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Abstract

Optical cavities with coupled atoms are a promising platform as the nodes of future quantum networks,
enabling interchange of information between single atoms and single photons. In particular, fiber-based
high-bandwidth cavities offer convenient and efficient routing of quantum information, in an interesting
regime that combines strong coupling with the atom and high-rate information exchange with the quantum
channel. However, critical control of coupled atoms for the quantum node operation, is hindered by the
strong Purcell effect, the miniaturized geometry and the high-bandwidth property of such cavities.

In this thesis, I report on my contributions towards a high level of control of individual atoms coupled
to a high-bandwidth cavity. To this end, three new experimental techniques were developed specially
adapted to high-bandwidth fiber cavities, with the following specific goals: (i) intracavity ground-state
cooling of single atoms; (ii) atom position detection by fluorescence imaging independent from the cavity
transition; (iii) cavity loading of small atomic ensembles with increased density.

In the first part of this work, I present the experimental setup, consisting of a fiber Fabry-Pérot cavity
(FFPC) coupled to 87Rb atoms, and the necessary experimental apparatus to operate the system in a
stable manner. I start by motivating the advantage of high-bandwidth cavities with a brief discussion
on cavity-mediated light-matter interfacing, and the peculiar strong coupling regime. Then, I give an
overview of the complete system with emphasis on the recent technical upgrades, such as an improved
cavity stabilization, an upgraded Raman laser setup with a linewidth-reduced DBR laser, and a new
cavity-compatible imaging system. Lastly, I introduce the basic experimental toolbox for atomic control
that we employ to operate the atom-cavity module: (i) cavity-based atom detection; (ii) cooling with a
magneto-optical trap (MOT) and trapping with a 3D lattice; (iii) state initialization by optical pumping;
(iv) Raman hyperfine manipulation; (v) position detection by imaging. Most of my work was to extend
such basic toolbox for an improved atomic control, with the techniques presented in the next chapters.

In Chapter 3, I report successful cooling of a single 87Rb atom to its one-dimensional motional ground
state while coupled to the FFPC, by degenerate Raman sideband cooling (dRSC). We overcome the
challenge of cooling in such high-bandwidth atom-cavity modules, by adapting the degenerate dRSC
technique to our cavity and lattice geometry. Raman cooling transitions are driven by the trapping lattice
and repumping by the intracavity probe field, without the need of additional lasers and activated by the
magnetic bias field. The resource-efficient and simple implementation is a highlight.

In Chapter 4, I present a newly implemented method in our system for successful fluorescence imaging
of small atomic ensembles coupled to a high-bandwidth FFPC, that overcomes the inhibiting Purcell effect
and the restricted optical access. It is based on techniques from the field of quantum gas microscopes
and relies on the detection of repumper fluorescence on the D1 line generated by three-dimensional (3D)
continuous Raman sideband cooling (cRSC). Thus, it remains fully independent from the cavity on the D2
line, for simultaneous operation of the atom-cavity node and position detection of the atoms. It requires
only a single free-space beam together with intra-cavity fields, ideal for platforms with limited optical
access, e.g. miniaturized quantum optical devices. The repumper-induced differential light shifts and the
heating by dipole-force fluctuations (DFFs) are also analyzed.

In Chapter 5, I introduce a novel and simple method to load the intracavity lattice: the drive-through
loading. It only relies on the dynamic control of intensity and phase of one lattice arm that works as
a conveyor belt between the MOT and the intracavity lattice. I discuss the working principle of the
technique, demonstrate that its efficiency, and show its tuning capability of the cavity-coupled atom
number. In the last chapter, I summarize the advances presented here that extend the toolbox for control
and manipulation of atom-cavity systems, impacting in the development of quantum networks. The three
new techniques presented here, with a future implementation of single-atom addressing, pave the way for
creating atomic arrays with predefined number and positions in the cavity: a cavity-quantum register.
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CHAPTER 1

Introduction

One single atom placed between two tiny mirrors — a cavity, fabricated on the tips of optical
fibers thin like hairs — interacts and exchanges information bits with a single quantum of
light — a photon — that bounces thousands of time between the mirrors. While this idealistic
scenario could well be worthy of an Isaac Asimov’s novel, it is in fact presently the core

research of multiple state-of-the-art laboratories around the globe to develop new quantum technologies.
Harnessing the ability of a cavity to interface single atoms and single photons is a good illustrative

example of the current second quantum revolution [3, 4]. This revolution applies the knowledge of the
quantum world acquired from the first quantum revolution to create quantum technology devices for a
broad range of applications. Along this line, the discovery by E. M. Purcell that a cavity can modify the
emission properties of an atom is now an essential piece for the development of a quantum internet [5, 6],
as will become clear later. Nowadays quantum technology has become so integrated in our society, that
recently the first mobile phone with a quantum chip arrived on the market [7, 8].

A major goal pursued in quantum technology during the last decades has been to create quantum
networks [9, 10] that would allow to distribute quantum information in an analogous way to distributing
classical information via the present internet [5, 6]. In quantum networks, flying qubits travel through
quantum channels, which are interconnected by quantum nodes capable of generating, processing and
storing quantum information in the form of stationary matter qubits [11]. Given the wide spread use
of optical fibers, optical photons are ideal candidates for flying qubits. However, much effort has
been invested into different platforms to implement the nodes [12, 13], which have to fulfill stringent
requirements to enable efficient, deterministic and coherent exchange of quantum information between
the photons and the matter counterpart.

Presently, cavity quantum electrodynamics (CQED) is a well established platform to serve as the
quantum nodes [14–16], enabling interchange of quantum information between single atoms (matter
qubits) and single photons [17–20]. Fiber-based Fabry-Perot cavities (FFPCs) [21–23] offer a promising
approach, that combines strong atom-cavity coupling 𝑔 and strong Purcell effect in a cavity with high-
bandwidth ^ [24], characterized by 𝑔, ^ ≥ 𝛾 and 𝑔 ≈ ^ with 𝛾 the free space decay rate of the atom. The
main breakthrough of such miniaturized cavities is that they allow for information flow at high-rates, while
still providing the necessary conditions for the strong coupling regime, with a cooperativity 𝐶 =

𝑔2

2^𝛾 ≫ 1.
This unique feature of FFPCs arises from their highly confined mode volume 𝑉 that boosts the coupling
strength 𝑔 ∝ 1√

𝑉
.

A single-sided design, with one mirror of higher reflectivity that the other as shown in Figure 1.1 (a),
further positions FFPCs as an ideal platform for quantum nodes: the intrinsic fiber coupling to a single
input-output channel enables convenient and efficient routing of photons carrying quantum information
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Figure 1.1: (a) A high-bandwidth and single-sided FFPC (reflectivities 𝑅1 < 𝑅2 ≃ 1) serves to efficiently
interface atomic qubits with photonic quantum information routed on a fiber network through the quantum channel.
Complementary information of number and position of the atoms is obtained through the imaging channel. The
two channels are kept independent by operating at different atomic transitions. Figure from the publication [2],
summarized in Chapter 4 and included in Appendix B. (b) Survey of cavity QED experiments (non-exhaustive)
with normalized parameters {𝑔, ^, 𝛾} and 𝐶 = 𝑔2/2^𝛾 as presented in Ref. [23]. Experiments using FFPCs (in
red, from left to right [24–32]) are shown with respect to atom-field coupling strength 𝑔/𝛾 versus cavity-field
outcoupling rate ^/𝛾, and compared to a small set of bulk-cavity systems (in blue, from top to bottom [33–35]).
The FFPC used in our experiment [24] is marked with a star. Figure adapted from Ref. [23].

from and to the optical fiber, i.e. the quantum channel, mediated by the cavity-coupled atoms. The above
argument is further supported when illustrated by a survey of existing cavity QED experiments in terms
of the normalized strengths of atom-field coupling 𝑔/𝛾 and cavity-field outcoupling ^/𝛾, as presented
in [23] and shown in Figure 1.1 (b). One can directly notice the advantages of FFPCs compared to bulk
cavities. The FFPC in our experiment with (𝑔, ^, 𝛾) ≈2𝜋 × (80, 41, 3) MHz has been highlighted with a
star.

In recent years, important basic functionalities of quantum nodes have been demonstrated in various
proof-of-principle experiments, with a single atom (or few atoms) both in FFPCs and in bulk cavities.
These breakthrough implementations include, among others, highly efficient and deterministic single
photon sources [36, 37], the storage and retrieval of a single photon using just a single atom [38], the
bandwidth conversion of a single photon mediated by a single cavity-coupled atom [39], and prototypes
for quantum memories and quantum repeaters [26, 40]. In our experiment, most of the previous results,
as the demonstration of strong Purcell broadening of an atom [24], and the storage of weak pulses beyond
the adiabatic regime [41], have been performed with single cavity-coupled atoms.

For more advanced applications it is highly desirable, if not indispensable, to increase the number of
atoms coupled to the cavity. The most obvious advantage is to overcome the limit for the single-atom
coupling strength 𝑔, restricted by the smallest mode volume 𝑉 technically achievable, by exploiting the
Dicke enhancement which occurs for 𝑁a identically coupled atoms and scales as 𝑔𝑁 ∝

√
𝑁a · 𝑔 [42–44].

Such an enhancement can boost the quantum node efficiency [45, 46], and could enable cavity-mediated
bandwidth-matching between diverse quantum emitters, e.g. semiconductor quantum dots (𝛾 ≈ 1 GHz)
and neutral atoms (𝛾 ≈ 6 MHz). Moreover, promising novel implementations relying on atomic ensembles
inside cavities have been recently proposed, such as dissipative protocols for robust maximally entangled
states [47, 48] (demonstrated with ions in Ref. [49, 50]), a highly scalable architecture for quantum
computing [51] and platforms for analogue quantum chemistry simulations [52].
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Most of the multi-atom implementations require a high level of control over the individual atoms,
namely trapping and cooling techniques to freeze their motion, as well as detection methods to acquire
knowledge on the number of emitters and their relative positions within the cavity mode [47–50, 53]. In
the case of the FFPC setup shown in Figure 1.1 (a) this knowledge can be acquired through a secondary
imaging channel, independent from the primary quantum channel. The detection and control of single
atoms has been a vivid subject of research in the last 50 years [54, 55], prompting the development of a
broad range of experimental techniques, among which fluorescence imaging has become the working
horse for the detection of individual neutral atoms [56–58]. For a nondestructive imaging scheme,
appropriate cooling methods [59, 60] need to be applied simultaneously to compensate for the heating
induced by photon scattering, while the atoms are kept in place in conservative trapping potentials, e.g.
in dipole traps and optical lattices [61–63].

However, high-bandwidth cavities impose a series of difficulties for the high-level of atom control that
is required for quantum-node operation. Standard imaging and cooling techniques are hindered by the
strong Purcell effect, the miniaturized geometry and the high-bandwidth property of such cavities. This
motivates the need of new atom control techniques, or the clever adaptation of standard ones, e.g. for
cooling, imaging and loading atoms coupled to FFPCs. Such motivation sets the stage for my thesis work
following our vision of a fiber-integrated quantum node as shown in Figure 1.1 (a). In such a node small
atomic ensembles are loaded into the FFPC mode where they interface photons on the quantum channel
while also acquiring information through the independent auxiliary imaging channel. With this goal in
mind, my thesis work consisted in developing and implementing cooling, imaging and loading techniques
for atoms in our FFPC experiment.

This thesis is organized with the following structure. In Chapter 2, I give an overview of the experimental
apparatus, including the basic toolbox for control and manipulation of the internal and external degrees
of freedom of 87Rb atoms. In Chapter 3, I present the adaptation of degenerate Raman sideband cooling
(dRSC) to our lattice and cavity geometry, resulting in successful ground-state cooling of single atoms.
Then, in Chapter 4, I introduce a new imaging scheme based on continuous Raman sideband cooling
on the D1 line, that ensures the independence of quantum channel and imaging channel. Further, in
Chapter 5, I introduce a novel and simple method to load the intracavity lattice with multiple atoms,
relying only on the intensity and phase control of the lattice. Finally, the conclusive Chapter 6 discusses
the possible influence of the new atom control techniques on the development of quantum networks, and
comments on the next steps towards a cavity-quantum register [64].
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CHAPTER 2

Scientific apparatus and experimental toolbox

Successful operation of an atom-cavity quantum node, as the one proposed in Figure 1.1 (a) with
our experiment, requires an extraordinary level of control of single atoms inside the optical
cavity [14, 19, 68, 69]. Such control relies on advanced laser-based techniques developed over
the past decades for cooling, trapping and detecting individual atoms, as well as measuring and

manipulating their quantum state [55, 70–73].
As mentioned in Chapter 1, fiber Fabry-Pérot cavity (FFPC) in our experiment offers clear advantages

as a light-matter interface (i.e. strong coupling, high-bandwidth, intrinsic network coupling) [23]. It thus
provides the necessary characteristics for a high speed quantum node, as the one proposed in Figure 1.1 (a),
by coupling small atomic ensembles. However, it also entails additional challenges for the control of the
cavity-coupled atoms. Consequently, standard techniques must be adapted or new methods developed to
be compatible with high-bandwidth cavities. Towards the goal of a multi-atom-cavity node, a complex
experimental apparatus has been developed over the course of four PhD generations, mine being the last,
by my predecessors M. Martı́nez-Dorantes [74], J. Gallego [75] and T. Macha [76].

In this chapter∗, I briefly introduce the scientific apparatus and summarize the key techniques that
constitute the basic toolbox used in our experiment for control of 87Rb atoms. I will start with an
introduction to the light-matter coupling formalism in Section 2.1, with the aim of motivating the
advantages of our high-bandwidth fiber cavity as a light-matter interface. Then in Section 2.2, while still
giving a complete overview of the experiment, the main focus will be on the changes and upgrades made
to the previous system. In Section 2.3 I describe the basic experimental toolbox for atom control and
operation of the atom-cavity module. It comprises standard manipulation and detection techniques for
the atomic external degrees of freedom — cooling and trapping (Sec. 2.3.2), and position detection by
imaging (Sec. 2.3.5) — and for the internal degrees of freedom — state preparation (Sec. 2.3.3), Raman
manipulation (2.3.4), and cavity-based state detection (Sec. 2.3.1) — that will be used and extended in
the following chapters.

2.1 A fiber–based cavity for high–bandwidth quantum nodes

The capability of cavities to act as light-matter interfaces is based on the discovery by E. M. Purcell, who
realized that the spontaneous decay rate of excited atoms could be altered by tailoring the density of

∗ Contribution statement: The upgrades to the experimental setup presented in this chapter were implemented under my lead
as a team effort with my colleagues Pooja Malik, Maximilan Ammenwerth and Lukas Ahlheit. Part of the characterizations
included here are contained in their respective M.Sc. theses [65–67]. Some fragments are based on my publications [1, 2].
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available electromagnetic states with which it can interact, for instance by coupling the atom to an optical
cavity [77].

Nowadays this surprising effect, i.e. the Purcell effect, is being applied to develop the nodes of future
quantum networks [14–16]. By coupling an atom to an optical cavity, it is possible to coherently exchange
quantum information between a photonic qubit and the atom[17–20]. This is the principle behind quantum
memories and quantum repeaters [26, 38–40].

Specially promising for this goal are fiber-based optical cavities that feature multiple advantages,
among which is their intrinsic fiber coupling to the quantum network, and the potential to provide a
high-bandwidth for fast quantum information routing [41]. The regime of a high-bandwidth module and
an efficient light-matter interfacing, is something very particular offered by fiber-based cavities [23, 24].
This last point sets the stage for this thesis, with the goal of coupling multiple atoms to the high-bandwidth
fiber cavity in our experiment [41].

2.1.1 An atom-photon interface

A single two-level atom in a closed cavity

The light-matter interaction at the quantum level between a single two-level atom and a single quantized
mode of electromagnetic field, i.e. in an ideal closed cavity system, is described by the well known
Jaynes-Cummings model [78, 79]. The Hamiltonian of the system given by

�̂�JC = ℏ𝜔𝑎 �̂�
†�̂� + ℏ𝜔𝑐 �̂�

†�̂� + ℏ𝑔0

(
�̂�†�̂� + �̂� �̂�†

)
, (2.1)

where the first term represents the energy of the atom with transition frequency 𝜔𝑎, the second term the
energy of the quantized light field with frequency 𝜔𝑐, and the third term the light-matter interaction
with a coupling rate 𝑔0. The terms �̂�†, �̂�, �̂�†, �̂� are the raising and lowering operators of the respective
systems. The rate 𝑔0, called the single-photon Rabi frequency, gives the coupling strength between the
two-level atom and a single cavity photon, in other words the rate of coherent energy exchange between
the atom and the photon. It is given by the expression

𝑔0 = 𝑑

√︂
2𝜔𝑐

ℏY0𝑉
, (2.2)

where Y0 is the vacuum permittivity and 𝑉 is the volume of the cavity mode. Since the cavity mode is a
Gaussian beam with a standing wave pattern, the position of the atom inside the mode affects the coupling
as

𝑔 = 𝑔0 | sin(𝑘𝑧) | 𝑒−(𝑥2+𝑦2 )/𝑤2
0 , (2.3)

for a cavity with mode waist 𝑤0 aligned with the 𝑧-axis.
The energy eigenvalues of the system are given by

𝜔± =
𝜔a + 𝜔c

2
± Ωeff

2
, (2.4)

where Ω2
eff = 4𝑔2 + (𝜔c − 𝜔a)2 is the effective single-photon Rabi frequency. The energy bands exhibit

an avoided crossing, with an energy splitting with respect to the original bands of the uncoupled atom
and cavity systems, with value 2ℏ𝑔: the so called vacuum Rabi splitting (VRS).

6



2.1 A fiber–based cavity for high–bandwidth quantum nodes

A single two-level atom in an open cavity

However, in real-life experiments dissipation channels must be taken into account, for instance the leakage
of the cavity field and the spontaneous decay of the atom into free space. In fact, the leakage of the cavity
is desired for quantum technologies because it allows the information exchange between the atom-cavity
node and the user. In this case, the system is an open quantum system that is properly described by the
master equation formalism [80], which goes beyond the scope of this thesis. A detailed discussion on the
topic can be found in Ref. [75].

Yet, a convenient model uses the week excitation approximation — a system of a two level atom in a
cavity with a single excitation — to describe the dissipative system with the non-hermitian Hamiltonian
�̂�diss [81, 82] defined as

�̂�diss = �̂�JC − 𝑖ℏ(𝛾�̂�†�̂� + ^�̂�†�̂�) , (2.5)

where the additional term accounts for the cavity-field decay at rate ^ and the spontaneous decay of the
atom at a rate 𝛾 = Γ/2.

The eigenvalues of this system �̃�± are complex numbers, that I will not display here but can be found
in Ref. [32, 35]. They are nevertheless plotted in Figure 2.1 (a) as a function of the coupling strength 𝑔

for the resonant case (𝜔𝑎 = 𝜔𝑐). Their real part Re(�̃�±) determines the resonance frequency while the
imaginary part ±Im(�̃�±) gives the linewidth of the resonance. The different coupling regimes will not be
discussed here as a detailed description is given in Ref. [75].

A figure of merit for the light-matter interfacing of the system is the so called cooperativity 𝐶, given by

𝐶 =
𝑔2

2^𝛾
, (2.6)

which describes the coherent coupling 𝑔 with the incoherent processes ^, 𝛾. The cooperativity also
determines the ratio of the photon emission rate by the atom into the cavity mode with respect to emission
in free-space [23]

[ =
2𝐶

1 + 2𝐶
, (2.7)

which is a highly important parameter for efficient quantum node applications [83].

The strong coupling regime

The most interesting regime for quantum nodes is the strong coupling regime, with 𝐶 > 1. The
interpretation of this condition is that the atom can interact coherently with the same cavity photon
multiple times before it is lost. It is in this regime that an atom-cavity quantum node can operate efficiently,
since it allows the reversible exchange of information between the photon carriers and the atomic memory.
On the other hand, it is highly desirable for a quantum node to have a high-bandwidth of information
exchange, i.e. a large cavity linewidth ^.

In Figure 2.1 (a) we see that in the strong coupling regime, the resonance bands are well separated,
such that the VRS can be measured. In fact, the ability to resolve the VRS is the unambiguous footprint
of being in the strong coupling regime. Such a measurement in our system was made in Ref. [24] and an
example for a single atom is shown in Figure 2.1 (c). We will see in Section 2.3.1 that this provides a
non-destructive method to measure the internal states of the atoms.

In Equation (2.2) we saw that the coupling rate 𝑔 depends on the cavity mode volume as ∝ 𝑉−1/2. This
sets the motivation to go for miniaturized cavities, where the greatly confined mode volume can allow
a high-bandwidth ^ while still remaining in the strong coupling regime. This is notable case of fiber
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Chapter 2 Scientific apparatus and experimental toolbox

Fabry-Pérot cavities (FFPCs) [23], as the high-bandwidth FFPC in our experiment which is the core
motivation of this thesis.

Collective coupling of multiple atoms to the cavity

The coupling of multiple two-level atoms to a cavity is described by the more complex Tavis-Cummings
model [84]. While I will not give any detailed description of the model, it is still worthwhile to motivate
the benefits of coupling atomic ensembles to the cavity, since it is an important motivation of this thesis.

The main effect is that, in the situation of individual coupling with 𝐶1 of each of atom 𝑁a to the cavity
mode simultaneously, the system behaves like a single “super atom” with a collective coupling 𝑔𝑁 =𝑔0

√
𝑁a.

Consequently, the cooperativity depends linearly on the number of coupled atoms, i.e. 𝐶𝑁 = 𝐶1 · 𝑁a. This
allows for example to tune the cooperativity of the system without any change to the cavity. Furthermore,
with the right placement of the atoms in the resonator mode, the Dicke effect of coherent enhancement [42]
can lead to collective effects [85] such as superradiance, which would boost the efficiency of the quantum
node for collective storage and readout of photonic qubits [11].

However, in a realistic scenario, all the atoms will not couple with the same strength to the cavity, such
that for the collective coupling one must consider the position distribution of the atoms in the cavity.
Depending on the specific spatial distribution, the coupling 𝑔𝑁 will be reduced by certain factor. In the
end it can be seen as if a lower number of atoms (with maximal coupling 𝐶1) was coupled to the cavity,
i.e. an effective atom number 𝑁eff = 𝛼𝑁a. The effect on the collective coupling is then written as

𝑔𝑁 = 𝑔0
√︁
𝛼𝑁a , (2.8)

where the factor 𝛼 depends only on the position distribution of the atoms within the intensity profile of
the cavity mode.

It is clear from Equation (2.8) that a cavity loading technique that leads to very inhomogeneous position
distributions is highly detrimental for the collective coupling. This was was observed in our system in
Ref. [75] using the conveyor belt feedforward transport loading that will be presented in Section 2.3.2.
This gave the motivation to develop a new loading technique that would lead to a more compressed denser
loading, which will be presented in Chapter 5.

Our high-bandwidth FFPC

Our experiment is based on a fiber Fabry-Pérot cavity (FFPC), with the mirrors fabricated on the end facets
of optical fibers [21, 22]. The top mirror has a higher transmission (HT) than the low transmission (LT)
bottom mirror, creating a single-sided resonator with a single input-output channel (recall Figure 1.1 (a)),
which is beneficial for optical-fiber-network integration.

The advantages of FFPCs have been well summarized in Ref. [23]: (i) high field concentration, (ii)
integration with optical fibers, (iii) high optical qualities, (iv) small footprint, (v) open geometry, (vi)
integration with other functional components.

In particular, FFPCs [21–23] offer an interesting regime, that combines strong atom-cavity coupling 𝑔

and strong Purcell effect in a cavity with high-bandwidth ^ [24], characterized by 𝑔, ^ ≥ 𝛾 and 𝑔 ≈ ^.
The FFPC in our experiment is in such high-bandwidth and high-coupling regime. When coupled on

the 87Rb D2 |𝐹 = 2⟩ → |𝐹′ = 3⟩ cycling transition (see Figure 2.1 (b)), we obtain CQED parameters
(𝑔, ^, 𝛾) = 2𝜋 · (80, 41, 3) MHz [22, 24]. With this, our cavity is deep in the strong coupling regime, has
a high bandwidth, and lies close to the Goldilocks condition for impedance matching with 𝑔 and ^ on the
same order. Further relevant parameters of the system have been compiled in Appendix D.2.
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2.1 A fiber–based cavity for high–bandwidth quantum nodes
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Figure 2.1: Cavity-enhanced atom-light interaction and cavity-based atom detection. (a) Spectrum of the open,
non-driven atom-cavity system as discussed in [75], here with parameters (^, 𝛾)=2𝜋 × (41, 3) MHz. The complex
eigenvalues �̃�± of the non-Hermitian Hamiltonian �̂�diss = �̂�JC − 𝑖 ℏ (𝛾 �̂�†�̂� + ^ �̂�†�̂�) are plotted with respect to the
atomic frequency 𝜔a (i.e. the detuning �̃�± −𝜔a), as a function of the atom-cavity coupling strength 𝑔. The real part
of �̃�± determines the center of the resonance, while the imaginary part gives its linewidth. Figure from Ref. [76].
(b) In our system, with the cavity resonant on the 87Rb |𝐹 = 2⟩ → |𝐹′ = 3⟩ cycling transition, we measure an
average 𝑔≈2𝜋 × 80 MHz placing us deep in the strong coupling regime. This allows us to measure the vacuum
Rabi splitting (VRS) of the energy spectrum. The cavity probe beam on the same transition serves to interrogate
the system, e.g. for the non-destructive atom detection, see (c) and (d). (c) Exemplary measurement of the VRS for
a single atom, with the cavity on resonance, by scanning the probe laser frequency 𝜔p and monitoring its reflection
with single photon counter modules (SPCMs), as presented in Ref. [75]. As a function of detuning 𝜔p − 𝜔a, the
reflection spectrum of the empty cavity (in red) is compared to the spectrum of the coupled atom-cavity system (in
yellow). (d) Histogram of the reflection signal (binned in 10 ms) for a set of measurement repetitions, with the
probe on resonance with the atom-cavity system (𝜔p = 𝜔a) in (c), featuring a clear bimodal distribution. We then
use a threshold method to discriminate single measurements between cavity-coupled (yellow) and uncoupled (red)
scenarios, with ∼97 % fidelity [75]. Depending on the absence or presence of a |𝐹 = 1⟩ → |𝐹′ = 2⟩ repumper in
(b), the measurement is a non-destructive state detection or an atom presence detection.

To put it in perspective with respect to other CQED experiments, we refer to the survey of parameters
{𝑔, ^, 𝛾} and 𝐶 = 𝑔2/2^𝛾 of CQED experiments by Ref. [23] shown in Figure 1.1 (b). We identify our
experiment (marked as a star) among other fiber-cavity experiments (red circles) and few bulk-cavity
ones (blue squares). It directly becomes clear that fiber cavities are very superior to bulk cavities. As we
discussed earlier, from Equation (2.8), the rate 𝑔 and thus the cooperativity 𝐶 have the potential to be
enhanced by coupling small atomic ensembles to the cavity.

Previous experimental results of our system include the measurment of strong Purcell broadening of a
single atom [24], and the storage and readout o short light pulses in the non-adiabatic regime. But all
these experiments were mainly performed with a single cavity-coupled atom. More recent results were the
development of a cooling method [1] and an imaging technique [2] adapted for high-bandwidth cavities,
which are main parts of this thesis (Chapter 3 and Chapter 4). In the following section of this chapter I
will then provide the knowledge and details about the experimental apparatus that is the foundation for
operating our FFPC quantum node.

Sadly, the end of my thesis work was marked by the end of the fiber cavity: an accident with the ion
pump of the vacuum system resulted in the permanent damage of the FFPC, triggered by the progressive
finesse degradation suffered by the cavity ever since its installation in vacuum [75]. A note on this can be
found in Appendix D.1.
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Chapter 2 Scientific apparatus and experimental toolbox

2.2 Overview of the experimental apparatus

At the core of our experiment is a high-bandwidth FFPC with few 87Rb atoms strongly coupled to its
single mode field. The experimental apparatus necessary to achieve such scenario is presented graphically
in a simplified form in figures 2.2 and 2.3. The first figure shows the vicinity of the cavity inside an
ultra-high vacuum system (10−10 mbar) [74], with the main optical elements and the light fields required
to operate the atom-cavity node. The second figure presents the lasers system and stabilization schemes
needed to provide reliable light sources for the beams impinging on the atoms inside the cavity, as shown
in Figure 2.2. A thorough discussion of the setup can be found in previous theses [74–76], thus in the
following I will only give an essential description of the system, hand in hand with both Figure 2.2 and
Figure 2.3 which are fairly self-explanatory. Certain modules relevant for the techniques used in this
thesis will be discussed in more detail in Section 2.3.

A typical experimental sequence starts with atoms being captured and cooled with a small magneto-
optical trap (MOT) [86] created ∼1 mm away from the cavity center (see Sec. 2.4). Then, they are loaded
into a standing wave dipole trap along the 𝑦-axis (the DT𝑦 lattice) that transports the resulting atom-chain
toward the cavity with the conveyor belt technique [87–89].

Within the cavity, the atoms become trapped in a three-dimensional (3D) optical lattice [61, 90], formed
in the 𝑥𝑦-plane by two pairs of red-detuned counter propagating beams, namely the DT𝑥 and DT𝑦 lattices
with wavelength 868 nm. Along the 𝑧-axis the confinement is provided by the blue-detuned intracavity
field of the lock laser that stabilizes the cavity length, namely the DT𝑧 lattice with wavelength 770 nm.
More on the optical lattice is found in Section 2.4.

To obtain a directional single-sided cavity, as desired for a network-integrated quantum node (see
Chapter 1, Figure 1.1 (a)), the top mirror has a higher transmission (HT) relative to the very low
transmission (LT) bottom mirror. The HT port is used as the input-ouput quantum channel, through
which a 780 nm probe beam is coupled to resonantly interrogate the atom-cavity system. The probe laser
is locked to the 87Rb D2 line with a Doppler-free polarization spectroscopy scheme [91]. The cavity
is stabilized to a length that features a simultaneous resonance at 780 nm and at 770 nm, i.e. with the
probe light and the lock laser respectively. In this configuration, trapping sites at intensity minima of DT𝑧

coincide with intensity maxima of the probe standing wave at the cavity center, providing an atom-cavity
interaction in the strong coupling regime [24], see Section 2.1. The probe light reflection is monitored by
single-photon counter modules (SPCMs), enabling the non-destructive detection of atom presence and
their internal state [24, 92], see Section 2.3.1.

At this point the system resembles a textbook-like atom-cavity node ready for interfacing single photons
and coupled atoms. However, the interaction with multiple additional light fields is still needed for the
required level of atom control as shown in Figure 2.2. These are also the modules in which I implemented
technical upgrades to the system, which I will briefly discuss in the following.

An auxiliary atomic line for optical pumping and illumination. The bottom LT mirror is used as
input port for two 795 nm beams, the optical pumping (OP) laser and the repumper, resonant with the
atoms on the D1 line but not with the cavity. These beams are sourced by two DFB lasers [76] that replace
the previously used home-built grating lasers, providing high long term stability. They are stabilized by
Doppler-free polarization spectroscopy to a common atomic vapour cell, to avoid differential effects due
to e.g. from magnetic field fluctuations [93]. More on the optical pumping scheme of the experiment
is discussed in Section 2.3.3. These beams also provide illumination light for fluorescence imaging
of the atoms, providing knowledge on the number of atoms and their position within the cavity mode.
Photons scattered by the atoms are collected with one of the in-vacuum high-NA lenses along the 𝑥 axis
and recorded with an EMCCD camera. The implementation of a fully new imaging scheme represents
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Figure 2.2: Simplified diagram (not to scale) of the experimental system to trap and couple 87Rb atoms to the
high-bandwidth fiber Fabry-Pérot cavity (FFPC), (a) viewed from the side and (b) from the top. Atoms captured in a
MOT outside the cavity are delivered by an optical conveyor belt to its center, where they couple to the cavity mode
while trapped in a 3D lattice (red-detuned in the 𝑥𝑦-plane, blue in the 𝑧-axis). We use the intrinsic fiber coupling of
the cavity to feed-in multiple laser fields. The high-transmission (HT) mirror serves as input port for the probe
and pulse fields that resonantly address the atom-cavity system, monitored in reflection by single-photon counter
modules (SPCMs), and additionally for the lock laser (off-resonant with the atoms) that stabilize the cavity and
creates a vertical lattice. The low-transmission (LT) mirror is reserved for the cavity-off-resonant optical pumping
beams. In free space an off-resonant Raman beam along the 𝑦-axis, in pair with the cavity lock laser, serves for
cooling the atoms. An additional resonant Raman beam along the 𝑥-axis controls the storage of weak light pulses
from the pulse laser [76]. One of the high-NA lenses that focuses the lattice beams also collects photons emitted by
the atoms for imaging with an EMCCD camera, using the optical pumping beams for illumination. (c) One main
upgrade to the system was to migrate the imaging method to the 87Rb D1 line from the previously used D2 line [74,
75], enabling position detection of the atoms and simultaneous operation of the atom-cavity node which was not
possible before. A more detailed description is given in the main text. The figure is adapted from Ref. [75, 76]
showing the evolution in complexity of the system.
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Figure 2.3: Overview of the lasers system and locking schemes needed to stabilize the fiber cavity, and to provide
reliable sources for the beams involved in the experiment, see Figure 2.2. The cavity length (i.e. resonance) is
stabilized with the Pound-Drever-Hall (PDH) technique to the 770 nm lock laser, which is phase-locked to an
optical frequency comb. The 780 nm probe laser is referenced to aD2-line spectroscopy setup. In the light-sealed
module, lock and probe beams are overlapped and fiber-coupled into the cavity through the high-transmission (HT)
mirror. The weak probe reflections is monitored with SPCMs for non-destructive atom detection (Sec. 2.3.1), while
the lock laser reflection is detected by an APD for the PDH lock. The 770 nm Raman laser is phase-locked to the
lock laser and used in pair for intracavity cooling (Sec. 2.3.4), entering the cavity in free-space from the side. The
795 nm optical pumping (OP) and repumper beams are locked to a common D1 line atomic spectroscopy reference.
They are cavity-coupled together through the low-transmission (LT) fiber mirror, and used for state initialization
(Sec. 2.3.3) and as illumination beams for the new imaging scheme (Sec. 2.7). Two key upgrades to the apparatus
are marked as grey shaded rounded boxes and are discussed in the main text: the linewidth reduction setup for the
Raman laser and the PDH-offset lock. Omitted here are the MOT lasers module [74], the TiSa laser module to
source the optical lattice beams [74, 75], and the pulse-storage module [76]. Figure adapted from Ref. [75, 76].
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another upgrade to the system, see Section 2.3.5. The imaging channel on the atomic D1 line remains
fully independent from the cavity interaction on the D2 line, and thus insensitive to the Purcell effect that
did not allow for simultaneous operation in the past.

Raman transitions for cooling and imaging. An additional 770 nm beam, the so called Raman laser,
is phase-locked to the lock laser and shines into the cavity in free space form the side. Together with the
intracavity lock field, they form a pair of Raman beams to manipulate the hyperfine states of the atoms
and cool their vibrational energy in the lattice, see Section 2.3.4. These beams are also essential for a
novel Raman imaging technique presented in Chapter 4. An upgrade to the previous system consisted in
replacing the light source for the Raman beam from an interference-filter laser, to a DBR laser providing
long term stability, which we upgraded for linewidth-reduction with an external optical feedback (shown
simplified in Fig. 2.3 as a grey-shaded rounded box, details in Appendix B.7).

An improved cavity stabilization to reduce atom heating. The cavity stability relies on a locking-
chain scheme implemented by [76], where the lock laser is phase-locked to an optical frequency comb
for high stability. In turn the cavity is stabilized to the lock laser with Pound-Drever-Hall (PDH)
technique [94]. In previous generations, offset fluctuations of the PDH error signal zero-level were
observed, attributed to interference effects in the multiple reflections of lock-laser light at the fiber splicing
points [75], thus with a highly unpredictable behavior, e.g. susceptible to light air currents or temperature
drifts. Efforts to reduce the fluctuations with Through the PDH feedback loop, this offset translated into
an offset of the cavity resonance with respect to the lock laser placing it on one slope of the transmission
spectrum instead of at the top. The direct consequence was that any phase fluctuations between the lock
and the cavity (e.g. from laser noise, or mechanical resonances of the cavity mount) were converted by
the frequency discrimination into intensity fluctuations of the DT𝑧 lattice leading to strong heating of the
atoms. This became evident by the lifetime of trapped atoms in the 3D lattice DT𝑥𝑦𝑧 inside of the cavity
without cooling of ∼1 s compared to ∼15 s in the 2D horizontal lattice DT𝑥𝑦 (lock laser blocked) [76].

As a solution, we have implemented a simple scheme to lock the offset of the PDH signal by
compensating the fluctuations, shown in a grey-shaded rounded box in Figure 2.3, described in the
following. A small modulation from a local oscillator (LO) is added (by capacitive coupling) to the
feedback signal from the PDH lock driving the the cavity piezos, at a frequency 𝑓 ≈600 Hz away from
any mechanical resonance and harmless for the atoms. This translates into a modulation of the reflection
signal of the lock laser, at a frequency 2 𝑓 if on resonance with the cavity but with an 𝑓 -component if on
the slope. The measured signal of the lock reflection is fed into a lock-in amplifier, which also receives the
same signal 𝑓 from the LO for demodulation. The lock-in amplifier provides a DC voltage proportional
to the 𝑓 -component of the reflection signal, which has the same magnitude but opposite sign than the
unwanted PDH offset fluctuations. Finally the DC offset is added as a correction to the PDH signal
driving the cavity piezos. When activating this additional simple stabilization scheme in our experiment,
we observe an increase in trapping lifetime in the DT𝑥𝑦𝑧 lattice to ∼3 s from the previous ∼1 s, without
cooling. Under continuous Raman cooling it reaches ∼1 min (see Chapter 4).

2.3 Manipulation and detection of degrees of freedom of the atoms: the
basic toolbox

The successful control of individual atoms relies on addressing, manipulating and detecting the external
and internal degrees of freedom of the atoms [70, 95].
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By external degrees of freedom we refer to the position and velocity of the atoms, which can be
controlled by standard laser cooling techniques and optical traps [60, 61, 96] (see Sec. 2.3.2), and
measured with imaging methods [55] (see Sec. 2.3.5).

On the other hand, the internal degrees of freedom refer to the electronic energy states of the atoms.
In particular, in our experiment we use the 87Rb ground hyperfine states, 52S1/2 |𝐹 = 2, 𝑚𝐹 = −2⟩ and
|𝐹 = 1, 𝑚𝐹 = −1⟩, as the two qubit states for the storage of photons and their retrieval, mediated by the
cavity [41]. These two internal states can be coherently coupled in our setup by microwave fields as in
Ref. [75, 76], or by Raman beams (see Sec. 2.3.4). Furthermore, we use optical pumping to initialize the
atom to the desired state (Sec. 2.3.3), and the cavity non-destructive measurement to detect the current
hyperfine level (see Sec. 2.3.2).

More advanced cooling methods rely on coupling external and internal degrees of freedom of the
atoms, for instance the Raman cooling techniques presented in this thesis in Chapter 3 and Chapter 4.

2.3.1 Non-destructive cavity-based atom presence and state detection

The non-destructive atom detection technique is based on the capability to measure the vacuum Rabi
splitting (VRS) of single atoms coupled to the cavity (see Eq. (2.4)), as shown if Figure 2.1 (c). It is also
the hallmark that our system is in the strong coupling regime, as discussed in 2.1.

Relevant atomic transition for the atom detection are shown in Figure 2.1 (b). The probe laser is
tuned on resonance with the atom cavity system on the D2 line |𝐹 = 2⟩ → |𝐹′ = 3⟩ cycling transition,
i.e. 𝜔p = 𝜔a = 𝜔c, while the probe reflection is monitored by single-photon counter modules (SPCMs).
From Figure 2.1 (c) it is clear that for an empty (or uncoupled) cavity, the SPCM counts are low. However,
if an atom couples to the cavity mode, the induced VRS increases the reflection signal.

For a set of measurement repetitions with different atoms and with a loading probability of ∼50 %, the
SPCM counts follow a clear bimodal distribution, with one low-counts Gaussian corresponding uncoupled
cases, and another high-counts one from the coupled events, as can be seen in the histogram (10 ms
binning) in Figure 2.1 (d). By choosing an appropriate counts value as a threshold [75], we can sort
single measurements in real-time as coupled or uncoupled, featuring a binary readout of the atom-cavity
coupling state with ∼97 % fidelity [24, 92].

An additional repumper beam on the |𝐹 = 1⟩ → |𝐹′ = 2⟩ transition, impinging from the cavity side
(not shown in figures 2.2 and 2.3), is used to choose between atom presence detection or state detection.
If the repumper is enabled, both states |𝐹 = 1⟩ and |𝐹 = 2⟩ provide a positive readout, and only an
empty cavity gives a negative result, i.e. it is an atom presence detection. But if the repumper is disabled
only the state |𝐹 = 2⟩ gives a positive readout, i.e. it is a state detection. In this case an atom in the
uncoupled state and an empty cavity have the same signal, but combining a presence and a state detection
confirms that the atom is present but uncoupled.

In the rest of the thesis we will use extensively this cavity measurement method, both in the presence-
detection variant and in the state-detection one. Since the atom does not interact with the probe photons
during this measurement, i.e. the VRS inhibits the transmission of probe light into the cavity, the
measurement is highly non-destructive. A limitation that we will have to deal with is that the VRS
saturates with a single coupled atom, such that it is not directly applicable for detecting the number of
atoms inside of the cavity. However, in Chapter 5 we will show that by statistical means the average
number of atoms can still be extracted.
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Figure 2.4: Basic techniques for atom cooling and trapping. (a) Relevant energy levels of 87Rb for cooling the atoms
(not to scale). On the D2 line, the MOT cooling beams are tuned to the |𝐹 = 2⟩ → |𝐹′ = 3⟩ cycling transition, and
the repumper beams to the |𝐹 = 1⟩ → |𝐹′ = 2⟩. Additionally, for the Raman cooling scheme (more in Sec. 2.3.4)
we use the D1 line, independent from the cavity interaction. There, an optical pumping beam and a repumping
beam are near-resonant on the |𝐹 = 2⟩ → |𝐹′ = 2⟩ and |𝐹 = 1⟩ → |𝐹′ = 2⟩ transitions respectively. These beams
also serve as illumination for imaging (see Sec. 2.3.5). (b) Working principle of an optical lattice for trapping atoms.
Two counter-propagating Gaussian beams (red detuned, with beam waist 𝑤0) interfere forming a standing-wave
pattern. The ground states of the atom are shifted down, creating a chain of attractive potential wells along the
axial direction, of depth 𝑈0 and periodicity _/2, that can trap one atom each. In the radial direction, the potential
follows the beam Gaussian profile. Atoms with energy below 𝑈0 are trapped and oscillate with characteristic axial
frequency 𝜔ax and radial frequency 𝜔rad, both proportional to

√
𝑈0. With our 868 nm lattice, the excited states of

87Rb shift upward by a different amount, creating a repulsive potential. Optical transitions are shifted by the sum of
both shifts. For a blue-detuned lattice the roles are inverted. Figure (b) adapted from Ref. [75].

2.3.2 Cooling and trapping: a small MOT and an intracavity 3D lattice

A small magneto-optical trap

As presented in Section 2.2, the first step to deliver cold atoms into our FFPC is to capture and cool them
from the 87Rb background gas by a magneto-optical trap (MOT). The working principle of a MOT is
broadly covered in the literature [60, 86, 97, 98].

The design and experimental implementation in our apparatus is described in detail in Ref. [74].
The relevant 87Rb energy levels and the involved light fields are shown in Figure 2.4 (a). The cycling
|𝐹 = 2⟩ → |𝐹′ = 3⟩ transition of the D2 line is used for the cooling light, while the repumper works on
the |𝐹 = 1⟩ → |𝐹′ = 2⟩ transition. Contrary to standard MOTs with millions of atoms, our MOT is
fairly small with only few tens of atoms. It is limited by the optical access for the beams between the
in-vacuum high-NA lenses that surround the cavity (see Fig. 2.2). Nevertheless these number of atoms is
enough for our goal of coupling small atomic ensembles to the cavity. Given that the MOT cannot fit
inside of the cavity for a direct loading, it is formed 1 mm away. The atoms are then transported to the
cavity by an optical conveyor belt [87–89], i.e. the DT𝑦 lattice.

The energy of the atoms captured by the MOT follows a Boltzmann distribution with mean temperature
𝑇mot≈40 µK. This first cooling step in the sequence in essential for a decent loading probability into the
DT𝑦 lattice, and for staying trapped during the conveyor-belt transport into the 3D intracavity lattice.
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An intracavity three-dimensional lattice

Once inside the cavity, after being shuttled by the DT𝑦 lattice, the atoms are trapped in three dimension
by the optical lattice DT𝑥𝑦𝑧 introduced in Section 2.2. Here we revise the working principle of an optical
lattice for trapping atoms and provide characteristics of the intracavity lattice in our experiment. Details
on the experimental implementation are found in Ref. [74, 75].

Trapping with the dipole force. Optical dipole traps are based on the dipole coupling of an atom and
an electromagnetic field far-off resonance [61]. The working principle relies on the different scaling as
a function of the detuning ΔDT of the light-induced potential (∝ Δ−1

DT) and the resulting scattering rate
(∝ Δ−2

DT). For large detunings, it results in a conservative trapping potential given by

𝑈DT(r) =
ℏΓ2

8ΔDT
· 𝐼 (r)
𝐼sat

(2.9)

where r denotes the spatial coordinates, 𝐼sat=𝜋ℎΓ𝑐/3_3 is the saturation intensity of the atomic transition
with decay rate Γ and wavelength _, and ΔDT = 𝜔0 −𝜔DT is the detuning of the dipole trap frequency 𝜔DT
from the atomic resonance 𝜔0. In Eq. (2.9) we note that the potential is proportional to the light-intensity
pattern, i.e. 𝑈DT(r) = 𝑈0 · 𝐼 (r) with 𝑈0 the maximum trap depth. It also shows that the potential is
attractive for red-detuned beams but repulsive for blue-detuned ones.

A 1D optical lattice. An optical lattice is generated by two counter-propagating Gaussian beams that
interfere forming a standing-wave. The resulting intensity pattern is shown in Figure 2.4 (b) (lower part).
Using Equation (2.9), the corresponding trapping potential is given by

𝑈DT(𝑥, 𝑟) = 𝑈0 ·
(
𝑤0
𝑤(𝑥)

)2
· exp

(
−2

(
𝑟

𝑤(𝑥)

)2
)
· cos2

(
2𝜋
_DT

𝑥

)
, (2.10)

with (𝑥, 𝑟) the axial and radial coordinates, _DT the lattice wavelength, and 𝑤(𝑥) the Gaussian beam waist
at position 𝑥 with minimum 𝑤0 at 𝑥 = 0. Within the Rayleigh range a good approximation is to neglect
the waveform curvature and the Gouy phase of the Gaussian beam. With this, the trapping potential
geometry features a chain of lattice wells (or sites) along the axial direction, shown in Figure 2.4 (b)
(upper part), with depth 𝑈0 and spacing _DT/2. In the radial direction the potential follows the Gaussian
beam profile. In each site, a single atom can be trapped (in our experiment), because a double occupancy
results in the loss of both atoms by light-induced collisions [99, 100].

A direct consequence of the dipole interaction is an AC-Stark shift of the atomic energy levels, also
referred to as light shift. At the bottom of the trap, the 87Rb ground states shift down by Δ0,g =𝑈0.
However the excited states shift differently by an amount Δ0,e = 𝜒 · Δ0,g where 𝜒 = 𝛼𝑒/𝛼𝑔 is the
polarizability ratio between ground and excited states. The total shift induced by the lattice on the atomic
transition between ground and excited states is then Δ0 = Δ0,g + Δ0,e.

Dynamics of a trapped atom. While the full dynamics of an atom trapped inside a lattice site,
i.e. the wave function and its time evolution, can be calculated with the expression of the potential in
Equation (2.10)(e.g. see [101]), here we use the convenient harmonic approximation. Then the wave
function is described by the well known quantum harmonic oscillator model. We note that the harmonic
approximation is reasonable for cold atoms at the bottom of the trap, but for higher energetic states the
anharmonicity of the lattice potential should considered [102].
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2.3 Manipulation and detection of degrees of freedom of the atoms: the basic toolbox

The atom oscillates (vibrates) in the lattice well at quantized motional energy levels 𝐸𝑛,𝑖 = ℏ𝜔𝑖 (𝑛+ 1/2),
with 𝑛 = 0, 1, 2, ... and with characteristic oscillation frequencies 𝜔ax in the axial direction and 𝜔rad in
the radial direction. Throughout the thesis, I will use the notation |𝐹, 𝑚𝐹 ; 𝑛⟩ to represent the full atomic
quantum state, with the hyperfine level denoted by |𝐹⟩, its magnetic sublevel by |𝑚𝐹⟩ and its vibrational
state by |𝑛⟩. The oscillation frequencies 𝜔ax and 𝜔rad are commonly called trap frequencies. They depend
both on the trap depth 𝑈0 and on the size of the trapping potential, following the expressions [61]:

𝜔ax = 2𝜋

√︄
2𝑈0

𝑚Rb _
2
DT

, (2.11)

𝜔rad = 2
√︄

𝑈0

𝑚Rb 𝑤
2
0
, (2.12)

with 𝑚Rb the atomic mass, and that are also commonly expressed as linear frequencies a𝑖 with 𝜔𝑖 = 2𝜋 · a𝑖 .

Our 3D intracavity lattice. In the 𝑥𝑦 plane, the lattice is formed by two near-orthogonal red-detuned
868 nm standing-wave dipole traps (DT𝑥 and DT𝑦), and in the 𝑧 axis by the blue-detuned 770 nm
intra-cavity lattice (DT𝑧), as shown previously in Figure 2.2. In this configuration, the atoms are localized
at intensity maxima of the DT𝑥𝑦 lattice, but at point of vanishing intensity of the DT𝑧 lattice. The 3D
trapping region is defined by the waist of the beams at the intersection (𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧) = (13, 11, 5) µm. The
lattice polarizations are defined as (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) = (𝜋, 𝜋, 𝜎+), with the quantization axis of our system set
parallel to the cavity axis by applying a magnetic guiding field. The magnitude of the magnetic field will
differ for different cooling techniques, see chapters 3 and 4.

As seen in Figure 2.2, the source of the blue-detuned lattice is the lock laser that also stabilized the
cavity resonance (it will also serve as a Raman beams as we will see in Sec. 2.3.4). The source of the
red-detuned beams is a Titanium Sapphire (TiSa) laser which provides narrow linewidth.

The trap features a depth of ∼0.5 mK in each direction, that allows for confinement in the Lamb-Dicke
regime [103, 104]. This permits to resolve the motional energy states of the atoms in the lattice potential
wells, which is a strong requirement for resolved Raman sideband cooling. The lattice beams DT𝑥,𝑦 are
not fully orthogonal to DT𝑧 , but feature small angles with respect to the normal plane of the vertical
lattice (\𝑥 ≈ 15◦ and \𝑦 ≈ 6◦), which is an important feature for the 3D Raman coupling discussed in
Section 2.3.4.

Later in Chapter 4 we overlap the trap frequencies of all DT𝑥𝑦𝑧 lattice components to 𝜔𝑥𝑦𝑧,ax ≈
2𝜋 × 350 kHz to implement simultaneous Raman cooling along all directions (see Sec. 2.3.4 for more on
the Raman scheme).

Characterization of light shifts. Since the atoms sit at intensity maxima of the 868 nm light in the
DT𝑥𝑦 lattice, the atomic transitions are subject to strong light shifts (see Figure 2.4 (b)). On the contrary,
the light shifts induced by the 770 nm DT𝑧lattice are negligible because the atoms lie at intensity minima.
The shifts of the different states of the D2 line have been characterized in Ref. [74] and are not very
relevant for this work. However, the shifts of the D1 line have a great impact on our optical pumping and
imaging schemes that rely on the resonance of the 795 nm optical pumping beams. What is more, when
illuminating the atoms with near-resonant D1 light, the asymmetry in light shifts of ground and excited
states, i.e. the polarizability ratio 𝜒, leads to heating induced by dipole-force fluctuations (DFFs) [58, 105].
This will play a big role for the implementation of Raman imaging in Chapter 4, see also Appendix B.10
for a discussion of DFFs.
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We determine the shift of the D1 transition by tracking the displacement of the 795 nm repumper
beam as a function of the intensity of the DT𝑥𝑦 beams. For the employed lattice depths (∼ 0.5 mK
per direction), we measure a total lattice-induced light shift of Δ0 = (32 ± 3) MHz. Details of the
measurement are given in Ref. [66]. To determine the polarizability ratio, we use the trap frequencies
𝜔𝑥𝑦,ax≈2𝜋 × 350 kHz, measured by Raman spectroscopy (see Sec. 2.3.4), to obtain the shift (by both
DT𝑥𝑦) of the ground state only Δ0,g≈−20.1 MHz. It follows from simple calculations that the excited
state shifts by Δ0,e≈11.9 MHz, and thus the polarizability ratio is 𝜒≈−0.59, which coincides with the
value estimated with numerical calculations in Ref. [106]. This characterization will be used in Chapter 4
for a numerical simulation of DFFs-induced heating during the Raman imaging process.

Atom loading methods by conveyor belt transport. As mentioned previously, from the MOT the
atoms are delivered into the cavity by the DT𝑦 lattice used as an optical conveyor belt [87–89]. With this
feature, previously in the experiment we used two different techniques to load the intracavity lattice.

The first one uses the non-destructive cavity detection (see Sec. 2.3.1) to stop the transport when a first
atom couples to the cavity mode, using a real-time feedback mechanism. This method is called feedback
transport loading. It has been used for most of the previous result in our experiment [24, 41, 75, 76] for
coupling a single atom to the cavity.

The second technique consist in transporting the whole 1D atom chain loaded from the MOT into the
DT𝑦 lattice into the center of the cavity, with the transport distance programmed beforehand. We call
this method the feedforward transport loading. It was used inRef. [24, 75] to couple multiple atoms to
the cavity. However, the feedforward transport loading has the disadvantage that only few atoms from
sparsely-loaded fit into the cavity mode, and with a very inhomogeneous position distribution. This
is detrimental for the collective coupling of the atoms as commented in Section 2.1 and measured in
Ref. [75].

In Chapter 5 I present a newly developed loading method, the so called drive-through loading. The
method relies on transporting the 1D atom-chain across the 3D lattice region with a reduced depth of DT𝑦 .
It generates atom loading at the DT𝑥𝑦𝑧 lattice intersection, which results promising for denser loading.
This would lead to a more homogeneous single-atom couplings and thus higher collective light-matter
interfacing.

Cooling inside the cavity

Even though the methods described above provide cold atoms from the MOT and trapped in 3D inside the
cavity, additional intracavity cooling is essential to avoid losses and for efficient light-matter interfacing.

Indeed, the atoms must be kept close to the their motional ground state at the bottom of the lattice
sites in DT𝑧 to remain at intensity maxima of the resonant cavity mode [75], where the coupling rate 𝑔 is
highest. What is more, inside the intracavity lattice (DT𝑧), the atoms are susceptible to high heating rates
because phase fluctuations between the cavity and the lock laser are transformed into lattice intensity
fluctuations1. Also, for fluorescence imaging of the atoms [58], scattering-induced heating must be
compensated with appropriate cooling methods.

As was briefly discussed in Chapter 1, in high-bandwidth cavities as our FFPC (see Sec. 2.1), standard
cooling techniques such as 3D optical molasses [97, 107, 108] and cavity cooling [109, 110] are not
applicable. The former is inhibited because of the restricted optical access, i.e. the 𝑧 axis is obstructed by

1 This problem arises when the cavity resonance and the lock laser resonance do not exactly coincide (see Sec. 2.2), e.g. due
to offset fluctuations of the PDH-lock zero-line [75]. To reduce the problem I implemented an active compensation of the
PDH-offset fluctuations, see Section 2.2.
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Figure 2.5: Optical pumping scheme and intracavity intensity calibration. (a) Relevant energy levels of 87Rb on the
D1 line, that are addressed with the optical pumping and repumper beams. (b) Exemplary optical pumping (OP)
curve by the repumper of the atomic population |𝐹 = 1⟩ → |𝐹 = 2⟩, as a function of the pulse time. We extract the
characteristic time 𝜏OP from a stretched exponential fit. (c) Optical pumping characteristic times 𝜏OP plotted as a
function of the repumper detuning Δ, to obtain the calibration of the saturation parameter 𝑠 = 𝐼rep/𝐼sat inside of the
cavity, see main text. The repumper detuning with respect to free space also includes the AC-Stark shift induced by
the dipole traps on the D1 transition (here at lower power than in Sec. 2.3.2). Figures (b,c) taken from Ref. [66].

the cavity; the latter because the temperature limit of cavity cooling is 𝑇cav = ℏ^/𝑘B, way higher than the
Doppler limit for our characteristic ^ ≫ 𝛾.

A core part of my work was dedicated to solve this problem by developing and implementing alternative
cooling methods specially compatible with high-bandwidth cavities. In Chapter 3 I present the adaptation
of degenerate Raman sideband cooling (dRSC) with cavity-assisted repumping [1] that we use in most of
the experimental sequences as a precooling step. Further, in Chapter 4 I present the technique of 3D
continuous Raman sideband cooling (cRSC) with only two dedicated Raman beams [2], that we employ
for fluorescence imaging of the atoms (see also Sec. 2.3.5).

2.3.3 Optical pumping for state initialization and imaging illumination

Optical pumping on the D1 transition As introduced in Section 2.2, we couple two 𝜎−-polarized
795 nm beams through the cavity LT mirror, to serve as optical pumping beams on the D1 line. The 87Rb
energy levels that are addressed are shown in Figure 2.5 (a). The repumper beam (|𝐹 = 1⟩ → |𝐹′ = 2⟩) is
used to pump the atomic population from the lower to the higher hyperfine ground state, while the optical
pumping beam (|𝐹 = 1⟩ → |𝐹′ = 2⟩) is used to polarize the atoms in 𝑚𝐹 = −2.

Atomic state initialization. This optical pumping (OP) scheme allows to initialize the atomic state in
|𝐹 = 2, 𝑚𝐹 = 2⟩, which is a dark state. The fidelity of the state preparation thus critically depends on the
polarization purity of the OP beams. To optimize the purity, we align the quantization axis of our system
by measuring the optical pumping time 𝜏OP (Figure 2.5 (b)) while scanning the direction of the magnetic
bias field. By minimizing the pumping time, we optimize the polarization purity of the OP beams. After
optimization, we achieve state preparation fidelities of ∼ 95 percent with an OP time 𝜏OP ≈ 3 µs. This
is still limited by residual polarization impurity originated by random birefringence fluctuation of the
in-coupling optical fiber (e.g. affected by air flow or temperature changes in the lab).
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Figure 2.6: Raman manipulation of atomic hyperfine states and motional state coupling. (a) Simplified diagram
of the Raman beam configuration. The 770 nm intra-cavity field also acts as a first Raman beam (RB1), and the
second one (RB2) is overlapped with the 𝑦-axis lattice. For state initialization, the 795 nm optical pumping beams
are coupled through the bottom LT mirror. (b) Relevant energy levels of 87Rb for Raman coupling of motional
states of a trapped atom in the lattice. The frequency difference of RB1 and RB2 equals the Zeeman-shifted energy
splitting between the involved hyperfine levels 𝐸hfs, plus a two-photon detuning 𝛿. To drive motional sidebands, the
beams are tuned to a multiple Δ𝑛 of the trap frequency 𝜔𝑖,ax, i.e. 𝛿 = Δ𝑛 · 𝜔𝑖,ax. (c) Raman spectrum of a single
atom in the 3D lattice, showing all first order sidebands and the suppressed carrier. The trap frequencies a𝑖 are
extracted by fitting the data with the sum of seven Lorentzians (orange line, individual peaks in black). We also use
the spectrum for sideband-ratio thermometry, see main text. Figure (c) adapted from Ref. [2].

Calibration of the saturation parameter with pumping rates. We also use the OP beams as
illumination light for the new Raman imaging scheme, on the D1 line and thus independent from the
cavity resonance on the D2 line [93], see Figure 2.2 and Section 2.3.5. Therefore, it is essential to know
the intensity 𝐼rep of the illumination (mostly the repumper beam) at the atom’s position inside the cavity.
The presence of differential light-shifts induced by the near-resonant D1 illumination (see Chapter 4)
renders this knowledge even more critical. Clearly that is a problematic task with the current scheme
because the losses in the optical fiber and through the LT mirror are unknown (theses beams are not
resonant with the cavity). A power measurement ”on the other side” to estimate the losses is in this case
impossible.

As a solution, we calibrate the saturation parameter 𝑠 = 𝐼rep/𝐼sat by monitoring saturation of the optical
pumping rates between hyperfine ground states for a single atom as a function of the intensity 𝐼rep and the
detuning Δ. As shown in Figure 2.5 (b,c), we measure optical pumping (|𝐹 = 1⟩ → |𝐹 = 2⟩) saturation
curves for scans of parameters 𝐼rep and Δ. For each curve we extract the characteristic pumping time 𝜏OP
with a stretched exponential fit, to account for the inhomogenoeus position distribution of the atoms [75].
Then, from the dependence of the pumping times 𝜏OP versus the detuning Δ (Figure 2.5 (c)), we obtain
with a fit the calibration constant 𝑐𝑠≈8 × 10−4

µW−1 that links the measured power (𝑃) before coupling
into the LT fiber with the intracavity saturation parameter 𝑠 = 𝑐𝑠 · 𝑃. For the fit we use the expression of
the scattering rates in Ref. [111] with a Gaussian convolution to account for frequency noise of the lasers,
see Ref. [66] for details.
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2.3.4 Raman manipulation of the hyperfine states

Raman scheme with an intracavity field and a single free-space beam. In 2.2, we briefly
introduced our Raman scheme to manipulate the ground hyperfine states of the 87Rb atoms, specifically
the qubit states |𝐹 = 2, 𝑚𝐹 = −2⟩ and |𝐹 = 1, 𝑚𝐹 = −1⟩ [41].The optical setup is illustrated in a
simplified diagram in Figure 2.6 (a).

The intracavity lattice DT𝑧 with 𝜎+ polarization, generated by the 770 nm lock laser that stabilizes the
cavity, also plays the role of a first Raman beam (RB1) A second 770 nm Raman beam (RB2) with 𝜋

polarization, propagates in free-space along the 𝑦-axis and enters the cavity from the side, overlapped
with the DT𝑦 lattice. Together, RB1 and RB2 form a Raman beam pair that couples the atomic hyperfine
states. The light source of RB2, the so called Raman laser, is phase-locked to RB1 (lock laser) to
obtain sufficiently high resolution for driving coherent Raman transitions between hyperfine levels (see
Figure 2.3)).

Such configuration of Raman beams, requiring only a single free-space beam and the intracavity lock
field, is technically simple to implement, resource efficient and ideal for situations with limited optical
access, e.g. for miniaturized quantum optical experiments.

A linewidth-reduced DBR Raman laser. An upgrade to the system was to exchange the light source
used as the Raman laser (RB2). We replaced the home-built interference filter laser [112] previously used
in [76] by a a distributed Bragg reflector (DBR) laser which offers convenient and mode hop free tuning
over several GHz, and good long term frequency stability. The drawback of the DBR laser, however, is
its large linewidth of ∼700 kHz, too broad for a high-quality phase lock. To reduce the linewidth, we
upgrade the DBR laser with an external optical feedback setup [65], which is shown in a very simplified
form in Figure 2.3. By optimizing the optical feedback power, we obtain laser linewidths of ∼1 kHz, ideal
for a high-stability phase lock. Further details about the linewidth-reduction are found in Appendix B.7
including a complete diagram of the setup. For an comprehensive description of the working principle
and the linewidth-measurement method, see Ref. [65].

Carrier-suppressed Raman transitions between the hyperfine states. The relevant 87Rb energy
levels for Raman coupling are shown in Figure 2.6 (b). As discussed in Section 2.3.3, the atoms are
initialized in the state |𝐹 = 2, 𝑚𝐹 = −2⟩ by optical pumping with the 795 nm OP lasers.

To drive coherent two-photon transitions between the qubit states, the Raman beams RB1 and RB2 are
phase locked with a frequency difference ∼6.8 GHz corresponding to the energy splitting 𝐸hfs between
the hyperfine levels |2, −2⟩ and |1, −1⟩, plus a variable two-photon detuning 𝛿. The resonant coupling
at 𝛿 = 0 is called the carrier transition, i.e. without coupling to the motional states of the trapped atoms.
Detrimental off-resonant scattering is suppressed by a single-photon detuning from the D2 of ΔR≈5 THz.

The two-photon Raman-Rabi frequency of the carrier transition Ω0 is given by [113]

Ω0 =
Ω1Ω2
2ΔR

, (2.13)

with Ω1 and Ω2 the single-photon Rabi frequencies of RB1 and RB2 respectively. In our case, from
measurements of the intensity of the Raman beams2 and with Eq. (2.13), we estimate a maximum
coupling frequency Ω0≈2𝜋 × 350 kHz.

2 For the intracavity lock field (RB1) at intensity maxima 𝐼RB1≈6.69 × 105 mW/cm2, for the free-space Raman beam (RB2)
𝐼RB2≈7.43 × 105 mW/cm2
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However, in our configuration the standing-wave intensity pattern of RB1 must be considered. At
the center of the DT𝑧 lattice sites there is no RB1 light and thus Ω0 vanishes. Still, Raman coupling is
enabled by the oscillatory motion of the atoms in lattice sites around the zero-intensity point. This leads
to the suppression of the carrier transition but still allows coupling on odd-order sidebands [114, 115],
as will become clear soon by means of Raman spectroscopy. Such carrier-free Raman coupling is not
specially beneficial for coherent qubit operations (for this we have use microwave-driving in Ref. [76])
but results highly convenient for Raman cooling, since it reduces off-resonant carrier transitions that
affect the cooling efficiency (see Chapter 4).

Raman coupling of motional states. As discussed in Section 2.3.2, our 3D optical lattice traps atoms
in the Lamb-Dicke regime [103, 104]. In this condition, the Raman beams can resolve the motional
states |𝑛⟩ of trapped atoms, also depicted in Figure 2.6 (b). By setting the two-photon detuning 𝛿 to
a multiple Δ𝑛 of the characteristic axial trap frequency along the 𝑖 direction, i.e. 𝛿 = Δ𝑛 · 𝜔𝑖,ax, the
Raman beams couple the internal and external degrees of freedom of the atoms. In this way the Raman
fields drive coherent two-photon transitions of the type |2, −2; 𝑛⟩ → |1, −1; 𝑛′⟩ with 𝑛′ = 𝑛 + Δ𝑛, and
Δ𝑛 = 0 corresponding to the carrier transition. In our case, the carrier-free characteristic discussed
before imposes the condition Δ𝑛 = ±1,±3, · · · [114, 115]. Most interesting for us are the transitions with
Δ𝑛 = ±1, i.e. the first order sidebands, with the positive side called the heating sideband and the negative
one the cooling sideband. As the name suggest, the coupling offered on the cooling sideband between
internal degrees of freedom and the motional states |𝑛⟩ → |𝑛 − 1⟩ is used for Raman sideband cooling as
will be discussed later.

The Raman motional coupling efficiency along a given lattice direction 𝑖, depending on the geometry
of the beams, can be described by the Lamb-Dicke parameter [104]

[𝑖 = 𝑘eff,𝑖 Φ0,𝑖 , (2.14)

where Φ0,𝑖 =
√︁
ℏ/(2𝑚Rb 𝜔𝑖) is the spread of the ground-state wave function along the 𝑖-axis. The factor

𝑘eff,𝑖 = | (k1 − k2) · 𝚤 | is the effective wave vector magnitude in the lattice 𝑖-direction, with k1 and k2 the
wave vectors of the Raman beams RB1 and RB2 respectively. The Raman-Rabi frequency on the first
order sidebands scales with the Lamb-Dicke parameter as [104]

Ω𝑖,heat = Ω0
√
𝑛 + 1 [𝑖 , (2.15)

Ω𝑖,cool = Ω0
√
𝑛 [𝑖 , (2.16)

where the frequencies on the heating and cooling sidebands show a different dependence on the particular
motional state |𝑛⟩ that is addressed.

We consider now the slight non-orthogonality of our lattice beams (see Sec. 2.3.2) featuring small
angles \𝑥 ≈ 15◦ and \𝑦 ≈ 6◦ of DT𝑥 and DT𝑦 with respect to the plane normal to DT𝑧 . With the
configuration of our Raman beams along DT𝑦 and DT𝑧 , the geometry ensures that the difference of
the Raman-beam wave vectors has a projection along all lattice dimensions. In other words, with the
single pair of Raman beams RB1+RB2 we can couple the motional states in all directions. Using
Equation (2.14), we estimate the Lamb-Dicke parameters in our lattice that describe the Raman coupling
efficiency as ([𝑥 , [𝑦 , [𝑧) ≈ (0.03, 0.09, 0.11) along the respective lattice directions.

Raman spectroscopy and sideband-ratio thermometry. We use the cavity state detection presented
in Section 2.3.1 to perform Raman spectroscopy with single atoms of the motional energy levels in our
3D lattice. After loading a single atom into the cavity and preparing it in the state |2, −2⟩ with optical
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pumping, we shine a Raman pulse with variable two-photon detuning 𝛿, driving Rabi oscillations between
the states |2, −2⟩ and |1, −1⟩, after which the internal state |𝐹⟩ of the atom is probed with the cavity
detection.

We record Raman spectra by evaluating the transfer probability of an atom to |𝐹 = 1⟩ from a set of
measurement repetitions, as a function of the Raman two-photon detuning 𝛿. In Figure 2.6 (c) we show a
typical spectrum after precooling with degenerate Raman sideband cooling (dRSC, see Chapter 3).

On the left side of the spectra (𝛿 < 0) we identify the heating sidebands (Δ𝑛 = +1) for each lattice
dimension and the corresponding cooling sidebands (Δ𝑛 = −1) on the right side (𝛿 > 0). We can
also see that the carrier peak is highly suppressed as expected from the standing-wave characteristic of
RB1. We extract the oscillation frequencies a𝑖 corresponding to each lattice dimension with a fit to the
spectrum using the sum of seven Lorentzian curves. We will use this information to overlap the cooling
sidebands for continuous Raman sideband cooling (cRSC) as we will see later. More details on the
Raman spectroscopy measurement and the full interpretation of the spectrum are found in Chapter 4 and
Appendix B.8.

We also use the Raman spectrum for sideband-ratio thermometry [116]. With this technique, assuming
that the motional states exhibit a thermal distribution, the mean motional excitation 𝑛𝑖 along the 𝑖-axis is
determined by

𝑛𝑖 =
1

𝑅h/c,𝑖 − 1
, (2.17)

where 𝑅h/c,𝑖 = ℎheat/ℎcool is the ratio of heights of the heating (ℎheat) and cooling (ℎcool) sidebands in the
spectrum. This method also provides a measurement of the mean temperature of the atoms as

𝑇𝑖 =
ℏ𝜔𝑖

𝑘B ln(𝑅h/c,𝑖)
, (2.18)

and additionally the ground state population 𝑛0,𝑖 can be derived from 𝑛𝑖 , giving the expression

𝑛0,𝑖 =
1

1 + 𝑛𝑖
. (2.19)

In Chapter 3 and Chapter 4 we will use these expressions to evaluate the efficiency of our cooling methods.

3D Raman sideband cooling with a single Raman-beam pair. As discussed earlier in this section,
the small non-orthogonality of our lattice enables Raman motional coupling along all directions. To
implement simultaneous cooling in 3D, we overlap the motional sidebands at ∼350 kHz and drive them
continuously. With Equation (2.16) and the Lamb-Dicke parameters that we derived earlier, we estimate
Raman-Rabi frequencies (assuming 𝑛 = 1) of Ω𝑥𝑦𝑧 ≈2𝜋 × (14, 42, 48) kHz. The 795 nm OP beams on
the D1 line are activated simultaneously to complete the cooling cycle.

With this scheme, directly after cooling, we estimated a residual temperature 𝑇 ≈1.4 µK corresponding
to motional ground state populations 𝑛0 > 85 % in each direction, based on Raman spectroscopy
measurements using Eq. (2.18) and Eq. (2.19). We also observe trapping lifetimes of ∼ 1 min in the
3D lattice, where the limit is attributed to background gas collisions and not to the cooling efficiency.
Ultimately, we employ this cooling method for imaging the atoms as has been mentioned before, by
collecting the D1 photons scattered during optical pumping. The implementation of 3D cooling and
Raman imaging are discussed with detail in Chapter 4 and in Appendix B.
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Figure 2.7: Characterization of the new imaging system. (a) To calibrate the magnification factor along the 𝑦-axis
we take advantage of our conveyor belt transport. With a single atom (or few) loaded into the 3D lattice, two images
are taken interleaved with a 2 µm transport. (b) The cross correlation between the two frames in (a) is computed
along both 𝑦𝑧 axes and then averaged over ∼100 repetitions. The pixel shift value of the correlation maximum
corresponds to the 2µm transported distance, resulting in a magnification factor 𝑀𝑦 ≈35. (c) Lattice reconstruction
along the 𝑧-axis with the histogram of atoms positions to calibrate the corresponding magnification and compare it
to the alternative method, giving a factor 𝑀𝑧 ≈38. (d) Point spread function (PSF) of our system reconstructed
by averaging single atoms images after superimposing them by means of the position detection algorithm. We
estimate a PSF Gaussian width of ∼0.8µm. Figures adapted from Ref. [67].

2.3.5 Position detection by cavity-compatible imaging

New cavity-compatible imaging scheme. The last ingredient of our basic toolbox is the position
detection of the atoms by fluorescence imaging. As discussed in Section 2.2 and shown in Figure 2.2 (c),
previously in our experiment fluorescence imaging, implemented on the 87Rb D2 line [74, 75], was only
possible by detuning the cavity to avoid the inhibiting influence of the Purcell effect.

As mentioned in Chapter 1, part of my work was to implement a new imaging scheme on the D1 line,
thus independent from the cavity coupling, to allow simultaneous operation of the quantum channel and
the imaging channel (recall Figure 1.1 (a)). This involved the development and implementation of a new
Raman imaging method using continuous Raman sideband cooling, that relies on collecting the photons
scattered during the cooling repuming cycle with and in-vacuum high-NA lens (see Figure 2.2 (b)), and
imaging them with an EMCCD camera3. The Raman imaging method is discussed in depth in the
dedicated Chapter 4. Summarizing the figures of merit: a signal to noise ratio SNR ≈ 13 with a 1 s
exposure time and an atom survival probability >90 %.

My work also included the design of a new imaging system to suppress detrimental scattering from
the edge of the FFPC mirrors, stemming from the fiber-coupled 795 nm illumination beams (our OP
beams) injected through the bottom LT mirror. Details about this problem and the new design can be
found in Ref. [66]. Furthermore, we implemented a position detection algorithm as a postprocessing
step [67] to extract accurately the positions of the atoms taking into account the resolution limit. The
complete characterization of the imaging system is included in Ref. [66, 67]. Here I will only summarize
the characterization of two properties that are relevant for the following chapters: the magnification factor
and the resolution limit.

3 Andor iXon 3: CCD chip with 512 × 512 px2, pixel size 16 × 16µm2, conversion factor (15 ± 1) counts/photon.
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2.4 Summary and conclusions

Magnification factor. A standard method to determine the magnification factor in quantum optics
experiments with optical lattices, is to use the average spatial intensity distribution of atomic fluorescence
as a ruler for calibration [57, 74] the positions of highest intensity are identified as the center of the
lattices sites and the resulting lattice spacing at the image plane (on the camera picture, in pixels) is
compared to the corresponding real distance at the object plane, i.e. _DT.

However, in our system with only one or few atoms in the 3D lattice, this method is not practical since
it implies a very high number of measurement repetitions on the order of ∼1000. Also, given the use
of the DT𝑦 lattice as a conveyor belt, the positions of the trapping sites are not well defined in the lab
reference frame, i.e. the stopping positions shift slightly between measurements, which washes out the
lattice shape when averaging.

Consequently, we employ an alternative method, first developed in Ref. [93], that takes advantage of our
atom transport capability with the optical conveyor belt. The concept is shown in Figure 2.7 (a). We load a
single or few atoms into the cavity where we can check the presence with the cavity detection, then acquire
two images separated by a 2 µm conveyor belt transport. Subsequently, we calculate the cross-correlation
between the two frames along both axes 𝑦 and 𝑧, and average over only ∼100 measurement repetitions, as
shown in Figure 2.7 (b). The pixel shift where the correlation is maximum corresponds to the transport
distance of 2 µm. We then use the relation 𝑀 = 𝑐 · 𝑠/𝑇 , where 𝑐 is the pixel shift of the peak of the
correlation function, 𝑠 is the pixel size and 𝑇 is the transport distance. With the size of a camera pixel
16 µm we obtain a magnification factor 𝑀𝑦≈35. The very small shift of the correlation along 𝑧 means
there is a very small angle < 1◦ between the camera axis and the DT𝑦 lattice, which we neglect.

To verify our alternative method, we also carry out the calibration of the magnification along the 𝑧-axis,
this time with the more standard lattice reconstruction method. However, instead of averaging the intensity
profile as commonly used [57, 74], we determine the position of each atom with the position-detection
algorithm [67], from a set of single or few-atom images. Even if the pictures are mostly single-atom
images without a common spatial reference, the intracavity lattice DT𝑧 features a very stable phase that
permits this measurement. From the histogram of extracted atom positions, shown in Figure 2.7 (c), we
obtain the magnification factor 𝑀𝑧≈38, confirming the measurement of 𝑀𝑦 within uncertainties.

Resolution limit. To investigate the resolution limit of our imaging system, we reconstruct the point
spread function (PSF) [57], as shown in Figure 2.7 (c). For this, we select images with well isolated atoms
(two close-by atoms would not work) and, average the images after superimposing them, centered by the
atom positions determined with the position-detection algorithm. From the average intensity profile we
estimate a PSF Gaussian width of ∼0.8 µm. This result compared to the lattice spacing _DT/2 = 434 nm,
means that our imaging system does not have a native single-site resolution. Nevertheless, it is still
possible to achieve single-site resolution by clever postprocessing algorithms, e.g. by providing additional
information on the geometry of the system [57].

Ultimately, this newly implemented imaging scheme matches the goal of counting individual atoms
and determining their position with full site resolution [57], while leaving the resonant cavity transition
reserved for the quantum channel.

2.4 Summary and conclusions

In this chapter I have introduced the experimental apparatus involved in the operation of our atom-FFPC
module. Furthermore, I have presented the basic toolbox of techniques for control and detection of the
internal and external degrees of freedom of single atoms.
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Concretely, regarding control I discussed the basic atom cooling and trapping techniques that we
employ in an experimental sequence, including a small magneto-optical trap (MOT), an intracavity lattice,
and atom transport with a conveyor belt to deliver the atoms from the MOT into the cavity. I also showed
our scheme for state initialization by optical pumping on the D1 line, which is also used as illumination
light for fluorescence imaging. In this regard, we used a special method to calibrate the intracavity power
when the system does not allow direct measurement. As a third control module, I introduced the Raman
scheme to couple the qubit states of the atoms. We use a particular Raman beam geometry, with one of
the beams being also the intracavity lattice, that allows us to drive the motional sidebands along all the
lattice directions. Along this line, I advanced briefly the Raman cooling scheme that we use for cooling in
3D with only one Raman-beam pair, and that will be the basis for the new imaging technique in Chapter 4.

On the detection side, I presented two techniques. First, the non-destructive cavity-based detection
permits to retrieve the internal state and the presence of a single atom by monitoring the induced vacuum
Rabi-splitting with the cavity-probe reflection. Second, a new imaging scheme on the D1 line, instead of
the previously used D2 line, enables the position and number detection of cavity-coupled atoms, without
restricting the cavity quantum channel. This scheme relies on the Raman imaging method that will be
presented in Chapter 4. In this chapter I focused on the general concept and on the characterization of the
imaging system.

This chapter will serve as a basis for the subsequent chapters where I present extensions to the atom
control toolbox, including novel techniques for cooling (Chapter 3), imaging (Chapter 4) and denser
loading of multiple atoms (Chapter 5), specifically developed for compatibility with high-bandwidth
cavities.
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CHAPTER 3

Ground–state cooling of a single atom inside a
high–bandwidth cavity

Cooling has been fundamental for the ultimate control of individual atoms that is achievable
nowadays [70, 95]. Multiple and diverse laser-cooling techniques have been developed over
the past decades [59, 60], complementing the existing trapping techniques, unlocking an
unprecedented level of control of the atomic motion and position. The enormous advantage

of isolated and controlled atoms is that they become a clean and simple system close to the idealized case,
that can be studied, understood and manipulated with high precision. Furthermore, cooling the atomic
motion improves the trapping time of the atoms thus allowing higher repetition rates of the experiment or
application, and improving its reproducibility by making different atoms indistinguishable.

In the case of atom-cavity modules as light-matter interfaces for quantum nodes, the atom has to
be confined at an antinode of the cavity field within a fraction of the wavelength, to ensure optimal
coupling efficiency. Besides a tight trapping potential, this requires cooling the atomic motion in the trap
close to the oscillatory ground state. As discussed in chapters 1 and 2, high-bandwidth optical cavities
constitute an important cavity-QED regime, that is especially useful for atom-photon quantum interfaces
that involve interactions with temporally very short pulses, as emitted by e.g. quantum dot light sources.
In chapter 2 we introduced the fiber Fabry-Pérot cavity (FFPC) at the heart of our experiment, which
offers a highly interesting regime featuring strong atom-light coupling together with a high-bandwidth
interface. However, the miniaturized construction of such fiber-based cavities (i.e. reduced optical access)
and their high-bandwidth characteristic, render the usage of standard atom cooling techniques, such as
optical molasses or cavity cooling [109, 110], unfeasible (see Appendix A.1). As an alternative we find
that degenerate Raman sideband cooling (dRSC) [113, 117] can be successfully applied.

In this chapter∗ I report successful cooling of a single 87Rb atom to its one-dimensional motional ground
state while coupled to the high-bandwidth FFPC in our experiment, based on the publication [1] included
in Appendix A. We overcome the challenge of cooling inherent to such high-bandwidth atom-cavity
modules, by adapting the dRSC technique to our cavity and lattice system, by which Raman cooling
transitions are driven by the trapping lattice itself. This technique was developed before in the field of

∗ Statement of published work: The content of this chapter is a summary of the publication reprinted in Appendix A, and
with the same title as the chapter: Ground-state cooling of a single atom inside a high-bandwidth cavity, E. Uruñuela, W. Alt,
E. Keiler, D. Meschede, D. Pandey, H. Pfeifer, and T. Macha, Physical Review A 101, 023415 (2020) [1].
Statement of author contribution: The concept and measurement plan was developed by T. Macha in [76], while I completed
the calibrations of the experimental setup. Together with T. Macha, I prepared and performed the measurements, and analyzed
the data that conducted to the published results. Furthermore, I participated in the writing process of the manuscript together
with the other co-authors.
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Figure 3.1: Concept for implementation of dRSC inside a cavity. (a) Two crossed 860 nm linearly-polarized dipole
traps (𝑥𝑦 plane) and a 770 nm intra-cavity field with 𝜎+ polarization (𝑧 axis), form a 3D lattice that traps a single
atom at the center of the FFPC. The horizontal lattice beams have slightly non-orthogonal angles with respect to
the cavity axis. The 780 nm cavity probe with 𝜎− polarization is used for optical pumping and state preparation. A
tunable magnetic bias field is applied along the cavity to define the quantization axis. (b) Diagram of one cooling
cycle of dRSC in a one-dimensional case. The lattice with non-orthogonal geometry drives two-photon 𝜎+-𝜋 or
𝜋-𝜎− transitions between adjacent 𝑚𝐹 levels of the trapped atom, that reduce the motional quantum number |𝑛⟩.
The cooling cycle is completed with optical pumping by the cavity probe field. Figure from the publication [1].

dense atomic gases [113, 117]. However, here we show for the first time its implementation inside a cavity
and in the single-atom regime. Our implementation offers a versatile and resource-efficient solution for
cooling and thus controlling trapped atoms for light-matter interfaces.

A comprehensive description of the experimental setup and techniques needed for the operation of
our atom-cavity module was given in chapter 2. In Figure 3.1 (a) we recapitulate the crucial elements
that play a role in our implementation of dRSC, (for details also see Appendix A.2). At the heart
of the experiment is the high-bandwidth FFPC with parameters (𝑔, ^, 𝛾) = 2𝜋 × (80, 41, 3) MHz (see
section 2.1 and table D.1). A single 87Rb atom is trapped in a three-dimensional (3D) optical lattice at
the cavity center, coinciding with an antinode of the 780 nm resonant cavity probe field to ensure high
coupling. Recalling the lattice configuration: in the horizontal plane two crossed 860 nm red-detuned
standing-wave dipole traps (DT𝑥,𝑦) and in the vertical axis a 770 nm blue-detuned intra-cavity lattice
(DT𝑧), with respective estimated axial trap frequencies a𝑥,𝑦 ⩽ 400 kHz and a𝑧 ⩽ 280 kHz, allowing
confinement in the Lamb-Dicke regime [103, 104]. A magnetic bias field along the cavity axis defines
the lattice polarization scheme as (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) = (𝜋, 𝜋, 𝜎+). The cavity probe field has 𝜎− polarization
and is resonant with the D2 line on the |2⟩ → |3′⟩ transition. Here and throughout the chapter we use the
notation for quantum states |𝐹, 𝑚 𝑓 ; 𝑛⟩ introduced in Chapter 2, with the prime symbol marking excited
states. We also recall that the beams of DT𝑥 and DT𝑦 are slightly tilted with respect to the 𝑥𝑦 plane, with
angles ∼15◦ and ∼6◦, respectively (measured more precisely after the publication), an important detail
for the cooling method that we will discuss in the following.

3.1 Simple cavity-compatible cooling with degenerate Raman
transitions

Our cooling scheme relies on two-photon transitions driven by the lattice beams, that couple the motional
states of the atom with its internal states. The cooling concept is depicted in the diagram of Figure 3.1 (b)
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Figure 3.2: Characterization of the dRSC method for atom cooling. (a) Measurement of the trapping lifetime 𝜏 of a
single atom in the 3D lattice while applying dRSC, in dependence to the Zeeman splitting Δ𝜔𝐵 = 2𝜋 a. We fit two
Gaussians with maxima centered at the Zeeman shift values that fulfill Equation (3.2) for the longitudinal trap
frequencies of the different lattice axes a𝑧 = (224 ± 5) kHz and a𝑥,𝑦 = (350 ± 1) kHz, indicating the activation of
dRSC. Long measurement times per repetition (∼60 s) limit the number of data samples, thus the error bars are
calculated using the bootstrapping method. (b) Comparison of survival probability decay curves at the optimum
magnetic field, for the cases with dRSC active (yellow line) and with cooling deactivated (red line) by switching
off the optical pumping field (cavity probe). With stretched exponential fits we obtain the drastically different
lifetimes 𝜏on = (42.9 ± 1.0) s and 𝜏off = (1.0 ± 0.1) s that validate the efficacy of the cooling method. Figure from
the publication [1].

for a one-dimensional scenario (further details are given in Appendix A.3). Specifically, we use transitions
between adjacent magnetic 𝑚𝐹 sublevels of the |𝐹 = 2⟩ hyperfine ground state, that simultaneously lower
the quantized vibrational level |𝑛⟩ of the atom in the trap:

|2, −2; 𝑛⟩ → |2, −1; 𝑛 − 1⟩ . (3.1)

To enable such degenerate Raman transitions, two conditions are necessary. First, the Zeeman shift
Δ𝜔𝐵 of adjacent 𝑚𝐹 levels has to match the energy spacing of motional states in the trap with oscillation
frequency a [61]:

Δ𝜔𝐵 = 2𝜋 a , (3.2)

which we achieve by tuning the magnitude 𝐵 of the magnetic field. Second, the light field of the DT
beams needs to provide pairs of photons 𝜎+-𝜋 or 𝜋-𝜎− simultaneously to sustain the required Raman
coupling. Contrary to previous implementations that use elliptically polarized beams [113, 117, 118],
here the necessary mixture of polarizations is provided by the inclination of the DT beams with respect
to the horizontal plane. Additionally, we observe that tilting the direction of the magnetic field, while
keeping its magnitude constant, also helps in this regard. To complete the cooling scheme, the weak cavity
probe field is used to optically pump the atom without altering the motional state back to |2, −2; 𝑛 − 1⟩,
effectively decreasing the motional state by one phonon per loop. The continuous cycle drives the atom
down the phonon ladder until reaching the ground state |2, −2; 0⟩, which is dark to the degenerate Raman
transitions. An additional repumper beam along DT𝑥 (not shown) in the D2 |1⟩ → |2′⟩ transition takes
care of any off-resonant decay into |𝐹 = 1⟩. In this way, the cooling mechanism is always active as soon
as the atoms enters the cavity mode, independently of its initial state.

To verify and characterize the cooling mechanism, we measure the average trapping lifetime of the
atom for different magnitudes 𝐵 of the magnetic field up to 1 G, while the cooling is active. We use
the non-destructive cavity detection (Section 2.3.1) to continuously monitor the presence of the atom,
and from multiple repetitions we extract the trapping lifetime 𝜏 with a stretched exponential fit [119,
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120] (see also Appendix A.4). The results are shown in Figure 3.2 (a) as a function of the corresponding
Zeeman splitting Δ𝜔𝐵. We observe a significant increase in the measured lifetime around the values
Δ𝜔𝐵 = 2𝜋 × (350± 1) kHz and Δ𝜔𝐵 = 2𝜋 × (224± 5) kHz, where the condition of Equation (3.2) is met
for the trap frequencies a𝑥,𝑦 and a𝑧 , respectively. The broad width of the cooling regions is attributed to
inhomogeneous broadening due to the distribution of atom positions in the 3D lattice.

To further validate the cooling effect we analyze the survival probability at the frequency 2𝜋 × 350 kHz
of the optimum Zeeman shift, comparing the case with dRSC activated and the case without cooling,
which we deactivate by switching off the optical pumping (cavity probe field). In Figure 3.2 (b) we
show the decay curves of the two cases, resulting in lifetimes of (42.9 ± 1.0) s under dRSC, as opposed
to (1.0 ± 0.1) s without cooling. The main source of atom loss leading to such short lifetimes is
parametric heating induced by intensity noise in the intra-cavity lattice DT𝑧 [121, 122], which is efficiently
compensated by the dRSC method. The fact that the 𝑧 direction is also cooled when addressing the
frequency for DT𝑥,𝑦 indicates the presence of a 3D cooling mechanism. This could be explained by
cross-dimensional mixing [115], or by the projection along DT𝑧 of the DT𝑥,𝑦 beams driving the Raman
transitions, coming from the non-orthogonal geometry.

For a quantitative estimate of the observed cooling effect in DT𝑧 , we perform Raman spectroscopy
along the 𝑧 axis, after a 150 ms dRSC interval. To drive resolved-sideband Raman transitions with tunable
frequency for the spectroscopy measurement, we use the Raman setup presented in Section 2.3. From the
sideband imbalance in the Raman spectrum [116] (the spectrum is shown in Appendix A), we obtain a
mean motional number 𝑛𝑧 = (0.13 ± 0.03) , corresponding to a one-dimensional ground-state population
of 𝑛0,𝑧 = (88 ± 3) % and a residual temperature 𝑇𝑧 ≃ 1.2 µK. A similar measurement with a 100 ms
cavity-noise-heating period (without cooling) before the spectroscopy pulse, results in an estimate of
𝑛𝑧 = (0.47 ± 0.06) and 𝑇𝑧 ≃ 2.3 µK. These observations confirm an efficient 3D cooling mechanism as
previously suggested.

3.2 Summary and conclusions

In this chapter, I have shown the implementation of a simple, cost-efficient and robust atom-cooling
technique inside a high-bandwidth optical cavity. Furthermore, I have shown that a slightly non-orthogonal
geometry of the optical lattice not only produces the necessary polarizations for Raman coupling, but also
induces three-dimensional cooling of the atom. Since, apart from the lattice, only weak optical pumping
and a tunable magnetic field are needed, the dRSC method is easily applicable to other cavity experiments
due to its simplicity and versatility, even in the case of narrow-linewidth resonators. More generally, this
implementation can also be interesting for atoms in lattices without a cavity, e.g. in applications with
limited optical access.

Ultimately, overcoming the difficulties of cooling in such high-bandwidth resonators is a valuable
contribution to the control toolbox for atom-cavity quantum nodes. The very long trapping lifetimes
that it provides for cavity-atom interaction, allow high repetition rates of the experiment, which in turn
directly enhances the uptime of the atom-cavity module.

However, since dRSC relies on scattering photons from far off-resonant traps, it entails a slow cooling
rate. For some applications faster and more powerful cooling methods are necessary, for instance to
compensate strong recoil heating rates during fluorescence imaging of the atoms. Consequently, in our
experiment we have also implemented a second cooling technique, namely carrier-free Raman sideband
cooling [114] in three dimensions, using the same tools as for Raman spectroscopy. In chapter 4 we will
show how we apply this more powerful cooling technique for imaging and locating individual atoms
inside of the FFPC.
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CHAPTER 4

Raman imaging of atoms inside a
high–bandwidth cavity

Imaging of individual atoms goes hand in hand with cooling and trapping methods for a high level
of control [70, 95]. The detection of single atoms has been a vivid subject of research in the
past 50 years [54, 55], prompting the development of a broad range of experimental techniques,
from which fluorescence imaging has been established as the workhorse for neutral atoms [56,

58]. A successful and non-destructive imaging scheme requires high photon scattering rates in addition
to an efficient cooling mechanism to compensate for the energy gain induced by photon recoil. While
cooled and pinned in an optical lattice [62, 63], high-resolution imaging [57] provides information on the
location of the atoms that can then be used for individual manipulation.

Not surprisingly, imaging is crucial for operating atom-cavity quantum nodes with atomic ensembles.
In Chapter 1 we emphasized that coupling multiple atoms to a high-bandwidth cavity [43, 44], instead of
a single atom, has the potential to greatly enhance the efficiency of the quantum node [45, 46] and unlock
new powerful applications [47, 48, 51, 52]. Most of the multi-atom implementations require critical
knowledge on the number of coupled emitters and their relative positions within the cavity mode. In our
experiment, we pursue the architecture for quantum nodes presented in Chapter 1 in Figure 1.1 (a) based
on a fiber Fabry-Pérot cavity (FFPC): The single-sided high-bandwidth cavity interfaces photonic and
atomic qubits and routes the quantum information to the fiber network through the fiber input/output
channel, while complementary information is obtained simultaneously through the imaging channel for
operation of the quantum node.

However, in high-bandwidth cavities, fluorescence imaging faces a number of experimental difficulties.
First, standard cooling techniques are ineffective due to the geometry and the Purcell effect, as already
discussed in Chapter 3. Specifically, 3D molasses cooling [60] is unfeasible because of the limited optical
access (one axis is blocked by the cavity), and cavity cooling [109, 110] is disabled in the high-bandwidth
regime (^ ≫ 𝛾). In Chapter 3 we showed our implementation of the dRSC method which allows efficient
cooling inside of the FFPC. But it is not powerful enough to compensate the recoil heating of the atoms

∗ Statement of published work: The content of this chapter is a summary of the publication reprinted in Appendix B, and
with the same title as the chapter: Raman imaging of atoms inside a high-bandwidth cavity, E. Uruñuela, M. Ammenwerth,
P. Malik, L. Ahlheit, H. Pfeifer, W. Alt and D. Meschede, Physical Review A 105, 043321 (2022) [2].
Statement of author contribution: I developed the underlying concept, then planned and led the measurement campaign that
conducted to the published results. Under my supervision, all upgrades to the experiment, characterizations, measurements and
data analysis were performed together with my colleagues M. Ammenwerth, P. Malik and L. Ahlheit (certain measurements
and details are part of their M.Sc. theses [65–67]). Subsequently, I conduced the writing process of the manuscript, with the
participation of all co-authors.
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during fluorescence imaging. Second, the strong Purcell effect desired for an efficient quantum node, also
suppresses considerably the free-space photon scattering, by directing most of the photons into the cavity
mode, which is highly detrimental for fluorescence imaging orthogonal to the cavity axis [75].

In this chapter∗, I present an alternative method for fluorescence imaging of small atomic ensembles
coupled to a high-bandwidth FFPC, that overcomes the aforementioned challenges, based on the
publication [2] included in Appendix B. Our approach relies on the detection of the repumper fluorescence
emitted during three-dimensional (3D) continuous Raman sideband cooling (cRSC). This technique,
dubbed Raman imaging, was pioneered by [123, 124] and quickly adopted in the field of quantum gas
microscopes [125–127]. We adapt this method to the FFPC setup in our experiment to achieve the
node functionality shown previously in Figure 1.1 (a). To circumvent the lack of optical access, we
conveniently couple one of the Raman beams and the repumper as intra-cavity fields. Furthermore, to
avoid the detrimental Purcell effect we use independent atomic transitions for the imaging channel and for
the quantum channel (resonant with the cavity). This implementation allows us to obtain high fidelity
pictures of the atoms, while simultaneously using the quantum channel for probing the atom-cavity
coupling. In the rest of the chapter (and Appendix B), we explain and characterize the implementation of
Raman imaging in our atom-cavity module.

Since the experimental setup was described extensively in Chapter 2, here we only remind of the
elements that are essential for our Raman imaging implementation (detailed in Appendix B.2). All
involved light fields are shown in the schematic of Figure 4.1 (a). Similarly as in Chapter 3, one or multiple
atoms1 are strongly coupled to our high-bandwidth FFPC2 (cavity probe at 780 nm with 𝜎−polarization),
trapped at its center in the 3D optical lattice with configuration known from previous chapters3. Yet, in
this case the horizontal lattice beams DT𝑥𝑦 are tuned to a wavelength of 868 nm for technical reasons4,
while the vertical intra-cavity lattice DT𝑧 is kept at 770 nm.

However, for the implementation of resolved-sideband Raman cooling there are also significant
differences compared with the dRSC scheme in Figure 3.1 (a). Mainly two new sets of laser fields are
added to the setup. To drive Raman transitions, we use the dedicated pair of 770 nm Raman beams (RB1
and RB2), prepared and phase-locked with the setup presented in Section 2.3. We emphasize that the beam
RB1 is simultaneously the intra-cavity lattice DT𝑧 , with 𝜎+polarization, which enables to drive carrier-free
Raman transitions [114]. The beam RB2, impinging along DT𝑦 with 𝜋 polarization, is generated by a
DBR laser which we upgrade for linewidth-reduction to achieve the necessary phase-locking stability (see
Appendix B.7). To avoid degenerate Raman transitions used for dRSC, now the magnetic field is increased
to ∼1.8 G along the quantization axis. Additionally, we couple a pair of 795 nm repumper beams with
𝜎−polarization through the low transmission (LT) cavity mirror, used for optical pumping and state
preparation. These repumper beams will also serve to generate fluorescence for imaging the atoms, as
will be discussed later in the chapter, rendering the imaging channel on the D1 line fully independent from
the cavity quantum channel on the D2 line. In the following, we exploit such independence to combine
the detection schemes of both channels and acquire complementary information about the atoms: their
presence and internal state by nondestructive cavity probing; their number and positions with fluorescence
imaging. Since having an efficient cooling mechanism is crucial for imaging, we will first describe the
implementation of three-dimensional sideband-resolved Raman cooling in the cavity, and then show its
application for fluorescence imaging of the atoms. Still, we should bear in mind that we optimize the
method for the purpose of imaging, and not primarily for cooling, as will be shown further in the chapter.

1 The number and density of loaded atoms can be adjusted with the drive-through loading technique explained in Chapter 5.
2 Main CQED parameters (𝑔, ^, 𝛾) = 2𝜋 × (80, 41, 3) MHz, see table D.1 for the complete characterization.
3 Polarization (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) = (𝜋, 𝜋, 𝜎+); beam waist (𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧) = (11, 13, 5) µm; trap depth ∼0.5 mK in all directions.
4 We obtained a superior stability of the TiSa laser generating the DT𝑥𝑦 lattice by mode-lock at a wavelength of 868 nm

compared to the previous 860 nm, but this change is irrelevant for the presented results, see Section 2.3.2.
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Figure 4.1: Implementation of three-dimensional continuous Raman sideband cooling (cRSC) inside of a high-
bandwidth FFPC. (a) Schematic of the beam arrangement inside of the cavity for cRSC, depicting all light fields
involved. Our implementation of Raman cooling uses a single free-space beam and the remaining beams as cavity
fields. (b) Representation of the cooling cycle in one dimension. A two-photon transition between atomic hyperfine
ground states with the phase-locked Raman beams, followed by optical pumping with the D1-line repumper beams,
reduces the motional quantum number of the atoms. (c) Raman spectrum of a single atom after 5 ms of resonant
cRSC. For three-dimensional cooling we overlap the cooling sidebands corresponding to different lattice dimensions
at ∼350 kHz and address them simultaneously with the single Raman beam pair RB1+RB2. Unwanted off-resonant
carrier transitions are highly suppressed by using the blue-detuned cavity lattice as RB1. With sideband-ratio
thermometry we infer a vibrational ground-state population above 85 % along all lattice dimensions and a residual
temperature ∼1.4 µK. Figures from the publication [2].

4.1 Three-dimensional resolved Raman sideband cooling in the cavity

For simplicity, the cooling scheme is best explained in a one-dimensional and single-atom scenario
following Figure 4.1 (b). Reducing the vibrational quantum number |𝑛⟩ is achieved by Raman transitions
between 𝑚𝐹 sublevels of the different hyperfine ground states. As a first step, the atom is polarized in
|2, −2⟩ with the repumper beams, using here our now familiar notation |𝐹, 𝑚𝐹 ; 𝑛⟩ for the quantum states.
The frequency difference of the Raman beams RB1 and RB2 is tuned to the hyperfine splitting between
the states |2, −2⟩ and |1, −1⟩ (i.e. the carrier frequency) plus a detuning 𝛿 from the carrier. This enables
two-photon cooling transitions

|2, −2; 𝑛⟩ → |1, −1; 𝑛 − 1⟩ (4.1)

whenever the two-photon detuning 𝛿 matches the trap frequency5 of the lattice a𝑖 (along the 𝑖 axis):

𝛿 = a𝑖 , (4.2)

namely the resonant addressing condition on the cooling sideband. The cooling mechanism is completed
by optical pumping with the 795 nm repumper beams without altering the motional state (in the Lamb-
Dicke regime provided by the lattice [103, 104]), bringing the atom back to |2, −2; 𝑛 − 1⟩ and ready for
the next Raman transition. The cooling cycle stops when reaching the motional ground state |2, −2; 0⟩,
which is a dark state for both the Raman beams and the repumpers.

Most conveniently, with our Raman sideband cooling scheme inside of the cavity, we can not only

5 For the sake of clarity, in this chapter and in Appendix B we use the notation a for angular frequencies, in contrast to Chapter 3
where it denoted linear frequencies.
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Chapter 4 Raman imaging of atoms inside a high–bandwidth cavity

cool in 1D but in all three dimensions, with the single pair of Raman beams RB1+RB2 (all details in
Appendix B.8). To do so, we overlap the cooling sidebands corresponding to each direction of DT𝑥𝑦𝑧

at near-degenerate frequencies a𝑥,𝑦,𝑧 ≈ 2𝜋 × 350 kHz, and we address them simultaneously with a
two-photon detuning that satisfies Equation (4.2) for all three lattice dimensions 𝛿 = a𝑥,𝑦,𝑧 . Raman
coupling along all the trap directions is allowed by the lattice geometry [115], featuring small angles of
DT𝑥𝑦 with respect to the plane orthogonal to DT𝑧 (\𝑥 ≈ 15◦ and \𝑦 ≈ 6◦). However, such configuration
of the lattice and Raman beams in Figure 4.1 (a), also implies mismatched Raman Rabi frequencies along
the different directions6. This motivates the use of a continuous Raman sideband cooling scheme (cRSC),
with Raman and repumper beams impinging simultaneously on the atoms at constant intensity, instead of
a pulsed sequence (see Appendix B.3).

We evaluate the efficiency of our three-dimensional cRSC technique7 by means of Raman spectroscopy
of a single atom (see Appendix B.8). After 5 ms of resonant cRSC, with the cavity state detection we
measure the probability of Raman transfer from |𝐹 = 2⟩ to |𝐹 = 1⟩, as a function of the two-photon
detuning 𝛿. The resulting spectrum is shown in Figure 4.1 (c), where three observations are relevant.
First, the heating sidebands (𝛿 < 0, Δ𝑛 = +1) and the cooling sidebands (𝛿 > 0, Δ𝑛 = −1) corresponding
to the three lattice dimensions are overlapped at the two-photon detunings equal to the chosen trap
frequencies ∼350 kHz. Second, the small amplitude of the carrier peak (𝛿 = 0, Δ𝑛 = 0) indicates a strong
suppression of carrier transitions by using the cavity lattice as one of the Raman beams (RB1). Note
that this disposition not only solves the problem of optical access, but also reduces off-resonant carrier
coupling that is detrimental for cooling. Third, the sidebands of all DT𝑥𝑦𝑧 have a large cooling-heating
amplitude imbalance, a clear signature of the 3D cooling power. By Raman-ratio thermometry, we
estimate a vibrational ground-state occupation 𝑛0,𝑖 ⩾ 85 % in all lattice dimensions (with 𝑖 = 𝑥, 𝑦, 𝑧),
corresponding to a mean motional number 𝑛𝑖 ≈ 0.17 and a residual temperature 𝑇𝑖 ≃ 1.4 µK. Under
uninterrupted cRSC, we observe atom trapping lifetimes8 of ∼1 min, thus more powerful than the dRSC
method presented in Chapter 3.

4.2 Differential light shifts in a continuous Raman cooling scheme

An underlying challenge of the cRSC scheme comes from the energy shifts induced by the 795 nm
repumper light onto the ground-state hyperfine levels. An atom in the dark state |2, −2⟩ is unaffected by
the 𝜎−repumper, while in the state |1, −1⟩ it is subject to the AC-Stark effect, resulting in a differential
light shift which modifies the Raman resonance condition. More precisely, the cooling sideband frequency
(with respect to the unshifted carrier at 𝛿 = 0) gets shifted by an amount 𝛿LS, such that the Raman beams
have to be tuned to 𝛿 = a𝑖 + 𝛿LS for addressing the cooling transitions. The strength and direction of the
shifts strongly depend on the repumper parameters, namely its detuning Δ and intensity 𝐼rep. The effect is
amplified with a near-resonant repumper, which is needed for an optimal imaging signal in our case, as
we will see later. Hence, for the optimization and operation of cRSC, good knowledge of the induced
shifts is essential. To model the differential light shifts, we use the simplified picture of a two-level atom
driven by the repumper light field including spontaneous emission. In Appendix B.9 we discuss the
justification and limitations of this simple model, and include the detailed derivation. The eigenvalues
of the system’s non-Hermitian Hamiltonian provide a good approximation for 𝛿LS to first order in the

6 The Lamb-Dicke parameters are ([𝑥 , [𝑦 , [𝑧) = (0.03, 0.09, 0.11) along the respective lattice directions.
7 We optimize dRSC for imaging and not specifically for cooling (Figure 4.2), so a higher cooling efficiency is possible with

different parameters.
8 This lifetime measurement was limited by background gas collisions due to a deteriorated vacuum at that moment, hence with

improved vacuum we would expect even longer lifetimes.
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saturation parameter 𝑠 = 𝐼rep/𝐼sat:

𝛿LS ≈ Δ

2
𝛾2

Δ2 + 𝛾2 𝑠 + O(𝑠2) (4.3)

with 2𝛾 ≈ 2𝜋 × 6 MHz the linewidth of the atomic transition. In the low power limit (𝑠 ≪ 1) or the large
detuning limit (Δ ≫ 𝛾) the induced light shift 𝛿LS scales linearly with intensity and follows a dispersive
Lorentzian dependence on Δ. In the experiment, we characterize the differential light shifts 𝛿LS by
tracking the displacement of the overlapped cooling sidebands in dependence of the repumper parameters
intensity 𝐼rep and detuning Δ (with respect to the trap-shifted resonance). The complete characterization
and discussion can be found in Appendix B.4. To locate the sidebands, with the cavity presence detection
we measure the survival probability after a period of cRSC, over a scan of the two-photon detuning
𝛿. We consider then that the point of highest survival occurs at resonant addressing of the cooling
transition, corresponding to the position of the cooling sidebands 𝛿 = a𝑖 + 𝛿LS. Upon comparison of
the measurements with the two-level model, we find a good qualitative agreement, but with certain
discrepancies that we discuss thoroughly in appendices B.4 and B.9. The most notorious is an asymmetric
distortion of 𝛿LS from the expected dispersive shape, affecting prominently the repumper red-detunings
(Δ < 0). We partially attribute this effect to oscillations of the atoms in the lattice for a finite temperature,
as suggested by an extended model including the atom’s kintetic energy (derivation and discussion also in
Appendix B.9). The importance of this observation will become clear during the parameter optimization
for fluorescence imaging, which is the next stage in our discussion.

4.3 Fluorescence imaging with continuous Raman sideband cooling

With a strong cooling mechanism in place, we now focus on the primary subject of this chapter, namely the
fluorescence detection of individual atoms. As stated before, we use the repumper beams as illumination
lights, and obtain images of the atoms by detecting the photons scattered during the repumping process
of cRSC. We emphasize again that by choosing the illumination (repumper) beams on the D1 line, we
avoid the detrimental Purcell effect for the imaging channel while leaving the quantum channel fully
operational on the D2 line. The 795 nm photons are collected with one of the in-vacuum high-NA
lenses surrounding the cavity, and imaged onto an EMCCD camera9, by means of the imaging system10

presented in Section 2.3.5. Although the special design reduced significantly the background scattering
of the repumper from the cavity mirrors, full suppression from the field of view was not possible in
our miniaturized FFPC setup. Hence for a sufficient fluorescence signal over background, the use of
a near-resonant repumper at low intensity is required, which in turn induces strong light shifts on the
atoms. Conveniently, our careful characterization of the differential light shifts (Appendix B.4) allows to
decouple the complicated parameter dependence, with a feedforward on the two-photon detuning 𝛿 that
keeps the cooling sideband on resonance.

To optimize continuous Raman sideband cooling as an imaging technique, we aim for the highest
signal-to-noise ratio (SNR) of the detected fluorescence. The working principle of cRSC is problematic
since it relies on driving the atom to a dark state where it no longer scatters the coveted photons. It is then
imperative to find a balance of heating and cooling rates to keep the atoms out of the motional ground
state, but close to it for low atom loss. In our system the intra-cavity lattice noise in sufficient for this
purpose, instead of using parametric heating as in [123]. But for optimal imaging SNR, we find that the

9 Andor iXon 3: CCD chip with 512 × 512 px2, pixel size 16 × 16µm2, conversion factor (15 ± 1) counts/photon.
10 Main properties: collection efficiency ∼4 %, magnification ×35, PSF width ∼0.8µm equal to 1.72 px on the CCD.
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Figure 4.2: Optimization of cRSC inside of our high-bandwidth cavity for fluorescence imaging of atoms. With a
1 s imaging interval, we measure (a) the integrated single-atom fluorescence with the EMCCD camera through the
imaging channel, and (b) the imaging survival probability with the non-destructive cavity detection through the
quantum channel, as a function of repumper saturation parameter 𝑠 and free-space detuning Δ̃. The dashed line
at Δ̃ = Δ0 indicates the trap-shifted resonance. In (c) we show high fidelity images of small atomic ensembles
(1, 2 and 3 atoms) at the center of our FFPC, featuring SNR≈13 and survival > 90 %, acquired at the optimum
repumper parameters Δ̃ ≈ 2𝜋 × 35 MHz and 𝑠 ≈ 0.057 (blue circle in (a) and (b)). Figures from the publication [2].

balance of heating-cooling rates, to enhance photon scattering but keep high survival over the camera
exposure time, can be tuned with the repumper parameters. To find the optimum balance, we perform a
2D scan of repumper detuning and intensity. Note that in the experiment, the accessible parameter is the
repumper free-space detuning Δ̃ = Δ + Δ0, where Δ is the detuning from the trap-shifted resonance (used
in the model), and Δ0 ≈ 2𝜋 × 32 MHz the AC-Stark shift by the dipole traps DT𝑥𝑦 on the D1 transition
(calibrated with a spectroscopy cell reference, see Section 2.3.2). The resonance condition is then met
at Δ̃ = Δ0. As a figure for the repumper intensity we use the saturation parameter 𝑠 = 𝐼rep/𝐼sat that we
calibrate with via optical pumping rates (see Section 2.3). For each set of parameters {𝑠, Δ̃} and with a
1 s imaging interval under cRSC, we measure simultaneously the integrated fluorescence with the camera,
in Figure 4.2 (a), and the atom survival probability with the cavity detection, in Figure 4.2 (b). For these
measurements, the power of the Raman beams was fixed to a two-photon Raman Rabi frequency (on the
carrier) of Ω̃0 ≈ 2𝜋 × 340 kHz. In Appendix B.5 we include a detailed description of the optimization
procedure. Combining the information of the fluorescence and survival maps, we identify a region with
favorable conditions for imaging at parameters Δ̃ ≈ 2𝜋 × 35 MHz and 𝑠 ≈ 0.057, marked by the blue
circle in Figure 4.2 (a, b). This choice of parameters is characterized by a survival probability above 90 %
and a scattering rate per atom of ∼2 × 104 photon s−1, thus providing ∼800 photons at the camera in the
1 s exposure time. The resulting SNR≈13 is sufficient to capture clear images of individual atoms inside
of the FFPC, as the ones shown in Figure 4.2 (c), allowing to determine the number of atoms and their
position with full site resolution [57].

Beyond optimization, the qualitative behavior of fluorescence and survival in the 2D paremeter maps
of Figure 4.2 (a, b), also gives insight into the underlying heating dynamics of the imaging process.
A thorough discussion is included in Appendix B.5; here we only summarize the most prominent
observations. While the fluorescence shape follows the expected Lorentzian-like function around the
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trap-shifted repumper resonance (except for a small blueshift, coming from the images postselection
procedure), the survival map shows an unexpected asymmetry with higher atom losses on the red detuning
side than on the blue. When increasing the repumper intensity the survival dip shifts further to the red,
resulting in the observed asymmetric V-shaped survival probability map. We attribute this effect to
parameter-dependent heating rates, generated by dipole-force fluctuations (DFFs) [58, 105] affecting the
trapped atoms during the repumping cycles of cRSC (see Appendix B.10). The origin of DFFs in our case
can be understood as following. An atom confined in the lattice potential and illuminated by the repumper
light, undergoes rapid scattering cycles between ground and excited states of the 87Rb D1 line. Since the
polarizability ratio between the states 52S1/2 and 52P1/2 at the lattice wavelength of 868 nm is 𝜒≈−0.59,
the atom spends a fraction of time in the antitrapping potential of the excited state, before scattering back
into the trapping ground state. Such fluctuation of the dipole force usually cause an increase of the atom’s
kinetic energy, depending on the shape of the potentials and the detuning of the driving field (cooling was
also observed in [128]). Indeed, with our experimental conditions, the parameter-dependent shape of
dressed-state potentials plays an important role as we explain in Appendix B.10.1. It gives rise to a strong
heating effect for small repumper red detunings, in the region in which the oscillations of atoms in the
trap can access non-centered lattice positions where the repumper becomes resonant, as described in [58].
A standard practice to avoid DFFs is to operate with far-detuned illumination, yet at the cost of decreased
fluorescence or the need of higher intensity. However, if near-resonant illumination is required as in the
case of imaging with cRSC, for a compromise of high fluorescence and high survival, blue detunings are
beneficial in preventing DFFs-induced heating and red detunings should be avoided. We validate the
role of DFFs with a semiclassical Monte Carlo simulation of scattering under near-resonant illumination,
for a trapped atom in a 1D lattice. Details of the Monte Carlo simulation algorithm can be found in
Appendix B.10.2. The simulation results shown in Appendix B.5 confirm that DFFs is the main heating
mechanism that lead to the asymmetric survival probabilities observed in Figure 4.2 (b).

4.4 Summary and conclusions

In this chapter I have shown that continuous Raman sideband cooling (cRSC) is a powerful method for
imaging individual atoms coupled to a high-bandwidth cavity, overcoming the challenges inherent to the
strong Purcell effect. An independent and simultaneous operation of the cavity quantum channel and the
imaging channel is guaranteed by reserving a different atomic line for each channel. Our implementation
of cRSC in three dimensions with only one free-space beam and cavity fields, is ideal for architectures
with limited optical access, going in line with the miniaturization trend in quantum technologies.

Through optimization using the repumper parameters, we find a convenient balance between photon-
scattering rate and cooling efficiency. Furthermore, we observe the presence of heating induced by
dipole-force fluctuations, that is avoided with a small blue detuning of the illumination-repumper light.
It should be noted that the heating effect of DFFs is not limited to our particular FFPC setup, on the
contrary it is relevant for most experiments involving near-resonant illumination of lattice-trapped atoms.
With this, we demonstrate an imaging SNR of ∼ 13 and a residual motional ground-state occupation
above 85 %, sufficient for high fidelity detection of individual atoms in optical lattices.

The ability to determine the number and positions of cavity-coupled atoms in a non-destructive way,
paves the way for creating and controlling predefined atomic arrays inside of the resonator, that could be
manipulated by individual addressing with e.g. by movable tweezers. Ultimately, this imaging technique
extends the available toolbox for control and manipulation of atom-cavity systems. In that way, it enhances
the capabilities of the current prototypes of cavity-based quantum nodes, thus giving one step forward in
the unfolding development of quantum networks.
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Until now, for loading multiple atoms into the cavity we have relied on a probabilistic and sparse
loading technique from the MOT into the conveyor belt. For experiments with atomic arrays, a technique
for denser loading is needed. We developed a technique based on dynamical loading with the optical
conveyor belt, which we will present in Chapter 5.
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CHAPTER 5

Delivery of small atomic ensembles into a fiber
microcavity

Coupling small atomic ensembles to our high-bandwidth fiber-based Fabry-Pérot cavity
(FFPC) [21–23], i.e. upscaling the cavity-atom quantum node in our experiment, is one of the
main motivation of this thesis. As discussed in Chapter 1, the strong interactions of multiple
atoms with the cavity electromagnetic field –instead of a single one– can greatly extend the

capabilities of the atom-cavity quantum node and opens the door to promising applications [43–48, 51,
52]. With this goal in mind, in previous chapters we have demonstrated novel techniques for an improved
control of atoms inside of FFPCs [1, 2], specifically for cooling in Chapter 3 and for imaging in Chapter 4.
Still, a missing piece of the extended atom control toolbox is a method to load small atomic ensembles
into the fiber cavity and ensuring strong coupling for all atoms.

In our particular system (see Chapter 2), this implies that the atoms should be confined within the
narrow cavity mode of ∼10 µm waist diameter. Previously in our experiment [75], the technique to couple
multiple atoms was to transport to the cavity center the full chain of atoms loaded from the atom cloud of
the MOT into the optical conveyor belt. However, with this so called feedforward loading, the atoms get
distributed within a ∼60 µm region in the one-dimensional (1D) lattice, much larger than the cavity mode.
This poses two main problems: (1) only a few atoms from the resulting sparse atom chain will couple to
the cavity; (2) the atoms that do couple to the cavity have a broad radial position distribution within the
cavity mode causing undesired inhomogeneous effects (e.g. in the individual coupling strength, cooling
efficiency, trapping frequency) and a significant reduction of the effective collective coupling [24]. Thus,
to increase the density of atoms close to the cavity center it becomes necessary to compress the original
position distribution of atoms in the 1D lattice.

A large number of robust techniques have been developed over the past years for increasing the filling
factor of optical lattices [129–136] and for transporting atoms over macroscopic distances [87, 137–141],
e.g. for atom-delivery into optical cavities [88, 89, 142–144]. The feasibility of the different compression
techniques for our system has been reviewed in detail in Ref. [67]. In summary, the compressed MOT
loading [132] and the time-dependent lattice compression [135, 136] cannot be used in our experiment,
due to the impossibility to create a MOT inside of the cavity and to modify the crossing angle of the lattice
beams, respectively. The quarter cycle compression realized in Ref. [133, 134] is a feasible alternative
which was initially considered as the best choice for our experiment. Nevertheless, the implementation in

∗ Contribution statement: The work leading to the results presented in this chapter was carried out as a team effort under my
coordination, with my colleagues and proud members of the FCQED-lab crew: L. Ahlheit, P. Malik and M. Ammenwerth. Of
the results included in this chapter, some details and preliminary measurements are part of the M.Sc. thesis by L. Ahlheit [67].
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our system requires complex algorithms to compensate the anharmonicity of the trapping potential [102]
as studied systematically in Ref. [74], and the particular geometry of our lattice which will be reviewed
in Section 5.1.1. Moreover, the atom densities achievable by this technique get quickly limited by
light-induced collisions [99, 100], with the occurrence probability increased by the low availability of
trapping sites in a 1D lattice. Recently, in Ref. [144] an optical elevator was implemented to load large
atomic arrays at the center of a FFPC. This approach, though, is not applicable for small atomic ensembles
with individual addressing that we envisage, and is also subject to the inhomogeneous effects discussed
earlier.

In this chapter∗, I present the development and implementation of a new and simple method for
delivering multiple atoms to a three-dimensional (3D) lattice at the center of our FFPC, which we call
drive-through loading. Contrary to other loading and compression methods, it does not need additional
optical elements or laser beams, nor involves complicated algorithms; it relies only on the intensity and
phase control of the optical lattice beams. As the name suggests, it makes use of the well known conveyor
belt technique, already implemented in our setup [87, 88, 138], to drive the atom chain in the 1D lattice
through the 3D lattice region. During the drive-through transport the atoms roll into the crossing of the
lattice beams, and accumulate around the center of the lattice. Certainly, this observed drive-through
loading effect only occurs within particular ranges of critical experimental parameters. Throughout the
chapter the underlying mechanism will be discussed and the involved parameters investigated.

Even though this technique was developed in the particular context of our experiment, it is worth noting
that it can have a broader range of applications in different experimental contexts. It can be particularly
interesting for cold-atom-delivery into miniaturized devices requiring the interaction with cold atoms but
presenting a restricted optical access, such as optical microcavities (as in our case), and further integrated
photonic devices [29, 145–148] and optomechanical platforms [149–153]. More generally, it can be
useful in numerous experimental systems where the loading from a distant MOT is required, either by the
unfeasibility of its direct overlap with the final trapping lattice, or by a preference to avoid it.

5.1 Intracavity lattice loading by drive-through transport

Before diving into details of the experimental implementation, this section is dedicated to give a simple
overview of the drive-through loading method, and to provide an intuitive understanding of the observed
effect that we exploit for the multi-atom loading technique.

Even though the particular goal of this loading method in our experiment is to deliver atoms to the
FFPC, the presence of the cavity does not have any influence on the drive-through effect. Still, it will play
a crucial role as a measurement device that will be used for the characterization and optimization of the
effect in Section 5.2. But for now, it is important to note that just the optical lattices together with the
ability to manipulate them dynamically, give rise to the drive-through loading effect.

5.1.1 Overview of the drive-through loading method

We start this discussion with a timely review of the optical lattice configuration in our setup, which was
presented in the overview of the scientific apparatus in Chapter 2. The 3D lattice is aligned with the
center of the fiber cavity, allowing to trap small ensembles of single atoms in ∼100 individual lattice sites
inside of the cavity interaction region. As shown in Figure 5.1 (a), the horizontal 𝑥𝑦-plane is formed by
two crossed red-detuned standing-wave dipole traps DT𝑥 and DT𝑦 (preserving the previous notation),
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Figure 5.1: Setup and concept for drive-through loading. (a) Configuration of the five beams to generate the
intracavity 3D optical lattice: in the 𝑥𝑦-plane two pairs of counter-propagating beams (DT±𝑥 and DT±𝑦), with
wavelength 868 nm and 𝜋 polarization; along the 𝑧-axis the standing-wave intracavity field of the Lock laser (DT𝑧),
with wavelength 770 nm and 𝜎+ polarization. The black arrows indicate the electric field polarization with respect
to the quantization axis defined by the magnetic bias field along the cavity axis. (b) Optical alignment of the
conveyor-belt lattice DT𝑦 to facilitate the delivery of atoms into the cavity from the MOT ∼1 mm away. To allow
sufficient trap depth at the MOT region and at the intracavity lattice, the focus of the beams DT±𝑦 is placed between
these two regions at ∼275 µm from the cavity. (c) Drive-through loading sequence to load small atomic ensembles
into the intracavity lattice. From left to right: (i) atoms are captured by the MOT and loaded into the 1D lattice
DT𝑦; (ii) a first fast transport (800 µm/200 ms) brings the atoms close to the cavity (∼200 µm from the center),
where the experimental parameters for drive-through loading are selected; (iii) the drive-through transport shuttles
the atoms through the intracavity lattice region where they can accumulate or just cross depending on the chosen
parameters, while their presence in the conveyor belt is monitored by the cavity transport check; (iv) the transport
stops after all shuttling lattice sites are on the other side of the cavity (∼100 µm past the center), and at this point
the cavity loading check measures the presence of loaded atoms. Figures adapted from Ref. [74, 75].
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Chapter 5 Delivery of small atomic ensembles into a fiber microcavity

with a wavelength of 868 nm1. In the 𝑧 direction, the intracavtiy blue-detuned field of the Lock laser
creates the trapping lattice DT𝑧 with a wavelength of 770 nm2. The specific lattice polarizations are
(𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) = (𝜋, 𝜋, 𝜎+), defined along the cavity axis (which is also the quanization axis defined by the
𝐵-field), and the corresponding waist radii of the lattice beams are (𝑤0,𝑥 , 𝑤0,𝑦 , 𝑤0,𝑧) = (11, 11, 5) µm.
This configuration provides the trap depth of ∼0.5 mK in all lattice directions, that we use as standard in
the experiment (see chapters 3 and 4, and also Ref. [41]).

We recall from Chapter 2 that, due to lack of optical access, to deliver cold atoms to the cavity a MOT
is created ∼1 mm away, as shown in Figure 5.1 (b). Atoms are loaded from the MOT into the DT𝑦 1D
lattice and shuttled to the intracavity 3D lattice with the conveyor belt technique [87, 88, 138]. To ensure
a sufficient trap depth both at the position of the MOT (to collect a sufficient number of atoms) and at the
cavity position, the transport lattice DT𝑦 is not focused at the cavity center but between the MOT and the
cavity: it features a focus offset 𝑦0 = −275 µm from the 3D lattice intersection3. Thus, in contrast to
DT𝑥 and DT𝑧 , the spot size of DT𝑦 at the lattice intersection is not the beam waist 𝑤0,𝑦 = 11 µm, but the
larger value 𝑤𝑦 = 13 µm reported in previous chapters, see Equation (5.4). This generates an asymmetry
in the lattice geometry that will be discussed later.

The basic experimental sequence for drive-through loading is shown in Figure 5.1 (c). After the MOT
loading, the 1D chain of atoms in the conveyor lattice DT𝑦 is shifted with a first transport to just before
entering the cavity (𝑦≈−200 µm). There, relevant experimental parameters are selected, followed by a
second transport4 that drives the atoms through the intracavity lattice region. While inside of the cavity,
the atoms are cooled with the dRSC method presented in Chapter 3. Although it was initially expected
that all atoms are transported through and past the cavity unaffected, for certain parameters we observed a
finite probability of finding an atom still inside after the transport. During the drive-through transport,
these atoms roll into the trap intersection and accumulate in the 3D lattice: the drive-through loading
effect. In the rest of this chapter, we investigate this effect and the experimental parameters to control its
behavior, with the aim of utilizing it for loading multiple atoms into the narrow cavity mode. Given the
complexity of the conditions involved in the phenomenon, before the experimental implementation we
use a simple model to gain a basic understanding of the effect and to identify possible critical parameters.

5.1.2 One-dimensional classical transport model and numerical simulation

To obtain an intuitive understanding of the drive-through loading effect, we employ a one-dimensional
classical model of the atoms in the dynamical lattice potential, moving at a constant velocity during the
conveyor-belt transport. A quantum mechanical treatment of atomic transport can be found in Ref. [101,
154]. Here, the atoms are modeled as classical point particles, evolving in the moving potential landscape
(see Figure 5.2) originating from the dipole-force exerted by the lattice electromagnetic field on the
atoms [61] (recall Section 2.3.2).

The one dimensional approach was chosen to simplify the physical interpretation and reduce the
required computational resources. The classical perspective is justified by a number of reasons: (i) for
cold atoms loaded from the MOT with a mean temperature of 40 µK, the recoil energy 𝐸rec transferred by
1 The choice of the wavelength of 868 nm for the DT𝑥𝑦 lattice was to improve the stability of the TiSa laser source, with the

mode-lock working best at that wavelength.
2 The 770 nm wavelength for the DT𝑧 allows simultaneous coupling of the Lock and Probe fields with the cavity for the

resonance stabilization, see Chapter 2 and Ref. [22].
3 We define the axis origin 𝑦 = 0 at the intersection of the 3D-lattice beams at the center of the cavity.
4 The transport is performed in two stages, between which the parameters for the drive-through loading are set. The reason is to

minimize effects unrelated to the drive-through mechanism but dependent on the chosen parameters, e.g. the atom loading
from the MOT into the conveyor belt or atom losses in the transport lattice. This improves the sensitivity of our measurements
to the drive-through loading processes.
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5.1 Intracavity lattice loading by drive-through transport

a scattered lattice photon (∼0.15 µK) is very small compared to the motional quanta (∼3 µK); (ii) the
scattering rate of lattice photons by the atoms is negligible because of far-off detuning (see Section 2.3.2);
(iii) the low temperature of the atoms compared to the typical trap depth 𝑈0 and the low transport
speeds, render tunneling insignificant for most of the time, i.e. while in the deep-lattice regime 𝑈0 ≫𝐸rec
[155–157]; (iv) the atom transport in the lattice is highly adiabatic, i.e. the atom oscillating in a lattice
well is not affected by the shift of the trapping potential, or in other words the kinetic energy transferred
by the lattice displacement is much smaller than a vibrational energy quantum. In the classical harmonic
oscillator approximation, with a typical transport velocity 𝑣T ≈ 5 mm/s the travel time of one-lattice-site
width is 𝑡T ≈ 90 µs, and given an axial trapping frequency 𝜔𝑦,ax ≈ 2𝜋 × 350 kHz the adiabaticity criterion
is met with 𝑡T · 𝜔𝑦,ax ≫ 1 [139, 158].

As a matter of fact, this simplification with a 1D classical model proved to be a surprisingly good
approximation for a qualitative analysis, as will become clear in Section 5.2, and to provide essential
understanding of the drive-through loading mechanism.

Introduction to the 1D model

The full 1D time-dependent lattice potential 𝑈DT(𝑦, 𝑡) is defined by the superposition of the moving axial
potential of DT𝑦 and the fixed radial potential of DT𝑥 , valuated only along the 𝑦 axis5:

𝑈DT(𝑦, 𝑡) = 𝑈𝑦 (𝑦, 𝑡) +𝑈𝑥 (𝑦) , (5.1)

with the individual lattice potentials given by

𝑈𝑦 (𝑦, 𝑡) = 𝑈0,𝑦 ·
(

𝑤0,𝑦

𝑤𝑦 (𝑦 − 𝑦0)

)2
· cos2

(
2𝜋 · (𝑦 − 𝑦0 + 𝑡 · 𝑣T)

_DT

)
, (5.2)

𝑈𝑥 (𝑦) = 𝑈0,𝑥 · exp

(
−2

(
𝑦

𝑤0,𝑥

)2
)
, (5.3)

and with the spot size of DT𝑦 scaling as

𝑤𝑦 (𝑦) = 𝑤0,𝑦

√︄
1 +

(
𝑦 · _DT

𝜋 · 𝑤0,𝑦2

)2
, (5.4)

where 𝑈0,𝑖 is the maximum trap depth and 𝑤0,𝑖 the beam waist for each lattice direction 𝑖, _DT = 868 nm
is the common wavelength, and 𝑦0 = −275 µm is the DT𝑦 focus offset from the lattice intersection. The
phase factor 𝑡 · 𝑣T in Equation (5.2) generates the conveyor belt transport by shifting the periodic lattice
structure with a constant velocity 𝑣T.

A snapshot of the resulting 1D lattice potential from Equation (5.1) at 𝑡 = 0 is shown in Figure 5.2 (a),
for the condition 𝑈0,𝑦 = 𝑈0,𝑥 (here the wavelength has been scaled by ×10 for better visualization). One
can see the complete travel profile of atoms during drive-through loading, from the MOT loading position
to the transport stop. At the lattice intersection, DT𝑥 creates a dimple in the potential profile of DT𝑦 ,
deforming its periodic lattice structure. This can be seen in Figure 5.2 (b), showing the intersection region
around 𝑦 = 0 (here to scale), now for 𝑈0,𝑦 = 0.2 ·𝑈0,𝑥 . It is evident that the deformation of the lattice
wells is most pronounced where the radial potential shape of DT𝑥 is steepest. As shown in the closeup of
Figure 5.2 (c), this has the effect of reducing one of the walls of the local lattice site micro-potential, and
5 The potential of the blue-detuned DT𝑧 lattice is not considered because, given its repulsive property, the intensity is zero at

the center of a trapping site at 𝑧 = 0 on the 𝑦 axis.
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Figure 5.2: One-dimensional classical model of the lattice and atom transport for the drive-through loading effect.
(a) Snapshot of the 1D lattice moving potential 𝑈DT (𝑦, 𝑡) from Equation (5.1), resulting from the overlap of
orthogonal lattice components DT𝑦 and DT𝑥 , here for equal trap depths 𝑈0,𝑦 = 𝑈0,𝑥 and with a ×10 wavelength
scaling for better visualization. The transport lattice DT𝑦 connects the MOT loading region at 𝑦 ≈−1 000µm,
and the beam crossing with DT𝑥 at 𝑦 = 0 (also the cavity center). The focus of DT𝑦 has an offset 𝑦0 = −275 µm
from the lattice intersection point (see main text). (b) Detailed view of the intersection region of DT𝑦 with DT𝑥

around 𝑦 = 0, here with 𝑈0,𝑦 = 0.2 · 𝑈0,𝑥 and normal wavelength 868 nm. The lattice wells are deformed by
the radial Gaussian potential of DT𝑥 , effectively lowering the potential barrier on one side of the trapping sites.
(c) Close-up of the lattice potential in the region of strongest DT𝑥 slope at 𝑦≈−6 µm, where the shallowest trapping
potential of a lattice site occurs during transport. The minimum potential barrier, i.e. the effective well depth
𝑈eff, sets an energy threshold above which an atom oscillating in the lattice well (shown in green) can escape the
lattice-site confinement during transport, triggering the drive-through loading mechanism. The value of 𝑈eff is
influenced by the relative lattice depth 𝛽 = 𝑈0,𝑦/𝑈0,𝑥 , and by the lattice focus offset 𝑦0. (d) Response of 𝑈eff (black
dots, left y-axis) to the relative depth 𝛽 in our model. 𝑈eff follows a linear dependence (fit in red) until the value
𝛽 = 0.034, below which the lattice-site confinement vanishes. For an ensemble of atoms loaded from the MOT
(𝑇mot = 40 µK), the escape probability (green dots, right y-axis) is given by the cumulative modified 1D Boltzmann
energy distribution ℘

(
𝐸𝛽; 𝛽, 𝐸mot

)
for 𝐸𝛽 > 𝑈eff (see main text). Figures (b) and (c) adapted from Ref. [67].
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5.1 Intracavity lattice loading by drive-through transport

increasing the other. We define the effective well depth 𝑈eff as the absolute minimum potential barrier of
the deformed lattice sites in the intersection region during transport.

The lattice deformation giving rise to the effective well depth is influenced by two variables: the
trap depth 𝑈0,𝑦 relative to 𝑈0,𝑥 and the lattice geometry, namely the beam shape, the crossing angle
and in our case the focus offset 𝑦0. Since in the experiment the lattice geometry is fixed, 𝑈eff can be
solely manipulated by the ratio of intensities of DT𝑦 to DT𝑥 . We define the parameter 𝛽 = 𝑈0,𝑦/𝑈0,𝑥
as the relative lattice depth, that will serve as a tuning knob for the experimental implementation. In
Figure 5.2 (d) is plotted the tuning response of 𝑈eff with respect to 𝛽 for the particular geometry of our
lattice, and a linear fit to the data (in red). It is interesting to see that the response is nearly linear with
a slope of 356 µK, but exhibits a sharp threshold at 𝛽 ≈ 0.034 below which the effective well depth is
zero. We will see in the following that this particular parameter plays a crucial role in triggering the
drive-through loading mechanism.

The drive-through loading mechanism

With the 1D model introduced above, we aim to understand the underlying mechanism leading to the
drive-through loading effect. As will be discussed below, we identify two necessary conditions of
adiabaticity, that have to do with a time-scales imbalance between the atomic motion and the dynamical
deformation of the lattice.

The model traces the journey of an atom loaded from the MOT with a mean temperature of𝑇mot = 40 µK
in a lattice site at 𝑦 = −1 000 µm, and transported towards the cavity in the conveyor belt. The conveying
lattice site is shifted across the 3D lattice intersection region, and stops on the other side at 𝑦 = +100 µm.
As a convenient approximation, the energy of the atom 𝐸0 is sampled from a 1D Boltzmann distribution
℘(𝐸0; 𝐸mot) with the MOT mean energy 𝐸mot = 𝑘B𝑇mot and considering the density of states of a
harmonic oscillator6. This approximation comes at the price of underestimating the probability of high
atom energies (this choice and further considerations are discussed in Ref. [67]). Already before the
drive-through transport, lowering the DT𝑦 lattice 𝑈0,𝑦 ↦→ 𝛽 ·𝑈0,𝑦 has the effect of adiabatic cooling the
atom [62] by rescaling its energy to 𝐸𝛽 =

√
𝛽 · 𝐸0.

During the transport through the lattice intersection, due to the lattice deformation the atom will either
continue the transport unaffected or escape from the lattice site, depending on the initial conditions (energy
and oscillation phase). As shown in Figure 5.2 (c), if the atom has a higher energy than the effective
well depth 𝐸𝛽 > 𝑈eff, then it can escape from the lattice well and roll into the DT𝑥 potential where it
oscillates along 𝑦 in its radial component 𝑈𝑥 (𝑦), see Eq. (5.3). For a set of atoms with randomly selected
energies and for a given 𝛽 value, the probability of escaping is then related to the cumulative probability
℘
(
𝐸𝛽 >𝑈eff; 𝛽, 𝐸mot

)
from the modified Boltzmann distribution7 with characteristic temperature

√
𝛽 ·𝑇mot,

as depicted in green in Figure 5.2 (d). That is the basic mechanism that triggers the drive-through loading.
But more concretely, the effect does not simply depend on fulfilling the threshold condition 𝐸𝛽 > 𝑈eff

instantaneously. During the dynamical deformation of the lattice-site potential amid the transport, an
escape window opens for a time 𝑡esc, from the moment the potential barrier drops lower than the atom
energy 𝐸𝛽, until it raises again above 𝐸𝛽. The probability of escaping goes in hand with the transport
adiabaticity criterion discussed earlier: for success, the escape window time 𝑡esc (a function of 𝐸𝛽 , 𝛽 and

6 The 1D Boltzmann probability distribution of energies 𝐸0 for an ensemble of atoms loaded from the MOT with mean energy
𝐸mot in a harmonic oscillator potential (the lattice sites) is given by ℘(𝐸0; 𝐸mot) = 1

𝐸mot
exp

(
− 𝐸0
𝐸mot

)
.

7 After adiabatic lowering of the lattice to a relative depth 𝛽, the 1D Boltzmann distribution of atom energies 𝐸𝛽 is modified to
℘
(
𝐸𝛽 ; 𝛽, 𝐸mot

)
= 1√

𝛽 ·𝐸mot
exp

(
− 𝐸𝛽√

𝛽 ·𝐸mot

)
. The cumulative probability for 𝐸𝛽 > 𝑈eff, plotted in Figure 5.2 (d), is then given

by the integral ℘
(
𝐸𝛽 >𝑈eff; 𝛽, 𝐸mot

)
=

∫ ∞
𝑈eff

℘
(
𝐸𝛽 ; 𝛽, 𝐸mot

)
d𝐸𝛽 .
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Chapter 5 Delivery of small atomic ensembles into a fiber microcavity

𝑣T) needs to be compared to the axial oscillation period 𝜏𝑦,ax,𝛽 of the atom in the DT𝑦 lattice, i.e. defining
the condition

𝑐1 =
𝑡esc

𝜏𝑦,ax,𝛽

!≫ 1 , (5.5)

with 𝜏𝑦,ax,𝛽 = 2𝜋/(
√
𝛽 · 𝜔𝑦,ax) where we consider the lowering of the lattice by the factor 𝛽. This

condition means that the atom has a large number of attempts to escape the lattice site (and its oscillation
phase plays no role for the escape probability), which is the first necessary condition for the drive-through
loading mechanism. Besides, the escape window not only determines the probability, but also the position
where the atom escapes and starts to roll into DT𝑥 . If 𝑐1 is large, the escape window opens higher in the
potential and the atom gets out as soon as 𝑈eff < 𝐸𝛽 , i.e. on the upper left part of 𝑈𝑥 (𝑦).

Once out of the lattice-site potential, the atom oscillates in the transverse potential 𝑈𝑥 (𝑦) with the
characteristic radial frequency 𝜔𝑥,rad, and with an amplitude that depends on the escape position within
DT𝑥 . Now, the second requirement for drive-through loading is to avoid recapture of the atom in the
moving lattice. Otherwise it is dragged out of the crossing region before the transport stops, i.e. the
drive-through loading fails. Recapture is most likely at the spatially mirrored position from where it
escaped, at the turning point of the oscillation on the right side of the DT𝑥 potential. The recapture
condition obeys a different process than the escape one: at the turning point of the oscillation the atom
has to coincide with a lattice site, enter while the potential wall is still low enough, and stay within the
lattice-site width (_DT/2) long enough until the potential wall rises and traps it. Here, the relevant time
scales are the recapture time window given by 𝑡rec = 0.5_DT/𝑣T, and the time the atom stays within a
lattice-site width at the turning point of the oscillation 𝑡tp. In the harmonic approximation this time is
given by 𝑡tp = (𝜏𝑥,rad/𝜋) · arccos(0.5_DT/𝐴𝑦), where 𝜏𝑥,rad = 2𝜋/𝜔𝑥,rad is the radial oscillation period in
DT𝑥 and 𝐴𝑦 its 𝑦-axis amplitude (given by the 𝑦-position of escape). With this, the recapture condition
can then be written as 𝑡rec/𝑡tp ≪ 1. Hence, to avoid recapture we define

𝑐2 =
𝑡rec
𝑡tp

!
> 1 , (5.6)

as the second condition necessary for the drive-through loading mechanism to succeed, that depends on
the parameters 𝐸𝛽 , 𝛽 and 𝑣T.

Given the very different processes governing the two conditions, in our system for certain parameters
the recapture condition becomes more strict and less probable than the escape one, thereby generating the
drive-through loading effect. This discussion can be illustrated with some quantitative estimations of
the conditions (5.5) and (5.6) using our model in Eq. (5.1). For selceted values 𝛽 = 0.045 and 𝛽 = 0.02,
the calculated values of relevant parameters and resulting conditions are compiled in Table 5.1. For
the calculations we consider an atom with energy 𝑘B · 5 µK, a transport velocity 𝑣T = 5 mm/s, and the
oscillation frequencies with our lattice parameters 𝜔𝑦,ax ≈ 2𝜋 × 350 kHz and 𝜔𝑥,rad ≈ 2𝜋 × 40 kHz (for
𝛽 = 1 at the cavity center, see sections 5.1.1 and 2.3.2).

One can see how for low values of 𝛽 it is easier to fulfill the first condition (5.5), while the non-
recapturing condition (5.6) remains equally favorable, i.e. there is a high probability that the drive-through
loading effect occurs. It follows that when lowering 𝛽 the unbalance of escape and recapture probabilities
increases which is advantageous for drive-through loading. However, we observe that below certain values
𝛽 ≲ 0.2 the recapturing probability increases [67], thereby affecting the probability of drive-through
loading. This effect is due to the anharmonicity of the lattice potential [102] in (5.3), that was not
considered in the calculation of 𝑡tp with the harmonic approximation: if the atom escapes earlier, its
oscillation reaches higher positions in the DT𝑥 potential where the slope is smoother, the particle velocity
is slower, and the atom spends more time close to the turning point. Then with a longer time 𝑡tp > 𝑡rec,
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5.1 Intracavity lattice loading by drive-through transport

Table 5.1: Quantitative estimations of the variables that determine the escape and recapture conditions responsible
for the drive-through loading mechanism. The calculations were made with our 1D model, part analytically and
part numerically, for an atom with energy 𝑘B · 5µK and transport velocity 𝑣T = 5 mm/s. For two values of the
relative depth 𝛽 we calculate the axial oscillation period 𝜏𝑦,ax,𝛽 in the DT𝑦 lattice sites, the radial oscillation period
𝜏𝑥,rad in the crossed DT𝑥 lattice, the escape time 𝑡esc (numerically), the recapture time 𝑡rec, the radial oscillation
amplitude 𝐴𝑦 after escaping (numerically), the turning-point time 𝑡tp, and finally the the control values 𝑐1 and 𝑐2
for the conditions (5.5) and Eq. (5.6) respectively. See main text for the parameter definitions.

𝛽 𝜏𝑦,ax,𝛽 𝜏𝑥,rad 𝑡esc 𝑡rec 𝐴𝑦 𝑡tp 𝑐1 𝑐2

0.045 ∼13.5 µs 25 µs ∼0.5 ms 86.8 µs ∼6.9 µm ∼12 µs ∼37 ∼7.2
0.020 ∼20.2 µs 25 µs ∼2.6 ms 86.8 µs ∼13.6 µm ∼12.2 µs ∼129 ∼7.1

the condition (5.6) would be broken, thus entering in the recapture regime.
Active cooling inside of the intracavity lattice (dRSC in the experiment and modeled as a friction force

in the simulation, see below) can play a role in increasing the probability that the atom remains in the
intersection region, in two ways. On one side it reduces atom loss induced by heating, and on the other it
damps the atom oscillations lower into the DT𝑥 potential thus reducing the recapture probability.

In summary, from the above discussion of the 1D model and the drive-through loading mechanism,
we identify four critical parameters influencing the effect (for a given mean temperature of the atoms):
the relative trap depth 𝛽, the transport velocity 𝑣T, the lattice focus offset 𝑦0, and the cooling strength.
We also learn that 𝛽 is the main parameter to use for optimization of the drive-through loading method.
Before the experimental implementation, we use a numerical simulation of the 1D model to understand
the rough dependence of the drive-through loading probability on the aforementioned parameters.

Numerical simulation

The numerical simulation was implemented by L. Ahlheit, based on preliminary ideas in Ref. [74]. A
comprehensive explanation, including the computational optimization and validation tests, is included in
his MSc thesis in Ref. [67]. Here I present a short overview of the implementation with some relevant
details.

The simulation solves the classical evolution of a set of atoms (point particles) with the 1D lattice
transport model introduced at the beginning of the section. For each particle with a set of parameters
{𝛽, 𝑣T, 𝑦0}, the simulation integrates numerically the equation of motion

¥𝑦(𝑡) = 𝐹 (𝑦, 𝑡)
𝑚Rb

− F (𝑦, ¤𝑦) , (5.7)

with the force 𝐹 (𝑦, 𝑡) = −∇𝑈DT(𝑦, 𝑡) given by the lattice potential in Equation (5.1), and 𝑚Rb the atomic
mass. The function F (𝑦, ¤𝑦) represents the interactivity cooling as a friction force8 with tunable strength,
linear dependence on the particle velocity ¤𝑦(𝑡) and Gaussian dependence on the position 𝑦(𝑡). Note that
the potential 𝑈DT(𝑦, 𝑡) is non-conservative due to the movement of the lattice.

For the chosen parameters {𝛽, 𝑣T, 𝑦0}, the simulation computes the single-atom loading probability
𝑃dt from the number of successfully loaded atoms, i.e. with final position within the lattice intersection

8 In the simulation the atoms are subject to a damping force depending on their velocity, which is a very simplified model of the
dRSC method in the experiment, but proves to be useful for a qualitative understanding of the underlying processes.
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region, out of an ensemble with initial conditions {𝑦(0), ¤𝑦(0)} (distributed according to the physical
characteristics of our system). Details about the computational implementation of the simulation and the
distribution of initial conditions are included in Appendix C.1. The most relevant results for a scan of
the relative depth 𝛽, are shown in Figure 5.3 along with the experimental measurements, and will be
discussed together in Section 5.2. Further simulation results of the other parameter scans are presented in
Ref. [67] and included here in Appendix C.2.

From the simulation results we gain the following important conclusions about the drive-through
loading effect: (i) we confirm that the relative lattice depth 𝛽 has a strong influence on the loading
probability, hence it is the most critical optimization parameter for the experimental implementation.
An optimum is found around the value 𝛽 ≈ 0.025; for lower depths, considerable losses of atoms occur
during transport, while for higher depth the effective well depth𝑈eff is not lowered enough to let the atoms
escape from the moving lattice. (ii) The oscillation phase of the atom in the lattice has no relevant effect
on the loading probability, as suspected from the adiabaticity conditions. (iii) The transport velocity has
little effect on the loading probability in the range [0.3, 30] mm/s, but higher velocities have an adverse
effect. (iv) The cooling strength does not modify the amplitude of the loading probability, but it has the
effect of shifting it on the 𝛽-axis. A stronger cooling favor loading at lower relative depths, whereas a
weaker cooling improves loading at higher values of 𝛽. For more details on these conclusions and the
complete results, see Ref. [67].

Even though these findings highlight the drive-through transport as a promising multi-atom loading
technique for the intracavity lattice, featuring above 80 % individual-atom loading probability, the 1D
model does not represent the full picture. In the experiment, certain effects that are not considered in the
simulation can influence the result, to cite some: the interaction of the atoms can lead to losses at high
densities by light-assisted collisions; the 3D structure of the lattice, and the resulting position distribution
of the atoms, makes the particle dynamics way more complex than the simple 1D model; the tunneling
probability, not considered in the simulation, can indeed play a role at low values of 𝛽; common heating
mechanisms are not considered (e.g. by photon scattering and trap laser noise), and the oversimplified
cooling model might behave differently than the degenerate Raman cooling active inside of the cavity.
Therefore, guided by the findings of the simulation, in the next section I present detailed measurements of
the drive-through loading probability as a function of the mentioned relevant experimental parameters.

5.2 Experimental implementation of drive-through atom loading

Based on the empirical observation of the effect during drive-through transport introduced in Section 5.1,
and on the learnings from the 1D model in Section 5.1.2, now we aim to implement an efficient multi-atom
loading method for our atom-cavity module. This calls for a systematic study, this time experimentally, of
the drive-through loading probability for a single atom as a function of critical parameters. Specifically,
we identify as such the effective well depth 𝑈eff (determined in the experiment by the relative lattice depth
𝛽 = 𝑈0,𝑦/𝑈0,𝑥), the transport velocity 𝑣T during drive-through and the effect of cooling in the 3D lattice
region.

The experimental sequence for the implementation of drive-through loading was briefly described in
Section 5.1 (see also Figure 5.1 (c)). It is now convenient to describe the sequence in more detail. Atoms
are loaded from the MOT into the transport 1D lattice (DT𝑦), with an estimated mean temperature of
40 µK. The average number of loaded atoms can be adjusted by varying the MOT loading time. Then, the
chain of atoms in the conveyor is shuttled to approach the cavity at a distance ∼200 µm with a first fast
transport (800 µm/200 ms). At this point, the system is updated to the chosen experimental parameters
of relative depth 𝛽 and transport velocity 𝑣T. Subsequently, the drive-through transport takes place for
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300 µm, across the 3D lattice region and the cavity mode where Raman cooling can be either activated or
disabled. The transport stops at a distance of ∼100 µm past the cavity center. This guarantees that, in
absence of drive-through loading effect, the full string of atoms loaded from the MOT and carried in the
conveyor belt has completely crossed the 3D lattice region and abandoned the cavity mode. Consequently,
we consider that any atoms remaining in the 3D lattice after transport have been successfully loaded with
the drive-through technique.

Throughout the rest of this chapter I will refer to the drive-through sequence as described above when
discussing the dependence on the different parameters identified as critical. The effect of the relative
lattice depth is studied in Section 5.2.2. Then, the influence of transport velocity and cooling is discussed
in Section 5.2.3. We also analyze the role of our particular lattice geometry, precisely the focus offset
𝑦0 between the lattices DT𝑦 and DT𝑥 at the crossing point (although only via simulation since it is not
modifiable in the experiment). But first, I will explain the procedure that we employ to assess the loading
probability by means of the cavity-based detection.

5.2.1 Indirect measurement of the loading probability with the cavity

Even though the cavity in our experimental setup plays no role for the drive-through loading effect, it
provides a useful sensor that we exploit to characterize the loading probability. Specifically, we employ
the non-destructive atom detection technique presented in Section 2.3.1 and Figure 2.1, to monitor the
presence of atoms inside the 3D lattice region, providing crucial information that we use to determine
the loading probability. The Raman imaging technique presented in Chapter 4 is not applicable for this
measurement because it does not resolve atoms along the line of sight that overlap in the image. It is,
however, suitable for characterizing the spatial distribution of the atoms resulting from the drive-through
loading sequence.

Measuring the mean atom number with the cavity detection

As discussed in Section 2.3.1, the cavity probe reflection signal saturates with the coupling of a single
atom to the cavity mode. Hence, the cavity presence check provides a binary readout of the absence (low
reflection signal) or presence (high reflection signal) of at least one atom inside of the cavity during the
interrogation time, but the exact number of coupled atoms can not be directly measured in this manner.
However, through statistical analysis from a set of repeated measurements we are able to estimate the
mean number of atoms corresponding to the measurement settings. The approach consists in drawing
a connection between the probability distribution of the cavity detection (experimentally accessible)
and the atom number probability distribution inside the cavity, based on conceptual knowledge of the
experimental procedure.

On the one hand, the expected outcome of a particular cavity check for given experimental parameters
(denoted with 𝑖), follows a binomial distribution that can be reconstructed from multiple measurement
repetitions. The resulting positive detection (high-signal) probability C𝑖 (+) corresponds to the probability
of at least one atom coupling to the cavity during the probing time, while the negative detection (low-signal)
probability C𝑖 (−) = 1 − C𝑖 (+) gives the probability of an empty cavity.

On the other hand, the number of atoms present in the lattice at any given moment (denoted with 𝑗),
follows Poisson statistics. The probability of having 𝑛 trapped atoms at time 𝑗 is expressed as

P 𝑗 (𝑛) =
𝛼 𝑗

𝑛

𝑛!
𝑒−𝛼𝑗 , (5.8)

where 𝛼 𝑗 is the mean number of atoms in the lattice for the given experimental parameters.
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As we know that the cavity detection signal saturates with a single atom, then the probability of a
positive detection is equivalent to the cumulative Poisson probability of encountering one or more atoms
in the cavity during the interrogation interval. But more interesting for us is the negative detection
binomial probability resulting from an empty cavity, since it unambiguously corresponds to the Poisson
probability of zero atoms. We can then write the connection between the two probability distributions as

C𝑖 (+) ≡
∞∑︁
𝑛=1

P𝑖 (𝑛) , (5.9)

C𝑖 (−) ≡ P𝑖 (0) , (5.10)

and combining equations (5.10) and (5.8) for 𝑛 = 0, we obtain a link between the mean number of trapped
atoms 𝛼𝑖 and the measured quantity in the experiment, namely the probability of a high-signal cavity
detection C𝑖 (+):

𝛼𝑖 = − ln
(
1 − C𝑖 (+)

)
. (5.11)

This expression provides a mechanism to indirectly measure the mean number of atoms coupled to the
cavity at any given time, and in the following we will use it to characterize the drive-through loading
probability.

Measuring the drive-through loading probability

With a method at hand to obtain the mean number of atoms inside of the cavity, we now focus on
measuring the probability of an atom to be loaded into the 3D lattice with the drive-through method, for
chosen experimental parameters. The idea is to look for the ratio of atoms remaining in the lattice after
transport to the available number of atoms transported by the conveyor belt.

During the drive-through loading sequence, we perform two cavity-based atom-presence checks at
particular moments. The first check is done throughout the drive-through transport: we monitor the cavity
reflection during the entire transport duration to detect any atom that enters the cavity mode, regardless
of only crossing or staying inside the cavity. This check, referred to as transport check, is considered
positive if there is at least one high-signal detection during drive-through. A positive transport check
means that one or more atoms were transported by the conveyor belt into the 3D lattice. The second
cavity check, the so called loading check, takes place after the drive-through transport has finished. The
loading check allows to verify if one or more atoms remain trapped in the 3D lattice inside the cavity
mode, i.e. if they were loaded during drive-through by the conveyor belt into the 3D lattice. We remind
that, without the drive-through loading effect, we expect all the atoms carried in the conveyor belt to cross
the 3D lattice region during transport (positive transport check), but then also to be dragged out of it,
such that the cavity would remain empty after the transport (negative loading check).

From a set of measurement repetitions with same parameters, we obtain the binomial probabilities of
the transport and loading cavity checks, CT(+) and CL(+) respectively. Then, with Equation (5.11) we
find the corresponding mean number of atoms present in the 3D lattice during each check. Finally, we
define the drive-through loading probability 𝑃dt (for each individual atom) for the given experimental
parameters as

𝑃dt =
𝛼L
𝛼T

(5.12)

with 𝛼L the average number of atoms loaded in the 3D lattice by the drive through transport, and 𝛼T the
average number of atoms transported by the conveyor belt. We note that atom losses occurring after the
MOT loading but before entering the cavity are automatically taken into account by the transport check,
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Figure 5.3: Experimental demonstration of the drive-though loading method. (a) Single-atom loading probability as
a function of the relative trap depth 𝛽 of the lattice DT𝑦 with respect to the crossed lattice DT𝑥 , for fixed transport
velocity 𝑣T = 3 mm/s and MOT loading time 80 ms. The measurements via the cavity nondestructive detection
(red circles, see main text for the procedure) are shown together with the results of the 1D classical simulation
(blue squares). Inset: a finer measurement in the region of maximum loading probability (gray shaded area in
main plot), with the same simulation data as in the main graph. (b) Mean number of loaded atoms as a function of
the mean number of available atoms transported by the conveyor belt into the 3D lattice (black circles). A linear
fit (red dashed line and confidence bounds) shows that the drive-through loading probability remains constant
(given by the slope) while the number of atoms can be tuned with the MOT loading time. We infer the mean
number of atoms from the binomial probability of the cavity detection and the conversion to Poisson statistics, see
Equation (5.11). Inset: tuning curve of the number of transported atoms versus the loading time from the MOT
into the DT𝑦 transport lattice (gray circles), and the corresponding binomial cavity detection probability (purple
circles). This shows the correspondence between cavity detection and atom-number statistics used for the main
graph. In (a) and (b), the error bars of the measured data (calculated with the Monte Carlo method) and the shaded
band of the simulated data represent the 68 % confidence intervals.

such that 𝛼T represent the true number of atoms available for loading.

5.2.2 Demonstration of the drive-through loading method

At this point we have the necessary tools to investigate experimentally the dependence of the drive-through
loading on the aforementioned critical parameters, mainly the relative lattice depth 𝛽 = 𝑈0,𝑦/𝑈0,𝑥 . This
will allow us to demonstrate the experimental implementation of the drive-through loading technique, to
verify its working principle, and to compare the experimental results to the numerical simulation.

Optimizing the loading probability with the relative lattice depth

We start by looking into the influence of the effective well depth𝑈eff, which we learned from the numerical
simulation in Section 5.1.2 to be the most critical parameter according to the one-dimensional model.
However, in the real case of the experiment with the three-dimensional lattice geometry, the drive-through
effect could exhibit a different behavior.

Hence, motivated by the results of the 1D simulation, we study systematically the drive-through loading
probability as a function of 𝑈eff. We recall the definition of the effective well depth as the minimum
trapping potential of a lattice site of DT𝑦 , being deformed during transport by the radial potential of DT𝑥

(see Figure 5.2). In the experiment, 𝑈eff can be tuned with the ratio of optical power between the conveyor
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belt DT𝑦 and the crossed lattice DT𝑥 , i.e. the relative lattice depth 𝛽 = 𝑈0,𝑦/𝑈0,𝑥 .
Using the procedure described in Section 5.2.1, we measure the drive-through loading probability 𝑃dt

for a scan of the lattice depth 𝑈0,𝑦 relative to the depth 𝑈0,𝑥 which remains constant. In the experimental
sequence (see Figure 5.1 (c)), after the fast transport, the conveyor belt lattice DT𝑦 is adiabatically lowered
within 2 ms to the selected relative depth 𝛽. Then, the drive through transport is performed, after which
the lattice is adiabatically raised back to 𝛽 = 1 in 2 ms before the loading check. For this measurement
we use a MOT loading time of 80 ms into the 1D lattice, and a constant drive-through transport velocity
𝑣T = 3 mm/s. As mentioned earlier, cooling in the cavity region is active during drive-through using the
dRSC technique (see Chapter 3). For each value of 𝛽, the measurement is repeated more than 1000 times
for the statistical analysis to obtain the loading probability 𝑃dt from equations (5.11) and (5.12).

In Figure 5.3 (a) are shown the measurement results (red circles) of loading probability 𝑃dt as a function
of the relative depth 𝛽, together with the outcome of the 1D simulation explained in Section 5.1.2 (blue
squares). One can see that for most of the relative lattice depth values, i.e. towards the deeper side
𝛽 > 0.3, the drive-through loading effect is not present and all the atoms are transported across the cavity
without accumulating in the 3D region, i.e. the loading probability is zero. Yet, the effect is clearly visible
for a significant intensity lowering of the DT𝑦 transport lattice, appearing for values 𝛽 < 0.03. Most
interestingly, 𝑃dt increases prominently for relative depth values 𝛽 < 0.08. A finer scan of 𝛽 measured
in this region (gray shaded) is shown in the inset together with the same simulation data as in the main
plot. A maximum drive-through loading probability 𝑃dt = (64 ± 4) % is measured at an optimum depth
𝛽 ≈ 0.02, whereas the simulation reaches a loading peak of ∼82 % at 𝛽 ≈ 0.016. For lower values of the
relative depth, the sharp decrease of loading probability is attributed to strong atom losses during the
drive-through transport and to a high recapture probability in the moving lattice before the transport stops
(see Section 5.1.2).

It is certainly expected to encounter discrepancies between the results of the simulated model and the
measured counterpart, considering the 1D versus 3D geometries and the disregard of quantum effects
(tunneling, scattering, light-induced collisions, ...). Nevertheless, we find notable how the qualitative
behavior of the measured data and the simulation results in Figure 5.3 (a) match surprisingly well, despite
the one-dimensional and classical simplification of the model. The lower maximum loading probability
in the experiment compared to the simulation is attributed to heating that causes atom loss during the
drive-through transport. The slight mismatch of the 𝛽-value of the respective maxima is possibly related
to the effect of cooling that was oversimplified in the model, and which will be studied in Section 5.2.3.

Most interesting is to note how the increase of 𝑃dt when lowering the DT𝑦 intensity in Figure 5.3 (a), is
related to the behavior of the effective well depth 𝑈eff shown previously in Figure 5.2 (d). As seen in the
figure, it defines an energy threshold that cuts into the energy distribution of the transported atoms. Atoms
above this threshold have the possibility to escape out of the transport lattice sites and to accumulate at
the lattice intersection. This comparison of figures strengthens the argument that the main trigger of the
drive-through loading effect is the reduced effective well depth 𝑈eff, with the mechanism explained in
Section 5.1.2. More along this line will be discussed in Section 5.2.3.

It is interesting to compare the response of the loading probability 𝑃dt when lowering the relative
depth 𝛽 (experiment and simulation) in Figure 5.3 (a), with the behavior of the escape probability when
reducing 𝛽, related to the effective well depth 𝑈eff, as shown previously in Figure 5.2 (d). The similarity
between the figures strengthens the argument that the main trigger of the drive-through loading effect is
the reduced effective well depth 𝑈eff, with the mechanism explained in Section 5.1.2. More along this
line will be discussed in Section 5.2.3.

These results show that the drive-through loading mechanism can work efficiently for a proper choice
of parameters. With a loading probability exceeding 60 % for each atom, it looks very promising to
achieve the accumulation of multiple atoms in the 3D lattice inside of the cavity. However, it is still
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unknown if the loading probability would show a dependence on the number of loaded atoms, e.g. due to
light-induced collisions or other effects that could affect or enhance it. In the next section we investigate
experimentally this matter.

Controlling the cavity-coupled atom number with the drive-through loading

After showing that the drive-through technique works with a high single-atom loading probability for
certain relative depths of the lattice (Figure 5.3 (a)), an important question arises: is it a useful technique
for loading small atomic ensembles? In other words, we want to know if we can use it to load multiple
atoms by increasing the number of available atoms during drive-through, without reducing the probability
of loading each atom. To answer this question, we investigate the behavior of the drive-through loading
effect as a function of the number of atoms transported by the conveyor belt into the 3D lattice.

We use the same overall experimental sequence than for the investigation of the 𝛽-dependence in
Figure 5.3 (a), but here we keep the relative lattice depth fixed at 𝛽 = 0.035 9. The transport velocity
is kept as before at 𝑣T = 3 mm/s. The number of atoms carried by the conveyor belt is controlled by
the loading time of the MOT into DT𝑦 . For each MOT loading time 𝑡mot we follow the measurement
procedure as explained in Section 5.2.1, with the statistical analysis based on atom detection by the cavity,
taking between 500 and 5000 samples depending on the evaluated uncertainties.

Differently than in the previous measurement (the scan of 𝛽), here we are interested in the average
number of successfully loaded atoms 𝛼L in the 3D lattice via drive-through loading, as a function of the
mean number of transported atoms 𝛼T by the conveyor belt. For each value of 𝑡mot, we obtain the mean
atom numbers from the binomial probabilities of the transport and loading cavity-checks, CT(+) and
CL(+) respectively, see (5.11).

The main plot in Figure 5.3 (b) presents the measurement results of 𝛼L for different values of 𝛼T, with
each pair of values corresponding to a MOT loading time 𝑡mot. The inset shows the tuning curve of 𝛼T as
a function of 𝑡mot (in gray, left y-axis), together with the corresponding cavity-detection probability CT(+)
(in purple, right y-axis). We observe that the dependence of the number of loaded atoms on the number
of transported atoms is nearly linear, with the slope representing the single-atom loading probability 𝑃dt.
From a linear fit (red dashed line) we obtain the value 𝑃dt = (39 ± 4) % that coincides with the result in
Figure 5.3 (a) for 𝛽 = 0.035.

Still, an evident limitation of this measurement is the restriction to low atom numbers only, i.e. ∼6 to
8 at most, above which a precise evaluation is not feasible. The extended uncertainties at higher atom
numbers are due to the highly nonlinear transformation of Equation (5.11), which is the base for our
measurement procedure by the cavity detection (Section 5.2.1). One can see in the inset of Figure 5.3 (b)
how the cavity detection probability saturates rapidly for longer MOT loading times, thereby increasing
the uncertainty of the corresponding atom number.

Even so, the presented measurement provides a clear picture of the drive-through loading action. The
interpretation is simple but important: we are able to tune the number of atoms loaded by drive-through
transport and coupled to the cavity, while the single-atom loading probability does not seem to get
affected, at least for the few-atoms regime.

Ultimately, the two measurements shown in Figure 5.3 and discussed in this section, demonstrate
the working principle of the drive-through loading technique and prove its potential for delivering
multiple atoms into the cavity. Nevertheless, it is still relevant to consider the effect of the other critical
experimental parameters identified in Section 5.1.2, which we examine in the next section.

9 The non-optimal value 𝛽 = 0.035 is chosen to lie on the sharp slope of 𝑃dt and thus increase the sensitivity to changes.
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Figure 5.4: Investigation of drive-though loading dependence on other experimental parameters: transport velocity,
cooling and lattice geometry. (a) Measurement of the loading probability as a function of the relative lattice depth
𝛽, for different transport velocities, and for the cases with intracavity cooling (dRSC) activated or deactivated.
(b) Testing the dependence on the lattice geometry: simulation of loading probability as a function of the
lattice-beams focus offset 𝑦0 and the relative lattice depth 𝛽 (circles in orange color scale). The landscape of
effective well depth values 𝑈eff in the parameter space {𝑦0, 𝛽} is depicted as a contour plot (dashed lines in gray
scale). The fact that equal values of the loading probability follow isolines of 𝑈eff confirms the main role of the
effective well depth for the drive-through loading mechanism.

5.2.3 Optimization of other relevant experimental parameters

With the help of the 1D model and the numerical simulation in Section 5.1.2, we identified the experimental
parameters relevant for the optimization of the drive-through loading method. Besides the relative
lattice depth 𝛽 (analyzed in Section 5.2.2), we found that transport velocity 𝑣T, the intracavity cooling
strength, and the lattice geometry (i.e. the beam focus offset 𝑦0) could play a role. Here we investigate the
dependence of the loading probability 𝑃dt on such parameters.

Effect of the transport velocity and intracavity cooling

Concretely, we are interested in the way the behavior of 𝑃dt versus 𝛽 observed in Figure 5.3 (a) is affected
by the transport velocity and the intracavity cooling. To measure the drive-though loading probability 𝑃dt
we employ our standard experimental sequence used in Section 5.2.2. In this case the MOT loading time
is fixed to 80 ms and the relative depth is scanned in the relevant range [0, 0.13]. We then perform a scan
of the transport velocity, and for each value of 𝑣T the measurement is repeated with intracavity cooling
active and with the cooling disabled. The intracavity degenerate Raman sideband cooling (dRSC, see
Chapter 3) is deactivated by switching off the repumper beam and thereby breaking the cooling cycle. For
each measurement point we obtain the loading probability 𝑃dt from ∼1000 repetitions, with the statistical
analysis explained in Section 5.2.1.

In Figure 5.4 (a) are prsented the results of 𝑃dt as a function of 𝛽, for four transport speeds in the range
[0.4, 10] mm/s, with dRSC on and off. The corresponding simulation results indicate an overall good
agreement with the measurements, but have been omitted here since they are not relevant for the present
discussion. A comparison of simulation and experimental results is displayed in Appendix C.2 of this
thesis, and a detailed description is contained in Ref. [67].

Let us examine first the effect of the transport velocity with cooling active, compared to the case of
𝑣T = 3 mm/s that we used before. For slower transports the overall loading probability decreases while
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for higher velocities it improves. This is because atom losses induced by heating (e.g. from laser noise)
are proportional to the time the drive-through transport takes. The change in loading probability is most
perceptible at low trap depths, at which the atoms are more likely to escape: we can see the maximum of
𝑃dt slightly shifting to the left for faster transport. However, the transport velocity also sets an upper limit.
At higher velocities than 15 mm/s we observe that most of the atoms are lost before entering the cavity,
heated out of the conveyor belt by the strong acceleration10. But all in all, we can note that in the range
[3, 10] mm/s the loading probability is only marginally affected by the choice of the transport velocity.

On the other hand, the intracavity cooling has a strong effect. While for 𝛽 > 0.05 there seems to be no
influence, without cooling the atoms at lower relative depths have a sharp drop in loading probability.
This is explained by two mechanisms: on one side the cooling action reduces atom loses during transport
that are caused by heating; on the other hand it also reduces the recapturing effect that is more probable at
lower values of 𝛽, see the discussion in Section 5.1.2. Due to the first mechanism, the effect of cooling is
stronger for slower transport where atoms are subject to heating for longer. But in general, we observe
that the effect of cooling is to increase the final loading probability by counteracting heating, but the
overall shape of 𝑃dt versus 𝛽 is not changed. This means that the pure drive-through loading mechanism,
as discussed in Section 5.1.2, is not directly influenced by the presence or absence of cooling in most
cases. Only in the regime of very low 𝛽-values cooling plays a critical role to avoid atom recapturing.

Effect of the lattice geometry

As discussed before in Section 5.1.2, the geometry of the lattice modifies the effective well depth 𝑈eff for
a given relative lattice depth 𝛽. In turn, this is expected to modify the drive-through loading probability
𝑃dt at the given settings. Specifically, it is influenced by the Gaussian beam parameters (of all lattice
beams), the beam crossing angle and the focus offset 𝑦0. We aim to test the role of the lattice geometry
in the drive-through loading probability, but changing the beam geometry in the experiment is clearly
not an option. Nevertheless, for a first evaluation of the effect, we use the numerical simulation from
Section 5.1.2 and run it with modified beam focus offset.

In Figure 5.4 (b) we present the simulated results of 𝑃dt for a 2D scan of focus offset 𝑦0 and relative
depth 𝛽 (round markers in orange scale). We also plot together a contour map (dashed lines in gray
scale) of the effective well depth values 𝑈eff corresponding to each value-pair {𝑦0, 𝛽}. The parameters
of the simulation runs were chosen in order to sample the parameter-space {𝑦0, 𝛽} along four isolines
of 𝑈eff. It is clearly noticeable that along each isoline the loading probability displays a nearly constant
value. Such observation confirms that the effective well depth is the main parameter that determines if
the drive-through loading mechanism works.

This conclusion highlights the adaptability of the drive-through loading method to other lattice
geometries: for a different focus offset or beam-crossing angle, 𝑈eff (and thus 𝑃dt) will have a different
dependence on the relative depth 𝛽, but it will most probably be possible to find a suitable range for the
drive-through loading to succeed.

Overall, from the measurements presented in this section and shown in Figure 5.4, we can emphasize
that the drive-through loading technique is robust against changes in the transport velocity, and in the
lattice geometry. An active atom cooling method is necessary to compensate unavoidable heating, but it
is not a requirement for the fundamental drive-through loading mechanism.

10 We employ for simplicity a bathtub-style transport [75, 158] having a velocity profile with sharp corners that imply strong
acceleration points. With more complex techniques such as optimal quantum control [101], shorter transport times are
achievable without heating, which could further improve the drive-through loading efficiency.
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Chapter 5 Delivery of small atomic ensembles into a fiber microcavity

5.3 Summary and conclusions

In this chapter I have presented the development and implementation of a new method for loading atoms
from a distant MOT into the intersection of a crossed-beam optical 3D lattice. The technique, known as
drive-through loading, relies on transporting atoms with a conveyor belt through the intersection of the
lattice beams, where the atoms accumulate when the trap depth of the transport lattice is reduced to a
small fraction of the intersecting lattice beams. The highlight of this method is its simplicity, avoiding the
need of extra laser beams, additional optical elements or complicated algorithms: it only requires control
on the intensity and the phase of the transport lattice beam.

After discussing the intuitive understanding of the drive-through loading mechanism with a one-
dimensional model, we investigated experimentally the dependence on the relative trap depth 𝛽. For
this, we employed an indirect statistical measurement of the mean atom-number based on the cavity
nondestructive detection. In our system, we demonstrated a promising single-atom loading probability
above 60 % for 𝛽 ≈ 2 %. Results from a numerical simulation using our 1D model showed a surprisingly
good match with the measurements, confirming our understanding of the underlying mechanism.
Furthermore, we demonstrated experimentally that the number of atoms loaded by drive-though can be
controlled by the loading time of the MOT, without affecting the drive-through loading probability per
atom. Additionally, we investigated the loading probability on other experimental parameters, namely
the transport velocity, the lattice geometry and the presence of atom cooling. Our investigation shows
that the drive-through loading effect is quite robust against changes in all the aforementioned parameters,
although cooling plays an important role for compensating atom loss due to heating.

Although the proof of principle of this technique is clearly shown in this chapter, combining these
measurements with an imaging technique (as the Raman imaging presented in Chapter 4) allows to
investigate the resulting position distribution (thus the density) and the behavior for higher atom numbers.
Preliminary measurements of the position distribution using Raman imaging were made in Ref. [67]
and can be found here in Appendix C.3. Unfortunately our effort to conclude such measurements was
interrupted by the irreversible damage or our FFPC (see Appendix D.1).

Yet, these preliminary measurements indeed suggest that the drive-through loading mechanism triggers
the accumulation of atoms around the beam-crossing center. For this reason we believe that the method is
suited to generate dense atom loading in the 3D lattice. The three-dimensional lattice geometry enhances
the loading density because the atoms can accommodate in ∼ 100 lattice sites, minimizing multiple
occupancy and thus reducing losses, such that placing few tens of atoms inside of the cavity mode should
be possible.

In conclusion, the loading technique presented here can be useful in general for experiments and
miniaturized quantum technology platforms, with low optical access that rely on the delivery of cold
atoms into the system and on optical lattices for trapping. In the particular case of our atom-cavity
platform, this loading method is straightforward for coupling small atomic ensembles to our FFPC. This
would allow collective effect that enhance light-matter interaction and thus the efficiency of the quantum
node, which is one of the main motivations of this thesis.
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CHAPTER 6

Summary and Outlook

In this thesis I have presented three new experimental techniques that enable a better control of
individual atoms coupled to high-bandwidth cavities, where standard control techniques face
difficulties. The techniques developed here presented here aimed at three specific goals: (i) cooling
the atoms inside the resonator, (ii) detecting their number and position with a cavity-independent

imaging technique, and (iii) loading small atomic ensembles into the narrow cavity mode.
First, I showed the degenerate Raman sideband cooling (dRSC) to the ground state of single atoms,

with a simple and resource efficient implementation adapted to the lattice and cavity geometry. Since,
apart of the lattice, only weak optical pumping and a tunable magnetic field are needed, the dRSC method
is easily applicable to other cavity experiments due to its simplicity and versatility, even in the case of
narrow-linewidth resonators. More generally, this implementation can also be interesting for atoms in
lattices without a cavity, e.g. in applications with limited optical access.

Second, I presented the new Raman imaging scheme, relying on Raman cooling transitions to generate
fluorescence on the 87Rb D1, independent from the D2 reserved for the quantum channel of the atom-cavity
node. With an imaging SNR of ∼ 13 and a residual motional ground-state occupation above 85 %,
this method allows for high fidelity detection of individual atoms in optical lattices. Furthermore, we
investigated the heating effect of dipole-force fluctuations (DFFs), and showed that it can be avoided
with a small blue detuning of the illumination light. It should be noted that the heating effect of DFFs is
not limited to our particular FFPC setup, on the contrary it is relevant for most experiments involving
near-resonant illumination of lattice-trapped atoms.

Third, I developed and demonstrated the drive-through loading technique, based on transporting atoms
with a conveyor belt through the intersection of the lattice beams, where the atoms accumulate when
the trap depth of the transport lattice is reduced to a small fraction of the intersecting lattice beams.
The highlight of this method is its simplicity, avoiding the need of extra laser beams, additional optical
elements or complicated algorithms: it only requires control on the intensity and the phase of the transport
lattice beam. From the preliminary measurements of the position distribution of atoms in the lattice, we
believe that the method is suited to generate dense atom loading in the 3D lattice. The three-dimensional
lattice geometry enhances the loading density because the atoms can accommodate in ∼100 lattice sites,
minimizing multiple occupancy and thus reducing losses, such that placing few tens of atoms inside of the
cavity mode should be possible. We note that this loading technique presented here is not setup-specific
and can be applied in general for experiments and miniaturized quantum technology platforms, with low
optical access that rely on the delivery of cold atoms into the system and on optical lattices for trapping.

Ultimately, theses three techniques extend the available toolbox for control and manipulation of
atom-cavity systems. The ability to load small atomic ensembles in our FFPC, and to determine the
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Chapter 6 Summary and Outlook

number and positions of cavity-coupled atoms in a non-destructive way, paves the way for creating and
controlling predefined atomic arrays inside of the resonator, that could be manipulated by individual
addressing with e.g. optical tweezers steered by an acousto-optical deflector [93]. This would allow
collective effects that enhance light-matter interaction, with the collective coupling 𝑔𝑁 ∝

√
𝑁a · 𝑔, and

thus the efficiency of the quantum node. In that way, it enhances the capabilities of the current prototypes
of cavity-based quantum nodes, with the possibility to create a network of cavity-quantum registers as
envisioned in Ref. [64], thus giving one step forward in the unfolding development of quantum networks.
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“All-Optical Switch and Transistor Gated by One Stored Photon”,
Science 341.6147 (Aug. 2013) 768, issn: 0036-8075 (cit. on p. 78).

[161] A. Reiserer, N. Kalb, G. Rempe and S. Ritter,
“A quantum gate between a flying optical photon and a single trapped atom”,
Nature 508.7495 (Apr. 2014) 237, issn: 0028-0836 (cit. on p. 78).

[162] H.-J. Briegel, W. Dür, J. I. Cirac and P. Zoller,
“Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication”,
Physical Review Letters 81.26 (Dec. 1998) 5932, issn: 0031-9007 (cit. on p. 78).

[163] M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter and G. Rempe,
“Decoherence-protected memory for a single-photon qubit”,
Nature Photonics 12.1 (Jan. 2018) 18, issn: 1749-4885 (cit. on p. 78).
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Ground-state cooling of a single atom inside a high-bandwidth cavity
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We report on vibrational ground-state cooling of a single neutral atom coupled to a high-bandwidth Fabry-
Pérot cavity. The cooling process relies on degenerate Raman sideband transitions driven by dipole trap beams,
which confine the atoms in three dimensions. We infer a one-dimensional motional ground-state population
close to 90% by means of Raman spectroscopy. Moreover, lifetime measurements of a cavity-coupled atom
exceeding 40 s imply three-dimensional cooling of the atomic motion, which makes this resource-efficient
technique particularly interesting for cavity experiments with limited optical access.

DOI: 10.1103/PhysRevA.101.023415

I. INTRODUCTION

Single atoms coupled to optical resonators are one of
the most fundamental platforms in quantum optics and find
applications in many tasks of quantum information science
[1–5]. As a light-matter interface, they are a promising build-
ing block for long-distance quantum communication [6,7]
because of their ability to provide single photons of controlled
shape [2] and to store quantum information [8] encoded in
single photons. Ultimately, the number of possible applica-
tions is rising with the resonator bandwidth: High-bandwidth
cavities are, for example, needed to interact with the tem-
porally short single-photon pulses emitted by quantum dots
[9], which are also excellent sources of highly entangled
photon pairs and thus potential building blocks in quantum
repeater applications [10]. At the same time, a strong light-
matter interaction—as required for the reversible transfer of
quantum information—has to be maintained by employing
ensembles of atoms and / or decreasing the cavity mode
volume [11]. For the latter, fiber Fabry-Pérot cavities (FFPCs)
are an attractive choice, since they also feature an intrinsic
fiber coupling of the mode field [12,13]. For optimal light-
matter coupling, the atom has to be confined within a fraction
of the wavelength by cooling the atomic motion close to the
oscillatory ground state. A standard technique in narrow-band
cavities is cavity cooling [14,15]. Its steady-state temperature
limit is Tcav ≈ h̄κ/kB, where 2κ is the resonator bandwidth
and kB is the Boltzmann constant. Effective cavity cooling
is therefore ineffective in the regime of high-bandwidth (i.e.,
open) resonators with 2κ much larger than the natural atomic
linewidth 2γ . In such open-cavity experiments, the optical
trap depth required for trapping atoms with high equilibrium
temperatures of Tcav will be difficult to achieve.

Here, we report on an alternative cooling method based
on degenerate Raman sideband cooling (dRSC), which was
originally developed for the loss-free cooling of neutral atom
gases at high densities [16,17]. We apply this method to
three-dimensionally (3D) cool a single atom within the cavity

*e.urunuela@iap.uni-bonn.de

mode using only dipole trap beams, a weak repumping beam,
and a tunable magnetic guiding field, which is a simple,
resource-efficient configuration and especially beneficial for
cavity experiments with limited optical access. By means of
Raman spectroscopy and cavity-assisted state detection, we
determine a one-dimensional (1D) ground-state population
close to 90%.

II. EXPERIMENTAL SETUP

Our setup consists of a single 87Rb atom trapped at the
center of a high-bandwidth FFPC [18] with CQED parame-
ters (g, κ, γ ) = 2π × (80, 41, 3) MHz, where g is the single
atom-cavity coupling strength. One of the fiber mirrors has
a higher transmission, providing a single-sided cavity with
a highly directional input-output channel [19]. The cavity
is placed at the focus of four in-vacuum, aspheric lenses
(NA = 0.5), which strongly focus two pairs of counter-
propagating, red-detuned dipole trap (DT) beams at 860 nm
[20] in the xy plane, as depicted in Fig. 1(a). They create
a two-dimensional (2D) optical lattice, which enables atom
trapping in the Lamb-Dicke regime [21]. One of the lattices
acts as a conveyor belt [22] to transport single atoms from a
magneto-optical trap (MOT) into the cavity. Confinement in
the z direction is provided by the intracavity, blue-detuned
lock laser field at 770 nm, which is additionally used for
stabilizing the resonator length via the Pound-Drever-Hall
method [23]. Hence, the atom is located with subwavelength
precision at the nodes of the lock laser standing wave. These
points coincide with the antinodes of a probe laser field,
which is an odd number of free spectral ranges away [18].
The σ−-polarized probe field and the cavity are resonant with
the |F = 2, mF = −2〉 → |F ′ = 3, mF = −3〉 hyperfine tran-
sition of rubidium at 780 nm. As a consequence, the presence
of an atom modifies the cavity-resonance frequency, which is
detected as an increased reflection of probe light. A magnetic
guiding field B of up to 1 G is applied along the cavity axis.

III. COOLING METHOD

In order to drive trap-induced, degenerate Raman transi-
tions, the DT beams need to be able to address σ± and π

2469-9926/2020/101(2)/023415(4) 023415-1 ©2020 American Physical Society
74



EDUARDO URUÑUELA et al. PHYSICAL REVIEW A 101, 023415 (2020)

FIG. 1. (a) Optical fields involved in the degenerate Raman sideband cooling (dRSC) process. The 860-nm dipole trap beams have a
slightly nonorthogonal angle with respect to the cavity axis, along which the magnetic guiding field �B is aligned. Two optical pumping beams
enter along the dipole trap (not shown) and along the cavity axis, for the latter in the form of 780-nm probe light entering through the
high-transmission (HT) mirror. The low-transmission (LT) mirror makes for a directional, single-sided cavity. A 770-nm lock laser is used to
stabilize the resonator length via the Pound-Drever-Hall method. Its field creates an intracavity standing wave which traps the atoms along the
z direction. (b) The schematic drawing shows the method of decreasing the quantized motional state |n〉 in an approximately harmonic trap
potential with trap frequency ν. The red-detuned dipole traps can drive π -σ− and σ+-π Raman transitions. Additionally, since the 860-nm
trap beams are not orthogonal to the cavity axis, they can couple to motional eigenstates in all directions. By optical pumping, the population
in F = 1 (not shown) and mF �= −2 states is transferred back toward |F, mF 〉 = |2, −2〉, such that Raman cooling will be constantly active if
Eq. (1) is fulfilled.

transitions simultaneously, while the Zeeman splitting �ωB

caused by the magnetic field B has to match an integer
multiple n of the axial trap frequency ν [24]:

�ωB = n2πν . (1)

In previous implementations [16,17,25], the lattice consisted
of three coplanar laser beams, two of which were linearly
polarized in the lattice plane perpendicular to the quantiza-
tion axis. The third one was elliptically polarized to enable
Raman coupling. In our experiment, the different polarization
components are generated by the geometric configuration of
the dipole trap beams; see Fig. 1(a). The beams of DTx,y

are slightly inclined with respect to the plane normal to the
quantization axis (for DTx � 15◦ and for DTy ∼ 8◦). Hence,
the beams of the individual DTs (with linear polarization)
are not purely π polarized and mF -state-changing two-photon
transitions are allowed.

In order to describe the Raman process, we express the
internal hyperfine state |F 〉 of the atom with its magnetic
sublevel |mF 〉 and its excited vibrational state |n〉 as a set
of discrete energy states |F, mF ; n〉. By the combined ac-
tion of the probe light and a repumper resonant with the
|F = 1〉 → |F ′ = 2〉 transition, the atom is optically pumped
to the state |2,−2; n〉; see Fig. 1(b). The Raman processes are
driven by DTx,y as π -σ− or σ+-π transitions |2,−2; n〉 →
|2,−1; n − 1〉, reducing the oscillatory quantum number n
by one. As a result, the atomic population is cooled into
the state |2,−2; 0〉, which is a dark state with respect to
Raman transitions. Simultaneously, the presence of the atom
is continuously interrogated by probe light. This allows to
record the atom trapping lifetime τ in dependence of the
Zeeman splitting �ωB.

IV. RESULTS

In Fig. 2(a), long trapping times are observed whenever
the absolute value of the magnetic field leads to a Zeeman
level shift on the order of the trap frequency νx, νy or νz,
which identifies degenerate Raman transitions. From a fit
of two Gaussians, the values νx = νy = (350 ± 1) kHz and
νz = (224 ± 5) kHz are extracted. The width of the Gaussians
indicate inhomogeneous broadening caused by different atom
positions in the 3D trapping region. Considering the optical
power in the beams and the beam diameters, we estimate
upper limits for the trap frequencies of νx = νy = 400 kHz
and νz = 280 kHz, in agreement with the measurement.

In a next step, �ωB is fixed to 2π × 350 kHz, which con-
stitutes the optimum value for cooling. Here, we investigate
in more detail the survival probability for different cooling
times. We find a 1/e lifetime of (42.9 ± 1.0) s by fitting the
data with a stretched exponential [26,27] of the type:

e−(t/τ )k
, (2)

with a lifetime τ and a stretching parameter k = (0.8 ± 0.1).
While this function is a phenomenological approach, it repre-
sents the average decay for an ensemble of decay processes
with a distribution of lifetimes τi, which depend on the in-
homogeneous atom confinement in the dipole traps. In the
absence of optical pumping (probe light) and thus dRSC, the
average lifetime is only (1.0 ± 0.1) s due to heating processes
induced by the cavity-resonant dipole trap. Here, a common
problem is the transfer of relative frequency noise between
cavity resonance and laser frequency into intracavity intensity
fluctuations, causing additional parametric excitation of the
atoms along the cavity axis [28,29].

To gain insight into the temperature of the atom in the
critical z direction, we perform Raman spectroscopy using a

023415-2
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FIG. 2. (a) A measurement of the atom trapping time τ as a function of the Zeeman splitting �ωB. A fit of two Gaussians (yellow
line) indicates dRSC whenever the absolute value of the magnetic field leads to a Zeeman level shift close to the trap frequencies. Since each
measurement takes 60 s, only a few trials per point are available. To accurately estimate the mean lifetime, we employ the bootstrapping method,
resulting in a larger margin of error. (b) Measurements of the survival probability at a fixed magnetic field lead to drastically different lifetimes
depending on whether optical pumping by probe light, and thus dRSC, is present (yellow line) or absent (red line). From stretched-exponential
fits [see Eq. (2)], 1/e lifetimes (dashed, black line) of (42.9 ± 1.0) s and (1.0 ± 0.1) s are obtained, respectively.

second 770-nm laser which is phase locked to the previously
introduced lock laser and enters the cavity as a running wave
from the side. The Raman light has a tunable frequency offset
δ around the hyperfine splitting of +2π × 6.834 GHz. To
record a spectrum, the atom is prepared in the state |2,−2〉
by dRSC and motional state-changing transitions are driven
between the states |2,−2〉 and |1,−1〉 by a 200-μs-long
Raman pulse, which exceeds the coherence time. During
the pulse, degenerate Raman transitions are prevented by an
increased magnetic field. By a cavity-assisted, nondestructive
readout of the hyperfine state, we measure the atomic popu-
lation remaining in |F = 2〉 as a function of the two-photon
detuning; see Fig. 3. The running-wave Raman beam is sent
along y, with DTy off, such that only odd-order sidebands
along z are observed. They change the motional state by
�nz = ±1,±3, ..., while the carrier transition is suppressed
[30,31]. The noise peaks (“servo bumps”) of our Raman laser
phase-locked loop appear as additional features at ±1.3 MHz
of any Raman transition, but they are mainly visible for the
strong heating sideband. The depths of the dips depend on the
technical details of the Rabi spectroscopy pulse and do not
play a role in calculating the mean motional excitation number
ni along the direction i. Assuming a thermal equilibrium, ni is
given by the relation

ni = Ri

1 − Ri
,

where Ri is the ratio of the areas under the cooling and
the heating sideband. Since in the presented spectra the
sidebands overlap, we extract this ratio from a fit consid-
ering all expected sidebands. The resulting mean motional
excitation along z is nz = (0.13 ± 0.03). This corresponds to
a one-dimensional ground-state population n0,z = 1/(1 + nz )
of (88 ± 3) %. To validate our interpretation of the Raman
spectrum, we record a second spectrum with atoms at higher
temperatures by introducing a 100-ms-long waiting time be-
fore each spectroscopy pulse during which the atoms heat
up. As a consequence, the cooling sideband becomes clearly
visible. In this case, the mean motional quantum number is
nz = (0.47 ± 0.06).

V. CONCLUSION

We have applied a simple and robust method to cool a
single atom inside a high-bandwidth resonator to its one-
dimensional motional ground state. The long trapping lifetime
of 40 s under continuous, nondestructive probing of the atom’s
presence allows interesting applications such as determining
the atomic position within the cavity by imaging the probe

FIG. 3. Carrier-free Raman spectroscopy. The atomic population
not transferred by the Raman pulse, i.e., remaining in |F = 2〉,
is plotted vs the two-photon detuning from the hyperfine ground-
state splitting. A schematic drawing of the expected sidebands
(±νz, ±3νz, ...) is shown above the measured Raman spectra. The
“servo bumps” of the phase-locked loop between lock and Raman
laser give rise to additional sidebands (black line in the schematic
drawing above). For a Raman spectrum after dRSC (blue data
points), a fit (blue line) yields a mean motional excitation along
z of nz = (0.13 ± 0.03), which indicates that dRSC is capable of
cooling the atoms to the motional ground state. In order to elucidate
the cooling sideband, we measure a second Raman spectrum (red
points) after the atoms were heated by a controlled, 100-ms-long
interruption of dRSC. Now, with hotter atoms, a cooling sideband
becomes visible on the right side of the suppressed carrier transition
(black, dashed line).
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light scattered into free space. Without cooling, the atom
trapping lifetime in each 1D red dipole trap, i.e., outside
the cavity region, is limited by optical phase-noise to only
≈15 s. Thus, the observation of a significantly longer lifetime
inside the cavity region suggests that the atoms are cooled
in three dimensions. A possible explanation could be cross-
dimensional mixing [31] or the ability to address motional
transitions along all dimensions by small tilting angles of the
dipole traps driving Raman transitions. For the latter, these in-
homogeneously broadened transitions (see Fig. 2) might then
simultaneously address oscillations in different directions at
slightly different trapping frequencies.

Since only weak optical pumping and a tunable magnetic
bias field are required, the dRSC method has the potential to
complement established techniques such as cavity cooling—
even for narrow-band cavities, where cavity cooling works

well. Neutral atoms trapped in free space equally profit from
this method.

It is worthwhile to point out that the tools used for Raman
spectroscopy can directly be applied for carrier-free ground-
state Raman cooling in three dimensions, if the Raman beam
is sent diagonally in the xy plane. In our setup, this method
will supersede dRSC as soon as the cooling conditions need
to be (de)activated faster than the timescale on which the
magnetic field can be changed.
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Raman imaging of atoms inside a high-bandwidth cavity

E. Uruñuela ,* M. Ammenwerth, P. Malik, L. Ahlheit , H. Pfeifer , W. Alt , and D. Meschede
Institute for Applied Physics, University of Bonn, Wegelerstr. 8, 53115 Bonn, Germany
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High-bandwidth, fiber-based optical cavities are a promising building block for future quantum networks.
They are used to resonantly couple stationary qubits such as single or multiple atoms with photons routing
quantum information into a fiber network at high rates. In high-bandwidth cavities, standard fluorescence
imaging on the atom-cavity resonance line for controlling atom positions is impaired since the Purcell effect
strongly suppresses all-directional fluorescence. Here, we restore imaging of 87Rb atoms strongly coupled to
such a fiber Fabry-Pérot cavity by detecting the repumper fluorescence which is generated by continuous and
three-dimensional Raman sideband cooling. We have carried out a detailed spectroscopic investigation of the
repumper-induced differential light shifts affecting the Raman resonance, dependent on intensity and detuning.
Our analysis identifies a compromise regime between imaging signal-to-noise ratio and survival rate, where
physical insight into the role of dipole-force fluctuations in the heating dynamics of trapped atoms is gained.

DOI: 10.1103/PhysRevA.105.043321

I. INTRODUCTION

A major goal pursued in quantum communication sci-
ence during the last decades has been to create quantum
networks [1,2] that would allow us to distribute quantum
information in an analogous way to classical information with
the present internet [3,4]. In such proposed networks, flying
qubits (i.e., photons) are excellent carriers of quantum in-
formation in fiber-based networks connecting quantum nodes
capable of generating, processing, and storing quantum infor-
mation in the form of stationary matter qubits [5]. It has been
demonstrated [6–8] that optical cavities can enhance light
matter interaction to the level required for efficient interfacing
of incoming and outgoing photonic information at the nodes
of future quantum networks.

Much research effort is still invested in finding the best-
suited physical platform for the nodes [9–11], having to fulfill
challenging technical requirements to enable efficient and co-
herent exchange of quantum information between the photons
and the matter counterpart. Several different physical plat-
forms are considered for the realization of such nodes [12], of
which atoms stored in and strongly coupled to optical cavities
offer a good compromise of efficient light matter interac-
tion and long storage times of quantum information [13–16].
Hence, fiber-based optical cavities [17–19] coupling to atomic
matter qubits make an attractive solution for directly routing
quantum information via fiber links.

A promising regime of fiber-based Fabry-Pérot cavities
(FFPCs) is to realize strong atom-field coupling g along with

*e.urunuela@iap.uni-bonn.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

a cavity of high-bandwidth κ [20], characterized by g, κ � γ

and g ≈ κ , with γ the free space decay rate of the atom. The
main breakthrough of such miniaturized cavities is that they
allow for information flow at high rates of order κ , while still
providing the necessary conditions for the strong-coupling
regime with cooperativity C = g2

2κγ
� 1. This unique feature

of FFPCs is possible due to their small mode volume V
that boosts the coupling strength g ∝ 1√

V
. The single-sided

configuration of Fig. 1(a) further positions FFPCs as an ideal
platform for quantum nodes: the intrinsic fiber coupling to a
single input-output channel enables convenient and efficient
routing of photons carrying quantum information from and to
the optical fiber, i.e., the quantum channel, mediated by the
cavity-coupled atoms.

In recent years, important basic functionalities of quantum
nodes have been demonstrated in proof-of-principle experi-
ments, with a single atom (or few atoms) in FFPCs and in
bulk cavities. These advances include highly efficient and
deterministic single-photon sources [21,22], the storage and
retrieval of a single photon into a single atom [23] even be-
yond the adiabatic regime [24], the bandwidth conversion of a
single photon mediated by a single cavity-coupled atom [25],
and recently prototypes for quantum memories and quantum
repeaters [26].

The functionality of the atom-cavity system can be ex-
tended by increasing the number of atoms [27] to overcome
the limit for the single-atom coupling strength (g is bounded
by the smallest mode volume V technically achievable), by
means of the Dicke enhancement with N identically cou-
pled atoms, yielding gN ∝ √

Ng. The Dicke enhanced rate
gN [28–31] can boost the coherent photon-atom ensemble in-
teraction to the level that Purcell effect can be tuned to match
the bandwidths of very diverse quantum emitters, e.g., semi-
conductor quantum dots (γ ≈ 1 GHz) and neutral atoms (γ ≈
6 MHz). Ensembles of atoms in cavities have also been envis-
aged as promising platforms for quantum simulators [32].

2469-9926/2022/105(4)/043321(15) 043321-1 Published by the American Physical Society
80



E. URUÑUELA et al. PHYSICAL REVIEW A 105, 043321 (2022)

FIG. 1. (a) A fiber based, single-sided high-bandwidth optical
cavity (reflectivities R1 < R2 � 1) serves to efficiently interface
atomic qubits with photonic quantum information routed on a fiber
network. (b) Images of small atomic ensembles (1, 2, and 3 atoms)
at the center of our high-bandwidth cavity registered with repumper
fluorescence during continuous Raman sideband cooling in 3D (ex-
posure time 1 s).

The necessary level of control for both single and multi-
atom implementations requires optical tweezers or lattices for
trapping, and motional control of the atoms [33–35]. The
atom-cavity coupling strength is governed by the local field
strengths and hence knowledge of the atoms positions within
the cavity is essential for operating efficient protocols, e.g.,
for photon storage [30] or dissipative entanglement [36]. In
the case of the FFPC setup shown in Fig. 1(a) this knowledge
is extracted through a secondary imaging channel, indepen-
dently of the primary fiber quantum channel. Fluorescence
imaging, complemented by cooling measures to compensate
scattering-induced heating and atom loss, has been established
for long as the workhorse for positional detection of individual
neutral atoms [37,38].

High-bandwidth cavities, however, are impairing the stan-
dard methods of both cooling and imaging since the strong
Purcell effect causes almost all light emitted by the atoms at
the cavity resonance line to be routed into the fiber channel,
which amounts to suppressing fluorescence in the direction
transverse to the cavity axis [20]. Also, the convenient cavity
cooling technique [39] does not exist for κ � γ , it is switched
off by the large cavity decay.

Alternative cooling schemes compatible with high-
bandwidth cavities and restricted FFPC geometries have been
established previously using Raman sideband cooling tech-
niques [40,41]. Here we show that the detection of the
repumper fluorescence (which is not subject to the Purcell
effect) emitted during the Raman cooling cycles, provides
enough intensity to allow imaging of the atoms trapped in
a three-dimensional (3D) lattice superimposed on the cavity
field.

The technique dubbed Raman imaging was pioneered
by [42,43] and quickly adopted in the field of quantum gas

microscopes [44–46] as a powerful method for single-site
resolved and loss-free imaging of dense atomic ensembles
in optical lattices [35]. In our experiment, we customize this
method to the FFPC setup in Fig. 1(a), where the restricted
optical access renders coupling of one of the Raman beams
and the repumper copropagating with the fiber quantum chan-
nel advantageous. The detrimental Purcell effect is avoided
by choosing atomic transitions for the imaging channel with
large detuning from the quantum channel (resonant with the
cavity). This implementation allows us to obtain clear pic-
tures of the trapped atoms with 1 s exposure time, as shown
in Fig. 1(b), while simultaneously probing the atom-cavity
coupling through the reserved quantum channel.

Combining the information obtained from both the imag-
ing and the fiber quantum channel not only allows us to
optimize the imaging scheme, but also to perform an in-depth
analysis of the underlying physical effects. We study the
repumper-induced differential light shifts that occur during
Raman sideband cooling and analyze the complex parame-
ter space governing both the scattering rate and the balance
between cooling efficiency and heating rates. Our analysis
provides useful parameter regions for a compromise between
high survival rate and an acceptable imaging signal-to-noise
ratio. Additionally, we gain physical insight into the under-
lying heating dynamics for atoms in optical lattices under
near-resonant illumination, originating from dipole-force fluc-
tuations [38,47]. For certain parameters we observe high
heating rates which we discuss and validate with a semi-
classical Monte Carlo simulation of scattering dynamics in
dressed-state potentials.

II. EXPERIMENTAL SETUP AND METHODS

In our experiment, few 87Rb atoms are trapped in a
3D lattice and strongly coupled to a high-bandwidth fiber
Fabry-Pérot cavity (FFPC) with parameters (g, κ, γ ) = 2π ×
(80, 41, 3) MHz [18,20]. A simplified diagram of the experi-
mental setup is shown in Fig. 2(a).

To obtain a directional single-sided resonator, a mirror with
high transmission (HT) is used at the input-output-channel
side. A 780 nm cavity probe beam is coupled through this port
to resonantly interrogate the atoms. The cavity is stabilized
to a length that features a simultaneous resonance with the
probe light at the D2 line of 87Rb, and with 770 nm light
forming a blue-detuned intracavity optical lattice (DTz). In
this configuration, trapping sites at intensity minima of DTz

coincide with intensity maxima of the probe standing wave at
the cavity center, providing an atom-cavity interaction in the
strong-coupling regime [20].

The atoms are trapped in a 3D lattice at the center of
the cavity. In the xy plane, the lattice is formed by two
near-orthogonal red-detuned 868 nm standing-wave dipole
traps (DTx and DTy), and in the z axis by the blue-detuned
770 nm intracavity lattice (DTz). With a depth of ≈ 0.5 mK
in each direction this allows for trapping in the Lamb-Dicke
regime [48], in a region defined by the waist of the beams
(wx,wy,wz ) = (13, 11, 5) μm. The lattice polarizations are
defined as (Px, Py, Pz ) = (π, π, σ+), with the quantization
axis of our system set parallel to the cavity axis by applying a
magnetic guiding field of ≈ 1.8 G. The dipole trap along the
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FIG. 2. Experimental setup and employed transitions for imag-
ing of 87Rb atoms inside a high-bandwidth cavity. (a) Atoms are
confined in the xy plane by a red-detuned 2D lattice (x direction
not shown), and along the cavity by a blue-detuned lattice. The
770 nm intracavity field also acts as a first Raman beam (RB1),
and the second one (RB2) is overlapped with the y-axis lattice.
The repumper beams induce scattering of photons on the D1 line
that are collected to image the atoms onto an EMCCD camera. We
probe the cavity on the D2 line to detect the presence and internal
state of the atom. (b) Representation of the 1D cooling scheme. The
frequency difference of RB1 and RB2 equals the Zeeman-shifted
energy splitting between the involved hyperfine levels Eh fs, plus a
two-photon detuning δ. To drive Raman transitions on the cooling
sideband, δ is tuned to the near-harmonic trap frequency ν. To close
the cooling cycle and obtain images with high SNR, the repumper
beams are kept detuned from the D1 line by �.

y axis serves as an optical conveyor belt [49,50] to transport
single atoms to the cavity center. The conveyor belt is loaded
from a magneto-optical trap (MOT) 1 mm away.

For Raman cooling we use two-photon transitions that cou-
ple the internal and external degrees of freedom of the atom.
The intracavity optical lattice DTz also plays the role of the
first Raman beam (RB1). The second 770 nm Raman beam
(RB2) is phase locked to DTz and copropagates along DTy

enabling momentum transfer on each cooling cycle. For long
term frequency stability, the source for RB2 is a distributed
Bragg reflector (DBR) laser. It is upgraded with an external
optical feedback to reduce its linewidth and enable phase
locking (see Appendix A). To achieve Raman coupling for all
three lattice directions, the lattice beams DTx,y are not fully
orthogonal to DTz, but feature small angles with respect to the
normal plane of the vertical lattice (θx ≈ 15◦ and θy ≈ 6◦).
This geometry ensures that the difference of the Raman beam
wave vectors has a projection along all lattice dimensions.
With uninterrupted cooling we observe vacuum-limited trap-
ping 1/e lifetimes of ≈ 1 min for single atoms in the lattice.

To close the cooling cycles we couple two σ−-polarized
795 nm optical pumping beams through the lower transmis-
sion cavity mirror (LT). One of them is used to pump the
atomic population from the lower to the higher hyperfine
ground state, while the other is used to polarize the atoms
in mF = −2. For the rest of the paper we refer to them to-
gether as repumper beams (in plural), and in singular to the
hyperfine-changing repumper alone. These beams also pro-

vide illumination light for fluorescence imaging of the atoms.
They are tuned to the atomic D1 line, hence they provide
an imaging channel that is fully independent from the cavity
interaction on the D2 line, and thus insensitive to the Purcell
effect.

To obtain information about the atoms inside the FFPC we
use two schemes. First, a nondestructive cavity probe mea-
surement determines the presence of an atom inside the cavity
and its internal state. If an atom couples to the cavity mode,
the induced vacuum-Rabi splitting increases the reflection
signal of the cavity-resonant probe light, featuring a binary
readout of the atom-cavity coupling state [20,51]. Second,
fluorescence imaging provides knowledge on the number of
atoms and their position within the cavity mode. For this, pho-
tons scattered by the atoms are collected with an in-vacuum
high-NA lens along the x axis and recorded with an EMCCD
camera. The combination of these two detection techniques
allows us to extract complementary and independent informa-
tion on the atom trapping lifetime and on the photon-scattering
rate, respectively, which we use for the subsequent analysis.

III. IMAGING WITH RAMAN COOLING

Our imaging technique of atoms inside fast cavities is
based on inducing scattering of photons with near-resonant
illumination while keeping the atoms close to their motional
ground state. This is achieved by applying resolved Raman
sideband cooling in all three lattice dimensions, and simulta-
neous imaging of the photons scattered during the repumping
transition onto the EMCCD camera.

To describe this cooling method, we consider the case of
a single atom in a one-dimensional lattice in the Lamb-Dicke
regime, as shown in Fig. 2(b). In the harmonic approxima-
tion for a cold atom at the bottom of the trap, the quantized
motional energy levels are given as En = h̄ν(n + 1/2), with
n = 0, 1, 2, . . ., and ν/2π being the trap oscillation frequency.
In the following, we use the notation |F, mF ; n〉 to represent
the full atomic quantum state, with its ground-state 52S1/2

hyperfine level denoted by |F 〉, its magnetic sublevel by |mF 〉
and its vibrational state by |n〉.

A cooling cycle starts with the atom optically pumped
to the ground state |2,−2; n〉, by means of the repumper
beams tuned to the D1 transitions between hyperfine F and
F ′ levels 1 → 2′ and 2 → 2′ respectively. The Raman beams
RB1 and RB2 are phase locked with a frequency difference
corresponding to the energy splitting Eh fs between the out-
ermost hyperfine levels |2,−2〉 and |1,−1〉 (Zeeman-shifted
by −1.27 MHz), plus a two-photon detuning δ. We note
that throughout the paper this detuning is referenced to the
carrier transition without light shifts at δ = 0. We tune the
two-photon Raman resonance on the cooling sideband with
δ = ν, thus driving the transition |2,−2; n〉 → |1,−1; n − 1〉.
A 5 THz single-photon detuning suppresses off-resonant scat-
tering by the Raman beams. The repumper beams, detuned by
� from the excited state 52P1/2 |2′,−2〉, pump the atom from
the lower hyperfine state back to |2,−2; n − 1〉 effectively
reducing its oscillation energy by one quantum. This cycle
continues until the ground state of the atomic motion, or until
an equilibrium is reached of cooling vs heating processes, due
to e.g., photon recoil during repumping.
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FIG. 3. Raman spectrum of a single atom in the 3D lattice after
5 ms of continuous Raman sideband cooling (cRSC), addressing
the overlapped cooling sidebands with a single Raman-beam pair
(see main text and Appendix B). The usage of the intracavity field
as a Raman beam highly suppresses unwanted off-resonant carrier
transitions [40,41]. We observe the cooling efficacy by a motional
ground-state population >85 % in each direction estimated from
sideband imbalance, and by single-atom 1/e trapping lifetimes of
≈ 1 min.

To implement Raman sideband cooling in 3D, in contrast
to addressing each lattice dimension with independent beams
or with multitone pulses at the different sideband frequen-
cies [42,44,52], we address the cooling transitions along all
directions simultaneously with the single Raman-beam pair
RB1 + RB2. For this, we tune the three trap frequencies to
near-degeneracy at νx,y,z/2π ≈ 350 kHz (for more details see
Appendix B), and we drive the overlapped cooling sidebands
with the Raman two-photon detuning δ = νx,y,z.

A pulsed scheme to drive the cooling transitions, with al-
ternating Raman and repumping pulses [45], is not applicable
with the geometry of our beams, since the different direc-
tions feature distinct Lamb-Dicke parameters (ηx, ηy, ηz ) =
(0.03, 0.09, 0.11). This entails mismatched Rabi frequen-
cies on the different (but overlapped) cooling sidebands, and
thus different π -pulse times for each direction, making the
optimization difficult. For this reason we have opted for
continuous Raman sideband cooling (cRSC), activating the
Raman and repumper beams simultaneously with constant
intensity during the entire cooling interval.

A Raman spectrum measured after optimization using a
cRSC interval of 5 ms is displayed in Fig. 3. It shows a
large imbalance of all cooling and heating sidebands which
gives a clear signature of the high 3D cooling power, with
an estimated residual temperature T ≈ 1.4 μK corresponding
to >85 % motional ground-state population in each direction
(see Appendix B). Note that usage of the intracavity field
as one of the Raman beams not only solves the problem of
optical access, but also suppresses off-resonant coupling on
the carrier transition [40,41].

We obtain fluorescence images of the atoms by collecting
the 795 nm photons scattered during the repumping cycle of

cRSC, with an in-vacuum 0.5-NA lens, and recording them
with the EMCCD camera (Andor iXon 3). The main prop-
erties of the imaging system are collection efficiency ≈ 4 %,
magnification ×35, point spread function width ≈ 0.8 μm
corresponding to 1.72 px on the CCD. The imaging fidelity
is limited by background scattering from the cavity mirrors
that cannot be fully suppressed from the field of view in
our miniaturized FFPC setup. This sets a strong condition on
employing low repumper intensity. To maintain a sufficiently
high scattering rate, this requires the repumper to be near
resonant. An optimal imaging signal-to-noise ratio (SNR) [37]
is found for a two-photon Raman Rabi frequency (on the car-
rier) �̃0/2π ≈ 340 kHz, a repumper blue detuning ≈ 3 MHz
and a repumper intensity ≈ 0.057Isat (see Fig. 5). For such
parameters we measure a scattering rate per atom of ≈ 2 ×
104 photons/s which allows us to collect about 800 photons
during a 1 s exposure time (atom survival probability >90 %).
The fluorescence images shown in Fig. 1(b) have a SNR ≈ 13,
which is sufficient to count individual atoms and determine
their position with full site resolution [37].

IV. DIFFERENTIAL LIGHT SHIFTS DURING
CONTINUOUS RAMAN SIDEBAND COOLING

Successful imaging requires high photon-scattering rates
in addition to efficient cooling. Both processes are affected by
the detunings of involved lasers from atomic resonances, more
precisely the Raman two-photon detuning δ and the repumper
detuning �. Hence, good knowledge and control of the light
shifts of the atomic levels during the imaging and cooling
processes is essential.

For continuous Raman sideband cooling (cRSC), the
sideband transition frequency needs to resonantly connect
motional states with different quantum numbers (see Fig. 2).
Therefore, we have to consider the light shifts induced
by the repumper onto the ground-state hyperfine levels. In
the following, we use the notation |F, mF 〉 for a ground
state (|F, mF 〉′ for an excited state) introduced in Sec. III.
The upper hyperfine state |2,−2〉 is an uncoupled dark state to
the σ− repumper, but the coupling to the lower hyperfine state
|1,−1〉 results in a differential light shift δLS which modifies
the resonance of the Raman transition. This shift grows when
tuning the repumper close to resonance in order to increase the
number of scattered photons for high imaging signal-to-noise
ratios.

The frequency of the cooling sideband δc (Fig. 2) is there-
fore shifted by an amount δLS with respect to the position
of the carrier in the absence of light shifts. Since the op-
timal detuning δ = δc (resonant addressing) depends on the
parameters of the repumper, the optimization of imaging and
cooling has to be carried out in a coupled 3D parameter space
of Raman detuning δ, repumper intensity Irep, and repumper
detuning �. To tackle this problem, we characterize the
repumper-induced differential light shifts prior to the imaging
optimization.

As a model for the differential light shifts δLS we use a
simple driven two-level system. The ground-state |1,−1〉 is
coupled to the excited state |2,−2〉′ by the repumper light
field, at Rabi frequency � and with a detuning �. The system
is described by a non-Hermitian Hamiltonian, with energy
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FIG. 4. Differential light shifts (i.e., cooling sideband detuning δc = δLS + ν) induced by the near-resonant repumper beams on the
hyperfine ground states of 87Rb. (a) Dependence on repumper saturation parameter s = Irep/Isat for selected detunings �̃ shows linear scaling.
Inset shows, for each set of parameters {s, �̃}, the value of δc is the Gaussian fit center of the survival probability vs two-photon detuning δ.
(b) Dispersive-shaped light shifts dependence on the repumper detuning for selected s values. The dash-dotted curve shows the model Eq. (1)
for s = 0.5, inflecting at the trap-shifted resonance �̃ = �0. All error bars represent 68 % confidence intervals.

eigenvalues E and light shifts δLS = E/h̄ given to first order
in the saturation parameter s = 2(�/2γ )2 = Irep/Isat by

δLS ≈ �

2

γ 2

�2 + γ 2
s + O(s2). (1)

In the low-power limit (s � 1) or the large-detuning limit
(� � γ ) the induced light shift δLS scales linearly with in-
tensity and follows a dispersive Lorentzian dependence on the
detuning. Details on this calculation are given in Appendix C.

We calibrate the saturation parameter s = Irep/Isat by mon-
itoring saturation of the optical pumping rates between
hyperfine ground states for a single atom as a function of
the intensity Irep. The repumper detuning with respect to
free space also includes the AC-Stark shift induced by the
dipole traps on the D1 transition. We define the total detuning
with respect to the free-space resonance as �̃ = � + �0,
with � the detuning from the trap-shifted resonance (used
in the model) and �0 the dipole-trap induced light shift.
For a trapped atom at the bottom of the lattice potential,
the resonance condition is met for �̃ = �0, with the shift
�0/2π = 32(3) MHz calibrated independently with respect
to a spectroscopy cell reference.

We measure the differential light shift by detecting the
displacement of the cooling sideband as a function of the
saturation parameter in Fig. 4(a) and of the repumper detuning
in (b). We load a single atom into the resonator, precool
it with degenerate Raman sideband cooling (dRSC) [53] to
reach the Lamb-Dicke regime, pump it to the state |2,−2〉,
and then cool it with cRSC for a fixed time. We use the fiber
quantum channel to probe the presence or absence of the
atom inside the resonator, before and after the cooling slot.
This measurement is repeated multiple times with different
sets of parameters {δ, s, �̃} to map the survival probability
to the parameter space for cRSC. For each set of repumper
parameters {s, �̃}, the light-shifted sideband frequency δc =
δLS + ν is found as the value of δ maximizing the survival

probability [inset of Fig. 4(a)], thus matching the Raman
resonance condition δ = δc which provides the most efficient
cooling. In Fig. 4(a) we show selected scans of the measured
parameter map δc(s, �̃), featuring the detuning δc for three
illustrative values of �̃, as a function of the repumper satura-
tion parameter s, documenting the expected linear dependence
on the repumper intensity, with the slope determined by the
detuning. We observe that the repumper detuning at which the
differential light shift becomes zero for all intensities occurs
at �̃/2π ≈ 28 MHz, showing a small offset to the red with
respect to the trap-shifted resonance calibrated independently.

In Fig. 4(b) we have plotted the measurements of δc as
function of the repumper detuning �̃ = � + �0, for three
selected values of s showing dispersive curves with inflec-
tion points near resonance, at �/2π ≈ −4 MHz and �̃/2π ≈
28 MHz [in agreement with the zero-shift line in Fig. 4(a)].
For comparison we show the two-level model Eq. (1) for
s = 0.5. According to the model, the strongest differential
light shifts (δLS = δc − ν) are expected for repumper detun-
ings of � = ±γ , and the inflection point at resonance � = 0
(or �̃ = �0).

The dispersive shape of the measured differential shift δc

is expected but deviates from the simple model of Eq. (1).
The deviation may be traced to several influences: (1) The
spatial distribution of atoms results in interactions with a
range of laser beam intensities both in the optical traps, the
Raman beams and the very narrow intracavity repumper beam
which lead to a smoothing of the observed dispersive curve
compared with the sharp model curve. (2) The technically
challenging calibration of repumper intensity can underes-
timate the s parameter, leading to higher amplitudes than
expected from Eq. (1). (3) The data show stronger shifts for
blue repumper detunings (�̃ > �0) than for red (�̃ < �0),
and the zero-shift condition at a smaller detuning than ex-
pected. We attribute these observations to detuning-dependent
heating rates causing extended oscillations of the atoms in the
trapping potential [38], analyzed further in Sec. V.
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V. BALANCING COOLING AND HEATING DYNAMICS
WITH IMAGING PARAMETERS

The optimization of fluorescence imaging of atoms inside
the resonator necessarily requires a trade-off of two competing
processes in this imaging technique: (1) photon scattering
that causes heating of the atom, and (2) Raman sideband
cooling that counteracts the heating effect. As discussed in
Sec. III [see also Fig. 2(b)], the working principle of Raman
sideband cooling relies on pumping the atom to the motional
ground state (in full notation |2,−2; 0〉), which is a dark state
decoupled both from the Raman and the repumping light. On
the other hand, continuous scattering of photons is required
for imaging during the camera exposure time. Therefore, the
atoms have to be heated out of the dark state but still kept close
to the motional ground state for small atom loss. In Ref. [42]
parametric heating was used for this purpose, however in our
case the intracavity lattice noise is sufficient to drive the atoms
out of the ground state.

For optimal imaging with continuous Raman sideband
cooling, we find that the balance of heating-cooling rates and
scattering can be tuned with the parameters of the repumper
light. We have explored its effect on the heating-cooling trade-
off and photon-scattering rate, and optimize for a high SNR.
The complexity of the parameter space is reduced by keep-
ing the Raman two-photon cooling sideband on resonance
using the differential light shifts measurements during cRSC,
analyzed in Sec. IV. Then, we simultaneously measure the
imaging fluorescence intensity and the atom survival proba-
bility as a function of the repumper detuning and intensity.

For the corresponding measurements we use an experi-
mental sequence similar to the light shifts measurements in
Sec. IV: we begin with loading a single atom into the 3D
lattice at the FFPC center, dRSC precooling, and initializing
in the state |2,−2〉. Then, a first cavity-based atom detection
is applied to probe the presence of an atom, followed by an
EMCCD image acquisition under cRSC with 1 s exposure, at
the end a second cavity detection is performed to verify the
survival of the atom in the trap.

The fluorescence signal is obtained by integrating the
EMCCD counts over a 33 × 33 pixels large image region
corresponding to a 15 × 15-μm2-large area at the center of
the cavity. Reduced fluorescence due to atom loss is excluded
by selecting the images based on successful presence and
survival detections. Also, images with more than one atom
are discarded by postprocessing with an atom detection al-
gorithm. To quantify the balance of heating-cooling rates we
take as a figure of merit the probability of a successful sur-
vival cavity-based detection conditioned on a prior successful
presence detection before the imaging interval.

The results for fluorescence intensity and imaging sur-
vival probability are shown as two-dimensional (2D) color
maps in Fig. 5(a), where cross sections for selected s val-
ues are given in Fig. 5(b). The combined information of
fluorescence and survival maps (upper and lower panel, re-
spectively) permits to identify a region favorable for imaging
with SNR ≈ 13, of high fluorescence (≈ 2 × 104 photons/s)
and high survival (>90 %), at parameters �̃/2π ≈ 35 MHz
and s ≈ 0.057. These parameters were used to capture the
images in Fig. 1(b) with one, two, and three atoms.

Qualitatively the behavior of the fluorescence intensity
[purple slices in Fig. 5(b)] exhibits a symmetric Lorentzian-
like function as expected for a resonant spectrum with
amplitude increasing with repumper intensity. We attribute a
small ≈ 3 MHz blueshift of the Lorentzian center from the
trap-shifted resonance to residual effects of atom loss for the
cases of undetected more-than-one atom images.

The imaging survival map [Fig. 5(a) lower panel and green
slices in Fig. 5(b)] shows an unexpected behavior. If con-
sidering only scattering-induced heating, we would expect
the lowest survival rate on resonance, with the dip becoming
deeper and broader for higher intensities. This is indeed the
case at low intensities, i.e., for s < 0.02. However, for higher
intensities the survival dip experiences a clear shift towards
red detunings with a linear dependence on the intensity. This
results in an asymmetric V shape of the imaging survival map
with higher survival probabilities on the blue detuning side
than on the red. The model of the atom motion inside the
trap for finite temperature introduced in Sec. IV predicts a
constant redshift, but not a power-dependent shift. The ob-
served asymmetric behavior indicates heating rates induced
by the repumper beams that depend both on their detuning
and intensity.

During the scattering cycles induced by the repumper field,
the atoms undergo rapid transitions between ground state
and excited state, which are associated with trapping and
antitrapping potentials, respectively. For our 868 nm lattice
the estimated polarizability ratio of the 87Rb excited state
52P1/2 over the ground state 52S1/2 is χ ≈ −0.59 [54]. We
therefore attribute this asymmetry to dipole-force fluctuations
(DFFs) [38,47].

To gain insight into the effect of DFFs in our measure-
ments, we set up a one-dimensional semiclassical Monte
Carlo simulation of the scattering process of an atom trapped
in a lattice potential under near-resonant illumination, based
on Ref. [38]. The simulation combines the classical mo-
tion of an atom in the dressed-state potentials, with the
position-dependent transition rates between dressed states and
the corresponding probabilities of scattering events. For an
ensemble of atoms with a set of repumper parameters, it calcu-
lates the time-dependent photon emission rate and the increase
of mean kinetic energy. From the time evolution of these
values we extract the mean scattering rate and the exponential
loss rate of atoms escaping from the trap. More details on
the theory of DFFs and on the Monte Carlo simulation are
presented in Appendix D.

In Fig. 5(c) we show the simulated 2D maps of atom loss
rates and photon-scattering rates as a function of repumper
detuning and intensity. A qualitative comparison with the
results of the measurement in Fig. 5(a) shows the striking
similarities between the simulated loss rates and the measured
survival probabilities. Moreover, the map of photon scattering
is in good agreement with the detected fluorescence. Our
model supports DFFs as the main effect governing the heating
dynamics that lead to the observed asymmetric survival rates.
For a compromise of high fluorescence and at the same time
high survival probability with the repumper close to reso-
nance, a red detuning should be avoided, while a blue detuning
can prevent DFFs-induced heating. This holds for the cases
where the AC-Stark shift induced by dipole traps increases
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FIG. 5. Balancing cooling-heating rates and fluorescence for imaging with cRSC. (a) Measured mean fluorescence per atom and survival
probability for 1 s of cRSC as function of repumper detuning �̃ and repumper saturation parameter s = Irep/Isat. The Raman addressing is
kept resonant on the cooling sideband by compensating the differential light shifts induced by the repumper beam. The blue marker shows the
optimum parameters at which the atom pictures in Fig. 1 were taken with SNR ≈ 13. (b) Cross sections of the fluorescence and survival maps
versus detuning for selected intensities, shown with fitted Lorentz functions as a guide to the eye. The minimum in survival shifts towards
red repumper detunings for an increase in intensity, contrary to the fluorescence peak that remains fixed close to resonance. We attribute the
asymmetry of the survival behavior to DFFs-induced heating. (c) Photon-scattering rates and atom loss rates computed with a one-dimensional
(1D) semiclassical Monte Carlo simulation of scattering in dressed-state potentials. The asymmetric shape of the atom loss rates validates
DFFs as the source of heating in the measurement.

the energy of the atomic transition. Such parameter-dependent
heating rates also offer an explanation for the asymmetric de-
formation of the light-shifts measurements previously shown
in Fig. 4(b).

VI. CONCLUSION

In summary, we have shown that imaging of single atoms
trapped inside a high-bandwidth FFPC can be successfully
implemented, despite the strong Purcell effect. Note that
the fluorescence suppression by the Purcell effect is closely
related to the observation of a glowing laser medium being vi-
sually dimmed when the laser mode ignites. Our experimental
realization takes advantage of our continuous Raman cooling
scheme by using the scattered repumper photons, which are
not resonant with the cavity. Our imaging technique requires
only a single free-space beam together with intracavity fields,
making it ideal for situations with limited optical access, e.g.,
in miniaturization trends in quantum technologies.

The signal-to-noise ratio in our experiment is limited by
background scattering from the cavity mirrors. In contrast
to other experiments relying on large detunings [38,44], this
enforces low power intensities and small detunings to obtain
a high SNR. Here, we have demonstrated an imaging SNR

of 13 based on a compromise between photon-scattering rate
and three-dimensional sideband cooling efficiency. During the
imaging process more than 85 % of the population remains
in the motional ground state per direction, sufficient for high
fidelity detection of single atoms in the optical lattice. The
optimization of the relevant parameters was enabled by a de-
tailed spectroscopic investigation during cRSC. This also shed
light onto deviations from the expected light shifts, revealing
a parameter-dependent heating mechanism that we attributed
to dipole-force fluctuations impairing the atom survival at red
detunings, but avoided at blue detunings. This was further
validated by a Monte Carlo simulation of the atom’s scattering
dynamics in the position-dependent dressed-state potentials.
The observed DFFs heating effect is not limited to our particu-
lar FFPC setup with cRSC. On the contrary, it is expected to be
a relevant effect in most experiments involving near-resonant
illumination of atoms trapped in a lattice, depending on the
polarizabilities of the states involved.

While global positioning of the atomic ensemble is con-
trolled with our optical conveyor belt, the imaging technique
shown in this work represents an important step towards
ultimate position control and manipulation of single atoms
in miniature optical cavities. It enables to determine the
number and position of the atoms within the resonator in a
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FIG. 6. (a) Experimental setup for linewidth reduction of the DBR laser RB2 and phase locking to the lattice laser RB1. (b) Delayed self
heterodyne (DSH) spectrum of the DBR laser with and without optical feedback (feedback power ratio of −40 dB). A linewidth reduction in
two orders of magnitude can be observed when the laser is subject to optical feedback (blue curve). Lower panel: close-up of the DSH spectrum
and simulation based fitting to extract linewidth components. (c) Pure lineshapes corresponding to the three laser frequency-noise components,
namely white (Lorentzian), flicker (Gaussian) and random-walk frequency noise (1/ f 2) extracted with the simulation-based fitting routine.
(d) Estimated linewidth corresponding to each frequency-noise component as a function of the feedback power ratio.

nondestructive manner, and paves the way for creating atomic
arrays with predefined number and positions in the cavity.
This can be implemented in the experiment by integrating
single-atom addressing optical tweezers controlled by a spa-
tial light modulator.
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APPENDIX A: LINEWIDTH-REDUCTION PREPARES DBR
LASER FOR PHASE LOCKING

The two-photon Raman cooling transitions are driven in
our setup by the 770 nm lasers RB1 and RB2 in Fig. 2(b) with
frequency difference ≈ 6.8 GHz. The primary RB1 laser field
is drawn from an interference filter stabilized diode laser [55]
with rms-linewidth of order few kHz. It is injected into the
FFPC and serves not only as a blue-detuned optical lattice for
atom trapping but also to simultaneously stabilize the cavity
length at the atomic resonance line at 780 nm. For this purpose
its wavelength is referenced to an optical frequency comb.

To obtain sufficiently high resolution for driving coherent
Raman transitions between hyperfine levels, the secondary
770 nm Raman beam (RB2) is phase locked to RB1. We have
chosen a distributed Bragg reflector (DBR) laser which offers
convenient and mode hop free tuning over several GHz, and
good long term frequency stability. The drawback of DBR
components, however, is a generally large Schawlow-Townes-
Henry linewidth [56] of order a few hundred kHz, too broad
for realizing sufficient feedback bandwidth for phase locking.
It is known that external optical feedback can help to reduce
the DBR linewidth [57], a road we have followed here.

We outline the application of optical feedback from a 2-
m-long external feedback path to reduce the linewidth of a
DBR laser diode based on the work in Ref. [58]. We use a
delayed self-heterodyne (DSH) linewidth measurement and a
simulation-based fitting routine [59] to analyze and estimate
all the linewidth components under the influence of vary-
ing optical feedback strengths. A current feed-forward was
implemented to achieve mode-hop-free tuning of the laser
frequency over the free spectral ranges of the external cavity.
With that, continuous tuning of up to 2 GHz was achieved.
Furthermore, we present the phase locking setup for Raman
sideband cooling in our experiment in Fig. 6(a).

To reduce the Lorentzian linewidth of the 770 nm DBR
laser, an external optical feedback path is implemented [high-
lighted in gray in Fig. 6(a)]. Approximately 4 % of the emitted
laser light reflected at the 90:10 beam splitter (BS) is coupled
into a 2-m-long polarization maintaining (PM) fiber. From the
fiber output, the laser light passes a quarter-wave plate (QWP),
a polarizing beam splitter (PBS), and a polarizer (Pol.) and
is focused on a mirror mounted on a piezo using a lens in a
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cat’s eye configuration. The light reflected at the mirror is then
coupled back into the fiber and fed into the laser diode. The
polarization optical elements are used to adjust the feedback
power. The monitor photodiode (mon. PD) placed at the free
arm of the 90:10 BS is used to monitor the feedback power.
At a fixed external feedback path length of 2 m, the feedback
power ratio (ratio of the power entering back into the DBR
laser to emitted power) can be varied from −50 dB to −30 dB.

To measure the linewidth of the laser subject to varying
optical feedback levels, we use a DSH method first described
in Ref. [60]. It consists of a Mach-Zehnder-type interferom-
eter, where the light passing one of the arms is frequency
shifted by δ f = 80 MHz and the other passing a 4.9 km optical
fiber delay. The spectrum of the beat signal of the recombined
arms is analyzed. Figure 6(b) shows a DSH spectrum with and
without the optical feedback. When the laser is not subject to
optical feedback [orange curve in top panel of Fig. 6(b)], the
DSH spectrum is a broad Gaussian curve with an estimated
linewidth of ≈ 700 kHz. With optical feedback, the width of
the DSH spectrum reduces by at least two orders of magnitude
[blue curve, top panel of Fig. 6(b) and close-up view in lower
panel]. The spectrum shows a Lorentzian at the modulation
frequency with periodic ripples on the wings indicating the
residual coherence between the interferometer arms.

To extract the different linewidth components from the
spectrum, we use a simulation-based fitting routine based on
Ref. [59]. It emulates the experimentally recorded spectra by
simulating the photodiode signal with numerically generated
phase noise contributions. The phase noise signal φ(t ) is gen-
erated by the superposition of a white φw(t ), flicker φ f (t ) and
random-walk frequency noise φr (t ) source with Aw, A f , and
Ar as the amplitudes of the corresponding noise sources:

φ(t ) = Awφw(t ) + A f φ f (t ) + Arφr (t ). (A1)

The power spectral density (PSD) of the heterodyne signal is
calculated and the noise amplitudes are adjusted to fit the nu-
merically simulated spectrum to the experimental data using
a Nelder-Mead simplex optimization. Figure 6(c) shows ex-
emplary simulated spectra of the different noise components.
Our code for the simulation-based linewidth measurement is
openly available in the repository [61].

Once the noise parameters are found, the Lorentzian
linewidth δν of the laser is estimated by fitting the PSD of
white phase noise by Sw( f ) = δν

π f 2 . The fitted Lorentzian
linewidth of the laser as a function of the feedback power ratio
is shown in the top panel of Fig. 6(d). Lorentzian linewidths
as low as 500 Hz are reached with optical feedback ratio close
to −36 dB. With larger feedback powers the laser becomes
multimode as also observed in Ref. [58]. The simulation
based fitting also allows us to extract weak components of
higher-order frequency noise. Here, we include flicker noise
(1/ f ), which results in a Gaussian lineshape, and frequency
random-walk noise (1/ f 2). The retrieved linewidth for both
with respect to feedback power is presented in the lower two
panels of Fig. 6(d).

For the experiment we fixed the feedback ratio at −43 dB,
where the Lorentzian linewidth is sufficiently low for our pur-
poses. The flicker and the random-walk noise are suppressed
using a fast phase lock, with the setup shown in Fig. 6(a).

The two lasers are combined on a polarizing beam splitter
(PBS) and the corresponding beat signal is detected on a
photodiode (PD beat). A phase frequency discriminator (PFD)
is used to compare the beat signal of the linewidth-reduced
DBR laser and RB1 to a tunable stable reference to quantify
frequency and phase deviations. The low-frequency (LF) and
the high-frequency (HF) error signals are further processed
to phase lock the two lasers. The HF error signal is used to
compensate for the fast phase fluctuations. Its corresponding
feedback is directly applied to the laser diode current via a
loop filter. The LF error signal is used to correct for slow
frequency drifts (order of kHz). Its corresponding feedback
signal is applied to the piezo of the mirror at the end of the
external feedback path after being amplified by a high-voltage
amplifier. As the external feedback path has a corresponding
free spectral range of 56 MHz, the frequency tunability is
regained by a current feed-forward. Currently, the mode-hop
free tuning range of up to 2 GHz is limited by the maximum
stroke of the piezo of the external feedback mirror.

APPENDIX B: THREE-DIMENSIONAL CONTINUOUS
RAMAN SIDEBAND COOLING WITH ONE FREE-SPACE

BEAM ONLY AND INTRACAVITY FIELDS

In Sec. III we summarized our continuous Raman sideband
cooling (cRSC) scheme focusing on the 1D case. Here we
explain in detail how we extend this scheme to cool with
respect to all directions of our 3D lattice, with only a single
free-space beam (RB2) and the remaining beams as intracav-
ity fields (RB1 and repumpers). For details on the setup see
Fig. 2. To drive the cooling transitions corresponding to all
lattice dimensions simultaneously, the key point is to bring the
relevant motional oscillator frequencies close to degeneracy in
all three directions.

We evaluate Raman spectra of single atoms trapped in our
cavity in order to identify the different heating and cooling
sidebands. A single atom is loaded into the cavity, precooled
with degenerate Raman sideband cooling (dRSC) [53], and
prepared into |2,−2〉. Next, a 500 μs Raman pulse with vari-
able two-photon detuning δ drives Rabi oscillations between
the states |2,−2〉 and |1,−1〉, after which the state of the atom
is probed by means of nondestructive cavity probing [20].
Within the trapping lifetime of about one minute, the same
atom can be re-initialized, cooled, and recycled by applying
5 ms of cRSC at δ/2π = 350 kHz before the spectroscopy
pulse, for up to 600 measurement cycles with different δ

values. Additionally, we use the cavity detection to postselect
the measurements upon the presence of an atom before and
after each spectroscopy sequence.

We record the Raman spectra by monitoring the proba-
bility of an atom to be transferred to |F = 1〉 as a function
of the Raman two-photon detuning. In Fig. 7(a) we show
the spectrum recorded before overlapping the sidebands. The
error bars of the data points represent the 68 % confidence
interval of the binomial distribution of each measurement. A
fit to the spectrum using seven Lorentzian curves allows us
to extract the oscillation frequencies corresponding to each
lattice dimension. After intensity adjustment of the lattice
beams the spectrum in Fig. 7(b) shows almost degenerate
sideband frequencies.
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FIG. 7. Raman spectra of an atom trapped in the 3D lattice inside
the FFPC. (a) For unequal trapping frequencies the first-order heating
(δ < 0) and cooling (δ > 0) sidebands corresponding to each lattice
dimension can be identified. The trap frequencies νi are extracted
by fitting the data with the sum of seven Lorentzians (orange line,
individual peaks in black). The carrier transition is highly suppressed
as a consequence of using the blue-detuned intracavity lattice as
a Raman beam [40,41]. (b) Raman spectrum after independently
tuning the lattice beam intensities (inset) superposes all three trap
frequencies (sidebands) into near-degeneracy around 350 kHz (the
dashed orange curve serves as a guide to the eye). The asymmetry of
the sidebands proves the efficiency of the 3D-cRSC scheme (>85 %
ground-state fraction).

On the left side of the spectra (δ < 0) we identify the
heating sidebands (�n = +1) for each lattice dimension
and the corresponding cooling sidebands (�n = −1) on the
right side (δ > 0). Note that, for Fig. 7(a), cooling the
atoms with dRSC and off-resonant cRSC was sufficient to
allow the measurement. As a consequence of using a blue-
detuned intracavity lattice as Raman beam RB1, the atoms
are trapped near the antinodes which causes the carrier tran-
sition (�n = 0) at δ = 0 to be highly suppressed [40,41].
The broad shape of the z heating sideband originates from
inhomogeneous broadening due to the radial position distri-
bution of the atoms in the narrow-waist intracavity lattice.
The z distribution is negligible since the trapping occurs
within the Rayleigh length of the cavity mode. The nonzero

spectrum baseline reflects a |2,−2〉 state preparation effi-
ciency of ≈ 95 %.

Based on these measurements we calibrate the displace-
ment of each sideband for different intensities of the lattice
beams [inset of Fig. 7(b)]. We typically tune all three trap
frequencies to νx,y,z/2π ≈ 350 kHz shown in the spectrum
of Fig. 7(b). Setting the Raman beams detuning to δ/2π =
350 kHz and switching the repumper beams (Fig. 2) on si-
multaneously, cRSC is active along all lattice dimensions,
as discussed in Sec. III. From the ratio of heating-cooling
sideband amplitudes we estimate a ground-state occupation
of more than 85 % in all lattice dimensions, corresponding to
mean motional excitations n ≈ 0.17 and a residual tempera-
ture of 1.4 μK.

APPENDIX C: JUSTIFICATION AND LIMITATIONS OF
THE TWO-LEVEL LIGHT-SHIFT MODEL

In Sec. IV of the main text we discuss the measurement of
the differential light shifts (Fig. 4) as a function of repumper
intensity and detuning during cRSC. We analyze our data with
respect to a simple two-level model in the low-power limit.

While the linear dependence on the power in Eq. (1) agrees
with the experiment [Fig. 4(a)], the dispersive relation of
repumper detuning � vs δc shows clear deviations from the
measurement [Fig. 4(b)]. Although a rough dispersive shape
is observed, the measured relation is broadened and shows an
asymmetric distortion towards red detunings of the repumper.
The deviations from the two-level model can be caused by a
multitude of both experimental factors and physical effects.
Here we detail the validity of the used model and some possi-
ble effects affecting the observed light shifts.

The two-level model focuses on the repumper coupling
only and ignores the Raman interaction. We also assume that
all atoms are subject to the same laser intensities. The ground-
state |1,−1〉 = |1〉 (to be short) is coupled to the excited state
|2′,−2〉 = |2′〉 with repumper Rabi frequency � and detuning
�, while the second ground state |2,−2〉 = |2〉 is considered
a dark state for σ− polarization [gray levels in Fig. 8(a)]. The
system is described by a non-Hermitian Hamiltonian [63,64],
which in matrix representation reads

H = h̄

(−� − iγ �/2
�/2 0

)
, (C1)

where the complex detuning iγ introduces the finite linewidth
of the optical transition. The light shift δLS for this two-level
system is obtained by computing the energy eigenvalues E =
h̄δLS,

E = h̄

2
Re(−� − iγ +

√
(2s − 1)γ 2 + �2 + 2iγ�), (C2)

where Re denotes the real part, 2γ ≈ 2π × 6 MHz is the
linewidth of the transition, and s = 2( �

2γ
)2 = Irep

Isat
is the satura-

tion parameter. To first order in s (� � 2γ ) or large detuning
(� � 2γ ), the light shift becomes

δLS = E
h̄

≈ 1

2
γ 2 �

�2 + γ 2
s + O(s2), (C3)

which is Eq. (1) in the main text in Sec. IV.
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FIG. 8. Differential light shifts models. (a) Two-level model used in the main text to fit the experimental data. (b) Three-level model
including the Raman Rabi coupling [62] for closed cycle treatment (c) Adjacent motional and relevant atomic levels. (d) Comparison of the
two light-shifts models (upper panel) for 87Rb, and of the two-level model when considering atomic oscillations in the lattice for different
kinetic energies of the trapped atoms (lower panel). All of the plots consider a repumper saturation parameter s = 0.36 and a trap depth
U0 = kB × 0.5 mK.

To investigate the validity and limitations of the two-level
approximation we explore the role of the Raman-coupled sec-
ond hyperfine level for our model [Raman Rabi frequency �̃,
Fig. 8(b)]. This scheme was first presented in Ref. [62], and
we will show that it modifies the calculated light shifts only
marginally. In Fig. 8(c) we include, for the sake of complete-
ness, adjacent relevant motional levels for our discussion of
the Raman cooling process, yielding the characteristic open
ladder of lowering motional states.

The motional atomic energy levels relevant for the Raman
cooling process have quantum numbers n and energy spac-
ing h̄ν, see Figs. 8(b) and 8(c). A cooling cycle starts in
the state |2, n〉, i.e., with an atom with motional excitation
n. Raman coupling transfers the atom with Rabi frequency
�̃ and two-photon detuning δ′ into the state |1, n − 1〉 and
thereby reduces the number of motional excitations by one.
The Raman two-photon detuning is denoted with δ′ = δ − ν

here, since we consider only the Raman cooling sideband
and neglect carrier and heating transitions. Optical repumping
occurs at a Rabi frequency � and with detuning �, via the
excited state |2′, n∗ − 1〉. Note that the excited state (excita-
tion number n∗) experiences a different trapping potential than
the ground states. In the Lamb-Dicke regime, where scattering
events changing the motional state n are unlikely, the excited
state decays either back into the state |1, n − 1〉 at a rate γ1,
or into the state |2, n − 1〉 at a rate γ2. In the latter case the
cooling cycle is completed and the atom was cooled from the
n manifold into the (n − 1) manifold. Following Ref. [62], we
note that the cooling occurs through the scattering mediated
via the excited state |2′, n∗ − 1〉, and thus the cooling rate is
proportional to the population of the excited state ρee, as long
as the system has not yet reached the dark motional ground
state.

To quantify the continuous Raman cooling rate as a func-
tion of the repumper parameters, the approach in Ref. [62] is
to find a steady-state solution ρst

ee for the excited-state popu-
lation. Under the assumptions of negligible population of the
motional ground state and of balanced decay rates into and
out of each n manifold, the additional adjacent levels of the

open ladder system in Fig. 8(c) can be neglected, rendering
the closed-cycle three-level model in Fig. 8(b) the next ap-
proximation beyond the two-level model in Fig. 8(a).

Using a Lindblad master-equation approach and for � �
� � �̃, with the atomic linewidth � = 2(γ1 + γ2), the
steady-state excited-state population is approximated as

ρst
ee ≈ �2�̃2

2�̃2(�2 + 4�2) + 4αδ′2�2 + α(�2 + 4δ′δ̃)2
, (C4)

where δ̃ = � − δ′ is the relative detuning and α = γ2

γ1+γ2
is the

effective repumping efficiency. Details of the derivation can
be found in Ref. [62]. Since the survival probability of atoms
in the experiment is proportional to the cooling rate and in
turn proportional to ρst

ee, we look for the two-photon detun-
ing δ′

m that maximizes the excited-state population, therefore
matching the differential light shift δLS = δ′

m. By imposing the

condition ∂ρst
ee

∂δ′ = 0, we find that δ′
m obeys

0 = (δ′
m )3 − 3

2
�(δ′

m )2 +
[
�2

2
− �2

4
+ �2

8

]
δ′

m + ��2

8
.

(C5)

The solution depends on the repumper Rabi frequency � and
the repumper detuning �, and using the relation δ′

m = δLS =
δc − ν it can be compared with the two-level model [Eq. (C3)]
used in the main text, and to the measured quantity δc (see
Sec. IV).

The comparison of the differential light shifts δLS calcu-
lated with both models is shown in the upper panel of Fig. 8(d)
for equal parameters. The results deviate slightly in the cen-
tral region between the extrema, with the three-level model
showing only a slightly sharper dispersive shape in the limit
of low repumper intensities. Therefore, explicit accounting for
the Raman cooling cycle does not explain the discrepancy to
the experimentally determined light shifts. Even though the
more elaborate model from [62] gives insight into the Raman
cooling rates in the full parameter region (detuning and in-
tensity from the repumper and the Raman beams), we find
that the two-level model suffices to describe the light shifts

043321-11
90



E. URUÑUELA et al. PHYSICAL REVIEW A 105, 043321 (2022)

in the low intensity regime of our experiment with respect to
light-matter interactions.

As a consequence, the observed broadening and asymmet-
ric distortions of light shifts towards red detuning have to be
attributed to effects that are not included in the theoretical de-
scription of the Raman cooling process, including: frequency
fluctuations of the laser sources, spatial inhomogeneities of
laser intensities, and both statistical and thermal distribution
of atoms among and within their lattice sites.

Laser frequency fluctuations of the repumper beam lead to
a broadening, or flattening of the observed dispersive curve.
The magnitude of this noise in our experiment is on the order
of few MHz with a Gaussian distribution. The broadening
would be symmetric since it corresponds to a convolution of
the idealized measurement with the Gaussian but does not
explain the asymmetric distortion towards red detunings.

The repumper is conveniently coupled through one of the
fiber cavity mirrors which, however, has the drawback to
create a narrow beam profile, leading to a highly inhomo-
geneous repumper intensity distribution sensed by the atoms.
The result is an effective reduction of the average intensity in
the measurements which leads to a flattening of the measured
curve compared with the model for a given repumper inten-
sity, but again would not introduce any asymmetric distortion.

The above described two and three-level models assume
that an atom is fixed at the bottom of the trapping potential and
therefore experiences a fixed light shift of the optical repump-
ing transition. Atoms with finite kinetic energy will, however,
perform oscillations in the lattice site and therefore be exposed
to varying light shifts within an oscillation period [38,47,65].
In the harmonic approximation, the time-dependent position
of an atom inside a lattice well is given as

x(t ) =
(

2Ek

mν2

)1/2

sin (νt ), (C6)

with m being the atomic mass, Ek the kinetic energy, and ν the
angular trapping frequency. The corresponding light shift of
the optical repumping transition leads to a position-dependent
detuning

�(x) = � + 1

2h̄
mν2x2(1 − χ ), (C7)

where � is the AC-Stark-shifted detuning, meeting the reso-
nance condition � = 0 at the bottom of the trapping potential,
and χ is the ratio of polarizabilities of ground and excited
state (χ = αe/αg). In particular, for small red detunings there
are positions in the atom oscillation trajectory where the reso-
nance condition is reached [�(x) = 0], which is not possible
for blue detunings. We note that this holds for all cases where
the AC-Stark shift increases the energy of the atomic transi-
tion. This process can be taken into account by averaging the
differential light shift over one oscillation period:

δ̄ = ν

2π

∫ 2π
ν

0
δLS(x(t ))dt

= −1

2
γ 2Re[[(�2 − γ 2 − �ξ ) + iγ (2� − ξ )]−1/2] s.

(C8)

Here, δLS(x(t )) is the light shift derived from Eq. (C2) eval-
uated with the position-dependent detuning �(x), Re denotes

the real part of the expression, and ξ = Ek/h̄ is the oscillation
amplitude in units of the detuning. The resulting dispersive
curve for a 87Rb atom with different kinetic energies in a
868 nm lattice (χ ≈ −0.59 [54]) with a trap depth U0 = kB ×
0.5 mK is shown in the lower panel of Fig. 8(d).

The most prominent effects on the dispersive curve with
increasing temperature are the shift of the inflection point
(δLS = 0) towards red detuning, the reduction of its amplitude
and the increased separation of the extrema. While we observe
a clear distortion of the shape for high temperatures it still
does not account alone for the observed asymmetric distortion
in the experiment.

The analysis with respect to motional excitations of the
atoms, however, gives a hint towards the underlying origin
of the asymmetry. The curves in Fig. 8(d) are computed for
a fixed position of the atom and identical intensities for all
radiation fields. This assumption is no longer valid since in the
experiment heating processes occur due to dipole-force fluctu-
ations caused by the repumper and depending on detuning and
intensity [38,47,65] (see Sec. V and Appendix D). They are
especially strong for a red-detuned repumper which for � < 0
increases the mean kinetic energy of the atoms and shifts the
observed δLS accordingly. As this process is dependent on the
repumper detuning, it can explain the observed asymmetric
distortion of the dispersive curve. A distinct footprint of this
process can be found in the measurement of the survival
probability presented in Fig. 5(a). There, the survival drops
stronger for � < 0 indicating a higher mean temperature for
this set of experimental parameters.

APPENDIX D: DIPOLE-FORCE FLUCTUATIONS AND
MONTE CARLO SIMULATION

In the experiment, we observe an asymmetry in the sur-
vival probability measurement of Fig. 5(a), which we relate
to heating rates that are dependent on the repumper param-
eters. We attribute those parameter-dependent heating rates
to dipole-force fluctuations (DFFs) affecting an atom during
the scattering cycles of the repumping process. The origin of
DFFs in our case is the following: an atom confined in the lat-
tice and illuminated by the repumper field cycles between the
ground state |g〉 = |52S1/2〉 and the excited state |e〉 = |52P1/2〉.
For 87Rb at the lattice wavelength of 868 nm the polarizability
ratio of the states |e〉 and |g〉 is χ = αe/αg ≈ −0.59, such
that the atom experiences a repulsive force for the fraction
of time that it spends in the antitrapping potential of |e〉,
before scattering back into the trapping potential of |g〉. These
fluctuations of the dipole force usually lead to an increase
of the kinetic energy of the atom [38,65], although situations
leading to cooling have also been observed [47].

To gain insight into the effect of DFFs, we implement
a semiclassical Monte Carlo simulation of scattering under
near-resonant illumination in a 1D optical lattice, following
the work in Ref. [38]. Since the repumper field is close to
resonance, we use the dressed-states formalism to simulate the
motional dynamics of the atom, while taking into account the
coherent atom-light coupling. From the simulation we obtain
the maps shown in Fig. 5(c) of photon-scattering rates and
atom loss rates as functions of the repumper detuning and
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intensity, which validate the hypothesis of DFFs as the main
source of heating.

1. Scattering in dressed-state potentials

Here, we summarize how we treat the simultaneous in-
teraction of the atom with the two relevant light fields: the
868 nm trapping field and the 795 nm repumper field. The
interaction of the atom with the lattice field is considered as
a pure position dependent AC-Stark shift of the bares states
|g〉 and |e〉, giving rise to the associated trapping and an-
titrapping potentials Ug(r) and Ue(r) = χUg(r) respectively,
with |Ug(0)| = U0. The additional illumination with the near-
resonant repumper field drives scattering transitions between
the two atomic states and their respective potentials, generat-
ing dynamics with coherent atom-field coupling.

To include the interaction with both light fields in the
motional dynamics of the atom, as in Ref. [38], we use
the dressed-states formalism to describe the evolution of the
atom-field system, with scattering events occurring between
the repumper-dressed states |−〉 and |+〉. The associated
dressed-state potentials are given by

U±(r) = Ug(r) + h̄

2
[−�(r) ±

√
�2(r) + �2], (D1)

with � being the repumper Rabi frequency on resonance and
�(r) the position-dependent detuning taking into account the
light shifts induced by the lattice,

�(r) = �̃ + Ug(r) − Ue(r)

h̄
, (D2)

where �̃ is the free-space detuning of the light field from the
atomic transition. We note that, for large values of the detun-
ing �(r), the potentials U±(r) almost preserve the shape of
the bare-state potentials Ug(r) and Ue(r). When approaching
resonance, in the regime where the condition �(r) = 0 can be
met, the shape of the dressed-state potentials and thus the cor-
responding dipole forces, strongly depend on the parameters
of the illumination light, showing the importance of using the
dressed-states formalism for the simulation.

We follow the approach in Ref. [38] using the secular
approximation of the optical Bloch equations, to obtain the
steady-state transition rates between dressed states and their
associated potentials [65]

�++ = �−− = � sin2 θ (r) cos2 θ (r),

�−+ = � sin4 θ (r), �+− = � cos4 θ (r), (D3)

with θ (r) being the mixing angle defined as

θ (r) = 1

2
arctan

(
− �

�(r)

)
+ π

2
H (�(r)), (D4)

where H (·) is the Heaviside step function.
The Monte Carlo simulation combines the classical motion

of a two-level atom in the lattice dressed-state potentials with
the semiclassical treatment of scattering induced by the illu-
mination with repumper light. We use the position-dependent
transition rates of Eq. (D3) to calculate and weight the proba-
bilities at a given position that the atom undergoes a scattering
event and if it results in a change of potential U±(r) → U∓(r).
Between scattering events (with random sampling), the clas-
sical equations of motion in the current potential are solved to

determine the position and probabilities of the next scattering
event. Events with change of potential will result in heating
by DFFs additional to the photon recoil, while in the case of
scattering without state change only the recoil will contribute
to the heating dynamics.

2. Details of the Monte Carlo loop algorithm

The simulation describes the coupled motion and scatter-
ing dynamics of a two-level atom (with 87Rb parameters)
trapped in a one-dimensional optical lattice with depth U0 =
kB × 0.5 mK, illuminated with near-resonant repumper light,
and considering the dressed-states approach. The polarizabil-
ity ratio between the two bare atomic states |g〉 and |e〉 in
the lattice is χ = −0.59. We extract the photon-scattering
rates (independent of atom losses) and the atom loss rates
shown in Fig. 5(c) as functions of the repumper saturation
parameter s = 2(�/2γ )2 and the free-space detuning �̃, from
the simulated evolution of an ensemble of 500 independent
atoms for each set of parameters. We use a linear model to fit
the number of total scattered photons per elapsed time, and
an exponential model for the increase of kinetic energy from
which we determine the atom loss rates. For each atom with a
given set {s, �̃} we run the following algorithm, starting with
the initial conditions:

(i) Initial total energy E0 drawn randomly from a
1D Boltzmann distribution with a mean temperature T =
100 μK.

(ii) Initial position and momentum randomized by per-
forming one evolution step of the atom in the potential Ug(r),
for a random time taken as a fraction of the harmonic-
oscillator period with trapping frequency ν = 350 kHz: {r =
0, p = √

2mE0} → {r0, p0}.
(iii) Initial state |−〉 or |+〉 selected by a weighted coin

flip with probabilities P− = |〈g|−〉|2 = cos2 θ (r) and P+ =
| 〈g|+〉 |2 = sin2 θ (r), with θ (r) being the mixing angle from
Eq. (D4).

The Monte Carlo loop follows the next steps:
(1) Start loop iteration i with the atom’s position ri,

momentum pi, total energy Ei and occupied dressed state
determined by the previous iteration (for i = 0 take the initial
conditions).

(2) If in the state |−〉 (|+〉), calculate the maximum value
of the transition rates �−−, �−+ (�++, �+−) within the
range of accessible positions at the current energy Ei, using
Eq. (D3).

(3) Draw random times from the exponential distributions
ρα = Rα,max exp (−Rα,maxt ), with Rα,max the maximum values
of the two rates from step 2 (for the current dressed state).
The minimum value between the two resulting times is taken
as the time τi elapsed until the next possible scattering event.
The transition rate associated with time τi is defined as Ri(r)
and its maximum value Ri,max.

(4) Evolve the system for a time τi by solving the equa-
tions of motion in the dressed-state potential U−(r) [U+(r)] in
Eq. (D1), to find {ri+1, pi+1}.

(5) Determine if the scattering event takes place by
a weighted coin flip with the success probability g =
Ri(ri+1)/Ri,max. If the event fails to occur, return to step 3.
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(6) If the scattering event occurred, update the occupied
dressed state accordingly, sum one count to the number of
scattered photons, update the new atom’s momentum pi+1 by
adding the photon recoil, and calculate the total energy Ei+1.

(7) The simulation terminates, if the new position ri+1

exceeds the bounds of the trapping potential or if the limit
of total time is reached. Otherwise start the next iteration in
step 1 with updated values.
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APPENDIX C

The drive-through loading method:
supplementary details

This appendix provides supplementary information and results about the drive-through loading method
presented in Chapter 5, that are either preliminary or not critical for the discussion in the main text.

In Section C.1 are included important details about the implementation of the numerical simulation.
Section C.2 contains a comparison of simulation results with the corresponding experimental results
shown in Section 5.2.3 (effect of transport velocity and cooling on the loading probability). Finally
Section C.3 presents preliminary measurements of the position distribution of atoms in the lattice resulting
from drive-through loading, obtained with the Raman imaging method presented in Chapter 4.

C.1 Numerical simulation of 1D transport: implementation details

Here I present a short summary of the most relevant technical details regarding the implementation of the
1D numerical simulation of atomic transport that was discussed in Section 5.1.2. For further information
and a comprehensive description see Ref. [67].

Our computational implementation uses a fifth-order Runge-Kutta method [179] considering discrete
time steps Δ𝑡. The recursive algorithm calculates the position and velocity of the particle, for all time
frames of the drive-through transport, based on the values of the previous time step {𝑦(𝑡), ¤𝑦(𝑡)} →
{𝑦(𝑡 + Δ𝑡), ¤𝑦(𝑡 + Δ𝑡)}, for given initial condition {𝑦(0), ¤𝑦(0)}. These initial values are defined by the
energy of the atom 𝐸𝛽 and an initial random phase 𝜙0 of the oscillations in the lattice. The energy
𝐸𝛽 is picked from the 1D Boltzmann distribution of the MOT (truncated by the maximum trapping
depth during MOT loading), and modified by 𝛽 as discussed previously. The phase 𝜙0 has the effect
of distributing the initial energy 𝐸𝛽 onto kinetic and potential components. The former determines
the velocity of the particle, while the latter gives the initial position inside of the starting lattice well,
i.e. {𝐸𝛽 , 𝜙0} ↦→ {𝑦(0), ¤𝑦(0)}. At the end of the simulation, the atom is considered as loaded into the
lattice intersection region if its final position is within the range [−20, +20] µm.

To obtain the drive-through loading probability for chosen values {𝛽, 𝑣T, 𝑦0}, we run the simulation
with 192 independent particles. The parameter space of initial conditions {𝐸𝛽 , 𝜙0} is sampled with 16
equally spaced energies (with probabilities weighted with the Boltzmann distribution), and for each
energy 12 initial phases with uniform distribution (the phases are random and with no special weights
during the MOT loading). The single-atom loading probability 𝑃dt is calculated from the number of
successfully loaded atoms out of the total 192 simulation runs. The results for a scan of the relative depth
𝛽 are shown and discussed in Section 5.2 along with the experimental measurements, see Figure 5.3 (a).
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The analysis of the lattice geometry effect on the loading probability is presented in Section 5.2.3, see
Figure 5.4 (b). Further simulation results of the other parameter scans are presented in Ref. [67] and
included below in Section C.2.

C.2 Effect of transport velocity and cooling: comparison of experiment
and simulation

In Section 5.2.3 we showed and interpreted the measurement results of drive-through loading probability
as a function of the transport velocity 𝑣T, and the absence or presence of cooling during the process.
There, in Figure 5.4, selected measurements were presented that contributed to the discussion. Also, the
corresponding simulation results were omitted since they were not crucial for the results.
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Figure C.1: Comparison of drive-through loading measurements and simulation to analyze the effect of transport
velocity and cooling. The single-atom loading probability as a function of relative depth 𝑏𝑒𝑡𝑎 is shown for the case
with cooling (a-c) and without cooling (b-d), resulting from experimental measurements (blue-yellow scale) and
from the simulation (grey scale). Figure from Ref. [67].

For completeness, here I include the full set of measurements and the comparison to the simulation
results, see Figure C.1, as first presented in Ref. [67]. Differently than in Figure 5.4 (a) where we plotted
the data as individual scans, here we represent it all together as contour plots with the loading probability
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encoded in color scales. This representation allows to appreciate and compare the overall behavior
landscape of the drive-through loading probability with respect to the studied parameters. There are
two main conclusions from the comparison: (i) In the simulation the transport velocity plays no role,
whereas in the measurements lower velocities are detrimental. The reason is that atom losses caused
by external heating effects are reduced for shorter transports, as discussed in Section 5.2.3. (ii) for the
measurements, cooling increases the loading probability overall and is more prominent for low relative
depths, whereas for the simulation it only plays a role for the low 𝛽 region (𝛽 < 0.02). The explanation is
that in the experiments the cooling compensates heating effects and also reduces recapturing of the atoms
that undermines the drive-through loading effect (see Section 5.1.2), while in the simulation only the
avoided recapturing plays a role since external heating effect are not considered. For a more detailed
explanation refer to [67].

C.3 Preliminary characterization of the atom position distribution

To characterize the loading density inside the cavity achievable with the drive-through loading method,
we have performed preliminary measurements of the position distribution of atoms via Raman imaging
(see Chapter 4). The images are postprocessed with a position-detection algorithm to obtain the
position distribution. The details of the measurement can be found in Ref. [67]. To benchmark the
resulting distribution by drive-through loading, we compare position distributions obtained with two other
techniques used alternatively in the experiment: the feedforward transport shuttles the full chain of atoms
loaded from the MOT into the center of the cavity, while the feedback transport uses the cavity-based
detection to stop the conveyor-belt shuttling when a first well-coupled atom is detected [75].

In Figure C.2 (a-c) we see the 2D histograms of the position distributions in the 𝑦𝑧-plane following
each loading technique. Since we are mostly interested in the position distribution along the transport
𝑦-axis, we average vertically the regions of interest (between white dashed lines). The normalized atom
position probabilities along the 𝑦-axis are shown in Figure C.2 (d) for all three loading methods. We
observe that the feedforward and feedback transports result in a very similar distribution, with a maximum
at pixel ∼24, whereas the drive-through loading creates a distribution that peaks 10 pixels to the left at
pixel ∼ 14. To interpret this observation it is necessary to know the crossing position of the different
lattice beams. Identifying the position of the lattices DT𝑥 and DT𝑧 is done by inducing atom loss via
parametric modulation of one lattice at a time, then spotting the center of the beam as the position of
higher losses. With this procedure, we discovered a misalignment of the 3D lattice by ∼4.57 µm, with the
position at pixel ∼24 corresponding to the intersection of the cavity mode with the conveyor belt (DT𝑧

and DT𝑦), and the position at pixel ∼14 to the intersection of DT𝑥 and DT𝑦 . Here we use that 1 pixel in
the camera image corresponds to ∼457 nm in the lattice plane at the cavity position, see Section 2.3.5.

Such diagnosis of the lattice misalignment allows important discussions about the loading techniques
following Figure C.2 (d). On one hand, the feedforward and feedback methods have a higher loading
probability at the cavity center (at the crossing DT𝑦𝑧), as it is expected by design (i.e. they are programmed
to bring the atoms there) and because cooling is highest at that position (see Chapter 3) so the survival
probability is higher (also the imaging quality is higher there which could bias the atom detection). Still,
we note that some atoms are also loaded in the crossing with DT𝑥 where the trapping potential is deeper.
On the other hand, the drive-through method has the highest loading probability at the intersection of
DT𝑥𝑦 , exactly as expected from the development of the technique (Chapter 5), even when that position is
not at the cavity center. We emphasize this because at such position the lattice misalignment creates harder
conditions for the atoms to survive the loading and imaging sequence (less efficient cooling) and to be
detected (lower image quality). Thus, the observation that the atom distribution peaks at the DT𝑥 despite
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the harder conditions points towards a highly effective loading by drive-through. In order to confirm
this idea we carried out the sensitive realignment of the lattice, with the aim of repeating the position
distribution measurements at the now common intersection of DT𝑥𝑦𝑧 . Unfortunately final measurements
could not be concluded due to the permanent damage suffered by the cavity (see Appendix D.1).
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Figure C.2: Preliminary characterization of the atom position distribution resulting from drive-through loading,
compared to alternative loading methods, measured with Raman imaging (Chapter 4) and postprocessed with a
position-detection algorithm [67]. The histogram of detected atoms positions in the cavity region is shown after
(a) drive-through-loading, (b) feedforward transport, and (c) feedback transport. (d) To compare the distributions
along the transport axis, the vertical average of the region of interest (in a-c, between white dashed lines) is plotted
together for all three cases. Note that in all the figures 1 pixel in the camera image corresponds to ∼457 nm inside
of the cavity (see Section 2.3.5). Figure from Ref. [67].
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APPENDIX D

Our high–bandwidth FFPC: supplementary
material

D.1 Cavity finesse degradation and permanent damage

Since the start of operation of the fiber-cavity experiment, an unexpected gradual degradation of the
cavity finesse was observed [75]. On the 14/10/2020 a pump runaway self-bakeout incident occured that
resulted in the loss of the cavity finesse. It was not possible to recover it with an oxygen treatment as usual.
Attempts to clean the cavity mirror with powerfull laser from the cided resulted in the permanent damage.
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Figure D.1: Finesse decay and cavity damage. (a) Finess degradation and (b) pressure rise in the vacuum system,
recorded over the course of the las year of the cavity life, that ended on the 14/10/2020 the pump runaway
self-bakeout and the resulting cavity damage.
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D.2 Relevant parameters of our FFPC system

Most relevant parameters of the FFPC system in our experiment — and used for the results of this thesis
— are compiled in Table D.1. The characterizations and measurements were made in Ref. [75]. Certain
discrepancies from the values in Table D.1 to the parameters (𝑔, ^, 𝛾) ≈2𝜋 × (80, 41, 3) MHz presented
in this thesis are due to the finesse degradation of the cavity, presented in Appendix D.1.

Table D.1: Relevant parameters of our FFPC system, as characterized in [75]. The reported parameter uncertainties
were either directly measured of propagated from other measurements. The maximum atom-light coupling rate
𝑔max is calculated for the ideal case of a single atom at the center of the cavity at an antinode of the cavity mode.
The finesse and the cavity linewidth measurements were performed under normal atmosphere before installing the
cavity in the vacuum system [22].

Parameter Value Extracted from

Mirrors (HT/LT)
Transmission T (126 ± 13) /(13 ± 3) ppm direct measurement
Losses (scat. and abs.) L (26 ± 5) /(25 ± 5) ppm finesse and transmission

Cavity geometry
Length 𝐿cav (93.36 ± 0.03) µm lock-probe beat length
Mode waist 𝑤0 (4.40 ± 0.04) µm cavity geometry
Input mode matching 𝜖HT 0.60 + −0.02 reflection dip asymmetry

Cavity spectroscopy
Free spectral range ΔaFSR (1 606.7 ± 0.5) GHz cavity length
Cavity full width ΔaFWHM (50.8 ± 1.0) MHz sideband-modulated dip
Finesse (780 nm) F (32 800 ± 1 100) FSR-FWHM ratio
Finesse (770 nm) Flock (27 200 ± 1 000) FSR-FWHM ratio
Pol.-mode splitting Δaspl (9.0 ± 0.3) MHz Hänsch-Couillaud setup [180]
Lock-probe beat length 𝑑beat (31.12 ± 0.01) µm

CQED parameters
Atom-light coupling 𝑔max/2𝜋 (121.6 ± 1.1) MHz 87Rb D2-line cycling transition
Cavity field decay ^total/2𝜋 (24.5 ± 0.8) MHz measured cavity linewidth
Atomic dipole decay 𝛾/2𝜋 3.03 MHz rubidium natural decay [111]
Single-atom cooperativity 𝐶 (100 ± 4)
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