band would thus require large amounts
of energy, for example in the form of heat, or very high voltages, that would
generally destroy the material. In semiconductors, the valence and conduction
band do not overlap, but the band gap is small enough to be passed by electrons
under certain circumstances that provide them with a sufficient amount of energy,
usually in the order of a few electronvolts. For example silicon, a very commonly
used semiconductor material in imaging sensors, has a band gap of 𝐸Si

g = 1.1 eV
at room temperature (𝑇 = 300 K). [13]

In order to use a semiconductor material to build a light-sensitive sensor, the
material is doped which means that impurity atoms are introduced into the lattice
structure of the material (see Fig. 2.4). For this doping, elements which have one
more or one less valence electrons in the outer shell than the semiconductor
element are used. For example in silicon, which has four valence electrons, atoms
of an element with five valence atoms, e.g. arsenic or lithium, is used to create a
so-called n-doping. These foreign atoms in the silicon lattice are called donors
because they provide an additional electron compared to the silicon. Due to the
surrounding lattice structure, this electron is not strongly bound to the atom

3 In reality, all possible energy states are discrete, but for practical purposes closely adjacent
levels can be treated as a continuous band. [13]
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2.2 Detecting Photons

Figure 2.3: Band model for insulators, semiconductors and conductors. 𝐸𝐹 is called

the Fermi level and denotes the (hypothetical) energy level which is occupied with a

probability of 50% at thermal equilibrium [14].

Figure 2.4: Doping of a semiconductor by introducing impurity atoms into the lattice.

Left: n-doping where donors provide excess electrons. Right: p-doping where acceptors

provide excess holes in the lattice structure. The illustration is based on [15].

and introduces an additional energy level slightly below the conduction band.
Analogously, foreign atoms with only three valence electrons can be used for
p-doping. They are called acceptors because they leave a “hole” in the lattice
structure which creates an energy level slightly above the valence band. Doped
semiconductors with a very low or very high doping concentration are usually
denoted p−/n− and p+/n+, respectively.

When an n-doped and a p-doped semiconductor are brought into contact,
they form a p-n junction, as illustrated in Fig. 2.5. Around this junction, the
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Chapter 2 Background

Figure 2.5: Schematic of a p-n junction with the p-doped semiconductor on the left

and the n-doped semiconductor on the right. Indicated in grey is the depletion zone

which contains the ionized impurity atoms. The density of holes and electrons drops

exponentially in the depletion zone [13].

donor electrons from the n-doped region combine with the holes in the p-doped
region, creating an insulating depletion zone that lacks free charge carriers.4
In order for electrons to pass this layer, sufficient energy needs to be provided
by an applied voltage. The conduction behaviour of the p-n junction depends
on the polarity of the voltage though. While a forward bias voltage narrows
the depletion zone and allows charge carriers to pass through, a reverse bias
voltage pulls electrons from the n-doped region even further into the p-doped
region, enlarging the depletion zone. No current flows through the junction in
this case – unless the voltage is high enough for charge carriers to overcome the
insulating layer. The minimum voltage in reverse direction necessary to cause
such a breakdown current is called the breakdown voltage.
Photodiodes are light detecting devices that are based on a p-n junction.

When light hits the depletion region of a p-n junction, a photon can transfer its
energy to a valence electron and lift it into the conduction band – as long as it
carries enough energy to overcome the band gap. In the valence band, the electron
leaves a hole, which is why the resulting state is called an electron-hole pair.
Due to the space charge in the depletion region, electrons and holes are separated
immediately, so instead of recombining they drift to opposite sides of the diode,
effectively creating a measurable photo current. In an ideal photodiode which
4 Not all free electrons combine with all holes, because the doping atoms become ionized and

form a space charge that induces an electric field in the depletion zone. The width of the
depletion zone is determined by the equilibrium between the attracting forces of the free
charge carriers and the electric field created by the doping ions. The density of charge carriers
drops exponentially inside the depletion zone. [13]
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2.2 Detecting Photons

converts all incident photons into electron-hole pairs (meaning it has a quantum
efficiency of 100%), this current is proportional to the number of photons and
therefore the light intensity. Photodiodes used to measure light intensity are
usually operated in reverse bias mode in order to increase the size of the depletion
zone and to reduce saturation effects. They constitute the basic element that the
imaging technologies described in the following sections are built upon. [14, 16]

2.2.1 IMAGE SENSORS

Conventional image sensors used to measure two-dimensional optical signals
are essentially arrays of photodiodes, where each photodiode is called a pixel. In
classical image sensors, these diodes are operated in such a way that photoelec-
trons are not immediately measured, but collected in a potential well inside the
pixel. This well is formed by potential barriers that can be shaped and adjusted
by applying an external voltage. During the exposure time, photoelectrons are
produced in the pixel as a result of the incoming photon flux and accumulate
in the potential well. The maximum number of electrons that can be stored in
each pixel, the full well capacity, determines the sensor’s dynamic range, which
describes the ratio between the largest and the smallest signal intensity that can
be measured. The more photoelectrons can fit into the potential well of each pixel,
the more light can be detected before the pixel is saturated. Two main categories
of conventional image sensors can be defined by the circuitry design used to read
out the accumulated charges from the pixels: charge-coupled devices (CCD)
and complementary metal-oxide-semiconductor (CMOS) technology.

In CCDs, the sensor architecture allows to pass collected charges from one
pixel to the next. This way, the charges are shifted into a transfer register row by
row and from there, pixel by pixel, into a charge amplifier that outputs a voltage
proportional to the number of measured photoelectrons that can then be conver-
ted into digital pixel values using an analog-to-digital converter (ADC). A special
type of CCD sensor is the emCCD (electron multiplying charge-coupled
device) which features an additional high-voltage electron-multiplication register
right before the readout, providing a high signal gain that allows imaging at very
low light intensity. [14]
Such a device is used in Chapter 4 as the temporally integrating image sensor
whose signal is combined with that of a time-resolved SPAD sensor in order to
obtain high-spatial-resolution time-resolved images.

CMOS sensors avoid the time-consuming charge-shifting readout process by
providing individual readout electronics at every pixel, which is why it is also
called an active pixel sensor. This increase in readout speed, however, comes at the
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cost of slight gain and noise variations between the pixels and usually a smaller
fill factor due to the required electronics taking up space on the sensor area. The
fill factor is defined as the ratio of photosensitive area to the whole sensor area
and is usually below 1. Some sensors employ microlens arrays where a tiny lens
in front of each pixel collects light and focuses it onto the sensitive region in
order to increase the quantum efficiency. [16]

Special image sensors whose capabilities exceed the simple integration of light
are described in the following section.

2.3 TIME-OF-FLIGHT SENSING

A conventional camera, as described above, collects photoelectrons produced
from light that is reflected or emitted by a scene and that falls onto the sensor
during a certain exposure time. This time is usually much longer than a photon
travels inside the scene, so the recorded image is an integration over all light
transport that happens during the exposure. Time-of-Flight cameras, instead of
simply integrating temporally over the light intensity, feature a light source that
illuminates the scene and are capable of measuring the time that the light took
to travel from the source through the scene and back to the sensor. There are
multiple techniques to achieve this high level of temporal resolution which vary
significantly in cost, flexibility, and resolution.

ToF imaging principles can be divided into two different categories: indirect
and direct ToF imaging (I-ToF and D-ToF ). While indirect ToF cameras use a con-
tinuous, amplitude-modulated light signal, direct ToF systems use a light source
that sends out ultra short pulses of light. I-ToF systems then measure a phase dif-
ference between the emitted and received signal, similar to the concept of LIDAR5,
while D-ToF systems directly measure the elapsed time between the emission
and detection of light. An important difference between the two technologies is
that I-ToF systems yield a single flight time value per pixel, hence the resulting
measurement data is a two-dimensional image with a flight time (usually corres-
ponding to a depth via 𝑑 = 𝑐 · 𝑡 ) value per spatial pixel. D-ToF systems on the
other hand are generally capable of measuring the full light response profile of a
point or scene: the light source sends out pulses of photons and the time between
their emission and detection at the sensor is measured. This process is repeated
multiple times and a histogram of measured flight times is collected. Its shape
characterizes the light response of the observed scene – a completely opaque

5 Light Detection And Ranging
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object, for instance, would result in a sharp peak in the histogram because all light
is reflected at the same point. When the object is translucent, though, light is also
transmitted inside the material and scattered there, hence travelling longer paths
before it reaches the sensor, which is reflected in the measurement histogram
as non-zero values after the initial surface reflectance peak. The same holds for
inter-reflections in a scene or light that passes through semi-transparent objects.
Using D-ToF technologies, the full light response of a scene can be recorded as a
three-dimensional data tensor (data cube) with two spatial dimensions and one
temporal dimension, also called a transient image or light-in-flight image.

The work presented in this thesis uses two types of ToF imagers: Amplitude-
Modulated Continuous-Wave (AMCW) ToF imagers (I-ToF) and Single-
Photon Avalanche Diode (SPAD) imagers (D-ToF), which are therefore both
explained in more detail in the following sections.6

Another important technology suitable for recording transient images with a
very high temporal resolution of up to 180 femtoseconds are streak cameras
[20] which work by accelerating a line of photoelectrons in a tube and deflecting
them by an amount that is proportional to their time of emission. This way, a
two-dimensional image is formed which features one spatial and one temporal
dimension, depicting the temporal light response of a narrow line of the observed
scene. In order to record full images with two spatial dimensions though, the
scene needs to be scanned line by line and the resulting images stacked to form
a three-dimensional “transient” data tensor, or the optical signal needs to be
spatially encoded in order to allow for a later reconstruction of the two spatial
dimensions [21, 22]. Additionally, streak cameras are generally expensive and
bulky, which is why SPADs are a preferred technology in many application
scenarios despite their lower temporal resolution, which is in the order of tens of
picoseconds [19].

2.3.1 AMPLITUDE-MODULATED CONTINUOUS-WAVE TOF SENS-

ING

The idea of modulation-based ToF (also called correlation ToF or lock-in ToF)
imaging is to illuminate the scene with an amplitude-modulated signal with a
fixed modulation frequency. The special camera sensor recording the scene is
6 Heide et al. [17] have shown that continuous-wave ToF systems can also be used to record

transient images, although the achieved temporal resolution is much lower than that of des-
ignated D-ToF systems. Conversely, SPAD sensors, which are generally considered a D-ToF
technology, can be used in I-ToF mode by sampling a modulated illumination signal similar to
AMCW systems (Single-Photon Synchronous Detection - SPSD) [18, 19].
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Figure 2.6: Schematic sketch of the structure and photo-electron collection mechanism

of a PMD pixel: Depending on the polarity of the modulation signal 𝑢𝑚 , the potential

inside the pixel follows an asymmetric distribution that allows electrons to drift either

to the left or to the right side where they’re collected in a deeper potential well at the

readout diodes a and b. The illustration is based on [23].

operated with the same modulation signal and can detect the phase difference
Δ𝜑 = 2𝜋 𝑓modΔ𝑡 between the emitted and the received signal, where 𝑓mod is
the modulation frequency and Δ𝑡 is the time that has passed between emission
and detection of the light. From this, the travelled light path can be easily
calculated as 𝑠 = 𝑐 · Δ𝑡 ; and the resulting depth, when light source and camera
are located close to each other, is then simply 𝑑 = 𝑠/2. Since different periods
of the illumination signal can not be distinguished, the maximum range that
can be measured unambiguously with this setup is given by one wavelength
of the illumination signal. For a typical modulation frequency of 20 MHz, this
corresponds to 𝜆mod = 𝑐/𝑓mod = 15 m, the maximum depth range is therefore
7.5 m.
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2.3 Time-of-Flight Sensing

Figure 2.7: Measurement principle of a correlation ToF system: A light source emits an

amplitude-modulated signal which undergoes a phase shift during the time Δ𝑡 that the

light takes to travel between light source, scene and sensor. Two ‘buckets’ inside the

pixel are operated with inverse modulation signals which allows to determine the phase

shift from the ratio of the two signals.

The detection of the phase shift Δ𝜑 at the sensor is based on the photonic mixer
device (PMD) [23]. It is a special kind of photo-diode illustrated in Fig. 2.6: instead
of collecting the produced photo-electrons in a single potential well during the
exposure that is then later read-out, it features two transparent electrodes at the
photosensitive area, whose voltage is modulated with a modulation signal 𝑢𝑚 .
Depending on the polarity of this modulation signal, the potential inside the pixel
forms a slope so that photoelectrons drift either to the left or the right side of
the pixel where they are stored in separate potential wells (’buckets’) that can
be read out individually. Figure 2.7 illustrates the measurement principle: The
amount by which the illumination signal has been shifted due to the travel time
Δ𝑡 from the light source (to the scene and then) to the sensor can be determined
by the ratio of signals collected in the first and the second bucket.

In real scenarios, however, ambient light produces an intensity offset in the
measured signals. This can either be compensated by acquiring a measurement
without active illumination and subtracting it from each bucket’s signal, or by
employing a more complex measurement scheme where the difference of the two
buckets’ signals is calculated (effectively removing the offset) and the signal is
sampled four times, each measurement with a different fixed phase shift (0◦, 90◦,
180◦, and 270◦) to the original modulation signal [24]. From these samples, the
phase, amplitude and offset of the measured signal can be calculated [25]. This
method allows to also compensate for different gains at the readout of the two
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buckets [26] and is explained in more detail in [24] and [27]. The ToF sensor’s
capability to calculate the difference of the two buckets in hardware, before the
read-out, is exploited in Chapter 3 where correlation ToF sensors are used as
general difference imagers.

2.3.2 SPAD SENSING

Avalanche photodiodes (APDs) are special photodiodes that are operated with
a strong reverse-bias voltage that accelerates photo-electrons in the depletion
zone after they have been produced by incident photons. This way they gain
enough energy (more than the width of the band gap) to excite new electrons
in the semi-conductor by impact ionization. These are again accelerated and
excite even more charge carriers, effectively creating an avalanche that produces
a strong measurable signal. Due to this multiplication process, similar to a
photomultiplier, even very low light intensities can be measured.

A special type of APD is the Single-Photon Avalanche Diode (SPAD) whose
bias voltage is so high that even a single electron-hole pair is sufficient to initiate
a self-sustaining avalanche that creates a large current pulse. Due to this binary
photon detection mode, where each detected photon creates a single countable
pulse, it is also called Geiger-mode APD because the working principle is similar
to that of a Geiger counter for ionizing radiation. Using a light source that emits
very short pulses of light, the time between the emission of a photon and its
detection at a SPAD sensor can be measured. Repeating this measurement, a
histogram of photon flight times can be formed, yielding a characteristic light
response distribution. Therefore, while correlation ToF systems only yield a single
time (or depth) value per pixel, a SPAD system yields a temporally resolved light
response signal as illustrated in Fig. 2.8. In a two-dimensional array of SPADs
(a SPAD sensor), each pixel yields such a light response histogram, so the full
SPAD image is a three-dimensional data cube with two spatial dimensions and
one temporal dimension.

This time-resolved light response data enables a wide variety of applications.
Besides direct depth imaging by finding the reflection peak, SPADs can, for
instance, also be used to record fluorescence decays in Fluorescence Lifetime
Imaging Microscopy (FLIM), where a pulsed light source excites a fluorescent
material and the SPAD measures the decay profile from which the fluorescence
lifetime can be extracted. The information contained in a SPAD histogram can also
be used to distinguish multiple reflections, enabling imaging of objects outside
the direct line of sight by observing the light signal reflected by a diffuse wall
that is in view of the target scene.
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Figure 2.8: Example of a light response distribution as it could be measured with a SPAD

setup. The shape of the histogram depends on the light response profile of the imaged

scene, object, or point.

Like a Geiger counter, a SPAD needs to be quenched after each avalanche [28].
Therefore, after the detection of a photon, the SPAD is insensitive for a certain
dead time which limits the maximum photon count rate of the detector and can
create a bias towards lower photon flight times in ToF histograms. Additional
to this dead time, other relevant parameters for the performance of a SPAD are
its sensitivity (photon detection probability), dark count rate, timing jitter and
afterpulsing probability (a time-correlated type of noise caused by fabrication
defects in the diode) [19]. Arrays of SPADs can generally be implemented in
CMOS technology, which however introduces additional performance parameters,
mainly concerning the uniformity of the aforementioned properties, as well as
crosstalk between pixels [19].

Chapter 4 of this thesis aims at increasing the spatial resolution of data meas-
ured with current SPAD sensors, and Chapter 5 explores the capabilities of very
cheap SPAD devices to perform challenging imaging and vision tasks.
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CHAPTER 3

SNAPSHOT DIFFERENCE IMAGING USING

CORRELATION TIME-OF-FLIGHT SENSORS

Abstract Computational photography encompasses a diversity of imaging techniques,

but one of the core operations performed by many of them is to compute image differ-

ences. An intuitive approach to computing such differences is to capture several images

sequentially and then process them jointly. In this paper, we introduce a snapshot

difference imaging approach that is directly implemented in the sensor hardware of

emerging time-of-flight cameras. With a variety of examples, we demonstrate that the

proposed snapshot difference imaging technique is useful for direct-global illumination

separation, for direct imaging of spatial and temporal image gradients, for direct depth

edge imaging, and more.

This work was supported by the German Research Foundation (HU-2273/2-1), the X-Rite
Chair for Digital Material Appearance, a National Science Foundation CAREER award
(IIS 1553333), a Terman Faculty Fellowship, and the KAUST Office of Sponsored Research
through the Visual Computing Center CCF grant. We thank Nick Maggio for his help on
early experiments.

3.1 INTRODUCTION AND MOTIVATION

Over the last two decades, research in computational photography has been
striving to overcome limitations of conventional imagers via a co-design of op-
tics, sensors, algorithms, and illumination. Using this paradigm, unprecedented
imaging modalities have been unlocked, such as direct-global light transport
separation [29], gradient imaging [30], temporal contrast imaging [31], and direct
depth edge imaging via multi-flash photography [32]. A common operation for
many of these techniques is to record two or more images and then compute the
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(a) (b) (c) (d) (e)
Figure 3.1: We introduce a method that uses time-of-flight (ToF) imagers not for measur-

ing scene depth, but rather as analog computational imagers that can directly measure

difference values at a pixel level. We demonstrate this principle with a slightly modified

ToF camera system (a), where simple reconfigurations in the optical path enable a wide

range of imaging modalities. For instance, our system can directly sense temporal gradi-

ents (b), depth edges (c), direct-light-only images (d) and spatial gradients (Fig. 3.10) –

each in a single exposure and without any additional decoding steps. We further show

that the remarkable noise statistics of such imagers can be exploited to extract two

color channels (here: red and blue) from a single snapshot taken under red and blue

illumination (e). The top images in columns (b)–(e) are reference photographs of the

respective scenes; the bottom ones visualize the output of our system.

difference between them. Unfortunately, difference imaging is challenging for
dynamic scenes, because motion creates misalignment between successively cap-
tured photographs which is in many cases difficult to mitigate in post-processing.
In this paper, we explore a new approach to capturing difference images in a
single exposure and generalize difference imaging to a variety of applications.

We propose to re-purpose time-of-flight (ToF) sensors to facilitate instant-
aneous difference imaging. The usual application for these sensors is depth
imaging. In that context, they are operated in conjunction with a periodically
modulated light source. Light that has been reflected by the scene is demodu-
lated by the sensor, reconstructing the shift in modulation phase and thereby the
depth estimate per pixel. This functionality is achieved by a pixel architecture
that employs two potential wells for photoelectrons to be stored in during the
exposure, and that subtracts the charges accumulated in these two wells (Fig. 3.2).
In other words, the core functionality of time-of-flight sensors is based on being
able to take the difference of two incident signals before analog-to-digital (A/D)
conversion.

Rather than computing scene depth, we demonstrate how ToF sensing tech-
nology can be used to conveniently implement a range of computational photo-
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graphy techniques, including direct-global separation, direct depth edge imaging,
spatio-temporal gradient imaging, and more. The capabilities unlocked with snap-
shot difference imaging are particularly interesting for applications that require
low-power, low-latency on-board processing with low bandwidth communication
channels, such as internet-of-things devices. With this paper, we take first steps
towards these directions.

Specifically, our contributions are the following:

• We introduce the concept of generalized difference imaging and develop an
image formation and a noise model for this principle.

• We construct a prototype difference imager using a modified time-of-flight
camera combined with multiple, spatio-temporally coded light sources.

• We evaluate the proposed imaging concept with several practical applications,
including direct-global separation, direct depth edge as well as spatio-temporal
gradient imaging.

• We demonstrate that two images can be recovered from a single difference
image by exploiting characteristics of the proposed image formation model.

Overview of benefits and limitations The proposed method has two primary
benefits. First, capturing a difference image within a single exposure allows
for faster time scales to be recorded than capturing two separate images and
subtracting them digitally. Second, the noise properties of difference imaging
before A/D conversion are shown to be favorable over digital subtraction post A/D
conversion. A limitation of the proposed technique is that it relies on ToF sensors,
which currently provide much lower resolution and signal quality than well-
established CMOS or CCD sensors. Thus, comparing digital difference imaging
with CMOS sensors and analog difference imaging with ToF sensors may not be
beneficial for the latter approach. Yet, we demonstrate that our method yields
superior noise performance for sensors with comparable characteristics.

3.2 RELATED WORK

Computational ToF imaging This work presents a method for difference ima-
ging by re-purposing two-bucket sensors usually used for depth imaging in
lock-in ToF cameras. Lock-in time-of-flight sensors are a rapidly emerging sensor
technology, with Microsoft’s Kinect for XBOX One as the highest-resolution
sensor available on the market at 512 × 424 pixels [33]. For technical details on
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Figure 3.2: Principle of operation of a time-of-flight (ToF) pixel. A light source is tem-

porally modulated, its emitted light is reflected by the scene, and then demodulated in

the pixel. To demodulate the coded illumination in the detector, two wells in each pixel

collect charge carriers and an electric field oscillates at the demodulation frequency to

direct incident photoelectrons into one or the other well. The sensor circuit measures

the voltage difference before digitizing it by an analog-to-digital converter (ADC). Here,

we illustrate how the difference between two modulated light sources can be directly

measured with such a pixel architecture.

lock-in ToF sensors we refer the reader to Lange et al. [34] and Hansard et al. [35].
A growing body of literature re-purposes these emerging sensors, in combination
with computational methods, to address a variety of challenging problems in
imaging and vision. Kadambi et al. [36] reduce multi-path interference by cod-
ing the modulation profiles, Heide et al. [17] recover temporal profiles of light
transport by measuring frequency sweeps, which allows for improved imaging
in scattering media [37]. Recently, Tadano et al. [38] designed depth-selective
modulation functions enabling virtual-blue screening and selective back-scatter
removal as applications.

Differential-pixel sensors The proposed difference imaging method subtracts
two signals before A/D conversion by “piggybacking” on two-bucket ToF sensor
technology. Wang et al. [39] have previously proposed a custom sensor design that
also performs pre-ADC subtraction for the purpose of optoelectronic filtering and
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light field capture. Specifically, the authors use programmable gain operational
amplifiers to compute the sum and difference of pixel pairs, which is then passed
on to the A/D converter. In combination with local diffractive gratings as optics
on every pixel, this allows to realize filtering with positive and negative filter
coefficients. In contrast to a conventional sequential capture approach, these
differential-pixel sensors offer reduced bandwidth [40], at the cost of spatial
resolution. Compared to the proposed method, the optical filters are static and
prohibit the flexible modes of operation demonstrated in this work. Changing
from one difference-imaging task to another would require placing a different
mosaicking pattern on the sensor.

Differential optical systems Instead of this optoelectronic approach to differ-
ence imaging, one could also imagine cameras that perform the signal subtraction
purely optically, plus a DC offset to ensure positivity. Building on Zomet and
Nayar’s work [41], Koppal et al. [42] present an optical design consisting of a
micro-aperture mask in combination with lenslets allowing to design custom
optical template filters for a variety of computer vision tasks. This approach may
be adopted to design optical filters that perform spatial gradient or other filter
differences in a single-shot, by designing difference filters with a DC offset to
ensure non-negative coefficients. In theory, this approach would require variable
high-resolution aperture patterns [41]. Note also, that the proposed approach
would be a natural choice for suppressing the DC in such a setup by relying on
the adaptive background suppression of recent ToF sensors.

Event-based sensors A further sensor design for differential measurements
are event-based dynamic vision sensors [31, 43], which have been demonstrated
for applications in vision and robotics, such as tracking [44] and simultaneous
localization and mapping (SLAM) [45]. Each pixel in such sensors asynchronously
measures temporal intensity changes and generates spike events for temporal
differences with magnitude above a given activation threshold. This event-driven
behavior is achieved by augmenting each pixel with its self-timed switched-
capacitor differencing circuit. By reading out pixels asynchronously, the core
benefit of this sensor design is the the low bandwidth requirement, enabling
high frame rates and low power consumption [31, 43]. However, similar to the
differential-pixel sensors, this comes at the cost of reduced spatial resolution,
when compared to conventional sequential capture. While the proposed solution,
based on ToF sensors, shares limitations in resolution, temporal differencing
sensors do not support the very flexible modes of operation shown in this work.
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For example, capturing intensity or depth images requires solving ill-posed
inverse problems [44].

Split-pixel HDR sensors Backside-illuminated split-pixel architectures have
become the dominant choice for high-dynamic-range (HDR) imaging in high-
speed vision cameras [46]. Single-shot HDR capture is essential for vision-based
autonomous or assisted driving systems where reacting to fast moving objects
over a wide dynamic range is critical [47]. A variety of HDR sensor designs
for high frame rates have been proposed in the past. Skimming HDR sensors
perform partial resets (draining) of the accumulated charges during integration,
allowing repeated partial integration with successively shorter resets [48]. The
repeated integration can cause motion artefacts if partial saturation are reached
quickly. Split-pixel architectures eliminate this issue by dividing each pixel
into multiple buckets [49, 50]. Multiple exposures are captured simultaneously
by implementing different-sized photosensitive areas (OmniVision OV10640,
OV10650). Given the emerge of split-pixel architectures as a key vision sensor
technology, we believe that the proposed two-bucket difference imaging method
may have broad applications even beyond the ones in this work.

3.3 IMAGING PRINCIPLE

Of all technologies that can be used for time-of-flight imaging, correlation sensors
are the most widespread and affordable. This is also the type of imager we are
using in this work; throughout the paper, we use the term “time-of-flight (ToF)
sensor” synonymously for this particular technology.

A pixel in a ToF sensor measures the amount of correlation between the
incoming temporally varying photon flux 𝑔𝑖 (𝑡) and a sensor modulation signal
𝑓 (𝑡) ∈ [0, 1] that also varies in time [34]. Unlike regular CCD or CMOS sensors
where electrical charges generated in a photodiode are collected in a potential
well, ToF sensors feature two such wells per pixel (Fig. 3.2). The sensor modulation
𝑓 (𝑡) decides whether a charge generated at time 𝑡 will tend to end up in one well
or the other. At the end of the integration phase, the difference between the two
wells is read out and digitized. Neglecting quantization from the A/D conversion,
this results in the digital value

𝐼
diff

= 𝜌 · 𝜂 · (𝐼+ − 𝐼−), (3.1)
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where 𝜌 is the conversion factor from electron counts to digital units, and 𝜂
denotes the so-called demodulation contrast [51]. 𝐼+ and 𝐼− are the photoelectrons
collected in the two wells over the integration period [0,𝑇 ]:[

𝐼
+

𝐼
−

]
=

∫ 𝑇

0

[
𝑓 (𝑡)

1 − 𝑓 (𝑡)

]
𝑔𝑖 (𝑡)d𝑡 (3.2)

The incoming photon rate 𝑔𝑖 (𝑡) is a function of the scene and the time-varying
intensity 𝑔(𝑡) of an active light source that illuminates it. In ToF imaging, 𝑓 (𝑡)
and 𝑔(𝑡) are periodic functions of the same high frequency, typically 20–100 MHz,
and the delay of light propagating from a source to the sensor results in a relative
phase shift which is measured to recover depth. In snapshot difference imaging,
we introduce two modifications to this scheme. Firstly, we reduce the modulation
frequency to a point (1–5 MHz) where the propagation of light through near-
range scenes can be assumed to be instantaneous and 𝑓 (𝑡), typically generated
by a digital circuit, only assumes the values 0 and 1. Secondly, we use two light
sources, one (LS1) driven using the same function 𝑓 (𝑡) and the other one (LS2)
with its logical negation 𝑓 (𝑡). According to Eq. 3.2, the photocharges collected
in 𝐼+ will record an image of the scene as illuminated by LS1, and LS2 will fill
𝐼
−. The pixel value 𝐼diff thus measures the difference between two images taken

under different illumination conditions, an insight that forms the foundation of
this work.

3.3.1 NOISE MODEL

Time-of-flight imagers are complex photonic devices and as such suffer from
noise of various different sources [51]. The differential measurement scheme, and
in particular the multi-tap measurement schemes typically used in ToF operation,
cancel out many of the systematic errors introduced by the hardware. None
of these measures, however, are capable of removing shot noise, which is the
uncertainty that occurs during the counting of photoelectrons.

If 𝐼± are the expected electron counts for the two wells, the actual number of
collected electrons 𝐼± in any image recorded is a Poisson-distributed random
variable with mean 𝜇± and variance (𝜎±)2 that are both identical to the respective
expected value:

𝜇
±
= (𝜎±)2

= 𝐼
± (3.3)
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As the difference of two independent random variables, the final pixel value is
also a random variable, and it follows a Skellam distribution [6, 52]. Mean 𝜇diff
and variance 𝜎2

diff relate to the means 𝜇± and variances 𝜎2
± of 𝐼± as

𝜇diff = 𝜂 (𝜇+ − 𝜇−) = 𝜂

(
𝐼+ − 𝐼−

)
(3.4)

𝜎
2
diff = 𝜂

2
(
𝜎

2
+ + 𝜎2

−

)
+ 𝜎2

read = 𝜂
2
(
𝐼+ + 𝐼−

)
+ 𝜎2

read (3.5)

where 𝜎2
read models additional noise sources (assumed to be zero-mean), and the

device constant 𝜂 ∈ [0, 1] is the imager’s contrast [51]. In terms of a matrix-vector
product: (

𝜇diff
𝜎

2
diff − 𝜎2

read

)
=

(
𝜂 −𝜂
𝜂

2
𝜂

2

)
︸     ︷︷     ︸

𝐻

(
𝐼
+

𝐼
−

)
. (3.6)

Note that the uncertainty 𝜎2
diff of the measurement 𝐼diff depends not primarily

on the net difference value, but rather on the latent components 𝐼± that are
subtracted from one another. Thus, even when there is zero signal (𝐼diff

= 0),
the actual observation 𝐼diff can suffer from significant noise. This is a principal
property of difference imaging and holds for all sorts of settings, applying to
in- as well as post-capture differencing techniques. We call the system-specific
matrix 𝐻 the Skellam mixing matrix. In Section 3.6, we show how it can be used
to recover two color channels from a single exposure — an insight that, to our
knowledge, has not been discovered before.

3.4 PROTOTYPE DIFFERENCE IMAGER

We constructed snapshot difference imagers based on two different time-of-flight
sensing platforms. Our first prototype (not pictured) is a recreation of Heide et
al.’s system [17] that is based on the discontinued PMD Technologies CamBoard
nano. The second prototype (Figs. 3.1 and 3.3) combines the Texas Instruments
(TI) OPT8241-CDK evaluation module with external modulation and light sources
in a similar way to the system described by Shrestha et al. [53]. Both imagers
have their infrared-pass filters removed so they can sense visible light. (For the
TI sensor, we carefully polished the filter coating off using a Dremel 462 rotary
tool.) To enable difference imaging, the external light sources are configured to
operate in and out of phase, respectively. The systems are configured to capture
at an exposure time of 2000 µs (PMD) and 1000 µs (TI) and 60 frames per second.
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Figure 3.3: Components of our system based on the Texas Instruments OPT8241-CDK

module (bottom left). An external function generator (bottom right) produces a relatively

low-frequency square wave, MOD, and its negated version, MOD, that correspond to

𝑓 (𝑡) and 𝑓 (𝑡) and modulate the sensor and two light sources (top right). The ENABLE

signal is held high by the camera during integration.

Each of our light sources carries three OSRAM OSLON LEDs that are switched
using the same signal. To implement the different imaging modalities described
in Section 3.5, we equipped the light sources with LEDs of different colors (red,
blue, infrared), placed them in different positions and equipped LEDs and camera
with polarization filters as required for each particular purpose.

In Appendix 3.8, to lower the entry barrier for the reader, we describe an
alternative modification for stock OPT8241-CDK modules that does not require
any custom hardware.

Measurement procedure To reduce fixed pattern noise, a black frame was
recorded before the data acquisition with our setup, and later subtracted from
each measured frame. As a result, the difference image pixels obtain negative
and positive values, depending on the charge balance of the two potential wells.
This applies to all results shown in this paper.
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Figure 3.4: Polarization difference imaging principle: the light of two identical light

sources is modulated in (+) and out (−) of phase, respectively, with the sensor. The light

sources’ polarization directions are mutually perpendicular, one them being aligned in

parallel with the analyzer filter in front of the sensor. Light that is reflected directly off

the surface of the scene preserves the polarization while the light that scatters multiple

times in the scene becomes depolarized. The sensor measures the difference image
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direct
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3.5 APPLICATIONS AND EVALUATION

3.5.1 POLARIZATION-BASED DIRECT-GLOBAL SEPARATION

Many computational imaging techniques are based on a decomposition of light
transport into a direct component, i.e., light that has undergone exactly one scat-
tering event between light source and camera, and a multiply scattered indirect,
or global, component. Being able to investigate these components separately
has been shown to enable, for instance, more realistic digital models for human
skin [54] or more robust 3D scans of objects made of challenging materials [55,
56]. While true separation into direct and indirect components is not within
reach, researchers have used common observations about light transport to de-
rive useful heuristics: indirect light tends to be spatially low-pass filtered [29],
it generally does not fulfill the epipolar constraint [57] and does not preserve
polarization [58]. Here, we use our setup to exemplarily implement the third of
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(a) (b) (c) (d)

Figure 3.5: Polarization difference images of the two different scenes seen as RGB images

in column (d). Column (a) shows the difference image 𝐼
diff

containing only directly

reflected light. The images in column (b) depict 𝐼
+

(parallel polarizers), the ones in

column (c) 𝐼
−

(crossed polarizers). The latter contains only light that has undergone

multiple scattering events. The top dataset was captured with the PMD-based system,

the bottom row with the TI sensor. The images have been rescaled for better visibility.

these heuristics in the form of a single-shot polarization-difference imager, and
demonstrate its capability to isolate directly reflected light.

According to Fig. 3.4, illuminating the scene using two light sources with
crossed linear polarization and an analyzing filter on the camera, one can consider
four different components of the image:

𝐼
direct
| | light that initially passed the polarization filter parallel to the analyzer and

that was reflected directly in the scene, hence preserving the orientation of
the polarization,

𝐼
rot
| | light that initially passed the polarization filter parallel to the analyzer and

that was scattered multiple times in the scene, thus not preserving the
orientation of the polarization,

𝐼
direct
⊥ light that initially passed the polarization filter perpendicular to the analyzer

and that was reflected directly in the scene,

𝐼
rot
⊥ light that initially passed the polarization filter perpendicular to the analyzer

and that was scattered multiple times in the scene.

Assuming that multiple scattering in the scene completely depolarizes the light
for both initial directions of polarization, the amount of the light reaching the
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camera after illumination with light polarized in parallel with the analyzer is the
component that is in phase with 𝑓 (𝑡):

𝐼
+
= 𝐼

direct
| | + 1

2 𝐼
rot
| | ,

while the amount of light reaching the sensor after illumination with light polar-
ized perpendicularly to the analyzer is only the ratio of the incident light that
has been depolarized and therefore passes the analyzing filter:

𝐼
−
=

1
2 𝐼

rot
⊥ .

The light sources are identical and we assume that the ratio between directly
and indirectly scattered light is equal for both initial directions of polarization,
hence 𝐼 rot

⊥ = 𝐼
rot
| | . Therefore, the difference image that the PMD sensor acquires in

lock-in operation with the light sources is

𝐼
diff

= 𝐼
+ − 𝐼− = 𝐼

direct
| | ,

leaving an image containing only directly reflected light. Images of two sample
scenes can be found in Fig. 3.5. Column (a) shows the difference image 𝐼diff.
Columns (b) and (c) show the parallel and perpendicular components 𝐼meas

| | (b) and
𝐼

meas
⊥ (c), respectively, where the latter visibly contains only indirectly scattered

light.

3.5.2 BIPOLAR COLOR MATCHING FUNCTIONS

Being able to characterize and classify materials is important in many applications.
Liu and Gu [59] proposed to use discriminative illumination, or optimized pairs
of spectro-angular illumination patterns to classify materials on a per-pixel basis.
Here, we adopt the spectral aspect of this work, using our PMD setup to construct
an active camera that discriminates between objects of red and blue reflectance
in a single shot. By equipping L1 with red and L2 with blue LEDs, we obtain
a bipolar color camera that measures a positive response for objects that are
predominantly red, and a negative response for bluish objects. Fig. 3.6 shows
an example measurement taken of the X-Rite ColorChecker, where the positive
or negative response in the colored patches can clearly be seen. Patches that
reflect red and blue to equal parts, like the greyscale, result in a response that is
approximately zero.
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Figure 3.6: Left: Difference image of a color calibration chart, taken using PMD setup

using alternating illumination of red and blue light. Reddish and bluish color patches

obtain values on the opposite ends of the scale. Patches whose reflection spectra do not

favor either red or blue obtain a value of approximately zero. Edges of some patches

appear exaggerated due to partial shadowing of the light sources. Right: RGB scan taken

of the color chart.

This example demonstrates the applicability of snapshot difference imaging
to discriminative color imaging. The red–blue illumination we used is merely a
simple example case. Multiple different light sources can be combined to obtain
complex bipolar illumination spectra that can be individually adapted to a variety
of applications. We also envision this capability to facilitate interesting and novel
approaches to image segmentation and classification or to enable direct sensing
of primary colors with bipolar matching functions, like the red primary 𝑟 (𝜆) in
the CIE 1931 RGB color space1.

3.5.3 DEPTH EDGE AND DIRECTIONAL GRADIENT IMAGING

It is often hard to deduce the structure and shape of three-dimensional objects
from conventional photographs, as they may show low contrast between spatially
distinct features of the object. Illuminating the object from two different angles,
however, can unveil the depth structure of a scene and facilitate, for instance, a
segmentation of the image. Similarly to Raskar et al. [32], our setup can be used
to produce directional gradient images of a scene, visualizing depth continuities
as shown in Fig. 3.7. In this mode of operation, two identical light sources of
opposite polarity are placed on opposite sides of the sensor. Whenever a depth
discontinuity shadows one of the light sources, the resulting image displays

1 https://commons.wikimedia.org/wiki/File:CIE1931 RGBCMF.svg
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positive or negative values. All other pixels obtain a value around zero. By varying
the distance between the light sources, different edge widths are obtained. As the
light source separation approaches the distance between scene and camera, the
system records shading images like Fig. 3.8. Similarly to Woodham’s photometric
stereo method [60], they could be used to estimate the surface orientation of an
object.

(a) (b)

(c) (d)

Figure 3.7: Horizontal (a)/(b) and vertical (c) alignment of the light sources creates

corresponding gradient images (TI camera). The distance between the light sources

determines the width of the edges in the image: short distance (a) vs. larger distance (b).

Comparison of single- and two-shot edge imaging One of the key advantages
of snapshot difference imaging is that it is immune to scene motion, whereas
multi-shot techniques typically suffer from alignment issues when objects are
rapidly moving. To illustrate this, we recorded two image sequences of a moving
scene (bonsai tree shaken by wind) at the same frame rate of 60 frames per
second. In Sequence 1, we used snapshot difference imaging with both light
sources active; for Sequence 2, we alternated between LS1 and LS2, and digitally
computed difference images between successive frames. As the results (provided
as supplemental video) show, the single-shot difference images are significantly
clearer with more consistent leaf shapes than the two-shot ones, and virtually
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Figure 3.8: Directional difference image acquired with two light sources in wide vertical

spacing (TI camera).

free of ghosting artifacts. On the other hand, the single-shot images show a slight
increase in fixed-pattern noise.

3.5.4 SPATIO-TEMPORAL GRADIENT IMAGING

A feature of difference imaging is its capability to extract essential information
from heavy streams of image data. Here, we use our setup to implement cameras
that selectively sense spatial or temporal changes in the input, opening use cases
such as machine vision and data compression [31].

Spatial gradient. We devise an optical setup that, in combination with a snap-
shot difference imager, performs edge detection in analog hardware. The key is
to introduce a small spatial displacement between the images 𝐼+ and 𝐼−, so the
net image becomes the difference between two shifted copies of the scene. While
this could in principle also be done through a mechanical element in the optical
path (similar to active image stabilization in photography), we only add optically
passive components to our setup. In particular, we use oppositely polarized
light sources as in Section 3.5.1. Instead of the analyzing filter on the lens, we
place a birefringent crystal immediately on top of the sensor, behind the camera
lens. We determined that an undoped YVO4 crystal, 1 mm thick and inclined
by 20◦ with respect to the optical axis, causes a displacement between light of
different polarization directions by about 15 µm, or one pixel of the TI sensor.
For a polarization-preserving scene, this setup produces two identical images
on the sensor area, displaced by one pixel and with opposite polarity. Uniform
areas in the image cancel out in this difference image, while edges are detected as
non-zero response (positive or negative depending on the direction). Figure 3.10
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Figure 3.9: A birefringent crystal is placed between the sensor and the scene; the scene

is illuminated using identical light sources that are polarized in perpendicular angles.

One of them is operated in phase (+) and the other in opposite phase (-) with the sensor.

In direct reflections which preserve the polarization, light from the light sources will be

refracted in different angles inside the birefringent crystal and hence undergo a relative

shift.

shows a gradient image of a planar aluminum resolution chart, recorded in a
single shot using the TI setup.

Temporal gradient. We conclude with an example for our difference imaging
approach that can even be used without active illumination. So far, we modulated
the sensor with a high-frequent square wave at 50% duty cycle, which effectively
made the sensor insensitive to ambient light. We now introduce a bias by choosing
an asymmetric modulation pattern (Fig. 3.11). Light that arrives at the beginning
of the exposure will now contribute to 𝐼−, and light that arrives near the end will
contribute more to 𝐼+. In doing so, we make the camera sense temporal changes
of intensity, similar to the works by Wei et al. [61] and Hontani et al. [62]: pixels
that receive more light during the second half of the exposure than during the
first half appear as positive pixel values and vice versa. Fig. 3.12 shows an image
thus captured of a rotating fan. From the temporal gradient image, the direction
of rotation can be identified by the black and white edges of the blades.
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3.5 Applications and Evaluation

Figure 3.10: Spatial gradient image of an aluminum resolution chart (TI camera). In

horizontal direction, the markers show black and white edges. The markers reflect more

light than the surrounding area, which is why the noise in the difference image is higher

inside the markers than outside.

50/50

Linear ramp t

f(t

T0

)
HF (default)

Figure 3.11: Example filters (modulation patterns) for use with our system. By default,

the sensor is modulated at high frequency (top row). For the analog computation of

temporal gradients, we use the 50/50 pattern with only one transition per exposure

interval. This is implemented by modulating the sensor with a delayed version of the

camera’s ENABLE signal (cf. Fig. 3.3).
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Figure 3.12: TI camera temporal gradient image (left) of a rotating fan (RGB image on

the right). From the color gradient of blade edges the rotation direction of the fan is

identifiable as clockwise.

Another example is shown in Fig. 3.1(b), where white pellets are shown falling
on the ground. The direction of motion is visible in the temporal gradient image:
Pellets falling to the ground feature positive values (red) on the bottom end and
negative values (blue) on the top end. Those that have bounced off the ground
and fly back up (as seen in the right part of the image) have reversed shading.
Pellets lying still on the ground are barely visible. Please see the real-time motion
in the supplementary video.

The exposure time used for this method is 1 ms, thus transferring this method
to a conventional camera would correspond to a required frame rate of 2000 fps.

3.5.5 QUANTITATIVE NOISE ANALYSIS

In contrast to conventional cameras, our snapshot difference imaging approach
performs only one read-out operation in the process of obtaining a difference
image, since the differencing operation is performed before the readout. Hence,
assuming shot noise and read noise as the main contributions to the measurement
uncertainty, a pre- and post-ADC difference image are expected to suffer from
different noise levels:(

𝜎
post
diff

)2
= 𝜂

2
𝜎

2
+ + 𝜎2

read + 𝜂
2
𝜎

2
− + 𝜎2

read,(
𝜎
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(3.7)
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Figure 3.13: Histograms of the absolute pixel variance in the analog and digital difference

images of the scene depicted in the bottom row of Fig. 3.5.
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Figure 3.14: Variance of each pixel, averaged over the whole difference image, for the

PMD sensor (a) and the TI sensor (b). The values were obtained from 400 frames each.

The lines in (b) are linear fits to the data.

To compare the relative performance of snapshot difference imaging with two-
shot, post-capture difference imaging under otherwise identical conditions, we
acquired three image sequences of a still scene, each 𝑁 frames long: one sequence
with both light sources activated (also shown in Fig. 3.5(a)), and two more with
only LS1 or LS2 turned on, respectively (Figs. 3.5(b) and 3.5(c)). We then used the
data acquired with separate light sources to compute another set of difference
frames. As a measure for the signal quality of the difference frames, we computed
for each pixel the variance across the 𝑁 recorded frames, and plotted the values
for all pixels in a histogram. As Fig. 3.13 illustrates for a case with 𝑁 = 100
frames, the noise in the snapshot difference image is significantly lower than in
the post-capture difference image.

Fig. 3.14 shows the pixel variance (averaged over all image pixels) in depend-
ence of the intensity of the incident light. For the PMD camera, we varied the
exposure time of otherwise identical shots using red and blue illumination. Since
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the TI sensor does not allow adjustment of the exposure time, we placed a white,
homogeneous target in different distances from the camera and light sources in
order to obtain different intensities. In both cases, the post-ADC difference image
consistently shows higher noise. For low light intensities (short exposure times
or large target distances, respectively), the shot noise of both pixel buckets tends
to zero, so in Eq. 3.7, only the read noise terms remain and one has(

𝜎
post
diff

)2
= 2

(
𝜎

pre
diff

)2
.

The data depicted in Fig. 3.14 supports this expectation as the lowest measured
variance values for the PMD sensor are(

𝜎
post
diff

)2

min
= 251.37,

(
𝜎

pre
diff

)2

min
= 127.90

(ratio 1.97) and the extrapolated (via a linear fit) lowest variance values for the TI
sensor are (

𝜎
post
diff

)2

min
= 29.99 ± 0.30,

(
𝜎

pre
diff

)2

min
= 15.05 ± 0.22

(ratio 1.99 ± 0.37), which is in good agreement with a ratio of 2.2

In order to embed our setup into the context of existing camera hardware, we
compared the noise level of the TI ToF camera to a conventional camera of type
Point Grey Flea3 (“PG”). Fig. 3.15 shows the variance of each pixel in a series of
difference images of a color chart taken with both cameras. For the PG camera,
two sets of images have been recorded and subtracted digitally. In order to make
this comparison as fair as possible, we used the same LED light sources and a
shutter time of 1 ms for the TI camera and 0.5 ms for the two separate images
taken with the PG camera. Evidently, the ToF camera shows higher noise and
lower resolution than the conventional camera, which is expected due to the

2 The variance values for pre- and post-ADC differencing in the PMD sensor diverge with higher
exposure times while the difference between the two measurements appears constant in the TI
sensor, which can be explained by dark current noise which is not explicitly accounted for in
Eq. 3.7. Since dark current noise vanishes with the exposure time tending to zero, it does not
affect the analysis of the PMD sensor, while its impact on the TI sensor analysis is unknown.
Since it is not possible to read out the pixel buckets separately, we furthermore cannot exclude
the possibility that what we model as 𝜎2

read is partly constituted of noise that is introduced by
the process of taking the difference voltage of both pixel buckets. This would reduce the factor
between post- and pre-ADC-differencing in a setup with an otherwise identical conventional
sensor to a value between 1 and 2.
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(a) (b)

Figure 3.15: Pixel variance in difference images of a color chart recorded with a TI ToF

camera (a) and a Point Grey Flea3 camera (b). The variances were calculated from 400

and 137 frames, respectively.

much longer development history of conventional image sensors compared to
ToF sensors.

The special architecture of ToF sensors, however, allows to neglect photoelectric
charges in the pixel buckets that have been produced by light that is not correlated
with the sensor modulation, i.e. ambient light. Figure 3.16 shows difference
images of a color chart obtained with a PMD ToF sensor and a PG camera with
and without ambient illumination of (several magnitudes) higher intensity than
the active illumination. As shown in the upper row of Fig. 3.16, the additional
light decreases contrast and increases noise in the difference image of the PMD
sensor. With the PG camera, the sensor’s dynamic range does not allow to find
a setting that captures both the target setup with and without ambient light
correctly. Thus, in Subfigure 3.16(d), several patches of the color chart obtain
pixel values of zero, because two saturated pixels have been subtracted from each
other. If the camera parameters are adjusted such that the image with ambient
illumination is properly exposed, the image without ambient light is too dark to
show meaningful values (bottom row of Fig. 3.16). While in both cases the image
quality for the properly exposed images is clearly better with the PG camera,
the PMD camera shows higher variability and adaptability in terms of ambient
illumination. Since the ability to suppress ambient illumination is unique to the
ToF sensor type, we suppose that it has the potential of increasing the range of
possible applications for the snapshot difference imaging approach in contrast to
conventional camera setups in the future.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Difference images without (left) and with (right) ambient illumination,

acquired with a PMD ToF camera (top row) and a conventional PointGrey Flea3 camera

with larger (center row) and smaller (bottom row) aperture setting.
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3.6 RECOVERING TWO IMAGES FROM A SINGLE DIF-

FERENCE IMAGE

In this section, we document an interesting side observation that falls directly out
of the proposed image formation model for difference imaging. We can recover
the two original images from a single difference image by exploiting the noise
characteristics of both photon limited signals. According to Eq. 3.6, the noise in
each pixel of a difference image is dependent on the amount of charges stored
in the individual wells, rather than the resulting difference value. Therefore, we
can calculate the separate values 𝐼+ and 𝐼− from the noise statistics (mean and
variance of each pixel) of the difference image:(

𝐼
+

𝐼
−

)
= 𝐻

−1
(
𝜇

𝜎
2

)
. (3.8)

We propose three methods (M1–M3) to estimate these quantities:
M1. Analysis of a sequence of input image frames 𝐼 ®𝑥1..𝑁 taken under identical
conditions:
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,

where 𝐼 ®𝑥𝑖 denotes the pixel value at location ®𝑥 = (𝑥,𝑦) in the 𝑖th frame.
M2. Patch-based analysis of a single pre-segmented image:
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where 𝑃 ®𝑥 denotes the set of pixels belonging to the same image segment (patch)
as pixel ®𝑥 = (𝑥,𝑦).
M3. Analysis of a single image using a bilateral filter:
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with the bilateral weight𝑤 [63]
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Fig. 3.17 shows the reconstructions of the individual blue and red channels from
the difference image shown in Fig. 3.6a (for acquisition details, see Section 3.5.2),
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(a) (b)

(c) (d)

Figure 3.17: Reconstruction of two color channels from a single exposure by exploiting

photon statistics. (a) Ground-truth image combined from isolated measurements of

red and blue illumination; (b) Reconstruction from 1000 difference images (Method 1);

(c) Reconstruction from one single difference image (Method 3); (d) Reconstruction from

one manually segmented image (Method 2). All images were acquired with the PMD

sensor.

obtained using M1–M3 without the read noise term (𝜎2
read :=0). 100 dark frames

were acquired, averaged and subtracted from the difference images before per-
forming the reconstruction. M1, here using 𝑁 = 1000 frames, delivers the best
result. M2 and M3 sacrifice quality to separate the sources from one single differ-
ence image, which makes them suitable for fast moving target scenes. M2 yields
the next-best reconstruction regarding color quality and particularly the gray
scale (top row of patches), but it requires flat homogeneous image regions (pre-
segmented by hand). M3 uses a bilateral filter to weight down dissimilar pixels
when computing mean and variance. This reduces the overall estimated variance
and introduces bias; nevertheless, this algorithm would be simple enough for
real-time applications.
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(a) Parallel (ground truth) (b) Crossed (ground truth)

(c) Parallel (M1) (d) Crossed (M1)

(e) Parallel (M1; 𝜎
2
read :=0) (f) Crossed (M1; 𝜎

2
read :=0)

Figure 3.18: Source images of the polarization difference image shown in Fig. 3.5a (bot-

tom), reconstructed from the statistics of 400 difference images, with (c,d) and without

(e,f) pre-calibrated read noise term. Subfigures (a) and (b) show ground truth images for

comparison.

53



Chapter 3 Snapshot Difference Imaging using Correlation Time-of-Flight Sensors

As another example of this differential recovery method, Fig. 3.18 shows re-
constructions of the source images via M1 from a series of 𝑁 = 400 difference
images from the direct-global separation application described in Section 3.5.1
with and without correction for read noise, as well as ground truth. As expected,
polarization-preserving reflections such as specular highlights appear in the “par-
allel” channel only, while sub-surface scattered (depolarized) light contributes to
both channels.

Since we exploit basic properties of the Skellam distribution, this method also
enables source separation for traditional difference imaging. As this approach
essentially enables high-speed spatial multiplexed capture without spatial separa-
tion on the sensor, we envision a variety of applications beyond the two presented
above.

3.7 DISCUSSION

In summary, we propose a new imaging system for direct recording of image
differences in a snapshot. The proposed technique directly maps to the emerging
technology of time-of-flight sensors and will therefore continue to benefit from
the ongoing technological development in that area. The primary benefits of
snapshot difference imaging include high video framerates that are only limited
by the readout interface as well as lower noise and reduced alignment artifacts as
compared to sequential, digital difference imaging. Finally, we devise an algorithm
that is capable of encoding and extracting two different images from the mean
and variance of a single photograph captured with the proposed method.

Limitations Similar to range imaging, most of the demonstrated applications of
snapshot difference imaging with time-of-flight sensors require active illumina-
tion. Joint coding and precise synchronization between the light sources and the
sensor are required. The power of the employed light sources limits the range of
distance within which the proposed method would function.

Future work In the future, we would like to explore passive implementations of
the proposed method, for example when using them with the natural flicker rates
of existing indoor lighting. We would like to explore more sophisticated temporal
coding strategies that may be able to separate direct and global illumination based
on their temporal characteristics rather than their polarization properties. We
would also like to explore spatio-temporal coding strategies that would allow
the light sources to be used as temporally-coded projectors rather than isotropic
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emitters [56]. Finally, we would like to extend the application to mitigating multi-
path interference for time-of-flight cameras and other tasks that may benefit
from gradient cameras, such as Visual SLAM [44] and 3D scanning [64].

3.8 MINIMAL SETUP

A basic implementation of a snapshot dif-
ference imager for infrared only can be ob-
tained by connecting a TI OPT8241-CDK
sensor board with two of its original infrared
light sources via an extended ribbon cable
(Fig. 3.19). The modulation polarity is re-
versed (wires #10 and #12 swapped) and wire
#16 is cut for the second light source. Note,
however, that the OPT8241-CDK board by
itself cannot generate modulation signals
below 10 MHz. Since the camera captures
groups of four phase-shifted sub-frames (in
90◦ steps), the effective frame rate is reduced
by a factor of 4 compared to our system.

Figure 3.19: Modified ribbon cable

with (top to bottom) connectors for

sensor board, LS1 and LS2.
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CHAPTER 4

SUPER-RESOLUTION TIME-RESOLVED IMA-

GING USING COMPUTATIONAL SENSOR FU-

SION

Abstract Imaging across both the full transverse spatial and temporal dimensions

of a scene with high precision in all three coordinates is key to applications ranging

from LIDAR to fluorescence lifetime imaging. However, compromises that sacrifice, for

example, spatial resolution at the expense of temporal resolution are often required, in

particular when the full 3-dimensional data cube is required in short acquisition times.

We introduce a sensor fusion approach that combines data having low-spatial resolution

but high temporal precision gathered with a single-photon-avalanche-diode (SPAD)

array with set of data that has high spatial but no temporal resolution, such as that

acquired with a standard CMOS camera. Our method, based on blurring the image on

the SPAD array and computational sensor fusion, reconstructs time-resolved images at

significantly higher spatial resolution than the SPAD input, upsampling numerical data

by a factor 12 × 12, and demonstrating up to 4 × 4 upsampling of experimental data.

We demonstrate the technique for both LIDAR applications and FLIM of fluorescent

cancer cells. This technique paves the way to high spatial resolution SPAD imaging or,

equivalently, FLIM imaging with conventional microscopes at frame rates accelerated

by more than an order of magnitude.

Conventional cameras produce images that show static illumination in a de-
picted scene, because exposure times are usually much longer than the photon
transit time. Time-of-Flight (ToF) imaging systems, however, reach temporal res-
olutions of picoseconds or less and can therefore record the propagation of light
in the scene. Obtaining both a high temporal and spatial resolution is particularly
important for ToF imaging systems, which are often limited by the resolution in
the time domain. A simple example are LIDAR-based systems where the meas-
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urement resolution in the temporal domain directly equates to the spatial depth
resolution. In more complex applications, such as non-line-of-sight imaging
(NLOS), the resolution of the ToF of the photons is critical for determining an
object’s position in all three spatial dimensions [65–68]. Access to high-resolution
temporal information is also pertinent to challenges such as imaging through
complex media [69–71], and fluorescence lifetime imaging (FLIM), where the
fluorophores of a target object are identified from their fluorescence lifetimes
[72].

The challenge of time resolved imaging amounts to sampling a spatio-temporal
impulse response 𝐼 (𝑥,𝑦, 𝑡), where 𝑥 and 𝑦 are image coordinates and 𝑡 is the
delay between emission and arrival of the light. Since the first capture of such
data by Abramson in 1978 [73], different technologies and methods for recording
light-in-flight images have emerged. Streak cameras accelerate and deflect photo-
electrons in order to separate them depending on their time of production. This
allows very high temporal resolution but is limited to imaging one line at a time.
Therefore, for two-dimensional imaging, it requires either scanning of the scene
[74] (which makes data acquisition time-costly and rules out single-shot imaging)
or further modification of the set-up, like adding a digital micromirror device
(DMD) in order to encode the signal spatially [21, 22]. To-date streak cameras
provide the optimum temporal resolution with commercially available systems
claiming resolutions of ∼100 fs, but are also the most expensive of the available
technologies.

Intensified charge-coupled devices (ICCD) provide high pixel counts and have
recently been shown to be able to reach down to 10 ps temporal resolution for
suitably prepared scenes [75]. This is, however, limited by various restrictions on
the type of measured data, and requires bulky and costly hardware.

A cheap alternative is the use of photonic mixer devices (PMD) [17], which are
based on intensity modulated illumination and a special sensor pixel design that
allows measuring the phase shift between outgoing and incoming illumination.
They are generally used as ToF sensors for depth imaging and provide high spatial,
but low temporal resolution.

Arrays of single-photon avalanche diodes (SPAD) are rapidly becoming a
leading technology for high temporal resolution imaging. This is due to the ability
to manufacture time-correlated single-photon counting (TCSPC) electronics for
each individual pixel directly onto the sensor chip allowing for timing resolutions
on the order of tens of picoseconds [76, 77]. Currently SPAD arrays suffer from a
relatively low pixel count and thus by themselves cannot be employed for many
of the above imaging applications.
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Figure 4.1: (a) Schematic sketch of the imaging set-up for the LIDAR experiment: The

scene is uniformly illuminated by pulsed laser from the same direction as the camera

setup. Light is collected and then imaged onto both the high-resolution CCD array and

the low-resolution SPAD array by the same objective lens. The SPAD sensor is placed

slightly out of the focal plane to ensure the temporal information from each point within

the scene spreads across multiple pixels. (b) Effect of the optical blur: With the low

fill-factor sensor in focus such that the imaging system’s point-spread-function PSF

(coloured circles) is smaller than the pixel pitch, regions of the scene are not collected

by the pixels (grey areas). Shifting the sensor out of the focal plane blurs the PSF and

ensures collection of the temporal information from each point in the scene.

In this paper, we present a method to provide three-dimensional images with
both high spatial and temporal resolution. In our approach, we fuse the time-
resolved image of a SPAD detector, which is low in spatial resolution, with the
image of a conventional CCD sensor which integrates the signal over the whole
acquisition time but provides higher spatial resolution. Both sensors share the
same objective lens and the acquired images are aligned. Our method uses an
optical blur to ensure that temporal information from the entire field of view is
captured by the SPAD detector despite the low fill-factor. In this respect the ap-
proach is similar to other methods that exploit blur for increased dynamic range,
image restoration methods, or to otherwise avoid a loss of critical information
[78, 79]. Point spread functions optimized by artificial neural networks have
also been proposed, using the neural network for the image reconstruction and
the SPAD data alone [80]. By using convex optimization, a data cube with the
temporal resolution of the SPAD detector and the spatial resolution of the CCD
camera is reconstructed. Furthermore, our approach is capable of compensating
sensor flaws like dead pixels in the SPAD array. We first verify our method with
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numerical simulations and assess its performance — details of this can be found
in the Supplementary Information. We then demonstrate the method practically
on two different temporal imaging schemes: namely multipath LIDAR and FLIM.

Our method upsamples the whole three-dimensional light-in-flight image.
Similar to the works of O’Toole [81] and Lindell [82], our optimization acts on the
data cube as a whole, not on a reduction to a two-dimensional depth map. This
feature is key for applications where simple interpolation methods will yield an
incorrect result, such as micron-scale changes in the florescence lifetime arising
from the structure of single cells in FLIM. To test the robustness of our approach,
we also demonstrate its potential using a separate publicly accessible dataset
acquired with a similar experimental configuration [83] (see Supplementary In-
formation). Our method retains high quality image reconstructions even in the
presence of ambient light.

4.1 COMPUTATIONAL FUSION OF SENSOR DATA

The goal of our method is to construct a final dataset with the spatial resolution
of a high pixel density CCD sensor and the temporal resolution of a SPAD array.
For a SPAD dataset of spatial resolution𝑚 × 𝑛 pixels and 𝜏 timebins, and a high
pixel density dataset of 𝑀 × 𝑁 pixels, this results in a final datacube, 𝑖HR(𝑥,𝑦, 𝑡),
of dimensions 𝑀 × 𝑁 × 𝜏 .
SPAD arrays typically suffer from poor fill-factor (around 1% for the array in
this work, see Methods), this results in a loss of information from light falling
outside of the active areas. The image, therefore, needs to be optically filtered
to prevent aliasing. We achieve this by moving the sensor slightly out of focus,
such that the light from each point in the scene reaches at least one pixel’s active
area and we therefore capture the temporal information from each point within
the scene. The resulting blur is then accounted for during the data analysis (see
Supplementary Information) such that the algorithm retrieves the full 𝑖HR(𝑥,𝑦, 𝑡)
with the correct temporal information at each spatial coordinate.
The forward model is designed to encapsulate these features, we represent this
with a matrix:

𝐴 = 𝑃 · 𝑆 · 𝐵 (4.1)

where 𝐵 performs a blurring operation to account for the defocusing, 𝑆 is a mask
accounting for the sparse sampling of the SPAD array, and 𝑃 performs a spatial
downsizing of the higher 𝑀 × 𝑁 dimensions to the lower𝑚 × 𝑛 dimensions (full
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details in Supplementary Information). The final SPAD camera measurement, the
low spatial-resolution time-of-flight image 𝑑 , is then given by:

𝑑 = 𝐴𝜏 · 𝑖HR (4.2)

with 𝐴𝜏 applying 𝐴 to all time bins and both 𝑖HR and 𝑑 being in vector form. The
high-resolution transient image, 𝑖HR, is reconstructed via

𝑖HR = arg min
𝑖∈R𝑀𝑁𝜏

∥𝐴𝜏𝑖 − 𝑑 ∥2 + 𝛼 ∥𝑇𝑖 − 𝑐 ∥2 + 𝛽 ∥𝐾ℎ𝑖 − 𝐾𝑙𝑑 ∥2 + 𝛾 ∥𝑖∥1 + 𝛿 ∥∇2D𝑖∥1

subject to 𝑖 ≥ 0 (4.3)

where 𝑇 performs a temporal integration over the data cube, 𝑐 is the vectorized
CCD image and 𝐾ℎ and 𝐾𝑙 perform a spatial integration over the high resolution
and low resolution data cube, respectively. The third term enforces a similarity
between the temporal distribution of photon counts in the measured data and
in the reconstruction, this proved to be an essential prior in the reconstruction.
The fourth term promotes sparsity of the reconstructed data cube and, while
not affecting the quality of the result significantly, it ensures stability of the
reconstruction. The last term is a 2-dimensional total variation prior that acts on
the spatial dimensions of each frame, which we found to significantly improve
the results for scenes with large amounts of multiply scattered light.

The relative weights 𝛼 , 𝛽 , 𝛾 and 𝛿 have been tuned to yield the best results (see
Numerical Simulations in Supplementary). The optimization is performed using
CVX 2.1 [84, 85] and Gurobi 7.52 [86].

4.2 EXPERIMENTAL RESULTS: LIDAR

We verify our method with data from a LIDAR scene depicted in Fig. 4.1 and
described in detail in the Methods section. The raw data is first denoised and ad-
justed as described in the Supplementary Information. The high spatial resolution
data cube is then reconstructed according to Eq. 4.3. The parameters used for this
and all other data shown in this paper and the Supplementary Information are
listed in Tab. 4.1. To model the blur of the defocused image on the SPAD sensor,
a standard deviation of 6 CCD pixel widths was used. This value was found
empirically as the one yielding the best reconstruction results and its accordance
with the data was verified using in- and out-of-focus data acquisitions.
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(a) (b) (c) (d)

Figure 4.2: (a) CCD image, (b) 32 × 32 × 𝑡 SPAD measurement, (c) 96 × 96 × 𝑡 reconstructed light-in-

flight image and (d) depth images extracted from the SPAD measurement (top) and the reconstruction

(bottom) for different scenes. (a) & (b) are used as the inputs for our algorithm. From top to bottom

the measurements show a golfball, a plastic cup filled with water in front of a slanted wall, detail of a

basketball, three cardboard letters with a few centimetres distance between them in front of a slanted wall,

three cardboard steps. Black areas in the depth images correspond to pixels with very low signal-to-noise

ratio that therefore contain no meaningful depth information.
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4.3 Experimental Results: FLIM

The reconstruction results for different scenes are shown in Fig. 4.2. Column
(a) and (b) show the raw measurements, (c) shows the reconstructed data cubes.
One can see that high-frequency textures that are well visible in the CCD image
but not in the SPAD measurements have been transferred into the light-in-flight
image. Surfaces are much smoother, less noisy, and sharpened in all dimensions.1

In addition to the reconstructed data cubes, simple depth images of the raw
SPAD measurement and reconstructed scene are shown in column (d), where
the time bin with the highest photon count per spatial pixel was used as the
depth value. Here, it is well visible that dead pixels from the SPAD array have
been filled in, even though they have not been masked or otherwise specifically
addressed before or during the reconstruction. This is possible because due to the
blur, information from the dead regions is not lost, but spread over and mixed
into surrounding pixels and can therefore be reconstructed. Noise has also been
reduced in comparison to the raw SPAD data.

The raw data of our SPAD measurements, as well as the reconstructed high
resolution light-in-flight images rendered as videos showing the light propagating
through the scene, can be found in the Supplementary Information, along with
run times for all datasets.

4.3 EXPERIMENTAL RESULTS: FLIM

We next show the potential of our method for FLIM using a commercial micro-
scope, the details of which are described in the Methods section. The sample
consists of ovarian cancer cells expressing Raichu-Rac clover-mCherry [87, 88]
and images are acquired using a single point scanning approach in a 256×256
grid. The temporal information is acquired with TCSPC in 75 timebins of 160 ps
duration. From this data we build a lower resolution dataset that emulates the
measurement that would be performed by the SPAD array. We apply our forward
model operator, 𝐴𝜏 , following Eq. 4.2 with a downsampling ratio of 4×4. This
results in a 64×64×75 temporally resolved dataset that forms the low-resolution
input to our algorithm, 𝑑 . For the high spatial resolution dataset, 𝑐 , we take the
total time-integrated photon counts from the full 256×256 pixel array to form an
intensity image. The lifetimes are estimated by fitting a single exponential decay
model to both 𝑑 and 𝑖HR, bounded between 1 ns and 7 ns using prior knowledge
of the lifetime distribution. The algorithm input images, along with the resulting
lifetime image, are depicted in Fig. 4.3. We test the validity of our approach by
1 Black lines visible in the images are due to temporal quantisation and rendition of the data

(the temporal axis is shown with a factor 3 in order to keep aspect ratios consistent).
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Figure 4.3: Spatial upsampling of the fluorescence lifetime of cancer cells. (a) Full 256×256
resolution intensity image. (b) Down-sampled low resolution fluorescence lifetime image.

(c) Ground truth image at the full 256×256 resolution. (d) Result of our reconstruction

algorithm with a 4×4 pixel upsampling. (e) Distribution of the reconstructed lifetimes.

comparing the distribution of the measured lifetimes with those obtained with the
algorithm, shown in Fig. 4.3e . There is a high level of fidelity to the ground truth
data with the overall shape of the ground truth distribution. The algorithm mean
lifetime of the reconstructed image was 2.18 ns with a standard deviation 0.41 ns,
in close agreement with the ground truth lifetimes of (2.14 ± 0.25) ns. The same
approach could also be used to improve the acquisition speed of point scanning
imaging systems such as the one used to acquire the data in Fig. 4.3. Our results
show a reduction in the number of time-resolved measurements (spatial points)
by at least a factor of 16 can be achieved with the amount of time needed to
acquire the high resolution image being small in comparison. We note, however,
that substantial time is still required for the reconstruction post-measurement.

4.4 CONCLUSION

Our method shows that with a simple optical set-up and a conventional camera,
the spatial resolution of a SPAD array sensor can be increased significantly. In
simulations, a factor of 12 could be achieved on each spatial dimension, corres-
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ponding to a factor of 144 in pixel count, even in the presence of noise. Low
fill factor limitations could be overcome by moving the SPAD sensor slightly
out of focus. Holes in the SPAD measurement due to dead pixels are filled in by
the reconstruction. This has been demonstrated on measurement data with an
upsampling factor of 3 × 3 on LIDAR data and a factor of 4 × 4 on FLIM data
due to hardware limitations. On additional datasets that have not been captured
with our hardware set-up we demonstrated upsampling of 8 × 8 and 16 × 16 after
blurring and downsampling the original 256×256 pixels SPAD data. These results,
as well as those from simulated measurements, suggest that using a CCD sensor
with higher pixel density, our method would allow higher upsampling factors
also with our original hardware set-up. Additionally, our method is not limited
by a low signal-to-noise ratio or the presence of ambient light as evidenced by
the reconstructions in the Supplementary Information (“Upsampling Results on
Other Data Sets” Section).

The main limitation of our method is the long run time of the reconstructions,
which scales with the size of the reconstruction as well as the original SPAD
measurement. A full calibration of the light transport matrix, which would
include all optical effects for the specific hardware set-up accurately, might
yield even better results on experimental data. On the other hand, it would
supposedly also make the model more bound to a specific set-up, and less flexible
in the application to new unknown hardware systems. However, it could be
a worthwhile enhancement for a fixed (commercial) system. Considering the
availability of small form factor SPAD and CCD sensors, both could be combined
into a single, convenient device.

4.5 METHODS

4.5.1 EXPERIMENTAL SETUP: LIDAR

For the high temporal resolution dataset, we use a 32 × 32 SPAD array with
in-pixel Time Correlated Single Photon Counting (TCSPC) capabilities of 55 ps
bin width [65, 76]. The sensor layout consists of 7 𝜇m diameter sensors with
a 50 𝜇m pitch and is of the same basic design now commercialised by Photon
Force Ltd. Exposure times of up to 13 s are used. The high spatial resolution is
obtained using an Andor iXon emCCD with a 512 × 512 pixel array cropped to
96 × 96 pixels to match the field of view of the SPAD array. The emCCD is used
without gain such that it operates as a conventional CCD. Exposure times of the
order of 100 ms are used. The same camera objective (12 cm fisheye) is used for

65



Chapter 4 Super-Resolution Time-Resolved Imaging using Computational Sensor Fusion

both sensors in parallel, separated with a beamsplitter. The illumination source is
Ti:Sapph oscillator of 130 fs pulse duration at a repetition rate of 80 MHz and a
centre wavelength of 800 nm which flood illuminates the scene. The SPAD camera
acquisition is synchronised with the laser using an Optical Constant Fraction
Discriminator to minimise electronic jitter.

4.5.2 MULTIPHOTON TIME-DOMAIN FLUORESCENCE LIFETIME

IMAGING (FLIM)

Cells were left to equilibrate on a heated microscope insert at 37 ◦C, perfused with
5 % CO2 prior to imaging. Images were acquired in the dark using a multiphoton
LaVision TRIM scan head mounted on a Nikon Eclipse inverted microscope with a
20X water objective. Illumination is provided by a Ti:Sapphire femtosecond laser
used at 920 nm (12 % power). Clover signal was passed through band pass filters
525/50 nm emission and acquired using a PicoHarp 300 TCSPC FLIM system
(Picoquant). A 254 𝜇m2 field of view correlating to 256 pixel2 was imaged at
600 Hz with a 10 line average.

4.5.3 MAMMALIAN CELL LINES, CULTURING CONDITIONS

AND TRANSFECTIONS

SKOV3 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10 % FBS, 2 mM L-Glutamine and 1X PenStrep. Cell lines were
maintained in 10 cm dishes at 37 ◦C and 5 % CO2. SKOV3 cells were transfected in
the morning using Amaxa Nucleofector (Lonza) kit V, program V-001 with 5 𝜇g
Raichu-Rac1 Clover-mCherry DNA (adapted from [87]) following manufacturers
guidelines and replated on 6 cm TC-treated dishes at 37 ◦C and 5 % CO2. Cells
were collected and replated onto 35 mm glass bottom MatTek dishes that were
previously coated overnight with laminin (10 𝜇g ml−1) diluted in PBS. These
were left overnight at 37 ◦C, 5 % CO2. The next morning prior to imaging, the
dishes were washed twice with pre-warmed PBS and replaced with pre-warmed
FluoroBrite DMEM supplemented with 10 % FBS, 2 mM L-Glutamine and 1X
PenStrep.

4.5.4 RECONSTRUCTION PARAMETERS

See Table 4.1.
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Table 4.1: Parameters used in the reconstruction of all images in the main text and

Supplementary Information.

𝛼 𝛽 𝛾 𝛿

LIDAR (Fig. 4.2) 10−4 10−3 10−7 0
FLIM (Fig. 4.3) 1 10−3 10−7 10−5

Sim. monkey (Fig. 4.9) 10−7 10−3 10−7 0
Sim. table (Fig. 4.13) 10−7 10−3 10−7 10−5

4.6 SUPPLEMENTARY INFORMATION

4.6.1 LIGHT TRANSPORT AND IMAGE FORMATION

A light-in-flight image is a three-dimensional data cube with two spatial and
one temporal dimension. It can be understood as an image where each spatial
pixel consists not of a single value like in a conventional intensity image, but of a
temporal histogram which contains information about how much light the pixel
receives at a given time 𝑡 after the emission from a light source. Following the
notation of O’Toole et al. [81], the flux of photons Φ for each pixel at time 𝑡 is
then

Φ(𝑡) = (𝑠 ∗ 𝑙) (𝑡) + 𝑎(𝑡) (4.4)

where 𝑠 is the scene response defined by the geometry and reflectance of the
scene, 𝑙 is the temporal distribution of the illumination pulse, and 𝑎 is the ambient
light present in the scene. This distribution is sampled using the SPAD sensor
which produces a signal for each detected photon that is then time-stamped by
the respective timing electronics. All detected photon events are then sorted into
a temporal histogram. For each SPAD pixel, a histogram is measured:

𝑛(𝑡) = 𝜂SPAD (Φ ∗ 𝑗) (𝑡) + 𝛾SPAD (4.5)

where 𝜂SPAD is the photon detection probability of the SPAD, 𝑗 is the jitter ac-
counting for uncertainties in the time-stamping, and 𝛾SPAD denotes dark counts of
the sensor. Temporal discretisation is determined by the width of each histogram
bin. The whole light-in-flight image is a spatial grid of these temporal histograms
and therefore has the form of a three-dimensional data cube 𝑖 (𝑥,𝑦, 𝑡) = 𝑛𝑥,𝑦 (𝑡).
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In addition to the SPAD sensor, we utilize a CCD sensor that sees the same
image as the SPAD sensor, but naturally has no time resolution. It can thus only
measure the integrated signal

𝑝 = 𝜂CCD

∫
Δ𝑇

Φ(𝑡) d𝑡 + 𝛾CCD (4.6)

that sums up all light intensity measured during an exposure time Δ𝑇 by the
sensor with quantum efficiency 𝜂CCD, including dark counts 𝛾CCD. The whole
two-dimensional CCD image is a grid of pixel values 𝑐 (𝑥,𝑦) = 𝑝𝑥,𝑦 .

In the following mathematical considerations, all images are vectorized, e.g.
the vector 𝑐 contains all pixels of a CCD image in a linear sequence, a vector 𝑑
analogously contains all entries of the light-in-flight data cube.

In our set-up, both sensors share the same objective lens via a beam splitter.
Due to this fixed imaging system, only one single initial alignment calibration
is necessary to ensure that the time-integrated SPAD-image matches the CCD-
image. It can easily be performed using a calibration target like a printed pattern
and then choosing the appropriate crop of the CCD sensor that matches the
integrated SPAD image.

4.6.2 FORWARD MODEL AND RECONSTRUCTION OF HIGH-

RESOLUTION LIGHT-IN-FLIGHT IMAGES

Our goal is to fuse a low spatial resolution SPAD image of size𝑚×𝑛×𝜏 (a data cube
with𝑚 × 𝑛 spatial pixels and 𝜏 time bins) with an intensity image of dimension
𝑀 × 𝑁 in order to recover a high resolution data cube of the size 𝑀 × 𝑁 × 𝜏 . To
achieve this, the light transport from the scene to the SPAD sensor is described by
a matrix𝐴 of size𝑚 ·𝑛×𝑀 ·𝑁 , which models all effects that the signal undergoes
in the spatial domain on its way from the high resolution state as it is measured
by the CCD camera, to the low resolution state as measured by the SPAD array. In
principle, this transport matrix could be gauged experimentally by illuminating
the scene with suitable patterns and probing the mapping from CCD pixels to
SPAD pixels. This process is difficult to conduct in practice, as the illumination
would have to be modified in such a way that it is capable of illuminating only
certain exact pixels in the CCD image. To circumvent this tedious calibration step,
we instead develop the matrix as a forward model based on the known (linear)
effects on the signal, which can then also be used to produce simulated SPAD
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measurements from a high-resolution ground truth. The matrix 𝐴 in our model
is given as the product of three matrices:

𝐴 = 𝑃 · 𝑆 · 𝐵 (4.7)

each representing a distinct step in the transport.
As described in the main paper, the SPAD sensor is moved slightly out of focus

in order to acquire information from all scene points despite the low fill factor of
the sensor. Instead of calibrating for the point spread function of the system, the
blur that is accounted for in the matrix 𝐵 is approximated as a 2D Gaussian. In
synthetic experiments with different blur kernels, a Gaussian kernel yielded the
best reconstruction results, even when the simulated measurements had been
produced using other possible shapes like a disk kernel (which would correspond
to the isolated defocus blur as it constitutes a convolution with the aperture
shape) instead. 𝐵 is thus the convolution matrix that, when multiplied with a
vectorized image, yields the convolution of said image with a Gaussian kernel.

The matrix 𝑆 acts as a mask, corresponding to the distribution of the active
pixel area on the sensor, selecting the part of the incident light that is actually
measured by the SPAD pixels. In practice, S is a diagonal matrix containing only
zeros and ones - depending on whether a high resolution image pixel falls onto
passive or active SPAD sensor area.

The matrix 𝑃 performs the downsizing of the resulting image from 𝑀 × 𝑁
to 𝑚 × 𝑛 pixels by summing up corresponding patches of pixels (for 𝑘 × 𝑘
downscaling, P would add up patches of size 𝑘 × 𝑘 to obtain a SPAD pixel value).

The matrix A acts only on the spatial dimensions of the light-in-flight image
and is thus applied on each temporal bin of the light-in-flight data cube:

𝑟 = 𝐴𝜏 · 𝑖HR, (4.8)

where 𝑟 is the vectorized raw SPAD measurement, 𝑖HR is the vectorized high-
resolution transient image and 𝐴𝜏 ∈ R𝑚𝑛𝜏×𝑀𝑁𝜏 applies 𝐴 to all time bins of 𝑖HR.
It is obtained as the Kronecker product of an identity matrix of size 𝜏 × 𝜏 and the
matrix 𝐴:

𝐴𝜏 = 1𝜏 ⊗ 𝐴 (4.9)

More details on the matrices used in the model can be found in the section below.
In the case of noisy SPAD data (real measurement or simulations including

noise), the data cube is first denoised using total variation in all three dimensions.
The contrast of the CCD image is adjusted such that a potential offset of the
pixel values is removed in order to eliminate sensor specific noise. Its intensity is
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furthermore scaled to match the integrated intensity of the SPAD measurement,
so that the total intensity integrated over all pixels and time bins is the same for
the CCD and the SPAD measurement. This is necessary due to different quantum
efficiencies and exposure times, as well as different measurement units of the
sensors and corresponds to a scaling of factor

𝑓 =
𝜂SPAD · Δ𝑇 eff

SPAD
𝑒 · 𝜂CCD · Δ𝑇CCD

(4.10)

under the assumption of temporally constant ambient light, with an effective
exposure time Δ𝑇 eff

SPAD of the SPAD sensor and a conversion factor 𝑒 between
photoelectrons and digital pixel intensity values. These individual quantities
constituting 𝑓 need not be known; instead we use

𝑓 =

∑𝑚,𝑛,𝜏
𝑥,𝑦,𝑡 𝑑 (𝑥,𝑦, 𝑡)∑𝑀,𝑁
𝑥,𝑦 𝑐 (𝑥,𝑦)

, (4.11)

treating intensity values in the SPAD and CCD images as effectively dimension-
less quantities and units as implicit.

4.6.3 FORWARD MODEL DETAILS

In order to fuse a low spatial resolution SPAD measurement of size𝑚 × 𝑛 × 𝜏 (a
data cube with𝑚 × 𝑛 spatial pixels and 𝜏 time bins) with an intensity image of
dimension 𝑀 × 𝑁 , we first model the light transport from the scene to the SPAD
sensor. It is described by a matrix 𝐴 of size𝑚 · 𝑛 ×𝑀 · 𝑁 that is the product of
three matrices, as given in Eq. 4.7, where 𝑃 , 𝑆 and 𝐵 each represent a distinct step
in the transport and are described in more detail in the following. All matrices
are given for a toy example of a 4 × 4 SPAD array with 𝜏 = 16 time bins and a
CCD image of resolution 16 × 16.

Since our SPAD sensor is moved out of focus, we model the resulting blur by a
2D Gaussian distribution. The matrix 𝐵 then looks as shown in Fig. 4.4. When
multiplied with a vectorized image of resolution 𝑀 ×𝑁 (represented as a column
vector of length 𝑀 · 𝑁 ), it yields a blurred image of the same resolution (plus
additional padding due to the blur).

The SPAD sensor has a low fill factor. We therefore include in our model the
fact that only 2% of the light actually reaches the active pixel area and neglect
the rest of the light. A mask as shown on the left side of Fig. 4.5 is used to model
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Figure 4.4: Matrix 𝐵.

the distribution of active area on the sensor area. It is reshaped into a matrix that
can be multiplied with the blurred vectorized image, as can be seen on the right
side of Fig. 4.5.

Lastly, the matrix P performs the downscaling of the vectorized 𝑀 × 𝑁 image
(plus padding from the blur) to the resolution𝑚 × 𝑛 by summing up respective
image areas (in this case patches of 4 × 4 pixels - see Fig. 4.6).
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Figure 4.5: Left: Mask of the active pixel areas on the whole sensor area. Right: Matrix 𝑆

- due to the dimensions of S, the active areas are only barely visible as black dots on the

diagonal.

Figure 4.6: Matrix 𝑃 .

The matrix 𝐴 which is the product of the matrices 𝑃 , 𝑆 , and 𝐵, then looks as
shown in Fig. 4.7.

Since this matrix acts only on a single image and not on a full SPAD data cube,
we construct a matrix 𝐴𝜏 as the Kronecker product of an identity matrix of size
𝜏 × 𝜏 and the matrix 𝐴:

𝐴𝜏 = 1𝜏 ⊗ 𝐴
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Figure 4.7: Matrix 𝐴.

When multiplied with a vectorized high resolution data cube 𝑥HR (size𝑀 ·𝑁 ·𝜏×1),
it yields a low resolution SPAD measurement 𝑟 (size𝑚 · 𝑛 · 𝜏 × 1), including blur
and mask, by applying 𝐴 to each time frame of the data cube:

𝑑 = 𝐴𝜏 · 𝑖HR.

𝐴𝜏 is of dimension𝑚 · 𝑛 · 𝜏 ×𝑀 · 𝑁 · 𝜏 as depcited in Fig. 4.8.
Using this forward model, a high resolution data cube can be reconstructed

from a low resolution SPAD measurement and a high resolution CCD image as
described in the paper.

4.6.4 NUMERICAL SIMULATIONS

In order to simulate the fusion of a CCD sensor image and a corresponding SPAD
measurement, we created artificial light-in-flight images of three-dimensional
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Figure 4.8: Matrix 𝐴𝜏 .

scenes by using a time-of-flight renderer2 that raytraces the scene, stores the
time each ray has travelled from the light source to the camera and sorts them
into a histogram for each camera pixel. The result is a three-dimensional data
cube of the light-in-flight image. An integration over the temporal dimension
of the high-resolution ground-truth rendering serves as the simulated CCD
image (see e.g. Fig. 4.10). Simulated SPAD measurements are created from this
high-resolution data cube using the forward model described earlier. Figure 4.9
shows the light-in-flight data cube as volume renderings seen from different
angles and, for additional visualisation, as depth maps. These depth maps are
created in a naive way, using the time bin with the highest photon count as depth
information, and are meant to provide additional visualisation for scenes with
negligible amounts of multiply scattered light. They should not be considered
comprehensive visualisations of the reconstruction results as they are not created
using state-of-the-art methods and always constitute a reduction of the data to
two dimensions. This holds for all depth maps depicted in this paper. In Fig. 4.9,

2 Further information on the used renderer can be found in [89].
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Figure 4.9: (a) High resolution ground truth simulated light-in-flight image. (b) The same scene in simulated SPAD sensor view

when the image is in focus. (c) Simulated SPAD view when the image is out of focus. (d) Reconstruction from the out-of-focus

measurements and a high-resolution time-integrated image of the scene. Columns 1-3 show a volume rendering of the scene

from different perspectives, column 4 shows a depth image of the scene obtained by using the time bin with the highest photon

count as the depth information per pixel.75
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Figure 4.10: Simulated CCD image of the artificial three-dimensional scene.

the ground truth data cube is shown in row (a) and the corresponding simulated
SPAD measurements created using the forward model in row (c). The scene is
visibly blurred in the spatial dimension – a standard variation of 6 high-resolution
pixel widths was used for the Gaussian kernel. Row (b) shows what the SPAD
measurement would look like without any blur: due to the low fill factor of the
SPAD sensor, information is lost and holes appear in the image in the temporal
dimension due to spatially sparse sampling.

Using only the simulated measurement from (c) and the simulated high-
resolution CCD image, the scene can be reconstructed as seen in row (d) ac-
cording to Eq. 4.3 of the main text. Suitable regularization parameters 𝛼 , 𝛽 and
𝛾 were found experimentally by performing a parameter sweep over several
orders of magnitude for each parameter. The total variation prior was found to be
unnecessary for this scene, as it contains mostly direct reflections, thus 𝛿 was set
to zero. 𝛼 = 1, 𝛽 = 10−3 and 𝛾 = 10−7 were found to yield the best and most stable
reconstruction results and were used for all reconstructions of this simulated
scene throughout this paper.

Figure 4.11 shows reconstructions of the same scene in different spatial res-
olutions with and without noise. The width of the Gaussian blur used in the
simulation was adjusted for each resolution, from 𝜎 = 1.5 CCD pixel widths in
the 96 × 96 case to 𝜎 = 6 CCD pixel widths in the 384 × 384 reconstruction. The
noise is modeled as a combination of Poissonian and Gaussian noise in order to
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Noise-free simulation Simulation with added noise

96
×

96

PSNR 43.17 dB, 𝛿rel = 0.36 PSNR 36.92 dB, 𝛿rel = 0.74

12
8×

12
8

PSNR 42.22 dB, 𝛿rel = 0.37 PSNR 34.35 dB, 𝛿rel = 0.92

19
2×

19
2

PSNR 42.02 dB, 𝛿rel = 0.34 PSNR 32.00 dB, 𝛿rel = 1.08

25
6×

25
6

PSNR 42.61 dB, 𝛿rel = 0.32 PSNR 31.58 dB, 𝛿rel = 1.15

38
4×

38
4

PSNR 41.51 dB, 𝛿rel = 0.34 PSNR 30.49 dB, 𝛿rel = 1.22

Figure 4.11: Reconstructed simulated scene in different spatial resolutions (96×96 to

384×384) with 95 time bins without (left column) and with (right column) added noise.

For each reconstruction, the deviation from the ground truth is given as the peak signal-

to-noise ratio (PSNR) and the relative error 𝛿
rel

= | |𝑖
reco

−𝑖
truth

| |2/| |𝑖
truth

| |2. Both refer to the

whole three-dimensional light-in-flight image, not the depth image.
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account for shot noise as well as other effects such as thermal or readout noise. In
order to model the simulated measurements as closely to the real measurements
as possible, the pixel count range of the artificial data was adjusted to typical
values measured with the set-up described in the main paper before applying
the Poisson noise (roughly 5 · 106 total photon counts, which corresponds to
∼100 photon counts per pixel and time bin - meaning per ’voxel’ in the data cube
- on average). Additionally, areas in the measured data cube (after background
subtraction) that do not contain any signal (only noise) were analysed and the
pixel values were found to follow a Gaussian distribution (due to background
subtraction having already been applied here, noise that is actually of Poissonian
nature with high mean values is treated as a Gaussian distribution with lower
mean). The parameters of this distribution were fitted to the data and used for
the artificial Gaussian noise that was added to the simulated data. As a result,
signal-independent Gaussian noise with 𝜇 = 5.6 and 𝜎 = 6.1 was added to the
simulated data, in addition to the Poisson noise.

As measures of the reconstruction performance, the peak signal-to-noise ra-
tio (PSNR) as well as the relative error 𝛿rel = | |𝑖reco−𝑖truth | |2/| |𝑖truth | |2 are stated for
each resolution. While in the noise-free case the quality of the reconstruction
is approximately constant, the addition of noise decreases the reconstruction
performance both numerically and perceptually. The degradation also increases
with higher spatial upsampling factors. However, even for a spatial resolution of
𝑀 ×𝑁 = 384×384, which corresponds to a factor of 12 in both spatial dimensions
of the SPAD measurement, a meaningful reconstruction could be achieved even
in the presence of noise.

An additional simulated scene featuring a diffuse table, three diffuse walls
forming a corner, and a specular mirror located behind the table, is shown on the
left side of Fig. 4.12. Due to inter-reflections between the objects, a light-in-flight
image of this scene has a complex temporal distribution that can not be reduced
to single light bounces on each surface. On the right side of Fig. 4.12, the temporal
intensity profile of a spatial pixel of the light-in-flight image (marked by a red
square in the left image) is shown: After an initial peak of light that undergoes
a single reflection on its path from the light source to the camera, additional,
less intense light is detected by the same pixel, due to interreflections of the
surrounding walls.
Figure 4.13 shows five frames from the simulated light-in-flight image at different
points in time, the first row depicting the ground truth, the second the 32 × 32
pixels measurement that has been created from it. The third row shows the
reconstruction of a 256× 256 light in flight image from the 32× 32 SPAD measure-
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Figure 4.12: Simulated scene featuring a diffuse table and walls, as well as a specular

mirror behind the table. The red square marks the spatial pixel whose temporal light

intensity profile is plotted on the right. After a primary (direct) reflection, additional

light that has scattered off the surrounding walls is reflected towards the camera from

this same scene point.

ment and the simulated CCD image (as shown in Fig. 4.12, left). It uses the same
parameters as above, except 𝛿 = 10−5, therefore employing a total variation prior.
The last row shows how the reconstruction quality degrades when Gaussian and
Poisson noise is added (using the same scaling and parameters as above). This
and Fig. 4.12 (right) show that the reconstruction matches the ground truth well,
with some artefacts in the late time-frames that contain only multiply reflected
light, especially with added noise. The time frame at 𝑡 = 1.430 ns (column four)
shows how spatial detail is resolved in the reconstruction that is not visible in
the simulated measurement due to the low resolution.
Since the intensity level of the multiply reflected light is very low (only about
5% of the intensity of the direct reflections, as can be seen from the color le-
gends in Fig. 4.13), its reconstruction is affected strongly by additional noise. If
necessary, lower noise levels can be achieved in experiment by averaging mul-
tiple measurements of the same scene, which would extend the acquisition time
accordingly.

The supplemental material of the paper contains video renderings of the light-
in-flight image and its reconstructions.
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Figure 4.13: Five frames from the light-in-flight image of the scene shown on the left side of

Fig. 4.12 at different points in time (see column headings) illustrating multiple light bounces in

the scene. Due to severe differences in brightness between direct and higher order reflections,

each frame’s brightness has been adjusted to the respective depicted intensity range (see color

legends). (a) Ground truth simulation. (b) Simulated SPAD measurement of size 32 × 32 (without

added noise). (c) Reconstruction to 256×256 without added noise. (d) Reconstruction to 256×256
with added noise.
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4.6.5 IMAGE RETRIEVAL RUNTIMES

Data set time bins 𝜏 Run time / mins
Golfball 25 11.6
Waterglass 44 78.3
Basketball 34 37.8
Letters 51 126.7
Steps 32 31.3
Simulation 38 19.0

Table 4.2: Reconstruction runtimes for data sets depicted in Fig. 4.2 of the main paper, as

well as the simulated data. All reconstructions have a spatial resolution of 96× 96 pixels.

4.6.6 UPSAMPLING RESULTS ON OTHER DATA SETS

In order to evaluate and compare our method further, we used it to reconstruct
high resolution light-in-flight images from measured and simulated data provided
by Lindell et al. [83, 90]. Each real mesurement data set consists of a SPAD meas-
urement in 256 × 256 pixels spatial resolution and a time bin width of 26 ps, as
well as a 1024 × 1024 pixel CCD image of the same scene. The data was captured
with the SPAD sensor in focus, so in order to simulate experimental conditions
as in our set-up and thus make the data compatible to our reconstruction, we
blurred the SPAD measurements spatially with a two-dimensional Gaussian and
then downscaled it to a spatial resolution of 64 × 64 pixels. We then used our
method to upsample this ’simulated out-of-focus measurement’ data to 512 × 512
and 1024 × 1024 for the full time resolution and a temporally rebinned version of
the data cube3, respectively. Figure 4.14 shows these results for three different
datasets. Especially the results depicted in the first row demonstrate how high
resolution detail, including intensity information, from the CCD image has been
transferred into the reconstructed light-in-flight image (see detail in Fig. 4.15).
For additional illustration and to provide a certain degree of comparability to the
upsampling results in [83], (naive) depth images are shown in the last column.

3 According to [83] the FWHM of their acquisition system is ∼440 ps, which corresponds to
approximately 17 time bins. We therefore perform a temporal rebinning of factor 6 for faster
reconstrucion times and smoother results.
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Figure 4.14: (a) CCD image and (b) SPAD image from [83] [90]. (c) Reconstruction using our method in full temporal resolution.

(d) Reconstruction using our method after temporally rebinning the SPAD data sixfold. (e) Simple depth images created from

the rebinned reconstruction.
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Figure 4.15: Detail of the first scene shown in Fig. 4.14 from a slightly different angle.

It shows how high resolution detail from the CCD camera has been fused into the

reconstructed data-cube, including fine intensity details like letters and symbols on

objects in the scene.

Figure 4.16 shows details of reconstructions, depicted as (naive) depth maps,
from a simulated dataset [90] with very low signal-to-noise ratio (on average
2 signal photons and 50 background photons per pixel). As with the real meas-
urements, to make the data compatible to our method, we first blurred the (now
synthetic) SPAD image spatially and downsampled it by a factor of 3. We then
upsampled it back to original size using our reconstruction method. For com-
parison, results from Lindell et al. for the same details can be found in [83] in
Figure 4. Despite being noisier than theirs, our depth maps demonstrate that our
model is capable of dealing with very low signal levels and produce meaningful
depth maps even though no sophisticated method to extract the depth map from
the reconstructed light-in-flight image is used.

Reconstructions of both captured and simulated data from [90] show a certain
level of ”patchiness” in the depth maps, which can also be observed in a video
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Figure 4.16: Depth maps of details from a scene simulated with low signal-to-noise

ratio of only 2 signal photons and 50 background photons per pixel. Top: ground truth.

Bottom: Results using our reconstruction.

view of the reconstructed data cubes (see supplemental material). Since this
behaviour is also visible in reconstructions on simulations with high signal-to-
noise ratio, and not present in our own captured data, we suspect that it is caused
by the artificial blur being applied to the SPAD measurement in a resolution of
only 256 × 256 pixels (as this is the maximum resolution available). The original
scene signal at this point has already undergone sampling by a SPAD device,
including all uncertainties and losses that come with it (low fill factor, spatial
quantization). Using this data to create the 64 × 64 measurement that serves as
input for our method, and then upsampling it to 1024×1024, is basically an attempt
to reconstruct more details than the undefocused SPAD data contains, justifying
a lack in quality (i.e. in the form of ’patchiness’) in the results. With the optical
blur during the acquisition, before the sampling step, we specifically address
this problem by spreading scene information into multiple pixels. Better results
would therefore be expected from data that had been acquired with a set-up like
ours, as it would include more scene information in the SPAD measurement than
we can account for with the given measurement data sets.

In comparison to the work by Lindell et al. [83], our method is capable of
upsampling whole light-in-flight images including mutliply reflected light. In-
stead of a neural network, it employs convex optimization and an appropriate
image formation model. It is still possible to reconstruct depth maps from the
reconstructed scenes in cases where this mapping makes sense (mostly direct
reflections). Our method is not limited to, but allows usage of a low resolution
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two-dimensional SPAD array that does not require scanning of the scene, like
the set-up used by [83]. As we downsample their 256× 256 SPAD data by a factor
of 4 × 4 after blurring it, we demonstrate upsampling by a factor of up to 16 × 16
on these external data sets (from 64 to 1024 pixels edge length).
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CHAPTER 5

LOW-COST SPAD SENSING FOR NON-LINE-

OF-SIGHT TRACKING, MATERIAL CLASSI-

FICATION AND DEPTH IMAGING

Abstract Time-correlated imaging is an emerging sensing modality that has been

shown to enable promising application scenarios, including lidar ranging, fluorescence

lifetime imaging, and even non-line-of-sight sensing. A leading technology for obtaining

time-correlated light measurements are single-photon avalanche diodes (SPADs), which

are extremely sensitive and capable of temporal resolution on the order of tens of

picoseconds. However, the rare and expensive optical setups used by researchers have so

far prohibited these novel sensing techniques from entering the mass market. Fortunately,

SPADs also exist in a radically cheaper and more power-efficient version that has been

widely deployed as proximity sensors in mobile devices for almost a decade. These

commodity SPAD sensors can be obtained at a mere few cents per detector pixel. However,

their inferior data quality and severe technical drawbacks compared to their high-end

counterparts necessitate the use of additional optics and suitable processing algorithms.

In this paper, we adopt an existing evaluation platform for commodity SPAD sensors, and

modify it to unlock time-of-flight (ToF) histogramming and hence computational imaging.

Based on this platform, we develop and demonstrate a family of hardware/software

systems that, for the first time, implement applications that had so far been limited to

significantly more advanced, higher-priced setups: direct ToF depth imaging, non-line-

of-sight object tracking, and material classification.

5.1 INTRODUCTION

Time-correlated imaging, or the recording of the optical response of a scene to
transient illumination, allows to analyze the temporal dimension of light trans-
port, a feature that is not accessible in pure intensity imaging. Time-correlated
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Figure 5.1: We propose the use of cheap, small off-the-shelf distance sensors (far left)

for a variety of computational imaging and vision tasks, and demonstrate and evaluate

their capabilities in emerging sensing applications like (from left to right) material

classification, non-line-of-sight tracking, and depth imaging.

optical measurements have established themselves as a valuable source of inform-
ation for scene understanding [91] and analysis in computer graphics, computer
vision, scientific imaging, healthcare and life sciences (e.g., fluorescence lifetime
imaging), consumer electronics, defense, robotics and autonomous driving, and
even locating hidden objects outside the direct line of sight, or “looking around a
corner” [66].

The approaches available for recording time-correlated measurements are rich
and varied, but most require bulky and expensive hardware and are too fragile to
be used outside of lab settings. A notable exception is the emerging technology
of single-photon avalanche diodes (SPADs). SPADs are single-photon sensitive
devices [92] that can be fabricated in CMOS technology [93] and, when combined
with precise time-tagging, provide time-resolved images at picosecond resolution
[65]. As direct time-of-flight sensors, SPADs have become the workhorse for a
wide range of emerging fields [76, 94], such as pulsed light detection and ranging
(lidar) in autonomous vehicles [95], non-line-of-sight (NLOS) sensing [96–99],
as well as fluorescence lifetime imaging microscopy (FLIM) [77] and extremely
high dynamic range imaging [100]. The sensors employed in all these works are
custom-made research-grade devices that need to be combined with an ultrafast
laser source, which is bulky and expensive (at least tens of thousands of US
Dollars in total) and therefore out of reach for most real-life applications.

In parallel to the research on implementing novel applications using SPADs,
however, the technology has already been fully democratized: small form-factor
SPAD-based ranging systems are available at a price of USD 3, that integrate a
pulsed laser source and a time-correlated single photon counter (TCSPC) along
with an I2C interface. Billions of consumer-grade mobile devices use them as
low-cost proximity sensors [101–103], for instance to turn off the display when
the phone is placed on the ear [104]. In this work, we investigate the suitability
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of such extremely cheap SPAD sensors for implementing computational imaging
applications such as the ones discussed above. This is not a given since, despite
the shared core technology, consumer-grade SPADs differ significantly from
their high-end counterparts in terms of their feature set and performance. In
lab settings without mass-market economies in mind, or in high-end industrial
prototyping (robotics, autonomous mobility), cost is a far lesser concern and each
of the components can be selected for optimum performance. Where research
systems offer thousands of histogram bins with low temporal jitter on the order
of a few tens of picoseconds, and sometimes detector arrays with relatively high
spatial resolutions [77, 98], consumer SPADs offer single-point or low resolution
measurements with coarse temporal binning. Equally severe constraints are
imposed by operation safety (consumer devices must be safe under all imaginable
circumstances, even when pointed directly at the user’s eye as is often the case
with cell phones), and the tight power budget of mobile devices. Consumer SPAD
systems therefore operate their lasers at the very minimum of what is required
for close-range sensing, which is not enough for less light-efficient scenarios like
non-line-of-sight sensing. On the API side, consumer SPADs are highly integrated
devices that cannot be synchronized to external devices, and by default output
heavily digested range data instead of raw timestamped photon events. This
renders them unsuitable for most computational imaging applications.

The goal of this study is to implement typical application scenarios like range
imaging, material classification, and object tracking around a corner, on a popular
type of consumer SPAD (STMicroelectronics VL53L1X), and to identify possible
avenues to improve the performance of such systems. In particular, these are our
contributions:

• We propose to use an off-the-shelf sensor evaluation kit as a low-cost alternative
to high-end SPAD sensors, and equip the board with a custom firmware to
output raw photon count histograms.

• We introduce hardware add-ons such as collimating optics and galvanometer
scanners to meet the needs of a selection of key applications for time-resolved
imaging. We further propose reconstruction pipelines based on inverse filtering,
deep learning, and other computational sensing paradigms that are capable
of handling the low-resolution time-tagged measurements produced by our
system.

• We validate the proposed platform for some of the most iconic application
modes of time-resolved imaging, namely non-line-of-sight object tracking,
material classification, and depth imaging.
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• We propose cost-neutral feature additions to the sensor hardware that would
greatly improve their interfacing to external hardware, and their suitability as
a general-purpose sensing platform for time-resolved light transport.

At a total system cost of USD 150 including all parts, our prototype system in
the most expensive configuration is two to three orders of magnitude lower in
cost than existing time-tagged research instrumentation. Software and data are
provided as supplementary material. We hope that our work will help unlock a
wide range of fascinating sensing applications on hardware that millions of users
are already carrying in their pockets.

5.2 RELATED WORK

This paper builds upon a substantial body of prior art, both from a technological
and an application-centered point of view.

Single-photon avalanche diodes SPADs are emerging as a promising mass-
market sensor technology capable of detecting electron-hole pairs generated by
single photons incident on the sensor. When combined with time-correlation elec-
tronics, these sensors allow for accurate time-tagging of such individual photon
detection events, or time-correlated single-photon counting (TCSPC). SPADs
are reverse-biased photodiodes that are operated well above their breakdown
voltage [105]. Every photon incident on a SPAD has a probability of triggering an
electron avalanche, the so-called photon detection efficiency (PDE). The resulting
avalanche event is time-stamped, providing a temporal resolution of tens to
hundreds of picoseconds. Compared to other single-photon photodetectors such
as photomultiplier tubes and multichannel plates, SPADs are small and versatile,
and are able to work at fast rates under ambient lighting conditions without
requiring a high bias voltage. SPADs and avalanche photodiodes (APDs) have
been successfully employed for a wide range of TCSPC applications [106] in
optical telecommunication, fluorescence lifetime imaging, and remote sensing
systems (e.g., LIDAR). While SPAD sensors can be fabricated in CMOS technology
[105], research instrumentation has been prohibitively costly at tens of thousands
of USD, outside the range of most practitioners and in particular computer vision
and graphics researchers without optical laboratories. In this work, we introduce
a scalable research platform for time-tagged photon counting that is affordable
and easy to use, since it is based on smartphone proximity sensors.
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Time-of-flight (ToF), transient and depth imaging Transient imaging captures
the impulse response of light transport in a scene, thereby completely charac-
terizing light transport as a linear time-invariant system. The idea of transient
imaging was originally proposed by Abramson [73] as “light-in-flight recording”,
using a holographic technique to reconstruct the propagation of a picosecond
light pulse over time. With recent developments in ultrafast sensing technology,
there exists now a variety of hardware options for transient imaging, turning
it into an emerging imaging modality with manifold applications in computer
graphics and computer vision [107]. Transient images and related time-of-flight
techniques have been used for fast and robust depth sensing and foreground-
background segmentation [83, 108, 109] where they often outperform passive
methods on scenes with complex geometry and untextured regions [110, 111],
while not requiring a wide stereo baseline. In addition, the availability of time-of-
flight histogram data allows for insightful visualization of light transport [74],
material estimation [112, 113], fluorescence lifetime microscopy [114], and even
the reconstruction of objects beyond the direct line of sight.
Technologies used for time-resolved imaging differ widely in cost as well as
individual advantages and drawbacks. At the high end of the price spectrum,
streak cameras offer very high temporal resolution, but require additional instru-
mentation and computation for imaging two-dimensional scenes [21, 22, 74]. At
much lower prices, amplitude modulated continuous wave (AMCW) ToF sensors,
specifically intended for depth imaging at relatively high spatial resolutions, have
been shown to be suitable for time-resolved imaging [17, 36]. For a more detailed
comparison of this work with amplitude modulated ToF sensors, see Section 5.7.

Non-line-of-sight (NLOS) tracking Conventional cameras capture scenes
that are in their direct line of sight, but computational sensing techniques have
been recently proposed to reconstruct objects that are obscured from direct view,
using secondary effects like indirect reflections [66] or partial shadows [115] as
an information source. Such ability to see occluded parts of the scene would
have numerous obvious benefits in traffic safety, search and rescue, healthcare
(endoscopy), and defense, but has yet to find its way into practical applications.
While a large body of work has been dedicated to the challenge of reconstructing
detailed scene geometry [66, 67, 98, 99, 116–120], some applications do not require
a full 3D reconstruction. Often, it could be sufficient to be able to detect objects
and track their motion. Thanks to a greatly reduced number of degrees of freedom,
this problem can be addressed with less detailed input data and even steady-state
(intensity, no time of flight) input images under passive [115] or active [121, 122]
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illumination, and it has led to the first industry demonstrators to integrate robust
non-line-of-sight sensing technology [123]. Nonetheless, with an expensive bill
of components, these demonstrators are unlikely to converge to mass-market
products. To our knowledge, this work marks the first reported instance of using
low-budget SPAD sensors for non-line-of-sight tracking.

Material classification Indoor and outdoor scenes for robotic or scene un-
derstanding tasks almost always contain a diverse set of materials. Being able to
robustly identify materials can be beneficial in many computer vision tasks such
as acquisition, object recognition and segmentation. Classifying materials based
on optical measurements is still a largely unsolved problem in computer vision, as
a result of the ambiguity in appearance measurements. For example, polystyrene
foam and white paper can appear very similar in conventional intensity RGB
images, which makes material classification challenging based on their visual
appearances. However, the interaction of light with many materials gives rise
to a unique temporal point spread function (TPSF), which can be resolved with
time-correlated detectors. A recent line of work [113, 124] proposes classification
methods that use temporally resolved measurements to identify the materials
via subsurface scattering. Comparing to reflectance-based methods that rely on
single-view RGB images [125–127], temporally-resolved approaches are more
robust to changes in illumination, and they are not as easily fooled by replicas
such as printed pictures of the target materials. In this work, we demonstrate
that it is, in fact, possible to achieve extremely reliable distinction between five
whitish materials using a cellphone-class SPAD sensor.

5.3 SYSTEM DESCRIPTION

The centerpiece of our system is the VL53L1X time-of-flight sensor module by
STMicroelectronics. The 12-pin package, priced around USD 3 for large volumes,
has a footprint of 15 mm2 and integrates a 940 nm light source and a 16×16 SPAD
array sensor with a field of view of 27◦ imaged by a miniature lens. Ambient
light influx is reduced by an appropriate filter. From this device, we obtain 24-bin
histograms of time-of-flight data with a bin width of 1.3 ns, thus spanning a range
of ca. 4.7 meters from the sensor in direct view. The data can be read as one
combined measurement from the sensor as a whole, or from a region of interest
(ROI) that can be any rectangle of sensor pixels with a minimum size of 4 × 4.
Read-out of individual pixels is not possible.
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Figure 5.2: Left: Setup schematic for depth and NLOS imaging: Two plano-convex lenses

collimate the light emitted from the VL53L1X’s light source and the SPAD sensor’s

field of view. Two rotatable mirrors allow deflection of the beam. Right: Lenses and

galvanometer scanner pair in front of the sensor and light source in the lab.

Figure 5.3: Left: The VL53L1X time-of-flight sensor module by STMicroelectronics on

a commercially available breakout board. Center: Profile of collimated laser beam at

0.4 m from the lens. Right: Point spread function of the full system shown in Figure 5.2,

obtained using a small retroreflective target.

For our prototype, we rely on the sensor evaluation kit P-NUCLEO-53L1A1
which adds a 32-bit microcontroller and USB interface. The system hosts up
to three sensor units, one premounted and two more on satellite boards that
connect to pin headers to either side of the main sensor. The stock firmware reads
preprocessed range data from the sensor, and forwards it to the host via a virtual
serial port. We replace it with a custom firmware that reads and forwards raw
photon count histograms.

For some of the applications demonstrated in this paper, we use additional
optical equipment for increased flexibility of the system.
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Addition 1: Glasses The sensor by default is configured for weakly directional
forward sensing. For some purposes, it is more desirable to work with narrower
illumination and viewing beams. We equip the sensor with a pair of small plano-
convex lenses (𝑓 = 6 mm, ◦ = 3 mm) mounted at an adjustable distance from the
exit/entrance apertures to fine-tune collimation (Figure 5.2). Using a bare image
sensor placed at roughly 40 cm from the emitter, we characterize the profile of
the laser beam as shown in Figure 5.2 (top right). It is clearly visible that the
emitter employs four laser diodes arranged in an arc shape.

Addition 2: Galvo scanners With the illumination and sensing beams collim-
ated through the lens pair, we mounted a pair of galvanometer scanners with hot
mirrors to scan the sensing path in two angular dimensions (Figure 5.2). We used
the cheapest unbranded product “20kpps Laser Galvanometer Set” that is avail-
able through the most common global sales platforms, and equipped it with larger
infrared mirrors and a custom 3D-printed mount. An Arduino microcontroller
board provides the analog input signals for these scanners.

Being able to control the sensing beam like this, we characterized the system’s
point spread function by using a small retroreflective target (Figure 5.3, right).

5.4 MATERIAL CLASSIFICATION

We use the VL53L1X to classify different materials based on their temporal and
spatial response to the illumination emitted by the device. When placing the
sensor right onto the surface of a material, the infrared light from the VL53L1X
light source penetrates the material, is scattered inside, and part of it is reflected
back to the SPAD sensor as illustrated in Figure 5.4. Depending on the structure of
the material, the signal measured by the sensor can vary temporally and spatially.
By training a neural network, characteristics of different materials can be learned
and they can later be distinguished by holding the sensor to an object.

For the material classification, we use contact measurements without any
additional equipment. This makes this application particularly suitable for usage
in small confined spaces, as well as for scenarios where the sensor is integrated
into (consumer) devices like smartphones or cameras. A possible use case could
be the distinction between a real finger and a dummy to improve the security of
fingerprint sensors.

For the measurement, we read out the whole sensor area in ROIs of 4× 4 pixels,
which yields 16 independent ROI measurements arranged on the sensor in a 4
by 4 grid. This configuration allows the maximum number of independent ROIs
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Figure 5.4: For the material measurement, the VL53L1X is placed in direct contact of

the sample. The active illumination penetrates the material and is scattered inside as

illustrated on the right. Depending on the material’s structure, the signal measured by

the SPAD sensor varies spatially and temporally.

on the sensor and constitutes a good compromise between captured information
and acquisition time.

We record data for five different materials — foam, paper, skin, towel, and
wax — by holding the sensor to the material 40 times in different positions
and orientations and recording 25 histograms on all 16 ROIs. This procedure
takes about 10 minutes per material. For evaluation purposes, we repeated the
measurement for each material in the presence of ambient illumination in the
form of a 100 W incandescent lighbulb that was placed in a distance of ∼30-40 cm
from the sample, as well as for different color variants of each material (lightgreen
foam, colored paper, another person’s skin, darkblue towel and red wax). Due to
the low temporal resolution of the SPAD sensor and the very short range of a
few millimeters, most of the information is contained in the first few time bins of
each histogram. We truncate the measurements to 16 time bins from the original
24, then reshape the data to matrices of size 16 × 16 with one spatial and one
temporal dimension. Renditions of this measurement data for the five different
materials are shown in Figure 5.5.

A two-dimensional principal component analysis of the data shows a certain
clustering of the materials - almost independent of the presence of ambient
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Figure 5.5: Measurements for five different materials. Top: Photograph of material. Center: SPAD histogram data averaged over

1000 measurements. Bottom: Deviation of each material from the mean of all materials. Center and bottom: Since no visible
information is contained in later time bins, these plots only show bins 1 to 5.
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Figure 5.6: Left: Two-dimensional PCA of the material data with and without ambi-

ent light (AL). Right: The first two eigenvectors with their corresponding eigenvalues,

reshaped to the input data format. As in Figure 5.5, only the first five time bins are

shown.

light -, but poor separation between the categories. The PCA and the first two
eigenvectors are shown in Figure 5.6.

In order to classify the different materials, we train a convolutional neural
network (CNN) with two 3 × 3 convolution layers and two fully connected layers
on data from 35 of the 40 collected positions while 5 serve as test data. We perform
and evaluate the training for different constellations of data for the five materials:
without ambient light, with added ambient light, and with added color variants
for each material. To ensure comparability in the results, the total number of
measurements in the training was kept consistent - results are shown in Table 5.1
and Figure 5.7(a)-(c). Additionally, we evaluated the performance for all material
variants separately, as shown in Figure 5.7(d).

While the addition of ambient light has almost no effect on the performance,
adding materials with different reflection properties (and slightly different struc-
ture) decreases the performance quality which can, however, be almost completely
avoided by adding more training data (see Table 5.1). As can be seen in the confu-
sion matrix in Figure 5.7(d), especially paper, skin and towel are mostly confused
among the variants of one type of material.
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Figure 5.7: Confusion matrices for the classification of five material classes on a test

dataset. (a) Measurements without ambient light, (b) measurements with and without

ambient light in the training and test datasets, (c) data of two color variants for each

material in the training and test datasets, (d) evaluation of classification of all color

variants treated as separate classes. Numbers are the absolute count of data points in

the test sets. The number of training data samples was kept consistent across (a)-(c) for

better comparability.
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Table 5.1: Classification accuracy on the test dataset with and without ambient light, as

well as with color variants of each material.

foam paper skin towel wax
w/o ambient light 99.2 % 92.0 % 98.4 % 97.6 % 100.00 %
w/ ambient light 97.6 % 94.4 % 95.6 % 87.6 % 100.00 %
w/ color variants 87.6 % 81.6 % 88.8 % 71.2 % 96.00 %
w/ color variants
(2× training size) 99.6 % 97.6 % 97.2 % 95.2 % 100.00 %

While the results for training and testing on a single sensor are very good
and the classification performs very well even in a live application where the
sensor is held to different materials and the classification runs at interactive
rates (as demonstrated in the supplemental video), it has to be considered that
there is a certain hardware variation between individual copies of the sensor
and that classification accuracy decreases significantly when performed on a
sensor instance that has not been used for the acquisition of the training data.
However, due to the relatively short time needed for the acquisition of training
data and the training itself, as well as the individuality of potential use cases that
probably require tailoring to the particular situation and used materials, we do
not consider this to be a substantial drawback. Future work could focus on a
generalization of the method that allows for the calibration of a particular sensor
instance in order to make the data consistent across different devices.

5.5 TRACKING OBJECTS “AROUND THE CORNER”

Observing objects hidden from the direct line of sight is a common application
of time-resolved imagers. We show that the VL53L1X can be used to track an
object “around the corner” by illuminating a wall facing the hidden area and
recording the echoing light signal that is reflected from the target object. To this
end, we train a neural network to recognize the target position from the SPAD
data of four measurements on the wall, as described in detail in the following
subsections.
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Figure 5.8: Two variants of NLOS tracking setting. Left: The SPAD package’s integrated

light source directly illuminates the wall in front of the occluded target. The histograms

from the four corners of the SPAD image are read out. Right: The illumination and SPAD

view is collimated using the glasses and deflected to four points on the wall using a

mirror galvanometer.

Figure 5.9: Histograms for all four corners measured with the setting without mirrors for

one target position, averaged over 30 measurements. The peaks from the reflection on

the wall are clearly visible.
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5.5.1 DATA ACQUISITION AND PROCESSING

We propose two possible setups for the non-line-of-sight tracking task. In the first
configuration, the bare light source and sensor are pointed at the relay wall and
the four corners of the SPAD sensor are read out as ROIs of size 5 × 5 pixels (see
Figure 5.8, left). The second configuration employs the “glasses” and galvo-mirror
system described in Section 5.3 to focus the illumination and SPAD view to four
points on the wall (Figure 5.8, right). This way, better spatial separation between
the probe positions can be achieved, and the luminous efficacy – and therefore
the signal-to-noise ratio in the measurements – is increased.

A square-shaped piece of cardboard laminated with retroreflective film serves
as the target. It is placed facing the relay wall at different positions in the hidden
volume by a Universal Robots UR10 robotic arm for optimal precision. We perform
all experiments with a big (50 cm× 50 cm) and a small (30 cm× 30 cm) target.

We record the SPAD signal for 800 random target positions with 10 histo-
grams each while averaging two consecutive measurements to mitigate intensity
fluctuation in the data (training data acquisition takes about 5 hours). In the con-
figuration using the galvo-mirrors, we additionally normalize the histogram by
the total intensity collected in the first five bins, which only contain signal caused
by light reflected back directly from the mirror system. This way, fluctuations
and deviations caused by internal factors of the sensor and illumination system
can be accurately compensated for.

Assuming a completely diffuse reflection of the illumination at the relay wall,
the light intensity falls off quadratically from thereon. We correct for this effect
by multiplying each bin content with the square of the corresponding bin number
in order to keep the signal intensity of light reflected off the target consistent
across the whole measurement volume. This has shown to greatly improve the
reconstruction accuracy.

5.5.2 POSITION RECONSTRUCTION

Figure 5.9 shows an example measurement of four corners in the “no mirror”
setup for one target position, averaged over 30 measurements to reduce noise.
The direct peak from the wall is clearly visible in all four histograms, while the
indirect peak position is not obvious to the naked eye. Due to the indirect peak
being this low, we propose to use a neural network to determine the position of
the target in the hidden space. Below, we outline four different approaches to
reconstruct the target position, three of which rely on training a neural network,
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while the last is a ‘classical’ approach that does not depend on previously recorded
data.

1. Direct position prediction: We train a neural network (a multilayer perceptron
with five hidden layers of size 50) to directly predict the target position from
the four histograms. It takes the four histograms as input and reconstructs the
coordinates of the target from these.

2. Distance prediction and multilateration: This approach consists of two stages.
First, for each of the four probe points, its distance to the target is estimated
from the measured histogram. To do this, an MLP with five hidden layers of
size 16 and a final dense output layer of size 1 is trained to yield the distance
from the wall point to the target from the histogram it takes as input. In
this manner, the distances of all four points on the wall to the target can be
predicted and used to multilaterate the target position from the four wall points
by solving a simple optimization problem using the L-BFGS-B algorithm [128].

3. Distance prediction and multilateration with histogram shift: Before processing
the histogram, we find the ‘direct peak’ that corresponds to the reflection on the
relay wall by calculating the weighted mean (center of mass) of the histogram.
We then shift the histogram such that it starts with the center of the direct
peak. For sub-bin precision of this method, we upsample the histogram by a
factor of ten and resubsample it after the shift. Then we proceed as described in
approach 2. By making the histogram independent of the distance between the
SPAD sensor and the wall and thus training the neural net to predict distances
to the target from any point on the wall, the tracking method becomes invariant
to the positioning of the SPAD relative to the relay wall: For multilateration,
the position of the probe points can be calculated from the positions of the four
direct peaks in the histograms (yielding the distance between the SPAD and
the wall) and the angles between the four beam directions, which are a known
system property.

4. Peak finding and multilateration: For a non-learning-based comparison, we
determine the position of the indirect peak from the latter part of the histogram
(behind the direct peak) as the weighted mean (center of mass) and use the
distance between this and the direct peak – converted from bin widths to spatial
distances – for multilateration of the target position. This approach does not
require any training and thus generalizes across target sizes and SPAD/wall
locations.
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Table 5.2: RMSE (root mean square error) of the reconstructed target position in all

spatial dimensions for all methods and target configurations in meters. We also evaluate

the reconstruction methods’ ability to generalize across target sizes, where the model is

trained on data recorded with the big target (if training is required) but tested on small

target data, listed as “zero-shot” performance

Reconstruction Approach w/ Mirror Performance (RMSE) w/o Mirror Performance (RMSE)

Big target Small target Zero-shot Big target Small target Zero-shot
Direct Position 0.160 0.255 0.288 0.269 0.316 0.319
Distance-Multilateration 0.299 0.304 0.307 0.397 0.421 0.423
HistShift-Distance-Multilateration 0.304 0.316 0.312 0.413 0.453 0.445
Peak-Finding-Multilateration 0.498 0.516 0.516 0.508 0.535 0.535

We evaluate all methods quantitatively and demonstrate their “zero-shot” abil-
ity across the different target sizes. All configurations and the corresponding
reconstruction accuracies are shown in Table 5.2.

As is expected due to the higher light efficiency, the setup using lenses and
mirrors consistently yields better results for all evaluated methods. Since the
estimation of the indirect peak with classical methods is almost impossible, the
‘peak finding and multilateration’ approach, however, performs poorly in all
configurations. The best accuracy is achieved by training a neural net to directly
predict the target coordinates from the four given histograms, which we therefore
consider our proposed method. It performs particularly well with the big target
and mirrors, but also yields fair results with the small target and even without
the additional mirrors, but just the bare VL53L1X device.

Predicting the distance between the probe points on the wall and the target
results in lower accuracy, but the performance drops only slightly when addi-
tionally shifting the histogram to make the model independent of the SPAD and
wall position. All methods generalize reasonably well across target sizes.

Figure 5.11 shows the full distribution of distances in all spatial dimensions
between the true and the predicted target position in the test dataset for the
proposed method, where 𝑥 denotes the dimension to the left and right (parallel
to the wall), 𝑦 is the distance from the wall, and 𝑧 is the height from the floor.
As visible in these plots, the method performs especially well at predicting the
distance from the wall. The height from the floor apparently poses the greatest
challenge, which could be attributed to the spacing of the probe points on the
wall – due to the oblique projection of the sensor’s field of view onto the wall,
the left and right corner points are set wider apart than the top from the bottom,
providing a larger baseline in 𝑥-direction. The height reconstruction accuracy
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5.6 Depth Imaging

Figure 5.11: Distances in all spatial dimensions between the true and predicted target

position in the test dataset for the ’direct position prediction’ method.

also benefits the most from the better light efficiency through the bigger target
and the collimating lenses.

A set of exemplary reconstructions with the proposed method and the ‘peak
finding and multilateration’ approach for comparison is shown in Figure 5.10.

5.6 DEPTH IMAGING

The VL53L1X can yield a spatially resolved transient image by scanning all
possible 4 × 4 ROIs on the 16 × 16 pixel sensor, which yields a 13 × 13 pixel
measurement. This measurement, however, features a substantial blur due to the
overlapping ROIs and the poor optical quality of the imaging lens. We therefore
instead use the imager setup shown in Figure 5.2. We rotate the mirrors to
128 × 128 positions and capture a single all-sensor measurement per mirror
position to acquire the final transient data cube (acquisition time ∼30 minutes).
In order to correct for internal automatic intensity corrections of the sensor, we
normalize each pixel’s histogram by the amount of light that is backscattered
from the lens and its mounting which is collected in the first five temporal bins
of each measurement.

Additionally, using a small retroreflector we measure the point spread function
of the system as shown in Figure 5.3 (right) and employ the fast deconvolution
method by Krishnan and Fergus [129] to deconvolve each temporal slice of the
data cube with the measured PSF.

To keep intensity values relatively consistent to each other along the full
depth of the measurement volume, we compensate the intensity falloff of the
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light travelling from the illuminated point in the scene back to the sensor by
multiplying each temporal bin 𝑛𝑖 with 𝑖2.

Figure 5.12 (a)–(c) shows three different scenes scanned with our setup, where
column (b) shows the raw data (each pixel’s intensity summed over all time bins)
and column (c) shows the data after applying the above-mentioned corrections.

From the 128× 128× 19 ‘corrected’ data cube, we calculate detailed depth maps
in two different ways. In the first approach, we calculate the weighted mean of
the histogram to use as the given pixel’s depth value 𝑑 as

𝑑 =

∑
𝑖 𝑖 · 𝑛𝑖∑
𝑖 𝑛𝑖

where 𝑛𝑖 is the intensity of bin 𝑖 . This way we achieve sub-bin accuracy in
the depth estimation, allowing even smooth depth gradients to be faithfully
reproduced despite the large bin width that corresponds to ∼40 cm (or ∼20 cm in
depth due to forth and back travel of the light). Results are shown in Figure 5.12(d),
where the second scene has been recorded in the presence of ambient light
(fluorescent ceiling lights). While this method produces detailed depth images, it
lacks the ability to distinguish between fore- and background contributions and,
instead of separating them, yields a mixture of both. This is especially relevant
for highly specular surfaces that contribute to the measurement with direct and
indirect reflections, where the latter take a longer time to arrive back at the sensor,
as well as depth edges of objects where pixels contain contributions from the
foreground object and the background. Additionally, this method suffers from a
bias in very near and very far distances due to noise and secondary reflections
dragging the center of mass of the histogram to the center of the distribution.
This effect is furthermore dependent on the albedo of the imaged surface, as low
peaks (in comparison to background noise) in the histogram will have less impact
on the resulting mean than high peaks.

To mitigate these effects, we use a second approach where we fit Gaussian
functions to the histogram of each pixel. While this method takes longer to
compute, it yields sharper and more reliable results as shown in Figure 5.12(e).
Especially the highly specular surface of the bucket in the third scene is much
more accurately reconstructed than with the first method. Note that both methods
produce false results for objects that are beyond the measurement range, as visible
in the second scene where the background behind the shelves is too far away to
be measured correctly.

The Gaussian fit method also allows a variety of active tweaking of the produced
depth images. For example, varying sensitivity to back- or foreground can easily
be implemented by changing the threshold for which of two detected peaks to be
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Figure 5.12: Measurements taken with our scanning setup of three different real scenes shown in column (a). Column (b) shows

the measured intensity of each pixel as raw data. After applying several corrections to the data, we obtain clearer and less noisy

data as shown in (c). From this data, depth maps are calculated in two different ways, once as a weighted mean as shown in

column (d), and once by fitting Gaussian distributions to the measured histograms (column (e)).
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Figure 5.13: Calibration of the relation between bin number and true distance for both

methods used to determine the position of the depth peak.

Figure 5.14: Exemplary histograms for a bright (left) and a dark (right) scene pixel (after

intensity calibration using the first five bins of the raw histogram) for different ambient

light scenarios (no ambient light, a 100 W incandescent lightbulb, a 230 lm white LED

lightbulb, a 940 nm infrared LED, and indirect daylight through an open window).

used in the depth map. For semitransparent objects, contributions from the object
itself and the background can be easily separated and selected independently of
each other.

A calibration measurement of the relation between the obtained distance in
units of bin numbers and the true distance is shown in Figure 5.13 for both
methods. From the fitted linear relation, distances can be easily and accurately
converted from bin numbers to meters for each method. This, however, does not
account for the above-mentioned bias of the weighted mean-method towards
differences in surface albedo.

In order to analyze the VL53L1X’s response and robustness to different para-
meters like ambient light, object reflectivity, object distance and integration time,
we imaged a scene with three flat targets arranged at different depths from the
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sensor under different ambient lighting conditions. Each target consists of five
patches that appear at different brightness at the 940 nm illumination of the
light source. Ambient light sources (a 940 nm LED and a 100 W incandescent
light bulb) have been placed next to the VL53L1X, in a distance of ca. 90 cm
from the closest target, directly illuminating the scene. Ambient daylight (third
row) was indirectly illuminating the target through an open window in a few
meters distance from the scene. An exemplary histogram for one pixel, averaged
over 10 measurements each, with different sources of ambient light is given in
Figure 5.14: only the 100 W incandescent light bulb and, to some extent, daylight
produce levels of ambient light that noticeably impact the measured histograms.
Especially the former results in a decreased signal-to-noise ratio, which we ob-
served to be more severe with higher total influx of light on the sensor, indicating
that there is a general saturation threshold which was, however, not reached
in any of our experiments. The ambient light background level is flat with no
pile-up effects and can therefore be easily subtracted from the signal, however
leaving an increased level of noise in the histograms. This has almost no effect on
depth maps created using the Gauss fit method, but does induce a bias towards
larger distances in the weighted mean method. Results for the whole scene are
shown in Figure 5.15: Column (a) shows the level of total brightness for each
measured pixel (integrated over all time bins) - note that the scale in the last
row is adjusted to the significantly higher light intensity. Columns (b) and (c)
show the depth maps of the scene acquired with the aforementioned methods. As
illustrated in columns (d) and (e), the additional ambient light almost exclusively
affects the weighted mean method (and more, the brighter the target), while in
the Gauss fit depth maps, only slight deviations around depth edges are visible.

Since the VL53L1X does not allow adjustment of the integration time for
each histogram, we acquired ten measurements for each ambient light situation
and analyzed the variance of the depth values acquired from them as plotted in
columns (f) and (g). Again, the weighted mean method shows larger variance as it
is more susceptible to the increased noise level. In the Gauss fit depth maps, there
is almost no variance except at depth edges where peak fitting is less precise due
to contributions from back- and foreground. In conclusion, there is no significant
benefit from averaging multiple histograms, and thus extended acquisition times,
for this method. Especially given these limitations, we consider the weighted
mean method a “quick-and-dirty” approach for a fast but noisy depth image while
the Gauss fit method provides the accurate results.
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Figure 5.15: Measurements of three targets in different depths, each with five patches of different reflectivity at the illumination

wavelength, for different levels / sources of ambient light (no ambient light, a 940 nm infrared LED, a 100 W incandescent

lightbulb, and indirect daylight through an open window). (a) Total intensity integrated over all time bins - please note the

adjusted colorscale in the last row. (b) Depth map acquired with the ’weighted mean’ method. (c) Depth map acquired with the

’Gauss fit’ method. (d)/(e) Difference of the depth maps at different ambient light levels to the depth maps acquired without

any ambient light (first row). (f)/(g) Variance of the calculated depth over 10 measurements.
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5.7 Comparison to AMCW ToF

5.7 COMPARISON TO AMCW TOF

Due to their relatively low cost in comparison to high-end SPAD setups, amplitude
modulated continuous wave (AMCW) ToF devices can be considered the closest
alternative technology for the tasks shown in this paper. We therefore provide
a short overview of the similarities and differences of the two technologies. In
general, cheap SPAD sensors like the VL53L1X are still orders of magnitude
cheaper than correlation-based ToF devices, making them especially suitable for
applications where multiple sensors are involved, as well as more widespread
in existing hardware where they are currently used, for instance, as proximity
sensors, while correlation ToF sensors are still a rather specialized feature of
a small number of device models. The designated application of correlation
ToF sensors is depth imaging, which they are therefore best suited for, without
requiring scanning of the scene. While ToF sensors directly measure a single depth
value per pixel, SPAD sensors yield a response histogram for each pixel, providing
complex light transport information. Heide et al. [17] and Kadambi et al. [36]
have shown that such temporally resolved information can be recorded using
photonic mixer device (PMD) measurements, which however requires hours of
post processing time. Even non-line-of-sight imaging with PMD sensors has
been shown by Heide et al. [130]; their setup uses six 250 mW laser diodes as
illumination sources, while the VL53L1X features an eye-safe class 1 laser source.

Su et al. [113] have demonstrated material classification using raw PMD meas-
urements on similar material samples as used in our paper, but from larger
distances. Since in our approach the whole device, including the sensor and light
source, has such a small form factor and can be placed directly on the material
surface, spatial and angular characteristics of the scattered light can be exploited.
We achieve much better classification accuracies than Su et al. and do not require
a combination of multiple samples or manual segmentation of the recorded data.

5.8 DISCUSSION AND FUTURE WORK

Although cheap SPADs deliver low-quality data and are narrowly optimized for
short-distance, single-point ranging applications, we have been able to demon-
strate that, by configuring these sensors to output raw photon counts, they can
be opened to a wider range of computational sensing tasks. They are readily
available in existing consumer devices. With nonstandard programming, they
could instantly enable new features for a wide audience without the need for
additional hardware. Furthermore, the affordability of these chips even qualifies
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them for use in larger quantities (arrays), which would be prohibitively expensive
for most research-grade SPAD systems.

The limitations of our prototype system (an off-the-shelf sensor evaluation
kit with custom firmware) are numerous. Although the sensor can capture at
60 histograms per second, overhead from API and serial communication reduces
the effective capture rate to about 9 histograms per second. Despite the relatively
fine grid of individual detector pixels, they cannot be read out individually but only
in blocks. We assume that the manufacturers want to ensure a minimum photon
count and hence signal-to-noise ratio. For our purposes, however, the main
effect is a reduced spatial resolution. While the spatial resolution is potentially
improvable with additional hardware [8], the temporal resolution of 24 bins per
histogram, too, is barely enough for most applications. Additional temporal blur
due to laser pulse length and detection jitter further reduces the capability to
discriminate components with similar time of flight. Finally, the light output of
our system is limited by the strict requirements of low power consumption and
eye safety in mobile applications. Most experimental work on non-line-of-sight
sensing, on the other hand, uses optical powers that are at least 3–4 orders of
magnitude higher.

To facilitate the broader adoption of the proposed sensor platform, we hope that
the sensor manufacturer alleviates these limitations by making minor technical
modifications to the sensor design and its API. An API change could be official
support of histogram readout, at the same level of configurability that is offered
for the ranging mode. An increased number of histogram bins, even if temporal
blur is the limiting factor and reduced photon count per bin leads to a higher shot
noise level, would enable computational recovery of a higher-resolved signal.
With the option of using region-of-interest sizes down to a single pixel, it would
be possible to obtain noisy photon counts at full sensor resolution, which can be
more useful for many applications than pre-binned counts. In the future, we hope
that an even wider range of applications could be enabled by deeper hardware
modifications to the sensor. A major difference between existing scientific time-
tagged SPAD systems and the mass-market proximity sensor used in this work
is the ability of syncronized triggered acquisition. The proposed system is fully
free-running in the sense that it does not facilitate external triggered acquisition
but only delivers repeated measurements using the internal source. As such,
the user can not “start” or “stop” measurements but only read out continuous
measurement streams. In the future, a trigger interface could enable the triggering
of the sensor by external light sources, or vice versa. With changes only to the
logic portion of the chip (introducing a time-to-digital converter per pixel), full
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5.8 Discussion and Future Work

image data could be captured. Finally, we envision a bare-sensor version (without
lens) that would allow for the use of higher-quality optics for better image quality.

With the ongoing establishment of SPAD sensors as a technology for time-
resolved imaging, which is accompanied by the in-depth analysis and modelling
of these sensor devices [131], we believe that the data quality even from cheap
and simple sensors will improve rapidly and that they will open up affordable
research using SPAD sensors across disciplines.
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CHAPTER 6

CONCLUSION AND OUTLOOK

The work presented in this thesis is based on and part of a rapidly evolving
body of related scientific work and technological developments. Time-of-Flight
camera systems are a relatively new technology and the field of time-resolved
imaging advances rapidly. Automation, smart consumer devices, and emerging
media like virtual and augmented reality drive the fast progress in this field, both
hardware and software wise, as the need for a thorough automated capture and
comprehension of physical surroundings and conditions grows. At the same time,
the different fields of applications pose a variety of demands and challenges on
the required technology like price, size, eye-safety, portability, etc.
Similarly, imaging and photography has generally become an increasingly im-
portant topic over the last years, as smartphones and online services have made
the production and sharing of images easy and accessible. The demand for small,
portable cameras has therefore greatly increased and computational photography
as a means of enhancing image quality and features while exhausting the techno-
logical and optical limits of the imaging hardware has become more and more
important. In recent years, even the combination of ToF and intensity cameras
became a relevant mode in smartphone cameras, mostly to achieve out-of-focus
blur and bokeh effects as an aesthetically desired natural optical feature of bigger
cameras with larger apertures. This fixed and well-calibratable setup provides a
convenient basis for all sorts of algorithms that combine intensity and ToF data,
like the one presented in Chapter 4. The sensor type that is used in Chapter 5 is
already used in many smartphones as proximity sensors. With the trend of using
much higher quality SPAD sensors in recent devices like Apple iPhones and iPads
[132], the results that have been shown for this cheap sensor type will likely
scale to even better quality and enable many new sensing modes for these devices.
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Chapter 6 Conclusion and Outlook

In applications like robotics and autonomous driving, depth sensing techno-
logies are essential as machines need to be able to capture and process their
environment in order to interact with and move inside it. SPAD sensors are
becoming an increasingly important technology in this context, as they are able
to capture the full light response of their surroundings, making them usable in
different conditions and allowing them to draw inferences even about objects
that may not be in the direct line of sight. SPAD sensor hardware is progressing
rapidly, with the first megapixel SPAD sensor having been presented recently
[133] and a 3.2 megapixel SPAD sensor being announced by Canon [134], and
with new architectures like back-illuminated sensors emerging [135, 136]. Metrics
like resolution, fill factor, quantum efficiency, and temporal resolution of SPAD
sensors are therefore expected to improve even more in the future. Similarly,
however, CCD and CMOS sensors are still improving as well, keeping a method
for combining SPAD and ToF sensors like the one presented in Chapter 4 to
improve SPAD data resolution a relevant option. This is especially true wherever
cost, size, and power are limiting factors, like in consumer devices.

The progress in ToF hardware is closely connected to the advances in com-
putational imaging algorithms, as is also reflected in the work presented in this
thesis. The snapshot difference imaging approach presented in Chapter 3 and the
low-cost SPAD sensing applications in Chapter 5 are in line with a general trend
of making imaging sensors more versatile, and using programmable hardware
to encode more image information than one would obtain through simple integ-
ration of light. Multiple approaches to general two-bucket sensors that allow
for a flexible switching between buckets have recently been proposed [137–139],
allowing to encode the measured image spatially and temporally, enabling for
example compressive sensing techniques. SPAD sensors have been shown to be
useful to greatly increase the dynamic range in imaging applications [100], and
methods to fuse intensity and SPAD sensor data in order to obtain very high
dynamic range photographs have recently been proposed [140].

ToF hardware is likely going to improve further in the future, as the above-
mentioned developments suggest. All methods presented in this thesis generally
scale to improved sensor characteristics, although processing times may become
an issue, especially with the sensor fusion approach presented in Chapter 4.
Reducing the runtime of the high-resolution data reconstruction, for example by
finding more efficient ways to solve the proposed optimization problem, would
be a sensible leverage point for a future improvement of this method. A deep
learning approach is also conceivable, as fusion of intensity and SPAD image
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data has been demonstrated for robust and noise-efficient depth estimation [83,
141] – although not yet for reconstruction of full transient images as are required
for applications like FLIM or NLOS imaging.

Even with the general improvement of high-end ToF technology, though,
cost-efficient solutions and hardware that is able to perform under a variety
of other external restrictions will most probably remain a relevant challenge.
The extension of working modes for existing hardware may also enable new
applications for already existing and widespread, as well as future consumer
devices. A specific issue that could be investigated based on this thesis is whether
the material classification demonstrated in Section 5.4 can be extended to larger
distances between the SPAD device and the material. Especially in setups where
a SPAD camera is aligned with an intensity or RGB camera, material classific-
ation could help in the recognition and identification of objects. The usage of
low-cost SPAD sensors for this purpose could provide an easy and cheap way
to improve the understanding that robots or autonomous cars can obtain about
their environment or objects they might interact with. Also conceivable are con-
sumer applications like the automatic estimation of caloric content or nutrients of
a meal by scanning it with a smartphone camera system that includes ToF sensors.

Generally, ToF imaging and ToF-based sensor systems will likely open up many
new applications in the future in a variety of different fields like medicine and
life science, robotics, autonomous driving, AR/VR, and consumer photography.
Virtual, augmented, and mixed reality might be on track to becoming comparably
influential and widespread as smartphones today, for example through smart
glasses or contact lenses [142]. In that case, ToF will most probably become
an essential and ubiquitous sensing mode, whose capabilities and prospects are
therefore worth exploring extensively, even today.
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