
ROBUST AND INTERPRETABLE VISUAL PERCEPTION
USING DEEP NEURAL NETWORKS

DISSERTATION

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

JÖRG WAGNER

aus Simmern (Hunsrück)

Bonn, 2022

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Sven Behnke
2. Gutachter: Prof. Dr. Jürgen Gall

Tag der Promotion: 18.11.2022
Erscheinungsjahr: 2023

Abstract

Autonomous vehicles promise to revolutionize the transportation of people and goods
by increasing road safety, reducing resource consumption, and improving quality of life.
To achieve an unrestricted and large-scale deployment in the real world without any hu-
man supervision, many challenges still need to be solved. A key challenge is the robust
perception and interpretation of the surroundings. Deep learning-based approaches have
significantly advanced the creation of robust environment representations in recent years.
However, further improvements are required, for example, to cope with difficult environ-
ment conditions (adverse weather, low lighting conditions, . . .). In the first part of this
thesis, we investigate approaches to improve the robustness of vision-based perception
models. One promising approach is to fuse data of multiple complementary sensors.
Building on previous deep learning-based pedestrian detectors operating on visible im-
ages, we develop a multispectral detector. Our detector combines the data of a visible
and a thermal camera using a deep fusion network and provides significantly better re-
sults than comparable single sensor models. To the best of our knowledge, this is the
first work to use a deep learning-based approach for multispectral pedestrian detection.
A complementary method for improving perception performance is the temporal filter-
ing of information. The filtering task can be divided into a prediction and an update step.
Initially, we explore the prediction step and propose an approach for generating semantic
forecasting models by transforming trained non-predictive feed-forward networks. The
predictive transformation is based on a structural extension of the network using a re-
current predictive module and a teacher-student training strategy. The resulting semantic
forecasting architecture models the dynamics of the scene, enabling meaningful predic-
tions. Building on the knowledge gained, we design a parameter efficient approach to
temporally filter the representations of Fully Convolutional DenseNet (FC-DenseNet)
in a hierarchical manner. Based on a simulated dataset with significant disturbances
(e.g. noise, occlusions, missing information), we show the advantages of temporal filter-
ing and compare our architecture with similar temporal networks.

A disadvantage of many modern perception models is their black-box character. Espe-
cially in safety-critical applications, a high degree of transparency and interpretability is
beneficial, as it facilitates model development, debugging, failure analysis, and valida-
tion. In the second part of this thesis, we study two approaches to increase transparency
and interpretability of deep learning-based models. First, we consider the concept of
interpretability by design and propose a modular and interpretable representation filter

iii

which divides the filtering task into multiple, less complex subtasks. Additional insights
into its functioning are gained by introducing intermediate representations which are
interpretable to humans. These representations also enable the integration of domain
knowledge. Using our proposed filter, we increase the robustness of a semantic segmen-
tation model. As an alternative to designing more interpretable architectures, post-hoc
explanation methods can be used to gain insights into the decision-making process of a
model. We present such a method, which creates visual explanations in the images space
by successively removing either relevant or irrelevant pixels from the input image. A core
component of our approach is a novel technique to defend against adversarial evidence
(i.e. faulty evidence due to artifacts). Using a multitude of experiments, we show the
ability of our method to create fine-grained and class-discriminative explanations which
are faithful to the model.

iv

Zusammenfassung

Autonome Fahrzeuge versprechen den Verkehrssektor zu revolutionieren, indem sie die
Verkehrssicherheit erhöhen, den Ressourcenverbrauch verringern und die Lebensquali-
tät verbessern. Um den uneingeschränkten Einsatz solcher Fahrzeuge im öffentlichen
Verkehr zu erreichen, sind noch viele Problemstellungen zu lösen. Ein wesentlicher For-
schungsschwerpunkt ist hier die robuste Wahrnehmung und Interpretation des Umfeldes.
Mit Deep-Learning-basierten Modellen wurden in den letzten Jahren große Fortschrit-
te in diesem Bereich erzielt. Es bestehen jedoch weiterhin noch viele ungelöste Her-
ausforderungen, wie zum Beispiel die zuverlässige Umfelderfassung unter schwierigen
Umgebungsbedingungen (schlechte Lichtverhältnisse, widrige Wetterbedingungen, . . .).
Im ersten Teil dieser Dissertation untersuchen wir Methoden zur Erhöhung der Robust-
heit von bild-basierten Wahrnehmungsmodellen. Ein vielversprechender Ansatz ist die
Fusion der Daten mehrerer komplementärer Sensoren. Aufbauend auf vorherigen Ar-
beiten im Bereich der Personendetektion entwerfen wir einen multispektralen Detektor,
der Bilddaten aus dem sichtbaren Spektrum mit Wärmebilddaten fusioniert. Kern unse-
res Detektors ist ein neuronales Netz, das Bildausschnitte der Sensordaten kombiniert
und klassifiziert. Ein komplementärer Ansatz zur Erhöhung der Leistungsfähigkeit von
Wahrnehmungsmodellen ist die zeitliche Filterung von Informationen. Die Filteraufga-
be kann in zwei Teile zerlegt werden: Prädiktion und Korrektur. Zunächst untersuchen
wir den Aspekt der Prädiktion und schlagen einen Ansatz zur Erzeugung semantischer
Vorhersagemodelle vor. Ausgangspunkt unseres Ansatzes ist ein trainiertes Einzelbild-
modell, welches durch Erweiterung um ein rekurrentes Modul strukturell transformiert
und anschließend selbst-überwacht trainiert wird. Das resultierende prädiktive Modell
ist in der Lage, die Bewegung und Interaktion von Objekten zu modellieren und Vorher-
sagen zu treffen. Aufbauend auf den gewonnenen Erkenntnissen, wird ein parameteref-
fizienter, hierarchischer Ansatz zur zeitlichen Filterung der Repräsentationen des Fully
Convolutional DenseNet (FC-DenseNet) entworfen. Unter Verwendung von simulierten
Videosequenzen mit signifikanten Störungen (z. B. Rauschen, Verdeckungen, fehlende
Informationen), zeigen wir die Vorteile der zeitlichen Integration von Informationen auf.

Ein Nachteil vieler aktueller Wahrnehmungsmodelle ist deren Black-Box-Charakter. Ins-
besondere in sicherheitskritischen Anwendungen ist ein hohes Maß an Transparenz und
Interpretierbarkeit vorteilhaft, da es die Modellentwicklung, Fehleranalyse, Validierung
und Zertifizierung erleichtert. Im zweiten Teil der Dissertation untersuchen wir zwei An-
sätze zur Erhöhung der Transparenz und Interpretierbarkeit von Deep-Learning-basierten

v

Modellen. Zunächst betrachten wir das Konzept der Interpretierbarkeit durch Design und
schlagen einen zeitlichen Filter vor, der die Filteraufgabe in mehrere Teilaufgaben zer-
legt. Zur Einblicknahme in das Filterverhalten, werden interpretierbare Zwischenreprä-
sentationen eingefügt, diese ermöglichen zudem die Integrationen von Domänenwissen.
Der Filter kann in eine Vielzahl von Einzelbildmodellen integriert werden, um deren
Robustheit zu erhöhen. Eine Alternative zum Design von interpretierbaren Architektu-
ren sind Post-hoc-Erklärungsmethoden, die Einblicke in den Entscheidungsprozess von
Modellen gewähren. Abschließend stellen wir eine solche Methode vor, die visuelle Er-
klärungen im Bildraum erzeugt, indem sie schrittweise aus dem Eingangsbild entweder
relevante oder irrelevante Pixel entfernt. Eine Kernkomponente unseres Ansatzes ist eine
neuartige Technik zur Abwehr fehlerhafter Evidenz. Unsere Methode ist in der Lage, de-
taillierte, klassendifferenzierende und modellgetreue visuelle Erklärungen zu erzeugen.

vi

Acknowledgments

First and foremost, I would like to thank my doctoral advisor, Prof. Dr. Sven Behnke, for
his excellent support, constant feedback, and scientific guidance. My sincere gratitude
also goes to Prof. Dr. Jürgen Gall, Prof. Dr. Thomas Schultz, and Prof. Dr.-Ing. Ribana
Roscher, for agreeing to serve on my examination committee.

In addition, I sincerely thank my colleagues and friends at the Bosch Center for Artificial
Intelligence (BCAI) for their mutual support, fruitful discussions, and scientific inspira-
tion. Our many social activities, kicker games, and music sessions during my time as a
Ph.D. student were also a pleasure and relaxing change of pace. I especially want to ex-
press my appreciation to Volker Fischer, Michael Herman, Tobias Gindele, Jan Köhler,
Johannes Döllinger, Leon Hetzel, Thaddaeus Wiedemer, Sebastian Ziesche, and Markus
Spies for their guidance and support in my scientific endeavors.

I am particularly grateful for the guidance, encouragement, and advice of my supervisor
at Bosch, Volker Fischer. I will fondly look back on our many discussions, whiteboard
sessions, and coffee breaks.

Last but not least, I would like to thank my family and friends for their unwavering
support and encouragement on the journey to completing this thesis.

vii

Contents

1 Introduction 1
1.1 Contributions . 5
1.2 Publications . 7
1.3 Outline . 8

2 Multispectral Pedestrian Detection 11
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Multispectral Pedestrian Detector . 17

2.3.1 Detection Framework . 17
2.3.2 Deep Fusion Architectures . 18
2.3.3 Training Procedure . 20

2.4 Experiments . 22
2.4.1 Dataset . 22
2.4.2 Baseline . 23
2.4.3 Results . 24

2.5 Conclusion . 28

3 Semantic Forecasting Models 31
3.1 Introduction . 32
3.2 Related Work . 34
3.3 Predictive Transformation . 37

3.3.1 Predictive Network Architecture 38
3.3.2 Recurrent Predictive Module 40
3.3.3 Predictive Knowledge Transfer 41

3.4 Experiments . 44
3.4.1 Dataset . 44
3.4.2 Implementation Details . 45
3.4.3 Results . 48

3.5 Conclusion . 51

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets 55
4.1 Introduction . 56

ix

Contents

4.2 Related Work . 58
4.3 Recurrent Fully Convolutional DenseNet 61

4.3.1 Revisiting the Fully Convolutional DenseNet (FC-DenseNet) . . 61
4.3.2 Temporal Representation Filtering 63
4.3.3 Instances of the Filter Module 65

4.4 Experiments . 68
4.4.1 Dataset . 68
4.4.2 Implementation Details . 70
4.4.3 Results . 72

4.5 Conclusion . 75

5 Functionally Modular and Interpretable Temporal Filtering 77
5.1 Introduction . 78
5.2 Related Work . 81
5.3 Functionally Modularized Temporal Filtering 83

5.3.1 Model Design . 83
5.3.2 Feature Filter . 87
5.3.3 Motion Filter . 90

5.4 Implementation Details . 93
5.4.1 Dataset . 93
5.4.2 Segmentation Models . 95
5.4.3 Training Procedure . 100

5.5 Evaluation . 100
5.5.1 Static Feature Integration . 101
5.5.2 Temporal Motion Integration 103
5.5.3 Comparison with Baselines 105

5.6 Conclusion . 107

6 Explaining Model Predictions 111
6.1 Introduction . 112
6.2 Related Work . 115

6.2.1 Backpropagation-Based Methods (BMMs) 115
6.2.2 Activation-Based Methods (ABMs) 116
6.2.3 Perturbation-Based Methods (PBMs) 117

6.3 Optimization-based Visual Explanations 118
6.4 Defending Against Adversarial Evidence 123
6.5 Experiments . 125

6.5.1 Implementation Details . 125
6.5.2 Validating the Adversarial Defense 126
6.5.3 Comparison of Game Types 130
6.5.4 Comparison of Methods . 132
6.5.5 Class-Discriminative / Fine-Grained 132

x

Contents

6.5.6 Investigating Biases of Training Data 134
6.5.7 Comparison of Models . 142
6.5.8 Faithfulness of Explanations 144
6.5.9 Further Examples . 145

6.6 Conclusion . 146

7 Conclusion 151

List of Abbreviations xiii

List of Tables xv

List of Figures xvii

Bibliography xix

xi

1
Introduction

Autonomous vehicles, such as self-driving cars or mobile robots, promise to revolution-
ize the transportation of people and goods (Fagnant and Kockelman, 2015). A majority
of current traffic accidents can be attributed to driver-related factors, such as driver dis-
traction, misjudgment of the driving situation, aggressive driving behavior, illegal ma-
neuvers, or inattention (NHTSA, 2008; Singh, 2015). Autonomous vehicles are capable
of preventing a large number of these accidents or reducing their severity, assuming
they are designed with a safety-first principle (Mueller et al., 2020). Besides safety,
further benefits of autonomous vehicles are an increased comfort, an optimized traffic
flow, and a lower environmental impact through fuel savings as well as improved usage
patterns (Hao and Yamamoto, 2018). Self-driving cars can additionally improve the mo-
bility of elderly people and teenagers (Fagnant and Kockelman, 2015), especially in areas
with poor public transport. Furthermore, mobile autonomous robots promise significant
cost savings in the transportation and delivery of goods.

The performance of autonomous vehicles depends highly on their ability to produce
a robust representation of their surroundings. Such vehicles must be able to reliably
perceive and interpret both the static environment (e.g. lanes, traffic signs, drivable area)
and the dynamic environment (e.g. vehicles, pedestrians, animals) in order to navigate
safely in an unconstrained and changing world without any human supervision. Errors
in the environment representation are passed to all subsequent processing steps and can
hardly be detected. Thus, the performance of the perception component is crucial for the
functional safety of an autonomous vehicle.

Deep learning-based approaches have greatly advanced the generation of robust environ-
ment representations. They became the standard for the majority of current perception
models (Grigorescu et al., 2020), especially in the visual domain. Object detectors such

1

1 Introduction

as Regions with CNN features (R-CNN) (Girshick et al., 2014) and Faster R-CNN (Ren
et al., 2015) are used to detect vehicles and pedestrians, semantic segmentation mod-
els (Long et al., 2015; Jégou et al., 2017; Zhao et al., 2017) identify the drivable area as
well as lanes, and models like the Multi-Scale Depth Network of Eigen et al. (2014) esti-
mate the geometry of the scene. In addition to new models and methods, decisive factors
for the progress of perception systems were more powerful computers and the availabil-
ity of large benchmark datasets (e.g. CityScapes (Cordts et al., 2016) or Caltech (Dollár
et al., 2009b)).

A majority of the previous work in the field of deep learning-based visual perception
uses models that make predictions conditioned on a single image and focuses on reduc-
ing epistemic failures. We denote failures of a perception system as epistemic if they
can be remedied by using more training data or a more advanced model (e.g. by intro-
ducing task-specific model structures). A drawback of many of these models is their
poor performance in challenging scenarios, such as adverse weather conditions, diffi-
cult lighting conditions, or short sensor failures (Pfeuffer and Dietmayer, 2020). Such
challenging scenarios are highly underrepresented in common large-scale benchmark
datasets (Cordts et al., 2016), as these are mostly recorded during daytime in good en-
vironment conditions. We refer to a second class of failures, which originate from such
data-inherent perturbations, as aleatoric failures in the following. Compared to epis-
temic failures, these failures cannot be eliminated by using a more advanced model or
additional training data. To solve aleatoric failures, one has to enhance the information
provided to the perception system. This can be achieved by fusing the information of
multiple sensors, by utilizing a more advanced sensor, by integrating context informa-
tion, and / or by considering temporal information. The categorization into epistemic and
aleatoric failures is based on the classification of uncertainties (Kiureghian and Ditlevsen,
2009; Kendall and Gal, 2017).

In this thesis, we focus on increasing the robustness of vision-based perception systems
by reducing aleatoric failures. In Chapter 2, we first evaluate the advantages of fusing the
information of a camera operating in the visible spectrum with the data of a thermal cam-
era. Given the complementary strengths of the two camera types, a fusion of their sensor
data is a promising approach for improving robustness of perception systems. Building
upon the R-CNN detection framework (Girshick et al., 2014), we propose a multispectral
pedestrian detection model. To fuse the information of the sensor modalities, we evaluate

2

1 Introduction

two deep fusion architectures — an early-fusion Convolutional Neural Network (CNN)
which fuses the information at pixel-level and a late-fusion CNN which performs fusion
at feature-level. We overcome the constraint of limited multispectral training data by
using a multi-step pre-training procedure that solely relies on training data from the vis-
ible spectrum. Our late-fusion-based pedestrian detector significantly outperforms prior
detectors on the KAIST benchmark (Hwang et al., 2015). To the best of our knowledge,
this is the first work to use a deep learning-based approach for multispectral pedestrian
detection.

In a second step, we consider the use of temporal information to increase the robustness
of semantic segmentation models. Using recurrent representation filters, information of
several time steps is temporally integrated. The filter task can be divided into two sub-
tasks: a prediction step and an update step. In the prediction step, information of the
previous time step is propagated into the future. The predicted information is fused in
the update step with information of the new measurement. To approach this problem
systematically, we first focus on the prediction step. In Chapter 3, we propose a method
to create semantic forecasting models — i.e. models which predict the pixel-wise seman-
tic segmentation of the next time step conditioned on previous observed image frames.
Such forecasting models enable an autonomous vehicle to reason about the future envi-
ronment state and thus provide valuable information for a predictive planner (Rudenko
et al., 2017). We create semantic forecasting models by transforming non-predictive
feed-forward networks. Our proposed predictive transformation extends a given feed-
forward network with a recurrent predictive module, while reusing its original struc-
ture and encoded task-specific knowledge. We suggest self-supervised training using a
teacher-student-like strategy to eliminate the need for costly labeled data. In addition,
we consider the applicability of our approach in a semi-supervised setting, when no ap-
propriate feed-forward model is available.

Building on the experience we have gained with our predictive transformation approach,
Chapter 4 focuses on using temporal information to reduce aleatoric failures of a single-
frame segmentation network (FC-DenseNet (Jégou et al., 2017)). We present a parameter
efficient approach to temporally filter the representations of FC-DenseNet in a hierar-
chical and recurrent manner. The resulting architecture, Recurrent Fully Convolutional

DenseNet (RFC-DenseNet), utilizes temporal correlations on all abstraction levels and
conceptually decouples temporal dependencies from scene representation. By using in-

3

1 Introduction

formation from multiple time steps, our proposed model is more capable in suppressing
noise, inferring additional object properties, and resolving missing information as well as
ambiguities compared to single-image models. It also shows an improved performance
compared to other common temporal semantic segmentation models.

One drawback of the models presented so far is their black-box character. Compared to
classical approaches, these deep learning models have a low level of transparency and
interpretability (Arrieta et al., 2020). Especially in safety-critical applications, such as
autonomous driving, it is advantageous to have insights into the decision-making process
of a model. Such insights facilitate debugging, they can help to better understand short-
comings and limitations of a model, and provide information which might be required to
certify or verify models (Arrieta et al., 2020; Fan et al., 2021; Zablocki et al., 2021). Ad-
ditionally, they may simplify incorporating prior knowledge and can be used to increase
the trust of a user (McAllister et al., 2017).

As a second focus of this thesis, we examine two approaches to increase the transparency
and interpretability of models: interpretability by design and a post-hoc explanation
method. In Chapter 5, similar to Chapter 4, we use a recurrent representation filter to
increase the robustness of a semantic segmentation model. However, we design the filter
to be more transparent and interpretable, by modularizing functionalities, using explicit
physical models as subcomponents, and introducing human interpretable intermediate
representations. The modular structure of our proposed architecture also allows for pre-
training, evaluation, and easy replacement of subcomponents. Our experiments espe-
cially highlight the advantages introduced by an interpretable and explicit filter structure.

In some cases, it is not possible to consider the interpretability requirement already in
the design phase of a model. Post-hoc explanation methods can then be used to ex-
amine the behavior of resulting black-box models. The most common form of such
methods are local ones, which explain the prediction of a model (e.g. CNN) for a spe-
cific input (e.g. image). A popular form of local explanations are visual, image-like
representations, which depict the pixels or image regions that significantly determine
the output of a model. In Chapter 6, we propose a post-hoc, local explanation method,
named Fine-Grained Visual Explanation Method (FGVis), which generates fine-grained
and class-discriminative visual explanations for CNNs. To prevent the generation of ad-
versarial evidence (i.e. faulty evidence due to artifacts), we propose a novel adversarial
defense which does not depend on human-tuned parameters and imposes no constraints

4

1 Introduction

(e.g. a reduced resolution) on explanations. Visual explanations created by FGVis are
intuitively interpretable, preserve the characteristics of images (e.g. edges and colors),
and can be tested as they are valid model inputs. FGVis is thus a useful tool to identify
and analyze failure cases and shortcomings of CNNs. The obtained insights can be used
to improve the robustness of a CNN.

1.1 Contributions

This thesis contributes to improving the robustness of visual perception systems, which
are critical for the realization of autonomous vehicles. To increase robustness, we in-
vestigate different models and methods that fuse data from multiple sensors or integrate
information over time.

Considering the safety critical nature of an autonomous vehicle, it is beneficial to gain
insights into the decision-making process of used models. As a second focus of this
thesis, we investigate two approaches to increase the transparency and interpretability of
models: interpretability by design and a post-hoc explanation method.

In particular, the main contributions of this thesis are:

• Multispectral Pedestrian Detection. We propose a multispectral pedestrian detec-
tor which is based on the R-CNN detection framework. To fuse the information
of a visible and a thermal camera, we evaluate a late- and an early-fusion CNN.
The limited availability of multispectral training data is address by a multi-step
pre-training procedure that exclusively relies on visible images. Our best model
significantly outperforms prior detectors on the KAIST benchmark (Hwang et al.,
2015). To the best of our knowledge, this is the first work to use a deep learning-
based approach for multispectral pedestrian detection.

• Semantic Forecasting Models. Autonomous vehicles have to act in an anticipa-
tory manner in order to facilitate a safe deployment. Consequently, they must be
able to reason about the future state of the environment. We propose a method
for creating semantic forecasting models, i.e. models which predict the semantic
segmentation of the next time-step conditioned on previous observed images, by
transforming non-predictive feed-forward networks. The predictive transformation

5

1 Introduction

is based on a structural extension of the feed-forward network using a recurrent
predictive module and a teacher-student training strategy. Training is performed in
a fully self-supervised fashion, eliminating the need for costly labeled data. Fur-
thermore, we show that our approach is applicable in a semi-supervised setting,
when no appropriate feed-forward model is available.

• Hierarchical and Recurrent Filtering. We present a parameter efficient temporal
filtering concept, which extends the Fully Convolutional DenseNet (FC-DenseNet)
of Jégou et al. (2017) to multiple video frames. Temporal integration is achieved
by recurrently filtering the representations of FC-DenseNet on all abstraction levels
in a hierarchical manner. The resulting Recurrent Fully Convolutional DenseNet

(RFC-DenseNet) conceptually decouples temporal dependencies from scene rep-
resentation. By integrating the information of previous time steps, RFC-DenseNet
is able to produce a more robust pixel-wise semantic segmentation compared to
single-image models. It also shows improved performance compared to other com-
mon temporal semantic segmentation models.

• Modular and Interpretable Filtering. We propose a temporal representation filter
to reduce aleatoric failures of a single-frame semantic segmentation model. The fil-
ter is designed to be inherently more transparent and interpretable, by modularizing
functionalities, using explicit physical models as subcomponents, and introducing
human interpretable intermediate representations. It consists of multiple submod-
ules, which can be pre-trained, debugged, and evaluated independently. Compared
to many other temporal architectures, our filter is less susceptible to missing in-
formation. The additional insights provided by the interpretable structure can be
used to understand shortcomings of the model and to derive new concepts for its
improvement.

• Explaining Model Predictions. We propose a post-hoc, optimization-based expla-
nation method (FGVis) to explain the prediction of a CNN for an input image. The
main contribution of our method is a novel adversarial defense, which prevents the
generation of adversarial evidence (i.e. faulty evidence due to artifacts). Compared
to other adversarial defense techniques, ours does not depend on human-tuned hy-
perparameters and imposes no further constraints (e.g. a reduced resolution) on
explanations. FGVis creates fine-grained and class-discriminative visual explana-
tions in the image space. In addition, explanations are intuitively interpretable,

6

1 Introduction

preserve the characteristics of images (e.g. edges and colors), and can be tested as
they are valid model inputs.

1.2 Publications

This thesis is based on work published in the following conference proceedings:

• Wagner, J., V. Fischer, M. Herman, and S. Behnke (2016). “Multispectral Pedes-
trian Detection using Deep Fusion Convolutional Neural Networks”. In: Euro-

pean Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning (ESANN), pp. 509–514

• Wagner, J., V. Fischer, M. Herman, and S. Behnke (2017). “Learning Semantic
Prediction using Pretrained Deep Feedforward Networks”. In: European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN), pp. 565–570

• Wagner, J., V. Fischer, M. Herman, and S. Behnke (2018a). “Functionally Modular
and Interpretable Temporal Filtering for Robust Segmentation”. In: Proceedings

of the British Machine Vision Conference (BMVC)

• Wagner, J., V. Fischer, M. Herman, and S. Behnke (2018b). “Hierarchical Re-
current Filtering for Fully Convolutional DenseNets”. In: European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learn-

ing (ESANN), pp. 49–54

• Wagner, J., J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer, and S. Behnke
(2019). “Interpretable and Fine-Grained Visual Explanations for Convolutional
Neural Networks”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 9089–9099. DOI: 10.1109/CVPR.
2019.00931; c© 2019 IEEE

7

https://doi.org/10.1109/CVPR.2019.00931
https://doi.org/10.1109/CVPR.2019.00931

1 Introduction

1.3 Outline

This thesis is organized in seven chapters: Chapter 1 introduces the context of the thesis,
outlines the bigger picture, and summarizes the scientific contributions. In Chapter 2 to
Chapter 6, the scientific contributions are presented in detail. Finally, Chapter 7 recapit-
ulates the proposed methods and gives an outlook on possible future fields of research.

The five chapters covering scientific contributions are based on work published in con-
ference proceedings (see Section 1.2) and are written in a self-contained manner. Each
chapter includes an introduction, a discussion of related work, a method section with
accompanying experiments, and a conclusion. Relevant related work released after the
publication of the content of each chapter is discussed in each chapter’s conclusion. Al-
though the chapters are self-contained, we still recommend reading them consecutively,
as ideas and approaches from previous chapters are revisited in subsequent ones.

In Chapter 2 to Chapter 6, we propose, discuss, and evaluate deep learning-based meth-
ods and models for visual perception. In particular, we focus on improving the robustness
of visual perception systems (Chapter 2 – 5) as well as approaches for increased model
transparency and interpretability (Chapter 5 – 6). The topics covered by each chapter
are:

• Chapter 2: Multispectral Pedestrian Detection

Sensor Fusion, Deep Fusion CNN, Early-Fusion vs. Late-Fusion, R-CNN

Detection Framework, Unimodal Pre-Training, Multispectral Sensor Sys-

tem, KAIST Benchmark

• Chapter 3: Semantic Forecasting Models

Future Prediction, Predictive Transformation, Teacher-Student Training, Re-

current Predictive Module, Self-Supervised / Semi-Supervised Learning,

Semantic Forecasting

• Chapter 4: Hierarchical and Recurrent Filtering

Temporal Filtering, Hierarchical Filter Concept, Recurrent Filter Modules,

Dense Connection Pattern, Robust Semantic Segmentation, Parameter Effi-

cient Structure

8

1 Introduction

• Chapter 5: Modular and Interpretable Filtering

Temporal Filtering, Interpretability by Design, Modular Filter Structure,

Human Interpretable Intermediate Representations, Robust Semantic Seg-

mentation, Multi-Task Learning, Inspecting Model Behavior, Physical Con-

straints / Subcomponents, Geometric Projection, Transparent Structures

• Chapter 6: Explaining Model Predictions

Post-hoc / Optimization-based Visual Explanation Method, Novel Defense

Against Adversarial Evidence, Inspecting Model Behavior, Fine-Grained

and Class-Discriminative Visual Explanations, Faithful Explanations

9

2
Multispectral Pedestrian Detection

A robust, vision-based pedestrian detection system is an important building block of
future autonomous vehicles, such as self-driving cars or mobile robots. Current de-
tection systems mainly rely on cameras operating in the visible spectrum due to their
low price, high resolution, and ability to provide rich color and texture information.
However, under low or rapidly changing lighting conditions, the information content
of a visible image is significantly reduced, leading to failures of current detectors. To
reduce these aleatoric failures, one can fuse the information of the visible spectrum
with the data of a thermal camera. The complementary strengths of the two sensors
lead to a more robust detection system.
In this chapter, we study the benefits of using a multispectral pedestrian detection
system. In contrast to prior multispectral pedestrian detectors, we investigate the
potential of using Convolutional Neural Networks to fuse the information of the two
sensor modalities. We evaluate two deep fusion architectures and analyze their per-
formance on the KAIST multispectral pedestrian detection benchmark. To address
the limited availability of multispectral training data, we propose a multi-step pre-
training procedure using only visible images. Our best performing detector uses a
deep late-fusion architecture and outperforms the current state-of-the-art pedestrian
detector on the KAIST benchmark significantly.

11

2 Multispectral Pedestrian Detection

2.1 Introduction

Vision-based pedestrian detection is a critical capability of future autonomous vehicles,
such as mobile robots or self-driving cars. Especially for self-driving cars, a robust detec-
tion of pedestrians is a mandatory requirement to ensure a safe deployment in populated
environments like city centers. Although the topic has been intensively researched in
the last decade (Benenson et al., 2014; Dollár et al., 2012), it is still a challenging task
due to the variability of the pedestrian’s shape, clothes, pose, occlusion, and illumina-
tion as well as the variability of the environment. Typical instances of these challenges
are highlighted in Figure 2.1a and Figure 2.1b using images of the KAIST multispectral
pedestrian detection dataset (Hwang et al., 2015).

The majority of past research focused on the detection of pedestrians in images of the
visible spectrum, where multiple benchmark datasets with comparatively large amounts
of annotated pedestrians are available (Benenson et al., 2014). For a long period of
time, approaches using hand-crafted features dominated these benchmarks. With the
recent interest of the vision community in deep learning-based approaches, an increasing
number of top performing detectors utilize Convolutional Neural Networks (CNNs).

A major drawback of pedestrian detectors operating on images of the visible spectrum
(visible images) is their poor performance in low lighting conditions (e.g. at night or
in the shade), as well as their sensitivity to illumination changes. To overcome these
drawbacks, it is helpful to fuse the information of a visible camera with the information
provided by a long-wavelength infrared (thermal) camera (Gade and Moeslund, 2014).
Due to the spectral band in which a thermal camera operates, it does not only omit the
need for an external light source, but is also less affected by bad weather conditions. In
comparison to visible cameras, thermal cameras therefore perform particularly well at
night, in rapidly changing lighting conditions, and can also observe pedestrians in the
shade. Example images of such situations are depicted in Figure 2.1c. On the other
hand, thermal cameras often exhibit a decrease in image quality during daytime due
to a high background temperature. Additionally, thermal images are usually of lower
resolution and do not provide rich texture information. Due to their complementary
strengths, a fusion of both sensors is a promising approach to construct a more robust
detection system. In the past, multispectral detectors (i.e. detectors which utilize the
information of a visible and a thermal camera) were mainly used in the military and

12

2 Multispectral Pedestrian Detection

(a) Pedestrian detectors have to cope with a variety of en-
vironments and illumination conditions.

(b) The appearance of pedestrians can differ drastically
due to variability in clothing, pose, occlusion and lighting.

? ! ? !

? ! ? !

(c) For two scenes we show the visible image on the left side and the corresponding thermal image on the right
side. Thermal cameras measure the long-wavelength infrared radiation. They are therefore well suited for detecting
pedestrians at night or in low lighting conditions. Although the pedestrians are poorly illuminated in both scenes, their
appearance can be clearly perceived in the thermal image.

Figure 2.1: Images of the KAIST multispectral pedestrian detection dataset (Hwang et al., 2015), highlighting the
variability of the environment and of pedestrians as well as the benefits of thermal imaging.

surveillance domain. With the recent decline in the price of thermal cameras, these
detectors are becoming increasingly attractive for other domains, such as self-driving
cars or mobile robots.

In this chapter, we propose a CNN-based multispectral pedestrian detection method.
Our detector builds upon the R-CNN detection framework (Girshick et al., 2014) and
extends it to the multispectral domain by using CNNs to fuse the information of a visible
and a thermal camera. To the best of our knowledge, this is the first work to use a deep
learning-based approach for multispectral pedestrian detection. We evaluate an early-
and a late-fusion approach and analyze their performance on the KAIST multispectral
pedestrian detection benchmark (Hwang et al., 2015). To overcome the constraint of
limited multispectral training data, we propose a multi-step pre-training procedure using
only visible images. We show that our late-fusion-based deep model, which is addi-

13

2 Multispectral Pedestrian Detection

tionally pre-trained on auxiliary datasets, outperforms the state-of-the-art baseline on the
KAIST benchmark significantly.

The approach of this chapter was first presented and published at the European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine Learn-
ing (Wagner et al., 2016).

2.2 Related Work

Vision-based pedestrian detection has been intensively researched in the last decade (Be-
nenson et al., 2014; Dollár et al., 2012). The majority of past research focused on the
detection of pedestrians in images of the visible spectrum. Early top performing detec-
tors mainly relied on the sliding window paradigm (Dollár et al., 2010) and used hand-
crafted features, such as Histogram of Oriented Gradients (HOGs) (Dalal and Triggs,
2005; Felzenszwalb et al., 2010), Haar-like features (Papageorgiou et al., 1998; Viola
and Jones, 2001), and channel features (Dollár et al., 2009a; Dollár et al., 2014). Com-
mon choices for the classifier were Support Vector Machines (SVMs) (Dalal and Triggs,
2005; Felzenszwalb et al., 2008) and boosted decision trees (Benenson et al., 2012; Be-
nenson et al., 2013). Cascade architectures were often used to quickly reject negative
examples, resulting in a decrease in detector runtime (Viola and Jones, 2001; Bourdev
and Brandt, 2005).

More recent works propose CNN-based pedestrian detection methods. Yang et al. (2015)
extend the channel features framework (Dollár et al., 2009a; Dollár et al., 2014) by in-
tegrating features extracted from a CNN pre-trained on ImageNet (Russakovsky et al.,
2015). Sermanet et al. (2013) use a multi-scale convolutional network for pedestrian de-
tection, which is pre-trained in an unsupervised manner. A multitude of detectors build
upon the R-CNN detection framework of Girshick et al. (2014). Using a proposal gener-
ator, a set of candidate bounding boxes is generated for an input image. These proposals
are evaluated in a second stage by a CNN-based classifier. A detailed investigation of
various aspects of this framework in the context of pedestrian detection is conducted
by Hosang et al. (2015). A variety of papers propose approaches to improve the second
stage of the R-CNN framework. Verma et al. (2015) use a mixture of CNN experts in the
second stage. Tian et al. (2015) propose to use additional auxiliary tasks (e.g. pedestrian

14

2 Multispectral Pedestrian Detection

and scene attribute prediction) and datasets to train a more robust CNN classifier. Similar
detection methods using more complex cascade structures are introduced by Angelova
et al. (2015) and Cai et al. (2015). These methods focus on increasing the accuracy of
detectors by using CNNs while ensuring a short processing time. Other approaches such
as JointDeep (Ouyang and Wang, 2013) or Switchable Deep Network (Luo et al., 2014)
explicitly model concepts like deformable body parts or occlusion into the network ar-
chitecture. Further improvements to the R-CNN detection framework, like Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2015), and new detection concepts (Redmon
et al., 2016) were developed concurrently to the preparation of the publication covering
the content of this chapter.

Variations of the introduced approaches for detecting pedestrians in visible images were
adopted to the thermal domain. Suard et al. (2006) use HOG features in combination
with a SVM classifier to detect pedestrians in thermal images. To reduce the runtime
of the detector they propose a heuristic which generates bounding box proposals based
on the temperature of image regions. Zhang et al. (2007) evaluate the usability of vari-
ous feature-classifier combinations developed for visible images in the thermal domain.
They conclude that methods developed for visible images can achieve comparable detec-
tion accuracy on thermal images. A larger number of features and classifiers developed
for visible images are compared by Teutsch et al. (2014) using four thermal datasets. On
the basis of their assessment, they propose Discrete Cosine Transform-based features in
combination with a modified Random Naïve Bayes classifier for pedestrian classifica-
tion. Their overall pedestrian detection system uses a two-stage approach, similar to the
R-CNN framework, consisting of a hot spot-based proposal generator and the pedestrian
classifier.

Multispectral pedestrian detectors can be divided into three categories based on the level
of abstraction at which the fusion takes place — pixel-level fusion, feature-level fusion,
and decision- or score-level fusion (Liggins et al., 2008; Zin et al., 2011). Choi and
Park (2010) use a joint bilinear filter to fuse the information of a thermal- and a visible
image at pixel-level. To detect pedestrians in the fused image they use a background
subtraction method. Such a detector is limited to surveillance applications as it assumes
a stationary camera and moving pedestrians. Additionally, the pedestrian temperature
is generally assumed to be higher than the background temperature. Similar assump-
tions are made by Leykin and Hammoud (2006) to develop a multispectral pedestrian

15

2 Multispectral Pedestrian Detection

detection and tracking system. Fusion takes place on pixel-level within a visible-thermal
scene background model. To better distinguish pedestrians from other moving objects,
they propose an additional verification stage using a pedestrian classifier based on move-
ment patterns in a subsequent work (Leykin et al., 2007). Further related works, which
focus on fusing the two modalities in a visible-thermal scene background model, are
proposed by Conaire et al. (2005) and St-Laurent et al. (2007). A method for multi-
spectral pedestrian detection that fuses thermal and visible information at feature-level is
proposed by Krotosky and Trivedi (2008). They combine HOG features extracted from
a visible and thermal image and employ a SVM classifier. The result of the HOG-based
classifier is fused with the result of a disparity-based classifier in a second processing
step at decision-level. The disparity image is calculated using a third visible or thermal
camera. They report a significant increase in performance by using a multispectral detec-
tor compared to a detector that uses either the visible or the thermal image only. Another
method that performs a feature-level fusion is introduced by Hwang et al. (2015). Their
pedestrian detector is an extension of the Aggregated Channel Features (ACF) detec-
tor of Dollár et al. (2014) using additional feature channels computed from the thermal
image. To evaluate the detector they introduce a large-scale multispectral pedestrian de-
tection benchmark dataset — the KAIST benchmark (Hwang et al., 2015). If there is a
poor spatial registration of the two sensor modalities, a fusion at decision level may be
appropriate. However, this also requires that each modality on its own contains sufficient
information to enable an independent detection of pedestrians. Such a decision-level fu-
sion approach is proposed by Bertozzi et al. (2006) to fuse the bounding boxes of two
independent pedestrian detectors. Each detector independently processes the data from a
stereo camera, of which one operates in the visible spectrum and one in the thermal spec-
trum. Similar approaches are proposed by Lee et al. (2015) and Torresan et al. (2004) to
construct multispectral pedestrian detectors.

Utilizing the multispectral dataset of Hwang et al. (2015), we investigate the potential of
using deep neural networks for multispectral pedestrian detection. Our proposed detector
is based on the R-CNN framework, which was successfully used to develop promising
detectors in the visible domain. To extend these ideas to the multispectral setting, we
propose two deep fusion architectures, an early-fusion CNN that fuses information at
pixel level and a late-fusion CNN that fuses information at feature level. Additionally, we
propose a multi-step pre-training procedure using only visible images, to overcome the

16

2 Multispectral Pedestrian Detection

Proposal
Generator

Stage 1

Deep Fusion CNN

3
Pedestrian?

Stage 2

...

Figure 2.2: Detection framework employed by our multispectral pedestrian detector. Our detector follows the R-CNN
framework consisting of a proposal generator (Stage 1) and a deep fusion CNN (Stage 2). We evaluate two options
for fusion, an early- and a late-fusion CNN architecture. The example images are taken from the KAIST multispectral
pedestrian detection benchmark (Hwang et al., 2015). All bounding box proposals of the first stage are shown as
green rectangles in both the visible and thermal image. For visualization purposes, the visual and thermal image are
displayed side by side (Stage 2) or one above the other (Stage 1). The actual input representation used for the two
fusion CNNs differs and is described in detail in Section 2.3.2.

constraint of limited multispectral training data. To the best of our knowledge, this is the
first work to use a deep learning-based approach for multispectral pedestrian detection.
Our detector is well suited for autonomous vehicles, like self-driving cars, as it does not
impose constraints on the geometry and dynamics of the scene. In this respect, we differ
in particular from the mentioned pixel-level detectors, which assume a static camera
and moving pedestrians. In comparison to detection methods which fuse information on
decision-level, our models should be better able to use inherent relations between the
sensor modalities.

2.3 Multispectral Pedestrian Detector

2.3.1 Detection Framework

Our multispectral pedestrian detector is based on the R-CNN detection framework of
Girshick et al. (2014), which is first applied by Hosang et al. (2015) to detect pedestrians
in visible images. According to the R-CNN framework, we utilize a proposal generator to
generate a set of candidate detections (i.e. candidate bounding boxes). The multispectral
image data of the proposals is transformed into a standardized size and classified using
a deep fusion CNN. The input size of the used CNN is set to 128×64 pixels containing

17

2 Multispectral Pedestrian Detection

64

128

RGBT

data conv1 - conv5

∗Conv(128,11,2) - Pool(3,2) - LRN - ∗∗Conv(342,5,1) -
Pool(3,2) - LRN - ∗Conv(512,3,1) -∗∗Conv(512,3,1) - ∗∗Conv(342,3,1) - Pool(3,2)

fc6

2048

fc7

2048

class

1

Figure 2.3: Early-fusion architecture which fuses the visible and thermal image on pixel-level. The model receives the
thermal and visible image concatenated along the feature dimension as input. ∗Conv(f,k,s): convolutional layer with
f filters, a kernel size of k, a stride of s, and a ReLU nonlinearity. A second asterisk in the superscript indicates the
use of two input groups. Pool(k,s): max-pooling layer with a kernel size of k and a stride of s. LRN: local response
normalization layer. We apply dropout and use ReLU nonlinearities in the first two fully connected layers, followed
by a binary classification layer.

the content of the proposal bounding box as well as additional surrounding context. The
proposal occupies 100×41 pixels centered in the input image the remainder is padded
context. As depicted in Figure 2.2, the resulting detector thus consists of a two-stage
cascade, whose first stage is the proposal generator and whose second stage a neural
network. By limiting the search space of potential pedestrians using the proposal gener-
ator, the more complex and computationally more expensive CNN only has to evaluate a
drastically reduced set of pedestrian candidates.

To generate the proposals, we use the multispectral ACF detector of Hwang et al. (2015),
which is described in detail in Section 2.4.2. The proposal generator is tuned to achieve
a high detection rate while keeping the false alarm rate fairly low. To further reduce
the number of proposals and to decrease redundancy, we apply non-maximum suppres-
sion (Viola and Jones, 2004) in a greedy fashion to the proposal bounding boxes using an
Intersection over Union (IoU) threshold of 0.65. In total, we investigate two deep fusion
CNNs for the second stage of the multispectral pedestrian detector, which are presented
in the next subsection.

2.3.2 Deep Fusion Architectures

We investigate an early- and a late-fusion-based CNN architecture to combine and clas-
sify the information of the visible and thermal image. The early-fusion architecture
(EarlyFusion) combines the information of the two modalities at pixel-level. In contrast,

18

2 Multispectral Pedestrian Detection

the late-fusion CNN (LateFusion) uses separate subnetworks to generate a feature rep-
resentation for each modality. These representations are combined in an additional fully
connected layer. Similar late-fusion architectures have been used by Eitel et al. (2015)
to perform RGB-D object recognition and by Simonyan and Zisserman (2014) for ac-
tion recognition in videos. The structure of the early-fusion architecture as well as the
subnetworks of the late-fusion architecture are based on the CaffeNet model (Jia et al.,
2014).

Early-Fusion Architecture

For the early-fusion architecture (EarlyFusion), we use CaffeNet and increase the num-
ber of filters per convolutional layer by a factor of 4/3, to compensate for the fourth input
channel. Additionally, we decrease the number of neurons in the fully connected layers
to 2048 and replace the 1000 class classification layer by a binary classification layer.
Furthermore, the stride of the first convolutional layer is reduced to two, to obtain a suf-
ficient spatial resolution after the last convolutional layer. The network receives images
of size 4×128×64 as input, containing a concatenated version of the visible-thermal im-
age pair. By combining the two modalities at pixel-level, we expect a better utilization of
inherent relations between the sensor modalities. We use Rectified Linear Unit (ReLU)
nonlinearities (Nair and Hinton, 2010) and apply dropout (Srivastava et al., 2014) after
the first and second fully connected layer. The overall model architecture is depicted in
Figure 2.3.

Late-Fusion Architecture

The late-fusion architecture (LateFusion) processes the data of the two modalities sepa-
rately in subnetworks and fuses the resulting feature representations in a fully connected
layer. The subnetwork which processes visible images will be referred to as CaffeNet-

RGB and the thermal subnetwork as CaffeNet-T. Both subnetworks are based on CaffeNet

without its classification layer and use, analogous to the early-fusion CNN, 2048 neurons
in their fully connected layers, as well as a stride of two in their first convolutional layer.
We use ReLU nonlinearities in both subnetworks and apply dropout after the two fully

19

2 Multispectral Pedestrian Detection

64

128

64

128

RGB

T

data conv1 - conv5

∗Conv(96,11,2) - Pool(3,2) - LRN - ∗∗Conv(256,5,1) -
Pool(3,2) - LRN - ∗Conv(384,3,1) -∗∗Conv(384,3,1) - ∗∗Conv(256,3,1) - Pool(3,2)

∗Conv(48,11,2) - Pool(3,2) - LRN - ∗∗Conv(128,5,1) -
Pool(3,2) - LRN - ∗Conv(192,3,1) -∗∗Conv(192,3,1) - ∗∗Conv(128,3,1) - Pool(3,2)

fc6

2048

2048

fc7

2048

2048

fusion

4096

class

1

CaffeNet-RGB

CaffeNet-T

Figure 2.4: Late-fusion architecture consisting of two subnetworks (CaffeNet-T and CaffeNet-RGB) which preprocess
the two sensor modalities independently. ∗Conv(f,k,s): convolutional layer with f filters, a kernel size of k, a stride of s,
and a ReLU nonlinearity. A second asterisk in the superscript indicates the usage of two input groups. Pool(k,s): max-
pooling layer with a kernel size of k and a stride of s. LRN: local response normalization layer. We apply dropout and
use ReLU nonlinearities in the fusion layer as well as the fully connected layers of the subnetworks.

connected layers. In subnetwork CaffeNet-T, we additionally halve the number of filters
per convolutional layer. The factor 0.5 is derived based on the number of grayscale filters
in the first convolutional layer of CaffeNet (Jia et al., 2014). The resulting activations of
the two subnetworks are concatenated along the feature dimension and fused in a fully
connected layer using 4096 filters. The fusion layer uses a ReLU nonlinearity and is
followed by a dropout layer and a binary classification layer. A detailed depiction of the
architecture is shown in Figure 2.4.

2.3.3 Training Procedure

The availability of a sufficiently large dataset is a crucial requirement when training
deep neural networks. However, due to the cost associated with data generation and
labeling, the amount of available training data is limited in many applications. One
popular approach to overcome this problem is to pre-train a network on a large auxil-
iary dataset. The ImageNet dataset (Russakovsky et al., 2015) has become the de facto
standard dataset for model pre-training in the computer vision domain. To evaluate the
benefits of pre-training in our multispectral setting, we train our networks twice. Both

20

2 Multispectral Pedestrian Detection

by only using the training data provided by the multispectral benchmark dataset and by
additionally pre-training the networks on auxiliary datasets. Due to the lack of available
large visible-thermal image datasets, we pre-train our models using visible data only.
The red channel is used as an approximation of the thermal channel in our pre-training
procedure. From a physical point of view, this approximation is rather crude given the
differences between the two sensor concepts. Nevertheless, the visual representation of
both sensor modalities has numerous similarities (e.g. edges at object borders), which
should enable a transfer of pre-trained filters. During pre-training, the images of the
early-fusion architecture contain the red channel twice. It is thus unclear whether the
early-fusion architecture can learn complementary features which utilize the substituted
thermal channel. We therefore expect a greater benefit from pre-training for the late-
fusion architecture.

Our pre-training procedure on auxiliary datasets consists of the following two steps:
In the first step, the convolutional layers of CaffeNet-T, CaffeNet-RGB and the Early-

Fusion network are pre-trained on the task of image classification using the ImageNet

dataset (Russakovsky et al., 2015). To adapt the three networks to the ImageNet bench-
mark, we add a 1000 class classification layer to the two subnetworks of the late-fusion
CNN and replace the binary classification layer of the early-fusion model with a multi-
class classification layer (i.e. a fully connected layer with 1000 filters, followed by a soft-
max function). In the second step, we fine-tune these networks using the Caltech (Dol-
lár et al., 2009b) dataset which was created for the development and benchmarking of
pedestrian detectors based on visible images. We use the Caltech10x sampling strategy
proposed by Hosang et al. (2015) and use ground truth bounding boxes to extract positive
training samples. Negative training samples are created using bounding box proposals
generated by an ACF pedestrian detector (Dollár et al., 2014). A proposal is counted
as a negative sample if its Intersection over Union (IoU) overlap with all ground truth
bounding boxes does not exceed a threshold of 0.5. To be consistent with the cascaded
processing scheme of our proposed multispectral detector (see Section 2.3.1), we ex-
tend the positive and negative samples to contain additional image context and transform
them into a standardized size of 128×64 pixels. Using these training samples, we fur-
ther pre-train the three networks of step one. To make the models compatible with the
new data, we replace the 1000 class classification layer with a randomly initialized bi-
nary classification layer and re-initialize the weights of the fully connected layers with

21

2 Multispectral Pedestrian Detection

random values. During both pre-training steps, the two subnetworks of the late-fusion
architecture are solely trained separately.

Finally, we fine-tune the models on the multispectral data of the KAIST benchmark
dataset (Hwang et al., 2015). Analogously to Hosang et al. (2015), we use every sec-
ond frame of the training data. Additionally, we split the original training data into a
training set containing 92 % of the images and a validation set containing the remain-
ing 8 % of the images. We create positive and negative samples similar to the procedure
used to create the Caltech pre-training data. Instead of using the ACF detector to extract
negative samples, we use the multispectral ACF detector (Hwang et al., 2015) of our
two-stage detection cascade (see Section 2.3.1). The fine-tuning of the late-fusion model
occurs in two steps. First, we separately optimize the two subnetworks (CaffeNet-T and
CaffeNet-RGB) by adding a binary classification layer at the end. Depending on whether
we use pre-training or not, the weights of the two subnetworks are initialized with either
pre-trained weights, or random values. The second step encompasses a fine-tuning of
the full late-fusion architecture on the KAIST data. As suggested by Eitel et al. (2015),
the best fusion results can be achieved when the weights of the subnetworks are fixed
and only the subsequent layers are trained. Due to its simple structure, the early-fusion
network is trained or fine-tuned, depending on the usage of pre-training, in a regular
fashion.

2.4 Experiments

2.4.1 Dataset

To train and evaluate our multispectral pedestrian detectors we use the KAIST multispec-
tral pedestrian detection benchmark dataset of Hwang et al. (2015). This dataset consists
of temporally and spatially aligned visible and thermal image pairs with a resolution of
640× 512 pixels. The images are captured at a frame rate of 20 Hz from a sensor system
mounted at the rooftop of a car driving at different times of day in regular traffic. In to-
tal, the dataset contains 95.3k images pairs, split into a training set of 50.2k images with
41.5k labeled pedestrians and a test set of 45.1k images with 44.7k labeled pedestrians.
Example images with corresponding ground truth pedestrian bounding boxes are shown
in Figure 2.5.

22

2 Multispectral Pedestrian Detection

Figure 2.5: Example images of the KAIST multispectral pedestrian detection dataset (Hwang et al., 2015) containing
ground truth pedestrian bounding boxes. For each scene we show the visible image at the top and the corresponding
thermal image at the bottom.

The evaluation of the detectors is performed on the reasonable all subset of the KAIST

test dataset (Hwang et al., 2015). This subset consists of pedestrians which are unoc-
cluded or partially occluded and have a pixel height of 55 or taller. Additionally, we
report the performance of the detectors on the reasonable day and reasonable night sub-
set. These two subsets each contain images recorded either only during the day or only
during the night. The reasonable all subset is thus the union of the reasonable day and
reasonable night evaluation settings.

2.4.2 Baseline

The best performing approach on the KAIST benchmark is an extension of the Aggre-

gated Channel Features (ACF) detector of Dollár et al. (2014). Given an image, the
ACF detector computes ten channel features. These channels are the components of the
CIELUV color space, the normalized gradient magnitude, and the histogram of oriented
gradients using six orientation bins (Dollár et al., 2009a). After computing all channels,
they are downsampled by a factor of four using average pooling and smoothed by means

23

2 Multispectral Pedestrian Detection

of a binomial filter. The pixels of the subsampled channels form the feature pool used
to train a boosted decision tree classifier. The resulting boosted classifier is transformed
into a soft-cascade classifier (Bourdev and Brandt, 2005), enabling a quicker rejection of
negative samples. To detect all pedestrians in an image, the classifier is applied in a slid-
ing window manner over multiple scales using the fast pyramid construction technique
of Dollár et al. (2014).

The ACF detector was extended to the multispectral domain by Hwang et al. (2015). In
the remainder of this work, we will refer to the multispectral extension of the ACF detec-
tor as multispectral ACF. The design of the ACF detector allows an easy extension to the
multispectral input data of the KAIST benchmark by adding additional feature channels
encoding the thermal image. These thermal feature channels are a contrast-enhanced
version of the thermal image as well as HOG features (Dalal and Triggs, 2005) of the
thermal image. The multispectral ACF detector used in our experiments is a retrained
version of the detector provided by the toolbox of the KAIST benchmark (Hwang et al.,
2015). As suggested by Dollár et al. (2012), we additionally standardize all bounding
boxes to an aspect-ratio of 0.41 by keeping the height and center fixed and only adjusting
the width.

2.4.3 Results

To compare the different detectors, we report their performance on the reasonable all,
reasonable day, and reasonable night subset of the KAIST test data (see Section 2.4.1).
We follow the evaluation protocol defined by Hwang et al. (2015) and additionally stan-
dardize in accordance with Dollár et al. (2012) the aspect ratio of bounding boxes to a
fixed value of 0.41, by means of width adjustment. In Figure 2.6, we visualize the miss
rate against false positives per image of the detectors for all three evaluation subsets. Ta-
ble 2.1 reports the corresponding log-average miss rates. Further details and discussion
of the metrics can be found in Dollár et al. (2012).

We report the performance of four versions of our multispectral pedestrian detector as
well as the performance of the baseline detector (multispectral ACF). All deep learning-
based detectors are named after the used CNN. LateFusion, for example, references a de-
tector according to the description in Section 2.3.1 which uses a late-fusion-based CNN

24

2 Multispectral Pedestrian Detection

Detector log-average miss rate
all day night

Multispectral ACF 50.48 % 51.27 % 47.40 %
LateFusion+PreTrain 43.80 % 46.15 % 37.00 %

LateFusion 51.30 % 55.27 % 41.58 %
EarlyFusion+PreTrain 53.94 % 50.90 % 51.76 %

EarlyFusion 57.96 % 58.22 % 57.78 %
CaffeNet-RGB+PreTrain 56.52 % 53.51 % 63.40 %

CaffeNet-T+PreTrain 54.67 % 59.77 % 42.09 %

Table 2.1: Log-average miss rate on the reasonable all, reasonable day, and reasonable night evaluation split. All deep
learning-based detectors, which are additionally pre-trained on auxiliary data, are indicated by the suffix PreTrain. All
detectors besides CaffeNet-RGB+PreTrain and CaffeNet-T+PreTrain operate on multispectral input data. The CNN
of the CaffeNet-RGB+PreTrain detector only uses visible images, the CNN of the CaffeNet-T+PreTrain detector only
thermal images. The LateFusion+PreTrain detector outperforms all other detectors on all three evaluation subsets.

architecture to classify proposals. The additional suffix PreTrain marks detectors which
utilize a CNN that is pre-trained on auxiliary datasets (see Section 2.3.3). In addition,
we evaluate the performance of two detectors whose CNN only uses one sensor modal-
ity. These detectors use the two late-fusion subnetworks CaffeNet-RGB and CaffeNet-T,
respectively, which are pre-trained on the ImageNet as well as Caltech dataset and then
fine-tuned on the KAIST dataset. Following our naming convention, they are referenced
by CaffeNet-RGB+PreTrain and CaffeNet-T+PreTrain.

Comparing the performance of CaffeNet-RGB+PreTrain and CaffeNet-T+PreTrain on
the reasonable day and reasonable night subset highlights the complementary strength
of the two sensor modalities. At night, when the lighting conditions are rather poor,
the detector using the thermal CNN (CaffeNet-T+PreTrain) achieves a log-average miss
rate of 42.09 %, outperforming CaffeNet-RGB+PreTrain by 21.31 %. However, on the
reasonable day subset which was recorded at daytime, the model using the visible im-
age (CaffeNet-RGB+PreTrain) yields a superior performance. CaffeNet-RGB+PreTrain

achieves a log-average miss rate of 53.51 %, while CaffeNet-T+PreTrain only achieves
a rate of 59.77 %. Due to their complementary strengths, a fusion of both modalities is
thus a promising approach to construct a more robust detector.

Even though during pre-training the substitution of the thermal channel with the red
channel is a very crude approximation, it leads to a significant performance increase for
all detectors. The early-fusion-based detector increases its performance by 4.02 % on

25

2 Multispectral Pedestrian Detection

10−3 10−2 10−1 100 101 102
.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

multispectral ACF
LateFusion+PreTrain
LateFusion
EarlyFusion+PreTraing
EarlyFusion
CaffeNet-RGB+PreTrain
CaffeNet-T+PreTrain

(a) Reasonable all evaluation setting

10−3 10−2 10−1 100 101 102
.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

multispectral ACF
LateFusion+PreTrain
LateFusion
EarlyFusion+PreTrain
EarlyFusion
CaffeNet-RGB+PreTrain
CaffeNet-T+PreTrain

(b) Reasonable day evaluation setting

10−3 10−2 10−1 100 101 102
.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

multispectral ACF
LateFusion+PreTrain
LateFusion
EarlyFusion+PreTrain
EarlyFusion
CaffeNet-RGB+PreTrain
CaffeNet-T+PreTrain

(c) Reasonable night evaluation setting

Figure 2.6: Miss rate against false positives per image for the reasonable all, reasonable day, and reasonable night
evaluation split. All deep learning-based detectors, which are additionally pre-trained on auxiliary data, are indicated
by the suffix PreTrain. All detectors besides CaffeNet-RGB+PreTrain and CaffeNet-T+PreTrain operate on multi-
spectral input data. The CNN of the CaffeNet-RGB+PreTrain detector only uses visible images, the CNN of the
CaffeNet-T+PreTrain detector only thermal images.

the reasonable all evaluation split and the late-fusion-based detector even achieves an
increase of 7.5 %. In the remainder of the evaluation, we will therefore primarily focus
on the detectors using pre-trained architectures.

The detector using a pre-trained late-fusion-based CNN (LateFusion+PreTrain) signif-
icantly outperforms the state-of-the-art multispectral ACF baseline, as well as all other
evaluated detectors in all three test set splits. During the day, the performance of the

26

2 Multispectral Pedestrian Detection

visible

thermal

Figure 2.7: Non-systematic alignment error occurring in a subset of the multispectral Kaist data (Hwang et al., 2015).
For two images, we visualize in the upper half the data of the visible camera and in the lower half the data of the
thermal camera. For each pedestrian two vertical lines indicate the position of the center of the pedestrian. A dashed
line is aligned according on the position of the pedestrian in the visible image, a solid line indicates the center of the
pedestrian in the thermal image. Both modalities are perfectly aligned in the right image. In the left image there is a
large horizontal offset between both modalities.

LateFusion+PreTrain architecture is 5.12 % better than the performance of the baseline,
and at night it is 10.4 % better. The performance of our best multispectral detector is par-
ticularly superior to the two single modality detectors, which underlines the advantage
of sensor data fusion.

For most of the evaluation settings, the detectors using the early-fusion architecture are
not able to reach state-of-the-art multispectral ACF detector performance. In our opinion,
there are at least three reasons for this observation: The poor performance of the early-
fusion model without pre-training can most likely be traced back to the limited amount
of data available in the KAIST dataset. Additionally, we suspect that the early-fusion net-
work did not learn meaningful multimodal features during the pre-training process, due
to the absence of complementary information in the chosen approximation of the ther-
mal channel. The architecture of the late-fusion CNN is due to its two subnetworks better
suited for pre-training on only visible data. A third reason for the poor performance of
the early-fusion architectures is a small non-systematic alignment error, which is notice-
able in some images of the dataset. This non-systematic offset complicates learning of
meaningful multimodal low-level features. In Figure 2.7, we exemplary show two im-
ages of the KAIST dataset, one in which the modalities are perfectly aligned and one with
a relatively large alignment error. The late-fusion network is better able to cope with such
alignment errors, because it fuses information at a stage where spatial information is less
relevant.

27

2 Multispectral Pedestrian Detection

2.5 Conclusion

A robust detection of pedestrians is a crucial capability of autonomous vehicles. Pedes-
trian detectors which rely only on images of the visible spectrum suffer from low or
rapidly changing lighting conditions. By using the information of multiple sensors with
complementary strengths, the robustness of a detection system can be significantly in-
creased. In this chapter, we investigated the benefits of multispectral pedestrian detectors
which utilize the information of a visible and thermal camera. To fuse the information of
both modalities, we proposed two deep fusion architectures. An early-fusion architecture
which fuses the information at pixel-level and a late-fusion architecture which performs
fusion at feature-level. We proposed a multi-step pre-training procedure that relies solely
on visible images to cope with the limited availability of multispectral training data. As
proposed by the R-CNN framework (Girshick et al., 2014), the deep fusion architectures
were combined with a proposal generator to construct a multispectral detector. To the
best of our knowledge, this is the first work to use a deep learning-based approach for
multispectral pedestrian detection.

Our analysis on the KAIST multispectral pedestrian detection benchmark dataset (Hwang
et al., 2015) showed that a CNN-based detector using both the visible and thermal image
can significantly outperform models relying solely on one of the two modalities. Our
best detector, which uses a pre-trained late-fusion architecture, outperformed the current
state-of-the-art multispectral detector (Hwang et al., 2015) on the KAIST benchmark
dataset by more than 6.5 %. Pre-training on auxiliary datasets was an important factor in
achieving a good performance. In our experiments, the late-fusion CNN has proven to
be superior to the early-fusion CNN. This is most likely due to the inability of the early-
fusion network to learn meaningful multimodal features in the given setting as well as
due to the poor spatial alignment of several of the benchmark images.

Following the publication of the contents of this chapter (Wagner et al., 2016), several
improvements have been proposed to increase the performance of multispectral pedes-
trian detectors. Numerous works investigate new fusion approaches and detection con-
cepts. Liu et al. (2016a) use the Faster R-CNN detection framework, which is an ex-
tension of the R-CNN framework used in this work. In total they evaluate four fusion
architectures and show that their Halfway Fusion architecture achieves the best perfor-
mance on the KAIST benchmark. Similarly to our LateFusion model, their best archi-

28

2 Multispectral Pedestrian Detection

tecture uses two subnetworks that process the visible and thermal image separately. In
contrast to our LateFusion model, fusion of the modalities already takes place on mid-
level convolutional features (i.e. after the fourth block of convolutional layers of the used
VGG16 (Simonyan and Zisserman, 2015) network). To combine the feature maps of
the visible and thermal image they utilize a fusion module consisting of a concatena-
tion layer and a 1×1 convolutional layer. König et al. (2017) use the Region Proposal

Network of the Faster R-CNN framework and combine it with a Boosted Decision Trees

classifier to construct a multispectral detector. They adopt the Halfway Fusion architec-
ture of Liu et al. (2016a) and show an improved performance when fusing the features of
both modalities after the third block of convolutional layers. Inspired by our work, they
employ a multi-stage training procedure using auxiliary datasets. Related multispectral
detection approaches are introduced by Lee et al. (2018) and Li et al. (2018). Lee et al.

(2018) adopt the Halfway Fusion approach, enrich it by additional multi-spectral features
and integrate it into a Deconvolutional Single Shot Detector (Fu et al., 2017). Utilizing
findings from previous multi-spectral and visible detectors, Li et al. (2018) propose the
Multispectral Simultaneous Detection and Segmentation R-CNN (MSDS-RCNN). This
model uses a two-stage cascade consisting of a multi-spectral proposal generator and a
multi-spectral classification network. The architecture of both networks is similar to the
CNN proposed by König et al. (2017). To further improve the performance of the model,
they propose to simultaneously solve a semantic segmentation task and to integrate ad-
ditional single-modality predictions. In total, their model generates four classification
scores for each bounding box proposal, which are fused at score level. More explicit
fusion approaches were introduced by Guan et al. (2019) and Li et al. (2019) using an
illumination-aware weighting mechanism to fuse the information of two subnetworks.
The illumination value used for weighting is predicted by a neural network which is
trained in a supervised manner using the coarse day / night labels of the KAIST dataset.
To better cope with the alignment error shown in Section 2.4.3, Zhang et al. (2019) and
Zhou et al. (2020) introduce modules which estimate the error and adaptively align the
feature maps of the sensor modalities. Zhang et al. (2019) regionally align feature maps
of both modalities by predicting and correcting a horizontal and vertical shift for each
proposal. To increase the robustness of the module they additionally introduce an aug-
mentation strategy which randomly shifts the modalities during training. Zhou et al.

(2020), on the other hand, predict a horizontal and vertical offset for each pixel and use
bilinear interpolation to align the modalities.

29

2 Multispectral Pedestrian Detection

In addition to sensor data fusion, temporal integration of information is a promising ap-
proach for improving the robustness of perception systems. We examine corresponding
methods in Chapter 4 and Chapter 5.

30

3
Semantic Forecasting Models

The ability to predict future environment states is essential for an anticipatory behav-
ior of autonomous agents, such as self-driving cars or mobile robots. Deep learning-
based methods have shown impressive results on key perception challenges but cur-
rently mainly operate in a non-predictive fashion. We bridge this gap by proposing
an approach to transform trained non-predictive feed-forward networks into predic-
tive ones via a combination of a recurrent predictive module with a teacher-student
training strategy. Our proposed predictive transformation can be conducted with-
out the need of labeled video data in a fully self-supervised fashion. This is espe-
cially beneficial for models which generate dense and detailed representations, like
a pixel-wise semantic segmentation, as manual labeling is quite time-consuming and
expensive.
Using simulated video data and focusing on the use case of semantic segmentation,
we evaluate the ability of our approach to generate models which forecast the future
environment representation conditioned on previous observations. Our results show
the ability of the resulting predictive network to model the dynamics of the world.
Additionally, we show the benefits of using our approach in a semi-supervised set-
ting, when no appropriate non-predictive feed-forward model is available.

31

3 Semantic Forecasting Models

3.1 Introduction

Deep learning-based methods yield impressive results in application domains such as
speech recognition, computer vision, and machine translation. Especially in visual per-
ception, deep convolutional neural networks dominate the majority of benchmarks (Dol-
lár et al., 2009b; Geiger et al., 2012; Cordts et al., 2016). Due to their ability to model
complex dependencies and to generalize to unseen examples, they have the potential to
solve key challenges of autonomous vehicles, such as self-driving cars or mobile robots.
Among these challenges are the robust perception and interpretation of the environment
as well as the prediction of future environment states in order to enable acting in an an-
ticipatory way. A pixel-wise semantic segmentation constitutes a detailed and rich repre-
sentation of the visually observed environment. Such a semantic representation contains
useful information for the planning and decision-making component of an autonomous
vehicle, such as the presence of other traffic participants, the position of lane markings,
or the extent of the drivable area. Deep learning-based models for semantic segmenta-
tion gained increasing interest in recent years (Garcia-Garcia et al., 2018), leading to a
rapid improvement of segmentation performance on common benchmark datasets (Bros-
tow et al., 2009; Cordts et al., 2016). These advances bring the autonomous vehicle
community closer to a robust and reliable perception of the environment. However, to
cope with the dynamic nature of the world (e.g. moving traffic participants), a planner
of a safety-critical system must take into account not only the current but also the future
environment state (Bahram, 2017). For example, in the situation depicted in Figure 3.1,
the autonomous vehicle has to decide whether to break or to drive on. The semantic
representation of the current time step provides the information that a pedestrian is in
the vicinity of a crosswalk located on the current path of the autonomous vehicle. By
predicting the environment state into the future, the system can infer the intent of the
pedestrian to cross the street in front of the vehicle and initiate a deceleration.

In this chapter, we focus on the prediction of the future environment representation con-
ditioned on previous observations. We build upon the recent success of deep convolu-
tional neural networks for visual perception and propose an approach to transform these
non-predictive feed-forward networks1 into ones which predict the future. Based on the

1For simplicity, we will refer to non-predictive feed-forward networks — i.e. models which receive a measure-
ment xt of the current time step t and generate a corresponding application specific target yt = f(xt; θ) (see Sec-
tion 3.3.1 for more details) — as feed-forward networks in the remainder of this chapter.

32

3 Semantic Forecasting Models

Break?
Drive on?

Image / Time: t Semantic Representation / Time: t

Semantic Representation / Time: t+1

Feed-Forward
Network

Predictive
Network

Predictive Transformation

Internal Memory

Updated Memory

Figure 3.1: Future autonomous vehicles have to act in an anticipatory manner in order to facilitate a safe deployment
in open-world scenarios. To enable a proactive planning of actions, we propose an approach to transform a given
feed-forward network into a predictive one. The predictive transformation is achieved by introducing an additional
recurrent module and applying a teacher-student-like training strategy. The predictive transformation can thus be
conducted without the need of labeled data in a fully self-supervised fashion. In our experiments, we use a pixel-wise
semantic segmentation to represent the observed environment in a semantic manner.

use case of pixel-wise semantic segmentation, we present and evaluate our predictive
transformation approach. The resulting semantic forecasting model predicts the seman-
tic segmentation of the next time step conditioned on previous observed image frames.
Since our proposed method is applicable to a wide range of feed-forward models, we
describe the transformation in general terms and highlight the specifics that apply to
pixel-wise semantic segmentation models.

The predictive network generated by our approach reuses the original structure of the pro-
vided feed-forward model an extends it by a recurrent predictive module. The resulting
predictive network conceptually decouples temporal prediction from scene representa-
tion. We thus can reuse the already well-trained weights and the encoded task-specific
knowledge of the original feed-forward model. Training of the predictive model is con-

33

3 Semantic Forecasting Models

ducted in a self-supervised fashion using a teacher-student-like training strategy. This
eliminates the need for labeling video data, which is time-consuming and costly, espe-
cially in the case of semantic segmentation. In total, we propose four knowledge transfer
variations and systematically evaluate their performance using simulated video data. Our
experiments quantitatively and qualitatively demonstrate the ability of our approach to
create semantic forecasting models using unlabeled video data which capture the dynam-
ics of the world (e.g. the interaction and motion of objects). We additionally demonstrate
that our approach is beneficial in cases when no feed-forward network is available and
one is tasked with training a predictive model based on video data of which only a small
portion is labeled (i.e. a semi-supervised setting (Ouali et al., 2020)). In such a setting,
we first train a non-predictive feed-forward model using the labeled data and then trans-
form it to a predictive one using the unlabeled data. A final fine-tuning of the predictive
model based on the labeled video data can further improve model performance.

The method presented in this chapter was first published at the European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning (Wagner
et al., 2017).

3.2 Related Work

The majority of approaches which predict a representation of the future environment
state either focus on the prediction of raw sensory data (Ranzato et al., 2014; Michalski
et al., 2014; Srivastava et al., 2015; Mathieu et al., 2016) or model the world in an
object-centric manner (Kruse et al., 2013; Lefèvre et al., 2014; Brouwer et al., 2016).

Object-centric approaches predict the future state or the future trajectory of an object
(e.g. a pedestrian or car) conditioned on observations of previous states. Elnagar (2001),
for example, uses a physics-based motion model (Lefèvre et al., 2014) to predict the
future position and orientation of an object. To better account for different behavior
patterns, Schneider and Gavrila (2013) combine several physics-based motion models
using the Interacting Multiple Model (IMM) (Blom, 1984) algorithm. Other methods
use observed data to learn models which approximate object dynamics (Goldhammer
et al., 2014) or apply a planner-based prediction approach (Ziebart et al., 2009). By
taking into account additional factors which influence the complex dynamics of real-

34

3 Semantic Forecasting Models

world objects, the prediction performance can be further improved. Alahi et al. (2016)
propose the Social-LSTM model which additionally takes into account the interaction
of pedestrians. They model each pedestrian using a Long Short-Term Memory (LSTM)
cell and use a social pooling strategy to enable information exchange between cells.
Their qualitative evaluation highlights the ability of the Social-LSTM model to create
predictions with plausible interaction patterns. In addition to object-object interactions,
modeling the interactions between objects and the static environment is an additional
crucial factor. The static environment is usually represented either as individual static
objects (Pellegrini et al., 2009) or as a grid-like, potentially semantic map (Rehder and
Kloeden, 2015; Karasev et al., 2016). The already mentioned planning-based prediction
approach of Ziebart et al. (2009), for example, utilizes features derived from a map of
the static environment.

Compared to these object-centric prediction approaches, which are usually limited to one
class of objects (e.g. pedestrians), our approach predicts a more dense and semantically
rich representation of the environment. Furthermore, since our method directly operates
on image data, there is no need for a separate perception component to extract objects.
Our model covers the perception and prediction step of a classical processing pipeline
and optimizes them jointly, in an end-to-end fashion2. Interactions between objects as
well as objects and the static environment are directly learned from data, without having
to design hand-crafted interaction features or an explicit interaction model (Luber et al.,
2010; Yi et al., 2015).

Deep learning-based models that predict raw sensory data have become increasingly pop-
ular in recent years. These models can be trained without requiring additional object de-
tection methods or labeled data. They make use of the sequential nature of sensor streams
and directly predict the next measurement or the future sequence of measurements given
the history of previous measurements. Such models have been used to predict the next
image in a video (Ranzato et al., 2014; Michalski et al., 2014; Srivastava et al., 2015;
Lotter et al., 2016; Mathieu et al., 2016), to predict radar measurements (Xingjian et

al., 2015), and to predict and filter future processed laser scans (Ondruska and Posner,
2016). Many predictive models incorporate recurrent structures to process sequential
data. Ranzato et al. (2014) draw inspiration from concepts used in language model-

2We propose and evaluate several knowledge transfer versions. Not all of them jointly optimize all weights of the
predictive network. For more details, see Section 3.3.3.

35

3 Semantic Forecasting Models

ing and propose the Recurrent Convolutional Neural Network (rCNN) to predict future
video frames. Srivastava et al. (2015) use LSTM cells to construct an encoder-decoder
architecture which predicts the sequence of future frames. To improve prediction per-
formance, they additionally add a second LSTM decoder which reconstructs the input
sequence. Furthermore, they condition the LSTM decoder on the last generated frame.
Xingjian et al. (2015) propose the convolutional LSTM, an extension of the classical
LSTM with a convolutional structure, and use it to build an encoder-decoder architecture
similar to Srivastava et al. (2015). Non-recurrent model architectures have been em-
ployed by Mathieu et al. (2016) and Michalski et al. (2014). The model by Mathieu et

al. (2016) predicts several concatenated future frames conditioned on a concatenated ver-
sion of previous frames using a convolutional multi-scale architecture. To optimize the
model weights, they use an adversarial training method combined with an image gradi-
ent difference loss. Michalski et al. (2014) use bi-linear models to infer transformations
(i.e. relational features) between two consecutive observations and utilize the inferred
transformations to forward propagate the second observation in time. Building on this
concept, they construct the multi-layer Predictive Gating Pyramid (PGP) by leverag-
ing higher-order relational features and applying the prediction in a recursive manner to
forecast multiple steps into the future.

Compared to these approaches, our forecasting network predicts a more abstract, high-
level representation of the environment (i.e. a pixel-wise semantic segmentation), which
is well suited for autonomous driving tasks. In most applications, one is more interested
in predicting such an application-specific representation of the world rather than the next
raw measurement. An autonomous robot tasked with avoiding the collision with people,
for example, has no additional benefit from knowing the future raw measurement com-
pared to the future position of all people. To implement a planner for an autonomous
vehicle, a second perception model is needed that derives an application-specific repre-
sentation from the predicted raw measurement. The overall number of parameters and
the computational cost of such a two-model approach is almost certainly much higher
compared to a model which directly predicts an application-specific representation. The
prediction task is additionally more complex, as the model has to reconstruct the whole
measurement of the next time step, which includes additional information not required
to derive a task-specific environment representation.

36

3 Semantic Forecasting Models

Vondrick et al. (2016) propose a model which predicts a more abstract, high-level repre-
sentation. They learn a general-purpose predictive feature extractor in a self-supervised
manner and use an off-the-shelf or an adapted classifier to predict future actions or ob-
ject categories. To train the adapted classifier, labeled data is required. Our method,
on the other hand, creates a task-specific predictive encoder and we evaluate options to
jointly optimize the overall predictive network in a self-supervised manner using unla-
beled data. Their method assumes that a general-purpose feature extractor network and
labeled data are available, our methods is based on the availability of a task-specific feed-
forward model. An additional difference is the prediction target of the models. Vondrick
et al. (2016) focus on predicting a single class (e.g. action class), which differs from the
spatially detailed representation of the environment created by our model. These dissim-
ilarities also manifest in the different design of the recurrent structures of the models.

A related field of research focuses on temporally stabilizing (temporally filtering) the
prediction of a model using information of previous time steps (Zhang et al., 2014; Pavel
et al., 2015; Patraucean et al., 2015; Fayyaz et al., 2016; Kundu et al., 2016). Such
methods perform a prediction for the current time step conditioned on the measurements
of the current as well as all previous time steps. In Chapter 4 and Chapter 5, we propose
two such models and additionally highlight related approaches from literature.

3.3 Predictive Transformation

To convert a trained feed-forward neural network into a predictive one, we transform
it into a recurrent network by introducing an additional recurrent predictive module.
Our proposed predictive module is based on a convolutional LSTM cell (Xingjian et

al., 2015) and propagates an abstract feature representation of the feed-forward model
one time step into the future. The weights of the newly generated predictive model are
optimized using a teacher-student-like (Bucilua et al., 2006; Ba and Caruana, 2014; Hin-
ton et al., 2014) training approach. In total, we evaluate two loss options for training, a
loss which enforces a similarity between the predicted feature representation of the stu-
dent and the corresponding feature representation of the teacher network and a loss that
enforces a similarity between the task-specific output of the teacher and student network.

37

3 Semantic Forecasting Models

xt

yt

f

xt

rt

yt

fenc

fdecTask-specific
representation

mt−2

xt−1

rt−1

r̂t

ŷt

mt−1

xt

rt

r̂t+1

ŷt+1

mt

frec

fenc

fdec

fenc

fdecInternal
memory

Predicted
representation

fpred

Figure 3.2: Proposed predictive transformation used to convert a trained feed-forward neural network f into a pre-
dictive network fpred. In a first step, we split the model into two parts, an encoder network fenc and a decoder
network fdec. To temporally propagate the feature representation rt of the encoder, a recurrent predictive module frec
is introduced. The resulting predictive network architecture fpred thus consists of the original feed-forward model
(fenc and fdec) depicted in blue and the inserted recurrent predictive module (frec), which is highlighted in red. The
predicted feature representations and targets are each marked by a hat accent above the variable name.

In Section 3.3.1, we describe the structural transformation of the feed-forward neural
network into a predictive model in general terms. Section 3.3.2, further elaborates on
the recurrent module that has been inserted to temporally predict an abstract feature
representation of the feed-forward model. In Section 3.3.3, we present our employed
learning strategy which operates in a self-supervised fashion without requiring hand-
labeled training data.

3.3.1 Predictive Network Architecture

We assume that a well-trained feed-forward neural network f with parameters θ is given,
which receives a measurement xt of the current time step t and generates a correspond-
ing application specific target yt = f(xt; θ). Although this chapter focuses on networks
which produce a pixel-wise semantic segmentation yt using the information of an im-
age xt, our approach is viable for feed-forward networks in general3. The measure-
ment xt can originate from different sensors such as cameras, laser scanners or even a
group of sensors (see Section 2), and the target can be chosen arbitrarily. However, the
target representation may influence the choice of training loss. A more detailed discus-
sion of loss options is given in Section 3.3.3.

3The proposed approach is viable for any feed-forward neural network that allows the structural transformation
described in this section — i.e. the model has to be divisible into two parts to create an abstract representation that can
be predicted in time.

38

3 Semantic Forecasting Models

To transform a model f into a predictive one, we first split it into two parts (see Fig-
ure 3.2, left sides) — a lower network part fenc, which we will refer to as feature
encoder, and an upper part fdec, the so-called decoder. The encoder network fenc re-
ceives the measurement xt and generates an abstract task-specific feature representa-
tion rt = fenc(xt; θenc). The decoder network fdec computes the target yt = fdec(rt; θdec),
given the representation rt generated by the encoder. All parameters of the encoder and
decoder are specified by θenc and θdec, respectively. To propagate the abstract feature rep-
resentation rt one time step into the future we utilize a recurrent predictive module frec
with parameters θrec:

r̂t+1 = frec(rt,mt−1; θrec)

= frec(fenc(xt; θenc),mt−1; θrec). (3.1)

This module predicts the expected representation of the next time step r̂t+1 based on the
current representation rt as well as a hidden state mt−1. The hidden state represents
the knowledge aggregated from representations of previous time steps. To generate the
predicted target ŷt+1 of time step t+1, the predicted representation r̂t+1 is passed through
the decoder network fdec:

ŷt+1 = fdec(r̂t+1; θdec)

= fdec(frec(fenc(xt; θenc),mt−1; θrec); θdec). (3.2)

The split of the network has to be chosen task-specifically and is a hyperparameter of
our approach. Based on our experience, a split at a layer producing higher-level (more
abstract) features is a favorable choice, considering that the temporal prediction of ab-
stract scene properties is generally easier compared to the prediction of detailed low
level features. The right side of Figure 3.2 depicts the overall predictive network archi-
tecture fpred:

ŷt+1 = fpred(xt,mt−1; θenc, θrec, θdec), (3.3)

consisting of the original feed-forward network drawn in blue as well as the inserted
recurrent module highlighted in red.

39

3 Semantic Forecasting Models

The resulting predictive network conceptually decouples temporal prediction (subnet-
work frec) from scene representation (subnetwork fenc and fdec). This property makes it
possible to reuse the trained weights θ = θenc∪θdec of the original feed-forward model f .

3.3.2 Recurrent Predictive Module

The recurrent predictive module is tasked with predicting a representation of a feed-
forward network one time step into the future. Thus, it has to learn the dynamics of the
representation based on a sequence of previous representations to predict the expected
next state. A natural model choice to implement such a behavior are Recurrent Neural

Networks (RNNs). Long Short-Term Memory (LSTM) cells as a variant of RNNs have
proven to produce state-of-the-art results in a variety of sequence modeling tasks (Graves,
2014). Due to the spatial and local nature of the data used in this work, we use a con-
volutional LSTM as suggested by Xingjian et al. (2015) to implement the predictive
module frec. The recurrent part of the predictive module is thus defined by:

it = σ(Wri ∗ rt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi), (3.4)

ft = σ(Wrf ∗ rt + Whf ∗ ht−1 + Wcf ◦ ct−1 + bf), (3.5)

ot = σ(Wro ∗ rt + Who ∗ ht−1 + Wco ◦ ct + bo), (3.6)

ct = ft ◦ ct−1 + it ◦ tanh(Wrc ∗ rt + Whc ∗ ht−1 + bc), (3.7)

ht = ot ◦ tanh(ct), (3.8)

where ∗ is the convolutional operator and ◦ the Hadamard product. The input, forget,
and output gate are denoted by it, ft, and ot, respectively. For brevity, we will sum-
marize the cell state ct and hidden state ht by mt in the remainder of this chapter. To
obtain the predicted representation r̂t+1, we pass the cell state ct through an additional
convolutional layer:

r̂t+1 = frec(rt,mt−1; θrec) = φ(Wcr ∗ ct + bcr). (3.9)

All trainable weights of the predictive module frec are summarized by the variable θrec.
As nonlinearity φ, we use a leaky ReLU (Maas et al., 2013) with a negative slope coef-
ficient of 0.01. The weight tensor Wcr of the final convolutional layer has to be chosen

40

3 Semantic Forecasting Models

mt−2

xt−1

rSt−1

fS
rec

r̂St

ŷS,τt

xt

rTt

yT,τt
Lrt

Lyt

mt−1

xt

rSt

fS
rec

r̂St+1

ŷS,τt+1

xt+1

rTt+1

yT,τt+1

Lrt+1

Lyt+1

mt

fS
enc

fS
dec

fT
enc

fT
dec

fS
enc

fS
dec

fT
enc

fT
dec

Figure 3.3: Teacher-student structure used for self-supervised training. The teacher network is depicted in blue and
marked by a superscript T. The student network is drawn in green and indicated by the superscript S. We use the trained
feed-forward model as the teacher network and apply it to the measurement of the next time step. The student network
mimics the teacher, given the current measurement as well as the internal memory. We evaluate two loss options, a
loss Lr defined on representation level and a loss Ly defined on target level.

in such a way that the predicted representation r̂t+1 and the input representation rt have
equal dimensions (i.e. the number of convolutional filters has to be identical to the num-
ber of feature maps in rt). The prediction capabilities of the proposed recurrent module
can easily be scaled up by stacking multiple convolutional LSTM cells and / or by using
an encoder-decoder-like structure as proposed by Xingjian et al. (2015).

3.3.3 Predictive Knowledge Transfer

We use the teacher-student paradigm (Bucilua et al., 2006; Ba and Caruana, 2014; Hin-
ton et al., 2014) to train the predictive network architecture in a self-supervised man-
ner without the need of labeled sequence data. This paradigm is commonly used to
compress a well-trained deep neural network into a smaller network by using the pre-
diction of the teacher as a supervision signal for the student. In our setting, the well-
trained feed-forward network f serves as the teacher to train the more complex predic-
tive model fpred — the student network. A similar setting, where a simple teacher model
is used to train a more complex student model, was investigated by Tang et al. (2016).

To generate a predictive supervision signal, we provide the teacher with the measure-
ment of the next time step and force the student network to mimic the teacher given the

41

3 Semantic Forecasting Models

current measurement as well as the internal memory. The resulting teacher-student train-
ing structure is depicted in Figure 3.3, with the teacher network illustrated in blue and
the student network in green. The trained weights of the teacher, which we will denote
as θT = {θTenc, θTdec}, are fixed during the training procedure. The weights of the stu-
dent θSpred = {θSenc, θSrec, θSdec} are optimized using the supervision signal of the teacher
model. In addition, we initialize all weights of the student which are not part of the pre-
dictive module (i.e. θSenc and θSdec) with the corresponding weights of the teacher. Since
the initial weights θSenc and θSdec are thus already well-trained, one could also fix them
and only optimize the weights θSrec of the recurrent module. Both training options are
evaluated in the experiments of Section 3.4. To compute the gradient with respect to the
weights, we use Backpropagation Through Time (BPTT) (Werbos, 1990) and unroll the
recurrent network for N time steps.

We evaluate two losses to train the predictive student network: a loss Lr defined on
representation level and a loss Ly defined on target level (i.e. using the semantic pre-
diction of both networks). The representation loss Lr enforces a similarity between the
predicted representation r̂St+1 of the student network and the representation rTt+1 of the
teacher network for the last N time steps:

Lr(θSenc, θSrec) =
N∑
t=1

λt
1
2

∥∥frec(fenc(xt; θSenc),mt−1; θ
S
rec)− fenc(xt+1; θ

T
enc)
∥∥2
2
, (3.10)

where λt denotes a time-dependent weighting factor. This loss only optimizes the weights
of the encoder network θSenc as well as the weights of the recurrent module θSrec. The
weights of the decoder θSdec are fixed to the corresponding weights of the teacher net-
work. The representation loss is independent of the target yt of the model and thus
usable in a variety of applications. A disadvantage of this loss is its inability to adapt the
weights of the decoder subnetwork to slight changes in the distribution of the abstract
feature representation.

The loss Ly on the other hand enforces a similarity between the task-specific output of
the two networks. Given our focus on a classification task (pixel-wise semantic seg-
mentation), we adopt the knowledge distillation loss of Hinton et al. (2014). To increase
clarity, we will omit the spatial pixel coordinates in the following equations (i.e. assume a
classical classification task). The specified loss function is extended to the use case of se-

42

3 Semantic Forecasting Models

mantic segmentation by aggregating the loss values over pixels. Let eTt+1 = f ′(xt+1; θ
T)

and êSt+1 = f ′pred(xt,mt−1; θSpred) be the pre-softmax activations (logits) of the teacher
and student network, respectively. Using the softmax function, the logit ei of class i can
be transformed to a probability:

yτi =
exp(ei/τ)∑
j exp(ej/τ)

. (3.11)

The temperature parameter τ scales the logit and is usually set to 1. A target y without
superscript τ indicates the use of a temperature of 1. For the sake of brevity we will
use the notation yτ = softmax(e/τ) to indicate the full probability distribution over
classes computed for the logits e using a temperature of τ . To compute the knowledge
distillation objective function, Hinton et al. (2014) propose to use a cross-entropy loss in
combination with soft targets (i.e. a softened probability distribution computed using a
softmax temperature of greater than 1):

Ly(θSpred) =
N∑
t=1

λtH
(

yT,τt+1, ŷ
S,τ
t+1

)
, (3.12)

where H denotes the cross-entropy and τ > 1. During training the same temperature
value τ is used to compute the probability distribution over classes of the teacher model:

yT,τt+1 = softmax

(
eTt+1

τ

)
= softmax

(
f ′(xt+1; θ

T)

τ

)
(3.13)

as well as the student model:

ŷS,τt+1 = softmax

(
êSt+1

τ

)
= softmax

(
f ′pred(xt,mt−1; θSpred)

τ

)
. (3.14)

Using soft targets instead of hard targets leads to a richer transfer of information from
the teacher network to the student network. A detailed discussion and experimental
evaluation of the benefits of soft targets is given by Hinton et al. (2014).

43

3 Semantic Forecasting Models

. . .

. . .

. . .

t = 16t = 15t = 14t = 13t = 12t = 11t = 10t = 9t = 8t = 7

Figure 3.4: Simulated video dataset for semantic segmentation, emulating a 2D environment in which rectangles
represent walls and borders, circles represent moving objects, and squares represent static foreground objects. Circles
elastically collide with other circles, walls as well as borders and are occluded by squares. A semantic label is only
available for the last image of each validation and test sequence as well as for 1000 training sequences. The four label
classes are: background pixels; wall and border pixels; pixels of circles; pixels of squares. We only
depict the last 10 frames of three example sequences of length 16.

3.4 Experiments

3.4.1 Dataset

To systematically evaluate different aspects of the proposed approach, we use a simulated
video dataset for semantic segmentation. The data emulates a 2D environment of 64×64
pixels, in which rectangles represent walls and environment borders, circles represent
moving objects, and squares represent static foreground objects. The circles elastically
collide with other circles, walls, and borders. Squares occlude all other objects as well as
each other. The color and size of the objects, the number of walls, squares, and circles as
well as the velocity of circles are randomly sampled for each sequence. Additionally, we
add independent Gaussian noise with zero mean and a variance of 0.005 to each pixel and
clip the resulting pixel values to the interval [0, 1] to obtain a valid sequence. The dataset
thus mimics common phenomena of the real world (e.g. occlusion, interaction of objects,
noisy observations, . . .). In total, our dataset contains 10,000 sequences of length 16,
which are split into 6,000 training sequences and 2,000 validation and test sequences,
respectively. A pixel-wise semantic label is available for the last image (i.e. frame 16)

44

3 Semantic Forecasting Models

xt

3×
64×64

32×
64×64

32×
64×64

32×
32×32

64×
32×32

64×
32×32

64×
16×16

rt

64×
16×16

split point

64×
16×16

512×
16×16

4×
16×16

yt

4×
64×64

∗Conv(3,1)
BN

∗Conv(3,1)
BN

Pool(2,2) ∗Conv(3,1)
BN

∗Conv(3,1)
BN

Pool(2,2)∗Conv(3,1)
BNDrop

∗Conv(1,1)
BN, Drop

Conv(1,1) DeConv(↑·4)
Softmax

Feed-forward network f

Figure 3.5: Convolutional feed-forward model f which receives an image xt and infers a pixel-wise semantic seg-
mentation yt.

∗Conv(f,s): convolutional layer with f filters and a stride of s. An additional asterix indicates the usage
of a leaky ReLU nonlinearity with a negative slope coefficient of 0.01. Pool(k,s): Max-pooling layer using a kernel
size and stride of k. The usage of dropout and batch normalization is respectively indicated by Drop and BN. To
obtain a semantic segmentation yt with the same resolution as the input image xt, we use a deconvolutional layer
DeConv(↑·4) which performs a fourfold upsampling, followed by a pixel-wise softmax function.

of each validation and test sequence. In addition, we assume that 1,000 sequences of the
training dataset are labeled in the same way. The pixels are labeled according to the four
classes: background, walls and borders, circles, and squares. Figure 3.4 depicts example
sequences of the dataset with corresponding ground-truth labels.

3.4.2 Implementation Details

To evaluate our proposed predictive transformation approach, we use the convolutional
feed-forward model f depicted in Figure 3.5. This model computes a pixel-wise seg-
mentation yt given an image xt. Structurally the model is based on the FCN-32s archi-
tecture of Long et al. (2015) with a reduced number and size of layers. In contrast to the
FCN-32s model, we use leaky ReLU nonlinearities (Maas et al., 2013) and apply batch
normalization (Ioffe and Szegedy, 2015). The model is trained using the 1,000 labeled
images of the training dataset and a pixel-wise cross-entropy loss. The parameters of the
optimizer as well as the dropout probabilities are derived using an exhaustive random
search. The feed-forward model f achieves a mean Intersection over Union (IoU) (Ev-
eringham et al., 2015) of 89.02 % on the labeled images of the test dataset.

The predictive network is constructed in accordance to Section 3.3, by splitting the feed-
forward model f before the first dropout layer. A vertical dotted line indicates the split

45

3 Semantic Forecasting Models

64×
16 × 16rt ConvLSTM

ct

128×
16 × 16 64×

16 × 16 r̂t+1
ht−1 ct−1

ht ct

Drop BN

∗Conv(3,1)
BN

frec

Figure 3.6: Recurrent predictive module frec consisting of a convolutional LSTM layer followed by a convolutional
layer (see Section 3.6). ∗Conv(f,s): convolutional layer with f filters and a stride of s. The usage of dropout and batch
normalization is respectively indicated by Drop and BN. The convolutional LSTM uses an input-to-hidden (Wr∗)
filter size of 5×5 and a hidden-to-hidden (Wh∗) filter size of 7×7.

point in Figure 3.5. Following the description of Section 3.3.2, we construct a recurrent
predictive module which propagates the feature representation rt one time step into the
future. The predictive module uses a convolutional LSTM with 128 features, an input-
to-hidden (Wr∗) filter size of 5×5 and a hidden-to-hidden (Wh∗) filter size of 7×7. We
additionally apply dropout to activations entering the LSTM and use zoneout (Krueger et

al., 2017) within the LSTM to improve generalization. The convolutional layer following
the LSTM uses a filter size of 3×3 and a leaky ReLU with a negative slope coefficient
of 0.01. Both layers are followed by a batch normalization layer and all convolutions
operate with a stride of 1. We treat the initial hidden h0 and cell state c0 of the convo-
lutional LSTM as model weights and learn them during training. The architecture and
parametrization of the recurrent predictive module frec is depicted in Figure 3.6.

We train the predictive model four times using the different knowledge transfer varia-
tions of Section 3.3.3. Versions PMr,all and PMy,all, respectively, use the representa-
tion loss Lr and target loss Ly and optimize all weights of the model. In the case of the
representation loss, the weights of the decoder θSdec are not updated. Versions PMr,rec

and PMy,rec are trained by only optimizing the weights of the recurrent predictive mod-
ule θSrec. The weights of the encoder and decoder are initialized for all four settings with
the corresponding weights of the feed-forward network (i.e. the teacher model). The
training is conducted utilizing all 6,000 training sequences without the ground-truth la-
bels. For each sequence of length 16, we provide the first 15 frames to the student and the
teacher receives the last 15 frames. The weighting factor is set to λt = ((t−1)/(N−1))5,
with N equal to 15.

These models are compared with three baselines. Baseline PMcopy uses the weights
of the feed-forward model and a copy function (̂rt+1 = rt) that serves as the predictive

46

3 Semantic Forecasting Models

module. The second baseline PMwarp uses a post-processing procedure to temporally
propagate the semantic segmentation yt of the feed-forward model f :

ŷt+1 = fwarp(yt,xt−1,xt). (3.15)

This baseline uses the segmentation yt to separate pixels belonging to static objects
(classes squares, walls / borders, and background) and dynamic objects (class circles).
Pixels originating from dynamic objects (dynamic pixels) are forward warped (Szeliski,
2010) using the optical flow (Ft→t+1 ≈ −Ft→t−1) (Sánchez Pérez et al., 2013) estimated
from the last two observed input images (xt−1 and xt)4. The temporally predicted dy-
namic pixels are combined with the static pixels of yt while using additional knowledge
about the physics of the simulated environment: 1) pixels which are no longer occluded
by a circle are set to the background class; 2) only background pixels are replaced by
predicted dynamic pixels (i.e. temporally predicted pixels of class circles are not allowed
to obscure pixels of class squares and class walls / borders). As no training is required,
these two baselines do not need labeled data and only utilize the feed-forward model f
analogous to our models. The third baseline PMsup is a predictive model trained from
scratch using the 1,000 labeled training sequences. The architecture of this model is iden-
tical to the four models trained with our predictive transformation approach. Training of
model PMsup is performed in a supervised manner using the ground-truth labels as
well as a pixel-wise cross-entropy loss. In this supervised setting, the predictive model
receives the first 15 frames of each sequence and predicts a semantic segmentation of
the 16th frame. The loss is computed using the predicted segmentation of frame 16 as
well as the corresponding ground-truth label. Compared to the models trained with our
knowledge transfer approach, this baseline requires labeled training data.

Additionally, we train a predictive model PMpre which uses the weights of the best
transformed model PMy,all as an initialization and is then fine-tuned in accordance
to PMsup. A similar two-step training approach, consisting of pre-training using soft
targets and fine-tuning using hard targets, was used by Tang et al. (2016). To make the
comparison of the different models as fair as possible, we perform an extensive random
search for each model to determine the training, regularization, and loss parameters.

4The predicted pixel locations at time step t+1 most likely do not align with integer pixel coordinates. We assign
in such cases the class of the predicted pixel (i.e. class circles) to all four nearest pixels.

47

3 Semantic Forecasting Models

Model Mean Background Walls / Borders Circles Squares
PMy,all 82.97 % 89.61 % 96.35 % 59.37 % 86.55 %
PMr,all 79.63 % 87.10 % 96.04 % 49.54 % 85.84 %
PMy,rec 80.05 % 87.58 % 96.01 % 51.52 % 85.09 %
PMr,rec 80.59 % 87.80 % 96.02 % 53.21 % 85.33 %
PMcopy 75.72 % 83.73 % 95.56 % 41.14 % 82.45 %
PMwarp 77.36 % 84.19 % 95.56 % 47.25 % 82.45 %
PMsup 80.63 % 88.23 % 97.57 % 43.36 % 93.35 %
PMpre 84.96 % 91.06 % 97.61 % 57.81 % 93.37 %

Table 3.1: Mean IoU score (%) and per-class IoU scores (%) on the test dataset for all introduced models. The first six
models are trained using only the feed-forward model and do not rely on additional training data. The last two models
additionally rely on labeled training data.

3.4.3 Results

To evaluate our approach, Table 3.1 reports the per-class IoU scores and the mean IoU
score of all introduced models on the 2000 sequences of the test dataset. The metrics are
calculated using the labeled 16th frame of each sequence as well as the corresponding se-
mantic prediction of the models. Equivalent to training, the prediction of a model is con-
ditioned on the first 15 frames of a sequence or a subset of these frames. Model PMcopy

only uses the information of frame 15 to create a semantic prediction of frame 16. Re-
spectively, model PMwarp only utilizes the information of frame 14 and 15. All other
models receive the first 15 frames of a sequence as input. In addition to the quantitative
results in Table 3.1, we visualize in Figure 3.7 semantic predictions of the best predictive
model PMy,all trained with our knowledge transfer approach without using labeled data.

All models trained with our predictive knowledge transfer approach significantly outper-
form the two baselines PMcopy and PMwarp which also do not rely on labeled training
data. Our best model PMy,all improves the mean IoU score by more than 7 % compared
to the copy baseline and by more than 5.5 % compared to baseline PMwarp. The dif-
ference is especially visible when focusing on the class circles which represents moving
objects. The copy baseline does not learn a recurrent predictive module and thus gener-
ates a rather low IoU score of 41.14 % for the class circles. Due to its ability to model
motion using the optical flow, baseline PMwarp is able to increase the IoU score of class
circles to 47.25 %. Our best model PMy,all achieves an IoU score of 59.37 % for class
circles, indicating that the recurrent predictive module has learned meaningful dynamics
and interactions of the different object types. The predictive capabilities of this model are

48

3 Semantic Forecasting Models

additionally visible in Figure 3.7. Our model is able to recognize different object types
and to predict the future pixel-wise semantic labels. It has learned the dynamics and
interactions of circles and can predict occlusion by squares (Figure 3.7, prediction ŷt−1)
as well as elastic collisions with walls (Figure 3.7, prediction ŷt+1). It can even resolve
heavy occlusion of one of the circles in image xt and predict its reappearance beneath
the occluding square (Figure 3.7, prediction ŷt). The predictions of PMy,all are rather
coarse which is due to the structure of the chosen feed-forward model f .

There are four options to train a predictive model in a self-supervised manner using our
knowledge transfer approach — two loss variants and two optimization settings (see Sec-
tion 3.3.3). When using the representation loss Lr, it is beneficial to only train weights
of the recurrent predictive module. However, the difference is relatively small — the
mean IoU score of model PMr,rec is 80.59 % and of model PMr,all 79.63 %. For the
target loss Ly, the best results are obtained when all weights are optimized. Compared
to the representation loss, the performance differences of the two optimization settings
are larger. Model PMy,all achieves a mean IoU score of 82.97 % while the score of
model PMy,rec is 80.05 %. In general, the best results are achieved by using the target
loss and optimizing all weights. This is most likely due to the fact that in this setting the
predictive model can be trained in an end-to-end manner using a loss tailored towards the
target application (i.e. semantic segmentation). The weights of the decoder subnetwork
can thus be adapted to changes in the distribution of the abstract feature representation
and the encoder can be adapted to create an abstract representation which is best suited
for temporal prediction.

Baseline PMsup, which is trained in a supervised manner using labeled data, achieves
a mean IoU score of 80.63 %. Our best model PMy,all thus also outperforms this su-
pervised baseline by more than 2 % according to the mean IoU score. This is most
likely due to the benefits of training with softened targets compared to hard labels as
well as due to the comparatively large number of available unlabeled sequences. Inter-
estingly, model PMsup outperforms model PMy,all for class wall / borders and class
squares, which represent static objects. The IoU score of class circles, on the other hand,
is significantly worse than the corresponding score of model PMy,all. Model PMsup

achieves an IoU score of 43.36 % on class circles which is only 2.22 % larger compared
to the score of the copy baseline PMcopy. The IoU score on class wall / borders and
squares are respectively 2.01 % and 10.76 % larger than the corresponding scores of the

49

3 Semantic Forecasting Models

Ground truth:

PMy,all:

.

Predictions

Classes:
Background
Walls/Borders
Circles
Squares

Input

xt−1

ŷt

xt−3 xt−2 xt xt+1

Figure 3.7: Example predictions of model PMy,all. For three time steps (xt−2, xt−1 and xt) we visualize the
semantic prediction of the model for the next time step (ŷt−1, ŷt and ŷt+1) as well as the corresponding ground truth
semantic map of the next time step. The predictions are each conditioned on the previous 15 frames. The predictive
model PMy,all is able to infer the different object types as well as their dynamics and interactions.

feed-forward model f on the test data5. The per-class IoU scores of the supervised model
indicate that it mainly uses information from previous time steps to provide more accu-
rate predictions of static objects. Its ability to create precise semantic predictions of the
interacting dynamic objects is however limited compared to model PMy,all.

The overall best results can be achieved when the model PMy,all is further fine-tuned in
a supervised manner using the labeled training data. The corresponding model PMpre

achieves a mean IoU score of 84.96 % on the test dataset. Fine-tuning using the ground-
truth labels yields an increased performance for classes of static objects.

From a labeling point of view, the same amount of effort is required to create model
PMsup and PMpre. The same 1000 labeled images are used in our experiments to
train each of the two models6. Model PMpre, which is significantly better than model
PMsup, requires additional unlabeled sequences for training, which are usually easy and
inexpensive to acquire. Besides the use case of transforming a feed-forward model into a
predictive model using only unlabeled sequence data, our approach is thus also applica-
ble in a semi-supervised setting (Ouali et al., 2020) — i.e. a scenario in which we want
to train a model which predicts the semantic segmentation of the next frame conditioned

5We use the IoU score of the feed-forward model f which creates a semantic prediction for time step 16 condi-
tioned on the image of time step 16 as a reference.

6The 1000 labeled frames which are used to train model PMsup are also used to train the feed-forward model.
Using unlabeled sequence data, the feed-forward model is transformed to the predictive modelPMy,all and fine-tuned
using the sequences containing the 1000 labeled frames to create PMpre.

50

3 Semantic Forecasting Models

on previous observations using a dataset which contains a comparatively small amount
of labeled examples and a large amount of unlabeled examples. The semi-supervised
learning version of our approach includes three training steps, consisting of: 1) training
of a feed-forward model using the labeled frames; 2) predictive transformation in ac-
cordance to Section 3.3 using a large amount of unlabeled sequences; 3) fine-tuning of
the predictive model using the sequences with labeled frames. With this approach, one
can use a large amount of unlabeled data that is inexpensive to acquire to learn powerful
predictive models.

3.5 Conclusion

To enable acting in an anticipatory way, autonomous agents have to reason about the fu-
ture environment state. Current deep learning-based approaches which generate a seman-
tic representation of the observed environment (i.e. a pixel-wise semantic segmentation)
mainly operate in a non-predictive fashion. In this chapter, we proposed an approach to
transform such non-predictive feed-forward networks into ones which predict the future.
Our proposed predictive transformation extends a given feed-forward network with a re-
current predictive module, while reusing its original structure and encoded task-specific
knowledge. To optimize the weights of the resulting predictive model, we proposed a
teacher-student-like training strategy and evaluated four corresponding training losses.
Training can thus be conducted without the need of labeled video data in a fully self-
supervised fashion. Our qualitative and quantitative analysis on simulated motion se-
quences showed that the resulting predictive network can model the dynamics of the
scene (e.g. the interaction and motion of objects), enabling meaningful predictions of
the future pixel-wise semantic segmentation. We additionally demonstrated the advan-
tages of using our approach when training a predictive model on a limited amount of
labeled data without the availability of a corresponding feed-forward model (i.e. a semi-
supervised setting). Although the main focus of this work has been on generating models
that predict the pixel-wise semantic segmentation of the next time step conditioned on
previous observed image frames, our general approach is applicable to a variety of feed-
forward networks.

51

3 Semantic Forecasting Models

Concurrent to our work (Wagner et al., 2017), Luc et al. (2017) and Jin et al. (2017b)
investigated similar approaches to predict the future semantic segmentation. Unlike our
model, Luc et al. (2017) do not use recurrent structures to model the temporal dependen-
cies, but adopt the multi-scale architecture of Mathieu et al. (2016). Similar to our ap-
proach, they use a feed-forward model to create pseudo-labels for a large set of unlabeled
videos. However, they do not reuse the structure and trained weights of the feed-forward
model when constructing the predictive network. Their training is also inspired by net-
work distillation, but differs in the choice of loss function. In accordance with Mathieu
et al. (2016), they optimize a combination of an L1 loss and a gradient difference loss.
In addition, they also evaluate adversarial fine-tuning, which did not consistently lead
to a significant performance improvement. Their best performing model predicts future
segmentations based on previous segmentations, unlike our model which receives raw
images of previous time steps as input.

Jin et al. (2017b) propose to temporally stabilize the pixel-wise semantic segmentation
of the current image using information of previous time steps. Their proposed model
(PEARL) is trained in two phases using additional auxiliary tasks. In phase one, the
portion of the model which processes the images of the previous time steps is pre-trained.
The pre-training is conducted in an unsupervised manner by performing future video
frame prediction. The overall PEARL architecture is trained in phase two using a multi-
task loss and labeled data. Their multi-task learning approach employs the concept of
hard parameter sharing (Ruder, 2017) for the two tasks: future semantic segmentation
and temporally stabilized semantic segmentation. Compared to our work as well as the
work of Luc et al. (2017), future semantic forecasting is used by Jin et al. (2017b) only as
an auxiliary training task and is not further evaluated in their experiments. The training
of the PEARL model additionally requires labeled data.

Following the publication of the contents of this chapter, a variety of work developed
new methods for predicting raw sensory data or future object trajectories. For detailed
discussions of such methods, please refer to the review papers of Oprea et al. (2020) and
Rudenko et al. (2020).

Several publications (Jin et al., 2017a; Nabavi et al., 2018; Luc et al., 2018; Couprie
et al., 2019; Terwilliger et al., 2019; Chiu et al., 2020; Saric et al., 2020; Hu et al., 2020)
also focused on developing new models for future semantic segmentation. Nabavi et al.

(2018) forecast the future segmentation conditioned on the segmentation of four previous

52

3 Semantic Forecasting Models

time steps. To capture spatio-temporal dependencies, they use convolutional LSTM cells
on four abstraction levels. Pseudo training labels are generated using a standard semantic
segmentation model. Terwilliger et al. (2019) use a warp layer to explicitly transform
the segmentation of the last observed time step into the future. The transformation is
parametrized by a model which predicts the future optical flow. By decomposing the
task into future flow forecasting and current frame segmentation, they manage to design
a model with a comparatively small number of parameters and a low inference time.
Saric et al. (2020) propose a novel predictive module which forecasts the representation
of a semantic segmentation model into the future. Their predictive module performs two
independent forecasts of the feature representation and combines them using predicted
pixel-wise weights. One of the forecasts is conducted by directly regressing future fea-
tures from observed previous features, the other forecast uses an explicit transformation
similar to Terwilliger et al. (2019). Our model as well as most of the referenced seman-
tic forecasting approaches are deterministic. Thus, they do not model the stochasticity
and multimodal nature of the world, which is especially relevant for complex scenes and
long time horizons. Hu et al. (2020) adopt a conditional variational approach to design
a model which predicts the future in a probabilistic manner. Conditioned on observed
video data, their model jointly predicts future semantic segmentation, depth, and optical
flow. They quantitatively highlight the ability of their model to perform plausible and
diverse future predictions.

Building on the experience we have gained with our predictive transformation approach,
we focus in Chapter 4 and Chapter 5 on using temporal information to reduce aleatoric
failures of single-frame semantic segmentation networks.

53

4
Hierarchical Recurrent Filtering for Fully
Convolutional DenseNets

Autonomous agents require the ability to generate a robust and reliable representa-
tion of the environment. Deep learning-based methods have greatly improved per-
ception systems that operate on image data, but still fail in challenging situations.
These failures are often not solvable on the basis of a single image. In this work,
we present a parameter efficient temporal filtering concept which extends an exist-
ing single-frame semantic segmentation model to work with multiple video frames.
The resulting recurrent architecture temporally filters feature representations on all
abstraction levels in a hierarchical manner, while conceptually decoupling temporal
dependencies from scene representation.
Using a synthetic video dataset, we quantitatively compare our model with other
temporal architectures and qualitatively show its ability to suppress noise, derive ad-
ditional object properties, and resolve missing information as well as ambiguities.
Our best model significantly outperforms common non-recurrent temporal baseline
models and achieves a 3.8 % better mean IoU score compared to a similar non-
hierarchical, recurrent baseline model. A comparison to single-frame segmentation
models further illustrates the clear advantage of temporal architectures with respect
to robustness.

55

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

4.1 Introduction

A robust and reliable perception and interpretation of the environment is a crucial capa-
bility of autonomous vehicles, such as self-driving cars or mobile robots. Deep learning-
based methods greatly advanced the generation of robust environment representations
and dominate the majority of perception benchmarks. From a safety point of view, a
major drawback of popular benchmark datasets, like Cityscapes (Cordts et al., 2016) or
Caltech (Dollár et al., 2012), is their recording at daytime under good or normal envi-
ronment conditions. In order to deploy autonomous vehicles in an unconstrained world
without any human supervision, one has to make sure that they still work in challenging
situations such as sensor outages or adverse weather. These situations induce failures of
vision-based perception systems, which are not solvable by just using the information
provided by a single image. In this chapter, we investigate the utilization of temporal
information to improve the robustness of such systems.

In the scope of this work, we divide failures of the perception system according to the
classification of uncertainties (Kiureghian and Ditlevsen, 2009; Kendall and Gal, 2017)
into two categories: epistemic failures and aleatoric failures. We denote a failure as
epistemic, if it can be solved by gathering more training data or by using a more powerful
model (Kiureghian and Ditlevsen, 2009). Aleatoric failures, on the other hand, originate
from perturbations inherent in the data (Kendall and Gal, 2017). More data or a better
tuned model will not solve these failures. To tackle aleatoric failures, one has to enhance
the information provided to the perception system. This can be achieved by using a better
sensor, fusing information of multiple sensors, and / or by taking temporal information
into account.

The aleatoric failures can be further subdivided into failures due to noise, ambiguities,
missing information, or occlusions.

Noise Noise is an unwanted disturbance of a desired signal, often caused by
harsh environment conditions, like rain or snow, or by the sensor itself
(e.g. electronic noise). Harsh weather conditions, for example, drastically
reduce the information content provided by an image and are challenging
for computer vision algorithms and humans. In general, noise effects the
whole image.

56

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

Ambiguities Sensors only observe a specific physical property of the world, e.g. the
electromagnetic spectrum of a specific frequency band. The observed
property may not be suitable to distinguish objects of different classes.
For example, to reliably distinguish a parked car from a moving one, the
information from a single image is generally insufficient. Such a classifi-
cation would benefit from a sequence of video frames or information from
a sensor which can directly measure the velocity of an object.

Missing
Information

A malfunction of the sensor hardware or limitations introduced by the
measurement principle of a sensor can result in missing information. Sud-
den illumination changes, shadows, or bad lighting conditions, for exam-
ple, drive cameras into their limitations. These perturbations can affect
the whole image or only a subregion of the image and are typically highly
correlated in space and / or time.

Occlusions Occlusions occur when one object of interest is fully or partially hidden
behind another object of interest. This is a common failure case especially
for autonomous vehicles which operate in crowded areas.

In this chapter, we focus on using temporal information to reduce aleatoric failures of
a single-frame semantic segmentation model. Using information from previous time
steps is quite cost-effective compared to other approaches (e.g. fusing the information
of multiple sensors; see Section 2), since no additional sensor hardware is required.
We build upon the Fully Convolutional DenseNet (FC-DenseNet) of Jégou et al. (2017)
and propose a temporal filtering concept, which extends it to multiple video frames.
The temporal integration is achieved by recurrently filtering the representations of the
FC-DenseNet on all abstraction levels in a hierarchical manner. The resulting Recur-

rent Fully Convolutional DenseNet (RFC-DenseNet) conceptually decouples temporal
dependencies from scene representation. This property makes it easy to transform any
single-image FC-DenseNet into a corresponding multi-image RFC-DenseNet. The de-
coupling additionally increases the transparency of the model, enabling an easy exchange
of modules responsible for temporal filtering (Filter Modules) or hierarchical feature gen-
eration. Due to the hierarchical nature of the filter concept, our model can utilize tem-
poral correlations on all levels of abstraction. In comparison, many approaches in the
literature only filter the representation of a high abstraction level (Fayyaz et al., 2016;
Valipour et al., 2017). These approaches suffer in situations when the information re-

57

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

quired to resolve aleatoric failures is not propagated to high-level feature maps. Despite
its recurrent nature, the proposed architecture is parameter efficient.

Using a simulated video dataset, we quantitatively and qualitatively evaluate our pro-
posed RFC-DenseNet architecture and compare its performance with other non-temporal
and temporal segmentation models. The use of simulated data enables a focus on aleatoric
perturbations which are often underrepresented in current real-world benchmark datasets.
In total, we propose and evaluate three different versions of the RFC-DenseNet architec-
ture differing in the choice of the used Filter Module. Our experiments show a favorable
performance for a recurrent Filter Module consisting of an encoder-decoder structure as
well as an enclosing identity skip connection. By comparing our RFC-DenseNet model
as well as other temporal architectures with single-frame models, we illustrate advan-
tages in terms of robustness that can be achieved by using information from previous
time steps. We additionally evaluate the benefits of recurrent and hierarchical filtering by
comparing the performance of our model with two non-recurrent temporal architectures
as well as a non-hierarchical, recurrent model. Our best RFC-DenseNet outperforms all
other evaluated temporal semantic segmentation models, achieving a mean IoU score
which is at least 3.8 % better compared to the other models. Using exemplary predic-
tions, we show the ability of RFC-DenseNet to suppress noise, derive additional object
properties, and resolve missing information as well as ambiguities.

The Recurrent Fully Convolutional DenseNet (RFC-DenseNet) presented in this chapter
was first published at the European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning (Wagner et al., 2018b).

4.2 Related Work

The majority of previous deep learning-based research used a single-image observa-
tion of the environment and focused on the reduction of epistemic failures. Starting
from fairly simple architectures like Regions with CNN features (R-CNN) (Girshick
et al., 2014) for object detection or the Fully Convolutional Network (FCN) (Long et

al., 2015) for semantic segmentation, the performance of models consistently increased
by introducing new layer structures (He et al., 2016a; Huang et al., 2017) or by task-
specifically adjusting the general network architecture (Liu et al., 2016b; Jégou et al.,

58

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

2017). Complementary research studied techniques to enhance the available training data
using data augmentation (Krizhevsky et al., 2012; Liu et al., 2016b), applying transfer
learning (Yosinski et al., 2014; Ganin and Lempitsky, 2015; Wagner et al., 2016), utiliz-
ing simulated data (Richter et al., 2016), or by using additional unlabeled data (Rasmus
et al., 2015; Dosovitskiy et al., 2016; Wagner et al., 2017). In addition, new large bench-
mark datasets (Cordts et al., 2016) have been introduced containing a high variability of
scenes and high-quality labels.

Fewer deep learning-based research focuses on the reduction of aleatoric failures of vi-
sion systems. A popular approach to address such failures is to fuse data from various
sensors. Mees et al. (2016) showed the advantage of fusing the modalities of a RGB-D

camera by using a mixture of Convolutional Neural Network (CNN) experts. Hazirbas et

al. (2016) proposed a CNN for semantic segmentation that fuses depth information with
RGB data. Their encoder-decoder architecture consists of two encoder branches, one
per modality. The features of the depth encoder branch are fused into the RGB encoder
branch on multiple abstraction levels. In Section 2, we investigated the benefits of multi-
spectral pedestrian detectors which use the information of a visible and a thermal camera.
Especially at night, the complementary thermal features proved to be beneficial, when
the visible camera suffers from low illumination conditions. A more detailed discussion
of different multispectral pedestrian detectors is given in Section 2.2. Complementary
approaches focus on exploiting temporal information to reduce aleatoric failures. In the
remainder of this section, we provide an overview of such methods, focusing on semantic
segmentation models.

A common technique for improving pixel-wise semantic segmentation models using
temporal information is to use a non-hierarchical, global filtering approach. Fayyaz
et al. (2016) and Valipour et al. (2017) generate an abstract feature representation for
each image in a video sequence and use Recurrent Neural Networks (RNNs) to tempo-
rally filter them. The resulting filtered representation is post-processed and up-sampled
to generate a pixel-wise semantic segmentation. Jin et al. (2017b) utilize a sequence of
previous images to predict an abstract feature representation of the current image. The
predicted representation is fused with the current one and propagated through a decoder
network. Similar approaches exist, which apply post-processing steps on top of indi-
vidual frame segmentations. Ghazvinian Zanjani and Gerven (2016) use a Conditional

Random Field (CRF) to integrate short-term temporal information with structural scene

59

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

properties. Lei and Todorovic (2016) propose the Recurrent-Temporal Deep Field ar-
chitecture, which combines Fully Convolutional Networks (FCNs), a recurrent temporal
restricted Boltzmann machine and a CRF into one framework. Kundu et al. (2016) use a
densely connected CRF operating on a Euclidean feature space, optimized to minimize
the distance between features associated with corresponding points in the scene. Our
approach differs from these approaches due to its hierarchical nature.

Other approaches (Tran et al., 2016; Zhang et al., 2014) build semantic video segmenta-
tion networks using spatio-temporal features computed with 3D-Convolutions (Ji et al.,
2013; Tran et al., 2015). We differ from these approaches due to the explicit utilization
of filters, which are independently applied to feature representations of all abstraction
levels. Gadde et al. (2017) propose to improve segmentation performance by warping
one or multiple feature representations of the previous frame to the current frame using
a dense optical flow field. The warped representations are fused with the corresponding
representations of the current time step to increase stability and temporal consistency.
The method of Gadde et al. (2017) relies on the availability of dense optical flow, which
often cannot be calculated, especially in the case of heavy noise or missing information.
The Recurrent Convolutional Neural Network of Pavel et al. (2015), which builds upon
prior work of Behnke (2003), is similar to our architecture. This method uses layer-wise
recurrent self-connections as well as top-down connections to stabilize representations.
The approach focuses on a fully recurrent topology, while our approach conceptually
decouples temporal filtering and scene representation. Additionally, our approach uses a
dense connection pattern to get an improved signal flow.

Related fields of research are semantic forecasting and efficient semantic video segmen-
tation. The former focuses on predicting the pixel-wise semantic segmentation of fu-
ture image frames conditioned on previous frames or segmentations. In Chapter 3, we
propose an approach to build semantic forecasting models based on the transformation
of non-predictive feed-forward networks. The proposed predictive transformation can
be conducted without the need of labeled video data in a fully self-supervised fashion.
For a detailed discussion of other semantic forecasting models, we refer the reader to
Section 3.2 and 3.5. The research field of efficient semantic video segmentation (Shel-
hamer et al., 2016; Zhu et al., 2017) deals with the development of temporal models
which reuse features of previous time steps to reduce the computational cost and / or
latency of frame segmentation. The goal is thus not to use information of previous time

60

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

steps to improve the performance of models, but rather to avoid or delay computation
by reusing features. Due to the different focus of these research fields, the developed
methods and models are not directly comparable to our proposed Recurrent Fully Con-

volutional DenseNet (RFC-DenseNet) architecture.

4.3 Recurrent Fully Convolutional DenseNet

In this section, we present an approach to extend the Fully Convolutional DenseNet

(FC-DenseNet) of Jégou et al. (2017) to video data, by hierarchically filtering the rep-
resentations of the model. First, we review the FC-DenseNet for semantic segmentation
in Section 4.3.1. Second, we present our concept to temporally filter the representations
of the model in a hierarchical fashion in Section 4.3.2. Finally, Section 4.3.3 elaborates
three specific instances of the resulting recurrent segmentation architecture.

4.3.1 Revisiting the Fully Convolutional DenseNet (FC-DenseNet)

The FC-DenseNet builds on the Fully Convolutional Network (FCN) for semantic seg-
mentation defined by Long et al. (2015) and extends it using concepts of the Densely

Connected Convolutional Network (DenseNet) introduced by Huang et al. (2017).

Fully Convolutional Networks (FCNs) (Long et al., 2015) produce dense predictions
of arbitrary-sized images by replacing the fully connected layers of classification net-
works, like VGG (Simonyan and Zisserman, 2015) or GoogLeNet (Szegedy et al., 2015),
with corresponding convolutional ones. The resulting coarse classification maps are up-
sampled to pixel-dense outputs using deconvolutional layers. The weights of the decon-
volutional layers can either be learned or fixed to bilinear upsampling. To get a more re-
fined pixel-wise segmentation the authors additionally propose to use skip layers, which
enhance the coarse information of the final prediction layer with fine information from
lower layers. In total, the Fully Convolutional Network (FCN) for semantic segmen-
tation (Long et al., 2015) consists of three components, a fully convolutional feature
extractor, an upsampling-path, and interlinking skip layers.

61

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

in
pu

t

3×
3

C
on

v DB
j = 0

[] TD
DB
j = 1

[] TD
DB
j = 2

TU[]DB
j = 3

TU[]DB
j = 41×

1
C

on
v

ou
tp

ut

Skip Connections

Feature Extractor

Upsampling-path

(a) Fully Convolutional DenseNet (FC-DenseNet) of depth two
(npool = 2), consisting of a DenseNet-based feature extractor, a DB
enhanced upsampling-path, and interlinking skip connections. We ap-
ply a softmax function to the output of the last convolutional layer to
compute pixel-wise class scores. The first convolutional layer com-
putes nconv features.

BN ReLU 1×1
Conv

Drop 2×2
Pool

Transition Down (TD)

BN ReLU 3×3
Conv

Drop

Dense Unit (DU)

Deconvolution
3×3, stride=2

Transition Up (TU)

(b) Units of the FC-DenseNet.

r̃tj,0
DU
l = 1

[] DU
l = 2

[] DU
l = 3

[]

[̃r
t j,
1
,r̃

t j,
2
,r̃

t j,
3
]

r̃tj,1 r̃tj,2 r̃tj,3

Dense Block (DB)

(c) Dense Block (DB) of length three (nlayer = 3). Each DU computes nfeature new features
using all previous features of matching spatial feature-map size.

Figure 4.1: Structural layout of the Fully Convolutional DenseNet (FC-DenseNet) as well as its subcomponents: Dense
Block (DB), Transition Down (TD), Transition Up (TU), and Dense Unit (DU). We use [] to indicate the concatenation
of features. Each DU computes nfeature new features. The TU and TD units only change the spatial size of a feature
representation while keeping the number of features constant.

Following the basic architectural structure of the FCN, FC-DenseNet is constructed by
using a fully convolutional version of DenseNet as the feature extractor, utilizing a Dense

Block (DB) enhanced upsampling-path, and interlinking both paths using skip connec-
tions. The architecture of FC-DenseNet is visualized in Figure 4.1a. The DenseNet,
used in the feature extractor, is a convolutional neural network which iteratively adds
features to a stack, which we refer to as the global feature state. Newly added features r̃tj,l
are computed using all previous ones (r̃tj,l−1, . . . , r̃

t
j,0) of matching spatial feature-map

size (see Figure 4.1c):

r̃tj,l = fDUj,l ([̃rtj,l−1, . . . , r̃
t
j,0]; θ

DU
j,l); (4.1)

where fDUj,l is the function of the corresponding Dense Unit (DU), with parameters θDUj,l .
We use [̃rtj,l−1, . . . , r̃

t
j,0] to specify the concatenation of features retrieved from the global

feature state. The global feature state is initialized with a set of features computed using

62

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

one preceding convolutional layer. To ensure a slow growth of the global feature state,
the number nfeature of newly added features is limited to a small value, e.g. nfeature = 12.

The dense connection pattern between units benefits the information and gradient flow
and facilitates an extensive reuse of already computed features (Huang et al., 2017).
Due to the feature reuse introduced by the global feature state, DenseNet is very pa-
rameter efficient. To successively reduce the spatial size of feature maps, sequences of
densely connected layers, also called Dense Blocks (DBs) (see Figure 4.1c), are inter-
leaved by Transition Down (TD) units. These units downsample the global feature state
while keeping the number of features constant. The persistence of the global state in
the feature extractor is ensured by concatenating the output of each but the last Dense

Block with the corresponding input. The high-level spatial feature maps computed in
the feature extractor’s last Dense Block are incrementally up-sampled using Transition

Up (TU) units, while enriching the features with finer-grained information via skip con-
nections. The features of Transition Up units are concatenated with the features provided
by corresponding skip connections and are processed using Dense Blocks. The full per-
sistence of the global feature state is discontinued in the upsampling-path to limit the
growth of feature maps. All features computed in the last Dense Block of the model
are processed by a 1×1 convolutional layer followed by pixel-wise softmax function to
compute pixel-wise class scores. The implementation of the individual units is specified
in Figure 4.1b. Experiments of Jégou et al. (2017) on the CamVid (Brostow et al., 2008)
and Gatech (Raza et al., 2013) dataset show the ability of FC-DenseNet to outperform
comparable segmentation models (Long et al., 2015; Kendall et al., 2017; Kundu et al.,
2016; Yu and Koltun, 2016) while being highly parameter efficient.

4.3.2 Temporal Representation Filtering

Due to perturbations inherent in the data (e.g. noise introduced by adverse weather con-
ditions; see Section 4.1), the features r̃tj,l computed in each DU of the FC-DenseNet are
only a crude approximation of the true feature representation without perturbations. To
get an improved estimate of the features, we propose to temporally filter them using a
recurrent Filter Module (FM):

r̂tj,l = fFMj,l (fDUj,l ([̂rtj,l−1, . . . , r̂
t
j,0]; θ

DU
j,l),mt−1

j,l ; θFMj,l); (4.2)

63

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

r̂t−1
j,0

DU
l = 1

FM
l = 1

[] DU
l = 2

FM
l = 2

[] DU
l = 3

FM
l = 3

[]

[̂r
t−

1
j,
1
,r̂

t−
1

j,
2
,r̂

t−
1

j,
3
]

r̄t−1
j,1 r̄t−1

j,2 r̄t−1
j,3r̂t−1

j,1 r̂t−1
j,2 r̂t−1

j,3

r̂tj,0
DU
l = 1

FM
l = 1

[] DU
l = 2

FM
l = 2

[] DU
l = 3

FM
l = 3

[]

[̂r
t j,
1
,r̂

t j,
2
,r̂

t j,
3
]

r̄tj,1 r̄tj,2 r̄tj,3r̂tj,1 r̂tj,2 r̂tj,3

mt−2
j,1 mt−2

j,2 mt−2
j,3

mt−1
j,1 mt−1

j,2 mt−1
j,3

Recurrent Dense Block (RDB)

Figure 4.2: Recurrent Dense Block (RDB) of length three (nlayer = 3) using a Filter Module (FM) after each Dense
Unit (DU). Newly computed features r̄tj,l are stabilized using temporal information before being added to the global
feature state. We use [] to indicate the concatenation of features.

where fFMj,l is the recurrent filter function, with parameters θFMj,l , and mt−1
j,l the hidden

state of the filter. The hidden state represents an internal memory, encoding all knowl-
edge aggregated from previous time steps. Framing Equation 4.2 in the context of a
Bayes Filter (Gu et al., 2017), the recurrent filter function has to propagate the belief
about the hidden state mt−1

j,l one time step into the future, update the belief using the
current input r̄tj,l of the filter, and compute an improved estimate r̂tj,l of the true feature
representation.

A FC-DenseNet can be transformed into our proposed Recurrent Fully Convolutional

DenseNet (RFC-DenseNet) by using a recurrent version of the Dense Blocks (see Fig-
ure 4.2), which employs a Filter Module (FM) after each Dense Unit (DU). To compute
a robust pixel-wise semantic segmentation ŝt, RFC-DenseNet utilizes the information of
multiple images. These images are propagated through the feature extractor and the sub-
sequent upsampling-path, while taking skip-connections as well as temporal correlations
via the Filter Modules into account. The weights of all computational units are shared
over time. Additionally, we use the same dropout mask for each time step, as suggested
by (Gal and Ghahramani, 2016a). The hidden state of each Filter Modules is initialized
with zeros.

The proposed Recurrent Dense Blocks (RDBs) (see Figure 4.2) only add filtered fea-
tures r̂tj,l to the global feature state of the model. Features r̄tj,l computed in each Dense

64

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

Units are thus derived from already filtered ones or the initial feature set1, generating a
hierarchy of filtered representations. Due to the hierarchical filter nature, RFC-DenseNet
can utilize temporal correlations on all abstraction levels. In comparison, a global filter
(i.e. a non-hierarchical filter) only has access to a sequence of high-level representa-
tions (Fayyaz et al., 2016; Valipour et al., 2017). The availability of all features, required
to solve aleatoric failures within the filter, is not guaranteed in such a global setting.

The Recurrent Fully Convolutional DenseNet (RFC-DenseNet) conceptually decouples
temporal dependencies from scene representation, by introducing dedicated Filter Mod-

ules. This property enables the transformation of any single-image FC-DenseNet into a
corresponding multi-image RFC-DenseNet. One could also use the trained weights of
the FC-DenseNet to initialize the non-recurrent part of the corresponding RFC-DenseNet.
The decoupling additionally increases the transparency of the model, enabling the allo-
cation of additional resources for temporal filtering (using a more complex filter) or
hierarchical feature generation (using a deeper architecture)2.

The proposed filter approach can also be employed in other models, but is especially suit-
able for the FC-DenseNet architecture. The explicit differentiation of newly computed
features r̄tj,l and features stored in the global feature state, makes the proposed temporal
filtering concept very parameter efficient. Each filter only has to process a small number
of newly computed feature maps, resulting in a moderate increase in the total number of
model parameters. The distinct focus on a small feature set in each Filter Module also
reduces the computational complexity of the filter task.

4.3.3 Instances of the Filter Module

We investigated three instances of the Filter Module (FM) with increasing complexity.
Figure 4.3 visualizes the architecture of the three proposed modules. All Filter Modules
are based on convolutional Long Short-Term Memory (LSTM) cells, which have proven
to produce state-of-the-art results on a multitude of spatio-temporal sequence modeling

1The initial feature set refers to the features computed in the first convolutional layer of the model.
2Depending on the chosen Filter Module as well as the training procedure, a mutually exclusive allocation of

resources is not necessarily guaranteed.

65

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

tasks (Graves, 2014). We adopt the implementation of Xingjian et al. (2015), but omit
the peephole connections to limit the number of parameters:

itj,l = σ(Wei
j,l ∗ etj,l + Whi

j,l ∗ ht−1j,l + bij,l), (4.3)

f tj,l = σ(Wef
j,l ∗ etj,l + Whf

j,l ∗ ht−1j,l + bfj,l), (4.4)

otj,l = σ(Weo
j,l ∗ etj,l + Who

j,l ∗ ht−1j,l + boj,l), (4.5)

ctj,l = f tj,l ◦ ct−1j,l + itj,l ◦ tanh(Wec
j,l ∗ etj,l + Whc

j,l ∗ ht−1j,l + bcj,l), (4.6)

htj,l = otj,l ◦ tanh(ctj,l), (4.7)

where ∗ is the convolutional operator, ◦ the Hadamard product, and etj,l the input of the
convolutional LSTM. The input, forget, and output gate are denoted by itj,l, f tj,l, and otj,l,
respectively. For brevity, we summarize the hidden state htj,l and cell state ctj,l of the
convolutional LSTM by mt−1

j,l (see Equation 4.2).

A property of all proposed Filter Modules are matching dimensions between the unfil-
tered r̄tj,l and filtered r̂tj,l representation. The growth rate of the global feature state of
the RFC-DenseNet is thus identical to the one of the corresponding FC-DenseNet. Anal-
ogous to the computational units of FC-DenseNet, we use pre-activations (He et al.,
2016b) in all Filter Modules. To regularize the Filter Modules, we use the variational
inference-based dropout variant proposed by Gal and Ghahramani (2016a) and apply it
to the convolutional LSTM (Gal and Ghahramani, 2016b). The input-to-hidden convo-
lutional kernels of the LSTM (We∗

j,l) have a filter size of 3×3 and the filter size of the
hidden-to-hidden kernels (Wh∗

j,l) is chosen dependent on the position (i.e. the index j)
of the corresponding Recurrent Dense Block (see Section 4.4.2 and Table 4.4 for further
details).

The first instance of the Filter Module FMff uses a single convolutional Long Short-

Term Memory (LSTM) cell following the two pre-activation layers (Batch Normalization

(BN) (Ioffe and Szegedy, 2015) and Rectified Linear Unit (ReLU) (Nair and Hinton,
2010)). The number of feature maps stored in the cell state ctj,l of the convolutional
LSTM matches the number of feature maps of the unfiltered representation r̄tj,l. This
property restricts the filter capabilities but also limits the number of required parameters.

The second instance of the Filter Module FMres uses the concept of deep residual learn-
ing (He et al., 2016a) and applies it to the first Filter Module. Instead of directly fitting

66

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets
[̂r

t−
1

j,
l−

1
,.
..
,r̂

t−
1

j,
0
]

DU BN ReLU Conv-LSTM

DU + r̂t−1
j,l (FMed)

r̂t−1
j,l (FMff)

+ r̂t−1
j,l (FMres)

r̄t−1
j,l et−1

j,l

ct−1
j,l

ht−1
j,l

mt−2
j,l

mt−1
j,l

Figure 4.3: Proposed instances of the Filter Module (FM) which are used in the Recurrent Dense Blocks to temporally
filter the feature representation of the Dense Units (DUs). All Filter Modules are based on a convolutional Long
Short-Term Memory (LSTM) cell following two pre-activation layers: Batch Normalization (BN) and Rectified Linear
Unit (ReLU). The filters FMres and FMed additionally use a identity skip connection and FMed employs an encoder-
decoder architecture. To better illustrate the differences, we visualize the Filter Modules in one diagram. The Filter
Module FMed, for example, is defined by the sub-graph which connects the unfiltered representation with the first
filtered output. In the experiments, each RFC-DenseNet architecture uses only one type of Filter Module. The weights
of the Filter Modules are not shared.

the desired filter function fFM(r̄), we let the convolutional LSTM fit the residual func-
tion gFM(r̄) = fFM(r̄)− r̄. The filtered representation can be recovered by solving for
the original mapping: r̂ = gFM(r̄)+ r̄. The identity skip connection in combination with
pre-activations ensures a direct information and gradient flow (He et al., 2016b). Using
the residual network interpretation of Veit et al. (2016): The resulting RFC-DenseNet has
many paths connecting the input with the output. One of these paths resembles the cor-
responding FC-DenseNet without Filter Modules. This FC-DenseNet can be recovered
from the RFC-DenseNet by learning to return zero in all convolutional LSTMs (e.g. by
closing the output gate of all LSTMs). As introduced in Section 4.3.2, the Filter Modules
are intended to compute an improved estimate of the true feature representation. The in-
troduction of identity skip connections might facilitate this property, as argued by Greff
et al. (2017). The number of parameters of FMres is identical to the one of FMff and the
added computational cost is extremely small.

The third proposed instance of the Filter Module FMed alleviates the limitation on the
complexity of the filter, introduced by matching feature dimensions of the unfiltered
representation and the cell state. This instance employs an encoder-decoder structure,
consisting of a convolutional LSTM and a Dense Unit. The number of feature maps
stored in the convolutional LSTM can be chosen to be a multitude αed of the number
of unfiltered feature maps. This filter instance can be considered an extension of FMres,

67

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

Class
ba

ck
gr

ou
nd

bo
ar

de
rs

/w
al

ls

dy
n.

sq
ua

re
s

/d
ig

it
0

dy
n.

sq
ua

re
s

/d
ig

it
1

dy
n.

sq
ua

re
s

/d
ig

it
2

dy
n.

sq
ua

re
s

/d
ig

it
3

dy
n.

sq
ua

re
s

/d
ig

it
4

dy
n.

sq
ua

re
s

/d
ig

it
5

dy
n.

sq
ua

re
s

/d
ig

it
6

dy
n.

sq
ua

re
s

/d
ig

it
7

dy
n.

sq
ua

re
s

/d
ig

it
8

dy
n.

sq
ua

re
s

/d
ig

it
9

st
at

ic
sq

ua
re

s

ci
rc

le
s

Color

Table 4.1: Semantic classes of the simulated dataset with the corresponding label color coding used in the figures.

since it also uses a residual unit-like structure. The number of parameters of FMed is
adjustable by changing the scaling factor αed.

4.4 Experiments

4.4.1 Dataset

To systematically evaluate the proposed architectures, we use a simulated video dataset.
This enables a focus on aleatoric failures which are often underrepresented in real-
world benchmark datasets. The simulated video sequences emulate a 2D environment
of 64×64 pixels, in which squares represent dynamic and static objects, rectangles rep-
resent boarders and walls, and circles represent moving foreground objects. Each square
is marked with a digit sampled from the MNIST dataset (LeCun et al., 1998). The dy-
namic squares elastically collide with all other squares, boarders, and walls. The moving
foreground circles occlude each other, as well as all other objects. Circles can leave the
frame and elastically collide with dedicated boarders located outside of the visible field
of view. A circle that leaves the frame will consequently reappear at a later point in time.
Due to the visible boarders surrounding the environment, dynamic squares are not able to
leave the frame. The number of the objects, their size and color, the color of the MNIST

digits, the color of the background, as well as the initial velocity of all dynamic objects
is randomly sampled for each sequence. The number of dynamic squares per sequence
is greater than the number of static squares. Each sequence contains two to four dynamic
squares, whereas only one or no static square.

68

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

(a) Four example sequences of the test dataset with corresponding ground truth labels.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 t = 2 t = 3 t = 4 t = 5

(b) Two example sequences of the clean test dataset with corresponding ground truth labels.

Figure 4.4: Example sequences of the test dataset as well as the clean test dataset with corresponding ground truth
labels. The sequences emulate a 2D environment of 64×64 pixels, in which squares represent dynamic and static
objects, rectangles represent boarders and walls, and circles represent moving foreground objects. The circles occlude
all other objects as well as each other. Dynamic squares elastically collide with all other squares, boarders, and walls.
A semantic label is only available for the last frame (i.e. t = 5) of each sequence. The 14 semantic classes as well as
the corresponding label color coding are listed in Table 4.1.

To simulate aleatoric failures, we perturb the data with instances of the four failure
classes proposed in Section 4.1. Noise is simulated by adding independent Gaussian

noise with zero mean to each pixel. The variance of the noise is independently sampled
for each sequence from the interval [0, 0.05]. The resulting pixel values are clipped to the
interval [0, 1] to obtain valid images. Occlusions are introduced by moving foreground
circles, which occlude each other, as well as all other objects of the scene. These cir-
cles should especially impede the classification of MNIST digits which are plotted on all
squares. To simulate missing information, we increase or decrease the intensity of pix-
els by a random value and let this offset decay over time. In 30 % of the sequences, we
add the effect to full images, starting from a randomly selected frame. Additionally, we

69

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

apply the perturbation to polygonal subregions of images. The shape of the subregions
as well as their number is randomly sampled for each sequence. Each subregion-based
perturbation starts at a randomly selected time step. To obtain valid images, we once
again clip the pixel values to the interval [0, 1] after applying the perturbations. Ambigu-
ities are simulated by using different classes for static squares and for dynamic squares.
Thus, the information of a single image is not sufficient to infer unambiguously the class
of a square.

In total, our dataset consists of 25,000 sequences of length 5 which are split into 20,000
training, 4,000 validation, and 1,000 test sequences. Each split is simulated using all
aleatoric failure classes. We additionally generate a test dataset containing 1,000 se-
quences with no added aleatoric perturbations. This dataset does not contain any fore-
ground circles and only dynamic squares. The images are not altered by Gaussian noise
or by the transformation used to simulated missing information. In the remainder of this
chapter, we will refer to the second test dataset without added aleatoric perturbations
as the clean test dataset. For the pixel-wise semantic segmentation task we define 14
classes: background, boarders / walls, static squares, circles, and dynamic squares with
an individual class per digit. Table 4.1 contains a list of the semantic classes with the
corresponding label color coding. Example sequences of the test dataset as well as the
clean test dataset with corresponding labels are shown in Figure 4.4. A label is only
available for the last frame of each sequence.

4.4.2 Implementation Details

We perform an extensive hyperparameter optimization to determine the best single-
image FC-DenseNet architecture. The optimized architectural parameters are listed in
Table 4.2, where npool is the depth of the model, nlayer the number of layers per Dense

Block, nfeature the number of newly added features per Dense Unit, and nconv the number
of features computed in the first convolutional layer. A detailed description of the pa-
rameters is given in Section 4.3.1 as well as Figure 4.1. In addition to the architectural
parameters, we also optimize all training and regularization parameters. The configura-
tion of the best model FCDb is listed in column two of Table 4.2. We additionally use a
smaller version of the single-image FC-DenseNet, which has less layers per Dense Block

as well as a smaller number of newly computed features per Dense Unit. The smaller

70

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

FCDb FCDs TMst

npool 2 2 2
nlayer 9 7 7
nfeature 12 8 10
nconv 48 48 56

Table 4.2: Structural configuration of the best
(FCDb) and small FC-DenseNet (FCDs) as well as
the temporal model TMst. The temporal model TMst

is structurally identical to a normal FC-DenseNet but
receives a stacked version of the image sequence
as input. The sequence frames are concatenated
along the feature dimension to construct a valid three-
dimensional input tensor. npool: depth of the model;
nlayer: number of layers per DB; nfeature: number of
newly added features per DU; nconv: number of fea-
tures computed in the first convolutional layer.

RFC-DenseNet Filter Module (FM)
RFCDff FMff

RFCDres FMres

RFCDed1 FMed, αed = 1
RFCDed2 FMed, αed = 2

Table 4.3: Type and parametrization of the Filter Module
used in the four proposed versions of the RFC-DenseNet
architecture.

j 0 1 2 3 4
f 9 5 3 5 9

Table 4.4: Spatial size f × f of the hidden-to-hidden ker-
nels Wh∗

j,l used in the jth Recurrent Dense Block of all
RFC-DenseNet architectures.

model FCDs (see column three in Table 4.2) is used as the basis of our recurrent models
to reduce training time.

In total, we train seven temporal models. Four RFC-DenseNets using our filter concept of
Section 4.3.2, a recurrent model which uses a non-hierarchical filter approach RMgf, and
two non-recurrent models, TM3D and TMst. The four RFC-DenseNet architectures are
constructed by transforming FCDs according to our proposed filter concept. The models
differ in terms of the choice of Filter Module. A summary of the type and parametrization
of the Filter Module used by each model is given in Table 4.3. The spatial size f × f of
the hiden-to-hidden kernels Wh∗

j,l of all Filter Modules is set dependent on the index j of
the corresponding Recurrent Dense Block (see Table 4.4). Model RMgf is constructed by
extending FCDs with a filter which is placed between the last Dense Block and the output
convolution. The added global filter temporally integrates high-level features computed
by the last Dense Block. The filter is implemented using FMed with αed = 0.625 and a
hidden-to-hidden filter size of 9. RMgf has approximately the same number of param-
eters as all RFC-DenseNets, besides RFCDed2. A model similar to RMgf was proposed
by Valipour et al. (2017). We also tested other Filter Modules, however FMed proved to
be the best option for RMgf. In addition to the five models using recurrent Filter Modules,
we also evaluate two non-recurrent temporal FC-DenseNets. Model TM3D is structurally
identical to FCDs except for the use of 3D convolutions (Tran et al., 2015) instead of
regular 2D convolutions in all Dense Units. TM3D preserves the temporal information
of the input sequence throughout the model and uses 3D convolutions with a filter size

71

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

of 3× 3× 3 to compute spatio-temporal features. Model TMst is a regular FC-DenseNet
which operates on a stacked version of the input sequence (Simonyan and Zisserman,
2014). The frames of the input sequence are concatenated along the feature dimension,
producing a valid three-dimensional input tensor. The parametrization of TMst is given
in column four of Table 4.2. We also experimented with larger versions of TMst, but were
not able to achieve a better segmentation performance.

Following the approach of Kendall and Gal (2017), we implement all models as het-

eroscedastic Bayesian Neural Networks (BNNs). The models use Monte Carlo dropout
and place a Gaussian distribution over the softmax logits to model epistemic uncertainty
as well as heteroscedastic aleatoric uncertainty. The parameters of the Gaussian distri-
bution are predicted by the Neural Network (NN). In accordance to Kendall and Gal
(2017), we use 50 Monte Carlo samples. Kendall and Gal (2017) show the ability of het-

eroscedastic BNNs to outperform comparable standard NNs on semantic segmentation
and depth regression benchmarks and highlight the ability of their proposed loss to be
more robust to noisy data.

4.4.3 Results

In Table 4.5a, we summarize the mean IoU score of all models on the test and the clean
test dataset. In addition, we list in Table 4.5b per-class IoU scores computed on the test
data. To increase readability, an aggregated score (i.e. the mean IoU score) is reported for
the classes representing dynamic squares. All metrics are computed using the labeled 5th

frame of each test sequence as well as the corresponding semantic prediction of the
models. The predictions of all temporal models are conditioned on full input sequences.
Models FCDb and FCDs, on the other hand, only use the information of a single image to
compute a pixel-wise semantic segmentation. In addition to the quantitative results, we
visualize in Figure 4.5 the semantic prediction of our best RFC-DenseNet architecture
RFCDed1 as well as the best single-image FC-DenseNet FCDb for four sequences of
the test dataset. These examples illustrate the ability of our temporal RFC-DenseNet
architecture to avoid aleatoric failures of a well-trained single-image model.

All models which utilize temporal information significantly outperform the single-image
FC-DenseNets (FCDb and FCDs) on the test dataset, showing the benefit of temporal

72

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

FCDb FCDs RFCDff RFCDres RFCDed1 RFCDed2 RMgf TM3D TMst

Test 45.4 % 43.4 % 67.1 % 67.9 % 69.2 % 68.4 % 65.4 % 60.8 % 50.4 %
Clean test 93.1 % 91.0 % 92.0 % 92.2 % 94.4 % 93.0 % 92.1 % 89.8 % 89.4 %

(a) Mean IoU score (%) of all models on the test dataset as well as the clean test dataset.

FCDb FCDs RFCDff RFCDres RFCDed1 RFCDed2 RMgf TM3D TMst

background 89.9 % 88.8 % 94.0 % 94.3 % 94.8 % 95.0 % 93.7 % 93.7 % 91.9 %
boarders /

walls 92.0 % 91.2 % 94.7 % 94.8 % 95.3 % 95.4 % 94.6 % 94.6 % 93.5 %

dyn. squares
(mean) 36.5 % 33.8 % 57.2 % 58.2 % 59.7 % 58.6 % 55.4 % 48.7 % 35.5 %

static squares 2.8 % 3.3 % 88.8 % 88.5 % 89.6 % 89.0 % 83.2 % 86.0 % 77.6 %
circles 86.8 % 85.6 % 90.4 % 91.0 % 91.8 % 91.9 % 90.6 % 90.2 % 87.7 %

(b) Per-class IoU scores (%) computed on the test dataset. To increase readability, we report an aggregated score for
the classes representing dynamic squares.

Table 4.5: Quantitative performance metrics of all introduced models. The first two models (FCDb and FCDs) utilize
the information of a single input frame, all other models are temporal models that perform a prediction conditioned on
full input sequences. Models RFCD∗ are different instances of the proposed Recurrent Fully Convolutional DenseNet
(RFC-DenseNet) architecture. TM3D and TMst are non-recurrent temporal models and RMgf is a recurrent model which
uses a non-hierarchical (i.e. global) filter approach.

filtering. The best temporal model RFCDed1 improves the mean IoU score by 23.8 %

compared to the best single-image model FCDb. In comparison to FCDs, which is the
basis of the RFCDed1 architecture, the mean IoU score is improved by 25.8 %. Looking at
the temporal model TMst with the worst performance on the test dataset, we still observe a
5 % better mean IoU score compared to FCDb. The difference between single-image and
multi-image models is especially visible when focusing on the class static squares. The
information provided by one image is not sufficient to distinguish a static square from
a dynamic square. By using the information of previous frames, a temporal model can
resolve such ambiguities. On the clean test dataset, the performance difference between
FCDb and the temporal models is comparatively small, suggesting that the additional
information provided by previous frames especially benefits the reduction of aleatoric
failures. The superior performance of FCDb on the clean test data compared to most of
the temporal models can most likely be attributed to its increased non-temporal depth
and width.

The mean IoU scores of the different RFC-DenseNet instances suggest a correlation
between filter complexity and segmentation performance. RFC-DenseNet architecture
RFCDff, which uses the most simple Filter Module FMff, achieves a mean IoU score
of 67.1 % on the test dataset. By adding a residual connection to the Filter Modules

73

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

t = 1 t = 2 t = 3 t = 4 t = 5

Ground truth label:

Prediction of FCDb:

Prediction of RFCDed1:

(a) RFCDed1 resolves heavy occlusion of the upper dy-
namic square marked with digit 1 () and is able to rec-
ognize the static square ().

t = 1 t = 2 t = 3 t = 4 t = 5

Ground truth label:

Prediction of FCDb:

Prediction of RFCDed1:

(b) Using information of previous time steps, RFCDed1 is
able to suppress noise as well as to reconstruct missing
information (and). Additionally, it can infer the
static motion state of the upper square ().

t = 1 t = 2 t = 3 t = 4 t = 5

Ground truth label:

Prediction of FCDb:

Prediction of RFCDed1:

(c) RFCDed1 can infer the static motion state of the lower
square () and is able to resolve heavy occlusion of one
of the two upper squares ().

t = 1 t = 2 t = 3 t = 4 t = 5

Ground truth label:

Prediction of FCDb:

Prediction of RFCDed1:

(d) RFCDed1 can resolves the miss-classification of the
two upper dynamic squares (and) and is able to
improve the segmentation of the lower square () com-
pared to the single-image baseline FCDb.

Figure 4.5: Example predictions of the best RFC-DenseNet model RFCDres1 as well as the best single-image
model FCDb. For four sequences of the test dataset, we visualize the ground truth pixel-wise semantic label as
well as the corresponding prediction of RFCDed1 and FCDb. The examples highlight scenes in which our proposed
architecture is able to use temporal information to significantly reduce the impact of noise, missing information, and
occlusions compared to the single-image FCDb. The information provided by previous time steps additionally enable
RFCDed1 to distinguish dynamic from static squares. A list of the semantic classes with the corresponding label color
coding is given in Table 4.1.

(model RFCDres) the score can be improved to 67.9 %. The best RFC-DenseNet RFCDed1

with a mean IoU score of 69.2 % uses the encoder-decoder Filter Module. The difference
introduced by the type of Filter Module is, however, relatively small. Model RFCDed2

74

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

performs unexpectedly poor in comparison to RFCDed1. The use of other recurrent reg-
ularization techniques (e.g. zoneout (Krueger et al., 2017)) might possibly benefit the
performance of RFCDed2.

The hierarchical RFC-DenseNet models outperform the non-hierarchical, recurrent base-
line RMgf by 1.7 % to 3.8 % on the test dataset, indicating a better ability of the trained
RFC-DenseNet models in resolving aleatoric perturbations. We suspect that our hier-
archical filter concept more efficiently utilizes temporal information, compared to the
non-hierarchical model. Taking only the dynamic squares with marked MNIST digits
into account, the performance difference increases further to 4.3 %. For these classes, it
is important to model low-level temporal dependencies. The non-hierarchical approach
possibly suffers, because of the loss in scene details from lower layers to upper layers.

The performance of the non-recurrent models, TM3D and TMst, is inferior to the recurrent
ones. TM3D achieves a mean IoU score of 60.8 % on the test dataset, which is 8.4 % less
than the score of the best RFC-DenseNet. Model TMst has the worst performance of all
temporal models with a mean IoU score of 50.4 %. We suspect that the superior perfor-
mance of the RFC-DenseNet models and RMgf is due to the better fit of the inductive bias
of these architectures. In particular, the recurrent nature of the filters as well as the use
of explicit Filter Modules could be favorable features.

In Figure 4.5, we show pixel-wise semantic segmentations of RFCDed1 and FCDb for
four sequences of the test dataset that are challenging for a single-image model. The
predictions highlight the ability of our RFC-DenseNet model to suppress noise, derive
additional temporal object properties, and to resolve missing information as well as oc-
clusions.

4.5 Conclusion

In this chapter, we proposed a parameter efficient approach to temporally filter the repre-
sentations of the Fully Convolutional DenseNet (FC-DenseNet) (Jégou et al., 2017) in a
hierarchical fashion, while conceptually decoupling temporal dependencies from scene
representation. The resulting Recurrent Fully Convolutional DenseNet (RFC-DenseNet)
can utilize information of multiple time steps to create a more robust and reliable seman-
tic environment representation.

75

4 Hierarchical Recurrent Filtering for Fully Convolutional DenseNets

Using a synthetic video dataset, we showed the benefits of using temporal information
in regard to aleatoric failures and evaluated the advantages introduced by our recurrent
and hierarchical filtering concept. Our best RFC-DenseNet was able to significantly
outperform common non-recurrent, temporal architectures and achieved a 3.8 % better
mean IoU score compared to a similar non-hierarchical, recurrent baseline model. Based
on exemplary predictions, we additionally showcased the ability of our model to suppress
noise, derive additional temporal object properties, and to resolve missing information
as well as occlusions.

In addition to a good prediction performance, an increased level of transparency and
interpretability is advantageous for models used in safety-critical applications. Higher
transparency and interpretability can be achieved, for example, by introducing human
interpretable intermediate representations. Such representations facilitate debugging of
a model, simplify the introduction of prior knowledge as well as constraints, and ease
the utilization of additional auxiliary losses. The conceptual decoupling of temporal
dependencies from scene representation in our proposed RFC-DenseNet is already a first
small step towards a more transparent model. In the next chapter, we focus on increasing
the transparency, explicitness, and interpretability of temporal models by proposing a
functionally modularized temporal representation filter.

Following the publication of the contents of this chapter (Wagner et al., 2018b), sev-
eral methods and models have been proposed for solving aleatoric failures of perception
systems. An overview of more recent approaches can be found in Section 5.6.

76

5
Functionally Modular and Interpretable
Temporal Filtering

The performance of autonomous vehicles heavily relies on their ability to generate
a robust representation of the environment. Deep neural networks have greatly im-
proved vision-based perception systems but still fail in challenging situations, e.g.
sensor outages or adverse weather. These failures are often introduced by data-
inherent perturbations, which significantly reduce the information provided to the
perception system.
In this chapter, we propose a functionally modularized temporal filter, which stabi-
lizes an abstract feature representation of a single-frame segmentation model using
information of previous time steps. Our filter module splits the filtering task into
multiple less complex and more interpretable subtasks. The basic structure of the fil-
ter is inspired by a Bayes estimator consisting of a prediction and an update step. To
make the prediction more transparent, we implement it using a geometric projection
and estimate its parameters. In addition, this enables the decomposition of the filter
task into static representation filtering and low-dimensional motion filtering. The
proposed filter structure enables our model to cope with heavy noise and missing in-
formation, e.g. a missing image frame due to a sensor outage. Using photorealistic,
synthetic video data, we show the ability of the proposed architecture to reduce the
performance degradation caused by data-inherent perturbations. The experiments
especially highlight the advantages introduced by an interpretable and explicit filter
module. We believe that a high degree of interpretability is an important property of
models, as it facilitates debugging and verification tasks, simplifies the integration
of domain knowledge, and eases the utilization of additional auxiliary losses.

77

5 Functionally Modular and Interpretable Temporal Filtering

5.1 Introduction

The performance of autonomous vehicles, such as self-driving cars or mobile robots,
is heavily influenced by their ability to generate a robust representation of their sur-
roundings. Errors in the environment representation are propagated to subsequent pro-
cessing steps and are hard to recover. In order to increase the reliability and safety of
autonomous vehicles, robust methods / models for observing and interpreting the envi-
ronment are required. Common measures for ensuring safety include the ability to debug
models, validate system behavior, assess risk factors, and verify predictions. Besides
prediction performance, it is therefore advantageous to also consider transparency and
interpretability during method / model development. In addition, a high degree of trans-
parency and interpretability provides further advantages, such as a simplified integration
of prior knowledge as well as domain constraints and an easier introduction of additional
auxiliary losses.

Deep learning-based methods have greatly advanced the state-of-the-art of perception
systems. Especially vision-based perception benchmarks (e.g. Cityscapes (Cordts et al.,
2016) or Caltech (Dollár et al., 2009b)) are dominated by approaches utilizing deep
neural networks. From a safety perspective, a major disadvantage of such benchmark
datasets is their recording during daytime under idealized environment conditions. To
deploy autonomous vehicles in an open world scenario without any human supervision,
one not only has to guarantee their reliability in good conditions, but also has to make
sure that they still work in challenging situations (e.g. during sensor outages or in adverse
weather conditions). One source of such challenges are perturbations inherent in the data,
which significantly reduce the information provided to the perception system. We denote
failures originating from data-inherent perturbations as aleatoric failures in accordance
to the classification of uncertainties (Kiureghian and Ditlevsen, 2009; Kendall and Gal,
2017). These failures cannot be resolved using a more powerful model or additional
training data. To solve aleatoric failures, one has to enhance the information provided
to the perception system. This can be achieved by fusing the information of multiple
sensors (see Section 2), by utilizing context information, by using a better sensor, and / or
by considering temporal information. A second class of failures are epistemic failures,
which are model or dataset dependent. They can be mitigated by using more training data
and / or a more powerful perception model (Kiureghian and Ditlevsen, 2009). Please
refer to Section 4.1 for a more detailed discussion of the two failure modes.

78

5 Functionally Modular and Interpretable Temporal Filtering

High-dimensional
static state encoding

all scene features

Low-dimensional
dynamic state encod-
ing scene dynamics

Hidden State

Feature Filter

Motion Filter

Prediction

Prediction Update

Update

Fusion
Motion

Depth

3D

Motion Estimation

Motion Integration

ht−1 ht

hs
t−1

h̄s
t

hs
t

hm
t−1 h̄m

t hm
t

r̃t−1

r̃t

r̂t

d̂t−1

m̃t
t−1

ãt
t−1

τ̂t
t−1

R,T

fmot

ffus

fm
updfm

pred

f3d

fdep

fproj fs
upd

Figure 5.1: Functionally modularized temporal filter used to compute an improved estimate r̂t of the encoder repre-
sentation. The filter task is decomposed into less complex and more transparent subtasks by splitting the hidden state
ht into a high-dimensional static state hs

t and a low-dimensional dynamic state hm
t . Separate filter modules are em-

ployed to filter the two sub-states. The subfilters adopt the basic structure of a recursive Bayesian estimator and utilize
auxiliary modules to compute human interpretable intermediate representations and to preprocess features. For illus-
tration purposes, abstract feature representations (e.g. r̃t and r̂t) are displayed as images framed by an orange dashed
line. Human interpretable intermediate representations (d̂t−1 and τ̂ tt−1) are highlighted by a blue dashed frame. The
pictures used to illustrate the various representations are altered images of the SceneNet RGB-D (McCormac et al.,
2017) dataset.

In this work, we focus on tackling aleatoric failures of a single-frame semantic segmen-
tation model using temporal consistency. Temporal integration is achieved by recurrently
filtering a representation of the model by means of a functionally modularized filter. A
structural overview of our proposed representation filter is depicted in Figure 5.1. In
contrast to other available approaches, our filter consists of multiple submodules, de-
composing the filter task into less complex and more transparent subtasks. The basic
structure of the filter is inspired by a recursive Bayesian estimator, consisting of a pre-
diction and an update step. Within the prediction step, the feature representation of the
previous time step is propagated one step into the future and in the update step the pre-
dicted representation is fused with more recent information from the image of the current
time step (see feature filter in Figure 5.1). We model the prediction of the representa-
tion as an explicit geometric projection given estimates of the scene geometry and the
scene dynamics. The scene geometry and dynamics are represented as a per-pixel depth

79

5 Functionally Modular and Interpretable Temporal Filtering

and a 6-DoF camera motion. Both parameters are estimated within the filter using two
task-specific subnetworks.

The decomposition of the prediction task into a transformation based on a physical model
as well as a depth and a motion estimation introduces several advantages. Instead of hav-
ing to learn dynamics of a high-dimensional representation, we enable modeling motion
separately in a low-dimensional feature space. The overall filter can therefore be subdi-
vided into two subfilters: a motion filter, which predicts and integrates low-dimensional
camera motion, and a feature filter, which handles the integration and prediction of ab-
stract scene features.

An advantage of our approach is its improved transparency, interpretability, and explic-
itness. Within the filter, we estimate three human interpretable representations: a depth
map, the camera motion, and the weight matrix (update gate) of our update module.
These representations can be used to inspect the functionality of the model, to split the
filter into pre-trainable subnetworks, or to debug and validate network behavior. In con-
trast to other methods, the proposed filter also works in cases when the current image is
not available. For example, methods that use the optical flow fail in such situations due
to their inability to compute a meaningful warping.

Using a photorealistic, synthetic video dataset, we evaluate our proposed functionally
modularized temporal filter as well as its subcomponents. First, we highlight the possi-
bility to pre-train subcomponents, evaluate them, and inspect their behavior. The analysis
of the feature update module verifies the capability of our filter to integrate information
over time. In addition, we evaluate the ability of our motion filter to propagate and
aggregate dynamics over time. In a second step, we compare the performance of a seg-
mentation model using our modular filter (FMTNet) with a single-image baseline as well
as a feature-level filter approach without task-specific modeling. The results indicate a
better ability of our filter in coping with missing data. Finally, we show predictions of
FMTNet and use the human interpretable intermediate representations of our filter to
inspect model behavior.

The functionally modularized temporal representation filter presented in this chapter was
first published at the British Machine Vision Conference (Wagner et al., 2018a).

80

5 Functionally Modular and Interpretable Temporal Filtering

5.2 Related Work

In this section, we introduce approaches that use temporal information to tackle aleatoric
failures of segmentation models and assess their interpretability. We classify the related
work into three categories: feature-level filtering, temporal post-processing, and spatio-
temporal fusion.

Feature-level temporal filtering. A common approach to temporally stabilize network
predictions are feature-level filters. These filters are applied to one or several feature
representations, which are integrated using information of previous time steps. Several
works implement such a filter using fully-learned, model-free architectures1. Fayyaz et

al. (2016) and Valipour et al. (2017) generate a feature representation for each image in
a sequence and use RNNs to temporally filter them. The resulting filtered representa-
tion is post-processed and up-sampled to generate the semantic segmentation. Jin et al.

(2017b) utilize a sequence of previous images to predict a feature representation of the
current image. The predicted representation is fused with the one of the current image
and propagated through a decoder network. Yurdakul and Yemez (2017) evaluate differ-
ent recurrent network structures to temporally integrate the joint feature representation
of RGB and depth data. The Recurrent Fully Convolutional DenseNet of Wagner et al.

(2018b) utilizes a hierarchical filter concept to increase the robustness of a segmentation
model (see Chapter 4). Being model-free, these filters usually require many parame-
ters and are harder to train. Due to their low interpretability, it is difficult to include
constraints, to inspect or debug their behavior, and thus to perform a safety analysis.

A second class of feature-level filters utilizes a partially model-based approach to tempo-
rally integrate features. These approaches use an explicit model to implement the tempo-
ral propagation of features and learn a subnetwork which fuses the propagated features
with features of the current time step. A common model for implementing the propaga-
tion is the optical flow. The replacement field parametrizing the flow can be predicted
in the model (Vu et al., 2019) or computed using classical methods (Gadde et al., 2017;
Nilsson and Sminchisescu, 2018). These models often fail to resolve aleatoric failures.
This is due to their dependence on the availability of the current frame. More sophis-

1We define model-free architectures as architectures which are designed without taking task-specific domain
knowledge or knowledge about the physical world into account. These architectures rely on more general structures
(e.g. common CNN or RNN architectures) and fully learn the expected prediction behavior from data.

81

5 Functionally Modular and Interpretable Temporal Filtering

ticated feature propagation models exist (Zhou et al., 2017; Mahjourian et al., 2017;
Mahjourian et al., 2018; Yin and Shi, 2018), which additionally constrain the transfor-
mation. Such a model was used by Radwan et al. (2018) to temporally aggregate learned
features within a multi-task model. Our model is also partially model-based using a
more sophisticated propagation model that is similar to the one by Radwan et al. (2018).
In contrast to all presented model-based approaches, our filter does not depend on the
availability of the current frame. Therefore, it is especially well-suited to tackle aleatoric
failures, while still being transparent due to its modularity. Model-based and partially
model-based architectures contain human interpretable representations (e.g. optical flow
fields), which aid an engineer to inspect, debug, and validate the model. In addition, it is
usually much easier to integrate auxiliary losses during training and to enforce physical
constraints.

Post-processing-based temporal integration. Some approaches use post-processing
steps to integrate predictions of a single-frame segmentation model. Lei and Todorovic
(2016) propose the Recurrent-Temporal Deep Field model for video segmentation, which
combines a convolutional network, a recurrent temporal restricted Boltzmann machine,
as well as a conditional random field. Kundu et al. (2016) propose a long-range spatio-
temporal regularization using a conditional random field operating on a Euclidean feature
space, optimized to minimize the distance between features associated with correspond-
ing points in the scene. Our temporal integration approach differs from post-processing
methods, due to the integration of rich feature representations instead of segmentations.
The modular structure of our filter, with its human interpretable representations, makes it
also more transparent. Additionally, feature-level filters are more general and can easily
be integrated into any other network architecture (e.g. an object detection model). Sev-
eral post-processing-based approaches use the optical flow, which is not always reliably
computable, especially in the presence of high image noise or missing information.

Spatio-temporal fusion. Other approaches build semantic video segmentation networks
using spatio-temporal features. Tran et al. (2016) and Zhang et al. (2014) use 3D con-
volutions to compute such features. The Recurrent Convolutional Neural Network of
Pavel et al. (2017) is another spatio-temporal architecture. It uses layer-wise recurrent
self-connections as well as top-down connections to stabilize representations. However,
it is difficult to integrate physical constraints into such approaches and they require large
numbers of parameters.

82

5 Functionally Modular and Interpretable Temporal Filtering

5.3 Functionally Modularized Temporal Filtering

5.3.1 Model Design

The goal of this work is to improve the robustness of a CNN f using information of pre-
vious time-steps. The temporal integration of information is achieved by means of a filter
module fFM , which stabilizes an abstract feature representation of the CNN. In compar-
ison to other filters, our filter has a modular structure and contains human interpretable
intermediate representations, resulting in an improved interpretability and transparency.
Although we focus on segmentation models in the remainder of this chapter, our filter
approach can be applied in a variety of models (e.g. CNNs for object detection, free
space detection, . . .).

We assume a semantic segmentation model f is given, which consists of two parts: a
convolutional feature encoder fenc and a semantic decoder fsem. The feature encoder
operates on an image x̃t and generates an abstract feature representation r̃t. This rep-
resentation is up-sampled and refined by the semantic decoder fsem to produce a dense
pixel-wise semantic segmentation s̃t:

s̃t = f(x̃t; θ) = fsem(r̃t; θsem) = fsem(fenc(x̃t; θenc); θsem), (5.1)

where θ are the learnable parameters of the overall model and θenc as well as θsem are the
parameters of the encoder and decoder, respectively.

Due to data-inherent perturbations (e.g. noise introduced by adverse weather conditions),
the representation r̃t is a crude approximation of the true feature representation without
perturbations. Using a temporal filter fFM , we improve the estimate of the features r̂t

and consequently also the segmentation of the decoder:

ŝt = fsem(r̂t; θsem) = fsem(fFM(r̃t,ht−1; θFM); θsem). (5.2)

The hidden state ht−1 represents an internal memory, encoding all the prior knowledge
about scene features and dynamics, aggregated from previous time steps. Framing Equa-
tion 5.2 in the context of a Bayes Filter (Gu et al., 2017), the filter module fFM has to
propagate the belief about the hidden state ht−1 one time step into the future, update the
belief using the current input r̃t of the filter, and compute an improved estimate r̂t of

83

5 Functionally Modular and Interpretable Temporal Filtering

Encoder

Approximation of
the true feature
representation

Filtered estimate
of the true feature

representation

Semantic Decoder

Knowledge from
previous time steps

Hidden State (t-1)

Hidden State (t)

Filter Module

Image x̃t Segmentation ŝt

r̃t r̂t

Figure 5.2: Semantic segmentation model f consisting of an encoder fenc and decoder fsem, extended by a filter
module fFM . The filter module uses information of previous time steps to derive an improved estimate r̂t of the true
feature representation. For illustration purposes, abstract feature representations (̃rt and r̂t) are displayed as images
framed by an orange dashed line. The pictures used to illustrate x̃t, r̃t, r̂t, and ŝt are altered images of the SceneNet
RGB-D (McCormac et al., 2017) dataset.

the true feature representation. A visualization of the resulting segmentation model with
filter is depicted in Figure 5.2.

A common architecture to implement filter modules for spatial representations are Recur-

rent Neural Networks (RNNs), such as convolutional LSTM cells (Xingjian et al., 2015).
Such models are well suited to model sequential data due to their recurrent structure and
are usually fully learned from data. However, due to being black-box architectures, they
are hard to understand, debug, and validate. Domain knowledge or additional constraints
(e.g. the consistency of camera motion across spatial dimensions) are also not easy to
integrate.

To overcome these drawbacks, we propose a more interpretable and transparent filter
module. We adopt the basic structure of a recursive Bayesian estimator and split the
filter fFM into a prediction module fpred and an update fupd module:

r̂t = fFM(r̃t,ht−1; θFM) = fupd(r̃t, fpred(ht−1; θpred); θupd), (5.3)

where θpred and θupd are the respective parameters of the two components. The predic-
tion module fpred propagates the hidden state ht−1 one time step into the future, while
the update module fupd refines it using information of the current input representation r̃t

to obtain an improved estimate of the encoder representation r̂t. Thus, the prediction
module has to learn the complex dynamics of a high-dimensional hidden-state. To in-
crease interpretability and divide the prediction task into easier subtasks, we decouple
static scene modeling and dynamic motion modeling. Decoupling is achieved by split-

84

5 Functionally Modular and Interpretable Temporal Filtering

ting the hidden state ht into a high-dimensional static state hst encoding all static scene
features (i.e. an abstract representation of the content and geometry of the scene) and
a low-dimensional dynamic state hmt encoding scene dynamics (e.g. the motion of the
camera). In the proposed implementation, the static state corresponds to the target out-
put of the filter: hst = r̂t. Both sub-states are temporally integrated using separate filter
modules — a feature filter and a motion filter. The two subfilters as well as their modules
and interconnection are depicted in Figure 5.1.

The prediction module of the feature filter only has to account for the spatial displace-
ment of static scene features due to motion. This displacement can be explicitly modeled
via a geometric projection fproj . To compute a valid projection of the static state hst−1,
estimates of the scene geometry and the scene dynamics are required. We encode the
scene geometry as a dense depth map d̂t−1 derived from the static state hst−1 by means
of a depth decoder fdep. A 3D rigid transformation τ̂ tt−1 is used to characterize the scene
dynamics, assuming the dynamics are dominated by camera motion. Scene dynamics
are separately estimated and filtered in the motion filter. The predicted static state h̄st is
updated in a second module f supd using new information of the input representation r̃t.
All components of the static feature filter are described in more detail in Section 5.3.2.

Scene dynamics are estimated and filtered in a second subfilter, the motion filter. A mo-
tion embedding module fmot is used to project the high-dimensional scene feature space
into a low-dimensional motion feature space. The transformation is fully learned, en-
abling the model to generate a representation well-suited for motion integration. The
prediction fmpred and update step fmupd of the motion filter is implemented using a Gated

Recurrent Unit (GRU) (Cho et al., 2014). The 3D rigid transformation τ̂ tt−1 is derived
from the filtered hidden state hmt by means of a small fully connected network f3d. Sec-
tion 5.3.3 further elaborates on the different components of the motion filter.

One advantage of decoupling motion and scene features is the easy integration of auxil-
iary information such as data recorded by additional sensors (e.g. acceleration data ãtt−1
of the recording camera). This kind of motion information can be fused much more tar-
geted with the appropriate motion features derived from image pairs. The feature fusion
is implemented using a fully-learned fusion module ffus. An additional advantage of
the decoupling is a global modeling of camera motion. The motion is guaranteed to be
consistent across spatial scene features and can be estimated using correlations across

85

5 Functionally Modular and Interpretable Temporal Filtering

Temporal Representation Filter

Feature Filter

Motion Filter

Multi-task Model

Encoder

Prediction
(explicit)

Prediction/
Update3D

3D’

Update

Motion

Depth

Semseg

t− 1

t

t+ 1

r̂t−1

r̄t

r̃t r̂t

r̃t−1
R,T

τ̃t
t−1

d̂t−1

ŝt

ãt
t−1

hm
t−1

hm
t

τ̂t
t−1

Figure 5.3: Multi-task-based interpretation of the resulting overall model. The model consists of an underlying multi-
task architecture which predicts a semantic segmentation, a depth map, and a 3D rigid transformation. The predictions
of the multi-task model are temporally stabilized by means of a representation filter. The depth map and the 3D
transformation predicted by the multi-task model are used in the temporal representation filter to propagate previous
knowledge. Due to the filter design, the model can also make a reasonable prediction if the input image at the current
time step t does not contain any meaningful information (e.g. the image is black due to a short failure of the camera).
The pictures used to illustrate the input images, the depth map, as well as the pixel-wise semantic segmentation are
altered images of the SceneNet RGB-D (McCormac et al., 2017) dataset.

full image pairs. Filters based on convolutional RNNs (Wagner et al., 2018b) usually do
not posses these properties, due to their convolutional processing nature.

The overall architecture (i.e. segmentation model plus functionally modularized temporal
filter) can also be interpreted as a multi-task model:

fMT (·; θMT) =fenc(·; θenc) ∪ fsem(·; θsem) ∪ fdep(·; θdep)∪
fmot(·; θmot) ∪ f3d(·; θ3d), (5.4)

which predicts a segmentation, a depth map, and a 3D rigid transformation (see Fig-
ure 5.3). The encoder representation r̃t of the multi-task model is integrated over time
using an additional filter module, which utilizes decoder outputs to propagate previous
knowledge. As decoders (i.e. the depth and semantic segmentation decoder) operate on
the filtered encoder representation r̂t or utilize a separate filter (see motion decoder), the
functionality of our model does not dependent on new input images x̃t. Thus, the model
can even make a reasonable motion, depth, and semantic prediction if the input image x̃t

86

5 Functionally Modular and Interpretable Temporal Filtering

at the current time step t does not contain any meaningful information (e.g. the image
is black due to a short failure of the camera). This property sets our filter apart from
other approaches in the literature (Gadde et al., 2017; Nilsson and Sminchisescu, 2018).
We thus believe that our approach is much better suited for reducing aleatoric failures of
single-frame semantic segmentation models.

The overall filter is developed to increase transparency and interpretability, by modu-
larizing functionalities, using explicit physical models as subcomponents, and introduc-
ing human interpretable representations. Compared to other existing architectures, it
is much easier to debug and validate the model, inspect intermediate results, pre-train
subnetworks, and introduce physical constraints. These properties are also particularly
relevant with regard to safety analysis. From a multi-task perspective, the two auxiliary
tasks (depth and motion estimation) may also benefit segmentation, due to an implicit
regularization (Ruder, 2017).

5.3.2 Feature Filter

In this section, we discuss the three components of the feature filter in more detail. Two
of the components, the update module and the depth decoder, are fully learned from data.
The prediction module, on the other hand, is implemented via a geometric projection and
does not contain any learnable parameters. Thus, the feature prediction is performed in
a more transparent manner, making it easier to determine the contribution of information
from previous time steps.

Prediction / Geometric Projection

The prediction module temporally propagates static scene features encoded in the static
state hst−1 one time step into the future. By focusing on a static representation, the pre-
diction is simplified to a spatial displacement of features. This displacement is modeled
using a geometric projection (Zhou et al., 2017; Mahjourian et al., 2017). Consequently,
the resulting prediction module does not contain any learnable parameters and is fully
parametrized by the scene geometry and the scene dynamics. The former parameter is
provided by the depth decoder and the later by the motion filter (see Section 5.3.3). The

87

5 Functionally Modular and Interpretable Temporal Filtering

idea of the proposed prediction approach is to use knowledge about the physical world as
well as the imaging process to increase interpretability and transparency. This enables an
easier integration of geometric as well as physical constraints (e.g. motion constraints)
and usually results in a reduced number of filter parameters.

Let p∗t−1 = (i, j, 1)T be the homogeneous coordinate of a pixel in the static state hst−1 at
time step t− 1 and d̂ijt−1 the associated depth value. Using the camera intrinsic matrix K

one can compute the corresponding 3D point in camera coordinates:

Pt−1 = d̂
(i,j)
t−1 ·K−1 · p∗t−1. (5.5)

This 3D point is transformed into the camera coordinate system at time step t using the
camera motion encoded in the transformation matrix τ̂ tt−1. The resulting 3D point is
projected back to the pixel coordinate system to get the homogeneous coordinate p∗t at
time step t:

p∗t ∼ K ·
(

1 0 0
0 1 0
0 0 1

∣∣∣ 00
0

)
· τ̂ tt−1 ·P∗t−1. (5.6)

We use the asterisk superscript to mark homogeneous coordinates, e.g. P∗t−1 is a homo-
geneous version of Pt−1. The coordinate pt is continuous and has to be discretized in
a subsequent processing step. Additionally, it is necessary to account for ambiguities,
in cases where multiple pixels of time step t − 1 are assigned to the same pixel of time
step t. We resolve these ambiguities by choosing the transformed pixel with the smallest
depth (i.e. we use objects closer to the sensor). Using Equation 5.5 and 5.6 as well as
the proposed post-processing steps, one can temporally propagate the static state hst−1
one time step into the future. The full projection is differentiable with respect to scene
features. In contrast to other explicit prediction methods, our implementation does not
depend on information of time step t. This is an important property for resolving failures
due to missing or incomplete information available in the current input frame.

Depth Estimation and Supervision

The scene geometry is parametrized by a dense depth map d̂t−1 (i.e. one depth value d̂ijt−1
per pixel) and estimated using a decoder network fdep operating on the filtered static
state representation hst−1. By operating on the representation hst−1 of the previous time

88

5 Functionally Modular and Interpretable Temporal Filtering

640×
30×40

384×
30×40

384×
30×40

ẑt−1

1×
30×40

∗Conv(3,1)
BN, Drop

∗Conv(1,1)
BN, Drop

∗Conv(1,1) reciprocal
fdep

hs
t−1 d̂t−1

LL1
depth,Lsig

depth

Figure 5.4: Depth decoder fdep consisting of three convolutional layers. The depth decoder estimates a dense depth
map d̂t−1 using the information provided by the filtered representation hs

t−1. ∗Conv(f,s): convolutional layer with f
filters, a stride of s, and a ReLU nonlinearity. The first two layers additionally apply batch normalization (BN) and
dropout (Drop). The inverse depth ẑt−1 is used to compute the depth decoder specific loss terms. The depiction of
the depth map d̂t−1 is taken from the SceneNet RGB-D (McCormac et al., 2017) dataset.

step it is possible to get meaningful depth estimates even when the current image x̃t at
time step t does not contain any meaningful information. The depth map is used in the
prediction module to compute the geometric projection of the representation hst−1.

The depth decoder consists of three convolutional layers with kernel size 3×3, 1×1,
and 1×1, respectively. We apply batch normalization (Ioffe and Szegedy, 2015) and
dropout (Srivastava et al., 2014) in the first two layers and use ReLU nonlinearities (Nair
and Hinton, 2010) in each layer. Therefore, the predicted depth is always positive and
valid. In the first two layers the number of features is set to 384 and the last layer predicts
one value per pixel. Instead of directly predicting depth values, we estimate the inverse
depth ẑt−1, which puts less focus on wrong predictions in larger distance. In a last step,
the inverse depth is explicitly converted to the depth map d̂t−1 = 1/ẑt−1. The overall
architecture of the depth decoder is depicted in Figure 5.4.

We use two depth decoder specific loss terms during training. The first loss term LL1depth
is a L1 loss on the inverse depth:

LL1depth =
∑
i,j

|zijt−1 − ẑijt−1|, (5.7)

where ẑijt−1 is the predicted inverse depth at pixel location (i, j) and zijt−1 the ground truth
inverse depth. The second loss term Lsigdepth is a squared L2 loss on the scale invariant
gradient gijh [·] computed for three spatial scales h ∈ {1, 2, 4} (Ummenhofer et al., 2017):

Lsigdepth =
∑

h∈{1,2,4}

∑
i,j

∥∥gijh [zt−1]− gijh [ẑt−1]
∥∥2
2
. (5.8)

89

5 Functionally Modular and Interpretable Temporal Filtering

This loss penalizes incorrect depth changes in small local neighborhoods. The scale
invariant gradient of the ground truth depth and the predicted depth is defined by (Um-
menhofer et al., 2017):

gijh [n] =

(
ni+h,j − nij
|ni+h,j|+ |nij| ,

ni,j+h − nij
|ni,j+h|+ |nij|

)T
. (5.9)

Update / Feature Fusion

The update module linearly combines previous knowledge encoded in the predicted static
state h̄st with new information of the current input representation r̃t. The weights of the
linear combination are calculated in a data-dependent manner to obtain an optimal fusion
of the two representations. Weighting is conducted on a per-pixel basis using information
of a local neighborhood. For each pixel position a weighting value iijt is estimated that
indicates whether one should rely on prior knowledge encoded in h̄st or on information
of the new input r̃t. This weight matrix it (also referred to as update gate) is calculated
similarly to convolution LSTM gates (Xingjian et al., 2015), but contains only one value
per pixel instead of one value per pixel and feature:

it = σ(Whi ∗ h̄st + Wri ∗ r̃t + bi). (5.10)

The convolutional operator is indicated by ∗, Whi and Wri are 3×3 kernels, and bi

is a bias term. Using it and element-wise multiplications represented by ◦, the update
module computes:

hst = r̂t = (1− it) ◦ h̄st + it ◦ r̃t. (5.11)

Note that weighting values are broadcasted along the feature dimension during multipli-
cation. The initial predicted state h̄s0 used in the first update step is a parameter of the
update module and learned during training.

5.3.3 Motion Filter

The scene dynamics are estimated and temporally integrated using the motion filter.
Within this work, we assume that scene dynamics are dominated by camera motion.

90

5 Functionally Modular and Interpretable Temporal Filtering

fmot

ffus

f3dδ̃tt−1

ãtt−1

τ̃ tt−1

1280×
30×40

512×
15×20

256×
8× 10

128×
4× 5

128

∗Conv(3,2)
BN

∗Conv(3,2)
BN

∗Conv(3,2)
BN

Average
Pooling

3 32 32

FC*

BN
FC*

BN
128

m̃t
t−1

128

FC*

BN
FC*

BN

128 6

Drop FC
Clip

Position at which the motion
integration module is inserted

Figure 5.5: Motion estimation module (motion decoder) consisting of a motion embedding subnetwork fmot, a fusion
subnetwork ffus, and a subnetwork f3d to infer the camera motion τ̃ tt−1. The module uses a pair of encoder represen-
tations δ̃tt−1 = [̃rt−1, r̃t] and the acceleration data ãt

t−1 of the camera as input. ∗Conv(f,s): convolutional layer with f
filters, a stride of s, and a ReLU nonlinearity. FC* / FC: fully connected layers, an asterisk superscript indicates the
presence of a ReLU nonlinearity. The symbol [] indicates the concatenation of feature representations. All layers
with learnable parameters, except the last fully connected layer, use batch normalization (BN). We additionally apply
dropout (Drop) to one representation and clip three entries of the final activation (the angle estimates) to [−1, 1],
indicated by Clip.

Thus, the motion filter has to estimate the rotation and translation of the camera, which
we parametrize by a 3D rigid transformation τ̂ tt−1. In comparison to the feature filter, all
components of the motion filter are fully learned from data. In principle, it would also
be possible to exchange subcomponents of the motion filter by physical models.

Motion Estimation

Using the motion embedding network fmot, the motion estimation module learns a pro-
jection from the high-dimensional scene feature space to the low-dimensional motion
feature space. To stabilize motion estimates, the projected features are combined in the
fusion module ffus with features derived from the acceleration data ãtt−1 of the camera.
The fused representation is propagated through a small fully connected network f3d to
infer the 3D rigid camera transformation τ̃ tt−1. Figure 5.5 visualizes the overall structure
of the motion estimation module.

Pairs of encoder representations δ̃tt−1 = [̃rt−1, r̃t] concatenated along the feature dimen-
sion are used as the input of the motion embedding network fmot. The motion embedding
network is a CNN consisting of three convolutional layers with kernel size 3×3 and a
stride of 2. The embedding of the CNN is processed by an average pooling layer to
aggregate motion features at all spatial locations. The motion network can be relatively
small as it does not use raw inputs, but abstract representations generated by the encoder
network fenc. The aggregated feature vector is concatenated with the motion features
derived from the acceleration data ãtt−1. To compute the acceleration features we use a

91

5 Functionally Modular and Interpretable Temporal Filtering

small network consisting of two fully connected layers. The concatenated features are
further transformed by two fully connected layers to create the motion embedding m̃t

t−1.
We apply batch normalization and ReLU nonlinearities in each layer with learnable pa-
rameters. The shape of all activations is specified in Figure 5.5.

To infer the 3D rigid camera transformation τ̃ tt−1 from the motion embedding m̃t
t−1, we

use a linear layer with 6 units. This layer predicts the translation vector T̃t
t−1 and the

sinus of the rotation angles (sinαtt−1, sin β
t
t−1, sin γ

t
t−1)

>. The angle sinus estimates are
clipped to [−1, 1] and converted to a rotation matrix R̃t

t−1 (Vijayanarasimhan et al., 2017;
Zhou et al., 2017). The rigid camera transformation is obtained by:

τ̃ tt−1 =
[
R̃t

t−1 T̃t
t−1

0T 1

]
. (5.12)

Temporal Motion Integration and Supervision

The prediction of the motion estimation module only depends on the information of two
consecutive time steps. This makes the motion estimation quite susceptible to incom-
plete or missing input data. In order to always obtain a meaningful motion estimate, we
integrate motion features over time in a fully-learned, model-free filter. Filtering may
also lead to a general improvement in motion estimation.

The filter consists of a GRU (Cho et al., 2014) followed by a fully connected layer and
is defined by:

ott−1 = σ(Wm̃om̃
t
t−1 + Whoh

m
t−1 + bo), (5.13)

utt−1 = σ(Wm̃um̃
t
t−1 + Whuh

m
t−1 + bu), (5.14)

ctt−1 = tanh(Wm̃cm̃
t
t−1 + ott−1 ◦ (Whch

m
t−1) + bc), (5.15)

hmt = (1− utt−1) ◦ hmt−1 + utt−1 ◦ ctt−1 (5.16)

m̂t
t−1 = relu(bn(Wouth

m
t + bout)). (5.17)

It is inserted after the fusion module (see marked location in Figure 5.5) and stabilizes
the motion embedding m̃t

t−1. The initial state vector hm0 of the GRU is a parameter of
the model and leaned during training. The output vector hmt consisting of 256 features
is transformed by the fully connected layer to a feature vector with the same size as the

92

5 Functionally Modular and Interpretable Temporal Filtering

input embedding m̃t
t−1. The function bn in Equation 5.17 indicates the usage of batch

normalization. Using the filtered motion embedding m̂t
t−1 as well as the network f3d,

one can compute the stabilized rigid camera transformation τ̂ tt−1 (see Equation 5.12).

Two motion specific loss terms are used during training. The losses are based on the
relative transformation between the predicted and ground-truth motion as defined by Vi-
jayanarasimhan et al. (2017):

Ltransmotion = (∆T)2 =
∥∥∥inv

(
R̂t
t−1

)(
Tt
t−1 − T̂t

t−1

)∥∥∥2
2
, (5.18)

Lrotmotion = ∆R

= arccos

min

1,max

−1,
trace(inv

(
R̂t
t−1

)
Rt
t−1)− 1

2

 , (5.19)

where Tt
t−1 is the ground-truth camera translation vector and Rt

t−1 the ground-truth ro-
tation matrix. T̂t

t−1 and R̂t
t−1 are the corresponding predicted translation vector and

rotation matrix.

5.4 Implementation Details

5.4.1 Dataset

We evaluate our proposed modular temporal filter using the SceneNet RGB-D (McCor-
mac et al., 2017) dataset which consists of 5M photorealistically rendered RGB-D im-
ages recorded from 15k indoor trajectories. The scene layout, lighting conditions, cam-
era trajectories, and textures are randomly sampled for each sequence, while considering
physical constraints. Besides the camera motion, all scenes are static. Due to its simu-
lated nature, the dataset provides labels for semantic segmentation, depth estimation, and
camera motion estimation. We split the training data into a training and validation set and
use the provided validation data as the test set. For training, we use all non-overlapping
sequences of length 7 generated from the training trajectories. The test set is constructed
by sampling 5 non-overlapping sequences of length 7 from each test trajectory, resulting
in 5,000 test sequences. Unless otherwise specified, we use this test set in our evaluation.

93

5 Functionally Modular and Interpretable Temporal Filtering

To add aleatoric uncertainty to the input data, all sequences are perturbed with noise,
clutter, and changes in lighting conditions. In the following, we give a detailed descrip-
tion of the process used to generate these perturbations. After applying the perturbations
to a clean sequence xs generated from the SceneNet RGB-D dataset, we clip pixel values
to the interval [0, 1] to get a valid perturbed sequence x̃s. Example sequences are shown
in Figure 5.6.

Clutter is introduced by setting subregions of each image to the pixel mean µs, computed
on a per-sequence basis. The clutter is generated once per-sequence and applied to each
frame. Thus, the resulting clutter pattern is the same in each frame, comparable to dirt
on the camera lens. The perturbed image x′sj is calculated by:

x′sj = xsj · (1−ms) + µs ·ms, (5.20)

where ms is a per-sequence clutter mask, µs the per-sequence pixel mean, and xsj the
clean image (the subscript j indicates the frame number and the index s the sequence
index). The clutter mask is generated by summing Ns Gaussian kernels whose centers
are randomly placed (uniformly sampled) within the image dimensions. Each kernel is
normalized to the maximum value one. The number of kernels Ns is uniformly sampled
from the interval [0, 8] for each sequence. In addition, we uniformly sample the standard
deviations of each 2D-kernel from the interval [10, 36]. The kernels are truncated at three
times the standard deviation. In a final step, the resulting clutter mask is clipped to the
range [−1, 1].

Rapid changes in lighting conditions are simulated by increasing or decreasing the
intensity of frames by a random value and letting this offset decay over time. For each
sequence, we uniformly sample one frame index is and a multiplier ps which with a
probability of 0.5 is either 1 or −1. In addition, we draw a scaling factor cs from the
interval [0.5, 1.0]. The perturbed images x′′sj are calculated by:

∀j < is : x′′sj = x′sj, (5.21)

∀j ≥ is : x′′sj = x′sj + ps · 0.3j−is · cs. (5.22)

Such a perturbation pattern occurs in real life, for example, when the light is suddenly
switched off in a room.

94

5 Functionally Modular and Interpretable Temporal Filtering

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Figure 5.6: Example sequences of the training dataset (McCormac et al., 2017). One sequence of length 7 is shown
per row. Each sequence is perturbed with randomly sampled noise, clutter, and changes in lighting conditions.

Noise is simulated by adding independent Gaussian noise with zero mean to each pixel
of a sequence. The variance of the noise is independently sampled for each sequence
from the interval [0, 0.001].

By utilizing simulated perturbations, we can focus on aleatoric failures, which are often
underrepresented in real-world benchmarks. The usage of a large-scale, fully-labeled
simulated dataset additionally reduces the amount of dataset-dependent epistemic fail-
ures. The generated dataset is thus well suited to investigate the benefits of temporal
integration.

5.4.2 Segmentation Models

All architectures used in this work are based on the Pyramid Scene Parsing Network

(PSPNet) of Zhao et al. (2017). This model uses a dilated Fully Convolutional Net-

work (Chen et al., 2015; Yu and Koltun, 2016) supplemented by a Pyramid Pooling

Module to produce a per-pixel semantic prediction.

95

5 Functionally Modular and Interpretable Temporal Filtering

PSPNet
3 × 240 × 320

x̃t

fres

ẽt

512×
30×40 fppm

r̃t

640×
30×40

fenc

384×
30×40 384×

30×40
13 × 240 × 320

s̃t

∗Conv(3,1)
BN, Drop

∗Conv(1,1)
BN, Drop

Conv(1,1)↑⋅8
fsem

fdep

1 × 30 × 40

d̃t

fmot f3d

r̃t−1
τ̃t
t−1

ẽt

512×
1×1

32×
1×1

512×
2×2

32×
2×2

512×
3×4

32×
3×4

512×
6×8

32×
6×8

r̃t

•Pool(30×40)

•Pool(15×20)

•Pool(10×10)

•Pool(5×5)

∗Conv(1,1)
BN

∗Conv(1,1)
BN

∗Conv(1,1)
BN

∗Conv(1,1)
BN

BN-ReLU

upscale

upscale

upscale

upscale

Figure 5.7: Multi-Task Pyramid Scene Parsing Network (MPSPNet) consisting of a feature encoder fenc and three
decoders (fsem: semantic decoder; fdep: depth decoder; fmot + f3d: motion decoder). The encoder uses a dilated
ResNet fres and a Pyramid Pooling Module fppm. The MPSPNet corresponds to a single-task Pyramid Scene Parsing
Network (PSPNet) (highlighted in blue), extended by a motion and depth decoder. ∗Conv(f,s): convolutional layer
with f filters and a stride of s; •Pool(k): Average pooling layer without zero padding using a kernel size and stride
of k. The use of batch normalization and dropout is indicated by BN and Drop, respectively. To obtain a semantic
segmentation s̃t with the same resolution as the input image x̃t, we use an eightfold bilinear upsampling (↑·8) as well
as a pixel-wise softmax function in the last layer of the semantic decoder. The input image, the depth map, as well as
the pixel-wise semantic segmentation are taken from the SceneNet RGB-D (McCormac et al., 2017) dataset.

Our implementation of the PSPNet, consisting of a feature encoder fenc and a semantic
decoder fsem, is shown in Figure 5.7. Within the feature encoder we employ a dilated
Residual Network (ResNet) (He et al., 2016a) to extract a representation ẽt with a fairly
large spatial resolution while avoiding a reduction of the receptive field of the neurons.
To improve information flow, we utilize pre-activations in all residual blocks (i.e. the
order of operations is normalization-nonlinearity-convolution) as proposed by He et al.

(2016b). The features of the ResNet are further supplemented by global context informa-
tion aggregated in a Pyramid Pooling Module (Zhao et al., 2017). This module average
pools the representation ẽt on four spatial scales, embeds the resulting representations
into a lower dimensional feature space, and upscales them to the original spatial resolu-
tion using bilinear interpolation. The resulting representations are concatenated with the
ResNet representation ẽt to produce the output r̃t of the encoder. The structure of the
dilated ResNet is depicted in Figure 5.8 and the Pyramid Pooling Module is shown in the
grey box of Figure 5.7. The weights of the feature encoder fenc are pre-trained using the
ImageNet dataset. The PSPNet is comparatively small to keep the computational effort
and the required memory of the filtered models manageable.

The semantic decoder fsem (Figure 5.7, highlighted in red) has a structure similar to
the depth decoder, consisting of three convolutional layers with kernel sizes 3×3, 1×1,

96

5 Functionally Modular and Interpretable Temporal Filtering

3× 240× 320

x̃t

64×
120×160

64×
120×160

128×
120×160

128×
60×80

64×
60×80

128×
30×40

256×
30×40

ẽt

512×
30×40

∗Conv(3,2,1)
BN

∗Conv(3,1,1)
BN

∗Conv(3,1,1)
BN

Pool(3,2)

ResBlock(1,1,1)ResBlock(2,1,1)ResBlock(1,1,2)ResBlock(1,2,4)

C×
H×W

C′×
H′×W ′

C′×
H′×W ′

∗Conv(3,s,d)
BN

Conv(1,s,1)

C′×
H′×W ′

∗Conv(3,1,e)
BN

C′×
H′×W ′

∗Conv(3,1,e)
BN

C′×
H′×W ′

∗Conv(3,1,e)
BN

C′×
H′×W ′

fres

ResBlock(s,d,e)

Figure 5.8: Dilated Residual Network. Conv(f,s,d): dilated convolutional layer with f filters, a stride of s, and a dila-
tion rate of d. An asterisk superscript indicates the presence of a ReLU nonlinearity. Pool(f,s): Max-pooling operator
using a stride of s and pooling regions of length f. The residual blocks (ResBlock, highlighted in light grey) use pre-
activations, meaning the order of operations is normalization-nonlinearity-convolution. To normalize representations,
we use batch normalization, indicated by BN. The input image x̃t is taken from the SceneNet RGB-D (McCormac
et al., 2017) dataset.

and 1×1, respectively. We apply batch normalization and dropout in the first two layers
and use an eightfold bilinear upsampling as well as a pixel-wise softmax function in
the last convolution layer. Thus, the prediction s̃t of the semantic decoder has the same
spatial resolution as the input image. We use one segmentation specific loss term during
training — the pixel-wise cross-entropy loss:

Lsem = −
∑
i,j

∑
c

log(s̃cijt) · scijt , (5.23)

where s̃cijt is the predicted softmax score of pixel (i, j) for class c and scijt the ground-
truth score.

Unfiltered Baseline Model

In our evaluation, an unfiltered segmentation model serves as a reference architecture.
To make the comparison of the reference with our filtered model as fair as possible, we
use a multi-task version of the PSPNet as the unfiltered baseline. This model, which will
be called Multi-Task Pyramid Scene Parsing Network (MPSPNet) in the remainder of
this chapter, extends the PSPNet by a motion and depth decoder. Thus, during training,

97

5 Functionally Modular and Interpretable Temporal Filtering

r̃t

640×
30 × 40 ConvLSTM

ht

286×
30 × 40 286×

30 × 40
ht−1 ct−1

ht ct r̂t

640×
30 × 40

∗Conv(1,1)
BN

∗Conv(1,1)
BN

Figure 5.9: Fully-learned, feature-level filter using a convolutional LSTM (ConvLSTM) to create spatio-temporal
features. ∗Conv(f,s): convolutional layer with f filters, a stride of s, and a ReLU nonlinearity. We use batch normaliza-
tion BN in both convolutional layers.

the baseline can also benefit from the additional depth and motion specific loss terms
(see Section 5.3.2 and 5.3.3) used to train our filtered architecture. Such a multi-task
learning setting (Ruder, 2017) can increase the segmentation performance as shown by
Kendall et al. (2018). The full architecture of the MPSPNet is depicted in Figure 5.7. It
uses the depth decoder introduced in Section 5.3.2 and the motion estimation module of
Section 5.3.3. Although the MPSPNet operates on image pairs, its semantic prediction s̃t

depends only on the current image x̃t.

Model with Modular Filter

Building upon the MPSPNet, we set-up a segmentation model which uses our function-
ally modularized filter concept introduced in Section 5.3. The filter is applied to the
output r̃t of the encoder and stabilizes the representation using information of previous
time steps. Please refer to Figure 5.3 for a detailed depiction of the filter integration.
Since the representation r̃t has a lower resolution than the input image, the camera in-
trinsic matrix K used in the feature filter has to be adjusted to be consistent with the
representation downsampling. The segmentation model, which uses our proposed filter,
will be called FMTNet hereinafter.

Filtered Baseline Model

Using a model-free, feature-level filter (Fayyaz et al., 2016; Valipour et al., 2017), we
create an additional temporally filtered baseline. Such a filter is well suited to solve
aleatoric failures, as it does not necessarily require information of the current frame. We
use a filter module similar to the one introduced in Wagner et al. (2018b). This filter
module (see Figure 5.9) operates on the encoder representation r̃t of the MPSPNet and

98

5 Functionally Modular and Interpretable Temporal Filtering

generates an improved estimate of the representation r̂t. The base component of the filter
is a convolutional LSTM (Xingjian et al., 2015), which receives the representation r̃t of
the current time step as well as the hidden ht−1 and cell state ct−1 of the previous time
step to produce a spatio-temporal embedding ht:

it = σ (Wri ∗ r̃t + Whi ∗ ht−1 + bi) , (5.24)

ft = σ (Wrf ∗ r̃t + Whf ∗ ht−1 + bf) , (5.25)

ot = σ (Wro ∗ r̃t + Who ∗ ht−1 + bo) , (5.26)

ct = ft ◦ ct−1 + it ◦ tanh(Wrc ∗ r̃t + Whc ∗ ht−1 + bc), (5.27)

ht = ot ◦ tanh(ct). (5.28)

All convolutions indicated by the symbol ∗ use weight tensors (Wr∗,Wh∗) with kernel
size 3×3. The initial hidden h0 and cell state c0 of the convolutional LSTM are parame-
ters of the model and learned during training. The spatio-temporal embedding ht is trans-
formed by a convolutional layer and concatenated with the unfiltered representation r̃t.
Using a second convolutional layer the filter computes the output representation r̂t. We
also evaluated larger kernel sizes and different feature counts in the convolutional LSTM
path, but could not achieve further performance improvements.

By inserting this filter in the MPSPNet after the feature encoder fenc, we create a baseline
segmentation model utilizing information of previous time-steps and taking advantage of
all the benefits of multi-task learning (Ruder, 2017). In the following, we will refer to
this model as GFNet. To be comparable with respect to filter complexity, we set the
number of parameters in the fully-learned filter to match the number of parameters in
our modularized filter. In the case of our filter, we count the parameters of the depth
and motion decoder to the filter, since these decoders are required for filtering. The use
of all three decoders in the GFNet model guarantees comparable training signals, but is
not necessary to create a semantic prediction. Hence, we do not assign the depth and
motion decoder weights to the filter, resulting in GFNet having 1.4 times the parameters
of FMTNet.

99

5 Functionally Modular and Interpretable Temporal Filtering

5.4.3 Training Procedure

All segmentation models MPSPNet, FMTNet, and GFNet are trained using the multi-task
loss introduced by Kendall et al. (2018), which learns the optimal weighting between the
cross-entropy segmentation loss, the two depth losses, as well as the two motion losses:

L =
1

2σ2
d1

· LL1depth + log σ2
d1

+
1

2σ2
d2

· Lsigdepth + log σ2
d2

+

1

2σ2
m1

· Ltransmotion + log σ2
m1

+
1

2σ2
m2

· Lrotmotion + log σ2
m2

+

1

σ2
s

· Lsem + log σ2
s . (5.29)

During training, we minimize this objective with respect to the model parameters as well
as the noise parameters {σs, σd1 , σd2 , σm1 , σm2}. We use the Adam optimizer (Kingma
and Ba, 2015) with a weight decay of 0.0001 and apply dropout with a probability of 0.1
in the three decoders. All components of FMTNet and GFNet that do not belong to
the filter are initialized with the corresponding weights of the trained MPSPNet. Due
to its modularity, we can additionally pre-train two components of our proposed filter.
First, we pre-train all weights of the motion filter and fine-tune the motion decoder, while
keeping the encoder weights fixed. Second, we pre-train the weights of the feature update
module as well as the encoder, while keeping all decoders fixed. The second training
is performed with sequences containing the same image in each frame, perturbed with
random noise patterns. Finally, we fine-tune the overall architecture.

5.5 Evaluation

In this section, we highlight the advantages of using an interpretable filter module and
assess the performance gains in semantic segmentation introduced by a temporal repre-
sentation filter. To evaluate the segmentation performance, we use the mean IoU score on
test sequences (see Section 5.4.1), computed over the 13 semantic classes of the SceneNet

RGB-D (McCormac et al., 2017) dataset. Table 5.1 contains a list of the semantic classes
with the corresponding label color.

100

5 Functionally Modular and Interpretable Temporal Filtering

bed books ceiling chair floor furniture objects

painting sofa table tv wall window

Table 5.1: Semantic classes of the SceneNet-RGBD dataset with the corresponding color coding that is used in the
figures of the evaluation.

Due to the modular design of our filter and the introduction of human interpretable in-
termediate representations, it is possible to debug and validate individual components of
the model. In Section 5.5.1 and Section 5.5.2, we utilize these properties and evaluate
the update module of the feature filter as well as the motion filter on toy-like data. To
show the advantage of using temporal information, Section 5.5.3 compares the perfor-
mance of a single-frame semantic segmentation model (MPSPNet) with a version of the
model that additionally uses our proposed filter. In addition, we also compare against a
segmentation model using a model-free, feature-level filter.

5.5.1 Static Feature Integration

To validate the functionality of the feature update module, we use a separate static toy-
dataset with sequences of length four. Each frame of these sequences contains the same
clean image, 50% of which is replaced by Gaussian noise. The clean images are taken
from the SceneNet RGB-D dataset and are not altered with any of the aleatoric pertur-
bations introduced in Section 5.4.1. We create a training dataset containing 2 million
sequences and a test dataset of 300,000 sequences.

We use the MPSPNet pre-trained on clean SceneNet RGB-D data and extend it by our
proposed feature filter. Due to the static nature of the sequences, we use the identity
transformation (static camera) in the filter. The encoder network fenc and feature update
module f supd of the resulting model are fine-tuned using the introduced static toy-data.

In Figure 5.10, we depict the semantic prediction of the resulting model and the update
gate it (i.e. the data-dependent weighting matrix) of its feature filter for one input se-
quence. A white gating pixel means that the filter uses new information from the current
time step. A black pixel means that the filter relies on information of previous time steps.

101

5 Functionally Modular and Interpretable Temporal Filtering

Frame 1 Frame 2 Frame 3 Frame 4

1)
In

pu
t

2)
G

ro
un

d-
tr

ut
h

3)
Pr

ed
ic

tio
n

4)
G

at
e
i t

Figure 5.10: Predictions of the MPSPNet with feature filter applied to a static sequence. The images of the sequence
are partially occluded by Gaussian noise. 1) Input sequence (McCormac et al., 2017) with only 50% of the image
visible in each frame. 2) Ground-truth semantic segmentation. 3) Semantic prediction of the MPSPNet with feature
filter. 4) Visual representation of the weight matrix it (update gate) of the feature filter. A white pixel corresponds to
a value of one, meaning information of the current time step is used. A black pixel corresponds to a value of zero,
meaning information of previous time steps is used.

The feature filter successfully integrates information over time. It has learned a mean-
ingful data-dependent weighting between previous information stored in the hidden filter
state and information provided by new frames. At each time step, the semantic prediction
of the model is improved by using new information from image parts that were previ-
ously not visible due to noise. In the first time step, there is no prior knowledge, so the
model fully relies on the information of the current frame. This behavior is indicated by
the fully white image of the update gate for frame 1. In the following time steps only
parts of the update gate image are white. These parts correlate primarily with unseen re-
gions or areas / objects for which only inaccurate information is available (e.g. the lower
left quarter of frame 2). The same behavior can be seen in Table 5.2, which reports the
mean IoU score on a per-frame basis, computed using 300,000 test sequences. The mean
IoU score of our model increases over time due to new information.

102

5 Functionally Modular and Interpretable Temporal Filtering

Frame 1 Frame 2 Frame 3 Frame 4
32.8 % 42.0 % 46.2 % 46.8 %

Table 5.2: Mean IoU score of the MPSPNet with feature filter on sequences of the static test dataset computed for
every time step. The model aggregates information over time resulting in an increasing performance with every new
frame.

Frame 1 Frame 2

τ̂2
1

Frame 3

τ̂3
2

Frame 4

τ̂4
3

Frame 5

τ̂5
4

Frame 6

τ̂6
5

Frame 7

τ̂7
6

Frame 8

τ̂8
7

Frame 9

τ̂9
8

Frame 10

τ̂10
9

τ2
1 τ3

2 τ4
3 τ5

4 τ6
5 τ7

6 τ8
7 τ9

8 τ10
9

1)

2)

3)

Figure 5.11: Successive projection of the first frame of a dynamic test sequence, once computed with ground-truth
motions τ and once using predicted motions τ̂ . We use the ground-truth depth maps for both successive projections.
1) Input test sequence (McCormac et al., 2017) used to estimate the camera motion τ̂ =

(
τ̂21 , . . . , τ̂

10
9

)
. 2) Projection

of frame 1 using ground-truth motions τ =
(
τ21 , . . . , τ

10
9

)
. 3) Projection of frame one using motion estimates τ̂ of our

model.

5.5.2 Temporal Motion Integration

In order to obtain a meaningful motion estimate for images that do not contain any infor-
mation, it is essential to propagate and aggregate dynamics over time. Using a dynamic
toy-dataset, we evaluate the ability of our motion filter to perform these two tasks. The
generated toy-dataset contains clean sequences of length 10 sampled from the SceneNet

RGB-D data for which we replace the last N frames with Gaussian noise. To create the
training dataset consisting of 2 million sequences, we sample the parameter N for each
sequence from a discrete uniform distribution with support k ∈ {0, 1, . . . , 6}. To obtain
easier interpretable quantitative results in the evaluation, we use a fixed N of five for the
test-dataset, which contains 30,000 sequences. An example sequence of the test data is
shown in the first row of Figure 5.11. Additionally, we create a clean version of the test
set in which all frames are available (i.e. N is set to 0).

For the evaluation, we use the MPSPNet pre-trained on clean SceneNet RGB-D data and
enhance it by the motion filter. The motion filter and motion decoder of the resulting
model is fine-tuned on the dynamic toy-data using the two motion losses introduced in
Section 5.3.3. In Table 5.3, we report the performance of the resulting model on the

103

5 Functionally Modular and Interpretable Temporal Filtering

All frames available Last 5 frames are Gaussian noise
∆T ∆R ∆T ∆R

Frame 1-2 0.0854 0.0339 0.0854 0.0339
Frame 2-3 0.0686 0.0209 0.0686 0.0209
Frame 3-4 0.0648 0.0193 0.0648 0.0193
Frame 4-5 0.0640 0.0189 0.0640 0.0189
Frame 5-6 0.0624 0.0188 0.0831 0.0279
Frame 6-7 0.0624 0.0183 0.0970 0.0303
Frame 7-8 0.0624 0.0185 0.1058 0.0317
Frame 8-9 0.0624 0.0181 0.1127 0.0322
Frame 9-10 0.0632 0.0190 0.1179 0.0336

Table 5.3: Translation norm ∆T in meters and rotation angle ∆R in radian of the relative transformation between
predicted and ground-truth motion. Metrics are computed for each frame pair using MPSPNet with motion filter on
the two test datasets. Note that due to the filter, the predicted motions depend not only on two time steps, but also on
all previous time steps in the sequence.

clean and noisy test data. We use the translation norm ∆T (see Equation 5.18) and the
rotation angle ∆R (see Equation 5.19) of the relative transformation between predicted
and ground-truth motion as evaluation metrics. The translation norm and rotation angle
decrease in the first three to four prediction steps, highlighting the ability of our motion
filter to integrate information over time. The results on the clean data suggest, that a
longer integration horizon does not yield a further performance gain. As expected, per-
formance decreases when the input images contain only noise (i.e. starting from frame 6).
However, due to the filter, the predictions are still reasonable for the last 5 frame pairs
and the performance only slowly decrease due to accumulating errors. This shows the
ability of our model to compensate for short sensor failures.

In Figure 5.11, we visualize for one test sequence the capabilities of our motion filter.
Using the proposed model, we estimate the camera transformation between all successive
time steps τ̂ = (τ̂ 21 , τ̂

3
2 , . . . , τ̂

10
9). Note that due to the motion filter, the estimation τ̂ tt−1

depends not only on time step t and t−1, but also on all previous time steps. To visualize
the motion estimates we plot the successive projection of the first frame of the input
sequence. The projection is calculated according to Equation 5.5 and Equation 5.6, using
ground-truth depth maps and the motion estimates τ̂ . As a reference, we additionally plot
the successive projection of the first frame, computed based on the ground-truth camera
motion τ . Our model is able to predict meaningful motion estimates for all time steps.

104

5 Functionally Modular and Interpretable Temporal Filtering

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
MPSPNet 39.0 % 38.5 % 37.9 % 38.8 % 38.4 % 38.1 % 38.1 %

GFNet 37.1 % 39.3 % 39.9 % 40.6 % 40.2 % 40.3 % 40.4 %
FMTNet (ours) 38.9 % 40.8 % 41.1 % 41.3 % 41.0 % 40.9 % 40.4 %

MPSPNet Mean IoU score for frame 7, if the last image (i.e. frame 7) in
all test sequences is replaced by a white image


5.7 %

GFNet 31.6 %
FMTNet (ours) 34.1 %

Table 5.4: Mean IoU score on test sequences which are perturbed by aleatoric noise. MPSPNet: Baseline segmentation
model. This model does not use a temporal filter, the predictions thus only depend on the information of one time step.
GFNet: MPSPNet enhanced by a model-free, feature-level filter module. FMTNet (ours): MPSPNet enhanced by our
modular filter module. In addition to the performance on the test data, we report the mean IoU score for frame 7 on
a slightly altered version of the dataset. In this dataset, we replace the last image in all sequences by a white image
(see first row of Figure 5.12).

Even for the time steps where the input image is only Gaussian noise, the predicted
motion is consistent with the ground-truth motion.

5.5.3 Comparison with Baselines

To compare our model FMTNet with the introduced baselines (MPSPNet and GFNet;
see Section 5.4.2), we use the test set described in Section 5.4.1. In Table 5.4, we re-
port the mean IoU score of all models on a per-frame basis. Results show an improved
performance of the models with filter (GFNet, FMTNet), compared to the unfiltered
baseline (MPSPNet). Only for the first frame, MPSPNet outperforms the filtered archi-
tectures. This is probably due to the hidden filter state that is not yet properly initialized.
Our model surpasses the other filtered baseline, suggesting that a poorly initialized hid-
den state has less impact. The second observation can most likely be attributed to the
modular and explicit structure of our filter and is consistent with the results of Sec-
tion 5.5.1. Unexpectedly, the performance of our model decreases again from Frame 5
forward. We suspect that this is due to the fairly simple design of our feature update
module. A more sophisticated fusion approach could counter this behavior. As an ad-
ditional measure, one could alter the optimization objective. In the current setting, the
predictions off all time-steps are equally weighted in the loss. By putting a higher weight
on loss components of later time steps, one could enforce the expected filter behavior.

To evaluate the robustness of the models against short sensor failures, we additionally
report the mean IoU score for frame 7 on a slightly altered version of the dataset. In

105

5 Functionally Modular and Interpretable Temporal Filtering

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

1)

2)

3)

4)

5)

6)

Figure 5.12: Example prediction of our model FMTNet. 1) Input sequence (McCormac et al., 2017) with aleatoric
perturbations. The last frame of the sequence is replaced by a white image to simulate a missing frame. 2) Ground-truth
semantic segmentation (McCormac et al., 2017). 3) Predicted semantic segmentation of FMTNet. 4) Ground-truth
depth map (McCormac et al., 2017). 5) Predicted depth map of FMTNet. 6) Visual representation of the update gate it
used in the feature filter. A white pixel corresponds to a value of one, meaning information of the current time step is
used. In contrast, a black pixel means that new information is disregarded and that the prediction is solely based on
previous time steps.

this data, we replace the last image (i.e. frame 7) in all test sequences by a white image,
simulating a missing frame. A corresponding sequence is shown in the first row of Fig-
ure 5.12. The mean IoU score of all three models on the altered data is reported in the
lower half of Table 5.4. As expected, the score of the single-image baseline MPSPNet
drops significantly to just 5.7 %, since predictions are only conditioned on empty frames.
The two filtered models (GFNet and FMTNet), on the other hand, are still able to achieve
a mean IoU score of 31.6 % and 34.1 %, respectively. Our model FMTNet outperforms
the other filtered model by 2.5 %. The performance difference may indicate a better
ability of our model to learn a meaningful motion model.

In Figure 5.12, we show an example prediction of our FMTNet on a test sequence whose
last frame is missing (i.e. the frame is fully white). In addition to visualizing the pre-
dicted semantic segmentation (Figure 5.12, row 3), we also show the predicted depth

106

5 Functionally Modular and Interpretable Temporal Filtering

map (Figure 5.12, row 5) and the update gate (Figure 5.12, row 6), which are two of
the human interpretable representations computed within our functionally modularized
temporal filter. The model is able to predict a meaningful depth map as well as camera
motion, which are required to propagate information over time. This is especially visible
in the last frame of the sequence – although the last frame is missing, the model is still
able to produce a meaningful semantic segmentation. In the last row of Figure 5.12, we
show the gate it of our update module. A white pixel corresponds to a gate value of one,
which means that the model uses information provided by the current input frame. A
black pixel, on the other hand, corresponds to a gate value of zero – the model relies
on prior knowledge of previous frames. As expected, the gate of the first frame is fully
white, since the filter has to rely on new information. In the last frame, the gate is mainly
black, since no meaningful information is provided in that frame. The gate values at
the right border of all frames are more white, as the model has never seen these areas
before due to camera motion. By inspecting the human interpretable representations of
our filter, one is able to debug and verify functionalities.

5.6 Conclusion

In this chapter, we introduced a functionally modularized temporal representation filter to
tackle aleatoric failures of a single-frame semantic segmentation model. The main idea
behind the filter is to decompose the filter task into less complex and more transparent
subtasks. The resulting filter consists of multiple submodules, which can be pre-trained,
debugged, and evaluated independently. Our proposed architecture increases the inter-
pretability and transparency of the filter. In our opinion, these are important properties
of models used in safety-critical applications. In contrast to many other approaches in
the literature, our filter also works in challenging situation, e.g. brief sensor outages or
adverse weather conditions. Using a photorealistic, synthetic video dataset, we evaluated
the different subcomponents of the filter, highlighted possibilities to inspect and debug
model behavior, and showed the ability of the proposed architecture to cope with missing
information.

Our filter assumes that dynamics are dominated by camera motion. This assumption is
only valid for a restricted set of applications. A natural extension of our approach is

107

5 Functionally Modular and Interpretable Temporal Filtering

to explicitly model the motion of dynamic objects. For example, one could predict a
segmentation mask and 3D rigid transformation for each moving object (e.g. car, bus).
These masks and transformations can be used in the prediction module in addition to
the estimated camera motion to improve the temporal prediction of the static scene fea-
tures (Vijayanarasimhan et al., 2017; Yang and Ramanan, 2021). Additionally, it would
be interesting to evaluate other options for the different submodules. For example, one
could investigate more sophisticated feature fusion approaches (e.g. incorporating the
uncertainty of the depth and semantic prediction) or evaluate the impact of more inter-
pretable motion filters (e.g. using a Kalman filter to integrate motion).

Following the publication of the contents of this chapter (Wagner et al., 2018a), different
models for the generation of more robust and reliable semantic environment represen-
tations were presented. To best utilize the information of previous time steps, Pfeuffer
et al. (2019) evaluate different options for the placement of convolutional LSTM cells in
a modern multi-branch semantic segmentation architecture (Zhao et al., 2018). Their re-
sults provide valuable insights on the placement of recurrent cells depending on the max-
imum available inference time. In a subsequent paper, Pfeuffer and Dietmayer (2019)
propose to use spatially separable convolutional LSTM cells to reduce inference time as
well as the model parameter count. Based on the work of Pfeuffer et al. (2019) and Pfeuf-
fer and Dietmayer (2019), Pfeuffer and Dietmayer (2020) propose a time-efficient video
segmentation model and highlight improvements in terms of robustness compared to a
single-image baseline in simulated and real adverse weather conditions. Although this
chapter focuses on an encoder-decoder architecture for semantic segmentation (Zhao et

al., 2017), our presented filter can be seamlessly integrated into other architectures, like
multi-branch segmentation networks (Zhao et al., 2018). When filtering multiple repre-
sentations of a model (see Chapter 4), one can additionally save complexity by predicting
the parameters of the geometric projection (i.e. the depth map and camera motion) once
and using the estimates in all filters.

Multiple approaches rely on optical flow estimates (Dosovitskiy et al., 2015; Ilg et al.,
2017) to temporally propagate features (Xu et al., 2018; Jain et al., 2019; Saemann et

al., 2019; Zhuang et al., 2021). Given the feature map of the current time step as well
as the warped features of previous time steps, Saemann et al. (2019) propose to perform
a confidence-based fusion of the feature maps. The confidence maps are derived from
the softmax scores of the pixel-wise semantic segmentation. To obtain better calibrated

108

5 Functionally Modular and Interpretable Temporal Filtering

uncertainties, they perform temperature scaling (Guo et al., 2017). Due to the reliance
on the optical flow, this approaches is in our opinion not well suited for solving aleatoric
failures of single-frame segmentation models (see Section 5.2). Zhuang et al. (2021)
propose to perform a distortion-aware feature fusion. The distortion maps used in the
weighted sum of the feature fusion step encode the quality of the optical flow on a per-
pixel basis — i.e. regions for which the optical flow is inaccurate have a high distortion
score. Our proposed filter module could also benefit from conditioning feature fusion
on the predictive uncertainty of the motion filter. Compared to our work, Zhuang et al.

(2021) aim to reduce the overall computational complexity by reusing features computed
in previous time steps. Therefore, they only apply the full semantic segmentation model
to a reduced set of key-frames and use a lightweight model for the other frames to predict
and correct distorted regions of the propagated representation.

In this chapter, we proposed a filter approach which provides additional insights into
the inner workings of the model by means of a modular structure as well as human
interpretable intermediate representations. Alternatively, one could also use post-hoc ex-
planation methods to derive further insights into the decision-making process of a model.
We propose and discuss such a post-hoc explanation approach in the next chapter.

109

6
Explaining Model Predictions

The increasing use of neural networks in safety-critical, high-risk domains, like au-
tonomous driving, creates the need for methods to inspect and explain their behavior.
Especially for verification and validation of neural networks, it is essential to gain
insights into their decisions, limitations, as well as possible shortcomings of training
data. In addition to safety aspects, explainability can also help to strengthen user
confidence and offers new possibilities to derive model improvements.
In this chapter, we propose a new post-hoc, optimization-based explanation method
(FGVis), which generates detailed, class-discriminative visual explanations. Our
method is based on a novel technique to defend against adversarial evidence (i.e.
faulty evidence due to artifacts) by filtering gradients during optimization. The de-
fense does not depend on human-tuned parameters. Unlike previous work, the visual
explanations of our approach are both fine-grained and preserve the characteristics
of images, such as edges and colors. Thus, they are intuitively interpretable, well
suited for visualizing detailed evidence, and can be tested as they are valid model
inputs. Using a variety of neural network architectures, we evaluate our proposed
visual explanation method qualitatively and quantitatively.

111

6 Explaining Model Predictions

6.1 Introduction

Convolutional Neural Networks (CNNs) have proven to produce state-of-the-art results
on a multitude of vision benchmarks, such as ImageNet (Russakovsky et al., 2015),
Caltech (Dollár et al., 2009b), or Cityscapes (Cordts et al., 2016). Their superior per-
formance has led to CNNs being used in numerous real-world systems (e.g. autonomous
vehicles) and services (e.g. language translation). The transition from classical, rule-
based / hand-engineered approaches to fully learned models is straight forward in low
risk domains which are not subject to strict safety standards. Web translation services,
for example, do not have to comply with any safety regulations and are not subject to
corresponding audits. The use of CNNs in safety-critical domains, on the other hand,
presents researchers and engineers with new challenges due to their black-box character.
The high complexity of CNNs usually goes hand in hand with a low level of transparency
and interpretability (Arrieta et al., 2020). However, these properties are critical to verify
and validate models, understand failure cases as well as limitations, and uncover short-
comings of training data. To overcome the interpretability and transparency disadvantage
of black-box models, post-hoc explanation methods have been introduced (Springenberg
et al., 2015; Zhou et al., 2016; Zhang et al., 2016; Selvaraju et al., 2017; Fong and
Vedaldi, 2017; Dabkowski and Gal, 2017; Petsiuk et al., 2018; Frosst and Hinton, 2017;
Ghorbani et al., 2019). Such methods provide insights into the decision-making process
of a model. Post-hoc explanation methods can be divided into two categories: global
explanation methods and local explanation methods. Global explanation methods seek
to characterize the overall model behavior. They specify the model output for all possi-
ble inputs in an intuitive manner (Zilke et al., 2016; Frosst and Hinton, 2017), provide
insights into the internal data representation of a network (Zhou et al., 2015; Nguyen
et al., 2016), or uncover generic decision patterns (Ghorbani et al., 2019). Local ex-
planation methods, on the other hand, focus on individual model inputs. Such methods
explain the prediction of a CNN for an individual input image. A common concept is to
highlight the evidence on which a model bases its decisions (Selvaraju et al., 2017; Fong
and Vedaldi, 2017; Sundararajan et al., 2017; Petsiuk et al., 2018). The most common
form of explanations are visual, image-like representations, which depict the important
pixels or image regions in a human interpretable manner (see Figure 6.1). In this work,
we focus on such visual, local explanation methods for CNNs. For the sake of brevity,

112

6 Explaining Model Predictions

Image

Mask

Fine-grained Explanation

FGVis
Perturbation-based visual explanation method

+ Novel technique to defend against adversarial evidence

FGVis highlights in detail the evidence
on which a model bases its decisions

CNN peacock

Model Target class
p(peacock) = 1.000

p(peacock) = 0.995

Figure 6.1: Fine-grained visual explanation computed by removing irrelevant pixels. The provided input image is
classified by the CNN with a score of 1.000 as class peacock. Our method (FGVis) tries to find a sparse expla-
nation mask with all irrelevant pixels set to zero, i.e. they visually appear black. The resulting visual explanation,
i.e. ’image×mask’, is optimized in the image space and can thus be directly used as a model input. The optimization
is parameterized to produce an explanation with a softmax score comparable to the image. The input image containing
the peacock is from the ImageNet (Russakovsky et al., 2015) dataset.

we will use the term explanation as a synonym for local explanation in the remainder of
this chapter.

A visual explanation should be easy to interpret, intuitive, and comprehensible not only
to experts but also to users of a black-box model. Explanations accessible to end-users
may help to increase the acceptance of a model, as users tend to trust a model more
when they understand its decision-making process and are able to anticipate or verify
results (McAllister et al., 2017). Additionally, a visual explanation should be class-
discriminative (i.e. focus on one object) and fine-grained (Selvaraju et al., 2017). The
latter property is particularly important for domains, where fine structures have a major
influence on the prediction of a model (e.g. classification tasks in the medical domain).
Besides, a visual explanation method should also capture the importance of different
color channels, e.g. to detect a color bias in the training dataset.

Moreover, visual explanations should be faithful, meaning they accurately explain the
function of the black-box model (Selvaraju et al., 2017). A common approach to evaluate
and verify the faithfulness of explanations is to use human-based metrics, such as weak-

113

6 Explaining Model Predictions

localization or pointing game performance (Selvaraju et al., 2017; Petsiuk et al., 2018;
Simonyan et al., 2014; Fong and Vedaldi, 2017). These metrics depend on human labels
and are thus biased towards human perception (Petsiuk et al., 2018). They are a good
indicator to check whether an explanation is consistent with a human’s reasoning, but
are not suitable for verifying whether an explanation correctly represents the evidence on
which a model bases its prediction. To overcome this drawback, recent works (Selvaraju
et al., 2017; Petsiuk et al., 2018; Chattopadhay et al., 2018) have introduced faithfulness
metrics which are directly based on model predictions for explanations. To be able to
compute such metrics without having to rely on proxy measures (Selvaraju et al., 2017),
it is beneficial to employ explanation methods which generate valid model inputs, e.g. a
perturbed version of the input image.

A major concern of visual explanation methods is adversarial evidence, i.e. faulty evi-
dence generated by artifacts introduced in the computation of the explanation. Especially
optimization-based explanation methods are susceptible to adversarial evidence and con-
sequently employ additional constraints or regularizations to prevent artifacts (Fong and
Vedaldi, 2017; Dabkowski and Gal, 2017; Du et al., 2018). A drawback of these de-
fenses are added hyperparameters and the necessity of either a reduced resolution of
the explanation or a smoothed explanation, making them not well-suited for displaying
fine-grained evidence.

In this chapter, we propose a new adversarial defense technique which selectively filters
gradients in the optimization which would lead to adversarial evidence otherwise (see
Section 6.4). Using this defense, we extend the work of Fong and Vedaldi (2017) and
derive a new fine-grained visual explanation method (FGVis). Unlike previous defenses,
the proposed one does not depend on hyperparameters and is the key to producing fine-
grained visual explanations as no smoothing or regularizations are necessary. Like other
optimization-based approaches, FGVis computes a perturbed version of the input image,
in which either all irrelevant or the most relevant pixels are removed. The resulting
explanations are valid model inputs and their faithfulness can thus be directly verified.
Moreover, they are additionally fine-grained and preserve the characteristics of images,
such as edges and colors. To the best of our knowledge, FGVis is the first method to
be able to produce fine-grained explanations directly in the image space. The image-
like nature of the resulting visual explanations ensures an intuitive interpretability, even

114

6 Explaining Model Predictions

for non-experts (see Figure 6.1). We evaluate our defense technique as well as FGVis
qualitatively and quantitatively in a multitude of experiments.

Our proposed post-hoc, visual explanation method (FGVis) provides insights into the
decision-making process of an existing black-box model. Alternatively, one can design
a model to have a higher degree of interpretability and transparency by, for example,
introducing human interpretable intermediate representations. We present such a model,
which is inherently more interpretable and transparent, in Chapter 4.

The content presented in this chapter was first published at the Conference on Computer
Vision and Pattern Recognition (Wagner et al., 2019)1.

6.2 Related Work

A variety of publications have introduced methods for explaining the behavior of models
and designing more interpretable deep learning architectures. Detailed surveys of the
different approaches are presented by Zhang and Zhu (2018) and Du et al. (2019).

In this section, we provide an overview of post-hoc explanation methods which gen-
erate visual, image-like explanations for individual model inputs (i.e. image-like, local
explanations). In particular, we focus on explanation methods for Convolutional Neural

Networks (CNNs). To structure the overview, we subdivided these explanation meth-
ods into three categories: Backpropagation-Based Methods (BBMs), Activation-Based

Methods (ABMs), and Perturbation-Based Methods (PBMs).

6.2.1 Backpropagation-Based Methods (BMMs)

BBMs generate an importance measure for each pixel by backpropagating an error sig-
nal to the input image. Simonyan et al. (2014), building on prior work by Baehrens
et al. (2010), use the derivative of a class score with respect to the input image as an
importance measure. Similar approaches have been introduced by Zeiler and Fergus
(2014) and Springenberg et al. (2015), who additionally manipulate the gradient when

1Wagner, J., J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer, and S. Behnke (2019). “Interpretable and Fine-
Grained Visual Explanations for Convolutional Neural Networks”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9089–9099. DOI: 10.1109/CVPR.2019.00931; c© 2019 IEEE

115

https://doi.org/10.1109/CVPR.2019.00931

6 Explaining Model Predictions

backpropagating through ReLU nonlinearities (Maas et al., 2013). The approach Inte-

grated Gradients of Sundararajan et al. (2017) additionally accumulates gradients along
a path from a base image to the input image. SmoothGrad (Smilkov et al., 2017) and
VarGrad (Adebayo et al., 2018a) visually sharpen explanations by combining multi-
ple explanations of noisy copies of the image. Other BBMs such as Layer-wise Rel-

evance Propagation (Bach et al., 2015), Excitation Backprop (Zhang et al., 2016), or
DeepLift (Shrikumar et al., 2017) utilize top-down relevancy propagation rules.

BBMs usually have a low computational cost and produce fine-grained importance / rel-
evancy maps. However, these maps are generally of low quality (Dabkowski and Gal,
2017; Du et al., 2018) and are less interpretable. To verify their faithfulness, it is ad-
ditionally necessary to apply proxy measures or use pre-processing steps, which may
falsify the result.

6.2.2 Activation-Based Methods (ABMs)

Activation-based approaches use a linear combination of activation maps from convolu-
tional layers to form a visual explanation. Prominent methods of this category are Class

Activation Mapping (CAM), introduced by Zhou et al. (2016), and its generalizations
Gradient-Weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) and
Grad-CAM++ (Chattopadhay et al., 2018). These methods differ mainly in the calcula-
tion of the linear combination weights and in the restrictions they impose on the CNN.
Extensions of such approaches have been proposed by Selvaraju et al. (2017) and Du
et al. (2018), which combine ABMs with backpropagation or perturbation-based ap-
proaches.

ABMs generate easy to interpret heat-maps which can be overlaid on the input image.
However, they are generally not well-suited to visualize fine-grained evidence or color
dependencies. Additionally, it is not guaranteed that the resulting explanations are faith-
ful and reflect the decision-making process of the model (Du et al., 2018; Selvaraju et al.,
2017).

116

6 Explaining Model Predictions

6.2.3 Perturbation-Based Methods (PBMs)

Such methods perturb the input image and monitor the prediction of the model. Zeiler
and Fergus (2014) slide a grey occlusion square over the image and use the change in
class score as a measure of importance. Several approaches are based on this idea, but
use other occlusion strategies or importance measures. Petsiuk et al. (2018) use ran-
domly sampled occlusion masks and define importance based on the expected model
score over sampled masks. The approach Local Interpretable Model-Agnostic Explana-

tions (LIME) of Ribeiro et al. (2016) uses a super-pixel-based occlusion strategy and a
surrogate model to compute importance scores. Further super-pixel or segment-based
methods are introduced by Seo et al. (2019) and Zhou et al. (2015).

The so far mentioned PBM approaches do not need access to the internal state or structure
of the CNN. However, their calculation is often quite time-consuming and they only
generate coarse visual explanations.

Other PBMs generate an explanation by optimizing for a perturbed version of the input
image (Dabkowski and Gal, 2017; Fong and Vedaldi, 2017; Du et al., 2018; Chang et al.,
2019). The perturbed image e is defined by:

e = m · x + (1−m) · r, (6.1)

where m is a pixel-wise mask, x the input image, and r a reference image containing
little information. Common references are a constant value (e.g. zero image), Gaussian

noise image, or a blurred version of the input image (Fong and Vedaldi, 2017; Dabkowski
and Gal, 2017). A more recent PBM approach by Chang et al. (2019) uses a generative
model to sample reference images.

To avoid adversarial evidence, PBMs utilize additional regularizations (Fong and Vedaldi,
2017), constrain the explanation (e.g. optimize for a coarse mask (Chang et al., 2019;
Fong and Vedaldi, 2017; Du et al., 2018)), introduce stochasticity (Fong and Vedaldi,
2017), or utilize regularizing surrogate models (Dabkowski and Gal, 2017). These ap-
proaches generate easy to interpret explanations in the image space, which are valid
model inputs and faithful (i.e. a faithfulness measure is incorporated in the optimiza-
tion).

117

6 Explaining Model Predictions

Our method also optimizes for a perturbed version of the input. Compared to existing ap-
proaches, we propose a new adversarial defense technique which filters gradients during
optimization. This defense does not rely on hyperparameters which have to be fine-tuned.
In addition, we optimize each pixel individually, thus the resulting explanations are not
limited in resolution and are fine-grained.

6.3 Optimization-based Visual Explanations

In this section, we briefly review the general paradigm of optimization-based visual ex-
planation methods, which compute an explanation by optimizing for a perturbed ver-
sion of the input image (Fong and Vedaldi, 2017; Du et al., 2018; Chang et al., 2019;
Dabkowski and Gal, 2017). Following this paradigm, a visual explanation is defined by:

Explanation by Preservation: The smallest subset of the input image which
must be retained to preserve the model output (i.e. minimal sufficient evidence).

Explanation by Deletion: The smallest subset of the input image which must
be deleted to change the prediction of the model.

To formally derive a visual explanation method based on this paradigm, we assume that
a CNN fcnn is given which maps an input image x ∈ R3×H×W to an output yx =

fcnn(x; θcnn). The output yx ∈ RC is a vector representing the softmax scores ycx of
the different classes c. Given an input image x, a visual explanation e∗cT for a target
class cT (e.g. the most-likely class cT = cml) is computed by removing either relevant
(explanation by deletion) or irrelevant information (explanation by preservation) from
the image. Since it is not possible to remove information without replacing it, and we do
not have access to the process that generated the image, we have to use an approximate
removal operator (Fong and Vedaldi, 2017). A common approach is to use a mask-
based operator Φ, which computes a weighted average between the input image x and a
reference image r, using a mask mcT ∈ [0, 1]3×H×W :

ecT = Φ(x,mcT) = x ·mcT + (1−mcT) · r. (6.2)

Common choices for the reference image r are constant values (e.g. a zero image), a
blurred version of the original image, Gaussian noise, or sampled references of a gen-

118

6 Explaining Model Predictions

Reference image r AlexNet GoogleNet VGG16 ResNet50
Blurred ImageNet image (σb = 5) 3.67± 1.12 3.15± 1.31 4.08± 1.43 2.38± 1.58
Blurred ImageNet image (σb = 10) 4.56± 0.88 4.09± 1.08 4.83± 0.86 3.22± 1.25

Gaussian noise image (σn = 8) 5.11± 0.16 4.62± 0.16 5.59± 0.09 4.56± 0.14
Gaussian noise image (σn = 32) 2.61± 0.29 4.67± 0.22 4.38± 0.23 4.07± 0.30

Zero image 6.90 4.08 6.31 5.09
ImageNet image 1.73± 1.43 1.09± 1.14 1.06± 1.22 0.67± 0.91

Maximum (1000 classes) 6.91 6.91 6.91 6.91

Table 6.1: Entropy of reference images r for different convolutional architectures. The entropy is averaged over 1000
random instances of each reference image. For all random references we report the mean ± standard deviation of the
entropy. Gaussian noise images are generated by independently sampling for each pixel from a Gaussian distribution
with zero-mean and a standard deviation of σn. The blurred ImageNet (Russakovsky et al., 2015) images are computed
using a Gaussian blur filter with a standard deviation of σb. The maximum possible entropy is listed in the last row of
the table. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

erative model (Fong and Vedaldi, 2017; Du et al., 2018; Chang et al., 2019; Dabkowski
and Gal, 2017). A good reference image r should carry little information and lead to a
model prediction with a high entropy, meaning, ideally all classes are assigned the same
softmax score. To compare references, we report in Table 6.1 the predictive entropy for
multiple models given different references. For all models except GoogleNet the zero
image reference has the highest entropy. Interestingly, for the zero image reference,
the more recent architectures (i.e. GoogleNet and ResNet50) have a lower entropy. For
comparison, we report the entropy of 1000 random ImageNet validation images for the
different models.

Due to the high entropy and the low computational effort, we use the zero reference
image in this work. In our opinion, this reference additionally produces the most pleasing
visual explanations, as irrelevant image areas are set to zero2 (see Figure 6.2) and not
replaced by other structures. We did not consider model-based references as proposed
by Chang et al. (2019), since these introduce significant additional computational efforts.

In addition to an approximate removal operator, a similarity metric ϕ(ycTx , y
cT
e) is needed,

which measures the consistency of the model output generated by the explanation ycTe
and the output of the image ycTx with respect to a target class cT . This similarity metric
should be small if the explanation preserves the output of the target class and large if the
explanation manages to significantly drop the probability of the target class (Fong and
Vedaldi, 2017). Typical choices for the metric are the cross-entropy with the class cT

2The models used in this work operate on zero-centered data. A value of zero for a tensor x, e, r thus corresponds
to a grey color, i.e. the color of the data mean.

119

6 Explaining Model Predictions

a) b) c) d) e) f) g)

Figure 6.2: Visual explanations (c - g) computed using a mask-based removal operator (see Equation 6.2) for different
reference images r. The mask (b) is hand-labeled to only contain pixels of the agama. The zero image reference (c)
produces the most pleasing visual explanation in our opinion, as irrelevant image areas visually appear gray (i.e. the
color of the data mean) and are not replaced by other structures. Used references: c) Zero image; d) Gaussian noise
image (σn = 8); e) Gaussian noise image (σn = 32); f) Blurred version of the image (σb = 5); g) Blurred version
of the image (σb = 10). The input image (a) containing the agama is from the ImageNet (Russakovsky et al., 2015)
dataset.

as a hard target (Hinton et al., 2014) or the negative softmax score of the target class.
The similarity metric ensures that the explanation remains faithful to the model and thus
accurately explains its function. This property is a major advantage of optimization-
based explanation methods.

Using a mask-based removal operator with a zero reference image (r = 0) as well as a
similarity metric ϕ, a preserving explanation can be computed by:

e∗cT = m∗cT · x,
m∗cT = arg min

mcT

{ϕ(ycTx , y
cT
e) + λ · ‖mcT ‖1}.

(6.3)

In accordance with Fong and Vedaldi (2017) we refer to the optimization in Equation 6.3
as the preservation game. Masks (see Figure 6.3 / b2)3 generated by the preservation

game are sparse (i.e. many pixels are zero / appear black; enforced by minimizing
‖mcT ‖1) and only contain large values at most important pixels. The corresponding
explanation e∗cT is computed by multiplying the mask m∗cT with the image x (see Fig-
ure 6.3 / c2)3.

Alternatively, we can compute a deleting explanation using:

e∗cT = m∗cT · x,
m∗cT = arg max

mcT

{ϕ(ycTx , y
cT
e) + λ · ‖mcT ‖1}.

(6.4)

This optimization will be called deletion game (Fong and Vedaldi, 2017) henceforward.
Masks (see Figure 6.3 / b1) generated by this game contain mainly ones (i.e. appear

3The shorthand notation ’Figure 6.3 / b2’ references Figure 6.3, column b – 2nd row.

120

6 Explaining Model Predictions

Figure 6.3: Visualizations calculated for VGG using different game types (i.e. deletion game, preservation game,
repression game, and generation game). Subscript cT ommited to ease readability. a) Input image (Russakovsky
et al., 2015). b) Mask obtained by the optimization. Colors in a deletion / repression mask are complementary to
the image colors. c) Explanation directly obtained by the optimization. d) Complementary mask with a true-color
representation for the deletion game / repression game. e) Explanation highlighting the important evidence for the
deletion game / repression game. f) Mean mask: mask / complementary mask averaged over colors. To underline
important evidence, we use (e) for the explanation of the preservation game / generation game and (ẽ) for the deletion
game / repression game. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

white; enforced by maximizing ‖mcT ‖1) and show only small values at pixels, which
provide the most prominent evidence for the target class cT . The colors in a mask of the
deletion game are complementary to the image colors. To obtain a true-color representa-
tion analogous to the preservation game, one can alternatively visualize the complemen-
tary mask (see Figure 6.3 / d1):

m̃∗cT = 1−m∗cT . (6.5)

A resulting explanation of the deletion game, as defined by Equation 6.4, is visualized
in Figure 6.3 / c1. This explanation is visually very similar to the original image as only
a few pixels need to be deleted to change the model output. For better visualization,

121

6 Explaining Model Predictions

Objective
Game type

Preserve important evidence Remove important evidence

Ones Preservation game Deletion game

In
iti

al
m

as
k

Zeros Generation game Repression game

Table 6.2: Overview of different game types (i.e. deletion game, preservation game, repression game, and generation
game). The objective defines how the resulting visual explanation should differ from the input image. Evidence always
refers to a particular target class cT which is the focus of the explanation. The mask initialization defines the starting
condition of the optimization. If the mask is initialized with ones, the first visual explanation is identical to the image.
However, if the mask is initialized with zeros, the first visual explanation is empty and ideally contains no evidence
towards any class.

we depict in the remainder of the chapter a modified version of the explanation for the
deletion game:

ẽ∗cT = x · (1−m∗cT). (6.6)

This explanation has the same properties as the one of the preservation game, since it
only highlights the important evidence (see Figure 6.3 / e1).

To solve the optimization in Equation 6.3 and Equation 6.4, we utilize Stochastic Gra-

dient Descent (SGD) and start with an explanation e0
cT

= 1 · x identical to the original
image (i.e. a mask initialized with ones; m0

cT
= 1). The initial explanation is thus always

faithful to the model and does not contain any adversarial evidence. As an alternative ini-
tialization of the masks, we additionally explore a zero initialization m0

cT
= 0. In this

setting, the initial explanation contains no evidence towards any class and the optimiza-
tion iteratively has to add relevant (generation game) or irrelevant, not supporting the
class cT , information (repression game). The explanation and mask of the generation

game are visually comparable to those of the preservation game, the same holds for
the deletion game and repression game (see Figure 6.3). To get comparable visualiza-
tions, we depict explanations e∗ for the preservation game and generation game and the
modified version of the explanations ẽ∗ for the deletion game and repression game in
the remainder of this chapter. An overview of the four optimization settings (i.e. game
types) is given in Table 6.2. Additional examples as well as a more detailed discussion
of the game types is included in Section 6.5.3.

122

6 Explaining Model Predictions

6.4 Defending Against Adversarial Evidence

CNNs have been proven to be susceptible to adversarial images (Szegedy et al., 2014;
Goodfellow et al., 2015; Kurakin et al., 2017). An adversarial image is a perturbed
version of a correctly classified image crafted to fool a neural network. Due to the com-
putational similarity of adversarial methods and optimization-based visual explanation
approaches, adversarial noise is also a concern for the latter methods. In order to get a
meaningful visual explanation, one has to make sure that an explanation is based on true
evidence present in the image and not on false adversarial evidence introduced during
optimization. This is particularly true for the generation game and repression game as
their optimization start with m0

cT
= 0 and iteratively adds information.

Fong and Vedaldi (2017) were the first to show the vulnerability of optimization-based
visual explanation methods to adversarial noise. To avoid adversarial evidence, they use
stochastic operations, additional regularizations, and optimize on a low-resolution mask
which is upsampled to match the dimensions of the input image. Similar methods are
employed by Dabkowski and Gal (2017), Du et al. (2018), and Chang et al. (2019).
Dabkowski and Gal (2017) additionally propose to use a regularizing surrogate model
to counter adversarial evidence. In general, these operations impede the generation of
adversarial noise by obscuring the gradient direction in which the model is susceptible
to false evidence, or by constraining the search space for potential adversarials. These
techniques help to reduce adversarial evidence, but also introduce new drawbacks:

1. The defense capabilities usually depend on human-tuned parameters (e.g. mask
upsamling factor, weighting of additional regularizations).

2. Computed visual explanations are limited to being low resolution and / or smooth,
which prevents fine-grained evidence from being visualized.

A novel Adversarial Defense. To avoid the generation of adversarial evidence, we pro-
pose a novel adversarial defense which filters gradients during backpropagation in a tar-
geted way. The basic idea of our approach is:

A neuron within a CNN is only allowed to be activated by the visual explana-

tion ecT if the same neuron is also activated by the original input image x.

123

6 Explaining Model Predictions

If we regard neurons as indicators for the existence of features (e.g. edges, objects) (Zhou
et al., 2015), the proposed constraint enforces that the explanation ecT only contains
features which exist at the same location in the original image x. If, for example, a face
is present at a specific location of an input image, the corresponding explanation is only
allowed to contain the same face at the same location. The explanation is however not
allowed to contain a new, possibly sparser face, in another location. By ensuring that the
allowed features in the explanation ecT are a subset of the features in the image x our
defense prevents the generation of new evidence.

This defense technique can be integrated into the visual explanation method of Sec-
tion 6.3 via an optimization constraint:0 ≤ hli(ecT) ≤ hli(x), if hli(x) ≥ 0,

0 ≥ hli(ecT) ≥ hli(x), otherwise,
(6.7)

where hli is the activation of the i-th neuron in the l-th layer of the network after the
nonlinearity. For brevity, the index i references one specific feature at one spatial loca-
tion in the activation map. This constraint is applied after all nonlinearity-layers (e.g.
ReLU-layers (Maas et al., 2013)) of the CNN, besides the final classification layer. It
ensures that the absolute value of activations can only be reduced towards values rep-
resenting lower information content (we assume that an activation of zero corresponds
to the lowest information content as commonly applied in network pruning (Han et al.,
2015)). To solve the optimization with subject to Equation 6.7, one could incorporate
the constraints via a penalty function in the optimization loss. This approach has the
drawback of introducing one additional hyperparameter. Alternatively, one could add an
additional layer h̄li after each nonlinearity which ensures the validity of the constraint:

h̄li(ecT) = min(bu,max(bl, h
l
i(ecT))),

bu = max(0, hli(x)),

bl = min(0, hli(x)),

(6.8)

where hli(ecT) is the actual activation of the original nonlinearity-layer and h̄li(ecT) the
adjusted activation after ensuring the bounds bu, bl of the original input. For instance, for
a ReLU nonlinearity, the upper bound bu is equal to hli(x) and the lower bound bl is zero.
We are not applying this approach as it changes the architecture of the model which we

124

6 Explaining Model Predictions

try to explain. Instead, we clip gradients in the backward pass of the optimization, which
lead to a further violation of Equation 6.7. This is equivalent to adding an additional
clipping-layer after each nonlinearity which acts as the identity in the forward pass and
uses the gradient update of Equation 6.8 in the backward pass. When backpropagating
an error-signal γ̄li through the clipping-layer, the gradient update rule for the resulting
error γli is defined by:

γli = γ̄li · [hli(ecT) ≤ bu] · [hli(ecT) ≥ bl], (6.9)

where [·] is the indicator function and bl, bu the bounds computed in Equation 6.8. This
clipping only affects the gradients of the similarity metric ϕ(· , ·) which are propagated
through the network. The proposed gradient clipping does not add hyperparameters and
keeps the original structure of the model during the forward pass. Compared to other ad-
versarial defense techniques (Dabkowski and Gal, 2017; Fong and Vedaldi, 2017; Chang
et al., 2019), it imposes no constraint on the explanation (e.g. resolution / smoothness
constraints), enabling fine-grained visual explanations.

6.5 Experiments

6.5.1 Implementation Details

Unless otherwise specified, the visual explanations are computed for the most-likely
class using SGD with a learning rate of 0.1, running for 500 iterations. To improve
optimization and avoid instabilities, we initialize the masks with noise sampled for each
pixel from a uniform distribution U(a, b). We use U(0, 0.01) for the generation game

and repression game and U(0.99, 1) for the preservation game and deletion game. We
normalize the gradient using its maximum value to prevent large changes of individual
mask pixels. For the similarity metric ϕ(·, ·) we use the cross-entropy for the genera-

tion game and preservation game and the negative probability for the deletion game and
repression game. During optimization the mask is clipped to the range [0, 1] after each
update step.

When computing a visual explanation for the most-likely class, we use a line-search
for the parameter λ to determine its optimal value. Unless otherwise noted, we itera-

125

6 Explaining Model Predictions

tively use 13 equally spaced λ values between 10−4 and 10−10 and stop when the result-
ing most-likely class of eml shifts (deletion and repression game) or achieves the high-
est probability among all classes (preservation and generation game). We use images
of the ImageNet (Russakovsky et al., 2015) validation dataset and pre-trained model
weights (Dieleman et al., 2015). Faces, license plates, and signs are shown pixelated
in the illustrations. Four common model architectures are utilized in our experiments:
AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015), ResNet50 (He et

al., 2016a), and VGG16 (Simonyan and Zisserman, 2015).

6.5.2 Validating the Adversarial Defense

Qualitative Evaluation

To qualitatively evaluate the performance of our defense, we compute an explanation for
an adversarial class cA for which there is no evidence in the image (i.e. it is visually not
present in the image). We approximate cA with the least-likely class cll considering only
images which yield a very high predictive confidence for the true class p(ctrue) ≥ 0.995.
The least-likely class should contain very little to no overlapping evidence with the true
class, assuming a well-trained model with a high confidence and a dataset with a large
number of diverse classes, such as ImageNet. Using cll as the target class, the result-
ing explanation method without defense is similar to an adversarial attack, the Iterative

Least-Likely Class Method (Kurakin et al., 2017).

A correct visual explanation for the adversarial class cA sould be “empty”, i.e. a grey
image, and the model prediction of the visual explanation should not match the adver-
sarial class cA. If, on the other hand, the explanation method is susceptible to adversarial
evidence (e.g.: when no adversarial defense mechanism is applied), the optimization pro-
cedure should be able to perfectly generate an explanation for any class. This behavior
can be seen in Figure 6.4. When no defense mechanism is used, the explanation method
is able to generate a faulty explanation for the adversarial class (cA: limousine). The ex-
planation for class cA (see Figure 6.4 / c2) contains primarily sparse artificial structures
and is classified with a probability of one as limousine. The corresponding explana-
tion, computed while employing our proposed adversarial defense, contains no evidence
for the adversarial class (see Figure 6.4 / b2). The explanation is grey and yields a zero

126

6 Explaining Model Predictions

Figure 6.4: Visual explanations computed for the adversarial class limousine and the true class agama using the
generation game (learning rate: 0.1; iterations: 500; λ: 1e−7) and VGG16. The explanations are computed once with
and once without our adversarial defense. We approximate the adversarial class with the least-likely class considering
an image with a very high confidence for the true class. The predicted softmax score of the target class is noted in
the lower left corner of each image. An adversarial for class limousine can only be computed without our defense.
Column (d) depicts mean masks enhanced by a factor of 7 to show small adversarial structures. The image containing
the agama is from the ImageNet (Russakovsky et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

probability for the adversarial class. To better perceive sparse structures, we addition-
ally show an enhanced mean mask in Figure 6.4 / d. As a reference, we also depict the
visual explanation of the true class (ctrue: agama). The optimization with our defense
results in a meaningful explanation of the agama (see Figure 6.4 / b1). Without defense
the explanation (see Figure 6.4 / c1) is much more sparse. Since there is no constraint to
change pixel values arbitrarily, we assume that the optimization has introduced additional
artificial structures to get a sparser visual explanation.

Figure 6.5 highlights equivalent results using an image of a peacock and the adversarial
class rotisserie. An adversarial explanation for class rotisserie can only be computed
without our defense.

Quantitative Evaluation

A quantitative evaluation of the proposed defense is reported in Table 6.3. We generate
visual explanations for 1000 random ImageNet validation images and use the adversarial

127

6 Explaining Model Predictions

Figure 6.5: Visual explanations computed for the adversarial class rotisserie and the true class peacock using the
generation game (learning rate: 0.1; iterations: 500; λ: 1e−7) and VGG16. The explanations are computed once with
and once without our adversarial defense. We approximate the adversarial class with the least-likely class considering
an image with a very high confidence for the true class. The predicted softmax score of the target class is noted in
the lower left corner of each image. An adversarial for class rotisserie can only be computed without our defense.
Column (d) depicts mean masks enhanced by a factor of 7 to show small adversarial structures. The input image
containing the peacock is from the ImageNet (Russakovsky et al., 2015) validation dataset.

Model GoogleNet VGG16 AlexNet ResNet50
No defense 100 % 100 % 100 % 100 %
Defended 0.0 % 0.2 % 0.0 % 0.0 %

Table 6.3: Ratio how often an adversarial explanation was generated for 1000 random ImageNet validation images, us-
ing the generation game (learning rate: 0.1; iterations: 500; λ: 0). The sparsity loss is set to zero to ease the generation
of adversarials. The statistics are computed once with and once without our adversarial defense. The evaluation is con-
ducted using four common model architectures: AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015),
ResNet50 (He et al., 2016a), and VGG16 (Simonyan and Zisserman, 2015). (Modified from Wagner et al. (2019) / c© 2019 IEEE)

class cA as the explanation target. For the adversarial class cA we use the least-likely
class, according to the qualitative evaluation. We use the second least-likely class, if the
least-likely class coincidentally matches the predicted class of the zero image (i.e. the
initial explanation of the optimization). The images are chosen to have a high predictive
confidence for the true class p(ctrue ≥ 0.995) to ensure a small amount of overlapping
evidence between the true- and least-likely class. To ease the generation of adversarial
examples, we set the sparsity loss to zero and only use the similarity metric which tries to
maximize the probability of the target class cA. Without an employed defense technique,

128

6 Explaining Model Predictions

Figure 6.6: Visual explanations computed with the genaration game (learning rate: 0.1; iterations: 500; λ:
5e−4) for the adversarial class iguana using a black input image and GoogleNet. An adversarial explana-
tion can only be computed without our defense. Column (c) depicts mean masks enhanced by a factor of 10.
(Modified from Wagner et al. (2019) / c© 2019 IEEE)

Model GoogleNet VGG16 AlexNet ResNet50
No defense 100 % 100 % 100 % 100 %
Defended 0.0 % 0.1 % 0.1 % 0.0 %

Table 6.4: Ratio how often an adversarial example was generated from a black input image averaged over 998 Ima-
geNet classes, using the generation game (learning rate: 0.1; iterations: 500; λ: 0). The sparsity loss is set to zero to
ease the generation of adversarials. The statistics are computed once with and once without our proposed adversarial
defense. (Wagner et al. (2019) / c© 2019 IEEE)

the optimization is able to generate an adversarial explanation for 100% of the images.
Applying our defense, the optimization nearly never was able to do so. The two adver-
sarial examples generated using VGG16 have a low confidence, so we assume that there
has been some evidence for the chosen class cA in the image. Our proposed technique is
thus well suited to defend against adversarial evidence.

Explanining empty Images

To validate our proposed defense without relying on approximating the adversarial class
with the least-likely class, we report an alternative version of the qualitative and quanti-
tative evaluation in Figure 6.6 and Table 6.4, by only using a black image as input. For

129

6 Explaining Model Predictions

Figure 6.7: Visual explanations and masks computed using the different game types for GoogleNet using the target
class brown bear. The complementary masks (1 −m) are plotted for the repression game and deletion game to get
comparable visualizations for all game types. The input image containing the brown bear is from the ImageNet (Rus-
sakovsky et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

the quantitative evaluation we create visual explanations for 998 ImageNet classes, us-
ing always the same black input image. We omit the predicted class of the black image
and the class of the starting condition (image · zero mask). This experiment is based on
the assumption that there is no evidence for the 998 ImageNet classes in the black input
image. The results are comparable to the once using real input images, fortifying the
effectiveness of our adversarial defense.

6.5.3 Comparison of Game Types

In Figure 6.7 and Figure 6.8, the different explanation types (i.e. game types; see Sec-
tion 6.3) are visually compared using GoogleNet. To obtain true-color representations
analogous to the preservation game and generation game, we depict the complementary
mask for the repression game and deletion game.

Visual explanations of the deletion game and repression game are qualitatively similar.
The similarity among the two game types is due to both using the same optimization with
only a different starting condition: m0

cT
= 0 for the repression game versus m0

cT
= 1 for

the deletion game. The same observation holds for the generation game and preservation

game (see Table 6.2) where visual explanations are in general less sparse than in the
repression game and deletion game. This is most likely due to the fact that only small

130

6 Explaining Model Predictions

Figure 6.8: Visual explanations and masks computed using the different game types for GoogleNet using the target
class hamster. The complementary masks (1−m) are plotted for the repression game and deletion game to get com-
parable visualizations for all game types. The input image containing the hamster is from the ImageNet (Russakovsky
et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

parts of the image need to be suppressed to change the model output (e.g. shifting one
breed of dog to another), though, to evoke a certain model output one needs to create
sufficient amount of evidence for this class.

During the optimization only pixels containing evidence towards the target class need
to be changed for the generation game and deletion game. The opposite is true for the
preservation game and repression game. Usually only a small subset of the image pixels
are relevant for the prediction of a model. Consequently, most of the mask pixels are zero
for the generation / preservation game and one for the deletion / repression game. Due
to the usage of complementary masks for the deletion / repression game (see Figure 6.7
and Figure 6.8) a value of one appears black in the corresponding mask visualizations.

In our experience the deletion game produces the most fine-grained visual explanations.
Compared to the other game types it usually needs the least amount of optimization steps.
This is caused by the fact that we start with a mask of ones (m0

cT
= 1) and comparatively

few mask values need to be changed to delete the most prominent evidence for the target
class.

131

6 Explaining Model Predictions

6.5.4 Comparison of Methods

In Figure 6.9, we compare FGVis with other state-of-the-art visual explanation meth-
ods. The masks for FGVis are computed using the deletion game with the standard
parametrization, as described in Section 6.5.1. To ensure that visualizations are compa-
rable to the reference methods we use mean explanation masks.

Explanation masks generated by our method (FGVis) are the most fine-grained. Es-
pecially the two other Perturbation-Based Methods (PBMs) (Figure 6.9 / e: occlusion-
based explanation (Zeiler and Fergus, 2014); Figure 6.9 / f: optimization-based expla-
nation (Fong and Vedaldi, 2017)) as well as the Activation-Based Method (ABM) (Fig-
ure 6.9 / d: Grad-CAM (Selvaraju et al., 2017)) produce coarser explanations and, there-
fore, tend to include additional non-essential evidence (i.e. background pixel which are
not relevant for the prediction of the target class). FGVis mainly highlights pixels which
form edges of the chosen target object. This observation is not true for the other methods.

The gradient-based explanations (Figure 6.9 / a (Simonyan et al., 2014)) and the explana-
tions generated by Guided Backpropagation (Figure 6.9 / b (Springenberg et al., 2015))
are the most similar to ours. However, our explanations are optimized to be faithful to the
model, meaning, by deleting the highlighted pixels from the corresponding images one
can prevent the model from correctly classifying the images. This is not necessarily true
for the other two methods. To verify the faithfulness of these methods one additionally
has to utilize proxy measures or use pre-processing steps, which may falsify the result.

6.5.5 Class-Discriminative / Fine-Grained

A reliable visual explanation method should only highlight evidence that contributes to
the prediction of a model. Consequently, an explanation method should be able to pro-
duce class-discriminative (i.e. focus on one object) and fine-grained explanations (Sel-
varaju et al., 2017). The latter property is particularly important for domains where only
small parts of an object have a major influence on the model prediction (e.g. the medical
domain). For such domains, a method should only visualize the object parts relevant for
the prediction and not the entire object.

To evaluate FGVis with respect to these two properties, we generate visual explanations
for images containing two dominant objects (see Figure 6.10 and Figure 6.11). The

132

6 Explaining Model Predictions

images are selected to contain objects from highly different categories, ensuring little
overlap of evidence between objects. For each image, we generate two explanations us-
ing the deletion game and GoogleNet. The corresponding target class is depicted in the
lower left corner of each explanation. We employ the strategy described in Section 6.5.1

Figure 6.9: Mean explanation masks of different state-of-the-art explanation methods. The masks are computed for
GoogleNet using the target class komodo dragon (top) / unicycle (middle) / impala (bottom). The three input images
are from the ImageNet (Russakovsky et al., 2015) dataset.
� Perturbation-Based Methods (PBMs): a) gradient-based explanation (Simonyan et al., 2014), b) Guided Backprop-
agation (Springenberg et al., 2015), c) Contrastive Excitation Backprop (Zhang et al., 2016).
� Activation-Based Methods (ABMs): d) Grad-CAM (Selvaraju et al., 2017).
� Perturbation-Based Methods (PBMs): e) occlusion-based explanation (Zeiler and Fergus, 2014), f) optimization-
based explanation (Fong and Vedaldi, 2017), g) FGVis (ours).
The masks of all reference methods are based on work by Fong and Vedaldi (2017) (c© 2017 IEEE). Due to the detailed
and sparse nature of our masks, we plot them in a larger format. FGVis produces the most fine-grained explanations
by deleting important pixel of the selected target class. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

133

6 Explaining Model Predictions

to determine the parameter λ for explanations of the most-likely class. To explain the
other class, the parameter λ is optimized to significantly reduce the corresponding soft-
max score.

FGVis is able to generate class-discriminative explanations and only highlights pixels of
the chosen target class. Even partially overlapping objects, as the soccer ball and norwe-

gian elkhound in Figure 6.10 / 1, the schooner and suspension bridge in Figure 6.11 / 3,
or the tennis balls and strainer in Figure 6.11 / 4 are correctly discriminated. As also
noted in Fong and Vedaldi (2017), especially faces seem to have a significant influence
on the prediction of animal classes (see Figure 6.10 / c1 and Figure 6.10 / c3).

One major advantage of FGVis is its ability to visualize fine-grained details. This prop-
erty is especially visible in Figure 6.11 / b2, which shows an explanation for the target
class chainlink fence. Despite the fine structure of the fence, FGVis is able to compute
a precise explanation which mainly contains fence pixels. The ability to generate fine-
grained explanations is also beneficial when dealing with small objects such as the traffic

light in Figure 6.10 / b2.

6.5.6 Investigating Biases of Training Data

Visual explanation methods can be used to identify a bias in the training data. Particularly
in safety-critical, high-risk domains (e.g. autonomous driving), such a bias can lead to
fatal system failures if a model is not able to generalize to real-world scenarios. The
likelihood of a collision can be significantly increased if, for example, an autonomous
car uses only the behavior of other traffic participants to derive the state of a traffic
light. Using insights from visual explanation methods, a domain expert can identify and
assess the severity of a bias and its impact on the real world to derive countermeasures
(e.g. record additional data to increase the diversity of the dataset).

In this section, we investigate two common data biases: the coexistence of objects as
well as the bias of certain objects towards specific colors.

134

6 Explaining Model Predictions

Figure 6.10: Visual explanation masks computed for images with multiple objects from distinct classes. For
each image we generate two masks using the deletion game and GoogleNet. The corresponding target class is
depicted in the lower left corner of each mask. The input images are from the ImageNet (Russakovsky et al.,
2015) validation dataset. FGVis produces class-discriminative explanations, even when objects partially overlap.
(Modified from Wagner et al. (2019) / c© 2019 IEEE)

135

6 Explaining Model Predictions

Figure 6.11: Visual explanation masks computed for images with multiple objects from distinct classes. For
each image we generate two masks using the deletion game and GoogleNet. The corresponding target class is
depicted in the lower left corner of each mask. The input images are from the ImageNet (Russakovsky et al.,
2015) validation dataset. FGVis produces class-discriminative explanations, even when objects partially overlap.
(Modified from Wagner et al. (2019) / c© 2019 IEEE)

136

6 Explaining Model Predictions

Figure 6.12: Visual explanations computed using the deletion game for GoogleNet. For both classes (hockey puck
and ping-pong ball) our visual explanation method additionally has to delete pixels of the players and the table tennis
bat / ice-hockey stick to shift the prediction of the GoogleNet model. The input images are from the ImageNet (Rus-
sakovsky et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

Coexistence of Objects

The coexistence of objects often leads to models learning a bias. In Figure 6.12, we
depict such a bias for GoogleNet trained on ImageNet.

Sports equipment like hockey pucks or ping-pong balls frequently appear in combination
with players in images. This bias is learned by the neural network and results in visual
explanations that also contain pixels belonging to the players. Without deleting these
pixels, the deletion game is not able to shift the class of the evaluated images. In addi-
tion to the player, the table tennis bat / ice-hockey stick seems to also contribute to the
prediction of the GoogleNet model.

137

6 Explaining Model Predictions

Figure 6.13: Explanations of ImageNet (Russakovsky et al., 2015) validation images containing minivans computed
using the preservation game for VGG16. Explanations of class minivan focus on edges, hardly preserving coloured
areas. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

Color Bias

Objects are often biased towards specific colors. FGVis generates color dependent ex-
planations and thus provides a first visual indication for the importance of different color
channels.

We investigate if a VGG16 model trained on ImageNet shows such a bias using the
preservation game. We focus on images of school buses and minivans and depict vi-
sual explanations for all correctly classified images of the ImageNet validation dataset in
Figure 6.13 and Figure 6.14, respectively. Visual explanations of minivans mainly focus
on edges, not consistently preserving the original color of the cars. Especially for white
or grey minivans the color visible in the explanation is primarily reduced to a greenish-
blue color. The explanations of school buses are strongly dominated by the color yellow,
matching the main color of school buses in the ImageNet training dataset. Compared to
minivans, explanations of school buses do not mainly focus on edges and also contain a

138

6 Explaining Model Predictions

relatively large amount of yellow surface areas. These observations are a first indication
for the importance of color for the prediction of school buses.

To verify the qualitative finding, we quantitatively estimate the color bias in Table 6.5.
For all correctly classified images of the ImageNet validation dataset, we swap each of
the three color channels BGR to either RBG or GRB and calculate the ratio of maintained
correct classifications. For class minivan 83.3% of the 21 correctly classified images keep
their class label, for class school bus only 8.3% of 42 images. The two reported metrics
result from averaging the accuracies of both color representations RBG and GRB (see
Table 6.5). The quantitative results thus support our qualitative findings for class school

bus. For 80 ImageNet classes at least 75% of images are no longer correctly classified
after the color swap. We show the results for the most and least affected 19 classes as
well as the classes minivan and school bus in Table 6.5.

To the best of our knowledge, FGVis is the first method used to highlight color channel
importance.

139

6 Explaining Model Predictions

Figure 6.14: Explanations of ImageNet (Russakovsky et al., 2015) validation images containing school buses com-
puted using the preservation game for VGG16. Explanations of class school bus are dominated by the color yellow.
(Modified from Wagner et al. (2019) / c© 2019 IEEE)

140

6 Explaining Model Predictions

ID Class name #Images Avg(RBG, GRB) RBG GRB
168 redbone 31 0.00 % 0.00 % 0.00 %
964 potpie 28 0.00 % 0.00 % 0.00 %
159 Rhodesian ridgeback 35 0.00 % 0.00 % 0.00 %
930 French loaf 27 0.00 % 0.00 % 0.00 %
234 Rottweiler 42 1.19 % 0.00 % 2.38 %
214 Gordon setter 36 1.39 % 2.78 % 0.00 %
963 pizza, pizza pie 35 1.43 % 2.86 % 0.00 %
950 orange 35 1.43 % 2.86 % 0.00 %
184 Irish terrier 33 1.52 % 0.00 % 3.03 %
962 meat loaf, meatloaf 29 1.72 % 3.45 % 0.00 %
984 rapeseed 47 2.13 % 4.26 % 0.00 %
211 vizsla, Hungarian pointer 35 2.86 % 2.86 % 2.86 %
11 goldfinch, Carduelis carduelis 48 3.12 % 0.00 % 6.25 %

934 hotdog, hot dog, red hot 40 3.75 % 2.50 % 5.00 %
218 Welsh springer spaniel 39 3.85 % 2.56 % 5.13 %
191 Airedale, Airedale terrier 37 5.41 % 5.41 % 5.41 %
163 bloodhound, sleuthhound 18 5.56 % 5.56 % 5.56 %
961 dough 15 6.67 % 0.00 % 13.33 %
263 Pembroke, Pembroke Welsh corgi 41 7.32 % 7.32 % 7.32 %
· · · · · · · · · · · · · · · · · ·
779 school bus 42 8.33 % 9.52 % 7.14 %
· · · · · · · · · · · · · · · · · ·
656 minivan 21 83.33 % 71.43 % 95.24 %
· · · · · · · · · · · · · · · · · ·
528 dial telephone, dial phone 36 95.83 % 91.67 % 100.00 %
866 tractor 37 95.95 % 91.89 % 100.00 %
572 goblet 26 96.15 % 96.15 % 96.15 %
47 African chameleon, Chamaeleo chamaeleon 40 96.25 % 95.00 % 97.50 %

302 ground beetle, carabid beetle 27 96.30 % 96.30 % 96.30 %
463 bucket, pail 27 96.30 % 96.30 % 96.30 %
717 pickup, pickup truck 28 96.43 % 100.00 % 92.86 %
178 Weimaraner 44 96.59 % 93.18 % 100.00 %
669 mosquito net 44 96.59 % 97.73 % 95.45 %
661 Model T 46 96.74 % 97.83 % 95.65 %
769 rule, ruler 36 97.22 % 100.00 % 94.44 %
771 safe 40 97.50 % 97.50 % 97.50 %
829 streetcar, tram, tramcar, trolley, ... 41 97.56 % 97.56 % 97.56 %
713 photocopier 44 97.73 % 100.00 % 95.45 %
916 web site, website, internet site, site 47 97.87 % 100.00 % 95.74 %
423 barber chair 31 98.39 % 96.77 % 100.00 %
190 Sealyham terrier, Sealyham 39 98.72 % 97.44 % 100.00 %
340 zebra 47 100.00 % 100.00 % 100.00 %
545 electric fan, blower 37 100.00 % 100.00 % 100.00 %

Table 6.5: Ratio of maintained correct classifications on the validation set of ImageNet after swapping color channels
BGR to either RBG or GRB. The most and least affected 19 classes as well as the classes minivan and school bus are
included in the table. The class ID, class name, number of correctly classified images before the color swap (#Images),
and percentage of maintained correct classifications after the swap are reported. (Wagner et al. (2019) / c© 2019 IEEE)

141

6 Explaining Model Predictions

Figure 6.15: Visual explanations and masks computed using the preservation game for different network architectures.
The images are from the ImageNet (Russakovsky et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

6.5.7 Comparison of Models

In Figure 6.15 and Figure 6.16, we compare the evidence on which different network
architectures base their prediction using the preservation and deletion game. Our evalua-
tion examines four architectures: AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy
et al., 2015), ResNet50 (He et al., 2016a), and VGG16 (Simonyan and Zisserman, 2015).
All four architectures are trained on the ImageNet training dataset and the images used
for comparison are taken from the ImageNet validation dataset.

Visual explanations of the ResNet50 architecture are more dense, meaning more pixels
have to be deleted / preserved to change / retain the prediction of the model. The ex-
planations of AlexNet and GoogleNet primarily contain fine structures and are not so

142

6 Explaining Model Predictions

Figure 6.16: Visual explanations and masks computed using the deletion game for different network architectures. The
images are from the ImageNet (Russakovsky et al., 2015) validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

pronounced compared to VGG16 and ResNet50. This is particularly visible in the ex-
planations of the impala in Figure 6.16 / 1. VGG16 has more pronounced edges in the
explanations compared to the other networks. In addition, pixels at the image edges are
highlighted more often. Visual explanations of ResNet50 show a grid-like pattern. Inter-
estingly, the grid pattern is not only visible within the target object, but also to a lesser
extent outside the object. A similar observation was also reported in Nie et al. (2018) for
ResNet50. A detailed investigation of this phenomenon is left to future research.

143

6 Explaining Model Predictions

(a) Input image

(b) Deletion masks: binary masks with fraction of pixels
removed

(c) Deletion curve

Figure 6.17: Subset of the binary deletion masks and resulting deletion curve for one input image. The deletion
curve (c) is computed by successively deleting pixels (b) from the image (a) according to their importance and mea-
suring the resulting probability of class cml. The input image containing the black-and-tan coonhound is from the
ImageNet (Russakovsky et al., 2015) validation dataset. (Wagner et al. (2019) / c© 2019 IEEE)

6.5.8 Faithfulness of Explanations

A visual explanation should be faithful to the underlying neural network, meaning, an
explanation should only highlight evidence which actually contributes to the prediction
of a network. Petsiuk et al. (2018) proposed causal metrics to quantitatively compare
the faithfulness of visual explanation methods. These metrics do not depend on human
labels (i.e. they are not biased towards human perception) and are thus well suited to
verify if a visual explanation correctly represents the true evidence on which a model
bases its decisions.

Using the deletion metric of Petsiuk et al. (2018), we evaluate the faithfulness of visual
explanations generated by FGVis. The deletion metric measures how the removal of
evidence affects the prediction of the used model. The metric assumes that an importance
map is given, which ranks all image pixels with respect to their evidence for the predicted
class cml (i.e. the most-likely class according to the model). We use the mean mask as
a proxy for the pixel-wise importance map. The mean mask is computed for all images
of the ImageNet validation dataset using the deletion game with a learning rate of 0.3,
running for 250 (VGG16) / 400 (ResNet50) iterations. A line-search is used to determine
the parameter λ. We iteratively use four equally spaced λ values between 10−7 and 10−10

and stop when ycml
e < 0.02 · ycml

x , where ycml
e is the softmax score of class cml given the

explanation, and ycml
x the corresponding score given the input image.

144

6 Explaining Model Predictions

Method VGG16 ResNet50
Grad-Cam (Selvaraju et al., 2017) 0.109 0.123

Sliding Window (Zeiler and Fergus, 2014) 0.116 0.142
LIME (Ribeiro et al., 2016) 0.101 0.122
RISE (Petsiuk et al., 2018) 0.098 0.108

FGVis (ours) 0.064 0.064

Table 6.6: Deletion metric of two model architectures computed on the ImageNet validation dataset (lower is better).
The results for all reference methods are from Petsiuk et al. (2018). FGVis outperforms the other explanation methods
by a large margin. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

Using the importance map, the deletion curve is generated by successively removing
pixels from the input image according to their importance and measuring the resulting
probability of class cml. The removed pixels are set to zero, as proposed by Petsiuk et al.

(2018). In Figure 6.17 / b, we illustrate a subset of the binary deletion masks for an input
image. The deletion metric is computed by measuring the Area Under the Curve (AUC)
of the deletion curve (Figure 6.17 / c).

In Table 6.6, we report the resulting deletion metric of FGVis, computed on the valida-
tion split of ImageNet using the VGG16 and ResNet50 model. FGVis outperforms the
other visual explanation methods on both models by a large margin. This performance
increase can most likely be attributed to the ability of FGVis to visualize fine-grained
evidence. All other approaches are limited to coarse explanations, either due to compu-
tational constraints or due to the used measures to avoid adversarial evidence.

6.5.9 Further Examples

In Figure 6.18 and Figure 6.19, we depict further explanation masks computed using our
proposed FGVis method. The masks in Figure 6.18 are computed using the repression

game for VGG16, whereas the ones in Figure 6.19 are computed using the preservation

game for ResNet50.

145

6 Explaining Model Predictions

Figure 6.18: Visual explanation masks computed using the repression game for VGG16. The target class is noted
in the lower left corner of each explanation mask. The images are from the ImageNet (Russakovsky et al., 2015)
validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

6.6 Conclusion

In the last decade, deep learning methods led to significant advances in a wide range of
disciplines, including computer vision (Krizhevsky et al., 2012; Girshick et al., 2014;
Long et al., 2015), natural language processing (Torfi et al., 2020), and behavior predic-
tion (Rudenko et al., 2020). A disadvantage of many deep learning models is their low
level of transparency and interpretability. Particularly in safety-critical applications, such
as self-driving cars, it is advantageous to have insights into the decision-making process
of a model. Developers can use these insights to debug and validate models and they
can increase the user’s trust in the technology (McAllister et al., 2017). In the case of a
serious error, authorities may require a review and explanation of model decisions which
would benefit from additional knowledge of a model’s decision-making process. One
can increase the transparency of a model in the design phase by, for example, incorporat-
ing intermediate representations which are human-interpretable. In the previous chapter,
we adopted this idea and designed an interpretable representation filter that stabilizes the

146

6 Explaining Model Predictions

Figure 6.19: Visual explanation masks computed using the preservation game for ResNet50. The target class is noted
in the lower left corner of each explanation mask. The images are from the ImageNet (Russakovsky et al., 2015)
validation dataset. (Modified from Wagner et al. (2019) / c© 2019 IEEE)

prediction of a semantic segmentation network. If a black-box model is given, post-hoc
explanation methods can be used to inspect its behavior.

In this chapter, we proposed a post-hoc, optimization-based explanation method (FGVis),
which generates fine-grained and class-discriminative visual explanations in the image
space. To prevent the generation of adversarial evidence (i.e. faulty evidence due to
artifacts), our method uses a novel adversarial defense which filters gradients during op-
timization. Compared to other adversarial defense techniques, ours does not depend on
human-tuned hyperparameters and imposes no further constraints (e.g. a reduced res-
olution) on the explanation. The visual explanations created by FGVis are intuitively
interpretable, well suited for visualizing detailed evidence, and can be tested as they
are valid model inputs. Additionally, they preserve the characteristics of images, like
edges and colors, enabling richer insights. We showed the effectiveness of our defense
technique using different model architectures, compared our visual explanations to other
methods, and quantitatively evaluated their faithfulness. Moreover, we underlined the

147

6 Explaining Model Predictions

strength in producing class-discriminative visualizations and pointed to characteristics
in explanations of the ResNet50 architecture.

After the publication of the content of this chapter, a variety of scientific papers have
been published on the topic of Explainable Artificial Intelligence (XAI) (Arrieta et al.,
2020; Zablocki et al., 2021; Linardatos et al., 2021; Samek et al., 2021; Fan et al.,
2021). Numerous works extended existing post-hoc, local explanation methods (Fong
et al., 2019; Kim et al., 2019; Qi et al., 2019; Wang et al., 2020a) or developed novel
local approaches (Goyal et al., 2019; Schulz et al., 2020).

Fong et al. (2019) improve their optimization-based explanation method introduced in
Fong and Vedaldi (2017) by replacing two terms of the objective function with corre-
sponding optimization constraints — an area constraint that fixes the sparsity of the
explanation mask to a given value as well as a smoothness constraint. The proposed
changes increase the usability of the explanation method by removing hyperparameters.
In addition, they extend their method to support the investigation of intermediate network
representations. The area constraint of Fong et al. (2019) could be used as an alterna-
tive to the sparsity loss term (see Equation 6.3) in our visual explanation method FGVis.
Khakzar et al. (2020) propose to improve gradient-based attribution methods via input-
specific network pruning (Khakzar et al., 2021). They intensively evaluate and verify
their approach PruneGrad using sanity checks (Adebayo et al., 2018b) and evaluation
metrics (Hooker et al., 2019). In addition, they highlight a connection between pruning
of neurons and our proposed adversarial defense (Khakzar et al., 2020). Other methods
like Score-CAM (Wang et al., 2020a) or Smooth Grad-CAM++ (Omeiza et al., 2019)
can be seen as extensions of Grad-CAM (Selvaraju et al., 2017). Score-CAM replaces
the gradient-based weighting of activation maps used in Grad-CAM with a weighting
approach relying on a Channel-Wise Increase of Confidence (CIC) score (Wang et al.,
2020a). Their experiments show a superior performance of Score-CAM in localization
and recognition metrics compared to other CAM-based approaches. Omeiza et al. (2019)
propose to integrate the gradient averaging technique of SmoothGrad (Smilkov et al.,
2017) into Grad-CAM++ (Chattopadhay et al., 2018) to improve the resulting visual ex-
planations in terms of sharpness and object localization. Compared to our method, these
two approaches are not well suited for visualizing fine-grained evidence. A more detailed
discussion of the recent XAI literature, which covers local explanation methods, global
methods, as well as other aspects (e.g. model-agnostic vs. model-specific methods, ap-

148

6 Explaining Model Predictions

proaches for other data types and machine learning models) can be found in Arrieta et al.

(2020), Samek et al. (2021), and Linardatos et al. (2021).

Explanation methods are also being increasingly used in the field of autonomous driving,
due to the safety-critical nature of such systems. Bojarski et al. (2018) propose a post-
hoc explanation method called VisualBackProp and use it to examine PilotNet (Bojarski
et al., 2016), a CNN which predicts the steering commands of a vehicle given the image
of a front-facing camera. Their qualitative results show that the model bases its decisions
on visual cues which are consistent with those a human driver would use, e.g. pavement-
grass boundaries, parked cars (Bojarski et al., 2017; Bojarski et al., 2020). Liu et al.

(2020) extend the perturbation-based explanation method of Fong and Vedaldi (2017) to
spatio-temporal models and inspect different architectures for scene-based driving be-
havior classification. Sauer et al. (2018) propose a neural network that predicts a human-
interpretable, abstract representation of an autonomous vehicle’s environment based on
data from a camera. To debug the behavior of their model, they use the explanation
method Gradient-Weighted Class Activation Mapping (Grad-CAM). A more detailed
evaluation of explainability in the field of vision-based autonomous driving is presented
by Zablocki et al. (2021).

We believe that explanation methods are a valuable tool to accelerate the development
and deployment of deep learning models in real-world applications. However, there are
still many limitations and challenges to be addressed, such as robust as well as consis-
tent metrics / concepts for evaluating methods, deeper theoretical understanding of XAI
approaches, and more intuitive concepts for communicating model behavior.

149

7
Conclusion

Due to their promise to disrupt the transportation sector, autonomous vehicles have at-
tracted great attention in both academic and industrial research. Such systems are ex-
pected to increase road safety, improve quality of life, reduce resource consumption, and
thus change society in a lasting way. However, to achieve large-scale deployment in the
real world without human supervision, there are still many technical, social, and legal
challenges to overcome.

A key technical challenge is the robust perception and interpretation of the environment.
Perception systems must exhibit a high degree of reliability under all possible environ-
ment conditions and traffic situations. In addition, they must cope with the large vari-
ability of the scene, sensor interference, as well as short sensor failures. In this thesis,
we particularly focused on reducing aleatoric failures, i.e. failures which cannot be elim-
inated by using a more advanced perception model or additional training data. To solve
such failures, one has to enhance the information provided to the perception system. We
investigated two such approaches: sensor data fusion and temporal integration of infor-
mation.

Low or rapidly changing lighting conditions as well as bad weather conditions are a chal-
lenge for pedestrian detectors operating on images of the visible spectrum. To increase
the robustness of such detectors, we proposed to fuse the information of a visible and
a thermal camera using deep learning-based models. An early- and a late-fusion CNN
were investigated for fusion. Building upon the R-CNN detection framework, we created
a multispectral pedestrian detector and analyzed its performance on the KAIST bench-
mark (Hwang et al., 2015). Our late-fusion-based detector with additional pre-training
on visible images outperformed prior detectors on the KAIST benchmark significantly.

151

7 Conclusion

To the best of our knowledge, this is the first work to use a deep learning-based approach
for multispectral pedestrian detection.

A complementary approach to sensor data fusion is the temporal filtering of informa-
tion. The filter task can be divided into two subtasks: a prediction subtask and an update
subtask. In a first step, we focused on the prediction aspect and proposed an approach
to create semantic forecasting models. Our approach is based on a predictive transfor-
mation, which converts non-predictive feed-forward models into predictive ones. The
transformation relies on a recurrent predictive module as well as a teacher-student train-
ing strategy. Training was conducted in a self-supervised manner, eliminating the need
for costly labeled data. Our experiments showed the ability of the transformed archi-
tectures to model the dynamics of the scene (e.g. the interaction and motion of objects),
enabling meaningful predictions of future environment states.

Building on the knowledge gained from our predictive transformation approach, we de-
signed a parameter efficient temporal filtering concept for FC-DenseNet. The resulting
temporal model RFC-DenseNet recurrently filters feature representations on all abstrac-
tion levels in a hierarchical manner, while conceptually decoupling scene representation
from temporal dependencies. Compared to other single-image baselines as well as other
temporal architectures, our model showed improved performance, especially in challeng-
ing scenarios.

As a second field of research, we examined two approaches to increase the transparency
and interpretability of deep learning-based models: interpretability by design and post-
hoc explanation methods. Such approaches are particularly important for models used in
safety-critical applications. Insights into the decision-making process of a model facil-
itate debugging, they help to better understand shortcomings as well as limitations of a
model, and enable an easy introduction of prior knowledge. A high-level of transparency
and interpretability may also play an important role in solving some of the social and
legal challenges of future autonomous vehicles. Users tend to trust a model more if
they are able to anticipate and verify results. Thus, explanations tailored to end users
can contribute to building trust, leading to a broader social acceptance of the technology.
Transparency and interpretability of models facilitate validation, certification, and failure
analysis, which may be required by legal authorities.

152

7 Conclusion

In a subsequent chapter, we again used a recurrent filter to increase the robustness of a
segmentation model. Compared to the filters used to create RFC-DenseNet, we designed
this filter to be more transparent and interpretable. The filter consists of multiple submod-
ules, which can be debugged, pre-trained, and tested independently. Human interpretable
intermediate representations were introduced to offer insights into the behavior of the fil-
ter. In addition, we used these representations to include auxiliary training losses. By
replacing individual submodules with physical models, we were able to integrate do-
main knowledge into the filter. Our experiments especially highlighted the advantages
of our interpretable and transparent filter design and showed the ability of the resulting
segmentation model to cope with missing information.

Finally, we proposed FGVis, a post-hoc, local explanation method. FGVis creates visual
explanations in the image space by optimizing for a perturbed version of the input image
in which all irrelevant or most relevant pixels are removed. To prevent the generation of
adversarial evidence (i.e. faulty evidence due to artifacts), we introduced a novel adver-
sarial defense which filters gradients during optimization. The defense imposes no con-
straints on explanations (e.g. a reduced resolution) and does not depend on human-tuned
hyperparameters. Explanations created by FGVis are fine-grained, class-discriminative,
and preserve the characteristics of images, such as edges and colors. Additionally, they
are valid model inputs and can thus be tested. We believe that visual explanation meth-
ods, such as FGVis, are a valuable tool to accelerate the development and deployment of
black-box models.

The methods and models of this thesis contribute to achieving an unrestricted and large-
scale deployment of autonomous vehicles in the real world without human supervision.
In the following, we outline outstanding challenges and potential future research direc-
tions.

To increase the robustness of perception systems, we investigated two complementary
approaches, which are especially beneficial for challenging scenarios: sensor data fusion
(Chapter 2) and temporal integration of information (Chapter 4 and 5). An autonomous
vehicle designed with a safety-first principle (Mueller et al., 2020) should employ both
measures concurrently to ensure a safe functioning in all possible situations. Further
complementary measures are the integration of context information (e.g. map data) as
well as the exchange of data with other road users and the infrastructure (i.e. vehicle-to-

everything (V2X) communication (Hobert et al., 2015; Wang et al., 2020b)). The joint

153

7 Conclusion

integration of all data streams in a deep learning-based perception model is a challenging
and open area of research.

The models developed in this thesis were trained and evaluated using classical perception
losses and metrics independent of the autonomous vehicle’s overall architecture. Such a
separate consideration of the perception component facilitates development, but does not
guarantee optimal performance with respect to the final task of autonomous driving (Her-
man et al., 2021; Casas et al., 2020). Thus, a holistic development approach with system-
level model training and evaluation is beneficial. One approach are end-to-end models
which directly predict the steering commands of the autonomous vehicle from raw sen-
sory data (Bojarski et al., 2016; Tampuu et al., 2020). However, such models have a low
level of transparency and interpretability, resulting in the disadvantages already men-
tioned. The development of end-to-end trainable models with a modular structure and
human interpretable intermediate representations is another interesting area of research.
A promising concept for the development of such a model is proposed by Casas et al.

(2021).

As discussed in Chapter 6, explanation methods are a useful tool for accelerating the de-
velopment and deployment of deep learning-based models. However, there are still many
limitations and challenges to address, such as reliable as well as consistent concepts and
metrics for evaluating methods, deeper theoretical understanding of XAI approaches,
and more intuitive concepts for communicating model behavior. In addition, method de-
velopment should be more focused on user-centric design, taking into account the target
audience (e.g. user, developer, regulator) and the overall goal (e.g. building trust, failure
analysis) to obtain more informative explanations (Weller, 2019).

154

List of Abbreviations

ABM Activation-Based Method

ACF Aggregated Channel Features

AUC Area Under the Curve

BBM Backpropagation-Based Method

BN Batch Normalization

BNN Bayesian Neural Network

BPTT Backpropagation Through Time

CAM Class Activation Mapping

CIC Channel-Wise Increase of Confidence

CNN Convolutional Neural Network

CRF Conditional Random Field

DB Dense Block

DenseNet Densely Connected Convolutional Network

DSSD Deconvolutional Single Shot Detector

DU Dense Unit

FC-DenseNet Fully Convolutional DenseNet

FCN Fully Convolutional Network

FGVis Fine-Grained Visual Explanation Method

FM Filter Module

Grad-CAM Gradient-Weighted Class Activation Mapping

GRU Gated Recurrent Unit

HOG Histogram of Oriented Gradient

IMM Interacting Multiple Model

IoU Intersection over Union

xiii

List of Abbreviations

LIME Local Interpretable Model-Agnostic Explanations

LSTM Long Short-Term Memory

MPSPNet Multi-Task Pyramid Scene Parsing Network

MSDS-RCNN Multispectral Simultaneous Detection and Segmentation R-CNN

NN Neural Network

PBM Perturbation-Based Method

PGP Predictive Gating Pyramid

PSPNet Pyramid Scene Parsing Network

R-CNN Regions with CNN features

rCNN Recurrent Convolutional Neural Network

RDB Recurrent Dense Block

ReLU Rectified Linear Unit

ResNet Residual Network

RFC-DenseNet Recurrent Fully Convolutional DenseNet

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TD Transition Down

TU Transition Up

V2X vehicle-to-everything

XAI Explainable Artificial Intelligence

xiv

List of Tables

2.1 Log-average miss rate of pedestrian detectors 25

3.1 Quantitative evaluation of the knowledge transfer approach 48

4.1 Semantic label colors . 68
4.2 Structural configuration of FCDb, FCDs, and TMst 71
4.3 Configuration of the RFC-DenseNet architectures 71
4.4 Parametrization of the Filter Modules 71
4.5 Quantitative performance of all introduced models 73

5.1 SceneNet-RGBD label colors . 101
5.2 Mean IoU score of the MPSPNet with feature filter on static toy-data . . 103
5.3 Performance evaluation of our proposed motion filter 104
5.4 Model comparison on test data . 105

6.1 Entropy of reference images for different convolutional models 119
6.2 Overview of different game types . 122
6.3 Quantitative evaluation of adversarial evidence using the least-likely class

to approximate the adversarial class 128
6.4 Quantitative evaluation of adversarial evidence using black images . . . 129
6.5 Ratio of maintained correct classifications on the validation set of Ima-

geNet after swapping color channels BGR to either RBG or GRB 141
6.6 Deletion metric of two model architectures computed on the ImageNet

validation dataset . 145

xv

List of Figures

2.1 Images of the KAIST multispectral pedestrian detection dataset 13
2.2 Detection framework of our pedestrian detector 17
2.3 Early-fusion architecture . 18
2.4 Late-fusion architecture . 20
2.5 Example images of the KAIST multispectral pedestrian detection dataset 23
2.6 Miss rate against false positives per image 26
2.7 Non-systematic alignment error . 27

3.2 Proposed predictive transformation . 38
3.3 Teacher-student training structure . 41
3.4 Simulated video dataset for semantic segmentation 44
3.5 Convolutional feed-forward model . 45
3.6 Structure of the recurrent predictive module frec 46
3.7 Example predictions of model PMy,all 50

4.1 Structural layout of the Fully Convolutional DenseNet (FC-DenseNet) . 62
4.2 Recurrent Dense Block (RDB) of length three 64
4.3 Proposed Filter Module instances: FMff, FMres, and FMed 67
4.4 Example sequences of the test and the clean test dataset 69
4.5 Example predictions of model RFCDres1 and FCDb 74

5.1 Functionally modularized temporal filter 79
5.2 Segmentation model with filter module 84
5.3 Multi-task-based filter interpretation 86
5.4 Structure of the depth decoder fdep . 89
5.5 Motion estimation module . 91
5.6 Exemplary training sequences . 95
5.7 Multi-Task Pyramid Scene Parsing Network (MPSPNet) 96
5.8 Dilated Residual Network . 97
5.9 Model-free, feature-level filter . 98
5.10 Static feature integration . 102
5.11 Temporal motion aggregation on dynamic toy-data 103
5.12 Example prediction of FMTNet . 106

xvii

List of Figures

6.1 Visual explanation computed by removing irrelevant pixels 113
6.2 Explanations resulting from different reference images 120
6.3 Overview of all visualizations for the four game types 121
6.4 Explanation for adversarial class limousine and true class agama 127
6.5 Explanation for adversarial class rotisserie and true class peacock . . . 128
6.6 Explanation for adversarial class iguana using a black input image . . . 129
6.7 Visual explanations and masks computed using the different game types

for GoogleNet using the target class brown bear 130
6.8 Visual explanations and masks computed using the different game types

for GoogleNet using the target class hamster 131
6.9 Comparison of explanation masks computed using different state-of-the-

art visual explanation methods . 133
6.10 Visual explanation masks computed for images with multiple objects

from distinct classes / set 1 . 135
6.11 Visual explanation masks computed for images with multiple objects

from distinct classes / set 2 . 136
6.12 Qualitative evaluation of a bias resulting from the coexistence of objects

in images . 137
6.13 Explanations of images containing minivans computed for VGG16 using

the preservation game . 138
6.14 Explanations of images containing school buses computed for VGG16

using the preservation game . 140
6.15 Visual explanations and masks computed using the preservation game

for different network architectures . 142
6.16 Visual explanations and masks computed using the deletion game for

different network architectures . 143
6.17 Deletion masks and resulting deletion curve for one example image . . 144
6.18 Explanation masks computed using the repression game for VGG16 . . 146
6.19 Explanation masks computed using the preservation game for ResNet50 147

xviii

Bibliography

Adebayo, J., J. Gilmer, I. Goodfellow, and B. Kim (2018a). “Local Explanation Methods
for Deep Neural Networks Lack Sensitivity to Parameter Values”. In: International
Conference on Learning Representations (ICLR), Workshop Track Proceedings.

Adebayo, J., J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim (2018b). “San-
ity Checks for Saliency Maps”. In: Advances in Neural Information Processing Sys-
tems (NeurIPS). Vol. 31. Curran Associates, Inc.

Alahi, A., K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese (2016).
“Social LSTM: Human Trajectory Prediction in Crowded Spaces”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 961–971. DOI: 10.1109/CVPR.2016.110.

Angelova, A., A. Krizhevsky, V. Vanhoucke, A. Ogale, and D. Ferguson (2015). “Real-
Time Pedestrian Detection With Deep Network Cascades”. In: Proceedings of the
British Machine Vision Conference (BMVC), pp. 32.1–32.12. DOI: 10.5244/C.29.
32.

Arrieta, A. B., N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S.
García, S. Gil-López, D. Molina, R. Benjamins, R. Chatila, and F. Herrera (2020).
“Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities
and Challenges Toward Responsible AI”. In: Information Fusion 58, pp. 82–115.
DOI: 10.1016/j.inffus.2019.12.012.

Ba, J. and R. Caruana (2014). “Do Deep Nets Really Need to be Deep?” In: Advances in
Neural Information Processing Systems (NIPS). Vol. 27. Curran Associates, Inc.

Bach, S., A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek (2015).
“On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation”. In: PLoS ONE 10.7. DOI: 10.1371/journal.pone.0130140.

Baehrens, D., T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller
(2010). “How to Explain Individual Classification Decisions”. In: Journal of Ma-
chine Learning Research 11.61, pp. 1803–1831.

xix

https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.5244/C.29.32
https://doi.org/10.5244/C.29.32
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1371/journal.pone.0130140

Bibliography

Bahram, M. (2017). “Interactive Maneuver Prediction and Planning for Highly Auto-
mated Driving Functions”. PhD thesis. Technische Universität München.

Behnke, S. (2003). Hierarchical Neural Networks for Image Interpretation. Vol. 2766.
Lecture Notes in Computer Science. Springer. DOI: 10.1007/b11963.

Benenson, R., M. Mathias, R. Timofte, and L. Van Gool (2012). “Pedestrian Detection
at 100 Frames Per Second”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2903–2910. DOI: 10.1109/CVPR.
2012.6248017.

Benenson, R., M. Mathias, T. Tuytelaars, and L. Van Gool (2013). “Seeking the Strongest
Rigid Detector”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3666–3673. DOI: 10.1109/CVPR.2013.470.

Benenson, R., M. Omran, J. Hosang, and B. Schiele (2014). “Ten Years of Pedestrian
Detection, What Have We Learned?” In: Computer Vision – ECCV 2014 Workshops.
Springer International Publishing, pp. 613–627. DOI: 10.1007/978-3-319-16181-
5_47.

Bertozzi, M., A. Broggi, M. Felisa, G. Vezzoni, and M. Del Rose (2006). “Low-Level
Pedestrian Detection by Means of Visible and Far Infra-Red Tetra-Vision”. In: Pro-
ceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 231–236. DOI: 10.
1109/IVS.2006.1689633.

Blom, H. A. P. (1984). “An Efficient Filter for Abruptly Changing Systems”. In: The
23rd IEEE Conference on Decision and Control, pp. 656–658. DOI: 10.1109/CDC.
1984.272089.

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba (2016). End
to End Learning for Self-Driving Cars. DOI: 10.48550/arXiv.1604.07316. arXiv:
1604.07316 [cs.CV].

Bojarski, M., P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and U.
Muller (2017). Explaining How a Deep Neural Network Trained with End-to-End
Learning Steers a Car. DOI: 10 . 48550 / arXiv . 1704 . 07911. arXiv: 1704 . 07911
[cs.CV].

Bojarski, M., A. Choromanska, K. Choromanski, B. Firner, L. J. Ackel, U. Muller, P.
Yeres, and K. Zieba (2018). “VisualBackProp: Efficient Visualization of CNNs for
Autonomous Driving”. In: Proceedings of the IEEE International Conference on

xx

https://doi.org/10.1007/b11963
https://doi.org/10.1109/CVPR.2012.6248017
https://doi.org/10.1109/CVPR.2012.6248017
https://doi.org/10.1109/CVPR.2013.470
https://doi.org/10.1007/978-3-319-16181-5_47
https://doi.org/10.1007/978-3-319-16181-5_47
https://doi.org/10.1109/IVS.2006.1689633
https://doi.org/10.1109/IVS.2006.1689633
https://doi.org/10.1109/CDC.1984.272089
https://doi.org/10.1109/CDC.1984.272089
https://doi.org/10.48550/arXiv.1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.48550/arXiv.1704.07911
http://arxiv.org/abs/1704.07911
http://arxiv.org/abs/1704.07911

Bibliography

Robotics and Automation (ICRA), pp. 4701–4708. DOI: 10 . 1109 / ICRA . 2018 .
8461053.

Bojarski, M., C. Chen, J. Daw, A. Değirmenci, J. Deri, B. Firner, B. Flepp, S. Gogri, J.
Hong, L. Jackel, Z. Jia, B. Lee, B. Liu, F. Liu, U. Muller, S. Payne, N. K. N. Prasad,
A. Provodin, J. Roach, T. Rvachov, N. Tadimeti, J. van Engelen, H. Wen, E. Yang,
and Z. Yang (2020). The NVIDIA PilotNet Experiments. DOI: 10.48550/arXiv.2010.
08776. arXiv: 2010.08776 [cs.CV].

Bourdev, L. and J. Brandt (2005). “Robust Object Detection via Soft Cascade”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 236–243. DOI: 10.1109/CVPR.2005.310.

Brostow, G. J., J. Shotton, J. Fauqueur, and R. Cipolla (2008). “Segmentation and Recog-
nition Using Structure From Motion Point Clouds”. In: Computer Vision – ECCV
2008. Springer International Publishing, pp. 44–57. DOI: 10 . 1007 / 978 - 3 - 540 -
88682-2_5.

Brostow, G. J., J. Fauqueur, and R. Cipolla (2009). “Semantic Object Classes in Video:
A High-Definition Ground Truth Database”. In: Pattern Recognition Letters 30.2,
pp. 88–97. DOI: 10.1016/j.patrec.2008.04.005.

Brouwer, N., H. Kloeden, and C. Stiller (2016). “Comparison and Evaluation of Pedes-
trian Motion Models for Vehicle Safety Systems”. In: Proceedings of the IEEE
International Conference on Intelligent Transportation Systems (ITSC), pp. 2207–
2212. DOI: 10.1109/ITSC.2016.7795912.

Bucilua, C., R. Caruana, and A. Niculescu-Mizil (2006). “Model Compression”. In: Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 535–541. DOI: 10.1145/1150402.1150464.

Cai, Z., M. Saberian, and N. Vasconcelos (2015). “Learning Complexity-Aware Cascades
for Deep Pedestrian Detection”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 3361–3369. DOI: 10 . 1109 / ICCV .
2015.384.

Casas, S., C. Gulino, S. Suo, and R. Urtasun (2020). “The Importance of Prior Knowl-
edge in Precise Multimodal Prediction”. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2295–2302. DOI:
10.1109/IROS45743.2020.9341199.

Casas, S., A. Sadat, and R. Urtasun (2021). “MP3: A Unified Model to Map, Perceive,
Predict and Plan”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-

xxi

https://doi.org/10.1109/ICRA.2018.8461053
https://doi.org/10.1109/ICRA.2018.8461053
https://doi.org/10.48550/arXiv.2010.08776
https://doi.org/10.48550/arXiv.2010.08776
http://arxiv.org/abs/2010.08776
https://doi.org/10.1109/CVPR.2005.310
https://doi.org/10.1007/978-3-540-88682-2_5
https://doi.org/10.1007/978-3-540-88682-2_5
https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1109/ITSC.2016.7795912
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1109/ICCV.2015.384
https://doi.org/10.1109/ICCV.2015.384
https://doi.org/10.1109/IROS45743.2020.9341199

Bibliography

sion and Pattern Recognition (CVPR), pp. 14398–14407. DOI: 10 . 1109 / CVPR
46437.2021.01417.

Chang, C.-H., E. Creager, A. Goldenberg, and D. Duvenaud (2019). “Explaining Image
Classifiers by Counterfactual Generation”. In: International Conference on Learn-
ing Representations (ICLR).

Chattopadhay, A., A. Sarkar, P. Howlader, and V. N. Balasubramanian (2018). “Grad-
CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional
Networks”. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pp. 839–847. DOI: 10.1109/WACV.2018.00097.

Chen, L., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2015). “Semantic
Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs”.
In: International Conference on Learning Representations (ICLR).

Chiu, H.-K., E. Adeli, and J. C. Niebles (2020). “Segmenting the Future”. In: IEEE
Robotics and Automation Letters 5.3, pp. 4202–4209. DOI: 10.1109/LRA.2020.
2992184.

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio (2014). “Learning Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation”. In: Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Choi, E.-J. and D.-J. Park (2010). “Human Detection Using Image Fusion of Thermal and
Visible Image With New Joint Bilateral Filter”. In: 5th International Conference on
Computer Sciences and Convergence Information Technology, pp. 882–885. DOI:
10.1109/ICCIT.2010.5711182.

Conaire, C. Ó., E. Cooke, N. E. O’Connor, N. Murphy, and A. F. Smeaton (2005). “Back-
ground Modelling in Infrared and Visible Spectrum Video for People Tracking”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops. DOI: 10.1109/CVPR.2005.419.

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele (2016). “The Cityscapes Dataset for Semantic Urban Scene
Understanding”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3213–3223. DOI: 10.1109/CVPR.2016.350.

Couprie, C., P. Luc, and J. Verbeek (2019). “Joint Future Semantic and Instance Seg-
mentation Prediction”. In: Computer Vision – ECCV 2018 Workshops. Springer In-
ternational Publishing, pp. 154–168. DOI: 10.1007/978-3-030-11015-4_14.

xxii

https://doi.org/10.1109/CVPR46437.2021.01417
https://doi.org/10.1109/CVPR46437.2021.01417
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/LRA.2020.2992184
https://doi.org/10.1109/LRA.2020.2992184
https://doi.org/10.1109/ICCIT.2010.5711182
https://doi.org/10.1109/CVPR.2005.419
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1007/978-3-030-11015-4_14

Bibliography

Dabkowski, P. and Y. Gal (2017). “Real Time Image Saliency for Black Box Classifiers”.
In: Advances in Neural Information Processing Systems (NIPS). Vol. 30. Curran
Associates, Inc.

Dalal, N. and B. Triggs (2005). “Histograms of Oriented Gradients for Human Detec-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 886–893. DOI: 10.1109/CVPR.2005.177.

Dieleman, S., J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana,
M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, D. M. de Almeida, B.
McFee, H. Weideman, G. Takács, P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu,
G. French, and J. Degrave (2015). Lasagne: First Release. DOI: 10.5281/zenodo.
27878.

Dollár, P., Z. Tu, P. Perona, and S. Belongie (2009a). “Integral Channel Features”. In:
Proceedings of the British Machine Vision Conference (BMVC), pp. 91.1–91.11.

Dollár, P., C. Wojek, B. Schiele, and P. Perona (2009b). “Pedestrian Detection: A Bench-
mark”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 304–311. DOI: 10.1109/CVPR.2009.5206631.

Dollár, P., S. Belongie, and P. Perona (2010). “The Fastest Pedestrian Detector in
the West”. In: Proceedings of the British Machine Vision Conference (BMVC),
pp. 68.1–68.11. DOI: 10.5244/C.24.68.

Dollár, P., C. Wojek, B. Schiele, and P. Perona (2012). “Pedestrian Detection: An Evalua-
tion of the State of the Art”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 34.4, pp. 743–761. DOI: 10.1109/TPAMI.2011.155.

Dollár, P., R. Appel, S. Belongie, and P. Perona (2014). “Fast Feature Pyramids for Object
Detection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
36.8, pp. 1532–1545. DOI: 10.1109/TPAMI.2014.2300479.

Dosovitskiy, A., P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt,
D. Cremers, and T. Brox (2015). “FlowNet: Learning Optical Flow with Convolu-
tional Networks”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 2758–2766. DOI: 10.1109/ICCV.2015.316.

Dosovitskiy, A., P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox (2016). “Dis-
criminative Unsupervised Feature Learning with Exemplar Convolutional Neural
Networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
38.9, pp. 1734–1747. DOI: 10.1109/TPAMI.2015.2496141.

xxiii

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.1109/CVPR.2009.5206631
https://doi.org/10.5244/C.24.68
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.1109/TPAMI.2014.2300479
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/TPAMI.2015.2496141

Bibliography

Du, M., N. Liu, Q. Song, and X. Hu (2018). “Towards Explanation of DNN-Based Pre-
diction with Guided Feature Inversion”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1358–
1367. DOI: 10.1145/3219819.3220099.

Du, M., N. Liu, and X. Hu (2019). “Techniques for Interpretable Machine Learning”. In:
Communications of the ACM 63.1, pp. 68–77. DOI: 10.1145/3359786.

Eigen, D., C. Puhrsch, and R. Fergus (2014). “Depth Map Prediction From a Single
Image using a Multi-Scale Deep Network”. In: Advances in Neural Information
Processing Systems (NIPS). Vol. 27. Curran Associates, Inc.

Eitel, A., J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard (2015). “Multi-
modal Deep Learning for Robust RGB-D Object Recognition”. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 681–687.

Elnagar, A. (2001). “Prediction of Moving Objects in Dynamic Environments Using
Kalman Filters”. In: Proceedings of the IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation, pp. 414–419. DOI: 10.1109/
CIRA.2001.1013236.

Everingham, M., S. M. Eslami, L. Gool, C. K. Williams, J. Winn, and A. Zisserman
(2015). “The Pascal Visual Object Classes Challenge: A Retrospective”. In: Interna-
tional Journal of Computer Vision (IJCV) 111.1, pp. 98–136. DOI: 10.1007/s11263-
014-0733-5.

Fagnant, D. J. and K. Kockelman (2015). “Preparing a Nation for Autonomous Vehicles:
Opportunities, Barriers and Policy Recommendations”. In: Transportation Research
Part A: Policy and Practice 77, pp. 167–181. DOI: 10.1016/j.tra.2015.04.003.

Fan, F.-L., J. Xiong, M. Li, and G. Wang (2021). “On Interpretability of Artificial Neural
Networks: A Survey”. In: IEEE Transactions on Radiation and Plasma Medical
Sciences 5.6, pp. 741–760. DOI: 10.1109/TRPMS.2021.3066428.

Fayyaz, M., M. H. Saffar, M. Sabokrou, M. Fathy, F. Huang, and R. Klette (2016).
“STFCN: Spatio-Temporal Fully Convolutional Neural Network for Semantic
Segmentation of Street Scenes”. In: Computer Vision – ACCV 2016 Workshops.
Springer International Publishing, pp. 493–509. DOI: 10.1007/978-3-319-54407-
6_33.

Felzenszwalb, P., D. Mcallester, and D. Ramanan (2008). “A Discriminatively Trained,
Multiscale, Deformable Part Model”. In: Proceedings of the IEEE/CVF Conference

xxiv

https://doi.org/10.1145/3219819.3220099
https://doi.org/10.1145/3359786
https://doi.org/10.1109/CIRA.2001.1013236
https://doi.org/10.1109/CIRA.2001.1013236
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1016/j.tra.2015.04.003
https://doi.org/10.1109/TRPMS.2021.3066428
https://doi.org/10.1007/978-3-319-54407-6_33
https://doi.org/10.1007/978-3-319-54407-6_33

Bibliography

on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2008.
4587597.

Felzenszwalb, P. F., R. B. Girshick, D. McAllester, and D. Ramanan (2010). “Object De-
tection with Discriminatively Trained Part-Based Models”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 32.9, pp. 1627–1645. DOI: 10.1109/
TPAMI.2009.167.

Fong, R. C. and A. Vedaldi (2017). “Interpretable Explanations of Black Boxes by Mean-
ingful Perturbation”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 3449–3457. DOI: 10.1109/ICCV.2017.371.

Fong, R. C., M. Patrick, and A. Vedaldi (2019). “Understanding Deep Networks via
Extremal Perturbations and Smooth Masks”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pp. 2950–2958. DOI: 10.1109/
ICCV.2019.00304.

Frosst, N. and G. Hinton (2017). “Distilling a Neural Network Into a Soft Decision Tree”.
In: Proceedings of the First International Workshop on Comprehensibility and Ex-
planation in AI and ML 2017.

Fu, C.-Y., W. Liu, A. Ranga, A. Tyagi, and A. C. Berg (2017). DSSD: Deconvolutional
Single Shot Detector. DOI: 10 . 48550 / arXiv . 1701 . 06659. arXiv: 1701 . 06659
[cs.CV].

Gadde, R., V. Jampani, and P. V. Gehler (2017). “Semantic Video CNNs Through Rep-
resentation Warping”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 4463–4472. DOI: 10.1109/ICCV.2017.477.

Gade, R. and T. B. Moeslund (2014). “Thermal Cameras and Applications: A Survey”.
In: Machine Vision Applications 25.1, pp. 245–262. DOI: 10 .1007/s00138- 013-
0570-5.

Gal, Y. and Z. Ghahramani (2016a). “A Theoretically Grounded Application of Dropout
in Recurrent Neural Networks”. In: Advances in Neural Information Processing
Systems (NIPS). Vol. 29. Curran Associates, Inc.

Gal, Y. and Z. Ghahramani (2016b). “Bayesian Convolutional Neural Networks With
Bernoulli Approximate Variational Inference”. In: International Conference on
Learning Representations (ICLR), Workshop Track Proceedings.

xxv

https://doi.org/10.1109/CVPR.2008.4587597
https://doi.org/10.1109/CVPR.2008.4587597
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/ICCV.2019.00304
https://doi.org/10.1109/ICCV.2019.00304
https://doi.org/10.48550/arXiv.1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
https://doi.org/10.1109/ICCV.2017.477
https://doi.org/10.1007/s00138-013-0570-5
https://doi.org/10.1007/s00138-013-0570-5

Bibliography

Ganin, Y. and V. Lempitsky (2015). “Unsupervised Domain Adaptation by Backpropaga-
tion”. In: Proceedings of the 32nd International Conference on Machine Learning
(ICML).

Garcia-Garcia, A., S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-
Gonzalez, and J. Garcia-Rodriguez (2018). “A Survey on Deep Learning Tech-
niques for Image and Video Semantic Segmentation”. In: Applied Soft Computing
70, pp. 41–65. DOI: 10.1016/j.asoc.2018.05.018.

Geiger, A., P. Lenz, and R. Urtasun (2012). “Are We Ready for Autonomous Driving?
The KITTI Vision Benchmark Suite.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361. DOI: 10 .
1109/CVPR.2012.6248074.

Ghazvinian Zanjani, F. and M. van Gerven (2016). “Improving Semantic Video Segmen-
tation by Dynamic Scene Integration”. In: Proceedings of the Netherlands Confer-
ence on Computer Vision (NCCV).

Ghorbani, A., J. Wexler, J. Y. Zou, and B. Kim (2019). “Towards Automatic
Concept-Based Explanations”. In: Advances in Neural Information Processing
Systems (NeurIPS). Vol. 32. Curran Associates, Inc.

Girshick, R., J. Donahue, T. Darrell, and J. Malik (2014). “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 580–587. DOI: 10.1109/CVPR.2014.81.

Girshick, R. (2015). “Fast R-CNN”. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

Goldhammer, M., K. Doll, U. Brunsmann, A. Gensler, and B. Sick (2014). “Pedestrian’s
Trajectory Forecast in Public Traffic With Artificial Neural Networks”. In: Proceed-
ings of the 22nd International Conference on Pattern Recognition, pp. 4110–4115.
DOI: 10.1109/ICPR.2014.704.

Goodfellow, I., J. Shlens, and C. Szegedy (2015). “Explaining and Harnessing Adversar-
ial Examples”. In: International Conference on Learning Representations (ICLR).

Goyal, Y., Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee (2019). “Counterfactual Visual
Explanations”. In: Proceedings of the 36th International Conference on Machine
Learning (ICML).

xxvi

https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICPR.2014.704

Bibliography

Graves, A. (2014). Generating Sequences With Recurrent Neural Networks. DOI: 10 .
48550/arXiv.1308.0850. arXiv: 1308.0850 [cs.NE].

Greff, K., R. K. Srivastava, and J. Schmidhuber (2017). “Highway and Residual Net-
works Learn Unrolled Iterative Estimation”. In: International Conference on Learn-
ing Representations (ICLR).

Grigorescu, S., B. Trasnea, T. Cocias, and G. Macesanu (2020). “A Survey of Deep
Learning Techniques for Autonomous Driving”. In: Journal of Field Robotics 37.3,
pp. 362–386. DOI: 10.1002/rob.21918.

Gu, J., X. Yang, S. De Mello, and J. Kautz (2017). “Dynamic Facial Analysis: From
Bayesian Filtering to Recurrent Neural Network”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1531–1540.
DOI: 10.1109/CVPR.2017.167.

Guan, D., Y. Cao, J. Yang, Y. Cao, and M. Y. Yang (2019). “Fusion of Multispectral Data
Through Illumination-Aware Deep Neural Networks for Pedestrian Detection”. In:
Information Fusion 50, pp. 148–157. DOI: 10.1016/j.inffus.2018.11.017.

Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger (2017). “On Calibration of Modern
Neural Networks”. In: Proceedings of the 34th International Conference on Ma-
chine Learning (ICML).

Han, S., J. Pool, J. Tran, and W. Dally (2015). “Learning Both Weights and Connections
for Efficient Neural Network”. In: Advances in Neural Information Processing Sys-
tems (NIPS). Vol. 28. Curran Associates, Inc.

Hao, M. and T. Yamamoto (2018). “Shared Autonomous Vehicles: A Review Consid-
ering Car Sharing and Autonomous Vehicles”. In: Asian Transport Studies 5.1,
pp. 47–63.

Hazirbas, C., L. Ma, C. Domokos, and D. Cremers (2016). “FuseNet: Incorporating
Depth Into Semantic Segmentation Via Fusion-Based CNN Architecture”. In: Asian
Conference on Computer Vision (ACCV), pp. 213–228. DOI: 10.1007/978-3-319-
54181-5_14.

He, K., X. Zhang, S. Ren, and J. Sun (2016a). “Deep Residual Learning for Image Recog-
nition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 770–778. DOI: 10.1109/CVPR.2016.90.

xxvii

https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1308.0850
http://arxiv.org/abs/1308.0850
https://doi.org/10.1002/rob.21918
https://doi.org/10.1109/CVPR.2017.167
https://doi.org/10.1016/j.inffus.2018.11.017
https://doi.org/10.1007/978-3-319-54181-5_14
https://doi.org/10.1007/978-3-319-54181-5_14
https://doi.org/10.1109/CVPR.2016.90

Bibliography

He, K., X. Zhang, S. Ren, and J. Sun (2016b). “Identity Mappings in Deep Residual
Networks”. In: Computer Vision – ECCV 2016. Springer International Publishing,
pp. 630–645. DOI: 10.1007/978-3-319-46493-0_38.

Herman, M., J. Wagner, V. Prabhakaran, N. Möser, H. Ziesche, W. Ahmed, L. Bürkle, E.
Kloppenburg, and C. Gläser (2021). “Pedestrian Behavior Prediction for Automated
Driving: Requirements, Metrics, and Relevant Features”. In: IEEE Transactions on
Intelligent Transportation Systems. DOI: 10.1109/TITS.2021.3135136.

Hinton, G., O. Vinyals, and J. Dean (2014). “Distilling the Knowledge in a Neural Net-
work”. In: NIPS Deep Learning and Representation Learning Workshop.

Hobert, L., A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs (2015).
“Enhancements of V2X Communication in Support of Cooperative Autonomous
Driving”. In: IEEE Communications Magazine 53.12, pp. 64–70. DOI: 10 .1109 /
MCOM.2015.7355568.

Hooker, S., D. Erhan, P.-J. Kindermans, and B. Kim (2019). “A Benchmark for Inter-
pretability Methods in Deep Neural Networks”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 32. Curran Associates, Inc.

Hosang, J., M. Omran, R. Benenson, and B. Schiele (2015). “Taking a Deeper Look at
Pedestrians”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4073–4082. DOI: 10.1109/CVPR.2015.7299034.

Hu, A., F. Cotter, N. Mohan, C. Gurau, and A. Kendall (2020). “Probabilistic Future
Prediction for Video Scene Understanding”. In: Computer Vision – ECCV 2020.
Springer International Publishing, pp. 767–785. DOI: 10.1007/978-3-030-58517-
4_45.

Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger (2017). “Densely Con-
nected Convolutional Networks”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. DOI: 10.1109/
CVPR.2017.243.

Hwang, S., J. Park, N. Kim, Y. Choi, and I. S. Kweon (2015). “Multispectral Pedestrian
Detection: Benchmark Dataset and Baselines”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1037–1045.
DOI: 10.1109/CVPR.2015.7298706.

Ilg, E., N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox (2017).
“FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks”.

xxviii

https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/TITS.2021.3135136
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/MCOM.2015.7355568
https://doi.org/10.1109/CVPR.2015.7299034
https://doi.org/10.1007/978-3-030-58517-4_45
https://doi.org/10.1007/978-3-030-58517-4_45
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2015.7298706

Bibliography

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1647–1655. DOI: 10.1109/CVPR.2017.179.

Ioffe, S. and C. Szegedy (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML).

Jain, S., X. Wang, and J. E. Gonzalez (2019). “Accel: A Corrective Fusion Network
for Efficient Semantic Segmentation on Video”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8858–8867.
DOI: 10.1109/CVPR.2019.00907.

Jégou, S., M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio (2017). “The One Hun-
dred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pp. 1175–1183. DOI: 10.1109/CVPRW.2017.156.

Ji, S., W. Xu, M. Yang, and K. Yu (2013). “3D Convolutional Neural Networks for Hu-
man Action Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 35.1, pp. 221–231. DOI: 10.1109/TPAMI.2012.59.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell (2014). “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678.

Jin, X., H. Xiao, X. Shen, J. Yang, Z. Lin, Y. Chen, Z. Jie, J. Feng, and S. Yan (2017a).
“Predicting Scene Parsing and Motion Dynamics in the Future”. In: Advances in
Neural Information Processing Systems (NIPS). Vol. 30. Curran Associates, Inc.

Jin, X., X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen, J. Dong, L. Liu, Z. Jie, J.
Feng, and S. Yan (2017b). “Video Scene Parsing with Predictive Feature Learn-
ing”. In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp. 5581–5589. DOI: 10.1109/ICCV.2017.595.

Karasev, V., A. Ayvaci, B. Heisele, and S. Soatto (2016). “Intent-Aware Long-Term Pre-
diction of Pedestrian Motion”. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2543–2549. DOI: 10.1109/ICRA.
2016.7487409.

Kendall, A., V. Badrinarayanan, and R. Cipolla (2017). “Bayesian SegNet: Model
Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Un-

xxix

https://doi.org/10.1109/CVPR.2017.179
https://doi.org/10.1109/CVPR.2019.00907
https://doi.org/10.1109/CVPRW.2017.156
https://doi.org/10.1109/TPAMI.2012.59
https://doi.org/10.1109/ICCV.2017.595
https://doi.org/10.1109/ICRA.2016.7487409
https://doi.org/10.1109/ICRA.2016.7487409

Bibliography

derstanding”. In: Proceedings of the British Machine Vision Conference (BMVC),
pp. 57.1–57.12. DOI: 10.5244/C.31.57.

Kendall, A. and Y. Gal (2017). “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” In: Advances in Neural Information Processing
Systems (NIPS). Vol. 30. Curran Associates, Inc.

Kendall, A., Y. Gal, and R. Cipolla (2018). “Multi-Task Learning Using Uncertainty
to Weigh Losses for Scene Geometry and Semantics”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7482–7491. DOI: 10.1109/CVPR.2018.00781.

Khakzar, A., S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim, and N. Navab (2020).
Improving Feature Attribution Through Input-Specific Network Pruning. DOI: 10.
48550/arXiv.1911.11081. arXiv: 1911.11081 [cs.CV].

Khakzar, A., S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim, and N. Navab (2021).
“Neural Response Interpretation Through the Lens of Critical Pathways”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 13528–13538. DOI: 10.1109/CVPR46437.2021.01332.

Kim, B., J. Seo, S. Jeon, J. Koo, J. Choe, and T. Jeon (2019). “Why are Saliency
Maps Noisy? Cause of and Solution to Noisy Saliency Maps”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
pp. 4149–4157. DOI: 10.1109/ICCVW.2019.00510.

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (ICLR).

Kiureghian, A. D. and O. Ditlevsen (2009). “Aleatory or Epistemic? Does It Matter?” In:
Structural Safety 31.2, pp. 105–112. DOI: 10.1016/j.strusafe.2008.06.020.

König, D., M. Adam, C. Jarvers, G. Layher, H. Neumann, and M. Teutsch (2017). “Fully
Convolutional Region Proposal Networks for Multispectral Person Detection”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, pp. 243–250. DOI: 10.1109/CVPRW.2017.36.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems (NIPS). Vol. 25. Curran Associates, Inc.

xxx

https://doi.org/10.5244/C.31.57
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.48550/arXiv.1911.11081
https://doi.org/10.48550/arXiv.1911.11081
http://arxiv.org/abs/1911.11081
https://doi.org/10.1109/CVPR46437.2021.01332
https://doi.org/10.1109/ICCVW.2019.00510
https://doi.org/10.1016/j.strusafe.2008.06.020
https://doi.org/10.1109/CVPRW.2017.36

Bibliography

Krotosky, S. J. and M. M. Trivedi (2008). “Person Surveillance Using Visual and Infrared
Imagery”. In: IEEE Transactions on Circuits and Systems for Video Technology
18.8, pp. 1096–1105. DOI: 10.1109/TCSVT.2008.928217.

Krueger, D., T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal, Y. Ben-
gio, A. C. Courville, and C. J. Pal (2017). “Zoneout: Regularizing RNNs by Ran-
domly Preserving Hidden Activations”. In: International Conference on Learning
Representations (ICLR).

Kruse, T., A. K. Pandey, R. Alami, and A. Kirsch (2013). “Human-Aware Robot Nav-
igation: A Survey”. In: Robotics and Autonomous Systems 61.12, pp. 1726–1743.
DOI: 10.1016/j.robot.2013.05.007.

Kundu, A., V. Vineet, and V. Koltun (2016). “Feature Space Optimization for Semantic
Video Segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3168–3175. DOI: 10.1109/CVPR.2016.
345.

Kurakin, A., I. Goodfellow, and S. Bengio (2017). “Adversarial Examples in the Physical
World”. In: International Conference on Learning Representations (ICLR), Work-
shop Track Proceedings.

St-Laurent, L., X. Maldague, and D. Prévost (2007). “Combination of Colour and Ther-
mal Sensors for Enhanced Object Detection”. In: 10th International Conference on
Information Fusion, pp. 1–8. DOI: 10.1109/ICIF.2007.4408003.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning Ap-
plied to Document Recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–
2324. DOI: 10.1109/5.726791.

Lee, J. H., J.-S. Choi, E. S. Jeon, Y. G. Kim, T. T. Le, K. Y. Shin, H. C. Lee, and K. R. Park
(2015). “Robust Pedestrian Detection by Combining Visible and Thermal Infrared
Cameras”. In: Sensors 15.5, pp. 10580–10615. DOI: 10.3390/s150510580.

Lee, Y., T. D. Bui, and J. Shin (2018). “Pedestrian Detection Based on Deep Fusion
Network Using Feature Correlation”. In: Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA ASC), pp. 694–699.
DOI: 10.23919/APSIPA.2018.8659688.

Lefèvre, S., D. Vasquez, and C. Laugier (2014). “A Survey on Motion Prediction and
Risk Assessment for Intelligent Vehicles”. In: ROBOMECH Journal 1.1. DOI: 10.
1186/s40648-014-0001-z.

xxxi

https://doi.org/10.1109/TCSVT.2008.928217
https://doi.org/10.1016/j.robot.2013.05.007
https://doi.org/10.1109/CVPR.2016.345
https://doi.org/10.1109/CVPR.2016.345
https://doi.org/10.1109/ICIF.2007.4408003
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/s150510580
https://doi.org/10.23919/APSIPA.2018.8659688
https://doi.org/10.1186/s40648-014-0001-z
https://doi.org/10.1186/s40648-014-0001-z

Bibliography

Lei, P. and S. Todorovic (2016). “Recurrent Temporal Deep Field for Semantic Video
Labeling”. In: Computer Vision – ECCV 2016. Springer International Publishing,
pp. 302–317. DOI: 10.1007/978-3-319-46454-1_19.

Leykin, A. and R. Hammoud (2006). “Robust Multi-Pedestrian Tracking in Thermal-
Visible Surveillance Videos”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops. DOI: 10 . 1109 /
CVPRW.2006.175.

Leykin, A., Y. Ran, and R. Hammoud (2007). “Thermal-Visible Video Fusion for Moving
Target Tracking and Pedestrian Classification”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/
CVPR.2007.383444.

Li, C., D. Song, R. Tong, and M. Tang (2018). “Multispectral Pedestrian Detection via
Simultaneous Detection and Segmentation”. In: Proceedings of the British Machine
Vision Conference (BMVC).

Li, C., D. Song, R. Tong, and M. Tang (2019). “Illumination-Aware Faster R-CNN for
Robust Multispectral Pedestrian Detection”. In: Pattern Recognition 85, pp. 161–
171. DOI: 10.1016/j.patcog.2018.08.005.

Liggins, M. E., D. L. Hall, and J. Llinas (2008). Handbook of Multisensor Data Fusion:
Theory and Practice; Second Edition. Electrical Engineering and Applied Signal
Processing Series. Taylor & Francis. DOI: 10.1201/9781420053098.

Linardatos, P., V. Papastefanopoulos, and S. Kotsiantis (2021). “Explainable AI: A Re-
view of Machine Learning Interpretability Methods”. In: Entropy 23.1. DOI: 10 .
3390/e23010018.

Liu, Y.-C., Y.-A. Hsieh, M.-H. Chen, C.-H. H. Yang, J. Tegner, and Y.-C. J. Tsai
(2020). “Interpretable Self-Attention Temporal Reasoning for Driving Behav-
ior Understanding”. In: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2338–2342. DOI:
10.1109/ICASSP40776.2020.9053783.

Liu, J., S. Zhang, S. Wang, and D. Metaxas (2016a). “Multispectral Deep Neural Net-
works for Pedestrian Detection”. In: Proceedings of the British Machine Vision Con-
ference (BMVC), pp. 73.1–73.13. DOI: 10.5244/C.30.73.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg (2016b).
“SSD: Single Shot Multibox Detector”. In: Computer Vision – ECCV 2016.
Springer International Publishing, pp. 21–37. DOI: 10.1007/978-3-319-46448-0_2.

xxxii

https://doi.org/10.1007/978-3-319-46454-1_19
https://doi.org/10.1109/CVPRW.2006.175
https://doi.org/10.1109/CVPRW.2006.175
https://doi.org/10.1109/CVPR.2007.383444
https://doi.org/10.1109/CVPR.2007.383444
https://doi.org/10.1016/j.patcog.2018.08.005
https://doi.org/10.1201/9781420053098
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1109/ICASSP40776.2020.9053783
https://doi.org/10.5244/C.30.73
https://doi.org/10.1007/978-3-319-46448-0_2

Bibliography

Long, J., E. Shelhamer, and T. Darrell (2015). “Fully Convolutional Networks for Se-
mantic Segmentation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3431–3440. DOI: 10.1109/CVPR.2015.
7298965.

Lotter, W., G. Kreiman, and D. Cox (2016). “Unsupervised Learning of Visual Structure
Using Predictive Generative Networks”. In: International Conference on Learning
Representations (ICLR).

Luber, M., J. A. Stork, G. D. Tipaldi, and K. O. Arras (2010). “People Tracking With
Human Motion Predictions From Social Forces”. In: Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 464–469. DOI:
10.1109/ROBOT.2010.5509779.

Luc, P., N. Neverova, C. Couprie, J. Verbeek, and Y. LeCun (2017). “Predicting Deeper
into the Future of Semantic Segmentation”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pp. 648–657. DOI: 10.1109/
ICCV.2017.77.

Luc, P., C. Couprie, Y. Lecun, and J. Verbeek (2018). “Predicting Future Instance Seg-
mentation by Forecasting Convolutional Features”. In: Computer Vision – ECCV
2018, pp. 593–608. DOI: 10.1007/978-3-030-01240-3_36.

Luo, P., Y. Tian, X. Wang, and X. Tang (2014). “Switchable Deep Network for Pedestrian
Detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 899–906. DOI: 10.1109/CVPR.2014.120.

Maas, A. L., A. Y. Hannun, and A. Y. Ng (2013). “Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models”. In: ICML Workshop on Deep Learning for Audio,
Speech and Language Processing.

Mahjourian, R., M. Wicke, and A. Angelova (2017). “Geometry-Based Next Frame Pre-
diction From Monocular Video”. In: Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), pp. 1700–1707. DOI: 10.1109/IVS.2017.7995953.

Mahjourian, R., M. Wicke, and A. Angelova (2018). “Unsupervised Learning of Depth
and Ego-Motion From Monocular Video Using 3D Geometric Constraints”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 5667–5675. DOI: 10.1109/CVPR.2018.00594.

Mathieu, M., C. Couprie, and Y. LeCun (2016). “Deep Multi-Scale Video Prediction
Beyond Mean Square Error”. In: International Conference on Learning Represen-
tations (ICLR).

xxxiii

https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/ROBOT.2010.5509779
https://doi.org/10.1109/ICCV.2017.77
https://doi.org/10.1109/ICCV.2017.77
https://doi.org/10.1007/978-3-030-01240-3_36
https://doi.org/10.1109/CVPR.2014.120
https://doi.org/10.1109/IVS.2017.7995953
https://doi.org/10.1109/CVPR.2018.00594

Bibliography

McAllister, R., Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla, and A. V.
Weller (2017). “Concrete Problems for Autonomous Vehicle Safety: Advantages of
Bayesian Deep Learning”. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 4745–4753. DOI: 10.24963/ijcai.2017/661.

McCormac, J., A. Handa, S. Leutenegger, and A. J. Davison (2017). “SceneNet RGB-D:
Can 5M Synthetic Images Beat Generic ImageNet Pre-Training on Indoor Segmen-
tation”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 2697–2706. DOI: 10.1109/ICCV.2017.292.

Mees, O., A. Eitel, and W. Burgard (2016). “Choosing Smartly: Adaptive Multimodal
Fusion for Object Detection in Changing Environments”. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 151–156. DOI: 10.1109/IROS.2016.7759048.

Michalski, V., R. Memisevic, and K. Konda (2014). “Modeling Deep Temporal Depen-
dencies with Recurrent Grammar Cells”. In: Advances in Neural Information Pro-
cessing Systems (NIPS). Vol. 27. Curran Associates, Inc.

Mueller, A. S., J. B. Cicchino, and D. S. Zuby (2020). “What Humanlike Errors Do
Autonomous Vehicles Need to Avoid to Maximize Safety?” In: Journal of Safety
Research 75, pp. 310–318. DOI: 10.1016/j.jsr.2020.10.005.

Nabavi, S. S., M. Rochan, and Y. Wang (2018). “Future Semantic Segmentation with
Convolutional LSTM”. In: Proceedings of the British Machine Vision Confer-
ence (BMVC).

Nair, V. and G. E. Hinton (2010). “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML).

Nguyen, A., A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune (2016). “Synthesizing the
Preferred Inputs for Neurons in Neural Networks via Deep Generator Networks”.
In: Advances in Neural Information Processing Systems (NIPS). Vol. 29. Curran
Associates, Inc.

NHTSA (2008). National Motor Vehicle Crash Causation Survey: Report to Congress.
Report No. DOT HS 811 059. U.S. Department of Transportation, National High-
way Traffic Safety Administration (NHTSA).

Nie, W., Y. Zhang, and A. Patel (2018). “A Theoretical Explanation for Perplexing Be-
haviors of Backpropagation-Based Visualizations”. In: Proceedings of the 35th In-
ternational Conference on Machine Learning (ICML).

xxxiv

https://doi.org/10.24963/ijcai.2017/661
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/IROS.2016.7759048
https://doi.org/10.1016/j.jsr.2020.10.005

Bibliography

Nilsson, D. and C. Sminchisescu (2018). “Semantic Video Segmentation by Gated Re-
current Flow Propagation”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 6819–6828. DOI: 10.1109/CVPR.
2018.00713.

Omeiza, D., S. Speakman, C. Cintas, and K. Weldermariam (2019). Smooth Grad-
CAM++: An Enhanced Inference Level Visualization Technique for Deep Con-
volutional Neural Network Models. DOI: 10 . 48550 / arXiv . 1908 . 01224. arXiv:
1908.01224 [cs.CV].

Ondruska, P. and I. Posner (2016). “Deep Tracking: Seeing Beyond Seeing Using Re-
current Neural Networks”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence.

Oprea, S., P. Martinez-Gonzalez, A. Garcia-Garcia, J. A. Castro-Vargas, S. Orts-
Escolano, J. Garcia-Rodriguez, and A. Argyros (2020). “A Review on Deep
Learning Techniques for Video Prediction”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence. DOI: 10.1109/TPAMI.2020.3045007.

Ouali, Y., C. Hudelot, and M. Tami (2020). An Overview of Deep Semi-Supervised Learn-
ing. DOI: 10.48550/arXiv.2006.05278. arXiv: 2006.05278 [cs.LG].

Ouyang, W. and X. Wang (2013). “Joint Deep Learning for Pedestrian Detection”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp. 2056–2063. DOI: 10.1109/ICCV.2013.257.

Papageorgiou, C. P., M. Oren, and T. Poggio (1998). “A General Framework for Object
Detection”. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 555–562. DOI: 10.1109/ICCV.1998.710772.

Patraucean, V., A. Handa, and R. Cipolla (2015). Spatio-Temporal Video Autoencoder
With Differentiable Memory. DOI: 10.48550/arXiv.1511.06309. arXiv: 1511.06309
[cs.LG].

Pavel, M. S., H. Schulz, and S. Behnke (2015). “Recurrent Convolutional Neural Net-
works for Object-Class Segmentation of RGB-D Video”. In: Proceedings of the
IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–8. DOI:
10.1109/IJCNN.2015.7280820.

Pavel, M. S., H. Schulz, and S. Behnke (2017). “Object Class Segmentation of RGB-D
Video Using Recurrent Convolutional Neural Networks”. In: Neural Networks 88,
pp. 105–113. DOI: 10.1016/j.neunet.2017.01.003.

xxxv

https://doi.org/10.1109/CVPR.2018.00713
https://doi.org/10.1109/CVPR.2018.00713
https://doi.org/10.48550/arXiv.1908.01224
http://arxiv.org/abs/1908.01224
https://doi.org/10.1109/TPAMI.2020.3045007
https://doi.org/10.48550/arXiv.2006.05278
http://arxiv.org/abs/2006.05278
https://doi.org/10.1109/ICCV.2013.257
https://doi.org/10.1109/ICCV.1998.710772
https://doi.org/10.48550/arXiv.1511.06309
http://arxiv.org/abs/1511.06309
http://arxiv.org/abs/1511.06309
https://doi.org/10.1109/IJCNN.2015.7280820
https://doi.org/10.1016/j.neunet.2017.01.003

Bibliography

Pellegrini, S., A. Ess, K. Schindler, and L. Van Gool (2009). “You’ll Never Walk Alone:
Modeling Social Behavior for Multi-Target Tracking”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 261–268.
DOI: 10.1109/ICCV.2009.5459260.

Petsiuk, V., A. Das, and K. Saenko (2018). “RISE: Randomized Input Sampling for Ex-
planation of Black-Box Models”. In: Proceedings of the British Machine Vision
Conference (BMVC).

Pfeuffer, A., K. Schulz, and K. Dietmayer (2019). “Semantic Segmentation of Video
Sequences with Convolutional LSTMs”. In: Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), pp. 1441–1447. DOI: 10.1109/IVS.2019.8813852.

Pfeuffer, A. and K. Dietmayer (2019). “Separable Convolutional LSTMs for Faster Video
Segmentation”. In: Proceedings of the IEEE International Conference on Intelligent
Transportation Systems (ITSC), pp. 1072–1078. DOI: 10.1109/ITSC.2019.8917487.

Pfeuffer, A. and K. Dietmayer (2020). “Robust Semantic Segmentation in Adverse
Weather Conditions by Means of Fast Video-Sequence Segmentation”. In: Pro-
ceedings of the IEEE International Conference on Intelligent Transportation
Systems (ITSC), pp. 1–6. DOI: 10.1109/ITSC45102.2020.9294554.

Qi, Z., S. Khorram, and F. Li (2019). “Visualizing Deep Networks by Optimizing with
Integrated Gradients”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops.

Radwan, N., A. Valada, and W. Burgard (2018). “VLocNet++: Deep Multitask Learning
for Semantic Visual Localization and Odometry”. In: IEEE Robotics and Automa-
tion Letters 3.4, pp. 4407–4414. DOI: 10.1109/LRA.2018.2869640.

Ranzato, M., A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra (2014). Video
(Language) Modeling: A Baseline for Generative Models of Natural Videos. DOI:
10.48550/arXiv.1412.6604. arXiv: 1412.6604 [cs.LG].

Rasmus, A., M. Berglund, M. Honkala, H. Valpola, and T. Raiko (2015). “Semi-
Supervised Learning with Ladder Networks”. In: Advances in Neural Information
Processing Systems (NIPS). Vol. 28. Curran Associates, Inc.

Raza, S. H., M. Grundmann, and I. Essa (2013). “Geometric Context From Videos”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3081–3088. DOI: 10.1109/CVPR.2013.396.

xxxvi

https://doi.org/10.1109/ICCV.2009.5459260
https://doi.org/10.1109/IVS.2019.8813852
https://doi.org/10.1109/ITSC.2019.8917487
https://doi.org/10.1109/ITSC45102.2020.9294554
https://doi.org/10.1109/LRA.2018.2869640
https://doi.org/10.48550/arXiv.1412.6604
http://arxiv.org/abs/1412.6604
https://doi.org/10.1109/CVPR.2013.396

Bibliography

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). “You Only Look Once: Uni-
fied, Real-Time Object Detection”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 779–788. DOI: 10.1109/
CVPR.2016.91.

Rehder, E. and H. Kloeden (2015). “Goal-Directed Pedestrian Prediction”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV) Work-
shops, pp. 139–147. DOI: 10.1109/ICCVW.2015.28.

Ren, S., K. He, R. Girshick, and J. Sun (2015). “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks”. In: Advances in Neural Infor-
mation Processing Systems (NIPS). Vol. 28. Curran Associates, Inc.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). “Why Should I Trust You?: Explaining
the Predictions of Any Classifier”. In: Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.
DOI: 10.1145/2939672.2939778.

Richter, S. R., V. Vineet, S. Roth, and V. Koltun (2016). “Playing for Data: Ground Truth
From Computer Games”. In: Computer Vision – ECCV 2016. Springer International
Publishing, pp. 102–118. DOI: 10.1007/978-3-319-46475-6_7.

Rudenko, A., L. Palmieri, and K. O. Arras (2017). “Predictive Planning for a Mobile
Robot in Human Environments”. In: Proceedings of the Workshop on AI Planning
and Robotics: Challenges and Methods (at ICRA 2017), Singapore.

Rudenko, A., L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras
(2020). “Human Motion Trajectory Prediction: A Survey”. In: The International
Journal of Robotics Research 39.8, pp. 895–935. DOI: 10.1177/0278364920917446.

Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks. DOI:
10.48550/arXiv.1706.05098. arXiv: 1706.05098 [cs.LG].

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015). “ImageNet Large
Scale Visual Recognition Challenge”. In: International Journal of Computer Vi-
sion (IJCV) 115.3, pp. 211–252.

Saemann, T., K. Amende, S. Milz, and H.-M. Gross (2019). “Leverage Temporal Con-
sistency for Robust Semantic Video Segmentation”. In: ICML Workshop on Uncer-
tainty and Robustness in Deep Learning.

xxxvii

https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/ICCVW.2015.28
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1177/0278364920917446
https://doi.org/10.48550/arXiv.1706.05098
http://arxiv.org/abs/1706.05098

Bibliography

Samek, W., G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller (2021). “Ex-
plaining Deep Neural Networks and Beyond: A Review of Methods and Applica-
tions”. In: Proceedings of the IEEE 109.3, pp. 247–278. DOI: 10 .1109 / JPROC.
2021.3060483.

Sánchez Pérez, J., E. Meinhardt-Llopis, and G. Facciolo (2013). “TV-L1 Optical Flow
Estimation”. In: Image Processing On Line 3, pp. 137–150.

Saric, J., M. Orsic, T. Antunovic, S. Vrazic, and S. Segvic (2020). “Warp to the Fu-
ture: Joint Forecasting of Features and Feature Motion”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 10645–10654. DOI: 10.1109/CVPR42600.2020.01066.

Sauer, A., N. Savinov, and A. Geiger (2018). “Conditional Affordance Learning for Driv-
ing in Urban Environments”. In: Conference on Robot Learning (CoRL), pp. 237–
252.

Schneider, N. and D. M. Gavrila (2013). “Pedestrian Path Prediction with Recursive
Bayesian Filters: A Comparative Study”. In: Pattern Recognition, pp. 174–183.
DOI: 10.1007/978-3-642-40602-7_18.

Schulz, K., L. Sixt, F. Tombari, and T. Landgraf (2020). “Restricting the Flow: Informa-
tion Bottlenecks for Attribution”. In: International Conference on Learning Repre-
sentations (ICLR).

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra (2017).
“Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Local-
ization”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 618–626. DOI: 10.1109/ICCV.2017.74.

Seo, D., K. Oh, and I.-S. Oh (2019). “Regional Multi-Scale Approach for Visually Pleas-
ing Explanations of Deep Neural Networks”. In: IEEE Access 8, pp. 8572–8582.
DOI: 10.1109/ACCESS.2019.2963055.

Sermanet, P., K. Kavukcuoglu, S. Chintala, and Y. Lecun (2013). “Pedestrian Detec-
tion with Unsupervised Multi-stage Feature Learning”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3626–3633. DOI: 10.1109/CVPR.2013.465.

Shelhamer, E., K. Rakelly, J. Hoffman, and T. Darrell (2016). “Clockwork Convnets
for Video Semantic Segmentation”. In: Computer Vision – ECCV 2016 Workshops.
Springer International Publishing, pp. 852–868. DOI: 10.1007/978-3-319-49409-
8_69.

xxxviii

https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1109/CVPR42600.2020.01066
https://doi.org/10.1007/978-3-642-40602-7_18
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ACCESS.2019.2963055
https://doi.org/10.1109/CVPR.2013.465
https://doi.org/10.1007/978-3-319-49409-8_69
https://doi.org/10.1007/978-3-319-49409-8_69

Bibliography

Shrikumar, A., P. Greenside, and A. Kundaje (2017). “Learning Important Features
Through Propagating Activation Differences”. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML).

Simonyan, K., A. Vedaldi, and A. Zisserman (2014). “Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps”. In: Interna-
tional Conference on Learning Representations (ICLR), Workshop Track Proceed-
ings.

Simonyan, K. and A. Zisserman (2014). “Two-Stream Convolutional Networks for Ac-
tion Recognition in Videos”. In: Advances in Neural Information Processing Sys-
tems (NIPS). Vol. 27. Curran Associates, Inc.

Simonyan, K. and A. Zisserman (2015). “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: International Conference on Learning Representa-
tions (ICLR).

Singh, S. (2015). Critical Reasons for Crashes Investigated in the National Motor Vehicle
Crash Causation Survey. Traffic Safety Facts Crash Stats, Report No. DOT HS 812
115. Washington, DC: National Highway Traffic Safety Administration.

Smilkov, D., N. Thorat, B. Kim, F. Viégas, and M. Wattenberg (2017). “SmoothGrad:
Removing Noise by Adding Noise”. In: ICML Workshop on Visualization for Deep
Learning.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2015). “Striving for
Simplicity: The All Convolutional Net”. In: International Conference on Learning
Representations (ICLR), Workshop Track Proceedings.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).
“Dropout: A Simple Way to Prevent Neural Networks From Overfitting”. In: Jour-
nal of Machine Learning Research 15.56, pp. 1929–1958.

Srivastava, N., E. Mansimov, and R. Salakhudinov (2015). “Unsupervised Learning of
Video Representations using LSTMs”. In: Proceedings of the 32nd International
Conference on Machine Learning (ICML).

Suard, F., A. Rakotomamonjy, A. Bensrhair, and A. Broggi (2006). “Pedestrian Detec-
tion Using Infrared Images and Histograms of Oriented Gradients”. In: Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), pp. 206–212. DOI: 10.1109/IVS.
2006.1689629.

xxxix

https://doi.org/10.1109/IVS.2006.1689629
https://doi.org/10.1109/IVS.2006.1689629

Bibliography

Sundararajan, M., A. Taly, and Q. Yan (2017). “Axiomatic Attribution for Deep Net-
works”. In: Proceedings of the 34th International Conference on Machine Learning
(ICML).

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus
(2014). “Intriguing Properties of Neural Networks”. In: International Conference
on Learning Representations (ICLR).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich (2015). “Going Deeper With Convolutions”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
DOI: 10.1109/CVPR.2015.7298594.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science &
Business Media. DOI: 10.1007/978-3-030-34372-9.

Tampuu, A., T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad (2020). “A Sur-
vey of End-to-End Driving: Architectures and Training Methods”. In: IEEE Trans-
actions on Neural Networks and Learning Systems. DOI: 10.1109/TNNLS.2020.
3043505.

Tang, Z., D. Wang, and Z. Zhang (2016). “Recurrent Neural Network Training With
Dark Knowledge Transfer”. In: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5900–5904. DOI: 10 .
1109/ICASSP.2016.7472809.

Terwilliger, A., G. Brazil, and X. Liu (2019). “Recurrent Flow-Guided Semantic Fore-
casting”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 1703–1712. DOI: 10.1109/WACV.2019.00186.

Teutsch, M., T. Mueller, M. Huber, and J. Beyerer (2014). “Low Resolution Person De-
tection with a Moving Thermal Infrared Camera by Hot Spot Classification”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, pp. 209–216. DOI: 10.1109/CVPRW.2014.40.

Tian, Y., P. Luo, X. Wang, and X. Tang (2015). “Pedestrian Detection Aided by Deep
Learning Semantic Tasks”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 5079–5087. DOI: 10.1109/CVPR.
2015.7299143.

Torfi, A., R. A. Shirvani, Y. Keneshloo, N. Tavaf, and E. A. Fox (2020). Natural Lan-
guage Processing Advancements By Deep Learning: A Survey. DOI: 10 . 48550 /
arXiv.2003.01200. arXiv: 2003.01200 [cs.CL].

xl

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/978-3-030-34372-9
https://doi.org/10.1109/TNNLS.2020.3043505
https://doi.org/10.1109/TNNLS.2020.3043505
https://doi.org/10.1109/ICASSP.2016.7472809
https://doi.org/10.1109/ICASSP.2016.7472809
https://doi.org/10.1109/WACV.2019.00186
https://doi.org/10.1109/CVPRW.2014.40
https://doi.org/10.1109/CVPR.2015.7299143
https://doi.org/10.1109/CVPR.2015.7299143
https://doi.org/10.48550/arXiv.2003.01200
https://doi.org/10.48550/arXiv.2003.01200
http://arxiv.org/abs/2003.01200

Bibliography

Torresan, H., B. Turgeon, C. Ibarra-Castanedo, P. Hebert, and X. P. Maldague (2004).
“Advanced Surveillance Systems: Combining Video and Thermal Imagery for
Pedestrian Detection”. In: Thermosense XXVI. Vol. 5405, pp. 506–515.

Tran, D., L. Bourdev, R. Fergus, L. Torresani, and M. Paluri (2015). “Learning Spa-
tiotemporal Features with 3D Convolutional Networks”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4489–4497.
DOI: 10.1109/ICCV.2015.510.

Tran, D., L. Bourdev, R. Fergus, L. Torresani, and M. Paluri (2016). “Deep End2End
Voxel2Voxel Prediction”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, pp. 402–409. DOI: 10.
1109/CVPRW.2016.57.

Ummenhofer, B., H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox
(2017). “DeMoN: Depth and Motion Network for Learning Monocular Stereo”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 5622–5631. DOI: 10.1109/CVPR.2017.596.

Valipour, S., M. Siam, M. Jagersand, and N. Ray (2017). “Recurrent Fully Convolutional
Networks for Video Segmentation”. In: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), pp. 29–36. DOI: 10 . 1109 /
WACV.2017.11.

Veit, A., M. J. Wilber, and S. Belongie (2016). “Residual Networks Behave Like Ensem-
bles of Relatively Shallow Networks”. In: Advances in Neural Information Process-
ing Systems (NIPS). Vol. 29. Curran Associates, Inc.

Verma, A., R. Hebbalaguppe, L. Vig, S. Kumar, and E. Hassan (2015). “Pedestrian De-
tection via Mixture of CNN Experts and Thresholded Aggregated Channel Fea-
tures”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops, pp. 555–563. DOI: 10.1109/ICCVW.2015.78.

Vijayanarasimhan, S., S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki (2017).
SfM-Net: Learning of Structure and Motion From Video. DOI: 10 . 48550 / arXiv .
1704.07804. arXiv: 1704.07804 [cs.CV].

Viola, P. and M. Jones (2001). “Rapid Object Detection Using a Boosted Cascade of
Simple Features”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2001.990517.

xli

https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/CVPRW.2016.57
https://doi.org/10.1109/CVPRW.2016.57
https://doi.org/10.1109/CVPR.2017.596
https://doi.org/10.1109/WACV.2017.11
https://doi.org/10.1109/WACV.2017.11
https://doi.org/10.1109/ICCVW.2015.78
https://doi.org/10.48550/arXiv.1704.07804
https://doi.org/10.48550/arXiv.1704.07804
http://arxiv.org/abs/1704.07804
https://doi.org/10.1109/CVPR.2001.990517

Bibliography

Viola, P. and M. Jones (2004). “Robust Real-Time Face Detection”. In: International
Journal of Computer Vision (IJCV) 57.2, pp. 137–154. DOI: 10 . 1023 / B : VISI .
0000013087.49260.fb.

Vondrick, C., H. Pirsiavash, and A. Torralba (2016). “Anticipating Visual Representa-
tions From Unlabeled Video”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 98–106. DOI: 10 . 1109 /
CVPR.2016.18.

Vu, T. H., W. Choi, S. Schulter, and M. Chandraker (2019). “Memory Warps for
Long-Term Online Video Representations and Anticipation”. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp. 1156–1165. DOI: 10.1109/WACV.2019.00128.

Wagner, J., V. Fischer, M. Herman, and S. Behnke (2016). “Multispectral Pedestrian
Detection using Deep Fusion Convolutional Neural Networks”. In: European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN), pp. 509–514.

Wagner, J., V. Fischer, M. Herman, and S. Behnke (2017). “Learning Semantic Prediction
using Pretrained Deep Feedforward Networks”. In: European Symposium on Artifi-
cial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
pp. 565–570.

Wagner, J., V. Fischer, M. Herman, and S. Behnke (2018a). “Functionally Modular and
Interpretable Temporal Filtering for Robust Segmentation”. In: Proceedings of the
British Machine Vision Conference (BMVC).

Wagner, J., V. Fischer, M. Herman, and S. Behnke (2018b). “Hierarchical Recurrent
Filtering for Fully Convolutional DenseNets”. In: European Symposium on Artifi-
cial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
pp. 49–54.

Wagner, J., J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer, and S. Behnke (2019).
“Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Net-
works”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 9089–9099. DOI: 10.1109/CVPR.2019.00931.

Wang, H., Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu (2020a).
“Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Net-
works”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, pp. 111–119. DOI: 10.1109/CVPRW50498.
2020.00020.

xlii

https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1109/CVPR.2016.18
https://doi.org/10.1109/CVPR.2016.18
https://doi.org/10.1109/WACV.2019.00128
https://doi.org/10.1109/CVPR.2019.00931
https://doi.org/10.1109/CVPRW50498.2020.00020
https://doi.org/10.1109/CVPRW50498.2020.00020

Bibliography

Wang, T.-H., S. Manivasagam, M. Liang, B. Yang, W. Zeng, and R. Urtasun (2020b).
“V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction”.
In: Computer Vision – ECCV 2020. Springer International Publishing, pp. 605–621.
DOI: 10.1007/978-3-030-58536-5_36.

Weller, A. (2019). “Transparency: Motivations and Challenges”. In: Explainable AI: In-
terpreting, Explaining and Visualizing Deep Learning. Springer, pp. 23–40. DOI:
10.1007/978-3-030-28954-6_2.

Werbos, P. J. (1990). “Backpropagation Through Time: What It Does and How to Do It”.
In: Proceedings of the IEEE 78.10, pp. 1550–1560. DOI: 10.1109/5.58337.

Xingjian, S., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo (2015).
“Convolutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting”. In: Advances in Neural Information Processing Systems (NIPS).
Vol. 28. Curran Associates, Inc.

Xu, Y.-S., T.-J. Fu, H.-K. Yang, and C.-Y. Lee (2018). “Dynamic Video Segmentation
Network”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6556–6565. DOI: 10.1109/CVPR.2018.00686.

Yang, B., J. Yan, Z. Lei, and S. Z. Li (2015). “Convolutional Channel Features”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 82–90. DOI: 10.1109/ICCV.2015.18.

Yang, G. and D. Ramanan (2021). “Learning to Segment Rigid Motions From Two
Frames”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1266–1275. DOI: 10 . 1109 / CVPR46437 .2021 .
00132.

Yi, S., H. Li, and X. Wang (2015). “Understanding Pedestrian Behaviors From Station-
ary Crowd Groups”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3488–3496. DOI: 10 . 1109 / CVPR .
2015.7298971.

Yin, Z. and J. Shi (2018). “GeoNet: Unsupervised Learning of Dense Depth, Optical
Flow and Camera Pose”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1983–1992. DOI: 10.1109/CVPR.
2018.00212.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). “How Transferable are Fea-
tures in Deep Neural Networks?” In: Advances in Neural Information Processing
Systems (NIPS). Vol. 27. Curran Associates, Inc.

xliii

https://doi.org/10.1007/978-3-030-58536-5_36
https://doi.org/10.1007/978-3-030-28954-6_2
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/CVPR.2018.00686
https://doi.org/10.1109/ICCV.2015.18
https://doi.org/10.1109/CVPR46437.2021.00132
https://doi.org/10.1109/CVPR46437.2021.00132
https://doi.org/10.1109/CVPR.2015.7298971
https://doi.org/10.1109/CVPR.2015.7298971
https://doi.org/10.1109/CVPR.2018.00212
https://doi.org/10.1109/CVPR.2018.00212

Bibliography

Yu, F. and V. Koltun (2016). “Multi-Scale Context Aggregation by Dilated Convolu-
tions”. In: International Conference on Learning Representations (ICLR).

Yurdakul, E. E. and Y. Yemez (2017). “Semantic Segmentation of RGBD Videos with
Recurrent Fully Convolutional Neural Networks”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, pp. 367–374.
DOI: 10.1109/ICCVW.2017.51.

Zablocki, É., H. Ben-Younes, P. Pérez, and M. Cord (2021). Explainability of Vision-
Based Autonomous Driving Systems: Review and Challenges. DOI: 10.48550/arXiv.
2101.05307. arXiv: 2101.05307 [cs.CV].

Zeiler, M. D. and R. Fergus (2014). “Visualizing and Understanding Convolutional
Networks”. In: Computer Vision – ECCV 2014. Springer International Publishing,
pp. 818–833. DOI: 10.1007/978-3-319-10590-1_53.

Zhang, H., K. Jiang, Y. Zhang, Q. Li, C. Xia, and X. Chen (2014). “Discriminative Fea-
ture Learning for Video Semantic Segmentation”. In: Proceedings of the Interna-
tional Conference on Virtual Reality and Visualization (ICVRV), pp. 321–326. DOI:
10.1109/ICVRV.2014.65.

Zhang, J., Z. Lin, J. Brandt, X. Shen, and S. Sclaroff (2016). “Top-Down Neural Atten-
tion by Excitation Backprop”. In: Computer Vision – ECCV 2016. Springer Inter-
national Publishing, pp. 543–559. DOI: 10.1007/978-3-319-46493-0_33.

Zhang, L., B. Wu, and R. Nevatia (2007). “Pedestrian Detection in Infrared Images Based
on Local Shape Features”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2007.383452.

Zhang, L., X. Zhu, X. Chen, X. Yang, Z. Lei, and Z. Liu (2019). “Weakly Aligned Cross-
Modal Learning for Multispectral Pedestrian Detection”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5126–5136.
DOI: 10.1109/ICCV.2019.00523.

Zhang, Q. and S.-C. Zhu (2018). “Visual Interpretability for Deep Learning: A Survey”.
In: Frontiers of Information Technology & Electronic Engineering 19.1, pp. 27–39.
DOI: 10.1631/FITEE.1700808.

Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia (2017). “Pyramid Scene Parsing Network”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 6230–6239. DOI: 10.1109/CVPR.2017.660.

xliv

https://doi.org/10.1109/ICCVW.2017.51
https://doi.org/10.48550/arXiv.2101.05307
https://doi.org/10.48550/arXiv.2101.05307
http://arxiv.org/abs/2101.05307
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/ICVRV.2014.65
https://doi.org/10.1007/978-3-319-46493-0_33
https://doi.org/10.1109/CVPR.2007.383452
https://doi.org/10.1109/ICCV.2019.00523
https://doi.org/10.1631/FITEE.1700808
https://doi.org/10.1109/CVPR.2017.660

Bibliography

Zhao, H., X. Qi, X. Shen, J. Shi, and J. Jia (2018). “ICNet for Real-Time Semantic
Segmentation on High-Resolution Images”. In: Computer Vision – ECCV 2018,
pp. 418–434. DOI: 10.1007/978-3-030-01219-9_25.

Zhou, B., A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba (2015). “Object Detectors
Emerge in Deep Scene CNNs”. In: International Conference on Learning Repre-
sentations (ICLR).

Zhou, B., A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba (2016). “Learning Deep
Features for Discriminative Localization”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929. DOI:
10.1109/CVPR.2016.319.

Zhou, K., L. Chen, and X. Cao (2020). “Improving Multispectral Pedestrian Detection
by Addressing Modality Imbalance Problems”. In: Computer Vision – ECCV 2020.
Springer International Publishing, pp. 787–803. DOI: 10.1007/978-3-030-58523-
5_46.

Zhou, T., M. Brown, N. Snavely, and D. G. Lowe (2017). “Unsupervised Learning of
Depth and Ego-Motion From Video”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6612–6619. DOI: 10 .
1109/CVPR.2017.700.

Zhu, X., Y. Xiong, J. Dai, L. Yuan, and Y. Wei (2017). “Deep Feature Flow for Video
Recognition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4141–4150. DOI: 10.1109/CVPR.2017.441.

Zhuang, J., Z. Wang, and B. Wang (2021). “Video Semantic Segmentation With
Distortion-Aware Feature Correction”. In: IEEE Transactions on Circuits and
Systems for Video Technology 31.8, pp. 3128–3139. DOI: 10.1109/TCSVT.2020.
3037234.

Ziebart, B. D., N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert,
A. K. Dey, and S. Srinivasa (2009). “Planning-Based Prediction for Pedestrians”.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3931–3936. DOI: 10.1109/IROS.2009.5354147.

Zilke, J. R., E. L. Mencía, and F. Janssen (2016). “DeepRed–Rule Extraction From Deep
Neural Networks”. In: International Conference on Discovery Science, pp. 457–
473. DOI: 10.1007/978-3-319-46307-0_29.

Zin, T. T., H. Takahashi, T. Toriu, and H. Hama (2011). “Fusion of Infrared and Visible
Images for Robust Person Detection”. In: Image Fusion. IntechOpen. Chap. 12.

xlv

https://doi.org/10.1007/978-3-030-01219-9_25
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1007/978-3-030-58523-5_46
https://doi.org/10.1007/978-3-030-58523-5_46
https://doi.org/10.1109/CVPR.2017.700
https://doi.org/10.1109/CVPR.2017.700
https://doi.org/10.1109/CVPR.2017.441
https://doi.org/10.1109/TCSVT.2020.3037234
https://doi.org/10.1109/TCSVT.2020.3037234
https://doi.org/10.1109/IROS.2009.5354147
https://doi.org/10.1007/978-3-319-46307-0_29

	Contents
	Introduction
	Contributions
	Publications
	Outline

	Multispectral Pedestrian Detection
	Introduction
	Related Work
	Multispectral Pedestrian Detector
	Detection Framework
	Deep Fusion Architectures
	Training Procedure

	Experiments
	Dataset
	Baseline
	Results

	Conclusion

	Semantic Forecasting Models
	Introduction
	Related Work
	Predictive Transformation
	Predictive Network Architecture
	Recurrent Predictive Module
	Predictive Knowledge Transfer

	Experiments
	Dataset
	Implementation Details
	Results

	Conclusion

	Hierarchical Recurrent Filtering for Fully Convolutional DenseNets
	Introduction
	Related Work
	Recurrent Fully Convolutional DenseNet
	Revisiting the Fully Convolutional DenseNet (FC-DenseNet)
	Temporal Representation Filtering
	Instances of the Filter Module

	Experiments
	Dataset
	Implementation Details
	Results

	Conclusion

	Functionally Modular and Interpretable Temporal Filtering
	Introduction
	Related Work
	Functionally Modularized Temporal Filtering
	Model Design
	Feature Filter
	Motion Filter

	Implementation Details
	Dataset
	Segmentation Models
	Training Procedure

	Evaluation
	Static Feature Integration
	Temporal Motion Integration
	Comparison with Baselines

	Conclusion

	Explaining Model Predictions
	Introduction
	Related Work
	Backpropagation-Based Methods (BMMs)
	Activation-Based Methods (ABMs)
	Perturbation-Based Methods (PBMs)

	Optimization-based Visual Explanations
	Defending Against Adversarial Evidence
	Experiments
	Implementation Details
	Validating the Adversarial Defense
	Comparison of Game Types
	Comparison of Methods
	Class-Discriminative / Fine-Grained
	Investigating Biases of Training Data
	Comparison of Models
	Faithfulness of Explanations
	Further Examples

	Conclusion

	Conclusion
	List of Abbreviations
	List of Tables
	List of Figures
	Bibliography

