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Abstract

Modern movies and computer games employ rich virtual environments to offer the consumer
an immersive experience. Digital models are often easier and more cost-efficient to create
than acquiring real-world film footage of exotic locations, items, creatures or plants. With
advances in range scanning technology, acquisition times for point clouds have been reduced
to the order of seconds. Point clouds offer a very detailed representation of 3D data, but at
the same time pose considerable challenges due to the amount and nature of data.

In this thesis, we present our recent approaches to working with point clouds as a
representation of 3D data and corresponding editing operations. First, we demonstrate
how to apply non-linear editing operations on a point cloud based 3D model, allowing to
bend, strech, rotate or scale parts of it in real-time, while ensuring smooth deformations
and intuitive user interactions. A key ingredient is the use of quaternions to describe and
compute point neighborhood relationships in a pose-invariant manner. Second, we introduce
a technique to compute the skeleton of a biological tree, given real-world laser scan data.
Such data may contain densely sampled regions, such as the tree trunk, while branches in
the tree crown may be sampled sparsely and suffer from occlusions and noise. Our approach
can determine the positions of branches and bifurcation points and also compute branch
radii.

Finally, we combine the previously described methods to create a framework for generating
tree models by interpolating and extrapolating from given tree samples. The input tree point
clouds are skeletonized and then transformed into a quaternion-based representation in a
shape space. Different points in that shape space represent different trees, which are similar
to the input samples, but still distinct and unique, so that they can be employed to populate
diversified virtual environments.
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Zusammenfassung

Moderne Filme und Computerspiele nutzen reichhaltige virtuelle Umgebungen, um dem
Verbraucher ein immersives Erlebnis zu bieten. Digitale Modelle sind oft einfacher und
kostengünstiger zu erstellen als reales Filmmaterial von exotischen Orten, Gegenständen,
Kreaturen oder Pflanzen zu beschaffen. Mit Fortschritten bei der Laser-basierten Entfer-
nungsmessung haben sich die Erfassungszeiten für Punktwolken auf Sekunden verkürzt.
Punktwolken bieten eine sehr detaillierte Darstellung von 3D-Daten, stellen aber gleichzeitig
aufgrund der Datenmenge und -beschaffenheit eine große Herausforderung dar.

In dieser Arbeit stellen wir unsere jüngsten Ansätze zur Arbeit mit Punktwolken als
Repräsentation von 3D-Daten und entsprechende Bearbeitungsvorgänge vor. Zunächst
zeigen wir, wie nicht-lineare Bearbeitungsoperationen auf ein punktwolkenbasiertes 3D-
Modell angewendet werden können, die es ermöglichen, Teile des Modells in Echtzeit
zu biegen, zu strecken, zu drehen oder zu skalieren, während plausible Verformungen
und intuitive Benutzerinteraktionen sichergestellt werden. Ein Schlüsselelement ist die
Verwendung von Quaternionen, um die Beziehungen zwischen benachbarten Punkten zu
beschreiben und zu berechnen, und zwar auf eine positionsinvariante Weise. Anschließend
stellen wir eine Technik zur Berechnung des Skeletts eines biologischen Baums anhand
von realen Laserscan-Daten vor. Solche Daten können dicht abgetastete Regionen enthalten,
wie beispielsweise den Baumstamm, während die Äste in der Baumkrone nur spärlich
abgetastet werden und von Verdeckungen und Rauschen betroffen sind. Unser Ansatz kann
die Positionen von Ästen und Verzweigungspunkten bestimmen und auch Zweigradien
berechnen.

Schließlich kombinieren wir die zuvor beschriebenen Methoden, um ein Verfahren für
die Erzeugung von Baummodellen durch Interpolation und Extrapolation aus gegebenen
Baumexemplaren vorzustellen. Die eingegebenen Punktwolken von Bäumen werden ske-
lettiert und dann in eine Quaternionen-basierte Darstellung in einem Formraum überführt.
Verschiedene Punkte in diesem Formraum repräsentieren verschiedene Bäume, die ähnlich
sind, aber dennoch unterscheidbar und einzigartig, so dass sie sich für die Bestückung von
diversifizierten virtuellen Umgebungen eignen.
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CHAPTER 1

Introduction

1.1 Motivation
Movies, games, and computer applications traditionally used real-world locations, items,
creatures, and plants as their primary content sources. With advances in digital technology,
those contents have been complemented by artificial models to provide rich virtual envi-
ronments that offer consumers an immersive experience. Digital models are often easier
and more cost-efficient to create than acquiring real-world film footage of exotic locations
or objects. Beyond limitations of the physical world, artists can create digital models of
creatures or plants to any extent their imagination permits.

For many years, polygonal meshes were the predominant representation of three-
dimensional (3D) models used for movies and computer applications. This can be largely
attributed to the comparably small number of polygons required to represent an object’s
surface with an acceptable visual appearance. While mesh models were often created
manually in the beginning, advances in range scanning technology enabled a direct creation
of 3D models through capturing of 2D depth maps, or respectively point clouds, within mere
seconds or fractions thereof. Various methods have been proposed to transform point clouds
into polygonal meshes or other representations for further processing. Those reconstruction
methods are generally elaborate and the additionally gained data, like connectivity informa-
tion, is not even necessary for every usage scenario. The number of polygons employed to
represent geometry accurately can be defined arbitrarily high, though the amount of data
may be detrimental for rendering such data on a computer screen. If multiple polygons are
to be rendered within the space of a single pixel, the whole transformation process could be
regarded as superfluous, and the original point cloud be used without it.

On the other hand, reconstruction techniques may add semantic information that is
valuable for further editing or animation of an object, like discerning the rigid limbs of
an animal model from the deformable joints. The large amounts of data which need to
be processed for detailed geometry pose considerable challenges. In certain application
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Chapter 1 Introduction

areas, like scene rendering for movies and games, evolved methods use data compression,
level-of-detail (LOD), or surfel-based representations in order to address issues regarding
available memory and processing power. Those methods are specifically tailored for their
use cases and are not generally applicable for arbitrary geometric editing operations, so we
present techniques that efficiently work on data directly acquired by range scanners.

In this thesis, we pursue the goal to extract geometric and semantic structure from point
clouds and use the gained information for editing and interpolation tasks. When work on
the publications within this thesis was started, the aim was to establish point clouds as a
viable and efficient representation of 3D models and corresponding operations. As several
years have passed since the first publication [ADK10], the historic context and more recent
development in that area will also be described.

Our notion of editing extends beyond the basic tasks of adding or removing parts of a 3D
shape, or applying an affine transformation. We focus on model deformations instead, like
turning the head of a human sideways, or bending the body of a snake. The basic usage
scenario we want to provide allows the user to first mark three different regions in the model,
e. g. of a human, to be edited. The first region is termed fixed handle and marks those parts
of the model that shall not be deformed, e. g. the torso. The next region is called editing
handle and marks the part that can be directly manipulated by the user, by moving, rotating
or scaling it, like the model head in our example. The rest of the model, which does not
belong to any of the handles, is the actual deformation region. None of the three mentioned
regions needs to be contiguous, so the editing handle could also be defined on both feet of
the model. The aim is then to let the user manipulate the editing handle and have the system
compute the deformation region in real-time, while ensuring that local surface details are
preserved, so the neck can twist or bend, and the Adam’s apple is still discernible.

As a second aspect, we seek to extract structure from a point cloud, with enhanced
semantic annotations. Our focus lies on models of biological trees and determining positions
of the trunk and branches, together with the radii of branches. Beyond modeling for virtual
environments, this task has got applications in the domain of forestry, where the wood
volume is one of the most important factors when conducting a forest inventory and making
forest management decisions. While many previous approaches exist to determine tree
skeletons from point clouds, they are usually tailored toward a specific acquisition setup
and the data created thereby. This results in techniques that work either on densely or on
sparsely sampled point clouds, but not in the other case. We pursue the challenge to create a
method that works in more diverse cases, even if a single point cloud contains both densely
and sparsely sampled regions.

The last topic we want to investigate is generation of new point clouds by exploiting
structural properties. Using models of biological trees together with semantic information
regarding branches, we want to provide a robust method that can create new tree models
by interpolating and extrapolating from given input data. Previous approaches used shape
spaces to capture the structure of trees and provide means to perform interpolations in those
spaces. As the approaches were focused on the topology of tree-like data, e. g. phylogenetic
trees representing an ancestry relationship between different species of organisms, they did
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1.2 Historical Background and State of Research

not take the geometry properly into account. We want to provide a method that uses shape
spaces which describe branch orientations, lengths, and radii, in order to give the impression
of natural deformations when moving through such a shape space. An important aspect is
the extension to point clouds, as we want our interpolated models to be point clouds as well,
and not only tree skeletons.

In the following, we first give an overview of the historical background and the state of
research for working with point clouds. Afterwards, we give an overview of our contributions
to the topics of editing, reconstructing and interpolating point clouds, and present each of
our methods in detail.

1.2 Historical Background and State of Research
Point clouds are traditionally associated with laser scanners, as points in 3D space are the
primary visual result of scanning activity. Although laser scanners were developed in the
second half of the 20th century, research interest in both the topics of geometry reconstruction
and point-based algorithms is by far older. It was already in 1860 that François Willème
developed his Photosculpture [Wil61], a setup of 24 optical cameras which were used to take
pictures of the target object or living being. The images were enlarged using a pantograph
to create stencils that were applied to a modeling compound. The cut-out result was a
replica of the original with high accuracy. Despite Willème’s method being completely
analog, the semblance to digital methods developed roughly 150 years later [e. g. SRDT01;
RMD04; NFD07] is striking. Algorithms for dealing with point sets have also existed
before the digital era. A well-known example is the Delaunay-Triangulation published in
1934 [Del34]. Though it was developed for point sets in 2 dimensions, variants have been
created to produce surface meshes in 3D or volumetric meshes using tetrahedra [BL95],
hexahedra, or other shapes [CDSS13].

After a point cloud has been acquired, the challenge of editing it interactively has
been pursued by several researchers. Pauly et al. [PKKG03] deform point clouds in
real-time using linear interpolations between the handles. Miao et al. [MFXP08] use a
more sophisticated method with differential coordinates. Like all linear methods they
both produce counterintuitive results for large deformations, since they cannot handle both
rotations and translations of local frames simultaneously, resulting in artifacts of different
kinds. Non-linear methods [BPGK06; SA07] solve these issues, but are time-consuming to
compute. Paries et al. [PDK07] present a non-linear editing framework for meshes, which we
generalize to work on unstructured point clouds (Chapter 2). We also describe a subsampling
scheme which allows the time-consuming steps to be computed on a coarse representation
of the model, while the fine-scale model of the whole point cloud is updated using linear
interpolations. Our method performs the deformation computations at interactive frame
rates, while previous methods required offline processing for similarly large models [WSG05;
BSS07].

Although our method is also applicable to point sampled volumes, emphasizing the
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aspect of point sampled surfaces yields comparison to other methods developed for meshes.
Crane [Cra13; Cra19] and Vaxman et al. [VMW15] further investigate conformal geometry
processing, albeit without regarding real-time user interaction.

More recent research applies machine learning methods to operations on point clouds.
Yin et al. [YHCZ18] propose a “neural network which learns geometric transformations
between point-based shape representations”. A user can provide a point cloud together with
a sketch representing the object and another sketch representing the target pose. Assuming
the neural network was trained with enough samples before, it can then compute a point
cloud for the target pose.

The general field of reconstruction in our context revolves around the task of inferring a
3D object from a collection of discrete points that sample the shape (see [BTS+17] for an
overview). Many approaches tackle the challenge of surface reconstruction, since data for
surfaces can be acquired through various technologies, like photographs, laser scanners,
or structured light scanners. As a given set of points can be approximated by an infinite
number of surfaces, the reconstruction problem is ill-posed. It mainly depends on the user
and application area to determine whether a concrete approximating surface is suitable.
However, prior knowledge regarding sampling density and noise, but also regarding the
scanned shape and acquisition setup leads to different reconstruction methods.

One subset of shapes are biological trees, which are the predominant object class
investigated within this thesis. Trees in nature do not grow randomly, but instead pursue
their requirements for light, nutrients and physical stability through some innate design
patterns. In 1971 Honda [Hon71] deduced a basic set of rules governing the growth of trees
and attributed differences between species and between individuals to parameter values and
distributions within the rules. Conversely, rule sets and parameter distributions have been
used in procedural approaches to generate 3D models of trees and other plants [PLH+90].
While generating diverse and visually pleasing models is relatively easy with such methods,
creating a model which resembles a specific tree, or respectively a given point cloud, is
difficult, since parameters needed for the procedural generation cannot usually be intuitively
found. Even small changes in parameters can result in large changes in the overall shape.
The field of inverse procedural modeling tries to determine the parameters necessary to
generate a specific appearance [SRDT01; QTZ+06; TZW+07], but requires different levels
of user interaction. Livny et al. [LPC+11] try to reconstruct the visual appearance of a tree
and represent large parts of the tree crown by textures from a library covering different
shapes and species. This produces natural-looking results, but is inherently limited to the
samples from the library, and shifts a large part of the reconstruction task to the creator of
the library.

When tree geometry data is available in the form of point clouds, a primary goal is the
extraction of a tree skeleton. For some applications the skeleton itself is considered to be
the desired form of representation [BLM10; HWC+13], while other approaches include the
surface geometry of the tree [LYO+10]. A common trait of those methods is their tailoring
toward sparsely sampled point clouds, which assume e. g. that a spanning tree computed on
the input data already represents the tree skeleton well. An example where such approaches
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fail, is a densely sampled cylindrical tree trunk without further branches, where a spanning
tree could only connect points on the trunk surface, while the proper skeleton would be the
central axis of the trunk.

If cross-sections of branches contain a relatively high number of data points, they can be
considered as densely sampled and subjected to techniques of fitting primitives to the input
data. Popular ideas include analytic circle fitting [TZC09; WCN+12] or RANSAC-based
circle fitting [Jay09], direct cylinder fitting [PGW04] or bounding cylinders [YWM+09]. In
sparsely sampled regions of a point cloud, where the width of a small branch corresponds
to a single input point, those methods fail to detect their expected primitives and cannot
reconstruct the tree skeleton.

Our proposed hybrid method for tree reconstruction (Chapter 3) bridges the gap between
densely and sparsely sampled point clouds by automatically segmenting the input data into
dense and sparse regions. Our approach for detecting ellipses in dense regions allows for
larger variations in branch shapes than when fitting circles with previous methods.

While our work focuses on bare trees without foliage, later works also take leaves
into account to provide a semantic distinction between branches and leaves of a single
tree [DNC+18; MZX+21; SWL+22], or additionally terrain and debris in scans of a complex
forest [KTG+21]. In general, research is geared toward more challenging data setups like
forests or multiple interleaved trees within a single point cloud, which are reconstructed
simultaneously [LP22]. 3D reconstruction is however not limited to point clouds, and
newer methods using single images [ACA16] or multi-view images [IOI+18; WWW+20],
which do not require expensive LiDAR devices for acquisition, are actively researched.
Okura [Oku22] provides a comprehensive overview of the most recent developments in the
area of 3D modeling and reconstruction of plants and trees.

Our aim of generating new tree models from existing ones is related to different research
areas. As previously explained, procedural modeling has been used for plant generation,
but is unsuitable to produce specific trees and deformations of certain aspects. Since we
want the generated models to be similar to the existing ones, the basic concept encompasses
interpolating and extrapolating their data. To that end, correspondences between points on
the input trees have to be established, along with a method to interpolate between them in a
meaningful way. The general correspondence problem is very hard to solve, as there is no
unique mapping between the points of a single tree acquired at different instances in time,
and even less so between different trees. For the setting of a single growing plant, Li et
al. [LFM+13] exploit spacial and temporal proximity in a forward-backward analysis in
order to track growing plant parts over time. Local deformations are notoriously difficult to
track and assign properly, so the framework proposed by Yuan et al. [YLX+16] decomposes
articulated point cloud sequences into near-rigid moving parts. This is not applicable to our
scenario, where we want to generate new models between unrelated tree instances.

The technique of optimal transport provides an alternative approach to the correspondence
problem, and has been used in various computer graphics and computer vision applications.
Examples include measurement of the similarity of images [RTG98; RTG00], texture
interpolation [RPDB11], reflectance models such as bidirectional reflectance distribution
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Chapter 1 Introduction

functions [BVPH11], or geometric models in terms of volumetric representations [SDP+15].
Golla et al. [GKK+20] apply optimal transport to point clouds of growing plants by
generating hierarchical segmentations, matching segments and formulating the segment-
wise growth process as an optimal transport problem. This in turn cannot account for
interpolations between topologically and geometrically different trees, e. g. an acorn and
a willow tree. Our proposed method (Chapter 4) matches branch points using optimal
transport, but improves upon an issue of the method of Golla et al. by aligning branches
before the matching step. As the result of optimal transport is not invariant to (affine)
transformations, it can otherwise lead to incorrect mappings.

Shape spaces represent a different approach to plant modeling. Billera et al. [BHV01]
introduced the concept of creating a shape space to represent phylogenetic trees. They
are used to model an ancestry relationship between different species of organisms and the
employed metric measures how closely related the species are in a biological sense. Various
authors used this concept for the statistical analysis of tree-like data [e. g. OP10; AAV+14].
Since those works focus on the topology of trees, they do not take the geometry into account.
Other authors [e. g. FLB+13; WLX+18; WLJ+18] introduce different metrics to capture a
geometric interpretation of a real-world object within a shape space, like airway trees and
biological trees. We extend that approach by explicitly representing the orientations of tree
branches using quaternions, in addition to scalar lengths and radii.

1.3 Contributions and Thesis Outline
In this thesis, we first introduce editing and deformation operations for 3D shapes in Chapter 2.
Our work builds upon the mesh editing framework presented by Paries et al. [PDK07]. It
applies non-linear editing operations to a 3D mesh model, allowing to bend, stretch, rotate
or scale parts of it in real-time, while ensuring smooth deformations and intuitive user
interactions. Due to an underlying non-linear deformation model, the obtained deformations
are physically plausible, even for large handle transformations. At the same time, local
surface details are preserved.

We generalize their approach to work on point clouds which do not contain explicit
connectivity information. This is achieved by defining a local neighborhood for each vertex
from its 𝑘 nearest neighbors, and adding links to symmetrize the neighborhood relation.
Some vertices may hence have more than 𝑘 other vertices in their local neighborhood.
Outliers and noisy points, which frequently appear in real-world scanning scenarios, are
thus linked to the main connected component. An implicit assumption for the whole editing
process is that the model regions involved in deformation are part of a single connected
component, as otherwise the deformation problem is ill-defined. Since connectivity
information is derived from local neighborhoods, our algorithm does not pose any specific
assumptions upon the structure of the point cloud being edited. The point cloud may be
irregularly sampled and represent an object’s surface or even point sampled volumes.

For point clouds containing a large amount of data, we present a means of performing
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the deformation calculations on a coarse scale and transfer the results to the fine scale
representation of a point cloud at interactive frame rates. The coarse scale representation
consists of a user-defined number of sample vertices, which are determined by a hierarchical
octree subdivision method, upon which the non-linear deformation is computed. Positions
and normals for the full point cloud are then determined with a weighted linear interpolation
between the sample vertices in the vicinity of each original vertex. The number of
sample points to use provides a trade-off between quality of the deformation and frame
rate for interactive display. Using the Dragon model from the Stanford 3D Scanning
Repository [Sta96] as an example, with a total of 437k vertices and a downsampling to
5000 vertices, several deformations of the whole body were performed and rendered at 8
frames per second on ordinary consumer-grade hardware. This allows an artist to receive
quasi-instantaneous visual feedback while editing a model, a feature which was not available
in previous methods that required offline-processing for large data sets.

From Chapter 3 onward, we focus our attention on models of botanical trees, as trees are
an important asset for natural-looking digital environments. We first discuss our approach
to generating tree models from data acquired by laser scanners, before presenting our
framework for creating 3D models from existing ones through the usage of shape spaces in
Chapter 4.

Depending on the individual acquisition setup used, most reconstruction techniques for
trees from laser-scanned input data are either specialized on dense or on sparse point clouds.
Approaches used for dense point clouds fail on inputs which are sampled too sparsely, while
approaches for sparse data fail to produce realistic results for dense point sets. We propose
a hybrid procedure which can operate on real-world scan data of trees, registered from
multiple views, which contain both densely and sparsely sampled regions as well as noise.
The hybrid approach consists of combining a novel skeleton extraction algorithm for the
densely sampled regions with a spanning-tree based algorithm for the sparsely sampled
regions.

Our first contribution in this area tackles the challenge of detecting ellipses in dense
regions of a point cloud, which are predominantly located at the trunk and main branches of
a scanned tree. The main idea is that cross-sections through branches usually exhibit an
elliptic shape, and the centers of all ellipses together form the tree skeleton. It may not always
be the case that a cut through a tree yields an elliptic shape, as e. g. branch bifurcations
make it difficult to discern the individual involved branches, but the general case for a single
branch cross-section is an ellipse. Previous approaches have tried to detect other primitives
like circles or cylinders in point clouds. Since a circle is only a special case of an ellipse, our
approach should be applicable to a larger variety of trees, especially when their branches
are not perfectly cylindrical, e. g. due to environmental influences. Notwithstanding the
observation that a branch in its entirety need not be a cylinder, each small patch on a branch
surface has a shape similar to a cylinder surface, in the sense that one principal curvature 𝑘2
is zero in the branch growing direction, while the other principal curvature 𝑘1 is non-zero
and orthogonal to the first one. 𝑘1 is inversely proportional to the cylinder radius and thus
provides an estimate for the radius of the branch under consideration.

7



Chapter 1 Introduction

Following these observations, our method first computes the principal curvatures for
the local neighborhood of each point 𝑃 in the input point cloud. One step is a principal
component analysis (PCA) on each point’s neighborhood, which reliably determines the
surface normal direction, and is then used to geometrically construct osculating circles to the
surface as proposed by Zhang et al. [ZLCZ09], which in turn yield the principal curvatures
and corresponding principal directions. A point 𝑃 with its normal 𝑛 and cylinder radius
𝑟1 = 1/𝑘1 defines another point 𝐶 = 𝑃 − 𝑟1 · 𝑛 which is termed center candidate supported
by 𝑃. With the help of 𝐶, 𝑟1, and the principal directions we can define a cylindrical slice
through the point cloud, which is supposed to contain a slice of the branch around 𝑃, and
project all points along the cylindrical slice’s axis onto a plane. Those projected points are
then subjected to an analytical ellipse fitting using the techniques of Rosin [Ros93] and
Zhang [Zha97].

Although the principal curvatures and thus the branch slices can be determined correctly
in many cases, there are still occurrences where the results are not accurate, especially in
flat or noisy point neighborhoods. We devise a mechanism to detect misaligned cylindrical
slices and automatically attempt to determine a proper slice instead. If both axes of the
fitted ellipse differ significantly in length, the ratio between the lengths gives an indicator
for the amount of rotation required for the slice to be orthogonal to the presumed branch
axis. Another ellipse is fitted to the newly selected and projected points, and replaces the
previously computed ellipse if it provides a better suit. As our experiments demonstrate,
ellipse fitting produces reasonable results even in scenarios where single branches are
captured only from one side or exhibit large holes.

When all ellipses have been computed, their centers are connected using a spanning
tree. From this spanning tree, those nodes can be removed that represent ellipses which are
not similar to adjacent ones, effectively removing noise from incorrectly detected ellipses.
Tree nodes are further thinned out until the remaining nodes represent the skeleton as
desired. Those skeleton nodes are then used to create geometry representing branches of the
original tree point cloud by constructing generalized cylinders between adjacent ellipses. A
generalized cylinder in our sense differs from an ordinary one in that its ends are not circles,
but ellipses instead, and they need neither have the same size nor be parallel.

Those parts of the original point cloud, which do not have a skeleton assigned after those
steps, are by definition sparsely sampled and do not contain enough points in cross-sections
of their branches as to allow ellipse fitting. Those points in turn form clusters which are
processed individually by creating spanning trees, thinning them out, and then attaching
them to the main skeleton from the dense region.

As a last remark regarding our method, it can reconstruct the skeleton and geometry of
a real tree automatically without any required user interaction. This is an advantage over
methods that require a sketch or other form of input that guides the reconstruction process.

In Chapter 4 we combine ideas from the previous chapters in order to generate new tree
models from existing ones. At the core of our method lies the concept of a shape space which
provides a frame to represent point clouds of two or more botanical trees. Correspondences
are first established between branches of the input trees, and then between individual points.
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1.3 Contributions and Thesis Outline

Points that correspond to each other are represented within the same dimensions of the shape
space. This allows to interactively explore the shape space and to compute the geometric 3D
tree model for a given point in shape space in linear time. As our shape space and its metric
capture branch attributes such as length, orientation, and radius, in a natural way, geodesics
in the shape space correspond to shortest path interpolations between the involved trees. It
is also possible to explore the shape space beyond those geodesics, effectively extrapolating
from the known data. Since every point in the constructed shape space represents a tree in
3D space, one can quickly create a large amount of similar, but unique trees, which can be
employed in virtual environments.

As previous methods exist that deal with shape spaces of botanical trees, we want to
point out our contributions to the process described above. We present the first approach
toward tree shape spaces that uses point clouds as an input and output format. To the best
of our knowledge, no previous publication has explicitly used point clouds before in this
context, as others mainly used graph theoretical trees that are composed of vertices and
edges. After skeletonizing a tree point cloud with the method described in Chapter 3, we
perform a segmentation of the point cloud which assigns each point to one of the tree
branches. This is insofar important as we want to preserve local surface details, such as the
tree bark structure, during the interpolation. The argument is similar to the one applied for
surface deformation in Chapter 2. Especially in the vicinity of branch bifurcations it can
lead to visible artifacts during interpolation if points are assigned to a wrong branch and
then deform in an unintuitive manner. To overcome this issue, our segmentation is based on
local surface normals, in addition to proximity to the skeleton, so that points from thin side
branches are not inadvertently assigned to wider main branches or vice versa.

After computing branch correspondences, we align the segmented points for two branches
by applying rotation, anisotropic scaling, and translation operations. Point correspon-
dences are then established using a regularized optimal transport as described by Golla et
al. [GKK+20]. Since the mapping computed by optimal transport is generally susceptible to
translations, scaling, and rotations, our alignment step before computing the mapping leads
to results superior to theirs. For example, if two branches have orientations where their axes
are perpendicular, optimal transport of Golla et al. may assign points from the end of one
branch to the center of the other branch. Interpolating over points mapped that way would
not yield discernible shapes. With our alignment instead, branch ends are properly mapped
onto each other and an interpolation yields a naturally rotated intermediate branch.

Our main contribution is the definition of a new Orientation Radius Length (ORL) tree
shape space which captures the geometric structure of a tree better than previous methods.
The number of dimensions used to describe a single branch correlates with the expressiveness
of the whole representation. When Billera et al. [BHV01] represented ancestry relationships,
the sole dimension used was the branch length. Feragen et al. [FLB+13] encoded the
geometry of airway trees by using two or three dimensions per branch, depending on the
use case of 2D or 3D data. Their approach was extended by Wang et al. [WLX+18] to
also encode the radius of each branch. Our approach does not use (𝑥, 𝑦, 𝑧) coordinates for
the representation of a branch, but its orientation, radius, and length instead, where the
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orientation is encoded in the form of a quaternion. For the task of interpolation, if the aim is
to rotate a branch around its parent branch, rotating a quaternion with Slerp (spherical linear
interpolation) is straightforward, while a linear interpolation over Euclidean coordinates
does not produce the same results. We explain the intrinsic metric of our shape space and
how it is used to compute geodesics between tree instances, and also how to obtain the 3D
tree geometry for arbitrary points in the ORL tree shape space in linear time. Since a shape
space can be constructed from more than two trees, it is also possible to determine the mean
tree using our metric.

We conclude our work in Chapter 5 with a summary of the results presented in this thesis
and suggested directions for future work.

1.4 Publications
The following first author journal and proceedings publications form the main body of this
thesis:

• Fabian Aiteanu, Patrick Degener and Reinhard Klein,
Efficient Non-Linear Editing of Large Point Clouds,
Proceedings of the International Conference on Computer Graphics, Visualization
and Computer Vision (WSCG 2010), Feb. 2010. (Chapter 2)

• Fabian Aiteanu and Reinhard Klein,
Hybrid Tree Reconstruction From Inhomogeneous Point Clouds,
The Visual Computer, Vol. 30, Issue 6-8, June 2014. (Chapter 3)

• Fabian Aiteanu and Reinhard Klein,
Exploring Shape Spaces of 3D Tree Point Clouds,
Computers & Graphics, Vol. 100, Nov. 2021. (Chapter 4)
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CHAPTER 2

Efficient Non-Linear Editing of Large
Point Clouds

This chapter corresponds to the publication Fabian Aiteanu, Patrick Degener and Reinhard
Klein, Efficient Non-Linear Editing of Large Point Clouds, Proceedings of the International
Conference on Computer Graphics, Visualization and Computer Vision (WSCG 2010), Feb.
2010 [ADK10].

2.1 Summary of the Publication
In this work, we consider the problem of applying non-linear editing operations to a 3D
model given as a point cloud. The aim is to bend, stretch, rotate, or scale parts of the
model in real-time, ensuring at the same time that surfaces are smoothly deformed and
surface details are preserved. Paries et al. [PDK07] present a framework for applying such
deformations to 3D mesh models by employing an underlying non-linear deformation model
based on differential coordinates. Their method produces physically plausible deformations,
even for large handle transformations.

While their approach relies on point connectivity explicitly provided by the mesh data
structure, we generalize the idea to work on point clouds which only possess implicit
connectivity information. To that end, we define a local neighborhood for each vertex from
its 𝑘 nearest neighbors. As a nearest neighbor relation between two vertices is not necessarily
reciprocal, our preliminary experiments yielded visible artifacts during deformation. The
solution was thus to symmetrize neighborhood relations by adding reciprocal links to
previously unidirectional neighbors. This also benefits real-world scanning scenarios in
which noisy points and outliers appear frequently. In fact, it is even difficult to distinguish
surface details from noise without additional knowledge. As our method uses connectivity
information derived from spacial proximity, it is not limited to mesh-like surfaces but can
be applied to point sampled volumes as well. The only implicit assumption and prerequisite
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Chapter 2 Efficient Non-Linear Editing of Large Point Clouds

of the whole editing process is that the model regions involved in deformation, i. e. both
handles and the region to be deformed, must be part of a single connected component, as
otherwise the deformation problem is ill-defined. However, a region in itself does not need
to be contiguous, e. g. a single handle can be placed on both feet of a humanoid model.

Point clouds representing detailed geometry can contain large amounts of data. As our
non-linear deformation calculations are computationally demanding, this conflicts with a
real-time editing experience for a user. To improve the experience, a user is allowed to define
a number of sample vertices upon which the non-linear operations are computed, while the
results are transferred to the full scale point cloud at interactive frame rates using a weighted
linear interpolation. The actual sample vertices are determined by a hierarchical octree
subdivision method, which ensures that the density of chosen sample points corresponds
to the local sampling density of the original point cloud. Since deformation computations
are performed on the subsamples using our neighborhood definition, some sample points
may be considered close to each other, while they belonged to different model parts in the
original point cloud. We thus introduce a step which determines geodesic nearest neighbors
of the sample points using neighborhood relations of the original point cloud, preventing
links between distant model parts.

Our results demonstrate that different deformations of our example models can be
performed with several frames per second computation and rendering speed on commodity
hardware. This enables a very fast feedback loop for an artist editing a model, a trait which
was not available in previous methods that required offline-processing for large data sets.

2.2 Author Contributions of the Publication

In this work, I devised the generalization of the mesh editing framework of Paries
et al. [PDK07] to point clouds by defining a local neighborhood for each point and
adding links to symmetrize the neighborhood relation. I implemented and performed the
experimental evaluation for the quality of results with different numbers of neighbors and
without neighborhood symmetrization, as well as symmetrization by removing neighborhood
links which were unidirectional.

Further, I proposed and implemented a subsampling scheme to be applied to large point
clouds, together with a weighted linear interpolation, which applies deformations of the
coarse-scale subsamples to the full scale point cloud. This involved both an implementation
for the CPU and one for the GPU using CUDA, in order to achieve sufficiently high frame
rates for interactive use. To alleviate an issue where wrong model parts were connected due
to proximity after subsampling, I modified the definition of employed nearest neighbors to
use geodesic nearest neighbors on the original point cloud.

All experiments, visualization, and evaluation of results were performed by myself.
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2.3 Abstract

2.3 Abstract

Editing 3D models is often performed on triangular meshes. We generalize editing operations
based on differential coordinates to work on point clouds without explicit connectivity
information. This allows a point cloud to be interpreted as a surface or volumetric body
upon which physically plausible deformations can be applied. Our multiresolution approach
allows for a real-time editing experience of large point clouds with 1M points without any
offline processing. We tested our method on a range of synthetic and real world data sets
acquired by laser scanner. All of them were interactively editable and produced intuitive
deformation results within few minutes of editing.

2.4 Introduction

Virtual 3D objects are a common asset for movies and games. In former years those were
predominantly created manually, but in later years it has become more common to scan
real objects and then edit and modify their virtual counterparts. For some application areas,
e. g. structured light scanning, data is available only as point clouds, though editing 3D
models is predominantly performed on triangular meshes. Despite ongoing efforts in the
area of surface reconstruction, triangulating point sets remains computationally demanding
and is error-prone in the presence of noise and outliers. Additionally, point clouds are
usually sampled much denser than meshes and thus contain amounts of data, which are
several times larger than for comparable meshes. This in turn can negatively influence the
interactivity of editing operations.

To address this problem specialized editing approaches for point sampled models have
been proposed. However, to handle the larger complexity of point clouds, these methods
resort to relatively simple deformation models like transformation interpolation or linear
models based on differential coordinates. As recently analysed by Sorkine and Botsch [SB09],
a common problem of these simple deformation models is a counterintuitive deformation
behaviour. For deformation of triangle meshes this problem is well known, and subsequently
non-linear deformation models have been developed that do not show these problems. The
higher intuitivity though comes at the cost of a significantly higher computational effort.

Space deformations are a different approach towards editing operations. They can
conceptually be calculated quickly, but lack the ability to respond to the structure of the
edited model. Points which are far apart in geodesic distance can be close in space and thus
be influenced by editing operations unintentionally. To overcome this limitation, cage-based
techniques try to separate such geodesically distant regions from each other, but the user is
required to create or at least adjust the cage manually. In contrast, our solution does not
require any manual intervention.

We present a novel method to enable direct real-time editing of point clouds without
the need for prior meshing. Our method shows intuitive, physically plausible deformation
behaviour and does not require manual preprocessing like cage construction. It is based on
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Chapter 2 Efficient Non-Linear Editing of Large Point Clouds

Figure 2.1: Armadillo model after 3 editing steps: head has been twisted by 45◦, left arm twisted by
90◦, right arm bent by 30◦.

geodesic distances only and avoids the problems of space deformation based approaches
described above. Using our method, large point sampled geometry (Figure 2.1) can be
edited as a whole at interactive frame rates.

In summary our contribution is this:

• We present an approach for editing point clouds while preserving local surface details.
Due to an underlying non-linear deformation model, the obtained deformations are
physically plausible, even for large handle transformations.

• Our algorithm does not pose any specific assumptions upon the structure of the point
cloud being edited. The input requires solely the vertex positions in 3D space, but
no explicit connectivity information. The point cloud may be irregularly sampled or
contain outliers. It is even possible to handle point sampled volumes.

• As point clouds are usually sampled much denser than comparable meshes, we present
a means of performing the deformation calculations on a coarse scale and transfer the
results to the fine scale representation of the point cloud at interactive frame rates. To
the best of our knowledge, no other system has been presented which could perform
similar non-linear deformations without offline processing.
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2.5 Related Work
As mentioned in the introduction, several methods exist for editing meshed input data,
but which are not directly applicable to point clouds. In the following we concentrate on
methods targeting point clouds.

The challenge of editing point clouds interactively has been pursued in a number of papers.
In an early work of Pauly et al. [PKKG03] they deform point clouds in real-time using linear
interpolations between the handles. Miao et al. [MFXP08] use a more sophisticated method
with differential coordinates. Like all linear methods they both produce counterintuitive
results for large deformations.

Especially for editing large models the required storage can exceed the available main
memory, or the computation time can become prohibitively high. It is thus often necessary to
use a simplified model upon which the editing is performed. Wand et al. [WBB+07] describe
a method to visualize data sets with a size of several gigabytes in a multi-resolution out-of-
core method. The direct editing operations are limited to simple translations or deletions
of vertices. More complex operations can only be performed in offline computations.
Boubekeur et al. [BSS07] use a streaming method to perform an offline simplification of
a large mesh into a smaller point cloud, which can then be edited interactively. A second
offline streaming step applies the modifications to the original mesh.

Wicke et al. [WSG05] use the concept of thin shells to construct a network of so-
called fibres on the surface of a point cloud, which are then used to model and calculate
possible deformations. The fibres provide a mesh representation at a coarse scale, and the
deformations are later applied to the detailed representation. As both of the methods of
Boubekeur and Wicke require time-consuming steps before and after the user performs the
actual editing, the user has to wait for the post-editing steps to complete in order to view the
final result. We deem this unsuitable for ad-hoc editing, because any corrections or further
editing steps require repeating the whole procedure.

In our method, the actual editing of the point cloud is performed on a differential
representation of its surface. This has recently gained much attention in the context of mesh
editing. Sorkine and Botsch [SB09] compare gradient-based methods and Laplacian-based
methods as the predominant methods used for differential representation-based deformations.
They identify two classes: linear methods can provoke a counterintuitive behaviour for
deformations, since they cannot handle both rotations and translations of local frames
simultaneously, resulting in artifacts of different kinds. Non-linear methods [BPGK06;
SA07] solve these issues, but are time-consuming to compute. The mesh editing framework
presented by Paries et al. [PDK07] represents local frames using quaternions. By enforcing
additional frame constraints they produce intuitive results for translations, rotations and
scaling. Their non-linear approach is computationally demanding and thus applicable only
to medium sized meshes. We generalize their approach to be applicable to large point
clouds.

Space deformations [e.g. HSL+06; XZY+07; BPWG07; AOW+08] are a different
approach towards editing operations. They do not directly manipulate the points’ positions,
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but warp the space and thus indirectly manipulate the points. The space deformations can
conceptually be calculated quickly, but they lack the ability to respond to the structure of the
edited model. Points which are far apart in geodesic distance can be close in space and thus
be influenced by editing operations unintentionally. To overcome this limitation, Huang et
al. [HSL+06] used a control mesh enclosing the model to separate such geodesically distant
regions from each other. In their approach the user is required to define the control mesh.
In contrast, our solution does not require any manual intervention.

The multiscale representation introduced by Pauly et al. [PKG06] and extended by
Duranleau et al. [DBP08] encodes the displacement of points between the representations at
different scales. It allows to edit the representation for a specific detail level using a space
warping function and then apply the deformation to the other detail levels. This enhances
interactivity and controllability of the result, but still has the mentioned limitations of space
deformations.

Meshless methods, of which space deformations are one specialization, provide further
aspects. The phyxels proposed by Müller et al. [MKN+04] are used to fill a volume and
preserve it during editing operations. The small amount of phyxels required to fill a volume,
allow for physically plausible deformations which can be calculated quickly. However, as
Müller et al. already mention, such volumetric approaches are not applicable to point clouds
representing a surface.

2.6 Overview

First we present a brief explanation of the mesh editing framework of Paries et al. [PDK07]
in Section 2.7 as it constitutes the basis upon which our work is built. Our generalization to
point clouds follows, including the concepts developed to use the mesh editing framework
without the need for meshing the input data. In Section 2.8 we explain our multiresolution
method, which allows editing point cloud data sets which are considerably larger than
comparable meshes. Although the amount of data points may be up to two scales of
magnitude higher, our parallel GPU implementation still provides several frames per
second during editing operations. We conclude this paper with an overview of the results
(Section 2.9) and our planned extensions for the future (Section 2.10).

2.7 Editing

2.7.1 Mesh Editing

As the underlying model for a mesh Paries et al. [PDK07] employ a differential representation
of local surfaces. For each vertex in the region of interest 𝑥𝑖 ∈ 𝑅 they define an orthonormal
local frame 𝐹𝑖 = (𝑡1𝑖 , 𝑡

2
𝑖 , 𝑁𝑖) with right hand orientation. 𝐹𝑖 can be interpreted as a rotation

matrix and thus be expressed in terms of a unit quaternion 𝑞𝑖.
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For each pair of adjacent vertices (𝑖, 𝑗) in the mesh 𝑀 the difference between the
quaternions is calculated as 𝑞

𝑗

𝑖
= 𝑞𝑖 · 𝑞 𝑗 . During editing and user interaction the mesh

surface can be reconstructed from the differential representation and the equation

𝑞𝑖 · 𝑞
𝑗

𝑖
= 𝑞 𝑗 (2.1)

which is a linear system. Fixing a single unit quaternion 𝑞𝑖0
is sufficient for getting a unique

solution (except for its rotation), by iteratively solving the remaining equations.
Reconstructing the mesh solely based on the local frames and ignoring the geometry can

lead to unintuitive results, because translations are not accounted for. To overcome this,
Paries et al. added constraints which impede a change of coordinates of 1-ring neighbors in
the local frames 𝐹𝑖. They formulate the constraints as

𝑞𝑖 (1, 𝑐
𝑗

𝑖
)𝑡𝑞𝑖 = (1, 𝑥 𝑗 − 𝑥𝑖)

𝑡 (2.2)

where 𝑐
𝑗

𝑖
:= 𝐹

−1
𝑖 (𝑥 𝑗 − 𝑥𝑖) are the local coordinates of 𝑥 𝑗 in frame 𝐹𝑖.

User input consists of a set of handle vertices 𝐻 which specify additional frame constraints
𝑞
𝑐𝑜𝑛𝑠𝑡
𝑘 and positional constraints 𝑥

𝑐𝑜𝑛𝑠𝑡
𝑘 . Given those two sets of constraints, the frame

differences 𝑞 𝑗

𝑖
and the local coordinates 𝑐 𝑗

𝑖
, the constrained reconstruction problem is to

find a set of local frames 𝑞𝑙 and absolute vertex coordinates 𝑥𝑙 for all vertices within the
region of interest 𝑅 that satisfy Equations (2.1), (2.2) and

𝑞𝑘 = 𝑞
𝑐𝑜𝑛𝑠𝑡
𝑘 𝑥𝑘 = 𝑥

𝑐𝑜𝑛𝑠𝑡
𝑘 ∀𝑘 ∈ 𝐻. (2.3)

As the resulting equation system is overconstrained, Paries et al. solve it in least squares
sense using a non-linear optimization procedure. They alleviate the complexity issue by
parting the original non-linear problem into several linear equation systems of which the
LU-matrices remain constant throughout one editing step. Thus after specifying a region
of interest and editing handles, a precomputation step factorizes the original matrices in
parallel on the GPU. During the actual editing the linear equation systems are solved on the
CPU with backsubstitution, which can be performed at several frames per second even for
medium sized meshes with up to 100k vertices.

2.7.2 Editing Point Clouds

The intention to seek for a generalization of the editing operations from mesh data structures
to arbitrary point clouds, comes from the observation that in practice raw data from range
scanning devices often is available only in form of 3D vertex coordinates. Depending on
the device, color information may also be available, but it plays only a minor role for editing
operations.

Though advanced triangulation techniques like MLS surface approximation exist, they
are usually dependant upon a specific structure of the point cloud, e. g. a closed surface.
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Margins, outliers, or in general arbitrarily distributed points pose severe problems. To be
more robust, most methods have the undesired effect of smoothing the surface represented
by the point cloud, thus degrading the quality of the data set. Furthermore, the computation
time for the triangulation becomes notably high for large data sets.

Although the editing framework of Paries et al. relies upon mesh data structures to ensure
connectivity of the vertices and to find a vertex’s 1-ring, the basic equation systems are
formulated without the need for an explicit mesh. They do though require the definition of a
local neighborhood in order to calculate the local frames. The simplest choice for a local
neighborhood, which comprises each vertex’s nearest neighbors in 3D space, is sufficient
for our needs and very fast to calculate.

In our approach we use the 𝑘 nearest neighbors of each vertex, which are computed in a
pre-processing step. To determine the nearest neighbors, we use an octree to partition the
point cloud, which can be calculated in O(𝑛 log 𝑛) time. The choice of 𝑘 was experimentally
determined, and may theoretically be any 𝑘 ≥ 2, since we need at least two neighboring
points to define the local frame for 𝑥𝑖. In practice, choosing 𝑘 too small, like e. g. 𝑘 = 2
leads to line-shaped disconnected components, which are not treatable well as a surface by
the later algorithm steps. On the other hand, choosing 𝑘 too large linearly slows down all
calculations which iterate the nearest neighbors. We found 𝑘 = 5 or 𝑘 = 6 to provide a good
tradeoff between speed and stability, and it is also the average number of neighbors in a
regular triangulation.

Using only the initially found nearest neighbors for each vertex can lead to non-symmetric
relations, especially if the input point cloud is irregularly sampled. This can prevent a
complete traversation of the graph induced by the nearest neighbors, and split it into several
seemingly disconnected components. Although removing the non-symmetric neighbors
reduces the amount of data to process, it may lead to more fragmentation. Our choice of
inserting the missing links to create bi-directional nearest neighbors relations counteracts the
possible fragmentation. At the same time it ties outliers to the main connected component(s).
The problem with auxiliary connected components which do not include user-defined
constraints is that they render Equation system (2.1)-(2.3) underdetermined, and thus
provide no stable solution. During the preprocessing step these unconstrained components
are detected and removed from the editable part of the model.

2.7.3 Area and Volume Preservation
Volume preservation is a key feature used in mesh editing and has also been applied to point
cloud editing [MKN+04]. It is however not unambiguous how to define this property, since
a point cloud does not possess an inherent volume, as opposed to a closed mesh. This is
especially the case for point clouds originating from single-image 3D capturing devices,
which can only capture one side of any given object at a time. As our method strives to
preserve the local neighborhood of each point, the volume is only an affected property, not
one which is calculated or optimized.

In particular, if a surface is stretched using handles on opposite sides, the surface is
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also enlarged in perpendicular direction to preserve the local shape of each point’s 1-ring.
This is a rather counterintuitive behaviour, since most materials in nature exhibit the
opposite behaviour of shrinking in perpendicular direction when stretched in the other
direction (e. g. rubber and metal). Nevertheless, auxetic materials exist, which do enlarge
in perpendicular direction (e. g. special foams), and others which do not change their
perpendicular size at all (e. g. cork). Our method can be parameterized to exert any one of
these elasticity behaviours by scaling the local frames 𝑞𝑖 in each iteration before solving the
equation systems, as detailed in [PDK07].

2.8 Sampling

The matrix factorization step performed during precomputation is necessary to reduce
the calculation time during the actual editing of a model. We employed the SuperLU
library [DEG+99] which is suited well to decompose the sparse matrices. Although the
matrix size grows squarely with the number of handle vertices, the sparsity leads to a
computation effort which grows below quadratic. Nevertheless, from 100k vertices onwards
this requires several minutes of precomputation and eventually the matrix size grows too
large to be handled in main memory.

Since complex operations on large data sets are today still limited in their speed by the
available computation power, we devised a multiresolution scheme similar to Wicke et
al. [WSG05]. The time-consuming solving of the Equation systems (2.1)-(2.3) is performed
on a coarse-scale subsample of the input point cloud, and the fine-scale representation is then
interpolated. Pauly et al. [PGK02] survey different point based simplification methods. For
our subsampling we chose a method from the category of hierarchical clustering methods,
since they adapt well to point clouds with varying point sampling densities. To generate
the subsamples, we use an octree partitioning the original point cloud. Taking the sample
points from each leaf of the octree allows us to handle arbitrary point clouds, not only those
representing implicit surfaces. At the same time, areas of the original point clouds which
have a high sampling density will receive a higher amount of sample points, thus preserving
local details.

Calculating the nearest neighbors for the sample points can be performed with the octree
that was already calculated. For some models like the dragon model this can yield undesired
connections between points (Figure 2.2(b)), which cannot be considered adjacent in the
original, but become adjacent in the sampled point cloud due to the lower point density.
In the work presented by Xu et al. [XZY+07] the user is required to manually create a
control mesh which prevents such connections between originally unconnected parts. Our
connected sample points are in effect similar to the control mesh used by Xu et al., but we
sought for an alternative working without manual intervention. The idea is to find the nearest
neighbors in a geodesic sense instead of the euclidean distance. As the geodesic distance
conceptually requires a surface to be applicable, using the nearest neighbors relation of
the original point cloud satisfies this need, but still makes it applicable to non-surface-like
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(a) Original point cloud with sample points drawn in black.

(b) Sample points connected using nearest neighbors. Wrong connections
between originally separated parts are created due to proximity.

(c) Calculating nearest neighbors on the original point cloud with a breadth
first search prevents wrong connections.

Figure 2.2: Sample points connected with nearest neighbors
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point clouds. With a breadth first search (Algorithm 1) for each point in the original point
cloud, the geodesic nearest neighbors can be found in O(𝑛 · 𝑟) time, where 𝑛 is the number
of original points and 𝑟 is the original-to-sample number ratio. The result can be seen in
Figure 2.2(c).

Algorithm 1 Geodesic nearest sample neighbors for a point
Input: point 𝑖0; number of sample neighbors to find 𝑘; Samples 𝑆; Original nearest neighbors relation 𝑁

init queue 𝑞 ⇐ 𝑖0
init geodesic neighbors 𝐺 (𝑖0) = ∅
repeat

𝑗 = 𝑞.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
for all 𝑛 ∈ 𝑁 ( 𝑗) do

if 𝑛 not visited then
𝑞.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑛)
mark 𝑛 as visited

end if
end for
if 𝑗 ∈ 𝑆 then

add 𝑗 to 𝐺 (𝑖0)
end if

until |𝐺 (𝑖0) | ≥ 𝑘 or 𝑞 = ∅

After each iterative solving step for the basic equations, the new position 𝑝
′
𝑖 and normal

𝑛
′
𝑖 of each original point is interpolated from the translations and rotations of its nearest

sample points:
𝑝
′
𝑖 =

∑︁
𝑠∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)

𝑤
𝑠
𝑖 · (𝑞𝑠 · 𝑝

𝑠
𝑖 + 𝑝𝑠) (2.4)

𝑛
′
𝑖 =

∑︁
𝑠∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)

𝑤
𝑠
𝑖 · (𝑞𝑠 · 𝑛

0
𝑖 ) (2.5)

with
𝑤
𝑠
𝑖 =

1
|𝑝𝑠𝑖 |

2 /
∑︁

𝑠∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)

1
|𝑝𝑠𝑖 |

2 (2.6)

where 𝑝
𝑠
𝑖 = 𝑝

0
𝑖 − 𝑝

0
𝑠 is the coordinate of point 𝑝𝑖 in the local coordinate system of 𝑝𝑠, and

𝑞𝑠 is the quaternion describing the rotation of 𝑠 from its original to its new orientation. The
weights 𝑤𝑠

𝑖 account for a smaller influence of neighbors which have a greater distance.
We implemented this interpolation method on the CPU first, but the involved quaternion

multiplications proved to be a limiting factor to the achievable speed, since multiplying two
quaternions includes 16 floating point multiplications, and multiplying a quaternion with
a 3D vector includes 27 floating point multiplications. The sheer amount of operations
required to perform the interpolations for large data sets with over 1M points does not allow
for a true real-time editing experience using this approach, as the frame rates can drop to
1-2 frames per second. The implementation of the upsampling step in CUDA for parallel
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Figure 2.3: Bunny model with 2 editing steps.

Model # points # sample Subsampling Precompu- Equation Upsampling
points tation solving

Bunny 35k 100 4.0 0.1 0.001 0.003
Bunny 35k 1000 0.5 2.0 0.019 0.004
Armadillo 172k 200 101.3 0.1 0.002 0.016
Armadillo 172k 5000 3.2 18.3 0.098 0.018
Dragon 437k 200 390.2 0.1 0.002 0.037
Dragon 437k 5000 13.7 23.3 0.116 0.040
Plain 1000k 200 1923.0 0.1 0.002 0.083

Table 2.1: Computation times in seconds on a 2.4GHz CPU and a NVidia GeForce 8800 GTX GPU.
Subsampling and precomputation are executed once, while equation solving and upsampling occur
each frame.

computation on the GPU is straightforward, since 𝑝
′
𝑖 and 𝑛

′
𝑖 can be computed independently

for each point on the available GPU processors. Our current implementation running on an
off-the-shelf graphics card (NVidia GeForce 8800 GTX) performs on average 5-8 times
faster than the CPU version. During the editing operation, for 1M points we measured 8
frames per second for the GPU implementation, while the CPU variant yielded only 1.4
frames per second.

2.9 Results
We tested our method on a variety of point clouds, including both artificial and scanned
models. All of the models have been used without manual preprocessing. Table 2.1 gives
an overview of the computation time for setup and each iteration step during the editing
phase. Usually the model converges to its final shape during 3-5 iterations.

As we have explained before, the equation solving time consumption grows slower than
O(𝑛2) where 𝑛 is the number of sample points, while the upsampling step requires only
linear time depending on the number of points to be interpolated.

The visual quality of the result is largely independent of the number of sample points,
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Figure 2.4: Bunny and Dragon models edited with only 50 sample points each. Sampling artifacts
can be observed in the head area of the Bunny and neck of the Dragon.

unless it falls below a certain threshold depending on the complexity of the model. This
means e. g. for the Stanford Bunny (Figure 2.3), which does not have a complex structure,
that the resulting point positions have very small deviations when calculated with 100, 1,000
or 10,000 sample points. Only with fewer than about 100 sample points the upsampling step
produces artifacts for large deformations (Figure 2.4). For the Dragon model (Figure 2.5),
which is more complex due to its winding body, sampling artifacts can be observed for less
than 500 points (Figure 2.4). Those artifacts could be circumvented by a more sophisticated
interpolation scheme which does take into account not only the nearest neighboring sample
points, but a selection of sample points which are evenly distributed on the surface around
the point to be interpolated. A too low sample density does however defeat the purpose of
our non-linear editing method by reducing it to the linear interpolation.

One minor drawback of our implementation using quaternions is the inability to perform
handle rotations of more than 360◦ within one editing step. This is due to the normalization
of quaternions which we perform for stability reasons when solving the equation systems.
In practice however this is not of concern, as it is possible to perform several editing steps
with smaller rotations to achieve the desired result.

2.10 Conclusions and Future Work

We have presented a novel method to interactively edit large point clouds. Using a non-
linear deformation model allows to produce physically plausible deformations even for large
modifications. The multiresolution approach faithfully handles the coarse scale deformations
while the model details are preserved. Our parallel implementation provides the speed
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Figure 2.5: Dragon model after rotation and translation of the head. Session time including
subsampling and precomputation for each result: 1 minute.
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necessary for real-time editing scenarios, shortening the time required to produce a desired
result. For models which are larger than the available main memory, our method could be
extended with a further sampling level, for which the upsampling step would be performed
offline. Our method does not require any manual preconditioning steps to create a control
mesh, and is thus suited for direct editing of arbitrary point clouds.

For the future we plan to incorporate the deformation features into a model reconstruction
framework which can work on a number of scanner-acquired time-varying point clouds.
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CHAPTER 3

Hybrid Tree Reconstruction From
Inhomogeneous Point Clouds

This chapter corresponds to the publication Fabian Aiteanu and Reinhard Klein, Hybrid
Tree Reconstruction From Inhomogeneous Point Clouds, The Visual Computer, Vol. 30,
Issue 6-8, June 2014 [AK14].

3.1 Summary of the Publication
In this work, we address the problem of reconstructing 3D geometry of trees from non-
uniformly sampled point clouds. Most reconstruction techniques proposed so far were
tightly coupled to properties of the data created by the acquisition setup employed by the
researchers. Vehicle-mounted laser scanners or similar setups with large distances between
acquisition device and scanned object deliver a sparse point cloud with relatively few points
per scanned object. In the case of trees, this means that branch diameters are sometimes
represented by only one or two scan points. This in turn leads to reconstruction techniques
which create a spanning tree over all points and assume that a tree skeleton is represented
sufficiently well. Such approaches fail on densely scanned trees with tens or hundreds of
points in a branch diameter. Conversely, approaches designed for dense point clouds, which
detect complex shapes like circles or cylinders in a point cloud, cannot find enough support
for their primitives in sparsely sampled data. We propose a hybrid method to bridge this
gap and work on non-uniformly sampled point clouds, which contain both sparsely and
densely sampled regions. We propose a novel skeleton extraction algorithm based on ellipse
detection for densely sampled areas and seamlessly combine it with a spanning-tree based
algorithm for the sparsely sampled regions.

The main idea behind ellipse detection is that cross-sections through branches usually
exhibit an elliptic shape. The centers of all ellipses together form the tree skeleton. While
some previous approaches tried to detect circles in branch cross-sections [e. g. Jay09; TZC09;
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WCN+12], they required special assumptions regarding the positions in space where to
expect such a circle. Our method is less demanding and more flexible in this regard, as even
an oblique cut through a branch yields an elliptic shape.

Our search for ellipses is guided by first performing a principal component analysis (PCA)
for each surface point and its neighborhood. The PCA can reliably determine the surface
normal direction, even in the presence of moderate noise. Using the normals, we execute an
algorithm proposed by Zhang et al. [ZLCZ09] to construct osculating circles to the surface,
and hence determine the principal curvatures and corresponding principal directions. A
general observation is that on a cylinder surface, which locally resembles a branch surface,
one principal direction is parallel to the cylinder axis, while the other principal direction
points tangentially around the cylinder. The value of the latter principal curvature is inversely
proportional to the cylinder radius. Using the radius and the principal directions, we define a
cylindrical region in space which likely contains a branch cross-section. The points therein
are projected to a plane and subjected to an analytical ellipse fitting using the techniques of
Rosin [Ros93] and Zhang [Zha97].

As the principal curvatures are not perfectly determined in every case, we devise a
mechanism to detect misaligned ellipses and attempt to automatically find better ones. The
centers of all ellipses are connected using a spanning tree, which is then successively thinned
out until the remaining nodes represent the skeleton of the dense region of the input tree.
Since we detected ellipses, the branch radii are known for all skeleton nodes.

Regions of the original point cloud which do not have a skeleton assigned after those steps
are considered to be sparsely sampled. In general, points in sparse regions form clusters of
branches and sub-branches, which are individually processed by creating spanning trees
following the idea of Livny et al. [LPC+11]. As a last step, those sub-trees are connected
to the main skeleton from the dense area, and radii are propagated to the sub-trees using
allometric theory. Generalized cylinders are then constructed to represent branch geometry
for the whole tree.

Our experiments show that different trees containing various sampling densities can be
successfully reconstructed into 3D models, even in the presence of noise and outliers. In
summary, we introduced a method that can reconstruct the skeleton and geometry of a real
tree automatically without any required user interaction.

3.2 Author Contributions of the Publication
In this work, I developed the idea of combining two methods aimed specifically at densely
and sparsely sampled regions of a point cloud. I designed and implemented the ellipse
fitting technique for densely sampled regions, including the re-alignment step for incorrectly
detected ellipses and the filtering required to produce a smooth skeleton. While the idea of
creating a spanning tree on sparsely sampled data was taken from Livny et al. [LYO+10],
I devised the segmentation scheme between densely and sparsely sampled regions, and
between clusters in sparse regions, together with a step to join all the reconstructed skeletons
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and creation of 3D meshes for display. I also implemented all steps in this pipeline.
All experiments, visualization, and evaluation of results were performed by myself.

3.3 Abstract

Trees are an important asset for natural-looking digital environments. We propose a novel
method to automatically reconstruct tree geometry from inhomogeneous point clouds created
by a laser scanner. While previous approaches focus either on dense or sparse point clouds,
our hybrid method allows for the reconstruction of a tree from an inhomogeneous point
cloud without further preprocessing. Using principal curvatures as indicators for branches,
we detect ellipses in branch cross-sections and create branch skeletons for dense regions.
For sparse regions we approximate branch skeletons with a spanning tree. Branch widths
are obtained from the ellipse fitting in dense regions and propagated to the sparse regions,
in order to create geometry for the whole tree. We demonstrate the effectiveness of our
approach in several real-world examples.

3.4 Introduction

Using real-world data to support the creation of digital content for movies and games has
gained a lot of attention in the past decades. Recently, city planners have started using
such data to visualize existing objects together with planned structures. For some planning
activities it is important to represent the existing vegetation with an accuracy that is hardly
achievable by procedural modeling or template-based approaches. Mobile laser scanners
have become an affordable asset for gathering real-world data by scanning an object from
different perspectives. Reconstructing a complex object like a tree from a single range
image [LYO+10; WCN+12] is more efficient than the use of multiple views [SRDT01], but
large parts of the tree structure may be occluded from view and thus are not reconstructable.
Registering several range images to create a combined point cloud from their data allows for
reconstructions with better quality.

Using data which was combined from multiple views results in point clouds which are
sampled more densely than those from single views, at least in those regions appearing in
more than one of the original views. Depending on the individual acquisition setup used,
most reconstruction techniques for trees from laser-scanned input data are either specialized
on dense or on sparse point clouds. Approaches used for dense point clouds fail on inputs
which are sampled too sparsely, while approaches for sparse data fail to produce realistic
results for dense point sets. We propose a hybrid procedure which can operate on real-world
scan data of trees, registered from multiple views, which contain both densely and sparsely
sampled regions as well as noise. Our algorithms can reconstruct the skeleton and geometry
of a real tree automatically.

Current reconstruction methods for trees vary in the amount of user interaction required.
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(a) (b)

(c) (d)

Figure 3.1: (a) Beech tree. (b) Reconstruction using circle fitting [Jay09]. (c) Reconstruction using
spanning tree [LYO+10]. (d) Our method.
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Some methods rely on the user manually adjusting parameters e. g. for branch widths
and branching angles [PLH+90], while others need sketches of the trees’ general out-
line [WBCG09] or structure [CNX+08]. Less interaction is required by those systems
using a database with sets of predefined parameters or textured images for certain plant
species [XGC07; LPC+11]. This however merely shifts the manual labor from a user to the
creator of the library. Our method performs the reconstruction without user interaction and
does not require a library.

The hybrid approach consists of combining a novel skeleton extraction algorithm for the
densely sampled regions with a spanning-tree based algorithm for the sparsely sampled
regions. Principal curvatures calculated for each input point guide the detection of ellipses
as cross-sections of branches in dense regions. The ellipse centers are connected and
filtered to create branch skeletons. Discovered ellipse positions and radii are then used
to create branch geometry. Spanning trees in sparse areas are considered to represent the
branch skeletons sufficiently well, after filtering and smoothing. Those sparse skeletons are
connected to the skeletons from the dense regions and the branch widths are propagated
along those sparse branches, followed by the creation of geometry. The resulting tree can
optionally have leaves added to enhance visual appeal.

In summary our contribution is this:

• A tree can be reconstructed from an inhomogeneous point cloud containing densely
and sparsely sampled regions.

• We present a novel method for extracting branch skeletons from dense regions of a
scanned tree using ellipse fitting.

• Our proposed framework reconstructs a tree automatically, without user interaction.

3.5 Related work
Modeling and reconstruction of trees has been investigated in a huge number of works. The
creation of plant models using procedural approaches [PLH+90] follows rules deducted
from plants occurring in nature [Hon71]. The modeling approach can be easily used to
create a variety of similar plants which can be used to populate a virtual environment.
Creating a model which resembles a specific tree is difficult, since parameters needed for
the procedural generation cannot usually be intuitively found. Small changes in parameters
for an L-System can result in large changes in the overall shape.

User-drawn sketches provide an aid to determine the parameters. The user can either
sketch the branch structure [CNX+08] or the silhouette [WBCG09] and iteratively improve
the results. The manual labor involved increases with the complexity of the desired result.

Existing trees can also be reconstructed from images or point clouds. Images can be used
to extract a volumetric representation of trees [RMD04] which is suitable for rendering
modified views of the same tree. To achieve more flexibility, Neubert et al. [NFD07] propose
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an approximate volumetric representation, upon which a particle flow simulation is applied
to generate branches. In a similar manner, inverse procedural modeling tries to determine
the parameters necessary to generate a specific appearance [SRDT01; TZW+07; QTZ+06],
requiring different levels of user interaction.

As 3D laser scanners become more accurate and affordable, they present an increasingly
popular source for tree geometry data. Most methods in literature are tailored toward
extracting a skeleton from the input point cloud. For some applications the skeleton itself
is considered to be the desired form of representation [BLM10; HWC+13], while other
approaches try to reconstruct the visual appearance [LPC+11] or the geometry of the
tree [LYO+10]. The lobe-based representation of Livny et al. [LPC+11] represents large
parts of the tree crown by textures from a library covering different shapes and species. This
produces natural-looking results but is inherently limited to the samples from the library.

Methods which extract a skeleton from a point cloud are usually specialized on either
dense or sparse point clouds, but are not able to handle the other case equally well. Dense
in this sense means that every cross-section through a branch contains a relatively high
number of sample points. Wang et al. [WCN+12] perform a clustering of points depending
on their distance from the tree root. All points are projected into a plane derived from the
cluster centroid and point normals. A circle is fitted to the projected points such that the
distance between points and circle is minimized. The circle centers are then connected to
represent the tree skeleton. Tagliasacchi et al. [TZC09] employ the Mahalanobis distance
to find neighboring points from the input point cloud upon which to perform the circle
fitting. Jayaratna [Jay09] uses spheres which are successively moved from the tree trunk
along the branches towards the leaves. The cut between sphere and branch is projected into
a plane and a circle is fitted using a RANSAC-based method. Instead of fitting a 2D circle
to projected points, Pfeifer et al. [PGW04] try to fit cylinders to the points in 3D. As direct
cylinder fitting is difficult due to noise and missing data, Yan et al. [YWM+09] employ
iteratively refined bounding cylinders to capture branches. All of those methods rely on
fitting 2D or 3D shapes to the input data, which is not possible in sparsely sampled regions
of inhomogeneous point clouds, where the width of a small branch corresponds to a single
input point. The resulting reconstruction captures just a part of the whole tree. Figure 3.1(b)
demonstrates the result of [Jay09].

Bucksch et al. [BLM10] partition the input points into octree cells and connect adjacent
cells to form the skeleton. Huang et al. [HWC+13] calculate the 𝐿1 median of input points
as the skeleton. Both approaches are not specifically tailored for trees but for general point
clouds. As such they are not able to handle the large differences in scale between the tree
trunk and fine branches in a tree, e. g. the size of octree cells must be small enough to
separate distinct small branches, but noise in the trunk must not create individual branches.

Trees from sparse input data are subject to methods which do not work only on local subsets
of the data. Livny et al. [LYO+10] create a spanning tree on the graph of nearest-neighbors
relations of the input points. A sequence of global optimizations removes unnecessary edges
from the spanning tree and smoothes the result. For branches sampled densely this method
does not produce a faithful reconstruction, since the spanning tree is created on the surface
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of the branches, but does not represent the actual branch skeleton (Figure 3.1(c)). Moreover,
the global optimization employs matrices which grow quadratically with the size of the
input point cloud, making the algorithm impractical for very large trees. Xu et al. [XGC07]
perform a clustering of the input points based on a fixed resolution and join the clusters of
main branches using knowledge from allometric theory. Fine branches are generated using
predefined rules and do not necessarily correspond to points from the input data.

Our aim is to provide a method which works reliably on an inhomogeneous point
cloud depicting a tree, reconstructing the densely scanned regions with high accuracy and
incorporating the tree branches from regions with sparse data (Figure 3.1(d)).

3.6 Overview

Our tree reconstruction pipeline consists of three main phases. The input is a point cloud
representing a single tree.

In the first phase, the principal curvatures are calculated for the surface in the local
neighborhood of each point of the input point cloud. The principal curvatures are used
to initialize the fitting of ellipses to cross-sections of each tree branch. The ellipses are
re-oriented and re-fitted to accurately represent branch cross-sections wherever possible and
filtered out where no branches could reliably be detected. A further filtering reduces the
number of ellipses in regions where sufficient support has been detected and a base tree
skeleton together with 3D geometry is created.

Afterwards, in the second phase the point cloud is segmented into regions which can
be represented by the geometry created in the previous step and those which cannot. A
spanning tree is created over the graph representing the nearest-neighbors-relation in the
original point cloud and each subtree is extracted from the segmented area which does not
already have geometry assigned. In general, each of those graph subtrees represents a group
of branches from the original tree, which are so sparsely sampled that a cross-section of
such a branch does not have enough points as to allow ellipse fitting. For each of the graph
subtrees unnecessary nodes are removed and the resulting branches are smoothed.

In the last phase subtrees from phase two are joined to the base tree skeleton from the
first phase and branch radii are propagated to the former subtrees according to allometric
theory. Geometry is created for the subtrees to create the final tree reconstruction.

3.7 Tree reconstruction

3.7.1 Principal curvatures

The first step in our tree reconstruction pipeline encompasses calculating the principal
curvatures for the local neighborhood of each point in the point cloud. A principal
component analysis (PCA) alone is not able to reliably detect the orientation of the first and
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second principal components within a local surface patch, since the choice of the individual
neighbor points determines the outcome. The third component however, which corresponds
to the surface normal, is usually stable (except for its sign), regardless of which neighbor
points are used in the PCA, provided their number is not too low (we use 𝑘 = 25 neighbors,
see [KAWB09] for a qualitative analysis).

After all normals have been computed, they are re-oriented to consistently point outwards.
If the normals are already given in the input point cloud this step can be skipped.

Using the geometric construction of osculating circles to the surface in a point 𝑃 with
normal 𝑛, the principal curvatures 𝑘1, 𝑘2 and corresponding principal directions 𝑒1, 𝑒2 at 𝑃
can be computed [ZLCZ09]. The principal curvature 𝑘𝑥 is inversely proportional to the
radius 𝑟𝑥 of an osculating circle whose tangent is the corresponding principal direction 𝑒𝑥 ,
i. e. 𝑟𝑥 = 1

𝑘𝑥
. If we regard a small part of a branch as being cylindrical, it is intuitive that the

larger 𝑘1 with its 𝑒1 defines a circle which cuts the cylinder perpendicular to its axis, while
𝑒2 is parallel to the cylinder axis (Figure 3.2). 𝑘2 = 0 because the cylinder does not have a
bend in its axis direction.

Figure 3.2: Principal curvature directions on a cylinder surface.

From the geometric construction we obtain 𝐶 = 𝑃 − 𝑟1 · 𝑛 as the center point on the
cylinder axis. As 𝐶 was constructed only from 𝑃 and its neighbors, and not necessarily from
the entire branch data, it will be referred to as a center candidate supported by 𝑃 henceforth.
The next step of our method determines whether 𝐶 actually represents the center point of a
cross-section through the branch.

3.7.2 Ellipse detection
In order to analyze a cross-section for its size and exact center point, we extract the data
points from the input point cloud which lie in a cylindrical region, project them into a plane
and fit an ellipse to these points.

The cylinder is determined by the center candidate 𝐶, the axis direction 𝑒2 and radius 𝑟1.
The height is the last value required to define the cylinder. We experimented with different
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methods for choosing the cylinder height, and the usage of a globally fixed value yielded the
best results. Choosing the height based on the local sampling distance around 𝐶 leads to
very large cylinders in sparsely sampled regions, thus including too many points which do
not belong to the same branch. By sampling distance of a point we mean the distance to its
nearest neighbor. Choosing the cylinder height too small makes the algorithm dependent on
the local variation in sampling distance and thus find too few points in sparse regions. For
the cylinder height we used 5 times the median sampling distance of the point cloud, which
yielded the best results for different trees we tested.

An octree data structure for the input point cloud allows for an efficient retrieval of those
points located within the cylinder. The points are projected into the plane defined by 𝐶 and
normal 𝑒2. Branches in real trees do not always have a circle as the shape of a cross-section,
so an ellipse is better suited to capture variances in branch shape, with a circle being a
special case of an ellipse. For this reason we want to fit an ellipse to the given points.

Mathematically, an ellipse can be uniquely defined by providing 5 points on its circum-
ference. For the reconstruction task, where we strive to discover the geometry of the real
tree branch, it is clear that taking just 5 probably noisy points and constructing an ellipse
through them is likely to produce incorrect results. In order to produce more stable results
we require a branch cross-section to contain at least 10 points. If there are more than 20
points in the projection, we randomly select 20 of them for the further computation.

We analytically fit an ellipse to the given points of the projected slice. An ellipse is a
conic section and hence may be defined by the conic equation

𝑄(𝑥, 𝑦) := 𝐴𝑥
2 + 𝐵𝑥𝑦 + 𝐶𝑦

2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0. (3.1)

If 𝑄(𝑥𝑖, 𝑦𝑖) > 0 for an arbitrary point 𝑃(𝑥𝑖, 𝑦𝑖) then 𝑃 does not belong to the ellipse.
𝑄(𝑥𝑖, 𝑦𝑖) represents the algebraic distance of 𝑃 to the ellipse. The fitting task is to minimize
the algebraic distance 𝑄(𝑥𝑖, 𝑦𝑖) for all points, which means to minimize the sum

𝑆 =

𝑛∑︁
𝑖=1

|𝑄(𝑥𝑖, 𝑦𝑖) |
2
. (3.2)

In order to avoid the trivial solution 𝐴 = 𝐵 = 𝐶 = 𝐷 = 𝐸 = 𝐹 = 0 many different
normalizations are proposed in literature. We chose to normalize 𝑄(𝑥, 𝑦) by setting 𝐹 = 1
and solve the resulting system of linear equations in a least-squares sense as described
in [Ros93; Zha97]. Other conic fitting techniques, e. g. based on the minimization of
Euclidean distances [Zha97], may yield better results than analytic fitting, but the difficulty
of calculating the orthogonal distance of a point to an ellipse requires those techniques to use
iterative algorithms like Gauss-Newton or Steepest Gradient Descent. Methods specialized
on ellipses [Tau91; FPF99] may also yield more accurate results than conic fitting, but are
computationally more demanding.

Due to noise and irregular sampling the principal curvature directions are not guaranteed
to be accurate, making an adjustment of the slice orientation necessary. This adjustment
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will be explained in the next section. Its presence however explains why a more accurate
ellipse fitting is not required in this step of the reconstruction.

Since adjacent points in the point cloud are likely to lead to similar detected ellipses, we
check for every detected ellipse whether the points from the slice used for fitting have a
curvature which is close to the curvature of the ellipse, with regard to value and orientation.
Any point, for which this is true, supports the same ellipse and does not require further
calculations.

3.7.3 Ellipse adjustment

Although the principal curvatures and thus the branch slices can be determined correctly in
many cases, there are still occurrences where the results are not desirable. This is especially
noticeable in regions of the input data where branch surfaces are nearly flat or even concave.
In those cases both the principal directions and principal curvatures will not allow to directly
determine the correct cylindrical slice to use for the ellipse detection.

Figure 3.3(a) shows a part of a tree branch in which a slice does not lie perpendicular to
the branch axis. A simple criterion allows for identification of that case: the ratio of the
length of the ellipse axes is not close to 1. We use a threshold of 0.9 for the ratio of the
shorter to the longer ellipse axis and perform the adjustment step if the ratio is lower. Some
branches do naturally have a shape which exhibits a smaller ratio, but this is not known a
priori for a branch.

For those ellipses which need to be adjusted, the points in the 2D projection of the slice
(Figure 3.3(d)) do not lie close to the fitted ellipse. This can be determined by calculating
the standard deviation 𝜎 of the distance from the points to the ellipse. We assign a score to
the ellipse fit which is score =

sampling distance
𝜎

.
For a perfectly cylindrical branch, the length of the shorter ellipse axis is equal to the

branch diameter, while |shorter ellipse axis|
|longer ellipse axis| = cos(𝛼), where 𝛼 is the angle between the slice

normal and the branch axis. In order to find the correct slice which is perpendicular to the
branch axis, the current slice needs to be rotated by 𝛼 around the shorter ellipse axis in 3D,
which by construction coincides with the line through 𝑃 and 𝐶 (Figure 3.2).

Since cos(𝛼) = cos(−𝛼) both directions are possible for rotation and have to be considered
(Figure 3.3(b-c,e-f)). For both rotated slices the score is calculated, and the one with a
score higher than the original slice is selected and the algorithm is repeated. The algorithm
terminates when the selected slice has a score > 1. If no such slice can be found within
several repetitions, the selected slice and its ellipse are discarded. The original point 𝑃 is
then marked as not having an associated ellipse. Note that the ellipse fitting algorithm from
Section 3.7.2 does not forcibly fit an ellipse to the points projected in 2D, as is the case in
Figure 3.3(f), since that is determined to be a hyperbola.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Adjusting the ellipses. Top left shows the points in the cylindrical region in red, bottom
left is the projection into 2D with fitted ellipse. Middle and right columns show points after tilt of
the cylinder axis towards left and right.

3.7.4 Segmentation

After the ellipse adjustment step there are regions in the tree where no ellipses could be
fitted to the data points. This is generally the case for sparsely sampled regions occurring in
the tree crown, where branch thickness is small compared to the sampling distance of the
acquisition device. The trunk region and main branches can often be represented well by
the detected ellipses.

This observation can be trivially used to segment the input point cloud into two regions.
The dense region contains all points which are within distance 𝜖 of the generalized cylinder
spanned by any two adjacent ellipses. These points can be considered as adequately
represented by the generalized cylinder. All other points then belong to the sparse
region (Figure 3.4).

3.7.5 Reconstructing dense regions

In a dense region virtually every point has an associated ellipse and the overall structure of
each branch is represented well by the ellipses (Figure 3.5(a,b)). 3D geometry for a branch
shall be created in the form of generalized cylinder shells between adjacent ellipses, which
requires to reduce the initial number of ellipses.

First, a spanning tree over the ellipse center points is calculated using Dĳkstra’s algorithm
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Figure 3.4: Segmentation of the tree into dense parts which have been found by the ellipse detection
(red) and those parts which need to be reconstructed using the spanning tree approach (blue).
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(a) (b) (c) (d)

Figure 3.5: (a) Input points in a dense region and (b) detected ellipses with their centers. For clarity,
only every 100𝑡ℎ ellipse is shown. (c) The center points are connected by a spanning tree. (d) Branch
representation after filtering.

(Figure 3.5(c)). From this spanning tree all those leaf nodes are successively removed,
whose ellipses lie within the radius of parent nodes, and those which have a radius much
larger than the parent nodes. This effectively removes noise from incorrectly detected
ellipses. Then nodes are removed from the branches until the distance between remaining
nodes is close to the branch diameter (Figure 3.5(d)). A generalized cylinder surface is then
constructed between any two adjacent ellipses to represent the local branch geometry.

3.7.6 Reconstructing sparse regions

A spanning tree is created over the graph representing the nearest-neighbors-relation in the
original point cloud and each subtree is extracted from the segmented area which does not
already have geometry assigned. In general, each of those graph subtrees represents a group
of branches from the original tree, which are so sparsely sampled that a cross-section of
such a branch does not have enough points as to allow ellipse fitting.

For each of the graph subtrees we perform an independent reconstruction. Following the
idea of [LYO+10] every node in the subtree is assigned an importance according to the size
of the partial tree from the node towards the leaves. This allows for computing a branch
radius which is proportional to the importance, so that branches in the tree crown are thinner
than inner branches of the tree. The base branch radius is initialized with the radius of the
ellipse which belongs to the node which connects the current subtree with the dense region.

Filtering of outliers, removal of nodes from the graph and geometry construction are
performed as in dense regions (Section 3.7.5), except that branch radii are not determined
by ellipse fitting but by a function from allometric theory [TZW+07; XGC07].
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(a) (b) (c) (d)

Figure 3.6: (a) Acorn automatically segmented into dense and sparse regions. (b) Reconstruction of
geometry for the dense region. (c) Reconstruction of the whole tree. (d) Tree with added leaves.

3.7.7 Joining parts

In the final step of our reconstruction algorithm the subtrees from the sparse region are joined
with the data from the dense region and the positions of the joining nodes are smoothed to
ensure the branches do not have sharp edges. The result is a complete reconstruction based
on the input point cloud. As the branch structure is known from the tree model, textured
leaves can be synthesized and attached to the tree in order to enhance visual appeal.

3.8 Results

For our experiments we used point clouds acquired by a ground-baser laser scanner (Leica
HDS3000). 3 scans of each tree from different directions were registered and aligned and
then used as inputs to our processing pipeline. The data acquisition step took roughly 15
minutes per scan plus another 15 minutes for data transfer and manual registration. Note
that the tree trunks are generally represented with a high accuracy and point density in all
scans, while the tree crowns still suffer from occlusions and a comparably low point density.

The single steps of our reconstruction pipeline are illustrated in Figure 3.6. Figure 3.7
shows several branches reconstructed from the dense region of the acorn data set. Although
points for the upper side of many branches were not available in the input and a certain
amount of noise is present, the ellipse fitting properly detected positions and sizes of the
branches.

For comparison with existing methods, we chose those of Jayaratna and Livny et al.
since they worked well for their respective setup with dense or sparse point clouds (Figure
3.8). Due to memory limitations, we were not able to perform the global optimizations of
Livny et al. on the whole beech tree data set, and instead chose a region of 100k points
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Figure 3.7: Detail of the dense region in a point cloud with reconstructed geometry from ellipse
fitting.

Model # points principal ellipse sparse
curvatures fitting reconstruction

Acorn 719,620 43m 61m 20m
Beech 1,342,990 80m 109m 44m

Table 3.1: Point clouds and reconstruction timings

around the trunk and several main branches (Figure 3.8 top row). Since that region was
densely sampled, the spanning-tree approach produced artifacts (Figure 3.8(c)), while the
RANSAC-based circle fitting and our analytical ellipse fitting (Figure 3.8(b,d)) produced
similar reconstructions.

For the complete data set with 1.3 million points (Figure 3.8 bottom row), our reconstructed
model looks plausible both for the trunk area and for the fine branches, while the circle
fitting does not find any additional branches within the sparsely sampled region.

Our current unoptimized implementation in MATLAB requires a few hours of processing
for each tree (Table 3.1) on a 2.4GHz CPU. Most of the time is spent on principal curvature
calculation and ellipse fitting. These steps could be sped up by parallelization, since the
calculations for every input point are independent from one another.

The main limitation of our approach is that it is mostly data-driven. If parts of a tree are
not represented in the input point cloud at all, they cannot be reconstructed. A possible
solution would be to simulate the tree growth and thus construct missing parts from rules
rather than from data. Small-scale occlusions however are handled well, as in Figure 3.7,
where the upper side of the small branches and the frontal side of the large vertical branch
have regions without data points.

As leaves of a real tree can produce noisy data points during the acquisition, due to their
fine structure and wind movement, our method does not directly try to reconstruct them.
Instead, leaves are added with random orientations to the fine branches of a reconstructed
tree (Figure 3.9).

Although not demonstrated in this paper, our reconstruction approach can work on
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No processing
possible due
to memory
limitations

(a) Input data (b) Jayaratna [Jay09] (c) Livny [LYO+10] (d) Our method

Figure 3.8: Comparison of tree reconstruction methods. Top row: dense point cloud with approx.
100k points. Bottom row: approx. 1.3m points.

(a) Input data for beech tree. (b) Reconstruction with leaves.

Figure 3.9: Beech tree data set.

different kinds of trees and tree-like objects. Small bushes with thin branches would only
use the sparse part of the hybrid approach, while a street lamp with a cylindrical lamppost
can be reconstructed by the dense part of the method.
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3.9 Conclusion
We have presented a novel method which is capable of reconstructing a model of a tree from
an inhomogeneous point cloud. Branch skeletons and geometry can be reconstructed from
both dense and sparse regions of the point cloud, without requiring user interaction for the
segmentation or parameter tuning. The median sampling distance serves as a good reference
and makes the algorithms independent of the actual size of the tree to be reconstructed.

Our choice of the ellipse fitting method is stable under reasonable amounts of noise and
lends itself to a faster parallel implementation in future. Having created a full skeleton
model for a tree, our future research will encompass the extraction of parameters for inverse
procedural modeling. This would enable an improved work-flow for creators of digital
environments, as they can then easily capture an existing tree, retrieve its parameters and
create large amounts of similar trees with variations of the parameters.

We want to thank Martin Blome for providing the scanned tree data used throughout this
chapter. This work was partially funded by the German Research Foundation (DFG) under
grant KL 1142/9-1 (Mapping on Demand).
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CHAPTER 4

Exploring Shape Spaces of 3D Tree
Point Clouds

This chapter corresponds to the publication Fabian Aiteanu and Reinhard Klein, Exploring
shape spaces of 3D tree point clouds, Computers & Graphics, Vol. 100, Nov. 2021 [AK21].

4.1 Summary of the Publication
In this publication we combine ideas from the previous chapters of this thesis in order to
generate new tree models from existing ones. We explain how to create a shape space
from two or more point clouds of botanical trees. After establishing correspondences
between branches and individual input points, our efficient formulation allows to compute
the geometric 3D tree model for a given point in shape space in linear time, allowing an
interactive exploration. As our metric captures branch attributes such as length, orientation,
and radius, in a natural way, it is possible to explore the shape space beyond the convex hull
formed by the input trees and their geodesics. Every point in the constructed shape space
represents a tree in 3D space, allowing to quickly create lots of similar but still distinct trees
for various areas of application.

Although researchers have previously proposed the use of shape spaces to represent
biological trees, we present the first approach which uses point clouds as an input and output
format. Similar to the preservation of surface details during editing operations presented in
Chapter 2, we also strive to preserve local surface details, such as the tree bark structure,
during our interpolation. This kind of detail was previously not regarded, as the main focus
of other methods lay on branch structure and connectivity. For our setting, the individual
points are important, and matching between points of corresponding branches requires
that points are assigned to proper branches in the first place. To that end, we present a
segmentation procedure which is based on point distances to branches and additionally on
local surface normals. This helps to assign points to the proper branch, as otherwise it can
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lead to visual artifacts in the vicinity of branch bifurcations if points are displaced in an
unintuitive manner during interpolation.

After computing branch correspondences, we want to compute a mapping between
individual points using an optimal transport technique. Golla et al. [GKK+20] explain how
to use a regularized optimal transport to compute such correspondences between patches
of points in a tree, but they do not take into account that optimal transport mappings are
generally susceptible to translations, scaling, and rotations. When applied to structurally
different trees, e. g. an acorn with upright branches and a willow tree with branches hanging
down, wrong ends of individual branches may be mapped onto each other and effectively
tear the tree apart during interpolation. To alleviate this issue, we introduce an alignment
step for branches including rotation, anisotropic scaling, and translation operations, before
executing the matching with optimal transport.

Our main contribution is the definition of a new Orientation Radius Length (ORL) tree
shape space which captures the geometry of a biological tree and its possible deformations
in an intuitive manner. When modeling a growing tree, it is straightforward to slightly
increase the values in all shape space dimensions for lengths, radii, and possibly also for
orientations. Such operations are considerably more difficult in the Euclidean shape spaces
of Feragen et al. [FLB+13] or Wang et al. [WLX+18]. Our shape space is equipped with a
proper metric and we explain its use for the computation of geodesics between tree instances,
and also how to determine corresponding 3D tree geometry from the coordinates of any
point in an ORL tree shape space in linear time.

In our experiments, the point correspondences required to establish a shape space were
computed in about 20 minutes. Creating the geometry for a tree instance from the shape
space took roughly half a second, allowing a user to quickly create a large variety of similar
trees.

4.2 Author Contributions of the Publication

In this work, I designed and implemented the segmentation of branch points based on
proximity and local surface normals. Point correspondences between corresponding
branches were computed using optimal transport as described by Golla et al. [GKK+20], but
I devised and implemented the alignment step of branches which considerably improves the
matching result. I developed the theoretical foundation for the Orientation Radius Length
(ORL) shape space for biological trees, including its metric, the computation of geodesics
used for interpolation, and the generation of a tree model from its shape space coordinates.
I also implemented the interpolation method and tree model generation.

All experiments, visualization, and evaluation of results were performed by myself.
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4.3 Abstract
We propose a framework for creating a shape space for biological trees from existing
point clouds. Our method allows to freely explore the shapes between given input trees
by computing arbitrary points on the geodesics induced by our metric. After establishing
correspondences between branches and individual input points, our efficient formulation
allows to compute the geometric 3D tree model for a given point in shape space in linear
time, allowing an interactive exploration. As our metric captures branch attributes such as
length, orientation, and radius, in a natural way, it is possible to explore the shape space
beyond the convex hull formed by the input trees and their geodesics. Our method works
directly on point clouds, which can be acquired using ranged sensing devices, and does not
rely on an intermediate mesh representation.

4.4 Introduction
Plants and trees are important assets for virtual environments. They are used in many
application areas like movies, games, or architecture. Since they are abundant in the world
surrounding us, vegetation plays an important role in making virtual environments look and
feel more natural. Many different approaches have been proposed to facilitate creation of
realistically looking models. Some of these methods aim at creating virtual representations
of existing plants by capturing images or range scans of them. Since manual acquisition
is quite labor-intensive and hardly viable for large environments as required in movies,
generative methods have been developed to create 3D models without an existing natural
counterpart.

In this work we propose a framework to generate 3D tree models from existing ones,
which have been acquired by a ranged sensing device. Using only a few input point clouds,
we can generate new models that are distinct from the existing ones, and can be used to
populate virtual environments. Tree instances are represented as points in the introduced
tree shape space and allow for an efficient exploration of that space, both within the convex
hull of the input trees and their connecting geodesics, and beyond it. We build upon the tree
shape space concept introduced by Billera et al. [BHV01] and extend it to represent branch
orientations, radii, and lengths. Those capture tree geometry in a way that allows for an
intuitive application of deformations.

In summary our contribution is this:

• We present a method that takes point clouds of biological trees as inputs, upon which
a point-wise interpolation is performed. Point correspondences are established after
an initial skeletonization and segmentation of the point clouds.

• Our segmentation is based on local surface normals, in addition to proximity, so that
points acquired from thin side branches are not inadvertently assigned to wider main
branches. A segment-wise regularized optimal transport computes the final point
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Figure 4.1: Overview of our processing pipeline. (a) Inputs are point clouds of source and target
biological trees. (b) A skeleton is computed for each point cloud and (c) branch correspondences are
determined. Corresponding branches are color-coded for display. (d) Point correspondences are
established between the point sets that belong to a pair of branches. (e) A shape space is created
in which trees are represented as points. Interpolated points (T2, T3) on the geodesics correspond
to smooth geometric deformations between source and target trees. Extrapolated points (T1, T4)
represent new trees which are similar to the given ones.

correspondences. Our computation pipeline uses point clouds for input and output,
which is data directly acquired by ranged sensing devices. We do not need meshes as
an intermediate representation.

• We define a novel Orientation Radius Length (ORL) tree shape space which is based
on the tree skeleton and captures tree geometry in a natural way. Bending a branch
can be represented by changing orientation and length of individual branch segments.

• We explain how to compute geodesics between tree instances in our ORL tree shape
space, and how to obtain the 3D tree geometry for arbitrary points in the ORL tree
shape space in linear time.

4.5 Overview

After presenting related work for our topic, we describe the individual steps of our processing
pipeline (Figure 4.1). First, we use the skeletons of the input trees to determine coarse
correspondences between branches. A common set of branches, some of which may have
zero length, is the basis for our tree shape space. Then we describe our method for finding
correspondences between branch points using an optimal transport approach. With the
given branch and point correspondences we explain creation of an ORL tree shape space
and its metric, along with the method to interpolate tree instances at arbitrary positions
on the geodesics, and extrapolate beyond the convex hull induced by the input trees. We
demonstrate the results of our processing pipeline on several examples.
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4.6 Related Work

3D Modeling of Trees
Modeling 3D trees is a challenging task. Various approaches have been developed, such as
capturing and reconstructing real-world trees from images or point clouds. On the other
hand, there are generative techniques like procedural modeling or data-based interpolation,
which do not aim at reconstructing an existing object, but creating new ones.

Early methods use images of biological trees as input for processing. Reche et al. [RMD04]
extract a volumetric representation of a tree, which is suitable for rendering modified views
of the same tree. Neubert et al. [NFD07] propose an approximate volumetric representation,
upon which a particle flow simulation is applied to generate branches.

With advances in scanning technology, newer methods use points clouds as data sources.
Some methods aim at extracting a skeleton from the input point cloud, where the skeleton
itself is considered to be the desired form of representation [BLM10; HWC+13; GZLC19].
Others try to reconstruct the surface geometry as well [LYO+10; RKÅ+13; AK14; HSC+15],
and thus implicitly or explicitly provide additional attributes to a skeleton representation,
such as branch radii.

In the context of plant modeling, procedural approaches try to mimic the growth of real
plants by repeatedly applying sets of rules. As the underlying biological rules [Hon71;
PLH+90] cannot be determined directly, inverse procedural modeling is a frequently used
technique to derive them [SRDT01; QTZ+06; TZW+07; SPK+14].

Point Correspondences
To generate tree models from existing exemplars, we want to have correspondences between
points on the source and target trees. The general correspondence problem is very hard to
solve, as no unique mapping exists between points of the same object acquired at different
instances in time, or between different objects. Li et al. [LFM+13] exploit spacial and
temporal proximity in a forward-backward analysis in order to track growing plant parts
over time. Local deformations are notoriously difficult to track and assign properly, so the
framework proposed by Yuan et al. [YLX+16] decomposes articulated point cloud sequences
into near-rigid moving parts. Trajectory analysis determines clusters of co-moving points
and progressively propagates this information to neighboring frames. This is different from
our setting, where we want to generate new models between unrelated tree instances.

If a direct mapping of points is not required, optimal transport provides an alternative
approach to the correspondence problem. It has been used successfully in various computer
graphics and computer vision applications. In general, optimal transport seeks to map two
probability distributions onto each other while minimizing the cost for mapping. Early
applications include its use for the measurement of the similarity of images by defining the
earth mover’s distance between color distributions and between texture feature distributions
as used by Rubner et al. [RTG98; RTG00]. Ferradans et al. [FPPA14] describe a regularized
discrete optimal transport within a unified convex variational framework. That demonstrates
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the possibility to use optimal transport in a discretized setting, as opposed to the initial
continuous notion used for distributions.

Regarding our setting of generative modeling, optimal transport has also been ap-
plied for interpolation tasks. Respective examples include the interpolation between tex-
tures [RPDB11], reflectance models such as bidirectional reflectance distribution functions
(BRDFs) [BVPH11] or geometric models in terms of volumetric representations [SDP+15].
In the context of point clouds, optimal transport has been used for surface reconstruction
and simplification [DCA+14], and Merigot et al. [MMT18] investigated optimal transport
between a simplex group and a point cloud.

Searching for global optimal correspondences does not generally yield plausible results.
This is particularly noticeable for botanical trees, as they can exhibit varying numbers of
branches and bifurcations. A global optimal transport can e. g. tear off pieces from some
branches and attach them to different parts of the tree. Golla et al. [GKK+20] solve this
issue by generating hierarchical segmentations of the point clouds, matching segments and
formulating the segment-wise growth process as an optimal transport problem. However,
they assume that matching is performed on the same tree in different growth stages, and
cannot account for interpolations between topologically and geometrically different trees,
e. g. an acorn and a willow tree.

Shape Spaces
A different approach to plant modeling is based on shape spaces. Creating a shape space for
trees was first introduced by Billera et al. [BHV01] to represent phylogenetic trees. They
are used to model an ancestry relationship between different species of organisms and the
employed metric measures how closely related the species are in a biological sense. Various
authors used this concept for the statistical analysis of tree-like data [e. g. OP10; AAV+14].
Since those works focus on the topology of trees, they do not take the geometry into account.
Other authors [e. g. FLB+13; WLX+18; WLJ+18] introduce different metrics to capture a
geometric interpretation of a real-world object within a shape space, like airway trees and
biological trees. We extend that approach by explicitly representing the orientation of tree
branches using quaternions, in addition to scalar lengths and radii.

4.7 Skeletonization and Branch Correspondences

The inputs to our processing pipeline are unstructured point clouds of botanical trees. Such
data may come from single laser range scans or multiple registered scans. Typically, scanned
data can be noisy or have holes due to occlusions. As various approaches exist to deal with
such situations (see [ACK13] or [BTS+17] for a comprehensive overview), we consider
them to be part of an optional pre-processing step, and do not attempt to modify the input
data. In that sense, we assume the inputs to have suitable quality themselves as to be usable
within the envisioned virtual environment.
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For the interpolation task, we want to have correspondences between points on the source
and target trees. In our approach, rough correspondences are first determined between
branch skeletons of the involved trees, and then detailed point correspondences are calculated
afterwards.

Tree branches are the central unit upon which the correspondence computation takes place.
In order to obtain them, a skeletonization method is applied to the input point cloud. We use
the method of Aiteanu et al. [AK14] to extract a tree skeleton, since it works well on point
clouds with varying density, but other methods [BLM10; HWC+13; GZLC19; LYO+10;
RKÅ+13] could also be used on specific input data. The computed skeleton consists of
segments which represent the trunk and branches. A long bent branch may be represented
by multiple straight segments. Nodes between branch segments are annotated with the
computed radius 𝑟𝑖 of each branch at the node point. Although the skeletonization method
of Aiteanu et al. fits ellipses to the branch cuts, we assume a single radius representing a
circular shape to be sufficient for our purposes.

Output of the skeletonization is a graph 𝐺 = (𝑉, 𝐸, 𝐴). The vertices 𝑉 of the graph are
either bifurcation nodes, points along branches, or branch extremities. Those vertices are
connected by the edges 𝐸 . The annotations 𝐴 consist of the branch radii at the node points.

A branch 𝐵𝑖 can then be represented as 𝐵𝑖 = {𝑃𝐵𝑖
, 𝑛1, . . . , 𝑛𝑚} where 𝑃𝐵𝑖

is the node of
the parent branch of 𝐵𝑖 and 𝑛 𝑗 = {𝑥, 𝑟}, 𝑥 ∈ R3

, 𝑟 ∈ R, 𝑗 = 1 . . . 𝑚 are the nodes constituting
the branch. Each branch is linked to its parent branch in a recursive fashion, up to the main
trunk of the tree.

The choice of correspondences determines the geometry of interpolated branches. Using
the trees in the left and right columns of Figure 4.2 as an example, there are three basic
methods of assigning the side branches to each other in literature, which can also be
combined. The approach of Feragen et al. [FLB+13] prefers branches with similar attributes,
thus mapping the side-branches on the same side of the trunk to each other. Their approach
unnaturally shortens the interpolated trunk and at the same time may produce trees with
are biologically implausible. The phyllotaxis arrangement of alternating branches in some
species, as in the left and right trees, does not allow for branches at the same position along
the trunk, as in the central image (Figure 4.2b). Duncan et al. [DKS+18] present one scheme
where position weights are strongly emphasized, leading to non-matching between the
existing branches and instead match new zero-length branches at the desired positions. In
the interpolated result all branches have half length, but their number doubles (Figure 4.2d).
This comes in addition to violating the phyllotaxis. The approach of Wang et al. [WLX+18;
WLJ+18] instead matches branches according to their linear order on the trunk. While their
interpolation may move branches through the trunk in 3D (Figure 4.2c), our approach rotates
the branches around the trunk, as can be seen in the top-down-view (Figure 4.2a). This
might not always provide biologically plausible results, but for instance rotating sunflowers
support the idea that torque around a tree trunk is possible.

In order to map a source tree 𝑆 to a target tree 𝑇 , we assume that correspondences can
be found on the same levels of the branch hierarchy in 𝑆 and 𝑇 . So the main trunk of the
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(a) Our approach

(b) Feragen et al.

(c) Wang et al.

(d) Duncan et al. with high position weight

Figure 4.2: Schematic comparison between branch geodesics in 3D obtained with our method (a),
the method of Feragen et al. [FLB+13] (b), Wang et al. [WLJ+18] (c) and Duncan et al. [DKS+18]
(d). Same colors represent corresponding branches according to the method used. The small boxes
represent top-down-views of the interpolated trees.

(a) (b)

Figure 4.3: (a) Skeletal representation of branches in source and target tree. (b) A bĳective mapping
is created between the branches. White circles show nodes created after elastic curve matching.
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source tree is mapped to the main trunk of the target tree, and then the same rule is applied
recursively to lower levels in the hierarchy. The main trunk is chosen as the branch with the
largest path length from the tree root to its end. A source branch is mapped onto its target
branch using the bifurcation point matching algorithm of Wang et al. [WLX+18], (see their
paper for full details): first, each branch is re-sampled with equidistant points and then a
B-spline is fitted to them, in order to obtain a smooth parameterized curve. An elastic curve
matching is then applied to minimize the amount of bending and stretching needed to align
the curves onto each other. Since the nodes of the branches may not coincide after curve
matching, especially if the number of nodes on the source and target branches differ, the last
step comprises minimization of an energy function which produces a bĳective mapping of
nodes between the branches (Figure 4.3). The construction of the mapping may involve
creating additional nodes on the source and target branches, ensuring that their number is
equal and their distance falls below a given threshold.

The last step of the skeletonization phase consists of assigning each point of the input
point cloud to one of the branches. Our approach first computes the distance between each
point 𝑝 and its nearest branches. As the branch radii of 𝐺 are known, a branch is a candidate
if the point is not further away than the branch radius times a noise factor. The noise factor
is dependent on the quality of the input point clouds and the specifics of the used sensing
device. We found a factor of 1.1 to be well suited for our purpose, as it allows for 10%
deviation in normal direction.

For most points there exists only a single branch which fulfills the proximity criterion.
However, especially in the vicinity of branch bifurcations it is not clear to which branch
a specific point belongs, as there are multiple candidates (Figure 4.4(a)). We select the
respective candidate branch which has the smallest angular deviation between the normal
of the point 𝑛𝑝, as determined from a nearest-neighbors search and principal component
analysis [AK14], and the normals of the branches 𝑛𝑢 and 𝑛𝑣 in their 2D projection.

As each point is uniquely assigned to a branch, each branch has a corresponding set of
points which belong to it (Figure 4.4(b)). Those are used for the next phase in our pipeline.

4.8 Point Correspondences
After having established correspondences between branches of the skeleton, the next
step is assigning point-wise correspondences between branch points. For this we use
an optimal transport algorithm. In its basic formulation, optimal transport computes
the Wasserstein metric, the minimum distance between two probability distributions. A
discretized interpretation hereof minimizes the cost of moving each point from a set
𝑆 = {𝑠1, . . . , 𝑠𝑛} to a position indicated by set 𝑇 = {𝑡1, . . . , 𝑡𝑚}, while ensuring that the
applied mapping is bĳective. Since our sets contain points from Euclidean space, we have
a cost function 𝑐 : R3 × R3 → [0,∞), where 𝑐(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ is the Euclidean distance
between points. Although the Wasserstein distance is well-defined, the mapping function is
generally not unique and different assignments may have the same minimal cost. Moreover,
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(a) (b)

Figure 4.4: (a) A point 𝑝 which is close to branches 𝑢 and 𝑣 with their normals 𝑛𝑢 and 𝑛𝑣 after
projecting to the plane spanned by 𝑢 and 𝑣. 𝑝 is assigned to the branch with smaller normal angular
deviation to 𝑛𝑝, in this case 𝑢. (b) Branches with assigned points for a whole tree. Individual
segments are randomly colored.

Figure 4.5: Steps to align the points of branch segment 𝑣𝑆 to 𝑣𝑇 .

the mapping computed by optimal transport is generally not invariant to translations and
scaling, and in particular it is very sensitive to rotations.

In order to achieve good point assignments, we initially align points of each branch
segment in 𝑆 to those of the branch segment in 𝑇 (Figure 4.5). The steps are

• rotate segment vector 𝑣𝑆 to the same orientation as 𝑣𝑇

• scale 𝑣𝑆 to the same length as 𝑣𝑇

• scale distance of all segment points from 𝑟𝑆 to 𝑟𝑇

• translate segment points by the difference of the segment start points 𝑝𝑇 − 𝑝𝑆

It is important to note that the two scaling steps are anisotropic, because corresponding
branch segments between trees may vary in length and diameter, and those are independent
of one another.
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4.9 Interpolation

With the computed initial alignment of points for a pair of branch segments we determine
point correspondences using optimal transport as described by Golla et al. [GKK+20].
Those point correspondences are generally not one-to-one, as there may be different numbers
of points on the branch segments, so each point on one branch may be related to multiple
points on the other branch. In the following, we briefly describe the important steps of the
optimal transport implementation.

A cost matrix 𝐶 ∈ R|𝑆 |×|𝑇 | is created where each entry 𝐶𝑖 𝑗 = 𝑐(𝑠𝑖, 𝑡 𝑗 ) is given by the cost
function defined earlier. The goal is to find an optimal transport matrix 𝑀 ∈ R|𝑆 |×|𝑇 | so that
the 2-Wasserstein distance

𝑑𝑤2(𝑆, 𝑇) = min
𝑀

√︄ ∑︁
1≤𝑖≤|𝑆 |

∑︁
1≤ 𝑗≤|𝑇 |

𝑀𝑖 𝑗 · 𝐶𝑖 𝑗 (4.1)

is minimized. Additional constraints ensure that 𝑀 preserves the transported mass between
source and target. As full cost and transport matrices may not fit in available memory
for large point clouds, only 𝑘 nearest neighbors are considered for each point, yielding
a formulation with sparse matrices. In that setup 𝑀 is efficiently computed using the
Sinkhorn algorithm [Cut13]. Although 𝑀 is sparse, it may produce lots of many-to-many
relationships between source and target points, what is not desirable for the purpose of tree
interpolation. To alleviate the issue, a matrix �̂� is constructed, that only has entries where
𝑀 had row-wise or column-wise maxima. This minimizes the number of corresponding
point pairs, but at the same time ensures that every point from 𝑆 and 𝑇 does have a partner
in the other set.

�̂� provides the correspondences between points that we can use to interpolate between
trees. If one point has multiple correspondences, the point is duplicated in its set, so that 𝑆
and 𝑇 effectively have the same number of points and a one-to-one mapping between them.

4.9 Interpolation

With branch-wise and point-wise correspondences established between two trees, we can
proceed to define the mechanism to interpolate between them. The only parameter required
for this purpose is _ ∈ [0, 1], which determines the ratio of blending the source and target
tree. If _ = 0 the result is 𝑆, and for _ = 1 the result is 𝑇 .

4.9.1 Skeleton Interpolation

Starting from the tree trunk, we compute a representation in generalized coordinates for
each tree, which consists of the length of each branch segment and its orientation relative to
its parent branch segment. The orientation change can be represented as a unit quaternion
𝑞 = (𝑤, 𝑥, 𝑦, 𝑧) ∈ S3 ⊆ R4 (Figure 4.6(a)).
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(a) (b)

Figure 4.6: (a) A unit quaternion 𝑞 describes the rotation from vector 𝑢 to 𝑣. Lengths are not taken
into account when rotating, so that the length 𝑠 of 𝑣 has to be stored separately. (b) When visualized
on a unit sphere in R3, the geodesic from 𝑢 to 𝑣 lies on an arc of a great circle.

Although infinitely many different rotations can be used to align two vectors 𝑢, 𝑣 ∈ R3,
the shortest arc quaternion (Figure 4.6(b)) provides the one with the shortest length and
thus “smallest" rotation:

𝑞𝑢→𝑣 =

[
‖𝑢‖‖𝑣‖ + 𝑢

𝑇 ·𝑣
𝑢 × 𝑣

]
1𝑢 · ‖𝑣‖ + ‖𝑢‖ · 𝑣

 (4.2)

where ‖ • ‖ is the Euclidean norm, 𝑢𝑇 ·𝑣 is the dot product and × is the cross product.
Without diving into details of quaternion algebra, we can see from the formula that 𝑢 × 𝑣

produces a vector orthogonal to 𝑢 and 𝑣 around which the quaternion performs its rotation.
This is more efficient than using a 3 × 3 rotation matrix, which rotates around 3 Euler axes
and is susceptible to gimbal lock.

The rotations 𝑞, radii 𝑟 and segment lengths 𝑠 are stored as attributes 𝐴 of a tree graph
𝐺 = (𝑉, 𝐸, 𝐴). The edges 𝐸 are the same ones as in the original graph 𝐺, and the vertices
𝑉 correspond to 𝑉 , but do not have associated Cartesian coordinates (𝑥, 𝑦, 𝑧). As a rotation
is represented by a unit quaternion, it is technically possible to also encode the segment
length in a non-unit quaternion. This would however overly complicate further calculations.

Due to the inserted nodes in 𝑆 and 𝑇 (Section 4.7) the graphs 𝐺𝑆 and 𝐺𝑇 share the same
sets of vertices 𝑉 and edges 𝐸 , and naturally all interpolations of those graphs do so as well.
An interpolated graph can be defined as

𝐺𝑆𝑇 (_) = (𝑉, 𝐸, 𝐴𝑆𝑇 (_)) (4.3)

where the radial and scalar components of the attributes are

𝐴
𝑆𝑇
𝑟 (_) = (1 − _) · 𝐴𝑆

𝑟 + _ · 𝐴𝑇
𝑟 (4.4)

𝐴
𝑆𝑇
𝑠 (_) = (1 − _) · 𝐴𝑆

𝑠 + _ · 𝐴𝑇
𝑠 (4.5)
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(a) _ = 0 (b) _ = 0.25 (c) _ = 0.5 (d) _ = 0.75 (e) _ = 1

Figure 4.7: Intermediate skeletons between the tree in the first column (_ = 0) and the one in the last
column (_ = 1). Corresponding branches are displayed in the same color. For clarity, only the main
trunk and second level branches are shown.

and the orientation is
𝐴
𝑆𝑇
𝑞 (_) = 𝑠𝑙𝑒𝑟 𝑝(𝐴𝑆

𝑞 , 𝐴
𝑇
𝑞 ;_). (4.6)

Slerp is the spherical linear interpolation between quaternions as introduced by Shoe-
make [Sho85] and can be expressed as 𝑠𝑙𝑒𝑟 𝑝(𝑞0, 𝑞1;_) = 𝑞0(𝑞

−1
0 𝑞1)

_. When multiple
successive values of _ are calculated, e. g. for an interactive application or animation, slerp
applied to a pair of quaternions has the effect of a rotation with uniform angular velocity
around a fixed rotation axis. This gives the impression of a smooth and natural deformation.

In order to obtain Cartesian coordinates to be displayed, 𝐺𝑆𝑇 needs to be computed
from 𝐺𝑆𝑇 . An arbitrary position and orientation vector are chosen for the root node of
the tree, e. g. 𝑥0 = (0, 0, 0) and 𝑣0 = (0, 1, 0). For each child node 𝑐 the direction vector
is 𝑣𝑐 = 𝑞𝑐𝑣𝑝𝑞

−1
𝑐 𝑠𝑐 and the position 𝑥𝑐 = 𝑥𝑝 + 𝑣𝑐, where 𝑥𝑝 and 𝑣𝑝 are the parent node’s

position and normalized direction respectively, and 𝑞
−1 is the quaternion inverse. For the

purpose of vector-quaternion multiplication, vector 𝑣 is treated as (0, 𝑣), a quaternion with
a zero scalar component. This scheme is applied recursively to all child nodes to determine
all node coordinates in 𝑉 . Figure 4.7 displays the computed skeleton for various values of
_. On a side note, converting an orientation-length representation to positions is known as
forward kinematics in the context of robotics and animation.

Note that 𝐺𝑆 and 𝐺𝑇 can be interpreted as points in an ORL tree shape space, where
each edge 𝑒 ∈ 𝐸 is associated with 6 dimensions: 4 for 𝑒𝑞, 1 for 𝑒𝑟 and 1 for 𝑒𝑠. The
values of 𝐺𝑆𝑇 (_) form the geodesic between 𝐺𝑆 and 𝐺𝑇 , and as such each point on the path
represents a tree from the same shape space. We will revisit this topic in Section 4.10.

4.9.2 Branch Point Interpolation

With the tree skeleton constructed, an interpolation is applied to the points of the branches
as well (Figure 4.8). For conceptual simplicity, each branch point 𝑝 is connected to the
skeleton branch end point via a virtual edge. Orientation 𝑞 and length 𝑠 are computed
for those virtual edges in the same way as for the skeleton edges, and the interpolation is
performed with the same formulas (Equations 4.5, 4.6) as for 𝐴𝑆𝑇

𝑞𝑠 (_). Point normals for
scene lighting are computed as being orthogonal to the branch direction vector.
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(a) _ = 0 (b) _ = 0.25 (c) _ = 0.5 (d) _ = 0.75 (e) _ = 1

Figure 4.8: Intermediate points between the branch in the first column and the one in the last column.
Branch rotation has been removed from this visualization for better comparability.

4.10 ORL Tree Shape Space

The generalized coordinates we employed to describe trees and paths between them can
be used to construct shape spaces for further analysis and construction tasks. Billera et
al. [BHV01] used tree shape spaces to model an ancestry relationship between different
species of organisms. The employed metric measures how closely related the species are in
a biological sense. They defined a tree shape space as 𝑋 = Π𝑒∈𝐸𝐼

(R1), where 𝐸𝐼 are the
inner edges of the tree and each dimension scalar represents the length of the corresponding
edge.

To encode geometry of airway trees, Feragen et al. [FLB+13] extend that approach to
𝑋 = Π𝑒∈𝐸 (R

𝑑)𝑛 by sampling 𝑛 points on each branch where 𝑑 = 2 or 3, according to the
dimensionality of the representation. Wang et al. [WLX+18] use 𝑑 = 4 attributes per point
(𝑥, 𝑦, 𝑧, 𝑟) in order to also describe the radius of biological tree branches. With the employed
Euclidean metric, the geodesic between two edges represented as vectors results in a circle
chord, which shortens the interpolated vectors, instead of a more natural circle arc. They
used an elastic metric to address the shortening issue in [WLJ+18].

We extend the previous approaches to a new Orientation Radius Length (ORL) tree
shape space with 𝑑 = 6 so that the set of attributes per edge is 𝐴 = (𝑞, 𝑟, 𝑠), having
𝑞 ∈ R4

, 𝑟, 𝑠 ∈ R1. We also introduce a metric on our ORL shape space which can be
evaluated in linear time, as opposed to the Tree Edit Distance (TED) and Quotient Euclidean
Distance (QED) metrics which are NP-complete [FLB+13] and thus only usable for very
small trees.

For any two trees 𝑥 and 𝑦 in the ORL shape space 𝑋 = Π𝑒∈𝐸 (R
6), our distance function
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𝑑 is given by the sum of pairwise branch distances 𝑑𝑒

𝑑 (𝑥, 𝑦) =
∑︁
𝑒∈𝐸

𝑑𝑒 (𝑥𝑒, 𝑦𝑒)

=
∑︁
𝑒∈𝐸

𝑑𝑟 (𝑥𝑒, 𝑦𝑒) + 𝑑𝑠 (𝑥𝑒, 𝑦𝑒) + 𝑑𝑞 (𝑥𝑒, 𝑦𝑒)

=
∑︁
𝑒∈𝐸

|𝑟𝑥𝑒 − 𝑟𝑦𝑒
| + |𝑠𝑥𝑒 − 𝑠𝑦𝑒

| + 2 cos−1( |〈𝑞𝑥𝑒 , 𝑞𝑦𝑒〉|))

(4.7)

where 𝑒 is a branch index, 𝑞, 𝑟, 𝑠 are orientations, radii, and lengths respectively, 𝑑𝑟 , 𝑑𝑠
are distances between radii and lengths, and 𝑑𝑞 is the angular distance between two unit
quaternions. As 𝑑𝑟 , 𝑑𝑠 : R × R→ R+0 , while 𝑑𝑞 : R4 × R4 → [0, 2𝜋], the magnitude of the
terms may vary with characteristics of the input point clouds.

In the previous section we described that the input trees 𝐺𝑆 and 𝐺𝑇 are points in the
created ORL shape space, and all points on the geodesic 𝐺𝑆𝑇 (_1) represent intermediate
trees. We prove that our geometric construction using equations (4.3-4.6) with _ = 1

2 yields
the mean tree between 𝑆 and 𝑇 under our distance metric 𝑑 (Equation 4.7) and thus equals
the geodesic.

Proof. Let 𝑀 be the mean tree between 𝑆 and 𝑇 , namely 𝑀 = 𝐺𝑆𝑇 ( 1
2 ) = (𝑉, 𝐸, 𝐴𝑆𝑇 ( 1

2 )).
For any pair of corresponding branches 𝑥𝑒 ∈ 𝑆, 𝑦𝑒 ∈ 𝑇 the mean branch 𝑚𝑒 ∈ 𝑀 has the
attributes

𝑚𝑟 =
1
2
𝑥𝑟 +

1
2
𝑦𝑟 (4.8)

𝑚𝑠 =
1
2
𝑥𝑠 +

1
2
𝑦𝑠 (4.9)

𝑚𝑞 = 𝑠𝑙𝑒𝑟 𝑝

(
𝑥𝑞, 𝑦𝑞,

1
2

) [
= 𝑥𝑞 (𝑥

−1
𝑞 𝑦𝑞)

1
2
]

(4.10)

The subscript 𝑒 is omitted for readability. The goal is to show

𝑑𝑒 (𝑥, 𝑚) = 𝑑𝑒 (𝑚, 𝑦) = 1
2
𝑑𝑒 (𝑥, 𝑦) (4.11)

Given
𝑑𝑒 (𝑥, 𝑚) = 𝑑𝑟 (𝑥, 𝑚) + 𝑑𝑠 (𝑥, 𝑚) + 𝑑𝑞 (𝑥, 𝑚) (4.12)
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the individual terms expand to

𝑑𝑟 (𝑥, 𝑚) = |𝑥𝑟 − 𝑚𝑟 | =
����𝑥𝑟 − 1

2
𝑥𝑟 −

1
2
𝑦𝑟

����
=

����12𝑥𝑟 − 1
2
𝑦𝑟

���� = |𝑚𝑟 − 𝑦𝑟 | = 𝑑𝑟 (𝑚, 𝑦) (4.13)

𝑑𝑠 (𝑥, 𝑚) = |𝑥𝑠 − 𝑚𝑠 | =
����𝑥𝑠 − 1

2
𝑥𝑠 −

1
2
𝑦𝑠

����
=

����12𝑥𝑠 − 1
2
𝑦𝑠

���� = |𝑚𝑠 − 𝑦𝑠 | = 𝑑𝑠 (𝑚, 𝑦) (4.14)

𝑑𝑞 (𝑥, 𝑚) = 𝑑𝑞 (𝑥𝑞, 𝑠𝑙𝑒𝑟 𝑝(𝑥𝑞, 𝑦𝑞,
1
2
))

= 𝑑𝑞 (𝑦𝑞, 𝑠𝑙𝑒𝑟 𝑝(𝑦𝑞, 𝑥𝑞,
1
2
)) = 𝑑𝑞 (𝑦, 𝑚) (4.15)

In (4.15) the central equality holds because 𝑑𝑞 measures the angle of rotation from 𝑥𝑞
towards 𝑦𝑞 performed by the slerp operation, and has necessarily the same angle as the slerp
operation from 𝑦𝑞 to 𝑥𝑞, but with opposite sign. From (4.12-4.15) the first equality in (4.11)
follows immediately, and we leave it to the interested reader to verify the second equality as
well. �

It is possible to create a shape space by adding another tree 𝑅 with its corresponding
representation 𝐺𝑅 to 𝑆 and 𝑇 , and compute intermediate points between 𝑅 and any other
computed point, yielding 𝐺𝑆𝑇 (_1)𝑅 (_2) = 𝐺𝑆𝑇𝑅 (_1, _2), which can be extended to an
arbitrary number of input trees. The convex hull, which encloses the input trees and
their geodesics, represents all trees which can be computed by interpolation between them
(Figure 4.9).

Mean tree-shape between multiple models. While the mean tree between 𝑆 and 𝑇 is
computed as the point at equal distance between the two on the geodesic, the mean tree
between a set of 𝑁 trees {𝑥𝑖, 𝑖 = 1, . . . , 𝑁} represented as points in an ORL shape space 𝑋 ,
is defined as the point with minimum 𝐿1 distance to all points in the set:

` = arg min
𝑥∈𝑋

𝑁∑︁
𝑖=1

𝑑 (𝑥, 𝑥𝑖) (4.16)

Using the definition of 𝑑 in (4.7), we observe that

` = arg min
𝑥∈𝑋

𝑁∑︁
𝑖=1

∑︁
𝑒∈𝐸

𝑑𝑟 (𝑥𝑒, 𝑥𝑖𝑒) + 𝑑𝑠 (𝑥𝑒, 𝑥𝑖𝑒) + 𝑑𝑞 (𝑥𝑒, 𝑥𝑖𝑒)

= arg min
𝑥∈𝑋

∑︁
𝑒∈𝐸

(
𝑁∑︁
𝑖=1

𝑑𝑟 (𝑥𝑒, 𝑥𝑖𝑒) +
𝑁∑︁
𝑖=1

𝑑𝑠 (𝑥𝑒, 𝑥𝑖𝑒) +
𝑁∑︁
𝑖=1

𝑑𝑞 (𝑥𝑒, 𝑥𝑖𝑒)
) (4.17)
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Figure 4.9: Shape space created by three tree models, placed at the corners of the triangle. The point
at the triangle center represents the mean tree.

Figure 4.10: Smooth blending between source and target tree.
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(a) Our approach

(b) Wang et al.

(c) Golla et al.

Figure 4.11: Interpolation between a zero-length branch (on the left) and a normal branch (on the
right) with our method (a), Wang et al. [WLJ+18] (b) and Golla et al. [GKK+20] (c).

The first implication of (4.17) is that the parameters for each edge 𝑒 of ` can be determined
independently. Second, the individual sums over radii, scales and orientations can be
subjected to the 𝑎𝑟𝑔𝑚𝑖𝑛 operator without influencing each other. As radii and scales are
values in R, `𝑟𝑒 and `𝑠𝑒

can be computed as the median of corresponding edge radii and
scales. The 𝑎𝑟𝑔𝑚𝑖𝑛 applied to orientations yields the 𝐿1 rotation averaging problem, which
can be solved using the classical Weiszfeld algorithm [Wei37] as described in [HAT11].

A possible concern regarding our method is the reliance on the trunk being defined as
the longest branch and the assumption that due to changes in branch length during the
interpolation, some other branch might become longer and then invalidate our construction.
We give a simple proof in the appendix, demonstrating that the defined trunk is stable for
any interpolation with _ ∈ [0, 1].

4.11 Results
We tested our framework on several different tree models. Details for the used models are
given in table 4.1. Some of them were pre-registered point clouds as captured using a laser
range scanner. Others were downloaded from the internet as 3D meshes, upon which we
performed a Poisson point sampling [KBH06]. We chose a sampling density of 1 point per
square centimeter in order to roughly match our scanned models. All of our tree models use
the same upright orientation.

Figure 4.10 shows tree instances on the geodesic path from the left-most to the right-most
displayed tree. The small branches on the lower left side of the trunk in the central image
can be regarded as growing naturally when increasing _, as they first grow upwards and
then bend sideways. This is different from the approaches of Wang et al. [WLJ+18] and
Golla et al. [GKK+20], where the interpolation from a zero-length source branch simply
provides a scaled-down version of the target branch (Figure 4.11).
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(a) _ = 0 (b) _ = 0.4 (c) _ = 1 (d) _ = 1.1 (e) _ = 1.2

Figure 4.12: Between the original input trees (a) and (c) one intermediate tree on the geodesic is (b).
Extending the path of the geodesic through the tree space beyond (c) yields (d) and (e).

Figure 4.13: Source and target are trees of different species with structural variation.

Our framework also allows to explore the ORL tree shape space beyond the convex
hull spanned by the input trees. As demonstrated in Figure 4.12, our skeleton and branch
interpolation schemes (Section 4.9) can produce meaningful results for values of _ outside
of the interval [0, 1] by following the direction of the geodesic. We found the range of
sensible results to be around _ ∈ [−0.5, 1.5]. For larger values the continued rotation of
the branch segments leads to branches producing spiral shapes and intersecting themselves.
A possible remedy is to limit the maximum rotation angle and only extrapolate radii and
lengths further.

Further statistical modeling as introduced by Wang et al. [WLJ+18] can be applied in a
straightforward manner to our ORL tree shape space. The mean between two trees can be
obtained by setting _ = 1/2, or respectively by using equation (4.16) for multiple trees, and
modes of variation are computable by using our metric instead of the one given in [WLJ+18].

Although our core approach with shape spaces expands upon the concepts of [BHV01;
OP10; WLX+18; WLJ+18], an important difference and contribution is the use of point
clouds as input and output data structures. While meshes generally represent pre-processed
data, point clouds are closer in representation to the raw data acquired by range sensing
devices. Notwithstanding the need for some pre-processing like segmenting a single tree
from a raw scan, creating a mesh from sparse point clouds is an ill-posed problem. For this
reason we cannot perform a sensible visual comparison of the results of our method to the
methods mentioned before, as the latter ones do not work on point clouds.

The pipeline we proposed can be altered and for example the point cloud skeletonization
step can be replaced by a mesh skeletonization, but we did not evaluate such alternatives, as
they diverge from our envisioned usage scenario.
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Tree # Points Branches Used in Figure

1 232,054 169 4.9 (left), 4.10 (left), 4.11 (left), 4.13 (left)
2 99,960 485 4.9 (right), 4.10 (right), 4.11 (right)
3 150,195 633 4.12 (a)
4 130,137 251 4.12 (c)
5 83,981 215 4.9 (bottom), 4.13 (right)

Table 4.1: Tree models used in this chapter

4.11.1 Computation time and implementation

Most parts of our framework have been implemented in Matlab, with the exception of
point correspondences, where we use a Python implementation for optimal transport. All
experiments were performed on a PC with an Intel Core i7-860 CPU running at 2.8 GHz
with 16GB RAM. For a set of trees, the branch and point correspondences have to be
computed only once in order to establish the structure of the shape space. Computing
geodesics in shape space and determining the point geometry requires O(𝑛) time, depending
on the number of points. For the trees in Figure 4.12 the initial correspondence computation
took 20.5 minutes. Every instance on the geodesic has 174k points and can be computed
in less than half a second. We can compare this to the methods of Wang et al. [WLX+18;
WLJ+18] which only compute geodesics for tree skeletons. For skeletons with a number of
edges comparable to ours, they report timings from 2 to 30 minutes. Thus our approach is
several orders of magnitude faster, considering that we have about 500 points per branch on
average.

The initial correspondence computations for the trees in Figures 4.10 and 4.13 took 22
and 21 minutes, respectively. Timings for geometry construction for a tree instance on the
geodesic were 0.65 and 0.45 seconds.

As mentioned before, point correspondences established using optimal transport can
increase the number of points on either matched branch. Whether this has any effect on the
quality of the visual result depends mainly on the rendering technique used. Using a point
splatting technique can in general render the tree as opaque, without depending on the exact
number of points.

4.11.2 Limitations

The main limitation inherent to the topic of tree interpolation is whether such interpolations
are biologically plausible. When considering scans of a single plant in different growth
stages, it is certainly possible to interpret a smooth deformation as a growth process.
However, when using exemplars of distinct species, that may be more challenging. One
example of this is called phyllotaxis, the arrangement of leaves or small branches on the
parent branch, which basically can be opposite or alternate. Since that is an either-or option,
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a halfway result might not occur in nature. We will leave this topic to discuss for biology
experts and instead focus on results which may just be visually pleasing.

For the same reason, there exists no ground-truth data for the interpolation between
different tree instances.

4.12 Conclusion

We presented a framework for exploring the shape space of point clouds for biological
trees. Our approach establishes correspondences between branches and individual points of
input trees and represents them in an ORL shape space with a proper metric. The efficient
formulation allows to compute interpolated and extrapolated tree instances on the geodesics
between the input trees and beyond them. Using branch orientations, lengths, and radii as
the basis for a shape space provides smooth and natural deformations when following a path
within that space. As this method does not require a mesh representation of the input data,
it can be easily used on noisy data provided by a range scanning device, without the need
for producing an intermediate meshed representation. We believe that our method will be
useful for creators of virtual environments such as in games or movies.

4.A Stable trunk under interpolation

Given two trees 𝑆 and 𝑇 with the trunk defined as the longest path from the root to
any vertex, those trunks are composed of their edges 𝑠 = {𝑠1, . . . , 𝑠𝑘 ; 𝑠𝑖 ∈ R+0} and
𝑡 = {𝑡1, . . . , 𝑡𝑘 ; 𝑡𝑖 ∈ R+0}, where 𝑠𝑖 and 𝑡𝑖 represent the lengths of the edges on the
path. By construction, 𝑠 and 𝑡 are chosen as correspondences for interpolation. Let
𝑎 = {𝑎1, . . . , 𝑎 𝑗 ; 𝑎𝑖 ∈ R

+
0} and 𝑏 = {𝑏1, . . . , 𝑏 𝑗 ; 𝑏𝑖 ∈ R

+
0} be a different pair of corresponding

paths from those trees. Obviously, the path lengths satisfy |𝑠 | > |𝑎 | and |𝑡 | > |𝑏 |, otherwise
𝑠 and 𝑡 were not chosen correctly as the longest paths.

|𝑡 | > |𝑏 | is equivalent to writing
∑𝑘

𝑖=1 𝑡𝑖 >
∑ 𝑗

𝑖=1 𝑏𝑖. We then multiply both sides of the
inequality with _ ∈]0, 1], which preserves the inequality:

_

𝑘∑︁
𝑖=1

𝑡𝑖 > _

𝑗∑︁
𝑖=1

𝑏𝑖 (4.18)

We obtain an analogous result for multiplying |𝑠 | > |𝑎 | with (1 − _) for _ ∈ [0, 1[:

(1 − _)
𝑘∑︁
𝑖=1

𝑠𝑖 > (1 − _)
𝑗∑︁

𝑖=1
𝑎𝑖 (4.19)
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Adding (4.18) and (4.19) we obtain

(1 − _)
𝑘∑︁
𝑖=1

𝑠𝑖 + _

𝑘∑︁
𝑖=1

𝑡𝑖 > (1 − _)
𝑗∑︁

𝑖=1
𝑎𝑖 + _

𝑗∑︁
𝑖=1

𝑏𝑖

𝑘∑︁
𝑖=1

(1 − _)𝑠𝑖 + _𝑡𝑖 >

𝑗∑︁
𝑖=1

(1 − _)𝑎𝑖 + _𝑏𝑖

(4.20)

The terms of the last row can be compared to equation (4.4) and represent the length of
the interpolated path between 𝑠 and 𝑡 on the left side, and between 𝑎 and 𝑏 on the right side
of the inequality. Thus, for all values of _ ∈ [0, 1] any path interpolated between any 𝑎 and
𝑏 will always be shorter than the trunk interpolated between 𝑠 and 𝑡, preserving its property
as trunk.
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CHAPTER 5

Conclusion and Future Directions

5.1 Summary and Conclusion
Point clouds as a representation for 3D data and operations on such data are still active topics
of current research. Primary reasons are the multitude of possibilities for acquiring 3D data,
increase of available storage and the processing powers of current CPUs and graphics cards.
Modern generations of laser range scanners can capture the surface of objects within seconds
or even fractions thereof, while structured light scanning takes longer, but requires only
cheaper devices. Captured objects can be directly used as assets for virtual environments,
but often designers and artists prefer to modify the assets to suit their specific needs. For
instance, for a captured dog an artist may choose to turn the head into a specific direction,
or lift the tail to signify excitement. The deformation in such cases is expected to be smooth
and not leave any holes or visual artifacts on the final object representation. Furthermore,
an artist can complement a scene with digital doubles of plants, while requiring them not to
look identical. With our shape space based approach a large number of similar but distinct
trees and plants can be created from only few sample exemplars.

In this thesis, we have presented several new methods that allow for efficient work with
digital assets in the form of point clouds. In Chapter 2, we explain our approach for
deforming point clouds captured from real-world objects. Our notion of editing includes
bending, stretching, twisting, and scaling of object parts, as determined by user-defined
handles. A differential surface representation combined with additional constraints, given
by the handles, into an overconstrained equation system is solved in least squares sense
using a non-linear optimization procedure. Local surface details are preserved during the
editing operation and the user is able to exercise fine-grained control over the result as the
deformation is computed at interactive frame rates. In contrast to previous methods, our
method does not require creating a mesh from input data or manual preprocessing like cage
construction for separating model parts. Since a global optimization is computationally
demanding for very large models, we present a means of performing the deformation
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calculations on a coarse scale and transfer the results to the fine scale representation of the
point cloud without offline processing. A central property of our deformation method is
agnosticity towards the kind of object represented by the point cloud being processed. On
the one hand, it is advantageous to process a scan of an animal, a plant, or a gardening tool
in the same way, regardless of sampling density or outliers. On the other hand, a lack of
semantic features can hinder more advanced editing scenarios.

We tackle the semantic challenge for point clouds of trees in Chapter 3. The aim is to
reconstruct a geometric representation of a tree from a given point cloud, including positions
of the trunk and branches, and their radii. Positions of the branch ends together with their
connectivity information form the skeleton of a tree. Previous approaches try to determine
a skeleton in various ways, but are either tailored towards densely or sparsely sampled point
clouds. Those methods focused on densely sampled point clouds often try to fit primitives
like circles, spheres, or cylinders to subsets of points. In sparsely sampled regions they fail
to detect such primitives and cannot reconstruct those parts of a tree. Techniques aimed
at sparse input data are not able to handle densely sampled trees, as demonstrated in our
examples. With our hybrid approach such input data with different sampling densities can
be processed satisfactorily. Guided by principal curvatures on branch surfaces, we detect
ellipses in branch cuts and connect them to represent the tree skeleton and branch radii in
densely sampled regions. Our spanning tree based approach used for reconstructing sparsely
sampled regions is similar to the ideas of Livny et al. [LYO+10], though it does not attempt
a global optimization over the whole input data, and thus does not suffer from the same
limitations. Instead, each region with a sparsely sampled subtree is treated independently
and afterwards joined to the skeleton from dense regions to produce a smooth and seamless
reconstruction of the whole tree.

Our reconstruction approach received acclaim in the scientific community over the last
years, as it has been cited by at least 30 newer publications at the time of writing this thesis.
While our method performs only a coarse distinction between dense and sparse regions
of a tree, Fan et al. [FWG+18] further examine a semantic segmentation between parts of
a tree. Researchers from the domain of forestry are less concerned with the structure of
tree skeletons, but are more interested in the primitive detection aspect in order to retrieve
reliable wood volume estimations [KHR+17; SMHS17; RFB+19]. Tsugawa et al. [TTO+22]
use extracted skeleton and geometry data in order to discuss mechanical and morphological
reasons of why trees exhibit certain shapes.

Given point clouds of trees and the semantic information regarding branches, Chapter 4
explains how to automatically generate a multitude of new tree models. As the new models
shall have a natural and realistic look, they are expected to be similar to the input models
with regard to their structure, as given by the skeletons. To that end, a shape space is
created from the input point clouds of trees. Although shape spaces for biological trees
have been proposed before, those spaces were of lower dimensions and regarded only
branch lengths or positions. Due to that simplistic view not all points on geodesics in those
shape spaces can be regarded as plausible interpolations between the given input trees,
as e. g. individual branches first shrink and then grow within a single interpolation. Our
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proposed ORL tree shape space is of higher dimension and can capture orientations, lengths,
and radii of all branches of the involved trees. In order to construct those dimensions,
correspondences between branches on different trees are first established. Then the point
clouds are segmented according to branch proximity and local surface normals. And lastly, a
variant of optimal transport is used to determine correspondences between individual points
of each pair of segments from the input trees. As we define a proper metric on our shape
space, geodesics induced by the metric represent interpolations between the input trees,
which can be efficiently computed in linear time. To a certain degree, it is also possible
to explore the shape space beyond the convex hull spanned by the input trees and their
geodesics. In that case it is up to the artist to decide whether the results look plausible,
using real-world knowledge.

In summary, we have presented methods for extracting structure from point clouds and
exploiting that information for editing and interpolation scenarios of 3D models. Our
approaches can work on real-world data, and help artists and designers to efficiently
create content for virtual environments as in movies or games. Although point clouds
usually consist of large amounts of data, our algorithms are efficient both in terms of
memory requirements and computational complexity. The editing method presented runs at
interactive frame rates on commodity hardware, while trees from our ORL shape space can
be computed equally fast. As the work with 3D models is still an active field of investigation,
we present possible directions for future research in the following section.

5.2 Future Directions

In Chapter 2 we introduced editing operations on individual 3D models. This prompts for
future extensions to more than one model, e. g. in the task of hole filling. Given two models
of similar objects and precomputed point correspondences, with one model containing holes
due to acquisition issues, the other model could be deformed to match the first shape and fill
its holes with own data. Physics-based animations and deformations could be a different
avenue worth researching. For instance, a ball bouncing on a surface and being deformed
on impact could be modeled by adding time-varying directional force constraints to our
modeling framework.

The skeletonization process we described in Chapter 3 is computationally demanding
in the steps of determining the surface curvature for branches and fitting ellipses. Beyond
trivial parallelization of the code to improve execution speed, different approaches which
generally require less computations are desired. Furthermore, added semantic information
would benefit further use of the reconstructed models. A recent publication by Sun et
al. [SWL+22] uses voxel thinning to extract a skeleton and semantically distinguish points
representing branches from those representing leaves, but their method is unable to properly
handle large differences in scale between a wide trunk and small branches, a critique which
we also applied to previous similar works [e.g. BLM10]. We would thus urge researchers
to take our remarks regarding inhomogeneously sampled point clouds into regard, and not
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focus solely on the easier case with homogeneous data. Instead, more challenging data
setups like multiple interleaved trees within a single point cloud which are reconstructed
simultaneously [LP22] may be an interesting direction for future research.

We presented a novel ORL shape space for biological trees in Chapter 4, which can be
traversed in order to create new tree models. An interesting extension is the application
of statistical modeling to our shape space. With a computed mean tree and given input
models, it is straightforward to compute modes of variation and to fit parametric probability
distributions to the data. Through random sampling from estimated probability distributions
new tree models can be synthesized that are closer in appearance to the original trees than
just random samples from the whole shape space. Those probability distributions could
also be employed to train systems for inverse procedural modeling, e. g. by learning the
lengths and angles for branches attached to the tree trunk and subsequent levels in the branch
hierarchy. Procedural models could be better suited to capture rules from allometric theory
than probability distributions alone, e. g. a biological branch can never have a larger radius
than its parent branch.

As a conclusion, this thesis demonstrated that point clouds are a viable representation for
3D models and editing operations on them. New models can easily be created and adapted
as needed. We are looking forward to seeing future applications and extensions based on
our ideas.
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