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Abstract
by Linlin Yang

for the degree of

Doctor rerum naturalium

3D hand pose estimation from monocular RGB inputs is critical for augmented and
virtual reality applications, and has achieved remarkable progress due to the revolution
of deep learning. Existing deep-learning-based hand pose estimation systems target
learning good representations for hand poses, requiring a large amount of accurate
ground truth labels, which are difficult to obtain. We turn to explore different auxiliary
information to aid representation learning and reduce the reliance on data annotation.
This dissertation explores different auxiliary information, i.e. , image factors, multi-
modal data, and synthetic data, for 3D hand pose estimation.

Motivated by the image rendering that requires a number of image factors of vari-
ation, we propose to learn disentangled representations to better analyze these factors
of variation. The disentangled representations enable explicit control over different
factors of variation for synthesizing hand images and training with hand factors as
weak labels for hand pose estimation. Besides labelled or shared hand factors, dif-
ferent modalities (e.g. , RGB images and depth maps) of the same hand should have
shared information. Therefore, we present multi-modalities as auxiliary information
for RGB inputs. Specifically, we explore multi-modal alignment in three aspects: la-
tent space alignment based on variational autoencoder and product of Gaussian expert,
pixel-level alignment via attention fusion, and low-dimensional subspace alignment via
contrastive learning. Besides multi-modal alignment, the auxiliary modalities can also
serve as weak labels for hand pose estimation.

To further remove the requirements of image factors or different modalities, we
emphasize the importance of synthetic data. Synthetic data is flexible, infinite, and
easy to achieve. With synthetic data as auxiliary information, we can significantly
reduce the number of labelled real-world data. Therefore, we introduce a challenging
scenario that learns only from labelled synthetic data and fully unlabelled real-world
data. To address this challenging scenario, we present a semi-supervised framework
with pseudo-labelling and consistency training, and try to address noisy pseudo-labels
using modules like label correction and self-distillation.

This dissertation advances the state-of-the-art 3D hand pose estimation, explores
representation learning, weakly- and semi-supervised learning for pose estimation, and
paves a path forward for learning pose estimation with diverse auxiliary information.

Keywords: 3D Hand Pose Estimation, Weakly-Supervised Learning, Semi-Supervised
Learning, Multi-Modal Learning.
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Zusammenfassung
von Linlin Yang

zur Erlangung des Doktorgrades

Doctor rerum naturalium

Die 3D-Handhaltungsschätzung, basierend auf den monokularen RGB-Eingaben,
ist für die Anwendungen der Augmented Reality (AR) und Virtual Reality (VR)
von großer Bedeutung. Aufgrund der Revolution des Deep Learnings wurden be-
merkenswerte Fortschritte in dem Bereich der 3D-Handhaltungsschätzung erzielt. Die
bestehenden Deep-Learning-basierten Systeme zur Handhaltungsschätzung zielen da-
rauf ab, gute Darstellungen für Handhaltungen zu lernen, was eine große Menge an
genauen Ground-Truth-Etiketten erfordert, die schwer zu erhalten sind. Daher unter-
suchen wir diverse Hilfsinformationen, um das Repräsentationslernen zu unterstützen
und die Abhängigkeit von Datenannotationen zu verringern. In der Dissertation wer-
den diverse Hilfsinformationen für die 3D-Handhaltungsschätzung erforscht, d.h. Bild-
faktoren, multimodale Daten und synthetische Daten.

Die Bildwiedergabe erfordert eine Reihe von Bildvariationsfaktoren. Wir wer-
den dadurch inspiriert und schlagen vor, die entwirrten Darstellungen zu lernen,
um diese Variationsfaktoren besser zu analysieren. Die entwirrten Darstellungen
ermöglichen eine explizite Kontrolle über verschiedene Variationsfaktoren zum Syn-
thetisieren von Handbildern und ein Training mit Handfaktoren als schwache Etiketten
für die Schätzung der Handhaltung. Neben beschrifteten oder gemeinsam genutzten
Handfaktoren sollten verschiedene Modalitäten (z.B. RGB-Bilder, Tiefenkarten) von
derselben Hand gemeinsame Informationen haben. Daher stellen wir Multimodal-
itäten als Hilfsinformation für RGB-Eingaben vor. Insbesondere untersuchen wir die
multimodale Ausrichtung aus drei Aspekten: Die auf Variations-Autoencoder und
dem Produkt des Gaußschen Experten basierende Ausrichtung des latenten Raums,
die Ausrichtung auf die Pixelebene durch Aufmerksamkeitsfusion und die Ausrich-
tung im niedrigdimensionalen Subraum durch kontrastives Lernen. Neben der multi-
modalen Ausrichtung können die Hilfsmodalitäten auch als schwache Etiketten für die
Schätzung der Handhaltung dienen.

Um die Anforderungen bestimmter Faktoren oder verschiedener Modalitäten weiter
zu beseitigen, wird die Bedeutung synthetischer Daten hervorgehoben. Synthetische
Daten sind flexibel, unendlich und einfach zu erreichen. Mit synthetischen Daten als
Hilfsmittel können wir die Anzahl gekennzeichneter realer Daten erheblich reduzieren.
Daher führen wir ein Herausforderungsszenario ein, bei dem nur aus gekennzeichneten
synthetischen Daten und vollständig nicht gekennzeichneten Daten aus der realen Welt
gelernt wird. Um dieses Herausforderungsszenario anzugehen, stellen wir ein semi-
überwachtes Framework mit Pseudo-Label und Konsistenztraining vor. Damit ver-
suchen wir, laute Pseudo-Labels durch Module wie Korrektur und Selbstdestillation
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des Labels zu beheben.
Diese Dissertation bringt den Stand der Technik in der 3D-Handhaltungsschätzung

voran, erforscht das Repräsentationslernen, schwach und semi-überwachtes Lernen für
die Haltungsschätzung und ebnet einen Weg für das Lernen der Haltungsschätzung
mit verschiedenen Hilfsinformationen.

Schlagwörter: Schätzung der Handhaltung, schwach überwachtes Lernen, semi-
überwachtes Lernen, multimodales Lernen..
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1.1 What is 3D Hand Pose Estimation?

The hand is the most frequently used body part in our daily activities, performing everyday
tasks and interacting with everyday objects. It is the most valuable tool we have no matter
we are at work, at home, or at play. With realizing the importance of our hands, we begin by
introducing the research of hands “3D hand pose estimation” throughout this dissertation.

The goal of 3D hand pose estimation is to predict hand joint locations in 3D world
space. Based on the kinematic configuration of hand, existing works model hand using
21 joints [178]. With the 21 joints skeleton hand model, we can recover our hand poses
accurately. Specifically, the 21 joints include a hand wrist (Wrist) and Distal InterPhalangeal
joints (DIP), Proximal InterPhalangeal joints (PIP), MetaCarpoPhalangeal joints (MCP),
hand fingertips (TIP) for each finger as shown in Fig. 1.1.

Being able to accurately estimate articulated hand enables many applications. As shown
in Fig. 1.2 (a), with pose estimation, we can achieve the re-targeting of human hand for
robotic hand and hence remote control the robot for many tasks like object grasping and
object handling. Besides that, pose estimation is also a prerequisite of different tasks. For
example, with the help of given pose sequences, we can analyze the activities (Fig. 1.2 (b)) and
recognize the sign language (Fig. 1.2 (c)). Furthermore, hand is the most natural, comfortable
and immersive interaction with objects in virtual reality (VR) and augmented reality (AR)
environments. This makes hand pose estimation the key to the next generation of human
and computer interaction (HCI) as shown in Fig. 1.2 (d).

Thanks to the development of deep learning and depth sensors during the past decade,
early works for hand pose estimation revolve around using depth maps as input and have



2 Chapter 1. Introduction

Figure 1.1: The illustration of hand joint locations, hand root and reference bone. “Wrist”,
“MCP”, “PIP”, “DIP”, “TIP”, denote wrist, MetaCarpoPhalangeal joints, Proximal InterPha-
langeal joints, Distal InterPhalangeal joints, fingertips respectively. “T”, “I”, “M”, “R”, “P”
denote Thumb, Index, Middle, Ring, Pinky fingers respectively. The hand root and reference
bone are based on [178].

achieved a high degree of accuracy. However, consumer depth sensors may suffer from limited
spatial resolution, depth measurement noise and restricted operating ranges, and hence their
usage scenario is still limited to indoor environments. In this case, recent works start to
explore RGB cameras, as the existing large amount of RGB cameras like phone cameras, as
well as existing RGB footage are still far more ubiquitous than depth cameras and depth
data. This dissertation emphasizes the high need for accurate RGB-based 3D hand pose
estimation methods and focuses on 3D hand pose estimation from monocular RGB images.

Estimating 3D poses from a monocular hand image is an ill-posed problem due to scale
and depth ambiguities. As shown in Fig. 1.3, we can see that different 3D keypoints may
project into the same 2D locations in the image coordinate. To get the accurate 3D hand joint
locations, we need either a given hand skeleton model with known bone lengths or provided
metric depth in the z axis (i.e. , optical axis). Without sufficient information, we can only
estimate relative normalized 3D joint locations. In this case, to recover the original 3D poses,
we follow the most common problem setting to disambiguate by providing one hand joint
as root and one bone length as reference besides the RGB input. As shown in Fig. 1.1, the
work [178] provides wrist as root and the first bone length of the index finger as the reference
bone length. Note the definition of hand root and reference bone length is not fixed and
different works may use different definition sets.
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Figure 1.2: Application of hand pose estimation. Images are from [1, 45, 101, 141]

1.2 Motivation

Unlike depth maps as 2.5D images, monocular RGB images only with 2D information suf-
fer from depth ambiguities for 3D pose estimation. Moreover, RGB images often exhibit
a large discrepancy between factors of variation ranging from image background content to
lighting. Deep models trained in limited scenes are prone to over-fitting to specific arti-
facts and the performance of models can deteriorate significantly when applied to different
scenes. To tackle the ambiguities and the diverse appearance associated with monocular
RGB inputs, most works require sufficient and diverse training data. Unfortunately, gains
from purely increasing dataset size tend to saturate, because it is difficult to get accurate
and diverse real-world data. Labelling real-world 3D hand pose labels can be laborious and
time-consuming, and even the quality of labels is hard to be guaranteed. We show current
annotation methods for RGB hand poses, i.e. , 6DoF sensors-based methods [165, 33] and
semi-automatic annotation methods [179] in Fig. 1.4. They all have non-negligible draw-
backs. For 6DoF sensors-based methods, the RGB data suffer from RGB image degradation
as the sensors are visible. For semi-automatic annotation methods, human-annotated labels
are noisy and biased because of the human annotation error and the multi-view camera rigs
are in-applicability in unconstrained environments. The drawbacks make it non-trivial to
gather high-quality “in-the-wild” data.

Instead of seeking more accurate labelled data, can we use other auxiliary information
to aid the representation learning and relieve the burden of annotation for 3D hand pose
estimation? In the following, we investigate three sources of auxiliary information: (1) image
factors such as background and viewpoint (2) multiple modalities such as RGB images and
depth maps and (3) synthetically rendered images, and provide insights to utilize auxiliary
information for deep models.
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Figure 1.3: Illustration of depth ambiguities associated with monocular RGB images. We
can see that different 3D poses may project into the same 2D locations in the image coordi-
nate.

Figure 1.4: Illustration of two annotation equipment and their labelled examples. Images
from [165, 33, 179]

1.3 Contribution of the Dissertation

1.3.1 Learning with Image Factors

From the aspects of image rendering, an image can be understood in terms of a number of
image factors of variation like background, viewpoint, texture, lighting as shown in Fig. 1.5.
We explore the image factors of variation as auxiliary information to get better representations
or server as weak-labels for hand poses. Below, we summarize two challenges.

Black-box Latent Representations. RGB hand images have a large discrepancy be-
tween factors of variation ranging from image background content to camera viewpoint. Those
factors make both hand image synthesis and pose estimation from RGB images highly chal-
lenging. Existing works tend to learn only black-box latent representations and offer little
control for conditioning upon image factors. Thus, there is a demand for disentangled repre-
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Figure 1.5: Pipeline of hand image rendering. Based on hand image factors of variation like
3D hand models, backgrounds, lights and camera viewpoints, we can generate hand images
by means of a renderer like Blender.

sentations to better analyze these factors of variation.
Data with Labelled Factors. It is easy to get data with labelled or shared factors of

variation. Taking video sequences for example, we can obtain data with the same background
easily when the camera position is fixed [167]. Moreover, we can get hand images with the
same canonical hand poses by keeping our hand pose fixed but moving our wrist [43]. However,
it is difficult to use the labelled factors as they are implicit and hence no existing works try
to explore frameworks that work with this kind of auxiliary information.

To address those challenges, in Chapter 4, based on variational autoencoder (VAE), we
propose a novel disentangled variational autoencoder (dVAE) model; this model is the first
VAE-based model that uses independent factors of variations to learn disentangled represen-
tations. With dVAE, we decouple the learning of disentangling factors and the embedding of
image content. With disentangled representations, we enable explicit control over different
factors of variation and introduce the first model with multiple degrees of freedom for syn-
thesizing hand images. Based on the proposed framework and factor-labelled data, we also
explore semi- and weakly-supervised settings for hand pose estimation.

1.3.2 Learning with Multi-Modalities

Real-world hand data usually comes with multiple modalities. For example, commercial
RGBD cameras can provide RGB images and depth maps; With gloves [7] or color paints [108],
we can further provide hand segmentation masks. Moreover, based on the connection among
the modalities, most modalities can be inter-conversion. Take a hand voxel for example, we
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can convert it to a hand mesh with marching cube algorithms [74]. As hand modalities are
representations of hands in different aspects, different modalities could be auxiliary informa-
tion for the learning of each other. Therefore, we aim to explore the usage of hand modalities
as auxiliary information. Here we list some common hand modalities below:

• Hand RGB image

• Hand depth map

• Hand point cloud

• Hand segmentation mask

• 2D hand heatmap

• Hand mesh

• 3D joint location

• 2D joint location

• Hand voxel

With aforementioned multi-modalities, we have the following challenges, the usage of
multi-modal data and the design of a flexible multi-modal framework.

The Usage of Multi-Modal Data. Auxiliary modalities share common visual cues,
such as the underlying geometry, or semantics, and hence be beneficial for the training of
target modalities. However, it is still unclear how to exploit multi-modal data. Prior works
either adopt a multi-task framework to encourage the models to reconstruct different modal-
ities or use modalities as weak labels by using a cross-modal reconstruction network [11].
However, they limit their focus on reconstruction, regardless of the role of multi-modal data
for representation learning in the feature space.

The Design of Multi-Modal Framework. Although there are various modalities
of hand, only depth maps have been explored to enhance RGB-based hand pose estima-
tion [163]. Different modalities are with different representations and hence require ad-hoc
network structures. For example, we usually adopt PointNet [38] for hand point clouds while
convolutional neural network (CNN) for RGB images. It is non-trivial to introduce a unified
framework to handle arbitrary modalities with ad-hoc networks . Moreover, it is favorable for
a framework to work with arbitrary data pairs. Assuming that we have some RGBD data as
the supplement of RGB data, to exploit the RGBD data, it would be better if our framework
can take both RGB and RGBD as input during training.

To handle the challenges, we introduce multi-modal data as auxiliary information for
RGB images in Chapter 5 and Chapter 7 with the technique of multi-modal alignment.

In Chapter 5, to get a flexible framework for arbitrary modalities, we formulate RGB-
based hand pose estimation as a multi-modal learning, cross-modal inference problem. Based
on this, we propose a VAE-based framework learning from different hand inputs of various
modalities. All the operations are processed in a shared latent space and we only need to
encode different modalities into latent variables. This makes the framework flexible and
easy to incorporate arbitrary modalities. Also, regarding hand modalities, we explore non-
conventional inputs such as point clouds and heatmaps for learning the latent hand space
and try to align modalities in the shared latent space via the product of Gaussian experts.

In Chapter 7, beyond simple latent space alignment, we explore more different alignments
for multi-modal representation learning. Especially, we design a dual-modality network to
take two modalities (i.e. , RGB images and depth maps) as input and align their features
in pixel-level via an attention-based multi-modal training. The fusion enables the model
for RGB images to better capture features relating to the common visual cues in the depth
maps. Moreover, we subsequently design multi-modal contrastive learning that allows us to
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Figure 1.6: Examples of synthetic data. Images from [153].

construct a well-structured low-dimensional subspace that aligns similar poses across different
modalities. The different levels of alignment make our framework easy to achieve better
representations and thus get better performance.

Overall, we exploit multi-modal data as auxiliary information for RGB images in multiple
levels, i.e. , latent space alignment (see Chapter 5), pixel-level alignment (see Chapter 7)
and low-dimensional subspace alignment (see Chapter 7). Meanwhile, we propose a flexible
framework for arbitrary modalities via a shared latent space (see Chapter 5).

1.3.3 Learning with Synthetic Data

As data driven methods, deep models require sufficient and diverse labelled data. Unfor-
tunately, labelling accurate real-world labels is non-trivial. As an alternative, synthetic data
can be used as auxiliary information for real-world data. The benefits of synthetic data are
threefold. First, synthesizing samples is an easy way to get accurate labels, thanks to the
improvements in image renderers. Second, synthetic data can be generated based on specific
needs or conditions. We can adjust the statistical properties, have fine-grained control over
the factors of variation, and cover rare cases in the real world. Lastly, synthetic data is the
key in avoiding the risk of privacy. With the growing concerns that real-world data may
lead to privacy risk, synthetic data preserve the important properties of real-world data and
relieve the dependence on real-world data, making it favorable to reduce the privacy risk.

To synthesize hand data, we need 3D hand models and image renderers. For 3D hand mod-
els, we can use “hand Model with Articulated and Non-rigid defOrmations” (MANO) [100],
which is a parametric model based on around 1000 high-resolution 3D scans of real-world
hands. Also, we can get hand models from human character animation services like Mix-
amo, Maya and Blender. Once we have a 3D hand model, we may use the renderer software
(e.g. Maya, Blender) or open-source renderer library (e.g. Neural Renderer [54], OpenDR)
to render images. We show three different synthetic hand data in Fig. 1.6. We can see that
different synthesis strategies have their own characteristics like hand appearances and light-
ing schemes for rendering. We summarize the challenges of learning with synthetic data as
below.

Domain Gap. Based on the data generation process, synthetic data may have particular
blending artifacts and are still far from “realistic”. Therefore, there still exists a significant
domain gap between synthetic and real-world data. Deep models trained on synthetic data
easily may over-fit to blending artifacts and the performance of models can deteriorate sig-



8 Chapter 1. Introduction

nificantly when applied to real-world data.
Semi-Supervision. From the view of training settings, training with labelled synthetic

data and unlabelled real-world data is in a semi-supervised setting. Once we have the pre-
trained model from synthetic data and the unlabelled data from real world, a common practice
for the semi-supervised setting is to fine-tune the model on unlabelled data with pseudo-
labels. However, naively generated pseudo-labels are inevitably noisy and deteriorate model
performance. To overcome this, existing classification works propose to correct pseudo-labels
using operations like argmax [65], sharpening [6] or thresholding [107]. However, extending
such concepts for a regression task and in the context of 3D pose estimation is non-trivial.

To overcome those challenges, in Chapter 6 and Chapter 7, by leveraging the readily
available synthetic data as auxiliary information, our proposed framework learns with labelled
synthetic data and unlabelled real-world data.

In Chapter 6, we propose the first semi-supervised framework that combines pseudo-
labeling with consistency training for RGB-based hand pose. For pseudo-labeling, taking
the feasibility of hand poses into account, we investigate the pose registration, which corrects
pose based on the limits of bone lengths and hence reduces the noise of pseudo-label. Also, we
estimate the confidence of pseudo-labels according to the consistency and the feasibility, and
then train with only high-confidence pseudo-labels. For consistency training, based on the
spatial information, we introduce two consistency losses for 3D pose estimation to encourage
the predictions to be consistent with perturbations and auxiliary modalities. Last, we also
introduce training with data augmentation of differing difficulties, which could improve the
stability of our framework.

In Chapter 7, we shift our focus to reducing the negative influence of pseudo-label noise.
Based on our new design dual-modality network and synthetic multi-modal data, we construct
a self-distillation structure for pseudo-labelling to gradually improve pseudo-labels instead of
replacing them dramatically. Moreover, we further improve the pose registration in Chapter 6.
Specifically, beyond our prior work, which focuses only on bone lengths, we also take joint
angles into account and hence guarantee biomechanical feasibility of the corrected hand pose
concerning both the bone lengths and the joint angles.

In summary, we develop different modules (pose registration, self-distillation) and different
strategies (consistency training, pseudo-labeling and self-paced training) for cross-domain
semi-supervised hand pose estimation to reduce the gap between synthetic data and real-
world data.

1.4 Organization

In this dissertation, we explore the usage of three auxiliary information for RGB-based 3D
hand pose estimation. The dissertation is organized as below:

• In Chapter 2, we introduce the preliminaries of RGB-based hand pose estimation.

• In Chapter 3, we present a comprehensive summary of existing 3D hand pose estimation
methods related to my topics.
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• In Chapter 4, we present our Disentangling Latent Hands for Image Synthesis
and Pose Estimation to use image factors of variations as auxiliary information [156].

• In Chapter 5, we introduceAligning Latent Spaces for 3D Hand Pose Estimation
to use multi-modal data as auxiliary information [155]. Specially, we propose a flexible
framework for arbitrary modalities alignment via a shared latent space.

• In Chapter 6, we target the challenging scenario of learning models from labelled syn-
thetic data and unlabelled real-world data and propose SemiHand: Semi-supervised
Hand Pose Estimation with Consistency to use synthetic data as auxiliary infor-
mation [153]. We propose the first cross-domain semi-supervised framework for 3D hand
pose estimation, including consistency training, pseudo-labelling and pose correction.

• In Chapter 7, we target the same scenario but shift our focus to multi-modal repre-
sentation learning and pseudo-labelling. We propose Dual-Modality Network for
Semi-Supervised Hand Pose Estimation to use both multi-modal data and syn-
thetic data as auxiliary information [70]. Specifically, we propose two feature alignments
(i.e. , multi-modal pixel-level alignment and multi-modal low-dimensional subspace
alignment), and reduce the negative influence of noisy pseudo-labels via self-distillation
and pose correction.

• In Chapter 8, we summarize the addressed and remaining challenges, and conclude the
dissertation.
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In this chapter, we provide a detailed overview of datasets in Sec. 2.1, architectures in
Sec. 2.2, coordinate representations in Sec. 2.3, hand surface models in Sec. 2.4 and evaluation
metrics in Sec. 2.5 for RGB-based hand pose estimation.

2.1 Datasets

In this section, we compare the statistics of existing RGB hand pose benchmarks including
RHD [178], ObMan [46], DO [113], FreiHAND [179], H3D [173], STB [167] and YT3D [63]
in Tab. 2.1 and introduce them briefly as below.

Rendered Handpose Dataset (RHD) is a synthesized dataset rendered by Blender
and 3D models from Mixamo. It is composed of 41k training and 2.7k testing images of
320×320 resolution from 20 animated characters. Each rendered RGB image comes with
corresponding multi-modal like depth map, segmentation mask, 2D joint location and 3D joint
location. As a synthetic dataset, the hand images of RHD have very different appearances
compared to those from the real world, which makes the model trained from RHD generalize
poorly on real-world data.

ObMan is a large-scale synthetic image dataset of hands grasping objects. It includes
8 object categories of everyday objects from ShapeNet and uses MANO as a hand model.
In order to generate plausible hand grasps for those objects, the dataset uses the automatic
robotic grasping software GraspIt. With 3D hand and object model, 150K RGB images
are generated by Blender, along with 2D/3D hand keypoints, object and hand segmentation
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Dataset Modality Resolution Subjects Views Frames Syn/Real Joints MANO Annotation

RHD RGBD 320×320 20 1 44K Syn 21 3D No syn
ObMan RGBD 256×256 - 1 150K Syn 21 3D Yes syn

DO RGBD 640×480 2 1 3K Real 5 3D No manual
FreiHAND RGB 240×240 32 1 36K Real 21 3D Yes semi-auto

H3D RGB 3840×2160 10 15 22K Real 21 3D No semi-auto
STB RGBD 640×480 1 2 36K Real 21 3D No manual

YT3D RGB mixed - 1 51K Real 21 2D Yes semi-auto

Table 2.1: Comparison of existing RGB-based hand pose benchmarks. We first present two
synthetic datasets: RHD and ObMan. We then list real-world datasets: STB, DO, YT3D,
H3D and FreiHAND. Here, “Modality” corresponds the available input source of dataset,
“Resolution” corresponds the resolution of input source, “Subjects” corresponds the number
of hands, “Views” corresponds the number of viewpoints, “Frames” corresponds the number of
images, “Syn/Real” indicates the dataset is either synthetic data or real-world data, “Joints”
shows the number of keypoint and either in 3D space or in 2D space, “MANO” shows if
MANO parameters are provided, “Annotation” shows the type of annotation method.

masks, and depth maps. Since this is also a synthetic dataset, it suffers from the same issue
as RHD.

Dexter+Object (DO) is an evaluation dataset for fingertip estimation. It consists of 6
sequences with 2 actors and varying interactions with a simple object. The dataset provides
3K frames of color images, depth maps, and manually annotated fingertips positions. Due to
the incomplete hand annotation and relatively small size, this dataset is only used to study
the cross-dataset performance.

FreiHAND is a large-scale, multi-view hand dataset. To annotate in the real world,
it adopts a recording setup and a MANO fitting method. The recording setup is with 8
calibrated and temporally synchronized RGB cameras located at the corners of a cube rig.
With multi-view RGBD data, an iterative, semi-automated approach is used for labelling.
It contains 130,240 training samples and 3,960 test samples. Each training sample contains
a single view RGB image, annotations of MANO-based 3D hand joints and mesh, as well
as camera pose parameters. The training data is recorded with a green screen and then
augmented by leveraging the green screen for background subtraction and creating composite
images using new backgrounds. In contrast, the testing set is directly recorded in real-world
scenario.

Hand 3D Studio dataset (H3D) is a multi-view dataset captured by a customized
acquisition system with 15 high-quality DSLR cameras. The dataset collects 50 one-handed
gestures and 27 hand-object interaction gestures in daily life from 10 persons. It consists
of high-resolution multi-view RGB images with corresponding point cloud data, 2D and 3D
hand joints location and the fitted 3D hand mesh models. It is an indoor dataset with fixed
backgrounds. This limits it to apply in a real-world scenario.

Stereo Tracking Benchmark Dataset (STB) contains 12 sequences of a single per-
son’s left hand in front of 6 backgrounds with two different poses. The first poses is counting
poses with slowly moving fingers. The second poses is random poses with self-occlusions and
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Figure 2.1: Illustration of three common network architectures for pose estimation, (a)
Hourglass [84], (b) Cascaded Pyramid Network [22], and (c) PoseResNet [149]. Images are
from [149].

global rotations. It provides RGB images, corresponding depth maps as well as annotated
3D poses. The hand poses in this dataset are relatively simple and therefore the performance
of state-of-the-art methods on it has been saturated.

YouTube 3D Hands (YT3D) is curated from YouTube videos, most of which are sign
language conversations performed by people of a wide variety of nationalities and ethnicity.
The training set has 47k images from 102 videos while the test set has 1.5k images from
7 videos. The dataset is semi-automatically annotated with OpenPose and MANO. The
annotation performance is bounded by the performance of OpenPose. Therefore, it can be
used only for self-comparison.

2.2 Architectures

Early works for RGB-based hand pose estimation adopt VGG-like plain deep CNN [105],
which stacked convolutional layers with activation functions and pooling operations. However,
those CNNs suffer from the vanishing gradient problem when going deeper. Skip connection
introduced by Residual Network (ResNet) [47] makes it possible for neural networks to go
deeper and perform better. With skip connection, two kinds of network architectures have
been the dominant architectures for pose estimation. The first one is the cascaded fully
convolutional network (FCN) with a coarse-to-fine design paradigm, like Hourglass [84] and
Cascaded Pyramid Network (CPN) [22]. The second one is ResNet and its variants like
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PoseResNet [149]. Based on the target representations, additional layers like convolutional
layers, deconvolution layers or Multilayer Perceptron (MLP) are added to produce a final
set of predictions. We take Hourglass, CPN and PoseResNet for examples in the following.
Those networks are shown in Fig. 2.1.

Stacked Hourglass Network is a symmetric network with downsampling layers, up-
sampling layers, and skipping connections as shown in Fig 2.1 (a). The overall architecture is
like an encoder-decoder architecture to get a very low-resolution representations via convolu-
tional and max pooling layers, and then gradually recover the high-resolution representations
using convolutional and simple nearest neighbor upsampling. The main difference from prior
designs is its symmetric topology and the skipping connection to concatenate feature maps
of downsampling layers to their symmetric feature maps of upsampling layers for subsequent
upsampling. This enables the network to capture and consolidate information across all
resolutions.

Cascaded Pyramid Network involves two modules, which serve for feature extraction
and feature refinement respectively, motivated by the effective stacking operation in stacked
hourglass networks. The feature extraction module using a feature pyramid structure enables
sufficient context information from different spatial resolutions while the feature refinement
module transmits and integrates the information of different resolutions by means of upsam-
pling and concatenating.

PoseResNet provides a quite simple yet surprisingly effective architecture for pose es-
timation, aiming to encourage researchers to shift their focus from the design of network
structures to the algorithms. From the aspects of an autoencoder, it uses a ResNet backbone
as the encoder and the deconvolutional layers as the decoder. ResNet is the most common
encoder for feature extraction while the deconvolutional layers combining the upsampling and
convolutional parameters is the most simple decoder to generate heatmaps. Note that there
are no skip layer connections between the encoder and the decoder.

Based on the above basic architectures, more variants are proposed. For example, the
work [154] introduces a multi-task bisected hourglass, which modifies the hourglass network by
adding one more decoder and allows the networks to encapsulate homogeneous information.
Spurr et al. [111] proposes to use ResNet with MLP layers as backbone to directly predict
3D hand poses.

2.3 Coordinate Representation

For a cropped hand image x ∈ Rm×n, the hand pose J ∈ RnJ×dJ with nJ keypoints
in dJ -dimensional space can be recovered by first encoding the image with h = En(x) and
then decoding the representation h into joint coordinates J = De(h). Existing pose esti-
mation architectures use an image encoding network, but differ in the way of decoding the
representation h to coordinate representations. In Fig. 2.2, we show one example of 2D
numerical coordinate-based representations and 2D heatmap-based representations. We can
see heatmap-based representations are pixel-wise representations and have pixel-wise cor-
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Figure 2.2: Comparison of 2D numerical coordinate-based representations (top) and 2D
heatmap-based representations (bottom) of fingertips from one hand. Red double headed
arrows indicate their correspondences.

respondence to original inputs while numerical coordinate-based representations are simple
numerical values. Existing 3D hand pose works either directly use lifting networks to learn
a mapping from 2D pose to 3D pose [11] or adjust existing 2D representations to 3D repre-
sentations by ad-hoc design for the z dimension [149, 50]. In the following, we focus more on
how to work with two different coordinate representations for 3D hand pose estimation.

2.3.1 Heatmap-based Representation

Heatmap-based methods, which locate the joints by estimating a likelihood heatmap, are
dominant for pose estimation. The rationale is that working with heatmaps allows the ar-
chitecture to remain fully convolutional, thereby retaining spatial structures throughout the
encoding and decoding process. As labels, heatmap methods use a Gaussian centered at the
ground truth joint coordinate. This formulation converts pose estimation into a detection
problem; the network is tasked with predicting, at each pixel, the probability of that pixel
being a joint pixel. For 2D pose estimation, the output heatmap h with element hp at loca-
tion p is supervised directly by the ground truth heatmaps hgt with corresponding element
hgt
p generated by the ground truth Jgt, with the Gaussian variance σh:

L =
∑
p

(hp − hgt
p )2, hgt

p = exp(− 1

2σ2
h

(p− Jgt)T (p− Jgt)). (2.1)

One intuitive way to get 3D poses is to extend the 2D heatmaps to 3D heatmaps [49].
However, getting poses from heatmaps is not differentiable. As such, the post-processing
(i.e. , argmax) is required. As an alternative, other heatmap-based approaches [178, 11, 175]
prefer an additional network named the pose lifting network to lift 2D heatmaps to 3D poses
by a neural network. In other words, they keep end-to-end training by using 2D heatmaps
supervision as intermediate supervision and lifting the 2D heatmaps to 3D poses with lifting
networks. Note that the lifting networks also have been explored to work with 3D surface
model. Recent works start to lift 2D heatmaps to 3D voxel space [49] or parametric 3D hand
models [9, 4, 169].
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2.3.2 Numerical Coordinate-based Representation.

It is intuitive to solve pose estimation from RGB images by a straightforward numerical
coordinate regression, i.e. , directly predicting the joint coordinates in 2D/3D space. For 2D
pose estimation, the joint outputs J is supervised directly by an L2 loss with respect to the
ground truth coordinates Jgt:

L = ‖J− Jgt‖22. (2.2)

However, compared with heatmap-based methods, direct numerical coordinate regression
is hard to capture spatial distributions around ground truth coordinates and therefore worsens
the performance [160]. Existing numerical coordinate regression methods explore different
directions to capture more spatial attention or improve the generalization. Based on VAE
and cross-training, the work [111] uses a shared latent space for cross modalities estimation to
regularize pose estimation from RGB images. Li et al. [68] introduces the network to exploit
bio-structure of hand, avoiding the negative transfer among less related joints. Among all the
numerical coordinate-based works, two directions have drawn much attention, integral pose
regression and 3D model regression.

Integral Pose Regression. Integral pose regression [117, 50] benefits from combining
heatmap-based and numerical coordinate-based representations by introducing softargmax
and the latent heatmaps to approximate the operation of argmax as well as the explicit
heatmaps. It can train end-to-end directly and capture spatial distributions around ground
truth coordinates while retaining the benefits of fully convolutional architectures. For 2D
pose estimation, the decoder is same as heatmap-based methods but the supervision comes
directly from the ground truth Jgt. Like [117, 50], the joint outputs J is calculated based on
the latent heatmaps h with element hp at location p and supervised directly by an L2 loss
with respect to the ground truth coordinates Jgt as below

L = ‖J− Jgt‖22, J =
∑
p

h̃p · p, h̃p =
exp(hp)∑

p′∈Ω exp(hp′ )
. (2.3)

To address 3D pose estimation, Sun et al. [117] constructs 3D space with grid cells like
voxel and directly extends 2D heatmaps to 3D space. In contrast, the work [50] proposes to
estimate the 2.5D pose which equals to 3D pose when given the camera intrinsic. A 2.5D pose
consists of 2D coordinates of the hand keypoints in the image space (i.e. , 2D pose), and scale
normalized metric depth for each keypoint relative to the root. The scale normalized metric
depth value is obtained as the summation of the Hadamard product of 2D latent heatmaps
and latent metric depth value maps.

3D Model Regression. A recent trend for 3D hand pose estimation is to formulate it
as a sub-problem of image-3D surface model alignment. Numerical coordinate regression is
easy to work with 3D hand models when the 3D hand models are rigged. Benefiting from the
sophisticated modeling of 3D hand, numerical coordinate regression with a 3D hand model
has been developing rapidly. Based on the parametric hand model MANO, works [9, 46] take
hand images as input and predict the hand meshes as well as 3D poses. Besides parametric
models, other works propose to train non-parametric 3D hand mesh networks [63, 37] from
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(a) (b) (c) (d) (e)

Figure 2.3: 3D hand surface models. (a) Sum-of-Gaussians model, (b) Primitives approxi-
mation, (c) Sphere-Meshes can be thought of as a generalization of the previous models, (d)
Loop Subdivision Surface of a triangular control mesh , (e) Hand MANO model. Images
reproduced from [100, 132].

large hand mesh datasets and then get the underlying joints from hand meshes.
Compared to other numerical coordinate-based methods, the main difference is that the

decoder De(·) of 3D model regression methods is either an articulated mesh deformation
model represented with a differentiable function for parametric models or an ad-hoc surface
decoder for non-parametric models. For 2D pose estimation, the joint outputs J is supervised
directly by an L2 loss with respect to the ground truth coordinates Jgt:

L = ‖J− Jgt‖22 +R(h), J = Π(M(De(h))), (2.4)

whereM(·) is a predefined function to get 3D poses from hand surfaces and Π(·) is the camera
projection function to get predicted 2D poses in the image space. R(·) is a regularization
term for the representation h.

2.4 Hand Surface Model

3D hand pose estimation can be formulated as a sub-problem of image-3D hand surface
alignment, thanks to the development of skeletal animation. With the help of model fitting,
3D models explicitly build a dense pixel-level connection with RGB images. If models are
rigged ones, the underlying skeletons then can be calculated easily. Hand surface models have
shown promising potential in numerical coordinate-based works for hand pose estimation.
Based on the type of 3D models, we introduce hand approximation models and hand mesh
models, which are the mainstream of 3D hand models.

2.4.1 3D Approximation Model

Approximating hand surfaces using a set of primitives enables balancing the accuracy and
the efficiency of model fitting. Existing methods tend to use spheres to approximate 3D hand
as shown in Fig 2.3 (a) - (c). Works [114, 82] model hand using a implicit sphere model, i.e. ,
the Sum of Gaussians (SoG) representation (See Fig 2.3 (a)). The mean and the variance of a
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Gaussian can be treated as the center and the radius for a sphere. SoGs are mathematically
smooth, approachable for constructing energy functions and hence enabling fast optimization.
Differently, works [96, 132] model a hand explicitly using a number of spheres (See Fig 2.3
(b)). Therefore, the hand surface can be approximated via the surfaces of spheres. To further
improve the sphere models to be more accurate to fit hand surfaces, the work [126] introduces
the use of sphere-meshes as a novel geometric representation (See Fig 2.3 (c)).

2.4.2 3D Mesh Model

3D mesh models have proven to be effective, because they are easy to render, visualize and
be derived. For hand, 3D hand mesh models also show favorable benefits as they can be
deformed and animated naturally. Specifically, there are two kind of hand mesh models,
parametric hand mesh models and non-parametric hand mesh models.

Parametric Hand Mesh Model. Most works prefer parametric hand models. The
benefits of parametric hand models are twofold: first, the parametric model do not require
much training data and can work well even with only weak labels. Second, the prediction,
i.e. , the parameters, is interpretable and flexible to add constraints if needed. Early works
like [124] exploit subdivision surfaces to define a smooth continuous hand model. The follow-
ups [55, 100] then articulate the models with standard Linear Blend Skinning (LBS) (See
Fig 2.3 (d) - (e)). Among them, MANO [100] is most commonly used and we introduce
MANO in detail.

MANO is an articulated mesh deformation model, which learned from around 1000 3D
scans of hands. The hand triangulated meshes from MANO consist N = 778 vertices on
the hand surfaces and K = 16 joints. As a parametric model, MANO parameterizes the
mesh using a differentiable function M(·) with shape parameters β ∈ R10 which represents
coefficients of PCA components that sculpt the identity subject and pose parameters θ ∈
RK×3 , which means the relative 3D rotation of K joints. Specifically, M(·) is defined by a
LBS function W (·) as below:

M(β, θ) = W (T (β, θ), J(β), θ,W). (2.5)

Here, J(·) is a linear regressor to calculate the joint locations from mesh vertices given β,
and W is the blend weights. T (·) aims to get hand template by deforming a mean mesh T̄
with both shape and pose deformations, BS(·) and BP (·), respectively.

T (β, θ) = T̄ +BS(β) +BP (θ). (2.6)

The mean mesh T̄ , the blend weights W and the functions BS(·), BP (·), J(·) are predefined
and learned using the registration of 3D hand scans. Especially, pose-dependent corrective
offsets BP (·) are learned to address the loss of volume caused by the skinning method, which
makes MANO more accurate than other parametric hand models. However, for paramet-
ric models, the parameters are still highly constrained to specified forms, which simplifies
the learning process, but limits the learning ability. In practice, naive parameter estimation
methods with a parametric hand model are unlikely to achieve satisfactory fitting perfor-
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mance.
Non-parametric Hand Mesh Model. The non-parametric hand models are more

powerful to fit the underlying function and result in higher performance for prediction. Recent
works [78, 37, 64, 63] introduce various frameworks to predict hand mesh from RGB input.
However, compared to the parametric models, those non-parametric models require more
labelled training data, more sophisticated network architectures and training strategies to
improve the fitting capability of deep models. This makes the models have the ability to
address more detailed hand surfaces but also more risk of over-fit to the training data.

2.5 Evaluation Metric

For quantitative evaluation and comparison with other works on hand pose estimation,
there are two common metrics, mean end-point-error (EPE) and the area under the curve
(AUC) on the percentage of correct keypoints (PCK) score. Mean EPE is defined as the aver-
age euclidean distance between predicted and ground truth keypoints; PCK is the percentage
of predicted keypoints that fall within some given distance with respect to the ground truth.
Assuming that we have N predicted poses Ĵ and their corresponding ground truth poses J,
and each pose contains K joints. Ĵkn and Jkn are the kth joint of nth pose from Ĵ and J. The
mean EPE is computed as

EPE(Ĵ,J) =
1

N ×K

N∑
n=1

K∑
k=1

||Ĵkn − Jkn ||2, (2.7)

and PCK is defined as

PCK(Ĵ,J) =
1

N ×K

N∑
n=1

K∑
k=1

1(||Ĵkn − Jkn ||2 < τ), (2.8)

where 1(·) is the indicator function and τ is a given distance as a threshold.
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Significant progress and remarkable performance have already been made for RGB-based
hand pose estimation. As deep-learning-based methods have dominated as the best per-
formers in recent years, we mostly focus on deep-learning-based methods for RGB-based 3D
hand pose estimation. Note that we also introduce some works from related topics like depth
map-based hand pose estimation and 2D pose estimation to make the introduction more
comprehensively.

In this chapter, we introduce the training of RGB-based 3D hand pose estimation with
multiple tasks in Sec. 3.1, with domain adaptation in Sec. 3.2, with hand models in Sec. 3.3,
with representation learning technique in Sec. 3.3 and with less supervision in Sec. 3.5.
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3.1 Multiple Tasks

3D hand pose estimation with multi-task learning strategies aims to improve the gen-
eralization of deep models by using the shared information contained in related tasks or
sub-tasks. Existing hand pose frameworks explore multiple tasks in view of modalities or
hand structures.

3.1.1 Modality-based Multi-Task Learning

Different hand modalities are representations of hands in different aspects. They are all highly
related; hence, different modality estimation tasks can be used as auxiliary tasks to aid the
training. Based on the type of shared network architecture, we introduce two strategies for
multi-task learning, shared backbone and shared latent space separately.

Shared Backbone. The typical multi-task strategy is to learn tasks with a shared
backbone and different heads. Most multi-task strategy for 3D hand pose estimation also
fall in this line. 3D hand pose related tasks like 2D pose estimation, segmentation and depth
estimation, have achieved significant performance improvements when using as pixel-level
prediction tasks with FCNs like Hourglass and CPN. Therefore, FCNs with multiple heads
have been the most common shared backbone.

Early works emphasize to embed 2D heatmap estimation into the framework due to
its pixel-level representation and connection to 3D pose estimation. Based on the shared
backbone, works [178, 175] adopt 2D heatmap estimation as an intermediate task and in-
troduce a 2D-to-3D lifting network to get 3D poses. Moreover, Zhou et al. [175] introduces
one additional head to predict bone direction heatmaps, which are constructed by tiling the
coordinates of bone direction to the size of the heatmaps, as an auxiliary task.

2D heatmaps for pose estimation allow to accurately localize the keypoint via pixel-wise
prediction, however, suffer from quantisation error and require post-processing to get 2D
poses. Beyond simply using a lifting network to get 3D poses from 2D heatmaps, recent
works tend to explicitly build the connection between 2D poses and 3D poses by introducing
latent heatmaps [50] or offset maps [134].

Iqbal et al. [50] introduces latent heatmaps for 3D hand pose estimation and decomposes
3D pose estimation into two pixel-wise prediction sub-problems for K joints, the prediction
of 2D poses {(xi, yi)}i∈K in the image coordinate and the prediction of metric depth values
{Ẑri }i∈K . They define {(xi, yi, Ẑri )}i∈K as a 2.5D representation. As shown in Fig. 3.1, given
a cropped hand image with size h×w, to estimateK hand keypoints, the network producesK
latent 2D heatmaps H∗2D and K latent depth maps H∗Ẑr . For ith joint, its 2.5D components
(xi, yi) and Ẑri are estimated based on the corresponding latent heatmap H∗2Di and latent
depth map H∗Ẑri as below:
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Figure 3.1: Illustration of latent 2.5D heatmap regression. Given a cropped RGB hand
image, the network produces latent heatmaps including K latent 2D heatmaps H∗2D and K
latent depth mapsH∗ẑr forK joints. To approximate 2D heatmaps with an argmax operation
but be differentiable, the latent 2D heatmaps are decoded into the numerical coordinates by
applying a softmax normalization and an expectation operation. To estimate the normalized
depth values, we use the summation of H ẑr , which obtained by multiplying H∗ẑr with H2D,
i.e. , the softmax normalized H∗2D. The image is from [50].

(xi, yi) =
∑
g∈Ω

g ⊗ softmax(βH∗2Di )(g),

Ẑri =
∑
g∈Ω

H∗Ẑ
r

i (g)⊗ softmax(βH∗2Di )(g),
(3.1)

where Ω is the set of all pixel locations, ⊗ is the element-wise product, β is the learnable
parameter and the function softmax(·) serves as normalization. With the predicted 2.5D
result {(xi, yi, Ẑri )}i∈K and its corresponding ground truth ({(xgti , y

gt
i , Ẑ

gt
i )}i∈K), the final

loss with hyper-parameters λs can be written as follows:

L =
1

K

K∑
i=1

(||xi − xgti ||2 + λ1||yi − ygti ||2 + λ2||Ẑri − Ẑ
gt
i ||2). (3.2)

Besides latent heatmaps, the offset map is another alternative to improve 2D heatmaps.
The offset map is a vector field composed of vectors pointing to the joint location from indi-
vidual pixels/voxels. The magnitude of each vector is the distance between the pixels/voxels
and the joint. Note that offset maps are more commonly used for 3D pose estimation from
depth maps as the pixel-wise hand surface locations from depth maps are important to sup-
port the learning of offset maps. Wan et al. [134] introduces to use offset maps and heatmaps
by decomposing the joint locations into three per-pixel estimations, i.e. , 2D heatmaps, 3D
heatmaps and unit 3D directional vector fields. The pixel-wise estimations can be directly
translated into a vote casting scheme.

Same to [134], Wu et al. [145] combines 2D heatmaps supervision with two dense guidance
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Figure 3.2: A cross-modal prediction pipeline with shared latent space. The RGB images
xRGB and 3D poses x3D are encoded into the same latent space via a RGB encoder q1(z|xRGB)
and a 3D pose encoder q2(z|x3D). With a latent variable z, we can decode z into xRGB or x3D

via a RGB decoder p1(xRGB|z) and a 3D pose decoder p2(x3D|z), respectively. We formulate
an image reconstruction task with q1(z|xRGB) and p1(xRGB|z), and a hand pose estimation
task with q1(z|xRGB) and p2(x3D|z). The image is from [111].

maps supervision, i.e. , the distance map supervision and the vector field supervision. Those
dense maps enable composing vectors pointing to the joint location from individual pixels,
which builds the connection between joints and each pixel. Notice that not all points or
pixels contribute equally for a certain joint. Based on this observation, Fang et al. [30]
predicts voting weights from Graph CNNs for predicted dense pixel-wise offset and Xiong et
al. [152] proposes to get final joint locations based on the selected informative anchor points
and their corresponding offsets. Those anchor points will capture the global-local spatial
context information in an ensemble way and improve performance.

For 3D pose estimation, besides 2D pose estimation, other hand modality estimation tasks
like hand segmentation and hand depth estimation are also easily extended into the framework
by simply adding more heads of the shared backbone [168, 153]. Instead of predicting different
modalities jointly, Yang et al. [154] introduces to predict different modalities based on the
information of modalities. Using two-stacked network architecture, they predict 2D heatmaps
and silhouettes in the first stage and 3D heatmaps and depth maps in the second stage, to
make the training process more effective.

Shared Latent Space. Besides shared backbone, shared latent space is also promising
for multi-task learning due to its flexibility. Compared to shared backbone, shared latent
space enables us to train with different modality pairs. Spurr et al. [111] formulates hand
pose estimation as a cross-modal prediction problem. Given two corresponding modalities xi
and xt, they aim to estimate xt using xi as input via maximizing the log probability of p(xt).
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log p(xt) =

∫
z
qφ(z|xi) log

qφ(z|xi)
pθ(z|xt)

dz +

∫
z
qθ(z|xi) log

p(xt)pθ(z|xt)
qφ(z|xi)

dz

= DKL(qφ(z|xi)||pθ(z|xt)) + Ez∼qφ(z|xi) log pθ(xt|z)−DKL(qφ(z|xi)||p(z)).

(3.3)

Here, DKL(·) is the Kullback-Leibler divergence. The variational approximation qφ(z|xi)
can be thought of as an encoder from xi to z, while pθ(xt|z) can be thought of as a de-
coder from z to xt. p(z) = N (0, I) is a Gaussian prior on the latent space. As the term
DKL(qφ(z|xi)||pθ(z|xt)) is intractable and greater than zero, we maximize the evidence lower
bound instead via a latent variable z as below:

log p(xt) ≥ ELBO(xi,xt) = Ez∼qφ(z|xi) log pθ(xt|z)−DKL(qφ(z|xi)||p(z)), (3.4)

where ELBO(·) is the evidence lower bound function, we can get the final loss for cross modal
prediction as follows:

L = ELBO(xi,xt). (3.5)

The cross modal framework is flexible and can be used for both reconstruction and cross
modal prediction. Therefore, for hand pose estimating, Spurr et al. [111] proposes to con-
struct paired modalities to exploit complementary information from auxiliary paired data.
Benefiting from cross training, different hand modalities are embedded into a shared latent
space and therefore regularize each other. Specifically, as shown in Fig. 3.2, they have two
modalities, RGB images xRGB and 3D poses x3D, and construct four data pairs for cross
training. The final loss is

L = ELBO(xRGB,xRGB) + ELBO(xRGB,x3D) + ELBO(x3D,x3D) + ELBO(x3D,xRGB).

(3.6)
However, projecting multi-modal data into a shared latent space may be difficult because

the modality-specific features usually interfere the learning of the optimal latent space. To
circumvent this, the follow-up work [41] disentangles the latent features into modality-specific
features and others, and then aligns those two accordingly.

3.1.2 Structure-based Multi-Task Learning

Rather than dealing with all hand joints as a whole, existing works also divide hand pose
estimation into sub-tasks based on the differences in the functional importance of hand struc-
ture [106, 176, 29] as shown in Fig. 3.3.

As the articulation complexity of palm and fingers is different, works like [106, 29] divide
hand estimation into palm estimation and finger estimation (See Fig. 3.3 left). Sinha et
al. [106] uses CNN to hierarchically regress the hand joints from palm to fingers. With the
observation that palm estimation is an easier task than that of the fingers, they propose a
conditioned search to use predicted palm as a condition and then fine-tune the predicted
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Figure 3.3: Illustration of two commonly used hand joints grouping. Different colours
indicate different groups. Based on hand palm and fingers, works [106, 29] divide hand joints
into palm joints and finger joints. Based on the function of different fingers, the work [29]
divides hand joints into thumb finger joints, index finger joints and others.

fingers, which will lead to more discriminative features and achieve better accuracy. Differ-
ently, Du et al. [29] emphasizes the information interaction between two sub-tasks and designs
a two-branch cross-connection structure to share the beneficial complementary information
between palm and fingers to improve the performance.

To highlight the different functions of fingers, Zhou et al. [176] divides hand pose estima-
tion into three finger estimations. Specifically, they partition hand into three parts: thumb,
index finger and others (See Fig. 3.3 right). Based on the three parts, they design a three-
branch CNN, where each branch corresponds to one hand part. After the three-branch CNN,
the features are fused with a feature ensemble layer and then decoded to hand joint locations.

3.2 Domain Adaptation

While acquiring annotations for real-world RGB data is a difficult task, works circumvent
this problem by utilizing the features from other domains like different modalities or synthetic
RGB data.

3.2.1 Transfer from Different Modalities

Unlike RGB images are difficult to get accurate and diverse 3D annotations, we can gather
high-quality labelled depth maps via 6DoF sensors-based methods. Therefore, it is possible
to utilize labelled depth map as auxiliary information. Benefiting from external large-scale
depth map datasets and existing labelled RGBD data, the work [163] proposes to align the
features from real-world RGB images to the features from real-world depth maps.

As shown in Fig. 3.4, there are two branches (depth branch and RGB branch), and each
for one input modality. For the purpose to transfer information, both branches adopt same
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Figure 3.4: Exploration of depth maps for enhancing RGB-based 3D hand pose estimation.
There are two branches, a depth branch (top) and a RGB branch (bottom). First, two
branches are pre-trained independently to minimize 3D pose loss to exploit external large-
scale depth maps. Then, based on paired RGBD data, two branches are fine-tuned based
on their 3D pose losses and an intermediate feature loss which encourages the features from
RGB branch to mimic the responses of the corresponding features from depth branch. This
feature imitation transfers common visual cues from the depth branch to the RGB branch.
The image is from [163].

backbone. Especially, CNNs are preferred as they are widely used in hand pose estimation
and have shown powerful ability to transfer knowledge across networks.

To exploit the external large-scale depth map datasets, they first initialize the depth
branch based on a numerical coordinate regression. With predicted joints Jdm from depth
map and their corresponding ground truth Jgtdm, the pre-training joint regression loss is

LD = ||Jdm − Jgtdm||2. (3.7)

Similarly, they also initialize the RGB branch based on the small size RGB data. With
predicted joints Jrgb from RGB images and their corresponding ground truth Jgtrgb, the joint
regression loss is

LC = ||Jrgb − Jgtrgb||2. (3.8)

With RGBD paired labelled data and a pre-trained deep model for depth maps, they
introduce the intermediate features from depth maps as supervision to aid the training of
RGB images. For the kth layer feature maps from depth branch and RGB branch, fkdm and
fkrgb

Linter = ||stop(fkdm)− fkrgb||2. (3.9)

Here, k is chosen as a hyper-parameter, stop(·) is a stop-gradient operation to fix depth
branch as the depth branch is more accurate. This loss encourages the features from RGB
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branch to mimic the responses of the corresponding features from depth branch. The final
loss to fine-tune the RGB branch is

L = Linter + λLC , (3.10)

where λ is used to balance the two losses.
Instead of mimicking the intermediate features from other modalities, based on knowledge

distillation, Zhao et al. [172] introduces a teacher-student framework to distill knowledge
learned from other modalities to real-world RGB images using paired examples.

3.2.2 Transfer from Synthetic Data

Synthesizing samples is an easy way to get accurate labels. More and more synthetic
dataset [178, 46, 37] and synthetic data generator [4, 9] are introduced. Existing works
also prefer to incorporate synthetic data to enrich the training data. However, synthetic
data may have particular blending artifacts and are still far from “realistic”. In this case,
deep models trained on synthetic data easily over-fit to specific blending artifacts and the
performance of models can deteriorate significantly when applied to real-world data.

Given the pre-trained deep models for synthetic RGB, Rad et al. [97] aims to learn a
mapping from the features of real-world RGB to the intermediate representations of synthetic
RGB. They first construct paired real/synthetic data by rendering 3D model under the same
ground truth of real-world RGB to obtain the corresponding synthetic RGB. After that, the
mapping network is trained by minimizing the distance between the features extracted from
the real-world RGB and that from the corresponding synthetic RGB. The mapping mostly
removes the large difference between real-world and synthetic RGB and therefore reduces the
domain gap.

Other works [178, 76] emphasize the importance of data augmentation for synthetic data
and empirically demonstrate both color and geometry augmentations offer complementary
benefits. Beyond data augmentation, more recent works turn to enhancing the appearance
of synthetic data. Inspired by Cycle Generative Adversarial Network (GAN), Mueller et
al. [81] takes unpaired real/synthetic images as input during training and translates synthetic
images to “real” images using an adversarial loss and a cycle-consistency loss. Since hand
pose is sensitive to the geometric perturbation, a geometric information, i.e. , hand masks, is
introduced as auxiliary supervision. To take both high/low frequency into account, Chen et
al. [16] explicitly decomposes RGB hand into color part (blurred RGB) and shape part (hand
edge), and propose conditional GAN with those two parts as conditions for image generation.
Therefore, it can generate realistic hand images and keep the color and shape from synthetic
data.

3.2.3 Others

Domain adaptation techniques for 3D hand pose estimation are still in the infancy. Related
research fields like 2D hand pose estimation [53] have shown some potential directions. With
the observation that the failure predictions in the target domain usually fall on the wrong
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joint locations instead of background, Jiang et al. [53] proposes a sparse output space for 2D
pose estimation based on the potential joint locations and use this sparse output space to
guide the adversarial training to minimax of target disparity [171].

3.3 Hand Models

In this section, we introduce three paradigms (i.e. , model-driven, data-driven and hybrid),
to exploit hand models for 3D hand pose estimation.

3.3.1 Model-driven Paradigm

Considering that the articulated hand model (e.g. , a hand surface model) is given or hy-
pothesized, the target of hand model-based approaches is to fit the model to the available
references (e.g. , depth maps, 2D poses and segmentation masks) (See Fig. 3.5 (b)). This can
be formulated as an optimization problem whose objective function measures the discrep-
ancy between the references and their corresponding pixels/points based on the articulated
model. Direct optimization may not require training and are more easily extendable. Note
that existing model-driven methods are all using depth maps as input due to the fact that
depth maps can serve as references while RGB images can not. In this case, for model-driven
paradigms, we only introduce 3D hand pose estimation from depth maps.

LM. A straightforward optimization for the articulated hand model is using LM algo-
rithm. Based on a smooth user-specific hand mesh model and subdivision surface, Taylor et
al. [124] introduces to optimize the model parameters with an LM-based optimizer; they min-
imize fitting energy with as-rigid-as-possible regularizers to deform the hand model to fit a
target point cloud. Beyond a user-specific model, Khamis et al. [55] builds a skeleton-driven
morphable mesh model of hands with aspects of pose and shape. This mesh is articulated
using standard LBS and based on a smooth subdivision surface like [124]. They parameterize
the model with latent parameters, that can be optimized using the LM optimizer. Further,
Taylor et al. [123] accelerates the optimization by introducing a better initialization and re-
formulating the energy function as a weighted sum of several terms for model fitting, which
is amenable for the proposed optimizer.

ICP. LM optimizer as a local optimizer needs multiply iterations, even under the sit-
uation that model is rigid non-articulated and correspondences are known. In contrast, in
that situation, vanilla ICP would recover the registration of non-articulated bodies in a single
iteration. However, the vanilla ICP is non-applicable for articulated models. To extend ICP
for articulated structures, the work [92] proposes articulated ICP with structure constraints
for point clouds; they divide the articulated structure into parts, which can be aligned rigidly
in the way of the vanilla ICP, and keep the articulated structure feasible using additional
constraints. To improve the efficiency of ICP, Stoll et al. [116] uses a sparse subset instead of
the whole point cloud as reference. To further avoid ICP suffering from local minima, Gana-
pathi et al. [32] introduces to combine ICP with ray-casting likelihood function using depth
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Figure 3.5: Comparison of the data-driven paradigm (a) and the model-driven paradigm
(b). We can see the data-driven paradigm requires training data during training and get one-
shot estimation during inference. In contrast, the model-driven paradigm without training
needs several optimization steps to model-fit to the references. Images reproduced from [132].

maps as references. ICP and ray-casting likelihood function are complementary, balancing
the fitting accuracy and efficiency.

Others. Recently, more and more optimization strategies have been explored to effi-
ciently search the high-dimensional parameter space of hand configurations. For example,
the work [87] proposes Particle Swarm Optimization (PSO) and another work [88] presents
an evolutionary algorithm. Interestingly, decomposing the high-dimensional parameter space
of hand configurations into smaller ones has also proven to be effective and efficient. Specifi-
cally, Tang et al. [121] decomposes pose parameters into subsets based on the tree structure
of hand and proposes hierarchical sampling optimization to optimize the parameter space
accordingly.

3.3.2 Data-driven Paradigm

Model-driven methods, as online optimization methods, are sensitive to the time complex-
ity of the optimization during inference. In contrast, data-driven methods with one-shot
prediction can quickly deliver a solution (See Fig. 3.5 (a)). Here, we introduce deep-learning-
based methods for RGB-based 3D pose estimation because they have dominated as the best
performers of data-driven methods. Specifically, we introduce deep-learning-based methods
based on the type of hand models, parametric or non-parametric models.

Parametric Models. To embed the existing predefined articulated hand models into
the deep learning frameworks, works [4, 169, 9, 46] develop a parametric model, MANO, as
a differentiable layer. Based on this differentiable hand model layer, works like [4, 169, 9, 46]
propose neural networks to predict the parameters of MANO to fit the hand models to RGB
images using different modalities (e.g. segmentation masks, 2D poses, 3D poses) as supervi-
sions. As the MANO model provides explicit control over the shapes and the poses of 3D
hand meshes, works [4, 9] also render RGB images based on MANO and neural renderers [54]
to enrich the training data. However, in practice, model fitting with a parametric model may
suffer from poor fitting performance due to the mediocre image-model alignment.

Non-Parametric Models. Unlike hand parametric models are predefined based on LBS,
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Figure 3.6: Illustration of a classic hybrid pipeline. For the data-driven part, given a depth
image as input, the correspondence regression network (CoRN) provides segmentation masks
and correspondence maps as references. For the model-driven part, an energy minimization
optimization is adopted to fit the parameters of a parametric model (MANO) to best explain
the references from data-driven part. Note that even this framework is designed for a depth
map input, it is also applicable for an RGB-based framework directly. The image is from [82].

non-parametric hand models rely on training data and ad-hoc network architectures based
on the hand structure. Non-parametric models as “implicit” hand models, can be trained
with other part of the network simultaneously. Recently, as more and more large-scale 3D
hand surface data have been synthesised or collected [37, 63], non-parametric models start
to draw more and more attention for hand. Based on Chebyshev spectral graph CNN [26],
works like [37, 64] encode RGB into a latent representation of meshes and then recover the
full 3D hand surface mesh. The difference between those two methods is, besides mesh losses,
Ge et al. [37] uses both 3D poses and depth maps as auxiliary supervisions while Kulon et
al. [64] only introduces the readily available 2D poses as auxiliary supervision. Furthermore,
instead of Chebyshev spectral mesh decoder, the work [63] presents a spatial convolutional
mesh decoder to directly reconstructs meshes in image coordinates, which also shows superior
performance on mesh reconstruction and pose estimation. Based on the voxel representations,
Moon et al. [78] models the location of a mesh vertex using a 3D heatmap representation and
formulates hand mesh estimation as vertex heatmap estimation. However, directly predicting
3D heatmaps is computationally infeasible for large-scale vertices. As an alternative, the
work [78] proposes to predict one-dimensional heatmaps for each mesh vertex coordinates.
Considering the 3D heatmaps as joint distributions of all coordinates, each one-dimensional
heatmap represents the marginal distributions of the coordinates like [160].

3.3.3 Hybrid Paradigm

Optimization from scratch needs more iterations to converge and is easy to fall into local min-
ima. In contrast, optimization with good initialization is more efficient. Data-driven methods
can quickly deliver a solution but often suffer from lower accuracy or missing anatomical va-
lidity; using parametric models, the models have limited fitting ability as the parameters of
models are highly constrained to specified forms; using non-parametric models, the models
have the risk of over-fit to the training data and generate infeasible predictions.

As deep models and optimization are somehow complimentary by nature, hybrid methods
with both elements are appealing to inherit the advantages of both paradigms. Overall, hybrid
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methods initial poses and references with the deep-learning-based part, and then refine the
poses based on the predicted references and the model-driven part. We show a classic hybrid
pipeline in Fig. 3.6. We can see the deep-learning-based part predicts segmentation masks
and correspondence maps as references based on a large dataset for the model-driven part.
Using MANO as hand model, the model-driven part takes the feasibility and the references
into account to optimize the parameters of MANO.

To start with a good initialization, hybrid works explore to use tight hand regions [61, 102],
the fingertips [114, 96, 140] or selected joints [93, 159, 132] from the detection modules. As for
the hand sequences, initialization from the previous frame is also preferable [82]. References
or observations are essential to energy minimization. Most methods [61, 132] use the depth
maps or hand segmentation masks as references. Note that with auxiliary hand annotations
for data-driven methods, other annotations like 2D heatmaps [128], hand part labels [112] or
UV mappings from 3D mesh [135] can be predicted and serve as references to speed up the
optimization of energy minimization.

3.4 Representation Learning

In this section, we will introduce two common representation learning techniques, i.e. ,
disentangled representation learning and contrastive learning, for hand pose estimation.

3.4.1 Disentangled Representation

Disentangled representations disentangle the features based on salient factors of variation and
encode them as separate dimensions. Existing disentangled representations can be learned in
an unsupervised setting or by exploiting “cheap” weak labels such as grouping information [8,
62, 39] and pairwise similarities [52].

One potential use of disentangled representations is we can precisely localize task-relevant
features and omit the task-irrelevant ones. To learn disentangled representations, one effective
solution is to minimize the mutual information [23]. To learn disentangled task-relevant
features for unsupervised domain adaptation tasks, an information-theoretical framework as
shown in Fig. 3.7 is commonly used. In an unsupervised domain adaptation setting, we have
images xs from the source domain X s with labels ys and images xt from the target domain X t
without labels. Our target is to get satisfying predictions in both source and target domain
without an obvious domain gap. To achieve this, two encoders, the content encoder Ec and
the domain encoder Ed, are introduced. We train the encoders to disentangle the features
into task-relevant features zc = Ec(x) and task-irrelevant features (i.e. , domain features)
zd = Ed(x). Noticed that besides the labels ys for images xs, we also have the domain labels.

The content embedding zsc from the source domain is further used as an input to a content
decoder C(·) to get the predictions, with a content loss Lc defined as based on the specific
task. For 3D hand pose numerical coordinate regression, the content loss could be

Lc = ||ys − C(zsc)||2. (3.11)
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Figure 3.7: Illustration of a disentangled representation-based framework for unsupervised
domain adaptation. The source data xs and the target data xt are passed to a task-relevant
encoder Ec and a domain-relevant encoder Ed, with output features zc and zd, respectively.
To encourage zc and zd to be disentangled, task-relevant loss (content loss), domain loss and
mutual information minimization loss are adopted. C is the content decoder to get task-
relevant predictions, and D is the domain discriminator. The mutual information between
zc and zd is minimized. The image is from [23].

The domain embedding zd (including zsd and ztd) is input to a domain discriminator D(·)
to predict whether the observation comes from the source domain or target domain, with a
domain loss defined as

Ld = Ex∈X s [logD(zd)] + Ex∈X t [log(1−D(zd))]. (3.12)

Since the content information and the domain information should be independent, we min-
imize the mutual information between the content embedding zc and domain embedding
zd. The mutual information estimator MI(·) could be L1Out [95] or CLUB [23]. The final
objective with λs as hyper-parameters is:

min
Ec,Ed,C,D

MI(zc, zd) + λcLc + λdLd. (3.13)

On the other hand, disentangled representations can be learned for image or video gen-
eration or translation. Such representations have been applied successfully to image edit-
ing [8, 25, 62, 83, 103, 120], video generation [129] and image-to-image translation [52]. To
learn a disentangled and controllable latent representation, existing works [27, 39] resort to
constructing paired images where their difference is only one factor of variation has changed.
With those paired images, they encourage unchanged part of features extracted from paired
images as close as possible via contrastive learning [67, 27] or cycle consistency [52]. However,
it is nontrivial to get paired images. One easy solution is to utilize synthetic images even
there is an added challenge of domain adaptation to the real-world images [27]. Based on the
synthetic data, We can train the image generation network to imitate the image rendering
process and use adversarial training to reduce the domain gap between synthetic images and
real-world images.
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Figure 3.8: Illustration of a simple framework for contrastive learning. A positive pair
x̃i and x̃j is generated based on the same data x but with different augmentations. The
positive pair is then passed to a base encoder network f(·) and a projection head g(·), with
representations hi and hj , and output zi and zj . f(·) and g(·) are trained to maximize
agreement using a contrastive loss. After training, the representations h can be used for
downstream tasks. The image is from [17].

3.4.2 Contrastive Learning

Contrastive learning is a powerful representation learning technique used to learn the general
features by encouraging the model to learn a low-dimensional space for data in which similar
sample pairs (positive pairs) stay close together while dissimilar samples (negative pairs)
are further apart. It has been successfully applied in the unsupervised setting [125, 18, 17].
Creating beneficial positive-negative pairs forms the basis of contrastive learning. Existing
works [125, 18, 17, 56] prefer to create positive pairs based on data augmentation. As shown in
Fig. 3.8, two data augmentation operators are sampled from the same family of augmentations
T and applied to data x to obtain two correlated views, x̃i and x̃j . After that, a base encoder
network f(·) and a projection head g(·) are trained to maximize agreement using a contrastive
loss. The projection head g(·) usually is two fully-connected layers to obtain 128-dimension
normalized latent features. Using a minibatch of N examples as input, 2N data points are
obtained after data augmentation. We treat zi and zj from same sample as a postive pair
and the other 2(N − 1) augmented examples within a minibatch as negative examples. We
have the loss function for a positive pair of examples (i, j) is defined as below:

`i,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k 6=i](exp (sim(zi, zk)/τ))
, (3.14)

where τ is a temperature parameter and usually set to 0.5, sim(·, ·) is the cosine similarity,
and 1 is the indicator function. It also can be applied in a supervised setting [56] by simply
combining supervised losses with the contrastive loss. Based on the explanation from [138],
the features of contrastive representation learning will obtain the benefit of two properties,
the alignment of features from positive pairs (See Fig. 3.9 (a)), and the uniformity of the
induced distribution of the (normalized) features on the hyper-sphere (See Fig. 3.9 (b)). This
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Alignment: Similar samples have similar features

Feature Density

Uniformity: Preserve maximal information(a) Alignment: Similar samples have
similar features.

(b) Uniformity: Preserve maximal
information.

Figure 3.9: Illustration of two properties of contrastive representations, alignment and
uniformity of feature distributions on the output unit hypersphere. Contrastive learning
makes similar sample pairs stay close together while dissimilar samples are further apart.
Also contrastive learning encourages features uniformly distributed throughout the hyper-
sphere feature space. Images are from [138].

explanation provides the effectiveness of contrastive learning as a representation learning
technique and also highlights the necessity of using normalized latent features on the unit
hyper-sphere for contrastive learning.

Existing pose estimation works [177, 109] propose to contrastive pre-train on the unla-
belled data and then fine-tune on the labelled data as shown in Fig. 3.10. Unlike classification,
contrastive learning in 3D pose estimation needs to account for semantic information. To con-
struct positive pairs for hand poses, Zimmermann et al. [177] simply augments the images by
performing randomized: crops of the image, color jitter, grayscale, and conversion and Gaus-
sian blur. Also, based on their collected multi-view green-screen background hand sequences,
they introduce more positive pairs via background randomization and temporal/multi-view
sampling. After contrastive pre-training, they adopt supervised training like other existing
supervised training pipelines [179] but using a smaller learning rate to fine-tune the models.

3.5 Less Supervision

Even existing fully supervised methods have improved the performance significantly on
public datasets, they usually fail to handle cross-dataset evaluation. Moreover, obtaining
diverse and sufficient training data is non-trivial and supervised approaches are still data-
hungry. Therefore, increasing attention is paid to 3D hand pose estimation with less super-
vision.
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Figure 3.10: Illustration of a pre-training and fine-tuning pipeline for 3D hand pose estima-
tion. During pre-training, a contrastive learning strategy for a large unlabelled hand image
dataset is adopt to yield useful image embeddings that can be used for the downstream hand
pose estimation task. During fine-tuning, the encoder is fine-tuned based on a smaller labelled
dataset. using a smaller learning rate. The image is from [177].

3.5.1 Weakly-Supervised learning

Hand modalities are representations of hand in different aspects. While obtaining paired
real-world RGB images and 3D annotation is expensive, existing methods resort to exploring
the use of RGB images with other corresponding modalities, e.g. 2D keypoints, segmentation
masks or depth maps. Real-world RGB images with corresponding easy-to-achieve modalities
as weak labels is an effective way to improve the cross-dataset performance.

To alleviate the burden of 3D annotations in real world, works like [28, 11] first propose
to fine-tune the pre-trained model by leveraging the depth maps as weak labels. They both
need renderers to get depth maps from 3D poses. Their difference is mainly the design of
the renderers. Dibra et al. [28] obtains depth maps from a parametric hand model while
Cai et al. [11] prefers to estimate depth maps from a pre-trained renderer network. The
follow-up works [137, 9, 63] either improve the pre-trained renderer networks or explore 3D
hand surface models. To relief the concern of insufficient real-world depth maps, the work [14]
proposes a conditional GAN model to generate realistic depth maps conditioned on the input
RGB image. Therefore, the synthesized depth maps can be used to regularize the pre-trained
model.

While 2D annotations are much easier to obtain than 3D annotations, 2D annotations
are one of the most efficient weak labels. Boukhayma et al. [9] exploits 2D annotations as
weak labels by embedding a differentiable parametric hand model (i.e. , MANO) and an
orthographic camera model into the framework. As shown in Fig. 3.11, with predicted pose
parameters θ and shape parameters β, 3D poses can be obtained by J(β, θ) where J(·) is
a predefined function in MANO to get 3D poses from hand parameters. For the camera
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Figure 3.11: Illustration of a weakly-supervised pipeline based on MANO and a weak
perspective camera model. The pipeline takes as input a hand image and optionally 2D
joint heatmaps. The encoder produces shape parameters and pose parameters for MANO to
generate 3D poses, and view parameters for camera model. Using orthographic re-projection,
the pipeline exploits 2D poses as weak labels for 3D hand pose estimation.The image is
from [9].

model, a global rotation matrix R, a translation t and a scaling s are estimated. Based on
orthographic projection function Π(·), 2D poses ŷ are obtained

ŷ = sΠ(RJ(β, θ)) + t. (3.15)

Therefore, the weak supervision is a simple `1 loss between predicted 2D poses ŷ and
ground truth 2D poses y:

L2D = ||ŷ − y||1. (3.16)

Even existing 2D annotation-based weakly-supervised frameworks are effective, the key
difficulty stems from the fact that direct application of additional 2D supervision mostly ben-
efits the 2D proxy objective but does little to alleviate the depth and scale ambiguities [110].
To embrace this challenge, the work [110] introduces biomechanical losses that constrain the
predicted bone lengths and joint angles to lie within the valid ranges based on the biome-
chanical feasibility of 3D hand configurations. Those biomechanical losses further improve
the performance when using 2D poses as weak labels.

3.5.2 Semi-Supervised learning

Semi-supervised learning for RGB-based 3D hand pose estimation is still in its infancy. The
only work [71] limits the research scenario on large-scale unlabelled videos and proposes
spatial-temporal consistency constraints to encourage the consistency between predicted 3D
poses and predicted 2D poses, and the consistency of hand shape (skeleton) and 2D pose over
time. As a complement, we introduce semi-supervised learning in two related research fields,
3D hand pose estimation from depth maps and 2D pose estimation.

3D Hand Pose Estimation from Depth Maps. Unlike RGB images, a depth map
contains 2.5D information regardless of texture or lighting information, which makes it easy
to build connection to 3D surface models. Therefore, reconstruction of depth maps or their
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Figure 3.12: Illustration of a semi-/self-supervised pipeline. It adopts synthetic data to
warm up the pose estimation network and uses consistencies within the data and the hand
model to serve as a label for learning. The image is from [132].

equivalent representations (such as point clouds) is used to improve the representation learn-
ing in a self-/semi-supervised setting.

Works like [20, 133] aim at making use of the unlabelled depth maps by projecting both
hand poses and depth maps into a shared latent space. The rationale is that a large number
of unlabelled depth maps will build a well-structured depth map space, and limited paired
hand poses and depth maps will encourage to align pose space to depth map space. As a
follow-up, the work [94] proposes to extend the corresponding depth maps from single-view
to multi-view for hand poses.

Those data-driven strategies are effective, and the shared latent space implicitly models
the hand. However, it is still hard to guarantee the feasibility of a hand. Also, the data
synthesizers and data-driven discriminators are isolated. To overcome this, recent works
like [132, 135] propose a hybrid framework to integrate discriminative models with model fit-
ting modules. Specifically, they use synthetic data to warm up the discriminative models and
then adopt the prediction from discriminative models as references to drive the model fitting
module. The final objective is the self reconstruction losses based on the hand models. Note
that an explicit hand model exists in the model fitting module to render depth maps. The
design of the hand model directly determines the model fitting and generalization ability of
the entire hybrid framework. We show one classic self-supervised hybrid pipeline in Fig. 3.12.
The rationale of this self-supervised hybrid pipeline is to use the consistency between inputs
and pre-defined articulated hand models to serve as labels for learning.

2D Pose Estimation. Works like [66, 80, 99] attempt to improve the stability of pre-
dictions on unlabelled data by exploiting various consistency constraints, pseudo-labelling
strategies and training strategies. To discover the consistency between input and output,
different augmentation strategies have been explored. If the augmentation does not change
factors associated with 2D pose estimation, the predicted pose is expected to be the same. In
contrast, if the augmentation causes geometric transformations in 2D images, the prediction
should be changed accordingly. The rationale here is that the predictions of a well-behaved
model should be robust to noise or perturbation. To explore the consistency over time,
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a smoothness consistency is proposed to regularize the predicted poses. It is reasonable
to assume that the poses from neighboring frames can not change dramatically in a real-
world video. As for pseudo-labelling, the key problem is how to find pseudo-labels with high
confidence. The work [66] proposes to use the maximum value of a 2D heatmap to select
pseudo-labels because a 2D heatmap itself models the probability of each pixel being a joint
pixel. Differently, Mu et al. [80] proposes to determine the confidence of samples based on
their consistencies, with the assumption that high-confident samples should satisfy these con-
sistencies. Without explicitly estimating the confidence of a pseudo-label, the work [99] takes
an ensembling strategy to determine the pseudo-label of an unlabelled image by aggregating
the predictions from a single model applied to multiple transformations of this unlabeled im-
age. Besides consistency constraints and pseudo-labelling strategies, the training strategies
are also important. works [80, 66] borrow the ideas from curriculum learning to gradually
increase the number of training samples and learn models in an iterative fashion, which will
improve the stability of the framework during training. Moreover, the work [80] demonstrates
a multi-task learning strategy can further boost the performance.

3.5.3 Hand Pose Correction

Even existing methods adopt complex networks and a large amount of data to fit the 3D
poses, the biomechanical feasibility of a hand pose is not guaranteed. This issue will become
increasingly serious when training with less supervision. We highlight hand pose correction
because the feasible solution space of inherent articulated hand model is the key to distinguish
3D pose estimation from other localization problems. The biomechanical feasibility can be
predefined and used as auxiliary information for 3D hand pose estimation. To avoid invalid
poses during testing, different correction strategies are explored.

Most pose correction methods [90, 170] are based on explicit physical constraints of hand.
Panteleris et al. [90] introduces joint limits by post-processing that fits the prediction to a
3D hand model with only plausible solution space of hand articulations. Zhang et al. [170]
proposes a knowledge distillation framework to transfer the physical constraints of hand from
a teacher network to a student network. Specifically, the teacher network corrects the angle-
invalid pose predictions from the student network and provides comprehensive supervision
based on the corrected poses. Especially, the work [110] proposes to build a local coordinate
system for hand and introduces valid ranges of bone lengths and joint angles based on the
statistics of feasible hand poses.

The data-driven-based pose correction methods are also preferred as a large amount of
motion capture (MoCap) data have been collected. Pre-trained on Mocap data, the VAE-
based prior [132, 91] is a simple yet efficient method to penalize infeasible hand poses while
admitting valid ones. Zhou et al. [175] formulates 3D poses to angle-based representations
as an inverse kinematics problem and proposes to regress the angles from 3D poses with a
neural network. The network is pre-trained on MoCap data. It is robust to noise, and can
correct the noisy 3D predictions.
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This chapter presents a VAE-based framework with the image factors of variation as
auxiliary information to get better representations for hand poses. Hand image synthesis
and pose estimation from RGB images are both highly challenging tasks due to the large
discrepancy between factors of variation ranging from image background content to camera
viewpoint. Inspired by the procedure of image rendering, we make a strong assumption
that the latent features extracted from RGB images can be deterministically decomposed
into independent factors, which are directly associated with observed variables. Taking RGB
hand images as examples, they contain independent image factors like image background
contents and hand poses. Based on this assumption and the labels of factors, we aim to
get task-relevant features or controllable features for image synthesis. As such, this chapter
presents a VAE-based framework to learn disentangled representations for RGB hand images.
Based on VAE, we introduce two steps, the disentangling step and the embedding step, to get
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the disentangled representations. In the disentangling step, we consider the joint distribution
between images and factors of variation, and aim to generate images based on the latent
variables from image factors. With the disentangling step, we learn a disentangled latent
space based on the given image factors. In the embedding step, we aim to learn a mapping
from images to the aforementioned disentangled latent space. Combining the disentangling
step and the embedding step, we can get disentangled representations from RGB images and
also generate images based on disentangled representations. In other words, the proposed
disentangled variational autoencoder (dVAE) allows for specific sampling and inference of
given factors. We also provide analysis for the objective of two steps based on evidence
lower bound. The derived objective from the variational lower bound as well as the proposed
training strategy is highly flexible, allowing us to handle cross-modal encoders and decoders
as well as semi-supervised learning scenarios.

We verify our framework via multiple tasks, including RGB hand image synthesis and
3D pose estimation from RGB images on RHD dataset and STB dataset. For synthesizing
hand images, we conduct the experiments based on two factors, i.e. , the image content
and the hand pose. First, we show latent space walks from one image to another image.
Specifically, we show the synthesized images when we interpolate the pose while keeping the
image content fixed and when we interpolate image content while keeping the pose fixed. In
both latent space walks, the reconstructed poses as well as the synthesized images demonstrate
a smoothness and consistency of the latent space. Also, we show examples of pose transfer.
We take poses from one image, content from other images and recombine them. Therefore,
we can generate images with our selected image content and hand poses. For 3D hand pose
estimation, we conduct the experiments based on two factors, the hand viewpoint and the
canonical hand pose. We estimate viewpoints, canonical hand poses and 3D hand poses
simultaneously, and achieve comparable performance compared to other state-of-the-art pose
estimation works. Experiments show that our dVAE can synthesize highly realistic images
of the hand specifiable by both pose and image background content and also estimate 3D
hand poses from RGB images with accuracy competitive with state-of-the-art on two public
benchmarks. As for future work, the assumption that the factors of variation here should
be labelled and independent is too strict and limits its application in the real world. We
will consider relaxing the need of labelled and independent between factors. Also, we will
introduce contrastive learning and mutual information minimization to further improve the
disentangled representations. The publication, contributors and author contributions in this
chapter are listed below:

Publication:

• Linlin Yang and Angela Yao. “Disentangling Latent Hands for Image Synthesis and Pose
Estimation.” IEEE Conference on Computer Vision and Pattern Recognition(CVPR).
2019.

Other Contributors:

• Angela Yao (Thesis Supervisor)
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Contributions:

• Linlin Yang proposed the framework, wrote the code and conducted the experiments.
Linlin Yang and Prof. Dr. Angela Yao developed the idea, analyzed the results and
wrote the main body of the article.

4.1 Motivation

Vision-based hand pose estimation has progressed very rapidly in the past years [118, 162],
driven in part by its potential for use in human-computer interaction applications. Advance-
ments are largely due to the widespread availability of commodity depth sensors as well as the
strong learning capabilities of deep neural networks. As a result, the majority of state-of-the-
art methods apply deep learning methods to depth images [34, 35, 36, 42, 75, 85, 86, 133, 134].
Estimating 3D hand pose from single RGB images, however, is a less-studied and more diffi-
cult problem which has only recently gained some attention [11, 81, 90, 111, 178].

Unlike depth, which is a 2.5D source of information, RGB inputs have significantly more
ambiguities. These ambiguities arise from the 3D to 2D projection and diverse backgrounds
which are otherwise less pronounced in depth images. As such, methods which tackle the
problem of monocular RGB hand pose estimation rely on learning from large datasets [178].
However, given the difficulties of accurately labelling hand poses in 3D, large-scale RGB
datasets collected to date are synthesized [81, 178]. Real recorded datasets are much smaller,
with only tens of sequences [130, 167]. This presents significant challenges when it comes to
learning and motivates the need for strong kinematic and or image priors.

Even though straight-forward discriminative approaches have shown great success in ac-
curately estimating hand poses, there has also been growing interest in the use of deep
generative models such as adversarial networks (GANs) [81, 133] and variational autoen-
coders (VAEs) [111]. Generative models can approximate and sample from the underlying
distribution of hand poses as well as the associated images, and depending on the model
formulation, may enable semi-supervised learning. This is particularly appealing for hand
pose estimation, for which data with accurate ground truth can be difficult to obtain. One
caveat, however, is that in their standard formulation, GANs and VAEs learn only black-box
latent representations. Such representations offer little control for conditioning upon human-
interpretable factors. Of the deep generative works presented to date [81, 111, 133], the latent
representations are specifiable only by hand pose. Consequently it is possible to sample only
a single (average) image per pose.

A recent work combining VAEs and GANs [25] introduced a conditional dependency
structure to learn image backgrounds and demonstrated the possibility of transferring body
poses onto different images. Inspired by this work, we would like to learn a similar latent
representation that can disentangle the different factors that influence how hands may appear
visually, i.e. normalized hand pose, camera viewpoint, scene context and background, etc. At
the same time, we want to ensure that the disentangled representation remains sufficiently
discriminative to make highly accurate estimates of 3D hand pose.
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Figure 4.1: Illustration of dVAE. The red lines denote variational approximations while
the black lines denote the generative model. With the help of labelled factors of variations
(e.g. pose, viewpoint and image content), we learn a disentangled and specifiable representa-
tion for RGB hand images in a VAE framework.

We present a disentangled variational autoencoder (dVAE) – a novel framework for learn-
ing disentangled representations of hand poses and hand images. As the factors that we would
like to disentangle belong to different modalities, we begin with a cross-modal VAE [89, 111]
as the baseline upon which we define our dVAE. By construction, our latent space is a dis-
entangled one, composed of sub-spaces calculated by factors and a training strategy to fuse
different latent space into one disentangled latent space. We show how these disentangled
factors can be learned from both independent and confounding label inputs. To the best of
our knowledge, our proposed model is the first disentangled representation that is able to
both synthesize hand images and estimate hand poses with explicit control over the latent
space. A schematic illustration of our dVAE and the disentangled factors is shown in Fig. 4.1.
We summarize our contributions below:

• We propose a novel disentangled VAE model crossing different modalities; this model
is the first VAE-based model that uses independent factors of variations to learn disen-
tangled representations.

• Our dVAE model is highly flexible and handles multiple tasks including RGB hand
image synthesis, pose transfer and 3D pose estimation from RGB images.

• We enable explicit control over different factors of variation and introduce the first
model with multiple degrees of freedom for synthesizing hand images.

• We decouple the learning of disentangling factors and the embedding of image content
and introduce two variants of learning algorithms for both independent and confounding
labels.
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4.2 Related Works

4.2.1 Hand Pose Estimation

Much of the progress made in hand pose estimation have focused on using depth image
inputs [34, 35, 36, 42, 50, 75, 79, 85, 86, 133, 134, 142]. State-of-the-art methods use a
convolutional neural network (CNN) architecture, with the majority of works treating the
depth input as 2D pixels, though a few more recent approaches treat depth inputs as a set
of 3D points and or voxels [36, 34, 79].

Estimating hand poses from monocular RGB inputs is more challenging. Early methods
could recognize only a restricted set of poses [3, 146] or used simplified hand representations
instead of full 3D skeletons [115, 147]. In more recent approaches, the use of deep learning
and CNNs has become common-place [11, 90, 178]. In [81, 111], deep generative models such
as variational auto-encoders (VAE) [111] and generative adversarial networks (GANs) [81]
are applied, which makes feasible not only to estimate pose, but also generate RGB images
from given hand poses.

Two hand pose estimation approaches [133, 111] stand out for being similar to ours in
spirit. They also use shared latent spaces, even though the nature of these spaces are very
different. Wan et al. [133] learns two separate latent spaces, one for hand poses and one
for depth images, and uses a one-to-one mapping function to connect the two. Spurr et
al. [111] learns a latent space that cross multiple hand modalities, such as RGB to pose and
depth to pose. To force the cross-modality pairings onto a single latent space, separate VAEs
are learned in an alternating fashion, with one input modality contributing to the loss per
iteration. Such a learning strategy is non-ideal, as it tends to result in fluctuations in the
latent space and has no guarantees for convergence. Additionally, by assuming all crossing
modalities as one-to-one mappings, only one image can be synthesized per pose.

Different from [133] and [111], our dVAE learns a single latent space by design. We learn
the latent space with the different modalities jointly, as opposed to alternating framework
of [111]. We find that our joint learning is more stable and has better convergence properties.
And because we explicitly model and disentangle image factors, we can handle one-to-many
mappings, i.e. synthesize multiple images of the same hand pose.

4.2.2 Disentangled Representations

Disentangled representations separate data according to salient factors of variation and have
recently been learned with deep generative models such as VAEs and GANs. Such represen-
tations have been applied successfully to image editing [8, 25, 62, 83, 103, 120], video gener-
ation [129] and image-to-image translation [52]. Several of these works [103, 120, 129, 136],
however, require specially designed layers and loss functions, making the architectures difficult
to work with and extend beyond their intended task.

Previous works learning disentangled representations with VAEs [8, 52, 62] typically re-
quire additional weak labels such as grouping information [8, 62] and pairwise similarities [52].
Such labels can be difficult to obtain and are often not defined for continuous variables such
as hand pose and viewpoint. In [25, 83], a conditional dependency structure is proposed to
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train disentangled representations for a semi-supervised learning. The work of [25] resembles
ours in the sense that they also disentangle pose from appearance; however, their conditional
dependency structure is sensitive to the number of factors. As the number of factors grows,
the complexity of the network structure increases exponentially. In comparison to existing
VAE approaches, we are able to learn interpretable and disentangled representations by the
shared latent space produced by image and its corresponding factors without additional weak
labels.

4.3 Methodology

4.3.1 Cross Modal VAE

Before we present how a disentangled latent space can be incorporated into a VAE framework
across different modalities, we first describe the original cross modal VAE [89, 111]. As
the name suggests, the cross modal VAE aims to learn a VAE model across two different
modalities x and y. We begin by defining the log probability of the joint distribution p(x,y).
Since working with this distribution is intractable, one maximizes the evidence lower bound
(ELBO) instead via a latent variable z. Note that x and y are assumed to be conditionally
independent given the latent z, i.e. (x⊥y | z).

log p(x,y) ≥ ELBOcVAE(x,y, θx, θy, φ)

= Ez∼qφ log pθx(x|z) + Ez∼qφ log pθy(y|z)

−DKL(qφ(z|x)||p(z)).

(4.1)

Here, DKL(·) is the Kullback-Leibler divergence. The variational approximation qφ(z|x) can
be thought of as an encoder from x to z, while pθx(x|z) and pθy(y|z) can be thought of as
decoders from z to x and z to y respectively. p(z) = N (0, I) is a Gaussian prior on the latent
space.

In the context of hand pose estimation, x would represent the RGB or depth image
modality and y the hand skeleton modality. One can then estimate hand poses from images
by encoding the image x into the latent space and decoding the corresponding 3D hand pose
y. A variant of this model was applied in [111] and shown to successfully estimate hand poses
from RGB images or depth images.

4.3.2 Disentangled VAE

In our disentangled VAE, we define a latent variable z which can be deterministically de-
composed into N+1 independent factors {zy1 , zy2 , ..., zyN , zu}. Of these factors, {zyi}i=1...N

are directly associated with observed variables {yi}i=1...N . zu is an extra latent factor which
is not independently associated with any observed variables; it may or may not be included
(compare Fig. 4.2a versus Fig. 4.2b).

Fully specified latent z: We begin first by considering the simplified case in which z

can be fully specified by zyi without zu, i.e. all latent factors can be associated with some
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Figure 4.2: Graphical models of disentangled VAEs. The shaded nodes represent observed
variables while un-shaded nodes are latent. The red and black solid lines denote variational
approximations qφ or encoders, and the generative models pθ or decoders respectively. The
dashed lines denote deterministically constructed variables. Figure best viewed in colour.

observed yi. For clarity, we limit our explanation to N=2, though the theory generalizes to
higher N as well. Our derivation can be separated into a disentangling step and an embedding
step. In the disentangling step, we first consider the joint distribution between x, y1 and
y2. The evidence lower bound of this distribution can be defined as:

log p(x,y1,y2) ≥ ELBOdis(x,y1,y2, φy1 , φy2 , θy1 , θy2 , θx)

= λxEz∼qφy1 ,φy2
log pθx(x|z)

+ λy1Ezy1∼qφy1
log pθy1 (y1|zy1)

+ λy2Ezy2∼qφy2
log pθy2 (y2|zy2)

− βDKL

(
qφy1 ,φy2 (z|y1,y2)||p(z)

)
,

(4.2)

where the λs and β are additional hyperparameters added to trade off between latent
space capacity and reconstruction accuracy, as recommended by the β trick [48].

The ELBO in Eq. 4.2 allows us to define a disentangled z = [zy1 , zy2 ] based on y1, y2

and x. In this step, one can learn the encoding and decoding of yi to and from zyi , as well
as the decoding of z to x. However, the mapping from x to z is still missing so we need an
additional embedding step [131] to learn the encoder qφx(z|x). Keeping all decoders fixed,
qφx(z|x) can be learned by maximizing:

L(φx|θy1 , θy2 , θx) = −DKL (qφx(z|x)||pθ(z|x,y1,y2))

= ELBOemb(x,y1,y2, φx)− log p(x,y1,y2).
(4.3)

Since the second term is constant with respect to φx and the θ’s, the objective simplifies to
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the following evidence lower bound with λ′ and β′ as hyperparameters:

ELBOemb(x,y1,y2, φx) = λ′xEz∼qφx log pθx(x|z)

+ λ′y1
Ezy1∼qφx log pθy1 (y1|zy1)

+ λ′y2
Ezy2∼qφx log pθy2 (y2|zy2)

− β′DKL(qφx(z|x)||p(z)).

(4.4)

Combining the disentangling and embedding evidence lower bounds, we get the following
joint objective:

L(φx,φy1 , φy2 , θx, θy1 , θy2) =

ELBOdis(x,y1,y2, φy1 , φy2 , θx, θy1 , θy2)

+ELBOemb(x,y1,y2, φx).

(4.5)

The above derivation shows that the encoding of modality x can be decoupled from y1

and y2 via a disentangled latent space. We detail the training strategy for the fully specified
version of the dVAE in Alg. 4.1.

Additional zu: When learning a latent variable model, many latent factors may be very
difficult to associate independently with an observation (label), e.g. the style of handwritten
digits, or the background content in an RGB image [25, 62, 8]. Nevertheless, we may still
want to disentangle such factors from those which can be associated independently. We
model these factors in aggregate form via a single latent variable zu and show how zu can be
disentangled from the other zyi which are associated with direct observations yi. For clarity
of discussion, we limit N = 1, such that z = [zy1 , zu]. To disentangle zu from z, both of
which are specified by a confounding x, we aim to make zu and y1 conditionally independent

Algorithm 4.1 dVAE learning for fully specified z.
Require: x,y1,y2, λx, λy1 , λy2 , β, T1, T2

Ensure: φx, φy1 , φy2 , θx, θy1 , θy2

1: Initialize φx, φy1 , φy2 , θx, θy1 , θy2

2: for t1 = 1, . . . , T1 epochs do
3: Encode y1,y2 to qφy1 (zy1 |y1), qφy2 (zy2 |y2)
4: Construct z← [zy1 , zy2 ]
5: Decode z to pθx(x|z), pθy1 (y1|zy1), pθy2 (y2|zy2)
6: Update φy1 , φy2 , θy1 , θy2 , θx via gradient ascent of Eq. 4.2
7: end for
8: for t2 = 1, . . . , T2 epochs do
9: Encode x to qφx(z|x)

10: Construct [zy1 , zy2 ]← z
11: Decode z to pθx(x|z), pθy1 (y1|zy1), pθy2 (y2|zy2)
12: Update φx via gradient ascent of Eq. 4.4
13: end for
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given zy1 To achieve this, we try to make p(y1|zy1 , zu) approximately equal to p(y1|zy1) and
update the encoder and the decoder of y1 by random sampling of zu and minimizing the
distance between p(y1|zy1 , zu) and p(y1|zy1). The training strategy for this is detailed in
Alg. 4.2. In this case, the joint distribution of x and y1 has the following evidence lower
bound in the disentangling step with hyperparameters λ′′ and β′′:

log p(x,y1) ≥ ELBOu
dis(x,y1, φy1 , φu, θy1 , θx)

=λ′′xEz∼qφy1 ,φu
log pθx(x|z)

+λ′′y1
Ez∼qφy1 ,φu

log pθy1 (y1|z)

−β′′DKL(qφy1 ,φu(z|y1,x)||p(z)).

(4.6)

Note that in the above ELBO, zu is encoded from x by qφu instead of being specified by some
observed label u, as was done previously in [62, 8, 25]. After this modified disentangling step,
we can apply the same embedding step in Eq. 4.3 to learn qφx(z|x).

Multiple x modalities: The situation may arise in which we have multiple input modali-
ties which fully specify and share the latent space of z, i.e. not only an x but also an additional
x̂ (see Fig. 4.2c). Here, it is possible to first consider the joint distribution between x, y1 and
y2, and maximize the ELBO in Eq. 4.2 for the disentangling step. To link the two modalities
of x and x̂ into the same disentangled latent space and embed x̂, we can use the following:

L(φx̂|θx, θy1 , θy2) = −DKL(qφx̂(z|x̂)||pθ(z|x,y1,y2))

= ELBO′emb(x̂,x,y1,y2, φx̂)− log p(x,y1,y2).
(4.7)

Similar to Eq. 4.4, we get the following evidence lower bound with λ′′′ and β′′′ as hyperpa-
rameters:

ELBO′emb(x̂,x,y1,y2, φx̂) = λ′′′xEz∼qφx̂ log pθx(x|z)

+ λ′′′y1
Ezy1∼qφx̂ log pθy1 (y1|zy1)

+ λ′′′y2
Ezy2∼qφx̂ log pθy2 (y2|zy2)

− β′′′DKL(qφx̂(z|x̂)||p(z)).

(4.8)

For learning, one simply encodes x̂ with qφx̂(z|x̂) to z instead of pφx(z|x) as shown currently
in line 9 of Alg. 4.1.

4.3.3 Applications

Based on the theory proposed above, we develop two applications: image synthesis and
pose estimation from RGB images. Like [178], we distinguish between an absolute 3D hand
pose (3DPose), a canonical hand pose (CPose), and a viewpoint. The canonical pose is a
normalized version of the 3D pose within the canonical frame, while viewpoint is the rotation
matrix that rotates CPose to 3DPose.

In image synthesis, we would like to sample values of z and decode this into an image x
via the generative model pθx . To control the images being sampled, we want to have a latent
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Figure 4.3: Inference models for the tasks of image synthesis (left and middle) and pose
estimation (right).

z which is disentangled with respect to the 3DPose, and image (background) content, i.e. all
aspects of the RGB image not specifically related to the hand pose itself. A schematic of the
image synthesis is shown in the left panel of Fig. 4.3; in this case, we follow the model in
Fig. 4.2a and use Alg. 4.1. Here, y1 would represent 3DPose and y2 would represent the image
content; similar to [129], this content is specified by a representative tag image. By changing
the inputs y1 and y2, i.e. by varying the 3DPose and content through the encoders qφy1 and
qφy2 , we synthesize new images with specified poses and background content. Furthermore,
we can also evaluate the pose error of the synthesized image via the pose decoder pθy1 .

Tag images for specifying background content are easy to obtain if one has video sequences

Algorithm 4.2 dVAE learning for additional zu.
Require: x,y1, λx, λy1 , β, T1, T2, T3

Ensure: φx, φy1 , φu, θx, θy1

1: Initialize φx, φy1 , φu, θx, θy1

2: for t1 = 1, . . . , T1 epochs do
3: Encode x,y1 to qφy1 (zy1 |y1), qφu(zu|x)
4: Construct z← [zy1 , zu], [µ, σ]← qφu(zu|x)
5: Decode z to pθx(x|z), pθy1 (y1|z)
6: Update φy1 , φu, θy1 , θx
7: for t2 = 1, . . . , T2 epochs do
8: Encode y1 to qφy1 (zy1 |y1)
9: Construct znoise ← N (µ, σ), z← [zy1 , znoise]

10: Decode z to pθy1 (y1|z)
11: Update φy1 , θy1

12: end for
13: end for
14: for t3 = 1, . . . , T3 epochs do
15: Encode x to qφx(z|x)
16: Construct [zy1 , zu]← z
17: Decode z to pθx(x|z), pθy1 (y1|z)
18: Update φx
19: end for



4.4. Experimentation 51

from which to extract RGB frames. However, for some scenarios, this may not be the case,
i.e. if each RGB image in the training set contains different background content. This is what
necessitates the model in Fig. 4.2b and the learning algorithm in Alg. 4.2. In such a scenario,
y1 again represents the 3DPose, while the image content is modelled indirectly through x.
For testing purposes, however, there is no distinction between the two variants, as input is
still given in the form of a desired 3DPose and an RGB image specifying the content.

For hand pose estimation, we aim to predict 3DPose x, CPose y1 and viewpoint y2

from RGB image x̂ according to the model in Fig. 4.2c by disentangling z into the CPose
zy1 and viewpoint zy2 . In this case, we embed x and x̂ into a shared latent space. We apply
inference as shown by the right panel in Fig. 4.3 and learn the model with Alg. 4.1. Moreover,
because annotated training data is sparse in real world applications, we can further leverage
unlabelled or weakly labelled. Our proposed method consists of multiple VAEs, which can
be trained respectively for semi- and weakly-supervised setting. For semi-supervised setting,
we use both labelled and unlabelled CPose, viewpoint and 3DPose data to train the encoders
qφy1 ,qφy2 and all decoders in the disentangled step. For weakly-supervised setting, we exploit
images and their weak labels like viewpoint y2 by training the VAE with qφx̂ and pθy2 in the
embedding step.

Figure 4.4: Latent space walk. The images in the red boxes are provided inputs. The first
two rows show synthesized images when interpolating on the latent 3DPose space; the third
row shows skeletons of the reconstructed 3DPose. The fourth row shows synthesized images
when the pose is fixed (to the fourth column) when interpolating in the content latent space.

4.4 Experimentation

A good disentangled representation should show good performance on both discriminative
tasks such as hand pose estimation as well as generative tasks. We transfer attributes be-
tween images and infer 3D hand poses from monocular hand RGB images via disentangled



52
Chapter 4. Disentangling Latent Hands
for Image Synthesis and Pose Estimation

representations. More precisely, for image synthesis, we transfer image content with fixed
3DPose, while for 3D hand pose estimation, we predict viewpoint, CPose and 3DPose.

4.4.1 Implementation Details

Our architecture consists of multiple encoders and decoders. For encoding images, we use
Resnet-18 [47]; for decoding images, we follow the decoder architecture DCGAN [98]. For
encoding and decoding hand poses, we use six fully connected layers with 512 hidden units.

For learning, we use the ADAM optimizer with a learning rate of 10−4, a batch size of 32.
We fix the dimensionality of d of z to 64 and set the dimensionality of sub-latent variable zy1

and zy2 to 32 and 32. For all applications, the λ’s are fixed (λx = 1, λy1 =λy2 = 0.01) while
we must adjust β (β=100 for image synthesis, β′′′=0.01 for pose estimation).

4.4.2 Datasets & Evaluation

We evaluate our proposed method on two publicly available datasets: Stereo Hand Pose
Tracking Benchmark (STB) [167] and Rendered Hand Pose Dataset (RHD) [178].

The STB dataset features videos of a single person’s left hand in front of 6 real-world
indoor backgrounds. It provides the 3D positions of palm and finger joints for approximately
18k stereo pairs with 640 × 480 resolution. Image synthesis is relatively easy for this dataset
due to the small number of backgrounds. To evaluate our model’s pose estimation accuracy,
we use the 15k / 3k training/test split as given by [178]. For evaluating our dVAE’s generative
modelling capabilities, we disentangle z into two content and 3DPose according to the model
in Fig. 4.2a synthesize images with fixed poses as per the left-most model in Fig. 4.3.

RHD is a synthesized dataset of rendered hand images with 320×320 resolution from 20
characters performing 39 actions with various hand sizes, viewpoints and backgrounds. The
dataset is highly challenging due to the diverse visual scenery, illumination and noise. It is
composed of 42k images for training and 2.7k images for testing.

For quantitative evaluation and comparison with other works on 3D hand pose estimation,
we use the common metrics, mean end-point-error (EPE) and the area under the curve (AUC)
on the percentage of correct keypoints (PCK) score. Mean EPE is defined as the average
euclidean distance between predicted and groundtruth keypoints; PCK is the percentage of
predicted keypoints that fall within some given distance with respect to the ground truth.

4.4.3 Synthesizing Images

We evaluate the ability of our model to synthesize images by sampling from latent space
walks and by transferring pose from one image to another.

For the fully specified latent z model we show the synthesized images (see Fig. 4.4)
when we interpolate the 3DPose while keeping the image content fixed (rows 1-3) and when
we interpolate image content while keeping the pose fixed. In both latent space walks,
the reconstructed poses as well as the synthesized images demonstrate a smoothness and
consistency of the latent space.
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Figure 4.5: Latent space walk, interpolating zu representing image background content.
The images along with groundtruth 3DPose (red) in the red box are the input points; the
first row shows generated images and the second row corresponding reconstructed 3DPose
(blue). Note that because we are interpolating only on the background content, the pose
stays well-fixed.

We can also extract disentangled latent factors from different hand images and then
recombine them to transfer poses from one image to another. Fig. 4.6 shows the results when
we take poses from one image (leftmost column), content from other images (top row) and
recombine them (rows 2-3, columns 3-5). We are able to accurately transfer the hand poses
while faithfully maintaining the tag content.

With additional zu we also show interpolated results from a latent space walk on zu
in Fig. 4.5. In this case, the 3DPose stays well-fixed, while the content changes smoothly
between the two input images, demonstrating our model’s ability to disentangle the image
background content even with out specific tag images for training.

4.4.4 3D Hand Pose Estimation

We evaluate the ability of our dVAE to estimate 3D hand poses from RGB images based on
the model variant described in Section 4.3.3 and compare against state-of-the-art methods [11,
111, 178, 81, 90] on both the RHD and STB datasets. In [178], a two-stream architecture is

Figure 4.6: Pose transfer. The first column corresponds to images from which we extract
the 3DPose (ground truth pose in second column); the first row corresponds to tag images
columns we extract the latent content; the 2-3 rows, 3-5 columns are pose transferred images.
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Figure 4.7: Quantitative evaluation. 3D PCK on RHD (left) and STB (middle). Mean EPE
(mm) on RHD and STB (right).

Figure 4.8: CPose and 3DPose estimation on RHD and STB. For each quintet, the left
most column corresponds to the input images, the second and the third columns correspond
to CPose groundtruth (red) and our prediction (blue), the right most two columns correspond
to 3DPose groundtruth (red) and our prediction (blue).

applied to estimate viewpoint and CPose; these two are then combined to predict 3DPose.
To be directly comparable, we disentangle the latent z into a viewpoint factor and a CPose
factor, as shown in Fig. 4.3 right. Note that due to the decompositional nature of our latent
space, we can predict viewpoint, CPose and 3DPose through one latent space.

We follow the experimental setting in [178, 111] that left vs right handedness and scale
are given at test time. We augment the training data by rotating the images in the range
of [−180◦, 180◦] and making random flips along the y-axis while applying the same trans-
formations to the ground truth labels. We compare the mean EPE in Fig. 4.7 right. We
outperform [178] on both CPose and 3DPose. These results highlight the strong capabilities
of our dVAE model for accurate hand pose estimation. Our mean EPE is very close to that
of [111], while our 3D PCK is slightly better. As such, we conclude that the pose estimation
capabilities of our model is comparable to that of [111], though our model is able to obtain a
disentangled representation and make full use of weak labels. We compare the PCK curves
with state-of-the-art methods [11, 111, 178, 81, 90] on both datasets in Fig. 4.7. Our method
is comparable or better than most existing methods except [11], which has a higher AUC of



4.5. Conclusion 55

0.038 on RHD and 0.03 on STB for the PCK. However, these results are not directly com-
parable, as [11] incorporate depth images as an additional source of training data. Fig. 4.8
shows some our estimated hand poses from both RHD and STB datasets.

Semi-, weakly-supervised learning: To evaluate our method in semi- and weakly-
supervised settings, we sample the firstm% images as labelled data and the rest as unlabelled
data by discarding the labels of 3DPose, CPose and viewpoint. We also consider using only
viewpoints as a weak label while discarding 3DPose and CPose. For the RHD dataset, we
vary m% from 5% to 100% and compare the mean EPE against the fully supervised setting.
We can see that our model makes full use of additional information. With CPose, viewpoint
and 3DPose labels, we improve the mean EPE up to 3.5%. With additional images and
viewpoint labels, the improvement is up to 7.5%.
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Figure 4.9: Mean EPE of our model on the semi-supervised setting and the weakly-
supervised setting.

4.5 Conclusion

We presented a VAE-based method for learning disentangled representations of hand poses
and hand images. We find that our model allows us to synthesize highly realistic looking
RGB images of hands with full control over factors of variation such as image background
content and hand pose.

As for the future work, the assumption that the factors of variation here should be la-
belled and independent is too strict and limits its application in the real world. We will
consider to relax the need of labelled and independent between factors. Overall, we highlight
the exploration of weak labels like domain labels, and dependent labels like group labels of
shared factors. First, we highlight the exploration of weak labels like domain labels, and
dependent labels like group labels of shared factors. Specifically, we will investigate disen-
tangled representations with multimodal learning and contrastive learning. Multimodal data
provide shared factors. In this case, multimodal data with shared image factors are more
common and easy to provide ”positive image factors”. With the help of contrastive learning,
we may encourage the features of ”positive image factors” as close as possible. Second, we
target developing a common task-relevant representation learning framework based on dis-
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entangled representations for downstream tasks. Third, it is important to construct data
pairs with shared factors of variation. We will exploit synthetic data to aid the training of
disentangled representations. Based on the synthetic data, We will warm-up/pre-train the
disentangled representation-based image generation network to imitate the image rendering
process. Moreover, we will construct data pairs based on some ad-hoc record settings to get
real-world images with shared factors of variation.
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This chapter presents a VAE-based framework with multi-modal data as auxiliary infor-
mation for hand pose estimation. Hand pose estimation from monocular RGB inputs is a
highly challenging task. Many previous works for monocular settings only used RGB infor-
mation for training despite the availability of corresponding data in other modalities such as
depth maps. Note that real-world hand data usually comes with multiple modalities and hand
modalities are representations of hands in different aspects. Therefore, we aim to use different
modalities as auxiliary information for RGB input. With this target, we first formulate RGB-
based hand pose estimation as a multi-modal learning, cross-modal inference problem, and
then propose to align the latent spaces between RGB images and auxiliary modalities (e.g. ,
point clouds) to improve the representations of RGB hand. Specifically, based on VAE, we
propose to learn a joint latent representation that leverages other modalities as prior knowl-
edge during training to improve RGB-based hand pose estimation. We treat the training of
joint latent representations as a distribution alignment. By design, our architecture is highly
flexible in embedding various diverse modalities such as heat maps, depth maps and point
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clouds. We start from naive cross-modal learning, and further propose cross-modal learning
with multiple decoders, distribution alignment with a KL divergence loss and distribution
alignment with the product of Gaussian experts. We find distribution alignment with the
product of Gaussian experts is flexible and can achieve the best performance. Besides the
distribution alignment, we highlight that encoding and decoding the point cloud of the hand
surface can improve the quality of the joint latent representations. Also, we introduce a
technique, i.e. view correction, for point clouds and 3D poses, to alleviate the one-to-many
mapping problems of 3D points for RGB input. Moreover, our framework can also be used in
the weakly-supervised setting. For example, we can use surface point clouds as weak labels
for unlabelled data to aid the training process and further improve the performance.

We conduct experiments on two public benchmarks, RHD and STB. First, we verify the
performance of hand pose estimation with point clouds as prior knowledge. Experiments
show that with the aid of other modalities during training, our proposed method boosts the
accuracy of RGB-based hand pose estimation systems and significantly outperforms state-
of-the-art methods. Second, we verify the proposed view correction. Experiments show the
view correction boosts the accuracy of RGB-based hand pose estimation systems stably and
reliably. Last, we evaluate the ability of our model to synthesize hand poses and point
clouds. From two RGB images of the hand, we estimate the corresponding latent variables
and then sample points by linearly interpolating between 3D hand pose and point cloud
reconstructions of the interpolated points via our learned decoders. We observe that the
learned latent space reconstructs a smooth and realistic transition between different poses,
with changes in both global rotations and local finger configurations. This also verifies the
alignment of the distribution. In the future, we may explore more alignment in pixel-level
features by encouraging the corresponding features between different modalities to be close so
that getting better representations. The publication, contributors and author contributions
in this chapter are listed below:
Publication:

• Linlin Yang∗, Shile Li∗, Dongheui Lee and Angela Yao. “Aligning Latent Spaces for 3D
Hand Pose Estimation.” International Conference on Computer Vision(ICCV). 2019.
∗ equal contribution.

Other Contributors:

• Shile Li (PhD student)

• Dongheui Lee (Supervisor of Shile Li)

• Angela Yao (Thesis Supervisor)

Contributions:

• Linlin Yang and Dr. Shile Li developed the method and wrote the code jointly, where
Linlin Yang is more responsible for the algorithm and Dr. Shile Li is more responsible
for the implementation. Linlin Yang and Dr. Shile Li wrote the main body of the
article. Linlin Yang, Dr. Shile Li, Prof. Dr. Dongheui Lee and Prof. Dr. Angela Yao
analyzed the results and revised the article.
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5.1 Motivation

Hand pose estimation plays an important role in areas such as human activity analysis, human
computer interaction, and robotics. Depth-based 3D hand pose estimation methods are now
highly accurate [133, 69, 157] largely due to advancements from deep learning. Despite
commodity depth sensors being more commonplace, high-quality depth maps can still only
be captured indoors, thereby limiting the environments in which depth-based methods can
be deployed. Furthermore, simple RGB cameras, as well as existing RGB footage are still far
more ubiquitous than depth cameras and depth data. As such, there is still a need for accurate
RGB-based 3D hand pose estimation methods, especially from monocular viewpoints.

To tackle the ambiguities associated with monocular RGB inputs, previous works have
relied on large amounts of training data [178, 81]. Gains from purely increasing dataset size
tend to saturate, because it is very difficult to obtain accurate ground truth labels, i.e. 3D
hand poses. Annotating 3D hand joint positions accurately is a difficult task and there is often
little consensus between human annotators [118]. While several methods have been developed
to generate RGB images [81], there still exists a large domain gap between synthesized and
real-world data, limiting the utility of synthetic data.

Even though accurate ground truth for RGB data is hard to collect, there exists plenty
of unlabelled RGB-D hand data which can be leveraged together with labelled depth maps.
Cai et al. [11] first proposed the use of labelled depth maps as regularizers to boost RGB-
based methods. Yang et al. [156] introduced a disentangled representation so that viewpoint
can be used as a weak label. Inspired by these works, we aim to leverage multiple modalities
as weak labels for enhancing RGB-based hand pose estimation.

Here, we consider different modalities of hand data (e.g. RGB images, depth maps, point
clouds, 3D poses, heatmaps and segmentation masks) and formulate RGB-based hand pose
estimation as a cross-modal inference problem. In particular, we propose the use of a multi-
modal variational autoencoder (VAE). VAEs are an attractive class of deep generative models
which can be learned on large-scale, high-dimensional datasets. They have been shown to
capture highly complex relationships across multiple modalities [119, 131, 144] and have also
been applied to RGB-based pose estimation in the past [111, 156]. However, both [111]
and [156] learn a single shared latent space and as a result must compromise on pose recon-
struction accuracy.

In this work, we propose to align latent space from individual modalities. More specifically,
we derive different objectives for three diverse modalities, namely 3D poses, point clouds, and
heatmaps, and show two different ways to aligning their associated hand latent spaces. While
such a solution may appear less elegant than learning one shared latent space directly, it is
has several practical advantages. First and foremost, it is much faster to converge and results
in a well-structured latent space; in comparison, the multimodal shared latent space of [111]
tends to fluctuate as one draws data from the multiple modalities. Additionally, the learning
scheme through alignment offers more flexibility in working with non-corresponding data
and also weak supervision. The resulting latent representation allows for estimating highly
accurate hand poses and synthesizing realistic-looking point clouds of the hand surface, all
from monocular RGB images (See Fig. 5.1).
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Figure 5.1: Latent space interpolation. The far left and far right columns (dashed boxes) are
generated poses and point clouds from monocular RGB images sampled from the training
data. Other columns are generated from linear interpolations on the latent space. The
smoothness and consistency imply that different cross-modal latent spaces can be embedded
and aligned into one shared latent space.

The main contributions are as follows:

• We formulate RGB-based hand pose estimation as a multi-modal learning, cross-modal
inference problem and propose three strategies for learning from different hand inputs
of various modalities.

• We explore non-conventional inputs such as point clouds and heatmaps for learning the
latent hand space and show how they can be leveraged for improving the accuracy of
an RGB-based hand pose estimation system. A side product of our framework is that
we can synthesize realistic-looking point clouds of the hand from RGB images.

• By evaluating on two publicly available benchmarks, we show that our proposed frame-
work makes full use of auxiliary modalities during training and boosts the accuracy of
RGB pose estimates. Our estimated poses surpass state-of-the-art methods on monoc-
ular RGB-based hand pose estimation, including a whopping 19% improvement on the
challenging RHD dataset [178]

5.2 Related Works

One way to categorize hand pose estimation approaches is according to either generative or
discriminative methods. Generative methods employ a hand model and use optimization to
fit the hand model to the observations [96, 87, 127]. They usually require a good initialization;
otherwise they are susceptible to getting stuck in local minima. Discriminative methods learn
a direct mapping from visual observations to hand poses [128, 156, 69, 86, 178, 11]. Thanks
to large-scale annotated datasets [178, 164, 128], deep learning-based discriminative methods
have shown very strong performance in the hand pose estimation task.

In particular, works using depth or 3D data as input are the most accurate. Oberweger et
al. [86] use 2D CNNs to regress the hand pose from depth images, using a bottleneck layer to
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regularize the pose prediction to a certain prior distribution. Moon et al. [79] use 3D voxels
as input and regress the hand pose with a 3D CNN. More recent works [69, 34] apply 3D
point clouds as input and can estimate very accurate hand poses.

3D data is not always available either at training or at testing. Some recent works have
started to explore the use of monocular RGB data. For example, Zimmermann et al. [178]
regress heatmaps for each hand keypoint from RGB images and then regress the 3D hand
pose from these heatmaps with fully-connected layers. Mueller et al. [81] follow a similar
approach, but obtain the final 3D hand pose by using a kinematic skeleton model to fit the
probability distribution of predicted heatmaps.

More recent monocular RGB-based methods leverage depth information for training [11,
111], even though testing is done exclusively with RGB images. Our proposed method also
falls into this line of work. Cai et al. [11] propose an additional decoder to render depth
maps from corresponding poses to regularize the learning of an RGB-based pose estimation
system. This architecture is essentially two independent networks with a shared hand pose
layer. This shared layer however cannot leverage data without pose annotations. Spurr et
al. [111] propose a VAE-based method that learns a shared latent space for hand poses from
both RGB and depth images.

However, its alternating training strategy from the different modalities ignores the avail-
ability of corresponding data and leads to a slow convergence speed.

5.3 Methodology

The aim of cross-modal methods is to capture relationships between different modalities so
that it is possible to obtain information of target modalities given observations of some other
modalities. In this section, we first present the cross modal VAE (CrossVAE) [89, 111] and
our extensions to handle inputs and outputs from multiple modalities (Sec. 5.3.1). We then
introduce two latent space alignment operators strategies (Sec. 5.3.2) and how they can be
applied for RGB-based hand pose estimation (Sec. 5.3.3).

5.3.1 Cross Modal VAE and Its Extension

Given data sample x from some input modality, the cross modal VAE aims to estimate its
corresponding target value y in a target modality by maximizing the evidence lower bound
(ELBO) via a latent variable z.

log p(y) ≥ ELBOcVAE(x;y; θ, φ)

= Ez∼qφ log pθ(y|z)− βDKL(qφ(z|x)||p(z)).
(5.1)

Here, DKL(·) is the Kullback-Leibler divergence. β is a hyperparameter introduced by [48]
to balance latent space capacity and reconstruction accuracy. p(z) = N (0, I) is a Gaussian
prior on the latent variable z. The variational approximation qφ(z|x) is an encoder from x

to z, and pθ(y|z) is a decoder or inference network from z to y.
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In addition to x and y, we assume that there are corresponding data from N other
modalities {w1, . . . ,wN} and that these modalities are conditionally independent given latent
representation z. For clarity, we limit our derivation below to N = 1, though the theory
generalizes to higher N as well. To encode these additional modalities, we can extend the
ELBO from Eq. 5.1 as follow:

log p(y,w1) ≥ ELBOcVAE(x,w1;y,w1;φx,w1 , θy, θw1)

=Ez∼φx,w1
log pθy(y|z) + λw1Ez∼φx,w1

log pθw1
(w1|z)

−βDKL

(
qφx,w1

(z|x,w1)||p(z)
)
,

(5.2)

where λw1 is a hyperparameter that regulates the reconstruction accuracy between w1 and
y. Graphical models of the original cross modal VAE and its extension to more modalities
are shown in Fig 5.2a and Fig 5.2b.

We expect the z sampled from the variational approximation qφ(z|x,w1) in Eq. 5.2 to
be more informative than the one sampled from qφ(z|x) in Eq. 5.1, since it is conditioned
on both z and w1. Furthermore, the expectation term for the decoder pθw1

can be regarded
as a regularizer that prevents the latent space from over-fitting to y’s modality. From here
onwards, ,we define zjoint as z from Eq. 5.2.

Note that Eq. 5.2 assumes that corresponding data from modalities x, w1 are always
available. While this is a reasonable assumption for training, i.e. having corresponding data
samples from multiple modalities, this severely limits the applicability.

One possibility is to simplify the encoder to take only inputs from x, so that Eq. 5.2
simplifies to ELBOcVAE(x;y,w1;φx, θy, θw1). The associated algorithm is shown in Alg. 5.1.
Note that this reduces the richness of the latent space and thereby the decoding capabilities.

5.3.2 Latent Space Alignment

An alternative solution is to learn qφx,w1 (z|x,w1) and qφx(z|x) jointly and ensure that they cor-
respond, i.e. are equivalent, by aligning the two distributions together. Note that equivalence
between the two distributions follows naturally from our originally assumption that x, y and
wi are all conditionally independent given z. Inspired by multimodal learning work of [5], we
propose joint training objectives to align the latent spaces learned from single modalities to

Algorithm 5.1 Extended cross modal with one encoder.
Require: x,y,w1, T
Ensure: φx, θy, θw1

1: Initialize φx, θy, θw1

2: for t = 1, . . . , T epochs do
3: Encode x to qφx(zx|x)
4: Decode zx to pθx(y|zx), pθw1

(w1|zx)
5: Update φx, θy, θw1 via gradient ascent of ELBOcVAE(x;y,w1;φx, θy, θw1)
6: end for
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Figure 5.2: Graphical models. (a) Cross modal; (b) Extended cross modal; (c) Latent
alignment with a KL divergence loss; (d) Latent alignment with the product of Gaussian
experts. The shaded nodes represent observed variables while un-shaded nodes are latent.
The red and black solid lines denote variational approximations qφ or encoders, and the
generative models pθ or decoders respectively. The dashed lines denote the operation that
embedding cross-modal latent spaces into a joint shared latent space; it is a KL divergence
optimization for (c) and product of Gaussian experts for (d). Figure best viewed in colour.

the one learned with joint modalities to improve inference capabilities. More specifically, we
would like to align zx (the latent representation learned only from x), with the joint latent
representation zjoint learned from both x and w so as to leverage the modalities of w. One
can also regard this as bringing together qφx,w1 (z|x,w1) and qφx(z|x) as close as possible.

KL divergence Loss. An intuitive way of aligning one latent space with another is
to incorporate an additional loss term to reduce the divergence between qφx,w1 (z|x,w1) and
qφx(z|x). This was first proposed by [119] for handling missing data from input modalities in
multimodal setting. While we have no missing data in our cross-modal setting, we introduce
a similar KL-divergence term DKL with hyper-parameter β′ to align the latent spaces.

L(φx,w1 ,φx, θy, θw1)

= ELBOcVAE(x,w1;y,w1;φx,w1 , θy, θw1)

+ ELBOcVAE(x;y,w1;φx, θy, θw1)

− β′DKL

(
qφx,w1

(zjoint|x,w1)||qφx(zx|x
)

).

(5.3)

Note that the decoders θy, θw1 are shared in the above ELBOs in Eq. 5.3. This implicitly
forces zjoint and zx to be embedded to the same space (see Fig. 5.2c and Alg. 5.2).

The above formulation suffers from two major drawbacks on the encoding side. Firstly, as
the number of modalities or N increases, the joint encoder qφx,w1

becomes difficult to learn.
Secondly, with only the two encoders qφx and qφx,w1

, we are not able to leverage data pairs
(w1,y). To overcome these weaknesses, we introduce the product of experts (PoE) as an
alternative form of alignment.

Product of Gaussian Experts. It was proven in [144] that the joint posterior is pro-
portional to the product of individual posteriors, i.e. q(z|x,w1) ∝ p(z)q(z|x)q(z|w1). To that
end, we can estimate the joint latent representation from unimodal latent representations.
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Recall that in the formulation of the VAE, both p(z) and q(z|·) are Gaussian; as such, we ar-
rive at q(z|x,w1) through a simple product of Gaussian experts, q(z|x) and q(z|w1) [13, 144]
(see model in Fig. 5.2d). With the help of shared decoders, we arrive at a joint latent
representation through the following objective:

L(φx, φw1 , θy, θw1) = ELBOcVAE(x;y,w1;φx, θy, θw1)

+ ELBOcVAE(w1;y,w1;φw1 , θy, θw1)

+ ELBOcVAE(x,w1;y,w1;φx, φw1 , θy, θw1)

= Ezx∼qφx log pθ(y,w1|zx) + Ezw1∼qφw1
log pθ(y,w1|zw1)

+ Ezjoint∼GProd(zx,zw1 ) log pθ(y,w1|zjoint)

− β(DKL (qφ(zx|x)||p(z)) +DKL (qφ(zw1 |w1)||p(z))),

(5.4)

where the GProd(·) is the product of Gaussian experts. Note in this formulation, we do not
need a joint encoder φx,w1 for x and w1 as was the case for alignment with KL divergence
in Eq. 5.3. Instead, we use q(z|x) and q(z|w1) as two Gaussian experts. Suppose that
q(z|x) = N (µ1,Σ1) and q(z|w1) = N (µ2,Σ2). The product of two Gaussian experts is also
Gaussian with mean µ and covariance Σ, where

µ = (µ1T1 + µ2T2)/(T1 + T2), and

σ = 1/(T1 + T2), where T1 = 1/Σ1, T2 = 1/Σ2.
(5.5)

All operations in the product of Gaussian experts are element-wise. In this way, we can build
a connection between zjoint and zx, zw1 , forcing them all into one shared latent space. This
alignment strategy is more flexible than Alg. 5.2, because the encoders of different modalities
can be trained individually, even from different datasets, while for Alg. 5.2, the joint encoder
must be trained on the complete x,w1 pairs. The learning algorithm can be found in Alg. 5.3.

Algorithm 5.2 Latent alignment with Eq. 5.3.
Require: x,y,w1, T
Ensure: φx, φx,w1 , θy, θw1

1: Initialize φx, φx,w1 , θy, θw1

2: for t = 1, . . . , T epochs do
3: Encode x to qφx(zx|x)
4: Encode x,w1 to qφx,w1

(zjoint|x,w1)
5: Decode zx to pθx(y|zx), pθw1

(w1|zx)
6: Decode zjoint to pθx(y|zjoint), pθw1

(w1|zjoint)
7: Construct DKL(qφx,w1

(zjoint|x,w1)||qφx(zx|x))
8: Update φx, φx,w1 , θy, θw1 via gradient ascent of Eq. 5.3
9: end for
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5.3.3 Application Towards Hand Pose Estimation

In the context of RGB-based hand pose estimation, x represents RGB images and y 3D hand
poses. Other modalities like heatmaps, depth maps, point clouds and segmentation masks
can be used as w during training to improve the learning of the latent space and thereby
leading to more accurate hand pose estimates from RGB inputs. Here, we use point clouds
(C) and heatmaps (H) as additional modalities w to improve the cross modal inference of
RGB (R) to 3D poses (P). In the rest, we use the format “A2B” to represent the estimation of
target modality “B” from input modality “A” during training. For example, R2CHP represents
the estimation of point clouds, heatmaps and 3D poses from RGB input. Note that unless
indicated otherwise, the test settings use RGB images as the source modality or input and
3D hand poses as the target modality or output.

5.4 Implementation Details

5.4.1 Data Pre-Processing and Augmentation

From the RGB image, the region containing hand is cropped from ground truth masks and
resized to 256×256. The corresponding region in the depth image is converted to point clouds
using the provided camera intrinsic parameters. For each training step, a different set of 256

points are randomly sampled as training input.
Viewpoint correction. After cropping the hand from the RGB image, the center of

the hand in the image moves from some arbitrary coordinates to the center of the image. As
such, the 3D hand pose and associated point cloud must be rotated such that the viewing
angle towards the hand aligns with the optical axis. As indicated in [69], this correction
is necessary to remove the many-to-one observation-pose pairings. We follow the approach
given in [69].

Data augmentation was performed online during training. The images are scaled ran-
domly between [1, 1.2], translated [−20, 20] pixels and rotated [−π, π] around the camera
view axis. Furthermore, the hue of the image is randomly adjusted by [-0.1, 0.1]. The point
clouds are rotated randomly around the camera view axis and the 3D pose labels are also

Algorithm 5.3 Latent alignment with Eq. 5.4.
Require: x,y,w1, T
Ensure: φx, φw1 , θy, θw1

1: Initialize φx, φw1 , θy, θw1

2: for t = 1, . . . , T epochs do
3: Encode x to qφx(zx|x)
4: Encode w1 to qφw1

(zw1 |w1)
5: Construct zjoint = GProd(zx, zw1)
6: Decode zx, zw1 , zjoint to pθx(y|·), pθw1

(w1|·) respectively
7: Update φx, φw1 , θy, θw1 via gradient ascent of Eq. 5.4
8: end for
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rotated accordingly.

Figure 5.3: 3D pose estimation and point cloud reconstruction for RHD (left) and STB
(right) dataset. From top to bottom: RGB images, ground-truth poses in blue, estimated
poses from zrgb in red, ground-truth point clouds, reconstructed point clouds from zrgb. The
color for point clouds decodes the depth information, closer points are more red and further
points are more blue. Note that the ground-truth point clouds are not used for inference, it
is shown here only for comparison purpose.

5.4.2 Encoder and Decoder Modules

Our proposed method is highly flexible and can integrate many different modalities to con-
struct a common latent space. In the current work, we learn encoders for RGB images and
point clouds and decoders for 3D hand poses, point clouds and heatmaps of the 2D hand
key points on the RGB image. We choose to convert the 2.5D depth information as 3D
point clouds instead of standard depth maps, due to its superior performance in hand pose
estimation, as shown in previous works [69, 19, 38]. Heatmaps are chosen as a third modality
for decoding to encourage convergence of the RGB encoder, since the heatmaps are closely
related to activation areas on the RGB images.

For encoding RGB images, we use Resnet-18 from [47] and two additional fully connected
layers to predict the mean and variance vector of the latent variable. For encoding point
clouds, we employ the ResPEL network [69], which is an learning architecture that takes
unordered point cloud as input. While we use same number of PEL layers as in [69], the
number of hidden units are reduced by half to ease the computational load.

To decode the heatmaps, we follow the decoder architecture of the DC-GAN [98]. The
loss function used for the heatmaps is the L2 loss function of pixel-wise difference between
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prediction and ground-truth:

Lheat =
J∑
j=1

||Ĥj −Hj ||, (5.6)

whereas Hj is the ground-truth heatmap for the j-th hand keypoint and Ĥj is the prediction.
For decoding point clouds, we follow the FoldingNet architecture [157] and try to reconstruct
a point cloud representing the visible surface of the hand. To learn the decoder, we use two
different loss terms based on the Chamfer distance and Earth Mover’s distance (EMD). The
Chamfer distance is the sum of the Euclidean distance between points from one set and its
closest point in the other set and vice versa:

LChamfer =
1

|P |
∑
p∈P

min
p̂∈P̂
||p̂− p||+ 1

|P̂ |

∑
p̂∈P̂

min
p∈P
||p̂− p||. (5.7)

For the Earth Mover’s distance, one-to-one bijective correspondences are established between
two point clouds, and the Euclidean distances between them are summed:

LEMD = min
φ:P→P̂

1

|P |
∑
p∈P
||p− φ(p)||, (5.8)

In both Eq. 5.7 and 5.8, P̂ , P ∈ R3 represent the predicted point clouds and the ground truth
point clouds respectively and the number of points in both clouds are 256.

The decoder for 3D pose consists of 4 fully-connected layers with 128 hidden units for
each layer. To learn the pose decoder, we use an L2 loss:

Lpose = ||ŷ − y||, (5.9)

where ŷ, y are the predicted and the ground truth hand poses describing the 3D locations of
21 keypoints.

Combining all the losses in Eq. 5.6-5.9, we obtain the following reconstruction loss func-
tion:

Lrecon = Lpose + λheatLheat + λcloud(LChamfer + LEMD). (5.10)

The overall loss for training is the sum of reconstruction loss and its corresponding DKL

loss based on Eq. 5.2-5.4.

5.5 Experimentation

In the experiments, we set the dimensionality of latent variable z to 64, λheat to 0.01, λcloud
to 1 for all cases and β′ to 1 for Eq. 5.3 . Our method is implemented with Tensorflow. For
learning, we use an Adam optimizer with an initial learning rate of 10−4 and a batch size of
32. We lower the learning rate by a factor of 10 two times after convergence. The value of β
is annealed from 10−5 to 10−3.
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Figure 5.4: Latent space interpolation. Two examples of reconstructing point clouds and
hand poses from the latent space. The most left and most right column are RGB images and
their corresponding ground-truth poses. Other columns are generated point clouds and poses
when interpolating linearly on the latent space.

5.5.1 Datasets and Evaluation Metrics

Our method is evaluated on two publicly available datasets: the Rendered Hand Pose Dataset
(RHD) [178] and the Stereo Hand Pose Tracking Benchmark (STB) [167].

RHD is a synthesized dataset of rendered hand images with 320×320 resolution from
20 characters performing 39 actions. It is composed of 41238 samples for training and 2728
samples for testing. For each RGB image, a corresponding depth map, segmentation mask,
and 3D hand pose are provided. The dataset is highly challenging because of the diverse
visual scenery, illumination, and noise.

STB contains videos of a single person’s left hand in front of six different real-world
backgrounds. The dataset provides stereo images, color-depth pairs with 640 × 480 resolution
and 3D hand pose annotations. Each of the 12 sequences in the dataset contains 1500 frames.
To make the 3D pose annotations consistent for RHD, we follow [178, 11] and modify the
palm joint in STB to the wrist point. Similar to [178, 11, 111, 156], we use 10 sequences for
training and the other 2 for testing.

To evaluate the accuracy of the estimated hand poses, we use the common metrics mean
end-point-error (EPE) and area under the curve (AUC) on the percentage of correct keypoints
(PCK) curve. EPE is measured as the average Euclidean distance between predicted and
ground-truth hand joints, whereas AUC represents the percentage of predicted keypoints that
fall within certain error thresholds compared with ground-truth poses. To compare with the
state-of-the-art methods in a fair way, we follow the similar condition used in [111, 50, 11, 156]
to assume that the global hand scale and the hand root position are known in the experimental
evaluations, where we set the middle finger’s base position as the root of the hand.
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Strategy Encoder Decoder Mean EPE [mm]

S1 (Eq. 5.1) R P 16.61

S2 (Alg. 5.1) R H+P 16.10
R C+P 15.91
R C+H+P 15.49

S3 (Alg. 5.2) R+C C+H+P 14.93

S4 (Alg. 5.3) R+C C+H+P 13.14

Table 5.1: Comparison of different training strategies on the RHD dataset. The mean EPE
values are obtained from monocular RGB images. (R: RGB, C: point cloud, P: pose, H:
heatmap). Poses estimated from monocular RGB images can be improved by increasing
number of different encoders and decoders during training.

5.5.2 Qualitative Results

Using the flexible design of our method, we train the networks exploiting all the available
modalities and test using only limited modalities. In Fig. 5.3, we show some qualitative
examples of poses and point clouds decoded from the zrgb. The 3D poses and point clouds
can be successfully reconstructed from the same latent variable z. The reconstructed point
clouds’ surfaces are smoother than the original inputs, since the inputs are sub-sampled from
raw sensor data, while the reconstructed point clouds hold some structured properties from
the FoldingNet decoder.

We also evaluate the ability of our model to synthesize hand poses and point clouds.
From two RGB images of the hand, we estimate the corresponding latent variables z1,2 and
then sample points by linearly interpolating between the two. 3D hand pose and point cloud
reconstructions of the interpolated points via our learned decoders are shown in Fig. 5.4. We
observe that the learned latent space reconstructs a smooth and realistic transition between
different poses, with changes in both global rotations and local finger configurations.

5.5.3 RGB 3D Hand Pose Estimation

Note that even though our network is trained with multiple modalities, the results provided
here are based only in monocular RGB inputs.

Training Strategy. We first compare different training strategies (S) in Table 5.1:
S1. Baseline method to only use RGB-pose pairs for training. S2. Training with extended
decoders, where the latent variables zrgb reconstruct more modalities (heatmaps and point
clouds) besides poses. S3. Training with an additional encoder for point clouds, where the
different latent variables are aligned as per Alg. 5.2. S4. The alignment method in S3 is
changed to the product of Gaussian experts (Alg. 5.3). More comparison results with AUC
metric are shown in Fig. 5.5

Comparing S1 to the other strategies, we observe that the baseline performance can be
improved by training with increasing number of additional encoders or decoders. Comparing
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Figure 5.5: Comparisons of 3D PCK results of our different strategies on RHD dataset.
The abbreviations can be found in Sec. 5.3.3 and “vc” stands for “view correction”

S4 to S3, the alignment with the Gaussian product outperforms the intuitive KL-divergence
alignment method by capturing a better joint posterior of different input modalities.

Furthermore, we emphasize the necessity of viewpoint correction (Sec. 5.4.1). We applied
both view corrected and uncorrected data for training the baseline strategy “R2P” (S1). The
difference can be seen from Fig. 5.5, where the view corrected data clearly improves the AUC
metric.

Method RHD STB

VAE-based
Spurr et al. [111] 19.73 8.56
Yang et al. [156] 19.95 8.66

Ours 13.14 7.05

Others Z&B [178] 30.42 8.68
Iqbal et al. [50] 13.41 \

Table 5.2: Comparison to state-of-the-art on the RHD and STB with mean EPE [mm]. Ours
refers to S4 in Table 1 (RC2CHP).

Comparison to state-of-the-art. In Table 5.2, we compare the EPE of our method
with VAE-based methods [111, 156] which are most related to our method as well as other
state-of-the-art [178, 50]. On both datasets, our proposed method achieves the best results,
including an impressive 1.61mm or 19% improvement on the STB dataset.

We also compare the PCK curve of our approach with other state-of-the-art methods [111,
156, 178, 50, 81, 90] in Fig. 5.6 and Fig. 5.7. For both datasets, our method achieves
the highest AUC value on the 3D PCK. We marginally outperform the state-of-the-art [50,
11] on the STB dataset, whereas on the RHD dataset, we surpass all reported methods to
date [178, 156, 11, 111] with a significant margin. We note, however, that the STB dataset
contains much less variation in hand poses and backgrounds than the RHD dataset and that
performance by state-of-the-art methods on STB has become saturated. As such, there is
little room for improvement on STB, whereas the benefits of our method is more visible on
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Figure 5.6: AUC: Comparison to state-of-the-art methods on the RHD dataset. Ours refers
to S4 in Table 1 (RC2CHP).
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Figure 5.7: AUC: Comparison to state-of-the-art methods on the STB dataset. Ours refers
to S4 in Table 1 (RC2CHP).

the RHD dataset.

Weakly-supervised learning. Thanks to flexibility of the proposed method, (surface)
point clouds can be also used as “weak” labels for unlabelled data to aid the training process.
We tested our method under a weakly-supervised setting on the RHD dataset, where we
sample the first m% samples as labelled data (including RGB, point clouds and 3D poses)
and the rest as unlabelled data (including RGB, point clouds) by discarding 3D pose labels.
We compare the supervised setting with the weakly-supervised setting for the “RC2CHP”
networks (S4 in Table 5.1). In the supervised training setting, we train the networks with
only m% samples, In the weakly-supervised setting, besides fully supervised training on m%
data, we also train the “RC2C” sub-parts with the rest (100-m)% samples simultaneously.
The percentage of labelled data is varied from 5% to 100% to compare the mean EPE between
supervised and weakly-supervised settings. From Fig. 5.8 we can see that our method makes
full usage of additional unlabelled information, where the improvement is up to 6%.
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Figure 5.8: Mean EPE of our model on the weakly-supervised setting. Our method makes
full use of unlabelled data, as the weakly-supervised setting performs almost as well as the
supervised one.

5.6 Conclusion

We formulate RGB-based hand pose estimation as a multimodal learning and cross-modal
inference problem. We derive different objectives for three hand modalities, and show different
ways of aligning their associated latent spaces with a joint one. We highlight the flexibility of
this framework as it can take arbitrary data pair for training. We will continue to explore the
network that learns from multimodal data but is applicable during inference to one specific
inputs. This is an efficient and effective way to use multimodal data. However, the alignment
in this work is in the latent space, which neglects the spatial information in pixel-level features.
We may explore more alignment in pixel-level features by encouraging the corresponding
features between different modalities be close so that getting better representations. Note
that this is applicable for 2D and 3D modalities, as we can connect 3D points with 2D pixels
using the camera projection. Moreover, there is a strong connection between our proposed
alignment strategy and knowledge distillation because both strategies require pre-training
and imitation. We will encourage the two strategies to learn from each other and propose a
unified framework for the alignment.
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With synthetic data as auxiliary information, we aim to reduce the burden of annotation
for real-world data. This chapter targets a new hand pose estimation setting, i.e. , the cross-
domain pose estimation, learning from labelled synthetic data and unlabelled real-world RGB
data, for application on real-world RGB data. Due to the large domain gap between synthetic
data and real-world data, training models with synthetic data generalize poorly to real-world
settings. To address the cross-domain pose estimation problem, we introduce SemiHand, a
framework that considers pseudo-labelling and consistency training for semi-supervised hand
pose estimation. Pseudo-labelling and consistency training are already established in semi-
supervised classification. However, extending such concepts for a regression task and in the
context of 3D pose estimation is non-trivial. We show their difference in the following. First,
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with perturbations like noise, rotation, translation and flip, the labels of classification remain
the same. In contrast, for 3D hand pose estimation, labels change accordingly based on
perturbation. For example, when rotating the RGB images, the keypoint location in the
image coordinate also changes. Second, classification is a single modality task while 3D pose
estimation may consider different modalities and adopt multi-task frameworks. Different
modalities should be consistent. Third, classification takes one-hot labels as ground-truth
labels while 3D hand pose estimation aims to predict 3D poses. 3D poses as continuous
labels should be biomechanically feasible. Last, for label correction, threshold or sharpening
for classification are used to revise the one-hot labels. For 3D poses, we should correct
poses based on their biomechanical feasibility. Inspired by classification, we highlight their
difference and transfer pseudo-labelling and consistency training to 3D hand pose estimation
accordingly.

Specifically, for perturbation and different modalities, we propose view consistency and
cross-modal consistency for 3D pose estimation to encourage the predictions to be consistent
with perturbations and auxiliary modalities. For label correction, we propose a template-
based label correction module to refine the pseudo-labels for real-world data and encourage
the model to be robust to noisy label outputs. For pseudo-labelling, we use consistency loss as
the confidence to select confident pseudo-labels and then revise the infeasible pseudo-labels,
to avoid confirmation bias. Moreover, to improve the stability of the fine-tuning, we propose
a self-paced strategy and gradually take the refined predictions from weakly augmented input
to supervise the predictions from strongly augmented input. Here, weak augmentations refer
to small rotations and translations, while strong augmentation includes larger rotations and
translations as well as image scaling. To evaluate our method, we pre-train the model on one
synthetic dataset, RHD and then fine-tune it with only the training data of a (single) real-
world dataset’s training partition. The test data is withheld completely and we use the labels
of these test data only for evaluation purposes. We evaluate our method on four real-world
datasets. With our pseudo-labelling, consistency training and self-pace training strategy, we
achieve significant improvement on real-world data. Moreover, we compare our method with
existing weakly-supervised methods. Without any labels, our SemiHand achieves a similar
improvement, demonstrating the effectiveness of our method, compared to existing weakly-
supervised methods. In the future, we aim to remove even the requirement of unlabelled
data. We would like to explore the techniques like domain randomization and hand image
renderer, and make the model purely trained on synthetic data achieve a satisfactory result
in the real world. The publication, contributors and author contributions in this chapter are
listed below:

Publication:

• Linlin Yang, Shicheng Chen and Angela Yao. “SemiHand: Semi-supervised Hand Pose
Estimation with Consistency.” International Conference on Computer Vision(ICCV).
2021.
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Other Contributors:

• Shicheng Chen (Master Student)

• Angela Yao (Thesis Supervisor)

Contributions:

• Linlin Yang proposed the framework, wrote the code and conducted the experiments.
Linlin Yang and Shicheng Chen were responsible for the label correction module, includ-
ing the implementation and experiments to verify the effectiveness of label correction.
Linlin Yang and Prof. Dr. Angela Yao developed the idea, analyzed the results and
wrote the main body of the article.

6.1 Motivation

A key challenge of monocular 3D hand pose estimation is getting sufficient high-quality
ground-truth poses. Labelling real-world data to an accurate enough degree often requires
dedicated interfaces and or multi-view camera rigs. This makes it non-trivial to gather “in-
the-wild” data that is much sought-after for actual application deployment.

Synthesizing training data is considered an easy alternative to get accurate labels and
has been incorporated into many learning-based frameworks. Yet there exists a significant
domain gap between synthetic and real-world images so the performance of models trained
on synthetic data deteriorates significantly when applied to real-world data. The favoured
approach for reducing the domain gap is a mix-and-train strategy [50], i.e. mixing multiple
real-world datasets together with synthetic data for training. Such a strategy depends largely
however on the quantity and quality of the labelled samples in the combined datasets.

What if we tried to learn only from labelled synthetic data and fully unlabelled real-world
data? We target exactly this scenario and present the first framework for domain-separated
semi-supervised learning for 3D hand pose estimation. A classic approach in semi-supervised
learning is to generate pseudo-labels [65] for the unlabelled data, usually via a classifier learned
from the labelled portion of the data [65, 107]. The utility of pseudo-labels is highly variable.
Used naively, these labels are even detrimental to learning because of confirmation bias [2],
i.e. , the classifier over-fits to the pseudo-labels which tend to be noisy and or inaccurate, so
additional corrections are necessary [2, 44, 174, 158]. Additionally, consistency training with
unlabelled data [107, 2, 150] can increase the reliability of pseudo-labels.

We integrate these concepts and introduce SemiHand, a framework that considers spa-
tial consistency and biomechanical feasibility for semi-supervised hand pose estimation. We
propose two consistency losses to encourage the predictions to be consistent with perturba-
tions and other modalities. As our labelled and unlabelled data come from different domains,
i.e. synthetic vs real RGB images, there is the added challenge of domain adaptation to the
unlabelled data. To bridge the domain gap, we propose a cross-modal consistency and lever-
age semantic predictions [73] from an auxiliary task to provide guidance for the predicted
poses. Meanwhile, we regard predictions on real-world data as noisy labels; further training
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Figure 6.1: Pseudo-labelling of SemiHand. Our pseudo-label with confidence is generated
based on the prediction from original (blue pose), the prediction from perturbation (green
pose) and the corrected prediction (red pose).

the network from these predictions directly may actually be detrimental due to their inac-
curacy. To mitigate the impact of this confirmation bias, we introduce label correction and
sample selection based on the feasibility so that we train with only corrected pseudo-labels
with high-confidence. We show our pseudo-labelling strategy in Fig. 6.1.

Pseudo-labelling and consistency training are already established in semi-supervised clas-
sification [65, 107, 2]. However, extending such concepts for a regression task and in the
context of 3D pose estimation is non-trivial and we are the first to present a unified frame-
work to do so. For example, existing methods [44, 139] primarily learn a noise transition
matrix to correct pseudo-labels; such an approach is not applicable for regression and we
instead focus on the confidence and feasibility of poses as a selection and correction crite-
ria. Similarly, consistency training in classification simply keeps the predicted categories
unchanged under perturbation. Consistency in 3D pose estimation however needs to account
for the change in label, i.e. the pose after perturbation. We summarize our contributions
below:

• We propose a novel RGB-based hand pose estimation framework using labelled syn-
thetic data and unlabelled real-world data; it is the first semi-supervised framework
that combines pseudo-labeling with consistency training for RGB-based hand pose.

• Based on the feasibility of hand poses, we propose a method for pose registration
and sample selection to correct noisy label outputs and select pseudo-labels of high
confidence for training.

• We propose two consistency losses for 3D pose estimation to encourage the predictions
to be consistent with perturbations and auxiliary modalities.

• Using a pre-trained synthetic model, we are able to adapt our model to challenging real-
world datasets without any labels. Our results are compelling when compared to fully
supervised frameworks and outperform previous works on synthetic image enhancement.
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6.2 Related Works

6.2.1 3D Hand Pose Estimation

Most recent methods apply deep learning and propose dedicated network architectures and or
training strategies, e.g. voxel-to-voxel predictions [79], point-to-point regression [38, 69], and
pixel-wise estimations [30, 50]. Other works like [29] propose a tree-like network structure to
capture the hand’s topology. As for training strategies, existing works are diverse and have
explored multitask learning [11, 9, 169], multi-view constraints for self-supervision [132, 135],
and biomechanical constraints [110] as regularization. In RGB-based hand pose estima-
tion, datasets are still relatively small and highly variable from each other. As such, most
approaches cannot generalize to other datasets or in-the-wild scenarios. To improve the
cross-dataset generalization, existing works like [50] adopt a mix-and-train strategy, i.e. ,
mix multiple real-world datasets together with synthetic data for training. Following this ap-
proach, most RGB-based works tend to synthesize more training samples using a GAN [81]
or a generation model [63].

For 2D pose, semi-supervised learning methods like [99] treat each 2D keypoint indepen-
dently and select ‘labels’ based on heatmap peaks. For 3D pose, weakly- and semi-supervised
learning explore using weak labels or simply unlabelled data to improve cross dataset perfor-
mance. Works like [9, 4] use 2D pose or the hand mask as weak labels while projecting the
points in 3D to image coordinates.

Self-supervised learning for 3D pose removes even the requirement of weak labels, The
most related works are for depth-based inputs [20, 132, 135] and human pose estimation [51].
Depth-based works like [20] use point cloud reconstruction as an auxiliary task to improve the
performance of 3D hand pose estimation. Beyond that, Wan et al. [132, 135] introduce model-
fitting with differentiable renderers for depth map reconstruction to utilize unlabelled data.
RGB images however are affected by illumination and complex backgrounds, which prevent
direct application of reconstruction or rendering approaches to RGB. As for the RGB-based
human pose estimation, existing work [51] focuses on unlabelled multi-view images, which is
still a highly limited scenario.

6.2.2 Semi-Supervised Learning

Consistency training and pseudo-labeling has recently shown much promise for semi-
supervised classification [107, 150, 44, 6, 2, 122] and segmentation [174, 31]. Recent semi-
supervised works have achieved comparable performance to supervised methods with only a
fraction of the labels. For consistency training, works like [150, 31] have explored various
augmentations. The mean teacher strategy [122] accelerates consistency training by aver-
aging model weights instead of label predictions. For pseudo-labeling, operations such as
argmax [65], sharpening [6] or thresholding [107] have been introduced to modify predic-
tions as labels. Others [2, 44, 174, 158] treat predictions as noisy labels and introduce label
correction to generate pseudo-labels.

Our work is the first to explore pseudo-labelling and consistency learning for hand pose
estimation. Several distinctions separate pose estimation from the previous application of
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these techniques for image classification and segmentation. Formulation-wise, it is a re-
gression problem that critically depends on spatial information. Secondly, there is a clear
separation between biomechanical feasible versus infeasible poses. Therefore, we design a
novel pipeline for semi-supervised hand pose estimation with corrected pseudo-labels and
spatial consistency.

6.3 Methodology

Figure 6.2: Overview of SemiHand. The model is pre-trained on labelled synthetic data.
Consistency training (orange double headed arrow, see Sec. 6.3.3) on unlabelled real-world
data with perturbation augmentations (see Sec. 6.3.4) and label correction and sample se-
lection (blue dash-dotted arrow, See Fig. 6.1 and Sec. 6.3.2) together with augmentation of
differing difficulties. (see Sec. 6.3.4).

We present an overview of our framework in Fig. 6.2. For pose estimation, let XL =

{(xli,pi,wi) : i∈ (1, · · · , N)} be N labelled examples, where xli is a labelled synthetic RGB
image of a hand, pi = (uvi,di) is its target 2.5D hand pose, where uv is the the image
pixel coordinates and d is its metric depth relative to the root keypoint, and wi is a binary
mask outlining the overall hand shape. Let XU = {(xuj ) : j ∈ (1, · · · ,M)} be M unlabelled
examples, where xui is an unlabelled real-world RGB image of a hand. We aim to estimate
the 2.5D hand pose and its associated hand mask by learning a mapping f in the form of a
neural network parameterized by θ, such that (p,w) = f(p,w|θ;XL, XU ). In practice, the
hand mask w is obtained by our shared fully convolutional network though our formulation
is sufficiently general that it can also be learned by a separate network. We optimize a mixed
objective of

L = Lsup(XL) + Lunsup(XU ) + λcLcons(XL, XU ), (6.1)

where Lsup is the supervised loss, Lunsup(XU ) is an unsupervised loss with pseudo-labels and
Lcons(XL, XU ) is a consistency loss. λc is a hyperparameter. In the following, we introduce
the details of the three losses.
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6.3.1 Supervised Pose Estimation

A standard approach for 3D hand pose estimation is 2.5D pose regression [50] followed by a
lifting into full 3D if camera intrinsics are known. The main benefit of regressing pose in 2.5D
is the pixel-wise representation. This adds flexibility for multitask learning and can easily
be extended to predict other pixel-wise outputs such as segmentations or depth maps with
fully convolutional networks. The multitasking strategy achieves improvement for hand pose
estimation [154]. In our work, besides 2.5D pose p, we also predict hand mask w. Here, we
first define the distance ` between two 2.5D poses p1 = (uv1,d1) and p2 = (uv2,d2) as

`(p1,p2) = ||uv1 − uv2||22 + λd||d1 − d2||22, (6.2)

where λd is a hyperparameter with a value of 50. Given a ground-truth pgt, wgt and corre-
sponding predictions p, w, the supervised loss is defined as:

Lsup(XL) = `(p,pgt) + λw||w −wgt||1, (6.3)

where λw is a hyperparameter. Here, we adopt the two-stacked hourglass with 2.5D regression
as our backbone to estimate 2.5D representation and hand mask.

6.3.2 Pseudo-labels for Pose Estimation

For now, assume we have some initial network f(θ) from pre-training. We initialize pseudo-
labels p̂ = (ûv, d̂) of XU using the prediction of f(θ) and fine-tune the model with corrected
pseudo-labels r. With the prediction p from f(p|θ;XU ), the objective Lunsup(XU ) can be
formulated as:

Lunsup(XU ) = 1(C(p̂) ≤ τ)`(p, p̂), where p̂ vM. (6.4)

Here, 1(·) is the indicator function, C(·) is a function to estimate the confidence of given
pseudo-labels, and τ is a confidence threshold. Pseudo-labels are often noisy and may require
corrections [72, 44]. In this objective, we constrain the pseudo-pose p̂ to be drawn fromM, a
pose space whose points are biomechanical feasible poses in which bone lengths are consistent
with the given hand model. Based on Eq. 6.4, we introduce a pose registration function P (·)
to project the pseudo-labels p̂ to corrected poses r and add a loss to minimize the distance
between the prediction p and r. To prevent degenerate labels r, we add a regularizer to
encourage r to remain close to p̂. Adding these terms, we get

Lunsup(XU ) = 1(C(p̂)≤τ)`(p, p̂) + `(r,p) + `(r, p̂), (6.5)

with r = P (p̂). For learning the network θ and the pseudo-labels p̂, We solve the objective
iteratively. First, we update the parameter of the network θ by

Lunsup(XU ) = 1(C(p̂) ≤ τ)`(p, p̂) + `(r,p), (6.6)

which can be solved by gradient descent. We then estimate the pseudo-labels p̂ and its
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Algorithm 6.1 Semi-supervised hand pose estimation.
Require: Pre-trained model θ0 based on Lsup, threshold τ , epoch number K, XL and XU

Ensure: Final model θ and pseudo labels p̂
1: Initialize the pseudo-labels p̂ for XU

2: Initialize the corrected pseudo-labels r for XU

3: for t = 1, . . . ,K epochs do
4: Calculate C(ŷ)
5: Update θ via gradient ascent of Eq. 6.6 with Lsup(XL) and Lcons(XL, XU )
6: Update p̂ and r based on Eq. 6.7
7: end for

correction r based on the previous prediction p′ and the previous correction r′,

p̂ = arg min
p̂

`(p′, p̂) + `(r′, p̂),

r = P (p̂).
(6.7)

Label Correction. Estimating the joint locations independently is not effective to ensure
the biomechanical feasibility of the hand. Inspired by the similarity transformation of [135],
we propose a pose registration function P . More specifically, we estimate the transformation
T with a greedy approximation based on the hand’s kinematic chain. As shown in Fig. 6.4
right, given a template (black) and a prediction (gray), we first align the root by translation,
and then calculate the bone direction (dotted gray line) using the parent node of registered
pose and the child node of estimation. With calculating T of each bone along with the chain
of a hand, we get the registered pose (orange). The proposed greedy approximation avoids
the accumulation of end point errors and ensure the feasibility of bone lengths without any
training.

Sample Selection. We design the confidence function C for samples based on the plau-
sibility and stability of the pseudo-labels p̂ for the unlabelled data xu as below:

C(p̂) = `(T (p̂), f(p|θ; T (xu))) + `(p̂, P (p̂)), (6.8)

where T is a random perturbation augmentation. The proposed confidence is a sum of the
distance between the prediction of perturbed image and its corresponding pseudo-label, and
the distance between the pseudo-label and its corrected pseudo-label.

6.3.3 Self Consistency for Pose Estimation

For bothXL andXU , we introduce a view consistency term Lvc and a cross-modal consistency
term Lcc to improve generalization. The consistency loss Lcons(XL,XU ) is simply the sum of
the two:

Lcons = Lvc + Lcc. (6.9)
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View Consistency. As shown in Fig. 6.3, we augment the training samples by rotating or
translating the samples, as depicted in Sec. 6.3.4, and encourage transformed 2.5D predictions
to be consistent with predictions of the transformed samples like existing 2D works [99]. The
proposed loss function, with random perturbation T is:

Lvc = `(f(p|θ; T (x)), (T (f(p|θ;x))))

+ ||f(w|θ; T (x))− (T (f(w|θ;x)))||1.
(6.10)

This loss encourages more robust and stable predictions for unlabelled data XU .

Figure 6.3: Overview of view consistency loss.

Cross-modal Consistency. Zamir et al. [166] observed that learning with cross-modal
consistency improves prediction accuracy. In that regard, different modality representations
e.g. RGB image, depth map, of the same hand should be ‘consistent’ in their pose. But
how can we enforce this consistency across these modalities without actual pose labels? In
this case, we incorporate multi-task learning and estimate multi-modal outputs i.e. pose
and mask, and add a model-fitting energy term. The proposed energy function encourages
consistency between the 2D pose and the hand mask, which we find improves pose and overall
generalization. Additionally, we adopt a stop-gradient operation stop(·) to the mask as shown
in Fig. 6.5 to prevent inaccurate poses from degenerating the masks.

Specifically, we approximate the hand mask with 55 circles: 9 for each finger and 10 for
the palm. The circle hand model is parameterized as m = {m0, · · · ,m54}, wheremi = (ci, ri)

is the ith circle centered at ci with radius ri. The circle centers are manually defined based
on the 2D pose, while radii are pre-trained from synthetic data. Fig. 6.4 middle shows an
example of the approximated hand mask and the circles for the little finger.

The cross-modality consistency loss Lcc is the sum of two standard model-fitting energy
terms:

Lcc(uv,w) = Lm2d(uv, stop(w)) + Ld2m(uv, stop(w)). (6.11)

The model-to-data term Lm2d is an L1 distance encouraging the circle-approximated mask
to be as similar as possible to the estimated mask:

Lm2d(uv,w) = ||R(G(uv))−w||1, (6.12)



82
Chapter 6. SemiHand: Semi-supervised Hand Pose Estimation

with Consistency

where G(·) estimates the centers and radius based on the 2D hand pose and R(·) renders the
circles to a hand mask like [132]. Note that this term has no gradients on the background of
the rendered mask. Hence, we add a data-to-model term Ld2m to measure the registration
error between the estimated hand model and hand mask:

Ld2m(uv,w) =
∑
g∈Ω

d(w(g), G(uv)), (6.13)

where Ω is the set of all pixel locations and the distance function d(·) is defined as:

d(w(g),m)

=


max( min

i∈[0,54]
(||g − ci||2 − ri), 0) if w(g)=1,

max( max
i∈[0,54]

(ri − ||g − ci||2), 0) otherwise.

(6.14)

Specifically, the distance estimates pixel g’s distance to the nearest circle mi with radius ri

centered at ci. If the predicted mask value at g is correct, the distance is set to 0.

Figure 6.4: Hand model and pose registration. Left: the ground-truth hand mask; Middle:
Our rendered hand mask based on ground-truth 2D pose (blue points); Right: pose regis-
tration of the template hand (black) to observed joints (grey) to result in a registered hand
(orange). Figure best viewed in colour.

Figure 6.5: Overview of cross-modal consistency loss. (uv, d) are 2.5D hand outputs; w
denotes the hand mask.
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6.3.4 Data Augmentation

Initially, we found that adding view-point consistency to be non-convergent. We speculated
the cause to be mode collapse, i.e. all the 2D pose predictions gradually move to the center
of the image. A similar phenomenon was observed in FixMatch [107]; they found that data
augmentation of differing difficulties could improve training stability. As such, we also adopt
two types of data augmentation like [107], as shown in Fig. 6.2. Specifically, we introduce
diversity augmentation for the labelled and high-confidence pseudo-labelled data and pertur-
bation augmentation for unlabelled data respectively, which we found to mitigate the problem
of mode collapse.

In all of our experiments, diversity augmentation is similar to augmentations used in ex-
isting supervised learning methods [50, 11, 155]. It includes color jitter, translation, rotation,
scale, gray-scale and random erasure. Differently, for unlabelled data, we simply perturb with
translations of [-5,5] pixels or rotations of either [−2◦, 2◦] or 90◦,180◦ and 270◦.

6.4 Experiments

6.4.1 Implementation Details

In the experiments, we adopt the two-stacked hourglass as our backbone. The input and out-
put resolution are both 64×64. We set the hyperparameters from Eqs. 6.1 to 6.4 empirically,
with λc= 0.1, λd = 50, λw = 100 and τ = 1.5. For pre-training on the synthetic data, we use
an Adam optimizer with an initial learning rate of 10−3 and a batch size of 32. We train
the model for 100 epochs, lowering the learning rate by a factor of 10 at the 60th and 90th

epoch. For fine-tuning, we use the learning rate 10−4 and a batch size of 128. We set K to
10. At 5th iteration, we lower the learning rate to 10−5. The associated algorithm is shown
in Alg. 6.1.

6.4.2 Datasets and Evaluation Metrics

Our method is trained on one synthetic dataset, the Rendered Hand Pose Dataset
(RHD) [178] and evaluated on four real-world datasets, Stereo Hand Pose Tracking Bench-
mark (STB) [167], Dexter+Object Dataset (DO) [113], Hand-3D-Studio (H3D) [173] and
YouTube 3D Hands (YT3D) [63].

To further verify the effectiveness of our proposed method, we also introduce and evaluate
on a new real-world hand sequence dataset (HSD) [161]. HSD is a video dataset with 3D
poses annotated in a semi-automated fashion like [179]. It consists of 4 sequences. Each
sequence is performed by one actor and contains 20K frames. We use the first two sequences
for training and others for testing.

To evaluate the accuracy of estimated poses, we use two common metrics: (1) mean end-
point-error (EPE), measuring the average Euclidean distance between predicted and ground-
truth joints, and (2) area under the curve (AUC) on the percentage of correct keypoints
(PCK) curve based on certain error thresholds. For a fair comparison with state-of-the-art,
we follow [111, 155], assuming that the global hand scale and the hand root position are
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Method training set testing set
STB train STB test

baseline RHD train(w/) 23.41 23.83
baseline STB train(w/) 5.27 18.04

baseline RHD train(w/)
STB train(w/) 5.25 7.32

with vc RHD train(w/)
STB train(w/o)

19.98 21.03
with cc 20.59 20.92

with vc+cc 19.18 19.93
with

pseudo-labeling
RHD train(w/)
STB train(w/o) 15.68 16.31

our proposed RHD train(w/)
STB train(w/o) 13.82 14.60

our proposed RHD train(w/)
STB test(w/o) 15.83 14.51

our proposed RHD train(w/)
STB train+test(w/o) 13.78 13.95

Table 6.1: Ablation study with mean EPE [mm]. w/ and w/o indicates with and without
labels for training.

known, and set the middle finger’s base position as the hand root. For convenience, we also
assume that hand template is given. For H3D and YT3D, we use 40 mm from STB as reference
bone length defined by [179]. Our default setting is fine-tuning with only the training data of
a (single) real-world dataset’s training partition. Following the convention of [132], the test
data is withheld completely. Additionally, we use the labels of these real-world datasets only
for evaluation purposes.

6.4.3 Ablation Study

Baseline. To start with, we first investigate the domain gap that exists between the syn-
thetic RHD versus the real-world STB. The pre-trained network, trained and tested on RHD
achieves good performance with a mean EPE 12.08 mm. However, the same network’s errors
almost double to a mean EPE of 23.41 mm and 23.83 mm on the STB training and testing
datasets respectively (see ‘baseline’ method in Tab. 6.1). If we train the network only on
STB, it is prone to over-fitting due to the small size of the dataset, so it leads to a large
error on testing data (18.04 mm). If one merges the training datasets of RHD and STB in
a mix-and-train strategy, we can lower this error to 7.32 mm and this serves as the upper
bound in performance for semi-supervised methods.

Impact of our components. We next analyse the performance of our method’s in-
dividual components to isolate the impact of consistency training and pseudo-labeling. We
fine-tune the pre-trained model with only view consistency loss (with vc), only cross-model
consistency loss (with cc), both consistency losses (with vc+cc) and with pseudo-labelling
in Tab. 6.1. Each component improves the performance; adding pseudo-labelling achieves
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Figure 6.6: Comparison of baseline, with only consistency training, with only pseudo-
labeling and our proposed SemiHand. Our proposed two modules both improve the perfor-
mance with respect to the baselines, and their combination further leads to a higher accuracy.

an impressive 7.52 mm improvement on the STB testing set. Combining these components
further decreases the error. With both consistency training and pseudo-labeling, we achieve a
9.23mm improvement on the STB testing set with fine-tuning on the unlabelled STB training
set.

For further verification, we compare the following: (1) baseline, (2) baseline with consis-
tency training, (3) baseline with pseudo-labels and (4) our proposed method on all real-world
datasets (see results in Fig. 6.6). We can see that both consistency training and pseudo-
labeling can improve the performance with respect to the baselines. Furthermore, the combi-
nation of our two modules leads to a higher accuracy. With our semi-supervised fine-tuning,
we achieve a decrease in mean EPE of up to 9.2 mm on STB, 22.4 mm on DO, 6.4 mm
on YT3D, 7.46 mm on H3D and 3.3 mm on HSD as shown in Fig. 6.6. The full model is
comparable to existing supervised methods.

Impact of training data. In Tab. 6.1 under ‘our proposed’, we fine-tune the network
on different STB sets, i.e. , STB train set only, STB test set only and both. We find that fine-
tuning on the testing image directly achieve lower mean EPE (13.82 mm/13.78 mm versus
15.83 mm for STB train and 14.51 mm/13.95 mm versus 14.60 mm for STB test). Moreover,
as the amount of unlabelled training data increases, the mean EPE decreases correspondingly.
As shown in Tab. 6.1, fine-tuning with both STB train and test sets outperforms fine-tuning
independently. We also verify this by fine-tuning with different percentages of STB training
data in Fig. 6.10. We decrease the mean EPE of STB test set from 17.31mm to 14.60 mm
by increasing the percentage of unlabelled STB training data during training.

6.4.4 Comparison to State-of-the-Art

We compare our hand pose estimation results with state-of-the-art methods [4, 81, 50, 148,
156, 155, 9, 111, 90], on STB and DO as shown in Fig. 6.7 and 6.8. We can see that
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Figure 6.7: AUC: Comparison to state-of-the-art on STB. Our SemiHand improves the
baseline’s AUC and achieves comparable performance to other supervised learning methods.

after fine-tuning, our SemiHand improves the baseline’s AUC significantly (0.774 to 0.927
for STB, 0.546 to 0.747 for DO). For STB, our semi-supervised method achieves comparable
performance to other supervised learning methods, even without any labels of STB. The
work [81] also reports its performance training on synthetic data only. As shown in Fig. 6.7,
ours outperforms [81] by a large margin (0.927 vs. 0.825).

Many existing methods use DO to evaluate cross-dataset performance. Our proposed
semi-supervised method outperforms most existing supervised methods, even though they
mix-and-train RHD with other synthetic data [4, 81], STB [167], MPII+NZSL [104] or
MVBS [104]. This confirms our original motivation of exploiting unlabelled RGB images
and improving the accuracy of pose estimation. Note that [148] does report better perfor-
mance but they incorporate a large-scale (111K) labelled real-world dataset for training.

With our proposed semi-supervised method, the predictions of unlabelled data will grad-
ually converge. We show two qualitative examples of the gradual convergence from the pre-
dictions of pre-trained model to our stable predictions in Fig. 6.9. Interestingly, we also find
cases like the example shown in Fig. 6.9, where our predictions seem more accurate than the
manually annotated ground-truth, i.e. predicted keypoints are centered on the finger, while
labelled keypoints lie at the edge of the fingers. Given the saturated results of state-of-the-art
methods on STB, it is likely that many networks are over-fitting to manual annotation biases
or noise.

6.4.5 Comparison to Weakly-Supervised Methods

As our SemiHand is the first semi-supervision framework for 3D hand pose estimation from
monocular images, there are no direct comparable methods. We compare instead to a weakly-
supervised method [9]. We fine-tune the pre-trained model on m% STB training data, either
without any labels (ours, SemiHand), with ground-truth (strong supervision) and with weak
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Figure 6.8: AUC: Comparison to state-of-the-art on DO. Our SemiHand improves the
baseline’s AUC and outperforms some supervised learning methods using the mix-and-train
strategy.
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Figure 6.9: Gradual convergence from the prediction of pre-trained model to our final
prediction. The arrows indicate the direction and distance of prediction movement dur-
ing fine-tuning. For 10thiteration, the optimization converges because the length of arrows
become almost zeros. We highlight the differences between our stable predictions and the
ground-truth poses with red boxes. Figure best viewed in colour.

labels of either 2D poses or masks. The percentage of STB training set is varied from 5% to
100% to compare the mean EPE on STB testing set. As shown in Fig. 6.10, when fine-tuning
with masks or 2D poses as weak labels, the weakly-supervised method [9] achieves 4.0 mm and
7.1 mm improvement on STB testing set respectively. This indicates that 2D pose provides
stronger supervision than simply a mask. Meanwhile, without any labels, our SemiHand
achieves a 9.2 mm improvement, demonstrating the effectiveness of our method compared
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Figure 6.10: Mean EPE on STB testing data with fine-tuning on different percentage of
STB training data. As the amount of training data increases, SemiHand achieves a similar
trend as the weakly-supervised methods, i.e., the mean EPE decreases correspondingly.

to [9]. Note that we discuss only the relative improvement as we use a different backbone
than [9]. Given that adding even a small amount of labels (as per the fully supervised method)
is still better, this encourages us to further explore the use of unlabelled images.

6.5 Conclusions

We aim to develop a semi-supervised 3D pose estimation framework, using labelled synthetic
and unlabelled real-world data. Directly applying the existing semi-supervised method is
nontrivial because pose estimation is a regression problem that critically depends on spatial
information. We therefore designed a new framework based the pose feasibility and spatial
consistency, with pseudo-labels and consistency training. Experiments on different datasets
demonstrate that our approach successfully leverages real-world RGB images without any
labels, paving a path forwards for learning pose estimation systems with only synthetic labels.
In the future, we would like to explore two research directions. First, We aim to remove even
the requirement of unlabelled data. We would like to explore the techniques like domain
randomization and hand image renderer, and make the model purely trained on synthetic
data may achieve satisfactory result in the real world. Second, we will explore few-shot
learning setting to make the pre-trained model migrate to a specific application scenario
easily. In other words, we aim to transfer a general model to a personalized model.
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As the rendering process for generating synthetic data makes it easy to synthesize multiple
data modalities, we further propose to use synthetic multi-modal data as auxiliary information
to aid the training of real-world data. The advantages of synthetic multi-modal data can be
derived from combining multi-modal data with synthetic data. We reduce the reliance on
real-world data by using synthetic data and further improve the performance of our proposed
system by using multi-modal representation learning. Specifically, in this chapter, we still
focus on the challenging scenario of learning models from labelled multi-modal synthetic data
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and unlabelled real-world data like Chapter 6. We propose a novel dual-modality network
that exploits multiple data modalities of synthetic data.

First, we explore synthetic data to pre-train the model with multi-modal alignment. Dur-
ing pre-training, we introduce to align modalities in a low-dimensional latent space and in a
feature space, thus facilitating better representation. To align modalities in a low-dimensional
latent space, we adopt multi-modal contrastive learning. The features extracted from the dif-
ferent modalities of similar poses should be close in the feature space. Intuitively, we can
treat each RGB and depth map pair as positive samples and cross-pair combinations as neg-
atives. Due to the large visual difference between RGB images and depth maps, pushing
these features far away has no effect on the uniformity purpose, i.e. , preserving maximal
information. Therefore, instead of creating positive pairs based on different modalities, we
consider a way of regulating their feature distances in a closer subspace by using their fusion.
To align modalities in a feature space, inspired by RGB image-depth map pairs that have
pixel-level correspondences, we propose to align their feature maps with an attention-based
fusion and a shared encoder. The alignment makes it easier for the RGB encoder to perform
cross-modal learning and capture shared visual cues.

Second, we aim to reduce the noise of pseudo-labels during fine-tuning. The pseudo-labels
from pre-trained model are inevitably noisy and used naively, are even detrimental to learning
as the model will over-fit to the noise. Therefore, we integrate the proposed method with
pose correction and self-distillation during fine-tuning. Benefiting from the design of our dual-
modality network, we take the predicted depth map from the RGB branch as an input to the
fusion branch and construct a self-distillation structure. With self-distillation, we encourage
the refined prediction to be consistent with its past prediction, distill the knowledge to obtain
a softer prediction, and generate a pseudo-label accordingly.

For the model training, we use a synthetic dataset, and four real-world hand datasets.
Experiments show that our framework beats existing state-of-the-art methods by a large
margin. We visualize the multi-modal predictions and the intermediate attention, and find
that after fine-tuning, the predicted hand depth maps and hand segmentation masks will be
more complete and the attention region will focus more on the hand region. In the future,
we intend to dive deeper into contrastive learning and self-distillation for semi-supervised
hand pose estimation. Also, we will try to make the model lightweight by redesigning the
depth map branch. The publication, contributors and author contributions in this chapter
are listed below:

Publication:

• Qiuxia Lin∗, Linlin Yang∗ and Angela Yao. “Dual-Modality Network for Semi-
Supervised Hand Pose Estimation.” In Submission. 2022. ∗ equal contribution.

Other Contributors:

• Qiuxia Lin (PhD student)

• Angela Yao (Thesis Supervisor)
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Contributions:

• Qiuxia Lin and Linlin Yang developed the method jointly where Qiuxia Lin was more
responsible for the algorithm and the implementation, and Linlin Yang was more re-
sponsible for the algorithm and the analysis. Qiuxia Lin and Linlin Yang wrote the main
body of the article. Qiuxia Lin and Linlin Yang and Prof. Dr. Angela Yao developed
the idea, analyzed the results and revised the article.

7.1 Motivation

Hand pose estimation supports a wide range of applications, including sign language recogni-
tion [60, 58] and gesture-based human-computer interaction systems [10]. However, training
deep-learning-based hand pose estimation systems requires a large amount of accurate ground
truth labels, which are difficult to obtain. Training models with synthetic data [178] can by-
pass this label scarcity, but such models generalize poorly to real-world settings due to the
domain gap between synthetic data and real data. While the careful modelling of synthetic
data can narrow this gap, the performance drop is still noticeable [81].

Here, we address the cross-domain pose estimation problem, focusing on a semi-supervised
setting. We target learning from labelled synthetic data and unlabelled real-world data,
for application on real-world data. It is now commonplace for methods to pre-train with
synthetic data and then subsequently fine-tune with real data [53, 153]. Such approaches,
however, leverage only the RGB modality of synthetic datasets. Yet the rendering process for
generating synthetic data makes it easy to synthesize multiple data modalities. For example,
the RHD dataset [178] makes both photo-realistic RGB images and depth maps available.

We believe that there are common visual cues shared by the different modalities, such as
the underlying geometry, or semantics. Leveraging these common cues can enhance RGB-
based hand pose estimation and limit a model’s sensitivity to non-informative cues and
shortcuts, such as background or texture appearances [40, 155]. To that end, we propose
a dual-modality network for RGB images and depth maps that aligns their features via an
attention-based multi-modal pre-training. Based on an RGB image and depth map encoder,
we design a fusion branch with an attention module that fuses local and global relationships
learned from depth maps to RGB features. The fusion enables the RGB branch to better cap-
ture features relating to the common visual cues in the depth map. We subsequently design
a multi-modal contrastive learning applied to all three branches that allows us to construct
a well-structured feature space that aligns similar poses across different modalities.

After obtaining a pre-trained model, a common practice is to utilize pseudo-labelling [66,
12, 80] to incorporate unlabelled data for fine-tuning. However, naïvely generated pseudo-
labels are inevitably noisy and deteriorates model performance. To handle noisy pseudo-
labels, we propose a correction of hand poses based on the feasibility of bone lengths and
joint angles. Moreover, based on architectural dependencies between the RGB and fusion
branches, we construct a self-distillation structure to obtain softer predictions for pseudo-
label generation. This will encourage the model to gradually improve pseudo-labels instead
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Figure 7.1: Visualisation of one prediction from FreiHAND before and after fine-tuning.
From left to right: multi-modal predictions (depth maps, segmentation masks, poses), at-
tention weights from depth maps and attention weights on RGB image. Our model takes
in multi-modal predictions based on the pretrained model and monocular RGB and output
corrected multi-modal predictions.

of replacing them dramatically [66, 57]. As shown in Fig. 7.1, we can see that multi-modal
predictions are much more accurate after applying pose correction and self-distillation.

In summary, we make the following contributions:

1. We propose a dual-modality network that learns from RGB images and depth maps
during pre-training but is applicable during fine-tuning and inference to only monocular
RGB inputs. The network features a specially designed cross-modal attention module
that enables the RGB branch to better capture common visual cues in the depth map.

2. We propose a multi-modal contrastive learning for synthetic data on a supervised set-
ting. By creating positive pairs based on the fused features, our proposed contrastive
loss avoids the large discrepancy of using different modalities and facilitates better
representation.

3. To exploit the noisy pseudo-labels during fine-tuning, we adopt pose correction for hand
to guarantee the biomechanical feasibility of hand poses and introduce self-distillation
based on our dual-modality network.

4. Our extensive experimentation shows that the proposed method significantly improves
the state-of-the-art by up to 16.0% and 19.2% for 2D keypoint detection and 3D key-
point estimation tasks, respectively.

7.2 Related Work

7.2.1 Contrastive Learning

Contrastive learning encourages the model to learn a low-dimensional space for data in which
similar sample pairs (positive pairs) stay close together while dissimilar samples (negative
pairs) are further apart. It has been successfully applied in both unsupervised [125, 18, 17]
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and supervised [56] settings. Creating beneficial positive-negative pairs forms the basis of
contrastive learning. Existing works [125, 18, 17, 56] prefer to create positive pairs based
on data augmentation. Interestingly, a recent work [125] introduced the use of different
modalities of one instance as a positive pair, showing great potential. However, the large
discrepancy between the different modalities may still limit the performance.

Previous pose estimation works [177, 109] explored contrastive learning with unlabelled
RGB images during pre-training. In contrast, we explore the use of labelled multi-modal
synthetic data. Specifically, we create positive pairs for RGB features by fusing RGB images
and depth maps. This approach avoids the large discrepancy of using different modalities
during pre-training and helps the model to align modalities in low-dimensional space and
facilitates better representation.

7.2.2 Semi-Supervised Learning

As acquiring 3D annotations for real-world images is difficult, pose estimation works often
study how to learn with limited annotations. To exploit unlabelled data, various consis-
tency constraints or pseudo-labelling strategies have been explored, including temporal con-
sistency [15], temporal pseudo-labels [71] and multiview consistency [132] for video sequences
and multiview images. To further remove the temporal or multiview requirement for unla-
belled data, template-corrected pseudo-labels [153] and photometric consistency [21] based
on model-fitting have been introduced.

A special case of semi-supervised learning is to learn from only labelled synthetic data
and unlabelled real-world data. However, this new setting also introduces an additional
domain gap that makes it more challenging. In addition to simple training with consistency
or pseudo-labels [80, 153], recent works [53, 66] have started to introduce other strategies,
such as domain adaptation, as auxiliary supervisions to bridge the gap. As pseudo-labels
tend to be noisy, we emphasize how to exploit these noisy pseudo-labels during fine-tuning.
Specifically, we explore pose correction for hand to guarantee the biomechanical feasibility
of hand poses and introduce self-distillation to alleviate the negative effect of noisy pseudo-
labels.

7.3 Method

7.3.1 Problem Definition

We aims to estimate the 2D and 3D keypoints of the hand from a monocular RGB image
in a cross-domain setting. The problem can be formulated as follows. Given the set of
synthetic data Ds = {(xsi ,yi)}

Ns
i=1, we have for each synthesized RGB image xsi ∈ R3×H×W

the multi-modal labels yi = (pi,di,mi) in the form of a 2.5D pose pi ∈ RJ×3, a depth map
di ∈ R1×H×W , and a binary segmentation mask mi ∈ R1×H×W . Note that the 2.5D pose
p is expressed as a triplet of the 2D pose and the metric depth relative to the root. For
real-world data Dr = {(xrj)}

Nr
j=1, we have real RGB image xrj ∈ R3×H×W without access to

any of the multi-modal labels.
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Figure 7.2: (a) Overview of our proposed dual-modality, i.e. , the RGB modality and the
depth map (DM) modality, and the three branches framework, i.e. , the RGB branch (blue
arrows), DM branch (green arrows) and fusion branch (red arrows); (b) illustration of the
shared decoder and the multi-modal output; (c) design of the attention module. Note that
we only use the RGB branch during inference.

A straightforward approach in cross-domain hand pose estimation is training the model
on synthetic data Ds and then applying it to real data Dr. We denote the training on Ds
as only a baseline (Sec. 7.3.2). Unsurprisingly, applying only multi-modal supervision to
synthetic data does not yield good performance for real data due to the inherent discrepancy
in distributions across the domains. To alleviate this discrepancy, we design a dual-modality
network with three branches (Sec. 7.3.3) and introduce a pre-training (Sec. 7.3.4) and fine-
tuning (Sec. 7.3.5) strategy.

7.3.2 Multi-modal Supervision

We follow a multi-modal pose estimation pipeline for Ds, similar to [50, 153], and simulta-
neously predict the 2.5D representations p, segmentation masks m and depth maps d from
a given RGB input. Specifically, we use as below a multi-modal supervised loss with ground
truth ygt = (pgt,mgt,dgt) and the corresponding predictions y = (p,m,d):

M(ygt,y) = `(p,pgt) + λm||m−mgt||1 + λd||d− dgt||1, (7.1)

where λm and λd are trade-off hyperparameters to balance the weights of the different modal-
ities. ` is the 2.5D pose distance, which is the sum of the weighted Euclidean distance be-
tween two 2D poses and that between two metric depths relative to the root keypoint, defined
in [153].

7.3.3 Model Architecture

Here, we introduce our dual-modality network for the RGB and depth map modalities. The
two inputs have their own input-encoding branches. Beyond the independent inputs, we define
a fusion branch that applies an attention module to enable features from the RGB images to
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be activated in more relevant regions. Put together, our framework comprises three branches:
the RGB branch, the depth map (DM) branch and the fusion branch. All three branches
project to a common latent space, and are illustrated in Fig. 7.2 (a)-(c) respectively. The
encoders of the RGB and depth map modalities have the same architecture, i.e. , ResNet101.
All three branches share a single decoder i.e. , 3 deconvolution layers with BN and ReLU, to
produce a final set of feature maps, which are then decoded into 2.5D pose, mask and depth
map outputs as shown in Fig. 7.2 (a)-(c).

Training of our network is split into a pre-training and fine-tuning stage. During pre-
training, the input of the network are RGB images with the accompanying depth maps. The
depth maps can be be either the ground truth depth map from Ds or a depth map predicted
from an RGB input encoded and decoded through the RGB branch. During fine-tuning,
only the RGB modality is given, so we use it together with the predicted depth map from
RGB branch as inputs for the network. During inference, we use the RGB branch with RGB
images only for prediction.

7.3.3.1 Attention Module.

To reveal the relationships between the local and global responses in the feature maps, we
design an attention module Att(·) to estimate the local attention weights. Specifically, given
a feature map f ∈ Rc×h×w, fij ∈ Rc×1×1 is the feature vector at position [i, j], and f̄ =

pool(f) ∈ Rc×1×1 is the average 2D spatial values on f . The pool(·) function is a channel-wise
average pooling operation. Note that f̄ and fij have the same shape. The attention weight
w is defined as the inner product 〈·〉 of f̄ and fij .

wij =
〈f̄ ,fij〉∑h

i=1

∑w
j=1 〈f̄ ,fij〉

× (h× w). (7.2)

The attention activated feature is defined as Att(f) � f , where � is a channel-wise multi-
plication operation. Our proposed attention mechanism helps the model focus more on the
relevant region of the input than on irrelevant parts.

The proposed attention module is embedded into the two ResNet encoders after the
conv1 and conv2_x to conv5_x layers. Suppose fRGB and fDM are a pair of corresponding
intermediate feature maps, with the same shape, derived from the RGB branch and DM
branch, respectively. We utilize fDM to apply attention to both fRGB and fDM to obtain an
attention-fused branch Att(fDM )�fRGB and a self-attended DM branch Att(fDM )�fDM ,
as shown in Fig. 7.2 (c). Here, we use Att(fDM ) instead of Att(fRGB) for the RGB branch
as monocular RGB images suffer from depth ambiguities and the attention from the 2.5D
information will make it easier for the RGB encoder to capture the 2.5D information and
semantic meanings.

We set the fusion branch to share the same encoder as the original RGB branch, but set
its own unique Batch Normalization (BN) layers due to the different statistics. Regarding the
depth map encoder, the fusion branch directly uses the BN layers of the depth map branch.
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Figure 7.3: The illustration of (a) the RGB branch, (b) the DM branch, (c) the fusion
branch and (d) the overall losses during pre-training. The yellow and blue arrows show the
forward of a positive pair. The superscript + denotes the positive paired sample.

7.3.4 Pre-training with Multi-modal Alignment

Fig. 7.3 (a)-(c) shows the overall architecture during pre-training. We pre-train the model
based on the synthetic data Ds. Since the ground-truth depth map provides 2.5D informa-
tion, we consider aligning the features from different branches to help the RGB modality
capture such information. To this end, we propose a multi-modal contrastive scheme with an
attention-based alignment.

7.3.4.1 Multi-modal Contrastive Learning.

The features extracted from the different modalities of similar poses should be close in the
feature space. Intuitively, we can treat each RGB and depth map pair as positive samples
and cross-pair combinations as negatives. However, due to the large visual difference between
RGB images and depth maps, pushing these features far away has no effect on the uniformity
purpose, i.e. , preserving maximal information [138]. Therefore, instead of creating positive
pairs based on different modalities, we consider a way of regulating their feature distances in
a closer subspace by using their fusion. Our attention-based fusion creates positive pairs for
the RGB image by activating the RGB feature map based on the attention from the depth
map, thereby avoiding a large discrepancy with other modalities.

Specifically, for each modality, we create positive pairs and negative pairs based on the
augmentations. We define TRGB(·), GRGB(·), TDM(·) and GDM(·) as the texture and geomet-
ric augmentations of the RGB image and depth map, respectively. Texture augmentations do
not affect the labels, i.e. , the hand pose, while geometric augmentations require the labels or
hand poses to be adjusted accordingly. Based on these augmentations, we obtain the positive
pairs (x,TRGB(x)) or (GRGB(x),TRGB(GRGB(x))) for the RGB image x. Similarly, we create
positive pairs for the depth map.

As shown in Fig. 7.3(a)-(c), we augment the data for the RGB branch, DM branch and
fusion branch. We then use two fully-connected layers after the encoders to obtain 128-
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dimension normalized latent features z, z+ for contrastive learning. After that, we adopt the
normalized temperature-scaled cross-entropy (NT-Xent) loss as below:

η(z, z+) = −
B∑
i=1

log
exp (sim(zi, z

+
i )/τ)∑B

k=1 1[k 6=i](exp (sim(zi, zk)/τ) + exp (sim(zi, z
+
k )/τ))

, (7.3)

where B is the batch size and z and z+ comprise a positive pair of the same sample. The
temperature is set to τ=0.5, sim(·, ·) is the cosine similarity, and 1 is the indicator function.
Based on NT-Xent loss, we define the contrastive loss for RGB, depth map and fusion as:

LRGB
c = η(zRGB, z

+
RGB)

LDM
c = η(zDM , z

+
DM )

LFusion
c = η(zRGB, zF ) + η(z+

RGB, z
+
F ).

(7.4)

As shown in Fig. 7.3(d), the final multi-modal contrastive loss is

Lc = LRGB
c + LDM

c + LFusion
c . (7.5)

7.3.4.2 Alignment with Attention.

Using only monocular RGB images as input increases the learning difficulty, since RGB images
have only 2D information and suffer from depth ambiguities. As RGB image-depth map pairs
have pixel-level correspondences, we propose aligning their feature maps with an attention-
based fusion and a shared encoder. The alignment makes it easier for the RGB encoder
to perform cross-modal learning and capture shared visual cues. As shown in Fig. 7.2 (c),
the attention derived from the depth map propagates the dependency relationship learned
in the depth branch and provides accurate attention guidance for the features of the RGB
image. Specifically, we conduct multi-modal supervision for RGB images, depth maps and
their fusion simultaneously, as shown in Fig. 7.3 (d). The final multi-modal supervised loss
is

Ls = M(yRGB,ygt) +M(yDM ,ygt) +M(yF ,ygt), (7.6)

where yRGB,yDM ,yF are the predictions of the RGB, depth map and fusion branches, re-
spectively and M is the multi-modal supervised loss defined in Eq. 7.1.

Note that a stop-gradient operation is added to stop the back propagation from the fusion
branch in Fig. 7.3(c) to prevent inaccurate RGB features from degenerating the attention.
This is because the fusion alone is insufficient to fully discard distractor information that
may be present in the features. Overall, we pre-train the model on synthetic data with the
following objective function and a hyper-parameter λc:

Lpretrain = Ls + λcLc. (7.7)
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Figure 7.4: (a) The architecture and (b) overall losses during fine-tuning. The yellow and
blue arrows show the forward of a weakly-strongly augmented image pair.

7.3.5 Fine-tuning with Noisy Pseudo-Labels

Assuming that we have the pre-trained network based on Sec. 7.3.4, we go on to explore
fine-tuning so that the model can generalize to real-world data Dr. As we are fine-tuning on
unlabelled real-world data, we do not have multi-modal labels. As such, we rely on pseudo-
labels generated by the pre-trained model, specifically depth maps and poses. However, the
pseudo-labels are inevitably noisy and used naively, are even detrimental to learning as the
model will over-fit to the noise. We therefore integrate pose correction and self-distillation
into the proposed dual-modality network to exploit noisy labels. The architecture and overall
losses during fine-tuning are shown in Fig. 7.4(a)-(b).

7.3.5.1 Pseudo-Labelling.

To learn discriminative features conditioned on real data, a straightforward approach is to
employ a pseudo-label with a high confidence. Therefore, we adopt the pseudo-labelling
strategy and enforce a modality agreement on the label assignment to realize consistency.
Directly training with (over-confident) pseudo-labels tends to deteriorate the model [2]. We
mitigate this with a pose correction step, i.e. , we correct 3D poses with rectifications on
bone lengths and joint angles to guarantee the biomechanical feasibility of the hand poses.
Following [110], we build a local coordinate system for the given poses and use a greedy
approximation to correct the given poses based on the hand’s kinematic chain. Our correction
is inspired by [153], but beyond their work which focuses only on bone lengths, we also take
joint angles into account. During the approximation, joint angles that exceed a valid interval
are rectified. Our pose correction guarantees biomechanical feasibility of the corrected hand
pose with respect to both the bone lengths and the joint angles.

Moreover, to improve the stability of the fine-tuning, we follow a self-paced strategy [151,
153] and gradually take the refined predictions from weakly augmented input (RGBweak)
to supervise strongly augmented input (RGBstrong). Here, weak augmentations refer to
small rotations and translations, while strong augmentation includes larger rotations and
translations as well as image scaling. The usage of the pose correction and self-paced strategy
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is shown in Fig. 7.4 (b).
Based on the observation that the RGB and fusion branches perform better on real

data than the depth branch, we generate pseudo-labels r by averaging the poses from the
weakly augmented images before and after correction in the RGB and fusion branches. The
confidence of a pseudo-label is determined by the variance. Then, we use the pseudo-labels
to supervise the poses from the strongly augmented images pstrong in all branches, as below

Ll = 1(C(r) ≤ ε)`(pstrong, r), (7.8)

where C(·) provides the confidence of the pseudo-labels. We select only samples with a
confidence larger than ε for further training.

7.3.5.2 Self-Distillation.

Pseudo-labels are inevitably noisy and may change dramatically during fine-tuning, all of
which hurts model performance [66]. To address noisy pseudo-labels, our goal is to gradually
improve pseudo-labels instead of replacing them dramatically. As our fusion branch of the
dual-modality network enable features of the RGB branch to be activated in more relevant
regions, it can be considered a denoised RGB branch with the possibility to output more
refined predictions. Therefore, we can by design take the predicted depth maps from the RGB
branch as an input to the fusion branch and construct a self-distillation structure [66, 57] as
shown in Fig.7.4 (a). By encouraging the refined prediction to be consistent with its past
prediction, we distill the knowledge to obtain a softer prediction, and generate a pseudo-label
accordingly. This achieves our purpose of improving pseudo-labels gradually. Concretely, we
apply consistency to the outputs by using multi-modal supervised loss, as below

Lf = M(yRGB,yF ), (7.9)

where yRGB and yF are the predictions of the RGB branch and the fusion branch, respec-
tively, during fine-tuning.

Overall, we fine-tune the pre-trained model using RGB images of real data based on self-
distillation Lf and pseudo-labelling Ll, together with supervision from synthetic data Ls.
The overall objective of this stage with hyper-parameters λf and λl is as follows:

Lfinetune = Ls + λfLf + λlLl. (7.10)

7.4 Experiments

7.4.1 Datasets & Evaluation

For the model training, we use the synthetic RHD [178], and four real-world hand datasets:
STB [167], FreiHAND [179], H3D [173], and HSD [161]. RHD is a large-scale synthetic
hand dataset containing 20 characters performing 39 actions. STB has 12 video sequences
recording finger counting or random poses against 6 different backgrounds, with a total of
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15k frames for training and 3k frames for testing. FreiHAND is a challenging hand dataset
with 130k training images and 4k testing images. The training set comprises 32,560 distinct
poses, each with 4 backgrounds, including green screen. Unlike STB and RHD, this dataset
features severe object occlusions. In H3D, we consider the subset of one-handed gestures for
our experiments, which comprises 11k training data and 2k testing data. HSD is a newly
released hand dataset features 4 actors from 4 camera views. It has 42k images for training
and 42k images for testing.

We evaluate 2D keypoint detection with the percentage of correct keypoints (PCK) and
regard an estimation as correct when its distance to the ground truth is within 0.05 of the
output size. In the 3D keypoint estimation task, the mean end-point-error (EPE) is used to
evaluate pose accuracy.

7.4.2 Implementation Details

We adapt ResNet-101 initialized from ImageNet as our backbone network. The input data
has a fixed resolution of 256 × 256, while the resolution for the output is 64 × 64. In our
experiments, the model is first trained with synthetic data using the Adam optimizer with
momentum of (0.9, 0.99). The initial learning rate is set to 2.5e-4, and is decreased by a factor
of 0.1 after 40 epochs and 50 epochs. We then use synthetic and real data to jointly train
the model with a decayed learning rate of 2.5e-5 for 6 epochs. We set the batch size to 140
for pre-training and 20 for fine-tuning. We set the hyper-parameters of Eqs. 7.1 and 7.7-7.10
empirically, with λm = 100, λd = 50, λc = 0.1, λf = 0.2, λl = 1 and ε = 1.5.

In our experiments, RHD provides the RGB hand images, depth maps, segmentation
masks and 3D annotations; the real-world datasets provides the RGB hand images and the
3D hand templates for training, as in [153]. Our default setting is pre-training on RHD
and fine-tuning with a single real-world dataset’s training data and report results on the
evaluation data. For fine-tuning on FreiHAND and HSD, we select only a subset of the
training to match the size of the STB training set for convenience.

The empirical results of the compared methods are taken directly from the corresponding
papers if available; otherwise, they are generated based on officially released code.

7.4.3 Augmentation

Here, we introduce the details of different augmentation strategies for contrastive learning
and self-paced learning.
Contrastive Learning. We define TRGB(·), GRGB(·), TDM(·) and GDM(·) as the texture
and geometric augmentations of the RGB image and depth map, respectively. Texture aug-
mentations do not affect the labels, i.e. , the hand poses, while geometric augmentations
require the labels or hand poses to be adjusted accordingly. We list the details as below:

• TRGB(·) consists of colour jitter, grey-scale and random erasure.

• GRGB(·) consists of a rotation of [-180◦,180◦], scale of [0.8,1] and translation of [-20,20]
pixels.
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PCK@0.05 STB FreiHAND H3D HSD
Baseline 0.547 0.511 0.555 0.515
RegDA [53] 0.613 0.622 0.720 0.601
CC-SSL [80] 0.655 0.631 0.717 0.602
AnimalDA [66] 0.631 0.629 0.676 0.640
SemiHand [153] 0.668 0.564 0.672 0.563
Ours 0.775 0.658 0.749 0.689
Improvement ↑16.0% ↑4.3% ↑4.0% ↑7.7%

EPE(mm) STB FreiHAND H3D HSD
Baseline 19.66 21.56 27.77 21.21
SemiHand [153] 14.60 19.33 19.19 19.75
Ours 11.99 15.61 17.08 16.45
Improvement ↑17.9% ↑19.2% ↑11.0% ↑16.7%

(a) 2D Keypoint SOTA comparison (b) 3D Keypoint SOTA comparison

Table 7.1: (a) The performance comparisons for 2D keypoint detection; (b) the performance
comparisons for 3D keypoint estimation. The relative performance boost between 1st and
2nd best methods can be seen in Improvement. Our approach brings consistent improvements
over previous state-of-the-art methods. Bold numbers indicate the best performance.

• TDM(·) consists of random erasure, salt and pepper noise.

• GDM(·) consists of a rotation of [-180◦,180◦], scale of [0.8,1] and translation of [-20,20]
pixels.

Self-Paced Learning. We define weak augmentation and strong augmentation for RGB
images. Strong augmentation is similar to augmentations used in other supervised learning
methods. It consists of colour jitter, grey-scale, random erasure, rotation of [-180◦,180◦],
scale of [0.8,1] and translation of [-20,20] pixels. In contrast, weak augmentation refers to less
intensity of rotation and translation for augmentation. It includes translation of [-8,8] pixels
and rotation of either [-2◦,2◦] or 90◦, 180◦ and 270◦.

7.4.4 2D Keypoint Detection

As shown in Table 7.1 (a), we compare our approach with state-of-the-art methods [53,
80, 66, 153] for 2D keypoint detection tasks using the metric PCK@0.05. Notably, our
method consistently achieves the best results for the four benchmarks, surpassing the second-
best method by a large margin, which can be seen in Improvement. All compared methods
perform better than the baseline that is merely trained with RHD supervision. In particular,
we observe that RegDA works better on H3D than the others, demonstrating that it can
more easily detect wrong predictions for the dataset with a simple background. Meanwhile,
compared with SemiHand, which is the most related to our work, we significantly improve
the performance for FreiHAND and HSD, at 16.6% and 22.4%, respectively. This further
verifies the effectiveness of our proposed method.

7.4.5 3D Keypoint Estimation

SemiHand [153] is the only published work on semi-supervised cross-domain 3D keypoint
estimation. Table 7.1 (b) shows that both SemiHand and our approach outperform the
baseline by a large margin. However, compared with SemiHand, our method further decreases
EPE from 2.1 to 3.7mm. The decrease is larger for the datasets with complex backgrounds
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Method STB FreiHAND H3D HSD
Baseline 19.66 21.56 27.77 21.21
+ Lc 16.37 19.19 25.94 19.62
+ Ll 12.59 16.27 17.45 16.91
+ Lf 11.99 15.61 17.08 16.45

Positive pairs STB FreiHAND H3D HSD
None 19.66 21.56 27.77 21.21
RGB only 17.14 19.76 26.83 20.01
RGB & DM 17.32 19.95 26.33 20.40
RGB & DM∗ 18.01 19.49 26.61 19.71
w/out SG 17.22 19.55 26.01 20.17
w/ SG 16.37 19.19 25.94 19.62

(a) Component Ablations (b) Positive Pair Ablations

Table 7.2: (a) Ablation study for the components of our approach. Adding (+) the com-
ponents incrementally improves performance. (b) Multi-modal contrastive learning with dif-
ferent positive pairs. RGB only: training on LRGBc ; RGB & DM: training on LRGBc and
LDMc ; RGB & DM∗: training on LRGBc , LDMc and η(zRGB, zDM ); w/ and w/out SG: denotes
training on Lc with and without the stop-gradient operation respectively. Our full model
(“w/ SG”) correctly leverages the depth map modality and generates better representations
for the cross-domain dataset. Bold indicates the best performance.

and more camera views (i.e. , FreiHAND and HSD) confirming our aim of forcing the model
to focus on semantically meaningful areas.

7.4.6 Ablation Study

Model Components. Table 7.2 (a) outlines the contributions of multi-modal contrastive
learning (+Lc), pseudo-labelling (+Ll) and self-distillation (+Lf ) as they are incrementally
added to the model. Each component successively decreases the mean EPE for all four
datasets.
Multi-modal Contrastive Learning. Eq. 7.5 has three loss terms, representing the
contrastive learning under the RGB, depth map, and fusion branches, respectively. Each
branch is trained with specific positive pairs. Table 7.2 (b) shows the contrastive learning
with different combinations of positive pairs. “RGB only”, in which we train with only the
RGB branch with RGB contrastive pairs improves the mean EPE over “none”, in which we
train the model without contrastive learning. Yet if we also apply a contrastive loss to the
depth map, i.e. , “RGB & DM” there is a slight performance drop on some datasets. To
investigate the drop, we are inspired by [125] to apply a contrastive loss to each RGB and
depth map pair, i.e. , η(zRGB, zDM ), denoted by “RGB & DM∗”. Yet this still deteriorates
on STB compared to “RGB only”. We conjecture that the large visual differences across the
RGB and depth map already make the latent features of the negative pair between RGB and
depth map distant so any uniformity effects from the negative samples are invalid.

However, this problem can be repaired, and even an extra boost can be seen, when training
together with the designed multi-modal contrastive learning (“w/ SG” setting), especially on
STB, whereby the accuracy can reach 16.37 mm which is a 16.7% increase over the baseline.
As such, we demonstrate that the proposed attention-based feature fusion makes multi-modal
contrastive learning not only feasible but also brings about improvements, despite the large
discrepancy between the RGB image and depth map. Note that this does require stopping
the back propagation of the gradient (“w/ SG”) to the attention module when training the
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Figure 7.5: 2D pose visualization on STB, H3D and HSD. We compare our method with
four state-of-the-art methods and highlight the differences between the predictions and the
ground truth poses with red boxes. Figure best viewed in colour.

fusion branch. This can be verified by allowing the gradient to propagate, i.e. , “w/out SG”,
versus “w/ SG”. This confirms our hypothesis that the attention from the DM encoder makes
it easier for the RGB encoder to capture the 2.5D information and improve cross-dataset
performance. On the other hand, the abundant non-informative features captured in the
RGB modality impedes the learning of the attention module.

7.4.7 Qualitative Results

As illustrated in Fig. 7.5, we show three qualitative examples of the 2D pose detection gen-
erated by the compared methods and our method on STB, H3D and HSD. We can see that
our predictions are most similar to the ground truth, while the other methods show poor
performance with wrong predictions or scale errors, especially in the finger tips.

We also visualize how the predicted depth maps and the attention weights from conv1
layers have changed after conducting the model fine-tuning, as shown in Figs. 7.1 and 7.6.
The results show analysis experiments based on two FreiHAND samples with object occlusion
and one STB sample with extreme lighting. In those cases, the pre-trained model can only
estimate the depth values for few areas, e.g. , some fingers. However, after model fine-tuning,
we obtain better depth map predictions for complete hands. Correspondingly, we can see
that there are some larger attention weights, which were not activated before fine-tuning.
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Figure 7.6: Visualisation of two examples before fine-tuning (first row) and after fine-
tuning (second row). From left to right: RGB images, multi-modal predictions (depth maps,
segmentation masks, poses), attention weights from depth maps and attention weights on
RGB image. Figure best viewed in colour.

7.5 Conclusion

We propose a dual-modality network to address the cross-domain pose estimation problem in
a semi-supervised setting. By leveraging the multiple data modalities of synthetic data, we
explore multi-modal learning during pre-training, including multi-modal contrastive learning
and feature alignment. This enables the RGB encoder to create a well-structured dimen-
sional space and better capture the most related features regarding the 2.5D information and
semantic meanings. During fine-tuning, we explore pose correction and self-distillation based
on our proposed dual-modality network and provide a unified fine-tuning scheme for real data
with noisy pseudo-labels. Our experiments show that our approach significantly outperforms
state-of-the-art methods on four datasets. In the future, we intend to dive deeper into con-
trastive learning and self-distillation for semi-supervised hand pose estimation. Also, we will
try to make the model lightweight by redesigning the depth map branch.
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8.1 Summary

Figure 8.1: Our goal is to utilize more auxiliary information and less annotation information
for model training. The exploration is in two directions. First, with auxiliary information, we
aim to achieve better representations by means of representation learning. Second, we would
like to exploit auxiliary information for weakly-/semi- supervise learning and hence reduce
the reliance on annotation. However, until now, even with diverse auxiliary information, the
accuracy still has not been close to that in supervised learning.

The overall goal of this dissertation is to explore auxiliary information to aid representa-
tion learning and relieve the burden of annotation for 3D hand pose estimation from single
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RGB images. As shown in Fig. 8.1, with respect to the modal accuracy and the amount
of training data, we can use auxiliary information for representation learning to get better
representations and hence improve the performance. Moreover, we would like to train with
less labelled data but more data with accessible auxiliary information to approach the per-
formance of training with all labelled data. Towards this goal, we explore three auxiliary
information with different strategies in Chapters 4-7. In the following, we summarize our
contributions.

In Chapter 4, we explore the image factors of variation among images as auxiliary infor-
mation. Inspired by image render processing, we present a VAE-based method for learning
disentangled representations. With the disentangled representations, we can synthesize RGB
images or generate hand poses with full control over factors of variation. This also provides
the potential to better analyze these factors of variation in both latent and appearance spaces.
Interestingly, our proposed model enables image factors as weak labels and evaluation in a
weakly-supervised setting.

In Chapter 5, we introduce different modalities as auxiliary information. We first for-
mulate RGB-based hand pose estimation as a multi-modal learning, cross-modal inference
problem. As such, we have a flexible framework to incorporate different modalities. Espe-
cially, we explore a non-conventional modality, point clouds, for learning the latent hand
space and show its superiority as auxiliary information for RGB-based hand pose estimation.
Moreover, we present the product of Gaussian expert operation to align the latent space.
The product of Gaussian expert alignment is flexible and enables the model to use different
data pairs as input. Due to the flexibility of our proposed multi-modal framework, different
modalities especially point clouds can be used as weak labels to support the training process.

In Chapter 6, we explore synthetic data as auxiliary information to aid the training of
unlabelled real-world data. We propose the first cross-domain semi-supervised framework
for 3D hand pose estimation. Directly applying the existing semi-supervised method is non-
trivial because pose estimation is a regression problem that critically depends on spatial
information. By design, we propose a template-based hand pose correction module to refine
the predictions. Moreover, to stabilize the training, we propose data augmentation of differing
difficulties.

In Chapter 7, we further combine both synthetic data and multi-modal data as auxiliary
information. We introduce a novel dual-modality network that learns from two modalities
(RGB images and depth maps) during pre-training but is applicable to only monocular RGB
inputs during fine-tuning and inference. During pre-training, we explore multi-modal learn-
ing, including multi-modal contrastive learning and multi-modal feature alignment. Dur-
ing fine-tuning, we explore pose correction and self-distillation based on our proposed dual-
modality network, and provide an effective fine-tuning scheme for real-world data with noisy
pseudo-labels.
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8.2 Discussion and Future Work

Even we investigate different auxiliary information, the gap in Fig. 8.1 still exists. This
encourages us to further explore the use of auxiliary information. In the following, we intro-
duce challenges we still faced in our research direction and also emphasize the interpretation
techniques and real-world application for hand pose estimation.

8.2.1 Multi-Modal Data

There is still a need to explore different modalities and emphasize their own characteristic for
specific application scenarios. Recently, 3D surface representations of hand have drawn much
attention. However, so far, most works only focus on predicting hand mesh from single RGB
input. Existing mesh works either directly [37, 135, 78], or indirectly [9, 179, 59] through the
use of parametric models like MANO [100] for the hand. I would like to break this limit by
introducing more hand representations. Here, we highlight the use of UV maps and implicit
functions for 3D surfaces and 3D poses.

• Different modalities have their own advantages and hence it is worthy of exploring
modalities for specific application scenarios based on their advantages. Taking UV
maps for example, a UV coordinate map can be easily augmented with their built-in
correspondences through additional channels of information, such as surface texture
and regions of object contact. This creates a natural connection between the 3D hand
shape, its appearance, and its interactions with objects in a seamless representation
space. As such, we emphasize the potential application of UV maps for pose estimation
and 3D reconstruction under the scenario of hand objection interaction.

• Besides the type of input modalities, how to utilize 3D representations for hand pose
estimation is also essential. This starts to be difficult as recent 3D representations
become more effective yet more complex. This leads us to think about - how shall we
build the skeleton or even the muscles for arbitrary 3D representations in one network?
Implicit functions like implicit neural representations [24] and neural radiance fields [77]
have shown great promise as they produce continuous reconstructions. It would be
interesting to get a “rigged” implicit function for 3D surfaces and 3D poses.

• Leveraging common cues from multi-modal data can enhance RGB-based hand pose
estimation. We propose to achieve this by explicitly aligning the latent spaces [155],
the attention and the low-dimensional subspace [70]. However, it is still a promising
direction to explore more different “alignment” for multi-modal data for representation
learning. We may explore more alignment in pixel-level features by encouraging the
corresponding features between different modalities to be close so that getting better
representations. Note that this is applicable for 2D and 3D modalities, as we can
connect 3D points with 2D pixels using the camera projection.
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8.2.2 Disentangled Representation

Disentangled representation learning can learn the task-relevant features without labels or
with weak labels. We continue exploring disentangled representation learning for label-
efficient pose estimation and improve the generalization of deep models.

• To learn a disentangled and controllable latent representation, it is important to con-
struct data pairs with shared factors of variation. One easy solution is to utilize syn-
thetic image like [27]. Also, we can control data record like fixing one of the factors of
variation. For a practical application in the real world, it is interesting to develop an
indoor environment to record such data. With both real-world and synthetic data, we
may have disentangled representations and generate realistic images.

• Disentangled representation learning has not been a mainstream framework to extract
task-relevant features for downstream tasks like contrastive learning. It would be inter-
esting if we can integrate disentangled representation with few-shot learning to improve
the generalization of deep models. Also, we should explore more cheap weak labels like
domain labels for disentangled representation learning to make it more practical in the
real world applications.

• Contrastive self-supervised representation learning with unlabelled real-world data has
achieved great success. However, constructing positive pairs seems still hard as simple
augmentations at most provide texture or geometric specific features. In contrast, data
with shared image factors are more common and easy to provide “positive image factors”
even not “positive images”. In this case, we would like to combine contrastive learning
with disentangled representation learning to address the data with shared image factors.
The combination will provide a novel representation learning framework.

8.2.3 Synthetic Data

Training models with synthetic data can bypass label scarcity, but such models generalize
poorly to real-world settings due to the domain gap between synthetic data and real-world
data. It is still promising to “transfer” the information from synthetic data to real-world
data effectively. In this case, we continue exploring to reduce the gap and improve the
representations based on synthetic data.

• The quality of synthetic hand data is still far from enough and this will high limit its
development. We should borrow the tools and ideas from related research fields like
face [143] to synthesize better hand images.

• Due to the flexibility of synthetic data, we highlight the potential research direction
that combining synthetic data with other auxiliary information like data with shared
image factors or multi-modal data, to get better representations. We will continue
exploring the “synthetic data-guided” representation learning.
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• During cross-domain semi-supervised learning, not all synthetic samples or real-world
samples are equally informative during training. As such, it is potential to explore
strategies like curriculum training or self-paced training, which finds the informative
samples in different training stages, to accelerate the training speed and get better per-
formance. Also, this sample selection procedure may be a key to stabilize the training.

• Pseudo-labelling are effective way to bridge the domain gap. However inevitably, the
pseudo-labels are noisy. To reduce the influence of noise, we should correct the pseudo-
labels. Even we propose pose correction in Chapters 6 and 7, we still try to find more
efficient (e.g. one-shot) correction methods based on more hand representations like
hand surfaces or hand heatmaps.

8.2.4 Interpretation Technique

By means of different auxiliary information for hand pose estimation, we improve the repre-
sentations of models and exploit those information in different supervised settings. However,
the usage of those auxiliary information is still hard to interpret and limited work try to
reveal the difference apart from the accuracy. Therefore, there is a need of interpretation
techniques for hand pose estimation to understand the behaviour of models and interpret the
rationale or details behind pipelines.

• There exists large amount of methods for hand pose estimation. We should systemat-
ically analyze different pose estimation pipelines. This will further provide insights to
understand the influence of different components and frameworks and assist diagnosing
models.

• Pose estimation frameworks exhibit flexible target modalities, i.e. , heatmap or coor-
dinate in 2D or 3D spaces. Therefore, We should compare and analyze different target
modalities in the same metric space.

• Pose estimation including diverse topics like human pose estimation, hand pose es-
timation, animal pose estimation and head pose estimation. Each of them has own
characteristics. It is favorable to analyze their similarities and differences.

8.2.5 Real-world Application

Hand pose estimation plays an important role for robotics, action recognition and immersive
interaction, and has broad real-world application prospects. Instead of single hand pose esti-
mation, most existing works turn to more challenging scenarios like hand object interaction
or hand hand interaction. However, they still limit their focus on the performance of public
benchmarks and overlook its application in real-world scenes. Differently, I highlight two
potential research directions for real-world hand pose estimation.

• To apply hand pose estimation on edge devices like AR/VR or mobile devices, we aim
to explore lightweight network architectures and network compression. This will give
the customer a more comfortable and convenient immersive interactive experience.
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• Given a pre-trained model, we target transferring the model to work better for new
scenes or people quickly. This will ensure the accuracy of pre-trained models in different
scenarios.
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