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Abstract

The visual appearance of materials on the surface of objects contributes greatly to the overall
perception of virtually every scene we encounter every day. However, complex material
appearance can be neigh impossible to model mathematically. Consequently, it can be
difficult to reproduce in computer-generated imagery. As a work-around, image-based digital
representations such as the bidirectional texture function (BTF) treat material appearance as
a “black box” which reproduce a given material’s appearance under the desired conditions by
appropriately interpolating between actual images of the material at hand. Effectively, the
problem of physically-based modelling is replaced with the problem of measuring: in order
to ensure high-quality, photo-realistic renderings, thousands to tens of thousands images of a
given material under varying viewing and lighting conditions are required. The design of
appearance acquisition devices inevitably involves choices with negative impact on acquisition
speed and accuracy.

The present thesis introduces a number of methods which alleviate this impact and therefore
make appearance acquisition much more practical. It is demonstrated that a generalization
of phenomenological models usually used for the purpose of BTF compression allows for
reconstruction of a full BTF measurement from a sparse measurement, greatly enhancing
measurement speed and enabling cheaper and more compact acquisition devices.

As another way of reducing acquisition time, illumination patterns of multiple instead of
single light sources are used, which significantly brightens materials with low albedo or lots
of self-shadowing, allowing for shorter shutter times. It is shown that the shot noise present
in the reconstruction of the desired images under single-light illumination can be effectively
reduced using the same or similar phenomenological models.

Both methods seem orthogonal and thus applicable simultaneously. However, due to the
dynamic range of BTF data, the employed models involve non-linear transformations which
make a combination unfeasible. A novel model is introduced, along with an alternating
least-squares algorithm to compute it efficiently, which deals with dynamic range in a different
way and allows for simultaneously sparse and illumination-multiplexed acquisition.

As a means to improve the optical resolution of material measurements, or allow for
larger material samples to be measured, a texture-space super-resolution algorithm based on
deep-learning techniques is introduced. It is shown that despite working on an image-by-image
basis, the resulting BTF does not exhibit obvious artifacts, and that data available realistically
is sufficient ground truth for the purpose of training.
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CHAPTER 1

Introduction

Computer-generated imagery (CGI), even in the narrow sense of imagery created from digital
representations of 3D scenes, has changed dramatically over the course of only half a century.
From the humble beginnings of simple, low-resolution, static shapes to a state-of-the-art
which, at its best, can itself only be described as humbling (cf. Fig. 1.1). In fact, CGI can be
so deceptively realistic nowadays that researchers in computer vision are developing methods
to assist humans in telling measured data, i.e. photos or videos, and CGI apart [103]. Given
these developments, it is not surprising that CGI has become an indispensable tool in many
applications: in research, it can be used for visualization, for creating synthetic training data
for machine learning algorithms [104], or for simulated scenes to be used in psychological
studies [105]. Computer games would be entirely impossible without CGI, and many movies,
TV shows and documentaries would look completely different if they had to rely on other
animation techniques only. Finally, in commercial and industrial applications, CGI plays an
increasingly important role, enabling more flexible advertising, product design, and so on.

The achievements of 3D computer graphics as a field of study cannot be attributed to a
single sub-discipline – they have been reached through continuing efforts in fields as diverse
as rendering, geometry processing and material appearance, each of which has seen similarly
impressive developments in the course of the decades. While in all generality none of these
disciplines can be singled out as the most important one, a case can be made for material
appearance, because there exist image-based material appearance models which incorporate
micro- and meso-scale surface geometry and thereby, as I shall explain in the subsequent
section, lower the demands on both geometry processing and rendering.

Finally, note that the term “computer-generated imagery” is somewhat misleading. While
CGI is indeed generated using computers, its creation often relies on data ultimately not
generated by a computer, but obtained somehow from the real world. For instance, an artist
may build an elaborate digital 3D scene consisting of virtual objects with complex surface
properties, either from their imagination, infused by their experience of the real world, or
directly inspired by or closely following an existing scene in the real world. But of course it
is not always desirable or possible for a human to act as the computer’s senses. Consequently,
there are many ways of digitizing the physical properties like surface reflectance of objects
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Chapter 1 Introduction

Figure 1.1: Top left: Screen photo of the famous arcade video game Pong (1972). Top right:
Rendering of a scene created by an artist. Bottom: Screenshot of an interactive live architecture
demo of a well-known 3D rendering engine, courtesy of UE4Arch.com. It is noteworthy that while
photo-realistic, the above 3D scenes do not contain optically complex spatially-varying materials.

present in a scene. In the case of digitization of material appearance, virtually all sensing
devices consist of digital cameras and rely on light sources within (LEDs, . . . ) or outside of
(environmental light) the operator’s control. Additionally, image-based representations of
material appearance require a certain amount of images of the material to be captured in order
to avoid artifacts due to a low sampling rate along the angular dimensions, i.e. directions of
incoming/outgoing light (cf. Fig. 1.2). Sensing devices for material appearance thus suffer
both from the constraints imposed by the underlying hardware, e.g. optical resolution or
brightness of light sources, and those imposed by how the hardware is organized, e.g. the
number of cameras and light sources and their placement in space.

The purpose of the present thesis is to extend the range of available methods for capturing
image-based material appearance, with a special focus on lifting the constraints imposed by

2
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1.1 Digital material appearance

Figure 1.2: Acquisition device for image-based digital material appearance. Many light sources on a
hemisphere above the material sample illuminate the scene, which is captured by a number of cameras.

the hardware. To this end, I introduce a number of methods which

• increase optical resolution, allowing for higher-quality digital material appearance or
greater flexibility in the design of acquisition devices;

• increase angular resolution, enabling faster acquisition and more compact acquisition
set-ups;

• increase the amount of light hitting the surface of the material to be measured, allowing
for shorter shutter times and much faster measurements.

All of these methods make use of novel data-driven models derived from databases of
measured material appearance.

In the subsequent sections, I provide definitions of the relevant terms, along with an
overview of appearance models in the given sense, and an outline of the methods I have
developed together with my co-authors.

1.1 Digital material appearance
The term “material appearance” is not very rigidly defined in general, and in the present
thesis, it only serves as an umbrella term for a small number of concepts that are, possibly up
to optional parameters. More generally, a material’s appearance may encompass properties
other than visual appearance, such as its tactile or acoustic properties, or even changes
over time [106]. However, in the following, “material appearance” is to be read as “visual
appearance of a material, regardless of the object composed of the material”; that is, the way
a particular material interacts with light.

The following subsections are loosely based on “Visual Texture” by Haindl and Filip [46]
and course notes by Michael Weinmann [60].

3



Chapter 1 Introduction

1.1.1 Reflectance functions

Superficially, the interaction of light with a material can be described in mathematical terms
by means of a general reflectance function [46]

𝑓 (_𝑖, x𝑖, 𝑡𝑖, 𝜔𝜔𝜔𝑖, _𝑜, x𝑜, 𝑡𝑜, 𝜔𝜔𝜔𝑜, 𝜔𝜔𝜔𝑡) =
d𝐿𝑜 (_𝑜, x𝑜, 𝑡𝑜, 𝜔𝜔𝜔𝑜, 𝜔𝜔𝜔𝑡)

𝐿𝑖 (_𝑖, x𝑖, 𝑡𝑖, 𝜔𝜔𝜔𝑖) 〈𝜔𝜔𝜔𝑖, n〉 d𝜔𝜔𝜔𝑖

.

Its value for a given set of parameters is the fraction of the spectral irradiance
𝐿𝑖 (_𝑖, x𝑖, 𝑡𝑖, 𝜔𝜔𝜔𝑖) 〈𝜔𝜔𝜔𝑖, n〉 incident on the material’s surface at point x𝑖 ∈ R3 in space with
surface normal n ∈ R3 and at time 𝑡𝑖 ∈ R with wavelength _𝑖 ∈ R from direction 𝜔𝜔𝜔𝑖 ∈ R3

re-emitted as spectral radiance 𝐿𝑜 (_𝑜, x𝑜, 𝑡𝑜, 𝜔𝜔𝜔𝑜, 𝜔𝜔𝜔𝑡) from the material’s surface at point
x𝑜 ∈ R3 in space and at time 𝑡𝑜 ∈ R with frequency _𝑜 ∈ R along direction 𝜔𝜔𝜔𝑜 ∈ R3 and
direction 𝜔𝜔𝜔𝑡 ∈ R3 of transmission. In this general form, most optical effects which make up
everyday materials’ appearance can be adequately represented, such as specular and diffuse
reflection, fluorescence, phosphorescence, sub-surface scattering, transmission, and even
ageing. Given a general reflectance function, a digital image of an object the surface of
which consists of the represented material’s appearance can be generated using the rendering
equation [107]:

𝐿𝑜 (_, x, 𝜔𝜔𝜔𝑜, 𝑡) = 𝐿𝑒 (_, x, 𝜔𝜔𝜔𝑜, 𝑡) +
∫
Ω

𝑓 (_, x, 𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜, 𝑡) 𝐿𝑖 (_, x, 𝜔𝜔𝜔𝑖, 𝑡) 〈𝜔𝜔𝜔𝑖, n〉 d𝜔𝜔𝜔𝑖,

where 𝐿𝑒 denotes emission by the surface itself. Note that the reflectance function 𝑓 in this
version of the rendering equation, taken from the publication which introduced it to the field
of computer graphics back in 1986 and, as of this writing, still one of the most commonly
used forms, has less parameters than the general reflectance function introduced above.
This is because the latter’s generality comes with severe drawbacks which render general
reflectance functions extremely impractical to deal with and thus seldomly-used: even under
simplifying assumptions on the underlying physics, evaluating a general reflectance function
means solving the problem of global illumination for a specific set of parameters, possibly
including scattering between points on the surface, which is recursive. It is therefore extremely
difficult, if not impossible, to write down closed-form general reflectance functions for any
but classes of comparatively simple materials. Consequently, evaluating and particularly
fitting general reflectance functions to real-world material samples can become arbitrarily
expensive. For this reason, these analytical models are often replaced by phenomenological
models, where physical soundness is given up in favor of much simpler models based on
interpolation of measured data. However, as can be inferred from the number of parameters to
general reflectance functions, the necessary data can be enormously cumbersome to deal with:
depending on the quality of the interpolation method and the complexity of the material’s
reflectance, the high-dimensional parameter space needs to be sampled very densely, resulting
in prohibitive amounts of data to be acquired, processed, stored, and interpolated when
evaluating the function.
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1.1 Digital material appearance

Fortunately, applications requiring a material’s entire general reflection function are rare.
Most of the time, it is in fact sufficient to restrict the function to a lower-dimensional parameter
space as in the above rendering equation, e.g. by ignoring the time parameters 𝑡{𝑖,𝑜} and,
thereby, effects like ageing and phosphorescence. Many variants of such restrictions have
proven very useful in practice over the decades and have therefore been given names. In the
following, I introduce the variants most relevant to the present thesis.

For all variants, it is assumed that the appearance of the materials to be represented

• is not phosphorescent; i.e. 𝑓 (𝑡𝑖, 𝑡𝑜) = 𝑓 (𝑡) · 𝛿(𝑡𝑖, 𝑡𝑜);

• does not change over time; i.e. 𝑓 (𝑡) ≡ const;

• is not fluorescent; i.e. 𝑓 (_𝑖, _𝑜) = 𝑓 (_) · 𝛿(_𝑖, _𝑜);

• does not exhibit transmission; i.e. we may omit the parameter 𝜔𝜔𝜔𝑡 .

We further assume that light takes either monochromatic (one-dimensional) or tri-stimulus
values (three-dimensional, e.g. RGB) and, in conjunction with the previous assumptions,
may therefore omit both the wavelength parameter _ and the time parameter 𝑡. For better
readability, light is assumed to be monochromatic for the rest of this introduction. The
generalization to the tri-stimulus case is straight-forward. Finally, in the above, x{𝑖, 𝑜} ∈ R3

are arbitrary points in space; however, we shall assume that x{𝑖, 𝑜} ∈ R2 are points on a
two-dimensional surface supposed to approximate the material’s proper surface.

Textures

Under the assumption that 𝑓 is constant for fixed x{𝑖,𝑜}, and that either 𝑓 (x𝑖, x𝑜) = 0
whenever x𝑖 ≠ x𝑜, we arrive at a function 𝑓 (x) of a single two-dimensional parameter
corresponding to positions on the material’s surface; that is, a texture as in classical 3D
computer graphics texture mapping. Note that even though 𝑓 does not depend on lighting or
viewing directions, using the above rendering equation the material’s appearance as seen by
an observer varies with the direction of incoming light due to the cosine term 〈𝜔𝜔𝜔𝑖, n〉. This
so-called “Lambertian” reflectance occurs when a surface scatters light perfectly diffusely.
Textures can thus be used to describe approximately diffuse materials, possibly with varying
color and albedo across the surface, such as certain types of wallpapers and wood. Note
that if the material’s surface is not entirely flat, effects such as parallax and inter-reflections
between points on the surface may occur, which may have to be treated separately at possibly
great computational costs.

Bidirectional reflectance distribution functions

Conversely, if 𝑓 is assumed constant for fixed 𝜔𝜔𝜔{𝑖,𝑜}, i.e. no variation occurs across the
material’s surface, we obtain a function 𝑓 (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) of the directions of incoming and outgoing
light, a bidirectional reflectance distribution function (BRDF) (cf. Fig. 1.3). They lend
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Chapter 1 Introduction

themselves to describing materials with approximately no surface variation, such as various
kinds of paints, plastics, metals, etc. As with textures, effects due to non-trivial surface
geometry may have to be accounted for separately. Indeed, in conjunction with the above
assumptions, a physically plausible BRDF is

• non-negative: 𝑓 (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) ≥ 0;

• Helmholtz reciprocal: 𝑓 (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) = 𝑓 (𝜔𝜔𝜔𝑜, 𝜔𝜔𝜔𝑖);

• energy-conserving:
∫
Ω
𝑓 (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜)〈𝜔𝜔𝜔𝑜, n〉d𝜔𝜔𝜔𝑜 ≤ 1 for all 𝜔𝜔𝜔𝑖 ∈ Ω.

Spatially-varying BRDFs

Spatially-varying BRDFs (SVBRDFs) of the form 𝑓 (x, 𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) are a natural generalization
of both BRDFs and textures, in that as functions of x and 𝜔𝜔𝜔𝑖,𝑜, they take values in the spaces
of BRDFs and textures, respectively. Consequently, they lend themselves to representations
of material appearance that can locally be described by BRDFs, but not necessarily globally
so, and where the surface geometry can be determined with a sufficient degree of accuracy.
Examples include approximately smooth opaque materials such as wallpaper, polished wood,
and fine-structured leathers and cloths. Whenever the material’s appearance is locally not
a BRDF, e.g. in the presence of subsurface scattering or inter-reflections, which may be
observed on coarse-structured leathers and cloths, or the material’s surface geometry is
complex, for instance in the case of many types of carpets, more sophisticated material
representations may allow for better results, albeit at the cost of SVBRDFs’ simplicity. This
is particularly true in real-time applications, where these effects are difficult to account for in
an appropriate amount of time.

Bidirectional texture functions

Bidirectional texture functions (BTFs) of the form 𝑓 (x, 𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜), in turn, generalize SVBRDFs,
even though they have the same signature as SVBRDFs, because as functions of ®𝑥, they do not
take values in the space of BRDFs, but in that of apparent BRDFs (ABRDFs) (cf. Fig. 1.3).
These have the same signature as BRDFs, but they are not assumed to be physically plausible
BRDFs in the above sense. In particular, they are not constrained by conservation of energy.
As a result, they inherently can account for effects which are non-local and may therefore
violate conservation of energy locally:

This might occur, for instance, if a certain point on a material’s surface receives light
not only directly from the light source, but also indirectly from a different point on the
material’s surface (inter-reflection), or no light at all because the surrounding surface casts
a shadow (self-shadowing). Similarly, light might be scattered underneath the material’s
surface (subsurface scattering). ABRDFs and, by extension, BTFs account for all of these
effects. Note, however, that the BTF’s signature demands that light sources are approximately
infinitely distant and their light, hence, be directional: a BTF cannot reproduce cases where a

6



1.1 Digital material appearance

Figure 1.3: Example of a sampled ABRDF of a leather-like material. 𝑥-axis: sampled 𝜔𝜔𝜔𝑖, 𝑦-axis:
sampled 𝜔𝜔𝜔𝑜.

ray of light hits the material’s surface at a single point, or at multiple points but with varying
angles, which would require a distinction between surface points of incoming and outgoing
light x𝑖 and x𝑜 as in the case of the general reflection function described above.

Furthermore, in practice a material’s surface geometry might only be known up to crude
approximation, either by choice or due to the difficulty of capturing its complex structure.
As a rather extreme example, one might not be able to determine a square patch of long
pile carpet’s exact surface geometry, so one might resort to representing it simply by a 2D
square in 3D space. Due to parallax, the actual surface point x may thus vary greatly and
therefore exhibit completely different optical properties for varying outgoing light directions
𝜔𝑜. Again, for fixed x, this means the function 𝑓 (x) may easily violate conservation of energy
and therefore not be a proper BRDF, even if the material’s appearance at the actual surface
point could be represented by a BRDF.

In a sense, BTFs can thus be considered a “black box” which encapsulates all kinds of
optical effects. BTFs and their modelling and acquisition are the present thesis’ main focus.

1.1.2 Appearance models

A material’s appearance is determined on several scales, from its subatomic structure over
micro-scale features such as tiny flakes and fibres and meso-scale structures like weave
patterns up to the macro-scale, where deviations of the surface geometry like curvature,
dents, wrinkles and bumps may cast shadows or cause inter-reflections. While this is
obviously infeasible to model precisely taking all scales into consideration, increasingly
successful attempts have been made at modelling material appearance both analytically and
phenomenologically on scales relevant for human perception.
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Chapter 1 Introduction

Analytical models

Analytical models are typically based on idealizations of the underlying physical reality.
This often leads to comparatively simple models with only small numbers of parameters,
which makes them easy to deal with once the difficult step of estimating appropriate model
parameters for a given collection of samples has been overcome. As an example, the
anisotropic Ward model, introduced in 1992 and as of this writing still commonly used, makes
certain assumptions about functions describing the height of possibly specular homogeneous
material surfaces, giving rise to a Gaussian-shaped specular lobe of the form

𝑓 (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) = 𝜌𝑠
1√︁

〈𝜔𝜔𝜔𝑖, n〉〈𝜔𝜔𝜔𝑜, n〉
〈𝜔𝜔𝜔𝑖, n〉
4𝜋𝛼𝑥𝛼𝑦

exp

−2

(
〈x, h〉
𝛼𝑥

)2
+
(
〈y, h〉
𝛼𝑦

)2

1 + 〈h, n〉

 ,
with 𝜌𝑠 ∈ R some weight, x, y ∈ R3 the directions of anisotropy with corresponding
weights 𝛼𝑥 , 𝛼𝑦 ∈ R, and h =

𝜔𝜔𝜔𝑖+𝜔𝜔𝜔𝑜

‖𝜔𝜔𝜔𝑖+𝜔𝜔𝜔𝑜 ‖2
the half vector of 𝜔𝜔𝜔𝑖 and 𝜔𝜔𝜔𝑜 ∈ R3 [108]. In order to

achieve greater accuracy when modelling real-world materials, reflection functions are often
constructed from several functions like the above, for instance as a sum of Ward functions
with different parameters and a diffuse, e.g. Lambertian, reflectance function. Before and
after the Ward model, a number of similar parametric BRDF models have been proposed,
some of which are analytical models derived from the underlying physics, some of which are
not [109, 110].

Phenomenological models

Phenomenological models do not make assumptions about the underlying physical reality as in
the above and only aim at reproducing the phenomenon as faithfully as possible, often relying
directly on measured data to reproduce material appearance, for instance by interpolating
between measured data points using an appropriate function. This allows for accurate
representation of material appearance of almost arbitrary complexity, constrained primarily
by limitations of the acquisition setup and processing hardware. As an example, while
general BRDFs are 4-dimensional functions (with 𝜔𝜔𝜔𝑖, 𝑜 represented in spherical coordinates),
isotropic BRDFs, the value of which is invariant under simultaneous rotation of𝜔𝜔𝜔𝑖, 𝑜 about the
surface normal n, only depend on three parameters after an appropriate change of variables
(now known as the Rusinkiewicz parameterization) [57]. A measured isotropic BRDF can
thus be represented as a 3-dimensional tensor and evaluated using barycentric coordinates
for interpolation, given a sufficient sampling rate known to be achievable in practice [24].
Matusik et al. [23] further demonstrated that high-resolution measured isotropic BRDFs can
be approximated well by a linear combination of a small number of basis BRDFs. Similarly,
recent years have seen the development of phenomenological models derived from measured
data using modern deep learning techniques [111].

8



1.1 Digital material appearance

Modelling spatially-varying appearance

Models for spatially-varying appearance like SVBRDFs and BTFs are at least partially
phenomenological in general, because the spatial variance is typically extremely difficult
to derive from first principles, let alone in a parametric way that allows for fitting model
parameters to a real-world material sample. Indeed, SVBRDFs are commonly described simply
as “images” comprised of model parameters, whereas BTFs are usually modelled based on
entirely image-based, i.e. phenomenological, representations (with notable exceptions [112]):

For reasons which will become clear soon, a measured BTF is often re-sampled such
that both the sets of BRDF- and texture-space sample coordinates are Cartesian products
of finite subsets of Ω and R, respectively. Let 𝑛𝑖, 𝑛𝑜, 𝑤 and ℎ ∈ N be the corresponding
resolutions. Then the BTF can be thought of as a tensor B ∈ R𝑛𝑖×𝑛𝑜×𝑤×ℎ. After appropriate
reshaping, it can be written as a matrix B ∈ R𝑛𝑖 ·𝑛𝑜×𝑤·ℎ; that is, its columns and rows represent
the BTF’s ABRDFs and bidirectional textures, respectively. In either form, the BTF can
easily be evaluated for given coordinates (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜, x)

B(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜, x) =
3∑︁
𝑖=1

3∑︁
𝑗=1

_𝑖 𝑗B(𝜔𝜔𝜔(𝑖)
𝑖
, 𝜔𝜔𝜔

( 𝑗)
𝑜 , x),

where _𝑖 𝑗 are interpolation weights and𝜔𝜔𝜔(𝑖, 𝑗)
𝑖,𝑜

the interpolated sampled directions of incoming
and outgoing light, determined via 2D Delaunay triangulation of the corresponding sample
points; x can be dealt with just as in regular texture mapping. Computing the weights is much
more convenient when for all x the sampled 𝜔𝜔𝜔𝑖 𝑜 are the same, as otherwise, there is a lot of
computational or storage overhead involved. In particular, the interpolation weights can be
pre-computed at a sufficient resolution, which makes it possible to render BTFs in real-time
on a GPU, provided they fit in the GPU’s memory.

However, a certain minimum BRDF-space sampling rate is required in order for the
measured BTF to produce results close to the material’s proper BTF, in particular for
materials with a glossy and/or uneven surface, which may lead to unpleasant interpolation
artifacts. Consequently, BTFs are much more demanding in terms of memory resources
than SVBRDFs, so much so that they usually need to be compressed in order to fit within
the graphic adapter’s or even the computer’s RAM. A tried way of achieving sufficient
compression while retaining a high-quality BTF, which is also the most relevant to the present
thesis, is based on singular value decomposition (SVD)

B = UΣΣΣV𝑡

of the BTF in its matrix representation B (cf. Fig. 1.4). In this form, compression can be
achieved by truncating U, ΣΣΣ and V: let 𝑘 ∈ N, then by the Eckart-Young-Mirsky theorem
[18], the rank-𝑘 truncated singular value decomposition

B ≈ U𝑘ΣΣΣ𝑘V
𝑡
𝑘

9
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𝑥,𝑦  

 

…
 

Acquisition 

Figure 1.4: Left: A leather-like material sample. Center: A stack of bidirectional textures obtained by
sampling the material’s BTF. Right: Representation of the sampled BTF as a matrix.

minimizes
argminM ‖B − M| |F s.t. rk M = 𝑘,

where ‖ · ‖F is the Frobenius norm. The BTF is thus represented as a linear combination of
eigen-ABRDFs U𝑘 , which can be considered a linear model for (precisely) the BTF at hand.
Evaluation is still almost as straight-forward as for uncompressed BTFs, but comes with a
performance penalty imposed by decompression. Note that typically some kind of non-linear
transformation is applied to deal with the BTF data’s dynamic range; cf. Ch. 3. Many other
ways of modelling BTFs have been proposed, virtually always for the primary purpose of
reducing storage requirements [113]. One of the present thesis’ central points is that the
above simple linear model serves particularly well as a foundation for more encompassing
models suitable for all kinds of applications.

1.1.3 Acquisition of digital material appearance
Obtaining digital representations of a given real-world material’s appearance can be arbitrarily
convoluted, depending on a multitude of choices and compromises. Even though the type of
reflectance function to be measured is arguably one of the most important choices to be made,
the remaining ones still warrant vastly differing acquisition paradigms, depending on the
compromises one is willing to accept. As a result, researchers and practitioners have come
up with many types of acquisition devices and methods for the various types of reflectance
functions as described above. Nonetheless, all of these devices and methods have in common
that they rely on imaging systems, typically digital cameras, and artifical or natural lighting.
The acquisition setup’s complexity depends to some extent on the number of parameters
of the reflectance function to be sampled: For instance, it may be possible to sample a 2D
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texture with sufficient quality by taking a single image of the material, lit by an appropriate
light source, whereas a 4D (or even 3D isotropic) BRDF may demand tens or hundreds of
images of the material seen and lit from different angles to achieve a sufficient sampling rate,
even when the material is painted on a spherical surface, allowing for a denser sampling of
the specular highlight [24].

The case is not as clearly cut when it comes to SVBRDFs and BTFs, which have the same
amount of parameters: Digital SVBRDFs are often represented by “textures” of parameters to
analytical BRDF models, usually obtained from measured data using some kind of non-linear
optimization, which can be achieved with a relatively low number of carefully selected
samples [114]. Conversely, digital BTFs are almost exclusively represented in an image-based
form, which may require a vast amount of samples in order to avoid interpolation artifacts.
In both cases, the number of actual images to be taken by means of the imaging systems
involved typically scales with the desired number of samples. Practically, this can lead to
hundreds or thousands (in the case of SVBRDFs) and even tens of thousands (in the case of
BTFs) of images to be required. Most state-of-the-art acquisition setups for SVBRDFs or
BTFs thus contain multiple cameras in order to both reduce delays caused by moving a single
camera or material sample to change the viewing angle and to allow for varying degrees of
parallelization (but see below). Notable exceptions include a method for obtaining SVBRDFs
from two pictures taken with a cellphone camera and its flash, and a BTF acquisition setup
based on a kaleidoscope, allowing for multiple viewing angles in a single image ([42] and
[21], respectively).

In the following I shall describe, in some generality, the process involved in acquiring
digital representations of material BTFs as used to obtain the data for the research that
culminated in the present thesis, along with the limitations it entails. In principle, it also
applies to all the other types of reflectance functions described above; in practice, however,
specialized methods will usually produce more satisfactory results. Relevant surveys (e.g.
[60]) provide a broader and more in-depth introduction to the various acquisition paradigms.

Measuring BTFs

Common general-purpose BTF acquisition setups (“camera domes”) consist of arrays of
digital cameras and light sources distributed on a hemisphere above a sample holder in its
center (cf. Fig. 1.5). Ideally, the setup is shielded from both environmental light in order to
avoid unnecessary noise from subtracting the background, and from stray light caused by
inter-reflections of the light emitted by the light sources. The setup needs to be calibrated
both radiometrically and geometrically: Radiometric calibration entails determining the
camera sensors’ response curves, dark frames and color profile as well as the light sources’
color profile and intensity distribution on the sample plane. Geometric calibration is used
to determine the positions of the acquisition setup’s relevant components with respect to
a chosen coordinate system, such that for each captured image, the angles 𝜔𝜔𝜔𝑖 and 𝜔𝜔𝜔𝑜 of
incoming and outgoing light, respectively, are known. The essential part of the physical
acquisition process then consists of placing the sample to be measured on the sample holder
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Figure 1.5: Left: DOME I, a highly parallel BTF acquisition device comprised of 151 consumer-grade
digital cameras, the built-in flashes of which serve as light sources. Right: DOME II, a camera dome
like DOME I, but with 11 industrial-grade digital cameras and 198 LEDs. The material sample is
placed on a turntable which is rotated a user-definable number of times in order to achieve a sufficient
sampling of viewing directions.

and taking one or usually several images of the material sample per combination of camera
and light source, with all cameras taking images in parallel. Several images with different
exposure times are needed in order to ensure that every part of the sample is correctly exposed
in at least one image. When all desired images have been obtained, some further processing
is required to bring the data into the form described in Sec. 1.1.2: Depending on the setup, an
appropriate method such as de-mosaicing in the case of cameras with Bayer pattern sensors
can be used to obtain RGB images. Subsequently, the per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) exposure series are
combined into per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) HDR radiance maps [84]. Finally, after the radiance maps have
been corrected radiometrically using the calibration data obtained beforehand, the trapezoid
regions of interest within them are warped into rectangular shapes of a chosen size using
the geometric calibration data which can then be stacked appropriately as to obtain tensor or
matrix representations of the measured material’s BTF. At this point, the digital BTF can be
re-sampled for compression and/or rendering as described in Sec. 1.1.2 (cf. Fig. 1.4).

The two setups employed to obtain the data used in the present thesis (see Fig. 1.5 and
below) are described in great detail in the publications that introduced them ([26] and [30],
respectively).

Drawbacks & Limitations

While the process of obtaining a digital representation of a material’s BTF as described
above is straight-forward on an abstract level, it requires significant effort in practice. The
time required for the post-processing step scales approximately linearly with the number
of HDR radiance maps. The same holds for the data size of both the intermediate and the
post-processed measured data, albeit with different constants. Worse, the actual measurement
time scales approximately linearly not only with the number of light sources and images per
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1.1 Digital material appearance

exposure series (assuming all cameras shoot simultaneously), but also with exposure time,
which is dominated by the longest exposure time due to the way shutter times are usually
chosen [29]. A dark, glossy material that exhibits self-shadowing may call for both many
and long exposure times, leading to excessive time and storage requirements of possibly
many hours, and terabytes of data [29]. One may seek to reduce these requirements simply
be reducing the number of light sources or cameras and, by extension, of images captured
and post-processed; however, this may come at the cost of severe undersampling of the
material’s BTF, leading to interpolation artifacts in rendering. Note that, conversely, there is
no canonical “good” sampling rate – the more samples are used, the closer the digital BTF
will reproduce the physical reality, albeit with diminishing returns at an application- and
material-specific point.

Designing a BTF acquisition device entails, in fact, many choices like the above, all of
which associated with some of the setup’s attributes such as cost, size, power consumption,
acquisition speed, output quality, etc. As an example, the quality of the acquisition setup’s
output depends on texture-space resolution, which in turn depends on parameters such as
image sensor resolution, image noise, optical properties of the camera lenses, and the distance
between cameras and material sample. All of these parameters also influence attributes such
as cost and size.

The present thesis focuses on methods to reduce both measurement and total acquisition
time, and to increase the texture-space resolution of the resulting digital BTFs. These attributes
can be controlled via setup parameters: at any rate, measurement and total acquisition time
depend on

• brightness of the light sources;

• photon efficiency of the cameras’ sensors;

• size of the cameras’ lenses’ apertures;

• numbers of light sources and cameras;

texture-space resolution on

• size and pixel density of the cameras’ sensors;

• size of the cameras’ lenses’ apertures;

• focal length of the cameras’ lenses;

• distance between the cameras and the material sample.

Thus, both attributes can be controlled by varying the parameters they depend upon. However,
the degree of control is bounded by both hard and soft constraints: for instance, for a
given lighting setup, there are hard theoretical limits on sensor pixel size, depending on the
signal-to-noise ratio one is willing to accept [115]. Once the limit is reached, in order to
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reduce exposure times further, one may choose brighter light sources, which may or may
not be available or affordable, or extend the size of the cameras’ lenses’ apertures, which
may or may not be possible, or lead to reduced optical resolution or undesirably shallow
depth of field. Overall acquisition time (including post-processing) can be decreased by
reducing the number cameras and/or light sources and thereby of images to be captured and
processed, at the cost of greater risk of noticeable interpolation artifacts in the output BTF.
On the other hand, the greater their number, the bigger and more expensive the resulting
setup, and the more difficult the digital BTFs become to deal with due to their sheer data size.
But the distance between light sources and material sample and, by extension, the setup’s
size is also limited from below as to ensure approximately far-field illumination assumed for
BTFs. If the cameras are placed much closer to the sample, they may cast shadows on its
surface, which imposes similar constraints on their placement. The cameras’ distance from
the material sample, in turn, influences the texture-space resolution of the resulting BTFs.
By choosing an appropriate focal length, a desired degree of resolution may be achieved;
however, the larger the focal length, the smaller the part of the material sample seen by the
cameras, and the narrower the cameras’ aperture, leading to longer exposure times. In fact,
there is a somewhat delicate balance between these parameters, particularly with respect to
texture-space resolution [116].

To a certain degree, practical BTF acquisition setups of the type considered here therefore
always suffer one way or another from the particular compromises made during their
conception.

1.2 Contributions & Outline

The aim of the present thesis is to alleviate the above limitations inherent to the process of
measuring BTFs (and, to a lesser degree, SVBRDFs, which can be obtained from measured
BTFs). All of the present thesis’ contributions presented in the following use data-driven
appearance models one way or another in order to improve upon and enhance state-of-the-art
material appearance acquisition devices through computational means.

The present thesis is a cumulative thesis; that is, its content is comprised mostly of a
number of peer-reviewed publications to which I was the primary contributor. Specifically,
the following articles are summarized in the subsequent chapters:

[1] D. den Brok, H. C. Steinhausen, M. B. Hullin, and R. Klein, Patch-Based Sparse
Reconstruction of Material BTFs, Journal of WSCG 22 (2014) 83,

[2] D. den Brok, H. C. Steinhausen, M. B. Hullin, and R. Klein, “Multiplexed Acqusition of
Bidirectional Texture Functions for Materials,”, Measuring, Modeling, and Reproducing
Material Appearance II (SPIE 9398), vol. 9398, doi: 10.1117/12.2078396, 1

1 best student paper award
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[3] D. den Brok, H. C. Steinhausen, and R. Klein, “Fast multiplexed acquisition of high-
dynamic-range material appearance,” Vision, Modeling & Visualization, 2015 151,
doi: 10.2312/vmv.20151270,

[4] D. den Brok, M. Weinmann, and R. Klein, Rapid material capture through sparse and
multiplexed measurements, Computers & Graphics 73 (2018) 26, doi: 10.1016/j.cag.2018.03.003,

[5] D. den Brok, S. Merzbach, M. Weinmann, and R. Klein, “Per-Image Super-Resolution for
Material BTFs,” 2020 IEEE International Conference on Computational Photography
(ICCP), 2020 1, doi: 10.1109/ICCP48838.2020.9105256.

Note that [2] did not undergo full peer review, but it is included because it serves as a
preface to [3], which extends it. I contributed to varying degrees to the following publications
as well, but either I was not the primary contributor, or they were intended as summaries of
previous or preliminary work to be presented to a workshop audience, hence they are not
included in the present thesis:

[6] H. C. Steinhausen, D. den Brok, M. B. Hullin, and R. Klein, Acquiring Bidirectional
Texture Functions for Large-Scale Material Samples, Journal of WSCG 22 (2014) 73,

[7] H. C. Steinhausen, D. den Brok, M. B. Hullin, and R. Klein, “Extrapolation of
bidirectional texture functions using texture synthesis guided by photometric normals,”
Measuring, Modeling, and Reproducing Material Appearance 2015, vol. 9398, SPIE,
2015 81,

[8] D. den Brok, M. Weinmann, and R. Klein, “Linear Models for Material BTFs,” Euro-
graphics Workshop on Material Appearance Modeling, The Eurographics Assocation,
2015 15,

[9] H. C. Steinhausen, D. den Brok, M. B. Hullin, and R. Klein, “Extrapolating Large-Scale
Material BTFs under Cross-Device Constraints,” Vision, Modeling & Visualization,
The Eurographics Assocation, 2015,

[10] M. Weinmann, D. den Brok, S. Krumpen, and R. Klein, “Appearance Capture and
Modeling,” SIGGRAPH Asia 2015 Courses, ACM, 2015,

[11] D. den Brok, M. Weinmann, and R. Klein, “Towards Sparse and Multiplexed Acquisition
of Material BTFs,” Workshop on Material Appearance Modeling, The Eurographics
Assocation, 2017,

[12] H. C. Steinhausen, D. den Brok, S. Merzbach, M. Weinmann, and R. Klein, “Data-driven
Enhancement of SVBRDF Reflectance Data”, Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Vol. 1: GRAPP, 2018,
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[13] C. Callenberg, A. Lyons, D. den Brok, R. Henderson, M. B. Hullin, and D. Faccio,
“EMCCD-SPAD Camera data fusion for high spatial resolution time-of-flight imaging,”
Imaging and Applied Optics 2019, Optical Society of America, 2019,

[14] C. Callenberg, A. Lyons, D. den Brok, A. Fatima, A. Turpin, V. Zickus, L. Machesky,
J. Whitelaw, D. Faccio, and M. B. Hullin, Super-resolution time-resolved imaging using
computational sensor fusion, Scientific Reports 11 (2021) 1689.
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CHAPTER 2

Patch-based sparse reconstruction of
material BTFs

The research summarized in this chapter has been published as

D. den Brok, H. C. Steinhausen, M. B. Hullin, and R. Klein, Patch-Based Sparse
Reconstruction of Material BTFs, Journal of WSCG 22 (2014) 83.

For consistency with the subsequent chapters, I have slightly modified the notation in the
following summary and use the symbol S for the measurement matrix instead of M as it
occurs in the publication.

2.1 Summary
Arguably two of the biggest drawbacks of digital image-based material representations such
as BTFs are the time and storage capacity it takes to acquire them from given real-world
material samples. In both cases, the number 𝑛 of images that have to be captured in
order to avoid obvious interpolation artifacts in renderings using the resulting digital BTF
is the dominant factor. However, all these images depict the self-same material sample,
albeit as seen and lit from varying angles. It is hence reasonable to assume that a given
per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜)-texture can at least approximately be inferred from others, for instance using
an appropriate model to describe the measured BTFs. Indeed, as outlined in Sec. 1.1.2
there is a straight-forward data-driven linear model given by the truncated singular value
decomposition (SVD) B ≈ U𝑘ΣΣΣ𝑘V𝑘 , where B is the measured BTF represented as a matrix.
When only 𝑛𝑠 � 𝑛 images of the material sample are taken, B and, by extension, U𝑘ΣΣΣ𝑘V

𝑡
𝑘

are unknown in their entirety. Instead, what is measured can be described in terms of B and a
measurement matrix S ∈ {0, 1}𝑛𝑠×𝑛 ⊂ R𝑛𝑠×𝑛 with SS𝑡

= 1. The goal is then to recover an
approximation of B from the actual measurement SB. Given a linear model U, this can be
achieved by solving SUV𝑡

= SB for V; then simply B ≈ UV𝑡 .
This approach raises a number of questions:

17



Chapter 2 Patch-based sparse reconstruction of material BTFs

• Apart from U𝑘 , which is unknown a priori, what is a good model U for this scenario?

• Given a model U, what is a good choice of V?

• Which and how many per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) yield pleasing reconstruction results, i.e. what is a
good choice of 𝑛𝑠 and S?

In the publication summarized in this section [1], we give practical answers to these questions.
The model U𝑘 of the first 𝑘 eigen-ABRDFs of B may be unknown beforehand because so is

B itself, but when some or many BTFs B1, . . . , B𝑚 of other materials have been measured in
their entirety before, a linear model U can be derived from these, for example by computing a
truncated SVD for all B𝑖 at once, or separately and merging them thereafter. We demonstrate
that a model U obtained this way indeed generalizes to BTFs B ∉

{
B𝑖

}
, albeit at the cost of a

greater but tolerable number of model parameters required.
Unfortunately, the greater the number 𝑘 of model parameters, the more samples are usually

needed to fit them robustly to a measurement, or else the resulting system SUV𝑡
= SB of

linear equations may become close to being under-determined or even beyond. This can often
be mitigated by means of additional regularization terms, but we chose a different approach
and instead modified the model U. By computing U not on a set of ABRDFs from different
BTFs, but on a set of small quadratic texture-space patches of ABRDFs, we both incorporate
some knowledge about how different spatial structures such as height differences translate to
effects in ABRDFs, and drastically increase the number of equations in the linear system to
be solved. That way, we are able to determine V much more robustly even for small numbers
𝑛𝑠 of samples, simply via

V𝑡
patch =

(
SpatchUpatch

)†
SpatchBpatch

where 𝑝 is the patch size, Spatch = 1
𝑝

2 ⊗ S the Kronecker product of the 𝑝
2 × 𝑝

2 identity
matrix and S, and (SpatchUpatch)

† the Moore-Penrose pseudo-inverse of SpatchUpatch.
It remains to determine S and 𝑛𝑠. For a fixed value of 𝑛𝑠, we follow Matusik et al. [23] and

minimize the condition number ^(SpatchUpatch) by iteratively replacing single lines of S until
convergence to a local minimum. That way, only the 𝑛𝑠 pairs (𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) most conducive to
solving the system of linear equations robustly are sampled.

In our experiments, we found that using the proposed method we were able to produce
visually pleasing results with as little as 6 % of the original samples. Note that depending
on the degree of parallelism in the acquisition setup, this does not necessarily mean that the
measurement only takes 6 % of the time of a full measurement. For fully parallel setups, we
provide a heuristic sampling strategy with the same number of samples, but chosen such that
one and the same subset of the available cameras is used throughout to exploit parallelism, at
the cost of a slight reduction in reconstruction quality.

18
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2.2 Author’s contributions
My own contributions to the above research encompass experimentation with different
models, ways to obtain them efficiently despite the amount of data to be processed, various
regularization methods, implementing most of the algorithms involved, evaluating the results
and, finally, summarizing the findings in the resulting publication [1]. My co-authors provided
guidance, helpful discussions, and writing assistance.
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CHAPTER 3

Fast multiplexed acquisition of
high-dynamic-range material appearance

The research summarized in this chapter has been published as

D. den Brok, H. C. Steinhausen, M. B. Hullin, and R. Klein, “Multiplexed
Acqusition of Bidirectional Texture Functions for Materials,”, Measuring, Mod-
eling, and Reproducing Material Appearance II (SPIE 9398), vol. 9398,
doi: 10.1117/12.2078396,

and

D. den Brok, H. C. Steinhausen, and R. Klein, “Fast multiplexed acquisition of
high-dynamic-range material appearance,” Vision, Modeling & Visualization,
2015 151, doi: 10.2312/vmv.20151270.

3.1 Summary
When measuring dark materials, or materials exhibiting a large amount of self-shadowing, it
is crucial that as much of the reflected light as possible reaches the cameras’ sensors in order
to keep shutter times low. However, some of the compromises involved in devising BTF
acquisition setups, described in more detail above (cf. Sec. 1.1.3), may lead to very little light
actually being sensed by the cameras, for instance when small apertures are used to ensure a
sufficiently large depth of field. Correct exposure under all circumstances can then only be
achieved through exposure series including very long shutter times, possibly on the order of
minutes [29]. In conjunction with the huge number of images to be captured in the first place,
the resulting overall measurement times quickly become excessive. In a fixed acquisition
setup bound by the above constraints, there is thus little choice but to light the material sample
using several light sources from different angles at once. That way, both more light arrives at
the material surface and is reflected towards the cameras, and regions shadowed when the
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scene is lit by one particular light source have a chance of being lit by at least one other light
source. In fact, when lit by all light sources relatively densely covering the hemisphere above
the material sample at once, the dynamic range of the resulting images may be reduced to
such an extent that a single, short exposure is sufficient for all images. However, there is no
obvious way of deriving the desired images of the material lit by single light sources from
images obtained this way. The case is different when consecutive, changing illumination
patterns of several (but not all) light sources at once are used; an approach called multiplexed
measuring.

Indeed, let 𝑛𝑖 ∈ N be the number of light sources. In analogy to the research presented in
Ch. 2, an illumination-multiplexed BTF measurement Bmultiplexed can be modelled in terms
of a measurement matrix M ∈ {0, 1}𝑛𝑝×𝑛𝑖 ⊂ R𝑛𝑝×𝑛𝑖 , with 𝑛𝑝 ∈ N the number of patterns to
be used:

Bmultiplexed = MB,

with B and Bmultiplexed re-shaped appropriately. If M is full-rank, B can be solved for exactly
(𝑛𝑝 = 𝑛𝑖) or at least approximately (𝑛𝑝 ≠ 𝑛𝑖). In the above example (assuming 𝑛𝑝 = 𝑛𝑖)
where all lights are used simultaneously, M is singular and therefore unsuitable. An obvious
modification which makes M invertible is M := M− 1𝑛𝑖 , corresponding to patterns of all light
sources but a single one varying from pattern to pattern. It turns out that the reconstructions
obtained from real-world images using these patterns typically have a very low signal-to-noise
ratio (SNR). The reason is that physical measurements are inherently subject to noise, some
of which may be signal-independent, some of which may not. It can be shown that in
the case of typical signal-independent noise, the ratio of root mean square (r.m.s.) SNRs
of non-multiplexed measurement and of reconstruction from multiplexed measurements
(“de-multiplexing”) can be computed as√︄

MSE
signal

signal
MSEde-multiplexed

=

√︄
MSE

MSEde-multiplexed
=

√︄
𝑛𝑖

tr [𝑀 𝑡
𝑀]−1 ,

where MSE and MSEde-multiplexed are the corresponding mean square errors [33]. For the
above choice of M, this actually amounts to a slight numerical improvement of SNR in the
reconstruction, with a ratio very close to 1. However, in imaging setups, signal-dependent
photon noise is inevitable. Photon noise follows a Poisson distribution and therefore increases
with the square root of the overall amount of light. For the patterns suggested above, this
amounts to a factor of (approximately) 𝑛𝑖 in the denominator in the left-hand side of the above
equation and thus a decrease of SNR by a factor of about 1√

𝑛𝑖
, which leads to overwhelming

amounts of noise in the reconstructions for practical values of 𝑛𝑖.
In the publications summarized in this section [2, 3], we seek to leverage the general

multiplexing approach nonetheless and aim at answering the following questions:

• Are there patterns which provide a reasonable balance between noise in the reconstruc-
tions and acquisition speed?
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• Can reconstruction noise additionally be reduced further, e.g. (additionally) by means
of a linear model similar to the one presented in Ch. 2?

• If so, is there a way to reduce the time required to actually obtain a suitable model in
the first place?

Indeed, general theory on multiplexed measuring states that multiplexing patterns derived
from Hadamard matrices are at least close to optimal with respect to the improvement of
signal-to-signal-independent-noise ratio. Unfortunately, this advantage is counteracted by
the degradation of signal-to-signal-dependent-noise ratio, which can be quantified as 1√

2
in

the worst case [33]. However, the resulting patterns consist of 𝑛𝑖
2 active light sources spread

over the hemisphere, usually providing greatly increased acquisition speed. As a measure to
reduce the amount of noise in the reconstructions, we find fitting the reconstructed BTFs to a
linear model U similar to the one described in the previous section to be effective; i.e.

Bdenoised = U
(
U†B

)
.

Additionally, the effectiveness of this approach can be enhanced by determining reconstructed
per-(𝜔𝑖, 𝜔𝑜) textures with particularly high variance, which are likely to be too corrupted by
noise, and casting the above fitting problem as a “sparse” reconstruction problem with the
high-variance textures as missing values; i.e.

Bdenoised = U
(
(SU)†SB

)
.

Using these approaches, we find Hadamard-derived illumination patterns to provide a
reasonable balance between reconstruction quality and acquisition speed. In our experiments,
we typically only need a single exposure step of under 100 ms instead of four of up to tens of
seconds, reducing raw measurement times by up to 95 %.

Obtaining a BTF database suitable for computing a linear model U may be an obstacle
in its own right. For the acquisition setup employed here, and described in Fig. 1.5 and
the relevant literature [30], which captures images in parallel only for a small slice of the
hemisphere of viewing angles, it is easy to determine beforehand which images will be
particularly bright due to the Fresnel effect and therefore cause the most signal-dependent
noise. In order to acquire a high-quality database using the proposed method, acquisition
speed can be traded for higher-quality BTFs by sub-dividing the illumination hemisphere
into sectors of (roughly) equal size and capturing images in the sector affected by the Fresnel
effect without multiplexing. The remaining sectors can then be measured using multiplexed
illumination with smaller 𝑛𝑖 and thus lower amounts of noise at the cost of longer shutter
times. We find that this approach still reduces raw measurement time by about 60 %, and that
the resulting linear model U′ is similarly effective for the purpose of noise reduction.
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3.2 Author’s contributions
My contributions to the research described in this chapter consist of re-writing parts of the
calibration and post-processing pipelines to accomodate multiplexed illumination, experi-
mentation with illumination patterns and de-noising algorithms, acquisition of multiplexed
and non-multiplexed BTF databases, evaluating the reconstruction results and, finally, sum-
marizing the findings in the resulting publications [2, 3]. My co-authors provided guidance,
helpful discussions, and writing assistance.
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CHAPTER 4

Rapid material capture through sparse
and multiplexed measurements

The research summarized in this chapter has been published as

D. den Brok, M. Weinmann, and R. Klein, Rapid material capture through
sparse and multiplexed measurements, Computers & Graphics 73 (2018) 26,
doi: 10.1016/j.cag.2018.03.003.

4.1 Summary

In the preceding two chapters, I describe two methods that can help accelerate the cumbersome
process of acquiring BTFs based on reducing the amount of HDR radiance maps of the
material sample to be taken, and the number and duration of exposure steps required in
order to ensure correct exposure. At first glance, it seems that these methods are somewhat
orthogonal and can, therefore, be easily combined, as in

B ≈ U
[
(SMU)† (SMB)

]
,

with U, S and M as in the previous chapter. This corresponds to measurements both
illumination-multiplexed and sparse with respect to the light sources and cameras available
in the given acquisition setup. However, there is a severe obstruction: both methods require a
linear model U derived from a database of measured BTFs with possibly wide dynamic range.
Computing U by means of a truncated SVD on such data is known to lead to visible artifacts
due to an over-emphasis of specular highlights [23, 50]. An established counter-measure
is to apply some kind of non-linear transformation to the data beforehand that reduces the
dynamic range, commonly the logarithm:

log D = UΣΣΣV𝑡
,
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and in fact this transformation was used in the methods introduced in the previous chapters,
too. One can thus only reasonably expect log B, not B itself, to be adequately representable
in terms of U. But log(SMB) = S log(MB) ≠ SM log B in general, so at any rate, the latter
can only be determined if S is chosen to incorporate all 𝑛𝑝 illumination patterns (because
then SMB can be de-multiplexed), which defeats the purpose of sparse acquisition.

In the published research summarized in this section [4], we seek to answer the following
questions:

• Is there a model U with similarly favorable properties as the one from Ch. 3, but which
allows for simultaneous de-multiplexing and sparse reconstruction as described above?

• If so, how can it be computed efficiently?

A straight-forward approach to the problem is to obtain U directly from D. Then the terms in
the above equation for a sparse, multiplexed measurement become “compatible” and may
thus yield satisfactory results. It remains to determine a way of dealing with the data’s wide
dynamic range. We propose to replace the commonly used optimization problem

U, V = argminŨ, Ṽ‖ log D − ŨṼ‖F

with
U, V = argminŨ, Ṽ‖W � (ŨṼ − D)‖F,

where � is the element-wise matrix product, and W a matrix of weights, and in both cases the
minimization parameters Ũ and Ṽ have 𝑘 columns and rows, respectively. This effectively
allows for fine-tuning the metric used when computing U. In particular, if W is chosen as
W := D−1, this amounts to minimizing the per-element relative L2 error |𝑥−𝑥 |

|𝑥 | . A metric like
this ensures that particularly bright parts of the BTF, like highlights or grazing angles with
strong Fresnel effect, are not overly emphasized in the fitting process.

However, contrary to the standard least-squares problem, there is no canonical way of
solving the resulting optimization problem. We propose an alternating least-squares approach,
alternatingly solving for U and V as vectors until convergence to a (typically local) minimum.
The resulting linear systems of equations are sparse, but impractical to handle nonetheless.
Fortunately, their sparsity structures allow for solving on a per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) and per-texel basis,
respectively, which reduces the complexity such that the partial problems can be handled
easily. As with the SVD-based approach, this is most easily achieved on a per-material basis.
U can then be obtained by computing an SVD of the concatenated per-material U(𝑖) .

Finally, as mentioned in Ch. 2, reconstruction from sparse measurements works best with
an appropriate regularization method. Following Nielsen et al. [54], who introduced it to
sparse reconstruction of BRDFs, we employ a Tihonov regularization term:

V = argminṼ‖SMUṼ − SMB‖F + ‖ΓΓΓV‖F

which I had experimented with with some success in the context of BTFs prior to the
publication of the referenced work, but which had not made it into a publication of my
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own up until that point. ΓΓΓ can be chosen arbitrarily; similar to Nielsen et al., we choose
ΓΓΓ = ΣΣΣ

−1, where ΣΣΣ is the diagonal matrix of singular values obtained along with U. This
choice penalizes large deviations from the database’s singular value distribution and hence
ensures a plausibel BTF.

In our experiments, we found our alternating least-squares algorithm to converge quickly
and to local minima reasonable in the sense that they always adequately represented the
BTFs from the validation set, albeit at the cost of an increased number of parameters for
approximately the same quality when compared to the conventional models. When put
into practice, we are able to produce visually pleasing BTFs from sparse and multiplexed
measurements taken in only 15–30 minutes, where the “brute-force” measurements take as
much as 10–23 hours, and separately sparse and multiplexed measurements 1–4 hours.

4.2 Author’s contributions
My contributions to the above research entail development, implementation and fine-tuning
of the involved algorithms, evaluation of the reconstruction results, and writing most parts
of the actual publication. My co-authors provided guidance, helpful discussions, literature
research, and writing assistance, particularly the section on related work.
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CHAPTER 5

Per-image super-resolution for material
BTFs

The research summarized in this chapter has been published as

D. den Brok, S. Merzbach, M. Weinmann, and R. Klein, “Per-Image Super-
Resolution for Material BTFs,” 2020 IEEE International Conference on Compu-
tational Photography (ICCP), 2020 1, doi: 10.1109/ICCP48838.2020.9105256.

5.1 Summary

In the previous chapters, measurement matrices were applied from the left to BTF data
represented as matrices with columns corresponding to ABRDFs. Mathematically, it is
admissible to apply matrices from the right and thus to the BTF’s bidirectional textures, and
in fact this operation may have a perfectly valid physical interpretation depending on the
choice of measurement matrix M. For instance, M can be chosen such that it corresponds to
convolution with a camera’s point spread function and subsequent down-sampling. Solving
the resulting linear system amounts to super-resolution, i.e. up-sampling and de-blurring,
for single images. In the case of BTFs, this corresponds to texture-space super-resolution
performed on each texture separately, which has been shown to work reasonably well even on
compressed representations [68]. However, while super-resolution is an important technique
which helps strike a more favorable balance of parameters in imaging systems such as
BTF measurement devices (cf. Sec. 1.1.3), it also is a hard problem to solve, because it
is under-determined by nature. Consequently, although it has been studied in general for
decades, the problem both in general and in special cases of interest is still a topic of ongoing
research. Following the general trend, many single-image super-resolution algorithms today
make use of modern “deep learning” techniques such as neural networks to great effect. For
several reasons, it is not clear a priori that this approach also lends itself to per-bidirectional
texture super-resolution for BTFs:
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Firstly, the resulting super-resolved images are often convincing in that they are plausible
and more detailed than what “classical” algorithms produce, but they need not always resemble
the ground-truth very closely. A BTF’s per-(𝜔𝜔𝜔𝑖, 𝜔𝜔𝜔𝑜) textures vary in a physically meaningful
way, and it is unclear whether they still do when super-resolved by a “hallucinating” single-
image algorithm, applied to each texture separately. If they don’t, the resulting super-resolved
BTF may exhibit annoying artifacts when rendered.

Secondly, BTFs typically cover a wider dynamic range than the images usually considered
in single-image super-resolution. Whether the same algorithms carry over to the HDR case
needs to be determined.

Finally, and on the other hand, BTF data is much less diverse than a completely random
sample of real-world images. In both this and the previous case, it is reasonable to assume
that a neural network trained on BTF data alone outperforms the same network trained on
real-world images. However, it may be difficult to find appropriate ground-truth data: in
a fixed acquisition setup, the only available data may be data produced by the setup itself.
Down-sampling that data in order to produce training data only tells the network about the
transition from the down-sampled resolution to the setup’s actual resolution, but the intention
is to exceed that resolution.

Our aim in the research project summarized in the present chapter is to investigate whether
“deep learning”-based single-image super-resolution algorithms can be leveraged to full BTFs.
In particular, we provide initial answers to the following questions:

• Are typical single-image super-resolution networks suitable for the high dynamic range
(HDR) radiance maps BTF acquisition devices produce?

• Is ground-truth data with a resolution exceeding the setup’s required, or is the problem
scale-invariant to some extent?

• Does the image-by-image approach lead to visible artifacts in the resulting BTFs?

To this end, we construct a convolutional neural network by enhancing a classical super-
resolution network with current best practices. We train and test the network on a database of
HDR radiance maps down-sampled once and twice. From the resulting high-resolution test
images, we produce high-resolution BTFs which we evaluate against both the ground-truth
and a state-of-the-art BTF super-resolution algorithm, and with respect to the above questions.
We find that we can answer the questions in favor of the chosen algorithm, and that our
algorithm outperforms the state-of-the-art.

5.2 Author’s contributions
My contributions to the above research include development, implementation and fine-tuning
of both the algorithm itself and visualization of the results, experimentation with different
models, evaluating the results and summarizing them in the corresponding publication. My
co-authors Michael Weinmann and Sebastian Merzbach both suggested various possible
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improvements to the CNN, some of which turned out to be critical and were thus used in
the final version of the algorithm. Sebastian Merzbach also helped with debugging the
algorithm’s implementation and writing and debugging the visualization code used for
evaluation and presentation. Michael Weinmann did a large amount of literature research
and helped with writing the “Related Work” section. All co-authors furthermore provided
guidance and helpful discussions.
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CHAPTER 6

Conclusion

The publications corresponding to the above summaries each contain an overview of the
relevant related work at the time they were written. In the meantime, a number of publications
have appeared which are immediately relevant in the context of the present thesis, some of
which I have picked as representatives of lines of similar work.

6.1 Recent developments

In research conducted in our group and with my participation, Steinhausen et al. [12] use a
linear BTF model similar to ours described above (cf. Ch. 2) to obtain BTFs with high angular
resolution from a commercially available low-angular-resolution SVBRDF acquisition device.
The advantage is that the acquisition device is readily available on the market and faster and
much more compact than high-angular-resolution acquisition devices specifically for BTFs.

As an interesting and purely optical approach to increasing the texture-space resolution of
BTF acquisition setups, Havran et al. [116] investigate Scheimpflug optics. They observe
that most common setups are, in fact, limited in optical resolution by diffraction occuring
due to the narrow camera apertures required to keep the entire material sample in focus at
grazing viewing angles. By using Scheimpflug optics, the focal plane can be tilted in order to
mitigate this problem. They further show that, using an additional anamorphic attachment,
the loss of resolution at the “far” end of the material sample resulting from the perspective
transformation can be counteracted. By combining both techniques, they show that the
system’s optical resolution can be enhanced by a factor of as large as approximately 2.

Our choice of illumination patterns for illumination-multiplexed BTF acquisition (cf. Ch. 3)
is somewhat arbitrary, albeit effective. Kang et al. ([117]) propose a method for learning
illumination patterns for the purpose of efficiently acquiring shape and reflectance of 3D
objects endowed with an SVBRDF-like surface material. The approach is based on a deep
neural network with a linear layer corresponding directly to the acquisition setup’s light
sources. Consequently, the resulting patterns are not binary and hence do not apply directly
to typical BTF acquisition setups. It should be possible to either adapt the algorithm, or to
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construct a BTF acquisition setup with dimmable light sources.
Following their 2019 article on the compression and interpolation of a single BTF using

neural networks [83], and in analogy to our own work on linear models for BTFs [1], Rainer
et al. demonstrate that a similar model trained on database of BTFs with varying angular
samplings generalizes to a wide range of BTFs of distinct materials at once, regardless of
their angular samplings [118]. Sampling-invariance is achieved by adding a Multi-Layer
Perceptron as a pre-processing step. The authors claim that their model lends itself to
applications such as BTF synthesis in the sense of extrapolation along the spatial domain and
sparse acquisition, and provide initial experimental evidence to support their claim. However,
they note that lack of training data is one of the major obstacles to achieving even better
results.

Another very promising neural BTF model has been proposed by Kuznetsov et al. [119]
Contrary to all prior BTF models, it is capable of incorporating geometric effects most
prominent at grazing viewing angles, such as parallax effects and silhouette. As a result,
objects rendered with such a “Silhouette BTF” (SBTF) as surface material look much more
realistic at the borders than traditional BTFs in the absence of advanced and computationally
expensive rendering techniques. The research’s focus lies on the model’s performance itself,
both in terms of reconstruction quality and practicability in rendering applications; whether
it also boasts similar qualities as the model introduced by Rainer et al. [83] warrants further
investigation.

Apart from these, the field of material appearance in general has seen further developments
not immediately relevant in the present context, including modelling of material representations
other than BTFs using neural networks, and digital material appearance acquisition techniques
in general. I thus refer the reader to corresponding recent surveys such as the one by Dong et
al. [111] The research described in Ch. 5 strongly depends on single-image super-resolution;
however, the model itself was chosen not with the aim of picking the currently “best” one in
whatever terms, but to demonstrate the approach’s feasibility. I therefore consider enumerating
the large, ever-growing body of additional work on this topic of great general interest out
of the present thesis’ scope and refer the reader to recent surveys, e.g. the ones by Yao et al.
[120] and Bashir et al. [121]
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6.2 Discussion & Outlook

In the present thesis, I have introduced a number of algorithms and techniques which lay
a foundation for significant improvements to the process of digitally capturing material
appearance. Arguably all of these were pioneering works, not necessarily in the sense of
“ground-breaking”, but in that they brought qualitative change to the field of BTF acquisition
as opposed to mere quantitative improvements: prior to them, to the best of my knowledge, a
model expressive enough to represent a wide range of BTFs at once, sparse acquisition (cf.
Ch. 2), multiplexed acquisition (cf. Ch. 3), the combination of the latter two (cf. Ch. 4), and
texture-space super-resolution based on neural networks (cf. Ch. 5) had not been considered
in the context of BTFs. Consequently, the goal of the works ultimately was not to provide the
optimal BTF acquisition strategy, whatever that might be, but to demonstrate that certain
ideas are both feasible and effective within this context in the first place. This naturally leaves
room for further exploration and improvements.

The most apparent approach is to take the techniques as they are from research into
development (as in “research and development”, “R&D”) in order to optimize them for
practical use and make them more robust. All of our methods and algorithms are subject to a
number of parameters that can be tuned such that an optimal balance between parameters,
subject to constraints imposed by practical concerns, is struck, similar to the technical
parameters that have to be considered when designing an acquisition device (cf. Sec. 1.1.3).
As a (simplified) example, our linear model has itself a certain number of model parameters
that need to be fitted, and the greater their number, the better the model represents BTFs
in general, but the more samples are required in order for the fitting process to be robust,
and their actual number is, in turn, a parameter itself. Similarly, the greater the number of
LEDs in the acquisition setup, the greater the reduction of shutter times achievable through
multiplexing, but the greater the amount of noise to be dealt with.

Optimized as in the above or not, our algorithms all to some degree enable the relaxation of
constraints imposed upon acquisition setup design. By extension, they pave the way to more
efficient acquisition setups which yield digital material BTFs of a quality similar to what is
possible with a “comprehensive” setup used to obtain the models underlying our algorithms.
Such a setup might be designed using only a small number of light sources and/or cameras,
allowing for more compact, light-weight, and possibly more cost-effective devices. In fact,
gonioreflectometers seem feasible for BTF acquisition again, given that devices with a low
degree of parallelization benefit the most from our sparse acquisition method. Additionally,
we already demonstrated that a commercially available industrial-grade SVBRDF acquisition
device small enough to fit on a large desk can be used to measure a material’s BTF using
one of our methods [12]. Conversely, one might actually be interested in building larger
devices or use camera lenses with a wider field of view than one would usually consider:
it is a well-known problem – which we have also dealt with in separate publications [6, 9]
– that most acquisition devices are limited to material patches of a spatial extent that may
be too small in certain practical use cases. Our super-resolution algorithm can be used to
compensate for the loss of texture-space resolution that comes with the above solutions to
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this problem and thus allows for much larger material samples to be measured.
On the algorithmic side, there is a lot of room for further experimentation: When it comes

to acquisition setups, it might be possible to devise an adaptive sparse sampling strategy
which stops when, e.g., a certain quality criterion is met, such that fewer samples may be
needed in many cases. While illumination patterns based on Hadamard matrices have been
shown to work well, there may be choices which strike a better balance between amount of
noise after reconstruction and reduction of shutter times, possibly adaptive as well. Moreover,
linear models are among the most simple ways of modelling BTFs, but even though more
sophisticated models may seem intriguing, linear models may have advantages that we have
not investigated thoroughly yet. For instance, having a “global” model for a wide range of
BTFs may facilitate defining a meaningful (pseudo-)metric on the space of BTFs, making
it easier to compare BTFs, or search for related BTFs in a material database, or interpolate
between (more than two) BTFs, similar to what Ruiters et al. have demonstrated [122]. Apart
from the type of model used, there are a number of parameters which can possibly be improved
upon, such as the metric when used to fit the model, which in turn depends on color space,
reduction of dynamic range, and so on; or the regularization terms. Note that the optimization
problem that occurs in our algorithm combining sparse and multiplexed acquisition contains
a weight matrix W which can be easily modified to accomodate more sophisticated metrics.
Our super-resolution algorithm, in turn, is inherently also a compression technique, given
that only at most 1

4 of the data is necessary in order to obtain visually pleasing BTFs of a
certain resolution. While it can be used as is for this particular purpose, it currently cannot
replace compression methods such as the truncated SVD described in Sec. 1.1.2 both in
terms of compression factor and suitability for real-time purposes. It might be possible to
combine both techniques and achieve reasonable decompression performance at least suitable
for offline rendering.

Again on the algorithmic side, there might still be considerable untapped potential in
(generalizations of) the optimization problem introduced in Ch. 4. Apart from the rather
technical suggestions in the previous paragraph, I strongly believe it is possible to expand the
idea sketched in Ch. 5 in order to achieve multi-view super-resolution for BTFs. The key
observation is that a “measurement matrix” can be also used to model the process of rendering
an assumed underlying high-resolution BTF into low-resolution images as produced by the
BTF acquisition setup, similar to the simple down-sampling matrix used in the classical
single-image super-resolution case referenced above. In general, the resulting linear system
is under-determined and involves huge sparse matrices with unfavorable sparsity structure.
However, by assuming priors such as the ones considered in the present thesis, such as that
BTFs are low-rank, or that they are representable in terms of a global BTF model, or that
they have roughly similar singular values, and by applying numerical tricks to cut down
the size of the problem, it might actually become tractable. Preliminary experiments I
conducted on synthetic data support this hypothesis; however, time did not permit to make
the real-world case work. If it can in fact be made to work, it might also be possible to
combine super-resolution with sparse and multiplexed acquisition into one single, elegant
problem, providing a single, practical solution to most shortcomings of common types of
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BTF acquisition setups at once. I consider this direction of research particularly worthwhile,
as it relies mostly on the underlying physics and not on AI “hallucinations” as with our
single-image super-resolution algorithm.

Finally, as of this writing, it seems that “deep learning” has found its way into most
branches of science, with computer graphics and vision being no exception, of course, and the
ongoing “revolution” does not appear to be ending anytime soon, given that it is ubiquitous
and regularly produces results that would have been unthinkable not too many years ago.
With the advent of neural network models for BTFs [83, 118, 119], it is likely that we will
see another qualitative jump in the context of BTFs, irrespective of the particular problem.
Regardless of what is actually possible with this first iteration of neural BTF models, I
am certain that at some point there will be an iteration that can be used for the same or
similar purposes as the models introduced in the present thesis. Given how well common
networks lend themselves to image processing, it is conceivable that in the future, it may be
possible to combine all the methods presented above into a single algorithm which produces
a high-quality, high-resolution BTF from low-resolution, (learned) illumination-multiplexed
input, or even from short snippets of low-dynamic-range smartphone video under uncontrolled
illumination. By incorporating knowledge of the underlying physics as some kind of prior
into the algorithm, inconsistencies from neural “hallucinations” could possibly be avoided.
However, as Rainer et al. note themselves in their publication on neural BTF models [118],
training neural networks robustly requires a lot of training data. The above methods should
be able to play an important role in acquiring the necessary amounts of training data in a
reasonable amount of time and fit them into a reasonable amount of memory. Moreover, at the
moment they represent the benchmark when it comes to “computational” BTF acquisition.

In summary, the present thesis contains a variety of pioneering methods which make
modelling and capturing digital material appearance in the form of bidirectional texture
functions a lot more practical by significantly reducing the amount of time and data required
to obtain a digital representation of a given material. Even though they only represent a
first step in certain directions and will, at some point, likely be superseded by methods
based on modern “deep learning” techniques, they are usable right now and can serve as a
foundation for acquiring the required vast amounts of training data for more advanced models
and techniques in the future.
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ABSTRACT
We propose a simple and efficient method to reconstruct materials’ bidirectional texture functions (BTFs) from
angularly sparse measurements. The key observation is that materials of similar types exhibit both similar surface
structure and reflectance properties. We exploit this by manually clustering an existing database of fully measured
material BTFs and fitting a linear model to each of the clusters. The models are computed not on per-texel data
but on small spatial BTF patches we call apparent BTFs. Sparse reconstruction can then be performed by solving
a linear least-squares problem without any regularization, using a per-cluster sampling strategy derived from the
models. We demonstrate that our method is capable of faithfully reconstructing fully resolved BTFs from sparse
measurements for a wide range of materials.

Keywords
bidirectional texture functions, sparse acquisition, material appearance

1 INTRODUCTION
In many applications, it is desirable or even imperative
to reproduce a material’s appearance faithfully and,
possibly, in real-time. For a wide range of materi-
als bidirectional texture functions (BTFs) – loosely
speaking, an image-based variant of the better known
spatially varying bidirectional reflectance distribution
functions (SVBRDFs) – provide good reproduction
quality, even at interactive frame rates. The acquisition
of high-quality, high-resolution BTFs of real-world
materials is, however, by many means expensive.
In particular, measurement times of typically many
hours per material make it very cumbersome to obtain
large BTF databases, as pictures of the material to be
measured have to be taken from many different viewing
angles and under many different lighting conditions.

We propose a simple and efficient method for the sparse
acquisition of material BTFs, assuming a sufficiently
large and heterogenous database of fully measured ma-
terials is available:

We demonstrate that linear models describing material
reflectance per texel are insufficient for this task be-
cause effects not local to texels frequently occur. We
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this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Left: Reference rendering along with the full
sampling. Right: Sparse sampling used to produce the
rendering of a sparse reconstruction shown below.

show that, instead, small BTF patches we call apparent
BTFs (ABTFs) provide a suitable foundation for such
models. In order to account for the high variance of
material surfaces, we propose to fit models to patches
clustered by semantic material class. From these mod-
els, sparse sampling strategies can be deduced that take
advantage of the peculiarities of existing BTF acqui-
sition devices. Reconstruction from such sparse mea-
surements can then be achieved efficiently by solving a
simple linear least-squares problem without regulariza-
tion.

We demonstrate that our method is able to reconstruct
fully resolved material BTFs of good quality from as
little as 6% of the original samples. It can be used
for substantially improving acquisition times or angu-
lar resolution, thus benefiting the most common BTF
acquisition devices.



2 BACKGROUND
2.1 Bidirectional texture functions
BTFs have been introduced by Dana et al. [1] as an
image-based approach to spatially varying appearance.
Like SVBRDFs, they are 6-dimensional functions of
the form

B(x,ωi,ωo),

where ωi,o ∈ R2 are the incoming and outgoing light
directions, respectively, and x ∈ R2 is the position on a
parameterized surface V . In the case of material BTFs,
V is typically flat; it does not need to coincide with the
material’s actual surface geometry. It is generally as-
sumed that light sources are directional and have the
same spectrum. In particular, effects such as phospho-
rescene, fluorescence and subsurface scattering cannot
be captured accurately.

The fundamental difference from SVBDRFs is that the
function B(x,−) need not be BRDF-valued: the corre-
sponding per-texel reflectance function does not need
to adhere to Helmholtz reciprocity and conservation of
energy and is, therefore, capable of capturing non-local
effects such as interreflections and self-shadowing.
Moreover, because V does not necessarily coincide
with the actual surface, the per-texel reflectance
functions may also describe parallax effects. For these
reasons, the term apparent BRDF (ABRDF) has been
suggested by Wong et al. [18] for this kind of functions.
Conversely, the values of the function B(−,ωi,ωo)
are just 2D textures corresponding to specific pairs of
incoming and outgoing light directions.

2.2 BTF acquisition
Several setups for the acquisition of BTFs have been
proposed. We briefly review the most prominent
paradigms, as our method benefits all of them to a
greater or lesser extent. An in-depth overview can be
found in [16].

2.2.1 Gonioreflectometer
In what is historically the first BTF acquisition setup,
proposed by Dana et al. [1], the material sample is
placed on a turntable, and a camera and a light source
held by robot arms are moved across the hemisphere
above the sample to capture images of the sample under
different lighting and viewing conditions. The goniore-
flectometer is very flexible in terms of possible sam-
plings of the hemisphere, but measurement times are
excessive – on the order of weeks for a moderate angu-
lar resolution – due to the little amounts of light sources
and sensors and the movable parts’ low speeds.

2.2.2 Kaleidoscope
Han et al. [7] introduced an intriguing parallel setup:
The sample is placed underneath a tapered kaleido-
scope, lit and captured from a projector and a camera

placed at the other end, which allows for a number of
lighting and viewing conditions to be measured in a sin-
gle camera shot. By appropriately arranging the mir-
rors, the angular and spatial resolution can be adjusted;
however, both are typically rather low, and increasing
one leads to a decrease of the other, so there is always a
tradeoff to be made.

2.2.3 Camera domes

Camera domes as proposed, for instance, by Müller et
al. [11] and Schwartz et al. [15] ideally provide a highly
parallel means to acquire BTFs: A number of cam-
eras is spread across the hemisphere above the sample
holder. Their flashes or separate LEDs are used as light
sources. Parallelism may be traded for fewer cameras
and lower cost by placing the sample on a turntable in
order to achieve a similarly dense sampling of the hemi-
sphere. Due to the number of cameras, data transfer
times become a new bottleneck.

In all of the above setups, it is usually necessary to cap-
ture the same scene several times with different shutter
times in order to obtain HDR data.

2.3 Related work
To the best of our knowledge, no method for sparse re-
construction of entire BTFs has been proposed so far.
There exists, however, a number of methods for lower-
dimensional reflectance models:

In [10], Matusik et al. perform singular value decom-
position (SVD) on a database of 100 measured BRDFs
of a wide range of isotropic materials to obtain a linear
model.

In [9], the same authors introduce two methods for
sparse reconstruction of isotropic BRDFs: The first
method is based on a wavelet analysis of their BRDF
database. A set of basis wavelets termed common
wavelet basis is determined and used to reconstruct pre-
viously unseen BRDFs with approximately 1.5 million
samples from approximately 70000 measurements. The
second method uses the entire BRDF database itself
as a linear model for reconstruction of fully measured
BRDFs from as little as 800 out of the original approx-
imately 1.5 million samples, at the cost of slightly in-
creased reconstruction errors and the required availabil-
ity of the BRDF database. Samples are chosen using a
simple optimization algorithm such that the linear sys-
tem to be solved for reconstruction is well-conditioned.
They do not investigate how well their methods gener-
alize to more complex reflectance such as anisotropic
BRDFs or ABRDFs.

In [2], Dong et al. reconstruct a material’s SVBRDF
from a sparse measurement using a manifold con-
structed from analytical BRDFs fit to fully measured
BRDFs of manually selected representative points on



the material’s surface. The algorithm is unlikely to
scale to BTFs because of the typically much higher
intrinsic dimensionality of the ABRDF manifold (cf.
section 4.1.1). A generalization to previously unseen
materials is not obvious, albeit conceivable.

Peers et al. [13] introduce compressed sensing [3] to
the acquisition of reflectance fields, assuming both 2D
outgoing (here: fixed viewing direction) and incident
light fields. Their algorithm uses a hierarchical, multi-
resolution Haar wavelet basis, taking spatial coherence
into account. It is not clear how to extend this approach
to a multi-view setup. Common BTF acquisition setups
only have a very limited number of light sources, where
the advantage of compressed sensing might be negligi-
ble. Due to these light sources’ brightness, we expect
shot noise to become a problem.

Conversely, in [8], Marwah et al. use sparsity-based
methods related to compressed sensing in order to
sparsely acquire 4D light fields with an angular res-
olution of 5× 5. They compute a dictionary of what
they call light field atoms – 11 × 11 spatial light field
patches which allow for a sparse representation of
natural light fields. Such a dictionary does not exist
in the case of ABRDFs or ABTFs; as demonstrated in
section 4.1.1, their dimensionality is likely too high.

Filip et al. [5] propose a vector quantization of BTFs for
the purpose of compression, guided by a psychophys-
ically validated metric. They conclude that as little as
10 – 35 % of the original textures are sufficient to main-
tain the same visual appearance in renderings. It would
be interesting to investigate whether there is a common
quantization for all materials, and if so, whether it could
be used for sparse acquisition. A large user study would
be needed in order to adapt the metric to a bigger BTF
database.

3 LINEAR MODELS FOR MATERIAL
BTFS

During measurement, a finite discretization of the mea-
sured material’s BTF B is obtained. After rectification
of the acquired images, the discrete BTF has a natural
representation as a matrix B ∈ Rn×m with the columns
representing the m discrete ABRDFs, each entry cor-
responding to some pair (ωi,ωo) of incoming and out-
going angle, and the rows representing the n rectified
textures (cf. figure 2).

3.1 Linear models & reconstruction
The goal is now to recover B from a sparse measure-
ment

B̃ = MB

of ns samples, where M ∈ Rns×n is a measurement ma-
trix, typically binary, which determines the sparse sam-
pling.

(x, y)

(ω
i,
ω
o)

Figure 2: Representation of a discretized BTF as a ma-
trix.

Arguably one of the most simple methods to attack this
problem is, given fully resolved training data D, to fit
a linear model D ≈ UC. An optimal fitting method in
terms of L2 error is to compute a truncated SVD

D≈ UΣVt

as established by the Eckart-Young theorem [4]. The
hope is that the model both

• generalizes to previously unknown data; i.e.

min
CB
‖UCB−B‖< ε (1)

• is expressive enough that a sparse sampling is suffi-
cient to find reasonable coefficients; i.e.

min
CB
‖M(UCB−B)‖< δ =⇒ ‖UCB−B‖< ε (2)

Provided B̃ has at least as many rows as columns, an
approximation of B may then be obtained via

B≈ U(MU)†B̃, (3)

where (MU)† denotes the Moore-Penrose pseudo-
inverse of MU.

It is well-known that the fitting of linear models through
minimization of L2 error is sensitive to outliers. In or-
der to decrease the influence of specular highlights, we
reduce the data’s dynamic range by converting the mea-
sured HDR RGB data to YUV color space, dividing the
U and V values by the corresponding Y value and ap-
plying log to the Y values.

Despite its simplicity, this approach has been demon-
strated in [9] to be quite effective in the special case of
isotropic BRDFs. It seems thus worthwhile to investi-
gate whether this generalizes to ABRDFs.

3.2 Linear models for ABRDFs
Linear models for ABRDFs are already being used for
compression and rendering of BTFs, often under the



moniker full matrix factorization (FMF). In that case,
models are fit to a certain material’s ABRDFs only; i.e.
to B instead of a whole database D. The columns of U
and V are commonly refered to as eigen-ABRDFs and
eigentextures, respectively [12], in reference to their se-
mantic meaning.

It is reasonable to assume that for BTFs the ABRDFs
of which are close to being true BRDFs, a linear model
may perform similarly well as in [9] [10] with respect to
equations 1 and 2. However, as soon as surface struc-
ture becomes significant, reconstructions from sparse
measurements might easily miss effects such as self-
shadowing, interreflections, occlusion and parallax. We
shall demonstrate in section 4.2 that this is indeed the
case.

3.3 Linear models for ABTFs
In order to overcome these problems, we take spatial
information into account: instead of considering only
ABRDFs, we consider entire collections of neighboring
ABRDFs, which we call apparent BTFs (ABTFs), as
similar to ABRDFs they capture effects not local to the
specific patch such as interreflections or shadows cast
from neighboring patches.

The matrix B then takes on a different form, with its
columns representing discrete ABTFs, for instance as
vectors of stacked discrete ABRDFs belonging to the
same neighborhood. The corresponding measurement
matrix becomes 1p2 ⊗M, where p denotes the spatial
patch size and ⊗ the Kronecker product.

Note that an alternative to patches exists in the form of
appropriate filter banks, as e.g. demonstrated by Peers
et al. [13] A case has been made in favor of the sim-
pler spatial patches by Varma et al. [17], albeit in the
case of material classification: the authors demonstrate
that classification using spatial patches, which can be
as small as 3× 3 texels, is superior to that using filter
banks with equivalent support.

The intrinsic dimensionality of the ABTF database is
likely higher than that of the ABRDF database; in the
worst case by a factor equal to the patch size. To mit-
igate this to some extent, we propose to cluster the
database such that each cluster contains only materials
with similar surface structure, and determine the linear
models Dcluster ≈ UΣVt per cluster. The columns of U
shall be called eigen-ABTFs.

3.4 Sampling strategies
Once a model satisfying equation 1 has been estab-
lished, a measurement matrix M that takes advantage of
the model needs to be devised. We chose to implement
the simple optimization algorithm proposed in [10]:

M ∈ Rns×n is initialized as random binary matrix
with precisely one 1 on each row. The algorithm then

randomly replaces one row of M with a different ran-
dom binary unit row vector. If the condition number
κ(MU) does not decrease, the change is reverted. This
is repeated until convergence or a maximum number of
steps is reached (cf. algorithm 1). For ABTFs, the con-
dition number κ((1p2 ⊗M)U) is tested instead.

The intuition behind this choice is that the condition
number κ(MU) is an indicator of how robustly MU can
be inverted; i.e. of how well coefficients CB as in equa-
tion 2 can be found.

In its present form the algorithm is free to choose what-
ever pairs of incoming and outgoing light directions
lead to well-conditioned linear system. This approach
suits best the gonioreflectometer setup, where all such
pairs have equal costs. The algorithm can easily be
modified to take the parallelism of camera dome setups
into account.

While undersampling could be used in the kaleidoscope
setup as well, we argue it is more beneficial to use
the proposed method in order to increase the kaleido-
scope’s limited angular resolution.

Algorithm 1 Generation of a measurement matrix.
Input: desired number ns of samples
Output: optimized measurement matrix M ∈ Rns × n

M← random binary with exactly one 1 per row
while not converged do

M′←M
r← random binary row vector with ‖r‖0 = 1
random row of M← r
if κ(M′U)< κ(MU) then

M←M′
end if

end while
return M

4 RESULTS

For our experiments, we used an existing database of
high-quality measured BTFs. The measurement device
used to create the database is a camera dome with 151
cameras, the flashes of which are used as light sources,
resulting in an angular resolution of 151×151 (cf. fig-
ure 3a). The rectified textures have a spatial resolu-
tion of 512 × 512 pixels and correspond to a part of
the sample approximately 4 cm× 4 cm in size. The
database consists of 14 semantic classes with 12 mate-
rials each. We selected the classes carpet, cloth, gravel,
leather, metal, stone, wall tile, wallpaper and wood,
which exhibit significant inter- and intraclass variance.
We used 11 materials per class for fitting the linear
models and the remaining material per class for the pur-
pose of validation.



(a) (b)
Figure 3: (a) Sketch of the acquisition setup. The red
points correspond to both light sources and cameras.
(b) Sketch of the 7 × 7 parabolic map sampling. The
red points correspond to both light sources and cameras.

All computations have been performed using MATLAB
2011b under Windows XP on a machine with two Intel
Xeon E5645 processors and 144 GB of RAM.

4.1 Model fitting
Computing at once a truncated SVD for either of the
entire database, or even single clusters thereof, is pro-
hibitive due to the computation time required. We
therefore used eigenspace merging to compute the SVD
hierarchically; i.e. we first use EM-PCA (cf. [14]) to
obtain approximate truncated SVDs of the single BTFs
and subsequently merge the resulting eigenspaces (cf.
e.g. [6]). In order to further reduce computation times,
we cropped the BTFs to a spatial extent of 128× 128
texels. For the purpose of comparison, we fit linear
models both to the ABRDF and the ABTF database.

4.1.1 ABRDFs
For a single one of our BTFs, 200 eigen-ABRDFs for
the log(Y ) channel and 100 eigen-ABRDFs for each the
U/Y and the V/Y channel provide a very high reproduc-
tion quality. We merged the resulting eigenspaces first
per cluster and then globally to obtain an ABRDF ba-
sis of 2048 eigen-ABRDFs. The entire process takes
approximately 30 minutes per cluster, including disk
I/O and the color space transformation, hence about 4.5
hours altogether.

Table 1 shows the relative projection errors ε that oc-
cur when projecting the log(Y ) channel of the test ma-
terial’s BTF onto the corresponding bases for various
numbers of basis ABRDFs; i.e.

ε =
‖U(U′B)−B‖F

‖B‖F

where ‖ · ‖F denotes the Frobenius norm. For compar-
ison, we include the relative projection errors for the
fully measured BTFs after FMF-compression retaining
128 eigen-ABRDFs, a number suitable for high-quality
real-time rendering. Typically, 1024 basis ABRDFs are
sufficient to achieve good projection results, which is
the lower limit on the number of samples necessary for
sparse reconstruction via equation 3.

4.1.2 ABTFs
For ABTFs, we computed bases per cluster. Following
the argument in [17], we used a spatial ABTF size of
3× 3. For performance reasons, we selected ABTFs
maximally without overlap, resulting in a database of
1764 ABTFs per material and 19404 ABTFs per clus-
ter. We again first computed bases per-material, retain-
ing 200 eigen-ABTFs for the log(Y ) channel and 100
eigen-ABTFs for each the U/Y and the V/Y channel,
and then merged the resulting eigenspaces per cluster.
This process takes approximately 2 hours per cluster, or
18 hours in total.

Table 1 shows relative projection errors (cf. sec-
tion 4.1.1) for the log(Y ) channel for 1024 and 2048
basis ABTFs in comparison with errors for reconstruc-
tions from ABRDF-wise projections. The projections
themselves were produced by collecting all possible
3 × 3 ABTFs from the test BTF and projecting them
onto the appropriate cluster’s basis. BTFs are obtained
from this representation by computing the reconstruc-
tion and blending the patches, all texels weighted
equally. Typically, 2048 basis ABTFs provide almost
as good projections results as 1024 basis ABRDFs.

4.2 Reconstruction
Figure 4 shows renderings of BTFs reconstructed with
the proposed method, table 2 the corresponding relative
reconstruction errors

ε =
‖U((MU)†B̃)−B‖F

‖B‖F
.

For comparison, we include renderings of the FMF-
compressed original fully measured BTFs and their
sparse reconstructions from ABRDF-wise linear mod-
els, along with the relative projection errors, which con-
stitute lower limits for the relative reconstruction er-
rors. BTFs were produced from ABTF-wise sparse re-
constructions as described in section 4.1.2. We used
two different sampling strategies: a 7 × 7 parabolic
map mapped to the closest light and camera positions
of the acquisition setup’s full sampling, which may be
considered a vague approximation of a kaleidoscope’s
sampling (cf. figure 3b), and optimized samplings with
the same number of samples produced by algorithm 1.
Both samplings consist of 1369 samples in total, or 6 %
of the original 22801 samples.

4.2.1 ABRDFs
As predicted in section 3.2, ABRDF-wise reconstruc-
tion produces acceptable results only for materials with
simple surface structure and reflectance – here: stone
and wood – and even then only with the optimized sam-
pling. Leather and metal already exhibit annoying ar-
tifacts; the results for even more complex materials are
unsuitable for any practical purpose.



# basis ABRDFs # basis ABTFs
class FMF 128 256 512 1024 2048 1024 2048

carpet 5.4 6.2 5.6 5.1 4.6 4.0 5.3 5.1
cloth 2.7 4.0 3.2 2.6 2.1 1.7 2.9 2.7
gravel 5.0 8.0 6.7 5.6 4.7 4.0 5.4 4.9
leather 1.5 2.9 2.4 2.0 1.6 1.3 1.9 1.8
metal 1.0 3.2 2.5 2.1 1.8 1.6 2.7 2.2
stone 0.6 3.1 2.5 2.0 1.5 1.2 1.8 1.5
wall tile 0.4 5.6 4.7 3.8 2.9 2.1 2.2 1.7
wallpaper 2.7 5.2 4.4 3.6 3.0 2.4 3.4 3.1
wood 0.8 2.3 1.9 1.6 1.3 1.0 1.2 1.1

Table 1: log(Y ) channel relative L2 projection errors in percent for various numbers of basis ABRDFs. FMF:
Projection onto per-material ABRDF basis with 128 eigen-ABRDFs.

ABRDF ABTF
class proj pmap7 optimized proj pmap7 optimized

carpet 4.6 27.6 11.4 5.1 7.3 6.3
cloth 2.1 11.1 5.4 2.7 3.6 3.2
gravel 4.7 26.7 11.8 4.9 8.0 7.0
leather 1.6 8.0 4.0 1.8 2.3 2.1
metal 1.8 8.8 4.6 2.2 3.8 3.3
stone 1.5 6.3 3.4 1.5 2.3 2.3
wall tile 2.9 10.0 6.3 1.7 6.9 6.8
wallpaper 3.0 14.8 7.0 3.1 4.2 4.2
wood 1.3 6.3 2.9 1.1 1.6 1.5

Table 2: log(Y ) channel relative L2 reconstruction errors per cluster in percent. proj: Projection onto common
basis. pmap7: Results for reconstruction from parabolic map sampling. optimized: Results for reconstruction
from optimized sampling.

4.2.2 ABTFs

In contrast, even the non-optimized sampling is suffi-
cient to produce convincing reconstructions of moder-
ately complex materials using ABTF models. Where it
is not, the optimized sampling often helps; only gravel
and wallpaper exhibit perceivable artificats. The high-
light of wall tile is not quite as sharp as it should be, and
there are some artifacts in the highlight of metal visible
mostly in the corresponding amplified error image (cf.
figure 4f).

4.3 Limitations
While the proposed algorithm performs well in many
situations, it has a number of limitations:

Most notably, it relies on the availability of a database
of fully measured BTFs. Depending on the materials to
be measured, that database must be quite encompass-
ing; however, if e.g. only leathers are going to be mea-
sured, then a small database of a few measured leather
BTFs might already be sufficient.

Without any regularization the lowest possible number
of samples is precisely the number of basis ABTFs di-
vided by the patch size. Typically, a greater number is
necessary for robust results.

Reconstructions of material BTFs with highly complex
surface structure may still suffer from artifacts visible
in common lighting scenarios. It is not clear whether
larger patch sizes could mitigate this. Even if so, this
would likely lead to an undesirable significant increase
of computation times and memory consumption.

For the same reason, the algorithm is constrained to
moderate sampling rates. It would also be difficult
to bootstrap a sufficiently large and heterogenous BTF
database with substantially higher sampling rates.

5 CONCLUSION
We demonstrated the general possibility of efficient
sparse acquisition of BTFs for a wide range of mate-
rials, provided a database of fully measured optically
similar materials is available.

It would be interesting to investigate whether our results
could be improved further. A possible approach is to
further improve the linear bases, for instance by feature-
aligning the ABTFs prior to fitting the models. It is
also unclear how suitable our manual clustering of the
database actually is. Automatic methods might be able
to find a better optimization, possibly even consisting
of fewer classes.



(a) (b) (c) (d) (e) (f)
Figure 4: Renderings of reconstruction results.
(a) ABRDF-based reconstructions from 7 × 7
parabolic map sampling (1369 samples).
(b) ABRDF-based reconstructions from optimized
sampling (1369 samples).
(c) FMF-compressed ground truth (22801 samples).
(d) ABTF-based reconstructions from optimized sam-
pling (1369 samples).
(e) ABTF-based reconstructions from 7 × 7 parabolic
map sampling (1369 samples).
(f) 20 × absolute differences between (c) and (d).

Moreover, our linear models might also be useful for
purposes other than sparse reconstruction; for instance,
it might be possible to use them to leverage the quality
of BTF measurements produced with consumer-grade
hardware, or under conditions less controlled than in
the discussed setups.
Although the improvement in measurement cost is sig-
nificant, the amount of samples needed still leaves room
for further improvement. Depending on the material, it

should not be impossible — at least given a rough es-
timate of the material’s surface structure — to obtain
satisfactory reconstruction results from less than 100
images. Both our experiments and compressed sens-
ing theory suggest, however, that this barrier cannot be
broken merely using unregularized linear methods. It
thus seems worthwhile to investigate non-linear meth-
ods such as manifold learning or texture synthesis.
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ABSTRACT

The bidirectional texture function (BTF) has proven a valuable model for the representation of complex spatially-
varying material reflectance. Its image-based nature, however, makes material BTFs extremely cumbersome to
acquire: in order to adequately sample high-frequency details, many thousands of images of a given material
as seen and lit from different directions have to be obtained. Additionally, long exposure times are required to
account for the wide dynamic range exhibited by the reflectance of many real-world materials.

We propose to significantly reduce the required exposure times by using illumination patterns instead of single
light sources (“multiplexed illumination”). A BTF can then be produced by solving an appropriate linear system,
exploiting the linearity of the superposition of light. Where necessary, we deal with signal-dependent noise by
using a simple linear model derived from an existing database of material BTFs as a prior. We demonstrate the
feasibility of our method for a number of real-world materials in a camera dome scenario.

Keywords: digital material appearance, bidirectional texture functions, illumination multiplexing

Figure 1. Our acquisition setup displaying an S-matrix pattern.

1. INTRODUCTION

Analytical or physically-based reflectance models such as the bidirectional reflectance distribution function
(BRDF) and its spatially varying sibling (SVBRDF) generally fail to accurately represent the noticeable non-local
effects such as interreflections and self-shadowing that can be observed on many common real-world materials.
The image-based bidirectional texture function (BTF) accounts for these effects, even in real-time applications.
This image-based nature, however, makes material BTFs extremely cumbersome to acquire: in order to ade-
quately sample high-frequency details, many thousands of images of a given material with different lighting and
viewing positions have to be obtained. Parallel setups such as camera domes and kaleidoscopes significantly
accelerate this process, but they still suffer from long exposure times for high dynamic range (HDR) capture and
the sheer number of samples required.

We propose to significantly reduce the required exposure times by using multiplexed illumination: instead of
taking images for each light source seperately, we use patterns consisting of many light sources at once, greatly
increasing the amount of light on the material sample. Exploiting the linearity of the superposition of light, it is
then possible to reconstruct the corresponding single-light images by solving an appropriate linear system. In the
presence of signal-dependent noise such as photon noise, this process may yield very noisy images, in particular
if the brightness of the scene varies greatly.

Best Student Paper Award

Measuring, Modeling, and Reproducing Material Appearance 2015, edited by Maria V. Ortiz Segovia, 
Philipp Urban, Francisco H. Imai, Proc. of SPIE-IS&T Vol. 9398, 93980F · © 2015 SPIE-IS&T · 

CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2078396

Proc. of SPIE-IS&T Vol. 9398  93980F-1



We demonstrate that for rather simple materials, this effect is not noticeable in practice, and for moderately
complex materials where it is, it is possible to denoise the resulting BTFs by using a simple linear model derived
from an existing database of material BTFs as a prior.

We evaluate the proposed method on a number of real-world materials in a camera dome scenario and show
that it is possible to reduce acquisition times by about 75–95%.

2. RELATED WORK

2.1 Plenoptic multiplexing

An in-depth theoretical background on plenoptic multiplexing in general has been given by Hartwit and Sloane.1

They prove or conjecture the optimality of Hadamard patterns and their binary derivates with respect to several
measures. They also cover the various noise sources in optical systems and how they influence demultiplexing,
albeit quite abstractly so.

As far as the authors are aware, Wenger et al.2 were among the first to investigate multiplexing for the
purpose of capturing some kind of appearance; in this case, time-varying light fields of human faces. However,
they observed an intolerable amount of noise when using Hadamard patterns that they were unable to reduce to
a tolerable level through simple filtering.

In contrast, Schechner et al.3 deal with the special case of illumination multiplexing using digital photo
cameras and various types of light sources. They explain in great detail the implications of this scenario regarding
noise and derive a formula useful for judging whether multiplexing is beneficial in a specific situation, taking
into account the setup’s relevant intrinsic parameters.

Ratner et al.4 provide an optimization method which produces illumination patterns that take the noise
characteristics of a given setup into account. They assume a one-dimensional affine noise model and a nearly
diffuse scene, assumptions generally violated in BTF acquisition. Furthermore, they show that in the presence
of overexposure it is preferable to reduce the number of light sources instead of shutter times.

Mitra et al.5 take this even further and compute illumination patterns using an optimization based on image
priors. In contrast to previous methods, their method is able to handle large amounts of light, but it still relies
on the assumption of a one-dimensional affine noise model. They show how to extend their method to low-
resolution light fields, which is, however, computationally very expensive and therefore likely prohibitive in the
case of BTFs.

2.2 Sparse acquisition

Sparse acquisition is related with the proposed method not directly in terms of methodology, but in that its goal
is faster acquisition, and to that end usually some kind of model is used as a prior as well. We thus briefly review
a number of articles on sparse acquisition.

Matusik et al.6 perform singular value decomposition (SVD) on a database of 100 measured BRDFs of a
wide range of isotropic materials to obtain a linear model.

The same authors7 introduce two methods for sparse reconstruction of isotropic BRDFs: The first method
is based on a wavelet analysis of their BRDF database. A set of basis wavelets termed common wavelet basis
is determined and used to reconstruct previously unseen BRDFs with approximately 1.5 million samples from
approximately 70000 measurements. The second method uses the entire BRDF database itself as a linear
model for reconstruction of fully measured BRDFs from as little as 800 out of the original approximately 1.5
million samples, at the cost of slightly increased reconstruction errors and the required availability of the BRDF
database. Samples are chosen using a simple optimization algorithm such that the linear system to be solved for
reconstruction is well-conditioned. They do not investigate how well their methods generalize to more complex
reflectance such as anisotropic BRDFs.

Filip et al.8 propose a vector quantization of BTFs for the purpose of compression, guided by a psychophysi-
cally validated metric. They conclude that as little as 10 – 35 % of the original textures are sufficient to maintain
the same visual appearance in renderings. It would be interesting to investigate whether there is a common
quantization for all materials, and if so, whether it could be used for sparse acquisition. A large user study
would be needed in order to adapt the metric to a bigger BTF database.
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Peers et al.9 introduce compressed sensing10 to the acquisition of reflectance fields, assuming both 2D outgoing
(here: fixed viewing direction) and incident light fields. Their algorithm uses a hierarchical, multi-resolution Haar
wavelet basis, taking spatial coherence into account. It is not clear how to extend this approach to a multi-view
setup. Common BTF acquisition setups only have a very limited number of light sources, where the advantage
of compressed sensing might be negligible. Due to these light sources’ brightness, we expect shot noise to become
a problem.

Dong et al.11 reconstruct a material’s SVBRDF from a sparse measurement using a manifold constructed
from analytical BRDFs fit to fully measured BRDFs of manually selected representative points on the material’s
surface. The algorithm is unlikely to scale to BTFs because of the typically much higher intrinsic dimensionality
of the manifold of per-texel reflectance distribution functions. A generalization to previously unseen materials
is not obvious, albeit conceivable.

Marwah et al.12 use sparsity-based methods related to compressed sensing in order to sparsely acquire 4D
light fields with an angular resolution of 5 × 5. They compute a dictionary of what they call light field atoms
– 11 × 11 spatial light field patches which allow for a sparse representation of natural light fields. Such a
dictionary does generally not exist in the case of BTFs; their dimensionality is likely too high.

Inspired by the work of Matusik et al. we13 demonstrated that there exists linear models that lend themselves
to sparse reconstruction of BTFs. We proposed to fit linear models to small BTF patches in order to account for
non-local effects, with seperate models per (manually chosen) classes of materials to constrain the dimensionality
of that data. Straight-forward models fit to per-texel reflectance distribution functions proved insufficient for
our purpose.

3. BACKGROUND

3.1 Bidirectional texture functions

BTFs have been introduced by Dana et al.15 as an image-based approach to spatially varying appearance. Like
SVBRDFs, they are 6-dimensional functions of the form

B(x, ωi, ωo),

where ωi,o ∈ R2 are the incoming and outgoing light directions, respectively, and x ∈ R2 is the position on a
parameterized surface V . In the case of material BTFs, V is typically flat; it does not need to coincide with
the material’s actual surface geometry. It is generally assumed that light sources are directional and have the
same spectrum. In particular, effects such as phosphorescene, fluorescence and subsurface scattering cannot be
captured accurately.

The fundamental difference from SVBDRFs is that the function B(x,−) need not be BRDF-valued: the
corresponding per-texel reflectance function does not need to adhere to Helmholtz reciprocity and conservation
of energy and is, therefore, capable of capturing non-local effects such as interreflections and self-shadowing.
Moreover, because V does not necessarily coincide with the actual surface, the per-texel reflectance functions
may also describe parallax effects. For these reasons, the term apparent BRDF (ABRDF) has been suggested by
Wong et al.16 for this kind of functions. Conversely, the values of the function B(−, ωi, ωo) are just 2D textures
corresponding to specific pairs of incoming and outgoing light directions.

During measurement, a finite discretization of the measured material’s BTF B is obtained. After rectification
of the acquired images, the discrete BTF has a natural representation as a matrix B ∈ Rn×m with the columns
representing the m discrete ABRDFs, each entry corresponding to some pair (ωi, ωo) of incoming and outgoing
angle, and the rows representing the n rectified textures (cf. figure 2).

3.2 BTF acquisition

Several setups for the acquisition of BTFs have been proposed. We briefly review the most prominent paradigms,
as our method benefits all of them to a greater or lesser extent. An up-to-date, in-depth overview is given in the
recent survey by Schwartz et al.17
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Figure 2. Representation of a discretized BTF as a matrix.

3.2.1 Gonioreflectometer

In what is historically the first BTF acquisition setup, proposed by Dana et al.,15 the material sample is placed
on a turntable, and a camera and a light source held by robot arms are moved across the hemisphere above the
sample to capture images of the sample under different lighting and viewing conditions. The gonioreflectometer
is very flexible in terms of possible samplings of the hemisphere, but measurement times are excessive – on the
order of weeks for a moderate angular resolution – due to the little amounts of light sources and sensors and the
movable parts’ low speeds.

Due to the absence of multiple light sources, our method does not readily apply to traditional setups. If the
gonioreflectometer’s total flexibility is not a necessity for the envisioned scenario, additional light sources can be
added.

3.2.2 Kaleidoscope

Han et al.18 introduced an intriguing parallel setup: The sample is placed underneath a tapered kaleidoscope,
lit and captured from a projector and a camera placed at the other end, which allows for a number of lighting
and viewing conditions to be measured in a single camera shot. By appropriately arranging the mirrors, the
angular and spatial resolution can be adjusted; however, both are typically rather low, and increasing one leads
to a decrease of the other, so there is always a tradeoff to be made.

3.2.3 Camera domes

Camera domes as proposed, for instance, by Müller et al.19 and Schwartz et al.20 ideally provide a highly parallel
means to acquire BTFs: A number of cameras is spread across the hemisphere above the sample holder. Their
flashes or separate LEDs are used as light sources. Parallelism may be traded for fewer cameras and lower cost
by placing the sample on a turntable in order to achieve a similarly dense sampling of the hemisphere. Due to
the number of cameras, data transfer times become a new bottleneck.

In all of the above setups, it is usually necessary to capture the same scene several times with different shutter
times in order to obtain HDR data.

3.3 Illumination multiplexing

Multiplexed measurement is based on the observation that by using appropriate patterns, the amount of signal-
independent noise in the demultiplexed measurements will be lower than without multiplexing. In the case of
imaging systems, the resulting linear system to be solved is

M · Isingle = Imultiplexed

where M ∈ Zn×n, Isingle ∈ Rn×(w·h) with each row a w × h image of the scene lit by an individual light source,
and Imultiplexed ∈ Rn×(w·h) where each row is a w×h image of the scene lit by an individual illumination pattern.

Typically, M is supposed to be binary, corresponding to light sources of equal power that can only be on or
off. It has been shown1 that binary illumination patterns given by a certain kind of matrices called S-matrices
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are at least very close to minimizing the average mean square error, and that the associated signal-to-signal-
independent-noise ratio is increased by a factor of

√
n/2 for large n. It has, however, also been shown that the

presence of signal-dependent noise such as photon noise strongly counteracts this advantage.13

There are several ways to produce S-matrices M ∈ Nn×n of a given order n ∈ N;1 we chose to implement
the most straight-forward one, the so-called quadratic residue construction: Let n = 4p+ 3, n, p ∈ N prime, be
the desired order, and Q the set of quadratic residues of 0, . . . , n−1

2 modulo n. Then

m1j =

{
1, j ∈ Q
0, else

The remaining n− 1 rows of M are obtained by cyclically shifting the preceding row to the left by one.

Clearly, the number of light sources in a given acquisition setup need not necessarily be prime of the required
form. In that case, one can choose a suitable higher order and truncate the resulting S-matrix such that the
number of columns equals the number of light sources, and solve the resulting linear system in the least-squares
sense.1

4. MULTIPLEXED BTF ACQUISITION

4.1 Experimental setup

We chose 12 materials from 3 classes – cloth, leather, and wood – each. Per class, we picked 4 materials for
the purpose of verifying the proposed method which we measured both conventionally and using the proposed
method.

The measurement device we used in our experiments is a camera dome with 11 industrial-grade cameras
with a maximum frame-rate of 8 Hz and 198 LED light sources, 10 of which are placed opposing the lower-most
10 cameras to produce direct reflections. The quadratic residue construction requires the S-matrix order to be
prime of the form 4p + 3, p prime. The smallest S-matrix order of that form greater or equal the number of
LEDs in our setup is n = 199, which we chose for our experiments.

In order to speed up the acquisition of the ground truth data, the single-light measurements were obtained
using a camera gain of 10 dB, while the multiplexed measurements were obtained with a camera gain of 0 dB.
Additionally, we measured 4 small patches (approximately 1 cm × 1 cm) of different materials of the same class
at once. We argue that, even in practive, this is a reasonable trade-off to be made: If required, larger BTFs
for each single sample can be produced quickly by measuring them again using the proposed method, or by
extrapolation as described e.g. by Steinhausen et al.21

The materials are placed on a turntable, which during measurement is rotated 12 times by 30◦, in order to
achieve a dense sampling of viewing directions. For each turntable position, the cameras take pictures of the
material lit by each of the LEDs separately using several exposure times determined manually before the actual
acquisition. The test materials were additionally measured using S-matrix patterns of order n = 199 before
proceeding to the next turntable position.

After measurement, we combine the low dynamic range (LDR) raw images into high dynamic range (HDR)
images and subsequently demosaic and rectify them. We use LED calibration data in order to account for
variations in the LEDs’ spectra. For further details on the various post-processing steps, cf. Schwartz et al.17

Finally, the resulting images are arranged and stored as matrices, which in the case of multiplexed measure-
ments are then demultiplexed. For rendering, the BTFs are furthermore resampled in the angular domain, such
that the light and view hemispheres are the same for each texel, and compressed using truncated SVD.
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εdemult εdenoised

cloth 1 – 4 13.1, 10.7, 9.4, 9.7 (∅ 10.2) 6.2, 5.6, 5.3, 5.1 (∅ 5.6)
leather 1 – 4 13.1, 15.7, 17.1, 19.9 (∅ 16.5) 6.5, 6.2, 6.9, 7.1 (∅ 6.7)

wood 1 – 4 7.0, 7.3, 8.5, 7.0 (∅ 7.5) 3.5, 3.6, 4.0, 3.6 (∅ 3.7 )

Table 1. Comparison of log(Y) relative errors [%], demultiplexed and denoised.

Figure 3. Renderings of Wood 1. Left: demultiplexed. Center: ground truth. Right: denoised.

4.2 Linear models and denoising

For the purpose of denoising, we fit linear models seperately to the per-color channel ABRDFs of each of the
three classes, converted to log(Y) U/Y V/Y color space, without the test materials. The fitting is done using a
truncated SVD

Dclass ≈ UΣVt,

which is known by the Eckhart-Young theorem to be optimal in terms of L2 error,22 where Dclass is a matrix with
the ABRDFs of the BTFs of class class as columns. We have shown13 that these model generalize to materials
B that do not belong to the particular database; i.e.

min
CB

||UCB −B|| < ε.

For our experiments, we used 768 basis vectors for log(Y) and 128 for both U/Y and V/Y, which, according to
our previous experiments,13 is sufficient for the materials classes considered in the present article. Under the
assumption that demultiplexing noise cannot be represented in these bases, denoising can now be performed by
simply projecting a demultiplexed BTF onto the corresponding basis:

Bdenoised = U · (Ut ·Bdemultiplexed).

5. RESULTS

Table 1 shows relative errors

ε{demult,denoised} =
‖B{demult,denoised} −Breference‖F

‖Breference‖F

of the demultiplexed and denoised demultiplexed BTFs, respectively. Errors are computed on the log(Y) color
channel to account for human perception.

In the case of wood, the relative errors are relatively small, and indeed there are no obvious differences
between the renderings of ground truth, demultiplexed and denoised BTF, even though the relative error is
approximately halved by denoising (cf. figure 3).

In contrast, Cloth 1 and Leather 2 exhibit annoying artifacts for grazing viewing angles, as seen at the
cylinder’s borders. While the denoised BTF does not look completely identical to the ground truth, it looks much
more plausible at the borders (cf. figures 4 and 6). For better comparison, figure 5 shows textures corresponding
to a low camera position (θ = 75◦), extracted from Cloth 1’s BTF. Note that these are rectified images; in an
actual rendering, each pixel will be a weighted average of several texels.

Demultiplexed Leather 4, however, exhibits so much noise (yielding a relative error of almost 20%) that our
denoising strategy breaks down as well (cf. figure 7), even though the relative error is more than halved.
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Figure 4. Renderings of Cloth 1. Left: demultiplexed. Center: ground truth. Right: denoised.

Figure 5. Low camera (θ = 75◦) textures extracted from Cloth 1 BTF. Left: demultiplexed. Center: ground truth.
Right: denoised.

Figure 6. Renderings of Leather 2. Left: demultiplexed. Center: ground truth. Right: denoised.

Figure 7. Renderings of Leather 4. Left: demultiplexed. Center: ground truth. Right: denoised.

single multiplexed rel. ∆

Cloth 1 – 4 10.8 1.8 −83%
Leather 1 – 4 23.6 1.2 −95%

Wood 1 – 4 4.4 1.2 −75%
Table 2. Comparison of acquisition times [h], single light vs. multiplexed.
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As can be seen in table 2, the larger amount of light reaching the material samples on each particular image
makes it possible to reduce total acquisition times by about 75–95%, even though the ground truth data was
obtained with a much higher camera gain. In the case of Leather 1–4 and Wood 1–4, the minimum acquitision
time achievable with our setup, caused by several bottlenecks, is reached.

6. CONCLUSION

We demonstrated that it is possibly to produce plausibly looking material BTFs from images taken under
multiplexed illumination, possibly by using linear models derived from an existing database of material BTFs as
a prior for denoising. The increased amount of light on the material sample can be used to considerably reduce
the necessary shutter times, leading to total acquisition times reduced by 75–95%. As expected, we observed
that this works best for materials with rather limited dynamic range.

It would be interesting to incorporate the method proposed by Mitra et al.,5 which would, however, require
both a suitable noise model for our camera dome setup and a modified optimization algorithm accounting for that
model. Moreover, it could be possible to automatically detect particularly noisy textures within a demultiplexed
BTF using adequate image statistics. These could then be regarded as missing values, and filled using e.g. our
sparse reconstruction method.13

Finally, it is conceivable that a database to derive linear models for denoising from can be “bootstrapped”,
for instance by using smaller S-matrix orders, or by leaving out light sources that over-proportionally increase
the BTF’s dynamic range and measuring the corresponding images seperately.
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Fast multiplexed acquisition of high-dynamic-range
material appearance
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Figure 1: Left: leather sample under single-light illumination. Right: same sample under multiplexed illumination.

Abstract
There is tremendous demand for digital representations that allow for materials to be re-lit under as wide a range
of illumination scenarios as possible. It is therefore desirable to capture the entire dynamic range of a material’s
appearance. This process can require excessive shutter times for many materials that reflect only small amounts
of light for certain lighting and viewing directions, for instance in the presence of low albedo or self-shadowing.
The problem is amplified in the case of image-based appearance models such as the bidirectional texture function
(BTF), where possibly many thousands of images are required to accurately sample high-frequency details in
the angular domain. We propose to capture material BTFs with their dynamic range compressed by multiplexed
illumination. We demonstrate that the signal-dependent noise associated with demultiplexing can be mitigated by
means of an existing database of low-noise material BTFs. Moreover, we investigate a method to quickly create a
suitable database from scratch.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-
itization and Image Capture—Reflectance

1. Introduction

In many applications it is desirable to be able to predict a
given material’s appearance under illumination that differs
vastly from the controlled illumination that is typically em-
ployed when obtaining a material’s digital representation. It
is therefore important to capture as much of the dynamic
range of material’s reflectance as possible. The process of
doing so, however, may require exposure series of many sep-
arate steps with shutter times that can range from only a few
milliseconds up to minutes, for instance in the presence of
low albedo or self-shadowing. In the case of image-based
appearance models such as the bidirectional texture func-

tion (BTF), where the number of single images contributes
strongly to the quality of reproductions in renderings, the re-
sulting resource requirements can become excessive: Due to
the many and possibly long shutter times, acquiring a single
material’s BTF may take from hours to even days. Moreover,
a BTF typically comprises many thousands of (HDR) im-
ages, which during acquisition is multiplied by the number
of (LDR) images per exposure series. This can easily lead
to terabytes of data and increases the time spent on post-
processing.

We propose to acquire material BTFs using illumination
multiplexing: the material sample is illuminated not by each
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single light source individually, but with a series of patterns
of many light sources at once. That way, the dynamic range
of a material’s reflectance is compressed, because less shad-
ows and highlights appear due to the many different simul-
taneous illumination angles, and the material is exposed to
a larger amount of light. A BTF can thus be obtained with
shorter exposure series and greatly reduced shutter times.
Recovery of the desired images under single-light illumi-
nation amounts to solving an appropriate linear system, ex-
ploiting the linearity of the superposition of light. In the pres-
ence of signal-dependent noise, this demultiplexing process
may yield intolerably noisy images, in particular if the ma-
terial’s dynamic range is wide.

We demonstrate that this effect can be mitigated by pro-
jecting the noisy BTF onto a linear subspace spanned by an
existing database of traditionally measured material BTFs.
In order to make this projection more robust, we heuristi-
cally identify possibly problematic images to be treated as
missing values during projection.

As a suitable database may not always be available, we
investigate a method of speeding up the process of creating
one by using a combination of single-light and multiplexed
illumination. We show that a database with material BTFs
thus obtained performs not much worse in de-noising but is
much quicker to create.

We evaluate our method on a number of real-world ma-
terials in a camera dome setup and show that it is possible
to reduce acquisition times by about 75–95%, often down to
our setup’s physical limits, while maintaining a satisfactory
reproduction quality.

2. Related work

2.1. Multiplexed illumination

Illumination multiplexing belongs to the wider field of
plenoptic multiplexing. An extensive theoretical introduc-
tion to the topic has been provided by Hartwit and
Sloane [HS79]. Essential for the present article is their proof
of the optimality of Hadamard patterns and their binary sib-
lings with respect to a number of measures. They also dis-
cuss the various noise sources in optical systems and their
influence on demultiplexing on a high level.

Wenger et al. [WGT∗05] propose multiplexing for the
purpose of capturing time-varying light fields of human
faces. However, they observed an intolerable amount of
noise when using Hadamard patterns that they were unable
to reduce to a tolerable level through simple filtering.

Schechner et al. [SNB07] provide a careful analysis of
illumination multiplexing using digital photo cameras and
various types of light sources, paying great attention to the
possible kinds of noise. They arrive at a formula as a cri-
terion whether multiplexing is beneficial given the setup’s
relevant intrinsic parameters.

Ratner et al. [RS07] demonstrate an optimization method
which produces illumination patterns that take the noise
characteristics of a given setup into account. They assume
a one-dimensional affine noise model and a nearly diffuse
scene, which does not lend itself well to BTF acquisition.
Furthermore, they show that in the presence of overexposure
it is preferable to reduce the number of light sources instead
of shutter times.

Mitra et al. [MCV14] take this even further and compute
illumination patterns using an optimization based on image
priors. In contrast to previous methods, their method is able
to handle large amounts of light, but it still relies on the
assumption of a one-dimensional affine noise model. They
show how to extend their method to low-resolution light
fields, which is, however, computationally very expensive
and therefore likely prohibitive in the case of BTFs.

As far as the authors are aware, den Brok et al. [dB-
SHK15] are the first to use multiplexed illumination in the
context of BTF acquisition. They, too, use a database of pre-
viously acquired materials for the purpose of de-noising;
they do, however, not provide a means to quickly bootstrap
such a database, and we shall demonstrate that their de-
noising scheme can be improved upon.

2.2. Sparse acquisition

We briefly review a number of articles on sparse acquisition,
even though not directly related, because its purpose, too, is
to reduce acquisition times.

Matusik et al. [MPBM03] demonstrate two sparse recon-
struction methods for measured isotropic BRDFs: In the first
method, they determine a set of basis wavelets they use to
reconstruct previously unseen BRDFs with approximately
1.5 million samples from approximately half that amount of
measurements. In the second, they reconstruct fully resolved
measured BRDFs from 800 out of the original 1.5 million
samples using their entire training BRDF database as a lin-
ear model. Drawbacks are slightly increased reconstruction
errors and the required availability of the BRDF database.
They do not investigate how well their methods generalize
to more general appearance models.

Koudelka et al. [KMBK03] use single per-material linear
models for apparent BRDFs for the purpose of BTF com-
pression.

Peers et al. [PML∗09] introduce compressed sensing
[Don06] to the acquisition of reflectance fields, assuming
both 2D outgoing (here: fixed viewing direction) and inci-
dent light fields. Their algorithm uses a hierarchical, multi-
resolution Haar wavelet basis that takes spatial coherence
into account. It is unclear how to extend their approach to
BTFs, where multiple viewing directions come into play, and
the typically very limited number of light sources counter-
acts the advantage of compressed sensing. We expect shot
noise to become a problem in this scenario as well.
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Dong et al. [DWT∗10] reconstruct a material’s SVBRDF
from a sparse measurement using a manifold constructed
from analytical BRDFs fit to fully measured BRDFs of man-
ually selected representative points on the material’s surface.
The algorithm is unlikely to scale to BTFs because of the
typically much higher intrinsic dimensionality of the mani-
fold of per-texel reflectance distribution functions. A gener-
alization to previously unseen materials is not obvious, albeit
conceivable.

Marwah et al. [MWBR13] use sparsity-based methods re-
lated to compressed sensing in order to sparsely acquire 4D
light fields with an angular resolution of 5×5. They compute
a dictionary of what they call light field atoms – 11 × 11 spa-
tial light field patches which allow for a sparse representa-
tion of natural light fields. It is unlikely that such a dictionary
exists in the case of BTFs, as their dimensionality is much
higher.

Following Matusik et al. [MPBM03], den Brok et al. [dB-
SHK14] demonstrate that there exist linear models that lend
themselves to sparse reconstruction of BTFs. In order to ac-
count for non-local effects, they propose to fit the models
to small BTF patches, manually clustered by material class
to constrain the dimensionality of that data. That way, they
are able to reconstruct BTFs with the acquisition setup’s full
resolution from 6% of the total number of sample images.

Miandji et al. [MKU15] introduce a novel compressed
sensing framework they demonstrate to work for 2D images,
videos, and even 4D light fields. They use 2D patches from
training data and show how to convert the problem of 2D
sparse signal recovery to an equivalent problem in 1D. It
would be interesting to investigate if their method could be
lifted to 6D BTFs.

3. Background

3.1. Bidirectional texture functions

BTFs have been used in practice first by Dana et al.
[DvGNK99]. Like spatially-varying BRDFs, they are 6-
dimensional functions of the form

B(x,ωi,ωo),

where ωi,o ∈ R2 denote the directions of incoming and out-
going light, respectively, and x ∈ R2 denotes the position
on a parameterized surface V which, in the case of mate-
rial BTFs, V is typically assumed flat; it does not need to
coincide with the material’s actual surface geometry. Light
sources are usually assumed to be directional and have the
same spectrum, which means that effects such as phospho-
rescene, fluorescence and subsurface scattering cannot be
accounted for accurately.

Note that the values of the function B(x,−) are not
BRDFs in the strict sense: they typically do not adhere to
Helmholtz reciprocity and conservation of energy and, in

(x, y)

(ω
i,
ω
o)

Figure 2: Representation of a discretized BTF as a matrix.

contrast to BRDFs, are therefore capable of capturing non-
local effects such as interreflections and self-shadowing.
When V does not coincide with the material’s actual sur-
face, they also describe parallax effects. For these reasons,
the term apparent BRDF (ABRDF) has been established by
Wong et al. [WHON97] for this kind of functions. The val-
ues of the function B(−,ωi,ωo), in contrast, are straight-
forward 2D textures corresponding to individual pairs of in-
coming and outgoing light directions.

Discrete BTFs have a natural representation as a matrix
B ∈ Rn×m, where the columns represent the w× h discrete
ABRDFs, each entry of which corresponds to a pair (ωi,ωo)
of incoming and outgoing light direction, and the rows cor-
respond to the n rectified 2D textures, where n is the number
of distinct pairs of incoming and outgoing light directions
(cf. Fig. 2). Measured BTFs are assumed to be arranged like
this in the following. For a very detailed overview of BTF
acquisition devices, we refer the reader to the recent survey
by Schwartz et al. [SSW∗14].

3.2. Illumination multiplexing

Multiplexed measurement in general is based on the ob-
servation that by using series of appropriate patterns, the
amount of signal-independent noise in the demultiplexed
measurements will actually be lower than without multiplex-
ing. In the special case of illumination multiplexing, the re-
sulting linear system to be solved is

M · Isingle = Imultiplexed

where M ∈ Zn×n, Isingle ∈ Rn×(w·h) with each row a w × h
image of the scene lit by an individual light source, and
Imultiplexed ∈ Rn×(w·h) where each row is a w× h image of
the scene lit by an individual illumination pattern determined
by the corresponding row of M.

In setups where light sources only have two states, “on”
and “off”, M needs to be binary. It has been shown that a
class of binary matrices called S-matrices is at least very
close to minimizing the average mean square error, and that
the associated signal-to-signal-independent-noise ratio is in-
creased by a factor of

√
n/2 for large n [HS79]. It has, how-

ever, also been shown that the presence of signal-dependent
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noise such as photon noise strongly counteracts this advan-
tage [HS79, SNB07].

A straight-forward way to obtain S-matrices M∈Nn×n of
a given order n = 4p+3 for n, p ∈N prime, is the quadratic
residue construction [HS79]: Let Q be the set of quadratic
residues of 0, . . . , n−1

2 modulo n. Then

m1 j =

{
1, j ∈ Q
0, else

The remaining n− 1 rows of M are obtained by cyclically
shifting the preceding row to the left by one.

If the number of light sources is not prime of the required
form, which will likely be the case in setups not constructed
with multiplexing in mind, one can choose a suitable higher
order and truncate the resulting S-matrix such that the num-
ber of columns equals the number of light sources. The re-
sulting linear system can then be solved in the least-squares
sense [HS79].

4. Proposed method

4.1. Thresholded de-noising

As we wish to achieve the maximum gain with respect
to compression of dynamic range and reduction of shutter
times, we chose to use the highest S-matrix order applicable
to our acquisition setup and, by extension, the largest amount
of demultiplexing noise. In order to mitigate that noise, we
assume the availability of a linear model U derived from a
database D of traditionally measured BTFs by means of a
truncated SVD

D≈ UΣVt

of some rank k� n, which has been shown to be an opti-
mal rank-k approximation in the least-squares sense [EY36].
Such models are known to generalize to materials B that do
not belong to the particular database [dBSHK14]; i.e.

min
CB
||UCB−B||< ε.

Den Brok et al. propose to de-noise by simply projecting a
demultiplexed BTF, obtained as described in Sec. 3.2, onto
the corresponding subspace via

Bdenoised = U · (UT ·Bdemultiplexed)

We observed that demultiplexing produces a number of very
noisy outlier textures that may have an undesirable impact on
the projection. We therefore introduce one intermediate step
to make this projection more robust: For the entire BTF, we
compute per-texture variances and do not take the BTF’s tex-
tures that correspond to some percentile of the variances into
consideration during projection. Let Ũ and B̃demultiplexed be
the linear model and demultiplexed BTF, respectively, with
the rows corresponding to the selected textures removed.
The equation thus becomes

Bdenoised = U · (Ũ† · B̃demultiplexed),

where † denotes the Moore-Penrose pseudo-inverse. We
tried various deciles with normalized and unnormalized data
and found the 9th decile of the latter to perform best.

4.2. Database bootstrapping

A drawback of the the outlined method certainly is the
assumed availability of a suitable database. We therefore
propose a bootstrapping scheme that helps constructing a
suitable database faster: Based on the observation that the
amount of demultiplexing noise depends on both dynamic
range and number of light sources, the idea is to divide
the hemisphere of light sources into quadrants of approxi-
mately equal size, such that one quadrant contains the light
sources directly opposite the cameras. As the direct reflec-
tions and Fresnel effect usually contribute most to the dy-
namic range, the images for this quadrant are best captured
using single-light illumination. The images for the remain-
ing three quadrants can be successively captured using ap-
propriate S-matrix patterns. Unfortunately, this approach is
somewhat tied to acquisition setup paradigms where such
a division of the hemisphere is actually possible. Different
means would need to be found for other paradigms.

5. Results

5.1. Experimental setup

We chose 12 materials from 3 classes – cloth, leather, and
wood – each, of which we used the same four materials per
class as den Brok et al. for performance evaluation. For the
purpose of evaluating our database bootstrapping scheme we
further selected four of the remaining leathers.

Figure 3: Our measurement device illuminating a material
sample with an S-matrix pattern.

The measurement device we used in our experiments is a
camera dome with 11 industrial-grade cameras with a max-
imum frame-rate of 8 Hz and 198 LED light sources, 10
of which are placed opposing the lower-most 10 cameras
to produce direct reflections. The material sample is placed
on a turntable that is rotated during acquisition to increase
the setup’s angular resolution. For an extensive description
of the setup, cf. Schwartz et al. [SSWK13]. The quadratic
residue construction requires the S-matrix order to be prime
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of the form 4p+3, p prime. The smallest S-matrix order of
that form greater or equal the number of LEDs in our setup
is n = 199, which we used in our experiments.

In order to speed up the acquisition of the ground truth
data, the single-light measurements were obtained using a
camera gain of 10 dB, while the multiplexed measurements
were obtained with a camera gain of 0 dB. Additionally, we
measured 4 small patches (approximately 1 cm × 1 cm) of
different materials of the same class at once. We argue that,
even in practive, this is a reasonable trade-off to be made:
If required, larger BTFs for each single sample can be pro-
duced quickly by measuring them once more using the pro-
posed method, or by extrapolation as described e.g. by Stein-
hausen et al. [SdBHK14].

The materials are placed on the turntable, which during
measurement is rotated 12 times by 30◦. For each turntable
position, the cameras take pictures of the material lit by each
of the LEDs separately using several exposure times deter-
mined manually before the actual acquisition. The test mate-
rials were additionally measured using S-matrix patterns of
order n = 199 before proceeding to the next turntable posi-
tion. In the case of leather, the four leathers selected for eval-
uation of the database bootstrapping scheme were addition-
ally measured using S-matrix patterns of orders n{1,2,3}= 47
for each of the three of the illumination hemisphere’s quad-
rants not sampled using single-light illumination.

After measurement, we combine the low dynamic range
(LDR) raw images into high dynamic range (HDR) im-
ages and subsequently demosaic and rectify them. We use
LED calibration data in order to account for variations in
the LEDs’ spectra. For further details on the various post-
processing steps, cf. Schwartz et al. [SSW∗14].

Finally, the resulting images are cropped to minimize in-
fluence from the materials’ surroundings and arranged and
stored as matrices, which in the case of multiplexed mea-
surements are then demultiplexed. For rendering we resam-
ple the BTFs in the angular domain such that the light and
view hemispheres are the same for each texel.

5.2. De-noising

We compute the linear models intended for de-noising seper-
ately from the per-color channel ABRDFs of each of the
three material classes, leaving out one test material at a time.
We use the log(Y) U/Y V/Y color space, which lends itself
well to least-squares fitting [MPBM03, dBSHK14].

For our experiments we used 768 basis vectors for log(Y)
and 128 for both U/Y and V/Y channels, which is sufficient
for the material classes under consideration and allows for
better comparability with the method proposed by den Brok
et al. [dBSHK15].

Tab. 1 shows relative errors

ε = ‖Breconstructed−Breference‖F
‖Breference‖F

for BTFs reconstructed in the denoted ways. Errors are com-
puted on the log(Y) channel to approximate human percep-
tion. We found the general tendencies to be the same for the
other color channels.

In the case of wood, the relative errors are relatively small,
and indeed there are no obvious differences between the ren-
derings of ground truth, demultiplexed and denoised BTFs,
even though the relative error is reduced significantly by de-
noising (cf. Fig. 4, 1st row). Curiously, this is the only ma-
terial class where the proposed method performs worse than
the state of the art in purely numerical terms. We have yet
to investigate what the reason might be. Possibly the error
introduced by sparse reconstruction exceeds and hence does
not counteract the low demultiplexing error. A higher thresh-
old might mitigate this problem.

In contrast, Cloth 1 and Leather 2 exhibit annoying ar-
tifacts for grazing viewing angles, as seen at the cylinder’s
borders. The BTF de-noised using den Brok et al.’s method
looks much more plausible than the demultiplexed BTF, but
it still exhibits minor artefacts which are close to unnoticable
in the BTF with our method (cf. Fig. 4, 2nd and 3rd row).

Demultiplexed Leather 4, however, exhibits so much
noise (yielding a relative error of over 27%) that both denois-
ing strategies break down (cf. Fig. 4, 4th row), even though
the relative error is more than halved by den Brok et al’s
method and reduced even further by ours. Note that the in-
tensity at grazing angles in the result produced using den
Brok et al.’s method is much too low. Our method does not
suffer from this problem; it fails, however, at reducing the
demultiplexing noise to an acceptable level for this particu-
lar material.

As can be seen in Tab. 2, the larger amount of light reach-
ing the material samples on each particular image makes it
possible to reduce total acquisition times by about 75–95%,
even though the ground truth data was obtained with a much
higher camera gain. In the case of Leather 1–4 and Wood
1–4, our setup’s minimum acquitision time is reached. For
all materials, 4 different shutter times were necessary under
single-light illumination, whereas with multiplexed illumi-
nation, only a single exposure step was needed in the case
of leather and wood, and two in the case of cloth, the latter
because the cloths exhibited significantly different albedos.
As a result, storage requirements for the raw measured data
are reduced by 50–75% from originally 0.5–1.5 TB.

5.3. Database bootstrapping

We evaluated the performance of our database bootstrapping
scheme in two steps. First, we compared the projection er-
rors when projecting onto linear bases computed from the
ground-truth and the bootstrapping measurements, respec-
tively (cf. Tab. 3). We found projection errors to be only
slightly bigger for the bootstrapping measurements. It is
thus also to be expected that de-noising performance will
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Class εdemult εdenoised εthreshold

1 2 3 4 ∅ 1 2 3 4 ∅ 1 2 3 4 ∅

Cloth 16.2 12.2 10.5 11.3 12.6 7.5 6.2 5.8 5.6 6.3 5.3 4.5 4.3 4.7 4.7
Leather 17.7 20.1 23.0 27.4 22.1 8.8 8.3 9.4 10.5 9.3 6.3 7.5 7.8 7.6 7.3
Wood 7.3 7.6 9.3 7.2 7.9 3.6 3.7 4.2 3.7 3.8 4.9 5.1 4.2 4.3 4.6

Table 1: Comparison of log(Y) relative errors [%], demultiplexed and denoised.

(a) Reference. (b) [dBSHK15] (c) Proposed method. (d) Demultiplexed.

Figure 4: Renderings of Wood 1, Cloth 1, Leather 2, and Leather 4.

Class shutter times [ms] acquisition times [h] rel. ∆

single multiplexed single multiplexed

Cloth 1 – 4 150, 608.2, 2466.2, 10000 15, 45 10.8 1.8 −83%
Leather 1 – 4 10, 144.2, 2080.1, 30000 30 23.6 1.2 −95%
Wood 1 – 4 10, 60.4, 364.4, 2200 20 4.4 1.2 −75%

Table 2: Comparison of shutter [ms] and acquisition times [h], single light vs. multiplexed.

be slightly worse, which our experiments confirmed. How-
ever, both numerically and perceptually, we found it still to
be better overall than that of den Brok et al.’s method, and the
resulting BTFs are perceptually close to the those produced
with the traditionally obtained basis (cf. Tab. 3 & Fig. 5). The

acquisition itself took approximately 9 hours, as opposed to
almost 24 hours for the ground-truth.

c© The Eurographics Association 2015.
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(a) Reference. (b) [dBSHK15] (c) Bootstrapped basis. (d) Original basis.

Figure 5: Bootstrapping: renderings of Leather 4.

1 2 3 4 ∅

εproj ground-truth 8.4 7.6 8.6 9.3 8.5
εproj bootstrapped 8.7 8.0 9.0 9.5 8.8

εdenoise ground-truth 6.3 7.5 7.8 7.3 7.3
εdenoise bootstrapped 7.0 8.3 8.8 8.5 8.2

Table 3: Comparison of projection and reconstruction er-
rors for Leather 1–4 with a bootstrapped database.

6. Conclusion & Future work

We demonstrated the feasibility of illumination multiplexing
in the context of BTFs, supported by using linear models de-
rived from an existing database of material BTFs as a prior
for a de-noising method that perceptually and, most of the
time, numerically outperforms the state of the art. We found
that using illumination multiplexing enables both dramati-
cally reduced dynamic ranges and shutter times. As a result,
storage requirements for raw measurement data could be re-
duced by up to 75%, and total acquisition times by up to
95%, even reaching the limits of our acquisition setup.

Moreover, we presented a “bootstrapping” method that al-
lows for faster creation of a database suitable for the purpose
of de-noising by using a hybrid approach where the quad-
rant of the illumination hemisphere likely to cause noise is
sampled using single-light illumination, and the remaining
quadrants are separately sampled using multiplexed illumi-
nation. That way, acquisition time could be reduced by about
63%. We found linear models derived from a database such
obtained to perform not much worse than linear models de-
rived from our ground-truth database.

It seems worthwhile to determine a proper noise model
for our camera dome setup to use with the method proposed
by Mitra et al. [MCV14] (cf. Sec. 2.1 for more details),
which might help decrease the amount of demultiplexing
noise even further.
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a b s t r a c t 

Among the many models for material appearance, data-driven representations like bidirectional texture 

functions (BTFs) play an important role as they provide accurate real-time reproduction of complex light 

transport effects such as interreflections. However, their acquisition involves time-consuming capturing 

of many thousands of bidirectional samples in order to avoid interpolation artifacts. Furthermore, high 

dynamic range imaging including many and long exposure steps is necessary in the presence of low 

albedo or self-shadowing. So far, these problems have been dealt with separately by means of sparse re- 

construction and multiplexed illumination techniques, respectively. Existing methods rely on data-driven 

models learned on data that has been range-reduced in a way that made their simultaneous application 

impossible. In this paper, we address both problems at once through a novel method for learning data- 

driven appearance models, based on moving the dynamic range reduction from the data to the metric. 

Specifically, we learn models by minimizing the relative L 2 error on the original data instead of the ab- 

solute L 2 error on range-reduced data. We demonstrate that the models thus obtained allow for faithful 

reconstruction of material appearance from sparse and illumination-multiplexed measurements, greatly 

reducing both the number of images and the shutter times required. As a result, we are able to reduce 

acquisition times down to the order of minutes from what used to be the order of hours. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Analytical material reflectance models such as (spatially vary- 

ing) bidirectional reflectance distribution functions ((SV)BRDFs) [1] , 

which model reflectance per surface point depending on the inci- 

dent and outgoing light directions, can nowadays be obtained effi- 

ciently, as simply as by taking two photographs with a cellphone 

camera [2] . Many applications require a higher degree of accuracy 

than what these models are able to deliver, or real-time render- 

ing including meso-scale light transport effects that require solving 

global illumination, e.g. interreflections and self-shadowing. Image- 

based representations such as data-driven SVBRDFs or bidirectional 

texture functions (BTFs) [3] provide these advantages. Capturing 

them, however, demands much more effort, up to days for a single 

material [4] . This can largely be attributed to two factors: high- 

frequency features and dynamic range. The former can be caused 

e.g. by specularity, parallax and shadows. In order to avoid visi- 

ble sub-sampling artifacts in rendering, often tens of thousands of 

images need to be obtained. The latter is a consequence particu- 

✩ This article was recommended for publication by H. Rushmeier. 
∗ Corresponding author. 

E-mail address: denbrok@cs.uni-bonn.de (D. den Brok). 

larly of specularity, but also of shadows or low albedo. The more 

prominent these effects, the greater the number of exposure steps 

and the maximum exposure time necessary to capture a material’s 

full dynamic range. 

By now there are a number of approaches to solving these 

problems separately. Sparse acquisition techniques are applied 

when only a small subset of the desired dense sampling is actu- 

ally measured; the remaining data is then interpolated by means of 

linear models learned from an existing material database (e.g. den 

Brok et al. [5] , Nielsen et al. [6] ). Conversely, illumination multi- 

plexing exploits the linearity of the superposition of light by illu- 

minating the material sample not with a single light source but 

with patterns of light sources, which increases the amount of light 

on the sample and eliminates shadows, thereby reducing dynamic 

range (see Fig. 3 ). The desired representation with one active light 

source per image can then be obtained by solving an appropriate 

linear system, a process that is, however, known to be detrimen- 

tal to the signal-to-noise ratio (SNR). The models used in sparse 

acquisition have been shown to also help mitigate the noise prob- 

lems [7] . 

Either way, acquisition times can be reduced significantly, down 

to the range of at most a few hours [4] , but still far from what 

acquisition devices for analytical SVBRDFs are capable of. As the 

approaches are completely orthogonal, the question arises whether 

https://doi.org/10.1016/j.cag.2018.03.003 

0097-8493/© 2018 Elsevier Ltd. All rights reserved. 
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the two paradigms can be combined. So far, this has been impos- 

sible: the linear bases used as models in the above approaches 

rely heavily on range-reduction techniques such as logarithmic 

transformations applied to the training data. These transforma- 

tions, however, do not commutate with multiplexing; i.e., we can- 

not infer the transformed data from a multiplexed measurement 

without prior de-multiplexing. But de-multiplexing requires im- 

ages for all multiplexing patterns, which we wish to avoid in 

sparse acquisition. 

In this paper, we present, to the best of our knowledge, the first 

approach to accurate reflectance acquisition which simultaneously 

exploits sparse acquisition and multiplexed illumination, enabling 

faithful BTF acquisition in several minutes. Specifically, we propose 

a different approach to dynamic range reduction in model learn- 

ing: rather than the absolute L 2 error on non-linearly transformed 

data as a metric, we minimize the relative L 2 error on untrans- 

formed data, which ultimately allows for sparse multiplexed ac- 

quisition of BTFs. As obtaining a basis this way is not as straight- 

forward as simply computing a truncated singular value decom- 

position (SVD), we provide an efficient alternating least-squares 

approach to compute a suitable basis. As demonstrated by our 

results, combined sparse and multiplexed acquisition allows for a 

reduction of acquisition time from the order of hours/days required 

for brute-force measurements down to only several minutes, sig- 

nificantly outperforming both sparse acquisition and multiplexed 

acquisition. 

We evaluate the performance in the sparse and multiplexed 

case, both separately and combined, and compare against the 

state-of-the-art. In our evaluation, we find that a method recently 

presented by Nielsen et al. [6] , which had only been tested on 

BRDFs and flat SVBRDFs so far, also works on material BTFs and 

slightly outperforms the state-of-the-art in this field. 

In summary, our paper presents the following key contribu- 

tions: 

• a novel basis for measured material appearance based on min- 

imizing the relative L 2 error on the untransformed data instead 

of the absolute L 2 error on non-linearly transformed data, 
• an evaluation of our basis’ performance as a model for the ap- 

pearance of typical real-world materials in the context of sparse 

or multiplexed acquisition. 
• En passant , we find that a recently presented sparse acquisition 

method only known so far to work for BRDFs and flat SVBRDFs 

also lends itself to arbitrary material BTFs and slightly outper- 

forms the state-of-the-art in this field. 
• We demonstrate that our basis is designed to take advantage 

of both sparse acquisition and multiplexed illumination at once, 

resulting in an overall acquisition speed-up of up several orders 

of magnitude in comparison to a full measurement, and a still 

significant speed-up of the acquisition process in comparison to 

sparse or multiplexed acquisition, while maintaining perceptu- 

ally accurate results. 

2. Related work 

In this section, we briefly review related work on modeling 

surface appearance including fine surface details. Furthermore, we 

discuss previous work on fast appearance acquisition based on 

the aforementioned concepts of sparse acquisition and illumination 

multiplexing. 

2.1. Acquisition and modeling of material appearance 

Detailed surveys on appearance acquisition and modeling can 

be found in the literature [8–11] . Widely used reflectance models 

that capture spatially varying material characteristics under vary- 

ing viewing and illumination conditions include spatially varying 

bidirectional reflectance distribution functions (SVBRDFs) [1] and 

bidirectional texture functions (BTFs) [3] . In contrast to SVBRDFs, 

BTFs are not necessarily defined with respect to the material’s ac- 

tual surface. Indeed, often a planar reference geometry is assumed, 

as for many materials like irregular fabrics it is difficult or prac- 

tically impossible to determine the exact surface geometry with 

conventional acquisition setups. As a result, SVBRDFs do not ac- 

curately capture the light exchange for such materials. Moreover, 

BTFs do not impose restrictions regarding energy conservation on 

the per-texel BRDFs and simply encode the appearance of the mate- 

rial at one particular coordinate on the reference geometry, which 

is why they are known as apparent BRDFs (ABRDFs) [12] . Together 

with the parametrization over a flat geometry this allows captur- 

ing non-local effects such as interreflections, self-occlusions and 

self-shadowing. As measured SVBDRFs can be considered a sub- 

class of BTFs, we shall focus on BTFs in this work. Due to their 

generality, BTFs are impossible to model, which is why one typ- 

ically retreats to image-based representations that can be eval- 

uated through a (possibly interpolated) table look-up. Measured 

BTFs have natural representations as matrices B ∈ R 

n lv ×n tx , where 

the rows correspond to linearized light- and view-dependent 2D 

textures, the columns to linearized per-texel apparent BRDFs (cf. 

Fig. 2 ), n tx denotes the number of texels (incorporating color chan- 

nels for brevity) and n lv the number of pairs of incoming and out- 

going light directions under consideration. Note that in order to 

avoid interpolation artifacts, it is desirable that n lv be large, in the 

order of thousands or tens of thousands, which in practice trans- 

lates to the expensive process of acquiring tens of thousands of im- 

ages of a given material. Given the matrix representation, both ex- 

isting methods to mitigate this problem and the proposed method 

can be written concisely in terms of matrix operations, as we shall 

detail on in the following. 

2.2. Sparse reflectance acquisition 

Seminal work on sparse reflectance acquisition has been intro- 

duced by Matusik et al. [13] with the introduction of a new re- 

flectance model that represents materials in terms of linear com- 

binations from a set of densely sampled BRDF measurements. In 

subsequent work, Matusik et al. [14] approach the sparse recon- 

struction of isotropic BRDFs based on both a wavelet basis and a 

linear model obtained from the MERL database of isotropic BRDFs. 

They, however, did not investigate generalizations of these results 

to more complex reflectance models. In a closely related work, BTF 

compression was approached by Koudelka et al. [15] , where sin- 

gle linear models for apparent BRDFs have been computed per- 

material. So far, the only technique that focuses on sparse recon- 

struction of BTFs has been presented by den Brok et al. [5] . Similar 

to the technique presented by Matusik et al. [13] , a linear model is 

derived by applying singular value decomposition on a (logarith- 

mically transformed) database of ABRDFs. By fitting these mod- 

els to small BTF patches, non-local effects of light exchange are 

taken into account and BTFs have been reconstructed from only 

6% of the typically used view-light conditions without a reduc- 

tion of the resolution determined by the acquisition setup. Further- 

more, manifold bootstrapping has been introduced by Dong et al. 

[16] , where a manifold is constructed from analytical BRDFs fitted 

to BRDF measurements of certain manually selected surface posi- 

tions on the material sample and used for the reconstruction of 

anisotropic SVBRDFs from sparse measurements. While a general- 

ization to previously unseen materials might be achieved, the sig- 

nificant increase of the dimensionality of the manifold of per-texel 

reflectance distribution functions makes this technique impractical 

for BTFs. Nielsen et al. [6] present an approach for BRDF recon- 

struction from an optimized sparse sampling, where an improved 

logarithmic mapping of the MERL database is employed to obtain 



28 D. den Brok et al. / Computers & Graphics 73 (2018) 26–36 

a simple linear BRDF subspace. This technique has been extended 

by Xu et al. [17] , where an improved minimal sampling method 

for data-driven reflectance acquisition of homogeneous, flat ma- 

terials from two images using the MERL BRDF database as prior 

has been presented. One further extension has been proposed by 

Yu et al. [18] , who independently apply the technique of Nielsen 

et al. to each pixel/point on the material. The technique presented 

by Zhou et al. [19] exploits the sparse basis in terms of a convex 

combination over a limited number of target-specific basis mate- 

rials and sparse blend priors for SVBRDF acquisition from a small 

number of images or even a single image. In particular, the rela- 

tive reconstruction error of the measurements is minimized while 

encouraging a small number of representatives and a blending be- 

tween a small number of them. A constrained optimization is ap- 

plied where the representatives are represented as a linear com- 

bination of generic BRDFs which is solved iteratively based on an 

alternating application of quadratic programming to the represen- 

tatives and the blending weights. 

Further investigations focused on the use of compressed sens- 

ing techniques. Peers et al. [20] apply compressed sensing for 

the acquisition of reflectance fields based on a hierarchical, multi- 

resolution Haar wavelet basis that exploits spatial coherence. The 

assumption of incident 2D light fields with fixed view conditions 

and outgoing 2D light fields, however, cannot directly be extended 

to multi-view scenarios as given for BTFs. Furthermore, the limited 

number of light source positions provided by parallel BTF acquisi- 

tion devices counteracts the advantage of compressed sensing and 

shot noise might be introduced. 

Focusing on the sparse reconstruction of light fields, the tech- 

niques presented by Marwah et al. [21] and Miandji et al. [22] rely 

on dictionary based sparse representation of the measured light 

field and non-linear sparse coding techniques are applied. As 

pointed out by den Brok et al. [5] , such a dictionary is likely to 

not exist for ABRDFs due to their high dimensionality. 

Further compressive sensing techniques focus on hand-held 

light field acquisition with commodity hardware ( [23,24] ). 

Aittala et al. [25] propose (analytical) SVBRDF acquisition for 

flat materials based on a setup that involves a single LCD screen 

and a camera. Continuous illumination patterns and a specially de- 

signed image formation model allows SVBRDF acquisition from rel- 

atively few measurements. The trend of hand-held acquisition re- 

cently culminated in the extremely light-weight approaches pre- 

sented by Aittala et al. [2,26] . 

Aittala et al. [2] focus on the acquisition of coarse anisotropic 

SVBRDFs for flat, stationary materials that exhibit self-similarities, 

i.e. there are several points on the texture with similar reflectance 

properties. This allows for gathering different reflectance samples 

across the materials based on taking two approximately fronto- 

parallel images taken under ambient illumination and flash illumi- 

nation and the subsequent fitting of an analytical SVBRDF model. 

Based on similar simplifying assumptions, the follow-up work 

[26] estimates statistically similar material appearance in terms of 

SVBRDFs from a single head-lit flash image based on neural tex- 

ture synthesis. While plausible material reconstructions are shown, 

these do not represent accurate reconstructions of the real-world 

materials. 

2.3. Multiplexed acquisition 

In their theoretical work, Harwit and Sloane [27] proof the op- 

timality of Hadamard patterns in terms of reduction of signal- 

independent noise. This is accompanied by a discussion of sources 

of noise that occur in optical systems as well as their influence 

on demultiplexing. Based on this work, Wenger et al. [28] used 

multiplexing with different pattern types (triangles of lights and 

Hadamard patterns) for the acquisition of time-varying light fields 

of human faces. In particular, Hadamard patterns have been 

demonstrated to result in noisy results that cannot be improved 

by straight-forward filtering. Schechner et al. [29] also propose 

a multiplexing approach based on Hadamard patterns and addi- 

tionally provide an analysis of different noise types introduced by 

stray light, saturation, and noisy illumination sources. Furthermore, 

a criterion is provided that indicates whether illumination multi- 

plexing is beneficial for a certain setup. To deal with photon noise 

and sensor saturation which impact Hadamard-based multiplexing 

schemes, Ratner and Schechner [30] derive multiplexing codes that 

are still optimal under these effects. However, the assumptions of 

a 1D affine noise model and a nearly diffuse scene are not valid for 

materials exhibiting more complex effects of light exchange. 

Park et al. [31] focus on continuous spectral reflectance recon- 

struction for each scene point from spectral measurements and 

apply illumination multiplexing based on a linear model to re- 

duce the number of required measurements. Liang et al. [32] ad- 

dress the limitations of Hadamard code-based multiplexing in the 

case of shot noise with an optimized multiplexing scheme for pro- 

grammable aperture photography of light fields. More recently, Mi- 

tra et al. [33] exploit image priors for the optimization of the illu- 

mination patterns. This allows for dealing with large amounts of 

light. However, the assumption of a 1D affine noise model as well 

as the computational burden of the extension to low-resolution 

light fields make this approach impractical for BTF acquisition. den 

Brok et al. [7] presented the first approach of illumination mul- 

tiplexing for BTF acquisition. By exploiting the linearity of light 

transport, images for the individual light-view configurations are 

obtained from the images acquired under illumination multiplexed 

with Hadamard patterns by solving an appropriate linear system. 

Noise contained in the demultiplexing result depending on the dy- 

namic range of the considered material is removed by projecting 

the noisy BTF onto a linear subspace obtained from a database of 

conventionally measured BTFs. 

Miyagawa and Taniguchi [34] focus on the recovery of dense 

and accurate light transports from objects. For this purpose, or- 

thogonal illumination based on a Walsh–Hadamard matrix is used 

for relighting which allows to consider ambient illumination in ad- 

dition to directly reflected light. 

3. Preliminaries 

In this section, we discuss basics on sparse acquisition and mul- 

tiplexed acquisition as prerequisites of the following sections: 

3.1. Sparse acquisition 

In the context of material acquisition, sparse acquisition typi- 

cally refers to taking only a small subset of the total amount of 

images. This can be formulated in terms of considering a matrix 

product SB instead of the full measurement B , where the binary 

sparse measurement matrix S ∈ { 0 , 1 } n s ×n lv , SS T = 1 , selects the 

desired rows of B . Under the assumption that B can be approxi- 

mated well by a linear basis U , a standard way to obtain an ap- 

proximation B ≈ UV is 

V = argmin ˜ V ‖ SU ̃

 V − SB ‖ 

2 
F + ‖ R ̃

 V ‖ 

2 
F , (1) 

where the second summand is an optional Tihonov regularization 

term supposed to penalize implausible solutions. In the case of 

BRDFs, Nielsen et al. [6] , for instance, propose to take R = �−1 , 

where � is the diagonal matrix of singular values corresponding 

to the singular vectors in U , which penalizes large deviations from 

the training set’s distribution of basis coefficients. This had so far 

not been investigated on BTF data, but in the matrix representation 

given in Section 2.1 , it readily applies to BTFs as well. In contrast, 

den Brok et al. [5] actually reconstruct BTFs, but using a slightly 
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different matrix representation consisting of small BTF patches, i.e. 

several neighboring apparent BRDFs stacked on top of each other, 

which acts as regularization. As we find the method proposed by 

Nielsen et al. to perform better, we leave out further details. 

3.2. Multiplexed illumination 

A well-established approach to reduce acquisition times in se- 

tups with multiple light sources is provided by illumination mul- 

tiplexing, i.e. by the simultaneous illumination of a material sam- 

ple by several light sources following certain illumination patterns. 

Thereby, the amount of light illuminating the scene is increased 

which allows a reduction of the shutter times required to obtain 

the images (cf. Fig. 3 ). Moreover, in typical BTF acquisition se- 

tups, light sources are distributed on almost the entire hemisphere 

above the material sample. Regions that would be shadowed under 

illumination by a single light source will thus typically be lit in the 

multiplexing case, allowing for a further decrease of shutter times. 

Formally, multiplexing corresponds to measuring MB , where 

M ∈ { 0 , 1 } n p ×n lv denotes a multiplexing matrix that specifies the 

n p illumination patterns used during acquisition. By choosing M 

as an invertible matrix, B can be reconstructed from MB . However, 

for imaging systems like BTF acquisition setups, measurements are 

slightly distorted by Poisson noise, and, as a result, the reconstruc- 

tion process is known to produce possibly intolerably noisy recon- 

structions [27] . den Brok et al. [7] demonstrated that in the case 

of material BTFs Hadamard illumination patterns provide a good 

trade-off between the number of simultaneous light sources and 

noise level in that the otherwise intolerable noise can be dealt 

with by the projection to a basis U computed on logarithmically 

transformed data: 

V = argmin ˜ V ‖ U ̃

 V − M 

† (MB ) ‖ 

2 
F , (2) 

where M 

† denotes the Moore-Penrose pseudo-inverse of M , often 

resulting in perceptually good approximations B ≈ UV . 

3.3. Basis acquisition and computation 

So far, we have not specified what the bases U in the previ- 

ous sections look like and how to obtain them. Given a database 

D of measured BTFs, where the separate BTFs are concatenated 

along the second dimension, i.e. D is a matrix with ABRDFs as 

columns, a straight-forward approach is the use of matrix factor- 

ization techniques like the (truncated) singular value decomposi- 

tion (SVD), e.g. 

D ≈ U �V 

T . 

Matusik et al. [13] have shown that the dynamic range of the 

reflectance data, determined by the huge difference in bright- 

ness between specular highlights and diffuse reflection which may 

amount to several orders of magnitude, leads to a severe overfit- 

ting of the highlights. A number of metrics have been proposed to 

overcome this problem. In their recent work, Nielsen et al. [6] pro- 

pose to use 

� �→ log 

(
� cos weight + ε 

� ref cos weight + ε 

)
, (3) 

where ϱ denotes a single (A)BRDF, � ref a reference (A)BRDF, taken 

as the median (A)BRDF, 

cos weight := max { cos ϑ i cos ϑ o , ε} 
and ε = 0 . 0 0 01 is a small offset to avoid division by zero. Note that 

Nielsen et al. [6] and derivative works like Vavra and Fili [35] and 

Yu et al. [18] validate this method on isotropic, anisotropic and flat 

(SV)BRDFs only, respectively. 

The MERL BRDF database used in most prior works only con- 

tains 100 isotropic BRDFs which can reasonably be assumed to 

be representative of at least a large subspace of homogeneous 

isotropic materials. In contrast, the space of arbitrary ABRDFs is 

much larger, and many sample ABRDFs are required in order to 

obtain a representative basis. A CPU- and memory-efficient way is 

to compute bases on a per-material basis and merging them using 

methods like eigenspace merging as proposed by den Brok et al. 

[5] . 

4. Our approach 

While the aforementioned techniques regarding sparse acquisi- 

tion and illumination multiplexing individually allow a significant 

speed-up of the acquisition process by several orders, the acqui- 

sition times are still rather long in comparison to conventional 

SVBRDF acquisition. By considering the success of applying the in- 

dividual techniques, the question arises whether the combination 

of these approaches is possible and allows an even more significant 

speed-up of the acquisition resulting in practical acquisition times 

of several minutes instead of hours. For this purpose, we propose 

to pose the combination of the different paradigms of sparse ac- 

quisition and multiplexed acquisition as an optimization problem 

V = argmin ˜ V ‖ SMU ̃

 V − SMB ‖ 

2 
F + ‖ R ̃

 V ‖ 

2 
F , (4) 

where the first summand represents the data term and the sec- 

ond summand an optional regularization term as described in 

Section 3.1 . This corresponds to obtaining a possibly small number 

of images of the material sample lit by and viewed from selected 

illumination patterns and camera positions, respectively. It turns 

out that the obstacle is the very idea which makes the previous 

approaches practical in their domains: the application of a loga- 

rithmic scaling to the data. The basis U typically is a basis for log- 

space data, but we cannot infer M log( B ) from the measurement 

MB , because in general log (MB ) � = M log (B ) . We thus propose to 

use a different strategy to deal with the data’s dynamic range. The 

respective details are discussed in the following: 

4.1. Relative error metric 

Inspired by Ruiters et al. [36] , we modify the metric used when 

computing the basis by assigning per-entry weights W to the L 2 
errors instead of modifying the data. The optimization problem to 

be solved then becomes 

U , V = argmin ˜ U , ̃  V ‖ W � ( ̃  U ̃

 V − D ) ‖ F , (5) 

where � denotes the entry-wise matrix product. By taking W as 

the entry-wise inverse of D , this is equivalent to minimizing the 

relative L 2 error instead of the absolute one ( [36] ). Note that it is 

still possible to modify W to include additional weights such as the 

cosine weighting mentioned above, or the additional sub-weights 

proposed by Bagher et al. [37] , by simply multiplying them with 

the proposed weights, or replacing them altogether. 

4.2. Basis computation 

As in related work, we assume the availability of a database 

{ D 

(i ) ∈ R 

n lv ×n tx | 1 ≤ i ≤ n } of n fully measured material BTFs. Like 

den Brok et al. [5] , we compute bases per-material first and later 

merge the results into a single basis. As, to the best of our knowl- 

edge, there is no canonical way to do the former, we chose to 

apply an alternating least-squares approach originally inspired by 

tensor rank decomposition which allows for per-entry weights 

[38] . 

For readability, denote by U , V the two factors approximating 

D 

( i ) . Let c be the approximate rank of D 

( i ) and d 

( i ) , w be the vectors 
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Fig. 1. Sketch of the proposed method: given a database of traditionally measured BTFs, a data-driven linear model U is derived in a novel way that allows for both sparse 

reconstruction and illumination-multiplexed acquisition to be used separately as well as, for the first time, simultaneously. 

Fig. 2. Representation of a discretized BTF as a matrix. ( x , y ) denotes the spatial 

coordinates in the BTF patch, i.e. there are n tx columns in the matrix. The number 

of rows n lv corresponds to the number of view-light configurations ( ω i , ω o ). 

of entries of D 

( i ) and W , respectively. We initialize U ∈ R 

n lv ×c with 

random values drawn uniformly from the interval (− 1 
2 , 

1 
2 ) . Then, 

we may determine V ∈ R 

c×n tx by solving for its vector v of entries 

as 

v = argmin ˜ v ‖ diag (w ) diag (U , . . . , U ) ̃  v − diag ( w ) d 

(i ) ‖ 2 , (6) 

where diag (U , . . . , U ) is a block-diagonal matrix of n tx copies of U . 

Although the involved matrices are very sparse, the resulting lin- 

ear system is still impractical to handle. Fortunately, the matrices’ 

sparsity structure allows for the system to be solved per-texel, pos- 

sibly in parallel, via 

V : ,x = 

(
(U 

T diag (W : ,x ) 
2 U 

)−1 
U 

T diag (W : ,x ) 
2 D 

(i ) 
: ,x . (7) 

Similarly, given a new estimate of V , U can be obtained via 

U lv , : = 

(
(V diag (W lv , : ) 

2 V 

T 
)−1 

V diag (W lv , : ) 
2 D 

(i ) 
lv , : . (8) 

These alterning optimizations are iterated until convergence, and 

finally U 

( i ) is taken as the normalized columns of U , and �( i ) as 

the diagonal matrix of products of column and row norms of U 

and V , respectively. Finally, a basis U for the entire database { D 

( i ) } 

can be obtained by computing the SVD 

U �V 

T = 

(
U 

(1) �(1) , . . . , U 

(n ) �(n ) 
)
, (9) 

which is cheap when the database is relatively small, or by using 

techniques like eigenspace merging [39] . Besides U , we also store 

� for the purpose of regularization. Cf. Fig. 1 for a brief overview. 

Note that this algorithm is not guaranteed or even likely to con- 

verge against the global minimum. The minima it found in our ex- 

periments, however, always worked reasonably well. 

Fig. 3. Material sample lit by single light source (left; scaled by factor 50) and 

Hadamard illumination pattern (right; no scaling applied). Note the right image’s 

flattened dynamic range and greatly increased brightness, which drastically reduces 

shutter times and exposure steps required. 

4.3. Sampling strategy 

Nielsen et al. [6] propose a sophisticated optimization algo- 

rithm to determine a specified number n of coordinates to sam- 

ple, assuming the samples lie on a regular grid defined on the 3D 

Rusinkiewicz parameterization [40] . As this assumption is violated 

by typical BTF acquisition setups, we use the more general but less 

effective algorithm originally proposed by Matusik et al. [13] . The 

goal is to find a measurement matrix S ∈ { 0 , 1 } n s ×n lv with SS T = 1 

such that the condition number κ( SMU �) becomes minimal, be- 

cause this is a good indicator that redundant sample coordinates 

have been avoided. Here, n s denotes the number of sparse samples. 

A greedy strategy is to start with a random subsampling and iter- 

atively testing whether exchanging a random coordinate with an- 

other leads to a smaller condition number, and, if so, keeping the 

new coordinate, until convergence or until a time-limit is reached. 

Note that once M encodes illumination patterns with many si- 

multaneous light sources, the dynamic range of MU may be greatly 

reduced, and consequently the condition numbers do not vary as 

much with the chosen subsampling. We expect this to be an in- 

dicator that in the case of multiplexed illumination the choice of 

subsampling is less important. We did not investigate whether the 

choice of patterns is irrelevant altogether, but the sampling strat- 

egy needs to be determined once per basis and desired sparsity 

only, anyway. 

4.4. Reconstruction 

Once a sparse, multiplexed measurement SMB has been ob- 

tained, determining an approximation B ≈ UV is straight-forward: 



D. den Brok et al. / Computers & Graphics 73 (2018) 26–36 31 

Fig. 4. Basis projections for various numbers d of basis vectors, ours. Top half: environmental lighting, bottom half: point light. Typically, d = 1024 yields good results. 

V = 

(
(SMU ) T (SMU ) + R 

T R ) 
)−1 

(SMU ) T (SMB ) , (10) 

where R is an appropriate regularization matrix. One might as- 

sume that this projection would also benefit from weighting, 

which could be achieved using an alternating least-squares ap- 

proach as above. We did not find any significant differences be- 

tween the algorithms’ results in practice and thus opted for the 

much faster one ( Eq. (10 )). Similar to Nielsen et al. [6] , we choose 

R = λ · �−1 , where λ is a free parameter determining the regular- 

ization’s weight. 

Finally, note that by taking S = 1 or M = 1 , the problem is re- 

duced to sparse or multiplexed acquisition, respectively, with one 

exception: in our new formulation, it is not necessary to perform 

the demultiplexing step explicitly; instead, we directly obtain a de- 

noised reconstruction. 

5. Evaluation 

We evaluate our approach on a material database of 12 pieces 

of leather and cloth, respectively. BTFs for the materials were cap- 

tured by means of a semi-parallel setup consisting of 11 cameras, 

198 LEDs, and a sample holder placed on a turntable which is ro- 

tated in increments of 30 ° during measurement. 

For the purpose of numerical comparisons, we avoid inaccura- 

cies due to registration and changes in scene geometry by obtain- 

ing both single-light and multiplexed images per turntable rota- 

tion. The resulting measured BTFs each consist of 198 × 11 × 12 = 

26136 HDR RGB images of size 128 × 128. 

In a post-processing step, we use exposure bracking to ob- 

tain HDR images, apply de-mosaicing, rectify the images using 2D 

homographies, and finally apply color correction. For the ground 

truth data, this process takes a couple of hours. As it scales roughly 

linearly with the number of images (counting both exposure steps 

and number of pairs of incoming and outgoing light directions), 

the proposed method allows for significantly faster post-processing 

as well. 

We randomly select one leather and two cloth BTFs as test ma- 

terials. The remaining materials are used for training the models. 

All computations are performed using MATLAB 2015b on a 3 GHz 

dual-Xeon E5-2690 machine with 20 physical cores and 256 GB of 

RAM. We confirmed that with the given data, the amount of RAM 

required to run the algorithm was well below what was available 

and even suitable for less powerful desktop workstations. 

As both our approach and the previous ones minimize the re- 

construction error with respect to some metric, a direct purely 

numerical comparison between reconstruction results can hardly 
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Fig. 5. Relative L 2 projection error, ours. 

Fig. 6. Evaluation of our basis for a challenging material exhibiting strong glossi- 

ness. The black artifacts are typical of insufficient range reduction and occur even 

when using d = 1024 basis vectors. 

ever be fair, because one method would be compared against 

the other’s metric, with respect to which it is supposed to be 

optimal. We thus compare the peak signal-to-noise ratio (PSNR) 

of renderings of the various reconstructions to renderings of the 

ground truth data, both under environmental lighting and direc- 

tional lighting. 
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Fig. 7. Basis projections for various numbers d of basis vectors, Nielsen et al. [6] . Top half: environmental lighting, bottom half: point light. Typically, d = 512 basis vectors 

suffice. 
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Fig. 8. Absolute L 2 projection error, Nielsen et al. [6] . 

5.1. Basis computation and performance 

We first compute bases for each material separately as ex- 

plained in Section 4 , using a target dimensionality of d material = 

256 , and the BTF matrix’ element-wise inverse as weights. The al- 

gorithm converges quickly; we allowed for 15 iterations, reached 

after about two hours, which might have been excessive given 

that the relative changes in reconstruction errors we observed at 

that point were miniscule. The per-material bases are subsequently 

merged in negligible time using SVD as in Eq. (9) . We obtain 

projections U 

T B test for various numbers d class ∈ { 256 , . . . , 2048 } of 

columns of U , which takes up to a couple of minutes, and evaluate 

the results numerically (cf. Fig. 5 ) and perceptually (cf. Fig. 4 ). 

As can be seen in Fig. 5 , contrary to what Matusik et al. [13] ob- 

served in the case of isotropic BRDFs, there is a clear plateau at 

very high dimensions at best; we thus choose d class = 1024 by vi- 

sual inspection. For comparison, we include reconstructions from 

projections to the basis proposed by Nielsen et al. [6] , along with 

the absolute reconstruction error for projections to bases of several 

dimensions. To this end, we compute per-material bases following 

Nielsen et al. (cf. Section 3 ) and merge them afterwards to obtain 

a basis for the entire training set. Even more than with our bases, 

there is no plateau in the graph of reconstruction errors (cf. Fig. 8 ). 

Judging from visual inspection, we find that the resulting models 

are a bit more expressive than ours, in that even d class = 512 basis 

vectors are typically sufficient ( Fig. 7 ). In the following, we shall 

thus choose d = 1024 when evaluating our method, and d = 512 

for the others. 

While our models express most materials well, they appear to 

be limited to some extent by the presence of strong glossiness: as 

Fig. 9. Reconstructions from sparse measurements for various numbers n s of samples, ours. Top half: environmental lighting, bottom half: point light. n s > = 200 samples 

are typically sufficient. 
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Fig. 10. Reconstructions from sparse measurements for various numbers n s of samples, Nielsen et al. [6] . Top half: environmental lighting, bottom half: point light. As with 

our method, n s > = 200 samples are usually sufficient. 

evident in Fig. 6 , the reconstruction from the projection of such a 

material to our basis exhibits artifacts typical of insufficient reduc- 

tion of dynamic range, demonstrated, e.g., by Menzel and Guthe 

[41] We believe this problem could be solved by appropriately ad- 

justing the weights W in Eq. (5) . 

5.2. Reconstruction from sparse data 

In our experiments, the sparse acquisition method proposed by 

Nielsen et al. [6] slightly but consistently outperformed its prede- 

cessor by den Brok et al. [5] on BTF data. We shall thus evaluate 

our method against Nielsen et al.’s only. 

As explained in Section 4 , we have to resort to Matusik et al.’s 

method [13] of determining the sparse samples to draw. Moreover, 

our acquisition setup is able to capture 11 images simultaneously. 

We thus further modified the sampling algorithm to only choose 

from pairs of light sources and turntable rotations and then al- 

ways use all cameras available. That way, we obtain samplings for 

n s ∈ {100, 200, 400} pairs of light sources and turntable rotations, 

resulting in {110 0, 220 0, 440 0} samples or approximately {4.2, 8.4, 

16.8} per cent of 26,136 samples altogether. Due to our choice of 

sampling, acquisition time is reduced down to n s 
198 ·12 times the ref- 

erence data acquisition time. 

We observe that our method is more sensitive to the choice of 

the regularization weight λ than that of Nielsen et al. We find that 

λ = 0 . 01 is a good choice for our approach, whereas we can follow 

Nielsen et al. and choose λ = 40 as they report. 

With the given parameters, we produce reconstructions from 

sparse measurements as outlined in Sections 3 and 4 . Overall, both 

methods appear to perform similarly well; in the case of leather 

#1, cf. Figs. 9 and 10 , both methods produce visible artifacts for 

n s = 100 , with a slight numerical and perceptual advantage for 

Nielsen et al., whereas we slightly outperform Nielsen et al. in nu- 

merical terms for n s = 400 . 

Note that these experiments depend on a number of tunable 

parameters (assumed dimensionality, regularization weight, color 

space transformation) that we might not have chosen optimally for 

either method; our main point here is that while our models ap- 

pear to be a bit less expressive than the previous ones, they still 

can be used at least almost equally well when compared to the 

competing methods. 

Fig. 11. Reconstructions from illumination-multiplexed measurements. Top half: 

environmental lighting, bottom half: point light. Because our method does not re- 

quire prior de-multiplexing, we do not have to deal with noise issues and therefore 

outperform the state-of-the-art on a number of materials, even though our model 

is slightly less expressive. 

5.3. Demultiplexing 

We choose n p as small as possible according to den Brok et al. 

[7] , i.e. greater than the number of light sources, such that a suit- 

able set of Hadamard patterns exists, leading to n p = 199 . 

We observe that a positive regularization weight λ = 0 . 01 im- 

proves slightly on reconstruction quality. As can be seen in Fig. 11 , 

we are able to produce results of a quality similar to that of den 

Brok et al.’s method, which is the point we intend to make. Note 

that with our method, there is no need to de-multiplex the mea- 

sured data first, which is how we are able to avoid the problems 

with noise caused by the de-multiplexing process. 

5.4. Sparse multiplexed acquisition 

Finally, we present results for simultaneous sparse and multi- 

plexed acquisition (cf. Figs. 12–15 ). For comparison, we include re- 

sults for either method alone as proposed in previous work, along 

with reconstruction errors and approximate acquisition times. As 

sparsity, we choose n s = 400 , which provides a good compromise 

between acquisition speed-up and reconstruction quality. Over- 
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Fig. 12. Acquisition times 	t and reconstructions from sparse, illumination-multiplexed measurements using n s = 400 samples (ours), sparse, single-light measurements 

(Nielsen et al.), and full multiplexed measurements (den Brok et al.), leather #1. Top half: environmental lighting, bottom half: point light. Our method numerically outper- 

forms both competing methods for this material, while allowing for greatly reduced acquisition times. 

Fig. 13. Acquisition times 	t and reconstructions from sparse, illumination-multiplexed measurements using n s = 400 samples (ours), sparse, single-light measurements 

(Nielsen et al.), and full multiplexed measurements (den Brok et al.), leather #2. Top half: environmental lighting, bottom half: point light. We consider this a failure case of 

our method, likely due to our model’s insufficiency to represent the chosen material well. However, the greatly reduced acquisition time might outweigh the reconstruction 

artifacts in some applications. 

Fig. 14. Acquisition times 	t and reconstructions from sparse, illumination-multiplexed measurements using n s = 400 samples (ours), sparse, single-light measurements 

(Nielsen et al.), and full multiplexed measurements (den Brok et al.), cloth #1. Top half: environmental lighting, bottom half: point light. Reconstructions are very close 

visually, while Nielsen et al.’s method outperforms the others numerically. Again, acquisition times are greatly reduced with our method. 
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Fig. 15. Acquisition times 	t and reconstructions from sparse, illumination-multiplexed measurements using n s = 400 samples (ours), sparse, single-light measurements 

(Nielsen et al.), and full multiplexed measurements (den Brok et al.), cloth #2. Top half: environmental lighting, bottom half: point light. Our method is outperformed in 

numerical terms by the competing methods, but visually close and much faster to obtain. 

Fig. 16. ABRDFs from various reconstructions of leather #1, for the same randomly 

selected texel. All methods exhibit minor artifacts in different areas, but overall, the 

reconstructions are close to the reference. 

all, our method produces results comparable to those of previ- 

ous methods, with the expected exception of leather #2, which 

our model so far does not represent well (cf. Fig. 13 ). This also 

holds on the level of ABRDFs, an example of which is shown in 

Fig. 16 . However, in terms of acquisition times, our method sig- 

nificantly outperforms the state-of-the-art, which takes between 

1.2 and 4 h, whereas we are able to produce reconstructions from 

sparse illumination-multiplexed measurements in 12–22 min. 

6. Conclusion 

To the best of our knowledge, we introduced the first tech- 

nique for data-driven reflectance acquisition that combines both 

optimizing for the minimum set of view-light configurations and 

considering high dynamic range imaging in a single framework. 

For this purpose, we proposed a novel method for learning data- 

driven appearance models based on moving the dynamic range re- 

duction from the data to the metric, where a novel basis for ma- 

terial BTFs is obtained using a metric computed via an efficient 

alternating-least squares algorithm and based on the relative L 2 er- 

ror to reduce the impact of the reflectance data’s dynamic range. 

We demonstrated that like previously studied bases, our basis can 

be used for the purpose of sparse acquisition and de-noising of 

data obtained via multiplexed illumination, but additionally allows 

for these approaches to be combined to the effect of greatly re- 

duced acquisition times in the order of minutes, which is orders of 

magnitude faster than traditional image-by-image measurements, 

and several to many times faster than previous approaches, while 

at the same time maintaining reconstruction results of comparable 

quality. 

As of now, our basis is slightly less expressive than bases ob- 

tained using a logarithmic scaling of the data, in that the dimen- 

sion of its span is larger. We believe that future work might further 

reduce dimensionality by choosing appropriate admissible transfor- 

mations and weights such as the ones proposed by Bagher et al. 

[37] in the context of compressing isotropic BRDFs using tensor 

factorization. This might also solve or mitigate the problem we ob- 

served with the rather challenging leather #2 (cf. Fig. 13 ), which 

we believe is due to its rather high degree of glossiness. More- 

over, the range of materials we evaluated our method on is rather 

limited; it would be interesting to investigate its performance on 

other categories of materials, and whether there is a model that 

works for several (or all) classes. 
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Per-Image Super-Resolution for Material BTFs
Dennis den Brok, Sebastian Merzbach, Michael Weinmann, and Reinhard Klein

Abstract—Image-based appearance measurements are fundamentally limited in spatial resolution by the acquisition hardware. Due to
the ever-increasing resolution of displaying hardware, high-resolution representations of digital material appearance are desireable for
authentic renderings. In the present paper, we demonstrate that high-resolution bidirectional texture functions (BTFs) for materials can
be obtained from low-resolution measurements using single-image convolutional neural network (CNN) architectures for image
super-resolution. In particular, we show that this approach works for high-dynamic-range data and produces consistent BTFs, even
though it operates on an image-by-image basis. Moreover, the CNN can be trained on down-sampled measured data, therefore no
high-resolution ground-truth data, which would be difficult to obtain, is necessary. We train and test our method’s performance on a
large-scale BTF database and evaluate against the current state-of-the-art in BTF super-resolution, finding superior performance.
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1 INTRODUCTION

SUPER-RESOLUTION, i.e. artificially increasing the sam-
pling rate of a given measuring system, is a problem

faced in disciplines as diverse as astronomy and biology.
In computer vision and graphics, it typically deals with
increasing the image resolution of imaging systems of all
kinds, from smartphone cameras to light-field cameras, for
static data as well as dynamic. There is an abundance
of practical solutions for many of these applications. In
contrast, imaging systems of importance to rendering ap-
plications, such as acquisition devices for material appear-
ance, have seen a lot less attention. But demand has in-
creased driven by rapid developments in display technol-
ogy, and while image-space super-resolution for Lambertian
reflectance has been studied and understood for a long time,
more comprehensive representations like spatially-varying
bidirectional reflectance distribution functions (SVBRDFs)
and bidirectional texture functions (BTFs) have started to
draw interest only recently. This case is a lot more diffi-
cult to deal with, as even though typical measurements
consist of hundreds or thousands of images with what
seems like exploitable per-texel redundancies, the fact that
the material’s reflection at each texel can often only be
described by complex BRDFs renders traditional multi-view
super-resolution approaches inapplicable. Consequently, the
current state-of-the-art method for BTF super-resolution by
Dong et al. [1] is based on classical single-image super-
resolution, albeit applied to eigentextures for a significant
performance increase.

In the present paper, we take things a step further and
introduce what we believe to be the first super-resolution
algorithm for non-Lambertian spatially-varying material ap-
pearance based on modern deep learning techniques for
single-image super-resolution. Our goal in this work has not
been to find the existing method to provide the best possible
results for our use cases, which would have involved train-
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ing and comparing an abundance of network architectures.
Instead, we try to answer a number of questions related to
the problem at hand:

• Are typical single-image super-resolution networks
suitable for the high dynamic range (HDR) radiance
maps our setup produces?

• Do we need ground-truth data in the target reso-
lution, which may be difficult to obtain, or is the
problem scale-invariant to some extent?

• Does the image-by-image approach lead to visible
artefacts in the resulting material representations?

To do so, we construct a simple convolutional neural net-
work (CNN) by extending one of the pioneering works with
current best pactices. We train and test our network on a
database of down-sampled HDR radiance maps from our
material measurements. From the resulting high-resolution
test images, we produce high-resolution BTFs for which we
provide both a ground-truth comparison and an evaluation
against the state-of-the-art. In the latter case, we are able to
demonstrate significantly improved reconstruction quality.

2 RELATED WORK

There is a wealth of literature on the general subject of
super-resolution. We briefly review some of the publications
more relevant to our work and refer to surveys for further
reference.

Single-Image Super-Resolution

Approaches for restoring high-resolution representations
from a single low-resolution images can be categorized
into interpolation-based, reconstruction-based and learning-
based methods. Interpolation-based techniques such as lin-
ear interpolation, bicubic interpolation or Lanczos resam-
pling [2] offer the possibility of a fast and simple upsam-
pling at the cost of limited accuracy due to remaining
blurring artifacts. In contrast, the use of additional prior
knowledge allows reconstruction-based approaches (e.g. [3],
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[4], [5], [6]) to be more flexible and even reproduce high-
frequency structures. However, these techniques are time-
consuming and suffer from a decreasing performance for
increasing scales. Learning-based approaches exploit the
statistical relationships between low-resolution images and
their corresponding high-resolution exemplars and have
been proven to allow results of high fidelity at fast computa-
tion. Classical learning-based approaches comprise the use
of Markov random fields [7], [8] and sparse coding [9], [10],
[11], [12], [13], [14], [15]. In recent years, these techniques
have been outperformed by deep learning approaches [16],
[17], [18], [19]. The Super-Resolution Convolutional Neural
Network (SRCNN) is based on an initial traditional bicu-
bic upsampling of the image resolution which is followed
by a CNN-based refinement. Only forcing the network to
perform the refinement without the upsampling facilitates
the task and the restriction to convolutional layers allows
to handle input images of arbitrary size. The involved
CNN consists of three convolutional layers that, except
the last convolutional layer, are followed by ReLU layers
and take the role of patch/feature extraction, nonlinear
mapping of the feature maps to a high-dimensional vector
and reconstruction by aggregating the feature maps. Other
approaches extend this idea by using different architectures
and learning strategies. However, performing most of the
operations in the high-resolution representation comes at
the cost of a high computational burden. To reduce the latter
and allow for a faster training and inference, several tech-
niques perform feature extraction is performed in the low-
resolution image directly and afterwards involve end-to-end
learnable upsampling layers [17], [20]. Respective variants
of these techniques involve different learnable upsampling
layers, structures and learning strategies. As performing the
upsampling in a single step is difficult for large scaling
factors, further developments aim at predicting the output
in multiple steps and, hence, in a progressive manner [21],
[22], [23], [24]. Further frameworks are based on generative
adversarial networks (GANs) [18], [19], [25], [26], [27], [28]
where a generator is trained to created super-resolution im-
ages that cannot be distinguished from real high-resolution
images by a discriminator. Wu et al. [27] additionally used
a perceptual loss. For more detailed discussions, we refer to
recent surveys [29], [30], [31].

BTF Super-Resolution

Dong et al. [1] address BTF image super-resolution (SR)
based on factorizing the captured low-resolution BTF data
into eigen-textures and eigen-apparent bidirectional re-
flectance distribution functions (eigen-ABRDFs) via singu-
lar value decomposition (SVD). This allows improving the
resolution of the eigen-textures using classical image super-
resolution techniques and the final high-resolution BTF
results from the combination of high-resolution intrinsic
textures and low-resolution eigen-ABRDFs. Zhang et al. [32]
exploit the combination of a GAN [33] and the perception-
driven texture generation model (PDTG) [34] to learn mate-
rial appearance under different illumination and viewing
directions. Furthermore, Rainer et al. [35] presented an
autoencoder-based approach for BTF representation, where
BTF texels are compressed to latent codes by the encoder

and the decoder is used to reproduce material appearance
under guidance by specified light and view direction.

3 BACKGROUND

Our goal is an algorithm capable of producing BTFs with
high texture resolution from such with low texture resolu-
tion. There are a number of natural choices for what the
algorithm’s input should be, precisely. In order to be able
to justify our particular choice, we first briefly introduce the
notion of BTFs and explain how they can be represented
digitally. Subsequently, we give an overview of the process
from physical material sample to digitally represented BTF,
and finally, as their method builds upon some of the tech-
niques explained in this section, we briefly cover the prior
art by Dong et al. [1]

3.1 Bidirectional Texture Functions

Consider the rendering equation

Lo(x, ωi, ωo) =

∫

Ωi

fr(x, ωi, ωo)Li(x, ωi, ωo)dωi (1)

Most commonly, fr is assumed to be a spatially-varying
BRDF, i.e. it adheres to conservation of energy and
Helmholtz reciprocity, and x is defined with respect to the
given surface geometry. For BTFs, none of these assump-
tions are required to hold, which allows them to account for
a number of effects not local to a texel, such as parallax and
meso-scale inter-reflections. The downside is that they are
notoriously difficult to model in a meaningful way, which
is why most BTF representations are discrete and image-
based. One of the main applications is arguably rendering,
particularly in real-time. Due to the way BTFs are typically
evaluated at given coordinates (x, ωi, ωo), it is convenient
to assume the set of sampled pairs (ωi, ωo) to be a Carte-
sian product L × V of sets of light and view directions,
respectively. In that case, a BTF can be represented as a
tensor B ∈ Rc×nl×nv×w×h, where c is the number of color
channels, nl, nv the number of sampled light and view
directions, and w, h the size of the bidirectional textures,
or more commonly as a matrix B ∈ Rnl·nv×c·w·h. This is
the desired final form for our algorithm’s output.

3.2 BTF Compression

In most practical scenarios, L and V need to be sufficiently
dense as to avoid interpolation artifacts when the BTF is
used in rendering. A typical order of magnitude is |L×V| ∝
105, which leads to impractical amounts of data. It is known,
however, that BTFs in the matrix representation outlined in
Section 3.1 admit a low-rank factorization

f(B) ≈ U ·V, (2)

where U ∈ Rnl·nv×k, V ∈ Rk×c·w·h are matrices of rank
k � nl · nv [36], which are usually obtained by singular
value decomposition (SVD), and f an optional function
modifying the effective metric used when computing the
factorization, commonly used to deal with the wide dy-
namic range of BTF data. Common values for k are in the
range 100–500.
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Dong et al. [1] exploit this factorization to achieve fast
and noise-resistant BTF super-resolution by operating per-
eigentexture, i.e. per row of the matrix V, only. One caveat
is that the algorithm relies on the eigentextures to be image-
like, i.e. f = id, and therefore likely works best for materials
with low-dynamic-range BTF.

3.3 Measuring BTFs

Clearly, it is impractial to sample a material’s BTF at pre-
cisely the desired coordinates, as the directions of incom-
ing and outgoing light vary across the material surface.
Virtually every available acquisition device therefore pro-
duces a set of images of the material as seen and lit from
different angles as an intermediate step. In principle, the
data acquired this way already constitutes a sampling of the
material’s BTF, but for the purpose of storage and rendering
efficiency, it is convenient to represent the data as a matrix
of the shape outlined in Section 3.1. This involves a number
of transformations which alter the image data significantly:

First, in order to obtain proper textures, a homographical
transformation is applied image-by-image which warps the
region of interest on the material surface from a polygonal
shape in image space to a rectangular shape of size w × h.
As a result, textures obtained from images taken by cameras
seeing the material surface from a grazing angle contain
information with much lower frequencies than those from
images as seen from a frontal parallel view.

Subsequently, the textures can be arranged in a matrix
representation of the described shape, but the columns,
which correspond to per-texel BRDFs, do not yet corre-
spond to the desired sampling L × V . The BRDFs are thus
re-sampled accordingly, typically by means of multilinear
interpolation, which further smoothes the textures.

3.4 Prior Art

The only algorithm for BTF super-resolution to date has
been proposed by Dong et al. [1] Similarly to ours it exploits
single-image super-resolution, but applied to eigentextures
instead of actual images, which provides both a significant
speed-up and improved robustness against noise in the
data. Contrary to the present paper, they chose a classical
approach based on deconvolution with a smoothness prior:

Starting at the image formation model

y = DPx + n, (3)

where D ∈ RwLR·hLR×wHR·hHR is a downsampling operator,
P ∈ RwHR·hHR×wHR·hHR a blur matrix accounting for the
camera’s point spread function (PSF), n ∈ RwLR·hLR a noise
vector, and x ∈ RwHR·hHR and y ∈ RwLR·hLR high- and
low-resolution images, respectively, with wHR > wLR and
hHR > hLR, one arrives at the single-image super-resolution
optimization problem

x̂ = argminx‖DPx− y‖22 + αφ(x), (4)

where φ : RwHR·hHR −→ R is some regularizing function
with weight α. Dong et al. [1] chose φ(x) = ‖Lx‖22, where
L is the 2D Laplacian operator. The resulting optimization
problem can be solved very efficiently using the regularized
normal equations. However, it is known to be sensitive to

the presence of noise. Moreover, it has to be applied to
each of the BTF’s bidirectional textures individually. Dong
et al. [1] thus enhance both efficiency and robustness of their
optimization problem by operating on the individual eigen-
textures V of the factorized low-resolution BTF B ≈ UV.

Note that U is computed on the low-resolution mea-
sured data, which may limit the achievable amount of detail
to some extent. Note also that the measured PSF does not
directly apply to the bidirectional textures and, by extension,
to the eigentextures of the BTF, because they have under-
gone warping to account for perspective transformation; see
Section 3.3. We are not aware of whether Dong et al. took the
latter into consideration, but it did not seem to noticeably
influence the quality of the results in our experiments.

Arguably, the speed improvement, though significant, is
not the algorithm’s primary feature, as the deconvolution is
very fast even on an full BTF measurement; nevertheless
we shall provide a suggestion how to reach comparable
performance with our image-by-image approach.

4 PROPOSED METHOD

It should be clear from Section 3 that there are various
natural ways to attack the problem of image-by-image
super-resolution for BTFs. In the following we shall give
a rationale for our particular design choices and a detailed
description of the chosen network architecture.

4.1 Design Choices

First of all – why did we choose an image-by-image ap-
proach?

Recall that measured material BTFs are of the shape
B ∈ Rnl·nv×c·w·h or similar, with nl · nv ∝ 105 (cf. Sec-
tion 3.1). This brings with it a number of problems. No
super-resolution algorithm we are aware of is capable of
dealing with anywhere near the necessary amount of nl ·nv
channels. Moreover, the BTF database at our disposal con-
sists of only 24 BTFs with small w×h = 128×128, which is
likely insufficient for learning proper parameters even when
dividing the available BTFs up into patches. The number
of channels can be decreased significantly by compressing
the BTFs and operating on the eigentextures V, similar to
Dong et al. However, the high-resolution eigentexures thus
obtained are parameters for a model U of eigen-BRDFs
computed on the low-resolution BTF (as the high-resolution
BTF is not available), which may limit the effectiveness
of the up-sampling network. Nevertheless, we conducted
experiments with this approach and indeed found it to
perform worse than the state-of-the-art, likely due to the
still high number of channels (typically 128–256) or the low
number of exemplars to learn from.

Secondly, now that we motivated an image-by-image
approach, the choice remains between the types of image
data that occur in the post-processing process outlined in
Section 3.3: eigentextures, bidirectional textures from the re-
sampled BTF, warped regions of interest, or simply the HDR
radiance maps before any further post-processing.

We see no obvious theoretical a priori reason why any
should perform significantly better than the others. By ex-
perimentation we found that using HDR radiance maps in
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fact works best by quite a margin. We assume that the filters
learned from this kind of images are the ones enabling the
highest-frequency reconstructions while not being too gen-
eral: for images corresponding to warped regions of interest,
the majority of the images are low-frequency because of the
large amount of warping for low-angle views, and bidirec-
tional textures have undergone even further interpolations.
Conversely, the range of frequencies is extremely wide in the
case of eigentextures, with the eigentexture corresponding
to the largest eigenvalue being similar to a mean texture
and the ones corresponding to very small eigenvalues being
almost indistinguishable from noise. Please note, however,
that this is only a hypothesis which we did not verify
experimentally.

4.2 Network Architecture

The proposed network is a convolutional neural network
(CNN) with skip connections, inspired by the work by Shi et
al. [20] We follow their suggestions closely, but modify them
in a few places according to current good practices. Their
network consists of a L layers, the first L − 1 of which are
consecutive 2D convolutional layers, followed by a single
sub-pixel convolution layer:

f (1)(ILR) = φ(W1 ∗ ILR + b1),

f (l)(ILR) = φ(Wl ∗ f (l−1)(ILR) + bl),

f (L)(ILR) = PS(WL ∗ f (L−1)(ILR) + bL),

(5)

where ILR is the low-resolution input image, Wl and bl,
1 ≤ l ≤ L, are the weights and biases of the corre-
sponding layers, respectively, φ is the activation function
(the same for all except the last layer), and PS is a periodic
shuffling operator. In this scenario, bl ∈ Rnl is a vector of
length nl, and Wl ∈ Ra an 2D convolution tensor of size
nl−1 × nl × kl × kl, where nl is the number of features
at layer l, n0 = 1, and kl the corresponding kernel size.

The original network did not perform very well in our
scenario in terms of upsampling quality, which is why we
introduced some modifications: Following Tong et al. [37]
we added a skip connection:

f (L−1)(ILR) = φ(WL−1 ∗
(
f (1)(ILR)
f (L−2)(ILR)

)
+ bL−1), (6)

which allows for combination of low- and high-level fea-
tures, resulting in enhanced sharpness. See Figure 1 for a
schematic of the resulting architecture. Moreover, we added
batch normalization to deal with internal covariate shift, al-
lowing for higher learning rates. [38]

We chose this particular architecture for several reasons:
it is easy to understand, fast and efficient, in particular due
to fact that the upsampling happens at the last layer only,
and it does not make any assumptions about the desired
output. The latter may seem like a disadvantage; however,
in our material BTF scenario, we are interested more in
faithful reconstruction in the sense of visual similarity rather
than, e.g., an extremely sharp, plausible result which only
remotely resembles the material sample. See Figure 4.2 for
a reconstruction obtained using a recent, pre-trained state-
of-the-art network [39] which may be sharper than what
our network produces, but does not look like the original

material sample. In particular, if this algorithm were applied
on a per-image basis to an entire BTF, it would probably lead
to visible artefacts.

4.3 Performance Considerations

Contrary to the work by Dong et al., our network does
not seem to work well with eigentextures as input images,
as hinted at in Section 4.1. However, once the network is
trained, it is still not necessary to upsample all measured
images. According to den Brok et al. [40], BRDF reconstruc-
tion from sparse measurements as proposed by Nielsen et
al. [41] also applies to spatially-varying material appearance
via

V = (UTSTSU + ΓTΓ)−1UT(SB), (7)

where S is a subsampling matrix which essentially selects
rows, i.e. bidirectional textures, from the full BTF B, and
Γ is a diagonal matrix of weights giving priority to the
eigen-BRDFs corresponding to the largest singular values.
By leveraging this method we can therefore reduce the
amount of images that need to be upsampled significantly,
if desired.

Note there are two natural choices for U here, which
represent a trade-off between speed and reconstruction
quality: we may compute a basis ULR on the low-resolution
input BTF, where, contrary to Dong et al., we have the
advantage that we can apply non-linear transformations
like the logarithm for dynamic-range reduction and thereby
obtain more adequate and concise bases (cf. [42]). That
way, we only have to upsample approximately the same
amount of images as Dong et al., albeit putting an upper
limit on the sharpness of the reconstruction because ULR

was computed on low-resolution data. The alternative is to
first produce a database of high-resolution BTFs using our
network, and to use that database to obtain a basis UHR po-
tentially allowing for more high-frequency reconstructions.
As rank(UHR) > rank(ULR), more sample images need to
be upsampled prior to sparse reconstruction, which reduces
reconstruction speed.

Either way, this approach comes with a penalty on re-
construction quality, which has been studied before. [43] In
our experiments, we therefore do not use this performance
enhancement and reconstruct full BTFs instead.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

We evaluate the proposed algorithm on a database of 24
material samples, 12 of which are leathers and fabrics,
respectively (cf. Table 1).

5.1.1 Acquisition Setup
Our acquisition device consists of 11 industrial-grade cam-
eras and 198 LED light sources, with the material sample
placed on a turntable which is rotated evenly to 12 different
positions to achieve a denser sampling of the hemisphere of
viewing directions. The cameras deliver 2048 × 2048 LDR
images in the Bayer raw domain, which we combine to
HDR images using the classical algorithm by Robertson et
al. [44] and subsequently correct radiometrically. In order
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Fig. 1. The proposed network architecture is an efficient convulational neural network (CNN) with a skip connection and a sub-pixel convolution
layer, extending work by Shi et al. for more detailed results on our data.

Fig. 2. Left: ground-truth. Right: reconstruction using a state-of-the-art
single-image super-resolution network, created by tone-mapping the
underlying HDR radiance map. Note that while the result is visually
pleasing, it does not resemble the ground-truth very closely. Even if this
is considered acceptable, it is unlikely that a BTF constructed this way
would behave consistently under varying viewing conditions; i.e., it may
exhibit flickering or similar artifacts.

to obtain full BTF measurements of the material samples in
a reasonable amount of time, four material samples were
measured at once, at the cost of reduced texture size, along
with approximate material geometries of four 3D points per
material sample (which is usually fine for BTFs). As a result,
a BTF measurement for a single material consists of nimg =
198 · 11 · 12 HDR images of size wimg × himg = 200 × 200.
Leaving a bit of safety borders to all sides to avoid light
scattering from other material samples, we end up with a
texture size of wBTF × hBTF = 128× 128 per material sam-
ple. Before applying the appropriate homographical trans-
formations, the majority of the corresponding regions of in-
terest are not axis-aligned and may therefore occupy square-
shaped bounding boxes of size up to w × h = 200 × 200
in the measured HDR images. These 200 × 200 regions of
interest are our ground-truth measurement data. We down-
sample these images by a factor of 0.5 to generate simulated
high-resolution data, and then again by a factor of 0.5 to
generate the simulated low-resolution data to be up-scaled
in the training step.

5.1.2 Training/Test Split

We randomly choose two leather materials and two fabrics
for testing and one leather and one fabric for validation. The
remaining material measurements are used as training set.

TABLE 1
Tone-mapped grund-truth HDR images from each of our database’s

materials.

5.1.3 Computing

Experiments are performed on a workstation with an Intel
Core i7-5820K CPU at 3.30 GHz with 32 GB RAM and
an NVIDIA GTX980 GPU with 4 GB of RAM, running
Fedora Linux 30 and a scientific computing stack based on
the Anaconda Python environment. We use PyTorch with
CUDA support for our algorithm’s learning step.
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5.2 Implementation Details
5.2.1 Prior Art
We found that the algorithm by Dong et al. crucially de-
pends on the presence of a non-trivial PSF. While no optical
system used for BTF acquision will not meet this criterion,
the cameras and lenses used for obtaining our database
exhibit extremely little point spread. This is not really a
problem, as in practice one can simply take the region of
interest slightly out of focus. As we have no such mea-
surements at our disposal, we just applied Gaussian blur
with the parameters provided by Dong et al. [1], i.e. a 9× 9
Gaussian blur kernel with σ = 1.5 to the actual ground-
truth, prior to creating the down-sampled simulated high-
resolution data. Our algoritm, in contrast, is applied to the
original un-blurred data. For dimensionality reduction, we
used rank k = 300 as proposed by Dong et al., which is
a lot greater than what we normally use for compression
(k = 128); we therefore expect the impact on reconstruction
quality to be negligible.

5.2.2 Network Parameters
We aim for an up-sampling factor of r = 2. For training, we
draw 17 × 17 non-overlapping patches from the simulated
low-resolution data and the corresponding 34 × 34 patches
from the simulated high-resolution data. In order to be able
to fit the entire training data into RAM, we sub-sampled
the BTFs by using approximately 5% of their bidirectional
textures, which amounts to 118 images per material, or 2124
images altogether. We consider the sub-sampling justified
by the large degree of redundancy in the measurements
across different lighting/viewing angles, as experimentally
verified by Filip et al. [45].

We implement the proposed network architecture using
L = 5 layers, the first four of which are the convolutional
layers with kernel sizes k1 = 5, k2 = 3, k3 = 3 and k4 = 3,
respectively. The number of features at the respective layers
are n1 = 64, n2 = 32, n3 = 32 and n4 = r2 = 4, closely
following Shi et al.

We use the Adam optimizer [46] with its default param-
eters and an initial learning rate of 10−2. For the activiation
functions, we choose φ = ReLU. Again following Shi et al.,
we employ the pixel-wise MSE as loss function.

5.3 Ground-Truth Comparison
For the ground-truth comparison, we use the original mea-
sured data. The proposed algorithm and the algorithm by
Dong et al. are applied to the measurements down-sampled
by a factor of 0.5; recall that the mapping for our method
was learned on data down-sampled twice.

The learning step converged after less than 100 training
epochs, which took only about an hour on the hardware
used for training.

Run-time per BTF was approximately 15 minutes for
Dong et al., where most of the time was spent on the re-
sampling step, the computation of the SVD, and the actual
algorithm.

Our algorithm has a run-time of approximately 32 min-
utes per BTF, 30 minutes of which are spent on the re-
sampling step, which is a lot slower because it needs to be
performed on the up-sampled data in our case, its run-time

scaling linearly with the (linear) resolution. Using the ap-
proach described in Section 4.3, overall run-time can likely
be reduced by as much as 90% depending on the choice
of U [40], at the cost of the additional quality penalties
imposed by sparse reconstruction. Given that run-time is
not excessive as is, we did not investigate how much this
amounts to in practice.

For comparison, we provide a number of error measures.
Following Dong et al., we provide the mean RMSE

mRMSE =
1

nl · nv

nl·nv∑

i=0

(
1√

wBTF · hBTF

‖Bi,: − B̃i,:‖2
)
,

(8)
the mean PSNR

mPSNR =
1

nl · nv

nl·nv∑

i=0

20 log10

max (Bi,:)
1√

wBTF·hBTF
‖Bi,: − B̃i,:‖2

,

(9)
and the mean relative error

mRE =
1

nl · nv

nl·nv∑

i=0

(
‖Bi,: − B̃i,:‖2
‖Bi,:‖2

· 100%
)
, (10)

the mean being taken over the bidirectional textures. Cf.
Table 2 for the numerical errors we obtained. Numerically,
our algorithm clearly outperforms the one by Dong et al.,
surpassing its performance in all of the metrices. Dong et
al.’s results are fundamentally limited by both the com-
pressed BTF representation they require and the smoothness
prior which counter-acts the super-resolution effect to some
extent.

In Table 3, we present bidirectional textures extracted
from the ground-truth and the various reconstructions.
Again, we obtain significantly improved results when com-
pared to Dong et al., which lacks sharpness and exhibits
dampened highlights, probably due to the compression.

Finally, cf. Table 4 for renderings of the ground-truth
and the reconstructions in a standard scene for displaying
BRDFs using environmental lighting.

5.4 Consistency
The renderings also provide indication for whether the BTFs
produced by our algorithm are consistent in the sense that
they do not exhibit noticeable artefacts caused by the per-
image nature of our approach. Because of the environmental
lighting, large parts of the BTF actually contribute to the
overall appearance. In a scene like this, artefacts may thus
become quite apparent. For the tested materials, this does
not appear to be the case for either algorithm.

For further evidence, in Table 5 we provide images of
ABRDFs for a single texel, which do not exhibit noticeable
artifacts. In the supplemental material to this paper, we
provide animated renderings of our results along with dif-
ference images, which do not exhibit artifacts like flickering,
either.

5.5 Scale Invariance
Given the quality of our reconstructions, which were ob-
tained using an up-sampling mapping learned on practi-
cally available low-resolution data, we think it is justified
to conclude that, at least for an up-sampling factor of
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leather #1 leather #2 fabric #1 fabric #2
Dong 2.41e-3, 29.7 dB, 19.0 % 3.49e-3, 30.5 dB, 10.4 % 6.16e-3, 23.3 dB, 26.6 % 4.14e-3, 30.2 dB, 21.8 %
Ours 1.41e-3, 33.1 dB, 12.8 % 2.29e-3, 33.8 dB, 6.6 % 2.16e-3, 32.1 dB, 9.7 % 1.80e-3, 37.1 dB, 10.0 %

TABLE 2
Numerical reconstruction errors for the selected test materials. From left to right per table cell: mRMSE, mPSNR, mRE. Our algorithm clearly

outperforms the state-of-the-art here, which relies on a lossy compressed BTF representation.

ground-truth Dong et al. proposed

TABLE 3
Bidirectional textures extracted from the ground-truth and the

reconstructions. Our reconstructions contain noticeably more detail
than the state-of-the-art.

r = 2, our algorithm is sufficiently scale-invariant as to
allow for surprisingly detailed reconstructions. For further
evaluation, we conducted an additional experiment where
we used a model trained to upsample data which has been
down-sampled only once instead of twice to the ground-
truth resolution. We observed an arguably expected slight
degradation in purely numerical terms, e.g. the relative error
was reduced further by 3.5% on average when compared to
our actual method’s model. However, the resulting images
and renderings turned out to be practically indistinguish-
able from our previous results.

6 CONCLUSION

We presented a BTF super-resolution algorithm based on a
simple but efficient convolutional neural network architec-
ture. We demonstrated that, when trained on down-sampled
real-world measurements, our network is capable of up-
sampling high-dynamic-range BTF measurements, which
allows for BTFs of much higher resolution than what was

measured, outperforming the state-of-the-art in BTF super-
resolution. Along the way, we gave what we believe to be
first, positive answers to the questions:

• Do conventional deep single-image super-resolution
algorithms apply to high dynamic range data?

• Are networks trained on downsampled BTF
measurements scale-invariant enough for super-
resolution?

• Can we reconstruct a consistent high-resolution BTF
from measurements upsampled on an image-by-
image basis?

Our algorithm shares the limitations of learning-based
single-image super-resolution methods. The network was
chosen such that it favors faithfulness of the reconstruction
over sharp, but visibly hallucinated results, which limits the
achievable degree of reconstructed detail.

We think it worthwhile to investigate whether deep
learning methods can be used even more effectively for our
scenario. As it is, our network is not specifically tailored to
BTF data. It should be possible to exploit the very specific
nature of BTF measurements further, e.g. by means of a
multi-view approach, or by using novel, more compact BTF
representations which would result in less input channels in
the network architecture. The former would be particularly
useful to overcome the intrinsic limitations of single-image
approaches. However, the lack of large, publically available
BTF databases may prove a major obstacle on any of these
paths.

Lastly, many modern super-resolution algorithms in-
cluding ours are trained and/or evaluated on synthetic data
generated by down-sampling in a very straight-forward
manner. However, the actual image formation model is a lot
more involved. Recent work by Zhang et al. demonstrates
a noticeable performance improvement when taking this
into consideration. [47]. We believe this to be a promising
starting point for any future work on image-space super-
resolution.
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