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Abstract
Even today, the treatment of industrial-grade geometries is a huge challenge in the field of
numerical simulations. The geometries that are created by computer aided design (CAD)
are often very complex and contain many flaws. Hence the discretization by mesh-based
methods like the finite element method (FEM) is very time consuming and can take several
months when human interaction is required. Therefore, a growing interest in so-called
meshfree methods arose in the scientific community over the last few decades.
One such meshfree method is the partition of unity method (PUM), which is very promising
because of its flexibility due to its very abstract formulations. But even though the PUM
is meshfree in its core, the treatment of complex geometries is still lacking. In this thesis
we develop methods to close that gap.
First we propose a post-processing step to the original cover construction algorithm em-
ployed in the PUM, that guarantees that stable approximation spaces can be constructed
for arbitrary geometries in two and three space-dimensions. Then, we tackle the problem
of efficient and robust integration in 2D, by proposing a monotone decomposition of the
input geometry. By exploiting properties of the resulting decomposition, we can prove
that all required intersection operations can be implemented reliably. By adding all in-
flection points of the domain’s boundary when constructing local decompositions of the
integration domains, we can prove that the resulting curved triangles always form a valid
decomposition. In 3D, we propose to create a linear approximation of the input geometry.
The linear representation allows all subsequent operations to be performed reliably and
fast. Then, we develop a method to estimate the domain approximation error and relate
that error to the approximation error of the PUM discretization. Refinement controlled by
those error estimates then yields a method that can overall converge with optimal rates.
All methods proposed throughout that thesis are validated by numerical experiments.
Thereby, we demonstrate the robustness on real-world industrial use cases. In 2D, we
present results for a shell problem on the door of a car. In 3D, results for mechanical parts
of the landing-gear of an Airbus A380 are presented.
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Introduction

Over the last decades, the prediction of physical behavior by numerical simulations car-
ried out on computers has become more and more important in the industry. One of the
main desires behind this development is to replace expensive real-world experiments by
comparable simulations that can be performed both faster, as well as cheaper. Nowa-
days, the undisputable methods of choice across the industry to perform those simulations
are the finite difference method (FDM), finite volume method (FVM) and finite element
method (FEM). A common property of all these methods is that they are mesh-based
methods. That means, they all require that the geometry of the object that is subject to
the numerical simulation is discretized into a so-called mesh or grid. But the generation
of those meshes is not an easy task and often needs human interaction. In [24], the time
that is required to create an analysis suitable geometry and mesh for a FEM simulation
is estimated to take up to 80% of the overall simulation time, where 60% are required to
prepare the geometry and 20% for the mesh generation itself. In [60] an example from the
automotive industry is given, stating that the process until an analysis suitable mesh for
a vehicle is available can take up to four month. Due to the models of cars, planes, ships,
etc. becoming increasingly complex over time, we expect those numbers to be even higher
and not lower nowadays.
A set of methods that try to overcome these costs are so-called meshfree (or meshless)
methods. One of the earliest approaches that falls into that category is smoothed particle
hydrodynamics (SPH) [45,84], which is a Lagrangian particle method. The diffuse element
method (DEM) introduced in [87] was initially described as a generalization of the FEM
by its authors, but it can also be considered to be based on moving-least squares (MLS)
approximation spaces and hence closely related to SPH. The element-free Galerkin method
(EFGM) introduced in [11] can be seen as an extension of the DEM, where some aspects
that have been omitted in the DEM were reintroduced to increase its accuracy. Similarly,
the reproducing kernel particle methods (RKPM) developed in [82, 83] can be seen as an
extension of the original SPH, where correction functions were introduced to allow the
exact reproduction of polynomial functions.
In [8, 9] the partition of unity method (PUM) has been introduced as a very general
framework that uses the abstract mathematical concept of a partition of unity (PU) and
an additional extrinsic basis to construct the involved approximation spaces. Here, the
choice of the additional basis is basically arbitrary, which makes the method very powerful
and especially well suited for problems where the solution is not necessarily very smooth.
The generalized finite element method (GFEM) [127,128] and the extended finite element
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2 INTRODUCTION

patches

Figure 1: A set of patches (blue boxes) overlaps the domain of a mechanical part (gray)
and forms a cover for the PUM.

method (XFEM) [12] are variants of the PUM where the classical linear shape functions
of a finite element mesh are used to create the PU. Thus they are not necessarily entirely
meshfree and can be seen as a combination of the FEM and the PUM. On the other hand,
in [128] the employed mesh does not need to resolve the boundary of the domain, but
simply overlap it, which makes the mesh generation domain independent and hence very
simple. Both, the GFEM and the XFEM employ special discontinuous and singular basis
functions to resolve local behavior imposed by cracks.
In [51] the particle-PUM has been introduced as a variant that is truly meshfree. Here,
the PU functions are constructed by building a d-binary tree over an initial set of particles
and then stretching the disjoint leaves of the tree in such a way, that an overlapping set of
patches is retrieved, which forms the so-called cover (compare Figure 1). If the stretching
is done according to carefully chosen stretch factors, the resulting PU functions fullfil
the so-called flat-top property. While this flat-top property implies that the PU functions
themselves can only reproduce constant functions, and hence additional smooth local basis
functions need to be added everywhere to gain higher order approximation properties, they
do on the other hand ensure that a globally stable basis can be created, regardless of the
employed local basis functions. This variant of the PUM is the one considered in this
thesis, although the initial set of particles is omitted in the construction of the cover.
Therefore, we will simply refer to it as the PUM in the following.
We believe that the very abstract properties that are presupposed by each of the com-
ponents involved in the construction of the PUM make it a very promising method to
tackle the challenges of numerical simulations for all kinds of problems. In fact, it has
been shown that the PUM framework allows the efficient treatment of many tasks that
are typically encountered in meshfree (and mesh-based) methods. To enforce essential
boundary conditions, an approach based on Nitsche’s method [55] as well as a conforming
approach [107] have been presented. To solve the resulting equation systems, an efficient
multilevel solver has been developed [53] and it has been shown that efficient smoothers
can be constructed, even when the local function spaces include polynomials of high de-
grees [50]. The parallelization of the method has been demonstrated by utilizing a domain
decomposition approach and space filling curves in [54], which shows the scalability of
the method to very large problems. Furthermore, it has been shown that it is possible to
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always retrieve a stable basis in the PUM, regardless of the employed local basis functions,
while keeping optimal approximation properties [105,108]. This does especially allow the
introduction of arbitrary enrichment functions that can be designed by using any a priori
knowledge of the solution to the problem at hand. Besides from the classical case of ana-
lytical enrichments for non-smooth behavior at material interfaces or discontinuities and
singularities at cracks, some additional examples where numerical enrichments have been
used in the PUM are to solve the Schrödinger equation [3,70] and in a stable global-local
enrichment scheme [13]. Further topics are the treatment of non-linear materials [130],
variational mass lumping for explicit dynamics [109], obstacle and contact problems [66]
and the non-invasive coupling with classical FEM codes [111,112].
But even though the method is meshfree in its roots, the simulation domain still needs to
be considered. First, the construction of the cover of patches has some dependencies on
the domain: The most obvious one is that the whole domain needs to be covered by those
patches to make sure a solution can be approximated everywhere. On the other hand, we
do not want to generate any patches that do not overlap the domain at all. Hence we need
to robustly determine whether a patch overlaps the domain or not. Furthermore, it is not
sufficient to ensure the flat-top property of the PU functions independent of the domain.
The flat-top property of the PU for a patch is guaranteed by the existence of a region in
the patch, that is not overlapped by any other patch. But if that flat-top region has an
empty intersection with the domain, it is insufficient to guarantee that we can retrieve a
globally stable basis. This deficiency has been reported in [110] and a possible solution
has been proposed in [34, 35]. But the solution therein did not consider employing local
function spaces with polynomials of higher degrees, nor the required properties of the
cover construction to enable the construction of efficient multilevel solvers. Hence, a cover
construction that guarantees a flat-top property under consideration of arbitrary domains
is still an open question, and a new solution is proposed in this thesis.
The other step in which the simulation domain needs to be considered in the PUM is during
the assembly of the stiffness matrix. Here, we need to compute integrals over intersection
domains of patches and the complete simulation domain. This assembly step is usually the
most expensive task of the overall simulation in many meshfree methods.1 Hence, it is of
high interest to use only efficient algorithms during that step. The requirement to evaluate
integrals over domains, that result from intersecting rectangular or triangular objects with
the simulation domain is not exclusive to the PUM. In fact, many other methods need
to solve similar problems. E.g. in the GFEM mentioned before, where the finite element
mesh that is used to construct the PU does not resolve the domain’s boundary, one needs
to evaluate such integrals. Similarly, a whole class of methods that falls under the category
of immersed or embedded boundary methods is confronted with the same problem. Some
representatives of those methods are the fictitious domain methods [73,102], unfitted finite
element method [10], CutFEM [16] and finite cell methods [31,90]. The classical approach
to tackle the integration problem in those methods is based on a space-tree decomposition
where every cell that intersects the boundary of the domain is subdivided recursively
into uniform subcells until a predefined depth is reached. On those final cells a known

1Under the assumption that an efficient solver for the linear equation system is available.
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Gaussian quadrature rule for the subcells is applied, without further resolution of the
domain’s boundary. Hence, the integration is still subject to the discontinuity imposed by
the boundary, and is thus not exact. In fact, the accuracy depends heavily on the depth
of the space-tree decomposition and very deep refinements lead to a rapidly increasing
number of quadrature points which has severe consequences for the overall efficiency of
the method [32, 76]. On the other hand, a more efficient variant of the integration has
been presented more recently in [76]. Here, an idea from the so-called NURBS enhanced
finite element method (NEFEM) [118] has been picked up. In the NEFEM, the triangular
elements that are located at the boundary are mapped to a curved triangle that than
represents the boundary exactly. For the numerical integration, this map is used, such that
the integration can be carried out on a reference triangle with known Gaussian quadrature
rules. The ideas from the NEFEM are then combined with the space-tree subdivision, such
that the recursive refinement of boundary cells is only performed until the subcells intersect
the boundary of the simulation domain in a simple enough manner. Then, the resulting
intersections can be decomposed into triangles easily, and a curved map is applied to create
an exact quadrature rule for each of the final, curved triangular cells.
Unfortunately, those approaches turn out to be insufficient to be applied in the setting
of the PUM. First we want to emphasis that due to the overlapping patches, we usually
have more rectangular cells that intersect the boundary of the simulation domain and need
to be integrated on, than in comparable methods as given above. Hence, it is even more
important to generate as few quadrature points per such cell as possible. Furthermore, the
construction of a multilevel solver in the PUM requires the assembly of the stiffness matrix
for covers of different refinement degrees. Especially very coarse covers are of interest, since
the coarsest possible level heavily influences the performance of the multilevel method.
With an approach as given above, the integration on coarse covers will require many
initial subdivisions of the space-tree since the geometry is very complex relative to the
coarse cells. Hence, the assembly of these coarse covers can take a fair amount of time,
which is undesirable. We will thus describe a new approach that creates curved, triangular
integration cells right from the original cells, without the need to apply any recursive
space-tree subdivisions at all.
Another difficulty that often gets little attention in scientific research papers is the vast
complexity and imperfections of actual industrial geometries. In [4], a representative
of Siemens PLM, states that the models that are commonly used in scientific research2

are “hopelessly unrealistic” and not good representatives of real-world data. Common
errors that are encountered in industrial geometries described by the ISO standard for the
exchange of product model data (STEP) are listed in [138]. In [137] a case study has been
conducted that categorized the most common flaws in such geometries. Such flaws are
usually introduced during the construction of these geometries via computer aided design
(CAD) which represents one of the main sources for geometries used in the industry.
Hence, we are convinced that even seemingly simple operations like the test whether a
point is within a CAD geometry or whether a box intersects the boundary of the CAD

2He mentions the famous Stanford Bunny [131] and Happy Buddha [25] from the Stanford 3D Scanning
Repository (http://graphics.stanford.edu/data/3Dscanrep/). Accessed: 2022-10-17.

http://graphics.stanford.edu/data/3Dscanrep/
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geometry, require thorough understanding of the underlying mathematical equations, such
that these problems can be solved robustly. To this end, we tackle the problem from the
bottom up and show how methods can be developed that aim to answer these fundamental
questions reliably for our use cases.
In the remainder of this thesis, we deal with the problems mentioned above. It is organized
as follows:

• We start by giving a summary of the basic theory of the partition of unity method
and its fundamental approximation properties. This is followed by short summaries
of topics related to the PUM that are relevant to this thesis.

• Then, we propose a new post-processing step for the cover construction that resolves
instabilities that can arise when considering complex geometries. The numerical ex-
amples at the end of this chapter show that the post-processing step is in fact capable
of constructing stable function spaces on complex two- and three-dimensional geome-
tries and that our method does achieve optimal convergence rates. Furthermore, we
show that we are still capable of creating an efficient multilevel solver, after the
different cover levels have been adjusted by the proposed post-processing step.

• The description of the PUM and the cover post-processing is followed by a short
summary of geometries described by the STEP standard. We introduce the basic
topological and geometrical representations, the implications of those descriptions
and the mathematical formulations used therein. We give a short explanation why
we can usually not expect real-world geometries to be “flawless” in the sense that
we have to deal with gaps, self-intersections and other defects in these geometries.

• We then describe the problems we need to solve for an efficient and robust integra-
tion in the PUM on two-dimensional geometries. We first propose to implement a
monotone decomposition of the curves that describe the input geometry and show
that such a decomposition can be computed efficiently for all supported input geome-
tries. We then show how this monotone decomposition can be used to guarantee the
robust computation of all intersection operations that are required to be performed
during the assembly step of our PUM. Next we show how to decompose the result-
ing domains into curved triangles. We propose to insert all inflection points into the
point sets when creating the local triangulations. We can prove that the insertion of
those points allows us to develop efficient and robust tests to detect invalid curved
triangles and show how to resolve these cases based on the previously developed
test. Finally, we describe how a mapping based on a transfinite interpolation can
be used to create quadrature points for each curved triangle, which completes the
description of how to deal with two-dimensional geometries.

• We end the handling of two-dimensional geometries by presenting results of numer-
ical examples. First, we show that we can still achieve optimal convergence rates
for curved domains and demonstrate the benefits of an exact boundary descriptions.
This is followed by an extensive analysis of the performance characteristics of the
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presented approach. Finally, we present a highly complex industrial use case where
we solve a shell problem on a real-world CAD geometry of the door of a car using
the proposed PUM.

• For three-dimensional solid geometries, we then start by motivating why an exact
treatment of curved domains is a far more difficult problem than it was in two-
dimensions. Hence, we propose to use an approximate representation for such ge-
ometries. After developing a simple approach to construct such approximations, we
continue to describe how those approximations allow us to compute the required
intersection operations and decompositions into integration cells, both, robust and
efficiently. Finally, we develop a strategy to estimate the errors of the geometry
approximation and put it into relation to the approximation error of the PUM dis-
cretization, to yield a method that can overall converge with optimal rates.

• The handling of three-dimensional geometries is completed by numerical examples
that first show that we are in fact capable of achieving close to optimal convergence
rates on curved, three-dimensional solid geometries. We then present a further
industrial use case with a non-smooth solution and finally show that we can obtain
results on real-world mechanical parts from the landing gear of an Airbus A380, that
are in good agreement with reference solutions obtained by a classical finite element
method.



1 Partition Of Unity
Method

In this chapter we give a brief overview of the Partition of Unity Method (PUM) that
was introduced in [8, 9] as a generalization of the FEM and is based on [7]. These basic
theoretical ideas have been picked up by Schweitzer and Griebel who then developed an
entire framework of algorithms around the PUM for an efficient and stable discretization
[52], handling of boundary conditions [55, 107], solving of the resulting equation systems
[50,53], stable enrichment methods [105,108] and more.

1.1 Approximation Properties

Let us consider a Lipschitz domain Ω ⊂ Rd in d dimensions. To obtain a partition of
unity space V PU we first construct an open cover CΩ = {ωi | i = 1, . . . , N} consisting
of open sets ωi, the so-called patches, that cover the whole domain, i.e. Ω̄ ⊂

⋃N
i=1 ωi.

The geometric information of the patches is used to construct a partition of unity (PU)
{φi}Ni=1 with supp(φi) = ωi for all i = 1, . . . , N . Additional local approximation spaces
Vi := Vi(ωi) := span⟨ϑm

i ⟩ give the final ingredient to define the global space as

V PU :=
N∑

i=1
φiVi = span⟨φiϑ

m
i ⟩

with m being a counting index over the local basis functions ϑm
i employed on each patch.

Let us now take a look at the basic properties that each of those ingredients need to fullfil
to show the approximation properties of the PUM as given in [9].

Definition 1.1 (Partition of Unity). Let Ω ⊂ Rd be an open set, {ωi | i = 1, . . . , N} be
an open cover of Ω satisfying a point-wise overlap condition

∃M ∈ N s.t. card{i | x ∈ ωi} ≤M ∀x ∈ Ω.

Let φi be a Lipschitz partition of unity subordinate to the cover {ωi} satisfying

supp(φi) ⊂ closure(ωi) ∀i = 1, . . . , N,

7



8 CHAPTER 1. PARTITION OF UNITY METHOD

N∑
i=1

φi ≡ 1 on Ω,

∥φi∥L∞(Rd) ≤ C∞ and

∥∇φi∥L∞(Rd) ≤
C∇

diam(ωi)

where C∞ and C∇ are two positive constants. Then {φi} is called a (M,C∞, C∇) partition
of unity subordinate to the cover {ωi}. The partition of unity {φi} is said to be of degree
m ∈ N0 if {φi} ⊂ Cm(Rd). The covering sets {ωi} are called patches.

Definition 1.2 (Global Partition of Unity Space). Let {ωi} be an open cover of Ω ⊂ Rd

and let {φi} be a (M,C∞, C∇) partition of unity subordinate to {ωi}. Let Vi ⊂ H1(ωi∩Ω)
be given. Then the space

V PU :=
N∑

i=1
φiVi =

{
N∑

i=1
φivi | vi ∈ Vi

}
⊂ H1(Ω)

is called a PUM space. The PUM space V PU is said to be of degreem ∈ N if V PU ⊂ Cm(Ω).
The spaces Vi are referred to as local approximation spaces.

Theorem 1.1 (Approximation). Let Ω ⊂ Rd be given. Let {ωi}, {φi} and {Vi} be as in
Definitions 1.1 and 1.2. Let u ∈ H1(Ω) be the function to be approximated. Assume that
the local approximation spaces Vi have the following approximation properties: On each
patch ωi ∩ Ω, the function u can be approximated by a function vi ∈ Vi such that

∥u− vi∥L2(ωi∩Ω) ≤ ϵ̂i and
∥∇(u− vi)∥L2(ωi∩Ω) ≤ ϵ̃i

hold for all i = 1, . . . , N with some local error bounds ϵ̂i and ϵ̃i. Then the function

uPU =
N∑

i=1
φivi ∈ V PU ⊂ H1(Ω)

satisfies the global estimates

∥u− uPU∥L2(Ω) ≤
√
MC∞

(
N∑

i=1
ϵ̂2i

) 1
2

, (1.1)

∥∇(u− uPU)∥L2(Ω) ≤
√

2M
(

N∑
i=1

(
C∇

diam(ωi)

)
ϵ̃2i + C2

∞ϵ̂
2
i

) 1
2

. (1.2)

Proof. See [8, 9].
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If we assume that M is independent of N , i.e. M = O(1)1 the equations (1.1) and (1.2)
can be reformulated to show that the PUM has both an h-version as well as a p- and
hp-version.
To this end, let us consider diam(ωi) ≈ hi for all i = 1, . . . , N with hi < h and that all
local approximation spaces Vi contain polynomials of order p. Due to the Bramble-Hilbert
lemma the local approximation spaces satisfy the local error bounds

∥u− ui∥L2(Ω∩ωi) ≤ Chp+1∥u∥Hk(Ω∩ωi) =: ϵ̂i,

∥∇(u− ui)∥L2(Ω∩ωi) ≤ Chp∥u∥Hk(Ω∩ωi) =: ϵ̃i
(1.3)

with u ∈ Hk(Ω), k ≥ 1 and p ≤ k − 1. Using these local error bounds the equations (1.1)
and (1.2) can be reformulated to become

∥u− uPU∥L2(Ω) ≤MC∞Ch
p+1∥u∥Hk(Ω), (1.4)

∥∇(u− uPU)∥L2(Ω) ≤M
√

2(C∇ + C∞)Chp∥u∥Hk(Ω) (1.5)

which resemble the error estimates for an h-version of a classical finite element method.
Similarly a p-version can be constructed when we assume local error bounds of the form

∥u− ui∥L2(Ω∩ωi) ≤ Chip
−µ∥u∥Hk(Ω∩ωi),

∥∇(u− ui)∥L2(Ω∩ωi) ≤ Cp−µ∥u∥Hk(Ω∩ωi)
(1.6)

for some appropriate µ > 0. These bounds again hold for local approximation spaces
Vi that contain polynomials of order p ≤ k − 1. But more generally the PUM allows to
use any construction of the local approximation spaces Vi that is best suited to reduce
the local error bounds ϵ̂i and ϵ̃i. This does especially include the possibility to exploit
a priori knowledge of any local behavior of the solution to construct local enrichment
functions that are added to the function spaces Vi and can immediately achieve much
better local approximation properties than either h-refinement as given in (1.3) or p-
refinement as given in (1.6). They are commonly used to, but not limited to, resolve
non-smooth components of the solution. Examples for such enrichment functions are
functions to resolve discontinuities in the derivatives as they arise at material interfaces
or singularities as they arise at re-entrant corners or at crack tips.
Let us now turn to the stability of the method. To this end, we should note that the
estimates given in Theorem 1.1 do only state how the approximations uPU converge to the
real solution, but the functions uPU =

∑
i φiui could be non-unique. This means that our

shape functions φiϑi can be linearly dependent. Consider the following example:

Example 1.1. Given the domain Ω := (0, 1) and the partition of unity functions

φ1(x) := 1− x, φ2(x) := x

1In fact this limitation can be lifted when we do additionally assume that our partition of unity functions
are non-negative, i.e. 0 ≤ φi(x) ≤ 1 for all x ∈ Ω, i = 1, . . . , N . In this case Theorem 1.1 can be improved
to be less dependent on M [109].
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with the local polynomial basis functions

ϑ1
1(x) := 1, ϑ2

1(x) := x and
ϑ1

2(x) := 1, ϑ2
2(x) := x.

This results in the global PUM space

V PU := span
〈
(1− x), (1− x)x, x, x2〉

which spans the space of all quadratic polynomials, but uses four functions to do so.
Since there are only three linearly independent polynomials of degree two, our shape
functions φiϑ

m
i have to be linearly dependent. In fact in our example it is φ1(x)ϑ2

1(x) =
φ2(x)ϑ1

2(x)− φ2(x)ϑ2
2(x) = x− x2 and hence ⟨φiϑ

m
i ⟩ is a generating set for V PU but not

a basis.

To overcome this issue Babuška and Melenk suggested to use PU functions φi that are
flat, i.e. φi ≡ 1, on some subset ω̃i ⊂ ωi ∩ Ω. Such requirements have been formalized
in [106] where definitions of the flat-top property and an admissible cover are given as
follows:

Definition 1.3 (Flat-top property). Let {φi | i = 1, . . . , N} be a partition of unity
according to Definition 1.1. Let us define the sub-patches ωFT

i ⊂ ωi such that φi|ωFT
i
≡ 1.

The PU is said to have the flat-top property, if there exists a constant CFT such that for
all patches ωi = supp(φi)

µ(ωi) ≤ CFTµ(ωFT
i ) (1.7)

where µ(A) denotes the Lebesgue measure of A ⊂ Rd.

Definition 1.4 (Admissible cover). Let Ω ⊂ Rd be an open set. Let ωi ⊂ Rd be open
sets with ωi ∩ Ω ̸= ∅ for i = 1, . . . , N . Furthermore let us introduce the covering index
λCΩ : Ω→ N such that

λCΩ(x) = card({ωi ∈ CΩ | x ∈ ωi}) (1.8)

with the collection CΩ = {ωi | i = 1, . . . , N} being called an admissible cover of Ω and the
sets ωi are denoted admissible patches if the following conditions are satisfied

• Global covering:

Ω̄ ⊂
N⋃

i=1
ωi.

• Minimal overlap: Given the subset

ωFT
i := {x ∈ ωi | λCΩ(x) = 1} ⊆ ωi, (1.9)

there exists a constant CFT such that

µ(ωi) ≤ CFTµ(ωFT
i ). (1.10)
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Figure 1.1: Different examples for covers CΩ over the same domain Ω.
Left: Using circles for all patches ωi.
Center: Using non-uniformly distributed axis-aligned rectangles for all patches ωi.
Right: Using uniformly distributed axis-aligned squares for all patches ωi.

• Bounded overlap: There exists a constant M > 0 such that for any x ∈ Ω, it holds
that

∥λCΩ∥L∞(Ω) < M ≪ N. (1.11)

• Sufficient overlap: There exists a constant CS > 0 such that for any x ∈ Ω there is
at least one cover patch ωi such that x ∈ ωi and

dist(x, ∂ωi) ≥ CS diam(ωi). (1.12)

• Comparability of neighboring patches: A subset

Ci := {ωj ∈ CΩ | ωj ∩ ωi ̸= ∅} ⊂ CΩ (1.13)

is called a local neighborhood or local cover of a particular cover patch ωi ∈ CΩ.
There exists a constant CN ≥ 1 such that for all patches ωj , ωi ∈ CΩ the implication

ωj ∩ ωi ̸= ∅, diam(ωi) ≥ diam(ωj) =⇒ diam(ωi)
diam(ωj) ≤ CN (1.14)

holds.

Given such an admissible cover (some examples are given in Figure 1.1) we can construct
a partition of unity by utilizing Shepard functions like

φi := Wi(x)∑
ωj∈Ci

Wj(x) (1.15)

where Ci is the set of all geometrical neighbors ωj of the patch ωi as defined in equa-
tion (1.13) and Wi being non-negative weight functions, i.e. Wi(x) > 0 for all x ∈ ωi.
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Here, we want to point out that a very important property of the PUM is that the PU
functions φi inherit their smoothness from the weight functions Wi. Thus we can con-
struct arbitrarily smooth function spaces V PU by choosing the right weight functions Wi.
This property is especially important when we want to solve higher order PDEs. To con-
struct those weight functions we assume that our patches are d-dimensional rectangles
ωi :=

⊗d
m=1((ci)m− (ri)m, (ci)m + (ri)m) with ci being the center of the patch and ri the

anisotropic radius. This allows us to construct the weight functions Wi by tensor prod-
ucts of one-dimensional spline functions W : [−1, 1]→ R. Utilizing affine transformations
Ti,m : [(ci)m − (ri)m, (ci)m + (ri)m]→ [−1, 1] the weight functions Wi can be written as

Wi(x) :=
d∏

m=1
W ◦ Ti,m(xm). (1.16)

Compare Figure 1.2 for an exemplary construction of some linear partition of unity func-
tions in 1D.

Lemma 1.1. The PU defined by (1.15) with weights (1.16) defined on an admissible cover
as given in Definition 1.4 is valid according to Definition 1.1 and satisfies Definition 1.3.

Proof. See [106].

The final ingredient for a PUM space as given in Definition 1.2 are the local approximation
spaces Vi. Again following the work of [106] we choose local approximation spaces that
consist of a smooth polynomial part Ppi := span⟨ψs

i ⟩ and problem dependent enrichment
functions Ei := span⟨ηt

i⟩ as

V pi
i := Ppi + Ei = span⟨ψs

i , η
t
i⟩ (1.17)

where the ψs
i are polynomials of total degree p ≤ pi. Since we construct our patches

ωi from d-dimensional rectangles, a natural choice for the polynomials ψs
i is to employ

tensor products of some one-dimensional polynomials. Throughout this thesis we use
one-dimensional Legendre polynomials L : [−1, 1] → R that allow us to define the basis
functions up to the degree pi as

{ψs
i (x) | ψs

i (x) :=
d∏

m=1
Lqm ◦ Ti,m(xm), ∥q∥1 ≤ pi} (1.18)

where q = (qm)d
m=1 is the multi-index of the polynomial degrees qm per dimension.

1.2 Hierarchical Cover Construction

In this section we give an overview on the construction of an admissible cover CΩ according
to Definition 1.4. To this end, we employ an algorithm based on d-binary trees similar to
what has been introduced in [52] and [56].
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Figure 1.2: Top, left: One-dimensional linear splines W(x) := 1 − |x| on the reference
domain [−1, 1].
Top, right: Two-dimensional tensor product spline W(x) · W(y) = (1 − |x|)(1 − |y|)
on the reference domain [−1, 1]2.
Bottom, left: One-dimensional, linear weight functions Wi of four different patches
with their centers at c1 = 0.125, c2 = 0.375, c3 = 0.625 and c4 = 0.875. All
patches do have the same radius ri = 0.1625. The weights have been constructed
by transformation of the linear spline function W from [−1, 1] to the respective do-
main ωi := (ci − ri, ci + ri) of each patch.
Bottom, right: Resulting flat-top PU functions φi from the weights Wi by applying
the Shepard construction given in equation (1.15).
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Instead of creating the cover CΩ directly, we start by creating a sequence of disjoint covers
Ĉk

Ω on levels k ∈ N0 as

Ĉk
Ω := {Ci,k}, Ci,k ∩ Cj,k = ∅ ∀i, j = 1, . . . , Nk, i ̸= j

with Nk := card(Ĉk
Ω), consisting of disjoint, rectangular tree cells

Ci,k :=
d⊗

m=1

(
(ai,k)m, (bi,k)m

)
with ai,k, bi,k ∈ Rd being the lower-bound and the upper-bound of the cell Ci,k, respectively.
These disjoint cells are then stretched into the patches ωi,k of the admissible cover by
applying a stretch factor αi,k as follows

ωi,k :=
d⊗

m=1
((ci,k)m − αi,k

(hi,k)m

2 , (ci,k)m + αi,k
(hi,k)m

2 ), (1.19)

with hi,k = bi,k − ai,k and ci,k = ai,k + hi,k

2 . We create the disjoint covers Ĉk
Ω by a tree

subdivision algorithm.
For the root node with depth l = 0 we initialize its associated cell to the bounding box
RΩ ⊃ Ω̄ of the domain Ω. By using RΩ as the only cell Ci,k on the coarsest level k = 0
we can create the initial disjoint cover Ĉ0

Ω := {RΩ} = {C1,0}. Next we subdivide this cell
uniformly into a set of smaller cells

Si,k :=
{

d⊗
m=1

(
(ai,k)m + qm

(hi,k)m

2 , (ai,k)m + (qm + 1)(hi,k)m

2

)
, ∥q∥∞ ≤ 1

}
, (1.20)

where q = (qm)d
m=1 is the counting multi-index with qm ∈ N0 per dimension and it is

card(Si,k) = 2d. For each cell Cj ∈ Si,k we attach a child-node of depth l+1 to the node of
Ci,k in the tree. After each refinement step we collect the cells associated with leaf nodes
of the tree that have a non-empty intersection with the domain Ω into the set of cells on a
level k, yielding Ĉk

Ω. Repeated application of the sub-division strategy to the leaves yields
ever finer covers over the domain (compare Figure 1.3). Note that in each refinement step
we can decide for each leaf cell whether it should be split into smaller cells or not. If a cell
Ci,k is not split up, its node stays a leaf in the new tree and the associated cell will be part
of the covers Ck

Ω on multiple levels k ≥ li,k, where li,k is the depth of the node in the tree
corresponding to the cell Ci,k. Finally we can transform all disjoint cells Ci,k ∈ Ĉk

Ω into
patches ωi,k by applying equation (1.19) which yields a cover Ck

Ω on each level (compare
Figure 1.4).

Lemma 1.2. There exists a choice of αi,k ∈ (1, 2) for each cell Ci,k such that on a level
k, the covers Ck

Ω constructed by the algorithm described above (and formalized below in
Algorithm 1.1) are admissible covers according to Definition 1.4.
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l = 0

l = 1
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Figure 1.3: Top left: Adaptive quad-tree with maximum depth l = 2. The white leaf
nodes induce a cover on level k ≥ l consisting of cells with depths l = 1 and l = 2.
Top right: The disjoint cover Ĉk

Ω on level k induced by the leaves of the tree on the
left.
Lower row: A single node of the tree has been refined, yielding new nodes of depth
l = 3 and a cover Ĉk+1

Ω on level k + 1. Most cells from the cover Ĉk
Ω are cells of the

cover Ĉk+1
Ω as well. Only the refined cell is no longer present, but its children have

been added to that cover.

Figure 1.4: Patches ωi,k of a cover Ck
Ω represented by rectangle boxes that have been

created by applying a stretch factor α = 1.2 to all cells Ci,k of the final disjoint
cover Ĉk

Ω depicted in Figure 1.3. The local tree cells Ci,k are represented by dotted
rectangles. The gray box highlights the domain of a single patch ωj,k.



16 CHAPTER 1. PARTITION OF UNITY METHOD

Proof. For ease of notation, let us drop the index k in the following and assume that all
arguments are made for a single level k. For a patch ωi stretched from Ci via equation
(1.19) we can state that for the distance of any point x ∈ C̄i to the boundary of its
corresponding patch ωi it holds

dist(x, ∂ωi) ≥ min
m=1,...,d

(
(αi − 1)(hi)m

2

)
, x ∈ C̄i.

Since ĈΩ is a disjoint partition of RΩ and Ω ⊂
⋃N

i=1 C̄i, for each x ∈ Ω there is always at
least one Cj such that x ∈ C̄j . Then with

dist(x, ∂ωj)
diam(ωj) ≥

minm=1,...,d

(
(αj − 1) (hj)m

2

)
diam(ωj)

≥ min
i=1,...,N

minm=1,...,d

(
(αi − 1) (hi)m

2

)
diam(ωi)

=: CS

it holds that CS > 0 if αi > 1 for all i = 1, . . . , N and diam(Ω) > 0 and thus we obtain the
sufficient overlap property from equation (1.12) of Definition 1.4. Next we should note
that the size of the tree cells Ci constructed by the algorithm described above, depends
solely on the depth li of its corresponding node in the tree and can be written as

diam(Ci) = diam(RΩ)
2li

. (1.21)

Let us additionally define the direct neighborhood of a cell Ci as

Ĉi := {Cj ∈ ĈΩ | C̄j ∩ C̄i ̸= ∅} (1.22)

as well as the global and local maximum depth difference

L := max
i=1,...,N

Li, Li := max
Cj∈Ĉi

|li − lj |. (1.23)

Then for a cell Ci and its neighbor Cj ∈ Ĉi with diam(Ci) ≥ diam(Cj), i.e. li ≤ lj , for
αi ∈ (1, 2) it is

diam(ωi)
diam(ωj) = αi diam(Ci)

αj diam(Cj) =
αi

diam(RΩ)
2li

αj
diam(RΩ)

2lj

= αi

αj
2lj−li

≤ max
k=1,...,N

αk

αj
2lj−lk ≤ max

k=1,...,N

αk

αj
2Lk < max

k=1,...,N
2Lk+1

≤ 2L+1

since αk
αj

< 2 and we obtain the comparability of neighboring patches from (1.14) with
CN := 2L+1 ≥ 1. Let us now define a sufficient condition that no patch ωi generated from
a cell Ci penetrates any of its direct neighbors Cj ∈ Ĉi \ {Ci} to its center or further by

(αi − 1)(hi)m

2 <
(hj)m

2 ∀m = 1, . . . , d ∀ Cj ∈ Ĉi \ {Ci}. (1.24)
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Since equation (1.21) can be formulated equivalently to define (hi)m of a cell Ci from RΩ
and li, we get

αi < 1 + 2li−lj ∀ Cj ∈ Ĉi \ {Ci}.

Since 1 + 2li−lj ≥ 2 if li ≥ lj we do only need to take the case into account where the
neighbors Cj are smaller than Ci. So let us define the maximum depth difference bounded
towards smaller neighbors as

L−
i := max

Cj∈Ĉi

|min{li − lj , 0}|. (1.25)

which leads to
αi < 1 + 2−L−

i . (1.26)

If we now turn the case around and look at a patch ωi that is only surrounded by patches
ωj that have been stretched by stretch factors limited as given in equation (1.26) we can
reformulate equation (1.24) to

(hi)m − max
Cj∈Ĉi\{Ci}

(
(αj − 1)(hj)m

)
=: (hFT

i )m > 0

where hFT
i is the diagonal of a domain

ω̃FT
i :=

{
x ∈ ωi | xm ∈

(
(ci)m −

(hFT
i )m

2 , (ci)m + (hFT
i )m

2
)}

located around the center ci of the patch ωi that is not overlapped by any other patch
ωj ̸= ωi and thus λCΩ(x) = 1 and ω̃FT

i ⊆ ωFT
i . With µ(ω̃FT

i ) :=
∏d

m=1(hFT
i )m > 0 and

due to ω̃FT
i ⊆ ωFT

i it holds that µ(ω̃FT
i ) ≤ µ(ωFT

i ) and we can reformulate the minimal
overlap property given in equation (1.10) from Definition 1.4 as

µ(ωi) ≤ CFTµ(ω̃FT
i ) ≤ CFTµ(ωFT

i )

which holds for
CFT := max

i=1,...,N

µ(ωi)
µ(ω̃FT

i )
.

We are now left to prove the property of bounded overlap given in equation (1.11) from
Definition 1.4. Given a point x ∈ Ω and a patch ωi such that x ∈ ωi. The center ci of the
patch ωi divides that patch in 2d disjoint sections and without loss of generality, let the
point be located in the upper most section, i.e.

(ci)m + αi
(hi)m

2 > xm ≥ (ci)m ∀m = 1, . . . , d. (1.27)

Then, assume that there is another patch ωj such that the point is located in the same
section, i.e.

(cj)m + αi
(hj)m

2 > xm ≥ (cj)m ∀m = 1, . . . , d. (1.28)
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Combining (1.27) and (1.28) then yields

(ci)m + αi
(hi)m

2 > (cj)m ∀m = 1, . . . , d and

(cj)m + αj
(hj)m

2 > (ci)m ∀m = 1, . . . , d.
(1.29)

Since the tree cells Ci do not overlap, it does additionally hold

|(cj)m − (ci)m| ≥
(hi)m

2 + (hj)m

2 . (1.30)

Without loss of generality we can assume (cj)m > (ci)m such that the first equation from
(1.29) together with (1.30) yields

αi
(hi)m

2 ≥ (cj)m − (ci)m ≥
(hi)m

2 + (hj)m

2

αi
(hi)m

2 − (hi)m

2 ≥ (hj)m

2

(αi − 1)(hi)m

2 ≥ (hj)m

2

which contradicts (1.24). Hence, if (1.26) holds for all patches, the point x cannot be in
the same section of more than a single patch and due to there being at most 2d different
sections we can finally state

∥λCΩ(x)∥L∞(Ω) ≤ 2d =: M.

Remark 1.1. As an alternative to enforce equation (1.24) that implies the flat-top property
for non-uniform covers, equation (1.26) can be reformulated to

L−
i < − log2(αi − 1), (1.31)

which gives us a bound on the local maximum depth difference based on a given stretch
factor αi. Using that bound we can select a fixed α ∈ (1, 2) that we apply to all patches
αi = α for all i = 1, . . . , N and modify our subdivision algorithm to only yield covers
where L−

i < Lmax := − log2(α − 1) is fulfilled by forcing a refinement of a neighboring
cell Cj when it is neighbor to a cell Ci with li − lj ≥ Lmax. While this method makes
sure we get a valid cover as of Definition 1.4 we additionally get a cover with smooth
transitions of patch sizes because the global maximum depth difference L is bounded by
Lmax as well. Note that bounding L ≤ Lmax = const does additionally establish a bound
on the number of neighbors, for which we have card(Ci) ≤ 2d(L+2), that depends on the
constants Lmax and d only. This benefits the computational cost of our method. On the
other hand, we should note that for some refinements this can have a noteworthy effect
on the total number of patches N , since the refinement of a single patch can lead to the
refinement of its neighbors and the neighbors of the neighbors etc., which leads to the
so-called ripple-effect.
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The conditional splitting of leaf cells yields an adaptive h-version of the PUM. Additionally,
in each refinement step we can choose to increase the polynomial degree of child patches
ωj,k+1 of ωi,k which results in adaptive p- and hp-versions depending on whether ωi,k is
split up, or simply transferred to the next level. In general, on each level we can define a
local refinement indicator function rS subject to

rS : {(ωi,k, Vi,k), i = 1, . . . , Nk} → {null,h,p,hp}

that decides for all patches ωi,k whether to refine their size, increase their polynomial
degree, both or nothing at all. The decision how to refine a specific patch can be based on
many criteria. Common examples would be simple geometric predicates for patches that
are close to some specific feature of the domain Ω, e.g. a re-entrant corner or crack tips.
Alternatively it can be driven by a more sophisticated local error estimate as described
in [56].
Let us summarize the complete cover construction in the following algorithm:

Algorithm 1.1 (Hierarchical Cover Construction).

Given: A domain Ω, a desired stretch factor α ∈ (1, 2) and an initial polynomial
degree p. Optionally a bound for the maximum depth difference Lmax.

Compute the bounding box RΩ ⊃ Ω̄ of the domain Ω.

Initialize the tree by using RΩ as root node with depth l = 0. Initialize the disjoint
cover on level k = 0 as the set Ĉ0

Ω := {C1,0} with C1,0 := RΩ being the only cell in
that cover. Initialize C0

Ω by applying (1.19) to C1,0. Initialize V PU
0 with the local

function space V1,0 for the patch ω1,0 by defining a weight function φ1,0 according to
(1.15) and (1.16) and the local basis functions according to (1.17) and (1.18) using
the initial polynomial degree p.

While the cover on level k is not fine enough:

1. Initialize the disjoint cover on the next level Ĉnext
Ω := {}.

2. Evaluate the refinement indicator function ri := rS(ωi,k, Vi,k) for all patches
ωi,k, i = 1, . . . , Nk.

3. If the maximum depth difference is to be bounded by Lmax:
(a) For all patches that are marked to be h-refined {ωi,k | ri ∈ {h,hp}}, select

all neighbors that are not marked to be h-refined and which are going to
violate the max depth difference {ωj,k ∈ Ci,k | rj ̸∈ {h, hp} and (li,k + 1)−
lj,k ≥ Lmax}. Mark those patches to be h-refined as well by

rj =
{

h if rj = null
hp if rj = p

.

Apply this step recursively on the newly h-refined patches until no patches
violate the max depth difference.
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4. For all cells on the current level Ci,k ∈ Ĉk
Ω:

(a) If ri ∈ {h,hp}:
i. Uniformly split the cell Ci,k of depth li,k into 2d children Cj ∈ Si,k of

depth li,k + 1 according to (1.20) and attach them to the tree.
ii. Append all children that have a non-empty intersection with the do-

main Ω to the disjoint cover on the new level Ĉnext
Ω ← Ĉnext

Ω ∪ {Cj ∈
Si,k | Cj ∩ Ω ̸= ∅}.

(b) Else:
i. Append the unrefined cell to the disjoint cover on the new level Ĉnext

Ω ←
Ĉnext

Ω ∪ {Ci,k}.
5. If a leaf cell has been refined, i.e. ∃ i | ri ∈ {h, hp} and li,k = k:

(a) Assign the generated disjoint cover to the next level Ĉk+1
Ω ← Ĉnext

Ω .
(b) Increment the level index k ← k + 1.

6. Else:
(a) Overwrite the last level with the newly created one Ĉk

Ω ← Ĉnext
Ω .

7. Create the overlapping cover Ck
Ω by applying (1.19) to all cells Ci,k ∈ Ĉk

Ω, using
the same stretch factor αi,k := αj,k−1 that has been used to create its parent
patch ωj,k−1.

8. Compute all neighborhoods Ci,k by a tree traversal algorithm.
9. If the maximum depth difference Lmax is not given or insufficient to guarantee

the flat-top property according to (1.31):
(a) Compute a new α̃i,k for each patch ωi,k according to (1.26) by using its

neighborhood Ci,k to evaluate the local depth difference L−
i,k. Update all

patches ωi by applying (1.19) if α̃i,k < αi,k and set αi,k ← α̃i,k. Update
the affected neighborhoods.

10. Create V PU
k by defining local function spaces Vi,k for all patches. Increase the

polynomial degree pi,k of all patches ωi,k that were children of a patch ωj,k−1
with rj ∈ {p,hp}. This step is optional for all levels k except the last one if
rS does not need the local function spaces Vi,k

2 and we do not want to use a
multilevel solver which will be described in Section 1.6.

Let us now state some additional properties of the patches constructed via Algorithm 1.1
that will be important throughout the rest of this thesis:

Lemma 1.3. For all patches ωj,k+1 ∈ Ck+1
Ω that have been constructed during Algo-

rithm 1.1 from children Cj ∈ Si,k of a cell Ci,k ∈ Ĉk
Ω with the corresponding patch ωi,k ∈ Ck

Ω
it holds that

ωj,k+1 ⊆ ωi,k.

2rS does usually need the local function spaces Vi,k when it is based on a local error estimator and does
not need them when it is based on purely geometric predicates.
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Remark 1.2. This property is very important for the computational efficiency of many
aspects in our method because it allows us to use tree-traversal algorithms for geometric
queries on a patch ωi,k. Those traversals have to visit kmax nodes for a full tree-descend,
where kmax is the total depth of our tree which is usually in O(log(Nkmax)). An example
is finding the neighborhoods Ci,k of all patches in step 8 of Algorithm 1.1.

Lemma 1.4. For each patch ωi,k ∈ Ck
Ω on a level k > 0 that has been constructed during

Algorithm 1.1 there is exactly one patch ωĩ,k−1 ∈ C
k−1
Ω such that

ωĩ,k−1 ⊇ ωi,k.

1.3 Galerkin Discretization & Numerical Integration

Up until now we have only looked into how to create PUM spaces but not how to use those
spaces to solve any problem equations. To this end, let us consider an elliptic boundary
value problem

Lu = f in Ω ⊂ Rd

Bu = g on ∂Ω

where L is a symmetric partial differential operator of second order and B expresses
suitable boundary conditions. For reasons of simplicity we restrict ourselves to a simple
Poisson problem in this section. The Poisson problem can be defined as

−∆u = f in Ω
u = gD on ΓD ⊂ ∂Ω

∇u · n = gN on ΓN = ∂Ω \ ΓD

with f being any appropriate right-hand side source term, gD being Dirichlet boundary
conditions on the boundary part ΓD and gN being Neumann boundary conditions in normal
direction n on the remaining boundary part ΓN.
We employ Galerkin’s method to discretize the partial differential operator, i.e. we multi-
ply the equation by appropriate test functions v and integrate both sides of the equation.
After partial integration we get∫

Ω
∇u∇v dx−

∫
∂Ω

(∂nu)v ds =
∫

Ω
fv dx (1.32)

with ∂nu := ∂u
∂n being the normal derivative of u on the boundary ∂Ω. Using the boundary

data from (1.3) we can split the surface term over ∂Ω into two disjoint parts over ΓD and
ΓN. The Neumann boundary conditions can be enforced naturally, thus we simply replace
the unknown ∂nu by the given gN on ΓN and move that term to the right-hand side. The
Dirichlet condition is enforced by a conforming splitting of the space V PU that is described
in Section 1.4 and thus we simply ignore that term for now. Hence we end up with the
following equation ∫

Ω
∇u∇v dx =

∫
Ω
fv dx+

∫
ΓN
gNv ds. (1.33)
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If we choose both, trial functions u and test functions v from our PUM Space V PU we can
reformulate (1.33) to the following left-hand side bilinear form

a(φiϑ
n
i , φjϑ

m
j ) =

∫
Ω
∇(φiϑ

n
i )∇(φjϑ

m
j ) dx

and right-hand side linear form

l(φiϑ
n
i ) =

∫
Ω
f(φiϑ

n
i ) dx+

∫
ΓN
gN(φjϑ

m
j ) ds.

These allow us to assemble the stiffness matrix A and right-hand side vector f̂ via

A = ((Ai,j)n,m), (Ai,j)n,m = a(φjϑ
m
j , φiϑ

n
i )

f̂ = ((f̂i)n), (f̂i)n = l(φiϑ
n
i )

to set up the linear equation system Aũ = f̂ , with ũ being the coefficient vector of the
unknown function. Note that we defined A to be a sparse block-matrix consisting of the
dense blocks (Ai,j). The block-sparsity pattern of A is determined by the neighborhoods
Ci from (1.13) of a patch ωi. For a given row i we have (Ai,j) ≡ 0 when ωj /∈ Ci. Thus
each row of A consists of card(Ci) non-zero blocks. On the other hand, each block (Ai,j)
is determined by the basis functions ϑn

i and ϑm
j of the patches ωi and ωj and thus has

a size of dim(Vi) × dim(Vj). While this block structure is not the only way to order the
degrees of freedom employed by the PUM space V PU it turned out to be beneficial to
the ease of implementation and performance during the numerical integration and linear
solving steps of the overall simulation algorithms. The employed equation system can be
solved by any direct or iterative algorithm for linear equation systems. One particularly
fast method for this task will be shown in Section 1.6.
We are now left with the (numerical) integration of a(·, ·) and l(·) to determine the entries
of A and f̂ . To this end, we need to consider the regularity of our PUM shape functions
φiϑ

n
i ∈ Vi. First, we consider the case without enrichments, i.e. Vi consists of polynomials

only. Since we choose smooth polynomial functions ψs
i up to a degree pi over the full local

patch domain ωi, the only source of kinks or discontinuities in φiψ
s
i can come from the

PU functions φi. To this end, recall the construction via Shepards method from equation
(1.15) given as

φi := Wi(x)∑
ωj∈Ci

Wj(x) = Wi(x)∑N
j=1Wj(x)

which we rewrite to

φi := WiS
−1, with S :=

N∑
i=1

Wj .

There are two main sources of kinks or discontinuities in φi or its derivatives ∇φi in this
construction: The first are kinks and/or discontinuities within the weight functions Wi or
their derivatives ∇Wi that are usually inherited directly from the construction by tensor
products of the univariate spline functions W. The second source is the sum within S.
Since the weight functions Wi have a support limited to their respective patches ωi and
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Figure 1.5: Decomposition of a patch domain ωi into integration domains {Dn
i }.

Left: A patch ωi (gray) with its three neighboring patches. The centers of the patches
are depicted by small circles.
Center: The patch ωi has been decomposed into the intermediate integration domains
{D̃m

i }. To this end, the overlaps have been resolved and the L-shaped sub-domains
have been split to form a total of 8 axis-aligned rectangle domains.
Right: The intermediate integration domains have been further split into a total of
13 final integration domains {Dn

i } so that the kinks of the linear spline weights Wi

and Wj on all patches are resolved correctly. The dotted lines indicate kinks in the
weights Wi and Wj . Intermediate cells D̃m

i that overlap the flat-top domain of ωi

have not been split along those dotted lines.

those patches overlap, S does additionally have kinks at the patch surfaces ∂ωj (compare
Figure 1.2). Therefore all integrals involving φ and especially their derivatives ∇φ should
not be integrated by a simple quadrature rule over all of ωi. Instead we should decompose
ωi into smaller integration domains {Dn

i } that resolve the piecewise character imposed by
Wi and S.
To this end, we first consider the decomposition required to resolve the sum in S. Here,
we decompose a patch into intermediate integration domains {D̃m

i } so that the covering
index λCΩ from equation (1.8) is constant on each of these domains. This results in a
decomposition where the number of iterations in the sum that evaluate to a non-zero
value is constant per integration domain or in other words all patch boundaries ∂ωi are
resolved. To make sure that we can use simple quadrature rules on the resulting integration
domain, all domains that are not yet axis-aligned rectangles (L-shaped polygons can occur)
are further split into rectangles (compare the first step in Figure 1.5). Considering that we
constructed our patches ωi as products of one-dimensional intervals in equation (1.19) the
decomposition can be carried out by a tree decomposition algorithm. The tree is initialized
with the patch’s domain ωi as root node and then the neighbors ωj ∈ Ci are inserted into
the tree by splitting all leaves of the tree that are intersected by each neighbor. Note that
this decomposition is key to the performance of the integration step of the PUM. We can
easily store a list of all patches that overlap each of the cells D̃m

i . This list can later be
used to determine which weights Wi and basis functions ϑi are to be evaluated at each
integration point without the need to search for the patches that are non-zero at any given
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Figure 1.6: Uniform neighborhood around a patch ωi (gray) where all patches have the
same diameter and the same distance in each direction.

position x.
We are now left with resolving the kinks in Wi or its derivatives induced by the piece-
wise character of the spline weights W (compare Figure 1.2). Since the weights Wi are
constructed by tensor products, the kinks at points of the univariate functions W can be
resolved in higher dimensions by splitting ωi into smaller axis-aligned rectangles. E.g. for
a linear spline where W has a kink at the center of its domain, we need to split a patch in
d dimensions into 2d equally sized sub-domains. Also note that in the flat-top region of a
patch ωi it is φi ≡ 1, thus the kinks of W do not translate into kinks of φi in the flat-top
region of a patch and we can spare to split the integration domains D̃m

i where λCΩ = 1
(compare the second step in Figure 1.5).
It is worth mentioning that the number of required splits to incorporate W can be miti-
gated under some circumstances. Let us assume that the cover has been constructed as
described in Section 1.2 and a uniform refinement strategy has been used, i.e. all patches
have the same diameter and their centers have the same distance in each direction (com-
pare Figure 1.6). Under these circumstances we can define the reference weight functions
W dependent on the stretch factor α in such a fashion that the kinks in all Wi are co-
located with the surfaces ∂ωj of the neighboring patches ωj (compare Figure 1.7) and thus
we have {D̃m

i } ≡ {Dm
i }.3

Now that we have integration domains that can be used to integrate our shape functions
φiψ

s
i on any domain ωi ∩ ωj we still need to create integration cells that can be used

to integrate the shape functions on ωi ∩ ωj ∩ Ω. For sub domains ωi ∩ ωj ∩ ∂Ω ̸= ∅
this is actually a very difficult task that we will cover in detail throughout Chapter 4
for two-dimensional domains Ω and throughout Chapter 5 for three-dimensional domains.
But in the case of an empty intersection with the boundary (i.e. ωi ∩ ωj ∩ ∂Ω = ∅)
our integration domains {Dm

i } are sufficient and we are only left with the task to select
appropriate quadrature rules on each domain Dm

i . Since both, the PU functions φi as
3In fact we can construct functions W that are even appropriate for non-uniform neighborhoods of a

patch ωi by moving the kinks closer to the center of the patch if it has neighbors ωj ∈ Ci with diam(ωj) >
diam(ωi) or further away in the opposite case. While this has the potential to put more kinks of Wi on top
of some ∂ωj it is not possible to guarantee this property for arbitrary neighborhoods in d > 1. Note that
this involves making use of the possibility to use different functions Wm in each direction m = 1, . . . , d in
the tensor-product construction of the weights Wi.
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Figure 1.7: Construction of flat-top weight functions for a uniform cover.
Left: The univariate linear spline function W on [0, 1] has been constructed in such
a fashion that the kinks are located at 1 − 1

α and 1
α , where α is the stretch factor

used in the construction of our patches from equation (1.19) (here α = 1.25 has been
used).
Right: Two-dimensional tensor product spline W(x)W(y) on the reference domain
[0, 1]2. Transformation of this function onto a patch with a uniform neighborhood as
depicted in Figure 1.6 will put the kinks onto the surface of the neighbor patches ωj .

well as the polynomial basis functions ψs
i , have been constructed by tensor products, a

natural choice is to use tensor-products of one-dimensional quadrature rules. Throughout
this thesis we used tensor products of one-dimensional Gauss-Legendre quadrature rules
on rectangular integration domains. Note that this includes the use of anisotropic tensor
products where one-dimensional rules of different orders are used in each direction. If we
consider the case of the uniform cover from Figure 1.6 with weights as depicted in 1.7, this
means we only need to increase the order in one direction on four of the eight domains
that have more than a single patch assigned to them. Additionally note that, even though
we constructed them via Shepards method, the PU functions φi are actually polynomials
most of the time for uniform covers. Therefore, we can integrate them exactly by an
appropriate tensor product rule. For cells Dm

i where the PU functions φi are actually
rational, higher integration orders are required to achieve a sufficient accuracy.

1.4 Dirichlet Boundary Treatment

The handling of essential boundary conditions is a non-trivial task in most meshfree meth-
ods as well as in the PUM. This is due to the fact that our shape functions φiϑ

n
i are neither

interpolatory on the boundary ∂Ω nor do they vanish on it. A common way to overcome
these issues and impose Dirichlet boundary conditions in meshfree methods is to use a
variational approach due to Nitsche [89]. This approach has been shown to work in the
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setting of our flat-top PUM in [55]. Even though Nitsche’s approach is of optimal complex-
ity and yields an optimally convergent method it comes with some downsides. The weak
formulations that include the required symmetrization and regularization terms need to
be derived analytically and thus they are highly dependent on the problems and boundary
conditions at hand. Additionally the computation of appropriate regularization parame-
ters is not always an easy task. Choosing parameters that are too low might lead to the
boundary conditions being imposed too weak and might even result in singular systems.
While in theory very high regularization parameters overcome those issues they have bad
effects on the condition number of the stiffness matrix and thus impose a hard problem
on the numerical linear solvers applied to the equation system. To counter those problems
a conforming treatment of Dirichlet boundary conditions has been derived from the limit
case where the regularization parameter goes to infinity in [107].
The main idea of the conforming method is to employ a direct splitting

Vi = Vi,K ⊕ Vi,I

of the local approximation spaces Vi, where Vi,K is used to approximate the solution of
the PDE and Vi,I is used to approximate the boundary conditions on ωi ∩ ΓD. This local
splitting transfers into our global PUM space and induces a global splitting

V PU =
N∑

i=1
φiVi =

N∑
i=1

φiVi,K ⊕
N∑

i=1
φiVi,I = V PU

K ⊕ V PU
I .

The first step in the algorithm is to construct an equation

bi(ui, vi) = gi(vi), ∀vi ∈ Vi (1.34)

that imposes the boundary conditions on a local function ui, utilizing a local bilinear form
bi : Vi × Vi → R and linear form gi : Vi → R. We then set Vi,K to the null space of bi(·, ·)
and Vi,I to the orthogonal space to Vi,K in Vi. In the case of standard Dirichlet boundary
conditions, where we set u = gD on ΓD ⊂ ∂Ω, we use an L2-projection for (1.34) that is
given by

bi(ui, vi) := ⟨ui, vi⟩L2(ωi∩ΓD), gi(vi) := ⟨gD, vi⟩L2(ωi∩ΓD). (1.35)

If discretized with ui, vi ∈ span⟨ϑn
i ⟩, the bilinear form bi(·, ·) and linear form gi(·) yields a

local boundary trace operator matrix

(Bi)n,m = bi(ϑm
i , ϑ

n
i ), Bi ∈ Rdi×di (1.36)

and right-hand side moment vector

(ĝi)n = gi(ϑn
i ), ĝi ∈ Rdi (1.37)

with di = dim(Vi). To come up with the splitting of the degrees of freedom of Vi into Vi,K

and Vi,I we employ an eigenvalue decomposition of Bi for all patches ωi ∩ ΓD ̸= ∅ as

Bi = QT
i DiQi with Qi, Di ∈ Rdi×di
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where the rows of Qi contain all eigenvectors of Bi, Di is diagonal and λs := (Di)s,s with
s = 1, . . . , di are the eigenvalues of Bi. Let us assume that the eigenvalues λs in Di are
given in descending order, thus λ1 being the largest eigenvalue. Then we can create a
block-partitioning

Qi =
(
Qi,I

Qi,K

)
, Di =

(
Di,I 0

0 Di,K

)

where Di,K contains all eigenvalues {λs | λs ≤ ϵλ1} that are small with respect to some
ϵ ≪ 1 and the rows of Qi,K represent the eigenvectors that span the (numerical) kernel
of bi(·, ·) if ϵ is chosen subject to the machine epsilon.4 Considering that Qi specifies a
normal basis-transformation

Qi : Vi = span⟨ϑn
i ⟩ → Vi = span⟨ϑ̃s

i ⟩

that transforms ⟨ϑn
i ⟩ into a new separated basis ⟨ϑ̃s

i ⟩ we can use the partitioning of Qi to
define the operators

Πi,I := QT
i,IQi,I =

(
Idi,I

0
0 0

)
and Πi,K := QT

i,KQi,K =
(

0 0
0 Idi,K

)

with di,K = card({λs | λs ≤ ϵλ1}) and di,I = di − di,K that are the projections into the
image of Bi and the kernel respectively. Thus we can create the sub-spaces

Vi,K := Qi,K(Vi), Vi,I := Qi,I(Vi)

that each are represented by parts of the new basis ⟨ϑ̃s
i ⟩.

These local transformations can be used to create a global transformation by a block-
diagonal operator with the entries

(T )i,j =


Idi

if i = j and ωi ∩ ΓD = ∅
Qi if i = j and ωi ∩ ΓD ̸= ∅
0 if i ̸= j

(1.38)

that allows us to transform any stiffness matrix assembled in the original basis ⟨ϑn
i ⟩ to the

separated basis ⟨ϑ̃s
i ⟩ by

Aϑ̃ := TAϑT
T .

Exchanging Qi in equation (1.38) by either Qi,K or Qi,I allows us to create rectangular
transformations TI and TK that can be used to transform any matrix Aϑ directly into the
subspaces V PU

K and V PU
I .

Let us now take a look on how to use the introduced splitting to employ boundary condi-
tions on a system to be solved. To this end, let us assume we want to solve an equation

4In practice we employ both a relative and an absolute epsilon to determine which eigenvalues belong
to the numerical kernel.
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system Aũ = f̂ that has been assembled in the global basis ⟨φuϑ
n
i ⟩ without taking bound-

ary conditions into account. We can then split the coefficient vector ũ into two parts

ũK = TK ũ and ũI = TI ũ

where ũK now contains all interior degrees of freedom, subject to the original PDE and
ũI contains all boundary degrees of freedom, subject to the boundary condition u = gD on
ΓD. We can then solve for ũI by solving the discretized L2-projections given by equation
(1.35) for the boundary degrees of freedom as

(Qi,IBiQ
T
i,I)ũi,I = Qi,I ĝi (1.39)

for all patches ωi ∩ ΓD ̸= ∅. Note that equation (1.39) imposes local problems only and
since Qi,IBiQ

T
i,I = Di,I they do only involve the inversion of a diagonal matrix and are

easily parallelizable. For the remaining degrees of freedom we can then solve

AK,K ũK = f̂K −AK,I ũi,I

where AK,K = TKAT
T
K , f̂K = TK f̂ and AK,I = TKAT

T
I . To retrieve a coefficient vec-

tor ũ that is represented in the original global basis ⟨φuϑ
n
i ⟩ we can simply apply our

transformation T to get

ũ = T T

(
ũK

ũI

)
.

1.5 Stability
Let us now take a closer look at the stability of our method. We introduced the flat-top
property in Definition 1.3 to make sure that we cannot get linear dependencies between
the shape functions φiϑ

n
i on different patches ωi, thus we get global stability of our PUM

space V PU from local stability of Vi. But we are still left with the question of whether
our local spaces Vi are stable, i.e. whether the functions ⟨ϑn

i ⟩ form a basis of Vi and
not only a generating set. In fact we can observe multiple cases where ⟨ϑn

i ⟩ is not a
valid basis for Vi. Reconsider our construction of Vi := span⟨ψs

i , η
t
i⟩ in which we use

polynomials ψs
i and problem dependent enrichment functions ηt

i . First of all, since an
important property of the PUM is that we want to use arbitrary enrichment functions ηt

i

we cannot (or do not want to) impose any restrictions on the functions used, thus ⟨ηt
i⟩ by

itself may be a generating set only. This is especially true if we consider that for Vi the
enrichment functions are imposed locally on ωi only. Thus if we use enrichment functions
that are linearly independent globally, they might still be (nearly) linearly dependent on
the restricted domain ωi. Additionally even if we have enrichment functions that are locally
linearly independent and ⟨ηt

i⟩ does indeed form a basis, the polynomials could be able to
approximate the enrichment functions well and thus ⟨ψs

i , η
t
i⟩ would be ill-conditioned. This

again can be common if the enrichments get restricted onto small domains ωi or if the
enrichment functions are not given by analytical functions, but instead are the solutions
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to some other numerical method. A last case of possible instabilities can arise in the pure
polynomial part ⟨ψs

i ⟩. While our choice of tensor products of Legendre polynomials for
ψs

i makes sure that ⟨ψs
i ⟩ is a orthogonal basis on ωi, the restriction ωi ∩ Ω onto small

intersections with the global domain can lead to numerical near linear dependencies that
either make our discretized stiffness matrix singular or at least make it very ill-conditioned
and hence difficult to solve by numerical solvers.
To this end, a local stabilization method has been proposed in [105] that transforms a
potential generating set ⟨ϑn

i ⟩ into a stable basis ⟨ϑ̃n
i ⟩ for Vi. Let the local mass matrix be

given by
(Mi)n,m := ⟨ϑn

i , ϑ
m
i ⟩L2(ωi∩Ω), m, n = 1, . . . , di

with di = dim(Vi). We can now compute the eigenvalue decomposition

Mi = QT
i DiQi with Qi, Di ∈ Rdi×di

where the rows of Qi contain all eigenvectors of Mi, Di is diagonal and λn := (Di)n,n

with n = 1, . . . , di are the eigenvalues of Mi. We assume that the eigenvalues are given in
descending order, i.e. λn ≥ λn+1 so that we can create a block-partitioning

Qi =
(
Q̃i

Ki

)
, Di =

(
D̃i 0
0 κi

)

where κi contains all eigenvalues {λn | λn ≤ ϵλ1} that are small with respect to some cutoff
ϵ ≪ 1 and the rows of Ki represent the eigenvectors associated with small eigenvalues.
Since (D̃i)n,n > ϵλ1 and hence (D̃i)n,n > 0 we can define the projection

Si := D̃
−1/2
i Q̃i

which can be used to remove the near-null space of Mi as

SiMiS
T
i = D̃

−1/2
i Q̃iMiQ̃

T
i D̃

−1/2
i = Id̃i

with d̃i := card({λn | λn > ϵλ1}). Hence we created a local basis transformation

Si : Vi = span⟨ϑn
i ⟩ → span⟨ϑ̃n

i ⟩ ≈ Vi

that transforms a potentially ill-conditioned generating set ⟨ϑn
i ⟩ to a stable basis ⟨ϑ̃n

i ⟩ that
is optimally conditioned. Similar to how we constructed global basis transformation oper-
ators T , TK and TI from the local transformation matrices Qi in (1.38) for the conforming
boundary treatment we can create a global block-transformation matrix

(S)i,j =
{
Idi

if i = j

0 if i ̸= j

for the stable transformation. Again, this allows us to assemble the stiffness matrix Aϑ

and right-hand side vector f̂ϑ employing the original basis ⟨ϑn
i ⟩ and then transform that

equation system with
Aϑ̃ := SAϑS

T , f̂ϑ̃ := Sf̂ϑ
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into the stable basis given by
Aϑ̃ũϑ̃ = f̂ϑ̃.

A coefficient vector in the original basis can then be retrieved with ũϑ = ST ũϑ̃ if it is
required for any further computations or post-processing purposes.
Remark 1.3. The method presented above stabilizes the complete set of functions ⟨ϑn

i ⟩ =
⟨ψs

i , η
t
i⟩ in one step. This means that after the stabilization there is no separation of

the stable basis functions ⟨ϑ̃n
i ⟩ into the smooth polynomial part and the enrichment part

anymore. Hence, we have no information on whether the instabilities arise due to linear
dependencies among the enrichments, among the polynomials or due to the enrichments
being well approximable by the polynomials. To this end, an improved stabilization ap-
proach has been presented in [108] where in a first step stable bases for Ppi = span⟨ψs

i ⟩
and Ei = span⟨ηt

i⟩ are created separately and in a second step the enrichment space is
additionally stabilized against the polynomials, which means we do only remove the part
of the stabilized enrichment space that is well approximated by the polynomials. Hence,
we end up with a direct splitting

Vi ≈ P̃pi ⊕ Êi

where P̃pi := span⟨ψ̃s
i ⟩ ≈ Ppi is the stabilized polynomial space and Êi ≈ Ẽi \ P̃pi is the

part of the stabilized enrichment space Ẽi := span⟨η̃t
i⟩ ≈ Ei without the part that can be

approximated by polynomials. Note that for patches where ⟨ψs
i ⟩ is already a stable basis

it is P̃pi = Ppi . Observe that this holds at least for all patches in the interior of Ω.

1.6 Multilevel Solver

For a PUM space on the cover CΩ where we use polynomials of degree pi on each patch
ωi ∈ CΩ we have dof = dim(V PU) ≃ Npd with N = card(CΩ) and p = maxi pi. Hence,
the system of linear equations Aũ = f̂ consists of the sparse block-matrix A of dimension
dof×dof, the coefficient vector ũ of length dof and the right-hand side moment vector f̂ of
the same length. Solving such an equation system with a direct solver like Gaussian elim-
ination, LU- or Cholesky-decompositions usually needs storage in O(dof2) and a number
of operations in O(dof3). Even more advanced direct solvers for sparse matrices can only
improve those complexities to a limited extend and hence a usual approach is to employ
iterative solvers on larger problems with many degrees of freedom. Iterative solvers like
the Jacobi or Gauss-Seidel method are able to keep a storage complexity of O(dof) but
since usually for an increasing number of degrees of freedom not only the required oper-
ations per iteration increases, but the number of iterations till convergence increases as
well, they cannot yield optimal complexity in general. One class of solvers that can yield
an optimal complexity in both storage as well as operations count are so-called multilevel
or multigrid methods.
The driving motivation in the construction of any multilevel solver is the observation that
classical iterative solvers like Jacobi or Gauss-Seidel methods are fast at reducing the high
oscillatory error components but do not converge well on the remaining smooth errors.
The idea is to move those smooth error components onto a coarser level where they can
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be approximated well and the formerly smooth errors on the fine level do now resemble
higher oscillations relative to the coarse level. Thus, the classical iterative solvers are again
suitable to reduce the errors on the coarser levels. After the errors have been reduced on
the coarse level the coarse information is transferred back to the fine level and applied as
correction to the fine solution. Recursive application of additional coarsening steps to this
two level approach yields a multilevel solver. Let us now formalize the multilevel algorithm.
Given a sequence of function spaces Vk on levels k = kmin, . . . , kmax with kmax ≥ kmin we
denote the discretization of the problem dependent bilinear-form a(·, ·) on each level by
Ak. Given additional linear inter-level transfer operators

Ik
k−1 : Vk−1 → Vk, Ik−1

k : Vk → Vk−1

and linear smoothing operators

Spre
k : Vk × Vk → Vk, Spost

k : Vk × Vk → Vk

on all but the coarsest level k = kmin + 1, . . . , kmax, we can define the recursive multilevel
algorithm as follows:

Algorithm 1.2 (Multilevel method M(k, xk, bk)).
if k > kmin

for i = 1, . . . , νpre
k ▷ Pre-smoothing

xk ← Spre
k (xk, bk)

rk−1 ← Ik−1
k (bk −Akxk) ▷ Restrict residual

ck−1 ← 0
for i = 1, . . . , γ ▷ Compute coarse-level correction

ck−1 ←M(k − 1, ck−1, rk−1)
xk ← xk + Ik

k−1ck−1 ▷ Prolongate & apply correction
for i = 1, . . . , νpost

k ▷ Post-smoothing
xk ← Spost

k (xk, bk)
else

xk ← A−1
k bk ▷ Solve on coarsest level

Here the parameters νpre
k and νpost

k allow us to control how many pre- or post-smoothing
steps should be performed on each level. The parameter γ controls the shape of the
multilevel iteration, where γ = 1 results in what is commonly known as the V-cycle and
γ = 2 yields the W-cycle. Note that we still need to solve the equation system xk ← A−1

k bk

on the coarsest level kmin. Usually the goal is to create a coarsest level function space
Vkmin that has only a very small amount of degrees of freedom und thus the high memory
and runtime complexities of a direct solver like the LU-decomposition do not impose any
significant problems.
Let us now take a look how we can apply this multilevel method to our PUM setting. In
Section 1.2 we already gave an algorithm that yields covers Ck

Ω on levels k = 0, . . . , kmax
that can be used to create function spaces V PU

k so the first step is already done and we
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can discretize the operators Ak for each of those function spaces. The next ingredient
we need to provide are the inter-level transfer operators Ik

k−1 and Ik−1
k . Due to the

fact that our hierarchical function space construction yields non-nested function spaces
V PU

0 ̸⊂ V PU
1 ̸⊂ · · · ̸⊂ V PU

kmax
and that additionally our shape functions φi,kϑ

s
i,k are non-

interpolatory in general we cannot create the transfers by natural injection, nor by simple
interpolation. Nevertheless it has been suggested to create the inter-level transfer operators
by L2-projections in [53] and we briefly summarize that approach in the following. An
inter-level L2-projection Πk

k−1 : V PU
k−1 → V PU

k can be defined by utilizing the mass matrices

(Mk
k )i,j := ⟨φj,kϑ

t
j,k, φi,kϑ

s
i,k⟩L2 ,

(Mk
k−1)i,j := ⟨φj,k−1ϑ

t
j,k−1, φi,kϑ

s
i,k⟩L2

to construct the global L2-projection as

Πk
k−1 := (Mk

k )−1(Mk
k−1).

We can identify some issues with this global construction: First of all the inter-level mass
matrix contains a significant amount of non-zero entries. The reason for this is that the
sparsity pattern of that matrix is determined by the intersections of patches over multiple
levels ωj,k−1 ∩ ωi,k ̸= ∅ which for uniform refined covers yields 4d neighbors to a coarse
patch ωj,k−1 compared to the usual 3d−1 neighbors within a single level. But not only the
inter-level mass matrix is rather dense. The mass matrix Mk

k has the same sparsity pattern
as the stiffness matrix A which already doubles the space requirement of our method on
the finest level only. But the final and most problematic issue is that we need to invert
the global mass matrix Mk

k , which renders the global projection as currently constructed
unsuitable in practice. Two modifications that solve each of the mentioned issues to a
varying extend have been proposed. The first modified version, denoted the global-to-local
L2-projection, is to replace the mass matrices by versions that are localized on the fine
level and that are given by

(M̃k
k )i,i := ⟨ϑt

i,k, ϑ
s
i,k⟩L2(ωi,k∩Ω),

(M̂k
k−1)i,j := ⟨φj,k−1ϑ

t
j,k−1, ϑ

s
i,k⟩L2(ωi,k∩Ω)

(1.40)

where M̃k
k is now a block-diagonal matrix and hence easy to invert in the construction for

the final projection operator

Π̂k
k−1 := (M̃k

k )−1(M̂k
k−1). (1.41)

We can show that this localization does not impose any significant loss of accuracy. Given
the fact that in the PUM the global error is bounded by the sum of our local errors
according to (1.1) we have

∥v − vPU∥2L2(Ω) ≤ C
N∑

i=1
∥v − vi∥2L2(Ω∩ωi)
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where vPU :=
∑N

i=1 φi
∑di

n=1 u
s
iϑ

n
i and vi :=

∑di
n=1 u

s
iϑ

n
i with di := dim(Vi). For the

localized inter-level projection from the coarse to the fine level we have v = uPU
k−1 and

vPU = Ik
k−1u

PU
k−1 which results in

∥uPU
k−1 − Ik

k−1u
PU
k−1∥2L2(Ω) ≤ C

N∑
i=1
∥uPU

k−1 − ui,k∥2L2(Ω∩ωi,k) (1.42)

as an error bound of the inter-level transfer problem that states that the global projection
error is bounded by the errors on the fine level patches ωi,k. Hence it is sufficient to
approximate the global function uPU

k−1 by the local basis functions ϑn
i,l of Vi,k only.

While the global-to-local projection solves the biggest problem (i.e. we needed to invert
the matrix Mk

k ) and thus it makes it suitable for the use in practice, the sparsity pattern
of the localized inter-level transfer matrix M̂k

k−1 did not change compared to the one
of Mk

k−1. To this end, an additional localization step was proposed where we want to
additionally exploit the PUM construction of the coarse level space V PU

k−1. Using Lemma
1.4 which stated that for each patch ωi,k we have exactly one coarse patch ωĩ,k−1 such that
ωi,k ⊆ ωĩ,k−1, we can introduce a term of the coarse level solution −uĩ,k−1 + uĩ,k−1 into
the local error expressions from the right-hand side of 1.42 and then apply the triangle
inequality to get

∥uPU
k−1 − ui,k∥L2(Ω∩ωi,k) ≤ ∥uPU

k−1 − uĩ,k−1∥L2(Ω∩ωi,k)+
∥uĩ,k−1 − ui,k∥L2(Ω∩ωi,k)

(1.43)

for the local error bounds. Note that the first term on the right-hand side of (1.43) is
small by construction and thus it is sufficient to be concerned with the control of the errors
∥uĩ,k−1 − ui,k∥L2(Ω∩ωi,k). This leads to the construction of the local-to-local projection by
utilizing the fully localized mass matrices

(M̃k
k )i,i := ⟨ϑt

i,k, ϑ
s
i,k⟩L2(ωi,k∩Ω),

(M̃k
k−1)i,j :=

{
⟨ϑt

j,k−1, ϑ
s
i,k⟩L2(ωi,k∩Ω) if j = ĩ

0 otherwise
(1.44)

to end up with the projection operator

Π̃k
k−1 := (M̃k

k )−1(M̃k
k−1). (1.45)

This new fully local projection eliminated all of the weaknesses of the initial global pro-
jection. The matrix M̃k

k is block diagonal and thus sufficiently sparse and easy to invert.
Additionally the matrix M̃k

k−1 is just as sparse: For each row i there is only a single block
(M̃k

k−1)i,j ̸= 0 for the patch where ωj,k−1 ⊇ ωi,k holds. Additionally it should be men-
tioned that the partition of unity functions φi,k and φi,k−1 do not play any role during
the assembly of both M̃k

k as well as M̃k
k−1. Therefore we can employ a decomposition of

Ω into integration cells that do not take the kinks and/or discontinuities of weights Wi,k

into account and additionally we can use lower quadrature rules on cells that are located
in the overlap of two or more patches.
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2 Domain Respecting
Cover Construction

In this chapter we revisit the cover construction that was introduced in Section 1.2 and
take a closer look on its properties with respect to stability under the influence of complex
geometries Ω. We can identify two main shortcomings where a stiffness matrix resulting
from a discretization using a function space V PU that has been constructed as described
in Section 1.2 can still be ill-conditioned or even singular:

• Even though we chose polynomials ψs
i that are orthogonal on ωi, they might not be

(numerically) linearly independent when we restrict them to a subset ω̃i ⊂ ωi (com-
pare Table 2.1). This can be particularly problematic for patches at the boundary
since in that case it is ωi ∩ Ω =: ω̃i ⊂ ωi.

• Even though the flat-top property from Definition 1.3 guarantees that ⟨φiϑ
n
i ⟩ pro-

vides a stable basis for the function space V PU over DCΩ :=
⋃N

i=1 ωi when all local
functions ⟨ϑn

i ⟩ are linearly independent, this flat-top property is no longer suffi-
cient to induce global stability from local stability when we restrict our functions to
Ω ⊂ DCΩ .

To overcome those issues we will propose a post-processing step, applied to each level of
the original, hierarchical cover construction, in the following.

2.1 Cover Post-Processing

Let us first take a look at the second item from the list above, that deals with global
instabilities and illustrate the problem by a simple example:

Example 2.1. Given two overlapping patches ω1 := (−1, 1) and ω2 := (0, 2) with respec-
tive partition of unity functions

φ1(x) :=


1 for x ∈ (−1, 0]
1− x for x ∈ (0, 1)
0 elsewhere

, φ2(x) :=


x for x ∈ (0, 1)
1 for x ∈ [1, 2)
0 elsewhere

35
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Table 2.1: Condition numbers of local mass matrices M := ⟨Lp,Lp⟩L2(ω̃) with p ≤ pmax
where Lp : [−1, 1] → R are the one-dimensional Legendre polynomials of degree p
and ω̃ := [−h, h] ⊆ [−1, 1] for 0 < h ≤ 1. While M stays well conditioned for h = 1
even when using higher-order polynomials, the condition number reaches machine-
precision limits for pmax = 5 when ω̃ covers only ∼ 6% of the original domain of
Lp.

pmax

h 0 1 2 3 4 5

1 1.0 · 100 3.0 · 100 5.0 · 100 7.0 · 100 9.0 · 100 1.1 · 101

0.5 1.0 · 100 1.2 · 101 1.0 · 102 1.2 · 103 1.3 · 104 1.7 · 105

0.25 1.0 · 100 4.8 · 101 1.9 · 103 1.0 · 105 5.5 · 106 3.2 · 108

0.125 1.0 · 100 1.9 · 102 3.2 · 104 7.2 · 106 1.6 · 109 3.8 · 1011

0.0625 1.0 · 100 7.7 · 102 5.1 · 105 4.7 · 108 4.3 · 1011 4.1 · 1014

and the local polynomial basis functions

ϑ1
1(x) := 1, ϑ2

1(x) := x and
ϑ1

2(x) := 1, ϑ2
2(x) := x.

Both PU functions clearly fullfil the flat-top property as given in Definition 1.3 on (−1, 0]
and [1, 2) respectively and local linear independence of ⟨ϑn

i ⟩ implies that ⟨φiϑ
n
i ⟩ is a basis

for V PU over (−1, 1). But when we restrict the problem onto the domain Ω := (0, 1), the
flat-top regions are cut away and we end up in the same case as illustrated by Example
1.1. Especially we again have φ1(x)ϑ2

1(x) = φ2(x)ϑ1
2(x) − φ2(x)ϑ2

2(x) = x − x2 for all
x ∈ Ω.

This problem can be overcome when we tighten the requirements of the flat-top property
and require that not only every patch has a sufficient flat-top domain ωFT

i , but that its
intersection with Ω does not vanish as well. To this end, we define the strict flat-top
property as follows:

Definition 2.1 (Strict flat-top property). Let {φi | i, . . . , N} be a partition of unity
according to Definition 1.1. Let us define the sub-patches ωFT

i ⊂ ωi such that φi|ωFT
i
≡ 1.

The PU is said to have the strict flat-top property, if there exists a constant CFT such
that for all patches ωi = supp(φi)

µ(ωi) ≤ CFTµ(ωFT
i ∩ Ω) (2.1)

where µ(A) denotes the Lebesgue measure of A ⊂ Rd.

Note that Definition 2.1 introduced only a minor change compared to the original flat-
top specification of Definition 1.3. For the strict flat-top property we now take ωFT

i ∩
Ω into account only, compared to ωFT

i in (1.7) from the original definition. The tree-
based cover construction algorithm introduced in Section 1.2 only creates an admissible
cover according to Definition 1.3, but not necessarily according to Definition 2.1 (compare
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Figure 2.1: Cut-corner domain Ω (gray area) with a uniform disjoint cover ĈΩ (dashed
rectangles) on level k = 2 and the respective overlapping cover CΩ (solid rectangles)
as constructed by Algorithm 1.1. Although the disjoint tree cell Ci for the upper right
patch has a non-empty intersection with the domain and thus the corresponding patch
ωi is added into the cover CΩ, the flat-top region of that patch (diagonally striped
region) has an empty intersection with the domain Ω.

Figure 2.1). Hence, we introduce a post-processing step that transforms a cover created
by Algorithm 1.1 into one that fulfills the strict flat-top property. To this end, we should
note that for all patches where ωi ⊂ Ω holds, the original flat-top property and the strict
version are equivalent and thus we are only concerned with patches at the boundary for
which ωi ∩ ∂Ω ̸= ∅ holds. We can further reduce the set of problematic patches by testing
whether ci ∈ Ω holds for the center ci of a patch ωi. In this case the strict flat-top property
has to be fulfilled for the patch since the choice of the stretch factors αi and/or the bound
Lmax on the depth differences in Algorithm 1.1 guarantee that ci is not included in any
other patch ωj with j ̸= i. For all remaining boundary patches we need to check whether
the intersection ωFT

i ∩ Ω is empty or not. If the intersection is empty we want to simply
eliminate those patches from CΩ. A simple elimination of a patch ωi with ωFT

i ∩ Ω = ∅
is valid since in this case the part of ωi that overlaps the domain omega is completely
covered by its neighbors, i.e. (ωi ∩Ω) ⊂

⋃
ωj∈Ci

ωj , and hence ωi is not required to obtain
a complete covering of Ω. Note that the arguments given before do not hold when we
consider a complete covering of Ω̄ instead of just Ω in cases that the flat-top region of an
eliminated patch touches the domain, i.e. ∂ωFT

i ∩ ∂Ω ̸= ∅. These cases can be mitigated
by enlarging the neighboring patches by a small amount, which we will explain in more
detail later.
At this point it is important to note that the shape of ωFT

i does not only depend on ωi itself
but especially on the neighbors ωj ∈ Ci of ωi. This has two implications: First of all, the
shape is not a simple axis-aligned box in general and hence checking whether ωFT

i ∩Ω = ∅
is computationally more involved in general. Secondly, the elimination of a patch ωi has
an influence on the flat-top property of all its neighbors ωj ∈ Ci since ωi has to be removed
from all neighborhoods Cj as well. This makes the elimination step inherently sequential:
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We cannot check concurrently for each patch ωi whether it needs to be eliminated or not
since the prior elimination of a patch ωj could have enlarged ωFT

i and thus eliminating
ωi could not only no longer be necessary but could even lead to a part of the domain Ω
not being covered anymore. Luckily, the elimination of a patch ωi always only enlarges
the flat-top regions ωFT

j of its neighboring patches, but never reduces them. This means
that when we have checked whether a patch ωi needs to be eliminated and found that
ωFT

i ∩Ω ̸= ∅, any subsequent elimination of a patch ωj never changes the fact that ωi does
not need to be eliminated. Hence the elimination step is sequential but does not need to
be iterated. To speed up the check whether a patch has an empty flat-top intersection
with the domain we utilize the decomposition into the intermediate integration domains
{D̃m

i } from Section 1.3 as depicted in Figure 1.5. We discard all domains D̃m
i where any

patch ωj other than ωi is present. For the remaining domains D̃m
i (which are axis-aligned

d-dimensional boxes) we can check whether the intersection with Ω is empty or not. As
soon as we found the first non-empty intersection we can stop and the patch does not need
to be eliminated. Only if there is no D̃m

i ⊆ ωFT
i with a non-empty intersection the patch

needs to be eliminated.

Let us now take a closer look at what happens to our PU functions φi when we eliminate
patches from the cover CΩ. To this end, we consider the case where we have four patches
of the same size and distance and one of them is eliminated from the cover which results
in something we call an L-constellation (compare the upper left in Figure 2.2). Those
constellations introduce a singularity into the gradients of the shepard partition of unity
functions φi. The singularity arises when flat-top regions “touch” each other. This can be
explained because for a patch ωi with flat-top region ωFT

i , for its corresponding shepard
PU function φi it must hold that φi(x) = 1 on the boundary of the flat-top region, i.e. for
all x ∈ ω̄FT

i . On the other hand, it has to hold φi(x) = 0 for all x ∈ ω̄FT
j with j ̸= i. At

locations χ := ω̄FT
i ∩ ω̄FT

j these conditions contradict and in the vicinity of those locations
it is limdist(x,χ)→0∇φi = ∞ (compare Figure 2.2). Note that χ ̸= ∅ can only happen if
d > 1. In 2D those sets can only contain isolated points. In 3D those sets can contain
points or edges, but no facets or volumes. In general we can say that only geometric
entities of co-dimension ≥ 2 can be elements of χ. Additionally note that in general those
singular locations are not a problem by themselves. E.g. we can still represent smooth
functions uPU by linear combinations of all shape functions φiϑ

m
i . The real problem is

that the accuracy of our numerical quadrature of the gradients ∇φi is highly influenced by
those locations and we would have to employ adaptive quadrature rules towards all x ∈ χ
to get a sufficiently good result. To mitigate that issue we want to make sure that the
problematic locations are far away from Ω. Moving the singularities away from ∂Ω can
be achieved by enlarging the neighboring patches ωj ∈ Ci when ωi has been eliminated
(compare Figure 2.3). While simply increasing the stretch factors αj for the neighboring
patches might seem like the most simple solution it comes with some major downsides:
First of all αj could already be the maximum allowed value according to (1.26) and thus
choosing a higher value could lead to a patch in the neighborhood of ωj being completely
covered by its own neighbors, and thus its flat-top region will be empty. But even when
we are not limited by (1.26) yet, stretching a patch ωj equally into all directions reduces
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ω1

ω2

ω3

W2(x)

0.0 0.2 0.4 0.6 0.8 1.0

∑N
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∥∇φ3(x)∥

0 4 8 12 16 20

Figure 2.2: Upper left: Setting of three patches ω1, ω2 and ω3 where the forth patch in
the upper right corner is not present. The overlap region ω1 ∩ ω2 ∩ ω3 of all three
patches is highlighted as gray box.
Upper right: Contour plot of the linear flat-top spline weight functions Wi(x) (com-
pare Figure 1.7) corresponding to the patches ωi. Only the overlap region with
x ∈ ω1 ∩ ω2 ∩ ω3 is shown. Note that the sum of all weight functions is zero in
the upper right corner of the overlap region.
Lower left: Rational shepard partition of unity functions φi according to (1.15) re-
sulting from the weights Wi. The PUs are undefined in the upper right corner.
Lower right: Magnitude of the gradients ∇φi. The gradients of the diagonally lo-
cated patches ω2 and ω3 go to infinity when x approaches the upper right corner (the
color-bar has been capped at 20).
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Figure 2.3: Left: Zoom into the four upper right patches from Figure 2.1. The flat-top
regions of the patches left and below the invalid patch are highlighted.
Center: The invalid patch has been eliminated from the cover and the flat-top re-
gions of the neighboring patches now protrude further into the region of the eliminated
patch. The point where the flat-top regions touch is marked by a diamond.
Right: The domains of the two neighboring patches have been extended anisotrop-
ically into the region of the eliminated patch. The point where the flat-top regions
touch has been moved further away from the domain Ω. The new flat-top regions of
the neighboring patches are a superset of the flat-top regions before the patch elimi-
nation took place. No flat-top regions of other patches have been changed.

the flat-top regions ωFT
k of its neighboring patches ωk ∈ Cj and could thus lead to the

fact that we end up with ωFT
k ∩ Ωj = ∅ for such a neighbor. This would then nullify our

previous property that eliminating a patch does not lead to any other patch being required
to be eliminated and hence we would need to apply the elimination step repeatedly over
all patches until no patches change anymore. To overcome those issues we do not enlarge
all neighboring patches ωj ∈ Ci after the elimination ωi and we do not stretch them by the
same amount into all directions. Instead we only enlarge those neighboring patches whose
tree cells Cj have a common facet with Ci (e.g. in 2D these are the cells left, right, below
and above Ci, but not the diagonal neighbors) and we enlarge those patches anisotropically
towards the center of ωi only. This makes sure that they are expanded into ωi only and
hence cannot overlap any region that was not previously overlapped by ωi itself. This
means we do not reduce the flat-top property of any other patch and the feature that the
elimination step does not need to be repeated after a single iteration of all patches stays
valid (compare Figure 2.3). Note that while this holds for all uniform covers, it does not
necessarily hold for adaptively refined covers when a patch ωi gets eliminated and we need
to enlarge one of its neighbors ωj that belongs to a tree cell from higher in the cover tree
than the patch to be eliminated, i.e. the neighbor ωj is larger than the patch ωi. Hence,
we do only enlarge a neighboring patch into the direction of the eliminated patch if the
neighbors diameter is smaller or equal to the diameter of the eliminated patch. Otherwise
we skip enlarging the patch and the potentially remaining singularity has to be resolved
by adaptive refinement of the integration cells.
We are now left with the question about the amount by which the neighboring patches
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should be enlarged. To answer that questions we should note that we do not only get
singularities in the derivatives of the PU functions when a patch is missing in the cover
due to the newly introduced elimination post-processing step. They can arise whenever a
disjoint tree cell Ci does not intersect the domain and thus no patch ωi is created for it.
The difference is that in those cases the singularity is always located outside of Ω̄. Let us
define the set of singular locations that arise from the elimination (or absence in general)
of a patch ωi as

χi :=
⋃

ωj ,ωk∈Ci

(
ω̄FT

j ∩ ω̄FT
k

)
, j ̸= k.

Then, when ωi is absent from the cover due to Ci ∩ Ω = ∅ for its corresponding tree cell
Ci, it is

dist(x, ∂Ω) ≥ min
Cj∈Ĉi

min
m=1,...,d

(
(αj − 1)(hj)m

2

)
∀x ∈ χi

with (hj)m being the diameter of Cj in the coordinate direction m. Experiments have
shown that those singularities do not impose any problems for the accuracy of the nu-
merical quadrature in the overall discretization process and hence moving the singularities
that arise from a patch elimination in the post-processing step away from ∂Ω by a similar
amount should be sufficient. We thus propose to extend a patch ωj into the direction of
ωi by

(αj − 1)(hj)m

2 .

Experimental verification that this choice is sufficient to retrieve optimal convergence
rates without the need to adjust the local quadrature will be presented in Section 2.2. An
additional benefit is that this guarantees that a patch ωi,k on a level k still completely
covers all its children on level k + 1, even when the children have been enlarged and thus
Lemma 1.3 still holds. On the other hand, Lemma 1.4 that states that for each patch
ωi,k there is exactly one patch ωĩ,k−1 such that ωĩ,k−1 ⊇ ωi,k holds, is not necessarily
true anymore. This can happen when ωĩ,k−1 has been eliminated from the cover on level
k − 1 but at least one of its children is part of the cover on level k (compare Figure 2.3
and 2.4). In such a case we cannot make use of the local-to-local projection as given
in (1.44) and (1.45) in the construction of our multilevel preconditioner anymore. One
option would be to fall back to the global-to-local projection as given in (1.40) and (1.41),
but since the number of eliminated patches on any level k is usually small compared to
the total amount of patches Nk, considering that elimination can only occur for patches
intersecting the boundary, we do not need to impose the cost of using all hierarchical
neighbors everywhere. Instead let us first denote the set of all patches ωi,k that have been
eliminated on a level k by CE

k . Then we can define the mixed-to-local projection

(M̃k
k )i,i := ⟨ϑt

i,k, ϑ
s
i,k⟩L2(ωi,k∩Ω),

( ˆ̃Mk
k−1)i,j :=


⟨ϑt

j,k−1, ϑ
s
i,k⟩L2(ωi,k∩Ω) if ωĩ,k−1 ̸∈ CE

k−1 and j = ĩ

⟨φj,k−1ϑ
t
j,k−1, ϑ

s
i,k⟩L2(ωi,k∩Ω) if ωĩ,k−1 ∈ CE

k−1
0 otherwise

(2.2)
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Figure 2.4: The cover from Figure 2.1 has been uniformly refined to level k = 3. The four
tree cells Ci in the upper right corner from Figure 2.3 resulted in 16 smaller cells from
which 13 have been stretched into patches of the cover CΩ on level 3. No patches have
been created for the other cells since their tree cells Ci do not intersect the domain.
All created patches have a flat-top region that intersects the domain and no patches
need to be eliminated. Note that one of the patches (highlighted by a thicker line) is
a child of the cell which’s corresponding patch has been eliminated on level 2.

to end up with the projection operator

ˆ̃Πk
k−1 := (M̃k

k )−1( ˆ̃Mk
k−1). (2.3)

Here, ˆ̃Mk
k−1 (and hence ˆ̃Πk

k−1) have a single block that is not zero in most rows, but in
rows i where the parent patch ωĩ,k−1 has been eliminated, we have a non-zero block for
all patches ωj,k−1 where ωj,k−1 ∩ ωi,k ∩Ω ̸= 0. Note that in most practical cases these are
still only a few non-zero entries, since the intersection ωi,k ∩Ω is usually small for patches
where the parent has been eliminated and since those patches are at the boundary the
number of patches ωj,k−1 for which ωj,k−1 ∩ ωi,k ̸= 0, is not very high as well since many
tree cells Cj,k−1 in the vicinity of ωi,k were already outside of Ω.
With the changes proposed above we do now have covers CΩ that can be used to create a
partition of unity {φi} that fulfills the strict flat-top property according to Definition 2.1,
with PU functions φi(x) that can be integrated numerically over Ω with sufficient accuracy
and efficiency, and we can still construct a fast multilevel preconditioner using the sequence
of covers Ck

Ω. We are now left to solve the problem mentioned in the first item at the
beginning of this section, about instabilities of the local polynomial spaces ⟨ψn

i ⟩ when
patches do only have small overlaps with Ω. In theory those instabilities do not impose any
major problem to the overall simulation since the stable transformation that was described
in Section 1.5 does create an orthogonal basis subject to the L2-norm restricted to each ωi

and remove the numerical kernel from the original basis. In cases where the intersection
ωi∩Ω is very small this could potentially include eliminating a part of the polynomial space
span⟨ψn

i ⟩. While this would be sufficient to make sure any globally discretized operator
matrix A would not be ill-conditioned, our local error bounds given in (1.3) require that
the local function spaces Vi contain all polynomials up to degree p. Hence, as soon as the
stable transformation starts to eliminate any part of the space span⟨ψn

i ⟩ on a patch ωi, it
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is not guaranteed that we are able to obtain optimal convergence rates anymore. In fact,
in the worst case, the error of the approximation uPU

k could be larger than the error of
the approximation uPU

k−1 if we applied some h-refinement when refining from level k− 1 to
level k, and due to small overlaps on level k, the stable transformation started to reduce
some function spaces Vi,k. We propose a very simple solution to this problem: For each
patch with ωi∩∂Ω ̸= ∅ we compute the intersection ωi∩Ω and then the minimal bounding
box Bωi :=

⊗d
m=1

(
(ri)m, (si)m

)
of that intersection such that Bωi ⊇ (ωi ∩Ω). Assume ωi

is currently given as ωi :=
⊗d

m=1
(
(ai)m, (bi)m

)
. Then we compute a smaller domain ω̃i

with ω̃i ⊆ ωi as

ω̃i :=
d⊗

m=1

(
max

{
(ai)m, (ri)m − (ei)m

}
,min

{
(bi)m, (si)m + (ei)m

})
where (ei)m > 0 is some safety distance that we add to the minimal bounding box. We
need to choose (ei)m > 0 to ensure that not only the open set Ω is fully enclosed within
all patches, but its boundary ∂Ω is covered as well. Additionally choosing (ei)m too
small might move singular locations x ∈ χ closer to Ω again. Hence, in practice we use
(ei)m := (αi − 1) (hi)m

2 which is exactly the distance by which we wanted singularities to
be kept away from ∂Ω in the elimination step. Finally Figure 2.5 depicts how an invalid
cover that resulted from Algorithm 1.1 is altered by the proposed post-processing step by
first eliminating patches violating Definition 2.1 and then shrinking boundary patches as
described above.

2.2 Numerical Experiments
In this section we want to validate that the post-processing step that was proposed in
the previous section does indeed yield function spaces V PU

k that are formed by bases that
are linearly independent and stable in the sense that the discretized operator matrices
are well-conditioned and the resulting equation systems can thus be solved efficiently
by numerical solvers. Additionally, we show that we can obtain optimal convergence
rates towards known reference solutions in two and three space dimensions. The ability
to obtain those optimal rates shows that the employed local function spaces do indeed
provide the necessary approximation power so that Theorem 1.1 and its h-version (1.4)
hold. In particular, this has thus to be true for patches at the boundary that have been
adjusted by the proposed post-processing step. Additionally, it shows that all numerical
integrals can be computed with a sufficient precision such that the overall method works
as expected. Throughout this first section that presents results of numerical experiments,
all domains Ω are described by either linear polygons in 2D or linear polyhedra in 3D.
Numerical experiments for curved simulation domains in 2D will be presented later in
Section 4.4 of Chapter 4 and for domains in 3D in Section 5.4 of Chapter 5.
Let us first introduce the relative errors subject to several norms by

eL∞ := ∥u
∗ − uPU∥L∞

∥u∗∥L∞
, eL2 := ∥u

∗ − uPU∥L2

∥u∗∥L2
, eH1 := ∥∇(u∗ − uPU)∥L2

∥∇u∗∥L2
(2.4)
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Figure 2.5: Left: T-domain Ω (gray area) with a uniform disjoint cover ĈΩ (dashed
rectangles) on level k = 2 and the respective overlapping cover CΩ (solid rectangles)
as constructed by Algorithm 1.1. The flat-top regions of all six lower patches have an
empty intersection with the domain.
Center: Three of the six patches have been eliminated and their neighbors have
been enlarged. The flat-top regions of the resulting patches do all have a non-empty
intersection with the domain. The cover CΩ still covers the whole domain, i.e. Ω̄ ⊂⋃N

i=1 ωi.
Right: All patches on the boundary have been shrunk to reduce the area that has no
intersection with the domain Ω. We can see that the original disjoint tree cells Ci by
which we constructed the patches ωi are no longer a subset of those patches, i.e. it is
no longer Ci ⊂ ωi for all patches.

where u∗ is the (analytical) reference solution. The corresponding convergence rates from
a level k − 1 to a level k are given by

ρ := −
log

(
∥u∗−uPU

k ∥
∥u∗−uPU

k−1∥

)
log

(
dofk

dofk−1

) (2.5)

where dofk := dim(V PU
k ) =

∑Nk
i=1 dim(Vi,k) is the number of degrees of freedom on a level

k. The specific convergence rates ρL∞ , ρL2 and ρH1 are formed by employing norms in
(2.5) that correspond to the norms used in (2.4). Under the assumption that the function
u∗ is sufficiently smooth we expect the optimal convergence rates to be ρL2 = p+1

d and
ρH1 = p

d for a uniformly h-refined cover over Ω ⊂ Rd with pi,k = p being a fixed polynomial
degree of the involved local function spaces Vi,k for all i = 1, . . . , Nk and k = 0, . . . , kmax.
In this section the reference solution u∗ is always given analytically. Hence, employing
a quadrature rule with integration cells that have been constructed for a function space
V PU

k as described in Section 1.3 might not be sufficient to integrate the norms of u∗ and
especially not to evaluate the norms of the errors e := u∗−uPU. Hence, the integration cells
to evaluate all norms involved in (2.4) have been constructed for a function space V PU

k but
the intermediate integration domains Dm

i have been refined uniformly and the employed
orders of the Gaussian quadrature rules have been increased, such that the computed
norms of the reference solution u∗ were at least three decimal places more accurate than
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(0, 0)

R

Figure 2.6: |10/4|-star polygon domain with outer radius R = 15.

the one of the approximated solution uPU
k . Note that the L∞ norm of the usually highly

oscillating errors e is very difficult to compute and thus it is approximated by using the
maximum of e evaluated at all integration points. This includes all integration points
within Ω as well as on the boundary ∂Ω. To reduce the influence of rounding issues from
limited machine precision during the computation of the numerical integrals required for
the errors in the L2- and H1-norms, a modified Kahan-Babuška summation algorithm
according to [88] has been implemented.
Throughout this section we consider a scalar Helmholtz type of equation given by

−∆u+ cu = f in Ω
u = gD on ΓD ⊂ ∂Ω

∇u · n = gN on ΓN = ∂Ω \ ΓD

(2.6)

with f being a right-hand side source term, gD being Dirichlet and gN Neumann boundary
conditions imposed on the boundary parts ΓD and ΓN, respectively.

Example 2.2 (2D star domain). In this example we consider equation (2.6) with c = 1
on a star shaped polygon domain (compare Figure 2.6). Since our main concern is to show
the stability and approximation properties of the local function spaces Vi,k for patches at
the boundary we are going to impose Neumann boundary conditions only, i.e. ΓN := ∂Ω
and ΓD := ∅. This makes sure all degrees of freedom are actually involved in the solution
of the PDE itself and we do not need to fix any degrees of freedom for the Dirichlet
boundary conditions by applying the conforming boundary transformation as described
in Section 1.4. Note that using c = 1 in (2.6) guarantees that the assembled operator
matrix is symmetric positive definite and has a unique solution, even though we are not
imposing any Dirichlet boundary conditions. We choose the right-hand side function f
and the Neumann boundary conditions gN in such a fashion that the reference solution is
given by

u∗ := x cos(y) + y sin(x). (2.7)

We first show that the many small intersections of the patches ωi,k with the star-shaped
domain Ω do indeed lead to local instabilities as mentioned in Section 2.1. Since the
computation of the eigenvalues (end especially the smallest eigenvalue) of the assembled
operator matrices is computationally very expensive and non-practical for large matrices,
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Table 2.2: Number of solver iterations n until the residual has reached an absolute tol-
erance of 10−15 for Example 2.2 (star domain) using the original hierarchical cover
construction without post-processing and without local stabilization (default),
without post-processing and with local stabilization (stable trafo) and with
post-processing but without local stabilization (post-process) employing polyno-
mials of degree p = 1, p = 3 and p = 5 in the construction of all local function spaces
Vi,k. Cases where the solver did not reach the desired residual tolerance after 1000
iterations are marked with a dagger †. The employed solver is a preconditioned CG
method using a multilevel-preconditioner with γ := 1, νpre

k := νpost
k := 1, global-to-

local transfer according to (1.41) and a block factorized sparse approximate inverse
(block-FSAI) smoother.

default stable trafo post-process

k np=1 np=3 np=5 np=1 np=3 np=5 np=1 np=3 np=5

3 2 2 2 2 2 2 2 2 2
4 8 9 12 7 9 12 8 8 11
5 10 8 11 11 9 12 10 8 11
6 13 10 555 13 10 12 14 10 11
7 14 10 1,000† 14 11 12 14 11 11
8 14 10 1,000† 14 11 12 14 10 11
9 14 10 1,000† 15 11 15 14 10 11
10 14 10 – 15 11 – 16 11 –
11 14 10 – 16 12 – 15 10 –
12 15 10 – 16 11 – 15 10 –

we use the number of iterations that a numerical solver requires to solve the discretized
equation system as an indicator for the condition of the operator matrix. We employ a
preconditioned conjugate gradient (CG) method with the multilevel-preconditioner from
Section 1.6 to solve the discretized equation system on multiple h-refined covers for dif-
ferent polynomial degrees pi,k =: p. We first perform the experiments with the original
cover construction presented in Algorithm 1.1 without applying a local stable transfor-
mation as presented in Section 1.5 and without the post-processing step as presented in
Section 2.1. Then we repeat the experiment, once with the local stabilization enabled
(using ϵ := 10−14 for the partitioning in (1.5)) and once with the post-processing step
enabled. From the results shown in Table 2.2 we can see that while for lower polynomial
degrees all matrices can be inverted efficiently, for higher polynomial degrees the naive
cover construction without stabilization results in an ill-conditioned operator matrix. Ad-
ditionally, the fact that applying the local stabilization fixes the arising ill-conditioning
indicates that the ill-conditioning is a result of local (numerical) linear dependencies of the
polynomials on some patches but not global linear dependencies resulting from the strict
flat-top property being violated for some boundary patches. Furthermore, we can see that
applying the post-processing step from Section 2.1 results in well-conditioned operator
matrices and does not require a local stabilization of the polynomial spaces. Besides that,
we can observe that the number of iterations for p = 5 is lower for the post-processing
case than for the stabilized case. This can be explained by two things: First, we do use a
relatively small cut-off factor ϵ in the stabilization so that the condition of a single patch
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Table 2.3: Relative errors e·, convergence rates ρ· and number of eliminated degrees of
freedom dofel for Example 2.2 (star domain) employing the original cover construction
with local stabilization, using a global polynomial degree p = 1.

k dof dofel N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 12 0 4 1.170 – 9.46−1 – 9.67−1 –
2 48 0 16 6.71−1 0.21 6.98−1 0.20 8.54−1 0.11
3 156 0 52 3.66−1 0.47 2.82−1 0.77 5.61−1 0.36
4 444 0 148 1.38−1 0.93 1.30−1 0.74 4.16−1 0.29
5 1,512 0 504 4.79−2 0.86 4.42−2 0.88 2.54−1 0.40
6 5,508 0 1,836 1.49−2 0.91 1.26−2 0.97 1.38−1 0.47
7 21,108 0 7,036 4.35−3 0.91 3.35−3 0.99 7.13−2 0.49
8 82,332 0 27,444 1.17−3 0.97 8.55−4 1.00 3.62−2 0.50
9 325,116 0 108,372 3.07−4 0.97 2.15−4 1.00 1.82−2 0.50
10 1,288,692 0 429,564 8.50−5 0.93 5.40−5 1.00 9.14−3 0.50
11 5,131,332 0 1,710,444 2.36−5 0.93 1.35−5 1.00 4.58−3 0.50
12 20,478,180 0 6,826,060 6.56−6 0.92 3.38−6 1.00 2.29−3 0.50

Table 2.4: Relative errors e·, convergence rates ρ· and number of eliminated degrees of
freedom dofel for Example 2.2 (star domain) employing the original cover construction
with local stabilization, using a global polynomial degree p = 3.

k dof dofel N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 40 0 4 8.36−1 – 7.04−1 – 8.71−1 –
2 160 0 16 2.76−1 0.78 2.28−1 0.82 4.36−1 0.50
3 520 0 52 5.17−2 1.41 3.18−2 1.67 1.21−1 1.09
4 1,480 0 148 2.84−3 2.77 2.48−3 2.44 1.70−2 1.87
5 5,040 0 504 2.65−4 1.94 1.94−4 2.08 2.22−3 1.66
6 18,360 0 1,836 2.07−5 1.97 1.38−5 2.05 2.91−4 1.57
7 70,360 0 7,036 1.46−6 1.97 9.12−7 2.02 3.75−5 1.53
8 274,440 0 27,444 9.48−8 2.01 5.86−8 2.02 4.76−6 1.52
9 1,083,720 0 108,372 5.96−9 2.01 3.71−9 2.01 5.99−7 1.51
10 4,295,636 4 429,564 3.29−6 −4.58 2.43−9 0.31 5.17−6 −1.56
11 17,104,144 296 1,710,444 7.78−6 −0.62 1.63−8 −1.38 5.80−5 −1.75
12 68,259,328 1,272 6,826,060 2.37−5 −0.80 6.00−8 −0.94 2.23−4 −0.97

matrix-block (Ai,i) within the global operator matrix can still be quite bad and we can
expect the condition of the global operator matrix to suffer from that. Second, due to the
patch elimination that is performed during the post-processing step the overall number of
degrees of freedom is smaller in the post-processing case than in the stabilized case, even
when we are considering the eliminated degrees of freedom during the local stabilization.
Next we take a closer look at the approximation properties of the spaces resulting from
the post-processed cover construction compared to the stabilized space. Errors and con-
vergence rates for the stabilized case with polynomials of degree p = 1, p = 3 and p = 5
are given in Table 2.3, 2.4 and 2.5 respectively and are depicted in Figure 2.7. The re-
sults for the post-processed case are given in Table 2.6, 2.7 and 2.6 and are depicted in
Figure 2.8. Let us first note that the prescribed solution u∗ is smooth everywhere, even
on the star-shaped domain at hand that has re-entrant corners and hence we expect the
approximations uPU

k on h-refined covers to converge with optimal rates. Looking at the
results using the local stabilization but not the post-processing step we can see that we
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Table 2.5: Relative errors e·, convergence rates ρ· and number of eliminated degrees of
freedom dofel for Example 2.2 (star domain) employing the original cover construction
with local stabilization, using a global polynomial degree p = 5.

k dof dofel N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 84 0 4 4.60−1 – 3.15−1 – 5.51−1 –
2 336 0 16 6.68−2 1.38 5.67−2 1.24 1.38−1 1.00
3 1,092 0 52 2.05−3 2.96 1.44−3 3.12 6.32−3 2.62
4 3,108 0 148 3.97−5 3.77 3.33−5 3.60 2.87−4 2.96
5 10,556 28 504 7.31−7 3.27 6.30−7 3.25 1.12−5 2.65
6 38,524 32 1,836 1.51−7 1.22 1.09−8 3.14 4.66−7 2.46
7 147,580 176 7,036 4.19−7 −0.76 8.77−9 0.16 1.82−6 −1.01
8 575,848 476 27,444 1.70−6 −1.03 1.66−8 −0.47 6.19−6 −0.90
9 2,273,964 1,848 108,372 1.35−5 −1.51 3.14−8 −0.46 2.52−5 −1.02

Table 2.6: Relative errors e·, convergence rates ρ·, number of eliminated patches Nel and
number of shrinked patches Nsh for Example 2.2 (star domain) employing the post-
processed cover construction without local stabilization, using a global polynomial
degree p = 1.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 12 4 0 4 1.020 – 9.42−1 – 9.66−1 –
2 48 16 0 8 1.020 −2.69−4 7.02−1 0.21 8.73−1 7.33−2
3 156 52 0 20 3.74−1 0.85 2.82−1 0.77 5.61−1 0.37
4 432 144 4 48 1.42−1 0.95 1.28−1 0.78 4.10−1 0.31
5 1,440 480 24 112 6.30−2 0.67 4.43−2 0.88 2.55−1 0.39
6 5,412 1,804 32 244 2.14−2 0.82 1.26−2 0.95 1.38−1 0.47
7 20,784 6,928 108 492 5.42−3 1.02 3.35−3 0.98 7.14−2 0.49
8 81,696 27,232 212 992 1.50−3 0.94 8.55−4 1.00 3.62−2 0.50
9 322,212 107,404 968 1,980 4.84−4 0.82 2.15−4 1.01 1.82−2 0.50
10 1,286,208 428,736 828 3,976 9.95−5 1.14 5.40−5 1.00 9.14−3 0.50
11 5,126,220 1,708,740 1,704 7,964 2.55−5 0.98 1.35−5 1.00 4.58−3 0.50
12 20,467,944 6,822,648 3,412 15,964 6.64−6 0.97 3.38−6 1.00 2.29−3 0.50

Table 2.7: Relative errors e· and convergence rates ρ·, number of eliminated patches
Nel and number of shrinked patches Nsh for Example 2.2 (star domain) employing
the post-processed cover construction without local stabilization, using a global
polynomial degree p = 3.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 40 4 0 4 8.36−1 – 7.04−1 – 8.71−1 –
2 160 16 0 8 2.44−1 0.86 2.18−1 0.85 4.16−1 0.53
3 520 52 0 20 5.14−2 1.32 3.17−2 1.64 1.20−1 1.06
4 1,440 144 4 48 2.84−3 2.84 2.36−3 2.55 1.64−2 1.95
5 4,800 480 24 112 3.08−4 1.84 1.98−4 2.06 2.24−3 1.65
6 18,040 1,804 32 244 2.57−5 1.88 1.37−5 2.02 2.90−4 1.54
7 69,280 6,928 108 492 1.75−6 1.99 9.15−7 2.01 3.76−5 1.52
8 272,320 27,232 212 992 1.15−7 1.99 5.86−8 2.01 4.76−6 1.51
9 1,074,040 107,404 968 1,980 6.68−9 2.07 3.71−9 2.01 6.00−7 1.51
10 4,287,360 428,736 828 3,976 4.58−10 1.94 2.33−10 2.00 7.53−8 1.50
11 17,087,400 1,708,740 1,704 7,964 9.65−11 1.13 1.72−11 1.89 9.43−9 1.50
12 68,226,480 6,822,648 3,412 15,964 1.83−10 −0.46 1.78−10 −1.69 1.22−9 1.48
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Table 2.8: Relative errors e· and convergence rates ρ·, number of eliminated patches
Nel and number of shrinked patches Nsh for Example 2.2 (star domain) employing
the post-processed cover construction without local stabilization, using a global
polynomial degree p = 5.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 84 4 0 4 5.88−1 – 3.15−1 – 5.51−1 –
2 336 16 0 8 6.90−2 1.55 5.58−2 1.25 1.36−1 1.01
3 1,092 52 0 20 2.00−3 3.01 1.40−3 3.13 6.21−3 2.62
4 3,024 144 4 48 4.14−5 3.81 3.29−5 3.68 2.84−4 3.03
5 10,080 480 24 112 9.32−7 3.15 6.30−7 3.29 1.13−5 2.68
6 37,884 1,804 32 244 1.90−8 2.94 1.06−8 3.08 3.87−7 2.55
7 145,488 6,928 108 492 3.49−10 2.97 1.72−10 3.07 1.26−8 2.54
8 571,872 27,232 212 992 6.08−12 2.96 2.72−12 3.03 4.01−10 2.52
9 2,255,484 107,404 968 1,980 5.81−12 3.3−2 1.63−12 0.37 2.64−11 1.98
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Figure 2.7: Error convergence for Example 2.2 (star domain) employing the original cover
construction with local stabilization, using global polynomial degrees p = 1, p = 3
and p = 5 (left to right).
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Figure 2.8: Error convergence for Example 2.2 (star domain) employing the post-
processed cover construction without local stabilization, using global polynomial
degrees p = 1, p = 3 and p = 5 (left to right).
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Table 2.9: Number of solver iterations n until the residual has reached an absolute toler-
ance of 10−15 for Example 2.2 (star domain) with different types of transfer matrices.
The employed solver is a preconditioned CG method using a multilevel-preconditioner
with γ := 1, νpre

k := νpost
k := 1 and a block factorized sparse approximate inverse

(block-FSAI) smoother. Results for transfer according to (1.41) (global-to-local),
according to (1.45) (local-to-local) and according to (2.3) (mixed-to-local).

global-to-local local-to-local mixed-to-local

k np=1 np=3 np=5 np=1 np=3 np=5 np=1 np=3 np=5

3 2 2 2 2 2 2 2 2 2
4 8 8 11 8 10 17 8 10 17
5 10 8 11 12 12 18 12 12 18
6 14 10 11 16 16 22 15 14 21
7 14 11 11 22 21 31 15 14 24
8 14 10 11 27 24 34 15 14 26
9 14 10 11 35 29 42 15 15 28
10 16 11 12 130 117 131 16 14 28
11 15 10 – 70 58 – 16 14 –
12 15 10 – 99 77 – 16 14 –

obtain close to optimal rates ρL2 = 1 and ρH1 = 1
2 for p = 1 on all levels k ≥ 6. Note that

for linear polynomials, no degrees of freedom have been eliminated anywhere and thus this
is expected. But for p = 3 we can only obtain the optimal rates ρL2 = 2 and ρH1 = 3

2 for
4 ≤ k ≤ 9. Starting from level k = 10 the convergence does not only slow down but the
errors do actually increase and keep increasing on all following levels. We should note that
this happens as soon as the stable transformation starts to eliminate even just very few
degrees of freedom. For p = 5 where the expected rates would be ρL2 = 3 and ρH1 = 5

2
we can see the same problem starting at level k = 7. Additionally note that due to this
effect the errors that we get on the final level k = 9 with polynomials of degree p = 5 are
actually larger than the errors we get on the same level for p = 3. For the post-processed
case we do not run into those problems and we can obtain the optimal convergence rates
until the values of the relative errors eL∞ , eL2 and eH1 reach ≈ 10−11 where rounding
errors due to the limited machine precision make further reductions rather challenging.1
To further illustrate those problems with the local stabilization we the errors |u∗−uPU

k | are
depicted in Figure 2.9 for p = 5 on levels k = 5, k = 6 and k = 7, where the stable trans-
formation starts to eliminate some degrees of freedom. We can clearly see that the error
is evenly distributed over the whole domain on level k = 5 but starting from level k = 6
the overall error is dominated by some patches at the boundary of the domain. These are
exactly those patches where some degrees of freedom have been eliminated due to small
overlaps with the domain and thus the local approximation spaces Ṽi,k := span⟨ϑ̃n

i,k⟩ after
the stable transformation are not capable of representing all polynomials of degree up to
p = 5 anymore. Again we can show that the post-processed cover does not suffer from
these issues and the error keeps being distributed evenly over all patches.

1Experiments on simple square and cube domains show that relative errors < 10−11 cannot be obtained
there as well and the same limitations have been encountered in [106].
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local stabilization post-processed

k
=

5
k

=
6

k
=

7

Figure 2.9: Warped contour plots of the errors |u∗ − uPU
k | using polynomials of degree

p = 5 on levels k = 5, 6, 7 (top to bottom).
Left column: Applying local stabilization according to Section 1.5 without the patch
shrinking post-processing step from Section 2.1. Starting on level 6 the errors for
some patches on the boundary do not get reduced anymore.
Right column: Applying the cover post-processing step from Section 2.1. The errors
are evenly distributed over all patches on all levels.
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Figure 2.10: T-domain with radius R = 15 and thickness T = 3.

We finally demonstrate that the mixed multilevel transfer operators as given in (2.2) and
(2.3) are capable of yielding a multilevel solver that requires a nearly constant number of
iterations over all levels, even when the post-processing step did eliminate parent patches
and hence Lemma 1.4 does not hold anymore. Table 2.9 depicts the number of iterations
that were required to solve the problem with the different transfer types. As expected, the
global-to-global transfer yields a very robust solver but it has the highest cost. On the other
hand, the local-to-local transfer is not capable of retaining a constant number of iterations
due to the patches with an eliminated parent not receiving any coarse level correction
information anymore. Finally, the mixed-to-local transfer is again capable of retaining a
constant number of iterations for polynomial degrees p = 1 and p = 3 and eventually for
p = 5 as well. For lower polynomial degrees, the required number of iterations is very close
to the number we retrieve by applying to global-to-global transfer, but the mixed-to-local
transfer is both cheaper to construct as well as cheaper to apply. Here, it is additionally
very important to note that it is far from self-evident that we can retrieve a similar number
of iterations for different polynomial degrees on the same level. This does usually require
the construction of sophisticated smoothers as has been demonstrated in [50]. The here
employed block factorized sparse approximate inverse (block-FSAI) smoother has not yet
been thoroughly analyzed with respect to this property.

Example 2.3 (2D T-domain). In this example we again consider the Helmholtz type of
equation from (2.6) with c = 1 but this time on a T-shaped polygon domain (compare
Figure 2.10). Again we choose the right-hand side f and the Neumann boundary conditions
gN such that the solution is given by (2.7). Again we first want to take a look at the
behavior of the linear solver when we try to solve the discretized equation systems from
the original cover construction, with the local stabilization and with the post-processing
step enabled. The results are shown in Table 2.10. If we compare those results to the
ones from the previous example we can observe the following differences: First of all using
the original cover construction does not only result in ill-conditioned operator matrices
for high polynomial degrees of p = 5, but this already happens for cubic and even linear
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Table 2.10: Number of solver iterations n until the residual has reached an absolute
tolerance of 10−15 for Example 2.3 (T-domain) using the original hierarchical cover
construction without post-processing and without local stabilization (default),
without post-processing and with local stabilization (stable trafo) and with
post-processing but without local stabilization (post-process) employing polyno-
mials of degree p = 1, p = 3 and p = 5 in the construction of all local function spaces
Vi,k. Cases where the solver did not reach the desired residual tolerance after 1000
iterations are marked with a dagger †. The employed solver is a preconditioned CG
method using a multilevel-preconditioner with γ := 1, νpre

k := νpost
k := 1, global-to-

local transfer according to (1.41) and a block factorized sparse approximate inverse
(block-FSAI) smoother.

default stable trafo post-process

k np=1 np=3 np=5 np=1 np=3 np=5 np=1 np=3 np=5

1 3 1,000† 1,000† 2 1,000† 1,000† 2 2 2
2 1,000† 1,000† 1,000† 1,000† 1,000† 1,000† 7 11 14
3 6 1,000† 1,000† 6 15 1,000† 6 13 16
4 6 60 1,000† 6 12 17 6 12 16
5 9 15 1,000† 9 16 31 9 14 29
6 11 16 1,000† 11 17 36 12 14 27
7 12 14 1,000† 12 15 32 12 14 30
8 12 13 1,000† 13 14 33 12 13 30
9 12 15 1,000† 13 17 37 13 13 30
10 12 15 – 13 17 – 12 14 –
11 12 13 – 13 15 – 12 13 –
12 12 13 – 13 15 – 12 13 –

polynomials. Additionally the stable transformation is not capable of solving those issues
on all levels. Especially on the lower levels k = 1, 2, 3 the linear solvers cannot converge
to the desired residual tolerance. These observations can be explained by the fact that
for this domain the violation of the strict flat-top property according to Definition 2.1
does actually lead to linear dependencies of the polynomials of neighboring patches and
such global linear dependencies cannot be resolved by the local stable transformation.
On the other hand, the post-processing step resolves both the local linear dependencies
by shrinking boundary patches and global linear dependencies by guaranteeing the strict
flat-top property and hence the equation systems on all levels can be solved efficiently.
Convergence results for the post-processed cover construction and employing polynomial
degrees p = 1, p = 3 and p = 5 are given in Table 2.11, 2.12 and 2.13 respectively and are
plotted in Figure 2.11. We can see that we are again able to obtain optimal rates for all
polynomial degrees until the relative errors reach an absolute value of about 10−11.

Example 2.4 (3D small stellated dodecahedron). In this final example of the section,
we show that the cover post-processing does not only work for two-dimensional domains,
but does in fact extend to three-dimensions as well. To this end, we are solving (2.6) in
d = 3 space dimensions with c = 1 on a small stellated dodecahedron domain as given in
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Table 2.11: Relative errors e· and convergence rates ρ·, number of eliminated patches Nel
and number of shrinked patches Nsh for Example 2.3 (T-domain) employing the post-
processed cover construction without local stabilization, using a global polynomial
degree p = 1.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 9 3 1 1 1.290 – 9.34−1 – 8.91−1 –
2 21 7 3 5 9.03−1 0.42 7.69−1 0.23 8.42−1 6.58−2
3 66 22 0 18 4.59−1 0.59 2.06−1 1.15 5.32−1 0.40
4 180 60 0 40 1.44−1 1.16 9.66−2 0.75 3.74−1 0.35
5 636 212 28 84 6.47−2 0.63 4.41−2 0.62 2.61−1 0.28
6 2,370 790 114 170 1.78−2 0.98 1.37−2 0.89 1.44−1 0.45
7 9,822 3,274 0 342 5.03−3 0.89 3.47−3 0.96 7.32−2 0.48
8 37,908 12,636 0 688 1.33−3 0.98 9.02−4 1.00 3.76−2 0.49
9 150,252 50,084 460 1,380 3.47−4 0.98 2.28−4 1.00 1.90−2 0.50
10 598,242 199,414 1,842 2,762 8.84−5 0.99 5.75−5 1.00 9.52−3 0.50
11 2,398,494 799,498 0 5,526 2.23−5 0.99 1.43−5 1.00 4.75−3 0.50
12 9,571,860 3,190,620 0 11,056 5.63−6 1.00 3.58−6 1.00 2.38−3 0.50

Table 2.12: Relative errors e· and convergence rates ρ·, number of eliminated patches Nel
and number of shrinked patches Nsh for Example 2.3 (T-domain) employing the post-
processed cover construction without local stabilization, using a global polynomial
degree p = 3.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 30 3 1 1 5.52−1 – 5.32−1 – 7.14−1 –
2 70 7 3 5 3.50−1 0.54 2.66−1 0.82 4.72−1 0.49
3 220 22 0 18 6.60−2 1.46 5.49−2 1.38 1.52−1 0.99
4 600 60 0 40 3.93−3 2.81 3.51−3 2.74 2.08−2 1.98
5 2,120 212 28 84 5.49−4 1.56 2.57−4 2.07 2.95−3 1.55
6 7,900 790 114 170 2.51−5 2.35 1.38−5 2.22 3.45−4 1.63
7 32,740 3,274 0 342 1.14−6 2.17 6.34−7 2.17 3.80−5 1.55
8 126,360 12,636 0 688 7.10−8 2.06 3.95−8 2.06 4.77−6 1.54
9 500,840 50,084 460 1,380 7.07−9 1.68 2.54−9 1.99 6.04−7 1.50
10 1,994,140 199,414 1,842 2,762 3.98−10 2.08 1.59−10 2.01 7.57−8 1.50
11 7,994,980 799,498 0 5,526 7.28−11 1.22 4.90−11 0.85 9.39−9 1.50
12 31,906,200 3,190,620 0 11,056 6.05−11 0.13 4.71−11 2.92−2 1.17−9 1.50

Table 2.13: Relative errors e· and convergence rates ρ·, number of eliminated patches Nel
and number of shrinked patches Nsh for Example 2.3 (T-domain) employing the post-
processed cover construction without local stabilization, using a global polynomial
degree p = 5.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 63 3 1 1 5.17−1 – 5.13−1 – 6.73−1 –
2 147 7 3 5 9.48−2 2.00 9.80−2 1.95 1.98−1 1.44
3 462 22 0 18 2.23−3 3.27 1.20−3 3.85 7.17−3 2.90
4 1,260 60 0 40 4.00−5 4.01 3.19−5 3.61 3.15−4 3.11
5 4,452 212 28 84 2.21−6 2.30 1.17−6 2.62 1.79−5 2.27
6 16,590 790 114 170 3.48−8 3.15 2.26−8 3.00 6.51−7 2.52
7 68,754 3,274 0 342 6.34−10 2.82 3.71−10 2.89 2.09−8 2.42
8 265,356 12,636 0 688 1.19−11 2.94 6.35−12 3.01 6.88−10 2.53
9 1,051,764 50,084 460 1,380 2.66−12 1.09 2.18−12 0.77 2.22−11 2.49
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Figure 2.11: Error convergence for Example 2.3 (T-domain) employing the post-
processed cover construction without local stabilization, using global polynomial
degrees p = 1, p = 3 and p = 5 (left to right).

Figure 2.12: Small stellated dodecahedron domain with edge length a = 100.

Figure 2.12. This time the reference solution is given by

u∗ := λx cos(λy) + λy sin(λx) + λ(x+ y) sin(λz) (2.8)

with λ = 0.1. The convergence results for the post-processed cover construction using
polynomial degrees p = 1, 3, 5 are presented in Table 2.14, 2.15 and 2.16 and are depicted
in Figure 2.13. We are again able to obtain optimal convergence rates. In the three-
dimensional case those are given by ρL2 = 2

3 and ρH1 = 1
3 for p = 1, ρL2 = 4

3 and ρH1 = 1
for p = 3 and ρL2 = 2 and ρH1 = 5

3 for p = 5.
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Table 2.14: Relative errors e· and convergence rates ρ·, number of eliminated patches
Nel and number of shrinked patches Nsh for Example 2.4 (stellated dodecahedron)
employing the post-processed cover construction without local stabilization, using
a global polynomial degree p = 1.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 32 8 0 8 9.32−1 – 9.45−1 – 9.64−1 –
2 112 28 4 20 1.040 −8.85−2 7.76−1 0.16 9.52−1 9.84−3
3 496 124 20 72 5.30−1 0.45 2.95−1 0.65 7.61−1 0.15
4 2,740 685 115 269 1.60−1 0.70 1.14−1 0.56 5.28−1 0.21
5 17,584 4,396 272 1,048 7.05−2 0.44 3.76−2 0.60 3.06−1 0.29
6 120,848 30,212 2,784 3,784 2.05−2 0.64 1.08−2 0.64 1.61−1 0.33
7 919,184 229,796 10,696 13,480 8.81−3 0.42 2.83−3 0.66 8.19−2 0.33
8 7,167,408 1,791,852 41,760 53,200 1.95−3 0.73 7.17−4 0.67 4.12−2 0.33
9 56,717,600 14,179,400 134,968 241,680 6.72−4 0.52 1.80−4 0.67 2.07−2 0.33

Table 2.15: Relative errors e· and convergence rates ρ·, number of eliminated patches
Nel and number of shrinked patches Nsh for Example 2.4 (stellated dodecahedron)
employing the post-processed cover construction without local stabilization, using
a global polynomial degree p = 3.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 160 8 0 8 1.440 – 5.92−1 – 8.37−1 –
2 560 28 4 20 4.35−1 0.95 2.34−1 0.74 5.70−1 0.31
3 2,480 124 20 72 1.59−1 0.68 3.55−2 1.27 2.02−1 0.70
4 13,700 685 115 269 1.18−2 1.52 2.50−3 1.55 2.86−2 1.14
5 87,920 4,396 272 1,048 9.47−4 1.36 1.89−4 1.39 3.47−3 1.13
6 604,240 30,212 2,784 3,784 5.72−5 1.46 1.59−5 1.29 4.30−4 1.08
7 4,595,920 229,796 10,696 13,480 6.58−6 1.07 1.21−6 1.27 5.26−5 1.04
8 35,837,040 1,791,852 41,760 53,200 3.90−7 1.38 8.37−8 1.30 6.57−6 1.01

Table 2.16: Relative errors e· and convergence rates ρ·, number of eliminated patches
Nel and number of shrinked patches Nsh for Example 2.4 (stellated dodecahedron)
employing the post-processed cover construction without local stabilization, using
a global polynomial degree p = 5.

k dof N Nel Nsh eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 448 8 0 8 8.44−1 – 1.51−1 – 3.47−1 –
2 1,568 28 4 20 2.83−1 0.87 6.45−2 0.68 2.30−1 0.33
3 6,944 124 20 72 2.23−2 1.71 2.07−3 2.31 1.29−2 1.93
4 38,360 685 115 269 3.25−4 2.47 5.09−5 2.17 5.89−4 1.81
5 246,176 4,396 272 1,048 4.80−6 2.27 1.03−6 2.10 2.14−5 1.78
6 1,691,872 30,212 2,784 3,784 5.86−8 2.28 1.96−8 2.05 7.14−7 1.76
7 12,868,576 229,796 10,696 13,480 1.69−9 1.75 3.35−10 2.01 2.29−8 1.70
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Figure 2.13: Error convergence for Example 2.4 (stellated dodecahedron) employing the
post-processed cover construction without local stabilization, using global polyno-
mial degrees p = 1, p = 3 and p = 5 (left to right).
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3 Geometry
Representation

To perform numerical simulations on real-world geometries we need to decide how these
geometries are to be represented. There are many different ways to describe geometries
and the choice of the representation format heavily influences how complex the geometries
we can support will be. Within the industry and especially within the fields of Computer-
Aided Design (CAD) and Computer-Aided Engineering (CAE) there have been efforts to
standardize how geometries are to be represented and how to exchange those represen-
tations between different software programs involved in the product’s development cycle.
The predominant result of those efforts is the STandard for the Exchange of Product model
data (STEP) described in the ISO standards document ISO 10303. This standard consists
of many parts dealing with different tasks during the development process from the initial
design, engineering, manufacturing up to maintenance. In this thesis we are most inter-
ested in Part 42 - Geometric and topological representation [62] of the STEP standard.
That part describes the Boundary Representation (BREP) which we summarize in this
chapter and that is used by the most common CAD kernels like ParaSolid, ACIS, C3D,
OpenCASCADE and many more.

3.1 Boundary Representation

The Boundary Representation (BREP or B-Rep) describes geometries in two and three
dimensions by their limits. I.e. a volumetric domain Ω ⊂ Rd with d ∈ {2, 3} is not
described directly, but instead a description for its (oriented) boundary ∂Ω is provided
and the volume is then defined as all points that lie within that boundary description.
It is a very powerful representation designed with the goal to be able to describe all
geometries that can be physically manufactured. Following the definition from part 42 of
the ISO 10303 standard [62] the description of BREPs is split into two parts, the topology
(mainly represented by vertices, edges, faces, shells and solids) and the geometry (mainly
represented by points, curves and surfaces).
The topology defines how the basic entities are connected with each other. Edges are
connected by vertices and form paths or loops, faces are connected along edges and form
shells. Shells that are closed (there is no edge that is connected to only a single face) can

59
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Figure 3.1: Exemplary BREP topologies.
Left: A cylindrical wedge solid model, represented by a closed shell consisting of six
faces. Each edge is connected to exactly two faces.
Right: A T-joint shell model consisting of three faces. The edge 6 is connected to
three faces and thus making it a non-manifold shell. All other edges are connected
to a single face only, thus making it an open shell.

be used to define a solid. Any solid is required to consist of at least one outer shell, but
can have additional inner shells that describe voids. Those inner shells need to be fully
enclosed in the outer shell and cannot be nested. In general shells can describe either
manifold or non-manifold entities, depending on whether an edge is allowed to connect
more than two faces with each other or not. While only closed manifold shells can be used
to define a solid, open or non-manifold shells are often used to describe thin geometries
where plate theory can be applied for the numerical simulations (compare Figure 3.1 for
some exemplary models described by BREPs). Note that STEP forbids faces from a
shell to intersect anywhere except along edges or vertices that connect them, even if they
categorize as non-manifold shells. This includes self-intersections.
While the topology describes the model’s structure, the geometry is used to describe its
actual shape. To this end each topological entity is assigned some geometrical represen-
tation. Vertices are represented by points, edges by curves and faces by surfaces. All
geometric objects are defined through a parametrization. A curve C in two or three
dimensions is defined by a function

C : PC → Rd, u 7→ x (3.1)

with PC := (ua, ub) ⊆ R and d ∈ {2, 3}. Similarly a surface S is defined by

S : PS → R3, (u, v) 7→ x (3.2)
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Figure 3.2: Left: A curve C maps from the one-dimensional interval PC := (ua, ub) ⊂ R
into the two dimensional world space R2.
Right: A surface S maps from the two-dimensional tensor product domain PS :=
(ua, ub)× (va, vb) ⊂ R2 into the three dimensional world space R3.

with PS := (ua, ub) × (va, vb) ⊆ R2 (compare Figure 3.2). The STEP standard describes
multiple entities to define such parametrized curves and surfaces. The most fundamental of
those entities are elementary representations for curves (e.g. lines or circles) and surfaces
(e.g. planes, spheres, cylindrical, conical or toroidal surfaces). These representations
usually describe infinite domains i.e. any of ua, ub, va or vb can be ±∞. Additionally
note that they can be periodic. E.g., while the parameter domain PC of a circular curve
is unbounded, a single turn of such a curve spans over an interval of length 2π. The
other of the most common representations are bounded curves and surface that are mainly
described by non-uniform rational B-splines (NURBS) which will be introduced in more
detail in Section 3.2. For surfaces there is the additional category of swept surfaces, like
linear extrusions of curves along a direction vector or surfaces of revolution. Those swept
surfaces as well as all elementary representations can be converted to NURBS curves and
surfaces that represent the same geometric objects, as long as the infinite surfaces are
restricted to a finite part of the parameter domains PC and PS [94]. Hence, without loss
of generality, we assume that all curves and surfaces are described by NURBS throughout
the remainder of this thesis.1
If we consider our current description of curves and surface and compare that to the

1Since edition 5 (2014) of ISO 10303-42, the STEP standard does additionally support (rational) locally
refined spline curves, surfaces and volumes. These have been introduced to better support Isogeometric
Analysis (IGA) and can represent things commonly known as hierarchical B-splines [40], T-splines [117]
or LR B-splines [30]. To the best of our knowledge they are still unsupported by most CAD kernels and
hence are not of importance for this thesis.
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Figure 3.3: Left: The parameter domain PS := (ua, ub)×(va, vb) of a surface S is restricted
to P̂S where ∂P̂S is represented by two rings {R1, R2}. The counter-clock-wise ori-
ented outer ring R1 consists of the curves C1, C2 and C3. The clock-wise oriented
inner ring R2 consists of a single curve C3 and defines a hole.
Right: The restricted parameter domain transfers onto the surface S and represents
a trimmed domain of the full tensor-product surface in the world space.

example geometries given in Figure 3.1 it is worth to notice that it would not be possible to
build the example geometries with the given geometric object descriptions yet. E.g. planes
and cylindrical surfaces are elementary and thus have an infinite extend. Additionally all
other surfaces have a tensor product shape and there is no way to express holes like in
the shell example on the right in Figure 3.1. To overcome those limitations STEP allows
to restrict the parameter domains and define P̂C ⊆ PC and P̂S ⊆ PS , which results in
so-called trimmed or bounded curves and surfaces. While the trimming of curves is simple,
since we just need to pick any interval P̂C := (ûa, ûb) that is defined by the two scalar
values ûa, ûb ∈ P̄C only, the trimming of surfaces is a lot more involved. The parameter
domain bounds for surfaces are provided by a two-dimensional boundary representation
and hence we have given a description for ∂P̂S instead of P̂S being given directly. The
boundary ∂P̂S is formed by closed rings consisting of curves, similar to how a solid is
formed by closed shells consisting of faces (compare Figure 3.3). To this end the bounds
are defined by a set of rings (also called loops) {R1, . . . , Rk} with k ≥ 1, where R1 is the
counter-clock-wise oriented outer ring and {R2, . . . , Rk} are optional clock-wise oriented
inner rings that describe the boundary of holes. It is then

∂P̂S :=
k⋃

i=1
R̄i.

Each ring Ri is not allowed to intersect any other ring Rj . Note that this also disallows self-
intersection in the case j = i. A ring itself consists of a set of one or more two-dimensional
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Figure 3.4: Intersection of two surfaces S1 and S2. The intersection curve has two-
dimensional representations in each of the surfaces parameter domains PS1 and PS2

(left) and another three-dimensional representation in the world-space (right).

curves {C1, . . . ,Cn} with n ≥ 1 that are connected and closed, i.e.

Ci(ub,i) = Cj(ua,j) with j = (i mod n) + 1 ∀i = 1, . . . , n. (3.3)

Note that the parameter bounds description above actually encloses a connected two-
dimensional volume and thus is additionally used to represent the simulation domain Ω
for two-dimensional simulation problems.
To understand the implications that trimmed surfaces have on the overall geometric ob-
jects and the numerical simulations to be performed on those geometries it is necessary
to look at the procedures that are performed during the modelling of the geometries that
lead to those trimmed surfaces. One of the most common ways to create BREP geome-
tries in CAD is by incorporating constructive solid geometry (CSG) ideas into the build
process. I.e. new BREP objects can be constructed by applying boolean operations (in
the sense of set-theoretical union, intersection and difference) of two or more input BREP
models [98]. To perform those operations one of the most fundamental steps is to find the
intersection curves of two surfaces. Those intersection curves are then used to describe
the trimming curves of a newly created trimmed surface of the resulting BREP geometry.
Unfortunately the computation and representation of those intersection curves turns out
to be a problem that is hard to solve in general. A famously cited example by Sederberg
et. al. shows that the intersection of bi-cubic surfaces patches results in a curve of degree
324 [113]. Those high degrees of the intersection curves make exact representations of
them unsuitable in practice and the common solution is to use low degree approximations
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Figure 3.5: The surfaces S1 and S2 have been trimmed at their intersecting curve. Due
to the separate approximations of the intersection curve in each of the parameter
domains, the surfaces do not match exactly along the intersection curve in the world
space. A gap can be seen between the surfaces.

of those curves instead. There are many different methods to compute the intersection
curves and an interested reader is referred to [91] and [92] that give good overviews over
those methods. Pretty much all of those methods end up presenting a set of sampling
points in the parameter space of one (or both) of the surfaces that are then used to form
low degree curves and need to be transferred into the world space (compare Figure 3.4).
The exact representation of a curve of degree d on a tensor product surface patch of de-
grees m and n is of a degree d(m + n) which again leads to the use of an approximate
representation of the three-dimensional curve in the world space in practice [97, 139]. A
fundamental problem that arises from those approximate representations is that the three
geometrical representations of an edge (one in each of the parameter spaces and the one in
the world space) do usually not match exactly. Since it is common that the approximation
or interpolation points used to create the distinct curve representations are not the same,
it is not even guaranteed that the curve representations agree on a finite set of points.
Quite the contrary, it is even allowed and very common that a STEP file that stores a
BREP geometry does only contain a single geometric representation for each edge (either
a parametric representation or the three-dimensional one) and the other representations
are re-created when the file is read or on-demand when required. Hence, trimmed surfaces
usually lead to BREP representations that are called non-watertight which means that
there are (small) gaps between neighboring surfaces (compare Figure 3.5). In fact, this
non-matching property does not only apply to surfaces connected over edges, but applies
to the connection of two consecutive trim curves as well. I.e. equation (3.3) that states
that consecutive curves need to agree at their endpoints actually becomes

∥Ci(ub,i)−Cj(ua,j)∥ ≤ ϵ with j = (i mod n) + 1 ∀i = 1, . . . , n.

in practice, where ϵ is a tolerance that depends on the tolerances that have been used
during the approximate construction of the involved trim curves.
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3.2 Non-Uniform Rational B-Splines
Since NURBS are used to describe the curves and surfaces within a BREP we will sum-
marize the mathematical theory behind NURBS while following [94].
A NURBS curve C of degree p in d-dimensions is defined for u ∈ [ua, ub], with ua, ub ∈ R
by

C(u) =
∑n

i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

(3.4)

where {Pi} are the d-dimensional control points, {wi} are real weights and {Ni,p} are the
B-spline basis functions of degree p. The basis functions Ni,p are defined recursively by

Ni,0(u) =
{

1, if ui ≤ u ≤ ui+1

0, otherwise

Ni,p(u) = u− ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

(3.5)

with U := {u0, . . . , un+p} being the so-called knot vector. We require the knot vector to be
non-decreasing, i.e. ui ≤ ui+1. The number of consecutive knots that are equal to a knot
ui is called the knot multiplicity of ui and can be defined as ki := card({uj | uj = ui}).
We additionally require that ki ≤ p+ 1 for the knots u0 and un+p and ki ≤ p for all inner
knots ui ∈ {u ∈ U | u ̸= u0 and u ̸= un+p}, which guarantees that the curve is at least
C0 continuous for u ∈ [u0, un+p]. In general a NURBS curve is Cp−ki continuous at the
knots ui. If the multiplicities k0 or kn+p are equal to p+ 1 the curve is called clamped at
any of those ends. A curve that is clamped at its beginning is discontinuous at u0 and it
interpolates the first control point at that location, i.e. C(u0) = P0. Respectively it is
C(un+p) = Pn for a curve that is clamped at its end.
Similarly a NURBS surface S of degree p in the u-direction and degree q in the v-direction
is defined by

S(u) =
∑n

i=0
∑m

j=0Ni,p(u)Nj,q(v)wi,jPi,j∑n
i=0

∑m
j=0Ni,p(u)Nj,q(v)wi,j

where the {Pi,j} are the three-dimensional control points, {wi,j} are real weights and
{Ni,p} and {Nj,q} are the basis functions from (3.5) and are utilizing the knot vectors
U := {u0, . . . , un+p} and V := {v0, . . . , vm+q} respectively.
Throughout this thesis we assume that all curve weights {wi} and surface weights {wi,j}
are positive which is a restriction that the STEP standard imposes on all curves and
surfaces it supports as well.
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4 Exact Geometry &
Integration (2D)

In this chapter we are concerned with the treatment of two-dimensional domains Ω for
the PUM that are represented by bounds like the trimming regions of faces described
in Chapter 3, especially on the left of Figure 3.3. Here, we want to point out that a
domain with Ω ⊂ R2 does not necessarily mean that we have a problem at hand that
would commonly be categorized as being two-dimensional. On the contrary, many of
the practically relevant problems that we will be able to solve with the methods presented
throughout this chapter are so-called shell problems where a three-dimensional domain that
consists of thin geometric structures is represented by its mid-surface only. Given some
assumption about the physical behavior of those problems, the three-dimensional PDEs
can be transformed into problems that are solved in the two-dimensional parametrizations
of those mid-surfaces. An example with a more detailed mathematical description for such
a shell problem will be given in Example 4.4.
In the PUM, the part that is most affected by the geometry is the assemble step. There,
integrals over parts of Ω and its boundary ∂Ω need to be evaluated as shown in Section 1.3:
The intersections of a patch ωi and its neighbors ωj have been split into integration domains
Dm

i that resolve all discontinuities and kinks of the employed basis functions and that are
axis-aligned bounding boxes. If ωi does not intersect the boundary, those integration
domains are already sufficient. But in general we need to evaluate integrals over Dm

i ∩ Ω
and Dm

i ∩ ∂Ω. Here, the idea is to split the intersections Dm
i ∩ Ω into smaller integration

cells like triangles (in 2D) or tetrahedra (in 3D) where we can employ known Gaussian
quadrature rules afterwards. Hence, we need to solve the following tasks:

1. Compute the intersection between the integration domains Dm
i and the simulation

domain Ω.

2. Create a local splitting of that intersection domain into simpler integration cells like
triangles or tetrahedra.

3. Perform Gaussian quadrature on those cells by using appropriate quadrature rules.

The remainder of this chapter is concerned with how these tasks can be solved for domains
Ω ⊂ R2.

67



68 CHAPTER 4. EXACT GEOMETRY & INTEGRATION (2D)

A

B

R1 R2

Figure 4.1: Intersection of a curved polygon A (gray) and an axis-aligned bounding box B
(green). The intersection points have been categorized into entry points (rectangles)
and exit points (diamonds) of the polygon A (categorization for the polygon B is not
depicted). The intersection R := A∩B consists of two disjoint (curved) polygons R1
(diagonally stripped) and R2 (horizontally stripped), where R2 includes one of the
holes from A.

4.1 Robust & Efficient Intersection Computations
To compute the intersections Dm

i ∩ Ω, we employ a modified version of the Greiner-
Hormann polygon clipping algorithm [49]. This algorithm was originally designed to
intersect two arbitrary polygons, which in particular includes self-intersecting polygons.
Given two polygons A and B with holes, the algorithm can be summarized as follows:

1. Compute all intersection points of the boundaries of the polygons A and B.

2. Mark all intersection points as either entry or exit points for the polygons A and
B. At an entry point of the polygon A we need to traverse along the boundary of
the polygon A in forward direction to get to the next intersection point. At an exit
point, we need to traverse in reversed direction.

3. Generate the resulting polygon by starting at any intersection point. If that point
is an entry point of A, follow the boundary of A in forward direction until the next
intersection point is reached. Otherwise follow B. At the next point, switch to the
polygon B (or A) and traverse its boundary in forward/reversed direction, corre-
sponding to its entry/exit flag. Whenever the initial intersection point is reached,
all added curves form an outer ring of a resulting polygon. If any intersection point
has not yet been reached, start forming a new ring from such an intersection point
until no intersection points are left. If any holes of A or B are located completely
within the resulting polygon without intersecting its boundary, their inner rings are
copied to the resulting polygon.

Compare Figure 4.1 for an example of the intersection of two (curved) polygons A and B.
While this algorithm has initially been introduced to compute intersections of arbitrary
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polygons with piecewise linear boundaries, it can be easily modified to support the inter-
sections we need: Patch domains ωi and the integration domains Dm

i are always described
by axis-aligned bounding boxes (AABB) and thus are a very simple case of a convex poly-
gon. The domain Ω on the other hand is a polygon with the generalization that instead
of having piecewise linear boundaries, we have boundaries of connected curve parts, de-
scribed by NURBS curves. The nice property of the Greiner-Hormann polygon clipping
algorithm is that this only affects step 1. of the algorithm: Instead of looking for the
intersection points between two straight line segments, we need to find the intersections of
axis-aligned line segments (the boundary segments of the AABB) and 2D NURBS curves
(the boundary segments of the domain Ω).
But one major downside of the original version of the Greiner-Hormann clipping algorithm
is that it cannot handle degenerate intersections where the boundaries of the polygons
touch in individual points or partially overlap. This is due to how the entry/exit flags are
computed: Given all intersection points pi, i = 1, . . . , N , ordered along a ring of polygon
A, we just need to check whether the first vertex of polygon A lies within polygon B or not.
If that point lies within polygon B, the intersection point p0 is an exit point, otherwise it
is an entry point. Then, all following intersection points p1, . . . ,pN are marked alternating
as entry and exit points. But this alternating assignment of the entry/exit flags is not
valid anymore when the polygons can have touching or overlapping intersections. Among
others, solutions to that problem have been proposed in [68] and [42]. For this thesis
a solution similar to what has been proposed in the latter has been implemented. The
basic idea is to simply ignore intersection points where the boundary of polygon A does
not cross the boundary of polygon B (and vice versa), but instead they are just touching.
To detect those cases let us assume that pi is the intersection point in question. We
then check whether a point on the boundary of A between pi and pi−1 and another point
between pi and pi+1 lies within the polygon B. Only if one of the points lies within B
and the other one is not, the intersection point pi is in fact a turn point and otherwise
it is just a touching point. Overlapping intersections can simply be considered “stretched
intersection points” where we need to check a point before the overlapping interval starts
and an additional point after the end of it, to detect whether the whole overlapping
segment is only touching or crossing. Note that we do not need to perform the additional
point-within-polygon checks for all intersection points. Touching intersections can only
arise when one of the curves has a kink at that location (a common case for this is at the
endpoints of curve parts) or when the tangents of the curves are parallel at the intersection
points. Additionally it is worth mentioning that in our use case one of the polygons is just
an axis-aligned bounding box, and hence most of the point-within-polygon checks are just
very simply point-within-AABB checks.
Hence the most difficult step that remains to be solved is to find all intersection points.
To this end, we want to start with a more formal description of the problem at hand: Let
an axis-aligned line segment in direction m be given by

A(t) = tαem + c (4.1)

with t ∈ [0, 1], em the canonical unit vector in direction m, α the length of the segment and
c the base point of the segment. Computing intersection points of such a line segment and
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a NURBS curve C as given by (3.4) can be described as solving the system of equations

A(t)−C(u) = 0. (4.2)

Unfortunately solving equation (4.2) might be very difficult in general:
1. Since C is a NURBS curve described by a possibly rational, higher order basis, it is

a nonlinear equation in general.

2. The equation can have no solution if the NURBS curve and the axis segment do
not intersect.

3. The equation can have more than one solution if there are multiple intersection
points.

4. The equation can have an infinite number of solutions if the NURBS curve and
the axis do (partially) overlap.

While this problem is far from new and basically all CAD kernels need to solve these
or similar equations, the difficulty in our case are the extremely high robustness and
performance requirements to the solutions of this equation that are imposed by our use
case. In general we have no control over how patches are located relative to the domain
and the curves that are used to describe them. This makes very unlucky locations of
patches that barely intersect or barely do not intersect specific curves not only likely, but
basically guarantees that such cases will arise on higher levels with millions of patches on
even just slightly more complex input geometries. Common approaches try to separate all
roots of (4.1) when high robustness is required, but the root separation per intersection
computation is very expensive and thus makes it unpractical for use cases like ours, where
many intersections need to be computed. On the other hand, approximate approaches
where a tolerance parameter is used to stop searching for further intersection points fail
to guarantee that all intersection points are found. While a CAD kernel can commonly
apply such approximate approaches and give the control back to the CAD engineer, who
can then validate the outcome and take steps (like moving one of the geometries to be
intersected slightly) in case of an incorrect computation, we do not have that luxury. To
this end, we have to find a more robust approach to solve equation (4.2).
To achieve the required robustness and performance for our use case, we split the boundary
of the simulation domain into parts where the number of intersection points with an infinite
axis-aligned line is known a priori, i.e. we split the parameter domain P of all NURBS
curves C into parts Pi where equation (4.2) has either no solution, exactly one solution
or the curve and the axis-aligned line segment overlap over the complete interval, i.e.
at all points C(u) for u ∈ Pi. To this end, we have to split each NURBS curve on
the boundary into x- and y-monotone parts. Splitting of NURBS curves into monotone
parts has been done before to solve different kinds of problems. Rockwood et al. use
monotone curve parts to split trimmed NURBS surface regions into smaller, monotone
regions [99]. Qin et al. perform it to accelerate distance queries in the context of texture
rendering [95]. Schollmeyer and Fröhlich pre-process NURBS trim bounds into monotone
parts to speed up point classification queries that arise during ray-tracing of trimmed
NURBS surfaces [104].
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Figure 4.2: NURBS curves that have been split into bi-monotone parts. The split locations
where C ′(u)x = 0 are denoted by blue circles and the split locations where C ′(u)y = 0
are denoted by red circles. Locations between two consecutive Bézier spans where the
knot multiplicity is ≥ p are denoted by diamonds.
Left: The curve has been split into eight bi-monotone parts between the points
{p0,p1,p2,p4,p6,p8,p10,p11,p12}.
Right: The closed curve has been split into six bi-monotone parts between the points
{p0,p2,p3,p4,p5,p6,p0}.

4.1.1 Monotone decomposition

Let us first start with a formal definition of a monotone curve:

Definition 4.1 (Monotone curve). Let C : P → R2 with P := [ua, ub] ⊂ R be the
parametrization of a two-dimensional curve with C ∈ C0(P). Then the curve is called
monotone in the direction m ∈ {1, 2} over the interval [ũa, ũb] ⊆ P when

C ′(u)m ≥ 0 ∀u ∈ [ũa, ũb] or
C ′(u)m ≤ 0 ∀u ∈ [ũa, ũb]

(4.3)

holds. It is called bi-monotone if (4.3) holds for both m = 1 and m = 2. Similarly the
curve is called strictly (bi-)monotone when

C ′(u)m > 0 ∀u ∈ (ũa, ũb) or
C ′(u)m < 0 ∀u ∈ (ũa, ũb)

(4.4)

holds.

Our goal is to split the parameter domain P := [ua, ub] of any NURBS curve C into parts
Pi such that the curve is bi-monotone according to Definition 4.1 over each interval Pi.
To this end, we first find locations û ∈ P where the curve has kinks so that the curve is at
least C1-continuous between all those locations. Then we search all those C1-continuous
sub-curves to find all locations ū ∈ P where C ′(ū)m = 0 for m ∈ {1, 2}. Then the curve
parts between all locations û and ū are bi-monotone (compare Figure 4.2). The first step in
the monotone decomposition is to convert all NURBS curves into an equal representation
of piecewise Bézier curves. This can be achieved by repeated knot insertion which is often
denoted as knot refinement [94]. It allows us to insert new knots into the knot vector U
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by adjusting the control points Pi and weights wi such that we get a new representation
of the same NURBS curve. For example if we have a NURBS curve of degree p = 3 with
knot vector U := {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 3} we would insert the knots 1, 1 and 2 so that all
inner knots have a multiplicity of p and the first and last knot have a multiplicity of p+ 1.
After that conversion each span u ∈ [uk, uk+1] between two NURBS knots uk ̸= uk+1 can
be represented by a rational Bézier curve of the form

Ck(ũ) =
∑p

i=0Bi,p(ũ)wĩPĩ∑p
i=0Bi,p(ũ)wĩ

(4.5)

with ũ := u−uk
uk+1−uk

being the transformation of u ∈ [uk, uk+1] into ũ ∈ [0, 1], ĩ = i+ k − p
being the shifted index to select the required weights and control points from the original
NURBS curve and Bi,p being the Bernstein polynomial basis functions that are given by

Bi,p(ũ) =
(
p

i

)
ũi(1− ũ)p−i.

Even though a NURBS curve that has been converted to piecewise Bézier form has a knot
vector where all inner knots have a multiplicity of p and thus is only guaranteed to be C0 at
all those inner knots, some of those locations might actually still be of higher smoothness.
E.g. at all knots that had a lower multiplicity before the conversion into piecewise Bézier
form, the curve has to be of higher smoothness. To this end, we check the derivative of the
two consecutive Bézier curves at each inner knot uk ∈ U where uk+1 ̸= uk that connects
them and do only split the curve C at uk when C ′

k(1) ̸= C ′
k+p(0) or C ′

k(1) = 0.1
Now that we have detected all kink locations û, we are left to find the extrema ū. To this
end, we need to investigate the derivatives C ′

k of the Bézier sub-curves. Let us first take
a look at the special case where the NURBS curves are actually non-rational, i.e. where
it is wi = 1 for all i = 0, . . . , p. In this case the denominator of (4.5) is equal to one
everywhere and the numerator is a simple polynomial of degree p. Hence, the derivatives
of such curves are polynomials of degree p− 1 which can be represented by a Bézier curve
of degree p−1, that is called its hodograph. For rational Bézier curves, the derivatives can
be transformed into a rational function where the numerator is given by a Bézier curve of
degree 2p− 2 [116] and is given by

C ′
bezier(u) =

∑2p−2
i=0 Bi,2p−2(u)Ri

(
∑p

i=0Bi,p(u)wi)2 (4.6)

with the control points

Ri =
∑⌊i/2⌋

k=max(0,i−p+1)(i− 2k + 1)
(p

k

)( p
i−k+1

)
wkwi−k+1(Pi−k+1 − Pk)(2p−2

i

) .

Since the denominator in (4.6) is positive, it is sufficient to find only the roots of the
numerator, which is a non-rational Bézier curve and thus a polynomial of known degree

1Note that for the monotone decomposition it would be sufficient to split at an inner knot uk when
there is an actual sign change in the derivatives, i.e. sgn(C′

k(1)) ̸= sgn(C′
k+p(0)).
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2p− 2. This means, to find the roots of the derivatives of any NURBS curve we need an
algorithm to find all roots of a polynomial of known degree. In the past a large number
of algorithms to find all real roots of a polynomial have been developed. In our case are
especially interested in algorithms to find the roots of polynomials that are given in the
Bernstein basis since (4.6) is a Bézier curve and it has been shown that not converting
those polynomials to a power basis for root finding is beneficial for the stability of the
root finding problem [36]. A thorough overview over many such algorithms can be found
in [126]. Nevertheless, most of those algorithms are especially designed to handle cases
that are not well conditioned, as they can arise when dealing with root finding problems
imposed when trying to find the intersections of two general Bézier curves. In contrast
to that, we need to find the roots of the derivative of a single Bézier curve, and hence we
usually have to deal with cases where the root finding problem is far better conditioned.
To this end, we briefly summarize a very simple algorithm to find the required roots in
the following. That algorithm has provided sufficient performance and robustness in all
our test cases so far.

Let f : [ua, ub]→ R, u 7→ f(u) be a polynomial of degree p. We want a simple algorithm
to find all locations ur where f(ur) = 0 with ur ∈ [ua, ub]. To this end we employ an
algorithm similar to a variant of real-root-isolation based on a sequence of derivatives
presented in [22]. We successively find the roots of the k-derivative, starting from the
highest non-trivial derivative up to the function itself. First, for k = p − 1 the degree
of f (k) is at most one, so there will be at most one uk,r ∈ [ua, ub] where f (k)(uk,r) = 0.
Whether there is an actual root or not can be verified by applying Bolzano’s theorem. If
the root exists we can find it by applying an algorithm like bisection and the root splits
the interval into two parts [ua, uk,r] and [uk,r, ub]. In both of these intervals the one-lower
derivative f (k−1) is strictly monotone and hence can again have at most one root per
interval. We continue to compute all roots uk,r for all k = p − 1, . . . , 0 until for k = 0
we have found the roots of f itself. Note that this algorithm is robust for cases where
the actual degree of f is less than assumed, so it is of a degree q < p. In this case the
derivatives k = p − 1, . . . , q are all zero on the complete interval [ua, ub]. When applying
Bolzano’s theorem it will hence be f (k)(ua) = f (k)(ub) = 0 which is not a sign change and
we thus do not report a root in [ua, ub]. This makes sure that the intervals of the next
iteration will not be split up and we will keep the single interval [ua, ub] until we reach
k = q − 1.

Remark 4.1. The monotone decomposition of a NURBS curve C described above does
actually not only split the curve into bi-monotone curve parts, but into parts that are
either strictly bi-monotone or parallel to either the x- or the y-axis. The reason for
this is that we have split all Bézier curves at locations where C ′

k(ū)m = 0, hence in the
intervals between those locations the derivatives are non-zero and thus the curves are
strictly monotone in direction m. The only exception to this is when C ′

k(ũ)m = 0 for all
ũ ∈ [0, 1] in which case it is Ck(ũ)m = const and hence the curve is parallel to the axis
orthogonal to the direction m.
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4.1.2 Intersection queries

Next, we will use the (bi-)monotone property of all curve parts to distinguish the cases
where equation (4.2) has no, exactly one or an infinite amount of solutions. To this end,
we first state some lemmas about the properties of a monotone curve:

Lemma 4.1. Let C : [ua, ub]→ R2, u 7→ C(u) be a curve between the points pa := C(ua)
and pb := C(ub) that is monotone in the direction m according to Definition 4.1. Let

Im := [min{(pa)m, (pb)m},max{(pa)m, (pb)m}] (4.7)

be the space in direction m between the endpoints of the curve. Then it holds that

C(u)m ∈ Im ∀u ∈ [ua, ub].

Proof. Without loss of generality, we consider the case (pa)m ≤ (pb)m. Let us then
assume that there is a location û ∈ (ua, ub) such that C(û)m < (pa)m. Since the curve
is continuous it follows from the mean value theorem that there has to be a location
u− ∈ (ua, û) where C ′(u−) = C(û)m−(pa)m

û−ua
< 0 and another location u+ ∈ (û, ub) where

C ′(u+) = (pb)m−C(û)m

ub−û > 0. This contradicts the definition of a monotone curve that
has either only non-negative or only non-positive derivatives and hence such locations û
cannot exist. The case for a point with C(û)m > (pb)m follows by symmetry, just like the
cases for (pa)m ≥ (pb)m.

Remark 4.2. From Lemma 4.1 it especially follows that a bi-monotone curve C with
u ∈ [ua, ub] is contained within the box B := I1 × I2 that is the bounding box of its
endpoints pa := C(ua) and pb := C(ub).

Lemma 4.2. Let C : [ua, ub]→ R2, u 7→ C(u) be a curve between the points pa := C(ua)
and pb := C(ub) that is monotone in the direction m according to Definition 4.1. Then
the following implication holds

(pa)m = (pb)m =: ξ =⇒ C(u)m = ξ ∀u ∈ [ua, ub].

Proof. This follows directly from Lemma 4.1, since in this case it is Im := [(pa)m, (pb)m] =
{ξ}.

Lemma 4.3. Let C : [ua, ub]→ R2, u 7→ C(u) be a curve between the points pa := C(ua)
and pb := C(ub) that is strictly monotone in the direction m according to Definition 4.1.
Then, for all ũ, û ∈ [ua, ub] with ũ ̸= û it holds that

C(ũ)m ̸= C(û)m.

Proof. Since C is differentiable for u ∈ [ua, ub] we can express any point along the curve
by

C(u)m = C(ua)m +
∫ u

ua

C ′(τ)m dτ.
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Figure 4.3: A NURBS curve C has been split into seven bi-monotone curve parts
{C1,C2, . . . ,C7}. The infinite line parallel to the x-axis A1 does not intersect any of
the bounding boxes of the curve parts and thus does not intersect any of the curves.
The line A2 intersects the bounding boxes of the curves C5 and C7 and thus has
exactly one intersection with each of the curves and no intersections with any other
curve. The line A3 intersects the (closed set) bounding boxes of C2, C3, and C4.
Since both endpoints of the bi-monotone curve C3 are located on A3, the curve over-
laps the line over its entire length. For the curves C2 and C4 the line has exactly one
intersection at the end and start of the curves respectively.

Given some ũ, û ∈ [ua, ub) with ũ ̸= û. Without loss of generality, assume ũ < û. Then,
we can state that

C(û)m = C(ua)m +
∫ û

ua

C ′(τ)m dτ

= C(ua)m +
∫ ũ

ua

C ′(τ)m dτ +
∫ û

ũ
C ′(τ)m dτ

= C(ũ)m +
∫ û

ũ
C ′(τ)m dτ.

Let us first assume that the curve is strictly monotone increasing in the direction m, i.e.
C ′(u)m > 0 for all u ∈ (ua, ub). Then it is

∫ û
ũ C

′(τ)m dτ > 0 and hence C(û)m ̸= C(ũ)m.
By symmetry the same holds for a strictly monotone decreasing curve, i.e. C ′(u)m < 0
and hence it holds for any curve that is strictly monotone in direction m.

Let us now consider a line A according to (4.1), parallel to the axis in direction m ∈ {1, 2}
with the base point c and k := (m mod 2) + 1 being the orthogonal direction to m in the
two-dimensional space. Furthermore, let us assume that the parameter domain P of the
curve C has been split into parts Pi := [ai, bi] by the monotone decomposition algorithm
described in the previous paragraph. Then, from Lemma 4.1 it follows that a curve C has
no intersection with A for u ∈ Pi when

ck ̸∈ Ik (4.8)
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Figure 4.4: The boundary segments of an axis-aligned bounding box (green) have been
extended to infinity (dotted lines). Even though the infinite lines have multiple inter-
sections with different curve parts, we need to compute only three intersection points
(red crosses) since the boundary segments do not intersect the bounding boxes of the
other curves. One of the intersection points will be discarded, since it is outside of
the original segment’s domain.

holds, where Ik is the curve’s bounds in direction k according to (4.7). On the other hand,
from Lemma 4.2 in follows that the curve C overlaps A over the entire interval Pi when

C(ai)k = C(bi)k = ck (4.9)

holds. Since equation (4.9) detects all intervals Pi in which the curve is parallel to the axis
in direction m, from Remark 4.1 the curve is strictly monotone in all remaining intervals
Pi. Hence, from Lemma 4.3 it follows that equation (4.2) has exactly one solution for
u ∈ Pi when neither (4.8) nor (4.9) hold. Compare Figure 4.3 for examples of curve-axis
intersections.
Additionally note that since we need to find the intersection point with an axis-aligned
line, we only need to take a single component of the two-dimensional curve equation for
C into account. Hence, we need to find û ∈ Pi such that

C(û)k − ck = 0. (4.10)

Finding those roots is now an easy task and can be performed by classic methods such
as a Newton solver or simple bisection. We should additionally note that equation (4.10)
is strictly monotone for u ∈ Pi which makes it an particularly easy problem to solve and
we only need to evaluate a single component of the curve’s equation, which makes it even
cheaper to compute. When we found a solution û, the parameter t̂ of the axis where
C(û) = A(t̂), is given by t̂ := C(û)m−cm

α and we can discard intersection points where
t̂ ̸∈ [0, 1] that are not located on the original segment’s domain.
To reduce the number of intersection points that are computed and then discarded we
can perform an initial filtering: For any axis-aligned segment we first check whether the
segment intersects the bounding box of any bi-monotone curve part. Only in the case that
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there is such an intersection, the segment and the curve can have an intersection (compare
Remark 4.2 and Figure 4.4). Note that such a filtering returns a subset of the curves for
which (4.8) holds and thus for each curve returned by that filtering we have exactly one
intersection point (or an overlap over the full curve domain) with the infinite extension
of the axis segment and no intersection points for all other curve parts that have been
filtered out. To speed up the filtering we can construct an acceleration structure like an
R-tree [57]. Note that due to the fact that we can easily first compute all monotone curve
parts and then construct the tree, we can use packing algorithms to build the tree, which
should result in good balancing and thus sufficient query times [43, 80]. Updates of the
tree after its initial construction are not required.

4.2 Local Decomposition into Integration Cells

Now that we can build the intersection domains of Ω with an axis-aligned bounding box we
need to decompose these intersection domains into simpler geometric primitives that we
have known quadrature rules for. The approach of choice in this thesis is to decompose the
potentially curved domains into triangles, with potentially curved edges. To this end, we
first create a linear triangulation of the curved domain, while keeping track of edges that
are actually curved. In a post-processing step we make sure that the curved triangulation
is valid, i.e. it does not contain any self-intersecting outer, curved or inner, linear edges.
The problem of generating linear triangulations for polygons or similar bounded domains
has been well studied in the past and multiple types of algorithms have been developed.
The predominant approaches in practice are iterative Delaunay construction algorithms.
A Delaunay triangulation is a triangulation where no point is located within the cir-
cumcircle of any triangle, which is called the Delaunay criterion. Such triangulations
maximize the minimum angle in the triangulation. Some noteworthy basics on how to
add a new point into an already existing Delaunay triangulation have been developed
independently by Bowyer [15] and Watson [134] and are nowadays known as the Bowyer-
Watson-algorithm. Lawson layed down the fundamentals to describe algorithms that allow
to transform non-Delaunay triangulations into Delaunay triangulations by performing sim-
ple flips [79]. Sloan combined those ideas and developed a fast algorithm to compute the
Delaunay triangulation of any input point-set [125]. Algorithms which do not only trian-
gulate a given point-set, but ensure that edges from the input polygons are represented
within the set of edges of the triangulation can mainly be divided into two groups: con-
forming triangulations where the Delaunay criterion is fulfilled everywhere and constrained
triangulations that allow the Delaunay criterion to be violated locally at input edges.
Conforming methods make sure that all input edges are represented in the triangulation
by inserting additional points and utilize the Delaunay criterion itself to make sure all
required edges are present [121]. One benefit of those methods is that Delaunay refinement
algorithms (like Chew’s second algorithm [21] or Ruppert’s algorithm [100]) to improve the
quality of the resulting triangles often require that all triangles are Delaunay and thus
they can be applied easily on conforming triangulations.
On the other hand, the benefit of constrained methods is that no additional points need to
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Figure 4.5: Meshes for a domain with one curved edge (dotted).
Left: Generated by an a posteriori meshing method potentially all edges in the mesh
are curved and thus all cells have to be higher order curved triangles.
Right: Generated by a direct mapping method only the edges belonging to the curved
input polygon are curved. Invalid triangles can arise where a curved input edge
intersects an inner edge.

be inserted into the triangulation, thus they usually result in triangulations with a lower
number of final triangles. The main idea behind constrained triangulations is to first
create a Delaunay triangulation of only the input points. In the next step all constrained
edges are inserted. For each constraint we need to find all triangles that are intersected
by them. Those triangles are first removed from the triangulation and the resulting cavity
is split along the constrained edge to be inserted into two sub-polygons that then need to
be re-triangulated [27]. After that step the inserted edge might not fullfil the Delaunay
criterion so that it needs to be flagged to make sure it will not be flipped in any subsequent
insertion steps. There are different approaches on how to re-triangulate the cavity during
the edge insertion. Some possibilities are given in [122, 132] where the latter has been
implemented for this thesis.
For curved mesh generation techniques one of the main application fields is to generate
higher order meshes for finite element methods, so that good convergence rates of an hp-
FEM can be attained on curved geometries [6]. Some of the most common methods to
generate higher order meshes for the finite element analysis start with a linear mesh and
then deform the cells by increasing the degree of the triangles via solving various physical
equations and are called a posteriori methods. Common methods to achieve this are
by solving a linear elastic equation [2], non-linear elastic equations [136] or the Winslow
equation [41,72]. All these methods have in common that the deformation is done on the
hole body, thus curved triangles will not only be present at the boundary, but throughout
the triangulation. Additionally since the curving is represented by polynomial higher
order finite elements, the original curved boundaries of the input geometries are usually
still approximated only and especially non-polynomial boundaries like circles or ellipsis
cannot be represented exactly. A benefit of those methods is that due to the deformation
of not only the edges on the surface of the original geometry, but all inner edges as well,
invalid triangles where a curved surface edge intersects one of the inner edges (as depicted
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p0
p1

p2

p3

p4

Figure 4.6: Points to be added into a local triangulation for the intersection of the curved
domain Ω (gray) and an integration domain Dm

i (green). The points p0, p1 and p4
are endpoints of the segments belonging to ∂Dm

i and are of category 1. The point p3
is an extrema of a curve belonging to ∂Ω and is of category 1. as well. The point p2
is an inflection point of a curve belonging to ∂Ω and is of category 2.

on the right in Figure 4.5) do usually not arise.
Direct mapping methods start with a linear mesh as well but then create higher order
elements only at the boundary by applying an analytical map [29, 44, 58]. While many
of these methods still only use polynomial approximations to boundaries described by
rational functions, a method to keep the original NURBS curves and surfaces for the
geometry approximation was introduced in [118]. Since direct methods only use curved
edges directly at the original curved surface of the geometry, they all have to deal with
curved edges intersecting inner edges of the triangulation as depicted in figure 4.5.
The method presented here falls into the category of direct mapping methods as well.
We start with a linear triangulation via an iterative constrained Delaunay triangulation.
An algorithm that is particularly easy to implement and showed sufficient performance
for our use cases is the one presented by Anglada [132]. Furthermore, data-structures to
represent the triangulation similar to the ones used by CGAL and described by Boissonnat
et al. [14] have been used. To locate the triangle which contains a point to be inserted, we
implemented a line-walk algorithm according to Devillers et al. [28]. To ensure consistent
results of geometric predicates with floating-point arithmetic, we implemented adaptive
floating-point predicates as shown in the well-known paper of Shewchuk [120].

4.2.1 Input point-set

First we need to specify the input point-set to be used when constructing the initial linear
triangulation. To this end, we add the following points (compare Figure 4.6):

1. Endpoints of bi-monotone curve parts, i.e. the curve’s extrema in x and y direction
and kinks.

2. Points where the sign of the curvature changes, i.e. the curve’s inflection points.

3. Points where two consecutive input curves are connected.
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Adding points from the category 1. gives us the guarantee that each curve that connects
two points from the triangulation is smooth and bi-monotone. Additionally adding the
points of category 2. makes sure that all those curve parts have constant sign curvature
as well. The properties of bi-monotonicity and constant sign curvature will be important
later on when we replace the initial linear edges with their original curved representation.
The points of category 3. are not actually necessary if two consecutive curve parts are
connected smoothly, i.e. they are not at kinks and do not additionally fall into category 1.
We add them nevertheless since this way each edge in the triangulation will only belong to
a single curve of the input geometry. This property makes it easier if we need to evaluate
integrals on a specific input curve only (e.g. to apply local boundary conditions on that
input curve).
If we consider that we want to triangulate the intersection of our initial input geometry
and an axis-aligned bounding box we can note the following: The points from category
1. are the split points that we computed for the initial monotone decomposition of the
input curves, thus they are readily available and do not need to be recomputed for the
curve parts belonging to the input geometry. Since the other curves that are parts of the
axis-aligned bounding box are always straight lines, they do not have any extrema and
their curvature is zero, so we do only need to take their endpoints into account.
The only points that are missing are the inflection points where the sign of the curvature
of a curve changes. The signed curvature of a plane curve C is defined as

κ(u) = C ′(u)×C ′′(u)
∥C ′(u)∥3 = det (C ′(u),C ′′(u))

∥C ′(u)∥3 . (4.11)

If we do only consider intervals u ∈ (a, b) for which the curve is bi-monotone, (4.11) is
always defined since we have split the curve at locations where C ′(u)x = 0 and C ′(u)y = 0
and hence ∥C ′(u)∥ ̸= 0 for u ∈ (a, b) holds. Since the denominator is always positive for
u ∈ (a, b) we need to be concerned with the roots of the numerator only and hence we
need to find all ũ where

C ′(ũ)×C ′′(ũ) = C ′(ũ)xC
′′(ũ)y − C ′′(ũ)xC

′(ũ)y = 0 (4.12)

holds. For non-rational curves (4.12) is a polynomial of degree 2p−3. For rational curves,
in contrast to the monotone decomposition that we have presented earlier, we are now
additionally concerned with the second derivatives C ′′. To this end, we first introduce an
alternative representation for the hodograph of a rational Bézier curve compared to (4.6).
Kim et. al. introduced a closed form for the hodograph in [69] such that the hodograph
itself is another rational Bézier curve of degree 2p that is given by

C ′(u) =
∑2p

i=0Bi,2p(u)w̄iP̄i∑2p
i=0Bi,2p(u)w̄i

(4.13)

with the weights given by

w̄i =
p∑

j=0
wi−jwjcp,p,i−j,j (4.14)
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with

cn,m,i,j =


(n

i)(m
j )

(n+m
i+j ) if 0 ≤ i ≤ n and 0 ≤ j ≤ m

0 otherwise

and the control points given by

P̄i =
( p∑

j=0

(
jwi−j(wj(Pj − Pi−j)− wj−1(Pj−1 − Pi−j))

+ (p− j)wi−j(wj+1(Pj+1 − Pi−j)− wj(Pj − Pi−j))
)
cp,p,i−j,j

)
/w̄i.

(4.15)

While in this representation the numerator of (4.13) is of degree 2p instead of 2p − 2
as given by (4.6), the benefit is that it can be applied recursively to derive higher order
derivatives of a rational curve. Hence, the second derivative is given by

C ′′(u) =
∑4p

i=0Bi,4p(u) ¯̄wi
¯̄Pi∑4p

i=0Bi,4p(u) ¯̄wi

where ¯̄wi and ¯̄Pi can be obtained by applying (4.14) and (4.15) to the weights w̄i and
control points P̄i of the first derivative. Introducing the short hand notation

C ′(u) =
∑2p

i=0Bi,2p(u)w̄iP̄i∑2p
i=0Bi,2p(u)w̄i

= N̄(u)
D̄(u)

and C ′′(u) =
∑4p

i=0Bi,4p(u) ¯̄wi
¯̄Pi∑4p

i=0Bi,4p(u) ¯̄wi

=
¯̄N(u)
¯̄D(u)

we can now rewrite (4.12) as

C ′(ũ)×C ′′(ũ) = N̄(u)x
¯̄N(u)y − ¯̄N(u)xN̄(u)y

D̄(u) ¯̄D(u)
. (4.16)

Since the denominator of that expression is the product of two positive functions D̄(u) and
¯̄D(u), it is positive as well and to find the roots of (4.16) we need to find the roots of the
numerator only. By applying arithmetic multiplication and addition for polynomials given
in Bernstein basis from [37] on the numerator of (4.16) we can further rewrite the root
finding problem to find the roots of a non-rational scalar valued polynomial in Bernstein
form

N̄(u)x
¯̄N(u)y − ¯̄N(u)xN̄(u)y =

6p∑
i=0

Bi,6p(u)ci = 0 (4.17)

with the coefficients

ci =
min(2p,i)∑

j=max(0,i−4p)

(2p
j

)( 4p
i−j

)(6p
i

) (
w̄j(P̄j)x ¯̄wi−j( ¯̄Pi−j)y − ¯̄wi−j( ¯̄Pi−j)xw̄j(P̄j)y

)
.

Note that the final equation (4.17) for rational curves is of the same structure as the original
equation (4.12) for non-rational curves. Hence, the transformation of the equation into a



82 CHAPTER 4. EXACT GEOMETRY & INTEGRATION (2D)

p1

p2
p3 p4 p5

p6

p7

p8

p9

p10

p1

p2
p3 p4 p5

p6

p7

p8

p9

p10

p11

Figure 4.7: Steps to create a constrained triangulation of a boomerang domain.
Left: The initial triangulation has been generated from the input points {p1, . . . ,p10}
and the segments {(p1,p2), (p2,p3), . . . , (p9,p10)} have been inserted as constrained
edges (solid red) into the triangulation. The next constraint (p10,p1) (dotted red)
cannot be added since it intersects the already added constraints (p3,p4) and (p7,p8).
Right: The curve belonging to the edge (p10,p1) has been refined. To this end a new
point p11 has been added to the triangulation. The new constraints (p10,p11) and
(p11,p1) have been added without intersecting any other already added constraint.

single, scalar valued polynomial in Bernstein basis can also be applied to (4.12) for non-
rational curves and we end up with a root finding problem for polynomials in Bernstein
form that are of degree 2p− 3 for non-rational curves and 6p for rational curves.2 These
roots can be found by the same polynomial real root isolation algorithm that has already
been used for the monotone decomposition.
Note that the inflection points, just like the extrema required for the monotone decomposi-
tion, depend on Ω only and are independent of the integration domains Dm

i we intersected
Ω with. Hence, the inflection points need to be computed only once in the beginning for
Ω and can be reused for the triangulations of any domain Ω ∩ Dm

i .

4.2.2 Initial linear triangulation

Now that we have specified all required points we first create an initial Delaunay triangu-
lation of that point set and then insert constrained edges between all consecutive points
that belong to an input curved edge. Since the constrained edges are straight and thus
do only approximate the original curves it can happen that those constraints intersect,
even though the original curves do not intersect (compare Figure 4.7). We resolve these
cases by a simple subdivision algorithm. Consider a curve C1, u 7→ C1(u) and two points
pa := C1(ua) and pb := C1(ub) along that curve that are part of the initial triangulation.

2The actual degree of the polynomial for rational curves is most likely of a slightly lower degree, since
we used an equation where the numerator in the rational hodograph was of degree 2p, but it is known that
the degree of that numerator is actually 2p − 2 only.
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Consider a second curve C2, v 7→ C2(v) with the points qa := C2(va) and qb := C2(vb).
Assuming that the edge (pa,pb) has already been added to the triangulation and the
insertion of the edge (qa, qb) fails since it intersects the edge (pa,pb). We then add a
new point qc := C2(va+vb

2 ) into the triangulation and try to add the constrained edges
(qa, qc) and (qc, qb). If this fails as well we remove the constrained edge (pa,pb) from the
triangulation, add another point pc := C1(ua+ub

2 ) along the first curve C1 and add the
constrained edges (pa,pc) and (pc,pb) before trying to add the edges (qa, qc) and (qc, qb)
again. This subdivision is then applied recursively whenever the insertion of a constrained
edge fails, until all constrained edges have been added without any intersection problems.
Using our restriction that the input curves Ci are not allowed to intersect, this algorithm
has to terminate at some point, since the approximations of the curves C1 and C2 by the
points p and q will convergence towards the original intersection-free curves. But as we
have learned in Chapter 3, curves in STEP files are often only approximations to actual
intersection curves of two faces. Hence, in practice it can still happen that two input
curves do actually intersect. It is easy to tolerate such intersections for us: The splitting
algorithm to resolve self-intersections presented above can be interpreted as a bisection
algorithm to find those invalid intersection points. Hence, we simply introduce a check
that tests for min{|pa − pc|, |pb − pc|} < ϵ after inserting the point pc in-between pa and
pb (an similarly for qc, qa and qb) with some ϵ dependent on the machine precision. If this
check is hit, this means that we have reached a point where pc is barely distinguishable
from pa and pb. Hence pc should be a good approximation of the intersection point of
the curves C1 and C2. Therefore we insert that point into the triangulation and add
constrained edges (pa,pc), (pc,pb), (qa,pc) and (pc, qb) and stop the recursive subdivision
after that point.3

4.2.3 Curving of triangles at the boundary

To create the final curved triangulation we have to replace all constrained edges in the
linear triangulation with the input curve parts that they belong to. As with all direct map-
ping methods it can now happen that those curved edges intersect inner, non-constrained
edges of the triangulation or a triangle gets inverted (compare Figure 4.8). To resolve
these issues we use the property that all curves belonging to a single constrained edge are
bi-monotone and have constant sign curvature which is guaranteed by the initial selection
of the points we inserted into the triangulation. To this end, we first formally define a
curve with constant sign curvature, similar to Definition 4.1 for monotone curves. We
then show that given a curve C that is bi-monotone and has constant sign curvature, we
can find a tight bounding triangle TC such that the complete curve is contained in that
triangle. Hence, for any triangle (pa,pb,pc) of the curved triangulation where the segment
(pa,pb) has to be replaced by the curve C we can quickly test whether the other segments
(pb,pc) or (pc,pa) intersect the bounding triangle TC to detect invalid self-intersections

3Note that this is different (and in fact easier) than finding all intersection points of all involved curves
Ci beforehand, since the algorithm presented here is not guaranteed to actually find all intersection points.
For two intersecting curves, the initial linear constrained edges could actually not intersect at all, and
hence the recursive sub-division would never be initiated.
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a.)

pa

pb

pc

b.)

pa

pb

pc

c.)

pa

pb

pc

Figure 4.8: A triangle (pa,pb,pc) with a single curved edge (blue) that is bi-monotone
and has constant sign curvature. Case a.) is a valid configuration, where the volume
of the curved triangle is well defined. Cases b.) and c.) are invalid. Either the curved
edge intersects an inner, non-curved edge (case b.)) or the point pc is underneath the
curved edge (case c.)) and the whole triangle is inverted.

and inversions. We finally show how such cases can be resolved after they have been
detected robustly.

Definition 4.2 (Constant sign curvature). Let C : P → R2 with P := [ua, ub] ⊂ R be
the parametrization of a two-dimensional curve with C ∈ C0(P). Then the curve is said
to have constant sign curvature if

κ(u) ≥ 0 ∀u ∈ [ua, ub] or
κ(u) ≤ 0 ∀u ∈ [ua, ub]

(4.18)

holds.

Additionally the direction of the tangent along a curve can be represented by a function
ϕ(u) : [ua, ub] → R that describes the angle between the tangent and the x-axis and is
denoted the tangential angle, defined by

C ′(u)
∥C ′(u)∥ =

(
cosϕ(u)
sinϕ(u)

)
. (4.19)

The tangential angle and the curvature are related by ϕ′(u) = ∥C ′(u)∥κ(u) [48, p. 20] and
hence it is

ϕ(u) =
∫ u

ua

∥C ′(τ)∥κ(τ) dτ + ϕ0

with ϕ0 = ϕ(ua) being the angle of the initial tangent C′(ua)
∥C′(ua)∥ . While ϕ(u) is always the

angle relative to the x-axis, we can shift that function by the initial angle at ua to get

ϕ̃(u) := ϕ(u)− ϕ0 =
∫ u

ua

∥C ′(τ)∥κ(τ) dτ. (4.20)

where ϕ̃(u) describes the change of the tangential angle (compare Figure 4.9).
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x
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C(ua)

C(ub)

ϕ(ua)
ϕ(ub)

ϕ̃(ub)

Figure 4.9: A curve C with the tangential angles ϕ(ua) and ϕ(ub) as well as the final
change of the tangential angle ϕ̃(ub).

Lemma 4.4. Let C : [ua, ub] → R2, u 7→ C(u) be a curve that is strictly bi-monotone
according to Definition 4.1. Then the tangential angle ϕ(u) cannot change by more than
π
2 , i.e.

|ϕ̃(u)| ≤ π

2
holds for all u ∈ [ua, ub].

Proof. Let us first note that due to the fact that the curve is strictly bi-monontone we
know that

C ′(u)m ̸= 0
for all u ∈ (ua, ub) and all m ∈ {1, 2}. Using (4.19) we can hence state that

cosϕ(u) ̸= 0 and sinϕ(u) ̸= 0 (4.21)

must hold for all u ∈ (ua, ub). Using the fact that cosx and sin x have a root at x = kπ+ π
2

and x = kπ respectively for all k ∈ Z, so either of those is zero at any x = k π
2 . Additionally

since C ′(u) is continuous for u ∈ [ua, ub] the tangential angle ϕ(u) given by (4.19) is
continuous as well. To fulfill (4.21) it then follows that

∃k̂ s.t. ∀u ∈ [ua, ub], ϕ(u) ∈ [k̂ π2 , (k̂ + 1)π2 ]

holds. Given that choice for k̂ and due to ϕ(u) = ϕ(ua) + ϕ̃(u) we can further state that

k̂
π

2 ≤ ϕ(ua) + ϕ̃(u) ≤ (k̂ + 1)π2 ∀u ∈ [ua, ub]

must hold and thus it must finally hold that

|ϕ̃(u)| ≤ π

2 ∀u ∈ [ua, ub].
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In the following lemma we need to distinguish whether a point is to the left or to the right
of a given oriented line segment. Let us hence define the well-known 2D-orientation test

γ(a, b,x) :=
∣∣∣∣∣a1 − x1 a2 − x2
b1 − x1 b2 − x2

∣∣∣∣∣ (4.22)

that returns a negative value if the point x is located to the left of the directed line (a, b),
a positive value if it is located to the right and zero if a, b and x all lie on the same line.

Lemma 4.5. Let C : [ua, ub] → R2, u 7→ C(u) be a curve that is strictly bi-monotone
according to Definition 4.1 and has constant sign curvature according to Definition 4.2.
Let pa := C(ua) be the point where the curve starts and qa := pa + C ′(ua) the point at
the end of the tangent vector applied to pa. Then a curve that turns left at at least one
point, lies completely left to its initial tangent vector and a curve that turns right once,
lies completely right to its initial tangent vector, i.e. the implications

∃ũ ∈ [ua, ub] s.t. κ(ũ) > 0 =⇒ γ(pa, qa,C(u)) < 0 ∀u ∈ (ua, ub] and
∃ũ ∈ [ua, ub] s.t. κ(ũ) < 0 =⇒ γ(pa, qa,C(u)) > 0 ∀u ∈ (ua, ub]

hold.

Proof. Let us first consider the case where the curve turns right at at least one point, so
we are looking at the case where

∃ũ ∈ [ua, ub] s.t. κ(ũ) < 0.

Since the curve has constant sign curvature this is equivalent to

κ(u) ≤ 0 ∀u ∈ [ua, ub]

and thus the curve can only turn right everywhere. We now show that such a curve cannot
reach any point to the left of the segment (pa, qa) when it is additionally bi-monotone.
Since C is differentiable for u ∈ [ua, ub] we can express any point along the curve by

C(u) = C(ua) +
∫ u

ua

C ′(τ) dτ. (4.23)

This shows that the curve can only progress in tangential direction and thus a necessary
condition to reach any point to the left of the segment (pa, qa) is that there is a tangent
vector C ′(u) that points to the left of (pa, qa). By introducing (4.19) and (4.20) into
(4.23), it can be reformulated to

C(u) = C(ua) +
∫ u

ua

∥C ′(τ)∥
(

cosϕ(τ)
sinϕ(τ)

)
dτ

= C(ua) +
∫ u

ua

∥C ′(τ)∥
(

cos(ϕ0 + ϕ̃(τ))
sin(ϕ0 + ϕ̃(τ))

)
dτ.
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pa
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C(u=)
C(u−)

C(ũ)

ϕ̃∗

ϕ̃(u=)

Figure 4.10: A bi-monotone curve C between two points pa and pb where there is a point
C(u+) that is to the left of (pa,pb) and a point C(u−) that is to the right of (pa,pb)
cannot have constant sign curvature.

Hence, to get a tangent vector that points to the left of (pa, qa) we need that there exists
a û ∈ [ua, ub] such that ϕ̃(û) ∈ (2kπ, 2kπ+ π) for any k ∈ Z. Since ϕ̃(u) is continuous and
ϕ̃(ua) = 0 it is sufficient to consider the interval for k = 0, i.e. (0, π), in the following. Let
us recall the definition of ϕ̃(u) from (4.20)

ϕ̃(u) :=
∫ u

ua

∥C ′(τ)∥κ(τ) dτ.

We can clearly see that ϕ̃(u) is a monotone decreasing function when κ(u) ≤ 0 and due to
Lemma 4.4 we can then state that

−π2 ≤ ϕ̃(u) ≤ 0

holds for all u ∈ [ua, ub] which in particular means there is no û ∈ [ua, ub] such that
ϕ̃(û) ∈ (0, π) and hence we cannot reach any point to the left of the segment (pa, qa).
The case were ∃ũ ∈ [ua, ub] s.t. κ(ũ) > 0 follows by symmetry.

Lemma 4.6. Let C : [ua, ub]→ R2, u 7→ C(u) be a curve between the points pa := C(ua)
and pb := C(ub) that is bi-monotone according to Definition 4.1 and has constant sign
curvature according to Definition 4.2. Let qa := pa + C ′(ua) be the point at the end of the
tangent vector applied to pa. Then, if qa is to the left of (pa,pb), the complete curve is to
the left of (pa,pb) and if qa is to the right of (pa,pb), the complete curve is to the right of
(pa,pb), i.e. the implications

γ(pa,pb, qa) < 0 =⇒ γ(pa,pb,C(u)) < 0 ∀u ∈ (ua, ub) and
γ(pa,pb, qa) > 0 =⇒ γ(pa,pb,C(u)) > 0 ∀u ∈ (ua, ub)

hold.

Proof. A graphical representation that corresponds to the notation introduced in the fol-
lowing proof is depicted in Figure 4.10. Let us first consider the case where the initial
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C′(ua)

−C′(ub)

pa

pb

χ

TC

Figure 4.11: A curve C that is bi-monotone and has constant sign curvature between the
points pa := C(ua) and pb := C(ub) is contained in the triangle TC defined by the
points (pa,pb,χ) where χ is the point at which the extensions of the tangent vectors
C ′(ua) and −C ′(ub) intersect.

tangent C ′(ua) points to the left of (pa,pb), i.e. γ(pa,pb, qa) < 0. This is equal to the
statement that the point pb is to the right of (pa, qa) and by an argumentation along the
lines of the proof of Lemma 4.5 it is

−π2 ≤ ϕ̃(u) ≤ 0 ∀u ∈ [ua, ub]

since we need at least one tangent vector that points to the right of (pa, qa) to reach the
point pb. Then, let ϕ̃∗ ∈ (−π, 0) be the angle between the vectors C ′(ua) and pb − pa.
Now, due to the initial tangent C ′(ua) pointing to the left of (pa,pb) there is at least
one u− such that its point on the curve C(u−) is to the left of (pa,pb), i.e. where
γ(pa,pb,C(u−)) < 0 holds. Let us then additionally assume that there is a u+ where the
corresponding point C(u+) is to the right, i.e. where γ(pa,pb,C(u+)) > 0 holds. Due
to the curve being continuous, the intermediate value theorem states that there has to be
at least one u= ∈ (u−, u+) where the point C(u=) is on the segment (pa,pb), i.e. where
γ(pa,pb,C(u=)) = 0 holds and to be able to actually reach the point C(u+) from such an
C(u=), we need the tangent C ′(u=) to point to the right of (pa,pb), i.e. ϕ̃(u=) < ϕ̃∗ holds
for the tangential angle at u=. On the other hand, to be able to reach the point pb from
C(u+) we need that there is a ũ ∈ [u+, ub) such that ϕ̃(ũ) > ϕ̃∗. But since u= < u+ ≤ ũ,
the statements ϕ̃(u=) < ϕ̃∗ and ϕ̃(ũ) > ϕ̃∗ contradict that the change of the tangential
angle ϕ̃ according to (4.20) is monotone for curves with constant sign curvature. Hence,
the assumption that there is a point C(u+) that is to the right of (pa,pb) does not hold.
The case where γ(pa,pb, qa) > 0 follows by symmetry.

Theorem 4.1. Let C : [ua, ub]→ R2, u 7→ C(u) be a curve between the points pa := C(ua)
and pb := C(ub) that is bi-monotone according to Definition 4.1 and has constant sign
curvature according to Definition 4.2. Let χ be the intersection point of the infinitely
extended tangent vectors at pa and pb, i.e. where

χ := pa + αC ′(ua) = pb − βC ′(ua)
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Figure 4.12: A triangle (pa,pb,pc). The constrained edge (pa,pb) (dashed) has been
replaced by the curve C (blue) that is bi-monotone and has constant sign curvature.
The space around the point pa has been divided into four sectors NE, NW, SE and
SW. The point pb is located in the NE sector relative to pa.
Left: The point pc is located in the NW sector relative to pa and thus cannot intersect
the curved edge.
Center: The point pc is located in the NE sector relative to pa but does still not
intersect the curved edge.
Right: The point pc is located in the NE sector relative to pa and does intersect the
curved edge.

holds for some α, β ∈ [0,∞). Then the complete curve C lies within the closed triangle
TC formed by the points (pa,pb,χ) (compare Figure 4.11).

Proof. In this proof, we show that the curve C is bounded by the segments (pa,χ) and
(pb,χ) defined by the tangents at its endpoints. Due to Lemma 4.6 it is additionally
bounded by (pa,pb) and hence it lies within the triangle (pa,pb,χ).
Let us first assume that pb is to the right of the segment (pa,χ). We did already state in
the proof of Lemma 4.5 that for a curve to reach a point that is to the right of (pa, qa)
with qa := pa + C ′(ua) and hence right of (pa,χ), it needs to turn right at least once, so
there has to exist at least one ũ ∈ [ua, ub] such that κ(ũ) < 0. Hence, from Lemma 4.5 we
know that the complete curve has to be right of (pa,χ). Let us then consider the reversed
curve CR, t 7→ CR(t) with t ∈ [−ub,−ua] and t = −u such that CR(t) = C(u). Since
that reversed curve starts at pb and ends in pa and with C ′

R(−ub) = −C ′(ub) we can
analogously apply Lemma 4.5 to state that the complete curve has to be left of (pb,χ).
The case where we initially assume that pb is to the left of the segment (pa,χ) follows by
symmetry.

Let us now discuss how we can use Theorem 4.1 to implement a fast test whether a
given triangle (pa,pb,pc) with one or more curved edges is self-intersecting or inverted as
depicted in Figure 4.8. Let us assume that the edge (pa,pb) of the triangle needs to be
replaced by the curve C. Then we need to check whether any of the segments (pa,pc) or
(pb,pc) does intersect the curve or whether pc is located between (pa,pb) and the curve.
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A naive implementation would be to compute the intersection point χ of the tangents of
C at pa and pb to form the triangle TC as given in Figure 4.11. Then we can test whether
any of the segments (pa,pc) or (pb,pc) intersects that triangle. Note that in the case that
pc lies within the triangle TC , either (pa,pc) or (pb,pc) intersect the curve, or pc is located
between the curve and (pa,pb) and hence the triangle is inverted. We present a slightly
simpler solution that does not require to compute χ and avoids a full segment-triangle
intersection test.
We first assume that we are looking at a curve C with u ∈ [ua, ub] between the points
pa = C(ua), pb = C(ub) and we want to check whether a segment (pa,pc) intersects the
curve C. To this end, we define a classification function

σ(a, b) :=


NE if b1 ≥ a1 and b2 ≥ a2

NW if b1 < a1 and b2 ≥ a2

SE if b1 ≥ a1 and b2 < a2

SW if b1 < a1 and b2 < a2

that determines in which sector (NE, NW, SE or SW) a point b is located relative to a
point a. Due to Lemma 4.1 and Remark 4.2 we do know that the complete curve is in the
axis-aligned bounding box of pa and pb, which means it is completely within one sector
relative to pa and thus

σ(pa,C(u)) = σ(pa,pb)

holds for all u ∈ (ua, ub]. Hence, a necessary condition for the curve to have an intersection
with the edge (pa,pc) or for pc to be within TC is that

σ(pa,pc) = σ(pa,pb) (4.24)

holds (compare Figure 4.12). Equation (4.24) gives us a first fast test to dismiss cases
where pc is located relative to pa such that an invalid case is impossible. We are now
left to distinguish the cases where pc and pb are located in the same sector relative to pa.
To this end we want to check whether the point pc is in-between the edges (pa,pb) and
(pa, qa). If this is the case the segment (pa,pc) does definitely intersect TC and hence we
have detected an invalid case (compare Figure 4.13). We employ the orientation test from
(4.22) with which

γ(pa,pb,pc) · γ(pa, qa,pc) < 0 (4.25)

returns whether the point pc is in-between of the segments (pa,pb) and (pa, qa) and thus
intersects TC . We can now additionally check the other end of the curve by swapping pa

and pb and use qb = pb −C ′(ub) instead of qa in (4.24) and (4.25) and so we are finally
able to detect all invalid triangles with a curved edge.
We are now left to resolve all those invalid triangles. Given the curve C between pa

and pb that is part of an invalid, curved triangle. We first remove the constrained edge
(pa,pb) from the triangulation. Then we insert a new point q := C(ũ) at the center of the
parametrization ũ = ua+ub

2 into the triangulation and insert the edges (pa, q) and (q,pb)
as new constraints (compare Figure 4.14). Note that any of those two new constraints can
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pc

Figure 4.13: A triangle (pa,pb,pc). The constrained edge (pa,pb) (dashed) has been
replaced by the curve C (blue) that is bi-monotone and has constant sign curvature.
The NE sector around the point pa has been divided into three smaller sectors. The
space between the edge (pa,pb) and the curve’s tangent vector C ′(ua) (red) and the
remaining space (green) between the x-axis and the edge (pa,pb) and the tangent
vector and the y-axis.
Upper: The point pc is located in the green zones, either left of the tangent vector
(left) or right of the edge (pa,pb) (right).
Lower: The point pc is located in the red zone, either above the curve C which results
in an intersection with the edge (pa,pc) (left) or below the curve where the whole
triangle is inverted (right).

intersect any other already added constraint, which will be resolved by adding even more
points along either the curve C or the curves belonging to the other constraints, just like
it was done when creating the initial constrained triangulation. When we are done and we
have a valid linear constrained triangulation, we check all curve parts that belong to newly
added constrained edges for an invalid triangle by (4.24) and (4.25) and continue to split
the curves until all triangles are valid. Even though it seems very likely, it is still open
to prove that this algorithm will terminate at some point. Since we cannot guarantee the
termination yet, we stop trying to curve an edge after 50 subdivisions and then just keep
linear edges for the remaining curve parts, that are still next to invalid triangles. Note
that after 50 subdivisions the diameter of the parameter range [ua, ub] of any remaining
curve part is 1

250 ≈ 9 · 10−16 of the original curve’s parameter range which is close to the
epsilon of a double precision floating-point number. In practice we have never encountered
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pc
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pa
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Figure 4.14: Left: Two triangles (pa,pb,pc) and (pa,pb, pd) with the edge (pa,pb) being
replaced by the curve C (blue) that intersects the inner edge (pb,pc).
Right: A new point q has been inserted along the curve C. After the insertion the
edges (pa, q) and (q,pb) have been added as constraints and the Delaunay property
has been restored. The self-intersection is resolved.

any case where more than 3 iterations were necessary to resolve all invalid triangles.

4.3 Quadrature by Transfinite Interpolation

Now that we can compute the intersections of the integration domains Dm
i with the sim-

ulation domain Ω and decompose the resulting domains into potentially curved triangles
T n

i , we are left to find quadrature rules for those triangles. Let us drop the patch index
i and the specific triangle index n in the following. Given a transformation Ψ : R → T
that transforms any point ξ from some reference domain R ⊂ R2 into the target triangle
T , we can carry out the integration of any function f : T → R, x 7→ f(x) in the reference
domain R by ∫

T
f(x) dx =

∫
R
f
(
Ψ(ξ)

)
· | det JΨ(ξ)| dξ (4.26)

where JΨ is the Jacobian of the transformation Ψ. If we then choose a reference domain
R, where we have a known quadrature rule Qn

R := {(ξi, wi)}ni=1 consisting of n quadrature
points ξi ∈ R and weights wi ∈ R we can approximate the integral by∫

T
f(x) dx ≈

n∑
i=1

f
(
Ψ(ξi)

)
· wi|det JΨ(ξi)|. (4.27)

Assuming that the target function f as well as the transformation Ψ can be described
by polynomials, we can usually find an n-point quadrature rule Qn

R that yields an exact
result and hence (4.27) becomes an actual equality. To this end, we need a quadrature
rule that is capable of integrating polynomials up to a degree

p̄ := deg
(
f
(
Ψ(ξ)

)
· | det JΨ(ξ)|

)
= deg(f) deg(Ψ) + deg(det JΨ)

(4.28)
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Figure 4.15: The transformation Ψ transforms points from ξ ∈ R described by(
(0, 0), (1, 0), (0, 1)

)
to a curved triangle (p1,p2,p3) with the curved edges C1, C2

and C3.

exactly on the reference domain R.
In our setting T is a triangle described by the points p1, p2 and p3 with potentially curved
edges C1, C2 and C3. Hence a natural choice for the reference domain is a simple, linear
unit triangle described by the points (0, 0), (1, 0) and (0, 1) (compare Figure 4.15). There
are many sources for quadrature rules defined over this (or similar) linear triangles. E.g.
rules to integrate polynomials up to degree 50 with only positive weights wi and where all
quadrature points ξi are in the interior of the reference triangle can be found in [135]. We
construct the transformation Ψ by a method denoted as transfinite interpolation which
was introduced in [46] and is highly related to the well-known Coons patches [23]. The
specific transformation for curved triangles given below was introduced in [20] and [93]
and has been used to generate quadrature point in the PUM in [26]. We start by defining
the barycentric coordinates of a point ξ in the reference triangle by

λ(ξ) = (λ1, λ2, λ3)T := (1− ξ1 − ξ2, ξ1, ξ2)T .

Then, let Ci : [ui,a, ui,b]→ R2 with i ∈ {1, 2, 3} and Ci(ui,a) = p1, Ci(ui,b) = p(i mod 3)+1
be the parametrized curves that represent the i-th edges of T . We first introduce the
mappings gi : [0, 1]→ [ui,a, ui,b], û 7→ ui,a + (ui,b−ui,a)û that allow us to define the curves
Ĉi := Ci ◦ gi which can be evaluated over the unit interval [0, 1]. Then the transfinite
interpolation from the reference triangle R to T is given by

ΨTFI(λ) := λ1(Ĉ1(λ2) + Ĉ3(1− λ3)− p1)
+λ2(Ĉ2(λ3) + Ĉ1(1− λ1)− p2)
+λ3(Ĉ3(λ1) + Ĉ2(1− λ2)− p3).

(4.29)

Assuming that all curves Ci are representable by polynomials we can introduce

pT := max{deg(C1),deg(C2),deg(C3)}
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Figure 4.16: Left: The transfinite interpolation ΨTFI is not a diffeomorphism, due to the
parametrization of the curve C2 being concentrated towards the point p3.
Right: The curve C2 has been reparameterized to be close to arc-length parametrized.
The “overspill” has been resolved.

as the highest polynomial degree of those curves. Using pT , the polynomial degree of the
transfinite interpolation and its Jacobian are given by

deg(ΨTFI) = pT + 1
deg(det JΨTFI) = pT .

(4.30)

By combining (4.28) and (4.30) we can state that to integrate a polynomial function f
over the curved triangle T exactly we need to employ a quadrature rule for polynomials
of degree

p̄TFI := deg(f)(pT + 1) + pT . (4.31)

Note that (4.31) gives an upper bound for the worst-case. E.g. we know that if all curves
Ci are actually just straight line segments, i.e. deg(Ci) = 1 for all i ∈ {1, 2, 3} and hence
pT = 1, it is sufficient to use a quadrature rule for polynomials of degree deg(f), but (4.31)
would suggest that we require a rule for polynomials of degree 2 deg(f) + 1. Additionally
(4.31) does only give a bound when all curves Ci are actually described by polynomials,
but the NURBS formulation allows Ci to be described by rational basis functions as well.
Simple tests indicated that if T consists of two straight edges and one curved edge that
describes the quarter of a circle, i.e. a rational NURBS curve, a quadrature rule for
polynomials of degree deg(f) + 19 was required to achieve an integration accuracy up to
machine precision.4 Nevertheless, in practice it is usually not required to integrate up to
machine precision accuracy and hence much lower quadrature rules can be employed.
Remark 4.3. For equation (4.26) to be valid, it is actually required that Ψ is a diffeomor-
phism. This does especially mean that Ψ needs to be invertible, i.e. det JΨ(ξ) ̸= 0 for all
ξ ∈ R needs to hold. While this is hard to proof in general, some of the most common
cases where a transformation ΨTFI as given in (4.29) is not invertible is when the curves
Ci do intersect or when they are “too wavy”. Both of those cases are mitigated in our

4Using IEEE double precision floating-point values.
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scenario. Intersections of two input curves Ci are forbidden by definition in the STEP
standard, and cases where that definition is violated are usually resolved as described in
Section 4.2.1 and hence the curves that end up in a single triangle do not intersect. Cases
where an input curve Ci is intersected by an internal edge of the triangulation or where a
curved edge inverts the whole triangle were the main topic throughout Section 4.2.3 and
are thus not present in the final integration cells. The “waviness” of the curved edges
is additionally restricted, since the change of the tangential angle is bounded by π

2 (see
Lemma 4.4) and the curve parts do have a constant sign curvature. To the best of our
knowledge the only case left where ΨTFI might be non-invertible is when any involved
curve is far away from being arc-length parametrized5 (compare the left of Figure 4.16).
These cases could be resolved by reparameterizing the curves to arc-length. Usually an
approximate arc-length parametrization is sufficient.6 One method to compute such a
parametrization is given in [133] and an application of that reparameterization to the in-
valid case depicted on the left of Figure 4.16 is shown on the right of the same figure. To
the best of our knowledge such extreme cases are very uncommon in practice and hence
we do not apply the reparameterization in any of our examples and no problems due to
the “overspill” phenomena have been observed in any of them. Note that even when the
reparameterization is to be applied, an approximate arc-length parametrization does only
need to be computed for all curves of the input geometry once in a pre-processing step
and can be reused for all curved triangles that include those curves.

4.4 Numerical Experiments

In this section we take a look at numerical examples to validate that the methods presented
in this chapter give the expected results. To this end, we are mainly concerned with the
approximation properties of the involved function spaces and the robustness of geometry
operations in general and the numerical integration in particular. We start by measuring
error norms as given in (2.4) and convergence rates as given in (2.5) against analytical
and numerical reference solutions. Then we continue to show that the approach presented
is performant, even when dealing with complicated geometries. Finally we conduct an
experiment on an industrial grade CAD geometry to show the robustness when confronted
with real-world geometries. During all experiments in this section we did employ the cover
post-processing step from Chapter 2 to guarantee linear independent function spaces V PU.

Example 4.1 (Curved half-circle domain). In this example we show that our PUM does
convergence with optimal rates to a smooth solution, even when we consider a non-linear
domain. To this end, we again consider the Helmholtz type of equation from (2.6) with
c = 1 and choose the right-hand side function such that the reference solution is given by
(2.7). But this time we use a domain Ω that has one curved edge. In particular we use a

5An arc-length parametrization of a curve is when moving a distance δu in the parametrization of the
curve is equal to moving the same distance along the curve in the world space.

6In general, it is impossible to give an exact arc-length parametrization by rational functions for real
rational curves other than the straight line [38].
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(0, 0)

R

Ω

Figure 4.17: Curved simulation domain where the right edge of a rectangle [−R, 0] ×
[−R,R] has been replaced by a half-circle around (0, 0) with radius R = 15.

Table 4.1: Relative errors e· and convergence rates ρ· for Example 4.1 (half-circle) using
a global polynomial degree p = 1

k dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 12 4 2.750 – 2.490 – 1.160 –
2 48 16 1.190 0.60 9.52−1 0.69 9.47−1 0.15
3 186 62 5.12−1 0.63 3.40−1 0.76 6.61−1 0.27
4 708 236 2.06−1 0.68 1.54−1 0.59 4.67−1 0.26
5 2,796 932 6.88−2 0.80 5.12−2 0.80 2.77−1 0.38
6 11,094 3,698 1.91−2 0.93 1.40−2 0.94 1.46−1 0.46
7 44,136 14,712 4.94−3 0.98 3.60−3 0.99 7.44−2 0.49
8 176,022 58,674 1.32−3 0.95 9.06−4 1.00 3.74−2 0.50
9 703,050 234,350 3.54−4 0.95 2.27−4 1.00 1.87−2 0.50
10 2,810,352 936,784 9.42−5 0.96 5.68−5 1.00 9.36−3 0.50
11 11,237,016 3,745,672 2.49−5 0.96 1.42−5 1.00 4.68−3 0.50
12 44,939,430 14,979,810 6.50−6 0.97 3.55−6 1.00 2.34−3 0.50

Table 4.2: Relative errors e· and convergence rates ρ· for Example 4.1 (half-circle) using
a global polynomial degree p = 3

k dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 40 4 1.870 – 1.180 – 1.010 –
2 160 16 3.81−1 1.15 3.53−1 0.87 6.01−1 0.37
3 620 62 5.10−2 1.49 3.79−2 1.65 1.50−1 1.02
4 2,360 236 4.48−3 1.82 2.90−3 1.92 1.99−2 1.51
5 9,320 932 3.61−4 1.83 2.23−4 1.87 2.50−3 1.51
6 36,980 3,698 2.38−5 1.97 1.49−5 1.96 3.13−4 1.51
7 147,120 14,712 1.52−6 1.99 9.48−7 2.00 3.91−5 1.50
8 586,740 58,674 9.57−8 2.00 5.96−8 2.00 4.90−6 1.50
9 2,343,500 234,350 5.99−9 2.00 3.73−9 2.00 6.12−7 1.50
10 9,367,840 936,784 3.72−10 2.01 2.33−10 2.00 7.65−8 1.50
11 37,456,720 3,745,672 1.70−10 0.56 1.69−11 1.89 9.57−9 1.50
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Table 4.3: Relative errors e· and convergence rates ρ· for Example 4.1 (half-circle) using
a global polynomial degree p = 5

k dof N eL∞ ρL∞ eL2 ρL2 eH1 ρH1

1 84 4 9.04−1 – 7.57−1 – 8.82−1 –
2 336 16 8.22−2 1.73 7.71−2 1.65 1.91−1 1.10
3 1,302 62 2.16−3 2.69 1.89−3 2.74 7.85−3 2.36
4 4,956 236 5.83−5 2.70 3.76−5 2.93 3.32−4 2.37
5 19,572 932 1.43−6 2.70 6.00−7 3.01 1.16−5 2.44
6 77,658 3,698 1.81−8 3.17 9.42−9 3.01 3.76−7 2.49
7 308,952 14,712 3.34−10 2.89 1.48−10 3.01 1.19−8 2.50
8 1,232,154 58,674 2.94−11 1.76 2.32−12 3.00 3.74−10 2.50
9 4,921,350 234,350 5.42−12 1.22 1.39−12 0.37 1.46−11 2.34
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Figure 4.18: Error convergence for Example 4.1 (half-circle) using global polynomial de-
grees p = 1, p = 3 and p = 5 (left to right).

rectangle and replace the right edge with a half-circle as depicted in Figure 4.17. This half-
circle is represented by a rational NURBS curve of degree 3. The convergence results are
shown in Table 4.1, 4.2 and 4.3 for polynomials of degree p = 1, 3 and 5 respectively and
are plotted in Figure 4.18. We can see that we are still able to obtain optimal convergence
rates until we reach machine precision. Note that this does in particular show that our
post-processed cover construction and numerical integration are accurate enough on the
curved domain. Since the reference solution as well as the function spaces employed are
independent of the specific shape of the domain (except that the patches need to cover all
of the domain) we do expect the same convergence rates on any domain.

Example 4.2 (Linear Elastic Hole). In this example we show the importance of an exact
representation of the simulation domain, compared to an approach where we approximate
the domain by a linear polygon. We did already mention above that when we are prescrib-
ing an analytical solution, we expect our method to always convergence to that solution,
no mather on what kind of domain we will solve the problem. But for most problems in
practice the results solved on an approximated domain will converge to a different solution
than the results that are solved on the original curved domain. To this end, we consider the
equations of linear elasticity as a boundary value problem for the unknown displacement
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Ω

ΓIΓL ΓR

Ω̃(4)

Γ̃(4)
IΓL ΓR

Ω̃(8)

Γ̃(8)
IΓL ΓR

Figure 4.19: Square with hole domain Ω where the boundary of the hole ΓI is a smooth
circle, represented by a rational NURBS curve and approximations Ω̃(4) and Ω̃(8)

where ΓI is approximated by 4 and 8 line segments respectively.

Figure 4.20: Magnitude of the displacement (left) and von Mises stress (right) of the
solution of the linear elastic problem imposed in Example 4.2. The domain has been
warped by the displacement field scaled by a factor of 100.

field u subject to given Dirichlet boundary conditions gD, Neumann boundary conditions
gN and a body force per unit volume f . Hence, the generic problem is given by

−div σ(u) = f in Ω
u = gD on ΓD ⊂ ∂Ω

σ(u) · n = gN on ΓN ⊂ ∂Ω
σ(u) · n = 0 on ∂Ω \ (ΓD ∪ ΓN)

(4.32)

with σ(u) = Cϵ(u) being the symmetric Cauchy stress tensor with the material dependent
stiffness tensor C and the infinitesimal strain tensor ϵ(u) = 1

2(∇u + (∇u)T ). We limit
ourselves to isotropic materials so we have σ(u) = Cϵ(u) = 2µϵ(u) + λ trace

(
ϵ(u)

)
I with

λ and µ being the Lamé constants. In this example the domain consists of a box [−1, 1]2
with a circular hole of radius 0.4 at its center, i.e. Ω := [−1, 1]2 \ {x | x2

1 + x2
2 < 0.4}

(compare first image in Figure 4.19). Let us define the left part of the boundary as
ΓL := {x ∈ ∂Ω | x1 = −1} and similarly the right part as ΓR := {x ∈ ∂Ω | x1 = 1}. Then
we impose the following boundary conditions to the problem

u1 = 0 on ΓL,
σ(u) · n = (0.01, 0)T on ΓR,
σ(u) · n = 0 on ∂Ω \ (ΓL ∪ ΓR).
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Figure 4.21: Error convergence for Example 4.2 (elastic hole) on the original domain Ω
using curved integration cells and on static approximations of the domain Ω(q) for
q ∈ {4, 16, 64, 256}.

To make sure we have a unique solution to the problem we do additionally fix the dis-
placement in y-direction, i.e. u2 = 0, in the lower left corner at (−1,−1)T .
Since we do not have an analytical solution for this problem we compute errors against
a numerical reference solution that has been computed by utilizing a PUM space over a
uniformly refined cover on level kmax = 11 consisting of Nkmax = 3 668 380 patches. We
did employ polynomials of degree p = 3 on all patches which resulted in a function space
with dofkmax = 73 367 600 degrees of freedom. Plots of the reference solution are depicted
in Figure 4.20. All error norms have been computed on integration cells that resolve
both, the cover of the reference solution as well as the respective cover of the solution
it is compared with. One additional uniform refinement of the integration domains Dm

i

has been performed and an increased Gaussian quadrature rule was used to make sure all
error were computed with a sufficient accuracy.
To demonstrate the error introduced when we are not using an actual circle to represent
the hole, but use a static approximation by linear edges we additionally solve the prob-
lem on domains Ω̃(q) where we approximate the circular hole by q line segments of equal
length (compare Figure 4.19). Convergence of solutions employing a PUM space with
global polynomial degree p = 1 on the different domains can be seen in Figure 4.21. We
can see that only the solutions on the original curved domain do converge to the reference
solution with optimal rates. The solutions on the static domain do still converge, but
they do so to a solution that is different to the one on the curved domain. The closer
the domain approximation gets to the curved domain, the closer the solutions get to the
curved solution, but even with q = 256 linear segments used for the approximation of the
circle, the solution cannot match the reference solution in the L2-norm by more than 4
decimal places. In fact this shows that on approximated domains we have two sources
of errors: the error imposed by the domain approximation and the error imposed by the
approximation power of the employed function spaces. Only if both errors get reduced in
an overall refinement scheme we can be confident that our solution to a given problem is
actually correct. Note that in general it is hard to estimate which of the two error sources
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Figure 4.22: Integration domains Dm
i (boxes) and the resulting integration cells (gray tri-

angles and boxes) of a single patch ωi that intersects the boundary of a circular hole.
Left: Original integration domains Dm

i resolving neighboring patches that overlap ωi.
Right: All integration domains Dm

i have been refined once. The resulting triangular
integration cells interpolate the circle at more points and thus form a better approx-
imation of the curved domain.

will dominate the overall error. Hence, trying to employ a static approximation where we
have to make a choice for q before the simulation is initiated is rather challenging. While
we can always chose q very high so that it is very likely to be sufficient for the desired ac-
curacy it is still hard to be guaranteed. Additionally choosing a high value for q increases
the computational cost of the integration step significantly, especially on coarser levels
where we do only have a few number of patches and we would expect our function space
approximation error to dominate the domain approximation error anyways. These obser-
vations motivate the idea that we have to balance the domain approximation error with
the function space approximation power on each level to obtain a method that convergence
to the solution on the original domain, even when using only linear approximations to the
domain. To this end, we additionally conduct an experiment where we solve the given
elasticity problem using the original curved domain to create the integration cells but then
we do not use the curved triangles and instead only use the linear triangles during the
integration. I.e. we simply disable the use of the transfinite interpolation to create the
quadrature points and use a simple affine map instead. Due to the fact that the size of the
integration domains Dm

i is dependent on the size of the patches and we compute the inter-
sections of those integration domains with the original curved domain Ω, this means that
our domain approximation is adaptive to h-refinement of our PUM space. We can then
employ additional refinement of the linear cells to improve the domain approximation. An
easy way to achieve this is by simply uniformly refining the integration domains Dm

i before
we compute the intersection of them with the domain Ω. This automatically yields linear
triangles that form a better approximation of the curved domain (compare Figure 4.22).
Convergence results of experiments comparing only linear triangles with the fully curved
triangles are depicted in Figure 4.23. The experiments have been conducted with different
polynomial degrees p = 1, 2, 3. We can see that for linear polynomials the convergence
behavior when using curved integration cells and the one using only linear triangles is
identical. Hence, in this case it is likely that the approximation error of the function
spaces dominates the one of the geometry approximation. But when using quadratic or
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Figure 4.23: Error convergence for Example 4.2 on the original domain Ω for polynomial
degrees p = 1, p = 2 and p = 3 (top to bottom). There are plots with enabled curved
integration cells and with not curved integration cells where the integration domains
Dm

i of boundary patches have been uniformly refined r times.
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Figure 4.24: Warped contour plots of the errors ∥u∗ − uPU
k ∥ using polynomials of degree

p = 3 on level k = 6 for the solution on the original curved domain employing curved
integration cells (upper left) and for solutions employing only linear integration cells
with r = 0 uniform refinements of the integration domains Dm

i (upper right), r = 1
refinements (lower left) and r = 3 refinements (lower right). While the error of
the solution with curved integration cells is highly oscillatory with respect to the
patch size when using curved integration cells, the errors of the solutions using linear
integration cells include error components with low oscillations that indicate that
the solution converges to a function that is different than u∗. The low oscillatory
error components decrease with higher values of r (and hence with better domain
approximations). Note that the warp factor has been adjusted to best fit each plot
separately and is hence not the same in all four plots.
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Figure 4.25: Violin domain with zooms into two locations where the boundary has very
small features. The zooms are magnifications by a factor of 106.

cubic polynomials on all patches the behavior changes and using only linear triangles re-
sults in reduced convergence rates. Note that only the convergence rate is being reduced,
but the solutions do still convergence to the original curved solution on all levels. The
reduced convergence rates are due to the fact that in those cases the geometry approxi-
mation error dominates the function space approximation error and thus we are already
in the case where further refinements of the involved function spaces lead to convergence
towards incorrect solutions (compare Figure 4.24). Refining the integration domains Dm

i

uniformly, which refines the geometry approximation relative to each patch, allows us to
obtain better convergence behavior for the linear integration cells. Using three refinement
steps results in close to optimal convergence rates for quadratic polynomials, but is still
not quite sufficient for cubic polynomials. Note that choosing an insufficient refinement of
the linear cells in this scenario is still better than choosing an insufficient static domain
approximation a priori since even though the convergence rates are suffering, the method
does still always converge closer to the curved solution when we employ any h-refinement.
Hence, using only linear integration cells can sometimes be beneficial since we do not need
to take the transfinite interpolation into account during the numeric integration which can
drastically reduce the number of integration points that are required. Nevertheless only
enabling the full curved integration scheme guarantees convergence with optimal rates.

Example 4.3 (Violin). In this example we carry out a simulation on a domain resembling
the front-plate of a violin7 as depicted on the left in Figure 4.25. To demonstrate the
robustness with respect to “dirty” input domains the violin has not been constructed
directly within a CAD modeler. Instead we did extract the contour lines from a simple

7In fact it is the front-plate of the Stradivarius “Messiah”.
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bitmap of the violin via a graphics processor (using Inkscape8) which resulted in an SVG
image that has then been imported into a CAD modeler to convert it into a STEP file
(using FreeCAD9). This process resulted in a domain that consists of 114 curves. The outer
ring consists of 57 curves and the two inner rings consist of 31 and 26 curves respectively.
Most of these curves are non-rational cubic NURBS curves (or thus simple cubic B-spline
curves) but 10 out of the 114 curves are just linear line segments. While the domain’s
bounding box has an extend of ∼135 in x-direction and ∼232 in y-direction there are two
curves in the input geometry that do only have a length of ∼1.7 · 10−5 and ∼1.4 · 10−5

respectively and hence are about seven magnitudes smaller than the overall geometry
(compare Figure 4.25). In a mesh-based method those small domain features would usually
dictate the size of the smallest triangle and to retrieve a mesh where the minimal angle
is bounded, this would drastically increase the total number of triangles in the mesh.
Hence, for mesh-based methods it would usually be desired to remove such small artificial
features in the domain before generating a mesh or to employ a meshing algorithm that is
designed to not preserve small features. In the PUM however, we do not need to remove
those features since the triangular decomposition is used for integration only and hence
sharp triangles do not impose any problems to our basis functions. The total number of
integration cells is only slightly increased when keeping those features and gets negligible
on finer levels of our covers.
To demonstrate that we retrieve good performance on this geometry, we consider the
time-dependent scalar wave equation in the time interval [0, T ], given by

ü(x, t) = ∆u(x, t) for (x, t) ∈ Ω× (0, T ]
u(x, 0) = 0 for x ∈ Ω
u̇(x, 0) = γ(x) for x ∈ Ω
u(x, t) = 0 for x ∈ ∂Ω, t > 0

(4.33)

where u̇ = ∂u
∂t and ü = ∂2u

∂t2 are the first and second time derivative of u and γ is an initial
velocity field that is given by

γ(x) = −β exp
(
−∥x− c∥2

σ2

)
with c = (98,−73)T , σ = 10 and β = 10.

We employ central differences with tn+1 = tn + δt for the time discretization of (4.33)
which yields

u(x, tn+1) = (δt)2∆u(x, tn) + 2u(x, tn)− u(x, tn−1) for x ∈ Ω

as the spatial problem. The Galerkin discretization in V PU of that equation then reads:
Find u(x, tn+1) ∈ V PU such that∫

Ω
u(x, tn+1)v dx = (δt)2

∫
Ω

∆u(x, tn)v dx+
∫

Ω
2u(x, tn)v dx+

∫
Ω
u(x, tn−1)v dx

8A free and open source vector graphics editor. https://inkscape.org
9A general purpose parametric 3D CAD modeler. https://www.freecadweb.org

https://inkscape.org
https://www.freecadweb.org
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holds for all v ∈ V PU. After partial integration, eliminating terms determined by the
Dirichlet boundary conditions and some rearrangement this becomes〈

u(x, tn+1), v
〉

L2(Ω) =
〈
2u(x, tn)− u(x, tn−1), v

〉
L2(Ω) − (δt)2〈∇u(x, tn),∇v

〉
L2(Ω).

With ũn being the coefficient vector of the unknown function uPU
n ∈ V PU at time tn, we

can obtain the algebraic representation

Mũn+1 = M(2ũn − ũn−1)− (δt)2Aũn

with the mass matrix M given by

(Mi,j)s,t := ⟨φjϑ
t
j , φiϑ

s
i ⟩L2(Ω) (4.34)

with i, j = 1, . . . , N , s = 1, . . . ,dim(Vi) and t = 1, . . . ,dim(Vj) and the stiffness matrix A
given by

(Ai,j)s,t := ⟨∇φjϑ
t
j ,∇φiϑ

s
i ⟩L2(Ω). (4.35)

Hence, one time-stepping iteration to obtain the new solution at time tn+1 from the
previous solutions is given by

ũn+1 = 2ũn − ũn−1 − (δt)2M−1Aũn.

By introducing ṽn = ũn−ũn−1
δt as the coefficient vector of the velocity field we get

ũn+1 = ũn + δtṽn − (δt)2M−1Aũn

= ũn + δtṽn+1
(4.36)

with
ṽn+1 = ṽn − δtM−1Aũn. (4.37)

The discretization of the initial velocity condition additionally yields a simple projection
problem which’s algebraic representation is given by

ṽ0 = M−1ĝ (4.38)

where ĝ is the right-hand side moment vector given by

(ĝi)s = ⟨γ, φiϑ
s
i ⟩L2(Ω) i = 1, . . . , N s = 1, . . . ,dim(Vi). (4.39)

In principle both (4.38) as well as (4.37) require us to invert the mass matrix M but
this is too expensive when required in each time step to be practical in general. Hence a
common approach is to replace the conforming mass matrix M with a so-called lumped
mass matrix M̄ that ideally is a diagonal matrix. Such an approach was introduced for
our PUM in [109] and M̄ is given by

(M̄i,j)s,t :=
{
⟨ϑt

j , φiϑ
s
i ⟩L2(Ω) i = j

0 otherwise
(4.40)
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Figure 4.26: Surface plots of the displacement field u(x, tn) at specific time points tn =
1500kδt for n = 1, . . . , 20 (row-wise, top left to bottom right).
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which does have a block-diagonal form. Hence, the inverse M̄−1 can be formed explicitly
and all steps (4.38), (4.37) and (4.36) end up being simple linear algebra operations. Snap-
shots of the solution u(x, tn) at specific moments in time tn are depicted in Figure 4.26.
To evaluate the performance of our method (and particularly all geometric operations)
we only take a look at the initialization step of the simulation and ignore the actual time
stepping, since in each time step we do perform linear algebra operations only. Hence we
measure the time of the four main tasks that take place before the time-stepping starts,
which are:

1. TC: Constructing the cover Ck
Ω on a given level k.

2. TI: Creating the integration cells for all boundary patches of that cover.

3. TA: Assembling the stiffness matrix A according to (4.35), the lumped mass matrix
M̄ according to (4.40) and the initial velocity moment vector ĝ according to (4.39).

4. TS: Explicit computation of the inverse M̄−1 via a block-wise Cholesky decomposi-
tion.

Since we are mainly interested in the performance of the geometry operations, let us first
discuss to which extend each of the tasks TC, TI, TA and TS include geometric operations.
The task TS is purely algebraic and thus does not include any geometric operations. On the
other hand, the task TI needs to compute the intersections Dm

i ∩Ω and the decomposition
of those domains into integration cells, which are the operations we are most interested
in. But the task TC includes geometric operations as well: First of all we need to check
whether Ci,k∩Ω = ∅ to figure out which local tree cells can be discarded and need not to be
stretched into a patch of Ck

Ω. Then this step includes the categorization of all patches into
the subsets of patches at the boundary and patches in the interior, so we need to check
for ωi,k ∩ ∂Ω ̸= ∅. Finally, the cover post-processing algorithm from Chapter 2 includes
checks for D̃m

i ∩ Ω ̸= ∅ to detect patches with empty flat-top domains and requires to
compute the bounding box of ωi,k ∩ Ω to shrink patches at the boundary. The task TA
does not need to perform any expensive geometric operations: Since the integration cells
for boundary patches that are expensive to compute have already been computed in task
TI the only geometric operations that are left are to compute the decompositions D̃m

i for
interior patches which do not involve any intersections with Ω or its boundary. We do
not pre-compute the quadrature points for any integration cell, hence the task TA does
additionally include the evaluation of the transformations Ψ that translate the quadrature
points from the reference domains into the actual integration cells. Regardless of that,
the main computational tasks in TA are the evaluation of the partition of unity functions
φi, the local basis functions ϑn

i and the bi-linear and linear forms to integrate as well as
computing the sums of the Gaussian quadrature and storing the results into the destination
block matrices and vectors.
To further discuss the expected runtime for each of those tasks let us split the set of all
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Table 4.4: Total number of patches Nk, number of boundary patches NB
k and number of

interior patches N I
k on levels k = 0, . . . , 12 for covers over the violin domain. Numbers

are given for a uniformly refined cover and an adaptively refined cover where only
boundary patches from Ck

Ω,B are refined in each refinement step.

k 0 1 2 3 4 5 6 7 8 9 10 11 12

uniform refinement

Nk 1 4 10 36 132 488 1851 7218 28456 112849 449652 1794741 7171429
NB

k 1 4 10 30 66 156 329 669 1357 2712 5419 10840 21676
N I

k 0 0 0 6 66 332 1522 6549 27099 110137 444233 1783901 7149753

boundary adaptive refinement

Nk 1 4 10 36 114 284 729 1728 3733 7909 16524 33240 67585
NB

k 1 4 10 30 66 156 329 669 1357 2712 5419 10840 21676
N I

k 0 0 0 6 48 128 400 1059 2376 5197 11105 22400 45909

patches in a cover Ck
Ω into the sets

Ck
Ω,B := {ωi,k ∈ Ck

Ω | ωi,k ∩ ∂Ω ̸= ∅} and
Ck

Ω,I := {ωi,k ∈ Ck
Ω | ωi,k ∩ ∂Ω = ∅}

where Ck
Ω,B is the set of boundary patches and Ck

Ω,I the set of interior patches. Let us
further introduce NB

k := card(Ck
Ω,B) and N I

k := card(Ck
Ω,I) for the number of patches in

each set and note that card(Ck
Ω) =: Nk = NB

k +N I
k.

Let us take a look at what this means for the expected runtime of our tasks on a specific
level k: The task TC uses the hierarchical tree construction and hence involves operations
on all patches on all levels 0, . . . , k. Since the number of nodes in a d-binary tree with Nk

leaves is less than 2Nk, the cover construction is at least in O(Nk).10 The task TA needs
to assemble blocks for all patches and hence it is in O(Nk) as well, although it is worth
mentioning that the work is probably not distributed equally among all patches. The
assembly of entries related to patches ωi,k ∈ Ck

Ω,B does usually lead to more integration
cells and due to the potentially curved triangle cells we need more quadrature points on
many of those integration cells compared to the assembly of entries only related to patches
ωi,k ∈ Ck

Ω,I. On the other hand, the integration cells for patches ωi,k ∈ Ck
Ω,B have already

been precomputed in task TI, while the integration cells involving only patches ωi,k ∈ Ck
Ω,I

are be computed on the fly. The task TS for this example does only involve the inversion
of a block-diagonal matrix and is thus in O(Nk) as well. Finally the task TI does only
involve the computation of integration cells for patches ωi,k ∈ Ck

Ω,B and hence it is O(NB
k )

only. To understand why this is crucial to the runtime behavior of the method, let us first
assume that the cover is refined uniformly, i.e. all patches get h-refined in each refinement

10Since the cover construction involves some steps where we need to traverse the tree for each patch
(e.g. the neighborhood construction), a more correct estimate of the complexity would be O(Nk log Nk)
but how distinct the logarithmic term can be observed in measurements depends heavily on the constants
involved in the complexities for the specific tasks during the cover construction.
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Figure 4.27: Stacked bar charts depicting the share of the simulation set-up time of the
tasks TC, TI, TA and TS on levels k = 1, . . . , 12. All measurements have been repeated
five times and mean values are presented. Top: Uniformly refined cover on all levels.
Bottom: Adaptively refined cover. On each level only patches intersecting the bound-
ary (i.e. where ωi ∩ ∂Ω ̸= ∅) have been refined.

step. On the first few levels we expect NB
k = Nk and N I

k = 0 since all patches intersect the
boundary. But as soon as we have reached a level k̂ where N I

k̂
> 0 we expect N I

k for k > k̂

to grow at least by a factor of 2d in each level since all child patches of an interior patch are
in the interior as well. In contrast to that we expect the growth of NB

k to slow down and
eventually reach a growth rate of about 2d−1 since the boundary ∂Ω is a geometric entity
of dimension d−1. That is why, asymptotically, only half the children of a boundary patch
will intersect the boundary as well, with the other half eventually being equally distributed
to patches being either outside of the domain or completely inside of it (compare the top
half of Table 4.4). Hence, on ever finer levels we can expect the runtime of a task that
is in O(NB

k ) to vanish compared any task that is in O(Nk) or even just O(N I
k). Thus it

especially holds that the work of the task TI has to vanish compared to the work of the
other tasks when we employ a uniform refinement scheme. In fact this is confirmed by the
runtime results depicted in the top half of Figure 4.27. First there is a short initialization
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phase up until level k = 5 where the portion of the runtime for task TI is increasing. On
the first few levels the asymptotic complexities of the distinct tasks do not yet hold. E.g.
on coarser levels a single patch can see a lot of complexity of the domain, thus we need to
create comparatively many integration cells per patch on those coarse levels. Additionally
it is important to note that level k = 5 is the first level where we indeed have N I

k > NB
k

and that the total runtime on that level is less than 0.1 seconds. But from k = 6 onwards
we can see that the runtime portion of the task TI starts to decline compared to the total
runtime until eventually on levels k ≥ 11 it even takes less time than the relatively cheap
task TS. Note that the experiment has been carried out employing polynomials of degree
p = 1. Employing higher order polynomials would further shift the runtime towards the
tasks TA and TS since the required number of integration points would increase and we
would need to evaluate more basis functions that result in larger blocks to be assembled
and inverted.

Let us now construct a case that is less favorable towards the task TI. Instead of a uniformly
refined cover, we employ a refinement strategy where we refine only patches ωi,k ∈ Ck

Ω,B on
each level. Note that this does not necessarily mean that we have NB

k > N I
k for high enough

levels. We did already note that refining a boundary patch will most likely result in some
of its children becoming interior patches that are added to the interior patches already
present from the last level. Additionally due us employing the maximum depth difference
Lmax according to (1.31) our refinement algorithm does occasionally refine interior patches
close to the boundary to retain a smooth transition of patch sizes. To this end we do rather
expect NB

k ∼ N I
k (compare the second half of Table 4.4). The runtime results for such a

refinement scheme are depicted in the bottom half of Figure 4.27. We can clearly see that
in contrast to the uniform refinement the runtime portion of the task TI does not vanish
on higher levels. Instead it seems to converge to a state where about 8.6% of the runtime
per level will be spend for the creation of integration cells in this example. This shows
that even for refinement strategies that tend to focus work around ∂Ω, the algorithms
presented throughout this chapter are efficient enough so that they do not dominate the
overall simulation time. A fundamental necessity for this to work is that the work per
boundary patch should be independent of the level k. This is only partially true though,
since the costs per intersection computation Dm

i ∩Ω and the decomposition of the results
thereof into (curved) triangular integration cells does heavily depend on the complexity of
the domain’s boundary ∂Ω where it overlaps a given patch ωi,k and hence it does heavily
depend on the size and location of that patch. Luckily the sizes of our patches ωi,k do
decrease on higher levels k and hence we expect the computation of the integration cells to
become less expensive per patch on each level until eventually all intersections of patches
with the boundary become as simple as each patch being cut by a single, close to linear
edge. Figure 4.28 depicts the time of the task TI per boundary patch split into the time to
compute Dm

i ∩Ω and the time to create the resulting integration cells. We can make two
important observations: First of all, both runtime components seem to converge to a state
where the amount of work is fixed per boundary patch, which confirms the assumptions
given above. Additionally we can see that the runtime behavior of the intersection and the
decomposition steps behave quite different over the levels. In case of the decomposition,
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Figure 4.28: Partition of the runtime of the integration cell creation task (TI) into the time
to compute the intersections Dm

i ∩ Ω and the time to decompose those domains into
the (curved) triangular integration cells T n

i . All times are reported per boundary
patch (i.e. the total time per level has been divided by the number of boundary
patches NB

k ). All measurements have been repeated five times and mean values are
presented.

level k = 0 is very special, since there we have a single patch overlapping the whole domain
and hence we need to create a global triangulation of the domain. Note that simulations
on level 0 are probably never relevant in practice since the approximation power of V PU

k is
very limited and barely useful anyways. Even if only used as coarser levels for a multilevel
level solver, we can usually start on finer levels since the respective discretized equation
systems do easily fit a direct solver, both in memory and runtime consumption. On finer
levels the time for the decomposition declines constantly, since the intersections Dm

i ∩Ω get
ever simpler and finally most decompositions end up in resulting in a single or up to only
three triangles. For the intersection task, level k = 0 is special as well, in the sense that
the intersection does actually result in all of Ω. Hence the intersection does mainly include
work to figure out that there are no intersection points and then copying Ω into the result.
Then, for a few levels the intersection costs decrease at first, then slightly increase before
eventually they reach a constant value per patch. The explanation here is manifold. One
aspect is that the costs per intersection depends on where exactly the patch is located,
since the complexity of ∂Ω is not distributed evenly across the whole domain. Thus it
takes a while until a steady state is reached. Additionally intersections where Dm

i ∩∂Ω = ∅
(i.e. either Dm

i ∩ Ω = Dm
i or Dm

i ∩ Ω = ∅ holds) tend to be slightly more expensive than
intersections where Dm

i ∩ ∂Ω ̸= ∅ and on lower levels the latter cases are more likely to
happen since the average size of Dm

i is bigger. To understand why intersections where
the boundary ∂Ω is not actually intersected are more expensive, we have to look at a few
things: Since we are only looking at integration domains Dm

i resulting from patches at the
boundary, we do expect the integration domains to be always close to the boundary ∂Ω,
even when they do not intersect it. Hence, we first compute the intersection points of the
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infinite extensions of the boundary segments of Dm
i with ∂Ω according to the algorithm

described in Section 4.1.2, only to discard all of those intersection points afterwards. In
contrast to the case Dm

i ∩ ∂Ω ̸= ∅ where we could now start to build the intersection
result, we do need to figure out whether Dm

i is completely within Ω or outside of it. Hence
we need to perform an additional point-within-BREP test that requires to compute the
intersections of a ray with all of ∂Ω. Nevertheless, since the amount of domains where
Dm

i ∩ ∂Ω ̸= ∅ compared to the amount of domains where Dm
i ∩ ∂Ω = ∅ should eventually

converge to a steady state and all elementary operations do only depend on the complexity
of ∂Ω and not on the current cover, we achieve a constant time per patch on higher levels
k.
In a final experiment we want to take a look at how the runtime of our method behaves
in the case of more complex simulation domains Ω. To this end, we artificially increase
the number of boundary curves that represent ∂Ω of our violin domain by recursively
subdividing all curves q times. This means after q subdivision steps the domain is de-
scribed by 114 · 2q curves instead of just the original 114 curves. Note that geometries
where seemingly simple boundary curves are described by many small, low-order Bézier
curves are not uncommon in practice. In fact, since the intersection curves of two three-
dimensional surfaces are often approximated by piecewise cubic B-splines as described in
Chapter 3, such boundary descriptions are frequently encountered when dealing with the
two-dimensional parameter domains of industrial shell geometries. Let us first only con-
sider the influence of the refined boundary description on the task TI. Especially we do
again take a look at the time to compute the intersections Dm

i ∩ Ω and the time to de-
compose those cells into the final integration cells per boundary patch. Results for q = 1,
q = 5 and q = 10 are depicted in Figure 4.29. We first discuss the time to compute the
intersections. We can note that on level k = 0 the time increases significantly with higher
q as it is expected. Copying the whole geometry should have a runtime that scales linearly
with the complexity of the geometry itself. Hence, for q = 10 a runtime increase of a
factor of about 1024 compared to q = 0 would not be surprising and indeed we can see an
increase to 74 373 µs for q = 10 compared 91 µs for the original geometry (q = 0) from
Figure 4.28. On higher levels the time for the intersections decreases rapidly until on the
finest levels the intersection time per patch for higher values of q is even lower than the
time for low values of q. The fact that intersections on fine levels can be performed faster
for higher values of q can be a sign that the acceleration R-Tree data structure that has
been built for all the monotone curve parts could be improved for the original unrefined
geometry by some additional splits: For the refined geometries the leaves of the tree that
contain the curve parts are smaller and thus more intersection queries can be filtered out
by the tree traversal algorithm. The numbers presented here seem to indicate that this
outweighs the increased number of total nodes in the tree. Let us now turn the focus on
the time to compute the local decomposition into the triangular integration cells. We can
again observe that on low levels k the time increases significantly for higher values of q but
the times improve rapidly on higher levels until on level k = 14 we get comparable times
for all values of q. We should note that on level k = 0 the triangular decomposition does
actually create a global triangulation of the whole geometry. The performance of that case
could probably be improved significantly by choosing a better algorithm for the cavity
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Figure 4.29: Partition of the runtime of task TI into the time to compute the intersections
Dm

i ∩ Ω and the time to decompose those domains into the (curved) triangular inte-
gration cells T n

i . All times are reported per boundary patch (i.e. the total time per
level has been divided by the number of boundary patches NB

k ). All measurements
have been repeated five times and mean values are presented. The boundary curves
of the input geometry have been subdivided q = 1, 5, 10 times (top to bottom).
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Figure 4.30: Stacked bar charts depicting the share of the simulation set-up time of the
tasks TC, TI, TA and TS on levels k = 1, . . . , 12. All measurements have been repeated
five times and mean values are presented. The boundary curves of the input geometry
have been subdivided q = 10 times.

triangulation during the constrained Delaunay triangulation algorithm. As mentioned in
Section 4.2 we did implement the algorithm presented in [132], which is easy to implement
and fast in most cases, but can have a worst-case complexity of O(N2) where N is the
number of vertices in the triangulation. The choice of that algorithm was based on the fact
that in practice discretizations on level k = 0 (or very coarse levels in general) are very
uncommon in practice, especially when considering complex geometries. The numbers
presented here do in fact show that algorithm is sufficiently performant when we consider
simple geometries or higher levels on complex geometries. Finally we take a brief look at
the runtime portion the complete task TI takes in the overall simulation when considering
complex geometries. Results for q = 10 are depicted in Figure 4.30. We can clearly see
that even on level k = 0 the task TI does not dominate the overall runtime. This is due to
the fact that the more complex geometry results in more triangular integration cells that
need to be processed during the assemble task TA an hence that steps runtime increases
as well. If we compare the runtime portions on the final level k = 12 for q = 10 to the
values for the original geometry as they were depicted in Figure 4.27 we can see that the
more complex geometry does not have any significant impact on the distribution of the
runtime across the tasks. In fact even the total runtime does not differ significantly on
the finest level. For the original geometry the mean runtime of five runs on level k = 12
was 497.08s, while for q = 10 we measured 503.08s which is only about 1.2% increase.

Example 4.4 (Door of a car). In this final experiment of the chapter we consider a
continuum mechanical problem where the geometry is that of the door of a car11 (compare
Figure 4.31). We only consider the inner shell of the door in the following. As it is
common for most body parts of a car, the door is built from sheet metal. For such
kinds of parts it is possible to make some kinematic assumptions that allow to reduce

11Door model has been taken from https://grabcad.com/library/car-front-door-1 by author
“Ciprian Dragne” (https://grabcad.com/ciprian.dragne). Accessed: 2022-09-29.

https://grabcad.com/library/car-front-door-1
https://grabcad.com/ciprian.dragne
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Figure 4.31: Full door model consisting of two shells. The outer shell (left) consists of 383
faces, the inner shell (right) consists of 2469 faces.

the three-dimensional solid mechanics problem to a two dimensional problem. There are
different kind of assumptions one can make that result in different kind of formulations of
the problem at hand. Commonly those descriptions are referred to as plate theories and
the two most widespread representatives are the Reissner-Mindlin plate theory and the
Kirchhoff-Love plate theory. In both theories only the mid-surface is used to represent the
originally three-dimensional problem. But while the former takes transverse shear forces
into account and it is thus usually applicable to moderately thick plates, the latter assumes
that those forces are negligible and hence it is only applicable to thin plates in general. On
the other hand, the Reissner-Mindlin model requires to introduce some additional degrees
of freedom to represent rotations of the normals to the mid-surface, while those normals
always stay orthogonal in the model by Kirchhoff-Love. Hence, for thin plates it is usually
desireable to employ the Kirchhoff-Love plate theory due to its lower costs. Nevertheless
in classical finite element methods the Reissner-Mindlin model is far more common since
its implementation does only require C0 continuous elements, while an implementation of
the Kirchhoff-Love model requires C1 continuous elements that are non-trivial to achieve.
On the contrary, the PUM allows us to construct higher order function spaces easily, since
the local smoothness of the function spaces Vi transfers directly into the smoothness of the
global space V PU. To this end, we employ the Kirchhoff-Love plate theory in this example.
The Kirchhoff-Love plate theory was introduced in the context of the PUM in [86], based
on the work in [103]. We briefly summarize that theory in the following.
Let us consider a parametrized surface S : Ω→ R3 with Ω ⊂ R2. Additionally, let x ∈ Ω
and

S∂d := ∂S

∂xd
, d ∈ {1, 2}

be the partial derivative of S with respect to directional coordinate xd. Then the normal
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to the surface at any location x is given by

nS(x) := S∂1(x)× S∂2(x)
∥S∂1(x)× S∂2(x)∥ .

Using that normal we can define the orthogonal projection operator as

P (x) := I3 − nS(x)⊗ nS(x).

Next we need to introduce some derivatives with respect to the surface S employing
tangential differential calculus. To this end, the tangential gradient of a scalar field u :
Ω→ R is given by

∇Su(x) = JS(x) ·GS(x)−1 · ∇u(x) (4.41)

where JS(x) ∈ R3×2 is the jacobian of the surface S and GS(x) := JS(x)TJS(x). Similarly
the tangential gradient of a vector field v : Ω → R3 can be defined by applying (4.41) to
all components of that vector field. The tangential divergence of a such a vector field is
then given by

divS v(x) = trace(∇Sv(x)) (4.42)

and similarly the divergence of a matrix field A : Ω→ R3×3 by applying (4.42) component-
wise to all rows of A(x). Finally the so-called Weingarten map is given by

H(x) := ∇SnS(x).

Let us now consider the original three dimensional shell domain Ω that can be described
by its mid-surface Ω := S[Ω] = {S(x) | x ∈ Ω} and a constant thickness τ such that any
point x ∈ Ω is given by

x = S(x) + ξnS

for x ∈ Ω and ξ ∈ (− τ
2 ,

τ
2 ). Let u : Ω→ R3 be the displacement field at the mid-surface.

Then, in the Kirchhoff-Love model the strain tensor is given by

ϵ(u, ξ) := ϵM (u) + ξϵB(u)

where
ϵM (u) := sym(∇Su) and ϵB(u) := sym(nS · ∇S∇Su)

with sym(A) := 1
2(A+AT ) are the membrane and bending part of the strain respectively.

If we then assume an isotropic linear elastic material and plane stress, the in-plane stress
tensor is given by

σ(u, ξ) := σM (u) + ξσB(u)

where
σM (u) := P

(
2µϵM (u) + λ trace

(
ϵM (u)

)
I
)
P and

σB(u) := P
(
2µϵB(u) + λ trace

(
ϵB(u)

)
I
)
P

are the in-plane membrane stress and in-plane bending stress respectively and where λ :=
E

2(1+ν) and µ := Eν
1−ν2 are modified Lamé parameters depending on the Young’s modulus



4.4. NUMERICAL EXPERIMENTS 117

E and Poisson’s ratio ν of the given material. Due to the possibility of an analytical
pre-integration through the thickness, we can then define the effective normal force tensor
by

N(u) :=
∫ τ

2

− τ
2

σ(u, ξ) dξ = τσM (u)

and the symmetric moment tensor by

M(u) :=
∫ τ

2

− τ
2

ξσ(u, ξ) dξ = τ3

12σB(u).

Assume that we want to impose only two kinds of boundary conditions: so-called simply
supported edge conditions on the boundary part ΓS ⊆ ∂Ω and free edge conditions on the
rest of the boundary ΓF := ∂Ω \ ΓS. Let n∂Ω ∈ R2 be the normal to the boundary ∂Ω
and n∂Ω := JSG

−1
S n∂Ω its respective normal in the three-dimensional space. Similarly

t∂Ω ∈ R2 is the tangent to ∂Ω and t∂Ω := JSt∂Ω its three-dimensional counterpart. Then,
with

bn(u) := n∂Ω ·
(
M(u)n∂Ω

)
and bt(u) := t∂Ω ·

(
M(u)n∂Ω

)
being the bending and twisting moment respectively, the strong form of the shell problem
on a single surface S is given by

−divS

(
N(u) +HM(u)

)
−divS

(
P divS M(u)

)
nS − 2H divS M(u) = f in Ω

u = 0 on ΓS(
N(u) +HM(u)

)
n∂Ω +Ht∂Ωbt(u) = 0 on ΓF

n∂Ω · P divS M(u) + t∂Ω · ∇Sbt(u) = 0 on ΓF
bn(u) = 0 on ΓS ∪ ΓF

(4.43)

where f is an applied body force per unit area. It is important to note that even though
the shell problem is three-dimensional, (4.43) is formulated on Ω only and hence it can be
solved entirely in the two-dimensional parameter space of S.
In the case of our door model, the complete shell does not consist of a single surface, but is
a collection of multiple surfaces that are connected through common edges. Hence, (4.43)
has to be solved for many surfaces Si : Ωi → R3 simultaneously and additional constraints
need to be added where those surfaces are connected along edges in the three-dimensional
space. The topological information of the CAD shell is used to determine which surfaces
are connected with each other, which edges are involved in the connection and which
curves represent those edges in the boundary descriptions of ∂Ωi and ∂Ωj . Then for each
edge Et := (i, j) that connects the surface Si to the surface Sj via the boundary parts
Γi,t ⊆ ∂Ωi and Γj,t ⊆ ∂Ωi respectively, we have the additional constraints

ui(xi) = uj(xj) on Γi,t

θn(ui,xi, i) = −θn(uj ,xj , j) on Γi,t
(4.44)

with
θn(u,x, i) := n∂Ωi

·
((
∇Siu(x)

)
nSi

)
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being the normal rotation and xj ∈ Γj,t being the point where Si(xi) = Sj(xj) holds.12

Note that for each edge Et := (i, j) we can formulate a corresponding symmetric edge
Ēt := (j, i) which represents the same constraint from the other side. The efficient and
robust treatment of those interface constraints is the topic of currently ongoing research at
the Institute for Numerical Simulation at the University of Bonn [67]. Hence, we only give
a very brief overview of a proof-of-concept implementation employed for the experiment
in this thesis. For the constraints on the displacement field from (4.44) we employ a
method based on the conforming Dirichlet treatment as presented in Section 1.4 and for
the constraints on the rotations we employ a skew-symmetric Nitsche method. To this
end, let us assume that the indices i, j of the surfaces related to an edge Et are sorted, i.e.
i ≤ j. Then the surface Si is appointed the primary side and Sj the secondary side of the
interface.
We first consider the rotational interface constraints. To this end, for a vector field w, let

[θn(w)]Γi,t := θn(wi,xi, i)− θn(wj ,xj , j) and

{bn(w)}Γi,t := 1
2
(
bn(wi,xi, i) + bn(wj ,xj , j)

)
be the jump of the normal rotation and the average of the bending moment across the
interface edge Γi,t respectively. Then the Nitsche terms that are employed in the weak
form of the problem are given by

γ

∫
Γi,t

[θn(u)]Γi,t [θn(v)]Γi,t ds−
∫

Γi,t

[θn(u)]Γi,t{bn(v)}Γi,t ds+
∫

Γi,t
[θn(v)]Γi,t{bn(u)}Γi,t ds

with γ being the regularization parameter, u being the trial functions and v the test
functions from spaces V PU

i and V PU
j corresponding to each side at the interface.

For the conforming coupling of the displacements, the basic idea is to introduce a global-
to-local, inter-surface L2-projection

ũi = (M̂ i
i )−1M̂ i

j ũj =: Πi
j ũj (4.45)

that allows us to replace the degrees of freedom in the coefficient vector ũi for V PU
i , that

are associated with the interface constraint, by the respective solution represented by
the coefficient vector ũj for V PU

j . To construct the projection Πi
j we employ the local,

block-diagonal mass matrix(
(M i

i )n,n
)

r,s
:=
〈
ϑs

i,n(xi), ϑr
i,n(xi)

〉
L2(ωi,n∩Γi,t)

and the inter-surface transfer matrix(
(M i

j)n,m
)

r,s
:=
〈
ϕj,m(xi)ϑs

j,m(xj), ϑr
i,n(xi)

〉
L2(ωi,n∩Γi,t).

12In fact, due to gaps in the geometry representation, the point xj := Dt(xi) is determined by applying
a map Dt that tries to find a point xj ∈ Γj,t such that ∥Si(xi) − Sj(xj)∥ is minimal. A more detailed
explanation is given around equations (5.1) and (5.2) in Section 5.1 when dealing with 3D geometries.



4.4. NUMERICAL EXPERIMENTS 119

Note that M j
j does exactly correspond to the boundary trace operator matrix from (1.36)

of the conforming Dirichlet treatment and the right-hand side moment vector from (1.37)
is replaced by the transfer M j

i ũi. Hence, the eigenvalue decomposition of M i
i can be used

to construct a basis transformation matrix T i
i similar to (1.38) that allows to create a

splitting V PU
i = V PU

i,K ⊕ V PU
i,I into the subspace V PU

i,I that is determined by the constraint
and the subspace V PU

i,K that is left to resolve the interior of the PDE. The matrices M̂ i
i and

M̂ i
j from (4.45) are then created by applying T i

i to M i
i and M i

j and setting all rows that
belong to the degrees of freedom from V PU

j,K to zero. Similar to the construction for the
Dirichlet boundary conditions we can then assemble the equation system in the original
basis without taking the displacement interface conditions into account and transform
that equation system by linear algebra operations only, into a coupled system. In contrast
to the Dirichlet boundary condition case where the prescribed values ended up on the
right-hand side of the equation, in the interface conditions introduce additional entries in
off-diagonal positions of the stiffness matrix.
Let us now turn our focus on how those equations are discretized. To this end, we first
construct covers CΩi for the parameter domains Ωi of each of the surfaces Si involved in
the CAD shell. Due to the CAD description of the surfaces, we have Si : PSi → R3 where
PSi := (pmin

1 , pmax
1 )× (pmin

2 , pmax
2 ) is a tensor product domain. It is then Ωi ⊆ PSi and ∂Ωi

is explicitly given as the trim domain of the surface. An important point to note is that
the extends of PSi and Si[PSi ] are usually vastly different. Hence, if the patches from
two different covers ωi,n ∈ CΩi and ωj,m ∈ CΩj are about the same size in their respective
parameter domains, their images in the three dimensional space are usually not, i.e.

diam(ωi,n) ≈ diam(ωj,m) ≠⇒ diam(Si[ωi,n]) ≈ diam(Sj [ωj,m]).

Hence we need to aim directly for diam(Si[ωi,n]) ≈ diam(Sj [ωj,m]) if we want to create a
uniform cover across all surfaces. A simple approximation to achieve that is by assuming
a constant relation between diam(PSi) and diam(Si[PSi ]). To this end, let us define the
anisotropic extend of the parameter domain hPSi

∈ R2 by

(hPSi
)m := pmax

m − pmin
m , m ∈ {1, 2}.

Let us then consider the four bounding curves of the surface

Cmin
i,1 : (pmin

1 , pmax
1 )→ R3, t 7→ Si(t, pmin

2 )
Cmax

i,1 : (pmin
1 , pmax

1 )→ R3, t 7→ Si(t, pmax
2 )

Cmin
i,2 : (pmin

2 , pmax
2 )→ R3, t 7→ Si(pmin

1 , t)
Cmax

i,2 : (pmin
2 , pmax

2 )→ R3, t 7→ Si(pmax
1 , t)

and let their respective lengths be given exemplary for Cmin
i,1 (t) by

Lmin
i,1 :=

∫ pmax
1

pmin
1

∣∣(Cmin
i,1 )′(t)

∣∣ dt. (4.46)
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Figure 4.32: Histogram of the levels kmax
i which the covers CΩi per surface Si of the inner

shell of the door model have been refined to.

Then we define hSi ∈ R2 with

(hSi)m := max{Lmin
i,m , L

max
i,m }, m ∈ {1, 2}

as the extend of the surface in the world space. Note that (4.46) can be given explicitly
for elementary surfaces like planes, cylindrical, conical, toroidal or spherical surfaces and
for NURBS surfaces it is sufficient to approximate that integral very roughly. With the
extends in the parameter space and the three-dimensional space we can define an extend
ratio βi ∈ R2 for each parameter direction m by

(βi)m := (hSi)m/(hPSi
)m. (4.47)

Let us then assume that hΩi ∈ R2 is the anisotropic extend of the bounding box of Ωi

and ĥ ∈ R is the desired patch diameter in the three-dimensional domain that we want to
achieve across all surfaces. We can then define

kmin
i,m := max

{
0, round

(
log2

(
(hΩi)m(βi)mĥ

−1))} (4.48)

as the minimum level so that patches on that level have an extend in direction m compa-
rable to the desired extend ĥ. To resolve the anisotropy, we can then stretch the bounding
box of Ωi that is used to initialize the root node during the construction of the cover CΩi ,
anisotropically corresponding to the aspect ratio (βi)1/(βi)2. Then, we refine each cover
uniformly to their respective level kmax

i := max{kmin
i,1 , kmin

i,2 , kmin
∗ } where kmin

∗ ∈ N0 is a
global, coarsest level we want all covers to be at least refined to. For the door model we
did use kmin

∗ = 1 to make sure that no cover consists of a single patch, which would limit
the freedom to represent the interface-constraints from neighboring faces significantly. Ad-
ditionally a desired patch size of ĥ = 3 mm has been employed, which resulted in a total of
148 898 patches across the covers on all faces. A histogram of the levels that are employed
per cover is depicted in Figure 4.32. It is important to note that over half of the covers
(1 267 of 2 469) have only been refined to very coarse levels kmax

i ≤ 3. This emphasis
the required robustness of the overall geometry operations to support even very coarse



4.4. NUMERICAL EXPERIMENTS 121

a.) b.) c.)

d.) e.)

Figure 4.33: Boundaries ∂Ωi of the five significantly self-intersecting trim domains included
in the door model.

Figure 4.34: Resulting integration cells for the trim-domains c.), d.) and e.) from Fig-
ure 4.33.
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levels without enforcing additional refinements of patches only to workaround special ge-
ometric constellations. It should additionally be noted that the CAD file contains five
surfaces where the trim domains have significant13 self-intersections in the descriptions
of the boundaries ∂Ωi (compare Figure 4.33). It is very likely that those trim domains
were not intended to be self-intersecting originally, but the self-intersections arose due
to robustness issues during the surface-surface intersection computations and especially
during the creation of the approximate curves in the parameter domain. Nevertheless
the methods presented throughout this chapter are fault-tolerant with respect to such
self-intersections and hence valid integration cells were created for all those trim domains
(compare Figure 4.34).
A generic steel material with Young’s modulus E = 200 000 MPa, Poisson’s ratio ν = 0.3
and density ρ = 7 900 kg · m−3 was used. A shell thickness τ = 1 mm was employed.
Simply supported boundary conditions were applied on all edges that form the outermost
boundary of the complete shell structure. A gravitational acceleration of 9.81 m · s−2 was
acting in direction (0,−1, 0) on the complete shell via the body force f . Local polynomial
spaces of order p = 2 were used on all patches ωi,n and quadratic splines were used for the
weight functions Wi,n during the construction of the Shepard partition of unity functions
φi,n. Results of the final displacement field u are depicted in Figure 4.35 and the von
Mises stress at the top-surface (ξ = τ

2 ), mid-surface (ξ = 0) and bottom-surface (ξ = − τ
2 )

is shown in Figure 4.36.

13Many more trim domains contain self-intersections that we classify as insignificant. Those are usually
self-intersections of parameter curves very close to vertices of the CAD file. All those self-intersections
are within the tolerance assigned to the corresponding vertex by the CAD system and should thus be
considered equal to the intersection (or rather connection) at the vertex itself.
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Figure 4.35: Color plots of th displacement field on the mid-surface. The magnitude of
the displacement and the separate displacement components in x, y and z direction
are depicted. The original geometry is warped by the displacement field, employing
a scaling factor of 475.
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Figure 4.36: Von Mises stress at the top-, mid- and bottom-surface of the shell (from top
to bottom). The original geometry is warped by the displacement field, employing a
scaling factor of 475.



5 Approximated Geometry
(3D)

While in Chapter 4 we were concerned with two-dimensional problems or BREP shell
models, we now turn to three-dimensional problems where Ω ⊂ R3 is represented by a
solid BREP model as described in Chapter 3. To this end we need to solve the same
problems as in two dimensions. Namely, we need to compute the intersections Dm

i ∩ Ω
between the integration domains Dm

i and the simulation domain Ω and then decompose
those intersections into smaller geometric entities where known Gaussian quadrature rules
are available. Unfortunately, the problem of computing Dm

i ∩Ω turns out to be a lot harder
in three dimensions, than it was in two dimensions. In 2D, the domain was described by
curves which we required to intersect with axis-aligned line segments. This could either
result in curve parts in the case of partial overlaps or in individual points otherwise. Since
the 3D domain is described by its boundary surfaces, we need to compute the intersection of
parametrized surfaces and axis-aligned plane parts (the boundary faces of the axis-aligned
boxes Dm

i ). The results of those intersections can be surface parts, curves, or individual
points. Especially intersections resulting in curves confront us with the hardest problems.
In Section 3.1 we already discussed the difficulties with representing the surface-surface
intersection curves for arbitrary surfaces. But even if one of the surfaces is an axis-aligned
plane part, the intersection curve with a bi-cubic surface patch would be of degree 18 [113]
and intersection curves are usually still approximated only [140]. Besides the issues of curve
approximation itself it is usually hard to guarantee that all intersection curves have been
detected, especially when considering that the intersection curves can form loops that do
not touch the boundary of any of the parametrized surfaces [19,47,61,74,101,114,115,124].
Then, even if all intersection curves could be found, the surface belonging to the domain Ω
is potentially trimmed and the intersection curves are usually computed for the untrimmed
surface first. This means to decompose the surface into the surface parts that are included
in the box Dm

i and are required to represent the intersection Dm
i ∩Ω as a BREP itself, we

need to compute the intersection points of the intersection curves and the trim curves in
each surface [75]. Hence we additionally need a robust and efficient curve-curve intersection
algorithm.
Even though these problems have been tackled a lot in the past (the references given
above are only a small selection of literature on that topic), the underlying complexity

125
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of those problems remains persistent. This means that a robust implementation of the
algorithms to compute the intersection of an arbitrary BREP solid and an axis-aligned box
is still quite involved. Additionally the number of tasks (intersection computation, curve
approximation, loop detection, trimming, computation of the resulting BREP topology)
entail an amount of work per intersection computation that can hardly be reduced. Most
of those algorithms have been developed to be applied during solid modelling, i.e. when a
CAD engineer designs the model in question. These processes usually only require a small
number of intersection computations, and the engineer performing those tasks can wait a
few seconds for a single intersection computation to be performed. But the performance
requirements become quite different when we need to perform thousands or millions of
intersections when generating the integration cells in the PUM setting, since the number
of integration cells Dm

i that need to be intersected with Ω depend linearly on the number
of patches ωi that intersect the boundary ∂Ω.1
That is why we propose to not use the exact, curved geometry representation of Ω for
three-dimensional solid geometries. Instead we create a linear approximation Ω̃ where the
boundary ∂Ω̃ is represented by triangles only. We then compute the intersections of Dm

i

with that approximated geometry Ω̃ to generate the integration cells during the Galerkin
discretization step in our PUM. Since ∂Ω̃ consists of triangles only, a robust implemen-
tation to compute those intersections is a lot easier to achieve and can be executed a lot
faster compared to when using the original curved domain Ω. In the two-dimensional Ex-
ample 4.2 in Section 4.4 it was shown that optimal convergence rates of our PUM can be
achieved even when the boundary of our domain Ω is approximated by linear segments, as
long as we choose an appropriate approximation ∂Ω̃ depending on the size of our patches
ωi and their respective local approximation spaces Vi. Driven by those results we compute
a sequence of geometry approximations Ω̃0, . . . , Ω̃kmax that matches the approximation
power of the global function spaces V PU

k on each level k of the covers Ck
Ω.

The remainder of this chapter is structured as follows: In Section 5.1 we describe how
we compute an initial approximation ∂Ω̃ of a curved BREP solid Ω represented by its
boundary ∂Ω and in Section 5.2 we then describe how to compute the intersections Dm

i ∩Ω̃
and decompose those domains into tetrahedra to perform the numerical integration. In
Section 5.3 we finally discuss how we can estimate the approximation error of Ω̃ compared
to the original Ω. We then put the estimated domain approximation error into relation to
the employed cover Ck

Ω and a PUM space V PU
k on levels k to propose a geometry refinement

scheme that allows the overall method to converge with optimal rates.

5.1 Triangular Approximation of Curved BREPs

Let us start this section by discussing the properties the linear approximations Ω̃ should
have. In general we could use any kind of approximation of the domain that allows
us to perform the subsequent operations (namely intersection and decomposition into
integration cells) more performant and robust than on the original domain Ω. To make

1A naive implementation where the CAD kernel Open CASCADE [1] has been used to compute the
necessary intersections could not provide the robustness, nor the performance required for our use case.
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these operations as easy and fast as possible we propose that the approximation consists
only of linear entities so that we can compute intersections fast and reliable. Specifically
this means that all faces in the approximated geometry should be planes and all edges
should be line segments. For simplicity and consistency we further restrict ourselves to use
only triangles and no other plane polygons to approximate surfaces. To further simplify the
subsequent operations we impose some additional restrictions: We want the approximation
of a shell to be a single closed triangular mesh (often denoted as watertightness). I.e. every
edge has exactly two neighboring triangles. This property makes it easy to partition the
space unambiguously into points that are inside the closed shell and the ones outside of
it. Additionally we want the triangular approximation to be non-self-intersecting. This is
required by the algorithm that we apply to decompose Dm

i ∩ Ω̃ into tetrahedra to form
our final integration cells.2
Besides those hard requirements we have one main goal when constructing the geome-
try approximations: We want it to consist of as few triangles as possible such that the
required accuracy can be achieved. This is because the number of triangles in the geom-
etry approximation has a big influence on the number of integration cells that need to
be generated at the boundary of the domain and hence is of significant importance for
the overall performance of the assemble step in the PUM. On the other hand, it is very
important to note that the “quality” (in the sense of the minimal angle of all triangles)
is not an important measure for our geometry approximation. This is in contrast to
most meshes used for finite element simulations and the reason for it is that we use the
triangles for integration only and our basis functions are created completely independent
of those triangles. Hence, the quality demands on our geometry approximation are more
comparable to the ones when generating tessellations for visualization purposes than the
ones for surface meshes generated for finite element simulations. Nevertheless, experience
has shown that a mesh consisting of triangles with larger minimal angles often allows to
get a better approximation of a curved surface with a lower number of triangles than a
mesh with many sharp triangles. Thus, whenever we have the opportunity to reduce the
number of triangles with small angles without introducing new triangles, we will try to do
so.
Surface mesh generation has been studied a lot in the past, with some of the most notable
application fields being finite element analysis (either for shell problems or as initial step
to finally form a volume mesh) and visualization. The method presented in the following
falls into the category of parametric surface meshing, where first a triangulation of the
trim domain in the parameter space is created which is then mapped into the three-
dimensional space by simply applying the surface parametrization to each vertex of the
triangulation. One of the earliest such methods was proposed in [119]. Such an approach
has two major benefits that we want to take advantage of in our use case: Due to having
a direct association of each triangle in the three-dimensional world to the triangle in the
parameter space we can easily evaluate error measures against the actual surface. The

2Note that the restrictions are not inherently given by the geometry approximation approach itself but
by the algorithms we chose to solve the subsequent intersection and decomposition problems as described
in Section 5.2. By choosing different algorithms for those problems we might be able to lift the restrictions
on the approximation in the future.
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Figure 5.1: Solid BREP model of a tube domain represented by a single shell, consisting of
four faces, six edges and four vertices. Left: Geometric representation of all topological
entities. Right: Face-Edge connection graph.

kind of error norms we want to evaluate will be discussed in Section 5.3. Additionally the
usage of an iterative triangulation algorithm in the parameter space allows us to efficiently
refine the geometry approximation whenever the employed error estimator indicates that
a refinement is necessary. We employ an approach very similar to what has been proposed
in [71] and many subsequent papers, e.g. [5, 78]. All of the approaches that we are aware
of have in common that the first step is to create linear approximations of the edges. The
number and distribution of linear segments to be used is usually driven by an error estimate
(commonly based on the curvature of the edge) and an error threshold based on the final
approximation accuracy to be achieved. But in our use case the desired final approximation
accuracy is in general unknown a priori, since it depends on the approximation power of
the employed function spaces V PU

k which we want to be controllable via an a posteriori
error estimator that drives the h and p refinement of V PU

k . Hence we want to start with an
approximation that is as coarse as possible and then refine it only based on the currently
employed V PU

k when necessary. To this end, we create triangulations of the trim domains
P̂Si ⊆ PSi sequentially for each surface Si : PSi → R3 that forms the boundary of a BREP
solid. Within each triangulation we approximate all curves by a single line segment only.
Hence, we only insert points into the triangulation that correspond to topological vertex
entities in the BREP. An exception is made for rings that consist of a single or only two
curve parts. In this case we add one or two additional points along the curves to make sure
that each ring is approximated by at least three points and can thus encapsulate a valid
area. The triangulations are created by an incremental constrained Delaunay triangulation
algorithm just like it was done in the two-dimensional case described in Section 4.2.2. Note
that just like in the two-dimensional case it can happen that the linear constraints in the
triangulation that approximate trim curves can intersect, even though the curves they
approximate do not intersect. We resolve those cases by the same sub-division approach
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Face 1 Face 2 Face 3 Face 4

At Vertex Along Edge 1 Along Edge 3 Along Edge 4 Along Edge 5

Figure 5.2: Subsequent triangulation steps of the four faces from the tube BREP depicted
in Figure 5.1 (top row to bottom row).
Row 1: The triangulation of Face 1 is created. In consists of a single ring with four
edges. Only the endpoints of the edges that correspond to vertices of the BREP are
added. Note that due to Face 1 having a periodic parametrization, both vertices on
the top edge in the triangulation correspond to Vertex 1 of the BREP and the vertices
on the bottom edge correspond to Vertex 2.
Row 2: The triangulation of Face 2 is created. It has two rings, each consisting of
a single edge. Two additional vertices along each of the edges are added. Edge 1 is
shared between Face 1 and Face 2, hence the vertices are transferred to Face 1 and
added into its triangulation.
Row 3: The triangulation of Face 3 is created. Additional vertices along Edge 4 are
immediately added into the triangulation.
Row 4: The triangulation of Face 4 is created. Similar to Face 2, additional vertices
are added along Edge 3 and Edge 5. The vertices are transferred to the connected
Faces 1 and 3 and added into the respective triangulations.
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as in the two-dimensional case (compare Figure 4.7). The points that are added during
this sub-division approach (just like the additional points we add for rings consisting of
less than three curve parts) need to be treated specially. Since they are located along edges
of the BREP they have to be added to the triangulation of the neighboring face that is
connected via that edge. Let us assume we have to add a point located at the parameter
t ∈ PCn along the curve Cn that is part of the boundary ∂P̂Si . Let us further assume
that the face corresponding to the surface Si is connected to another face represented
by a surface Sj along an edge that is represented by the curve Cn in PSi and the curve
Cm in PSj . We first transfer the point to be added into the three-dimensional space by
evaluating the curve and then the surface to get xt := (Si ◦Cn)(t). Then we can find the
parameter location ξt ∈ PSj of the point on Sj that is closest to xt by solving

ξt := arg min
ξ∈PSj

∥Sj(ξ)− xt∥. (5.1)

In an ideal world it should be ∥Sj(ξt) − xt∥ = 0 but due to gaps in the BREP represen-
tation, it is usually only ∥Sj(ξt)− xt∥ ≤ ϵ where ϵ is some tolerance assigned to the edge
in the BREP. After that we can solve a similar problem

st := arg min
s∈PCm

∥Cm(s)− ξt∥ (5.2)

to find the parameter st ∈ PCm along the curve Cm. Again we can only expect to get
points where ∥Cm(st) − ξt∥ ≤ ϵ due to the non-matching representations of (Si ◦ Cn)
and (Sj ◦ Cm).3 In the past, many algorithm have been presented to solve (5.1) and
(5.2), e.g. [17, 33, 81]. A method that gave sufficient performance and robustness to solve
the two-dimension point to curve projection problem was presented in [18]. After solving
(5.1) and (5.2) we add the point Cm(st) into the triangulation of P̂Sj if it has been created
already (i.e. if j ≤ i). Otherwise we remember that point and will add it immediately
when creating the triangulation for surface Sj .
After all triangulations for the trimmed parameter domains of all involved faces have been
generated, we can now create a closed, conforming, non-self-intersecting three-dimensional
surface mesh for each BREP shell. To create the vertices of the surface mesh we simply
need to apply the surface maps Si to the vertices in the triangulation of the corresponding
trim domains P̂Si . Since each triangulation point on an edge is present in two faces and
triangulation points that belong to BREP vertices can be present on even more faces, we
need to take some care to not create duplicated vertices in the surface mesh. Hence, we
transfer every point just once by simply using only the point and the surface map Si with
the lowest index i for the transfer.4 The topology of the surface mesh (i.e. the connections
between the three-dimensional vertices) is then simply the same as the topology of the
two-dimensional triangulations. At this point we have a closed, conforming surface mesh

3Alternatively, a slightly better transfer could be achieved by combining (5.1) and (5.2) to solve directly
for st := arg mins∈PCm

∥(Sj ◦ Cm)(s) − xt∥ but since (Sj ◦ Cm) is only implicitly represented this problem
is potentially a lot harder to solve robustly.

4Alternatively we could compute the average of all three-dimensional points, but we did not see any
benefit of doing this in practice.
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Figure 5.3: Initial triangular approximation of the tube BREP from Figure 5.1. It consists
of 12 vertices, and 24 triangles.

but due to the triangles only approximating the curved surface, it can happen that some
triangles are intersecting other ones. As discussed in the beginning of this section this is
not a property that we tolerate and hence we need to resolve those self-intersections. The
idea is very simply: In a first step we detect all pairs of intersecting triangles and collect
them into a set. In the second step we refine all those triangles by inserting additional
points into the corresponding triangulations and update the three-dimensional surface
mesh accordingly. These steps are repeated until there are no more intersecting triangles.
The detection of intersecting triangles can be speed-up by constructing an R-tree [57] with
the bounding boxes of the triangles. When refining triangles we apply some heuristics to
determine where to add the new points into the triangulations which will be described in
more detail in Section 5.3.2.
The overall approach is depicted exemplary in Figure 5.2 for a solid BREP model of a
tube domain Ω as shown in Figure 5.1. The resulting approximation Ω̃ can be seen in
Figure 5.3.
Remark 5.1. It is important to note that the parametrizations of the surfaces Si are not
area-preserving in general, i.e. for A ⊆ PSi we have

area(A) ̸= area(Si[A]).

In particular that means that curves along the surface are not arc-length parametrized,
which usually leads to the parametrization being anisotropic in the sense that curves
parallel to the different axes in the parameter space get stretched by different factors when
applying the surface parametrization. As a consequence of this anisotropy, a triangulation
that fulfills the Delaunay criterion in the parameter space will most likely not fulfill that
criterion when mapped to the world space. In contrast it is quite common for the mapped
triangulations to be highly distorted and to contain very sharp triangles. Unlike surface
meshes that are used for finite element simulations, such sharp triangles do not impose
fatal problems when employed during the assemble step in the PUM. Nevertheless sharp
triangles impose robustness issues to the following algorithms described in Section 5.2 due
to limited floating point precision. Even though these robustness issues can be overcome
by using exact predicates like those given in [120], applying those predicates to sharp
triangles does usually increase their runtime cost. Hence there is still a benefit in at least
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reducing the number of sharp triangles in our method. To this end, we do not create the
triangulations directly in the parameter space PSi of the surface Si. Instead we employ
a transformation ΦSi : PSi → R2 that transforms any point before we insert it into our
triangulation. Hence, the triangulation is built in the image of ΦSi instead of directly in
PSi . We use a simple affine transformation

ΦSi(x) :=
(

(βSi)1 0
0 (βSi)2

)
x

with βSi as given in (4.47). This transformation is designed to only resolve the anisotropy
of the parametrization. Such a transformation does resolve most sharp triangles that we
encountered in practice, is easy to compute, cheap to apply and has the additional benefit
that its inverse Φ−1

Si
is trivial to form. The inverse is important when new points need

to be added during the triangulation step, which then need to be mapped into the world
space to form the actual surface mesh.

5.2 Intersections & Decomposition into Integration Cells
After constructing the domain approximation according the previous section, the boundary
∂Ω̃ is only represented by triangles and hence the intersections Ω̃ ∩ Dm

i should be a lot
easier to compute. Since ∂Dm

i only consists of plane segments, the intersection Ω̃ ∩ Dm
i

is just the intersection of two polyhedral domains. The evaluation of such intersections
has been well studied in the past. One of the first algorithms to intersect two polyhedra
described by plane polygonal faces in the context of CAD has been presented in [77].
In [59] an algorithm has been presented where the boundary of both polyhedra consist of
triangular faces only. Algorithms where both polyhedra are only represented by triangles
are of very high interest since those representations are very common in computer graphics
and some engineering fields as additive manufacturing. Hence a lot of literature exists on
the topic that mainly deals with improvements of the efficiency and robustness of these
intersection problems [39, 65]. In general all those algorithms utilize the fact that the
boundary of the intersection A∩B of two polyhedra A and B is a combination of parts of
the boundaries ∂A and ∂B. Ignoring degenerate intersection cases this can be written as

∂(A ∩B) = (∂A ∩ B̄) ∪ (Ā ∩ ∂B). (5.3)

Most algorithms decompose the boundary of both objects into disjoint parts that are
either completely within the other object or completely outside of it. Then the boundary
that describes the intersection can be constructed by selecting only those boundary parts
that are within the other one by applying an appropriate classification algorithm. But
in our case Dm

i is actually an axis-aligned bounding box and we can use this property
to accelerate the intersection computation. To this end, we use two different algorithms
to compute the two parts ∂Ω̃ ∩ D̄m

i and ¯̃Ω ∩ ∂Dm
i of (5.3). In the following we briefly

summarize the implemented approach.
In the first step to compute ∂Ω̃ ∩ D̄m

i we employ the Sutherland-Hodgman clipping algo-
rithm [129] to clip all triangles that form ∂Ω̃ with the six axis-aligned planes that form the



5.2. INTERSECTIONS & DECOMPOSITION INTO INTEGRATION CELLS 133

v1

v2

v3

v4

v5

p1

p2 p3

p4

p5

p6

p7

x

yz

Figure 5.4: Three triangles T1, T2 and T3 defined by the vertices (v1,v2,v3), (v1,v4,v2)
and (v2,v5,v3), respectively, are clipped by an axis-aligned bounding box B. T1 ∩ B
results in a pentagon (p1,p2,p3,p4,p5), T2 ∩B results in a single triangle (p2,p6,p3)
and T2 ∩ B in another triangle (p4,p7,p5).

boundary of Dm
i . Each clipped triangle results in a convex, plane polygon that consists

of at most nine vertices which we can triangulate easily5 and hence we do immediately
retrieve a valid triangle representation of ∂Ω̃ ∩ D̄m

i (compare Figure 5.4). In this step the
R-Tree that we have constructed over all triangles to detect self-intersections in the end
of Section 5.1 is used to significantly speed up the clipping. The hierarchical tree data
structure can be used to quickly filter triangles that are either outside of Dm

i (which are
discarded) or completely inside of it (which are transferred unchanged to the result). Only
triangles that intersect the boundary of Dm

i need to be clipped.
For the second step, to compute ¯̃Ω ∩ ∂Dm

i , we should first note that all new vertices (and
edges) created during the clipping algorithm that are not already part of the mesh of ∂Ω̃
are located on the boundary of Dm

i . Since the mesh of ∂Ω̃ is closed, these edges and
vertices form connected lines on the six plane-segments of ∂Dm

i where both endpoints are
on the boundary of the plane-segment or they form a closed ring (compare the first row
in Figure 5.5). In fact these lines are exactly the intersection curves that form ∂ ¯̃Ω∩ ∂Dm

i .
The lines can then be used to partition each of the plane-segments into separate polygons
(potentially with holes) by an algorithm that was proposed in [75]. Each of the polygons
will then either be completely within Ω̃ or outside of it. To distinguish which polygon is
inside we will create a point within each polygon6 and check whether that point is located
within Ω̃7 (compare the second row in Figure 5.5). We discard all polygons that are not

5The triangulation can be performed by fan triangulation where one vertex is connected with all others,
or we can simply use a table lookup for all seven possible cases (since the polygon can consist of between
three and up to nine vertices).

6We can find such a point by computing the centroid of the bounding box of the polygon and then shot
a ray through that point. By computing all intersection points with that ray and applying an even-odd
rule we can find a segment of the ray that is within the polygon. We select the midpoint of that segment.

7We check this by shooting a (half-)ray through the point and computing all intersections of ∂Ω̃ and
the ray. Then we apply an even-odd rule on the number of intersections before the point.



134 CHAPTER 5. APPROXIMATED GEOMETRY (3D)

yz-plane at xmax xz-plane at ymax xy-plane at zmax

p3

p4

p6

p7

y

z

p1

p2 p6

x

z
p1

p5
p7

x

y

Figure 5.5: Decomposition of the axis-aligned plane segments that form ∂Dm
i after ∂Ω̃ has

been clipped by Dm
i as seen in Figure 5.4. Only the plane segments that intersect a

triangle are shown.
Top: The vertices created during the clipping form polylines on the plane segments.
Middle: The polylines are used to split each of the plane segments into disjoint
polygons. A point in the interior of each polygon is created (crosses).
Bottom: Polygons outside of Ω̃ have been discarded and the other ones have been
triangulated.

within Ω̃ and create a triangulation for all the other polygons. Note that these polygons
are not necessarily convex and can even have holes. One possibility to triangulate them is
by applying the constrained Delaunay triangulation algorithm from Section 4.2 (compare
the third row in Figure 5.5). The final triangular, conforming and closed mesh8 that forms
the boundary of the intersection Ω̃ ∩ Dm

i is then formed by collecting all triangles from
the clipping and the ones on the plane-segments (compare Figure 5.6).
Now we are left with the task of decomposing the intersections Ω̃ ∩ Dm

i into integration
cells. Since we have a triangle representation of its boundary, the most natural choice
is to decompose the volume into tetrahedra. To this end we employ a 3D constrained
tetrahedralization provided by Tetgen [123]. It is worth mentioning that in contrast to
the triangular decomposition for the 2D case presented in Section 4.2 our description of
the boundary in 3D is linear already. Hence there is no need to worry about any self-

8In fact the result can consist of multiple (volumetric) disjoint closed meshes.
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x

yz

Figure 5.6: Mesh representation of ∂(Ω̃ ∩ Dm
i ) consisting of vertices from the mesh rep-

resentation of ∂Ω̃, the corner points that form Dm
i and intersection points created

during the clipping algorithm.

intersections after curving the boundaries. Finally to integrate over the tetrahedra we can
employ well-known Gaussian quadrature rules. One of the most recent sources for such
quadrature rules that provides rules to integrate polynomials up to a degree of 20 can be
found in [64].

5.3 Estimation of Approximation Errors & Local Refine-
ment

Now that we have shown how to construct an approximation Ω̃ of the original domain
Ω and how to use such an approximation to efficiently create integration cells for the
PUM, we want to discuss the influence that the domain approximation has on the overall
error when carrying out simulations over Ω̃ that where originally formulated over Ω. To
this end, we do develop a complete error theory with thorough error estimates. We rather
motivate simple estimates that are easily accessible, straightforward to implement, efficient
to evaluate and of practical significance. In a subsequent step we show how we can
implement refinement strategies for the domain approximation Ω̃ that are driven by the
developed error estimates.

5.3.1 Error Estimation

Let us assume that the error ∥u − uPU∥, where u ∈ H1(Ω) is the actual solution to our
PDE and uPU ∈ V PU(Ω̃) is the approximate solution we retrieve from the PUM, is subject
to similar behavior as described by the lemmas of Strang. Then the error bound for
∥u − uPU∥ consists of two components: the one commonly denoted the approximation
error, that results from the discretization of the function space and the one denoted the
consistency error, that results from the discretization of the equation to be solved. The
approximation error is resolved via h-, p-, hp-refinement or in general by improving the
approximation power of the local function spaces Vi and error bounds were established in
Theorem 1.1. In the following we are more concerned with the consistency error. That
error is well known to include errors that arise due to insufficient numerical integration or
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floating point precision in general. But in addition to that the consistency error is related
to the discretization of the simulation domain Ω. Let us assume that the consistency error
is in general related to a term

|a(·, ·)− ah(·, ·)| (5.4)

where ah(·, ·) is the discretized variant of the original continuous bilinear form a(·, ·) from
the given variational problem. Let us assume that a(·, ·) is mainly described by an integral∫

Ω
f(x) dx (5.5)

where surface integrals have been omitted for simplicity and f is just a placeholder for the
actual integrand corresponding to the given PDE. In the discretized form of ah(·, ·), this
translates to ∫

Ω̃
f(x) dx (5.6)

where the integral over Ω has been replaced by an integral over Ω̃.9 Let us assume that
the integral in (5.6) can be computed exactly.10 Let us then introduce Ω̃= := Ω ∩ Ω̃ as
the region where both domains agree, Ω̃− := Ω \ Ω̃ as the region where our approximated
domain is to small and Ω̃+ := Ω̃ \ Ω as the region where our approximated domain is to
large. Then we can decompose the domains into

Ω = Ω̃= ∪ Ω̃− and Ω̃ = Ω̃= ∪ Ω̃+.

The error introduced by the domain approximation that we get from applying (5.5) and
(5.6) to (5.4) can then be decomposed similarly, so we get∣∣∣ ∫

Ω
f(x) dx−

∫
Ω̃
f(x) dx

∣∣∣
=
∣∣∣( ∫

Ω̃=
f(x) dx +

∫
Ω̃−

f(x) dx
)
−
( ∫

Ω̃=
f(x) dx +

∫
Ω̃+

f(x) dx
)∣∣∣

=
∣∣∣ ∫

Ω̃−
f(x) dx−

∫
Ω̃+

f(x) dx
∣∣∣

≤
∣∣∣ ∫

Ω̃−
f(x) dx

∣∣∣+ ∣∣∣ ∫
Ω̃+

f(x) dx
∣∣∣

(5.7)

were in the last step the triangle inequality has been applied. Finally we ignore the
actual integrand f and simply assume f(x) = 1 to define our estimate for the domain
approximation error as

τ :=
∫

Ω̃−
1 dx +

∫
Ω̃+

1 dx. (5.8)

Let us now take a look at how we can compute τ . Considering the surface Si, let Ti,n ⊂ Pi

be one of the triangles in the parameter space that is defined by the vertices vm
i,n ∈ Pi

9Here we assume that the integrand f is the same for a(·, ·) as well as ah(·, ·) and that f is defined for
all x in both Ω and Ω̃.

10In practice that integral is only approximated by applying a discrete quadrature rule, but this kind of
discretization error is not subject of the current discussion.
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Figure 5.7: Left: Parameter space of the a surface Si with the triangle Ti,n, its edges Em
i,n

and vertices vm
i,n from the triangulation of the trim domain P̂Si ⊂ PSi .

Right: The triangle T i,n from the surface mesh in the world space that corresponds
to Ti,n and the curved triangle T

i,n
.

for m ∈ {1, 2, 3}. Then let T i,n ⊂ ∂Ω̃ be the three-dimensional counterpart of that
triangle, defined by the vertices vm

i,n ∈ R3. Additionally let T
i,n

:= Si[Ti,n] be the curved
counterpart of the triangle on the surface and vm

i,n
:= Si(vm

i,n) its vertices. Finally let the
edges of the triangle in the parameter space be denoted as Em

i,n ∈ Pi for m ∈ {1, 2, 3}, the
respective linear edges in the three-dimensional space Em

i,n and the curved edges on the
surface Em

i,n
(compare Figure 5.7). Note that we would expect vm

i,n and vm
i,n

for a given
m to be the same point, but the vertex vm

i,n can be located on the boundary of the trim
domain ∂Pi and thus belong to the representation of a CAD edge. Hence, it is possible
that vm

i,n has been created for a neighboring surface Sj and we can only expect vm
i,n ≈ vm

i,n
.

Now, to compute τ , we want to compute the volume that is enclosed between T i,n and
T

i,n
for all triangles. To this end, we first define parametric representations for the edges

Em
i,n and Em

i,n. Let

Em
i,n(t) := vm

i,n + t(v(m mod 3)+1
i,n − vm

i,n)

Em
i,n(t) := vm

i,n + t(v(m mod 3)+1
i,n − vm

i,n)

with t ∈ [0, 1] be the parametrizations of Em
i,n and Em

i,n respectively. A parametrization of
Em

i,n
can then be defined by the composition (Si ◦ Em

i,n)(t). Finally we can define three
surfaces that close the sides between each edge pair (Em

i,n, Em
i,n

) via a simple ruled surface
construction given by

F m
i,n(r, s) := (1− s)Em

i,n(r) + sEm
i,n

(r)

with r, s ∈ [0, 1]. Let Fm
i,n := {F m

i,n(r, s) | r, s ∈ [0, 1]}, then we can define Vi,n to be the
set of points that are enclosed by the faces T i,n, T

i,n
and Fm

i,n, with m ∈ {1, 2, 3}, i.e. the
wedge like object depicted on the right in Figure 5.7. Now, due to the divergence theorem
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we can rewrite the volume integral of a vector field ϕ : R3 → R3 into surface integrals, so
we get ∫

Vi,n

div ϕ dx =
∫

T i,n

ϕ · n ds+
∫

T
i,n

ϕ · n ds+
3∑

m=1

∫
Fm

i,n

ϕ · n ds

with n being the outwards pointing normal vectors to each of the respective surfaces.
Choosing any vector field where div ϕ(x) = 1, e.g. ϕ(x) := (0, 0, x3)T , finally gives us a
simple equation to compute the volume of Vi,n by

∫
Vi,n

1 dx =
∫

T i,n

x3n3 ds+
∫

T
i,n

x3n3 ds+
3∑

m=1

∫
Fm

i,n

x3n3 ds =: τ̃i,n. (5.9)

To compute the surface integrals in (5.9) we can employ simple Gauss quadrature rules.
The parametrizations of the surfaces T i,n and T

i,n
can be used to perform the integra-

tion in a two-dimensional reference triangle domain. The parametrizations F m
i,n allow to

perform the integration on each Fm
i,n in two-dimensional reference rectangle domains. We

can then define an estimate for the total domain approximation error by

τ̃ :=
∑

i

∑
n

τ̃i,n. (5.10)

Note that τ̃ is just an approximation for τ from (5.8). One reason for this is that the
triangles Ti,n do only form a linear approximation of the trim domain P̂i that transfers
into an insufficient representation of the CAD edges on the boundary of each T

i,n
. Hence,

if we consider an edge Em
i,n at the boundary of the triangulation and the same edge Em

j,k

from the approximation of a neighboring surface Sj , their respective curved edges Em
i,n

and Em
j,k

do usually not overlap and hence there is a gap or overlap in the global volume
computation, even if we assume that the original geometry is perfectly watertight. On
the other hand, that inaccuracy in the error estimation is going to get reduced when the
triangulation in the parameter domain P̂i is refined along the edges. Another reason for
inaccuracies in τ̃ comes from the preconditions that are required for (5.9) to be accurate.
One of those preconditions is that the surface of Vi,n is not allowed to be self-intersecting.
But such cases can arise where surfaces Si are neither convex, nor concave everywhere
and hence T

i,n
can run through T i,n, which results in some parts of the actual volume

canceling out each other or τ̃i,n can even become negative.11 To this end we propose a
second way to estimate the error. Let x ∈ T i,n be a point in the parameter triangle and
ξx its corresponding point in the parameter triangle Ti,n. Then we define

τ̂i,n :=
∫

T i,n

∥x− Si(ξx)∥ dx (5.11)

as the local approximation error. There are some benefits of using (5.11) instead of (5.9) to
measure local errors. For one thing, the computation of τ̂i,n does only require to evaluate

11Hence, in practice, we do actually use the absolute values |τ̃i,n| for the local error estimate and in
(5.10).
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a single surface integral on a triangle and is hence cheaper to compute than τ̃i,n. Secondly
the integrand in (5.11) is always positive. Hence, τ̂i,n is always positive and there is no
canceling out effect in the case where T i,n and T

i,n
intersect. On the other hand, (5.11) is

only remotely related to the actual volume of Vi,n, but it does indeed give a good estimate
if the vector x − Si(ξx) is (almost) orthogonal to T i,n and when T

i,n
does not vary to

much. Both of those properties are more likely to be fulfilled the finer the triangulation
in the parameter space is. Hence, for ever finer domain approximations, we expect the
difference between τ̂ :=

∑
i

∑
n τ̂i,n and τ̃ to vanish, and both should eventually approach

τ .

5.3.2 Refining the Domain Approximation

We now discuss a simple way to refine the domain approximation Ω̃ based on the error
estimates introduced in the last section. To this end, let us assume that we are at an
iteration k where we do have a triangular description of ∂Ω̃k and we have computed local
errors τ̃k,i,n or τ̂k,i,n for all triangles involved in the representation of ∂Ω̃k. We drop the
distinction between τ̃k,i,n and τ̂k,i,n in the following and simply refer to the estimated
errors as τk,i,n and the respective global error as τk. Let us then assume that a desired
domain approximation error τ̄k+1 < τk for the next iteration is given. The goal is to create
a new domain approximation ∂Ω̃k+1 such that τk+1 ≈ τ̄k+1. To this end, we propose an
algorithm that works in two steps: In the first step we collect a set of triangles that
should be refined. In the second step those triangles are refined and the errors for the
new triangles are computed. Those steps are repeated until the new global approximation
error τk+1 is less than the desired error τ̄k+1. To this end, let us define

r∗ := τk − τ̄k+1 (5.12)

as the target error reduction. Additionally let Tn̂ and τn̂ with n̂ = 1, . . . , N̂ be the
triangles and their respective errors without the distinction which surfaces Si they belong
to, hence N̂ being the total number of triangles over all surfaces. Then, let us assume
that the triangles are ordered by their errors in descending order, i.e. τn̂ ≥ τn̂+1 for all
n̂ = 1, . . . , N̂ − 1. Let us then introduce β ∈ (0, 1) as the conservative error reduction
factor and σ ∈ (0, 1) with σ ≤ β as the optimistic error reduction factor.12 We then start
to mark the triangles Tn̂ as to be refined until the estimated total error reduction after
refining m triangles given by

rm :=
m∑

n̂=1
βτn̂ = rm−1 + βτm (5.13)

reaches r∗, i.e. rm ≥ r∗ or when we reach a triangle at index m such that

τm < στ1. (5.14)

The condition from (5.14) tries to avoid refining triangles with errors that are less than
the errors we expect to be present on the new triangles that result from the refinement

12Throughout this thesis we used β := 0.5 and σ := 0.25.
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of the triangle with the largest error. The idea behind that condition is that it should
be beneficial to refine those new triangles in the next iteration first. Hence the algorithm
above will eventually establish a state where the errors should be distributed evenly among
all triangles. When either (5.13) or (5.14) are fulfilled or when we have reached m = N̂
the collection step is finished and we go over to the refinement step.
The refinement step is simple to implement. For each triangle to refine we compute new
points to be inserted into the parameter triangulations of its respective faces. Since we
employed an incremental constrained Delaunay triangulation, adding new points into the
triangulation is directly supported. We usually refine a triangle by adding three new points
at the centers of its edges so that the refinement of a single triangle results in four new
triangles. Hence, such a refinement strategy is often denoted the 1-to-4 refinement. An
exception to this is when we have to deal with sharp triangles. For sharp triangles we do
not add new points at the centers of all edges, but only a single point at the center of
the longest edge. This is supposed to mitigate cases where two new points very close to
each other would be added. Since all new points that we add are along edges of triangles,
we need to take special care of constrained edges. Those edges represent parts of the
originally curved description of the trim domain P̂i. Hence, new points that are added
along those edges are not added at the center of the linear edge from the triangle, but they
are added at the parametric center of the corresponding curve part that represents ∂P̂i.
Additionally those points need to be added to the triangulation of the adjacent surface Sj .
To this end, they are transferred according to (5.1) and (5.2) and then added to the target
triangulation. Special care has to be taken that only a single point is added for any refined
edge between two triangles. This is true for two triangles that belong to the same surface
as well as for two triangles that belong to different surfaces. Then, after all points have
been added to the triangulations, we recompute the local error estimate τk+1,i,n according
to (5.9) or (5.11) for all modified triangles. This does include triangles that have been
newly created after a refinement, as well as triangles that have been modified due to
flips being performed during the Delaunay insertion algorithm. Then, we can reevaluate
the total domain approximation error τk+1 and check whether we have reached our goal
τk+1 < τ̄k+1. If the goal has not yet been reached, we compute the remaining target error
reduction according to (5.12) and continue with another refinement collection step.

Remark 5.2. A simpler version of the algorithm above could be formulated by keeping a
heap like data structure of the triangles with their respective errors. Then, we always pop
the triangle with the highest error, refine it immediately and update the heap with the
newly inserted triangles and their errors.13 We would stop as soon as we have reached
our target error τ̄k+1. But the benefit of formulating the algorithm in two steps as given
above is that it is easier to adapt to common domain decomposition approaches for the
parallelization in the PUM as e.g. given in [54]. Here the patches of a cover are distributed
among multiple parallel entities (usually processes) and each process performs operations
only local to its patches. Hence each process does only need to have the fully resolved

13The heap would be more difficult to update, since not only the refinement triangle needs to be removed
and the new ones inserted, but triangles that got modified due to edge flips in the Delaunay insertion of a
new point need to be handled correctly as well.
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description of the domain approximation ∂Ω̃ that intersects the patches it owns. To this
end, the basic idea to adapt the algorithm described above to a parallel PUM is that
each process would perform the collection step of the triangles to be refined only locally.
Then the triangles to be refined are communicated to the neighboring processes, and the
refinement is then applied locally by each process, synchronizing the total approximation
error after each iteration. This has not yet been implement and is a topic for future work.
Let us now shortly discuss a few strategies how to make choices for the desired domain
approximation errors τ̄k+1. The basic idea is that according to the Strang lemmas, the
total error is bounded by a combination of the approximation error and the consistency
error. Since we have a solid theory for the convergence of the approximation error, we want
to reduce the consistency error by the same rate so that the consistency error does never
dominate the total error and hence slows down the overall convergence of the method.
Based on that idea there are some ways to choose τ̄k+1. One way is to simply assume that
Theorem 1.1 and its h-version (1.4) hold from the beginning of the refinement sequence,
so we can furthermore assume that there is a given convergence rate that depends on
the global polynomial degree employed in the local function spaces. Considering the L2-
error, we expect the error to get reduced by a factor of 2−(p+1), with p being the global
polynomial degree, when refining the cover and the respective PUM space from a level
k to a level k + 1 by uniform h-refinement.14 Hence, a very simply strategy is to make
sure the domain approximation error gets reduced by the same factor for each level of
refinement and the desired approximation error on a refined level k + 1 is given by

τ̄k+1 := τk
1

2(p+1) . (5.15)

If we additionally assume that our domain refinement algorithm does not overrefine too
much, i.e. τk+1 ≈ τ̄k+1 holds, we can adjust (5.15) to

τ̄k,p := τ0

( 1
2(p+1)

)k

(5.16)

which allows us to directly give the desired approximation error for any level k based only
on the initial domain approximation error τ0 and the employed polynomial degree p. Some
alternative strategies will be examined in the next section. A strategy where we try to
estimate the actual approximation error on each level and then select a desired domain
approximation error in relation to that estimate is studied in Example 5.2. An alternative
strategy that is similar to (5.16), but tries to compensate for patches that are outside of
the domain is studied in Example 5.3.
Remark 5.3. If the final level kmax is known beforehand we can use (5.16) to determine
a final desired domain approximation error immediately. Hence, we can first refine the
domain up to the accuracy required for the final level and then build the covers and PUM
spaces via the hierarchical tree construction algorithm for that static domain, i.e. all
covers Ck

Ω̃ with k = 0, . . . , kmax will be built according to the same domain approximation
14This would only hold under additional assumptions, like none of the children of a patch are outside of

the domain or get eliminated by the cover post-processing step.
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Ω̃kmax . An alternative approach is to refine the domain approximation synchronously to
the refinement of the cover, i.e. at a given level k, the covers Ck

Ω̃ will be built according
to the approximated domain Ω̃k. Such an approach is always required when the final
level kmax is not known a priori, e.g. when the refinement process and stopping criterion
is based on an error estimate for a solution uk on the currently finest level (such a case
will be demonstrated in Example 5.2). Additionally it can be beneficial to assemble the
stiffness matrices and other operators required for a multilevel solver with respect to
coarser domain approximations that correspond to the level of the cover instead of to
the finest level since those coarser domain approximations result in a significantly lower
amount of integration cells to be used on the coarser levels. But the adjustment of the
domain approximation after each cover refinement imposes an additional difficulty. Let us
assume we are on a level k with a cover Ck

Ω̃, built for a domain Ω̃k and then we refine the
domain according to (5.16) or (5.15) for the level k + 1. The cover Ck

Ω̃ will not be valid
anymore for the domain Ω̃k+1 since some tree cells Ci,k did not intersect Ck

Ω̃ and thus were
not stretched into patches ωi,k, but those cells would now intersect Ω̃k+1 and hence we
are missing some patches in Ck

Ω̃. Similarly, patches that were intersecting Ck
Ω̃ could not

intersect Ω̃k+1 anymore and should thus be removed from the cover. But not only is the
cover Ck

Ω̃ invalid for Ω̃k+1. Using that cover to construct a new cover Ck+1
Ω̃ according to

our hierarchical cover construction algorithm 1.1 would be incorrect as well, since we do
only consider patches (or their respective tree cells) for refinement that were not outside
of the domain on the previous level. Hence, we propose to update the cover Ck

Ω̃ to be
valid according to Ω̃k+1 before performing the refinement step. This can be done by a tree
traversal algorithm from the root patch. For each patch we check whether its children do
intersect Ck

Ω̃ but not Ck+1
Ω̃ or vice versa. If such cases are found we insert new patches into

the respective covers or delete patches with all their children when they became outside
patches. Note that we do not traverse the children of patches that were completely inside
(or outside) of Ω̃k and that stayed completely inside (or outside) of Ω̃k+1. Hence only
patches that intersect either ∂Ω̃k or ∂Ω̃k+1 need to be visited. After the update of the
tree structure, we can create the new cover Ck+1

Ω̃ by Algorithm 1.1 as usual and continue
from there on.

5.4 Numerical Experiments

In the following we present the results of numerical experiments, conducted to show that
the method presented in this chapter yields a converging refinement scheme. All the ex-
periments are carried out for three-dimensional domains Ω where at least a part of the
boundary is described by non-linear surfaces and hence we employ a sequence of domain
approximations Ω̃k. We start by measuring error norms as given in (2.4) for a uniformly
h-refined cover and show that we are indeed able to achieve good overall convergence
towards smooth solutions when employing the domain approximation refinement as pre-
sented throughout this chapter. Then we proceed to show results for non-smooth solutions
and adaptively refined covers. Finally we employ an example on a industrial CAD geom-
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Figure 5.8: Geometry and boundary conditions for Example 5.1. The geometry is a cube
[0, 10]3 with two half-cylindrical cuts and one cylindrical hole. A force is applied on
the face ΓN := {x ∈ ∂Ω | x2 = 10} (red) and the displacement in y-direction is fixed
on the face ΓD := {x ∈ ∂Ω | x2 = 0} (blue). Additionally the x-displacement is fixed
in the points (0, 0, 0)T and (0, 0, 10)T (green) and the z-displacement is fixed in the
point (10, 0, 0)T (yellow).

etry described nearly entirely by curved NURBS surfaces and compare our results to the
results presented in a reference paper where a classical FEM has been used to obtain the
solution.

Example 5.1 (Cut-Cube with hole). This first experiment can be considered as the
three-dimensional equivalent of the two-dimensional Experiment 4.1. To this end, we
again consider the equations of linear elasticity as given in (4.32) and compare sequences
of solutions on uniformly refined covers for different polynomial degrees to a numerically
computed reference solution. The domain Ω in this example is a cube [0, 10]3 with two
half-cylindrical cuts and one cylindrical hole. Let ΓD := {x ∈ ∂Ω | x2 = 0} be the face
at minimal y-coordinates and ΓN := {x ∈ ∂Ω | x2 = 10} the opposite face at maximum
y-coordinates. Then we employ the boundary conditions

u2 = 0 on ΓD,
σ(u) · n = (0, 0.01, 0)T on ΓN,
σ(u) · n = 0 on ∂Ω \ (ΓD ∪ ΓN)

and we additionally fix the displacement in x-direction (i.e. u1 = 0) in the points (0, 0, 0)T

and (0, 0, 10)T and the displacement in z-direction (i.e. u3 = 0) in the point (10, 0, 0)T

(compare Figure 5.8). An artificial material with Young’s modulus E = 10 and a Poisson’s
ratio ν = 0.3 is used. An exemplary solution to that problem is depicted in Figure 5.9.
It is important to note that the domain is described by faces that are either planar or
cylindrical surfaces that cut into the original cube. Hence the overall domain can be con-
sidered to have a “concave” kind of shape. This means that given a triangle that is part
of the boundary description of an approximation Ω̃, that triangle is always completely
outside of the original domain Ω. Thus, no triangle intersects the surface it is approximat-
ing and it is safe to use (5.9) to compute the domain approximation error estimates τ̃i,n.
Hence, whenever we use τk to refer to the domain approximation error on a level k in this
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Figure 5.9: Magnitude of the displacement field (left) and von Mises stress (right) of the
solution computed on level k = 5 employing polynomials of degree p = 2. The domain
has been warped by the displacement field scaled by a factor of 28.

Figure 5.10: Approximations of the domain Ω for different levels k employing polynomials
of degree p = 1. Initial approximation with estimated approximation error τ0 ≈ 156.46
(left), approximation for level k = 3 with τ̄3,1 ≈ 2.44 and τ3,1 ≈ 2.32 (center) and
approximation for level k = 5 with τ̄5,1 ≈ 0.153 and τ5,1 ≈ 0.151 (right).
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example, we mean the estimated errors computed according to (5.9) and (5.10). Let us
then consider that we create domain approximations Ω̃k for a cover on level k subject to
the desired domain approximation error according to (5.16). Then the concave property of
the domain ensures that subsequent refinements of the approximated domain are always
included within the coarser domain approximation, i.e.

Ω̃0 ⊇ Ω̃1 ⊇ · · · ⊇ Ω̃k (5.17)

holds for any k ∈ N0. Approximations for some exemplary levels are depicted in Fig-
ure 5.10. Due to the nesting property of the domain approximations, we compute all
errors on a very fine reference domain Ω̃ref that forms a subset of all the other domains
Ω̃k. The final estimated domain approximation error of the employed reference domain
Ω̃ref is given by τref ≈ 1.161 · 10−4 where for comparison the initial domain approximation
error is given by τ0 ≈ 156.46. We compute the reference solution u∗ on that domain
where we employ a polynomial degree pref = 4 on a uniformly refined cover up to level
kref = 6 which results in a total of Nref = 132 528 patches and dofref = 13 915 440 degrees
of freedom.
Let us first take a look at the convergence behavior subject to h-refinement for PUM spaces
with different polynomial degrees p on static domain approximations Ω̃q where q ∈ N is
fixed for all levels k of the employed cover. The domain approximations Ω̃q are created
according to desired target domain approximation errors

τ̄q := τ0

(1
4

)q

(5.18)

which is equal to the level dependent domain approximation strategy given by (5.16) for
linear polynomials. We first conduct the experiments for polynomial degrees p = 1, 2, 3,
each on a range of domain approximations Ω̃q with q = 3, . . . , 10. Results are shown in
Figure 5.11. As first result, we want to point out that for p = 1 we can achieve close
to optimal rates up until the final level k = 7 for a domain approximation using q = 7.
Since (5.18) resembles the level dependent target domain approximation error (5.16) for
linear polynomials, this indicates that this level dependent estimate is indeed sufficient.
Additionally, we can see that coarser domain approximations impose higher errors on the
final level. While for q = 6 the difference on the final level is not yet significant (but
present), q = 5 does already give a visually distinguishable final error in the plot and
the error for q = 3 is about a magnitude higher than the one for q = 7. These results
imply that the level dependent estimate (5.16) is also not too pessimistic and will thus
not impose too fine domain approximations that would lead to the creation of a large
amount of unnecessary integration cells. In Figure 5.12 the results are depicted for the
domains Ω̃q with q = 4, 7, 10 and different polynomial degrees. Those plots clearly show
that insufficient static domain approximations can lead to states where further refinement
of the PUM space does not reduce the overall error of the retrieved solutions (similar to
what has been observed in the two-dimensional Example 4.2). Only the very fine domain
approximation with q = 10 allows to retrieve close to optimal rates in the L2- and H1-
norms for all polynomial degrees up to the finest levels. The non-optimal behavior in



146 CHAPTER 5. APPROXIMATED GEOMETRY (3D)

102 103 104 105 106 107

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eL∞ (p = 1)

q = 3
q = 4
q = 5
q = 6
q = 7

102 103 104 105 106 107

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eL2 (p = 1)

q = 3
q = 4
q = 5
q = 6
q = 7

102 103 104 105 106 107

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eH1 (p = 1)

q = 3
q = 4
q = 5
q = 6
q = 7

103 104 105 106 107
10−5

10−4

10−3

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eL∞ (p = 2)

q = 5
q = 6
q = 7
q = 8
q = 9

103 104 105 106 107

10−5

10−4

10−3

10−2

10−1

degrees of freedom

re
l.

er
ro

r

Error convergence eL2 (p = 2)

q = 5
q = 6
q = 7
q = 8
q = 9

103 104 105 106 107

10−3

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eH1 (p = 2)

q = 5
q = 6
q = 7
q = 8
q = 9

103 104 105 106

10−5

10−4

10−3

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eL∞ (p = 3)

q = 6
q = 7
q = 8
q = 9

q = 10

103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

degrees of freedom

re
l.

er
ro

r

Error convergence eL2 (p = 3)

q = 6
q = 7
q = 8
q = 9

q = 10

103 104 105 106

10−3

10−2

10−1

100

degrees of freedom

re
l.

er
ro

r

Error convergence eH1 (p = 3)

q = 6
q = 7
q = 8
q = 9

q = 10

Figure 5.11: Error convergence for Example 5.1 (cut-cube) using polynomials of degrees
p = 1, 2, 3 (top to bottom). Results on different static geometries Ω̃q for q = 3, . . . , 10
are shown. For p = 1 and p = 2 the results for levels k = 1, . . . , 7 are shown and
for p = 3 results on levels k = 1, . . . , 6 are shown. Optimal convergence rates are
depicted by dashed lines.
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Figure 5.12: Error convergence for Example 5.1 (cut-cube) on different static geometries
Ω̃q, for q = 4, 7, 10 (top to bottom). Each graph contains plots for different polynomial
degrees p. Optimal convergence rates are depicted by dashed lines.
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Figure 5.13: Error convergence for Example 5.1 (cut-cube) for polynomial degrees p =
1, 2, 3 on dynamic domain approximations Ω̃k on each level k. Optimal convergence
rates are depicted by dashed lines.

the L∞ norm can be explained by the inherent difficulty to compute errors in that norm.
In particular, we do only compute the errors on Ω̃ref here and hence the computation
does not include any integration points that are located on the boundary of Ω̃q where the
approximate solutions uPU

k live on. Additionally, for the computations we always resolve
all discontinuities (i.e. especially the patches) of the PUM space that the reference solution
is computed on and the PUM space on the level k that the solution uPU

k is computed on.
Hence, we use a different set of quadrature points to compute the errors for the solutions
on each level k which makes an accurate measurement of convergence even more difficult.15

Finally we conduct the experiment where we use domain approximations Ω̃k that are re-
fined according to the target domain approximation error per level k according to (5.16).
The results are depicted in Figure 5.13. Those results show that the simultaneous refine-
ment of the PUM space and the domain approximation yields a method that converges
with close to optimal rates in the L2- and H1-norms.16

Example 5.2 (Flange). In this example we examine the practically more relevant geom-
etry of a mechanical flange17. We again consider the equations of linear elasticity given
by (4.32) and a generic steal material with a Young’s modulus E = 200 GPa and a Pois-
son’s ratio ν = 0.3. We then conduct experiments with two different sets of boundary
conditions (compare Figure 5.14). In both cases we fix the displacement on the two left
bolt holes via a homogenous Dirichlet boundary condition u = 018. Then, in the first

15The result for ∥u∗∥L∞ is only consistent up to three or four digits on average over the different sets
of quadrature points used to compute the errors for uPU

k on different levels k.
16The error computations in the L∞-norm are subject to the same problems as described above.
17The flange model has been taken from https://grabcad.com/library/flange-175 by author “Sand-

dip Padhariya” (https://grabcad.com/sanddip.padhariya-1). Accessed: 2022-09-29.
18The Dirichlet boundary conditions are not enforced by the conforming approach that was presented

in Section 1.4. Instead we apply a weak enforcement by Nitsche’s method as presented in [55]. This
is beneficial in the current case where due to the piecewise linear approximation of the boundary, the
conforming method would need to fix all basis functions to represent the boundary condition. In contrast

https://grabcad.com/library/flange-175
https://grabcad.com/sanddip.padhariya-1
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Figure 5.14: Geometry and boundary conditions for Example 5.2. The displacement is
fixed at the two bolt holes on the left (blue). On the bolt hole on right (red) either a
force in direction d = (0, 0, 1) is applied or a prescribed displacement of βd is given
for all points at that bolt hole.

set of boundary conditions, we apply a force on the right bolt hole. That force is given
by a Neumann boundary condition σ(u)n = d L

A , where L = 1 kN is the force acting in
direction d = (0, 0, 1)T on the surface of the right bolt hole that has a surface area of
A. Alternatively, we apply a Dirichlet boundary condition on the right bolt hole with a
prescribed displacement of u = βd with β = 0.0072 mm.
Since the interior and exterior edges and corners of the geometry have not been equipped
with fillets, we expect the solution to be subject to high stress concentrations or even
singularities at those locations (compare Figure 5.15). In the case of such non-smooth
solutions we cannot expect a uniform refinement scheme to yield optimal convergence
rates. Hence we employ adaptively refined covers and PUM spaces in this example. To this
end, the adaptive refinement is controlled by an a posteriori sub-domain error estimator
that was proposed for our PUM in [56]. Here we compute the solution on a given cover
and PUM space and then solve local problems on each patch, employing local function
spaces Vi with an increased polynomial degree p+ q (throughout this thesis an increment
of q = 1 is used). From those local solutions we can then retrieve local error estimates
ηi in the energy norm on each patch that are used to control the h-refinement of the
cover and PUM space. To this end, we first uniformly refine the cover to an initial level
kinit were we solve the problem to obtain a solution uPU

m for the first iteration m = 0.
The error of that solution is then estimated per patch and the local estimate is used to
control the refinement of the cover. Then we continue to compute a global solution for the
next iteration m + 1 on the refined cover. Note that our hierarchical cover construction
algorithm 1.1 does only create a new level when at least one leaf cell/patch is h-refined,
thus we do usually not create a new level in every iteration m and hence it is km

max ≤ m,

Nitsche’s method has more freedom to balance the correct representation of the boundary conditions and
the solution of the PDE in the interior.
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Figure 5.15: Magnitude of the displacement field (left) and von Mises stress (right) of the
solution in iteration m = 18 employing polynomials of degree p = 2. The domain has
been warped by the displacement field scaled by a factor of 1000.

Figure 5.16: Patches represented by spheres around the centers of the respective domains
ωi. The spheres have been scaled anisotropically by half the radius of the patches’
domains. The color indicates the depth of the associated cell in the cover tree. De-
picted are the patches of the refinement iterations m = 1, 5, 9, 13, 17 and 21 (top
left to bottom right). In the final iteration m = 21 the finest level of the cover is
km

max = 12.
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Figure 5.17: Approximations of the domain Ω in different refinement iterations m employ-
ing polynomials of degree p = 1. Initial approximation with estimated approximation
error τ0 ≈ 1.44 · 105 (left), approximation in iteration m = 5 with τ5 ≈ 2.47 · 103

(center) and approximation in iteration m = 13 with τ13 ≈ 2.15 · 102 (right).

where km
max is the finest cover level in iteration m. Since we expect the errors in the energy

norm to be higher at locations of stress concentrations or singularities, the refinement will
yield covers that are adaptively refined to those locations (compare Figure 5.16). We use
a stretch factor α = 1.2 when creating the patches ωi from the local tree cells Ci and
hence we can allow a maximum depth difference of Lmax = 2 according to (1.31) to get
sufficiently adaptive covers.
It is important to note that the sub-domain error estimator does not alter the geometry
when estimating the local errors. Hence it does only give an estimate for the approxima-
tion error and does not include any error components due to the domain approximation.
Since the overall idea of the geometry refinement is to couple the convergence of the ap-
proximation error with the convergence of the consistency error we hence use the error
estimates to determine the desired target domain approximation errors τ̄ . Up to the initial
level kinit, where we do not have any error estimates yet, we employ our usual equation
based on the optimal convergence rates for a polynomial degree p, i.e.

τ̄init = τ0

( 1
2p+1

)kinit

is the initial target domain approximation error that is applied before solving for the first
solution uPU

0 . Then, let ηL2
m be the global estimate of the approximation error in the

L2-norm according to the sub-domain error estimator for a solution uPU
m in iteration m.

We then use

τ̄m+1 = τinit
ηL2

m

max
n=0,...,m

{ηL2
n }

(5.19)

as the desired target domain approximation error for the next iteration. The fraction
in that equation resembles the overall factor by which the approximation error has been
improved up to iteration m. In the denominator we take the maximum error estimate
of all previous iterations n = 0, . . . ,m instead of simply the estimated error ηL2

0 in the
first iteration, since we cannot always expect ηL2

0 to be the largest error estimate. The
reason for that is that on very coarse covers, the estimate itself might not be very precise
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Figure 5.18: Error convergence according to (5.20) for Example 5.2 (flange). Optimal
convergence rates are depicted by dashed lines (for polynomial degrees p = 1 and
p = 2 only). The top row depicts results for the case where a fixed displacement is
prescribed on the right bolt hole. The bottom row depicts results where a force is
prescribed at that bolt hole.

and often underestimates the actual error. Hence, it is common for the error estimates to
increase on the first few iterations before they start to decrease monotonically.
Let us now turn our focus on how we measure errors in this example. In contrast to the
geometry used in Example 5.1, the flange geometry has both, surfaces that are concave
and surfaces that are convex. Hence, we have to assume that

Ω̃m+1 ̸⊆ Ω̃m, Ω̃m+1 ̸⊇ Ω̃m

for all domain approximation Ω̃m+1 that result from the refinement of a domain approx-
imation Ω̃m. This does especially mean that is not easy to find a common sub-domain
where we can evaluate the errors according to (2.4) on. To this end, we employ a simplified
error measure

ẽL2 :=
∣∣∥u∗∥L2(Ω̃∗) − ∥uPU

m ∥L2(Ω̃m)
∣∣

∥u∗∥L2(Ω̃∗)
(5.20)

that does only evaluate norms of solutions on the respective domains they have been
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computed on. Error measures utilizing the L∞ and H1 norms are created analogously.
For the reference solution u∗ we then simply use the finest solution in the final iteration
of the refinement process. The convergence results for both sets of boundary conditions
as mentioned in the beginning are depicted in Figure 5.18. Let us first discuss the results
for the case where we apply a fixed displacement on the right bolt hole. The first thing to
mention is that the error in the L∞-norm first decreases very fast, plateaus for a short time
and then starts do decrease with a close to constant rate. This initially fast convergence
can be explained by the fact that the maximum displacement (on the final level we measure
∼7.226 µm) is very close to the prescribed displacement (∼7.2 µm) and hence we get a
very accurate result, right from the start. Looking at the errors in the L2- and H1-norm,
we observe that we get good convergence for polynomial degrees p = 1 and p = 2, with
rates close to what would be expected for errors measured by the original formulas given
in (2.4). Especially in the H1 norm we see convergence with even better rates. This is due
to the fact that the employed error measures (5.20) are less strict than the original ones
given in (2.4) and additionally the improving convergence on fine levels can be explained
due to the numerical reference solution not being sufficiently accurate itself. Also note
that the convergence employing polynomials of degree p = 3 does not yield better results
than when employing polynomials with p = 2. This is not surprising, since the solution
is known to be singular at the re-entrant edges and hence cannot be expected to be of
high regularity. Overall, we can observe very similar convergence behavior for the case
where force boundary conditions are applied on the right bolt hole (compare second row of
Figure 5.18). The convergence in the L∞-norm does not show the initially fast convergence
and the effect of observed high convergence rate in the H1-norm is even stronger here.
Similarly, we cannot see any improved convergence behavior when employing polynomials
of degree p = 3. We want to note that it might be possible to achieve better convergence
for higher polynomial degrees when allowing more adaptivity by increasing the allowed
maximum depth difference Lmax or by applying a more sophisticated error estimator and
refinement strategy that performs both, adaptive h- as well as adaptive p-refinement as
has been presented in [106]. We would expect such an refinement strategy to only increase
the polynomial degrees on patches further away from the singular locations where the
solution exhibits smoother behavior locally.
Nevertheless, the reduced convergence for higher polynomial degrees allows us to demon-
strate another beneficial behavior of the geometry refinement that is bound to the error
estimator as given in (5.19), compared to the one only determined by the employed polyno-
mial degree as given in (5.16). Since the error estimator observes similar error reductions
for both polynomials of degree p = 2 as well as p = 3, this results in similar geome-
try refinement in both cases (compare Figure 5.19). Hence, in the case of p = 3 we do
not unnecessarily overrefine the geometry and create a lot of integration cells when the
approximation error would not convergence fast enough anyways.

Example 5.3 (Landing Gear’s upper panel). In this final example we validate the PUM
19Renderings based on CAD models taken from https://grabcad.com/library/

main-landing-gear-blg-tandem-bogie-airbus-a380-1 by author “Mohammed Ismail A”
(https://grabcad.com/mohammed.ismail.a-2). Accessed: 2022-09-29.

https://grabcad.com/library/main-landing-gear-blg-tandem-bogie-airbus-a380-1
https://grabcad.com/library/main-landing-gear-blg-tandem-bogie-airbus-a380-1
https://grabcad.com/mohammed.ismail.a-2
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Figure 5.19: Left: Relative total estimated approximation error by the employed error
estimator in the L2-norm.
Right: The corresponding domain approximation errors according to (5.19) relative
to the reference volume V ∗ of the complete geometry.

Figure 5.20: Left: Main landing gear of an Airbus A380 with the upper panel highlighted
in blue. Right: Only the upper panel in its conventional design.19

results by comparing them to external solutions that have been obtain by a classical FEM.
To this end, we consider a solid mechanical problem on the upper panel, that is a part of
the main landing gear of an Airbus A380 (compare Figure 5.20). We thereby reproduce
the results that have been presented in [85]. In that work, alternative geometries for the
upper panel have been constructed by employing a generative design technique, with the
goal to create parts that are lighter than the conventional design but do still withstand all
applied loading conditions. The two main results from that generative design are denoted
iteration 1 and iteration 2 which are depicted in Figure 5.21.20 It is important to note that
both geometries are nearly entirely described by NURBS surfaces. Again, we consider the

20The geometries of the upper panel models have been taken from https://grabcad.com/library/
landing-gear-s-torsion-link-1 by author “Ravi Maurya” (https://grabcad.com/ravi.maurya-3).
Accessed: 2022-09-29.

https://grabcad.com/library/landing-gear-s-torsion-link-1
https://grabcad.com/library/landing-gear-s-torsion-link-1
https://grabcad.com/ravi.maurya-3
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Figure 5.21: Geometries and boundary conditions for Example 5.3. The geometries are
variants of the upper panel from the landing gear of an Airbus A380 created by
generative design. The geometry on the left is denoted iteration 1 and the one on the
right is donated iteration 2 of the design. The displacement is fixed at the three bolt
holes on the right (blue) and a force in axial direction d = (0, 1, 0)T is applied on the
bolt holes on the left (red).

equations of linear elasticity (4.32). As boundary conditions we apply a fixed displacement
u = 0 on the three smaller bolt holes on the right. On the larger bolt holes on the left,
we apply a Neumann boundary condition σ(u)n = d L

A , where a force of L = 4.48 kN is
acting in axial direction d = (0, 1, 0)T on the holes with a combined surface area of A.
The material is the Titanium alloy Ti-6Al-4V with a Young’s modulus E = 113 800 MPa
and a Poisson’s ratio ν = 0.33.
To control the geometry refinement, we employ yet another equation for the target domain
approximation error, given by

τ̄k,p = τ0

( 1
2p+1

)log8(Nk)
(5.21)

where Nk is the number of patches on the level k. In contrast to the original formulation in
(5.16), this modified version does not assume the optimal reduction on all levels. Instead
the reduction is based on the actual number of patches that end up on the specific level
of the cover. The idea behind that modification is to compensate for cases where on
the first few levels many of the patches end up being outside of the domain and hence
the number of patches does not increase by a factor of eight per level. Note that in a
case where no patches are outside of the domain (e.g. in the case of a cube domain),
equations (5.16) and (5.21) are equal. Since in the considered geometries we cannot easily
make any assumptions about concave or convex properties of the surfaces, we employ the
simpler, parametrization based domain approximation error estimation from (5.11) that
behaves better in cases where surfaces intersect the triangles that are used to approximate
them. The initial domain approximation error for iteration 1 of the design is given by
τ0 ≈ 1.226 · 107 and for iteration 2 it is τ0 ≈ 1.139 · 107.
Let us now compare our results to the solution from [85], which we will use as our reference
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Figure 5.22: Magnitude of the displacement field (upper row) and von Mises stress (lower
row) of the solution on level k = 8 using polynomials of degree p = 1.

solution. In that paper a mesh with a target element size of ∼5 mm was used. For iteration
1 of the design this resulted in 1 097 621 elements and 1 604 103 nodes (due to it being a
vector valued problem, we assume each node to correspond to three degrees of freedom,
hence ∼4 812 309 degrees of freedom in total). The maximum displacement is given as
0.094308 mm. In comparison we used a PUM space with linear polynomials on level
k = 8 which resulted in 159 489 patches with a diameter of ∼6.3515 mm and a total
of 1 913 868 degrees of freedom. The final domain approximation error for that cover is
τ8,1 ≈ 3.801·103. The maximum displacement over all integration points that we measured
with that PUM discretization is 0.094380 mm, which is in very good agreement to the
reference results. Employing a PUM space with quadratic polynomials allowed us to get
very similar results with far less patches and degrees of freedom. Here we did refine the
cover to level k = 5 which resulted in just 773 patches with a diameter of ∼50.812 mm
and 23 190 degrees of freedom and a final domain approximation error τ5,2 ≈ 1.439 · 104.
The maximum displacement resulting from that discretization is 0.0945098 mm, which
is still in very good agreement to both, the fine PUM solution as well as the reference
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FEM solution. For iteration 2 of the design, the reference used a mesh that consists of
1 092 078 elements and 1 579 567 nodes (∼4 738 701 degrees of freedom). The maximum
displacement is given as 0.089805 mm. With a PUM employing linear polynomials on level
k = 8 we ended up with 158 830 patches and 1 905 960 degrees of freedom and a domain
approximation error τ8,1 ≈ 3.465 · 103. Since the bounding boxes of the two geometries
are identical, the patch diameter is the same as for the first iteration. Here the maximum
displacement is given by 0.090937 mm, which is again in good agreement to the reference
results. Similarly to the case in iteration 1, we can get comparable results when employing
quadratic polynomials on a coarser level with k = 5. Here we end up with 778 patches and
23 340 degrees of freedom, a domain approximation error τ5,2 ≈ 1.271 · 104 and measure
a maximum displacement of 0.0899502 mm. Results for both iterations are depicted in
Figure 5.22. The color ranges have been adjusted to resemble the figures in the reference
paper.
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Concluding Remarks

In this thesis we demonstrated that the flat-top partition of unity method is indeed a
capable meshfree method that can be used to solve partial differential equations on real-
world, industrial-grade CAD geometries. The first stage to attain that goal was achieved
by introducing a new post-processing step to the cover construction of the PUM. By
eliminating all patches that violate the strict flat-top property, we guarantee that we
retrieve a globally stable basis, whenever we impose locally stable bases on each patch.
A stable polynomial basis for boundary patches, that keeps its full approximation power,
was obtained by a simple shrinking step. Singularities, that arise in the derivatives of
PU functions due to the elimination of patches, were moved away from the boundary
such that they do not impose any practical problems to the subsequent integration steps.
The robustness of the post-processing step was demonstrated in two and three space-
dimensions by numerical experiments. Furthermore, for the construction of a multilevel
solver, we showed that a simple combination of a global-to-local and local-to-local transfer
can be built to overcome issues introduced by the patch elimination.
To implement a reliable numerical quadrature, we developed two different approaches in
two and three space-dimensions. In two-dimensions we presented a method that keeps an
exact representation of the geometry on all levels of our PUM construction. First, we solved
the problem of reliable intersection operations by employing a monotone decomposition
of all curves that form the boundary of the simulation domain. The properties resulting
from the monotone decomposition were used, such that all intersection points of the axis-
aligned integration domains and the boundary of the simulation domain can be computed
robust and efficiently. The employment of the Grainer-Hormann clipping algorithm then
allowed to compute the intersection domains of the axis-aligned boxes with the simulation
domain reliably, even when the input geometry contains self-intersections in its boundary
description. The resulting curved polygon domains where then first decomposed into
linear triangles. The usage of an iterative Delaunay triangulation algorithm was chosen
such that potential self-intersections of the input curves can be resolved in this step. It
was demonstrated, that the insertion of the original boundaries’ inflection points into the
local triangulations allows to derive an important property of all curve parts included in
the local triangulations: The curve parts are contained within a triangle determined by
their endpoints and the tangents at those endpoints. With this property we developed
an efficient and robust test to detect invalid curved triangles and showed how this test
can be used to reliably resolve those invalid cases. Finally, we presented how to use a
transfinite-interpolation for the numerical quadrature on each curved triangle.

159
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In three space-dimensions we presented an approach where the boundary of the input
geometry is first approximated by a triangular surface mesh. The linear description of the
approximation allowed us to implement the subsequent intersection and decomposition
operations robust and efficiently. To overcome errors introduced by the domain approxi-
mation, we presented a way to estimate the domain approximation error. Then, we estab-
lished a relation between the domain approximation error and the error induced by the
PUM discretization. It has was shown, that an approach where the domain approximation
error is reduced by a refinement strategy, such that it matches the PUM approximation
error, is capable of obtaining close to optimal convergence rates, for polynomials up to a
degree of p = 3.
The work presented here lays the groundwork for a robust geometry treatment in the
PUM and makes it finally accessible to industrial use cases. Furthermore, we think that
the presented methods for the two-dimensional integration can be applied to any immersed
or embedded boundary method that uses axis-aligned rectangle cells for its background
mesh. A runtime and robustness comparison with currently established methods would
be an interesting topic for future work.
The parallelization of the presented methods was not discussed in this thesis. Nevertheless,
we think the presented methods are good candidates to be applied in a parallel PUM
subject to a domain decomposition approach as presented in [54]. In fact, the patch-wise
distribution of work to parallel processes does immediately lead to a parallelization of
the complete integration step. Hence, in most of the experiments presented throughout
this thesis, the assemble step was already executed on parallel computers with multiple
processes. The load estimate for the space-filling curve based load distribution was thereby
adjusted to incorporate the increased amount of work for boundary patches, but a more
thorough analysis of the balancing problem is still an open question. One aspect that is not
trivial to parallelize is the patch elimination step during the cover post-processing. Here,
the presented algorithm is inherently sequential, since the elimination of one patch can
influence whether a subsequently visited patch needs to be eliminated or not. Nevertheless,
we think a parallelization can be achieved. Here, all processes eliminate local patches that
are not located at process boundaries first. Then, they mark patches at process boundaries
that are candidates for elimination and communicate those patches with their neighboring
processes. The process with the lowest rank then decides which patches to eliminate and
communicates that information back to the neighboring processes. The communication
step might need to be iterated until all in-valid patches have been eliminated. The resulting
cover will probably end up being different, than what would have been achieved by a
sequential algorithm, since the order in which patches are eliminated, will depend on the
number of processes. Details of such a parallel implementation are left for future work.
The integration process for two-dimensional domains could be subject to some improve-
ments as well. E.g. an alternative code path could be introduced to handle cases where
the intersected integration domains Dm

i ∩ Ω are bounded by only four curves. In such a
case the triangulation step could be skipped and the integration could be carried out on
a rectangular reference domain. The required transformation Ψ could thereby be con-
structed similar to Coons patches [23]. It is an open question whether the bi-monotone
and constant sign curvature properties of the involved curve parts have any implications
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on whether the Coons map will be a valid diffeomorphism or not. Furthermore, due to the
skipped triangulation step, a new method to detect self-intersecting input curves would
be required. A possible answer to those questions might be found in [96] where sufficient
and necessary conditions for the regularity of a Coons map are given.
The generation of integration cells for three-dimensional domains could also be further
improved. First of all, due to the requirement of a watertight surface mesh for the domain
approximation, our current approach can only tolerate flaws in the geometries to a limited
extend. The main reason why this requirement was imposed, is that we need a robust
point containment test. Thus, we might be able to remove that restriction by applying
a containment test that can deal with gaps and self-intersections. A possible candidate
for such an algorithm has been proposed in [63]. Lifting the restriction would then allow
us to generate the approximations of all faces from the CAD solid independent of each
other, since they would not need to match along edges anymore. Resulting gaps would
not impose a problem anymore, and self-intersections of the approximated surfaces can be
detected and resolved during the Delaunay tetrahedralization step. Another benefit of an
independent approximation of all surfaces is that we could choose different approximation
strategies for each of those surfaces. This is particularly interesting for faces described by
elementary surface types like e.g. cylinders, cones and spheres. For these types of surface,
closed-form solutions for the intersection curves with a plane exist. Hence, we would not
need to approximate those surfaces at all. The intersections Dm

i ∩ Ω and the integration
cell creation could then be considering the exact geometry for those surfaces. Only after
the intersections have been computed, we would need to create a local triangulation of the
curved surface before we can tetrahedralize the volume. This would result in a method
that is similar to what has been demonstrated in Example 4.2 for the linear elastic hole
case in two-dimensions, where the curving after the triangulation was disabled. But a final
improvement could be to incorporate the original surface representation when creating the
quadrature points. Similar to the two-dimensional, case this would involve curving the
resulting tetrahedral cells at triangles that are related to the curved boundary. Transfinite
interpolations for tetrahedra can be found in [20, 93]. It is an open question whether the
approach to detect invalid triangles presented in this thesis can be extended to 3D.
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