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Abstract

This thesis is concerned with theory and numerics of optimal control of quasi-
linear parabolic PDEs. The underlying parabolic PDE models, e.g., heat con-
duction with temperature-dependent thermal conductivity and is highly nonlinear
with a nonmonotone nonlinearity in the elliptic operator. This makes its anal-
ysis and the analysis of the entire control problem as interesting as challenging.
In our work we address optimal control problems with additional pointwise state-
constraints and problems with sparse solutions, and analyze convergence of the
SQP method. Moreover, we consider model order reduction by proper orthogo-
nal decomposition both for the state equation and the control problem. On the
one hand, our contributions can be regarded as extension of results on control-
constrained optimal control of quasilinear parabolic PDEs towards the abovemen-
tioned additional aspects. In particular, di�culties associated with the nonlinear
structure of our state equation are a recurrent issue in our analysis. On the other
hand, we also contribute to the �elds of state-constrained or sparse optimal control,
the analysis of optimization algorithms, and model order reduction by extending
them towards quasilinear parabolic PDEs. Consequently, we also encounter the
typical challenges due to these respective areas, especially such challenges related
to optimality conditions in in�nite dimensions.

In Chapter 2 we start our analysis by considering problems with additional
pointwise state-constraints. Under appropriate regularity assumptions on the do-
main, the boundary conditions, and the coe�cient functions of the equation we
prove �rst-order necessary and second-order su�cient optimality conditions for
pointwise in space and time and pointwise in space and averaged in time state-
constraints. Besides typical di�culties associated with the second-order analysis
of optimization problems in in�nite dimensions, the high regularity requirements
coming along with state-constrained problems pose a particular di�culty. As a
consequence, we need to perform a detailed regularity analysis of our highly non-
linear state equation and its linearization, the latter requiring careful estimation
of the derivatives of the nonlinearity of the state equation. Hereby, the presence of
di�erential operators in the derivatives of the nonlinearity is a particular di�erence
compared to the case of semilinear equations and poses a new di�culty that is
speci�c for quasilinear problems.

Subsequently, we come back to a control-constrained problem in Chapter 3 but
now with additional cost terms in the objective functional that enforce so-called

iii



iv Abstract

sparse solutions. Based on available results from the literature concerned with semi-
linear parabolic problems we prove �rst- and second-order optimality conditions
for this problem type. Besides the already mentioned issues speci�cally related to
the quasilinear state equation and the general intricacy of second-order optimality
conditions in in�nite-dimensional spaces, an additional di�culty now arises from
the fact that the sparsity-enforcing cost terms are convex, but nonsmooth. Special
emphasis is payed to the practically relevant case of purely time-dependent con-
trols for which we analyze the sparsity patterns resulting from seven di�erent cost
terms.

In Chapter 4 we analyze convergence in function space of the SQP method for
a control-constrained model problem. Here, we can build again on results from the
literature on semilinear parabolic problems. However, since the properties of quasi-
linear and semilinear equations are quite di�erent, it is not clear a priori that this
transfer of techniques works in the end. In particular, we have to restrict ourselves
to the so-called purely time-dependent control setting and need, again, to carry out
a careful regularity analysis of the appearing equations. Moreover, we put special
emphasis on the interplay of second-order su�cient optimality conditions and the
resulting restriction of the SQP subproblems onto certain neighbourhoods of the
optimal control. Some progress has been made in the theory of such second-order
optimality conditions after the existing results on convergence of the SQP method
for semilinear parabolic problems have been published. Therefore, revisiting the
converegence theory of the SQP method, and in particular the localization of the
subproblems, in the light of new techniques and results on second-order conditions
is of particular interest to us.

The topic of the �nal Chapter 5 is model order reduction by proper orthog-
onal decomposition (POD). First, we apply this technique to the state equation
and observe that this allows for a heavy reduction in the computational e�orts
related to the numerical solution of the state equation. Moreover, we prove a-
posteriori estimates for the error due to this POD-reduction. As observed already
in the literature on model order reduction for other nonlinear equations, the main
di�culty is to combine the projection-based, and hence linear, POD-model order
reduction with a highly nonlinear equation. A particular di�erence compared to
previous results on a-posteriori POD error estimates for, e.g., semilinear or quasi-
linear equations is the presence of a nonmonotone nonlinearity that makes the
analysis more di�cult. Finally, we demostrate by numerical examples that ap-
plication of POD-reduction also allows to speed up the numerical solution of the
entire control problem signi�cantly.
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Introduction

Eine einzelwissenschaftliche, etwa eine physikalische Untersuchung kann
ohne weitere Umschweife mit der Bearbeitung ihres Problems beginnen. Sie
kann, sozusagen, mit der T�ur ins Haus fallen; es ist ja ein \Haus" da: ein
wissenschaftliches Lehrgeb�aude, eine allgemein anerkannte
Problemsituation. Der Forscher kann es deshalb auch dem Leser �uberlassen,
die Arbeit in den Zusammenhang der Wissenschaft einzuordnen.

K. Popper, Logik der Forschung1

The overall topic of this thesis is optimal control of quasilinear parabolic partial
di�erential equations (PDEs). It seems to be appropriate to begin with a short
explanation of these termini technici, before we give more details. The generic
formulation of an optimal control problem reads as follows; see, e.g., [201, 156,
270]: given Banach spaces Y; U; Z, subsets Uad � U , Yad � Y and maps J: Y �U !
R, E: Y � U ! Z, solve8>>>><

>>>>:

min
(y;u)2Y�U

J(y; u)

subject to u 2 Uad;
y 2 Yad;

and E(y; u) = 0:

(OCP)

We call Y and U state- and control-space, Yad � Y and Uad � U the sets of admis-
sible state and controls, respectively, J the objective functional, and \E(y; u) = 0"
the state equation. We will refer to elements y 2 Y and u 2 U as states and
controls, respectively. To make (OCP) a control problem |so far we have only
described a constrained optimization problem| we need that each control u 2 U
uniquely determines a state y = y(u) 2 Y (which we will call the state associated
with u) such that E(y(u); u) = 0. In other words: there is a map S: U ! Y , the
so-called control-to-state map, such that

E(S(u); u) = 0; and z 2 Y; E(z; u) = 0 , z = S(u):

1Preface to the �rst german edition 1934, quoted from: K. R. Popper, Gesammelte Werke
in deutscher Sprache, Band 3, Mohr Siebeck, T�ubingen, 2005.
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2 Introduction

The property that the state is uniquely determined by the control, distinguishes the
class of optimal control problems from the class of constrained optimization prob-
lems. In particular, by eliminating the state-variable we can reformulate (OCP)
equivalently as follows:8><

>:
min
u2U

j(u) := J(S(u); u)

subject to u 2 Uad;
S(u) 2 Yad:

(OCPred)

We call (OCPred) the reduced form of problem (OCP) and refer to j as the re-
duced functional. Now, a quasilinear parabolic optimal control problem simply
is an optimal control problem in which the state equation \E(y; u) = 0" involves
a quasilinear parabolic PDE. Of course, Y and Z have to be appropriate func-
tion spaces in that case. In general, if the state equation of an optimal control
problem consists of a PDE, we may also speak of \PDE-constrained optimization"
which will be used as synonym for \optimal control of PDEs" in the following. Of
course, di�erent types of optimal control problems are also known from the litera-
ture. We mention, e.g., optimal control of ordinary di�erential equations (ODEs)
or di�erential-algebraic equations [112] or recent research on optimal control of
variational inequalities for which we cite exemplarily [85]. Nevertheless, for the
reason of shortness, the notion \optimal control (problem)" always refers to opti-
mal control problems with PDEs throughout this thesis. Sometimes, we just write
\control (problem)" and still refer to optimal control since control problems in
the control- or system-theoretic sense, cf., e.g., [259], will not be addressed in the
present work.

It remains to make precise the notion of a quasilinear parabolic PDE. In
order to avoid to get bogged down in lengthy de�nitions of excessively technical
nature, we do not explain the term \quasilinear" in its full generality. Instead, we
just mention that a quasilinear PDE is roughly characterized by the fact that its
nonlinearity appears in the highest order term |in our case in the elliptic operator
of the parabolic PDE. Note that this distinguishes this class of PDEs from, e.g.,
semilinear PDEs, in which nonlinearities are only allowed in the lower order terms.
One may therefore imagine a scale of PDE-classes in ascending order of distance
to the linear class |and hence, in general, also ascending di�culty| as follows:

linear �! semilinear �! quasilinear �! fully nonlinear:

For the precise form of the state equation under consideration in this thesis, how-
ever, we refer the reader to Chapter 1. Let us just mention that the nonlinearity
considered in the present work appears, e.g., in the modelling of heat conduction
in an object with temperature-dependent thermal conductivity. In practice, this
is of interest in, e.g., the induction heating of steel [214, 215] or the modelling
of semiconductor devices [253, Chapter 4.3]. In general, the analysis of highly
nonlinear equations and related optimal control problems as in this thesis can be
motivated by the following heuristic rule of thumb: the more realistic and accu-
rate the underlying physical model, the more nonlinear, and the more di�cult the
resulting PDE.

We are now able to summarize the goals of this thesis with a bit more details
as follows: in [35, 45], which will serve as a starting point of our considerations,
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a quasilinear parabolic optimal control problem with pure control-constraints, i.e.
Yad = Y , has been discussed. In this thesis we present and discuss extensions hereof
from [167, 166, 168, 169] recently obtained by the author in joint work with I.
Neitzel. More precisely, in Part I we modify the two componenents of the optimal
control problem, i.e. additional constraints and the objective functional: �rst, we
add certain pointwise constraints on the state and analyze the resulting problems.
Second, we add nonsmooth penalization terms to the objective functional that
ensure so-called sparsity of the optimal controls. Afterwards, in Part II, we come
back to the original problem from [35] and focus on the numerical solution hereof.
We prove convergence of the SQP method in function spaces, and we investigate
how model order reduction can help to reduce the computational e�ort related to
solving the state equation or the control problem. Consequently, our contributions
can always be seen from two perspectives. On the one hand, we extend the results
on control-constrained optimal control of quasilinear parabolic PDEs from [35, 45]
towards the abovementioned additional aspects. This is the read thread of this
thesis because |besides the challenges speci�c to the abovementioned aspects|
the ubiquituous di�culty in our work is posed by the highly nonlinear structure
of the underlying quasilinear parabolic PDE. On the other hand, of course, we
also build on results and techniques from the �elds of state-constrained or sparse
optimal control, as well as the analysis of optimization algorithms and model order
reduction within PDE-constrained optimization. Consequently, our results have to
be regarded as contributions to these areas of research, too.

Since we have provided the reader at least a �rst and rough impression of our
topic for the moment, let us start with concise literature overview in order to put
our work into its context. A more detailed literature overview on the respective
most related aspects will be given at the beginning of each chapter of this thesis.
Optimal control of PDEs has become a 
ourishing and broad area of research in
the last decades; see, e.g., the early monography [201] or the more recent textbooks
[156, 270, 90]. Among the almost countless number of real-world applications in
di�erent areas we cite exemplarily induction heating of metals [214, 215], optimal
cooling of glass [156, Chapter 4.1] or steel [278], multiphase steel production [161],
optimization of semiconductor devices [156, Chapter 4.2] or crystal growth [218],
optimal planning of hypothermia treatment in cancer therapies [95], inverse prob-
lems in �ncance [252] and geophysics [33], and last, but not least, optimization in
oenology [217]. Also on the mathematical side, the contributions are very diverse.
They extend from rather theoretical considerations with strong functional analytic

avour up to highly application-oriented results with computational focus. Typical
problems to be considered are, e.g., well-posedness of the problem, i.e. existence
of optimal controls, the derivation of �rst- and second-order optimality conditions,
discretization of problems and corresponding a-priori discretization error estimates,
algorithms and their convergence analysis both on the function space and discrete
level, and, �nally, analysis and e�cient implementation of computational proce-
dures, such as, e.g., regularization of additional constraints, adaptive discretization
and optimization strategies, preconditioning, parallel computing, or model order
reduction. After this short glimpse on the area in its entirety, we will focus in the
following on some particular aspects that are closely related to the present work:
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quasilinear (or more general: nonlinear) state equations, additional constraints on
the state-variable, sparsity-enforcing functionals, SQP methods, and model order
reduction.

We begin our overview with literature on quasilinear problems. In the recent
years substantial progress has been made in this topic. We mention in particular
the papers [216, 214, 215, 35, 45, 167, 166, 168, 169] and [68, 50, 69, 70,
88, 87, 89, 164] concerned with parabolic and elliptic problems, respectively. For
earlier results we refer the reader to the introduction of [35] for instance. In [216]
the quasilinear parabolic equation8><

>:
@ty �r � �(y)�ry + y = F(t; y); in Ls(I;W

�1;p
�D

);

y = 0; on (0; T )� �D;

y(0) = y0; on 
;

(0.1)

has been analyzed in a W
�1;p
�D

-W
1;p
�D

-setting with a bounded, zero-order semilinear
term F . Moreover, existence of solutions to a respective optimal control problem
has been proven. For an optimal control problem governed by a slightly di�erent
equation, without id-term and semilinear term, �rst- and second-order optimality
conditions were obtained in [35]. Further, an improved regularity analysis of the

underlying equation on certain Bessel potential spaces H
��;p
D has been provided.

Existence of optimal controls and �rst-order optimality conditions for optimal con-
trol of the so-called thermistor problem, a coupled system of a quasilinear parabolic
and a quasilinear elliptic PDE, have been derived in [214, 215]. Optimal control
of a quasilinear parabolic system with a di�erent structure, the so-called chemo-
taxis system, is considered in [108]. The papers [216, 35, 214, 215] deal with
assumptions on the underlying problem data that are often referred to as \rough"
setting: they allow, e.g., for nonsmooth domains and coe�cient functions and
mixed boundary conditions, as they often arise in real-world constellations; see,
e.g., [97, 98]. We also mention that �rst- and second-order optimality conditions
for a problem similar to the one from [35] have been obtained in [45] for a slightly
di�erent setting that is more regular w.r.t. domain and boundary conditions, but
allows, e.g., for unbounded coe�cients and a mononote semilinear term of or-
der zero. Finite element discretization error estimates for the corresponding state
equation have been established in [46]. In joint work with I. Neitzel the author has
addressed quasilinear parabolic problems with additional state-constraints [168],
sparse purely time-dependent optimal control [169] and the convergence analysis
of the SQP method [167]. The respective results form the content of Chapters 2
to 4 of this thesis. Hereby, it is both one of the goals and one of the challenges to
perform as much of the analysis as possible within the rough regularity setting of
[216, 35], i.e. under minimal assumptions; only if the speci�c problem type under
discussion cannot be handled in a satisfactory manor within this setting, we �nally
change to a smoother setup based on [45].

Optimal control problems with quasilinear parabolic PDEs share some typical
di�culties with optimal control problems governed by other nonlinear PDEs. In
order to derive �rst-order necessary optimality conditions, di�erentiability of the
control-to-state map needs to be addressed. The latter requires di�erentiability of
the nonlinearity in the state equation, which itself forces us to consider states in



Introduction 5

su�ciently regular function spaces on which the respective superposition operators
are di�erentiable. Usually, obtaining L1-regularity of solutions of the state equa-
tion is necessary. The latter is certainly nontrivial, in particular for time-dependent
problems and in a rough setting, and requires a careful regularity analysis. In [35]
this analysis relies on [216] and the functional analytic concept of maximal para-
bolic regularity for nonautonomous operators; see [15]. Since �rst-order necessary
optimality conditions are, in general, not su�cient for optimality in the case of
nonconvex problems, the derivation of second-order su�cient conditions plays an
important role in optimal control of nonlinear PDEs. Moreover, such conditions
often serve as starting point for the investigation of discretization error estimates
or the convergence analysis of numerical algorithms; for the latter see, e.g., Chap-
ter 4 of this thesis. For an overwiew covering di�erent aspects of the topic we refer
the reader to, e.g., the recent survey [73] on second-order optimality conditions
in PDE-constrained optimization. Let us just mention the following prominent
example from [71, Example 1.2] that highlights the di�culties associated with
optimality conditions in in�nite dimensions. Consider the following optimization
problem without additional constraints:

min
u2L2(0;1)

j(u) :=
1

2

Z 1

0

sin(u(x))dx:(0.2)

Clearly, �u � ��
2 is a global solution of (0.2) and purely formal computations yield

j0(�u)v = 0; j00(�u) = kvk2L2(0;1); 8v 2 L2(0; 1):
One might be tempted to conclude from j0(�u) = 0 and coercivity of j00(�u) that �u is
a strict local solution of (0.2), i.e. that it holds j(u) > j(�u) for all u 6= �u su�ciently
close to �u. Such a conclusion would be correct in �nite dimensions, but for the
present in�nite-dimensional example it is false, at least if \local" is meant w.r.t.
the L2(0; 1)-topology: for any � > 0 we can de�ne u� = ��

21(0;1��) +
3�
2 1(1��;1)

and observe

ku� � �ukL2(0;1) = 2�
p
� and j(u�) = j(�u):

The reason for this unexpected behaviour is that the purely formal computations
that lead to j0(�u) and j00(�u) were not correct in a precise mathematical sense. In
fact, the functional j is not di�erentiable as map L2(0; 1) ! R. Regarding j as a
map L1(0; 1)! R, however, we can prove twice Fr�echet di�erentiability with the
above given formulas for the derivatives; but then j00(�u) is no longer coercive w.r.t.
the underlying norm, i.e. the L1(0; 1)-norm. This so-called two-norm discrepancy
|di�erentiability of the functional and coercivity of its second derivative only
hold w.r.t. to di�erent, nonequivalent norms| goes back to [174] and is typical
for optimization problems in ini�nite-dimensional function spaces, in particular for
PDE-constrained optimization [71]. In the case of (0.2) we are only able to draw
the following conclusion, a so-called quadratic growth condition with two-norm
gap: there are �; � > 0 such that

j(u) � j(�u) +
�

2
ku� �uk2L2(0;1) 8u 2 L2(0; 1) s.t. ku� �ukL1(0;1) < �;

cf. [71, Theorem 1.3]. Only in certain situations, see, e.g., [71], such a two-norm
gap can be avoided when addressing second-order optimality conditions in in�nite
dimensions in the presence of a two-norm discrepancy. This is the case, e.g.,
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in both [35] and [45] where second-order necessary (SNCs) and su�cient (SSCs)
optimality conditions for quasilinear parabolic optimal control problems without
norm gap have been achieved despite the presence of the two-norm discrepancy.
In any case, when proving second-order optimality conditions for optimal control
problems with nonlinear state equation the choice of the appearing function spaces
and a careful regularity analysis of the state equation and its linearizations become
highly important.

A topic that gained some attention in the last years is optimal control of PDEs
with additional constraints on the state. In an application, e.g., in which one has
to control the temperature of some object, it may be necessary to keep the temper-
ature always below the melting point in order to avoid damage. Mathematically,
this or similar situations can be formulated as pointwise inequality constraints on
the state (\state-constraints"). Among the applications of PDE-constrained op-
timization mentioned before, e.g., the problems related to induction heating of
metal [214, 215], crystal growth [218], and cancer therapy [95] make use of this
concept. Problems with such additional state-constraints are particularly interest-
ing, but their analysis is challenging. We only mention, e.g., the early contributions
[40, 41] dealing with linear and semilinear elliptic equations and state-constraints,
and refer the reader to the introduction of Chapter 2 for a more detailed liter-
ature overview. In our paper [168] we have addressed this challenging problem
type in the case of quasilinear parabolic PDEs; the results hereof are presented in
Chapter 2 of this thesis. To illustrate one of the main di�culties associated with
state-constraints, let us brie
y recall the following classical result on �rst-order
optimality conditions in in�nite dimensions.

Theorem 0.1 (KKT conditions in Banach spaces, [41], Theorem 5.2). Let U;Z
be Banach spaces, and K � U , C � Z convex sets such that C has nonempty
interior. Let �u 2 K be a solution of the problem

min
u2K

j(u) s.t. g(u) 2 C;
where j: U ! R and g: U ! Z are Gâteaux di�erentiable at �u. Moreover,
assume that the following linearized Slater condition is satis�ed at �u: there is
uSl 2 K such that

g(�u) + g0(�u)(uSl � �u) 2
�
C:

Then, there exists a Lagrange multiplier �� 2 Z� such that the following opti-
mality system holds true:

h��; z � g(�u)iZ�;Z � 0 8z 2 C;(0.3)

h��j0(�u) + g0(�u)���; u� �uiU�;U � 0 8u 2 K:(0.4)

The vast majority of results on �rst-order conditions in PDE-constrained op-
timization with state-constraints is based on this theorem or similar results. Re-
lying on a typical Slater-type constraint quali�cation, however, is known to infer
substantial di�culties: in order to prove �rst-order conditions for a problem with
pointwise state-constraints in Chapter 2, we will apply Theorem 0.1 with K = Uad,
C = Yad, j being the reduced functional of our problem, and g being the control-
to-state map S. The di�culty arises from the fact that one requires Yad to have
nonempty interior in Z = Y in order that the Slater-type constraint quali�cation
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can be ful�lled. If Yad is given by pointwise inequality constraints, this excludes
to choose an Lp-space with p < 1 for the state space Y . Instead, Y is typically
chosen to be a space of continuous functions, which in return usually results in
the presence of regular Borel measures, i.e. the corresponding dual objects, as
Lagrange multiplier �� 2 Z� = Y � in the KKT system. In particular, g0(�u)��� will
be related to the solution of a certain linear PDE with a right-hand side containing
the measure ��, in general. Having in mind the problems coming along even with
the \simple" problem (0.2) without additional constraints, it is not surprising that
second-order optimality conditions for state-constrained optimal control problems
are a challenging topic; see, e.g., [73, section 7.2] for a concise overview. In essence,
a deeper regularity analysis of the underlying PDE and its linearizations than in
the presence of control-constraints only is needed. Of course, this is particulary
challenging in the present case of a quasilinear, i.e. highly nonlinear, state equa-
tion and rough regularity assumptions. In fact, the regularity results required to
address second-order conditions for pointwise in space and time state-constraints
cannot be achieved in the rough setting. Hence, we will either have to enforce our
regularity assumptions on the state equation in the 
avour of [45] in order to meet
the regularity requirements, or we have to modify the type of state-constraints to-
wards averaged-type state-constraints in order to relax the regularity requirements
towards such that can be achieved in the rough setting.

Another well-known �eld in PDE-constrained optimization is so-called sparse
optimal control. Let us �rst recall the following motivating example related to
the design of piezoelectric plates mentioned in the introduction of [261]: in order
to achieve a prescribed desired displacement of the plate, electrodes need to be
positioned suitably on this plate. Hereby, it is crucial to �nd |in some sense|
the optimal location of these electrodes. It is clear that also in other applications
it may be necessary, or at least desirable, to determine controls that are nonzero
only on a small (\sparse") part of the (space-time-)domain under consideration.
For classical L2-tracking-type functionals with L2-Tikhonov regularization for the
control-variable we cannot expect such a property to hold for the optimal control,
in general, due to the structure of the optimality system. Therefore, sparsity of
the optimal control has to be enforced by modifying the control problem. In our
paper [169] we follow a popular approach to do so: a multiple of the L1-norm, or
a mixed L1-L2- or L2-L1-norm of the control is added to the objective functional
as additional cost/penalization term. We will present the corresponding results in
Chapter 3. The usage of L1-penalization goes back to [261] which is the �rst con-
tribution on sparsity in the context of PDE-constrained optimization. Penalization
with mixed norms has been introduced in [138] and results in so-called directional
sparsity, i.e. di�erent sparsity patterns for di�erent spatial/temporal directions.
We refer the reader to the recent survey [44] or the introduction of Chapter 3 for a
detailed literature overview. In Chapter 3 we will apply directional sparsity to the
so-called purely time-dependent control setting originally introduced in [91]: there
are m 2 N �xed actuators and the control is a function (0; T )! Rm that encodes
the intensity of each actuator depending on time. For instance, when considering
optimal cooling of a steel pro�le by water, cf. [91], the actuators are given by a
�nite number of nozzles spraying water on the pro�le and the controls are their
time-dependent intensities. The combination of directional sparsity and purely
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time-dependent controls allows to enforce seven di�erent, interesting sparsity pat-
terns for the optimal controls. For instance, one can select from a given, large set
of possible actuators only a small number of actuators that are allowed to become
active at every time point while all other actuators are not used at all, or one can
select a sparse subset of time points at which all given actuators are allowed to
become active while they have to be inactive at all other time points. The typical
di�culty related to sparse optimal control arises from the fact that any method
to enforce sparsity infers some kind of nonsmoothness. The L1-norm or mixed
norms used for penalization are convex and Lipschitz continuous, but nonsmooth
functionals. Of course, this infers additional di�culties in the derivation of opti-
mality conditions as well as in the numerical solution of such problems. The above
outlined challenges related to second-order optimality conditions in in�nite dimen-
sions, e.g., are now enriched by the question how to deal with the nonsmooth part
of the functional that does not even have a second derivative at all. For problems
with additional L2-Tikhonov regularization we are able to handle these problems
in a similar way as done in [54] for semilinear parabolic problems. The fact that
without L2-Tikhonov regularization we are not able to prove second-order condi-
tions, illustrates that the transfer of techniques successfully applied to semilinear
problems to quasilinear ones is not straightforward. Regarding the numerical so-
lution of sparse optimal control problems, we �nally note that so-called proximal
algorithms [250] are easy to implement, relatively fast, state of the art solvers
for problems with L1-penalization. The application to L1-L2-penalized problems
without control-constraints is straightforward, but |to our best knowledge| a
generalization to L2-L1-penalization has not been done so far. Therefore, in addi-
tion to those cost terms discussed in [54], we analyze a slightly modi�ed alternative
to L2-L1-penalization that allows the application of proximal methods and that has
already been applied successfully in a �nite dimensional setting in the context of
data science.

The issues addressed so far are of more or less theoretical nature. In the follow-
ing we continue with some more computational aspects. Although this will not be
addressed explicitely in the present thesis, we start with the important topic of dis-
cretization of optimal control problems. Herein we will restrict ourselves completely
to literature on discretization by the �nite element method (FEM). In general,
discretization techniques can be divided into approaches where an in�nite dimen-
sional optimality system is discretized (\optimize then discretize") and approaches
where the whole optimization problem is discretized (\discretize then optimize");
see, e.g., [156, Chapter 3]. We just note that under certain conditions both ap-
proaches yield the same result and focus our brief literature overview on the second
approach. Hence, one has to consider discretization of the state-variable and the
state equation, and discretization of the control-variable. Unlike in the \optimize
then discretize"-approach, the discrete counterpart of the adjoint equation is now
determined by the optimality system of the discrete optimal control problem. For
a survey on the main techniques in the case of FEM discretization error estimates
for elliptic problems we refer the reader to, e.g., [159]. For parabolic problems we
exemplarily mention discretization of the state-variable and equation by discon-
tinuous Galerkin in time and continuous Galerkin FEM discretization in space for
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linear [212, 213] and semilinear problems [224], or the Crank-Nicolson scheme for
time discretization [284]. For the discretization of the control-variable there are
several well-established concepts, e.g., variational discretization [149, 284], piece-
wise linear [237, 238], and piecewise constant [17] control discretization. The last
one can be combined with a so-called post-processing step [219] to improve the
order of convergence. For respective a-priori FEM discretization error-estimates we
refer the reader to, e.g., [212, 213] for linear quadratic parabolic optimal control,
or to [224] for a semilinear parabolic state equation. As far as we know, there are
yet no results on discretization error estimates for quasilinear parabolic optimal
control problems. A-priori FEM error estimates for the quasilinear parabolic state
equation from [45], however, have recently been derived in [46]. Time discretiza-
tion of an optimal control problem governed by a quasilinear parabolic PDE with
a di�erent, monotone nonlinearity is addressed in [32]. Moreover, we exemplarily
mention the earlier results [101, 99] on discretization error estimates for quasi-
linear parabolic PDEs in di�erent settings. A-priori error estimates for the FEM
discretization of smooth quasilinear elliptic control problems have been considered
in [69, 70], for instance, and error estimates for a problem involving a nonsmooth
quasilinear elliptic PDE have been obtained recently in [89].

Let us now comment on the two computational aspects of PDE-constrained
optimization that will be addressed in this thesis: the analysis of SQP methods
and the application of model order reduction. Sequential quadratic programming
(SQP) methods form a prominent class of state of the art algorithms for the ef-
�cient numerical solution of nonlinear optimal control problems; see, e.g., [156,
Chapter 2.6] for an overview. In essence, the nonlinear optimization problem is
approximated by a sequence of linear quadratic subproblems that can be solved,
e.g., by application of the well-understood primal dual active set strategy. More
precisely, given current approximations yk, uk, pk for the state, control, and ad-
joint state, the next iterates yk+1, uk+1, pk+1 are obtained as state, control, and
adjoint state of the problem8>>>>>>><

>>>>>>>:

min
yk+1;uk+1

1

2
L00(yk; uk; pk)[(yk+1 � yk; uk+1 � uk)]2

+ J 0(yk; uk)(yk+1 � yk; uk+1 � uk)
s.t. 0 = E(yk; uk) + Ey(yk; uk)(yk+1 � yk)

+ Eu(yk; uk)(uk+1 � uk);
uk+1 2 Uad;

(0.5)

where L00 denotes the second derivative of the so-called Lagrangian L(y; u; p) =
J(y; u) � hp;E(y; u)iZ�;Z associated with (OCP). The �rst convergence analysis
of this algorithm in function space for optimal control of a semilinear parabolic
equation has been carried out in [114, 268]; see the introduction of Chapter 4 for
further literature. In our paper [167] we have extended this towards the case of
a quasilinear parabolic state equation. Our respective results form the content of
Chapter 4 of this thesis. Revisiting the convergence analysis for our quasilinear par-
abolic problem is certainly already of interest, just because quasilinear equations
are quite di�erent from semilinear ones in several aspects and hence the adaptation
of results known for semilinear PDEs to quasilinear ones is by no means straight-
forward. Let us brie
y explain a second motivation. Besides the correct choice of
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function spaces and the analysis of the underlying equations, a typical issue in the
analysis of SQP methods in in�nite dimensions is that a localization of the linear
quadratic subproblems is necessary in order to guarantee their well-de�nedness.
Of course, one will be tempted to keep this arti�cial restriction as low as pos-
sible. It is well-known that convexity of (0.5) for yk; uk; pk in a neighbourhood
the solution of the original control problem is closely related to coercivity of the
second derivative of the reduced functional at the optimal control; this closes the
circle to the topic of second-order optimality conditions mentioned before. In the
abovementioned references concerned with the convergence of the SQP method
second-order conditions with two-norm gap have been used as a starting point.
Since for our quasilinear parabolic model problem second-order conditions without
two-norm gap are available, the question naturally arises how this in
uences the
localization of the SQP subproblems. Hence, we pay particular attention to this
technical, but interesting problem during our analysis in Chapter 4.

We conclude our overview with the aspect model order reduction. The nu-
merical solution of optimal control problems governed by time-dependent PDEs
is expensive because their discretization leads to large-scale optimization prob-
lems. A possibility to reduce the computational e�ort is model order reduction
(MOR). The aim of MOR is to replace the high-dimensional original model by a
suitable model with less degrees of freedom, the so-called reduced-order model.
Typical approaches are, e.g., proper orthogonal decomposition (POD) [121, 131]
or reduced basis (RB) methods [139], the �rst being a particular instance of the
second technique. Both techniques are so-called data-driven, i.e. the approxi-
mation properties of the reduced-order model depend on the data, the so-called
snapshots, that have been used for its generation. Consequently, these snapshots
have to be chosen carefully to ensure that the resulting reduced-order model is able
to capture the essential properties of the underlying problem. This means that,
in general, there are no a-priori POD/RB error estimates of practical relevance.
Instead, a-posteriori error estimates are needed in order to assess the quality of a
POD/RB-reduced model. In the context of quasilinear parabolic optimal control
problems, POD/RB-MOR poses two main di�culties that we will be confronted
with in Chapter 5. First, the POD/RB approach is projection-based, and hence
of linear nature which makes the treatment of nonlinear problems particularly
challenging. In order to incorporate nonlinearities e�ciently into the reduced-
order model so-called hyperreduction techniques have to be utilized and also in
the derivation of a-posteriori error estimates for the POD/RB error the presence of
nonlinearities infers substantial di�culties. In our case, the nonmonotone character
of our nonlinearity is a particular challenge when deriving a-posteriori POD/RB
error estimates. The respective results have been published in our paper [166]; we
will present them in Section 5.2.2 of this thesis. Second, the fact that POD/RB are
data-driven techniques implies that in applications related to PDE-constrained op-
timization it is important to couple MOR and numerical optimization accordingly.
This is a highly active area of research; cf., e.g., [272, 38, 232, 236, 21, 183].
Typically, some kind of a-posteriori estimates for the POD/RB error of the whole
control problem are required. The latter, however, may not be available for highly
nonlinear control problems. In our case, e.g., we have at hand error estimates for
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the state equation, but not for the adjoint equation. Therefore, we present nu-
merical experiments with a heuristic, alternative coupling based on an SQP-type
method that avoids the usage of such estimates. Nevertheless, we still achieve a
considerable amount of reduction of the computing time.

Let us now give a short overview over the structure of this thesis. In Chapter 0
we introduce our notation and conventions and summarize some basic de�nitions.
In Chapter 1 we state some assumptions that we will rely on in the following and
discuss results on control-constrained optimal control of quasilinear parabolic PDEs
from [35, 216, 45]. They will serve as a fundament of our further analysis. For later
reference we also include a summary of important results on maximal parabolic
regularity. Chapters 2 to 5 contain the main contributions of this thesis. Most
of the respective results have already been published in the authors publications
[167, 166, 168, 169] (joint work with I. Neitzel).

� Chapter 2: Pointwise constraints on the state (based on [168]) | We
discuss state-constrained optimal control of a quasilinear parabolic PDE.
Existence of optimal controls and �rst-order necessary optimality condi-
tions are derived for a rather general, rough setting including pointwise in
space and time constraints on the state. Second-order su�cient optimality
conditions are obtained for averaged in time and pointwise in space state-
constraints under general regularity assumptions for the equation, and for
pointwise in space and time state-constraints when restricting in return to
a more regular setting for the state equation.

� Chapter 3: Sparse purely time-dependent optimal control (based on
[169]) | We prove �rst- and second-order optimality conditions for sparse
purely time-dependent optimal control problems governed by a quasilinear
parabolic PDE. In particular, we analyze sparsity patterns of the optimal
controls induced by di�erent sparsity-enforcing functionals in the purely
time-dependent control case and illustrate them by numerical examples.
Moreover, we obtain second-order necessary and su�cient optimality con-
ditions. Our �ndings are based on results obtained by abstraction of well-
known techniques from the literature.

� Chapter 4: Convergence of the SQP method (based on [167]) | We
discuss the SQP method for the numerical solution of a quasilinear par-
abolic optimal control problem with purely time-dependent controls and
control-constraints. Following well-known techniques, convergence of the
method in appropriate function spaces is proven under some common tech-
nical restrictions. Particular attention is payed to how the second-order
su�cient conditions for the optimal control problem and the resulting L2-
local quadratic growth condition in
uence the notion of locality in the SQP
method. Numerical examples illustrate the theoretical results.

� Chapter 5: Model order reduction by proper orthogonal decomposi-
tion | This chapter addresses two aspects. First, we discuss POD/RB-
MOR for our quasilinear parabolic state equation and prove corresponding
a-posteriori error estimates. We consider the solution of a semidiscrete
counterpart of the state equation as reference, and therefore incorporate
POD/RB, empirical interpolation, and time discretization errors in our
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consideration. This is joint work with I. Neitzel and has been published
in [166]. Second, we demonstrate the ability of POD-MOR to reduce the
computational e�orts in the numerical solution of our model problem on
behalf of a simple, heuristic, and a-posteriori error estimate-free coupling
of POD-MOR and a slightly modi�ed SQP-type algorithm.

We conclude the thesis by an outlook to ongoing work.
As can be seen from this overview, there are two recurrent topics that can be

seen as some kind of read thread of this thesis. First, and most important, we
will have to deal with di�culties associated with the particular, highly nonlinear
structure of our quasilinear parabolic state equation. This is an issue that appears
|more or less explicitely| in every chapter of our work and that we will put
special emphasis on. Second, as explained before, the two-norm discrepancy and/or
second-order optimality conditions with or without two-norm gap are speci�c for
and important in PDE-constrained optimization. This topic also appears multiple
times in this thesis and plays a central role particularly in Chapters 2 to 4.



Chapter 0

Notation and de�nitions

In this chapter we brie
y summarize conventions and abbreviations. Moreover,
we �x the general notation and recall some basic de�nitions. In particular, we
precisely introduce the required function spaces on rough domains.

Abbreviations and conventions

Troughout this thesis we will make use of the following, common abbreviations:

a.a./a.e. almost all/almost everywhere (with respect to a measure),
DoF degrees of freedom,
EIM empirical interpolation method,
FEM �nite element method,
FON �rst-order necessary optimality condition,
MOR model order reduction,
ODE ordinary di�erential equation,
PDE partial di�erential equation,
POD proper orthogonal decomposition,
SNC second-order necessary optimality condition,
SQP sequential quadratic programming,
SSC second-order su�cient optimality condition,
SSN semismooth Newton method,
s.t. such that, or |depending on the context| subject to,
w.l.o.g. without loss of generality,
w.r.t. with respect to.

Sometimes, we will not distinguish properly between a \minimum" of a mini-
mization problem (i.e. the minimal attained value of the objective functional) and
the \minimizer" (i.e. the argument for which the minimal value is attained). The
true meaning, however, will always become clear from the context. Moreover, for
the reason of brevity we often refer to linear, semilinear, or quasilinear (elliptic or
parabolic optimal control) problems, although being aware that \linear", \semilin-
ear", or \quasilinear", and \elliptic", or \parabolic" only refers to the underlyling
partial di�erential equation and not the entire optimization problem, of course.
We follow the well-known convention in PDE-constrained optimization to write y,
u, and p (possibly with indices, bars, hats etc.) for states, controls, and adjoint
states. This causes a minor clash of notation, because \p" will also be used to
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denote an integrability exponent | however, it will always become clear from the
respective context whether \p" refers to a function space object or a real number.

In equations we utilize the notation \lhs ≲ rhs", if there is c > 0 such that
\lhs � c � rhs" and the actual value of c does not matter or is clear in the respective
context.

Given a set X and a subset S � X we denote by 1S: X ! R, 1S(x) = 1 for
x 2 S, 1S(x) = 0 for x 2 X n S, the indicator function of S. Given another set Y
and functions f; g : X ! Y we use the abbreviation

ff = gg := fx 2 X: f(x) = g(x)g:
By \⇒" we indicate set-valued maps. The euclidean (i.e. the `2-)norm on Rd is
denoted by j�j2, and the `1-norm by j�j1. We use the notation Br(x) for the open
euclidean balls in Rd with center x 2 Rd and radius r > 0.

Finally, we use the set-valued sign function de�ned by sign(z) = f�1g for
z ≷ 0 and sign(0) = [�1; 1].

Normed spaces and linear operators

For an overview on linear functional analysis we refer the reader to, e.g., the
summaries in the introductory chapters of [12, 240], or to the extensive monogra-
phies [290, 104, 241].

Let X, Y be (real) Banach spaces with norm k�kX , k�kY , respectively. By
L(X;Y ) we denote the Banach space of bounded linear maps X ! Y , equipped
with the operator norm

kAkL(X;Y ) := sup
x2Xnf0g

kAxkY
kxkX :

We use the short notation L(X) := L(X;X) for the bounded linear maps acting
on X. The notation X ,! Y indicates that X � Y with the inclusion being a
bounded linear map. If this embedding is dense, we use the notation X ,!d Y .
The topological dual L(X;R) of X is denoted by X�, and by h�; �iX�;X we refer to
the respective duality pairing. If k�kX is induced by a scalar product, we also write
h�; �iX for this scalar product.

If A: X ! Y is a linear operator, we denote by A� its adjoint Y � ! X�. More-
over, if A: X ! Y is closed, we denote by DomX(A) the domain of A, equipped
with the graph norm

kxkDomX(A) := kxkX + kAxkY ; x 2 DomX(A):

As usual, R(z;A) = (z � A)�1 denotes the resolvent of an operator A.
Given a sequence (xn)n � X and x 2 X, we denote by xn ! x and xn *

x, norm- and weak convergence of xn to x, respectively. An embedding that is
additionally a compact linear map is denoted by X ,!c Y . Finally, we use the
notation

BXr (x) := fz 2 X: kz � xkX < rg;
for the open ball in X with radius r > 0 and center x 2 X, and clX(S) for the
closure of a set S � X with respect to the norm-topology on X. If the topology
becomes clear from the context we also write S instead of clX(S). The closure of
S with respect to the weak topology on X is denoted by weak- clX(S).
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Interpolation theory

Let X and Y be (real) Banach spaces such that X ,! Z, Y ,! Z for some
locally convex space Z; in that case we call (X;Y ) an interpolation couple. Given
� 2 (0; 1) and r 2 (0;1) we denote by

[X;Y ]�; and (X;Y )�;r

the complex and real interpolation spaces between X and Y ; for the precise de�-
nition hereof and basic functorial properties we refer the reader to, e.g., [267] or
[12, Chapter I.2].

Spaces of continuous, Hölder continuous, and smooth functions

Given a topological space E and a Banach space X, we denote by C(E;X) the
space of bounded and continuous functions E ! X, equipped with the supremum
norm

k'kC(E;X) := sup
s2E

k'(s)kX :
If, in addition, E is a metric space with metric dE , and � 2 (0; 1] we introduce the
space of X-valued, bounded, �-H�older continuous functions on E by

C0;�(E;X) := f': E ! X: k'kC(E;X) + j'jC0;�(E;X) <1g
with j'jC0;�(E;X) := sups;t2E;s6=t

k'(s)�'(t)kX
dE(s;t)�

and equipp this space with norm

k�kC0;�(E;X) := k�kC(E;X) + j�jC0;�(E;X):

For � = 1 we obtain the space of bounded, Lipschitz continuous X-valued functions
on E. We refer the reader to, e.g., [12, Chapter II.1.1] for these de�nitions.

For X = R we omit X in the notation and write C(E) and C0;�(E) instead
of C(E;R) and C0;�(E;R). Let now E be a locally compact Hausdor� space. By
Cc(E) we denote the subspace of C(E) consisting of continuous functions E ! R
with compact support, and by C0(E) the closure of Cc(E) in C(E). The space
of (signed) regular Borel measures on E is de�ned by M(E) := (C0(E))

� and
equipped with the canonical total variation norm. The support of a regular Borel
measure � 2M(E) will be denoted by supp(�); see, e.g., [242, Chapter 6] for the
details.

Finally, if E � Rd is open, k 2 N, � 2 (0; 1] we denote by Ck;�(E) the space
of functions E ! R that are k-times di�erentiable with the k-th derivatives being
bounded and �-H�older continuous.

Lebesgue, Sobolev, and Bessel potential spaces

For an introduction to measure theory and Lebesgue spaces we refer the reader
to [242], and for the theory of Sobolev spaces in general to, e.g., [127]. Intro-
ducing Sobolev and Bessel potential spaces |in particular such with boundary
conditions| on rough domains is a bit delicate. Therefore, we recall the main
steps from [25, Section 2.3] to which we also refer for further details and refer-
ences.

Function spaces are �rst introduced on Rd and then on open subsets of Rd
by restriction. Given an integrability exponent p 2 [1;1] we denote by p0 =
(1 � p�1)�1 always the corresponding dual exponent. For s 2 (0;1), p 2 (1;1)
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we refer by Lp(Rd) and Hs;p(Rd) to the Lebesgue and Bessel potential spaces,
respectively, on Rd; see, e.g., [25, Section 2.3] or [127, De�nition 1.3.1.3] for the
standard de�nitions. Given a so-called (d � 1)-regular set D � Rd [25, De�nition
2.3] and s 2 ( 1p ; 1 +

1
p ) we de�ne

H
s;p
D (
) := f' 2 Hs;p

D (
): trD ' = 0 Hd�1-a.e. on Dg;
where trD denotes the trace in the sense of Jonsson and Wallin and Hd�1 the
(d � 1)-dimensional Hausdor� measure on D. The respective function spaces on
subsets of Rd can now be de�ned by pointwise restriction: for open E � Rd and
(d� 1)-regular D � E we set

Hs;p(E) := f'jE: ' 2 Hs;p(Rd)g;
H
s;p
D (E) := f'jE: ' 2 Hs;p

D (Rd)g;
equipped with the quotient norms

k'kHs;p(E) := inffk kHs;p(Rd):  2 Hs;p(Rd);  jE = 'g;
k'kHs;p

D (E) := inffk kHs;p(Rd):  2 Hs;p
D (Rd);  jE = 'g:

Finally, for s < 0 and p 2 (1;1) we set Hs;p(E) = (H�s;p0(E))� and Hs;p
D (E) =

(H
�s;p0
D (E))�, where the duality pairing extends the L2(E)-scalar product.
Since the function spaces introduced so far are de�ned by restriction of the

respective spaces on Rd, the well-known Sobolev embeddings hold true for them.
Nevertheless, the de�nition by restriction is rather abstract. For s 2 Z, s � �1,
and appropriate conditions on the underlying domain the spaces Hs;p coincide with
the well-known classical Sobolev spaces W s;p. We give a brief summary hereof in
the following. First, recall that in the classical way the Sobolev space W

1;p
D (E),

p 2 (1;1), with homogeneous Dirichlet boundary condition on D can by de�ned
as the closure of

C1D (E) := f': E ! R is in�nitely often di�erentiable, supp(') \D = ;g
w.r.t. the norm

k'kW 1;p :=
�
k'kpLp(E) + kr'kpLp(E)

� 1
p

:

Of course, W
1;p
D (E) is also equipped with this norm. Moreover, one de�nes

W
�1;p
D (E) := (W

1;p0

D (E))�:

For the equivalence of this de�nition to the second classical de�nition based on
Lp-integrability of weak derivatives we refer the reader to [221]. We recall the
following result [25, Proposition B.3] concerning the relation of Bessel potantial
and Sobolev spaces.

Proposition 0.1. If E � Rd is open, D � E is (d � 1)-regular, and E

satis�es a uniform Lipschitz condition around E nD, then it holds

W
1;p
D (E) = H

1;p
D (E); with equivalent norms.
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Similarly, one usually de�nes the Sobolev space (without boundary conditions)
W k;p(E), k 2 N, p 2 (1;1), as the closure of C1; (E) w.r.t. the W k;p(E)-norm

k'kWk;p :=

0
@ kX
`=0

X
j�j=`

kD�'kpLp
1
A

1
p

:

For so-called (�; �)-domains, see, e.g., [235, De�nition 5] for this notion, it is well-
known that these Sobolev spaces again coincide with the Bessel potential spaces.

Proposition 0.2. Let E � Rd be an (�; �)-domain. Then, it holds

W k;p(E) = Hk;p(E); with equivalent norms,

for k 2 Z, k � �1.
This is an immediate consequence of the following extension property for (�; �)-

domains that is also noteworthy on its own and the well-known relation Hk;p(Rd) =
W k;p(Rd) for k 2 N.

Theorem 0.3 ([235], Theorem 8). Let E � Rd be an (�; �)-domain and
p 2 [1;1]. Then, there exists a so-called degree independent Sobolev extension
operator, i.e. a bounded linear operator �: Lp(E)! Lp(Rd) such that (�')jE =
' for all ' 2 Lp(E) and the restrictions

�jWk;p(E): W
k;p(E)!W k;p(Rd);

are well-de�ned and bounded linear for each k 2 N.

Bochner-Lebesgue and Bochner-Sobolev spaces

Let I � R be an interval, p 2 [1;1], and X a Banach space. By Lp(I;X)
we denote the Bochner-Lebesgue space with respect to the Lebesgue measure dt
on I; see, e.g., [240, Chapter 1.5] for the de�nition. By W 1;p(I;X) we denote the
Bochner-Sobolev space

W 1;p(I;X) := f' 2 Lp(I;X): @t' 2 Lp(I;X)g;
where @t denotes the derivative in the sense of distributions; see for instance [240,
Chapter 7.1] or [12, Chapter III.1]. We equipp this space with norm

k'kW 1;p(I;X) := k'kLp(I;X) + k@t'kLp(I;X):

Moreover, given Banach spaces Y ,!d X with dense embedding, and s 2 (1;1)
we introduce the maximal regularity space by

W1;s(I; (X;Y )) :=W 1;s(I;X) \ Ls(I; Y );
equipped with norm k�kW1;s(I;(X;Y )) := k�kW 1;s(I;X) + k�kLs(I;Y ).

Maximal parabolic regularity

Let Y ,!d X be Banach spaces and �x some interval I = (0; T ) � R, T > 0.
Moreover, let A: I ! L(Y;X) be bounded and measurable such that A(t) is a closed
operator in X for each t 2 I. In particular, we can regard A as as a bounded linear
map A: Ls(I; Y )! Ls(I;X) by de�ning (Aw)(t) = A(t)w(t) for w 2 Ls(I; Y ).
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Definition 0.4 ([15]). A is said to have (nonautonomous) maximal parabolic
regularity on Ls(I;X), s 2 (1;1), if for every f 2 Ls(I;X) and w0 2 (X;Y )1=s0;s
there exists a unique solution w 2W1;s(I; (X;Y )) to the equation

@tw + Aw = f in Ls(I;X); w(0) = w0 in (X;Y )1=s0;s:

For the well-de�nedness of w(0) we refer to, e.g., Proposition 1.1. We denote
byMRs(I; (X;Y )) the set of all operators having maximal parabolic regularity on
Ls(I;X). For equivalent formulations we refer to, e.g., Proposition 1.2 and [15,
Proposition 3.1]. If A is autonomous, i.e. A(t) � A for all t 2 I, maximal regularity
of A on Ls0(I;X) for one s0 2 (1;1) is equivalent to maximal regularity of A on
all Ls(I;X), s 2 (1;1) and T > 0, cf., e.g., Proposition 1.3, and we say that A
has maximal parabolic regularity on X. We use the notation MR(X;Y ) for the
set of all such operators.

Convex Analysis

Let X be a Banach space and f: X ! R be a convex function. It is well-known
that the directional derivatives

f 0(x; v) := lim
t&0

f(x+ tv)� f(x)
t

;

are well-de�ned for any x; v 2 X. The subgradient @f(x) � X� of f at x is de�ned
by

@f(x) := f� 2 X�: f(y)� f(x) � h�; y � xiX�;X 8y 2 Xg
and it holds f 0(x; v) = sup�2@f(x)h�; viX�;X ; see, e.g., [106, Chapter I.5] or [36,
Chapter 2.4] for these de�nitions. In this sense, we denote by k�k0L1(u; v) or j�j01(x; y)
the directional derivatives of the L1- or the `1-norm at u in direction v or at x in
direction y, respectively.

From [36, De�nition 2.54] let us recall the following de�nitions. Given a convex
set C � X and x 2 C we introduce the radial cone

RC(x) := f�(y � x): � > 0; y 2 Cg;
and the tangent cone (contingent cone)

TC(x) := fv 2 X: 9(vk)k � X 9(tk)k � (0;1)

s.t. vk ! v; tk & 0 and x+ tkvk 2 Cg
= clX RC(x);

where the last equality is due to convexity of C; cf. [36, Proposition 2.55]. More-
over, we recall that C is called polyhedric if for all x 2 C and ' 2 X� it holds

TC(x) \ ker' = clX(RC(x) \ ker');

note that the classic de�nition of polyhedricity, see , e.g., [36, De�nition 3.51] or
[287, De�nition 3.1.1], can be simpli�ed in the above way due to [287, Lemma 4.1].



Part I

Analysis of the control problems





Chapter 1

Preliminaries: the control-constrained problem

As explained in the introduction, the goal of this �rst part of the thesis is
the analysis of two variants of the following control-constrained optimal control
problem from [35]:8>><

>>:
min J(y; u) :=

1

2
ky � ydk2L2(I�
) +

�

2
kuk2L2(�);

s.t. u 2 Uad
and (Eq):

(P)

The quasilinear parabolic state equation (Eq) will be given by(
@ty +A(y)y = Bu in Ls(I;W

�1;p
�D

);

y(0) = y0 in (W
�1;p
�D

;W
1;p
�D

)1=s0;s;
(Eq)

where the quasilinear di�erential operator A is de�ned by A(y) := �r � �(y)�r.
Boundary conditions are incorporated in the right-hand side of (Eq) and the re-
spective function spaces. Our assumptions on the control space Ls(�) and the
control operator B will allow to cover di�erent types of control mechanisms. For
the precise de�nitions and assumptions we refer the reader to Section 1.2 below,
where also examples will be given.

Throughout this thesis, the set of admissible controls Uad � Ls(�) will be given
by so-called box-constraints, i.e. by pointwise inequality-constraints from below
and above. Again, the precise formulation will be provided below. The objective
functional J consists of two summands: the quadratic L2-tracking-type functional
y 7! ky � ydk2L2(I�
) and the control cost term u 7! �

2 kuk2L2(�). Consequently,

by formulating (P) we aim at �nding an admissible control u 2 Uad such that the
associated state y is close to the function yd, the so-called desired state, w.r.t. the
L2(I�
)-norm while keeping also track of the \cost" of the control u, measured in
the squared L2(�)-norm and weighted by the parameter � > 0. In the context of
inverse problems, such a cost term is also known as Tikhonov regularization term
which is the reason why we refer to � as the Tikhonov parameter in the following.
Let us brie
y mention that replacing the tracking-type part of J by a di�erent,
su�ciently regular functional usually does not cause major problems, in general.
The presence of a Tikhonov regularization term with � > 0, however, is crucial
for many results. The so-called bang-bang case � = 0 exhibits quite di�erent
structural properties and usually requires di�erent arguments as will be explained
in more detail in Section 1.5.3.

21
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The setting described above in (P), i.e. minimization of a quadratic L2-
tracking-type functional with L2-control cost subject to box-constraints on the
control-variable, is a typcial problem type in PDE-constrained optimization; cf.,
e.g., [270, 156]. For the case of a quasilinear parabolic state equation it has re-
cently been analyzed in [35] and [45]; our problem (P) is identical to the one under
consideration in [35]. Both papers [35] and [45] deal with existence of optimal con-
trols and �rst- and second-order optimality conditions for optimal control problems
of quasilinear parabolic PDEs with box-constraints on the control. They mainly
di�er w.r.t. the concrete form of the state equation and the assumptions on the
underlying data.

In Chapter 2 we will be concerned with additional constraints on the state
variable (problem (Pst)) and in Chapter 3 we will add certain nonsmooth cost
terms to the functional (problems (P

sp
k )). In Chapter 4 we come back to (P) and

prove convergence of the SQP method. In all three chapters, the results on (P)
obtained in [216, 35, 45] will serve as a fundament for our analysis. Therefore, we
provide a summary hereof in the present chapter. Since we collect this material
for later reference, our selection of the results is slightly biased: we cite the �rst-
and second-order analysis exclusively from [35] although analogous results have
been obtained in [45] as well. From [45] we only cite a result concerning improved
regularity of solutions of the state equation. Moreover, we completely omit the
stability analysis of the control problem w.r.t. the coe�cient function � from [35,
Section 5].

Let us note that the assumptions from [35] are minimal in the sense that they
include certain nonsmooth domains and coe�cient functions and mixed boundary
conditions as they were formulated in [216] for the analysis of the underlying equa-
tion. Such a setting, which is also referred to as \rough", is particulary interesting
because real-world problems often come along some kind of irregular data. When-
ever possible, we will keep these minimal assumptions from [35] in our analysis.
Therefore, we state and discuss them in Section 1.2 and will rely on them in most
parts of the thesis. This is the reason why we often refer to [35] only although
similar results have been obtained in [45] as well. Nevertheless, problem-speci�c
di�culties will sometimes force us to apply certain results that are not available in
the rough setting of [35]. In that case, we will switch to stronger, rather classical
assumptions on the data in the 
avour of [45] that in return allow to utilize much
stronger regularity results obtained in [45]. In particular, we recall these strength-
ened assumptions on the equation together with the resulting regularity theory for
solutions of this equation from [45] in Section 1.6. An overview on the relation of
the di�erent regularity assumptions used troughout this thesis together with the
dependence of the main results on these assumptions is provided at the end of this
chapter in Figure 1.1 and Table 1.1.

The structure of this chapter can be summarized as follows: since we make
repeatedly use of the concept of maximal parabolic regularity we start with a
summary of related important results in Section 1.1. In Section 1.2 we state and
discuss the minimal assumptions on (P) from [35]. Results from [216, 35] concern-
ing the solvability of the state equation (Eq) and di�erentiability of the associated
solution map in this rough setting are summarized in Section 1.3. In Section 1.4
we brie
y recall the analysis of the so-called adjoint equation from [35] and state
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two extensions hereof from [167, 169]. Subsequently, we summarize the �rst- and
second-order optimality conditions for the purely control-constrained instance of
(P) from [35] in Section 1.5. At the end of the chapter we �nally recall the im-
proved regularity analysis for solutions of a variant of (Eq) under the additional
assumptions from [45].

1.1. Maximal parabolic regularity

Maximal regularity spaces and the concept of (nonautonomous) maximal par-
abolic regularity provide the framework for the analysis of the underyling time-
dependent PDEs in [35, 216]. Consequently, they will also play an important role
in almost every part of our analysis. Therefore, we summarize some basic facts
that will be used throughout the thesis.

Let Y ,!d X be Banach spaces and �x some interval I = (0; T ) � R, T > 0.
First, we recall from [13, Theorem 3] and [12, Theorem III.4.10.2], see also [14,
formula (1.2)], the following embeddings of the maximal regularity spaces.

Proposition 1.1. For s 2 [1;1) it holds:

1. W1;s(I; (X;Y )) ,! Lq(I; (X;Y )�;1), if 1 � 1
q > � � 1

s0 > 0,

2. W1;s(I; (X;Y )) ,! C(I; (X;Y )1=s0;s,

3. W1;s(I; (X;Y )) ,! C0;�(I; (X;Y )�;1), if 0 � � < 1
s0 � �.

If the embedding Y ,! X is compact, the �rst and the third embedding are
compact as well.

The second embedding hereof implies that for each t 2 I the trace map
trt: W1;s(I; (X;Y ))! (X;Y )1=s0;s is a well-de�ned bounded linear map.

The notion of (nonautonomous) maximal parabolic regularity has been intro-
duced in Chapter 0. We start with one of the equivalent formulations from [14,
Proposition 2.1] that is of particular interest to us.

Proposition 1.2. Given A 2 L1(I;L(Y;X)) \ L(W1;s(I; (X;Y )); Ls(I;X))
the following properites are equivalent:

� A 2MRs(I; (X;Y )),
� (@t + A; tr0): W1;s(I; (X;Y )) ! Ls(I;X) � (X;Y )1=s0;s is a topological
isomorphism.

As mentioned in Chapter 0, maximal parabolic regularity in the autonomous
case is independent of the time interval and the integrability of the right-hand side.
For completeness, we state the precise result from [15, Remark 6.1].

Proposition 1.3. Let A 2 L(Y;X) de�ne a closed operator in X. Then
the following conditions are equivalent:

� A 2MRs(I; (X;Y )) for some particular s 2 (1;1) and T > 0,
� A 2MRs(I; (X;Y )) for all s 2 (1;1) and T > 0.

Finally, we will need the following result that allows to deduce maximal par-
abolic regularity of certain nonautonomous and autonomous operators. This is
particularly usefull in the analysis of the linearized state equation or the adjoint
equation; cf., Lemma 1.12, Proposition 1.17, and Lemma 2.24.
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Proposition 1.4.

1. ([15], Theorem 7.1) Let #; � 2 (0; 1) and 0 � 1
� < min(1� �; 1s ). It holds

C(I;MR(X;Y )) + L1(I;L(Y; (X;Y )#;1)) + L�(I;L((X;Y )�;1; X))

�MRs(I; (X;Y )):

2. ([15], Proposition 7.1) If A 2MRs(I; (X;Y ))\C(I;L(Y;X)), then A(t) 2
MR(X;Y ) for each t 2 I.

3. ([231], Corollary 3.4) It holds

C(I;MR(X;Y )) + Ls(I;L((X;Y )1=s0;s; X)) �MRs(I; (X;Y )):

Herein, when referring to continuous functions I ! M(X;Y ), we equipp the
set M(X;Y ) � L(Y;X) with the topology inherited from L(Y;X).

1.2. Minimal Assumptions

In the following we summarize the minimal assumptions required for the anal-
ysis of the state equation (Eq) from [216, 35]. As explained in the introduc-
tion, \minimal" refers to the fact that rather irregular data are allowed. Assump-
tions 1.5, 1.6 and 1.8 are close to the Assumptions 1-4 formulated in [35] but at
�rst we forego those parts that refer to the improved regularity analysis from [35]
on Bessel potential spaces. Instead, we stick to the original setting of [216] and
formulate the improved regularity assumptions separately. We will explain this in
more detail below Example 1.9 after having stated the assumptions.

At the end of this chapter, in Figure 1.1, we show how the di�erent regular-
ity settings used in this thesis are related to each other. Moreover, in Table 1.1
the required regularity assumptions for each of the main results in this thesis are
summarized.

We start with the assumptions on the underlying domain, its boundary, and
the boundary conditions imposed.

Assumption 1.5. 
 � Rd, d 2 f2; 3g, is a bounded domain with boundary
@
. �N � @
 is relatively open and denotes the Neumann boundary part, whereas
�D = @
 n �N denotes the part of @
 where homogeneous Dirichlet boundary
conditions are prescribed. Let 
[�N be regular in the sense of Gr�oger [128] such
that every chart map in the de�nition of regularity in the sense of Gr�oger can be
chosen volume-preserving. The time interval I = (0; T ) with T > 0 is �xed. We
denote the space-time cylinder by Q := I � 
.

For an alternative, geometric characterization of regularity in the sense of
Gr�oger we refer the reader to [133, Section 5]. Assumption 1.5 is ful�lled for
any domain with a Lipschitz boundary (\strong Lipschitz domain", [127, De�ni-
tion 1.2.1.1]) in the case �N = ; or �N = @
; cf. [134, Remark 3.3]. However,
there are also domains without Lipschitz boundary ful�lling this assumption, e.g.,
a pair of crossing beams in 3D [134, Section 7.3].

Function spaces on 
 are de�ned according to Chapter 0. Regarding the de�-
nition of Sobolev and Bessel potential spaces, with and without Dirichlet boundary
conditions on �D, we point out that Assumption 1.5 in particular implies the geo-
metric conditions from Chapter 0 with E = 
 andD = �D; see, e.g., [35, Appendix
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A] for a proof. Moreover, the assumptions of Propositions 0.1 and 0.2 are satis�ed,
cf., e.g., [105, Lemma 2.2.20] for the fact that 
 is an (�; �)-domain, and hence
integer Sobolev and Bessel potential spaces coincide. Since the spatial domain will
be �xed we will omit it in our notation in the following, and write, e.g., Lp, W

1;p
�D

,

H
�s;p
�D

, etc., instead of Lp(
), W
1;p
�D

(
), H
�s;p
�D

(
).
Next, we state our assumptions regarding the coe�cient functions.

Assumption 1.6.

1. The function �: R ! R is twice di�erentiable with �00 being Lipschitz
continuous on bounded subsets of R. Let �: 
 ! Rd�d be measurable,
symmetric, and uniformly bounded and coercive in the following sense:

0 < �� := inf
x2


inf
z2Rdnf0g

zT�(x)z

zT z
; �� := sup

x2

sup

1�i;j�d
j�i;j(x)j <1:

We assume a coercivity condition 0 < �� � � � �� for � as well. With this
we de�ne

hA(y)'; iL2(I;W 1;2
�D

) :=

Z
I

Z



�(y)�r'r dxdt; ';  2 L2(I;W 1;2
�D

):

2. We assume that there is p 2 (d; 4) such that

�r � �r+ 1: W
1;p
�D

!W
�1;p
�D

is a topological isomorphism and �x this choice of p.

Assumptions 1.5 and 1.6 certainly impose nontrivial conditions on the geome-
try of the domain, the elliptic operator �r��r+1, and the boundary conditions.
Hence, we mention the following examples; cf. also [35, Remarks 2.1 and 2.3] and
[168, Example 2.3].

Example 1.7.

1. If 
 is a bounded domain with Lipschitz boundary, �N = ; or �N = @
,
and �: 
! Rd�d is symmetric-valued and uniformly continuous, Assump-
tion 1.5.2 is ful�lled with some p > 3; see [107, Theorem 3.12, Remark
3.17]. Therefore, Assumptions 1.5 and 1.6 cover the classical regular set-
ting of domains with Lipschitz boundary in dimensions d = 2; 3 with pure
Dirichlet or Neumann boundary conditions and symmetric, uniformly con-
tinuous coe�cient �.

2. According to the well-known work [128] the isomorphism property from
Assumption 1.6.2 for some p > 2 is a consequence of Assumption 1.5 for
any coe�cient � ful�lling Assumption 1.6.1. This is also true under more
general assumptions on the domain; see [132]. Hence, for space dimension
d = 2 Assumption 1.6.2 is guaranteed for a broad range of nonsmooth
domains, mixed boundary conditions, and nonsmooth �.

3. It is well-known that for mixed boundary conditions Assumption 1.6.2 can
only be expected to hold for some p < 4, in general; cf. the famous coun-
terexample in [254]. In [97] for instance several real-world constellations in
dimension d = 3 have been described that ful�ll Assumptions 1.5 and 1.6,
e.g., two crossing beams in 3D with constant � and pure homogeneous
Dirichlet or Neumann boundary conditions.
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Finally, we introduce the space of controls and how they enter the state equa-
tion.

Assumption 1.8. Let s > 2 be �xed such that 1
s <

1
2 (1 � d

p ) holds. For a

measure space (�; �) we de�ne the control space U := Ls(�) and the admissible
set

Uad = fu 2 Ls(�): ua(x) � u(x) � ub(x) for �-a.a. x 2 �g
with ua; ub 2 L1(�), ua � ub �-almost everywhere. The control operator

B: U ! Ls(I;W
�1;p
�D

)

is bounded linear and admits a bounded linear extension

B: L2(�)! L2(I;W
�1;p
�D

):

Finally, the initial condition y0 2 (W
�1;p
�D

;W
1;p
�D

)1�1=s;s, the desired state yd 2
L1(I; Lp), and an L2-Tikhonov parameter � > 0 are �xed.

The constants p and s are �xed from now on until further notice. Note that in
Assumption 1.8 we only suppose B to be continuous from Ls(�) to Ls(I;W

�1;p
�D

),

instead from L1(�) to Ls(I;W�1;p
�D

) as in [35]. Moreover, we have changed regu-

larity of the desired state from yd 2 L1(I; L2) to yd 2 L1(I; Lp). Nevertheless,
this does not destroy applicability of the assumption to the full range of situations
described in [35, Section 2.2]. For convenience we repeat these examples as stated
in [168, Example 2.2].

Example 1.9.

1. Distributed control: It holds � = Q, i.e. U = Ls(I � 
), and B is the

identity map Ls(Q) ! Ls(I;W
�1;p
�D

). Denoting the outer normal unit
vector of @
 by n
, the state equation reads

@ty +A(y)y = u on Q;

n
 � �(y)�ry = 0 on I � �N ;

y = 0 on �D:

2. Neumann boundary control (d = 2): We choose � = I � �N , i.e. U =

Ls(I � �N ), and B = tr� where tr: Ls
0

(I;W
1;p0

�D
) ! Ls

0

(I � �N ) denotes
the trace map. With this the state equation reads

@ty +A(y)y = 0 on Q;

n
 � �(y)�ry = u on I � �N ;

y = 0 on �D:

Of course, adding a su�ciently regular, �xed, nonhomogeneous distributed
source is possible. The same is true for a su�ciently regular, �xed, non-
homogeneous Neumann boundary source in Example 1.9.1.

3. The following setting for the controls, often referred to as \purely time-
dependent controls", has been introduced in [91] in the case of a semilinear

parabolic state equation. We �x b1; :::; bm 2 W�1;p
�D

, that we may imagine

as �xed actuators, set U = Ls(I;Rm), and de�ne Bu :=
Pm
i=1 uibi. If, for
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instance, bi = tr� fi with fi 2 Ls(�N ) where tr: W 1;p0

�D
! Ls

0

(�N ) denotes
the trace map on �N , we obtain as state equation:

@ty +A(y)y = 0 on Q;

n
 � �(y)�ry =
mX
i=1

uifi on I � �N ;

y = 0 on �D:

Note that this approach allows control action on the Neumann boundary
also in space dimension d = 3, but now with a-priori �xed actuators. A
similar construction applies to actuators bi 2 Ls(
).

Besides its relevance in practice, the purely time-dependent control
setting has also several advantages w.r.t. the theoretical analysis. We will
explain this in more detail as soon as we will restrict ourselves to this
setting, e.g., in Section 2.4, Chapter 3 and Chapter 4.

As announced at the beginning of this section, let us brie
y comment on the
di�erence of Assumptions 1.5, 1.6 and 1.8 compared to the assumptions in [35].
In fact, note that except for mininmal changes (symmetry of �, slightly increased
integrability of yd) Assumptions 1.5, 1.6 and 1.8 are identical to Assumptions 1-3
of [35], i.e. the suppositions w.r.t. domain, coe�cients, and boundary conditions
essentially remain unchanged. We only modify the assumptions w.r.t. the initial
condition and regularity of the right-hand side of (Eq). Assumption 4 in [35], cf.
Assumption 1.10 below, is related to the improved regularity analysis of the state
equation on Bessel potential spaces. As pointed out in [35, Section 3] this analysis
is not required for the �rst- and second-order analysis of Sections 3.1 and 4.1-4.3
of [35], except for [35, Proposition 4.7], a result concerning the so-called adjoint
state. We will recall the respective results from [35] in the remaining part of this
chapter. If not stated otherwise we will only rely on those results that are obtained
completely within the W

�1;p
�D

-W
1;p
�D

-setting described in our Assumptions 1.5, 1.6
and 1.8, cf. also [216, Theorem 5.3], and do not include the improved regularity
assumptions of [35]. For completeness and for later reference, however, we also
state the following strengthened version of Assumption 1.8 that is identical to [35,
Assumption 4]. It enables to obtain improved regularity of the states on the Bessel

potential spaces H
��;p
�D

which will also be recalled in this chapter.

Assumption 1.10. Let � 2 (0; 1) and s 2 (2;1) satisfy

max

�
1� 1

p
;
d

p

�
< �;

1

s
< min

�
1

2
� �

2
;
�

2
� d

2p

�
:

For a measure space (�; �) we de�ne the control space U = Ls(�) and the admissible
set by

Uad = fu 2 Ls(�): ua(x) � u(x) � ub(x) for �-a.a. x 2 �g;
with ua; ub 2 L1(�), ua � ub �-almost everywhere. The control operator

B: Ls(�)! Ls(I;H
��;p
�D

);

is bounded linear and admits a bounded linear extension

B: L2(�)! L2(I;W
�1;p
�D

):
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Finally the initial condition y0 2 (H
��;p
�D

;DomH
��;p
�D

(�r � �r))1=s0;s, the desired

state yd 2 L1(I; Lp), and a Tikhonov-parameter � > 0 are �xed.

We note that Assumption 1.10 allows for all constellations described in Exam-
ple 1.9 with the only di�erence that the purely time-dependent control case now

requires actuators bi 2 H
��;p
�D

, i = 1; :::;m. Herein, the assumptions on � ensure

that H
��;p
�D

also contains boundary integrals or certain distributional sources; cf.
[134, Theorem 6.9].

1.3. Solutions of the state equation

In this section we summarize results from [216, 35] concerning the existence
of solutions to (P). Moreover, we precisely introduce the so-called control to state
map, recall results concerning its di�erentiability and state formulas for the deriva-
tives of the reduced functional. In particular, we explain brie
y how the regularity
assumptions are related to these di�erentiability results.

First, let us make precise in which sense solutions to (Eq) have to be under-

stood: y 2W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) is said to be a solution of the equation(
@ty +A(y)y = v; in Ls(I;W

�1;p
�D

);

y(0) = y0; in (W
�1;p
�D

;W
1;p
�D

)1=s0;s;
(1.1)

if and only if

h@ty; 'iW�1;p
�D

;W
1;p0

�D

+

Z



�(y(t))�ry(t)r' dx = hv(t); 'i
W
�1;p
�D

;W
1;p0

�D

for all ' 2 W
1;p0

�D
and almost all t 2 I, and y(0) = y0 in (W

�1;p
�D

;W
1;p
�D

)1=s0;s. For

the well-de�nedness of y(0) 2 (W
�1;p
�D

;W
1;p
�D

)1=s0;s we refer to Proposition 1.1.
Existence and uniqueness of solutions to (1.1) has �rst been obtained in [216,

Corollary 5.8] for a slightly di�erent equation with elliptic operator �r��(y)�r+1
instead of �r��(y)�r and an additional, uniformly bounded, zero-order semilinear
term. In [35] this result has been adapted to our precise setting.

Theorem 1.11 ([35], Proposition 3.5). Under Assumptions 1.5, 1.6 and 1.8

the solution map ~S of the equation (1.1), de�ned by y := ~S(v) if and only if
(1.1) holds, is a well-de�ned map

~S: Ls(I;W
�1;p
�D

)!W1;s(I; (W
�1;p
�D

;W
1;p
�D

)):

By composition of ~S with B we obtain the so-called control-to-state map

S: Ls(�)!W1;s(I; (W
�1;p
�D

;W
1;p
�D

)); u 7! ~S(Bu);

which is the solution map of (Eq). For the applicability of the results from [216]
to the slightly di�erent equation in [35] we refer the reader, e.g., to Appendix A
of [168] the respective details have been summarized.

Given y 2 W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) we recall from [35] the notation for certain
terms related to the derivatives of the nonlinearity, stated in weak form:

hA0(y)v; 'i :=
Z
Q

�0(y)v�ryr' dxdt;
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hA00(y)[v1; v2]; 'i :=
Z
Q

(�0(y)(v1�rv2 + v2�rv1) + �00(y)v1v2�ry)r' dxdt;

with v; v1; v2 2 W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) and a test function ' 2 Ls0(I;W 1;p0

�D
). It is

possible to relax the regularity requirements on v; v1; v2, as done, e.g., in the proof
of the following di�erentiability properties of ~S [35, Proposition 4.4 and Lemma
4.5].

Lemma 1.12. Let Assumptions 1.5, 1.6 and 1.8 be satis�ed.

1. The map ~S: Ls(I;W
�1;p
�D

) ! W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) is twice continu-

ously Fr�echet di�erentiable with derivatives ~S0(v)h = z and ~S00(v)[h1; h2]
given by the unique solutions of

@tz +A(y)z +A0(y)z = h; z(0) = 0;(1.2)

@tw +A(y)w +A0(y)w = A00(y)[ ~S0(v)h1; ~S0(u)h2]; w(0) = 0(1.3)

for y = ~S(v), respectively.
2. The nonautonomous operator A(y)+A0(y) exhibits maximal parabolic

regularity on Lr(I;W
�1;p
�D

) for r 2 (1; s]. It holds

~S0(v) 2 L(Lr(I;W�1;p
�D

);W1;r(I; (W
�1;p
�D

;W
1;p
�D

))

for all v 2 Ls(I;W�1;p
�D

), r 2 (1; s].

At this point, some comments regarding the relation between the choice of the
time integrability exponent s in Assumption 1.8 and di�erentiability of ~S seem
to be appropriate. Di�erentiablity of ~S is proven in [35] by an application of the
implicit function theorem; cf. the proof of [35, Lemma 4.5]. Consequently, it is
crucial to ensure that the map

W1;s(I; (W
�1;p
�D

;W
1;p
�D

))! Ls(I;W
�1;p
�D

); y 7! @t +A(y)y;
is twice continuously Fr�echet di�erentiable. As we have pointed out in the intro-
duction on behalf of the example (0.2), di�erentiability of superposition operators
between function spaces is a nontrivial topic; see, e.g., [270, Chapter 4.3] or the
extensive monography [16]. In the present case, di�erentiability of the superposi-
tion operator y 7! �(y) as L1(Q)-valued map is needed. Thus, s has to be chosen
in such a way that there is an embedding

W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) ,! L1(Q):

This results in exactly the choice for s as in Assumption 1.8; in fact, there is even
� > 0 such that

W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) ,!c C
0;�(Q);(1.4)

cf. [35, Proposition 3.3]. In particular, we point out that considering controls
in Ls(�) with s > 2 is necessary to ensure di�erentiability of the control-to-state
map.

For convenience of the reader, let us state the concrete Bochner-Sobolev em-
bedding that led to (1.4) for later reference.
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Lemma 1.13 ([35], Proposition 3.3). Let Assumption 1.5 hold and p > d.
If 1 > 1

r � 1
2 � d

2p , then

W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) ,!c L
q(I; C0;�)

with 1
q >

1
r � 1

2 +
d
2p and � = �(q) > 0. If 1

r <
1
2 � d

2p , then

W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) ,!c C
0;�(I; C0;�)

with � = 1
2 � d

2p � 1
r � �

2 and � > 0 su�ciently small.

Let us now introduce the reduced objective functional

j: Ls(�)! R; u 7! J(S(u); u):(1.5)

From [35, Lemma 4.6] we recall that the reduced functional j is twice continuously
Fr�echet di�erentiable on Ls(�) with gradient

rj(u) = B� ~S0(Bu)�(y � yd) + �u; u 2 Ls(�):(1.6)

As typical in PDE-constrained optimization, the abbreviation p := ~S0(Bu)�(y�yd),
the so-called adjoint state, which is well-de�ned in Lr

0

(I;W
1;p0

�D
), r0 2 [s0;1), due

to Lemma 1.12, is introduced and one writes rj(u) = B�p+�u. In this notation,
the second derivative of j at u 2 Ls(�) in direction v 2 Ls(�) is given by

(1.7) j00(u)v2 = �kvk2L2(�)+
Z
Q

�
(1� �00(y)rp�ry)z2v � 2�0(y)zvrp�rzv

�
dxdt;

with zv = S0(u)v; cf. [35, Proposition 4.10].
We conclude this summary on the analysis of (Eq) with the improved regularity

result on Bessel potential spaces that holds under the slightly stronger regularity
Assumption 1.10.

Theorem 1.14 ([35], Theorem 3.20). Let Assumptions 1.5, 1.6 and 1.10
hold. For each control u 2 Ls(�) the associated state y has additional regu-
larity

y 2W1;s(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r))):
Moreover, the operator �r � �(y)�r has nonautonomous maximal parabolic

regularity on H
��;p
�D

.

We further note that there is � > 0 such that

W1;s(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r))) ,!c C
0;�(I;W

1;p
�D

);(1.8)

cf. [35, Corollary 3.7].

1.4. The adjoint equation

In the previous section we have expressed the gradient of the reduced functional
of (P) with the help of the so-called adjoint state; cf. (1.6). Expressing the adjoint

state, so far only given by the rather abstract de�nition p = ~S0(Bu)�(y � yd), in
terms of the solution of a certain backward parabolic PDE, the so-called adjoint
equation, is a standard technique in optimal control of parabolic PDEs. In essence,
one has to prove that ~S(Bu)� can be identi�ed with the solution operator of the
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adjoint equation. Roughly speaking, since ~S0(Bu) is the solution map of a linear
nonautonomous parabolic PDE, cf. Lemma 1.12, one has to observe that the
adjoint of the solution operator of such a linear (forward) parabolic PDE is given
by the solution operator of an appropriate backward parabolic PDE; see, e.g., [270,
Chapter 3.6 and 5.5] for a detailed exposition in the case of linear and semilinear
control problems.

In this section we recall the corresponding result for the quasilinear parabolic
case from [35]. Moreover, we provide two di�erent extensions hereof that we will
rely on during our further analysis. We start with the result from [35], dealing

with the adjoint equation in the W
�1;p0
�D

-W
1;p0

�D
-setting.

Proposition 1.15 ([35], Proposition 4.7). Let y 2 C(I;W 1;p
�D

) and r0 2 [s0;1).

For all w 2 Lr0(I;W�1;p0
�D

) and wT 2 (W
�1;p0
�D

;W
1;p0

�D
)1=r;r0 , the equation8<

: �@tp+A(y)�p+A0(y)�p = w; in Lr
0

(I;W
�1;p0
�D

);

p(T ) = wT ; in (W
�1;p0
�D

;W
1;p0

�D
)1=r;r0 ;

has a unique solution p 2 W1;r0(I; (W
�1;p0
�D

;W
1;p0

�D
)), and the solution map

(w;wT ) 7! p is bounded linear.
In particular, under Assumptions 1.5, 1.6 and 1.10 the adjoint state p

introduced in the previous section exhibits regularity

p 2W1;r0(I; (W
�1;p0
�D

;W
1;p0

�D
)); r0 2 [s0;1);

and satis�es the equation

�@tp+A(y)� +A0(y)�p = y � yd; p(T ) = 0;

in the sense of distributions.

Since the application of Proposition 1.15 requires y 2 C(I;W 1;p
�D

), we only get
improved regularity of the adjoint state if the required regularity for the state is
guaranteed, e.g., by Theorem 1.14. The latter, however, relies on the additional
regularity assumptions from [35]; cf. Assumption 1.10. Obviously, the result does

not allow to obtain L1(I;W 1;p0

�D
)-regularity of the adjoint state. Since the latter

will be required during the analysis of the SQP method in Chapter 4, we discuss the

adjoint equation on the Bessel potential spaces H
��;p
D . This is our �rst extension

of Proposition 1.15.

Proposition 1.16 ([167], Theorem 7.2). Let y 2 C(I;W 1;p
�D

) and r0 2 (1;1).

For all w 2 Lr0(I;H��;p
�D

) and wT 2 (H
��;p
�D

;DomH
��;p
�D

(�r � �r))1=r;r0 , the equa-
tion8<
:

�@tp+A(y)�p+A0(y)�p = w; in Lr
0

(I;H
��;p
�D

);

p(T ) = wT ; in (H
��;p
�D

;DomH
��;p
�D

(�r � �r))1=r;r0 ;

has a unique solution p 2 W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r))), and the solu-

tion map (w;wT ) 7! p is bounded linear.
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In particular, under Assumptions 1.5, 1.6 and 1.10 the adjoint state p
exhibits regularity

p 2W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r))); r0 2 [s0;1);

and satis�es the equation

�@tp+A(y)� +A0(y)�p = y � yd; p(T ) = 0;

in the sense of distributions.

For r0 = s this allows to conclude C(I;W
1;p
�D

)-regularity of the adjoint state by

an application of embedding (1.8). This is even more than L1(I;W 1;p0

�D
)-regularity

of the adjoint state that we will rely on in Chapter 4; cf. the remarks below
Theorem 4.11. The following proof from [167] is a shorter and more elegant version
of our original argument, communicated by H. Meinlschmidt (FAU Erlangen).

Proof. The starting point of the argument is the observation that the map

(1.9) (�@t +A(y)� +A0(y)�; trT ): W1;r0(I; (W
�1;p0
�D

;W
1;p0

�D
))

! Lr
0

(I;W
�1;p0
�D

)� (W
�1;p0
�D

;W
1;p0

�D
)1=r;r0

is a topological isomorphism for each r0 2 (1;1); this is a consequence of Proposi-
tion 1.15 and Proposition 1.2. We will consider restrictions of this isomorphism to
smaller spaces of more regular functions. First, a short computation veri�es that

A0(y)�jLr0 (I;W 1;p
�D

)' = �0(y)�ryr'; ' 2 Lr0(I;W 1;p
�D

);

and that the conditions on � and p ensure Lp=2 ,! H
��;p
�D

. We choose 1+�
2 < � < 1

such that 1
r0 > 1 � # and obtain with the help of Proposition 1.1.1 and [35,

Proposition 3.6] that

(1.10) W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r)))
,!c L

r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r))�;1) ,! Lr
0

(I;W
1;p
�D

):

Together, the operator

A0(y)�: W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r)))
,!c L

r0(I;W
1;p
�D

)! Lr
0

(I; Lp=2) ,! Lr
0

(I;H
��;p
�D

);

z 7! �0(y)�ryrz;
is compact as it can be expressed as the composition of bounded linear operators
of which one is the compact embedding (1.10). From Theorem 1.14 in combination
with Proposition 1.2 and Proposition 1.4 we know that the map

(�@t +A(y)�; trT ): W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r)))
! Lr

0

(I;H
��;p
�D

)� (H
��;p
�D

;DomH
��;p
�D

(�r � �r)1=r;r0
is a topological isomorphism. Consequently, the sum

(1.11) (�@t +A(y)� +A0(y)�; trT ): W1;r0(I; (H
��;p
�D

;DomH
��;p
�D

(�r � �r)))
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! Lr
0

(I;H
��;p
�D

)� (H
��;p
�D

;DomH
��;p
�D

(�r � �r)1=r;r0

is a Fredholm operator of index 0. Since it is the restriction of the isomorphism
(1.9), its kernel is trivial, and hence (1.11) is a topological isomorphism itself. □

In contrary to the above two results on the adjoint equation, the following result
on regularity of the adjoint states on the Lp-DomLp(�r � �r)-scale only relies on
Assumptions 1.5, 1.6 and 1.8. Together with its proof it has been provided by L.
Bonifacius (Munich) and J. Rehberg (WIAS, Berlin) in personal communication.

Proposition 1.17 ([169], Proposition 3.2). Given y 2 C(Q), the operator
��(y)r��r has nonautonomous maximal parabolic regularity on Lr(I; Lq) for
each q 2 [2;1). In particular, under Assumptions 1.5, 1.6 and 1.8 the adjoint
state p introduced in the previous section exhibits the regularity

p 2W1;r(I; (Lp;DomLp(�r � �r))); r 2 (1;1);

and satis�es the equation

�@tp� �(y)r � �rp = y � yd; p(T ) = 0;

in the sense of distributions. Moreover, there is an embedding

W1;r(I; (Lp;DomLp(�r � �r))) ,! C0;�(I;W
1;p
�D

)(1.12)

with some � > 0 provided that r 2 (2;1).

Proof. Due to our assumptions on �, �, 
, and �D we can apply [140, Propo-
sition 5.4] to obtain maximal parabolic regularity of each autonomous opera-
tor ��(y(t))r � �r, t 2 I. Due to y 2 C(Q), cf. Theorem 1.11 and (1.4),
the nonautonomous operator t 7! ��(y(t))r � �r is continuous as a map I !
L(DomLq (�r � �r); Lq), from which we conclude nonautonomous maximal para-
bolic regularity of ��(y)r � �r on Lq by application of Proposition 1.4.1.

Next, we prove that A(y)� + A0(y)� = ��(y)r � �r on DomLq (�r � �r) for
q 2 [2;1) and any y 2 W

1;p
�D

. Let z 2 DomLq (�r � �r) and  2 C1c (
). Since

 �(y) 2W 1;p
�D

has compact support and �rz has weak divergence in Lq we obtain:Z



(��(y)r � �rz) dx =
Z



(�r � �rz) �(y)dx =
Z



�rzr( �(y))dx
= hz; (A(y) +A0(y)) i

W
1;p0

�D
;W

�1;p
�D

= h(A(y) +A0(y))�z;  i
W
�1;p0

�D
;W

1;p
�D

:

The left-hand side thereof is well-de�ned for every  2 Lq0 , and hence the claimed
identity follows from density of C1c (
) in Lq

0

. Finally, we can proceed similar
to the proofs of [35, Lemma 4.6 and Proposition 4.7] to improve regularity of

p = ~S0(u)�(y � yd) and to obtain the adjoint equation. It remains to show (1.12).
According to [134, Lemma 6.6] it holds

(Lp;DomLp(�r � �r))�;1 ,!W
1;p
�D
; � 2

�
1

2
; 1

�
:

Hence we can apply standard Bochner-Sobolev embeddings; see, e.g., Proposi-
tion 1.1. □
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1.5. Optimality conditions for pure control-constraints

In this section we summarize the analysis of the control-constrained prob-
lem (P) from [35]. As explained before Assumption 1.10, the respective results
can be obtained under Assumptions 1.5, 1.6 and 1.8 and do not require the
slightly stronger Assumption 1.10. The overal structure of this section resem-
bles the structure of Chapters 2 and 3 and is typical for the analysis of nonlinear
PDE-constrained optimization problems; cf. [270, 156]: �rst, one has to prove
well-posedness of the problem by showing existence of a globally optimal control.
Second, local solutions of the problem are characterized by �rst-order necessary
optimality conditions. Third, second-order su�cient conditions and, if possible,
complementing second-order necessary conditions are derived.

Before going into the details, let us mention that analogous �rst- and second-
order results for distributed control of the slightly di�erent equation (1.22) instead
of (Eq) have been obtained in [45].

1.5.1. Existence of optimal controls. Let us start with the well-posedness of
(P), i.e. existence of optimal controls.

Proposition 1.18 ([216], Proposition 6.4, [35], Lemma 4.1). Under Assump-
tions 1.5, 1.6 and 1.8 the optimal control problem (P) admits at least one
globally optimal control.

The proof utilizes standard arguments in the calculus of variations, cf., e.g.,
[270, 156], and can be found in [216]. Uad is bounded in Ls(�) and hence weakly
sequentially compact and weak sequential lower semicontinuity of the reduced func-
tional j is a consequence of weak-to-strong continuity of the control-to-state map
as map Ls(�) ! C(Q); cf. [216, Proposition 6.1]. For the adaptation of the
results from [216] to the slightly di�erent equation (Eq) we refer the reader to
Appendix A of [168] where the respective details have been summarized. In fact,
weak-to-strong continuity of the control-to-state map as map Ls(�) ! C(Q) is
much more than actually needed for the present purpose; however, we will use the
full strength of [216, Proposition 6.1] when proving existence of optimal control in
the state-constrained case in Chapter 2.

1.5.2. First-order conditions. Since (P) is a nonconvex problem, in general,
optimality conditions deal with so-called local solutions of (P). As in [35] we call
�u 2 Uad a local solution to (P) (in the sense of L2(�)) if there is some r > 0 such

that j(u) � j(�u) holds for all u 2 BL
2(�)

r (�u) \ Uad. Of course, any global solution
to (P) is also a local solution.

For any local solution of (P) the following �rst-order necessary optimality
conditions (FONs) have to hold.

Theorem 1.19 ([35], Lemma 4.8). Let Assumptions 1.5, 1.6 and 1.8 be
satis�ed and let �u 2 Uad be a local solution to (P) with associated state �y =

S(�u) 2 W1;s(I; (W
�1;p
�D

;W
1;p
�D

)). Then, there exists the unique adjoint state

�p 2W1;r(I; (Lp;DomLp(�r � �r))), r 2 (2;1), such that(
@t�y +A(�y)�y = B�u; in Ls(I;W

�1;p
�D

);

y(0) = y0; in (W
�1;p
�D

;W
1;p
�D

)1=s0;s;
(1.13)
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�@t�p+A(�y)��p+A0(�y)� = �y � yd; in Lr(I; Lp);

p(T ) = 0; in (Lp;DomLp(�r � �r))1=r0;r;
(1.14)

j0(�u)(u� �u) = hB��p+ ��u; u� �uiL2(�) � 0; 8u 2 Uad:(1.15)

This is proven in exactly the same way as in [35] utilizing Proposition 1.17 for
improved regularity of the adjoint state. For an introduction to the main ideas we
refer the reader to, e.g., [156, Chapter 1.7.2]. Since the set of admissible controls
Uad is convex, the main di�culty during the derivation of �rst-order necessary
optimality conditions for (P) is verifying di�erentiability of the reduced functional.
For a highly nonlinear problem like (P) this requires considerable work; cf. our
summary of the respective results from [35] in Section 1.3. The state-constrained
or sparse cases, (Pst) and (P

sp
k ), respectively, exhibit additional intrinsic di�culties

because a constraint quali�cation is needed or the functional is not di�erentiable,
respectively; we will address these issues in more detail in Chapters 2 and 3.

We note that one does not require � > 0 for the derivation of these �rst-order
conditions. The generalization to the bang-bang case � = 0 is straightforward.
Moreover, for � > 0 it is well-known that the variational inequality (1.15) can be
expressed equivalently as

�u = ProjUad(���1B��p) = min
�
ub;max(ua;���1B��p)

�
;(1.16)

where min() and max() have to be understood pointwise on �. Similarly, in the
bang-bang case � = 0 it holds

�u = ua on fB��p > 0g and �u = ub on fB��p < 0g;
i.e. the optimal control jumps between the control-bounds ua and ub which ex-
plains the notion \bang-bang". For the derivation of these pointwise reformulations
we refer the reader to, e.g., [270, Chapter 2.8].

Before addressing second-order conditions, let us as in [168, Example 2.9]
state the speci�c form of the variational inequality (1.15) for the three variants of
B discussed in Example 1.9.

Example 1.20.

1. In the case of distributed control we obtain B� to be the identity map

Ls
0

(I;W
1;p0

�D
)! Ls

0

(Q) and (1.15) readsZ
Q

(�p+ ��u)(u� �u)dxdt � 0; 8u 2 Uad � Ls(Q):

2. For Neumann boundary control (d = 2)B� is the trace map Ls
0

(I;W
1;p0

�D
)!

Ls
0

(I � �N ) and we obtainZ
I��N

(�pjI��N + ��u)(u� �u)dsdt � 0 8u 2 Uad � Ls(I � �N ):

3. We obtain

B��p =
�
t 7! hbi; �p(t)iW�1;p

�D
;W

1;p0

�D

�m
i=1

=

�
t 7! s

�N

fi�p(t)j�Nds
�m
i=1

2 Ls0(I;Rm);
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and
mX
i=1

Z
I

�Z
�N

fi � �p(t)j�Nds+ ��ui(t)

�
(ui(t)� �ui(t))dt � 0

for all u 2 Uad � Ls(I;Rm) in the case of purely time-dependent controls.

1.5.3. Second-order conditions. Let us now turn to second-order conditions.
As in �nite dimensions there are second-order necessary (SNCs) and second-order
su�cient (SSCs) conditions. The �rst ones are (together with FONs) necessarily
ful�lled at a local solution of (P) and consequently characterize such minimizers,
while the second ones serve as su�cient criteria for local optimality: since (P) is
nonconvex, some u 2 Uad that satis�es the �rst-order necessary optimality condi-
tions does not need to be a local solution of (P), in general. If, however, u satis�es
both FONs and a SSC then u is indeed a local minimizer of (P).

On the surface, this seems to be completely analogous to the �nite dimensional
theory, but, as we explained in the introduction on behalf of Example (0.2), the
topic of second-order conditions in in�nite dimensions confronts us with phenom-
ena that are not known from �nite dimensions. In Section 1.3 we have explained
that the reduced functional of (P) is di�erentiable w.r.t. the Ls(�)-norm with
s > 2 as in Assumption 1.8, but not necessarily w.r.t. the L2(�)-norm. Moreover,
it is well-known that coercivity of j00(�u) (see (1.7)) can only be expected to hold
w.r.t. L2(�) but not w.r.t. Ls(�)1. Such a property, i.e. that di�erentiability and
coercivity of the second derivative only hold w.r.t. di�erent norms, often occures in
PDE-constrained optimization and is usually referred to as two-norm discrepancy
[174, 73, 71]. One might expect that a similar norm gap as in (0.2) occures during
the formulation of second-order conditions for (P), i.e. that coercivity of j00(�u)
w.r.t. L2(�) only allows to conclude local optimality w.r.t. Ls(�), but not w.r.t.
L2(�). We refer the reader to, e.g., the survey [73] for more details on second-order
optimality conditions in PDE-constrained optimization.

The second-order conditions proven in both [35] and [45] avoid the two-norm
gap. Their proof is based on results of the paper [71] in which second-order con-
ditions in the presence of a two-norm discrepancy, but without two-norm gap, are
obtained in an abstract setting that resembles the typical structure of optimal con-
trol problems with PDEs and pure control-constraints2. We mention that similar
arguments were also used in [70] in the context of abstract �nite element errors.
The abstract setting from [71] applies to Neumann boundary or Dirichlet bound-
ary control of semilinear elliptic PDEs, distributed control of semilinear parabolic
PDEs [71], and, as proven in [35], to the quasilinear parabolic problem (P).

In essence, due to [71] the main work in the proof of SNCs/SSCs for the
control-constrained instance of (P) consists of checking the respective properties
of the reduced functional of the control problem under consideration. For later
reference we summarize the respective results from [35] that rely on a careful and
detailed analysis of the PDEs appearing in the formulas for j0 and j00.

1In fact, it has been proven in [35, Theorem 4.13] that the positivity condition j00(�u)v2 > 0
for all v 2 C�u with the so-called critical cone Cu � L2(�) already implies L2(�)-coercivity of
j00(�u) on C�u; cf. Proposition 2.9

2We will state the precise assumptions of this framework as part 1 of our Assumption 2.7 in
Chapter 2 when formulating an extension of [71].
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Proposition 1.21. Under Assumptions 1.5, 1.6 and 1.8 the reduced func-
tional satis�es the conditions (A1) and (A2) from [71]: the reduced func-
tional j: Ls(�)! R is twice continuously Fr�echet di�erentiable, and for every
u 2 Uad the �rst and second derivatives of j at u extend to continuous lin-
ear and bilinear forms on L2(�), respectively. Moreover, for any sequences
(uk)k � Uad and (vk)k � L2(�) such that uk ! �u strongly in L2(�) and vk * v
weakly in L2(�) it holds:

1. j0(�u)v = limk!1 j0(uk)vk,
2. j00(�u)v � lim infk!1 j00(uk)v2k,
3. if v = 0, there is c > 0 such that

c lim inf
k!1

kvkk2L2(�) � lim inf
k!1

j00(uk)v2k:

The proof hereof can be found in [35, Propositions 4.9 and 4.10] and is inde-
pendent of the improved regularity analysis of the adjoint state in [35, Proposition
4.7]. We point out that L1-boundedness of Uad is essential for this result. More-
over, the presence of an L2-Tikhonov cost term, i.e. � > 0, is crucial for condition
3. For the concrete formulas for j0 and j00 we refer to (1.6) and (1.7).

The following no-gap second-order optimality conditions without two-norm
gap for (P) have been obtained in [35]. Once the respective assumptions from [71]
on the reduced functional have been checked, cf. Proposition 1.21, they are an
immediate consequence of the abstract results [71, Theorems 2.2 and 2.3].

Theorem 1.22 ([35],Theorems 4.12 and 4.14). Let Assumptions 1.5, 1.6
and 1.8 hold. If �u 2 Uad is a local solution of (P), it holds

j00(�u)v2 � 0 8v 2 C�u(1.17)

with C�u := clL2(�)(RUad(�u)) \ ker j0(�u). Conversely, if some �u 2 Uad satis�es
the �rst-order condition (1.15) and

j00(�u)v2 > 0 8v 2 C�u n f0g(1.18)

there are �; � > 0 such that

j(u) � j(�u) +
�

2
ku� �uk2L2(�) 8u 2 BL

2(�)
� (�u) \ Uad:(1.19)

In particular, �u is a strict local solution of (P).

Before we put this result into context, let us state the following important
observation.

Proposition 1.23 ([35], Theorem 4.13). Under the assumptions of the pre-
vious theorem, the positivity condition (1.18) is equivalent to the coercivity
condition

j00(�u)v2 � 
kvk2L2(�) 8v 2 C�u;(1.20)

with some 
 > 0.

Now, to make the context of Theorem 1.22 more clear, let us brie
y comment
on the notions \no-gap" and \without two-norm gap" characterizing these second-
order conditions. In particular, one has to observe that the two formulations refer
to di�erent gaps.
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We start with the notion \two-norm gap" which has already been explained
on behalf of Example 0.2 in the introduction. Unlike in Example 0.2, there is
no two-norm gap in the above second-order su�cient conditions. Although j is
only di�erentiable w.r.t. the Ls(�)-norm with s > 2, cf. the comments below
Lemma 1.12, the positivity condition (1.18) and the |due to Proposition 2.9|
equivalent coercivity condition (1.20) w.r.t. the L2(�)-norm allow to deduce the
quadratic growth condition (1.19), and hence strict local optimality, on an L2(�)-
neighbourhood. As for Proposition 1.21, L1-boundedness of Uad and � > 0 are
crucial for Theorem 1.22; without L1-boundedness of Uad a two-norm gap would
be inferred. Second-order conditions for the bang-bang case, i.e. � = 0, usually
require completely di�erent techniques; cf., e.g., [78, 84, 59, 286]. For quasilinear
parabolic problems this is, as far as we now, an open problem. We will comment
on the speci�c problems of bang-bang optimal control in the context of quasilinear
parabolic problems in more detail in a slightly di�erent setting in Section 3.3.3.

Let us now explain the notion of no-gap second-order conditions, which means
the following: the gap between necessary and su�cient second-order conditions is
minimal, i.e. the same cone of directions C�u appears in (1.17) and (1.20). This is
due to the fact that the abstract second-order conditions from [71] are of no-gap-
type if the admissible set is polyhedric; see, e.g., Chapter 0 for the de�nition. In the
present case, Uad is indeed polyhedric and the critical cone C�u may be expressed
equivalently as follows:

C�u = clL2(�)(RUad(�u) \ ker j0(�u)) = fv 2 L2(�): (1.21) holdsg;
with

v � 0 on f�u = uag; v � 0 on f�u = ubg; and v � 0 on f�u = ���1B��pg;(1.21)

cf. [35, Proposition 4.11]. For recent no-gap second-order conditions for control-
constrained optimal control of a nonsmooth quasilinear elliptic PDE we refer the
reader to [87].

In Chapters 2 and 3 we will prove second-order su�cient conditions for prob-
lems with additional state-constraints and second-order necessary and su�cient
conditions for sparse problems. To put our own work into the context of the
abovementioned state of the art results concerning pure control-constraints, let
us note that the second-order conditions proven in this thesis avoid the two-norm
gap, too. Our second-order conditions for sparse problems in Chapter 3 are even of
no-gap-type as well. Whether this is also true for the second-order su�cient con-
ditions for state-constrained problems in Chapter 2 is not clear because we did not
obtain complementing necessary conditions. We will explain this in more detail at
the end of Section 2.2 where also literature concerned with no-gap optimality con-
ditions in the case of state-constraints will be discussed. To prove our second-order
results, we follow a similar approach as in [35, 45]. We develop extensions of the
abstract framework from [71] that allow us to handle the respective problems. In
particular, when applying our abstract results to the concrete problems (Pst) and
(P

sp
k ) we will make use of Proposition 1.21 to check the conditions of the reduced

functional (Chapter 2) or of the smooth part of the reduced functional (Chapter 3).
Finally, let us mention that the analysis of the SQP method in Chapter 4 will rely
on assuming certain second-order su�cient conditions that need to be stronger
than those from Theorem 1.22. In fact, one has to assume coercivity of j00(�u) on a
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subspace of L2(�) strictly larger than the critical cone C�u. However, we will put
particular emphasis on keeping this subspace as small as possible.

1.6. Improved regularity of the state

We conclude this chapter by mentioning an improved regularity result for the
solutions of the state equation. In [45] a problem similar to (P) but with slightly
di�erent assumptions w.r.t. the domain, the boundary conditions, and the coef-
�cient functions has been discussed. In particular, �rst-order necessary as well
as second-order necessary and su�cient optimality conditions analogous to those
from [35] summarized in the previous sections have been derived.

The authors of [45] consider a more regular setting for the underlying equa-
tion than in [35, 216], but in return they obtain improved regularity results for
the states in W 2;p-spaces, include a zero-order semilinear term and allow for pos-
sibly unbounded nonlinearities. In the same setting they also derive �nite element
discretization errors for the state equation in [46]. We will need such higher regu-
larity for the states when addressing second-order su�cient optimality conditions
for a problem with additional pointwise state-constraints in Chapter 2. There-
fore, we provide a summary of the respective regularity result. A version hereof
and the underlying assumptions adapted to our particular setting will be stated in
Theorem 2.20.

Theorem 1.24 ([45], Theorem 2.3). Let 
 � Rd, d 2 f1; 2; 3g, be a domain
with C1;1-boundary, s; p 2 [2;1) such that 1

s +
d
p < 2, and let the coe�cient

functions a: Q� R! R and a0: Q� R! R have the following properties:

1. a is continuous and
� there there is a� > 0 such that

a(x; t; y) � a� 8(t; x; y) 2 Q� R;

� and for each M > 0 there is LM > 0 such that

ja(t; x2; y2)� a(t; x1; y1)j � LM (jx2 � x1j+ jy2 � y1j)

holds for all x1; x2 2 
, t 2 I, and y1; y2 2 R such that jy1j; jy2j �
M ,

2. a0 is a Carath�eodory function, i.e. measurable w.r.t. the �rst two
arguments and continuous w.r.t. the third argument,

� monotone nondecreasing w.r.t. y,
� for each M > 0 there is L0;M > 0 such that

ja0(t; x; y2)� a0(t; x; y1)j � L0;M jy2 � y1j

holds for all (t; x) 2 Q and all y1; y2 2 R such that jy1j; jy2j �M ,
� and a0(�; �; 0) 2 L2s(I; Lp).
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Then, for each u 2 L2s(I; Lp) and y0 2 C(
) \ (W
�1;2p
�D

;W
1;2p
�D

)1�1=(2s);2s \
(Lp;W 2;p \W 1;p

�D
)1=s0;s, the equation8>>><

>>>:
@ty(t; x)�r � a(t; x; y(t; x))ry(t; x)

+ a0(t; x; y(t; x)) = u(t; x) 8(t; x) 2 Q;
y(t; x) = 0 8(t; x) 2 I � @
;
y(t; x) = y0(x) 8x 2 
;

(1.22)

has a unique solution y 2W1;s(I; (Lp;W 2;p \W 1;p
�D

)).
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Figure 1.1. Relation of the di�erent regularity assumptions.
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Results 1.5 1.6 1.8 1.10 3.1 4.1 2.19

State equation on W
�1;p
�D

(Theorem 1.11) � � �

State equation on H
��;p
�D

(Theorem 1.14) � � �

State equation on Lp with W 2;p-regularity (Theorem 2.20) �

Adjoint equation on W
�1;p0
�D

(Proposition 1.15) � � �

Adjoint equation on H
��;p
�D

(Proposition 1.16) � � �

Adjoint equation on Lp (Proposition 1.17) � � �

FONs for pure control-constraints (Theorem 1.19) � � �

SNCs/SSCs for pure control-constraints (Theorem 1.22) � � �

FONs for state-constraints (Theorems 2.4 and 2.17) � � �

SSCs for averaged state-constraints (Theorem 2.18) � � �

SSCs for pointwise state-constraints (Theorem 2.29) �

FONs/SNCs/SSCs for sparse optimal control (Theorems 3.3 and 3.4) � � �

Convergence of the SQP method (Theorems 4.15 and 4.25) � � �

A-posteriori POD errors approach I
?
(Theorem 5.6) �

A-posteriori POD errors approach II
?
(Theorem 5.9) � � �

Table 1.1. Regularity assumptions required for the main results. We only list assumptions related to the regularity
setting for the state equation; additional assumptions such as, e.g., the properties of additional state-constraints

or the existence of a linearized Slater point (Theorem 2.4) etc., are not considered here. (
?
As will be explained

in detail at the beginning of Section 5.2.2 and right before Theorem 5.9, our results on a-posteriori POD error
estimates actually do not rely on these assumptions. However, they rely on quantities of which we believe that
they can only be expected to be independent of discretization under these assumptions and the resulting regularity
results.)



Chapter 2

Pointwise constraints on the state

This chapter is based on the work [168] by I. Neitzel and the author. We modify
problem (P) from Chapter 1 by adding pointwise constraints on the state-variable.
More precisely, we consider the following model problem:8>><

>>:
min J(y; u) :=

1

2
ky � ydk2L2(I�
) +

�

2
kuk2L2(�);

s.t. u 2 Uad; y 2 Yad;
and (Eq):

(Pst)

The set of admissible states Yad will be clari�ed in each section, and is given either
by pointwise in space and time inequality-constraints, i.e.

Yad =
�
y 2 C(Q): ya(t; x) � y(t; x) � yb(t; x) 8(t; x) 2 Q

	
;

or, if we require a weaker type of constraints for our analysis, by pointwise in space
and averaged in time bounds of type

Yad =

�
y 2 L1(I; C(
)): ya(x) �

Z
I

y(t; x) dt � yb(x) 8x 2 


�
:

We prove existence of optimal controls and derive �rst-order necessary optimality
conditions (FONs) under the rather general assumptions on the state equation from
Section 1.2 and pointwise in space and time state-constraints. Under additional
assumptions we provide second-order su�cient optimality conditions (SSCs). For
the rough setting from Section 1.2 we restrict the analysis to pointwise in space and
averaged in time state-constraints. Pointwise in space and time state-constraints
are discussed for a more regular state equation as in Section 1.6 and purely time-
dependent controls utilizing the improved regularity analysis from [45].

As we have explained in the introduction, PDE-constrained optimiziation prob-
lems with pointwise state-constraints are as interesting as challenging. The state
equation under consideration in the present work models, e.g., heat conduction
in material with temperature-dependent thermal conductivity and therefore state-
constrained problems are certainly conceivable, e.g., in applications in which the
temperature of an object has to be kept between prescribed bounds. Since the
�eld of optimal control with pointwise state-constraints gained much attention in
the last years the following literature overview focusses on optimality conditions
and excludes topics less related to the present work. For a brief summary of liter-
ature concerned with discretizational and numerical aspects we refer the reader to
Section 2.5 at the end of this chapter.

43



44 2. Pointwise constraints on the state

In order to derive �rst-order optimality conditions for problems with point-
wise state-constraints one usually needs continuity of the states in order to ful�ll
a Slater-type constraint quali�cation. This results in the presence of regular Borel
measures, i.e. objects of low regularity, as Lagrange multipliers in the KKT sys-
tem; see, e.g., [40, 41] for early work concerned with linear and semilinear elliptic
problems. For an alternative approach with even slightly less regular multipliers
in a convex setting we refer to [248]. Moreover, we mention that under certain
conditions improved regularity of the Lagrange multipliers has been obtained for
linear elliptic problems [63], and that recent work [83] on parabolic problems avoids
the usage of a Slater-type condition by a reformulation of the problem involving
a variational inequalty. The case of mixed control-state-constraints, in which one
imposes pointwise bounds on terms like, e.g., �u + y with � 2 R, is known to be
di�erent because in that case the Lagrange multipliers are given by integrable func-
tions under natural assumptions; see, e.g., [18] for semilinear parabolic problems
or [239] and the references therein.

For control problems with nonlinear PDEs, SSCs are important because FONs
are not su�cient in general. Regarding an overview on second-order optimality
conditions in PDE-constrained optimization we refer the reader to, e.g., the survey
[73] and the references therein. State of the art no-gap second-order conditions
for quasilinear parabolic optimal control problems in the presence of pure control-
constraints [35, 45] have been summarized and put into context in Section 1.5.3.
Let us brie
y point out a few more aspects particularly related to our work. The
�rst publication addressing SSCs for parabolic problems in the presence of addi-
tional state-constraints is, to the best of our knowledge, [113]. As already men-
tioned in the introduction, a speci�c di�culty arising in the second-order analysis
of PDE-constrained optimization is the two-norm discrepancy [174, 71]: di�eren-
tiability of the reduced functional and coercivity of its second derivative often only
hold w.r.t. di�erent norms. In any case, a careful regularity analysis of the under-
lying PDE is necessary. Especially in the presence of state-constraints this often
leads to certain restrictions or additional assumptions that are necessary in order
to guarantee the required regularity. Let us brie
y recall some examples from the
literature: the derivation of SSCs for semilinear elliptic problems usually requires
the restriction to space dimension d � 3 in the case of distributed and to dimension
d � 2 in the case of Neumann boundary control [49, 133]. With the same tech-
niques, distributed control of semilinear parabolic PDEs can be handeled for space
dimension d = 1 only [49], but the restriction on the space dimension can be lifted
if one in return considers purely time-dependent controls [91]. A careful analysis
utilizing the concept of maximal parabolic regularity has been used in [189] to
prove SSCs for distributed control of semilinear parabolic PDEs in space dimen-
sion d = 2 and 3. However, these SSCs are di�erent from those of [91, 49] because
they are postulated w.r.t. a larger cone of directions that includes some �rst-order
information. Alternatively, the regularity requirements of the problem type can
be weakened by switching from pointwise in space and time state-constraints to
certain averaged-type [113] or �nitely many [37, 75] state-constraints. In particu-
lar, averaged-type state-constraints turned out to be a fertile concept, also in other
areas of PDE-constrained optimization, whenever dealing with purely pointwise
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state-constraints is not possible for theoretical reasons; see, e.g., [211, 204] for
their application in the context of discretization error estimates.

Regarding second-order necessary optimality conditions (SNCs) for pure state-
constraints we only mention [184], as well as both SNCs and SSCs with emphasis
on a possibly small gap between them in [258, 185] for the di�erent setting of
pointwise mixed control-state-constraints. Finally, we cite [84, 287, 288] for SNCs
and SSCs in an abstract optimization-theoretic setting. More literature on SNCs
will be given at the end of Section 2.2.

As far as we know, there are only few results on state-constrained optimal
control problem with quasilinear parabolic PDEs [109, 110, 214, 215, 168]. As
already pointed out in the introduction, the nontrivial existence and regularity the-
ory for solutions of the quasilinear PDE and its linearizations poses the main dif-
�culty of such problems. Hence, combining them with additional state-constraints
|that are known to require a deeper regularity analysis than purely control-
constrained problems, in general| is both interesting and challenging. The early
papers [109, 110] address existence of optimal controls and FONs for a problem
with averaged in space and pointwise in time, or �nitely many state-constraints of
integral-type, respectively. Optimal control of the thermistor problem, a coupled
system consisting of a quasilinear parabolic and a nonlinear elliptic equation, with
pointwise in space and time state-constraints is addressed in [214, 215].

In this chapter we present results that have been obtained in [168]. First, we es-
tablish existence of optimal controls and FONs for (Pst) in the presence of pointwise
in space and time state-constraints, extending the results on the purely control-
constrained problem (P) from [35, 45] that have been summarized in Chapter 1.
In particular, let us emphasize again that the underlying regularity assumptions
on the problem data (see Section 1.2) are fairly general: our �rst-order results for
pointwise in space and time state-constraints hold in a rough setting, including
certain nonsmooth domains, nonsmooth coe�cient functions, and mixed bound-
ary conditions, and allow for di�erent types of control mechanisms, such as dis-
tributed control (d = 2; 3), Neumann boundary control (d = 2 only), or purely

time-dependent controls with actuator functions from W
�1;p
�D

(d = 2; 3); cf. Ex-
amples 1.7 and 1.9. This is di�erent from, e.g., the more restrictive regularity
assumptions in [109, 110]. In essence, to obtain �rst-order conditions we have to
apply the classical abstract Theorem 0.1 to our concrete setting; the appropriate
choice of the underlying function spaces and having at hand suitable regularity
results for the respective PDEs are the main di�culty. Fortunately, we can build
on results from [35, 216] that we have summarized in Chapter 1.

The second part of our results from [168] deals with SSCs under di�erent ad-
ditional assumptions. As one may expect with a view to the literature overview
provided above, some restrictions cannot be avoided when aiming at SSCs for a
state-constrained optimal control problem with a time-dependent, highly nonlin-
ear PDE. Nevertheless, it is one of the goals of our work to investigate how far
the analysis of (Pst) can be performed within the rough setting, before regularity
requirements force us to switch to a di�erent setup. Essentially, for both choices of
Yad stated at the beginning of this chapter we prove SSCs under natural assump-
tions: �rst, we keep the rough setting and weaken the pointwise in space and time
state-constraints towards such that are pointwise in space but only integral w.r.t.
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time. As we already pointed out above, switching to such averaged-type state-
constraints is a well-known trick [113, 211, 204]. However, due to the regularity
results available in the rough setting we have to average w.r.t. time, instead of
taking averages w.r.t. space, which is di�ent from the aforementioned results from
the literature. Second, we keep the pointwise in space and time state-constraints
and, in return, strengthen our regularity assumptions towards a classical, smooth
setting in the 
avour of [45]. In both cases, a careful investigation of the state
equation and its linearizations is crucial crucial for obtaining our results.

Let us point out another important feature of our work. As we have explained
in the introduction chapter, we pay particular attention to avoiding the so-called
two-norm gap when addressing SSCs in this thesis. The phenomena two-norm
discrepancy and two-norm gap, that are typical for the second-order analysis of
PDE-constrained optimization problems, have been illustrated on behalf of Exam-
ple (0.2) in the introduction chapter; see also our remarks in Section 1.5.3. In our
results we can avoid a two-norm gap in the formulation of SSCs although a two-
norm discrepancy is present in the problem formulation. Recall from our summary
in Chapter 1 that the proof of SNCs and SSCs for the purely control-constrained
problem (P) in [35, 45] is based on an application of abstract results of the paper
[71]. There, second-order conditions avoiding the two-norm gap despite the pres-
ence of two norms in the problem data were proven in an abstract framework that
resembles the structure of control-constrained problems. We extend the abstract
framework from [71] in such a way that, as a consequence on the concrete level,
we obtain SSCs for both the pointwise in space and time and the pointwise in
space and averaged in time state-constrained instace of (Pst). Doing so, we make
use of techniques from [71] and abstract ideas known from, e.g., [91, 49]. Let us
note that the chosen abstract approach has the advantage that it also facilitates
the application to other problem settings: as a byproduct, e.g., our abstract result
allows to reformulate the SSCs for semilinear parabolic problems from [91], that
originally contained a two-norm gap, without this norm gap.

This chapter is structured as follows: In Section 2.1 we introduce the problem
setting, prove existence of optimal controls, and derive FONs in this rather gen-
eral context. In Section 2.2 we prove SSCs for an abstract optimization problem
extending the result from [71]. In Section 2.3 we explain why our abstract result
from Section 2.2 does not apply to the model problem as stated in Section 2.1.
Then, we prove SSCs without two-norm gap for a modi�ed version of our model
problem where the regularity assumptions remain unchanged but the pointwise
state-constraints are replaced by averaged in time state-constraints. In Section 2.4
we come back to pointwise state-constraints and prove SSCs for this situation, but
now assuming a more regular setting as in Section 1.6 and purely time-dependent
controls. In the �nal section we provide some numerical examples.

2.1. Existence of optimal controls and first-order necessary conditions

The problem (Pst) under consideration has been stated at the beginning of
this chapter. Note that compared to the control-constrained problem (P) from the
previous chapter we do not change the underlying state equation (Eq). Also, the
regularity Assumptions 1.5, 1.6 and 1.8 on the underlying data remain unchanged
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until further notice. For the newly introduced state-constraints we choose the
following setting, which remains unchanged until noted otherwise, too.

Assumption 2.1.

1. The set of admissible states is given by

Yad = fy 2 C(Q) : ya(t; x) � y(t; x) � yb(t; x) 8(t; x) 2 Qg;
with bounds ya; yb 2 C(Q) satisfying ya(t; x) < yb(t; x) for all (t; x) 2 Q,
ya(t; x) < 0 < yb(t; x) for all (t; x) 2 I��D, and ya(0; x) < y0(x) < yb(0; x)
for x 2 
. We allow for ya � �1 or yb � +1.

2. There is a feasible point, i.e. there is (y; u) 2 Yad �Uad such that y and u
ful�ll the state equation (Eq).

A compatibility condition like Assumption 2.1.2 is di�cult to check a-priori on
behalf on the problem data but it cannot be avoided, in general. Roughly speaking,
we need to assume that the set of controls satisfying all constraints imposed in (Pst)
is not empty. For the construction of a feasible control-state pair in the particular
case of a linear elliptic PDE, distributed control, and pure state-constraints we
refer the reader to, e.g., [63, Theorem 2.3]. For our setting we are not aware
of analogous results in the presence of additional control-constraints or a general
control operator B.

2.1.1. Existence of optimal controls. For completeness, we start with the
proof of existence of a minimizer for (Pst). The respective results for the case
with control-constraints only from [35, 216] have been summarized in Section 1.5.
Moreover, let us note that an analogous result for the state-constrained thermistor
problem has already been obtained in [214].

Proposition 2.2 ([168], Theorem 2.6). Let Assumptions 1.5, 1.6, 1.8, and
2.1 hold. Then there exists a globally optimal control �u 2 Uad for the optimal
control problem (Pst).

Proof. This is analogous to Proposition 1.18 with two exceptions: �rst, exis-
tence of an in�mizing sequence now needs to be ensured by assuming the existence
of a feasible point (Assumption 2.1.2). Second, we need the full strength of [216,
Proposition 6.4] where weak-to-strong continuity of the control to state map as
map Ls(�) ! C(Q) has been shown in order to see that a subsequence of the
corresponding sequence of states converges in C(Q). Since Yad is closed in C(Q)
the limit is still in Yad, i.e. it ful�lls the state-constraints. □

For comments on how Proposition 2.2 and all further results in this chapter
change in the case without or with only unilateral control-constraints we refer the
reader to Section 6 of our paper [168].

2.1.2. First-order necessary optimality conditions. We closely follow [168,
Section 2.4] in this section. We characterize local solutions of (Pst) that ful�ll a
Slater-type constraint quali�cation by FONs. The need for such a constraint qual-
i�cation is the main di�erence to the case without state-constraints summarized in
Theorem 1.19. As we have explained in the introduction, the following main di�-
culty is well-known in state-constrained optimal control of PDEs; cf. e.g. [40, 41].
To use a Slater-type condition, we have to ensure nonempty interior of Yad in the
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respective space. Since Yad is de�ned by pointwise inequality-constraints, this ex-
cludes states in Lq(Q), 1 � q < +1. We have to consider them in C(Q), which
infers regular Borel measures, i.e. the corresponding dual objects, in the KKT
system. To apply the abstract Theorem 0.1 for optimization problems in Banach
spaces to our problem (Pst) we formulate an additional assumption.

Assumption 2.3. Let �u 2 Uad be an L2(�)-local solution to (Pst) with as-
sociated state �y = S(�u) 2 Yad, i.e. there is � > 0 such that j(u) � j(�u) for

all u 2 BL
2(�)

� (�u) \ Uad ful�lling S(u) 2 Yad. Further, assume that the fol-
lowing linearized Slater condition is ful�lled at �u: there is uSl 2 Uad such that
�y + S0(�u)(uSl � �u) 2 �Yad, i.e.

ya(t; x) < �y(t; x) + S0(�u)(uSl � �u)(t; x) < yb(t; x) 8(t; x) 2 Q:
Since the Ls-norm is stronger than the L2-norm every L2(�)-local solution is

in particular also an Ls(�)-local solution. In general, it will be extremely di�cult
to check only on behalf of the problem data whether a local or global solution of
(Pst) satis�es the linearized Slater condition. However, assuming a constraint qual-
i�cation can usually not be avoided when aiming at �rst-order necessary optimality
conditions. For the constructive veri�cation of the linearized Slater condition in
the special case of optimal control of a semilinear elliptic equation with pure state-
constraints we refer to, e.g., [222, Lemma 2.11].

Theorem 2.4 ([168], Theorem 2.8). Under Assumptions 1.5, 1.6, 1.8, 2.3,
and 2.1.1 there exists a regular Borel measure �� 2 M(Q) = C(Q)� on Q

and the so-called adjoint state �p 2 Lr
0

(I;W
1;p0

�D
), r0 2 (1; 2p

p+d ), such that the

optimality system (
@t�y +A(�y)�y = B�u;

�y(0) = y0;
(2.1)

(
�@t�p+A(�y)��p+A0(�y)��p = �y � yd + ��;

�p(T ) = 0;
(2.2)

h��; y � �yiM(Q);C(Q) � 0 for all y 2 Yad;(2.3)

hB��p+ ��u; u� �uiLs0 (�);Ls(�) � 0 for all u 2 Uad(2.4)

is satis�ed. The so-called adjoint equation (2.2) has to be understood in the
sense outlined in the proof below; cf. also Remark 2.6.

For the concrete form of B� and the respective variational inequality (2.4) we
refer the reader to Example 1.20.

Proof. In Theorem 0.1 choose U = Ls(�), Z = C(Q), g = S, K = Uad and

C = Yad. Note that the embedding W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) ,! C(Q), cf. (1.4),

ensures that the control-to-state operator maps Ls(�) into C(Q). It holds

~S0(B�u) 2 L(Lr(I;W�1;p
�D

);W1;r(I; (W
�1;p
�D

;W
1;p
�D

)); r 2 (1; s];
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cf. Lemma 1.12.2. Employing the second embedding from Lemma 1.13, i.e.
W1;r(I; (W

�1;p
�D

;W
1;p
�D

)) ,! C(Q) for r 2 ( 2p
p�d ;1), we obtain

~S0(B�u) 2 L(Lr(I;W�1;p
�D

); C(Q))

for those r, and consequently

~S0(B�u)� 2 L(M(Q); Lr
0

(I;W
1;p0

�D
)); r0 2

�
1;

2p

p+ d

�
:(2.5)

Following the usual adjoint technique in optimal control, see e.g. [270, Chapter
6.2.1], we introduce the adjoint state �p := ~S0(B�u)�(�y�yd+��). Note that �p is well-
de�ned in this way and exhibits the regularity stated in the theorem due to (2.5)
and �y � yd + �� 2 M(Q). The adjoint equation (2.2) has to be understood purely
formal, in the very-weak/adjoint sense. We discuss this further in Remark 2.6
below. Combining equation (1.6) for the reduced gradient of our particular setting
with the abstract variational inequality (0.4) and the de�nition of �p yields (2.4). □

Some remarks are in order to put this into context. The most obvious di�erence
of Theorem 2.4 compared to the corresponding result for the control-constrained
problem (P) in Theorem 1.19 is the so-called complementary slackness condition
(2.3). For completeness, we state the following well-known observation.

Remark 2.5. The complementary slackness condition (2.3) can be rewritten
in a more illustrative way. The Jordan decomposition �� = ��+ � ��� into non-
negative measures ��+; ��� � 0, cf. [242, Chapter 6], satis�es

supp ��+ � f(t; x) 2 Q: �y(t; x) = yb(t; x)g;
supp ��� � f(t; x) 2 Q: �y(t; x) = ya(t; x)g:

For a proof we refer to, e.g., [63, Proposition 2.5]. We note that the adaptation
from the elliptic setting in [63] is straightforward because except for the bounds
de�ning Yad no speci�c problem data of (Pst) appear in (2.3).

Next, let us point out some issues related to the appearance of the Borel
measure �� on the right-hand side of the adjoint equation (2.2). These problems
are typical for parabolic control problems with pointwise in space and time state-
constraints.

Remark 2.6. The adjoint equation (2.2) has to be understood purely formal.

In general, it is not guaranteed that �p 2 Lr
0

(I;W
1;p0

�D
) has a distributional time

derivative or a well-de�ned trace on fTg � 
. Hence, (2.2) really only serves as
a more illustrative and intuitive notation for the precise de�nition of �p given by
�p = ~S0(B�u)�(�y � yd + ��). The notation as backward parabolic PDE is motivated

by the fact that ~S0(B�u)� restricted to the spaces Lr
0

(I;W
�1;p0
�D

), r0 2 (1;1), can be
identi�ed with the solution map of the respective backward nonautonomous para-
bolic PDE; cf. Section 1.4. Moreover, the presence of mixed boundary conditions in
the state equation does not pose additional di�culties, see, e.g., [189, 133, 162],
in particular because the support of �� is disjoint from I � �D and f0g � 
; cf.
Remark 2.5 and Assumption 2.1.1.
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Because �� is, in general, only a Borel measure, we cannot improve regular-
ity of the adjoint state �p along the lines of [35, Proposition 4.7], cf. Proposi-
tion 1.15. However, we mention that improved regularity for adjoint states in
state-constrained optimal control has been obtained under additional assumptions
and with di�erent techniques in case of linear and semilinear elliptic [63] and par-
abolic [83] PDEs.

The fact that the adjoint equation has to be understood purely formal as
pointed out in Remark 2.6 is not a too severe problem. Recall, e.g., from our
summary in Chapter 1 that the second-order analysis for the control-constrained
problem (P) in [35] has been carried out completely in the W

�1;p
�D

-W
1;p
�D

-setting,
i.e. in a setting where in [35] no adjoint equation was available; cf. in particular
our comments below Proposition 1.15.

The main obstruction in our further analysis arises from the extremely low
regularity of �p, which is a typical issue when dealing with state-constrained prob-
lems: in fact, due to 2p

p+d < 2 and p0 < 2 Theorem 2.4 shows rather poor temporal

and spatial regularity for �p. This di�culty has to be overcome during the analysis
of second-order optimality conditions for (Pst) as we will outline in Sections 2.3
and 2.4. To do so, we will either have to modify the type of state-constraints
(Assumption 2.13) or assume a more regular setting for the state equation (As-
sumption 2.19).

2.2. An abstract result on second-order sufficient conditions

The presentation of this section follows Section 3 of the underlying paper [168].
We extend the abstract framework of [71] towards inclusion of state-constraints,
i.e. we give SSCs for an abstract optimization problem similar to the one from
Theorem 0.1, but now enriched with two norms as typical for PDE-constrained op-
timization. However, we prove SSCs that avoid the two-norm gap. The framework
is developed having in particular the setting and the arguments from [91] in mind.
We start by introducing the abstract problem

min j(u) s.t. u 2 K; g(u) 2 C;(APst)

with the assumptions given below. The suppositions on the real-valued functional
j and the underlying spaces U2, U1, respectively, are identical to those from [71]
and thus ful�lled for the functional of our quasilinear parabolic problem as we have
seen in Proposition 1.21. The second-order conditions for the control-constrained
problem (P) summarized in Section 1.5.3 have been proven in [35, 45] by an
application of the abstract framework from [71]. Now, we extend this work in
such a way that, on the concrete level, we are able to obtain SSCs for the state-
constrained problem (Pst).

More precisely, we extend [71] towards the inclusion of a state-constraint-like
constraint of type \g(u) 2 C", cf. (APst), that is formulated in a further Banach
space Z. For instance, choosing g to be the control-to-state map allows to handle
state-constraints. Since the set K \ g�1(C) is nonconvex in general, this situation
is not covered by the results of [71]. Further, j and g are di�erentiable w.r.t.
the U1-norm, but not necessarily w.r.t. the weaker U2-norm. We have in mind
the case U2 = L2(�;m) and U1 = Lp(�;m) with some p 2 (2;1] for a measure
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space (�;dm). The presence of such two norms is typical for PDE-constrained
optimization as we have explained in Section 1.5.3.

Let us brie
y put our result into context. As far as we know, other results
on SSCs for state-constraints without two-norm gap required di�erentiability of j
and g w.r.t. L2; cf. [258, Section 4], [49, Theorem 4.3] | an assumption that we
can now avoid. In particular we can state SSCs for the same semilinear parabolic
optimal control problem as in [91], but without two-norm gap; see Example 2.10
below. In [84] both SNCs and SSCs for certain optimization problems in in�nite
dimensions are proven. The results rely on the concept of a directional curvature
functional for the (possibly nonconvex) admissible set. The authors state that it is
possible to include cases with two-norm discrepancy (see Remark 4.6.iv), but the
special case of the present chapter and [71], in which such a discrepancy appears
but can be avoided in the formulation of second-order conditions, is not addressed.
Further, the explicit computation of the directional curvature term in the presence
of pointwise state-constraints is left as topic of further research. We believe that our
approach, explicitly tailored to situations as, e.g., (Pst), [91], and [71], respectively,
is of independent interest.

Assumption 2.7. Let U2 be a Hilbert space and U1 a Banach space such that
there is a continuous embedding U1 ,! U2. With k�k2 and k�k1 we denote the
corresponding norms. Moreover, h�; �i2 is the duality product in U�2 �U2. Further,
let Z be a Banach space with norm k�kZ and duality pairing h�; �iZ�;Z .

1. Let ; 6= K � U1 be convex and A � K be open in U1. We �x �u 2 K.
The functional j: A! R is twice continuously Fr�echet di�erentiable w.r.t.
the norm k�k1.
1a. The derivatives of j taken w.r.t. the space U1 extend to continuous

linear respectively bilinear forms on U2, i.e.

j0(u) 2 L(U2;R) and j00(u) 2 L(U2 
 U2;R) for u 2 A:
1b. Let (uk)k � K, (vk)k � U2 be arbitrary sequences such that uk ! �u

strongly w.r.t. the U2-norm and vk * v weakly in U2 as k ! 1.
Then it holds:

1bi. j0(�u)v = limk!1 j0(uk)vk,
1bii. j00(�u)v2 � lim infk!1 j00(uk)v2k,
1biii. if v = 0, there is c > 0 such that

c lim inf
k!1

kvkk22 � lim inf
k!1

j00(uk)v2k:

2. Let g: A! Z be twice continuously Fr�echet di�erentiable w.r.t. k�k1.
2a. The derivatives of g taken w.r.t. U1 extend to continuous linear

respectively bilinear forms on U2, i.e.

g0(u) 2 L(U2; Z); and g00(u) 2 L(U2 
 U2; Z) for u 2 A:
2b. Let (uk)k � K, (vk)k � U2 be arbitrary sequences such that uk ! �u

strongly w.r.t. the U2-norm and vk * v weakly in U2 as k ! 1.
Then it holds:

2bi. g0(uk)vk * g0(�u)v weakly in Z
2bii. g00(uk)v2k * g00(�u)v2 weakly in Z
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The following is our main abstract result and extends [71, Theorem 2.3] to-
wards the inclusion of a state-constraint-like constraint of type \g(u) 2 C". We
denote by RS(x) and TS(x) the radial cone and the tangent cone of a closed convex
set S in a Banach space X at some x 2 S; see Chapter 0 for the de�nition.

Theorem 2.8 ([168], Theorem 3.2). Let Assumption 2.7 hold. Let C � Z
be a closed convex set and let �u 2 K, g(�u) 2 C, and �� 2 Z� ful�ll the following
properties:

hj0(�u) + g0(�u)���; u� �ui2 � 0 8u 2 K;(2.6)

h��; z � g(�u)iZ�;Z � 0 8z 2 C;(2.7)

i.e. the KKT conditions for the problem (APst). Assume further that it holds

j00(�u)v2 + h��; g00(�u)v2iZ�;Z > 0 8v 2 C�u;�� n f0g(2.8)

with

C�u;�� := clU2(RK(�u))\fv 2 U2 : j0(�u)v = 0; hg0(�u)���; vi2 = 0; g0(�u)v 2 TC(g(�u))g:
Then, there are �; � > 0 such that the quadratic growth condition

j(u) � j(�u) +
�

2
ku� �uk22

holds for all u 2 K that satisfy ku� �uk2 � � and g(u) 2 C; in particular, �u is
an U2-local minimizer for (APst).

In the theorem and its proof we make extensive use of the continuation proper-
ties from Assumption 2.7.1a and 2.7.2a. In formula (2.6), for instance, g0(�u)��� 2 U�2
is well-de�ned because of g0(�u) 2 L(U2; Z) by Assumption 2.7.2a. We follow the
the proof of [71, Theorem 2.3], and abstract the techniques of several similar results
in this context; see, e.g., [49, 258, 185], and, in particular, [91].

Proof. Assume the contrary, i.e. that there exist (uk)k � K such that

ku� ukk2 < 1

k
; j(uk) < j(�u) +

1

2k
kuk � �uk22; and g(uk) 2 C:

De�ne �k := kuk � �uk2 and vk := 1
�k
(uk � �u). Since (vk)k � U2 is bounded by

de�nition and U2 is a Hilbert space we can assume w.l.o.g. that vk * v with some
v 2 U2. We prove v 2 C�u;�� in four steps:

Step A. From weak convergence and (2.6) we derive immediately:

hj0(�u) + g0(�u)���; vi2 = lim
k!1

hj0(�u) + g0(�u)���; vki2

= lim
k!1

1

�k
hj0(�u) + g0(�u)���; uk � �ui2 � 0:

Step B. To show hg0(�u)���; vi2 � 0 observe that

h��; g0(u�k)vkiZ�;Z =
1

�k
h��; g0(u�k)(uk� �u)iZ�;Z =

1

�k
h��; g(uk)� g(�u)iZ�;Z

(2.7)

� 0

with some u�k := �kuk + (1� �k)�u, (�k)k � [0; 1], originating from the mean value
theorem. Utilizing Assumption 2.7.2bi we obtain

hg0(�u)���; vi2 = h��; g0(�u)viZ�;Z = lim
k!1

h��; g0(u�k)vkiZ�;Z � 0:
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Similarly we obtain for arbitrary but �xed � 2 Z� that

h�; 1
�k
(g(uk)� g(�u))iZ�;Z = h�; g0(u�;�k )vkiZ�;Z ! h�; g0(�u)viZ�;Z

due to Assumption 2.7.2bi, i.e. g0(�u)v 2 weak-clZ(RC(g(�u))) = TC(g(�u)), which
is shown as follows: since C is assumed to be closed and convex, we infer from
[36, Proposition 2.55] that TC(g(�u)) = clZ(RC(g(�u))). The radial cone RC(g(�u))
is convex due to convexity of C, and hence its (strong) closure in Z is equal to its
weak closure weak-clZ(RC(g(�u))); see [36, Theorem 2.23.ii] for instance.

Step C. As in the proof of [71, Theorem 2.3] we �nd with help of the mean
value theorem that j0(�u)v � 0 holds. Together with step B we obtain hj0(�u) +
g0(�u)���; vi2 � 0 and therefore with step A:

hj0(�u) + g0(�u)���; vi2 = 0:

Step D. Now, by step B we have j0(u)v = �hg0(�u)���; vi2 � 0, which implies
together with j0(�u)v � 0 that j0(�u)v = 0. Finally it follows by step C that
hg0(�u)���; vi2 = 0.

As in [71] one can show that v 2 clU2(RK(�u)) and hence it follows from steps
A-D that v 2 C�u;�� . Using our assumption and Taylor expansion we �nd

�2k
2k

> j(uk)� j(�u) = j0(�u)(uk � �u) +
1

2
j00(u�k)(uk � �u)2

with some u�k = �kuk+(1��k)�u, (�k) � [0; 1]. Exploiting (2.6) and (2.7) it follows

�2k
2k

(2.6)
> �h��; g0(�u)(uk � �u)iZ�;Z +

1

2
j00(u�k)(uk � �u)2

= � h��; g(uk)� g(�u)iZ�;Z + h��; g(uk)� g(�u)� g0(�u)(uk � �u)iZ�;Z
+
1

2
j00(u�k)(uk � �u)2

(2.7)

� h��; g(uk)� g(�u)� g0(�u)(uk � �u)iZ�;Z +
1

2
j00(u�k)(uk � �u)2

=
1

2
�2k(h��; g00(~u�k)v2kiZ�;Z + j00(u�k)v

2
k);

where we used the mean value theorem for the last equality with some ~u�k =
~�kuk + (1� ~�k)�u 2 K, (~�k) � [0; 1]. From

1

k
> h��; g00(~u�k)v2kiZ�;Z + j00(u�k)v

2
k

and u�k ! �u, ~u�k ! �u in U2, vk * v weakly in U2 we �nd with Assumptions 2.7.1bii
and 2.7.2bii:

j00(�u)v2 + h��; g00(�u)v2iZ�;Z � 0:

Since (2.8) and v 2 C�u;�� hold, we conclude v = 0. Using Assumptions 2.7.1biii at
(|) and 2.7.2bii at (⋆) we �nally arrive at

0 < c = c lim inf
k!1

kvkk22
(|)
� lim inf

k!1
j00(u�k)v

2
k � lim inf

k!1
(
1

k
�h��; g00(~u�k)v2kiZ�;Z)

(⋆)
= 0;

which is the desired contradiction. □
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Before addressing applications to optimal control of quasilinear parabolic prob-
lems, let us put our result into context.

In [35, Theorem 4.13] it has been proven that in the purely control-constrained
case the positivity condition (1.18) is actually equivalent to the seemingly stronger
coercivity condition (1.20). We have summarized this in Proposition 2.9 in Sec-
tion 1.5. Such an observation is typical for PDE-constrained optimization problems
in the presence of an L2-Tikhonov regularization term; cf., e.g., [73, Theorem 4.11]
for a semilinear parabolic problem. Since one of the read threads of this thesis is
concerned with the two-norm discrepancy, let us point out that this property also
holds true in the present abstract setting.

Proposition 2.9. Under the assumptions of Theorem 2.8 the positivity
condition (2.8) implies that there is 
 > 0 such that

j00(�u)v2 + h��; g00(�u)v2iZ�;Z � 
kvk22 8v 2 C�u;�� :

The proof uses similar techniques as the proof of [73, Theorem 4.11] and relies
crucially on Assumption 2.7.1biii, i.e. on the presence of the L2-Tikhonov term.

Proof. Assume the contrary, i.e. that there exist (vk)k � C�u;�� , kvkk2 = 1, such
that

j00(�u)v2k + h��; g00(�u)v2kiZ�;Z <
1

k
:(2.9)

W.l.o.g. we can assume vk * v weakly in U2 for some v 2 U2. With the same
techniques as in the proof of Theorem 2.8 we see that actually v 2 C�u;�� holds.
Moreover, taking inferior limits on both sides of (2.9) and using Assumption 2.7.1bii
and 2bii we obtain

j00(�u)v2 + h��; g00(�u)v2iZ�;Z � lim inf
k!1

j00(�u)v2k + lim
k!1

h��; g00(�u)v2iZ�;Z

� lim inf
k!1

1

k
= 0:

Due to (2.8) we conclude v = 0. Therefore, again taking inferior limits on both
sides of (2.9) and now utilizing Assumption 2.7.1biii and 2bii yields the desired
contradiction 0 < c � 0. □

Note that Proposition 2.9 highlights the strength of Theorem 2.8: the positivity
condition (2.8) implies coercivity of j00(�u)+h��; g00(�u)[�]2iZ�;Z w.r.t. the U2-norm on
C�u;�� , but di�erentiability of j and g only hold w.r.t. the U1-norm. Nevertheless,
the �rst-order conditions (2.6) and (2.7) together with (2.8) are su�cient for local
optimality of �u w.r.t. the U2-norm.

Let us now indicate how Theorem 2.8 allows to extend a well-known result for
semilinear parabolic problems.

Example 2.10 ([168], Example 3.3). Let us recall the following simpli�ed
version of the semilinear parabolic optimal control problem with pointwise state-
constraints and purely time-dependent controls from [91]:
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

min
u;y

J(y; u) :=
1

2
ky � ydkL2(I�
) + �

2
kuk2L2(I;Rm)

s.t. u 2 Uad := fv 2 L2(I;Rm) : ua � v(t) � ub 8t 2 Ig;

@ty �r � �ry + d(y) =
mX
i=1

uibi;

@ny = 0;

y(0) = y0;

and g(y) � 0 pointwise on I � 
:

(2.10)

Here, �r � �r denotes an elliptic second-order di�erential operator with L1-
coe�cients, and d and g respectively are functions R! R that induce su�ciently
smooth superposition operators L1(Q) ! L1(Q). Further, d is assumed to be
monotone increasing. The actuator functions b1; :::; bm 2 L1(
) are �xed.

The reader may easily verify along the lines of [91, 71] that this control problem
�ts into the framework of Assumption 2.7. Hence, Theorem 2.8 allows to reformu-
late the second-order su�cient conditions obtained in [91, Theorem 5] with L1-
replaced by L2-neighbourhoods, i.e. a two-norm gap can be avoided. Despite that
in our formulation of (2.10) we have replaced the general objective functional from
[91] by a standard quadratic one for reasons of shortness, Theorem 2.8 is still ap-
plicable to the class of more general functionals described in [91]; see also [71].
For the precise assumptions and a detailed discussion of the full model problem we
refer the reader to [91].

The following example, although of arti�cial nature, illustrates that the as-
sumptions in the formulation of Theorem 2.8 are necessary. Necessity of the as-
sumptions on j is addressed in [71] and hence we only concentrate on the assump-
tions on g.

Example 2.11 ([168], Example 3.5). With U1 = L1([0; 1]), U2 = L2([0; 1]),
Z = C([0; 1]) we consider8>>><

>>>:
min

u2L2([0;1])
j(u) :=

Z 1

0

u(t)2dt

s.t. � 1 � u(t) � 1;

[g(u)](t) � t 8t 2 [0; 1];

(E)

with [g(u)](t) :=
R t
0
(1 � cos(�2u(s)))ds. Note that j satis�es Assumption 2.7 and

observe that g: L2([0; 1]) ! C([0; 1]) is well-de�ned. Yet, since the superposition
operator associated to the cosine function is known to be Fr�echet di�erentiable on
L1([0; 1]), but not on L2([0; 1]), we only have at hand twice Fr�echet di�erentiablity
of g as map L1([0; 1])! C([0; 1]).

One veri�es that �u � 1 is feasible for (E), and satis�es the FONs (2.6) and (2.7)
with �� = � 2

� �1 2 C([0; 1])�. Herein, �1 denotes the Dirac measure concentrated

at t = 1. The coercivity condition (2.8) is trivially satis�ed at (�u; ��), because
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C�u;�� = f0g. Further, the second derivative of the functional at �u is even L2([0; 1])-

coercive, but any un 2 L2([0; 1]) de�ned by un(t) = �1 for t 2 [0; 1n ] and un(t) = 1,
else, is also feasible for (E) and satis�es j(un) = j(�u). Together with un ! �u w.r.t.
the L2([0; 1])-norm, this shows that a quadratic growth condition around �u cannot
hold.

The reason is that Theorem 2.8 cannot be applied, because Assumption 2.7.2
fails to hold. Choose vn := n

1
21(0; 1n ), then it holds vn * 0 weakly in L2([0; 1]),

but for ûn :=
1
2 (un + �u) we obtain ûn ! û strongly in L2([0; 1]) and

h�1; g00(ûn)v2ni =
�2

4

Z 1

0

cos(
�

2
ûn(t))v

2
n(t)dt =

�2

4
↛ 0 = h�1; g00(�u)v2i

which disproves Assumption 2.7.2bii. However, we note that due to continuous
Fr�echet di�erentiability of g w.r.t. L1([0; 1]) an argument summarized in Re-
mark 2.12 below applies: �u is an L1([0; 1])-local but not an L2([0; 1])-local solution
of (E).

In fact, we note that under slightly weaker assumptions than in Assumption 2.7
a modi�ed version of Theorem 2.8, now with two-norm gap, can be obtained. This
version is of interest, e.g., for (Pst) in the case without control-constraints. We
refer the reader to [168, Section 6] for the details.

Remark 2.12 ([168], Remark 3.4). Let us for a moment replace convergence
uk ! �u in U2 in Assumption 2.7 by the stronger convergence uk ! �u in V ,
where (V; k�kV ) is a Banach space such that V ,! U1 and K � V . The proof of
Theorem 2.8 still shows that a quadratic growth condition of type j(u) � j(�u) +
�
2ku� �uk22 holds, but now only for those u 2 K that ful�ll ku� �ukV < � and g(u) 2
C, i.e. there is a two-norm gap in the quadratic growth condition. Consequently,
�u is at best a V -local minimizer for (APst), which corresponds |on the abstract
level| for V = U1 to the result of [91]; cf. also [71, Theorem 1.3] and the
references given there.

We conclude this section by pointing out an open problem. An important prop-
erty of the SSCs in [71, Theorem 2.3] is their minimal gap to corresponding SNCs
if the admissible set K is polyhedric. Positivity of j00(�u) on a certain cone C�u � U2
is |together with FONs| a su�cient optimality condition for �u, while nonneg-
ativity of j00(�u) on the same cone is necessarily implied by local optimality of �u
[71, Theorem 2.2]. The second-order conditions for the control-constrained quasi-
linear parabolic problems from [35, 45] have this property as already explained
in Section 1.5. Obtaining SNCs for (APst), however, seems to be a challenging
topic and is beyond the scope of our work. Indeed, proving SNCs for an optimal
control problem with in�nitely many state-constraints is known to be highly di�-
cult in general, and in the survey [73] the respectiv theory is described as \widely
open"; cf. [73, Section 7.5]. To the best of our knowledge, the only contributions
so far pertain to SNCs in the case of pure state-constraints for semilinear elliptic
or the stationary Navier-Stokes equations [184], or to the case of mixed control-
state-constraints and semilinear elliptic PDEs; see, e.g., [258, 185]. Apart from
that there are several results on second-order conditions for problems with �nitely
many state-constraints; see for instance [37, 66, 57, 67, 43]. In this context we
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also mention abstract optimization-theoretic results [84, 287, 288] with di�erent
applications to PDE-constrained optimization.

2.3. Second-order sufficient conditions for averaged in time state-constraints

This section roughly follows [168, Section 4] and contains the �rst part of
our discussion of SSCs for (Pst) with state-constraints. We replace the pointwise
in space and time state-constraints by averaged in time state-constraints; see As-
sumption 2.13 below. For the resulting modi�ed model problem we prove SSCs
avoiding the two-norm gap while keeping the rather low regularity requirements
on the state equation from Assumptions 1.5, 1.6 and 1.8. Consequently, our results
apply to the full range of situations described in Section 1.2, yet with additional
state-constraints.

The �rst part of Assumption 2.7, referring to the unchanged state equation
and the objective functional, has already been veri�ed in [35, Section 4.3]; we have
summarized this in Proposition 1.21. Therefore, the remaining work is to check
Assumption 2.7.2. This requires a careful regularity analysis of the derivatives of
the control-to-state map. The results of this analysis also highlight the obstruc-
tions that prevent us from applying Theorem 2.8 under Assumptions 1.5, 1.6, 1.8
and 2.1 directly and therefore motivate the introduction of averaged in time state-
constraints. In particular, the analysis of the quasilinear problem (Pst) is quite
di�erent from the discussion of the semilinear problem mentioned in Example 2.10
due to the more complicated structure of derivatives of the nonlinearity in the
di�erential operator. This yields slightly better regularity results in the case of
semilinear PDEs.

2.3.1. Averaged in time state-constraints. The regularity Assumptions 1.5,
1.6 and 1.8 on (Pst) remain unchanged. However, throughout Section 2.3 we will
be concerned with the following, modi�ed type of state-constraints.

Assumption 2.13.

1. The set of admissible states is

Yad =

�
y 2 L1(I; C(
)) : ya(x) �

Z
I

y(t; x)dt � yb(x) 8x 2 


�
;

with bounds ya; yb 2 C(
) satisfying ya(x) < yb(x) for all x 2 
 and
ya(x) < 0 < yb(x) for all x 2 �D. We allow for ya � �1 or yb � 1.

2. There is a feasible point, i.e. there is (y; u) 2 Yad �Uad such that y and u
ful�ll the state equation (Eq).

Intuitively, this means, e.g., in the case of controling temperature, keeping the
average temperature over the time interval at each point of an object in a certain
desired range. Of course, it is also possible to take the average w.r.t. a subinterval
Iobs � I only. In Section 2.5 we will illustrate the in
uence of averaging w.r.t. time
and of the choice of Iobs on behalf of some numerical examples. Moreover, to get
closer to the original pointwise in time formulation, one may also consider averaging
on a �nite number of subintervals of I separately. Since these two modi�cations
di�er from the basic setting described in Assumption 2.19 only by technicalities,
we will not address them further during our analysis. Averaged-type instead of
purely pointwise constraints are common in the literature, e.g., averaged in space
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and pointwise in time bounds on the state [113, 211, 204, 109] or its gradient
[205]. Interestingly, the regularity results available for our problem type in the
rough setting require us to average w.r.t. time, instead of w.r.t. space as in the
aforementioned publications; see the explanation below Proposition 2.14 for the
details.

To motivate the setting chosen in Assumption 2.13, let us already state the fol-
lowing result concerned with properties of the control-to-state map and its deriva-
tives. It will serve as the main step towards the proof of SSCs for (Pst) under
Assumption 2.13. We postpone the proof to Section 2.3.3 below.

Proposition 2.14 ([168], Proposition 4.6). Let Assumptions 1.5, 1.6 and 1.8
hold and �x u 2 Ls(�).

1a. The �rst derivative S0(u) of the control-to-state map extends to a con-
tinuous linear map from L2(�) to Lq(I; C(
)) for any q 2 (1; 2pd ).

1b. The second derivative S00(u) extends to a continuous bilinear map from

L2(�)� L2(�) to W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) for any r 2 (1; 2p
p+d ).

2. Let (uk)k � Ls(�) converge to �u strongly in Ls(�) and (vk)k � L2(�)
converge to some v weakly in L2(�). Then it follows S0(uk)vk !
S0(�u)vk strongly in Lq(I; C(
)) and S00(uk)v2k * S00(�u)v2 weakly in

W 1;r(I; (W
�1;p
�D

;W
1;p
�D

)) for q and r as in part 1a and 1b.

Having in mind these continuity and continuation properties for S and its
derivatives, assume that we want to apply Theorem 2.8 to (Pst) in case of point-
wise in space and time state-constraints (Assumption 2.1). Consequently, we have
to verify Assumption 2.7 for U1 = Ls(�), U2 = L2(�), K = Uad, Z = C(Q),
C = Yad, j being the reduced functional and g = S being the control-to-state
map of (Pst). We would have to show that S0(u) extends to a bounded lin-
ear map L2(�) ! C(Q), and that S00(u) extends to a continuous bilinear map
L2(�) � L2(�) ! C(Q), for any �xed u 2 Uad. This, however, already fails
to hold for the �rst derivative: from Lemma 1.12 we know that the extension
S0(u): L2(�)!W1;2(I; (W

�1;p
�D

;W
1;p
�D

)) is the best possible we can expect. Unfor-

tunately, there is no embedding W1;2(I; (W
�1;p
�D

;W
1;p
�D

)) ,! C(Q). Due to 2p
p+d < 2

in Proposition 2.14.1b, the situation is even worse for S00(u). Similarly, the appli-
cation to averaged in space and pointwise in time state-constraints [211], i.e.

Yad =

�
y: ya(t) �

Z



y(t; x)!(x)dx � yb(t) 8t 2 I
�

with continuous functions ya; yb 2 C(I) and a weight function ! 2 L1 is not
possible. Utilizing Proposition 2.14.1b we would require an embedding

W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) ,! C(I; L1)

for some r 2 (1; 2p
p+d ) in order to verify Assumption 2.7.2bii. Unfortunately, such

an embedding cannot be true. However, the embedding

W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) ,! L1(I;W
1;p
�D

) ,! L1(I; C(
))

is obvious. Therefore, averaging in time |instead of averaging in space| seems
to be reasonable, resulting in the formulation of Assumption 2.13.

Having motivated the chosen setting we start our analysis of (Pst).
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2.3.2. Existence of optimal controls and first-order optimality conditions.
For completeness, we proceed in the standard way and start with proving well-
posedness of the problem and �rst-order conditions. Except for minor modi�ca-
tions due to the di�erent structure of the state-constraints this is rather similar to
Section 2.1.2.

Existence of an optimal control for (Pst) with averaged in time state-constraints
is proven completely analogous to Proposition 2.2. We therefore only state the
result.

Proposition 2.15 ([168], Theorem 4.2). Let Assumptions 1.5, 1.6, 1.8
and 2.13 hold. Then, there exists a globally optimal control �u 2 Uad for
the optimal control problem (Pst).

To address FONs we �rst need to formulate a suitable constraint quali�cation.

Assumption 2.16. Under Assumption 2.13.1 let �u 2 Uad be an L2(�)-local
solution to (Pst) with associated state �y = S(�u) 2 Yad such that the follow-
ing linearized Slater condition is ful�lled at �u: there is uSl 2 Uad such that
�y + S0(�u)(uSl � �u) 2 �Yad, i.e.

ya(x) <

Z



[�y(t; x) + S0(�u)(uSl � �u)(t; x)] dt < yb(x); 8x 2 
:

As in Section 2.1.2 the proof of the following result is based on the abstract
KKT conditions from Theorem 0.1.

Theorem 2.17 ([168], Theorem 4.4). Under Assumptions 1.5, 1.6, 1.8
and 2.16 and Assumption 2.13.1 there exists a regular Borel measure �� 2
M(
) = C(
)� on 
 and the adjoint state �p 2 Lr0(I;W 1;p0

�D
), r0 2 (1;1), such

that the optimality system (
@t�y +A(�y)�y = B�u;

�y(0) = y0;
(2.11)

(
�@t�p+A(�y)��p+A0(�y)��p = �y � yd + dt
 ��;

�p(T ) = 0;
(2.12)

supp(��+) � fs
I
�y(t; �)dt = ybg; supp(���) � fs

I
�y(t; �)dt = yag;(2.13)

hB��p+ ��u; u� �uiLs0 (�);Ls(�) � 0 for all u 2 Uad;(2.14)

is satis�ed. Here, �� = ��+ � ��� denotes the Jordan decomposition of ��, cf.
Remark 2.5, and (2.12) has to be understood in the sense outlined in the
proof.

As in Theorem 2.4, pointwise in space and averaged in time state-constraints
infer a complementary slackness condition in the FONs. In Theorem 2.17, however,
we have already rephrased this condition as (2.13) follwing Remark 2.5. The overal
structure of the following proof is analogous to the proof of Theorem 2.4. Hence,
we put particular emphasis on the handling of the new type of averaged in time
state-constraints introduced in Assumption 2.13.
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Proof. In Theorem 0.1 we choose Z = C(
) and g := � � A � S: , where
S: Ls(�) ! W1;s(I; (W

�1;p
�D

;W
1;p
�D

)) is the control-to-state map, �: W
1;p
�D

,! C(
)

the Sobolev embedding, and A: ' 7! (x 7! R
I
'(t; x)dt) is averaging w.r.t. time,

which is a bounded linear map Lr(I;W
1;p
�D

) ! W
1;p
�D

for any r 2 (1;1). The

choice r = s shows that g is well-de�ned from Ls(�) into C(
). From A 2
L(Lr(I;W 1;p

�D
);W

1;p
�D

) we conclude A� 2 L(W�1;p0
�D

; Lr
0

(I;W
�1;p0
�D

)), and �� is the

embedding M(
) ,!W
�1;p0
�D

. For a test function  2 Lr(I;W 1;p
�D

) we compute

hA�����;  i
Lr0 (I;W

�1;p0

�D
);Lr(I;W

1;p
�D

)
= h����;A iM(
);C(
) =

Z



A d�� =

Z
�Q

 dtd��;

i.e. A����� = dt
 �� 2 Lr0(I;W�1;p0
�D

) for each r0 2 (1;1). Together with

~S0(B�u) 2 L(Lr(I;W�1;p
�D

); Lr(I;W
1;p
�D

));

for r 2 (1; s], which follows from Lemma 1.12.2, we �nd

~S0(B�u)�A��� 2L(M(
); Lr
0

(I;W
1;p0

�D
))

for r0 2 [s0;1). This shows that �p = ~S0(B�u)�(�y � yd + A�����) 2 Lr
0

(I;W
1;p0

�D
),

r0 2 (1;1), is well-de�ned. Equation (2.12) has to be understood in this sense.
Finally, a short computation shows that (2.14) holds. □

Let us now brie
y comment on the di�erences of this result from the corre-
sponding Theorem 2.4 in the case of pointwise in space and time state-constraints.
In the introduction of this chapter we have explained that averaged-type state-
constraints are often introduced to cope with regularity issues, i.e. when regularity
results available for the problem type under consideration do not su�ce to handle
purely pointwise state-constraints in a satisfying manor. Our speci�c setting of
averaged in time state-constraints has been motivated below Proposition 2.14. In
Theorem 2.17, the advantage of averaged-type state-constraints becomes visible,
too. Unlike for pointwise in space and time state-constraints, cf. our remarks at
the end of Section 2.1.2, now the regularity of the adjoint state can be improved
as pointed out in [168, Remark 4.5]: let instead of Assumption 1.8 the enhanced
regularity Assumption 1.10 hold that allows to apply Theorem 1.14 and Proposi-

tion 1.15. Since it holds A����� = dt 
 �� 2 Lr
0

(I;W
�1;p0
�D

) for any r0 2 (1;1) we
can apply Proposition 1.15 to obtain improved regularity

�p 2W1;r0(I; (W�1;p0 ;W 1;p0

�D
)); r0 2 [s0;1);

for the adjoint state from Theorem 2.17 in this case. In particular, the adjoint
equation (2.12) even holds in the distributional sense in the respective spaces.
This is di�erent from Theorem 2.4 where the adjoint equation had to be understood
purely formal; cf. Remark 2.6. The reason for this di�erent behaviour is the special
structure of the right-hand side in (2.12) which originates from the averaged-type
state-constraints.

2.3.3. Regularity of the derivatives of the control-to-state map: proof of
Proposition 2.14. We now give the proof of Proposition 2.14, i.e. the proof of
[168, Proposition 4.6]. We need to perform a detailed analysis w.r.t. regularity,
continuity, and extension properties of the derivatives of the control-to-state map
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S. In particular, recall the de�nition of S and its derivatives stated in Lemma 1.12.
As already pointed out at the end of Section 1.2 our Assumptions 1.5, 1.6 and 1.8
su�ce to apply those results from [35] summarized in Chapter 1 that we will use
in the following.

We start with the proof of part 1 of Proposition 2.14. We know S0(u) 2
L(L2(�);W1;2(I; (W

�1;p
�D

;W
1;p
�D

))) for all u 2 Ls(�), cf. Lemma 1.12. Hence, 1a.
follows from

W1;2(I; (W
�1;p
�D

;W
1;p
�D

)) ,!c L
q(I; C(
)); q 2

�
1;
2p

d

�
;

which is the �rst embedding from Lemma 1.13. Since this embedding is compact,
the mapping S0(u) 2 L(L2(�); Lq(I; C(
))) is also compact. For 1b. it su�ces due
to Lemma 1.12 to show for r 2 (1; 2p

p+d ) and z1; z2 2W1;2(I; (W
�1;p
�D

;W
1;p
�D

)) that

kA00(y)[z1; z2]kLr(I;W�1;p
�D

) ≲ kz1kW1;2(I;(W
�1;p
�D

;W
1;p
�D

))kz2kW1;2(I;(W
�1;p
�D

;W
1;p
�D

))

holds, where y = S(u). This, however, follows from the de�nition of A00, H�older's
inequality and the aforementioned embedding.

Let us now prove part 2. In the proof of [35, Proposition 4.9] it has been shown
that

~S0(Buk)! ~S0(B�u) in L
�
Lr(I;W�1;p);W1;r(I; (W

�1;p
�D

;W
1;p
�D

))
�

as long as r � 2p
p�d ; see Section 2.1.2 for the meaning of ~S. In particular,

S0(uk)! S0(�u) in L
�
L2(�);W1;2(I; (W

�1;p
�D

;W
1;p
�D

))
�

is true, from which we conclude the �rst statement of part 2. For the second
derivative we write

S00(uk)v2k � S00(�u)v2 =
�
~S0(Buk)� ~S0(B�u)

�
A00(yk)[S0(uk)vk]2

+ ~S0(B�u)
�A00(yk)[S0(uk)vk]2 �A00(�y)[S0(�u)v]2� ;

with yk = S(uk) and �y = S(�u). Convergence of the operators above is in par-
ticular true for r 2 (1; 2p

p+d ). Hence, it su�ces to show that A00(yk)[S0(uk)vk]2 *
A00(�y)[S0(�u)v]2 weakly in Lr(I;W

�1;p
�D

), which follows by H�older's inequality and
the previous results. This completes the proof of the proposition.

The following comments are an extended version of [168, Remark 4.7]. Uti-
lizing improved regularity of the states (Theorem 1.14) obtained in [35] together
with considering the linearized state equation on Bessel potential spaces instead
of W

�1;p
�D

would not improve the situation signi�cantly, as can be seen along the
lines of the above proof. Moreover, the appearance of di�erential operators in the
A00-term in the second derivative of the control-to-state map, cf. (1.3), and hence
in the second derivative of the Lagrangian of (Pst), makes it impossible to repeat
the approach of [189]; cf. in particular [189, Proposition 3.8]: for the semilinear
equation discussed in [189] all terms in the second derivative of the nonlinearity
are of order zero, which allows to get along with less regularity for the linearized
state equation than in our case.



62 2. Pointwise constraints on the state

Let us point out this interesting detail a bit more precisely because it highlights
the di�erences between semilinear and quasilinear problems: the second derivative
of the control-to-state map, w = S00(�u)v2, is given by the solution of the equation

@tw �r � �(�y)�rw �r � �0(�y)w�r�y = �r � �2�0(�y)z�rz + �00(�y)z2�r�y
�| {z }

A00(�y)[z;z]
w(0) = 0;

where z = S0(�u)v and �y = S(�u); cf. Lemma 1.12. The right-hand side of this
equation is a distributional object and not a measurable function on Q, in general.
Consequently, the regularity that can be expected for w is rather limited. We have
seen this in the above proof of Proposition 2.14 when we had to estimate the norm
of A00(y)[z1; z2] in Lr(I;W�1;p

�D
) in terms of z1 and z2.

This is clearly di�erent from the semilinear parabolic case: let, e.g., G denote
the control-to-state map associated with the problem (2.10) from Example 2.10.
Hereby, it does not matter that this problem has been formulated with purely
time-dependent controls. Standard computations, see, e.g., [270, Chapter 5], show
that the second derivative w = G00(�u)v2 is now given by the solution of

@tw �r � �rw + d0(�y)w = �d00(�y)z2
w(0) = 0;

where z = G0(�u)v and �y = G(�u). Unlike for the quasilinear case, the right-hand
side hereof is given by a measurable function on Q, i.e. having at hand the same
regularity for the �rst derivatives S0(�u)v and G0(�u)v the regularity of the second
derivative will always be much lower in the quasilinear case than in the semilinear
case. This e�ect is due to the presence of di�erential operators in A00, i.e. in the
term originating from the second derivative of the nonlinearity in (Eq), and hence
due to the quasilinear structure of this equation.

2.3.4. Second-order sufficient conditions. Using the previously obtained aux-
iliary results we formulate SSCs for (Pst). As already pointed out, the proof relies
on Theorem 2.8. For convenience, we introduce the regular part p̂ of the adjoint
state �p de�ned by the following equation

�@tp̂+A(�y)�p̂+A0(�y)�p̂ = �y � yd; p̂(T ) = 0;(2.15)

Note that this allows us to express the �rst derivative of the reduced functional j
as j0(�u)v = hB�p̂+ ��u; viL2(�); cf. Section 1.3.

Theorem 2.18 ([168], Theorem 4.8). Let Assumptions 1.5, 1.6 and 1.8
and Assumption 2.13.1 hold, and let �u 2 Uad, �y = S(�u) 2 Yad, �� 2M(
) ful�ll
the optimality system (2.11)-(2.14) from Theorem 2.17. We de�ne the critical
cone by

C�u;�� := fv 2 L2(�): (2.16)-(2.18) holdg
with Z

�

(��u+B�p̂)v = 0;

Z



Z
I

zv(t; x)dtd�� = 0;(2.16)
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I

zv(t; �)dt � 0 on fs
I
�y(t; �)dt = yag;Z

I

zv(t; �)dt � 0 on fs
I
�y(t; �)dt = ybg;

(2.17)

v � 0 on f�u = ubg; v � 0 on f�u = uag;(2.18)

where �p and p̂ are de�ned by (2.12) and (2.15), respectively, and zv = S0(�u)v.
If

�kvk2L2(�) +
Z
Q

((1� �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt > 0(2.19)

holds for all v 2 C�u;�� n f0g, there are �; � > 0 such that the quadratic growth
condition

j(u) � j(�u) +
�

2
ku� �uk2L2(�)

holds for all u 2 Uad such that ku � �ukL2(�) < � and ya(x) �
R
I
S(u)(t; x)dt �

yb(x) for all x 2 
. In particular, �u is an local solution of (Pst) w.r.t. the
L2(�)-topology.

The setting of pointwise in space and averaged in time state-constraints from
Assumption 2.13 has already been motivated in Section 2.3.1. That the application
of Theorem 2.8 to this setting goes through under Assumptions 1.5, 1.6 and 1.8
retrospectively completes this motivation.

Proof. We apply Theorem 2.8 with U1 = Ls(�), U2 = L2(�), K = Uad,
Z = C(
), and C = fz 2 C(
): ya � z � yb on 
g. The properties for the
reduced functional j, j(u) = J(S(u); u), required in Assumption 2.7 have al-
ready been checked in [35, Theorem 4.14]; cf. also Proposition 1.21. Note that
the average-in-time map A is linear and continuous from both Lq(I; C(
)) and
W1;r(I; (W�1;p;W 1;p)) ,! Lr(I; C(
)) into C(
) for any q; r � 1. Hence, exten-
sion and continuity properties for the derivatives of g := A�S in Assumption 2.7.2
immediately follow from Proposition 2.14. Hereby, observe that convergence of
(uk)k � Uad to �u w.r.t. L2(�) implies, due to L1(�)-boundedness of Uad, also
convergence w.r.t. Ls(�) by the Riesz-Thorin interpolation theorem. Therefore,
application of Proposition 2.14 is possible. □

Problem (Pst) with averaged in time state-constraints is slightly easier than
(Pst) with pointwise in space and time state-constraints from an analytical point of
view; this is exactly the reason for considering averaged in time instead of purely
pointwise state-constraints. Nevertheless, Theorem 2.18 still illustrates the full
strength of Theorem 2.8. To prove C2-di�erentiability of the control-to-state map
we need controls in Ls(�) with s � 1 as in Assumptions 1.5, 1.6 and 1.8 because
already existence of solutions to (Eq) relies on such an assumption; cf. Theo-
rem 1.11. Hence, C2-di�erentiability, and even well-de�nedness, of the reduced
functional j is guaranteed on Ls(�) but not necessarily on L2(�). For the same
reason, a similar situation holds for g := A�S. It is clear that g is well-de�ned and
C2-di�erentiable on Ls(�). The question whether g is even well-de�ned on L2(�)
is not clear. However, according to Proposition 2.9 the positivity condition (2.19)
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is equivalent to

�kvk2L2(�) +
Z
Q

((1� �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt � 
kvk2L2(�)

for all v 2 C�u;�� with some 
 > 0, i.e. coercivity of the expression in (2.19) holds
w.r.t. L2(�) and not w.r.t. Ls(�). Although the problem necessarily requires us
to refer to two nonequivalent norms, a two-norm gap in the formulation of The-
orem 2.18 can be avoided. This is the main bene�t and novelty of Theorem 2.8;
see the introduction chapter or Section 1.5.3 for detailed explanations regarding
the two-norm discrepancy and two-norm gaps. Finally, let us emphasize that un-
like for �rst-order necessary conditions we now need the presence of L2-Tikhonov
regularization, i.e. � > 0, in Assumption 1.8. This is due to the fact that � > 0 en-
sures that Assumption 2.7.1biii is satis�ed; cf. Proposition 1.21 and the respective
comments in Section 1.5.3.

2.4. Second-order sufficient conditions for pointwise state-constraints

In the previous section of this chapter we relaxed the type of state-constraints
while keeping the regularity assumptions for the equation unchanged. Now, we
proceed the other way round and strengthen the regularity assumptions and restrict
ourselves to purely time-dependent controls. In return, we establish SSCs for (Pst)
with pointwise in space and time state-constraints as introduced in Section 2.1.
The content of this section is based on Section 5 of our paper [168].

We replace Assumptions 1.5, 1.6 and 1.8 by a slightly smoother setting that
allows to use the stronger regularity result obtained in [45] and summarized in
Theorem 1.24. Based on this we derive a result analogous to Proposition 2.14 in
the Lp-W 2;p-setting that �nally allows to apply Theorem 2.8 also in the case of
pointwise in space and time state-constraints.

Before going into the details, let us brie
y motivate the setting chosen in [168,
Section 5] in an informal way. In Section 2.3.1 we have pointed out that in order
to apply Theorem 2.8 to (Pst) with pointwise in space and time state-constraints
we need to guarantee that, among further conditions, at least

S0(�u) 2 L �L2(�); C(Q)�(2.20)

holds. According to Assumption 1.8 it holds B 2 L(L2(�); L2(I;W�1;p
�D

)) and,

hence, due to Lemma 1.12 S0(�u) 2 L
�
L2(�);W1;2(I; (W

�1;p
�D

;W
�1;p
�D

))
�
which is

not su�cient for (2.20). Hence, we need to improve the regularity setting. To do

so, let us for the moment just assume that B 2 L(L2(�); L2(I;H��;p
�D

)) with some
� 2 [0; 1]. Moreover, assume that for the linearized state equation (1.3) a regularity

result in the H
��;p
�D

-H
2��;p
�D

-setting is available, i.e. that

S0(�u) 2 L
�
L2(�);W1;2(I; (H

��;p
�D

; H
2��;p
�D

))
�

(2.21)

holds. Utilizing the Bochner-Sobolev embedding from Proposition 1.1.2 we can
prove (2.20) if we can show

(H
��;p
�D

; H
2��;p
�D

)1=2;2 ,! C(
):
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To compute this interpolation space, let us, in addition, assume that there is an si-

multaneous extension operator for H
��;p
�D

! H
��;p
�D

(Rd) and H2��;p
�D

! H
2��;p
�D

(Rd).
In that case the retraction-coretraction theorem [267, Theorem 1.2.4], interpolation
results for function spaces on Rd, and standard Sobolev embeddings yield

(H
��;p
�D

; H
2��;p
�D

)1=2;2 ,! H
#;p
�D

,! C(
)

as long as # < 1 � � and # > d
p . Since

d
p < 1 might be arbitrarily close to 1, we

need to choose � = 0, i.e. H
��;p
�D

= Lp and H
2��;p
�D

=W 2;p \W 1;p
�D

.
For the rest of this section we will make the above reasoning mathematically

precise. Let us brie
y indicate how this results in the formulation of Assump-
tion 2.19 below: �rst of all, we need to ensure B 2 L(L2(�); L2(I; Lp)) which is
done by choosing the purely time-dependent control setting as described in Exam-
ple 1.9.3 with �xed actuators bi 2 Lp. Making a regularity result for the linearized
state equation in the Lp-W 2;p \ W 1;p

�D
-setting available is more delicate; in par-

ticular, this means that the appearing elliptic operators A(y) + A0(y) have to be
well-de�ned as maps W 2;p ! Lp which can only be expected to hold in a rather
smooth setting as introduced below. Fortunately, we can build on the analysis from
[45] and a corresponding regularity result for the state equation in the Lp-W 2;p-
setting that has already been summarized in Theorem 1.24. For brevity and clarity
we do not consider the equation from Theorem 1.24 in its full generality, where,
e.g., an additional semilinear term is allowed. Instead, we keep the structure of
(Eq) unchanged and enforce the assumptions on the underlying data in such a way
that the results from [45] now apply to (Eq) as well. Finally, we note that the
existence of a simultaneous extension operator for Lp and W 2;p does not require
additional assumptions once 
 is assumed to be a su�ciently smooth domain.

2.4.1. Regularity assumptions for the state equation. From now on we con-
sider (Pst) with pointwise in space and time state-constraints (Assumption 2.1)
under the following additional assumptions.

Assumption 2.19.

1. 
 � Rd, d 2 f2; 3g is a bounded domain with C1;1-boundary, and homo-
geneous Dirichlet boundary conditions hold on the entire boundary, i.e.
�D = @
.

2. Let Assumption 1.6 on � and � hold and assume in addition that � is
Lipschitz continuous as map 
! Rd�d.

3. Choose p > d and s > 2 such that 1
s <

1
2 (1 � d

p ). The set of admissible

controls is given by

Uad := fu 2 L2s(I;Rm) : ua � u � ub on Ig
with control-bounds ua; ub 2 L1(I;Rm), and for �xed actuator functions
bi 2 Lp, i = 1; :::;m, we de�ne

B: L2s(I;Rm)! L2s(I; Lp); u 7!
mX
i=1

uibi:

The initial value y0 for the state equation ful�lls

y0 2 (Lp;W 2;p \W 1;p
�D

)1�1=s;s \ (W
�1;2p
�D

;W
1;2p
�D

)1�1=(2s);2s \ C(
);
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and the desired state has regularity yd 2 L1(I; Lp). We �x � > 0.

As explained above, Assumption 2.19 is the adaptation of the assumptions
from [45], see Theorem 1.24 for a summary, applied to the setting described in
Assumptions 1.5, 1.6 and 1.8. The reason for the integrability exponent 2s w.r.t.
time in part 3 of the assumption is of rather technical nature and will be explained
in Remark 2.25 below. Unlike in [45] we have to restrict ourselves to purely time-
dependent controls as introduced in [91]. The reason has already been indicated
above and is the following; cf. also [91, Remark 2]: when switching from controls in
U1 = L2s(I;Rm) to controls in U2 = L2(I;Rm), only time integrability decreases,
but the spatial regularity of the right-hand sides of the PDEs is not a�ected. This
is crucial for obtaining the required regularity for the derivatives of the control-to-
state map. From the applied point of view, having only �nitely many prede�ned
actuators to in
uence a system might also seem reasonable. However, note that
Lp-regularity (unlikeW

�1;p
�D

-regularity in Example 1.9.3) of the �xed actuator func-
tions now excludes any possibility of boundary control. Moreover, compared to the
rough regularity setting considered in this thesis so far, Assumption 2.19 is a really
strong assumption. Nevertheless, as we have pointed out in the introduction of this
chapter, such kind of restriction is exactly what we have to expect when aiming at
second-order results for control problems with nonlinear, time-dependent PDEs in
the presence of pointwise in space and time state-constraints.

To make the relation of Assumption 2.19 to the previous rough regularity
setting for (Eq), i.e. Assumptions 1.5, 1.6 and 1.8, clear, let us recall from [45,
p. 609] the following observation: C1;1-smoothness of @
 combined with pure
homogeneous Dirichlet boundary conditions on �D = @
 and Lipschitz-continuity
of � implies that

�r � �r+ 1: W
1;q
�D

!W
�1;q
�D

(2.22)

is a topological isomorphism for any q 2 (1;1). Consequently, Assumption 2.19
is indeed a (heavily) tightened version of Assumptions 1.5, 1.6 and 1.8.

2.4.2. Improved regularity of the state. From Theorem 1.24 we obtain im-
mediately the following regularity result that will be the cornerstone of our further
analysis.

Theorem 2.20 ([45], Theorem 2.3). Under Assumption 2.19 the control-
to-state map S introduced in Section 1.3 is well-de�ned from L2s(I;Rm) to
W1;s(I; (Lp;W 2;p \W 1;p

�D
)).

From Section 1.3, formulas (1.4) and (1.8), recall that under Assumptions 1.5,

1.6 and 1.8 or Assumptions 1.5, 1.6 and 1.10 C0;�(Q)- or C0;�(I;W
1;p
�D

)-regularity,
respectively, has been proven in [35] for solutions of (Eq). The above regularity
result due to [45] yields considerably more regularity as the following corollary
shows.

Corollary 2.21 ([168], Corollary 5.4). Under Assumption 2.19 there are
some �; � > 0 such that

W1;s(I; (Lp;W 2;p \W 1;p
�D

)) ,!c C
0;�(I; C1;�):
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The proof of this embedding makes use of a similar interpolation argument
as we have sketched at the beginning of this section during the motivation of the
chosen setting. Now, it can be made precise because the existence of a simultaneous
Sobolev extension operator is guaranteed for domains with C1;1-boundary.

Proof. Choose 1
2 (1 +

d
p ) < � < 1 � 1

s and set � = 1 � 1
s � � > 0. By Proposi-

tion 1.1.3 it holds

W1;s(I; (Lp;W 2;p \W 1;p
�D

)) ,!c C
0;�(I; (Lp;W 2;p)�;1):

Further, it is well-known that (Lp;W 2;p)�;1 ,! [Lp;W 2;p]�. Since 
 is in particular
a domain with Lipschitz boundary, there is a bounded linear extension operator
Lp ! Lp(Rd) that restricts to a bounded extension operatorW 2;p !W 2;p(Rd); we
have summarized this result from [235] in Theorem 0.3. Thus, a standard argument
utilizing the retraction-coretraction theorem ([267, Theorem 1.2.4], [12, Proposi-
tion I.2.3.2]) shows that it su�ces to prove [Lp(Rd);W 2;p(Rd)]� ,! C1;�(Rd). The
latter follows from [Lp(Rd);W 2;p(Rd)]� = H2�;p(Rd) [267, Theorem 4.3.2.2] and
standard Sobolev embeddings on Rd with � = 2� � d

p � 1 > 0 [267, Theorem

2.8.1]. □

2.4.3. Improved regularity of the derivatives of the control-to-state map.
We provide an improved version of Lemma 1.12 under the strengthened regularity
Assumption 2.19. This is the regularity result for the linearized state equation
in the Lp-W 2;p-setting that corresponds to (2.21) in our motivation of the chosen
setting at the beginning of this section.

The improved regularity of the state from Theorem 2.20 is the crucial point
because we can show that the domain of �r � �(y(t))�r in Lp is independent of
t 2 I for y 2 C0;�(I; C1;�). Hence, it is possible to show that A(y) and A(y)+A0(y)
exhibit maximal parabolic regularity on Lp-spaces, which �nally allows to prove
the desired regularity result analogous to Lemma 1.12 and Proposition 2.14. The
approach is similar to [35] with the essential di�erence that the weaker regular-

ity y 2 W1;s(I; (W
�1;p
�D

;W
1;p
�D

)) for the states in [35, Section 3.2] su�ces to show

constant domains and maximal parabolic regularity on H
��;p
�D

for certain � 2 (0; 1)
close to 1, but not on Lp; cf. the proof of [35, Proposition 3.17]. However, an

analysis carried out on H
��;p
�D

will not su�ce for the derivation of SSCs for (Pst)
in case of pointwise in space and time state-constraints as we have pointed out in
Section 2.3.3.

The following observation is rather trivial in our case. We state it due to its
importance for the following results.

Lemma 2.22 ([168], Lemma 5.5). Under Assumption 2.19 let � 2 W 1;1

with � � �� > 0 on 
. Then it holds:

1. DomLp(�r � ��r+ 1) �= DomLp(�r � �r+ 1) = W 2;p \W 1;p
�D

, i.e. �r �
��r+ 1 is a topological isomorphism W 2;p \W 1;p

�D
! Lp.

2. The map

W 1;1 ! L(W 2;p \W 1;p
�D
; Lp); � 7! �r � ��r

is bounded linear.
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Similar results have been obtained in [134, Lemmas 6.5, 6.7, Corollary 6.8] if
(Eq) is considered on Bessel potential spaces instead of Lp.

Proof. 1. This follows from [127, Theorem 2.4.2.5] for instance.

2. It holds �r � ��r 2 L(W 2;p \W 1;p
�D
; Lp) for any � 2 W 1;1, with linear

dependence on �. A short computation shows

k�r � ��r'kLp ≲ k�kW 1;1k'kW 2;p\W 1;p
�D

for any � 2W 1;1, ' 2W 2;p \W 1;p
�D

, which veri�es boundedness. □

The following lemma is a �rst step towards the analysis of the linearized state
equation on Lp, where linearization takes place at some y that exhibits the regular-
ity obtained in Theorem 2.20 for solutions of (Eq). The linearized state equation
is given by the parabolic PDE associated to the nonautonomous linear parabolic
operator A(y) + A0(y). Regularity of the �rst summand of this operator, i.e.
A(y), is provided by the following lemma; the whole operator will be addressed in
Lemma 2.24.

Lemma 2.23 ([168], Lemma 5.6). Let Assumption 2.19 hold and �x y 2
W1;s(I; (Lp;W 2;p\W 1;p

�D
)). The nonautonomous linear parabolic operator A(y)

exhibits maximal parabolic regularity on Lr(I; Lp), r 2 (1;1), i.e. the solution
map (w;w0) 7! z of the equation

@tz +A(y)z = w; z(0) = w0;

is linear and bounded as a map

Lr(I; Lp)� (Lp;W 2;p \W 1;p
�D

)1=r0;r !W1;r(I; (Lp;W 2;p \W 1;p
�D

)):

Moreover, the corresponding operators norms are bounded uniformly for y
coming from a bounded set in W1;s(I; (Lp;W 2;p \W 1;p

�D
)).

The proof relies on the same technique as in [35, Theorem 3.20]. Nevertheless,
the present situation is slightly easier than in [35], because the additional regularity
assumptions ensure that the domains of A(y(t)) in Lp stay independent of t.

Proof. We apply [35, Lemma D.1]; see also [230, Corollary 14]. First, note
that Lp is an UMD space; see, e.g., [12, Section III.4.4] for the de�nition. Uniform
resolvent estimates and uniform R-sectoriality for A(t) := �r � �(y(t))�r on Lp

have already been established; see formulas (3.16) and Lemma 3.12 in [35]. Note
that uniformity already holds for y's coming from a bounded set in C0;�(Q), which
is a much weaker assumption than in the present case. It remains to check the so-
called Acquistapace-Terreni condition on Lp. The latter was done in [35] on the

Bessel potential spaces H
��;p
�D

for appropriate � 2 (0; 1) but not on Lp. As in the
proof of [35, Proposition 3.18] we write with help of the resolvent calculus:

(A(t) + 1)R(z;A(t) + 1)[(A(t) + 1)�1 � (A(s) + 1)�1]

= R(z;A(t) + 1)[A(t)� A(s)](A(s) + 1)�1:

From Lemma 2.22.2 it follows that

kA(t)� A(s)kL(W 2;p\W 1;p
�D
;Lp) � ck�(y)kC�(I;W 1;1)jt� sj�
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with c > 0 independent of y. Employing formula (3.16) from [35] there is � 2
(0; �=2) such that kR(z;A(t) + 1)kL(Lp) � cjzj�1 for all z 2 C n ��, t 2 I, with
�� = fz 2 C n f0g: jarg zj < �g, and �nally it follows again from Lemma 2.22 that

k(A(s) + 1)�1kL(Lp;W 2;p\W 1;p
�D

) � ck�(y)kL1(I;W 1;1)

with a constant c independent of y. Together, this shows the Acquistapace-Terreni
condition,

k(A(t) + 1)R(z;A(t) + 1)[(A(t) + 1)�1 � (A(s) + 1)�1]kL(Lp) � Cjt� sj�jzj�1

for all z 2 Cn��, t; s 2 I, with the constant C > 0 depending on the C�(I;W 1;1)-
norm of y. Therefore, C can be chosen uniformly for y's coming from a bounded
set in W1;s(I; (Lp;W 2;p \W 1;p

�D
)) due to Corollary 2.21. □

Now, we consider maximal parabolic regularity for the linearized state equa-
tion. This extends Lemma 1.12, i.e. [35, Proposition 4.4], or [45, Theorem 3.2],
where maximal parabolic regularity on W�1;p has been dealt with.

Lemma 2.24 ([168], Lemma 5.7). Let Assumption 2.19 hold, and �x y 2
W1;s(I; (Lp;W 2;p \W 1;p

�D
)). For any r 2 (1; s] and f 2 Lr(I; Lp), the linearized

state equation

@tw +A(y)w +A0(y)w = f; w(0) = 0;

has a unique solution w 2 Wr(I; (Lp;W 2;p \ W 1;p
�D

)). The nonautonomous
operator A(y) + A0(y) has maximal parabolic regularity on Lr(I; Lp) for r 2
(1; s].

Proof. Maximal parabolic regularity of A(y) on Lr(I; Lp), r 2 (1;1), has been
shown in Lemma 2.23. Corollary 2.21 together with Lemma 2.22 implies continuity
of the map

I ! L(W 2;p \W 1;p
�D
; Lp); t 7! �r � �(y(t))�r;

from which we conclude that each autonomous operator �r��(y(t)�r 2 L(W 2;p\
W

1;p
�D
; Lp), t 2 I, has in fact maximal parabolic regularity on Lp. This follows from

Proposition 1.4.2. Regarding the second summand, A0(y), we observe that the map
I ! L(W 1;1; Lp); t 7! ( 7! �r � �0(y(t)) �ry(t))

is Ls-integrable w.r.t. time: this follows from the continuity of the map

W 1;1 ! L(W 2;p \W 1;p
�D
; Lp); � 7! �r � ��r;

see Lemma 2.22.2, together with �0(y) 2 L1(I;W 1;1), the continuity of the prod-

uct on W 1;1 �W 1;1, and the fact that y 2 Ls(I;W 2;p \W 1;p
�D

). Hence, we have
just shown

A0(y) = (t 7! ( 7! �r � �0(y) �ry)) 2 Ls(I;L(W 1;1; Lp))

,! Ls(I;L((Lp;W 2;p)�;1; Lp))

with some 1 � 1=s > � > �̂ > 1
2 +

d
2p . Hereby, we made use of the embedding

(Lp;W 2;p)�;1 ,! [Lp;W 2;p]�̂ ,! W 1;1; cf. the proof of Corollary 2.21. From
Proposition 1.4.1 we conclude maximal parabolic regularity of A(y) + A0(y) on
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Lr(I; Lp) for r 2 (1; s). Similar to the proof of [35, Proposition 4.4] we invoke
Proposition 1.4.3 to get maximal parabolic regularity on Ls(I; Lp). □

We point out that Lemma 2.24 and Theorem 2.20 do not allow immedi-
ately to conclude di�erentiability of the solution map of (1.1) from Lr(I; Lp) to

W1;r(I; (Lp;W 2;p \ W 1;p
�D

)). Of course, for 1
r < 1 � d

2p , e.g., r = 2, there is an

embedding W1;r(I; (Lp;W 2;p\W 1;p
�D

)) ,! C(Q); which can be shown with a similar
argument as for Corollary 2.21. Hence, the map

F : W1;r(I; (Lp;W 2;p \W 1;p
�D

))� Lr(I; Lp)! Lr(I; Lp)� (Lp;W 2;p \W 1;p
�D

)1=r0;r;

(y; v) 7! (@ty +A(y)� v; y(0)� y0);

is continuously Fr�echet di�erentiable. Further, for r 2 (1; s] the partial deriva-
tive @yF (y; v) is even continuously invertible; cf. Lemma 2.24. Nevertheless, the
fact that prevents us from application of the implicit function theorem is that
we would �rst require a well-de�ned solution map v 7! y(v) associated with
F (y; v) = 0, and we do not have such a map at hand. To obtain solutions to

(1.1) in W1;s(I; (Lp;W 2;p\W 1;p
�D

)) we need right-hand sides v 2 L2s(I; Lp) and not
in Ls(I; Lp); see Theorem 2.20. For v 2 Ls(I; Lp) we do not know whether there

exists some y 2 W1;s(I; (Lp;W 2;p \W 1;p
�D

)) such that F (y; v) = 0. On the other

hand, @yF (y; v) cannot be invertible from W1;s(I; (Lp;W 2;p\W 1;p
�D

)) to L2s(I; Lp),

because invertibility of @yF (y; v) holds between W1;r(I; (Lp;W 2;p \ W 1;p
�D

)) and
Lr(I; Lp), r 2 (1; s]; cf. Lemma 2.24.

Remark 2.25. Double time integrability on the right-hand side of (1.1) in
Theorem 2.20 is due to the technique applied in the proof of [45, Theorem 2.3].
For a short outline we refer the reader to the proof of Lemma 2.27 below.

The following lemma is the �rst step towards an analogue to Proposition 2.14.1
under Assumption 2.19. Particularly, the regularity of the A00-term appearing in
the second derivative of the control-to-state map can be essentially improved in the
present case. Even in this highly regular setting A00(y)w2 is from Lr(I;W

�1;p
�D

),
i.e. a distributional object in general, which illustrates the di�culty of this term.
We also refer the reader to the end of Section 2.3.3 where we have compared this
situation to the semilinear parabolic case.

Lemma 2.26 ([168], Lemma 5.9). For y 2 W1;s(I; (Lp;W 2;p \W 1;p
�D

)), w 2
W1;2(I; (Lp;W 2;p \W 1;p

�D
)) it holds

kA00(y)w2kLr(I;W�1;p
�D

)� cy;rkwk2W1;2(I;(Lp;W 2;p\W 1;p
�D

))

for r 2 (1;1). The constant cy;r can be chosen uniformly w.r.t. y coming
from a bounded set in L1(I;W 1;p).

Proof. This follows from the de�nition of A00 and H�older's inequality. We
have to make use of the embeddings W1;2(I; (Lp;W 2;p \ W 1;p

�D
)) ,! C(Q) and

W1;2(I; (Lp;W 2;p \W 1;p
�D

)) ,! Lq(I;W 1;p) for every q 2 (1;1), that can be shown
similarly as in Corollary 2.21. □
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The following lemma is the last auxiliary result before we will be able to verify
the assumptions of Theorem 2.8 in the proposition thereafter.

Lemma 2.27 ([168], Lemma 5.10). The solution map of the state equation

(1.1) is continuous from L2s(I; Lp) to W1;s(I; (Lp;W 2;p \W 1;p
�D

)).

This result is implicitely, but not explicitly contained in [45]. There, di�eren-
tiability and, consequently, continuity of the control-to-state map have been ad-
dressed in theW

�1;p
�D

-setting; cf. [45, Theorem 3.2]. As outlined after Lemma 2.24,
argueing via the implicit function theorem is not possible here. To prove contin-
uous dependence we go through the steps in [45] tracking continuous dependence
of the quantities under consideration.

Proof. It is well-known that L2s(I; Lp) ,! L2s(I;W
�1;2p
�D

) and that solution

map of (1.1) is continuous (in fact, even C2) from v 2 L2s(I;W
�1;2p
�D

) to y =

y(v) 2 W1;2s(I; (W�1;2p;W 1;2p
�D

)). Hereby, existence of a solution is clear by [45,
Theorem 2.1] and di�erentiability of the solution map follows using the implicit
function theorem similarly as in the proof of [45, Theorem 3.2]: the required
invertibility property is assured by maximal parabolic regularity of A(y) + A0(y)
on L2s(I;W

�1;2p
�D

), which is proven similarly as in the proof of [35, Proposition
4.4] with s and p replaced by 2s and 2p, respectively; cf. also the similar proof of
Lemma 2.24 in the Lp-setting. Next, following the main idea in the proof of [45,
Theorem 2.3] we rewrite equation (1.1) as

@tz � �r � �rz = v +r� � �ry;
with y = y(v) 2 W1;2s(I; (W�1;2p;W 1;2p

�D
)) being the solution to (1.1) and � =

�(y(v)). It is clear that the right-hand side measured in Ls(I; Lp) depends contin-
uously on � in L2s(I;W 1;2p) and on y in L2s(I;W 1;2p), respectively, i.e. on v in
L2s(I;W�1;2p) by the above consideration. Further, due to the embedding

W1;2s(I; (W�1;2p;W 1;2p
�D

)) ,! C(Q)

also � = �(y(v)) depends continuously in C(Q) on v. Finally, the map

C(Q)! L(W1;s(I; (Lp;W 2;p \W 1;p
�D

)); Ls(I; Lp)); � 7! @t � �r � �r
is continuous. Therefore, using [45, Lemma 2.4] the solution z = y depends

continuously on � in C(Q) and y in W1;2s(I; (W�1;2p;W 1;2p
�D

)), and thus on v in

L2s(I; Lp). □

The following proposition is our analogue to Proposition 2.14 for the present
section. It provides the main steps in checking Assumption 2.7 for the setting
described by Assumption 2.19, and therefore forms the main part of the proof of
our second main result, SSCs for (Pst) with pointwise in space and time state-
constraints, below. Retrospectively, this result completes the motivation of As-
sumption 2.19 that we have provided at the beginning of Section 2.4.

Proposition 2.28 ([168], Proposition 5.11). Under Assumption 2.19 the
control-to-state map is twice continuously Fr�echet di�erentiable as map

Ls(I;Rm)!W1;s(I; (W
�1;p
�D

;W
1;p
�D

))



72 2. Pointwise constraints on the state

and the following continuation and continuity properties hold for the respec-
tive derivatives:

1. For any u 2 L2s(I;Rm), S0(u) and S00(u) extend to continuous linear
and bilinear forms on L2(I;Rm) with values in C(Q), respectively.

2. Let (uk)k � L2s(I;Rm) converge to �u strongly in L2s(I;Rm) and (vk)k �
L2(I;Rm) converge weakly in L2(I;Rm) to some v. Then S0(uk)vk *
S0(�u)vk and S00(uk)v2k * S00(�u)v2 weakly in C(Q).

The proof has similar structure as the one of Proposition 2.14. Nevertheless,
we give some details due to the importance of the result.

Proof. Di�erentiability of the control-to-state map and the formulas for the
respective derivatives follow from Lemma 1.12. Note that Assumption 2.19 indeed
su�ces to invoke this result as has been pointed out at the end of Section 2.4.1.
The extension property for the �rst derivative follows from Lemma 2.24 with r = 2
and the �rst embedding in the proof of Lemma 2.26. For the continuation of the
second derivative combine the continuation property for S0(u) with Lemmas 2.24
and 2.26 and the second embedding from Lemma 1.13. It remains to check the
continuity properties: as an auxiliary result, we �rst show that

S0(uk)! S0(�u) in L(Lr(I;Rm);W1;r(I; (Lp;W 2;p \W 1;p
�D

)))

for any r 2 (1;1). To do so, it su�ces, by continuity of operator inversion, to
show convergence

A(yk) +A0(yk)! A(�y) +A0(�y) in L(W1;r(I; (Lp;W 2;p \W 1;p
�D

)); Lr(I; Lp)):

This can be done using Lemma 2.27, H�older's inequality, and

W1;r(I; (Lp;W 2;p \W 1;p
�D

)) ,! Lq(I;W 1;1)

for some q such that 1
q +

1
s � 1

r , which can be shown by the same technique as for

Corollary 2.21. Having at hand this auxiliary result, the continuity property for
the �rst derivative follows similarly as in the proof of Proposition 2.14. For the
second derivative we also argue similarly as in the proof of Proposition 2.14: due
to the second embedding from Lemma 1.13 for r > 2p

p�d it su�ces to show that

~S0(Buk)! ~S0(B�u) in L(Lr(I;W�1;p
�D

);W1;r(I; (W
�1;p
�D

;W
1;p
�D

)))

and A00(yk)[wk]2 * A00(y)[w]2 weakly in Lr(I;W�1;p
�D

). We leave the details to the
reader. □

2.4.4. Second-order sufficient conditions. Now, we can apply Theorem 2.8 to
(Pst) under Assumptions 2.1 and 2.19 and formulate SSCs for (Pst) with pointwise
in space and time state-constraint. Compared to Theorem 2.18 we crucially rely on
the improved regularity results due to the strengthened regularity Assumption 2.19.

Theorem 2.29 ([168], Theorem 5.12). Let Assumption 2.19 and Assump-

tion 2.1.1 hold, and let �u 2 L2s(I;Rm), �y 2W1;s(I; (Lp;W 2;p\W 1;p
�D

))\Yad and
�� 2 M(Q) ful�ll the FONs (2.1)-(2.4) from Theorem 2.4. We de�ne the cone
of critical directions by

C�u;�� := fv 2 L2(I;Rm): (2.23)� (2.25) holdg;
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with Z
I

(��u(t) +B�p̂(t))T v(t)dt = 0;

Z
Q

zvd�� = 0;(2.23)

zv(t; x) � 0 on f�y = ybg; zv(t; x) � 0 on f�y = yag;(2.24)

vi(t) � 0 if �ui(t) = ub;i(t); vi(t) � 0 if �ui(t) = ua;i(t);(2.25)

where p̂ is de�ned by (2.15) and zv = S0(�u)v. If

(2.26) �kvk2L2(I;Rm) +

Z
Q

((1 � �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt > 0

holds for all v 2 C�u;�� n f0g, then �u is an L2(I;Rm)-local minimizer for (Pst)
and there are �; � > 0 such that the quadratic growth condition

j(u) � j(�u) +
�

2
ku� �uk2L2(I;Rm)

holds for all u 2 Uad that satisfy ku� �ukL2(I;Rm) < � and S(u) 2 Yad.
Proof. We apply Theorem 2.8 with U1 = Ls(I;Rm), U2 = L2(I;Rm), Z =

C(Q), K = Uad, C = Yad. As already observed in the proof of Theorem 2.18,
the assumptions on the reduced functional j from Assumption 2.7.1 have been
veri�ed in [35]; this has been summarized in Proposition 1.21. Assumption 2.7.2
for g = S is ful�lled due to Proposition 2.28. The crucial point is as in the proof
of Theorem 2.18 to observe that due to L1-boundedness of Uad convergence w.r.t.
the L2(I;Rm)-norm implies both L2s(I;Rm)- and Ls(I;Rm)-convergence. □

To put this result into context, let us note that the problem formulation re-
quires two di�erent norms, as it was the case also in Example 0.2 in the introduc-
tion. Reduced functional and control-to-state map are well-de�ned and C2-Fr�echet
on Ls(I;Rm) with some s � 2 but not necessarily on L2(I;Rm). The positivity
condition (2.26) implies the coercivity condition

�kvk2L2(I;Rm) +

Z
Q

((1� �00(�y)�r�yr�p)z2v � 2�0(�y)zv�rzvr�p)dxdt � 
kvk2L2(I;Rm)

for all v 2 C�u;�� and some 
 > 0; cf. Proposition 2.9. Thus, di�erentiability of j and
S and coercivity of the expression in (2.26) hold w.r.t. di�erent norms. However,
unlike in Example 0.2 or some previous results on SSCs for parabolic problems,
e.g., [91], it is possible to state the quadratic growth condition in Theorem 2.29
only referring to the L2(I;Rm)-norm: similarly to Theorem 2.18 and Example 2.10
the occurrence of a two-norm gap can be avoided. As for Theorem 2.18 we point
out that the L1-boundedness of Uad and the assumption � > 0 are crucial for
Theorem 2.29.

2.5. Numerical illustration

We conclude this chapter by some numerical examples. As explained in the
introduction of this chapter or in Section 2.3.1, considering state-constraints that
are averaged w.r.t. time (instead of averaged w.r.t. space) is a new feature of
our work [168]. Therefore, we now provide a numerical illustration of this type of
constraint. In particular, we consider averaging on di�erent subintervals Iobs � I
and compare this with the case of pointwise in space and time state-constraints.
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Our computations indicate that standard numerical schemes that have already
successfully been applied to other PDE-constrained optimization problems with
state-constraints also allow to handle the problem class under consideration in this
chapter. The theoretical analysis of the discretization scheme or the regularization
method applied to the state-constraints are beyond the scope of this thesis and not
addressed.

2.5.1. Computational approach. In order to solve the state-constrained prob-
lem (Pst) numerically, we employ Moreau-Yosida regularization; see, e.g., [176,
147]. In essence, instead of (Pst) we solve the regularized problem8><

>:
min
y;u

J(y; u) :=
1

2
ky � ydk2L2(I�
) +

�

2
kuk2L2(�) +

�

2
P (y);

subject to u 2 Uad and (Eq);

(Pst� )

where � = ��nal > 0 is large and P (y) is the following functional that penalizes
constraint-violation of y:

P (y) :=

Z
Q

max(0; y(t; x)� yb(t; x))2dxdt for Assumption 2.1 or

P (y) :=

Z



max

�
0;

Z
I

y(t; x)dt� yb(x)
�2

dx for Assumption 2.13.

For simplicity, we have restricted ourselves to unilateral bounds from above and
formulated the regularized problem without discretization; the discretization of
(Pst� ) is addressed below. Basically, (Pst� ) is a straightforward adaptation of Prob-

lem (P
) from [147, p1137], which was formulated for linear state equations, to our
problem setting. Problem (Pst� ) itself is solved by a semismooth Newton method

(SSN), cf., e.g., [274, 275], with Armijo linesearch in order to decrease the pro-
jection formula residual su�ciently in each Newton iteration. If the latter fails,
we perform a gradient descent step with Armijo linesearch instead. Since (Pst� )
with large � = ��nal cannot be solved without a good initial guess we follow the
approach described in [147, Section 4]: �rst, we solve (Pst� ) with � = 0 as described
above and obtain its approximate solution �u0. After that, we solve for k = 1; :::; N

the problem (Pst� ) with � = �
k�1
N�1

�nal ; as initial guess in the semismooth Newton
method at each k = 1; :::; N we utilize the previously obtained approximate solu-
tion �uk�1. We stop the semismooth Newton method after at most 15 iterations
or if the residual is smaller than 10�3 for k = 0 and k = N or after at most 8
iterations or if the residual is smaller than ��1 for k = 1; :::; N � 1.

Let us brie
y comment on how the implementation could be re�ned utilizing
techniques that have successfully been applied in the literature to di�erent, mostly
linear elliptic, model problems. For a more elaborate coupling of inner and outer
iterations we refer the reader to, e.g., [146]. As alternatives to Moreau-Yosida
regularization we mention, e.g., barrier methods [247], or Lavrentiev [220] and
virtual control regularization [190]. For a proof of convergence of Moreau-Yosida
and Lavrentiev regularization in the case of semilinear parabolic equations we refer
the reader to [223]. Moreover, to enhance e�ciency, the usage of appropriate
preconditioners [226] and reasonable coupling of regularization and discretization
[144, 158, 154] could be applied.
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2.5.2. Example problem and results. We consider the following speci�cation
of (Pst) in two space dimensions: let 
 = [0; 1]2 n ([ 13 ; 1] � [ 23 ; 1] [ [ 23 ; 1] � [ 12 ; 1]),

�D = ;, T = 1, 
 = 2 � 10�2, y0 � 0, � � id2,

yd(t; x) := max(0;min(1; 3t� 1)); and �(y) :=
3

4
+

1

2(1 + exp(�10(y � 1
2 )))

:

Note that Assumptions 1.5 and 1.6 are satis�ed; cf. Example 1.7.2. In Assump-
tion 1.8 we choose Ls(�) = Ls(I) and Bu := ub with b 2 W

�1;p
�D

given by

b(') :=
R
@

'ds. For simplicity, we omit control-constraints. We consider the

following six di�erent situations:

� no state-constraints,
� pointwise in space and time state-constraints with upper bound yb � 1,
� averaged in time state-constraints of typeZ

Iobs

y(t; �)dt � yb on 
;

with

Iobs =

�
2

3
; 1

�
; yb � 1

3
;

Iobs =

�
1

2
; 1

�
; yb � 11

24
;

Iobs =

�
1

2
;
5

6

�
; yb � 7

24
;

or Iobs = [0; 1]; yb � 1

2
:

Here, the respective upper bounds for the averaged-type constraints are chosen to
be the integrals of yd over Iobs.

The numerical experiments are implemented in python utilizing FEniCS and
mshr [9, 203] for �nite element discretization. Each problem (Pst� ) is discretized as
follows: the state and the adjoint equation are discretized by continuous, piecewise
linear �nite elements in space (1076 DoF, maximum cell diameter hmax � 4:24 �
10�2) and by piecewise constant, discontinuous ansatz functions in time which
result in an implicit Euler time stepping (555 equidistant time steps). The purely
time-dependent controls are discretized by piecewise constant in time functions.
Let us note that this coincides with the variational discretization concept [149].
For the solution of the nonlinear equations appearing in each time step of the
solution of the state equation we use the built-in nonlinear solver of FEniCS.

As pointed out in the introduction chapter, we are not aware of literature
dealing with discretization error estimates for the control problem (Pst). The
estimates for the state equation from [46, Theorem 3.11 and Corollary 3.14] made
us choose the above number of time steps in order to roughly balance space and
time discretization errors for the state equation. Regarding discretization error
estimates for PDE-constrained optimization problems with state-constraints, we
mention the survey [157], and exemplarily literature on linear elliptic [93, 188, 63],
semilinear elliptic [42, 58, 155, 222], parabolic [94, 211, 115, 83], and semilinear
parabolic problems [204].
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To solve (Pst) approximately, we apply the pathfollowing scheme described in
Section 2.5.1 with N = 6 and ��nal = 105 emplyoing the above explained dis-
cretization of (Pst� ). Figures 2.1 and 2.2 provide an overview over the convergence
behaviour of the outer and the inner iterations; hereby, we only show the outer it-
erations k = 1; :::; 6. The residuals during the inner semismooth Newton iterations
are displayed in Figure 2.1. Since penalization-based regularization approaches pro-
duce infeasible iterates, in general, i.e. the iterates violate the state-constraints, we
show the respective constraint-violations of the outer iterates in Figure 2.2. The
optimal controls for all six cases de�ned above are displayed in Figures 2.3 to 2.5
together with the range of values of the associated optimal states. Some di�erences
between the pointwise in space and time and the averaged in time and pointwise
in space state-constraints are clearly visible. This is due to the fact that averaging
w.r.t. time allows to compensate exceeding a certain pointwise bound for a while
by staying strictly below this bound for some other time in Iobs. Hence, the choice
of the observation interval Iobs is crucial in the averaged-type case.
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Figure 2.1. L2-norm of the residuals in the semismooth New-
ton method (inner iterations, numbered consecutively) during the
outer iterations k = 0; 1; :::; 5.
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Figure 2.2. Constraint violation of the (outer) control iterates uk,
k = 0; :::; 5, measured in percent of the respective upper bound.
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Figure 2.3. a. No state-constraints and b. pointwise in space and
time state-constraints.
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Chapter 3

Sparse purely time-dependent optimal control

After having addressed additional constraints on the state-variable in Chap-
ter 2, we now turn to considering (P) again with pure control-constraints, but in
return with a modi�ed functional. More precisely, this chapter, which is based
on the preprint [169] by I. Neitzel and the author, is devoted to sparse optimal
control. Hereby, sparsity is enforced by adding certain penalization terms to the
objective functional. We focus on the purely time-dependent control setting, i.e.
controls depending on time only, but not on space, cf. [91] or Example 1.9.3, a
particularly interesting setting that will be motivated in detail below.

We obtain results that we expect from known results for the linear and semi-
linear case; see, e.g., [138, 54]. More precisely, we derive �rst-order necessary
optimality conditions and associated sparsity patterns as well as second-order nec-
essary and su�cient optimality conditions for problems of the following type:8><

>:
min
y;u

J(y; u) :=
1

2
ky � ydk2L2(I�
) +

�

2

mX
i=1

kuik2L2(I) + �jk(u);

s.t. u 2 Uad and (Eq).

(P
sp
k )

Herein, the assumptions on the state equation, the set of admissible controls, the
�rst two summands of J , as well as the L2(I;Rm)-Tikhonov parameter � > 0 are
the same as introduced in Chapter 1. The new parameter � > 0 weighs the sparsity-
enforcing penalization/cost term jk: L

2(I;Rm) ! R. For k 2 f1; :::; 7g, the latter
is given by one of the following functionals that are adaptations of the classical (di-
rectional) sparsity-enforcing penalizers [138] to the purely time-dependent setting:

j1(u) :=
mX
i=1

kuikL1(I);

j2(u) :=
mX
i=1

kuikL2(I); j3(u) :=

Z
I

 
mX
i=1

jui(t)j2
! 1

2

dt;

j4(u) :=

 
mX
i=1

kuik2L1(I)
! 1

2

; j5(u) :=

0
@Z

I

 
mX
i=1

jui(t)j
!2

dt

1
A

1
2

;

j6(u) :=
1

2

mX
i=1

kuik2L1(I); j7(u) :=
1

2

Z
I

 
mX
i=1

jui(t)j
!2

dt:

83
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Figure 3.1. Optimal controls a. without sparsity and b. for func-
tional j1.

We start with a numerical illustration from [169] in order to give the reader an
impression why problems involving the cost terms j1-j7 are of interest. For details
on the underlying model problem, its discretization, and its numerical solution we
refer to Section 3.4.2 at the end of this chapter. Let us just say that this problem
may be imagined as a very abstract counterpart of the following setting: in a room
(which corresponds to the domain 
) there are eight air conditioning devices with
a �xed position (that correspond to �xed actuators bi 2 Ls in Example 1.9.3).



3. Sparse purely time-dependent optimal control 85

0 1 2 3 4 5 6 7 8

�1

0

1

time t

a. Functional 2

u1 u2 u3 u4 u5 u6 u7 u8

0 1 2 3 4 5 6 7 8

�1

0

1

time t

b. Functional 3

u1 u2 u3 u4 u5 u6 u7 u8

Figure 3.2. Optimal controls a. for functional j2 and b. for func-
tional j3.

The purely time-dependent controls ui, i = 1; :::; 8, are the intensities of the i-th
device, i.e. ui(t) > 0 or ui(t) < 0 means heating or cooling by the i-th device at
time t with the respective intensity given by ui(t), while ui(t) = 0 simply means
that the i-th device is turned o� at time t. In the respective control problem we
aim at making the temperature in the room follow a given desired trajectory over
time by regulating the intensity of the air conditioning devices apropriately.
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Figure 3.3. Optimal controls a. for functional j4 and b. for func-
tional j5.

Figure 3.1.a shows how the solution of such a problem may look like for � = 0,
i.e. in the classical setting without sparsity considered in Chapter 1: it can be seen
that all devices are turned on at every time point, although some devices, e.g.,
device no. 2 or 3, seem to be used with much less intensity than others. Moreover,
at some time points, e.g. at the beginning of the time interval, the intensity of
all devices is rather low. From an economic point of view one may therefore be
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Figure 3.4. Optimal controls a. for functional j6 and b. for func-
tional j7.

tempted to avoid the usage of air conditioning at the beginning of the time interval
and/or to dispense with devices no. 2 or 3 at all.

The solution looks completely di�erent when adding one of the functionals j1-
j7 to the objective functional of the problem: functional j1 selects �ve devices that
are used to control the temperature of the room while the remaining three devices
are not used at all. Even those devices that are used, are only turned on for certain
rather small time intervals. In particular, no device is turned on at the beginning of
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the time interval and devices no. 2 and 3 are not used at all. Functional j2 selects
a certain subset of the devices, too, but now each of these devices is constantly
used for the whole time interval under consideration as can be seen in Figure 3.2.a.
In particular, these devices are also turned on at the beginning of the time interval
with extremly low intensity. Figure 3.2.b illustrates that functional j3 allows to
determine a small subset of time points at which all devices are turned on, while
no air conditioning takes place at all other time points at all. We see, e.g., that
all devices stay turned o� at the beginning of the time interval. Consequently, the
functionals j1-j3 allow in some sense to incorporate the abovementioned economic
considerations into the optimization problem.

The interpretation of functionals j4-j7 within the narrative of optimal aircon-
ditioning is less obvious, but could be interesting in di�erent contexts. In the case
of functional j4, cf. Figure 3.3.a, each device is turned on only for a small subset of
timepoints. This set of time points is di�erent for each device and seems to be given
by those time points where the respective device is most needed. In Figure 3.3.b
it can be seen that at each time point exactly two devices are turned on. In this
sense, functional j5 seems to select for each time point only a small number of
devices that are turned on simultanuously. The solutions of (P

sp
k ) associated with

j6 and j7 (Figure 3.4) look quite similar as those with j4 and j5 from a structural
point of view; we will come back to this lateron.

Having thus motivated the consideration of (P
sp
k ), let us now give a short

overview on literature concerned with sparse optimal control. Starting with the pi-
oneering work of Stadler [261] on sparse optimal control of linear elliptic equations,
there have been many contributions on this topic in the recent past. For a broader
overview we refer the reader, e.g., to the survey article [44], and focus on litera-
ture related to the present work in the following. Regarding literature following the
original idea of Stadler to enforce sparsity by adding an L1-penalization term to the
objective functional we mention, e.g., [289, 53, 52, 64, 72, 65, 74, 260, 59, 286].
These publications refer to di�erent types of PDEs and cover several aspects, in-
cluding �rst- and second-order optimality conditions, discretization error estimates,
and additional state-constraints. When considering parabolic PDEs it might be fa-
vorable to obtain a space-time sparsity pro�le of the optimal control in which space-
and time-variable are treated in a di�erent way. This leads to the concept of di-
rectional sparsity introduced in [138] for linear PDEs. An extension towards the
setting of polar coordinates has been discussed in [137] in the case of linear elliptic
problems, and �nite element discretization error estimates have been derived for
linear parabolic [62] and semilinear parabolic [61] problems. We mention in par-
ticular that �rst- and second-order optimality conditions for directionally sparse
optimal control of semilinear parabolic PDEs have been obtained in [54, 61], for
instance. The speci�c di�culty herein arises from the fact that sparsity-enforcing
penalizers are convex, but nonsmooth, whereas the remaining part of the objective
functional is smooth, but |due to nonlinearity of the state equation| nonconvex.
Moreover, as typical for optimal control of nonlinear PDEs, the so-called two-norm
discrepancy [174, 71] occurs: di�erentiability and coercivity of the second deriva-
tive of the smooth part of the objective functional hold only w.r.t. di�erent norms.
Let us already note that the second-order su�cient conditions from [54, Theorems
4.3 and 4.8] and [61, Theorem 4.2] nevertheless avoid introducing a two-norm gap.
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As alternative approaches to enforce sparsity in PDE-constrained opimization
we �nally mention, e.g., control in measure spaces [86, 47, 229, 55, 56, 76],
directional sparsity with measure spaces [48, 192], or L0-penalization [178, 77].

As far as we know, the �rst contribution addressing sparse optimal control
of quasilinear PDEs is our preprint [169]. Consequently, this chapter, which is
based on the results of [169], contributes both to the �elds of optimal control of
quasilinear PDEs and sparse optimal control. We extend the �rst- and second-order
analysis for sparse optimal control of semilinear parabolic PDEs from [54, 61] to
problems with a quasilinear parabolic state equation. Here, we focus on the purely
time-dependent control setting, which can be motivated as follows: �rst, such
a setting may be advantageous in applications as one may imagine with a view
to the abovementioned arti�cial setting. Among the real-world examples given
in the introduction of [91] we mention, e.g., optimal cooling of steel pro�les by
controlling the intensities of the �nite number of nozzles that spray water on the
pro�le. Second, while space-time sparsity patterns for distributed optimal control
problems have already been under detailed consideration in [54], the purely time-
dependent control setting has not been addressed systematically in the context
of directional sparsity before [169]. Nevertheless, our results would also apply
to the classical directionally sparse distributed control setting as in, e.g., [54].
Finally, the chosen purely time-dependent control setup allows to include control by
�xed Neumann boundary sources up to dimension 3, whereas distributed Neumann
boundary control is only possible up to dimension 2; cf. Example 1.9 or [35,
Example 2.4]. Let us also mention that the discretization of control problems
with purely time-dependent controls is usually slightly easier to handle than the
discretization of problems with distributed controls; cf. Section 3.4.2.

With our work, we combine two challenging aspects, namely sparsity-enforcing
penalization and a quasilinear state equation. In the presence of L2-Tikhonov reg-
ularization we are able to carry out a full �rst- and second-order analysis, the
latter one avoiding the two-norm gap. Let us emphasize that with respect to the
state equation we again rely on the rough regularity setting of [216, 35] as intro-
duced in Section 1.2. Similarly as done in Chapter 2 for the analysis of the state-
constrained problem (Pst), we pursue an abstract approach in the 
avour of [71]
and work out the abstract core of existing arguments for second-order conditions
from [53, 54, 61], which may also facilitate the application to other problems. Due
to the di�erent nature of our nonlinearity, the second-order analysis from [54, 59]
cannot be carried over to our setting in the bang-bang case � = 0, i.e. the case
without L2-Tikhonov regularization; cf. Section 3.3.3 below. This illustrates that
the transfer of techniques from semilinear to quasilinear problems is by no means
trivial.

In this chapter we provide an extensive analysis of directional sparsity for
purely time-dependent controls. The interesting e�ects of the di�erent jk on the
solution of (P

sp
k ) has already been illustrated numerically above. Throughout this

chapter we carry out a detailed analysis of the respective control problems. In par-
ticular, the structural properties (often called \sparsity patterns") of the optimal
controls observed in the numerical examples turn out to be a direct consequence
of the respective �rst-order necessary optimality conditions for (P

sp
k ). Besides the

functionals j1-j5, whose structure corresponds to those already discussed in [54],
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we also propose and analyze the functionals j6 and j7, that have |to the best
of our knowledge| not been dealt with in the context of PDE-constrained opti-
mization before [169]. These two functionals are interesting, because their sparsity
patterns are similar to those of j4 and j5, respectively, while they are advantegeous
compared to j4 and j5 from a numerical point of view because their proximity
operator is computable.

In order to reduce redundancy, we formulate as many of the results and argu-
ments as possible on an abstract, general level from which the concrete results can
be obtained afterwards. This is analogous to Chapter 2 where our abstract theorem
on SSCs with a state-constraint-like constraint, cf. Theorem 2.8, allowed to prove
SSCs both for averaged in time and pointwise in space and time state-constraints
on the concrete level; cf. Theorems 2.18 and 2.29. Consequently, we state our
main results concerning (P

sp
k ) right at the beginning in Section 3.1 and postpone

their proofs to the remaining part of the chapter. For convenience of the reader, let
us already point out some key features of our arguments. In two important steps
of our arguments we introduce abstract settings that allow to handle seemingly
di�erent situations with a common argument.

The �rst abstraction takes place in Section 3.2.1: we prove �rst- and second-
order optimality conditions for an abstract optimization problem in Banach spaces
whose functional is given by the sum of a smooth and a nonsmooth functional,
both satisfying certain assumptions. For the rest of this chapter, we show that
these abstract results apply to the concrete instances of (P

sp
k ), k = 1; :::; 7. The

main work is to check that both smooth and nonsmooth part of the (reduced)
functional of (P

sp
k ) satisfy the required assumptions. For the smooth part, given

by the �rst two summands of J in (P
sp
k ), this has already been shown in [35];

see Proposition 1.21. The assumptions on the nonsmooth part, i.e. for u 7!
�jk(u), are veri�ed in Section 3.2.2. To avoid checking the conditions for all
seven cases of jk separately, we apply the second step of abstraction: it turns out
that the seven functionals can be reduced to four generic cases for which we then
prove the required results utilizing techniques known from the literature. Hereby,
it is important to note that the conditions on the smooth and the nonsmooth
part of the functional can be checked independently of each other. Consequently,
the presence of a quasilinear parabolic state equation does not cause additional
problems when applying results on the nonsmooth part of the functional that
have been derived earlier in the context of optimal control of di�erent underlying
equations. In particular, our results on the abstract level may also serve as kind of
a template for analogous concrete �rst- and second-order results on other problems,
e.g., with a di�erent underlying state equation.

3.1. First- and second-order optimality conditions

Throughout this chapter we will again rely on the rough regularity setting
described by Assumptions 1.5, 1.6 and 1.8 in Chapter 1. We only slightly enforce
Assumption 1.8 by restricting ourselves to purely time-dependent controls.
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Assumption 3.1. Let s, yd, y0, and � be chosen as in Assumption 1.8. In
addition, it holds Ls(�) = Ls(I;Rm), the control operator is given by

B: Ls(I;Rm)! Ls(I;W
�1;p
�D

); u 7!
mX
i=1

uibi;

where bi 2 W�1;p
�D

, i = 1; :::;m, are �xed actuator functions, and the set of admis-
sible controls is given by

Uad := fu 2 Ls(I;Rm): ua;i � ui � ub;i a.e. on I, i = 1; :::;mg
with control bounds ua; ub 2 L1(I;Rm), ua;i � ub;i a.e. on I for i = 1; :::;m.
Moreover, we �x the cost parameter � > 0.

Let us start by mentioning the main results of our analysis of (P
sp
k ) from

[169]. The proofs of the �rst- and second-order results are quite technical, rely on
auxiliary material from Section 3.2, and are therefore postponed to Section 3.3. As
in Section 1.5 our presentation follows the standard procedure of the analysis of
an optimal control problem. Of course, we have to prove well-posedness of (P

sp
k )

�rst.

Proposition 3.2. Under Assumptions 1.5, 1.6 and 3.1 the optimal control
problem (P

sp
k ) admits at least one globally optimal control.

Due to convexity and continuity of jk and boundedness of Uad, existence of an
optimal control for (P

sp
k ) is guaranteed by [216, Proposition 6.4]. Since there is no

di�erence to Proposition 1.18 we do not give more details.
Regarding �rst-order necessary optimality conditions for an L2(I;Rm)-local

solution to (P
sp
k ) we will obtain the following result that also characterizes the

di�erent (directional) sparsity patterns resulting from the di�erent functionals jk,
k = 1; :::; 7.

Theorem 3.3 ([169], Theorem 1.4). Let Assumptions 1.5, 1.6, 1.8 and 3.1
hold and let �u be a local solution to (P

sp
k ) w.r.t. the L

2(I;Rm)-topology. Then,
there exists a unique, so-called adjoint state �p 2W1;r(I; (Lp;DomLp(�r��r))),
r 2 (1;1), ful�lling (1.14) and a unique �� 2 @jk(�u) (see formulas (3.20)-
(3.26)), such that the variational inequalityZ

I

(B��p+ ��u+ ���)T (u� �u)dt � 0 8u 2 Uad(3.1)

is satis�ed. In particular, in the respective cases k = 1; :::; 7 the optimal control
�u exhibits the following sparsity patterns, that will be described on more detail
below:

�ui(t) = 0 if and only if

k =1: j(B��p)i(t)j � �,
k =2: k(B��p)ikL2(I) � �,
k =3: jB��p(t)j2 � �,

k =4: j(B��p)i(t)j � �
i with 
i =
k�uikL1(I)

j(k�uikL1(I))ij2 if �u 6= 0 and 
i = 1 otherwise,

k =5: j(B��p)i(t)j � �
(t) with 
(t) = j�u(t)j1
kju(�)j1kL2(I) if �u 6= 0 and 
(t) = 1 other-

wise,
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k =6: j(B��p)i(t)j � �
i with 
i = k�uikL1(I) if �u 6= 0 and 
i = 1 otherwise,
k =7: j(B��p)i(t)j � �
(t) with 
(t) = j�u(t)j1 if �u 6= 0 and 
(t) = 1 otherwise.

In essence, this result consists of two parts: the optimality condition (3.1)
characterizing an optimal control �u and conclusions on the structure of �u that can
be drawn from (3.1) and the structure of �� in the di�erent cases k = 1; :::; 7.

Let us note that the �rst part of Theorem 3.3 roughly resembles other �rst-
order results in this thesis; see, e.g., Theorem 1.19 for the control-constrained
problem (P) or Theorems 2.4 and 2.17 for (Pst) with state-constraints. In par-
ticular, the gradient of the �rst two summands of J , i.e. the smooth part of J ,
is given by B��p + ��u, as before. The only di�erence compared to Theorem 1.19
originates from the newly introduced, nonsmooth term �jk. Since the latter is not
di�erentiable, but convex, its subgradient ��� instead of a gradient appears in (3.1).

Next, some detailed comments on the sparsity patterns seem to be in order. In
an application one usually has to determine a suitable � experimentally in order
to ensure that the support of the corresponding solution of (P

sp
k ) has roughly the

desired size. Heuristically, choosing larger � decreases the support of the associated
�u and for su�ciently large � it may hold �u � 0. However, since all the quantities
�u; �y; �p; ��; 
 in the above theorem are coupled, the actual size of the support of �u,
i.e. the concrete amount of sparsity of �u, depending on the size of � is di�cult to
predict a priori. Nevertheless, on a qualitative instead of a quantitative level we
can describe the di�erent sparsity patterns as follows. Hereby, we refer to the bi
from Assumption 3.1 as \actuators" (=\device" in the numerical example provided
in the introduction) and say that an actuator bi is \active" (=\turned on" in the
introduction) at time t if ui(t) 6= 0.

j1 — “Sparsity”: This approach ensures sparsity of both the number of ac-
tuators bi and the time intervals at which they are active. However, there
is no further structure in this sparsity.

j2 — “Sparse time-global selection of actuators”: This approach selects a
subset of the actuators that are allowed to be active. All other actuators
are not used. The activity intervals of those actuators used are not sparse,
in general.

j3 — “Sparsity in time of any control action”: Any actuator, and then pos-
sibly all actuators, can become active only on a subset of I that is sparse.

j4 — “Sparse activity-time for each actuator”: An actuator i becomes ac-
tive at some time point t only if its contribution at time point t is above a
threshold depending on i. Therefore, the time of activity of each actuator
i is sparse with a sparsity pattern depending on i.

j5 — “Sparse selection of actuators at each time”: At each time point t,
an actuator i can be active only if its contribution is above a threshold
depending on t. Therefore, at each time point t a certain sparse subset of
actuators is selected to become active at t.

j6 and j7: These functionals result in similar sparsity patterns as j4 and j5,
but with di�erent thresholds that weight the components di�erently. More
precisely, in the cases k = 4 and k = 6 an actuator bi only becomes active
at time point t if and only if j(B��p)i(t)j > �
i holds. The thresholds 
i,
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however, are di�erent; it holds:


i =
k�uikL1(I)

j(k�uikL1(I))ij2 for k = 4; and 
i = k�uikL1(I) for k = 6:

Similarly, in the cases k = 5 and k = 7 an actuator bi becomes active at
time point t if and only if j(B��p)i(t)j > �
(t) with


(t) =
j�u(t)j1

kju(�)j1kL2(I) for k = 5; and 
(t) = j�u(t)j1 for k = 7:

Note that 
i in the case k = 4 may be interpreted as the fraction of the cost
term j(k�uikL1(I))ij2 that is due to the i-th actuator. Similarly, in the case
k = 5 we can imagine 
(t) as the fraction of the overal cost kju(�)j1kL2(I)
that is consumed at time point t. In this sense, the thresholds for k = 4; 5
are more intuitive than those for k = 6; 7.

Each of these possibilities may be of interest in certain applications. A nu-
merical illustration together with some rough ideas why the respective sparsity
patterns could be interesting in practice has been given in Figures 3.1 to 3.4 in
the introduction of this chapter; for the details of the numerical implementation
of this example we refer to Section 3.4.2. At this point, let us just emphasize that
functionals j6 and j7 have an advantage compared to j4 and j5 from the perspec-
tive of fast numerical implementation, while the latter are superior in terms of
interpretability. The respective details will be explained in Section 3.4.

We note that analogous sparsity patterns are also obtained for � = 0; cf. the
results of Section 3.2.2. Until this point of our analysis we could indeed allow
both for � > 0 or � = 0, to which we refer as the regular or the bang-bang case,
respectively.

For the formulation of second-order conditions, however, we have to restrict the
analysis to the regular case, as will be explained in Section 3.3.3. In the following
we slightly change the notation compared to the previous chapters. For the rest
of this chapter, we denote by f the smooth part of the functional of (P

sp
k ) (which

equals the reduced functional j from Chapters 1 and 2) and by Ĵ = f + �jk the
reduced functional of (P

sp
k ); a detailed de�nition will be given at the beginning of

Section 3.3 below.
The following theorem is our second main result of this chapter.

Theorem 3.4 ([169], Theorem 1.5). Let Assumptions 1.5, 1.6, 1.8 and 3.1

hold. If �u 2 Uad is a local solution to (P
sp
k ) such that the reduced functional Ĵ

ful�lls

Ĵ(u) � Ĵ(�u) +
c

2
ku� �uk2L2(I;Rm) 8u 2 Uad s.t. ku� �ukL2(I;Rm) < �(3.2)

with some c � 0 and � > 0, it holds:

f 00(�u)v2 + �j00k(�u; v
2) � ckvk2L2(I;Rm) 8v 2 C�u(3.3)

with

C�u =
�
v 2 L2(I;Rm): v � 0; if �u = ua; v � 0; if �u = ub;

f 0(�u)v + �j0k(�u; v) = 0g
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and f 0, f 00, j0k, and j
00
k given by (1.6), (1.7), (3.27)-(3.33), and (3.34)-(3.40), re-

spectively. Conversely, let �u 2 Uad satisfy the �rst-order necessary optimality
condition (3.1) and

f 00(�u)v2 + �j00k(�u; v
2) > 0 8v 2 C�u n f0g:(3.4)

Then, there are �; c > 0 such that the quadratic growth condition (3.2) holds
true. In particular, �u is a strict local solution to (P

sp
k ) w.r.t. the L2(I;Rm)-

topology.

On the surface, the overal structure of Theorem 3.4 is analogous to the corre-
sponding result from [35] for the problem (P) without sparsity-enforcing penaliza-
tion summarized in Theorem 1.22: nonnegativity of the second derivative of the
reduced functional on a certain cone of directions is necessary for local optimality
and positivity of this second derivative on the same cone is su�cient for strict local
optimality. A closer look, however, reveals that unlike in Theorem 1.22 actually
there is no second derivative of the reduced functional Ĵ in Theorem 3.4. In (3.3)

and (3.4), only f 00, i.e. the second derivative of the smooth part f of Ĵ , is a true
Fr�echet derivative, while for the nonsmooth part a surrogate for the second de-
rivative, denoted by j00k , is used. Similarly, also the de�nition of the critical cone
is slightly di�erent from Theorem 1.22: instead of using Fr�echet derivatives, i.e.
linear forms, we now need to refer to the directional derivative of jk at �u that is
not linear w.r.t. the direction, in general.

Next, let us mention some similarities of Theorem 3.4 with the second-order
results Theorems 1.22, 2.18 and 2.29 encountered in this thesis so far. First, we note
that necessary and su�cient optimality conditions in Theorem 3.4 have minimal
gap: SNCs and SSCs refer to the same cone of directions. This is analogous to
the result for the problem (P) without sparsity; cf. our comments in Section 1.5.3.
For the state-constrained problem (Pst) we had to leave the question whether our
SSCs are of no-gap-type as an open question; see the end of Section 2.2. Second,
as also observed in [54], the positivity condition (3.4) and the coercivity condition
(3.3) are equivalent for � > 0. This is analogous to the situation in Theorem 1.22
as well as to the the observation in Proposition 2.9 in the case of state-constraints.
For no-gap second-order conditions for bang-bang problems, i.e. the case � = 0,
with a semilinear elliptic state equation and L1-penalization we refer the reader to
the recent paper [286].

As in earlier second-order results in this thesis, we encounter the two-norm
discrepancy, but avoid inferring a two-norm gap in the SSCs; a brief explanation
hereof has been given in the introduction on behalf of Example 0.2 and in Sec-
tion 1.5.3. In the situation of Theorem 3.4 di�erentiability of f and coercivity
of f 00 + �j00k hold w.r.t. the Ls(I;Rm)- and the L2(I;Rm)-norm, respectively, i.e.
w.r.t. di�erent, nonequivalent norms. Nevertheless, a two-norm gap can be avoided
in Theorem 3.4 since the quadratic growth condition (3.2) resulting from (3.4)
holds on an L2(I;Rm)-neighbourhood of �u. This is consistent with correspond-
ing second-order conditions for directionally sparse optimal control of semilinear
parabolic PDEs; cf. [54, Theorems 4.3 and 4.8] and [61, Theorem 4.2].

After having stated and explained our main results, let us brie
y point out
the structure of the remaining part of this chapter containing their proofs. In
Section 3.2.1 we discuss optimality conditions for an abstract problem in the 
avour
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of [71] or Section 2.2 by abstracting the main ideas from [53, 54, 61]. A more
concrete instance hereof is dealt with in Section 3.2.2. There, we show that the
previous results apply to a certain class of optimization problems on Lebesgue
spaces with four di�erent sparsity-enforcing penalization terms, and analyze the
resulting sparsity patterns of their solutions. Here, we rely again on [53, 54, 61].
In Section 3.3 we �nally prove our main results by applying the framework of
Section 3.2.2 to (P

sp
k ). Details on the numerical experiments already presented in

the introduction of this chapter are provided in Section 3.4.

3.2. First- and second-order optimality conditions on an abstract level

This section closely follows [169, Section 2] and prepares the proofs of our
main theorems in Section 3.3. As a �rst step, we analyze in Section 3.2.1 �rst-
and second-order optimality conditions for a purely abstract optimization problem
whose functional is given by the sum of a smooth, but nonconvex, and a convex, but
nonsmooth term. More precisely, we extend the abstract framework for smooth
functionals from [71] in an appropriate way. As explained in Section 1.5, the
abstract framework from [71] resembles the typical structure of control problems
with smooth functional and pure control-constraints. Now, we extend this towards
the inclusion of nonsmooth, but convex summands that satisfy certain properties
that are typical for sparsity promoting cost terms as, e.g., j1-j7. The results are
obtained utilizing the techniques of [53, 54, 61], and may therefore also be viewed
as a summary of these earlier results on an abstract level. This strategy is analogous
to Chapter 2 where we extented the work [71] in such a way that we could, on the
concrete level, derive second-order su�cient conditions in the presence of state-
constraints. After proving second-order conditions in this abstract setting, we
make the problem under consideration a bit more concrete in Section 3.2.2 and deal
with optimization problems on Lebesgue spaces with directional sparsity-enforcing
penalization terms. Following [53, 54, 61] we verify that these problems �t into
the framework of Section 3.2.1 and analyze the corresponding sparsity patterns
of the solutions. Hereby, one has to note that the properties of the nonsmooth
cost term are independent of the state equation of the respective optimal control
problem. This allows to transfer results on sparsity-enforcing penalization terms
from the literature concerned with problems with a di�erent state equation.

3.2.1. Optimality conditions for an abstract nonsmooth and nonconvex
problem. Let us de�ne the following optimization problem:

min
u2K

Ĵ(u) := f(u) + g(u);(APsp)

where K is a closed, convex set in a Banach space U1 and f and g are real-
valued functionals such that f is smooth, but possibly nonconvex, and g is convex
and Lipschitz but not necessarily smooth. Since we have in mind the concrete
situation of Ĵ being the reduced functional of a sparse PDE-constrained optimal
control problem, we include a two-norm discrepancy; cf. Section 1.5.3: coercivity
of second derivatives can be expected only w.r.t. a weaker norm in a Hilbert space
U2 � U1. As in [71] and Section 2.2, we usually expect U2 to be an L2-space
in applications, while U1 is an Ls-space with s 2 (1;1]. The precise setting is
described in detail below. In particular, our assumptions on the smooth functional
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f are identical to those in [71] and Assumption 2.7.1, and cover a broad range of
functionals arising from PDE-constrained optimization as has been pointed out in
Section 1.5.3. Hence, we generalize the result from [71] for the smooth case Ĵ = f
to the inclusion of a nonsmooth summand g in the functional.

Our approach di�ers from the similar abstract approach in [286] by several
technical aspects. Our setting includes the presence of two nonequivalent norms,
but instead of working with a Banach space and its predual as in [286] we restrict
ourselves to formulating optimality conditions w.r.t. the Hilbert space U2. More-
over, unlike in [286] we do not include the convex constraint \u 2 K" as indicator
function in the nonsmooth part of the functional. We will show in Section 3.2.2
that our assumptions on g are typically ful�lled by penalizers promoting directional
sparsity, while the applications discussed in [286] are primarily concerned with dif-
ferent, nonuniformly convex integral functionals. The proofs and assumptions of
this section are inspired by [71] and well-known techniques employed in particular
in [53, 54, 61].

For convenience of the reader we state the full assumptions on (APsp) although
the �rst part is identical to Assumption 2.7.1.

Assumption 3.5. Let U2 be a Hilbert space and U1 a Banach space such
that U1 ,! U2. With k�k1, k�k2, and h�; �i2 we denote the corresponding norms
and the duality pairing on U�2 � U2. Let ; 6= K � U1 be convex and A � K be
open in U1. We �x �u 2 K.

1. The functional f: A ! R is assumed to be twice continuously Fr�echet
di�erentiable w.r.t. k�k1 and to ful�ll the following properties:
1a. The derivatives of f taken w.r.t. the space U1 extend to continuous

linear and bilinear forms on U2, i.e.

f 0(u) 2 L(U2;R) and f 00(u) 2 L(U2 
 U2;R); u 2 A:
1b. Let (uk)k � K, (vk)k � U2 be arbitrary sequences such that uk ! �u

strongly w.r.t. the U2-norm and vk * v weakly in U2 as k ! 1.
Then it holds:

1bi. f 0(�u)v = limk!1 f 0(uk)vk,
1bii. f 00(�u)v2 � lim infk!1 f 00(uk)v2k,
1biii. if v = 0, there is some c > 0 such that

c lim inf
k!1

kvkk22 � lim inf
k!1

f 00(uk)v2k:

2. The functional g: U2 ! R is assumed to be convex and Lipschitz contin-
uous. By g0 and @g we denote its directional derivatives and subgradient
and introduce the following sets

D�u := clU2 (fv 2 RK(�u): f
0(�u)v + g0(�u; v) = 0g) ;

C�u := TK(�u) \ fv 2 U2: f 0(�u)v + g0(�u; v) = 0g ;
where RK(�u) and TK(�u) denote the radial and tangent cone of K at �u;
see Chapter 0 for the de�nitions. Moreover, let g00(�u; �): U2 ! R denote a
continuous quadratic form such that:
2a. If v 2 D�u there is a sequence (vk)k � U2 such that f 0(�u)vk +

g0(�u; vk) = 0, vk ! v in U2, uk := �u+ tkvk 2 K, tk & 0, uk ! �u in
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U1, and

g00(�u; v2) � lim
k!1

2

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk)) :

2b. If (vk) � U2, (tk) � R>0 such that tk & 0, vk * v weakly in U2 with
v 2 C�u, g

0(�u; vk)! g0(�u; v), and �u+ tkvk 2 K, it holds

g00(�u; v2) � lim inf
k!1

2

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk)) :

We start with a discussion of �rst-order necessary optimality conditions.

Theorem 3.6 ([169], Theorem 2.2). Let Assumption 3.5.1a hold and sup-
pose that �u is a local minimizer of (APsp) w.r.t. the U2-topology. Then there
is �� 2 @g(�u) such that

hf 0(�u) + ��; u� �ui2 � 0; 8u 2 K:(3.5)

The proof works completely analogous to for instance the proof of [54, The-
orem 2.1]. For convenience we provide the main steps. Hereby, note that both
di�erentiability of f and convexity of g play a crucial role.

Proof. Given u 2 K, it holds Ĵ(�u + t(u � �u)) � Ĵ(�u) � 0 for all su�ciently
small t 2 (0; 1), due to local optimality of �u and convexity of K. From convexity
of g we infer g(u)�g(�u) � t�1[g(�u+ t(u� �u))�g(�u)] for all t 2 (0; 1) and together
with di�erentiability of f we therefore obtain

f 0(�u)(u� �u) + g(u)� g(�u) � lim inf
t&0

t�1[Ĵ(�u+ t(u� �u))� Ĵ(�u)] � 0 8u 2 K:
In particular, �u is a solution of the following optimization problem on U2:

min
u2K

f 0(�u)u+ g(u):

The map f 0(�u) + g: U2 ! R is convex and continuous and hence the claim follows
from standard results of convex analysis; see, e.g., [106, Proposition I.5.6]. □

Before addressing second-order optimality conditions, some comments on D�u

and C�u seem to be appropriate.

Lemma 3.7 ([169], Lemma 2.3). Let �u and �� satisfy (3.5). Then C�u is a
closed, convex cone in U2. Moreover, it holds D�u � C�u and g0(�u; v) = h��; vi2
for all v 2 C�u.

We can follow, e.g., [53, Proposition 3.4] to prove this.

Proof. Closedness and the cone-property of C�u as well as the inclusionD�u � C�u

are obvious consequences of the de�nition. Herein, note that it holds TK(�u) =
clU2(RK(�u)); cf. [36, Proposition 2.55]. Moreover, (3.5) implies

f 0(�u)v + g0(�u; v)
(?)

� hf 0(�u) + ��; vi2 � 0 8v 2 TK(�u)
and that equality in (?), and hence g0(�u; v) = h��; vi2, holds for v 2 C�u. For
v1; v2 2 C�u and t 2 (0; 1) we conclude, utilizing convexity of g(�u; �) and convexity
of TK(�u), that
0 � f 0(�u)(tv1 + (1� t)v2) + g0(�u; tv1 + (1� t)v2)
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� t[f 0(�u)v1 + g0(�u; v1)] + (1� t)[f 0(�u)v2 + g0(�u; v2)] � 0;

i.e. tv1 + (1� t)v2 2 C�u. This proves convexity of C�u. □

Due to the fact that g0(�u; �) is not a linear form on U2, we cannot apply the
concept of polyhedricity; see Chapter 0 for the de�nition. This is di�erent from
the smooth case in [71], where D�u = C�u holds for polyhedric K. In fact, we do
not know whether this equality still holds true in our abstract nonsmooth setting.
Since in the following su�cient conditions will be formulated on the cone C�u,
and necessary conditions on the possibly smaller cone D�u, we do not obtain no-
gap second-order conditions for the fully abstract setting. However, for sparse
optimization problems on Lebesgue spaces equality holds, cf. Section 3.2.2, because
Assumption 3.5.2a can be veri�ed with D�u replaced by C�u in these cases. The
following necessary second-order optimality condition is the abstract version of the
�rst part of Theorem 3.4.

Theorem 3.8 ([169], Theorem 2.4). Let Assumption 3.5.1 and 2a hold and
suppose that there are c � 0 and r > 0 such that

Ĵ(u) � Ĵ(�u) +
c

2
ku� �uk22 8u 2 K \ BU2r (�u):

Then, it holds

f 00(�u)v2 + g00(�u; v2) � ckvk22 8v 2 D�u:

Proof. Fix v 2 D�u. Due to Assumption 3.5.2a there is a sequence (vk)k � U2,
such that vk ! v strongly in U2, uk = �u+ tkvk 2 K, f 0(�u)v+ g0(�u; v) = 0, tk & 0,
and uk ! �u in U1. It holds

c

2
t2kkvkk22 =

c

2
kuk � �uk2 � Ĵ(uk)� Ĵ(�u) = f(uk)� f(�u) + g(uk)� g(�u)

= f 0(�u)(uk��u)+1

2
f 00(u�k)(uk��u)2+(g(uk)� g(�u)� g0(�u; uk � �u))+g0(�u; uk��u)

by assumption and Taylor expansion of f at �u with some u�k := (1� �k)�u+ �kuk,
�k 2 [0; 1]. Exploiting that f 0(�u)(uk��u)+g0(�u; uk��u) = tk[f

0(�u)vk+g0(�u; vk)] = 0
and dividing by t2k yields:

c

2
kvkk22 �

1

2
f 00(u�k)v

2
k +

1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk)) :(3.6)

Taking inferior limits on both sides of (3.6) and utilizing Assumption 3.5.1.bii and
2a concludes the proof. □

Obviously, the above proof also keeps valid with slightly modi�ed assumptions.
If Assumption 3.5.2a is weakened by replacing limits by inferior limits, we need
to strengthen Assumption 3.5.1 by demanding additional continuity of f 00 as map
U1 ! L(U2 
 U2;R).

Next, we state and prove su�cient optimality conditions, that correspond |on
the abstract level| to the second part of Theorem 3.4.

Theorem 3.9 ([169], Theorem 2.5). Let Assumption 3.5 hold and suppose
that �u 2 K and �� 2 @g(�u) satisfy the �rst-order necessary optimality condition
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in Theorem 3.6. If in addition

f 00(�u) + g00(�u; v2) > 0 8v 2 C�u n f0g
holds, there are c; r > 0 such that

Ĵ(u) � Ĵ(�u) +
c

2
ku� �uk22 8u 2 K \ BU2r (�u):

In particular, �u is a U2-local solution of (APsp).

Proof. We argue by contradiction, following, e.g., the well-known approach
in [71, 54, 61]. If the statement of the theorem is not true there is a sequence
(uk)k � K such that uk ! �u in U2 and

1

2k
kuk � �uk22 > Ĵ(uk)� Ĵ(�u) = f(uk)� f(�u) + g(uk)� g(�u):(3.7)

We set tk := kuk � �uk2, vk := t�1k (uk � �u) and assume w.l.o.g. that vk * v 2 U2
weakly. The contradiction is achieved in three steps I.-III.

Step I. First, we show that v 2 C�u. It clearly holds v 2 weak-clU2(RK(�u)).
Since RK(�u) is convex due to convexity of K it follows that the weak and strong
closure of RK(�u) coincide, cf. [36, Theorem 2.23ii], from which we deduce v 2
TK(�u). From the �rst-order necessary optimality condition hf 0(�u)+��; uk� �ui2 � 0
together with f 0(�u) + �� 2 U�2 and weak convergence of (vk)k we immediately
conclude hf 0(�u)+ ��; vi2 � 0. The subgradient property therefore implies f 0(�u)vk+
g0(�u; vk) � 0 and f 0(�u)v + g0(�u; v) � 0. Applying Taylor expansion to f at �u we
obtain from (3.7)

t2k
2k

> Ĵ(uk)� Ĵ(�u) � f 0(u�k)(uk � �u) + g(uk)� g(�u);

where u�k = (1� �k)�u+ �kuk, �k 2 [0; 1]. Dividing by tk > 0, this leads to

f 0(u�k)vk + g0(�u; vk) � f 0(u�k)vk + t�1k [g(uk)� g(�u)] � tk
2k

! 0 as k!1:

Taking the inferior limits on both sides hereof and using Assumption 3.5.1bi for
the �rst summand on the left-hand side we obtain

f 0(�u)v + g0(�u; v) = f 0(�u)v + lim inf
k!1

t�1k [g(�u+ tkvk)� g(�u)] � 0;

where we have used that g0(�u; �) is convex and continuous as in [61, Proof of The-
orem 4.2]. Hence, this shows v 2 C�u. Moreover, we have �f 0(�u)vk � g0(�u; vk) �
tk
2k � f 0(u�k)vk, and hence g0(�u; vk)! �f 0(�u)v = g0(�u; v) as k!1.

Step II. Next, we prove v = 0. Again, we apply Taylor expansion to f in (3.7)

and obtain with some ~u�k = (1� ~�k)�u+ ~�kuk, ~�k 2 [0; 1]:

t2k
2k

> f 0(�u)(uk � �u) +
1

2
f 00(~u�k)(uk � �u)2 + g0(�u; uk � �u)

+ (g(uk)� g(�u)� g0(�u; uk � �u))

� 1

2
f 00(~u�k)(uk � �u)2 + (g(uk)� g(�u)� g0(�u; uk � �u)) :
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Here, we have used the �rst-order necessary condition in the second inequality.
Dividing by t2k and taking the inferior limits on both sides yields:

0 � lim inf
k!1

�
1

2
f 00(~u�k)v

2
k +

1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk))

�

� lim inf
k!1

1

2
f 00(~u�k)v

2
k + lim inf

k!1
1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk))

� 1

2
f 00(�u)v2 +

1

2
g00(�u; v2);

where we have applied Assumptions 3.5.1bii and 2b in the last step. Due to v 2 C�u

it follows from the assumption of the theorem that v = 0.
Step III. In this �nal step we arrive at the desired contradiction. From As-

sumption 3.5.1biii and kvkk2 = 1 we infer from the above considerations:

0 < c � lim inf
k!1

f 00(~u�k)v
2
k � lim inf

k!1

�
1

2k
� 1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk))

�

� � lim sup
k!1

1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk)) :

Since the term inside the limes superior is always nonnegative due to convexity of
g we arrive at the desired contradiction 0 < c � 0. □

The crucial observation in the �nal step of the proof of Theorem 3.9 is the
inequality

lim inf
k!1

f 00(~u�k)v
2
k � � lim sup

k!1

1

t2k
(g(�u+ tkvk)� g(�u)� tkg0(�u; vk)) :

Assumption 3.5.1biii ensures positivity of the left-hand side, while convexity of
g implies nonpositivity of the right-hand side. Without Assumption 3.5.1biii, we
would only have nonnegativity of the left-hand side, which does not su�ce to
achieve a contradiction, unless the right-hand side could be shown to be negative.
However, we think that the latter can only hold for g being strongly convex at
�u w.r.t. the U2-norm. A strongly convex function g, however, is the sum of a
convex function and a U2-Tikhonov term u 7! 


2kuk22. Such a Tikhonov term is
smooth and would ensure Assumption 3.5.1biii when being shifted to f . This is
the reason why the application of Theorem 3.9 will be restricted to the regular case
in the subsequent sections. Note that this is the same as in the proofs of Theo-
rem 2.8 or [71, Theorem 2.3]: in both results, the �nal contradiction in the proof
by contradiction is achieved by utilizing Assumption 3.5.1biii. Consequently, not
only Theorem 3.4 but all second-order results dealt with in this thesis exclusively
pertain to the regular case since they are based either on [71] or extensions hereof.
As will be explained in Section 3.3.3, we expect that a di�erent type of argument
is needed for the the bang-bang case.

To conclude the section, we mention that similarly as in Remark 2.12 a variant
of Theorem 3.9 with norm gap can also be obtained. Let strong convergence uk ! �u
in Assumption 3.5.1b hold only w.r.t. another Banach space V such that V ,! U1,
e.g., V = U1. Under this weaker supposition, the quadratic growth condition in
Theorem 3.9 holds true in a V -neighbourhood of �u, and, consequently, �u is a
V -local solution to (APsp).
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3.2.2. Optimality conditions for directionally sparse optimization on Le-
besgue spaces. In this section we incorporate directionally sparse optimization
problems on Lebesgue spaces into the framework established before. We replace
(APsp) by the following slightly more concrete model problem that contains (P

sp
k )

as an instance: given a complete, �nite measure space (�; �) we consider

min
u2Uad

Ĵ(u) := h(u) +
�

2
kuk2L2(�)| {z }

=:f(u)

+�jX(u)| {z }
=:g(u)

; X 2 fA;B;C;Dg;(LPX)

with the following four typical (directional) sparsity-enforcing functionals jX de-
�ned on L2(�):

A. jA = k�kL1(�),
B. jB = k�kL1(�1;L2(�2)),
C. jC = k�kL2(�1;L1(�2)),
D. jD = 1

2k�k2L2(�1;L1(�2)),
where in the cases B-D, (�; �) is given by the product measure space of two com-
plete, �nite measure spaces (�1; �1) and (�2; �2). Moreover, let � � 0, � > 0 and
f: Ls(�) ! R ful�ll Assumption 3.5.1 with U1 = Ls(�), s > 2, U2 = L2(�),
and K = Uad := fu 2 Ls(�): ua � u � ub �-a.e. on �g with ua; ub 2 L1(�).
In the following we will analyze �rst-order optimality conditions for (LPX) to-
gether with the resulting sparsity patterns of the minimizers. Moreover, we will
verify that functionals jX , X 2 fA;B;C;Dg, �t into the framework of Section
3.2.1 which allows to formulate second-order necessary and su�cient conditions
for (LPX) provided that h ful�lls the appropriate assumptions.

Before we put the content of this section into the context of the literature,
a few comments motivating the formulation of (LPX) are in order. Note that
functionals j1-j7 from Section 3.1 are included in this setting by an appropriate
choice of �1 and �2; see Table 3.1 in Section 3.3.1 below. Let us explain this
brie
y on behalf of, e.g., the functional j2. First, one has to observe that the
space L2(I;Rm) can be written equivalently as L2(�) with � = �1 � �2, where
(�1; �1) is the m-element set equipped with the counting measure and (�2; �2) is
the interval I equipped with the Lebesgue measure. Next, a short computation
shows that j2 can be expressed as u 7! kukL1(�1;L2(�2)) in this setting. In essence,
one has to observe that measurable functions on �1 can be identi�ed with vectors
in Rm and that the L1(�1)-norm corresponds to the `1-norm on Rm under this
identi�cation; the variable x1 2 �1 corresponds to the index i enumerating the
actuators in Assumption 3.1 and the variable x2 2 �2 corresponds to the time t.
Thus, j2 is a particular instance of the abstract functional jB introduced above.

In Section 3.3, i.e. in the proof of our main results for (P
sp
k ), the smooth

functional h will be given by the �rst summand of the reduced functional of (P
sp
k ).

Nevertheless, the particular choice of h does not matter for the arguments of the
present section. This is the reason why we can easily adapt proofs from earlier
literature concerned with semilinear elliptic or parabolic problems to the present
setting. Again, let us brie
y illustrate the case k = 2. The formulas (3.10) and
(3.11) for the directional derivatives and the subgradient of jB that we will obtain
in this section can easily be translated back to j2 in formulas (3.28) and (3.21).
Similarly, by translating back Proposition 3.11.1 on �rst-order conditions for (PB)



102 3. Sparse purely time-dependent optimal control

to the setting of j2 we prove the case k = 2 in Theorem 3.3. Here, it is important
to observe that the choice h(u) = 1

2kS(u) � ydk2L2(Q) in (PB), where S denotes

the solution map of the quasilinear equation (Eq), is possible because it has been
already been shown in [35] that h exhibits the required properties; cf. our summary
of the results from [35] in Chapter 1. Let us also sketch how to obtain second-
order optimality conditions. To do so, we apply the abstract Theorems 3.8 and 3.9
with U2 = L2(I;Rm), U1 = Ls(I;Rm), K = Uad, f(u) = h(u) + �

2 kuk2L2(I;Rm) =
1
2kS(u)�ydk2L2(Q)+ �

2 kuk2L2(I;Rm) and g(u) = �j2(u). That under Assumptions 1.5,

1.6 and 3.1 the smooth part of the functional, f , satis�es the respective assumptions
has again already been proven in [35]; see Proposition 1.21. The assumptions on the
nonsmooth part, g, will be veri�ed in Proposition 3.11.2 of this section for g = �jB ,
and hence, by the above reasoning, for g = �j2. Let us in particular point out that
in all arguments the smooth and the nonsmooth part of the appearing functionals
can be handeled completely independent of each other as long as both parts exhibit
the required assumptions. This is the reason why earlier results obtained in the
context of optimal control of linear or semilinear equations can easily be transferred
to the present case.

At a �rst look, one may wonder whether argueing in such an abstract way is
worth the e�ort coming along with this. In fact, the bene�ts are the following:
�rst, instead of checking assumptions for all seven jk we only need to check four
generic cases in this section. For instance, once the abstract functional jB has
been analyzed, the results immediately apply to the two concrete functionals j2
and j3; in order to deal with j3 one has to interchange the choice of �1 and �2

compared to j2. Further, replacing the m-element set equipped with the counting
measure by 
 equipped with the Lebesgue measure one can easily address the case
of distributed directionally sparse optimal control as in, e.g., [54]. Second, argueing
in an abstract way reveals that the actual choice of the state equation (entering
only via the functional h) does not matter as long as the smooth part f of the
functional stil exhibits the typical properties. Therefore, the abstract setting is
also intended to facilitate the application towards problems with a di�erent state
equation.

Let us now put the content of this section into the context of the literature.
Except for case D, all these results have already been obtained in [261, 138, 54, 61]
dealing with linear and semilinear problems in a more concrete setting. There, �
is a domain in Rd or a space-time cylider, equipped with the Lebesgue measure,
and h is a smooth tracking-type functional originating from optimal control of a
linear or semilinear PDE. For functional j3 in the context of optimal control of an
ordinary di�erential equation we refer the reader to [251]. As pointed out above,
the proofs also apply to our abstract setting because they are actually independent
of the concrete structure of h. Nevertheless, for convenience of the reader we repeat
these results in our notation. We also mention that discrete analoga of functionals
A and B are well-known in the machine learning as \lasso" [264] and \group lasso"
[291].

To the best of our knowledge, our preprint [169] contains the �rst analysis of
case D in the context of PDE-constrained optimization. It can be motivated by the
successfull use of analogous functionals in the discrete setting, e.g., the so-called
\exclusive lasso"[39] in machine learning, or the sparse regression problem in [187].
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In particular, jD results in sparsity patterns similar to jC , but, as well-known in
the discrete case, jD unlike jC allows the application of proximal algorithms; cf.
Section 3.4.1. Therefore, we may view case D as an alternative to case C that also
deserves a theoretical analysis.

In the following we repeatedly make use of the fact that h0(�u) 2 L2(�)� can be
identi�ed with its Riesz-representative rh(u) 2 L2(�). Above, we introduced the
functionals jX , X 2 fA;B;C;Dg, to be de�ned on the Hilbert space U2 = L2(
).

By ~jX we refer to their respective, straightforward extensions to L1(�) in the case
A, to L1(�1; L

2(�2)) in the case B, or to L2(�1; L
1(�2)) in the cases C and D.

Functional A. Both, directional derivatives and subdi�erential of jA, are well-
known; see for instance [53]. Note that the proofs that originally pertain to
Lebesgue spaces on open sets of Rd apply to our slightly more general setting
without changes. Therefore, for some u; v 2 L1(�) the directional derivatives of
~jA: L

1(�)! R are given by

~j0A(u; v) =
Z
�+(u)

vd��
Z
��(u)

vd�+

Z
�0(u)

jvjd�;(3.8)

where we use the notation �0(u) := fx 2 �: u(x) = 0g and ��(u) := fx 2
�: u(x) ≷ 0g. The subdi�erential is given by

@~jA(u) = f� 2 L1(�): �(x) 2 sign(u(x)) �-a.e. on �g :(3.9)

Here, recall that L1(�)� = L1(�) for any �-�nite measure space (�; �); cf. [242,
Satz 6.16]. However, note that we will actually be concerned with jA = ~jA � �
where �: L2(�) ,! L1(�) denotes the canonical embedding. It is obvious, that
the formulas for the directional derivatives remain true for jA. Regarding the
subdi�erential, recall that by the chain rule, see, e.g., [106, Proposition 5.7], it

holds @jA(u) = @(~jA � �)(u) = ��@~jA(�u) = ��@~jA(u), which implies that the above
characterization of the subdi�erential is also valid for jA because �� acts as the
embedding L1(�) ,! L2(�).

Proposition 3.10 ([169], Proposition 2.6). Let �u 2 Uad be a local solution
to (LPA).

1. If � > 0, it holds �-a.e. on �:

�u(x) = 0 , jrh(�u)(x)j � �;

�� = Proj[�1;1]
����1rh(�u)� ;

�u = Proj[ua;ub]
����1 �rh(�u) + ���

��
:

If � = 0, it holds for �-a.e. on �:

jrh(�u)(x)j < � ) �u(x) = 0;

rh(�u)(x) > � ) �u(x) = ua(x);

rh(�u)(x) < �� ) �u(x) = ub(x):

2. g = �jA satis�es the properties of Assumption 3.5.2 with D�u replaced
by C�u and g00(�u; v2) � 0 for all v 2 L2(�).
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Proof. The �rst-order conditions and the analysis of the sparsity pattern can
be found in [53, Corollary 3.2]. Regarding the second statement, Assumption
3.5.2a is veri�ed in the proof of [53, Theorem 3.7], while Assumption 3.5.2b is an
immediate consequence of the convexity of jA. Note that the properties of the
nonsmooth cost term in [53] are actually independent of those of the smooth part
of the functional, which is the only part of the functional speci�cally related to the
state equation. Hence, the transfer of the techniques from the semilinear elliptic
setting in [53] does not cause problems. □

Functional B. This functional has been discussed in [54, 61] for the special
case that �1 is a domain in Rd and �2 is an interval, both equipped with the
Lebesgue measure. We refer the reader to [251] for the particular case j3 in the
context of an optimal control problem with ODE-constraints. The results and their
proofs also apply to our setting. Using the notation

�0
1(u) = fx1 2 �1: ku(x1; �)kL2(�2) = 0g

we obtain the directional derivatives and subgradients of ~jB: L
1(�1; L

2(�2))! R;
cf. [54, Proposition 2.8]:

~j0B(u; v) =
Z
�01(u)

kv(x1; �)kL2(�2)d�1(x1)

+

Z
�1n�01(u)

1

ku(x1; �)kL2(�2)

Z
�2

u(x1; x2)v(x1; x2)d�2(x2)d�1(x1);

(3.10)

@~jB(u) = f� 2 L1(�1; L
2(�2)):

�(x1; �)
8<
:2 BL

2(�2)
1 (0); if x1 2 �0

1(u);

= u(x1;�)
kukL1(�1;L2(�2))

; if x1 =2 �0
1(u);

�1-a.e. on �1g:

(3.11)

Here, note that L1(�1; L
2(�2))

� = L1(�1; L
2(�2)); cf. [104, Theorem 8.18.3]. As

for case A, we obtain the representation of the subdi�erential of jB on L2(�) by
an application of the chain rule.

Proposition 3.11 ([169], Proposition 2.7). Let �u 2 Uad be a local solution
to (LPB).

1. If � > 0 it holds �1-a.e. on �1 or �-a.e. on �, respectively:

ku(x1; �)kL2(�2) = 0 , krh(�u)(x1; �)kL2(�2) � �;

��(x1; x2) =

(
���1rh(�u)(x1; x2) if x1 2 �0

1(u);
u(x1;x2)

k�u(x1;�)kL2(�2)
if x1 2 �1 n �0

1(u);

�u = Proj[ua;ub]
����1 �rh(�u) + ���

��
:

If � = 0 it holds �1-a.e. on �1:

krh(�u)(x1; �)kL2(�2) < � ) u(x1; �) � 0;

�u(x1; �) � 0 ) krh(�u)(x1; �)kL2(�2) � �:
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2. g = �jB satis�es Assumption 3.5.2 with D�u replaced by C�u,

g00(�u; v2) := �

Z
�1n�01(�u)

1

k�u(x1; �)kL2(�2)
h
kv(x1; �)k2L2(�2)

�
�Z

�2

�u(x1; x2)v(x1; x2)

k�u(x1; �)kL2(�2)
d�2(x2)

�2
#
d�1(x1)

for �u 6= 0, and g00(0; v2) � 0 otherwise.

Proof. For the �rst part, see [54, Corollary 2.9]. For the second part, Case
III in the proof of [54, Theorem 3.3] and [61, Section 4] prove Assumption 3.5.2a
and 2b. As already observed in the case A, the speci�c semilinear parabolic state
equation under consideration in [54, 61] does not in
uence the properties of the
nonsmooth cost term. Therefore, the adaptation of the cited results is possible. □

Functional C. This functional has been addressed in [54] for the special case
that �1 is an interval and �2 is a domain in Rd, both equipped with the Lebesgue
measure. The proof, however, also applies to our setting and we obtain expressions
for the directional derivatives and the subdi�erential of ~jC: L

2(�1; L
1(�2))! R as

follows; cf. [54, Proposition 2.4]:

~j0C(u; v) =
1

kukL2(�1;L1(�2))

Z
�1

k�k0L1(�2)(u(x1; �); v(x1; �))d�1(x1):(3.12)

Regarding the subdi�erential, �rst note that L2(�1; L
1(�2))

� = L2w-?(�1; L
1(�2)),

where the latter denotes the space of weak-? measurable functions �1 ! L1(�2),
equipped with the L2(�1; L

1(�2))-norm; cf. [104, Theorem 8.20.3]. The sub-
di�erential is given by

(3.13) @~jC(u) =
�
� 2 L2w-?(�1; L

1(�2)):

�(x1; x2) 2 sign(u(x1; x2))
ku(x1; �)kL1(�2)
kukL2(�1;L1(�2))

�-a.e. on �

�
:

As for A and B, the formulas for the directional derivatives also stay true for jC
instead of ~jC . If we denote by � the embedding L2(�1 � �2) ,! L2(�1; L

1(�2)),

it follows by the chain rule that @jC(u) = ��@~jC(u), where �� is the embedding
L2w-?(�1; L

1(�2)) ,! L2(�1 � �2). Note that this embedding is a consequence of
the separability of L2(�2), Pettis' measurability theorem [104, Theorem 8.15.2],
and Fubini's theorem.

Proposition 3.12 ([169], Proposition 2.8). Let �u 2 Uad be a local solution
to (LPC) and de�ne

�
(x1) =
k�u(x1; �)kL1(�2)
k�ukL2(�1;L1(�2))

if �u 6= 0 and 
(x1) = 1 else.

1. If � > 0 it holds for �-a.a. x 2 �:

�u(x1; x2) = 0 , jrh(�u)(x1; x2)j � ��
(x1);

��(x1; x2) = Proj[��
(x1);�
(x1)]
����1rh(�u)(x1; x2)� ;

�u(x1; x2) = Proj[ua;ub]
����1 �rh(�u)(x1; x2) + ���(x1; x2)

��
:
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If � = 0 it holds for �-a.a. x 2 �:

jrh(�u)(x)j < �
(x1) ) �u(x) = 0;

rh(�u)(x) > �
(x1) ) �u(x) = ua(x);

rh(�u)(x) < ��
(x1) ) �u(x) = ub(x):

2. If in addition rh(�u) 2 L1(�) holds, then g = �jC ful�lls Assumption
2.7.2 with D�u replaced by C�u,

g00(�u; v2) =
�

k�ukL2(�1;L1(�2))

�Z
�1

k�k0L1(�2)(�u(x1; �); v(x1; �))2d�1(x1)� j0C(�u; v)2
�

for �u 6= 0, and g00(0; v2) � 0 otherwise.

Proof. As for the cases A and B, the concrete type of the state equation in [54]
does not in
uence the properties of the nonsmooth cost term. Therefore, we can
easily adapt the respective arguments: for the �rst part, see [54, Corollary 2.6].
For the second part, note that Assumption 3.5.2a is veri�ed in Case II of the proof
of [54, Theorem 3.3], while 2b is obtained as follows: for tk, vk as in Assumption
3.5.2b it follows from [54, Lemma 4.7] that

lim inf
k!1

2

t2k
[jC(�u+ tkvk)� jC(�u)� tkj0C(�u; vk)] � lim inf

k!1
j00C(�u; v

2
k):(3.14)

From [54, Lemma 4.6] we know that vk * v in L2(�), v 2 C�u, and j
0
C(�u; vk) !

j0C(�u; v) implies that the sequence of functions x1 7! k�k0L1(�2)(�u(x1; �); vk(x1; �))
converges weakly in L2(�1) to x1 7! k�k0L1(�2)(�u(x1; �); v(x1; �)). Consequently, by
weak lower semicontinuity of the L2(�1)-norm it holds

lim inf
k!1

Z

1

k�k0L1(�2)(�u(x1; �); vk(x1; �))2d�1(x1)

�
Z

1

k�k0L1(�2)(�u(x1; �); v(x1; �))2d�1(x1):

Due to j0C(�u; vk) ! j0C(�u; v) and the formula for j00C stated in the proposition,
we conclude lim infk!1 j00C(�u; v

2
k) � j00(�u; v2), and together with (3.14) the claim

follows. □

The additional assumption rh(�u) 2 L1(�) is only required to verify Assump-
tion 3.5.2a, i.e. for second-order necessary optimality conditions.

Functional D. Discrete versions of jD are well-known in the machine learning
community, cf., e.g., [187, 39]. We now provide an analysis of jD in the present
in�nite dimensional setting as done for jA-jC . First, a short computation shows
for any u; v 2 L2(�1; L

1(�2)) and t > 0:

(3.15)

~jD(u+tv)�~jD(u) = 1

2

Z
�1

�
ku(x1; �) + tv(x1; �)k2L1(�2) � ku(x1; �)k2L1(�2)

�
d�1(x1)

=

Z
�1

ku(x1; �)kL1(�2) �
�ku(x1; �) + tv(x1; �)kL1(�2) � ku(x1; �)kL1(�2)

�
d�1(x1)
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+
1

2

Z
�1

�ku(x1; �) + tv(x1; �)kL1(�2) � ku(x1; �)kL1(�2)
�2
d�1(x1):

Dividing by t and sending t& 0 yields:

~j0D(u; v) =
Z
�1

k�k0L1(�2)(u(x1; �); v(x1; �))ku(x1; �)kL1(�2)d�1(x1):(3.16)

Consequently, we obtain

(3.17) @~jD(u) =
�
� 2 L2w-?(�1; L

1(�2)):

�(x1; x2) 2 sign(u(x1; x2))ku(x1; �)kL1(�2) �-a.e. on �
	

and as for A-C these formulas remain true for jD instead of ~jD.

Proposition 3.13 ([169], Proposition 2.9). Let �u 2 Uad be a local solution
to (LPD) and de�ne

�
(x1) = k�u(x1; �)kL1(�2) if �u 6= 0 and 
(x1) = 1 else.

1. If � > 0 it holds for �-a.a. x 2 �:

�u(x1; x2) = 0 , jrh(�u)(x1; x2)j � ��
(x1);

��(x1; x2) = Proj[��
(x1);�
(x1)]
����1rh(�u)(x1; x2)� ;

�u(x1; x2) = Proj[ua;ub]
����1 �rh(�u)(x1; x2) + ���(x1; x2)

��
:

If � = 0 it holds for �-a.a. x 2 �:

jrh(�u)(x)j < �
(x1) ) �u(x) = 0;

rh(�u)(x) > �
(x1) ) �u(x) = ua(x);

rh(�u)(x) < ��
(x1) ) �u(x) = ub(x):

2. g = �jD ful�lls Assumption 3.5.2 with D�u replaced by C�u,

g00(�u; v2) = �

Z
�1

k�k0L1(�2)(�u(x1; �); v(x1; �))2d�1(x1)

for �u 6= 0, and g00(0; v2) � 0 otherwise.

Proof. Although functional jD has not been under consideration in [54] we will
make use of some techniques and intermediate results from [54] in the following. As
explained for the cases A-C, they can be applied in our setting because the analysis
of the nonsmooth cost terms in [54] is actually independent of the concrete choice
of the smooth functional. Part one is veri�ed along the lines of the proof of [54,
Corollary 2.6] utilizing the above formula (3.17) for the subgradient. Regarding
part two, we start with the veri�cation of Assumption 3.5.2a with D�u = C�u. Let
v 2 C�u and �u 6= 0. As in the case II of the proof of [54, Theorem 3.3] we de�ne
vk 2 L2(�) by vk(x) = 0 if u(x) 2 [ua(x); ua(x) + k�1) [ (�k�1; 0) [ (0; k�1) [
(ub(x) � k�1; ub(x)], and vk(x) = Proj[�k;k](v(x)), otherwise, and observe that

vk ! v in L2(�), and �u + tvk 2 Uad if 0 < t < k�1. Moreover, it follows directly
from the de�nition of vk that

(3.18) k�u(x1; �) + tvk(x1; �)kL1(�2) = k�u(x1; �)kL1(�2)
+ tk�k0L1(�2)(�u(x1; �); vk(x1; �))
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holds �1-a.e. on �1 for 0 < t < k�2. With similar arguments as in [54] it can be
shown that f 0(�u)vk + �j0D(�u; vk) = 0, i.e. vk 2 C�u. From (3.18) and (3.15) we
conclude for those 0 < t < k�2 that
2

t2
[jD(�u+ tvk)� jD(�u)� tj0D(�u; vk)] =

Z
�1

k�k0L1(�1)(�u(x1; �); vk(x1; �))2d�1(x1):

Finally, we take 0 < tk < k�2 and conclude due to vk ! v strongly in L2(�):

lim
k!1

2

t2k
[jD(�u+ tkvk)� jD(�u)� tkj0D(�u; vk)]

= lim
k!1

Z
�1

k�k0L1(�1)(�u(x1; �); vk(x1; �))2d�1(x1)

=

Z
�1

k�k0L1(�1)(�u(x1; �); v(x1; �))2d�1(x1) = j00D(�u; v
2):

Hence, we have veri�ed Assumption 3.5.2a. Next, let vk, tk be as in Assumption
3.5.2b. First, recall from the proof of [54, Lemma 4.7] that

k�u(x1; �) + tkvk(x1; �)kL1(�2) �
���k�u(x1; �)kL1(�2) + tkk�k0L1(�2)(�u(x1; �); vk(x1; �))

���
which implies

1

2

Z
�1

k�u(x1; �) + tkvk(x1; �)k2L1(�2)d�1(x1)

� 1

2

Z
�1

�
k�u(x1; �)kL1(�2) + tkk�k0L1(�2)(�u(x1; �); vk(x1; �))

�2
d�1(x1)

= tk

Z
�1

k�u(x1; �)kL1(�2)k�k0L1(�2)(�u(x1; �); vk(x1; �))d�1(x1)

+
t2k
2

Z
�1

k�k0L1(�2)(�u(x1; �); vk(x1; �))2d�1(x1)

+
1

2

Z
�1

k�u(x1; �)k2L1(�2)d�1(x1)

and hence

(3.19)
2

t2k
[jD(�u+ tkvk)� jD(�u)� tkj0D(�u; vk)]

�
Z
�1

k�k0L1(�2)(�u(x1; �); vk(x1; �))2d�1(x1):

Along the lines of the proof of [54, Lemma 4.6] we obtain that vk * v, v 2 C�u,
and j0D(�u; vk)! j0D(�u; v) imply

k�k0L1(�2)(�u(x1; �); vk(x1; �))* k�k0L1(�2)(�u(x1; �); v(x1; �)) weakly in L2(�1):

Thus, we conclude from (3.19):

lim inf
k!1

2

t2k
[jD(�u+ tkvk)� jD(�u)� tkj0D(�u; vk)]

�
Z
�1

k�k0L1(�2)(�u(x1; �); v(x1; �))2d�1(x1) = j00D(�u; v
2);
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(�1; �1) (�2; �2) x1 x2
k = 1 case A (I;dt) (f�gm; counting measure) t i
k = 2 case B (f�gm; counting measure) = (I;dt) i t
k = 3 case B (I;dt) (f�gm; counting measure) t i
k = 4 case C (f�gm; counting measure) (I;dt) i t
k = 5 case C (I;dt) (f�gm; counting measure) t i
k = 6 case D (f�gm; counting measure) (I;dt) i t
k = 7 case D (I;dt) (f�gm; counting measure) t i

Table 3.1. Reduction of functionals jk, k = 1; :::; 7, to the four
generic cases A-D from Section 3.2.2. By f�gm we denote the m-
element set.

i.e. we have veri�ed Assumption 3.5.2b. □

3.3. Proofs of the main results

Finally, we can prove Theorems 3.3 and 3.4 for (P
sp
k ) from Section 3.1. As in

[169, Section 3] they are obtained by application of the abstract results of Sections
3.2.1 and 3.2.2 to

f(u) :=
1

2
kS(u)� ydk2L2(Q)| {z }

=:h(u)

+
�

2
kuk2L2(I;Rm); g(u) := �jk(u);

Ĵ(u) = f(u) + g(u):

Here, recall that S denotes the control-to-state map introduced in Section 1.3.
Before proving Theorems 3.3 and 3.4 we summarize the required auxiliary results on
f and g. That f satis�es Assumption 3.5.1 with U1 = Ls(I;Rm), U2 = L2(I;Rm)
and K = Uad has been proven in [35] and summarized in Proposition 1.21. The
respective properties for g are discussed in the next subsection.

3.3.1. Auxiliary results for the nonsmooth part g of the functional Ĵ. Re-
garding the nonsmooth part g of the functional, it su�ces to observe that the seven
possibilities for jk given in the introduction can be reduced to the four generic cases
A-D from Section 3.2.2. The respective choices of �1;�2 and the identi�cation of
the variables x1; x2 (notation of Section 3.2.2) with the indices i and time t are
summarized in Table 3.1. The details have been explained on behalf of k = 2 at
the beginning of Section 3.2.2.

Therefore, we can translate the results for jX , X 2 fA;B;C;Dg from Sec-
tion 3.2.2 back to jk for k = 1; :::; 7. For reference, we state concrete formulas
for the directional derivatives, the subgradients, and the surrogates for the second
derivative.

Subgradients.

@j1(u) =
�
� 2 L2(I;Rm): �i(t) 2 sign(ui(t)) for a.a. t 2 I; i = 1; :::;m

	
;(3.20)

@j2(u) =

8<
:� 2 L2(I;Rm): �i

8<
:2 BL

2(I)
1 (0); if ui � 0;

= ui
j(kuikL2(I))ij1 ; else.

9=
; ;(3.21)
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@j3(u) =

(
� 2 L2(I;Rm): �(t)

(
2 B1(0); if u(t) = 0;

= u(t)
kjuj2kL1(I) ; else.

)
;(3.22)

@j4(u) =

�
� 2 L2(I;Rm): �i(t) 2 sign(ui(t))

kuikL1(I)
j(kuikL1(I))ij2

�
;(3.23)

@j5(u) =

�
� 2 L2(I;Rm): �i(t) 2 sign(ui(t))

ju(t)j1
kjuj1kL2(I)

�
;(3.24)

@j6(u) =
�
� 2 L2(I;Rm): �i(t) 2 sign(ui(t))kuikL1(I)

	
;(3.25)

@j7(u) =
�
� 2 L2(I;Rm): �i(t) 2 sign(ui(t))ju(t)j1

	
:(3.26)

Directional derivatives.

j01(u; v) =
mX
i=1

k�k0L1(I)(ui; vi);(3.27)

j02(u; v) =
X

fi: kuikL2(I)=0g
kvikL2(I) +

X
fi: kuikL2(I) 6=0g

Z
I

ui(t)

kuikL2(I) vi(t)dt;(3.28)

j03(u; v) =
Z
ft: u(t)=0g

jv(t)j2dt+
Z
ft: u(t)6=0g

u(t)T

ju(t)j2 v(t)dt;(3.29)

j04(u; v) =
mX
i=1

k�k0L1(I)(ui; vi)
kuikL1(I)

j(kuikL1(I))ij2 ;(3.30)

j05(u; v) =
Z
I

j�j01(u(t); v(t))
ju(t)j1

kjuj1kL2(I) dt;(3.31)

j06(u; v) =
mX
i=1

k�k0L1(I)(ui; vi)kuikL1(I);(3.32)

j07(u; v) =
Z
I

j�j01(u(t); v(t))ju(t)j1dt:(3.33)

Surrogates for the second derivatives. It holds

j001 (u; v
2) = 0;(3.34)

j002 (u; v
2) =

X
fi: ui 6=0g

1

kuikL2(I)

"
kvik2L2(I) �

�Z
I

ui(t)vi(t)

kuikL2(I) dt
�2
#
;(3.35)

j003 (u; v
2) =

Z
ft: u(t) 6=0g

1

ju(t)j2

"
jv(t)j22 �

�
u(t)T v(t)

ju(t)j2

�2
#
;(3.36)

j004 (u; v
2) =

1

j4(u)

 
mX
i=1

k�k0L1(I)(ui; vi)� j04(u; v)2
!
;(3.37)

j005 (u; v
2) =

1

j5(u)

�Z
I

j�j01(u(t); v(t))dt� j05(u; v)2
�
;(3.38)

j006 (u; v
2) =

mX
i=1

k�k0L1(I)(ui; vi)2;(3.39)
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j007 (u; v
2) =

Z
I

j�j01(u(t); v(t))2dt;(3.40)

for u 6= 0 and jk(0; v
2) = 0 for all v 2 L2(�) and k = 1; :::; 7.

3.3.2. Main results: Proofs of Theorems 3.3 and 3.4. We follow Section 3.3
of our preprint [169]. First, we prove Theorem 3.3 that states �rst-order optimality
conditions and the resulting sparsity patterns of the optimal control. As already
pointed out, we obtain this result by straightforward application of Propositions
3.10, 3.11, 3.12, and 3.13.

Proof of Theorem 3.3. Each (P
sp
k ), k 2 f1; :::; 7g, can be understood as re-

alization of (LPX) for some X 2 fA;B;C;Dg; cf. Section 3.3.1. First-order
optimality conditions and sparsity patterns for the latter have been obtained in
Section 3.2.2. The formula for the gradient of the smooth part of the functional
has been stated in (1.6) and Proposition 1.17. □

Next, we prove Theorem 3.4 on second-order optimality conditions. Again, the
proof is short because the main work has already been done in Theorems 3.8 and
3.9, and the veri�cation of the corresponding assumptions in Sections 1.5 and 3.2.2.

Proof of Theorem 3.4. Apply Theorems 3.8 and 3.9 to U1 = Ls(I;Rm), U2 =
L2(I;Rm), f , g, and h speci�ed above, and K = Uad. Assumption 3.5.1 and 2 with
D�u replaced by C�u have been veri�ed in Proposition 1.21 and Section 3.2.2. The
additional requirement rh(�u) = B��p 2 L1(I;Rm) in the case B follows from
Proposition 1.17. □

Here, L1-boundedness of Uad and � > 0 are crucial for the veri�cation of
Assumption 3.5.1 as has been pointed out below Proposition 1.21. When omitting
control-constraints, the results of this chapter need to be modi�ed in roughly the
same way as described in Section 6 of our paper [168] in the case of the state-
constrained problem (Pst). Thereby, Remark 2.12 needs to be replaced by the
observation formulated at the end of Section 3.2.1.

3.3.3. Limitations of the approach: The bang-bang case. We conclude the
theoretical part of this chapter by the outlook to the bang-bang case � = 0 from
[169, Section 3.4] that illustrates the limits of our second-order analysis. In fact,
the present approach cannot be extended to the bang-bang case. As we will see
in the following, the main obstruction is not due to sparsity but due to the highly
nonlinear structure of the underlying PDE-constraint (Eq).

Regarding necessary optimality conditions, a short computation shows that
C�u = f0g holds for �u satisfying the �rst-order optimality conditions of (P1). Hence,
the �rst part of the statement of Theorem 3.8 is still true, but trivial for � = 0. For
su�cient optimality conditions, Assumption 3.5.1biii is crucial. It is well-known
that this property for the smooth part of the functional can only be expected in the
case of � > 0, or a similar so-called Legendre-Clebsh condition; cf., e.g., formulas
(3.3) and (5.3) in [71]. As explained at the end of Section 3.2.1, it seems impossible
to avoid this assumption on f by exploiting properties of g. Recall from Section 1.3
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that in the case � = 0 the second derivative of the smooth part of the functional
reads as follows:

f 00(�u)v2 =
Z
Q

�
[1� �00(�y)r�p � �ry]z2v � 2�0(�y)zvr�p � �rzv

�
dxdt; v 2 L2(I;Rm);

with �y = S(�u), zv := S0(�u)v and �p as in Lemma 1.12 and Theorem 3.3. Assuming
appropriate higher regularity for �p this can be transformed into

f 00(�u)v2 =
Z
Q

(1� �0(�y)r � �r�p)z2vdxdt:

The approach in [54, 59] for the bang-bang case is based on a second-order
su�cient optimality condition of the type

f 00(�u)v2 + �jk(�u; v
2) � ckzvk2L2(Q)

with some c > 0 and all directions v from a certain cone. For such a condition
to hold in our setting, we expect that 1 � �0(�y)r � �r�p 2 L1(Q), and therefore
r � �r�p 2 L1(Q) has to hold, which is a very strong assumption. Moreover, to
follow the arguments of [54, 59] we would need certain continuity properties like

jf 00(u)v2 � f 00(�u)v2j ≲ ku� �ukLs(I;Rm)kzvk2L2(Q):
Consequently, r � �rp 2 L1(Q) would be required to depend continuously on u,
which is out of reach, even in a highly smooth setup and with controls measured
in L1(I;Rm) instead of Ls(I;Rm).

On the other hand, to apply the approach for L1-penalized semilinear elliptic
bang-bang problems from [286], we would have to guarantee that there is a bounded
bilinear extension f 00(�u): M(I;Rm) �M(I;Rm) ! R, to the space M(I;Rm) of
Rm-valued regular Borel measures on I. Moreover, appropriate higher regularity
for the adjoint state would be needed. This is, of course, more delicate for parabolic
problems than for elliptic ones and the additional problems when switching from
semilinear to quasilinear problems have been highlighted at the end of Section 2.3.3.
Moreover, it is not clear whether the results obtained in [286] for L1-penalization
also hold for directional sparsity functionals. Nevertheless, we point out that the
aforementioned obstructions do not originate from sparsity, but primarily from the
the structure of f 00 that is due to the underlying quasilinear parabolic equation.
Hence, we would be confronted with roughly the same problems when aiming
at a generalization of the second-order conditions from [35, 45] that have been
summarized in Theorem 1.22 towards the bang-bang case, even without additional
sparsity functional.

This shows that it is by no means obvious that techniques successfully applied
to semilinear parabolic or semilinear elliptic problems can be transferred to the
quasilinear parabolic case. We have to leave this as an interesting open problem.

3.4. Numerical illustration

This section closely follows [169, Section 4]. We provide the announced details
regarding the numerical example used for the illustration of di�erent sparsity pat-
terns in the introduction of this chapter. This will be done in Section 3.4.2. Before
doing so, we give a concise overview over the fast proximal method in Section 3.4.1,
that is used to solve (P

sp
k ) for k = 1-3; 6; 7. For k = 4; 5 we apply a subgradient
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method to (P
sp
k ). As expected, the fast proximal method turns out to be much

faster than subgradient descent in our numerical experiments. This illustrates that
j6 and j7 may be avantageous compared to j4 and j5 from a numerical perspective.

3.4.1. Proximity operators and fast proximal methods. Proximal algorithms,
see, e.g., [26, 225], have been applied successfully in di�erent areas, e.g., image
processing, and machine learning, but also in PDE-constrained optimization of
elliptic and parabolic PDEs with L1-penalization [249, 250]. For further references
we refer to the introductions of [249, 250].

This class of algorithms speci�cally applies to problems of type (LPX), cf.
Section 3.2.2, consisting of a nonconvex, but smooth, and a convex, but nonsmooth
summand in the functional. In the context of sparse optimal control we are aware
of possibly faster methods, e.g., certain Newton-type methods in function space
[261, 138, 228, 209], or algorithms on the discrete level, e.g., [48, Section 6] and
[138, Section 4]. However, proximal methods usually have the advantage that
they are relatively easy to implement and, compared to second-order methods, less
intrusive. Let us recall from, e.g., [249, Algorithm 2] the basic concept of the
so-called fast proximal method, formulated on behalf of (LPX). Given a �xed step
size L > 0, an initial guess u0, and t0 = 1, set v0 = u0 and for ` = 1; 2; 3; :::

u` = Prox �
L

�
v`�1 � 1

L
rf(v`�1)

�
;

t` =
1

2

�
1 +

q
1 + 4(t`�1)2

�
; v` = u` +

t`�1 � 1

t`
(u` � u`�1);

until the current iterate u` reaches a desired optimality criterion. Here, we denote
by

Prox� (v) := argminu2Uad

�
1

2
ku� vk2L2(�) + �jX(u)

�
(3.41)

the so-called proximity operator; see, e.g., [225] or [24, Chapter 24] for an overview.
It is a crucial condition for the applicability of proximal algorithms to (LPX), that
the nonsmooth part of the functional, jX , is \proximable", i.e. we have to know
how to compute (3.41) e�ciently. We brie
y address this issue using the notation
of Section 3.2.2. In case A, it is well-known, see, e.g., [249, Lemma 4.3] or [228,
Section 3.3.2], that jA is proximable with

[Prox� (v)](x) =

8><
>:
min(v(x)� �; ub(x)) if v(x) > �;

0 if jv(x)j � �;

max(v(x) + �; ua(x)) if v(x) < ��;
for a.a. x 2 �:

For case B and Uad = L2(�) it holds

[Prox� (v)](x1; x2) = max

�
0; 1� �

kv(x1; �)kL2(�2)

�
v(x1; x2); for a.a. x 2 �;

cf., e.g., [228, Section 3.3.2]. We refer the reader to [225, Section 6.5.4] or [187,
Theorem 3] for the same formula in the discrete case. For the proximity operator
in the case B with Uad := fu 2 L2(�): u � 0 a.e.g, we refer the reader to [228,
Section 3.3.2]. We are not aware of an explicit formula for the proximity operator in
the case of bilateral box-constraints. To the best of our knowledge, the functional
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of case C is not proximable. For case D and Uad = L2(�), however, a formula
for the proximity operator is well-known for the discrete analogue, see, e.g., [187,
Theorem 3], and the adaptation to our setting is not di�cult. We obtain:

[Prox� (v)](x1; x2) = sign(v(x1; x2))max(0; jv(x1; x2)j � �(x1)) for a.a. x 2 �;

where �(x1) 2 R has to satisfy for every x1 2 �1:

kmax(0; jv(x1; �)j � �(x1))kL1(�2) =
�(x1)

2�
:(3.42)

The e�cient computation of proximity operators for case C, as well as for cases B
and D in the presence of box-constraints, is certainly of interest, but beyond the
scope of this thesis. Also, we do not address the convergence analysis of the fast
proximal method in our precise setting.

3.4.2. Results. We consider the following speci�cation of (P
sp
k ): we choose


 = B1(0) � R2, T = 8, � � I2 2 R2�2, �D = @
, � = �
25 � 10�2, � = 10�2,

y0 � 0, �(s) := 1
2+

1
1+exp(�20s) , and yd(t; x) := � t

4 sin(
�
2 t) exp(�36jx�m(t)j22) with

m(t) = 2
3 (sin(

�
4 t); cos(

�
4 t))

T . The eight control actuators are given by hbi; 'i :=R


1B 1

5
(m(i�1))(x)'(x)dx, i = 1; :::; 8. Consequently, the state equation reads as

follows:

@ty(t; x)�r �
�
1

2
+

1

1 + exp(�20y(t; x))
�
ry(t; x) =

8X
i=1

ui(t) � 1B 1
5
(m(i�1))(x);

on [0; 8]�B1(0);

y(t; x) = 0; on [0; 8]� @B1(0);

y(0; x) � 0; on B1(0):

We omit control-constraints and set Uad = Ls(I;Rm).
Space is discretized with the help of FEniCS and mshr [9, 203] using piecewise

linear �nite elements with 3324 DoF and mesh size hmax � 5:0 � 10�2. For time
discretization we use the implicit Euler scheme with 160 equidistant time steps;
more precisely: state and adjoint state are discretized piecewise linear in space and
piecewise constant in time, while the controls |whose \spatial" components are
vectors in Rm in our setting and, consequently, do not need to be discretized| are
Rm-valued piecewise constant in time. Hence, the chosen discretization coincides
with the variational discretization concept [149]. Moreover, discretization and op-
timization commute (\optimize then discretize = discretize then optimize"); in
particular, the discretization of the subgradient of jk yields the subgradient of the
discretization of jk. Note that introducing constant (w.r.t. time) control bounds
ua; ub 2 Rm would not change this sitation. However, we point out that dealing
with distributed controls (instead of purely time-dependent ones) would be more
intricate because then the spatial component of the controls requires discretiza-
tion (or variational discretization) as well. For issues related to the handling of
the control-variable in the discretization of sparse optimal control problems and
corresponding error estimates we refer the reader to the overview in [228, Section
4.5.3], or to, e.g., [61, 62] for semilinear parabolic or [53, 52] for semilinear elliptic
problems.
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For k = 1-3; 6; 7, i.e. cases A, B, and D, we solve the discretized counterpart
of (P

sp
k ) by the fast proximal method described above with step size L = 10�2. In

the case D, equation (3.42) is solved by bisection. Regarding the computation of
the proximity operators note that commutativity of optimization and discretiza-
tion pointed out above applies to the minimization problem (3.41) de�ning the
proximity operator vice versa. Since for the case C we are not aware of a proximity
operator, we solve the optimal control problem for k = 4; 5 by a classical subgra-
dient descent method, cf. [208, Chapter II.2.1.2] for instance, with the step size in
iteration ` given by 10p

`
. The initial guess in all cases is u0i � 0:1 and the nonlinear

problem at each time step of the solution of the discretized state equation is solved
by the built-in nonlinear solver provided by FEniCS.

For the solutions of (P
sp
k ) we refer to Figures 3.1 to 3.4 at the beginning of the

chapter. The di�erent sparsity patterns described below Theorem 3.3 are clearly
visible. In Figure 3.5 we illustrate the convergence speed of the fast proximal and
the subgradient method. We display the L2(I;Rm)-norm of the residuals r` of the
control iterates u`, i.e.

r` := u` + ��1(p` + ��`);

where p` and �` denote the adjoint state and the subgradient of jk associated
with u`; cf. the optimality conditions in Theorem 3.3. As expected, the fast
proximal method converges much faster than the subgradient method. In our
opinion, this indicates that replacing functionals j4, j5 by j6, j7, respectively,
may be worth considering in applications in order to allow the application of fast
proximal methods.
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Figure 3.5. Convergence behaviour of a. the fast proximal
method and b. the subgradient method.



Part II

Algorithms and model order reduction





Chapter 4

Convergence of the SQP method

In our numerical examples for state-constrained or sparse optimal control in
the previous chapters we used standard computational schemes without addressing
their theoretical analysis. In the present chapter based on the authors paper [167]
(joint work with I. Neitzel) we now turn to such a type of question and analyze
the convergence of the so-called SQP method for the control-constrained problem
(P) from Chapter 1 in function space.

Sequential quadratic programming (SQP) methods form a prominent class of
state of the art algorithms for the e�cient numerical solution of nonlinear opti-
mal control problems. Instead of solving the nonlinear control problem directly,
a sequence of linear quadratic optimal control problems, i.e. problems with qua-
dratic objective functional and a linear PDE-constraint, is solved iteratively. The
idea behind this approach is that, in general, such linear quadratic problems are
easier to solve than the original problem with a nonlinear PDE-constraint, e.g.,
by application of the well-understood primal dual active set strategy [31, 145].
The analysis of SQP methods for nonlinear optimal control problems has been ad-
dressed in several publications; see, e.g., [268, 114] for semilinear parabolic equa-
tions, [143, 152, 285] for optimal control of the time-dependent Navier-Stokes
equations, [125, 124] for semilinear elliptic problems with mixed control-state-
constraints, [271, 281] for optimal control of Burgers equation, and [135] for op-
timal control of a phase �eld equation. For an overview concerning the origins
of SQP methods in the context of PDE-constrained optimization we also refer to
the introduction of [114]. As further second-order methods for the solution of
nonlinear optimal control problems we mention the Newton method, the semis-
mooth Newton method, and versions of the primal dual active set strategy; see,
e.g., [152, 153, 126, 148, 177, 275].

In this chapter we present our convergence analysis of the SQP method for op-
timal control problems governed by quasilinear parabolic PDEs in function space
from [167]. As the most closely contributions from the literature we mention
[276, 293, 294] and [108, Chapter 8], respectively. The papers [276, 293, 294]
deal with trust-region and trust-region SQP methods for optimal control of general
nonlinear PDE. The main di�erence to our work is that discretization is included
and convergence of adaptive multilevel algorithms is proven whereas we stick to the
undiscretized function space setting. In return, we are able to prove locally super-
linear convergence around local minima ful�lling certain second-order conditions
avoiding the two-norm gap, whereas the three aforementioned publications estab-
lish global convergence to a point ful�lling �rst-order optimality conditions but

119
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without explicit rate. In [108] optimal control of the so-called chemotaxis system,
a quasilinear system of parabolic equations, is considered. Besides the di�erence in
the structure of the underlying PDE-constraint another important di�erence to our
work is the following: convergence of the SQP method in [108] is proven assuming
a rather strong second-order su�cient condition. This corresponds to our interim
result in Section 4.4.1, whereas our main focus for the rest of this chapter is on
the interplay of weaker second-order conditions and the notation of locality in the
SQP method. We will discuss this in more detail below.

To conclude our literature overview, let us brie
y mention some topics related
to SQP methods that we do not address in this chapter and that have not been
cited so far. First, there are globalization strategies, e.g., by linesearch w.r.t.
certain value functionals [141, 142]. Also, there are slightly di�erent concepts for
the update of the adjoint state-variable; see, e.g., [142, 280, 245]. Moreover, the
SQP ansatz can be combined with so-called Augmented Lagrangian approaches;
cf., e.g., [175, 245] and the references therein. Finally, some results on mesh-
independence have been obtained in [279, 280]. For literature on the combination
of SQP methods with model order reduction we refer the reader to the introduction
of the next chapter. In Section 5.3 we will also provide numerical experiments
concerned with the combination of an SQP-type method and model order reduction
by proper orthogonal decomposition.

Let us now put the results presented in this chapter into context. Many of
our arguments in [167] are similar to those known from other, earlier publications.
However, we believe that our analysis is of interest for particularly two reasons.

First, we demonstrate that the results on optimal control of quasilinear para-
bolic PDEs obtained in [35] and summarized in Chapter 1 allow to derive conver-
gence of the SQP method. As we have seen in the previous chapters of this thesis,
dealing with quasilinear problems is quite di�erent from semilinear ones and some-
times much more involved. This makes the choice of the correct function spaces
in the analysis of the SQP method particularly complicated and we believe that it
is not clear a-priori that |in the end| the arguments from literature concerned
with, e.g., semilinear parabolic PDEs apply to the present model problem as well.

Second, most results addressing convergence of the SQP method have been
published before the introduction of a framework for second-order su�cient condi-
tions without two-norm gap in [71]. As pointed out in the introduction on behalf
of Example (0.2) or in Section 1.5.3, issues related with the so-called two-norm
discrepancy and two-norm gaps in second-order optimality conditions are typical
in PDE-constrained optimization. They accompanied us through all chapters of
this thesis so far. In Section 1.5.3 we have explained that it has been shown in
[35] that our model problem (P) �ts into the framework of [71] and hence |
unlike in earlier publications on second-order conditions for nonlinear parabolic
problems| second-order conditions without two-norm gap can be formulated; cf.
Theorem 1.22. In the convergence analysis of SQP methods, SSCs are known to
play a central role, too. Consequently, it is natural to revisit the convergence the-
ory of the SQP method in view of these new second-order result without two-norm
gap. Let us explain this in a bit more detail: unlike in �nite dimensions, it has
been observed that the set of admissible controls of the linear quadratic subprob-
lems of the SQP method needs to be restricted in the in�nite dimensional setting



4. Convergence of the SQP method 121

for proving convergence. Hereby, the restriction is related to the SSCs assumed
to hold at the (local) solution of (P) to which we want to prove convergence of
the SQP method. Roughly speaking, assuming stronger SSCs allows to weaken
the restriction of the subproblems and the other way round: strongest possible
second-order su�cient conditions, i.e.

j00(�u)v2 � ckvk2L2(�) 8v 2 L2(�)

with some c > 0, e.g., allow to avoid any restriction of the subproblems as we will
see in Section 4.4.1. However, such conditions can hardly be expected to hold,
in general, since there is a huge gap to the corresponding necessary optimality
condition that are guaranteed to hold at �u; cf. Theorem 1.22. Weaker SSCs (their
concrete type will be introduced lateron in Section 4.1.2), however, were known to
require restriction of the quadratic subproblems: either the controls have to be �xed
on certain parts of the active set of �u or the subproblems need to be restricted to
L1-balls around �u; see, e.g., [114, 268] for semilinear parabolic problems. Such a
restriction to L1-balls around �u has some similarity with the conclusion that could
be drawn at that time from these SSCs w.r.t. the original nonlinear problem, i.e.
L2-quadratic growth of the reduced functional L1-locally around �u; cf., e.g., [270,
Theorems 5.17 and 5.18]. Meanwhile, new results on SSCs following [71] allow to
avoid this two-norm gap for certain problem types, i.e. the same SSCs actually
imply quadratic growth of the reduced objective functional L2-locally (instead
of L1-locally) around the optimal control. As proven in [35] this is also the
case for the quasilinear parabolic problem (P); cf. Theorem 1.22. Therefore, one
may wonder, whether it is possible to replace L1-neighbourhoods from previous
convergence proofs for the SQP method by L2-neighbourhoods. The answer of
this question is not straightforward due to the fact that convergence of the SQP
method is established by showing convergence of a generalized Newton method for
a certain generalized (set-valued) equation. In order to obtain a di�erentiable map
in this generalized equation we still need to measure controls in a norm stronger
than the L2-norm; this is roughly the same issue that has been pointed out below
Lemma 1.12. In contrast, the regularity property (analogous to the invertibility of
the Hessian in the classical Newton method) relies on the L2-coercivity property
due to the second-order su�cient conditions. Thus, the presence of two norms in
the arguments cannot be avoided, in general, and we need, again, to adapt some
ideas from [71] to give an answer to this question in Section 4.4.3, which is our
main result.

The chapter is organized as follows and keeps the main structure of many con-
tributions concerning the analysis of SQP methods; cf. in particular [268, 285,
114, 167]. In Section 4.1 we introduce the precise problem setting under consid-
eration and outline the idea of the SQP method together with appropriate second-
order su�cient conditions. To prepare the analysis of the convergence properties
of the SQP method, we provide some auxiliary results that are speci�cally related
to our quasilinear parabolic model problem in Section 4.2. After that, we follow
the standard argument to prove convergence of the SQP method in Sections 4.3
and 4.4. We utilize the connection to the Josephy-Newton method for a general-
ized equation originating from the �rst-order optimality conditions. Convergence
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of this Newton method is proven in Section 4.3 and the interpretation of the it-
erates as the solutions of certain linear quadratic optimization problems is topic
of Section 4.4. Assuming strongest possible second-order su�cient conditions we
formulate our �rst main result in Section 4.4.1. The remaining two theoretical Sec-
tions 4.4.2 and 4.4.3 of this chapter are devoted to the analysis of the generalized
Newton and the SQP method under weaker second-order assumptions. In partic-
ular we are able to replace the L1-neighbourhoods in the results of [268, 285] by
L2-neighbourhoods in our �nal result in Section 4.4.3. For a detailed overview of
this part of the chapter we refer to the introduction of Section 4.4. Finally, we give
short numerical examples that illustrate our theoretical �ndings in Section 4.5.

4.1. Optimality conditions and the SQP method

In this section we brie
y state our assumptions and explain the basic idea of
the SQP method. We roughly follow Section 3 of our paper [167]. First, we for-
mulate the �rst-order necessary optimality conditions for (P) from Theorem 1.19
as a generalized equation and observe that application of a Newton-type method
to this generalized equation results in a system of equations that can be inter-
preted as �rst-order necessary optimality condition for a certain linear quadratic
optimization problem. To identify solutions of the equation with minimizers of the
linear quadratic problem we need to impose certain second-order conditions on the
original problem that ensure convexity of the linear quadratic problem.

Let us start with the precise problem formulation. The model problem for
this chapter is an instance of the control-constrained problem (P) as introduced
in Chapter 1. We will rely on Assumptions 1.5, 1.6 and 1.10, i.e. we utilize the
improved regularity assumptions on Bessel potential spaces from [35]. Moreover,
we have to restrict ourselves to the purely time-dependent control setting, i.e. we
need to enforce Assumption 1.10 in the following way.

Assumption 4.1. Let �, s, yd, y0, and � be chosen as in Assumption 1.10.
In addition, it holds Ls(�) = Ls(I;Rm), the control operator is given by

B: Ls(I;Rm)! Ls(I;H
��;p
�D

); u 7!
mX
i=1

uibi;

where bi 2 H��;p
�D

, i = 1; :::;m, are �xed actuator functions, and the set of admis-
sible controls is given by

Uad := fu 2 Ls(I;Rm): ua;i � ui � ub;i a.e. on I, i = 1; :::;mg;
with control bounds ua; ub 2 L1(I;Rm), ua;i � ub;i a.e. on I for i = 1; :::;m.

The reason for restricting ourselves to the Bessel potential space setting in
this chapter is that in Section 4.1.1 below we are going to formulate the adjoint

equation as an equation in the W
1;p0

�D
-W

1;p0

�D
-setting as in Proposition 1.15. The

latter result relies on improved regularity for the states from Theorem 1.14 proven
in [35] and hence requires the chosen Bessel potential space setting. A more de-
tailed explanation, in particular regarding the restriction to purely time-dependent
controls, will be provided lateron in Section 4.3.1 below Theorem 4.11.

From Section 1.3 recall the de�nition of A0 and A00. Moreover, let us introduce
some additional notation that will be useful in the context of the following analysis:
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For reasons of shortness we will sometimes write the state equation (Eq) as

e(y; u) := (@ty +A(y)y �Bu; tr0 y � y0) = 0(4.1)

with the twice Fr�echet di�erentiable map

e: W1;s(I; (W
�1;p
�D

;W
1;p
�D

))� Ls(�)! Ls(I;W
�1;p
�D

)� (W
�1;p
�D

;W
1;p
�D

)1=s0;s:

By LP(y; u; p) := J(y; u)� hp; e1(y; u)i we denote the Lagrangian of (P).

4.1.1. First-order optimality conditions as generalized equation. Utilizing

the the analysis of the adjoint equation in the W
�1;p0
�D

-W
1;p0

�D
-setting summarized in

Proposition 1.15, we can write the �rst-order necessary optimality conditions for
(P) from Theorem 1.19 equivalently as the following generalized equation:

0 2 F (y; u; p) +N(y; u; p)(GE)

with the maps

F (y; u; p) :=

0
BBBB@

@ty +A(y)y �Bu
tr0 y � y0

�@tp+A(y)�p+A0(y)�p� (y � yd)
trT p

�u+B�p

1
CCCCA

and N(y; u; p) :=
�f0g ; f0g ; f0g ; f0g ; NUad(u)�T ;

where NUad(u) denotes the normal cone of the closed convex set Uad at the point
u 2 Ls(�), i.e. NUad(u) =

�
v 2 Ls(�): hv;w � uiL2(�) � 0 for all w 2 Uad

	
. To

make the de�nition of F and N precise, F is understood as map F : Xs ! Zs with

Xs := W1;s(I; (W
�1;p
�D

;W
1;p
�D

))� Ls(�)�W1;s(I; (W
�1;p0
�D

;W
1;p0

�D
))

and

Zs := Ls(I;W
�1;p
�D

)� (W
�1;p
�D

;W
1;p
�D

)1=s0;s � Ls(I;W�1;p0
�D

)

� (W
�1;p0
�D

;W
1;p0

�D
)1=s0;s � Ls(�):

Accordingly, N is understood as set-valued map Xs ⇒ Zs. We equip Xs and Zs
with the canonical norms

k(y; u; p)kXs := kykW1;s(I;(W
�1;p
�D

;W
1;p
�D

)) + kukLs(�) + kpkW1;s(I;(W
�1;p0

�D
;W

1;p0

�D
))
;

k(f; y0; g; pT ; r)kZs := kfkLs(I;W�1;p
�D

) + ky0k(W�1;p
�D

;W
1;p
�D

)1=s0;s
+ kgk

Ls(I;W
�1;p0

�D
)

+ kpT k(W�1;p0

�D
;W

1;p0

�D
)1=s0;s

+ krkLs(�):

Having chosen these spaces, the following result holds that retrospectively also
motivates the chosen setting.

Lemma 4.2 ([167], Lemma 3.1). F: Xs ! Zs is continuously Fr�echet dif-
ferentiable, N: Xs ⇒ Zs has closed graph.

Proof. Di�erentiability has been used implicitely by [35, Lemma 4.5] where
the di�erentiability of the control to state map is shown by the implicit function
theorem. The closed graph property is standard. □
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For the reason why (GE) needs to be de�ned with Ls-integrable control func-
tions u instead of L2-integrable controls we refer the reader to our comment below
Lemma 1.12. As explained there, we require time integrability s� 2 as in Assump-
tion 1.8 in order to ensure di�erentiability of the superposition operators associated
with � and �0, and hence di�erentiability of F .

Sometimes we will need the following subspaces X1 and Z1 of Xs, Zs:

X1 := W1;s(I; (W
�1;p
�D

;W
1;p
�D

))� L1(�)�W1;s(I; (W
�1;p0
�D

;W
1;p0

�D
));

Z1 := Ls(I;W
�1;p
�D

)� (W
�1;p
�D

;W
1;p
�D

)1=s0;s � Ls(I;W�1;p0
�D

)

� (W
�1;p0
�D

;W
1;p0

�D
)1=s0;s � L1(�);

equipped with the canonical norms similarly as above. Note that changing from
Xs; Zs toX1, Z1 means nothing more than replacing the Ls(�)-factors by L1(�)-
factors, i.e. considering controls in the L1- instead of the Ls-norm. The same
result as before holds.

Lemma 4.3 ([167], Lemma 3.3). F : X1 ! Z1 is continuously Fr�echet
di�erentiable and N: X1 ⇒ Z1 has closed graph.

Due to Lemma 4.2 we can formulate the ansatz of the SQP method in its
abstract form as the Josephy-Newton method for generalized equations; see [180,
100, 10], or [156, chapter 2]. Given a current iterate (yk; uk; pk) 2 Xs, solve

0 2 F (yk; uk; pk) + F 0(yk; uk; pk)(y � yk; u� uk; p� pk) +N(y; u; p)(4.2)

to obtain the new iterate (yk+1; uk+1; pk+1) 2 Xs. Writing down the full system of
equations for (4.2) we �nd: (

@ty +A(yk)y +A0(yk)y = Bu+A0(yk)yk;
tr0 y = y0;

(4.3)

(
�@tp+A(yk)�p+A0(yk)�p = y � yd �A00(yk)[y � yk; �]�pk;

trT p = 0;
(4.4)

0 2 �u+B�p+NUad(u):(4.5)

Obviously, the current control-iterate uk has canceled out, which implies that the
next iterate (yk; uk; pk) depends on yk and pk but not on uk. This is due to
the structure of our model problem. Note that the �rst two equations (4.3) are
equivalent to the linearized state equation

0 = e(yk; uk) + ey(yk; uk)(y � yk) + eu(yk; uk)(u� uk):(4.6)

A standard computation shows that

1

2
L00P(yk; uk; pk)[(y � yk; u� uk)]2 + J 0(yk; uk)(y � yk; u� uk)(4.7)

is equal (up to addition of constants) to the expression

Jk(y; u) :=
1

2
ky � ydk2 + �

2
kuk2 � 1

2
hpk;A00(yk)[y � yk; y � yk]i(4.8)
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that �nally ful�lls: the system of equations (4.3)-(4.5) is the formal optimality
system of the optimal control problem

(QP)

(
min
y;u

Jk(y; u)

s.t. u 2 Uad and (4.3).

This is the classical formulation of the SQP method as sequence of quadratic prob-
lems to solve. Note that our computations were completely formal in the sense that
we do not know whether (QP) is convex or not. Hence, we cannot say whether
there is a unique minimizer of (QP) or whether the optimality system (4.3)-(4.5)
is a su�cient characterization for this minimizer. This issue will be addressed in
the following section utilizing the assumption of second-order su�cient conditions.

4.1.2. Second-order sufficient conditions and the SQP method. Depending
on second-order su�cient conditions (SSCs) for (P) we have to restrict the ad-
missible set for (QP) to ensure convexity. For technical reasons it is not possible
to work with SSCs on the critical cone as considered in Theorem 1.22; this will
be explained in more detail below. Instead, the set of directions w.r.t. which we
demand coercivity of j00(�u) needs to be enlarged. In fact, SSCs related to the so-
called strongly active sets turned out to be suitable assumptions for the analysis of
SQP methods; see, e.g., [268, 114, 285], which work with the same assumption as
we do. More precisely, we need to state the following assumptions on the locally
optimal control �u which we want to �nd with help of the SQP method.

Assumption 4.4. From now on let �u 2 Uad be a �xed L2-local minimizer for
(P), i.e. there is r > 0 such that

u 2 Uad and ku� �ukL2(I;Rm) < r =) j(u) � j(�u):

Let �y and �p be the state and adjoint state associated with �u; cf. Theorem 1.19.
For � 2 [0;1] we de�ne the �-active set of �u as

A�(�u) := fx 2 �: j��u+B��pj(x) > �g
and the corresponding subspace

C�(�u) := fv 2 L2(�): v = 0 on A�(�u)g
of directions vanishing on A�(�u). We assume that the following second-order suf-
�cient condition for (P) is satis�ed at �u: there is a �xed � 2 [0;1] (whether we
allow the case � = 0 or not will be stated in our further results) such that there
exists � > 0 such that8>>>>><

>>>>>:

L00P(�y; �u; �p)[(y; u)]2 � �kuk2L2(�)
for all (y; u) 2W1;2(I; (W

�1;p
�D

;W
1;p
�D

))� L2(�) s.t.

u 2 C�(�u);
ey(�y; �u)y + eu(�y; �u)u = 0:

(SSC-�)

Let us put this assumption into context. First, note that it holds

L00P(�y; �u; �p)[(y; u)]2 = j00(�u)u2
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for y and u as in (SSC-�), which follows from a short computation utilizing the
de�nition of the Lagrangian. Consequently, one may express (SSC-�) equivalently
as

j00(�u)v2 � �kvk2L2(�) 8v 2 C�(�u):
The formulation in terms of the second derivative of the Lagrangian, however, is
more convenient in the context of SQP methods. Due to C�u � C�(�u) for ev-
ery � � 0 it is obvious that condition (SSC-�) is stronger than the second-order
su�cient condition (1.20); cf. Theorem 1.22 and Proposition 2.9. Consequently,
(SSC-�) implies strict local optimality of �u together with the local quadratic growth
condition (1.19) on the reduced functional. Of course, the gap of (SSC-�) w.r.t. the
necessary second-order optimality condition from Theorem 1.22 is larger. In par-
ticular, local quadratic growth of the reduced functional does not allow to deduce
(SSC-�), in general.

That it is not possible to work directly with the SSCs from Theorem 1.22
established in [35], that are minimal in the sense that they have minimal gap to
the corresponding SNCs, has two technical, but important reasons: �rst, we require
the coercivity condition in (SSC-�) to hold on a vector space instead of just a cone
in the proof of the L2-stability result in Section 4.3.1. Second, in Section 4.4.2
we will make use of the fact that strongly active sets behave well under small
perturbations for � > 0.

Given � 2 [0;1] that will always become clear from the context we introduce
the modi�ed admissible set as

U�ad := Uad \ (�u+ C�(�u)) = fu 2 Uad: u = �u on A�(�u)g(4.9)

and de�ne the corresponding restricted quadratic problem as follows:

(QP-�)

(
min
y;u

Jk(y; u)

s.t. u 2 U�ad and (4.3).

Using the relation of Jk to the second derivative of the Lagrangian of (P) (see (4.7)
and (4.8)) it is clear that (QP-�) is a linear quadratic and, under Assumption 4.4,
strictly coercive control problem, at least for (yk; uk; pk) = (�y; �u; �p). Therefore, it
is strictly convex in this case which will be crucial for the convergence analysis of
the SQP method.

In general, increasing � means imposing a stronger SSC and results in larger
U�ad, i.e. in less restriction of Uad. As already explained in the introduction of
this chapter, strongest possible second-order conditions, i.e. coercivity of L00P on
the whole space L2(�) form a special case since they allow to avoid technical
restrictions of the SQP subproblems. We will refer to this by � =1. In that case
it holds C1(�u) = L2(�) and U1ad = Uad; see, e.g., [125, 124, 108, 135] for such
an assumption in the context of SQP methods. In Section 4.4.1 we state our main
theorem for this special case: local superlinear convergence of the SQP method
can be shown with the quadratic subproblems given by (QP).

To avoid confusion, let us emphasize that these strongest possible SSCs are
indeed quite strong but not unreasonably strong: if j00(�u) is assumed to be coercive
w.r.t. all directions, one may imagine j to behave locally at �u like a strictly convex
function. The following example shows that this does not imply that minimality of
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�u is trivial in the sense that �u is also a local minimizer of j without the constraint
u 2 Uad: 8><

>:
min

u2L2(0;1)
j(u) :=

Z 1

0

�
u(t) +

1

2
u(t)2 +

1

3
u(t)3

�
dt

s.t. 0 � u(t) � 1 a.e. on (0; 1):

(4.10)

Indeed, �u � 0 is global the solution of (4.10), but not even a local minimizer of j if
the pointwise inequality-constraint is omitted. Nevertheless, j is twice continuously
Fr�echet di�erentiable as map L1(0; 1) ! R and it holds j00(�u)v2 = kvk2L2(0;1) for
all v 2 L2(0; 1), i.e. strongest possible SSCs hold at �u.

During our analysis of the SQP method, a restriction of Uad in the formulation
of the quadratic subproblems cannot be avoided when relying on weaker SSCs, i.e.
such with � 2 [0;1). Nevertheless, it will be the topic of the remaining part of
Section 4.4 to keep this as small and as natural as possible.

4.2. Auxiliary results

Before going into the details of the convergence analysis for the SQP method
we collect some auxiliary results in the following section. We follow [167, Section
4].

More precisely, we analyze a property of B�, provide detailed estimates for the
A00-term under two di�erent assumptions, and prove stability properties for the
gradient and the Hessian of the reduced functional associated with the quadratic
problems (QP).

4.2.1. A property of the control operator. Recall from Assumption 1.8 the
de�nition of the control operator in the case of purely time-dependent controls.
Obviously, B is continuous from L2(�) to L2(I;W

�1;p
�D

) and therefore its adjoint

B� is de�ned on L2(I;W 1;p0

�D
) with values in L2(�). To derive the L1-stability result

from the L2-stability result in Section 4.3.1 we need to perform a bootstrapping
argument that requires us to know how B� behaves restricted to a space of more
regular functions.

To simplify notation, let B: Ls(I;R) ! Ls(I;H��;p) be de�ned by u 7! u � b1
with only a single �xed control function b1 2 H��;p

�D
. Of course, this yields

(B�v)(t) = hb1; v(t)iW�1;p
�D

;W
1;p0

�D

for every v 2 L2(I;W 1;p0

�D
):

It is obvious that B maps Lr(�) into Lr(I;H
��;p
�D

) for r 2 [2;1]. To obtain

B�v 2 Lq(�), we have to ensure that v 2 Lq(I;H
�;p0

�D
) holds. As earlier in this

thesis, the argument relies on Bochner-Sobolev embeddings. We therefore need
the following lemma on the appearing interpolation spaces.

Lemma 4.5 ([167], Lemma 4.2). It holds

(W
�1;q
�D

;W
1;q
�D

)�;1 ,! H
2��1;q
�D

for 0 < � < 1 and q 2 (1;1) as long as 2� � 1 =2 f1=q;�1=q0g.
Proof. This is a direct consequence of [123, Theorem 3.5]. □
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Now, set � := (�+1)=2. For r 2 (1;1) there are two possibilities: if � < 1�1=r,
then it holds for 0 � � < 1� 1=r � �:

W1;r(I; (W
�1;p0
�D

;W
1;p0

�D
)) ,! C0;�(I; (W

�1;p0
�D

;W
1;p0

�D
)�;1) ,! C0;�(I;H

�;p0

�D
);

i.e. B� is continuous from W1;r(I; (W
�1;p0
�D

;W
1;p0

�D
)) to L1(�). Otherwise, if � >

1� 1=r, then we obtain q � 1 such that 1=q > � � (1� 1=r) > 0 and

W1;r(I; (W
�1;p0
�D

;W
1;p0

�D
)) ,! Lq(I; (W

�1;p0
�D

;W
1;p0

�D
)�;1) ,! Lq(I;H

�;p0

�D
);

which means that B� maps W1;r(I; (W
�1;p0
�D

;W
1;p0

�D
)) to Lq(�). For the two embed-

dings we refer, e.g., to Proposition 1.1. We will come back to this in Section 4.3.1:
given an estimate on the control in Lr(�), we have estimates for linearized state

and adjoint state in W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) and W1;r(I; (W
�1;p0
�D

;W
1;p0

�D
)), respec-

tively. Application of B� either yields an estimate for the control in Lq with some
q > r or in L1 if r already was large enough.

4.2.2. Estimates for A00. Recall the de�nition of A00 from Section 1.3. In Sec-
tion 2.3.3 we have pointed out that this term originating from the second derivative
of the nonlinearity causes signi�cant additional di�culties compared to the semi-
linear case. Our analysis of the SQP method requires a careful estimation of this
term as well.

We start with the following result that we will require during the proof of the
L2- and L1-stability results in Section 4.3.1.

Lemma 4.6 ([167], Lemma 4.3). It holds

kA00(y)[v; �]�pk
Lr(I;W

�1;p0

�D
)
� C(�; �; y)kpk

L1(I;W
1;p0

�D
)
kykL1(I;W

1;p
�D

)kvkLr(I;W 1;p
�D

):

The constant C can be chosen uniformly with respect to y for y's coming from
a bounded subset of W1;s(I; (W

�1;p
�D

;W
1;p
�D

)).

Proof. Estimate hA00(y)[v; �]�p;wi = hA00(y)[v;w]; pi for an arbitrary testfunc-

tion w 2 Lr0(I;W 1;p
�D

) utilizing H�older's inequality. □

In Lemma 4.6 we bound the norm of A00(�y)[v; �]��p in the space Lr(I;W
�1;p0
�D

)

against the norm of v in the space W1;r(I; (W
1;p
�D
;W

1;p
�D

)) for each r 2 [2; s] by

estimating hA00(y)[v;w]; pi with arguments v 2 Lr(I;W 1;p
�D

) and w 2 Lr0(I;W 1;p
�D

).
This generality will be necessary in the bootstrapping argument in the proof of
the L1-stability, which was already mentioned in the previous Section 4.2.1. As
explained in the remark after Lemma 4.7, this requires bounds for y in L1(I;W 1;p

�D
)

and p in L1(I;W 1;p0).
In the next section, however, we will require an estimate of hA00(y)[v;w]; pi

directly (and not of A(y)00[v; �]�p) which allows us to use the arguments v and w

from the space W1;2(I; (W
�1;p
�D

;W
1;p
�D

)) in Lemma 4.7. In that case we can exploit
more regularity of v and w, which allows to relax the assumptions on y and p.

Lemma 4.7 ([167], Lemma 4.4). It holds

jhA00(y)[v;w]; pij � C(�; �; y)kykLs(I;W 1;p
�D

)kpkLs(I;W 1;p0

�D
)
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� kvkW1;2(I;(W
�1;p
�D

;W
1;p
�D

))kwkW1;2(I;(W
�1;p
�D

;W
1;p
�D

)):

The constant C can be chosen uniformly with respect to y for y's coming from
a bounded subset of W1;s(I; (W

�1;p
�D

;W
1;p
�D

)).

Proof. The proof works similar as for Lemma 4.6, but now we try to exploit
more regularity of v and w. Using the �rst embedding from Lemma 1.13 and the
de�nition of s in Assumption 4.1 we �nd

W1;2(I; (W
�1;p
�D

;W
1;p
�D

)) ,!c L
q(I; L1)

with some q 2 (2;1) satisfying 1
q +

1
s � 1

2 . Now, an application of H�older's

inequality (the temporal integrability exponents match due to the conditions on q
and s) yields the desired result. The uniform choice of the constant with respect
to y follows from the boundedness of � and its derivatives on bounded sets of R
and the compactness of the embedding W1;s(I; (W

�1;p
�D

;W
1;p
�D

)) ,!c C(Q). □

As in [167, Remarks 4.5 and 4.6] let us emphasize that the di�erence in the
regularities assumed for y and p in the two lemmas is essential. Lemma 4.6 will
be applied in Section 4.3.1 for y = �y and p = �p only, i.e. the required regularity is
guaranteed by Proposition 1.17 for �p and Section 1.3 for �y. In Section 4.2.3 we will
have to apply Lemma 4.7 for y = yk, p = pk with yk; pk being iterates of the SQP
method, i.e. yk and pk are solutions of the linearized state and adjoint equation.
Hence, the regularity requirements for Lemma 4.7 are met, but not immediately
those of Lemma 4.6. Moreover, we note that Lemma 4.6 cannot be improved. The
limiting factor is the summandZ

Q

�0(y)w�rprvdxdt;

which has to be estimated for v 2 W1;r(I; (W
�1;p
�D

;W
1;p
�D

)) and w 2 Lr
0

(I;W
1;p
�D

),

r 2 [2; s]. The function w has Lr
0

-integrability in time and L1-integrability in
space, whereas rv has Lr-integrability in time and Lp-integrability in space, which
is the best we can expect from the assumptions each. This implies that we require

p 2 L1(I;W 1;p0

�D
) in order to be able to estimate the above integral.

4.2.3. Derivatives associated to (QP). In this section we provide results on
the �rst and second derivatives of the reduced objective functionals associated to
the quadratic subproblems (QP). We will apply them in Section 4.4.3 brie
y before
obtaining our main result.

Recall from Section 4.1.1 the de�nition of the space Xs. By jk: L
2(�)! R we

denote the reduced functional associated with the linear quadratic optimal control
problem (QP) at (yk; uk; pk) 2 Xs. In particular, note that j00k is constant because
jk is a quadratic functional, which makes us write j00k instead of j00k(v) for some v
because v 7! j00k(v)[�; �] is constant and hence independent of such v.

Proposition 4.8 ([167], Proposition 4.7). Let Assumptions 1.5, 1.6, 4.1
and 4.4 be satis�ed. Then, it holds uniformly in u 2 L2(�)

j(j00k � j00(�u))u2j ≲
�
kyk � �ykW1;s(I;(W

�1;p
�D

;W
1;p
�D

))
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+ kpk � �pkW1;s(I;(W
�1;p0

�D
;W

1;p0

�D
))

�
kuk2L2

as yk ! �y, pk ! �p in the above norms.

Proof. Recall by (4.7) that j00k � u2 = L00P(yk; uk; pk)(y; u)2 with
ey(yk; uk)y + eu(yk; uk)u = 0(4.11)

holds. We expand this as

L00P(yk; uk; pk)(y; u)2 = L00P(�y; �u; �p)(~y; u)2| {z }
=:(I)

� �L00P(�y; �u; �p)(~y; u)2 � L00P(�y; �u; �p)(y; u)2�| {z }
=:(II)

� (L00P(�y; �u; �p)� L00P(yk; uk; pk)) (y; u)2| {z }
=:(III)

(4.12)

with ~y 2W 1;2(I;W
�1;p
�D

) \ L2(I;W 1;p
�D

) de�ned by

ey(�y; �u)~y + eu(�y; �u)u = 0:(4.13)

From the de�nition of the Lagrangian we know (I) = j00(�u)u2. Hence, it remains to
show that the contribution of (II) and (III) gets uniformly small as claimed above.
By de�nition we have

(II) = k~yk2 � kyk2| {z }
=:(IIa)

�h�p;A00(�y)~y2 �A00(�y)y2i| {z }
=:(IIb)

;

(III) = hpk;A00(yk)y2i � h�p;A00(�y)y2i
= hpk � �p;A00(yk)y2i| {z }

=:(IIIa)

+ h�p; (A00(yk)�A00(�y))y2i| {z }
=:(IIIb)

;

wherein the summands

(IIa) = h~y + y; ~y � yi and (IIb) = h�p;A00(�y)[~y + y; ~y � y]i(4.14)

can be estimated using the boundedness of the solution operator of the linearized
state equation [35, Proposition 4.4] (see Lemma 1.12) and applying Lemma 4.7 and
a similar argument as in the proof of Lemma 4.7; in particular recall our comments
at the end of Section 4.2.2. In the same way one can treat (III) as well. □

For the gradient of jk we obtain a similar result.

Proposition 4.9 ([167], Proposition 4.8). If (yk; uk; pk) ! (�y; �u; �p) in Xs,
vk ! �u in Ls, it holds

rjk(vk)! rj(�u) strongly in L2(�):

Proof. We split

rjk(vk)�rj(�u) = rjk(vk)�rj(vk)| {z }
=:(A)

+rj(vk)�rj(�u)| {z }
=:(B)
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and estimate both summands. For some v 2 Uad, e.g., v = vk, introducing the
following quantities will be helpful:

y(v) state associated to v w.r.t. (P),

p(v) adjoint state associated to v w.r.t. (P),

yk(v) state associated to v w.r.t. (QP);

pk(v) adjoint state associated to v w.r.t. (QP):

Regarding (B) we know from [35, Proposition 4.9] that

krj(vk)�rj(�u)kL2(�) � �kvk � �ukL2 + kB�(p(vk)� p(�u))kL2 ! 0

holds as vk ! �u in Ls because the adjoint states p(vk) converge to �p in L
s(I;W

1;p0

�D
).

To estimate (A), �rst note that the states yk(vk) of the quadratic problem converge

to �y = y(�u) in W1;2(I; (W
�1;p
�D

;W
1;p
�D

)); this is shown using the convergence of
the solution operators of the linearized state equation [35, Proposition 4.9] (see
Lemma 1.12). Utilizing similar techniques as before the desired result follows after
some straightforward computations. We omit the details. □

4.3. Generalized Newton method on U�ad

This section closely follows [167, Section 5]. Following the standard arguments,
see, e.g., [269, 268, 114, 11, 125, 124, 285, 143], we show that the Newton-
Josephy method applied to a modi�ed version of the generalized equation (GE),
see Section 4.1.1, converges.

The main challenge here is to verify that |under the correct choice of spaces
and with the help of suitable auxiliary results that have been achieved in the
previous section| arguments known from the literature for di�erent problem types
apply to the quasilinear case as well. That this is nontrivial becomes apparent
especially in the proof of Theorem 4.11: here, the available regularity results for the
linearized state equation and the adjoint equation �t together exactly as needed;
cf. also our remarks below this result. Proving convergence of the generalized
Newton method is a central step toward showing convergence of the SQP method.
The iterates of the generalized Newton method will be interpreted as iterates of
the SQP method in Section 4.4.

From formula (4.9) in Section 4.1.2 recall the de�nition of the modi�ed admis-
sible set U�ad for some � 2 [0;1]. We consider the generalized equation with this
modi�ed admissible set, i.e. we replace (GE) by

0 2 F (y; u; p) +N�(y; u; p);(GE-�)

where Uad is replaced by U�ad in the de�nition of the normal cone map N , i.e.

N�(y; u; p) :=
�f0g ; f0g ; f0g ; f0g ; NU�

ad
(u)
�T
;

where NU�
ad
(u) denotes the normal cone of U�ad at u. The map F: Xs ! Zs as well

as the spaces Xs; Zs, see Section 4.1.1 for their de�nitions, do not change.
To prove convergence of the generalized Newton method, strong regularity in

the sense of Robinson [234] (see also [156, De�nition 2.5]) has to be shown at an
optimal point (�y; �u; �p) 2 Xs: there exist �; � > 0 such that for all perturbations d 2
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Zs, kdkZs < � there exists a unique solution (y; u; p) 2 Xs, k(y; u; p)�(�y; �u; �p)kXs
<

� to the generalized equation

d 2 F (�y; �u; �p) + F 0(�y; �u; �p)(y � �y; u� �u; p� �p) +N�(y; u; p)(GE-�-D)

with Lipschitz continuous solution map d 7! (y; u; p).
Translating back this generalized equation for (y; u; p) into an optimal control

problem yields

(QP-�-D)

8>>>>>>>><
>>>>>>>>:

min
y;u

1

2
ky � ydk2 + �

2
kuk2 � 1

2
h�p;A00(�y)[y � �y]2i

+ hdT ; trT yi � hdu; ui+ hdp; yi
s.t. u 2 U�ad
and

�
dy
d0

�
= ey(�y; �u)(y � �y) + eu(�y; �u)(u� �u);

where d = (dy; d0; dp; dT ; du) 2 Zs is a given perturbation with components coming
from the corresponding spaces. Note that (GE-�-D) is indeed the �rst-order nec-
essary and (due to convexity) su�cient optimality condition for (QP-�-D) because
(QP-�-D) is convex since only linear perturbation terms have been added to the
convex objective function from (QP-�). The perturbation in the corresponding
a�ne linear state equation is only a constant and does not destroy convexity as
well.

4.3.1. Stability of the quadratic problems (QP-�). We �x d0 = 0 and dT =
0, i.e. we assume that initial and �nal conditions are met exactly during the
application of the SQP method, which is reasonable from the numerical point of
view.

Proposition 4.10 ([167], Proposition 5.1). Let Assumptions 1.5, 1.6, 4.1
and 4.4 with some � 2 [0;1] hold. Denote with (yi; ui; pi) 2 Xs, i = 1; 2, the
solution of (QP-�-D) for arbitrary perturbation vectors di 2 Zs. Then it holds

ku2 � u1k2L2 ≲ kd2u � d1uk2L2 + kd2y � d1yk2L2(I;W�1;p) + kd2p � d1pk2L2(I;W�1;p0 )
:

The hidden constant depends on the data of (P) and (�y; �u; �p), but not on di.

To enhance clarity, we state the KKT system of the perturbed problems, that
can easily be derived from (GE-�-D) using (4.2) and (4.3)-(4.5), before starting
the proof:

(4.15)

8>>>>>>>>><
>>>>>>>>>:

@ty
i +A(�y)yi +A0(�y)yi = Bui +A0(�y)�y + diy;

yi(0) = y0;

�@tpi +A(�y)�pi +A0(�y)�pi = yi � yd �A00(�y)[yi � �y; �]��p+ dip;

pi(T ) = 0;

diu 2 �ui +B�pi +NU�
ad
(ui):
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In the following we use the short notation �y := y2 � y1, �u := u2 � u1,
�p := p2 � p1 (and similarly for dy; du; dp). From (4.15) we derive:

@t�y +A(�y)�y +A0(�y)�y = B�u +�dy ;(4.16)

�@t�p +A(�y)��p +A0(�y)��p = �y �A00(�y)[�y; �]��p+�dp ;(4.17)

with vanishing initial and �nal condition: �y(0) = 0 and �p(T ) = 0.

Proof. The proof is similar to the one in [114] and relies on the linear quadratic
structure of (QP-�-D). Therefore, we omit the details. Let us just note that
the regularity results Lemma 1.12 and Proposition 1.15 for the linearized state
equation and the adjoint equation proven in [35] have to be applied and that
terms containing A00 are estimated with the help of Lemma 4.6. □

This shows L2-stability of the quadratic problems (QP-�) with respect to per-
turbations measured in corresponding norms. Utilizing a standard bootstrapping
argument as, e.g., in [269] we can show the corresponding Ls- and L1-stability
result.

Theorem 4.11 ([167], Theorem 5.2). Let Assumptions 1.5, 1.6, 4.1 and 4.4
with some � 2 [0;1] hold. Then, for the (yi; ui; pi), i = 1; 2, from the previous
proposition we have

ku2 � u1kLs ≲ kd2u � d1ukLs + kd2y � d1ykLs(I;W�1;p) + kd2p � d1pkLs(I;W�1;p0 );

ku2 � u1kL1 ≲ kd2u � d1ukL1 + kd2y � d1ykLs(I;W�1;p) + kd2p � d1pkLs(I;W�1;p0 );

and

k(y1; u1; p1)� (y2; u2; p2)kXs ≲ kd1 � d2kZs ;
k(y1; u1; p1)� (y2; u2; p2)kX1 ≲ kd1 � d2kZ1 :

In particular, the generalized equation (GE-�) is strongly regular in the sense
of Robinson at its solution (�y; �u; �p) with respect to the spaces Xs; Zs and
X1; Z1.

Proof. Again, the proof follows the techniques from [114, 269]. From the
projection formula ui = ProjU�

ad

�� 1
� (B

�pi � diu)
�
, i = 1; 2, we infer that

j�uj � 1

�
(jB��pj+ j�du j)

holds pointwise on �. Thus, we can bound �u in the Lq(�)-norm if we can bound
B��p and �du in the L

q(�)-norm. We apply a bootstrapping argument that relies
on the property of B� from Section 4.2.1. Assume that we already know

k�ukLr ≲ k�dukLr + k�dykLr(I;W�1;p) + k�dpkLr(I;W�1;p0 )

for some r 2 [2; s). Using the regularity theory of the linearized state equation and
the adjoint equation for (4.16) and (4.17) we conclude

k�pkLr(I;W�1;p0

�D
)
≲ k�dukLr + k�dykLr(I;W�1;p) + k�dpkLr(I;W�1;p0 );

hereby, we make use of Lemma 1.12 and Proposition 1.15 that have been established
in [35]. At this point we need the full strength of Lemma 4.6 in order to estimate
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the A00-terms for di�erent r 2 [2; s]. Note that �p 2 L1(I;W 1;p0) holds due to
Proposition 1.16. Our discussion of B� from Section 4.2.1 shows that either

(� + 1)=2 < 1� 1=r; which implies kB��pkL1 ≲ k�pkLr(I;W�1;p0 )

or

(� + 1)=2 > 1� 1=r; which implies kB��pkLq ≲ k�pkLr(I;W�1;p0 )

with some q ful�lling 1=q > 1=r + (� � 1)=2 holds. In the �rst case it follows

k�ukL1 ≲ k�dukL1 + k�dykLs(I;W�1;p
�D

) + k�dpkLs(I;W�1;p0

�D
)

and we are done. In the second case we have

k�ukLq ≲ k�dukLq + k�dykLq(I;W�1;p) + k�dpkLq(I;W�1;p0 )

and we repeat the procedure with r = q as long as the �rst case holds, which is
clearly the case due to Assumption 4.1 if r = s is reached. Note that (� � 1)=2 < 0
is �xed and that we can avoid q being equal to the exceptional cases of Lemma 4.5
due to the strict inequality that allows small perturbations. □

Instead of using Proposition 1.16, one could also apply Proposition 1.17 in
order to obtain su�cient regularity for �p in the above proof. This does not make

any di�erence because both results ensure that �p 2 C(I;W
1;p
�D

) ,! L1(I;W 1;p0

�D
),

which su�ces to apply Lemma 4.6.
Nevertheless, we have to point out that Assumption 4.1 cannot be relaxed in

a straightforward way. We rely both on the purely time-dependent control setting
and the Bessel potential space setting in the above proof of Theorem 4.11. As al-
ready explained in Section 4.1, the formulation of the adjoint equation of (P) as an

equation in the W
�1;p0
�D

-W
1;p0

�D
-setting in Section 4.1.1 requires the Bessel potential

space setting. In the above proof we utilize the speci�c mapping properties of B�

from Section 4.2.1 in combination with the regularity results for the linearized ad-

joint equation in theW
�1;p0
�D

-W
1;p0

�D
-setting and Lemma 4.6 on the A00-term. In fact,

this is the part of our analysis where the di�culties speci�cally associated to the
underlying quasilinear parabolic equation become most visible. A generalization
towards the full setting of Assumption 1.8 or Assumption 1.10 is not immediately
clear. The main di�culty would lie in keeping the arguments for Proposition 4.10
and Theorem 4.11 working. Let us, e.g., consider the case of distributed control,

i.e. � = Q and B = id: Ls(Q) ! Ls(I;H
��;p
�D

) in Assumption 1.10. In that case,
B� is also given by identity map and in order to to obtain L1(Q)-estimates for
�u as in the proof of Theorem 4.11 we would need to consider the adjoint states
in a space that embeds into L1(Q). The latter certainly excludes dealing with

the adjoint states in the W
�1;p0
�D

-W
1;p0

�D
-setting applied so far. However, it is not

possible just to choose a more regular function space for the adjoint states and
to consider the adjoint equation in the setting of, e.g., Proposition 1.17 instead
without additional modi�cations of the overal setting. This is due to the fact that
in that case also an improved version of Lemma 4.6 and, consequently, improved
regularity for the states would be needed. For the same reason it is also unclear
whether dealing with the adjoint equation in the setting from Proposition 1.17
instead of Proposition 1.15 from the beginning is a reasonable alternative.
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4.3.2. Convergence of the generalized Newton method. Invoking a general
result on the convergence of generalized Newton methods, see, e.g., [156, Theorem
2.19], our previous results allow to derive the following theorem.

Theorem 4.12 ([167], Theorem 5.4). Let Assumptions 1.5, 1.6, 4.1 and 4.4
with some � 2 [0;1] hold.

1. Then there is a radius rNewton > 0 such that for any triple (y0; u0; p0) 2
Xs ful�lling

(y0; u0; p0) 2 BXs
rNewton((�y; �u; �p))

the sequence of iterates generated by the Newton-Josephy method for
equation (GE-�) with (y0; u0; p0) as start is well-de�ned, stays in the
ball BXs

rNewton((�y; �u; �p)), and converges q-superlinearly to (�y; �u; �p) in Xs.
2. The same result as in part 1 holds with X1 instead of Xs.

Proof. The proof is standard; see, e.g., [268, 114, 285, 143, 124, 125]. □

4.4. Convergence of the SQP method

So far, the well-de�nedness of the iterates in Theorem 4.12 is only ensured by
some generalized implicit function theorem and the strong regularity of (GE-�) at
(�y; �u; �p). Convexity of the quadratic subproblems (QP-�) is up to now only known
in the case (yk; uk; pk) = (�y; �u; �p), i.e. the relation of possible minimizers of (QP-�)
and solutions of (GE-�) is unclear at the moment.

In this section we closely follow [167, Section 6], provide an extended analysis
of the generalized Newton method for (GE), and interprete the Newton iterates as
solutions of some linear quadratic optimal control problems. Roughly speaking, we
can prove convergence of the SQP method with the subproblems being restricted

either to U�ad (see Section 4.1.2 for the de�nition) or to Uad \ BL2� (�u) with some
� > 0. Hereby, note that for theoretical reasons it is not possible to avoid such
technical restrictions completely, even in �nite dimensions; cf. the example given
in [114, Section 6]. In the in�nite dimensional case an additional di�culty arises as
pointed out in [268, �nal Remark]: unlike in �nite dimensions we cannot assume
that the possibly in�nite set of active constraints is correctly identi�ed after the
�rst iteration and therefore technical restrictions encoding some a-priori knowledge
on the correct active set have to be imposed.

In order to make the 
ow of the argumentation more clear, we give a short
summary of this section.

In a �rst step (Section 4.4.1) we consider the quadratic problems restricted to
U�ad, i.e. the set of those controls from Uad that coincide with the optimal control
�u on the �-active set of �u. The main argument here is that the quadratic prob-
lems su�ciently close to the true KKT triple get strictly convex when restricted
to U�ad. Hence, their unique solution is characterized by the corresponding �rst-
order necessary optimality condition, which coincides with the generalized equation
originating from the Newton method discussed in Section 4.3.

The assumption to restrict to U�ad can be slightly relaxed in the case that
(SSC-�) holds for a positive �: the quadratic subproblems have to be restricted to

Uad\BL2� (�u) with some radius � > 0, as shown in Section 4.4.3, and the generalized
Newton method for (GE) converges locally, even without further restrictions; see
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Section 4.4.2. As we have pointed out in the introduction of this chapter, the
fact that the restriction of the quadratic subproblems can be done in terms of L2-
balls around �u distinguishes our results from [167] presented in this chapter from
earlier results where restriction to L1-balls had been considered. Our results are
obtained by by careful application of the SSCs. The main steps of the argument
are as follows: �rst, we establish convergence of the generalized Newton method
for the corresponding set-valued equation (GE) in Section 4.4.2, Theorem 4.20.
Thereby, the proof of strong regularity is the crucial part and essentially relies on
the observation that L2-local quadratic growth and L2-local uniqueness of critical
points implied by SSCs for certain quadratic problems also stays valid uniformly
under perturbation (Proposition 4.17). This and the fact that the set of strongly
active points behaves su�ciently well under perturbation (Lemma 4.16) allows to

carry over results on U�ad to Uad \ BL2� (�u) in Corollary 4.18.
At this point, let us recall that the proof of second-order conditions for (P) in

[35] relied on the results of [71]; cf. our comments in Section 1.5.3. Moreover, in
Chapters 2 and 3 we applied and extended techniques from [71] to address second-
order conditions for the state-constrained problem (Pst) and the sparse problems
(P

sp
k ). Now, an extension of the results from [71] again plays a central role in the

formulation and the proof of Proposition 4.17 that is decisive for formulating the
quadratic problems with restriction onto L2- instead of L1-balls.

Finally, in Section 4.4.3 the iterates of the generalized Newton method are
identi�ed with the solutions of the quadratic subproblems; see Proposition 4.24. We
start with the iterates of the SQP method with subproblems restricted to U�ad from
Section 4.4.1. Using perturbation arguments analogous to those from Section 4.4.2
it is shown that su�ciently close to the true KKT triple these iterates can also

be obtained as unique solution of the quadratic subproblems on Uad \ BL2� (�u)
with appropriate � > 0, or as the unique local solution of the global quadratic
subproblem that is contained in the aforementioned set; see Proposition 4.24.

4.4.1. The SQP method on U�ad. In this section we relate the iterates of the
Newton method from Section 4.3 to solutions of (QP-�); see Section 4.1.2 for the
de�nition of U�ad and (QP-�). To do so, we will show that the formal optimality
conditions for (QP-�) encoded in the Newton equations for (GE-�) are indeed
su�cient optimality conditions for (QP-�). Following again [268, 114, 285] this
is done by showing strict convexity for (QP-�) for (yk; uk; pk) su�ciently close to
(�y; �u; �p). We prove convergence of the SQP method under the technical restriction
to replace Uad by U�ad. Assuming strongest possible SSCs, i.e. Uad = U�ad, this
yields our �rst main result.

Recall the de�nition of the space Xs from Section 4.1.1. The following result
corresponds to [268, Lemma 6.2, Corollary 6.3].

Proposition 4.13 ([167], Proposition 6.1). Let Assumptions 1.5, 1.6, 4.1
and 4.4 with some � 2 [0;1] be satis�ed. Then, the linear quadratic SQP
problem (QP-�) is a strictly convex optimization problem as long as (yk; uk; pk)
is su�ciently close to (�y; �u; �p) in Xs.
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Proof. The optimization problems (QP-�) are of linear quadratic type. To
show strict convexity, it su�ces to show coercivity but the latter is an immedi-
ate consequence of the second-order su�cient condition (SSC-�) and the uniform
estimate from Proposition 4.8. □

Now, we can show locally superlinear convergence of the SQP method with
quadratic problems on U�ad.

Theorem 4.14 ([167], Theorem 6.2). Let the assumptions of Theorem 4.12
be ful�lled.

1. There is a radius rSQP-� > 0 such that for any start triple (y0; u0; p0) 2
Xs ful�lling

(y0; u0; p0) 2 BXs
rSQP-� ((�y; �u; �p))

the sequences of iterates generated by the generalized Newton method
applied to (GE-�) or generated by the SQP method with quadratic
subproblems (QP-�) are both well-de�ned, coincide, stay in the ball
BXs
rSQP-� ((�y; �u; �p)), and converge superlinearly to (�y; �u; �p) in Xs.

2. The statement analogous to part 1 with Xs replaced by X1 is true,
too.

3. There is a radius ~rSQP-� > 0 such that the SQP method with quadratic
subproblems (QP-�) and initial iterate (y0; u0; p0) with

ky0 � �ykW1;s(I;(W
�1;p
�D

;W
1;p
�D

)) + kp0 � �pkW1;s(I;(W
�1;p0

�D
;W

1;p0

�D
))
� ~rSQP-�

converges superlinearly in Xs and X1 to (�y; �u; �p). In particular, we
can choose

u0 2 Uad; ku0 � �ukL2(�) su�ciently small;

y0; p0 state and adjoint state associated to u0:

Proof. For parts 1 and 2 the proof works analogous to that of [268, Theorem
6.4]. For part 3 note that (QP-�) is actually independent of the current control
iterate uk, cf. also the remark after (4.5), which shows the �rst statement in part
3. Since Uad is bounded in L1 and s > 2 by Assumption 4.1 it holds

ku0 � �ukLs � Cku0 � �uk2=sL2 8u0 2 Uad
by the Riesz-Thorin interpolation theorem; cf. also the remark after the next
theorem. Here, C > 0 is a constant depending on the L1-bound of Uad only, i.e.
on ua and ub. From this we conclude by continuity

k(y0; u0; p0)� (�y; �u; �p)kXs ≲ ku0 � �uk2=sL2 ;

which shows the second statement of part 3. □

In Section 4.1.2 we have pointed out that (SSC-�) with � =1, i.e. coercivity
of the second derivative of the Lagrangian on the whole space L2(�), is the strongest
possible SSC. Under this assumption we are now able to state our �rst main result.
Note that it is possible to formulate all \closeness" required for convergence of the
SQP method with respect to L2-norms.
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Theorem 4.15 ([167], Theorem 6.3). Let Assumptions 1.5, 1.6 and 4.1 be
ful�lled and let the second-order su�cient condition (SSC-�) from Assump-
tion 4.4 hold on the whole space L2(�) (i.e. � = 1). Then the SQP method
for (P) started in (y0; u0; p0) 2 Xs,

u0 2 Uad; ku0 � �ukL2(�) su�ciently small;

y0; p0 state and adjoint state associated to u0;

converges superlinearly in Xs and X1 to (�y; �u; �p).

Proof. Use Theorem 4.14.3 together with U�ad = Uad. □

That the topologies generated by the L2- and the Ls-norm (s > 2) coincide
on an L1-bounded set by the Riesz-Thorin interpolation theorem, is a well-known
fact. However, this observation is a key argument for many proofs concerning
second-order conditions without two-norm gap; see, e.g., [71, Proposition 3.4] and
our comments below Proposition 1.21 that is a crucial step towards Theorems 1.22,
2.18, 2.29 and 3.4. Nevertheless, let us emphasize that the application of the frame-
work from [71], cf. Assumption 2.7.1 or Assumption 3.5.1, is not exclusively limited
to such situations; see, e.g., [71, Section 4]. In Theorem 4.14.3 and Theorem 4.15
above, we made use of this technique to tighten the unsatisfying gap between the
quadratic growth condition for j implied by (SSC-�) |this growth condition holds
L2-locally| and the Ls-local convergence of the SQP method.

4.4.2. The generalized Newton method on Uad and Uad \ BL2� (�u). Before

showing convergence of the SQP method restricted to Uad\BL2� (�u) we �rst consider
convergence of the Newton method for the associated generalized equation.

Doing so, we follow arguments from [285] but similar results are also contained
in [114, 268]. Our analysis, however, di�ers from these references due to L2-
locality instead of L1-locality in the statements of Proposition 4.17. An analogous
technique will be utilized afterwards in Section 4.4.3 to prove also convergence of
the SQP method under certain localization conditions.

In the following we consider the perturbed generalized equation

d 2 F (�y; �u; �p) + F 0(�y; �u; �p)(y � �y; u� �u; p� �p) +N(y; u; p):(GE-D)

Note that we now use the normal cone map N associated with the true set of
admissible controls Uad instead of the normal cone map N� associated with the
modi�ed admissible set U�ad that was used for the de�nition of (GE-�-D) in the
previous sections. Furthermore, note that (GE-D) can be understood as general-
ized equation both in the spaces Xs; Zs and X1, Z1; for the de�nition of these
spaces see Section 4.1.1. As before, the generalized equation (GE-D) is the formal
optimality system of the following perturbed optimal control problem:

(QP-D)

8>>><
>>>:
min
y;u

1

2
ky � ydk2 + �

2
kuk2 � 1

2
h�p;A00(�y)[y � �y]2i � hdu; ui+ hdp; yi

s.t. u 2 Uad and

�
dy
0

�
= ey(�y; �u)(y � �y) + eu(�y; �u)(u� �u):
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The reduced objective function for (QP-D) will be denoted by jd. Note that we did
not discuss properties of this optimization problem so far. Further, we introduce
the following notation for the strongly active sets w.r.t. (QP-D):

A�d (u) := fx 2 �: jrjd(u)j(x) = jB�p+ �u� duj(x) > �g ;
A�(u) := A�0 (u); i.e. d = 0 in the de�nition above.

Here, p denotes the adjoint state associated with u w.r.t. (QP-D) with perturbation
vector d; see (4.15). As the notation A�(u) indicates, A�0 (�u) coincides with the
strongly active set for �u de�ned in Assumption 4.4.

In Section 4.3 we observed that under Assumptions 1.5, 1.6, 4.1 and 4.4 the
restricted optimal control problem (QP-�-D), i.e. problem (QP-D) restricted to
U�ad, is strictly convex and admits a unique solution (�yd; �ud; �pd). This holds true for
arbitrarily large perturbation vectors d. In particular, the map d = (dy; dp; du) 7!
(�yd; �ud; �pd) was shown to be Lipschitz from Z1 to X1 in Theorem 4.11, say with
modulus L0 > 0. It follows that the mapping

Z1 ! L1(�);

d 7! ��ud +B��pd � du = rjd(�ud)(4.18)

is Lipschitz as well, say with modulus L > 0. Of course, even the map Zs ! Xs,
d 7! (�yd; �ud; �pd) is Lipschitz continuous as shown in Theorem 4.11, which implies
that d 7! ��ud+B

��pd�du is Lipschitz continuous from Zs to L
s(�). Unfortunately,

we will rely on L1-estimates in the following.
Assuming that (SSC-�) holds for some � 2 (0;1) we can draw some immediate

conclusions from the Lipschitz continuity of (4.18) as done in [285, Corollaries 5.3
and 5.4].

Lemma 4.16 ([167], Lemma 6.6). Let Assumptions 1.5, 1.6, 4.1 and 4.4
with some � 2 (0;1) hold and suppose that kdkZ1 < �

2L .

1. It holds A�(�u) � A
�=2
d (�ud) and the signs of rjd(�ud) and rj0(�u) coincide

on A�(�u).
2. The solution (�yd; �ud; �pd) of (QP-�-D) is a solution of (GE-D) as well,

i.e. it holds

h��ud +B��pd � du; u� �udiL2(�) � 0 8u 2 Uad:
Proof. This works completely analogous to [285]. □

Lemma 4.16 shows that the solution of (QP-�-D) that depends Z1-X1-
Lipschitz on d is a solution of (GE-D) as well if the perturbation d is small enough
in Z1. To establish strong regularity of (GE) w.r.t. the spaces X1; Z1 from this
result we have to prove that this solution is locally unique. This is done by proving
that (�yd; �ud; �pd) is not only a global solution of (QP-�-D) but even a local solu-
tion of (QP-D) ful�lling a quadratic growth condition on a ball around (�yd; �ud; �pd)
with radius independent of d. As announced in the introduction of this section,
the following result is, together with its analogue Proposition 4.23 in Section 4.4.3
below, the cornerstone of this section.

Proposition 4.17 ([167], Proposition 6.7). Let the assumptions of Lemma
4.16 be satis�ed.
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1. Then there exist 0 < ~� < �
2L and ~�; � > 0, such that (�yd; �ud; �pd), i.e. the

solution of (QP-�-D), is also an L2-local solution of (QP-D) satisfying
the quadratic growth condition

jd(u) � jd(�ud) + �ku� �udk2L2
for ku� �udkL2(�) � ~�, u 2 Uad, as long as kdkZ1 < ~�.

2. There are 0 < �̂ � ~�, 0 < �̂ � ~� such that (�yd; �ud; �pd) is the only

stationary1 point for (QP-D) in BL2�̂ (�ud).

The �rst statement of this proposition corresponds to [285, Theorem 5.5] with
the L1-ball around �ud replaced by an L2-ball. To establish quadratic growth
L1-locally around �ud, one could follow the direct proof of [270, Theorem 5.17].
Avoiding the two-norm gap |which is our aim| can be done following ideas from
[71, Theorem 2.3], see also [273, Theorem 3.22], utilizing a proof by contradic-
tion. Di�erent extensions of the abstract techniques of [71] have already been
used in Chapters 2 and 3 of this thesis to derive second-order conditions for state-
constrained or sparse control problems without two-norm gap. Note that for every
single perturbation d 2 Z1, both properties in the proposition are directly implied
by [71, Theorem 2.3 and Corollary 2.6]. The crucial point here is to guarantee that
the radii of the respective balls can be chosen independently of the choice of the
perturbation d as long as kdkZ1 is small enough.

Proof. 1. For the proof of part 1 we extended the technique of the proof of
[71, Theorem 2.3] to our needs. First, note that due to the quadratic structure of
(QP-D) it holds j00d (�ud)[v1; v2] = j00(�u)[v1; v2]. In particular, j00d is independent of
d. We are going to argue by contradiction and assume the contrary of our claim:
there are sequences (dn)n � Z1, (hn)n � L2(�) with kdnkZ1 < 1

n , khnkL2 < 1
n

and �udn + hn 2 Uad such that

jdn(�udn + hn)� jdn(�udn) <
1

n
khnk2L2 :(4.19)

De�ne vn :=
hn

khnkL2 and �n := khnkL2 . It holds dn = (dy;n; dp;n; du;n)! 0 strongly

in Z1, which implies �udn ! �u and rjdn(�udn) ! rj(�u) strongly in L1(�). Due
to kvnkL2 = 1 for all n 2 N we can w.l.o.g. assume that vn * v� weakly in L2(�)
for some v� 2 L2(�).

Step I. We prove j0(�u)v� = 0. We have

j0(�u)v� = hstrong- lim
n!1

rjdn(udn);weak- lim
n!1

vniL2
= lim
n!1

hrjdn(udn); vniL2 � 0
(4.20)

because hrjdn(udn); vniL2 = 1
�n
hrjdn(udn); hniL2 � 0 holds for every n due to

�udn+hn 2 Uad and Lemma 4.16.2, for which we can assume w.l.o.g. that kdnkZ1 <
�
2L . Further, by the mean value theorem there are �n 2 (0; 1) such that

jdn(udn + �nvn)� jdn(�udn)
�n

= hrjdn(�udn + �n�nvn); vniL2 :

1We call (y; u; p) stationary for (QP-D) if (y; u; p) ful�lls the �rst-order necessary conditions
for (QP-D).
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Due to the structure of (QP-D) |see, e.g., (4.16), (4.17) and use regularity results
as in the proof of Theorem 4.11| we know that rjdn(�udn + �n�nvn) ! rj(�u)
strongly in L2(�), which implies

jdn(udn + �nvn)� jdn(�udn)
�n

! j0(�u)v� as n!1:(4.21)

On the other hand, it holds by assumption (4.19) that

jdn(udn + �nvn)� jdn(�udn)
�n

<
1

�n
� 1
n
khnk2L2 =

�n
n
! 0;

which together with (4.21) yields j0(�u)v� � 0 �rst, and then together with (4.20):

j0(�u)v� = 0:(4.22)

Step 2. We want to show that v� = 0 if jrj(�u)j > 0. To do so, we show v� � 0
if rj(�u) > 0 and v� � 0 if rj(�u) < 0, which implies together with Step 1 the

desired property. For �0 > 0 arbitrary de�ne A�
0;a(�u) := fx 2 � : rj(�u) > �0g.

As in the proof of Lemma 4.16 we conclude that rjdn(�udn) > 0 on A�
0;a(�u) for all

su�ciently large n, which implies hn; vn � 0 on A�
0;a(�u) for all such n. Because

weak convergence in L2 preserves signs a.e. we conclude v� � 0 on A�
0;a(�u). Since

�0 > 0 was arbitrary it follows v� � 0 whenever rj(�u) > 0, as stated. The case
rj(�u) < 0 is handeled in the same way.

Step 3. In Step 2 we have shown that v� 2 C0(�u) � C�(�u) holds; for the
de�nition of C0(�u) and C�(�u) see Assumption 4.4. In this �nal step we will arrive
at the �nal contradiction. First observe that by our assumption

�2n
n

=
1

n
khnk2L2 > jdn(�udn + hn)� jdn(�udn)

(⋆)
= j0dn(�udn)hn +

1

2
j00(�u)hn

(■)

� �2n
2
j00(�u)v2n;

where we used the linear quadratic structure of (QP-D) at (⋆) and the �rst-order
optimality condition at (■). It follows

j00(�u)v2� � lim inf
n!1

j00(�u)v2n � lim inf
n!1

2

n
= 0;(4.23)

where the �rst inequality comes from the weak lower semicontinuity of j00(�u); see
Proposition 1.21.2. Since v� 2 C�(�u) we can apply (SSC-�) and conclude from
(4.23) that v� = 0. Using Proposition 1.21.3 at (▲) we obtain

c = c lim inf
n!

kvnk2L2
(▲)
� lim inf

n!1
j00(�u)v2n

(4.23)
= 0

which is the desired contradiction.
2. The second part of the proposition is shown similarly adapting the proof of

[71, Corollary 2.6]. Since one of the read threads of this thesis is concerned with
second-order conditions, the two-norm gap, and related issues, we nevertheless
give the details. Again we assume the contrary, i.e. that there are sequences
(dn)n � Z1, (un)n � Uad, such that dn ! 0 strongly in Z1 and

kun � �udnkL2�
1

n
and j0dn(un)(v � un) � 0 8v 2 Uad:
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W.l.o.g. we can assume kun� �udnkL2� ~� and kdnkZ1 < ~� and apply the �rst part
of the proposition:

jdn(un) � jdn(�udn) + �kun � �udnk2L2
= jdn(un) + j0dn(un)(�udn � un) +

1

2
j00dn(un)[�udn � un]2 + �kun � �udnk2L2

(?)

� jdn(un) +
1

2
j00(�u)[�udn � un]2 + �kun � �udnk2L2

Note that at (?) we use our assumption that un is a stationary point for (QP-D)
and that j00dn = j00(�u) holds. We conclude that for vn := 1

�n
(un � �udn) and �n :=

kun � �udnkL2 < 1
n it holds:

1

2
j00(�u)v2n � ��:(4.24)

Since (vn)n � L2(�) is bounded we can assume w.l.o.g. that vn * v� weakly in
L2(�) with some v� 2 L2(�). Due to optimality of �udn and un 2 Uad we have

j0dn(�udn)vn =
1

�n
j0dn(�udn)(un � �udn) � 0

and by stationarity of un

�j0dn(un)vn =
1

�n
j0dn(un)(�udn � un) � 0:

As in Step 1 in the proof of the �rst part it follows j0(�u)v� = 0. Further, the
same argument as in Step 2 shows that v� 2 C�(�u). Hence we get the desired
contradiction

0
(SSC-�)

� 1

2
j00(�u)v2�

(|)
� lim inf

n!1
1

2
j00(�u)v2n � �� < 0;

where we used Proposition 1.21.2 at (|). □

Given a radius � > 0 we introduce another modi�cation of the perturbed linear
quadratic problem (QP-D)

(QP-D-�)

8>>>>>>>><
>>>>>>>>:

min
y;u

1

2
ky � ydk2 + �

2
kuk2 � 1

2
h�p;A00(�y)[y � �y]2i � hdu; ui

+ hdp; yi

s.t. u 2 Uad \ BL2� (�u)

and

�
dy
0

�
= ey(�y; �u)(y � �y) + eu(�y; �u)(u� �u)

for which the following result holds.

Corollary 4.18 ([167], Corollary 6.8). Let the assumptions of Lemma 4.16
be satis�ed.

1. There are �; � > 0 such that for kdkZ1 < � the triple (�yd; �ud; �pd), i.e. the
unique solution of (QP-�-D), is also the unique solution of (QP-D-�).

2. There are �; � > 0 such that for kdkZ1 < � the control �ud is the unique

solution of (GE-D) that is contained in the set Uad \ BL2� (�u).
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A result similar to part 2 |but with L1- instead of L2-balls| was proven in
[114, Theorem 5.4] using a di�erent argument that relies on strongly active sets
and continuity of (4.18).

Proof. 1. Choose � = 2~�
3 and � < min

�
~�; ~�

3C

�
, where C > 0 is the Z1-

L2-Lipschitz constant for the map d 7! �ud; cf. Theorem 4.11 for the Lipschitz
continuity. Then, it holds in particular kdkZ1 < ~�, i.e. the previous Proposition
applies, and

�ud 2 Uad \ BL2� (�u) � Uad \ BL2~� (�ud)

for all kdkZ1 < �. Since �ud is the unique minimizer of (QP-D) restricted to Uad \
BL2~� (�ud) by quadratic growth (Proposition 4.17.1) and this minimizer is contained

in the smaller set Uad \ BL2� (�u), we �nally proved that �ud is the unique minimizer

of (QP-D) restricted to Uad \ BL2� (�u), i.e. the unique minimizer of (QP-D-�).
2. Similarly as for part 1. Now make use of Proposition 4.17.2. □

We introduce another variation of (GE),

0 2 F (y; u; p) +N�(y; u; p);(GE-�)

with the set-valued map N�(y; u; p) :=

�
f0g ; f0g ; f0g ; f0g ; N

Uad\BL2� (�u)
(u)

�T
,

where N
Uad\BL2� (�u)

(u) denotes the normal cone of the closed convex set Uad\BL2� (�u)

at some point u. The �rst part of the following result is similar to [285, Corollary
5.6] and the second part to the observation on top of p. 240 in [114].

Theorem 4.19 ([167], Theorem 6.9). Let the assumptions of Lemma 4.16
be ful�lled. It holds:

1. The generalized equation (GE) is strongly regular at (�y; �u; �p) w.r.t. the
spaces X1, Z1.

2. There is a � > 0 such that the generalized equation (GE-�) is strongly
regular at (�y; �u; �p) w.r.t. the spaces X1; Z1.

Proof. Both statements are consequences of Corollary 4.18 and Theorem 4.11.
The �rst part is proven in the same way as in [285]. We have to use that the L1-
norm is stronger than the L2-norm. For the second part note that for all u in the

L2-interior of the ball BL2� (�u), i.e. in particular for all u su�ciently close to �u in
the L1-norm, the equality N

Uad\BL2� (�u)
(u) = NUad(u) holds, as already mentioned

in [114]. □

The following result is an immediate consequence of an abstract result [156,
Theorem 2.19] and Theorem 4.19. The closed graph property for the normal cone
map N� is standard.

Theorem 4.20 ([167], Theorem 6.10). Let Assumptions 1.5, 1.6, 4.1, and
4.4 with some � 2 (0;1) hold. For any (y0; p0) su�ciently close to (�y; �p) in
the space

W1;s(I; (W
�1;p
�D

;W
1;p
�D

))�W1;s(I; (W
�1;p0
�D

;W
1;p0

�D
))
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it holds:

1. The sequence of iterates generated by the Newton-Josephy method for
(GE) with initial iterate (y0; u0; p0) is well-de�ned and converges su-
perlinearly in X1 to (�y; �u; �p).

2. The same holds true for the sequence of iterates generated by the
Newton-Josephy method for (GE-�) with � from Theorem 4.19.2.

From Lemma 4.16 on we had to consider perturbations in Z1, i.e. we had
to measure the control in L1(�). This is the reason why have to show strong
regularity only in Z1; X1 and not in Zs; Xs as we did before. That we impose
no condition on u0 is due to the fact that the Newton update equations for (GE)
and (GE-�) are independent of the current u-iterate uk; see the comment after
equation (4.5).

4.4.3. The SQP method on Uad \ BL2� (�u). Finally, we investigate how the
iterates of the generalized Newton method from Theorem 4.20 can be computed

by solving linear quadratic optimal control problems restricted to Uad \ BL2� (�u).
For analogous results in the case of semilinear equations (but with L1- instead of
L2-balls) we refer the reader to [268] and [114].

Lemma 4.21 ([167], Lemma 6.11). Let the assumptions of Theorem 4.20
hold. Let (yk; uk; pk) 2 X1 be a given triple and consider the restricted qua-
dratic subproblem (QP-�) associated with this triple. There exists a X1-
neighbourhood V1 of (�y; �u; �p) such that the map

(yk; uk; pk) 7! (y�k+1; u
�
k+1; p

�
k+1)

is well-de�ned on V1 and Lipschitz continuous, where (y�k+1; u
�
k+1; p

�
k+1) de-

notes the unique solution of (QP-�).

Proof. Existence and uniqueness of a solution to (QP-�) is established in Pro-

position 4.13 for (yk; uk; pk) su�ciently close to (�y; �u; �p). De�ne ~V to be such a
neighbourhood of (�y; �u; �p). To see Lipschitz continuity, note that (y�k+1; u

�
k+1; p

�
k+1)

is a solution of the parametrized generalized equation

0 2 G((yk; uk; pk); (y; u; p)) +N�(y; u; p)

:= F (yk; uk; pk) + F 0(yk; uk; pk)(y � yk; u� uk; p� pk) +N�(y; u; p)

|with (yk; uk; pk) being the parameter| and that

0 2 G((�y; �u; �p); (y; u; p)) +N�(y; u; p)

= F (�y; �u; �p) + F 0(�y; �u; �p)(y � �y; u� �u; p� �p) +N�(y; u; p)

is strongly regular at its solution (�y; �u; �p) according to Theorem 4.11. Further, G
andG0, i.e. F and F 0, depend continuously on (yk; uk; pk), because F: X1 ! Z1 is
continuously di�erentiable; cf. Lemma 4.3. Hence, [156, Theorem 2.18] guarantees
well-de�nedness and Lipschitz continuity of (yk; uk; pk) 7! (y�k+1; u

�
k+1; p

�
k+1) from

X1 to X1 on a su�ciently small neighbourhood V̂ of (�y; �u; �p). Now, V1 := ~V \ V̂
yields the desired neighbourhood. □
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In the previous lemma we have shown in particular that

X1 ! L1(�)

(yk; uk; pk) 7! rjk(u�k+1) = �u�k+1 +B�p�k+1
(4.25)

is Lipschitz continuous on the X1-neighbourhood V1 of (�y; �u; �p). By jk we denoted
the reduced functional of (QP-�) and p�k+1 is the adjoint state w.r.t. (QP-�)
associated to the control u�k+1; see equations (4.3), (4.4). The same argument as
for Lemma 4.16 now shows the following result.

Lemma 4.22 ([167], Lemma 6.12). Let the assumptions of Theorem 4.20
hold. There is a X1-neighbourhood V2 of (�y; �u; �p) such that for all (yk; uk; pk) 2
V2 the solution (y�k+1; u

�
k+1; p

�
k+1) of (QP-�) satis�es the �rst-order necessary

optimality conditions of (QP).

Proof. State- and adjoint equation of (QP) and (QP-�) coincide. We only have
to show that (y�k+1; u

�
k+1; p

�
k+1) ful�lls the variational inequality of (QP) as well;

this works completely analogous to Lemma 4.16 replacing (4.18) by (4.25). □

Now, we can show the following result that is similar to Proposition 4.17.

Proposition 4.23 ([167], Proposition 6.13). Let the assumptions of Theo-
rem 4.20 hold. Then, there is a X1-neighbourhood V3 of (�y; �u; �p) and there
are �; � > 0 such that for all triples (yk; uk; pk) 2 V3 the unique solution
(yk+1; uk+1; pk+1) := (y�k+1; u

�
k+1; p

�
k+1) of (QP-�)

1. is an L2-local solution of (QP) satisfying the quadratic growth condi-
tion

jk(u) � jk(uk+1) + �ku� uk+1k2L2
for all u 2 Uad such that ku� uk+1kL2(�) � �.

2. is the only stationary point for (QP) in BL2� (uk+1).

Proof. We proceed as in the proofs of Proposition 4.17.1 and 2 and argue by
contradiction. Instead of jdn and �udn we have to consider jk and uk+1. We only
mention the essential ingredients that keep all the previous arguments working:

i. For any sequence (wk) � Uad such that wk ! �u in L2(�) it holds

rjk(wk)! rj(�u) strongly in L2(�):

This was shown in Proposition 4.9; use the Riesz-Thorin interpolation
theorem as explained at the end of Section 4.4.1 to obtain the required
Ls-convergence wk ! �u from the given L2-convergence.

ii. If uk ! �u strongly in L2 and vk * v� weakly in L2 we have

j00(�u)v2� � lim inf
k!1

j00k(uk)v
2
k:

This can be shown as follows: one uses boundedness of (vk)k, Proposi-
tion 4.8, weak lower semicontinuity of j00 (see Proposition 1.21.2), and
�nds

lim inf
k

j00k(uk)v
2
k � lim inf

k
(j00k(uk)� j00(uk)) v2k| {z }
!0 uniformly in vk

+ lim inf
k

j00(uk)v2k � j00(�u)v2� :
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iii. If v� = 0 in part ii, then

c lim inf
k!1

kvkk2L2 � lim inf
k!1

j00k(uk)v
2
k

with some c > 0. This is shown by the same argument as above utilizing
the results of [35] summarized in Proposition 1.21 as auxiliary results.

□

Next, we obtain the following result with the same argument as for Corol-
lary 4.18.

Proposition 4.24 ([167], Proposition 6.14). Let the assumptions of Theo-
rem 4.20 hold.

1. There is a X1-neighbourhood V4 of (�y; �u; �p) and a radius � > 0 such
that for all (yk; uk; pk) 2 V4 the next SQP iterate (yk+1; uk+1; pk+1)
given by the unique solution of (QP-�) is also the unique solution of

(QP) with admissible set Uad \ BL2� (�u).
2. There is a X1-neighbourhood V5 of (�y; �u; �p) and a radius � > 0, such

that for all (yk; uk; pk) 2 V5 the next SQP iterate (yk+1; uk+1; pk+1)
given by the unique solution of (QP-�) is also the unique L2-local
solution of the global quadratic problem (QP) that is contained in Uad\
BL2� (�u).

Now we can state our main result of this chapter.

Theorem 4.25 ([167], Theorem 6.15). Let Assumptions 1.5, 1.6, 4.1, and
4.4 with some � 2 (0;1) hold. Then there are radii � > 0, rSQP > 0 such that
for any initial guess

(y0; p0) 2W1;s(I; (W
�1;p
�D

;W
1;p
�D

))�W1;s(I; (W
�1;p0
�D

;W
1;p0

�D
))

ful�lling

ky0 � �ykW1;s(I;(W
�1;p
�D

;W
1;p
�D

)) + kp0 � �pkW1;s(I;(W
�1;p0

�D
;W

1;p0

�D
))
� rSQP

the sequence of iterates generated by the successive solution of the SQP sub-
problems

(QP(�; yk; pk))

8>>>>>>><
>>>>>>>:

min
y;u

Jk(y; u) :=
1

2
ky � ydk2 + �

2
kuk2 � 1

2
hpk;A00(yk)[y � yk]2i

s.t. u 2 Uad \ BL2� (�u)

and

(
@ty +A(yk)y +A0(yk)y = Bu+A0(yk)yk;

y(0) = y0

converges superlinearly in X1 to (�y; �u; �p).
A possible choice of y0; p0 are state y0 and adjoint state p0 associated to

some control u0 2 Uad w.r.t. (P) if ku0 � �ukL2 is chosen small enough.

Proof. Combine Proposition 4.24 with Theorem 4.12. □
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Note in particular that we tightened the gap between the L2-local growth
condition originating from the second-order su�cient condition (SSC-�) in As-
sumption 4.4 and the closeness conditions in the SQP method. This is di�erent
from, e.g., [114, 268, 285] where closeness had been formulated with respect to
L1. Now, in Theorem 4.25 above all required closeness can be formulated with
respect to the L2-norm.

4.5. Numerical examples

In the �nal section of this chapter we illustrate our theoretical results by the
numerical examples. We follow the presentation in [167, Section 8]. First, we test
with so-called manufactured solution examples, i.e. optimal control problems with
analytically known solution; see, e.g., [270, Section 2.9] for the construction of such
examples. Second, we test with an example based on real-world parameters; cf.
Section 4.5.2. Let us note that our focus is clearly on illustrating our convergence
results and not on computational e�ciency, which can be seen, e.g., in the much
too accurate solution of the quadratic subproblems that is usually unnecessary and
expensive. Approaches to speed up the numerical solution of (P) by combining
SQP(-type) methods with model order reduction will be addressed experimentally
in Section 5.3, on behalf of the model problem from Section 4.5.2.

We implemented the SQP algorithm in python using FEniCS [9, 203] for the
�nite element discretization of the problem. States and adjoint states are dis-
cretized piecewise constant w.r.t. time and by piecewise linear �nite elements
w.r.t. space. The purely time-dependent controls are discretized piecewise con-
stant w.r.t. time. Since the control bounds are constant w.r.t. time, this coincides
with the well-known variational discretization concept [149]. The details of the
respective discretization will be given for each problem below. Following the ap-
proach of [143], the algorithm implemented consists of three nested loops: the
outermost iteration is given by the SQP method. The quadratic subproblem of
each SQP iteration is solved iteratively by application of the semismooth Newton
method (SSN); see, e.g., [275]. Finally, the innermost loop consists of the iterative
solution of the Newton update equation by the CG method in every semismooth
Newton iteration.

In order to solve the quadratic subproblems accurately enough we choose the
relative tolerance for SSN to be 10�5, i.e. the solver of the quadratic subproblems
either terminates when the L2-norm of projection residual (of the subproblem) is
reduced by at least 10�5 or the maximum of 20 SSN iterations is reached. To avoid
problems in case of already very small initial residual norms, the SSN iteration
also ends when the residual norm gets smaller than 10�12 (absolute tolerance).
Similarly, the CG method terminates if the intial CG-residual is decreased by
factor at least 10�2. To enhance stability, SSN is combined with Armijo linesearch
with the squared L2-norm of the projection residual (of the subproblem) as merit
function.

As observed in, e.g., [114, 285] the restriction of the quadratic subproblems
to L1- or |in our case| L2-balls is only required to prove convergence of the
algorithm in function space. Fortunately, we can omit this additional constraint in
practice and solve the quadratic subproblems on Uad without loosing convergence,
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i.e. the subproblems in our implementation are given by (QP); cf. the end of
Section 4.1.1.

In all three examples the initial guess for the SQP method is (y0; u0; p0) :=
(0; 0; 0). To measure optimality of some iterate uk we compute the L

2-norm of the
residual of the projection formula

resk :=


uk � ProjUad

��
�1B�p(uk)�

L2 ;(4.26)

where the adjoint state p(uk) associated to uk w.r.t. (P) is computed using the
implicit Euler scheme for the time discretization of the nonlinear state equation.
The nonlinear equations appearing at each timestep during the solution of the state
equation are solved by the built-in nonlinear solver of FEniCS. Convergence of the
SQP method is measured by the increments

incr1k := kyk+1 � ykkL1 + kuk+1 � ukkL1 + kpk+1 � pkkL1 ;
incr2k := kyk+1 � ykkL2(I;H1

�D
) + kyk+1 � ykkW 1;2(I;H�1

�D
) + kuk+1 � ukkL1

+ kpk+1 � pkkL2(I;H1
�D

) + kpk+1 � pkkW 1;2(I;H�1
�D

):

Note that we do not compute the norm of the increments with respect to the norms
appearing in Theorem 4.25 because we do not have the abstract exponents p; s at
hand in a practical context. To illustrate our theoretical results, we show for all
examples both increments and residuals for di�erent discretizations. Convergence
behaviour of the SQP method uniform with respect to su�ciently �ne discretization
strongly indicates convergence in function space.

4.5.1. Manufactured solution examples.
4.5.1.1. Example 1. For I = [0; 1] and 
 = [0; 1] we consider the problem

(4.27)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

min
y;u

J(y; u) :=
1

2
ky � ydk2L2(Q) + 10�3 � kuk2L2([0;1])

s.t. u 2
(
v 2 L2([0; 1]) : � 9

10
� v(x) �

p
2

2
a.e.

)
;

and

8><
>:
@ty �r � �(y)ry = b � u+ f on Q;

y = 0 on I � @
;
y(0) = sin(�x1)

and choose

�y(t; x) = cos(2�t) sin(�x);

�p(t; x) =
1

100
sin(2�t) sin(�x);

b(x) = 1[1=3;2=3](x);

�(z) =
1

2
+

1

1 + exp(�5z) :
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Level 1 Level 2 Level 3

hmax 7:95 � 10�2 3:98 � 10�2 1:99 � 10�2

Nt 158 632 2529
DoF FEM 421 1640 6549

Table 4.1. Discretization levels for Example 2 (Manufactured So-
lution in 2D, Section 4.5.1.2).

With the help of Wolfram Mathematica we compute the remaining quantities yd,
f , �u such that the optimality system for (4.27) is ful�lled. In particular, it holds

�u(t) = min

 p
2

2
;max

�
� 9

10
;�10

�
sin(2�t)

�!
:

Note that all our theoretical results remain true for a problem of type (4.27) since
addition of the term f to the model problem (P) does not change its structural
properties.

Discretization of spatial functions is done with piecewise linear �nite elements
on a equidistant partition of 
 = [0; 1] into Nh subintervals. For time discretization
we apply an implicit Euler discretization with Nt = N2

h equidistant time steps,
whereby the number of time steps is chosen in order to roughly balance spatial
and temporal discretization errors of the state equation; cf. [46]. The behaviour
of the increments incr1k and incr2k during the SQP iteration is shown in Table 4.3,
whereas L2-residuals and errors of the SQP iterates with respect to the interpolated
true KKT triple are shown in Table 4.4. Note that increments (Table 4.3.a and b)
and their decrease factors (Table 4.3.c and d) indicate superlinear convergence and
behave uniform with respect to the di�erent discretization levels, which illustrates
superlinear convergence in function space. Also, the residuals (Table 4.4.a) and
errors (Table 4.4.b-f) seem to behave uniformly, at least until their convergence
stagnates due to the limited accuracy given by discretization.

4.5.1.2. Example 2. For I = [0; 1] and 
 = [0; 1]2 we consider a problem of the
same structure as the 1D manufactured solution example (4.27) but now with

y0(x) = sin(�x1) sin(�x2);

�y(t; x) = cos(2�t) sin(�x1) sin(�x2);

�p(t; x) =
1

100
sin(2�t) sin(�x1) sin(�x2);

b(x) = �2 � 1[1=3;2=3]2(x)
and the regularization parameter � = 2 � 10�3 in (4.27) replaced by � = 10�2. As
before, the remaining quantities are computed utilizing Wolfram Mathematica and
the optimal control is given by

�u(t) = min

 p
2

2
;max

�
� 9

10
;� sin(2�t)

�!
:

Discretization of spatial functions is now done with piecewise linear �nite ele-
ments on a triangular mesh generated by mshr, the mesh-generation tool of FEniCS,
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Level 1 Level 2 Level 3

hmax 5:90 � 10�1 2:84 � 10�1 1:84 � 10�1

Nt 115 495 1182
DoF FEM 548 2848 10073

Table 4.2. Discretization levels for Example 3 (Section 4.5.2).

with maximum element diameter hmax. For time discretization we apply an im-
plicit Euler discretization with Nt equidistant time steps, whereby as for Example 1
the size of time steps N�1

t � h2max is chosen in order to roughly balance spatial and
temporal discretization errors of the state equation. Maximum element diameter
and number of time steps of the three di�erent discretization levels used in our nu-
merical experiments can be found in Table 4.1. In Table 4.5 we display increments
and their decrease rates during the SQP iteration. Similarly to the 1D manufac-
tured solution example these quantities behave uniform with respect to di�erent
discretization levels, which illustrates convergence in function space. Moreover,
residuals (Table 4.6.a) and errors of the iterates with respect to the interpolated
true KKT triple (Table 4.6.b-f) show uniform behaviour until stagnation due to
the respective discretization occurs.

4.5.2. Example 3. This �nal example is chosen to demonstrate that our as-
sumptions also cover an example with real-world parameters. We consider the
following problem related to heat conduction in a block of silicon modelled accord-
ing to [253]:

(4.28)

8>>>>>>>>><
>>>>>>>>>:

min
y;u

J(y; u) :=
1

2
ky � ydk2L2(Q) + 10�2 � kuk2L2(I)

s.t. u 2 �v 2 L2(I) : 2:9 � v(t) � 10
	

and

8><
>:
@ty �r � �(y)ry = 0 on Q;

�(y)@n
y + �y = �u on I � @
;
y(0) = 10:

The spatial domain is


 = [�2; 2]� [�0:5; 0:5]� [�1; 0] [ [�0:5; 0:5]� [�2; 2]� [0; 1] � R3

and consists of two crossed beams. For a picture of the domain we refer the reader
to Figure 5.5 in the next chapter. The time interval is I = [0; T ] = [0; 40], the
desired state

yd(t; x) = 10� 71

400
t;

the nonlinearity

�(y) :=
1

a+ by + cy2
; a = 0:0818292; b = 0:4255118; c = 0:0450061;

and � = 0:0146647. In order to make � formally ful�ll Assumption 1.6 we can
choose a twice continously di�erentiable, uniformly bounded from below and above
continuation of the above � outside the relevant values of y.

Measuring temperature in units of 100 Kelvin [K], length in 0:1 meters [m] and
time in 60 seconds [s], the state equation of (4.28) describes the evolution of the
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temperature y of a block 
 of silicon with initial temperature 1000K when the
temperature of the surrounding air is given by the control-variable u. Hence, the
optimal control problems aims at �nding the optimal temperature trajectory for
the ambient air in order to cool down the block 
 following the desired tempera-
ture trajectory yd from 1000K to room temperature 290K. Density, speci�c heat,
and temperature-dependent thermal conductivity are taken from [253, Chapters
2.5 and 4.3] and rescaled according to the abovementioned units. For the heat
transfer coe�cient between silicon and air (forced convection) we guess the value
40Wm�2K�1 which results in the value given for �.

As pointed out in Example 1.7.3, the domain under consideration ful�lls our
assumptions although not being a domain with Lipschitz boundary. The Robin
boundary condition in (4.28) is not covered by our assumptions but, since it di�ers
from Neumann boundary conditions only by a linear term, this can be tackled by
straightforward modi�cations of our arguments; cf. also [214, 215].

Again, we use FEniCS and mshr for the implementation. Space is discretized by
piecewise linear �nite elements on tetrahedral meshes with maximal cell diameter
hmax while time is discretized by Nt equidistant implicit Euler time steps; see
Table 4.2 for the di�erent discretization levels. As before, hmax and Nt are chosen
in such a way that spatial and temporal discretization errors of the state equation
are of roughly the same order. The numerically determined optimal control and
associated optimal state are shown in Figure 4.1.a. Due to the three-dimensionality
of the problem we were not able to choose discretization as �ne as in the previous
examples and therefore the behaviour the increments (Table 4.7) and residuals
(Table 4.8) is not as illustrative as in 1D or 2D.

Figure 4.1.b shows an enlarged section of the control iterates near the change
from inactive to active set at t � 17:1. It can be seen that, once the correct active set
is identi�ed after the third iteration, convergence is so fast that there is no visible
di�erence between the further iterates. This might be seen as an illustration of the
importance of detection of the correct active sets in in�nite dimensions that has
been discussed at the beginning of Section 4.4. The small kinks in the plots at the
border between active and inactive set are due to the fact that time discretization
(size of timesteps � � 3:38 � 10�2) does not resolve the active/inactive sets exactly.
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a. Increments incr1
k

b. Increments incr2
k

k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

0 2.15e+00 2.15e+00 2.15e+00 3.54e+00 3.54e+00 3.54e+00
1 1.89e+00 1.89e+00 1.89e+00 2.22e+00 2.22e+00 2.22e+00
2 1.46e-01 1.46e-01 1.46e-01 1.54e-01 1.54e-01 1.54e-01
3 9.00e-05 9.29e-05 9.16e-05 9.81e-05 1.01e-04 1.00e-04
4 4.96e-10 4.98e-10 5.15e-10 5.13e-10 5.17e-10 5.33e-10
5 1.52e-15 2.73e-15 4.75e-15 9.27e-15 1.82e-14 3.64e-14

c. Decrease of increments
incr1

k+1

incr1
k

d. Decrease of increments
incr2

k+1

incr2
k

k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

0 8.79e-01 8.79e-01 8.79e-01 6.27e-01 6.28e-01 6.27e-01
1 7.74e-02 7.71e-02 7.73e-02 6.96e-02 6.93e-02 6.94e-02
2 6.15e-04 6.37e-04 6.27e-04 6.36e-04 6.58e-04 6.48e-04
3 5.51e-06 5.36e-06 5.62e-06 5.23e-06 5.10e-06 5.33e-06
4 3.06e-06 5.47e-06 9.22e-06 1.81e-05 3.52e-05 6.82e-05

Table 4.3. Increments during the SQP method applied to Exam-
ple 1 (Manufactured Solution in 1D, Section 4.5.1.1).

a. Residuals resk b. Error in the control kuk � �ukL1

k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

0 7.60e-01 7.56e-01 7.58e-01 9.00e-01 9.00e-01 9.00e-01
1 9.24e-01 9.23e-01 9.26e-01 1.61e+00 1.61e+00 1.61e+00
2 1.13e-01 1.13e-01 1.13e-01 1.70e-01 1.48e-01 1.43e-01
3 3.29e-05 3.85e-05 3.78e-05 3.48e-02 1.59e-02 6.09e-03
4 3.60e-06 3.29e-07 2.51e-07 3.48e-02 1.60e-02 6.04e-03
5 3.60e-06 3.29e-07 2.51e-07 3.48e-02 1.60e-02 6.04e-03
6 3.60e-06 3.29e-07 2.51e-07 3.48e-02 1.60e-02 6.04e-03

c. Error in the state kyk � �ykL1 d. Error in the state kyk � �ykW
k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

0 1.00e+00 1.00e+00 1.00e+00 2.61e+00 2.61e+00 2.61e+00
1 2.56e-01 2.57e-01 2.56e-01 5.63e-01 5.69e-01 5.68e-01
2 6.11e-03 6.68e-03 6.65e-03 1.50e-02 1.40e-02 1.40e-02
3 1.85e-03 6.31e-04 2.06e-04 4.73e-03 1.23e-03 4.29e-04
4 1.85e-03 6.32e-04 2.05e-04 4.73e-03 1.23e-03 4.28e-04
5 1.85e-03 6.32e-04 2.05e-04 4.73e-03 1.23e-03 4.28e-04
6 1.85e-03 6.32e-04 2.05e-04 4.73e-03 1.23e-03 4.28e-04

e. Error in the adjoint state kpk � �pkL1 f. Error in the adjoint state kpk � �pkW
k Nh = 32 Nh = 64 Nh = 128 Nh = 32 Nh = 64 Nh = 128

0 1.00e-02 1.00e-02 1.00e-02 2.61e-02 2.61e-02 2.61e-02
1 2.15e-02 2.16e-02 2.15e-02 4.42e-02 4.47e-02 4.46e-02
2 1.10e-03 1.09e-03 1.07e-03 2.28e-03 2.22e-03 2.15e-03
3 1.32e-04 4.29e-05 1.12e-05 3.36e-04 9.45e-05 2.50e-05
4 1.31e-04 4.27e-05 1.15e-05 3.36e-04 9.41e-05 2.48e-05
5 1.31e-04 4.27e-05 1.15e-05 3.36e-04 9.41e-05 2.48e-05
6 1.31e-04 4.27e-05 1.15e-05 3.36e-04 9.41e-05 2.48e-05

Table 4.4. Residuals and errors of the iterates during the SQP
method applied to Example 1 (Manufactured Solution in 1D, Sec-
tion 4.5.1.1). We use the abbreviation k�kW := k�kL2(I;H1

�D
) +

k�kW 1;2(I;H�1
�D

).
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a. Increments incr1
k

b. Increments incr2
k

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 2.15e+00 2.16e+00 2.16e+00 2.75e+00 2.67e+00 2.61e+00
1 1.04e+00 1.05e+00 1.06e+00 1.10e+00 1.11e+00 1.11e+00
2 2.57e-02 2.38e-02 2.22e-02 2.70e-02 2.52e-02 2.35e-02
3 6.32e-06 7.45e-06 7.99e-06 6.09e-06 7.21e-06 7.86e-06
4 1.84e-11 2.03e-12 1.93e-12 1.90e-11 1.10e-12 1.04e-12

c. Decrease of increments
incr1

k+1

incr1
k

d. Decrease of increments
incr2

k+1

incr2
k

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 4.82e-01 4.88e-01 4.89e-011 4.00e-01 4.17e-01 4.26e-01
1 2.49e-02 2.26e-02 2.10e-02 2.46e-02 2.26e-02 2.11e-02
2 2.45e-04 3.13e-04 3.60e-04 2.25e-04 2.87e-04 3.34e-04
3 2.91e-06 2.72e-07 2.42e-07 3.13e-06 1.53e-07 1.32e-07

Table 4.5. Increments during the SQP method applied to Exam-
ple 2 (Manufactured Solution in 2D, Section 4.5.1.2).

a. Residuals resk b. Error in the control kuk � �ukL1

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 7.60e-01 7.50e-01 7.43e-01 9.00e-01 9.00e-01 9.00e-01
1 8.05e-01 7.99e-01 7.94e-01 8.23e-01 8.13e-01 8.12e-01
2 2.21e-02 2.36e-02 2.45e-02 1.33e-01 9.08e-02 5.54e-02
3 5.72e-06 1.39e-06 1.13e-06 1.37e-01 8.09e-02 4.48e-02
4 6.88e-06 3.80e-07 1.05e-06 1.37e-01 8.09e-02 4.48e-02
5 6.88e-06 3.80e-07 1.05e-06 1.37e-01 8.09e-02 4.48e-02

c. Error in the state kyk � �ykL1 d. Error in the state kyk � �ykW
k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 1.00e+00 1.00e+00 1.00e+00 1.81e+00 1.72e+00 1.67e+00
1 2.33e-01 2.40e-01 2.45e-01 2.82e-01 2.93e-01 2.93e-01
2 3.02e-02 1.62e-02 1.02e-02 4.15e-02 2.06e-02 1.13e-02
3 2.93e-02 1.49e-02 7.48e-03 4.06e-02 1.93e-02 9.27e-03
4 2.93e-02 1.49e-02 7.47e-03 4.06e-02 1.93e-02 9.27e-03
5 2.93e-02 1.49e-02 7.47e-03 4.06e-02 1.93e-02 9.27e-03

e. Error in the adjoint state kpk � �pkL1 f. Error in the adjoint state kpk � �pkW
k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 1.00e-02 1.00e-02 1.00e-02 1.81e-02 1.72e-02 1.67e-02
1 7.66e-03 8.72e-03 9.12e-03 1.17e-02 1.22e-02 1.22e-02
2 1.08e-03 5.52e-04 3.10e-04 1.39e-03 6.26e-04 3.15e-04
3 1.06e-03 6.07e-04 3.20e-04 1.46e-03 6.71e-04 3.18e-04
4 1.06e-03 6.07e-04 3.20e-04 1.46e-03 6.71e-04 3.18e-04
5 1.06e-03 6.07e-04 3.20e-04 1.46e-03 6.71e-04 3.18e-04

Table 4.6. Residuals and errors of the iterates during the SQP
method applied to Example 2 (Manufactured Solution in 2D, Sec-
tion 4.5.1.2). We use the abbreviation k�kW := k�kL2(I;H1

�D
) +

k�kW 1;2(I;H�1
�D

).
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a. Increments incr1
k

b. Increments incr2
k

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 1.71e+01 1.72e+01 1.72e+01 1.91e+02 1.85e+02 1.75e+02
1 1.16e+00 1.15e+00 1.17e+00 1.08e+01 1.09e+01 1.07e+01
2 2.24e-02 2.52e-02 2.58e-02 1.42e-01 1.50e-01 1.49e-01
3 5.23e-06 1.15e-05 6.77e-06 3.78e-05 4.51e-05 4.01e-05
4 2.78e-11 2.40e-10 3.37e-10 4.05e-11 2.69e-10 3.74e-10
5 - 1.03e-13 2.80e-13 - 1.29e-12 2.12e-12

c. Decrease of increments
incr1

k+1

incr1
k

d. Decrease of increments
incr2

k+1

incr2
k

k Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

0 6.79e-02 6.70e-02 6.80e-02 5.68e-02 5.88e-02 6.10e-02
1 1.93e-02 2.19e-02 2.21e-02 1.31e-02 1.38e-02 1.40e-02
2 2.33e-04 4.57e-04 2.62e-04 2.65e-04 3.01e-04 2.68e-04
3 5.31e-06 2.09e-05 4.98e-05 1.07e-06 5.96e-06 9.33e-06
4 - 4.30e-04 8.31e-04 - 4.81e-03 5.67e-03

Table 4.7. Increments during the SQP method applied to Exam-
ple 3 (Section 4.5.2).

Residuals resk
k Level 1 Level 2 Level 3

0 2.58e+01 2.59e+01 2.59e+01
1 1.15e+01 1.16e+01 1.16e+01
2 1.69e+00 1.72e+00 1.72e+00
3 4.23e-04 4.28e-04 4.28e-04
4 2.09e-08 1.10e-09 1.44e-08
5 2.09e-08 1.06e-09 1.45e-08
6 - 1.06e-09 1.45e-08

Table 4.8. Residuals during the SQP method applied to Example
3 (Section 4.5.2).
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Figure 4.1. Example 3 (Section 4.5.2) on the �nest discretization
level: a. Optimal control and optimal state yopt evaluated at the
points xcorner = (�0; 5; 2; 0) and xmiddle = (0; 0; 0). For compar-
ison we also display the state ynaive associated with the \naive"
�rst guess unaive(t) := 10� 71

400 t at the same points and the desired
trajectory yd. b. Control iterates during the SQP method on a
certain subinterval of I.





Chapter 5

Model order reduction by proper orthogonal

decomposition

In the previous chapter we have presented several numerical examples for the
SQP method with focus on illustrating its convergence in function space. This
�nal chapter of the thesis is devoted to the important problem of making these
(or similar) computations faster and more e�cient by utilizing so-called model
order reduction (MOR). More precisely, we apply proper orthogonal decomposition
(POD) to the semidiscrete in space counterpart of the state equation (Eq) and prove
corresponding a-posteriori error estimates for the POD error. This is joint work
with I. Neitzel and has been published in [166]. Moreover, we present numerical
experiments in which we achieve a signi�cant reduction of computing time during
the numerical solution of the entire control problem by combining POD-MOR with
SQP or SQP-type methods on a heuristic level.

The numerical solution of optimal control problems governed by PDEs is a so-
called many-query scenario: the same linear or nonlinear equation has to be solved
repeatedly for di�erent right-hand sides or parameters. Such a task is highly time
consuming, in particular in the case that the underlying equation is time-dependent
or the spatial domain is three-dimensional which drastically increases the number
of degrees of freedom. A typical way out of this problem is to apply model order
reduction (MOR). The aim of MOR is to replace the high-dimensional original
model by a suitable model with less degrees of freedom, the so-called reduced-
order model. We mention, e.g., the recent monography series [29, 27, 28]. A
prominent method of MOR for parabolic PDEs is the so-called proper orthogonal
decomposition (POD) method; see, e.g., the survey [121] contained in [27]. This
approach uses so-called snapshots of the dynamical system under consideration to
construct a low-dimensional subspace of, e.g., a high-dimensional �nite element
space. More generally speaking, projection of a high-dimensional dynamical or
parametric system onto smaller dimensional spaces leads to so-called reduced basis
methods (RB); see, e.g., the monographies [139, 233]. Regarding applications of
POD-MOR to optimal control we mention the survey articles [131] and [246, 30]
on linear quadratic and nonlinear control problems, respectively.

Both POD and RB approaches are data-driven: the quality of the reduced-
order model crucially depends on the data, i.e. the snapshots, used for the gener-
ation of the reduced-order model. More precisely, the low-dimensional subspaces
generated from the data need to be in some sense capable of expressing the original,
high-dimensional trajectory of the system su�ciently well. This issue poses one of

157
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the main di�culties in the context of POD/RB methods and the following ques-
tions naturally arise when applying POD/RB-MOR, in particular in the context
of PDE-constrained optimization: how can we estimate and/or control the addi-
tional errors arising from MOR in our computations? How can we couple MOR
and numerical optimization when solving an optimal control problem numerically?
These both questions are closely related to each other and have been subject to
intensive research in the last years. Since there is a huge amount of literature about
POD/RB-MOR we have to restrict ourselves to an incomplete literature overview
focussed on the abovementioned two questions.

We start our literature overview on the �rst question with literature on a-priori
error estimates for POD-MOR of equations. Such estimates have been obtained,
e.g., in an abstract setting for linear and semilinear parabolic equations [193, 79],

uid dynamic equations [194, 255], linear wave equations [79, 136], for a nonlinear
elliptic-parabolic system related to the modelling of lithium ion batteries [198], an
equation related to laser surface hardening [163], and a partial integro-di�erential
equation related to �nance [244]. Due to the data-driven character of POD-MOR
these a-priori error estimates contain quantities that are not explicitely computable
in advance. Therefore, a-posteriori error estimates are needed in practical computa-
tions. We mention, e.g., such estimates in the RB-setting for quasilinear elliptic and
parabolic equations related to magneto(quasi)statics [150, 151, 186], time-discrete
nonlinear parabolic equations [103], and parametrized nonlinear parabolic equa-
tions related to lithium ion batteries [173]. Regarding control problems, a-priori
POD error estimates have been obtained, e.g., for optimal control of linear parabolic
equations [160] or for certain in�nite horizon problems [3]. As for POD/RB-MOR
of equations, a-posteriori error estimates are needed in applications. As far as we
know, the �rst a-posteriori POD error estimates in optimal control have been ob-
tained in [272] for linear quadratic parabolic problems. Meanwhile, the underlying
perturbation approach has been extended to linear quadratic parabolic problems
with mixed control-state-constraints [130], semilinear parabolic problems [182],
or bilinear elliptic control problems [181]. A di�erent, residual-based approach
has been applied to semilinear parabolic control problems [236] and parameter
optimization problems with linear elliptic and parabolic PDEs [232]. Parameter
optimization problems with evolution equations or a nonlinear elliptic-parabolic
system have been under consideration in [96, 200].

Let us now turn to the second question stated above, i.e. the coupling of POD-
MOR and numerical optimization, which is an active area of research. Following
the pioneering work on linear quadratic problems [272], the perturbation approach
has directly been applied to, e.g., semilinear parabolic problems [182] or linear
quadratic problems involving the Helmholtz equation [265]. Moreover, this idea
has been applied to the linear quadratic subproblems during the application of the
SQP method to bilinear elliptic [181] and semilinear parabolic [116] problems. Let
us also mention that iterated solution of the POD-reduced optimal control problem
under successive enrichment of the snapshot set with the states associated with the
control iterates has been suggested in [1] for a 
ow control problem. Several trust-
region frameworks for the coupling of POD/RB-MOR and numerical optimization
have been developed for various problem types. In [19, 38, 232] the local model
function in the trust-region algorithm is given by the reduced-order counterpart
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of the original objective functional. While [19, 252, 243, 38] use balls, i.e. the
classical choice, as trust-regions, the trust-region in [232] is de�ned by sublevel sets
of a-posteriori MOR error estimates for the reduced functional. In [236] the second-
order Taylor polynomial of the POD-reduced functional is used as local model
function and the trust-regions are given by balls again. In [183, 21] the reduced-
order counterpart of a nonconforming dual corrected version of the functional serves
as local model and the trust-regions are chosen as in [232]. Finally, a completely
di�erent idea, so-called optimality system POD, has been developed in [195, 282],
and a-priori convergence of this method in the case of linear parabolic problems
has been proven in [191].

A related aspect is the interplay of POD/RB-MOR and discretization. We
mention recent work on the combination of POD and adaptive space discretization
for parametrized PDEs [277], evolution equations [118], incompressible 
ows [119],
and optimal control of the Cahn-Hilliard system [120]. Adaptive selection of the
snapshots has been addressed in [5, 4] for linear parabolic control problems. More-
over, the optimal location of snapshots has been discussed for time-dependent [196]
or parametric [199] equations. Adaptive re�nement of the discretization together
with adaptive updates of the reduced-order model during numerical optimization
has been proposed in [38] for control problems governed by the Navier-Stokes equa-
tions. Moreover, the balancing of POD and discretization errors for linear parabolic
control problems has been studied in [129].

Finally, let us exemplarily cite recent applications of POD/RB-MOR to mul-
tiobjective optimization [171, 172, 22], mixed-integer optimal control problems
[20], robust optimization [6], and model predictive control [210, 8, 197].

Let us now come back to the content of this chapter that consists of two
contributions to model order reduction in the context of quasilinear parabolic PDEs
and related control problems. The �rst one is concerned with POD-MOR for the
equation (Eq); we achieve both theoretical and numerical results. Our second
contribution is of purely numerical and experimental nature and deals with the
numerical solution of the control problem (P) utilizing POD-MOR.

Our results on POD-MOR and corresponding a-posteriori POD/RB error es-
timates for (Eq) from [166] are the topic of Section 5.2. As a motivation for these
results one may have in mind recent approaches for the coupling of numerical
optimization and MOR like [236, 232, 183, 21] that require a-posteriori error es-
timation for the state and the adjoint equation. We �x a spatial discretization and
consider the semidiscrete (in space) counterpart of (Eq) as our reference. Con-
sequently, our a-posteriori error estimates include errors arising from RB/POR-
MOR, so-called EIM-hyperreduction of the nonlinearity, and time discretization.
The incorporation of time discretization errors in the a-posteriori error estimates is
di�erent from, e.g., [103, 151, 232] and has the advantage that it may prevent the
choice of unnecessarily accurate reduced-order models below the time discretization
error in practice. Let us point out further important features of our work. First
of all, the application of POD/RB-MOR, which is a projection-based and hence
linear technique, to nonlinear problems is known to be challenging, in general, and
so-called hyperreduction techniques, such as, e.g., empirical interpolation (EIM),
are required to allow for an e�cient handling of the nonlinear terms within the
reduced-order model. The particular structure of the nonlinearity in (Eq) adds
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another di�culty: in fact, the presence of a nonmonotone nonlinearity is di�er-
ent from other publications concerned with POD/RB a-posteriori error estimates
for nonlinear PDEs [151, 150, 236] and also poses the main challenge in our a-
posteriori error analysis. In [166] we followed two di�erent ideas to cope with the
missing monotonicity. The two approaches result in error estimates of di�erent
structure and, interestingly, they are, on a heuristic level, related to the regularity
setting assumed for (Eq) and the corresponding regularity results for the solutions;
this will be explained in detail at the beginning of Section 5.2.2 and right before
Theorem 5.9. For the sake of brevity, we will only discuss the details of the �rst
approach in this thesis and restrict ourselves to stating the result of the second one.
In the numerical examples we �nally compare the results of both approaches and
observe a signi�cant speedup of the numerical solution of (Eq) due to POD-MOR.

In order to reproduce the results from [236, 232, 183] for our model problem,
we would have to derive error estimates for the adjoint equation, too. We believe
that the latter is particularly challenging as will be explained in more detail in Sec-
tion 5.2.5. This issue motivates our second contribution that will be the topic of
Section 5.3: we present numerical experiments concerned with a straightforward,
heuristic, and estimate-free POD-Newton-SQP method that has some similarities
to other ideas that target the combination of SQP-like methods with POD-MOR
[181, 116, 38]. Our numerical �ndings indicate that this approach allows for a
signi�cant speedup of about factor 10 in the numerical solution of (P) and may be
less sensitive w.r.t. initialization than methods relying on a single, a-priori �xed
POD basis. In essence, for a Newton-like variant of the SQP method we solve the
linear quadratic subproblems utilizing POD-reduction with a POD basis deter-
mined from the current full-order state and adjoint state. Consequently, we only
need to apply MOR in a linear quadratic setting. Compared to a more elaborate,
certi�ed coupling between POD-MOR and numerical optimization, as, e.g., in the
abovementioned literature, this purely heuristic approach has the advantage that
we do not require a-posteriori error estimates for the POD error of the state and
the adjoint equation. However, we cannot carry out a convergence analysis and do
not reach the same level of e�ciency as in [116, 236, 232].

This chapter is organized as follows. We start with a brief introduction to
proper orthogonal decomposition in Section 5.1. Section 5.2 is devoted to POD-
MOR for (Eq) and corresponding a-posteriori error estimates: �rst of all, we pre-
cisely introduce the semidiscrete (in space) counterpart of (Eq) that serves a refer-
ence object in the following. A-posteriori POD/RB error estimates are derived in
Section 5.2.2. Additional hyperreduction of the nonlinearity by empirical interpo-
lation (EIM) and the incorporation of the respective errors into the error estimates
are addressed in Section 5.2.3. In Section 5.2.4 we illustrate our results concerning
POR-MOR of (Eq) numerically and put them into the context of optimal control in
Section 5.2.5. The �nal Section 5.3 contains our numerical experiments concerning
the POD-reduced solution of the entire control problem.

5.1. Proper orthogonal decomposition

For convenience of the reader we provide a short introduction to the main ideas
of proper orthogonal decomposition in this section. Proper orthogonal decomposi-
tion (POD) goes back to applications in 
uid dynamics [256] and has successfully
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been applied in di�erent context. In particular, the same or similar techniques re-
lated to the mathematical concept of singular value decomposition (SVD; see, e.g.,
[290, Theorem VI.3.6]) are also known as principal component analysis (PCA)
in the data science community [227, 170, 179]. We give a short, and therefore
necessarily incomplete, introduction to the main ideas in the following. For the
remaining part of this section we follow the exposition in [194, Section 3.1] and
refer the reader to, e.g., [131] for more details.

Let V be a separable Hilbert space and suppose that y1; :::; yn 2 V , the so-called
snapshots, together with some weights �1; :::; �n > 0 are given. The snapshots
generate a �nite-dimensional subspace S := spanfy1; :::; yng � V with dimension
dimS � n. A POD basis of rank `, 1 � ` � dimS, is given by ` orthonormal
vectors  1; :::;  ` 2 V that solve the following optimization problem:8>><

>>:
min

( 1;:::; `)2�`
i=1 V

nX
j=1

�j






yj � X̀
i=1

hyj ;  iiV  i






2

V

subject to h i;  jiV = �ij ; 1 � i � `; 1 � j � i:

(5.1)

Due to X̀
i=1

hyj ;  iiV  i = argminz2spanf 1;:::; `gkyj � zkV ;

the POD basis of rank ` allows for the best simultanuous approximation of the
snapshots (weighted by the �j) among all orthonormal bases of length ` in V . To
compute such a POD basis the following linear operators are introduced:

K: Rn ! V; x 7!
nX
j=1

�jxjyj ;

K�: V ! Rn; v 7! (hv; yjiV )i=1;:::;n;

R: V ! V; v 7! KK�v =
nX
j=1

�jhv; yjiV yj ;

Q: Rn ! Rn; Q = K�K = (hyi; yjiV )i;j=1;:::;n 2 Rn�n:

Here, we equipp Rn with the scalar product hx1; x2i := Pn
j=1 �jx

1
jx

2
j . We note

that R is bounded, selfadjoint, nonnegative, and has �nite-dimensional range
range(R) = S. Consequently, it is a compact operator and there are an orthonor-
mal basis ( i)i2N for V and eigenvalues �1 � ::: � �dimS > 0, �i = 0 for i > dimS,
such that S = spanf 1; :::;  dimSg and

R i = �i i 8i 2 N:
It turns out that these eigenvectors  i and the POD basis of rank ` for the snapshots
y1; :::; yn are closely related.

Proposition 5.1. For any 1 � ` � dimS, the POD basis of rank ` for the
snapshots y1; :::; yn is given by the �rst ` eigenvectors  1; :::;  ` of R. Moreover,
the following estimate holds true:

bX
j=1

�j






yj � X̀
i=1

hyj ;  iiV  i






2

V

=
dimSX
i=`+1

�i:
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The error estimate given in this proposition is often used to determine the
length of a POD basis. Assume that we are given a tolerance �POD > 0 that sets
an upper bound on how much \information" contained in the snapshots we want
give up when projecting onto a POD basis of rank `. Since it holds

Pn
j=1 �jkyjk2V =PdimS

i=1 �i, one may therefore determine the length of the POD basis as the minimal
` that satis�es

dimSX
i=`+1

< �POD �
dimSX
i=1

�i:

For practical computations, the following relation of the POD basis to the eigen-
system of the matrix Q and to the singular systems of K and K� is of interest.
The n eigenvalues (in descending order) of the the symmetric, positive semidef-
inite matrix Q 2 Rn�n coincide with the �rst n eigenvalues of R. Moreover, if
v1; :::; vn 2 Rn denote the corresponding, pairwise orthonormal eigenvectors of Q,
the following relations hold true:

vi =
1p
�i
K� i;  i =

1p
�i
Kvi;

dimSX
i=1

�i = trace(Q):

In particular, the eigenvalues and eigenvectors of R can be computed with the help
of Q and the other way round. Moreover, the singular value decomposition (SVD)
of K is given by

Kx :=
nX
i=1

p
�ix

T vi i;

and an analogous expression holds true for K�. Consequently, the POD basis can
also be computed as the �rst ` singular vectors of K. All four approaches, i.e.
computation of the eigensystem of Q or R and computation of the SVD of K or K�
can be used in practice; the approach based on the eigensystem of Q is particularly
well-known as \method of snapshots". In the case of rapidly decaying eigenvalues,
however, SVD-based approaches may be advantageous since the singular values of
K and K� drop below machine precision later than the eigenvalues of R or Q do.

Let us brie
y comment on the relation to the so-called continuous version of
POD which helps to explain the meaning of the weights �j . Let I = (0; T ) be an
interval with a partition 0 = t0 < t1 < ::: < tn�1 < tn = T and �j = tj � tj�1
for j = 1; :::; n. If we de�ne the piecewise constant trajectory y 2 L2(I; V ) by
y =

Pn
j=1 1(tj�1;tj ]yj , we can rewrite (5.1) equivalently as8>><

>>:
min

( 1;:::; `)2�`
i=1 V

Z T

0






y(t)� X̀
i=1

hy(t);  iiV  i






2

V

dt

subject to h i;  jiV = �ij ; 1 � i � `; 1 � j � i:

(5.2)

Therefore, in the case of time-dependent problems in which the snapshots y1; :::; yn
may be viewed as given by snapshots of a trajectory I ! V , the weights �j will be
related to quadrature weights related to the integral on I. The observation that
leads to the continuous version of POD is the following: the problem (5.2) can also
be considered for an arbitrary (i.e. not necessarily piecewise constant) trajectory
y 2 L2(I; V ). In that case, Rn has to be replaced in the above considerations
by the in�nite-dimensional Hilbert space L2(I); retrospectively, this explains why
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Rn has been equipped with the weighted scalar product introduced above. One
obtains, e.g., the following expressions for K and R:

K: L2(I)! V; ' 7!
Z
I

'(t)y(t)dt;

R: V ! V; v 7! KK�v =
Z
I

hv; y(t)iV y(t)dt:

Hilbert-Schmidt theory still allows to prove existence of eigensystems and singular
systems as before, with the main di�erence that now in�nitely many eigen- and
singularvalues will be positive, in general. For details on this and on the transition
from �nitely many snapshots to continuous POD we refer the reader to, e.g., [194,
Section 3.2] or [131].

5.2. POD-MOR for the state equation

In this section we present the results obtained in [166] on POD/RB-MOR for
the state equation and corresponding a-posteriori POD/RB error estimates. We
consider the equation(

@ty +A(y)y = f; in Ls(I;W
�1;p
�D

);

y(0) = y0; in (W
�1;p
�D

;W
1;p
�D

)1=s0;s;
(5.3)

with f 2 Ls(I;W�1;p
�D

), y0 2 (W
�1;p
�D

;W
1;p
�D

)1=s0;s and rely on Assumptions 1.5, 1.6
and 1.8. Recall that results on existence and regularity of solutions to this equation
have been collected in Chapter 1; see in particular Theorems 1.11, 1.14 and 1.24
and Theorem 2.20 in Chapter 2. Moreover, let us point out that troughout this
section we are concerned with this equation only and not with an optimal control
problem. Our main results on a-posteriori POD/RB error estimates for (5.3) are
Theorems 5.6 and 5.9 in Section 5.2.3 below and a numerical illustration will be
given in Section 5.2.4. Finally, we will put our results into the context of optimal
control in Section 5.2.5. In the following we always refer to POD/RB because our
arguments and results apply to general RB methods although we clearly have the
particular case of POD in mind.

Before going into the details, let us brie
y comment on the nonmonotone
structure of the nonlinearity in (5.3). The main di�culty as well as the main
novelty in the following a-posteriori error analysis arise from this fact. Recall that
a nonlinear operator N : X ! X� on a Banach space X is called monotone if

hN (x)�N (y); x� yiX�;X � 0 8x; y 2 X;
and strongly monotone if there exists a constant c > 0 such that

hN (x)�N (y); x� yiX�;X � ckx� yk2X 8x; y 2 X;

cf., e.g., [240, 292] for this notion and its application in the theory of nonlinear
PDEs. It has turned out that exploitation of strong monotonicity of the nonlinear
terms is also an important step in the derivation of RB a-posteriori error estimates
for semilinear parabolic [236], quasilinear elliptic [150], and quasilinear parabolic
[151] PDEs. Note that the quasilinear nonlinearities in [151, 150, 186] refer to
problems from magneto(quasi)statics and depend on the gradient of the solution.
The nonlinear operator H1

�D
! H�1

�D
under consideration in the present thesis,
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however, is given by the map y 7! A(y)y = �r � �(y)�ry, and hence it depends
also on the solution y and not on its gradient ry only. The counterexample [111,
Example 8.18] shows that this changes the structure of the nonlinearity. It cannot
be expected to be monotone, and therefore it is essentially di�erent from those
considered in, e.g., [151, 150, 236]. In fact, the main di�culty in the derivation of
RB a-posteriori error estimates will be to �nd a workaround for the missing strong
monotonicity of our nonlinearity. In our paper [166] we presented two di�erent
approaches to do so; their relation will be discussed in more detail below. We will
work out the �rst approach in detail in Section 5.2.2 while for the second one we
will only provide a summary of the main result and numerical examples.

5.2.1. Semidiscretization in space, truth solution, and POD/RB-MOR. We
follow Section 2.2 of our paper [166] and introduce the semidiscrete (in space)
counterpart of (5.3). Its solution will serve as the so-called truth-solution, i.e. the
reference solution to which the a-posteriori error estimates will refer to. In par-
ticular, this means that we do not address spatial discretization errors. Moreover,
we also introduce the POD/RB-reduced counterpart of the semidiscrete (in space)
equation.

Let V h be an H1
�D

-conforming �nite element space on 
 and Ih: H1
�D

! V h

be an appropriate interpolation operator. We may introduce the semidiscrete (in
space) counterpart of (5.3) as follows: Find yh 2W1;2(I; ((V h)�; V h)) such that8>><

>>:
h@tyh(t) +A(yh(t))yh(t); 'hiH�1

�D
;H1

�D

= hf(t); 'hiH�1
�D

;H1
�D

8t 2 I; 'h 2 V h;
yh(0) = Ihy0:

(5.3h)

Due to �nite-dimensionality of V h, equation (5.3h) results in a system of ordinary
di�erential equations (ODEs) for the coe�cients of yh w.r.t. some basis of V h.
This allows to discuss existence of solutions to (5.3h), even without using all parts
of Assumptions 1.5, 1.6 and 1.8.

Proposition 5.2 ([166], Proposition 2.2). Assume that V h is a �nite-dimen-
sional subspace of H1

�D
(
)\C(
). For any right-hand side f 2 L2(I;H�1

�D
) and

initial value Ihy0 2 V h there exists a unique solution yh: I ! V h of (5.3h) such
that

kyhkL1(I;L2)\L2(I;H1
�D

) + kyhkW1;2(I;((V h)�;V h)) � C
�
kfkL2(I;H�1

�D
) + kIhy0kL2

�
;

with a constant C > 0 independent of V h, f and Ihy0.

For the rest of the chapter we will refer to yh as the semidiscrete (in space)
solution to (5.3), or, shorter, the truth-solution. By y we will denote the continuous
in space and time solution to (5.3), short: the true solution.

A �nite element error analysis for yh in the setting of Assumptions 1.5, 1.6
and 1.8 without additional suppositions has not been carried out in the existing
literature. Under the regularity assumptions of [45], cf. Section 1.6 or Assump-
tion 2.19, error estimates for the equation from [45], cf. (1.22), have been obtained
in [46]. We refer to the references therein or to the introduction of [99] for an
overview of further results under di�erent additional assumptions. Let us only
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mention two results: an L1(I; L2)\L2(I;H1)-quasi-bestapproximation result has
been derived in [101] with a technique slightly related to the one applied in Sec-
tion 5.2.2. In [99] for instance pointwise error estimates have been obtained.

Proof of Proposition 5.2. Let ('i)i=1;:::;Nh , Nh = dimV h, be a basis for V h.

Writing yh(t) =
PNh

i=1 xi(t)'i, the coe�cient vector x(t) 2 RNh ful�lls

M@tx(t) +A(x(t))x(t) = f(t); x(0) = x0;(5.4)

with

M := (h'i; 'jiL2)i;j ;

A(z) :=

 Z



�

 
NhX
n=1

zn'n

!
�r'ir'jdx

!
i;j

;

f(t) :=
�
hf(t); 'iiH�1

�D
;H1

�D

�
i
;

and x0 being the coe�cient vector of I
hy0. Using continuity of the basis functions

as well as global Lipschitz continuity and boundedness of �, one easily veri�es
that (5.4) satis�es the assumptions of [262, Lemma 5.7]. Therefore, existence and
uniqueness of a solution x 2W 1;2(I;RNh) to (5.4) follows, which implies existence
and uniqueness of a solution yh 2 W 1;2(I; V h) to (5.3h). The estimate follows by
standard techniques: testing (5.3h) with '

h = yh and integrating by parts yields
the �rst summand of the estimate. The second summand is obtained by testing
with an arbitray 'h 2 L2(I; V h). □

Note that the embedding V h ,! C(
) is crucial in the previous argument.
It ensures Lipschitz continuity of A(�) and therefore existence of a solution to
(5.4) via a generalized Picard-Lindel�of principle. If V h is a classical continuous
Lagrange �nite element space on a polygonal (polyhedral) domain 
 equipped with
a triangular (tetrahedral) mesh, this assumption is obviously ful�lled. However,
we would like to point out that except for the assumptions from Proposition 5.2
we do not rely on further details of spatial discretization.

Performing expensive computations in the high-dimensional space V h can be
avoided by application of the reduced basis approach. We replace the �nite element
space V h by a much smaller `-dimensional subspace V h;` � V h that is related to
the physical properties of the system and might be determined by the well-known
POD approach; cf. Section 5.1. Although our arguments do not rely on the
particular choice of V h;` and therefore also cover general RB methods, we clearly
have in mind V h;`'s obtained by POD and also restrict our numerical experiments
in Section 5.2.4 to this case. Having at hand a reduced ansatz space V h;` �
V h and a suitable projection Ph;`: V h ! V h;`, usually the L2- or H1-orthogonal
projection, we introduce the reduced-order counterpart of (5.3h) as follows: �nd
yh;` 2W1;2(I; ((V h;`)�; V h;`)) such that

8>><
>>:
h@tyh;`(t) +A(yh;`(t))yh;`(t); 'h;`iH�1

�D
;H1

�D

= hf(t); 'h;`iH�1
�D
;H1

�D

8t 2 I; 'h;` 2 V h;`;
yh;`(0) = Ph;`Ihy0:

(5.3h;`)
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A reader familiar with ROM techniques may already have noticed that the nonlin-
ear term in (5.3h;`) does not allow for e�cient evaluation within the reduced-order
model. We have to overcome this issue by so-called hyperreduction techniques, e.g.,
the empirical interpolation method (EIM), which will be addressed in Section 5.2.3.

5.2.2. A-posteriori POD/RB error estimates. We now state and prove our
�rst main contribution of this chapter: a-posteriori error estimates for (5.3h) in-
cluding both reduced-order and time discretization errors. For the reason of clarity
we exclude hyperreduction for the nonlinearity at this point, and address this issue
subsequently. This section is based on [166, Section 3].

We roughly follow the ansatz of [236], where a semilinear equation with mono-
tone nonlinearity has been discussed. To overcome the di�culties arising from the
fact that our nonlinearity is not monotone, we exploit L1(I;W 1;1)-regularity of
the truth-solution yh and obtain explicit estimates of classical structure in terms
of the error in the initial condition and the (V h)�-residual of the discrete solution
under consideration. As a semidiscrete in space solution, yh obviously exhibits
the required regularity for any �xed (spatial) discretization level. However, since
the error estimates will depend on the value of the L1(I;W 1;1)-norm of yh it is
desirable to have uniform bounds for this norm for all su�ciently �ne spatial dis-
cretization levels. We believe that we can only expect such a uniform bound if the
continuous in space and time solution of (5.3) exhibits L1(I;W 1;1)-regularity,
which is guaranteed, e.g., in the smooth setting from [45], i.e. under Assump-
tion 2.19; cf. Theorem 1.24 and Corollary 2.21. For the reason of brevity, we focus
on the details of this approach in the present thesis. The main result of our second,
alternative approach from [166] that exploits less regularity of the truth-solution
will be summarized in Theorem 5.9 at the end of Section 5.2.3 below.

We start by �xing the following notation and assumptions.

Assumption 5.3.

1. Assume that V h � H1
�D
\C(
)\W 1;1(
) is anNh-dimensional conforming

�nite element space, and V h;` a `-dimensional subspace of V h. By yh 2
W1;2(I; ((V h)�; V h)) we denote the truth-solution, i.e. the unique solution
to (5.3h).

2. Moreover, let yh;` 2W1;2(I; ((V h;`)�; V h;`)) be arbitrary. By eh;`y := yh;`�
yh we denote the error with respect to the truth-solution.

3. We assume that � is globally Lipschitz continuous and denote the global
Lipschitz constant of � by j�0j1.

We have in mind the following situation: yh;` is the solution of a time-discrete
counterpart of (5.3h;`), and we want to estimate how good yh;` approximates the
truth-solution yh. Note that in order to ensure that yh;` meets the regularity
requirements of Assumption 5.3 we have to choose a time discretization for (5.3h;`)
that results in su�ciently regular solutions, e.g., the Crank-Nicolson scheme in
its CG1-DG0 Petrov-Galerkin form. Time-discrete solutions of (5.3h;`) obtained
by discontinuous Galerkin time discretization, e.g., backward/implicit Euler, do
not ful�ll Assumption 5.3. Since discontinuous time discretization might be of
particular interest in the context of PDE-constrained optimization we will outline
an approach to overcome this restriction in Remark 5.8.



5.2. POD-MOR for the state equation 167

We start with some prelimiary calculations and follow the residual-based ansatz
of [236] as far as possible without modi�cation, i.e. up to the point where strong
monotonicity of the nonlinearity would be required. First, we introduce the resid-
ual of yh;` by

rh;`y (t) := @ty
h;`(t) +A(yh;`(t))yh;`(t)� f(t) 2 (V h;`)� ,! H�1

�D
; t 2 I:(5.5)

To keep notation short we will omit the argument \t" in the following. A short
computation utilizing (5.3h) shows that

(5.6) hrh;`y ; 'hiH�1
�D

;H1
�D

= h@teh;`y ; 'hiH�1
�D
;H1

�D

+ hA(yh;`)yh;` �A(yh)yh; 'hiH�1
�D

;H1
�D

holds for all 'h 2 V h. We consider V h as a vector space canonically equipped
with the H1

�D
-norm. Therefore, its dual (V h)� is canonically equipped with the

following norm:

k`hk(V h)� := sup
06= h2V h

h`h;  hiH�1
�D

;H1
�D

k hkH1
�D

= sup
06= h2V h

`h( h)

k hkH1
�D

:(5.7)

Note that this norm is not equal to the H�1
�D

-norm, because we only test with

elements  h from V h in (5.7). For later use we state the following observation.

Lemma 5.4 ([166], Lemma 3.2). Let Assumption 5.3 hold. Then, the

function I ! R, t 7! krh;`y (t)k2(V h)� is well-de�ned a.e. on I and L2-integrable.

Proof. This follows from the de�nition of r
h;`
y and the regularity assumed for

yh;`. □

Plugging in 'h = e
h;`
y (t) for every �xed t in (5.6), and using the classical

integration by parts formula from [240, Remark 7.5] we obtain

d

dt

1

2
keh;`y k2L2 + hA(yh;`)yh;` �A(yh)yh; eh;`y iH�1

�D
;H1

�D

= hrh;`y ; eh;`y iH�1
�D

;H1
�D

:(5.8)

Note that the second summand on the left-hand side of (5.8) causes problems in
our case: If the nonlinearity y 7! A(y)y was strongly monotone, we could proceed
as done in [236] for a semilinear term and estimate as follows:

hA(yh;`)yh;` �A(yh)yh; eh;`y iH�1
�D

;H1
�D

� cjeh;`y j2H1
�D

:

However, as pointed out at the beginning of Section 5.2 such an estimate cannot
be expected to hold true. We cannot even bound the term under consideration
from below by zero. Therefore, we have to proceed in a di�erent way and split the
problematic term into a coercive part and a remainder as follows:

hA(yh;`)yh;` �A(yh)yh; yh;` � yhiH�1
�D
;H1

�D

=

Z



(�(yh;`)�ryh;` � �(yh)�ryh)r(yh;` � yh)dx

=

Z



�(yh;`)�reh;`y reh;`y dx+

Z



(�(yh;`)� �(yh))�ryhreh;`y dx
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� ����jeh;`y j2H1
�D

+

Z



(�(yh;`)� �(yh))�ryhreh;`y dx:

Plugging this into (5.8) yields

(5.9)
d

dt

1

2
keh;`y k2L2 + ����jeh;`y jH1

�D

� hrh;`y ; eh;`y iH�1
�D
;H1

�D

�
Z



(�(yh;`)� �(yh))�ryhreh;`y dx;

i.e. except for the remainder term that we have shifted to the right-hand side we
have preserved a similar structure as in [236]. In [166] formula (5.9) serves as
the common basis for our two di�erent approaches for obtaining a-posteriori error
estimates. The main challenge in both cases is to estimate the second summand on
the right-hand side in (5.9) in such a way that Gronwall's Lemma or a similar com-
parison principle can be applied to the resulting inequality. As already explained
at the beginning of this section, we will only explain our �rst approach from [166]
in detail in this thesis. It is closer to [236] than the second one, and relies on
L1(I;W 1;1)-regularity of the truth-solution. An analogous regularity assumption
on the true solution y and a similar estimate of the nonlinear term as below have
been used in [101] in the context of �nite element errors.

Theorem 5.5 ([166], Theorem 3.3). Let Assumptions 1.5, 1.6, 1.8 and 5.3
hold, and let c1 > 0 be such that

jyh(t)jW 1;1 � c1 8t 2 I:
Moreover, let "; � > 0 be chosen such that

� + "j�0j1��c1 = ����

and de�ne � := 2
�
1
2" j�0j1��c1 + ����

�
. Then, the following a-posteriori error

estimates for yh;` hold true:

keh;`y (t)k2L2 � e�tkyh;`(0)� yh(0)k2L2 + ��1
Z t

0

e�(t�s)krh;`y (s)k2(V h)�ds;(5.10)

keh;`y k2L2(I;L2) � ��1
�
e�T � 1

� kyh;`(0)� yh(0)k2L2
+ ��1��1

Z T

0

(e�(T�t) � 1)krh;`y (t)k2(V h)�dt:

(5.11)

keh;`y k2L2(I;H1
�D

) � ��1� ��1� e�T kyh;`(0)� yh(0)k2L2

+ ��1� ��1� ��1
Z T

0

e�(T�t)krh;`y (t)k2(V h)�dt:

(5.12)

Proof. We proceed with the above computations. Starting with the estimate
(5.9) we bound the remaining term of the nonlinearity in the following way:����

Z



(�(yh;`)� �(yh))�ryhreh;`y dx

���� � j�0j1��c1keh;`y kL2keh;`y kH1
�D
:(5.13)

Using W 1;1-regularity for yh we can estimate one of the e
h;`
y -factors in the L2-

norm, which would not be possible assuming W 1;p-regularity for uh with some
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�nite p only. With the help of Young's inequality we arrive at

d

dt

1

2
keh;`y k2L2 + ����keh;`y k2H1

�D

� ����keh;`y k2L2 + hrh;`y ; eh;`y iH�1
�D
;H1

�D

+ j�0j1��c1
�
1

2"
keh;`y k2L2 +

"

2
keh;`y k2H1

�D

�
with some " > 0. Another application of Young's inequality yields

d

dt

1

2
keh;`y k2L2 + ����keh;`y k2H1

�D

�
�
1

2"
j�0j1��c1 + ����

�
keh;`y k2L2

+
1

2�
krh;`y k2(V h)�

+
��
2
+
"

2
j�0j1��c1

�
keh;`y k2H1

�D

with � > 0. Now, we choose �; " as in the statement of the theorem and obtain

d

dt

1

2
keh;`y k2L2 +

1

2
����keh;`y k2H1

�D

� � � 1
2
keh;`y k2L2 +

1

2�
krh;`y k2(V h)� ;(5.14)

where we will use from now on the abbreviation � = 2
�
1
2" j�0j1��c1 + ����

�
to

enhance readability. With the help of Gronwall's Lemma [102, Corollary 2] we
obtain an a-posteriori estimate for the L1(I; L2)-error from this:

keh;`y (t)k2L2 � kPnIhy0 � Ihy0k2L2e�t + ��1
Z t

0

krh;`y (s)k2(V h)�e
�(t�s)ds:

The second summand thereof is integrated using integration by parts, i.e.Z T

0

e�t
�Z t

0

e��skrh;`y (s)k2(V h)�ds

�
dt = ��1

Z T

0

(e�(T�t) � 1)krh;`y (t)k2(V h)�dt;

and together with the �rst summand we obtain the L2(I; L2)-estimate (5.11). As
in [236] the L2(I;H1)-estimate (5.12) is obtained from (5.14) by integrating with
respect to time over I and using (5.11). □

To conclude this section, let us note that by a slight modi�cation of this ap-
proach it is possible to exploit less regularity of yh. The price to pay is that the
constants in the resulting estimates cannot be computed explicitely, in general.
More precisely, the unknown referee of [166] suggested the following modi�cation
based on the Ladyzhenskaya-Gagliardo-Nirenberg inequality; cf. the end of [166,
Section 3.2]: if d = 2 and yh 2 L1(I;W 1;4), estimate (5.13) can be replaced by����

Z



(�(yh;`)� �(yh))�ryhreh;`y dx

���� � j�0j1��keh;`y kL4 jyhjW 1;4 jeh;`y jH1 :

In order to apply Gronwall's Lemma as before one has to observe

keh;`y kL4 jyhjW 1;4 jeh;`y jH1 � 1

2�
keh;`y k2L4 jyhj2W 1;4 +

�

2
jeh;`y j2H1

� C2
LGN;2

2�
jyhj2W 1;4keh;`y kL2 jeh;`y jH1 +

�

2
jeh;`y j2H1 ;
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where Young's inequality with parameter � > 0 has been used in the �rst, and the
2D-Ladyzhenskaya-Gagliardo-Nirenberg interpolation inequality,

k'kL4 � CLGN;2k'k
1
2

L2 j'j
1
2

W 1;4 8' 2W 1;4;

in the second step. Finally, a second application of Young's inequality, again with
parameter �, allows to obtain

keh;`y kL4 jyhjW 1;4 jeh;`y jH1 � C4
LGN;2

8�3
jyhj4W 1;4keh;`y k2L2 + �jeh;`y j2H1 :

In dimension d = 3 one has to apply

k'kL4 � CLGN;3k'k
1
4

L2 j'j
3
4

W 1;4 8' 2W 1;4

and Young's inequality with exponents 4 and 4
3 to arrive at

keh;`y kL4 jyhjW 1;4 jeh;`y jH1 � C8
LGN;3

64�8
jyhj8W 1;4keh;`y k2L2 +

 
�

2
+
3�

4
3

4

!
jeh;`y j2H1 :

In both cases one can proceed similarly as in the proof before in order to obtain

estimates for e
h;`
y of structure analogous to those in Theorem 5.5. The main di�er-

ence is that the constants CLGN;2; CLGN;3 > 0, whose exact values are unknown in
general, enter the estimates. For explicit upper bounds of these constants we refer
the reader to, e.g., [2, Theorem 7.3] and the references therein.

5.2.3. A-posteriori error estimates including EIM. It is a well-known issue
in RB methods that the evaluation of nonlinear terms such as �(y) requires access
to the full number of degrees of freedom. Since the reasoning behind MOR is
to avoid such computations within the full model, alternatives have to be found.
In order to allow for a so-called e�cient o�ine-online splitting, the evaluation of
nonlinearities in the reduced-order model for (5.3) needs to be done by methods
of hyperreduction, e.g., the empirical interpolation method (EIM, [23]). In this
section we follow Section 4 of our paper [166], describe a very basic version of the
latter technique applied to our model problem, and show how the additional errors
can be incorporated in the a-posteriori error estimates of Theorem 5.5 using the
same technique as in [151, 150].

First, we introduce EIM as far as required for our purpose and as concise as
possible; for details see, e.g., [23, 283]. In order to present the main idea without
technicalities, we stick to the continuous setting and omit space discretization;
the generalization to �nite element spaces with a nodal basis is straightforward.
Given so-called snapshots y1; :::; yN 2 C(
), and a tolerance tolEIM > 0, determine
via a greedy procedure some functions �1; :::;�m 2 C(
) and interpolation points
x1; :::; xm 2 
 such that

�(yi(xj)) =
mX
k=1

ci;k�k(xj); i = 1; :::; N; j = 1; :::;m;

implies


�(yi)�Pm

k=1 ci;k�k



L1

� tolEIM. For some w 2 C(
) we de�ne the EIM
approximation of �(w) as

�EIMm (w) =
mX
k=1

ck�k;
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where c 2 Rm solves the linear m � m-system �(w(xj)) =
Pm
k=1 ck�k(xj), j =

1; :::;m. With this we may introduce a RB-EIM-reduced counterpart of (5.3) as

8>>>>><
>>>>>:

h@tyh;`;m(t); 'h;`iH�1
�D
;H1

�D

+ hAEIM
m (yh;`;m(t))yh;`;m(t); 'h;`iH�1

�D
;H1

�D

= hf(t); 'h;`iH�1
�D
;H1

�D

8t 2 I; 'h;` 2 V h;`;
yh;`;m(0) = Ph;`Ihy0;

(5.3h;`;m)

where AEIM
m denotes the EIM-reduced version of the nonlinear di�erential operator

de�ned by

hAEIM
m (y)'; iH�1

�D
;H1

�D

:=

Z



�EIMm (y)�r'r dx; ';  2 H1
�D :

Note that there is an e�cient online evaluation of AEIM
m because the sti�ness matri-

ces associated to the operators �r��k�r can be precomputed in the o�ine-phase.
Therefore, we only have to deal withm and ` degrees of freedom when dealing with
AEIM
m . In the following we will denote the EIM error by

�EIM
m (y) := k�(y)� �EIMm (y)kL1 :

Results addressing a-priori convergence of EIM can be found, e.g., in [23, 122, 207].
For sophisticated algorithmic coupling of model order reduction and hyperreduc-
tion we refer to [103, 257] for instance. Other kinds of hyperreduction include,
e.g., discrete empirical interpolation (DEIM, [80]), or dynamic mode decomposition
(DMD, [7]).

Now, we extend the results from Section 5.2.2 by incorporating also EIM errors.

It is clear that A(yh;`)yh;`, and therefore rh;`y , cannot be computed e�ciently during
the online phase due to the fact that the assembly of the sti�ness matrix for A(yh;`)
would require us to use the full number of degrees of freedom. Hence, the estimates
of Theorem 5.5 cannot be evaluated e�ciently in the online phase. Consequently,

evaluation of r
h;`
y has to be avoided. Instead, given an arbitrary trajectory yh;`

ful�lling Assumption 5.3 (not necessarily a solution of (5.3h;`;m)), we introduce

the EIM-reduced residual r
h;`;m
y of yh;` as

rh;`;my (t) := @ty
h;`(t) +AEIM

m (yh;`(t))yh;`(t)� f(t) 2 (V h)�; t 2 I:(5.15)

It is obvious, that r
h;`;m
y allows an e�cient online evaluation. It remains to show

how the error yh;` � yh to the truth-solution can be estimated in terms of r
h;`;m
y

instead of r
h;`
y . Since all changes in the arguments already known from Section 5.2.2

are straightforward utilizing the estimates (5.16) and (5.17) below, we omit the
details and only state the results. As before, we will we omit the argument \t"
in the following. A short computation as in Section 5.2.2 shows that the error

e
h;`
y := yh;` � yh ful�lls

hrh;`;my ; 'hiH�1
�D
;H1

�D

= h@teh;`y ; 'hiH�1
�D
;H1

�D

+ hA(yh;`)yh;` �A(yh)yh; 'hiH�1
�D
;H1

�D

+ hAEIM
m (yh;`)yh;` �A(yh;`)yh;`; 'hiH�1

�D
;H1

�D

:
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As before, it follows

(5.16)
d

dt

1

2
keh;`y k2L2 + ����jeh;`y j2H1 � hrh;`;my ; eh;`y iH�1

�D
;H1

�D

�
Z



(�(yh;`)� �(yh))�ryhreh;`y dx

�
Z



(�EIMm (yh;`)� �(yh;`))�ryh;`reh;`y dx:

The second summand on the right-hand side can be estimated as in Section 5.2.2.
The third summand is estimated as follows:

(5.17)

����
Z



(�EIMm (yh;`)� �(yh;`))�ryh;`reh;`y dx

����
� �EIM

m (yh;`)��jyh;`jH1keh;`y kH1

� 1

2�
�EIM
m (yh;`)��jyh;`j2H1 +

1

2
��EIM

m (yh;`)��keh;`y k2H1 ;

where � > 0 is the parameter in Young's inequality. With this, we are ready to
state the modi�ed version of Theorem 5.5.

Theorem 5.6 ([166], Theorem 4.1). Let Assumptions 1.5, 1.6, 1.8 and 5.3
hold, and let c1 > 0 be such that

jyh(t)jW 1;1 � c1 8t 2 I:
Given yh;`, choose "; �; � > 0 such that

� + "j�0j1��c1 + ��EIM
m �� = ����;

is satis�ed with the EIM error �EIM
m := supt2I �

EIM
m (yh;`(t)). Moreover, we

introduce the constant � := 2
�
1
2" j�0j1��c1 + ����

�
. Then, the following a-

posteriori error estimates for yh;` hold true:

keh;`y (t)k2L2 � e�tkyh;`(0)� yh(0)k2L2

+

Z t

0

e�(t�s)
�
��1krh;`;my (s)k2(V h)�

+��1�EIM
m ��jyh;`(s)j2H1

�
ds;

(5.18)

keh;`y k2L2(I;L2) � ��1
�
e�T � 1

� kyh;`(0)� yh(0)k2L2
+ ��1

Z T

0

(e�(T�t) � 1)
�
��1krh;`;my (t)k2(V h)�

+��1�EIM
m ��jyh;`(t)j2H1

�
dt;

(5.19)

keh;`y k2L2(I;H1
�D

) � ��1� ��1� e�T kyh;`(0)� yh(0)k2L2

+ ��1� ��1�

Z T

0

e�(T�t)
�
��1krh;`;my (t)k2(V h)�

+��1�EIM
m ��jyh;`(t)j2H1

�
dt:

(5.20)
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We also �x the following simpli�ed estimates, that are less sharp but exhibit a
favorable structure. They are weighted sums of the initial L2-error, the L2-(V h)�-
norm of the residual, and the EIM error. This allows to determine the optimal
choice of the parameters "; �; � for these simpler estimates.

Corollary 5.7 ([166], Corollary 4.2). Under the assumptions of the previous
theorem it holds:

keh;`y (t)k2L2 � e�tkyh;`(0)� yh(0)k2L2 + e�t��1
Z t

0

krh;`;my (s)k2(V h)�ds

+ ��1e�t�EIM
m ��

Z t

0

jyh;`(s)j2H1ds;

keh;`y k2L2(I;L2) � ��1
�
e�T � 1

� kyh;`(0)� yh(0)k2L2
+ ��1(e�T � 1)

�
��1krh;`;my k2L2(I;(V h)�)

+��1�EIM
m ��jyh;`j2L2(I;H1)

�
;

keh;`y k2L2(I;H1
�D

) � e�T ��1� ��1� kyh;`(0)� yh(0)k2L2
+ e�T ��1� ��1�

�
��1krh;`;my k2L2(I;(V h)�)

+��1�EIM
m ��jyh;`j2L2(I;H1)

�
:

Note that the error estimates in the results above hold true without additional
assumptions on the size of residuals and EIM errors. In practice, however, in
order to obtain an accurate reduced-order model and corresponding small error
estimates, it will be necessary to construct RB and EIM bases in such a way that
the size of residuals and EIM errors is balanced appropriately. We do not address
this issue here and refer the reader for instance to [103, 257].

Moreover, let us point out that the EIM error �EIM
m (yh;`) at yh;` cannot be

computed without referring to the full number of degrees of freedom; however, the
computation of k�(yh;`)��EIMm (yh;`)kL1 in the full degrees of freedom is still much
cheaper than the computation of the respective full sti�ness matrices associated
with the nonlinear elliptic operator that would be required for the computation

of r
h;`
y . In contrast, note that the H1-seminorm of yh;` required in Theorems 5.6

and 5.9 admits e�cient online evaluation, because it is induced by a bilinear form
whose matrix w.r.t. the basis of V h;` can be precomputed and saved. Similarly,
also the weight matrices for the evaluation of the EIM-reduced residual can be
precomputed and saved in the o�ine phase.

Let us brie
y outline a possibility to relax Assumption 5.3.2 in order to allow
error estimation also for a discontinuous in time trajectory.

Remark 5.8 ([166], Remark 4.4). Let yh;`, e.g., be given as

yh;` := 1f0gY
h;`
0 +

NtX
k=1

1(tk�1;tk]Y
h;`
k ; Y

h;`
k 2 V h;`; k = 0; :::; Nt;

for a partition 0 = t0 < t1 < ::: < tNt�1 < tNt = T . Such yh;` might be obtained by
applying the backward Euler method in its DG0-formulation to (5.3h;`;m). Since
our error estimates do not apply directly to yh;` due to discontinuity w.r.t. time,
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we replace yh;` by its piecewise linear and continuous w.r.t. time interpolation ŷh;`

w.r.t. the same partition de�ned by ŷh;`(tk) := yh;`(tk) = Y
h;`
k for k = 0; :::; Nt.

Obviously, Theorems 5.6 and 5.9 apply to ŷh;` and in order to obtain an estimate
for the overall error we need to add the interpolation error ŷh;` � yh;`. The latter
can be computed explicitely:

kyh;` � ŷh;`k2L1(I;L2) � max
1�k�Nt

kY h;`k � Y h;`k�1k2L2 ;

kyh;` � ŷh;`k2L2(I;L2) �
NtX
k=1

1

3
(tk � tk�1)kY h;`k � Y h;`k�1k2L2 ;

kyh;` � ŷh;`k2L2(I;H1) �
NtX
k=1

1

3
(tk � tk�1)kY h;`k � Y h;`k�1k2H1 :

The appearance of such jump terms is what we may expect for an a-posteriori error
for a discontinuous in time trajectory. Note that compared to classical a-posteriori
error estimates for discontinuous in time methods, see [202, 263] for instance, we
do not assume that yh;` is the solution of a discrete in time analogue to (5.3h;`).

We conclude this section by mentioning the second main result from our paper
[166] without proof; for the respective details we refer the interested reader to [166,
Section 3.3]. Recall from the beginning of Section 5.2.2 that the a-posteriori error
estimates presented in this section so far depend on the L1(I;W 1;1)-norm of the
truth-solution. In the rough regularity setting of Assumptions 1.5, 1.6 and 1.8 or
Assumptions 1.5, 1.6 and 1.10 we expect that the respective constant c1 in The-
orem 5.6 depends on the space discretization because the continuous in space and
time solution of (5.3) does not exhibit L1(I;W 1;1)-regularity, in general. More
precisley, we expect that c1 tends to in�nity as discretization gets �ner. There-
fore, we proposed in [166, Sections 3.3] also a second approach that is motivated
by the intention to exploit less regularity of the truth-solution, more precisely:
L1(I;W 1;p)-regularity for some p > d only. For continuous in space and time
solutions of (5.3) this regularity is guaranteed in the Bessel potential space setting
from [35], i.e. under Assumptions 1.5, 1.6 and 1.10; cf. Theorem 1.14 and (1.8).
The price to pay for exploiting less regularity of yh is that we do no longer obtain
an explicit formula for the error estimate. Instead, the evaluation of the estimate
now requires the solution of an ODE. Moreover, for technical reasons we require
additional assumptions on time regularity of the residual and the size of the initial
error.

Theorem 5.9 ([166], Theorem 4.3). Let Assumptions 1.5, 1.6, 1.8 and 5.3
hold, and let p > d and cp > 0 be such that

jyh(t)jW 1;p � cp 8t 2 I:
Moreover, we assume that the initial error does not vanish, i.e. kyh;`(0) �
yh(0)kL2 > 0, and that t 7! krh;`;my (t)k2V �

h
is piecewise continuous on I. Choose

"; �; � > 0 such that

���� = � + " � ��(2��)1� 2
q j�0j

2
q1cp + ��EIM

m ��
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is satis�ed for the EIM error �EIM
m = supt2I �

EIM
m (yh;`(t)). Given the constants

� = 2����, � = "�1��(2��)1�
2
q j�0j

2
q1cp, and r = 1 � 2

p , let ': I ! [0;1) be the

solution to the ODE

'0(t) = �'(t) + �'(t)r + ��1krh;`;my (t)k2V �
h
+ ��1�EIM

m ��jyh;`(t)j2H1 ; t 2 I;
'(0) = keh;`y (0)k2L2 :

Then, the following a-posteriori error estimates for yh;` hold true:

keh;`y (t)k2L2 � '(t); 8t 2 I; keh;`y k2L2(I;L2) �
Z T

0

'(s)ds;(5.21)

keh;`y k2L2(I;H1
�D

) �
1

����

 
kyh;`(0)� yh(0)k2L2 + ��1krh;`;my k2L2(I;V �

h
)

+ ��1�EIM
m ��jyh;`j2L2(I;H1) +�

Z T

0

'(s)ds

+�

Z T

0

'(s)2=qds

!
:

(5.22)

5.2.4. Numerical illustration. This section closely follows [166, Section 5]. We
illustrate and compare the quality of our a-posteriori POD/RB-EIM error estimates
numerically for three prototypical test problems. By \approach I" we refer to the
estimates from Theorem 5.6 and by \approach II" to those from Theorem 5.9.
Although our results apply to general RB methods, our particular focus is on
POD-MOR as explained at the beginning of this chapter. Therefore, we restrict
ourselves to reduced ansatz spaces V h;` spanned by a POD basis of rank ` in our
numerical tests.

The two-dimensional underlying domain 
 = [0; 1]2 and the time interval
I = [0; 1] are the same in all three test problems. We �x two euclidean discs
C1 = B 1

5

�
1
4 ;

1
4

�
and C2 = B 1

5

�
3
4 ;

3
4

�
, and the three boundary parts �1 = fx 2

@
: x2 = 1g, �2 = fx 2 @
: x1 = 0; x2 <
1
2g, �3 = fx 2 @
: x1 = 1; x2 <

1
2g. The

nonlinearity is given by

�(y) =
3

4
+

1

2(1 + e5y)
:

We introduce the three test problems P1-P3 by equipping the equation

@ty �r � �(y)ry = 10 sin(2�t)1C1 � 10 cos(2�t)1C2

with the following boundary and initial conditions:

P1. Pure homogeneous Dirichlet boundary conditions and zero initial condition.
P2. Pure homogeneous Neumann boundary conditions and zero initial condition.
P3. Mixed boundary conditions: homogeneous Dirichlet boundary condition y =

0 on I � �1, nonhomogeneous Neumann conditions �(y)@ny = sin(2�t) on
I��2, and �(y)@ny = � cos(2�t) on I��3, and natural boundary condition
@ny = 0 on the remaining part of the boundary. The initial condition is
given by [y(0)](x1; x2) :=

1
10 (1� x1).
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Space and time discretization. All computations are done utilizing FEniCS [9,
203] and piecewise linear �nite elements on a mesh generated by mshr, the mesh-
generation tool of FEniCS, with Nh = 5769 degrees of freedom and maximum cell
diameter hmax � 2:1 � 10�2. The POD basis is generated with snapshots coming
from an (implicit) Crank-Nicolson solution of the equation with Nt = 2500 time
steps (\reference solution"). Hereby, the appearing nonlinear equations are solved
by the built-in nonlinear solver of FEniCS. The same set of snapshots is also used to
generate the EIM approximation of the nonlinearity in a standard greedy procedure
with L1-tolerance 10�6 independent of the number of POD basis functions, i.e.
we do not balance accuracy of POD and EIM approximation. The POD-EIM-
reduced equation is again solved utilizing the (implicit) Crank-Nicolson scheme
with Nt = 2500 time steps, whereby the nonlinear algebraic equations appearing
in every time step are solved by a standard Newton method that is initialized with
a semiimplicit Euler step as �rst guess (\reduced solution"). Approximate true
L2(I; L2)-, L1(I; L2), and L2(I;H1)-errors are computed with respect to a further
numerical solution that is computed on the same �nite element mesh, but with a
four times higher number of time steps than for the snapshot generation (\truth-
solution"). Finally, to ensure comparability between the di�erent test problems
and norms, all errors and estimates are relative errors, i.e. the absolute error or
error estimate is divided by the corresponding norm of the truth-solution.

Estimation of the required parameters. Parameters like ��; ��; j�0j1 etc. are
known from the problem data. The solution-dependent parameters are found as
follows: the norms of yh are computed exactly based on the truth-solution in
order to give the possibility to determine whether our estimates are sharp or not
under the exact data. In real applications we would have to estimates those norms
appropriately. The quality of the error estimates |as absolute values| can heavily
deteriorate in case of \safe" (i.e. large) estimates for the parameters. The same
might happen in case of just inconvenient problem data due to the exponential
terms in the estimates. However, we would like to point out that one might still
hope in such a case that the relative behavior of the estimates, i.e. whether they
decrease/increase by some factor, provides some information on the quality of
the reduced-order model. Although we compute the EIM error �EIM

m as de�ned
in Section 5.2.3 by accessing the full number of degrees of freedom, we did not
observe signi�cant time consumption for this. We believe that this is due to the
fact that evaluation of �(yh;`) in the full model is much cheaper than assembling
the corresponding sti�ness matrices in the full model.

Estimates for approach I (Theorem 5.6). For approach I we determine the pa-
rameters "; �; � in such a way that the simpler estimates for the L2(I;H1)-error
in Corollary 5.7 become optimal, and plug in the same parameters into the esti-
mates from Theorem 5.6. Integrals with respect to time are evaluated using Gauss
quadrature of order 2 on every subinterval given by the time steps. To improve
readability, we omit the estimates of Corollary 5.7 in our plots. In fact, they are
not much worse than those of Theorem 5.6; we refer the interested reader to the
diagramms in [166] that also display the estimates from Corollary 5.7.

Estimates for approach II (Theorem 5.9). In order to obtain meaningful results
we had to use relatively large values for the integrability exponent p, e.g., p = 16.
Therefore, choosing p according to the requirements of [35], cf. Chapter 1, i.e.
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only slightly larger than d in general, seems to be di�cult. Moreover, the following
parameters turned out to be a good choice:

� =
1

10
(1��EIM

m )����; " =
9

10

1��EIM
m

��(2��)1�
2
q j�0j

2
q1cp

; � =
����
��

:

Note that optimization of the parameters as in approach I is not possible because we
do not have an explicit formula at hand. The ODE for the evaluation of ' is solved
utilizing the backward di�erence formulae solver (BDF) within the solve ivp-
routine from scipy.integrate, with relative tolerance rtol=10�6, and absolute
tolerance atol=10�3 � kyh(0) � yh;`(0)k2L2 . The maximal allowed step size is the
same as the size of time steps in the reduced-order model. We found that among
other methods (Runge-Kutte with 2/3 and 4/5 stages, Radau) this choice delivered
the best results. However, it is clear that the numerical approximation of ' is
challenging (in particular, for small p or small initial values), which might in
uence
the reliability of the results.

Figures 5.1 to 5.4 show the results of our experiments. It can be seen that ap-
proach I yields the better results the smoother the truth-solution is. Test problems
P1 and P2 (homogeneous boundary conditions, Figures 5.1 and 5.2) perform better
than the problem with mixed boundary conditions (Test problem P3, Figure 5.3).
Moreover, we observe that the a-posteriori error estimates of both approaches start
stagnating at about the same point at which also the true errors stagnate due to
time discretization. Indeed, in Figure 5.4 it can be seen that this stagnation comes
from stagnation of the residual norm at roughly the same magnitude as the size
of time steps. This indicates that from that point on the overall accuracy of the
reduced-order model cannot be improved further by increasing the number of basis
functions; see also, e.g., [129] for balancing of POD-MOR and time discretization
errors for linear quadratic parabolic optimal control problems.

How much approach II depends on the choice of the exponent p can be seen in
Figure 5.2.b. The estimates stagnate very early for small p, i.e. approach II unfor-
tunately does not yield reasonable results in that case. For large p the estimates
seem to get closer to the values of approach I. In this sense one might interpret
approach II as a modi�cation of approach I that trades strength of the required as-
sumption (bigger p means stronger assumption) against quality of results (smaller
p means less meaningful results and numerical instability).

For the computing times observed in our numerical experiments we refer to
Table 5.1. The evaluation of the POD-EIM-reduced model is about 25- to 100-
times faster than the evaluation of the full model. We believe that even higher
speedups might be possible in case of �ner �nite element discretization. Compared
to the computing time for the full model, evaluation of the a-posteriori error esti-
mates from approach I is quite cheap. Evaluation of the POD-EIM-reduced model
together with computation of an error estimate still yields a speedup of factor at
least 10. As expected, evaluation of the estimates from approach II needs slightly
more time.

5.2.5. A-posteriori POD/RB errors in the context of optimal control. Ex-
tending the comments in [166, Section 2.3], let us come back to the optimal control
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b. Approach II
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L1-L2 L2-L2 L2-H1 (error estimates, p= 6)
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Figure 5.1. Test problem P1 (homogeneous Dirichlet boundary
conditions): a. estimates from approach I (Theorem 5.6 with
optimized parameters) and b. estimates from approach II (for
p 2 f6; 16; 32g). Approximate true errors w.r.t. the truth-solution
are included in dotted lines.
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Figure 5.2. Example P2 (homogeneous Neumann boundary con-
ditions): a. estimates from approach I (Theorem 5.6 with opti-
mized parameters) and b. estimates from approach II for p = 16.
Approximate true errors w.r.t. the truth-solution are included in
dotted lines.
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Figure 5.3. Example P3 (mixed boundary conditions): a. esti-
mates from approach I (Theorem 5.6 with optimized parameters)
and b. estimates from approach II for p = 16. Approximate true
errors w.r.t. the truth-solution are included in dotted lines.
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Figure 5.4. Error contributions in Example P3 (mixed bound-

ary conditions): residual norms krh;`;my kL2(I;(V h)�), initial errors

keh;`y (0)kL2 , and EIM errors �EIM for yh;`;m.

Computing times for Example P1 Example P2 Example P3
Number of EIM basis functions 28 36 49
Setup EIM-reduced model 50-57% 70% 99-157%
POD-EIM-reduced model 1% (0.9%) 1% (1.1%) 1-4% (1.6%)
Approach I (Corollary 5.7) 2-3% (3%) 2-4% (4%) 3-6% (5%)
Approach I (Theorem 5.6) 3-6% (6%) 3-9% (8%) 5-12% (10%)
Approach II 3-15% (9-15%) 4-22% (18%) 6-15% (11%)

Table 5.1. Computing times for the setup of the EIM-reduction of
the nonlinearity, the evaluation of the POD-EIM-reduced model,
and the error estimates, respectively. 100% correspond to the time
that is required to compute the snapshots (\reference solution").
We show the range of times observed in the experiments from
Figures 5.1 to 5.3, and in brackets we give the time observed for
` = 13 POD basis functions.

problem (P) introduced in Chapter 1. We consider the particular purely time-
dependent control setting from Assumption 3.1; see also Example 1.9.3. Fixing a
space discretization for the underlying state equation as described in Section 5.2
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results in a semidiscrete (in space) counterpart (Ph) of (P):8>>>>>>>>>>>><
>>>>>>>>>>>>:

min
yh;u

J(yh; u)

s.t. u 2 Uad

and

8>>>>>><
>>>>>>:

h@tyh(t); 'hiH�1
�D
;H1

�D

+ hA(yh(t))yh(t); 'hiH�1
�D
;H1

�D

=
mX
i=1

hbi; 'hiH�1
�D

;H1
�D

ui(t)

8t 2 I; 'h 2 V h;
yh(0) = Ihy0:

(Ph)

Again, �xing a concrete space discretization we may consider the resulting semidis-
crete problem (Ph) and its solution as reference object (\truth-solution") as we did
with (5.3h) and its solution. Proposition 5.2 shows that (Ph) is well-de�ned because
the solution map of the underlying semidiscrete equation is well-de�ned.

At this point, recall the remarks we made about discretization of optimal
control problems in the introduction chapter of this thesis. Due to the purely
time-dependent control structure of (P), the semidiscrete (in space) problem (Ph)
may be regarded as variational discretization [149] of (P) when only space is dis-
cretized. We mention, e.g., [236] for the same semidiscrete (in space) setting in
the context of a-posteriori POD errors for an optimal control problem governed
by a semilinear parabolic PDE, or [92] for semidiscrete (in space) �nite element
error estimates for optimal control of the instationary Navier-Stokes equations. To
obtain a fully discrete problem, there are di�erent possibilities to choose an appro-
priate time discretization. Our POD/RB a-posteriori error estimates in particular
apply to CG1 time discretization, but an extension to, e.g., DG0 (implicit Euler)
discretization has been sketched in Remark 5.8.

In numerical algorithms for the solution of the semidiscrete control prob-
lem (Ph), we may have to evaluate the semidiscrete reduced functional jh(u) :=
J(yh(u); u) for several control functions u where yh(u) denotes the solution of
the underlying state equation in (Ph). Since repeated evaluation of jh is costly,
POD/RB-MOR together with EIM can be applied to this equation. Therefore,
and due to additional time discretization, we only have the possibility to com-
pute an approximate solution yh;`;m = yh;`;m(u), i.e. a solution of a time-discrete
counterpart of (5.3h;`;m), instead of the respective truth-solution yh(u). A short
computation shows that the resulting error in the reduced functional can be esti-
mated, e.g., as follows:

jJ(yh;`;m; u)� J(yh; u)j �
�
1

2
kyh;`;m � yhkL2(I;L2) + kyh;`;m � ydkL2(I;L2)

�
� kyh;`;m � yhkL2(I;L2):

Consequently, for each of the L2(I; L2)-estimates for the solutions of (5.3h) from
Theorems 5.6 and 5.9 we immediately obtain a corresponding a-posteriori error
estimate for the reduced functional of (Ph) . Retrospectively, this may be regarded
as motivation for the results presented in the section. Note that the above estimate
for the functional error di�ers from the one obtained in [232, Theorems 4 and 9]
because we do not utilize adjoint information.
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Let us conclude our discussion of a-posteriori POD/RB error estimates for the
state equation by pointing out some di�culties related to the open problem of
such estimates for the whole optimal control problem. We already saw that our
error estimates for the semidiscrete state equation allow to estimate inexactness
in the POD/RB-reduced evalutation of the reduced objective functional jh of the
semidiscrete control problem (Ph). As far as we know, all recent approaches for
the adaptive coupling of MOR and numerical optimization for a nonlinear prob-
lem like (Ph), see, e.g., [38, 232, 236, 183, 21], require a-posteriori POD/RB
error estimates both for the evaluation of jh and its gradient. For the latter, in
essence an a-posteriori POD/RB error estimate w.r.t. the L2(I;H1

�D
)-norm for the

adjoint equation of (Ph) would be needed. We refer to, e.g., [232, 236] for such
estimates in the case of di�erent, linear and semilinear parabolic model problems.
An extension of these results to our quasilinear parabolic problem seems to be
a challenging task. Let us brie
y explain the main obstruction. The coe�cients
of the POD/RB-reduced adjoint equation depend on the POD/RB-reduced state.
For the POD/RB error of the state we have at hand a-posteriori errors w.r.t. the
L1(I; L2)- and the L2(I;H1

�D
)-norm so far, cf. Theorem 5.6, but not, e.g., w.r.t.

the L1(Q)-norm. The latter, however, would be a typical norm to measure inex-
actnes in the coe�cients of a PDE. Consequently, obtaining a-posteriori POD/RB
error estimates for the adjoint equation poses the following additional di�culty:
we have to deal with inexactnes in the coe�cients inferred by an inexact state, and
we can only estimate this inexactnes in the coe�cients with the help of existing
a-posteriori POD/RB error estimates for the state. If possible at all, we believe
that this will require rather strong assumptions. Therefore, we think that as a �rst
step it could be worth considering a model problem with a slightly easier equation
instead in which the quasilinear nonlinearity is of integral (nonlocal) type as in,
e.g., [82] or [81, Chapter 12.2].

5.3. POD for the optimal control problem

In the previous section we have presented a-posteriori POD/RB error estimates
for the state equation of our control problem (P) that have been obtained in [166].
Further, we explained that state of the art techniques for the adaptive coupling of
POD/RB-MOR and numerical optimization would require us to have at hand also
such estimates for the adjoint equation. This topic, however, is an open problem
whose di�culty essentially arises from the combination of the linear nature of
POD/RB methods with the highly nonlinear structure of our problem.

Nevertheless, POD-MOR allows to reduced the computational costs of solving
(P) numerically by a signi�cant amount. In our numerical experiments presented
in the following we observe, e.g., a speedup factor of about 10. Hereby, instead
of utilizing a fully certi�ed method [38, 232, 236, 183, 21] based on a-posteriori
error control we roughly follow earlier ideas on the combination of POD-MOR and
SQP-type optimization algorithms from [116, 38] and formulate a purely heuristic,
estimate-free method. Consequently, our contribution in this section is of purely
computational nature and we do not address a theoretical analysis of the applied
method. In some sense one may view this section as experimental continuation
and extension of our analysis of the SQP method in Chapter 4.
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We consider two approaches for the coupling of POD-MOR and SQP(-type)
methods that will be described precisely in Section 5.3.1. The �rst one, called
\POD-SQP" from now on, has been introduced in [181]. In a nutshell, one ini-
tially determines a POD basis and reduces all computations of the classical SQP
method w.r.t. this basis. The second approach, called \POD-Newton-SQP" in
the following, has |to the best of our knowledge| not been considered in the
literature so far, although it has some similarties to di�erent known ideas as we
will explain in more detail below. In essence, for a Newton-like modi�cation of the
SQP method, called \Newton-SQP" from know on, we solve the linear quadratic
subproblems with the help of POD-MOR. Hereby, in each Newton-SPQ-iteration
a new POD basis is determined from the corresponding full-order solutions of the
nonlinear state and the adjoint equation.

Of course, we expect that POD-SQP is more e�cient because a larger share
of the computations is performed within the reduced-order model than in POD-
Newton-SQP. On the other hand, our numerical results in Section 5.3.2 indicate
that due to the update of the POD basis in each iteration POD-Newton-SQP is
less sensitive w.r.t. the initialization than POD-SQP. Regarding computing times,
POD-Newton-SQP achieves a reduction of the computational costs of roughly fac-
tor 10 compared to Newton-SQP in our experiments.

5.3.1. POD-SQP, Newton-SQP, and POD-Newton-SQP. Let us now give
some more details on the numerical schemes under consideration. As done for the
SQP method in Chapter 4, we state all algorithms in function space. Of course,
all computations formulated in functions spaces have to be carried out utilizing
an appropriate space and time discretization in practice. We will not address this
aspect in more detail.

We start with POD-SQP, an ansatz for the coupling of POD-MOR and the SQP
method that goes back to [181] where it was applied to bilinear elliptic problems.
We follow the variant in [116, Algorithm 7.2] concerned with semilinear parabolic
problems, see also [117], and describe a simpli�ed version hereof applied to our
setting in Algorithm 1. Let us brie
y summarize the simpli�cations in the formu-
lation of this algorithm compared to [116]. First, we have �xed the length of the
POD basis while the number of basis functions in [116] is chosen adaptively in each
SQP iteration. Moreover, [116] also accounts for inexactness in the solutions of
the subproblems. Nevertheless, the essence of the approach, i.e. applying an SQP
method with the subproblems being POD-reduced w.r.t. an a-priori determined
and �xed basis, is kept.

In order to propose a slightly di�erent coupling of POD-MOR with an SQP-
type optimization algorithm, let us as an intermediate step �rst explain the main
idea of what we call Newton-SQP method in the following. We describe it in
Algorithm 2. Herein, note that the SQP subproblem (QP) at (yk; uk; pk) in line 7
of Algorithm 2 is equal to

uk+1 := argminu2Uad j
0(uk)(u� uk) + 1

2
j00(uk)(u� uk)2;

because yk and pk are state and adjoint state associated with uk. The di�erence
between the Newton-SQP and the SQP method is that in the Newton-SQP method
we do not linearize state and adjoint equation; see lines 2 and 3 of Algorithm 2.
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Algorithm 1: POD-reduced SQP method (“POD-SQP”)

Input: initial guesses (y0; u0; p0) for the KKT tripple, control usg 2 Uad
for the snapshot generation, accuracy parameter �POD > 0 for the
generation of a POD basis, optimality tolerance �SQP > 0

Output: Approximation of the optimal state, control, and adjoint state

1 Compute the state ysg = S(usg);

2 Compute the the adjoint state psg = ~S0(Busg)�(ysg � yd) ;
3 Compute a POD basis B from ysg and psg with accuracy �POD > 0 ;

4 for k = 1; 2; 3; ::: do
5 Set up the POD-reduced (w.r.t. basis B) SQP subproblem (QP) at

(yk�1; uk�1; pk�1);
6 Solve this problem to obtain the next iterates (yk; uk; pk);

7 Compute incrk = kyk � yk�1kL1 + kuk � uk�1kL1 + kpk � pk�1kL1 ;
8 if incrk < �SQP then
9 return yk; uk; pk

This is similar to [38, Algorithm 5.2] or [276, Algorithm 3.3]. Solving the nonlinear
parabolic state equation (instead of its linearization) is not a major issue since there
are e�cient nonlinear solvers available in many �nite element software libraries.
We call this approach Newton-SQP because it reduces to the classical Newton

method for solving rj(�u) !
= 0 in the special case without control-constraints. One

may keep this in mind as a heuristic motivation of this approach.

Algorithm 2: Newton-SQP method

Input: initial guess u0 2 Uad for the control, optimality tolerance
�Newton > 0

Output: Approximation of the optimal state, control, and adjoint state

1 for k = 0; 1; 2; ::: do
2 Compute the state yk = S(Buk);

3 Compute the adjoint state pk = ~S0(Buk)�(yk � yd);
4 Compute resk = kuk � ProjUad(�
�1B�pk)kL2(�);
5 if resk < �Newton then
6 return yk; uk; pk

7 Solve the SQP subproblem (QP) at (yk; uk; pk) to obtain the next

control iterate uk+1;

Including POD-MOR into Algorithm 2 is rather straightforward. Our sug-
gestion inspired by [38] is formulated in Algorithm 3. Note that this approach
still requires the solution of the nonlinear state and the adjoint equation in the
full number of degrees of freedom. POD-MOR is only applied to the linear qua-
dratic subproblems. This has the advantage that we do not require hyperreduction
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Algorithm 3: POD-Newton-SQP method

Input: initial guess u0 2 Uad for the control, optimality tolerance
�Newton > 0, accuracy parameter �POD > 0 for the generation of a
POD basis

Output: Approximation of the optimal state, control, and adjoint state

1 for k = 0; 1; 2; ::: do
2 Compute the state yk = S(Buk);

3 Compute the adjoint state pk = ~S0(Buk)�(yk � yd);
4 Compute resk = kuk � ProjUad(�
�1B�pk)kL2(�);
5 if resk < �Newton then
6 return yk; uk; pk

7 Determine a POD basis Bk from yk, pk with accuracy �POD > 0;

8 Solve the POD-reduced (w.r.t. Bk) SQP subproblem (QP) at

(yk; uk; pk) to obtain the next control iterate uk+1;

techniques, cf. Section 5.2.3, to cope with nonlinearities. Also, we hope that com-
puting a POD basis from the solution of the nonlinear state equation and the
adjoint equation helps to capture the true dynamics of the underlying nonlinear
problem. Since the solution of the quadratic subproblems is responsible for a major
part of the overall computing time of the Newton-SQP method, POD-Newton-SQP
still acchieves a good amount of reduction of the computational costs as we will
see in our numerical examples. Moreover, we point out that in the case without
control-constraints the proposed method essentially reduces to an inexact Newton
method.

Let us brie
y comment on di�erences and similarities of the POD-Newton-
SQP method compared to the two most closely related approaches [116] and [38].
Except for the incorporation of inexact solution of the subproblems and (slightly
heuristic) a-posteriori POD error estimation, we have already sketched the main
idea of [116, Algorithm 7.2] at the beginning of this section. The main di�erences
are that in the POD-Newton-SQP, �rst, we solve the nonlinear state and adjoint
equation in each iteration, and, second, we determine a new POD basis in each
iteration. In [116], a POD basis of maximal length is only generated once at the
beginning and then (with adaptively chosen number of basis functions) used for
the solution of all subproblems of the subsequently applied SQP method. The
most obvious di�erence to [38] is, of course, that in [38, Algorithm 5.2] FEM
discretization is adaptively re�ned during the algorithm while discretization is a
priori �xed in our case. Moreover, we do not employ a trust-region framework.
The approach in [38] and our POD-Newton-SQP have in common that they require
solutions of the nonlinear state equation and the adjoint equation | however, in
[38] this may also be done within the reduced-order model, while we perform this
step always in the full number of degrees of freedom. Finally, although POD-
Newton-SQP is not a trust-region algorithm, let us point out that the local model
function in line 8 of Algorithm 3 di�ers from the ones used in [19, 38, 236, 232,
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183, 22]; cf. the introduction of this chapter: since the subproblem in POD-
Newton-SQP is given by the reduced-order counterpart of the SQP subproblem
with full-order state and adjoint state, our local model is given by the reduced-
order counterpart of the second-order Taylor polynomial of the full-order nonlinear
objective functional.

5.3.2. Numerical examples. We test and compare the three algorithms de-
scribed above on behalf of Example 3 from Section 4.5.2 utilizing discretization
level 2 in Table 4.2. We present three numerical experiments. The �rst two are in-
tended to illustrate the di�erent in
uence of initialization in POD-SQP and POD-
Newton-SQP. The third one compares Newton-SQP and POD-Newton-SQP for
di�erent accuracies of the POD-models and is also concerned with the respective
computing times.

We implemented POD-SQP, Newton-SQP, and POD-Newton-SQP in python
utilizing fenics and mshr [9, 203] for the �nite element discretization. The appear-
ing linear quadratic subproblems are solved similar to Section 4.5 by a semismooth
Newton method that is now stopped after at most 10 iterations or if the initial
residual (of the linear quadratic problem) is reduced by a factor < 10�2. Again,
stability of the semismooth Newton method is enhanced by Armijo linesearch, and
the Newton update equations are solved by CG with at most 100 iterations and
relative tolerance 10�2. POD bases are determined by the method of snapshots
from the snapshots both of the state- and the adjoint state-variable with equal
weights �j = 1 and accuracy �POD; see Section 5.1 for an explanation hereof. As
for the SQP method in Chapter 4 we illustrate the convergence behaviour of the
algorithms by referring to the L2-residuals of the iterates, de�ned and computed
as in (4.26).

Experiment 1. To have a reference for comparison, we �rst address a speci�c
aspect of the behaviour of the POD-SQP method. More precisely, we focus on
the question how the choice of usg in
uences the outcome. Therefore, we choose a
very high accuracy �POD = 10�14 for the POD basis and, consequently, we do not
compare computing times. We consider �ve di�erent constellations:

Run 0. u
(0)
sg (t) = �u(t),

Run 1. u
(1)
sg (t) = yd(t; �),

Run 2. u
(2)
sg (t) = ua(t),

Run 3. u
(3)
sg (t) = yd(T � t; �),

Run 4. u
(4)
sg (t) = 2:9 + 7:1 � 1+cos(

2�
40 t)

2 .

Here, we choose the initial guess (y0; p0) in the SQP method to be state and adjoint

state associated with u
(k)
sg for Run 1-4 and y0 � 0, p0 � 0 for Run 0. One may

view Run 0 as the POD-reduced version of the computations from Section 4.5.2
with the \optimal" POD basis. Figure 5.7 displays the behaviour of the POD-
SQP algorithm for these di�erent usg's and Table 5.2 shows the respective POD
ranks. As expected, it can be seen that the �nal accuracy (in terms of the residual)
depends on the choice of the control usg used for the generation of the POD basis.
The best results are achieved in Run 0 by using the optimal control �u for the
generation of the snapshots; of course, this only of theoretical interest because in
applications �u is not known in advance. To give the reader an impression how a
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Run 0 Run 1 Run 2 Run 3 Run 4

POD-ranks 17 9 18 18 14

Table 5.2. Experiment 1: POD ranks for the POD-SQP method
for di�erent usg's.

POD-ranks at iteration
0 1 2 3 4 5 6 7

Run 1 9 18 17 17 17 17 17 17
Run 2 18 23 17 17 17 17 17 17
Run 3 18 22 17 17 17 17 17 17
Run 4 14 24 17 17 17 17 17 17

Table 5.3. Experiment 2: POD ranks during the POD-Newton-
SQP method for di�erent initialization.

typical POD basis in the case of the present example may look like, we show the
�rst �ve basis functions of the POD basis from Run 0 in Figure 5.5. The rapid
decay of the corresponding eigenvalues in Figure 5.6 may be regarded as a heuristic
explanation why POD-MOR allows to obtain good results for the present problem.

Remarkably, there does not seem to be an obvious, intuitive relation between
usg and the �nal accuracy for Runs 1-4. The rather intuive guess for usg in Run
1 produces much worse results than the somehow contraintuitive choices for usg
in Runs 3 and 4. This illustrates an important issue in the application of the
POD-SQP algorithm: since there is no update of the POD basis during the SQP
iteration, the choice of this single POD basis is crucial. However, �nding such an
appropriate basis without having a-priori knowledge on the solution of the problem
and its characteristics is not straightforward.

Experiment 2. In our next experiment we demonstrate that the POD-Newton-
SQP method is less sensitive w.r.t. the initialization because the POD basis is
updated in each iteration. For comparison with Experiment 1 we choose the
same high accuracy �POD = 10�14 and repeat Run 1-4 from Experiment 1 for the
POD-Newton-SQP method, now with four di�erent choices for the initial guess

u
(k)
0 = u

(k)
sg , k = 1; :::; 4. Figure 5.8 displays residuals and increments of the respec-

tive iterations; the respective POD ranks are shown in Table 5.3. Now, the �nal
accuracy does not depend on the initialization, which is di�erent to the behaviour
of the POD-SQP method shown in Figure 5.7. Nevertheless, we have to note that
this advantage is payed by performing a larger amount of computations outside
the ROM than done in the POD-SQP method.

Experiment 3. Finally, we test the POD-Newton-SQP method for di�erent
�POD and compare it to the full-order Newton-SQP algorithm. We choose �Newton =
10�5 and perform at most 8 Newton iterations. In Figure 5.9 we display the con-
vergence behaviour of the two methods. The Newton-SQP method reaches the
desired accuracy kreskkL2(�) < �Newton after three steps. In Figure 5.9.a it can be
seen that the POD-reduced version of the Newton-SQP method roughly behaves
the same until the residuals stagnate at some level depending on the chosen accu-
racy of the POD-model. The increments (see Figure 5.9.b) still decrease which may
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no. 1 no. 2

no. 3 no. 4

no. 5

Figure 5.5. Experiment 1: The �rst �ve POD basis functions at �u.
Of course, the plots can only show the values of the basis functions
on the surface of 
. For the corresponding eigenvalues we refer to
Figure 5.6.
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Figure 5.6. Experiment 1: POD eigenvalues at �u. Since we com-
puted the POD basis with weights �j = 1 the eigenvalues have to

be scaled by the factor N�2
t � 4 � 10�6 in order to obtain approx-

imations for the eigenvalues related to the continuous version of
POD; cf. Section 5.1.

a. POD ranks b. reduction of computing time
at iteration compared to Newton-SQP

�POD 0 1 2 3 4 5 6 7 all iterations (iterations 0-3 only)

10�6 2 3 2 2 2 2 2 2 89% (94%)
10�7 2 3 3 3 3 3 3 3 89% (94%)
10�8 3 5 5 5 5 5 5 5 88% (93%)
10�9 3 6 6 6 6 6 6 6 88% (93%)
10�10 4 7 7 7 7 7 7 7 88% (93%)
10�11 5 9 9 9 9 9 9 9 88% (93%)

Table 5.4. Experiment 3: a. POD ranks during POD-Newton-
SQP for di�erent POD accuracies. b. Reduction of the respective
computing times of POD-Newton-SQP vs Newton-SQP. We com-
pare the time needed for 3 iterations of Newton-SQP with the time
for all 8 iterations of POD-Newton-SQP (\all iterations") or the
times needed for the �rst 3 iterations of each method (\iterations
0-3 only").

indicate that the POD-Newton-SQP still converges, but only to some suboptimal
control close to �u. However, note that it holds k�ukL2(I) � 26:8 for our problem, i.e.
the �nal residuals for �POD = 10�6 and �POD = 10�7 are about 6% and 0:05% of
k�ukL2(I). Consequently, already POD-MOR with these rather low accuracies and
corresponding low numbers of basis functions (see Table 5.4) yields good results.
Indeed, as can be seen in Table 5.4.a, POD-MOR allows to reduce the numbers of
degrees of freedom in the quadratic subproblems drastically; hereby, note that the
underlying �nite element space has 2848 degrees of freedom. Hence, POD-MOR
acchieves a heavy reduction of the computing times by a factor of about 10; cf.
Table 5.4.b. We think that this reduction will stay of comparable size or will even
increase when choosing a �ner �nite element discretization.
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Figure 5.7. Experiment 1: a. L2-norms of the residuals and b.
L1-increments during the iterations of the POD-SQP method.

In order to conclude this section, let us mention some directions in which the
implementation of the POD-Newton-SQP method might be re�ned. First, choos-
ing separate POD bases for state and adjoint state or di�erent POD accuracies
in di�erent (outer) iterations is possible. Second, for certain linear quadratic op-
timal control problems there is a well-known a-posteriori POD error estimate for
the control-variable; see, e.g., [272]. Hereby, it is essential that the Hessian of the
reduced problem is constant and coercive. The underlying idea has been general-
ized toward subproblems of the SQP method [116, Algorithm 7.1] or the nonlinear
problem itself [182, 266] in the case of a semilinear parabolic state equation. Since
in these cases the Hessian of the respective reduced problems cannot be supposed
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Figure 5.8. Experiment 2: L2-norms of the residuals during the
iterations of the POD-Newton-SQP method for di�erent initial-
ization.

to be uniformly coercive in general, these approaches are of slightly heuristic na-
ture. For this reason we did not follow them in the present work. However, we
have to note that, despite this issue on the theoretical side, the numerical per-
formance observed in [116, 182] is outstanding and might be promising also for
our problem type. Finally, one could also re�ne the implementation by combining
POD-Newton-SQP with a trust-region framework as in, e.g., [19].
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Figure 5.9. Experiment 3: a. L2-norms of the residuals and b.
L1-increments during the iterations of Newton-SQP and POD-
Newton-SQP.





Conclusion and outlook

Kein Buch wird jemals fertig; w�ahrend wir daran arbeiten, lernen wir
immer gerade genug, um seine Unzul�anglichkeit zu sehen, wenn wir es der
�O�entlichkeit �ubergeben.

K. Popper, Die o�ene Gesellschaft und ihre Feinde, Band I, Der Zauber
Platons1

In this thesis we have extensively discussed our recent contributions to optimal
control of quasilinear parabolic PDEs [167, 166, 168, 169]. Following [168] and
[169] we derived �rst- and second-order optimality conditions for problems with
pointwise state-constraints and for problems with sparsity-enforcing penalization,
respectively. Moreover, we presented the convergence analysis of the SQP method
in function space from [167] and a-posteriori error estimates for POD/RB-model
order reduction of the state equation from [166]. Finally, we demonstrated nu-
merically that such reduction techniques also allow to speed up the solution of
the entire control problem signi�cantly. As the title indicates, we may regard our
work in particular as the extension of earlier work on optimal control of quasilin-
ear parabolic PDEs [35, 216, 45] towards the abovementioned additional aspects.
However, it has to be pointed out that we also built on earlier work in the �elds of
state-constrained or sparse optimal control, the convergence analysis of optimiza-
tion algorithms, and model order reduction for nonlinear problems. Therefore, the
results presented in this thesis certainly contribute to these areas, too.

Let us brie
y revisit the two read threads announced at the end of the intro-
duction chapter. The �rst one, problems related to the highly nonlinear structure
of the state equation, accompanied us through every chapter. In Chapter 2 we
estimated the second derivative of the nonlinearity very carefully in order to guar-
antee that the second derivative of the control-to-state map exhibits appropriate
extension properties required during the proof of second-order su�cient conditions;
see the comments at the end of Section 2.3.3 and above Lemma 2.26. Similar reg-
ularity issues speci�cally due to the quasilinear parabolic PDE prevented us from
addressing second-order conditions for the so-called bang-bang case in Chapter 3 as

1Preface to the �rst american edition 1950, quoted from: K. R. Popper, Gesammelte Werke
in deutscher Sprache, Band 5, Mohr Siebeck, T�ubingen, 2003.
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we pointed out in detail in Section 3.3.3. Also, in our analysis of the SQP method
in Chapter 4 the careful estimation of the second derivative of the nonlinearity
combined with matching estimates for the linearized state equation and the ad-
joint equation was crucial. We explained this in particular in Section 4.2.2 and in
the remark below Theorem 4.11. Finally, the nonmonotone structure of the non-
linearity turned out to be a major di�culty and novelty when aiming at POD/RB
error estimates for the state equation as we saw in Section 5.2; cf. particularly the
remark below Lemma 5.4.

The second recurring topic, the two-norm discrepancy and optimality condi-
tions with/without norm gap, was of particular importance in Chapters 2 to 4. Our
second-order results |Theorems 2.18 and 2.29 for problems with state-constraints,
and Theorem 3.4 for sparse problems| avoid a norm gap although a two-norm
discrepancy appears in the problem formulation. The basis of our analysis is [71]
where second-order conditions without a two-norm gap despite the presence of two
norms in the problem formulation have been proven for certain control-constrained
problems on behalf of an abstract framework. In Sections 2.2 and 3.2 of this thesis,
we extended the abstract framework from [71] in two di�erent directions: second-
order su�cient conditions in the case of additional state-constraints, and second-
order conditions for problems with certain nonsmooth terms in the functional. To
do so, we abstracted and extended techniques known from the literature; cf. the
references given in Chapters 2 and 3. Nevertheless, �nding appropriate abstract
formulations that in particular allow to handle the concrete quasilinear parabolic
problems (Pst) and (P

sp
k ) was not trivial. Finally, we encountered the the topic of

second-order su�cient conditions in Chapter 4 again, as explained in the introduc-
tion of this chapter. We were able to avoid another norm gap when restricting the
SQP subproblems to L2- instead of L1-balls around the optimal control. To do
so, we essentially extended the results of [71] in Sections 4.4.2 and 4.4.3 towards
a family of perturbed problems satisfying suitable assumptions; see in particular
Proposition 4.17.

Let us now give an outlook to ongoing and closely related work that has not
been included in this thesis. Currently, two results in collaboration with L. Boni-
facius (Munich), H. Meinlschmidt (University of Erlangen) and I. Neitzel are in
preparation. The �rst one addresses improved regularity of the state equation
on the [W

�1;p
D ; Lp]-scale. The second one deals with an optimal control problem

with additional constraints on the gradient of the state, governed by a quasilinear
parabolic PDE including a gradient term.

The main goal of the improved regularity analysis ([165], joint work with H.
Meinlschmidt and I. Neitzel) is global-in-time existence of solutions to a quasi-
linear parabolic equation similar to the one from [216], cf. (0.1), on the whole
scale of Bessel potential spaces [W�1;p; Lp]�, � 2 [0; 1]. Roughly speaking, our
aim is to close the gap between [216] (� = 0), [35] (� > 0, but close to 0), and
[45] (� = 1), while keeping the respective regularity assumptions w.r.t. the do-
main, the coe�cient functions, and the boundary conditions as general as possible.
This requires, e.g., a careful analysis of maximal parabolic regularity of certain
nonautonomous parabolic operators with H�older continuous coe�cients on Bessel
potential spaces and the computation of interpolation spaces of various function
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spaces under rather low regularity assumptions. Let us note that the resulting
improved regularity theory for (Eq) would allow, e.g., to simply the arguments in
Section 2.4 a bit. Moreover, as one may already have expected, pure homogeneous
Neumann boundary conditions can be allowed in Assumption 2.19.1, too.

The second part of our ongoing work ([34], joint work with L. Bonifacius,
H. Meinlschmidt, I. Neitzel) deals with optimal control of a quasilinear parabolic
PDE in the presence of gradient-constraints and may therefore be viewed as evident
continuation of our results on constraints on the state in this thesis. First of all, a
typical di�culty related to pointwise constraints on the gradient of the state is the
following: proving �rst-order conditions in that case usually requires having states
with continuous gradients; cf., e.g., [51] dealing with semilinear elliptic equations.
Of course, obtaining such regularity for the solutions of a quasilinear parabolic
PDE is nontrivial and requires rather strong assumptions, e.g., in the 
avour of
[45]. Consequently, when aiming at results in a rough regularity setting as in [35]
one has to switch to averaged-type gradient constraints; cf., e.g., [206, 60, 205].
Moreover, we include another issue in our considerations: when adding a semilinear
term of order one, e.g., a quadratic gradient term, to the state equation (Eq), we
encounter the problem that we cannot prove existence of global-in-time solutions to
the resulting equation, in general. Interestingly, this can be overcome by imposing
certain bounds on the gradient of the solution; see for instance [214] for a related
idea. Besides applications requiring bounds on the gradient of the state, this can
be seen as a further motivation for the consideration of problems with gradient-
constraints.

Finally, let us mention sparse optimal control of quasilinear PDEs as a promis-
ing area of future research. Besides sparsity-enforcing penalization, which we have
considered in Chapter 3 of this thesis, approaches that rely on measure spaces are
particulary interesting. In general, sparse optimal control in measure spaces is
known to be challenging already for linear parabolic [48, 192, 56] or semilinear el-
liptic problems [55]. As a �rst step in the direction of quasilinear control problems
in measure spaces the author has addressed sparse optimal control of a quasilinear
elliptic PDE in measure spaces in the preprint [164]. There are several di�cul-
ties associated with this problem type. First, one has to prove well-posendness
of the optimal control problem by ensuring existence, uniqueness, and su�cient
regularity of solutions to the state equation for controls of very low regulartiy.
This is a particular problem for parabolic equations, cf., e.g., [56] where the states
do not have L2(Q)-regularity, or nonlinear equations [55]. Second, in the case of
a nonlinear state equation the investigation of di�erentiability properties of the
control-to-state map becomes particulary challenging. This is due to the fact that
di�erentiability of the nonlinear terms has to be addressed in appropriate, su�-
ciently regular function spaces, while solutions to PDEs with measure right-hand
sides tend to have low regularity; see, e.g., [55]. A further di�culty arises from
the presence of the total variation-norm of the underlying measure space in the
objective functional, which makes the control problem a nonsmooth problem. In
[164] we apply the so-called Kirchho� transform, a nonlinear superposition op-
erator that transforms the quasilinear elliptic equation into a linear one, to cope
with these issues. In particular, we are able to prove well-posedness of the state
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equation, obtain existence of optimal controls, and derive �rst- and second-order
optimality conditions.
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