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Abstract: (1) Background: Pulmonary arterial hypertension (PAH) is a serious condition that is
associated with many cardiopulmonary diseases. Invasive right heart catheterization (RHC) is
currently the only method for the definitive diagnosis and follow-up of PAH. In this study, we
sought a non-invasive hemodynamic biomarker for the diagnosis of PAH. (2) Methods: We applied
prospectively respiratory and cardiac gated 4D-flow MRI at a 9.4T preclinical scanner on three
different groups of Sprague Dawley rats: baseline (n = 11), moderate PAH (n = 8), and severe PAH
(n = 8). The pressure gradients as well as the velocity values were analyzed from 4D-flow data and
correlated with lung histology. (3) Results: The pressure gradient between the pulmonary artery and
vein on the unilateral side as well as the time-averaged mean velocity values of the small pulmonary
arteries were capable of distinguishing not only between baseline and severe PAH, but also between
the moderate and severe stages of the disease. (4) Conclusions: The current preclinical study suggests
the pulmonary arteriovenous pressure gradient and the time-averaged mean velocity as potential
biomarkers to diagnose PAH.

Keywords: pulmonary hypertension; cardiac magnetic resonance; treatment response; hemodynam-
ics; 4D-flow

1. Introduction

Pulmonary hypertension (PH) is a life-threatening condition that is defined as an
increase in mean pulmonary artery pressure above 20 mmHg when measured by right
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heart catheterization (RHC) at rest [1,2]. Clinically, pulmonary arterial hypertension (PAH)
is categorized as the first group in the PH classification, which is described in detail in the
clinical guidelines of the European Society of Cardiology [1]. The clinical manifestations
of PAH are often nonspecific and usually arise from right ventricular dysfunction in
advanced stages [1,3]. Routine blood gas and respiratory function tests, electrocardiography
(ECG), chest X-ray, as well as blood and serological tests can produce different results
for a variety of conditions and indicate a number of possible underlying diseases [1,4].
Therefore, further evaluations by means of additional diagnostic tools are recommended
for differential diagnosis. RHC is the diagnostic standard for the definite diagnosis of
PH, the assessment of the severity of hemodynamic impairment in its course and for
further follow-ups [1,5–7]. However, there are a variety of pitfalls when assessing and
interpreting the parameters determined by RHC; for example, the measurement of the
pulmonary artery wedge pressure at an over- or under-wedge position can lead to incorrect
results [8]. In addition, as an invasive diagnostic tool, RHC can cause intra- or post-
procedure complications, such as hematomas, pulmonary artery ruptures, or damage to
the electrical conduction system of the heart [9]. Furthermore, it is contraindicated under
certain circumstances such as in mechanical tricuspid or pulmonary valve replacement,
right heart masses, etc. [7]. In contrast to RHC, transthoracic echocardiography (TTE) is a
non-invasive method that cannot directly measure pulmonary vascular resistance or any
other related indices to vascular pressure, but plays an important role in assessing the
likelihood of PAH, the development of right heart failure, or the necessity for catheterization
in symptomatic patients [1,10]. Nuclear imaging and computed tomography techniques
are also indicated in pulmonary hypertension assessments [11–13], but suffer from high
effective dose exposures. Cardiac magnetic resonance (CMR) can improve patient care in
clinics substantially [14] as it is the gold standard for quantifying right-heart function [15,16]
and is useful to PH evaluations [5,15,17]. In recent years, the development of 4D-flow CMR
has opened a new direction for the qualitative and quantitative assessment of cardiovascular
hemodynamics and function [18–20]. In previous studies, various CMR hemodynamic
indices (such as peak velocity, blood flow, etc.) were compared to RHC [19,21,22]. However,
none of the evaluated biomarkers correlated very strongly with the catheterization results.
Among all the parameters, the most promising non-invasive hemodynamic index was
the time-averaged mean velocity of the main pulmonary artery [19]. For this purpose,
we evaluated this index in the small pulmonary arteries in 4D-flow and its correlation
with histology to assess its suitability for diagnosing PAH. In addition, we calculated
the pulmonary arteriovenous pressure gradient (i.e., the pressure gradient between the
pulmonary small arteries and veins of the unilateral side) in all the experimental groups
to evaluate its diagnostic utility for PAH. To confirm the influence of the experimental
PAH model on heart mechanics, we calculated tricuspid annular plane systolic excursion
(TAPSE) by means of TTE and right-ventricular ejection fraction (RVEF) by using MRI.
Finally, a comprehensive correlation analysis of all the CMR findings in relation to the
histology results was performed.

2. Materials and Methods

• Animal model: A total of 27 male Sprague Dawley rats (Charles River Laboratories,
Sulzfeld, Germany) with an average weight of 330 ± 39.9 g were included in the study
and divided into three different experimental groups: (A) Baseline (n = 11, with a
nuchal subcutaneous injection of 300 µL NaCl 0.9%); (B) Severe PAH (n = 8, with
a single-dose subcutaneous injection of 60 mg/kg monocrotaline—Carl Roth, Karl-
sruhe, Germany—dissolved in 300 µL NaCl 0.9%); and (C) Moderate PAH (n = 8, with
the same medication as the severe PAH group and an additional oral application of
15 mg/kg macitentan—Actelion Pharmaceuticals Ltd., Allschwil, Switzerland—from
day 14 to 28). All invasive and non-invasive diagnostic procedures were performed
4 weeks after disease induction. The general anesthesia protocol was chosen depend-
ing on the diagnostic procedure: all the non-invasive procedures were conducted
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under inhalation of isoflurane ~3% (due to the long tubing between the vaporizers
and the MRI system) to keep the animals’ respiration in the range of 30 to 50 per
minute. Perfusion was carried out under deep anesthesia with the intra-peritoneal
administration of a single dose of 100 mg/kg body weight of ketamine (volume 450 µL)
and 10 mg/kg body weight of xylazine (volume 250 µL). All the experiments were
conducted in accordance with approved ethical guidelines (see the section on the
Institutional Review Board Statement).

• Cardiac Magnetic Resonance: Prospectively, a cardiac and respiratory triggered 4D-
flow stack-of-stars phase-contrast sequence was performed on a 9.4 T BioSpec USR
94/20 imaging scanner with ParaVision 6.0.1 software (Bruker, Ettlingen, Germany).
All the animals were examined by a vendor-supplied 72 mm-diameter quadrature
volume resonator with the following sequence parameters. Flow encoding scheme:
HADAMARD; TR = 10 ms; TE = 1.1 ms; FA = 10◦; BW = 100 kHz; under-sampling fac-
tor = 1.4–1.6; averages = 1; resolution = (375 × 375 × 375) µm3; VENC = 75–200 cm/s.
The data were reconstructed offline using regridding with iterative sampling density
estimation. All the functional and hemodynamic parameters were quantified using
manual region-of-interests (ROI). The time-averaged mean-velocities were calculated
in the large (main, right and left pulmonary arteries) and small pulmonary arter-
ies. Furthermore, the pulmonary arteriovenous pressure gradients were calculated
through the use of modified Bernoulli’s equation from 4D-flow data (Figure 1). All the
parameters investigated by MRI are listed in Tables 1 and 2.
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Figure 1. A schematic representation showing the region of interests (ROI) for the calculation of
pulmonary arteriovenous pressure gradients and pulmonary small arteries’ time-averaged mean
velocities. The green label in (A) shows ROI on a small pulmonary artery, and in (B) depicts ROI on
the ipsilateral pulmonary vein (Annotations: (1) left superior vena cava (2) right superior vena cava
(3) right pulmonary artery along its small branch (4) inferior vena cava (5) right ventricle (6) right
atrium (7) aorta (8) left atrium (9) pulmonary veins).
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Table 1. Results for CMR-derived hemodynamic parameters in the three experimental groups.

MRI-Derived Index Abb. Unit
Sig.

(p < 0.05)
Group (Mean ± Standard Deviation)

Baseline Severe Moderate

Main pulmonary artery averaged velocity MPAV-mean cm·s−1 1 30.43 ± 7.90 12.18 ± 4.32 22.28 ± 11.41
Right pulmonary artery averaged velocity RPAV-mean cm·s−1 1 23.15 ± 4.97 13.78 ± 7.24 19.15 ± 10.78
Left pulmonary artery averaged velocity LPAV-mean cm·s−1 1 22.65 ± 6.94 12.77 ± 2.23 20.44 ± 8.11

Right pulmonary small artery averaged velocity RPSAV-mean cm·s−1 1 18.40 ± 3.72 7.43 ± 3.40 14.36 ± 7.62
Left pulmonary small artery averaged velocity LPSAV-mean cm·s−1 1, 3 22.57 ± 4.66 7.47 ± 4.07 16.16 ± 8.50

Right pulmonary arteriovenous averaged pressure RPSA-RPV∆P-mean mmHg 1, 3 0.12 ± 0.06 0.018 ± 0.02 0.093 ± 0.095
Left pulmonary arteriovenous averaged

pressure gradient LPSA-LPV∆P-mean mmHg 1, 3 0.19 ± 0.09 0.02 ± 0.02 0.11 ± 0.14

1, Two independent Mann–Whitney U tests between baseline and severe groups were significant (p < 0.05). 2, Two
independent Mann–Whitney U tests between baseline and moderate groups was significant (p < 0.05). 3, Two
independent Mann–Whitney U tests between severe and moderate groups were significant (p < 0.05).

Table 2. Results for different right heart functional indices derived from CMR and TTE in the three
experimental groups.

Functional Index Abb. Unit
Sig.

(p < 0.05)
Group (Mean ± Standard Deviation)

Baseline Severe Moderate

CMR: Right ventricle ejection fraction RVEF % 1, 2, 3 56.27 ± 3.67 17.97 ± 2.31 38.75 ± 10.42
TTE: Tricuspid annular plane

systolic excursion TAPSE mm 1, 2 2.73 ± 0.64 1.03 ±0.17 1.27 ± 0.45

1, Two independent Mann–Whitney U tests between baseline and severe groups were significant (p < 0.05). 2, Two
independent Mann–Whitney U tests between baseline and moderate groups were significant (p < 0.05). 3, Two
independent Mann–Whitney U tests between severe and moderate groups were significant (p < 0.05).

• Transthoracic echocardiography: TTE was performed in all animals before CMR
with a high-resolution ultrasound imaging system Vevo-770 (Visual Sonics, Toronto,
ON, Canada) using a rodent specific 17 MHz probe. The recorded TTE movies were
analyzed by an experienced cardiologist and the calculated parameter is listed in
Table 2.

• Histological assessment of lungs: The formalin-fixed, paraffin-embedded, and H&E-
stained lung tissue sections were evaluated by two experienced scientists. PAH-
associated tissue damage of the lungs was evaluated semi-quantitatively using an
established and validated sum-score system of our group [23,24]. The list of the
evaluated histological indices is summarized in Table 3. According to the scoring
system, atelectasis area (AA), emphysema area (EA), peribronchial artery media
hypertrophy (PAMH), peribronchial artery perivascular cellular edema (PAPCE), and
small artery media hypertrophy (SAMH) were evaluated and scored individually.
Subsequently, all the scores were added up and summarized by an index called “Lung
assessment sum-score”, or LASS, reflecting the overall pulmonary tissue changes due
to PAH.
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Table 3. Results for pulmonary histological indices in the three experimental groups.

Pulmonary Histopathology Index Abb. Sig. (p < 0.05) Group (Mean ± Standard Deviation)
Baseline Severe Moderate

Atelectasis area AA 1, 3 0.80 ± 0.44 1.67 ± 0.51 1.00 ± 0.00
Emphysema area EA 2 0.20 ± 0.447 0.67 ± 0.51 1.25 ± 0.50

Peribronchial artery media hypertrophy PAMH 1, 2, 3 0.40 ± 0.54 2.83 ± 0.408 2.00 ± 0.00
Peribronchial artery perivascular

cellular edema PAPCE 1 0.00 ± 0.00 1.67 ± 0.816 1.00 ± 1.15

Small artery media hypertrophy SAMH 1, 2, 3 0.00 ± 0.00 2.83 ± 0.40 2.00 ± 0.00
Lung assessment sum score LASS 1, 2, 3 1.40 ± 1.14 9.67 ± 0.81 7.25 ± 1.50

1, Two independent Mann–Whitney U tests between baseline and severe groups were significant (p < 0.05). 2, Two
independent Mann–Whitney U tests between baseline and moderate groups were significant (p < 0.05). 3, Two
independent Mann–Whitney U tests between severe and moderate groups were significant (p < 0.05).

• Statistical Analysis: The pairwise Mann–Whitney U test was performed to compare
the means of various variables among the experimental groups statistically with a
p-value significance threshold of 5%. In addition, the Spearman correlation (between
the scalar and ordinal variables) and Pearson correlation (between two scalar variables)
tests were used for correlation analysis between two different parameters (Table 4).
The strength of the correlation coefficients was classified according to the following
scale: very strong correlation (r = 0.90 to 1.0), strong correlation (r = 0.70 to 0.90),
moderate correlation (r = 0.50 to 0.70), low and negligible correlation (r < 0.50) [25].

Table 4. Results of the inter-parameter correlation analysis.

MRI Index Corr. Index AA EA PAMH PAPCE SAMH LASS
MPAV-mean −0.537 −0.421 −0.754 −0.866 −0.708 −0.829
RPAV-mean −0.342 −0.383 −0.495 −0.619 −0.550 −0.613
LPAV-mean −0.537 −0.163 −0.723 −0.743 −0.682 −0.817

RPSAV-mean −0.220 −0.529 −0.761 −0.725 −0.816 −0.819
LPSAV-mean −0.342 −0.565 −0.827 −0.785 −0.892 −0.925

RPSA-RPV∆P-mean −0.416 −0.566 −0.792 −0.662 −0.854 −0.868
LPSA-LPV∆P-mean −0.390 −0.526 −0.851 −0.742 −0.917 −0.915

Red: Very strong correlation (r = 0.90 to 1.0); Yellow: Strong correlation (r = 0.70 to 0.90); Green: Moderate
correlation (r = 0.50 to 0.70); Blue: weak and negligible correlation (r < 0.50). (MPAV-mean: Main pulmonary artery
averaged velocity; RPAV-mean: Right pulmonary artery averaged velocity; LPAV-mean: Left pulmonary artery
averaged velocity; RPSAV-mean: Right pulmonary small artery averaged velocity; LPSAV-mean: Left pulmonary
small artery averaged velocity; RPSA-RPV∆P-mean: Right pulmonary arteriovenous averaged pressure gradient;
LPSA-LPV∆P-mean: Left pulmonary arteriovenous averaged pressure gradient).

3. Results

• CMR-Derived Hemodynamics: The time-averaged mean-velocities (Vmean) of the
large and small pulmonary arteries were investigated in all the experimental groups.
In addition, the right and left pulmonary arteriovenous pressure gradients (right:
RPSA-RPV∆P-mean, left: LPSA-LPV∆P-mean) were calculated (Table 1). The Vmean-
related indices in the large pulmonary arteries were only capable of distinguishing
between severe PAH and baseline (p < 0.05), while the Vmean-related indices in the
small pulmonary arteries were capable of differentiating not only between severe PAH
and baseline, but also between the moderate and severe stages of the disease (p < 0.05).
Notably, RPSA-RPV∆P-mean and LPSA-LPV∆P-mean could differentiate between base-
line and severe PAH as well as the moderate and severe disease groups (p < 0.05),
but with stronger statistical properties than Vmean, suggesting their suitability for
the non-invasive diagnosis and follow-up of PAH. The qualitative assessments of
the velocity-time curves in the pulmonary arteries indicated that the early and peak
systolic velocities did not generally change in PAH. However, the late systolic veloci-
ties appeared more attenuated and flattened; i.e., velocity notches occurred (Figure 2,
Figure 3 and Supplementary Material Video S1), which affected the Vmean values. This
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phenomenon was more dominant in the small pulmonary arteries compared to the
large ones.
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Figure 2. (A–C) Intra- and (D) inter-experimental group variability assessment of the velocity-time
curve through a cross-section drawn in the distal portion of the main pulmonary artery, i.e., proximal
to the pulmonary bifurcation. Notches are indicated by red arrows. Each cardiac frame corresponds
to a temporal resolution of 10 ms.
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Figure 3. Representative streamline reconstructions of baseline, moderate, and severe pulmonary
arterial hypertension in an animal model (top row) with corresponding velocity changes over time,
averaged across the green cross-section in the distal MPA (bottom row). The vortical flow pattern
formation and its effect on the corresponding velocity-time curve can be observed in this example in
the green cross-section area.

• RVEF & TAPSE: Due to the pitfalls and difficult procedure of RHC in rats, RVEF and
TAPSE were investigated by CMR and TTE to prove all the animals were influenced
by PAH. RVEF could reliably differentiate all the experimental groups from each other
(p < 0.05), i.e., it was largely reduced in severe PAH and preserved in the moderate
stage (Table 2). TAPSE could also differentiate well between baseline and severe
PAH as well as between the severe and moderate disease groups (p < 0.05) (Table 2)
(Figure 4). The RVEF and TAPSE results proved the effectiveness of the experimental
design.
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Figure 4. Representative transthoracic echocardiography (TTE) images showing the tricuspid annular
plane systolic excursion (TAPSE) in baseline, moderate, and severe pulmonary arterial hypertension.

• Histological Assessment of Lung Tissue: In general, the animals with severe PAH
demonstrated the highest individual scores in all the histological criteria except for em-
physema among all the experimental groups. Therefore, severe PAH showed extensive
signs of histological damage compared to baseline through significantly higher sum-
scores (p < 0.05) (Figure 5). In moderate PAH, the sum-score was significantly lower
compared to the severe group but still higher than the baseline (p < 0.05), reflecting a
partial improvement in histological damage. With respect to the individual indices,
moderate PAH showed a significant decrease for atelectasis and media hypertrophy
in both the peribronchial and small pulmonary arteries compared to the animals at
the severe stage of the disease (p < 0.05). However, the media hypertrophy of both
arteries was still increased in severe and moderate PAH compared to baseline (p < 0.05)
(Figure 5).
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Figure 5. Representative images of histological changes in the lung tissue of baseline, moderate, and
severe pulmonary arterial hypertension (PAH) with a focus on media hypertrophy of peribronchial
(black arrows) and small arteries (black arrowheads) at a 20× magnification, as well as a graph-
ical comparison between histological sum-score changes between all three experimental groups
(* indicates statistical significance, with p < 0.05).

• Correlation analysis between 4D-flow parameters and histopathology: In general,
the correlation analysis between the Vmean-related indices and the histological results
showed moderate-to-strong correlation coefficient values, while the correlation analy-
sis between the right/left pulmonary arteriovenous pressure gradients and histological
results indicated a strong-to-very-strong associativity (Table 4).

4. Discussion and Conclusions

The limitations of RHC in the diagnosis of PAH in combination with its invasiveness
prompted us to investigate the potential role of new hemodynamic indices derived from
4D-flow to diagnose PAH. In current research, CMR is used to assess the response of
PH to surgical or medical treatments primarily through conventional indices (e.g., right
ventricular functions, right ventricular mass, main pulmonary velocities, etc.) [16]. In
addition, the hemodynamic changes in the large pulmonary arteries under PH have been



Diagnostics 2022, 12, 58 10 of 13

extensively assessed in previous studies and are well summarized by Reiter U. et al. [19].
In PAH, we observed the same findings as in the previous clinical studies [21,22,26–31],
indicating that we reached the same level of accuracy. In a recent study by Cerne et al. [32],
the Vmean of the main, right and left pulmonary arteries showed considerably lower values
in PAH in comparison to the normal population. However, in the current study, we
hypothesized that the small pulmonary arteries were more suitable regions than large
vessels for the evaluation of hemodynamic changes due to their proximity to the site of
media hypertrophy. In contrast to [32], we chose histology as the reference standard instead
of RHC to directly evaluate the lung tissue changes in PAH, since hemodynamics alter
secondary to histological changes. In addition, we minimized the time gaps between
all the diagnostic procedures and kept all the study conditions constant throughout the
experiment to mitigate any possible confounding factors arising in between. In our results,
the Vmean of the small pulmonary arteries differentiated between the baseline, moderate,
and severe PAH groups more sensitively than the Vmean of the large pulmonary arteries,
suggesting its superiority as a hemodynamic index in diagnosing PAH.

In addition, the pronounced changes in the Vmean of the small pulmonary arteries in
severe PAH reflected the hampered blood flow within the pulmonary circulation as a result
of vascular resistance, which led to blood flow pattern changes and vortex ring formation
in the large pulmonary arteries (Figures 2 and 3, Supplementary Material Video S1). Vortex
rings influenced the shape of the velocity–time curves and could adequately explain the
formation of the velocity notches during the late systole, which was also described in [19,33].
Figure 3 and Supplementary Material Video S1 highlight an exemplary case, illustrating the
effects of vortex ring formation on the velocity–time curves in the distal portion of the main
pulmonary artery. The study by Reiter G. et al. [34] also reported a correlation between
vortex ring formation and mean pulmonary artery pressure changes in PH, which supports
our observations.

In addition to the evaluation of the Vmean in the small pulmonary arteries, we intro-
duced the time-averaged pulmonary arteriovenous pressure gradient as a new diagnostic
index. We modeled the pulmonary circulation in the lungs as a simple water stopcock
system with one inlet and one outlet (i.e., the vascular stiffness of the lung was modeled as
the stopcock, the pulmonary artery was the inlet, and the pulmonary vein was the outlet)
and used the modified Bernoulli’s equation to roughly measure the associated pressure
gradient caused by the stopcock stiffness, which was equivalent to the severity of media
hypertrophy in our model of PAH. This study showed that the pulmonary arteriovenous
pressure gradient was one of the most sensitive indices reflecting the severity of PAH. The
correlation between this novel parameter and the lung assessment sum-score in histology
was found to be very strong (more than 90%), which is superior to all the previously
introduced imaging biomarkers summarized in [19].

As stated in the Materials and Methods section, the target regions of this study were
the small pulmonary arteries. To meet the necessary spatial properties of such small
geometries, the resolution and the measurement noise had to be increased; however,
the use of the 4D-flow stack-of-stars velocity mapping technique instead of the 4D-flow
Cartesian technique (which is the most frequently used sequence in preclinical CMR) could
compensate for the loss of velocity-to-noise ratio and could decrease the measurement bias
in these small vessels.

The major pitfall of this study was the high standard deviations in different hemo-
dynamic indices observed in moderate PAH. A reasonable explanation could be that the
response to medication was subjective and could vary among individual animals, which
might have led to large standard deviations in the results of this group. One suitable remedy
for this problem could be an increase in the sample size to allow more accurate statistics. In
addition, we recommend a more comprehensive longitudinal study with multiple CMR
scans on individual animals at multiple time points during the disease progression, instead
of one single time point. Despite all these constraints, we are convinced that the results of
the time-averaged pulmonary arteriovenous pressure gradient and the velocity values in
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the small pulmonary arteries can serve as potentially sensitive biomarkers in the diagnosis
and follow-up of PAH.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12010058/s1. Video S1: Qualitative assessment of
the velocity-time curves in the main pulmonary artery. Due to high vascular resistance in severe
pulmonary arterial hypertension (PAH in diseased animals), vortex rings are generated in the large
pulmonary arteries producing velocity notches in the corresponding velocity-time curves. This effect
was not noticed in either the baseline (normal) or in the moderate PAH (treated) animals.
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