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Summary 

Rising global temperatures, carbon dioxide (CO2) concentration, and the occurrence of extreme 
weather events are constantly changing the environmental conditions for crop productivity. 
Identifying climate-adapted and high-yielding cultivars has become a challenging task for the 
plant breeding community. Time-efficient and objective crop phenotyping is advantageous in 
reliably identifying desired varieties. Moreover, the identification of variabilities within the 
agricultural system is an important means of enabling site-specific management and increasing 
agricultural sustainability. In recent years, unmanned aerial vehicles (UAVs) have opened new 
frontiers for high-throughput phenotyping. Small-sized and lightweight sensors can be 
equipped on UAVs, facilitating the mapping of field heterogeneity, with a high spatial and 
temporal resolution. The enormous potential to assess different crop parameters non-
destructively using the three-dimensional (3D) or spectral information has been investigated in 
this work. In addition, the potential limitations and the effort of applying the developed methods 
to unknown datasets are examined in this thesis, to meet the needs of precision agriculture and 
plant breeding.   

The first study focuses on the lodging assessment of barley, based on the 3D 
information. Canopy height models were utilized to quantify the presence or absence of lodged 
plants (lodging percentage), as well as the intensity of the permanent displacement of plants 
from their upright position (lodging severity). Height thresholds that make use of a 
mathematical approach enabled to distinguish between the naturally occurring height variations 
and the lodged plants. The results showed a high correlation of lodging percentage to reference 
data (RMSE = 7.66 %) when applied to breeding trials. A similar accuracy could be observed 
in the case of a farmer’s field. The use of the 3D information is nearly independent of the abiotic 
or biotic factors and is characterized by high repeatability and applicability. 

The second study of this thesis makes use of multispectral imagery for the plant density 
assessment of barley and wheat. The methodology was based on an empirical regression model 
and the relationship between plant density, counted in the field, and calculated fractional cover 
(number of plant pixels per square meter). The results illustrated that, at an early seedling stage, 
fractional cover is closely related to the number of plants (RMSE < 34 plants m−2). In order to 
expose the robustness of this statistical relationship, a developed model was applied to an 
unknown dataset and showed a high degree of accuracy (RMSE = 24 plants m−2). In addition, 
11 reference measurements have proved to be sufficient, to enable the adaptation of the 
empirical regression model to the scene. 

The third study explores the application of high-resolution RGB imagery for the spike 
density assessment of wheat. Similar to the previous study, the statistical relationship between 
the manually counted spike density and the UAV-derived spike cover (number of spike pixels 
per square meter) was examined. The spike density could be accurately modelled (RMSE < 18 
spikes m−2) for three different genotypes, with phenotypic variations of canopy and spike 
characteristics. Investigations in this study have led to the assumption that 11 reference 
measurements can enable the adaptation of the empirical regression model. 

In summary, the work demonstrated the great diversity of mapping crop heterogeneity 
with UAVs on a field scale. This potentially enables the faster selection of superior lines, the 
spatially differentiated prediction of crop yield or site-specific management for different 
nutrition and soil conditions. The independency or known effort of adapting the methodologies 
to unknown datasets increases the application potential in practice. However, the greatest 
challenge in remote sensing is to demonstrate universal applicability or the satisfactory 
adaptation of the methods.  
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Zusammenfassung 

Der Anstieg der globalen Temperaturen, der Kohlendioxid (CO2) Konzentration sowie das Auftreten 
extremer Wetterereignisse verändern die Umweltbedingungen für die Produktivität von Nutzpflanzen 
kontinuierlich. Die Identifizierung von klimaangepassten und ertragreichen Sorten ist für die 
Pflanzenzüchtung zu einer anspruchsvollen Aufgabe geworden. Eine zeiteffiziente und objektive 
Phänotypisierung von Nutzpflanzen ist dabei vorteilhaft, um die richtigen Sorten zuverlässig 
identifizieren zu können. Zusätzlich ist die Identifizierung der Variabilität innerhalb eines 
landwirtschaftlichen Systems wichtig, um standortspezifisches Management zu ermöglichen und die 
Nachhaltigkeit in der Landwirtschaft zu erhöhen. In den letzten Jahren haben Unmanned Aerial Vehicles 
(UAVs) neue Möglichkeiten für die Hochdurchsatz-Phänotypisierung eröffnet. UAVs können mit 
kleinen und leichten Sensoren ausgestattet werden, die es ermöglichen, Heterogenitäten mit einer hohen 
räumlichen und zeitlichen Auflösung zu erfassen. Dieses Potenzial wird in der vorliegenden Arbeit 
untersucht, um verschiedene Pflanzenparameter nicht destruktiv und anhand dreidimensionaler (3D) 
oder spektraler Informationen zu quantifizieren. Darüber hinaus werden in dieser Arbeit mögliche 
Grenzen sowie der Aufwand für die Anwendung der entwickelten Methoden auf unbekannte Datensätze 
untersucht, um den Anforderungen der Präzisionslandwirtschaft und der Pflanzenzüchtung gerecht zu 
werden. 

Dabei befasst sich die erste Studie mit der Ermittlung der Lagerbildung bei Gerste auf Grundlage 
der 3D-Information. Mit Hilfe eines Oberflächenmodelles von Pflanzenbeständen wird die Betroffenheit 
und nicht Betroffenheit von Pflanzen im Bezug zur Lagerbildung (Lageranteil) sowie deren Intensität 
(Lagerintensität) quantifiziert. Höhenschwellwerte, die auf einem mathematischen Ansatz beruhen, 
ermöglichen die Unterscheidung zwischen natürlich vorkommenden Höhenschwankungen und der 
Lagerbildung. Die Ergebnisse zeigen eine hohe Korrelation des ermittelten Lageranteils zu 
Referenzdaten (RMSE = 7,66 %) bei Zuchtparzellen. Eine ähnliche Genauigkeit konnte auch für eine 
klassische landwirtschaftliche genutzte Fläche erzielt werden. Die Nutzung der 3D-Informationen ist 
nahezu unabhängig von abiotischen und biotischen Faktoren und zeichnet sich durch eine hohe 
Wiederholbarkeit und Anwendbarkeit aus.  

Im zweiten Teil dieser Arbeit werden multispektrale Bilder zur Ermittlung der Pflanzendichte 
von Gerste und Weizen genutzt. Die Methodik basiert auf einem empirischen Regressionsmodell und 
der Beziehung zwischen der auf dem Feld gezählten Pflanzendichte und dem berechneten 
Bedeckungsgrad (Anzahl Pflanzenpixel pro Quadratmeter). Die Ergebnisse zeigen, dass der 
Bedeckungsgrad in einem frühen Entwicklungsstadium stark mit der Pflanzendichte korreliert (RMSE 
< 34 Pflanzen m−2). Um die Robustheit dieser statistischen Beziehung aufzuzeigen, wurde ein 
entwickeltes Modell auf einen unbekannten Datensatz und unbekannte Genotypen mit einer hohe 
Genauigkeit angewandt (RMSE = 24 Pflanzen m−2). Außerdem erwiesen sich bereits elf 
Referenzmessungen als ausreichend, um das empirischen Regressionsmodell an eine spezifische 
Situation anzupassen. 

Die dritte Studie befasst sich mit der Nutzung von hochauflösenden RGB-Bildern zur 
Quantifizierung von Ähren in Weizenbeständen. Ähnlich wie in der vorangegangenen Studie wurde die 
statistische Beziehung zwischen der manuell gezählten Ährendichte und des Ährenbedeckungsgrads 
(Anzahl Ährenpixel pro Quadratmeter) untersucht. Die Ährendichte konnte für drei verschiedene 
Genotypen mit phänotypischen Variationen von Kronen- und Ährenmerkmalen genau modelliert 
werden (RMSE < 18 Ähren m−2). Eine Untersuchungen der Studie führte ebenfalls zu der Annahme, 
dass elf Referenzmessungen eine Anpassung des empirischen Regressionsmodells ermöglichen können.  

Zusammenfassend lässt sich sagen, dass die Arbeit eine Vielzahl an Möglichkeiten aufzeigt, um 
Heterogenitäten im Feld mit UAVs erfassen zu können. Dies ermöglicht potenziell eine schnellere 
Selektion von idealen Züchtungslinien, eine räumlich differenzierte Vorhersage von Ernteerträgen oder 
eine standortspezifische Bewirtschaftung bei unterschiedlichen Nährstoff- und Bodenbedingungen. Die 
Unabhängigkeit beziehungsweise der bekannte Aufwand zur Anpassung der Methodik an unbekannte 
Datensätze erhöht das Anwendungspotenzial in der Praxis. Allerdings ist die größte Herausforderung 
im Bereich der Fernerkundung die universelle Anwendbarkeit beziehungsweise erfolgsversprechende 
Anpassung der Methoden nachzuweisen. 
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Abbreviations 

AGL  above ground level 

ALS  average lodging severity 

BBCH  Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie  

CH  canopy height  

CHM  canopy height model  

CNN  convolutional neural network 

CO2  carbon dioxide  

DAS  days after sowing  

DEM  digital elevation model 

DLS  downwelling light sensor  

DN  digital number 

DTM  digital terrain models  

ELM  empirical line method  

ExGR  excess green minus excess red 

FA  flight altitude  

GCP  ground control point 

GNSS  global navigation satellite system  

GPS  global positioning system 

GSD  ground sampling distance 

LAI  leaf area index  

LiDAR light detection and ranging 

LPT  lodging percentage threshold 

MAE  mean absolute error 

MAXCH maximum canopy height 

NDVI  normalized difference vegetation index 

NIR  near infrared  

PA  precision agriculture  

RGB  red green blue  

rRMSE relative root mean square error 

RMSE  root mean square error 

RTK  real time kinematic  

R²  averaged coefficient of determination (R²) 

S  Direct solar illumination during data acquisition 

(S)  Minor clouds but predominantly direct solar illumination 

SD  standard deviation  

Abbreviations continued... 
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SfM  structure from motion 

SU  sampling unit 

SVM  support vector machines  

O  Overcast sky 

(O)  Short periods of direct solar illumination but mainly overcast sky 

UAV  unmanned aerial vehicle 

WALS  weighted average lodging severity  

2D  two-dimensional  

3D  three-dimensional 
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1. Introduction 1 

Global agricultural productivity faces enormous challenges. With anticipated growth of the 

world population to more than nine billion people by the middle of the 21st century (United 

Nations 2015), it will be necessary to nearly double global crop production to meet the food 

demand (Tilman et al. 2011). In addition, intense land competition (e.g., with urban 

expansion), increasing meat consumption, and rising demand for bioenergy production put 

further pressure on global agriculture (Ainsworth et al. 2008; Rathmann et al. 2010; Harvey 

and Pilgrim 2011; Henchion et al. 2014).  

In recent decades, advanced crop breeding and optimization in land use for example, 

with artificial fertilizer and pesticides have been the main drivers of efforts to meet the 

steadily increasing food demand (Evenson and Gollin 2003; Pingali 2012). Currently, more 

than half of the world population is dependent on nitrogen fertilizers for food production 

(Erisman et al. 2008; Basso et al. 2016). In addition, digestibility has been improved in high-

yielding breeds, allowing an increase in average daily gains from livestock (Casler and 

Vogel 1999). However, current estimates indicate that approximately 690 million people, 9 

% of the current world population, are still starving (FAO et al. 2020). Furthermore, the 

environment in which crops are grown is changing, influencing the productivity of already 

established crops. The last decade was the warmest since the 19th century and led to record-

breaking heatwaves in many areas of the world (Coumou et al. 2013; Schiermeier 2019). 

Increasing temperatures and water stress resulted in a reduction in plant productivity and 

performance (Challinor et al. 2014; Asseng et al. 2015; Gao et al. 2020). Moreover, carbon 

dioxide (CO2) concentrations are continuously rising. Atmospheric emissions of CO2 will at 

least double by 2050 (Houghton et al. 2001; Solomon et al. 2007) with a positive effect on 

photosynthesis and water-use efficiency. This could be the basis for efforts to offset losses 

caused by increased drought and temperature stress, particularly for important C3 crops like 

cereals (Ittersum et al. 2003; Ainsworth et al. 2008; Alexandratos and Bruinsma 2012).   

It has become a priority to determine resilient as well as high-yielding crop genotypes 

under these changing environmental conditions in order to maintain steady gains in yield 

and ensure global food security. Advanced phenotyping can address these challenges and 

has significant potential in terms of identifying uncertainties and variabilities within 

agricultural or breeding systems. This identification is also an important means for precision 

agriculture (PA), to enable site-specific management and increase crop performance. Tekin 

(2010) estimated that by applying variable rates of fertilizer, wheat yield could be increased 

by up to 10 %, and the use of artificial fertilizer could be reduced by up to 37 %. Such an 

approach would also saves valuable resources and reduce negative environmental impacts, 

for  instance, on water and air pollution caused by excessive release of fertilizers or emissions 

into the atmosphere (Gebbers and Adamchuk 2010; Hunt et al. 2012; Basso et al. 2016). 
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Moreover, advanced phenotyping offers an opportunity to assess the performance of 

agricultural chemicals, hybrids, and seed types within agricultural or breeding systems under 

different environmental conditions (Tellaeche et al. 2008; Tekin 2010; Araus and Cairns 

2014). 

Evaluating, for example, application of chemicals or fertilizers at the right time and 

place requires qualitative and quantitative information within a short period, to guide the 

decision-making process. Therefore, it is important to replace the current practice of 

subjective, time-consuming, and expensive manual surveys of subsample areas to represent 

field or plot conditions. Remote sensing data from satellites, aircrafts, and UAVs can help 

to advance and accelerate phenotyping to complement the work of breeders and farmers. 

These technologies have the ability to provide spectrally, spatially and temporally extensive 

information about large areas quickly, cost-effectively, and easily (Liaghat and Balasundram 

2010; Basso et al. 2016; Weiss et al. 2020).  

In particular, with rapid development of sensor technology and data processing, 

UAVs contribute to increasing digitalization in agriculture and have the potential to change 

crop phenotyping and agricultural crop production in the coming years (C. Zhang and 

Kovacs 2012; G. Yang et al. 2017a; Vargas et al. 2020). UAVs are capable of acquiring 

high-resolution data, with ground sampling distances (GSDs) of centimeters to millimeters, 

making them ideal for mapping the spatial variability of plants in small-scale experimental 

plots. Furthermore, due to their flexibility, low cost and simple, safe handling, UAVs have 

been widely adopted by many other research communities, such as search and rescue 

(Scherer et al. 2015; Shakhatreh et al. 2019) or in geodesy (Berteška and Ruzgienė 2013; 

Burdziakowski 2018). Moreover, UAVs are ideal for forestry operations, to monitor fire and 

its effects (Ollero et al. 2006), to classify species and map diseases (Torresan et al. 2017) or 

to monitor wildlife (Gonzalez et al. 2016; Ward et al. 2016). The preparation time for UAV 

campaigns is short with a high flexibility. In addition, data acquisition is not limited by 

different illumination conditions, and the GSD can be adjusted to the needs of the research, 

which makes UAVs advantageous for satellite and airborne systems (Zhang and Kovacs 

2012; Mulla 2013; Candiago et al. 2015).    

These properties of UAVs also facilitate a broad range of agricultural applications, 

making them suitable for assessing, as example, plant diseases (Nebiker et al. 2016; 

Abdulridha et al. 2020), plant resistance (Joalland et al. 2018; Chivasa et al. 2020), and plant 

vigor (Candiago et al. 2015; Wahab et al. 2018). Moreover, various plant traits like the leaf 

area index (Tian et al. 2017; Comba et al. 2020), canopy height (Holman et al. 2016; Mohan 

et al. 2017) and biomass (Bendig et al. 2014; Lu et al. 2019) have successfully been 

quantified non-invasively, to name just a few. The monitoring of chosen variables on a field 

scale can be used to determine specific heterogeneity time within a breeding trials site or to 

reactively optimize the micro-management and treat each field section individually as 

required (Mulla 2013; Srbinovska et al. 2015; Thomasson et al. 2018). Furthermore, 

information can be used for spatially differentiated predictions of crop yield (Nebiker et al. 

2016; Wahab et al. 2018; Hassan et al. 2019).  
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The two main sources used in the aforementioned studies are 3D information and 

transformation of certain color bands into a meaningful vegetation index or color space. 

Through overlapping of acquired images, data were processed using the “structure from 

motion” (SfM) technique. This enabled calculation of photogrammetric products like 3D 

point clouds and orthomosaics. The latter allows analysis of a single georeferenced 

mosaicked image, replacing individual images covering only a small area of interest 

(Westoby et al. 2012; Thomasson et al. 2018).  

Similarly, in this thesis, use was made of transformation of certain color bands into 

a meaningful vegetation index or color space and 3D point clouds, as sources for method 

development aimed at quantifying the lodging, plant and spike density of cereals. A UAV 

was used as the image acquisition platform, taking into account guidelines for qualitative 

data recording, data processing, and the right timing for trait extraction in relation to the 

developmental stage. In addition, the influence of varying GSDs for trait extraction was 

evaluated, which is correlated to the flight altitude of the UAV as well as individual camera 

parameters. Moreover, in this study, an attempt was made to investigate the accuracy, 

repeatability and practicability of the method by applying the approach, for example, to 

unknown datasets. Thus, the accuracy of the developed UAV methodologies was validated 

with manual reference measurements. 

 

In summary, the main parts of this thesis are structured as follows:  

 

Section 2 provides an overview about the study site, the basic principles, and applied 

concepts. 

Section 3 refers to use of 3D point clouds for canopy height extractions to quantify lodging 

of barley, based on two different parameters for breeding trials and a classical farmer’s 

field. The first parameter was the lodging percentage, which determined the presence 

or absence of lodged plants. The second parameter was lodging severity, which takes 

into account the intensity of permanent displacement of plants from their upright 

position. The focus was on developing a method that could objectively distinguish 

between naturally occurring height variations and lodged plants. In addition, the 

methodology and the factors that influence canopy height extractions were examined. 

Section 4 investigates the relationship between plants counted in the field and fractional 

cover (number of plant pixels per unit of ground area), determined by two vegetation 

indices (NDVI and ExGR), derived from UAV-based multispectral imagery. 

Measurements derived from manual counting in the field are advantageous in that it is 

possible to intervene in the plant structure or change the view for a better estimation 

of plant density. The relevant question is how much information can be obtained from 

nadir UAV images for the respective plant trait. 
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Section 5 examines the relationship between the spike density of wheat counted in the image 

and spike cover (number of spike pixels per square meter), determined by the extended 

CIELAB color space of spatially highly resolved information in the visible 

electromagnetic spectrum. 

Section 6 evaluates the advantages and applicability of developed approaches in practice 

and discusses the limitations of having, for example, different measurement 

conditions.  

Section 7 summarizes the benefits and future challenges of UAV applications to meet the 

demands of precision agriculture and breeding communities. 
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2. Basics and methods 

2.1 Empirical-statistical regression methods 

Empirical-statistical regression methods are very popular approaches for predicting bio-

geophysical vegetation traits, based on spectral information from remote sensing imagery 

(Dorigo et al. 2007; Verrelst et al. 2015). They can be separated into parametric and non-

parametric regression methods (Figure 1). Linear non-parametric models have been 

extended by machine learning algorithms that go beyond linear transformations. The 

different approaches for each category are summarized in Figure 1. 

Figure 1 Overview of different empirical-statistical regression methods (modified according to 

Verrelst (2015)). 

Non-linear transformations with kernel methods like support vector machines 

(Liakos et al. 2018) and neural networks (Kamilaris and Prenafeta-Boldú 2018) have already 

shown high potential for trait extractions. Information on, for example, texture, color, 

morphology and spectrum is used to identify complex associations between predicting 

variables and the variable of interest. This procedure does not necessitate preselection of 

data and explicit awareness of the underlying process (Houborg and McCabe 2018; Tewes 

2018), and it is especially advantageous for automating trait extractions. However, diversity 

is critical, and training datasets from thousands to millions are normally required to show 

significant advantages (Deng et al. 2009; Ubbens et al. 2018; Sadeghi-Tehran et al. 2019). 

In addition, the training process can be computationally intensive, needs expert knowledge 

and is potentially adapted to genotypic specificities or illumination conditions with a 
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restricted level of generalization and applicability. This is reinforced by lack of explicit 

awareness of the underlying process and by the fact that most methods are considered as 

block boxes (Verrelst et al. 2015; Morota et al. 2018).   

Parametric regression methods just assume a simple relationship between two sets of 

variables: a dependent variable (variable of interest), such as the leaf area index (LAI), and 

an independent variable, for example, a spectral transformation like a vegetation index 

(Figure 2). Prediction of the plant parameter is based on a fitting function between the 

independent and dependent variable (Verrelst et al. 2015). In this study, parametric 

regression methods were used for plant and spike density quantification.  

 

 

Figure 2 Generalized flowchart of plant trait retrieval using parametric regression methods (modified 

according to Verrelst (2015)). 

Such statistical relationships can suffer, for example, from a lack of robustness and 

transferability as they are species-, time-, and site-specific (Homolová et al. 2013). However, 

in this study, an attempt was made to evaluate the effort required to recalibrate the model. 

Recalibration does not require expert knowledge and is computationally fast. Respective 

disadvantages and advantages of non-parametric and parametric regression methods for 

plant trait identification are discussed in the corresponding subsection of this thesis. 

2.2 Study site 

The experiments were conducted at the agricultural research station Campus Klein-

Altendorf, 15 km southwest of the city of Bonn, in part of the Lower Rhine valley. The soil 

type can be classified as luvisol. It is base- and nutrient-rich and ideal for growing wheat, 

barley, and sugar beet. Based on the German system of measured productivity (Ackerzahl), 

the fields have scores between 85 and 90 points, the maximum being 100 points 

(www.cka.uni-bonn.de/standort, accessed January 02, 2022). The study area is located on 

the lee side of the Eifel and is dominated by westerly winds. The weather station of the 

campus, in operation since 1956, has reported a long-term average annual temperature of 9.4 

°C. The climate is characterized by significant precipitation throughout the year, with an 

average annual precipitation of 603 mm (Kunz and Völkering 2015). The temperatures and 

amount of precipitation in the long-term monthly averages are illustrated in Figure 3, in 

comparison to the year 2018. This year was selected because it was the essential period for 

plant (Section 4) and spike (Section 5) density assessment in this thesis.  



- 7 - 
 

 

In 2018, the average annual precipitation was 150 mm lower, and the average annual 

temperature was around 2 °C higher, compared to the long-term average. For the investigated 

spring cultivars of barley and wheat, the temperatures in April (up to 25 °C, well above the 

daily average) and precipitation higher than the long-term average led to ideal conditions for 

plant germination (Figure 3). 

 

Figure 3 Long-term average climate diagram of precipitation and temperature for Klein-Altendorf 

in comparison to the year 2018 (an essential period for data acquisition in this thesis). 

During spike development from May to July, the temperature was around 3 °C higher and 

precipitation was lower, compared to the long-term average (Figure 3). Drought and heat 

stress can influence crop growth and development, leading, for example, to an earlier onset 

of plant senescence (Samarah 2005; Prasad et al. 2015).  

2.3 Remote sensing with UAVs 

Acquisition of nadir image data from UAVs is highly interesting and helps to obtain 

information that is only partially visible from the ground. Nowadays, influenced by advances 

in technology, numerous sensors are available on the market that can be mounted on UAVs. 

Small-sized thermal image systems have been used to detect, for instance, wildlife and plant 

water stress (Ward et al. 2016; Messina and Modica 2020). In addition, lightweight 

multispectral and hyperspectral sensors can deliver information on plant diseases and plant 

vigor (Nebiker et al. 2016; Wahab et al. 2018; Abdulridha et al. 2020). Moreover, red, green, 

blue (RGB) cameras can be used to generate, for instance, 3D point clouds, comparable to 
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light detection and ranging (LiDAR) sensors for height and biomass assessment (Madec et 

al. 2017; Xie and Yang 2020).   

Furthermore, UAV platforms have been broadly diversified and nowadays can fall 

into two main categories: rotary-wing and fixed-wing UAVs. Both types have their 

advantages and disadvantages (cf. Table 1). Therefore, selection of a UAV platform must be 

tailored to the target and the specific field of application. The important features for trait 

extraction in this study, essential for spike and plant density estimation, are highlighted in 

bold letters.  

Table 1 Overview of advantages and disadvantages of rotary-wing and fixed-wing UAVs. Important 

features for data acquisition in this study are highlighted in bold letters (modified according to 

Dronedeploy (2017)). 

 

 

 

 

 
 Rotary-Wing UAVs Fixed-Wing UAVs 

Maneuverability  
Size/portability   
Ease of use  

Payload capacity  
Actively stabilized system for sensor 

(Gimbal)  

Low flight speed   
Flight time  
Stability  

Safer recovery from motor power loss  
Efficiency for area mapping  

   

Based on assessment of these features, a rotary-wing UAV was deemed preferable 

for data acquisition in this study. Essentially, the architecture of fixed-wing UAVs ensures 

mainly longer flight times with a similar payload. In particular, the maneuverability and 

flight speed of fixed-wing UAVs do not facilitate recording of high-resolution data with a 

GSD in the range of millimeters, which was a prerequisite in this thesis. Furthermore, rotary-

wing UAVs have an actively stabilized system like a gimbal to correct orientation of the 

sensor to the UAV movements, which is important in order to avoid motion blur (Gülch 

2012; Sieberth et al. 2014).
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2 Parts of this section have previously been published by Wilke et al. (2019) and Wilke et al. (2021) 

 

2.3.1 UAV system 2 

The off-the-shelf Falcon 8 octocopter (Ascending Technologies GmbH, Krailing, Germany) 

was used for data acquisition in this study, which has already proved to be a reliable platform 

for different scientific purposes (Bláha et al. 2012; Burkart et al. 2015). This small rotary-

wing UAV weighs 1700 g and has a maximum payload of 500 g. With a take-off weight of 

less than 2 kg, there was no need to have an operating license according to German 

regulations until 2020. In addition, this lightweight UAV generates little wind, which is 

advantageous for proximal sensing. A single 6.250-mAh lithium polymer battery powers the 

system and enables a flight duration of 10 to 15 minutes. It is mainly wind speed, payload 

and the number of charging cycles of the battery that influence variations in flight duration. 

The platform was fully designed and built by the manufacturer, with a global positioning 

system (GPS) receiver and autopilot. This guaranteed simple handling and reliable flight 

conditions for autonomous image acquisition. The patented V-shaped design of the UAV, 

illustrated in Figure 4, enables integration of sensors into a gimbal that looks upwards and 

downwards, without the sensors’ field of view being blocked by other components of the 

UAV. 

Figure 4 Falcon 8 octocopter used for data acquisition in the presented study (image provided by 

Ralf-Uwe Limbach). 

The gimbal is an important component which compensates for pitch and roll 

movement of the UAV platform during data acquisition and guarantees that the sensor has a 

stable nadir view during data acquisition. However, space and payload are limited on the 

Falcon 8, with the need to exchange the setup by different sensors.  
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3 Parts of this section have previously been published by Wilke et al. (2019) and Wilke et al. (2021) 

 

2.3.2 UAV sensors 3 

In this study, the UAV system was equipped with two different sensors: a consumer-grade 

digital RGB Sony Alpha 6000 (Sony Europe Limited, Weybridge, Surrey, UK) camera and 

the MicaSense RedEdge-3 multispectral sensor (Micasense, Seattle, USA). The former has 

a resolution of 24 megapixels (6000 × 4000 pixels) and captures images in the visible 

wavelength range (400 – 700 nm). The UAV manufacturer integrated the sensor into the 

Falcon 8 system (Figure 4), which allowed live transmission to the controller and the 

possibility of triggering the camera manually. The GPS receiver and autopilot of the Falcon 

8 can also be used to trigger the camera, based on a waypoint pattern with intended across- 

and along-track overlap. The RGB images were not geotagged. Nadir images were acquired 

in JPEG format and sRGB color standard (Süsstrunk et al. 1999) at a shutter speed of 1/1000 

seconds.  

The multispectral MicaSense sensor has already proven its effectiveness in different 

agricultural studies (Walsh et al. 2018; Gong et al. 2019). The global shutter simultaneously 

captures five spectral bands in 12-bit RAW TIFF format with GPS information. Details of 

the center wavelength of each band and the associated bandwidth from blue to near infrared 

(NIR) are summarized in Table 2. 

Table 2 Spectral characteristics of the MicaSense RedEdge-3. 

Band Center Wavelength (nm) Bandwidth (nm) 

Blue 475 32 

Green 560 27 

Red 668 14 

Red edge 717 12 

NIR 842 57 

 
In terms of weight (150 g) and dimensions (12.1 cm x 6.6 cm x 4.6 cm), the sensor was ideal 

for the available UAV platform. The capture rate of 1 second per image enabled data 

acquisition from low flight altitudes and at high flight speed. Exposure and gain settings are 

automatically optimized for each captured image and spectral band to avoid blurring or 

overexposure, resulting in correctly exposed images (Walsh et al. 2018). The images of the 

five spectral bands acquired by the multispectral camera were separately saved as TIFF files. 

An additional important feature of the sensor is the downwelling light sensor (DLS), which 

records the downwelling incoming light (irradiance) for each spectral band during a flight. 

Moreover, the camera manufacturer provides users with a radiometrically calibrated 

reference panel. 
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 The setup of the MicaSense camera was integrated into the Falcon 8 system. The 

patented V-shaped design of the UAV enabled the DLS to be placed on the back of the 

gimbal, facing towards the sky (Figure 5). Therefore, both the camera and the DSL have an 

identical correction of orientation to the UAV’s movements.   

Figure 5  MicaSense multispectral camera integrated into the Falcon 8 system (left), including a GPS 

module and light sensor mounted on the back of the gimbal (right). 

The weight of the DLS, GPS, camera, mounting plate and power supply battery was around 

230 g, resulting in a total UAV take-off weight of less than 2 kg.  

2.3.3 Improvements in the UAV setup 

The UAV market has been driven by innovations as well as price decreases over the past 

few years. In comparison to other systems available on the market, the flight time and 

payload of the Falcon 8 UAV are clearly limited, leaving room for improvement in terms of 

more efficient data acquisition. The main criteria in this study were simultaneous data 

acquisition with a high-resolution RGB and multispectral sensor, a higher payload and an 

increase in flight time. Bearing in mind this list of requirements, the DJI Matrice 600 Pro 

Hexacopter with a Ronin MX gimbal, which has already proved to be a reliable platform in 

other scientific studies (Horstrand et al. 2019; Tait et al. 2019), seemed a good choice. The 

system also enables simple handling and stable and reliable autonomous flight conditions. 

With a total weight of 12.5 kg, including the gimbal, the Hexacopter requires a drone license 

for operation. 

Light 
sensor 

GPS Camera 
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The RGB and the multispectral sensors were attached to the gimbal for simultaneous 

data acquisition (Figure 6). The common drone architecture enabled DSL integration only 

on the top of the UAV, without correction of sensor orientation to UAV’s movements during 

data acquisition. 

 

 

 

Figure 6 DJI Matrice 600 Pro and Ronin MX gimbal, with integrated high-resolution RGB camera 

and MicaSense multispectral sensor 

As with the Falcon 8 UAV system, the company offers live transmission and manual 

triggering of the RGB camera. The multispectral camera with the smaller field of view of 

the two cameras determined the UAV waypoint pattern to ensure sufficient across- and 

along-track overlap. This setup and six 5.700-mAh lithium polymer batteries enabled a flight 

time of more than 20 minutes.  

Light sensor 
& GPS 

Cameras 
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4 Parts of this section have previously been published by Wilke et al. (2019) & Wilke et al. (2021) 

 

2.3.4 Data acquisition, processing, and georeferencing 4 

The photogrammetry software Agisoft Professional (Agisoft LLC, Saint Petersburg, Russia) 

makes use of the SfM technique to process single UAV images. Through a defined number 

of overlapping images, the algorithms identify corresponding images by means of feature 

recognition. Details of the algorithms can be found in several publications (Lowe 2004; 

Kersten 2016; Agisoft 2018). In this study, images were acquired with 60 % across- and      

80 % along- track overlap in the lawnmower pattern (Dos Santos et al. 2015). This is 

supported by the software manufacturer’s recommendations to avoid image artifacts and to 

enable reliable reconstruction of the scene (Agisoft 2018), which has been successfully 

applied in several studies (Colomina and Molina 2014; Soares et al. 2018). Based on these 

overlapping images, the software recreates their final orientation in a spatial three-

dimensional (3D) point cloud (Özyeşil et al. 2017). Reconstruction of the 3D point cloud is 

an important prerequisite for generation of a geometrically corrected mosaicked image of 

the entire scene.  

The photogrammetric process can be divided into the following five steps: 

1. Align photos: The alignment process identifies prominent points within an image 

to detect similarities and matches across the image sequences. Thus, a sparse 

point cloud is calculated based on identified corresponding points in different 

images. This sparse point cloud can already be used to manually add ground 

control points (GCPs) with known locations to georeference the product in a 

global coordinate system (WGS 84 / UTM Zone 32N). The exact locations of the 

GCPs were measured using a Trimble differential real-time kinematic (RTK) 

GPS (Trimble Inc., Sunnyvale, CA, USA). 

2. Optimize alignment: The internal and external camera positions were determined 

without GPS information, resulting in possible estimation errors. Georeferencing 

enables final optimization of the camera parameters and realignment of the sparse 

point cloud in this second step. GCPs permitted the highest accuracy for image 

alignment, in comparison to image GPS data (Agisoft 2018). 

3. Build dense cloud: The coarse point cloud is used in the third step to condense 

the point cloud with depth information, based on the multiview stereo process. 

Resolution of the dense cloud is influenced by selected quality parameters. With 

high-quality settings, this is the most time-consuming and computationally 

demanding part of the photogrammetric process. 

4. Build DEM: Based on the dense cloud, the digital elevation model (DEM) is 

calculated, which represents a surface model in the form of a grid of height 

values. 
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5. Build orthomosaic: A geometrically corrected orthomosaic is generated based on 

the DEM, the reconstructed model and the surface elements of individual images. 

The blending mode is defined as mosaic. Therefore, areas in the orthomosaic try 

to be reconstructed based on the central area within recorded images. 

The processing settings were selected depending on the necessary source for trait 

assessment (e.g., lodging or plant density). For the 3D point cloud, as the main product, high-

quality processing settings for image alignment and dense cloud generation were used (Table 

3). This led to a point cloud with an adequate resolution to precisely extract canopy height 

in this thesis (Section 3). Using higher quality settings only increases the processing time 

without any benefit, while lower quality settings do not yield the required resolution for 

height extractions. 

Table 3 Ideal processing settings in Agisoft Professional depending on the target product (3D point 
cloud, orthomosaic) for trait extraction. 

 

In order to generate a high-quality orthomosaic, lower quality processing settings for 

image alignment and dense cloud generation were mandatory. The canopy structure, for 

instance, in the growth stage of spike development is very detailed and prone to possible 

errors in the reconstruction. With high-quality processing settings for image alignment and 

dense cloud generation, the number of matching features found within the SfM process also 

increases (Aasen et al. 2018), and the dense cloud naturally has a much higher resolution. 

asa 

  

Step Job type 
Job type 

specifications 

Processing settings 

Product: 
3D point cloud 

Product: 
orthomosaic 

1 Align photos Accuracy High Low 

2 Optimize alignment Parameters 
f, b1, b2, cx, cy, 
k1–k4, p1, p2 

f, b1, b2, cx, cy, k1–
k4, p1, p2 

3 Build dense cloud 
Quality High Lowest 

Filtering mode Aggressive Aggressive 

4 Build DEM 
Source data 

/ 

Dense cloud 

Surface DEM 

5 Build orthomosaic 
Surface Mosaic 

Blending mode Mosaic 
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As a consequence, reconstruction of an area in the orthomosaic is likely to involve images 

with identical spikes in different positions, resulting in blurred and noisy areas (cf. Figure 

7a.). This kind of issue can be avoided by choosing low-quality processing settings for image 

alignment and dense cloud generation, as illustrated in Figure 7b. 

Figure 7 Appearance of a similar area in a reconstructed orthomosaic influenced by different 

processing settings for image alignment and dense cloud generation: (a) high-quality processing 

settings resulting in blurry areas due to an increased number of matching features found for the SfM 

process; (b) low-quality processing settings for a high quality orthomosaic. 
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2.3.5 Calculating reflectance 

The multispectral sensor records the digital numbers (DNs) of each spectral band. In order 

to calculate comparable physical units of reflectance, the aforementioned irradiance acquired 

by the DLS and the reference panel were used in this study. MicaSense provides an accurate 

radiometrical characterization of the panel (Figure 8), avoiding the need for own 

characterization systems like an expensive spectrometer. 

Figure 8 Reference panel provided by the camera manufacturer, radiometrically calibrated between 

350 nm and 850 nm to calculate comparable physical units of reflectance for the multispectral sensor.  

The data processing and calibration process is simplified and integrated in photogrammetric 

software like Agisoft (Agisoft 2019). Moreover, Agisoft automatically corrected images for 

exposure time, lens vignette effect, sensor gain, and black level values. The calibration 

process has been applied and evaluated successfully in different studies (Mamaghani et al. 

2018; Su et al. 2019; Taddia et al. 2020). Finally, this setup enabled radiometric calibration 

of image data for a variation of irradiance during data acquisition, e.g., for cloudy 

illumination conditions.  
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Abstract 

UAVs open new opportunities in precision agriculture and phenotyping because of their 

flexibility and low cost. In this study, the potential of UAV imagery was evaluated to 

quantify lodging percentage and lodging severity of barley using SfM techniques. 

Traditionally, lodging quantification is based on time-consuming manual field observations. 

Our UAV-based approach makes use of a quantitative threshold to determine lodging 

percentage in a first step. The derived lodging estimates showed a very high correlation to 

reference data (R² = 0.96, root mean square error (RMSE) = 7.66 %) when applied to 

breeding trials, which could also be confirmed under realistic farming conditions. As a 

second step, an approach was developed that allows the assessment of lodging severity, 
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information that is important to estimate yield impairment, which also takes the intensity of 

lodging events into account. Both parameters were tested on three ground sampling 

distances. The lowest spatial resolution acquired from the highest flight altitude (100 m) still 

led to high accuracy, which increases the practicability of the method for large areas. Our 

new lodging assessment procedure can be used for insurance applications, precision farming, 

and selecting for genetic lines with greater lodging resistance in breeding research. 

3.1 Introduction 

The use of UAVs allow acquisition of image data with high spatial resolution, which is a 

basic requirement for deriving detailed 3D canopy structure of crops using feature matching 

and SfM techniques (Turner et al. 2012; Dandois and Ellis 2013; Colomina and Molina 

2014). To derive the canopy height (CH) from the canopy structure, a nonvegetated ground 

model is needed. This ground model represents the topsoil surface, which is usually acquired 

by a UAV overflight shortly after sowing or harvest, when agricultural fields are free of 

vegetation (Bendig et al. 2013; Chu et al. 2017). This kind of information can also be 

provided by digital terrain models (DTMs) derived from LiDAR data. Different studies have 

already examined the quality and accuracy of LiDAR DTMs (Li 1988; Kraus et al. 2004; 

Podobnikar 2009; Hirt 2017). The potential of this data source as an alternative ground 

model for CH retrieval, however, has not yet been evaluated. 

UAV CH has been investigated in several studies in recent years (Anthony et al. 2014; 

De Souza et al. 2017; Stanton et al. 2017). Noninvasive measurement of CH, multitemporal 

growth curves (Holman et al. 2016), and biomass development (Bendig et al. 2014) at 

different phenological stages is a major requirement for precision agriculture. Crop vitality, 

fertilizer status, soil quality, and water availability influence the aforementioned plant traits 

and are used to optimize agricultural management practices or yield predictions (Shanahan 

et al. 2001; Hansen and Schjoerring 2003; Adamchuk et al. 2010; Mulla 2013; Bareth et al. 

2015). Compared to plant height measured with a ruler in the field at a specific location, the 

UAV-based approach provides information on the spatial height distribution of a continuous 

canopy (Aasen et al. 2015). Thus, it contains height information of numerous single plants, 

while reference measurements in the field only represent height information of single plants 

covering a very limited area. 

Furthermore, CH is very well suited to quantify lodged areas. The term “lodging” is 

defined as permanent displacement of a plant from the upright position (Berry and Spink 

2012; Rajapaksa et al. 2018). It is a major problem in cereal crops, because it leads to 

qualitative and quantitative yield losses up to 45 % (Weibel and Pendleton 1964; Pinthus 

1974; Berry and Spink 2012; Peng et al. 2014). Yield loss is strongly affected by the lodging 

severity and the development stage at which it occurs (Fischer and Stapper 1987; Briggs 

1990; Berry et al. 2004). Extreme weather conditions (wind, hail, heavy rain) and other 

environmental factors, such as excessive nitrogen supply, pests, diseases, and high plant 

density, can cause lodging before harvesting (Zhang et al. 2017; Dahiya et al. 2018). Thus, 
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breeding programs aim to select for genetic lines of cereal crops with greater lodging 

resistance (Pinthus 1974). Due to the impacts of climate change, with an increasing amount 

of extreme weather conditions, lodging is still a major limiting factor in yield impairment, 

resulting in an increasing need for a cost-efficient and accurate approach to quantify lodging. 

The use of UAVs can replace laborious and subjective ground data collection and enable 

spatial assessment of lodging by an automated system. Susko et al. (2018) tried to assess 

crop lodging with a field camera track system. Liu et al. (2018) used visible and thermal 

infrared images derived from UAV for rice lodging estimation. Texture information and 

canopy structure have also been used to assess lodging in rice (Yang et al. 2017b).  Murakami 

et al. (2012) quantified lodging in buckwheat using the 3D canopy structure. In general, the 

area of lodging can be determined by using a predefined threshold at which CH lodging 

occurs. However, the thresholds applied in different studies (Chapman et al. 2014; Yang et 

al. 2017b) were defined by subjective inspections rather than by mathematical approaches.  

The lodging percentage parameter identified with the single threshold approach only 

enables determining the presence or absence of lodging. In recent years, several studies 

showed that yield impairment is additionally affected by lodging severity (Fischer and 

Stapper 1987; Berry 1998; Berry and Spink 2012; Murakami et al. 2012). The term “lodging 

severity” is defined as the angle of the permanent displacement of plants from their upright 

position (Berry 1998; Berry and Spink 2012). Ground data based on visual lodging scores 

are generally insufficient in accuracy, efficiency, and objectivity (Simko and Piepho 2011; 

Murakami et al. 2012). So far, only Chu et al. (2017) have assessed the lodging severity of 

corn by quantifying the number of lodge plants. Due to the typical plant structure and plant 

density of corn, this approach cannot be applied to cereal crops.  

The major aims of this study are to use canopy structure derived from RGB image data 

to determine the factors that affect canopy height and to develop new methodologies for the 

assessment of lodging percentage and severity. The primary objectives are: (1) to compare 

plant traits derived from UAV- and DTM-based ground models to evaluate whether the 

DTM can serve as an alternative data source; (2) to investigate the comparability between 

ground-measured plant heights in the field with UAV-derived CHs, taking factors like 

canopy structure and plant density into account; (3) to develop a mathematical approach for 

the assessment of lodging percentage, avoiding adjusted thresholds and subjective decisions; 

and (4) to assess lodging severity with a novel approach based on canopy height variations. 
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3.2 Materials and methods 

3.2.1 Study area 

Within the research campus at the field lab on the Campus Klein-Altendorf of the University 

of Bonn, 2 experimental sites were investigated. The first experimental site was sown on 09 

April 2016 consisted of several small breeder plots, each 2.62 × 3 m in size. This experiment 

was the test bed for developing a method that allows canopy height and lodging assessment. 

The layout included 3 spring barley (Hordeum vulgare) cultivars (HOR 21770, HOR 9707, 

HOR 3939) and 2 different sowing densities with 6 repetitions (Figure 9a). The high density 

(300 seeds m–2) reflected the common sowing density in Germany. The lower density 

consisted of 150 seeds m–2. The selected barley cultivars varied in canopy characteristics (cf. 

Figure 9).  

Figure 9 (a) Experimental site 1, consisting of small breeder plots with three spring barley cultivars 

and two sowing densities. Representative images of three barley varieties 61 days after sowing 

(DAS); (b) genotype HOR 3939, characterized by sparser vegetation cover and small soil gaps; (c) 

HOR 9707, characterized by a closed canopy with fewer gaps and (d) HOR 21770, characterized by 

a closed and dense canopy without any gaps. 

The second site was a normal production field with a size of 1.5 hectares (Figure 16a), 

where winter barley was sown on 28 September 2017. The variety “Lomerit” was sown 

with a commonly used density of 300 seeds m–2. The lodging assessment approach 

developed at the first experimental site was applied to test its robustness and usability 

on this conventionally treated field. The experiments were fertilized with 170 kg 

nitrogen per hectare and growth inhibitors were applied. The seeds were sown in rows 

with 10.9 cm row distance. 
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3.2.2 Data acquisition, processing, and canopy height model generation 

The Falcon-8 octocopter and the Sony Alpha 6000 RGB wide-angle camera with a 30 mm 

fixed focal length lens were used for image acquisition, resulting in a GSD of 0.54 cm at a 

flight altitude of 35 m above ground level (AGL). Agisoft PhotoScan (Version 1.4.1) was 

used to recreate the 3D point cloud (Westoby et al. 2012) as first product and the two-

dimensional (2D) orthomosaic (Gómez-Candón et al. 2014) as second product. The 

evaluation of the 3D point cloud with the necessary processing settings (Table 3) was done 

in CloudCompare (Version 2.9.1) (Danielgm 2016). The 3D point cloud contains height 

information above the ellipsoid. To derive the canopy height model (CHM), the 3D point 

cloud must be subtracted from an underlying ground model (cf. Figure 10). 

Figure 10 Overall flowchart of software products used in this study for data processing and 

evaluation of the spatial assessment of canopy height, lodging percentage, and lodging severity. GIS: 

geographic information system; DTM: digital terrain model; CHM: canopy height model; ROI: 

region of interest. 

Two methods were investigated in this study to derive the ground model: 

1) Ground model determination based on a UAV overflight shortly after sowing (UAV-

based ground model), and 

2) Ground model determination based on a DTM provided by state authorities (DTM-

based ground model). 

 

Method 1 requires an additional overflight in the time frame shortly after sowing until 

seedling emergence with no visible vegetation. In contrast, method 2 is based on the airborne 
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LiDAR dataset that provides the topsoil surface with a GSD of 1 m. In Germany, DTMs are 

freely accessible and updated at least every 6 years. The DTM for the study was acquired in 

2015.  

The height difference between the ground and the canopy model finally enables the 

assessment of canopy height (CH), as illustrated in Figure 11.  

Figure 11 Visualization of CHM (m) for selected barley plots in side view (left) and nadir top view 

(right). 

Rasterization of the 3D CHM resulted in a 2D *TIF image with high spatial resolution of 

0.01 m (cf. Figure 10), from which the maximal height value for each grid cell was exported 

and used for further calculation. 

3.2.3 UAV canopy height assessment and validation 

The analysis of the rasterized CHM based on images with 0.85 cm GSD was done in QGIS 

(version 3.2.3) open source GIS software, using layers with different levels (cf. Figure 10). 

Shape files with a size of 2.4 × 2.8 m were created for each barley plot of the experimental 

site and used to calculate the median CH. The size of the shape files was chosen slightly 

smaller than the size of the plots to avoid border effects in the further processing. 

Plant heights were also determined with a measuring ruler in the field to compare them to 

the UAV- derived CH of experimental site 1. The median plant height was calculated based 

on 6 height measurements within each plot, whereby the highest point of the plants was 

taken. In total, 4 repetitions per sowing density and genotype were recorded 61 days after 

sowing (DAS).  
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3.2.4 Lodging assessment and validation 

The rasterized CHMs and the shape files (2.4 × 2.8 m) of the plots were also used for the 

lodging assessment (Figure 10). Two parameters were calculated in this study: (1) lodging 

percentage, which represents the area affected by lodging, and (2) lodging severity, which 

describes how strongly the canopy is affected by lodging based on the canopy height 

variation, hereinafter specified in detail. 

 

3.2.4.1 Experimental site 1: Breeding trials 

The first step in the process of quantifying lodging was to determine an objective threshold. 

First, the maximum canopy heights (MAXCH) of each genotype were calculated based on 

images with 0.85 cm GSD. In the second step, the average MAXCH of all repetitions was 

used to minimize the risk of including outliers as maximum values. To determine the UAV 

lodging percentage, 4 lodging percentage thresholds (LPTs) related to the MAXCH were 

calculated: 80 % (80LPT), 70 % (70LPT), 60 % (60LPT), and 50 % (50LPT) of the 

MAXCH. For example, 70LPT of a MAXCH of 1 m is 0.7 m. Based on the different LPTs, 

the lodging percentage could be determined by a simple query (rasterized CHM < LPT), 

resulting in a binary image showing areas affected and not affected by lodging (Figure 12c). 

Figure 12 (a) High-resolution RGB orthomosaic used for manual validation of areas affected by 

lodging; (b) Calculated CHM (m) in the region of interest and (c) Binary image calculated based on 

70 % lodging percentage threshold (70LPT) with areas affected (dark red) and not affected (green) 

by lodging. 

For the lodging severity assessment a mixture of four thresholds (80LPT, 70LPT, 60LPT, 

50 LPT) related to the MAXCH were used. Based on these thresholds, first the average 

lodging severity (ALS) and second the weighted average lodging severity (WALS) were 

determined according to Equations 1 and 2. In comparison to ALS, the WALS parameter 

additionally rates areas affected by lodging, differentiated to consider also the yield 

impairment. The applied weighting factors were chosen based on expertise, adjustments and 

the expected yield impairment of the LPTs. Sections with CH lower than 50 % (50LPT) of 

the MAXCH were weighted twice as much as those with CH lower than 80 % (80LPT) of 

the MAXCH (Equation 2). The difference between adjacent LPT factors within the WALS 
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calculation was 0.25, so that the value range for both lodging severity parameters varied 

between 0 and 100 %.  

𝐴𝐿𝑆   =    
80𝐿𝑃𝑇 + 70𝐿𝑃𝑇 + 60𝐿𝑃𝑇 + 50𝐿𝑃𝑇

4
    (1) 

𝑊𝐴𝐿𝑆   =    
(0.625 ∗ 80LPT) + (0.875 ∗ 70LPT) +  (1.125 ∗ 60LPT) +  (1.375 ∗ 50LPT)

4
    (2) 

To validate the accuracy of the UAV lodging percentage, affected areas of each barley plot 

were manually determined in a high-resolution orthomosaic (GSD = 0.23 cm). Due to the 

high spatial resolution, the lodged areas could be easily identified, resulting in a precise 

lodging percentage determination (Figure 12a). These reference data do not consider 

information on lodging severity and only provide a differentiation between the presence or 

absence of lodging. 

 

3.2.4.2 Experimental site 2: Farmer field 

For the case study, the above described method was applied to a conventional production 

field. Due to the lack of repetition in a classical farmer field, the 90th percentile of canopy 

height distribution was used as MAXCH to minimize the risk of including an outlier as a 

maximum value. To evaluate the influence of the spatial resolution on the assessment of 

lodging percentage and severity, 3 datasets with different GSDs were acquired by adjusting 

flight altitude: 0.54 cm (35 m AGL), 1.09 cm (70 m AGL), and 1.57 cm (100 m AGL). Data 

acquisition took place 258 DAS. For validation purposes, the orthomosaic with 0.54 cm GSD 

was used to manually determine areas affected by lodging.  
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3.3 Results and analysis 

3.3.1 Comparison of plant traits derived from UAV- and DTM-based 
ground models 

As aforementioned (cf. Section 3.2.2), the 3D point cloud has to be subtracted from a ground 

model to derive the CHM. The UAV- and DTM-based ground models were used in the first 

experiment (breeding trials) to determine the average CH (61 DAS) and lodging percentage 

parameter (75 DAS) for each barley plot. The CHs derived from both ground models showed 

a high level of agreement (R² of 0.99) and provided almost the same results (Figure 13a). 

Figure 13 Scatter plots from UAV- and DTM-based ground models of experimental site 1 of (a) 

average canopy height 61 DAS and (b) lodging percentage (70LPT) 75 DAS. Black line represents 

regression line with 95 % confidence interval; blue line represents 1:1 line. 

In comparison to CH, the lodging percentage parameter determined for both ground models 

using 70LPT resulted in a slightly lower R² of 0.93 (Figure 13b). Small CH differences can 

influence the determined lodging percentage, especially for plots that are less affected by 

lodging. Therefore, a higher residual deviation can be observed for lower values by 

considering the 1:1 line (Figure 13b). In contrast, values higher than 50 % showed a better 

fit with the 1:1 line. Although the correlation of the parameter lodging precentage was 

slightly lower compared to the UAV CH, it still showed a high level of accuracy. 

 

For experimental site 2, both ground models were investigated based on the parameter 

lodging percentage using 70LPT (Table 4). Only a small difference of 3.25 % between both 

ground models could be observed. Compared to the reference data, the UAV ground model 

showed a smaller deviation than the DTM ground model. Due to the slightly higher accuracy, 

the UAV ground model was used in the further course of the study. 
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Table 4 Assessment of UAV lodging percentage (70LPT) derived from UAV- and DTM-based 

ground models in comparison to reference data for experimental site 2 258 DAS. LPT: lodging 

percentage threshold; DTM: Digital Terrain Model; DAS: Days after sowing. 

Lodging percentage (%) 

UAV-based 
ground model 

DTM-based 
ground model 

Reference data 

71.81 75.06 70.27 

3.3.2 UAV canopy height assessment and validation 

Comparing the UAV-derived CHs of the breeder trial with corresponding plant heights 

measured directly in the field, clear deviations in accuracy could be detected, depending on 

genotype and sowing density. While genotype HOR 3939, with 0.29 m in low density and 

0.18 m in high density, showed greater differences between UAV CH and reference 

measurements, genotypes HOR 9707 and HOR 21770 showed only slight differences (Table 

5).  

Table 5 Comparison of UAV CH and reference measurement 61 DAS (n = 24). SD: standard 
deviation. 

Genotype Sowing density 

Median and SD (m) Discrepancy between 
reference 

measurements and 
UAV CH (m) 

Reference 
measurements UAV CH 

HOR 3939 
HOR 9707 

HOR 21770 

 
Low 

 

0.96 ± 0.02 
1.00 ± 0.04 
0.93 ± 0.02 

0.67 ± 0.08 
0.92 ± 0.05 
0.90 ± 0.05 

(–) 0.29 
(–) 0.08 
(–) 0.03 

HOR 3939 
HOR 9707 

HOR 21770 

 
High 

 

0.94 ± 0.05 
1.02 ± 0.03 
0.93 ± 0.01 

0.76 ± 0.06 
0.99 ± 0.04 
0.92 ± 0.01 

(–) 0.18 
(–) 0.03 
(–) 0.01 

One reason for the more pronounced deviations observed for genotype HOR 3939 was that 

the canopy fractional cover was lower than that of the other two cultivars. This resulted in 

small areas inside the plot without vegetation cover where soil was visible (Figure 9b). Thus, 

not only the top layer of the canopy was acquired, but lower parts were also included in the 

computation of CHM. These nonvegetated areas had an influence on the determined median 

CH and caused underestimation of the UAV-based CH retrieval. In contrast, genotype HOR 

21770 showed a dense and closed canopy without any gaps (Figure 9d). Thus, only the top 

canopy layer was considered in CHM generation, consequently leading to a small deviation 

of 0.03 m in the low sowing density and 0.01 m in the high sowing density compared to the 

reference measurements (Table 5). In general, the UAV CH of the high-density plots 

matched better with the plant heights measured in field with an average difference of 0.07 

m in comparison to the lower-density plots with an average difference of 0.13 m. This is also 

due to the fact that the lower sowing density resulted in a less dense canopy with gaps and 

consequently influenced the UAV CH assessment. 
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3.3.3 Lodging assessment and validation 

3.3.3.1 Experimental site 1: Breeding trials 

Permanent displacement of a plant from the upright position can be affected by different 

lodging severity, as illustrated in Figure 14. The first example shows a slightly affected 

canopy where only low-yield loss can be expected (Figure 14a). The same applies for the 

plot in Figure 14b, where just a few small areas are strongly affected by lodging. 

Additionally, Figure 14c clearly illustrates the capability of the approach to detect lateral 

lodging. In contrast to the other examples, the canopy in Figure 14d is heavily affected by 

lodging, so that parts of the plot lay completely on the ground.  

Figure 14 RGB images of barley plots showing different types of lodging (top) and corresponding 

lodging severity derived from the CHM (middle), as well as canopy height distributions with 

visualization of different lodging percentage thresholds (LPTs) (bottom). 

In order to identify the most suitable threshold for lodging percentage assessment, 4 LPTs 

(80LPT, 70LPT, 60LPT, 50LPT) were compared to the reference data. The UAV lodging 

percentage derived from 80LPT has a RMSE of 18.78 % (Figure 15a).  
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Figure 15 Scatter plots of manually determined lodging percentage and calculated UAV-based 

lodging percentage for (a) 80LPT; (b) 70LPT; (c) 60LPT; (d) 50LPT as well as lodging severity 

parameters (e) ALS, and (f) WALS 75 DAS. Black line represents regression line with 95 % 

confidence interval; blue line represents 1:1 line (n = 36).  
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It became clear that the absolute height differences between MAXCH and 80LPT were small 

and varied between 0.13 m (HOR 3939, high sowing density) and 0.22 m (HOR 21770, low 

sowing density) (Table 6). The naturally occuring plant height variation was higher than the 

predefined lodging threshold, resulting in an overestimation of lodging (Figure 15a). 

Table 6 Overview of MAXCH, UAV lodging percentage for four LPTs (80 %, 70 %, 60 %, 50 %), 

ALS, WALS, and manually determined lodging percentage reference data for different sowing 

densities and genotypes 75 DAS (n = 36). MAXCH: maximum canopy height; LPT: lodging 

percentage threshold; Ref: Reference data; WALS: weighted average lodging severity; ALS: average 

lodging severity. 

Genotype Sowing 
density 

MAX 
CH 
(m) 

Lodging percentage (%)  Lodging 
severity (%) 

80LPT 70LPT 60LPT 50LPT Ref.  WALS ALS 

HOR 3939 
HOR 9707 

HOR 21770 
Low 

0.72 
0.79 
1.12 

74.70 
84.90 
44.59 

59.94 
70.54 
26.86 

41.74 
54.35 
16.21 

20.76 
34.48 
9.77 

53.97 
70.54 
24.81 

 43.66 
55.84 
20.76 

49.29 
61.07 
24.35 

HOR 3939 
HOR 9707 

HOR 21770 
High 

0.66 
0.68 
1.03 

94.52 
98.10 
92.45 

86.90 
92.86 
85.75 

73.00 
80.94 
78.30 

50.10 
58.44 
69.37 

77.27 
73.28 
80.90 

 71.53 
78.49 
79.07 

76.13 
82.58 
81.47 

 

The UAV lodging percentage derived from 70LPT took into account the naturally occuring 

plant height variation in the field and led to the highest correlation (R² = 0.96) and the lowest 

RMSE (Figure 15b). The low amount of scattering indicated that 70LPT can be applied 

independently from the amount of lodged plants. No influence of the aforementioned 

differentiated canopy characteristics and canopy heights was observed. In comparison to the 

reference data, the UAV lodging percentage derived with 60LPT and 50LPT showed lower 

correlations (Figure 15c,d). Canopy areas affected by lodging were partly not identified 

when the lower CH thresholds were applied. Thus, the lodging percentage was 

underestimated, especially in strongly affected plots, where the CH threshold was more 

relevant.  

In comparison to the single threshold approach normally used, a combination of different 

thresholds can provide additional information for the lodging percentage assessment. The 

average of all four thresholds used in the ALS calculation enabled estimation of the lodging 

percentage on a pixel basis with high accuracy (R² = 0.94, RMSE = 8.22 %) (Figure 15e). 

The WALS parameter, in contrast, provided slightly lower accuracy (R² = 0.92, RMSE = 

11.53 %) (Figure 15f), because of the weighting procedure that was implemented within the 

parameter calculation (Equation 2).  

The aforementioned lodging severity variation cannot be determined by applying a 

single threshold approach, because that only represents a binary distinction between lodged 

and nonlodged areas. Consequently, 70LPT, for example, cannot distinguish between 

slightly affected areas (Figure 14a,b), where a low-yield impairment can be expected, and 

heavily affected areas (Figure 14d), which necessarily cause yield loss.  
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As a second step, the WALS parameter took these CH variations into account by its 

inbuilt weighting procedure and therefore can be used as an indicator for yield impairment. 

The reference data displayed in Table 6 clearly show that the lower sowing density with an 

average of 50 % were less affected by lodging compared to plots with the higher sowing 

density averagely affected by 77 %. Moreover, 50LPT applied to the lower-density plots 

allowed dectection of only 35 % of lodged area at maximum and 10 % at minimum. 

Contrarily, 70LPT determined a distinctly higher amount of 71 % lodge area at maximum 

and 27 % at minimum.  

The applied weighting procedure within the WALS calculation based on the different 

thresholds was able to consider this lodging intensity variation and, compared to the lodging 

percentage derived from 70LPT, led to a difference of 16 % at maximum (Table 6). The 

disparity between the WALS and reference data was influenced by the fact that the 

determined reference data were only an indicator for the presence or absence of lodging and 

did not provide information on lodging severity. The plots with high sowing density showed 

distinctly larger areas heavily affected by lodging, with 69 % at maximum and 50 % at 

minimum for 50LPT. This higher lodging severity led to a stronger correlation between the 

WALS and determined reference data (Table 6). Nevertheless, the variations still present 

between the different LPTs resulted in a deviation of 15 % at maximum between 70LPT and 

WALS for the plots with high sowing density. The average difference considering all 

genotypes and sowing densities between both parameters was 12 % (SD ± 4.2).  

Comparing ALS and WALS clarified that ALS without the weighting procedure slightly 

overestimated the lodging severity (Table 6). The difference between WALS and ALS was 

6 % at maximum, the average difference was 4 % (SD ± 1.1). 
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3.3.3.2 Experimental site 2: Farmer field 

The results for the developed lodging assessment procedure applied to an entire farmer field 

for different GSDs are summarized in Table 7. The 70LPT calculated for the highest spatial 

resolution (0.54 cm) showed the closest match to the reference data. Therefore, 70LPT again 

seemed to be most suitable to assess the lodging percentage.  

Table 7 Comparison of lodging percentage reference data with UAV-based lodging percentage for 

four LPTs (80 %, 70 %, 60 %, 50 %) and UAV lodging severity for image datasets with different 

spatial resolutions. 

GSD (cm) 
Lodging percentage (%)  Lodging severity (%) Reference 

data 80LPT 70LPT 60LPT 50LPT  WALS ALS 

0.54 88.83 71.81 66.69 64.75  70.61 73.02 70.27 
1.09 89.79 78.04 68.11 64.36  72.38 75.08  

1.57 87.35 78.51 73.05 68.60  74.95 76.88  

 

The results for 70LPT determined for the image data with lower spatial resolutions (1.09 and 

1.57 cm) led to slightly higher deviations at around 6 % compared to the reference data. 

However, the measured deviations were quite small. The general trend showed that the 

lodging percentage of all LPTs increased with decreasing GSDs. Therefore, the results for 

60LPT correlated increasingly better with the reference data with lower spatial resolution. 

This was influenced by the fact that the lodging severity of the entire farmer field was 

relatively high (Figure 16) and the differences between LPTs were small.  

The calculated lodging severity parameters showed exactly the same trend regarding the 

different spatial resolutions. The WALS parameter only increased by 4 % with decreasing 

GSDs. This underlines that the GSD has only a small impact on the parameter calculation. 

The WALS calculated for the dataset with the highest GSD (cf. Figure 16) provided a high 

level of agreement compared to the reference data. The small deviations of only 0.35 % for 

the reference data and 1.2 % for 70LPT were almost negligible and again were influenced 

by the high amount of plants strongly affected by lodging determined for 50LPT (cf. Table 

7).  
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The ALS once more probably slightly overestimated the lodging severity because of the 

missing weighting procedure. The difference between the two parameters, however, was 

only 3 % at maximum because of the small variations between the different LPTs (cf. Table 

7). 

Figure 16 Experimental site 2: (a) conventional farmer field 1.5 hectare in size and (b) result 

of WALS determination (0.54 cm GSD) 258 DAS.   
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3.4 Discussion 

In the presented study, different methods for high-throughput field phenotyping based on 

UAV image data were developed. In the following, the results achieved for the investigations 

are discussed in detail: a comparison of UAV-based and DTM-based ground models, 

comparability between measured plant heights in the field and UAV-derived CHs, and a 

spatially precise assessment of lodging percentage and severity.  

The quality assessment of DTMs derived from airborne LiDAR data was mostly based 

on statistical methods (Li 1988; Kraus et al. 2004; Podobnikar 2009). Comparing the LiDAR 

DTM in this study with a UAV-acquired ground model, the results showed that the LiDAR 

DTM can be used as an almost equivalent ground model to determine accurate CHMs. A 

direct comparison of the ground models independent from plant traits was not done, because 

the average height difference between the two ground models would consider irrelevant 

information. Agricultural activities such as deeper wheel tracks were more pronounced in 

the UAV ground model because of the distinctly higher spatial resolution in comparison to 

the LiDAR DTM. Areas like this were not relevant for the CH and lodging assessment and 

therefore can be neglected. The results in this study are independent from the year (2016 – 

Experimental site 1, 2017 – Experimental site 2) and location of data collection. Without 

extensive changes caused by human impact or agricultural crop rotation, it can be assumed 

that the renewed interval every six years provides sufficiently up-to-date information to 

obtain a precise ground model. However, a larger-scale experiment considering different 

locations and years needs to be conducted in the future to exploit the potential of DTM-based 

ground models in more detail. Nevertheless, the DTM has the potential to substitute for the 

mandatory UAV overflight and thus substantially reduce the effort in data collection. In this 

way, the time needed for data collection and data processing to determine lodging can be 

reduced by half. The included height information of the topsoil surface every square meter 

can be a benefit for large fields or hilly areas. 

As already demonstrated in different studies (Bendig et al. 2014; Holman et al. 2016; 

Chu et al.  2017), the UAV-based CH can be highly correlated with manually determined 

plant heights collected with a measuring ruler in the field. This study additionally shows that 

the UAV-derived information on the spatial height distribution of the canopy was affected 

by the canopy structure, the sowing density, and correspondingly also the sowing 

heterogeneity. In contrast, manual plant height measurements only represent single points in 

the field associated with subjective decisions, in particular with high plot heterogeneity. For 

that reason, the UAV-derived CH should be considered as an autonomous trait with a 

different definition compared to the plant height measurements. A validation of the UAV 

CH using the plant height measurements was correspondingly only possible to a limited 

extent. The UAV assessment enabled representative information on plots with high 

heterogeneity that can be measured manually only with great effort. Especially for breeders, 

the CH determination enabled simplifying complex crop and plant surfaces on an objective 

scale to estimate genetic effects. Furthermore, canopy homogeneity can be investigated for 
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entire farmer fields because it carries information on the heterogeneity of the underlying soil 

and the factors influencing crop growth. 

The developed approach for lodging percentage assessment provided very high accuracy 

in breeding trials (R² = 0.96, RMSE = 7.66 %) and led to a slight overestimation of 2 % 

when applied to a classical farmer field. Compared to other approaches where thresholds are 

normally chosen based on subjective decisions without a mathematical approach and 

reference data for validation (Chapman et al. 2014; Yang et al. 2017b), 70LPT enabled the 

precise detection of lodged areas within the canopy and took into account the naturally 

occuring plant height variations in the field. Furthermore, the implemented method for 

detection of an objective threshold considered the aforementioned factors influencing the 

CHM. The results showed that the developed method is well suited for barley genotypes 

with differentiated canopy structures and therefore has the potential to be applied to other 

cereal crops, such as wheat. 

In the process of determining lodging percentage in rice using structure, texture, and 

thermal information derived from UAV images, Liu et al. (2018) and Yang et al. (2017b) 

obtained high R² values greater than 0.9. The accuracy of the lodging percentage determined 

from textural information, however, is strongly dependent on a trained support vector 

machine (SVM) and the dataset used. Changing illumination conditions during the flight, 

general illuminance, sun angle, shadow effects, plant development stages, and color variance 

between genotypes and species can influence the method. For that reason, the approach is 

not transferable without having to adapt the SVM to other datasets. The quantification of 

lodging from thermal images is also very challenging, because external factors such as small 

changes in wind speed and cloud cover can strongly influence the derived canopy surface 

temperatures (Jackson et al. 1983; Chapman et al. 2014). The temperature difference 

between lodged and nonlodged plants was quite low, which can only be determined from 

image data recorded by precisely calibrated camera systems combined with accurate 

processing from raw data to final products.  

The lodging assessment based on RGB images to derive the relevant CH presented in 

this study is almost independent from abiotic and external factors. Just a consumer RGB 

camera is needed, without the demand for calibration. In general, only large canopy height 

variations within a field can cause problems. In this extreme case, lower grown plants would 

be labeled as lodged plants. This issue, however, can be considered in the workflow by 

applying differentiated MAXCH values in areas with strong CH variations caused, for 

example, by different soil or nutrition conditions.  

An advantage of the newly developed WALS and ALS lodging severity parameters is 

that they additionally take CH variance into account and enable quantifying of yield 

impairment caused by lodging. Several studies only considered the presence or absence of 

lodging, and different lodging severities as illustrated in Figure 14, were treated equally 

(Chapman et al. 2014; Yang et al. 2017b; Liu et al. 2018). Already Fischer and Stapper 

(1987) and Berry and Spink (2012) showed that the yield potential was influenced by the 

intensity of the permanent displacement of crops from their upright position. Additionally, 
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Murakami et al. (2012) investigated the usability of UAV data to assess lodging and showed 

that the yield was stronger impaired by higher lodging scores and low average CHs. Taking 

this into account, the novel WALS parameter was designed to consider the influence of 

lodging on yield. For the general lodging severity assessment the ALS parameter is adequate. 

However, to quantify the yield impairment caused by lodging, the LTP has to be weighted 

(WALS) to improve the prediction accuracy. In future studies, the factors applied to lower 

LPTs (Equation 2) should be ideally weighted more strongly and compared to yield data to 

investigate the potential in more detail.  

The average difference of 12 % between the lodging percentages derived from 70LPT 

and WALS of experimental site 1 illustrate the need to differentiate between the lodging 

percentage and lodging severity. Even though plots with high sowing density were partly 

strongly influenced by lodging, there was still variation between the different LPTs, resulting 

in a reasonable deviation between the two parameters (cf. Table 6). This discrepancy 

between 70LPT and WALS decreased with less divergent LPTs, as ascertained for the 

farmer field of experimental site 2 (cf. Table 7). The higher the deviation between LPTs, the 

higher the difference between 70LPT and WALS. For the lodging severity in general the 

ALS parameter is more objective without the weighting factors. However, for the yield 

impairment caused by lodging the LTP has to be weighted to improve the prediction. 

The results showed finally, that detection of lodge areas was still possible with the 

lowest spatial resolution (1.6 cm GSD) from the highest flight altitude (100 m) without a 

substantial decline in accuracy. Nevertheless, for very high accuracy, it is recommended to 

use images with higher spatial resolution (0.5 cm GSD), otherwise small patches with 

differentiated lodging severity will hardly be detected and severity values will increase. 

To summarize, the developed lodging assessment approach can be used for insurance 

applications, precision farming, and breeding research. Besides selecting for genetic lines 

with higher lodging resistance, the different lodging severities and consequently yield 

impairments can be quantified as additional information. The approach additionally enabled 

determination of the recovery rate of crops. Navabi et al. (2006) demonstrated on over 140 

different wheat genotypes that the extent of recovery capability varied among genotypes. 

Similar results were found by Briggs (1990) for barley.  

The pixel-based lodging severity information based on the WALS parameter, illustrated in 

Figure 14, can be further used in precision farming to generate harvest maps and improve 

yield quality by avoiding areas in the harvest process that sprout again after heavy lodging 

events during the early stages of plant development.  
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3.5 Conclusions 

In the meantime, UAV technology is widely used because the data acquisition is relatively 

easy, timely, flexible, and cheap. The acquired data can provide timely, detailed information 

on the current status of plants, which is valuable for breeders, insurance companies, and 

farmers. Breeding trials are particularly difficult to monitor on a regularly basis within a 

reasonable time, resulting in an increasing need for faster selection of superior lines.  

First steps were realized in this study to use an airborne LiDAR DTM provided by national 

authorities as an alternative ground model for CHM generation. The comparison of the DTM 

with the UAV ground model demonstrated that the DTM information can be used as a 

ground model and can help to reduce the effort in data collection and processing. Further 

investigations are needed to evaluate the robustness of ground models derived from LiDAR 

data under different conditions and in different locations. 

The UAV-based CH assessment provides spatial information on the canopy height 

distribution and offers much more information compared to the classical plant height 

measurements of single spots in the field. The UAV-derived CH enables simplification of a 

complex crop surface with an objective scale to estimate genetic effects.  

Moreover, the presented lodging assessment approach based on 3D canopy structure has 

many advantages over other methods, because it is more independent from external 

conditions, which increases its practicability. Furthermore, the method makes it possible to 

estimate yield impairment caused by lodging. Future studies need to be conducted to 

evaluate the accuracy in more detail. Finally, it was shown that areas affected by lodging 

could be detected with high accuracy even at the lowest spatial resolution (1.57 cm GSD). 

The higher the flight altitude, the shorter the flight time, the smaller the number of recorded 

images, and the shorter the processing time. Therefore, fixed-wing UAVs, normally operated 

at higher altitudes to cover large areas, can be used for lodging assessment. This also 

substantially increases the practicability of the developed method, especially for large 

agricultural fields. 
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Abstract 

Cereal plant density is a relevant agronomic trait in agriculture and high-throughput 

phenotyping of plant density is important for the decision-making process in precision 

farming and breeding. It influences the water as well as the fertilization requirements, the 

intraspecific competition, and the occurrence of weeds or pathogens. Recent studies have 

determined plant density using machine-learning approaches and feature extraction. This 

requires spatially very highly resolved images (0.02 cm) because the accuracy distinctly 

decreased when images had lower resolution. In this study, we present an approach that uses 

the linear relationship between plant density manually counted in the field and fractional 

cover derived from a RGB and a multispectral camera equipped on an UAV. We assumed 

that at an early seedling stage fractional cover is closely related to the number of plants. 

Spring barley and spring wheat experiments, each with three genotypes and four different 
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sowing densities, were examined. The practicability and repeatability of the methodology 

were evaluated with an independent experiment consisting of 42 winter wheat genotypes. 

This experiment mainly differed for genotypes, sowing density and season. 

The empirical regression models that make us of multispectral images having a GSD of 0.69 

cm were able to determine plant density with a high prediction accuracy for barley and wheat 

(R² > 0.91, mean absolute error (MAE) < 28 plants m−2). In addition, prediction accuracy 

only slightly declines for multispectral image data having 1.4 cm GSD or RGB image data 

having 0.6 cm GSD (MAE < 35 plants m−2). BBCH stage 13 was identified as the ideal 

growth stage in which the plants were large enough to accurately determine fractional cover 

even from the lower resolution image data. Moreover, the developed empirical regression 

model transferred to an independent experimental field verifying its robustness across 

different conditions. The prediction accuracy of UAV estimated plant density showed an R² 

value of 0.83 and an MAE of less than 21 plants m−2. Furthermore, manual measurements 

of 11 randomly selected plots proved sufficient for a user-based training of the regression 

model (R² = 0.83, MAE < 23 plants m−2). 

The method and the use of UAV image data enable high-throughput phenotyping of cereal 

plant density with uncertainties of less than 10 %. The practicability, repeatability, and 

robustness of the developed approach were demonstrated in this study. 

4.1 Introduction 

The non-invasive assessment of plant traits with new sensors and autonomous small aircraft 

is becoming increasingly important in agriculture. The quantification of plant density under 

field conditions is also part of this ongoing development. Water and fertilization 

requirements are dependent on this parameter for agricultural management purposes. In 

addition, plant density has an impact on intraspecific competition and the occurrence of 

weeds or pathogens (Olsen et al. 2006; Olsen and Weiner 2007; Lawles et al. 2012; Liu et 

al. 2017a; Aich et al. 2018). A homogenous and ideal plant density is an important 

prerequisite for efficient crop production and potential yield (Joseph et al. 1985; Whaley et 

al. 2000; Valério et al. 2009; Liu, et al. 2017a; Jin et al. 2017a; Postma et al. 2020).   

Plant density depends on sowing density and germination rate. Most yield prediction 

models typically consider sowing density as a trait rather than plant density. Although the 

germination rate is often corrected for in sowing density this only takes into account the 

genotypic variation in germination rate determined under optimal conditions and not the 

influence of abiotic (temperature, moisture, soil, nutrients, and frost), biotic (pests and 

diseases), and management factors (sowing variations, e.g. depth) (Lindstrom et al. 1976; 

Winter et al. 1988; Steiner et al. 1989; Kirby 1993; Murungu 2011; Rajala et al. 2011; Al-

Mulla et al. 2014). Yield predictions can be improved by substituting estimated plant density 

for sowing density. However, such an implementation in modeling or decision-making is 

only feasible and realistic with a working high-throughput phenotyping approach (Furbank 

and Tester 2011; Araus and Cairns 2014). The current practice of representing the conditions 
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in a field or a plot is to count individual plants within several smaller subsample areas. This 

approach requires agricultural experts, is time-consuming, expensive, and not representative 

in the case of spatial variability within the field.  

To replace these laborious ground data collection methods, the plant density has already 

been determined using different methods for maize (Shrestha and Steward 2003; Tang and 

Tian 2008), potatoes (Sankaran et al. 2017; Li et al. 2019) and sugar beet (Lottes et al. 2017). 

The planting structures of these cultivars with evenly spaced seedlings prevent an overlap 

among neighboring plants in early developmental stages and allow a relatively easy 

quantification of the germination rate. For cereals, however, mechanical seed drilling with a 

non-even seed distribution is the standard practice. Plants emerge very close to each other 

with narrow leaves overlapping among neighboring plants and single plants develop in 

multiple tillers further complicating individual plant identification especially at later stages. 

Therefore, the aforementioned methods developed for crops with a clear row structure 

cannot be reliably applied to cereal crops. 

The plant density of cereals were also determined in previous studies from images 

recorded by RGB cameras mounted on an UAV, field bicycle or monopod (Jin et al. 2017b; 

Liu et al. 2017a; Liu et al. 2017b). Machine-learning techniques based on feature extraction 

were used to estimate plant density. High-resolution image data (0.02 cm) were required in 

these studies to enable a good prediction accuracy with feature extraction (Jin et al. 2017b; 

Liu et al. 2017a; Liu et al. 2017b). In this context, Jin et al. (2017b) have already 

demonstrated a distinctly decreasing accuracy using image data with a lower spatial 

resolution (0.10 cm). The prediction accuracy was also dependent on the sowing density 

with decreasing performance in the case of higher sowing density and probability of 

overlapping plants (Liu et al. 2017a; Liu et al. 2017b). In summary, the aforementioned 

approaches only permit a low throughput and limited adaptability to high sowing frequency. 

In the present study, the plant density determination of cereals is based on fractional 

cover estimated from UAV multispectral image data. At the early seedling stage, plant 

density does not affect individual plant size. Only the area of overlapping leaves increases, 

especially with higher plant density. However, even at high plant densities, we expected that 

there would be a relatively little surface area overlapping as leaves are narrow. We assumed 

that a higher value of fractional cover at the early seedling stage also indicates a larger 

number of plants and a linear relation. Using this hypothesis, we trained empirical regression 

models for barley and wheat based on reference measurements acquired in the field and 

UAV derived fractional cover values. The procedure does not require the assignment of 

single leaves to particular seeds. This enabled the determination of plant density from spatial 

image data with potentially lower resolution leading to higher practicability of the 

methodology. Sankaran et al. (2015) had already made use of pixel values of a calculated 

vegetation index for germination assessment with a good correlation to ground truth 

observations. However, the visual ground truth rating of germination in their study with 10 

% increments was only a rough estimation of plant density. Moreover, the development of 
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an empirical regression model and the transferability of the model to unknown data was not 

investigated. 

The following study aims to answer the following questions, which can be divided into 

factors influencing the accuracy of the empirical regression model (i to v) and the 

evaluation of transferability of the method to an independent test site (v, vi): (i) What is the 

ideal plant developmental stage for data collection? (ii) What spatial resolution is 

necessary to achieve both high prediction accuracy and high throughput? (iii) What 

influence do plant characteristics (e.g., leaf arrangement, species, genotype) have on the 

methodology? (iv) Is an RGB camera sufficient or is it necessary to use a multispectral 

camera with five spectral bands? (v) What accuracy can be obtained when the previously 

trained empirical regression model is transferred to an independent site and environment? 

(vi) How many reference measurements are necessary for a user-based training of an 

empirical regression model at an independent site? 

4.2 Material and methods 

4.2.1 Study site and experimental design 

Three experimental fields were investigated on the research campus at the field lab on the 

Campus Klein-Altendorf.  Two of them consisted of breeding plots (1.4 × 3 m) arranged in 

a randomized block design planted with monocultures of three spring barley genotypes 

(Avalon, Grace, RGTPlanet, Field 1, Figure 17a) and three spring wheat genotypes (Quintus, 

Kadrilj, Tybalt, Field 2, Figure 17b). 

The genotypes were sown in four different densities (150, 250, 350 and 450 seeds m−2) with 

eight repetitions (Figure 17a,b), resulting in 96 samples per species. Each repetition was 

divided into a sampling unit (SU) of one square meter. The seeds were sown in rows with a 

space of 10.4 cm for barley and wheat on 09 April. The experiments were treated with 80 kg 

N/ha on 19 April, herbicides were applied after data acquisition. 

Spring wheat and spring barley differed strongly in their leaf arrangement. The leaf 

orientation of barley was erectophile with mainly vertical leaves, whereas wheat in this study 

had a planophile orientation with mainly horizontal leaves (Figure 17c,d). 

Experimental field 3 was a breeding trial with 42 winter wheat genotypes arranged in a 

randomized block design (1.4 × 3 m). Three repetitions of each genotype were sown with a 

density of 460 seeds m−2 in rows with a space of 11 cm on 16 October (n =126). Fertilization 

as well as herbicides were applied after data acquisition and do not have an influence on the 

scene in this study. This third experimental field was used to test the repeatability and 

practicability of the methodology. The experiment differed in genotype, sowing density, row 

spacing, sowing date, and season. Furthermore, the moisture content and thus the color of 

the soil varied among the experimental fields. The soils of experimental field 1 and 2 were 

dry and thus characterized by a light brown color. During wintertime, the soil of 

experimental site 3 was much darker because of the higher soil moisture. 
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Figure 17 Experimental fields 1 and 2, consisting of breeding plots with four sowing densities, three 

genotypes, and a different leaf arrangement of each species. (a) Experimental field 1: spring barley; 

(b) Experimental field 2: spring wheat; (c) Barley plants with mainly erectophile leaf arrangement, 

and (d) Wheat plants with mainly planophile leaf arrangement. 
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4.2.2 Field validation 

For all plots in the three experimental fields, the individual plant numbers were counted in 

the field within one square meter. A metal frame covering one square meter was used to 

facilitate high plant counting accuracy in the field (Figure 18a). The corners were marked 

with pink sticks to highlight the area of interest for the UAV image data analysis.   

Figure 18 (a) Example of the field validation setup. Metal frame (1x1 m) used for field plant counting 

with pink sticks at the corners to facilitate the identification of the region of interest in the UAV data; 

(b) Graphical illustrations of the principal growth stages in the leaf development of cereal plants 

according to the scale of the Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie 

(BBCH) (modified according to Meyer (2001)). 

Plant counting in the field was conducted according to the Biologische Bundesanstalt, 

Bundessortenamt und Chemische Industrie (BBCH) scale (Meier 2001) at stage 11 when the 

first leaf was unfolded and the tip of the second leaf became visible (Figure 18b). BBCH 11 

has two main advantages as a reference point. First, the developmental stage enables to 

consider delayed development of seeds (BBCH 10) during the reference measurement. 

Second, at this stage the plant only consists of one unfolded leaf and therefore it is still 

possible to separate the individual plants, even if the seeds have germinated closely side by 

side. 

4.2.3 UAV data acquisition 

In this study, data were acquired with the MicaSense RedEdge multispectral camera. Image 

data at an flight altitude (FA) of 10 m above ground level resulted in a spatial resolution of 

0.69 cm. In addition, the Sony Alpha RGB camera was used with a 20 mm fixed focal length 

lens, resulting in a spatial resolution of 0.20 cm at a FA of 10 m above ground level.  

The experimental fields 1 and 2 were covered from these sensors four times. Table 8 provides 

an overview of the different acquisition dates, growth stages, flight altitudes, and 

illumination conditions. At the beginning of data acquisition, barley was already at BBCH 

stage 12, while wheat was at stage 11. For the subsequent acquisition dates, the plants were 

at the next BBCH stage (Table 8). For both crops, we recorded data at BBCH stages 12, 13, 
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and 14, which were expected to be the most appropriate growth stages for plant density 

assessment.  

Table 8 Data acquisition of the experimental fields 1 (barley) and 2 (wheat) with information on 

BBCH stages of the plants, sensors used, flight altitude, and illumination conditions for the data 

point. BBCH: Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie; S: Direct solar 

illumination during data acquisition; (S): Minor clouds but predominantly direct solar illumination; 

O: Overcast sky; (O): Short periods of direct solar illumination but mainly overcast sky. 

Nr. Date 
BBCH Stage 

Sensor 
Flight 

altitude 
(m) 

Illumination conditions 

Barley Wheat Barley Wheat 

1 22.04.2018 12 11 

RGB 
10 (S) 

S  
30 O  

Multispectral 
10 (S)  

20 S  

2 26.04.2018 13 12 

RGB 
10 

O  
(O)   

30 O 

Multispectral 
10 (O)  S  

20 O  O  

3 30.04.2018 14 13 

RGB 
10 

S 

O 
30 

Multispectral 
10 

O  
20 

4 04.05.2018 15 14 

RGB 
10 

S  
30 

Multispectral 
10 

20 
 

In addition to the different spectral and spatial properties of the RGB and multispectral 

images, data were acquired from two different altitudes with both cameras. This allowed us 

to investigate which spatial and spectral resolutions were optimal for each BBCH stage. The 

FAs of both cameras and the corresponding GSD are summarized in Table 9.   

 
Table 9 Spatial resolution of the UAV images depending on the sensor and the flight altitude. 

 

Sensor RGB Multispectral 

Flight altitude (m) 10 30 10 20 

Ground sampling distance (cm/pixel) 0.20 0.59 0.69 1.38 
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Furthermore, illumination conditions varied between direct solar illumination, completely 

overcast sky and the combination of both conditions at the different dates of data acquisition 

(Table 8). The first and fourth data sets were acquired under predominantly direct solar, 

while the second and third data sets were recorded under predominantly overcast conditions. 

For experimental field 3, a data set was acquired on 17 November, at BBCH stage 12, 

with the multispectral sensor from an FA of 20 m above ground level (GSD = 1.38 cm) under 

overcast conditions. For these data acquisition parameters, flight altitude and sensor were 

selected based on the results of the best-performing wheat empirical regression model in 

relation to the lower GSD. 

4.2.4 Data analysing 

For the analysis in this study, the UAV images were processed to orthomosaics using Agisoft 

Metashape software (version 1.5.5) take into account the necessary processing settings (cf. 

Table 3).  

The excess green minus excess red (ExGR) (Neto 2010) vegetation index was calculated for 

the RGB camera data (Equation 3) and the normalized difference vegetation index (NDVI) 

(Tucker 1979) for the multispectral data (Equation 4). 

𝐸𝑥𝐺𝑅   =    (2 𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒) − (1.4 𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛) (3)

𝑁𝐷𝑉𝐼   =    
𝑅𝑒𝑓ேூோ  − 𝑅𝑒𝑓ோா஽

𝑅𝑒𝑓ேூோ + 𝑅𝑒𝑓ோா஽
 (4)

The vegetation indices finally allowed the fractional cover assessment by applying a 

threshold that divided the pixels into two classes; foreground (plant pixels) and background 

(soil pixels). The threshold was automatically determined by the variance between two 

classes based on the Otsu method (Otsu 1979). The use of Otsu thresholding is an established 

method based on the aforementioned variance between two classes to distinguish vegetation 

from the background (Torres-Sánchez et al. 2015; López-Granados et al. 2016; Bassine et 

al. 2019; B. Li et al. 2019; Marcial-Pablo et al. 2019). The procedure and segmentation 

performance are exemplarily illustrated in Figure 19. Shapefiles based on the 

aforementioned SU were finally used to calculate the fractional cover (number of plant pixels 

per square meter) for the calculated vegetation indices (ExGR, NDVI) in the processed 

orthomosaics. 
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Figure 19 (a) Section of an UAV RGB orthomosaic at BBCH stage 13; (b) Calculated ExGR in the 

region of interest, and (c) Segmentation of plants (white) and background (black) using the ExGR 

and Otsu thresholding. 

4.2.5 Statistical analysis 

The manually counted plant density in combination with the determined fractional cover per 

SU allowed to develop linear empirical regression models for plant density assessment. For 

this, a k-fold cross-validation was used to estimate the model and test the error rate.  

Firstly, we randomly divided the data sets of experimental fields 1 and 2, each with 

a sample size of 96, 48 times into a calibration and validation data set for the empirical 

regression model development. Two-thirds were used to train the model (calibration), 

whereas the remaining third was used to evaluate the model performance (validation). 

Across the models, we determined the performance using R (Core team 2018) based on the 

averaged coefficient of determination (R²), root mean square error (RMSE) and mean 

absolute error (MAE). The advantage of the MAE over the RMSE is that it gives the same 

weight to all errors. Therefore, the MAE is more robust to outliers. In contrast, the commonly 

used RMSE weights errors with larger absolute values more than errors with smaller absolute 

values and thus is more sensitive to outliers (Willmott and Matsuura 2005; Chai and Draxler 

2014). 

In order to identify which settings provide the highest model accuracies and smallest errors, 

three-way ANOVAs were conducted to verify the MAE including a Tukey post-hoc test. 

ANOVAs were fitted for each species separately. The following model in R notation was 

used: MAE ~ (Vegetation Index * BBCH * GSD).  
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Secondly, a previously calibrated empirical regression model obtained from 

experimental field 2 was transferred to the third experimental field according to Equation 5. 

In this context, the best- performing wheat model for the low GSD imagery and multispectral 

camera was chosen (Table 11, BBCH 12, NDVI, 20 m; Slope = 0.171, Intercept = -15.628). 

By transferring a previously calibrated empirical regression model to an independent data 

set with a different experimental design (genotypes, sowing densities) and environmental 

conditions (season, soil color) it was possible to verify the model robustness and the 

repeatability of the methodology at the same time.  

𝑈𝐴𝑉 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
fractional cover − intercept

slope
 (5)

In addition, we again randomly divided the data, consisting of 126 samples, 63 times into a 

calibration and validation data set for the third experimental field. Each time either 1/2, 1/3, 

1/4, 1/6, 1/8, 1/11, 1/15 or 1/25 of the total number of samples was used for model 

calibration. Thus, it was possible to identify the minimum number of reference 

measurements required to build up a user-based empirical regression model adapted to a 

specific experimental layout and environment. Each time, the remaining part of the data set 

was used to validate the performance of the model based on the averaged R², RMSE, and 

MAE. To identify significant deviations between the different sample sizes used for the 

model calibration, one-way ANOVAs, including a Tukey post-hoc test, were conducted to 

verify the MAE. 
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4.3 Results  

4.3.1 Experimental field 1: Barley 

The results of all individual models predicting the plant density of spring barley from UAV 

fractional cover values are summarized in Table 10. It can be seen that the spatial resolution 

had a substantial impact on ExGR model performance at the early stage of leaf development 

with only two unfolded leaves per plant (BBCH 12). The high GSD (0.20 cm) provided a 

model performance with an R² of 0.92 and an MAE of 26 plants m−2. With decreasing GSD 

(0.59 cm), the correlation declined (R² = 0.70) with regression error metrics (RMSE, MAE) 

of more than 55 plants m−2 (Table 10).  

Table 10 Statistical relationship between manually counted plant density and the fractional cover of 

barley at different BBCH stages, VIs, FAs, and GSDs. Averaged statistical measures were computed 

across the empirical regression models randomly divided into calibration and validation data sets. 

Different letters indicate significant differences between MAE (p < 0.05). VI: vegetation index; FA: 

flight altitude; GSD: Ground sampling distance; Ill: Illumination conditions; R²: averaged coefficient 

of determination; RMSE: averaged root mean square error; MAE: mean absolute error; ExGR: excess 

green red; NDVI: normalized difference vegetation index. 

BBCH VI 
FA 
(m) 

GSD 
(cm) 

 
Ill. 

 

Calibration (n = 64)  Validation (n = 32) 

Slope Intercept R²  Slope Intercept R² RMSE MAE 

12 

ExGR 
10 0.20 (S) 0.051 -1.666 0.91  1.010 -0.553 0.92 34 26ab 

30 0.59 O 0.085 -6.632 0.68  1.031 -6.796 0.70 75 55h 

NDVI 
10 0.69 (S) 0.089 -10.107 0.93  1.017 -5.217 0.92 32 24a 

20 1.38 S 0.105 -15.201 0.89  1.009 -3.436 0.90 37 29bc 

13 

ExGR 
10 0.20 O 0.077 -1.556 0.92  1.007 -3.432 0.92 34 26ab 

30 0.59 O 0.139 -12.822 0.87  1.001 -0.766 0.89 40 31c 

NDVI 
10 0.69 (O) 0.108 -7.756 0.90  1.010 -1.392 0.90 38 26ab 

20 1.38 O 0.153 -15.301 0.90  1.012 -1.727 0.90 37 26ab 

14 

ExGR 
10 0.20 S 0.113 0.422 0.80  0.984 4.957 0.78 56 44g 

30 0.59 S 0.177 -22.158 0.84  0.987 5.034 0.83 48 34d 

NDVI 
10 0.69 O 0.130 -3.319 0.85  1.018 -4.930 0.85 47 35d 

20 1.38 O 0.162 -8.280 0.83  1.022 -5.527 0.84 49 38ef 

15 

ExGR 
10 0.20 S 0.111 24.883 0.84  0.998 0.789 0.83 50 41f 

30 0.59 S 0.147 21.045 0.82  0.999 -2.178 0.83 50 39ef 

NDVI 
10 0.69 S 0.163 4.893 0.85  0.996 0.970 0.86 45 36de 

20 1.38 S 0.184 5.947 0.84  1.001 -0.997 0.85 47 39ef 

 

In contrast, the spatial resolution had less impact on model performance at BBCH stage 12 

using the NDVI to predict the plant density. The results of the low GSD (1.38 cm) showed 

only slightly lower model performance (R² = 0.90, MAE = 29 plants m−2) in comparison to 
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the model constructed with the high GSD data (0.69 cm). This model provided the best 

performance with the highest R² of 0.92 and an MAE of 24 plants m−2 (Table 10). 

At BBCH stage 13, the best validation performance was observed for the ExGR with 

uncertainties of less than 10 % for both GSDs (GSD = 0.20 cm, R² = 0.92, MAE = 26; GSD 

= 0.59 cm, R² = 0.89, MAE = 31), also illustrated in Figure 20. Moreover, BBCH stage 13 

was as well the optimal development stage for the multispectral data and low GSD (NDVI, 

0.69 cm), which led to an R² of 0.90 and MAE of 26 plants m−2 (Table 10). The regression 

line showed a good match to the 1:1 line, with almost no over- or underestimation of the 

predicted plant density (Figure 20, a-d).  

The model performance of both vegetation indices declined in the subsequent growth stages 

(BBCH 14, 15), where the leaves grow in size and the plants develop further leaves. The R² 

of the regression models, varying between 0.78 and 0.86, was still high, but the regression 

error metrics (RMSE, MAE) of 34-44 plants m−2 indicated lower model accuracy (Table 10).  

In general, a higher BBCH stage led to a higher slope in the calibration models (Table 10). 

This was influenced by the fact that areas with a higher number of plants have a 

proportionally stronger increase in fractional cover over time compared to areas with a lower 

number of plants. The slopes in the validation models with values around one and intercepts 

of around zero for almost all BBCH stages demonstrated the high prediction accuracy of the 

regression models.  

4.3.2 Experimental field 2: Wheat 

The model performance at early leaf development stages of spring wheat (BBCH 11, 12) 

was also influenced by the spatial resolution. The ExGR calculated from the high GSD (0.20 

cm) data led to a significantly higher prediction accuracy compared to the models based on 

the low GSD (0.59 cm) data (Table 11). The spatial resolution has less impact on model 

performance when the NDVI was used for plant density assessment. The NDVI provided 

similar model accuracies for data sets recorded from different GSDs within a BBCH stage. 

Even at BBCH stage 12, the model for multispectral data and low GSD imagery (NDVI, 

1.38 cm) already led to the best performance (R² = 0.89, MAE < 29 plants m−2) with 

uncertainties of less than 10 % (Table 11). However, it can be observed that the model made 

use of the image data with a lower GSD (1.38 cm) led to better results compared to the model 

based on data with the higher GSD (0.69 cm). Considering the illumination conditions, the 

high GSD data was acquired under sunny, while the low GSD data was recorded under 

cloudy conditions. 

Almost the same prediction accuracy was observed for the NDVI model constructed using 

the low GSD data (1.38 cm) at BBCH stage 13 (Figure 20), while the higher GSD model 

provided the highest R² of 0.91 and the lowest MAE of 28 plants m−2 of all models (Table 

11). The best model performances for the ExGR and both GSDs were also observed when 

the third leaf of the plants was unfolded (BBCH 13). Both models had an R² higher than 0.85 

and MAE of less than 35 plants m−2 (Figure 20).  
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Figure 20 Linear regression between manually counted and UAV estimated plant density 

for different vegetation indices and GSDs obtained for BBCH stage 13 (n = 96). The UAV 

estimated plant density represents an averaged number of plants computed by the 

randomly divided models for (a-d) barley and (e-h) wheat. Black lines represent 

regression lines with 95 % confidence intervals; blue lines represent 1:1 line. 
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Similar to barley, the regression lines showed a good match with the 1:1 lines and only less 

scattering was visible (Figure 20, e-h). At BBCH stage 14, under sunny conditions, the 

accuracy for the ExGR models clearly decreased. In contrast, the NDVI models led to similar 

performances as at the BBCH stage 13 (Table 11). As already observed for barley, higher 

BBCH stages led to a higher slope value for the calibration models (Table 11). In contrast, 

these slope values were higher for wheat compared to barley (Table 10). The slopes of the 

validation models had values close to one, which illustrated the high prediction accuracy of 

the generated models (Table 11). However, the performance evaluation for wheat led to a 

slightly lower R² and higher regression error metrics compared to barley. 

Table 11 Statistical relationship between manually counted plant density and the fractional cover of 

wheat at different BBCH stages, VIs, and FAs. Averaged statistical measures were computed across 

the empirical regression models randomly divided into calibration and validation data sets. Different 

letters indicate significant differences between MAE (p < 0.05). 

BBCH VI 
FA 
(m) 

GSD 
(cm) 

 
Ill. 

 

Calibration (n = 26)  Validation (n = 32) 

Slope Intercept R²  Slope Intercept R² RMSE MAE 

11 

ExGR 
10 0.20 S 0.029 1.394 0.81  1.007 -3.532 0.81 52 40fg 

30 0.59 S 0.036 -1.706 0.59  1.007 -4.064 0.60 87 67j 

NDVI 
10 0.69 S 0.086 -7.358 0.83  1.000 0.414 0.83 50 39fg 

20 1.38 S 0.078 -11.406 0.80  1.010 -2.157 0.81 54 42g 

12 

ExGR 
10 0.20 (O) 0.082 -8.013 0.83  1.013 -4.587 0.84 48 38ef 

30 0.59 O 0.089 -14.445 0.63  1.039 -11.496 0.63 86 62i 

NDVI 
10 0.69 S 0.116 -5.648 0.84  1.011 -4.485 0.85 45 34cd 

20 1.38 O 0.171 -15.628 0.89  1.004 -3.493 0.89 37 29ab 

13 

ExGR 
10 0.20 O 0.148 -4.750 0.87  1.004 -1.623 0.87 41 31bc 

30 0.59 O 0.219 -26.645 0.86  1.014 -3.006 0.85 45 35de 

NDVI 
10 0.69 O 0.160 4.893 0.91  1.020 -4.927 0.91 34 28a 

20 1.38 O 0.182 6.681 0.87  1.023 -5.911 0.87 42 33bc 

14 

ExGR 
10 0.20 S 0.103 17.981 0.83  0.960 10.483 0.82 50 38fg 

30 0.59 S 0.133 16.955 0.78  0.956 10.650 0.76 59 46h 

NDVI 
10 0.69 S 0.180 1.230 0.90  1.019 -4.790 0.90 36 28a 

20 1.38 S 0.200 9.290 0.86  1.017 -4.812 0.87 43 34cd 

4.3.3 Ideal parameters for data acquisition  

The three-way ANOVA for the MAE was calculated for barley (Table S1, Table S2) and 

wheat (Table S3, Table S4) to identify the ideal parameters for plant density assessment and 

data acquisition. In the case of barley the vegetation index, the BBCH stage, and the 

interaction between BBCH and GSD explained most of the variation in the methodology 

(Table S1). The ANOVA results identified in general the NDVI as the vegetation index, 
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BBCH 13 as the development stage and the high GSD as the ideal parameter for data 

acquisition and plant density assessment of barley (Table S2) 

For wheat, the vegetation index clearly explained most of the variation (Table S3). 

The GSD also had a high impact on the plant density assessment. The interaction between 

BBCH and GSD was the third most important factor. Despite the investigated differences of 

barley and wheat, the ANOVA of wheat identified the same predictors (NDVI, BBCH 13, 

high GSD) for data acquisition and plant density assessment (Table S4).  

4.3.4 Experimental field 3: Investigate repeatability  

In the case of the third experiment, two investigations were conducted to evaluate the 

practicability and repeatability of the developed methodology. Firstly, the best-performing 

empirical regression model for wheat and the low GSD (Table 11, BBCH 12, NDVI, 20 m; 

slope = 0.171, intercept = -15.628) was applied to the data of experimental field 3 according 

to Equation 5. The best-performing model of the lower GSD was considering instead of the 

ideal model performance to increase the practicability of the methodology. The experiments 

differed with regard to season, soil color, genotypes, and sowing density. Especially with its 

42 genotypes and the large number of variations in plant characteristics, the third 

experimental field was well suited for testing the repeatability and practicability of the 

previously developed regression model. 

The transfer of the calibrated empirical regression model for UAV based plant 

density prediction yielded in a high prediction accuracy. The determined MAE was lower 

than 20 plants m−2 and the R² of 0.83 was relatively high (Figure 21a). The regression line 

showed a good match with the 1:1 line and only lower values were slightly overestimated.  

Secondly, the size of the calibration data subset was reduced stepwise to 

determine the minimum number of field measurements necessary for a user-based 

calibration of a new empirical regression model (Table 12). The starting calibration 

subset consisting of 63 samples also provided the highest accuracy with an MAE of less 

than 21 plants m−2 and an R² of 0.83. The prediction accuracy of the user-based 

calibration model based on the 63 training samples and the corresponding scatterplot 

(Figure 21b) were almost similar compared to the transferred calibrated empirical 

regression model from experimental field 2 (Figure 21a).  

The continuous reduction of the calibration sample size from 63 to 11 samples led to no 

significant changes in model performance (Table 12). The slope and intercept values of 

the validation regression functions slightly increased with decreasing size of the 

calibration samples. However, the residual deviations and the 95 confidence intervals 

were quite uniformly independent of the calibration sample sizes (Figure 21b-d). The 

last two reduction steps from 11 to only eight and five samples led to significantly lower 

model performances (MAE > 26 plants m−2) (Table 12). Additionally, the corresponding 

scatterplots (Figure 21e,f) illustrated an underestimation of lower values and an 

overestimation of higher values. 
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Figure 21 Linear regression between manually counted wheat plant densities and those 

estimated from UAV data at BBCH stage 12 for experimental field 3 with two investigations (n 

= 126): (a) The empirical regression model from experimental field 2 was transferred to the data 

of experimental field 3 and (b-f) Investigation of the necessary number of field measurements 

for a user-based calibration of an empirical regression model based on stepwise reduction of 

calibration size to (b) 63 samples; (c)  32 samples; (d) 11 samples; (e) 8 samples, and (f) 5 

samples. The UAV estimated plant density represents an averaged number of plants computed 

by the randomly divided models. Black lines represent regression lines with 95 % confidence 

intervals; blue lines represent 1:1 lines. S: Slope; I: Intercept.  
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Table 12 Analysis results of the number of field measurements necessary to calibrate an 

empirical regression model to a specific layout or environment (n = 126). The calibration sample 

size was reduced stepwise from 63 to five reference measurements, while the remaining samples 

were used to validate the performance of the calibrated models. Averaged statistical measures 

were computed across the empirical regression models randomly divided into calibration and 

validation data sets for each sample size. Different letters indicate significant differences 

between MAE (p < 0.05). 

Experimental field 3 
Calibration  Validation  

n Slope Intercept R²  n Slope Intercept R² RMSE MAE 

63 0.169 -14.868 0.83  63 1.005 -2.246 0.83 25 21a 

42 0.169 -14.955 0.83  84 1.008 -2.976 0.83 25 21a 

32 0.169 -14.972 0.82  94 1.009 -2.885 0.83 25 21a 

21 0.168 -14.446 0.81  105 1.024 -10.355 0.83 26 22a 

16 0.168 -14.441 0.81  110 1.026 -11.117 0.83 27 22a 

11 0.165 -12.837 0.81  115 1.063 -26.407 0.83 28 23ab 

8 0.165 -13.404 0.78  118 1.086 -35.029 0.83 31 26bc 

5 0.161 -11.325 0.79  121 1.154 -66.075 0.83 36 29c 
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4.4. Discussion 

In the study presented here, UAV data were evaluated for high-throughput field phenotyping 

of plant density. The results demonstrated that plant density could be predicted with potential 

uncertainties of less than 10 %. In the following, the introductory questions are discussed in 

detail. 

BBCH stage 13 was identified as the plant developmental stage best suited for UAV 

data acquisition (Table S1-S4). At this growth stage, the MAEs of the validation models 

were between 25 and 34 plants m−2 and therefore similar compared to previous studies 

focusing on wheat (Jin et al. 2017b; Liu et al. 2017a; Liu et al. 2017b). In addition, we 

observed a high prediction accuracy at BBCH stage 12 when plant density prediction was 

based on the data recorded from the higher GSD (Ø MAE < 30 plants m−2) (Table 10, 11). 

In summary, the plants or the resolution needs to be large enough to detect the fractional 

cover accurately. Even with four unfolded leaves per plant (BBCH 14) predictions of plant 

density were possible with MAEs ranging from 28 to 46 plants m−2. However, the model 

accuracy partly declined at BBCH stage 14 and 15 compared to the previous stages. The 

leaves grow in size and the plants develop additional leaves (Figure 18b), resulting in a 

higher overlap between neighboring plants. 

In other studies, the investigated methodology was limited to a specific growth stage 

(Sankaran et al. 2015; Liu et al. 2017a; Jin et al. 2017b; Liu et al. 2017b; Aich et al. 2018). 

The approach presented here, however, allowed plant density to be estimated from UAV 

data acquired during BBCH stages 12 to 14. This makes the proposed method more practical, 

since UAV data acquisition is possible in a longer time window.  

The models constructed using the higher GSD data enabled a higher prediction accuracy 

of plant density. However, especially at the later stages of plant development (BBCH 13 

onwards), the differences in the predictions between the models for the GSDs were not great. 

At BBCH stage 13, the averaged MAE was lower than 31 plants m−2 for the low GSD image 

data (ExGR-30 m, NDVI-20 m) and had an almost similar prediction accuracy compared to 

the high GSD (ExGR-10 m, NDVI-10 m, Ø MAE < 28 plants m−2 ). In principle, the 

prediction accuracy was influenced less by the spatial resolution using the NDVI for plant 

density assessment (Table 10, Table 11). We conclude that multispectral data recorded with 

a lower GSD than 1.38 cm may predict a similar accuracy to increase the throughput of the 

approach. 

In comparison to other studies (Liu et al. 2017a; Jin et al. 2017b; Liu et al. 2017b; Aich et 

al. 2018), the present methodology is not limited to spatially very highly resolved image data 

(0.02 cm) in order to obtain precise estimates of plant density. The results showed that for 

ideal conditions RGB data with 0.6 cm and multispectral data with 1.4 cm spatial resolution 

were sufficient to predict the plant density of numerous plots, greatly enhance the throughput 

of the approach. In addition, the automatic image acquisition of the UAV and the use of 

orthomosaics instead of individual images (Liu et al. 2017a; Liu et al. 2017b; Aich et al. 
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2018) are ideally for large scales and decision-making process in precision farming and 

breeding. 

Cereals such as wheat and barley have comparable plant structures, especially at the 

early leaf developmental stages. However, some individual characteristics such as the leaf 

arrangement can be different. The results stressed that it was essential to distinguish between 

planophile (wheat) and erectophile (barley) leaves in the process of developing empirical 

regression models having the capability to estimate plant density precisely. In a nadir UAV 

image, a leaf with horizontal orientation (planophile) covers a larger soil area and consists 

of a higher number of green pixels in comparison to a leaf with vertical orientation 

(erectophile) (Figure 17 c,d). This results in higher fractional cover in the case of the 

observation of planophile cereals. For that reason, the wheat calibration models had steeper 

slopes compared to the barley calibration models. The impact of the leaf arrangement on the 

methodology was not investigated in previous studies focusing on the assessment of plant 

density (Sankaran et al. 2015; Liu et al. 2017a; Jin et al. 2017b; Liu et al. 2017b; Aich et al. 

2018; Koh et al. 2019).  

The comparison of the sensors revealed that the multispectral camera had a higher 

prediction accuracy compared to the RGB sensor (Table S2, Table S4). Especially for the 

prediction of wheat plant density, the vegetation index was the most important factor (Table 

S3). The predominantly horizontally oriented leaves of wheat caused more mixed pixels. 

The additional near- infrared spectral band used for the calculation of the NDVI is 

advantageous for distinguishing plant from soil pixels. Furthermore, the radiometric 

correction of the multispectral data based on the solar irradiance sensor and reference panel 

enabled to convert the raw pixel information into absolute spectral reflectance. This made 

the method more robust to varying illumination conditions among data sets and during data 

acquisition (Table 8). Based on these findings, multispectral data are recommended in 

particular for genotypes with planophile leaves.  

In order to test the repeatability and robustness of the approach, in particular with regard 

to genotypic varieties, the calibrated empirical regression model constructed for spring 

wheat was transferred to an independent breeding experiment with 42 different winter wheat 

genotypes. Visual field observation revealed only little variability among genotypes in the 

early leaf developmental stages. This observation was similar to the findings of Jin et al. ( 

2017b). The transferred regression model, therefore, provided good prediction accuracy 

across the genotypes (R² = 0.83, MAE < 20 plants m−2). The large variation in the training 

dataset resulted in a robust model, which avoids the need for further genotypic model 

adaptation. For this reason, a specific re-calibration, which is usually required for machine-

learning techniques (Jin et al. 2017b; Liu et al. 2017b; Koh et al. 2019), was not obligatory 

using this approach and comparable conditions in this study. 

Estimating the required number of reference measurements in the field to calibrate a 

user-based empirical regression model is needed in the case of different seed row spacing, 

illumination conditions and different spatial resolution of the UAV data. For this user-based 

calibration, 11 randomly selected field measurements were already sufficient in this study to 
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train a robust model (MAE < 23 plants m−2). No significant differences in prediction 

accuracy were observed by using a small training subset of 11 samples instead of a larger 

one consisting of 63 samples (Table 12, Figure 21). Nevertheless, attention has to be paid to 

outliers when such a small calibration sample size is used. Moreover, some variation of plant 

density in the field, which covers a range of possible values, is needed to adequately train a 

user-based empirical regression model. The required time to manually count the plants in an 

area of one square meter with a sowing density of 460 seeds m−2  is approximately 5 minutes. 

In summary, the prediction accuracy of the transferred regression model (Figure 21a) 

was closely related to the user-based calibrated model (Figure 21b-e), although the 

experiments differed by season, soil color, genotypes, and sowing density. Therefore, we 

assumed that user-based calibration is not necessary as long as the conditions are 

comparable, such as seed row spacing, the spatial resolution of the UAV data and the 

illumination conditions during data acquisition. In this respect, it is important to note that 

the empirical regression model was calibrated and transferred with data acquired under 

overcast conditions. Hence, the transferability of the model was not affected by the position 

of the sun. It is important to note that a calibrated model should be transferred to data with 

comparable illumination conditions. This is an important prerequisite for the transferability 

of empirical regression models (Dorigo et al. 2007). Therefore, we recommend that data 

should be primarily acquired under overcast conditions or as an alternative timely close to 

solar noon to enable high transferability of the calibrated model. Under direct sunlight, data 

acquisition around solar noon conditions has the benefit of minimizing shadow effects and 

enabling comparable illumination conditions between datasets.  

The investigation of repeatability focused on wheat with predominantly planophile 

leaves, higher regression error metrics and high sowing density of up to 500 plants m−2 to 

demonstrate the transferability and robustness of the calibrated regression model. It can be 

expected that the model performance increases for predominately erectophile leaves and 

lower sowing densities. However, the prediction capability in this study was not negatively 

affected at early leaf developmental stages by high sowing densities of up to 500 plants with 

a higher probability of overlapping leaves (Jin et al. 2017b; Liu et al. 2017a; Liu et al. 

2017b). However, a weed-free crop stand is required to achieve a sufficient prediction 

accuracy, since weeds have a negative impact on the assessment of fractional cover. 

Furthermore, local soil heterogeneities or sowing failures need to be ideally identified and 

subsequently considered to enable a successful differentiation among varieties. 
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4.5 Conclusions 

The study presents a novel way to assess the plant density of cereal crops with high-

throughput UAV image data. The determination of fractional cover for plant density 

assessment takes advantage of the fact that the average plant size is relatively stable and the 

number of overlapping plants is relatively low at early leaf developmental stages. BBCH 

stage 13 was identified as the ideal growth stage when the plants were large enough to detect 

the fractional cover accurately even with lower GSDs in this study. Nevertheless, with 

appropriate parameters such as a high GSD for BBCH stage 12, the specific growth stage 

was not critical for UAV based plant density assessment. 

The calibrated models proved to be robust with respect to unknown sites with comparable 

conditions such as seed row spacing, spatial resolution, and illumination conditions. Across 

a data set of 42 genotypes, it was shown that genotypic model adaptation is not necessary. It 

is only essential to distinguish between planophile and erectophile cereals in the application 

and process of empirical regression models. Better results were observed when multispectral 

data were used for plant density quantification, in particular for planophile cereals. However, 

also RGB data provided comparable model performance and was sufficient for plant density 

assessment. 

The results stressed the transferability, practicability, and repeatability of the developed 

methodology. With conditions comparable to the presented study, the operator can choose 

whether to apply the trained regression model without re-calibration or whether to perform 

a user-based approach with a small number of field measurements. Furthermore, also a 

broader application of the method is conceivable, e.g. for other cereals with heterogeneous 

germination and overlapping leaves such as oats or triticale. In contrast to machine-learning 

approaches, expert guidance in feature extraction and large training datasets are not 

necessary. 

The developed methodology facilitates high-throughput plant density assessment of cereal 

crops for decision-making in precision farming and breeding. Breeding trials are particularly 

difficult to monitor within a reasonable time, resulting in an increasing need for faster 

selection of superior lines. In addition, considering the plant density variation caused, for 

example, by different soil or nutrition conditions, can increase farmer’s crop production and 

yield estimations. 
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Abstract 

The real-time information regarding agronomic traits, such as spike density can enhance the 

quality of yield estimations, variety selection, and agricultural management. At present, 

spikes are still quantified by subjective and expensive manual labor, without a standard 

protocol for counting. Different image processing techniques, algorithms, and machine 

learning approaches have already been applied to increase the throughput and objectivity of 

spike quantification in-field conditions. However, the methods relied mainly on ground-

based systems and spatially, highly-resolved images. In addition, the adaptation to external 

conditions (e.g., illumination, sensors) or to specific phenotypic variations among genotypes 

remains a significant challenge. In this study, a method is presented that makes use of the 

statistical relationship between manually counted spike density and spike cover (number of 

spike pixels per square meter) derived from an RGB camera equipped on UAV. Three 

different wheat genotypes, with morphological variations, such as rate of awn occurrence, 

color and spike inclination were examined. With a GSD of 1.4 mm, the spike density could 

be accurately modelled (rRMSE < 15 %, RMSE < 18 spikes m−2) among the phenotypes in 

this study. Furthermore, the results of the power analysis led to the assumption that 11 

reference measurements were appropriate for a user-based calibration of an empirical 

regression model. This would potentially allow for an adaption of the approach to genotypic 

specificities and the external conditions of the scene, which require only a small number of 

field measurements for high-throughput phenotyping of spike density.  
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5.1 Introduction 

Wheat production plays a major role in ensuring global food security (Alexandratos and 

Bruinsma 2012). The correct selection of varieties for abiotic and biotic stresses has the 

potential to increase grain yield in the future (Slafer et al. 1996; Slafer et al. 2014). The 

number of spikes per unit of ground area (spike density) has been proven to correlate to 

wheat yield, together with a thousand corn weight and the number of grains. Therefore, spike 

density is a vital trait for early yield predictions (García Del Moral et al. 2003; Zhang et al. 

2007; Pask et al. 2012; Ferrante et al. 2017). The current practice involves the manual 

counting of spikes within several small subsample areas to represent field or plot conditions. 

This requires an additional step of extrapolation to achieve comparable standard units (m−2), 

leading to unknown uncertainties, especially in the case of a high spatial variability in the 

distribution of spikes.  

       Several alternative approaches have been developed to quantify spikes in the field. 

Thermal image data enable to distinguish between spikes and canopy elements, due to a 

lower transpiration and the higher temperature of the spikes (Fernandez-Gallego et al. 2019). 

However, the slight temperature difference of the spikes in comparison to the rest of the 

canopy makes their detection challenging. Cloud cover, the angle of the sun, and changes in 

wind speed, possibly caused by UAV movements, are factors influencing the derived canopy 

surface temperatures (Jackson et al. 1983; Chapman et al. 2014) and can complicate spike 

detection.  

Other approaches primarily make use of conventional, high-resolution RGB data. 

Information on texture, color, and morphology were utilized for spike quantification, e.g., 

using filtering techniques, grayscale transformation and algorithms (Cointault et al. 2008; 

Liu et al. 2014; Alharbi et al. 2018; Fernandez-Gallego et al. 2018; Zhou et al. 2018a). 

Subsample areas of highly-resolved images were selected, leading to promising results for 

spike identification. In addition, machine learning approaches like CNNs (Hasan et al. 2018; 

Madec et al. 2019; Sadeghi-Tehran et al. 2019) and SVM (Zhu et al. 2016; Zhou et al. 2018b) 

have been successfully trained to RGB data for spike recognition.  

However, the data acquisition in relation to the aforementioned approaches was limited 

to ground-based systems like a camera platform (Cointault et al. 2008), self-built vehicles 

(Hasan et al. 2018; Zhou et al. 2018a), fixed-site phenotyping platforms (Zhu et al. 2016; 

Sadeghi-Tehran et al. 2019), a boom (Madec et al. 2019) or was acquired predominantly by 

hand (Liu et al. 2014; Alharbi et al. 2018; Fernandez-Gallego et al. 2018; Zhou et al. 2018b; 

Fernandez-Gallego et al. 2019; Sadeghi-Tehran et al. 2019). Moreover, for a sufficient spike 

detection, images were acquired from the side in some cases, at an angle of 45 degrees above 

the horizontal (Alharbi et al. 2018; Hasan et al. 2018; Zhou et al. 2018b), rather than from a 

nadir view.  

These data collection requirements clearly limited throughput, automation capabilities, 

and applicability. Firstly, images from each sampling unit (SU) were manually acquired and 

analyzed individually, without any information regarding their geolocation on the field scale. 
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Secondly, the aforementioned selection of subsample areas required an additional step to 

extrapolate in standard units (spikes per square meter). Thirdly, methodologies were applied 

to highly-resolved images (GSD < 0.60 mm) and small image footprints, to allow for good 

prediction accuracy. Madec et al. (2019) and Sadeghi-Tehran et al. (2019) have already 

demonstrated that a lower spatial resolution (GSD < 1.00 mm) leads to a clearly decreased 

identification performance of spikes. The necessity for such a high resolution or image 

acquisition from the side distinctly limits the application possibilities of e.g., a UAV for data 

acquisition. 

Recently, only Fernandez-Gallego et al. (2020) has successfully made use of UAV 

images for the spike density assessment, with machine learning techniques. However, the 

approach has been applied to very similar awnless genotypes and would be problematic for 

large scales. The UAV images were taken in manual mode to avoid different image settings 

and to minimize errors caused by distortion or perspective. Moreover, a manual selection of 

the plot centroids was necessary. 

In general, developed methodologies are adapted and trained to external conditions like 

illumination, background, soil moisture content, and GSDs, as well as to genotypic 

specificities, such as the number of spikes per SU (spike overlap), spike distribution, color, 

inclination, shape, size, presence of awns, and developmental stage. The canopy at the 

growth stage of spike development is very complex, with variations in its appearance among 

genotypes, herein also specified in detail. A technical, as well as the timely, easy adaptation 

of a methodology to the aforementioned external conditions and genotypic specificities 

would be beneficial and remains a significant challenge. 

In the present study, UAV-based RGB images and the color space transformation in the 

extended CIELAB color space were used to determine the wheat spike cover (number of 

spike pixels per square meter). Influenced by the homogeneous appearance of spikes in the 

canopies, a linear relation between the spike cover and the number of spikes can be expected. 

Using this hypothesis, empirical regression models were trained for different wheat varieties, 

based on manually counted spikes and corresponding spike cover. The approach makes use 

of a simple color space transformation (extended CIELAB) for spike cover determination 

and does not require expert knowledge, labelled data or large training datasets to identify, 

for instance, overlapping and intersecting spikes. This potential enables a simple adaptation 

to the external conditions of the scene and genotypic specificities, by means of a recalibration 

of the model.  

The presented study aims to identify factors influencing the accuracy of the developed 

empirical regression models to quantify spikes from UAV data, and tries to answer the 

following questions: (i) What is the ideal wheat developmental stage and time frame for data 

acquisition? (ii) What influence does the GSD have on regression model accuracies? (iii) 

What impact do spike and canopy characteristics (e.g., genotype, presence of awns, spike 

inclination) have on regression model accuracies? (iv) How many reference measurements 

are necessary for a user-based calibration of an empirical regression model, adapted to the 

environment of the scene?  
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5.2 Material and methods 

5.2.1 Study site and experimental design 

Three different spring wheat genotypes (Tybalt, Kadrilj and Quintus) were arranged in a 

randomized block design in the form of small breeder plots (1.4×3 m) at the agricultural 

research station, Campus Klein-Altendorf. The genotypes were sown in rows with a space 

of 10.4 cm and a density of 350 and 450 seeds m−2, with four repetitions for each sowing 

density.  

In addition, each plot was divided into four individual SUs of one square meter (Figure 22a), 

resulting in 32 samples per genotype for further analysis. The field, with a total area of 900 

m−2, was treated with 80 kg N/ha and growth inhibitors. 

Figure 22 Experimental layout, with highlighted sampling areas and genotypic specificities for 

method development. (a) Experimental field consisting of small breeder plots, with two sowing 

densities and three genotypes; (b) Tybalt with an awnless spike development; (c) Kadrilj with a low 

to medium rate of awn occurrence, and (d) Quintus with a high rate of awn occurrence. 

Selected wheat genotypes varied in terms of spike and awn characteristics. Tybalt has an 

awnless spike development (Figure 22b), whereas Kadrilj and Quintus can be characterized 

by a low to a high rate of awn occurrence (Figure 22c-d). This variation in sowing densities, 
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spikes and awn characteristics’ potential enable the robustness and the repeatability of the 

approach to be evaluated. 

5.2.2 UAV data acquisition 

For UAV data acquisition, the Sony Alpha 6000 RGB camera was used, equipped with a 

fixed focal length lens of 30 mm. Light sensitivity was set to ISO 800 and the white balance 

was fixed to the daylight setting for equal image acquisition settings.  

Over a period of one month, the experiment was repeated four times (Table 13). Data were 

acquired at a wind speed of less than 15 km/h and in overcast conditions.  

Table 13 Information on UAV acquisition dates, growth stage of the spring wheat according to the 

BBCH scale and approximate wind speed during data acquisition.  

Dataset Date BBCH stage Wind speed (km/h) 

1 14.06.2018 61 < 10 

2 05.07.2018 71 < 10 

3 10.07.2018 77 < 15 

4 18.07.2018 85 < 15 

 

According to the BBCH scale, the developmental stages varied between early flowering 

(BBCH 61) and ripening (BBCH 85). The fruit development (BBCH 71 and 77) was 

expected to be the most appropriate growth stage for spike identification and was covered 

twice (Table 13). The properties of the different genotypes clearly affected the canopy 

characteristics at different developmental stages, as shown in Figure 23.  

Image data were recorded from three different flight altitudes, at 8 m, 12 m and 17 

m AGL for each BBCH stage, to investigate the impact of a decreasing spatial resolution on 

the accuracy of spike identification. The corresponding GSDs at different flight altitudes, 

the recorded number of images and the flight durations are summarized in Table 14. If the 

GSD was reduced, for example, from 1.4 mm to 2.0 mm, the number of acquired images and 

the flight duration to cover the region of interest was reduced by more than the half. 

Table 14 Overview of corresponding GSDs, number of images and flight duration to cover the region 

of interest, depending on the flight altitude. 

Flight altitude (m) GSD (mm) Number of acquired images Flight time (minutes) 

8 1.4 460  ~ 12 

12 2.0 209 ~ 5 

17 2.8 113 ~ 3 
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Figure 23 UAV images from 8 m above ground level, illustrating the different canopy characteristics 

and colors of (a-d) Tybalt; (e-h) Kadrilj, and (i-l) Quintus at different BBCH stages from fruit 

development (BBCH 61) to ripening (BBCH 85) in identical areas.  

 

BBCH stage 61 BBCH stage 71 BBCH stage 77 BBCH stage 85 
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5.2.3 Acquisition of the training dataset 

The spike density of each SU was manually counted using the software ImageJ (Schneider 

et al. 2012)  from the UAV images, with a GSD of 1.4 mm, recorded at BBCH stage 71. The 

corners of the SUs were marked with blue wooden stakes in the field, to identify the region 

of interest within each image (Figure 24a). Each time images were chosen, the SU was 

located in their central region. Due to the high spatial resolution and the selected 

developmental stage, the individual spikes could easily be counted (Figure 24b). The 

advantage of BBCH stage 71, as reference point for manual counting, is that spikes located 

deeper in the canopy, as well as potentially green spikes with delayed development, could 

be clearly identified. 

Figure 24 (a) Section of a UAV image at BBCH stage 71, used for manual counting with blue 

wooden stakes, facilitating the identification of the SU and (b) Enlarged section of a UAV image, 

with manually labelled spikes in the software ImageJ. 

5.2.4 Spike segmentation in the extended CIELAB color space 

The CIELAB color space consists of a plane, spanned by the opponent-color dimensions 

green-red (a*), blue-yellow (b*), and the orthogonal luminance dimension (L*) (Figure 25a). 

This color space, with nonlinear, opponent-color dimensions was developed to simulate the 

response of the human eye. The transformation of RGB data into the CIELAB color space 

is an established method, aimed at distinguishing target objects, such as diseases, weeds or 

plants from the background (Kulkarni and Patil 2012; Ferreira et al. 2017; García-Martínez 

et al. 2020; Riehle et al. 2020). The color space can also make use of two additional 

dimensions, the chroma (C) and the hue angle (H) (Figure 25a). In particular, the C 

dimension is valuable in terms of coping with the high variation of green colors, e.g., in plant 

canopies during spike development (Figure 23). Details of the RGB transformation to the 

extended CIELAB color space can be found in several publications (Kurniawati et al. 2009; 

Macedo-Cruz et al. 2011; Choudhary et al. 2012; Azetsu and Suetake 2019).  
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In this study, these different dimensions were used to compute a binary image for spike 

segmentation. Values between the respective upper and lower thresholds were assigned to 

the spikes and acquired the value of one in the binary channel (Equation 6). The binary 

outcome was calculated by applying lower and upper thresholds in each dimension 

separately and then combining individual segmentation results. At the end, only those pixels 

in the binary image were identified as spikes, which have values of one in all channels, as 

illustrated by Equation 6. Otherwise, they are classified as zero (background). 

 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑖𝑚𝑎𝑔𝑒 (𝑥, 𝑦) =  

⎩
⎪⎪
⎨

⎪⎪
⎧

1 𝑖𝑓  

 𝐿∗
௟௢௪ <  𝐼௅∗(𝑥, 𝑦) <  𝐿∗

௨௣௣

 𝑎∗
௟௢௪ <  𝐼௔∗(𝑥, 𝑦) <  𝑎∗

௨௣௣

  𝑏∗
௟௢௪ <  𝐼௕∗(𝑥, 𝑦) <  𝑏∗

௨௣௣ 

C ௟௢௪ <  𝐼஼(𝑥, 𝑦) <  C ௨௣௣

 H  ௟௢௪ <  𝐼ு(𝑥, 𝑦) <  H ௨௣௣

 0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (6) 

 

The necessary dimensions and thresholds for accurate spike segmentation, using the 

extended CIELAB color space, are hereinafter specified in detail. MATLAB environment 

9.2 was used for image transformation, as well as for the computing of binary images.  

For a robust spike identification, the luminance dimension (L*) was well-suited (Figure 

25b). The removal of the green, as well as the yellow parts of the canopy, with a luminance 

similar to the spikes, was achieved using the C dimension. In the early stages of the 

development, the lower threshold in the a* dimension was also suitable for this. Furthermore, 

the upper threshold in the a* dimension was ideal for removing the brown areas of the 

canopy, with a luminance similar to the spikes. Dimension H was primarily used to remove 

the blue wooden stakes (Figure 25b), as well as a number of very light brown areas within 

the canopy.  

Figure 25 (a) Dimensions of the extended CIELAB color space that was utilized for spike 

segmentation; (b) Left: section of the RGB image; Right: corresponding binary image, segmented in 

the extended CIELAB color space. White pixels represent the spikes and black pixels represent the 

background. 
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The lower and upper thresholds in the extended CIELAB color space were identified 

separately for each BBCH stage, GSD, and genotype to ensure an optimal spike 

segmentation. The applied thresholds are summarized in Table S5.  

In addition, two filters, based on fragment removal and hole-filling, were applied to the 

resulting binary images (Figure 25b). Firstly, all fragments, i.e., small, connected 

components, classified as spikes, were classified as background, if they only contained 10 

pixels or less. Secondly, all holes, i.e., small, connected components, classified as 

background, were treated in an analogous manner.  

Finally, shapefiles, based on the aforementioned highlighted area, were used to calculate the 

spike cover (number of spike pixels per square meter) of the individual SUs in the processed 

orthomosaics (Figure 22a). 

 

5.2.5 Statistical analysis 

The manually counted spike number in combination with the determined spike cover per SU 

enabled the build-up of empirical regression models for spike density assessment. During 

this process, the data containing 32 samples for each genotype were randomly divided 16 

times into a calibration and validation set. Two thirds of the samples (n = 21) were used to 

train the model (calibration), while the remaining third (n = 11) was used to evaluate the 

model accuracy (validation). The performance of all models was determined based on the 

R², RMSE, and the relative root mean square error (rRMSE) using the software R (2018). In 

order to identify a significant difference between the models, two-way ANOVAs were 

conducted to verify the RMSE, including a Tukey post-hoc test. 

Furthermore, the study makes use of the power analysis to estimate an appropriate training 

sample size for the best-performing models of each genotype and GSD. The power analysis 

is a test of probability to correctly reject the null hypotheses (Lerman 1996; Tomczak et al. 

2014). In this study, the null hypothesis assumes no significant difference in prediction 

accuracy for an appropriate training sample size (p = 0.05). A minimum power of 0.8 was 

set by the statistical literature to accept the null hypothesis (Cohen 1988; Lerman 1996; 

Tomczak et al. 2014). In addition, the datasets were again randomly divided 16 times into a 

calibration and a validation set, whereby the training sample size was reduced stepwise. Each 

time, either 16, 11 or 6 samples were used for model calibration. The remainder of the total 

sample sizes enabled the validation of the model performance, based on the averaged R², 

RMSE, and rRMSE. In summary, the investigations attempted to estimate the effort required 

to adapt the model to specific scene conditions.  
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5.3 Results  

5.3.1 Tybalt 

The results of the models, predicting the spike density of Tybalt at different developmental 

stages and GSDs, are summarized in Table 15. At the beginning of the observation period, 

during flowering at BBCH stage 61 (Figure 23a), a minimal contrast between the spikes and 

the other canopy elements can be observed. The leaves frequently had a similar luminance 

and color, and it was difficult to discern spikes alone. Model development, based on data 

with the highest GSD, only led to a low R² of 0.47 and a high RMSE of 40 spikes m−2. 

Subsequently, lower resolved image data, acquired in the same developmental stage, was 

not suitable for a meaningful model development (Table 15).  

Table 15 Statistical relationship between the manually counted spike density and spike cover of 

Tybalt at different BBCH stages and GSDs. Averaged statistical measures were computed across the 

empirical regression models, randomly divided into calibration and validation datasets. Different 

letters indicate significant differences between the RMSE (p < 0.05). R²: averaged coefficient of 

determination; RMSE: averaged root mean square error; rRMSE: relative root mean square error. 

BBCH GSD        
(mm) 

Calibration (n = 21)  Validation (n = 11) 

Slope Intercept R²  Slope Intercept R² RMSE 
rRMSE 

(%) 

61 

1.4 0.018 -2.784 0.49  1.015 -18.040 0.47 40g 30 

2.0 0.002 3.449 0.02  
/ 

2.8 0.000 1.173 0.01  

71 

1.4 0.021 -0.475 0.82  0.979 9.720 0.83 16a 12 

2.0 0.021 1.920 0.73  0.933 23.710 0.73 21bc 15 

2.8 0.016 1.941 0.65  0.874 41.436 0.63 27ef 20 

77 

1.4 0.025 -2.462 0.80  1.002 -0.176 0.80 18ab 13 

2.0 0.018 1.194 0.68  0.947 12.999 0.71 24cd 17 

2.8 0.018 1.199 0.58  0.940 13.744 0.57 32f 23 

85 
1.4 0.019 0.627 0.70  0.980 5.996 0.68 24de 18 
2.0 0.019 0.326 0.64  1.109 -54.423 0.64 32f 24 
2.8 0.016 1.705 0.49  0.964 20.160 0.51 34f 25 

 
During fruit development (BBCH 71), the contrast between the spikes and the other canopy 

elements was more clearly visible: the spikes had a light grey color, whereas the rest of the 

canopy was predominantly dark green (Figure 23b,c). Therefore, the best results for the 

different GSDs were obtained in this developmental stage (Table 15). The dataset with the 

highest GSD of 1.4 mm led to a model having an rRMSE of 12 % and an RMSE of 16 spikes 

m−2. The model also showed less scattering and the regression line indicated a good match 

to the 1:1 line (Figure 26a). 
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Figure 26 Statistical relationship between the manually counted spikes and from the empirical 

regression model estimated spike density of the three GSDs and the best-performing models of each 

genotype; (a-c) Tybalt at BBCH stage 71; (d-f) Kadrilj at BBCH stage 77, and (g-i) Quintus at BBCH 

stage 85. Averaged statistical measures were computed randomly across the division of the empirical 

regression models. Black lines represent regression lines with 95 % confidence intervals; brown lines 

represent the 1:1 line. 

With a lower GSD (2.0 mm), a slight underestimation of the predicted spike density was 

observed (Figure 26b) and the RMSE increased to 21 spikes m−2. For the dataset with the 

lowest spatial resolution (GSD = 2.8 mm), the underestimation of the predicted spike density 

identified, was accompanied by a higher scattering and a lower model performance (R² = 

0.63, RMSE = 27 m−2, rRMSE = 20 %) (Figure 26c). 

1.4 mm GSD 2.0 mm GSD 
 

2.8 mm GSD 
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During late fruit development (BBCH 77), the RMSE of the models increased slightly by a 

maximum of five spikes m−2, compared to BBCH stage 71 (Table 15).  

By contrast, the model performances were significantly reduced in the subsequent growth 

stage at BBCH stage 85. Spikes and other canopy elements matured and turned yellow, 

which led to a reduction in contrast between the spikes and the rest of the canopy (Figure 

23d). The model, based on the images with the highest GSD, still had an R² of 0.68 with an 

RMSE of 18 spikes m−2 (Table 15). With a lower spatial resolution of the data (GSD > 2.0 

mm), the RMSE was higher than 24 spikes m−2. 

5.3.2 Kadrilj 

The model performances of Kadrilj during flowering (BBCH 61) were also negatively 

affected by the weak contrast of the spikes and other canopy elements (Figure 23e). This 

was additionally amplified due to the awn occurrence of the genotype. Model development 

was only meaningful, if at all, based on the data with highest GSD, which still resulted in 

low prediction accuracy with an R² of 0.21 and an RMSE of 67 spikes m−2 (Table 16).  

Table 16 Statistical relationship betw een the manually counted spike density and spike cover of 

Kadrilj at different BBCH stages and GSDs. Averaged statistical measures were computed across 

the empirical regression models, randomly divided into calibration and validation datasets. Different 

letters indicate significant differences between the RMSE (p < 0.05). 

BBCH GSD     
(mm) 

Calibration (n = 21)  Validation (n = 11) 

Slope Intercept R² 
 

Slope Intercept R² RMSE 
rRMSE 

(%) 

61 

1.4 0.011 6.308 0.21  1.490 -97.227 0.21 67e 55 

2.0 0.003 2.528 0.02  
/ 

2.8 0.001 1.648 0.01  

71 

1.4 0.024 -2.490 0.78  1.059 -28.716 0.77 17ab 14 

2.0 0.022 -0.637 0.53  0.973 5.733 0.59 25c 20 

2.8 0.019 1.337 0.34  1.062 -29.853 0.33 44d 36 

77 

1.4 0.026 -2.393 0.76  0.964 15.875 0.74 16a 13 

2.0 0.026 -2.609 0.64  0.999 -4.849 0.63 22c 18 

2.8 0.027 -2.881 0.53  0.859 50.734 0.54 25c 21 

85 
1.4 0.006 7.751 0.04  

/ 2.0 0.005 3.618 0.03  
2.8 0.006 7.497 0.02  

 
Similar to Tybalt, the contrast between the spikes and the other canopy elements was 

considerably enhanced during the stage of fruit development (Figure 23f,g). At BBCH stages 

71 and 77, the highest model accuracies could be achieved, based on the data with a GSD of 

1.4 mm (RMSE < 17 spikes m−2, rRMSE < 14 %) (Table 16). The regression line also 

showed a good match to the 1:1 line, without over- or underestimation of the predicted spike 

density (Figure 26d).  
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The model, based on image data and having a GSD of 2.0 mm at BBCH stage 71, led to an 

RMSE of 25 spikes m−2 (Table 16). In the case of images with the lowest spatial resolution, 

the model performance further declined (RMSE = 44 spikes m−2, rRMSE = 36 %). The awns 

of the genotype affected the color and luminance of the spikes. In comparison to Tybalt, the 

spikes were still partly green during early fruit development (Figure 23b,f). This negatively 

affected the segmentation and the model performances, particularly in the case of image data 

having the lowest GSD of 2.8 mm.  

Influenced by the further development of the plants at BBCH stage 77, ideal model 

performances were finally observed for the image data of the two lowest GSDs (GSD = 2.0 

mm, RMSE = 22 spikes m−2, rRMSE = 18 %; GSD = 2.8 mm, RMSE = 25 spikes m−2, 

rRMSE = 21 %). For corresponding models, an underestimation of higher values, in 

particular, were observed (Figure 26e,f). 

At BBCH stage 85, a meaningful assessment of spike cover and correspondingly spike 

density, was not possible for Kadrilj (Table 16). The ripening clearly reduced the contrast 

between the spikes and the other canopy components (Figure 23h).  

5.3.3 Quintus 

The accuracy of the spike density assessment of Quintus was significantly dependent on the 

spatial resolution, as well as the developmental stage. During flowering (BBCH 61), the 

model development was independent of the GSD and was not meaningful (Table 17).  

Table 17 Statistical relationship between the manually counted spike density and spike cover of 

Quintus at different BBCH stages and GSDs. Averaged statistical measures were computed across 

the empirical regression models, randomly divided into calibration and validation datasets. Different 

letters indicate significant differences between the RMSE (p < 0.05). 

BBCH 
GSD        

(mm) 

Calibration (n = 21)  Validation (n = 11) 

Slope Intercept R²  Slope Intercept R² RMSE 
rRMSE 

(%) 

61 

1.4 0.001 1.499 0.06  

/ 2.0 0.001 0.741 0.03  

2.8 0.001 0.509 0.03  

71 

1.4 0.016 1.943 0.52  0.956 29.934 0.54 32b 26 

2.0 0.013 3.232 0.19  0.812 54.793 0.17 65d 53 

2.8 0.009 5.236 0.12  0.722 130.955 0.09 81e 67 

77 

1.4 0.022 -0.398 0.55  0.969 16.788 0.56 31b 26 

2.0 0.017 1.729 0.30  0.998 1.859 0.28 55cd 45 

2.8 0.011 3.839 0.26  1.067 -30.754 0.25 63d 52 

85 
1.4 0.027 -3.390 0.81  0.988 4.527 0.81 17a 14 
2.0 0.029 -3.942 0.44  1.166 -65.541 0.45 45c 37 
2.8 0.032 -5.526 0.36  1.120 -35.384 0.35 54c 44 
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At BBCH stage 71, the model, based on image data with the highest GSD of 1.4 mm, led to 

an R² of 0.54 and an RMSE of 32 spikes m−2 (Table 17). In the case of the models based on 

the lower resolved image data (GSD > 2.0mm), the correlation significantly declined, 

resulting in an RMSE of more than 65 spikes m−2 (Table 17). Due to the high rate of awn 

occurrence, the spikes at the stage of fruit development were still green and exhibited a slight 

contrast in comparison to the rest of the canopy (Figure 23j).  

Image data, acquired at the later development stage of BBCH 77, led to a slightly increased 

model performance of the two lowest GSDs (GSD = 2.0 mm, R² = 0.28, RMSE = 55 spikes 

m−2; GSD = 2.8 mm, R² = 0.25, RMSE = 63 spikes m−2).  

The model performances of Quintus were significantly improved in the subsequent growth 

stage (BBCH 85), when the spikes, the other canopy elements and, in particular, the awns 

were ripening (Figure 23l). The best model prediction accuracy was finally observed for the 

highest GSD, with an RMSE of 17 spikes m−2, uncertainties of 14 % and an almost perfect 

match of the regression to the 1:1 line (Figure 26g). The reduction of the image GSDs (GSD 

> 2.0 mm) led to significantly lower model accuracies, with an R² of less than 0.45 and an 

RMSE higher than 45 plants m−2 (Table 17). Additionally, the model showed a high level of 

scattering and an overestimation of predicted spike density, in particular, for lower values 

(Figure 26h,i). 

5.3.4 Power analysis and stepwise reduction of the sample size  

In order to identify the appropriate training sample size for a user-based calibration of an 

empirical regression model in this study, a statistical power analysis and a stepwise reduction 

of the training sample size were computed. The results are illustrated in Figure 27 and Table 

S6 for the best-performing models, developed for each genotype and GSD.  

For the models with the highest GSD (1.4 mm) of the different genotypes, a 

continuous reduction of the training sample size from 21 to 11 samples still led to a power 

over 0.80 (Figure 27). When the training subset was reduced to six samples, the power 

clearly declined, with values between 0.61 and 0.52.  

With a reduction in GSD to 2.0 mm, similar results were observed for Tybalt with a 

power over 0.80 for models calibrated with more than 11 samples (Figure 27). The 

investigation of the stepwise reduction in the training sample size also indicated that only a 

statistical power below 0.80 resulted in significant differences in model performances in this 

study (Table S6, Figure 27). Therefore, for Kadrilj and the aforementioned GSD of 2.0 mm, 

the first reduction step, with a power less than 0.80, also led to a significant difference in 

model performance (Table S6). However, the reduction of the training sample size from 21 

to 11 samples increased the RMSE by a maximum of six spikes m−2 (Table S6). Similar 

results were observed for Tybalt, in combination with the model performance having the 

lowest GSD of 2.8 mm. 
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Due to the poor model accuracies achieved for Quintus, based on the images with GSDs 

lower than 1.4 mm and a determined power of less than 0.55 for the highest number of 

training samples (Figure 27), a reduction of the training subset was not meaningful. The 

stepwise reduction of the training sample size also identified significantly decreasing model 

accuracies (Table S6). 

 
 
Figure 27 Power curves, based on the number of samples determined for the best-performing models 

of Tybalt at BBCH stage 71, Kadrilj at BBCH stage 77, and Quintus at BBCH stage 85, to estimate 

the appropriate training sample size. An averaged statistical power analysis was computed across the 

empirical regression models, randomly divided into calibration and validation datasets (p = 0.05).  
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5.4 Discussion 

The results of the study demonstrated that the spike density of differential wheat phenotypes 

can be predicted with uncertainties of less than 14 % from auto-captured UAV images for 

high-throughput field phenotyping.  

In the case of Tybalt, which is an awnless genotype, the early fruit development stage 

(BBCH 71) was identified as the most suitable growth stage for spike density assessment 

(Table 15). Models, based on image data acquired during late fruit development (BBCH 77), 

also provided comparable model performances with possible RMSEs of 18 spikes m−2. The 

high contrast between spikes and other canopy elements enabled high prediction accuracies. 

In addition, the spikes of Tybalt were homogenously distributed at a similar height level 

within the canopy, which was advantageous for their detection (Figure 23b,c). In the 

subsequent development stage 85, which corresponds to ripening, the contrast between the 

spikes and the other canopy elements was severely reduced. This led to a less precise 

segmentation and lower prediction accuracies (Table 15). 

Moreover, the models of Tybalt, built on images with a spatial resolution of 2.0 mm during 

fruit development (BBCH 71-77) were able to predict spike density, with slightly lower 

accuracies (RMSE < 24 spikes m−2).  

Similar to Tybalt, the fruit development of Kadrilj (BBCH 71-77) was the ideal stage 

for spike density quantification. At this growth stage, the RMSE of the validation models 

was below 17 and 24 spikes m−2 for image data, with a GSD of 1.4 mm and 2.0 mm, 

respectively. In comparison to Tybalt, the model accuracy was slightly lower. This was due 

to a more heterogeneous canopy structure, characterized by spikes growing at different 

heights within the canopy and a more pronounced spike inclination (Figure 23f,g). 

Furthermore, Kadrilj, with a low to medium rate of awn occurrence led to a greater color 

variation between spikes, in particular, at the early fruit development stage (Figure 23f). 

Over the course of further plant development, the number of previously dark green spikes 

became fewer, with potentially improved segmentation accuracy. Model development, based 

on image data with the lowest GSD (2.8 mm) thus led to better accuracy for late fruit 

development (BBCH 77). 

As regards genotypes with a high rate of awn occurrence, such as Quintus, the most 

suitable growth stage for spike detection occurred relatively late in plant development 

(BBCH 85). The models, based on image data recorded during the earlier growth stages, 

were clearly influenced by the high rate of awn occurrence, leading to a lower contrast 

between the spikes and the other canopy elements (Figure 23j,k). The awns remained green 

until the ripening stage, which hindered the determination of sound thresholds. In addition, 

for good model performances, data acquisition was only meaningful in the case of images 

with the highest GSD of 1.4 mm (Table 17). 

In summary, the spike density could be accurately modelled with an RMSE of less than 

17 spikes m−2 among the investigated wheat phenotypes and ideal models. This performance 

is comparable to the results of other studies (Cointault et al. 2008; Fernandez-Gallego et al. 



- 74 - 
 

 
 

2019; Madec et al. 2019; Sadeghi-Tehran et al. 2019; Fernandez-Gallego et al. 2020). 

Moreover, the presented methodology is firstly advantageous in that the approach directly 

quantifies the spike density in standard units (m−2), compared to other studies that still 

require a selection of representative subsample areas (Cointault et al. 2008; Zhu et al. 2016; 

Alharbi et al. 2018; Fernandez-Gallego et al. 2018; Zhou et al. 2018a; Fernandez-Gallego et 

al. 2019). This needs an additional extrapolation step to obtain comparable standard units, 

leading to unknown uncertainties, especially in terms of a spatial variability in the 

distribution of spikes. Secondly, the results in this work suggest that the model accuracies 

did not degrade with an increase in spike density at the ideal GSD and BBCH stage (Figure 

26a,d,g). Thirdly, images were auto captured at regular intervals from the UAV, according 

to a flight pattern. Therefore, it was not necessary to manually acquire images of each SU. 

Fourthly, a georeferenced orthomosaic was used for data analysis, instead of single images 

of each SU, ideally for large scales. Lastly, spike quantification was possible with a lower 

spatial resolution, compared to approaches applied to highly-resolved images (GSD < 0.60 

mm) (Cointault et al. 2008; Alharbi et al. 2018; Hasan et al. 2018; Zhou et al. 2018a; Madec 

et al. 2019; Sadeghi-Tehran et al. 2019). In this study, the spike density could be accurately 

modelled with a GSD of 2.0 mm for Tybalt and Kadrilj (RMSE < 22 spikes m−2). The 

reduction of the GSD from 1.4 mm to 2.0 mm already reduced the necessary time for image 

acquisition and the number of images to cover the region of interest by more than a half 

(Table 14).   

The significantly declining model accuracies for Quintus, with a GSD lower than 1.4 

mm (Table 17) can be associated with this reduced number of acquired images and the late 

developmental stage (BBCH 85). Due to larger image footprints at higher flight altitudes, 

the central location of an SU within the recorded images, classically used for creating the 

orthomosaic, was no longer ensured. This could potentially lead to errors arising from 

distortion or perspective (Jaud et al. 2019). In addition, the spikes during ripening (BBCH 

85) were often inclined (Figure 23l). Inclined spikes that were not reconstructed based on a 

central area of the image can be an error source for the determination of fractional cover. 

Thus, it can be assumed that this was the reason why the models, based on a lower GSD (2.0 

and 2.8 mm) exhibited such a high scattering and essentially overestimated the spike density 

of Quintus (Figure 26h,i). For Tybalt and Kadrilj, such distortion and perspective problems 

were less relevant, since the ideal models for spike assessment occurred during the earlier 

stages of development, without problematical spike inclination. 

Therefore, it is recommended, particularly in the case of predominantly inclined spikes, that 

the SU be recorded by a central area of the image for a sufficient reconstruction within an 

orthomosaic. However, compared to Fernandez-Gallego et al. (2020), the results in this study 

showed that a manual UAV image acquisition is still not necessary to record this plot 

centroid. The set-up, based on a 1.4 mm GSD and UAV auto-captured image within the 

lawnmower pattern (60 % across and 80 % along the track overlap) ensured a high prediction 

accuracy and centrally located SUs in the acquired images, to reconstruct the orthomosaic 

sufficiently. 
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In this study, the influence of three distinguished wheat phenotypes and canopy 

characteristics on the method accuracy for spike density assessment was examined. The 

complex structure of the canopy and the variation among genotypes and stages are illustrated 

in Figure 23. Machine learning approaches (Zhu et al. 2016; Hasan et al. 2018; Zhou et al. 

2018b; Madec et al. 2019; Sadeghi-Tehran et al. 2019), image processing techniques 

(Cointault et al. 2008; Liu et al. 2014; Alharbi et al. 2018; Fernandez-Gallego et al. 2018; 

Zhou et al. 2018a), and also the developed models in this study have been adapted to these 

genotypic specificities (spike overlap, distribution, color, inclination, shape, size, presence 

of awns, developmental stage) as well as to external conditions (illumination, background, 

soil moisture content, sensors). Therefore, methodologies may fail when they are applied to 

images acquired in relation to different external conditions and genotypic specificities. In 

the case of machine learning approaches, diversity is critical, thus training datasets from 

thousands to millions are required to show great advantages (Deng et al. 2009; Ubbens et al. 

2018; Sadeghi-Tehran et al. 2019). In this study, the results led to the assumption that among 

the examined wheat phenotypes, 11 reference measurements were appropriate for a user-

based calibration of an empirical regression model (Figure 27, Table S6). However, further 

investigations are necessary to evaluate the robustness of the adaptation process to different 

conditions. 

In summary, the presented results are very promising, but further investigations into 

similar and different phenotypes are essential to evaluate the robustness of the statistical 

relationship and the reliability of spike density prediction. In addition, applied thresholds 

must be potentially adapted to external conditions or different phenotypes, similar to other 

studies with the need of defining specific thresholds for spike identification (Cointault et al. 

2008; Zhu et al. 2016; Alharbi et al. 2018; Fernandez-Gallego et al. 2018; Zhou et al. 2018b; 

Madec et al. 2019).  

Furthermore, the developed approach is dependent upon specific weather conditions, 

which restrict the practicability of the approach. Firstly, it is recommended that the wind 

speed should not be higher than 15 km/h, similar to this study (Table 13). This avoids issues 

in relation to image processing, caused by excessive spike movements during data 

acquisition. Secondly, data acquisition is limited to overcast conditions. Constant solar 

illumination conditions during data acquisition clearly reduced the contrast between the 

spikes and the other canopy elements, as illustrated in Figure S1. Similar results were 

observed by Fernandez-Gallego et al. (2020), whose images were also acquired from UAVs. 

With regard to direct illumination, a higher resolution appears to be required to distinguish 

the spikes from the other canopy elements.  
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5.5 Conclusions 

This study presented an easy to implement and low-cost approach for a non-invasive 

assessment of spike density, based on the statistical relationship between counted spike 

density and fractional cover. The determination of spike cover per unit of ground area takes 

advantage of the fact that under ideal conditions, the average spike size is relatively stable. 

For the first time, image acquisition and data analysis make use of auto-captured UAV 

imagery and processed orthomosaics, ideally for large scales. The influence of different 

wheat phenotypes, as well as the potential errors of distortion and perspective with a 

decreasing GSD, were also considered in the methodology under in-field conditions. 

Moreover, the necessary effort was made to investigate whether the methodology could be 

adapted to external conditions or genotypic specificities. The results led to the assumption 

that 11 reference measurements were appropriate for a user-based adaptation process. 

However, the robustness of such an adaptation process, as well as the statistical relationship, 

needs to be examined in further studies. 

The quantification of spike density can already be used to identify yield potential in the early 

phases for breeding programs and for variety selections. Considering the variation of spike 

density in-field, caused by different nutrition and soil conditions, this can increase a farmer’s 

yield estimations in real time. These reliable yield estimations can reduce costs by improving 

farming management, such as the transportation, harvesting and storage of cereals. 
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6. Synthesis 

The research in this thesis was focused on methodologies to quantify vegetation traits with 

a high degree of accuracy and practicability. For traits like plant and spike density, high 

spatial and temporal resolutions were necessary for method development and evaluation. As 

has been shown, the acquired UAV data met all these criteria and could be used to estimate 

vegetation traits non-invasively for small and numerous plots. The applied approaches can 

be used as a standard protocol for trait quantification and can replace subjective and 

expensive manual labor, with the added benefit of providing reliable identification of desired 

varieties. Application of the developed methodologies necessitates limited prior knowledge, 

compared to SVM and CNNs. Moreover, the methods were able to increase the throughput 

of trait assessment and were generally not limited to single developmental stages, an 

important factor in terms of practicability. In this thesis, individual images covering only a 

small area of interest were replaced by georeferenced mosaicked images for trait extraction, 

which are mandatory, especially for large scales or site-specific management. For parametric 

regression methods, the investigated model adaptation, with a small number of reference 

measurements, can potentially facilitate adaptation to specific scene conditions. Moreover, 

the 3D information used for lodging assessment is almost independent of abiotic or external 

factors and does not require recalibration. These elements are crucial for application of the 

developed methods in practice and for reducing the hurdle of implementation in the decision-

making process of PA and breeding. However, there are also limitations to consider, which 

are documented in the following sections. 

6.1 Thresholding 

Threshold determination influences the accuracy and applicability of an approach. 

Therefore, ideally, a threshold should be defined automatically and objectively. 

The MAXCH was the basis for determining the threshold values used for 

quantification of the lodging percentage and severity. However, this approach depends on a 

homogeneity of the MAXCH and can cause problems through variations among genotypes 

and locations in the field. Moreover, the accuracy of the height extraction method is in the 

range of approximately ± 5 cm and can also vary for different areas in the field, particularly 

for large scales. In summary, although the threshold is determined automatically and 

objectively, the user still needs to check heterogeneity of the MAXCH visually or with 

statistical approaches before applying the procedure. In the worst case, different MAXCH 

values for areas and genotypes need to be considered in the workflow. 

The second part of the study focused on plant density assessment and made use of 

the established unsupervised Otsu thresholding (Otsu 1979) to calculate fractional cover 

(Section 4.2.4). This work and various other UAV studies have demonstrated reliable 

separation of vegetation from soil, based on variance between the two classes (Torres-

Sánchez et al. 2015; López-Granados et al. 2016; Li et al. 2019; Marcial-Pablo et al. 2019). 
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However, Meyer and Neto (2008) and Kittler and Illingworth (1985) claimed that the 

approach can also lead to insufficient accuracy and that the performance of Otsu thresholding 

is dependent on the value distribution and should ideally be bimodal.  

In this study, paths between plots were created in the experimental design (Figure 17, Section 

4.2.1) to avoid negative effects of field measurements (e.g., plant counting) on further plant 

growth. Similar designs have been used in studies in which the Otsu thresholding has been 

successfully applied (Torres-Sánchez et al. 2015; López-Granados et al. 2016; Li et al. 2019; 

Marcial-Pablo et al. 2019). Such a design automatically results in a higher proportion of pure 

soil pixels compared to plant pixels. For orthomosaics, this enables reliable separation of 

vegetation from soil, based on variance between the two classes. Designs without paths 

between plots, which are common in traditional agriculture, have proportionally lower soil 

and higher plant content, which affects the value distribution. Therefore, for such agricultural 

fields, it is necessary to investigate whether the Otsu threshold method and the developed 

approach also provide good results. For designs similar to this study with paths between 

plots, such as breeding trials, the Otsu thresholding is an appropriate and proven method.  

For spike segmentation, thresholds were determined subjectively in the extended 

CIELAB color space and required manual adjustment to suit the conditions of the scene. 

Machine learning approaches, as previously applied by Fernandez-Gallego et al. (2020), 

offer the potential to increase the objectivity and automation capacity of spike identification. 

However, machine learning algorithms also needs recalibration based on the scene context 

(e.g., genotypic specificities, external conditions, sensor). This recalibration requires expert 

guidance in feature extraction, is tedious (as the spikes are tiny) and needs numerous labeled 

images. The method used in this thesis suffers from a lack of automatability and objectivity 

but can be adapted with limited prior knowledge.  

In summary, it is useful to check the results of the threshold procedure. On the one 

hand, this reduces the automation potential. On the other hand, the methodology allows for 

easy verification of the thresholding accuracy based on clear criteria, ideally to also 

determine the traits for unknown datasets and genotypes.  

6.2 Georeferencing 

In this study, the location of points in the clouds was identified by GCPs in the field using 

high-accuracy RTK-GNSS measurements. Although this is a standard UAV data processing 

procedure, placement, measurement, and removal of GCPs in the field are labor-intensive 

tasks and therefore difficult to apply in practice (Song and Wang 2019; Teppati Losè et al. 

2020). The location of points can be additionally determined by spatial coordinates of the 

camera, with substantially less effort. In particular, recently developed commercial UAVs 

such as the DJI Phantom 4 RTK system with a dual-frequency global navigation satellite 

system (GNSS) receiver simplify the georeferencing of photogrammetric UAV products. 

Different studies using on-board GNSS RTK for data processing have already shown similar 

georeferencing accuracy in relation to the horizontal position (x- and y-axis) to that achieved 
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by the GCP-based approach (Stott et al. 2020; Štroner et al. 2020; Urban et al. 2020). This 

is particularly beneficial for trait extractions based on 2D products, e.g., for plant and spike 

density in this study. Determination of the vertical position (z-axis) from an on-board GNSS 

RTK system is associated with larger inaccuracies in height estimations. This problem is 

mainly caused by incorrect estimation of interior orientation parameters and the bundle 

adjustment. However, this issue can be avoided by using a small number of GCPs (at least 

one or ideally four GCPs), distributed in the area of interest (Przybilla et al. 2020; Štroner et 

al. 2020). Therefore, the number of GCPs required can be reduced, making usage of UAVs 

more practicable for large-scale applications. 

6.3 Reflectance calculation 

The DLS, in combination with a calibrated reference panel, was used in this study to 

radiometrically correct the multispectral images. This approach requires minimal time, 

resources, and human effort to estimate surface reflectance. In addition, this correction 

procedure enables irradiance variation to be addressed during data acquisition. However, 

different studies have indicated that the approach can also lead to an overestimation of 

reflectance (Cao et al. 2019; Doughty and Cavanaugh 2019). Moreover, Hakala et al. (2018) 

found that the vertical orientation of the irradiance sensor is important, and a tilt of only a 

few degrees can greatly affect the accuracy of the determined irradiance. The attitude of the 

UAV during a flight mission can easily change by ± 5 ° and was identified as a major error 

source (Hakala et al. 2018). In addition, MicaSense noted that the accuracy of measured 

irradiance is influenced by the sensor orientation relative to the sun’s position (MicaSense 

2017). In summary, the accuracy can be influenced by several factors, also leading to studies 

that have been observed good results in application and evaluation of the calibration process 

(Mamaghani et al. 2018; Su et al. 2019; Taddia et al. 2020). 

In the present thesis, image data were acquired around solar noon to avoid issues 

caused by the position of the sun. In addition, the patented V-shaped UAV design allows the 

DLS to be installed on the gimbal. The gimbal, as an actively stabilized platform, specifically 

avoids the issue of irradiance measurements associated with a tilted DLS. However, this is 

only an exception, compared to commonly used UAV systems, as shown in Section 2.3.3. 

Sufficiently stabilized platforms for an upward-looking sensor need to be developed and 

cannot be installed on all UAV platforms, such as with fixed wings. Therefore, further 

investigations on novel and reliable tilt correction methods for on-board irradiance sensors, 

as already investigated by Suomalainen et al. (2018), have great potential and offer a more 

general solution independent of the UAV system used. 

The empirical line method (ELM) described by Smith and Milton (1999) is an 

alternative approach widely applied to calculate estimates of surface reflectance from 

multispectral remote sensing data. It is based on the empirical relationship between the DN 

values of recorded image data and the at-surface reflectance of well-characterized reference 

targets. The determined prediction equations for each band take into account atmospheric 
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factors affecting the scene (Smith and Milton 1999). The ELM has a high degree of reliability 

in terms of image calibration and has already been applied and investigated in different 

studies (Baugh and Groeneveld 2008; Bondi et al. 2016).  However, for the ELM approach, 

it is essential to purchase several reference targets (of sufficient quality and suitability), to 

place these in the field and measure the reflectance of targets at the scene with a 

spectrometer. In addition, it is necessary to go to the trouble of creating and applying the 

ELM as preprocessing for every image, a time-consuming and computationally demanding 

process. Furthermore, the ELM is not applicable under changing illumination conditions 

during data acquisition and is thus limited to cloudless conditions with constant illumination.   

In summary, the ELM processing procedure and placement, measurement, and 

removal of targets in the field are labor-intensive. Moreover, the approach is only applicable 

under constant solar illumination conditions, which clearly limits the practicability of the 

ELM and highlights the advantage of an on-board irradiance sensor for radiometric 

correction of multispectral images.  

6.4 Empirical-statistical regression methods 

In this thesis, parametric regression methods were used to assess plant and spike density, for 

the following reasons: 

1) The required spatial resolution also allows use of UAVs for trait assessment, 

increasing the practicability of data acquisition and analysis; 

2) These methods facilitate accurate and robust model performance; 

3) A simple and small number of reference measurements facilitate investigation of the 

method accuracy for unknown datasets; 

4) A small number of reference measurements potentially allow adaptation of the model 

to specific scene conditions; 

5) Relatively little training and knowledge is required in order to apply and adjust the 

method; 

6) Parametric regression methods are computationally fast.  

However, the study results illustrated that, for plant density assessment and for model 

self-calibration, the timing of reference measurements (BBCH 11) differs from the timing 

of UAV data acquisition (BBCH 12-15). For spike density assessment, the timing of 

reference measurements (BBCH 71) may also differ from the ideal timing of UAV data 

acquisition (BBCH 85). Hence, it is necessary to check the BBCH stage regularly in order 

to ascertain the right time for reference measurement and UAV data acquisition. Influenced 

by ideal weather conditions, e.g., during plant germination in April in the study (Figure 3, 

Section 2.2), the time difference between BBCH stages was only four days (Table 8, Section 

4.2.3). The need to measure twice at the right place and time for model self-calibration is 

clearly a drawback of the method. Identification of the right timing with the assistance for 

example of PhenoCam image data can help make this task more manageable.  
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Non-parametric regression methods such as SVM or CNNs are also dependent on the 

right timing for data acquisition and trait quantification (Zhou et al. 2018b; Jin et al. 2017b; 

Aich et al. 2018). In contrast, a single data set is sufficient for data labeling and trait 

extraction but, similarly, requires adaptation to specific situational conditions (e.g., 

genotypic specificities, sensor). This recalibration requires expert knowledge and needs 

numerous labeled images. Nevertheless, training datasets with a high degree of diversity 

have the potential to assess traits without the need for adaptation in the future. However, 

non-parametric regression methods (e.g., for plant density assessment) require much higher 

spatial resolution and are limited to early and specific developmental stages for trait 

extraction (Liu et al. 2017a; Jin et al. 2017b; Liu et al. 2017b). The developed parametric 

regression methods have higher variability in terms of developmental stage and GSD, with 

a positive impact on the practicability.  

6.5 Hardware and software requirements  

The developed methods are not computationally intensive and can be applied and adapted 

with limited prior knowledge. However, hardware and software requirements also influence 

the practicability of an approach. Table 18 summarizes the requirements for trait extraction 

in this thesis, including potential investment costs. The UAV price indicates the minimum 

price for a reliable and simple system that allows RGB waypoint data acquisition. UAV 

systems that allow simultaneous data acquisition with third-party multispectral and RGB 

cameras, as shown in Section 2.3.3, cost up to 6,000 € without batteries. 

Table 18 Hardware and software requirements, including investment costs for trait assessment in 

this thesis: X = mandatory; () = alternative 

 

In summary, investment costs of at least 10.500 € are necessary for trait extraction 

(Table 18). In particular, georeferencing is costly. In addition to necessary basic knowledge 

about the UAV system and different steps (e.g., data processing and georeferencing), the 

requirements of the technology are likely to present some hurdles for a layperson. Moreover, 

based on the new EU regulations valid for 2021, a drone license is required even for small 

Equipment 
& 

Software 

Data 

Acquisition 
Sensor 

Data 

Processing 
 Georeferencing  Others 

UAV & 

RGB 

UAV & 

Multi-

spectral 

Photogramm-

etric Software 

(e.g., Agisoft) 
 

UAV RTK + 

Reference 
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RTK 

Device 

(GCPs) 
 

PC & 

Drone 
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Plant density X () X  () X  X 

Spike density X  X  () X  X 

Lodging X  X   X  X 

Investment 

costs (€) 
> 1,500 ~ 8,500 ~ 3,000  ~ 7,500 ~ 5,000  ~ 1,000 
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UAVs with a take-off weight more than 250 g. These factors lead to the assumption that 

external companies may be better placed to implement UAV concepts in agriculture and 

farm management. 
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7. Conclusion and outlook  

In this study, UAV image data were used to assess spatial variabilities in small-scale 

experimental plots. The final section of the thesis outlines the opportunities and major 

challenges for sustainable integration of such UAV applications in breeding and agriculture. 

Growing attention is being paid in social sciences to the need for sustainable 

agriculture, and in recent decades, the EU has been keeping a close eye on environmental 

protection and nature conservation. Regulations and compliance will become more 

restrictive in the future so that negative environmental impacts can be reduced. Under these 

conditions, site-specific farm management will be essential in order to maintain steady gains 

in yields and to ensure global food security. Surveys of agricultural fields, as well as large 

breeding trials, with data of high spatial and temporal resolution will deliver important 

information for monitoring, as example, the effects of environmental conditions on crop 

phenology. Remote sensing with UAVs can provide powerful means in plant phenotyping 

and decision-making. Relevant data can be acquired in a short space of time, taking into 

account geolocations on a field scale, for further processing and site-specific 

recommendations for actions.  

The key factor for meaningful implementation is the degree of heterogeneity within 

breeding trials or agricultural fields. The variability must at least be higher than the 

investigated regression error metrics (e.g., RMSE and MAE) of the developed methods. In 

addition, methodologies are usually specific to particular developmental stages, 

necessitating data acquisition at the right time and place. However, this is a challenge in 

breeding trials characterized by different developmental stages among genotypes and 

requiring a multitemporal data set for a single trait. Furthermore, the correct timing of data 

acquisition in relation to the developmental stage still needs to be assessed, which can be 

time-consuming for large breeding trials. For external companies, this process can only be 

economical if they obtain the information from local customers or via specific technologies 

(e.g., PhenoCams) in the field. Overall, it is ideal if the method works for different 

development stages, such as the plant density assessment in this study. This avoids the need 

for a multitemporal data set for breeding trials, as well as multiple identification of the right 

timing for data acquisition.  

Moreover, empirical-statistical regression methods are adapted to specific 

phenotypes, layout, and illumination conditions. Therefore, to increase the application 

potential in practice, it is advantageous to know approximately how much effort will be 

required to adapt the methods to unknown data sets. However, this also requires detailed 

investigations in order to evaluate the robustness of the adaptation process in different 

conditions, similarly required in the scope of this thesis. One good result is not sufficient to 

confirm the universal applicability in practice.   
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These factors, along with the limitations addressed in Section 6, are the reasons why 

application of UAVs for plant trait extractions in agriculture is still at a low level outside the 

scientific community. At present, the reliability of empirical-statistical regression methods 

is not at the same level as reference measurement in the field. However, due to the time-

consuming nature of manual surveys, only small potentially representative subareas are 

usually surveyed for extrapolation into standard units (m−2). Compared to UAV approaches, 

these extrapolations are subject to an unknown uncertainty, especially in the case of high 

spatial variability. UAV approaches can quantify plant traits directly in standard units with 

a known uncertainty. In addition, field measurements are not feasible for all applications, 

e.g., when a user needs timely information about a specific trait for decision-making and a 

manual survey would be too time-consuming and costly relative to the benefits. UAV 

approaches are quicker and less costly than manual surveys. They generates much more 

information, advantageous when it comes to optimizing the phenotyping process and for 

efficiency of management. Moreover, knowledge of geolocations allows development of on-

board decision-making support for site-specific recommendations, such as fungicide 

application or acquisition of images with a higher resolution. 

Field measurements that are limited to subjective estimations, such as the 

quantification of lodging, can easily be replaced by UAV applications. Moreover, 

procedures that make use of 3D information for trait assessment are much less dependent on 

the developmental stage or illumination conditions. They have high applicability and 

repeatability and may be an ideal substitute for manual surveys in the long term. 

One can only guess which revolution will provide the solution to the problem of 

increased demand – superior genotypes or technological advances such as combination of 

surveying UAVs and small unmanned ground vehicles responsible for site-specific 

fertilization. It is highly likely that precision agriculture and remote sensing will contribute 

to this revolution. The major challenge in this regard will be to demonstrate universal 

applicability or satisfactory adaptation of the developed methods to meet the demands of 

precision agriculture and breeding. 
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8. Puplications 

1. Wilke, Norman, Bastian Siegmann, Lasse Klingbeil, Andreas Burkart, Thorsten Kraska, 
Onno Muller, Anna van Doorn, Sascha Heinemann, and Uwe Rascher. 2019. 
Quantifying lodging percentage and lodging severity using a UAV-based canopy 
height model combined with an objective threshold approach. Remote Sensing 11: 
515. https://doi.org/10.3390/rs11050515 

Contribution: Design 65 %, Experimentation 80 %, Analysis 85 %, Publication work 85% 

 

2.  Wilke, Norman, Bastian Siegmann, Johannes A. Postma, Vera Krieger, Onno Muller, 
Ralf Pude and Uwe Rascher. 2021. Assessment of plant density for barley and wheat 
using UAV multispectral imagery for high-throughput field phenotyping. Computers 
and Electronics in Agriculture 198. https://doi.org/10.1016/j.compag.2021.106380 

Contribution: Design 85 %, Experimentation 90 %, Analysis 90 %, Publication work 90 % 

 

3.  Wilke, Norman, Bastian Siegmann, Mark Müller-Linow, Erekle Chakhvashvili and 
Uwe Rascher. In preperation. Assessment of cereal plant density using UAV 
multispectral imagery for high-throughput field phenotyping. 

Contribution: Design 85 %, Experimentation 90 %, Analysis 80 %. 
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10. Supplementary materials 

Table S1 Summary of the variance analysis of barley based on the MAE for different parameters 
(VI, BBCH, GSD). B: barley; VI: vegetation index; BBCH: Biologische Bundesanstalt, 
Bundessortenamt und Chemische Industrie; GSD: Ground sampling distance; *** significance level 
< 0.0001. 
 

 Df Sum Sq Mean Sq F Value Pr(>F) 

B$VI 1 5051 5051 260.27 
< 2.20e-16 *** 

 
B$BBCH 3 15117 5039 259.64 
B$GSD 1 3034.4 3034 156.36 

B$VI:B$BBCH 3 5158.4 1720 88.60 
B$VI:B$GSD 1 394.9 395 20.35 7.49e-06 *** 

B$BBCH:B$GSD 3 11416 3805 196.08 
< 2.20e-16 *** 

B$VI:B$BBCH:B$GSD 3 9836.7 3279 1.69E+02 
Residuals 752 14594 19.4   

 
Table S2 Results of the three-way ANOVA for barley based on the MAE. Multiple R-squared: 0.77; 
adjusted R-squared: 0.77; F-statistic: 171.8 on 15 and 752 DF; p-value: 2.20e-16. 
 

  Estimate    Std. Error t Value Pr(>|t|) 
(Intercept)  54.94 0.64   86.40 

< 2.00e-16 *** 

B$VI_NDVI -26.38 0.90 -29.33 
B$BBCH_13 -24.17 0.90 -26.88 
B$BBCH_14 -21.02 0.90 -23.37 
B$BBCH_15 -16.28 0.90 -18.10 
B$GSD_High -29.12 0.90 -32.39 

B$VI_NDVI:B$BBCH_13   22.18 1.27   17.44 
B$VI_NDVI:B$BBCH_14   30.61 1.27   24.07 
B$VI_NDVI:B$BBCH_15   26.47 1.27   20.81 
B$VI_NDVI:B$GSD_High   24.62 1.27   19.36 
B$BBCH_13:B$GSD_High   23.87 1.27   18.77 
B$BBCH_14:B$GSD_High   39.53 1.27   31.08 
B$BBCH_15:B$GSD_High   31.46 1.27   24.74 

B$VI_NDVI:B$BBCH_13:B$GSD_High -18.98 1.80 -10.55 
B$VI_NDVI:B$BBCH_14:B$GSD_High -38.39 1.80 -21.34 
B$VI_NDVI:B$BBCH_15:B$GSD_High -29.64 1.80 -16.48 
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Table S3 Summary of the variance analysis of wheat based on MAE for different parameters (VI, 
BBCH, GSD). W: wheat. 
 

 Df Sum Sq Mean Sq F Value Pr(>F) 
W$VI 1 25381 25381 860 

< 2.2e-16 *** 

W$BBCH 3 25269 8423 285 
W$GSD 1 15276 15276 517 

W$VI:W$BBCH 3 5949 1983 67 
W$VI:W$GSD 1 9349 9349 317 

W$BBCH:W$GSD 3 2874 958 32 
W$VI:W$BBCH:W$GSD 3 9293 3098 105 

Residuals 752 22206 30   

 
Table S4 Results of the three-way ANOVA for wheat based on MAE. Multiple R-squared: 0.81; 
adjusted R-squared: 0.81;F-statistic: 210.8 on 15 and 752 D; p-value: < 2.20e-16; *** significance 
level < 0.0001. 
 

  Estimate Std. Error t Value Pr(>|t|) 
(Intercept) 67.47 0.78 86.02 

< 2.00e-16 *** 
W$VI_NDVI -25.79 1.11 -23.25 

2 -5.09 1.11 -4.59 5.15e-06 *** 
W$BBCH_13 -32.76 1.11 -29.53 

< 2.00e-16 *** W$BBCH_14 -21.01 1.11 -18.94 
W$GSD_High -27.30 1.11 -24.62 

W$VI_NDVI:W$BBCH_12 -7.76 1.57 -4.95 9.38e-07 *** 
W$VI_NDVI:W$BBCH_13 23.63 1.57 15.06 

< 2.00e-16 *** W$VI_NDVI:W$BBCH_14 13.39 1.57 8.54 
W$VI_NDVI:W$GSD_High 25.11 1.57 16.00 
W$BBCH_12:W$GSD_High 2.57 1.57 1.64 0.101 
W$BBCH_13:W$GSD_High 23.88 1.57 15.22 

< 2.00e-16 *** 
W$BBCH_14:W$GSD_High 19.17 1.57 12.22 

W$VI_NDVI:W$BBCH_12:W$GSD_High 5.17 2.22 2.33 0.02 * 
W$VI_NDVI:W$BBCH_13:W$GSD_High -26.67 2.22 -12.02 

< 2.00e-16 *** 
W$VI_NDVI:W$BBCH_14:W$GSD_High -23.10 2.22 -10.41 
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Table S5 Lower and upper thresholds of extended CIELAB color space identified for each BBCH stage, genotype and GSD for spike segmentation. L: 

Lower threshold; U: Upper thresh  

BBCH 
Color 

dimen-
sion 

Tybalt  Kadrilj  Quintus 
1.4 mm 

GSD 
 2.0 mm 

GSD 
 2.8 mm 

GSD 
 1.4 mm 

GSD 
  2.0 mm 

GSD 
  2.8 mm 

GSD 
 1.4 mm 

GSD 
  2.0 mm 

GSD 
  2.8 mm 

GSD 
L U   L U   L U  L U   L U   L U  L U   L U   L U 

61 

L* 165 255  155 255  145 255  165 255  155 255  145 255  160 255  150 255  130 255 
a* 115 125  115 125  115 125  115 125  115 125  115 125  0 255  0 255  0 255 
b* 0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255 
C 0 178  0 178  0 178  0 178  0 178  0 178  176 255  176 255  176 255 
H 131 255  131 255  131 255  131 255  131 255  131 255  137 255  137 255  137 255 

71 

L* 160 255   165 255   170 255  160 255   177 255   170 255  140 255   145 255   140 255 
a* 0 134  0 134  0 134  0 132   0 131  0 131  0 130  0 126  0 127 
b* 0 255  0 255  0 255  0 255   0 255  0 255  0 255  0 255  0 255 
C 0 199  0 200  0 200  0 199   0 198  0 197  0 195  0 197  0 197 
H 133 255   131 255   130 255  132 255   130 255   131 255  134 255   138 255   138 255 

77 

L* 195 255  185 255  175 255  195 255  185 255  180 255  167 255  155 255  155 255 
a* 0 134  0 132  0 135  0 133  0 132  0 133  121 130  0 130  0 131 
b* 0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255 
C 0 200  0 201  0 202  0 199  0 201  0 202  0 199  0 200  0 199 
H 128 255   128 255   128 255  128 255   128 255   128 255  133 255   137 255   132 255 

85 

L* 180 255  178 255  190 255  180 255  178 255  190 255  180 255  180 255  185 255 
a* 0 141  0 141  0 139  0 141  0 141  0 139  0 141  0 141  0 135 
b* 0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255  0 255 
C 0 206  0 206  0 204  0 206  0 206  0 204  0 205  0 205  0 209 
H 120 255   120 255   120 255  120 255   120 255   120 255  120 255   120 255   120 255 
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Table S6 Stepwise reduction of the calibration sample size from 21 to six reference measurements for different GSD and for best-performing models at 

BBCH stage 71 for Tybalt, BBCH Stage 77 for Kadrilj and BBCH stage 85 for Quintus. Remaining samples were used to validate the performance of the 

calibrated models. Averaged statistical measures were computed across the empirical regression models randomly divided into calibration and validation 

data sets for each sample size. Different letters indicate significant differences between RMSE (p < 0.05).  

n 
(Calibration/
Validation) 

GSD 
(cm) 

Tybalt Kad 
Calibration   Validation Calibration   Validation 

S I R²   S I R² RMSE S I R²   S I R² RMSE 
21/11 

1.4 

0.021 -0.475 0.82   0.979 9.72 0.83 15.91a 0.026 -2.393 0.76   0.964 15.875 0.74 16.26a 
16/16 0.022 -0.931 0.82  1.042 -16.206 0.83 16.5a 0.027 -3.001 0.77  0.884 43.539 0.71 17.04a 
11/21 0.021 -0.801 0.82  0.994 9.118 0.83 16.73a 0.026 -2.554 0.76  0.849 74.129 0.73 17.6a 
6/26 0.022 -1.126 0.81   1.253 -106.155 0.83 21.75b 0.027 -2.919 0.78   1.176 -76.073 0.74 20.56b 

21/11 

2 

0.021 1.92 0.73   0.933 23.71 0.73 20.71b 0.026 -2.609 0.64   0.999 -4.849 0.63 22.45c 
16/16 0.019 2.508 0.71  1.039 -10.881 0.73 21.91b 0.026 -2.618 0.65  1.048 -32.764 0.61 25.8cd 
11/21 0.022 1.421 0.71  0.961 8.646 0.72 22.37b 0.027 -3.06 0.66  1.186 -87.276 0.61 27.94d 
6/26 0.021 1.721 0.71   1.13 -44.832 0.71 27.19c 0.03 -4.233 0.65   1.381 -160.296 0.63 33.43e 

21/11 

2.8 

0.016 1.941 0.65  0.874 41.436 0.63 26.74c 0.027 -2.881 0.53  0.859 50.734 0.54 25.38c 
16/16 0.016 2.14 0.64  0.993 11.413 0.61 29.15cd 0.028 -3.524 0.56  0.94 35.291 0.5 28.58d 
11/21 0.014 2.831 0.58  1.09 -24.16 0.61 32.03d 0.026 -2.557 0.54  1.203 -80.974 0.52 34.49e 
6/26 0.015 2.267 0.61   1.088 -11.514 0.61 39.85e 0.023 -1.36 0.55   1.348 -138.132 0.53 39.79f 
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n 
(Calibration/
Validation) 

GSD 
(cm) 

Quintus 
Calibration   Validation 

S I R²   S I R² RMSE 
21/11 

1.4 

0.027 -3.390 0.81   0.988 4.527 0.81 16.71a 
16/16 0.028 -3.575 0.81  1.055 -18.322 0.81 18.46a 
11/21 0.029 -4.031 0.83  0.917 42.109 0.79 18.99a 
6/26 0.028 -3.784 0.85   1.308 -119.014 0.80 25.16b 

21/11 

2 

0.029 -3.942 0.44   1.166 -65.541 0.45 44.51c 
16/16 0.030 -4.437 0.43  1.184 -66.679 0.48 45.96d 
11/21 0.024 -1.660 0.38  1.370 -161.392 0.49 51.72e 
6/26 0.033 -5.531 0.51   1.424 -184.752 0.48 55.6e 

21/11 

2.8 

0.032 -5.526 0.36  1.120 -35.384 0.35 53.58e 
16/16 0.029 -4.449 0.32  1.256 -118.956 0.41 56.49f 
11/21 0.032 -5.732 0.38  1.269 -85.854 0.37 62.21f 
6/26 0.029 -4.209 0.39   1.505 -195.597 0.35 71.59g 
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Figure S1 Appearance of the same area in an orthomosaic, influenced by illumination conditions at 

BBCH stage 71 for Tybalt. (a) Data acquired under cloudy illumination conditions and (b) data 

acquired under constant solar illumination conditions, which do not allow for a good visual 

identification of the spikes, even with the naked eye.  
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