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Abstract

The recent advances in Augmented Reality (AR) and Virtual Reality (VR) technology and
their growing popularity in the past years has significantly influenced emerging trends
towards more intuitive and user-centric applications that are accessible to a large community.
Sharing immersive experiences is the central challenge here and requires the accurate
presentation of virtual content to the user which not only depends on several technical
aspects of the respective display devices but also on the visualized scene elements. However,
many applications are particularly designed for immediate scenarios which cannot entirely
rely on pre-generated content and, thereby, require on-the-fly acquisition of the unknown
surrounding scene environment in an efficient and progressive way.

In this thesis, we developed and investigated techniques for real-time reconstruction of 3D
scene geometry and appearance with a specific focus on practical methods and systems that
could be used in AR and VR scenarios. To this end, we present several contributions which
can be categorized into three major areas of these systems. First, we studied the L1-based
Locally Optimal Projection (LOP) operator in the context of data prefiltering and introduced a
family of generalized operators in which each element corresponds to a localized Lp estimator.
Furthermore, we revealed their close relation to the Mean Shift framework and derived
various theoretical properties of the respective kernels and, in turn, the projection operator.
We applied the gained insights to define an improved density weighting scheme, a more
accurate kernel approximation for the continuous projection operator, as well as a set of
robust loss functions which correspond to the kernels. Secondly, we developed a practical
multi-client live telepresence system which enables streaming live-captured 3D scene data
to remotely connected users who can independently explore and interact with the scene.
We introduced a bandwidth-efficient volumetric data structure based on Marching Cubes
indices as well as fast GPU hash data structures to efficiently maintain and progressively
stream the reconstructed model with only moderate network requirements. In subsequent
work, we further improved the overall performance and scalability of our telepresence system
by introducing several algorithmic improvements to the reconstruction component. Thirdly,
we investigated a segmentation-based approach for estimating appearance information in
terms of the spatially-varying surface albedo from RGB-D and additional infrared (IR) input
data. In addition to an improved formulation of the coupling between the color and infrared
channels, we also incorporated temporal information from previous frames to accelerate the
Total Variation-based optimization process.
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Chapter 1

Introduction

The rapid developments of recent Augmented Reality (AR) and Virtual Reality (VR) tech-
nology have benefited many applications and are increasingly influencing our everyday
lives towards more intuitive and user-centric experiences. Current AR display devices such
as the Microsoft HoloLens 2 or the Magic Leap 2 allow to see the physical world with
overlaid virtual elements and can, thereby, enhance the visual perception with additional
information. On the other hand, VR devices such as the HTC Vive Pro or the Valve Index
allow users to completely dive into a virtual world by providing an immersive experience of
being and feeling present in there. Natural applications that arise from these capabilities
are telepresence and teleconferencing scenarios where people at distant places can connect
and interact with each other in a similar way as if they were physically present at a single
location. This, in turn, stimulated further applications in other related fields like robotics,
architecture, entertainment, education, medicine, and many others.

A crucial component in any of these systems is the accurate presentation of the virtual content
to the user which is not only influenced by the actual visualization on the respective AR
or VR display devices, determined by technical parameters including framerate, resolution
or latency to avoid disturbing effects like motion sickness, but also by the quality and
expressiveness of the content itself. Pure image-based data such as 360◦ images and videos
can easily be captured by standard cameras and provide a high amount of details due to the
maturity of the camera sensor technology. In this context, the recently presented seminal
work in Neural Radiance Fields (NeRF) [Mildenhall et al., 2020] received significant attention
as it enabled synthesizing realistic novel unseen views of a scene from an implicit model
which was represented by a neural network and optimized only from a set of recorded
images and the respective camera poses. A plethora of subsequent work aimed to address
several of its initial limitations including to allow representing dynamic scenes [Li et al.,
2022], handling varying illumination conditions [Martin-Brualla et al., 2021], reducing the
amount of training time [Müller et al., 2022], or increasing its robustness for very sparse
sets of input views [Niemeyer et al., 2022]. Nevertheless, many of these approaches still
resort to offline optimization and precomputed camera poses, are restricted to small-scale
scenes, cannot render high-resolution images in real time due to expensive ray marching, and
only have limited interaction and editing functionalities in terms of interpolating between
observed states. To this end, traditional concepts from computer graphics and computer

3



Chapter 1 Introduction

vision were leveraged by converting the implicit NeRF representation into classic primitives
such as Bidirectional Reflection Distribution Functions (BRDF), environment illumination,
and surface geometry in terms of meshes [Zhang et al., 2021b; Yuan et al., 2022] that can be
more flexibly edited or exchanged and are also significantly faster to visualize [Chen et al.,
2022b]. Similarly, the workflow as well as several components of classic real-time surface
reconstruction systems were employed to perform online fusion of radiance fields [Zhang
et al., 2022b]. Meeting all of these requirements, i.e. real-time online reconstruction of
large-scale scenes and real-time live visualization of the dynamically updated model state
which is crucial in many VR applications such as telepresence, is, however, still an unsolved
problem. Thus, it remains an open question whether such NeRF-based view synthesis
approaches will eventually replace traditional reconstruction and rendering concepts, or
instead extend them and stimulate further research in these directions [Tewari et al., 2022].

In contrast to these implicit approaches, the direct recovery of explicit surfaces and their
appearance properties has already been studied extensively for several decades as one
of the fundamental problems in computer vision and computer graphics. Initial work in
this area focused on high-fidelity reconstruction of scene geometry from point cloud data
which was captured by expensive laser scanning equipment [Levoy et al., 2000]. Besides
purely geometric scene information, the estimation of an object’s appearance has also been
extensively analyzed in the scope of accurately calibrated lab-like setups [Schwartz et al.,
2013]. With the recent advances of depth sensing technology and the increasing availability of
low-cost commodity hardware such as theMicrosoft Kinect and even built-in RGB-D cameras
in today’s mobile phones, the focus has shifted towards more casual acquisition scenarios
and the first classic systems which enable both real-time reconstruction and visualization
emerged [Izadi et al., 2011; Newcombe et al., 2011].

In this thesis, we developed methods which contribute towards this goal of real-time live
geometry and appearance reconstruction of real-world scenes with commodity RGB-D
camera hardware. In particular, we directed our attention onto practical methods to support
emerging trends and applications using immersive AR and VR technology.

1.1 Reconstruction Pipeline and Challenges

Significant effort has been invested in advancing the field of real-time 3D reconstruction
where many respective approaches follow a common pipeline that can be divided into
multiple stages, each describing a distinct sub-problem with several challenges. An overview
of this pipeline is shown in Figure 1.1.

Data Prefiltering. The raw input frames captured by low-cost depth sensing devices are
of much lower quality than data from more expensive, specialized hardware and exhibit a
significantly higher amount of noise. In order to facilitate the processing of the frames in
subsequent stages and furthermore increase their reliability, the data is first preprocessed
and denoised in an initial step which typically consists of applying a (Gaussian) bilateral
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Input
Frame

Output
ModelData Prefiltering Camera Tracking Surface Reconstruction

Appearance Reconstruction

3D Telepresence

Local
User

Remote
User 1

Remote
User 2

Remote
User N

T (t)

T (t+1)

𝝎𝑖
𝝎𝑟𝒇d = 𝜿d/𝜋

𝒇s

Chapter 4

Chapter 7

Chapter 5 + 6

Figure 1.1: Overview of the common stages of 3D reconstruction systems. New input frames captured
by the local user are first prefiltered and then used to track the current camera pose and to update
the global model in the surface reconstruction step. In addition to the surface geometry, appearance
information can be reconstructed and integrated into the 3Dmodel as well. Finally, the captured scene
can be progressively streamed to remotely connected users to enable sharing immersive telepresence
experiences. Our contributions presented in this thesis are located in data prefiltering, 3D telepresence,
and appearance reconstruction.

filter that smooths the samples in the L2 sense. However, the characteristics of the noise
may not necessarily follow a simple Gaussian model, but can instead also include systematic
outliers introduced by limitations in the measurement process of the sensor and lead to a
distribution that is generally unknown. Furthermore, in case of directly captured point cloud
data, the samples are usually not uniformly distributed in 3D space.

Camera Tracking. Since the scene is captured from various angles, the pose of the camera
in a canonical world coordinate system should be estimated to bring the acquired data into
alignment. This requires finding correspondences between two frames which, however,
becomes challenging in scenarios where mostly feature-less regions are visible during the
acquisition, such as in the case of moving the sensor in front of a low-textured, planar wall.
Fast motions and, in particular, large changes of the camera orientationmay introducemotion
blur effects in the frames and further increase the difficulty of the correspondence estimation.
In addition, the brightness of recorded color images may change rapidly over time in scenes
with strongly varying illumination conditions. Although the relative motion to the previous
frame is typically small, slight estimation errors in the position and orientation caused by
these effects may quickly accumulate and could lead to larger inconsistencies in the model.
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Surface Reconstruction. Afterwards, the surface is reconstructed by fusing the captured
and aligned frames into a suitable geometric data representation. This process shares many
of the challenges of data prefiltering which particularly includes the fact that the input frames
can still be noisy and may contain outliers or the fact that the sampling of the surface data is
often non-uniform. Furthermore, small misalignments in the camera tracking stage could
lead to artifacts and duplicate surface geometry which, however, should be merged into a
single surface instead. On the other hand, the surface of thinner objects should be preserved
at each side and, in turn, not be accidentally consolidated. Finally, incomplete and missing
data poses an additional challenge where small regions in scenes may not have been fully
scanned or were partially occluded by other objects but should still be completed.

Appearance Reconstruction. In addition to the aforementioned steps which are related
to the geometric aspects of the surface, the appearance can be estimated as well. This is a
highly under-constrained problem as the camera only captures the final color information
resulting from the complex interplay of light with the geometry and material properties,
defined by the diffuse albedo as well as specular components, of the scene. Solving this
problem requires incorporating more information about the captured scene in terms of
additional data modalities or further priors and assumptions to regularize the formulation.
However, overly restrictive constraints or too insufficient regularization can both lead to
implausible decomposition results or even introduce artifacts which makes the process of
finding a suitable granularity of priors particularly difficult and challenging.

3DTelepresence. In the context of immersiveARandVRapplications, further requirements
and demands on the performance of the reconstruction and rendering systems are imposed
to ensure a pleasant user experience. Providing a high degree of immersion and awareness
requires the visualization of scene content at considerably higher resolutions and framerates
than on standard displays like monitors to avoid deteriorating effects such as motion sickness.
On the other hand, the available network and computing resources at the user site are often
highly limited, making systems that run a computationally demanding live-reconstruction
of the scene in parallel to high-quality rendering infeasible in such scenarios. Furthermore,
the amount of reconstructed and updated 3D data depends on the distance of the visible
objects to the camera which may significantly vary over time during acquisition.

1.2 Contributions

In the scope of this thesis, we developed methods to address some of the aforementioned
challenges. The key contributions of our work are:

• Generalized LOP Operators for Filtering. We reveal the relation of the L1-based
Locally Optimal Projection (LOP) operator to theMean Shift framework and introduce a
novel family of generalized kernels each representing a particular localized Lp estimator.
Furthermore, we study the theoretical properties of this kernel family and apply the
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gained insights in several applications to demonstrate their effectiveness [Stotko et al.,
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1.4 Thesis Outline

Chapter 2. First, we provide an overview of previous developments and the state of the art
in the area of surface reconstruction, 3D telepresence systems, and appearance estimation.

Chapter 3. Furthermore, we introduce the relevant theoretical preliminaries and basic
concepts for 3D scene reconstruction which will serve as the foundation of the presented
methods.

Chapter 4. We present our publication “Incomplete Gamma Kernels: Generalizing Locally
Optimal Projection Operators” [Stotko et al., 2022] which already appeared as a preprint and
introduces a generalization of Local Optimal Projection operators for point cloud denoising.

Chapter 5. We present a summary of our peer-reviewed publication “SLAMCast: Large-
Scale, Real-Time 3D Reconstruction and Streaming for Immersive Multi-Client Live Telepres-
ence” [Stotko et al., 2019a] which introduces a practicable telepresence system for remote
collaboration and exploration of live-captured scenes.

Chapter 6. We present a summary of our peer-reviewed publication “Efficient 3D Re-
construction and Streaming for Group-Scale Multi-Client Live Telepresence” [Stotko et al.,
2019d] which proposes several algorithmic extensions to the system presented in Chapter 5
to significantly improve its overall performance and open up further applications in, e.g.,
education.

Chapter 7. We present a summary of our peer-reviewed publication “Albedo estimation
for real-time 3D reconstruction using RGB-D and IR data” [Stotko et al., 2019e] which
features a method for reconstructing both the scene geometry and appearance in terms of
the spatially-varying albedo in real time.

Chapter 8. Finally, we conclude this thesis by discussing the impact of the presented
methods and providing an outlook of potential future directions.
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Chapter 2

Related Work

In this chapter, we provide an overview of the literature related to the techniques and systems
presented in this thesis. To this end, we first review the initial developments in the field of
surface reconstruction (see Section 2.1) as well as advances towards real-time commodity
scanning (see Section 2.2) and recent trends in learning-based approaches (see Section 2.3).
Furthermore, we discuss the recent achievements in related fields such as the application in
3D telepresence systems (see Section 2.4) or appearance reconstruction (see Section 2.5). A
timeline of selected influential and closely related publications is shown in Figure 2.1.

2.1 Classic Surface Reconstruction

Surface reconstruction has been an active research field for several decades where various
methods have been presented over time.

Local Point-based Approaches. Early works have been developed starting in the 1990s
with the seminal work of Hoppe et al. [1992]. Based on a set of registered point clouds,
normals were first computed and then oriented in a consistent manner by propagating
normal orientations over neighboring points. In the actual reconstruction step, a signed
distance function (SDF) was computed by considering the local tangent plane of the closest
point in the input data and then converted to a surfacemesh usingMarching Cubes [Lorensen
and Cline, 1987]. Similar to this tangent plane formulation, Moving Least Squares (MLS)
approaches [Alexa et al., 2003; Levin, 2004] defined a localized projection operator that
first finds the tangent plane that approximates the neighboring points of the target point
cloud. Afterwards, the (unsigned) distances of each target point to this plane are used
as weights to locally fit a polynomial which represents the MLS surface onto which the
query point is then finally projected. The MLS surface could also be defined in a different
way via a fixed-point optimization [Amenta and Kil, 2004] or even implicitly in terms of a
signed distance function by the Implicit MLS (IMLS) [Kolluri, 2005] and Robust Implicit
MLS (RIMLS) [Öztireli et al., 2009] approaches. In contrast to these L2-based projection
operators, the Locally Optimal Projection (LOP) operator [Lipman et al., 2007] considered a
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Practical multi-user
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Figure 2.1: Timeline of selected influential and closely related publications as well as their relation to
the contributions of this thesis which will be presented in Chapters 4 to 7. Surface reconstruction
methods are highlighted in orange, telepresence systems in blue, and appearance reconstruction
approaches in green.

L1-based formulation built upon a localized version of the geometric median which can be
computed by, e.g., the Weiszfeld algorithm [Weiszfeld, 1937]. Due to its high robustness in
the presence of strong noise and outliers, LOP can be used for point cloud consolidation to
obtain a resampled set of clean points which more closely represents the measured surface
and which can be passed as the input for other surface reconstruction techniques such
as global approaches like Poisson Surface Reconstruction [Kazhdan et al., 2006]. Several
extensions of the original LOP approach have been developed to address its limitations
including a weighted version to improve the distribution of the projected points [Huang
et al., 2009], accelerated variants that either consider subsampling based on kernel density
estimation [Liao et al., 2013] or continuous representations [Preiner et al., 2014], as well as
anisotropic edge-aware formulations [Huang et al., 2013].

In the scope of our recent work [Stotko et al., 2022] which will be discussed in Chapter 4, we
derived a generalization of the LOP operator and took advantage of the gained theoretical
insights to further improve on the weighted and continuous versions and to open up other
potential applications.
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2.2 Real-time Online Surface Reconstruction

Global Point-based Approaches. Besides the methods that operate locally either in an
explicit manner via projection or based on an implicit formulation, global optimization
has also been employed for reconstruction from point clouds. Radial basis functions (RBF)
were used to define a signed distance function as a weighted sum of the basis which is
computed by a global linear optimization of the weights [Carr et al., 2001]. This ensures that
the zero-set of the SDF interpolates the observed input points. In more recent work [Liu
et al., 2016], Hermite radial basis function (HRBF) implicits have been considered for
interpolation and, in the special case of compactly supported kernels [Wendland, 1995], a
quasi-solution for interpolating local surface regions can be derived in closed form. Poisson
Surface Reconstruction (PSR) [Kazhdan et al., 2006] computed a binary indicator function for
distinguishing interior and exterior space by casting the respective minimization objective,
consisting of the difference between the gradient of the indicator function and a vector
field defined by the point cloud normals, to a Poisson problem. In follow-up works, the
authors further improved their method by incorporating a screening term to more closely
approximate the point set [Kazhdan and Hoppe, 2013] as well as by enforcing envelope
constraints to improve the accuracy in regions with missing data [Kazhdan et al., 2020].
Recent work even considered the application of Poisson Surface Reconstruction on unoriented
point clouds by iteratively running the method while refining the normal orientations after
each reconstruction attempt [Hou et al., 2022]. Other methods considered smooth signed
functions instead of indicator functions and constrained the smoothness in the Poisson
problem formulation by an additional regularization term based on the Hessian matrix of
the SDF [Calakli and Taubin, 2011].

Initial Depth-based Approaches. In contrast to the aforementioned methods which pri-
marily worked on raw point clouds or point clouds with additionally computed normal
information, Curless and Levoy [1996] focused on the direct reconstruction from depth image
data. While also a signed distance function is used as the underlying representation, their
least-squares-based formulation resulted in a simple online update step which particularly
allows for an incremental and order-independent processing of the depth data. This approach
has been further extended to operate on various discrete hierarchy scales managed by an
octree [Fuhrmann and Goesele, 2011] and even to continuous scales based on Gaussian radial
basis functions [Fuhrmann and Goesele, 2014].

2.2 Real-time Online Surface Reconstruction

With the more widespread availability of cheap commodity sensors in the 2010s such as
the Microsoft Kinect, capturing depth information at high framerates of typically 30 Hz
became more popular and the reconstruction of larger scenes with hand-held sensors gained
increasing interest.

Volumetric Fusion Methods. The seminal KinectFusion system [Izadi et al., 2011; New-
combe et al., 2011] marked the cornerstone of this trend as it was the first system that enabled
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the reconstruction of room-sized scenes with interactive feedback to the user by running not
only camera tracking but also dense surface reconstruction in real time. Key to their success
was a fully GPU-accelerated pipeline consisting of an efficient projection-based depth image
registration algorithm [Rusinkiewicz et al., 2002], which aligned new input data against
an on-the-fly generated depth image of the current 3D model resulting in a significantly
improved tracking accuracy, as well as the fast incremental integration of these input data
into a volumetric signed distance function representation [Curless and Levoy, 1996]. In
the following years, several extensions have been developed to address the limitations of
the KinectFusion system. Whereas initially only a fixed-sized cubic volume consisting of
typically 512 voxels per dimension was used limiting the size of the reconstructed model,
moving volume techniques [Roth and Vona, 2012; Whelan et al., 2012; Whelan et al., 2015a]
as well as hierarchical data structures [Zeng et al., 2012; Chen et al., 2013; Steinbrücker et al.,
2013], spatially-hashed data structures [Nießner et al., 2013; Kähler et al., 2015] or even
a combination of the latter two [Kähler et al., 2016b] have been proposed to increase the
storage efficiency of the volumetric representation and to enable the live reconstruction of
large-scale scenes of theoretically almost unrestricted size. Besides these improvements to
the internal data representation, the camera tracking component also received significant
attention by considering loop closure techniques that build a graph of nearby camera poses
and perform a global optimization of all poses. This includes approaches that divided the
scene into individually reconstructed small overlapping submaps which were continuously
aligned by the pose graph [Kähler et al., 2016a], as well as keyframe-based approaches which
directly performed a correction of previous input data via on-the-fly de-integration and
re-integration into the 3D model [Dai et al., 2017]. Further work considered collaborative
scenarios where multiple users, each equipped with a RGB-D camera, independently scan
parts of a large scene, such as a building, to obtain a single merged 3D model [Golodetz
et al., 2018], or even scenarios where the scene is scanned in a fully autonomous manner by
multiple moving robots [Dong et al., 2019]. Finally, instead of relying on GPU-accelerated
processing of the input data which requires powerful hardware, approaches that run purely
on the CPU [Steinbrücker et al., 2014; Han and Fang, 2018] have been developed including
methods that are capable of running on mobile devices [Klingensmith et al., 2015].

Surfel Fusion Methods. Whereas KinectFusion and all related approaches that we dis-
cussed so far were based on a volumetric grid and, thereby, used an implicit surface
representation, the advantages of other data structures such as surfels [Pfister et al., 2000]
as the underlying representation were also leveraged. Stückler and Behnke [2014] used
a hybrid representation where surfels generated from the input depth images are stored
and integrated in a hierarchical octree data structure to ensure a regular distribution of the
surfels. A flexible method inspired by the KinectFusion system has been presented by Keller
et al. [2013] who followed the same general pipeline, but applied the volumetric update
step [Curless and Levoy, 1996] directly on the explicit surfel data to incrementally build a
large surfel model that is more compact than implicit voxel data structures. Similar to the
discussed developments in overcoming the limitations of KinectFusion, several extensions
to the surfel-based fusion approach were presented which particularly included improved
camera tracking using loop closure [Whelan et al., 2015b] or direct bundle adjustment [Schöps
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et al., 2019a], as well as modeling anisotropic noise in the fusion process [Lefloch et al., 2015]
and in the tracking component [Cao et al., 2018] to improve the accuracy of the reconstructed
models. Recently, closed-form interpolation with Hermite radial basis function implicits [Liu
et al., 2016] has been applied in fast surfel-based fusion to continuously evaluate the surface
and, thereby, increase the tracking and reconstruction accuracy [Xu et al., 2022b].

2.3 Learning-based Surface Reconstruction

Due to the huge success of modern deep learning approaches in various computer vision
tasks, much work has been invested into learning-based surface reconstruction from point
cloud or depth data.

Offline Learning. Early methods constructed an atlas of learned local surface parametriza-
tions and obtained the final surface via composition of the local patches [Groueix et al.,
2018; Williams et al., 2019]. Implicit functions also became very popular as the underlying
data representation. Riegler et al. [2017] used a 3D convolutional neural network (CNN)
architecture to learn the signed distance function using an octree representation from a
set of depth images. In order to avoid the limitations of discrete voxel representations,
the seminal works of Park et al. [2019] and Mescheder et al. [2019] proposed to use fully
connected networks, i.e. multi-layer perceptrons (MLP), for learning continuous signed
distance functions or continuous occupancy fields respectively. Recent approaches followed
this trend and learned a continuous SDF from a sequence of RGB-D images [Azinović et al.,
2022] or from point clouds [Ma et al., 2021]. Some techniques also applied ideas from classic
surface reconstruction (see Section 2.1) by incorporating priors based on Implicit Moving
Least Squares [Liu et al., 2021b; Wang et al., 2021] or a differentiable formulation of Poisson
Surface Reconstruction [Peng et al., 2021].

Online Learning. Since the aforementioned offline approaches require significant comput-
ing resources as well as repeated access to the whole fully captured dataset, augmenting
classic real-time online approaches (see Section 2.2) with neural networks recently gained
increasing attention. Instead of applying the classic volumetric update step [Curless and
Levoy, 1996] which effectively results in a local average, some methods learned a non-linear
SDF update function to improve the reconstruction quality [Weder et al., 2020], or performed
data fusion in a latent space where the fused SDF can be obtained from the latent represen-
tation by an additional translation network [Rückert and Stamminger, 2021; Weder et al.,
2021]. A similar idea has been applied for online fusion of point cloud data in a latent
space [Lionar et al., 2021]. In the context of collaborate scanning, recent work demonstrated
how to learn the noise characteristics of different sensors to perform multi-sensor data
fusion [Sandström et al., 2022]. Finally, continual learning of the signed distance function has
also been considered for online data fusion where samples of previous network predictions
of the SDF are stored in a fixed-size buffer and replayed in future updates to maintain these
learned structures within the network [Yan et al., 2021; Ortiz et al., 2022]. Despite these
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advances in learning-based fusion, current real-time methods are either inherently limited
in terms of reconstruction resolution or achieve this performance at higher resolutions only
when considering a small subset of keyframes.

2.4 3D Telepresence Systems

Similar to its impact on the recent trends in the field of surface reconstruction, the release
of cheap RGB-D cameras like the Microsoft Kinect also opened up new possibilities for
telepresence applications.

Frame-based Data Fusion. In initial systems, multiple Kinect cameras were placed in a
room to capture the interior from various angles and a visibility-based method was proposed
to merge the overlapping depth images [Maimone and Fuchs, 2011; Maimone et al., 2012].
With the great success of the KinectFusion system [Izadi et al., 2011; Newcombe et al., 2011]
for rapid scene capturing and reconstruction, 3D telepresence systems improved significantly
in terms of visualization quality. Instead of only relying on the RGB-D images of multiple
Kinect sensors from a single time step, Maimone and Fuchs [2012] applied KinectFusion
to dynamic scenes and modified the volumetric update step to quickly replace detected
persons and other moving parts within the scene with new measurements while keeping
the static parts of the scene. Further work considered a two-stage capturing process where
initially a 3D model of the static and semi-static parts of the scene is reconstructed with a
single moving RGB-D camera and subsequently overlaid with the dynamic scene content
captured from various fixed RGB-D cameras [Dou and Fuchs, 2014]. The recent Starline
project [Lawrence et al., 2021] demonstrated a high-fidelity telepresence system which, in
addition to replacing volumetric data fusion with faster image-based fusion, also accounted
for spatialized audio using head tracking and, thereby, provided a much higher degree of
immersion than 2D teleconferencing systems.

Temporal Data Fusion. Although the limitations of handling dynamic scene content in
the KinectFusion system, which was originally designed for static scenes, have been partially
mitigated, fully consistent integration was demonstrated only later by DynamicFusion [New-
combe et al., 2015] which performed non-rigid tracking in real time by estimating a dense
volumetric warp field that represents the individual motion of each point in space. Succes-
sive methods not only focused on a more accurate tracking in general, but also considered
multiple RGB-D cameras to handle fast motions [Dou et al., 2016]. Based on these impressive
developments, the Holoportation system [Orts-Escolano et al., 2016] demonstrated to provide
an immersive telepresence experience usingAugmented Reality devices such as theMicrosoft
HoloLens by performing incremental reconstruction and streaming of fully dynamic 3D
models of the person and their surrounding objects to another user in real time.
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Scene-oriented Telepresence. The primary focus of the aforementioned systems lied onto
3D telepresence of users and, thereby, onto scenarioswhich are limited to small and controlled
room-like scenes. However, telepresence of places that directly targets the surrounding
scene environment also received increasing attention in recent years. Mossel and Kroeter
[2016] developed a system that performed large-scale scene reconstruction using an efficient
spatially-hashed extension of KinectFusion [Kähler et al., 2015] and simultaneously streamed
the internal volumetric 3D model representation to another remotely connected user over
time. This way, the remote user was able to virtually explore the scene during acquisition
using Virtual Reality devices. In the context of Mixed Reality (MR), such systems were
extended to allow for closer collaboration [Zillner et al., 2018] where the local user captures a
reconstructed 3D model of the environment via an AR device with an integrated RGB-D
camera and sees the interactions of a remote user with the virtual model. Other approaches
captured the environment with a calibrated cluster of RGB-D cameras and streamed the
stitched 3D panorama point clouds to a VR remote user [Sasikumar et al., 2019; Bai et al.,
2020]. Similarly, the MobilePortation system [Young et al., 2020] allowed to incrementally
capture a 3D point cloud model of the scene using mobile phones with integrated RGB-D
cameras by filtering duplicate points with a simple voxel grid filter. To increase the degree of
immersion, a live 360◦ video was streamed in parallel and blended with the 3D model when
the remote user approached the local user’s position.

In the scope of our publications introducing SLAMCast [Stotko et al., 2019a; Stotko et al.,
2019d] which will be discussed in Chapters 5 and 6, we developed a practical telepresence
system which is not limited to single-user data streaming, but instead allows to share
live-reconstructed, large-scale 3D models of the surrounding scene environment to multiple
remotely connected users by introducing a bandwidth-efficient data structure for streaming
and managing the respective client states with fast GPU hash map data structures.

2.5 Appearance Reconstruction

Besides the reconstruction of the shape of objects in terms of surface geometry, their
appearance also plays an important role in the creation of high-quality virtual models and is
captured by the complex interplay between material properties such as the surface albedo,
the surrounding illumination conditions as well as the viewing direction. Many methods
that are built upon the volumetric update step of KinectFusion [Izadi et al., 2011; Newcombe
et al., 2011] apply a similar weighted averaging scheme to estimate surface color information
which, however, bakes all illumination-dependent effects into the reconstructed texture.

TextureOptimization. In order to improve the texture quality, highlight detectionwas used
to remove samples from the integration process and, thereby, from the final texture [Whelan
et al., 2016]. Since RGB-D cameras automatically adjust the exposure time of the captured
RGB images to ensure that the observed dynamic range of intensities can be well represented
by the limited capabilities of the sensor, other approaches proposed to estimate this exposure
time to obtain a consistent high-dynamic-range color texture instead of directly fusing the
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raw low-dynamic-range images [Li et al., 2016]. More sophisticated methods formulated
the problem as a large offline optimization objective to increase the overall sharpness of the
reconstructed texture and the amount of reconstructed details [Zhou and Koltun, 2014; Bi
et al., 2017; Fu et al., 2021]. Recent work also considered online texture fusion in real time by
storing texture tiles per voxel [Lee et al., 2020; Kim et al., 2022], as well as learning-based
texture optimization using adversarial formulations [Oechsle et al., 2019; Huang et al., 2020b]
or differentiable rendering [Dai et al., 2021].

Albedo Estimation. Although texture optimization improves the quality and consistency
of the object colors, the surrounding illumination is still inherently tied into the texture which
makes these approaches unsuitable in various scenarios such as relighting applications
where a reconstructed object is placed into another scene with a different illumination, e.g.
in the context of Augmented or Mixed Reality. Separating the shading to recover the surface
material in terms of the diffuse albedo has been formulated as the ill-posed intrinsic image
decomposition problem where a broader overview of various classic and learning-based
approaches can be found in related surveys [Bonneel et al., 2017; Garces et al., 2022]. Popular
choices to address the inherent scale ambiguity of the intrinsics image decomposition problem
include smoothness priors for the albedo and shading images based on L1 regularization of
the gradients [Kerl et al., 2014] or L2 regularization respectively [Meka et al., 2016]. Several
approaches used depth data to define more expressive priors for guiding the optimization
process [Barron and Malik, 2013; Chen and Koltun, 2013; Hachama et al., 2015]. Since
the scene is actively illuminated with infrared (IR) light by time-of-flight cameras in the
depth measurement process, Kerl et al. [2014] estimated the respective IR albedo from this
controlled illumination setup and applied it in an image-wide coupling term to resolve the
ambiguity. Recent work also considered natural infrared illumination [Cheng et al., 2019b] or
even hyperspectral images [Zhang et al., 2022a] to regularize the gradients of the decomposed
shading images. Furthermore, additional constraints to enforce piecewise constant albedo
or shading values within clusters were introduced based on image segmentation [Shi et al.,
2015] or from user inputs in interactive scene editing applications [Meka et al., 2017]. The
latter approach has been recently extended in a global-illumination-based formulation by
decomposing the shading image into a linear combination of indirect illumination layers that
model inter-reflections with respect to estimated base color clusters [Meka et al., 2021].

In the scope of our publication [Stotko et al., 2019e] which will be discussed in Chapter 7,
we demonstrated accelerated albedo estimation from RGB-D and IR data within common
real-time surface reconstruction systems and introduced a segmentation-based approach to
improve the coupling between the RGB and IR albedo images.

BRDF Estimation. Since the diffuse albedo only partially captures the material properties
and the appearance of objects, some methods considered the estimation of Bidirectional
Reflection Distribution Functions (BRDF) as a more sophisticated model to also faithfully
handle specular effects. Wu and Zhou [2015] proposed a multi-stage capturing process
where the geometry is first estimated by the KinectFusion system and subsequently used
to estimate the diffuse surface albedo as well as the specular component in terms of the
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Ward model [Ward, 1992]. Similar multi-stage approaches were developed in the context of
Mixed Reality for relighting applications [Richter-Trummer et al., 2016]. Due to the higher
resolution and lower amount of noise in RGB images in comparison to depth data, joint
appearance estimation and surface geometry refinement was explored to obtain higher
quality reconstruction results [Wu et al., 2016; Maier et al., 2017a]. Recent learning-based
approaches allowed to estimate material properties as well as the environment illumination
of a scene based on differentiable path tracing [Azinović et al., 2019] or even in image space
from a single image [Li et al., 2020b].
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Chapter 3

Background

In this chapter, we will introduce the basic concepts and tools for 3D scene reconstruction.
After introducing the theoretical foundations of energy optimization (see Section 3.1),
we will discuss the data acquisition process (see Section 3.2) as well as the initial data
prefiltering (see Section 3.3) and camera tracking stages (see Section 3.4). Furthermore, we
will review common geometric data representations (see Section 3.5) and describe the steps
in volumetric surface reconstruction (see Section 3.6) in more detail. Finally, we will also
discuss the preliminaries of image-based appearance reconstruction in terms of intrinsic
image decomposition (see Section 3.7).

3.1 Energy Optimization

A common tool to obtain suitable solutions for various problems in the field of computer
graphics and computer vision is the optimization of an energy function. In its most general
form

θ∗ � arg min
θ∈Rm

E(θ) (3.1)

we are interested in finding the optimal parameters θ∗ ∈ Rm which minimize an arbitrary
energy function E(θ).

3.1.1 Linear Least Squares Optimization

A very popular choice for the energy function is the Least Squares regression model. Given a
set of n measurements, each of them is associated with a residual function ri : Rm → R and
the contributions of each residual are consolidated into a sum which leads to the following
formulation of the energy function:

E(θ) �
n∑

i�1
ri(θ)2 � ‖r(θ)‖22 (3.2)
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Here, the energy can be rewritten in a simpler form by introducing a vector-valued function
r : Rm → Rn that includes the individual residual terms component-wise. Whereas the
residual terms ri can be non-linear in general, linear functions are often employed as a simple
model where the energy function reduces to a linear system of equations E(θ) � ‖A θ − b‖22
and the solution θ∗ � (AT A)−1AT b can be efficiently obtained by the well-known normal
equations.

For example, the weighted distance ri(y) � √wi ‖y − xi ‖2 is chosen in various problem
formulations to define the energy function

E(y) �
n∑

i�1
wi ‖y − xi ‖22 (3.3)

where the objective is to find a vector y ∈ Rd which best approximates a set of potentially
noisy samples xi ∈ Rd associated with accompanying weights wi ∈ R>0 in the least squares
sense. The solution of this problem is the well-known weighted mean

y∗ �
∑n

i�1 wi xi∑n
i�1 wi

(3.4)

which is one of several possible formulations to quantify the central tendency of the samples.

3.1.2 Geometric Median

Another possibility to define the central tendency is the geometric median which can be
considered as a special case of the more general Least Absolute Deviation regression model
that is defined by the energy function

E(θ) �
n∑

i�1
|ri(θ)| � ‖r(θ)‖1 (3.5)

and consolidates the individual residual terms in an L1 sense. Similar to the aforementioned
example, by choosing the residual function ri(y) � wi ‖y − xi ‖2, the geometric median of
a set of samples xi ∈ Rd with associated weights wi ∈ R>0 defines the point in space that
minimizes the weighted absolute distances to the samples:

E(y) �
n∑

i�1
wi ‖y − xi ‖2 (3.6)

Since no analytic closed-form solution to this problem exists, the value can only be computed
numerically via iterative methods such as the Weiszfeld algorithm [Weiszfeld, 1937] which
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can be derived by considering the partial derivative

0 �
∂
∂y

E(y) �
n∑

i�1
wi

y − xi

‖y − xi ‖2
(3.7)

of the energy. After rearranging the terms, the resulting equation reveals a recursive
dependency of the optimal solution y∗ with itself and, at the same time, defines the
corresponding fixed-point iteration step

y(k+1)
�

∑n
i�1 w̃i(y(k)) xi∑n

i�1 w̃i(y(k))
, w̃i(y) � wi

‖y − xi ‖2
(3.8)

of the Weiszfeld algorithm. This iterative process can in fact be viewed as repeatably
computing the weighted mean with dynamically changing weights with respect to the
current estimate y(k) and, thereby, also be reformulated in terms of the following Iteratively
Reweighted Least Squares (IRLS) problem

E(y) �
n∑

i�1
wi ‖y − xi ‖2

�

n∑
i�1

wi

‖y − xi ‖2
‖y − xi ‖22

≈
n∑

i�1
w̃i(y(k)) ‖y − xi ‖22 (3.9)

with the same weights w̃i(y(k)).

3.1.3 Total Variation Regularization

Whereas the aforementioned formulations effectively describe data terms which are designed
for finding parameters θ ∈ Rm that best approximate a set of given samples, Total Variation
(TV) regularization instead imposes additional smoothness constraints on the parameter
coordinates. In particular, we now consider the more general case of finding a function
f : Ω→ Rm parameterized over a l-dimensional domain Ω ⊆ Rl instead of a single vector θ.
The set of functions f forms a vector space and can be associated with the (canonical) inner
product and a p-norm that are defined in a similar way as for finite-dimensional vectors by

〈 f |g〉 :�
∫
Ω

〈 f (x)|g(x)〉 dx , ‖ f ‖p :�
[∫
Ω

| f (x)|p dx
]1/p

(3.10)

where | f (x)| denotes the euclidean length, i.e. | f (x)| :� ‖ f (x)‖2. Since the domain Ω is
a non-finite set in general, we require the functions to be square-integrable to ensure a
well-defined inner product and, in addition, p-times integrable for the p-norm. Furthermore,
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the functions should be at least once continuously differentiable in order to compute gradients
∇ f : Ω→ Rm×l .

Based on this definition, a regularized energy function taking a function f as argument can
then be defined as

E( f ) � Edata( f ) +
∫
Ω

|∇ f (x)| dx

� Edata( f ) + ‖∇ f ‖1 (3.11)

and consists of a data term Edata, which can be formulated, e.g., in the L2 sense by a linear
least squares term or by other means, as well as the Total Variation regularization term,
which penalizes local deviations of f within the domain Ω in the L1 sense. In order to
control the influence of the regularization, an additional balancing parameter λ ∈ R>0 can be
introduced within the data term Edata as a trade-off between the smoothness of the function
f and its fidelity. Several algorithms for solving the above regularized optimization problem
have been proposed including the popular primal-dual approach by Chambolle and Pock
[2011] where the original minimization task is reformulated to the saddle point problem

E( f ,G) � Edata( f ) + 〈∇ f |G〉 − δ1(G) (3.12)

in which the primal variable f is minimized and the respective dual variable G is maximized.
Here, the Dirac delta function

δ1(G) �
{

0 if ‖G‖∞ ≤ 1
+∞ otherwise

(3.13)

restricts the solution space of the dual variable to functions with bounded maximum norm.
Furthermore, the primal and dual variables are connected through the gradient operator ∇
and its adjoint version ∇T � −div which allows to map between the two function spaces.

Given an initialization of the primal and dual variables f (0) and G(0) along with the auxiliary
variable f̄ (0) � f (0) as well as the step sizes σ, τ ∈ R>0 and θ ∈ [0, 1], the primal-dual solver
iteratively applies the following steps:

1. Gradient ascent step: G(k+1) � proxσ δ1
(G(k) + σ∇ f̄ (k))

2. Gradient descent step: f (k+1) � proxτ Edata
( f (k) − τ ∇TG(k+1))

3. Extrapolation step: f̄ (k+1) � f (k+1) + θ ( f (k+1) − f (k))
The involved proximal operator

proxτ Edata
( f ) � arg min

g

‖ f − g ‖22
2τ + Edata(g) (3.14)

can be interpreted as a damped minimizer of the considered function, which is Edata in this
case, where the solution is additionally constrained to lie close to the specified value. In case
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3.2 Data Acquisition

of the dual variable, the proximal operator reduces to a projection to the solution space:[
proxσ δ1

(G)](x) � G(x)
max(1, |G(x)|) (3.15)

We will built upon this formulation and the respective primal-dual solver in our albedo
estimation approach which will be described in Chapter 7.

3.2 Data Acquisition

Since the focus of this thesis lies on the reconstruction of indoor scenes, we will primarily
consider approaches that operate on RGB-D image frames and are explicitly designed to
take advantage of this structured data format (see Figure 3.1). However, we also studied
more general approaches that only require unstructured data in terms of 3D point clouds
(see Chapter 4). In the following, we will thus also consider point-based sensing devices in
addition to purely imaged-based ones.

3.2.1 Depth Sensing

Several types of cameras have been developed for measuring depth information which can
be divided into two major categories: passive capturingwhich includes stereo cameras and
active capturingwhich is employed by structured light and time-of-flight cameras.

Stereo Cameras. In contrast to active capturing devices which emit a signal into the scene
and capture the reflected response, stereo cameras are passive sensors consisting of a pair of
RGB cameras that record the scene from slightly different angles. By finding correspondences
between the two captured images, the depth of the observed 3D point can be estimated using
triangulation and the known fixed baseline between the cameras. While stereo cameras
can be used both in indoor and outdoor scenes, the accuracy of the depth image heavily
depends on the reliability of the estimated correspondences which becomes challenging for
low-textured objects.

Structured Light Cameras. Structured light cameras also rely on correspondence estima-
tion, but consider a more controlled setup where measurements are taken in the infrared
(IR) spectrum instead of the visible spectrum. In particular, an IR emitter projects a known
structured pattern, e.g. a speckle pattern in case of the Microsoft Kinect v1, into the scene
which is then observed by an IR camera. Depth estimation follows the same principle as
in the case of stereo cameras by performing triangulation on the matched correspondences
which, however, is a significantly easier detection task in this scenario due to the known
emitter pattern. Therefore, structured light cameras are well-suited for capturing near
objects in indoor scenes within a range of up to five meters but become less reliable in
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Figure 3.1: Exemplary RGB-D frame from the heating_room dataset [Stotko et al., 2019a]. A colored 3D
point cloud can be computed via back-projection of the depth image.

outdoor scenarios where the emitted signal may not be distinguished from the surrounding
environment illumination, e.g. direct sunlight, anymore.

Time-of-Flight Cameras. Another increasingly popular depth sensing technique is based
on time-of-flight imaging which can be categorized into pulsed and continuous wave
modulation approaches [Horaud et al., 2016]. Indoor scanning devices such as the Microsoft
Kinect v2 usually emit modulated infrared light with a fixed known frequency and measure
the phase shift of the reflected signal per pixel. Since the speed of light is a known constant,
the overall traveled distances of the light can be computed from the pixel-wise measured
phase shifts and then converted to respective depth values by taking half of the distances.
Similarly, pulsed time-of-flight cameras emit short pulses of infrared light into the scene and
directly measure the time until the pulse is reflected back to the device. While the underlying
assumption of a single direct reflection back to the sensor usually holds for most parts of the
scene, the emitted light can be reflected more than once around corners or concave edges
which results in multiple measurements and can lead to systematically overestimated depth
values.

LiDAR Sensors. A subclass of the general set of time-of-flight devices are light detection
and ranging (LiDAR) sensors which utilize laser beams to emit light into the scene. Since
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3.2 Data Acquisition

these sensors are usually equipped with a single or a very low number of laser beams and
each of them can only contribute to a single depth measurement, a rotating mirror is used to
vary the directions of the laser beams and, thereby, to progressively scan the scene within
a frame. Therefore, the measured output provided by LiDAR devices typically consists of
3D point clouds whereas time-of-flight cameras like the Microsoft Kinect v2 capture 2D
depth images which can then be projected back to 3D space using the pinhole camera model.
Furthermore, LiDAR sensors are often employed in outdoor scenes where measuring larger
distances with high accuracy is crucial which includes various scenarios such as autonomous
driving [Li and Ibanez-Guzman, 2020].

3.2.2 Pinhole Camera Model

While the captured RGB and depth information is provided in 2D image space, the following
processing steps operate on scene information that is given in 3D space. This, in turn, requires
the capability to convert between the depth values pz measured at 2D pixel coordinates
u � (ux , uy)T ∈ R2 and the corresponding 3D points p � (px , py , pz)T ∈ R3 which can be
defined in terms of perspective projection and back-projection functions. To this end, the
pinhole camera model is employed which is a simple model that assumes lens-free projection
along a ray to a single point and can be described by the camera calibration matrix

K �
©«

fx 0 cx
0 fy cy
0 0 1

ª®¬ (3.16)

consistingof the focal lengths ( fx , fy)T ∈ R2 of the camera and theprincipal point (cx , cy)T ∈ R2

which depicts the center of projection in image space. These device-specific properties of the
camera can be estimated in a calibration process where a series of images of a known target
object, e.g. a checkerboard pattern or another suitable reference object, are taken [Zhang,
2000]. Since the pinhole model does not explicitly handle lens distortions which usually
cannot be neglected for actual real-world cameras, the respective distortion parameters
are estimated as well during the initial calibration and used in the prefiltering step (see
Section 3.3) to compute an undistorted image from the raw sensor data. Based on this camera
matrix K, the perspective projection πK of a 3D point to an undistorted 2D pixel is defined in
vector notation by (u , 1)T � K · p/pz . Ignoring the fixed last coordinate, we can also write
this expression more compactly as:

πK : R3 → R2

p 7→
(

fx
px

pz
+ cx fx

py

pz
+ cy

)T

(3.17)

Similarly, the inverse of the projection π−1
K , i.e. the back-projection of a 2D pixel with a

given depth value pz � z(u) into 3D space, is defined as p � K−1 · (u , 1)T · pz and can also be
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rewritten in a more compact form as:

π−1
K : R2 × R→ R3

(u , pz) 7→
(

ux − cx

fx
pz

uy − cy

fy
pz pz

)T

(3.18)

3.3 Data Prefiltering

Before the captured data is further processed, a set of prefiltering steps is applied first. In
addition to the aforementioned undistortion step, this primarily includes noise reduction
which is usually performed by applying a bilateral filter [Tomasi and Manduchi, 1998] to the
2D depth image to obtain a smoothed version

zfiltered(u) �
∑

ui
Krange(‖z(ui) − z(u)‖2)Kspatial(‖ui − u‖2) z(u)∑
ui

Krange(‖z(ui) − z(u)‖2)Kspatial(‖ui − u‖2)
(3.19)

where Kspatial denotes a filter kernel in the spatial pixel domain and Krange a kernel in the
domain of the depth image values. A zero-mean Gaussian kernel K(x) � e−x2/(2σ2), where the
normalization constant can be omitted, is commonly applied for both kernels. Alternatively,
Cao et al. [2018] used a temporal median filter where first a batch of consecutive depth
images is registered (see Section 3.4) to determine pixel correspondences between the images
and then the pixel-wise median over the batch is computed. In the context of unstructured
point cloud data, such an initial denoising or consolidation step can be realized by, e.g., the
LOP operator [Lipman et al., 2007] which performs L1-based spatial denoising in 3D space
and which we will study in more detail in Chapter 4.

Afterwards, a vertex map p(ux , uy) is commonly computed via back-projection with the
pinhole camera model and subsequently used to derive further geometric information such
as an estimate of the surface normals

n(ux , uy) �
(p(ux + 1, uy) − p(ux − 1, uy)) × (p(ux , uy + 1) − p(ux , uy − 1))(p(ux + 1, uy) − p(ux − 1, uy)) × (p(ux , uy + 1) − p(ux , uy − 1))2

(3.20)

in terms of finite differences, e.g. central differences as shown above.

3.4 Camera Tracking

Since the individual frames only capture certain parts of the scene from different angles, a
crucial step in 3D reconstruction pipelines is the camera tracking stage where the data are
brought into alignment by transforming each frame into a canonical world coordinate system.
This transformation effectively determines the pose of the moving camera at a time step t
and consists of a 3D rotation, which represents its orientation and can be defined in terms
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3.4 Camera Tracking

of a rotation matrix R(t) ∈ SO(3) with SO(3) � {R ∈ R3×3 |RT R � I, det (R) � 1}, as well as a
3D translation t (t) ∈ R3, which denotes the position of the camera. A point pcamera ∈ R3 from
the local camera coordinate system can then be transformed into global world coordinates

pglobal � R(t) pcamera + t (t) (3.21)

by applying the rotation and translation. By writing the point in homogeneous coordinates
(pcamera , 1)T ∈ R4, the transformation can be defined in matrix form as

T (t) �
(
R(t) t (t)
0 1

)
∈ R4×4 (3.22)

which allows for convenient inversion and concatenation of the transformations, e.g. to map
between two local coordinate systems at time steps t1 and t2.

The estimation of these transformations from RGB-D frames as well as from other types of
data such as pure monocular RGB images or additional inertial information has been an
active field of research. Local tracking approaches optimize the relative pose ∆T between
two frames at time steps t and t + 1 based on the energy formulation

E(∆T) � Egeometric(∆T) + λphotometric Ephotometric(∆T) (3.23)

consisting of a geometric term that is often accompanied with an additional photometric
term and balanced by a weight λphotometric ∈ R≥0. The geometric term only relies on the
depth image and is usually defined in terms of point-to-plane distances in 3D space [Izadi
et al., 2011; Newcombe et al., 2011; Nießner et al., 2013]

Egeometric(∆T) �
∑

u

〈∆T p(t+1)(u) − p(t)(ureprojected) | n(t)(ureprojected)〉2 (3.24)

where ureprojected � πK([T (t)]−1 T (t+1) p(t+1)(u)) denotes the pixel u reprojected to the frame
at time step t. On the other hand, the photometric term

Ephotometric(∆T) �
∑

u

‖I(t+1)(u) − I(t)(πK(∆T p(t+1)(u)))‖22 (3.25)

considers the intensity images I(t) and I(t+1), which are computed from the input RGB data,
and penalizes differences between the reprojected and the observed intensity [Steinbrücker
et al., 2011; Whelan et al., 2013]. This non-linear optimization problem is solved iteratively
by linearizing the transformation ∆T and obtaining the solution of the resulting linear
least squares approximation. The final transformation at time step t + 1 is then given by
T (t+1) � T (t) · ∆T . Whereas in frame-to-frame tracking two subsequent input frames are used
to estimate the relative pose, in frame-to-model tracking the reference frame at time step t is
generated from the current state of the reconstructed model which significantly reduces the
amount of accumulated drift over time caused by slight estimation errors.

In order to ensure global consistency, various methods also considered the joint optimiza-
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tion of all transformations E(T (1) , T (2) , . . . , T (t)) via loop closure detection and pose graph
optimization techniques. For a more comprehensive overview, we refer to related surveys
and state-of-the-art reports [Stotko, 2016b; Taketomi et al., 2017; Macario Barros et al., 2022].
In the scope of the methods developed in this thesis, we relied on the computationally faster
frame-to-model methods.

3.5 Geometric Data Representations

After estimating the pose of the camera, the input frames can be merged into a 3D model.
However, a naive composition into a single point cloud would lead to unpleasant, low-quality
results since the individual frames do not only overlap and, hence, introduce significant
redundancy, but are also corrupted by sensor noise and outliers. In order to obtain a
smooth, compact, and high-quality estimate of the surface, we want to employ more
sophisticated fusion approaches which require the notion of a suitable respective geometric
data representation.

In the following, we briefly discuss common explicit representations such as points, surfels,
and polygon meshes as well as implicit representations in terms of signed distance functions.
A visual comparison of these representations is shown in Figure 3.2.

Points. One of the simplest surface representations is the point cloud model which consists
of a set of unordered 3D points in space belonging to the surface:

S :� {pi ∈ R3} (3.26)

A point cloud can effectively be considered as a discrete set of samples of the continuous
surface and therefore captures a sparse subset of the whole geometry. As a consequence of
this minimal representation, other properties including tangent planes, normals, or curvature
information are not explicitly provided and must typically be estimated separately from the
distribution of the points within a local neighborhood.

Surfels. In comparison to the point cloudmodel, surface elements (surfels) are primitives that
are additionally equipped with further attributes of the surface which, in particular, includes
first-order surface geometry information [Pfister et al., 2000]. To this end, surfel-based
reconstruction approaches [Keller et al., 2013] typically maintain their data as an unordered
list

S :� {(pi , ni , ri) ∈ R3 × R3 × R≥0} (3.27)

where each surfel is modeled as an oriented disk and specified by the center position pi , the
orientation described by the normal vector ni , as well as the radius ri of the disk. Furthermore,
a color value or other auxiliary information that are relevant for the purpose of data fusion
can be associated as well to a surfel.
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Figure 3.2: Overview of common data model representations for surface reconstruction at the example
of the Bunnymodel [Stanford Computer Graphics Laboratory, 1994]. Low model resolutions were
chosen to visualize the individual structure of each explicit and implicit data representation.

Polygon Meshes. As points and surfels cover a small local part of the surface geometry in
a flexible but also uncorrelated and unstructured way, the surface itself is not necessarily
closed and may exhibit small holes in-between when it is rendered to an image. On the other
hand, polygon meshes were utilized for several decades in graphics pipelines and offer a
simple way to model closed surfaces as a graph

S :� (V , F ) with V :� {pi ∈ R3}, F j V ×V × · · · × V︸                ︷︷                ︸
k times

(3.28)

where V denotes the set of vertices, i.e. the sampled points on the surface, and F the
connectivity of the graph in terms of a set of faces. The most common choice are triangle
mesheswhere k � 3 and the surface between the three vertices is represented by the respective
triangle in a piecewise linear manner. In contrast to the other representations discussed in
this section, polygon meshes are often only constructed in a post-processing step, e.g. via
Marching Cubes [Lorensen and Cline, 1987] in the case of voxels (see Section 3.6.2). Some
recent 3D reconstruction approaches also directly integrated an incremental meshing step
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into the data fusion stage to progressively update the reconstructed polygon mesh over
time [Dong et al., 2018; Schöps et al., 2019b].

Signed Distance Functions. An alternative to the discussed explicit data models are
implicit representations where, in particular, the level set method [Dervieux and Thomasset,
1979; Osher and Sethian, 1988] became very popular as an elegant framework to define and
analyze surfaces. In its general form, the level set of a d-dimensional function f : Rd → R is
defined as the set of all points p ∈ Rd that are mapped to a constant value clevel ∈ R by f . For
the purpose of 3D reconstruction where d � 3, we are interested in the zero level set

S :� {p ∈ R3 | f (p) � 0} (3.29)

as a means to implicitly define the surface S in a continuous way. While in theory any
function that fulfills the above requirement can be applied in this context, an intuitive choice
for f is the Signed Distance Function (SDF) which returns the closest distance of a query
point p to S. Here, the sign of the distance indicates the location of the point relative to the
surface. Points that are located within the object, i.e. lying behind the surface, have negative
values f (p) < 0 whereas they have positive values f (p) > 0 if they lie outside the object and,
thereby, in front of the surface. As we are only interested in the zero level set of the SDF, the
other possible convention with flipped signs to determine the inner and outer space could
be equally used instead. Nevertheless, we will use the former convention throughout this
thesis since it has been adopted by the KinectFusion system [Izadi et al., 2011; Newcombe
et al., 2011] and related techniques. Furthermore, we store the SDF discretely in volume
elements (voxels). In fact, voxels can be considered as the generalization of 2D pixels to the
three-dimensional domain where the 3D space is subdivided into axis-aligned cells that are
associated with a scalar-valued or vector-valued property.

3.6 Volumetric Surface Reconstruction

After this brief overview of common geometric data representations, we will now discuss
the surface reconstruction stage in more detail with a focus on volumetric methods based
on signed distance functions which will serve as the basis for the techniques and systems
developed in Chapters 5 to 7.

3.6.1 Projective Data Fusion

Given a set of n depth images which capture the surface from various angles, Curless and
Levoy [1996] formulated the objective of fusing the given overlapping depth information
into a single consistent signed distance function that best approximates the observations as
an optimization problem. To this end, the respective energy function has been defined as a
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weighted linear least squares problem

E(S) �
n∑

t�1

∫
Ω(t)

w(t)sight(x ,S) d
(t)
sight(x ,S)2 dx (3.30)

where for each depth image captured at time step t the signed distances d(t)sight of themeasured
3D points to the surface along the line of sight of the sensor are minimized. Here, the
integration domain Ω(t) is specified with respect to the line of sight and depends on the
time step t as well as on the corresponding sensor pose estimated in the tracking stage (see
Section 3.4). By reparametrizing the energy to a canonical domain, the global SDF that
minimizes the above energy can be computed as the weighted average

D∗(p) �
∑n

t�1 w(t)(p) d(t)(p)∑n
i�1 w(t)(p) (3.31)

of signed distances d(t) for every point p ∈ R3. This solution can be further reformulated to
an incremental update step

D(t+1)(p) � W (t)(p)D(t)(p) + w(t)(p) d(t)(p)
W (t)(p) + w(t)(p) (3.32)

W (t+1)(p) � W (t)(p) + w(t)(p) (3.33)

which avoids the cost of storing all observations and allows to process the data in an online
fashion. In practice, the signed distances d(t) are computed in a projective way as the
differences between the depth of the points p and the corresponding depth measurements
at the projected image positions of p. Furthermore, the values are truncated and specified
relative to a small band ctruncation ∈ R>0 since only the close proximity around the surface is
required to accurately represent and store it. Therefore, a Truncated Signed Distance Function
(TSDF) is effectively computed. Further information such as colors provided by the RGB
camera of the sensor or albedo information (see Section 3.7.2) can be fused as well using the
same incremental update step.

3.6.2 Surface Extraction via Marching Cubes

Although many operations for signed distance functions including data fusion can be
performed very efficiently and elegantly, directly rendering an image of the implicitly defined
surface is, however, a more complex operation and requires to traverse the volume along
a set of cast rays and to repeatably sample the SDF. In contrast to this, the visualization of
explicit representations such as polygon meshes usually only requires a rasterization step
which is a standard operation for rendering and implemented in a highly optimized manner
on the GPU. To this end, Marching Cubes [Lorensen and Cline, 1987] has been developed
as an approach to extract the isosurface at a given value f (p) � ciso in terms of a triangle
mesh. This algorithm will be a key component of our proposed telepresence system which
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Figure 3.3: Visualization of the Marching Cubes algorithm [Lorensen and Cline, 1987] at the example
of the Bunny model [Stanford Computer Graphics Laboratory, 1994] for a single 2D slice of the voxel
grid, inspired by Anderson [2004].

we will discuss in Chapters 5 and 6. A visual overview of the algorithm for a 2D slice of a
volumetrically stored SDF is shown in Figure 3.3.

Starting from an arbitrary voxel with discrete coordinates u ∈ Z3, the stored SDF values
d0 , . . . , d7 of the voxel and its seven neighboring voxels at the positions

NMC(u) � {(ux + ∆ux , uy + ∆uy , uz + ∆uz)T ∈ Z3 | ∆u ∈ {0, 1}3} (3.34)

are fetched and compared against the specified isovalue ciso ∈ R to determine whether the
isovalue is crossed in-between the discrete voxels. This results in a binary code of eight
bits that can be written as an index iMC ∈ [0, 255] ⊂ N0 encoding the detected configuration
of the local surface structure. Based on this configuration, vertices are placed at the edges
between the voxels crossing the isovalue and connected to a set of triangles. In practice, this
is efficiently implemented in terms of a precomputed lookup table which can be indexed
by iMC and returns the involved edges as well as the triangulation pattern for any possible
configuration. Since the concrete values of the SDF are available, the positions along the
edges can be linearly interpolated to obtain a smoother mesh that more closely approximates
the isosurface.

3.6.3 Spatial Voxel Block Hashing

Although the KinectFusion system [Izadi et al., 2011; Newcombe et al., 2011] allows to run
the aforementioned stages of the 3D reconstruction pipeline in real time, one of its major
limitations was the runtime and storage complexity which restricts the system to room-scale
scenes. Due to its reliance on managing a dense voxel grid, doubling the size of the scene
or the resolution of the grid would result in eight times higher memory requirements and,
hence, a cubic scaling. In order to address this problem, Nießner et al. [2013] proposed an
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extension where only a small band around the surface was actively stored which reduced
the requirements to almost quadratic complexity and was close to the theoretically optimal
asymptotic scaling. In particular, a two-level voxel grid hierarchy is employed where the
finer level stores the actual voxel data similar to KinectFusion and the coarser level provides
a lightweight mechanism to handle sets of 83 � 512 voxels by composing them into blocks.
These blocks are managed by a GPU hash table and can be retrieved by evaluating the spatial
hash function [Teschner et al., 2003]

hblock : Z3 → N0

u 7→ (ux · p1 ⊕ uy · p2 ⊕ uz · p3) mod n (3.35)

where the coordinates of the discrete 3D block position u are first multiplied by the large
prime numbers p1 � 73856093, p2 � 19349669, p3 � 83492791, thenmerged into a single value
using the XOR operator ⊕, and finally mapped to one of the n hash table buckets. Applying
this sparse volumetric grid representation to the reconstruction pipeline requires several
further changes and additional steps which will be described in the following.

Block Allocation. Since only a tight band around the reconstructed surface should be ex-
plicitly stored andmaintained, the set of voxel blocks, that lie within this region and should be
subsequently updated, has to be computed first. To this end, the pixel-wise range of the band
is determined from the depth image values z as the interval [z − ctruncation , z + ctruncation] and
the corresponding line segments are constructed via back-projection of the interval bounds
(see Section 3.2.2). Afterwards, the Digital Differential Analyzer (DDA) algorithm [Ama-
natides and Woo, 1987] is applied to find all blocks that intersect with these segments and
each block is allocated and inserted into the GPU hash table.

BlockGarbage Collection. Some depth samples are potentially unreliable due to noise and
may unnecessarily increase the size of the truncation band. Such voxel blocks are typically
located at the border of the band and will receive significantly less updates than blocks that
are close to the surface. Therefore, the maximum weight as well as the minimum absolute
SDF value within a block are computed and compared against some thresholds. Blocks that
are detected in this way are removed from the hash table and deallocated.

Block Streaming. In addition to the more compact storage of the surface, the unordered
structure of the sparse voxel grid in terms of spatially-hashed blocks enables further
possibilities to improve the scalability of the overall system by streaming currently inactive
blocks from the smaller GPU memory to the larger CPU memory. This is determined by
testing whether the considered block is still visible to the moving (virtual) camera. Once
a streamed-out voxel block becomes visible again and its voxel data will be updated with
new sensor information, the block is streamed back into GPU memory. Nießner et al. [2013]
managed the blocks on the CPU in larger groups of chunks using a separate linked list,
which effectively corresponds to a three-level hierarchy, whereas Kähler et al. [2015] reused
the GPU hash table and instead tracked the state of the block explicitly by a flag.
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3.7 Image-based Appearance Reconstruction

Although the surface geometry provides clues about the shape of the reconstructed objects
and scenes, it lacks information about the perceived appearance which is another crucial
ingredient to reconstruct realistic 3D models. Before we discuss the preliminaries of image-
based appearance reconstruction in terms of intrinsic image decomposition, which will be
the focus of our work discussed in Chapter 7, we first introduce the fundamental concepts of
light transport.

3.7.1 Light Transport

Understanding how the final color values in an RGB image are determined from the captured
environment requires knowledge about the interaction of light with the scene and, thereby,
about light transport through the scene. A general formulation of this physical process
has been introduced by Kajiya [1986] in terms of the Rendering Equation. Considering only
non-translucent, opaque objects in the scene, the radiance Lo , that is emitted or reflected at a
surface point p ∈ S into the direction ωo ∈ H(n) of the hemisphereH(n), can be formulated
as

Lo(p ,ωo) � Le(p ,ωo) +
∫
H(n)

fBRDF(p ,ωi ,ωo) Li(p ,ωi) 〈n |ωi〉 dωi (3.36)

and consists of an emission term and a reflection term. Here, the former term specifies
the directly emitted radiance Le from the surface, which is non-zero for light sources,
whereas the latter term denotes the total amount of reflected light and, hence, captures
all contributions of reflected light over the hemisphere H(n). Each of these individual
contributions is determined by the total amount of incoming radiance Li received from the
direction ωi ∈ H(n), the Bidirectional Reflection Distribution Function (BRDF) fBRDF, as well as
an additional attenuation term based on the angle of the incident light to the surface. The
BRDF fBRDF(p ,ωi ,ωo) is a property of the material and describes the fraction of light that is
reflected from a direction ωi to a direction ωo .

Since radiance remains constant during light transport through vacuum, the incoming
radiance Li(p ,ωi) at the point p is equal to the outgoing radiance Lo(p′,−ωi) at the point p′
which denotes the closest intersection point of the ray l(τ) � p + τωi with the scene. This
assumption can also be applied in many real-world scenarios that do not include fog or other
complex participating media. As a result, the rendering equation can be expressed as a
recursive integral equation which, in the general case, has no analytic closed-form solution.

3.7.2 Intrinsic Image Decomposition

Whereas the rendering equation formally defines the interaction of known scene geometry,
material properties and surrounding illumination which is primarily used to generate photo-
realistic images, inverse rendering describes the process of recovering these components from
the final images. A simple, yet effective formulation of this process in image space is intrinsic
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image decomposition introduced by Barrow and Tenenbaum [1978] which separates a captured
image into an element-wise product of reflectance and shading images and can be derived
from the rendering equation under the consideration of additional assumptions [Bonneel
et al., 2017; Garces et al., 2022]. To this end, the reflection behavior of a material and, thereby,
its BRDF can be analyzed by splitting it into a diffuse and a specular term

fBRDF(p ,ωi ,ωo) � κd(p) fd(p ,ωi ,ωo) + κs(p) fs(p ,ωi ,ωo) (3.37)

where κd ∈ [0, 1]3 and κs ∈ [0, 1]3 denote the respective albedo components of the material
and fd and fs the diffuse and specular lobes of the BRDF [Guarnera et al., 2016]. In the
context of intrinsic image decomposition, the materials are assumed to be Lambertian and
only reflect light in a perfectly diffuse manner without further specular terms. This results in
the Lambert BRDF fBRDF(p ,ωi ,ωo) � κd(p)/π [Lambert, 1760] which distributes radiance
uniformly into all directions and does not depend on the incoming or outgoing directions ωi
and ωo . If we further assume that the captured scene is not additionally emitting light, i.e.
no light sources are directly visible in the final image, the rendering equation reduces to

Lo(p ,ωo) � κd(p) ·
∫
H(n)

1
π

Li(p ,ωi) 〈n |ωi〉 dωi (3.38)

and reveals the separation of the diffuse albedo from the remaining shading terms for
each surface point p. In image space, this relation denotes the classic intrinsic image
decomposition formula

L(u) � κd(u) s(u) (3.39)

where the diffuse albedo κd is typically referred to as the reflectance term and s, representing
the integral term, is called the shading term. Here, it is important to note that during the
image formation process the linear radiance values are converted to gamma space and finally
mapped to pixel values via quantization. Therefore, the decomposition is formally defined in
gamma space which more closely resembles the human vision system and allows to interpret
differences in color on a perceptional basis.

Computing the actual decomposition remains a challenging and ill-posed problem due to the
inherent pixel-wise scaling ambiguity which implies that there exists an infinite number of
solutions (κd · crandom , s/crandom) that perfectly explain the final image L after re-composition.
Several priors have been employed to constrain the problem and to resolve this ambiguity
where popular choices are based on the Retinex Theory [Land and McCann, 1971] or the
assumption of white light to restrict the shading term to a one-dimensional scalar value.
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Chapter 4

Incomplete Gamma Kernels:
Generalizing Locally Optimal

Projection Operators

In this chapter, wediscuss the contributions and results developed in the followingpublication
which already appeared as a preprint and is currently under review:

Patrick Stotko, Michael Weinmann, and Reinhard Klein.
“Incomplete Gamma Kernels: Generalizing Locally Optimal Projection Operators.”
arXiv:2205.01087 (under review), submitted to IEEE Transactions of Pattern Analysis and
Machine Intelligence (TPAMI), 2022.
doi: 10.48550/arXiv.2205.01087

In the following, we include a verbatim copy of the content of this work subject to some
minor editorial changes.

Author Contributions of the Publication In this work, I developed the theoretical deriva-
tion of the kernel family, its properties, as well as the applications. Furthermore, I performed
the experiments and evaluations of the proposed extensions.

4.1 Abstract

We present incomplete gamma kernels, a generalization of Locally Optimal Projection (LOP)
operators. In particular, we reveal the relation of the classical localized L1 estimator, used in
the LOP operator for surface reconstruction from noisy point clouds, to the common Mean
Shift framework via a novel kernel. Furthermore, we generalize this result to a whole family
of kernels that are built upon the incomplete gamma function and each represents a localized
Lp estimator. By deriving various properties of the kernel family concerning distributional,
Mean Shift induced, and other aspects such as strict positive definiteness, we obtain a deeper
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Figure 4.1: Relation between LOP and Mean Shift at the example of the 2D Fishmodel. Minimizing
the localized L1 attraction energy with the Gaussian kernel KGaussian (left) results in the same trajectory
q(t) as applying Mean Shift on a global kernel density estimate with the kernel KLOP (right).

understanding of the operator’s projection behavior. From these theoretical insights, we
illustrate several applications ranging from an improved Weighted LOP (WLOP) density
weighting scheme and a more accurate Continuous LOP (CLOP) kernel approximation to
the definition of a novel set of robust loss functions. These incomplete gamma losses include
the Gaussian and LOP loss as special cases and can be applied for reconstruction tasks such
as normal filtering. We demonstrate the effects of each application in a range of quantitative
and qualitative experiments that highlight the benefits induced by our modifications.

4.2 Introduction

Digital 3D scene models have become a crucial prerequisite for numerous applications
in entertainment, advertisement, design, architecture, autonomous systems, and cultural
heritage. In this context, the accurate digitization of real-world objects and scenes is of great
relevance and offers new opportunities regarding a variety of tasks including AR/VR-based
inspection and collecting realistic training data for tasks in robotics, autonomous driving,
aerial or satellite surveys. Aside from professional scanning campaigns with expensive
laser scanning equipment, there has also been an increasing trend towards more practical
scene capture with consumer-grade hardware such as passive purely image-based scene
scanning using Structure-from-Motion and Multi-view Stereo approaches, or with respective
cheaper active time-of-flight depth sensors that have meanwhile even been integrated into
numerous mobile devices. However, the use of passive scene scanning or active scanning
based on cheap hardware with low sensor quality and low sensor resolution induces noise
in both the capture process and the 3D reconstruction procedure, and thereby results in
noisy point clouds and a low number of points that might not preserve finer geometric
details in the reconstruction respectively, which, in turn, may lead to registration artifacts.
Furthermore, the limited accessibility of capture conditions as well as occlusions induce
holes in the reconstructed models. These challenges result in an increasing interest in robust
surface reconstruction techniques capable of handling noise, outliers, registration artifacts
and missing data.

42



4.2 Introduction

Among others, the Locally Optimal Projection (LOP) operator [Lipman et al., 2007] has
gained a lot of attention in recent years due to its benefit of not relying on a well-defined
surface parametrization or a piecewise planar approximation and, meanwhile, there has
been a whole series of further extensions of this approach [Huang et al., 2009; Huang
et al., 2013; Liao et al., 2013; Preiner et al., 2014]. Furthermore, many learning-based
approaches also aim at projecting the noisy data onto a (latent) denoised manifold [Zhang
et al., 2020; Xu et al., 2022a]. Therefore, investigations towards the unification of traditional
approaches with their respective regularization techniques might be of great relevance
for future learning-based approaches as well. Even further, traditional techniques such as
Mean Shift clustering [Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer,
2002] become more and more relevant in modern deep learning methods. Besides their
application to structure the latent space representation of the data within encoder-decoder
approaches [Madaan et al., 2019], there is even a direct relation between the Mean Shift
approach and denoising autoencoders [Bigdeli and Zwicker, 2018]. In particular, as the
output of an optimal denoising autoencoder corresponds to the local mean of the true data
density [Alain and Bengio, 2014], the autoencoder loss can be interpreted as a Mean Shift
vector [Bigdeli and Zwicker, 2018]. However, to the best of our knowledge, this observation
has not yet been explored in the context of surface reconstruction and denoising. Hence,
relating traditional concepts to modern deep learning methods might not only lead to a more
explainable behavior of the latter but also allow increasing the resulting performance. In
turn, this relies on the better understanding of the relationship between previous (traditional)
techniques.

In this paper, we investigate the theoretical relationship of projection-based surface recon-
struction approaches with their respective properties and show that these are unified within
the common Mean Shift framework. In particular, the key contributions of our work are:

• We reveal the relation of the classical localized L1 estimator used in LOP to the Mean
Shift framework via a novel kernel KLOP and introduce the family of incomplete gamma
kernels KΓ as a generalization of this result where each kernel represents a localized Lp
estimator (see Section 4.4).

• We derive various properties of the kernel family concerning distributional, Mean
Shift induced, and other aspects such as strict positive definiteness to obtain a deeper
understanding of the operator’s projection behavior (see Section 4.5).

• We demonstrate that leveraging the derived theoretical insights enables several appli-
cations including an improved Weighted LOP (WLOP) density weighting scheme, a
more accurate Continuous LOP (CLOP) kernel approximation as well as the derivation
of incomplete gamma losses, a set of novel robust loss functions (see Section 4.6).

In our evaluation, we demonstrate the benefits induced by our modifications in a range
of quantitative and qualitative experiments. Furthermore, the theoretical insights of our
investigationswith their proven effectmay be of great relevance also for future learning-based
approaches.
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4.3 Related Work

In the following, we provide a review of geometric and learning-based denoising approaches.
Furthermore, we also review seminal work regarding the theory and application of the Mean
Shift framework due to its relationship to LOP approaches that we will demonstrate later.

4.3.1 Geometric Denoising Approaches

Following early approaches such as the local fitting of tangent planes [Hoppe et al., 1992] or
using radial basis functions [Carr et al., 2001], respective developments particularly focused
on projection-based methods, sparsity-based methods and non-local methods.

Projection-based Methods. These approaches rely on the assumption of an underlying
smooth surface and the projection of noisy data points onto the estimated local surface. For
this purpose, respective approaches apply moving least squares (MLS) basedmethods [Alexa
et al., 2003; Amenta and Kil, 2004; Fleishman et al., 2005; Öztireli et al., 2009], robust principal
component analysis (RPCA) [Narváez and Narváez, 2006] and moving robust principal
component analysis (MRPCA) [Mattei and Castrodad, 2017], or locally optimal projection
based operators where the LOP operator [Lipman et al., 2007] has been extended in terms
of Weighted LOP (WLOP) [Huang et al., 2009], Feature LOP (FLOP) [Liao et al., 2013],
Continuous LOP (CLOP) [Preiner et al., 2014], Edge-Aware Resampling (EAR) [Huang et al.,
2013] and a Gaussian mixture model inspired projection operator [Lu et al., 2017]. The latter
has been demonstrated to be capable of resampling point clouds while preserving features
due to the additional guidance of filtered normals.

Sparsity-based Methods. This class of approaches relies on the assumption that objects
can be represented in terms of piecewise smooth surfaces with sparse features. Respective
denoising techniques include L0-norm [Sun et al., 2015; Cheng et al., 2019a] and L1-norm
minimization [Avron et al., 2010; Mattei and Castrodad, 2017; Leal et al., 2020], sparse
dictionary learning [Digne et al., 2017] as well as patch-based or feature-based graph
Laplacian regularization [Zeng et al., 2019; Dinesh et al., 2020; Hu et al., 2020], graph-based
point cloud denoising based on jointly leveraging geometry and color information [Irfan and
Magli, 2021], guided filtering based on normal information followed by a L1-medial skeleton
extraction to get the sharp structure of the surface [Zheng et al., 2017] as well as leveraging
gravitational feature functions [Shi et al., 2022]. In the context of denoising dynamic point
clouds, Hu et al. [2021] explored the temporal coherence of spatio-temporal graphs with
respect to the underlying surface, where a respective manifold-to-manifold distance has
been introduced. Furthermore, data-driven exemplar priors have been used for surface
reconstruction [Remil et al., 2017], where the sparsity of local shapes from a collection of 3D
objects has been explored.

44



4.3 Related Work

Non-local Methods. In contrast to the previous classes, these approaches rely on the
assumption that geometric statistics are (approximately) shared by certain surface patches
of a 3D model, i.e. local surface denoising is conducted based on collected neighborhoods
with similar geometry [Rosman et al., 2013; Chen et al., 2019; Lu et al., 2020; Zhu et al., 2022].
However, the definition of a suitable metric as well as the regular representation of local
surface structures remain challenging. Furthermore, density-based point cloud denoising
has been approached by first applying particle-swarm based optimization for kernel density
estimation followed by a Mean Shift clustering-based outlier removal and a final bilateral
mesh filtering [Zaman et al., 2017].

4.3.2 Learning-based Denoising Approaches

Recent works more and more leverage deep learning for surface reconstruction from point
clouds as well as point cloud denoising. Examples include approaches for point cloud
consolidation and resampling such as PointNet [Qi et al., 2017a], PointNet++ [Qi et al.,
2017b], patch-based progressive point cloud upsampling [Yifan et al., 2019b] as well as the
unification of the considerations of densifying, denoising and completing point clouds [Choe
et al., 2022]. Other approaches followed the principles of initially projecting the points
onto coarse-level local reference planes and applying a subsequent refinement [Duan et
al., 2019] or the initial removal of outliers before conducting the denoising [Rakotosaona
et al., 2020]. Further approaches include edge-aware point cloud consolidation [Yu et
al., 2018], adversarial defense [Zhou et al., 2019], graph-convolutional methods [Pistilli
et al., 2020], unsupervised approaches such as Total Denoising [Hermosilla et al., 2019],
gradient field based denoising [Chen et al., 2021a; Luo and Hu, 2021; Zhao et al., 2022],
differentiable approaches [Roveri et al., 2018; Yifan et al., 2019a; Luo and Hu, 2020] as well
as manifold learning based on encoder-decoder architectures [Zhang et al., 2020; Xu et al.,
2022a]. Non-local self-similarities have also been considered to define neural self-priors that
capture geometric repetitions [Hanocka et al., 2020], capture semantically related non-local
features [Huang et al., 2020a], or apply self-correction by allowing the model to capture
structural and contextual information from initially disorganized parts [Chen et al., 2021b].
Furthermore, normalizing flows have been applied to the learn the distribution of noisy
points and disentangle noise from the latent space [Mao et al., 2022]. In addition, the feature-
aware recurrent point cloud denoising network (RePCD-Net) [Chen et al., 2022a] combines a
recurrent network architecture for noise removal with multi-scale feature aggregation and
propagation and a feature-aware Chamfer distance loss.

4.3.3 Mean Shift Approaches

TheMean Shift approach [Fukunaga andHostetler, 1975] is awell-studied localmode-seeking
method with diverse applications including data clustering [Cheng, 1995; Comaniciu and
Meer, 2002; Grillenzoni, 2016; Beck et al., 2019], image filtering [Comaniciu and Meer, 2002],
segmentation [Comaniciu and Meer, 2002; Jang and Jiang, 2021], denoising [Bigdeli et al.,
2017; Bigdeli and Zwicker, 2018], and object tracking [Jang and Jiang, 2021]. Tremendous
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effort has been spent to study its convergence behavior [Cheng, 1995; Comaniciu and Meer,
2002; Li et al., 2007; Chen, 2015; Ghassabeh, 2015; Huang et al., 2018] which culminated
in a rigorous set of properties proven by Yamasaki and Tanaka [Yamasaki and Tanaka,
2019]. Recently, Mean Shift clustering has also been applied in the latent space of neural
encoder-decoder approaches to achieve a better structured data representation [Madaan
et al., 2019]. Furthermore, the connection between the Mean Shift approach and denoising
autoencoders [Vincent et al., 2008] has been revealed by Bigdeli and Zwicker [2018], who
leveraged the observation that the output of an optimal denoising autoencoder (DAE) is a
local mean of the true data density [Alain and Bengio, 2014] to show that that the autoencoder
loss is a Mean Shift vector and to use the respective magnitude to define a prior for image
restoration.

4.4 Background

Before deriving our proposed kernel family as a generalization of LOP in the context of Mean
Shift, we first provide a brief introduction into the concepts of both approaches.

4.4.1 Mean Shift

The basic objective of Mean Shift [Fukunaga and Hostetler, 1975] is to find the modes of a
density function f which has been observed by a (sparse) set of points P � {pi ∈ Rd} and is
modeled by a kernel density estimate function:

f̂P ,K(q) � 1
|P| hd

∑
i

K( pi−q
h ) (4.1)

Here, h denotes the kernel window size and K a kernel that is non-negative (K(x) ≥ 0),
normalized (

∫
Rd K(x)dx � 1), and radially symmetric (K(x) � cK k(‖x‖2)). The function k

defined in the symmetry constraint along with the normalization constant cK is called the
kernel profile of K and plays an important role in the analysis of Mean Shift [Yamasaki and
Tanaka, 2019]. Furthermore, the gradient of the kernel density estimate

∇ f̂P ,K(q) � 2
|P| hd+2

cK

cG

∑
i

G( pi−q
h ) (pi − q) (4.2)

can be derived using the kernel G(x) � cG g(‖x‖2) and its corresponding profile g(x) �
− d

dx k(x). Based on these two functions, Mean Shift finds the modes by iteratively applying
the Mean Shift vector

mP ,G(q) � h2

2
cG

cK

∇ f̂P ,K(q)
f̂P ,G(q)

�

∑
i G( pi−q

h ) (pi − q)∑
i G( pi−q

h )
(4.3)
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which describes the gradient vector normalized with respect to the kernel G and is the
main component in the algorithm. In particular, it directly defines the update step of the
corresponding fixed-point iteration q(t+1) � q(t) + mP ,G(q(t))which performs gradient ascent
on the kernel density estimate function f̂P ,K .

4.4.2 Locally Optimal Projection

The central tendency of a set of data points, often measured in terms of the geometric
mean, is a crucial and desirable property used in many applications, but its definition and
computation has been a challenging research question for decades. Although the geometric
mean can be easily evaluated, it is highly sensitive to outliers. In contrast, the L1 median
— also called geometric median — is a more robust quantity and can be computed by the
iterative Weiszfeld algorithm [Weiszfeld, 1937]. In addition to many other contexts, it has
been applied to 3D surface reconstruction to define a robust projection operator [Lipman
et al., 2007]. Given a set of noisy target points P � {pi ∈ Rd} sampled from a surfaceS where
d � 3 is usually considered, the task consists in projecting an additional set of projection
points Q � {q j ∈ Rd} onto S based on the observations P. This can be expressed in terms of
an energy formulation

E(Q) �
∑

j

ELOP(q j) + Erep(q j) (4.4)

based on an attraction and a repulsion term

ELOP(q j) �
∑

i

θ(‖pi − q(t)j ‖) ‖pi − q j ‖ (4.5)

Erep(q j) � λ j

∑
i ,i, j

θ(‖q(t)i − q(t)j ‖) η(‖q(t)i − q j ‖) (4.6)

where θ(x) � e−x2/(h/4)2 denotes a compact localization kernel and η a decreasing regulariza-
tion function penalizing small distances between projection points. Common choices of η
include the originally proposed function ηLOP(x) � 1/(3x3) [Lipman et al., 2007] as well as
the less rapidly decreasing function ηWLOP(x) � −x [Huang et al., 2009]. Both energy terms
are balanced by weights λ j which are chosen such that they only depend on a single, global
parameter µ ∈ [0, 1/2). Based on the Weiszfeld algorithm, the solution to this optimization
problem can be obtained by the fixed-point iteration

q(t+1)
j �

∑
i α(‖pi − q(t)j ‖) pi∑
i α(‖pi − q(t)j ‖)

+ µ

∑
i ,i, j β(‖q(t)i − q(t)j ‖) (q(t)j − q(t)i )∑
i ,i, j β(‖q(t)i − q(t)j ‖)

(4.7)

with kernels α(x) � θ(x)/x and β(x) � θ(x)/x �� d
dx η(x)

��.
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KΓ(x |p, σ2)KLOP KGaussian

Figure 4.2: Interpolation between 2D incomplete gamma kernels KΓ with varying p ∈ [1, 2] and fixed
σ2 � 1/32. Each kernel corresponds to a localized attraction energy minimization with the respective
p-norm.

4.4.3 Generalization via Incomplete Gamma Kernels

Although Mean Shift and Locally Optimal Projection were developed to solve different
problems, we can link both concepts by rewriting the update step:

q(t+1)
j � q(t)j + mP ,GLOP(q(t)j ) − µmQ(t)j ,Grep

(q(t)j ) (4.8)

This reveals that the LOP operator is a combination of standard Mean Shift with respect
to the target set P and reverse Blurring Mean Shift with respect to the moving source set
Q(t)j � Q(t) \{q(t)j }. Therefore, we can interpret the localized L1 attraction energyminimization
with a Gaussian kernel as a global density maximization with respect to a different kernel
KLOP. An example of this relation is shown in Figure 4.1.

To derive this corresponding kernel, we consider the profile of the involved kernel which
follows a gamma distribution fΓ(x | a , b) ∝ xa−1 e−x/b with support x ∈ (0,∞) and parameters
a > 0, b > 0. The profile of the actual kernel then follows the distribution F̄Γ(x | a , b) ∝
Γ(a , x/b)which is the complementary CDF of fΓ and based on the upper incomplete gamma
function Γ(a , x) �

∫ ∞
x ta−1 e−t dt. Since we want to define a d-dimensional kernel KΓ, we also

need to compute the respective normalization constant. For this, we switch the integration
domain to d-dimensional spherical coordinates and substitute s � r2/b:

1
cKΓ

�

∫
Rd
Γ(a , ‖x‖2b )dx �

∫
Ω

∫ ∞

0
Γ(a , r2

b ) rd−1 dr dΩ

�
b

d
2

2

[∫
Ω

dΩ
] [∫ ∞

0
Γ(a , s) s d

2−1 ds
] (4.9)

Due to radial symmetry, both integrals can be solved independently. The former one
describes the surface area of the d-dimensional unit sphere and has the closed form∫
Ω

dΩ � 2πd/2/Γ(d/2). Using the relation
∫ ∞

0 Γ(a , x) xb−1 dx � Γ(a + b)/b [Bateman, 1953],
we get an expression for the latter one in terms of the ordinary gamma function. We can
also apply the recursive relation of the gamma function Γ(a + 1) � a Γ(a) and conclude that
1/cKΓ � (πb)d/2 Γ(d/2 + a)/Γ(d/2 + 1). Finally, we change the parametrization by setting
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Table 4.1: Properties of Incomplete Gamma Kernels KΓ(x | p , σ2) in Rd for p > 0
D
is
tr
ib
ut
io
n Mean 0

Covariance d+p
d+2 σ

2 I

Characteristic function 1F1( d+p
2 , d+2

2 ,− σ2‖ω‖2
2 )

Moment-generating function 1F1( d+p
2 , d+2

2 , σ
2‖ω‖2

2 )

M
ea
n
Sh

ift

Differentiable profile X except for x � 0 if p ∈ (0, 2)
Strictly decreasing profile X

Convex profile X for p ∈ (0, 2]
Analytic X

Bounded X

O
th
er Completely monotonic profile X for p ∈ (0, 2]

Strictly positive definite X for p ∈ (0, 2]

a � p/2, b � 2σ2 to obtain the final kernel:

KΓ(x | p , σ2) � 1
(2πσ2) d

2

Γ( d+2
2 )

Γ( d+p
2 )
Γ( p2 , ‖x‖

2

2σ2 ) (4.10)

These incomplete gamma kernels span a family of Mean Shift kernels corresponding to Lp
estimators of the attraction energy localized by a Gaussian kernel. An important special case
of this family is the LOP kernel for which we choose p � 1, σ2 � 1/32 and apply the identity
Γ(1/2, x) � √π erfc(√x) to get

KLOP(x) � 4d

π
d−1

2

Γ( d+2
2 )

Γ( d+1
2 )

erfc(4 ‖x‖) (4.11)

where erfc denotes the complementary error function. Another special case is the corresponding
Gaussian kernel KGaussian obtained by setting p � 2 which is a common choice in Mean Shift
and has been extensively analyzed as the localized L2 estimator of the geometric mean.
Figure 4.2 shows an interpolation between these kernels by varying the p-norm.

4.5 Kernel Properties

In the following, we derive several theoretical properties of the family of incomplete gamma
kernels which are summarized in Table 4.1.
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4.5.1 Characteristic Function and Fourier Transform

In order to gain a deeper understanding of the proposed kernel family KΓ, we are interested
in its characteristic function ϕΓ which can also be interpreted as the Fourier transform F .
First, we can apply the relation between the d-dimensional Fourier transform of a radially
symmetric function f (x) in terms of the Hankel transform of order d/2 − 1 of the function
‖x‖d/2−1 f (x) [Stein andWeiss, 1971] to reduce the dimensionality of the integral to the radial
component

ϕΓ(ω) � F
[
KΓ(x | p , σ2)](ω) � ∫

Rd
KΓ(x | p , σ2) ei〈ω |x〉 dx

� cKΓ
(2π) d

2

‖ω‖ d
2−1

∫ ∞

0
Γ( p2 , r2

2σ2 ) J d
2−1(‖ω‖ r) r d

2 dr
(4.12)

where Jq(x) denotes the Bessel function of the first kind of order q. This integral has the
closed-form solution (see the Appendix for a more detailed derivation):

cKΓ
(2π) d

2

‖ω‖ d
2−1

∫ ∞

0
Γ( p2 , r2

2σ2 ) J d
2−1(‖ω‖ r) r d

2 dr

� cKΓ(2πσ2) d
2
Γ( d+p

2 )
Γ( d+2

2 )
1F1( d+p

2 , d+2
2 ,− σ2‖ω‖2

2 )

� 1F1( d+p
2 , d+2

2 ,− σ2‖ω‖2
2 )

(4.13)

Therefore, the characteristic function of the incomplete gamma kernel can be written in terms
of the confluent hypergeometric function of the first kind 1F1. Figure 4.3 shows a comparison
between the Gaussian kernel (p � 2) and the LOP kernel (p � 1) both in spatial and in
frequency domain.

If we consider the special case 1F1(a , a , x) � ex , we can observe that this result is consistent
with the Fourier transform of the Gaussian kernel. Furthermore as d →∞, the entire family
of localized Lp kernel estimators converges to the L2 estimator since distances become
increasingly similar in higher dimensions due to the curse of dimensionality.

4.5.2 Moment-generating Function

Another closely related and useful quantity to consider is the moment-generating function
MΓ of the kernel KΓ which can be used to compute the mean µΓ and covariance matrix ΣΓ.
Although there is a direct connection to the characteristic function in terms of

MΓ(ω) � ϕΓ(−iω) � 1F1( d+p
2 , d+2

2 , σ
2‖ω‖2

2 ) (4.14)
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Figure 4.3: Comparison of LOP and Gaussian kernels in spatial and frequency domain. Filtering with
the LOP kernel KLOP better preserves higher frequency information.

it does not necessarily exist in general, so we have to prove this property for all ω ∈ Rd . For
this purpose, we repeatedly apply the comparison theorem of calculus to derive a finite upper
bound of the integral. After switching to spherical coordinates, we bound cos(∠(ω, x)) ≤ 1
to decouple the radial component from the angular one:

MΓ(ω) �
∫
Rd

KΓ(x | p , σ2) e〈ω |x〉 dx

� cKΓ

∫
Ω

∫ ∞

0
Γ( p2 , r2

2σ2 ) rd−1 e‖ω‖r cos(∠(ω,x)) dr dΩ

≤ c1

∫ ∞

0
Γ( p2 , r2

2σ2 ) rd−1 e‖ω‖r dr

(4.15)

For brevity, we put finite terms into constants ci . Next, we combine the two individual upper
bounds

Γ(a , x) ≤
{

a xa−1 e−x , a ∈ [1,∞), x ∈ [a ,∞) [Natalini and Palumbo, 2000]
xa−1 e−x , a ∈ (0, 1], x ∈ (0,∞) (partial int.) (4.16)

and apply them after splitting the integral at r0 � max(1, p/2). Furthermore, we simplify the
expression by completing the square in the exponential term:

c1

∫ ∞

0
Γ( p2 , r2

2σ2 ) rd−1 e‖ω‖r dr

≤ c1 c2 + c1

∫ ∞

r0

r0 ( r2

2σ2 )
p
2−1 e−

r2
2σ2 rd−1 e‖ω‖r dr

� c1 c2 + c1 c3

∫ ∞

r0

rp+d−3 e−
(r−σ2 ‖ω‖)2

2σ2 dr

(4.17)

Since r ∈ [1,∞), the remaining polynomial can be bound by a higher order k � max(0, dp +

d − 3e) ∈ N0. Therefore, this integral describes the (incomplete) k-th raw moment of a
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1D normal distribution and is finite for any k ∈ N0 which, in turn, proves that MΓ(ω) < ∞
exists.

4.5.2.1 Mean

We can now use the moment-generating function MΓ to directly compute all raw moments
of the kernel KΓ by evaluating the respective derivative at ω � 0. For the mean, we consider
the first-order derivative

∂
∂ω

MΓ(ω) � d+p
d+2 σ

2
1F1( d+p+2

2 , d+4
2 , σ

2‖ω‖2
2 )ω (4.18)

and get µΓ � ∂
∂ωMΓ(0) � 0 as the expected result for a radially symmetric kernel.

4.5.2.2 Covariance

Similarly, we compute the second-order derivative

∂2

∂ω ∂ωT MΓ(ω) � d+p
d+2 σ

2
[
1F1( d+p+2

2 , d+4
2 , σ

2‖ω‖2
2 ) I

+
d+p+2

d+4 σ2
1F1( d+p+4

2 , d+6
2 , σ

2‖ω‖2
2 )ωωT

] (4.19)

and obtain the covariance matrix of the kernel KΓ using the first-order and second-order raw
moments as ΣΓ � ∂2

∂ω ∂ωT MΓ(0) − µΓµT
Γ
� (d + p)/(d + 2) σ2 I.

4.5.3 Mean Shift Properties

In addition to the distribution-specific properties above, we can get further insights into
the kernel family by exploiting the comprehensive theory that has been developed for the
Mean Shift algorithm [Yamasaki and Tanaka, 2019]. This requires proving several additional
properties including that the kernel KΓ is bounded and analytic and that its profile kΓ is
differentiable, strictly decreasing, and convex.

4.5.3.1 Differentiability, Monotonicity and Convexity

In order to show that the profile is strictly decreasing, we consider its first-order derivative

d
dx

kΓ(x | p , σ2) � d
dx
Γ( p2 , x

2σ2 ) � −( 1
2σ2 )

p
2 x

p
2−1 e−

x
2σ2 (4.20)

which is defined for all x ∈ (0,∞) as well as for x � 0 if p ∈ [2,∞). Since the involved
polynomial and exponential terms are always positive, it follows that the derivative must be
negative, that is d

dx kΓ(x | p , σ2) < 0, and the profile strictly decreasing.
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Similarly, we see that the second-order derivative is given by

d2

dx2 kΓ(x | p , σ2) � d
dx

kΓ(x | p , σ2)
[ p

2 − 1
x
− 1

2σ2

]
(4.21)

where, in order to ensure that d2

dx2 kΓ(x | p , σ2) > 0, the latter term must be non-positive
which is equivalent to the condition x ≥ (p − 2) σ2. Since this should hold for all x ∈ (0,∞),
convexity is only guaranteed for kernels with p ∈ (0, 2] which, in particular, includes the
Gaussian kernel (p � 2) as well as the LOP kernel (p � 1).

4.5.3.2 Boundedness and Analyticity

Instead of showing both properties for the kernel KΓ itself, it is sufficient to show them for its
profile kΓ. Since kΓ is non-negative and monotonically decreasing, we only have to consider
the case x � 0. For this value, Γ(a , x) reduces to the gamma function Γ(a)which is finite for
a > 0. Furthermore, analyticity directly follows from the fact that Γ(a , x) is holomorphic in
x ∈ (0,∞) for any fixed a > 0.

4.5.3.3 Consequences for the LOP operator

The aforementioned properties have several direct implications [Yamasaki and Tanaka, 2019]
on the behavior of the LOP operator (with zero repulsion) as well as to Mean Shift applied
with the incomplete gamma kernel KΓ for p ∈ (0, 2]. With the exception of the finite set of
target points P where singularities are introduced in the kernel GΓ, the following properties
hold:

Non-zero Gradient. The gradient of the kernel density estimate ∇ f̂P ,KLOP is non-zero
outside the convex hull of the target point set P. This implies that all solutions must lie
within the convex hull.

Plateau-free Density. In addition to non-zero gradients, the kernel density estimate
function on the set R3 \P has no plateaus. Since the set of target points P is finite, we can
extend this property to the full space R3.

Non-decreasing Density Estimate. Another interesting subset to consider is the improve-
ment ball I(q(t)j ) which denotes a d-dimensional sphere centered at the point q(t)j +

mP ,GLOP(q(t)j ) with radius ‖mP ,GLOP(q(t)j )‖. In case of the LOP operator, it follows that
all points x within the improvement ball have non-decreasing kernel density estimates
f̂P ,KLOP(x) ≥ f̂P ,KLOP(q(t)j ).
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Convergence of Density Estimate Sequence. As a consequence of the above property,
the sequence of kernel density estimates { f̂P ,KLOP(q(t))} obtained via the fixed-point iter-
ation q(t+1) � q(t) + mP ,GLOP(q(t)) is non-decreasing. Furthermore, this sequence always
converges.

Convergence ofModeEstimate Sequence. Finally, we can conclude that themode estimate
sequence {q(t)} converges to a single point. Depending on the window size h and the
distribution of the target points P, this solution could be either a point p ∈ P due to the
singularity (for very small window sizes) or a different point p ∈ R3 \P in the corresponding
convex hull (for larger window sizes).

4.5.4 Further Properties

Besides the theoretical results of our proposed kernel family concerning basic distribution-
related aspects as well as insights in the behavior and structure of the Mean Shift algorithm,
we want to derive further properties that opens up a broader set of applications such as
solving linear equation systems.

4.5.4.1 Complete Monotonicity

For this purpose, we show that the kernel profile kΓ is completely monotonic, that is
(−1)n dn

dxn kΓ(x | p , σ2) ≥ 0 for all n ∈ N0 and x ∈ (0,∞). From the derivation of the Mean
Shift properties, we already know that kΓ(x | p , σ2) > 0 and d

dx kΓ(x | p , σ2) < 0 holds for all
x ∈ (0,∞). Since xa with a ≤ 0 as well as e−x are both completely monotonic and the product
of two completely monotonic functions retains that property [Schilling et al., 2012], we can
conclude that this also holds for kΓ(x | p , σ2)with p ∈ (0, 2].

4.5.4.2 Strict Positive Definiteness

A direct consequence of the complete monotonicity of its profile is that the kernel KΓ must
be a strictly positive definite function [Schoenberg, 1938]. Therefore, for any set of points P,
the matrix

C �
(
KΓ(pi − p j | p , σ2)) i j ∈ R|P|×|P| (4.22)

is symmetric and positive definite for p ∈ (0, 2], so any linear system with respect to C has
a unique solution which can be computed by, e.g., conjugate gradient solvers. This also
directly extends to any truncated version of KΓ where the matrix C becomes sparse and
more efficient to solve as vanishing derivatives of the truncated profile do not affect complete
monotonicity.
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Noisy p→ 0 p = 0.5 p = 1 p = 1.5 p = 2 Original

KΓ(x |p, σ2)

Figure 4.4: Exemplary point cloud denoising of the Elephant model (302 458 points) with 30
WLOP [Huang et al., 2009] iterations (h � 6, µ � 0.4) for different incomplete gamma kernels
KΓ using varying p ∈ (0, 2] and fixed σ2 � 1/32. The model has been corrupted with σnoise � 0.3
(80 % points) and σoutlier � 1.5 Gaussian noise (20 % points) respectively to account for both typical
sensor noise and heavy outliers. Higher p-norms result in more regular but oversmoothed point
distributions whereas lower values better preserve features. Unit of h , σnoise , σoutlier: [% BB diagonal].

4.6 Applications

Besides the application of other localized Lp estimators for point cloud denoising via
the incomplete gamma kernels KΓ, as shown in Figure 4.4, we illustrate several further
applications to demonstrate the benefits of the theoretical results derived for the kernel
family.

4.6.1 WLOP Density Weights

Although the repulsion term mitigates the clustering effect of the attraction term, the
projection is still highly dependent on the distribution of the target points P. This has been
addressed in WLOP [Huang et al., 2009] by computing weights vi for each target point pi

and v(t)j for each projection point q(t)j based on the reciprocal and ordinary density value
respectively with the (unnormalized) localization kernel θ. However, our derived theoretical
properties reveal two major limitations of this particular choice: 1) Although the Gaussian
localization kernel θ could be considered a reasonable approximation of the actual kernel
KLOP (see Figure 4.3), high-frequency information in the density estimate is not properly
handled and smoothed out; 2) taking the reciprocal to invert the density of pi ignores the
dependencies between the weights which corresponds to the assumption of constant density
in a window of size h. In order to achieve a more accurate normalization, we propose two
novel weighting schemes.

Simple Scheme. A simple extension to the WLOP weights keeps the assumption of the
latter limitation and addresses only the former one by applying the actual kernel KLOP, that
is estimating the weights

vi �
1

f̂P ,KLOP(pi)
, v(t)j � f̂Q(t) ,KLOP

(q(t)j ) (4.23)
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Table 4.2: Parameter Sets of Kernel Approximation K̂LOP

CLOP [Preiner et al., 2014] Ours Ours (Consistent)

k ŵk σ̂k ŵk σ̂k ŵk σ̂k

1 97.761 0.01010 61.509 0.02102 46.409 0.03118
2 29.886 0.03287 11.932 0.07289 9.635 0.10582
3 11.453 0.11772 5.069 0.15700 2.674

√
1/32

via the density of the point clouds P and Q(t) respectively. This scheme can be easily
integrated into existing applications of WLOP as it only involves a different kernel function
in the overall weight computation.

Full Scheme. To address both limitations, we consider the kernel density estimate function
f̂P ,KLOP with weights vi applied to each term. We want to enforce constant density at the
points pi which can be formulated as a linear optimization problem in matrix form:

1
|P| hd

(
KLOP( pi−p j

h )
)

i j
v � 1 (4.24)

This corresponds to radial basis function (RBF) interpolation and we can obtain a unique
solution since KLOP is strictly positive definite. Furthermore, we truncate the kernel at h/2
to drastically reduce the memory requirements of the matrix and use a sparse conjugate
gradient solver. In case of the projection points q(t)j , we consider the inverse of the matrix
which leads to the same weights as in the simple scheme.

4.6.2 CLOP Kernel Approximation

Both LOP and Mean Shift operate on a discrete set of points and are formulated as discrete
sums over the point cloud which may have a significant runtime cost on large datasets. To
allow for a more compact modeling of the input data, CLOP [Preiner et al., 2014] replaces
the point set P by a smaller set of normal distributions PN � {(wi , µi ,Σi)} with weights
wi , means µi , and local covariance matrices Σi and extends the attraction energy to the
continuous space. However, since the integral in the respective update step cannot be directly
solved, the kernel α(‖x‖) is approximated by a radially symmetric Gaussian mixture model
α̂(x) � 1/h ∑3

k�1 ŵk ĉkN(x/h | 0, σ̂2
k I) consisting of three components with fitted parameters

{(ŵk , σ̂k)} and dimension-dependent constants ĉk � |2πσ̂2
k I|1/2. In the context of Mean Shift,

this implies that the kernel GLOP is in fact approximated which directly allows us to derive

K̂LOP(x) �
∑3

k�1 σ̂
2
k ŵk ĉkN(x | 0, σ̂2

k I)∑3
k�1 σ̂

2
k ŵk ĉk

(4.25)
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Figure 4.5: Comparison of LOP and Gaussian M-estimators for σ2 � 1. Due to the close relation to
Mean Shift, the robust loss functions ρ do not only share the shape of the corresponding kernels K
but also have similar properties.

as an approximation of the kernel KLOP with the same set of fitted parameters {(ŵk , σ̂k)}.

Kernel Fit. However, finding the optimal parameter set is highly challenging due to the
singularity of GLOP at x � 0 and, thereby, the unbounded ratio between the smallest and
largest sampling value in the half-open fitting interval (0, 1] for h � 1. In contrast, we
directly optimize on the kernel KLOP which does not suffer from these limitations. We fix the
parameter w3 � 1 to constrain the remaining degree of freedom and obtain the solution from
107 uniformly sampled points in the interval [0, 1] via the Levenberg-Marquardt algorithm
(see Table 4.2). Although the LOP operator is scale-invariant in terms of the kernel α, we
nevertheless estimate a global scaling factor for the weights ŵk via Levenberg-Marquardt
optimization in the interval (0.01, 1] for a better comparability with CLOP.

Consistent Fit. We can also see from the definition of the kernel approximation K̂LOP that
its variance consists of a convex combination of the individual variances σ̂2

k :

σ̂2
LOP �

∑3
k�1 ŵk σ̂d+4

k∑3
k�1 ŵk σ̂d+2

k

(4.26)

In the limit d →∞, this combination degenerates to σ̂2
LOP → maxk σ̂2

k which is similar
to the maximum norm L∞ being the limit of the Lp norms. Therefore, we can enforce
an additional consistency constraint in the parameter optimization process by fixing the
parameter σ̂3 �

√
1/32 to match the expected standard deviation.

4.6.3 Robust Loss Functions

In the context of point cloud reconstruction, LOP formulates the projection onto the
underlying surface via the localized L1 median in a robust way. Similarly, mesh denoising
applications aim to improve the quality of meshes in a two-stage approach where the
face normals are initially filtered and subsequently used in the second stage to estimate
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the original vertex positions. Obtaining a reliable estimate of a surface normal n can be
performed by M-estimators in the field of robust statistics which is also related to the concept
of anisotropic diffusion [Black et al., 1998]. Here, the objective function

L(n) �
∑

i

ρ(‖ni − n‖) (4.27)

defined with a robust loss function ρ is considered and a solution can be found based
on the corresponding influence function Ψ(x) � d

dx ρ(x) and anisotropic weight function
g̃(x) � Ψ(x)/x [Yadav et al., 2021]:

n(t+1)
�

∑
i g̃(‖ni − n(t)‖) n(t)∑
i g̃(‖ni − n(t)‖) n(t) (4.28)

This result is closely related to the derivation of Mean Shift and shares many properties with
it [Comaniciu and Meer, 2002]. Thus, we can define the family of incomplete gamma losses
along with the respective influence and anisotropic weight functions:

ρΓ(x | p , σ2) � 1
Γ( p2 )

γ( p2 , x2

2σ2 ) (4.29)

ΨΓ(x | p , σ2) � 2
(2σ2) p

2 Γ( p2 )
|x |p−2 e−

x2
2σ2 x (4.30)

g̃Γ(x | p , σ2) � 2
(2σ2) p

2 Γ( p2 )
|x |p−2 e−

x2
2σ2 (4.31)

Here, the losses ρΓ are built upon the lower incomplete gamma function γ(a , x) �
∫ x

0 ta−1 e−t dt
which is connected to the upper incomplete gamma function via the relation γ(a , x)+Γ(a , x) �
Γ(a). By choosing p � 1 and applying the identity γ(1/2, x) � √π erf(√x), we get the LOP
loss

ρLOP(x | σ2) � erf( |x |√
2σ2 ) (4.32)

where erf denotes the error function and is related to its complementary counterpart via
erfc(x) � 1 − erf(x). Considering σ2 � 1/32, the relation g̃LOP(x | 1/32) ∝ gLOP(x2) further
highlights the close similarity to Mean Shift. Figure 4.5 shows a comparison between the
Gaussian M-estimator (p � 2) and the LOP M-estimator (p � 1).

4.7 Experimental Results

In the following, we demonstrate the effectiveness of our proposed extensions that are
derived from the theoretical properties of the kernel family.
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Figure 4.6: Kernel density estimate f̂ for h � 3 of a planar target surface patch P (74 000 points) that is
sampled inversely proportional to the intensity of the Bird image. The regularity σQ of any projected
point set Q onto this target directly depends on the uniformity of f̂ . Whereas WLOP [Huang et al.,
2009] and our simple weighting scheme cannot fully remove high-frequency variations, our full
weighting scheme leads to a significantly better normalization and more uniform density. Unit of h:
[% BB diagonal].
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Figure 4.7: Regularity σQ of the input subset Q (3 700 points) projected on a planar target surface patch
P (74 000 points) that is sampled inversely proportional to the intensity of the Bird image. Due to the
better density normalization, our weighting schemes further improve the regularity across various
combinations of the window size h and the repulsion weight µ. Unit of h and σQ : [% BB diagonal].
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4.7.1 Evaluation of WLOP Density Weights

In order to evaluate the performance of our density weighting schemes, we measured the
regularity of the point cloud Q after projection onto a highly irregular target P [Huang et al.,
2009]. For this purpose, we sampled 74 000 target points from a 3D surface patch inversely
proportional to the intensity of the mapped Bird image and took a random subset of 3 700
points for projection. Then, we applied 100 iterations of the LOP operator as well as its
weighted versions and computed the regularity

σQ �

[
1
|Q|

∑
i

(
d(qi ,Q\{qi}) − d(qi ,Q\{qi})

)2
] 1

2

(4.33)

which is defined as the standard deviation of the nearest neighbor distances d(x ,Y) �
min j

x − y j
 within the point cloud Q. Figure 4.7 shows the quantitative results for 60×50

combinations of h and µ. Throughout 76.7 % of all combinations, our simple weighting
scheme performs better than WLOP with a slightly lower value of σQ on average. Our full
scheme outperforms WLOP in 99.3 % and the simple scheme in 98.7 % of all combinations,
especially in configurations with low repulsion weights µ ∈ [0, 0.2].
These improvements inpoint cloud regularity directly correspond to amore evenlydistributed
density along the surface. Figure 4.6 depicts a comparison of 1 000×1 000 evenly sampled
density values on the respective 3D surface patch. Both WLOP and our simple scheme
normalize the lower frequency components of the density, but still retain high-frequency
variations due to the independent computation of each weight. On the other hand, our full
scheme does not suffer from these artifacts and only leads to underestimated densities at the
boundary and in sparsely sampled regions where the window size h is not sufficiently large
to bridge these gaps.

SinceMean Shift and, thereby, LOP and its variants are scale-invariant with respect to a global
normalization constant, we computed the mean density f̂ for each weighting scheme and
used this value to normalize each density distribution for a fair comparison. Whereas this
value is close to one for both of our schemes due to the correct handling of the normalization
constants, we can derive a theoretical estimate of this value for WLOP

f̂ WLOP ≈
1
|P| h3 c(d�3)

θ

c(d�3)
LOP

c(d�2)
LOP

c(d�2)
θ

c(d�3)
θ

� 2.396 (4.34)

which consists of three terms: 1) the normalization constant of the kernel density estimate
function; 2) themissing normalization constant of the kernel θ; and 3) a dimension-dependent
correction factor. The last term models the different domains from which the density is
accumulated as we consider a surface patch that corresponds to a 2D subspace embedded
in the 3D space. Therefore, the integration domain of the density differs by one dimension
which can be accounted for by the ratio of the normalization constants of both the actual
density kernel KLOP as well as the chosen kernel θ for density weight computation.
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Figure 4.8: Analysis of bias in the width of the kernel approximations K̂LOP to the original kernel KLOP.
A correction by scaling the parameters σ̂k with a global factor 1/bopt lowers the error for CLOP [Preiner
et al., 2014]. Nevertheless, our approximation still better follows KLOP with a significantly lower error
and is almost unbiased in the 1-dimensional case.

Table 4.3: Ratio of Standard Deviations σ̂LOP/σLOP Between the Kernel Approximations K̂LOP and the
Original Kernel KLOP in Rd

d � 1 d � 2 d � 3 d � 4 d →∞
CLOP [Preiner et al., 2014] 0.7931 0.7632 0.7430 0.7291 0.6659
Ours 0.9917 0.9834 0.9737 0.9640 0.8881
Ours (Consistent) 1.0137 1.0252 1.0362 1.0440 1

4.7.2 Evaluation of CLOP Kernel Approximation

We evaluated the approximation error of our fitted parameter set against the original one
proposed by CLOP [Preiner et al., 2014]. First, we quantified systematic errors of the kernel
approximation K̂LOP by analyzing its standard deviation σ̂LOP. We can see in Table 4.3
that both CLOP and our approximation underestimate the actual value σLOP and that the
bias increases in higher dimensions. Although these errors are significantly lower for our
approximation throughout all dimensions, they may still be significant. Our consistent
approximation always overestimates the actual standard deviation and has a slightly higher
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Figure 4.9: Bias of the kernel approximations K̂LOP when applying WLOP [Huang et al., 2009] to
smooth the Block model (25 000 points) with the window size h � 25. Whereas the CLOP [Preiner
et al., 2014] approximation introduces systematic errors at the edges due to the bias in the width, our
variant closely resembles the behavior of the original kernel KLOP. Unit: [% BB diagonal].

error than the unconstrained variant in low dimensions up to d � 5. However, it becomes
unbiased in the limit d →∞ and should be preferred in higher dimensions. We also
considered minimizing the L1 distance to the actual kernel KLOP by scaling the values σ̂k
with correction factors 1/bopt to obtain an improved set of parameters which is shown in
Figure 4.8. Here, the error of our approximation is significantly lower than for CLOP both
before and after optimal correction. Furthermore, the optimal scaling factors are similar to
the ratios of the standard deviation for d � 1.

In addition to the theoretical analysis of the kernel approximations, we also measured the
reconstruction errorwhen replacing the actual kernel KLOP with the respective approximation.
For this purpose, we chose the Blockmodel and uniformly sampled 50 000 target points P and
25 000 projection points Q respectively. We applied 100 iterations of WLOP as a smoothing
operator with a large window size of h � 25 percent of the bounding box diagonal of P and a
repulsion weight µ � 0.4. Then, we measured the distance of each point to the (triangulated)
surface of the reference point cloud as well as the mean point-surface distance

dsurface(X ,Y) � 1
|X|

∑
i

min
j

d(xi , t(y j)) (4.35)

where t(y j) denotes the j-th triangle ofY. Figure 4.9 shows the results of this point cloud
smoothing operation. Whereas the CLOP approximation introduces higher errors at the
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4.7 Experimental Results

Noisy ρL2 ρL1 ρGaussian ρLOP Original

dangle = 21.09 dangle = 14.45 dangle = 13.74 dangle = 14.42 dangle = 14.74

Figure 4.10: Mesh denoising of the Gargoyle model (86 311 vertices, 172 610 faces) corrupted with
0.25 le uniform noise. Although the mean angular distance dangle is slightly higher for the LOP loss
ρLOP, features and finer details are better preserved. Unit: [◦].

Noisy ρL2 ρL1 ρGaussian ρLOP Original

dangle = 21.83 dangle = 21.16 dangle = 20.22 dangle = 18.38 dangle = 17.17

Figure 4.11: Mesh denoising of the Boxmodel (70 134 vertices, 140 259 faces) corrupted with 0.25 le
uniform noise. Filtering with the LOP loss ρLOP results in the lowest mean angular distance dangle
and reconstructs fine details best. Unit: [◦].

edges of the sampled model due to the significantly underestimated standard deviation of
the kernel, our approximation does not suffer from these artifacts.

4.7.3 Evaluation of Robust Loss Functions

We tested the LOP M-estimator against other popular choices for normal filtering. For this,
we used the Gargoyle (86 311 vertices, 172 610 faces) and Box (70 134 vertices, 140 259 faces)
models and corrupted the vertices in random directions by 0.25 le uniform noise where le
denotes the average face edge length. Then, we applied 50 iterations of normal filtering with
σ � 0.3 for each face normal n within its geometric neighborhood of size r � 1.5 le , that is
all normals whose face centers are traversable along the surface within a ball of size r. To
avoid the singularity of the L1 and LOP losses at x � 0, we only considered the neighboring
face normals in the initial iteration and used all normals subsequently. For the second stage
of the mesh denoising framework, we used the vertex update by Zhang et al. [2018] with
their default parameters of 20 iterations and w � 0.001 which avoids the triangle flipping
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problem. We evaluated the reconstruction error by the mean angular distance

dangle(X ,Y) � 1
|X|

∑
i

[
360
2π arccos(〈n(xi)|n(yi)〉)

]
(4.36)

to the face normals of the ground truth mesh. Figures 4.10 and 4.11 show comparisons
between the L2, L1, Gaussian, and LOP loss. Whereas the L2 loss leads to a very smooth
surface, its L1 counterpart is less sensitive to large normal variations within the local
neighborhood and better preserves features. However, sharp edges cannot be reconstructed
since all collected normals are considered in a global fashion. The Gaussian and LOP loss
functions can be viewed as localized versions of the former losses and do not suffer from this
limitation. Finer details being at a similar scale as the applied noise are hard to reconstruct
and mostly smoothed out by all variants, but can be partially recovered by the LOP loss.

4.8 Conclusions

We presented incomplete gamma kernels, a novel family of kernels generalizing LOP
operators. By revisiting the classical localized L1 estimator used in LOP, we revealed its
relation to the Mean Shift framework via a novel kernel KLOP and generalized this result to
arbitrary localized Lp estimators. We derived several theoretical properties of the kernel
family KΓ concerning distributional, Mean Shift induced, and other aspects such as strict
positive definiteness to obtain a deeper understanding of the operator’s projection behavior.
Furthermore, we illustrated several applications including an improved WLOP density
weighting scheme, a more accurate kernel approximation for CLOP, as well as introducing
incomplete gamma losses ρΓ as a novel set of robust loss functions and confirmed their
effectiveness in a variety of quantitative and qualitative experiments. We expect that building
upon the insights provided by our work will be beneficial for future developments on surface
reconstruction from noisy point clouds.
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Chapter 5

SLAMCast: Large-Scale,
Real-Time 3D Reconstruction and

Streaming for Immersive
Multi-Client Live Telepresence

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Patrick Stotko, Stefan Krumpen, Matthias B. Hullin, Michael Weinmann, and Reinhard
Klein.
“SLAMCast: Large-Scale, Real-Time 3D Reconstruction and Streaming for Immersive
Multi-Client Live Telepresence.”
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2019.
doi: 10.1109/TVCG.2019.2899231

5.1 Summary of the Publication

This work addresses the problem of efficiently reconstructing and streaming a 3D scene
between remotely connected clients for immersive rendering in Virtual Reality using head-
mounted displays (HMDs). For this purpose, a scalable multi-client telepresence system
has been developed where a single user captures their environment using a low-cost RGB-D
camera which can then be independently explored as a 3D model by an arbitrary number of
further users. Thus, instead of directly visualizing the recorded raw video data or 360◦ images
which are restricted to the position of the capturing device and require fast and immediate
streaming to ensure low latencies, we use reconstruction-based approaches to decouple
these requirements. In particular, our key insight is that a high degree of immersion with
low latencies can be achieved by real-time rendering of the captured 3D model whereas the
incremental streaming of that model can only be performed at lower interactive framerates.
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The system itself consists of three major components: 1) the reconstruction client, 2) the
central server, and 3) an arbitrary number of exploration clients. On the capturing side,
we leveraged established methods for volumetric 3D reconstruction [Nießner et al., 2013;
Kähler et al., 2015] to build a large-scale 3D model incrementally from a sequence of RGB-D
images using spatially-hashed voxel data structures. Here, we used the fact that visible voxel
blocks that leave the view current frustum of the camera will no longer receive updates until
they become visible again. Consequently, we added those blocks to a stream set, which
is implemented as a GPU hash set data structure similar to its hash map counterpart, to
allow controlling the amount of streamed data per frame. We also proposed a pre-fetching
functionality to stream the currently visible scene parts, e.g. when the user stops moving
the camera and points to a certain location, as well as a partial reset functionality to quickly
update the currently visible scene parts and handle dynamics in quasi-static scenes. In
particular, pre-fetching is only performed if the size of the stream set after filtering by an
exponential moving average over a time period of τ � 5 seconds is below a threshold. On the
server side, we managed the streamed voxel block data using both the original voxel data
structure, which is primarily designed for data fusion, and a bandwidth-optimized version
for efficient streaming to the exploration clients. Surface information, i.e. the truncated signed
distance function (TSDF) value (4 bytes) and its associated weight (4 bytes), are converted
to a Marching Cubes [Lorensen and Cline, 1987] index (1 byte) which directly encodes the
relevant triangulation information of a voxel to its neighbors but discards interpolation
information leading to a lossy compression. Based on this index, color values at voxels,
where no surface geometry will be generated, are cut off to improve the data compression.
Similar to the handling of updates in the reconstruction client, the server maintained a
stream set for each exploration client which allows each client to independently provide
an advanced streaming strategy and, in turn, enables recovery from network outages. On
the exploration side, this flexibility is used to request scene updates either in the order of
reconstruction, the currently visible blocks based on the HMD’s field of view and pose in
world space, or in a random order. After receiving new data from the server, the mesh
as well as the additional three coarser levels of detail, which are computed to accelerate
the rendering of distant scene parts, are updated. In order to improve the collaboration
experience in VR, the pose information of the reconstruction client and each connected
exploration client is broadcast via the server such that all users can observe their movement
in the virtual scene. Furthermore, the exploration client can request the current RGB image
from the reconstruction client to display finer structures such as text that may be below the
reconstruction resolution.

Besides the efficient storage of the 3D data, the fast and reliable management of this data
is a crucial component of our telepresence system. In contrast to previous hash map data
structures [Nießner et al., 2013; Kähler et al., 2015] which handle insertion or removal failures
by considering subsequent input frames and, hence, relying on the high sensor framerate,
our GPU data structures provided stronger guarantees to avoid data loss and to maintain a
consistent state of the system. For this purpose, all concurrent operations maintained the
hash entry positions and all links to colliding elements as an invariant.

We analyzed the performance of our system in terms of bandwidth requirements and visual
scene quality. Throughout several real-world datasets, our Marching Cubes index-based
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data structure reduced the amount of required bandwidth by over 90 % in comparison to
the TSDF-based voxel data structure. We also generally observed a similar visual quality
of the compressed 3D scene model due to the good reconstruction accuracy at 5 mm voxel
resolution. Small artifacts may be introduced in regions with highly textured objects or
sharp edges which, however, could be compensated by requesting the current RGB image
from the reconstruction client.

In summary, we introduced a scalable live telepresence systems that streams 3D scene
information using a bandwidth-efficient voxel data structure and manages the stream states
with a fast and reliable GPU hash map and hash set data structure.

5.2 Author Contributions of the Publication

In this work, I developed the design of the hash map and hash set data structure as well as the
logic of the reconstruction client and the server components. The novel bandwidth-efficient
voxel data structure for streaming data between the server and the exploration client has
been proposed by both Stefan Krumpen and me. Furthermore, Stefan Krumpen developed
and implemented the exploration client component. Finally, I performed the evaluation and
experiments of the bandwidth and scalability of the system as well as of the performance
and reliability of the hash data structures.
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Chapter 6

Efficient 3D Reconstruction and
Streaming for Group-Scale

Multi-Client Live Telepresence

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Patrick Stotko, Stefan Krumpen, Michael Weinmann, and Reinhard Klein.
“Efficient 3D Reconstruction and Streaming for Group-Scale Multi-Client Live Telep-
resence.”
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2019.
doi: 10.1109/ISMAR.2019.00018

6.1 Summary of the Publication

While we proposed a live telepresence system [Stotko et al., 2019a] in the previous chapter
that focused on providing immersive exploration experiences to an arbitrary number of
users in a reconstructed quasi-static 3D virtual model, the focus of this work lies on the
optimization of the reconstruction component to overcome the limitations of such systems in
terms of client scalability and streaming latency.

Our optimizations targeted several stages of the volumetric 3D reconstruction pipeline: 1)
the image preprocessing stage, 2) the data fusion stage, and 3) the model visualization stage.
Furthermore, the third optimization can also be applied to the server component of the
telepresence system to provide the same consistent model for both the local user at the
capturing side as well as the remote users. At the preprocessing stage, we improved the
robustness of the captured RGB-D image data by filtering out unreliable depthmeasurements.
For this purpose, we detected samples at depth discontinuities in a small window similar to
previous work [Whelan et al., 2015a] and, in addition, also detected samples in regions with
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a low relative number of valid samples which indicates that data acquisition is potentially
unreliable in these regions and could result in significantly distorted samples caused by
stronger noise or even systematic bias. During the data fusion stage, we directed our attention
onto the allocation of the voxel blocks which is performed to only explicitly manage data
within a small band around the surface [Nießner et al., 2013; Kähler et al., 2015]. Since noisy
samples can unnecessarily increase this allocated region and might not always be filtered out
by the previous optimization, we applied an implicit downsampling filter on the depth image
to only consider a subset of the samples when determining the set of voxel blocks that should
be allocated. In contrast to an additional garbage collection step, this further reduced the cost
of the actual update step within the data fusion stage. Finally at the visualization stage of
the standalone volumetric 3D reconstruction pipeline, we classified voxels with a low weight
as unstable similar to previous work [Keller et al., 2013], but, instead of deleting these voxels,
we only ignored them in the raycasting process as well as in the Marching Cubes [Lorensen
and Cline, 1987] algorithm. This effectively filtered out noisy regions in the 3D model that
may still become stable in the future when more captured data from the camera is fused.
A similar optimization has been incorporated in the server component of the telepresence
system. During the integration of the updated scene parts from the reconstruction client into
the global model, we only allocated and updated the bandwidth-efficient voxel block data,
consisting of a Marching Cubes index (1 byte) as well as a color value (3 bytes) per voxel,
which actually contained stable surface information. Therefore, all voxel blocks that would
not contribute to the visualization in VR are discarded and not queued to the stream sets of
the connected exploration clients.

We evaluated the performance of each proposed optimization under the aspects of scalability
and streaming latency of the telepresence system as well as visual quality of the reconstructed
3D model. For the analysis of the system scalability, we measured the maximum number of
exploration clients that the server could handle in real time without introducing an increase
in the overall delay. Whereas the base system [Stotko et al., 2019a] could only handle up to
about five clients simultaneously, each optimization contributed towards a higher overall
performance upon this baseline allowing the full system to handle groups of more than 24
clients. Furthermore, we observed a significantly lower streaming latency between the server
and the exploration clients since the representation of the 3D model in terms of the set of
spatially-hashed voxel blocks was more compact. These efficiency improvements can also be
seen in standalone 3D reconstruction applications where we compared the visual quality
against the baseline system. In addition to reduced memory requirements and runtime by
up to 40 % and 60 % respectively, our proposed optimizations also reduced the amount of
artifacts introduced by noisy input data which resulted in an overall higher visual quality.
Although the completeness of the 3D model slightly decreased at the same time, this could
provide an additional implicit guidance to the user for putting more attention in capturing
these affected regions as they require more reliable data to obtain a smooth and consistent
reconstruction.

In summary, we introduced several optimizations to improve the overall performance of
our live telepresence system which opens up several new applications in education or
collaboration scenarios that involve larger groups of people. We also demonstrated that
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these contributions are not limited to telepresence applications and could also be beneficial
for standalone volumetric 3D reconstruction approaches in general.

6.2 Author Contributions of the Publication

In this work, I developed the proposed optimizations to the volumetric 3D reconstruction
algorithm as well as to the streaming components of the telepresence system. Furthermore,
I performed the quantitative and qualitative experiments and evaluations concerning
scalability, latency, and visual quality.
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Chapter 7

Albedo estimation
for real-time 3D reconstruction

using RGB-D and IR data

In this chapter, we discuss the contributions and results developed in the following peer-
reviewed publication:

Patrick Stotko, Michael Weinmann, and Reinhard Klein.
“Albedo estimation for real-time 3D reconstruction using RGB-D and IR data.”
ISPRS Journal of Photogrammetry and Remote Sensing (P&RS), 2019.
doi: 10.1016/j.isprsjprs.2019.01.018

7.1 Summary of the Publication

In the scope of this work, we considered the problem of jointly reconstructing geometry
and appearance information of static scenes from RGB-D image data in real time. Whereas
most RGB-D image-based reconstruction approaches solely concentrated on the fusion of the
scene geometry and the captured RGB data, we estimated the surface appearance in terms of
the spatially-varying albedo by exploiting the infrared (IR) data that current time-of-flight
sensors such as the Microsoft Kinect v2 record to compute depth information.

Our system is built upon established volumetric 3D reconstruction approaches [Nießner
et al., 2013; Kähler et al., 2015] for depth data fusion into a single model. Considering
the IR images, we first leveraged the controlled illumination setup of the sensor to model
the perceived radiance in the infrared domain by a direct illumination term, where the
incoming light direction is approximated by the view direction, as well as a constant ambient
term, which approximates the indirect illumination components [Or-El et al., 2016]. We
iteratively optimized for both the ambient term and the pixel-wise IR albedo in terms of
an energy formulation with Total Variation regularization where the L1-based smoothness
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term is weighted by the magnitude of the normal image gradient ∇n which served as a
curvature-relatedmetric and ensured sharp edges in the IR albedo image at object boundaries.
Afterwards, weused the estimated IR albedo to guide the optimization of theRGBalbedo from
the ambiguous intrinsic image decomposition formulation by adding a coupling term [Kerl
et al., 2014]. However, since the reflectance properties between different wavelengths could
significantly vary between materials which, in particular, includes the visible spectrum
as well as infrared light, a constant image-wide coupling term is not sufficient to model
this behavior. In order to address this issue, we employed image segmentation to identify
regions with similar reflectance properties and considered several approaches using either
color-based or geometry-based clustering. The resulting probability images were used to
formulate a segment-wise coupling term for the albedo image optimization. We further
replaced the smoothness term of the involved shading image by a temporal dampening term
to reduce the cost of the optimization process and to improve its convergence. In order to
compute the solutions of the Total Variation-based energy formulations, we developed an
approximate primal-dual solver where we modified the evaluation of the partial derivative of
the data term to allow for an efficient computation in parallel on the GPU. Furthermore, we
accelerated this process by projecting the solution from the previous frame into the current
one using the estimated camera pose from the geometry reconstruction pipeline which then
served as an initialization and, thereby, enabled distributing the computational cost across
multiple input images of the sensor. During the data fusion stage, we further accounted for
this acceleration by incorporating confidence weights based on the total number of TV solver
iterations spent per pixel across various time steps.

We evaluated the performance of our joint geometry and albedo reconstruction approach
in terms of runtime performance and convergence of the albedo image estimation as well
as visual quality of the final reconstructed 3D model between the considered segmentation
approaches. Our localized temporally-coherent shading term formulation resulted in a
higher convergence rate, especially during the initial iterations, while at the same time the
required total runtime of the estimation process was up to 20 % lower than the baseline
Total Variation approach. Similarly, the improved initialization of the TV solver and the
significantly reduced number of iterations per frame further reduced the runtime cost, but
introduced artifacts in those parts of the albedo image which were not yet converged. The
additional confidence-based weighting in the data fusion step eliminated these artifacts
resulting in a similar quality of the final reconstructed surface albedo as the considerably
slower baseline approach. We also analyzed the effect of different segmentation approaches
to the quality of the estimated albedo images. A major challenge of the geometry-based
and color-based hard clustering approaches was occurring over- and under-segmentation
which resulted in wrongly classified object boundaries and, thereby, inconsistent albedo
values within a single material. In contrast to this, the probability images of the color-based
soft clustering were smooth across the materials and improved the overall accuracy of the
reconstructed albedo.

In summary, we introduced a novel approach for reconstructing both geometry and appear-
ance information in terms of the spatially-varying albedo by modeling the relation of the
albedo across different wavelengths in a segment-wise manner and exploiting temporal
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coherence between input frames to accelerate the optimization of the Total Variation-based
energy formulations in real time.

7.2 Author Contributions of the Publication

In this work, I developed the real-time albedo estimation and fusion algorithm and performed
the experimental evaluation of the approach. Parts of this work have been already published
in my master’s thesis [Stotko, 2016a] which, in particular, covers the Total Variation-based
optimization of the albedo inspired by Kerl et al. [2014] as well as the involved approximate
Total Variation solver. In contrast to these components, I introduced several further novel
contributions and extensions in the scope of this publication which go beyond the state of
the master’s thesis. This includes 1) the introduction of image segmentation based on the
color and geometry information to improve the coupling between the RGB and IR images,
2) the localized shading estimation with temporal dampening replacing the costly Total
Variation-based optimization of the shading term, 3) the acceleration of the TV solver using
temporal information from the previous frame, and 4) the extension of the albedo fusion
step using confidence weights from the TV solver.
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Chapter 8

Conclusion

In this chapter, we provide a summary of the contributions of this thesis (see Section 8.1).
Furthermore, we discuss the limitations of our work as well as potential future research
directions (see Section 8.2).

8.1 Summary of Contributions and Impact

In the scope of this thesis, we presented three key contributions which, in particular, include
a family of generalized LOP operators for data prefiltering, a scalable 3D telepresence system
based on large-scale surface reconstruction, as well as a segment-wise albedo estimation
method from RGB-D and IR data.

Generalized LOP Operators for Filtering. In the context of data prefiltering, we directed
our attention onto the LOP operator which does not require structured input data in terms
of 2D images like in the case of bilateral filters, but instead allows to filter unstructured
3D point clouds. In Chapter 4, we studied the operator in more detail and revealed that
the involved attraction and repulsion terms are both closely related to the Mean Shift
framework. Furthermore, we derived the corresponding kernel in the context of Mean
Shift and generalized this result from the initial scenario of L1-based estimators to arbitrary
localized Lp estimators which culminated in the definition of a novel family of kernels. In
order to obtain more insights on the general structure and behavior of the LOP operator,
we also derived various theoretical properties of the kernel family and illustrated their
application in a variety of related scenarios. We demonstrated that our proposed density
weighting scheme as well as our estimate of the kernel approximation required for the closed-
formContinuous LOP (CLOP) operator consistently outperforms previous established results.
Finally, we introduced a set of robust loss functions, which correspond to the respective
kernels, and showed that their application in the closely related field of mesh denoising for
filtering surface normals in a local manner leads to more detailed results in comparison to
the corresponding global variants.
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Scalable 3D Telepresence based on Surface Reconstruction. We further investigated
techniques to incorporate real-time surface reconstruction techniques into 3D telepresence
systems to improve their practicality and to extend their scope to further application scenarios.
To this end, we presented a multi-client telepresence system in Chapter 5 for sharing live-
reconstructed 3D scene models in real time to an arbitrary number of remote users who
can independently explore and interact with the model in VR. We proposed an efficient
volumetric data structure based on Marching Cubes indices for streaming data between the
server component and the exploration clients and showed that the bandwidth requirements
of the system can be drastically reduced with only slight reductions in the reconstruction
accuracy. Furthermore, we developed a reliable GPU hash map and set data structure which
is employed at the reconstruction client as well as on the server to efficiently manage the
individual states of the streamed scene data of all connected clients. This allowed the system
to recover from network outages of individual clients and further increased its practicality in
real-world scenarios.

In Chapter 6, we proposed several algorithmic improvements for the reconstruction client as
well as for the server component to further increase the compactness of the streamed 3D
model. We extended the image preprocessing step of the reconstruction client by detecting
unreliable depth samples in the captured frames. In addition to approaches from previous
work which determine whether a sample lies at a depth discontinuity, we further marked
depth values as unreliable if their local neighborhood only contains a low number of other
valid samples which provides an indication that data acquisition in such regions can be
more challenging. Furthermore, we reduced the likelihood of unnecessary enlargements
of the allocated band of voxel blocks by considering only a subset of the depth samples
in the allocation step which corresponds to an implicit downsampling filter applied to
the depth image. Finally, we restricted the computation of our bandwidth-efficient voxel
data structure to stable fusion results and demonstrated that with the incorporation of all
developed extensions the scalability of our 3D telepresence system improved significantly.

Our work also received significant attention from the open-source community and from
industry. We released the implementation of our GPU hashmap and set data structures along
with a thorough documentation [Stotko, 2019b] which has been recently integrated into the
popular Open3D library [Zhou et al., 2018]. Furthermore, the software of our telepresence
system has been licensed by the company DoubleMe [University of Bonn, 2021].

Segment-wise IR-Guided Albedo Estimation for 3D Reconstruction. In the context of
appearance reconstruction, we integrated albedo estimation into common real-time 3D
reconstruction systems and analyzed the effect of captured infrared data from current
time-of-flight cameras as an additional guidance in more detail. To this end, we developed
several contributions in the scope of this thesis which have been presented in Chapter 7 and
go beyond our previous work [Stotko, 2016a]. In particular, we studied image segmentation
approaches which either take color or geometry information into consideration to identify
clusters of objects with similar reflectance properties between the visible and the infrared
spectrum. Furthermore, we proposed a temporally-damped local shading prior term as
well as an improved initialization of the involved Total Variation solver using temporal
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information. In conjunction with an additional confidence-based weighting scheme applied
in the albedo fusion step, we showed that our contributions improved the performance and
robustness of the IR-guided intrinsic image decomposition process.

8.2 Limitations and Future Work

While some challenges in real-time 3D reconstruction have been addressed by the methods
developed in this thesis, more work is required to address the remaining limitations. To this
end, we provide an outlook of potential future research directions as well as further open
challenges in this context.

8.2.1 Data Prefiltering

Surface Projection for Registration. Recently, the projection of points onto a continuous
surface defined by Hermite radial basis function implicits has been used as a replacement of
the surface evaluation step of real-time surfel-based reconstruction systems which is typically
implemented in terms of standard surfel splatting [Xu et al., 2022b]. In combination with
further curvature and confidence-basedweighting schemes, the robustness of the registration
process in the camera tracking stage to noisy input data has been improved. A potential
future direction could include investigations towards enhancing real-time registration with
other projection-based operators such as the LOP operator, which was specifically designed
for the presence of strong noise, or our generalization in terms of Lp estimators, which has
been proposed in Chapter 4. In this context, a tighter integration of the operator into the
optimization process could be analyzed.

Deblurring of Color Images. The Gaussian loss function, which is also often referred to
as the Welsch loss, has been recently studied for image deblurring to improve the robustness
in the scenarios with outliers and saturated regions [Xu et al., 2022c]. Further investigations
in this direction could explore the benefits of applying our family of robust loss function
that correspond to the generalized LOP operators. Therefore, incorporating such deblurring
methods in the reconstruction process could not only lead to sharper and more detailed
color textures in the final reconstructed model, but may also contribute towards enhancing
the accuracy of the color-based components in camera tracking [Liu et al., 2021a].

Priors for Learning-basedSurfaceReconstruction. Ideas from classical surface reconstruc-
tion techniques were recently incorporated as an additional guidance for learning signed
distance functions in a fully supervised [Liu et al., 2021b] or self-supervised way [Wang
et al., 2021]. In a more general scenario which is not necessarily limited to implicit data
representations, the density-based projection behavior of LOP operators could be employed
as a prior to steer the learning process in a more controlled way and, in turn, potentially
improve the convergence rate.
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8.2.2 3D Telepresence

Reconstruction of Articulated Objects. Although quasi-static scenes can in principle also
be reconstructed and streamed in our telepresence system which has been introduced in
Chapters 5 and 6, non-static scene parts and objects were handled in an oversimplified
manner by erasing the corresponding parts from the global 3D model based on the current
view frustum. Afterwards, the object was recaptured again to obtain an updated version
of the quasi-static scene. In future work, approaches for detecting articulated objects as
well as their kinematics in terms of the involved joint parameters [Li et al., 2020a] could
be investigated to obtain a more complete virtual 3D model. This way, the initially hidden
interior of furniture such as cabinets could be reconstructed and remote users would be able
to virtually manipulate the semantically enriched scene which enables further collaborative
interaction scenarios.

Streaming and Visualizing Globally Consistent Models. In addition to the sparse nature
of the voxel block data structure, the reconstruction client of our telepresence system further
relied on a frame-to-model-based camera tracking approach to only update the 3D scene
model in a local manner and, in turn, to reduce the amount of updated data for streaming.
Since camera drift cannot be corrected in this way during reconstruction, globally consistent
tracking methods should be employed instead. In this context, we considered continuous
reintegration of the input data [Dai et al., 2017] with the updated camera poses which,
however, drastically increased the bandwidth requirements as the virtual model was globally
deformed. Alternative approaches maintain a set of static submaps and only update their
poses, but postpone the final fusion into a single model after the end of the capturing session
or use simple depth-based foreground rendering for overlapping parts which may lead to
artifacts [Kähler et al., 2016a; Golodetz et al., 2018]. Therefore, further exploring globally
consistent 3D reconstruction in the context of practical VR applications to meet the higher
demands in terms of visualization quality and streaming efficiency would be an interesting
line of future research.

Streaming Neural Scene Representations. Recent learning-based methods focused on
continuous surface representations with neural networks to avoid the inherent limitation of
discretized data structures. While respective online approaches are still limited in terms
of reconstruction resolution when processing a small set of keyframes in real time [Yan
et al., 2021; Ortiz et al., 2022], an interesting future direction would be their incorporation
into reconstruction-based telepresence systems. In particular, exploring ways how such
progressively updated neural representations can be efficiently streamed to other remote
users in a space and runtime-efficient manner would not only be beneficial in the field of
telepresence systems research, but could also contribute towards a deeper understanding of
the evolution of such neural data models over time.

Guidance in Teleoperation Applications. Based on our 3D telepresence system, we also
explored its application to teleoperation scenarios [Stotko et al., 2019c] in subsequent
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work. We showed that employing live-captured 3D scene models and allowing users to
independently explore the scene in VR resulted in a higher situation awareness over video-
based solutions and allowed the users to remotely navigate a ground robot [Schwarz et al.,
2019] more precisely through a challenging environment with many obstacles. In a similar
scenario, Zhang et al. [2021] recently considered scene capturing with an unmanned aerial
vehicle (UAV) which is remotely controlled by a user in VR from the first-person perspective
of the drone. Further investigations in this direction could include the scanning of large
environments with possibly multiple autonomous robots by only providing sparse guidance
and hints from VR remote operators in captured regions which require closer attention.

8.2.3 Appearance Reconstruction

Segment-wise Temporal Acceleration. The techniques for accelerating the reconstruction
of albedo data using forward-projected temporal information of estimates from previous time
frames, which have been presented in Chapter 7, enabled the overall reconstruction system
to run in real time. However, convergence artifacts may occur in regions where no depth data
is available to properly compute the corresponding pixel coordinates for forward projection
or where strong variations in the shading image from high-frequency illumination lead to
suboptimal initializations. In futurework, more sophisticated propagation strategies could be
investigated which may for instance reuse the already computed segmentation information
for the current image to identify similar regions andperformboundary-preserving hole-filling
and correction of the data.

IR-GuidedNeural Reflectance Estimation. Similar to the recent developments in learning-
based geometry reconstruction, methods based on neural networks were also used to infer a
representation of scene colors or even scene appearance information in terms of diffuse albedo
and specular model parameters [Bi et al., 2020]. Although these approaches are still limited
to small object-scale scenes and are optimized in an offline manner using full supervision, an
interesting future direction could include investigations towards incorporating the IR data
from RGB-D cameras as an additional source of information. This, in turn, could provide
further guidance in large room-scale scenarios where objects are typically reconstructed
from a set of less uniformly distributed camera angles.
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SLAMCast: Large-Scale, Real-Time 3D Reconstruction and
Streaming for Immersive Multi-Client Live Telepresence

Patrick Stotko, Stefan Krumpen, Matthias B. Hullin, Michael Weinmann, and Reinhard Klein
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Fig. 1. Illustration of our novel multi-client live telepresence framework for remote collaboration: RGB-D data captured with consumer-
grade cameras represent the input to our real-time large-scale reconstruction technique that is based on a novel thread-safe GPU hash
map data structure. Efficient data streaming is achieved by transmitting a novel compact representation of the reconstructed model in
terms of Marching Cubes indices. Multi-client live telepresence is achieved by the server’s independent handling of client requests.

Abstract— Real-time 3D scene reconstruction from RGB-D sensor data, as well as the exploration of such data in VR/AR settings,
has seen tremendous progress in recent years. The combination of both these components into telepresence systems, however,
comes with significant technical challenges. All approaches proposed so far are extremely demanding on input and output devices,
compute resources and transmission bandwidth, and they do not reach the level of immediacy required for applications such as
remote collaboration. Here, we introduce what we believe is the first practical client-server system for real-time capture and many-user
exploration of static 3D scenes. Our system is based on the observation that interactive frame rates are sufficient for capturing and
reconstruction, and real-time performance is only required on the client site to achieve lag-free view updates when rendering the 3D
model. Starting from this insight, we extend previous voxel block hashing frameworks by introducing a novel thread-safe GPU hash
map data structure that is robust under massively concurrent retrieval, insertion and removal of entries on a thread level. We further
propose a novel transmission scheme for volume data that is specifically targeted to Marching Cubes geometry reconstruction and
enables a 90% reduction in bandwidth between server and exploration clients. The resulting system poses very moderate requirements
on network bandwidth, latency and client-side computation, which enables it to rely entirely on consumer-grade hardware, including
mobile devices. We demonstrate that our technique achieves state-of-the-art representation accuracy while providing, for any number
of clients, an immersive and fluid lag-free viewing experience even during network outages.

Index Terms—Remote collaboration, live telepresence, real-time reconstruction, voxel hashing, RGB-D, real-time streaming.

1 INTRODUCTION

One of the main motivations behind virtual reality research has always
been to allow users to immersively and subjectively explore remote
places or environments. An experience of telepresence could benefit
applications as diverse as remote collaboration, entertainment, adver-
tisement, teaching, hazard site exploration, or rehabilitation. Thanks to
advances in display technology and the emergence of high-resolution
head-mounted devices, we have seen a recent surge in virtual reality
solutions. However, it has long been known that traditional display pa-
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rameters like resolution, frame rate and contrast are not the only factors
contributing to an immersive viewing experience. The presentation of
the data, its consistency, low-latency control to avoid motion sickness,
the degree of awareness and the suitability of controller devices are just
as important [11, 16, 52]. For applications such as remote exploration,
remote collaboration or teleconferencing, these conditions are not easily
met, as the scene is not pre-built but needs to be reconstructed on-the-
fly from 3D input data captured by a person or robotic device. At the
same time, the data flow in a well-designed system should give multiple
remote users the freedom to individually explore, for instance using
head-mounted displays (HMD), the current state of reconstruction in
the most responsive way possible.

A particular challenge, therefore, is to find a suitable coupling be-
tween the acquisition and viewing stages that respects the practical
limitations imposed by available network bandwidth and client-side
compute hardware while still guaranteeing an immersive exploration
experience. For this purpose, teleconferencing systems for transmit-

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org. This is
the author’s version of an article that has been published in this journal. The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2899231.



ting dynamic 3D models of their users typically rely on massive well-
calibrated acquisition setups with several statically mounted cameras
around the region of interest [9, 40, 49]. Instead, we direct our attention
to the remote exploration of places using portable, consumer-grade
acquisition devices, for instance in scenarios of remote inspection or
consulting. On the acquisition site, a user digitizes their physical envi-
ronment using consumer-grade 3D capture hardware. Remote clients
can perform immersive and interactive live inspection of that envi-
ronment using off-the-shelf VR devices even while it is acquired and
progressively refined. In this scenario, additional challenges arise as the
incoming amount of captured data may be high and may also signifi-
cantly vary over time depending on the size of the scene that is currently
imaged. The latter particularly happens for strongly varying object dis-
tances within the captured data, whereas the amount of data over time
remains in the same order of magnitude if the objects are within the
same distance to the capturing camera (as met for teleconferencing
scenarios). A first attempt towards interactive virtual live inspection
of real scenes [35] built upon real-time voxel block hashing based
3D reconstruction [22] using implicit truncated signed distance fields
(TSDFs) that has become a well-established method for high-quality
reconstructions [8, 19, 22, 37–39, 50]. Voxel blocks that are completely
processed, i.e. those that are no longer visible, are immediately sent to
the remote client and locally converted into a mesh representation using
Marching Cubes [30] to perform the actual rendering. Besides the fact
that the system is restricted to one remote user, other limitations are the
rather high bandwidth requirement of up to 175MBit/s and the missing
handling of network failures where the remote client has to reconnect.
In particular for multi-client scenarios, handling both the bandwidth
problem and the reconnection problem is of utmost importance to allow
a satisfactory interaction between the involved users.

To overcome these problems, we propose a novel efficient low-cost
multi-client remote collaboration system for the exploration of quasi-
static scenes that is designed as a scalable client-server system which
handles an arbitrary number of exploration clients under real-world
network conditions (including the recovery from full outages) and using
consumer-grade hardware. The system consists of a voxel block hash-
ing based reconstruction client, a server managing the reconstructed
model and the streaming states of the connected clients as well as
the exploration clients themselves (see Fig. 1). The realization of the
system relies on the following two key innovations:

• A novel scene representation and transmission protocol based on
Marching Cubes (MC) indices enables the system to operate in low-
bandwidth remote connection scenarios. Rather than reconstructing
geometry on the server site or even performing server-side rendering,
our system encodes the scene as a compressed sequence of voxel
block indices and values, leaving the final geometry reconstruction to
the exploration client. This results in significantly reduced bandwidth
requirements compared to previous voxel based approaches [35].

• For the scalable, reliable and efficient management of the stream-
ing states of the individual exploration clients, we propose a novel
thread-leveled GPU hash set and map datastructure that guarantees
successful concurrent retrieval, insertion and removal of millions of
entries on the fly while preserving key uniqueness without any prior
knowledge about the data.

From a system point of view, the extension of the system towards
multiple reconstruction clients [15] is also envisioned but beyond the
scope of this paper. In order to overcome the inherently limited resolu-
tion of voxel-based scene representations, we also include a lightweight
projective texture mapping approach that enables the visualization of
texture details at the full resolution of the depth camera on demand.
Users collaboratively exploring the continuously captured scene experi-
ence a strong telepresence effect and are directly able to start conversa-
tion about the distant environment. We motivate the need of a client
server system, provide a discussion of the respective challenges and
design choices, and evaluate the proposed system regarding latency,
visual quality and accuracy. Furthermore, we demonstrate its practical-
ity in a multi-client remote servicing and inspection role-play scenario
with non-expert users (see supplemental video).

2 RELATED WORK

In this section, we provide an overview of previous efforts related to our
novel large-scale, real-time 3D reconstruction and streaming framework
for immersive multi-client telepresence categorized according to the
developments regarding telepresence, 3D reconstruction and hashing.

2.1 Telepresence
Real-time 3D reconstruction is a central prerequisite for many im-
mersive telepresence applications. Early multi-camera telepresence
systems did not allow the acquisition and transmission of high-quality
3D models in real-time to remote users due to limitations regarding the
hardware at the time [12, 24, 27, 36, 46, 47] or the applied techniques
such as the lacking reconstruction accuracy of shape-from-silhouette
approaches for concave surface regions [29, 41]. Then the spreading
access to affordable commodity depth sensors such as the Microsoft
Kinect led to the development of several 3D reconstruction approaches
at room scale [13, 19, 20, 31, 32, 34]. However, the high sensor noise
as well as temporal inconsistency in the reconstruction limited the
quality of the reconstructions. Furthermore, Photoportals [26] have
been proposed to provide immersive access to pre-captured 3D virtual
environments while also supporting remote collaborative exploration.
However, including live-captured contents comes at the cost of a signif-
icant lag as well as a reduced resolution. In contrast, the Holoportation
system [40] is built on top of the accurate real-time 3D reconstruction
pipeline Fusion4D [8] and involves real-time data transmission as well
as AR and VR technology to achieve an end-to-end immersive telecon-
ferencing experience. However, massive hardware requirements, i.e.
several high-end GPUs running on multiple desktop computers, were
needed to achieve real-time performance, where most of the expensive
hardware components need to be located at the local user’s side. In
the context of static scene telepresence, Mossel and Kröter [35] devel-
oped an interactive single-exploration-client VR application based on
current voxel block hashing techniques [22]. Although the system is
restricted to only one exploration client, the bandwidth requirements of
this approach have been reported to be up to 175MBit/s in a standard
scenario. A further issue resulting from the direct transmission of the
captured data to the rendering client occurs in case of network interrup-
tions where the exploration client has to reconnect to the reconstruction
client. Since the system does not keep track of the transmitted data,
parts of the scene that are reconstructed during network outage will
be lost. While previous approaches are only designed for single client
telepresence or do not support interactive collaboration, our approach
overcomes these limitations and enables a variety of new applications.

2.2 3D Reconstruction
The key to success of the recently emerging high-quality real-time
reconstruction frameworks is the underlying data representation that is
used to fuse the incoming sensor measurements. Especially the mod-
eling of surfaces in terms of implicit truncated signed distance fields
(TSDFs) has become well-established for high-quality reconstructions.
Earlier of these volumetric reconstruction frameworks such as Kinect-
Fusion [19, 37] rely on the use of a uniform grid so that the memory
requirement linearly scales with the overall grid size and not with the
significantly smaller subset of surface areas. As this is impractical for
handling large-scale scenes, follow-up work focused on the develop-
ment of efficient data structures for real-time volumetric data fusion
by exploiting sparsity in the TSDF. This has been achieved based on
using moving volume techniques [43, 51], representing scenes in terms
of blocks of volumes that follow dominant planes [17] or height maps
that are parameterized over planes [44], or using dense volumes only
in the vicinity of the actual surface areas to store the TSDF [4, 22, 39].
The allocated blocks that need to be indexed may be addressed based
on tree structures or hash maps. Tree structures model the spatial hi-
erarchy at the cost of a complex parallelization and a time-consuming
tree traversal which can be avoided with the use of hash functions that,
however, discard the hierarchy. Nießner et al. [39] proposed real-time
3D reconstruction based on a spatial voxel block hashing framework
that has been later optimized [22]. Drift that may lead to the accumula-
tion of errors in the reconstructed model [39] can be counteracted by
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Fig. 2. Possible design choices regarding the architecture of an end-to-end VR collaboration system. Although both the reconstruction client (RC)
and the exploration client (EC) can be realized at the remote expert’s side or inside the cloud (top row) to rely on standard video streaming techniques
(red arrows), such systems either impose an extremely high computational burden to the client’s machine (top left) or fail to provide an immersive VR
experience due to Internet latencies. Our system (bottom) overcomes these limitations by streaming the reconstructed 3D model to the individual
exploration clients using a novel compact and bandwidth-optimized representation (green arrows). Note, that the use of multiple reconstruction clients
can be naturally realized in this setting by transmitting the original representation (blue arrows) between reconstruction client (RC) and server (S).

implementing loop closure [7, 21]. Due to its efficiency, we built our
remote collaboration system on top of the voxel block hashing approach
and adapt the latter to the requirements discussed before. Very recently,
Golodetz et al. [15] presented a system for multi-client collaborative
acquisition and reconstruction of static scenes with smartphones. For
each connected camera, a submap representing the client-specific scene
part is reconstructed and managed by a server. After capturing has
finished, all submaps are merged into a final globally consistent 3D
model to avoid artifacts arising from non-perfectly matching submap
borders [21]. In contrast we focus on the development of a practical
collaboration system for on-the-fly scene inspection and interaction by
an arbitrary number of exploration clients. In this scenario, issues such
as the submap jittering caused by progressive relocalization during the
capturing process have to be handled carefully in order to preserve an
acceptable VR experience. As the respective adequate adjustment of
the submaps has to be evaluated in the scope of comprehensive user
studies, we consider this challenge to be beyond the scope of this paper.

2.3 Hashing
Lossless packing of sparse data into a dense map can be achieved via
hashing. However, developing such data structures on the GPU offering
the reliability of their CPU-side counterparts is highly challenging. Cur-
rent voxel block hashing techniques [7, 22, 39] including hierarchical
voxel block hashing [23] rely on the high camera frame rate to clean
up block allocation failures in subsequent frames and, thus, guarantee
consistent but not necessarily successful insertion and removal. Only
the guarantee regarding key uniqueness is strictly enforced to avoid that
duplicate blocks are allocated and integrated during fusion. Although
data integration for some voxel blocks (and re-integration [7]) might,
hence, be staggered to a few subsequent frames, model consistency
is still ensured by the high frame rate fusion. To achieve a more reli-
able GPU hashing, perfect hashing approaches [3, 28, 48] have been
proposed that aim at collision-free hashing, but are hardly applicable
for online reconstruction. In the context of collision handling, mini-

mizing the maximum age of the hash map, i.e. the maximum number
of required lookups during retrieval, by reordering key-value pairs
similar to Cuckoo Hashing improves the robustness of the hash map
construction [14]. Similar to Alcantara et al. [1], who analyzed different
collision resolving strategies, the entry size is restricted to 64-bit due to
the limited support size of atomic exchange operations. However, these
approaches do not support entry removal and insertion is allowed to fail
in case the defined upper bound on the maximum age is not achieved.
Stadium Hashing [25] supports concurrent insertion and retrieval, but
lacks removal, by avoiding entry reordering that would otherwise lead
to synchronization issues. Recently, Ashkinani et al. [2] presented a
fully dynamic hash map supporting concurrent insertion, retrieval, and
also removal based chaining to resolve collisions. However, their data
structure cannot enforce key uniqueness, which is an essential property
required by voxel block hashing frameworks to preserve model con-
sistency. In contrast, our hash map data structure overcomes all of the
aforementioned limitations and is specifically suited for continuously
updated reconstruction and telepresence scenarios.

3 DESIGN CHOICES

In a practical remote communication and collaboration system, users
should be able to directly start a conversation about the – possibly
very large – environment/scene and experience an immersive live ex-
perience without the need for time-consuming prerecording similar to
a telephone call. Such systems rely on efficient data representation
and processing (see Table 1), immediate transmission as well as fast
and compact data structures to allow reconstructing and providing a
virtual 3D model in real time to remote users. In order to meet the
requirements regarding usability, latency, and stability, several crucial
design choices have to be taken into account. In particular, we thus
focus on the discussion of a system design that benefits a variety of ap-
plications, while allowing the distribution of the computational burden
according to the hardware availability respectively, i.e. to the cloud or
to the remote expert’s equipment, and scaling to many remote clients.



Table 1. Advantages and disadvantages of different scene representations for remote collaboration systems.

Data Representation Flexibility Individual Exploration Re-Connection Data Management Compactness

RGB-D Data - - - easy good
Voxel Block Model X X X easy bad
Mesh X X X hard good
MC index based Model X X X easy very good

Naı̈ve Input Video Streaming An obvious strategy for the interac-
tive exploration of a live-captured scene by the user is the transmission
of the RGB-D input sequence and the reconstruction of the scene model
at the exploration client’s site (see Fig. 2 top left). Whereas the current
state of the art in image and video compression techniques as well as
real-time reconstruction would certainly be sufficient for the develop-
ment of such systems, this approach has several limitations. First, such
a setup imposes an extremely high computational burden to the remote
expert’s machine, where both the reconstruction and the rendering have
to be performed, such that a smooth VR experience at 90Hz may not be
guaranteed. Furthermore, in case of network outages, parts of the scene
that are acquired while the exploration client is disconnected cannot be
recovered automatically and the local user performing the capturing of
the scene is forced to move back and acquire the missing parts again.
In the worst case where the exploration client completely looses the
currently reconstructed model, e.g. when the user accidentally closes
the client, the whole capturing session must be restarted. In contrast,
this problem can be avoided by instead streaming parts of the fused 3D
model where the streaming order is not limited to the acquisition order
and can, thus, be controlled for each exploration client independently
according to their particular interests.

Full Cloud Video Streaming Alternatively, the full reconstruction
including triangulation could be performed on a central cloud server and
only RGB-D video streams are transmitted from/to the users (see Fig. 2
top right). While re-connections do not require further handling and
data loss is no longer an issue, however, Internet latency becomes an
apparent problem and prohibits an immersive VR experience. Lags in
transmitting the video data directly affect the user experience. Standard
approaches trying to compensate this issue rely on the view-adapted
transmission of 360 degree video data (e.g. [6, 10, 18]). This allows
inspecting the scene based on head rotations, however, translations
through the scene are not supported. Furthermore, this not only requires
that the users do not perform any fast movements, but also results in
drastically increased bandwidth requirements due to the transmission
of 360 degree video data which can easily result in the range of around
100MBit/s for SD video at 30Hz or more than 1GBit/s for 4K resolution
at 120Hz respectively [33] which is higher than streaming the 3D model.
The additional use of techniques for view specification based on e.g.
fixation prediction [10] result in additional delays of around 40ms
which represents a noticeable perceivable lag in remote collaboration
scenarios and reduces the interactive experience. In addition, when the
reconstruction is finished or paused and the 3D model does not change
for a certain time, the video stream of the renderings still requires a
constantly high amount of bandwidth whereas the bandwidth required
for streaming the 3D model would immediately drop to zero.

Mesh Data Streaming When deciding for the aforementioned
server architecture, there remains still the question which data should
be transferred from the server to the exploration clients. Similar to full
cloud-based video streaming, mesh updates could be streamed to the
exploration clients and directly rendered at their machines using stan-
dard graphics APIs. Whereas the mesh representation is more compact
in comparison to the voxel block model that is used for reconstruction,
the number of triangles in each updated block largely differs depending
on the amount of surface inside resulting in significantly more compli-
cated and less efficient data management, updating and transmission.
Furthermore, the vertex positions, which are given in the global coor-
dinate system, are much harder to compress due to their irregular and
arbitrary bit pattern. Instead, we propose a novel bandwidth-optimized
representation based on Marching Cubes indices (see Sect. 4.2) that is

even more compact after compression due to its more regular nature.

Centralized Data Processing We focus on the development of a
system that is particularly designed for collaboration tasks where users
can explore and interact with the captured scene while at the same time
being able to observe the other client’s interactions. For this purpose, a
central server is placed between the individual clients to simplify the
communication between clients and move shared computational work
away from the clients. Using a server avoids complicated and error-
prone dense mesh networks between all the exploration clients. Further-
more, it naturally facilitates the integration of multiple reconstruction
clients and it allows lower hardware requirements at the exploration
clients. This, in turn, makes the system suitable for a much broader
variety of users. Powerful hardware, required for the scalability to a
large number of clients, can be provided as practical cloud services or
similar services (see Fig. 2 bottom).

Hash Data Structure Efficient data structures are crucial for effi-
ciently and reliably managing the set of updated blocks for each con-
nected exploration client as well as the scene model and therefore have
to be adequately taken into account during the design phase. For data
management, fast and efficient retrieval of subsets as well as guaranteed
modification through duplicate-free insertion and deletion, which both
implicitly perform retrieval to ensure uniqueness, are strictly required
to avoid data loss during transmission or redundant streaming of data.
In particular, the streaming states of each connected client, i.e. the set
of updated data that needs to be transmitted, must be maintained in
real-time to avoid delays during live exploration. Since the support
for re-connections is a major feature of our telepresence system, these
states will contain the list of blocks updated in the time while the con-
nection was down or all blocks in case the client was closed accidentally
by the user. Selecting a subset (which involves retrieval and deletion)
as well as filling the state (which should be duplicate-free to avoid
redundant transmissions) should, hence, be performed as fast as pos-
sible in parallel on the GPU for which hash data structures are highly
suitable and have been well-established (e.g. [22, 39]). While recently
developed hashing approaches work well with high-frame-rate online
3D reconstruction techniques, their lack of strong guarantees regarding
hash operations make them hardly applicable to use cases with high
reliability requirements such as telepresence systems. Dispensing with
the uniqueness guarantee would lead to redundantly transmitted data
and, hence, wasted bandwidth whereas artifacts such as holes will occur
when insertion, removal, and retrieval cannot be guaranteed and these
blocks get lost during streaming from the reconstruction client until the
exploration client. With a novel hash map data structure that supports
concurrent insertion, removal, and retrieval including key uniqueness
preservation while running on a thread level, we directly address these
requirements. A detailed evaluation regarding run time and further
relevant design choices are provided in the supplemental material.

4 PROPOSED REMOTE COLLABORATION SYSTEM

The overall server-client architecture of our novel framework for effi-
cient large-scale 3D reconstruction and streaming for immersive remote
collaboration based on consumer hardware is illustrated in Fig. 3 and
the tasks of the involved components are shown in Fig. 4. RGB-D data
acquired with commodity 3D depth sensors as present in a growing
number of smartphones or the Kinect device are sent to the reconstruc-
tion client, where the 3D model of the scene is updated in real time
and transmitted to the server. The server manages a copy of the recon-
structed model, a corresponding, novel, bandwidth-optimized voxel
block representation, and the further communication with connected
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Fig. 3. Our novel 3D reconstruction and streaming framework for multi-client remote collaboration. RGB-D images acquired by consumer cameras,
e.g. smartphones or the Kinect device, are streamed to the reconstruction client (red arrows) which updates the virtual model and transfers it to the
server (blue arrows). The server converts the received data to a novel bandwidth-optimized representation based on Marching Cubes (MC) indices
and manages a set of updated blocks that are queued for streaming for each connected exploration client. By design, our system supports an
arbitrary number of exploration clients that can independently request the currently relevant updated parts of the model (green arrows) and integrate
them into their locally generated mesh from which images are rendered in real-time and displayed on devices such as VR headsets or screens. For
an immersive lag-free experience, the computational load during streaming is distributed using our novel hash map and set data structures. Red
arrows are used to represent the image streaming, while blue and green arrows are used to represent the streaming of TSDF and MC voxel blocks.

exploration clients. Finally, at the exploration client, the transmitted
scene parts are triangulated to update the locally generated mesh which
can be immersively explored i.e. with VR devices. Clients can connect
at any time before or after the capturing process has started. In the fol-
lowing sections, we provide more detailed descriptions of the individual
components of our framework, i.e. the reconstruction client, the server,
and the exploration client, which is followed by an in-depth discussion
of the novel data structure (see Sect. 5). Additional implementation
details for each component are provided in the supplemental material.

4.1 Reconstruction Client

The reconstruction client receives a stream of RGB-D images acquired
by a user and is responsible for the reconstruction and streaming of the
virtual model. We use voxel block hashing [22, 39] to reconstruct a
virtual 3D model from the image data. Since the bandwidth is limited,
the as-efficient-as-possible data handling during reconstruction is of
great importance. For this purpose, we consider only voxel blocks
that have already been fully reconstructed and for which no further
immediate updates have to be considered, i.e. blocks that are not visi-
ble in the current sensor’s view anymore and have been streamed out
to CPU memory [35]. In contrast, transmitting blocks that are being
still actively reconstructed and, thus, will change over time which re-
sults in an undesirable visualization experience for exploration clients.
Furthermore, continuously transmitting these individual blocks during
the reconstruction process results in extremely increasing bandwidth
requirements which make this approach infeasible to real-world scenar-
ios. In contrast to Mossel and Kröter [35], we concurrently insert the
streamed-out voxel blocks into a hash set which allows us to control the
amount of blocks per package that are streamed and avoids lags by dis-
tributing the work across multiple frames similar to the transfer buffer
approach of the InfiniTAM system [22]. To mitigate the delay caused
by transmitting only fully reconstructed parts of the scene, we add the

currently visible blocks at the very end of the acquisition process as
well as when the user stops moving during capturing or the hardware
including the network connection are powerful enough to stream the
complete amount of queued entries. In particular, we check whether
the exponential moving average (EMA) of the stream set size over a
period of τ = 5 seconds [53] is below a given threshold and the last such
prefetching operation is at least 5 seconds ago. The EMA is updated as

EMA(tn+1)
τ = uEMA(tn)

τ +(v−u)sn +(1−u)sn+1 (1)

with
u = e−a, v =

1−u
a

, a =
tn+1− tn

τ
. (2)

This ensures that the delayed but complete model is available to the
server and the exploration clients at all times. After fetching a subset
of stream set (via concurrent removal) and the respective voxel data
from the model, we compress them using lossless compression [5] and
send them to the server. In addition to the pure voxel data, the recon-
struction client and the exploration clients send their camera intrinsics
and current camera pose to the server where they are forwarded to
each connected exploration client to enable interactive collaboration.
Furthermore, requests for high-resolution textures on the model by the
exploration clients, required e.g. for reading text or measurement in-
struments, are handled by transmitting the sensor’s current RGB image
to the reconstruction client where it is forwarded to the server and the
exploration clients. To make our framework also capable of handling
quasi-static scenes, where the scene is allowed to change between two
discrete timestamps, as e.g. occurring when an instrument cabinet has
to be opened before being able to read the instruments, our framework
also comprises a reset function that allows the exploration client to
request scene updates for selected regions. This can be achieved by
deleting the reconstructed parts of the virtual model that are currently
visible and propagating the list of these blocks to the server.
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Fig. 4. Components of our framework and their respective tasks. Images are partially provided by PresenterMedia [42].

4.2 Server
The server component is responsible for managing the global voxel
block model and the list of queued blocks for each connected explo-
ration client. Furthermore, it converts incoming TSDF voxel blocks
into our novel MC voxel block representation. Finally, it forwards
messages between clients and distributes camera and client pose data
for an improved immersion and client interaction.

In order to reduce the computational burden and infrastructural
requirements regarding network bandwidth, the streamed data should
be as compact as possible while being efficiently to process. Instead of
streaming the model in the original TSDF voxel block representation
of the voxel block hashing technique [35] to the exploration clients, we
compute and transmit a bandwidth-optimized representation based on
Marching Cubes [30]. Thus, a TSDF voxel (12 bytes), composed of a
truncated signed distance field (TSDF) value (4 bytes), a fusion weight
(4 bytes), and a color (3 bytes + 1 byte alignment), is reduced to a MC
voxel, i.e. a Marching Cubes index (1 byte), and a color value (3 bytes).
Furthermore, we cut off those voxel indices i and colors c where no
triangles will be created, i.e. for

S c = {(i,c) | i = 0∨ i = 255} , (3)

by setting the values i and c to zero. While omitting the interpolation
weights, resulting in lossy compression, might seem drastic in terms of
reconstruction quality, we show that the achieved improvement regard-
ing compression ratio and network bandwidth requirement outweigh
the slight loss of accuracy in the reconstruction (see Sect. 6). Compared
to a binary representation of the geometry that would lead to the same
quality and a similar compression ratio, our MC index structure directly
encodes the triangle data and enables the independent and parallel
processing at the remote site by removing neighborhood dependencies.

Incoming data sent by the reconstruction client are first concurrently
integrated into the TSDF voxel block model and then used to update the
corresponding blocks and their seven neighbors in negative direction in
the MC voxel block representation. Updating the neighbors is crucial to
avoid cuts in the mesh due to outdated and inconsistent MC indices. To
avoid branch divergence and inefficient handling of special cases, we
recompute the whole blocks instead of solely recomputing the changed
parts. The list of updated MC voxel blocks is then concurrently inserted
to each exploration client’s stream hash set. Maintaining such a set for
each connected client not only enables advanced streaming strategies
required for a lag-free viewing experience (see Sect. 4.3). It also allows
them to reconnect at any point in time, e.g. after network outages, and
still explore the entire model since their stream sets are initially filled
with the complete list of voxel blocks via concurrent insertion. After
selecting all relevant blocks, a random subset of at most the request size
limit is extracted via concurrent removal and the corresponding voxel
data are retrieved, compressed [5] and sent to the exploration client.

4.3 Exploration Client
The exploration client’s tasks comprise generating surface geometry
from the transmitted compact representation in terms of MC indices,

updating the current version of the reconstructed model at the remote
site, and the respective rendering of the model in real-time. There-
fore, exploration clients are allowed to request reconstructed voxel
blocks according to the order of their generation during reconstruc-
tion, depending on whether they are visible in the current view of the
client, or in a random order which is particularly useful in the case
when the currently visible parts of the model are already complete, and
thus, other parts of the scene can be prefetched. Since the exploration
client controls the request rate and size, a lag-free viewing experience
is achieved by adapting these parameters depending on the client’s
hardware resources.

The received MC voxel blocks are decompressed in a dedicated
thread, and the block data is passed to a set of reconstruction threads
which generate the scene geometry from the MC indices and colors of
the voxels. We reduce the number of draw calls to the graphics API
by merging 153 voxel blocks into a mesh block instead of rendering
each voxel block separately [35]. To reduce the number of primitives
rendered each frame, we compute three level of details (LoDs) from the
triangle mesh, where one voxel, eight voxels or 64 voxels respectively
are represented by a point and the point colors are averaged over the
voxels. During the rendering pass, all visible mesh blocks are rendered,
while their LoD is chosen according to the distance from the camera.
We refer to the supplemental material for more details.

To allow a better interaction between the involved clients, each ex-
ploration client additionally sends its own pose to the server, which
distributes it to other exploration clients, so that each user can observe
the poses and movements of other exploration clients within the scene.
Analogously, the current pose of the reconstruction client is visualized
in terms of the respectively positioned and oriented camera frustum.
Furthermore, users can interactively explore the reconstructed envi-
ronment beyond pure navigation by measuring 3D distances between
interactively selected scene points. For the purpose of depicting struc-
tures below the resolution of the voxel hashing pipeline as e.g. required
for reading measurement instruments or texts, the exploration client
can send requests to the server upon which the RGB image currently
captured by the sensor is directly projected onto the respective scene
part and additionally visualized on a virtual measurement display.

5 HASH MAP AND SET DATA STRUCTURES

For the purpose of large-scale 3D reconstruction and streaming to an
arbitrary number of remote exploration clients, we developed a thread-
safe GPU hash data structure allowing fast and simple management
including dynamic concurrent insertion, removal and retrieval of mil-
lions of entries with strong success guarantees. In comparison to pure
3D reconstruction, maintaining consistency in multi-client telepresence
is much more challenging since streaming data between clients requires
that updates are not lost e.g. due to synchronization failures. Whereas
previous approaches either allow failures [14, 22, 39] or do not ensure
key uniqueness [2, 25], our robust hash data structure is not limited
in this regard and represents the key to realize our real-time remote
collaboration system. A detailed evaluation in terms of design choices
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Fig. 5. Illustration of thread-safe hash map/set modifications on the
GPU by maintaining the proposed invariant. The importance of thread
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and runtime performance can be found in the supplemental material.

General Design Our streaming pipeline is built upon two different
hash data structures. The server and the individual client components
use an internal map structure, that stores unique keys and maps a value
to each of them, whereas the server-client streaming protocol relies on a
set structure, which only considers the keys. Thus, the major difference
lies in the kind of stored data whereas the proposed algorithm for
retrieval, insertion and removal is shared among them. We built upon
the single-entry data structure by Kähler et al. [22] which stores the
values, i.e. key-value pairs for the map structure (voxel block hashing
and server model) and keys for the set (streaming states, see Fig. 3) into
a linear array. Collisions are resolved through linked lists using per-
entry offsets to the next elements and a stack structure that maintains
the set of available linked list entries. Voxel block hashing based
reconstruction approaches rely on the high camera frame rate to clean
up block allocation failures in subsequent frames [7, 22, 23, 39] and,
therefore, reduce synchronization to a minimum. In contrast, failures
in our telepresence system result in data loss during data transmission
which cannot be recovered. Thus, we need additional indicators to
determine whether an entry is occupied and locks for synchronization
to handle cases where several threads attempt to modify the same entry
simultaneously. Furthermore, we maintain a strong invariant which is
required to achieve correct concurrency on the thread-level: At any time,
the entry positions and the links to colliding values are preserved. Fig. 5
demonstrates mixed insertion and removal operations on our thread-
safe hash data structure. Detailed descriptions and implementation
details of the hash and stack data structures as well as further design
remarks are provided in the supplemental material.

Retrieval Since our proposed invariant ensures that entry positions
are not allowed to change, finding an element in the hash map or set
can be safely implemented as a read-only operation. First, the bucket b
of a given key value is computed according to the underlying hashing
function. In case of spatial hashing, this function could be defined as

b = (x · p1⊕ y · p2⊕ z · p3) mod n (4)

where (x,y,z) are the voxel block coordinates, p1 = 73856093, p2 =
19349669, p3 = 83492791 represent prime numbers, and n denotes the
number of buckets [22, 39]. We check whether the entry is occupied
and its key matches the query. If both conditions are met, we found the
key and return the current position. Otherwise, we traverse the linked
list through the offsets and check each entry in a similar manner.

Insertion For successful concurrent insertion, the modification
of an entry by several threads needs to be handled while avoiding
deadlocks. We handle the latter problem by by looping over a non-
blocking insertion function, which is allowed to fail, until the value is
found in the data structure. In the non-blocking version, we first check
if the value is already inserted (by performing retrieval). If the entry is
not found, there are two possible scenarios: The value can be inserted
at the bucket (if this entry is not occupied) or at the end of the bucket’s
linked list. In both cases, other threads might attempt to also modify
the entry at the same time. This not only requires locking (which might
fail to prevent deadlocks), but also a second occupancy check. If both
the lock is successfully acquired and the entry is still free, the value is
stored and the entry is marked as occupied and unlocked. In case the
bucket was initially occupied (second scenario), we first find the end of
the linked list by traversing the offsets and lock that entry. Afterwards,
we extract a new linked list position from the stack, store the value
there, set the occupancy flag and reset its offset to zero. Note that the
offset is intentionally not reset in the removal operation to avoid a race
condition (see the section below for details). Finally, the offset to the
new linked list entry is stored and the acquired lock is released.

Removal Removing elements as required when selecting voxel
blocks for client-server streaming, is similar to insertion and also in-
volves double checking during lock acquisition as well as looping over
a non-blocking version. Again, there are two possible scenarios: The
entry may be located at the bucket or inside the linked list. In the former
case, we try to acquire the lock and then reset the value and mark the
entry as unoccupied. In contrast to the approach by Nießner et al. [39],
the first linked list entry is not moved to the bucket to preserve our
invariant. Threads that try to erase this value might, otherwise, fail
to find it. We evaluated the impact of this change and observed that
runtime performance was not affected. If the value is inside the linked
list (second scenario), we first find the previous entry and lock both en-
tries. Afterwards, the current entry is reset and marked as unoccupied,
the offset of the previous entry is updated, and both locks are finally
released. As mentioned earlier, the offset is kept to avoid a race con-
dition where other threads concurrently performing direct or indirect
retrieval (inside insertion and removal) might not be able to access the
remainder of the linked list which would lead to failures in all three
operations. Thus, we avoid the need for additional synchronization in
the retrieval operation by delaying this step to the insertion operation.

6 EVALUATION

After providing implementation details, we perform an analysis regard-
ing bandwidth requirements and the visual quality of our compact scene
representation. This is accompanied by the description of the usage
of our framework in a live remote collaboration scenario as well as a
discussion of the respective limitations.

6.1 Implementation
We implemented our framework using up to four desktop computers
taking the roles of one reconstruction client, one server, and two explo-
ration clients. Each of the computers has been equipped with an Intel
Core i7-4930K CPU and 32GB RAM. Furthermore, three of them have
been equipped with a NVIDIA GTX 1080 GPU with 8GB VRAM,
whereas the fourth computer made use of a NVIDIA GTX TITAN
X GPU with 12GB VRAM. For acquisition, we tested two different
RGB-D sensors by using the Microsoft Kinect v2, which delivered data
with a resolution of 512 × 424 pixels at 30Hz, and by using an ASUS
Zenfone AR, which captured RGB-D data with a resolution of 224 ×
172 pixels at 10Hz. Although the ASUS device is, in principle, capable
of performing measurements at frame rates of 5-15Hz, we used 10Hz
as a compromise between data completeness and speed. Each of the



Table 2. Bandwidth measurements of our system for various scenes. We compared mean (and maximum) bandwidths of our optimized MC voxel
structure with 128-1024 blocks/request and 100Hz request rate to the standard TSDF representation with 512 blocks/request and unlimited rate.
Across all scenes, our optimized representation saved more than 90% of the bandwidth and scales linearly with the package size.

Dataset Voxel Size [mm] Bandwidth [MBit/s] Model Size [# Voxel Blocks]
MC 128 MC 256 MC 512 MC 1024 TSDF 512

heating room 5 4.5 (8.0) 8.8 (12.3) 17.5 (30.9) 32.7 (71.3) 561.5 (938.8) 897 ×103

pool 5 4.6 (7.1) 9.0 (14.0) 17.8 (29.7) 29.3 (54.5) 489.3 (937.0) 637 ×103

fr1/desk2 5 8.1 (11.6) 16.2 (23.8) 32.6 (46.8) 61.0 (95.0) 764.0 (938.6) 134 ×103

fr1/room 5 12.3 (23.6) 16.4 (23.6) 32.1 (42.2) 57.6 (87.9) 739.7 (938.0) 467 ×103

heating room 10 5.1 (7.6) 9.2 (14.4) 14.6 (27.8) 20.2 (63.7) 216.8 (937.1) 147 ×103

pool 10 5.6 (8.5) 9.9 (16.0) 13.6 (27.2) 16.9 (52.3) 176.3 (937.0) 104 ×103

fr1/desk2 10 8.7 (11.2) 14.3 (21.8) 19.6 (39.2) 24.4 (71.3) 170.1 (436.4) 23 ×103

fr1/room 10 9.2 (12.5) 15.7 (23.5) 22.9 (46.1) 28.5 (88.8) 207.8 (936.6) 86 ×103

Table 3. Time measurements of our system for various scenes. We compared the time to stream the whole model represented by our optimized MC
voxel structure with 128-1024 blocks/request and 100Hz request rate to the standard TSDF representation with 512 blocks/request and unlimited
rate. The reconstruction speed is given by TSDF 512 and serves as a lower bound. For a voxel resolution of 5mm, a package size of 512 voxel
blocks results in the best trade-off between required bandwidth and total streaming time. Increasing the size leads to slightly better results with less
latency, but substantially higher bandwidths. For a resolution of 10mm, the optimal streaming time is reached with even smaller package sizes.

Dataset Voxel Size [mm] Time [min] Model Size [# Voxel Blocks]
MC 128 MC 256 MC 512 MC 1024 TSDF 512

heating room 5 4:06 3:08 2:40 2:32 2:31 897 ×103

pool 5 2:14 1:32 1:12 1:09 1:08 637 ×103

fr1/desk2 5 0:39 0:31 0:27 0:24 0:22 134 ×103

fr1/room 5 1:46 1:14 1:01 0:57 0:56 467 ×103

heating room 10 1:49 1:44 1:44 1:44 1:44 147 ×103

pool 10 0:54 0:50 0:50 0:50 0:50 104 ×103

fr1/desk2 10 0:21 0:19 0:19 0:19 0:18 23 ×103

fr1/room 10 0:46 0:42 0:41 0:41 0:41 86 ×103
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Fig. 6. Streaming progress over time for the pool dataset. Larger
package sizes reduce the total transmission time of the virtual model to
the exploration client (EC). To save bandwidth, only fully reconstructed
blocks are streamed from the reconstruction client (RC) to the server (S)
causing a noticeable delay, which becomes smaller when our prefetching
queues the currently visible scene parts to the RC’s stream set (RC SS).

exploration client users was equipped with an HTC Vive HMD with
a native resolution of 1080 × 1200 pixels per eye whereas the recom-
mended rendering resolution (reported by the VR driver) is 1512 ×
1680 pixels per eye, leading to a total resolution of 3024 × 1680 pixels.
Please note that the higher recommended resolution (in comparison to
the display resolution) originates from the lens distortion applied by
the VR system. All computers were connected via a local network.

6.2 Bandwidth and Latency Analysis
In the following, we provide a detailed quantitative evaluation of the
bandwidth requirements of our novel collaboration system. For the
purpose of comparison, we recorded two datasets heating room and
pool (see supplemental material) with the Kinect v2, and also used
two further publicly available standard datasets that were captured with
the Kinect v1 [45]. Throughout the experiment, we loaded a dataset
and performed the reconstruction on the computer equipped with the
NVIDIA GTX TITAN X. The model is then streamed to the server
(second computer) and further to a benchmark client (third computer).

Compared to the exploration client, the benchmark client is started
simultaneously to the reconstruction client, requests voxel blocks with a
fixed predefined frame rate of 100Hz, and directly discards the received
data to avoid overheads. Using this setup, we measured the mean and
maximum bandwidth required for streaming the TSDF voxel block
model from the reconstruction client to the server and the MC voxel
block model from the server to the benchmark client. Furthermore, we
also measured the time until the model has been completely streamed
to the benchmark client. For the voxel block hashing pipeline, we used
5mm and 10mm for the voxel size, 60mm for the truncation region
and hash maps with 220 and 222 buckets as well as excess list sizes
matching the respective active GPU and passive CPU voxel block pool
sizes of 219 and 220 blocks. The server and reconstruction client used
the passive parameter set for their hash maps and sets. The results of
our experiment are shown in Table 2 and Table 3. A further evaluation
regarding the server scalability is provided in the supplemental material.

Across all scenes and voxel sizes, the measured mean and maximum
bandwidths for our novel MC voxel structure scale linearly with the
package size and are over one order of magnitude smaller compared
to the standard TSDF voxel representation. We measured higher band-
widths at 10mm voxel size than at 5mm for package sizes of 128 and
256 blocks. Our stream hash set automatically avoids duplicates, which
saves bandwidth in case the system works at its limits and can be con-
sidered as an adaptive streaming. At 10mm this triggers substantially
less and thus, more updates are sent to the server and exploration clients.
We also observed by a factor of two larger bandwidths for the datasets
captured with the Kinect v1 in comparison to the ones recorded by us
with the Kinect v2. This is mainly caused by the lower reliability of the
RGB-D data which contains more sensor noise as well as holes, which,
in turn, results in a larger number of allocated voxel blocks that need
to be streamed. Furthermore, the faster motion induces an increased
motion blur within the images, and thus leads to larger misalignments
in the reconstructed model as well as even more block allocations.
However, this problem is solely related to the reconstruction pipeline
and does not affect the scalability of our collaboration system.

The overall system latency is determined by the duration until newly
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(b) Bandwidth requirements between server (S) and exploration client (EC) with
package sizes of 256, 512, and 1024 blocks/request.

Fig. 7. Bandwidth measurements of our system over time for the pool dataset.

seen parts of the scene are queued for transmission, i.e. until they are
streamed out to CPU memory, the latency of the network, and the
package size of the exploration client’s requests. Since the whole sys-
tem runs in real-time, i.e. data are processed in the order of tens of
milliseconds, the runtime latency within the individual components has
a negligible impact on the total latency of the system. In order to evalu-
ate the bandwidth requirements and the overall latency, we performed
further measurements as depicted in Fig. 7 and Fig. 6. Whereas the
bandwidth for transmitting the TSDF voxel block representation has a
high variance and ranges up to our network’s limit of 1Gbit/s, our band-
width optimized representation has not only lower requirements, i.e. a
reduction by more than 90%, but also a significantly lower variance.
For a package size of 256 blocks, the model is only slowly streamed
to the exploration client which results in a significant delay until the
complete model has been transmitted. Larger sizes such as 512 blocks
affect both the mean bandwidth and the variance while further increases
primarily affect the variance since less blocks than the package size
need to be streamed (see Fig. 7). This effect also becomes apparent in
Fig. 6 where lower package sizes lead to a smooth streaming and larger
delays whereas higher values reduce the latency. Furthermore, the delay
between the reconstruction client and the server in the order of seconds
is directly related to our choice of only transmitting blocks that have
been streamed out to save bandwidth. Note that directly streaming the
actively reconstructed voxel blocks is infeasible due to extremely in-
creasing bandwidth requirements (see Section 4.1). Once our automatic
streaming of the visible parts triggers, which can be seen in the rapid
increases of the RC’s stream set (RC SS), the gap between the current
model at the reconstruction client and the streamed copy at the server
becomes smaller. Since the visible blocks are streamed in an arbitrary
order, this results in lots of updates for already existing neighboring MC
voxel blocks at the server site that need to be streamed to the exploration
client. Therefore, the exploration client’s model grows slower than the
server’s model but this gap is closed shortly after the server received all
visible blocks. Note that the effects of this prefetching approach can be
also seen in the reconstruction client’s bandwidth requirements, where
high values are typically observed when this mechanism is triggered.

In comparison to per-frame streaming [35], we transmit data per
block which allows the recovery from network outages as well as ad-
vanced streaming strategies controlled by the remote user. Therefore,
depending on the possibly very high number of eligible blocks from
streaming, e.g. all visible blocks after re-connection, scene updates may
appear unordered and patch-by-patch which can affect the subjective
latency (see the supplemental video). However, due to the control-
lable strategies, the objective latency until these visible data are fully
transmitted is much smaller than for inflexible frame-based approaches.

6.3 Scene Model Completeness and Visual Quality

In addition to the bandwidth analysis, we have also evaluated the model
completeness during transmission for our novel hash map data structure
in comparison to previous techniques that allow failures [39]. Thus, we
measured the model size in terms of voxel blocks at the reconstruction

(a) Hash Map by Nießner et al. [39]. (b) Our Hash Map Data Structure.

Fig. 8. Visual comparison of model completeness for the pool dataset:
While previous hash maps allow failures, our hash data structure ensures
hole-free reconstructions during transmission to an exploration client.

client, where the streaming starts, and at the exploration client, where
the data is finally transmitted to. To reduce side effects caused by dis-
tributing the computational load, we have chosen a package size of 1024
blocks (see Table 3). Whereas previous GPU hashing techniques work
well for 3D reconstruction and failures can be cleaned up in subsequent
frames, they are not suitable for large-scale collaboration scenarios
where blocks are often sent only once to save bandwidth. Insertion and
removal failures will, hence, lead to holes in the reconstruction that
cannot be repaired in the future (see Fig. 8).

We also provide a qualitative visual comparison of our bandwidth-
optimized scene representation based on Marching Cubes indices. In
order to reduce the bandwidth requirements by over 90%, we omitted
the interpolation of vertex positions and colors. Fig. 9 shows a com-
parison between our approximation and the interpolated mesh, where
both representations have been reconstructed using a voxel resolution
of 5mm. While the interpolated model has a smooth appearance, the
quality of our approximation is slightly lower at edges but, otherwise,
resembles the overall visual quality quite well. However, for small
highly textured objects, staircase artifacts become visible and lead to
worse reconstruction results (see Fig. 10). Note that our system al-
lows compensating this issue by using our projective texture mapping
approach to enable higher resolution information on demand.

6.4 Live Remote Collaboration
To verify the usability of our framework, we conducted a live remote
collaboration experiment where a local user and two remotely con-
nected users collaboratively inspect the local user’s environment sup-
ported by audio-communication (i.e. via Voice over IP (VoIP)). For this
experiment, we selected people who were unfamiliar to our framework
and received a briefing regarding the controls. Furthermore, these user
have never been in the respective room before.



(a) With Color Interpolation. (b) Without Color Interpolation.

Fig. 9. Visual comparison of our scene encoding for the heating room
dataset: Compared to standard mesh generation techniques that use
linear interpolation, our scene encoding achieves a similar quality without
interpolation in real-world scenes.

While one person took the role of a local user operating the ac-
quisition device, two different remotely connected exploration clients
provide support regarding maintenance and safety. The exploration
clients can interactively inspect the acquired scene, i.e. the maintenance
expert guides the person operating the acquisition device to allow the
observation of measurement instruments. By allowing scene resets,
where parts of the scene can be updated on demand, our system allows
certain scene manipulations such as opening the door to a switch board
that has to be checked by the maintenance expert. Furthermore, the
scene model can be visualized at higher texture resolution based on the
transmission of the live-captured RGB image upon request and its usage
in a separate virtual 2D display or directly on the scene geometry. This
allows checking instruments or even reading text (see supplemental
material for further details and evaluation). Measurements performed
based on the controllers belonging to the HMD devices are of sufficient
accuracy to allow detecting safety issues or select respective compo-
nents for replacement. The interaction flow of this experiment is also
showcased in the supplemental video. In addition to the Kinect v2, we
also used an ASUS Zenfone AR (224× 172 pixels, up to 15Hz) for
RGB-D acquisition. However, the limited resolution and frame rate
affect the reconstruction quality obtained with the smartphone.

Furthermore, the users testing our framework particularly liked the
options to reset certain scene parts to get an updated scene model as
well as the possibility of interacting with the scene by performing mea-
surements and inspecting details like instrument values. After network
outages or wanted disconnections from the collaboration process, the
capability of re-connecting to re-explore the in-the-meantime recon-
structed parts of the scene was also highly appreciated and improved
the overall experience significantly. In fact, they reported a good spatial
understanding of the environment.

6.5 Limitations
Despite allowing an immersive live collaboration between an arbitrary
number of clients, our system still faces some limitations. In particular,
the acquisition and reconstruction of a scene with a RGB-D camera
may be challenging for unexperienced users, who tend to move and
turn relatively fast resulting in high angular and linear velocities as well
as potential motion blur. As a consequence, the reconstruction is more
susceptible to misalignments. Whereas loop-closure techniques [7]
compensate this issue, their uncontrollable update scheme during loop
closing would cause nearly the entire model to be queued for stream-
ing. This would impose much higher bandwidth requirements to the
client connections and prohibit remote collaboration over the Inter-
net. Submap approaches [21] avoid this problem, but issues such as

(a) With Color Interpolation. (b) With Color Interpolation.

Fig. 10. Challenging cases: For highly textured objects and sharp edges
with high contrasts, our approximation introduces small artifacts.

the submap jittering caused by progressive relocalization during the
capturing process have to be handled carefully in order to preserve an
acceptable VR experience and require a respective evaluation in the
scope of a comprehensive user study. Furthermore, we stream the vir-
tual model in the TSDF voxel representation between the reconstruction
client and the server which requires both to be in a local network. How-
ever, the increasing thrust in cloud services could fill this gap. While
we believe that the usability of our novel system significantly benefits
from mobile devices with built-in depth cameras, the current quality
and especially the frame rate of the provided RGB-D data is inferior
compared to the Kinect family resulting in low-quality reconstructions.

7 CONCLUSION

We presented a novel large-scale 3D reconstruction and streaming
framework for immersive multi-client live telepresence that is espe-
cially suited for remote collaboration and consulting scenarios. Our
framework takes RGB-D inputs acquired by a local user with commod-
ity hardware such as smartphones or the Kinect device from which
a 3D model is updated in real-time. This model is streamed to the
server which further manages and controls the streaming process to
the, theoretically, arbitrary number of connected remote exploration
clients. As such as system needs to access and process the data in
highly asynchronous manner, we have built our framework upon – to
the best of our knowledge – the first thread-safe GPU hash map data
structure that guarantees successful concurrent insertion, retrieval and
removal on a thread level while preserving key uniqueness required by
current voxel block hashing techniques. Efficient streaming is achieved
by transmitting a novel, compact representation in terms of March-
ing Cubes indices. In addition, the inherently limited resolution of
voxel-based scene representations can be overcome with a lightweight
projective texture mapping approach which enables the visualization
textures at the resolution of the depth sensor of the input device. As
demonstrated by a variety of qualitative experiments, our framework is
efficient regarding bandwidth requirements, and allows a high degree
of immersion into the live captured environments.
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Efficient 3D Reconstruction and Streaming for Group-Scale Multi-Client
Live Telepresence

Patrick Stotko* Stefan Krumpen† Michael Weinmann‡ Reinhard Klein§

University of Bonn
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Figure 1: Illustration of our novel highly scalable multi-client live telepresence system. While previous approaches are limited to a
low number of up to 4 remote exploration clients, our system is capable of providing an immersive telepresence experience within a
live-captured high-quality scene reconstruction to more than 24 clients simultaneously without introducing further latency.

ABSTRACT

Sharing live telepresence experiences for teleconferencing or remote
collaboration receives increasing interest with the recent progress in
capturing and AR/VR technology. Whereas impressive telepresence
systems have been proposed on top of on-the-fly scene capture, data
transmission and visualization, these systems are restricted to the im-
mersion of single or up to a low number of users into the respective
scenarios. In this paper, we direct our attention on immersing signif-
icantly larger groups of people into live-captured scenes as required
in education, entertainment or collaboration scenarios. For this pur-
pose, rather than abandoning previous approaches, we present a
range of optimizations of the involved reconstruction and streaming
components that allow the immersion of a group of more than 24
users within the same scene – which is about a factor of 6 higher than
in previous work – without introducing further latency or changing
the involved consumer hardware setup. We demonstrate that our
optimized system is capable of generating high-quality scene recon-
structions as well as providing an immersive viewing experience to
a large group of people within these live-captured scenes.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual real-
ity; Human-centered computing—Human computer interaction
(HCI)—Interaction paradigms—Collaborative interaction; Comput-
ing methodologies—Computer graphics—Graphics systems and
interfaces—Virtual reality; Computing methodologies—Computer
vision—Computer vision problems—Reconstruction

1 INTRODUCTION

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final version of record is available at
http://dx.doi.org/10.1109/ISMAR.2019.00018.

The rapidly increasing potential of AR/VR technology has led to
several highly advanced telepresence applications such as telecon-
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ferencing in room-scale environments [4, 24] or the exploration of
places – that may vary from the users’ local physical environment
– for live-captured scenes beyond room-scale [27] and for remote
collaboration purposes. To meet the critical success factors of an im-
mersive telepresence experience for on-the-fly captured 3D data as
required by these scenarios, these systems impose strong demands re-
garding the reconstruction and streaming speed as well as the visual
quality of the acquired scene. Furthermore, the interactive explo-
ration within the scene requires rendering at high framerates and low
latency to avoid motion sickness. This means that all of the involved
processing steps including 3D scene capture, data transmission and
visualization have to be achieved in real-time, while taking the typi-
cally available network bandwidth and client-side compute hardware
into account. Previous teleconferencing systems [4, 24, 28] were
designed to capture a fixed region of interest based on expensive
well-calibrated acquisition setups involving statically mounted cam-
eras. In contrast, the live telepresence system by Stotko et al. [27] is
tailored to the acquisition of scenes beyond such a fixed size defined
by the setup and involves portable, consumer-grade capture hard-
ware. As a result, efficiently representing and transmitting the scene
to visualization devices is significantly harder. While further work
has been spent on parallelized capturing [6], the goal of immersing
a large number of people into the same live-captured environment
while allowing them to interact with each other for e.g. remote col-
laboration and exploration scenarios, to the best of our knowledge,
has not received a lot of attention so far. In particular, the major
challenge is given by the accurate reconstruction and transmission
of 3D models while keeping the computational burden as well as
the memory and streaming requirements as low as possible, thus,
minimizing the amount of unnecessary or unreliable model data
resulting from noise and outliers in the captured input data.

In this paper, we address the scalability of live telepresence sys-
tems to the immersion of whole groups of (more than 24) people
without introducing further latency as required for education, enter-
tainment and collaboration scenarios (see Fig. 1). For this purpose,
rather than developing new techniques for 3D capture and data trans-
mission, we demonstrate how existing well-established systems for
3D reconstruction and streaming can be optimized to significantly
increase the scalability of live telepresence systems under strong
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Figure 2: Overview of the major components of state-of-the-art live multi-client live telepresence systems. RGB-D image data acquired by a single
camera device are streamed to a cloud server (red arrows) where a global 3D scene model is reconstructed in a dedicated 3D reconstruction
process. This scene model is then passed to the central server process (blue arrows) which also runs on the cloud server and manages a
bandwidth-optimized version of the model as well as the client states. Large groups of people (more than 24 in our system), each running an
exploration client on their local hardware, can independently request parts of the reconstructed global scene model (green arrows) and render the
locally generated mesh on their display devices (red arrows).

constraints regarding latency and bandwidth. We demonstrate that
our extensions result in compact high-quality 3D reconstructions
and finally allow the immersion of more than 24 people within
the same live-captured scene (beyond room-scale), thereby signifi-
cantly exceeding the number of immersed persons in previous ap-
proaches [27] without adding or exchanging hardware components.

In summary, the key contributions of this work are (1) an efficient
novel set of filters designed to optimize the performance and scala-
bility of current state-of-the-art telepresence systems at the example
of the SLAMCast system [27], (2) an adaption of the telepresence-
specific filters to standalone volumetric 3D reconstruction and (3)
a comprehensive evaluation of the beneficial effect of the proposed
set of filters regarding scalability, latency and visual quality.

2 RELATED WORK

Telepresence applications for sharing live experiences rely on real-
time 3D scene capture. For this purpose, the underlying scene repre-
sentation, where the scene is reconstructed based on the fusion of the
incoming sensor data, is of particular importance. Well-established
representations include surface modeling in the form of implicit
truncated signed distance fields (TSDFs). Early real-time volumetric
reconstruction approaches [9, 21] are based on storing the scene
model in a uniform grid. This results in high memory requirements
as the data structure is not adapted according to the local presence
of a surface. To improve the scalability to large-scale scenes, further
work exploited the sparsity in the TSDF representation, e.g. based on
moving volume techniques [26, 31], representing scenes in terms of
blocks of volumes that follow dominant planes [8] or storing TSDF
values only near the actual surface areas [1, 12, 23]. The individual
blocks can be managed using tree structures or hash maps as pro-
posed by Nießner et al. [23] and respective optimizations [12,13,25].
Furthermore, the replacement of the TSDF representation by a high-
resolution binary voxel grid has also been considered by Reichl
et al. [25] to improve the scalability and reduce the memory re-
quirements. Recent extensions include the detection of loop clo-
sures [2, 11, 16] to reduce drift artifacts in camera localization as
well as multi-client collaborative acquisition and reconstruction of
static scenes [6].

This progress in real-time capturing enabled the development
of various telepresence applications. Early telepresence sys-
tems [5, 9, 10, 17–19] were designed for room-scale environments
and faced the problems of a limited reconstruction quality due to
high sensor noise and a reduced resolution. Relying on an expensive
capturing setup with several cameras, GPUs and desktop computers,
the Holoportation system [24] was designed for high-quality real-
time reconstruction of a dynamic room-scale environment based on
the Fusion4D system [3] as well as real-time data transmission. This
has been complemented with AR/VR systems to allow immersive
end-to-end teleconferencing. In contrast, interactive telepresence for
individual remote users within live-captured static scenes has been
addressed by Mossel and Kröter [20] based on voxel block hash-

ing [12,23]. The limitations of this system regarding high bandwidth
requirements, the immersion of only a single remote user into the
captured scenarios as well as network interruptions leading to loss
of scene parts that are reconstructed in the meantime have been over-
come in the recent SLAMCast system [27]. However, the scalability
to immersing large groups of people into on-the-fly captured scenes
has not been achieved so far. In this paper, we directly address this
problem by several modifications to the major components involved
in telepresence systems.

3 SYSTEM OUTLINE

Akin to previous work, we build our scalable multi-client telepres-
ence system on top of a volumetric scene representation in terms
of voxel blocks, i.e. blocks of 83 = 512 voxels. This approach
has been well-established by previous investigations in the context
of real-time reconstruction [1, 2, 9, 11–13, 21–23, 30, 31] and telep-
resence [20, 24, 27]. As shown in Fig. 2, current state-of-the-art
telepresence systems involving live-captured scenarios rely on the
core components of (1) a real-time 3D reconstruction process, (2)
a central server process as well as (3) exploration clients. RGB-D
images captured by a single camera are streamed to the reconstruc-
tion process that runs on a cloud server and allows on-the-fly camera
localization and scene capture via volumetric fusion. The recon-
structed scene data is then passed to the central server process that
manages a bandwidth-optimized version of the global model as well
as the streaming of these data according to requests by connected
exploration clients. Each exploration client integrates the transmitted
scene parts into a locally generated mesh that can be interactively
explored with VR devices on their local computers. In the follow-
ing, we focus on the extension of such live telepresence systems to
the immersion of larger groups of remote users into a live-captured
scene at the example of the SLAMCast system [27]. This requires
the optimization of the reconstruction (see Sect. 4) and the central
server processes (see Sect. 5). In contrast, the exploration client
receives the compressed and optimized scene representation and is
already capable of providing an immersive viewing experience at
the remote user’s site.

4 OPTIMIZATION OF THE 3D RECONSTRUCTION PROCESS

Since our optimizations are not particularly restricted to the recon-
struction process used in the SLAMCast system, we show their
application to volumetric 3D reconstruction approaches in general
and provide an overview of the respective pipeline (see Fig. 3). Here,
the surface is represented in terms of implicit truncated signed dis-
tance fields (TSDFs) and stored as a sparse unordered set of voxel
blocks using spatial hashing [2, 11, 12, 23, 25]. Input to the recon-
struction pipeline is an incremental stream of RGB-D images which
is processed in an online fashion. First, the current RGB-D frame is
preprocessed where camera-specific distortion effects are removed
and a normal map is computed from the depth data. Afterwards,
the current camera pose is estimated either using frame-to-model
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Figure 3: General volumetric 3D reconstruction pipeline. Our set of efficient filters designed to improve the performance and scalability of the
state-of-the-art live telepresence systems can also be applied to the components of standalone 3D reconstruction (highlighted).

tracking [9, 12, 21, 23, 25, 29, 31] (as also used in the SLAMCast
system) or using bundle adjustment for globally-consistent recon-
struction [2, 11]. Using this pose, non-visible voxel block data are
streamed out to CPU memory whereas visible blocks in CPU mem-
ory are streamed back into GPU memory [12, 16, 23, 25]. In the next
step, new voxel blocks are allocated in the volume and the RGB-D
data are fused into the volumetric model. Finally, a novel view
depicting the current state of the reconstruction is generated using
raycasting to provide a live feedback to the user during capturing.

4.1 Image Preprocessing
We improve the robustness of the acquired RGB-D data by filtering
potentially unreliable data from the depth map. A further benefit
of this operation is the resulting more compact scene model repre-
sentation. Inspired by previous work [31], we discard samples d
located on stark depth discontinuities by considering the deviations
to the depth values di in a 7× 7 neighborhood N(d). Due to the
limited resolution and the overall noise characteristics of the sensor,
such samples are likely to be outliers and might largely deviate from
the true depth values. We extend this filter by further discarding
samples d with a significant amount of missing data in their local
neighborhood. In such regions, which may not only contain depth
discontinuities, the depth measurements are also susceptible of being
unreliable. Thus, we consider the set

Do = {d | ∃i ∈N(d): |d−di|> cd ∨|No(d)|> ch · |N(d)|} (1)

as outliers where cd and ch are user-defined thresholds, N(d) de-
notes the neighborhood of the depth sample d and No(d) the set of
neighboring pixels with no valid depth data. These outliers affect
the overall reconstruction quality as well as the model compactness.

4.2 Data Fusion
Although potentially unreliable data around stark depth discontinu-
ities have been filtered out during the preprocessing step, there are
still samples, e.g. around small discontinuities, that do not contribute
to the reconstruction and negatively affect the model compactness
and streaming performance. In the voxel block allocation step, these
unreliable data unnecessarily enlarge the global truncation region
around the unknown surface since all voxel blocks located within
the local truncation region around the respective depth samples are
considered during allocation. Traditional approaches tried to remove
these blocks afterwards using a garbage collection [23] which re-
quires a costly analysis of the voxel data. In contrast, we propose a
novel implicit filter which reduces the amount of unnecessary block
allocations. By considering only every ca-th pixel per column and
row, where ca is a user-defined control parameter, the depth image
is virtually downsampled and the likelihood for an over-sized global
truncation region is significantly reduced. Furthermore, this reduces
the number of processed voxels during data fusion which greatly
speed-ups the reconstruction and reduces the amount of blocks that
are later queued for streaming to the server. Note that this down-
sampling is only performed during allocation whereas the whole
depth image is still used for data fusion to employ TSDF-based
regularization. In the context of globally-consistent 3D reconstruc-
tion using bundle-adjusted submaps [6, 11], our filter improves the
compactness of the respective submap into which the RGB-D data

Algorithm 1 Our optimized server voxel block data integration
Input: Received TSDF voxel block positions P T SDF and voxel data V T SDF

Output: Voxel block position list PMC for updating the stream sets
1: MT SDF ← allocateBlocks(P T SDF )
2: MT SDF ← copyVoxelData(V T SDF )
3: PMC ← createBlockUpdateSet(P T SDF )
4: V MC,FMC ← computeVoxelData(PMC,MT SDF )
5: MMC ← allocateNonEmptyBlocks(PMC,FMC)
6: MMC ← copyNonEmptyVoxelData(V MC,FMC)
7: MMC ← pruneEmptyBlocks(PMC,FMC)
8: PMC ← pruneBlockUpdateSet(PMC,PMC

A ,FMC)
9: PMC

A ← updateNonEmptyBlockSet(PMC
A ,PMC)

are fused whereas the fusion of the more compact submaps into a
single global model would be performed as in previous work.

4.3 Model Visualization
In order to provide a decent live preview of the current model state,
the generation of such model views should preserve all the relevant
scene information while suppressing noise as much as possible. Fur-
thermore, if frame-to-model tracking is used to estimate the current
camera pose, this is also crucial to allow a robust alignment. We
propose a Marching Cubes (MC) voxel block pruning approach
which will be described in more detail in Sect. 5, as it has been
carefully designed for the central server process. Here, we show an
adaption of this contribution to standalone volumetric 3D reconstruc-
tion where the model is stored implicitly using TSDF voxels. Each
TSDF voxel stores a TSDF value D ∈ [−1;1] and fusion weight
W ∈ [0;255] (both compressed using 16-bit linear encoding [12])
as well as a 24-bit color C ∈ [0;255]3. Inspired by the garbage col-
lection approach of point-based reconstruction techniques [14], we
ignore TSDF voxels for raycasting and triangle generation which
are currently considered unstable. These voxels contain only very
few, possibly unreliable observations from the input data, so their
fusion weight falls below a user-defined threshold cw:

V T SDF
o = {(D,W,C) |W < cw} (2)

However, in contrast to previous garbage collection approaches [14,
23], we do not remove these voxel blocks but only ignore them.
This avoids accidental removal of blocks that might become stable
at a future time when this scene part is also partially stored in a
different submap or revisited by the user or another client in multi-
client acquisition setups [6, 11]. Furthermore, by ignoring unstable
data, the raycasted view will also be consistent with the exploration
client’s version of the 3D model.

5 OPTIMIZATION OF THE CENTRAL SERVER PROCESS

Beyond optimizations in the reconstruction process, the scalability
of a live telepresence system also relies on the optimization of its
central server process that takes care of managing the reconstructed
global scene model as well as the stream states and requests by
connected exploration clients. In this regard, we show respective
optimizations at the example of the recently published SLAMCast
system [27]. In comparison to the standard voxel block data inte-
gration at the server side, we propose a further filtering step which



discards empty or unstable voxel blocks that contain only very few
or none observations from the input RGB-D image data. This sig-
nificantly improves the streaming performance and scalability and
allows the immersion of groups of people. The individual steps of
our optimized integration approach are shown in Algorithm 1.

Similar to the original SLAMCast system, we first integrate the
TSDF voxel block positions P T SDF and voxel data V T SDF into
the global TSDF voxel block model MT SDF of the central server
process. Afterwards, we update the global MC voxel block model
MMC which is optimized for streaming and stores a Marching
Cubes index I ∈ [0;255] as well as a 24-bit color C∈ [0;255]3 in each
MC voxel. For this purpose, we create the set PMC of MC voxel
block positions requiring an update as well as a set of flags FMC

and the respective MC voxel data V MC by performing the Marching
Cubes algorithm on the corresponding TSDF voxels [15]. The flags
FMC indicate whether a block will generate reliable triangles and
are constructed by analyzing the Marching Cubes indices I of the
MC voxels as well as the fusion weight W of the corresponding
TSDF voxels. Therefore, the following set V MC

o of voxels either
does not contain surface information in terms of triangles or would
generate unstable triangle data:

V MC
o = {(I,C) | I = 0∨ I = 255∨W < cw} (3)

We only allocate those blocks in the MC voxel block model MMC

that are flagged and prune blocks that are currently not flagged. This
minimizes the amount of scene data that are streamed to the explo-
ration clients. Finally, we integrate the generated MC voxel data
V MC of the flagged blocks. We do not prune the TSDF voxel block
model MT SDF which would otherwise lead to potential artifacts, i.e.
missing geometry at block boundaries, since currently empty blocks
might be needed for future updates.

In contrast to the MC voxel block model, pruning the list of
updated MC voxel block positions PMC in the same way would in-
troduce artifacts at the exploration client side since they may already
have received a previous version of blocks that have been pruned in
the meantime. To properly handle updates, we manage the update
set PMC

A containing all voxel block positions that were considered
for streaming in the past. We generate the list of updated MC voxel
blocks by only considering the ones which either generated trian-
gles in the past or with the current update. Finally, after the MC
voxel blocks have been integrated into the volume and the list of
updated block positions has been generated, we update the set PMC

A
by inserting all currently integrated voxel block positions.

6 EVALUATION

We tested our highly scalable telepresence system on a variety of
different datasets and analyzed several aspects such as system scala-
bility, streaming latency and visual quality. For a quantitative com-
parison of the proposed contributions, we considered the following
variants of our system:

• Base (B): Our 3D reconstruction and streaming system with de-
activated filtering contributions, yielding equivalent performance
to SLAMCast [27].

• Base + Depth Discontinuity Filter (B+DDF): The base ap-
proach with an additional depth map filtering at discontinuities
with ch = 0.25, cd = 0.2m (see Sect. 4.1).

• Base + Voxel Block Allocation Downsampling (B+VBAD):
The base approach with an additional virtual downsampling at the
voxel block allocation stage with ca = 4 (see Sect. 4.2).

• Base + MC Voxel Block Pruning (B+MCVBP): The base ap-
proach with an additional pruning of empty MC voxel blocks at
the server side with cw = 2.0 (see Sect. 4.3 and Sect. 5).

• Ours: Our approach incorporating all filtering contributions.

Table 1: Maximum number of exploration clients (ECs) that the server
can handle without any delay compared to a single client. Instead of
using different package sizes with a fixed request rate of 100Hz, we
use a fixed size of 512 and vary the rate accordingly to demonstrate
the highest possible scalability. If empty MC voxel block pruning is
used (B+MCVBP and Ours), the sizes of the TSDF and MC voxel
block models differ and we list both (MMC/PMC

A (MT SDF )).

Approach Dataset Max.
ECs

Request
Rate [Hz]

Model Size [# ×103

MC Voxel Blocks]

B

lounge 5 100 314
copyroom 9 50 228
heating room 3 100 850
pool 5 100 590
lr kt2 1 200 834

B+DDF

lounge 9 50 270
copyroom 10 50 230
heating room 9 50 443
pool 10 50 379
lr kt2 10 50 227

B+VBAD

lounge 8 50 264
copyroom 5 100 226
heating room 4 100 622
pool 8 50 446
lr kt2 1 200 550

B+MCVBP

lounge 21 12 47 / 51 (314)
copyroom 9 50 65 / 75 (298)
heating room 8 25 120 / 127 (850)
pool 13 25 104 / 108 (590)
lr kt2 7 25 64 / 64 (834)

Ours

lounge 25 12 44 / 47 (240)
copyroom 18 25 57 / 67 (202)
heating room 27 12 90 / 94 (352)
pool 28 12 95 / 99 (317)
lr kt2 26 12 53 / 55 (201)

The filter sizes and thresholds as described above were determined
empirically using several datasets. For validation, we used differ-
ent real-world datasets recorded with an ASUS Xtion Pro (lounge,
copyroom) [32] and a Kinect v2 (heating room, pool) [27] as well
as synthetic data (lr kt2 with simulated noise) [7]. Throughout the
experiments, we used three computers where each of them takes the
role of one part of the telepresence system, i.e. 3D reconstruction
process (RC), central server process (S) and exploration client (EC).
All computers were equipped with an Intel Core i7-4930K CPU and
32GB RAM and a NVIDIA GTX 1080 GPU with 8GB VRAM and
connected via a local network. We replaced the exploration client
by a benchmark client which starts requesting voxel blocks with a
fixed frame rate of 100Hz when the reconstruction process starts.
Furthermore, the reconstruction process uses a fixed reconstruction
speed of 30Hz matching the framerate of the used datasets. We set
the voxel size to 5mm as well as the truncation region to 60mm and
used hash map/set sizes of 220 and 222 buckets as well as GPU and
CPU voxel block pool sizes of 219 and 220 blocks, thereby following
previous work [27].

6.1 System Scalability

In this section, we will evaluate the scalability of our system in
comparison to the baseline SLAMCast approach (see Table 1). In
contrast to the following evaluations, the benchmark client discards
the received data which allows for running all benchmark clients on
a single computer without an overhead. Furthermore, rather than
lowering the package size, we used a fixed package size of 512 voxel
blocks and lower the request rate accordingly. This significantly
reduced the constant overheads of kernel calls and memory copies
and introduces only a minimal delay in the range of milliseconds
which made it the preferred setting for handling a large number of
clients. For an appropriate choice of the streaming rate, we deter-
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mined the lowest package size which still allows the benchmark
client to retrieve the whole model with an acceptable delay of at
most one second (see supplemental material for a detailed analysis).
Then, we measured the maximum number of benchmark clients that
the server could handle without introducing a further delay. While
the original SLAMCast system was only able to handle around 3-5
clients in general, both filters at the reconstruction side (B+DDF and
B+VBAD) raised this limit to up to 10 clients. Since there is a track-
ing loss at the end of the copyroom sequence resulting in a slightly
higher delay, a higher request rate was chosen and the scalability
decreased accordingly. Although the number of MC voxel blocks
is significantly lower after pruning (B+MCVBP), we observed that
the general performance is similar to the depth discontinuity filter
approach. Here, the TSDF voxel block model has the same size as in
the base approach and is, hence, considerably larger than in the other
approaches. In contrast, our full system reduces the request rate
requirements to 12Hz for most scenes making it the preferred choice
for this parameter. This significantly improves its scalability to more
than 24 clients in all scenes which is sufficient for applications in
education, entertainment or collaboration scenarios.

6.2 Latency and Streaming Progress Analysis
In addition to the scalability analysis, we also measured the stream-
ing latency over time (see Fig. 4). Similar to the original SLAMCast
approach, our system has a small delay between the reconstruction
process and the server process due to the shared streaming strategy.
However, our optimized server model prunes unreliable or irrelevant
blocks which results in a very low latency between the server and the
exploration client. We also compared the latency between the largest

and smallest chosen package size, i.e. 1024 and 64 blocks/request.
Here, the model size of the exploration client is close to the size of
the server’s update set PMC

A indicating a very fast and low-latent
streaming while the gap to the minimal size of the server model
MMC increases over time. Note that these two sizes are the bounds
for the exploration client’s model size and clients which have recon-
nected, e.g. due to network outages, will receive a slightly more
compact model closer to the lower bound. Reducing the package
size from 1024 to 64 blocks significantly reduces the bandwidth
requirements (see supplemental material for a detailed analysis) and
leads to a slightly worse latency when the reconstruction process
queues the currently visible voxel blocks for streaming.

In Fig. 5, we also compared the different system variants regard-
ing streaming progress and latency. For a fair comparison between
the approaches, the package size is chosen such that the mean band-
widths are similar, i.e. around 15Mbit/s. Here, we also considered
the size of the update set PMC

A in addition to size of the server model
MMC when empty MC voxel block pruning is enabled (B+MCVBP
and Ours). In these scenarios, the number of voxel blocks transmitted
to the exploration client bound by these two sizes is typically close
to the upper bound PMC

A . In comparison to the baseline, both filter-
ing approaches at the reconstruction side (B+DDF and B+VBAD)
reduce the latency significantly. Similar results can be seen when
empty MC voxel blocks are pruned (B+MCVBP). Whereas all of
these approaches still introduce a noticeable delay at the time steps
40s and 90-100s, our full system is capable of streaming the recon-
structed model with almost no delay across the whole sequence.
Additional results regarding bandwidth and streaming latency over
time are provided in the supplemental material.
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9.7ms (3.3ms), 1442MB

(f) lounge: B,
10.9ms (5.0ms), 1286MB

(g) lounge: B+DDF,
10.0ms (4.4ms), 1106MB

(h) lounge: B+VBAD,
10.0ms (5.4ms), 1081MB

(i) lounge: B+MCVBP,
10.9ms (5.2ms), 1286MB

(j) lounge: Ours,
9.7ms (4.3ms), 983MB

Figure 6: Comparison of visual quality, mean runtime (and standard deviation) as well as memory requirements for each system variant. All
individual contributions reduced the amount of reconstruction artifacts while improving the overall reconstruction performance.

6.3 Visual Quality

In order to demonstrate the benefit for standalone volumetric 3D
reconstruction, we also provide a qualitative comparison regarding
the visual quality of the reconstructed 3D models as well as the re-
spective runtime and memory requirements for the individual system
variants (see Fig. 6). In general, all approaches generated detailed
and accurate 3D models from the noisy RGB-D input data. However,
without filtering, there might be some artifacts around depth discon-
tinuities as well as in regions which have not been fully observed
by the camera. These artifacts affect the overall visual experience
and lead to high runtime and memory requirements. Using virtual
downsampling at the voxel block allocation stage (B+VBAD), we
obtain almost identical 3D models but the computational burden
is significantly lower since the number of empty blocks within the
model is reduced. In contrast, filtering depth samples at depth dis-
continuities (B+DDF) or unreliable triangle data during Marching
Cubes (B+MCVBP) reduces the amount of artifacts in the afore-
mentioned regions. Note that in standalone 3D reconstruction, voxel
block pruning (B+MCVBP) mainly affects the triangulation step
at the end of the capturing session which leads to results similar
to the base approach regarding runtime and memory. Our full sys-
tem enhances the visual quality even further and almost completely
removes artifacts without sacrificing the overall model complete-
ness. Here, we observe improvements of 10-40% and 25-60% for
the runtime and memory footprint respectively depending on the
scene. The objects in the lounge scene have been captured at a much
smaller distance and from more angles than in the heating room
scene which leads to less unreliable input data and, hence, a lower
impact of our outlier filtering approach. Additional performance
measurements and results are provided in the supplemental material.
In the context of live remote collaboration, a slightly less complete
model can be beneficial and helps to identify regions that still need
to be captured and reliably reconstructed. This, in turn, might even
increase the model completeness and accuracy since the scene is

more thoroughly acquired by the user.

6.4 Limitations

Despite the significant improvements in terms of scalability, latency
and visual quality, our system still has some limitations. Since our
work is based on the SLAMCast system, misalignments within the
reconstruction might occur due to fast camera movement. While this
problem has been addressed by loop-closure techniques [2,11], their
integration into live telepresence systems is still highly challenging.
Furthermore, too aggressive virtual downsampling during voxel
block allocation might lead to holes in the final model when some
blocks covering distant objects are always skipped and, hence, never
allocated. However, this is only problematic for long-range devices
whereas typical RGB-D cameras have a smaller range of up to 5
meter which is still sufficient for most scenarios.

7 CONCLUSION

We presented a highly scalable multi-client live telepresence sys-
tem which allows immersing a large number of people into a live-
captured environment. For this purpose, we used well-established
systems and proposed several optimizations regarding scalability,
latency, and visual quality. While our contributions are designed
with the telepresence system in mind, we also show their application
to standalone volumetric 3D reconstruction approaches. As demon-
strated in a comprehensive evaluation, our novel system allows the
immersion of more than 24 people within the same scene using
consumer hardware.
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[20] A. Mossel and M. Kröter. Streaming and exploration of dynamically
changing dense 3d reconstructions in immersive virtual reality. In Proc.
of IEEE Int. Symp. on Mixed and Augmented Reality, pp. 43–48, 2016.

[21] R. A. Newcombe et al. KinectFusion: Real-Time Dense Surface
Mapping and Tracking. In Proc. of IEEE Int. Symp. on Mixed and
Augmented Reality. IEEE, 2011.

[22] R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time. In IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 343–352, 2015.
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A B S T R A C T

Reconstructing scenes in real-time using low-cost sensors has gained increasing attention in recent research and
enabled numerous applications in graphics, vision, and robotics. While current techniques offer a substantial
improvement regarding the quality of the reconstructed geometry, the degree of realism of the overall ap-
pearance is still lacking as the reconstruction of accurate surface appearance is highly challenging due to the
complex interplay of surface geometry, reflectance properties and surrounding illumination. We present a novel
approach that allows the reconstruction of both the geometry and the spatially varying surface albedo of a scene
from RGB-D and IR data obtained via commodity sensors. In comparison to previous approaches, our approach
offers an improved robustness and a significant speed-up to even fulfill the real-time requirements. For this
purpose, we exploit the benefits of scene segmentation to improve albedo estimation due to the resulting better
segment-wise coupling of IR and RGB data that takes into account the wavelength characteristics of different
materials within the scene. The estimated albedo is directly integrated into the dense volumetric reconstruction
framework using a novel weighting scheme to generate high-quality results. In our evaluation, we demonstrate
that our approach allows albedo capturing of complicated scenarios including complex, high-frequent and
strongly varying lighting as well as shadows.

1. Introduction

Due to the rapidly spreading availability of affordable RGB-D sen-
sors included in capturing devices like the Microsoft Kinect or recent
mobile devices and the increasing computational power of GPUs, real-
time 3D reconstruction has gained a lot of attention in recent years and
enabled numerous applications in graphics, vision and robotics.
Inferring accurate 3D models in terms of both geometry and material
characteristics is of great importance to enable a better immersive ex-
perience of objects when inspecting or interacting with a captured
scene. For instance, the fast digitization of scenes also receives a lot of
interest in architecture and entertainment applications where the di-
gitized model may be used with exchanged illumination conditions as
given for different day/night times or different weather conditions.
When looking at a certain scene, we perceive the inherent interplay of
the geometric structure and the reflectance behavior of the surfaces in
the considered scene as well as the present illumination conditions that
results in the overall scene appearance. Therefore, incrementally cap-
tured color observations may vary significantly for a particular surface
point due to view-dependent and illumination-dependent shading ef-
fects such as shadows and high-frequency lighting characteristics.
However, decoupling the surface albedo from these environment-

specific characteristics as required by applications where the scene has
to be depicted in a manipulated environment such as different lighting
conditions, is highly ill-posed and non-trivial. In addition, this task
becomes even more challenging due to the high demands regarding
efficiency imposed on real-time reconstruction approaches. With this
paper, we directly address these issues with an intrinsic image de-
composition framework that is based on an efficient optimization to
allow real-time performance. In addition to the significantly faster in-
ference of albedo and illumination characteristics in comparison to
previous work, our approach also offers an improved robustness which
becomes particularly evident for scenes with complex, high-frequent
and strongly varying illumination.

Since the introduction of the seminal KinectFusion real-time re-
construction framework (Izadi et al., 2011; Newcombe et al., 2011),
much effort has been spent on improving run-time and reconstruction
quality (Nießner et al., 2013; Chen et al., 2013; Whelan et al., 2012;
Kähler et al., 2016b; Dai et al., 2017). However, these approaches are
still lacking regarding the degree of surface texture quality in their
reconstructions induced by an insufficient scene representation (see
Figs. 1 and 10). As a result of fusing view-dependent and illumination-
dependent color images into a texture, shading effects such as shadows
and highlights are not separated and the appearance of the
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reconstructed model exhibits inconsistencies when analyzing the scene
from different viewpoints or performing scene relighting. This, in turn,
may even lead to wrong impressions regarding the corresponding ma-
terial properties. Among the few approaches that consider on-line color
texture reconstruction, Whelan et al. (2015) improve texture con-
sistency by rejecting samples at object boundaries or grazing angles.
However, shadows cannot be handled in this way since the appearance
of an object is much more complex and depends on the complex in-
terplay of surface geometry, surface reflectance properties, and the
surrounding illumination conditions in the scene. Towards a more ac-
curate scene reconstruction regarding reflectance properties – which is
well-known to be a severely ill-posed and hard-to-solve task, particu-
larly under the requirement of real-time performance – Meka et al.
(2017) incorporate user-provided constraints to estimate the surface
albedo and geometry interactively, however, only in a semi-automatic
way. Furthermore, Kerl et al. (2014) propose an additional constraint
using the IR data provided by the Kinect v2 to improve the decom-
position into a reflectance and shading term in scenarios with complex
high-frequent illumination.

In this paper, we propose a novel practical automatic large-scale
reconstruction technique that jointly estimates geometry and surface
appearance in terms of spatially-varying albedo in real-time. For this
purpose, we leverage the IR data provided by the Kinect v2 to improve
the robustness of the albedo estimation similar to the approach by Kerl
et al. (2014) but use a more general approach based on a soft scene
segmentation. Thereby, our technique allows a more flexible decom-
position into an albedo and shading term and overcomes the limitation
of the approach by Kerl et al. (2014) regarding the implicit assumption
that for all materials in the scene there is only one proportionality
factor between the IR channel and the RGB channels which is violated
in real scenarios (see Fig. 3). In addition, we apply a new data propa-
gation technique that greatly improves the performance of the whole
reflectance estimation pipeline. Inspired by a state-of-the-art volumetric
reconstruction pipeline, we densely fuse the acquired geometry and
surface reflectance information. Furthermore, efficiency is gained by
the use of a novel Total Variation (TV) solver that is particularly de-
signed to handle high-framerate data. By exploiting frame-to-frame
coherency for initializing the optimization, a speed-up of up to a factor
of 40 compared to traditional approaches makes the approach run in
real-time.

In summary, the main contributions of this paper are:

• A novel fully-automatic technique to reconstruct surface geometry
together with reflectance information in terms of albedo informa-
tion at real-time rates and with the texture resolution of state-of-the-
art real-time reconstruction frameworks (voxel resolution) based on
integrating intrinsic image decomposition into a real-time scene
reconstruction framework.
• A novel approach for the robust estimation of surface reflectance
properties from RGB-D and IR data based on soft scene

segmentation.
• A dedicated total variation solver that exploits the high frame-rates
of the Kinect and improves the decomposition run-time performance
by more than one order of magnitude.

2. Related work

3D Reconstruction. Real-time scene reconstruction has been a chal-
lenging topic for decades and rapidly gained increasing interest with
the success of the KinectFusion system (Izadi et al., 2011; Newcombe
et al., 2011). Based on a volumetric fusion principle (Curless and Levoy,
1996), the first automated real-time reconstruction of indoor scenes
was achieved using a low-cost Kinect sensor. Unfortunately, the com-
pelling results were achieved at the cost of an extremely limited size of
the working volume due to the high GPU memory requirements. Recent
developments tried to relax this by using moving volume techniques
(Whelan et al., 2012; Whelan et al., 2015), hierarchical data structures
(Chen et al., 2013), and sparse voxel block hashing (Nießner et al.,
2013; Kähler et al., 2015, 2016a). Another drawback of KinectFusion
limiting the reconstruction quality was the accuracy of the used camera
pose estimation algorithm. In the meantime, several registration ap-
proaches have been proposed to increase the robustness of the esti-
mated poses (Stotko, 2016). Several loop closure techniques (Kähler
et al., 2016b; Dai et al., 2017) have further improved the results by
enforcing global consistency constraints. Very recently, Liu et al. (2018)
used a stability-based sampling method and exploited additional IMU
data to improve camera tracking accuracy. Rajput et al. (2018) applied
depth outlier removal and denoising based on total variation for im-
proving the accuracy regarding tracking and 3D geometry. A more
comprehensive survey in the context of 3D reconstruction can be found
in the state-of-the-art report by Zollhöfer et al. (2018).

Color texture reconstruction. The aforementioned approaches mainly
focus on the quality of the reconstructed geometry and only consider
the averaging of RGB values to obtain the texture and spend little focus
on enforcing global texture consistency. Whelan et al. (2015) rejected
samples at object borders or grazing viewing angles that would lead to
undesirable updates. In subsequent work, they estimated the light
source positions in the scene and rejected samples containing specular
highlights (Whelan et al., 2016). Li et al. (2016) further improved the
reconstructed textures by estimating the varying exposure time of the
Kinect and correcting the brightness of the input color images. In the
context of off-line reconstruction, Zhou and Koltun (2014) proposed a
system that jointly estimates camera poses and vertex colors by max-
imizing photometric consistency. Bi et al. (2017) built upon this work
and used patch-based segmentation to define patch-based consistency
constraints. Optimization of camera poses, geometry and surface albedo
in the volumetric domain has also been considered to obtain high
quality color textures (Maier et al., 2017).

Intrinsic image decomposition. The main drawback of only re-
constructing color textures lies in the fact that, although highlights and

Fig. 1. We present a novel approach that allows
the automatic real-time reconstruction of both
geometry and reflectance information in terms
of spatially varying surface albedo of static
scenes. For the input depth, RGB and IR data
(illustrated in the bottom row for an exemplary
image within the sequence) the reflectance
layer estimated using our technique (right) is
more accurate than the one obtained with pre-
vious approaches where viewpoint and illumi-
nation dependent effects such as shadows are
stored within the mapped texture information
(left). (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)
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exposure artifacts can be factored out, shadows and other illumination
effects are still fused into the texture. Instead, intrinsic image decom-
position approaches overcome this problem by factoring the observed
color image into an reflectance image, which contains the surface-
specific diffuse albedo information, and a shading image containing all
illumination-dependent effects. To disambiguate the inherently am-
biguous intrinsic image decomposition problem, several approaches
assume distant low-frequent illumination modeled by first or second
order spherical harmonics (Wu et al., 2014; Barron and Malik, 2013,
2015). However, in case of sunlight shining through a window or non-
distant light sources, strong shading variations cannot be handled and
will be propagated into the reflectance layer instead of the shading
layer where they should occur. Shi et al. (2015) used super-pixel clus-
tering to group regions with similar reflectance behavior to improve
run-time performance by reducing the number of unknowns and im-
plicitly enforce a reflectance constancy prior. While this approach
works for (textured) objects consisting of a set of uniform albedo
components, texture gradients as well as overlapping colors and re-
flectance variations cannot be handled and are left to the shading map.
Similarly, Jin and Gu (2017) combined super-pixel clustering and in-
trinsic image decomposition for hyperspectral images. In contrast,
Meka et al. (2016) developed a real-time approach that solves the in-
trinsic image decomposition problem automatically on the GPU for
video data. In subsequent work, they integrated their approach into a
volumetric reconstruction framework and incorporated user-provided
constraints which stabilize the results and allow interactive applications
like material editing and recoloring (Meka et al., 2017). Kerl et al.
(2014) exploited the infrared data of the Kinect v2 to disambiguate the
intrinsic image decomposition problem by coupling RGB and IR ob-
servations. Since the exposure time of the IR camera is fixed in com-
parison to the RGB camera, coupling also implicitly enforces temporal
consistency when video data is considered. In the context of dynamic
scene reconstruction, the real-time approach by Guo et al. (2017) is
tailored to single moving objects. For a more comprehensive survey in
the context of reflectance estimation from intrinsic image decomposi-
tion, we refer to the state-of-the-art report by Bonneel et al. (2017).

While we built upon the work of Kerl et al. (2014), however, in
contrast to this approach, our approach benefits from a better coupling
of the IR albedo and the RGB albedo based on a segment-wise con-
sideration. This allows to overcome the implicit assumption that for all
materials in the scene there is only one proportionality factor between
the IR channel and the RGB channel which is violated in real scenarios.
While the incorporation of segmentation into image decomposition is
not new in this context (Shi et al., 2015; Jin and Gu, 2017), we, to the
best of our knowledge, for the first time use a soft segmentation for
RGB-D and IR data. By using soft segmentation instead of hard seg-
mentation, we avoid artifacts like overlapping reflectance colors or
reflectance variations in super-pixels as mentioned by Shi et al. (2015).
Furthermore, we exploit frame-to-frame coherency for improved de-
composition performance and use standard 3D reconstruction frame-
works (Nießner et al., 2013; Kähler et al., 2015) to jointly fuse geo-
metry and estimated albedo observations into a consistent global 3D

model.
Surface appearance and illumination reconstruction. While our ap-

proach focuses on real-time surface albedo and geometry recovery,
some techniques tried to reconstruct surface geometry together with
spatially varying surface reflectance characteristics and surrounding
environment illumination. Wu and Zhou (2015) introduced the App-
Fusion framework which, using a mirror ball to capture the surrounding
environment illumination as well as exploiting RGB-D and IR data
provided by the involved sensor, reconstructs the spatially varying
diffuse and specular albedo of an object along with its geometry.
However, the region of interest was limited by the markers involved for
camera tracking/registration and the algorithm required multiple cap-
turing passes and manual refinement by the user. Recently, further
approaches have been proposed that, however, all are lacking regarding
real-time capability (Hachama et al., 2015; Richter-Trummer et al.,
2016; Wu et al., 2016; Zuo et al., 2017). Very recently, Meka et al.
(2018) applied deep learning techniques to estimate the surface re-
flectance of a single object with uniform appearance.

3. Overview

As illustrated in Fig. 2, our proposed reconstruction pipeline fully-
automatically processes incoming RGB-D and IR data streams as ob-
tained by commodity sensors such as the Kinect v2 and infers a 3D
model with attached albedo information in real-time. This is achieved
based on an architecture that can be divided into a geometry-related
part (blue-framed steps) inspired by a state-of-the-art 3D volumetric
reconstruction approach (Nießner et al., 2013) and a reflectance-re-
lated part (orange-framed steps).

First, the camera pose is estimated to get a transformation mapping
from the current local camera coordinate system to the global one. The
camera pose as well as the RGB-D and IR data are then used to re-
construct the IR Shading Model consisting of an ambient term and a
diffuse albedo map (Section 5.1). Using the input color image and the
estimated infrared albedo map, the image space is clustered into a set of
segments (Section 5.3). Our novel intrinsic image decomposition for-
mulation incorporates these information to robustly reconstruct the
current diffuse color albedo image (Section 5.2). Finally, the geometry
fusion step of the 3D reconstruction framework is extended to also fuse
the estimated albedo information robustly using a confidence-based
weighting scheme (Section 6). This is followed by the extraction of the
current isosurface of the stored volume to provide the user live feed-
back of the capturing process. Furthermore, we improve the run-time of
these approaches using a dedicated total variation solver that exploits
the high frame-rates of the Kinect (Sections 7.1 and 7.2). Details of
these involved components will be provided in the following sections.

4. Sensor

Estimating the albedo solely from the RGB data is a highly-chal-
lenging task since the illumination of the scene may be arbitrarily
complex and may result in large variations of surface appearance. In

Fig. 2. Our novel appearance reconstruction technique fully-automatically estimates and fuses geometry and albedo information in real-time. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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contrast, active scanning devices performing measurements in the in-
frared (IR) domain such as the Kinect v2 allow for a more robust
modeling of the observed radiance in this domain due to knowledge
regarding the light source position and characteristics. Therefore, we
take advantage of the additional depth and IR data of the Kinect v2
camera to improve the robustness of the albedo estimation approach.

The sensor uses time-of-flight (ToF) technology to estimate the
distance to the objects in the scene. The resulting measurement is a
depth image with values within a range between approximately 0.5m
and 4.5m (Payne et al., 2014; Pagliari and Pinto, 2015). Here, modu-
lated near infrared (NIR) light with a fixed wavelength of 860 nm and a
modulation frequency between 10MHz and 130MHz (Payne et al.,
2014; Valgma, 2016) is sent out by the emitter, travels through the
scene and is reflected back to the sensor. The object distance is esti-
mated from the phase of the reflected light and the time until it is
captured by the IR camera. Since the depth range and emitter intensity
are known and fixed, the IR camera uses a fixed exposure time for
capturing temporally coherent IR images with 11-bit dynamic range.

In the fields of robotics, depth refinement and others, the reliability
of the IR and depth data provided by the Kinect v2 was evaluated in
various indoor and outdoor scenarios. The effect of the natural illumi-
nation in indoor scenes and outdoor overcast situations is negligible
and is dominated by the emitter’s signal (Zennaro et al., 2015;
Fankhauser et al., 2015). Choe et al. (2014, 2017) demonstrated similar
results even with the presence of a wide spectrum light source. For sun
light directly facing the sensor, large amounts of the IR and depth data
are not reliable anymore but fortunately classified as invalid by the
sensor and rejected (Fankhauser et al., 2015). Therefore, similar to
previous work (Kerl et al., 2014; Wu and Zhou, 2015; Wu et al., 2016;
Guo et al., 2017; Meka et al., 2017), we assume that the camera is
calibrated and artifacts caused by effects such as multi-path inter-
ference and misalignments between RGB and depth/IR images are not
introduced in both the geometry and appearance reconstruction.

5. Albedo estimation

We build our approach on top of an initial estimation of the re-
flectance properties in the infrared channel and use these information
for the computation of the RGB albedo which we additionally stabilize
based on a prior segmentation step. In the following, we will discuss the
individual albedo estimation steps in detail. An in-depth explanation of
the used notation can be found in Table 1.

5.1. IR reflectance reconstruction

We use the physically motivated definition of light transport to
model the reflectance reconstruction problem. For a point x , the ob-
served radiance Lo that is reflected into direction v is defined by the

Rendering Equation (Kajiya, 1986)

= + < >L x v L x v f l x v L x l l n d( , ) ( , ) ( , , ) ( , )i io e BRDF i i (1)

where f BRDF is the light- and view-dependent reflectance, Li the in-
cident radiance from direction li, and Le the radiance if the surface itself
is emitting light, i.e. is a light source. In our IR scenario, we assume that
the objects are predominantly diffuse and that the sensor is the only/
dominant light source in the scene. In contrast to Kerl et al. (2014), we
model the observed radiance in the IR image LIR, where vignetting ef-
fects at the borders are corrected using a pre-computed mask, similar to
Or-El et al. (2016) by an indirect and a direct illumination term ac-
cording to

= + < >p p
p

l nL L I
r

( ) ( )·
( )

·IR d IR a IR
d IR IR

, ,
,

2 (2)

where d IR, denotes the diffuse albedo that has to be determined, La IR,
the ambient radiance, IIR the known intensity of the IR emitter, and n
the normal of the surface point seen at pixel p. Therefore, the surface
reflectance reduces to a diffuse term p( )d IR, (Lambert, 1760; Guarnera
et al., 2016) and the direct radiance I

r
IR
2 is proportional to the emitter’s

intensity. For the ambient part, we approximate and summarize all
contributing factors into the ambient radiance La IR, . Although the
normals are computed from noisy input depth images, slight in-
accuracies in the normal directions do not affect the reconstruction
quality of the color albedo map since the introduced noise is regularized
using a total variation prior. We approximate the incoming light di-
rection l by the viewing direction v since emitter and camera are only a
few centimeters apart in the sensor. As a consequence, the distance r
between the surface point x that is observed at pixel p can be computed
as the distance of x to the camera.

Inspired by the approach of Or-El et al. (2016), we iteratively al-
ternate the optimization for the ambient radiance La IR, and the diffuse
albedo d IR, while keeping the other variable fixed. First, we define an
ambient residual image La IR, containing only the shading effects
caused by the ambient term and minimize the following least-squares
energy

= p pE L L L( ) ( ) ( )·
p

a IR a IR a IR d IR a IR, , , , , 2
2

(3)

to obtain an estimate of the ambient radiance. Subsequently, we derive
an estimate of the diffuse albedo map d IR, by the optimization of the
energy

= +

+
( )E L L

w

( ) ·

·

l n
d IR d IR d IR IR d IR a IR

I
r

d IR d IR

, , , , ,
2

2

, , 1

IR
2

(4)

consisting of a least-squares data term that penalizes deviations from
the infrared shading model and a weighted L1 total variation smooth-
ness term. For the sake of simplicity and readability, we only mention
the pixel variable p when needed and define optimization problems for
images pixel-wise to solve them in parallel on the GPU (see Section 7).
Here, the scalar d IR, controls the trade-off between fidelity and
smoothness of the solution. In contrast to Or-El et al. (2016), we do not
consider the albedo image gradient with respect to a manifold. Instead,
we weight each gradient value by

=p n pw ( ) exp ( )
d IR

d IR
,

2

, (5)

to further guide the optimizer to the desired solution. The weight values
describe a local curvature-like measure based on the gradient of the
normal map n and ensure sharp edges in the albedo map. Typically,
changes of the albedo are observed at object boundaries where the local
curvature is high.

Table 1
Symbols and notation used throughout this paper.

Symbol Explanation

p Image pixel in ×w h[0, ) [0, )
x 3 Surface point

n 3 Surface normal at point x
r Distance of point x to the infrared emitter
l 3 Incoming light direction

v 3 View direction to camera
LIR Input infrared image
d IR, Diffuse infrared albedo image

La IR, Ambient infrared radiance value
IIR Intensity of infrared emitter

LRGB Input RGB radiance image
d RGB, Diffuse RGB albedo image
sRGB RGB shading image
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5.2. RGB reflectance reconstruction

We use the inferred infrared model to solve the highly ambiguous
intrinsic image decomposition problem

=L p p ps( ) ( )· ( )RGB d RGB RGB, (6)

where LRGB denotes the observed RGB radiance image, d RGB, the diffuse
color albedo map and sRGB the shading map. Like most other decom-
position approaches, we assume that the scene is predominantly diffuse
and illuminated with white light, which leads to scalar-valued shading
images. Furthermore, we assume that the radiance and albedo values lie
in the unit interval and that the shading values are non-negative.
Whereas the radiance image LIR, the ambient radiance La IR, and the
diffuse albedo image d IR, in the infrared model are all defined in linear
space, their counterparts in the RGB model are given in gamma space.
In this way, equal differences in the energy are also observed percep-
tually equal. To derive an estimate for the unknown albedo and shading
images d RGB, and sRGB, we propose the following energy functional

=
+
+

E s E s
E
E s

( , ) ( , )
( )

( , )

RGB d RGB RGB data RGB d RGB RGB

coup RGB d RGB

reg RGB d RGB RGB

, , ,

, ,

, , (7)

consisting of a data term Edata RGB, , a coupling term Ecoup RGB, , and a
regularization term Ereg RGB, .

Data term. Similar to previous approaches (Meka et al., 2016, 2017),
we constrain the solution to fulfill the intrinsic image decomposition,
i.e. we penalize

= LE s s( , ) ·data RGB d RGB RGB data RGB RGB d RGB RGB, , , , 2
2 (8)

Here, the parameter data RGB, controls the influence of this soft con-
straint.

Coupling term. In order to disambiguate the intrinsic image decom-
position problem and get a unique temporal consistent solution even for
video data, we couple the diffuse color albedo with its infrared version
that has been estimated before. Kerl et al. (2014) performed this cou-
pling globally for the complete image using the term

g·d IR d RGB, , 2
2 (9)

where the factor g is chosen such that the mean albedo equals the mean
color value:

= ×g
L

1
3

¯
¯

d IR

RGB

, 1 3
(10)

As demonstrated in Fig. 3, such a coupling across the whole image
leads to undesirable results as the reflectance may change widely across
different wavelengths for most materials. Thus, the ratio between color
and infrared albedo values can be large. Image-wide coupling not only
shifts the mean albedo towards the mean radiance, but also the albedo

ratio towards the mean ratio, i.e. the coupling factor g.
To overcome this problem, we divide the image into a set of k

segments and compute the coupling factor per segment rather than per
image:

=
=

gE v( ) ·coup RGB d RGB coup RGB
i

k

i d IR i d RGB, , ,
1

, , 2
2

(11)

Here, vi denotes the probability map that associates each pixel the
probability to be coupled with the i-th segment. This way, the gap be-
tween albedo ratio and the segment ratio is much smaller.

Regularization term. Like in the infrared shading model described in
Section 5.1, we use a smoothness prior for the color albedo image. Kerl
et al. (2014) also added such a prior for the shading image and alternate
the optimization between both images in order to make the problem
feasible. In contrast, we observed that enforcing smoothness only for
the albedo image is already sufficient and leads to almost identical
results as the data term implicitly handles this constraint. Furthermore,
sharp edges in the radiance image caused by shading effects would
directly be propagated to the shading image and not accidentally get
smoothed out. Instead of spending additional time for an alternating
optimization of albedo and shading, we prefer to use the saved time for
the reconstruction in the infrared model to get a more accurate albedo
there. As a consequence, only the data term depends on the shading
image which leads to a local least-squares solution per pixel. Un-
fortunately, the convergence speed decreases as the data term error
immediately gets very small. We overcome this issue by adding a term
that penalizes the temporal gradient of the shading image during the
optimization, i.e. we estimate the shading map sRGB by optimizing the
energy

=
+

E s s s
w

( , )
·

reg RGB d RGB RGB reg RGB RGB RGB
j

d RGB d RGB

, , ,
( 1)

2
2

, , 1 (12)

Here, sRGB
j( 1) is the shading image from the previous iteration j 1 and

reg RGB, controls the strength of the dampening. In addition, we weight
the color albedo gradients based on the infrared albedo image gradient
according to

=p
p

w ( ) exp
( )

d RGB
d IR

d RGB
,

, 2

, (13)

Edges in the color albedo image are likely if there is also an edge in
the infrared albedo image.

5.3. Image segmentation

As mentioned earlier, we consider a segment-wise computation of
the coupling factors for the coupling energy term to improve the ro-
bustness of the albedo estimation algorithm. In our case, segments

Fig. 3. Observed radiance may change drasti-
cally for some materials like cloth. Compared to
black plastic (right chair) and the gray jacket,
the radiance of the dark blue cloth cover (left
chair) is much larger in the infrared channel.
Black pixels correspond to missing or unreliable
data in the RGB or depth/IR image (see Section
4). (For interpretation of the references to color
in this figure legend, the reader is referred to
the web version of this article.)
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should also follow brightness variations as obtained for shadowed
areas, which is in contrast to semantic segmentation where the seg-
ments should follow semantic entities. Since segmentation is a chal-
lenging task itself, we apply different strategies and evaluate their
performance in the scope of our framework.

Color-based hard clustering. Given the color radiance image LRGB
converted to the LAB color space and the diffuse infrared albedo map

d IR, , we define the feature image f to be composed of the two LAB
color components and the diffuse infrared albedo. We normalize the
LAB components to the unit interval to match the range of the infrared
albedo values. Assuming that the scene can be divided into k segments,
we estimate the probability pv ( )i that the pixel p belongs to the i-th
segment. In our segmentation energy of the form

=

+
=

c p f p c

v

E v v

w

( , ) ( ) ( )

·
p

hard seg i i seg
i

k

i i

seg

,
1

2
2

1 (14)

this is modeled by penalizing the squared distance of the data value
f p( ) to the cluster center ci weighted by the probability pv ( )i . In ad-
dition, we enforce that the segmentation is smooth in the sense of the
L1 total variation. The regularization weights

=p n pw ( ) exp ( )
seg

seg

2

(15)

depend on the curvature such as in Section 5.1 to enforce that the
segments are aligned with the object boundaries. Finally, we obtain the
final clustering by choosing the segment with the highest probability
for each pixel.

Color-based soft clustering. In addition to the previously mentioned
hard clustering strategy, we also consider soft clustering as an alter-
native technique to separate materials with different reflectance prop-
erties. For this purpose, we use a slightly modified energy formulation
that penalizes perceptual differences of colors:

=

+
=

c p e L p e c p

v

E v v

w

( , ) ( ) ( ( )) ( · ( ))

·
p
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i RGB i d IR

seg

,
1

, 2
2

1

(16)

Here, e denotes the transformation from the RGB to the LAB color
space. The cluster centers ci couple the color and infrared domain si-
milar to the factors used for color albedo reconstruction.

Geometry-based hard clustering. Another strategy is the segmentation
of a scene into a set of objects based on the observed geometry since
material properties change at object boundaries. Therefore, we use the
approach by Tateno et al. (2016) to reconstruct a model segmentation
and compare this to the color-based approach described above.

6. Geometry and albedo fusion

After the computation of the camera pose and the albedo maps, we
have to fuse the geometry information given as depth maps provided by
the sensor and the estimated albedo map to a consistent scene model.
For this purpose, we developed a fusion pipeline inspired by the
VoxelHashing technique by Nießner et al. (2013). Like in the Ki-
nectFusion framework (Izadi et al., 2011; Newcombe et al., 2011), the
3D reconstruction is stored implicitly using a discretized truncated
signed distance field (TSDF). Each voxel in the volume stores a TSDF
value together with a weight needed for the update and a color value.
The captured depth data +z t( 1) from the new time step +t 1 are fused
into the volume based on a weighted average update (Izadi et al., 2011;
Newcombe et al., 2011):

=
+
+

+
+ +

+D
W D w d

W w
t d

t t
d

t t

d
t

d
t

( 1)
( ) ( ) ( 1) ( 1)

( ) ( 1) (17)

= ++ +W W w wmin( , )d
t

d
t

d
t

d max
( 1) ( ) ( 1)

, (18)

Here, D and W denote the fused TSDF value and weight stored in the
voxels. The observed truncated signed distance +d t( 1) is computed from
the depth and its confidence in the fusion process is expressed by its
weight +wd

t( 1) to obtain high-quality reconstructions.
Instead of storing the observed color value, we store the estimated

albedo similar to the approach of Meka et al. (2017). However, we use a
different weighting scheme that also accounts for the confidence of the
albedo values. With increasing time, the albedo values are refined until
they converge to an optimum. We model this process by the confidence
function

=w n n( ) 1 expTV
TV (19)

measuring the probability that the results have converged after n
iterations. Besides the color albedo map, we also store its confidence
map and also propagate it from frame to frame. The confidence map can
be efficiently updated on-the-fly without explicitly storing the previous
number of iterations n. The weight after cadditional iterations is then
given by:

+ = +w n c w n c( ) 1 ( ( ) 1)·expTV TV
TV (20)

We use these weights to reduce the influence of the albedo values
during fusion if they have not yet converged:

=+ + +w w w·t
d

t
TV

t( 1) ( 1) ( 1) (21)

This requires storing a second weight value in each voxel leading to
16 bytes per voxel. The model obtained after fusing depth and albedo
information and the extraction of the isosurface may be shown to the
user as a direct feedback during the capturing progress.

7. Energy optimization

In this section, we describe the framework used for the optimization
of the aforementioned energy functionals. To allow an efficient opti-
mization, we propose an approximate total variation approach (Section
7.1) as well as an additional acceleration strategy for the TV solver that
exploits the parallelism offered by GPUs and results in an optimization
in real-time (Section 7.2).

7.1. Approximate total variation optimization

Algorithm 1. Primal-Dual-Solver (Chambolle and Pock, 2011)

1: Initialize variables u P,k k(0) (0)
1 and set =u u¯ (0) (0)

2: Choose scalars >, 0 and [0, 1]
3: for = …n 0, 1, 2, do
4: = ++P P uprox ( ¯ )n

wk
n n( 1) ( ) ( )

5: =+ +u u Pprox ( )n
Ed

n n( 1) ( ) ( 1)

6: = ++ + +u u u u¯ ( )n n n n( 1) ( 1) ( 1) ( )

7: end for

Optimizing the energy functionals in Sections 5.1, 5.2 and 5.3 re-
quires a robust solver that is able to compute optimal solutions in real-
time. For this purpose, we use the approach of Chambolle and Pock
(2011). We are given an energy function

= +u u uE E w( ) ( ) ·d 1 (22)
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where Ed represents an arbitrary data term such as a least-squares data
fitting term and w denotes a weight map. The image u k is an
element of the space of images k and stores in each pixel p an image
value u p( ) k. This energy uE ( ) can be reformulated in its primal-
dual formation

= +u P u u P PE E( , ) ( ) ( )d w
k (23)

where evaluates to zero if P w
k and otherwise to infinity. The

image P with values ×P p( ) k 2 represents the dual variable to its
primal counterpart u. The delta function enforces that the dual variable
satisfies the constrains of the image space w

k :

p P p pw: ( ) ( )F (24)

Here, · F denotes the Frobenius norm. A solution of the primal-dual
energy is found by minimizing the primal variable u and maximizing
the dual variable P by applying Algorithm 1. After initialization, a
gradient ascent update step is performed for P, which is followed by a
gradient descent step for u. Both updates are wrapped with the prox-
imal operator

= +v u v uprox f( ) arg min
2

( )
u

f
2
2

(25)

which controls the trade-off between being close to the argument v and
minimizing the function f. In case of the dual update step, the proximal
operator reduces to a projection

w
k to the image space w

k according
to

= ( )P p P p( ( )) ( )

max 1, P p
pw

( )
( )

w
k

F
(26)

On the other hand, the optimization in the primal domain is given
by

= ++
+

u u u P uEarg min ( )
2

( )
u

n
n n

d
( 1)

( ) ( 1)
2
2

(27)

Since the data term Ed can be arbitrarily complex, the local opti-
mizer depends on the partial derivative of the data term with respect to
the new image +u n( 1). Therefore, a costly equation system has to be
solved for each pixel in general.

To make the approach feasible for arbitrary data terms, we propose
to evaluate the data derivative at the current image u n( ) instead of the
new unknown one. In this case, the primal update step simplifies to

=+ +u u
u

u PE div( )n n
n d

n n( 1) ( )
( )

( ) ( 1)
(28)

where we apply the well-known identity = div. Algorithm 2 sum-
marizes our novel approximate total variation solver.

Algorithm 2. Our Novel Approximate Primal-Dual-Solver

1: Initialize variables u P,k k(0) (0)
1 and set =u u¯ (0) (0)

2: Choose scalars >, 0 and [0, 1]
3: for = …n 0, 1, 2, do
4: = ++P P u( ¯ )n

wk
n n( 1) ( ) ( )

5: =+ +( )u u u PE div( )
u

n n
n d n n( 1) ( )

( )
( ) ( 1)

6: = ++ + +u u u u¯ ( )n n n n( 1) ( 1) ( 1) ( )

7: end for

7.2. TV solver acceleration

Our methods proposed for albedo estimation and image segmenta-
tion are all built upon a state-of-the-art total variation solver
(Chambolle and Pock, 2011) that can efficiently be run on the GPU.

However, several hundreds of iterations are typically needed to reach
convergence which prevents the optimization from being feasible in
real time. To overcome this issue, we exploit the high frame rate of
current commodity sensors such as the Kinect v2. Consecutive frames
only differ slightly in the viewing angle so that most parts of an image
are also visible in the next ones. Many state-of-the-art 3D reconstruction
algorithms use this overlap to estimate the camera pose with respect to
a global coordinate system (Izadi et al., 2011; Newcombe et al., 2011).
Given the poses +T T,t t( ) ( 1) inferred from our underlying reconstruction
pipeline and the new depth map +z t( 1) allows to forward project an
image I t( ) from the current time step t to the new time step +t 1:

=+ p pI I( ) ( )t
i

t
c i

( 1) ( )
( ) (29)

The corresponding pixel pc i( ) is obtained by transforming each
vertex +v pz( , )t

i
( 1) from the local camera coordinate system at time step

+t 1 to the one at time step t and perspectively projecting it onto the
image plane. This operation can be computed in constant time per pixel.

We use the forward projection technique to propagate the solutions
of each TV solver to the next frame. These solutions hence serve as an
initial guess and are used to reinitialize the solvers so that the results
are continuously refined over time. The additional degree of the
freedom gained here by distributing the computational load across
subsequent frames relaxes the hardware requirements and allows real-
time performance of our approach even with non-high-end GPUs.

8. Results

Implementation details. All experiments were performed on an Intel
Core i7-4930K with 32 GB RAM and a Nvidia GeForce GTX TITAN X
with 12 GB VRAM. In all experiments, the following parameter
values were used for the albedo estimation: = =3.0, 0.25,d IR d IR, ,

= = = = =3.0, 3.0, 1.0, 0.01, 2.0,data RGB coup RGB reg RGB d RGB seg, , , ,
= =0.25, 150.0seg TV . For the total variation solver, we always set the

primal and dual step width to = = 0.025 and the extrapolation
weight to = 1.0. All these values were determined heuristically and
provided stable results for all of the considered scenarios. Furthermore,
the 3D space was discretized with a voxel resolution of 5 mm as applied
by several related geometry reconstruction techniques (e.g. Izadi et al.
(2011), Newcombe et al. (2011), Nießner et al. (2013)). The higher
memory requirements of our approach in comparison to previous ap-
proaches (Nießner et al., 2013; Meka et al., 2017) resulting from the
need for storing the estimated albedo values and a corresponding fusion
weight, however, do not represent a significant limitation as most real-
world scenes easily fit in the available GPU memory due to the sparse
nature of the geometry-related part of our approach. On average, the
geometry-related part of the pipeline took 14.9 ms where the camera
pose estimation took 7.5 ms, the fusion of geometry and albedo in-
formation 3.9 ms, and the final isosurface extraction 3.5 ms.

Datasets. We tested the performance of our approach on several
indoor scenes captured with a Kinect v2. Since most datasets on in-
trinsic image decomposition do not provide IR images, a fair compar-
ison to other approaches that do not take advantage of such data is
hardly achievable. In the following, we will compare our work against
the approach by Kerl et al. (2014), that also exploits the IR data pro-
vided by the Kinect sensor, and demonstrate how the results can be
improved based on our approach. However, taking advantage of addi-
tional IR data makes us believe that a comparison against approaches
that only rely on RGB or RGB-D data would not be fair.

TV solver scalability.We compared the performance of our dedicated
total variation solver with conventional approaches. For this purpose,
we evaluated the reflectance-related part of our approach, which in-
cludes the image segmentation and the estimation of the albedo image
in the IR and RGB image, without propagating intermediate results
between frames. 300 iterations for each of the three optimization tasks
were used leading to a total computation time of 889.7 ms per frame on
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average. Compared to typical run-times of CPU versions (Chambolle
and Pock, 2011), this is a substantial improvement by a factor of about
40, but still far from real-time rates.

Our image propagation approach through forward projection dra-
matically reduces the computational costs and requires a significantly
smaller number of iterations per frame for convergence. In our ex-
periments, we only used 6 iterations for each step leading to a total
estimation time of 21.3 ms on average which is well within real-time
rates. However without appropriately handling non-converged parts of
the albedo images, several artifacts may be introduced into the final
reconstruction leading to a poor reconstruction quality as shown in
Fig. 4. Our full pipeline including forward projection and confidence-
based weighting did not suffer from such artifacts and yields similar
results as obtained with a significantly higher number of iterations. This
demonstrates that the additional degree of freedom gained through
propagation can be used to adjust the number of iterations depending

on the power of the GPU to achieve real-time performance even on non-
high-end hardware.

Intrinsic video decomposition. Since our albedo estimation approach
without fusion can also be used for intrinsic video decomposition, we
can apply it to several other applications such as recoloring, relighting,
material editing, etc. (Meka et al., 2016; Bonneel et al., 2017). In a
supplemental video, we show a relighting application where a movable
light source is added into the scene and the modified object appearance
is rendered in real-time. While we could leverage the high-resolution
RGB image data of the Kinect v2 in such scenarios, we instead applied it
to RGB-D and IR data given in the depth camera’s resolution to directly
show the results used for albedo fusion. Furthermore, we also demon-
strate the scalability of our dedicated total variation solver in the
supplemental video which makes our approach run in real-time similar
to the L2 regularization approach of Meka et al. (2016, 2017), however,
at the increased robustness provided by an L1 regularization.

Fig. 4. Comparison of reconstructed models. Simple forward projection already allows the use of significantly less iterations and improves the run-times dramatically
(889.7 ms vs. 21.3 ms) but leads to a poor reconstruction quality (b). Our confidence based weighting combined with forward projection (c) overcomes this limitation
without increasing the number of iterations and generates high-quality reconstructions that are otherwise only possible with a significantly higher number of
iterations (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of albedo maps obtained
with different energy priors and different
numbers of iterations. Whereas previous ap-
proaches (Kerl et al., 2014) alternately optimize
both the albedo and the shading image using
Total Variation (first row), our damped local
optimizer (third row) provides the improved
run-time of a local optimizer (second row) and
at the same time a higher convergence rate
when using fewer iterations. The corresponding
shading images and run-time measurements are
shown in Fig. 6 and Table 2 respectively. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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Shading map optimization. In addition to the improved total variation
solver framework, we also compared our novel energy formulation
regarding the color shading map. To evaluate the convergence speed
and the run-time, we only considered the RGB and IR reflectance re-
construction steps and discarded the image segmentation and forward
projection steps. Therefore, the number of iterations needed to estimate
the infrared albedo image with the total variation solver was increased
from 300 to provide converged estimates to its color counterpart. Both
the albedo and shading map are initialized with zeros to simulate
missing data during forward projection and highlight how effective
these strategies perform in such cases. The results are shown in Figs. 5
and 6 and Table 2.

Applying a Total Variation optimization for both the color albedo
and the color shading map leads to a slow convergence rate at fewer
iterations and a moderate rate at a higher number of iterations. A pure
local solver leads to similar results at convergence and improved run-
times by up to 20%. However, intermediate results suffer from strong
artifacts such as wrong albedo estimates at few iterations (see entry

(Local, 6) in Fig. 5) and implausible values at object boundaries (see
middle row in Fig. 6). Since only the data term affects the shading map,
the corresponding error term does not contribute to the albedo opti-
mization and errors due to missing data at object boundaries cannot be
reduced or eliminated. Our damped energy functional (see bottom row
of Fig. 6) avoids such artifacts and provides faster run-times and better
convergence rates in comparison to the other approaches.

Segmentation. We also tested different segmentation strategies to
provide a more robust coupling between infrared and color albedo
images. For the color-based hard and soft clustering approaches, we
used a predefined number of five segments and initialized four of them
along the two axes of the a and b components of the LAB color space
and the last one in the center which reduces the probability that two
clusters immediately fall together. Since we use segmentation to im-
prove the coupling, we observed that five segments are sufficient to
handle the different ratios between mean infrared albedo and mean
color radiance and that a full object segmentation is not required. The
geometry-based technique automatically adjusts the number of clusters
during reconstruction, so we only cap the maximum number to 100.
The corresponding results for the final reconstructions of geometry and
albedo as well as for one image inside the captured image sequence are
shown in Figs. 7 and 8 respectively. The segmentations of the selected
image are shown in Fig. 9.

Since the coupling factors in the albedo estimation framework lar-
gely affect the quality of the results, artifacts caused by incorrect seg-
mentations are directly propagated to the color albedo maps. Color-
based hard clustering might fail to fully segment objects from each
other leading to under-segmentation. On the other hand, geometry-
based approaches (e.g. Tateno et al. (2016)) tend to over-segment the
scene. Furthermore, scene parts that are segmented as object bound-
aries are considered to be holes in the albedo estimation step. Seg-
mentation failures might also lead to inconsistently fused albedo tex-
tures as shown in Fig. 7c and d. Our soft segmentation approach (see

Fig. 6. Comparison of shading maps obtained with different energy priors and number of iterations corresponding to the color albedo maps shown in Fig. 5. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Run-time measurements for different energy priors. We compared the run-time
for different energy regularization priors during the shading image optimiza-
tion with respect to the number of iterations. While the total variation prior
significantly consumes more run-time, our damping prior has no impact on the
performance and provides similar or better convergence results as shown in
Figs. 5 and 6.

Energy Run-time [ms]

6 30 100 300

TV 7.9 30.4 92.5 271.8
Local 7.3 25.7 78.8 229.9
Damped 7.2 25.9 78.6 230.0
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Fig. 7b) does not suffer from such artifacts and also improves the
quality especially for objects being shadowed where the observed RGB
values are close to black (see close-ups of Fig. 8). The corresponding
albedo reconstruction shows the highest quality even preserving the
structures and color gradients within the scene as it can e.g. be observed
on the book covers surrounded by the green cloth (see Fig. 7).

9. Discussion

We demonstrated that our novel framework is capable of auto-
matically reconstructing high-quality surface geometry together with
surface reflectance information in terms of albedo information at real-
time rates. As shown in the previous section, our improved total var-
iation solver exploits the high frame rate of the Kinect sensor to im-
prove run-time performance by up to a factor of 40. Our novel energy
formulation based on soft scene segmentation and optimized regular-
ization priors not only leads to better decomposition results (see Fig. 8)
but also converges faster in a significantly smaller number of iterations
in comparison to previous work (Kerl et al., 2014).

While we have also demonstrated that our approach is more robust

in comparison to previous approaches in terms of a more flexible se-
paration into albedo and shading layers, it still has a few limitations.
The direct coupling of IR and RGB albedo values sometimes leads to
undesirable results as estimation artifacts and imperfections in the in-
frared albedo image are propagated into the color albedo map. This
may be addressed by a more expressive infrared reflectance model that
better fits to the observed radiance values. Furthermore, our segment-
based coupling technique assumes that the estimated segment borders
correspond to edges in the albedo image where the surface reflectance
properties change. In scenes with complex illumination conditions and
self-shadowing, objects with a uniform albedo might be accidentally
segmented into multiple or incorrect segments (see right column of
Fig. 11) leading to possibly different albedo estimates. Color textures
that are invisible in the infrared channel violate the assumption that the
appearance in both the RGB and IR channel is similar and result in a flat
reconstructed reflectance that matches the one of the underlying ma-
terial. Although our soft segmentation technique also improves the
decomposition robustness for such objects (see top left row of Fig. 11),
such scenes are still challenging for IR-based approaches. For most real-
world materials such as wood, cloth, plastic, etc., however, this

Fig. 7. Virtual 3D models reconstructed from RGB-D and IR data. Artifacts and incorrect results obtained from hard clustering approaches directly propagate to the
color albedo reconstruction. On the other hand, soft clustering avoids such artifacts and leads to more expressive models than previous approaches that fuse colors
directly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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assumption holds and, hence, leads to improved decomposition results.
For specular scenes, undesired shading effects such as highlights in the
IR domain might be propagated to the estimated diffuse RGB albedo
image (see bottom left row of Fig. 11). Furthermore, small errors in the
camera poses due to a non-optimal registration of subsequent frames
may result in high-frequency shading edges being not fully factored into
the shading image (see Fig. 10). However, such complex illumination
can also not be handled correctly by previous work relying on low-
frequency spherical harmonics or similar representations. Finally, our
acceleration technique might introduce some artifacts in the final re-
construction that were not fully compensated by our novel weighting
scheme. However, our total variation solver is several orders of mag-
nitude faster than previous approaches which may allow enough ca-
pacity for further processing steps. For this reason we believe our ap-
proach to be of great relevance for future developments in this context.

10. Conclusions

We presented a novel approach to simultaneously reconstruct geo-
metry and surface albedo properties of a scene with a Kinect v2. The
captured RGB-D and IR data are used to efficiently compute the re-
flectance in the infrared channel and to segment the image space into a
set of clusters based on soft clustering. Our novel segment-wise for-
mulation of the intrinsic image decomposition problem incorporates
these information to improve the robustness of the obtained decom-
position results for albedo and shading components and, finally, the
inferred albedo information is fused into the reconstructed 3D model.
Using a dedicated total variation solver that exploits the high frame-
rate of the Kinect, we demonstrated in various indoor scenes that our
framework is able to generate high-quality real-time reconstructions in
a fully automatic manner. Therefore, we believe that our work

Fig. 8. Comparison between segmentation ap-
proaches. Whereas hard clustering techniques
((b) and (c)) may introduce artifacts due to
wrong segmentation or coupling, soft clus-
tering achieves smooth and more accurate re-
sults (d) in comparison to image-wise coupling
(a). (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Soft and hard clustering results. Each
image of the five images (left) decodes the
probability of a pixel to be associated with its
corresponding coupling factor. For the other
two images, pixel assignments to hard clustered
segments are color coded (right). (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the web version
of this article.)
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represents a significant step towards capturing realistic environments
that enable a better immersive experience of objects and are required
for new augmented and virtual reality applications.
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