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Abstract

In this dissertation, we study multiplications in globally equivariant stable homotopy
theory. Concretely, this means studying ultra-commutative ring spectra, which encode a
rich multiplicative structure on a family of compatible equivariant homotopy types for all
compact Lie groups. The associated algebraic structure is that of a global power functor.
This structure formalizes a collection of compatible G-Tambara functors for all compact
Lie groups G, encoding the norms present in the homotopy groups of an ultra-commutative
ring spectrum. These norms are alternatively encoded as power operations, facilitating the
calculations.

The main tool we introduce to study these multiplicative structures is globally equiv-
ariant André-Quillen theory. This is a generalization of the cohomology theory introduced
independently by André and Quillen in 1967 for commutative rings, and the corresponding
topological André-Quillen cohomology for commutative ring spectra by Basterra. This co-
homology theory is well-adapted to the study of multiplicative structures, and it is able to
detect interesting properties of commutative algebras, like smoothness and étaleness. More-
over, the topological André-Quillen theory has proven to be very useful in the construction
of obstruction theories for commutative ring spectra.

In the construction of the globally equivariant generalization of algebraic André-Quillen
cohomology, a main aspect is the handling of the power operations. This is mainly done
by considering the power operations as a twisted version of the usual power x 7→ xn, and
adapting the classical formulas accordingly. As the André-Quillen cohomology is a non-
abelian derived functor of derivations, and the homology is a derived functor of the Kähler
differentials, we first introduce derivations and Kähler differentials of global power algebras.
Moreover, we study the related notion of square-zero extensions. For the derivations, the
new aspect is a twisted version of the Leibniz rule for the derivation of a power operation.

From the definition of derivation and Kähler differentials, we obtain André-Quillen co-
homology and homology by resolving global power algebras by simplicial polynomial al-
gebras, and applying the described functors. We observe that also this global version of
André-Quillen cohomology is well-suited to detect properties like smoothness and étaleness
of global power algebras, and can be used to study extensions. The low-dimensional groups
can efficiently be calculated by a short naive cotangent complex. However, the categories
of global functors and modules over a global power functor exhibit homological anomalies,
such as the phenomenon that projective objects do not need to be flat. This leads to the
failure of a long exact cohomology sequence beyond degree n = 1.

We emphasize which kind of modules we use for this thesis: Classically, the definitions
of modules as objects with an action or as abelian group objects in a category of augmented
algebras coincide. However, Strickland has shown that these two notions define different
structures in an equivariant setting by defining an abelian group object that does not come
from a module. We study an example of this phenomenon extended to the globally equiv-
ariant context, and show that it arises as a free abelian group object. Moreover, we discuss
an approach followed by Hill to resolve this discrepancy by studying global functor objects
instead of abelian group objects. For the main part of this thesis, we use the usual definition
of modules as global functors with an action by the global power functor. This definition in
fact does not depend on the power operations of the global power functor.

Finally, we also consider topological André-Quillen homology and cohomology for ultra-
commutative ring spectra. This is an interesting topic, as we expect this to give rise to an
obstruction theory for such ring spectra. As an ultra-commutative ring spectrum is a very
rich type of structure, this obstruction theory would be desirable to provide more examples.
We lay the foundation for such a theory by providing an André-Quillen homology and co-
homology. This starts by a technical consideration of model categories of modules, algebras
and non-unital algebras over such ultra-commutative algebras. We show that the commu-
tative monoid axiom of White allows one to put a model category structure on non-unital
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commutative monoids in a general model category, and then use this as an intermediate step
to build topological André-Quillen objects in general model categories.

When we specialize to ultra-commutative ring spectra, we obtain a generalization of the
topological André-Quillen cohomology for commutative ring spectra of Basterra. We show
that this comes equipped with a transitivity long exact sequence, which distinguishes the
topological from the algebraic situation, where such a sequence does not exist. Moreover,
as a first step into a usage of this theory for obstruction theory, we build Postnikov towers
of ultra-commutative ring spectra using André-Quillen cohomology.
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Introduction

Motivation In algebraic topology, we exploit algebraic invariants of topological objects in
order to extract more information of the objects of study. Classical invariants are homology
and cohomology theories as well as homotopy groups. An invariant is more useful the more
structure it comes endowed with. One of the first instances of such an additional structure is
the cup product on singular cohomology with ring coefficients, which allows to distinguish more
spaces (like CP 2 and S2 ∨ S4, leading to the conclusion that the Hopf map η : S3 → S2 is not
null-homotopic). This also allows to formulate structural results like Poincaré duality. When we
endow singular cohomology with even more structure, it becomes an even more useful invariant.
For example, the Steenrod squares on singular cohomology with F2-coefficients can be used to
show that even the suspension of the Hopf map is not null-homotopic, yielding the calculation of
the first stable homotopy group of spheres as πstable

1 (S) ∼= Z/2. Furthermore, calculations over
the Steenrod algebra are a key part in analyzing the Adams spectral sequence.

Both the cup product and the Steenrod operations come from a multiplicative structure on
the representing spectrum HF2 for singular cohomology. Such multiplicative structures come in
different variants and strengths. The weakest multiplicative structure is that of a commutative
ring spectrum in the homotopy category of spectra. Such a structure induces a multiplication
on the represented cohomology, but no further structure. The richest structure is that of an
E∞-ring spectrum. Those spectra support power operations on the represented cohomology and
also on their homotopy groups. In modern homotopy theory, E∞-ring spectra have become an
important object of study, and hence it is important to be able to detect such structures and
endow spectra with E∞-multiplications.

In some cases, putting a structured multiplication on spectra is easy, for example Eilenberg-
MacLane spectra for rings carry E∞-multiplications obtained by their functoriality. In other
cases, the existence of multiplications can be a subtle question. For instance on Moore spectra,
the observations that S/2 does not support a unital multiplication, S/3 does not support an as-
sociative multiplication and more generally, S/p supports an Ap, but not an Ap+1-multiplication,
emphasize that structured multiplications can be hard to come by. The non-existence of a uni-
tal multiplication on S/2 can be shown by analyzing Steenrod squares [4, Theorem 1.1], and
for the multiplications on S/p for p ≥ 3 one uses (generalized) Toda brackets [3, Example 3.3].
Further non-existence results can be obtained by studying the power operations induced by hy-
pothetical E∞-ring structures. This approach is utilized by Lawson and Senger to show that the
Brown-Peterson spectra BP do not support E∞-structures [40, 57].

In order to endow spectra with structured multiplication, a useful tool is obstruction theory.
The idea of obstruction theory is to start with a multiplicative structure on an algebraic invariant
associated to a spectrum, and then to lift this structure to a multiplication of the spectrum itself.
This process aims to iteratively construct approximations to the spectrum in question, with these
approximations carrying the desired structure. Whether the construction of the next approxi-
mation from the last is possible is governed by an obstruction, an element in an algebraically
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INTRODUCTION

defined obstruction group, which has to vanish in order to perform the new approximation step.
If all obstructions vanish, then the spectrum can be endowed with the desired structure. For
commutative ring spectra, the first such obstruction theory was introduced in unpublished work
by Kriz [39], who tried to use Postnikov towers of ring spectra in order to show that BP is a com-
mutative ring spectrum. This approach was later carried out formally by Basterra and Mandell
in [12], who show that BP can be given an E4-multiplication. Another successful obstruction
theory was introduced by Goerss and Hopkins [26], who utilized this theory to show that the
Morava E-theory spectra carry a unique E∞-ring structure. This obstruction theory was also
successfully generalized to other contexts, most recently by Patchkoria and Pstrągowski [51, 50]
in order to prove Franke’s algebraicity conjecture, and by Burklund [20] to show that Moore
spectra S/pk indeed posses En-structures for sufficiently large k. Thus, we see that obstruction
theory is an important tool for studying commutative ring spectra.

Another branch of homotopy theory that recently receives attention is equivariant homotopy
theory. Equivariant homotopy theory aims at incorporating symmetries of topological objects
into their study. These symmetries are encoded as group actions. Many homotopy theoretic ob-
jects come equipped with natural group actions, which makes equivariant methods an important
topic of research. Also for non-equivariant problems, taking an equivariant perspective can prove
fruitful. This has been illustrated most prominently in the solution of the Kervaire invariant one
problem by Hill-Hopkins-Ravenel [29]. In that work, equivariant commutative ring spectra are
used, which posses a very rich structure. In addition to the usual multiplication, they also come
endowed with so-called norm maps, which can be thought of as products twisted by the group
action.

Often, equivariant phenomena occur not only for one fixed group, but work uniformly for a
whole family of groups. Such phenomena are studied by global homotopy theory. This approach
has been formalized recently by Schwede [55], using orthogonal spectra to model global homotopy
types. The approach to study different group actions simultaneously can lead to better structural
properties of the involved objects and hence simplify the analysis considerably. For example,
Hausmann [28] was able to use this global perspective to solve a long-standing conjecture about
an equivariant generalization of Quillen’s theorem, identifying equivariant complex bordism with
the equivariant Lazard ring, which carries the universal formal group law.

One aim of this dissertation is to bring together these fields of homotopy theory and to
study globally equivariant commutative ring spectra. These are a very rich type of structured
ring spectra, coming endowed with norm maps for all groups simultaneously. To emphasize this
rich structure, Schwede calls these “ultra-commutative ring spectra” in [55], and we follow that
terminology here. In particular, we want to be able to put such commutative ring spectrum
structures on global spectra. In [55], Schwede constructs global versions of K-theory and Thom
spectra and studies ultra-commutative ring structures on these. This can be done by exhibiting
explicit models of these as orthogonal spectra and specifying point-set multiplications. On the
other hand, in previous work [61], I studied G∞-multiplications on global Moore spectra. A
G∞-structure is an up-to-homotopy version of an ultra-commutative ring spectrum that also
induces power operations on the homotopy groups of such a ring spectrum. It is a global version
of the notion of H∞-ring spectra as studied in [19]. I identified G∞-ring structures on Moore
spectra with the presence of power operations on the underlying commutative ring, and related
this algebraic structure to that of a β-ring. In particular, this shows that classical examples
like S/2 or S[i], the Moore spectra for Z/2 and the Gaussian integers Z[i] respectively, do not
support G∞-ring structures, whereas for example the Moore spectrum for Z[i, 1

2 ] does posses a
G∞-structure.

To further understand the structure of ultra-commutative ring spectra, and to exhibit more
examples, an obstruction theory for ultra-commutative ring spectra is desirable. A main step in
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INTRODUCTION

building an obstruction theory for any topological structure is to choose an appropriate coho-
mology theory for the obstructions to take values in. This cohomology theory should reflect the
type of structure we are trying to detect. Classically, in the case of commutative ring spectra,
the cohomology theory of choice is topological André-Quillen cohomology. As mentioned before,
this cohomology theory was used by Basterra-Mandell [12] and Goerss-Hopkins [26] to construct
multiplications on BP and Morava E-theory, respectively.

Topological André-Quillen cohomology has its origins in (algebraic) André-Quillen cohomol-
ogy, a cohomology theory for commutative rings. The latter was introduced and studied indepen-
dently by André and Quillen [1, 2, 52, 53]. This cohomology theory can detect useful properties of
commutative rings, like being smooth or étale, and classifies extensions of commutative algebras.
This makes it an apt choice for a cohomology theory for commutative rings. For this reason,
our first objective in this dissertation is to generalize André-Quillen cohomology to global power
functors, which are the globally equivariant analogues of commutative rings. As mentioned, the
homotopy groups and cohomology groups arising from an ultra-commutative ring spectrum come
equipped with norms, equivalently encoded as power operations, and the algebraic structure en-
coding such power operations is called a global power functor. After studying this André-Quillen
cohomology for global power functors, we introduce topological André-Quillen cohomology for
ultra-commutative ring spectra, and use it to build Postnikov towers of ultra-commutative ring
spectra.

Results In the first part of the dissertation, we study algebraic André-Quillen cohomology
of global power functors. Global power functors are the analogue of commutative rings in the
context of globally equivariant algebra, incorporating power operations. They are a generalization
of Tambara functors introduced in [63] for a fixed group G, and were considered in different
forms in [65, 18, 24, 55]. An interesting feature that distinguishes the theory of global power
functors (and similarly the theory of Tambara functors) from the situation for commutative
rings is that they are not monoid objects for a symmetric monoidal structure on the category
of global functors, the global analogue of abelian groups. The difference is exactly described by
the presence of power operations. Hence, a sensible generalization of André-Quillen cohomology
specifically needs to take these power operations into account.

André-Quillen cohomology is a non-abelian derived functor of derivations, and the corre-
sponding homology theory is a derived functor of Kähler differentials. Hence, the first step to
generalize these theories to global power functors is to define derivations and Kähler differentials
in this context. Both of these notions are moreover closely connected to square-zero extensions
of a global power functor R by an R-module M . In defining these notions, we mimic the clas-
sical definitions from the case of commutative rings, and additionally have to handle the power
operations. We generally work relatively to a base global power functor, introducing the notion
of global power algebras and augmented global power algebras.

Definition (Construction 1.2.1 and Definitions 1.2.8 and 1.2.12). Let R be a global power
functor, S be a global R-algebra and M be an S-module. The square-zero extension S ⋉M is a
global power functor with power operations defined by

Pm(s,m) = (Pm(s), trΣm≀G
(Σm−1≀G)×G(Pm−1(s)×m)).

This is a global R-algebra with an augmentation map to S.
An R-derivation is a morphism d : S →M of R-modules satisfying the usual Leibniz rule as well
as the twisted Leibniz rule

d(Pm(s)) = trΣm≀G
(Σm−1≀G)×G(Pm−1(s)× d(s))
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INTRODUCTION

for power operations. This forms a functor Der: ModS → Ab.
The module of Kähler differentials Ω1 is a representing module for the functor Der, ie R-linear
derivations from S to M correspond to morphisms Ω1

S/R →M of S-modules.

These constructions are linked in the usual way.

Theorem (Theorems 1.2.7 and 1.2.11). Let R be a global power functor, S be an R-algebra and
M be an S-module. There is a chain of natural isomorphisms

HomS(Ω1
S/R,M) ∼= DerR(S,M) ∼= AlgR /S(S, S ⋉M)

In the theory of commutative rings, a key observation for the definition of André-Quillen ho-
mology is that R-modules can be identified as abelian group objects in the category of augmented
R-algebras. In this way, André-Quillen homology is an instance of the slogan “Homology is a de-
rived abelianization” that also applies to singular homology and can be seen in [52, Chapter II.5].
Strickland [62] gives an example that this is no longer the case for Z/2-Tambara functors. In
this work, we upgrade this to an example of an abelian group object in augmented global power
algebras that does not arise from a square-zero extension of a module. This can be detected from
the non-vanishing of the power operations on the kernel of the augmentation map. Our example
improves upon Strickland’s example in a number of ways: we show that it is freely generated by
a single element as an abelian group object, our example is defined over the Burnside ring global
power functor A instead of the constant global power functor Z, and this example persists after
rationalization.

Example (Proposition 1.3.4). A naive module of Kähler differentials for a polynomial algebra
R[xG] defines the free abelian group object in augmented R-algebras. This abelian group object
has non-trivial norms on the kernel of the augmentation ideal and hence does not arise as the
square-zero extension of an R-module.

Based on work of Hill [30], we conjecture an alternative description of modules via global
functor objects in augmented algebras. The definition of global functor objects is given in Defi-
nition 1.3.18.

Conjecture (Conjecture 1.3.21). Let S be a global power functor. Then the square-zero extension
functor

S ⋉ _ : ModS → GF(AlgS /S)
is an equivalence between S-modules and global functor objects in augmented S-power algebras.

Having defined derivations and Kähler differentials, we derive these functors in order to define
André-Quillen homology and cohomology groups. This can be done since the category of global
power functors satisfies the properties needed in order to admit well-behaved non-abelian derived
functors, as exhibited by Quillen in [52, 53]. This derivation procedure works by using polynomial
resolutions of global power algebras.

Definition (Definition 1.5.6). Let R be a global power functor and S be a global R-power
algebra. A simplicial polynomial resolution of S as an R-power algebra is a simplicial R-power
algebra P• with an augmentation ε : P• → S, such that ε is a weak equivalence of simplicial
R-power algebras, each Pn is a polynomial R-algebra and the degeneracies send generators to
generators.
Let now P• → S be a simplicial polynomial resolution of S over R and M be an S-module. The
André-Quillen cohomology of S over R is defined as Dq(S,R,M) = Hq(DerR(P•,M)).
The André-Quillen homology of S over R is defined as Dq(S,R,M) = Hq(S□P•Ω1

P•/R
).
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This cohomology in fact can detect properties of global power algebras.

Theorem (Proposition 1.5.14 and Definition 1.4.1). Let R be a global power functor and S be a
global R-power algebra, and let M be an S-module. Then there is a natural isomorphism

D1(S,R,M) ∼= ExalcommR(S,M),

where ExalcommR(S,M) classifies R-power algebra extensions of S by M , ie exact sequences
0→M → E → S → 0, where M is square-zero in E.

The term Exalcomm was introduced by Grothendieck in [27, §18] and is an abbreviation for
the french “Extensions des algèbres commutatives”.

Theorem (Proposition 1.4.15). Let R be a global power functor and S be a global R-power alge-
bra. Then S is formally smooth over R if and only if for all S-modules M , the first cohomology
D1(S,R,M) vanishes. Moreover, S is formally unramified over R if and only if for all S-modules
M , the zeroth cohomology S0(S,R,M) vanishes, and it is formally étale if and only if both the
zeroth and the first cohomology with arbitrary coefficients vanish.

In fact, the low-dimensional terms can be computed explicitly by means of a naive cotangent
complex, constructed in Construction 1.5.17. For a global power functor R and an R-power
algebra S, this takes the form

Lnaive
S/P/R = I/I≥2 → Ω1

P/R□PS,

where P → S is a surjection of global R-power algebras with P a polynomial R-power algebra,
and where I = ker(P → S). The choice of P does not influence the (co-)homology of this
complex up to isomorphism.

Theorem (Proposition 1.5.21). Let R be a global power functor and S be a global R-power
algebra. Then the cohomology groups D0(S,R,M) and D1(S,R,M) can be calculated as

D0(S,R,M) ∼= H0(Lnaive
S/P/R) and D1(S,R,M) ∼= H1(Lnaive

S/P/R).

These results suggest that this global André-Quillen cohomology is a useful theory for the
study of global power functors. However, homological anomalies present in the category of global
functors and inherited by R-modules, as explained in [44], imply that the transitivity and base
change results for classical André-Quillen cohomology do not carry over to the global setting.

Proposition (Theorem 1.5.27). Global André-Quillen cohomology does not satisfy base change,
and the transitivity sequence is not exact for general global power algebras.

This result is obtained from explicit calculations using the naive cotangent complex, further
highlighting the utility of an explicit calculational tool.

After setting up the algebraic André-Quillen theory, we pass to topological André-Quillen
homology, a theory for ultra-commutative ring spectra. We follow the approach by Basterra in
[10] and define this homology theory as the derived functor of Kähler differentials, mimicking the
algebraic construction. In order to make the derived functors precise, we use model categorical
techniques. For this, we use the (positive) global model categories on orthogonal spectra and
orthogonal commutative ring spectra introduced in [55], and extend this by a model structure
on non-unital ultra-commutative ring spectra. We denote the category of non-unital S-algebras
by Alg+

S . The definition proceeds in the following steps:
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INTRODUCTION

Proposition (Propositions 2.1.3 and 2.1.6). Let R be an ultra-commutative ring spectrum, and
S be an R-algebra spectrum. The sequence

AlgR /S AlgS /S Alg+
S ModS

S∧R_

Iforget

K Q

Z

consists of Quillen adjunctions, with left adjoints on the top. Here, I assigns to an augmented
S-algebra the fibre of the augmentation morphism, and K takes a non-unital S-algebra M to the
extension S ∨M . The functor Q takes the module of indecomposables, by forming the cofiber of
the multiplication map N ∧S N → N for a non-unital commutative S-algebra N , and Z endows
a module with the zero-multiplication.

Definition (Definitions 2.1.7, 2.1.9 and 2.2.2). Let R be an ultra-commutative ring spectrum
and S be a commutative R-algebra. We define the cotangent complex of S over R to be

ΩS/R = (LQ)(RI)(S ∧L
R S).

We call the homology and cohomology theories represented by this S-module spectrum topolog-
ical André-Quillen (co-)homology.

This definition comes with the desirable properties of a cohomology theory, in that it has
cofiber sequences and also satisfies base change. We highlight the transitivity cofiber sequence
here.

Theorem (Theorem 2.1.20). Let R → S → T be a sequence of ultra-commutative ring spectra.
Then we have a cofibre sequence

ΩS/R ∧L
S T → ΩT/R → ΩT/S

of T -module spectra.

These properties are not satisfied by the algebraic theory, as highlighted before. This suggests
that we might also study topological André-Quillen cohomology for global power functors by
considering Eilenberg-MacLane ring spectra. This may give a better-behaved theory, in exchange
for more complicated calculations.

We end this dissertation by giving a first application of our global topological André-Quillen
cohomology and construct Postnikov towers for ultra-commutative ring spectra.

Theorem (Theorem 2.2.9). Let R be a connective ultra-commutative ring spectrum. Then there
is a sequence R0, . . . , Rn, . . . of commutative R-algebras, equipped with maps Rn+1 → Rn of
commutative R-algebras, and elements kn ∈ TAQn+2

e (Rn, R;Hπn+1(R)), such that the following
properties are satisfied:

i) R0 ∼= Hπ0(R), and Rn is extended from Rn−1 using kn−1,

ii) πk(Rn) = 0 for k > n,

iii) the unit maps ηn : R→ Rn are (n+ 1)-equivalences.

The k-invariants kn are lifts of the k-invariants for the Postnikov tower of R as a global spectrum.
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INTRODUCTION

Organization This dissertation is organized in two parts: in Chapter 1, we study the algebraic
André-Quillen homology and cohomology of global power functors. We start in Section 1.1 with
a recollection of the notions of global functors and global power functors, and discuss which
notion of R-modules for a global power functor R we consider. We also introduce global power
algebras here, and define polynomial algebras. After this, we introduce square-zero extensions,
derivations and Kähler differentials for global power algebras in Section 1.2. In Section 1.3, we
dive into more details regarding our notion of modules, and show that they cannot be described as
abelian group objects in augmented global power algebras. Instead, we conjecture a description
in terms of global functor objects. The next section, Section 1.4, studies extensions of global
power algebras by modules, and uses these to extend the exact sequence of derivations. Moreover,
in this section we show that formally smooth, unramified and étale global power algebras can be
detected by considering derivations and extensions. Finally, in Section 1.5 we introduce André-
Quillen homology and cohomology of global power algebras. We identify the low-degree terms
with derivations, Kähler differentials and extensions, and exhibit the naive cotangent complex as
a calculational tool for these low-degree terms. We finish this section with an explicit calculation
of some first homology groups, which shows that the transitivity sequence fails to be exact in
this global context.

The second part of this dissertation in Chapter 2 is concerned with topological André-Quillen
homology and cohomology of ultra-commutative ring spectra. In Section 2.1, we study the defi-
nition of (topological) André-Quillen homology in a general model category, and show that this
general construction comes equipped with a transitivity cofibre sequence and a base-change result.
We use this theory in Section 2.2 for ultra-commutative ring spectra, modelled as commutative
orthogonal ring spectra with the positive global model structure, and thus obtain a topological
André-Quillen theory for these. We then exhibit a Hurewicz theorem for this homology theory,
and use it to construct Postnikov towers of ultra-commutative ring spectra.

In the appendix, we include a discussion of two ingredients for the main body of this work.
In Appendix A, we recall the definition of the wreath product Σm ≀G, needed in the formulation
of the power operations of a global power functor. We moreover explicitly describe polynomial
global power functors, using a classification of conjugacy classes in such wreath products. In
Appendix B, we show that the commutative monoid axiom allows to lift a model structure on a
symmetric monoidal model category to the category of non-unital commutative monoids. This
is an ingredient in the construction of topological André-Quillen homology and cohomology in
Section 2.1.
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Chapter 1

André-Quillen (Co-)Homology of Global
Power Functors

In this first part of the dissertation, we generalize algebraic André-Quillen cohomology to the
context of globally equivariant stable homotopy theory. In this globally equivariant algebraic
context, we are concerned with global functors and global power functors. These are general-
izations of abelian groups and commutative rings. The connection to globally equivariant stable
homotopy theory lies in the fact that these algebraic structures describe the structure present in
the homotopy groups of globally equivariant spectra and ultra-commutative ring spectra, respec-
tively. They are also generalizations of the notions of Mackey and Tambara functors for a fixed
group G. The generalization consists of considering all (finite or compact Lie) groups simulta-
neously, instead of only subgroups of a fixed group G. The idea of considering global (power)
functors originated in relation to the study of Mackey and Tambara functors, for example Webb
defines a notion of globally defined Mackey functors in [65]. In his study of homological properties
of Mackey functors in [44], Lewis also considers globally defined Mackey functors and shows that
they exhibit some homological anomalies, for example that projectivity does not imply flatness
in this context. This observation has implications on the cohomology theory we introduce in this
work. Also global power functors have been considered in various places, for example by Ganter
[24] in the study of λ-rings. On a related note, the author of this dissertation has shown that
global power functors exhibit a close relation to β-rings in previous work [61].

In order to define André-Quillen cohomology for global power functors, we first define the
notions of square-zero extensions, derivations and Kähler differentials for global power functors
in Section 1.2. These notions are well-known for commutative rings. When adapting them to
global power functors, we take additional care regarding the behaviour of power operations. We
show that our definitions are compatible with the definitions given by Strickland [62] and Hill
[30] in terms of norms. In my opinion, however, the formulation in terms of power operations is
considerably clearer and easier to work with.

We observe that Kähler differentials define a left adjoint to the square-zero extension functor
from modules to augmented algebras, see Theorem 1.2.13. This adjunction is classically used to
interpret Kähler differentials as an abelianization functor, since R-modules for a commutative
ring are equivalent to abelian group objects in augmented R-algebras. In the case of Z/2-
Tambara functors, Strickland [62] gives an example that the analogous statement is no longer
true. We upgrade this example to an abelian group object in augmented global power algebras
over the Burnside ring global power functor in Section 1.3.a. The presence of power operations
on this example shows that also for global power functors, modules and abelian group objects
in augmented algebras are different objects. We expect that modules can instead be described
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as global functor objects in augmented global power functors, transferring the result of Hill [30,
Corollary 3.23] to the global context. We give the background to this conjecture in Section 1.3.b.

For a triple of global power functors R → S → T , and a T -module M , we obtain exact
sequences

0→ DerS(T,M)→ DerR(T,M)→ DerR(S,M)

and
T□SΩ1

S/R → Ω1
T/R → Ω1

T/S → 0

for derivations and Kähler differentials. One goal of defining André-Quillen (co-)homology is to
extend these sequences indefinitely into long exact sequences. A first step into this direction
can be made by using extensions of global power algebras, generalizing Grothendieck’s functor
Exalcomm [27] to global power functors. We give the details in Section 1.4.a. Moreover, this
functor of global power algebra extensions can be used to classify formally smooth global power
algebras, defined by a lifting property, as we show in Section 1.4.b. All in all, this shows that
the theory of derivations and global power algebra extensions nicely generalizes from classical
commutative algebra to the globally equivariant algebra of global power functors.

Finally, in Section 1.5, we define and study André-Quillen homology and cohomology for
global power algebras. The homology is defined as a non-abelian derived functor of Kähler dif-
ferentials, and the cohomology as a non-abelian derived functor of derivations. These derived
functors are defined using simplicial resolutions of global power algebras by polynomial alge-
bras. We are able to identify the low-dimensional terms of this cohomology theory in terms of
derivations and global power algebra extensions, and exhibit the naive cotangent complex as a
calculational tool for the low-degree terms. However, we also show by an explicit calculation of
the first André-Quillen homology group of an example that this theory does not come with a long
exact sequence extending the sequence of Kähler differentials. In fact, this example shows that
it is not possible to extend the six-term exact sequence of derivations and global power algebra
extensions to a long exact sequence. This defect is caused by the homological anomalies of the
category of global functors exhibited by Lewis in [44], namely that projectivity does not imply
flatness.

Nevertheless, the fact that the low-degree terms of this theory detect interesting properties
of global power algebras makes this an interesting object of study. Furthermore, the topological
André-Quillen theory for ultra-commutative ring spectra does not suffer from the same problem,
but indeed comes equipped with a transitivity long exact sequence. Hence, studying the interplay
between these theories could also provide valuable insights.

1.1 Global Functors, Global Power Functors, Modules and Algebras

This chapter introduces the basic notions we use throughout the algebraic part of this work.
Concretely, we first recall the definitions of global functors and global power functors from [55].
Moreover, we introduce the notions of modules and (augmented) algebras over a global power
functor R. These are necessary for the definition of André-Quillen (co-)homology, since this is
best described as a relative theory for morphisms of global power functors R → S, and it takes
coefficients in S-modules M . Of particular interest is the definition of R-modules, since there are
two possible definitions: either as modules over the underlying Green functor of R, or as Beck
modules, ie abelian group objects in augmented R-algebras. These notions are indeed different,
as first observed by Strickland for Z/2-Tambara functors in [62]. We go into more detail on this
difference in Section 1.3.a. For our work, we use the definition as modules over the underlying
Green functor of R, and explain this choice in Remark 1.1.26.
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1.1.a Recollections on Global Functors and Global Power Functors
In this section, we review the theory of global functors and global power functors needed through-
out this dissertation. We follow the definitions given by Schwede in [55]. We assume the basics
of global orthogonal spectra and equivariant homotopy groups as known, in particular for the
description of the indexing category for global functors in Definition 1.1.1 and the justification
of our definition of modules in Remark 1.1.26. The algebraically inclined reader can, however,
work with the description of the Burnside category in Remark 1.1.2 and follow the remaining
exposition without in-depth knowledge of global orthogonal spectra.

Global Functors We start by introducing the indexing category on which we define global
functors.

Definition 1.1.1. The global Burnside category A has as objects all compact Lie groups, and
as morphisms from G to K we set

A(G,K) = Nat(πG0 , πK0 ).

This is the abelian group of natural transformations of equivariant homotopy group functors πG0
to πK0 from orthogonal spectra to sets. Composition in A is given as composition of natural
transformations.

This definition is topological in nature. However, the relevant set of natural transformations
between equivariant homotopy group functors can be described explicitly, as is demonstrated in
[55, Theorem 4.2.6]. We summarize the results:
Remark 1.1.2. The morphism sets in the global Burnside category can be described as follows:
For compact Lie groups G and K, the morphism group A(G,K) is free abelian on (K × G)-
conjugacy classes of pairs (L,α), where L ≤ K is a closed subgroup of K with finite Weyl group
WKL, and α : L→ G is a continuous homomorphism.

We write the transformation indexed by a pair (L,α) as trKL ◦α∗ and call trKL the transfer
from L to K, and α∗ the restriction along α. If α is surjective, we also call restriction along α
an inflation. Hence, we see that all morphisms in the global Burnside category can be described
by transfers and restrictions. The composition is governed by the following rules (as explained
after [55, Theorem 4.2.6]):

i) restriction maps are contravariantly functorial,

ii) transfers are covariantly functorial,

iii) transfers along inclusions of subgroups with infinite Weyl group vanish,

iv) restrictions along inner automorphisms are the identity,

v) transfers commute with inflations, in the following sense: Let H ≤ G be a closed subgroup
and α : K → G be a surjective continuous homomorphism. Let L = α−1(H) ≤ K. Then
α∗ ◦ trGH = trKL ◦(α|L)∗.

vi) transfers and restrictions along subgroup inclusions compose according to the double coset
formula. For general compact Lie groups, the double coset formula is formulated in [55,
Theorem 3.4.9]. For transfers along codimension 0 inclusions, the double coset formula
takes the usual form, which agrees with the double coset formula for Mackey functors:
Let H,K ≤ G be two closed subgroups of G such that H has codimension 0 in G (or
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equivalently, finite index). Then the homogeneous space G/H is discrete and K acts on it
by left translation. We consider the double coset space, ie the space of K-orbits in G/H,
denoted by K\G/H. Then

resGK ◦ trGH =
∑

[g]∈K\G/H

trKK∩gHg−1 ◦g∗ resHg−1Kg∩H .

Here g∗ denotes the restriction along the conjugation with g as a morphism g−1Kg ∩H →
K ∩ gHg−1.

Definition 1.1.3. A global functor is an additive functor A → Ab. The category of global
functors is the additive functor category GF = Funadd(A,Ab). Explicitly, a morphism of global
functors is a natural transformation.

Remark 1.1.4. By Remark 1.1.2, the structure of a global functor F is equivalent to the datum of
an abelian group F (G) for any compact Lie group G, restriction maps α∗ : F (G)→ F (K) for any
continuous homomorphism α : K → G of compact Lie groups, and transfers trGH : F (H)→ F (G)
for any inclusion H ≤ G of a closed subgroup. These morphisms have to satisfy the relations
explained in Remark 1.1.2.
Remark 1.1.5. In the case of a fixed finite group G, the category of G-Mackey functors can be
described in multiple ways. The definition of global functors via the Burnside category used
above is akin to the definition of Mackey functors using the G-equivariant stable homotopy
category, where transformations between the equivariant homotopy groups may be used for an
indexing category for Mackey functors. The description given in Remark 1.1.4 is equivalent to
the definition of G-Mackey functors using explicit formulas for restriction and transfers.

There is another way to package the information in a G-Mackey functor, by using an indexing
category built from spans of finite G-sets. A similar description can be given for global functors
(for the family of finite groups). One way to generalize from a given finite group G to a global
setting is by identifying a finite G-set with its translation groupoid. Using this point of view, one
observes that an adequate way to formalize actions by arbitrary finite groups on finite sets is by
considering all finite groupoids. This approach is for example carried out in [24]. Global functors
for the family of finite groups can also be formalized as so-called biset functors, as explained in
[18].

Example 1.1.6. The easiest example of a global functor is a represented global functor. In
particular, we consider the Burnside ring global functor A := A(e,_), whose value A(G) at a
finite group G can be identified with the Burnside ring of finite G-sets for any finite group G.
A general represented global functor A(K,_) is a free global functor, in the sense that evaluation
at the identity is an isomorphism

HomGF (A(K,_), F ) ≃−→ F (K)

for any global functor F .

Monoidal Structure and Global Green Functors Since we are interested in multiplicative
structures in equivariant homotopy theory, we now study analogues of commutative rings in
the category of global functors. A possible generalization of commutative rings is obtained by
introducing a symmetric monoidal structure on the category GF , generalizing the tensor product
of abelian groups, and considering commutative monoids for this monoidal structure. This leads
to the notion of global Green functors, which we introduce in this section.

Global functors are defined as a functor category, and hence come equipped with a Day
convolution product [21], which we call the box product.
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Construction 1.1.7. Recall that the category of global functors is GF = Funadd(A,Ab). The
category Ab of abelian groups carries a symmetric monoidal structure given by the tensor prod-
uct. The category A carries a symmetric monoidal structure described in [55, Theorem 4.2.15].
It takes two compact Lie groups G and G′ to the cartesian product G × G′, and morphisms
trKL ◦α∗ and trK′

L′ ◦(α′)∗ to trK×K′

L×L′ ◦(α× α′)∗.
From these two symmetric monoidal structures, we obtain the box product of global functors

as a Day convolution product [21]. Its value F□F ′ on global functors F and F ′ can be described
as an Ab-enriched left Kan extension

A× A Ab×Ab Ab .

A

F×F ′

×

⊗

F□F ′

Proposition 1.1.8 ([21, Theorem C.10, Remark C.12]). The box product □ : GF × GF → GF
is part of a closed symmetric monoidal structure on the category of global functors.

We denote the internal hom-global functor by Hom.
Remark 1.1.9. The box product comes with a bimorphism (F, F ′) → F□F ′, which at compact
Lie groups G and G′ is given as a morphism ⊠ : F (G)⊗F ′(G′)→ (F□F ′)(G×G′). In particular,
we obtain elements x⊠ y ∈ (F□F ′)(G×G′) for elements x ∈ F (G) and y ∈ F ′(G′). We call the
morphism ⊠ an external product.
The Day convolution product of F and F ′ can be described as a coequalizer of⊕
K,K′,G,G′

A(K×K ′,_)⊗A(G,K)⊗A(G′,K ′)⊗F (G)⊗F (G′) ⇒
⊕
G,G′

A(G×G′,_)⊗F (G)⊗F (G′).

From this description, we observe that as a global functor, the box product is in fact generated
by elements of the form x⊠ y ∈ (F□F ′)(G×G′) as described above.

Definition 1.1.10. A global Green functor is a commutative monoid for the box product. The
category of global Green functors is defined to be the category of commutative monoids in GF .

Remark 1.1.11. The structure of a global Green functor can be made explicit in a number of
equivalent ways. The Day convolution product is universal for bimorphisms, so the multiplica-
tion R□R → R required for a global Green functor is equivalent to multiplication morphisms
× : R(G) ⊗ R(K) → R(G ×K) for all compact Lie groups G and K, satisfying unitality, asso-
ciativity, commutativity, and compatibility with restrictions and transfers.

Another way to describe the multiplication of a global Green functor is by diagonal products.
These are of the form _ · _ : R(G) ⊗ R(G) → R(G) for all compact Lie groups G. They have
to turn each R(G) into a unital, associative and commutative ring such that the restrictions are
ring homomorphisms and transfers satisfy the Frobenius reciprocity relation

trGH(x · resGH(y)) = trGH(x) · y (1.1.12)

for x ∈ R(H) and y ∈ R(G), where H ≤ G is a closed subgroup.
The relation between the two products is as follows. Given the product ×, we recover the

diagonal product by restricting along the diagonal ∆: G → G × G, as x · y = ∆∗(x × y) for
x, y ∈ R(G). Conversely, from the diagonal product we obtain the usual product by using the
projections G prG←−− G × K

prK−−→ K. Concretely, x × y = pr∗
G(x) · pr∗

K(y) for x ∈ R(G) and
y ∈ R(K). This correspondence is explained in [55, Remark 4.2.20]
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Remark 1.1.13. Using this translation between diagonal and usual products, we also can give an
alternative set of generators for the box product, similar to the one given in Remark 1.1.9. For
this, we consider for all compact Lie groups G the morphism

⊡ : F (G)⊗ F ′(G) ⊠−→ (F□F ′)(G×G) ∆∗

−−→ (F□F ′)(G).

Then F□F ′ is generated as a global functor by the elements x⊡y ∈ (F□F ′)(G) for x ∈ F (G) and
y ∈ F ′(G). In fact, the previous set of generators can be recovered as x⊠ y = pr∗

G(x) ⊡ pr∗
G′(y)

for x ∈ F (G) and y ∈ F ′(G′).

We also describe the internal homomorphism global functor explicitly, by using shifts of global
functors.

Definition 1.1.14. Let F be a global functor and G be a compact Lie group. We define F [G]
to be the global functor with F [G](K) = F (K ×G), where the structure maps are defined via

A(K1,K2)⊗ F (K1 ×G) (_×G)⊗F (K1×G)−−−−−−−−−−−−→ A(K1 ×G,K2 ×G)⊗ F (K1 ×G)→ F (K2 ×G).

Lemma 1.1.15. Let F be a global functor and G be a compact Lie group. Then we have an
isomorphism

Hom(A(G,_), F ) ∼= F [G]

of global functors.

Proof. This is a consequence of a formal manipulation, using the Yoneda Lemma and the tensor-
hom adjunction in a closed monoidal category, and that the convolution product of representables
is representable. For any compact Lie group K, we have the chain

Hom(A(G,_), F )(K) ∼= Hom(A(K,_),Hom(A(G,_), F ))
∼= Hom(A(K,_)□A(G,_), F )
∼= Hom(A(K ×G,_), F )
∼=F (K ×G) ∼= F [G](K)

of isomorphisms. These are natural in K, hence these assemble into isomorphisms of global
functors.

As a result of this statement, we see that any θ ∈ A(G,K) induces a morphism θ∗ : F [G]→
F [K] of global functors in a functorial way by precomposition with θ∗ : A(K,_)→ A(G,_).
We can also define these operations directly, by defining for θ ∈ A(G,K) and any compact Lie
group H the map

R[θ](H) : F [G](H) = F (H ×G) F (H×θ)−−−−−→ F (H ×K) = F [K](H).

That these definitions agree follows by the above chain of isomorphisms.

Proposition 1.1.16. Let E and F be global functors and G be a compact Lie group. Then there
is an isomorphism

Hom(E,F )(G) ∼= Hom(E,F [G]).
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Proof. This is a similar formal manipulation as in the previous lemma:

Hom(E,F )(G) ∼= Hom(A(G,_),Hom(E,F ))
∼= Hom(A(G,_)□E,F )
∼= Hom(E,Hom(A(G,_), F ))
∼= Hom(E,F [G])

Remark 1.1.17. The above description of the internal Hom object for global functors is analogous
to the description of the Hom object for G-Mackey functors for a finite group G given in [43,
Definitions 1.2 and 1.3]. Also the description of F [G] as a Hom object from a representable global
functor is analogous to the corresponding statement given in [43, Lemma 1.6]. The reader familiar
with the theory of G-Mackey functors should be aware, however, that the other descriptions of
the shift F [G] via a box product with a representable functor given in the same lemma are not
valid in the context of global functors. This comes from the fact that the indexing category A of
global functors is not self-dual under exchanging transfers and restrictions, unlike the G-Burnside
category. This comes from the additional presence of inflation morphisms.

Global Power Functors In Definition 1.1.10, we define commutative monoids for the box
product of global functors. However, it is well-known that a completely equivariant analogue of
commutative rings should come equipped with more structure, namely with power operations or
norms. These can be thought of as twisted versions of products, just as transfers can be thought
of as twisted versions of sums. This can nicely be observed in the fixed point Mackey functor R
of a ring R with an action of a finite group G. The value of R at a subgroup H are the fixed
points RH . Here, the total transfer R(e)→ R(G) takes the form

trGe (x) =
∑
g∈G

gx.

We also can define a norm map
NG
e (x) =

∏
g∈G

gx.

A G-Green functor for a (finite) group G equipped with this additional structure is called a
G-Tambara functor. For a thorough treatment of Tambara functors, see for example the original
source [63] or the survey article [62]. We call the global analogue a global power functor, em-
phasizing that we choose to formalize this additional structure by power operations rather than
by norms. We elaborate on the differences in Remark 1.1.20. This chapter closely follows the
discussion of global power functors in [55, Chapter 5.1].

The following definition is given in [55, Definition 5.1.6]. The wreath product Σm ≀G as well
as the various comparison morphisms Φi,j , Ψk,m and ∆m are defined in Appendix A.

Definition 1.1.18. A global power functor is a global Green functor R together with maps
Pm : R(G) → R(Σm ≀ G) for all m ≥ 1 and all compact Lie groups G, satisfying the following
properties:

i) Pm(1) = 1 for the unit 1 ∈ R(e).

ii) P 1 = Id as maps R(G)→ R(Σ1 ≀G) ∼= R(G) under the identification G ∼= Σ1 ≀G, g 7→ (1; g).

iii) For every continuous homomorphism α : K → G between compact Lie groups and all
m ≥ 1, we have

Pm ◦ α∗ = (Σm ≀ α)∗ ◦ Pm
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as maps R(G)→ R(Σm ≀K).

iv) For all compact Lie groups G and all m ≥ 1, and all x, y ∈ R(G), we have

Pm(x · y) = Pm(x) · Pm(y)

in R(Σm ≀G).

v) For all compact Lie groups G, all i, j ≥ 1 and all x ∈ R(G), we have

Φ∗
i,j(P i+j(x)) = P i(x)× P j(x)

in R((Σi ≀G)× (Σj ≀G)).

vi) For all compact Lie groups G, all k,m ≥ 1 and all x ∈ R(G), we have

Ψ∗
k,m(P km(x)) = P k(Pm(x))

in R(Σk ≀ (Σm ≀G)).

vii) For all compact Lie groups G, all m ≥ 1 and all x, y ∈ R(G), we have

Pm(x+ y) =
m∑
k=0

trk,m−k(P k(x)× Pm−k(y))

in R(Σm ≀G), where trk,m−k = trΣm≀G
(Σk≀G)×(Σm−k≀G) is the transfer associated to the inclusion

Φk,m−k : (Σk ≀G)× (Σm−k ≀G)→ Σm ≀G, and P 0(x) = 1 is the multiplicative unit.

viii) For every closed subgroup H ⊂ G of a compact Lie group and for every m ≥ 1, we have

Pm ◦ trGH = trΣm≀G
Σm≀H ◦P

m

as maps R(H)→ R(Σm ≀G).

A morphism of global power functors is a morphism of global Green functors that also commutes
with the power operations.

Remark 1.1.19. In the above definition of power operations, the multiplicativity relation 1.1.18 iv)
is expressed in terms of the diagonal product. We can reformulate it in terms of the product
× : R(G) ⊗ R(K) → R(G × K) as follows: For all compact Lie groups G and K, m ≥ 1 and
elements x ∈ R(G) and y ∈ R(K), the relation

Pm(x× y) = ∆∗
m(Pm(x)× Pm(y))

holds in R(Σm ≀ (G ×K)), where ∆m : Σm ≀ (G ×K) → (Σm ≀ G) × (Σm ≀K) is defined via the
diagonal on Σm. This can be concluded by a straight-forward calculation from the relation for
the diagonal product, using the relations explained in Remark 1.1.11.
This is also explained in [60, Remark 2.31].
Remark 1.1.20. Classically, a G-Tambara functor is defined as a G-Green functor R together with
norm maps NK

H : R(H)→ R(K) for subgroups H ≤ K ≤ G. These have to satisfy functoriality,
unitality and multiplicativity, and the composition of norm and restriction is governed by a mul-
tiplicative double coset formula. Finally, the norm of a transfer is calculated by a distributivity
law involving analysis of a so-called exponential diagram. This formalization was originally given
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in [63]. In my opinion, this distributivity law is quite complicated, making proofs in the realm
of Tambara functors often rather involved. As an example, the additivity relation considered
in [31, Theorem 2.4 – Corollary 2.9] is rather complicated and inexplicit. In comparison, the
axioms for the power operations are easy to use, since the compatibility with transfers is straight-
forward and the additivity is a generalization of the binomial formula. Also in the context of
André-Quillen homology and cohomology, a comparison of this dissertation with the work of Lee-
man [42, eg Lemma 3.3.6 and Proposition 3.3.8] shows that the possibility to work with power
operations simplifies calculations considerably. However, since the G-equivariant framework is
restricted to working with subgroups of G, it is not possible to formalize Tambara functors in
terms of power operations. Thus the presence of power operations is a major advantage of the
global setting

In fact, the formulation of a global power functor is equivalent to a formulation in terms of
norms satisfying the above-mentioned axioms. The comparison is explained in [55, Remark 5.1.7]
and works as follows:
Suppose we are given power operations Pm : R(G)→ R(Σm ≀G) for all compact Lie groups G. We
construct norm maps NG

H : R(H)→ R(G) for all subgroups H ≤ G of finite index. Suppose H has
index m in G. We choose an ordered H-basis Γ = (g1, . . . , gm) of G, ie an H-equivariant bijection∐m
i=1 H → G (for the right H-actions), and observe that Σm ≀H acts freely and transitively on

the set of such bases from the right by multiplication and permutation. Moreover, G acts freely
on the left on Γ by multiplication, and this defines an injective homomorphism ΨΓ : G→ Σm ≀H
by sending g ∈ G to the element (σ;h1, . . . hm) such that gΓ = Γ ·(σ;h1, . . . , hm). We then define
the norm NG

H as the composite

R(H) Pm

−−→ R(Σm ≀H) Ψ∗
Γ−−→ R(G).

We observe that another choice of basis Γ′ changes Ψ only by a conjugation, and since conjugated
homomorphisms induce the same restrictions by Remark 1.1.2 iv), the definition of the norm does
not depend on this choice of basis.

In the other direction, we can recover the power operations from the norms as follows: For a
compact Lie group G, we observe that the power operation Pm : R(G)→ R(Σm ≀G) is given as
the composite

R(G) q∗

−→ R((Σm−1 ≀G)×G)
NΣm≀G

(Σm−1≀G)×G

−−−−−−−−−→ R(Σm ≀G).

Here, q : (Σm−1 ≀ G) × G → G is the projection to the second factor. It is a straight-forward
calculation to see that these are inverse constructions.

We use this translation between norms and power operations in Remark 1.2.6 to relate our
constructions of square-zero extensions and derivations for global power functors to the construc-
tions proposed by Strickland [62] and Hill [30] for G-Tambara functors for fixed G.

Example 1.1.21. The Burnside ring global functor A has the structure of a global power functor,
and this structure can be made very explicit in the case of finite groups. We already noticed that
the values A(G) are rings, which are the Burnside rings of finite G-sets for finite groups G. These
ring structures make A into a global Green functor. We also describe the power operations in
terms of finite G-sets for finite groups G: If X is a finite G-set, then the m-th power operation
on X is Pm(X) = Xm, with the natural Σm ≀ G-action. This definition can be extended by
additivity to the entirety of A(G).

The Burnside ring global power functor is the initial global power functor. This can for
example be seen by using that global power functors are comonadic over global Green functors
by [55, Section 5.2], and hence the initial global Green functor is also initial as a global power
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functor. The Burnside ring global functor is initial as a global Green functor, since it is the unit
for the box product.

Polynomial Power Functors An important class of global power functors are polynomial
global power functor, also called free global power functor in [55, Example 5.1.19]. We recall
their definition here.

Definition 1.1.22. Let R be a global power functor and K be a compact Lie group. The
polynomial algebra over R generated by an indeterminate x in degree K is

R[xK ] =
⊕
n≥0

R□A(Σn ≀K,_).

The multiplication and power operations are described in [55, Example 5.1.19]. The map
R → R[xK ] is the inclusion as the summand indexed by n = 0, and the n-th summand is a
free R-module on Pn(xK) in degree Σn ≀ K, where by xK we denote the identity in A(K,K).
The power operation Pn(xK) is then represented by the identity in A(Σn ≀ K,Σn ≀ K). This
polynomial algebra has the usual universal property, in that

AlgR(R[xK ], S)
∼=−→ S(K), f 7→ f(xK) (1.1.23)

is a bijection for any R-algebra S. This follows from [55, Proposition 5.2.6 (ii)] and the extension
of scalars adjunction.
Remark 1.1.24. The category of global power functors can also be described as the category of
algebras for a multi-sorted algebraic theory. The basic notion of an algebraic theory was intro-
duced by Lawvere [41] as a means to formalize varying algebraic structures. Such an algebraic
theory consists of a category T with finite products together with a distinguished object t such
that any other object s of T is a finite power of t, ie s = t×n for some n ∈ N. A model, or alge-
bra, for such a theory in a category C with finite products is then a product-preserving functor
T : T → C. Examples for such algebraic theories include the theories of groups, abelian groups,
(commutative) rings and modules over a fixed ring, and for any of these theories, the models in
sets are exactly the given objects. For such theories, the category T can be interpreted as the
full subcategory of free objects on finitely many generators.

A multisorted theory generalizes the above structure to incorporate distinguishable types
of structure. A multisorted theory over a set S of sorts is a category T with finite products
containing a set {xs | s ∈ S} of distinguished objects, such that any object of T is isomorphic to
a finite product of such distinguished elements. Again, a model, or algebra, of T in a category C
with finite products is a product-preserving functor T→ C. A classical example is the category of
(commutative) rings and modules over these, which can be represented as a category of algebras
for an algebraic theory with two sorts. Multisorted algebraic theories are introduced in [16,
Definition 2.3] and studied for example in [14].

Global functors, global Green functors and global power functors can all be formalized by
multisorted algebraic theories. The sorts in this case are (isomorphism classes of) compact Lie
groups, and we take algebras in the category of global sets, ie collections of sets indexed by
(isomorphism classes of) compact Lie groups. The morphisms between the free objects encode
the group and ring structures of F (G), the restrictions, transfers and power operations, as well
as the various relations between compositions of these. This formalization allows one to use
general results for algebras over algebraic theories, such as completeness and cocompleteness of
these categories, that limits and certain colimits are calculated underlying, and that effective
epimorphisms are detected on underlying sets. For such results, we refer to [17, Chapter 3].
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1.1.b Modules and Algebras over Global Power Functors
In Section 1.1.a, we recall the basic algebraic notions we use in this dissertation, as formulated
by Schwede in [55]. This includes global functors and global power functors, which act as our
generalizations of abelian groups and commutative rings. These notions are sufficient to perform
the equivariant algebra relative to the Burnside ring global power functor, which is initial as
a global power functor. However, we mainly work relative to an arbitrary base global power
functor R in this thesis, and thus we introduce the notions of modules and algebras over a given
global power functor. These notions have already been considered in the context of G-Mackey
and Tambara functors, for example in [62, 30]. We follow these definitions and transfer them
to the context of global equivariant algebra. One point that deserves special attention is the
definition of an R-module for a global power functor R. Since a global power functor comes
equipped with power operations, the question arises whether an R-module M should itself have
some flavour of power operations, and how these should interact with those of R if they are
defined. After being introduced by Strickland [62, Chapter 14], the names genuine and naive
modules have persisted in the literature on G-Tambara functors for modules with and without
power operations, respectively. As we show in Section 1.3.a, this distinction is also necessary
for modules over a global power functor. We are mostly concerned with the so-called “naive”
modules in this dissertation, ie modules that do not come equipped with power operations. This
is compatible with the work of Hill in [30], and we elaborate on the reasons for this choice in
Remark 1.1.26.

In addition to the definitions of modules and algebras, we also introduce ideals of global
power algebras in Definition 1.1.30. This definition as a non-unital sub-global power functor is
analogous to the definition of an ideal in a G-Tambara functor given by Nakaoka in [48]. It
is used to describe the module of Kähler differentials in Section 1.2.c and the naive cotangent
complex in Section 1.5.c.

Definition 1.1.25. Let R be a global power functor. Then an R-module is a module over the
underlying global Green functor of R in the category of global functors. Morphisms of R-modules
are morphisms of modules for the global Green functor R.

Explicitly, this definition says that an R-module M is a global functor M together with
an action map α : R□M → M , satisfying the usual unitality and associativity relations. The
category of R-modules is the categories of modules over a commutative monoid in the symmetric
monoidal category GF with the box product.
Remark 1.1.26. As mentioned in the introduction to this section, there is another feasible defi-
nition of an R-module: The definition given above makes no mention of the power operations on
R, and in particular, M is not required to have any additional structure of power operations. It
would be possible to give a definition of an R-module that encompasses power operations on M
and a compatibility with the power operations of R. A way to formalize this is by considering
what is classically called a Beck module after its usage in [13, Definition 5], and is called a genuine
module by Strickland [62, Chapter 14] in the context of G-Tambara functors. A Beck module
is an abelian group object in the category of augmented R-algebras, as defined in our context
in Definition 1.1.29. Classically, such a Beck module for a commutative ring R is equivalent
to a usual R-module, as is shown in [13, Example 8]. In the context of G-Tambara functors,
Strickland proves that this equivalence no longer holds, and that a Beck module is more data
than a (Green) module [62, Proposition 14.7]. The same is true for modules over global power
functors, as we show in Section 1.3.a.

Since we have two possible choices of a notion of R-modules, we are faced with choosing
one of these notions. As described in Definition 1.1.25, we choose to work with modules over
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the underlying Green functor, ie without power operations on the module. In my opinion, this
definition has several advantages over the definition as Beck modules:

i) It recovers global functors as A-modules. This is due to the fact that A is the initial global
Green (and hence also global power) functor. It is desirable to have this property, since
this means we work with the classical notions when we take A as the base global power
functor.

ii) It mirrors the topological notion. When we consider an ultra-commutative (orthogonal)
ring spectrum R, the category of R-modules is defined as the category of modules over
R for the wedge product. The homotopy groups π0(R) form a global power functor, and
for an R-module M , the global functor π0(M) comes equipped with the structure of an
R-Green module. However, there are no power operations present on this module. This
hold, since the power operations are induced from the multiplications R∧m → R. Such
products do not exist for M , and hence no power operations are induced.
This point also links back to the first point, since in the context of global spectra, S-modules
are equivalent to global spectra.

iii) Since power operations are twisted versions of classical powers, we should not expect an
R-module M to have power operations, since on M , there are no products or powers.

iv) Even though the notions of derivations and Kähler differentials need to be adjusted to
account for power operations, the definitions for our chosen notion of modules are clean
generalizations of the classical definitions, and much of the theory can be developed in
parallel to the classical theory. In other words, it is convenient to work with Green modules.

Also in the work by Hill [30], where derivations and Kähler differentials for G-Tambara functors
are defined, the notion of Green modules is used. In that work, it is also shown that these
“naive” modules can still be interpreted appropriately as equivariant Beck modules: Hill shows
that R-Green modules are equivalent to Mackey functor objects in the category of augmented
algebras over R. This gives further evidence that the notion of Green modules is the correct one
to work with, since it also properly generalizes the notion of a Beck module to an equivariant
context. We expect that a similar interpretation of R-modules for R a global power functor as
global Beck modules is possible, and explain the necessary constructions in Section 1.3.b.

In the above discussion, we focussed on the question whether a module M should be equipped
with power operations. This is the main question when we consider working with Beck modules.
Since power operations are unary operations, power operations on an augmented R-algebra are
determined by power operations on R and on the augmentation ideal, which corresponds to the
module. However, when posing the question of how to define a module over a global power functor
R, another conceivable approach would be to symmetrize expressions of the type r× . . .× r×m
for r ∈ R and m ∈ M . However, since the M -factor is distinguishable from the R-factors, the
maximal symmetry group of such an expression is Σk−1 × Σ1, and symmetrization with respect
to this group should yield P k−1(r)×m. This is already determined by the power operations on
R and the Green-module structure of M . This shows that our definition above is reasonable also
under this perspective.

We note that as a category of modules over a commutative monoid R in the symmetric
monoidal category GF , the category of R-modules inherits a closed symmetric monoidal structure
via the relative box product □R. This is defined for R-modules M and N as a coequalizer

M□R□N M□N M□RN. (1.1.27)
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A proof that this relative tensor product (together with the appropriately defined internal Hom
object of R-linear morphisms) defines a closed symmetric monoidal structure can be found in
[37, 38]. These references study the more general case of algebras over a commutative monad in
a closed symmetric monoidal category, and we use the monad R□_ on GF here.

We now define the notion of global power algebras.

Definition 1.1.28. Let R be a global power functor. Then a global R-power algebra is a global
power functor S together with a morphism η : R → S of global power functors. The morphism
η is called the unit map of the R-power algebra S. We denote the category of R-power algebras
by AlgR.

As usual, the notion of global power algebras can equivalently be described as a global power
functor based in the category of R-modules. The category of R-modules is symmetric monoidal
for the relative box product □R, and commutative monoids for this structure are global Green
algebras over R, without power operations. A global power algebra S then needs additional power
operations, satisfying the axioms specified in Definition 1.1.18. Additionally, the compatibility
axiom Pm(r · s) = Pm(r) · Pm(s) for r ∈ R(G), s ∈ S(G) needs to be satisfied.

At various points, we need to consider augmented algebras.

Definition 1.1.29. Let R be a global power functor and let T be a global R-power algebra.
Then a global R-power algebra S augmented to T is a global R-power algebra S together with
a morphism ε : S → T of global R-power algebras, called the augmentation. The category of
R-power algebras augmented to T is denoted AlgR /T , since it is an over-category.
In the case R = T , with unit map given by the identity, we call S an augmented R-power algebra.
The category of augmented R-algebras is denoted AlgR /R.

Finally, we also introduce the notion of a global power ideal, analogous to the definition of
an ideal in a G-Tambara functor in [48]. For completeness, we also mention the corresponding
notion of a Green ideal.

Definition 1.1.30. Let R be a global power functor. Then a global power ideal in R is a non-
unital global power subfunctor. Explicitly, it is a sub-global functor I ⊂ R that is closed under
the product with elements of R and power operations of R.
A global Green ideal is a non-unital global Green subfunctor.

Hence, a global Green ideal does not need to be closed under power operations.

Example 1.1.31. Let R be a global power functor, G be a compact Lie group, and f ∈ R(G)
be an element of R. Then we denote the smallest global power ideal of R containing f by ⟨f⟩.
We observe that the value of this ideal at a compact Lie group K takes the form

⟨f⟩(K) =
{

n∑
i=1

trKLi
α∗
i (ri × Pmi(f))

}
.

Here, n is any natural number, which is allowed to vary for different elements of this set, Li ≤ K
are closed subgroups, αi : Gi×(Σmi

≀G)→ Li are continuous homomorphisms, and ri ∈ R(Gi) for
compact Lie groups Gi. The fact that this set is closed under addition, transfer and restriction,
multiplication with elements in R and power operations is a straight-forward application of the
relations present in a global power functor.

As for ideals in commutative rings, it is possible to take the quotient of a global power functor
by a global power ideal.
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Proposition 1.1.32. Let R be a global power functor and I ⊂ R be a global power ideal. Then
the quotient R/I uniquely inherits the structure of a global power functor from R such that the
quotient map R→ R/I is a morphism of global power functors.

Proof. We focus on the power operations here, since the multiplication works completely analo-
gous to the case of commutative rings.
Since R → R/I is surjective, we have to define the power operations on R/I via Pm([r]) =
[Pm(r)]. We check that this is well-defined. For this, let r ∈ R(G) and i ∈ I(G) for a compact
Lie group G. Then we calculate

Pm(r + i) =
m∑
k=0

trm−k,k(Pm−k(r)× P k(i)) = Pm(r) +
m∑
k=1

trm−k,k(Pm−k(r)× P k(i)).

In the last expression, the entire second sum is contained in I(Σm ≀G), since I is a global power
ideal. Hence, the power operations are well-defined. The properties of these power operations
are easily deduced from those for R.

Conversely, any kernel of a morphism of global power functors is a global power ideal.

Lemma 1.1.33. Let R and S be global power functors and f : R→ S be a map of global power
functors. Then the kernel ker(f) is a power ideal of R.

Proof. The kernel of any map of global functors is again a global functor. As f is a map of global
Green functors, for any compact Lie group G the map f : R(G) → S(G) is a map of rings, and
hence the kernel is an ideal in R(G). Thus ker(f) is a Green ideal in R. Moreover, for x ∈ ker(f),
f(P k(x)) = P k(f(x)) = 0, thus ker(f) is closed under power operations. Thus, it is a power
ideal.

1.2 Square-Zero Extensions, Derivations and Kähler Differentials

In algebraic geometry, a main objective is to use algebraic techniques to study geometric phe-
nomena of varieties. One important geometric property is smoothness of an algebraic variety.
Translating this to the algebraic side, an important property of a commutative algebra is being
(formally) smooth. In order to formulate this property, one first needs to consider square-zero
extensions, derivations and Kähler differentials. All these notions are intimately linked by various
adjunctions and representability results, and they constitute a theory of infinitesimal deforma-
tions of commutative rings. These constructions also are the first steps towards constructing
André-Quillen (co-)homology, which is defined as a derived functor of Kähler differentials or
derivations, respectively.

In this section, we introduce the notions of square-zero extensions, Kähler differentials and
derivations for global power functors. In these definitions, we are required to specify how to
handle the additional power operations present in a global power functor. The underlying idea
is to consider the power operations as a twisted version of the multiplication. The newly defined
concepts of square-zero extension, derivation and Kähler differentials satisfy the same relations
as the classical notions, and this facilitates calculations on some easy global power functors
such as polynomial global power functors. Later, when studying exact sequences related to
derivations and Kähler differentials, we also are able to calculate Kähler differentials for quotients
of polynomial global power functors.

The definitions in this section are related to the definitions for G-Tambara functors for fixed
finite groups G, defined by Strickland [62, Definition 14.8] in the case of square-zero extensions
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and by Hill [30, Definitions 4.1 and 5.4] in the case of derivations and Kähler differentials. We
show that our definitions in terms of power operations recover the definitions by Strickland and
Hill in terms of norms, but emphasize that the definitions for the power operations are formulated
more concisely and hence are easier to work with. Moreover, our definition is compatible with
the additional functoriality present in a global power functor in the form of inflations, and also
works for compact Lie groups.

1.2.a Square-Zero Extensions of Global Power Functors
We define a square-zero extension of a global power functor R by an R-module M .

Construction 1.2.1. Let R be a global power functor and M be a module over R. Then we
define the global power functor R⋉M as follows: As a global functor, we set R⋉M = R⊕M .
Explicitly, for every compact Lie group G the value of R ⋉M at G is given as (R ⋉M)(G) =
R(G) ⊕M(G), for any homomorphism α : K → G of compact Lie groups, the restriction map
takes the form

α∗ : (R⋉M)(G)→ (R⋉M)(K), α∗(r,m) = (α∗r, α∗m),

and for any closed subgroup H ⊂ G, we have the transfer

trGH : (R⋉M)(H)→ (R⋉M)(G), trGH(r,m) = (trGH r, trGH m).

Then, we endow this global functor with a unit map

A→ R⋉M

using the unit map of R and the zero-map on M . This is equivalent to defining the unit element
of R⋉M to be (1, 0), where 1 is the unit in R. Moreover, we define a product by

(R⋉M)□(R⋉M) ∼= (R□R)⊕ (R□M)⊕ (M□R)⊕ (M□M)→ R⊕M = R⋉M,

where the middle map is the multiplication of R on the first summand, the module structure of
M on the second and third summand and the zero-map on the fourth summand. Explicitly, for
every compact Lie group G, the multiplication is given via

(r,m) · (r′,m′) = (rr′, rm′ + r′m) (1.2.2)

for (r,m), (r′,m′) ∈ (R ⋉M)(G). This is equivalent to the external multiplication being given
for elements (r,m) ∈ (R⋉M)(G), (r′,m′) ∈ (R⋉M)(K) by

(r,m)× (r′,m′) = (r × r′, r ×m′ + r′ ×m). (1.2.3)

Finally, we define power operations on R⋉M by the formula

P k(r,m) = (P k(r), trΣk≀G
(Σk−1≀G)×G(P k−1(r)×m)) (1.2.4)

for (r,m) ∈ (R ⋉ M)(G). For notational ease, we write trGi,j = trΣi+j ≀G
(Σi≀G)×(Σj ≀G), which is the

transfer along the inclusion Φi,j from Remark A.1.3 i). Then, the transfer in the above formula
is trGk−1,1.

Remark 1.2.5. We offer some context for the above formula: We think about the pair (r,m) as
a sum r + m of elements r ∈ R(G) and m ∈ M(G), and assume that the multiplication of any
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two elements in M vanishes. Now, the power operations are a Σk-equivariant version of the map
x 7→ xk, so we compare the above formula to the calculation

(r +m)k = rk + krk−1m

obtained in a non-equivariant square-zero extension by the binomial formula. The equivariant
version of this binomial formula is the additivity relation for a global power functor given in
Definition 1.1.18 vii). If we set P k(m) = 0 for m ∈ M(G), k ≥ 2, motivated by the definition
that modules are not equipped with power operations, then this additivity relation recovers the
above definition, as

P k(r +m) = P k(r) + trGk−1,1(P k−1(r)×m).

Remark 1.2.6. The definition of the power operations on the square-zero extension is analogous
to the definition used by Strickland for a square-zero extension of a Tambara functor in [62,
Definition 14.8]. The relation to our definition can be made precise by the translation between
power functors and Tambara functors explained in Remark 1.1.20. We restrict to finite groups
G here, since this is the context in which Strickland works. We first show how our formula for
the power operations is obtained from the formula for the norm:

Let G be a finite group, and (r,m) ∈ (R ⋉ M)(G) be an element of the square-zero ex-
tension. Then by the translation between norms and power operations, we have P k(r,m) =
NΣk≀G

(Σk−1≀G)×Gq
∗(r,m), where q : (Σk−1 ≀ G) × G → G is the projection to the second factor. By

the formula for the norm on a square-zero extension given by Strickland in [62, Definition 14.8],
we thus have

P k(r,m) = (NΣk≀G
(Σk−1≀G)×G(q∗r), trΣk≀G

(Σk−1≀G)×G((Npr1 respr2(q∗r)) · q∗m)).

In this formula, the two projections pr1 and pr2 are those from the Σk ≀ G-set (Σk ≀ G/((Σk−1 ≀
G)×G))×(Σk ≀G/((Σk−1 ≀G)×G))\∆, where ∆ denotes the diagonal. We now observe that this
Σk ≀G-set is isomorphic to Σk ≀G/(G× (Σk−2 ≀G)×G), and the two projections are associated
to the two inclusions G × (Σk−2 ≀ G) × G ⊂ (Σk−1 ≀ G) × G using either the left two or the
right two factors. Moreover, the first entry in the description of P k(r,m) is equal to P k(r), thus
we only need to consider the second component. In the following calculation, we denote with
qi : (Σi−1 ≀G)×G→ G the projection to the second factor, and by pi : (Σi−1 ≀G)×G→ Σi−1 ≀G
the projection to the first factor. We have

trΣk≀G
(Σk−1≀G)×G((Npr1 respr2(q∗

kr)) · q∗
km)

= trΣk≀G
(Σk−1≀G)×G((N (Σk−1≀G)×G

G×(Σk−2≀G)×G resG×(Σk−1≀G)
G×(Σk−2≀G)×G q

∗
kr) · q∗

km)

= trΣk≀G
(Σk−1≀G)×G((N (Σk−1≀G)×G

G×(Σk−2≀G)×G(G× pk−1)∗q∗
k−1r) · q∗

km)

= trΣk≀G
(Σk−1≀G)×G((p∗

kN
Σk−1≀G
G×(Σk−2≀G)q

∗
k−1r) · q∗

km)

= trΣk≀G
(Σk−1≀G)×G((NΣk−1≀G

G×(Σk−2≀G)q
∗
k−1r)×m)

= trΣk≀G
(Σk−1≀G)×G(P k−1(r)×m).

Hence, we exactly recover our definition of the power operations.
Conversely, we show how to obtain the definition of the norm on the square-zero extension

from our formulation of the power operations. For a compact Lie group G and a closed subgroup
H of index k, we choose an ordered H-basis Γ = (γ1, . . . , γk) of G. We assume that γk = e is
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the trivial element of G. As explained in Remark 1.1.20, this defines a monomorphism ΨΓ : G→
Σk ≀H. We have for any element (r,m) ∈ (R⋉M)(H) the formula

NG
H (r,m) = Ψ∗

Γ(P k(r,m)) = Ψ∗
Γ(P k(r), trHk−1,1(P k−1(r)×m)).

The first entry in this exactly recovers the norm NG
H (r), hence we focus on the M -component

of this term. First, we calculate the composition Ψ∗
Γ ◦ trHk−1,1 by a double coset formula. For

this, we observe that the coset space (Σk ≀H)/((Σk−1 ≀H) ×H) is in bijection to {1, . . . , k} by
identifying [(σ;h1, . . . , hk)] with σ(k). As left multiplication by G is transitive on G/H and Γ
identifies G/H ∼= {1, . . . , k}, we observe that G acts transitively on (Σk ≀H)/((Σk−1 ≀H) ×H)
through ΨΓ, and hence the double coset formula consists of a single summand. Moreover, the
corresponding stabilizer occurring in the double coset formula is given as H ⊂ G, by the choice
of taking γk = e in Γ. Equivalently, (ΨΓ)|H : H → Σk ≀ H takes values in (Σk−1 ≀ H) × H and
exhibits H as the preimage of this subgroup. Thus, we calculate

Ψ∗
Γ(trHk−1,1(P k−1(r)×m)) = trGH((ΨΓ)∗

|H(P k−1 ×m))
= trGH((ΨΓ)∗

|H(p∗
k(P k−1) · q∗

k(m)))
= trGH((pk ◦ (ΨΓ)|H)∗(P k−1) · (qk ◦ (ΨΓ)|H)∗(m))

In this last line, we observe that qk◦(ΨΓ)|H = idH is the identity on H, and hence the second fac-
tor evaluates to m. On the other hand, to calculate (pk ◦(ΨΓ)|H)∗(P k−1), we have to understand
pk ◦ (ΨΓ)|H . This depends on the left action of H on (G/H) \ {eH}. We decompose this set into
H-orbits. For each of these H-orbits, which we index by j, we obtain the corresponding sub-basis
Γj consisting of those γi in Γ such that γiH is part of this specific H-orbit. The stabilizer inside
H for this orbit can be written as H ∩ gjHg−1

j for some gj ∈ G, and we fix a gj for each orbit.
Then, performing the right multiplication ΓHj := Γjg−1

j defines an ordered (H ∩ gjHg−1
j )-basis

for H. Finally, we denote by kj the order of this orbit. Using this, we observe that we can factor
pk ◦ (ΨΓ)|H via

H
×ΨΓH

j−−−−→×Σkj
≀ (H ∩ gjHg−1

j ) ⊂×Σkj
≀H

Φ(kj )
−−−→ Σk−1 ≀H.

Applying the restriction along this composition to the power operation P k−1(r), we obtain

(pk ◦ (ΨΓ)|H)∗(P k−1) =
∏

Ψ∗
ΓH

j
(res

Σkj
≀H

Σkj
≀(H∩gjHg

−1
j

)(P
kj (r))) =

∏
NH
H∩gjHg

−1
j

(resH
H∩gjHg

−1
j

(r)).

Finally, we observe that this H-orbit decomposition of (G/H)\{eH} is equivalent to the G-orbit
decomposition in (G/H) × (G/H) \ ∆, the G-set used by Strickland. Hence, this product of
norms of restrictions is exactly Npr2 respr1(r), which recovers the formula for the norm in the
square-zero extension from our formula for the power operations.

In my opinion, the description of the square-zero extension is another case in which the
power operations simplify exposition and calculations compared to the norms. In particular, as
explained in Remark 1.2.5, the formula for the power operations in R⋉M is a direct generalization
of the binomial formula, and benefits from the easy additivity relation of the power operations. In
comparison, the norms have to utilize the Σk ≀G-set (Σk ≀G/((Σk−1 ≀G)×G))× (Σk ≀G/((Σk−1 ≀
G) × G)) \ ∆, which makes the new norms hard to work with. This is a consequence of the
inexplicit additivity formula for general norms.

In addition to the structure required for a global power functor, R⋉M comes equipped with
maps η : R→ R⋉M, r 7→ (r, 0) and ε : R⋉M → R, (r,m) 7→ r.
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Theorem 1.2.7. Let R be a global power functor and M be an R-module. Then the square-zero
extension R ⋉M , endowed with multiplication and power operations as in Construction 1.2.1,
and endowed with the maps η : R→ R⋉M and ε : R⋉M → R defined above, is an augmented
R-power algebra. Moreover, for a morphism f : M → N of R-modules, the induced morphism
R⋉ f : R⋉M → R⋉N is a morphism of augmented R-power algebras.

We obtain a functor
R⋉ (_) : ModR → AlgR /R

from the category of R-modules into the category of augmented R-algebras.

When we consider a global power functor R, an R-power algebra S and an S-module M ,
we can also consider S ⋉M as an R-power algebra augmented to S via the functor AlgS /S →
AlgR /S that composes the unit map of an S-algebra with the unit map R→ S of the R-algebra
S.

Proof. By definition as a direct sum of two global functors, R⋉M is a global functor. To check
that R ⋉ M is a global Green functor, we need to show that for any compact Lie group G,
(R⋉M)(G) is a commutative ring such that restrictions are ring homomorphisms and transfers
satisfy reciprocity, as explained in Remark 1.1.11. By the definition of multiplication in (1.2.2)
and the usual arguments in algebra, (R ⋉M)(G) is a commutative ring. We then calculate for
any homomorphism α : K → G and (r,m), (r′,m′) ∈ (R⋉M)(G):

α∗((r,m)(r′,m′)) =(α∗(rr′), α∗(rm′ + r′m))
=(α∗(r)α∗(r′), α∗(r)α∗(m′) + α∗(r′)α∗(m)) = α∗(r,m)α∗(r′,m′)

Moreover, for a closed subgroup H ⊂ G and (r,m) ∈ (R ⋉M)(H), (r′,m′) ∈ (R ⋉M)(G), we
have

trGH((r,m) · resGH(r′,m′)) =(trGH(r · resGH(r′)), trGH(r · resGH(m′)) + trGH(resGH(r′) ·m))
=(trGH(r)r′, trGH(r)m′ + r′ trGH(m)) = trGH(r,m)(r′,m′).

This shows that R⋉M is a global Green functor.
Now we check the properties for the power operations given in Definition 1.1.18. In the following,
k ≥ 1 and G is a compact Lie group.

i) The unit in (R⋉M)(G) is (1, 0). We calculate

P k(1, 0) = (P k(1), trGk−1,1(P k−1(1)× 0)) = (1, 0).

ii) For any compact Lie group G and (r,m) ∈ (R⋉M)(G), we have

P 1(r,m) = (P 1(r), trΣ1≀G
Σ0≀G×G(P 0(r)×m)) = (r,m),

where the transfer is the identity under the identification Σ1 ≀ G ∼= G ∼= Σ0 ≀ G × G, and
P 0(r) = 1 by definition.

iii) Let α : K → G be a homomorphism of compact Lie groups, and (r,m) ∈ (R ⋉M)(G).
Then

P k(α∗(r,m)) = (P k(α∗r), trKk−1,1(P k−1(α∗r)× α∗(m)))
= ((Σk ≀ α)∗P k(r), trKk−1,1(((Σk−1 ≀ α)× α)∗(P k−1(r)×m)))
= ((Σk ≀ α)∗P k(r), (Σk ≀ α)∗(trGk−1,1(P k−1(r)×m))) = (Σk ≀ α)∗P k(r,m).

Here, to obtain the last line, we use that in this specific case, transfer and restriction
commute. This is proved in [55, 5.2.9].
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iv) Let (r,m), (r′,m′) ∈ (R⋉M)(G). Then we calculate

P k((r,m) · (r′,m′)) = (P k(r · r′), trGk−1,1(P k−1(r · r′)× (r ·m′ + r′ ·m)))
= (P k(r) · P k(r′), trGk−1,1((P k−1(r) · P k−1(r′))× (r ·m′) +

(P k−1(r) · P k−1(r′))× (r′ ·m)))
= (P k(r) · P k(r′), trGk−1,1((P k−1(r)× r) · (P k−1(r′)×m′) +

(P k−1(r′)× r′) · (P k−1(r)×m)))
= (P k(r) · P k(r′), trGk−1,1(Φ∗

k−1,1P
k(r) · (P k−1(r′)×m′)) +

trGk−1,1(Φ∗
k−1,1P

k(r′) · (P k−1(r)×m)))
= (P k(r) · P k(r′), P k(r) · trGk−1,1(P k−1(r′)×m′) +

P k(r′) · trGk−1,1(P k−1(r)×m))
= P k(r,m) · P k(r′,m′).

Here, in the third line, we used an exchange property between the interior product · and the
exterior product × for a global Green functor. This is explicitly stated and proved in [60,
Diagram 2.22]. Here, we also have a Green module M in the formula, but the arguments
work exactly the same. In the fourth line, the map Φk−1,1 : (Σk−1 ≀ G) × G → Σk ≀ G is
the one from Remark A.1.3 i), along which trGk−1,1 is the transfer. Thus, the next equation
follows by reciprocity.

v) Let i, j ≥ 1 such that i+ j = k, and let (r,m) ∈ (R⋉M)(G). Then

Φ∗
i,j(P k(r,m)) = (Φ∗

i,j(P k(r)),Φ∗
i,j(trGk−1,1(P k−1(r)×m))).

To commute the restriction Φ∗
i,j past the transfer trGk−1,1, we need to apply the double coset

formula. The double cosets are calculated in Lemma A.1.4 i). Hence, for the double coset
formula, we get

Φ∗
i,j(trGk−1,1(P k−1(r)×m)) =

=
∑
ε=0,1

tri,j,Gi−ε,ε,j−1+ε,1−ε(χ(ε)⋆(Φ∗
i−ε,j−1+εP

k−1(r)× Φ∗
ε,1−ε(m)))

= tri,j,Gi,0,j−1,1(P i(r)× P j−1(r)×m) + tri,j,Gi−1,1,j,0(P i−1(r)×m× P j(r))
= P i(r)× trGj−1,1(P j−1(r)×m) + P j(r)× trGi−1,1(P i−1(r)×m).

Here, we abbreviated

tri,j,Gi−ε,ε,j−1+ε,1−ε = tr(Σi≀G)×(Σj ≀G)
(Σi−ε≀G)×(Σε≀G)×(Σj−1+ε≀G)×(Σ1−ε≀G) .

Then, the total expression can be written as

Φ∗
i,j(P k(r,m)) = (Φ∗

i,j(P k(r)),Φ∗
i,j(trGk−1,1(P k−1(r)×m)))

= (P i(r)× P j(r), P i(r)× trGj−1,1(P j−1(r)×m) + P j(r)× trGi−1,1(P i−1(r)×m))
= (P i(r), trGi−1,1(P i−1(r)×m))× (P j(r), trGj−1,1(P j−1(r)×m))
= P i(r,m)× P j(r,m).
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vi) Let k, l ≥ 1 and (r,m) ∈ (R⋉M)(G). Then we need to calculate

Ψ∗
k,l(P kl(r,m)) = (Ψ∗

k,lP
kl(r),Ψ∗

k,l trGkl−1,1(P kl−1(r)×m)).

Again, to switch the order of restriction and transfer, we need to apply the double coset
formula, this time for the subgroups Σk ≀ (Σl ≀G) and (Σkl−1 ≀G)× (Σ1 ≀G) in Σkl ≀G. There
is a single double coset, as described in Lemma A.1.4 ii), and the double coset formula
takes the form

Ψ∗
k,l(trGkl−1,1(P kl−1(r)×m))

= trΣk≀(Σl≀G)
(Σk−1≀(Σl≀G))×(Σl−1≀G)×G(res(Σkl−1≀G)×G

(Σk−1≀(Σl≀G))×(Σl−1≀G)×G(P kl−1(r)×m))

= trΣk≀(Σl≀G)
(Σk−1≀(Σl≀G))×(Σl≀G)(P

k−1(P l(r))× trΣl≀G
(Σl−1≀G)×G(P l−1(r)×m)).

Here, in the last line, we used that transfers are transitive and compatible with × and that

resΣkl−1≀G
(Σk−1≀(Σl≀G))×(Σ1≀(Σl−1≀G)) P

kl−1(r) = P k−1(P l(r))× P 1(P l−1(r)).

Thus, we calculate

Ψ∗
k,l(P kl(r,m)) = (Ψ∗

k,lP
kl(r),Ψ∗

k,l trGkl−1,1(P kl−1(r)×m))
= (P k(P l(r)), trΣl≀G

k−1,1(P k−1(P l(r))× trGl−1,1(P l−1(r)×m)))
= P k(P l(r), trGl−1,1(P l−1(r)×m)) = P k(P l(r,m)).

vii) Let (r,m), (r′,m′) ∈ (R⋉M)(G). Then

P k((r,m) + (r′,m′)) = (P k(r + r′), trGk−1,1(P k−1(r + r′)× (m+m′)))

=
( k∑
i=0

trGi,k−i(P i(r)× P k−i(r′)),

trGk−1,1(
k−1∑
j=0

trj,k−j−1(P j(r)× P k−j−1(r′))× (m+m′))
)

=
( k∑
i=0

trGi,k−i(P i(r)× P k−i(r′)),

k−1∑
j=0

trGk−1,1(trGj,k−j−1(P j(r)× P k−j−1(r′))×m) +

trGk−1,1(trGj,k−j−1(P j(r)× P k−j−1(r′))×m′)
)

=
( k∑
i=0

trGi,k−i(P i(r)× P k−i(r′)),

k−1∑
j=0

trGj+1,k−j−1(trGj,1(P j(r)×m)× P k−j−1(r′)) +

trGj,k−j(P j(r)× trGk−j−1,1(P k−j−1(r′)×m′))
)
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=
( k∑
i=0

trGi,k−i(P i(r)× P k−i(r′)),

k∑
i=0

trGi,k−i(trGi−1,1(P i−1(r)×m)× P k−i(r′)) +

trGi,k−i(P i(r)× trGk−i−1,1(P k−i−1(r′)×m′))
)

=
k∑
i=0

trGi,k−i(P i(r,m)× P k−i(r′,m′)).

Here, in the passage to the penultimate line, we applied an index shift to the first half of the
sum. Moreover, observe that in this reindexed sum, we have added two terms. However,
both of these evaluate to 0. Hence, we have shown additivity.

viii) Let H ⊂ G be a closed subgroup and (r,m) ∈ (R⋉M)(H). Then

P k(trGH(r,m)) =(P k(trGH(r)), trGk−1,1(P k−1(trGH(r))× trGH(m)))

=(trΣk≀G
Σk≀H(P k(r)), trGk−1,1(tr(Σk−1≀G)×G

(Σk−1≀H)×H(P k−1(r)×m)))

=(trΣk≀G
Σk≀H(P k(r)), trΣk≀G

Σk≀H(trHk−1,1(P k−1(r)×m))) = trΣk≀G
Σk≀H P

k(r,m).

Here, in the last line, we used the transitivity of the transfer to commute the two transfers.

That the maps η : R→ R⋉M and ε : R⋉M → R are morphisms of global power functors is an
easy calculation. Thus R⋉M is an augmented R-algebra.
We now check functoriality. Let f : M → N be a morphism of R-modules, we need to show that
R ⋉ f is a morphism of augmented R-algebras. First, we check that R ⋉ f is a map of global
functors. This is clear, since additively, R⋉ f = R⊕ f , which is a morphism of global functors.
It is a map of global Green functors, since we have (R⋉f)(1, 0) = (1, 0), and for (r,m), (r′,m′) ∈
(R⋉M)(G), we calculate

(R⋉ f)((r,m) · (r′,m′)) = (rr′, f(rm′ + r′m)) = (rr′, rf(m′) + r′f(m))
= (R⋉ f)(r,m) · (R⋉ f)(r′,m′).

Moreover, R⋉ f commutes with the power operations, since for (r,m) ∈ (R⋉M)(G),

(R⋉ f)(P k(r,m)) = (P k(r), f(trGk−1,1(P k−1(r)×m))) = (P k(r), trGk−1,1(P k−1(r)× f(m)))
= P k((R⋉ f)(r,m)).

Finally, R ⋉ f also commutes with the unit η and the augmentation ε, since it is the identity
on the R-summand. Thus R ⋉ f is a morphism of augmented R-algebras. Functoriality is then
clear.

1.2.b Derivations of Global Power Functors
Definition 1.2.8. Let R be a global power functor, S be an R-algebra with unit map η : R→ S
and let M be an S-module. Then, an R-derivation of S with values in M is a map d : S →M of
global functors such that the following properties are satisfied:

i) For all compact Lie groups G and s, s′ ∈ S(G),

d(ss′) = sd(s′) + s′d(s).
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ii) For all compact Lie groups G and s ∈ S(G),

d(P k(s)) = trGk−1,1(P k−1(s)× d(s)).

iii) The composition d ◦ η = 0 vanishes.

We denote the set of R-derivations of S with values in M by DerR(S,M). This is an abelian
group by addition of morphisms of global functors.

Remark 1.2.9. As for derivations of commutative rings, the property in Definition 1.2.8 iii) is
equivalent to d being R-linear. Indeed, if r ∈ R(G) and s ∈ S(G), then we calculate

d(η(r)s) = η(r)d(s) + d(η(r))s = η(r)d(s).

Conversely, if d is R-linear, using the Leibniz-rule for η(r) · 1 for any r ∈ R(G) gives d ◦ η = 0.
Moreover, the Leibniz rule in Definition 1.2.8 i) is formulated in terms of the internal product

of a global Green functor. It can equivalently be given using the external product, and then
takes the form

d(s× s′) = s× d(s′) + d(s)× s′

for s ∈ S(G) and s′ ∈ S(K).

Remark 1.2.10. The formula given in Definition 1.2.8 ii) for the behaviour of a derivation on
a power operation can be thought of as a twisted version of the classical Leibniz rule. On a
usual power, a derivation satisfies d(xk) = kxk−1d(x). The power operations are an equivariant
refinement of the usual powers in a commutative ring. The index of (Σk−1 ≀ G) × G in Σk ≀ G
is k, and hence the transfer trGk−1,1 can be considered as an equivariantly twisted version of
multiplication by k. In particular, for a constant global power algebra S over R for an R-algebra
S, the above notion of a derivation recovers the usual notion of a derivation on a commutative
algebra.

Moreover, this formula for the twisted Leibniz rule is a generalization of the formula for
derivations of G-Tambara functors present implicitly in Strickland’s definition of square-zero
extensions in [62, Definition 14.8] and made explicit by Hill in [30, Definition 4.1]. This formula
is

d(NK
H (s)) = trKH(Npr1 respr2(s) · d(s))

for s ∈ S(K) and K ≤ H ≤ G a sequence of subgroups in G. This definition can be translated
into our context of power operations using Remark 1.1.20, and the calculations are exactly the
same as in Remark 1.2.6.

The main property of derivations is that they control maps into square-zero extensions.

Theorem 1.2.11. Let R be a global power functor, S and T be R-algebras and f : T → S be
a map of R-algebras, making T into an R-algebra augmented over S. Let M be an S-module,
considered as a T -module via f . Then, the map

DerR(T,M)→ HomAlgR /S(T, S ⋉M)
d 7→ f ⋉ d

is bijective.
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Proof. We first prove that for an R-derivation d : T → M , the map f ⋉ d is indeed a map of
R-algebras augmented to S. It is a map of global functors as the direct sum of two maps of
global functors. Moreover, for a compact Lie group G and t, t′ ∈ T (G), we have

(f ⋉ d)(t · t′) = (f(tt′), d(tt′)) = (f(t)f(t′), f(t)d(t′) + f(t′)d(t)) = (f ⋉ d)(t) · (f ⋉ d)(t′),

where in the second equation, we note that the T -module structure on M is via the map f : T →
S. Together with (f ⋉ d)(1) = (f(1), 0) = (1, 0), this proves that f ⋉ d is a map of global Green
functors.
Let now G be again a compact Lie group, t ∈ T (G) and k ≥ 1. Then

(f ⋉ d)(P k(t)) = (f(P k(t)), d(P k(t))) = (P k(f(t)), trGk−1,1(f(P k−1(t))× d(t))) = P k(f(t), d(t)),

thus f ⋉ d is a map of global power functors. Moreover, if η : R→ T is the unit of the R-algebra
T , we have the identity

(f ⋉ d)(η(r)) = (f(η(r)), d(η(r))) = (f(η(r)), 0)

for any compact Lie group G and r ∈ R(G), since d ◦ η = 0 by the property that d is an R-
derivation. Thus, by definition of the algebra structure of S ⋉M , we see that f ⋉ d is a map of
R-algebras. As the map f ⋉ d agrees with f on the S-summand and the augmentation of S⋉M
is the projection onto S, we see that f ⋉ d is a map of R-algebras augmented to S.

Now let g : T → S⋉M be a map of R-algebras augmented to S. We denote the two projections
of g to S and M by gS = πS ◦g and gM = πM ◦g, such that g(t) = (gS(t), gM (t)). As g commutes
with the augmentations and the augmentation on S ⋉M is πS , we see that gS = f . We now
show that gM : T →M is an R-derivation. As both g and πM are morphisms of global functors,
also gM is a morphism of global functors. Let G be a compact Lie group and t, t′ ∈ T (G). Then,

gM (tt′) = πM (g(tt′)) = πM (g(t) · g(t′)) = πM (f(t)f(t′), f(t)gM (t′) + f(t′)gM (t))
= f(t)gM (t′) + f(t′)gM (t)

and for any k ≥ 1, we have

gM (P k(t)) =πM (g(P k(t))) = πM (P k(g(t))) = πM ((P k(f(t)), trGk−1,1(P k−1(f(t))× gM (t))))
= trGk−1,1(P k−1(f(t))× gM (t)).

Lastly, for any r ∈ R(G), we have gM (η(r)) = πM (g(η(r))) = πM (f(η(r)), 0) = 0, since g is a
map of R-algebras. Hence, gM is indeed an R-derivation.
Then we consider the assignment

HomAlgR /S(T, S ⋉M)→ DerR(T,M), g 7→ gM .

Since for any g ∈ HomAlgR /S(T, S ⋉M), we have gS = f , we see that g = f ⋉ gM , and for any
R-derivation d : T → M , we have d = (f ⋉ d)M . Thus, these assignments are inverse to each
other.

1.2.c Kähler Differentials of Global Power Functors
Theorem 1.2.11 shows that morphisms into a square-zero extension are characterized by deriva-
tions. In the case of commutative rings, the functor of derivations is representable. The same
statement is also true for the functor DerR(S,_) : ModS → Ab, where S is a global power func-
tor. We call the representing object the module of Kähler differentials. Most of the relevant
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properties of this S-module can be deduced purely from this description, and we follow this line
of thought in order to give proofs that follow the classical ones without needing to explicitly
handle the power operations. We show the existence of the module of Kähler differentials by
considering the multiplication map S□RS → S of an R-power algebra S. Here, the classical
recipe of taking the kernel I of the multiplication and forming the indecomposables I/I2 has to
be slightly modified to account for the power operations. In the case of a fixed group G, this has
already been carried out for Tambara functors by Hill in [30, Chapter 5]. The construction used
here also becomes useful when studying the naive cotangent complex as a means to calculate the
low-degree André-Quillen (co-)homology in Section 1.5.c.

Definition 1.2.12. Let R be a global power functor and S be an R-power algebra. Suppose the
functor

DerR(S,_) : ModS → Ab

is representable. Then we denote a representing object by (Ω1
S/R, d) and call Ω1

S/R the module
of Kähler differentials. The R-derivation d : S → Ω1

S/R is called the universal derivation.

From this, we directly observe that if these modules of Kähler differentials exist for every R-
power algebra S, they are automatically functorial in the R-algebra S. Since Ω1

S/R is naturally
an S-module for any R-power algebra S, a natural target for a functor of Kähler differentials
is ModR, the category of pairs of an R-power algebra and modules over it, which arises as the
Grothendieck construction from the 2-functor AlgR → Cat, S 7→ ModS . However, we do not
need this formulation here and hence do not provide any details on this construction. We only
need the resulting functor

R□(_)Ω1
(_)/R : AlgR /R→ ModR

and the relative version
S□(_)Ω1

(_)/R : AlgR /S → ModS

for a fixed R-power algebra S.
This functoriality is also compatible with a change in the base global power functor R.

Explicitly, if we are given a commutative square

R R′

S S′

of global power functors, then we obtain an induced morphism Ω1
S/R → Ω1

S′/R′ of S-modules, or
equivalently by extension of scalars, a morphism S′□SΩ1

S/R → Ω1
S′/R′ of S′-modules.

We prove the existence of Kähler differentials for any global power functor R and R-power
algebra S in Theorem 1.2.24. This existence allows us to formulate the following adjunction,
which is a consequence from the definition of Kähler differentials and Theorem 1.2.11:

Theorem 1.2.13. Let R be a global power functor and S be an R-algebra. Then the functor

S□(_)Ω1
(_)/R : AlgR /S → ModS

is left adjoint to
S ⋉ (_) : ModS → AlgR /S.
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Proof. Let M be an S-module and T be an R-algebra augmented to S. Then we can consider
M as a T -module via the map ε : T → S. Then we have the chain

HomAlgR /S(T, S ⋉M) ∼= DerR(T,M)
∼= HomT (Ω1

T/R,M)
∼= HomS(S□TΩ1

T/R,M)

of bijections. This proves that the functors are adjoint.

Example 1.2.14. As an example, we calculate the global functor of Kähler differentials on a
polynomial global power functor from Definition 1.1.22. Let R be a global power functor and
R[xK ] be a polynomial R-power algebra on a generator at level K. We claim that

Ω1
R[xK ]/R

∼= R[xK ]{dxK} := R[xK ]□A(K,_)

is a free R[xK ]-module on one generator in degree K, which we call dxK . For the proof, we show
that this satisfies the universal property of the module of Kähler-differentials: Let M be any
R[xK ]-module. Then we have the chain

DerR(R[xK ],M) ∼= HomAlgR /R[xK ](R[xK ], R[xK ]⋉M) ∼= M(K) ∼= HomR[xK ](R[xK ]□A(K,_),M)

of bijections, where the second bijection uses HomAlgR
(R[xK ], R[xK ] ⋉M) ∼= (R[xK ] ⋉M)(K),

and that such a morphism is a morphism over R[xK ] iff the first component is xK . The composite
bijection above exhibits the universal property of Ω1

R[xK ]/R, thus we have shown that we have
Ω1
R[xK ]/R

∼= R[xK ]{dxK}.
We can also describe the universal derivation in this context, using the above isomorphism to
translate the identity on the right side into a derivation d : R[xK ] → R[xK ]□A(K,_). This
yields d(xK) = 1 ⊡ idK , which justifies the name R[xK ]{dxK} for this module. Generally, a
power Pn(xK) satisfies

d(Pn(xK)) = trKn−1,1(Pn−1xK × dxK).

By the same representability arguments or using Proposition 1.2.30 (at least for finitely many
generators), we get the following result for general polynomial algebras:

Proposition 1.2.15. Let R be a global power functor and Ki be (not necessarily distinct) com-
pact Lie groups for i ∈ I, with I any indexing set. Let

T = R[xi,Ki
, i ∈ I] := □R

i∈I
R[xi,Ki

]

be a polynomial algebra over R in generators indexed by I. Then

Ω1
T/R
∼= T{dxi,Ki

, i ∈ I} :=
⊕
i∈I

T□A(Ki,_)

is a free T -module on generators indexed by I.

Another case in which Kähler differentials are easily computed using the universal property is
for surjections R→ S. A morphism of global power functors is called a surjection if it is levelwise
surjective. This is equivalent to being an epimorphism in the category of global power functors,
and all epimorphisms are effective. This can be deduced as a consequence of the description of
global power algebras as a multisorted algebraic theory in Remark 1.1.24.
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Proposition 1.2.16. Let R be a global power functor and S be an R-algebra such that the unit
map η : R→ S is surjective. Then Ω1

S/R = 0.

Proof. Since any R-derivation d : S → M vanishes on the image of the unit map η : R → S,
surjectivity of η implies that DerR(S,_) = 0 is trivial. Hence, this functor is represented by the
zero module, so Ω1

S/R = 0.

By exhibiting a construction, we now show that Kähler differentials exist for all R-power
algebras S. Classically, we have the formula Ω1

S/R
∼= I/I2, where I denotes the kernel of the

multiplication map S⊗R S → S. In our context, the kernel of the multiplication map is a global
power ideal as defined in Definition 1.1.30 and is still the correct object to consider, but in the
presence of power operations, we have to replace I2 by an object that also contains powers of
elements in I. We follow the definitions given by Hill in [30, Definitions 5.1 and 5.4].

Definition 1.2.17. Let R be a global power functor and I be a power ideal in R. Then we
define the ideal I≥2 of decomposables in I as the submodule of R generated by elements of the
form P k1(x1)× . . .× P kn(xn) with k1 + . . .+ kn ≥ 2 and all xi ∈ I.
Explicitly, the value of I≥2 at a compact Lie group G is given by

I≥2(G) =

 ∑
j∈J

J finite

trGHj
α∗
j (rj × P kj,1(xj,1)× . . .× P kj,nj (xj,nj )) | kj,1 + . . .+ kj,nj ≥ 2

 ,

(1.2.18)
where Kj and Kj,i are compact Lie groups, Hj ⊂ G are closed subgroups of G, αj : Hj →
Kj ×

(×nj

i=1 Σkj,i
≀Kj,i

)
are continuous homomorphisms and rj ∈ R(Kj), xj,i ∈ I(Kj,i).

Lemma 1.2.19. With the above definition (1.2.18), I≥2 is a power ideal in R.

Proof. By the definition of I≥2 in (1.2.18) and the relations satisfied by compositions of transfers
and restrictions given in Remark 1.1.2, we see that I≥2 is closed under restrictions and transfers.
Moreover, it is a Green ideal in R, since for s ∈ R(L), r ∈ R(K) and xi ∈ I(Ki) and natural
numbers ki ≥ 1 with k1 + . . .+ kn ≥ 2, and H and α as above, we calculate

s× trGH(α∗(r×P k1(x1)× . . .×P kn(xn))) = trL×G
L×H((L×α)∗((s× r)×P k1(x1)× . . .×P kn(xn))).

This again is an element in I≥2.
Finally, we check that I≥2 is closed under power operations. With the same notation as before,
we have

P k(trGH α∗(r × P k1(x1)× . . .× P kn(xn))) = trΣk≀G
Σk≀H(Σk ≀ α)∗(P k(r × P k1(x1)× . . .× P kn(xn)))

= trΣk≀G
Σk≀H((Σk ≀ α)∗ ◦∆∗

k ◦ (×Ψk,ki)∗)(P k(r)× P kk1(x1)× . . .× P kkn(xn))

= trΣk≀G
Σk≀H((×Ψk,ki) ◦∆k ◦ (Σk ≀ α))∗(P k(r)× P kk1(x1)× . . .× P kkn(xn)),

where ∆k is an iterated version of the diagonal embedding from Remark A.1.3 iii), which is used
in the external multiplicativity of power operations, as explained in Remark 1.1.19. The closure
of multiplication and power operations on arbitrary sums of the above elements then follows
from additivity. This completes the proof that I≥2 is a power ideal in R.

We consider the following construction that turns out to calculate the module of Kähler
differentials:
Let R be a global power functor and S be an R-algebra, with unit η : R→ S. Let

µ : S□RS → S
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be the multiplication map of S. Let I = ker(µ). Then we consider the global functor I/I≥2.
Moreover, we define the morphism

d : S id□η−η□id−−−−−−−→ I/I≥2 (1.2.20)

as the difference of the inclusion as the left and right factor, using S ∼= R□RS ∼= S□RR.

Proposition 1.2.21. The S-module structure on S□RS by multiplication in the left factor de-
fines the structure of an S-module on the global functor I/I≥2. Moreover, the map d : S → I/I≥2

is an R-derivation.

Proof. We already know that I is an S□RS-module, since it is an ideal in S□RS. Moreover,
I≥2 is a subideal in I, and hence I/I≥2 is an S□RS-module. Now, using the left inclusion
S

id□η−−−→ S□RS, we see that the left multiplication on S□RS induces an S-module structure on
I/I≥2.
As the difference of two maps of global functors, the map d = id□η − η□id is a map of global
functors. Let s, s′ ∈ S(G), then we have

d(s · s′) =(s · s′) ⊡ 1− 1 ⊡ (s · s′)
=(s · s′) ⊡ 1− s⊡ s′ + (s · s′) ⊡ 1− s′ ⊡ s

=(s⊡ 1) · (s′ ⊡ 1− 1 ⊡ s′) + (s′ ⊡ 1) · (s⊡ 1− 1 ⊡ s) = s · d(s′) + s′ · d(s).

Here, ⊡ : S(G)⊗S(G)→ (S□RS)(G) is the universal diagonal product explained in Remark 1.1.13.
In the second line, we added (s⊡ 1− 1 ⊡ s) · (s′ ⊡ 1− 1 ⊡ s′) ∈ I≥2, which is trivial in I/I≥2.
Moreover, for s ∈ S(G) and k ≥ 1, we have

d(P k(s)) =P k(s) ⊡ 1− 1 ⊡ P k(s)
=P k(s⊡ 1)− P k(1 ⊡ s) = P k(s⊡ 1)− P k(s⊡ 1− d(s))

=P k(s⊡ 1)−
k∑
i=0

trk−i,i(P k−i(s⊡ 1)× P i(−d(s)))

= trk−1,1(P k−1(s)× d(s))−
k∑
i=2

(P k−i(s)× P i(−d(s))).

Here, we used the power operations on the boxproduct S□RS, making it into the coproduct in
global power functors, as described in [55, Example 5.2.15]. Moreover, we again used that the
S-module structure on I is given by the left inclusion of S into S□RS, in order to identify the
action of P k(s) with that of P k(s ⊡ 1). In this formula, the last sum lies in I≥2, hence we see
that in I/I≥2, we have the relation

d(P k(s)) = trk−1,1(P k−1(s)× d(s)).

Finally, since the boxproduct S□RS is taken over R, we see that for r ∈ R(G), we have d(η(r)) =
r ⊡ 1− 1 ⊡ r = 0, and thus d is indeed an R-derivation of S with values in I/I≥2.

Another way to see that d is a derivation is to identify the square-zero extension S⋉ (I/I≥2)
with (S□RS)/I≥2 and use the characterization of morphisms into a square-zero extension from
Theorem 1.2.11. This in fact amounts to the same calculations as in the previous proof, but
since the result is interesting on its own, we state it explicitly.
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Lemma 1.2.22. The map

ψS/R = (id□η,− incl) : S ⋉ (I/I≥2)→ (S□RS)/I≥2, (s, x) 7→ (s⊡ 1− x)

is an isomorphism of global power functors, such that the diagram

S S ⋉ (I/I≥2) S

(S□RS)/I≥2

id⋉d

η□id
ψS/R

prS

µ

commutes.

Proof. Since as global functors, S ⋉ I/I≥2 = S ⊕ I/I≥2 and both the left inclusion id□η and
the inclusion of I/I≥2 into (S□RS)/I≥2 are maps of global functors, we see that ψS/R is a
morphism of global functors. To see that it is a map of global power functors, we have to do
a similar calculation as in the proof of Proposition 1.2.21 as follows. Let G be a compact Lie
group and (s, x), (s′, x′) ∈ (S ⋉ I/I≥2)(G). Then,

ψS/R((s, x) · (s′, x′)) =ψS/R(ss′, sx′ + s′x)
=ss′ ⊡ 1− sx′ − s′x

=ψS/R(s, x) · ψS/R(s′, x′)− xx′︸︷︷︸
∈I≥2

,

and for k ≥ 1 we have

P k(ψS/R(s, x)) =P k(s⊡ 1− x)

=
k∑
i=0

trk−i,i(P k−i(s⊡ 1)× P i(−x))

=P k(s) ⊡ 1− trk−1,1(P k−1(s)× x) +
k∑
i=2

trk−i,i(P k−i(s)× P i(−x))

=ψS/R(P k(s, x)) +
k∑
i=2

trk−i,i(P k−i(s)× P i(−x))︸ ︷︷ ︸
∈I≥2

.

Thus, the map ψS/R is a map of global power functors. By the explicit formulas, we directly see
that ψS/R ◦ (id⋉d) = η□id is the right inclusion of S in S□RS. Moreover, since for any element
x ∈ I/I≥2 the multiplication µ(x) = 0 vanishes, also the augmentations agree.
To see that ψS/R is an isomorphism, we explicitly construct an inverse. We consider

ψ̃S/R : (S□RS)/I≥2 → S ⋉ I/I≥2, ξ 7→ (µ(ξ), µ(ξ) ⊠ 1− ξ).

This is well-defined on the quotient by I≥2, since for ξ ∈ I≥2, we have both µ(ξ) = 0 and
ξ = 0 ∈ I/I≥2. By an easy calculation, it is inverse to ψS/R. Thus, ψS/R is an isomorphism of
global power functors.

Now, we show that the derivation d : S → I/I≥2 is the universal R-derivation on S and I/I≥2

is a model for the Kähler differentials. First, we need the following lemma:
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Lemma 1.2.23. The S-module I/I≥2 is generated by the image of d : S → I/I≥2.

Proof. Since I/I≥2 is a quotient of an ideal in S□RS, we first consider this box product. By
Remark 1.1.9, the elements s ⊠ s′ for s ∈ S(H), s′ ∈ S(H ′) generate the global functor S□RS,
where H and H ′ run through the pairs of representatives of isomorphism classes of compact Lie
groups.
Thus, we may write any element of I(G) ⊂ (S□RS)(G) as

∑
trGHi

(α∗
i (xi ⊠ yi)) for some finite

index set J , compact Lie groups Ki,K
′
i, closed subgroups Hi ⊂ G, continuous homomorphisms

αi : Hi → Ki ×K ′
i and elements xi ∈ S(Ki), yi ∈ S(K ′

i). Then, we can calculate∑
trGHi

(α∗(xi ⊠ yi)) =
∑

trGHi
(α∗((xi × yi) ⊠ 1− xi × d(yi))).

Since we started with an element in the kernel of the multiplication map, we see that the first
summands sum to zero. Thus, we see that the elements d(yi) generate I/I≥2 as an S-module.

This allows us now to show that Kähler differentials exist by showing the universal property
for (I/I≥2, d).

Theorem 1.2.24. Let R be a global power functor and S be an R-algebra. Let M be an S-module,
and d : S → I/I≥2 be the derivation from (1.2.20). Then the map

HomS(I/I≥2,M)→ DerR(S,M), φ 7→ φ ◦ d

is an isomorphism of abelian groups natural in M . In particular, Kähler differentials exist for
all R-power algebras, and we have

Ω1
S/R
∼= I/I≥2.

Proof. First, we need to check that φ ◦ d is indeed a derivation. This is easily seen from the
definition in 1.2.8, since φ is a morphism of S-modules. Moreover, the map φ 7→ φ ◦ d is clearly
additive.
We now construct an inverse map: Let e ∈ DerR(S,M) be an R-derivation. Then, by 1.2.11, we
obtain a morphism id ⋉ e : S → S ⋉M of R-algebras augmented to S. Then, the extension-of-
scalars adjunction between R- and S-algebras gives a map

id⋉ e : S□RS → S ⋉M

of S-algebras augmented to S, where on the left we have as augmentation the multiplication.
Hence, this induces a morphism φ̃e : I → M between the augmentations ideals as power ide-
als. Since S ⋉M is a square-zero extension, all products and power operations vanish on the
augmentation ideal M , so this factors over a morphism

φe : I/I≥2 →M

of S-modules.
We now claim that these two assignments are inverse to each other. Let e : S → M be an
R-derivation. Then, we consider the diagram

S□RS S ⋉M

(S□RS)/I≥2 ∼= S ⋉ I/I≥2

id⋉e

proj∼=id⋉d

id⋉φe
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of morphisms of augmented S-algebras, where the identification at the bottom and the translation
of the projection morphism follow from Lemma 1.2.22. This diagram commutes by the definition
of φe. Thus, we obtain the equation e = φe ◦ d by restricting to elements of the form 1 ⊡ s in
S□RS. This proves that one composition of the above morphisms is the identity. Moreover, this
implies for a morphism φ : I/I≥2 →M and e = φ◦d that φ◦d = φφ◦d ◦d. By Lemma 1.2.23, we
can cancel precomposition with d in the category of S-modules, hence φφ◦d = φ, which proves
that the other composition is also the identity. Naturality of the morphism is clear. Hence, we
have proven the theorem.

Remark 1.2.25. Theorem 1.2.24 shows that the functor of derivations is representable. Thus, the
abelian group ofR-derivations on S can be described as the group of homomorphisms between two
S-modules. By Proposition 1.1.8, the category of global functors is closed symmetric monoidal,
and this transfers to the category of S-modules. Hence, we observe that we can upgrade the
abelian group structure on DerR(S,M) to a global functor of derivations. This may be done by
defining

DerR(S,M)(G) = DerR(S,M [G]). (1.2.26)

This definition uses the description of the internal function object in Proposition 1.1.16 in terms
of shifted modules.

This enrichment to a global-functor-valued functor of derivations later leads to a possible
interpretation of S-modules as global functor objects in augmented S-algebras, as we explain in
Section 1.3.b. It also emphasizes the duality between Kähler differentials and derivations, which
later leads to the duality between André-Quillen homology and cohomology.

1.2.d Base Change and Transitivity
In this section, we prove the basic properties of Kähler differentials and derivations, namely a
transitivity exact sequence and a base change result. These results are important for the cal-
culation of Kähler differentials and derivations. Moreover, the existence of right and left exact
sequences of Kähler differentials and derivations, respectively, raises the question of existence of
derived functors, which then leads to the development of André-Quillen homology and cohomol-
ogy. We start with the base change.

Proposition 1.2.27. Let R be a global power functor, S and R′ be R-algebras and S′ = R′□RS.
Then, the morphism

φ : R′□RΩ1
S/R
∼= S′□SΩ1

S/R → Ω1
S′/R′

of S′-modules, arising from functoriality of the Kähler differentials, is an isomorphism.
Moreover, for any S′-module M , restriction along S → S′ gives an isomorphism

φ∗ : DerR′(S′,M)→ DerR(S,M).

Proof. We start with the statement for the functor Der, the statement for Ω1 follows from
representability, since the restriction morphism is dual to φ.
We define an inverse morphism to φ∗ as

ψ∗ : DerR(S,M)→ DerR′(S′,M)

d 7→ (S′ = R′□RS
R′□d−−−→ R′□RM

µ−→M),

where µ : R′□RM → M is the restriction of the S′-module structure of M . We need to check
that for any R-derivation d : S → M , the morphism ψ∗(d) indeed is an R′-derivation. It is
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a morphism of global functors, and we can verify the equations from 1.2.8 on elements of the
form r ⊡ s with r ∈ R′(G) and s ∈ S(G), since these elements generate R′□RS. We have, for
r ⊡ s, r′ ⊡ s′ ∈ (R′□RS)(G) and k ≥ 1,

ψ∗(d)((r ⊡ s) · (r′ ⊡ s′)) =ψ∗(d)((rr′) ⊡ (ss′))
=(rr′) · d(ss′) = (rr′) · (sd(s′) + s′d(s))
=(r ⊡ s) · (r′d(s′)) + (r′ ⊡ s′) · (rd(s))
=(r ⊡ s) · ψ∗(d)(r′ ⊡ s′) + (r′ ⊡ s′) · ψ∗(d)(r ⊡ s)

ψ∗(d)(P k(r ⊡ s)) =ψ∗(d)(P k(r) ⊡ P k(s))
=P k(r) · trk−1,1(P k−1(s)× d(s))
= trk−1,1(Φ∗

k−1,1(P k(r)) · (P k−1(s)× d(s)))
= trk−1,1((P k−1(r) ⊡ P k−1(s))× (r · d(s)))
= trk−1,1(P k−1(r ⊡ s)× ψ∗(d)(r ⊡ s)).

Moreover, the composition R′ → R′□RS
ψ∗(d)−−−→ M is the extension of scalars of the morphism

R → S
d−→ M , which is trivial since d is an R-derivation. So ψ∗(d) vanishes on R′ and hence is

an R′-derivation. Now we have to check that ψ∗ is indeed inverse to φ∗.
The composition φ∗ ◦ ψ∗ is the morphism

DerR(S,M)→ DerR(S,M), d 7→ (S → S′ = R′□RS
R′·d−−−→M).

On any element s ∈ S(G), we see that the right derivation takes the value s 7→ 1⊡ s 7→ 1 ·d(s) =
d(s), so this composition is the identity.
The other composition is the map

DerR′(S′,M)→ DerR′(S′,M), d 7→ (S′ = R′□RS
R′·d|S−−−−→M).

This maps any element r⊡s to r ·d(s). Since d is R′-linear, we see that this agrees with d(r⊡s).
Since elements of this form generate S′, we see that also this composition is the identity. This
finishes the proof.

Remark 1.2.28. The inverse morphism ψ∗ : DerR(S,M) → DerR′(S′,M) constructed in the
proof is induced by a morphism ψ : Ω1

S′/R′ → S′□SΩ1
S/R of S′-modules. This morphism can be

constructed by universality from the differential

d̃ := R′□RdS/R : S′ ∼= R′□RS → R′□RΩ1
S/R
∼= S′□SΩ1

S/R.

The calculations that this is indeed a differential and that the resulting map ψ is inverse to φ can
be done by similar arguments as in the given proof, but also follow formally by representability.

Next, we show that we have the transitivity exact sequences:

Proposition 1.2.29. Let R→ S → T be a triple of global power functors and M be a T -module.
Then the sequences

T□SΩ1
S/R → Ω1

T/R → Ω1
T/S → 0

of T -modules and
0→ DerS(T,M)→ DerR(T,M)→ DerR(S,M)

of abelian groups are exact, where the morphisms are the natural ones induced by the restrictions
of derivations.
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Proof. We again start with the statement for derivations. There, exactness is clear, since by
definition, DerS(T,M) is the subgroup of DerR(T,M) consisting of exactly those derivations
which vanish on S.
That the sequence of representing objects is exact is then a consequence of the Yoneda Lemma.

Finally, we also describe how the Kähler differentials and derivations interact with coproducts.
Note that the coproduct in the category of R-power algebras is given by the relative box product
□R defined in (1.1.27). This can be deduced from the description of coproducts in the slice
category of R-power algebras and since colimits in global power functors are calculated in the
category of global Green functors. This last statement holds since global power functors are
comonadic over global Green functors, as shown in [55, Section 5.2].

Proposition 1.2.30. Let R be a global power functor and let S and T be R-algebras. Then the
inclusions S → S□RT and T → S□RT induce an isomorphism

(Ω1
S/R□T )⊕ (S□Ω1

T/R)→ ΩS□RT/R,

and dually, restriction along these inclusions induces an isomorphism

DerR(S□RT,M)→ DerR(S,M)⊕DerR(T,M)

for any S□RT -module M .

Proof. As before, we only give the proof of the fact for derivations, the claim for the Kähler
differentials follows by representability.
We need to define an inverse map DerR(S,M) ⊕ DerR(T,M) → DerR(S□RT,M). So let
d : S → M and d′ : T → M be R-derivations. Then we define d̄ : S□RT → M on S□RT
via the bimorphism

S(G)⊗ T (K)→M(G×K), s⊠ t 7→ d(s)× t+ s× d′(t).

This descends to a well-defined map on S□RT by R-linearity of the derivations, and it is easy
to check that this is indeed a derivation. Thus, we have defined a morphism DerR(S,M) ⊕
DerR(T,M)→ DerR(S□RT,M). Moreover, it is clearly inverse to the morphism

DerR(S□RT,M)→ DerR(S,M)⊕DerR(T,M)

defined by restriction. This finishes the proof.

1.3 The Comparison to Beck Modules

In the classical theory of commutative rings, it is a well-known fact that the category of modules
over a commutative ring R can equivalently be described as the category of abelian group objects
in the category of augmented algebras over R.

Theorem 1.3.1. Let R be a commutative ring. Then the functors

ModR Ab(AlgR /R)
R⋉(_)

ker

are inverse equivalences.
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This theorem amounts to saying that the abelian group structure in an abelian group object
T → R of augmented algebras is determined by the addition on T and on the kernel all products
vanish.

This result is used by Quillen to define his cohomology theory for commutative rings in [53].
It goes back to Beck’s work on cohomology theories for triples1 [13], where he considers modules
over commutative rings in Example 8 and gives the argument why the products on the kernel
vanish for associative algebras in Example 6. After his influential work, abelian group objects
in various algebraic categories are also called “Beck modules”. The fact that the abelian group
structure is determined by the addition on T is an application of the Eckmann-Hilton argument
and can be found in [22], where also the notion of (abelian) group objects in general categories is
introduced. The argument for vanishing products on the kernel is also spelled out by Strickland
in [62, after Proposition 14.7] in the context of Tambara functors.

However, in our situation of modules over global power functors, the square-zero extension is
no longer an equivalence between modules and Beck modules. In fact, the abelian group structure
is not sufficient to conclude that all power operations on the augmentation ideal vanish. We give
an example of this in Section 1.3.a. Based on the work of Hill [30], we propose an alternative
identification of modules over a global power functor as “global Beck modules”, ie global functor
objects in the category of augmented R-algebras. The details of this conjecture are explained in
Section 1.3.b.

We also shortly comment on the topological version of this identification, which is integral
to the understanding of topological André-Quillen homology of commutative ring spectra. In
this context, Basterra and Mandell have shown in [11] that the category of R-modules for a
commutative ring spectrum R can be identified with the category of spectra of augmented R-
algebras. This result follows the slogan that in stable homotopy theory, the correct analogue of an
abelian group is a spectrum, and abelianization should be replaced by stabilization. The result of
Basterra-Mandell shows that topological André-Quillen homology and cohomology indeed arise
from a stabilization procedure.
In the context of ultra-commutative ring spectra, which we study in Chapter 2, we should follow
this slogan and replace the global functor objects from Conjecture 1.3.21 by a stable homotopy
theoretic notion. This leads to studying “global stabilizations”, constructed by a model category
of global spectra over a base model category. Then, we aim at comparing R-modules for an
ultra-commutative ring spectrum R with global spectra over augmented R-algebras. This line of
study is currently investigated in joint work with Tobias Lenz.

1.3.a Abelian Group Objects that are not Modules

In the case of Tambara functors for a fixed group, there is an example by Strickland [62, Example
14.13, 7.8] of an abelian group object in the category of augmented C2-Tambara algebras over
the constant Tambara functor Z that is not a square-zero extension of a Z-module. Indeed, there
are non-trivial norms on elements in the augmentation ideal. A priori, it is not clear whether
a similar example of an abelian group object with power operations can exist in the context of
global power functors, because the presence of the additional inflation maps could prevent this.
However, it turns out that Strickland’s example can (after a minor adjustment to accommodate
for inflations) be generalized to a global functor, and we supply an explicit description for its
value at finite groups. In fact, we demonstrate that this example can be obtained from a free
example of an abelian group object in augmented global power algebras.

We first recall a modified version of Strickland’s example from [62, Example 14.13, 7.8].

1Here, triples is used synonymously to the word monad
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Example 1.3.2. We define an algebra T over the constant C2-Tambara functor Z via the
following Lewis diagram:

T (C2) = Z[β, γ]/(β2, βγ, γ2, 2γ)

T (e) = Z[α]/(α2)

1 7→1
β 7→α

γ 7→0

1 7→1
α7→β

1 7→2
α7→2β

i+jα7→i2+2ijβ+j2γ

Here, the downwards arrow is the restriction, the leftmost arrow is the transfer and the rightmost
arrow is the norm. We have also included the inflation along the surjection C2 → e, which is
present in our generalization to a global power algebra, as the straight upwards arrow. We
emphasize that in comparison to Strickland’s original example, we shifted one coefficient 2 from
the restriction map to the transfer. This is necessary since the presence of the inflation forces
the restriction to be surjective. For me, the above placement of the 2 is more natural, since this
way the sub-Mackey functor on the elements α and β is itself a constant Mackey functor. This
change does not influence the relevant calculations to check that T is a C2-Tambara functor.
We observe that the maps Z→ T and T → Z given by including as the summand generated on
1 and projecting to this summand, respectively, give T the structure of an augmented Z-algebra.
Moreover, as explained in [62, Example 14.13], T is an abelian group object in the category of
augmented algebras. Indeed, the augmentation ideal is generated by the elements α, β and γ,
on which all products vanish. However, the norm of α is γ and thus not trivial.

We now generalize this example to the global setting. This implies the existence of such
examples as G-Tambara functors for all finite G since any global power functor can be restricted
to give G-Tambara functors for all G. To carry out the generalization, we observe that the
augmentation ideal of T above is essentially a “free Z-module with norms” on the generator α,
or in the language introduced by Strickland, a free genuine Z-module. We first consider a free
global functor with power operations, which we model by a naive version of a module of Kähler
differentials over A. The generalization of Strickland’s example is then obtained by taking the
box product with the constant global power functor Z. We start by motivating the construction.

As we have seen in Proposition 1.2.15, the module of Kähler differentials of a polynomial
global power functor is a free module on a single generator. Moreover, by Lemma 1.2.22, we
have a nice description of the square-zero extension R[x]⋉Ω1

R[x]/R
∼= (R[x]□RR[x])/I≥2 for this

free module. In this description, we take the quotient by I≥2 instead of by the naive square I2

exactly to enforce that all powers on the module of Kähler differentials are trivial. Hence, in order
to obtain a free “naive” module on a single generator and allow for norms on the augmentation
ideal, we should instead take the naive module of Kähler differentials by taking the quotient by
I2. We carry this out over A:

Construction 1.3.3. We consider the augmented algebra A[xG] xG 7→0−−−−→ A, a polynomial algebra
over A on a single generator at the compact Lie group G. In this algebra, we consider the (Green)
ideal I2 generated by elements of the form P k(xG)×P l(xG) for k, l ≥ 1. In fact, this ideal even
is a power ideal in A[xG], and it is the square of the kernel I = ker(A[x] → A). We consider
the quotient Ãpow{xG} = A[xG]/I2. This inherits the structure of a global power functor from
A[xG], and comes equipped with the structure of an augmented A-algebra by sending xG to 0.

The augmentation ideal of this augmented algebra is isomorphic to I/I2, and it is generated
as an A-module by the elements P k(xG) for k ≥ 1. In particular, the power operations on this
augmentation ideal are non-trivial. We denote this augmentation ideal by Apow{xG}. However,
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1.3. THE COMPARISON TO BECK MODULES

since all products in this augmentation ideal vanish, we see that Ãpow{xG} is an abelian group
object in the category of augmented A-algebras.

As indicated previously, we can interpret this A-module as a “naive module of Kähler dif-
ferentials” of A[xG] over A, base-changed to A. Here, in contrast to the calculation of the
actual, genuine Kähler differentials from Theorem 1.2.24, we only take the quotient by actual
decomposables, omitting the power operations of degree ≥ 2 on single elements.

Proposition 1.3.4. The augmented A-algebra Ãpow{xG} is an abelian group object in the cate-
gory of augmented A-algebra. It is free as an abelian group object, ie for any abelian group object
T in augmented A-algebras, the morphism

evx : HomAb(AlgA /A)(Ãpow{xG}, T )→ ker(T → A)(G), φ 7→ φG(x)

is an isomorphism of abelian groups.
For this free abelian group object, the augmentation ideal Apow{xG} has non-trivial norms.

In the description of freeness, we used that an abelian group object is in fact totally determined
by its augmentation ideal.

Proof. The augmented algebra Ãpow{xG} is an abelian group object since all products on the
augmentation ideal vanish. Explicitly, we can check that the morphisms

(Ãpow{xG} ×A Ãpow{xG})(K)→ Ãpow{xG}(K),a0 +
∑
k≥0

akP
k(x), a0 +

∑
k≥0

bkP
k(x)

 7→ a0 +
∑
k≥0

(ak + bk)P k(x)

and the inclusion
A→ Ãpow{xG}

as the constant summand define the structure of an abelian group object on Ãpow{xG}. Here,
ak, bk ∈ A(Σk ≀ G,K) are the Burnside-ring coefficients of a polynomial in A[xG]. It is clear
that on the augmentation ideal Apow{xG}, non-trivial power operations exist, as P k(x) /∈ I2 for
k ≥ 2. Hence, it remains to show freeness of this construction.
By freeness of the polynomial global power functors (1.1.23), we know that

HomAlgA(A[xG], T ) ∼= T (G), φ 7→ φ(x)

is a bijection. A morphism φ : A[xG]→ T is a morphism of augmented global power algebras if
and only if φ(x) ∈ ker(T → A), hence we obtain

HomAlgA /A(A[xG], T ) ∼= ker(T → A)(G), φ 7→ φ(x).

As T is an abelian group object, all products on this augmentation ideal vanish, and hence we
observe that I2 ⊂ A[xG] is sent to 0 in T . Thus any such φ factors uniquely over A[xG]/I2 =
Ãpow{xG}. Finally, by the Eckmann-Hilton argument, the abelian group structures on Ãpow{xG}
and T are completely determined by the addition, and hence any morphism of augmented algebras
is automatically a morphism of abelian group objects. In total, we obtain the isomorphism

evx : HomAb(AlgA /A)(Ãpow{xG}, T )→ ker(T → A)(G), φ 7→ φG(x).
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Corollary 1.3.5. The functor

A⋉ (_) : GF ∼= ModA → Ab(AlgA /A)

is not essentially surjective.

We obtain a generalization of Strickland’s example by forming the base change Zpow{xe} :=
Z□Apow{xe}. We provide explicit descriptions of Apow{x} and Zpow{xe} on finite groups, which
highlight the connection to Strickland’s example. To formulate this calculation, we introduce
the following notation:

Notation 1.3.6. Let m ≥ 1 and G be a finite group. Then we define the set

Gm(G) = {(H,X) | H ≤ G, X a transitive H-set of cardinality m}/∼.

The equivalence relation ∼ is conjugacy, ie two pairs (H,X) and (H ′, X ′) are equivalent if there
is g ∈ G such that H ′ = gHg−1, and there is a bijection f : X

∼=−→ X ′ such that hx = ghg−1f(x)
for all h ∈ H and x ∈ X. We also define G(G) =

∐
m≥1 Gm(G).

On this set, we define a partial ordering by setting (H,X) ≤ (L, Y ) if H is conjugate to a
subgroup H ′ ≤ L and the restriction of Y to H ′ is equivalent to the H-set X as above. Then,
we define Mm(G) ⊂ Gm(G) and M(G) ⊂ G(G) as the sets of all maximal elements.

Proposition 1.3.7. Let G be a finite group.

i) We have that
Apow{xe}(G) ∼=

⊕
G(G)

Z = Z{trGH X | [(H,X)] ∈ G(G)}

is a free abelian group on transfers of generators indexed by conjugacy classes of pairs
(H,X), where H ≤ G is a subgroup of G and X is a transitive H-set.

ii) There is a surjection ⊕
M1(G)

Z⊕
⊕

p a prime
k≥1

⊕
M

pk (G)

Z/p↠ Zpow{xe}(G).

Explicitly, we have a set of generators given by conjugacy classes of pairs (H,X), with H a
subgroup of G and X a transitive H set with cardinality a prime power, which are maximal
with respect to the order defined in Notation 1.3.6. Moreover,M1(G) = {[(G, ∗)]} has only
one element.

Proof. We start by analysing Apow{xe}:

i) We know that Apow{xe} = I/I2, where I is the kernel of the augmentation A[x]→ A. Thus,
I(G) =

⊕
m≥1 A(Σm, G). By the description of the Burnside category in Remark 1.1.2,

we see that A(Σm, G) is free abelian on generators of the form trGH ◦α∗, where H ≤ G is a
subgroup of G and α : H → Σm is a group homomorphism. Such a group homomorphism is
equivalent to an H-set X of cardinality m, and hence we denote this generator by trGH(X).
The conjugacy relation in A(Σm, G) is the same as the one used to define Gm(G).
We now claim that I2(G) is the submodule generated by exactly those trGH(X) where X is
not transitive. This proves the desired description of Apow{xe}. For this, we consider the
product on I. This is given on components by the map

A(Σm, G)⊗ A(Σn,K) ×−→ A(Σm × Σn, G×K)
A(Φ∗

m,n,G×K)
−−−−−−−−−→ A(Σm+n, G×K)
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that sends trGH(X)⊗ trKL (Y ) to trG×K
H×L (X ⨿ Y ). Here, H × L acts on X ⨿ Y by letting H

act as given on X and trivially on Y , and conversely for L. With this description, we see
that if the H-set X is not transitive, using a decomposition X = X1 ⨿X2 as H-sets, we
can write trGH(X) = trGH(trHH(X1) · trHH(X2)) ∈ I2(G). Here, we used the diagonal product
I(H)⊗ I(H)→ I(H), which arises from the product above by applying a restriction along
the diagonal. Hence, any generator trGH(X) with X not transitive is contained in I2.
Conversely, I2 is generated as a global functor by elements trG×K

H×L (X ⨿ Y ). We observe
that X ⨿ Y is a non-transitive G × H-set, as both X and Y are not empty. It is thus
sufficient to show that for a non-transitive H-set X and any homomorphism α : K → G,
also α∗ trGH(X) is a sum of elements of the form trKL (Y ), where Y is a non-transitive L-set.
This follows easily from the double coset formula, since any restriction of a non-transitive
set is still not transitive. We omit the exact calculation here.
In total, we have shown I2(G) ∼= Z{trGH X | H ≤ G, X a non-transitive H-set}/∼, and
hence we conclude

Apow{xe}(G) ∼= Z{trGH X | H ≤ G, X a non-empty transitive H-set}/∼ ∼=
⊕
G(G)

Z.

ii) Observe that the morphism A → Z, X → |X| is a quotient map with kernel generated by
trGH(resGH) − [G : H] for all pairs H ≤ G. Since the box product is right exact, we hence
may calculate Zpow{xe}(G) as a quotient of Apow{xe}(G). We obtain a surjection⊕

G(G)

Z ↠ Zpow{xe}(G).

Thus, it suffices to show that we may restrict to maximal generators, that generators
indexed by a set of non-prime-power order vanish in the quotient, and that generators
indexed by sets of prime power order have corresponding prime torsion.
Let [(H,X)] ≤ [(K,Y )] be two elements in Gm(G). Then there is g ∈ G such that gH =
gHg−1 ≤ K. We calculate that in Zpow{xe}(G), the relation

trGH(X) = trGK(trKgH(resKgH(Y ))) = [K : gH] trGK(Y )

holds. Thus, we may reduce to Mm(G) as a generating set.
For the other two relations, we consider that for a given m ≥ 1, any action on a set X
with m elements arises by pulling back along a morphism α : H → Σm. Thus, we consider
the Σm-set X. We already know that restriction to any non-transitive subgroup of Σm
annihilates X in Apow{xe}. Any non-transitive subgroup is subconjugate to one of the
form Σi × Σm−i with 1 ≤ i ≤ m− 1. We obtain that(

m

i

)
X = [Σm : Σi × Σm−i]X = trΣm

Σi×Σm−i
(resΣm

Σi×Σm−i
(X)) = 0.

Thus, X is torsion also for the greatest common divisor of these indices. It is well-known
that for binomial coefficients, we have

gcd([Σm : Σm−i × Σi] | 1 ≤ i ≤ m− 1) =


0 if m = 1
p if m = pk

1 else.

For a reference, see [54]. This shows both that we can reduce to generators of cardinality
m = pk for p a prime and that these generators are p-torsion. This finishes the calculations.
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Remark 1.3.8. We warn the reader that the usage of H-sets in the description above should not be
confused with the usage of G-sets in the classical description of the Burnside ring A(G) = A(e,G),
which is the Grothendieck ring of finite G-sets. In this description, the disjoint union of G-sets
corresponds to addition, and a set of generators may be given by considering transitive G-sets,
which are of the form G/H and correspond to trGH in our description of the Burnside category
from Remark 1.1.2. Hence, in this description, we use the fact that any G-set decomposes into a
disjoint union of orbits in order to describe the free abelian group. Here, the product is given by
the Cartesian product ofG-sets, equipped with either the diagonal action for the diagonal product
· : A(G)⊗A(G)→ A(G), or with the G×K-action for the product × : A(G)⊗A(K)→ A(G×K).
The power operation is given by the m-th Cartesian power with the natural action of Σm ≀G by
acting on each factor and permuting the factors.
By contrast, in the description of I and I/I2 in Proposition 1.3.7 i) above, H-sets are purely
used as a means to conveniently index the generators of the free abelian group and describe the
indecomposables. The sum is not given by disjoint union, but as the formal sum in a free abelian
group. Also the transfer and restriction are calculated by formal manipulation. The product is
induced by disjoint union, and thus also the power operations are defined by iterated disjoint
unions. Hence, care should be taken when working with this description.

Example 1.3.9. We observe that restricted to subgroups of the cyclic group C2, the surjection
above is an isomorphism, and this description of Zpow{xe} recovers the example given by Strick-
land, as recalled in Example 1.3.2 (up to the adjusted occurrence of one 2). We also give the
structure of the global power functor Zpow{xe} on subgroups of Σ3. These subgroups are Σ3
(top), C3 generated by a 3-cycle (left), C2 generated by a 2-cycle (right) and the trivial subgroup
e (bottom).

Z[β, γ, δ]/(β2, βγ, βδ, γ2, γδ, δ2, 2γ, 3δ)

Z[β, δ]/(β2, βδ, δ2, 3δ)

Z[β, γ]/(β2, βγ, γ2, 2γ)

Z[α]/(α2)

1 7→1, β 7→β

γ 7→γ, δ 7→0

1 7→1, β 7→β

γ 7→0, δ 7→δ

1 7→1, β 7→α

δ 7→0

1 7→1, β 7→β

δ 7→δ

1 7→2, β 7→2β
δ 7→2δ

1 7→1, β 7→α

γ 7→0

1 7→1, β 7→β

γ 7→γ1 7→3, β 7→3β
γ 7→3γ

1 7→1
α 7→β

1 7→2
α7→2β

1 7→1
α7→β

1 7→3
α7→3β

i+jα7→i2+2ijβ+j2γ

i+
j
α

7→
i3

+
3i

2
j
β

+
3i
j

2
γ

+
j

3
δ

Here, the downward-pointing morphisms are restrictions, and the straight upward-pointing mor-
phisms are inflations. The linear curved morphisms are transfers, and the non-linear morphisms
are the power operations. On Zpow{xe}(C3), we also have an automorphism given by restricting
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along the (outer) automorphism of C3 given by squaring all elements. This morphism is the
identity and omitted from the diagram. Moreover, there are various compositions of the given
transfers and restrictions, which are not depicted for the sake of readability. One such composi-
tion of particular interest is resΣ3

C3
◦P 3 : Zpow{xe}(e) → Zpow{xe}(C3), which is the norm NC3

e .
One calculates that NC3

e (α) = δ is non-trivial.
For these small groups, we actually only see actual transitive G-sets themselves at all levels,

and all transfers from lower levels are multiples of generators named by transitive G-sets. Framed
differently, all maximal elements in M(G) are of the form [(G,X)]. The necessity to include
transfers of transitive sets for proper subgroups becomes apparent eg when considering A5. Here,
we observe that the alternating group A5 cannot act transitively on a set with 2 elements, since
it is simple. However, there is a transitive set with 2 elements for the Klein 4-group K4 ≤ A5,
and thus we obtain an element named trA5

K4
(X) in Zpow{xe}(A5).

One benefit of lifting the example from Z to an example over A is that at each level G,
Apow{xK}(G) is torsion-free. Thus, we also obtain that the phenomenon that abelian group
objects and modules differ persists after rationalization. Explicitly, we obtain an example over
A ⊗ Q, where the tensor product is taken levelwise. This is a global power functor by [55,
Example 5.2.19]. Such an example for rational Tambara functors was not known previously, as
Strickland’s example only supports a norm that is 2-torsion. Also in our global context, it is not
yet clear whether there exists an abelian group object in augmented Q-algebras with non-trivial
power operations.

Corollary 1.3.10. For the rational global power functors R = A⊗Q, the functor

R⋉ (_) : ModR → Ab(AlgR /R)

is not essentially surjective.

1.3.b Modules as Global Functor Objects

In Section 1.3.a, we exhibit an example of an abelian group object in the category of augmented
A-power algebras that does not arise from a module via square-zero extension. This shows that
the mismatch between modules and Beck modules in the context of equivariant algebra for a fixed
finite group G exhibited by Strickland in [62] persists in the case of global power functors, and
our example clarifies some aspects left open by Strickland’s example. In the case of modules over
a G-Tambara functor R, subsequent work of Hill [30] gives a new perspective on this discrepancy:
Instead of being abelian group objects in augmented R-algebras, R-modules can be interpreted
as Mackey functor objects in this category. In this fashion, the notion of a Beck module is also
suitably generalized to a G-equivariant world.

This interpretation of modules as Mackey functor objects needs some preparations, which
are carried out in [30, Section 3]. In particular, it is necessary to define what a Mackey functor
object should be. For this, it is convenient to recall a possible definition of abelian group objects:
For a category C, the structure of an abelian group object in C on X is a lift of the functor

HomC(_, X) : Cop → Sets

through the forgetful functor Ab → Sets. In a category with finite products, this is equivalent
to the description by the usual maps and diagrams of an abelian group. Hill showed that the
category of augmented G-Tambara algebras over R comes with an enrichment in coefficient
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systems of sets, ie for any subgroup H of G, there is an associated morphism set, and we have
restrictions between these. The structure of a Mackey functor object thus is a lift of

Hom(_, X) : (AlgR /R)op → CoefficientSystems

through the forgetful functor from Mackey functors to coefficient systems. In [30, Theorem 3.22,
Corollary 3.23], Hill proved that with this notion of Mackey functor objects, the square-zero-
extension functor is indeed an equivalence between R-modules and Mackey functor objects in
augmented R-algebras.

One of the ingredients in this interpretation of square-zero extensions as Mackey functor
objects is that, in fact, the functor HomAlgR /R(_, R ⋉M) : AlgR /Rop → Sets of morphisms
into a square-zero extension can be upgraded to a Mackey functor. This works using the natural
bijection

HomAlgR /R(S,R⋉M) ∼= DerR(S,M) ∼= HomS(Ω1
S/R,M)

and the closed monoidal structure on S-modules. Thus, the square-zero extension R⋉M is indeed
a Mackey functor object. We observe that similarly, in the context of global power functors,
HomAlgR /R(S,R ⋉M) can be upgraded to a global functor. Hence, we consider whether it is
possible to interpret R-modules as global functor objects in augmented R-algebras.

As mentioned before, a first step towards this interpretation is to show that the category
of augmented R-power algebras is in fact enriched over global coefficient systems. Recall from
Proposition 1.1.16 that the internal Hom functor for global functors can be described using shifts
of global functors. We consider the same construction in the context of global power functors
and algebras.

Construction 1.3.11. Let R be a global power functor, and G be a compact Lie group. We
endow the global functor R[G] with the structure of a global power functor as follows:
First, we define the structure of a global Green functor on R[G]. For this, we notice that
R[G](H) = R(H×G) has the structure of a commutative ring, since R is a global Green functor.
Moreover, we define power operations on R[G] as follows: Let H be a compact Lie group and let
m ≥ 1. Then we define

P [G]m : R[G](H) = R(H ×G) Pm

−−→ R(Σm ≀ (H ×G)) (∆m
G )∗

−−−−→ R((Σm ≀H)×G) = R[G](Σm ≀H).

Here, ∆m
G : (Σm ≀H) × G → Σm ≀ (H × G) is the diagonal on G, sending ((σ;h1, . . . , hm), g) to

(σ; (h1, g), . . . , (hm, g)).

Proposition 1.3.12. Let R be a global power functor and G be a compact Lie group. Then
R[G] with the multiplication and power operations described in 1.3.11 is a global power functor.
Moreover, the external product

× : R[G](H)×R[G](K)→ R[G](H ×K)

is obtained as the composite

R(H ×G)×R(K ×G) ×−→ R(H ×G×K ×G) ∆∗
G−−→ R(H ×K ×G)

of the external product of R and the restriction along the diagonal of G.

Proof. We first check that the multiplications on R[G](H) = R(H ×G) make R[G] into a global
Green functor. For this, notice that for a group homomorphism φ : K → H, the morphism

φ[G]∗ = (φ×G)∗ : R[G](H) = R(H ×G)→ R(K ×G) = R[G](K)
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is a homomorphism of commutative rings. Also, the transfer tr[G]HL = trH×G
L×G for a closed

subgroup L ⊂ H satisfies Frobenius reciprocity for resH×G
L×G = res[G]HL . Thus, R[G] has the

structure of a global Green functor induced from R.
Next, we check the description of the multiplication × on R[G]. For this, consider the diagram

R(H ×G)×R(K ×G) R(H ×K ×G)

R(H ×K ×G)×R(H ×K ×G)

R(H ×G×K ×G)×R(H ×G×K ×G)

R(H ×G×K ×G).

prH [G]∗×prK [G]∗

pr∗
H×G × pr∗

K×G

×

×

·

pr∗
1 × pr∗

2

·

∆∗
G×∆∗

G

∆∗
G

In this diagram, we used the description of× in the terms of ·, that the compositions of projections
is a projection, and that the restriction along the projections is a section for the restriction along
the diagonal. Thus, this diagram commutes and we have proven the claimed description of the
external multiplication.
For the power operations, we need to check the properties from Definition 1.1.18:

i) We calculate P [G]m(1) = (∆m
G )∗Pm(1) = 1.

ii) Since ∆1
G : (Σ1 ≀ H) × G → Σ1 ≀ (H × G) is the identity after identifying both sides with

H ×G, we see P [G]1 = Id.

iii) Let α : K → H be a homomorphism of compact Lie groups. Then we have

P [G]mα[G]∗ =(∆m
G )∗Pm(α×G)∗ = (∆m

G )∗(Σm ≀ (α×G))∗Pm

=((Σm ≀ α)×G)∗(∆m
G )∗Pm = (Σm ≀ α)[G]∗P [G]m.

iv) Let x, y ∈ R[G](H). Then

P [G]m(x · y) = (∆m
G )∗Pm(x · y) = (∆m

G )∗Pm(x) · (∆m
G )∗Pm(y) = P [G]m(x) · P [G]m(y).

v) Let x ∈ R[G](H) and i, j ≥ 1. Then

Φi,j [G]∗P [G]i+j(x) =(Φi,j ×G)∗(∆m
G )∗P i+j(x)

=∆∗
G(∆i

G ×∆j
G)∗Φ∗

i,jP
i+j(x)

=∆∗
G((∆i

G)∗P i(x)× (∆j
G)∗P j(x)) = P [G]i(x)× P [G]j(x).

vi) Let x ∈ R[G](H) and k,m ≥ 1. Then

Ψk,m[G]∗P [G]km(x) =(Ψk,m ×G)∗(∆km
G )∗P km(x)

=(∆k
G)∗(Σk ≀∆m

G )∗Ψ∗
k,mP

km(x)
=(∆k

G)∗(Σk ≀∆m
G )∗P k(Pm(x))

=(∆k
G)∗P k((∆m

G )∗Pm(x)) = P [G]k(P [G]m(x)).
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vii) Let x, y ∈ R[G](H) and m ≥ 1. Then

P [G]m(x+ y) = (∆m
G )∗Pm(x+ y) =

m∑
k=0

(∆m
G )∗ trk,m−k(P k(x)× Pm−k(y))

=
m∑
k=0

trk,m−k[G]∆∗
G(∆k

G ×∆m−k
G )∗(P k(x)× Pm−k(y))

=
m∑
k=0

trk,m−k[G](P [G]k(x)× P [G]m−k(y)).

Here, we used that the double coset formula for the composition (∆m
G )∗ trk,m−k has only one

summand, and the intersection of the corresponding subgroups is (Σk ≀H)×(Σm−k ≀H)×G.

viii) Let L ⊂ H be a closed subgroup and m ≥ 1. Then we calculate

P [G]m trHL [G] =(∆m
G )∗Pm trH×G

L×G

=(∆m
G )∗ trΣm≀(H×G)

Σm≀(L×G) P
m

= tr(Σm≀H)×G
(Σm≀L)×G (∆m

G )∗Pm = trΣm≀H
Σm≀L [G]P [G]m.

Thus R[G] is a global power functor.

We also consider whether the morphisms R[ϑ] : R[G]→ R[K] for ϑ ∈ A(G,K) are morphisms
of global power functors. This is the case for restrictions.

Proposition 1.3.13. Let R be a global power functor. Let φ : K → G be a homomorphism of
compact Lie groups. Then the restriction

R[φ∗] : R[G]→ R[K]

is a morphism of global power functors.

Proof. We already know that R[φ∗] is a morphism of global functors. Hence it suffices to prove
that it is compatible with the multiplication and the power operations. For the multiplication,
we see that R[φ∗](H) : R[G](H) → R[K](H) is given as (H × φ)∗, and this is a morphism of
commutative rings, since R is a global Green functor.
For the power operations, we calculate

R[φ∗]P [G]m =((Σm ≀H)× φ)∗(∆m
G )∗Pm

=(∆m
K)∗(Σm ≀ (H × φ))∗Pm = (∆m

K)∗Pm(H × φ)∗ = P [K]mR[φ∗].

Thus R[φ∗] : R[G]→ R[K] is a morphism of global power functors.

Remark 1.3.14. We could also try to consider transfers R[trGL ] : R[L] → R[G]. However, these
will in general not be morphisms of global power functors. One reason is that transfers are
not homomorphisms of rings in a global Green functor, but only satisfy Frobenius reciprocity.
Moreover, in the definition of the power operations, there is the diagonal restriction (∆m

G )∗.
To commute this with the transfer, we have to consider the double coset formula, and hence
calculate the double coset space (Σm ≀H)×G\Σm ≀ (H ×G)/Σm ≀ (H ×L). This, however, does
not only consist of a single double coset, hence in general we cannot commute these restrictions
and transfers without introducing additional summands. Thus, the transfers do not in general
define morphisms of global power functors.
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Construction 1.3.15. In the definition of derivations and Kähler differentials, we consider not
only global power functors, but also global power algebras and augmented power algebras for a
global power functor R and an R-algebra S. We generalize the above definition of R[G] to these
contexts.
For a global power functor R, the inflation R[p∗

G] : R = R[e]→ R[G] along the unique morphism
pG : G→ e makes R[G] into an R-power algebra. Using this and functoriality of the construction
(_)[G], we see that for a global R-power algebra S, also S[G] is a global R-power algebra via
the unit map R

R[p∗
G]−−−−→ R[G]→ S[G].

Moreover, if we have given an R-power algebra S and an R-power algebra T augmented to S,
then we define FS(G,T ) as the pullback

FS(G,T ) T [G]

S S[G].
S[p∗

G]

This is then also a global R-power algebra augmented to S. Also, the restrictions give morphisms

FS(φ∗, T ) : FS(G,T )→ FS(K,T )

of global R-power algebras augmented to S by functoriality, using Proposition 1.3.13.

We call the structure given in the above definition a global coefficient system.

Definition 1.3.16. A global coefficient system F (of sets) is a functor F : Repop → Sets, where
Rep is the category of compact Lie groups and conjugacy classes of continuous homomorphisms
between those. Explicitly, a global coefficient system consists of sets F (G) for all isomorphism
classes of Lie groups and restrictions φ∗ : F (G) → F (K) for any continuous homomorphism
φ : K → G, such that restrictions are functorial and conjugated morphisms induce the same
restrictions.
Generally, for a category C, a global coefficient system in C is a functor F : Repop → C. We
denote the category of global coefficient systems in C as Coeff(C) = Fun(Repop, C).

There is a forgetful functor GF → Coeff(Sets) by forgetting the abelian group structure on
F (G) and all transfers for a global functor F .

With this definition, we can reformulate the above results.

Proposition 1.3.17. Let S be a global power functor. Then for any augmented S-power algebra
T , the collection of augmented S-power algebras FS(G,T ) for compact Lie groups G, together
with the restrictions FS(φ∗, T ), defines a global coefficient system in AlgS /S.
The category AlgS /S is enriched over global coefficient systems by defining

HomAlgS /S
(T, T ′)(G) = HomAlgS /S

(T, FS(G,T ′)).

However, we know that the square-zero extensions provide even more structure, given by
transfers and abelian group object structures at every compact Lie group. We formalize this
structure as follows.

Definition 1.3.18. Let C be a category enriched in global coefficient systems of sets. A global
functor object in C is an object X of C together with a lift of the functor Hom(_, X) : Cop →
Coeff(Sets) through the forgetful functor GF → Coeff(Sets). We denote the category of global
functor objects by GF(C).
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Using the isomorphism

HomAlgS /S
(T, S ⋉M) ∼= DerS(T,M) ∼= HomT (Ω1

T/S ,M)

for a global power functor S, an augmented S-algebra T and an S-module M , we consider the
lift

HomAlgS /S
(T, S ⋉M) = DerS(T,M) ∼= HomT (Ω1

T/S ,M).

This proves that any S-module defines a global functor object.

Proposition 1.3.19. Let S be a global power functor and M be an S-module. Then S ⋉M has
the structure of a global functor object in AlgS /S.

We can also make the structure of the global functor object S⋉M more explicit by identifying
(S⋉M)(G) = S⋉(M [G]), and for θ ∈ A(G,K) considering S⋉(M [θ]) : S⋉(M [G])→ S⋉(M [K]).
This uses the following result:

Lemma 1.3.20. Let S be a global power functor and M be an S-module. Then there is an
isomorphism

FS(G,S ⋉M) ∼= S ⋉ (M [G])

of augmented S-power algebras, natural in restrictions φ : K → G.

Proof. The definition of (_)[G] is additive, thus we see (S ⋉M)[G] = S[G] ⊕M [G] as global
functors. Moreover, also as global power functors, we have (S⋉M)[G] = S[G]⋉M [G]. To check
that the power operations agree, we use the same double coset formula as for additivity of the
power operations P [G]m.
We consider the diagram

S ⋉ (M [G]) S[G] ⋉M [G]

S S[G].

S[p∗
G⋉id]

ε ε[G]

S[p∗
G]

This is easily seen to be a pull-back diagram of S-algebras, and thus we have the isomorphism
FS(G,S ⋉M) ∼= S ⋉ (M [G]).

Now, we can formulate an interpretation of modules as global functor objects.

Conjecture 1.3.21. Let S be a global power functor. Then the square-zero extension functor

S ⋉ _ : ModS → GF(AlgS /S)

is an equivalence.

We comment here on the proof of the corresponding statement in the context of G-Tambara
functors for a finite group G given by Hill in [30, Corollary 3.23]. This proof consists of two
steps: showing that the transfers on a Mackey functor object are already determined by the
transfers of the underlying augmented algebra [30, Lemma 3.20], and showing that the norms on
the augmentation ideal vanish [30, Theorem 3.22]. We reformulate his proof in a diagrammatic
way, which highlights the similarity in handling both parts of the argument. Then, we highlight
the situation in the case of global power functors, and how it compares to the G-equivariant case.
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Remark 1.3.22. The proof in [30, Corollary 3.23] of the G-Tambara version of Conjecture 1.3.21
proceeds as follows (adapted to our notation): Suppose we are given a G-Mackey functor object
T in the category of augmented R-algebras, where R is a G-Tambara functor. We need to show
that T is isomorphic to a square-zero extension R ⋉ M for an R-module M , as a G-Mackey
functor object. Choosing M = ker(T → R), we obtain an isomorphism T ∼= R ⋉M as Green
functors by the analogous arguments to the classical case. Hence, we only need to check that
the norms on M vanish, and that the “external” transfers, ie the transfers of the structure as
a Mackey functor object, agree with the given transfers of M . For both of these, it suffices to
consider a subgroup inclusion H ≤ G to transfer or norm along.

For both of these statements, we consider the diagrams

M(G/H ×G/H) = M [G/H](G/H) M(G/H ×G/G) = M [G/G](G/H)

M(G/G×G/H) = M [G/H](G/G) M(G/G×G/G) = M [G/G](G/G).

trG,ext
H

(G/H)

trG
H [G/H] NG

H [G/H] trG
H [G/G] NG

H [G/G]
trG,ext

H
(G/G)

(1.3.23)

The two diagrams, one for the transfers and one for the norms, both commute, as by assumption
T is a Mackey functor object, so the external transfers are morphisms of G-Tambara functors.
Here, we used the shifts M [X] = M(_×X) for M a G-Mackey (or Tambara) functor and X a
finite G-set, as considered in [30, Proposition 3.9] similarly to our Proposition 1.3.12.

The main observation here is that M(G/H ×G/H) decomposes as
⊕

[g]∈H\G/HM(G/(H ∩
gHg−1)) by the double coset formula. In this decomposition, a special role is played by the
diagonal ∆ ∈ G/H × G/H, which is a G-orbit isomorphic to G/H and thus splits off this
decomposition.

We now analyse these two diagrams, and start with the one for the transfer. Let x ∈
M(G/H) ∼= M [G/H](G/G). Then, the element (x, 0) ∈M(G/H)⊕

⊕
[e] ̸=[g]∈H\G/HM(G/(H ∩

gHg−1)) is a preimage of x under the transfer trGH [G/H]. We then observe that trG,ext
H (G/H)(x, 0) =

x ∈ M [G/G](G/H) ∼= M(G/H). From this and the commutativity of the diagram (1.3.23), we
observe that transfer and external transfer agree.
Similarly for the norm, we consider an element x ∈ M(G/H) ∼= M [G/G](G/H). Then, the
element (x, 0) ∈ M(G/H) ⊕

⊕
[e] ̸=[g]∈H\G/HM(G/(H ∩ gHg−1)) is a preimage of x under the

external transfer trG,ext
H (G/H), since this agrees with the usual transfer. But on this element,

the norm NG
H [G/H] vanishes. Hence, also NG

H : M(G/H)→M(G/G) is trivial.
For the global version, suppose now that T is a global functor object in augmented R-power

algebras, where R is a global power functor. Then, for any pair of (finite) groups H ≤ G, we
have the commutative diagrams

M(H ×H) = M [H](H) M(H ×G) = M [G](H)

M(G×H) = M [H](G) M(G×G) = M [G](G).

trG,ext
H

(H)

trG
H [H] NG

H [H] trG
H [G] NG

H [G]
trG,ext

H
(G)

(1.3.24)

In this, we cannot use a decomposition of M(H×H) as before. Hence, it is not clear how to adapt
the arguments of Hill to our situation. One possible approach is to compare this diagram (1.3.24)
to (1.3.23) by means of a diagonal restriction. This uses the interpretation of global functors as
functors on spans of finite groupoids, see for example [24]. Then, for any subgroups K,L ≤ G
and a global functor M , we have a diagonal morphism ∆: G/K × G/L → (G × G)/(K × L),
where the left is the action groupoid of a G-set and the right the action groupoid of a G×G-set.
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Hence we can consider the restriction ∆∗ : M(K×L) = M((G×G)/(K×L))→M(G/K×G/L).
Using these diagonal restrictions, we get the following cube-shaped comparison diagrams

M(G/H ×G/H) M(G/H ×G/G)

M(H ×H) M(H ×G)

M(G/G×G/H) M(G/G×G/G))

M(G×H) M(G×G).

trG,ext
H

(G/H)

trG
H [G/H] NG

H [G/H]
trG,ext

H
(H)

∆∗

trG
H [G] NG

H [G]

∆∗

trG,ext
H

(G/G)

trG,ext
H

(G)
∆∗ ∆∗

(1.3.25)

In this diagram, the front face commutes, since by assumption T is a global functor object.
All side faces involving ∆∗ commute by various double coset formulas. However, it is not clear
whether the back face, which is a copy of (1.3.23), commutes. If this is the case, then Conjec-
ture 1.3.21 would be proved.

1.4 Extensions of Global Power Algebras

In Section 1.2, we introduce the notions of square-zero extensions, derivations and Kähler differ-
entials. In the classical algebra of commutative rings as introduced by Grothendieck [27], these
notions are a starting point to study infinitesimal properties in the framework of algebraic ge-
ometry. One introduces infinitesimal extensions of algebras as (non-split) extensions with trivial
multiplication on the kernel of the augmentation, and formal smoothness of algebras by testing
against such extensions. This allows one to study geometric properties of varieties.

In the context of André-Quillen cohomology, introducing extensions of commutative algebras
has another important benefit. This notion can be used to extend the exact sequence of deriva-
tions from Proposition 1.2.29 to a six-term sequence, thus providing the first step to a derived
functor of derivations. This six-term sequence was later extended to a nine-term sequence by
Lichtenbaum and Schlessinger [45] by studying two-term extensions, and finally to a long exact
sequence in André-Quillen cohomology by André [1] and Quillen [53] by simplicial methods.

In this section, we introduce infinitesimal extensions of global power algebras in Defini-
tion 1.4.1. Collecting all such extensions in an algebraic structure allows us to extend the exact
sequence of derivations to a six-term sequence in Theorem 1.4.5. We calculate these extensions
for some special cases, and use this to calculate the Kähler differentials for quotients of free global
power functors in Example 1.4.11. In Section 1.4.b, we give the definition of formally smooth,
unramified and étale global power algebras and show that these notions are characterised by
derivations and extensions of global power algebras. Moreover, we show that in the case of
formally smooth algebras, the transitivity exact sequences from Proposition 1.2.29 are actually
short exact.

1.4.a Infinitesimal Extensions of Global Power Algebras
We have seen in Proposition 1.2.29 that the functor Der_(_,M) : Alg → Ab takes triples of
global power functors to left exact sequences of abelian groups. It is a classical result that
goes back to Grothendieck [27, Théorème 20.2.2] that this exact sequence can be extended by
considering extensions of commutative algebras. In fact, maps into such extensions are closely
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connected to derivations. For the special case of the trivial extension S ⋉M , this reduces to
Theorem 1.2.11. We now generalize the theory of extensions of commutative algebras to global
power functors.

Definition 1.4.1. Let R be a global power functor, S be an R-algebra and M be an S-module.
Then an (infinitesimal) extension of S by M is an exact sequence

0→M
i−→ E

p−→ S → 0

of R-modules where E is an R-algebra, p is a map of R-algebras, i is a map of E-modules
p∗(M)→ E and on the image of i in E, all products and power operations Pm for m ≥ 2 vanish.
An isomorphism of two extensions 0 → M

i−→ E
p−→ S → 0 and 0 → M

i′−→ E′ p′

−→ S → 0 is an
isomorphism f : E → E′ of R-algebras such that the diagram

E

0 M S 0

E′

p

f ≃

i

i′ p′

commutes. We denote by ExalcommR(S,M) the set of isomorphism classes of extensions of S
by M .

Remark 1.4.2. The set ExalcommR(S,M) is endowed in the usual way with the structure of
an abelian group using the Baer sum: Given two extensions 0 → M → E → S → 0 and
0→M → E′ → S → 0, we form

0→M → E ×S E′/((m,−m) for all m ∈M)→ S → 0.

Here, E×S E′ is the product in the category of R-power algebras augmented to S. The quotient
inherits the power operations, since the power operations on M vanish and hence ((m,−m) |
m ∈M) is a global power ideal.
The neutral element in this group ExalcommR(S,M) is given by the trivial square-zero extension
S ⋉M defined in Construction 1.2.1. An extension is equivalent to this trivial extension if and
only if there exists an R-algebra section s : S → E to the projection p : E → S.
Moreover, Exalcomm is functorial both in the R-algebra S (contravariantly) and in the S-module
M (covariantly). The functoriality in the R-algebra is given by the pull-back, ie for a morphism
f : S → T of R-power algebras and an extension M → E → T , we form the new extension as

0 M S ×T E S 0

0 M E T 0.

f

This indeed is an R-power algebra extension of S by M . On the other hand, given a morphism
g : M → N of S-modules and an extension M → E → S, we form

0 M E S 0

0 N E ⊕M N := (E ⋉N)/((i(m),−g(m)) for all m ∈M) S 0.

i

g
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Here, N is considered as an E-module via the augmentation E → S, and we need to explain
why ((i(m),−g(m)) for all m ∈ M) is a global power ideal in E ⋉N . It is an ideal by an easy
computation explained for example in [27, 18.2.8], hence we only need to consider the power
operations. For the power operation P 1 = id, there is nothing to prove. For P 2, we calculate

P 2(i(m),−g(m)) = (P 2(i(m)), tr1,1(P 1(i(m))× (−g(m))))
= (0,− tr1,1(i(m)× g(m)))
= 0,

using that p(i(m)) = 0 and the E-module structure on N is induced from the surjection p.
Finally, for all higher power operations, we calculate

P k(i(m),−g(m)) = (P k(i(m)), trk−1,1(P k−1(i(m))× (−g(m)))) = 0.

Thus, E ⊕M N is indeed a global power algebra. We alternatively also denote it by g∗E.
Using these constructions, we are able to factor any morphism of extensions with possibly

different modules and bases. The following lemma the global analogue of [27, 18.2.8] in the case
of commutative algebras.

Lemma 1.4.3. Let R be a global power functor and S and T be global R-power algebras. More-
over let M be an S-module and N be a T -module. Suppose we are given the commutative diagram

0 M E S 0

0 N F T 0,

g G γ

in which the rows are extensions of the global R-power algebras S and T by M and N , respectively,
γ is a morphism of R-power algebras, g is a morphism of S-modules (using the S-module structure
on N induced by γ) and G is a morphism of R-power algebras.

i) Then there is a commutative diagram

0 M E S 0

0 N g∗E S 0

0 N F T 0,

g G1

G2 γ

where the top row of morphisms arises from the construction of functoriality of Exalcomm,
and in the bottom row of morphisms, G2 is a morphism of R-power algebras.

ii) Then there is a commutative diagram

0 M E S 0

0 N F ×T S S 0

0 N F T 0,

g G̃1

G̃2
γ
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where the bottom row of morphisms arises from the construction of functoriality of Exalcomm,
and in the top row of morphisms, G̃1 is a morphism of R-power algebras.

Proof. We only prove the first assertion. The second is similar but easier since F ×T S is the
product in R-power algebras augmented to T .
Recall that g∗E = E ⊕M N , hence we obtain a morphism G2 : g∗E → F of R-modules, and this
makes the diagram commute. Hence, we are left to prove that G2 is a morphism of global power
algebras.
Let (e, n), (e′, n′) ∈ (g∗E)(G) for a compact Lie group G, and k ≥ 1. Then we calculate

G2((e, n) · (e′, n′)) = G2(ee′, en′ + e′n)
= (G(ee′), en′ + e′n) = (G(e)G(e′), G(e)n′ +G(e′)n)
= G2(e, n) ·G2(e′, n′)

Here, we used that both the E- and the F -module structure on N are induced from the T -module
structure via the maps to T , and thus en = G(e)n. Similarly, we calculate

G2(P k(e, n)) = G2(P k(e), trk−1,1(P k−1(e)× n))
= (P k(G(e)), trk−1(P k−1(G(e))× n))
= P k(G2(e, n)).

Thus, G2 is indeed a morphism of R-power algebras.

Maps to global power algebra extensions are intimately tied to derivations. The following
lemma is a generalization of Theorem 1.2.11, where the special case of the trivial extension S⋉M
is considered.

Lemma 1.4.4. Let R be a global power functor, S be an R-algebra, M an S-module and

0→M → E → S → 0

be an extension of S by M . Moreover, let T be an R-algebra augmented to S. We consider
M as a T -module by pulling back the S-module structure along the augmentation of T . Then
HomAlgR /S(T,E) is a torsor over DerR(T,M). Concretely, given any morphism φ : T → E of
R-algebras augmented to S, there is a bijection

αφ : DerR(T,M)→ HomAlgR /S(T,E)
d 7→ φ+ d.

Proof. Since the corresponding statement is classical in the case of commutative algebras and
derivations of such (see eg [27, Corollaire 20.1.3]), we focus on the compatibility with power
operations here.
Let φ : T → E be any morphism of R-algebras augmented to S, and let d : T → M be an R-
derivation. We first verify that φ + d is a morphism of algebras. For this, let t ∈ T (G) be an
element of T . Then we calculate

(φ+ d)(Pm(t)) = φ(Pm(t)) + d(Pm(t)) = Pm(φ(t)) + trm−1,1(Pm−1(t)× d(t))
= Pm(φ(t)) + trm−1,1(Pm−1(φ(t))× d(t)) = Pm(φ(t) + d(t)).

Here, to get to the last line, we used that the T -module structure on M is via the augmentation
of T . Since the S-module structure on M is compatible with that induced from multiplication
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in E by being square-zero and since φ is a morphism of augmented algebras, we observe that
the T -module structure can be described by t ×m = φ(t) ×m. Moreover, in the last equation
we used additivity of the power operations and that power operations on M vanish.

Let now ψ : T → E be another morphism of augmented algebras. We need to check that
d := ψ−φ is a derivation T →M . Again, we restrict to proving that the corresponding property
for the power operations is satisfied.
Let t ∈ T (G). We calculate

d(Pm(t)) = ψ(Pm(t))− φ(Pm(t)) = Pm(ψ(t))− Pm(φ(t)) = Pm(φ(t) + d)− Pm(φ(t))

=
m∑
k=1

trm−k,k(Pm−k(φ(t))× P k(d(t))) = trm−1,1(Pm−1(φ(t))× d(t)).

Here, the last equation again uses that all power operations on M vanish. Hence d is a derivation.
Since the constructions are inverse to one another, this finishes the proof.

Using this result, we can show that these groups of global power algebra extensions extend
the exact sequence of derivations from Proposition 1.2.29 to the right. This is a global power
functor version of [27, Théorème 20.2.2].

Theorem 1.4.5. Let R f−→ S
g−→ T be morphisms of global power functors and M be a T -module.

Then the sequence

0→DerS(T,M)→ DerR(T,M)→ DerR(S,M)→
δ−→ExalcommS(T,M)→ ExalcommR(T,M)→ ExalcommR(S,M)

of abelian groups is exact. Here, the map δ : DerR(S,M) → ExalcommS(T,M) associates to
an R-derivation d : S → M the class of the extension 0 → M → T ⋉M → T → 0, where we
consider T ⋉M as an S-algebra by the morphism (g, d) : S → T ⋉M . The last two maps are
restriction maps induced on Exalcomm by functoriality.

Proof. We already proved in Proposition 1.2.29 that the beginning of this sequence is exact.
We first examine the map δ : DerR(S,M)→ ExalcommS(T,M). For any derivation d, the map
(g, d) : S → T ⋉M indeed defines the structure of an S-algebra extension of T by M on T ⋉M
by Lemma 1.4.4. This extension is a trivial R-algebra extension, since d vanishes on R. It is also
S-trivial if and only if there is an S-linear section T → T ⋉M of the projection to T . Any such
map is of the form (id, e), where e : T → M is an R-linear derivation by Lemma 1.4.4. For the
map (id, e) to be an S-algebra map, we need

(g(s), e(g(s))) = (g(s), d(s)).

Hence we obtain that d = e ◦ g, so that d lies in the image of the restriction map DerR(T,M)→
DerR(S,M). Thus we have exactness at DerR(S,M).
Let now M → E

p−→ T be an S-algebra extension that is R-trivial. Hence, there is an R-
linear isomorphism to the extension M → T ⋉ M → T . This isomorphism takes the form
(p, d) : E → T ⋉ M , where d : E → M is an R-derivation. We now consider on T ⋉ M the
S-algebra structure defined by (g, d ◦ η), where η : S → E is the unit of the S-algebra E. This is
the extension δ(d◦η). It is obvious that with this structure, the morphism (p, d) is even S-linear,
since pη = g. This shows that E is equivalent to δ(d ◦ η).
Finally, let M → E → T be an R-algebra extension such that the restricted extension M →
E ×T S → S is R-trivial. This means there is a section S → E ×T S. After projection to E,
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this yields a morphism S → E of R-algebras augmented to T , and thus lifts M → E → T
to an extension of S-algebras. Conversely, if M → E → T is an S-algebra extension, then
M → E ×T S → S is a trivial extension, since we have the section (id, η) : S → S ×T E.

Remark 1.4.6. In Remark 1.2.25, we define a lift of the functor of derivations to take values
in global functors. This can be extended to the functor of global power algebra extensions, by
setting

ExalcommR(S,M)(G) = ExalcommR(S,M [G]).

With this definition, we directly observe that the above Theorem 1.4.5 also provides a six-term
exact sequence of global functors by applying it to the modules M [G] for compact Lie groups G.

In general, calculating the groups of algebra extensions might be complicated. If we consider
a surjective morphism of global power functors R → S, however, we can identify all extensions
in terms of module homomorphisms. This approach can be extended by introducing the naive
cotangent complex. We study this in connection with the first André-Quillen cohomology group
in Section 1.5.c.

Construction 1.4.7. Let R→ S be a surjective morphism of global power functors with kernel
I. Then I/I≥2 inherits the structure of an S-module since S ∼= R/I, and we may consider the
canonical extension

0→ I/I≥2 → R/I≥2 → S → 0.

For any S-module M , we compare HomS(I/I≥2,M) and ExalcommR(S,M).
To any S-module homomorphism f : I/I≥2 → M , we associate the extension given by func-

toriality of Exalcomm via

0 I/I≥2 R/I≥2 S 0

0 M (R/I≥2)⊕I/I≥2 M S 0.

f

Conversely, for a given extension 0→M → E → S → 0, we consider the composition I ↪→ R→
E. Since I = ker(R → S), we see that this morphism factors over M = ker(E → S). Since on
M , all products and power operations vanish, this then induces a morphism I/I≥2 →M . As the
map I →M ⊂ E is by construction R-linear and all products vanish, this morphism is indeed a
morphism of S-modules.

Remark 1.4.8. Via this construction, we are able to interpret the extension

0→ I/I≥2 → R/I≥2 → R/I → 0

as a universal extension over R/I. This point of view is sometimes useful, for example in the
comparison of André-Quillen cohomology with the cohomology of the naive cotangent complex
in Section 1.5.c.

In the classical literature, this approach also can be used to identify the second André-Quillen
cohomology group with a group of two-term extensions, as shown by Lichtenbaum-Schlessinger
[45, Theorem 4.1.2]. There, a universal such two-term extension is identified. We discuss that
this approach does not work in our context when discussing identifications of the low-dimensional
André-Quillen cohomology groups in Remark 1.5.15.
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Proposition 1.4.9. Let R → S be a surjective morphism of global power functors with kernel
I, and let M be an S-module. Then the assignments defined in Construction 1.4.7 yield inverse
isomorphisms

HomS(I/I≥2,M) ExalcommR(S,M).
∼=

These isomorphisms are natural in surjections R→ S and modules M .

Proof. We study the two compositions of the described morphisms. The composition

HomS(I/I≥2,M)→ ExalcommR(S,M)→ HomS(I/I≥2,M)

is the identity since in the defining diagram

0 I/I≥2 R/I≥2 S 0

0 M (R/I≥2)⊕I/I≥2 M S 0,

f

the left square commutes. This exactly describes the procedure of factoring R→ R/I≥2⊕I/I≥2M

through a map I/I≥2 →M .
Conversely, for any extension 0→M → E → S, we obtain a morphism

0 M (R/I≥2)⊕I/I≥2 M S 0

0 M E S 0

φ

of extensions. This arises from the defining commutative diagram

0 I/I≥2 R/I≥2 S 0

0 M E S 0

by Lemma 1.4.3. By the 5-Lemma, we obtain an isomorphism of extensions. Thus, we see that
also the other composition is the identity.

Naturality of these morphisms in the module is straight-forward. We now exhibit the natu-
rality with respect to surjections of global power functors. For this let

I R S

I ′ R′ S′

be a commutative diagram of global power functors, with kernels indicated by the dashed arrows,
and M be an S′-module. Let moreover f : I ′/(I ′)≥2 →M be a morphism of S′-modules. Then,
we consider the two extensions of S by M defined by the diagrams

0 I/I≥2 R/I≥2 S 0

I ′/(I ′)≥2

0 M (R/I≥2)⊕I/I≥2 M S 0
f
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and
0 I ′/(I ′)≥2 R′/(I ′)≥2 S′ 0

0 M (R′/(I ′)≥2)⊕I′/(I′)≥2 M S′ 0

0 M
(
(R′/(I ′)≥2)⊕I′/(I′)≥2 M

)
×S′ S S 0.

f

We then observe that the maps R → R′ and R → S induce the dashed map as indicated in the
cube-shaped commutative diagram

0 I ′/(I ′)≥2 R′/(I ′)≥2 S′ 0

0 I/I≥2 R/I≥2 S 0

0 M (R′/(I ′)≥2)⊕I′/(I′)≥2 M S′ 0

0 M
(
(R′/(I ′)≥2)⊕I′/(I′)≥2 M

)
×S′ S S 0.

But the dashed map as indicated induces an isomorphism

0 M (R/I≥2)⊕I/I≥2 M S 0

0 M
(
(R′/(I ′)≥2)⊕I′/(I′)≥2 M

)
×S′ S S 0

by Lemma 1.4.3. This proves naturality of the isomorphism HomS(I/I≥2,M)→ ExalcommR(S,M).

Combining this with the six-term exact sequence from Theorem 1.4.5, we obtain the following
exact sequence, which classically is known under the name “conormal sequence”. It extends the
exact sequence of Kähler differentials from Proposition 1.2.29 by one term on the left in the case
that one morphism of global power functors is a surjection.

Proposition 1.4.10. Let R → S → T be a triple of global power functors where S → T is
surjective with kernel I. Then the sequence

I/I≥2 → T□SΩ1
S/R → Ω1

T/R → 0

of T -modules is exact. Here, the first morphism arises by composing the universal derivation
d : S → Ω1

S/R with the unit morphism Ω1
S/R → T□SΩ1

S/R of the extension-of-scalars adjunction,
restricting to I and passing to the quotient I/I≥2.

Proof. We observing that Ω1
T/S = 0 as explained in Proposition 1.2.16. Moreover, for any T -

module M , we identify ExalcommS(T,M) as HomT (I/I≥2,M) by Proposition 1.4.9. Then using
the exact sequence in Theorem 1.4.5 for derivations into M and extensions by M , we obtain the
left exact sequence

0→ DerR(T,M)→ DerR(S,M)→ ExalcommS(T,M).
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The right exact sequence of Kähler differentials can thus be detected by mapping out of it by
applying HomT (_,M) for arbitrary T -modules M .

In the same fashion, we also obtain other three-term sequences when multiple of the mor-
phisms R→ S → T are surjective.

We can use the above exact sequence for calculations of Kähler differentials on quotients of
polynomial algebras.

Example 1.4.11. Let R be a global power functor, and S = R[xi,Ki
] be a polynomial algebra

over R on generators xi at level Ki, for i ∈ I. Let moreover fj ∈ S(Lj) be polynomials, indexed
by j ∈ J . We denote by (fj) the global power ideal generated by these elements, and consider
the global power functor T = S/(fj).

We calculate the Kähler differentials Ω1
T/R by means of the exact sequence from Proposi-

tion 1.4.10. We know by Proposition 1.2.15 that Ω1
S/R
∼= S{dxi,Ki} is a free S-module, and thus

also T□SΩ1
S/R
∼= T{dxi,Ki

} is free. Moreover, the image of I/I≥2 → T{dxi,Ki
} is generated by

the elements dfj . Hence, in total we obtain

Ω1
(R[xi]/(fj))/R

∼= (R[xi]/(fj)){dxi}/(dfj).

1.4.b Characterizing Smooth, Unramified and Étale Global Power
Algebras

In classical commutative algebra, the notion of commutative algebra extensions can be used to
define the classes of formally smooth, unramified and étale algebras. We extend these definitions
to the context of global power functors.

Definition 1.4.12. Let R → S be a morphism of global power functors. For any R-algebra
extension M → E → B, we consider the lifting problem

M

R E

S B

(1.4.13)

given by morphisms R→ E and S → B of R-algebras.
The morphism R→ S, or the R-algebra S, is called

i) formally smooth if for all lifting problems (1.4.13), a lift exists.

ii) formally unramified if for all lifting problems (1.4.13), at most one lift exists.

iii) formally étale if for all lifting problems (1.4.13), a unique lift exists.

Example 1.4.14. Let R be a global power functor, and P be a polynomial R-algebra. Then P
is formally smooth as an R-algebra. The lifting problem can be solved by choosing preimages
for all images of the polynomial generators of P . This can be seen using the universal property
of polynomial global power functors from (1.1.23).

By the results of Section 1.4.a, we may characterize formally smooth, unramified and étale
algebras in terms of derivations and extensions of global power functors.
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Proposition 1.4.15. Let R→ S be a morphism of global power functors. Then R→ S is

i) formally smooth if and only if for all S-modules M , we have ExalcommR(S,M) = 0.

ii) formally unramified if and only if for all S-modules M , we have DerR(S,M) = 0.

iii) formally étale if and only if for all S-modules M , we have DerR(S,M) = 0 and
ExalcommR(S,M) = 0.

Proof. i) Suppose R → S is formally smooth, and let M → E → S be an extension of
R-algebras, representing an element in ExalcommR(S,M). Then the lifting problem

M

R E

S S

admits a lift. This lift equivalently describes a section for the projection E → S, and hence
the extension M → E → S is trivial. This shows ExalcommR(S,M) = 0.
Conversely, suppose ExalcommR(S,M) = 0 for all S-modules M . Consider a lifting prob-
lem

M

R E

S B.

We moreover consider the extensionM → E×BS → S of S byM . Since ExalcommR(S,M) =
0, this extension is trivial and hence admits a section S → E×B S. Composing this section
with the projection to E yields the desired lift. Hence R→ S is formally smooth.

ii) Using Lemma 1.4.4, we see that lifts in the diagram 1.4.13 are a torsor over DerR(S,M).
Moreover, for any S-module M , the trivial extension M → S ⋉M → S does admit a lift.
Hence, R→ S is formally unramified if and only if DerR(S,M) = 0.

iii) The result for formal étaleness is obtained from combining the characterizations of formal
smoothness und unramifiedness.

Using this characterization of formally smooth algebras, we obtain that the exact sequences
of derivations and Kähler differentials are also exact at the other ends in the case of formally
smooth algebras.

Proposition 1.4.16. Let R→ S → T be a triple of global power functors and let T be a formally
smooth S-algebra. Let moreover M be a T -module. Then the sequences

0→ Ω1
S/R□ST → Ω1

T/R → Ω1
T/S → 0

and
0→ DerS(T,M)→ DerR(T,M)→ DerR(S,M)→ 0

are split short exact.
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Proof. From the six-term exact sequence in Theorem 1.4.5 and since by formal smoothness of T
over S, ExalcommS(T,M) = 0, it follows that the second sequence is exact. This already implies
that the sequence of Kähler differentials is split exact, where a retraction of Ω1

S/R□ST → Ω1
T/R is

obtained since applying HomT (_,Ω1
S/R□ST ) yields a surjection. Finally, a split of the sequence

of Kähler differentials yields a split of the sequence of derivations.

Proposition 1.4.17. Let R→ S → T be a triple of global power functors, let S → T be surjective
with kernel I and let T be a formally smooth R-algebra. Let moreover M be a T -module. Then
the sequences

0→ I/I≥2 → Ω1
S/R□ST → Ω1

T/R → 0

and
0→ DerR(T,M)→ DerR(S,M)→ ExalcommS(T,M)→ 0

are split short exact.

Proof. The proof is completely analogous to the one for Proposition 1.4.16, using that the six-
term sequence from Theorem 1.4.5, the surjectivity of S → T and the formal smoothness of T
over R imply that the second sequence is exact.

Proposition 1.4.18. Let R be a global power functor and S be a formally smooth R-algebra.
Then Ω1

S/R is a projective S-module.

Proof. Let P be a polynomial R-algebra with a surjection P → S of R-algebras. Then by
Proposition 1.4.17, the sequence

0→ I/I≥2 → Ω1
P/R□PS → Ω1

S/R → 0

is split exact, where I denotes the kernel of the surjection P → S. Since P is polynomial over R,
the calculation in Example 1.4.11 show that Ω1

P/R is a free P -module. Thus the split surjection
Ω1
P/R□PS → Ω1

S/R exhibits Ω1
S/R as a direct summand of a free S-module, hence it is a projective

S-module.

1.5 André-Quillen (Co-)Homology

In this section, we describe the André-Quillen (co-)homology theory for global power algebras S
over a global power functor R. This is a generalization of the classical cohomology theory for
commutative rings described independently by André and Quillen in [1, 52, 53].

André-Quillen cohomology and homology are the non-abelian derived functors of derivations
and Kähler differentials, respectively. Hence, they are defined by considering simplicial resolu-
tions of a global power algebra by basic building blocks and then applying derivations or Kähler
differentials to this. The basic global power algebras in question are the polynomial global power
algebras from Definition 1.1.22, since these form a nice set of projective generators for the cat-
egory of global power algebras. Moveover, on these polynomial algebras derivations and Kähler
differentials behave well.

After giving the definition of the homology and cohomology groups, we identify the low-
dimensional terms in Section 1.5.b. As usual, the zeroth terms are given by the functors we
derive to obtain the (co-)homology theory, ie Kähler differentials for homology and derivations for
cohomology. Furthermore, as the six-term exact sequence from Theorem 1.4.5 suggests, the first
André-Quillen cohomology group is given by the group of global power functor extensions. This
is a globally equivariant generalization of the corresponding fact in classical commutative algebra
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due to André [1, Proposition 25.2]. In order to facilitate calculation of these low-dimensional
terms, we also introduce the naive cotangent complex in Section 1.5.c. This construction is
inspired by the work of Illusie [36, Chapitre III], and allows for explicit calculation of the zeroth
and first André-Quillen (co-)homology.

In Section 1.5.d, we use this naive cotangent complex to compute the first homology of certain
quotients of polynomial algebras over the Burnside ring global power functors. These calculations
show that the exact sequence of the low-dimensional André-Quillen groups cannot be extended
beyond a six-term sequence. This failure of the existence of a long exact transitivity sequence is
founded in the fact that projective global functors do not need to be flat for the box product, as
shown by Lewis [44].

Despite this flaw of the global André-Quillen cohomology, I still believe this to be a useful
theory, especially for the interpretation of the low terms and their connection to differential
properties of global power functors. Also, the comparison with topological André-Quillen theory
as defined in the second part of this dissertation, which in fact does have a transitivity sequence,
may provide valuable insights in the algebra of global power algebras.

1.5.a Definition of the (Co-)Homology
In Section 1.2, we generalized the notions of derivations and Kähler differentials to the context of
global power algebras. Now, we also generalize André-Quillen cohomology to this context. For
this, we have to derive the functors of derivations and Kähler differentials, and hence we recall
the necessary definitions and results from homotopical algebra [52, II, 4].

Definition 1.5.1. Let C be a category closed under finite limits. An effective epimorphism is
a morphism f : X → Y which is the coequalizer of its kernel pair X ×Y X ⇒ X. An object
P of C is called projective if for every effective epimorphism f : X → Y , the induced map
Hom(P, f) : Hom(P,X)→ Hom(P, Y ) is surjective.
We say that C has enough projectives if for every object X of C, there is an effective epimorphism
p : P → X from a projective object P .

In our case, let R be a global power functor and consider the category AlgR. We claim that
in this category, the polynomial algebras R[xK ] for any compact Lie group K, and any box
product over R of those are projective. In fact, let f : S → T be an effective epimorphism. Then,
we consider the induced morphism Hom(R[xK ], f) : Hom(R[xK ], S) → Hom(R[xK ], T ). By the
universal property of the polynomial algebra, this is isomorphic to fK : S(K)→ T (K).
As explained in Remark 1.1.24, we can write the category of R-power algebras as a multisorted
algebraic theory, where the sorts are given by the compact Lie groups, and we have R[xK ] as
the free R-algebra on the group K, left adjoint to evaluation at the group K. By [17, Corollary
3.5.3], for any algebraic theory T , the forgetful functor U : ModT → Sets preserves and reflects
effective epimorphisms, and hence, by the multisorted analogue, the map fK : S(K)→ T (K) is
surjective. Thus, the R-algebra R[xK ] is indeed projective. Since any coproduct of projective
objects is projective and the box product is the coproduct in AlgR, we see that any polynomial
algebra R[xKi,i, i ∈ I] is projective. Thus, we have the following result:

Lemma 1.5.2. Let R be a global power functor. The category AlgR of R-power algebras has
enough projectives. Explicitly, for any R-power algebra S, the morphism

εS : □
K

s∈S(K)

R[xK,s]→ S, xK,s 7→ s (1.5.3)

is an effective epimorphism from a projective object. Here, the box product is indexed over a
representing set of isomorphism classes of compact Lie groups K and elements s ∈ S(K).
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By this lemma, we can do homotopical algebra in the category AlgR. In particular, by [52,
II.4, Theorem 4], the category sAlgR of simplicial R-algebras has a model category structure and
we can talk about cofibrant replacements of an R-algebra.

Definition 1.5.4. Let R be a global power functor and let S be an R-algebra. Then a cofibrant
resolution of S is an object P• of sAlgR together with a map p : P• → S of simplicial R-algebras
(where S is considered as a constant simplicial object) such that P• is cofibrant and p is an
acyclic fibration in the model structure on sAlgR.

Remark 1.5.5. One way to construct cofibrant resolutions is by using polynomial global power
functors. We define a polynomial simplicial resolution of an R-power algebra S to be a simplicial
R-power algebra P• with a morphism P• → S, such that

• Pn ∼= R[x(n)
i,Ki

] is a polynomial R-power algebra, and

• the degeneracies map generators to generators.

In fact, any cofibration is a retract of an inclusion into a polynomial algebra. This procedure is
explained in [52, Remark 4, p. II.4.11]. Thus, we can use polynomial resolutions to calculate
derived functors.

Now, we can use this formalism to define the derived functors of derivations and Kähler
differentials in the category of R-algebras.

Definition 1.5.6. Let R be a global power functor and S be an R-algebra. Let M be an S-
module. Let P• be a cofibrant resolution of S in sAlgR. Then the André-Quillen cohomology of
S over R with coefficients in M is

Dq(S,R;M) = Hq(DerR(P•,M)),

the cohomology of the simplicial abelian group DerR(P•,M).
Moreover, we define the cotangent complex of S as the simplicial object LS/R = S□P•Ω1

P•/R
in

ModS , where the boxproduct is formed levelwise. Then, the André-Quillen homology of S over
R with coefficients in M is the graded global functor

Dq(S,R;M) = Hq(LS/R□SM).

These constructions are obviously functorial in squares

R S

R′ S′

fR

η

fS

η′

of global power functors, induced from the functoriality of Kähler differentials.
Remark 1.5.7. By the universality of the Kähler differentials from Definition 1.2.12, we can
rewrite the André-Quillen cohomology as

Dq(S,R;M) ∼= Hq(HomS(LS/R,M)).

This emphasizes the duality between the simplicial objects defining homology and cohomology.
As in Remark 1.2.25, we can also define a global-functor-valued André-Quillen cohomology

by setting
Dq(S,R;M)(G) = Dq(S,R;M [G]).
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This satisfies the same duality as the abelian-group-valued cohomology, in that

Dq(S,R;M) ∼= Hq(HomS(LS/R,M)).

Using this internal definition, the identifications given in Proposition 1.5.10 and Proposition 1.5.14
also lift to give isomorphisms of global functors for the internal cohomology and derivations or
global power functor extensions, respectively.

Sometimes it is convenient to have a specific resolution to compute the cotangent complex and
André-Quillen homology. We can take a simplicial projective resolution by using the free-forgetful
adjunction between global power functors and “global sets”, describing global power functors as
a multisorted theory. The result is a comparison of Quillen’s homotopical algebra approach
to cohomology followed in Definition 1.5.6 and a cotriple/comonad cohomology approach as
introduced by Beck in [13] and studied by Barr and Beck as well as Ulmer in multiple works
[8, 9, 6, 7, 64]:

We consider the functor

G : AlgR → AlgR, S 7→ □
K

s∈S(K)

R[xK,s].

This is a comonad, since it arises from the free-forgetful adjunction

AlgR
∏
G Sets

ev

□R[_]
.

In particular, we have the counit ε : G → id from (1.5.3), and this defines for any R-algebra
S a simplicial polynomial R-algebra G•S, where GnS = Gn+1S and the face maps are di =
Gn−iεGiS : GnS → Gn−1S. The degeneracy maps are defined using the comultiplication ν : G→
G2. This simplicial R-algebra is augmented to S via εS : GS → S.

Proposition 1.5.8. Let R be a global power functor and S be an R-power algebra. Let M be an
S-module. Then we have isomorphisms

Dq(S,R;M) ∼= Hq(DerR(G•S,M)) and Dq(S,R;M) ∼= Hq(S□G•SΩ1
G•S/R

□SM).

This is part of [52, II.5, Theorem 5], and follows since we may choose any cofibrant resolution
in order to compute the cotangent complex.

On polynomial algebras, the André-Quillen cohomology is trivial in positive degrees.

Proposition 1.5.9. Let R be a global power functor and let S = R[xKi,i, i ∈ I] be a polynomial
algebra. Then the augmentation G•S → S is a homotopy equivalence. In particular, we have

Dq(S,R;M) =
{

DerR(S,M) for q = 0
0 else

and Dq(S,R;M) =
{

Ω1
S/R□SM for q = 0

0 else

for any S-module M .

Proof. We have an additional degeneracy given by

S → GS, xKi
7→ xxKi

.

This induces the desired homotopy inverse.
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1.5.b Identification of the Low-Degree Terms
We can identify the low-degree terms of the André-Quillen cohomology in terms of previously
defined functors, namely derivations and Kähler differentials in degree 0 and Exalcomm in degree
1.

Proposition 1.5.10. Let R be a global power functor and S be an R-algebra. Let M be an
S-module. Then D0(S,R;M) = DerR(S,M) and D0(S,R;M) = Ω1

S/R□SM .

Proof. We consider the beginning P1 ⇒ P0 → S of a cofibrant resolution of the R-algebra S.
This exhibits S as a reflexive coequalizer in the category of R-algebras of the diagram P1 ⇒ P0.
Since S□(_)Ω1

(_)/R is left adjoint to square-zero extension by Theorem 1.2.13, it preserves re-
flexive coequalizers. Moreover, the functors (_)□SM and HomS(_,M) are right respectively
left exact and hence send reflexive coequalizers to coequalizers and equalizers respectively. Since
D0(S,R;M) = H0(HomS(LS/R,M)) and D0(S,R;M) = H0(LS/R□SM), this proves the propo-
sition.

Classically, the first André-Quillen cohomology group can be described via extensions of
commutative algebras. We generalize this into our context. This follows the original connection
between derivations and commutative algebra extensions by Grothendieck in [27, §18&20] and
the connection to the cotangent complex by Illusie in [36, Chapitre III]. In the context of André-
Quillen cohomology of commutative algebras, this is also the content of [1, Proposition 25.2].

Construction 1.5.11. We construct the maps comparing the first André-Quillen cohomology
group to the group of global power algebra extensions. Let R be a global power functor, S be
an R-algebra and M be an S-module. Let 0 → M

i−→ E
p−→ S → 0 be an extension of S by M .

Moreover, let

P1 P0 S
d0

d1

ε

be the beginning of a simplicial resolution of S via polynomial R-algebras. We define a coho-
mology class in D1(S,R;M) as follows.
Choose any R-algebra lift q : P0 → E of ε : P0 → S, using that P0 is a projective R-algebra. Then
we consider the map D = q ◦ (d1 − d0) : P1 → E. By Lemma 1.4.4, this defines an R-derivation
D : P1 → M as the difference of the two power algebra morphisms qd1 and qd0. By definition,
this clearly is a cocycle and defines a cohomology class [D] ∈ D1(S,R;M). Moreover, this is
independent of the chosen lift q: again by Lemma 1.4.4, any other lift q′ : P0 → E only differs by
an R-derivation d : P0 → M , and the resulting derivation D′ : P1 → M thus differs from D by
a coboundary. Hence, we get a well-defined cohomology class in D1(S,R;M) associated to the
extension 0→M → E → S → 0.
Suppose now that conversely we are given a cohomology class in D1(S,R;M), represented by an
R-derivation D : P1 →M . Then we consider the base-change

P1 P0 S 0

M E = P0 ⊕P1 M S 0.

d1−d0

D

ε

(1.5.12)

We verify that this indeed defines an algebra extension of S by M in Lemma 1.5.13. Again using
Lemma 1.4.4, one may check that the isomorphism class of this extension does not depend on
the choice of representative D, since the derivation d : P0 →M defining the coboundary defines
an isomorphism between the two extensions.
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Lemma 1.5.13. Let R be a global power functor and S be an R-power algebra. Let P• → S
be a simplicial resolution of S by polynomial R-algebras and M be an S-module. Moreover, let
D : P1 →M be a derivation representing a cohomology class in D1(S,R;M).
Then E = P0 ⊕M/((d1(x) − d0(x),−D(x)) for x ∈ P1), as considered in Construction 1.5.11,
defines an R-power algebra extension of S by M .

Proof. First, we endow E with the structure of an R-power algebra. For this, we consider the
square-zero extension P0 ⋉M , and check whether the relations imposed on the quotient E =
P0⊕M/((d1(x)− d0(x),−D(x)) for x ∈ P1) are compatible with product and power operations.
This follows from the fact that D is an R-derivation, as follows:
We show that the sub-global functor {(d1(x) − d0(x),−D(x)) | x ∈ P1} ⊂ P0 ⊕M is a global
power ideal, as defined in Definition 1.1.30. Suppose we are given for a compact Lie group G
elements (y,m) ∈ (P0 ⊕M)(G) and (d1(x) − d0(x),−D(x)) for x ∈ P1(G). Then we consider
the element x′ = s(y) · x ∈ P1(G), using the degeneracy s : P0 → P1 of the simplicial polynomial
resolution P•, and calculate

(y,m) · (d1(x)− d0(x),−D(x)) = (yd1(x)− yd0(x),−yD(x) +md1(x)−md0(x))
= (d1(s(y))d1(x)− d0(s(y))d0(x),−ε(y)D(x))
= (d1(s(y)x)− d0(s(y)x),−(ε(d1(s(y)))D(x) + ε(d1(x))D(s(y))))
= (d1(x′)− d0(x′),−D(x′)).

Here we used that the structures ofM as a module over P0 and P1 are obtained from the S-module
structure by pulling back along the augmentation ε : P• → S, which equalizes all face maps.
Moreover, we observe that since s(y) lies in the image of the differential d2 − d1 + d0 : P2 → P1
and D vanishes on the image of this map, D(s(y)) = 0.

For the power operations, we employ an inductive argument, starting with P 1 = id as the
trivial induction beginning. Let x ∈ P1(G). For k ≥ 2, we calculate by additivity of the power
operations

P k(d1(x)− d0(x),−D(x)) = (P k(d1(x)− d0(x)), trk−1,1(P k−1(d1(x)− d0(x))× (−D(x))))

=
(
P k(d1(x))− P k(d0(x))−

k−1∑
i=1

trk−i,i(P k−i(d1(x)− d0(x))× P i(d0(x))), 0
)

= (d1(P k(x))− d0(P k(x)),−D(P k(x)))
− (tr1,k−1(P 1(d1(x)− d0(x))× P k−1(d0(x))),− tr1,k−1(D(x)× P k−1(x)))

−
( k−2∑
i=1

trk−i,i(P k−i(d1(x)− d0(x))× P i(d0(x))), 0
)

= (d1(P k(x))− d0(P k(x)),−D(P k(x)))
− (tr1,k−1((d1(x)− d0(x))× P k−1(d0(x))),− tr1,k−1(D(x)× P k−1(d0(x))))

−
k−2∑
i=1

(trk−i,i(P k−i(d1(x)− d0(x))× P i(d0(x))),

tr1,k−i−1,i((−D(x))× P k−i−1(d1(x)− d0(x))× P i(d0(x)))).

Here, in the second line, we used that P k−1(d1(x) − d0(x)) acts trivially on M , since it van-
ishes upon projection to S. Moreover, we calculated P k(d1(x) − d0(x)) by using additivity for
P k(d1(x)) = P k((d1(x) − d0(x)) + d0(x)) and solving for the relevant term. In the last line,
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we again used that d1(x) − d0(x) acts trivially on M . In total, we observe that each of the
summands in the last line lies in {(d1(x) − d0(x),−D(x)) | x ∈ P1}, the first summand as the
image of P k(x), the second summand since we already established that this set is closed under
multiplication with arbitrary elements in P0 ⊕M , and the last k − 2 summands since we may
use induction for P k−i(d1(x) − d0(x),−D(x)) and again because this set is closed under multi-
plication. This finishes the verification that we take the quotient by a global power ideal. Thus,
we have the structure of an R-algebra on E.

Moreover, the maps ε : P0 → S and 0: M → S define a surjective morphism p : E → S of
R-algebras compatible with ε. We claim that the map M → E exhibits M as the kernel of
the map p. By definition, p vanishes on M , and by exactness of the upper row in (1.5.12), M
surjects onto the kernel. If an element in M is sent to 0 in E, then there exists an preimage in
ker(d1−d0) under D. But since D is a cocycle, it has to vanish on the kernel of d1−d0. So M in
fact is the kernel of p : E → S. Finally, by construction, M is square-zero in E and the S-module
structure on M induced from this agrees with the given one. Hence, we have constructed an
algebra extension of S by M .

Proposition 1.5.14. Let R be a global power functor, S be an R-power algebra and M be an
S-module. Then the two assignments from Construction 1.5.11 define natural inverse group
isomorphisms

D1(S,R;M) ∼= ExalcommR(S,M).

Proof. For the proof, it is left to check that the maps defined above are natural, compatible with
the group structure and inverse to one another. The naturality and additivity of the maps is
straight-forward to check. For the two compositions of the above constructions, we consider the
diagram

P1 P0 S 0

M E = P0 ⊕P1 M S 0.

d1−d0

D

ε

from (1.5.12). This already shows that starting from a derivation, forming the associated exten-
sion and then taking the corresponding cohomology class is the identity. Conversely, we consider
the diagram

P1 P0 S 0

M P0 ⊕P1 M S 0

M E S 0.

d1−d0

D

ε

Similar to the arguments in Lemma 1.4.3, the dashed morphism of R-algebras exists and makes
the diagram commute, and hence the extensions formed by E and P0 ⊕P1 M are equivalent.
Thus, the two constructions are indeed inverse to one another.

Remark 1.5.15. In the classical literature, one can also find interpretations of the second André-
Quillen cohomology group. Both Gerstenhaber [25] and Lichtenbaum-Schlessinger [45] define a
group of two-term extensions of an R-algebra S by an S-module M . These are exact sequences
of the form 0→M

i−→ N
f−→ E

p−→ S → 0, where E is an R-algebra and the map p is a surjection
of R-algebras, M and N are E-modules and the maps i and f are E-linear, and finally the
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morphism N → E satisfies f(n1)n2 = f(n2)n1. Moreover, in [45, Definition 2.1.8], a three-term
cotangent complex is defined (a generalization of the naive cotangent complex we transfer to the
theory of global power algebras in Section 1.5.c), and it is shown that its second cohomology is
given by the group of two-term extension in [45, 4.1.2]. The zeroth and first cohomology indeed
recover derivations and extensions. Also, the six-term exact sequence from Theorem 1.4.5 is
extended to a nine-term exact sequence in [45, Theorem 2.2.4, 2.3.5-6].

In the proof that these two-term extensions give the second André-Quillen cohomology, one
may follow the outline given in the comparison of the first André-Quillen cohomology group and
(one-term) extensions of commutative algebras in Construction 1.5.11. Since I was not able to find
the explicit comparison in the literature, and since a precise understanding of the construction
is helpful to see how the situation changes in the presence of power operations, I decided to give
some detail here. We explain the construction of a cohomology class in D2(S,R;M) associated
to a two-term extension. The argument roughly takes the following form:

We consider the diagram

P2 P1 P0 S

M N E S.

D

d0

d1
λ

ε

g

i f p

(1.5.16)

Here, we are given a two-term extension M → N → E → S of S by M and a simplicial
resolution P• → S of S by polynomial R-power algebras. Since P0 is a projective R-algebra
and p is surjective, we find an R-algebra lift g : P0 → E of ε against p. Then the two maps
g ◦ d0 and g ◦ d1 are also R-algebra maps. Then with respect to the two different P1-module
structures induced on E by pulling back along these maps, the difference g ◦ d1− g ◦ d0 becomes
a biderivation. This is an analogue of the notion of a derivation in the presence of two module
structures, considered as a left and a right module structure. The relevant Leibniz condition
becomes

(g ◦ d1 − g ◦ d0)(pp′) = (g ◦ d1)(p)(g ◦ d1 − g ◦ d0)(p′) + (g ◦ d1 − g ◦ d0)(p)(g ◦ d0)(p′).

The properties that im(g ◦ d1 − g ◦ d0) ⊂ im(f) (by exactness) and that f satisfies f(n1)n2 =
n1f(n2) allow to construct a lift λ : P1 → N , which then also is a biderivation. The proof of this
fact is given in [45, Lemma 2.1.6, Definition 2.1.4].

Finally, on the image of d2 − d1 + d0 : P2 → P1, the morphisms d1, d0 : P1 → P0 agree, so
λ ◦ (d2 − d1 + d2) : P2 → N is a derivation with image contained in im(i). Thus, we obtain a
derivation D : P2 →M . This represents a cohomology class in D2(S,R;M), and this assignment
is used to identify this second André-Quillen cohomology group with the group of two-term
extensions.

In the global context, however, we need to also consider the twisted Leibniz rule for the
derivation of a power operation. This formula requires a symmetry for the module structure on
the target, since the power operations exactly capture the additional Σm-action available from
the symmetry of the multiplication. The notion of a biderivation classically is a relaxation to two
different left and right module structures. This does not make sense globally, since this breaks
the required symmetry, and hence the above construction cannot be transferred to the situation
of global power algebras. It is also unclear what type of structure we should require on N and
the morphism f : N → E. Here, the dichotomy of R-modules (without power operations) and of
abelian group objects in augmented algebras (with power operations) might play a role, and N
could be required to have power operations. However, the mentioned lack of symmetry inherent
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in the classical construction suggests that no sensible definition can lead to a description of the
second cohomology group in terms of extensions.

The fact that this comparison is impossible to perform for global power algebras is also
suggested by the failure of the transitivity sequence shown in Section 1.5.d. As observed there,
the six-term sequence from Theorem 1.4.5 cannot be extended by an additional term to the
left while also enforcing that the higher André-Quillen cohomology groups vanish on polynomial
power algebras. This shows that no hypothetical interpretation of the second cohomology in
terms of extensions can lead to a nine-term exact sequence as constructed by Lichtenbaum-
Schlessinger.

1.5.c The Naive Cotangent Complex
After identifying the low-dimensional terms of the André-Quillen cohomology, we exhibit a dif-
ferent way of calculation, by means of the so-called “naive cotangent complex”. This is an explicit
truncation of the actual cotangent complex, and its construction generalizes the comparison of
Exalcomm with Hom(I/I≥2,M) obtained in Proposition 1.4.9. The next results follow [36, III
1.3].

Construction 1.5.17. Let R be a global power functor and S be an R-power algebra. Let
moreover P be a polynomial R-algebra and ε : P → S be a surjection of R-algebras with kernel
I ⊂ P . We then define the naive cotangent complex as the two-term complex

Lnaive
S/P/R =

(
I/I≥2 → Ω1

P/R□PS), (1.5.18)

concentrated in degrees 0 and 1. Here, the morphism I/I≥2 → Ω1
P/R□PS is induced from

the universal derivation P → Ω1
P/R and the unit Ω1

P/R → Ω1
P/R□PS of the scalar extension

adjunction between P -modules and S-modules. This uses the observation that since S ∼= P/I,
any derivation I ⊂ P →M with M an S-module annihilates I≥2.

We directly observe that H0(Lnaive
S/P/R) ∼= Ω1

S/R by the exact sequence from Proposition 1.4.10.
Moreover, in the case that R → S is already surjective and we choose P = R, we see that
Ω1
P/R = 0 and the cohomology of this naive cotangent complex recovers ExalcommR(S,M) by

Proposition 1.4.9. In fact, the homology and cohomology of the naive cotangent complex are
independent of the surjection P → S we choose:

Lemma 1.5.19. Let R be a global power functor and S be an R-algebra. Let ε : P → S and
η : Q → S be two surjections of R-algebras with P and Q polynomial. Denote the kernels by I
and J , respectively. Let moreover φ : P → Q be a morphism of R-algebras with ηφ = ε. Then
there is an induced morphism

φ∗ : Lnaive
S/P/R → Lnaive

S/Q/R,

which is a quasi-isomorphism. These morphisms make the naive cotangent complex functorial in
the choice of the surjection P → S.

Proof. The existence of an induced morphism is clear from functoriality of the Kähler differentials
and the universal derivation, and follows from considering the diagram

I P

S.

J Q
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We now consider the effect of this morphism on homology. First, we observe that we may factor
φ : P → Q through P → P□RQ→ Q, where the first morphism exhibits P□RQ as a polynomial
P -algebra and the second morphism is surjective. Thus, we consider these cases separately and
start with the assumption that Q is polynomial over P .
In this case, we consider the sequence

0→ I/I≥2 → J/J≥2 → Ω1
Q/P□QS → 0. (1.5.20)

Applying HomS(_,M) for arbitrary S-modules M and using Theorem 1.2.24 and Proposi-
tion 1.4.9, we obtain the sequence

0→ DerP (Q,M)→ ExalcommQ(S,M)→ ExalcommP (S,M)→ 0.

This is exact by Theorem 1.4.5, since DerP (S,M) = 0 by surjectivity of P → S and since
ExalcommP (Q,M) = 0 as Q is polynomial over P . Hence the sequence (1.5.20) is exact.
We also obtain the split short exact sequence

0→ Ω1
P/R□PQ→ Ω1

Q/R → Ω1
Q/P → 0

by Proposition 1.4.16, since Q is smooth over P . Upon applying _□QS, we obtain the short
exact sequence

0→ Ω1
P/R□PS → Ω1

Q/R□QS → Ω1
Q/P□QS → 0.

The differential for the naive cotangent complex now defines a morphism

0 I/I≥2 J/J≥2 Ω1
Q/P□QS 0

0 Ω1
P/R□PS Ω1

Q/R□QS Ω1
Q/P□QS 0

φ1

φ0

of short exact sequences. The long exact homology sequence for this short exact sequence of
two-term complexes then shows that the morphism φ∗ is a quasi-isomorphism.

We now have to consider the case that P → Q is surjective. In this case, we denote K =
ker(P → Q) and consider the diagram

K/K≥2□QS I/I≥2 J/J≥2 0

0 K/K≥2□QS Ω1
P/R□PS Ω1

Q/R□QS 0.

φ1

φ0

In this diagram, the bottom row is split exact by Proposition 1.4.17, since Q is polynomial over
R. The top sequence is dual to the sequence

0→ ExalcommQ(S,M)→ ExalcommP (S,M)→ ExalcommP (Q,M)

from Theorem 1.4.5, which is exact because DerP (Q,M) = 0, since P → Q is surjective. Hence
the top sequence is right exact. Again, the long exact sequence in homology then shows that φ∗
is a quasi-isomorphism.

Next, we show that indeed the naive cotangent complex always computes the first two terms
of André-Quillen (co-)homology.
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Proposition 1.5.21. Let R be a global power functor and S be an R-algebra. Moreover let
P• → S be a simplicial polynomial resolution of S as an R-algebra. In particular, we have a
surjection ε : P0 → S from a polynomial R-algebra onto S. Then there is a morphism

φ : LS/R → Lnaive
S/P0/R

inducing a (co-)homology isomorphism in degrees at most 1.

Proof. We first construct the map LS/R → Lnaive
S/P0/R

. It arises from considering the extension

0→ I0/I
≥2
0 → P0/I

≥2
0 → S → 0,

where I0 denotes the kernel of the augmentation P0 → S. Using Construction 1.5.11, we may
lift d1 − d0 : P1 → P0 → P0/I

≥2
0 to an R-derivation D : P1 → I0/I

≥2
0 . This derivation is then

equivalent to a homomorphism φ̃1 : Ω1
P1/R

→ I0/I
≥2
0 of P1-modules. We base-change it to a

morphism φ1 : Ω1
P1/R

□P1S → I0/I
≥2
0 of S-modules. By the construction of φ1 by lifting d1− d0,

it is clear that this induces a morphism φ : LS/R → Lnaive
S/P0/R

of complexes together with the
identity in degree 0. We only show that this induces an isomorphism in homology of degree at
most 1, the proof in cohomology is analogous.

To check that this morphism induces a homology isomorphism in degrees at most 1, we build
an entire complex of naive cotangent complexes. We observe that the construction of the naive
cotangent complex is functorial in morphisms of R-algebras compatible with surjections to S, as
shown in Lemma 1.5.19. Hence, the simplicial object P• of polynomial R-algebras augmented to
S defines a simplicial object

Lnaive
S/P•/R

= (I•/I
≥2
• → ΩP•/R□P•S).

In particular, we obtain a double complex

0 0 0

I0/I
≥2
0 I1/I

≥2
1 I2/I

≥2
2 · · ·

Ω1
P0/R

□P0S Ω1
P1/R

□P1S Ω1
P2/R

□P2S · · · .

For later reference, we have included the morphism φ1 : Ω1
P1/R

□P1S → I0/I
≥2
0 constructed above

as the dashed morphism. Associated to this double complex are two spectral sequences converging
to the homology of the total complex [47, Theorem 2.15, Homological version]. If we first take the
vertical homology, we obtain the homology of the naive cotangent complexes. Since all face maps
di : Pn → Pn−1 induce isomorphisms between these homologies by Lemma 1.5.19, the horizontal
complexes are now constant chain complexes. Hence we obtain that the E2-page is concentrated
in bidegrees (0, 0) and (0, 1), and the homology of the total complex is computed as the homology
of the naive cotangent complex Lnaive

S/P0/R
.

We now consider the other spectral sequence and start by computing the horizontal homology.
Since the zeroth row is exactly the usual cotangent complex, its homology computes the André-
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Quillen homology of S over R. We obtain the following E1-page:

0 0 0

H0(I•/I
≥2
• ) H1(I•/I

≥2
• ) H2(I•/I

≥2
• ) · · ·

D0(S,R) D1(S,R) D2(S,R) · · ·

We now claim that the homology groups H0(I•/I
≥2
• ) and H1(I•/I

≥2
• ) vanish. After we show this,

we have proved the proposition, since the only groups contributing to the lowest two homology
groups of the total complex are D0(S,R) and D1(S,R), which thus have to be isomorphic to the
homology groups of the naive cotangent complex. The identification of the morphism inducing
this isomorphism follows by considering the edge homomorphism of the second spectral sequence,
which agrees with the morphism φ1 : ΩP1/R□P1S → I0/I

≥2
0 by considering the diagram

I0/I
≥2
0

Ω1
P0/R

□P0S Ω1
P1/R

□P1S,

D

d1−d0

φ1

which is part of the spectral sequence considered above.
We are left to prove that H0(I•/I

≥2
• ) and H1(I•/I

≥2
• ) vanish. For this, we consider the

simplicial object I• of non-unital global power functors. Since the augmentation P• → S induces
isomorphisms on homotopy groups, I• is acyclic. The following lemma then proves that the first
two homology groups of I•/I

≥2
• vanish and thus finishes the proof.

Lemma 1.5.22. Let I• be an acyclic simplicial object of non-unital global power functors, then
H0(I•/I

≥2
• ) = 0 and H1(I•/I

≥2
• ) = 0.

Proof. We know that d1 − d0 : I1 → I0 is surjective by acyclicity. Then also the induced map
I1/I

≥2
1 → I0/I

≥2
0 is surjective, and thus H0 = 0.

We now consider H1. Suppose we have a cycle [f ] ∈ I1/I
≥2
1 . This means that (d1−d0)(f) ∈ I≥2

0 .
If we are able to find a preimage g ∈ I≥2

1 of (d1 − d0)(f), then the element f − g satisfies
(d1 − d0)(f − g) = 0 and thus lifts to I2. Since we consider the quotient I1/I

≥2
1 , this yields a lift

of [f ] to I2/I
≥2
2 . We have thus reduced to showing that also d1 − d0 : I≥2

1 → I≥2
0 is surjective.

By definition, I≥2
0 is generated by elements f · g and P k(f) for f, g ∈ I0(G), k ≥ 2, G a

compact Lie group. We start by considering f · g. Here, we choose a preimage F ∈ I1(G) of f
and calculate

(d1 − d0)(F · s(g)) = d1(F )d1(s(g))− d0(F )d0(s(g)) = (d1 − d0)(F ) · g = fg.

Thus all products lie in the image. We now turn to the power operations. For this, we again
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take a preimage F ∈ I1(G) of f ∈ I0(G), and we calculate

P k(f) = P k(d1(F )− d0(F ))

= d1(P k(F ))− d0(P k(F ))−
k−1∑
i=1

trk−i,i(P k−i(d1(F )− d0(F ))× P i(d0(F )))

= (d1 − d0)(P k(F ))−
k−1∑
i=1

trk−i,i(P k−i(f)× P i(d0(F ))).

Here, we used additivity for P k((d1(F )− d0(F )) + d0(F )) for the decomposition in the first line.
In the last term, we now observe that the first summand lies in the image of I≥2

1 . All other
summands are products of elements in I0, and hence lie in the image of I≥2

1 by the previous
arguments. This finishes the proof.

1.5.d Failure of Transitivity and Base Change
In the classical theory for commutative rings, André-Quillen (co-)homology exhibits a long ex-
act sequence for a sequence of rings. This extends the exact sequences of Kähler differentials
and derivations given in Proposition 1.2.29. We show that this three-term exact sequence for
global power functors is extended to a six-term exact sequence by the Exalcomm-functor in The-
orem 1.4.5. For commutative rings, the higher André-Quillen groups extend this to a long exact
sequence. Concretely, for morphisms R → S → T of commutative rings, the natural maps of
cotangent complexes

T ⊗S LS/R → LT/R → LT/S (1.5.23)

form an exact triangle in the triangulated category of chain complexes of T -modules, ie a short
exact sequence of chain complexes. We obtain exact sequences in homology and cohomology.
The cohomology sequence for example reads

. . .→ Dn(T, S;M)→ Dn(T,R;M)→ Dn(S,R;M)→ Dn+1(T, S;M)→ . . .

These results are proved in [53, Theorem 5.1], [1, Proposition 18.2] and [2, Theorem V.1].
We quickly sketch the proof for this transitivity sequence as given by Quillen in [53, Theorem

5.1]. For the sequence of commutative rings R→ S → T , we consider the diagram

Q•

P• Q• ⊗P• S

R S T.

≃

≃

(1.5.24)

In this diagram, we choose a resolution R→ P• → S of S by a polynomial simplicial R-algebra
P• and a resolution P• → Q• → T of T by a polynomial simplicial P•-algebra Q•. We then form
Q• ⊗P• S. This receives a map from S, which exhibits it as a polynomial simplicial S-algebra.
Moreover, since the polynomial algebra Q• over P• is in particular flat, we can conclude that the
base-change of the weak equivalence P• → S to Q• → Q• ⊗P• S also is a weak equivalence. By
the 2-out-of-3 property, also Q• ⊗P• S → T is a weak equivalence. In total, we have constructed
a resolution S → Q• ⊗P• S → T of T by a polynomial simplicial S-algebra. Using these three
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resolutions, we obtain the distinguished triangle (1.5.23) by applying the transitivity sequence
of Kähler differentials to R → P• → Q•, using base change for Kähler differentials from Q•/P•
to Q• ⊗P• S/S, and tensoring with T . Since the involved algebras here are polynomial and thus
smooth, the resulting sequence is (levelwise split) short exact by Proposition 1.4.16.

When we try to transfer this result to our André-Quillen theory for global power functors,
we may attempt to mimic the above proof. However, this fails as in the category of modules
over a global power functor, projective modules might not be flat. This observation goes back
to a study of flatness in various categories of equivariant algebra conducted by Lewis in [44].
This then implies that a polynomial algebra might not be flat. Hence, we are no longer able to
conclude that Q• ⊗P• S → T is a weak equivalence.

In fact, we can explicitly calculate that the six-term exact sequence of the low-dimensional
André-Quillen homology groups as identified in Section 1.5.b does not extend to a long exact
sequence. For this, we first recall Lewis’s example of a projective global functor that is not flat.

Proposition 1.5.25. Let p be a prime. Then the global functor A(Z/p,_) is free, hence projec-
tive, but not flat.

Proof. This is the statement of [44, Theorem 6.10]. For this, we observe that the category of
Fin-global functor is the category of (∅,∞)-Mackey functors as considered by Lewis. The same
calculation also goes through in the case of compact Lie groups. There is a slight mistake in
the description in the map τ̃eZ/p(Z/p) on page 244, where restriction along the non-surjective
endomorphism of Z/p should be sent to p times the inflation, but this does not change the
argument.

The concrete example Lewis uses for this proof is the sequence A(Z/p,_) (trZ/p
e )∗

−−−−−→ A →
A/ trZ/pe . The proof cited above can be interpreted as considering this sequence as the start of a
projective resolution of A/ trZ/pe , on which taking □A(Z/p,_) picks up a non-trivial Tor1-term.

Guided by this example, we state the following comparison result for certain first André-
Quillen homology groups that implies that the long transitivity sequence fails to be exact in
general. In this statement, the notation ⟨f⟩ denotes the power ideal generated by f . We also
observe that this statement expresses that the corresponding base-change result [53, Theorem
5.3] fails, which usually can be deduced as a corollary from the transitivity sequence.

Proposition 1.5.26. Consider the global power functors S = A[xe]/⟨trZ/2
e (x)⟩ and T = S[tZ/2].

Then the natural morphism
T□SD1(S,A)→ D1(T,A)

is surjective but not injective.

Before we give the proof by explicit calculations, we record the consequence for the transitivity
sequence.

Theorem 1.5.27. For general morphisms R→ S → T of global power functors and T -modules
M , there is no possible choice of connecting homomorphisms ∂n : Dn(T, S;M)→ T□SDn−1(S,R;M)
such that the transitivity sequence

. . .→ T□SDn(S,R;M)→ Dn(T,R;M)→ Dn(T, S;M)→ T□SDn−1(S,R;M)→ . . .

is exact. In fact, this fails even for n = 2.
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Proof. We consider the sequence A → S → T from Proposition 1.5.26. Since T is polynomial
over S, we see that Dn(T, S;M) = 0 for all n ≥ 1 and all T -modules M . Hence, exactness of the
transitivity sequence implies that

T□SD1(S,A)→ D1(T,A)

is an isomorphism. This is not the case by Proposition 1.5.26.

Remark 1.5.28. In his book [2], André gives an overview of the homology theory for commutative
rings and gives modified arguments for many results from [1]. In particular, in this proof of the
transitivity sequence (which he calls Jacobi-Zariski sequence), he shows that it can be deduced
from the property that enlarging an R-algebra S to a polynomial S-algebra T only base-changes
the higher André-Quillen homology groups over R from S to T ([2, Condition V.9]). This is
exactly the property we show to fail for global power algebras in Proposition 1.5.26. That this
condition is necessary is the content of the proof of Theorem 1.5.27. André’s arguments show
that this special case of the transitivity sequence is also sufficient.

The condition mentioned above is always satisfied for polynomial R-algebras S by the calcu-
lations in Proposition 1.5.9. This shows that if the middle global power functor in the transitivity
sequence is polynomial, we in fact do obtain a transitivity result. In the classical case, André
shows in [2, V.11] that one can bootstrap the general case from this special case. However, this
argument also uses that polynomial algebras are flat, which is no longer the case for global power
functors.
Remark 1.5.29. The reader well versed in the literature on equivariant André-Quillen (co-
)homology may find the above statement about failure of the transitivity sequence surprising.
The reason for this is that Leeman claims in his PhD-thesis [42, Proposition 3.4.11] that André-
Quillen homology and cohomology for Tambara functors do come equipped with a transitivity
sequence. On the other hand, Tambara functors also exhibit the property that polynomial
algebras are not flat, see [32] for an extensive study (even though this comes about because
polynomial algebras are seldom free as Mackey functors, whereas projective Mackey functors are
indeed flat). In fact, I believe that Leeman’s proof is not correct, and expect that also for Tam-
bara functors, counterexamples for the transitivity sequence can be found. The faulty argument
in the cited proof (transcribed into our notation) lies in the analysis of the pushout

P• Q•

S Q•□P•S,

≃

which is part of the Diagram 1.5.24. Leeman claims that since the P• and Q• are cofibrant in
the model category of simplicial R-algebras and P• → Q• is a cofibration, the pushout has to
preserve the weak equivalence P• → S by a classical argument, see eg [33, Proposition 13.2].
However, this argument actually needs S to be cofibrant over R, which is generally not the case.
In fact, this is the reason we need to resolve S by P• in the first place.

Proof of Proposition 1.5.26. We calculate the first André-Quillen homology modules by using the
naive cotangent complex from Proposition 1.5.21. We start by performing the calculations for
S = A[xe]/⟨trZ/2

e (x)⟩. We calculate the values of the André-Quillen global functors for the groups
e and Z/2. At the trivial group, we recover the classical results from the case of commutative
rings and the morphism in question is an isomorphism. At Z/2, we obtain that the morphism is
not injective.
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The naive cotangent complex depends on a surjection P → S from a polynomial A-algebra
P . We choose the canonical surjection P = A[xe] → A[xe]/⟨trZ/2

e (x)⟩ = S. Then we have that
the Kähler differentials Ω1

P/A = P{dx} ∼= A[x]{dx} are a free P -module on a generator at e by
Proposition 1.2.15. Thus the 0-th term of the naive cotangent complex is

(Lnaive
S/P/A)0 = Ω1

P/A□PS = S{dx}.

We explicitly calculate the values at the groups e and Z/2. For this, we recall that A[xe](G) =⊕
m≥0 A(Σm, G). Using the description of the Burnside ring global power functor from [55, The-

orem 4.2.6], we obtain the description of the polynomial global power functor A[xe] as explained
in Remark A.2.1, as

P (e) = Z[x]

P (Z/2) = Z[P 2(x), p∗(x)] ⋉
⊕
k≥0

Z{trZ/2
e (xk)}.

Here, p : Z/2 → e is the unique homomorphism, and p∗(x) is the inflation of x along this
homomorphism. The product structure on the left summand of P (Z/2) is the one of a polynomial
ring on the two designated generators, as both power operations and inflations are multiplicative.
The symbol ⋉ indicates that

⊕
k≥0 Z{tr

Z/2
e (xk)} is an ideal in P (Z/2), with multiplication

determined by the formulas tr(xi) tr(xk) = 2 tr(xi+k), P 2(x) tr(xk) = tr(xk+2) and p∗(x) tr(xk) =
tr(xk+1). These relations follow from Frobenius reciprocity.
From this description, we obtain that Ω1

P/A□PS
∼= S{dx} has the form

S{dx}(e) = Z[x]/(2x){dx}

S{dx}(Z/2) =
(
Z[P 2(x), p∗(x)]/(2P 2(x), 2p∗(x))⊕ Z{trZ/2

e (1)}
)
{dx}.

For the next term of the naive cotangent complex of S, we denote I = ker(P → S) =
⟨trZ/2

e (x)⟩ and calculate I/I≥2. We calculate from the above description of P that I has the
form

I(e) = (2x)
I(Z/2) = (2P 2(x), 2p∗(x), trZ/2

e (xk) for k ≥ 1),

where each level is considered as an ideal in P (G) for G = e,Z/2 on the specified generators.
From this, we calculate I≥2 as

I≥2(e) = (4x2)
I≥2(Z/2) = (2P 2(x) + trZ/2

e (x2), 4p∗(x)2, 2 trZ/2
e (xk) for k ≥ 2),

and I/I≥2 as

(I/I≥2)(e) = 2x · Z[x]/2x = Z{2x} ⊕
⊕
k≥2

Z/2{2xk}

(I/I≥2)(Z/2) = Z{2p∗(x)} ⊕
⊕
k≥2

Z/2{2p∗(x)k} ⊕ Z{trZ/2
e (x)} ⊕

⊕
k≥2

Z/2{trZ/2
e (xk)}.

Note that P 2(2x) ∈ I≥2 by definition, and P 2(2x) = trZ/2
e (x2) + 2P 2(x) by additivity of the

power operations. Generally, P 2(2nx) is also contained in I≥2(Z/2), which can explicitly be
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checked with the above description and the A-linearity of the power operations. The fact that
this element is contained in I≥2 allows us to identify 2P 2(x) with − trZ/2

e (x2) in I/I≥2, and
hence we do not introduce a generator 2P 2(x) in the above description.

We have now computed the naive cotangent complex Lnaive
S/P/A = (I/I≥2 d−→ Ω1

P/A□PS). The
first André-Quillen homology group is now the kernel of the map d. Explicitly, the morphism d
comes from the universal derivation and hence takes the form

Z{2x} ⊕
⊕
k≥2

Z/2{2xk} → Z[x]/(2x){dx}

2xk 7→ 2kxk−1dx(
Z{2p∗(x), trZ/2

e (x)}⊕⊕
k≥2 Z/2{2p∗(x)k, trZ/2

e (xk)}

)
→
(
Z[P 2(x), p∗(x)]/(2P 2(x), 2p∗(x))⊕ Z{trZ/2

e (1)}
)
{dx}

trZ/2
e (xk) 7→ k trZ/2

e (xk−1)dx
2p∗(xk) 7→ 2kp∗(xk−1)dx.

The kernel is thus given by

D1(S,A)(e) =
⊕
k≥2

Z/2{2xk}

D1(S,A)(Z/2) =
⊕
k≥2

Z/2{2p∗(xk)} ⊕
⊕
k≥2

Z/2{trZ/2
e (xk)}.

Finally, we now calculate D1(S,A)□ST ∼= D1(S,A)□A[tZ/2]. We describe the polynomial
global power functor A[tZ/2] in Corollary A.2.3. The classical coend formulation, recalled in
Remark 1.1.9, implies that only the levels e and Z/2 of the two box-product factors influence
the value of the box product at e and Z/2. Considering all relations, we obtain

(D1(S,A)□ST )(e) =
⊕
k≥2

Z/2[resZ/2
e (t)]{2xk}

(D1(S,A)□ST )(Z/2) =
(⊕

k≥2 Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{trZ/2
e (xk)}⊕⊕

k≥2 Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{2p∗(xk)}

)
.

We now calculate the corresponding first André-Quillen homology global functor at the groups
e and Z/2 for A→ T = A[xe, tZ/2]/⟨trZ/2

e (x)⟩. Here, we use as input for the naive cotangent com-
plex the canonical surjection Q = A[xe, tZ/2]→ T . We again obtain that the Kähler differentials
Ω1
Q/A = Q{dx, dt} are a free Q-module on two generators at e and Z/2 by Proposition 1.2.15.

Thus the 0-th term of the naive cotangent complex is

(Lnaive
T/Q/A)0 = Ω1

Q/A□QT = T{dx, dt}.

We again start by writing down the polynomial algebra Q =
⊕

m,n≥0 A((Σm ≀Z/2)×Σn,_).
The computation of A(Σm ≀ Z/2,Z/2) is carried out in Corollary A.2.3. For Q, we obtain

Q(e) = Z[x, resZ/2
e (t)]

Q(Z/2) = Z[P 2(x), p∗(x), t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))] ⋉
⊕
k,l≥0

Z{trZ/2
e (xk resZ/2

e (t)l)}.
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Here, the multiplication on the left summand is again that of a polynomial ring, and the right
summand on the transfers is an ideal, with multiplications given by Frobenius reciprocity. In
particular, the term trZ/2

e (xk resZ/2
e (t)l) agrees with trZ/2

e (xk)tl. This determines the Kähler
differentials.

We now compute the next term of the naive cotangent complex. We denote the kernel of the
surjection Q→ T by J = ⟨trZ/2

e (x)⟩. We have

J(e) = (2x)
J(Z/2) = (2P 2(x), 2p∗(x), trZ/2

e (xk) for k ≥ 1),

where each level is considered as an ideal in Q(G) for G = e,Z/2 on the specified generators.
From this, we calculate J≥2 as

J≥2(e) = (4x2)
J≥2(Z/2) = (2P 2(x) + trZ/2

e (x2), 4p∗(x)2, 2 trZ/2
e (xk) for k ≥ 2),

and J/J≥2 as

(J/J≥2)(e) = 2x · Z[x, resZ/2
e (t)]/2x = Z[resZ/2

e (t)]{2x} ⊕
⊕
k≥2

Z/2[resZ/2
e (t)]{2xk}

(J/J≥2)(Z/2) =

 Z[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{2p∗(x)}
⊕
⊕

k≥2 Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{2p∗(x)k}
⊕Z[t]{trZ/2

e (x)} ⊕
⊕

k≥2 Z/2[t]{trZ/2
e (xk)}

 .

For the map to Ω1
Q/A□QT , we obtain similar formulas as in the calculation for S. Calculating

the kernel then gives as André-Quillen homology groups

D1(T,A)(e) =
⊕
k≥2

Z/2[resZ/2
e (t)]{2xk}

D1(T,A)(Z/2) =
⊕
k≥2

Z/2[t]{trZ/2
e (xk)} ⊕

⊕
k≥2

Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{2p∗(xk)}.

Comparing this term to the calculation of D1(S,A)□ST above, we observe that the natural
comparison map on

Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{trZ/2
e (xk)} → Z/2[t]{trZ/2

e (xk)}

identifies polynomials in t, P 2(resZ/2
e (t)) and p∗(resZ/2

e (t)) if they have the same restriction to e.
Hence, the map is not injective.

Remark 1.5.30. When carefully going through the calculations in the proof of Proposition 1.5.26,
we see that the reason the considered morphism is not injective is that in the two calculations
of D1(S,A)□ST and D1(T,A), the Frobenius reciprocity for terms of the form F · trZ/2

e (x) with
F ∈ Z[t, P 2(resZ/2

e (t)), p∗(resZ/2
e (t))] is used at different steps of the calculation. In the first one,

it is used at a step where this “transfer” is not actually a transfer of anything at level e, since
the term it is a transfer of has been killed during the calculation of D1(S,A). Thus, we cannot
apply Frobenius reciprocity for this term. In the calculation of the André-Quillen homology for
T , we use the Frobenius reciprocity already in T , and there trZ/2

e (x) still is a transfer of x. Hence
we identify terms of the form F · trZ/2

e (x) when the restrictions of F agree.
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Remark 1.5.31. As the functor _□ST is not exact since polynomial algebras need not be flat,
there is another candidate for the spot in the transitivity sequence occupied by D1(S,A)□ST ,
namely H1(Lnaive

S/P/A□ST ). However, also this term does not agree with D1(T,A). Using the
calculation of the naive cotangent complex in the proof of Proposition 1.5.26, we can calculate
that this term takes the form

H1(Lnaive
S/P/A□ST )(e) =

⊕
k≥2

Z/2[resZ/2
e (t)]{2xk}

H1(Lnaive
S/P/A□ST )(Z/2) = Z/2{trZ/2

e (x)} ⊗ ker(res : A[t](Z/2)→ A[t](e))

⊕
⊕
k≥2

Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{trZ/2
e (xk)}

⊕
⊕
k≥2

Z/2[t, P 2(resZ/2
e (t)), p∗(resZ/2

e (t))]{2p∗(xk)}.

This differs from D1(S,A)□ST by the additional first summand, which again comes about since
we are able to use Frobenius reciprocity one step earlier, namely on the level of the naive cotangent
complex. This then picks up additional elements in the kernel. It also differs from D1(T,A).
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Chapter 2

Topological André-Quillen
(Co-)Homology of Ultra-Commutative
Ring Spectra

In this second part of the dissertation, we study ultra-commutative ring spectra. These are
modelled by commutative orthogonal ring spectra in the positive global model category of or-
thogonal spectra, as defined in [55]. The name “ultra-commutative” is chosen in order to convey
that such ring spectra represent a very rich structure, in particular this structure is stronger than
that of E∞-ring spectra in global spectra. Specifically, the homotopy groups and cohomology
groups of global spaces represented by such spectra inherit not only the structure of commutative
monoids in global functors (called global Green functors), but also additional equivariant power
operations. Thus, we obtain a global power functor π0(R) from such an ultra-commutative ring
spectrum R. These power operations are equivalent to a global version of norm maps, which
recently have seen many applications in equivariant homotopy theory. The prime example is the
usage of genuine equivariant commutative ring spectra in the solution of the Kervaire invariant
one problem by Hill-Hopkins-Ravenel [29].

Hence, the study of ultra-commutative ring spectra is an interesting subject. In this section,
we construct a cohomology theory for such ring spectra, which can then be used to study the
multiplication in detail. We aim to provide the tools which later might be applied in the con-
struction of an obstruction theory for ultra-commutative ring spectra. A similar program for
commutative ring spectra was initiated by work of Kriz [39], who proposed to use a topological
version of André-Quillen cohomology to build Postnikov towers of commutative ring spectra. The
aim in that project was to study multiplications on the Brown-Peterson spectrum BP . The the-
oretical groundwork was later carried out by Basterra [10], and applied by Basterra and Mandell
to put an E4-multiplication on BP in [12]. Also using topological André-Quillen cohomology,
Goerss and Hopkins [26] built an obstruction theory to show that Morava E-theory spectra have
a unique E∞-ring structure.

Thus, we observe that topological André-Quillen cohomology has proven to be a useful co-
homology theory for commutative ring spectra. Hence, in this chapter, we generalize it to
topological André-Quillen cohomology of ultra-commutative ring spectra. For this, we use a
model-categorical approach, utilizing the model of orthogonal ring spectra with a positive global
model structure, as considered in [55, Chapter 5]. Hence, the first step is to study the con-
struction of topological André-Quillen cohomology in a general model category. This is carried
out in Section 2.1, and follows the constructions given by Basterra in [10, Sections 2-4]. In this
section, we also show that the transitivity sequence of topological André-Quillen cohomology can

91



CHAPTER 2. TAQ OF ULTRA COMMUTATIVE RING SPECTRA

be deduced in this general context.
In Section 2.2, we then apply this theory to the model category of ultra-commutative ring

spectra, and obtain a topological André-Quillen cohomology of ultra-commutative ring spectra.
This cohomology theory is well-behaved in that it comes equipped with a transitivity long exact
sequence, and satisfies base-change and additivity results. Moreover, we exhibit a Hurewicz
theorem for this cohomology theory, treating the behaviour on connective algebras, and construct
Postnikov towers of ultra-commutative ring spectra. In these Postnikov towers, the k-invariants
lie in topological André-Quillen cohomology, and refine the classical k-invariants as global spectra
through a comparison map to the underlying cohomology. In this way, we expect an obstruction
theory to arise by studying lifts of the k-invariants along this comparison map.

2.1 André-Quillen Homology in Abstract Model Categories

In this section, we define André-Quillen cohomology for commutative algebra objects in an
abstract symmetric monoidal model category C. We follow the outline of [10], generalizing it to
a cofibrantly generated symmetric monoidal model category C that supports a model category
structure on categories of commutative algebras and modules. The classical example in [10] is
the category of spectra, realized as S-modules. In this category, the commutative monoids are
commutative S-algebras, modelling commutative ring spectra, or equivalently E∞-ring spectra.
In Section 2.2, we apply the theory to the model category of orthogonal spectra with the global
model structure defined in [55], thus defining topological André-Quillen cohomology for ultra-
commutative ring spectra.

Throughout this chapter, we assume that C is a cofibrantly generated symmetric monoidal
model category, satisfying the monoid and strong commutative monoid axiom. We moreover
assume that C is pointed and that the symmetric monoidal structure, denoted ∧, distributes over
the coproduct ∨, and that coproducts ∨ are homotopical.
Under these assumptions, we obtain induced model category structures on the categories of
algebras and modules. For a commutative monoid R in C, we denote by ModR the category
of R-modules, by CAlgR the category of commutative R-algebras and by CAlg+

R the category
of non-unital commutative R-algebras. Moreover, for a commutative R-algebra B, we denote
by CAlgR /B the category of R-algebras augmented to B. These categories all inherit model
structures from C by the results obtained in [56, 66] and Appendix B.

2.1.a Construction of the Cotangent Complex
We define the functors from which we obtain the cotangent complex and the definition of André-
Quillen cohomology. Since usual André-Quillen cohomology is defined in Definition 1.5.6 as
the derived functor of derivations, represented by the module of Kähler differentials, we mimic
the construction of the module of Kähler differentials in this context. This is accomplished
by recalling the construction of Ω1 as the module of indecomposables for the kernel of the
multiplication map in Theorem 1.2.24.

Definition 2.1.1. Let R be a commutative monoid in C. Then for an augmented R-algebra
A ∈ CAlgR /R with structure morphisms η : R→ A and ε : A→ R, we define the augmentation
ideal I(A) as the pullback

I(A) A

∗ R

i

ε
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in the category of R-modules. This comes equipped with a multiplication map µ : I(A)∧RI(A)→
I(A) induced from the diagram

I(A) ∧R I(A) A ∧R A A

∗ R ∧R R R.

i∧i

ε∧ε

µA

ε

µR

This defines a functor I : CAlgR /R→ CAlg+
R.

Moreover, for a non-unital R-algebra J , we define K(J) = R ∨ J , with multiplication given as

(R ∨ J) ∧R (R ∨ J) ∼= R ∨ (R ∧R J) ∨ (J ∧R R) ∨ (J ∧R J) multiply−−−−−→ R ∨ J.

This R-algebra comes equipped with an augmentation R ∨ J → R by projection onto the R-
summand. This defines a functor K : CAlg+

R → CAlgR /R.

Proposition 2.1.2. The functors

CAlg+
R CAlgR /R

K

I

are adjoint, with K left and I right adjoint. The adjunction unit is given as

u : Id→ IK; J → I(R ∨ J) ∼= J

via the pullback square
J R ∨ J

∗ R.

incl

pr

The adjunction counit is given as

c : KI → Id; R ∨ I(A) η∨i−−→ A.

Proof. We need to check that the triangle equalities hold. Thus, we consider the diagrams

R ∨ J R ∨ I(R ∨ J)

R ∨ J

R∨u

cR∨J
and

I(A)

I(R ∨ I(A)) I(A).

uI(A)

I(c)

Both diagrams commutes, thus the maps c and u indeed exhibit K and I as adjoint.

Proposition 2.1.3. Let C be a cofibrantly generated symmetric monoidal model category satis-
fying the monoid and the strong commutative monoid axiom. Then the adjunction

CAlg+
R CAlgR /R

K

I

is a Quillen equivalence, for the induced model structures on the categories of non-unital and
augmented commutative algebras defined in Appendix B. Moreover, the functor K is homotopical.

93



CHAPTER 2. TAQ OF ULTRA COMMUTATIVE RING SPECTRA

Proof. We first prove that K preserves both cofibrations and acyclic cofibrations of non-unital
commutative R-algebras. Let Igen be a set of generating cofibrations and Jgen be a set of
generating acyclic cofibrations for C. Then, the proof of Theorem B.2.6 shows that the sets
R ∧ P+Igen and R ∧ P+Jgen are generating cofibrations and generating acyclic cofibrations for
the model category CAlg+

R. Moreover, the corresponding sets R ∧ PIgen and R ∧ PJgen are
the generating sets for CAlgR /R, with augmentations given by projection on the first wedge
summand of P. Since K as a left adjoint preserves colimits, it is enough to check that K
preserves the generating cofibrations and acyclic cofibrations. But K(R∧P+(i)) ∼= R∧P(i), and
thus K is a left Quillen functor. Hence the adjunction is a Quillen adjunction.

The functor K is homotopical, since weak equivalences of algebras are defined using the
underlying morphisms and in C, the wedge sum is homotopical by assumption.

To check that this Quillen adjunction is indeed a Quillen equivalence, we check the following
criterion [34, Definition 1.3.12]: Let J ∈ CAlg+

R be cofibrant and A ∈ CAlgR /R be fibrant. Then
we need to check that a morphism f : KJ → A is a weak equivalence if and only if its adjoint
f̃ : J → I(A) is a weak equivalence. So suppose first that f̃ is a weak equivalence. Its adjoint f
is given as the composite R ∨ J R∨f̃−−−→ R ∨ I(A) c−→ A. Now if A is a fibrant object in CAlgR /R,
then by the definition of fibrations in the over-category CAlgR /R [34, Proposition 1.1.8], the
augmentation ε : A→ R is a fibration of commutative R-algebras. Thus the defining square

I(A) A

∗ R

i

ε

is a homotopy fibre square in ModR. Thus, it is in particular also a homotopy fibre square in C.
Moreover, the unit map η : R → A defines a section of ε. This proves that R ∨ I(A) c−→ A is a
weak equivalence. Moreover, R ∨ f̃ is a weak equivalence whenever f̃ is one.
Suppose conversely that f is a weak equivalence. Its adjoint is given as f̃ : J u−→ I(R ∨ J) I(f)−−−→
I(A). By considering the commutative diagram

J I(A)

R ∨ J R ∨ I(A)

A,

f̃

incl incl
R∨f̃

f
c≃

we observe that R∨ f̃ is a weak equivalence. Moreover, the inclusions in the above diagram and
the associated projections R ∨ J → J and R ∨ I(A) → I(A) prove that f̃ is a retract of R ∨ f̃ .
Since weak equivalences are stable under retracts, we conclude that f̃ is a weak equivalence.
Thus K and I form a Quillen equivalence.

Next, we define the indecomposables functor.
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Definition 2.1.4. Let R be a commutative monoid, and J be a non-unital commutative R-
algebra. Then we define the R-module Q(J) of indecomposables of J via the pushout diagram

J ∧R J J

∗ Q(J)

µ

q

in ModR. This defines a functor Q : CAlg+
R → ModR.

Moreover, for an R-module M , we define the non-unital R-algebra Z(M) by endowing M with
the zero-multiplication. This defines a functor Z : ModR → CAlg+

R.

Proposition 2.1.5. The functors

CAlg+
R ModR

Q

Z

are adjoint, with Q left and Z right adjoint. The adjunction counit is given as

c : QZ → Id; QZ(M)
∼=−→M

via the (strict) pushout square
M ∧RM M

∗ M.

∗

id

The adjunction unit is given as the projection

u : Id→ ZQ; J q−→ ZQ(J).

Proof. We need to check that the triangle equalities hold. Thus, we consider the diagrams

QJ Q(ZQJ)

QJ

Q(u)

cQJ and
ZM

ZQ(ZM) ZM.

uZM

Z(c)

Both diagrams commutes by straight-forward considerations, thus the maps c and u indeed
exhibit Q and Z as adjoint.

Proposition 2.1.6. Let C be a cofibrantly generated symmetric monoidal model category satis-
fying the monoid and the strong commutative monoid axiom. Then the adjunction

CAlg+
R ModR

Q

Z

is a Quillen adjunction, for the induced model structures on the categories of non-unital com-
mutative algebras and R-modules defined in Appendix B and [56, Theorem 4.1]. Moreover, the
functor Z is homotopical.

Proof. We only need to prove that the right adjoint Z preserves fibrations and weak equivalences.
But since both fibrations and weak equivalences are defined on the underlying objects, and Z is
the identity on the underlying objects, Z preserves both fibrations and weak equivalences.
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Finally, for a commutative R-algebra B, we have the usual extension-of-scalars adjunction

CAlgR /B CAlgB /B
B∧R(_)

forget

between R-algebras and B-algebras, descending to augmented algebras. Again, since the forgetful
functor from B-algebras to R-algebras is the identity on underlying objects and morphisms, it
preserves fibrations and weak equivalences, hence this adjunction is a Quillen adjunction as well.
We denote the left derived functor of B ∧R _ by B ∧L

R _.

Definition 2.1.7. Let R be a commutative monoid in the cofibrantly generated symmetric
monoidal pointed model category C, and let B be a commutative R-algebra. Then we define the
abelianization functor as

AbB/R : CAlgR /B → ModB , A 7→ (LQ)(RI)(B ∧L
R A).

In algebra, abelian group objects in augmented algebras are equivalent to modules and the
square-zero extension functor has a left adjoint given by Kähler differentials. This adjunction
is shown for global power functors in Theorem 1.2.13, even though here the interpretation as
abelian group objects is not valid anymore, as we show in Section 1.3.a. This adjunction justifies
the name abelianization for this functor, which we adopt from Basterra [10]. In the case of
commutative ring spectra, Basterra and Mandell [11] show that this functor can be interpreted
as a stabilization. A corresponding statement for ultra-commutative ring spectra is the topic of
a joint project with Tobias Lenz.

Also in this general context over a model category C, we observe that abelianization and
square-zero extension are adjoint after passage to the homotopy categories. In this case, the
square-zero extension functor is the composite

B ⋉ (_) := KZ : ModB → CAlgR /B, M 7→ B ⋉M = B ∨M.

Since both Z and K are homotopical, this composite descends to the homotopy categories.

Proposition 2.1.8. The functors

Ho(CAlgR /B) Ho(ModB)
AbB/R

Ho(B⋉(_))

are adjoint, with AbB/R left and Ho(B ⋉ (_)) right adjoint.

Proof. We use the Quillen adjunctions exhibited in Propositions 2.1.2 and 2.1.5 and calculate

Ho(ModB)(AbB/R(A),M) ∼= Ho(CAlg+
B)((RI)(B ∧L

R A), (RZ)(M))
∼= Ho(CAlgB /B)((LK)(RI)(B ∧L

R A), (LK)(RZ)(M))
∼= Ho(CAlgB /B)(B ∧L

R A,B ⋉M) ∼= Ho(CAlgR /B)(A,B ⋉M).

Here, we used that LK is an equivalence of homotopy categories inverse to RI.

Using this definition, we define the cotangent complex.

Definition 2.1.9. Let R be a commutative monoid in C and B be a commutative R-algebra.
Then the cotangent complex of B over R is the B-module

ΩB/R = AbB/R(B) = (LQ)(RI)(B ∧L
R B),

taking indecomposables of the fibre of the multiplication map B ∧L
B B → B.
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Definition 2.1.10. Let R be a commutative monoid in C and B be a commutative R-algebra.
Then we call the map

dB/A : B → ΩB/R
of R-modules, obtained by composing the unit B → B ⋉ ΩB/R of the adjunction from Proposi-
tion 2.1.8 with the projection B ⋉ ΩB/R → ΩB/R, the universal derivation of B over R.

We record the functoriality of the cotangent complex.

Construction 2.1.11. Let
R R′

B B′

fR

fB

be a commutative diagram of commutative monoids in C. This induces a morphism B ∧L
R B →

B′ ∧L
R′ B′. Moreover, by functoriality of pullbacks and pushouts, we also obtain morphisms

RIR(B ∧L
R B)→ RIR′(B′ ∧L

R′ B
′)

and
LQR(RIR(B ∧L

R B))→ LQR′(RIR′(B′ ∧L
R′ B

′)).
In total, this induces a morphism f∗ : ΩB/R → ΩB′/R′ . This construction is functorial.

As a first calculation, we can exhibit the cotangent complex on a free commutative algebra
PX as a free module generated by X. We formulate this relative to a commutative monoid R,
where PR : ModR → CAlgR denotes the free R-algebra functor.

Proposition 2.1.12. Let R be a commutative monoid in C, and X be an R-module. Then there
is a natural weak equivalence

ΩPRX/R
∼= PRX ∧L

R X.

Proof. We show this assertion by showing that PRX ∧L
RX has the universal property of ΩPRX/R

in the homotopy category of PRX-modules, exhibited by the adjunction in Proposition 2.1.8.
Hence, we need to show that for any PRX-module M , we have an isomorphism

Ho(ModPRX)(PRX ∧L
R X,M) ∼= Ho(CAlgR /PRX)(PRX,PRX ⋉M).

This can be seen by the chain of isomorphisms

Ho(ModPRX)(PRX ∧L
R X,M) ∼= Ho(ModR)(X,M)

∼= Ho(CAlg+
R)(P+

RX,RZ(M))
∼= Ho(CAlgR /R)(R⋉ P+

RX,R⋉M)
∼= Ho(CAlgR /PRX)(PRX,PRX ⋉M).

Here, in the third line, we used that LK is an equivalence of homotopy categories between CAlg+
R

and CAlgR /R. Moreover, in the last line, we used the adjunction of over categories

CAlgR /PRX CAlgR /R,
ε∗

ε!

where ε : PRX → R is the projection to the constant summand of the free algebra, ε∗ is postcom-
position with ε and ε! is pullback along ε. It is straight-forward that this is indeed an adjunction,
and since ε∗ is the identity on objects and morphisms, it is left Quillen. The last isomorphism
then follows from the observation that R⋉ P+

RX
∼= ε∗(PRX).
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2.1.b The Transitivity Sequence
In this section, we establish the basic properties of the cotangent complex, namely the transitivity
sequence, flat base change and additivity. For the algebraic cotangent complex, this is carried
out in [53, Section 5], and for topological André-Quillen cohomology for S-algebras, this is done
in [10, Section 4]. We mimic their arguments for the proof in our context.

First, we need to establish certain compatibilities of the augmentation ideal and the inde-
composables functors with change of rings.

Lemma 2.1.13. Let R be a commutative monoid in C, B be a commutative R-algebra and A be
a commutative R-algebra augmented to R. Then the natural map

RIR(A) ∧L
R B → RIB(A ∧L

R B), (2.1.14)

induced by the commutative diagram

IR(A) ∧R B A ∧R B

∗ B,

(2.1.15)

is an isomorphism in the homotopy category of non-unital commutative B-algebras.

Proof. Since the functors I and K are inverse Quillen equivalences, it suffices to show that the
mate transformation

LKB(A ∧L
R B)→ LKR(A) ∧L

R B

is a weak equivalence (see eg. [58, Lemma 2.2], applied to the adjunction on the level of homotopy
categories). However, this transformation is the isomorphism B ∨ (A ∧R B) ∼= (R ∨ A) ∧R B,
applied to suitable cofibrant replacements of A and B.

Lemma 2.1.16. Let R be a commutative monoid in C, B be a commutative R-algebra and J be
a non-unital commutative R-algebra. Then the natural map

LQB(J ∧L
R B)→ LQR(J) ∧L

R B, (2.1.17)

induced by the commutative diagram

(J ∧R J) ∧R B J ∧R B

∗ QR(J) ∧R B,

is an isomorphism in the homotopy category of B-modules.

Proof. As a left adjoint, _ ∧R B commutes with the pushout diagram defining Q(J). Hence,
considering suitable cofibrant replacements of B and J shows that the map (2.1.17) is indeed an
isomorphism.

Remark 2.1.18. On first glance, it might not be obvious how the transformation IR(_) ∧R B ⇒
IB(_ ∧R B), defined by diagram 2.1.15, induces the transformation in (2.1.14) on composites of
derived functors. In this transformation, we mix left and right derived functors. This can be
handled formally by considering the double category of model categories and left and right Quillen
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functors as vertical and horizontal morphisms, respectively. Then [58, Theorem 7.6] shows that
taking homotopy categories can be made into a double pseudofunctor. This incorporates the
definition of derived transformations as in (2.1.14), which are constructed in [58, 7.1].

In the similar situation of Lemma 2.1.16, the situation is easier, since both functors in question
are left Quillen. Hence they preserve cofibrant objects, so that the second cofibrant replacement is
not necessary. Formally, the natural transformation can be obtained by using the fact that on the
2-category of model categories and left Quillen functors, taking homotopy categories is a pseudo-
2-functor by [34, Theorem 1.4.3]. This incorporates the existence of a natural isomorphism
LF ◦ LG→ L(F ◦G), which together with its inverse can be used to define the transformation
in (2.1.17).

Lemma 2.1.19. Let R be a commutative monoid, S and T be commutative R-algebras with a
map S → T of commutative R-algebras. Assume moreover that C is left proper or that S is
cofibrant as a commutative monoid. Then a homotopy cofiber of S ∧L

R T → T ∧L
R T in CAlgT /T

is given by T ∧L
S T .

Proof. This statement mainly consists of a consideration of the relevant cofibrant replacements.
We consider the morphism S → T . In order to calculate S ∧L

R T , we consider a cofibrant replace-
ment ΓRS → S of S as a commutative R-algebra. Moreover, in order to calculate T ∧L

R T , we
decompose the morphism ΓRS → S → T into a cofibration followed by a weak equivalence as
ΓRS → ΓRT → T . Obviously, both ΓRS and ΓRT are cofibrant replacements also of commuta-
tive R-algebras augmented to T , and since the morphism ΓRS → ΓRT is a cofibration, ΓRT is
also cofibrant as a ΓRS-algebra. Then the map we need to take the homotopy cofiber of is

ΓRS ∧R T → ΓRT ∧R T.

Since _ ∧R T : CAlgR /T → CAlgT /T is a left Quillen functor, we observe that this map is a
cofibration between cofibrant objects. Hence, its homotopy cofiber is represented by the actual
cofiber of this map. This can be calculated by the usual properties of pushouts as

(ΓRT ∧R T ) ∧ΓRS∧RT T
∼= (ΓRT ∧ΓRS ΓRS ∧R T ) ∧ΓRS∧RT T

∼= ΓRT ∧ΓRS T.

We now need to compare this with ΓST ∧S T , where ΓST is a cofibrant replacement of T as a
commutative S-algebra. For this, it suffices to establish a weak equivalence ΓRT ∧ΓRS S → ΓST
of commutative S-algebras. Since both ΓRT ∧ΓRS S and ΓST are cofibrant S-algebras (since
_∧ΓRS S is left Quillen and by definition, respectively), the left Quillen functor _∧S T preserves
this weak equivalence.

In order to establish this weak equivalence, we consider the diagram

ΓRS S ΓST

ΓRT ∧ΓRS S

ΓRT T.

≃

≃

≃

In this diagram, we factored the map S → T into a cofibration followed by an acyclic fibration
as S → ΓST → T . Since the left vertical map is a cofibration, the diagonal dashed morphisms
exist by the lifting property. Moreover, since either the categories in question are left proper or
S is cofibrant, we conclude that the morphism ΓRT → ΓRT ∧ΓRS S is a weak equivalence. This
now proves that we indeed have a weak equivalence ΓRT ∧ΓRS S → ΓST as desired.
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We now have the necessary ingredients to show the existence of the transitivity sequence.

Theorem 2.1.20. Let R → S → T be a sequence of commutative monoids in C. Moreover,
assume that either C is left proper or that S is cofibrant. Then the sequence

ΩS/R ∧L
S T → ΩT/R → ΩT/S ,

induced from functoriality of Ω, has the structure of a homotopy cofiber sequence of T -modules.

Proof. We consider the morphism S ∧L
R T → T ∧L

R T of T -algebras augmented to T . By
Lemma 2.1.19, the homotopy cofiber of this morphism in CAlgT /T is given by T ∧L

S T . Since
I is a Quillen equivalence and Q is left Quillen, applying LQT ◦ RIT to the resulting cofiber
sequence yields a cofiber sequence of T -modules. This takes the form

LQT (RIT (S ∧L
R T ))→ LQT (RIT (T ∧L

R T ))→ LQT (RIT (T ∧L
S T )).

The last two terms are by definition the cotangent complexes ΩT/R and ΩT/S . We thus only
have to identify the first term as ΩS/R ∧L

S T .
For this, we observe that S ∧L

R T
∼= (S ∧L

R S) ∧L
S T . Then, we use Lemmas 2.1.13 and 2.1.16

to calculate

LQT (RIT (S ∧L
R T )) ∼= LQT (RIT ((S ∧L

R S) ∧L
S T ))

∼= LQT (RIS(S ∧L
R S) ∧L

S T )
∼= LQS(RIS(S ∧L

R S)) ∧L
S T

∼= ΩS/R ∧L
S T.

In total, we obtain the desired homotopy cofiber sequence.

Moreover, we also get analogues of the base change and additivity results.

Proposition 2.1.21. Let R be a commutative monoid in C and S and T be two commutative
R-algebras. Then there are natural equivalences

ΩS∧L
R
T/T
∼= ΩS/R ∧L

R T and

ΩS∧L
R
T/R
∼= (ΩS/R ∧L

R T ) ∨ (S ∧L
R ΩT/R).

Proof. For the first assertion, we calculate

ΩS∧L
R
T/T
∼= LQS∧L

R
T (RIS∧L

R
T ((S ∧L

R T ) ∧L
T (S ∧L

R T )))
∼= LQS∧L

R
T (RIS∧L

R
T ((S ∧L

R S) ∧L
S (S ∧L

R T )))
∼= LQS∧L

R
T (RIS(S ∧L

R S) ∧L
S (S ∧L

R T ))
∼= LQS(RIS(S ∧L

R S)) ∧L
S (S ∧L

R T )
∼= ΩS/R ∧L

R T.

The second assertion follows from observing that the transitivity cofiber sequences for R→ S →
S ∧L

R T and R → T → S ∧L
R T fit together to define splittings for each other, and applying the

first assertion to the resulting cotangent complexes.
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2.2 Topological André-Quillen Homology for Ultra-Commutative
Ring Spectra

In this section, we apply the general theory of cotangent complexes developed in Section 2.1 to the
model category Sp of global spectra established in [55]. Here, the commutative monoids are the
ultra-commutative ring spectra, which represent a very rich structure. Hence, the construction
of topological André-Quillen cohomology for these ring spectra is a useful step in understanding
this structured multiplication better. Classically, topological André-Quillen cohomology has been
used successfully in obstruction theory for commutative ring spectra, and we introduce some
tools in order to facilitate such an analysis also in the case of ultra-commutative ring spectra.
Concretely, after the definition of the cohomology, we observe that we have a base-change result
as well as a transitivity long exact sequence for this theory.

2.2.a Construction and Basic Properties of Topological André-Quillen
Homology

We denote by Sp the category of orthogonal spectra, equipped with the positive global model
structure constructed in [55, Proposition 4.3.33]. This model structure satisfies the monoid axiom
and the strong commutative monoid axiom by [55, Proposition 4.3.28, Theorem 5.4.1]. In par-
ticular, the positive global model structure transfers to the category CAlg of ultra-commutative
ring spectra, as is elaborated in [55, Theorem 5.4.3]. Moreover, if R is an ultra-commutative ring
spectrum, then also the categories ModR of R-modules, CAlgR of commutative R-algebras and
CAlg+

R of non-unital commutative R-algebras inherit model structures from the positive global
model structure on Sp.

We now specialize the results from Section 2.1 to the case of ultra-commutative ring spectra.

Definition 2.2.1. Let R be an ultra-commutative ring spectrum and B be a commutative
R-algebra. Then we define the cotangent complex of B over R as the B-module

ΩB/R = (LQ)(RI)(B ∧L
R B).

In the context of B-modules, we can now consider the (co-)homology theory represented by
this cotangent complex. This is called topological André-Quillen (co-)homology.

Definition 2.2.2. Let R be an ultra-commutative ring spectrum and B be a commutative R-
algebra. Let M be a B-module. Then we define the topological André-Quillen homology of B
over R with coefficients in M as

TAQ∗(B,R;M) = π∗(ΩB/R ∧L
B M),

and the topological André-Quillen cohomology of B over R with coefficients in M as the B-
module

TAQ∗(B,R;M) = π−∗(RFB(ΩB/R,M)).
Here, FB denotes the function spectrum in the category of B-modules.

In particular, we obtain a transitivity long exact sequence on topological André-Quillen ho-
mology theory by considering the cofiber sequence established in Theorem 2.1.20.

Theorem 2.2.3. Let R→ S → T be a sequence of ultra-commutative ring spectra, and M be a
T -module. Then there are long exact sequences

. . .→ TAQ
n+1(T, S;M)→ TAQ

n
(S,R;M)→ TAQ

n
(T,R;M)→ TAQ

n
(T, S;M)→ . . .
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and

. . .→ TAQn(T, S;M)→ TAQn(T,R;M)→ TAQn(S,R;M)→ TAQn+1(T, S;M)→ . . .

of global functors.

We moreover obtain base change and additivity results from considering the effect of Propo-
sition 2.1.21 on cohomology.

Proposition 2.2.4. Let R be an ultra-commutative ring spectrum and S and T be two commu-
tative R-algebras. Let moreover M be an S ∧L

R T -module and n ∈ Z. Then there are natural
isomorphisms

TAQ
n
(S ∧L

R T, T ;M) ∼= TAQ
n
(S,R;M) and

TAQ
n
(S ∧L

R T,R;M) ∼= TAQ
n
(S,R;M)⊕ TAQn(T,R;M)

in homology and

TAQn(S ∧L
R T, T ;M) ∼= TAQn(S,R;M) and

TAQn(S ∧L
R T,R;M) ∼= TAQn(S,R;M)⊕ TAQn(T,R;M)

in cohomology.

2.2.b A Hurewicz Theorem for Topological André-Quillen Homology
We now study some structural properties of topological André-Quillen cohomology and the cotan-
gent complex. As a first result, we prove a Hurewicz theorem for topological André-Quillen
homology. Since André-Quillen homology is an invariant of R-algebras and thus of morphisms
R → S of ultra-commutative ring spectra, the Hurewicz theorem compares it to the relative
homotopy groups of this morphism. The Hurewicz theorem is a key input in the construction of
Postnikov towers for ultra-commutative ring spectra.

As a first step, we study how the functor Q : CAlg+
R → ModR behaves on connective spectra.

Lemma 2.2.5. Let R be a connective ultra-commutative ring spectrum and J be a non-unital
commutative R-algebra. Suppose moreover that J is n-connected for n ≥ 0. Then also Q(J) is n-
connected, and the adjunction unit η : J → QJ induces an isomorphism on πk for n+1 ≤ k < 2n.

Proof. We may assume that J is a cofibrant non-unital R-algebra. We consider the defining
cofiber sequence

J ∧R J
µ−→ J

η−→ Q(J)

of R-modules. In this sequence, J is n-connected by assumption. Moreover, by the compatibility
of the smash product with the t-structure on global spectra established in [55, Proposition 4.4.15],
the spectrum J ∧R J is (2n− 1)-connected.
Using this observation, the claim of the lemma follows from the long exact sequence in homotopy
groups.

Remark 2.2.6. In the above proof, we used [55, Proposition 4.4.15] to use connectivity assump-
tions on R-modules X and Y in order to obtain connectivity of X ∧R Y . However, the statement
of [55, Proposition 4.4.15] makes no mention of the relative smash product over R and only
considers X ∧ Y . In order to deduce statements about ∧R, we observe that we can copy the ar-
guments of the cited proof for the triangulated category of R-modules, replacing the generators
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Σ∞
+ BglG by R ∧ Σ∞

+ BglG. These are again compact generators of this triangulated category.
Since homotopy classes of morphisms out of these generators recover the equivariant homotopy
groups of the underlying spectrum of an R-module by adjunction, these compact generators also
define a t-structure on the homotopy category of R-modules. In this t-structure, the connective
R-modules are those that are connective as underlying spectra, and this class is spanned by
the compact generators given above. The proof of these fact can be copied verbatim from [55,
Theorem 4.4.9 and Proposition 4.4.13]. In all this, we use that R is connective, so the generators
R ∧ Σ∞

+ BglG are connective as well.
In total, we may mimic the arguments given in [55, 4.4.15] and conclude that the analogous

statement in ModR also holds.
The Hurewicz theorem for topological André-Quillen homology of commutative ring spectra

appears as [10, Lemma 8.2]. That version contains an error in that the homotopy group of the
cotangent complex is compared to that of the base instead of the cone, which was pointed out
in [5, Lemma 1.2].

Theorem 2.2.7 (Hurewicz theorem). Let R be a connective ultra-commutative ring spectrum
and let B be a connective commutative R-algebra such that the unit map η : R → B is an n-
equivalence, with n ≥ 1. Then ΩB/R is n-connected and πn+1(Cone(η)) ∼= πn+1(ΩB/R).

Proof. By cofibrantly replacing B, we assume that B is cofibrant as a commutative R-algebra.
We consider the universal derivation dB/R : B → ΩB/R defined in Definition 2.1.10. Restricting
this map to R along η, it becomes trivial, since it factors through ΩR/R ∼= ∗. Hence, we obtain an
induced map τ : Cone(η)→ ΩB/R. We claim that τ induces an isomorphism on πk for k ≤ n+1,
from which the claim follows.

In order to compare the cone of η with the cotangent complex, we consider the diagram

R B Cone(η)

B B ∧R B B ∧R Cone(η).

η

η

Here, the lower line arises by applying B ∧R _ to the top line and the vertical maps are the
inclusions of the right factor. Since B is cofibrant over R, both horizontal lines are cofiber
sequences. Moreover, we know by Proposition 2.1.3 that the counit

B ∨RI(B ∧R B)→ B ∧R B

is a weak equivalence. Hence, by comparing cofibers, we obtain B ∧R Cone(η) ∼= RI(B ∧R B).
In total, instead of considering τ , we can consider

Cone(η) ι−→ B ∧R Cone(η) ∼= RI(B ∧R B)→ ΩB/R.

Now, since η is an n-equivalence, Cone(η) is n-connected. Since moreover B is connective, by
[55, Proposition 4.4.15], ι induces an isomorphism on πk for k ≤ n + 1. Finally, Lemma 2.2.5
shows that also the map RI(B ∧R B)→ ΩB/R induces isomorphisms on πk for k ≤ n+ 1. This
finishes the proof.

2.2.c Postnikov Towers of Ultra-Commutative Ring Spectra
In this section, we construct Postnikov towers for ultra-commutative ring spectra. These can
be seen in a precise way as lifts of the usual Postnikov towers for global spectra arising from
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the t-structure established in [55, Section 4.4]. Thus, these Postnikov systems could be used in
order to construct ultra-commutative ring spectrum structures on global spectra, by successively
lifting the k-invariants in the Postnikov tower of global spectra to ones for ultra-commutative
ring spectra, and then studying convergence of the resulting tower of ultra-commutative ring
spectra. This idea goes back to Kriz [39] and is for example explained in [12, Section 4, esp.
Corollary 4.6]. There, this theory is used in order to show that the Brown-Peterson spectrum
BP supports an E4-multiplication. Moreover, this obstruction theory can also be used to study
maps between ring spectra.

In the classical story, a Postnikov tower is determined by its k-invariants, elements of the
cohomology of the successively defined stages of the tower, which are used to construct the next
stage as a homotopy fiber. We first explain how this step can be carried out in the category
of ultra-commutative ring spectra, where the correct cohomology theory is topological André-
Quillen cohomology.

Construction 2.2.8. Let R be an ultra-commutative ring spectrum, and B be a commutative
R-algebra. Let moreover M be a B-module. Then we have an identification

TAQn
e (B,R;M) ∼= Ho(ModB)(ΩB/R,ΣnM) ∼= Ho(CAlgR /B)(B,B ⋉ ΣnM)

by the defining adjunction for the abelianization functor.
Thus, if we are given a class k ∈ TAQn

e (B,R;M), we consider it as a morphism B → B⋉ΣnM
of commutative R-algebras over B. Then, we form the homotopy pullback

B[k] B

B B ⋉ ΣnM

ι

k

in the category of R-algebras over B, where the right vertical map is the inclusion of a wedge
summand. We call B[k] an extension of B by the element k ∈ TAQn

e (B,R;M).
We moreover consider the projection map pr: B ⋉ ΣnM → ΣnM . This map is the same as

the projection used to define the universal derivation dB/R : B → ΩB/R, and hence we see that
the induced map

d∗
B/R : TAQn(B,R;M)→ Hn(B,R;M)

from topological André-Quillen cohomology to usual (Bredon) cohomology, represented by the
spectrum B, sends k to pr ◦k. From this, we conclude that the R-module underlying B[k] is the
homotopy fiber of the map pr ◦k : B → ΣnM of R-modules.

Theorem 2.2.9. Let R be a connective ultra-commutative ring spectrum. Then there is a se-
quence R0, . . . , Rn, . . . of commutative R-algebras, equipped with maps Rn+1 → Rn of commuta-
tive R-algebras, and elements kn ∈ TAQn+2

e (Rn, R;Hπn+1(R)), such that the following properties
are satisfied:

i) R0 ∼= Hπ0(R), and Rn ∼= Rn−1[kn−1],

ii) πk(Rn) = 0 for k > n,

iii) the unit maps ηn : R→ Rn are (n+ 1)-equivalences.

Proof. We define R0 = Hπ0(R) as an Eilenberg-MacLane spectrum for the global power functor
π0(R). By [55, Theorem 5.4.14], this carries the structure of an ultra-commutative ring spectrum.
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Moreover, as discussed before the cited theorem, we obtain a map η0 : R → Hπ0(R) of ultra-
commutative ring spectra, which is an isomorphism on π0. Hence this serves as a first stage of
the required Postnikov tower.

We now suppose we have constructed the required sequence of R-algebras up to level n. Then,
the map ηn : R → Rn is an (n + 1)-equivalence, and πn+2(Rn) = πn+1(Rn) = 0. Hence, by the
Hurewicz theorem 2.2.7 we observe that ΩRn/R is (n + 1)-connected and has πn+2(ΩRn/R) ∼=
πn+1(R). Thus, we get a map k̃n : ΩRn/R → Σn+2Hπn+1(R) of R-modules realizing this equiva-
lence on πn+1. This map corresponds to an element kn ∈ TAQn+2

e (Rn, R;Hπn+1(R)), and by ad-
junction to a map kn : Rn → Rn⋉Σn+2Hπn+1(R) of R-algebras. We then define Rn+1 = Rn[kn].
This comes equipped with a map Rn+1 → Rn of R-algebras. Since as an R-module, Rn+1 is
the homotopy fiber of the map Rn

dRn/R−−−−→ ΩRn/R
k̃n−→ Σn+2Hπn+1(R), we observe that the

morphism R → Rn is indeed an (n + 2)-equivalence, and the higher homotopy groups of Rn+1
vanish. Thus, the theorem follows by induction.

Remark 2.2.10. We note that the above theorem also shows that the k-invariants of the Postnikov
tower of R-modules and the k-invariants of the Postnikov tower of R-algebras are linked by the
map

d∗
B/R : TAQn(B,R;M)→ Hn(B,R;M)

induced by the universal derivation on cohomology. As mentioned before, this can then be
used to establish an obstruction theory for maps of ultra-commutative ring spectra and for the
existence of ultra-commutative ring structures by considering whether the classical k-invariants
lift through this universal comparison map.
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Appendix A

Symmetric Groups and Wreath Products

In this section, we recall the definition of wreath products of symmetric groups with arbitrary
(finite or compact Lie) groups. These wreath products are used in the definition of the power
operations of a global power functor, and we exhibit double cosets and conjugacy classes of
elements in wreath products needed in calculations with power operations.

A.1 Definition of the Wreath Product

Definition A.1.1. Let G be a group. Then the wreath product Σm ≀ G is the semi-direct
product Σm⋉Gm with respect to the permutation action of Σm on the factors of Gm. Elements
of Σm ≀G are denoted (σ; g1, . . . , gm), with σ ∈ Σm and gi ∈ G for i = 1, . . . ,m. Explicitly, the
multiplication is given as

(σ; g1, . . . , gm)(τ ;h1, . . . , hm) = (στ ; gτ(1)h1, . . . , gτ(m)hm).

If G is a compact Lie group, then also Σm ≀G is a compact Lie group.

Remark A.1.2. The wreath product occurs in the definition of power operations in Defini-
tion 1.1.18, and one reason for this is that for a G-set X, the wreath product Σm ≀G naturally
acts on the m-power Xm by combining the G-action on each factor with the permutation action
of Σm. On elements, this takes the form

(σ; g1, . . . , gm)(x1, . . . , xm) = (gσ−1(1)xσ−1(1), . . . , gσ−1(m)xσ−1(m)).

In particular, if V is a G-representation, this action turns V m into a Σm ≀G-representation.
Moreover, for a G-set X, Σm ≀G similarly also acts on the m-fold disjoint union X⨿m, by using
the G-action of the relevant copy of X and the permutation action of Σm. On an element (x, i) in
the i-th copy of X, with 1 ≤ i ≤ m, we thus have (σ; g1, . . . , gm)(x, i) = (gixi, σ−1(i)) considered
as an element in the σ−1(i)-th copy of X.

Observe that for small values of m, we obtain that Σ0≀G = e is the trivial group and Σ1≀G ∼= G
is the group G itself. The wreath product Σm ≀G contains Gm as a normal subgroup, represented
by the elements where the permutation is the identity, and the quotient by this subgroup is
isomorphic to Σm. The quotient map splits by setting all G-coordinates to the neutral element
of G.
Remark A.1.3. There are various comparison morphisms between products of wreath products
and iterated wreath products. These morphisms are used in the formulation of the properties of
the power operations. The first two of these morphisms are also described in [55, 2.2.5-6].
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i) Let i ≥ 0 and j ≥ 0, and let G be a group. Then we define the injective homomorphism

Φi,j : (Σi ≀G)× (Σj ≀G)→ Σi+j ≀G
((σ; g1, . . . , gi), (σ′; g′

1, . . . , g
′
j)) 7→ (σ + σ′; g1, . . . , gi, g

′
1, . . . , g

′
j)

by concatenating the permutations and the tupels of elements of G. Here + denotes the
concatenation of permutations, ie the inclusion Σi × Σj ↪→ Σi+j obtained by identifying
{1, . . . , i+ j} with {1, . . . , i} ⨿ {1, . . . , j}.

ii) Let k ≥ 0 and m ≥ 0, and let G be a group. Then we define the injective homomorphism

Ψk,m : Σk ≀ (Σm ≀G)→ Σkm ≀G
(σ; (τ1; g1,1, . . . , g1,m), . . . , (τk; gk,1, . . . , gk,m)) 7→ (σ♮(τ1, . . . , τk); g1,1, . . . , g1,m, . . . , gk,m).

Here, we use the identification of
∐
k{1, . . . ,m} with {1, . . . , km} by concatenating the

k-copies of the set {1, . . . ,m}. Since Σk ≀Σm naturally acts on the first set as described in
Remark A.1.2, we thus identify it with a subgroup of “block permutations” in Σkm, and
call this inclusion ♮.

iii) Let m ≥ 0 and G and K be two groups. Then we define the injective homomorphism

∆m : Σm ≀ (G×K)→ (Σm ≀G)× (Σm ≀K)
(σ; (g1, k1), . . . , (gm, km)) 7→ ((σ; g1, . . . , gm), (σ; k1, . . . , km))

using the diagonal on the symmetric group.

In the verification of the properties of the power operations on a square-zero extension in
Theorem 1.2.7, we need two double coset formulas. We explain these double coset formulas here.
They are also utilized in a more general form in the comonadic description of power operations
in [55, Chapter 5.2, Equations 3, 4 and 12].

Lemma A.1.4. Let i, j, k,m ≥ 0 and G be a group.

i) There are exactly two double cosets in ((Σi ≀ G) × (Σj ≀ G))\Σi+j ≀ G/((Σi+j−1 ≀ G) × G).
They may be represented by the permutations χ(ε) for ε = 0, 1, defined as

χ(ε)(t) =


t for 1 ≤ t ≤ i− ε
t+ ε for i− ε+ 1 ≤ t ≤ k − 1
t− j for t = k and ε = 1
t for t = k and ε = 0.

Thus, χ(0) = id, and χ(1) is a cyclic permutation on the last j + 1 elements, permuting k
into the i-th position.
The intersections of the two subgroups occurring in the double coset formula are

((Σi ≀G)×(Σj ≀G))χ(ε)∩((Σi+j−1 ≀G)×G) = (Σi−ε ≀G)×(Σj−1+ε ≀G)×(Σε ≀G)×(Σ1−ε ≀G)

and

((Σi ≀G)×(Σj ≀G))∩χ(ε)((Σi+j−1 ≀G)×G) = (Σi−ε ≀G)×(Σε ≀G)×(Σj−1+ε ≀G)×(Σ1−ε ≀G).
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ii) There is a single double coset in (Σk ≀ (Σm ≀ G))\Σkm ≀ G/((Σkm−1 ≀ G) × G). It is thus
represented by the identity element.
The relevant intersection of the two subgroups occurring in the double coset formula is

(Σk ≀ (Σm ≀G)) ∩ ((Σkm−1 ≀G)×G) = (Σk−1 ≀ (Σm ≀G))× (Σm−1 ≀G)×G.

This is a subgroup of Σk ≀ (Σm ≀G) via the inclusion

(Σk−1 ≀(Σm ≀G))×(Σm−1 ≀G)×G id×Φm−1,1−−−−−−−→ (Σk−1 ≀(Σm ≀G))×(Σm ≀G) Φk−1,1−−−−→ Σk ≀(Σm ≀G),

and a subgroup of (Σkm−1 ≀G)×G via the inclusion

(Σk−1 ≀ (Σm ≀G))× (Σm−1 ≀G)×G Ψk−1,m×id×id−−−−−−−−−−→ (Σ(k−1)m ≀G)× (Σm−1 ≀G)×G
Φ(k−1)m,m−1×id
−−−−−−−−−−−→ (Σkm−1 ≀G)×G.

The proof is a straight-forward calculation, and we omit the details.

A.2 Polynomial Global Power Functors and Conjugacy Classes in
Wreath Products

In the main body of this dissertation, we study polynomial global power functors. As global
functors, these take the form A[xG] =

⊕
m≥0 A(Σm ≀ G,_). We now explicitly describe these

polynomial global power functors for small groups G and evaluated at small groups. These cal-
culations are for example used in analysing the transitivity sequence for André-Quillen homology
of global power functors in Theorem 1.5.27. As described in Remark 1.1.2, for any compact Lie
groups G and K, the group A(G,K) is free abelian on conjugacy classes of pairs consisting of a
subgroup L ≤ K and a continuous homomorphism α : L → G. We describe this data explicitly
for small groups.
Remark A.2.1. We first describe the free global power functor generated by an element at the
trivial group, for values at small groups. This is

A[xe](G) =
⊕
m≥0

A(Σm, G).

Recall that we denote the generator of the m-th summand, corresponding to the identity in
A(Σm,Σm), by Pm(x), since it indeed is the m-th power of the generator x. We thus also denote
all other elements of this free global power functor in terms of power operations, restrictions and
transfers of the generator x.
For G = e, the group A(Σm, e) is free abelian on a single generator, which is the restriction
resΣm

e (Pm(x)) = xm. For G = Z/2, additionally to the composition trZ/2
e resΣm

e (Pm(x)) =
trZ/2
e (xm), which is the only generator associated to the subgroup e ≤ Z/2, there is one generator

α∗(Pm(x)) for any conjugacy class of homomorphism α : Z/2 → Σm. Such conjugacy classes of
homomorphisms are equivalent to conjugacy classes of elements of order at most 2 in Σm. In the
symmetric group, the conjugacy classes of elements are determined by the cycle type. The trivial
element forms one such conjugacy class and corresponds to the composition p∗

Z/2 resΣm
e (Pm(x)) =

p∗
Z/2(x)m of inflation and restriction. Any element of order 2 in the symmetric group is a product

of disjoint transpositions. There are ⌊m2 ⌋ such cycle types. The restriction associated to such an
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element containing k disjoint 2-cycles applied to the generating element Pm(x) gives the element
(P 2(x))k · (p∗

Z/2(x))m−2k. We thus observe that

A[xe](Z/2) ∼= Z[P 2(x), p∗
Z/2(x)] ⋉

⊕
m≥0

Z{trZ/2
e (xm)}.

The multiplication on the left summand is the one of a polynomial ring, and all multiplications
involving the transfer summand are governed by Frobenius reciprocity (1.1.12) and are again a
transfer term. The symbol ⋉ is chosen to reflect this action of the polynomial part of A[xe](Z/2)
on the transfer part.

The other case we consider is the polynomial global power functor A[xZ/2] generated by an
element at Z/2. To analyse this, again at the groups e and Z/2, we need to exhibit conjugacy
classes of elements of order at most 2 in Σm ≀Z/2. Conjugacy classes of elements in wreath prod-
ucts are studied using generalized cycle types in [59, 49], and the results are nicely summarized
in [15]. These results can be used to study more generally A(Σm ≀G,K) for finite groups G and
K. We present the relevant special case for Z/2 here for completeness.

Lemma A.2.2. Let m ≥ 0. We denote Z/2 = {0, 1} additively.

i) An element (σ; s1, . . . , sm) ∈ Σm ≀ Z/2 has order at most 2 if and only if σ ∈ Σm has
order at most 2, ie is a (possibly empty) product of disjoint transpositions, and for any
transposition (i, j) occurring in the cycle decomposition of σ, we have si = sj.

ii) Two such elements (σ; s1, . . . , sm), (τ ; t1, . . . , tm) ∈ Σm≀Z/2 of order at most 2 are conjugate
if and only if σ and τ have the same cycle type, and the cardinalities of {i ∈ {1, . . . ,m} |
σ(i) = i and si = 1} and {j ∈ {1, . . . ,m} | τ(j) = j and ti = 1} agree.

Proof. The results in this lemma are special cases of the decomposition of general wreath products
into conjugacy classes, as explained in [59, Satz II] and [49, Theorem 4]. For this classification,
any element (σ; s1, . . . , sm) is decomposed into a product of elements (σi; si,1, . . . , si,m), where
each σi is either a cycle occurring in the cycle decomposition of σ or the identity, with every
non-trivial cycle occurring exactly once. If σi is non-trivial, then si,j = 0 if j is fixed by σi, else
si,j = sj . If σi is the identity, then there is exactly one j fixed by σ such that si,j = sj ̸= 0, and
all other si,j are trivial. This is the decomposition of an element of the wreath product into so
called disjoint wreath cycles.
To any wreath cycle (σ; s1, . . . , sm) with σ = (i1, i2, . . . , ik) a k-cycle, we associate the determi-
nant ∆ = si1si2 . . . sik . If σ is the identity, then we set the determinant to be the non-trivial
entry si, or if all entries are trivial, we set the determinant to be the trivial element of G. Then
two wreath cycles are conjugate if and only if they have conjugate cycles and their determinants
are conjugate in G. The conjugacy class of any element in the wreath product is then determined
by its wreath cycle decomposition. The order of a wreath cycle is |(σ; s1, . . . , sm)| = |σ| · |∆|, see
[49, Theorem 4].
From these statements, we deduce the lemma as the special case for G = Z/2 and elements of
order at most 2.

From this description, we are able to calculate the explicit form of the free global power
functor A[xZ/2] at the groups e and Z/2.

Corollary A.2.3. The free global power functor generated at Z/2 is given as follows:
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i) At level e,
A[xZ/2](e) ∼= Z[resZ/2

e (x)],

a polynomial ring on the restriction of the generator.

ii) At level Z/2,

A[xZ/2](Z/2) ∼= Z[x, P 2(resZ/2
e (x)), p∗

Z/2(resZ/2
e (x))] ⋉

⊕
m≥0

Z{trZ/2
e (resZ/2

e (xm))},

where the left summand is a polynomial ring on three generators, and the multiplications
involving the transfers are given by Frobenius reciprocity (1.1.12).

Proof. The first calculation follows from the fact that A(Σm ≀ Z/2, e) is a free abelian group
generated on the restriction to the trivial group. Applying this restriction to the generator Pm(x)
gives resΣm≀Z/2

e (Pm(x)) = (resZ/2
e (x))m. Hence, we obtain the polynomial ring as claimed.

For the value at Z/2, we observe that A(Σm ≀ Z/2,Z/2) is free abelian on the following
generators: There is a single generator that is a transfer, which is of the form trZ/2

e resΣm≀Z/2
e .

Applied to Pm(x), we obtain the terms trZ/2
e (resZ/2

e (xm)). Moreover, we have generators given by
conjugacy classes of homomorphisms Z/2→ Σm ≀Z/2. Such conjugacy classes of homomorphisms
correspond to conjugacy classes of elements of order at most 2 in Σm ≀ Z/2, which we classify in
Lemma A.2.2. Suppose we consider an element (σ; s1, . . . , sm) ∈ Σm≀Z/2 where σ is a product of k
disjoint transpositions, and |{i ∈ {1, . . . ,m} | σ(i) = i and si = 1}| = l. Then the corresponding
restriction, applied to Pm(x), yields the element (P 2(resZ/2

e (x)))k ·xl · p∗
Z/2(resZ/2

e (x))m−2k−l. In
total, we observe that the part of A[xZ/2](Z/2) generated by the restrictions is polynomial in the
generators P 2(resZ/2

e (x)), x and p∗
Z/2(resZ/2

e (x)). This finishes the calculations.
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Appendix B

Model Categories of Non-Unital
Commutative Monoids

Recently, the study of ring spectra and commutative ring spectra has become an important
field of study in algebraic topology and homotopy theory. This made it necessary to endow
the category of (commutative) ring spectra with a framework in which to do homotopy theory.
Early results in this direction were obtained by Elmendorf-Kriz-Mandell-May in [23], where the
smash product on S-modules was constructed and a model category structure was put on the
category of S-modules, which lifts to one on the category of ring spectra. An important point in
this construction is that any S-module is fibrant in this model structure. Later, the examples of
symmetric and orthogonal spectra with their corresponding model structures defined by Hovey-
Shipley-Smith and Mandell-May-Schwede-Shipley [35, 46] provided examples of model categories
where not every object is fibrant. In this context, the work [56] of Schwede-Shipley provided
formal criteria in the form of the monoid axiom for when the category of modules in a monoidal
model category inherits a model structure. Recently, this has been generalized to a formal
criterion for when the category of commutative monoids inherits a model structure by White in
[66], making use of a commutative monoid axiom.

In this section, we adapt the arguments from [66] to show that the commutative monoid axiom
also allows one to put a model structure on the category of non-unital commutative monoids. A
similar result was obtained by Basterra [10], but there the condition that every object is fibrant
is used in the analysis. Since this is often not the case in applications, and especially not true for
the category of orthogonal spectra with the positive global model structure we apply this theory
to in Section 2.2, we instead use the commutative monoid axiom.

B.1 The Commutative Monoid Axiom and General Lifting Results

We first recall the definitions of the monoid axiom and the commutative monoid axiom and give
the basic result for lifting model structures to categories of algebras over a monad. Using this,
the proof of the existence of a model category of non-unital commutative monoids reduces to
an analysis of a certain pushout in this category, as it is also the case for associative monoids
[56] and for commutative monoids [66]. In absence of a unit map, this analysis will look slightly
different, but follows along the same lines.

Let (C,∧,S) be a symmetric monoidal cocomplete category. We always assume that the
symmetric monoidal category is closed, such that X ∧ _ is a left adjoint for any X ∈ C. Then
the category of non-unital commutative monoids can be described as the category of algebras
for the monad P+ : C → C, which is defined as P+(X) =

∨
n≥1 X

∧n/Σn, where
∨

denotes the
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coproduct in the category C.
We now assume that C is a cofibrantly generated model category. Then by lifting the model
structure of C to the category of T -algebras for a monad T , we mean transferring the model
structure along the adjunction C AlgT

T

U
, such that weak equivalences and fibrations in AlgT

are precisely the underlying weak equivalences and fibrations respectively. We say that this
model structure on AlgT is inherited by that of C. The following lemma, which is part of [56,
Lemma 2.3] and [66, Lemma 2.1], gives a condition when AlgT inherits a model structure from
C.

Here and in the following arguments, if K is any class of morphisms in C, we denote by K-cell
the class of all morphisms obtained as transfinite compositions of pushouts of morphisms in C.
These morphisms are called regular cofibrations in [56].

Lemma B.1.1. Let C be a cofibrantly generated model category with sets I of generating cofi-
brations and J of generating acyclic cofibrations. Let T be a monad on C which commutes with
filtered colimits. Suppose the domains of T (I) and T (J) are small with respect to T (I)-cell
and T (J)-cell respectively, and that T (J)-cell is contained in the weak equivalences. Then AlgT
inherits a model structure from C, where weak equivalences and fibrations are the underlying
weak equivalences and fibrations, respectively. It is cofibrantly generated, with T (I) as a set of
generating cofibrations and T (J) as a set of generating acyclic cofibrations.

If C is a cofibrantly generated symmetric monoidal model category, then the monads A(X) =∨
n≥0 X

∧n and P(X) =
∨
n≥0 X

∧n/Σn for associative and commutative monoids commute with
filtered colimits, as does P+. Then, in [56, Definition 3.3], the following condition is given such
that the above lemma applies to the associative monad A:

Definition B.1.2. Let C be a monoidal model category. We say that C satisfies the monoid
axiom if (acyclic cofibrations ∧ C)-cell is contained in the weak equivalences.

Similarly, in [66], a condition for P to satisfy the condition of the above lemma is given:

Definition B.1.3. Let C be a symmetric monoidal model category. We say that C satisfies the
commutative monoid axiom if for any acyclic cofibration f : X → Y , the map f□n/Σn is an
acyclic cofibration for all n ≥ 0.

In the above definition, the map f□n is a generalization of the pushout product map f□g : A∧
Y ∪A∧B X ∧B → X ∧ Y . Explicitly, we consider the cube

W : P({1, . . . , n})→ C, S 7→W1 ∧ . . . ∧Wn,

where

Wi =
{
X if i ̸∈ S
Y if i ∈ S.

On an inclusion S ⊂ T , we set W (S ⊂ T ) = φ1 ∧ . . . ∧ φn, with

φi =
{
id if i ̸∈ T \ S
f if i ∈ T \ S.

This defines a map f□n : Qn = colimP({1,...,n})\{{1,...,n}} W → W ({1, . . . , n}) = Y ∧n. This
is Σn-equivariant for the action permuting the elements of {1, . . . , n}, hence induces the map
f□n/Σn : Qn/Σn → Pn(Y ).

We also record here a condition introduced in [66] to study the cofibrations of commutative
monoids:

114



B.2. NON-UNITAL COMMUTATIVE MONOIDS

Definition B.1.4. Let C be a symmetric monoidal model category. We say that C satisfies the
strong commutative monoid axiom if for any cofibration and acyclic cofibration f : X → Y , the
map f□n/Σn is a cofibration or acyclic cofibration for all n ≥ 0, respectively.

Using these properties, the following results hold (see [56, Theorem 4.1] and [66, Theorem
3.2 and Proposition 3.5]):

Theorem B.1.5. Let C be a cofibrantly generated symmetric monoidal model category, such that
the domains of the generating cofibrations I are small with respect to (I∧C)-cell and the domains
of the generating acyclic cofibrations J are small with respect to (J ∧ C)-cell.

i) If C satisfies the monoid axiom, the category Alg of monoids in C inherits a cofibrantly
generated model structure. Moreover, if f : X → Y is a cofibration in Alg such that X is
cofibrant in C, then f is a cofibration in C.

ii) If C satisfies moreover the commutative monoid axiom, then the category CAlg of commu-
tative monoids in C inherits a cofibrantly generated model structure.

iii) If C satisfies moreover the strong commutative monoid axiom, then if f : X → Y is a
cofibration in CAlg and X is cofibrant in C, then f is a cofibration in C.

B.2 Non-Unital Commutative Monoids

We now prove the analogous statement to Theorem B.1.5 in the case of non-unital commutative
monoids. To do so, we follow the same path as in the unital cases, so we prove the following
analogue of [56, Lemma 6.2] and [66, Lemma B.1]:

Lemma B.2.1. Let C be a cofibrantly generated symmetric monoidal model category with sets
I of generating cofibrations and J of generating acyclic cofibrations, and let P+ : C → CAlg+

denote the free non-unital commutative monoid functor. If C satisfies the commutative monoid
axiom and the monoid axiom, then any morphism in P+(J)-cell forgets to a weak equivalence in
C.
If moreover C satisfies the strong commutative monoid axiom, then any morphism in P+(I)-cell
with domain cofibrant in C forgets to a cofibration in C.

The proof of this lemma relies on the following analysis of certain pushouts in the category
CAlg+ of non-unital commutative monoids, This is analogous to the statements in the proof of
[56, Lemma 6.2] and in [66, Lemma B.2].

Construction B.2.2. Let C be a cocomplete symmetric monoidal category. Let h : K → L and
p : K → X be morphisms in C, where X is a non-unital commutative monoid with multiplication
map µ : X ∧X → X. Consider the pushout

P+K P+L

X P

P+h

p̃

f

(B.2.3)

in CAlg+, where p̃ is the adjoint to p under the free-forgetful adjunction.
We claim that the morphism f : X → P factors as

X = P0
f1−→ P1

f2−→ . . .→ colim
n≥0

Pn = P,
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where we think of Pn as consisting of words on letters in X and L, where we multiply letters in
X by the monoid structure, and have at most n letters from L. Formally, Pn and the morphisms
fn : Pn−1 → Pn are inductively defined via pushouts in C of the form

(S ∨X) ∧ (Qn/Σn) (S ∨X) ∧ PnL

Pn−1 Pn.

(S∨X)∧h□n/Σn

tn Tn

fn

Here, Qn is again the colimit of the punctured n-cube defined by h, as explained after Defini-
tion B.1.3.
The vertical morphism

tn : (S ∨X) ∧ (Qn/Σn)→ Pn−1

is defined as follows:
We first describe this for n = 1. There, we need to define a morphism (S∨X)∧K ∼= K∨(X∧K)→
X. On K, we define this as p, and on X ∧K, we define it as

X ∧K X∧p−−−→ X ∧X µ−→ X.

For n > 1, we write (S ∨X) ∧ (Qn/Σn) ∼= (Qn/Σn) ∨ (X ∧ (Qn/Σn)), and then define the map
to Pn−1 on both wedge summands inductively. To simplify notation, let ε ∈ {0, 1}, such that
X∧ε ∈ {S, X}. Then we define a map on each vertex of the punctured cube and then argue
that this descends to the colimit. This induces a morphism on X∧ε ∧ (Qn/Σn), since X∧ε ∧ _
preserves colimits.
So let S ⊊ {1, . . . , n} be a proper subset. On the vertex X∧ε∧W1∧ . . .∧Wn of the cube indexed
by S, we define a map tS to Pn−1 as

X∧ε ∧W1 ∧ . . . ∧Wn X∧ε ∧W ′
1 ∧ . . . ∧W ′

n X∧(n−|S|+ε) ∧ L∧|S|

Pn−1 P|S| X ∧ P|S|L X ∧ L∧|S|.

∧p

tS

shuffle

µ∧L∧|S|

fn−1◦...◦f|S|+1 T|S| pr

Here, the map labelled ∧p applies the map p : K → X to any factor K inside W1 ∧ . . . ∧Wn.
There is at least one K, since S is a proper subset of {1, . . . , n}. Then, we denote

W ′
i =

{
X if i ̸∈ S
L if i ∈ S.

The map T|S| was already constructed by induction, and we restrict it here to the summand
X ∧ P|S|L.

We claim that this defines objects Pn for all n ≥ 0 and morphisms fn : Pn−1 → Pn fitting into
pushouts as stated. The arguments are exactly analogous to those carried out in the commutative
case at the beginning of [66, Proof of Lemma B.2]. In our case, the factor X ∧_ may fall away,
but this does not change the argument.

Now, we have defined the sequence

X = P0
f1−→ P1 → . . . .
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We define P = colimn≥0 Pn. This receives maps f : X = P0 → P and L = P1L
T1−→ P1 → P ,

hence it fits into a diagram
K L

X P.

h

p

f

(B.2.4)

This diagram commutes, since by definition of P1, the corresponding diagram with P1 in the
lower right corner commutes, and the above diagram is obtained from this by applying P1 → P .

Lemma B.2.5. Let C be a cocomplete symmetric monoidal category. Let h : K → L and p : K →
X be morphisms in C, where X is a non-unital commutative monoid. Then the object P defined
in Construction B.2.2 can be endowed with the structure of a non-unital commutative monoid,
such that the morphism f : X → P is a morphism of commutative monoids and (B.2.4) induces
the pushout-square

P+K P+L

X P

P+h

p̃

f

in CAlg+.

Proof. We begin by defining the multiplication. It is induced by compatible maps Pn ∧ Pm →
Pn+m. Such a map is defined inductively by using the pushout diagram

(X+ ∧ Q̃n) ∧ (X+ ∧ PmL) ∪(X+∧Q̃n)∧(X+∧Q̃m) (X+ ∧ PnL) ∧ (X+ ∧ Q̃m) (X+ ∧ PnL) ∧ (X+ ∧ PmL)

(Pn−1 ∧ Pm) ∪Pn−1∧Pm−1 (Pn ∧ Pm−1) Pn ∧ Pm,

where we abbreviated X+ = S ∨X and Q̃n = Qn/Σn. The upper left span, of which Pn ∧ Pm is
the pushout, admits a morphism to the span in the pushout square

X+ ∧ Q̃n+m−1 X+ ∧ Pn+mL

Pn+m−1 Pn+m

by multiplying the X+-factors in the top row and using the maps Pn−1 ∧ Pm → Pn+m−1 and
Pn ∧ Pm−1 → Pn+m−1 provided by the induction hypothesis. Hence, taking pushouts provides
the map Pn ∧ Pm → Pn+m.
That this map induces a multiplication map P ∧ P → P which makes P into a non-unital
commutative monoid, that f : X → P is a monoid map and that P is the pushout of the diagram
(B.2.3) in CAlg+ follows analogous to the proof for unital commutative monoids in [66, Proof of
Lemma B.2].

Using this description of pushouts in non-unital commutative monoids, we can now prove
B.2.1. The proof is completely analogous to that of [66, Lemma B.1]
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Proof of Lemma B.2.1. Let C be a cofibrantly generated symmetric monoidal model category
which satisfies the monoid and the commutative monoid axiom. Let F be any map in P+(J)-cell.
This means that F is a transfinite composition of pushouts f of the form (B.2.3). By the above
Lemma B.2.5, f is a (transfinite) composition of pushouts in C of maps of the form X+∧h□n/Σn,
where h is an acyclic cofibration and X is some object in C. By the commutative monoid axiom,
h□n/Σn is an acyclic cofibration. By the monoid axiom, any transfinite composition of pushouts
of morphisms of the form Y ∧ j is a weak equivalence, where j are acyclic cofibrations. Since F
is such a transfinite composition, this proves that F is a weak equivalence.

Assume now that C also satisfies the strong commutative monoid axiom. Let G be a morphism
in P+(I)-cell with cofibrant domain. Then we can write G as a transfinite composition of maps g
which arise as pushouts of the form (B.2.3), where h is a cofibration. It suffices to prove that if the
domain X of g is cofibrant, then g is a cofibration, since transfinite compositions of cofibrations
are cofibrations. We can write g as a transfinite composition of pushouts in C of maps of the
form X+∧ (h□n/Σn) ∼= (h□n/Σn)∨ (X ∧ (h□n/Σn)). By the strong commutative monoid axiom,
h□n/Σn is a cofibration, and since X is cofibrant, also X ∧ (h□n/Σn) is a cofibration. Thus, g
is a transfinite composition of cofibrations, hence itself a cofibration in C.

Using this result, we can invoke Lemma B.1.1 to obtain the model structure on non-unital
commutative monoids. By considering the category of R-modules for any commutative monoid
R as the base category, we also obtain by the same arguments a model structure on the category
of non-unital R-algebras.

Theorem B.2.6. Let C be a cofibrantly generated symmetric monoidal model category, such
that the domains of the generating cofibrations I are small with respect to (I ∧ C)-cell and the
domains of the generating acyclic cofibrations J are small with respect to (J ∧ C)-cell. Let R be
a commutative monoid in C.
Suppose that C satisfies the monoid axiom and the commutative monoid axiom. Then the category
CAlg+

R of non-unital R-algebras inherits a cofibrantly generated model structure from C, in which
a morphism is a weak equivalence or fibration if and only if its underlying morphism in C is.
If moreover C satisfies the strong commutative monoid axiom, then any cofibration in CAlg+

R

with domain cofibrant in C forgets to a cofibration in C.
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