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1  | INTRODUC TION

Reliable information of population dynamics is a major pillar of es-
timating the impact of wildlife management actions. A key factor 
for population dynamics is an accurate estimation of numbers of 

animals living in a certain area. Counting wild animals, whether it 
is carnivores or herbivores, is often a demanding task, especially 
in nocturnal or elusive species (Bellemain, Swenson, Tallmon, 
Brunberg, & Taberlet, 2005; de Oliveira, do Couto, & Duarte, 2019; 
Eggert, Eggert, & Woodruff, 2003; Kery, Gardner, Stoeckle, Weber, 
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Abstract
Estimating population density as precise as possible is a key premise for managing 
wild animal species. This can be a challenging task if the species in question is elusive 
or, due to high quantities, hard to count. We present a new, mathematically derived 
estimator for population size, where the estimation is based solely on the frequency 
of genetically assigned parent–offspring pairs within a subsample of an ungulate 
population. By use of molecular markers like microsatellites, the number of these 
parent–offspring pairs can be determined. The study's aim was to clarify whether a 
classical capture–mark–recapture (CMR) method can be adapted or extended by this 
genetic element to a genetic-based capture–mark–recapture (g-CMR). We numeri-
cally validate the presented estimator (and corresponding variance estimates) and 
provide the R-code for the computation of estimates of population size including 
confidence intervals. The presented method provides a new framework to precisely 
estimate population size based on the genetic analysis of a one-time subsample. This 
is especially of value where traditional CMR methods or other DNA-based (fecal or 
hair) capture–recapture methods fail or are too difficult to apply. The DNA source 
used is basically irrelevant, but in the present case the sampling of an annual hunting 
bag is to serve as data basis. In addition to the high quality of muscle tissue samples, 
hunting bags provide additional and essential information for wildlife management 
practices, such as age, weight, or sex. In cases where a g-CMR method is ecologically 
and hunting-wise appropriate, it enables a wide applicability, also through its species-
independent use.
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& Royle, 2011). Not every method for estimating population den-
sities is equally applicable for every species. Low-density tending 
species, which concerns many carnivores (Kery et al., 2011), must 
be counted differently. For instance, hair traps seem to be suit-
able for low-density populations (Balestrieri et al., 2010; Steyer, 
Simon, Kraus, Haase, & Nowak, 2013), but rather inappropriate for 
some high-density ungulate species (Ebert, Huckschlag, Schulz, & 
Hohmann, 2009).

Collecting fecal samples is a widely used method for species 
monitoring and estimating population trends. They can be used in 
two different ways. Standard dung counts use a defecation rate 
in a defined area and timescale for density estimation (Eggert 
et al., 2003; Pfeffer et al., 2018). Alternatively, DNA analyses of the 
collected feces can reveal the number of different individuals, and 
with classical capture–mark–recapture methods (CMR), the density 
can be evaluated (Bellemain et al., 2005; Ebert, Knauer, Spielberger, 
Thiele, & Hohmann, 2012; Kery et al., 2011; Petit & Valiere, 2006). 
Counting fecal pellets can provide reliable results (Ferretti, Fattorini, 
Sforzi, & Pisani, 2016; Plhal, Kamler, & Homolka, 2014) but in some 
cases can lead to over- or underestimated densities compared to 
other methods (Barnes, 2001; Pfeffer et al., 2018). The choice of 
appropriate transects, often unavoidably high staff expenses, aggra-
vated long-term storage for later DNA analysis and DNA amplifica-
tion, and weather-dependent feces quality can make feces counts 
and genetic analyze of the fecal pellets a protracted and time-con-
suming process with an uncertain outcome (Barnes, 2001; Bellemain 
et al., 2005; Kolodziej, Nikolov, Schulz, Theissinger, & Schulz, 2013; 
Soto-Calderon et al., 2009).

Drive counts are another widely used method for estimat-
ing densities, particularly in ungulate species (Noss, Salidas, & 
Crespo, 2006). However, the accuracy of the results is known to be 
insufficient, when a high level of reliability of the estimated density 
is needed (Borkowski, Palmer, & Borowski, 2011). Over the last de-
cade, camera traps became a commonly used method to estimate 
population density using the random encounter model (REM) by 
Rowcliffe, Field, Turvey, and Carbone (2008) that needs no individ-
ual recognition for density estimations (Pfeffer et al., 2018; Rowcliffe 
et al., 2008).

The European wild boar (Sus scrofa) is a species that is hard to 
count accurately, which can partly be explained by its complex social 
behavior and nocturnal activity (Briedermann, 2009; Cahil, Llimona, 
& Gràcia, 2003) and an exceptionally high reproductive potential 
compared to other ungulates of similar body size (Carranza, 1996). 
For more than 30 years, a Europe-wide continuous increase of the 
size of wild boar populations can be observed (Baubet, Bonenfant, 
& Brandt, 2004; Boitani, Trapanese, Mattei, & Nonis, 1995; Cahill 
et al., 2003; Ferreira, Souto, Soares, & Fonseca, 2009; Keuling 
et al., 2013; Tsachalidis & Hadjisterkotis, 2009). This steady and 
partly immense population growth is basically recognizable and 
measurable by two factors/conditions: (a) by the annual increase in 
the number of shot animals in hunting bags and (b) by increased crop 
damages (Keuling et al., 2013). Germany has one of the highest wild 

boar stocks all over Europe (Keuling et al., 2013; Massei et al., 2015), 
and particularly, the hunting season 2017/2018 had the highest hunt-
ing bag of all times with almost 837,000 shot animals. Nevertheless, 
there is no clear perception of how many living wild boars there are 
in absolute numbers (Briedermann, 2009). But especially, the prog-
ress of African swine fever (ASF) (More et al., 2018) necessitates a 
reliable and accurate method to estimate their density and to adjust 
a proper wildlife management.

Even in Germany, the size of the remaining living populations re-
mains mostly ambiguous due to the lack of a unified applied and exact 
procedure to calculate wild boar population density. Comparisons 
concerning the wild boar population development extending over 
several years or between different populations are therefore barely 
achievable.

The currently most common method for wild boar stocktaking 
is hunting bag-based abundance calculation (Briedermann, 2009; 
Keuling et al., 2018). However, the annual rate of increment (be-
tween 100%–300%) or the hunting ground-specific ecological con-
ditions can only be guessed. Different hunting grounds are therefore 
difficult to compare, and the impact of current management actions 
is hardly assessable. Even with further attempts of improvement 
based on camera trap detections, drive counts, and distance sam-
pling (Keuling et al., 2018), the comparability of estimated popula-
tion sizes remains difficult without unified, standardized methods to 
estimate population size.

Hunting wild animals like carnivores or ungulates is not always 
without bias. Sport and trophy hunting, as well as sex- and age-spe-
cific hunting, can affect reproduction, offspring sex ratio, body 
weight etc. (Milner, Nilsen, & Andreassen, 2007). Accordingly, se-
lective harvesting can influence the age and sex composition of a 
hunting bag and, with that, kinship structures. Since many ungulates 
practice parental care, parent(s) and offspring often appear close to-
gether in their home range. This could lead to an increased propor-
tion of parent–offspring pairs in a hunting bag, when these animals 
are shot together. Both circumstances could bias the results of an 
estimator that is based on this proportion. Regular wild boar hunting 
can be assumed as mostly unbiased with respect to the sex of the an-
imals (Keuling et al., 2013; Keuling, Lauterbach, Stier, & Roth, 2010; 
Toigo, Servanty, Gaillard, Brandt, & Baubet, 2008), as well as un-
biased toward hunting close relatives intentionally. Hunters try to 
avoid shooting adult females (Toigo et al., 2008) or females with pig-
lets in general (Keuling et al., 2013), coincident with increased hunt-
ing efforts toward male yearlings and adults. A sex-biased hunting 
bag toward males is not found in central Europe per se. There are 
both regional and annual variations, but the trend is rather toward 
balanced sex ratios (Keuling et al., 2013). Therefore, there seems 
to be no significant influence on the parent–offspring pairs in the 
annual hunting bag. Because of that, we expect a random and rep-
resentative sample size of close relatives (like parents and offspring, 
full-sibs, half-sibs) within a sampled hunting bag.

The common data acquisition of hunting bags mainly con-
sists of information concerning, that is, long-term tendencies of 
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population size, sex ratio, age composition, and sometimes state 
of pregnancy and litter size. But hunting bags additionally pro-
vide a whole range of genetic information, which usually remains 
unexploited, in particular the genetic relationships between the 
animals.

Genotypic analyses of fecal samples were used to develop a 
CMR estimator of the actual population density (Ebert et al., 2012; 
Ebert, Knauer, Storch, & Hohmann, 2010; Kolodziej, Schulz, et al., 
2012; Kolodziej, Theissinger, Brün, Schulz, & Schulz, 2012) but re-
quire a considerable extra amount of money, work, and workforce. 
Some of the difficulties with fecal samples can be low DNA concen-
trations and low genotyping rates (e.g., Kolodziej et al., 2013). Taking 
fresh and high-quality muscle tissue samples from the hunting bag 
could solve these problems.

With these data, kinship relations like parent–offspring pairs and 
kinship structures within and between populations can be revealed. 
Based on adaptions of classical CMR models as the Lincoln–Petersen 
estimator (Lincoln, 1930; Petersen, 1896; Seber, 1973; Southwood 
& Henderson, 2000) or the Chapman estimator (Chapman, 1951, 
1954; Southwood & Henderson, 2000), these genetic relationships 
can be used to estimate population densities. Although no physical 
recapture for an already shot animal is feasible, the use of genetic 
information in a hunting bag, and in particular the detection and 
number of parent–offspring pairs, may act as a genetic recapture. 
Most of all, such a genetic-based capture–mark–recapture (g-CMR) 
model would provide a unified, reliable, and comparable method for 
estimating abundance and density of wild boar and other (ungulate) 
species.

Despite the possibility of using newer molecular methods 
(Genotyping by Sequencing, GBS) (Hodel et al., 2016; Sonah 
et al., 2013), microsatellites (Simple Sequence Repeats, SSR) still 
belong to the most frequently used genetic markers for reliable 
individual identification (reviewed in Hodel et al., 2016; Selkoe 
& Toonen, 2006). Microsatellites allow for accurate estimations 
of parent–offspring as well as full-sib and half-sib relationships 
(Christie, 2010; Costa et al., 2012; Putnova, Knoll, Dvorak, & 
Dvorak, 2003).

In principle, the number of parent–offspring pairs can be deter-
mined from all available DNA sources, for example, muscle tissue, 
hair samples, or feces. Furthermore, it should be possible to esti-
mate the size of a population based on the number of these par-
ent–offspring pairs within a subsample: The larger the population 
is (while keeping the size of a subsample constant), the lower is the 
chance that parents and offspring appear together within the sub-
sample. Thus, the estimated population size should increase with 
a decreasing number of parent–offspring pairs within the subsam-
ple. We thus aimed to create a protocol and R-script that allows for 
estimating and simulating population densities together with the 
opportunity to validate the results. In order to estimate a possible 
influence of the above-mentioned hunting bias on a hunting bag, 
different scenarios should be considered. Below, we mathemat-
ically derive and numerically validate corresponding population 
estimators.

2  | DERIVATION OF THE ESTIMATORS

Let N be the true size of a closed population N, where NF is the num-
ber of adult females, NM is the number of adult males, and NJ is the 
number of juveniles, thus N = NF + NM + NJ. Let further n be the size 
of a subsample of N, where nF is the number of adult females in the 
subsample, nM is the number of adult males in the subsample, and 
nJ is the number of juveniles, thus n = nM + nF + nJ. Finally, mFC is the 
number of father–offspring pairs in the subsample, and mMC is the 
number of mother–offspring pairs.

The average chance of any juvenile being in the same subsample 
as their parent depends on the relative portion of all NM adult males 
(NF females) in this subsample: If for example 50% of the adult males 
are within the subsample, for each juvenile in the subsample the av-
erage chance that its father is also within the subsample is 0.5. It 
follows for the expected values that

respectively

Assuming that there is always at least one mother–offspring 
respectively one father–offspring pair within the subsample (i.e., 
mFC > 0 and mMC > 0, otherwise the population size cannot be esti-
mated), simple rewriting of the equation leads to

respectively

Leading to the corresponding estimators

respectively

Thus, an estimator for all adult animals NA=NM+NF is given by

which is strongly related to the Lincoln–Petersen estimator 
(Lincoln, 1930; Petersen, 1896) that is frequently used in the capture–
mark–recapture analysis. In our derived estimator, we require ran-
domly chosen males (females, juveniles) from the entire population of 
males (females, juveniles), but the proportion of males versus females 
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versus juveniles in the subsample does not have to be representative. 
This is an important issue, especially when the catching probability of 
animals depends on sex or age.

However, if the true number of juveniles NJ has to be estimated 
as well, an estimator for the average number of juveniles per adult is 
required, in the following denoted by Ĵ. If such an estimator is given, 
N can be estimated via

If the proportion of males versus females versus juveniles in the 
subsample can be assumed to be representative for the entire popu-
lation (i.e., the catching probability does not depend on sex or age), a 
straight forward definition of Ĵ is given by

thus

3  | VARIANCE ESTIMATION

In the following, we estimate the variance of the estimators by using 
bootstrap methods, which have been shown to yield reliable vari-
ance estimations if the analytical calculations are complex (Canty, 
Davison, Hinkley, & Ventura, 2006; Davison & Hinkley, 1997; Efron 
& Tibshirani, 1994). Especially, for each subsample of size n, we cre-
ate j = 1,..., nboot random resamples with replacement (of size n) and 
calculate for each resample j the corresponding estimator value; the 
final variance is then calculated based on the quantiles of the nboot 
estimator values.

4  | VALIDATION OF THE ESTIMATORS

In order to validate the estimators, it is worth mentioning that for a 
given population N, the estimators ̂NM, ̂NF, ̂NA, and ̂N differ on average 
only by one (not necessarily even) number, so that the relative bias 
(i.e., the population estimate normalized by the true population size, 
̂N/N) should show an identical behavior for all estimators. It is thus 
sufficient to numerically validate one of them, for example, ̂N.

The validation of the bias and coverage probability has been 
done based on Monte Carlo methods. Specifically, we first created 
a virtual population of 100 males, 100 females, and 200 offspring 
(thus N = 400), where the number of offspring per mother has been 
randomly generated based on a Poisson distribution with expected 

value λ = 2, and the father has been randomly assigned for each off-
spring. In a second step, we randomly selected a subsample of size 
n, and based on this subsample, we finally estimated the population 
size as well as 95% confidence intervals, and the latter based on 200 
bootstrap resamples. The second step has been repeated for n = 20, 
21, 22,…, 360; thus, the relative subsample size n/N ranged between 
0.05 and 0.9. The corresponding results are shown in Figure 1a. 
It appears that the estimator is only slightly positively biased for 
small values n/N and appears to be unbiased with increasing n/N. 
However, for n/N = 0.05 the relative bias is still <10%. Additionally, 
the calculated confidence intervals show a reasonable experimental 
coverage, even for small values of n/N.

To estimate a possible hunting distortion on a hunting bag, we 
simulated the following two scenarios: (a) the influence of random 
harvest efforts on parent–offspring pairs staying together in their 
home range and (b) the influence of harvest efforts on parent–off-
spring pairs when not random, but purposefully caused by hunt. In 
Figure 1b, the bias is plotted against the number of parent–offspring 
pairs in the hunting bag, demonstrating that the estimator works 
well (respectively is only slightly positively biased) if only a few pairs 
are available. Finally, Figure 1c demonstrates that when parent–off-
spring pairs are harvested together (e.g., by hunters’ purpose), the 
estimator shows a strong negative bias, revealing the importance 
of considering only populations (respectively, hunting techniques 
and conventions) where parent–offspring pairs do not per se have a 
higher chance to occur together in the same hunting bag.

5  | DISCUSSION

We derived and validated an estimator for the population size based 
on the number of parent–offspring pairs in a subsample. Based on 
Monte Carlo simulations, we demonstrated that the estimator is 
only slightly biased when relative subsample sizes are small and as-
ymptotically unbiased when the relative subsample size increases. 
Calculated confidence limits showed a reasonable coverage prob-
ability. Finally, we provided the R-code for the calculations as well as 
some examples in order to make this method easily available for any 
researcher (see Appendix S1–S3). The presented approach allows an 
accurate estimate of population size based on the genetic analysis 
of a subsample and thus offers a simple and attractive alternative to 
frequently used capture–mark–recapture methods, especially if the 
latter are difficult or impossible to apply.

An appropriate wildlife management for wild boar or any other 
wild animal species can only be implemented when it is based on 
reliable and current data. For more than 30 years, people recog-
nized the importance of having information concerning the annual 
growth rate and the relationship between the living stock and the 
hunting bag to calculate population trends as precise as possible 
(Briedermann, 1986, 2009). However, calculating reliable trends 
needs long-term data (Acevedo et al., 2007) but such data are only 
of limited benefit for calculating current population density (Keuling 
et al., 2018). Since the annual population density and hunting bag can 
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strongly fluctuate, it is essential to update the actual density every 
year (Briedermann, 2009). The technical advances, particularly in 
molecular genetic protocols combined with the here presented g-
CMR, shall help to take an important step forward to accomplish 
this objective.

The usage of classical capture–mark–recapture (CMR) pro-
vides reliable and high-grade results concerning animal densities. 
However, there are some disadvantages making this method out-
dated. Capturing, for example, ungulates is time-consuming and, in 
some countries, demands extensive administration. In high-density 
populations, where the need for reduction is a main management pur-
pose, releasing captured animal seems paradox (Keuling et al., 2018). 
Simultaneously, modern spatial capture–recapture models (SCR) are 
replacing traditional CMR in wildlife monitoring (Jimenez, Higuero, 
Charre-Medellin, & Acevedo, 2017; Kery et al., 2011). Using DNA 
data as a component of recapture instead of physical recapture for 
estimating population densities in a CMR or SCR environment also 
provides results with high quality and accuracy (Ebert et al., 2012; 
Kery et al., 2011). Compared to DNA-based sampling methods like 
feces sampling (Bellemain et al., 2005; Ebert et al., 2012; Kolodziej 
et al., 2013), genotyping of the hunting bag requires less time and 
sampling effort and provides a steady and faster genotyping success 

due to superior DNA quality of muscle tissue. Additionally, this 
method gives a surplus of information regarding the population. For 
any sampled individual, it is possible to collect information concern-
ing the weight, approximately age, the general body condition etc. 
For females, period of gestation and number of embryos can be cal-
culated. Basically, the sex can be determined by molecular methods 
(e.g., Fontanesi, Scotti, & Russo, 2008), but is normally not required 
when sampling a hunting bag. Combining all available information 
results in an improved insight in the investigated population. Further 
statistical analyses could reveal different preferences of individuals 
and age classes (piglets, subadult and adult) in terms of mate choice 
preferences or the individual reproductive success. All that appears 
helpful for further improvements in managing populations. Knowing 
the density of a population as precisely as possible is one part of 
wildlife management. To know the impact, and its reasons, of the dif-
ferent population members in the population growth is another part.

The estimation procedure is robust to certain deviations from 
random sampling and smaller sample sizes. A deviation of less than 
10% of the real population size appears to be tolerable. In that case, 
the estimator rather tends to overestimate the real population size, 
but as the magnitude of the error can be estimated, it can be con-
sidered for future management actions. However, too small sample 

F I G U R E  1   (a) Numerical (Monte Carlo) validation of the relative bias and the coverage probability of the estimator. Especially, the 
influence of different relative subsample sizes n/N is investigated. Gray dots: Relative bias estimated for a single subsample; red continuous 
line: average smooth of the single estimates; red dashed lines: average smooth of the upper and lower 95% confidence limits as calculated 
based on 200 bootstrap resamples; blue dotted line: unbiased value at 1. Smooths are based on LOESS smoothing, the total size of the 
virtual population is N = 400. (b) The same simulation framework and legend as in (a), but estimator bias is plotted against the total number 
of parent–offspring pairs per sample. (c) The same simulation framework and legend as in (a, b) (except a fixed subsample size of n = 50) but 
“nonrandom bias” in the hunting bag has been additionally introduced and plotted against estimator bias. Especially, a nonrandom bias = 0 
means that there is no per se increased chance that parents and offspring occur together in the hunting bag; a nonrandom bias = 0.5 means 
a 50% probability for an offspring being shoot together with either its mother or father; a nonrandom bias = 1 means a 100% probability for 
an offspring being shoot together with its mother and father
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sizes or subsamples appears rather unrealistic for many European 
ungulates. But when investigating, for example, small carnivore pop-
ulations (Kery et al., 2011), the results of the here developed estima-
tor must be treat with caution.

For species with a hunting regime that is focused on specific 
or purposefully harvest on parent–offspring pairs, the estima-
tor seems to become inaccurate and inappropriate and tends to 
underestimate the real population size. It is therefore recom-
mended not to rely on one method alone, but to always use at 
least two different methods for mutual validation. Combining the 
here presented estimator with, for example, a noninvasive sam-
pling and density-estimating method (e.g., Ebert et al., 2012; Kery 
et al., 2011; Mollet, Kery, Gardner, Pasinelli, & Royle, 2015), could 
provide more than promising results, allowing both long-term and 
sustainable wildlife management.

Both CMR models, Lincoln–Petersen and Chapman estimator, 
assume that the investigated population in question is closed and 
without any migration. This also applies to our model. Although real 
populations are always affected by both immigration and emigra-
tion, as a first approach it makes sense to treat populations as closed, 
especially as reliable data on migration are hard to come by. In case 
of wild boar, this error is rather small since especially females are 
faithful to their habitats and have comparatively small home ranges 
(Keuling, Stier, & Roth, 2008, 2009). However, this may not be true 
for other species, both ungulates and carnivores. Further studies 
may aim to extend the present model with data on migration.
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