Neuartige Oxidphosphate (M,M')OPO₄ (M,M': V, Nb, Ta, W, Sb) Ab initio Modellierung, Synthese, Charakterisierung und Redoxverhalten

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

 der

Mathematisch-Naturwissenschaftlichen Fakultät

 der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von Sylvia Kunz (M. Sc.) aus Oldenburg

Bonn 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Robert Glaum

2. Gutachter: Prof. Dr. Thomas Bredow

Tag der Promotion: 02.12.2022 Erscheinungsjahr: 2023

Allen, die mit mir zusammen durchs Feuer gegangen sind - vor allem meiner Familie

Battery in your legs

This is a ballad for the good times So put a battery in your leg Put a rock beat over anything Get it stuck there in your head You can be with me

I got nothing to rely on I've broken every bone Everybody's stopped believing But you know you're not alone You can be with me

This is a ballad for the good times And all the dignity we had Don't get het up on the evil things You ain't coming back You can be with me If you want to be You can be with me

Lyrics and Song by Blur

Inhaltsverzeichnis

1	Ein	leitung		1		
	1.1 Katalytische Oxidation von <i>n</i> -Butan zu					
		Malein	nsäureanhydrid	2		
	1.2	Zielset	tzung der vorliegenden Arbeit	9		
2	Dis	kussio	n der Kristallstrukturen relevanter Polymorphe von			
	Oxi	dphosp	phaten $MOPO_4$ und Berechnung von deren Stabilitäten			
				11		
	2.1	Übers	icht zu den Strukturtypen der Oxidphosphate $M{\rm OPO}_4$	11		
		2.1.1	Der β -VOSO ₄ -Strukturtyp	12		
		2.1.2	$Der \ SbOPO_4-Strukturtyp $	13		
		2.1.3	Der α -MoOPO ₄ -Strukturtyp	16		
		2.1.4	Der MPTB-Strukturtyp	18		
	2.2	Weiter	re Kristallstrukturen	22		
		2.2.1	Die Kristallstruktur von α_{I} -VOPO ₄	22		
		2.2.2	Die Kristallstrukturen von ω -VOPO ₄ /X1-VOPO ₄	23		
		2.2.3	Die Kristallstruktur von $VOPO_4 \cdot 2 H_2O$	23		
		2.2.4	Der α -TiOSO ₄ -Strukturtyp	24		
		2.2.5	Die Kristallstruktur von $SbPO_4$	25		
	2.3	Über o	die relativen Stabilitäten der $MOPO_4$ -Polymorphe	27		
		2.3.1	Einleitung	27		
		2.3.2	Details zu den Rechnungen	27		
		2.3.3	Ergebnisse und Diskussion	29		
	2.4	Die re	lativen Stabilitäten der			
		MOP	O_4 -Polymorphe	31		
	2.5	Zusan	nmenfassung	39		

3	Das	Oxidphosphat $VOPO_4$ und dessen Redoxverhalten	41
	3.1	Synthese von α_{II} -VOPO ₄	44
	3.2	³¹ P-MAS-NMR-Spektren von β - und	
		$\alpha_{\text{II}}\text{-VOPO}_4$	51
	3.3	Topotaktisch kontrollierte Reduktion von	
		β -VOPO ₄	51
		3.3.1 Experimentelles	56
		3.3.2 Ergebnisse	57
		3.3.3 Strukturmodelle für VPO ₄ - $m1$ und - $m2$	61
		3.3.4 UV/vis/NIR-Pulverremissionsspekrum und magnetisches	
		Verhalten von VPO_4 -m1	65
		3.3.5 IR- und Raman-Spektren	67
		3.3.6 DFT-Rechnungen zu metastabilem $VPO_4 \dots \dots \dots \dots$	68
		3.3.7 Vergleich der experimentellen und berechneten Schwingungs-	
		$\operatorname{spektren}$	77
		3.3.8 Diskussion	77
	3.4	Zusammenfassung	78
4	Oxi	dphosphate $MOPO_4$ von Niob und Tantal	79
	4.1	Niob(V)-oxidphosphat	79
	4.2	$Das Tantal(V)-oxidphosphat \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	83
5	Das	quasibinäre System $VOPO_4$ -Nb OPO_4	87
	5.1	Experimentelle Untersuchungen: Ergebnisse und Diskussion	88
	5.2	DFT-Rechnungen	97
	5.3	Katalytisches Verhalten	104
	5.4	Zusammenfassung	106
6	Wei	tere quasibinäre Systeme MOPO ₄ - MOPO ₄ ':	
	Pha	senbildung, Mischbarkeit und Redoxverhalten	109
	6.1	Die Antimonphosphate SbOPO ₄ und SbPO ₄ \ldots \ldots \ldots \ldots	109
		6.1.1 Ergebnisse und Diskussion	110
		6.1.2 Vorhersage neuer Polymorphe von SbOPO ₄ \ldots \ldots \ldots	114
	6.2	Die quasibinären Systeme SbOPO ₄ - M OPO ₄ (M : Nb, Ta)	119
		6.2.1 Synthese und Phasenbildung	119

		6.2.2	Das quasibinäre System SbOPO ₄ -NbOPO ₄	121
		6.2.3	Der quasibinäre Schnitt SbOPO ₄ -TaOPO ₄	131
		6.2.4	Zusammenfassung	136
	6.3	Das qu	ıasibinäre System $WOPO_4$ -Nb OPO_4	137
		6.3.1	Ergebnisse und Diskussion	138
		6.3.2	Zusammenfassung	146
	6.4	Das qu	ıasibinäre System TaOPO ₄ -WOPO ₄	148
		6.4.1	Ergebnisse und Diskussion	148
		6.4.2	Zusammenfassung	151
	6.5	Das qu	ıasibinäre System NbOPO ₄ -TaOPO ₄	152
		6.5.1	Ergebnisse und Diskussion	152
		6.5.2	Zusammenfassung	156
7	Тор	otaktis	sch kontrollierte Reduktion der Oxidphosphate	
	$(V_{1-}$	$(x M_x)$	$\mathrm{OPO}_4 \; (M: \mathrm{W}, \mathrm{Nb})$	157
	7.1	Die Sy	steme V/W/P/O und V/Nb/P/O \ldots	157
	7.2	Das R	edoxverhalten von $(V_{0,8}W_{0,2})OPO_4$ und $(V_{0,74}W_{0,26})OPO_4$	157
	7.3	Die to	potaktisch kontrollierte Reduktion der Mischkristallreihe	
		(\mathbf{V}_{1-x})	$Nb_x)OPO_4$	166
	7.4	Zusam	menfassung	169
8	Zus	ammer	nfassung	171
9	Syn	these a	ler eingesetzten Verbindungen	175
	9.1	Ausgai	ngsverbindungen \ldots	175
	9.2	Synthe	esen über SCS	176
		9.2.1	Synthese von α -NbOPO ₄ und β -NbOPO ₄	176
		9.2.2	Synthese eines wasserlöslichen Precursors für $\mathrm{Ta}_2\mathrm{O}_5$ und die	
			Darstellung von β -TaOPO ₄	178
		9.2.3	Synthese von $SbPO_4$ und $SbOPO_4$	179
10	App	oaratur	en und präparative Methoden	181
	10.1	Herste	llung von Kieselglashalbampullen und	
		geschle	ossenen Ampullen	181
	10.2	Öfen		182
		10.2.1	Zwei-Zonen-Ofen	182

10.2.2 Kammeröfen	183
10.3 Solution Combustion Synthesis (SCS)	183
11 Analytische Methoden	187
11.1 Röntgenpulverdiffraktometrie	187
11.1.1 Auswertung der Guinier-Aufnahmen	189
11.1.2 Erstellen von Simulationen	189
11.2 UV/vis-Spektroskopie	190
12 Grundlagen der Density Functional Theory (DFT)	193
12.1 Vielteilchensysteme	193
12.1.1 Born-Oppenheimer-Näherung	194
12.2 Density Functional Theory (DFT) $\ldots \ldots \ldots \ldots \ldots$	195
12.2.1 Hohenberg-Kohn-Theoreme	195
12.2.2 Kohn-Sham-Gleichungen $[1, 2]$	196
12.3 Dispersionskorrigierte Dichtefunktionaltheorie (DFT) $\ . \ . \ .$	200
12.4 Festkörperquantenchemie	201
12.4.1 Das Kristallgitter	201
12.4.2 Der reziproke Raum	202
12.4.3 Das Bloch-Theorem	203
12.4.4 Born-von-Kármán-Randbedingung	203
12.4.5 Das Monkhorst-Pack-Gitter	204
12.5 Spektroskopie \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	204
12.5.1 Raman-Spektroskopie	205
12.5.2 Das Franck-Condon-Prinzip	206
12.5.3 Auswahlregel und Symmetrie	208
12.5.4 Schwingungsberechnung	209
13 Anhang	213
13.1 Strukturmodelle der $MOPO_4$ -Vertreter	213
13.1.1 Strukturmodelle nach der DFT-Optimierung	216
13.2 Indizierung der Pulverdiffraktogramme metastabiler Formen $$	von
VPO_4 so wie IR- und Ramansprektren der Vanadiumphosphate	e . 228
13.3 Strukturvorhersagen zum Verlauf der Oxidation von $\rm SbPO_4$	242
13.4 Der quasibinäre Schnitt SbOPO ₄ -NbOPO ₄	246

13.5	Der quasibinäre Schnitt SbOPO ₄ -TaOPO ₄ \ldots \ldots \ldots \ldots	258
13.6	Der quasibinäre Schnitt NbOPO ₄ -WOPO ₄	271
13.7	Der quasibinäre Schnitt TaOPO ₄ -WOPO ₄ \ldots \ldots \ldots \ldots	280
13.8	Der quasibinäre Schnitt VOPO ₄ -NbOPO ₄ \ldots \ldots \ldots \ldots \ldots	291

Kapitel 1

Einleitung

In den letzten Jahren haben Oxidphosphate der Zusammensetzung $MOPO_4$ große Aufmerksamkeit sowohl als Katalysatoren [3] wie auch als Trägermaterial zur Verbesserung de Leistungsfähigkeit des eigentlichen Katalysators erfahren [4]. Insbesondere Polymorphe von VOPO₄ und MoOPO₄ wurden für die katalytische Oxidation von Kohlenwasserstoffen getestet [5, 6]. Abgesehen von der Anwendung als Katalysator wird VOPO₄ auch als Kathodenmaterial in Lithium- [7, 8, 9] und Natrium-ionen-Batterien eingesetzt [10]. Neben redoxaktiven Elementen wie Vanadium und Molybdän sind aber auch solche ohne ausgeprägtes Redoxverhalten in den Fokus der Forschung gerückt.

Die katalytische Leistungsfähigkeit eines Katalysators hängt unter anderem vom eingesetztem Polymorph ab. Die Polymorphe unterscheiden sich untereinander hinsichtlich ihrer elektronischen Struktur, der Mobilität der Ionen sowie der Stabilität von Bulk und Oberflächen [11, 12, 13]. Pd/NbOPO₄ wird als multifunktionaler Katalysator bei der Hydro-Deoxygenierung von Furan abgeleiteten Addukten hin zu flüssigen Alkanen [14] eingesetzt. Ru/NbOPO₄ findet Einsatz für die Synthese aromatischer Ether und Phenole [15], amorphes K₂O/NbOPO₄ für die Produktion von Biodiesel aus Palmöl [16] und NbOPO₄ für die direkte Synthese von Dimethylether in Kombination mit einem Katalysator für die Methanolsynthese $(10,1\% Al_2O_3, 65,5\% CuO, 24,7\% ZnO, 1,3\% MgO)$ [17].

 $TaOPO_4$ wird unter anderem als Trägermaterial für Platin in der Elektrokatalyse [18, 4, 4] und als Katalysator für die Dehydratisierung von Xylose zur Produktion von Furfural [19] verwendet.

Die Leistungsfähigkeit der verwendeten Reinphasen MOPO₄ könnte, unabhängig

von ihrem Einsatzgebiet, durch Substitution oder die Verwendung von Promotoren weiter optimiert werden. So könnte der Einbau von Fremdmetallkationen M' in $MOPO_4$ zur Stabilisierung neuer Polymorphe führen, die aufgrund ihrer unterschiedlichen chemischen Eigenschaften eine gesteigerte Wirksamkeit in der Katalyse oder als Elektrodenmaterial zeigen. Im Folgenden soll die Katalyse von n-Butan zu Maleinsäureanhydrid beschrieben werden. Dabei soll auch auf die Bedeutung von VOPO₄ in diesem katalytischen Prozess, sowie auf den Einsatz von Promotoren zur Steigerung der Performance des Katalysators eingegangen werden.

1.1 Katalytische Oxidation von *n*-Butan zu Maleinsäureanhydrid

Ein bedeutendes großtechnisches Verfahren ist die Herstellung von Maleinsäureanhydrid (MSA) mittels heterogener Katalyse. Maleinsäureanhydrid ist ein wichtiges Zwischenprodukt der chemischen Industrie mit einer Produktion von 3 mio t/a [20]. Es ist vielseitig einsetzbar, da sowohl Polykondensationen als auch Polyadditionen mit diesem Ausgangsstoff möglich sind. Auch für die Herstellung von Polyestern, Lacken, Weichmachern, Alkydharzen sowie Schmiermitteln wird MSA eingesetzt. Die industriell wichtigsten Copolymere, die mit Maleinsäureanhydrid umgesetzt werden, sind Styrol und Acrylsäure. Beide werden für die Synthese von Kunststoffen verwendet [20]. Historisch erfolgte die Darstellung von MSA durch die Oxidation von Benzol mittels Luftsauerstoff. Als Katalysator wurde dabei V_2O_5 , dotiert mit Molybdän, genutzt [21]. Dabei wird jedoch für MSA nur eine Ausbeute von 60-65% erreicht [21]. Dieses Verfahren wurde in den letzten Jahren immer mehr durch die selektive Gasphasenoxidation von *n*-Butan verdrängt. Dies liegt zum einen am Verlust zweier C-Atome pro eingesetztem Benzol-Molekül und dem daraus entstehenden CO_2 , sowie am vergleichsweise hohen Benzolpreis.

$$V_2O_5 + 4,5O_2 + 2H_2O$$

Benzol Maleinsäureanhydrid

Abbildung 1.1: Oxidation von Benzol zu MA über V₂O₅ als Katalysator.

Heute wird n-Butan als Ausgangsmaterial eingesetzt und über einen Katalysator, der hauptsächlich aus (VO)₂P₂O₇ (VPP) besteht, zu MSA umgesetzt. Der Einsatz von n-Butan als Edukt hat viele Vorteile. Zum einen ist Butan ein natürlicher Bestandteil von Erdgas, zum anderen wird es beim Cracken aus Erdöl erhalten und ist damit ein günstigeres Ausgangsmaterial als Benzol. Der VPP-Katalysator wurde während der 60er Jahre in den USA entwickelt. Im industriellen Maßstab fand er erst im Jahre 1971 bei Monsanto Verwendung [22]. Die Oxidation von *n*-Butan zu MSA lässt sich als Redoxreaktion beschreiben, bei welcher insgesamt 14 Elektronen übertragen, acht Wasserstoffatome abstrahiert und drei Sauerstoffatome insertiert werden.

n-Butan

Abbildung 1.2: Oxidation von n-Butan zu MA über (VO)₂P₂O₇ als Katalysator.

Dabei wurden mittels TAP-Reaktoren (Temporal Analysis of Products) die Intermediate der Reaktion identifiziert [23, 24], und eine hypothetische Reaktionsreihenfolge abgeleitet (Abbildung 1.3). Insgesamt sind zwei Routen bekannt, nach denen die Umsetzung von *n*-Butan zu MSA ablaufen soll. Die erste Route ist die sogenannte Olefinroute [25], bei der davon ausgegangen wird, dass die Intermediate während der Reaktion von der Katalysatoroberfläche desorbieren. Die zweite Route ist unter dem Namen Alkoxidroute [26] bekannt. Für diese Route wird angenommen, dass die Intermediate bis zum Ende der Reaktion an die Katalysatoroberfläche gebunden sind.

Abbildung 1.3: Intermdiate bei der Umsetzung von *n*-Butan zu MSA.

1.1. Katalytische Oxidation von n-Butan zu Maleinsäureanhydrid

Die Elementarschritte der katalytischen Reaktion waren lange Zeit unbekannt und sind bis heute nicht zweifelsfrei geklärt. Als gesichert gilt, dass das Volumen des Katalysators ("bulk ") aus (VO)₂P₂O₇ besteht [27]. An der Oberfläche des Katalysators, an welcher die katalysierten Reaktionsschritte stattfinden, liegen hingegen V^{4+} und V^{5+} nebeneinander vor [28, 27]. Die durchschnittliche Oxidationsstufe von Vanadium beträgt im Bulk 4,0 und auf der katalytisch aktiven Schicht 4,3 [29]. Dies beweist, dass nicht nur $(VO)_2P_2O_7$, sondern auch Vanadium(V)phosphate bei der katalytischen Reaktion vorliegen. Es gibt zudem Hinweise darauf, dass größere Mengen an V^{5+} einen positiven Einfluss auf die Ausbeute an MSA haben [30]. COULSTON ET AL. vermuteten, dass der erste Schritt der Aktivierung von n-Butan die Abstraktion eines H-Atoms, von V^{5+} abhängt. Daraus wiederum ergibt sich die Frage, welches katalytisch aktive Vanadiumphosphat während der Reaktion vorliegt. Zur Diskussion standen α_{I} -VOPO₄ [31], α_{II} -VOPO₄ [27] und X1-VOPO₄ [32], sowie (VO)₂ P_2O_7 [33, 12]. In der folgenden Abbildung haben GODDARD et al. mögliche aktive Spezies der katalytischen Reaktion aufgeführt. Sie postuliert als Schlussfolgerung 2017 erstmals den ROA-Mechanismus (Reduction-Coupled Oxo Activation).

Abbildung 1.4: Mögliche aktive Spezies unterschiedlicher VPO-Verbindungen bei der Katalyse von *n*-Butan in Maleinsäureanhydrid, rot Sauerstoff, violett Phosphor, grau Vanadium. Abbildung mit freundlicher Genehmigung von [34]. Copyright 2021 American Chemical Society.

GODDARD et al. kommen zu dem Ergebnis, dass nur die terminale P=O-Bindung des X1-Polymorphs für die Aktivierung von n-Butan infrage kommt. Wird ein H-Atom an das P=O-Motiv angelagert, wird das zusätzliche Elektron über die V-O-P-Bindung stabilisiert, sodass eine sehr starke PO-H-Bindung gebildet wird. Für die weitere selektive Oxidation des aktivierten n-Butans ist allerdings die $\alpha_{\rm I}$ -Phase zuständig, da das X1-Polymorph (ω -VOPO₄) zu reaktiv für eine selektive Oxidation ist. Der komplexe Ablauf der Reaktion wird über einen 15-stufigen Mechanismus beschrieben [34]. Dabei erfolgt der erste Schritt, die Abstraktion des H-Atoms, durch die terminale P-O-Bindung der X1-Phase. Es entsteht ein Butyl-Radikal. In den Schritten 2 und 3 wird eine sekundäre C-H-Bindung des Butyl-Radikals durch das Sauerstoffatom der α_{I} -Phase aktiviert, sodass im nächsten Schritt Butadien entsteht. In Schritt 3 wird Butadien an die V≡O-Bindung angelagert. Es kommt zum Ringschluss und zur anschließenden Desorption des Produkts (Schritt 6 und 7). Dabei wird vermutet, dass das entstehende V^{3+} mit $V^{V} \equiv O$, welches in der zweiten Lage vorliegt, eine V^{IV} -O- V^{IV} -Brücke bildet. Der nächste Schritt ist eine C-H-Aktivierung des 2,5-Dihydrofurans über das verbrückendes V-O-P-Sauerstoffatom. Es erfolgt wieder die Adsorption des Radikals über eine terminale $V \equiv O$ -Bindung. Die Elementarschritte 7 bis 16 wiederholen sich nun bis zur Desorption von MSA.

1.1. Katalytische Oxidation von n-Butan zu Maleinsäureanhydrid

Abbildung 1.5: Zweiphasenmechanismus für die Gasphasenoxidation von *n*-Butane zu MSA mit VPO als Katalysator mit berechneten Energien (Δ h) und Energiebarrieren (Ea), angegeben in kcal/mol. Die Abbildungen TS1 bis TS15 zeigen ausgesuchte Übergangszustände (TS) des 15-stufigen Mechanismus. Abbildung mit freundlicher Genehmigung von [34]. Copyright 2021 American Chemical Society.

Eine experimentelle Bestätigung von GODDARDS Berechnungen ist die Beobachtung, dass ein erhöhter Phosphor-Anteil an der Katalysatoroberfläche zu einer Zunahme an MSA führt [35]. Dies lässt sich mittels des Modells von GODDARD so erklären, dass durch einen erhöhten Phosphoranteil mehr *n*-Butan aktiviert werden kann. Auf der Katalysatoroberfläche wurde ein erhöhter Anteil von Phosphat beobachtet [27]. Vermutlich wird durch die Adsorption von Wasser das Phosphat aus dem Katalysatormaterial gelöst, sodass sich auf der Oberfläche Phosphorsäure bildet. Diese wird mit der Zeit abgetragen, was der Grund für Selektivitätseinbrüche des Katalysators ist [36]. Um das zu vermeiden, wird über den Gasstrom P_4O_{10} zum Beispiel in Form von Trimethylphosphat (TMP) zugeführt [37, 38]. Die Zugabe von Wasser erhöht die Selektivität der Reaktion ebenfalls. Erklärt werden kann dies durch die Hydratisierung katalytisch aktiver Zentren, die so blockiert werden. Damit wird die vollständige Oxidation zu CO_2 oder die Kondensation der Zwischenprodukte vermieden [39].

Einen großen Einfluss auf die Größe der Oberfläche des Katalysators hat dessen Synthese. Eine größere Katalysatoroberfläche sorgt aufgrund der Zunahme der Kontaktfläche für mehr Umsatz des Edukts. Anfang der 1970er wurde der Katalysator über eine wässrige Syntheseroute dargestellt. Erst ab Mitte der 1970er wurden organische Lösemittel, vorwiegend Isobutylalkohol, für die Synthese verwendet, was zu einer drastischen Zunahme an Selektivität führte. Der Grund hierfür ist die Vergrößerung der aktiven Oberfläche, der (1 0 0)-Ebene von Vanadylpyrophosphat [40].

In der Literatur wurde vermutet, dass diese Ebene für die Sauerstoffübertragung an das Edukt zuständig ist. Mit den Ergebnissen von GODDARD lässt sich vermuten, dass nicht $(VO)_2P_2O_7$ die katalytisch aktive Phase ist, die Sauerstoff überträgt, sondern die Oxidation an der Oberfläche von X1-VOPO₄ erfolgt. Für den Sauerstofftransport innerhalb des Katalysators wird der Mars-van-Krevelen-Mechanismus diskutiert [41, 29]. Der industrielle Prozess zur Herstellung von MSA wird in der Regel so gesteuert, dass der Umsatz 80-85 % beträgt mit einer Ausbeute von 50-60% [21]. Erreicht wird dies auch durch die Zugabe sogenannter Promotoren. Promotoren können entweder als Edukte bei der Synthese des Katalysators eingesetzt werden, sodass sie in das Material eingebaut werden können [42], oder sie werden auf die Oberfläche des Katalysators gesprüht [43]. Als mögliche Promotoren werden zum Beispiel Niob [44] oder Molybdän [45] zugesetzt. Der Verbleib der Promotoren im Katalysator bleibt dabei meistens ungeklärt [44]. Dabei haben diese nachweislich einen Einfluss sowohl auf die Struktur des Materials wie auch auf dessen Redoxverhalten. Am Beispiel der Mischkristallreihe $(V_{1-x}W_x)OPO_4$ konnte dies eindrucksvoll gezeigt werden [46, 47]. Aus der Einleitung wurden folgende Fragestellungen abgeleitet:

• Welches Sauerstoffatom von $VOPO_4$ wird unter katalytischen Bedingungen des Prozesses bei der Umwandlung von n-Butan zu Maleinsäureanhydrid

abstrahiert?

• Können bestehende Polymorphe von VOPO₄ durch die teilweise Substitution

von Vanadium stabilisiert werden?

 Welche neuen, unbekannten Polymorphe von MOPO₄ sind herstellbar und bieten sie eine Alternative zu VOPO₄?

1.2 Zielsetzung der vorliegenden Arbeit

Die vorliegende Dissertation befasst sich mit der Entwicklung neuer Katalysatormaterialien der allgemeinen Formel $MOPO_4$ für die Umsetzung kurzkettiger Kohlenwasserstoffe wie Propan und *n*-Butan zu Maleinsäureanhydrid.

Zunächst wird dafür die Stabilität von vier $MOPO_4$ -Strukturtypen (M: V, Mo, Nb, Ta, W, Sb; β -VOSO₄, α -MoOPO₄, SbOPO₄, und MPTB (m = 2)) anhand von DFT-Rechnungen untersucht, um bisher unbekannte, aber herstellbare Polymorphe zu identifizieren, die für die katalytische Anwendung interessant sein könnten. In den folgenden Kapiteln wird untersucht, ob die theoretisch vorhergesagten $MOPO_4$ -Polymorphe der Reinphasen im Experiment durch Substitution des Metallkations M synthetisiert werden können. Dafür wurden die quasibinären Schnitte SbOPO₄-NbOPO₄, SbOPO₄-TaOOP₄, NbOPO₄-WOPO₄, TaOPO₄-WOPO₄ und NbOPO₄-TaOPO₄ untersucht.

Zusätzlich wurde das Redoxverhalten von VOPO₄ unter katalytischen Bedingungen untersucht. Zu den Stabilitäten der erhaltenen Produkte wurden DFT-Rechnungen durchgeführt. Dies soll Hinweise auf die katalytisch aktive Phase von $(VO)_2P_2O_7$ (VPP) bei der Umsetzung von *n*-Butan zu Maleinsäureanhydrid liefern.

Es wurden zudem die chemischen sowie katalytischen Eigenschaften der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ bei der Umwandlung kurzkettiger Kohlenwasserstoffe zu Maleinsäureanhydrid (MSA) untersucht, was einen Hinweis auf den Effekt von Promotoren auf die katalytische Aktivität liefern sollte.

Da auch Antimon teilweise als Promotor in der Katalyse Verwendung findet, wurde ebenfalls das Redoxverhalten von SbOPO₄ zu SbPO₄ untersucht. Alle Proben wurden mittels Solution Combustion Synthesis (SCS) dargestellt. Diese Synthesemethode erlaubt die gezielte Darstellung bisher schwer synthetisierbarer, metastabiler Polymorphe, die aufgrund ihrer katalytischen Eigenschaften für die Industrie von Interesse sind.

Kapitel 2

Diskussion der Kristallstrukturen relevanter Polymorphe von Oxidphosphaten MOPO₄ und Berechnung von deren Stabilitäten

2.1 Übersicht zu den Strukturtypen der Oxidphosphate $MOPO_4$

In diesem Abschnitt sollen alle für diese Arbeit relevanten Kristallstrukturen diskutiert werden. Da im Fokus $MOPO_4$ steht, werden zuerst Strukturtypen mit dieser Zusammensetzung besprochen, dann folgen weitere. Es wurden vier in der Literatur bekannte $MOPO_4$ -Strukturtypen ausgewählt (β -VOSO₄, SbOPO₄, α -MoOPO₄, und MPTB ((PO₂)₄(WO₃)_{2m}, m=2), die mit den in dieser Arbeit behandelten Elementen literaturbekannt sind. In Tabelle 2.1 ist zusammengestellt, welche der vier $MOPO_4$ -Strukturtypen von den jeweiligen Elementen bekannt sind, sowie deren Nomenklatur und thermodynamische Stabilität. Ergänzend dazu werden alle, in dieser Arbeit relevanten Kristallstrukturen, diskutiert.

Tabelle 2.1: In der Literatur bekannte Strukturtypen von Oxidphosphaten $MOPO_4$ (M: V, Mo, Nb, Ta, W, Sb) mit der bekannten Nomenklatur. Der Stern markiert die thermodynamisch stabilen Polymorphe im Temperaturbereich 700-900 °C unter Normaldruck.

$MOPO_4$	β -VOSO ₄	$SbOPO_4$	α -MoOPO ₄	MPTB	ggf. weitere
$VOPO_4$	$\beta^{*}[48]$	$\epsilon[49]$	$\alpha_{\rm II}$ [50]	-	$\alpha_{\rm I} \ [51], \ \delta \ [52],$
$M_{\circ}ODO$	<i>G</i> [55]	<i>Q</i> [56]	a* [57]		γ [53], ω [54]
$MOOPO_4$	p_{I} [99]	ρ [30]	α^{*} [37] α^{*} [58]	- B [50 60]	-
$T_{a}OPO_{4}$	_	_	α [55] α [61]	$\beta [53, 00]$ $\beta * [62]$	_
$WOPO_4$	_	_	α [61] α [63]	$\beta [62] \beta^* [64]$	_
$SbOPO_4$	-	SbOPO_4^* [65]	-	_	-

2.1.1 Der β -VOSO₄-Strukturtyp

β-VOSO₄ kristallisiert im orthorhombischen Kristallsystem mit der Raumgruppe Pnma (a = 7,371 Å, b = 6,269, Å, c = 7,082 Å [66]). Die Kristallstruktur ist aus Ketten von eckenverknüpften [VO₆]-Oktaedern entlang der a-Achse aufgebaut. Dabei sind aufeinanderfolgende Oktaeder gegeneinander verkippt, da sie zusätzlich über einen [SO₄]-Tetraeder miteinander verknüpft sind (vgl. Abbildung 2.1b). Eine [SO₄]-Einheit verbindet drei benachbarte Oktaederstränge. Die Koordinationspolyeder der Metallkationen sind aufgrund der kurzen Metallylbindung V≡O stark verzerrt, da durch diese starke Bindung der dazu trans-ständige V-O-Abstand verlängert ist (vgl. Tabelle 2.2). Der Grad der Verzerrung ist abhängig vom Metallkation. Die Verzerrung ist am ausgeprägtesten mit V⁵⁺. Die thermodynamisch stabile β-Form von VOPO₄ [48] kristallisiert im β-VOSO₄-Typ. Bei MoOPO₄ wird die entsprechende Struktur in der Literatur als β₁-MoOPO₄ [55] bezeichnet. β₁-MoOPO₄ ist ein metastabiles Polymorph.

Abbildung 2.1: Projektion der Kristallstruktur von β -VOSO₄ entlang der *a*-, *b*- und *c*-Achsen (a). Die Verkippung der [VO₆]-Oktaeder eines Stranges ist als Projektion entlang der kristallographischen *c*-Achse dargestellt (b); [VO₆]-Oktaeder grün, [SO₄]-Einheiten gelb. Sauerstoff ist rot dargestellt. Die vergrößerten Atome in (b) markieren die Sauerstoffatome, die aufgrund der Verkippung der Oktaeder aus der Ebene nach vorne zeigen.

Tabelle 2.2: Experimentelle Strukturparameter von β -VOSO₄, β -VOPO₄ und β_I -MoOPO₄. Vergleich der Abstände d(M-O) in den verzerrten $[MO_6]$ -Oktaedern und der Gitterparameter (alle β -VOSO₄-Typ, Raumgruppe Pnma).

	$VOSO_4$ [67]	$VOPO_4$ [48]	$MoOPO_4$ [55]
$d(M \equiv O)$ [Å]	1,598	1,565	1,683
$d(M-O_{\ddot{a}q})$ [Å]	1,994 (2x),	1,853,	1,976 (2x),
	1,995,	1,886 (2x),	2,002,
	1,998	1,902	2,018
$d(M-O_{ax})$ [Å]	2,271	2,592	2,380
a [Å]	7,376(3)	7,770(3)	7,704(2)
b [Å]	6,269(3)	6,143(3)	6,301(2)
c [Å]	7,082(3)	6,965(3)	7,080(2)

2.1.2 Der SbOPO₄-Strukturtyp

SbOPO₄ kristallisiert im monoklinen Kristallsystem mit der Raumgruppe C2/c(a = 6,791(1) Å, b = 8,033 Å, c = 7,533(5) Å, $\beta = 115,85(10)^{\circ}$ [65]). Die Kristallstruktur ist aus spitzenverknüpften Oktaedersträngen aufgebaut, die durch [PO₄]-Baueinheiten verbunden vorliegen. Ähnlich wie im β -VOSO₄-Strukturtyp sind die Oktaeder innerhalb der Kette alternierend verkippt, gleichzeitig sind sie entlang des Strangs gegeneinander verdreht (vgl. Abbildung 2.2a).

Vom SbOPO₄-Typ sind bislang drei Vertreter bekannt (ϵ -VOPO₄, β -MoOPO₄ und SbOPO₄). Allerdings ist die entsprechende Form nur bei SbOPO₄ thermodynamisch stabil. In SbOPO₄ ist die Verzerrung des [MO_6]-Oktaeders nahezu aufgehoben, da Sb⁵⁺ im Unterschied zu V⁵⁺ keine leeren *d*-Orbitale besitzt, in die Oxidionen ihre Elektronen donieren können. Folglich bleibt die Bildung der Metallyl-Bindung aus (vgl. Tabelle 2.3). In ϵ -VOPO₄ ist die Verzerrung des Oktaeders wiederum aufgrund der vorhandenen Metallylbindung stark ausgeprägt (vgl. Tabelle 2.3).

Der SbOPO₄-Typ ist strukturell eng mit dem β -VOSO₄-Typ verwandt. ϵ -VOPO₄ (SbOPO₄-Typ) und β -VOPO₄ (β -VOSO₄-Typ) stehen zwar in keiner Gruppe-Untergruppe-Beziehung zueinander, sind aber sehr ähnlich aufgebaut. Der Unterschied zwischen beiden Kristallstrukturen besteht lediglich im Verkippungsmuster der Oktaeder in benachbarten Ketten. In ϵ -VOPO₄ liegen die Oxidionen der Metallylbindungen in den benachbarten Oktaederstränge abwechselnd ober-und unterhalb der *ac*-Ebene (vgl. Abbildung 2.3a). In β -VOPO₄ zeigen die Oxidionen in benachbarten Ketten alle in einer Richtung aus der *aa*-Ebene heraus (vgl. Abbildung 2.3b).

Tabelle 2.3: Vergleich der experimentellen Strukturdaten von SbOPO₄, ϵ -VOPO₄ und β -MoOPO₄ (alle im SbOPO₄-Typ). Interatomare Abstände d(M-O) der $[MO_6]$ -Oktaeder im SbOPO₄-Typ sowie Gitterparameter verschiedener Vertreter (Sb, V, Mo) in den Raumgruppen C2/c (Sb) und Cc (V, Mo).

	$SbOPO_4^{a)}$ [65]	ϵ -VOPO ₄ ^{b)} [49]	β -MoOPO ₄ ^{b)} [56]
$d(M \equiv O)$ [Å]	1,903	1,572	1,812
$d(M-O_{aq})$ [Å]	1,986 (2x),	1,838,	2,011
	1,992 (2x)	1,862,	2,0321,
		1,882,	2,062,
		1,921	1,878
$d(M-O_{ax})$ [Å]	1,903	2,556	2,125
a [Å]	6,791(1)	7,2659(3)	7,4043(3)
b [Å]	8,033(1)	6,8934(2)	7,2128(3)
c [Å]	7,046(1)	7,2651(3)	7,2876(3)
β [°]	115,90(1)	115,340(1)	118,346(2)

a) Raumgruppe C2/c

b) Raumgruppe Cc

Abbildung 2.2: Projektionen der Kristallstruktur von SbOPO₄ entlang der kristallographischen Achsen c, a und b. Die Verkippung und Verdrehung eines Oktaederstrangs von SbOPO₄ ist in Projektion entlang dera- und b-Achsen dargestellt (c). Bindungslängen im [SbO₆]-Oktaeder (d). Die [SbO₆]-Oktaeder sind grün, [PO₄]-Tetraeder gelb, rot die Oxidionen.

Abbildung 2.3: Vergleich der Kristallstrukturen von ϵ -VOPO₄ (a) und β -VOPO₄ (b). Die blaue Linie soll den Unterschied der Strukturen verdeutlichen. Unterstützend wurden die Oxid-Ionen vergrößert, welche aus der *ac*-Ebene in ϵ - und der *ba*-Ebene in β -VOPO₄ heraus zeigen. Grün sind die [VO₆]-Oktaeder, gelb [PO₄]-Tetraeder.

2.1.3 Der α -MoOPO₄-Strukturtyp

 α -MoOPO₄ kristallisiert im tetragonalen Kristallsystem mit der Raumgruppe P4/n (a = 6,1768(3) Å, c = 4,2932(3) Å [68]). Die Struktur ist aus eckenverknüpften [MoO₆]-Oktaedern aufgebaut, die mit alternierenden Mo \equiv O-Mo-Bindungen entlang der c-Achse angeordnet sind. Die [MoO₆]-Oktaederstränge sind untereinander über [PO₄]-Einheiten verknüpft. Eine [PO₄]-Einheit verknüpft insgesamt vier Oktaederstränge miteinander (vgl. Abbildung 2.4a).

Abbildung 2.4: Kristallstruktur von α -MoOPO₄ entlang der *c*- und *b*-Achse (a), Bindungslängen der Vertreter des α -MoOPO₄-Strukturtyp mit V, Mo und Nb (b). Grün sind die [VO₆]-Oktaeder, gelb die [PO₄]-Tetraeder.

Der Verzerrungsgrad des $[MO_6]$ -Oktaeders ist stark abhängig vom jeweiligen Kation (vgl. Abbildung 2.4b). Der Gitterparameter c ist im α -MoOPO₄-Strukturtyp die Summe aus der Metallylbindung und der dazu *trans*-ständigen *M*-O-Bindung (Gleichung 2.1).

$$c = d(M \equiv O) + d(M - O_{ax}) \tag{2.1}$$

Je kürzer die Metallyl-Bindung des $[MO_6]$ -Polyeders ist, desto länger wird der *c*-Gitterparameter (Tabelle 2.4). Dies scheint auf den ersten Blick paradox und soll deshalb anhand des Beispiels von α_{II} -VOPO₄ erläutert werden.

In α_{II} -VOPO₄ sind sehr stark ausgeprägte und folglich kurze Vanadylbindungen zu finden. Da aber die axiale Bindung V-O_{ax} durch die starke Bindung V=O geschwächt ist, ist diese im Verhältnis deutlich länger und führt zu einem viel größeren Gitterparameter c. Mit zunehmender Ordnungszahl wird zwar die M=O-Bindung länger, die dazu trans-ständige Bindung M-O_{ax} wird jedoch deutlich kürzer, sodass in Summe der c-Gitterparameter abnimmt. Die Variation innerhalb der M-O_{ax}-Bindungslängen ist deutlich größer (Gleichung 2.2), als die der M=O-Bindungen (Gleichung 2.3). Hierin spiegelt sich wieder, dass die Valenz einer Bindung nicht linear von deren Länge abhängt.

$$\Delta d(M \equiv O) = |d(Nb \equiv O) - d(V \equiv O)| = 0,160$$
(2.2)

$$\Delta d(M - O_{ax}) = |d(Nb - O) - d(V - O)| = 0,490$$
(2.3)

Der α -MoOPO₄-Typ ist von den meisten Oxidphosphaten $MOPO_4$, die in dieser Arbeit behandelt werden, bekannt (VOPO₄ [50], NbOPO₄ [58], MoOPO₄ [57], TaOPO₄ [61], WOPO₄ [63]). Thermodynamisch stabil ist der α -MoOPO₄-Strukturtyp mit Niob (α -NbOPO₄ [69]) und Molybdän (α -MoOPO₄ [57]). Er kann zusätzlich als Hochdruckmodifikation von $TaOPO_4$ [61] und $WOPO_4$ [63] erhalten werden. Von reinem VOPO₄ ist dieser Strukturtyp nur als metastabiles Polymorph mit der Bezeichnung α_{II} -VOPO₄ bekannt. Aufgrund der stark verkürzten V \equiv O-Bindung in α_{II} -VOPO₄ ist der [VO₆]-Polyeder verzerrt und kann anstelle eines Oktaeders auch als quadratische Pyramide beschrieben werden. In dieser Arbeit wird die Struktur aufgrund seiner chemischen Eigenschaften von α_{II} -VOPO₄ nicht mit quadratischen Pyramiden, sondern mit verzerrten Oktaedern beschrieben. Begründet werden kann das damit, dass α_{II} -VOPO₄ im Unterschied zu α_{I} -VOPO₄ nicht hygroskopisch ist, da an der sechsten Koordinationsstelle des Oktaeders ein Oxidion koordiniert ist. Durch Co-Substitution von V^{5+} mit W^{6+} und V^{4+} kann derVOPO₄ mit α -MoOPO₄-Struktur soweit stabilisiert werden, dass es als thermodynamisch stabile Phase erhalten wird [64].

	$\begin{array}{c} \alpha_{\mathrm{II}}\text{-}\mathrm{VOPO}_{4}\\ [51] \end{array}$	$\begin{array}{c} \alpha \text{-MoOPO}_4\\ [57] \end{array}$	$\begin{array}{c} \alpha \text{-NbOPO}_4\\ [69] \end{array}$	$\begin{array}{c} \alpha \text{-TaOPO}_4\\ [61] \end{array}$
$d(M \equiv O)$ [Å]	1,583	$1,\!652$	1,744	1,791
$d(M-O_{\ddot{a}q})$ [Å]	1,858 (x4)	1,9787 (4x)	1,968 (4x)	1,969 (x4)
$d(M-O_{ax})$ [Å]	2,851	2,641	2,361	2,210
$d(M-O_{ax})$	$4,\!434$	4,293	4,104	4,001
$+ d(M \equiv O)$ [Å]				
a [Å]	6,014(7)	6,1768(3)	6,3907(4)	6,425(3)
c [Å]	4,434(2)	4,2932(3)	4,1042(6)	4,001(3)

Tabelle 2.4: Vergleich der Abstände d(M-O) und Gitterparameter in verschiedenen Vertretern (V, Mo, Nb, Ta) des α -MoOPO₄-Typs.

2.1.4 Der MPTB-Strukturtyp

Der Strukturtyp der Monophosphatwolframbronzen (MPTB) der Oxidphosphate $MOPO_4$ ist ein Mitglied der Serie der gemischtvalenten Wolframphosphate $(PO_2)_4(WO_3)_{2m}$ ($2 \le m \le 14$), bekannt als Monophosphat-Wolframbronzen (MPTB) [70]. Mit m = 2 kann die allgemeine Formel zu WOPO₄ umformuliert werden.

Wird W⁵⁺ durch W⁶⁺ und ein dreiwertiges Kation M^{3+} co-substituiert, werden Phosphate der Formel $M^{\text{III}}(W^{\text{VI}}O_2)_2(P_2O_7)(PO_4)$ [71] erhalten, welche sich ebenfalls mit der Summenformel $MOPO_4$ beschreiben lassen.

Die Strukturfamilie der MPTB wird von der ReO₃-Struktur abgeleitet. Dabei sind die $[MO_6]$ -Oktaeder über Ecken miteinander verknüpft, wobei m die Zahl der über ac-Ebene verknüpften $[MO_6]$ -Oktaeder angibt, durch die $[PO_4]$ -Tetraeder separiert sind (Abbildung 2.5a). In Abbildung 2.5b ist ein Beispiel mit m = 6zu sehen. Bei m = 2 ist der MPTB-Typ aus Oktaederketten aufgebaut, deren Oktaedereinheiten cis-verknüpft sind. Die benachbarten Oktaederstränge werden durch $[PO_4]$ -Einheit miteinander verknüpft. Ein $[PO_4]$ -Tetraeder verknüpft dabei drei Oktaederketten miteinander. Im Vergleich zum α -MoOPO₄-Typ sind die $[MO_6]$ -Oktaeder weniger verzerrt. Der Grund dafür liegt in der cis-Verknüpfung der Oktaeder mit zwei kurzen und vier längeren M-O-Bindungen. Die verkürzten M-O-Bindungen sind die zu den verknüpfenden M-O-M-Sauerstoffatomen (vgl. Tabelle 2.5).

Tabelle 2.5: Vergleich der Abstände d(M-O-M) und d(M-O) der Oxidphosphate WOPO₄ (R.G.: $P2_1/m$) und NbOPO₄ (R.G.: $P2_1/c$) der MPTB-Strukturfamilie.

	WOPO ₄ [72]	NbOPO ₄ [73]
$d(M-O_{\rm b}-M)$	W1-O8: 1,842; 1,842	Nb1-O3: 1,872; 1,913
	W2-O7: 1,847; 1,847	Nb2-O8: 1,853; 1,914
$d(M-O_t)$	W1: $1,950$ (O4), $1,964$ (O2),	Nb1: 1,965 (O1), 1,971 (O2),
	1,973 (O6, 2x)	1,993 (O5), 2,051 (O4)
	W2: 1,955 (O1), 1,956 (O3),	Nb2: 1,921 (O6), 1,995 (O7),
	1,971 (O5, 2x)	2,009 (O9), 2,032 (O10)

Abbildung 2.5: Die Kristallstrukturen von $(PO_2)_4(WO_3)_{2m}$ mit m = 2 (a) und m = 6 (b). Dunkelgrün eingezeichnet ist $[W1O_6]$, grün $[W2O_6]$, hellgrün $[W3O_6]$, hellblau $[W4O_6]$ und gelb $[PO_4]$.

Der MPTB-Strukturtyp (m = 2) wird mit Nb (β -NbOPO₄), W (β -WOPO₄) und Ta (β -TaOPO₄) gebildet und ist die thermodynamisch stabile Phase von

WOPO₄ [74] und TaOPO₄ [62]. β -NbOPO₄ kann als Hochtemperaturphase erhalten werden [59, 60]. Für jeden der hier genannten Vertreter sind mehrere Modifikationen in der Literatur beschrieben worden (Tabelle 2.6).

Die orthorhombische Modifikation des MPTB-Strukturtyps wird als Hochtemperaturphase erhalten, die durch einen Phasenübergang zweiter Ordnung bei tieferer Temperatur in eine monokline Struktur übergeht. Der Phasenübergang wird bei Temperaturen von 292 °C (β -NbOPO₄ [73]) und 280 °C (β -TaOPO₄ [75]) beobachtet.

In der Literatur sind auch zwei verschieden verfeinerte monokline Kristallstrukturen mit $P2_1/m$ und $P2_1/c$ (vgl. Tabelle 2.6) beschrieben worden. Die unterschiedlichen $MOPO_4$ -Vertreter werden in der Literatur entweder nur in $P2_1/m$ oder $P2_1/c$ beschrieben, was einen direkten Vergleich der Gitterparameter untereinander unmöglich macht (vgl. Tabelle 2.6). Obwohl eine Gruppe-Untergruppe-Beziehung zwischen den Raumgruppentypen $P2_1/m$ und $P2_1/c$ besteht und das Verknüpfungsmuster der Koordinationspolyeder in allen Strukturmodellen gleich ist, ist eine Transformation der einen Struktur in die andere mit den publizierten Elementarzellen nicht möglich. In dieser Arbeit wird für die Indizierung ein Strukturmodell verwendet, welches auf WOPO₄ [72] mit der Raumgruppe $P2_1/m$ basiert.

Tabelle 2.6: Übersicht aller in der Literatur publizierten Raumgruppen und Gitterpara-
meter für Oxidphosphate $MOPO_4$ (M : W, Ta, Nb; MPTB-Strukturfamilie mit $m = 2$).
R.G. für Raumgruppe.

	R.G.	a [Å]	b [Å]	c [Å]	β [°]	Lit.
$WOPO_4$	$Pna2_1$	11,174(3)	6,550(2)	5,228(1)	90	[74]
	$P2_1/m$	6,5538(4)	5,2237(8)	11,1866(8)	90,332(7)	[72]
$TaOPO_4$	$P2_{1}/c$	13,07(1)	5,281(4)	13,24(1)	120,4	[62]
	monoklin	11,272(1)	5,281(1)	6,621(1)	90,22(1)	[60]
	$P2_1/m$	6,6295(9)	5,2813(7)	11,277(1)	89,89(1)	<i>a</i>)
$NbOPO_4$	Pnma	11,304(2)	5,316(2)	6,640(2)	90	[76]
	$Pnma^{b)}$	11,255(1)	5,315(1)	6,657(1)	90	[73]
	$Pnma^{c)}$	11,253(1)	5,316(1)	6,661(1)	90	[73]
	$Pna2_1^{d)}$	$11,\!2875$	6,6296	5,2871	90	[69]
	$P2_{1}/m^{a)}$	6,6108(5)	5,2778(5)	11,2629(8)	90,316(7)	[75]
	$P2_{1}/c$	13,08(4)	5,27(7)	13,22(6)	$120,\!68(1)$	[77]
	$P2_1/c$	13,0969(16)	5,2799(6)	13,2281(16)	120,334(8)	[78]
	$P2_1/c$	13,098(1)	5,2763(6)	13,222(2)	120,67(5)	[73]

a) Aus Pulverdaten über das Programm SOS bestimmt.

b) Gemessen bei 598 K.

c) Gemessen bei 673 K.

d) NbOPO $_4$ mit Sauerstoffdefizit.

2.2 Weitere Kristallstrukturen

In diesem Abschnitt werden alle weiteren, für diese Arbeit relevanten, Kristallstrukturen beschrieben und diskutiert.

2.2.1 Die Kristallstruktur von α_{I} -VOPO₄

Das Polymorph $\alpha_{\rm I}$ -VOPO₄ kristallisiert in der monoklinen Raumgruppe C2/m(a = 8,7319(1) Å, b = 6,2055(1) Å, c = 6,2090(4) Å, $\beta = 104,448 \circ [51]$). Die Struktur ist aus kantenverknüpften [V₂O₁₀]-Doppeloktaedern aufgebaut, welche wiederum von [PO₄]-Einheiten voneinander separiert vorliegen. Das $\alpha_{\rm I}$ -Polymorph ist $\alpha_{\rm II}$ -VOPO₄ sehr ähnlich. Der wesentliche Unterschied zwischen beiden Strukturen ist die unterschiedliche Ausrichtung der kurzen Vanadyl-Bindung. Bei $\alpha_{\rm I}$ -VOPO₄ zeigt diese in die Schicht hinein (vgl. Abbildung 2.6), bei $\alpha_{\rm II}$ -VOPO₄ zeigt sie heraus. Durch diese Ausrichtung der Vanadyl-Bindung in $\alpha_{\rm I}$ -VOPO₄ entstehen Schichten, zwischen denen nur schwache Wechselwirkungen im Vergleich zu $\alpha_{\rm II}$ -VOPO₄ wirken. Dadurch können zum einen die Schichten leicht gegeneinander verschoben werden, zum anderen können zwischen den Schichten leicht Wasser oder andere Lewis-Basen eingelagert werden. $\alpha_{\rm I}$ -VOPO₄ ist aus diesem Grund sehr hygroskopisch.

Abbildung 2.6: Projektion der Kristallstruktur von α_{I} -VOPO₄ entlang der kristallographischen *b*- und *c*-Achse. Die Koordination von Vanadium ist sowohl oktaedrisch als auch quadratisch-pyramidal eingezeichnet. [VO_x] grün, [PO₄] gelb.

2.2.2 Die Kristallstrukturen von ω -VOPO₄/X1-VOPO₄

 ω -VOPO₄ kristallisiert in der Raumgruppe $P4_2/mmc$ (a = 4,8552(3) Å, c = 8,4301(6) Å) [54]. In der Literatur ist ω -VOPO₄ auch als X1-VOPO₄ bekannt [79]. In ω -VOPO₄ liegen die [VO₆]-Oktaederketten parallel und senkrecht zueinander vor und verlaufen parallel zur a- und b-Achse. Die beiden Sauerstofflagen sind, anders als in Abbildung 2.7 dargestellt, teilbesetzt. Sie sind zur besseren Übersichtlichkeit auf gemittelten Positionen dargestellt (O1: Wyckoff-Lage 2banstelle 4m; O2: Wyckoff-Lage 8o statt 16r). Der Besetzungsfaktor beider Lagen beträgt 0,5.

Abbildung 2.7: Kristallstruktur von ω -VOPO₄/X1-VOPO₄ entlang der *c*-Achse und der kristallographischen *a*-Achse. In der Darstellung ist die gemittelte Position der Sauerstofflagen dargestellt (O1: Wyckoff-Lage 2*b* anstelle 4*m*; O2: Wyckoff-Lage 8*o* statt 16*r*).

2.2.3 Die Kristallstruktur von $VOPO_4 \cdot 2 H_2O$

VOPO₄·2 H₂O kristallisiert in der Raumgruppe P4/n (a = 6,212 Å, c =

7,4273 Å [80]). Die Struktur ist aus abwechselnden Schichten von eingelagerten Wassermolekülen und $[(V \equiv O)O_4(H_2O)]$ -Einheiten aufgebaut. Die Koordinationspolyeder von Vanadium sind über vier Ecken mit jeweils einer $[PO_4]$ -Einheit verknüpft. Entsprechend liegen auf zwei unterschiedliche Arten gebundene Wassermoleküle in dieser Struktur vor (vgl. Abbildung 2.8). Eines wird über Wasserstoffbrückenbindungen zwischen den Schichten eingelagert, das andere ist koordinativ an Vanadium gebunden.

Abbildung 2.8: Kristallstruktur von VOPO₄· 2 H₂O entlang der kristallographischen *c*und *b*-Achse. Die blauen, vergrößerten Sauerstoffatome geben die Position des Wassers an, welches zwischen den Schichten eingelagert ist. Die in der Abbildung kleiner dargestellten blauen Wassermolküle sind koordinativ an Vanadium gebunden ([(V \equiv O)O₄(H₂O)]).

2.2.4 Der α -TiOSO₄-Strukturtyp

 α -TiOSO₄ kristallisiert in der Raumgruppe C2/c (a = 5,1175(2) Å, b = 13,7675(6) Å, c = 9,5035(4) Å, $\beta = 91,097(3)$ ° [81]) und ist aus [SO₄]-Tetraedern sowie Ketten aus eckenverknüpften [TiO₆]-Oktaedern aufgebaut (vgl. Abbildung 2.9). Es gibt zwei unabhängige Metalllagen, die innerhalb einer Kette abwechselnd vorliegen und ein unterschiedliches Verknüpfungsmuster aufweisen. Die Oktaeder [Ti1O₆] sind mit jeweils zwei [Ti2O₆] cis-verknüpft. Die [Ti2O₆] wiederum sind trans-verknüpft mit je zwei [Ti1O₆]-Oktaedern. Diese sind nur wenig verzerrt und zeigen keine ausgeprägte Titanyl-Bindung. Im benachbarten [Ti2O₆]-Oktaeder tritt diese aufgrund der trans-Verknüpfung hervor. Zur Betonung der Bindungsverhältnisse kann dieser Polyeder als [(Ti2 \equiv O)O₅] (d(Ti2 \equiv O) = 1,841 Å) beschrieben werden, im Unterschied zu [Ti1O₆].

Abbildung 2.9: Kristallstruktur von α -TiOSO₄. Projektion entlang der *a*- und *b*-Achse. [Ti1O₆]: grün; [Ti2O₆]: blau; [PO₄]: gelb.

2.2.5 Die Kristallstruktur von SbPO₄

SbPO₄ kristallisiert in der Raumgruppe $P2_1/m$ (a = 5,088(2) Å, b = 6,762(2) Å, c = 4,724(2) Å, $\beta = 94,644^{\circ}$ [65]). Insgesamt ist Sb³⁺ von vier Oxidionen koordiniert, welche mit jeweils einer Phosphatgruppe verknüpft sind. Das Koordinationspolyeder [Sb^{III}O₄] ist schmetterlingsförmig, wobei Antimon in einer off-center Position über den vier Sauerstoffatomen lokalisiert ist (vgl. Abbildung 2.10 b, c). Die [SbO₄]-Baueinheiten sind in der *ab*-Ebene entlang einer Kette angeordnet, wobei zwischen den Antimon-Kationen das freie Elektronenpaar sitzt, welches indirekt an dem langen Sb-Sb-Abstand von 5,09 Å entlang der *a*-Achse zu erkennen ist (siehe Abbildung 2.10 e). Alle weiteren Sb-Sb-Abstände sind in Abbildung 2.10c dargestellt. Die Kristallstruktur von SbPO₄ besitzt einige Ähnlichkeiten zum α -MoOPO₄-Strukturtyp. Das betrifft zum einen die in einer Kette angeordneten [SbO₄]-Einheiten, zum anderen den schichtartigen Aufbau der Struktur.

Abbildung 2.10: Kristallstruktur von SbPO₄ entlang der Achsen a (a), b (b) und c (c). Die Sb-Sb-Abstände sind in (d) und (e) eingezeichnet. Grau markiert in (d) sind die Sb-Atome in der hinteren Elementarzelle, grün in der vorderen. In (e) sind zusätzlich die Sb-O-Abstände der Koordinationspolyeder dargestellt.

2.3 Über die relativen Stabilitäten der $MOPO_4$ -Polymorphe

2.3.1 Einleitung

Wie schon in Kapitel 1 erwähnt, haben in den letzten Jahren Oxidphosphate der Zusammensetzung $MOPO_4$ große Aufmerksamkeit als Katalysatormaterial [3] wie auch als Trägermaterial zur Verbesserung des katalytisch aktiven Materials erhalten [4]. Details dazu können in Kapitel 1 nachgelesen werden.

In diesem Kapitel wird die Stabilität von vier $MOPO_4$ -Strukturtypen (β -VOSO₄, α -MoOPO₄, SbOPO₄, und MPTB (m = 2)) mit sechs unterschiedlichen Metallen (V, Mo, Nb, W, Ta, Sb) anhand von DFT-Rechnungen untersucht, um mögliche neue Polymorphe zu identifizieren, sie herstellen und katalytisch testen zu können. Dafür wurde die relative freie Gibbs-Enthalpie G(T) sowie die Beiträge von $E_{vib}(T)$ und $S_{vib}(T)$ der Gitterschwingungen nach den Gleichungen 2.5 (siehe Abschnitt 2.4) berechnet. Mithilfe dieser Rechnungen kann vorhergesagt werden, welche der Polymorphe metastabil sind oder ob diese nur als Übergangszustände auftreten. Es wurden vier Strukturtypen von $MOPO_4$ ausgewählt, die von mehr als einem der betrachteten Elemente bekannt sind. Die sechs Metalle wurden gewählt, da alle in der Oxidationsstufe +5 vorliegen können und bereits in katalytisch aktiven Materialien Anwendung gefunden haben.

2.3.2 Details zu den Rechnungen

Die DFT-Strukturoptimierungen und die Berechnung der Schwingungsmoden wurden mit dem Programm CRYSTAL17 [82] durchgeführt. Dabei wurde das Hybrid-Funktional PW1PW eingesetzt, welches schon bei anderen Übergangsmetallverbindungen gute Ergebnisse geliefert hat [83]. Langreichweitige Wechselwirkungen wurden mithilfe der D3-Korrektur von GRIMME unter Verwendung der Becke-Johnson-Dämpfung berücksichtig [84, 85, 86]. Der empirisch bestimmte s_8 -Parameter wurde anhand von vorhergegangenen Rechnungen (vgl. Kapitel 5.2) an die experimentellen Gitterparameter von α_{II} -VOPO₄ und α -NbOPO₄ angepasst. Als bester Wert wurde $s_8 = 1,5363$ erhalten.

$$E_{disp}^{D3} = -\sum_{AB} \sum_{n=6,8} s_n \frac{C_n^{AB}}{R_n} f_{damp}^{(n)}(R)$$
(2.4)

Für alle Elemente wurden POB_TVZP oder POB_TVZP_rev2 gewählt (V [87], Nb_POB_TVZP [88], Ta_POB_TVZP_rev2 [89], W_POB_TVZP _rev2 [89], Mo_POB_TVZP [88], Sb_POB_TVZP rev2 [90], O_pob_TZVP rev2 [87], P_pob_TZVP_rev2 [87]).

Zur Anpassung der numerischen Präzision wurden einige Konvergenz-Parameter verändert. Die integrale Genauigkeit wurde für alle Rechnungen das TOLINTEG auf 7 7 7 14 42 gesetzt. Das Monkhorst-Pack-Gitter wurde an die jeweiligen Gitterparameter angepasst (Tabelle 13.1).

Eine Verdopplung der k-Punkte hatte keinen Effekt auf die Gesamtenergie. Sowohl die Atompostionen als auch die Gitterparameter wurden unter Erhalt der Symmetrie optimiert.

Sofern vorhanden, wurden experimentelle Daten als Ausgangspunkt für die Optimierung gewählt. War dies nicht der Fall, wurde entweder eine bekannte oder schon voroptimierte Struktur verwendet. Anhand von α -MoOPO₄ wurde der Einfluss des Startmodells auf das relaxierte Strukturmodell untersucht. Unabhängig von der gewählten Startstruktur wurden sehr ähnliche Strukturen nach der Optimierung erhalten. Die Startmodelle, sowie das Monkhorst-Pack-Gitter sind in Tabelle 13.1 aufgelistet. Die experimentell ermittelten und optimierten Gitterparameter wurden miteinander verglichen. Schwingungsrechnungen wurden mit der masse-gewichteten Hesse-Matrix berechnet [91], um eine Aussage über die relative Stabilität der Polymorphe zu erhalten. Es wurden IOCHP-Rechnungen (Integrated Crystal Orbital Hamilton Population) mit dem Programm LOBS-TER [92] durchgeführt, um eine Aussage über die *M*-O-Bindungsstärke treffen zu können.

2.3.3 Ergebnisse und Diskussion

Für die vier genannten Strukturtypen mit sechs unterschiedlichen Metallkationen wurden die Strukturen optimiert. Alle Optimierungen sind erfolgreich relaxiert. Die berechneten Gitterparameter stimmen gut mit jenen aus den experimentellen Untersuchungen, soweit vorhanden, überein (vgl. Tabelle 13.2). Die maximale Abweichung einer Achsenlänge beträgt 2,6%. Diese wurde bei einer metastabilen Phase gefunden. Alle erhaltenen Kristallstrukturdaten sind im Anhang mit Vergleich zu den experimentell bestimmten Werten hinterlegt (Tabelle 13.3 bis 13.28). Im Folgenden werden nur Strukturmerkmale der hypothetischen Verbindungen diskutiert, da die Rechnungen die experimentell bekannten Verbindungen sehr gut beschreiben.

Der β -VOSO₄-Strukturtyp. Der β -VOSO₄-Strukturtyp ist unbekannt für NbOPO₄, TaOPO₄, WOPO₄ und SbOPO₄. Es wird erwartet, dass die Ausprägung der $M \equiv \text{O-Bindung}$ ausgehend von VOPO₄ abnimmt. Damit einhergehen sollte eine geringere Verzerrung des $[MO_6]$ -Oktaeders. Diese Annahme basiert auf den Beobachtungen, die beim α -MoOPO₄-Typ gemacht wurden (vgl. Abschnitt 2.1). Dieser zeigt folgende Trends in den M-O-Bindungslängen: Zunahme von $d(M \equiv O)$ in der Reihe Nb < W < Ta und eine Abnahme in der Reihe d(M-O_{ax}) Ta > W > Nb. Die Rechnungen bestätigen diese Erwartungen für den β -VOSO₄-Strukturtyp. Da SbOPO₄ keine leeren d-Orbitale besitzt, in welche Oxidionen Elektronen donieren könnten, bildet Sb⁺⁵ keine Metallylbindungen aus. Deswegen ist der Längenunterschied zwischen den axialen und äquatorialen Bindungen Sb-O vernachlässigbar (0,078 Å).

Der SbOPO₄-**Strukturtyp.** Mit den Metallen Nb, Ta, W sind bislang drei Oxidphosphate mit SbOPO₄-Struktur bekannt. Beim Vergleich der relaxierten, hypothetischen Strukturmodelle mit SbOPO₄ (SbOPO₄-Typ) fällt auf, dass die Verdrehung der Oktaederketten, wie sie SbOPO₄ in Abbildung 2.11 zeigt, bei diesen aufgehoben ist (vgl. Abbildung 2.11b). Die Verdrehung der Oktaederkette erlaubt einen relativ kurzen Sb-Sb-Abstand in SbOPO₄ (3,52 Å). Im Vergleich dazu liegt der Abstand *M-M* in den Oxidphosphaten von Nb, Ta und W bei 3,7 -4,1 Å [69, 62, 72]. Da ein Abstand von 3,52 Å zwischen diesen Metallkationen zu einer starken elektrostatischen Abstoßung führt, wird vermutlich die Verdrehung der Oktaderketten während des Optimierungsprozesses aufgehoben. Ein weiterer Grund für die strukturellen Unterschiede könnte die Metallylbindung sein, welche von Antimon in SbOPO₄ nicht gebildet wird. Die strukturellen Unterschiede sind auch an den stark abweichenden Gitterparametern von SbOPO₄ ($\Delta a = +11\%$, $\Delta b = +5\%$, $\Delta c = -11\%$) erkennbar, die sich nicht nur durch eine Änderung der Ionenradien erklären lassen. Der Shannon-Radius von Nb⁺⁵ ist gleich groß wie der von Sb⁺⁵ [93].

Abbildung 2.11: Kristallstrukturen von SbOPO₄ (SbOPO₄-Typ) (a) und NbOPO₄ (SbOPO₄-Typ) (b) nach der Optimierung. $[MoO_6]$ -Oktaeder grün, $[PO_4]$ Tetraeder gelb.

Der α -MoOPO₄-Strukturtyp. SbOPO₄ ist das einzige Oxidphosphat, für das bislang der α -MoOPO₄-Typ nicht experimentell nachgewiesen wurde. Da die besetzten *d*-Orbitale von Sb⁵⁺ (*d*¹⁰-Ion) keine Ausbildung von Metallylbindungen mit Oxidionen erlauben, sind die [SbO₆]-Oktaeder regulär. Dies geht einher mit einer Verkürzung des *c*-Gitterparameters (Kapitel 2), der dementsprechend bei SbOPO₄ im Vergleich zu den anderen Vertretern der kürzeste ist (Abbildung 2.12).

d(M=0) [Å] V	Мо	Nb	W	Та	Sb
	1	I			
1.572	1.673	1.757	1.752	1.818	1.919
d(M-Oax) [Å]					
	0 0 40	0 00 1	0 000	0 404	4 00 4
2.788	2.648	2.294	2.203	2.131	1.934
c [Å] —					<u> </u>
	•				
4.360	4.321	4.051	3.955	3.949	3.853

Abbildung 2.12: Zusammenstellung berechneter interatomarer Abstände von $d(M \equiv O)$ und $d(M - O_{ax})$ vom α -MoOPO₄-Typ, sowie des *c*-Gitterparameters für M = V, Mo, Nb, W, Ta und Sb.

Der MPTB-Strukturtyp. Hypothetische Verbindungen im MPTB-Strukturtyp sind VOPO₄, MoOPO₄ und SbOPO₄. Die charakteristische Verzerrung der [VO₆]

bzw. [MoO₆-Oktaeder (vgl. α_{II} -VOPO₄ und α -MoOPO₄) ist in den relaxierten Strukturen mit MPTB-Struktur nicht mehr zu finden. Die *cis*-Verknüpfung der [VO₆]- und [MoO₆]-Oktaeder verhindert dies (vgl. Abbildung 2.13). Da SbOPO₄ keine Metallyl-Bindungen ausbildet, sind die [SbO₆]-Oktaeder auch im MPTB-Typ regulär.

Abbildung 2.13: $[VO_6]$ -Oktaeder von VOPO₄ mit β -VOSO₄-Struktur (a) und mit hypothetischer MPTB-Struktur (b). Die angegeben V-O_{eq}-Bindungslängen sind gemittelt.

2.4 Die relativen Stabilitäten der MOPO₄-Polymorphe

COHP (Crystal Orbital Hamilton Populations) zeigt bindende und antibindende Beiträge zur Energie der Bandstruktur. Das Integral der COHP, die sogenannte ICOHP (Integrated Crystal Orbital Polpulations) erlaubt demnach eine Aussage über die Bindungsstärke, welche entweder in eV oder kJ/mol angegeben wird [94]. ICOHP-Rechnungen wurden durchgeführt, um zu überprüfen, von welchem Metall ein bestimmtes $MOPO_4$ -Polymorph aufgrund der M-O-Bindungsstärke bevorzugt wird. Die Rechnung ergab aber keine Informationen über bevorzugte Bindungssituationen der Metallkationen in den unterschiedlichen Polymorphen, da die Unterschiede im Bereich des Fehlers der Methode liegen (vgl. Abbildung 2.14). Um die bevorzugte Phasenbildung dennoch erklären zu können, wurde die relative freie Gibbs-Enthalpie G(T) sowie die Beiträge von $E_{\rm vib}(T)$ und $S_{\rm vib}(T)$ der Gitterschwingungen nach den Gleichungen 2.5 berechnet. Hierbei sind $E_{\rm elec}$ die elektronische Energie, T die Temperatur in Kelvin, k_B die Boltzmann-Konstante und ν_i die Schwingungsmoden.

$$G(T) = E_{\text{elec}} + E_{\text{vib}}(T) - TS_{\text{vib}}(T)$$

$$E_{\text{vib}}(T) = \sum_{i=1}^{N} \nu_i \left(\frac{1}{2} + \frac{1}{e^{(\frac{\nu_i}{k_{\text{B}}T})} - 1} \right)$$

$$S_{\text{vib}}(T) = k_{\text{B}} \sum_{i=1}^{N} \left(\frac{\nu_i}{k_{\text{B}}Te^{(\frac{\nu_i}{k_{\text{B}}T})} - 1} - \ln(1 - e^{(\frac{\nu_i}{k_{\text{B}}T})}) \right)$$
(2.5)

Abbildung 2.14: Integrierte M-O-Bindungsstärken (kJ/mol) aller MOPO₄-Vertreter. Resultate der Berechnungen mit LOBSTER 4.0.0 [92]

VOPO₄. Die relativen Stabilitäten wurden von VOPO₄ (β -VOSO₄), α_{II} -VOPO₄ (α -MoOPO₄), ϵ -VOPO₄ (SbOPO₄) und dem hypothetischen Polymorph von VOPO₄ mit der MPTB-Struktur berechnet. Die Berechnung der elektronischen Energien zeigt, dass das Polymorph mit β -VOSO₄-Struktur am stabilsten ist (vgl. Abbildung 2.15). Weniger stabil sind die Formen mit den Strukturen von α -MoOPO₄ ($\Delta E_{0K} = +25$ kJ/mol) und SbOPO₄ ($\Delta E_{0K} = +26$ kJ/mol). Das im MPTB-Typ vorliegende Polymorph ist mit Abstand am instabilsten ($\Delta E_{0K} = +92$ kJ/mol).

Eine Temperaturerhöhung von 0 nach 1400 K hat nur einen geringen Effekt auf die relative Stabilitätsdifferenz von β -VOSO₄ zum nächst stabileren Polymorph,

führt aber insgesamt zu einer Destabilisierung der restlichen Polymorphe. Dieses Ergebnis bestätigt, dass VOPO₄ mit β -VOSO₄-Struktur das thermodynamisch stabile Polymorph ist. Es soll betont werden, dass die Energiedifferenz von 6 kJ/mol zwischen den bekannten, metastabilen Polymorphen von VOPO₄ mit den Strukturen von α -MoOPO₄ ($\Delta G_{923K} = +38 \text{ kJ/mol}$) und SbOPO₄ ($\Delta G_{923K} = +32 \text{ kJ/mol}$) relativ gering ist. Dieser kleine energetische Unterschied könnte erklären, warum es schwierig ist, gezielt ein metastabiles Polymorph phasenrein darzustellen.

 $VOPO_4$ mit MPTB-Struktur befindet sich nicht in einem lokalen Energieminimum. Deshalb ist die Synthese dieser Phase wahrscheinlich nicht möglich. Die Struktur des MPTB-Typs ist aus *cis*-verknüpften Oktaederketten aufgebaut, die nahezu keine Verzerrung des [VO₆]-Oktaeders erlauben. Dies führt zu einer Destabilisierung.

Abbildung 2.15: Berechnete relative freie Enthalpie ΔG (kJ/mol) verschiedener VOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph. Für VOPO₄ in der MPTB-Struktur wurden negative Eigenwerte der massegewichteten Hessematrix erhalten. Dies ist mit einem Stern gekennzeichnet.

MoOPO₄. Insgesamt sind drei Polymorphe von MoOPO₄ bekannt (MoOPO₄ (α -MoOPO₄ [57]), β -MoOPO₄ (SbOPO₄), β_I -MoOPO₄ (β -VOSO₄) [55]). Der MPTB-Typ wurde nie beobachtet. Gemäß den elektronischen Energien sind die stabilsten Polymorphe jene mit den Strukturtypen von α -MoOPO₄ und β -VOSO₄, gefolgt von jenen mit SbOPO₄-Typ ($\Delta E_{0K} = +19$ kJ/mol) und der MPTB-Struktur ($\Delta E_{0K} = +43$ kJ/mol, Abbildung 2.16).

Bei Temperaturerhöhung von 0 auf 1400 K bleibt MoOPO₄ im β -VOSO₄-Typ das stabilste Polymorph. Gleichzeitig bewirkt diese eine Destabilisierung von MoOPO₄ im α -MoOPO₄-Typ ($\Delta G_{923K} = +21 \text{ kJ/mol}$). Diese Ergebnisse stehen nicht im Einklang mit dem Experiment, wonach α -MoOPO₄ das thermodynamisch stabile Polymorph ist. Die Form von MoOPO₄ mit SbOPO₄-Struktur ($\Delta G_{923K} = +10 \text{ kJ/mol}$) wie auch mit MPTB-Struktur werden mit zunehmender Temperatur stabiler, allerdings kann der MPTB-Typ nicht von MoOPO₄ gebildet werden. Der Grund hierfür wurde schon im vorherigen Abschnitt bei VOPO₄ erläutert.

Abbildung 2.16: Berechnete relative freie Enthalpien ΔG (kJ/mol) verschiedener MoOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph.

NbOPO₄. Zwei Polymorphe von NbOPO₄ sind bekannt (α -NbOPO₄ (α -MoOPO₄-Typ) und β -NbOPO₄ (MPTB-Typ)). NbOPO₄ mit den Kristallstrukturen des β -VOSO₄- und SbOPO₄-Typs sind hypothetische Polymorphe. Basierend auf den elektronischen Energien ist NbOPO₄ mit der α -MoOPO₄- Struktur am stabilsten (vgl. Abbildung 2.17), was experimentell bestätigt wurde. Danach kommt das Polymorph mit der β -VOSO₄-Struktur ($\Delta E_{0K} = +10 \text{ kJ/mol}$), gefolgt von dem Polymorph mit MPTB-Struktur ($\Delta E_{0K} = +30 \text{ kJ/mol}$) und SbOPO₄-Struktur ($\Delta E_{0K} = +32 \text{ kJ/mol}$).

Eine Temperaturerhöhung destabilisiert den β -VOSO₄-Typ ($\Delta G_{923K} = +37$ kJ/mol) und den SbOPO₄-Typ ($\Delta G_{923K} = +54$ kJ/mol) noch weiter, wohingegen der MPTB-Typ stabilisiert wird ($\Delta G_{923K} = +20$ kJ/mol). Diese Stabilisierung mit zunehmender Temperatur bestätigt experimentelle Beobachtungen, die zeigen, dass das MPTB-Polymorph die Hochtemperaturphase von NbOPO₄ ist.

Obwohl NbOPO₄ mit β -VOSO₄-Struktur bis zu einer Temperatur von ca. 600 K stabiler als der MPTB-Typ ist und sich in einem energetischen Minimum befindet, ist er bis heute unbekannt. Ein Grund hierfür könnte eine kinetische Hemmung bei der Bildung dieser Phase sein. NbOPO₄ mit der SbOPO₄-Struktur kann gemäß der Frequenzrechnungen nicht gebildet werden. Basierend auf den Ergebnissen wird die Existenz des β -VOSO₄-Typs für NbOPO₄ vorhergesagt.

Abbildung 2.17: Berechnete relative Freie Enthalpie ΔG (kJ/mol) verschiedener NbOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph.

TaOPO₄ und WOPO₄. Sowohl von TaOPO₄ als von WOPO₄ sind zwei Polymorphe bekannt (α -TaOPO₄/WOPO₄ (α -MoOPO₄), β -TaOPO₄/WOPO₄ (MPTB)). Der α -MoOPO₄-Typ tritt als Hochdruckmodifikation auf, die MPTB-Phase ist thermodynamisch stabil. Die Bildung von TaOPO₄ und WOPO₄ in der SbOPO₄-und β -VOSO₄-Struktur wurde nie beobachtet.

Bei 0 K sind der MPTB-Typ und α -MoOPO₄ die stabilsten Polymorphe von TaOPO₄ (vgl. Abbildung 2.18). Die elektronische Energie der zwei hypothetischen Strukturen von TaOPO₄ mit β -VOSO₄- und SbOPO₄-Strukturtyp sind mit ca. +20 kJ/mol deutlich instabiler. Wird die Temperatur erhöht, nimmt die Stabilität von TaOPO₄ mit α -MoOPO₄-Struktur ab (Δ G_{923K} = +10 kJ/mol), die Stabilitätsdifferenz des MPTB-Typs von TaOPO₄ bleibt dabei unverändert. Diese Ergebnisse werden von experimentellen Beobachtungen bestätigt. Die Erhöhung der Temperatur hat ebenfalls wenig Einfluss auf die Stabilität von TaOPO₄ in β -VOSO₄-Struktur (Δ G_{923K}) = +23 kJ/mol) im Gegensatz zu TaOPO₄ mit SbOPO₄-Struktur (Δ G_{923K}) = +42 kJ/mol), welche deutlich destabilisiert wird. Basierend auf den Ergebnissen wird die Existenz zweier Polymorphe von TaOPO₄ (β -VOSO₄-Typ, SbOPO₄-Typ) vorhergesagt.

Die stabilste Struktur von WOPO₄ ist über den gesamten betrachteten Temperaturbereich (0-1400 K) die in der MPTB-Form. Auch dies steht im Einklang mit den Experimenten. Mit zunehmender Temperatur nimmt die Stabilität der zwei hypothetischen Strukturen mit β -VOSO₄-Struktur ($\Delta G_{923K} = +42$ kJ/mol) und SbOPO₄ ($\Delta G_{923K} = +38$ kJ/mol) von WOPO₄ ab. WOPO₄ in der α -MoOPO₄-Struktur wird dagegen mit zunehmender Temperatur stabilisiert ($\Delta G_{923K} = +29$ kJ/mol). Basierend auf den Ergebnissen können für WOPO₄ zwei Polymorphe vorhergesagt werden (SbOPO₄-Typ, β -VOSO₄-Typ).

Abbildung 2.18: Berechnete relative Freie Enthalpie ΔG (kJ/mol) verschiedener TaOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph.

Abbildung 2.19: Berechnete relative Freie Enthalpie ΔG (kJ/mol) verschiedener WOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph.

SbOPO₄. Für SbOPO₄ ist nur ein Polymorph bekannt (SbOPO₄-Typ). Basierend auf den elektronischen Energien zeigt sich, dass SbOPO₄ in der SbOPO₄-Struktur am stabilsten ist (vgl. Abbildung 2.20). Danach kommt SbOPO₄ in der β -VOSO₄-Struktur ($\Delta E_{0K} = +6 \text{ kJ/mol}$), gefolgt von der α -MoOPO₄-Struktur ($\Delta E_{0K} = +41 \text{ kJ/mol}$), sowie SbOPO₄ in der MPTB-Struktur ($\Delta E_{0K} = +89 \text{ kJ/mol}$). Ab einer Temperatur von ungefähr 381 K wird SbOPO₄ in der β -VOSO₄-Struktur so stabil wie in der SbOPO₄-Struktur. Eine weitere Erhöhung der Temperatur führt zu keiner signifikanten Veränderung der relativen Energien. Die berechneten Abweichungen der relativen Energien beider Strukturen von SbOPO₄ liegt im Fehlerbereich der Methode. Da beide Polymorphe energetisch gleich sind, ist schwer nachvollziehbar, warum SbOPO₄ in der β -VOSO₄-Struktur bisher unbekannt ist. Eine Temperaturerhöhung hat nahezu keine Auswirkung auf die relative Stabilität von SbOPO₄ in der α -MoOPO₄-Struktur ($\Delta G_{923K} = +33$ kJ/mol), welches laut Frequenzrechnungen ebenfalls hergestellt werden kann.

Beim Vergleich der Zellvolumina von SbOPO₄ in den Strukturen α -MoOPO₄ (77,4 Å³), SbOPO₄ (87,1 Å³) und β -VOSO₄ (84,8 Å³) fällt auf, dass SbOPO₄ in der α -MoOPO₄-Struktur das kleinste Zellvolumen besitzt. Aus diesem Grund könnte es möglich sein, dieses Polymorph über Hochdrucksynthese darzustellen. SbOPO₄ in der MPTB-Struktur befindet sich in keinem lokalen Energieminmum und kann daher nicht hergestellt werden. Es können demnach insgesamt zwei neue Polymorphe für SbOPO₄ vorhergesagt werden: β -VOSO₄ und α -MoOPO₄.

Abbildung 2.20: Berechnete relative Freie Enthalpie ΔG (kJ/mol) verschiedener SbOPO₄-Polymorphe. Der Bezugspunkt ist das stabilste Polymorph.

2.5 Zusammenfassung

Mit Hilfe der Berechnung der elektronischen Energie und der relativen freien Gibbs-Enthalpie G(T) konnte eine Aussage zur bevorzugten Polymorphbildung von $MOPO_4$ (M: V, Mo, Nb, Ta, W, Sb) getroffen werden (vgl. Tabelle 8.1). Dabei wurden bei den Rechnungen die Beiträge von $E_{vib}(T)$ und $S_{vib}(T)$ der Gitterschwingungen in Abhängigkeit der Temperatur berücksichtigt. Anhand der elektronischen Energien war es für jeden MOPO₄-Vertreter möglich, das thermodynamisch stabile Polymorph zu bestimmen. Die Vorhersagen der Polymorphbildung stimmen bei VOPO₄, NbOPO₄ und TaOPO₄ sehr gut mit den experimentellen Beobachtungen überein. Bei MoOPO₄ und SbOPO₄ kam es zu abweichenden Aussagen im Vergleich zum Experiment. Zwar ergeben die elektronischen Energien das thermodynamisch stabile Polymorph, bei Berücksichtigung der Schwingunsgbeiträge wird dieses allerdings instabiler als andere Polymorphe. Dies wurde im Experiment nie so beobachtet. Für NbOPO₄ wird ein neues Polymorph mit β -VOSO₄-Struktur vorhergesagt. TaOPO₄ kann hypothetisch mit β -VOSO₄- und SbOPO₄-Struktur kristallisieren. SbOPO₄ kann theoretisch den β -VOSO₄- und den α -MoOPO₄-Typ annehmen. Das Zellvolumen von SbOPO₄ mit α -MoOPO₄-Struktur deutet darauf hin, dass dieser Strukturtyp über Hochdruck erhalten werden könnte. Die stabilen, vorhergesagten Polymorphe können vielleicht über den Einbau von Fremdmetallkationen im Rahmen einer Mischkristallreihe und/oder über Synthesemethoden erhalten werden, die den Zugang zu metastabilen Polymorphen erlauben, wie zum Beispiel Solution Combustion Synthesis oder Hydrothermalsynthesen.

Tabelle 2.7: In der Literatur publizierte Strukturtypen der MOPO₄-Vertreter (M: V, Mo, Nb, Ta, W, Sb) mit bekannter Nomenklatur. Stern: thermodynamisch stabil im Temperaturbereich 700-900 °C unter Normaldruck; Häkchen: metastabil; Kreuze: Übergangszustand.

$MOPO_4$	β -VOSO ₄	$SbOPO_4$	α -MoOPO ₄	MPTB	ggf. weitere
$VOPO_4$	β^*	ϵ	$lpha_{ m II}$	X	$\alpha_{ m I},\delta,\gamma,\omega$
$MoOPO_4$	β_{I}	β	α^*	X	
$NbOPO_4$	\checkmark	X	α^*	β	
$TaOPO_4$	\checkmark	\checkmark	α	β^*	
$WOPO_4$	\checkmark	\checkmark	α	β^*	
$SbOPO_4$	\checkmark	SbOPO_4^*	\checkmark	X	

2.5. Zusammenfassung

Kapitel 3

Das Oxidphosphat VOPO₄ und dessen Redoxverhalten

Das System V/P/O findet aufgrund der ausgeprägten Redoxchemie des Vanadiums besondere Beachtung im Bereich der heterogenen Katalyse. Ein bekanntes Beispiel ist die Umsetzung von *n*-Butan zu Maleinsäureanhydrid mittels (VO)₂P₂O₇ (VPP) [95]. Trotz intensiver Forschung ist der genaue Reaktionsmechanismus bis heute unbekannt und wird kontrovers diskutiert (s. Einleitung) [46]. Dafür gibt es verschiedene Gründe, wobei wahrscheinlich der wichtigste die hohe Flexibilität des V/P/O-Systems sowohl in struktureller wie auch in redoxchemischer Hinsicht ist. Mögliche Oxidationsstufen des Vanadiums in bekannten Vanadiumphosphaten sind +V, +IV, +III und +II, wobei diese auch nebeneinander vorliegen können. Es sind die gemischtvalenten Phosphate VO^{III/IV}(PO₃)₂ [96, 97], V^{III}₂(V^{IV}O)(P₂O₇)₂ [98] wie auch V₂^{II/III}OPO₄ [99, 100] bekannt. Im volloxidierten System VO_{2,5}/PO_{2,5} sind bis heute sieben Polymorphe von VOPO₄ bekannt ($\alpha_{\rm I}$ [51], $\alpha_{\rm II}$ [50], β [48], γ [53], δ [52], ϵ [49], ω [54]). In der folgenden Tabelle ist eine Übersicht der literaturbekannten Vanadiumphosphate gegeben.

Verbindung	Ox.	Lit.	R.G.	Gitterparameter [Å, °]
$V_{1,08}P_{0,92}O_5$	V	[101]	P4/n	6,011(4), 4,452(4)
$\alpha_{\mathrm{I}}\text{-}\mathrm{VOPO}_4$	V	[51]	C2/m	8,73186(14), 6,20902(4),
				6,20548(5), 104,448(2)
$\alpha_{\rm II}$ -VOPO ₄	V	[50]	P4/n	6,014(7), 4,434(2)
β -VOPO ₄	V	[48]	Pnma	7,770(3), 6,143(3), 6,965(3)
γ -VOPO ₄	V	[53]	Pbam	17,3970(5), 8,81986(23),
				4,90794(12)
δ -VOPO ₄	V	[52]	$P4_2/mbc$	9,0547(7), 8,6080(8)
ϵ -VOPO ₄	V	[49]	Cc	7,2659(3), 6,8934(2),
				7,2651(3), 115,3396(13)
ω -VOPO ₄	V	[54]	$P4_2/mmc$	e 4,8552(3), 8,4301(6)
$V_2(PO_4)_3$	IV/V	[102]	$P2_1/n$	8,4067(8), 8,5152(8),
				11,5903(11), 89,129(6)
$VO(PO_3)_2$	IV	[96]	C2/c	15,140(3), 4,195(1),
				9,573(2), 126,54(2)
$(\mathrm{VO})_2\mathrm{P}_2\mathrm{O}_7$	IV	[103]	$P2_1$	7,7276(3), 16,58849(40),
				9,5796(5), 89,975(3)
$(\mathrm{VO})_2\mathrm{P}_2\mathrm{O}_7$	IV	[104]	$Pca2_1$	7,73808(7), 9,58698(8),
				16,58949(10), 89,975(3)
$(\mathrm{VO})_2\mathrm{P}_2\mathrm{O}_7^{(a)}$	IV	[105]	Pnab	7,571(1), 9,536(1), 8,362(1)
$(\mathrm{VO})_2\mathrm{P}_2\mathrm{O}_7$	IV	[106]	$Pca2_1$	7,725(3), 9,573(3), 16,576(4)
$V(P_2O_7)$	IV	[107]	$P2_1$	4,7725(1), 7,8710(2),
				6,8618(2),106,1417(10)
$V_2(VO)(P_2O_7)$	$_2$ III/IV	[98]	Pnma	17,459(3), 12,185(2),
				5,2431(7)
$V(VO)_3(PO_4)_3$	III/IV	[108]	F2dd	7,2596(8), 21,786(2), 38,904(4)
$V(PO_3)_3$	III	[109]	Cc	13,223(2), 6,380(3),
				10,643(3), 134,95(3)
$V(PO_3)_3$	III	[110]	Cc	13,1902, 19,09,5 9,4320, 127,151
VPO_4	III	[111]	Cmcm	5,2316(5), 7,7738(7),
				6,2847(5)

Tabelle 3.1: Übersicht aller in der Literatur bekannten Phosphate des Vanadiums. a) Hochdruckmodifikation.

Tabelle 3.1 - Fortsetzung						
Verbindung	Ox.	Lit.	R.G.	Gitterparameter [Å, °]		
VPO_4	III	[112]	Imma	10,55908(10), 13,10514(12),		
				6,33928(7)		
$\mathrm{V}_4(\mathrm{P}_2\mathrm{O}_7)_3$	III	[113]	Pmcn	7,443(1), 9,560(2), 21,347(4)		
$V_2O(PO_4)$	II/III	[99]	C2/c	7,5552(8), 7,5979(8), 7,2110(7),		
				121,198(5)		
$V_2O(PO_4)$	II/III	[100]	$I4_1/amd$	5,362(5), 12,378(9)		

In der Literatur wurde bereits viel über die gezielte Synthese metastabiler VOPO₄-Polymorphe berichtet [51, 114, 115]. Dennoch ist die Reproduzierbarkeit bei einigen Syntheserouten problematisch, da die Phasenbildung kinetisch kontrolliert abläuft. Sobald sich einmal Keime von β -VOPO₄ gebildet haben, werden alle metastabilen Polymorphe in die thermodynamisch stabile Phase umgewandelt. Deswegen ist das Hauptziel, die Bildung von β -VOPO₄ zu unterdrücken. Dies gelingt durch den Einsatz der richtigen Precursoren, wie folgende Graphik zeigt. Auch die Gasatmosphäre sowie die Strömungsgeschwindigkeit über der Probe bei der anschließenden thermischen Behandlung haben einen Einfluss auf die Phasenbildung. In dieser Arbeit wurden zwei der bekannten VOPO₄-Polymorphe synthetisiert (α_{II} -, β -VOPO₄). Von diesen wurden ³¹P-NMR-, (Abbildung 3.7) IR-, Raman-und UV/vis-Spektren (vgl. Kapitel 3.2 und 3.3) aufgenommen und miteinander verglichen. Ziel war, bestehende Arbeiten zu ergänzen und einen Syntheseweg für metastabiles α_{II} -VOPO₄ zu entwickeln.

Abbildung 3.1: Übersicht unterschiedlicher Synthesewege und Precursoren zur gezielten Darstellung der VOPO₄-Polymorphe [114].

3.1 Synthese von α_{II} -VOPO₄

Im Folgenden wird die Synthese des α_{II} -Polymorphs behandelt. Der Einsatz von $VOPO_4 \cdot 2 H_2O$ als Precursor bietet sich aufgrund der strukturellen Ähnlichkeit zum Endprodukt an. Der einfachste Weg, α_{II} -VOPO₄ aus dem Dihydrat herzustellen, ist dessen Dehydratisierung (Gleichung 3.1). Wird das koordinativ gebundene Wasser entfernt, können die vorher voneinander separierten $[(V \equiv O)O_4(H_2O)]$ -Oktaeder entlang der *c*-Achse über Eckenverknüpfung zu Ketten kondensieren. Über die Synthese des α_{II} -Polymorphs wurde häufig berichtet [115, 116]. Ein Problem der in der Literatur beschriebenen Synthesewege ist, dass die Vorgehensweise meist nicht genau genug wiedergegeben wurde, da wahrscheinlich unklar war, welche Faktoren für eine optimale Reaktionsführung entscheidend waren. Wird den Anweisungen in der Literatur gefolgt, ist das erhaltene Produkt oftmals nicht phasenrein.

$$VOPO_4 \cdot 2 \operatorname{H}_2O(s) \longrightarrow \alpha_{\mathrm{II}} \cdot VOPO_4(s) + 2 \operatorname{H}_2O(g)$$

$$(3.1)$$

Abbildung 3.2: Die Kristallstrukturen von VOPO₄· 2 H₂O (a) und α_{II} -VOPO₄ (b) mit Projektionen entlang der kristallographischen *c*- und *b*-Achse. Die blauen, vergrößerten Sauerstoffatome geben die Position des Wassers koordiniert an [VO₅] sowie zwischen den Schichten an.

Zwei veröffentlichte Syntheserouten schlagen die Behandlungen des Dihydrats entweder im Sauerstoffstrom bei Temperaturen um 750 °C oder im trockenen Luftstrom bei 750 °C mit einer Heizrampe von 240 °C h⁻¹ vor [116].

Eine Gemeinsamkeit beider Synthesen ist die Reaktionsführung in einem strömendem System, weswegen zu Beginn dieser Arbeit untersucht wurde, ob die Synthese im Gasstrom eine notwendige Voraussetzung zur Bildung von α_{II} -VOPO₄ ist. Zu diesem Zweck wurde die Dehydratisierung versuchsweise in einer Kieselglashalbampulle oder in einem Tiegel durchgeführt. Dabei erfolgte keine Umsetzung des Dihydrats zu α_{II} -VOPO₄ nicht möglich. Selbst nach einer Temperzeit von sechs Tagen bei 700 °C an Luft war die Hauptphase VOPO₄· 2 H₂O (vgl. Abbildung 3.3).

Eine Erklärung für dieses Ergebnis wäre, dass das Dihydrat bei 700 °C an Luft kein Wasser abgibt. Dies kann aber anhand der typischen Stabilität von Hydraten ausgeschlossen werden. Stattdessen entsteht vermutlich hygroskopisches α_{I} -VOPO₄, welches dann durch die Luftfeuchtigkeit und Zugabe von Ethanol für die Röntgenpulvermessung wieder zum Dihydrat reagiert. Die Umwandlung in

 α_{II} -VOPO₄ ist auf diese Weise offensichtlich nicht möglich.

Abbildung 3.3: Pulverdiffraktogramm (Guinier, Cu-K α_1) nach Tempern von VOPO₄· 2 H₂O in einer Kieselglashalbampulle im Kammerofen bei 700 °C für sechs Tage an Luft (a). Die unterlegten Simulationen sind VOPO₄· 2 H₂O (blau) und α_{II} -VOPO₄ (schwarz) (b).

Dieses Experiment zeigte, dass das Wasser aus der Probe abtransportiert werden muss, weswegen in der Literatur strömende Systeme eingesetzt wurden. Aus diesem Grund wurde im Folgendem ebenfalls im Sauerstoffstrom bei 750 °C gearbeitet. Als Reaktionsgefäß wurde ein Kieselglasschiffchen eingesetzt.

Um den Effekt von Heizrampen auf die Phasenbildung im System zu untersuchen, wurden diese variiert. Langsames Aufheizen führte zur schnelleren Bildung von β -VOPO₄ (vgl. Abbildung 3.4a, b). Wurde das Wasser hingegen ohne eine Heizrampe bei hohen Temperaturen aus VOPO₄ ausgetrieben, bildete sich die α_{II} -Phase, da sich durch die schnelle Reaktionsführung die thermodynamisch stabile Phase noch nicht bilden konnte. Das α_{II} -Polymorph stellt energetisch ein lokales Minimum dar, sodass für die Bildung von β -VOPO₄ Aktivierungsenergie aufgebracht werden musste. Die kinetische Hemmung wird durch längeres Tempern überwunden, sodass dann die Bildung von β -VOPO₄ beobachtet wurde (vgl. Abbildung 3.4 b).Gemäß der Literatur sollte bei der Dehydratisierung von VOPO₄· 2 H₂O im Sauerstoffstrom im Reaktionsverlauf zuerst α_{I} -, dann α_{II} - und zuletzt γ -VOPO₄ entstehen (vgl. Abbildung 3.1). Die Bildung aller drei Phasen konnte anhand der durchgeführten Experimente bestätigt werden, wobei die α_{I} -Phase als VOPO₄· 2 H₂O in den Pulverdiffraktogrammen nachweisbar war (vgl. Abbildung 3.4 a und b). Die Phasenumwandlung von α_{I} -VOPO₄ in α_{II} - oder γ -VOPO₄ lief gleichzeitig ab, sodass es unmöglich war, reines α_{II} -VOPO₄ über diesen Syntheseweg zu erhalten. Je länger die Temperzeit war, desto mehr γ -VOPO₄ wurde neben α_{II} -VOPO₄ erhalten. Gleichzeitig nahm die Wahrscheinlichkeit zu, dass sich bereits β -VOPO₄ bildete. Ob für die Bildung der γ -Phase die oxidierenden Bedingungen durch die Sauerstoffatmosphäre oder der Gasstrom wichtig war, wird an dieser Stelle nicht diskutiert, da die Ergebnisse nicht eindeutig sind. Auffallend war, dass der Einsatz eines O₂-Gasstromes zur Bildung der γ -Phase führte, sodass im Folgenden darauf verzichtet wurde.

Abbildung 3.4: Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Experimenten zur Darstellung von α_{II} -VOPO₄ im Sauerstoffstrom nach drei Tagen bei 750 °C mit Heizrampe (a), ein Ansatz nach sechs und 13 Tagen im Sauerstoffstrom ohne Heizrampe (b), sowie die Synthese im Kammerofen auf einer Quarzglasplatte bei 700 °C an Luft für zwei Tage (c) mit den Simulationen von VOPO₄ · 2 H₂O (blau), α_{II} -VOPO₄ (schwarz), β -VOPO₄ (rot) und γ -VOPO₄ (violett).

Stattdessen wurde die Probe für einen Tag bei 700 °C in einem Kammerofen an

Luft getempert. Um das Kristallwasser möglichst schnell aus dem System entfernen zu können, wurden die Reaktion auf Quarzglasplatten durchgeführt. Dabei musste die Schütthöhe niedrig gehalten werden. Auf diesem Weg war es möglich, beim ersten Reaktionsdurchlauf mit einer sauberen Quarzglasplatte phasenreines α_{II} -VOPO₄ zu erhalten (Abbildung 3.4c). Allerdings ließen sich die Quarzglasplatten nach der Reaktion nur schwer vollständig säubern, sodass Kristallkeime auf der Oberfläche zurückblieben, die bei erneuter Verwendung der Platte zum Auftreten der β -Phase neben α_{II} -VOPO₄ führte. Dieser Effekt war besonders am Rand der Quarzplatte zu beobachten, da dort die größten Verunreinigungen waren (vgl. Abbildung 3.5). An Stellen mit einem hohen Anteil an β -VOPO₄ hatte das Pulver anstatt einer leuchtend gelben eine orange Farbe (Abbildung 3.5). Dies lässt sich auf einen geringen Anteil von V₂O₅ in VOPO₄ rückführen.

Die Verwendung einer Goldfolie erlaubt nach der Reaktion eine vollständige Entfernung von Kristallkeimen von $VOPO_4$, weswegen diese anstelle der Quarzplatte für die Dehydratisierung eingesetzt werden sollte.

Zusammengefasst sind die wichtigsten Voraussetzungen für die Synthese von phasenreinem α_{II} -VOPO₄

- 1. Ausreichend hohe Temperatur; vorgeheizter Ofen (Umwandlung von α_{I} -VOPO₄ in α_{II} -VOPO₄; Vermeidung der Einstellung des heterogenen Gleichgewichte),
- 2. Eine möglichst schnelle Dehydratiserung durch das Vermeiden von Heizrampen und halboffenen Reaktionsgefäßen,
- 3. Eine dünne Schüttung der Probe (schneller Abtransport des Wassers),
- 4. Kurze Temperzeit (Vermeidung der Gleichgewichtseinstellung),
- 5. Verwendung einer kristallkeim-freien Reaktionsunterlage (Vermeidung der Gleichgewichtseinstellung).

Abbildung 3.5: Schematische Darstellung der Quarzglasplatte mit der Phasenverteilung der erhaltenen Produkte nach mehreren Reaktionsdurchgängen nach dem Abkühlen.

Abbildung 3.6: Pulverdiffraktogramme (Guinier, Cu-K α_1) von Proben aus einem Experiment zur Darstellung von α_{II} -VOPO₄ auf einer Quarzglasplatte. Proben entnommen von der Mitte (a) und vom Rand (b).

3.2 ³¹P-MAS-NMR-Spektren von β - und α_{II} -VOPO₄

Die chemische Zusammensetzung der VOPO₄-Polymorphe β und α_{II} ist gleich. Da sich allerdings die Verknüpfungen der [VO₆]-Oktaeder mit den [PO₄]-Tetraedern in den Polymorphen unterscheidet (Abschnitte 1.3.1 und 1.3.3), zeigen beide eine unterschiedliche chemische Verschiebung im ³¹P-NMR-Spektrum (Abbildung 3.7). Die Phosphor-Lage in β -VOPO₄ ($\delta_{iso} = -10,6$ ppm) ist stärker entschirmt als die in α_{II} -VOPO₄ ($\delta_{iso} = -18,3$ ppm).

Abbildung 3.7: ³¹P-NMR-Spektren von β -VOPO₄ (a) und α_{II} -VOPO₄ (b). Die Spektren sind relativ zu $\delta_{iso}(\text{H}_3\text{PO}_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal ist einer dauerhaften Verunreinigung des Rotors zuzuschreiben, das Signal bei 7,9 ppm kann VOPO₄· 2 H₂O zugeordnet werden [117].

3.3 Topotaktisch kontrollierte Reduktion von β -VOPO₄

In den letzten drei Jahrzehnten haben sowohl die Vorhersage und die Synthese neuer metastabiler Verbindungen großes Interesse hervorgerufen. In mehreren Papern erarbeitete JANSEN Strategien zur Vorhersage thermodynamisch metastabiler Feststoffe und Kriterien für deren Stabilität [118, 119, 120].

Zur gleichen Zeit wurden die präparativen Möglichkeiten erweitert, was zu einer ganzen Reihe neuer, zuvor "nicht-denkbarer" Verbindungen führte. Die Zusammenstellung in Tabelle 3.2 zeigt, dass kinetische Effekte, deren Einfluss auf die Synthese in der Festkörperchemie (vielleicht mit Ausnahme der Herstellung von Zeolithen) lange Zeit ignoriert wurden, ausgenutzt werden können.

Der Einsatz reaktiver Ausgangsstoffe erlaubt die Kontrolle über den Diffusionsprozess (NaN₃, RuSb₃), die Kontrolle der Keimbildung (zum Beispiel unter Berücksichtigung der Ostwaldschen Stufenregel) mittels Übersättigung der Gasphase oder einer Schmelze (polymorphe Formen von TeI₄, Cu^I₃PO₄ und Li₄P₂O₇) sowie das Ausnutzen kinetischer Stabilitäten vorhandener Oxidstrukturen. Stabile Systeme aus geeigneten Precursoren können über viele chemische Reaktionen, z.B. die topotaktisch kontrollierte Reduktion multinärer Metalloxide erhalten werden (z.B. in der Perowskit-verwandten Kristallstruktur von Sr₂Fe^{III}Ir^{II}O₄).

Außerdem kann die elektrochemische Deinterkalationen eingesetzt werden (LiFePO₄/ FePO₄, LiCoPO₄/ CoPO₄, Na₃V₂(PO₄)₃/V₂(PO₄)₃). Gerade Oxo-Verbindungen des Vanadiums scheinen viele Möglichkeiten zur Synthese metastabiler Feststoffe zu bieten, wie eine ganze Reihe von Beispielen zeigen: V₂O₃ im Bixbyt-Strukturtyp, V₄O₉ im (VO)₂P₂O₇-Strukturtyp, sechs metastabile VOPO₄-Polymorphe, sowie α -VPO₄ im α -CrPO₄-Typ.

Verbindung Synthese		Synthese steuerung	Ref.	
$\operatorname{NaN}_3{}^{a)}$	Erhitzen eines Na/N	Überwinden der	[121]	
	Gemenges (ALD^{b}) mit	Reaktionsbarierre		
	homogener Verteilung	von N_2		
	auf atomarer Ebene			
$RuSb_3$	Vorsichtiges Erhitzen	Kontrolle von	[122]	
	alternierender	Diffusion und		
	Atomlagen $\operatorname{Ru}/3\operatorname{Sb}$	Keimbildung		
TeI_4	Kristallisation aus	Kontrollierte	[123]	
	einer Methanol/HI-	Keimbildung		
	Lösung			
$Cu_3^IPO_4$	Abschr. einer	Kontrollierte	[124]	
	Schmelze aus	Keimbildung		
	$2Cu \text{ und } Cu_3(PO_4)_2$			
$\rm Li_4P_2O_7$	Abschr. einer $Li_4P_2O_7$	Kontrollierte	[125]	
	-Schmelze	Keimbildung		
$FePO_4, CoPO_4,$	Elektrochemische		[126]	
$V_2(PO_4)_3$	Deinterkalation			
	von LiFePO ₄ , LiCoPO ₄			
	sowie oxidative			
	Deinterkalation			
	von $Na_3V_2(PO_4)_3$			
$FePO_4$	Dehydratisierung	Topotaktisch	[127]	
	von FePO ₄ \cdot 2 H ₂ O	kontrolliert		
α -VPO ₄	Reduktive	Topotaktisch	[112]	
	thermische Zersetzung	kontrolliert		
	von $(NH_4)VOPO_4$			
V_2O_3	Hydrolyse von VF_3	nicht bekannt	[128, 129]	
	in feuchtem			
	Wasserstoffstrom			
$\mathrm{Sr}_{2}\mathrm{Fe}^{\mathrm{III}}\mathrm{Ir}^{\mathrm{II}}\mathrm{O}_{4}$	Reduktion von	Topotaktisch	[130]	
	Sr_2FeIrO_6 durch	kontrolliert		
	N_2/H_2			
$(V^{IV}O)_2 V^V{}_2O_7$	Reduktion von	unbekannt	[131]	
	V_2O_5 mit Schwefel			
α_{I} - und α_{II} -VOPO ₄	Dehydratisierung	topotakt. kontr.	[132, 51, 116]	
	vom Dihydrat			

Tabelle 3.2: Beispiele metastabiler, kristalliner Feststoffe sowie deren präparativer Zugang.

a) Na₃N ist im eigentlichen Sinne keine metastabile Phase, wird aber trotzdem an dieser Stelle aufgeführt, da es als Beispiel dient wie wichtig Diffusion im Festköper ist und wie die Reaktionsträgheit von N₂ überwunden werden kann.

b) ALD: atomic layer deposition im Ultrahochvakuum.

Im Rahmen dieser Arbeit wird auf die Möglichkeit eingegangen, durch topotaktisch kontrollierte Reduktion neue, metastabile Vanadiumphosphate zu synthetisieren. Als Ausgangsverbindungen wurden β - sowie α_{II} -VOPO₄ eingesetzt. Es sind mehrere Verbindungen im ternären System V/P/O mit dem Verhältnis Metall:Phosphor = 1:1 bekannt (VOPO₄, (VO)₂P₂O₇, VPO₄, VP). Die Entstehung dieser Gleichgewichtsphasen ist sowohl vom Sauerstoffpartialdruck als auch von der Temperatur abhängig. Dies wird durch die folgenden Gleichungen (3.2 bis 3.4) beschrieben.

$$4 \operatorname{VOPO}_4(s) \leftrightarrows 2(\operatorname{VO})_2 \operatorname{P}_2 \operatorname{O}_7(s) + \operatorname{O}_2(g), \ p(O_2)_{1000\,K} = 1, 7 \cdot 10^{-6} \, bar \qquad (3.2)$$

$$2(VO)_2 P_2 O_7(s) = 4VPO_4(s) + O_2(g), \ p(O_2)_{1000\,K} = 2, 3 \cdot 10^{-13} \, bar$$
 (3.3)

$$0.5 \text{ VPO}_4(s) \Leftrightarrow 0.5 \text{ VP}(s) + O_2(g), \ p(O_2)_{1000 \, K} = 1, 2 \cdot 10^{-25} \, bar$$
 (3.4)

Die thermodynamischen Daten, die zur Berechnung des Barogramms (Abbildung 3.8) verwendet wurden, sind in Tabelle 3.3 aufgeführt.

Phase	$\begin{array}{c} \Delta_R \mathrm{H}^0_{298} \\ (\mathrm{kcal} \cdot \mathrm{mol}^{-1}) \end{array}$	S_{298}^0 (cal ·mol ⁻¹ · K ⁻¹)	$A^{a)}$	$\mathbf{B}^{a)}$	$C^{a)}$	Ref.
$\begin{array}{c} \hline VOPO_4 \\ (VO)_2P_2O_7 \\ VPO_4 \\ VP \end{array}$	-412,5 -792,2 -365,8 -61	29,32 54,1 28,6 12	32,2 53,6 23,625 10,75	$ \begin{array}{r} 17,5 \\ 42,2 \\ 21,78 \\ 2,5 \end{array} $	-8,5 -11,62 -4,75 -	[133] [134]

Tabelle 3.3: Thermodynamische Daten von VPO_n (n = 5; 4, 5; 4; 0).

a) Koeffizienten der spezifischen Wärmekapazität nach $C_{p,T} = A + B \cdot T + C \cdot T^{-2} + D \cdot T^2$ [135].

Das Barogramm (vgl. Abbildung 3.8) legt nahe, dass unter Gleichgewichtsbedingungen in einer Atmosphäre von kommerziellem 4N Argon $(p(O_2) \approx 20 \cdot 10^{-6} \text{ bar}$ nach eigenen Messungen) V^VOPO₄ bei Temperaturen $\vartheta > 780 \,^{\circ}\text{C}$ in $(V^{\text{IV}}O)_2 P_2 O_7$ und O₂(g) zerfällt. Dies entspricht einem Sauerstoffpartialdruck von $p(O_2) \approx 10^{-8}$ bar bei 873 K, was erheblich unter dem in der Literatur berichteten Wert $p(O_2) \approx 2.9 \cdot 10^{-4}$ bar bei 873 K liegt [136]. Dem Barogramm folgend zerfällt $(V^{IV}O)_2P_2O_7$ zu $V^{III}PO_4$ und $O_2(g)$ bei Temperaturen von $\vartheta > 1150$ °C und einem Sauerstoffpartialdruck von $p(O_2) \approx 20 \cdot 10^{-6}$ bar unter der Voraussetzung, dass keine Konkurrenzreaktion, wie zum Beispiel die Reduktion des Phosphats, stattfindet. Anders ausgedrückt, unter Gleichgewichtsbedingungen kann $(VO)_2P_2O_7$ aus VOPO₄ im Temperaturbereich zwischen 780 und 1150 °C bei einem Sauerstoffpartialdruck von $p(O_2) \approx 20 \cdot 10^{-6}$ bar erhalten werden.

Aus dem Barogramm kann ebenfalls entnommen werden, dass VPO₄ schon bei niedrigeren Temperaturen erhalten wird, wenn der Sauerstoffpartialdruck im Gasstrom deutlich unterhalb von 10⁻⁶ bar liegt. Es ist zum Beispiel möglich, (VO)₂P₂O₇ zu VPO₄ bei 600 °C unter einem Sauerstoffpartialdruck von $p(O_2) \approx 10^{-16}$ bar zu reduzieren, während bei $\vartheta > 600$ °C die Reduktion zu VP stattfinden sollte. Die Reduktion von β -VOPO₄ zu (V^{IV}O)₂P₂O₇ unter den im Barogramm gegebenen Bedingungen wurde schon oft bestätigt [133, 137].

 $(VO)_2P_2O_7$ wird seit mehr als 40 Jahren als Katalysator in der selektiven Oxidation von *n*-Butan zu Maleinsäureanhydrid eingesetzt [31]. Das Redoxverhalten der verschiedenen Vanadiumphosphate unter Gleichgewichts- und Nichtgleichgewichtsbedingungen ist offensichtlich relevant im Hinblick auf die selektive Oxidation von Kohlenwasserstoffen. Insbesondere das kinetisch unterschiedliche Reduktionsverhalten von $(V\equiv O)^{3+}$ und $[PO_4]$ -Einheiten ist von Interesse. Die topotaktisch kontrollierte Reduktion multinärer Metalloxide (insbesondere Perowskit-verwandte Strukturen [130]) hat in den letzten Jahren zur Synthese von Festkörpern mit Elementen in ungewöhnlichen Oxidationsstufen- und Koordinationspolyedern geführt (zum Beispiel quadratisch-planares $[Fe^{2+}O_4]$, $[Ir^{2+}O_4]$ [130]). In dieser Arbeit wurden, ausgehend von β -VOPO₄, unter Nicht-Gleichgewichtsbedingungen durch topotaktisch kontrollierte Reduktion zwei neue, ungewöhnliche Polymorphe von VPO₄ erhalten.

3.3. Topotaktisch kontrollierte Reduktion von $\beta\text{-VOPO}_4$

Abbildung 3.8: Barogramm des Systems VPO_n (n = 0; 4; 4,5; 5) mit den Sauerstoffpartialdrücken gängiger Reaktionsatmosphären.

3.3.1 Experimentelles

 β -VOPO₄ wurde als leuchtend gelbes einphasiges Pulver (XRPD) aus äquimolaren Mengen NH₄VO₄ (Merck, Darmstadt, p.A.) und (NH₄)₂HPO₄ (Merck, Darmstadt, p.A.) bei 675 °C an Luft in einer Menge von 10 g nach der Literatur beschriebenen Synthese erhalten [47]. Das Oxidphosphat wurde ebenfalls via SCS erhalten (vgl. Abschnitt 7.2).

Für die Reduktion wurden ca. $300 \text{ mg } \beta$ -VOPO₄ in dünner Schüttung in einem Quarzglasschiffchen verteilt (Länge 10 cm, Breite: 2 cm) und horizontal in einem Röhrenofen positioniert. Die Temperaturkontrolle erfolgte mit einem NiCr-Ni-Thermoelement (Typ K). Es wurde kommerziell erhältliches Wasserstoffgas (Air Products, Hattingen, 99,9%) eingesetzt, welches bei Raumtemperatur durch eine H₂O-Waschflasche geleitet wurde, um es mit Wasser zu sättigen. Der Sättigungsdampfdruck von Wasser bei 293 K (Labortemperatur) ist gegeben als $p_{sat} = 0,023$ bar [138]. Für das Gasphasengemisch H₂/H₂O kann nach Gleichung 3.5 der Gleichgewichtsdruck von Sauerstoff p(O₂) berechnet werden. Die Ergebnisse dieser Berechnung sind in Abbildung 3.8 wiedergegeben.

$$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{H}_2 \operatorname{O}(g); \ p(O_2)_T = (K_p, T)^{-1} \cdot (p^2(H_2O)_T / p^2(H_2)_T)$$
(3.5)

3.3.2 Ergebnisse

Obwohl es aus thermodynamischer Sicht möglich ist (vgl. Abbildung 3.8), im Temperaturbereich $350 \leq \vartheta \leq 600 \,^{\circ}\text{C} \beta$ -VOPO₄ in einem feuchten Wasserstoffstrom (1 ml/sec) zu reduzieren, war dieser Vorgang stark von kinetischen Effekten beeinflusst. Bei Temperaturen von $\vartheta \leq 350 \,^{\circ}\text{C}$ führte auch langes Tempern nur zu einem Farbwechsel des Oxidphosphats (leuchtend gelb \rightarrow olivgrün) ohne eine erkennbare Änderung des Röntgenpulverdiffraktogramms. Der Farbwechsel des so behandelten β -VOPO₄ weist auf ein kleines Sauerstoffdefizit hin. Die Röntgenpulveraufnahmen in Abbildung 3.11 d, e und f zeigen die Diffraktogramme von zwei bisher unbekannten Polymorphen von VPO₄ (VPO₄-m1 und -m2). Diese metastabilen Phasen konnten nie phasenrein erhalten werden. Die Reduktion von β -VOPO₄ (300 mg) unter feuchtem Wasserstoff bei 500 °C für einen Tag führte, neben VPO₄-m1 als Hauptphase, zu einem kleinen Anteil an (VO)₂P₂O₇, VPO₄-m2 oder anderen, unbekannten Nebenphasen (vgl. Abbildung 3.11). Vergleiche unterschiedlicher Röntgenpulveraufnahmen ermöglichten es, zwischen den Reflexen der unbekannten Phase und VPO₄-m1 zu unterscheiden.

Wurden 2 g β -VOPO₄ bei 400 °C reduziert, wurde (VO)₂P₂O₇ als Hauptprodukt neben geringen Mengen an VPO₄-m1 erhalten. Bei Versuchen die Kristallinität von VPO₄-m1 zu erhöhen ($\vartheta = 500$ °C, mehrere Tage erhitzt unter feuchtem Wasserstoff) wurde wiederholt eine unbekannte Nebenphase erhalten (Abbildung 3.14, Tabelle 13.30 für *d*-Werte). Tempern bei höheren Temperaturen führte zum Verschwinden dieser Reflexe. Wurde β -VOPO₄ bei 600 $\leq \vartheta \leq 800$ °C reduziert, wurde als Hauptphase VPO₄-m2 erhalten (isotyp zu Fe₂(VO)(P₂O₇)(PO₄) [139]). Wurde (VO)₂P₂O₇ bei 600 °C für vier Tage reduziert, wurde ebenfalls VPO₄-m2 erhalten. Die Bildung des thermodynamisch stabilen Polymorphs von VPO₄ (R.G. *Cmcm*, CrVO₄-Typ) wurde nie beobachtet.

Bei Temperaturen $T \geq 900$ °C wurde $PO_x(g)$ unter Bildung von β -V₂OPO₄ [100] und V₂O₃(s) abgegeben (vgl. Abbildung 3.9). Beim Tempern der metastabilen Polymorphe (*m*1 und *m*2) in einer evakuierten Kieselglasampulle bei 700 °C für einen Tag wurde das thermodynamisch stabile VPO₄-Polymorph (Raumgruppe *Cmcm*,

3.3. Topotaktisch kontrollierte Reduktion von $\beta\text{-VOPO}_4$

 $CrVO_4$ -Typ) phasenrein erhalten (vgl. Abbildung 3.10). Diese Experimente bestätigen die Zusammensetzung der metastabilen Polymorphe VPO₄-m1 und-m2. Diese zeigen beim Lagern an Luft im Labor auch nach mehren Wochen keine Veränderung in den Pulverröntgendiffraktogrammen. Um die Möglichkeit einer kinetisch kontrollierten Oxidation von VPO₄-m1 zu testen, wurde die Substanz für zwei Tage bei 450 °C in einer geschlossenen Ampulle mit O₂ (in situ Zersetzung von Ag₂O) erhitzt. Jedes dieser Experimente führte zur Bildung der stabilen Phosphate (VO)₂P₂O₇ und VOPO₄, je nach Menge an eingesetztem Sauerstoff (Abbildung 3.12).

Abbildung 3.9: Pulverdiffraktogramm (Guinier, Cu-K α_1) nach der Reduktion von VPO₄-m1 bei 900 °C für zwei Tage. Simulation für β -V₂OPO₄, die Sterne markieren Reflexe von V₂O₃.

Abbildung 3.10: Pulverdiffraktogramme (Guinier, Cu-K α_1) von VPO₄-m1 vor der Gleichgewichtseinstellung (a) und nach isothermer Behandlung in einer evakuierten Ampulle bei 700 °C für einen Tage mit Simulation von VPO₄-Cmcm (b).

3.3. Topotaktisch kontrollierte Reduktion von $\beta\text{-VOPO}_4$

Abbildung 3.11: Pulverdiffraktogramme (Guinier, Cu-K α_1) zur Synthese von VPO₄-m1 (a-e) und m2 (f) ausgehend von 350 mg β -VOPO₄. Kreise markieren Reflexe, die einer monoklinen Zelle mit bisher unbekannter Kristallstruktur zugeordnet werden können (a = 13,0989 Å, b = 5,3643 Å, c = 7,6210 Å, $\beta = 93,508$ °).

Abbildung 3.12: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Produkte aus der Re-Oxidation von VPO₄-m1 (a) nach einem Tage bei 450 °C (b) und zwei Tagen bei 450 °C (c). Schwarz ist die Simulation von (VO)₂P₂O₇, violett von β -VOPO₄.

3.3.3 Strukturmodelle für VPO₄-m1 und -m2

Trotz der schlechten Qualität der Röntgenpulverdiffraktogramme von VPO₄-m1 und -m2 war es möglich, die Indizierung der Reflexe aufgrund der Ähnlichkeit zu den Beugungsdiagrammen von β -V^VOPO₄ [48] und Fe^{II}Fe^{III}(V^{IV})(PO₄)(P₂O₇) [139] vorzunehmen (vgl. Abbildung 3.14; die Indizierung der Reflexe ist im Anhang, Tabelle 13.30 und 13.31, zu finden).

Im Vergleich zu β -V^VOPO₄ [48] (R.G. *Pnma*; a = 7,7863(5) Å, b = 6,1329(3) Å, c = 6,9673(5) Å) hat die daraus abgeleitete Elementarzelle für VPO₄-m1 eine deutlich kürzere a-Achse, aber verlängerte b- und c-Achsen (a = 7,3453(12) Å, b = 6,4001(12) Å, c = 7,3196(13) Å vgl. Tabelle 3.4). Die Verkürzung der a-Achse

3.3. Topotaktisch kontrollierte Reduktion von $\beta\text{-VOPO}_4$

lässt sich durch das Entfernen des Sauerstoffs der (V^V≡O)³⁺-Gruppen erklären. Diese liegen nur leicht gegen die *a*-Achse verkippt vor. Die Verlängerung der *b*und *c*-Achse lässt sich auf den größeren Ionenradius von V³⁺ im Vergleich zu V⁵⁺ zurückführen. Die Übereinstimmung der Intensitäten des experimentellen Pulverdiffraktogramms mit der Simulation konnte verbessert werden, indem eine Fehlordnung in das Model eingeführt wurde. Basierend auf dem zu β-VOPO₄ isostrukturellen β-LiVOPO₄ [140] können die zwei Metalllagen (Li, V) teilweise besetzt werden. Aus diesem Modell resultierten für beide V³⁺-Lagen verzerrte, quadratisch-planare [VO₄]-Koordinationspolyeder. In den DFT-Rechnungen (vgl. Abschnitt 3.3.6) wird die Fehlordnung der zwei Vanadiumlagen in zwei unterschiedlichen Strukturmodellen VPO₄-m1' und VPO₄-m1" mit derselben Einheitszelle (R.G. *Pnma*), aber unterschiedlicher Besetzung von V³⁺ entweder auf der Lage 4*c* oder 4*b* behandelt.

Abbildung 3.13: Vergleich der Kristallstrukturen von β -VOPO₄ (a), LiVOPO₄ [140] (b) und VPO₄-m1' basierend auf β -VOPO₄ mit quadratisch-planaren [V^{III}O₄] (c). Phosphatgruppen sind gelb, V⁵⁺ orange, V⁴⁺ blau, Li⁺ grün, V³⁺ dunkelbraun (70% Besetzung) und hellbraun (30% Besetzung) dargestellt. S.O.F Site occupation factor.

Tabelle 3.4: Atomkoordinaten für metastabiles VPO_4 -m1 (R.G. Pnma) basierend auf

β -VOPO ₄ [4 b = 6,4001(2)	⁴⁸]/ β -LiVOPO ₄ [1 12) Å, $c = 7,3196($	40] mit ang 13) Å).	epassten Gitterpar	ametern ($a = 7$	7,3453(12) Å,
Atom	Wyckoff	x	y	z	S.O.F

Atom	Wyckoff	x	y	z	S.O.F
V1	4c	0,1383	1/4	0,7622	0,7
V2	4b	$0,\!5$	0	0	0,3
P1	4c	$0,\!3756$	1/4	$0,\!3778$	1
O1	4c	0,2208	1/4	0,5272	1
O2	8d	0,3608	0,0590	0,2785	1
O3	4c	0,0465	1/4	0,0080	1

3.3. Topotaktisch kontrollierte Reduktion von β -VOPO₄

Abbildung 3.14: Pulverdiffraktogramme (Guinier, Cu-K α_1) von VPO₄-m1 (Aufnahmezeit 300 min) im Vergleich zu Simulationen nach verschiedenen Strukturmodellen. V1 ist voll besetzt (b), die Vanadiumlage in (c) ist gesplittet in V1 und V2. Strukturmodell nach DFT-Optimierung (d) mit gesplitteten Vanadiumlagen V1 und V2 (e) und nur mit Besetzung von V2 (VPO₄-m1') (f). Nicht zugeordnete Reflexe sind mit einem Kreis gekennzeichnet.

Die Gitterparameter der Elementarzelle von VPO₄-m2 sind ähnlich zu denen der Referenzstruktur Fe^{II}Fe^{III}(V^{IV})(PO₄)(P₂O₇) [139]. Bei der Entstehung dieses Phosphats aus FePO₄ und VPO₄ findet sowohl eine Redox- als auch eine Lux-Flood-Säure-Base-Reaktion satt (Transfer von O²⁻, Gleichung 3.6). Die Kristallstruktur der thermodynamisch stabilen Verbindung ist kristallchemisch optimal für die Kationen Fe²⁺, Fe³⁺ und V⁴⁺ (als VO²⁺), sowie die Anionen P₂O₇⁴⁻ und PO₄³⁻ angepasst.

Damit ergibt sich im Fall von VPO_4 -m2 die Frage nach der Oxidationsstufe der verschiedenen Vanadiumionen auf den kristallographischen Lagen. Diese Frage soll im Rahmen von DFT-Rechnungen beantwortet werden. Das Strukturmodell von VPO_4 -m2 ist aus $[VO_6]$ -Oktaedern aufgebaut, in denen Vanadium mit Sauerstoff, Orthophosphat, sowie Pyrophosphat zu einem dreidimensionalen Gitter verknüpft ist (Abbildung 3.15). Interessanterweise zeigt die Kristallstruktur von VPO_4 -m2 auch einige Ähnlichkeiten zu der von LiVOPO₄.

$$2 \operatorname{FePO}_4(s) + \operatorname{VPO}_4(s) \longrightarrow \operatorname{Fe}_2(\operatorname{VO})(\operatorname{P}_2\operatorname{O}_7)(\operatorname{PO}_4)(s) \tag{3.6}$$

Abbildung 3.15: Kristallstruktur von VPO₄-m2, mit der strukturierten Formel V₂(VO)(P₂O₇)(PO₄) (a, b), im Vergleich zu β -LiVOPO₄ [140] (c, d). VPO₄-m2: [V^{III}O₆]-Oktaeder in dunkelblau und grün, [P₂O₇]: orange, [PO₄]: gelb; β -LiVOPO₄: [V^{IV}O₆]: dunkelblau, [LiO₆]: grün, [PO₄]: gelb.

Abbildung 3.16: Pulverdiffraktogramm (Guinier, Cu-K α_1) von VPO₄-m2 im Vergleich mit Simulationen verschiedener Strukturmodelle, (b) ist an das Experiment angepasst, (c) das Modell nach der DFT-Strukturoptimierung.

3.3.4 UV/vis/NIR-Pulverremissionsspekrum und magnetisches Verhalten von VPO_4 -m1

VPO₄-m1 (V³⁺, d²-System) zeigt paramagnetisches Verhalten (vgl. Abbildung 3.17) mit einem temperaturabhängigen magnetischen Moment. Der Curie-Weiss-Plot χ^{-1} vs. T zwischen 200 und 300 K ergibt $\theta_p = -155$ K und ein magnetisches Moment von $\mu/\mu_B = 2,79$. Der berechnete Wert ist nahe am erwarteten Spin-only Wert für d² ($\mu_{s.o.}/\mu_B = 2,83$).

Trotzdem sollten noch andere Erklärungen für das magnetische Verhalten in Betracht gezogen werden. Es ist bekannt, dass für V³⁺-Ionen in einem nichttetraedischen Ligandenfeld aufgrund der Spin-Bahn-Wechselwirkung das magnetische Moment starke Temperaturabhängigkeit zeigt [141]. Genau diese Abhängigkeit zeigt Abbildung 3.17. Zusätzlich zur Ligandenfeldanalyse wurde auch ein Pulverremissionsspektrum im NIR/vis/UV-Bereich gemessen (vgl. Abbildung 3.18). Das braune Pulver zeigte drei Absorptionsbanden ($\tilde{\nu}_1 = 10000 \text{ cm}^{-1}$, $\tilde{\nu}_2 = 15000 \text{ cm}^{-1}$, $\tilde{\nu}_3 = 22000 \,\mathrm{cm}^{-1}$,). Trotz erfolgreicher Ligandenfeldanalysen von VPO₄ (CrPO₄-Strukturtyp) und V(PO₃)₃ [134] im Rahmen des AOM (Angular Overlap Model), konnte dies für VPO₄-m1 nicht erreicht werden.

Abbildung 3.17: VPO₄-m1. Reziproke Suszeptibilität (grau) und effektives magnetisches Moment (schwarz) gegen die Temperatur. Der Curie-Weiss-Plot für den Temperaturbereich 200-300 K ist als gestrichelte Linie dargestellt.

Abbildung 3.18: Pulverremissionsspektrum im NIR/vis/UV-Bereich von VPO₄-m1 (oben) und VPO₄ (CrVO₄-Typ, unten [142]).

66

3.3.5 IR- und Raman-Spektren

IR- und Raman-Spektren von β -VOPO₄, VPO₄ (CrVO₄-Typ), VPO₄-m1 (ungefähr 10 Gew.-% von VPO₄-m2 enthalten) und VPO₄-m2 (ungefähr 30 Gew.-% von VPO₄-m1 enthalten) wurden miteinander verglichen (Abbildung 3.19).

Wie erwartet ist die Auflösung der Spektren für die thermodynamisch stabilen, gut kristallisierten Phasen besser als die der metastabilen Phasen.

Im Zusammenhang mit Orthophosphaten gibt es vier Typen von Schwingungen, die im Spektrum beobachtet werden können. Dies sind die antisymmetrischen P-O-Schwingungen (1200-1000 cm⁻¹), die symmetrischen P-O-Schwingungen (900- 800 cm^{-1}), die antisymmetrischen(650-550 cm⁻¹) und die symmetrische O-P-O-Schwingungen (450 cm⁻¹) [143, 144, 112]. Die O-P-O-Schwingungen sind gekoppelt mit V-O-Schwingungen [112, 143]. Die Vanadylstreckschwingung kann nur im Spektrum von VOPO₄ gefunden werden (1020-1150 cm⁻¹), was beweist, dass alle anderen hier gemessenen Verbindungen keine Vanadylgruppe enthalten. In der Literatur wird die Schwingung im Bereich 1080-1140 cm⁻¹ eingeordnet [143].

Da die Gesamtzahl der Schwingungsmoden mit dem dreifachen der Zahl N der Atome in einer Zelle berechnet wird unter Abzug der Translation (3N-3), werden für β -VOPO₄ (RG: *Pnma*, D_{2h}) insgesamt 84 Moden erwartet. Gemäß der Symmetrieanalyse sind davon 34 IR-aktiv (13 B_{1u} + 13 B_{2u} + 8 B_{3u}) und 42 Raman-aktiv $(13 \text{ A}_{g} + 8 \text{ B}_{1g} + 8 \text{ B}_{2g} + 13 \text{ B}_{3g})$. Für VPO₄ (RG: *Cmcm*, *C*_{2h}) werden 36 Moden erwartet. Davon sind 21 IR- $(8 A_u + 13 B_u)$ und 15 Raman-aktiv $(9 A_g + 6 B_g)$. Im Fall von VPO_4 -m1 werden 72 Moden erwartet. Eine Unterteilung in IR- und Raman-aktiv kann nicht getroffen werden, da keine Symmetrieanalyse durchgeführt wurde. Für VPO₄-m2 (C_{2h}) werden 104 Moden erwartet. Davon sind 56 IR- $(22 A_u + 34 B_u)$ und 48 Raman-aktiv $(31 A_g + 17 B_g)$. Starke Aufspaltungen sowie Überlagerungen der Banden in den IR- und Ramanspektren zeigen sich, aufgrund der geringen Lage-Symmetrie bei VPO_4 -m1 und -m2. Die Raman-Spektren von β -VOPO₄ und VPO₄ (CrVO₄-Typ) geben keine weiteren Informationen. Die experimentellen Spektren von VPO_4 -m1 und VPO_4 -m2 sind nur von schlechter Qualität, sodass keine detaillierte Zuordnung der Banden möglich ist. Das IR-Spektrum von $TiPO_4$ (CrVO₄-Typ) wurde bereits veröffentlicht [144]. In diesem Paper wird berichtet, dass das IR-Spektrum von VPO₄ (CrVO₄-Typ) mit diesem gut übereinstimmt, was sich gut mit der aktuellen Messung von VPO₄ deckt. Das bereits veröffentlichte IR-Spektrum von β -VOPO₄ [143] unterscheidet sich stark

von dem hier publizierten, obwohl das Raman-Spektrum gute Übereinstimmung mit einer bereits publizierten Messung zeigt [145].

Abbildung 3.19: IR (links) und Raman (rechts) von β -VOPO₄. In der Simulation von β -VOPO₄ ist die VPO₄ (CrVO₄-Typ), VPO₄-m1 und VPO₄-m2 im Vergleich zu den DFT-Rechnungen. Die Vanadylschwingung grün gefärbt . Die Spektren von VPO₄-m2 wurden ohne Intensitäten berechnet.

3.3.6 DFT-Rechnungen zu metastabilem VPO₄

Um die Stabilität der Strukturmodelle von VPO_4 -m1 und -m2 zu überprüfen, und weitere Informationen über die Kristallchemie dieser Strukturen zu erhalten, wurden diese Startmodelle unter unterschiedlichen Bedingungen unter Verwendung des DFT Programms CRYSTAL17 optimiert [82]. Es wurde das Hybrid-Funktional PW1PW eingesetzt, welches schon in anderen Rechnungen zu guten Ergebnissen geführt hat [83]. Die integrale Genauigkeit wurde auf TOLINTEG: 7 7 7 14 42 gesetzt, das Monkhorst-Pack-Gitter an die Gitterparameter angepasst.

Die Strukturmodelle VPO₄-m1', VPO₄-m1" und VPO₄-m2 wurden optimiert. VPO₄-m1' und VPO₄-m1" zusammen umfassen die Fehlordnung der Vanadiumatome, die eingeführt wurde um das experimentelle Pulverdiffraktogramm besser beschreiben zu können. In den Rechnungen wurden noch drei weitere metastabile Polymorphe für VPO₄ vorhergesagt: VPO₄-m3, -m4 und -m5.

 VPO_4 -m1'. Die Atompositionen der Startstruktur sind in Tabelle 3.4 aufgeführt. Die Wyckoff-Lage 4c wurde vollständig mit Vanadium besetzt. In Tabelle 3.5 sind die Atomkoordinaten der optimierten Struktur angegeben. Es wurden nur die Atompositionen relaxiert. VPO_4 -m1' ist aus [PO_4]-Einheiten und nahezu quadratisch-planaren [VO_4]-Polyedern aufgebaut (vgl. Abbildung 3.13). Auch nach der Optimierung entsprechen die P-O-Abstände denen typischer Orthophosphate (Tabelle 13.32).

Berechnungen der Schwingungsmoden bestätigen, dass dieses Strukturmodell stabil ist. Die Fehlordnung, die in der realen Struktur sicher vorhanden ist, kann im Modell nicht simuliert werden. Aus diesem Grund wurden die Gitterparameter festgehalten. Beim Versuch das Strukturmodell VPO₄-m1' ohne Symmetrierestriktionen zu optimieren, wurde ein neues Polymorph (VPO₄-m3) erhalten.

Tabelle 3.5: Berechnete Atomkoordinaten für metastabiles VPO₄-m1' (R.G. Pnma) basierend auf β -VOPO₄ [48]/ β -LiVOPO₄ [140] mit angepassten Gitterparametern (a = 7,3453(12) Å, b = 6,4001(12) Å, c = 7,3196(13) Å).

Atom	Wyckoff	x	y	z
V1	4c	0,152	1/4	0,764
P1	4c	0,410	1/4	0,381
O1	4c	0,259	1/4	0,532
O2	8d	0,397	0,052	0,261
O3	4c	0,095	1/4	0,015

 VPO_4-m1 ". Da die Simulation des Pulverdiffraktogramms von VPO_4-m1 (Abschnitt 3.3.3) auf eine Fehlordnung der Vanadium-Atome auf zwei Metalllagen (Wyckoff-Lagen 4c und 4b) hindeutet, wurde ein zweites Strukturmodell für VPO_4-m1 entwickelt. In diesem Modell wurde nur die Vanadiumlage 4b vollständig besetzt, die Gitterparameter wie auch die restlichen Atompositionen sind dieselben wie für VPO_4-m1 (vgl. Tabelle 3.4). Es wurden, wie bei VPO_4-m1 ' auch, nur die Atompositionen optimiert. VPO_4-m1 " ist aus $[PO_4]$ -Einheiten und quadratisch-planaren $[VO_4]$ -Einheiten aufgebaut (vgl. Abbildung 3.20). Neben den unterschiedlichen Koordinationspolyedern für Vanadium ist auch die Verknüpfung der Polyeder in m1' und m2" anders.

In VPO₄-m1' ist jede Phosphat-Gruppe über Ecken mit vier [VO₄]-Einheiten verknüpft, wodurch die Koordinationszahl aller Oxidionen bei K (O²⁻) = 2 liegt. Im Unterschied dazu variiert die Koordinationszahl für die Oxidionen in VPO₄-m1'' zwischen 1 und 3 (Abbildung 3.20).

Berechnungen der Schwingungsmoden bestätigen, dass das Strukturmodell von VPO₄-m1" stabil ist. Dies ist überraschend, da die Struktur terminale P=O-Bindungen enthält. Die Ergebnisse der Strukturoptimierung (Tabelle 3.6) zeigen, dass die kurze P=O-Bindung mit $d(P-O_t) = 1,47$ Å deutlich kürzer ist als für eine normale P-O-Einfachbindung zu erwarten wäre und daher den Charakter einer Mehrfachbindung hat (Tabelle 13.33).

In W^{VI}O(P₂O₇) hat die bisher einzige experimentell charakterisierte terminale P-O-Bindung eine Länge von 1,499 Å [146]. Im Vergleich dazu hat das Oxidion O1 mit der Koordinationszahl K = 3 (P+ 2V) einen langen Bindungsabstand d(P-O) = 1,635 Å, welcher den Abständen d(P-O_b) ähnelt.

Abbildung 3.20: Kristallstruktur von VPO₄-m1" nach der DFT-Strukturoptimierung.

Tabelle 3.6: Atomkoordinaten berechnet mit dem Funktional PW1PW für metastabiles VPO₄-m1" (R.G.: Pnma) basierend auf β -VOPO₄ [48]/ β -LiVOPO₄ [140] mit angepassten Gitterparametern (a = 7,3453 Å, b = 6,4001 Å, c = 7,3196 Å). Nur die Vanadiumlage 4b is besetzt.

Atom	Wyckoff	x	y	z
V1	4b	$0,\!5$	0	0
P1	4c	0,357	1/4	0,340
O1	4c	$0,\!153$	1/4	$0,\!429$
O2	8d	$0,\!357$	0,056	0,204
O3	4c	0,999	1/4	0,019

 VPO_4 -m2. DFT-Strukturoptimierungen wurden durchgeführt, da die Qualität der experimentellen Pulverdiffraktogramme keine Verfeinerung des Strukturmodells erlaubte. Das Strukturmodell von VPO_4 -m2 basiert auf der gemischtvalenten Verbindung Fe^{II}Fe^{III}(V^{IV}O)(PO_4)(P_2O_7) [139].

Für VPO₄-m2 ergibt sich daraus die Frage, ob die Vanadiumionen der drei kristallographischen Lagen (Tabelle 3.7) gleichwertig oder verschieden sind. Diese Frage sollte ebenfalls mittels Ergebnissen der DFT-Rechnungen beantwortet werden. Die Atompositionen der Startstruktur wurden von Fe^{II}Fe^{III}(V^{IV}O)(PO₄)(P₂O₇) [139] übernommen. Eisen und Vanadium liegen in den Oxidationsstufen +II, +III und +IV vor. In Fe^{II}Fe^{III}(V^{IV}O)(PO₄)(P₂O₇) ist der Vanadylsauerstoff durch die Mehrfachbindung an V⁴⁺ stabilisiert, sodass kein Oxidionen-Transfer (Lux-Flood-Säure-Base-Reaktion) von der Vanadylgruppe zum Pyrophosphat unter der Bildung zweier Orthophosphatgruppen und V⁴⁺ stattfindet.

Für VPO₄-m2 ergibt sich daraus die Frage, ob die Vanadium-Ionen der drei kristallographischen Lagen (vgl. Tabelle 3.7) gleichwertig oder verschieden sind. Um diese Frage zu beantworten, wurden ebenfalls DFT-Rechnungen durchgeführt. Die Atompositionen der Startstruktur wurden von Fe^{II}Fe^{III}(V^{IV}O)(PO₄)(P₂O₇) [139] übernommen und unter Erhalt der Raumgruppe optimiert. Die Optimierung war erfolgreich ($P2_1/m$, Z = 2, a = 8,764 Å, b = 5,331 Å, c = 10,353 Å, $\beta = 112,619$ °). Die optimierten Gitterparameter sind nahe an den experimentell bestimmten Werten (vgl. Tabelle 3.7). Die V-O-Abstände aus der Strukturoptimierung (vgl. Tabelle 13.33) stimmen mit denen von VPO₄ (CrVO₄-Typ) überein, weswegen angenommen wird, dass Vanadium auf allen Lagen in der Oxidationsstufe +III vorliegt.

3.3. Topotaktisch kontrollierte Reduktion von $\beta\text{-VOPO}_4$

Tabelle 3.7: Strukturmodell für VPO₄-m2 (R.G. $P2_1/m$) basierend auf Fe^{II}Fe^{III}(V^{IV})(PO₄)(P₂O₇) [139] nach der DFT-Optimierung (a = 8,764 Å, b = 5,331 Å, c = 10,353 Å, $\beta = 112,619$ °). Gitterparameter basierend auf dem experimentellen Röntgenpulverdiffraktogramm (Abbildung 3.16): a = 8,792(4) Å, b = 5,269(2) Å, c = 10,398(6) Å, $\beta = 112,60(4)^{\circ}$.

Atom	Wyckoff	x	y	z
V1	2c	0	0	1/2
V2	2e	0,431	3/4	0,291
V3	2e	0,074	3/4	0,217
P1	2e	0,714	3/4	0,599
P2	2e	$0,\!170$	3/4	0,939
P3	2e	0,346	3/4	0,751
O1	2e	0,165	3/4	$0,\!639$
O2	2e	0,331	3/4	0,902
O3	2e	0,844	3/4	0,532
O4	2e	0,538	3/4	$0,\!488$
O5	2e	0,002	3/4	0,369
O6	4f	0,739	0,993	$0,\!687$
O7	2e	0,237	3/4	0,101
O8	4f	$0,\!433$	0,990	0,745
O9	4f	0,075	0,989	0,884

 VPO_4 -m3. Ein Versuch das Strukturmodell von VPO_4 -m1 ohne Symmetrierestriktionen zu optimieren (Startkoordinaten Tabelle 3.4; nur Lage 4c vollständig mit Vanadium besetzt), ergab ein weiteres Polymorph, VPO_4 -m3. Nach vollständiger Strukturoptimierung wiesen die Gitterparameter auf eine höhere Symmetrie als P1 hin. Die finale Struktur ist orthorhombisch mit der Raumgruppe Pnma (Z = 4, a = 9,584 Å, b = 6,002 Å, c = 4,732 Å, Tabelle 3.8 und Tabelle 13.32) und gehört zur Strukturfamilie von Heterosit/Purpurit [126].

In diesem Modell (vgl. Abbildung 3.23) sind die stark verzerrten $[V^{III}O_6]$ -Oktaeder über Kanten mit $[PO_4]$ -Tetraedern verknüpft. Jeder $[PO_4]$ -Tetraeder ist mit drei unterschiedlichen Oktaederketten verbunden. Dabei ist ein $[PO_4]$ -Tetraeder mit zwei Oktaedern über Ecken, mit dem dritten über eine Kante verknüpft. Dieses Verknüpfungsmuster ist aus elektrostatischer Sicht ungünstig, da im Vergleich zu VPO₄ (CrVO₄-Typ, 3,15 Å) der V-P-Abstand in VPO₄-m3 viel kürzer ist (2,74 Å), was zu einer Zunahme abstoßender Kräfte führt. Dies könnte einer der Gründe sein, warum VPO₄-m3 bisher nie im Experiment beobachtet wurde, obwohl es sich um ein lokales Minimum handelt. Bei VPO₄-m3 könnte es sich um ein Intermediat bei der Umwandlung von VPO_4-m1 ' zu VPO_4 (CrVO₄-Typ) handeln.

Abbildung 3.21: Kristallstruktur von VPO₄-m3 nach der DFT-Strukturoptimierung.

Tabelle 3.8: DFT-optimiertes Strukturmodell für VPO₄-m3 (R.G. Pnma) mit den Gitterparametern a = 9,584 Å, b = 6,002 Å, c = 4,732 Å.

Atom	Wyckoff	x	y	z
V1	4c	0,028	3/4	0,564
P1	4c	0,339	3/4	0,371
O1	4c	0,183	3/4	0,304
O2	8d	0,415	$0,\!551$	0,217
O3	4c	0,865	3/4	0,812

VPO₄-*m*4. Als Startmodell wurde wieder von VPO₄-*m*1 (Tabelle 3.4) mit Vanadium nur auf der Lage 4*c* ausgegangen. Diesmal wurde das Modell unter Freigabe der Gitterparameter optimiert, die Raumgruppe wurde festgehalten. Erhalten wurde ein neues Polymorph VPO₄-*m*4 (*Pnma*, *a* = 6,801 Å, *b* = 6,321 Å, *c* = 5,676 Å, Tabelle 3.9). VPO₄-*m*4 gehört zur Strukturfammilie des Zirkons (ZrSiO₄, *I*4₁/*amd*, *a* = 6,612(2) Å, *b* = 5,994(2) Å [147]). Dieser Strukturtyp wird auch bei kleinen, dreiwertigen Seltenenerd-Kationen beobachtet (z. B. ScPO₄: *a* = 6,574(1) Å, *c* = 5,791(1) Å [148] und LuPO₄: *a* = 6,792(2) Å, *c* = 5,955(2) Å [149]). Im Modell ist V³⁺ von acht Oxidionen koordiniert. Die V-O-Bindungsabstände variieren zwischen 1,96 und 2,53 Å (vgl. Tabelle 13.32). Die [VO₈]-Dodekaeder sind über Kanten zu Ketten verknüpft. Die Ketten sind auch untereinander über Kanten verknüpft. Die [PO₄]-Tetraeder sind über eine Kante mit einem [VO₈]-Polyeder, sowie über zwei Ecken mit verschiedenen [VO₈]-Ketten verknüpft (vgl. Abbildung 3.22).

Abbildung 3.22: Kristallstruktur von VPO_4 -m4 nach der DFT-Strukturoptimierung (Zirkon-Strukturtyp).

Tabelle 3.9: Vorhergesagte Kristallstruktur VPO₄-m4 (R.G. Pnma, Z = 4, a = 6,801 Å, b = 6,321 Å, c = 5,676 Å).

Atom	Wyckoff	x	y	z
V1	4c	0,03	1/4	0,615
P1	4c	1/4	0,378	$0,\!371$
01	4c	0,310	$0,\!25$	0,537
O2	8d	$0,\!499$	0,066	$0,\!195$
O3	4c	0,162	1/4	0,944

 VPO_4 -m5. Die Startkoordinaten dieses Strukturmodells sind die Atomkoordinaten von β -VOPO₄ und die dazu veröffentlichten Gitterparameter [48] ohne O4, dem Vanadylsauerstoff (Tabelle 3.10). Das Modell wurde unter Erhalt der Raumgruppe *Pnma* optimiert.

Die so erhaltenen Gitterparameter sind alle kürzer als die der Startstruktur (a = 6,462 Å, b = 5,327 Å, c = 6,892 Å). Die besonders starke Verkürzung des *a*-Gitterparameters ist durch den fehlenden Vanadylsauerstoff zu erklären. VPO₄-*m*5 ist strukturell sehr nahe mit dem thermodynamisch stabilen Polymorph VPO₄-*Cmcm* [111] verwandt (Abbildung 3.23, Tabelle 3.10). Die in der Startstruktur enthaltenen [V^{III}O₄]-Polyeder sind in VPO₄-*m*5 zu kantenverknüpften Ketten kondensiert. Die Ketten sind untereinander über [PO₄]-Gruppen verknüpft. Der Hauptunterschied zwischen VPO₄-*m*4 und VPO₄-*Cmcm* ist die Orientierung der [PO₄]-Einheiten. In VPO₄-*m*5 sind diese entlang der *a*-Achse alternierend, in VPO₄-*Cmcm* dagegen gleich angeordnet.

Abbildung 3.23: Kristallstruktur von VPO₄-m5.

Tabelle 3.10: Atomkoordinaten für das Startmodell basierend auf β -VOPO₄ (fettgedruckt, *Pnma*, a = 7,770(3) Å, b = 6,143(3) Å, c = 6,965(3) Å [48]) ohne O4 und VPO₄-m5 (R.G.: *Pnma*, a = 6,462 Å, b = 5,327 Å, c = 6,892 Å).

Atom	x	y	z
V1	1/4	1/4	1/4
	$0,\!1735$	1/4	0,2307
P1	0	1/4	-0,149
	0,8831	1/4	0,8783
01	0	0,499	0,270
	$0,\!1228$	$0,\!5494$	$0,\!2511$
O2	$0,\!800$	1/4	-0,028
	0,7235	1/4	0,0091
O3	0,200	1/4	-0,028
	0,0469	1/4	-0,0030

In Abbildung 3.24 wurden alle berechneten Simulationen der VPO₄-Polymorphe miteinander verglichen. Der thermodynamisch stabilen Phase am ähnlichsten ist VPO₄-m5, was auch beim Vergleich der Kristallstrukturen deutlich wird. Die Strukturmodelle von VPO₄-m3 und VPO₄-m4 unterscheiden sich hingegen deutlich von VPO₄-Cmcm. In Tabelle 3.11 werden die elektronische Energie und das molare Volumen der verschiedenen Polymorphe von VPO₄ miteinander verglichen. Für die thermodynamisch stabile Form VPO₄ (CrVO₄-Typ) wird die niedrigste Energie erhalten, gefolgt von VPO₄-m2. Das am wenigsten stabile Polymorph ist VPO₄-m1", gefolgt von VPO₄-m1. Im Fall von VPO₄-m1" lässt sich die geringe Stabilität auf die Bildung terminaler P-O-Bindungen und einer ungleichen Koordinationszahl der Oxidionen zurückführen. Trotzdem liegt diese Struktur in einem lokalen Minimum der Energiehyperfläche. Der energetische Unterschied von VPO_4-m1' zum nächst stabileren Polymorph, VPO_4-m4 , ist groß. VPO_4-m4 und VPO_4-m3 sind beide aus kantenverknüpften $[VO_6]$ - und $[VO_8]$ -Polyedern, sowie $[PO_4]$ -Tetraedern aufgebaut. Diese Verknüpfungsmuster erlauben eine Erhöhung der Koordinationszahl von Vanadium, was nach den DFT-Rechnungen offenbar bevorzugt ist. Interessanterweise folgt das molare Volumen der verschiedenen Polymorphe nicht den berechneten Energien.

Abbildung 3.24: Simulierte Pulverdiffraktogramme (Cu-K α_1) für VPO₄-m3 (a),VPO₄-m5 (b) und die thermodynamisch stabile Form von VPO₄ (CrVO₄-Typ) (c).

Tabelle 3.11: Auf eine Formeleinheit normierte Energiedifferenz der VPO₄-Polymorphe. Das stabilste Polymorph ist der Bezugspunkt.

Polymorph	Cmcm	m1'	m1"	m2	m3	m4	m5
$ \begin{array}{c} \mathbf{E}_{el} \; [\mathrm{kJ/mol}] \\ \mathbf{V}_{mol,0K} \; [\mathrm{\AA}^3] \end{array} $	0 63,32	$+206 \\ 85,94$	$+290 \\ 85,94$	$+5 \\ 74,33$	$+52 \\ 61,05$	$+64 \\ 61,00$	$+45 \\ 59,31$

3.3.7 Vergleich der experimentellen und berechneten Schwingungsspektren

Die Berechnungen der IR-und Raman-Spektren wurde duchgeführt, um die Zuordnung der Schwingungsmoden zu unterstützen (vgl. Tabellen 13.34-13.39). Die berechneten Spektren von VPO_4 (CrVO₄-Typ) und VPO_4 -m1 stimmen gut mit den experimentellen überein, im Fall von β -VOPO₄ trifft das nur auf den Bereich niedriger Wellenzahlen zu ($< 900 \,\mathrm{cm}^{-1}$). Im Bereich höherer Wellenzahlen sind die simulierten Banden zu höheren Wellenzahlen verschoben (ca. $30 \,\mathrm{cm}^{-1}$). Wird diese Verschiebung berücksichtigt, passen die beobachteten Banden zu denen in der Simulation. Die Abweichung von Simulation und Messung könnte auf Oberflächeneffekte oder die Form der untersuchten Kristalle zurückzuführen sein, was eine Verschiebung der Banden im gemessenen Spektrum verursachen kann [150]. Die DFT-Rechnung von VPO₄ (CrVO₄-Typ) erlaubt es, zwischen V-O_{eq} und V- O_{ax} -Schwingungen zu unterscheiden (vgl. Tabellen 13.36 und 13.37). In VPO₄-m1 sind alle P-O-Banden mit denen der V-O-Schwingungen gekoppelt. Die V-O-Moden können in symmetrische und antisymmetrische Schwingungen unterschieden werden. Die symmetrischen Schwingungen werden bei $1109 \,\mathrm{cm}^{-1}$ und $1153 \,\mathrm{cm}^{-1}$ beobachtet. Die gute Übereinstimmung der Spektren mit den Simulationen ist ein weiterer Beleg dafür, dass die Modelle, basierend auf den Röntgenpulverdiffraktogrammen, das Polymorph VPO_4 -m1' gut beschreiben.

3.3.8 Diskussion

Die Fehlordnung der Vanadiumpositionen in VPO₄-m1 ist aufgrund des Bildungsprozesses mit den zwei benachbarten, flächenverknüpften Oktaedern \Box/V (in β -VOPO₄), Li/V in β -LiVOPO₄ (4b und 4c in Pnma) anzunehmen. Die Berücksichtigung dieser Fehlordnung durch zwei verschiedene Strukturmodelle (m1' und m1") in den DFT-Rechnungen zeigt, dass beide Strukturen ein lokales Energieminimum darstellen. Die Fehlordnung der Lagen von Vanadium erklärt wahrscheinlich auch, warum weder das elektronische Spektrum, noch die magnetische Suszeptibilität oder das Schwingungsspektrum quantitativ beschrieben werden können. Für VPO₄-m2 wurde das Strukturmodell, welches aus den Röntgenpulveraufnahmen abgeleitet wurde, bestätigt. Außerdem zeigte das optimierte Modell, dass Vanadium auf den drei unabhängigen Lagen jeweils dreiwertig vorliegt. Die drei Polymorphe VPO₄-m3, -m4 und -m5 sind weitere kristallchemisch mögliche Strukturen, die energetisch in einem Minimum der Energiehyperfläche liegen.

3.4 Zusammenfassung

Die Reduktion von β -VOPO₄ mit feuchtem Wasserstoff läuft bei Temperaturen T < 650 °C kinetisch kontrolliert ab. Dabei erfolgt der Verlust des Vanadylsauerstoffs der V \equiv O-Gruppe als erster Schritt. Überraschenderweise ist die Reduktion der Vanadylgruppe unter diesen Bedingungen nicht auf die Oberfläche begrenzt, sondern erfolgt auch im Volumen. Die kinetisch kontrollierte Reduktion führt zu den neuen metastabilen Polymorphen von VPO₄-m1 und -m2.

Das experimentell für VPO₄-m1 beobachtete Beugungsdiagramm kann mit zwei Strukturmodellen (m1' und m1") mit demselben Zellvolumen, aber einer unterschiedlichen Besetzung der Lagen 4b und 4c (Pnma) erklärt werden. Diese Modelle bestehen aus [VO₄]- und [PO₄]-Einheiten.

Weitere metastabile Polymorphe konnten mittels DFT-Rechnungen durch Variation der Optimierungsbedingungen erhalten werden (VPO₄-m3, -m4 und m5). VPO₄-m3 ist strukturchemisch nahe verwandt mit VPO₄ (CrVO₄-Typ) und gehört zur Heterosit/Purpurit-Strukturfamilie. VPO₄-m4 (ZrSiO₄-Typ) zeigt die strukturelle Ähnlichkeit zwischen dem CrVO₄-Typ und der ZrSiO₄-Struktur. Der ZrSiO₄-Typ zeigt eine höhere Koordinationszahl K (M^{3+}) = 8 für dreiwertige Kationen als die anderen MPO_4 -Polymorphe. Dies könnte ein Hinweis sein, dass VPO₄-m4 über Hochdrucksynthese zugänglich ist. VPO₄-m5 ist strukturell verwandt zu VPO₄ (CrVO₄-Typ). VPO₄-m3 könnte einen Übergangszustand bei der Umwandlung von VPO₄-m1 nach VPO₄ (CrVO₄-Typ) darstellen.

Die vorgestellten Ergebnisse zeigen, dass nicht nur Perowskit-artige Oxide, sondern auch die topotaktisch kontrollierte Reduktion von Oxidphosphat-Netzwerken mit feuchtem Wasserstoff den Zugang zu neuen, thermodynamisch metastabilen Phosphaten von Übergangsmetallen in ungewöhnlichen Oxidationsstufen und Koordinationspolyedern eröffnet.

Kapitel 4

Oxidphosphate $MOPO_4$ von Niob und Tantal

4.1 Niob(V)-oxidphosphat

Das ternäre System Nb/P/O ist in der Literatur ausführlich behandelt worden. Das thermische Ausdehnungsverhalten, sowie die Phasenübergänge von α -NbOPO₄ (α -MoOPO₄-Typ) und β -NbOPO₄ (MPTB-Strukturfamilie) wurden bereits ausführlich untersucht. Eine Literaturübersicht befindet sich im Anhang, Tabelle 13.40.

AMOS ET AL. haben gezeigt, dass α -NbOPO₄ (α -MoOPO₄-Strukturtyp) einer Phasenumwandlung von P4/n nach P4/nmm bei Temperaturen um 200 °C unterliegt [151]. Für β -NbOPO₄ (MPTB-Typ) wurde ein Phasenübergang zweiter Ordnung bei 290 °C berichtet [73]. Bei NbOPO₄ mit der Raumgruppe $Pna2_1$ von KAISER ET AL. handelt es sich um eine Verbindung mit einem kleinen Sauerstoffdefizit, erkennbar an der dunkelblauen Farbe der Kristalle. Die von FUKUOKA ET AL. gefundene Reihe Nb(P_{2,02-x}O₇) (x = 0,00; 0,10; 0,21; 0,22) ist dem Strukturtyp ZrP₂O₇ zuzuordnen.

Im folgendem Abschnitt werden die literaturbekannten Eigenschaften der Polymorphe α -NbOPO₄ und β -NbOPO₄ miteinander verglichen und durch eigene Untersuchungen zu den UV/vis-, IR- und Raman-Spektren ergänzt. Dazu wurde die ab initio Berechnung der Schwingungsmoden durchgeführt.

Die Synthese wird in Abschnitt 9.2.1 behandelt. Das UV/vis-Spektrum von α -NbOPO₄ zeigt keinen Übergang im hier zugänglichen Messbereich (vgl. Abbil-

dung 4.1). Dagegen sind im Spektrum von β -NbOPO₄ zwei Absorptionsbanden $(\tilde{\nu}_1 = 29000 \text{ cm}^{-1}, \tilde{\nu}_2 = 34000 \text{ cm}^{-1})$ zu erkennen. Ein Grund für das Absorptionsverhalten könnte die unterschiedliche Wechselwirkung von Orbitalen in α - und β -NbOPO₄ sein. Durch deren geometrische Anordnung in β -NbOPO₄ könnte ein LMCT von den *p*-Orbitalen des Sauerstoffs in die leeren 4*d*-Orbitale des Niobs bei niedrigeren Wellenzahlen als bei α -NbOPO₄ möglich sein.

Die PDOS-Rechnungen (vgl. Abbildung 4.2)für die beiden NbOPO₄-Polymorphe bestätigen die experimentelle Beobachtung. In α -NbOPO₄ ist die Wechselwirkung des Niobs mit der Umgebung stärker, weswegen die antibindenen *d*-Orbitale energetisch höher liegen, als in β -NbOPO₄.

Abbildung 4.1: Pulverremissionsspektren von α - und β -NbOPO₄.

Abbildung 4.2: PDOS der Niob- und Sauerstoffatome von α - und β -NbOPO₄.

Es wurden IR- und Raman-Spektren von α -und β -NbOPO₄ gemessen. Die Tabellen mit den Schwingungszuordnungen der IR-und Raman-Spektren sind im Anhang, Tabelle 13.41 und 13.87 zu finden.

Da α -NbOPO₄ in der Raumgruppe P4/n kristallisiert und damit höhersymmetrisch als β -NbOPO₄ ist, sind in dessen Spektrum im Vergleich wesentlich weniger Schwingungen zu erwarten (Abbildung 4.3). Zudem sind aufgrund der Zentrosymmetrie von α -NbOPO₄ alle IR-Banden Raman-inaktiv und alle Raman-Banden IR-inaktiv. Die IR- und Raman-Spektren von α -und β -NbOPO₄ unterscheiden sich daher stark voneinander. Dies ist auch zu erwarten, da sich das Verknüpfungsmuster der Oktaederketten in den beiden Kristallstrukturen voneinander unterscheidet. In α -NbOPO₄ sind diese Ketten trans-verknüpft und gleichzeitig die [NbO₆]-Oktaeder durch alternierende Nb \equiv O-Nb-Bindungen verzerrt. Die Nb \equiv O-Bindung ist eine Mehrfachbindung und sollte aus diesem Grund eine höhere Anregungsenergie benötigen als eine einfache Nb-O-Bindung.

Im MPTB-Strukturtyp sind die Oktaeder entlang der Kette cis-verknüpft. Die

verknüpfende Nb-O-Bindung ist keine Mehrfachbindung und sollte demnach im Bereich niedrigerer Wellenzahlen zu finden sein.

Im Folgenden wird nur auf die Bindungsstärke der Nb-O-Bindungen in den beiden Strukturen näher eingegangen. Das experimentelle IR-Spektrum von β -NbOPO₄ zeigt im Bereich von 620-830 cm⁻¹ Absorptionsbanden, die im IR-Spektrum von α -NbOPO₄ fehlen (Abbildung 4.3). Frequenzrechnungen haben ergeben, dass in diesem Bereich die Nb-O-Nb-Schwingungen der *cis*-verknüpften Oktaederketten liegen, entsprechend treten diese Banden bei α -NbOPO₄ nicht auf. Im experimentellen Spektrum von β -NbOPO₄ wird bei 1182 cm⁻¹ zusätzlich ein Oberton der Nb-O-Nb-Schwingung gemessen. Die Nb \equiv O-Schwingungsmode kann im experimentellen IR-Spektrum von α -NbOPO₄ aufgrund der Auflösung nicht ohne Hilfe von berechneten Schwingungsspektren zugeordnet werden. Die berechneten Schwingungsfrequenzen der Nb \equiv O-Schwingungsmode liegen bei 830 cm⁻¹ und liegen damit energetisch gleich oder höher als die Nb-O-Nb-Schwingungsmoden in β -NbOPO₄. Daraus kann abgeleitet werden, dass die Nb \equiv O-Mehrfachbindung in α -NbOPO₄ stärker, als die Nb-O-Nb-Bindung in β -NbOPO₄ ist, sich die Bindungsstärken aber nicht sehr stark voneinander unterscheiden.

Im experimentellen Raman-Spektrum von α -NbOPO₄ ist die Bande der Nb \equiv O-Mehrfachbindung bei 802 cm⁻¹ zu finden. Die Nb-O-Nb-Schwingungen von in β -NbOPO₄ haben im experimentellen Raman-Spektrum nur eine geringe Intensität und können den Schwingungsrechnungen zufolge im Bereich von 580-630 cm⁻¹ angesiedelt werden. Die gemessene Bande bei 834 cm⁻¹ könnte eine Oberschwingung dieser Banden bei 416 cm⁻¹ sein. Insgesamt stimmen die berechneten und beobachteten Spektren gut überein.

Abbildung 4.3: IR- und Ramanspektren von α -NbOPO₄ (a, b) und β -NbOPO₄ mit berechneten Schwingungsfrequenzrechnungen (c, d).

4.2 Das Tantal(V)-oxidphosphat

Das Dreistoffsystem Ta/P/O ist bisher wenig in der Literatur beachtet worden. Der Grund hierfür ist zum einen die Eigenschaft von Tantal in Verbindung mit Sauerstoff, fast ausschließlich in der Oxidationsstufe +V aufzutreten [134], zum andern sind reaktive Precursoren nicht einfach herzustellen. Die von Tantal bekannten Verbindungen sind oftmals schlecht charakterisiert, was sich wahrscheinlich mit der Reaktionsträgheit der meisten Tantalverbindungen erklären lässt, die aufgrund dessen als Edukt für Synthesen ungeeignet sind. Im Rahmen dieser Arbeit wurde in Anlehnung an die Literatur eine Synthese für einen wasserlöslichen und lagerstabilen Precursoren entwickelt. Für Einzelheiten zu dessen Synthese sei auf Kapitel 9 verwiesen. Die folgende Tabelle gibt eine Übersicht zu den bisher bekannten Tantalphosphaten.

Zusammensetzung	Kristallsystem/ Raumgruppe	Gitterparameter [Å], [°]
β-TaOPO ₄ [62] β-TaOPO ₄ [60] α-TaOPO ₄ [61] Ta _{0,899} P _{1,901} O ₇ [152] TaP ₂ O _{7,5} [153] Ta ₂ P ₂ O _{12,5} [153]	$P2_1/c$ monoklin P4/n $Pa\bar{3}$ monoklin trigonal	$\begin{array}{c} 13,07(1),\ 5,281(4),\ 13,24(1),\ 120,4\\ 11,272(1),\ 5,281(1),\ 11,277(1),\ 89,89(1)\\ 6,425(3),\ 4,001(3)\\ 8,109(1)\\ 15,178(7),\ 5,246(2),\ 6,472(3),\ 92,52(6)\\ 8,637(2),\ 22,146(6) \end{array}$

Tabelle 4.1: Übersicht aller in der Literatur bekannten Phosphate des Tantals.

Im folgenden Abschnitt werden die Eigenschaften von β -TaOPO₄ zusammenfassend beschrieben. Im Rahmen dieser Arbeit wurden ³¹P-NMR- und UV/vis-Spektren aufgenommen, sowie die Phasenumwandlung von β -TaOPO₄ mittels thermischer Analyse charakterisiert.

 β -TaOPO₄ lässt sich über SCS guinierrein darstellen (Abschnitt 9.2.2). Das ³¹P-NMR-Spektrum von β -TaOPO₄ (Abschnitt 6.5, Abbildung 6.33) zeigt nur ein Phosphor-Signal bei -21,7 ppm, trotz der zwei kristallographischen P-Lagen in der Struktur. Der Grund hierfür könnte eine ähnliche chemische Umgebung der beiden Phosphoratome sein. β -TaOPO₄ (MPTB-Strukturtyp) ist farblos und zeigt im UV-Bereich oberhalb von 29000 cm⁻¹ einen Ligand-Metall-Charge-Transfer (LMCT) von einem *p*-Orbital des Sauerstoffs in ein leeres *d*-Orbital von Tantal (Abschnitt 6.5, Abbildung 6.31).

TaOPO₄ zeigt schwache Fluoreszenz unter UV-Licht (390 nm, siehe Kapitel 6.5, Abbildung 6.32) [154]. Die Messung mittels dynamischer Differenzkalorimetrie (DSC) an TaOPO₄ [75] zeigt beim Aufheizen einen endothermen Phasenübergang bei ca. 280 °C, der mit einer geringen Enthalpieänderung einhergeht. Dies ist ein Indiz, dass sich in der Struktur nur wenig geändert hat. Wahrscheinlich handelt es sich hierbei um einen Phasenübergang von monoklin nach orthorhombisch, der bereits für β -NbOPO₄ in der Literatur beschrieben wurde [73]. Da beim Abkühlen der Probe keine signifikante Hysterese beobachtet wurde, handelt es sich vermutlich um einen Phasenübergang zweiter Ordnung [155].

Abbildung 4.4: DSC-Messung von β -TaOPO₄. Aufgetragen ist die Leistung gegen die Temperatur, Aufheizen (rot) und Abkühlen (schwarz); Enthalpie (J/g).

Kapitel 5

Das quasibinäre System $VOPO_4$ -Nb OPO_4

Das Dreistoffsystem V/P/O ist aufgrund der Redoxchemie des Vanadiums sehr vielfältig. Die in der Literatur bekannten Vanadiumphosphate wurden bereits in den Kapiteln 2 und 3 diskutiert, ebenso wie die katalytische Bedeutung von Vanadiumpyrophosphat als Katalysator bei der Umsetzung von n-Butan zu Maleinsäureanhydrid. Im technisch eingesetztem Katalysator werden zur Erhöhung von dessen Selektivität geringe Mengen an Niob zugesetzt [95, 44].

Während des katalytischen Prozesses entstehen, auch ohne den Einsatz von Niob, in geringe Mengen VOPO₄ [28, 156, 157], wobei die Entstehung von α_{II} -VOPO₄ die Selektivität erhöht [51]. Der Zusatz von Niob erhöht den Anteil an $MOPO_4$ im Phasengemenge, wobei in der Literatur zu finden ist, dass bevorzugt δ -VOPO₄ erhalten wurde [44]. Genaue Erkenntnisse über den Einbau von Niob in (VO)₂P₂O₇ und VOPO₄ liegen bisher allerdings nicht vor. Es wurde vermutet, dass Niob die Bildung von Oxidphosphatphasen $MOPO_4$ begünstigt und zusätzlich in (VO)₂P₂O₇ eingebaut wurde.

Auch das System Nb/P/O wurde bereits in Abschnitt 3.3 diskutiert. Im System V/Nb/O sind einige ternäre Oxide bekannt (VNb₉O₂₅ [158], V₄Nb₁₈O₅₅ [159], NbOVO₄ [160], V₈Nb₅O₂₉ [161], (V,Nb)₆O₁₃ [162], V₃Nb₉O₂₉ [162], (V,Nb)₁₂O₂₉ [162]).

Im quaternären System V/Nb/P/O wurde die Mischkristallbildung im quasibinären System PNb₉O₂₅-PV₉O₂₅ [163] untersucht. "VNb(PO₄)₃ " mit NASI-CON-verwandter Struktur der Zusammensetzung "VNb(PO₄)₃ " wurde kristallographisch charakterisiert [164, 163].

Erste Arbeiten zur Darstellung quaternärer Phosphate entlang des quasibinären Schnittes VOPO₄-NbOPO₄ wurden von TITLBACH durchgeführt. Diese lieferten Hinweise auf eine mögliche Mischkristallbildung [163]. Über eine nasschemische Syntheseroute war die guinierreine Darstellung der Mischkristallreihe allerdings nicht gelungen. Stattdessen wurden stets Gemenge bestehend aus einer Phase mit α -MoOPO₄-Strukturtyp und einer weiteren Verbindungen mit Sc₂(WO₄)₃-Strukturtyp [165] erhalten. Im Rahmen dieser Arbeit wurde die Bildung der Mischkristallreihe (V_{1-x}Nb_x)OPO₄ via SCS untersucht, um Zugang zur phasenreinen Mischkristallreihe zu erhalten und deren katalytische Eigenschaften bestimmen zu können.

5.1 Experimentelle Untersuchungen: Ergebnisse und Diskussion

Mittels Solution Combustion Synthesis wurde die Mischkristallreihe $V_{1-x}Nb_x)OPO_4$ im Bereich $0, 1 \le x \le 1$ (α -MoOPO_4-Strukturtyp) bei 700 °C an Luft als gelbes Pulver erhalten (zu Synthesedetails siehe Kapitel 9). Für x < 0, 1 wurde ein zweiphasiges Gemenge, bestehend aus β -VOPO₄ und dem Mischkristall mit der unteren Grenzzusammensetzung, erhalten. Ein hoher Anteil an Niob ($0, 8 \le x \le 0,95$) führt zur Bildung des β -NbOPO₄-Typs als Nebenphase. Die Reaktionstemperatur muss auf 1000 °C erhöht werden, um den Anteil an der MPTB-Phase zu verringern (vgl. Abbildung 5.1). Die Halbwertsbreite der Reflexe in der Mischkristallreihe (α -MoOPO₄) ist breiter als die der Reinphasen. Der Grund hierfür könnte die statistische Verteilung von Vanadium und Niob auf den Metalllagen im Mischkristall sein, die zu Störungen der lokalen Ordnung in der Kristallstruktur führt. Zudem ist die Kristallinität der Mischkristalle geringer, was in einem schlechteren Signal-zu-Rausch-Verhältnis in den Pulverdiffraktogrammen resultiert.

Abbildung 5.1: Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Proben der Zusammensetzung (V_{0,1}Nb_{0,9})OPO₄ nach Tempern an Luft bei 800 °C (a) und bei 1000 °C (b) mit den Simulationen für (V_{0,1}Nb_{0,9})OPO₄ basierend auf α -NbOPO₄ (blau) und von β -NbOPO₄ (rot).

Die Auswertung der Röntgenpulveraufnahmen zeigen, dass eine Zunahme an Niob im Mischkristall zu einer Vergrößerung der a-Achse führt, während der Gitterparameter c kleiner wird (vgl. Abbildung 5.3).

Die Unterschiede der Gitterparameter von α_{II} -VOPO₄ und NbOPO wurde schon in Kapitel 2 diskutiert. Der Gang der Gitterparameter innerhalb der Mischkristallreihe kann auch anhand der Vertauschung der Reflexpositionen (1 1 1) und (2 0 0) mit zunehmenden Anteil an Niob verfolgt werden (vgl. Abbildung 5.2). Der Reflex (2 0 0) wird zu niedrigeren Winkeln verschoben, was eine Zunahme des Gitterparameters *a* widerspiegelt. Die Verschiebung des Reflexes (1 1 1) ist zum einen von der Zunahme des Gitterparameters *a* bestimmt, zum anderen durch die Abnahme von *c*. Da diese Abnahme deutlich stärker ausgeprägt ist als die von *a*, wird der Reflex (1 1 1) zu höheren Winkeln verschoben. Die experimentell ermittelten Gitterparameter der Mischkristallreihe folgen keinem linearen Zusammenhang in Abhängigkeit der Zusammensetzung.

Um die thermodynamische Stabilität der Mischkristallreihe zu überprüfen, wurden drei Zusammensetzungen (x = 0.2; 0.5; 0.8) in geschlossenen, evakuierten Kieselglasampullen bei 700 °C für zehn Tage getempert. Die so erhaltenen Gleichgewichtsphasen waren stark von der Zusammensetzung des eingesetzten Mischkristalls abhängig. Bei x = 0.2 findet eine Separierung in eine Vanadium-reiche Phase $(\beta$ -VOPO₄) und eine mit hohen Niob-Gehalt mit der ungefähren Zusammensetzung $(V_{0,2}Nb_{0,8})OPO_4$ statt. Bei Proben mit einem höheren Niob-Gehalt $(0,5 \le x \le 0,7)$ wird $(V_{0,2}Nb_{0,8})OPO_4$ neben einer unbekannten, vermutlich Vanadium-reichen Phase mit einem ungefähren Anteil von 3% erhalten (vgl. Abbildung 5.4). Die Bildung von β -VOPO₄ wurde nicht mehr beobachtet. Bei noch höheren Niob-Gehalt in der Mischkristallreihe $(0, 8 \le x \le 0, 9)$ wurde unter Gleichgewichtsbedingungen keine Phasenseparierung beobachtet. Aus diesem Grund ist es wahrscheinlich, das ab der Zusammensetzung $(V_{0,2}Nb_{0,8})OPO_4$ die Mischkristallreihe thermodynamisch stabil ist, wie auch schon in vorangegangenen Arbeiten gezeigt wurde [163]. Offenbar gelingt es jedoch mittels SCS auch die Synthese des metastabilen Bereichs der Mischkristallreihe zwischen $0, 1 \le x \le 0, 8$.

5.1. Experimentelle Untersuchungen: Ergebnisse und Diskussion

Abbildung 5.2: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Proben von $(V_{1-x}Nb_x)OPO_4$ nach Tempern bei 700 °C an Luft von x = 0.0; 0,1; 0,3; 0,5; 0,9 und 1,0 mit den Simulationen im α -MoOPO₄-Typ (blau) und dem β -NbOPO₄-Strukturtyp (rot). Die Verschiebung der Reflexe mit der Zusammensetzung wird durch die gestrichelte Linie hervorgehoben.

Abbildung 5.3: Relative Änderung der Gitterparameter a und c sowie des Zellvolumens der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ $(0, 1 \le x \le 1, 0)$ in Abhängigkeit von der Zusammensetzung bezogen auf α_{II} -VOPO₄.

Abbildung 5.4: Pulverdiffraktogramme (Guinier, Cu-K α_1) zu den Gleichgewichtsexperimenten mit den Zusammensetzungen x = 0,2; 0,5; 0,8 nach Tempern in evakuierten Kieselglasampullen bei 700 °C für zehn Tage.

IR- und Ramanspektren. Im folgenden werden die experimentellen IR- und Ramanspektren von α_{II} -VOPO₄, (V_{0.5}Nb_{0.5})OPO₄ und α -NbOPO₄ diskutiert. Die IR-Spektren zeigen zwei dominante Banden (vgl. Abbildung 5.5). Die Erste, im Bereich $580-630 \,\mathrm{cm}^{-1}$ wird der antisymmetrischen $[PO_4]$ -Deformationsschwingung zugeordnet, welche mit M-O-Streckschwingungen gekoppelt ist. Die Bande bei 800-1200 cm⁻¹ wird hauptsächlich von der P-O-Streckschwingungen verursacht und ist die intensivste in den Spektren. Sie überlagert auch die $M \equiv O$ -Schwingung. Diese kann deshalb in den experimentellen IR-Spektren nicht zweifelsfrei identifiziert werden. Aus diesem Grund kann die Energie der $M \equiv O$ -Schwingungen nur aus den DFT-Rechnungen entnommen werden. Während die Energie der P-O-Streckschwingungen in allen drei Verbindungen gleich ist, gibt es deutliche Unterschiede in den Energien der Nb \equiv O- und V \equiv O-Schwingungen in α -NbOPO₄ und α_{II} -VOPO₄. Das IR-Spektrum von (V_{0.5}Nb_{0.5})OPO₄ kann in guter Näherung als eine Überlagerung der Schwingungsmoden der beiden Randphasen betrachtet werden. Letzteres steht im Einklang mit dem Vorliegen einer homogenen Phase und spricht gegen ein zweiphasiges Gemenge aus den Randphasen. Dabei sind im Mischkristall einige charakteristische Banden leicht verschoben.

Die Qualität der Spektren variiert. Diese Variation ist auf das Messverfahren zurückzuführen. α_{II} -VOPO₄ zeigt ein gutes Signal-zu-Rausch-Verhältnis. Dies ist sowohl bei (V_{0,5}Nb_{0,5})OPO₄ als auch bei α -NbOPO₄ deutlich schlechter, da aufgrund des schwachen Signals der Proben die Energie des Lasers erhöht werden musste. Dies führte zur teilweisen Zerstörung der Proben.

Das Ramanspektrum von α -NbOPO₄ zeigt zwei Banden hoher Intensität. Die Bande bei 985 cm⁻¹ wird der antisymmetrischen P-O-Streckschwingung zugeordnet, die bei 802 cm⁻¹ der Nb \equiv O-Streckschwingung. Die antisymmetrische Nb-O-Streckschwingung liegt bei 612 cm⁻¹. Die Banden bei 466 cm⁻¹, 462 cm⁻¹ und 368 cm⁻¹ gehören hauptsächlich zu den O-P-O-Schwingungen. O-Nb-O-Schwingungen sind bei 288 cm⁻¹ zu finden.

Das Ramanspektrum von α_{II} -VOPO₄ zeigt ebenfalls zwei Banden hoher Intensität. Die Bande bei 943 cm⁻¹ gehört zur antisymmetrischen P-O-Streckschwingung, die bei 996 cm⁻¹ zur V \equiv O-Schwingung, die mit der antisymmetrischen P-O-Streckschwingung gekoppelt ist. Die Schwingung der Metallylbindung ist bei VOPO₄ im Vergleich zu NbOPO₄ zu höheren Wellenlängen verschoben. Die antisymmetrische V-O-Schwingung liegt bei 620 cm⁻¹, Banden bei 471 cm⁻¹, 434 cm⁻¹ und $401\,{\rm cm^{-1}}$ gehören zu den O-P-O-Schwingungen. Die übrigen Banden unter $400\,{\rm cm^{-1}}$ werden den O-V-O-Schwingungen zugeordnet.

Weder die Form noch die Position der Banden im Ramanspektrum von $(V_{0,5}Nb_{0,5})OPO_4$ lassen sich als Überlagerung der Randphasen erklären. Dies bestätigt die Annahme, dass es sich hierbei in der Tat um einen Mischkristall handelt. Die Peakhalbwertsbreite der Banden von $(V_{0,5}Nb_{0,5})$ OPO₄ ist deutlich höher als bei den Reinphasen. Diese Verbreiterung steht im Einklang mit Unterschieden in der lokalen Umgebung der beiden Kationen und geht einher mit leicht variierenden Anregungsenergien.

Abbildung 5.5: Vergleich der IR- und Ramanspektrum von α -NbOPO₄ (a bis d), $(V_{0,5}Nb_{0,5})OPO_4$ (e, f) und α_{II} -VOPO₄ (g bis j) mit den berechneten Spektren. Rote Linien kennzeichnen die $M \equiv O$ -Streckschwingungen in den Simulationen, die Pfeile in den Messungen.

In den UV/vis-Spektren von reinem α_{II} - und β -VOPO₄ lassen sich mindestens zwei Absorptionsbanden erkennen (vgl. Abbildung 5.6). Diese liegen in den Bereichen 20000-23000 cm⁻¹ und 30000-35000 cm⁻¹. Die Spektren sind sehr ähnlich zu Messungen, die in der Literatur zu finden sind [47, 166]. In der Literatur werden diese Banden den Übergängen LMCT(O²⁻ \longrightarrow V⁵⁺) zugeordnet [167]. Dabei handelt es sich vermutlich um Übergänge aus den *p*- und *s*-Orbitalen des Sauerstoffs in die leeren *d*-Orbitale des Vanadiums. Aufgrund der starken Ligandenfeldaufspaltung treten mehrere LMCT(O²⁻ \longrightarrow V⁵⁺) auf ($E(d_{xy}) << E(d_{x^2y^2}) << E(d_{z^2})$). Mit zunehmendem Anteil an Niob in der Mischkristallreihe wird die zweite Absorptionsbande zu niedrigeren Wellenzahlen verschoben (vgl. Abbildung 5.6). Sehr deutlich ist dieser Effekt bei $(V_{0,3}Nb_{0,7})OPO_4$ und $(V_{0,1}Nb_{0,9})OPO_4$. Im Fall von $(V_{0,3}Nb_{0,7})OPO_4$ ist die zweite Bande aufgespalten (II' und II''), was vermutlich auf unterschiedliche Mengen an Niob in der Umgebung des $[VO_6]$ -Chromophors zurückzuführen ist. $(V_{0,1}Nb_{0,9})OPO_4$ hat nur eine Absorptionsbande (II''), diese liegt bei der gleichen Energie wie die Bande II'' in $(V_{0,3}Nb_{0,7})OPO_4$. Wahrscheinlich verursacht dies die niobreiche Umgebung (second-sphere ligand field effect [168]). Die Änderung des Absorptionsverhaltens wird hier mit Bezug auf die lokale Umgebung des Metallkations diskutiert werden. Informationen über deren Einfluß liefern DFT-Rechnungen (siehe Abschnitt unten).

Abbildung 5.6: UV/vis Pulverremissionsspektren von β -VOPO₄ (blau), α_{II} -VOPO₄ (rot), (V_{0,7}Nb_{0,3})OPO₄ (grün), (V_{0,5}Nb_{0,5})OPO₄ (orange), (V_{0,1}Nb_{0,9})OPO₄ (violett) und α -NbOPO₄ (magenta). Alle Pulver, mit Ausnahme von NbOPO₄, zeigen eine leuchtend zitronengelbe Farbe. Die Nummerierung der Banden dient zur einfachen Beschreibung in der Diskussion.
5.2 DFT-Rechnungen

Für die Strukturoptimierungen, die Berechnung der harmonischen Frequenzen sowie IR- und Raman-Intensitäten in den Spektren wurde das Programm CRY-STAL17 verwendet [82]. Details zu der Theorie sind in Kapitel 12 zu finden. Alle Berechnungen wurden mit demselben Funktional und Korrekturen wie in Kapitel 2.3 beschrieben, durchgeführt. Als Basissätze wurden für Vanadium V_86-411d31G_harrison_1993 [169], für Niob Nb_SC_HAYWSC-31(31d)G_baranek_2013_LiNbO3 [170], für Phosphor P_85-21d1G_zicovich_2002 [171] und für Sauerstoff O_8-411d_bredow_2006 [172] verwendet. Die Koordinaten der Atome in der Elementarzelle wurden ohne Symmetrieeinschränkungen optimiert. Die experimentellen Strukturen dienten als Startpunkt. Die erhaltenen optimierten Gitterparameter wurden mit denen aus dem Experiment verglichen. Einige Konvergenz-Parameter wurden angepasst, um die numerische Präzision zu erhöhen. TOLINTEG wurde auf 7 7 7 14 42 gesetzt. Um die SCF-Konvergenz zu verbessern, wurde FMIXING auf 75 % eingestellt. Die Shrinking-Faktoren des Monkhorst-Pack-Gitters wurden auf $4 \times 4 \times 6$ festgelegt.

Die optimierten Strukturen von α_{II} -VOPO₄ und α -NbOPO₄ dienten als Startstruktur für die 2×2×2-Superzellen (Z = 16) (V_{16/16}Nb_{0/16})OPO₄, (V_{15/16}Nb_{1/16})OPO₄, (V_{0/16}Nb_{16/16})OPO₄ und (V_{1/16}Nb_{15/16})OPO₄. Die Superzellen wurden ohne Symmetrierestriktionen optimiert. Für die Optimierung wurden die Konvergenz-Parameter nochmals angepasst, da die hohe Anzahl von 112 Atomen in einer Zelle zu hohen Rechenaufwand führen. TOLINTEG wurde auf 7 7 7 7 14 und SHRINK auf 2 2 gesetzt.

Die Zustandsdichte wurde nach der Fourier-Legrende-Technik für alle vier Superzellen berechnet [173]. Für ein belastbares Ergebnis wurden die k-Punkte auf $6 \times 6 \times 6$ gesetzt.

Zunächst wurden die experimentell bestimmten Kristallstrukturen der Ausgangsverbindungen optimiert (Z = 2). Mit den so erhaltenen Modellen wurde eine $2 \times 2 \times 2$ -Superzelle (Z = 16) erzeugt und unter Freigabe der Symmetrie optimiert (Zusammensetzungen $(V_{16/16}Nb_{0/16})OPO_4, (V_{15/16}Nb_{1/16})OPO_4, (V_{1/16}Nb_{15/16})OPO_4,$ $(V_{0/16}Nb_{16/16})OPO_4$, Tabelle 5.1), um einen besseren Einblick auf den Einfluss der Verteilung der Metallkationen auf die lokale Umgebung zu gewinnen. Die Rechnungen der Reinphasen dienten als Referenz. Um die substituierte Superzelle $(V_{15/16}Nb_{1/16})OPO_4$ zu erzeugen, wurde ein Vanadium-Atom durch ein Niob-Atom ersetzt. Für die Bildung der Superzelle $(V_{1/16}Nb_{15/16})OPO_4$ wurde umgekehrt vorgegangen.

Die lokale Umgebung der Kationen im α -MoOPO₄-Strukturtyp besteht aus vier äquatorial angeordneten Oxidionen (aus Phosphatgruppen) und den zwei axialen Oxidionen. Die letzteren sind entlang der *c*-Achse der Einheitszelle angeordnet, wobei eine Bindung kurz und die andere verlängert ist. Im folgenden werden die berechneten Bindungsabstände untereinander verglichen. Die DFT-Strukturoptimierung der Superzelle bestätigen für reines $\alpha_{\rm II}$ -VOPO₄ und α -NbOPO₄, dass die Abstände $d(M\equiv O)$ und $d(M-O_{ax})$ gegenüber den Startwerten (exp. Daten) nahezu unverändert bleiben ($d(M\equiv O) = 1,572$ Å in ($V_{16/16}$ Nb_{0/16})OPO₄ und $d(M\equiv O) = 1,756$ Å in ($V_{0/16}$ Nb_{16/16})OPO₄; $d(M-O_{ax}) = 2,893$ bis 2,895 Å in ($V_{16/16}$ Nb_{0/16})OPO₄ und $d(M-O_{ax}) = 2,367$ Å in ($V_{0/16}$ Nb_{16/16})OPO₄). Im Unterschied dazu führt die Substitution eines V⁵⁺-Kations durch Nb⁵⁺ bzw. von Nb⁵⁺ durch V⁵⁺ zu einer deutlichen Änderung der lokalen Umgebungen.

Der [NbO₆]-Oktaeder in (V_{15/16}Nb_{1/16})OPO₄ zeigt eine leicht verkürzte Niobyl-Bindung $d(Nb\equiv O) = 1,725$ Å anstelle von 1,754 Å in NbOPO₄, und einen stark verlängerten Abstand $d(Nb-O_{ax}) = 3,027$ Å), welcher sogar länger ist als der Abstand von $d(V-O_{ax})$ in reinem VOPO₄ (vgl. Tabelle 5.1). Die zwei benachbarten [VO₆]-Oktaeder in der gleichen Kette wie der [NbO₆]-Oktaeder sind nur leicht verzerrt im Vergleich zur Reinphase mit leicht verkürzten Abständen $d(V-O_{ax})$ und verlängerten $d(V\equiv O)$. Die Änderungen der äquatorialen *M*-O-Abstände sind so klein, dass sie an dieser Stelle vernachlässigt werden können.

In der Superzelle mit der Zusammensetzung (V_{1/16}Nb_{15/16})OPO₄) ist die Vanadylbindung von [VO₆] leicht verlängert (0,019 Å), aber immer noch sehr nahe am Wert der Reinphase (vgl. Tabelle 5.1). Diese verkürzte Bindung verursacht die Verlängerung der benachbarten Bindung Nb-O_{ax} um 0,290 Å. Diese Verlängerung wiederum führt zu einer Verkürzung der Niobylbindung um 0,02 Å. Zudem wird der Abstand $d(V-O_{ax} = 2,291$ Å sehr kurz. Der Grund hierfür ist wahrscheinlich, dass Vanadium in die bevorzugte Koordinationsumgebung des Niobs gedrängt wird, um Störungen in der Struktur zu minimieren.

Trotz der beschriebenen Abweichungen der Bindungslängen im Wirtsgitter zeigen die Strukturoptimierungen, dass die koordinative Umgebung der Fremdkationen an die des Wirtsgitters angepasst wird. Das hat vor allem Auswirkungen auf die

schwache M-O_{ax}-Bindung, die Metallylbindung bleibt nahezu gleich.

Abbildung 5.7: Ketten aus [MO₆]-Oktaedern nach DFT-Strukturoptimierung (Superzelle, $2 \times 2 \times 2$) ohne Symmetrie für die Zusammensetzungen (V_{16/16}Nb_{0/16})OPO₄ (a), (V_{0/16}Nb_{16/16})OPO₄ (b) sowie der Mischkristalle (V_{15/16}Nb_{1/16})OPO₄ (c) und (V_{1/16}Nb_{15/16})OPO₄ (d); Abstände in Å. Blau ist Nb⁵⁺, orange V⁵⁺ und rot sind die Oxidionen.

Tabelle 5.1: Abstände $d(M \equiv O)$ und $d(M - O_{ax})$ sowie Gitterparameter der Superzellen (2×2×2 gerechnet ohne Symmetrierestriktionen in *P*1) aus DFT-Rechnungen, von α_{II} -VOPO₄, α -NbOPO₄ und zwei Mischkristallen der Zusammensetzungen (V_{15/16}Nb_{1/16})OPO₄ und (V_{1/16}Nb_{15/16})OPO₄. Die Gitterparameter der experimentellen Phasen α_{II} -VOPO₄ und α -NbOPO₄ (Raumgruppe *P*4/*n*) wurden mit zwei multipliziert.

$MOPO_4$	$d(M \equiv O)$ [Å]	$d(M-O_{ax})$ [Å]	a, b, c [Å]a
V _{16/16} Nb _{0/16} (exp.)	1,58	2,85	12,028, 12,028, 8,868
$V_{16/16}Nb_{0/16}$ (calc.)	1,572 (16x)	2,893 (4x), 2,894 (7x), 2,895 (5x)	$11,970, \\11,970, \\8,932$
V _{15/16} Nb _{1/16} (calc.)	$ \begin{array}{c} 1,733 \ (1x) \\ 1,572 \ (4x), \\ 1,573 \ (6x), \\ 1,574 \ (4x), \\ 1,579 \ (1x) \end{array} \right\} V $	$\begin{array}{c} 3,027 \ (1x) \\ 2,533 \ (1x), \\ 2,852 \ (1x), \\ 2,854 \ (1x), \\ 2,856 \ (2x), \\ 2,857 \ (3x), \\ 2,856 \ (3x), \\ 2,862 \ (1x), \\ 2,863 \ (2x), \\ 2,867 \ (1x) \end{array}\right\} V$	12,006, 12,006, 8,864
$V_{1/16}Nb_{15/16}$ (calc.)	$1,591 (1x) \\ 1,733 (1x) \\ 1,752 (7x), \\ 1,753 (3x) \\ 1,754 (4x) \end{cases} Nb$	$2,291 (1x) \\ 2,380 (2x) \\ 2,387 (6x), \\ 2,388 (4x), \\ 2,396 (1x), \\ 2,399 (1x), \\ 2,666 (1x) \end{cases}$ Nb	12,643, 12,644, 8,280
V _{0/16} Nb _{16/16} (calc.)	1,754 (16x)	2,376 (16x)	12,695, 12,695, 8,259
$V_{0/16}Nb_{16/16}$ (exp.)	1,74	2,36	$12,781, \\12,781, \\8,208$

a) Die berechneten Winkel α,β,γ weichen maximal ±0,002° von 90° ab. 100

Basierend auf den Superzellen (Abbildung 5.8) wurden die Zustandsdichten (PDOS) von $(V_{16/16}Nb_{0/16})OPO_4$, $(V_{15/16}Nb_{1/16})OPO_4$, $(V_{1/16}Nb_{15/16})OPO_4$ und $(V_{0/16}Nb_{16/16})OPO_4$ (PDOS) berechnet. Um die Unterschiede in den optischen Spektren der Mischkristallreihe in Abhängigkeit des Vanadiumgehalts erklären zu können, wurden nur die Dichte der Zustände der Metall- und Sauerstoffatome berücksichtigt.

Die Zustandsdichten von Vanadium in $(V_{16/16}Nb_{0/16})OPO_4$ liegen hauptsächlich oberhalb des Fermi-Niveaus und können im Bereich 4 bis 7 eV den 3*d*-Orbitalen zugeordnet werden. Die Zustände der 3*d*-Orbitale sind aufgrund der starken Verzerrung der $[VO_6]$ -Oktaeder in drei Zustandsgruppen aufgespalten. Dies entspricht der erwarteten Aufspaltung eines gestauchten Oktaeders. Die erste Gruppe von Zuständen (3,9-4,3 eV; 31400-35000 cm⁻¹) erklärt den ersten Übergang im experimentellen Absorptionsspektrum, die zweite Gruppe (5,1-5,6 eV; 41100-45200 cm⁻¹) den zweiten Übergang. Es wird angenommen, dass die erste Gruppe von Zuständen von den d_{xy} -Orbitalen gebildet wird, während die d_{xz} - und $d_{x^2y^2}$ -Orbitale die zweiten Gruppe bilden. Die dritte Gruppe von Zuständen wird den d_{z^2} -Orbitalen zugeordnet. Zwischen den Maxima der Zustände beider Gruppen eins und zwei liegt eine Energiedifferenz von 1,4 eV (11300 cm⁻¹). Unterhalb des Fermi-Niveaus wird die Zustandsdichte durch die Orbitale der Oxidionen bestimmt.

Die PDOS von $(V_{0/16}Nb_{16/16})OPO_4$ zeigt oberhalb des Fermi-Niveaus (ab 5,2 eV; 41900 cm⁻¹) ebenfalls die charakteristische Aufspaltung der *d*-Orbitale des Niobs, allerdings ist deren Aufspaltung kleiner, da der $[NbO_6]$ -Oktaeder weniger verzerrt als der eben betrachtete $[VO_6]$ -Oktaeder ist. Die 4*d*-Orbitale des Niobs liegen bei höherer Energie als die 3*d*-Orbitale des Vanadiums. Aus diesem Grund ist die fundamentale Bandlücke von $(V_{0/16}Nb_{16/16})OPO_4$ höher als die von $(V_{16/16}Nb_{0/16})OPO_4$. Dies ist der Grund, warum NbOPO₄ kein sichtbares Licht absorbiert.

Der Einbau von Niob in VOPO₄ führt zu einem Shift der zweiten Gruppe von Zuständen mit Beteiligung von V⁵⁺ zu niedrigeren Energien (5,0-5,6 eV, 40300-44400 cm⁻¹) und überlappt so mit den Zuständen des Niobs. Desweiteren nimmt die Energiedifferenz zwischen den Maxima der Zustandsgruppen des Vanadiums ab (1,2 eV, 9700 cm⁻¹). Unter Berücksichtigung der lokalen Umgebungen in der Superzelle könnte diese Beobachtung mit der Abnahme der Bindungslänge $d(V \equiv O)$ zusammenhängen, die zu dem substituierten Niob benachbart ist. Im experimentellen UV/vis-Spektrum kann sowohl eine Verschiebung von Bande II zu niedrigeren Wellenzahlen als auch eine Abnahme der Energiedifferenz zwischen den Übergängen beobachtet werden.

Die PDOS von $(V_{1/16}Nb_{15/16})OPO_4$ zeigt drei schmale Gruppen von Zuständen $(3,8 \text{ eV} (30600 \text{ cm}^{-1}), 4,7 \text{ eV} (37900 \text{ cm}^{-1}), 5,3 \text{ eV} (42700 \text{ cm}^{-1})$. Die ersten beiden Zustände über dem Fermi-Niveau werden wieder Vanadium zugeordnet. Die in $(V_{16/16}Nb_{0/16})OPO_4$ beobachtete dritte Gruppe von Zuständen, die von Orbitalen des d_{z^2} gebildet werden, treten hier nicht auf. Dies lässt vermuten, dass der $[VO_6]$ -Oktaeder in $(V_{1/16}Nb_{15/16})OPO_4$ regulärer als in $(V_{16/16}Nb_{0/16})OPO_4$ ist. Aufgrund der geringen Menge an Vanadium in der Struktur gibt es nur wenige Gruppen von Zuständen. Die Energiedifferenz zwischen den zwei Zuständen des Vanadiums ist weiter reduziert $(0,9 \text{ eV}; 7300 \text{ cm}^{-1})$. Die zweite Gruppe von Zuständen überlappt nicht mit denen des Niobs. Die Energiedifferenz beträgt hier 0,6 eV (4800 cm⁻¹).

Das experimentelle UV/vis-Spektrum von $(V_{0,1}Nb_{0,9})OPO_4$ kann anhand der Ergebnisse aus den Rechnungen erklärt werden. Es wird angenommen, dass das Auftreten von Bande II" durch die energetischen Übergänge von V⁵⁺ verursacht wird, dessen Koordinationspolyeder weniger stark verzerrt ist als in VOPO₄. Dies führt zu einer Abnahme der Energiedifferenz zwischen Übergang eins und zwei, sowie der Separierung des Übergangs von Niob, welcher aus diesem Grund nicht im gemessenen Spektrum gesehen werden kann. Natürlich muss berücksichtgt werden, dass optische Spektren excitonische Effekte beinhalten, die nicht quantitativ mit berechneten Bandlücken verglichen werden können.

Abbildung 5.8: PDOS der $2 \times 2 \times 2$ -Superzellen von $(V_{16/16}Nb_{0/16})OPO_4$, $(V_{0/16}Nb_{16/16})OPO_4$ sowie der Mischkristalle $(V_{15/16}Nb_{1/16})OPO_4$ und $(V_{1/16}Nb_{15/16})OPO_4$.

5.3 Katalytisches Verhalten

Die erhaltene Mischkristallreihe ($(V_{1-x}Nb_x)OPO_4$, x = 0.95; 0.9; 0.8; 0.7; 0.6; 0.4; 0.2) wurde katalytisch für die Selektivoxidation von *n*-Butan zu Maleinsäureanhydrid an der TU Berlin getestet. Dabei wurde jeweils ein Probenvolumen von 1 ml verwendet. Die Untersuchungen liefen in den folgenden fünf Schritten ab:

- 1. Aufheizen auf $225 \,^{\circ}$ C mit 2 K/min unter 5 % O₂ in N₂.
- 2. Wechsel der Gasatmosphäre zu 2 % n-Butan, 20 % O₂, 3 % H₂O und 3 % Ar in N₂.
- 3. Schrittweises Aufheizen auf 225 und dann 400 °C in 25 °C-Schritten. Gegebenenfalls wurde die Maximaltemperatur aufgrund der unterschiedlichen Aktivität der Katalysatormaterialien angepasst, sodass der Umsatz X von n-Butan nie mehr als 90 % betrug.
- 4. Schrittweises Abkühlen auf 300 °C in 25 °C-Schritten. (Diese Daten wurden für die Selektivitäts/Umsatz-Kurven verwendet).
- 5. Abkühlen auf Raumtemperatur in 5% O₂ in N₂.

Während Schritt 4 wurde das Produktgemisch gaschromatographisch analysiert. Anhand dieser Daten wurde der Umsatz X an *n*-Butan bestimmt. Generell nahm der Umsatz mit steigender Temperatur zu. Den höchsten Umsatz bei 400 °C zeigen (V_{0,1}Nb_{0,9})OPO₄, (V_{0,2}Nb_{0,8})OPO₄ und (V_{0,3}Nb_{0,7})OPO₄ mit ca. 80 %. Je höher der Anteil an Vanadium war, desto weniger aktiv waren die Katalysatoren. Eine Ausnahme von diesem Trend bildet (V_{0,05}Nb_{0,95})OPO₄. Die Probe mit der höchsten Selektivität für MSA ist (V_{0,1}Nb_{0,9})OPO₄ bei 375 °C mit 38 %. Mit abnehmendem Anteil an Vanadium nahm die Selektivität S(MSA) der getesteten Proben zu. Die Pulverdiffraktogramme der Ausbauproben zeigten weder eine signifikante Änderung der Phasenzusammensetzung (vgl. Abbildungen 5.10), noch eine Zunahme der Kristallinität der Proben. Insgesamt liegen alle Ergebnisse unter denen des kommerziell verwendeten VPP-Katalysators (Tabelle 13.103).

Abbildung 5.9: Umsatz von *n*-Butan (oben) und Selektivität für die Bildung von Maleinsäureanhydrid in Abhängigkeit der Temperatur und Zusammensetzung des Katalysators.

Abbildung 5.10: Pulverdiffraktogramme (Guinier, Cu-K α_1) ausgewählter Proben, $(V_{0,1}Nb_{0,9})OPO_4$, $(V_{0,4}Nb_{0,6})OPO_4$, $(V_{0,8}Nb_{0,2})OPO_4$, vor und nach den katalytischen Tests. Die Sterne markieren die MPTB-Nebenphase.

5.4 Zusammenfassung

Entlang des quasibinären Schnittes VOPO₄-NbOPO₄ wurde die Bildung einer Mischkristallreihe (V_{1-x}Nb_x)OPO₄ (0,1 < x < 1,0) mit α -MoOPO₄-Struktur beobachtet. Der Einbau von Nb⁵⁺ führt demnach zu einer Stabilisierung des

 α -MoOPO₄-Strukturtyps. Die Mischkristallreihe ist im Bereich $0, 2 \le x < 1, 0$ darstellbar, aber nur im Bereich $0, 8 \le x < 1, 0$ thermodynamisch stabil.

IR- und Ramanspektren des Mischkristalls zeigen Nb \equiv O- neben V \equiv O-Schwingungen, die im Vergleich zu denen der Reinphasen verschoben sind. Dies bestätigt, dass in $(\mathrm{V}_{0,5}\mathrm{Nb}_{0,5})\mathrm{OPO}_4$ tatsächlich eine homogene Verbindung von V^{5+} und Nb^{5+} im Sinne eines Mischkristalls vorliegt und keine Domänen der beiden Randphasen. Das Absorptionsverhalten der Mischkristallreihe wird vom V/Nb-Verhältnis stark beeinflusst. Im UV/vis-Spektrum wird bei einem kleinen Gehalt an Vanadium für den LMCT $(O^{2-} \rightarrow V^{5+})$ eine leichte Verschiebung zu höheren Wellenzahlen im Vergleich zu reinem VOPO₄ beobachtet. Dies kann mit der geringeren Verzerrung des [VO₆]-Oktaeders erklärt werden, da dies zu einer Abnahme der Aufspaltung der t_{2q} -Orbitale führt. Strukturoptimierungen basierend auf substituierten Superzellen bestätigen, dass der Substituent wie auch die benachbarten Metallkationen im Vergleich zu den Reinphasen eher ungewöhnliche M-O-Bindungslängen aufweisen. Im Vanadium-reichen System werden die Bindungen Nb- O_{ax} deutlich länger als in der Reinphase berechnet. Auf der anderen Seite wird der Abstand V- O_{ax} ungewöhnlich kurz in Niob-reicher Umgebung. PDOS-Rechnungen der Oxidionen und Metallkationen der Reinphasen und Mischkristalle bestätigen die experimentellen Beobachtungen aus den UV/vis-Spektren. Die beobachtete Verschiebung kann in der PDOS mit hohem Anteil an Niob gesehen werden, ist aber noch nicht vollständig verstanden. Da die Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ katalytisch aktiv bei der Umsetzung von n-Butan zu Maleinsäureanhydrid ist und keine nachweislichen Mengen an V⁴⁺ enthält, kann für den allgemeinen Katalyseprozess abgeleitet werden, dass V⁵⁺ tatsächlich einen entscheidenden Einfluss auf die katalytische Aktivität des Katalaysators hat.

5.4. Zusammenfassung

Kapitel 6

Weitere quasibinäre Systeme MOPO₄ - MOPO₄': Phasenbildung, Mischbarkeit und Redoxverhalten

6.1 Die Antimonphosphate SbOPO₄ und SbPO₄

Antimon wird schon seit ein paar Jahren in Katalysatoren der allgemeinen Zusammensetzung (V, Sb, M)O₂ (Rutilstruktur) für die Ammoxidation kurzkettiger Kohlenwasserstoffe eingesetzt [174, 175]. Auch SbOPO₄ oder SbPO₄ könnten aufgrund ihrer Lewis-Säure-Base-Eigenschaften interessant für die katalytische Anwendung sein, wobei auch das Verhältnis von Sb³⁺/Sb⁵⁺ Einfluss auf die katalytische Performance nehmen könnte. Aus diesem Grund wurde im folgenden die Oxidation von SbPO₄ zu SbOPO₄ genauer untersucht. Im ternären System Sb/P/O sind einige Phosphate bekannt. Tabelle 6.1 gibt einen Überblick zum Stand der Literatur. Sb³⁺ nimmt chemisch und strukturell gesehen eine Sonderstellung durch den lone-pair Effekt ein.

Phosphat	R.G.	a [Å]	<i>b</i> [Å]	$c[\text{\AA}]$	β [°]	Lit.
$SbPO_4$	$P2_1/m$	5,0868(6)	6,7547(7)	4,7247(5)	94,66(1)	[176]
$SbPO_4$	$P2_1/m$	5,088(2)	6,762(2)	4,724(2)	94,64	[177]
$Sb_2(PO_4)_3$	$P2_1/n$	11,936(1)	8,7354(8)	8,3185(8)	91,12(2)	[178]
$Sb_2(PO_4)_3$	$R\bar{3}$	16,880(2)		21,196(3)		[179]
$Sb_5O_6(PO_4)$	$P2_{1}2_{1}2_{1}$	6,8373(5)	7,0932(5)	19,8730(15)		[180]
$SbOPO_4$	C2/c	6,791(1)	8,033(1)	7,046(1)	115,90(1)	[65]
$\mathrm{Sb}_2(\mathrm{P}_2\mathrm{O}_7)_2$	$P2_1/c$	8,088(1)	16,015(3)	8,135(5)	90,17(2)	[181]
$\mathrm{Sb}_2(\mathrm{P}_2\mathrm{O}_7)_2$	$Pna2_1$	8,018(1)	16,134(3)	8,019(5)		[181]

Tabelle 6.1: Übersicht der kristallographisch charakterisierten Antimonphosphate.

In diesem Kapitel wird das Redox-Gleichgewicht zwischen SbPO₄ und SbOPO₄ experimentell und theoretisch betrachtet. Aus diesem Grund wird hier zuerst die Kristallstruktur von SbPO₄ diskutiert. Anschließend werden Strukturmodelle entwickelt, mit denen die Oxidation von SbPO₄ zu SbOPO₄ verstanden werden kann. Dabei werden auch neue Polymorphe von SbOPO₄ hervorgesagt.

6.1.1 Ergebnisse und Diskussion

Die Phosphate $SbPO_4$ und $SbOPO_4$ wurden über SCS (Solution Combustion Synthesis) erhalten. Details zu den verwendeten Precusoren für die Synthesen sind in Kapitel 9 beschrieben.

Eine Oxidationsreaktion ist aufgrund der neuen Bindungsknüpfung ein exothermer Vorgang. Sie sollte demnach bevorzugt bei niedrigen Temperaturen ablaufen. Die Synthese von SbOPO₄ sollte bei niedrigeren Temperaturen erfolgen als die von SbPO₄. Tatsächlich ist der Reaktionsverlauf an Luft mit der Temperatur unerwartet, da nach vier Tagen bei 600 °C nur SbPO₄ gebildet wird. Die Entstehung von SbPO₄ anstelle von SbOPO₄ könnte über die Synthesemethode (SCS), erklärt werden. Bei der SCS sind die Reaktionsbedingungen reduzierend, sodass eine Reduktion von Sb⁵⁺ zu Sb³⁺ denkbar wäre.

Die Oxidation von Antimon(III)-phosphat zu Antimon(V)-oxidphosphat an Luft wurde erst bei Temperaturen ab 700 °C beobachtet. Anhand des Pulverdiffraktogramms konnte gezeigt werden, dass die Oxidation von SbPO₄ zu SbOPO₄ bei 700 °C nach sieben Tagen abgeschlossen war. Allerdings zeigten die ³¹P-NMR-Spektren noch geringe Anteile von SbPO₄ in der Probe (Abbildungen 6.1b und 6.2 a, b).

Zwischen 700 und 800 °C wurde die Bildung der unbekannten Nebenphasen Sb1und Sb2 in geringen Mengen beobachtet (vgl. Abbildung 6.1, Tabelle 6.2). Die Bildung von Sb1 konnte hauptsächlich bei einer Temperatur von 700 °C nach einem Tag beobachtet werden, neben geringen Mengen an Sb2. Weiteres Tempern für drei Tage bei 700 °C führte allerdings zur Abnahme von Sb1, während Sb2noch nach dem Tempern für einen Tag bei 800 °C über Röntgenpulverdiffraktometrie nachweisbar war. Bei Tempern für mehr als einen Tag bei 900 °C wurde reines SbOPO₄ erhalten (Abbildung 6.2c). Tempern an Luft ($p(O_2) = 0.2$ bar) bei 1000 °C für einen Tag führt zur thermischen Reduktion von Sb⁵⁺ unter Bildung von SbPO₄ (Gleichung 6.1).

$$2 \operatorname{SbOPO}_4(s) \rightleftharpoons 2 \operatorname{SbPO}_4(s) + O_2(g) \tag{6.1}$$

Die experimentell ermittelten Gitterparameter der hergestellten Proben von SbOPO₄ unterscheiden sich untereinander ebenso wie von den in der Literatur publizierten Werten [75] (Tabelle 6.3). Das gibt Grund zur Annahme, dass SbOPO₄ bei einer Temperatur von 900 °C Sauerstoff unter Bildung von Sb³⁺ abgibt, sodass formal eine Verbindung der allgemeinen Summenformel (Sb^VO)_{1-x}Sb^{III}_x(PO₄) entsteht. Der Sauerstoffgehalt von SbOPO₄ ist demnach zum einen von der Temperdauer, zum anderen vom gewählten Reaktionsgefäß abhängig. So war der Verlust an Sauerstoff geringer, wenn SbOPO₄ in einer Kieselglashalbampulle nachgetempert wurde, da sich in der Ampulle über dem Bodenkörper ein Gleichgewicht einstellen konnte. Dies verlangsamte die thermische Reduktion von Sb⁵⁺ durch den eingeschränkten Abtransport des Sauerstoffs.

Wurde dagegen ein offener Tiegel verwendet, erfolgte keine derartige Behinderung der Gleichgewichtseinstellung und der Gehalt an Sauerstoff in der Probe nahm schneller ab als in der Halbampulle. Ab 1000 °C wurde SbOPO₄ thermisch vollständig zu SbPO₄ reduziert.

Abbildung 6.1: Pulverdiffraktogramme (Guinier, Cu-K α_1) von SbPO₄/SbOPO₄ nach dem Tempern bei 700 °C für einen Tag (a), 4 Tagen (b) und nach einem Tag bei 800 °C an Luft (c). Die Pfeile kennzeichnen die nicht zuzuordnenden Reflexe der Phasen Sb1 und Sb2.

Abbildung 6.2: ³¹P-NMR-Spektren von SbPO₄ (600 °C an Luft, 96 h) (a), SbOPO₄ neben geringen Mengen an SbPO₄ (700 °C an Luft, 168 h) (b) und reinem SbOPO₄ (900 °C an Luft, 24 h) (c) [75]. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist auf eine dauerhafte Verunreinigung des Rotors zurückzuführen.

Tabelle 6.2: Beugungswinkel der unbekannten Nebenphasen Sb1 und Sb2 [75]; Synthesetemperatur ϑ .

Nebenphase	ϑ [°C]	t [h]	Beugungswinkel $^\circ$ in 4 θ
Sb1	700	24	20,8; 28,0; 31,4; 32,8; 65,7
Sb2		76	28,8;60,4
	800	24	$28,8;\ 60,4$

Tabelle 6.3: Vergleich der experimentell bestimmten Gitterparameter von SbOPO₄ in Abhängigkeit des Reaktionsgefäßes [75], berechnet mit dem Programm SOS [182], mit den Literaturwerten. Die Halbampulle bestand aus Kieselglas.

	a [Å]	<i>b</i> [Å]	c [Å]	β [°]	ϑ [°C]	t [h]
Halbampulle	6,7827(7)	8,0183(7)	7,0315(6)	115,935(8)	900	24
Goldtiegel	6,7797(6)	8,0155(6)	7,0295(6)	115,934(7)	900	24
Literaturwert [65]	6,791(1)	8,033(1)	7,046(1)	$115,\!90(1)$	900	12

Zur weiteren Charakterisierung wurden Pulverremissionsspektren von SbOPO₄ und SbPO₄ aufgenommen. Beide Verbindungen sind farblose Pulver, jedoch wird sowohl bei SbPO₄ wie auch bei SbOPO₄ im UV-Bereich ab ungefähr 30000 cm⁻¹ ein elektronischer Übergang beobachtet werden. Der Übergang von SbOPO₄ ist dem LMCT aus den *p*-Orbitalen der Oxidionen in die leeren 5*s*-Orbitale des Antimons zuzuordnen. Der Übergang bei SbPO₄ kann nicht eindeutig zugeordnet werden. Möglich wäre ein LMCT ($O^{2-} \rightarrow Sb^{5+}5p$) oder ein 5*s*-5*p*-Übergang an Sb³⁺.

Abbildung 6.3: Pulverremissionsspektren von $SbPO_4$ (a) und $SbOPO_4$ (b).

6.1.2 Vorhersage neuer Polymorphe von SbOPO₄

Um den Oxidationsvorgang von SbPO₄ nach SbOPO₄ nachzuvollziehen und vielleicht die bei der Oxidationsreaktione entstehenden, unbekannten Nebenphasen Sb1 und Sb2 zuordnen zu können, wurden drei DFT-Rechnungen durchgeführt. In diesen wurde zunächst die Kristallstruktur von SbPO₄ »volloxidiert«, das bedeutet zwischen benachbarten Sb-Atomen wurde ein Sauerstoffatom in die Struktur eingeführt. Das so erhaltene Startmodell ist dem α -MoOPO₄-Strukturtyp sehr ähnlich. Diese Struktur blieb bei der Relaxation in P1 erhalten (vgl. Abbildung 6.4). Durch das nun fehlende freie Elektronenpaar hat sich der Sb-Sb-Abstand von 5,09 Å auf 3,82 Å verringert. Da bei der Berechnung der Schwingungsmoden keine negativen Eigenwert erhalten wurden, ist das so berechnete Polymorph von SbOPO₄ stabil. Die in P1 erhaltene Struktur kann nach Symmetriesuche in die orthorhombischen Raumgruppe $Pnm2_1$ transformiert werden. Die Struktur zeigt große Ähnlichkeit zu SbOPO₄ mit α -MoOPO₄-Struktur (vgl. Tabelle 6.4 und Abbildung 6.4). Dieses Polymorph wurde schon in Kapitel 2 vorhergesagt. Die

Atompositionen des Startmodells (Tabelle 13.43), sowie der optimierten Struktur (Tabelle 13.44) sind im Anhang zu finden.

Abbildung 6.4: Vergleich der Kristallstruktur von SbPO₄ mit Projektion entlang *c*-Achse (a) und der optimierten Struktur von SbOPO₄ nach Volloxidation (in Raumgruppe $Pnm2_1$) mit Projektion entlang der *a*-Achse (b) im Vergleich zu α_{II} -VOPO₄ mit Projektion entlang der *b*-Achse (c).

Tabelle 6.4: Vergleich der Gitterparameter des optimierten SbOPO₄-Polymorphs $(Pmn2_1)$ mit den ausgehend von α -NbOPO₄ als Startmodell berechneten (P4/n).

	Raumgruppe	a [Å]	b [Å]	c [Å]
$SbOPO_4$	$Pmn2_1$	$6,\!295$	$6,\!295$	3,820
SbOPO ₄ (basierend auf α -NbOPO ₄)	P4/n	$6,\!151$		$3,\!837$

Der zweite Rechenweg zur Beschreibung der Oxidation von SbPO₄ basierte auf der Annahme, dass der Einbau des Sauerstoffs schrittweise erfolgt. Aus diesem Grund wurde zunächst nur die Hälfte der benötigten Sauerstoffatome in SbPO₄ eingeführt. Die so erhaltene Struktur enthielt die gleiche Menge an Sb³⁺, erkennbar an dem langen Sb-Sb-Abstand (Abbildung 6.5) und Sb⁵⁺ (vgl. Tabelle 13.45). Im zweiten Schritt wurde das noch fehlende Sauerstoffatom zwischen die noch verbliebenen Sb³⁺-Kationen gesetzt. Dieses Modell wurde wieder relaxiert (Tabelle 13.46 und 13.47). Das schließlich erhaltene Polymorph, im folgenden Polymorph 4 genannt, kann keinem bekannten Strukturtyp zugeordnet werden. Die Kristallstruktur ist, wie SbPO₄, aus Schichten aufgebaut. Anders als in den bisher besprochenen Kristallstrukturen sind immer zwei [SbO₆]-Oktaeder über Kanten

Abbildung 6.5: Kristallstrukturen des Intermediats $(Sb^VO)_{0,5}Sbb^{III}_{0,5}PO_4$ nach den DFT-Strukturoptimierung entlang der Blickrichtungen [0 0 1] (1a), [0 1 0] (b) und [1 0 0] (c), sowie die des volloxidierten Polymorphs SbOPO₄ (2a, b, c) entlang derselben Blickrichtungen.

miteinander verknüpft. Die Schwingungsfrequenzrechnungen bestätigen, dass es sich um eine stabile Struktur handeln sollte. Die relativen Energien der vier Polymorphe von SbOPO₄ (SbOPO₄ (exp.), α -MoOPO₄, SbOPO₄ (*Pmn2*₁), Polymorph 4) nehmen in der Reihenfolge SbOPO₄ (exp.), α -MoOPO₄, SbOPO₄ (*Pmn2*₁), Polymorph 4 ab (vgl. Tabelle 6.6). Leider konnte keines der hier entwickelten Modelle die unbekannten Reflexe von Sb1 und Sb2 erklären (vgl. Abbildung 6.6).

Tabelle 6.5: Die Gitterparameter des Intermediats $(Sb^VO)_{0,5}Sb^{III}_{0,5}PO_4$ und der volloxidierten Form von SbOPO₄ (Polymorph 4) nach Strukturoptimierung in der Raumgruppe *P*1.

	a [Å]	b [Å]	c [Å]	α [°]	β [°]	$\gamma \ [^\circ]$
$(Sb^VO)_{0,5}Sb^{III}_{0,5}PO_4$	5,020	6,367	$5,\!942$	106,00	87,31	86,00
Polymorph 4	$4,\!881$	6,240	6,600	110,71	$76,\!16$	84,73

Tabelle 6.6: Relative Energiedifferenzen der vier SbOPO₄-Polymorphe in den verschiedenen Strukturtypen (SbOPO₄ (exp.), α -MoOPO₄, SbOPO₄ (*Pmn*2₁), Polymorph 4) bezogen auf den SbOPO₄-Strukturtyp pro Formeleinheit.

Strukturtyp des Polymorphs	relative Energie [kJ/mol]
$SbOPO_4$ (exp.)	+ 0
SbOPO ₄ (α -MoOPO ₄)	+ 45
SbOPO ₄ $(Pmn2_1)$	+50
$SbOPO_4$ (Polymorph 4)	+ 67

Abbildung 6.6: Pulverdiffraktogramme (Guinier, Cu-K α_1) von SbPO₄/SbOPO₄ nach dem Tempern bei 700 °C für einen Tag (a), vier Tage (b) mit den Simulationen der berechneten Polymorphe von SbOPO₄ (c). Die Pfeile kennzeichnen nicht zuzuordnende Reflexe der unbekannten Phasen *Sb*1 und *Sb*2.

6.2 Die quasibinären Systeme SbOPO₄-MOPO₄ (M: Nb, Ta)

Mischkristalle (V, Sb, M)O₂ mit Rutilstruktur werden für die Ammoxidation von Propen oder Propan eingesetzt [174, 175]. Für NbOPO₄ und TaOPO₄ sind ebenfalls katalytische Anwendungen bekannt (siehe Kapitel 2). Im Rahmen der hier beschriebenen Untersuchungen sollten neue Strukturtypen von SbOPO₄ über den Einbau anderer fünfwertiger Kationen (Nb, Ta) stabilisiert werden. In den Vierstoffsystemen Sb/Ta/P/O und Sb/Nb/P/O sind bisher nur Verbindungen der Zusammensetzung (Sb^{III}_{0,5}M^V_{1,5})(PO₄)₃ der NASICON-Strukturfamilie bekannt [183].

6.2.1 Synthese und Phasenbildung

Im Folgenden wird über die Phasenbildung entlang der quasibinären Schnitte SbOPO₄-NbOPO₄ und SbOPO₄-TaOPO₄ im Temperaturbereich von 600 bis 1000 °C berichtet. Die Synthese der Mischkristallreihen (Sb_{1-x}Nb_x)OPO₄ und (Sb_{1-x}Ta_x)OPO₄ mit $0 \le x \le 1$ (Schrittweite $\Delta x = 0, 1$) erfolgten wie in den Abschnitten 9.2.3 und 9.2.2 beschrieben. Für die Synthese von ausgesuchten Vertretern der Mischkristallreihen über Festkörperreaktionen wurden SbOPO₄ und α -NbOPO₄ bzw. β -TaOPO₄ eingesetzt. Im Verlauf der Phasenbildung mit der Zeit und bei steigender Reaktionstemperatur wurden folgende Strukturtypen beobachtet, deren Auftreten auf die Bildung verschiedener Mischkristallreihen hinweist: der MPTB-Typ (m=2), der α -TiOSO₄-Typ und der α -MoOPO₄-Strukturtyp. Im quasibinären System SbOPO₄-TaOPO₄ bleibt die Bildung des α -MoOPO₄-Typs aus. Alle erhaltenen Pulver waren farblos. In den Abbildungen 6.7 und 6.8 ist der Verlauf der Phasenbildungen aus den zum Teil röntgenamorphen Verbrennungsprodukte direkt nach der SCS für die quasibinären Systemen NbOPO₄-SbOPO₄ und TaOPO₄-SbOPO₄ dargestellt.

Abbildung 6.7: $(Sb_{1-x}Nb_x)OPO_4$. Übersicht zum Gang der Phasenbildung bei SCS mit nachfolgendem Tempern. Die Phasenanteile wurden auf Grundlage der Pulverdiffraktogramme geschätzt. Die Temperzeit betrug 24 bis 96 h bei 600 bis 800 °C, 168 h bei 900 °C und 24 h bei 1000 °C; Abbildung nach [75] mit graphischen Anpassungen (Korrekturen).

Abbildung 6.8: $(Sb_{1-x}Ta_x)OPO_4$. Übersicht der Phasenbildung bei SCS mit nachfolgendem Tempern. Die Phasenanteile wurden auf Grundlage der Pulverdiffraktogramme geschätzt. Die Temperzeit betrug 24 bis 72 h bei 600 bis 800 °C, 24 h bei 1000 °C; Abbildung nach [75] mit graphischen Anpassungen (Korrekturen).

6.2.2 Das quasibinäre System SbOPO₄-NbOPO₄

Bei einem geringen Anteil an Niob und einer niedrigen Temperatur beim Erhitzen des Produkts aus der SCS (600 °C) wird SbPO₄ als Hauptphase erhalten. Die Beugungswinkel stimmen mit denen von reinem SbPO₄ überein, sodass der Einbau von Niob ausgeschlossen werden kann (vgl. Abbildung 6.9). Je höher der Anteil an Niob im System ist, desto weniger SbPO₄ wird bei den tiefen Temperaturen gebildet, bis eine detektierbare Bildung einer kristallinen Phase ab einem Anteil von 70 % Niob ausbleibt. Der Grund hierfür ist, dass die Bildung kristalliner Niob(V)-phosphate eine höhere Aktivierungsenergie benötigt als Antimon, wie die Vergleichsexperimente mit NbOPO₄ bestätigen. Der Anteil an Antimon ist aber gleichzeitig zu gering (30 %, 600 °C), um eine kristalline Phase bilden zu können. Bei höheren Reaktionstemperaturen als 600 °C, wurde Antimon(III)-phosphat zu Antimon(V)-phosphat (SbOPO₄-Typ) oxidiert. Da aber schon bei der Reinphase SbOPO₄ die experimentell bestimmten Gitterparameter in Abhängigkeit von den Synthesebedingungen untereinander, sowie von den in der Literatur publizierten Werten abweichen (Abschnitt 6.1), kann anhand der Gitterparameter keine Aussage zum Einbau von Niob in SbOPO₄ getroffen werden.

Abbildung 6.9: Pulverdiffraktogramm (Guinier, Cu-K α_1) des Experiments mit der Einwaage (Sb_{0,9}Nb_{0,1})OPO₄ (600 °C, 1d) (a) mit Simulation von SbPO₄ (b) [177].

Neben der Oxidation von SbPO₄ zu SbOPO₄ kommt es auch zur Bildung einer neuen Phase. Dabei handelt es sich um eine im α -TiOSO₄-Strukturtyp kristallisierende Verbindung (vgl. Abbildung 2.9). Dieser ist für die beiden Randphasen, NbOPO₄ und SbOPO₄, unbekannt. Die Bildung der Mischkristallreihe wurde im Zusammensetzungsbereich $0,1 \le x \le 0,9$ bis zu Temperaturen von 900 °C beobachtet. Im Zusammensetzungsbereich $0,2 \le x \le 0,7$ ist sie die Hauptphase.

Die zwei chemisch unterschiedlichen Lagen von Titan im α -TiOSO₄-Strukturtyp (vgl. Kapitel 1) können in der Mischkristallreihe (Sb_{1-x}Nb_x)OPO₄ entweder statistisch mit Niob und Antimon besetzt werden, oder eine Lage wird von einem Element bevorzugt. Da bei SbOPO₄ bisher nur die *trans*-Verknüpfung der Oktaederketten bekannt ist, bei NbOPO₄ aber beide Verknüpfungsmuster dokumentiert sind, ist es wahrscheinlich, dass Antimon bevorzugt die Lage besetzt, die *trans*-verknüpfend ist. Ein Hinweis, dass diese Vermtung zuteffen könnte, geben die gemessen Intesitätn in den Röntgenpulverdoffraktogrammen beim Vergleich verschiedener Simulationen von Strukturmodellen (vgl. Abbildung 6.10). ZuSätzlich wurden DFT-Rechnungen mit der hypothetischen Zusammensetzung $(Sb_{0,5}Nb_{0,5})OPO_4$ durchgeführt. Dabei wurde Antimon auf die *trans*-verknüpfende oder auf die *cis*-verknüpfende Lage gesetzt. Beide Startmodelle wurden relaxiert. Die berechnete Gesamtenergie beider Modelle bestätigt, dass für die Mischkristallreihe eine Besetzung der Metallage 2 (*trans*) mit Antimon energetisch bevorzugt sein sollte.

Tabelle 6.7: Gitterparameter, sowie Energiedifferenzen der relaxierten Struktur des Mischkristalls $(Sb_{0,5}Nb_{0,5})OPO_4$ mit unterschiedlicher Besetzung der Metalllagen.

Element (<i>trans</i> -Verknüpfung)	a [Å]	b [Å]	c [Å]	β [°]	$\Delta G \; [kJ/mol]$
Niob Antimon	$5,\!280$ $5,\!077$	$13,\!844$ $13,\!868$	$9,468 \\ 9,695$	90,334 91,470	$+37\\0$

Die [SbO₆]-Oktaeder sind dabei, wie in SbOPO₄ (SbOPO₄-Strukturtyp), transverknüpft (Tabelle 6.7). Dies wird ebenfalls durch die berechneten Simulationen der Pulverdiffraktogramme bestätigt, da die experimentell gemessenen Intensitäten für (Sb_{0,5}Nb_{0,5})OPO₄ (α -TiOSO₄-Typ) am besten durch die Simulation in Abbildung 6.10c beschrieben werden.

Die experimentell bestimmten Gitterparameter der Mischkristallreihe $(Sb_{1-x}Nb_x)OPO_4$ (α -TiOSO₄-Strukturtyp) variieren leicht mit dem Gehalt an Niob. Mit steigendem Gehalt wird der *a*-Gitterparameter kleiner, während die Gitterparameter *b* und *c* zunehmen. Die Veränderungen der Gitterparameter sind jedoch gering und liegen im Rahmen der vierfachen Standardabweichungen. Dies ist zu erwarten, da sich die Ionenradien von Sb⁵⁺ und Nb⁵⁺ kaum unterscheiden.

Abbildung 6.10: Pulverdiffraktogramm (Guinier, Cu-K α_1) von den Proben der Zusammensetzung "(Sb_{0,5}Nb_{0,5})OPO₄" nach vier Tagen bei 900 °C an Luft (a) mit der Simulation mit statistischer Besetzung der Metalllagen (b), nach der Strukturoptimierung erhaltene Simulation mit Antimon auf der Metalllage eins (Position des *cis*-verknüpfenden Oktaeders) (c) und zwei (Position des *trans*-verknüpfenden Oktaeders)(d). Die Pfeile kennzeichnen die enthaltende Nebenphase im MPTB-Strukturtyp. Die DFT-Strukturoptimierung wurde unter Freigabe der Atompositionen und Gitterparameter durchgeführt.

Einwaage	a [Å]	<i>b</i> [Å]	c [Å]	β [°]
$\begin{array}{c} ({\rm Sb}_{0,8}{\rm Nb}_{0,2}){\rm OPO}_4 \\ ({\rm Sb}_{0,8}{\rm Nb}_{0,2}){\rm OPO}_4 \ {}^{a)} \\ ({\rm Sb}_{0,7}{\rm Nb}_{0,3}){\rm OPO}_4 \\ ({\rm Sb}_{0,7}{\rm Nb}_{0,3}){\rm OPO}_4 \ {}^{a)} \\ ({\rm Sb}_{0,6}{\rm Nb}_{0,4}){\rm OPO}_4 \\ ({\rm Sb}_{0,6}{\rm Nb}_{0,4}){\rm OPO}_4 \end{array}$	5,1462(7) 5,144(2) 5,141(1) 5,1425(9) 5,1389(7) 5,1371(8)	$13,722(2) \\13,735(3) \\13,739(3) \\13,755(3) \\13,789(1) \\13,708(2)$	9,536(2) 9,544(2) 9,553(2) 9,568(2) 9,591(1) 0,594(2) $9,594(2)$	90,02(2) 90,13(3) 90,22(2) 90,33(3) 90,42(1) 90,51(1)
$(Sb_{0,5}Nb_{0,5})OPO_4$ $(Sb_{0,4}Nb_{0,6})OPO_4$	5,1371(8) 5,139(1)	13,798(3) 13,815(3)	9,594(2) 9,597(2)	90,31(1) 90,44(2)

Tabelle 6.8: Experimentell bestimmte Gitterparameter der Mischkristallreihe SbOPO₄-NbOPO₄ (α -TiOSO₄-Typ) nach Tempern bei 900 °C [75], berechnet mit dem Programm SOS [182].

a) Über Festkörperreaktion erhalten.

Die Mischkristallreihe mit α -TiOSO₄-Strukturtyp wurde auch über Festkörperreaktionen an Luft aus SbOPO₄ und α -NbOPO₄ guinierrein erhalten. Offenbar handelt es sich um eine thermodynamisch stabile Phase. Über SCS ist die guinierreine Darstellung dieser Phase bisher nicht gelungen. Dafür kann es verschiedene Gründe geben. Die thermische Zersetzung des Mischkristalls im α -TiOSO₄-Strukturtyp setzt ab 900 °C ein. Der Grund dafür ist die thermische Reduktion von Sb⁵⁺ zu Sb³⁺, die zu einer Entmischung der Mischkristallreihe in die thermodynamisch stabilen Randphasen (SbPO₄, α -NbOPO₄) führt. SbPO₄ konnte mittels Guinieraufnahme und über ³¹P-NMR nachgewiesen werden (vgl. Abbildungen 6.12 und 6.11). Die Entmischung war nach einem Tag bei 1000 °C noch unvollständig, wie die Bestimmung der Gitterparameter des Mischkristalls im α -MoOPO₄-Strukturtyps bestätigt. Diese unterschieden sich signifikant von jenen des reinen α -NbOPO₄. Längeres Tempern bei 1000 °C an Luft führte zum Aufschmelzen der Proben, sodass keine weiteren Aussagen über die Phasenbildung getroffen werden konnte.

Abbildung 6.12: Pulverdiffraktogramm (Guinier, Cu-K α_1) der Probe mit der Einwaage (Sb_{0,4}Nb_{0,6})OPO₄ ($\vartheta = 1000$ °C) [75] (a) im Vergleich zu Simulationen von Mischkristall mit α -MoOPO₄-Strukturtyp nach [69] (blau) und SbPO₄ (schwarz) nach [177].

Abbildung 6.11: ³¹P-NMR-Spektrum des Produkts aus dem Experiment mit der Einwaage (Sb_{0,4}Nb_{0,6})OPO₄ nach Tempern an Luft (1000 °C, 24 h). Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) stammt aus einer dauerhaften Verunreinigung des Rotors.

Neben der Mischkristallreihe mit α -TiOSO₄-Strukturtyp ist auch die Bildung des MPTB-Strukturtyps ab Temperaturen von 700 °C und $x \ge 0,2$ bemerkenswert, da der MPTB-Strukturtyp von reinem NbOPO₄ erst bei T = 1250 °C gebildet wird (Abbildung 6.13 a). Daher ist es wahrscheinlich, dass der Einbau von Sb⁵⁺ zur Stabilisierung des MPTB-Strukturtyps führt. Auch die experimentell bestimmten Gitterparameter weichen von denen der Reinphase (β -NbOPO₄) ab, variieren untereinander jedoch kaum (Tabelle 6.9). Dies ist zu erwarten, da die Ionenradien von Sb⁵⁺ und Nb⁵⁺ ähnlich sind. Der Anteil der MPTB-Phase im Phasengemenge ist abhängig von der Reaktionstemperatur und dem Niob-Anteil. Mit zunehmender Reaktionstemperatur und geringerem Niob-Anteil nimmt die MPTB-Phase zugunsten des α -TiOSO₄-Strukturtyps ab, welche unter diesen Bedingungen die thermodynamisch stabile Phase ist (vgl. Abbildung 6.13 b). Ist der Niob-Anteil hoch, ist der Phasenanteil des MPTB-Strukturtyps größer, allerdings nimmt auch hier dessen Anteil mit zunehmender Reaktionstemperatur und Temperdauer zugunsten der thermodynamisch stabilen, niobreichen Phase mit α -MoOPO₄-Typ ab (vgl. Abbildung 6.13 c, d). Die MPTB-Phase entsteht wahrscheinlich nur aus kinetischen Gründen.

Tabelle 6.9: Gemessene Gitterparameter des Mischkristalls mit MPTB-Struktur im System SbOPO₄-NbOPO₄ im Vergleich zu β -NbOPO₄ (MPTB-Strukturtyp) [75].

Einwaage	a [Å]	b [Å]	c [Å]	β [°]
$ \begin{array}{l} \beta \text{-NbOPO}_4 \ ^{a)} \\ (\text{Sb}_{0,1}\text{Nb}_{0,9})\text{OPO}_4 \\ (\text{Sb}_{0,2}\text{Nb}_{0,8})\text{OPO}_4 \end{array} $	$\begin{array}{c} 6,6108(5) \\ 6,5608(9) \\ 6,545(3) \end{array}$	5,2778(5) 5,2286(7) 5,189(2)	$11,2629(8) \\11,233(1) \\11,229(3)$	90,316(7) 90,33(2) 90,46(2)

a) Im Arbeitskreis synthetisiert.

Die Mischkristallreihe mit α -MoOPO₄-Struktur wurde im Zusammensetzungsbereich $0, 2 \leq x \leq 1, 0$ ab Temperaturen von 700 °C erhalten. Mit steigendem Niob-Gehalt nahm der Anteil der Phase mit α -MoOPO₄-Strukturtyp im Gemenge zu. Bei 1000 °C und $x \geq 0,5$ ist dieser die Haupt- oder sogar einzige nachweisbare Phase im Reaktionsprodukt. Wurden Proben bei 900 °C für längere Zeit nachgetempert, nahm der Anteil am α -MoOPO₄-Strukturtyp ebenfalls zu.

Da die experimentell bestimmten Gitterparameter für die Phase mit α -MoOPO₄-Strukturtyp von denen der Reinphase (α -NbOPO₄) abweichen, ist auch hier von der Bildung eines Mischkristalls auszugehen. Für die Einwaagen x = 0.8und 0.9 wurden die experimentellen Gitterparameter bestimmt und mit denen der Reinphase verglichen. Dabei nahm der *a*-Gitterparameter mit zunehmenden Antimon-Gehalt ab, während sich die Änderung des Gitterparameters *c* innerhalb der Standardabweichungen bewegt.

Abbildung 6.13: Pulverdiffraktogramme der Reaktionsprodukte aus verschiedenen Experimenten im quasibinären System SbOPO₄-NbOPO₄ (Guinier, Cu-K α_1) von den Einwaagen (Sb_{0,4}Nb_{0,6})OPO₄ nach 700 °C an Luft (a), nach 800 °C an Luft (b), und (Sb_{0,1}Nb_{0,9})OPO₄ nach 900 °C nach 24 h (c) und 504 h (d). Die drei unterlegten Simulationen basieren auf α -NbOPO₄ (blau) nach [69], dem WOPO₄-Strukturtyp (rot) nach [72] (MPTB-Strukturtyp), sowie des α -TiOSO₄-Strukturtyp nach [81] unter Berücksichtigung der Substitution von Sb/Nb für Ti sowie P für S und der experimentell bestimmten Gitterparameter [75].

Einwaage	ϑ [°C]	t[h]	a [Å]	c [Å]
α -NbOPO ₄ ^{a)}	1000	72	6,3910(2)	4,1052(2)
$(\mathrm{Sb}_{0,1}\mathrm{Nb}_{0,9})\mathrm{OPO}_4$	1000	24	6,3871(2)	4,1066(2)
$(Sb_{0,2}Nbb_{0,8})OPO_4 \ ^{b)}$	1000	24	6,3835(4)	4,1091(5)
$(\mathrm{Sb}_{0,3}\mathrm{Nbb}_{0,7})\mathrm{OPO}_4$	1000	24	6,3847(2)	4,1074(2)

Tabelle 6.10: Gemessene Gitterparameter für Vertreter der Mischkristallreihe mit α -MoOPO₄-Struktur im System SbOPO₄-NbOPO₄ im Vergleich zur Reinphase [75].

a) Im Arbeitskreis synthetisiert.

b) Neben dem α -MoOPO₄-Strukturtyp lag X4 (Nebenphase) vor.

Aufgrund der geringen Änderung der Gitterparameter mit der Zusammensetzung liegt die Vermutung nahe, dass nur wenig Antimon in α -NbOPO₄ eingebaut werden kann. Für die Zusammensetzung (Sb_{0,3}Nb_{0,7})OPO₄, welche ab 1000 °C guinierrein den α -MoOPO₄-Strukturtyp bildet, wurde ein ³¹P-NMR-Spektrum aufgenommen. Die chemische Verschiebung des Mischkristalls liegt mit $\delta_{iso} = -24,2$ ppm zwischen denen der Reinphasen (α -NbOPO₄: -23,3 ppm (Kapitel 5), SbOPO₄: -30,7 ppm [75], Abschnitt 6.1). Das breite Signal des Spektrums ist ein Hinweis auf starke lokale Unterschiede in der Struktur, obwohl im Röntgenpulverdiffraktogramm nur der α -MoOPO₄-Typ zu sehen ist. Dies ist ebenfalls ein Hinweis auf einen erfolgreichen Einbau von Antimon in α -NbOPO₄.

Es wurde zudem kein Signal für die Probe der Zusammensetzung $(Sb_{0,3}Nb_{0,7})OPO_4$ (1000°C, 24 h) detektiert, welches auf eventuell amorph vorliegendes SbPO₄ oder SbOPO₄ hindeutet (vgl. Abbildung 6.14). Da die Kieselglasampullenwände im Verlauf der Reaktion stark angegriffen werden, wird vermutlich P₄O₁₀ abgegeben oder Antimon in das Kieselglas eingebaut. Der Verlust an P₄O₁₀ könnte das fehlende Signal dieser Phosphate erklären. EDX-Messungen bestätigen, dass in der Probe weniger Antimon vorhanden war als eingewogen wurde (Sb:Nb = 17:83 statt 30:70).

Abbildung 6.14: ³¹P-NMR-Spektrum der Einwaage (Sb_{0,3}Nb_{0,7})OPO₄ nach Tempern an Luft bei 1000 °C für 24 h. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist eine dauerhafte Verunreinigung des Rotors.

Im Zusammensetzungsbereich $0,1 \le x \le 0,5$ tritt bei niedrigen Temperaturen eine nicht identifizierte Phase X1 als Hauptphase auf (Abbildung 6.15 a). Eine ähnliche Phase erhielt Roy [47] beim Versuch, Sb(WO₂)₂(P₂O₇)(PO₄) herzustellen. Seine Beobachtungen bestätigen, dass es sich um eine Antimon-reiche Phase handeln muss.

Abbildung 6.15: Pulverdiffraktogramm des Reaktionsprodukts aus dem Experiment der Einwaage (Sb_{0,8}Nb_{0,2})OPO₄ (Guinier, Cu-K α_1) nach 800 °C für 24 h mit unbekannter Phase X1. Die drei unterlegten Simulationen basieren auf α -NbOPO₄ (blau) nach [69], SbOPO₄ (violett) nach [65], sowie α -TiOSO₄ nach [81] unter Berücksichtigung der Substitution von Sb/Nb für Ti sowie P für S und der experimentell bestimmten Gitterparameter [75].

6.2.3 Der quasibinäre Schnitt SbOPO₄-TaOPO₄

Die Phasenbildung im System SbOPO₄-TaOPO₄ läuft bis 600 °C analog zu NbOPO₄-SbOPO₄. Es wird nur reines SbPO₄ gebildet. Auch hier nimmt die Kristallinität von SbPO₄ mit steigendem Tantalgehalt ab, bis eine kristalline Phasenbildung aufgrund des hohen Anteils an Tantal unterbleibt (x = 0,7). Gleichzeitig reicht die Temperatur nicht aus, damit ein kristallines Tantalphosphat entstehen kann. Die Oxidation von SbPO₄ wird ab Temperaturen von 700 °C beobachtet, unter Bildung von SbOPO₄ $(0,0 \le x \le 0,5)$ und dem MPTB-Strukturtyp ($0, \le x \le 0, 3$). Ab 800 °C wird der MPTB-Strukturtyp im Zusammensetzungsbereich $0,1 \le x \le 0.8$ gebildet, ab einen Anteil von $x \ge 0.7$ wird ausschließlich der MPTB-Strukturtyp gebildet. Für die Bildung von kristallinem β -TaOPO₄ (MPTB-Strukturtyp) ist eine höhere Reaktionstemperatur als 700 °C notwendig. Die Bildung des MPTB-Strukturtyps von $TaOPO_4$ bei diesen niedrigen Temperaturen spricht für den Einbau von Antimon in die Kristallstruktur. Auch die experimentell bestimmten Gitterparameter legen nahe, dass es sich hier nicht um die Reinphase von TaOPO₄ handelt, sondern dass ein Teil des Sb^{5+} in die TaOPO₄-Struktur eingebaut wurde. Je höher der Anteil an Sb⁵⁺ im MPTB-Typ ist, desto kleiner werden die Gitterparameter a, b und c (Tabelle 6.11). Diese Veränderung lässt sich mit dem kleineren Ionenradius von Sb⁵⁺ (0,74 Å, K=6) im Vergleich zu Ta⁵⁺ (0,78 Å, K=6) erklären.

Tabelle 6.11: Gitterparameter der Mischkristallreihe im System SbOPO₄-TaOPO₄ im Vergleich zu reinem β -TaOPO₄ mit MPTB-Struktur, berechnet mit dem Programm SOS [75].

Einwaage	ϑ [°C]	t [h]	a [Å]	<i>b</i> [Å]	c [Å]	β [°]
β -TaOPO ₄	1000	24	6,624(2)	5,282(1)	11,628(1)	90,23(2)
$(Sb_{0,1}Ta_{0,9})OPO_4$	900	24	6,597(1)	5,2584(8)	11,252(2)	90,32(2)
$(Sb_{0,1}Ta_{0,9})OPO_4$	1000	24	6,594(2)	5,2607(9)	11,260(2)	90,33(2)
$(Sb_{0,2}Ta_{0,8})OPO_4$	900	24	6,570(1)	5,2327(8)	11,240(2)	90,38(2)
$(Sb_{0,3}Ta_{0,7})OPO_4$	900	24	6,546(2)	5,211(1)	11,223(2)	90,47(2)
$(\mathrm{Sb}_{0,3}\mathrm{Ta}_{0,7})\mathrm{OPO}_4$	1000	24	6,577(2)	5,242(1)	11,244(2)	90,41(2)

Abbildung 6.16: Pulverdiffraktogramme der Reaktionsprodukte aus verschiedenen Experimenten im quasibinären System SbOPO₄-TaOPO₄ (Guinier, Cu-K α_1) mit den Einwaagen (Sb_{0,3}Ta_{0,7})OPO₄ (800 °C, 24 h) (a), (Sb_{0,7}Ta_{0,3})OPO₄ (800 °C, 24 h) (b) (Sb_{0,7}Ta_{0,3})OPO₄ und (900 °C, 24 h) (c). Die unterlegten Simulationen basieren auf WOPO₄ [72] mit angepassten Gitterparametern (MPTB-Strukturtyp), SbOPO₄ [65] sowie α -TiOSO₄ nach [81] unter Berücksichtigung der Substitution von Sb/Ta für Ti sowie P für S und der experimentell bestimmten Gitterparameter. Die mit einem Pfeil markierten Reflexe konnten keiner bekannten Phase zugeordnet werden [75].
Vom Reaktionsprodukt der Einwaage "(Sb_{0,2}Ta_{0,8})OPO₄", welches nach dem Tempern bei 1000 °C an Luft guinierrein aus der MPTB-Phase bestand (Abbildung 6.16 a), wurde ein ³¹P-NMR-Spektrum aufgenommen, um zu überprüfen, ob Sb⁵⁺ eingebaut wurde. Das erhaltene Spektrum (vgl. Abbildung 6.17) zeigt mindestens zwei Signale ($\delta_{iso} = -21,2; -25,8$ ppm), welche auf mehrere unterschiedliche Phosphorlagen hindeuten. Dies steht im Einklang mit der monoklinen MPTB-Struktur, welche zwei unabhängige Phosphorlagen enthält [72]. Jedoch konnten diese in reinem β -TaOPO₄ nicht voneinander unterschieden werden [154].

Das erste Signal bei -21,2 ppm wurde in Anlehnung an die Reinphase, β -TaOPO₄ (-21,7 ppm), auf Phosphat zurückgeführt, welches von Tantal umgeben ist. Das Signal bei -25,8 ppm könnte von Phosphateinheiten stammen, die von Sb⁵⁺ umgeben sind, da das Signal von reinem SbOPO₄ bei -30,7 ppm liegt.

Der Einbau von Sb^{3+} scheint hier wenig wahrscheinlich, da dies vermutlich zu einer höheren chemischen Verschiebung führen würde (SbPO₄: -18,3 ppm). Die Schulter bei ca. -25,8 ppm deutet demnach eher auf kleine Mengen an Sb^{5+} in der Probe hin (Abbildung 6.17, mit Pfeil (2) markiertes Signal). Die thermische Reduktion von Sb^{5+} zu Sb^{3+} bei 1000 °C, wie sie um quasibinären System $SbOPO_4$ -NbOPO₄ beobachtet wurde, findet in Proben mit einem hohen Gehalt an Tantal nicht oder zumindest deutlich langsamer statt. Ein Indiz dafür ist die Annäherung der Gitterparameter der MPTB-Phase an die Reinphase nach längerem Tempern bei 1000 °C (Tabelle 6.11). Vermutlich liegt auch hier amorphes Antimonoxid neben der MPTB-Phase vor, welches sich durch die Abgabe von P_4O_{10} gebildet haben kann. Ähnlich wie im quasibinären System mit NbOPO₄ waren die Ampullen nach der Reaktion stark angegriffen. Ab 900 °C wird für das quasibinäre System SbOPO₄-TaOPO₄ an Luft im Bereich $0, 1 \le x \le 0, 6$ die Bildung der Mischkristallreihe mit dem α -TiOSO₄-Strukturtyp beobachtet. Da dieser Strukturtyp weder für reines $SbOPO_4$ noch für TaOPO₄ bekannt ist, handelt es sich hier offensichtlich um eine Mischkristallreihe, wie sie auch im quasibinären System SbOPO₄-NbOPO₄ auftritt. Allerdings wird der α -TiOSO₄-Strukturtyp im System SbOPO₄-TaOPO₄ im kleineren Zusammensetzungsbereich $0.2 \le x \le 0.4$ als Hauptphase erhalten. Die experimentell bestimmten Gitterparameter für die Mischkristallreihe $(\alpha$ -TiOSO₄-Strukturtyp) stimmen innerhalb der Standardabweichungen überein (vgl. Tabelle 6.12). Die Darstellung ist auch über eine Festkörperreaktion aus den Randphasen SbOPO₄ und β -TaOPO₄, möglich. Es handelt sich demnach

um eine thermodynamisch stabile Phase, die jedoch bei $T \geq 1000 \text{\AArC}$ durch die thermische Reduktion von Sb⁵⁺ nach Sb³⁺ in die MPTB-Phase und SbPO₄ zersetzt wird (vgl. Abbildung 6.18 b). Da die Proben mit einem Antimonanteil mit $x \geq 0,2$ bei 1000 °C aufschmelzen, kann keine Aussage über die Phasenbildung getroffen werden.

Abbildung 6.17: ³¹P-NMR-Spektrum der Einwaage des Experiments (Sb_{0,2}Ta_{0,8})OPO₄ nach Tempern an Luft bei 1000 °C für 24 h [75]. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil (1) markierte Signal (-11,8 ppm) ist eine dauerhafte Verunreinigung des Rotors, das Signal (2) ist eine Schulter, die SbOPO₄ zugeordnet wurde.

Abbildung 6.18: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Reaktionsprodukte aus dem Experiment der Einwaage "(Sb_{0,6}Ta_{0,4})OPO₄" von nach 504 Stunden bei 900 °C (a) und nach 24 h bei 1000 °C (b).

Tabelle 6.12: Gitterparameter von zwei Vertretern der Mischkristallreihe mit α -TiOSO₄-Strukturtyp im System SbOPO₄-TaOPO₄ nach Tempern bei 900 °C, berechnet mit dem Programm SOS [75].

Einwaage	a [Å]	b [Å]	c [Å]	β [°]
$\begin{array}{c} ({\rm Sb}_{0,8}{\rm Ta}_{0,2}){\rm OPO}_4 \\ ({\rm Sb}_{0,7}{\rm Ta}_{0,3}){\rm OPO}_4 \end{array}$	5,1529(9) 5,174(2)	$13,728(4) \\ 13,708(4)$	9,528(2) 9,546(3)	90,07(2) 90,21(3)

Im Temperaturbereich 700-900 °C wurde bei Einwaagen mit $0,1 \le x \le 0,6$ eine nicht identifizierte Phase gebildet (Abbildung 6.19). Die Reflexlagen sind denen der nicht identifizierten Phase *Sb*1 im System SbOPO₄-NbOPO₄ ähnlich.

Abbildung 6.19: Pulverdiffraktogramm (Guinier, Cu-K α_1) des Reaktionsprodukts von der Einwaage (Sb_{0,9}Ta_{0,1})OPO₄ (900 °C, 24 h) mit der nicht zugeordneten Phase *Sb*1 [75]. Die unterlegten Simulationen basieren auf WOPO₄ [72] mit angepassten Gitterparametern (MPTB-Strukturtyp) und SbOPO₄ [65].

6.2.4 Zusammenfassung

Die quasibinären Systeme SbOPO₄- $MOPO_4$ (M: Nb, Ta) sind sich hinsichtlich der Phasenbildung sehr ähnlich. In beiden Systemen werden sowohl die Bildung von Mischkristallreihen mit MPTB-Struktur und α -TiOSO₄-Typ beobachtet. Der α -TiOSO₄-Typ ist für die Reinphasen unbekannt. DFT-Rechnungen bestätigen, dass für Antimon die Besetzung der *trans*-verknüpfenden Metalllage im α -TiOSO₄-Typ energetisch bevorzugt ist. Es wird vermutet, dass in einem geringen Umfang auch Niob oder Tantal in SbOPO₄ eingebaut werden können. Der Einbau von Nb⁵⁺ oder Ta⁵⁺ in SbOPO₄ führt zu einer geringfügigen Stabilisierung gegen eine thermische Reduktion im Vergleich zu reinem SbOPO₄. Die Bildung der Mischkristallreihe mit α -MoOPO₄-Struktur tritt nur im quasibinären System SbOPO₄-NbOPO₄ auf.

6.3 Das quasibinäre System WOPO₄-NbOPO₄

Das quarternäre System W/Nb/P/O wurde bisher in der Literatur wenig behandelt. Eine Übersicht der literaturbekannten Verbindungen gibt das Phasendreieck in Abbildung 6.20, welches den Temperaturbereich 700 °C bis 1000 °C einschließt. Die einzige bekannte quarternäre Verbindung ist (Nb_{0,787}W_{0,213})OPO₄ mit α -MoOPO₄-Struktur (P4/nmm (a = 6,3524(7) Å c = 4,0916(5) Å [184]). Sie wurde unter reduzierenden Reaktionsbedingungen erhalten. Für das System WOPO₄-TaOPO₄ ist nichts dergleichen bekannt. Eine grobe Orientierung, bei welchem Sauerstoffpartialdruck bestimmte Oxidationsstufen zu erwarten sind, liefern die Zustandsbarogramme nach SCHMIDT, aufgestellt für binäre Oxide bei 1000 K [185]. Die benötigten Sauerstoffpartialdrücke für die Reduktion der volloxidierten Oxide Nb₂O₅, Ta₂O₅ und WO₃ sind in Tabelle 6.13 angegeben.

Binäres "W₂O₅" ist unbekannt, deswegen ist die Reduktion zu WO₂ angegeben. Für den Existenzbereich von W⁵⁺ ist der benötigte Sauerstoffpartialdruck höher als 10^{-20} bar. Von den drei betrachteten Oxiden ist WO₃ am leichtesten zu reduzieren. An Luft werden in den quasibinären Systemen WOPO₄-NbOPO₄ und WOPO₄-TaOPO₄ die Oxidationsstufen +VI für Wolfram und +V für Niob und Tantal erwartet.

Abbildung 6.20: Graphische Übersicht zu den bekannten Verbindungen im quarternären System W/Nb/P/O.

Tabelle 6.13: Redox-G	leichgewichte ausge	hend von den (Oxiden WO	O_3, Nb_2O_5	und
WO ₃ mit dem Obergr	enze des Sauerstoff	partialdrucks b	oei 1000 K.	[185].	

Element	Reduktionsreaktion	Sauerstoffpartialdruck [bar]
Wolfram Niob Tantal	$2 WO_3 \rightleftharpoons 2WO_2 + O_2$ $Nb_2O_5 \rightleftharpoons 2NbO_2 + O_2$ $Ta_2O_5 \rightleftharpoons 2Ta + 1.5 O_2$	$ \begin{array}{r} 10^{-20} \\ 10^{-25} \\ 10^{-35} \end{array} $

6.3.1 Ergebnisse und Diskussion

Der beobachtete Verlauf der Phasenbildung im System NbOPO₄-WOPO₄ ist in Abbildung 6.21 dargestellt. Es wurden zwei Mischkristallreihen ($W_{1-x}Nb_x$)OPO₄ mit den Strukturtypen α -MoOPO₄ und β -NbOPO₄ erhalten. Für einen niedrigen

Wolfram-Gehalt $(0,0 \le x \le 0,2)$ wurde nach Erhitzen der Rückstände aus der SCS bei 800 °C an Luft der α -MoOPO₄-Strukturtyp guinierrein erhalten (vgl. Abbildung 6.22). Die Erhöhung des Wolframanteils $(0,3 \le x \le 0,4)$ führte zu einem Zweiphasengemenge aus dem α -MoOPO₄-Typ und dem MPTB-Typ (m=2). Für x = 0,5 wurde nur noch die MPTB-Phase erhalten. Bei weiterer Erhöhung des Wolfram-Anteils $x \ge 0,6$ trat als weitere W₂O₃(PO₄)₂ auf.

Bei 1000 °C an Luft nahm der Anteil der MPTB-Phase bei Zusammensetzungen $0,1 \le x \le 0,4$ mit einem geringen Anteil an Wolfram zu. Die vollständige Umwandlung der Mischkristallreihe vom α -MoOPO₄-Strukturtyp den Strukturtyp der MPTB (m = 2) wurde so jedoch nicht erzielt. Um diese zu erreichen, mussten die Proben in einer geschlossenen Platin-Ampulle bei 1350 °C getempert werden (Abbildung 6.22). Für $x \ge 0,5$ nahm der Anteil an W₂O₃(PO₄)₂ mit steigender Reaktionstemperatur zu.

Die mittlere Oxidationsstufe der Metallkationen im α -MoOPO₄-Typs ist +V. Höhere Oxidationsstufen führen zur Phasenseparierung, da die Struktur die Kompensation der zusätzlichen Ladung nicht erlaubt. Im Mischkristall der allgemeinen Formel (A_{1-x}B_x)OPO₄ mit zwei unterschiedlichen Metallkationen A und B sind mehrere Möglichkeiten des Ladungsausgleichs denkbar. Der einfachste Weg ist, beide Metallkationen haben die Oxidationsstufe +V. Eine weitere Möglichkeit wäre eine Redoxreaktion zwischen A und B, zum Beispiel wie bei (V^V_{1-2x}V^{IV}_xW^{VI}_x)OPO₄ (0,04 $\leq x \leq 0,26$) [64].

Im Falle des quasibinären Systems NbOPO₄-WOPO₄ muss entweder Nb⁵⁺ neben W⁵⁺ vorliegen, oder in einer Redoxreaktion zu Nb⁴⁺ und W⁶⁺ reagieren. Im EPR-Spektrum der Zusammensetzung (W_{1-x}Nb_x)OPO₄ mit α -MoOPO₄-Typ ist kein Signal von Nb⁴⁺ detektierbar, stattdessen wurde das Signal von W⁵⁺ gemessen (vgl. Abbildung 6.26).

Es scheint als wäre es einfacher W⁶⁺ zu W⁵⁺ zu reduzieren reduziert und ins NbOPO₄-Gitter einzubauen, statt eine Wolfram(VI)-haltige Phase zu bilden. Offenbar wird unter diesen Bedingungen an Luft (!) W⁶⁺ zu W⁵⁺ reduziert. Der α -MoOPO₄-Typ kann über Festkörperreaktionen aus α -NbOPO₄ und W₂O₃(PO₄)₂ bei 1000 ° an Luft hergestellt werden, was dessen thermodynamische Stabilität beweist. Die experimentellen Gitterparameter der Mischkristallreihe (W_{1-x}Nb_x)OPO₄ (0,0 $\leq x \leq 0, 4$) mit α -MoOPO₄-Struktur liegen zwischen denen der Randphasen und verlaufen damit wie erwartet (Tabelle 13.67, siehe Abschnitt 1.3.3). Die im α -MoOPO₄-Typ erhaltenen Pulver haben eine hellbraune Farbe (vgl. Abbildung 6.25).

Abbildung 6.21: Phasenbildung nach SCS und Tempern an Luft im quasibinären System WOPO₄-NbOPO₄ in Abhängigkeit von der Zusammensetzung und der Temperatur. Bei den Reaktionen bei 1350 °C wurden die Proben in geschlossenen Platinampullen getempert, um einen Verlust von P_4O_{10} zu verhindern. Die jeweiligen Phasenanteile wurden auf Grundlage der Pulverdiffraktogramme geschätzt.

Abbildung 6.22: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Proben mit den Einwaagen (Nb_{0,9}W_{0,1})OPO₄ nach 1000 °C (a) und 1350 °C (b) und (Nb_{0,5}W_{0,5})OPO₄ nach 1000 °C (c). Die Simulationen basieren auf WOPO₄ (MPTB-Typ [72], rot) und α -NbOPO₄ (α -MoOPO₄-Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern.

Die Mischkristallreihe mit MPTB-Struktur $x \ge 0.3$ entsteht im Vergleich zur Bildung von β -NbOPO₄ (MPTB-Typ, 1350 °C [77]) bei erstaunlich niedrigen Temperaturen (800 °C). Ist die MPTB-Phase die Hauptphase im Gemenge, zeigen die Pulver eine hellblaue Farbe.

Die experimentellen Gitterparameter der Phasen vom MPTB-Typ im Zweiphasengemenge mit $W_2O_3(PO_4)_2$ im Zusammensetzungsbereich $0.6 \le x \le 0.9$ bei 1000° C zeigen keinen klaren Gang mit der Zusammensetzung, liegen aber zwischen denen von $(Nb_{0,5}W_{0,5})OPO_4$ und β -WOPO₄.

Abbildung 6.23: Relative Änderungen $l/\Delta l$ der Gitterparameter in den Mischkristallreihen (Nb_{1-x}W_x)OPO₄ mit α -MoOPO₄-Struktur (a) und MPTB-Typ (b) verglichen mit den Gitterparametern von α - und β -NbOPO₄. Grenzzusammensetzung bei $x \approx 0,3$ durch gestrichelte Linie angedeutet [69, 75].

Die Mischkristallreihe $(Nb_{1-x}W_x)OPO_4$ mit MPTB-Struktur konnte nicht einphasig über eine Festkörperreaktion an Luft erhalten werden, im Unterschied zu jener mit α -MoOPO₄-Struktur. Stattdessen wurde α -NbOPO₄ mit WOPO₄ in einer geschlossenen, evakuierten Ampulle bei 900 °C umgesetzt. Der Anteil an Niob muss dabei hoch sein (x = 0,2). Bei einem niedrigen Anteil an Niob (x =0,8) findet eine Redoxreaktion unter Abspaltung unter Bildung des Mischkristalls der Zusammensetzung (Nb_{0,5}W_{0,5})OPO₄ und von W^V₈W^{VI}₄P₈O₅₂ [186] statt. Letzteres gehört zur Familie der Diphosphat-Wolframbronzen (DPTB). Es wurde angenommen, dass ebenfalls WP₂O₇ gebildet werden sollte, um die Elementbilanz auszugleichen. Diese Phase konnte allerdings nicht in der Guinieraufnahme nachgewiesen werden, obwohl der Anteil im Phasengemenge relativ hoch sein sollte (Abbildung 6.24). Eine Erklärung für das Fehlen von WP₂O₇ liefert die Annahme, dass in die DPTB ebenfalls Niob eingebaut wurde.

Abbildung 6.24: Pulverdiffraktogramm (Guinier, Cu-K α_1) des Produktgemenges nach der Reaktion bei 1000 °C für 5 Tage von 0,2 α -NbOPO₄ mit 0,8 β -WOPO₄.

 $(Nb_{0,9}W_{0,1})OPO_4$. Von $(Nb_{0,9}W_{0,1})OPO_4$ (α -MoOPO₄-Typ) wurden Pulverremissionsspektren, EPR-Spektren und magnetische Messungen aufgenommen. Sie bestätigen, dass W⁵⁺ neben Nb⁵⁺ in der Mischkristallreihe vorliegen. Aufgrund der Wolframyl-Bindung des Chromophors [(W^V \equiv O)O₅] ist dieser verzerrt. Als Konsequenz entspricht die Aufspaltung der *d*-Orbitale jener eines gestauchten Oktaeders mit C_{4v} -Symmetrie. Im UV/vis-Spektrum (Abbildung 6.25, hellbraun) sind zwei Übergänge erkennbar, einer im NIR-Bereich (7500-12000 cm⁻¹), welche dem Übergang ²B₂ \longrightarrow ²E zugeordnet wird, und einen weiteren im UV/vis-Bereich (15000-27000 cm⁻¹), welcher ²B₂ \longrightarrow ²B₁ zugeordnet wird [187]. Der dritte Übergang (²B₂ \longrightarrow ²A₁) wird bei viel höheren Wellenzahlen erwartet.

Abbildung 6.25: UV/vis-Spektren von $(Nb_{0,9}W_{0,1})OPO_4$ mit α -MoOPO₄-Typ (braun) und β -NbOPO₄-Typ (blau). Die Aufspaltung der *d*-Orbitale von W⁵⁺ im Mischkristall mit α -MoOPO₄-Typ ist rechts dargestellt.

Die Energie der optischen Übergänge nach ²B₂ und ²E wurden auch anhand der *g*-Werte des EPR-Spektrums (Abbildung 6.26) ermittelt ($g_{\parallel} = 1,557; g_{\perp} = 1,626$). Es gilt $g_{\parallel} = g_{\perp} = g_e$ und für das Singulett $g_{\parallel} \neq g_{\perp} < g_e$. Die experimentell erhaltenen *g*-Werte stehen im Einklang mit der Orbitalaufspaltung eines gestauchten Oktaeders ($g_{\parallel} \neq g_{\perp} < g_e$; vgl. Literatur [188, 189]). Anhand dieser Werte kann der Stevensorbitalreduktionsparameter k mit $k_{\parallel} = 0,71$ und $k_{\perp} = 0,88$ unter Verwendung von $\lambda_0(W^{5+}) = 2300 \text{ cm}^{-1}$ mit der Abraham-Pryce-Näherung ermittelt werden (vgl. Gl. 6.2 und 6.3).

$$g_{\parallel} = g_e - \frac{8 \cdot k_{\parallel}^2 \cdot \lambda_0}{E(^2B_2 \to {}^2B_1)}$$
(6.2)

$$g_{\perp} = g_e - 2 \frac{k_{\perp}^2 \cdot \lambda_0}{E({}^2B_2 \to {}^2E)}$$
(6.3)

Abbildung 6.26: Tieftemperatur-EPR-Spektrum (30 K, X-Band) von $(Nb_{0,9}W_{0,1})OPO_4$ (α -MoOPO₄-Strukturtyp). Rot eingezeichnet ist die numerische Simulation der Messung.

Überraschend zeigt die hellblaue MPTB-Phase von (Nb_{0.9}W_{0.1})OPO₄ (1350 °C) kein EPR-Signal, was auf eine vollständige Oxidation des Wolframs hinweist. Dies könnte nur durch den Verlust von P₄O₁₀ erklärbar sein, da ansonsten die Ladungsbilanz in der MPTB-Phase nicht erfüllt wird. Der Verlust von P₄O₁₀ würde zu einer Fehlordnung in der Kristallstruktur führen, was anhand von HRTEM-Aufnahmen überprüft wurde. Weder die HRTEM-Aufnahmen noch das Elektronenbeugungsdiagramm der Probe zeigten Hinweise auf Defektbildung. Stattdessen passte das MPTB-Strukturmodell mit einem Verhältnis Metall:Phosphor von 1:1 sehr gut auf die HRTEM-Aufnahme, auf dem die charakteristischen, unterschiedlich orientierten zick-zack-artigen ReO₃-Säulen gut zu erkennen sind (Abbildung 6.27). Es ist daher wahrscheinlich, dass der Anteil an W⁶⁺ in der MPTB-Phase sehr gering ist. Die Anwesenheit von W⁶⁺ kann anhand des UV/vis-Spektrums (Abbildung 6.25, hellblau) nachgewiesen werden, da es den Spektren von reduziertem WO₃ ähnelt. Das Spektrum zeigt eine breite Absorptionsbanden im NIR-Bereich von 8000 bis $13000 \,\mathrm{cm}^{-1}$). Die Bande kann dem *d-d*-Übergang von [W^VO₅] zugeordnet werden [190].

Abbildung 6.27: HRTEM-Aufnahme (CM30 T) von $(Nb_{0,9}W_{0,1})OPO_4$ (b) mit Strukturmodell des MPTB-Typs (a), sowie ein Elektronenbeugungsbild (SAED) in der [0 1 0]-Zonenachse (c). Grün $[Nb/WO_6]$, gelb $[PO_4]$.

6.3.2 Zusammenfassung

Entlang des quasibinären Schnitts NbOPO $_4$ –WOPO $_4$ wurden bei unterschieldichen Temperaturen zwei Mischkristallreihen mit unterschiedlichen Strukturtypen

erhalten. Der α -MoOPO₄-Strukturtyp wurde bei Temperaturen ab 800°C an Luft und einem Wolframgehalt von $x \leq 0,3$ identifiziert. Diese Mischkristallreihe ist sowohl über SCS als auch über eine Festkörperreaktion an Luft unter Einsatz von α -NbOPO₄ und W₂O₃(PO₄)₂ darstellbar. EPR-Messungen bestätigen, dass Wolfram in der Oxidationsstufe +V vorliegt in der Mischkristallreihe mit α -MoOPO₄-Struktur vorliegt.

Mit zunehmender Temperatur wird der MPTB-Typ bevorzugt gebildet. Wolfram liegt dabei in den Oxidationsstufen +V und +VI vor. Für $0.5 \le x \le 0.1$ entsteht an Luft W₂O₃(PO₄)₂ neben dem Mischkristall mit der Grenzzusammensetzung (Nb_{0.5}W_{0.5})OPO₄. Im geschlossenen System wird bei der Einwaage "(Nb_{0.9}W_{0.1})OPO₄" eine Redoxreaktion mit der Bildung von (Nb_{0.5}W_{0.5})OPO₄ und W^V₈W^{VI}₄P₈O₅₂ beobachtet. Es ist davon auszugehen, dass in W^V₈W^{VI}₄P₈O₅₂ zu einem kleinen Anteil Wolfram durch Niob substituiert wurde.

6.4 Das quasibinäre System TaOPO₄-WOPO₄

Im Folgenden wird der quasibinäre Schnitt entlang TaOPO₄-WOPO₄ betrachtet. Bei der Synthese wurde ein Überschuss an Phosphat eingesetzt, was zu der Entdeckung zweier bisher unbekannter Mischkristallreihen mit NASICON- und $Sc_2(WO_4)_3$ -Struktur führte. Ab 1000 °C entsteht aus diesen Proben die Mischkristallreihe ($W_{1-x}Ta_x$)OPO₄ mit MPTB-Struktur. Die beobachtete Phasenbildung ist in Abbildung 6.28 dargestellt.

Abbildung 6.28: Phasenbildung nach SCS und Tempern an Luft bei 900 und 1000 °C im quasibinären System TaOPO₄-WOPO₄ mit einem Überschuss an Phosphat im System in Abhängigkeit der Zusammensetzung und Temperatur.

6.4.1 Ergebnisse und Diskussion

Bei der Synthese der Mischkristallreihe $(Ta_{1-x}W_x)OPO_4$ wurde infolge eines Einwaagefehlers ein Überschuss an Phosphor eingesetzt. Dies führte zur Bildung einer NASICON-verwandten Struktur mit x = 0,1 bei Temperaturen von 900 °C (Abbildung 6.29 a). Deren dunkelblaue Farbe deutete auf den Einbau von Wolfram in den Oxidationsstufen +5 und +6 in die NASICON-verwandte Struktur hin. Eine blaue bis dunkelblaue Farbe zeigen alle hier besprochenen Verbindungen. Die Farbintensität nimmt dabei mit steigendem Wolfram-Gehalt zu. Eine weitere Mischkristallreihe, die isotyp zu Nb_{1,91}P_{2,82}O₁₂ (Sc₂(WO₄)₃) ist, wurde ab 900 °C bei einem erhöhten Wolfram-Anteil beobachtet (x = 0, 4, 0, 5, 0, 6, 0, 9). Ab 1000 °C wurde das überschüssige Phosphat als P₄O₁₀ abgegeben, sodass sich ein Verhältnis Metall:Phosphor von 1:1 einstellte. So konnte die Mischkristallreihe (Ta_{1-x}W_x)OPO₄ mit MPTB-Strukturtyp im Bereich von $0, 0 \le x \le 0, 6$ erhalten werden. Die experimentell bestimmten Gitterparameter belegen den Einbau von W⁵⁺. Sie werden mit steigendem Anteil an Wolfram kleiner, wie es anhand der Gitterparameter von reinem WOPO₄ zu erwarten ist. Wurde der Anteil von Wolfram weiter erhöht (x = 0,7), bildete sich neben dem MPTB-Strukturtyp W₂O₃(PO₄)₂.

Tabelle 6.14: Gitterparameter der Mischkristallreihe mit MPTB-Struktur im System TaOPO₄-WOPO₄ im Vergleich zu reinem β -TaOPO₄ und WOPO₄, berechnet mit dem Programm SOS [182]. Neuauswertung der Daten von [154].

Einwaage	a [Å]	<i>b</i> [Å]	c [Å]	β [°]
β -TaOPO ₄	6,624(2)	5,282(1)	11,628(1)	90,23(2)
$(Ta_{0,9}W_{0,1})OPO_4$	6,624(3)	5,277(3)	11,265(5)	90,22(3)
$(Ta_{0,6}W_{0,4})OPO_4$	6,582(2)	5,265(2)	11,212(3)	90,27(3)
$(Ta_{0,5}W_{0,5})OPO_4$	6,577(2)	5,259(2)	11,210(3)	90,34(3)
$(Ta_{0,4}W_{0,6})OPO_4$	6,585(2)	5,260(2)	11,204(3)	90,38(2)
$(Ta_{0,3}W_{0,7})OPO_4$	6,558(3)	5,246(4)	11,172(7)	90,33(4)
$(Ta_{0,2}W_{0,8})OPO_4$	6,546(6)	5,240(4)	11,150(9)	90,20(6)
$WOPO_4$	6,5541(4)	5,2334(7)	11,1862(7)	90,330(6)

Abbildung 6.29: Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Proben "(Ta_{0,9}W_{0,1})OPO₄" nach einem Tag bei 900 °C (a) und nach sieben Tagen bei 1000 °C (b). Die Zusammensetzung "(Ta_{0,4}W_{0,6})OPO₄" nach einem Tag bei 900 °C (c) und nach sieben Tagen bei 1000 °C. Die unterlegten Simulationen basieren auf NbTi(PO₄)₃ (NASICON, schwarz), dem MPTB-Strukturtyp (rot) und Nb_{1,91}P_{2,82}O₁₂ (Sc₂(WO₄)₃-Typ, orange) mit angepassten Gitterparametern.

6.4.2 Zusammenfassung

Entlang des quasibinären Schnittes TaOPO₄-WOPO₄ wurde die Mischkristallreihe $(Ta_{1-x}W_x)OPO_4$ ($0,0 \le x \le 0,6$) im MPTB-Typ erhalten. Ebenso wie in NbOPO₄ wird W⁵⁺ auch in der TaOPO₄-Matrix an Luft stabilisiert. Die Bildung von $W_2O_3(PO_4)_2$ fand erst ab einem Anteil von x = 0,7 stattfand. Die Proben haben eine hellblaue bis blaue Farbe, sodass vermutet werden kann, dass W⁵⁺ neben kleinen Mengen an W⁶⁺ vorliegt. Experimente mit höherem Anteil an P₄O₁₀ geben Hinweise auf Phasen mit NASICON- und Sc₂(PO₄)₃-Struktur. Diese spalten an Luft bei 1000 °C P₄O₁₀ ab und gehen dabei in die oben beschriebene Mischkristallreihe (Ta_{1-x}W_x)OPO₄ ($0,0 \le x \le 0,6$) über.

6.5 Das quasibinäre System NbOPO₄-TaOPO₄

Das quasibinäre System NbOPO₄-TaOPO₄ wurde schon von LU ET AL. genauer untersucht [77]. Er hat gezeigt, dass über einen weiten Zusammensetzungsbereich die Substitution von Tantal durch Niob möglich ist. Der Einbau von Tantal in NbOPO₄ führt schon bei der Zusammensetzung (Nb_{0,98}Ta_{0,02})OPO₄ zur Stabilisierung des MPTB-Strukturtyps, der bei reinem NbOPO₄ erst ab Temperaturen von 1350 °C in einer geschlossenen Platinampulle erhalten wird. Dabei zeigten die synthetisierte Mischkristallreihe (Nb_{1-x}Ta_x)OPO₄ (x = 0,2; 0,1; 0,05; 0,02) keine starke Änderung der Gitterparameter. Im Rahmen dieser Arbeit wurde die Reihe durch Mischkristalle mit einem höheren Anteil an Tantal ergänzt und näher charakterisiert. Die Synthese von Mischkristallen bei x = 0,1; 0,5; 0,9 wurde im Rahmen dieser Arbeit über SCS durchgeführt.

6.5.1 Ergebnisse und Diskussion

Wie LU ET AL. gezeigt hatten, ist es möglich, NbOPO₄ im MPTB-Strukturtyp durch den Einbau von Ta⁵⁺ zu stabilisieren. Durch den Einbau von Tantal wurde die Bildung der thermodynamisch stabilen Phase α -NbOPO₄ (MoOPO₄-Strukturtyp) unterdrückt und stattdessen der MPTB-Typ erhalten. α -NbOPO₄ trat im Phasengemenge von "(Nb_{0,9}Ta_{0,1})OPO₄" als Nebenphase auf, aber in Hinblick auf die Ergebnisse von LU ET AL. ist eine Mischungslücke auszuschließen. Mithilfe von *Match! [191]* wurde trotzdem das Phasenverhältnis berechnet, sodass die Zusammensetzung der MPTB zu (Nb_{0,875}Ta_{0,125})OPO₄ bestimmt wurde. Die experimentell bestimmten Gitterparameter der Mischkristallreihe mit MPTB-Struktur weichen von denen der Reinphasen ab, jedoch sind die Abweichungen der Gitterparameter innerhalb der Reihe sehr gering (Tabelle 6.15). Ein Grund könnte der aufgrund der Lanthanoidenkontraktion ähnliche Ionenradius von Ta⁵⁺ und Nb⁵⁺ bei K(M^{5+}) = 6 sein.

Abbildung 6.30: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Proben mit den Zusammensetzungen (Nb_{0,9}Ta_{0,1})OPO₄ (a), (Nb_{0,5}Ta_{0,5})OPO₄ (b) und (Nb_{0,1}Ta_{0,9})OPO₄ (c) nach Tempern an Luft bei 1000 °C. Die Simulationen sind dem MPTB-Strukturtyp (rot) und α -NbOPO₄ (blau) zuzuordnen.

Tabelle 6.15: Gitterparameter der Mischkristalle mit MPTB-Struktur in der Raumgruppe $P2_1/m$ basierend auf WOPO₄ [72] im System NbOPO₄-TaOPO₄ im Vergleich zu reinem β -NbOPO₄ [75] und β -TaOPO₄ [75].

Einwaage	a [Å]	<i>b</i> [Å]	c [Å]	β [°]
β -NbOPO ₄	6,6108(5)	5,2778(5) 5,278(1)	11,2629(8) 11,263(3)	90,316(7)
$(Nb_{0,5}Ta_{0,5})OPO_4$	6,616(2)	5,278(1) 5,279(2)	11,203(3) 11,260(4)	90,20(2) 90,27(2)
$\begin{array}{l} (\mathrm{Nb}_{0,1}\mathrm{Ta}_{0,9})\mathrm{OPO}_4\\ \beta\text{-}\mathrm{Ta}\mathrm{OPO}_4 \end{array}$	6,612(1) 6,6295(9)	5,277(1) 5,2813(7)	$11,261(3) \\ 11,277(1)$	90,29(1) 89,89(1)

Ab einer Temperatur von 700 °C wurde bei der Einwaage $(Nb_{0,9}Ta_{0,1})OPO_4$ ein Pulver mit einer hellgelben Farbe erhalten, weiteres Tempern ließ sie wieder verblassen. Aufgrund dieser Beobachtung wurde von allen Proben Pulverremissionsspektren aufgenommen. β -NbOPO₄ (MPTB-Strukturtyp) zeigt mindestens zwei Absorptionsbanden ($\bar{\nu}_1 = 29000 \text{ cm}^{-1}$, $\bar{\nu}_2 = 34000 \text{ cm}^{-1}$), β -TaOPO₄ (MPTB-Strukturtyp) hat keine im messbaren Bereich.

Die beobachteten Absorptionsbanden der Mischkristallreihe $(Nb_{1-x}Ta_x)OPO_4$ liegen im UV-Bereich und werden mit zunehmendem Anteil an Tantal zu höheren Wellenzahlen verschoben. Die beobachteten Übergänge sind LMCTs, wobei der erste Übergang durch die Anregung eines *p*-Elektrons des Sauerstoffs in das leere d_{xy} -Orbital des Metallkations erzeugt wurde. Die Anwesenheit von Niob im MPTB-Strukturtyp setzt die Anregungsenergie für den Übergang herab, sodass dieser bei niedrigeren Wellenzahlen detektiert werden konnte. Ein Grund dafür könnte sein, dass das Nb $4d_{xy}$ -Orbital energetisch niedriger liegt als das $5d_{xy}$ -Orbital von Tantal.

Abbildung 6.31: UV/vis-Spektren von β -TaOPO₄ (violett), (Nb_{0,1}Ta_{0,9})OPO₄ (rot), (Nb_{0,5}Ta_{0,5})OPO₄ (hellblau), "(Nb_{0,9}Ta_{0,1})OPO₄" (dunkelblau) und β -NbOPO₄ (grün). Die Einwaage "(Nb_{0,9}Ta_{0,1})OPO₄" enthielt Verunreinigungen des MoOPO₄-Strukturtyps ($\omega = 20\%$).

Bei Bestrahlung mit UV-Licht ($\lambda = 254 \text{ nm}$) zeigten β -TaOPO₄, α -NbOPO₄

sowie die Vertreter der Mischkristallreihe schwache Fluoreszenz (Abbildung 6.32). α -NbOPO₄ emittiert grün-gelbes Licht, β -TaOPO₄ schwach rötliches. Die Mischkristalle emittierten oranges Licht. Die Lumineszenz wird durch die die Anregung der Elektronen in einem *p*-Orbital des Tantalyl- bzw. Niobylsauerstoffs in die jeweils leeren *d*-Orbitale der Metallkationen erzeugt. Für Tantalphosphat war sie bisher nicht bekannt [154].

Abbildung 6.32: Die Vertreter der Mischkristallreihe $(Nb_{1-x}Ta_x)OPO_4$ (mit x = 0.8; 0,5; 0,1) sowie β -TaOPO₄ und α -NbOPO₄ bei Sonnenlicht (oben) und UV-Licht ($\lambda = 254$ nm; unten). β -TaOPO₄ (a), $(Nb_{0,1}Ta_{0,9})OPO_4$ (b), $(Nb_{0,5}Ta_{0,5})OPO_4$ (c), $(Nb_{0,875}Ta_{0,125})OPO_4$ (d) und α -NbOPO₄ (e). Die Abbildungen wurden bearbeitet, um den visuellen Eindruck bestmöglich wiederzugeben. Im Fall von $(Nb_{0,875}Ta_{0,125})OPO_4$ liegt α -NbOPO₄ als Nebenphase vor. Die Abbildung wurde von WODAK übernommen [154].

Die Phosphorumgebung der erhaltenen Mischkristallreihe $(Nb_{1-x}Ta_x)OPO_4$ wurde mit Hilfe der ³¹P-NMR-Spektroskopie untersucht (vgl. Abbildung 6.33). Dabei wurde in Abhängigkeit der Zusammensetzung des Mischkristalls eine Verschiebung in den ³¹P-NMR-Spektren gemessen. Für alle gemessenen Proben wurde jeweils ein breites Signal detektiert, dabei nahm die Breite des Signal mit zunehmendem Niob-Anteil zu.

Dies ist vermutlich auf die Quadrupolkopplung zum ⁹³Nb-Isotop zurückzuführen. Zusätzlich wird das Signal aufgrund der lokalen Umgebung des Phosphors verbreitert, da aufgrund der Substitution Phosphor in vielen leicht unterschiedlichen Koordinationsumgebungen von Tantal und Niob vorliegt. Trotz der Breite des Signals, welches dadurch Aufspaltungen verdecken könnte, ist es wahrscheinlich, dass beide Metalllagen im MPTB-Typ statistisch von Niob und Tantal besetzt

Abbildung 6.33: ³¹P-NMR-Spektren von β -TaOPO₄ (a), (Nb_{0,5}Ta_{0,5})OPO₄ (b) und (Nb_{0,9}Ta_{0,1})OPO₄ (c) [154]. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist auf eine dauerhafte Verunreinigung des Rotors zurückzuführen.

6.5.2 Zusammenfassung

Der Einbau von Tantal in NbOPO₄ stabilisiert den MPTB-Strukturtyp über den ganzen Zusammensetzungsbereich der Mischkristallreihe $(Nb_{1-x}Ta_x)OPO_4$ und betätigen damit die schon in der Literatur gemachte Beobachtung. Die Gitterparameter ändern sich wenig mit der Zusammensetzung der Mischkristallreihe aufgrund der ähnlichen Ionenradien von Nb⁵⁺ und Ta⁵⁺. Die ³¹P-Spektren legen ebenfalls nahe, dass es sich hier um eine Mischkristallreihe der Form $(Nb_{1-x}Ta_x)OPO_4$ handelt. Die Verbreiterung der Signale des Phosphors weist auf eine lokale Unordnung in dessen Umgebung hin, was in Einklang mit unterschiedlichen Koordinationsumgebungen steht, die in einem Mischkristall zu erwarten sind. Zudem zeigt sowohl die Mischkristallreihe als auch die Reinphasen β -TaOPO₄ und α -NbOPO₄ Fluoreszenz.

sind.

Kapitel 7

Topotaktisch kontrollierte Reduktion der Oxidphosphate $(V_{1-x}M_x)OPO_4$ (M: W, Nb)

7.1 Die Systeme V/W/P/O und V/Nb/P/O

In Abschnitt 3.3 wurde die topotaktisch kontrollierte Reduktion von β -VOPO₄ beschrieben. Im folgenden Abschnitt sollen dotierte Vanadiumphosphate ((V_{1-x}M_x)OPO₄) des α -MoOPO₄-Typs reduziert werden. Genauer untersucht wurden Mischkristalle der Zusammensetzung (V_{1-x}W_x)OPO₄ (x = 0,2; 0,26) sowie Vertreter der Mischkristallreihe (V_{1-x}Nb_x)OPO₄ mit x = 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9. Die Betrachtung des Redoxverhaltens der vanadiumhaltigen Mischkristallreihen ist von besonderem Interesse aufgrund deren Einsatz bei der Partialoxidation von Alkanen. Die topotaktisch kontrollierte Reduktion der Oxidphosphate erlaubt zudem den präparativen Zugang zu neuen metastabilen Verbindungen ungewöhnlicher Oxidationsstufen und Koordinationspolyedern.

7.2 Das Redoxverhalten von $(V_{0,8}W_{0,2})OPO_4$ und $(V_{0,74}W_{0,26})OPO_4$

Die Reduktion von $(V_{0,8}W_{0,2})OPO_4$ und $(V_{0,74}W_{0,26})OPO_4$ für zwei Tage bei 400 °C unter feuchtem Wasserstoff führte zur Bildung der anreduzierten Phase,

im folgenden R-1 genannt (($V_{0,8}W_{0,2}$) $O_{1-\delta}PO_4$). Das erhaltene Pulver hatte eine rotbraune Farbe. Durch längere Reduktionszeit wurde aus R-1 eine zweite Phase, im folgenden R-2 genannt, erhalten. Der Sauerstoffdefizit von R-2 ist höher als von R-1. Um den Unterschied in der Zusammensetzung zu kennzeichnen werden die R-2 Proben ausgeschrieben als ($V_{0,8}W_{0,2}$) $O_{1-\delta'}PO_4$ und ($V_{0,74}W_{0,26}$) $O_{1-\delta'}PO_4$.

Experiment	Reaktions- dauer (h)	Temp. (°C)	Ergebnis (nach Guinieraufnahme)	Farbe des Pulvers
V8W2_1	72, Reduktion48, Reduktion24, Reduktion	400 450 500	Edukt, R-1 R-1 R-2	dunkelgrün rotbraun dunkelbraun
V8W2_2 V8W2_2	24, Reduktion 24, Oxidation	400 400	R-1 $\alpha_{\rm II}$ -Phase	rotbraun grün
V8W2_3	48, Reduktion 288, isotherm ^{a)} dauer (h)	400 600	R-1 VPO ₄ , unbekannte Phase Guinieraufnahme)	rotbraun dunkelbraun des Pulvers
V74W26_1	48, Reduktion 72, Reduktion	400 450	R-1 R-2	rotbraun dunkelbraun
V74W26_1	48, Reduktion 288, isotherm ^{a)}	400 600	R-1 R-1	rotbraun braun
V74W26_2	48, Reduktion 24, Oxidation ^{b}	$\begin{array}{c} 400\\ 400 \end{array}$	R-1 α -VOSO ₄ -Typ	rotbraun grün

Tabelle 7.1: Übersicht ausgewählter Experimente zu $(V_{0,8}W_{0,2})OPO_4$ und $(V_{0.74}W_{0.26})OPO_4$ (α -MoOPO₄-Strukturtyp).

a) Das Pulver wurde isotherm unter Vakuum in einer geschossenen Ampulle nachgetempert.

b) Die Oxidation erfolgte an Luft in einem Kammerofen.

Aufgrund des unterschiedlichen Sauerstoffgehalts unterscheiden sich die Gitterparameter von R-1 und R-2. Durch die Abnahme des Sauerstoffgehalts in der Struktur nimmt der *c*-Gitterparameter mit zunehmendem Reduktionsgrad ab, der *a*-Gitterparameter hingegen durch den zunehmenden Ionenradius von V^{IV} oder V^{III} zu (vgl. Tabelle 7.2). Der Reduktionsgrad hat auch einen Einfluss auf die Kristallinität der Proben. In $(V_{0,8}W_{0,2})OPO_4$ und $(V_{0,74}W_{0,26})OPO_4$ geht die Bildung von R-2 mit einer starken Abnahme der Kristallinität einher (vgl. Abbildungen 7.1 und 7.2). Gleichzeitig nimmt die Halbwertsbreite der Reflexe zu. Besonders die starke Verbreiterung des (101)-Reflexes, die bei R-2 ($(V_{0,8}W_{0,2})O_{1-\delta'}PO_4$) zu beobachten ist, deutet auf eine Fehlordnung der Schichten hin (Abbildung 7.1d). Die Re-Oxidation von R-1 ($(V_{0,8}W_{0,2})OPO_4$ und $(V_{0,74}W_{0,26})OPO_4$) wurde an Luft für einen Tag bei 400 °C durchgeführt. Das re-oxidierte Produkt von ($V_{0,8}W_{0,2}$)OPO₄ wies einen höheren Anteil amorpher Bestandteile im Vergleich zu ($V_{0,74}W_{0,26}$)OPO₄ auf (vgl. Abbildungen 7.3 und 7.4). Daraus kann abgeleitet werden, dass ($V_{0,74}W_{0,26}$)OPO₄ aufgrund des höheren Wolframanteils und der damit einhergehenden Stabilisierung der Struktur für die Redoxreaktion besser geeignet ist. R-2 war bei beiden Mischkristallzusammensetzungen unter diesen Bedingungen nicht re-oxiderbar. Es konnte nach einem Tag an Luft bei 400 °C keine Änderung im Röntgenpulverdiffraktogramm festgestellt werden.

Tabelle 7.2: Gitterparameter des α_{II} -Strukturtyps von VOPO₄, $(V_{0,8}W_{0,2})OPO_4$, $(V_{0,8}W_{0,2})O_{1-\delta}PO_4$ (R-1), $(V_{0,8}W_{0,2})O_{1-\delta'}PO_4$ (R-2), $(V_{0,76}W_{0,24})OPO_4$, $(V_{0,74}W_{0,26})O_{1-\delta}PO_4$ (R-1) und $(V_{0,76}W_{0,26})O_{1-\delta'}PO_4$ (R-2) im Vergleich.

Zusammensetzung	a (Å)	c (Å)	c/a	V (Å ³)
VOPO ₄ ($V_{0,8}W_{0,2}$)OPO ₄ [64] ($V_{0,8}W_{0,2}$)O _{1-δ} PO ₄ (R-1) [192] ($V_{0,8}W_{0,2}$)O _{1-δ'} PO ₄ (R-2)[192]	$\begin{array}{c} 6,014(7) \\ 6,0875(6) \\ 6,2827(6) \\ 6,342(3) \end{array}$	$\begin{array}{c} 4,434(2) \\ 4,3141(13) \\ 4,2662(2) \\ 4,060(6) \end{array}$	$0,74 \\ 0,68 \\ 0,68 \\ 0,64$	160,37 159,87 168,40 163,30
$\begin{array}{l} (V_{0,76}W_{0,24})OPO_4 \ [64] \\ (V_{0,74}W_{0,26})O_{1-\delta}PO_4 \ (R-1) \ [192] \\ (V_{0,74}W_{0,26})O_{1-\delta'}PO_4 \ (R-2) [192] \end{array}$	6,0979(2) 6,248(2) 6,3907(1)	$\begin{array}{c} 4,2995(1) \\ 4,226(2) \\ 4,1042(8) \end{array}$	$0,71 \\ 0,68 \\ 0,64$	159,87 164,97 167,62

Abbildung 7.1: Eingesetztes Edukt $(V_{0,8}W_{0,2})OPO_4$ mit Simulation (a). Phasengemenge aus $(V_{0,8}W_{0,2})OPO_4$ und $V_{0,8}W_{0,2})O_{1-\delta}PO_4$ (R-1) (b). $V_{0,8}W_{0,2})O_{1-\delta}PO_4$ (R-1) mit angepasster Simulation (c). Bildung von $(V_{0,8}W_{0,2})O_{1-\delta'}PO_4$ (R-2) (d).

Abbildung 7.2: Guinieraufnahme von $(V_{0,76}W_{0,24})OPO_4$ mit Simulation. Experiment V74V26_1 nach zwei Tagen unter feuchtem Wasserstoff bei 400 °C mit angepasster Simulation von $(V_{0,74}W_{0,26})O_{1-\delta}PO_4$ (R-1) (b). Experiment V74V26_1 nach drei Tagen unter feuchtem Wasserstoff bei 450 °C mit angepasster Simulation von $(V_{0,74}W_{0,26})O_{1-\delta'}PO_4$ (R-2).

Abbildung 7.3: Das eingesetzte Edukt mit der Simulation von $(V_{0,8}W_{0,2})OPO_4$ (a). Experiment V8W2_1 nach der Reduktion für einen Tag unter feuchtem Wasserstoff mit angepasster Simulation (b). Re-oxidierte Phase mit α -MoOPO₄-Strukturtyp nach Oxidation an Luft für einen Tag bei 400 °C (c).

Abbildung 7.4: Eingesetztes Edukt $(V_{0,76}W_{0,24})OPO_4$ mit ca. 2%Gew. β -VOPO₄ (a). Experiment V74V26_2 mit angepasster Simulation von Phase 1 (b). $(V_{0,76}W_{0,24})OPO_4$ nach Re-Oxidation für einen Tag bei 400 °C an Luft (c).

Wurde R-1 (V8W2_3, Tabelle 7.2) ins chemische Gleichgewicht bei 600 °C gesetzt, bildete sich ein Phasengemenge aus VPO₄-Cmcm, V₄(P₂O₇)₃, sowie WO₃. Aufgrund der Zersetzungsprodukte von R-1 und der bekannten Elementbilanz ergibt sich folgende Reaktionsgleichung:

$$10 V_{0,8} W_{0,2} O_{1-\delta} PO_4(s) \longrightarrow 4 VPO_4(s) + V_4 (P_2 O_7)_3(s) + 2 WO_3(s)$$
 (7.1)

 δ kann nun durch die aufgestellte Zersetzungsgleichung berechnet werden und beträgt $\delta = 0,7$. Demnach wurde mehr als die Hälfte des Vanadylsauerstoffs durch die Reduktion entfernt. Dieser Wert besitzt allerdings nur orientierenden Charakter. Wichtig zu betonen ist jedoch, dass Vanadium vollständig zu +3 reduziert wurde.

Abbildung 7.5: Experiment V8W2_3 nach Reduktion unter feuchtem Wasserstoff für zwei Tage bei 400 °C mit angepasster Simulation (a). Phasengemenge nach isothermen Tempern von Phase 1 in einer geschlossenen Kieselglasampulle für zwölf Tage bei 600 °C mit den Simulationen von VPO₄ (schwarz) und V₄(P₂O₇)₃ (grün). Der Stern markiert Reflexe, die vermutlich WO₃ zuzuordnen sind.

Basierend auf den Ergebnissen wird vereinfacht angenommen, dass die Reduktion der Mischkristallreihe $(V_{1-x}W_x)OPO_4$ (x = 0,2; 0,26) in drei Schritte unterteilt werden kann. Die Schritte laufen voneinander nicht isoliert ab, verdeutlichen den Reduktionsablauf.

- 1. Die volloxidierte Phase wird teilweise anreduziert. Visuell findet ein Farbwechsel des Pulvers von grün nach dunkelgrün statt. Es ist ein Phasengemenge, bestehend aus der volloxidierten und reduzierten Phase (R-1), entstanden.
- Das Phasengemenge (oxidiert und reduziert) wurde weiter reduziert (V⁵⁺ wurde zu V⁴⁺ oder V³⁺ reduziert) und phasenrein R-1 erhalten. Das Pulver hatte nun eine rotbraune Farbe.

3. Der letzte Schritt führte zur Zerstörung von R-1 durch weitere Reduktion. Die Röntgenpulverdiffraktogramme zeigen Verbreiterungen der Reflexhalbwertszeiten, sowie eine Zunahme des amorphen Untergrunds. Optisch war ebenfalls ein Farbwechsel von rot- nach dunkelbraun zu erkennen. Diese Phase wurde R-2 genannt.

Möglich wird der kinetisch kontrollierte topotaktischer Ausbau ohne Verlust der Gerüststruktur, weil die Reduktion unter moderaten Bedingungen stattfindet und demnach die zugeführte Energie nicht ausreichend ist, die Energiebarierre zur Phasenumwandlung in die thermodynamisch stabilen Phasen zu überwinden. Aus diesem Grund bleibt die metastabile, reduzierte Phase R-1 erhalten und kann re-oxidiert werden.

7.3 Die topotaktisch kontrollierte Reduktion der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$

Die Reduktion der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ (α -MoOPO₄-Strukturtyp, x = 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9) wurde für einen Tag bei 400 °C unter feuchtem Wasserstoffstrom durchgeführt. Anschließend wurde unter Vakuum bei 700 °C isotherm 14 Tage nachgetempert, um eine Aussage über die vorliegenden Oxidationsstufen zu erhalten. Für die Re-Oxidation wurden die reduzierten Proben bei 400 °C einen Tag an Luft getempert. Nach der Reduktion war optisch eine Farbveränderung erkennbar, die durch Reduktion von Vanadium hervorgerufen wurde.

Die volloxidierten Proben haben eine gelbe Farbe, nach der Reduktion hatten die Pulver eine beige (niobreich) bis braune Farbe (vanadiumreich). Die experimentell bestimmten Gitterparameter (vgl. Tabelle 7.3) können mit denen der oxidierten Mischkristallreihe sowie untereinander verglichen werden. Werden die Gitterparameter der reduzierten Verbindungen mit jenen der volloxidierten verglichen, fällt auf, dass mit zunehmendem Anteil an Niob der Gitterparameter a zunimmt, der Gitterparameter c hingegen leicht abnimmt. Die Zunahme von Gitterparameter awurde bereits durch die Ionenradien erklärt. Die Änderung von Gitterparameter ain Abhängigkeit der Zusammensetzung ist deutlich stärker ausgeprägt als die von Gitterparameter c (Tabelle 7.3). Der Gitterparameter c wird kleiner, weil zum einen Vanadylsauerstoff aus dem Gitter entfernt wird, sodass die Schichten weiter zusammenrücken können. Innerhalb der reduzierten Mischkristallreihe nimmt mit steigendem Gehalt an Niob der Gitterparameter a ebenfalls zu und der Gitterparameter c ab. Der Gitterparameter c nimmt ab, da immer mehr Niob seinen favorisierten Koordinationspolyeder einnehmen kann und somit sich in Summe der Gitterparameter c an den von reinem NbOPO₄ angleicht.

Abbildung 7.6: Pulverdiffraktogramme (Guinier, Cu-K α_1) der Experimente mit den Zusammensetzungen (V_{0,9}Nb_{0,1})OPO₄ (a) und (V_{0,5}Nb_{0,5})OPO₄ (b) nach Reduktion, Re-Oxidation und Gleichgewichtseinstellung der reduzierten Phase.

7.3. Die topotaktisch kontrollierte Reduktion der Mischkristallreihe $(\mathbf{V}_{1-x}\mathbf{N}\mathbf{b}_x)\mathbf{OPO}_4$

Tabelle 7.3: Re-Oxidationsexperimente von der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$. Die Proben wurden bei jedem Temperschritt für jeweils einen Tag reduziert, bzw. an Luft getempert. α -NbOPO₄ wurde als Referenz angegeben [192].

x(M)	a_{ox}	a_{red}	a_{red}/a_{ox}	C_{ox}	c_{red}	c_{red}/c_{ox}
x(Nb)						
0,1	6,036(2)	6,34(1)	$1,\!05$	4,413(3)	4,25(1)	0,96
0,2	6,050(2)	6,348(2)	$1,\!05$	4,402(3)	4,229(9)	0,97
$0,\!3$	6,079(2)	6,376(1)	$1,\!05$	4,366(3)	4,214(4)	0,97
$0,\!4$	6,134(5)	6,3726(8)	1,02	4,313(5)	4,214(4)	1,00
$0,\!5$	6,206(3)	6,347(1)	1,02	4,241(4)	4,233(1)	$1,\!00$
$0,\!6$	6,248(3)	6,385(1)	1,01	4,198(2)	4,184(2)	1,01
0,7	6,287(2)	$6,\!386(3)$	1,01	4,180(2)	4,173(3)	$1,\!00$
$0,\!8$	6,318(2)	$6,\!3853(7)$	1,01	4,152(2)	4,158(4)	$1,\!00$
$0,\!9$	6,353(1)	6,3843(8)	1,01	4,132(2)	4,123(1)	$1,\!00$
$1,\!0$	6,3907			4,1042		

Im Verlauf der Reduktion bestimmt die Menge an Vanadium in der Mischkristallreihe, wie stark sich die Gitterparameter relativ zu den volloxidierten Phasen ändern. Je höher der Anteil an Vanadium in der Mischkristallreihe ist, desto ausgeprägter ist die relative Änderung der Gitterparameter im Vergleich zu den oxidierten Phasen, da hier mehr Sauerstoff aus dem Gitter entfernt wird (vgl. Abbildung 7.7).

Abbildung 7.7: Relative Änderung der Gitterparameter des Mischkristalls $(V_{1-x}Nb_x)O_{1-\delta}PO_4$ im Vergleich zu den vollständig oxidierten Phasen.
Um eine Aussage über die Oxidationsstufen des Vanadiums zu erhalten, wurden die nach der Reduktion erhaltenen Phasengemenge unter Vakuum in geschlossenen Kieselglasampullen bei 700 °C für vierzehn Tage nachgetempert (Abbildung 7.6). Für die Zusammensetzungen $(V_{1-x}Nb_x)OPO_4$ (x = 0,1; 0,5, 0,8) wurde eine niobreiche Phase ($(V_{0,2}Nb_{0,8})OPO_4$) neben VPO₄ (R.G. *Cmcm*) erhalten, was beweist, dass Vanadium in der Mischkristallreihe ohne Zerstörung der Gerüststruktur bis zur Oxidationsstufe +III reduziert werden kann.

$$(\mathbf{V}^{V}_{1-x}\mathbf{Nb}^{V}_{x})\mathbf{OPO}_{4}(\mathbf{s}) + \delta \mathbf{H}_{2}(\mathbf{g}) \longrightarrow (\mathbf{V}^{\mathrm{III}}_{1-x}\mathbf{Nb}^{V}_{x})\mathbf{O}_{1-\delta}\mathbf{PO}_{4}(\mathbf{s}) + \delta \mathbf{H}_{2}\mathbf{O}(\mathbf{l})$$

$$(7.2)$$

Die Re-Oxidation war über die gesamte Phasenbreite möglich. Es gab jedoch Unterschiede, wie gut eine Phase nach der erfolgten Reduktion wieder in den Ausgangszustand überführt werden konnte. Bei einigen Proben führte die Re-Oxidation zwar zur Bildung der oxidierten Phase, allerdings hatte der Anteil an amorphen Bestandteilen im Vergleich zum eingesetzten Edukt deutlich zugenommen (Abbildung 7.6 a).

$$(\mathbf{V}^{\mathrm{III}}_{1-x}\mathbf{Nb}^{\mathrm{V}}_{x})\mathbf{O}_{1-x}\mathbf{PO}_{4}(\mathbf{s}) + \frac{1-\mathbf{x}}{2}\mathbf{O}_{2}(\mathbf{g}) \longrightarrow (\mathbf{V}^{\mathrm{V}}_{1-x}\mathbf{Nb}^{\mathrm{V}}_{x})\mathbf{OPO}_{4}(\mathbf{s})$$
(7.3)

Wie stark der amorphe Anteil des re-oxidierten Produkts im Vergleich zum Ausgangsmaterial zugenommen hatte, ließ sich mit dem Anteil an Nb⁵⁺ in der Mischkristallreihe korrelieren. Ein hoher Niob-Gehalt führte zu einer besseren Reversibilität als ein hoher Gehalt an Vanadium (vgl. Abbildung 7.6 b).

7.4 Zusammenfassung

Der α -MoOPO₄-Strukturtyp ist eine Schichtstruktur. Die einzelnen Schichten werden durch alternierende O- $M-M\equiv$ O-Bindungen zusammengehalten, wobei die M-O-Bindungsstärke schwach ist und eine Verschiebung der Schichten gegeneinander möglich ist. Die Reduktion der Mischkristalle (V_{1-x}W_x)OPO₄ (x = 0,2; 0,26) und (V_{1-x}Nb_x)OPO₄ (x = 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9) verläuft kinetisch kontrolliert unter Erhalt von den Strukturen (α -MoOPO₄-Strukturtyp) ab. Die hier erhaltenen, reduzierten Mischkristalle sind metastabil und wandeln sich bei ausreichend hoher Aktivierungsenergie in die thermodynamisch stabilen Phasen um. Da die Aktivierungsenergie für die Phasenumwandlung relativ hoch ist (T ≈ 800 °C), können durch die hier durchgeführte topotaktisch kontrollierte Reduktion Phasen erhalten werden, die auf anderen Wegen nicht zugänglich sind. Bei der Reduktion der Mischkristallreihen mit α -MoOPO₄-Struktur wird der elektrophile V \equiv O-Sauerstoff entfernt. Der Metallylsauerstoff hingegen, welcher an Niob oder Wolfram gebunden ist, bleibt in der Struktur, da der Sauerstoffpartialdruck zu hoch ist, und stabilisiert so die Kristallstruktur (Abbildung 7.8 und Gleichung 7.2). Es wird eine Art Gerüststruktur mit veränderten Gitterparametern erhalten (Tabelle 7.3). Aufgrund des fehlenden Vanadylsauerstoffs verkürzt sich die *c*-Achse und die Schichten können näher zusammenrücken. Dadurch nehmen die "interlayer"-Wechselwirkungen zu.

Abbildung 7.8: Schematischer Ablauf der Reduktion von $(V_{1-x}M_x)OPO_4$. Grün eingezeichnet sind die $[VO_x]$ -Polyeder, blau eingefärbt die $[MO_6]$ -Oktaeder und gelb sind die $[PO_4]$ -Tetraeder. Die Sauerstoffanionen haben eine rote Farbe. Es ist darauf hinzuweisen, dass eine Differenzierung der Metalllagen nicht möglich ist. Dieses Bild soll nur der Veranschaulichung des Reduktionsvorganges dienen und hat nicht den Anspruch, die reale Zusammensetzung der Struktur wiederzugeben.

Ist der Anteil an Wolfram und Niob zu gering, so wird die metastabile "Gerüststruktur" nicht ausreichend stabilisiert und durch die Reduktion teilweise zerstört. Die Re-Oxidation dieser Proben ist unter diesen Voraussetzungen bedingt möglich, allerdings sind die amorphen Anteile in den Proben höher. Ist der Anteil an Niob und Wolfram hoch genug, ist die Re-Oxidation vollständig reversibel.

Kapitel 8

Zusammenfassung

Die vorliegende Dissertation befasst sich sowohl experimentell wie auch unter Nutzung von DFT-Rechnungen mit der Polymorphie und dem Redoxverhalten verschiedener $MOPO_4$ -Vertreter.

DFT-Rechnungen wurden eingesetzt, um neue unbekannte Polymorphe der $MOPO_4$ -Verbindungsklasse vorherzusagen. Über die Berechnung der Schwingungsmoden war zudem eine Unterscheidung dieser Polymorphe zwischen einer stabilen und einer Übergangsstruktur möglich. Insgesamt wurden die Stabilitäten von vier bekannten Strukturtypen $MOPO_4$ (β -VOSO_4, SbOPO_4, α -MoOPO_4, MPTB (m = 2)) in Kombination mit sechs Elementen V, Mo, Nb, Ta, W und Sb durchgeführt. Es wurde keine Mischkristallbildung zwischen den Metallkationen der Form $(M_{1-x}M_x)OPO_4$ berücksichtigt. Es wurden acht neue metastabile Polymorphe vorhergesagt (vgl. Tabelle 8.1).

Tabelle 8.1: In der Literatur publizierte Strukturtypen der MOPO₄-Vertreter (M: V, Mo, Nb, Ta, W, Sb) mit bekannter Nomenklatur. Stern: thermodynamisch stabil im Temperaturbereich 700-900 °C unter Normaldruck; Häkchen: metastabil; Kreuze: Übergangszustand.

$MOPO_4$	β -VOSO ₄	$SbOPO_4$	α -MoOPO ₄	MPTB	ggf. weitere
$VOPO_4$	β^*	ϵ	α_{II}	X	$\alpha_{\mathrm{I}},\delta,\gamma,\omega$
$MoOPO_4$	β_{I}	β	α^*	X	
$NbOPO_4$	\checkmark	X	α^*	β	
$TaOPO_4$	\checkmark	\checkmark	α	β^*	
$WOPO_4$	\checkmark	\checkmark	α	β^*	
$SbOPO_4$	\checkmark	SbOPO_4^*	\checkmark	×	

Die gezielte Darstellung solcher metastabilen Polymorphe ist jedoch oftmals sehr herausfordernd, gelang aber für α_{II} -VOPO₄ unter genauer Studie der Reaktionsbedingungen in dieser Arbeit (kein Vorheizen des Edukts (VOPO₄·2H₂O), geringe Schüttdichte, kurze Temperzeit). Ebenso war es möglich, VOPO₄ in diesem Strukturtyp (α -MoOPO₄) durch den Einbau von Niob unter Bildung der Mischkristallreihe ($V_{1-x}Nb_x$)OPO₄ ($0,1 \le x \le 1,0$) zu stabilisieren. Die Mischkristallreihe zeigt eine hohe katalytische Aktivität bei der Umsetzung von *n*-Butan zu Maleinsäureanhydrid im Vergleich zu β -VOPO₄, dem thermodynamisch stabilen Polymorph. Da nach der katalytischen Testung der Mischkristallreihe V⁴⁺ kaum nachweisbar war, kann vermutet werden, dass V⁵⁺ auch im industriellen Katalysator vermutlich einen wichtigen Beitrag zur Aktivität des Katalysators leistet. Zudem scheint auch Nb⁵⁺ die katalytische Aktivität zu erhöhen.

Es konnte zudem erfolgreich gezeigt werden, dass die Reduktion der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ zur Abstraktion des Vanadylsauerstoffs zu re-oxidierbaren Reaktionsprodukten unter Erhalt des α -MoOPO₄-Typ führt. Dieser hohe Grad an Reversibilität erklärt wahrscheinlich die strukturelle Stabilität der Katalysatoren. Ein ähnliches Verhalten wurde bei der Mischkristallreihe $(V_{1-x}W_x)OPO_4$ (x =0,2; 0,26) beobachtet. Es wurden zwei Phasen bei der Reduktion erhalten. R-1 $((V_{1-x}W_x)O_{1-\delta}PO_4)$ kann an Luft wieder re-oxidiert werden. R-2 $((V_{1-x}W_x)O_{1-\delta}PO_4)$ wird bei weiterer Reduktion aus R-1 erhalten und ist unter denselben Reaktionsbedingungen von R-1 nicht re-oxidierbar.

Bei der Reduktion von β -VOPO₄ konnt ebenfalls gezeigt werden, dass der Vanadylsauerstoff am leichtesten unter reduzierenden Reaktionsbedingungen abstrahiert werden kann. Zwei neue thermodynamisch metastabile VPO₄-Polymorphe m1 und m2 konnten in Abhängigkeit der Reduktionstemperatur (400 °C; 650 °C) gebildet werden. Die Bildung von VPO₄-m1 wird über den Verlust der Vanadylgruppe $(V\equiv O)^{3+}$ erklärt, dabei bleibt die Struktur von β -VOPO₄ (R.G. *Pnma*) erhalten, sodass nun anstelle [VO₆]-Oktaedern quadratisch-planare [VO₄]-Polyeder vorliegen. Zudem legen experimentelle Ergebnisse nahe, dass eine Teilbesetzung der Vanadiumatome in den Wyckoff-Lagen 4b und 4c vorliegt.

Das Strukturmodell von VPO₄-m2 basiert auf der gemischtvalenten Verbindung Fe^{II}Fe^{III}(V^{IV})(PO₄)(P₂O₇). Weitere metastabile Polymorphe von VPO₄ (m3, m4, m5) konnten über DFT-Rechnungen durch Variation des Startmodells von VPO₄

und Optimierungsbedingungen vorhergesagt werden. Die vorhergesagten Polymorphe konnten teilweise bekannten Strukturtypen zugeordnet werden (VPO₄-m3: Heterosit/Purpurit-Familie, VPO₄-m4: ZrSiO₄-Familie).

Die Ergebnisse der Reduktionsexperimente könnten ein Hinweis darauf sein, dass unter katalytischen Bedingungen das Vanadyl- bzw. der Metallylsauerstoff abstrahiert wird.

Die Synthese neuer metastabiler Polymorphe $MOPO_4$ gelang unter Einsatz der SCS als Synthesemethode unter gleichzeitiger Substitution des Metallkations M unter Bildung von Mischkristallreihen der Form $(M_{1-x}M_x)OPO_4$.

Im Fall von NbOPO₄ konnte durch Substitution von Niob durch Wolfram zwei Mischkristallreihen (Nb_{1-x}W_x)OPO₄ mit α -MoOPO₄-Struktur (0,1 $\leq x \leq 0,4,800$ °C) und mit MPTB-Struktur (0,1 $\leq x \leq 0,5,1000$ °C) an Luft erhalten werden. EPR-Messungen bestätigen, dass W⁵⁺ in einer NbOPO₄-Matrix an Luft im α -MoOPO₄-Typ stabilisiert werden kann.

Die Stabilisierung von W⁵⁺ wurde ebenfalls, wenn auch weniger stark ausgeprägt, in der TaOPO₄-Matrix beobachtet ((Ta_{1-x}W_x)OPO₄, MPTB-Typ).

In den quasibinären Systemen SbOPO₄-MOPO₄ (M: Nb, Ta) wurde die Bildung einer komplett neuen Mischkristallreihe mit α -TiOSO₄-Struktur beobachtet. Der α -TiOSO₄-Strukturtyp ist für die Randphasen unbekannt. Er enthält insgesamt zwei Lagen, die die Metallkationen besetzen können. Eine davon führt zu einer *cis*-Verknüpfung der [MO₆]-Oktaederketten, die andere zu einer *trans*-Verknüpfung. DFT-Rechnungen haben bestätigt, dass Antimon bevorzugt die Wyckofflage besetzt, in der der [MO₆]-Oktaederketten miteinander *trans*-verknüpft sind.

Die Mischkristallreihe $(Ta_{1-x}Nb_x)OPO_4$ mit MPTB-Struktur wurde in der Literatur schon ausführlich untersucht. Im Rahmen dieser Arbeit wurde die Änderung des optischen Verhaltens mit dem Substitutionsgrad untersucht. Je höher der Anteil an Tantal ist, desto höher liegt die Absorptionsbande im UV/vis-Spektrum.

Kapitel 9

Synthese der eingesetzten Verbindungen

9.1 Ausgangsverbindungen

Substanz	Summenformel	Hersteller	Reinheit
Ammonium- dioxalatoniobat	$\frac{(\mathrm{NH}_4)[\mathrm{NbO}(\mathrm{C}_2\mathrm{O}_4)_2]}{\cdot x \mathrm{H}_2\mathrm{O}^{a)}}$	Sigma-Aldrich, St.	99,99 %
Ammonium- metavanadat	$(NH_4)VO_3$	Chempur, Karlsruhe	99,9%
Ammonium- metawolframat	$({\rm NH}_4)_6 {\rm W}_{12} {\rm O}_{39}$ $\cdot 4.8 ~{\rm H}_2 {\rm O}$	Alfa Aesar, Karlsruhe	p.a.
Diammonium- hydrogenphosphat	$(\mathrm{NH}_4)_2\mathrm{HPO}_4$	VWR Chemicals, Leuven, BE	p.a.
Antimon(III)-oxid Glycin	$\mathrm{Sb}_2\mathrm{O}_3$ $\mathrm{CH}_2\mathrm{NH}_2\mathrm{COOH}$	Sigma- Aldrich, St. Louis MO, USA	$\geq 99~\%$
Oxalsäure	$H_2C_2O_4$		
Salpetersäure	HNO_3	Th. Geyer, Renningen	p.a.
Tantal-Ethoxyd	$Ta(C_2H_5O)_5$	AlfaAesar	p.a.
Weinsäure	$C_4H_6O_6$		

Tabelle 9.1: Kommerziell erhältliche Ausgangssubstanzen.

a) Der Wassergehalt wurde für jede Charge gravimetrisch bestimmt.

9.2 Synthesen über SCS

In diesem Abschnitt wird die allgemeine Syntheseroute über SCS erklärt. In ca. 100 mL deionisiertem Wasser wurden die wasserlöslichen Edukte (Metallsalz, Diammoniumhydrogenphosphat, Komplexligand) vorgelegt und anschließend mit 2 mL konzentrierter Salpetersäure angesäuert. Als Metallsalz wurde je nach Zielverbindung Ammoniummetavandat, Ammoniumdioxalatoniobat oder Ammoniummetawolframat eingesetzt. Wurden Antimon oder Tantal eingesetzt, musste eine andere Vorgehensweise gewählt werden (siehe Abschnitt 9.2.2 und 9.2.3). Der Komplexligand wurde im dreifachen Überschuss der Stoffmenge zum Metallsalz eingesetzt. Wurde Ammoniumdioxalatoniobat eingesetzt, wurde für Niob kein zusätzlicher Ligand eingesetzt, da hier schon Oxalat als solcher im Edukt vorhanden ist. Die erhaltene Lösung wurde unter Rühren bei 80 °C bis zur Trockene eingedampft und in einem vorgeheizten Kammerofen bei 400 °C gezündet. Nach zehn Minuten konnte das Becherglas aus dem Ofen entnommen und der schwarze Rückstand gemörsert werden. Dieser wurde anschließend in eine Kieselglashalbampulle überführt und für jeweils einen Tag in 100 °C-Schritten, beginnend bei 400 °C, bis zur gewünschten Temperatur getempert.

9.2.1 Synthese von α -NbOPO₄ und β -NbOPO₄

 α -NbOPO₄ wurde via SCS dargestellt. Glycin wurde bei diesem Ansatz nicht verwendet, da das im Niobat enthaltene Oxalat als Brennstoff diente. Nach der Zündung wurde das Produkt schrittweise nachgetempert. Obwohl NbOPO₄ nach 4 Tagen an Luft bei 800 °C guinierrein erhalten wurde, zeigten die *hkl*-Reflexe mit $l \neq 0$ eine Verbreiterung der Reflexe (Abbildung 9.1 a). Dies kann auf Stapelfehler entlang der *c*-Achse zurückgeführt werden. Um diese zu beseitigen, wurde die Probe bei 1000 °C an Luft nachgetempert. Dies führte zu einer guten Übereinstimmung der Reflexintensitäten von Experiment und Simulation (siehe Abbildung 9.1 b). β -NbOPO₄ wurde, ausgehend von α -NbOPO₄, bei 1350°C in einer geschlossenenen Platinampulle für drei Stunden getempert und so phasenrein erhalten (Abbildung 9.1 c) [77].

$$\alpha \text{-NbOPO}_4(s) \xrightarrow{1350 \text{ AfC}} \beta \text{-NbOPO}_4(s) \tag{9.1}$$

176

Die Synthese kann nicht in einem offenen System erfolgen, da es bei der hohen Reaktionstemperatur zur Abspaltung von P_4O_{10} unter Bildung von PNb_9O_{29} kommt.

$$9 \operatorname{NbOPO}_4(s) \longrightarrow \operatorname{PNb}_9\operatorname{O}_{25}(s) + 2 \operatorname{P}_4\operatorname{O}_{10}(g) \tag{9.2}$$

Abbildung 9.1: Guinieraufnahmen (CuK α_1) von α -NbOPO₄ nach Tempern an Luft bei (a) 800 °C für 4 Tage mit *hkl*-Indices und (b) nach dem Tempern derselben Probe bei 1000 °C für 2 Tage verglichen mit der Simulation von α -NbOPO₄ [69] (b). Pulverdiffraktogramm nach Bragg-Brentano (Co-K α) von β -NbOPO₄ mit angepasster Simulation basierend auf der Indizierung von WOPO₄ [47] (c).

9.2.2 Synthese eines wasserlöslichen Precursors für Ta_2O_5 und die Darstellung von β -TaOPO₄

Für eine erfolgreiche Synthese von Tantal-Verbindungen über SCS ist die Wasserlöslichkeit der Precursor entscheidend. Aufgrund der Reaktionsträgheit und Unlöslichkeit in Wasser ist Ta₂O₅ als Startmaterial ungeeignet. LI ET AL. konnten über eine Kaliumhydroxid-Schmelze, in der Ta₂O₅ gelöst wurde, einen wasserlöslichen Oxalato-tantalat-Komplex herstellen, indem die Schmelze in Wasser gelöst und unter Verwendung von Eisessig Tantal(V)-oxidhydroxid bzw. Tantal(V)-oxidhydrat ausgefällt wurde. Dieser Niederschlag wurde dann in einer Oxalsäurelösung gelöst [193]. Das Hauptproblem dieser Syntheseroute ist das eingesetzte Kalium, welches nur schwer vollständig durch Waschen zu entfernen ist. Aus diesem Grund wurde anstelle der Schmelze Tantal(V)-ethoxid eingesetzt. Tantal(V)-ethoxid ist an Luft aufgrund seiner Hydrolyse durch die Luftfeuchtigkeit nicht stabil und reagiert sofort zu Tantaloxidhydroxid unter Bildung von Ethanol. Um den entstandenen Niederschlag wieder lösen zu können, wurde Tantal(V)-ethoxid sofort ein eine warme, gesättigte Oxalsäurelösung (14 g/100 mL) überführt. Damit wurde nach dem Ausfallen des Tantaloxidhydroxids der Niederschlag unter Bildung des Oxalato-Tantalat(V)-Komplex gelöst. Auf dieses Weise konnte vollständig auf den Einsatz von Schutzgas zur Vermeidung der Hydrolyse verzichtet werden.

$$Ta(OEt)_{5}(l) + 5 H_{2}O(l) \longrightarrow , Ta(OH)_{5}^{"}(s) + 5 EtOH(l)$$

$$(9.3)$$

Um den Auflöseprozess des Niederschlags zu beschleunigen, wurde die Oxalsäurelösung auf 60-80 °C erhitzt. Der Auflösevorgang kann Stunden bis Tage dauern. Es wurde jeweils eine klare, farblose und lagerstabile Lösung erhalten. Um 10 g Tantal(V)-ethoxid vollständig in den Oxalato-tantalat(V)-Komplex zu überführen wurden ca. 3*l* gesättigte Oxalsäurelösung eingesetzt.

$$Ta(OH)_{5}(s) + 4C_{2}H_{2}O_{4}(aq) \longrightarrow H_{3}[Ta(C_{2}O_{4})_{4}](aq) + 5H_{2}O(l)$$

$$(9.4)$$

Der Gehalt an Tantal in der Lösung wurde gravimetrisch bestimmt. Dazu wurden jeweils 5 mL der erhaltenen Lösung in einen Goldtiegel überführt und bis auf $800 \,^{\circ}$ C erhitzt, sodass als Rückstand Ta₂O₅ erhalten wurde. TaOPO₄ wurde über SCS hergestellt. Dabei wurde die gewünschte Stoffmenge an Tantal der

Maßlösung entnommen und zusammen mit $(NH_4)_2HPO_4$ und 2 ml konz. HNO₃ in einem Becherglas unter Rühren bis zur Trockne bei 70 °C eingedampft. Die folgenden Schritte sind dieselben wie in Kapitel 9.2 bereits beschrieben wurde. TaOPO₄ wurde bis 1000 °C an Luft getempert. Das erhaltene mikrokristalline Pulver konnte über chemischen Transport kristallisiert werden. Dies war möglich mit einem Gemenge aus Iod und Phosphor bei einem Temperaturgradienten von 1000 °C nach 900 °C für 28 Tage. Als Ausgangsmaterial diente zuvor hergestelltes, mikrokristallines TaOPO₄ [75]. Eine mögliche Transportgleichung ist in Gleichung 9.5 aufgestellt.

$$5 \operatorname{TaOPO}_4(s) + 3 I_2(g) + 3 \operatorname{PI}_3(g) \Longrightarrow 5 \operatorname{TaOI}_3(g) + 2 P_4 O_{10}(g)$$
 (9.5)

Abbildung 9.2: Guinieraufnahme (Cu K α_1) von β -TaOPO₄ nach einem Tag bei 900 °C an Luft mit angepasster Simulation basierend auf WOPO₄ [72].

9.2.3 Synthese von SbPO₄ und SbOPO₄

Sowohl SbPO₄ als auch SbOPO₄ ließen sich über SCS darstellen. Als Edukte wurden Sb₂O₃, $(NH_4)_2HPO_4$, Weinsäure und konz. Salpetersäure eingesetzt. Das in Wasser schlecht lösliche Sb₂O₃ wurde unter Erwärmen in einer konzentrierten Weinsäure-Lösung (24 mg Weinsäure pro mg Sb₂O₃) unter Bildung eines wasserlöslichen Komplexes gelöst (Gleichung 9.6).

$$Sb_2O_3(s) + 2C_2H_6O_6(aq) \longrightarrow H_2[Sb_2(C_4H_2O_6)_2](aq) + 3H_2O(l)$$
 (9.6)

Nachdem Sb₂O₃ vollständig gelöst wurde, wurden $(NH_4)_2HPO_4$ und auf 100 ml Lösung 2 ml konz. Salpetersäure zugegeben. Die Lösung wurde bis zur Trockne bei ca. 70 °C eingedampft und anschließend an Luft in einem vorgeheizten Ofen bei 400 °C gezündet. Nach der Zündung wurde SbPO₄ erhalten, welches ab 700 °C an Luft zu SbOPO₄ oxidiert wurde. Ab 900 °C konnte SbOPO₄ guinierrein erhalten werden.

Abbildung 9.3: Guinieraufnahmen von SbPO₄ nach einem Tag bei 600 °C an Luft mit Simulation (a) und SbOPO₄ nach einem Tag bei 900 °C an Luft mit Simulation (b).

Kapitel 10

Apparaturen und präparative Methoden

10.1 Herstellung von Kieselglashalbampullen und geschlossenen Ampullen

Alle Reaktionen wurden in offenen oder geschlossenen Kieselglasampullen mit einem Durchmesser von 1,7 cm und einer Wanddicke von 0,1 cm durchgeführt. Zur Herstellung der Kieselglasampullen werden zuerst Glasrohre auf eine Länge von ca. 30 cm zurecht geschnitten und anschließend mit einem Knallgasbrenner in der Mitte dee Rohres abgeschmolzen, sodass zwei Halbampullen entstehen. Diese werden dann mit handelsüblichen Spülmitteln gesäubert, mit demineralisiertem Wasser gespült und so in den Trockenschrank gelegt, dass was Wasser verdampfen kann.

Wurden Reaktionen in einer geschlossenen Ampulle durchgeführt, musste ein Glasschliff auf die Halbampullenöffnung geschmolzen werden, um die Ampulle an die Vakuumapparatur anschließen zu können $(10^{-3} - 10^{-4} \text{ atm})$. Die Ampulle wurde anschließend unter Vakuum auf 700 °C für vier Stunden erhitzt, um Wasser, welches von der Glaswand absorbiert wurde, zu entfernen. Nach dem Abkühlen wird die Ampulle mit getrocknetem Argon geflutet und mittels eines Beladestabs mit Probenmaterial befüllt. Die Befüllung erfolgt mittel eines Ladestabs, an dessen Ende ein Schnappdeckelgläschen, indem sich das Pulver befindet, befestigt ist. Danach wurde die Ampulle rundherum verjüngt und eine dünne Kapillare gezogen. Die Ampulle wurde wieder an die Vakuumapparatur angeschlossen und die Kapillare abgeschmolzen. Anschließend wird mittels eines Ionisators (Spark-Tester, Firma Edwards) geprüft, ob die Ampulle unter Vakuum steht. Ist es ausreichend, wird die Ampulle von außen mit Aceton gereinigt, um zu verhindern, dass die äußere Ampullenwand, hervorgerufen durch einen Kristallisationskeim, rekristallisiert. Der Aufbau der Vakuumapparatur ist in Abbildung 10.1 gezeigt.

Abbildung 10.1: Schematischer Aufbau der eingesetzten Vakuumapparatur [194].

10.2 Öfen

10.2.1 Zwei-Zonen-Ofen

Für Transport- oder Gleichgewichtsexperimente werden sogenannte Zwei-Zonen-Öfen (HTM Reetz GmbH) eingesetzt. Diese haben zwei separate Thermoelemente, die jeweils eine der beiden Heizwicklungen steuern. In der Mitte des Ofenrohrs kann somit ein Temperaturgradient erzeugt werden, der bei chemischen Transportexperimenten für die Abscheidung aus der Gasphase essentiell ist. Die Temperaturregelung erfolgt über Ni/NiCr-Elemente, die mittels einer Reglereinheit der Firma Eurotherm gesteuert werden können. Die Maximaltemperatur beträgt 1100 °C. Eingestellt werden kann die Temperatur mit einer Genauigkeit von bis zu 1 °C, die Abweichung vom Sollwert kann aber bis zu 25 °C betragen.

Abbildung 10.2: Skizze des Temperaturverlauf im Zweizonenofen [163].

10.2.2 Kammeröfen

Die offenen Kieselglashalbampullen werden in Kammeröfen (Modell L5/12) der Firma Nabertherm isotherm getempert. Auch diese Öfen erlauben eine Maximaltemperatur von ca. 1100 °C. Zu beachten ist, dass innerhalb der Ofenkammer die Temperatur um ± 50 ÅřC schwanken kann.

10.3 Solution Combustion Synthesis (SCS)

Die Solution combustion Synthese (SCS) ist eine Methode, welche häufig für die Synthese von Nanopartikeln verwendet wird [195, 196, 197, 198]. Entwickelt wurde die SCS mitte der 80er Jahre bei der thermischen Zersetzung von Hydrazincarboxylat-Hydraten, bei der die jeweiligen Oxide der eingesetzten Metallkationen erhalten wurden [199].

$$4 N_2 H_5 Fe(N_2 H_3 COO)_3 \cdot H_2 O(s) + 5 O_2(g) \longrightarrow$$

$$2 Fe_2 O_3(s) + 12 CO_2(g) + 16 NH_3(g) + 8 H_2 O(g) + 8 N_2(g)$$
(10.1)

Aufgrund der guten Wasserlöslichkeit werden Metallnitrate häufig als Edukte verwendet. Zusätzlich werden organische Liganden als Komplexbildner zugesetzt.

Die Ausgangsstoffe werden in Wasser gelöst und mit Salpetersäure versetzt. Nach dem Einkochen bei 70 °C an Luft in einem vorgeheizten Ofen bei 400 °C gezündet. Das Besondere an der SCS ist die direkte Nachbarschaft von Brennstoff und Oxidationsmittel. Das wird erreicht durch die Bildung von Metallkomplexen, wobei der Ligand aus Kohlenstoff, eingesetzt als Brennstoff, und Sauerstoff, eingesetzt als Oxidationsmittel, besteht. Die nach Aktivierung ablaufende Redoxreaktion ist stark exotherm. Kurzfristig können so Temperaturen von bis zu 1200 °C erreicht werden [200], sodass sich die Liganden unter Bildung der Metalloxide zersetzen. Gleichzeitig werden durch die Verbrennung der Liganden große Mengen an Gas freigesetzt. So kommen nach Gleichung 10.1 auf ein mol Eisenoxid ungefähr 22 mol Gas, wodurch Produkte mit hoher spezifischer Oberfläche und kleiner Korngröße erhalten werden [195]. Nach der Zündung fällt die Temperatur der Probe schnell wieder ab. Die schnelle Generierung der hohen Temperatur, sowie deren schneller Abfall erlauben die Darstellung metastabiler Phasen, die auf dem Weg der klassischen Festkörpersynthese nicht zugänglich sind [201].

Abbildung 10.3: Schematischer Syntheseablauf einer SCS-Reaktion [202].

Für einen erfolgreichen Ablauf der SCS ist die Einstellung des Verhältnisses von Brennstoff zu Oxidationsmittel entscheidend. Eine Aussage darüber trifft das o/f-Verhältnis. Wird weniger Oxidationsmittel als Brennstoff eingesetzt, ist der Wert unter 1, wird mehr Oxidationsmittel als Brennstoff eingesetzt, über eins. Als ideal gilt ein Verhältnis von 1. Bei dieser Zusammensetzung sollte theoretisch die größte Wärmeenergie bei der Zündung freigesetzt werden [196]. Als Brennstoff werden häufig Glycin [196], Urea [198] oder Citronensäure [197] verwendet, wobei bei der Verbrennung von Glycin die höchste Combustion Temperatur erreicht werden kann (Glycin: -3,24 kcal/g; Urea: -2,98 kcal/g, Citronensäure: -2,76 kcal/g [196]). Die hohe Temperatur der SCS ist bedingt durch die Enthalpieänderung der Edukte zu den Produkten.

$$\sum n_i R_i = \sum n_j P_j \tag{10.2}$$

 n_i, n_j : stöchiometrische Koeffizienten

 R_i, P_j : Enthalpie der Edukte, bzw. der Produkte

Wichtig bei der Synthese ist die Zündtemperatur. Die Zündtemperatur ist die Aktivierungsenergie, die aufgewendet werden muss, um die Redoxreaktion zu starten. Die Aktiverungsenergie kann, unter der Annahme eines adiabatischen Systems, über die folgende Formel abgeschätzt werden:

$$H(R) = \int_{T_{ig}}^{T_0} \sum n_i C_p(R_i) dT + \sum_{T_0 - T_{ig}} n_i C_p(L_i)$$
(10.3)

 T_0 : Anfangstemperatur in K

 T_{ig} : Zündtemperatur in K

 n_i, n_j : stöchiometrische Koeffizienten

 $C_p(R_i)$: spezifische Wärmekapazitäten in J/(kg · K) der Reaktanden

 $C_p(L_i)$: Phasenumwandlungs-Enthalpie in J/(kg · K)

Die freiwerdende Wärme nach Zündung ist dann

$$\Delta H(T_{ig}) = -[H(P) + H(R)]$$
(10.4)

Damit lässt sich die maximal freiwerdende Wärmemenge unter adiabatischen Bedingungen wie folgt abschätzen:

$$H(P) = \int_{T_{ad}}^{T_{ig}} \sum n_j C_p(P_j) dT + \sum_{T_{ig} - T_{ad}} n_j C_p(P_j)$$
(10.5)

 T_{ad} : Maximal
temperatur in K, die unter adiabatischen Bedingungen erreicht werden kann.

Da die Bildungsenthalpien meist bei 298 K angegeben sind und die Synthese meist an Raumtemperatur ohne Vorheizen gezündet wird, kann T_{ig} mit folgender

Formel abgeschätzt werden:

$$\Delta H(T_{ig}) = \Delta H_{298K} + \int_{298}^{T_{ig}} \left[\sum n_j C_p(P_j) - \sum n_i C_p(R_i) \right] dT + \left[\sum_{298-T_{ig}} n_j L(P_j) - \sum_{298-T_{ig}} n_i L(R_i) \right]$$
(10.6)

Die freiwerdende Wärmemenge wird aber in der Praxis unter dem berechneten Wert liegen, da nicht unter adiabatischen Bedingungen gearbeitet wird und dementsprechend immer ein Wärmeaustausch mit der Umgebung stattfindet [201].

Kapitel 11

Analytische Methoden

11.1 Röntgenpulverdiffraktometrie

Mithilfe der Röntgenpulverdiffraktometrie wird die Phasenzusammensetzung kristalliner Proben analysiert. Der Röntgenstrahl wird dabei auf die Probe fokussiert und von dieser an den Gitterebenen der Kristallite reflektiert. Ist die Bragg-Gleichung (11.1) erfüllt, entstehen konstruktive Interferenzen, die als Reflexe von der Guinierkamera erfasst werden [203].

$$\sin \theta = \frac{n \cdot \lambda}{2 \cdot d_{hkl}} \tag{11.1}$$

 θ : Beugungswinkel λ : Wellenlänge in Å d_{hkl} : Netzebenenabstand in Å n: Beugungsordnung (1, 2, 3...)

Die hier eingesetzte Guinierkamera G670 der Firma Huber verwendet Cu-K α_1 -Röntgenstrahlung ($\lambda = 1,5405980$ Å). Die Röntgenstrahlung wird durch den Beschuss einer wassergekühlten Kupferanode mit einem Elektronenstrahl erzeugt. Dabei werden Elektronen der K-Schale herausgeschlagen. Die entstandene Lücke wird anschließend mit Elektronen der L-Schale aufgefüllt, wobei die charakteristische Cu-K α -Röntgenstrahlung emittiert wird. Dies ist ein Dublett, bestehend aus K α_1 und K α_2 -Strahlung. Zudem kann auch K β -, sowie Bremstrahlung emittiert

Abbildung 11.1: Schematischer Strahlengang einer Guinierkamera [163].

werden. Um die für die Messung nicht benötigte Strahlung abzulenken, wird ein Monochromator eingesetzt, hier ein Germaniumeinkristall, der dafür sorgt, dass nur Cu-K α_1 -Strahlung auf die Probe trifft.

Zur Vorbereitung der Guinieraufnahmen wird das Pulver in einem Mörser verrieben und anschließend auf eine im Probenhalter eingespannte, röntgenamorphe Folie der Firma Fluxana GmbH & Co. KG, Typ TF-160, mit zwei bis drei Tropfen Ethanol dispergiert, wodurch ein dünner Kristallfilm entsteht. Der Probenhalter wird während der Messung kontinuierlich im Röntgenstrahl bewegt, damit möglichst viele Kristalle unterschiedlicher Orientierung erfasst werden können. Die Anwendung von Ethanol als Dispergiermittel war nicht für alle Proben geeignet. Einige der gemessenen Proben waren hydrophil oder reagieren mit Ethanol weiter. Diese Probe wurden entweder mittels eines Scotch-Tapes MagicTM der Firma Scotch gemessen, welches durch den Klebstoff das Pulver wasserfrei fixieren konnte, allerdings für ein relativ hohes Untergrundrauschen sorgt, oder mittels einer Kapillare gemessen. Die Kapillare wurde nach dem Befüllen mit einem Rüttlers durch Wachs verschlossen um zu verhindern, dass die Probe an Luft mit Wasser reagieren kann.

Die an der Probe gebeugte Strahlung wird mit einer Bildplatte (Imaging Plate, IP) aufgezeichnet, welche mit einem Speicherleuchtstoff, bestehend aus BaFBr, beschichtet ist. Der verwendete Speicherleuchtstoff ist zu einem geringen Anteil mit Eu²⁺ dotiert. Durch die auftreffenden Röntgenquanten wird Eu²⁺ zu Eu³⁺ oxidiert, wobei der Film an dieser Stelle geschwärzt wird und somi die Information des Röntgenstrahls speichert. Nach Abschluss der Messung wird die Bildplatte mit einem roten Diodenlaserstrahl abgetastet, der zur Rückbildung von Eu^{2+} führt. Die dabei auftretende photostimulierte, blaue Lumineszenz wird über einen Photomultiplier registriert. Die unterschiedlich stark geschwärzten Bereiche der Plate werden mit dem Programm AIDA [204] vermessen, die als *xy*-Dateien im ACSII-Format oder als gdf-Datei gespeichert werden. Mithilfe einer Halogenlampe wird die *IP* anschließend regeneriert und kann erneut verwendet werden.

11.1.1 Auswertung der Guinier-Aufnahmen

Die im gdf-Format erhaltenen Daten werden zur Analyse in das Programm Match! [191] eingelesen. Dabei kann zunächst die Guinieraufnahme mit den gespeicherten Simulationen der PDF-2 Datenbank [205] verglichen werden. Zusätzlich ist es möglich, eigene Simulationen in Match! einzulesen und mit dem Pulverdiffraktogramm zu vergleichen. Auch das quantitative Verhältnis von Phasengemengen kann abgeschätzt werden. Dabei ist es aber notwendig, dass $\frac{I}{I_c}$ berechnet wurde, da sonst keine Aussage über die Phasenanteile getroffen werden kann. Der $\frac{I}{I_c}$ -Wert berücksichtigt insbesondere die absoluten Intensitäten des Diffraktogramms. Auch die Partikelgröß der Proben hat einen großen Einfluss [206].

Eine weitere Möglichkeit, die erhaltenen *xy*-Daten zu verarbeiten. bietet das Programm ORIGIN [207]. Mittels eines Templats wird das gemessene Pulverdiffraktogramm graphisch dargestellt.

11.1.2 Erstellen von Simulationen

Sollen die experimentell erhaltenen Pulverdiffraktogramme mittels Simulationen erklärt werden, so können bei einer bereits bekannten oder isotypen Verbindung die benötigten Kristallstrukturdaten aus der *Inorganic Crystal Structure Data Base* (ICSD) [208] erhalten werden. Anhand dieser Daten wird mit den Programmen LAZY-Pulverix [209] und GINA [210] ein Strichdiagramm erstellt, mit welchem die Guinieraufnahme verglichen werden kann. Ist der Strukturtyp bekannt, aber die Gitterparameter aufgrund z.B. von Dotierungen, verschieden, so können mit dem Programmpaket SOS (bestehend aus SOS1 und SOS2) [182] die Gitterparameter angepasst werden. Dazu muss für die Nullpunktkorrektur in die Probe Tiefquarz gemengt werden. Die ersten 14 Reflexpositionen werden dann mithilfe von ORIGIN ausgelesen und in die Mappe von SOS eingetragen. Anschließend wird angegeben, welche Symmetrie das gesuchte Kristallsystem hat. Dies wird in Form von Zahlen angegeben (3 steht für orthorhombisch, 4 für tetragonal ···). Zuletzt werden die zugehörigen Reflexe der Phase abgelesen, dessen Gitterparameter bestimmt werden sollen. Zu jedem eingetragenen Reflex muss ein hkl-Wert angegeben sein. Für eine grobe Zuordnung eignen sich die in der PDF-2-Datenbank eingespeicherten Daten, im weiteren Verlauf der Verfeinerung kann auf die OUT-Datei von SOS Bezug genommen werden, sodass Schritt für Schritt die Standardabweichungen der Gitterparameter verbessert werden können. Wurden die Gitterparameter verfeinert, kann nun mittels LAZY PULVERIX eine neue Simulation, basierend auf den neuen Besetzungsfaktoren der Verbindung und den experimentell bestimmten Gitterparametern berechnet werden.

11.2 UV/vis-Spektroskopie

Das Absorptionsverhalten der Proben, welches über die Farbigkeit eines Pulvers oder Kristalls entscheidet, wird anhand der UV/vis-Spektroskopie quantifiziert. Von besonderem Interesse ist dabei das Absorptionsverhalten von Übergangsmetallverbindungen, die sich durch eine auffallende Farbvielfalt auszeichnen. Farbe wird erzeugt durch Elektronenübergänge. Elektronenübergänge können nur durch Anregung erzeugt werden. Je nachdem, wie stark das Elektron an den Kern gebunden ist, wird mehr oder weniger Energie zur Anregung benötigt. Für die meisten Verbindungen der Übergangsmetalle ist sichtbares Licht ausreichend, um elektronsiche Übergänge zu generieren. Dies liegt an den d-Elektronen in der Valenzschale, welche leicht anregbar sind. Um abzuschätzen, welche elektronischen Übergänge für die Farbe der Probe verantwortlich sind, muss das Ligandenfeld des Zentralatoms betrachtet werden. Das Ligandenfeld gibt Auskunft über die energetische Anordnung der Orbitale. Das isolierte Zentralatom ohne eine Ligandenfeld besitzt insgesamt sechs entartete d-Orbitale. Werden nun sechs Liganden symmetrisch an das Zentralatom gesetzt, so wird die Entartung der d-Orbitale aufgehoben. Ein oktaedrisches Ligandenfeld führt zu einer Aufspaltung in die t_{2g} (d_{xy}, d_{xz}, yz) und e_g $(d_{x^2-y^2}, d_{z^2})$ -Orbitale. Wird ein axialer Ligand so weit vom Zentralatoms entfernt, dass sein Einfluss auf das Ligandenfled vernachlässigt werden kann, spricht man von einem quadratisch pyramidalen Ligandenfeld. Dies ist bei vielen Vanadiumverbindungen zu finden. Wird nun auch der zweite axiale

Ligand entfernt, wird das Ligandenfeld als quadratisch planar beschrieben. Dabei werden die d_{xz} - und d_{yz} -Orbitale energetisch weiter abgesenkt und gleichzeitig das d_{xy} -Orbital soweit angehoben, dass das d_{z^2} -Orbital unter diesem liegt. Das Orbital, welches energetisch am weitesten angehoben wird, ist das $d_{xz,yz}$ -Orbital.

Probenvorbereitung in der Pulverremissionsspektroskopie. Die Pulverremissionsspektroskopie wurde mit den Spektralphotometern der Firma Varian (Cary 2400, Wellenlängenbereich von $200 \le \lambda \le 2000 \text{ nm}$) und der Firma OLIS (On-line Instrument System Inc., OLIS 14) modifiziertes Spektralphotometer verwendet (Cary 17, Wellenlängenbereich von $185 \le \lambda \le 2600 \text{ nm}$). Der schematische Aufbau der Messzelle ist in Abbildung 11.2 dargestellt. Abhänigig vom Messbereich werden unterschiedliche Detektoren verwendet. Zur Probenvorbereitung werden ca. 500 mg des Pulvers auf einem Probenträger aufgetragen und möglichst glatt verstrichen. Ist die Substanz zu farbintensiv, kann mit Bariumsulfat verdünnt werden.

Abbildung 11.2: Aufbau der Messzelle des Spektralphotometers. Ansicht von oben.

Kapitel 12

Grundlagen der Density Functional Theory (DFT)

Um die in den vorherigen Kapiteln vorgestellten Systeme auf atomarer Ebene verstehen zu können, wurden quantenchemische Rechnungen durchgeführt. Ziel war es, Stoffeigenschaften und Reaktionen vorhersagen oder erklären zu können, die ansonsten nur schwer nachvollziehbar oder zu verstehen sind. Im Folgenden sollen die theoretischen Grundlagen, auf denen die Rechnungen in dieser Arbeit basieren, kurz erläutert werden.

12.1 Vielteilchensysteme

Zur Beschreibung von Vielteilchensystemen wird die nicht relativistische, stationäre Schrödingergleichung angewendet. Mit ihr kann die Gesamtenergie von Systemen berechnet werden, die aus M Atomkernen und N Elektronen bestehen. Aus der Eigenwertgleichung des Hamiltonoperators \hat{H} (Gleichung 12.1) wird der Eigenwert E bestimmt, welches die Gesamtenergie des Systems darstellt.

$$\hat{\boldsymbol{H}}\Psi(\boldsymbol{r},\boldsymbol{R}) = E\Psi(\boldsymbol{r},\boldsymbol{R})$$
(12.1)

Die Vielteilchenwellenfunktion wird von der Eigenfunktion (textbf $\Psi(\mathbf{r}, \mathbf{R})$ dargestellt, die von einem Satz aus $\mathbf{r} = \mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N$ Elektronenkoordinaten und $\mathbf{R} = \mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_M$ Kernkoordinaten abhängt. Der Hamiltonoperator setzt sich wie folgt zusammen.

$$\hat{\boldsymbol{H}} = \hat{\boldsymbol{T}}_{K} + \hat{\boldsymbol{T}}_{e} + \hat{\boldsymbol{V}}_{KK} + \hat{\boldsymbol{V}}_{eK} + \hat{\boldsymbol{V}}_{ee}$$
(12.2)

Dabei wird die kinetische Energie aller Kerne von \hat{T}_{K} und die aller Elektronen durch \hat{T}_{e} beschrieben. \hat{V}_{ee} beschreibt die Elektronen-Elektronen-Abstoßung, \hat{V}_{KK} die Kern-Kern-Abstoßung, sowie \hat{V}_{eK} die Kern-Elektronen-Anziehung. In atomaren Einheiten lautet der Hamilton-Operator

$$\hat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{1}{2M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_{A}}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_{A}Z_{B}}{R_{AB}},$$
(12.3)

dabei ist M_A die relative Masse des Kerns A ist. Z_A ist die Kernladung, R_{AB} ist der Kern-Kern-Abstand. r_{iA} ist der Elektron-Kern-Abstand, r_{ij} der Abstand der Elektronen untereinander. Um die Schrödingergleichung für Vielelektronensysteme lösen zu können, müssen verschiedene Näherungen eingeführt werden.

12.1.1 Born-Oppenheimer-Näherung

Die Born-Oppenheimer-Näherung [211, 2] ist eine der wichtigsten Näherungen, um die Schrödingergleichung für Vielelektronensysteme lösen zu können. Sie beruht auf der Annahme, dass die Bewegung der Elektronen und der Kerne voneinander separiert betrachtet werden können. Die kinetische Energie der Kerne \hat{T}_K ist aufgrund der höheren Masse im Vergleich zu der der Elektronen vernachlässigbar. Die Elektronen bewegen sich in einem Kraftfeld ortsfester Kerne, weswegen das Kern-Abstoßungs-Potential V_{KK} als konstant angenommen werden kann. Aus dieser Annahme kann der Born-Oppenheimer-Hamilton-Operator \hat{H}_{BO} formuliert werden als:

$$\hat{\boldsymbol{H}}_{BO} = \hat{\boldsymbol{T}}_{e} + \hat{\boldsymbol{V}}_{eK} + \hat{\boldsymbol{V}}_{ee} + \hat{\boldsymbol{V}}_{KK}.$$
(12.4)

Der Hamiltonoperator kann demzufolge als Summe des elektronischen und Kernabhängigen Potentialteil dargestellt werden (Gleichung 12.5).

$$\hat{\boldsymbol{H}}_{BO} = \hat{\boldsymbol{H}}_{el} + \hat{\boldsymbol{V}}_{KK} \tag{12.5}$$

Der Eigenwert des Born-Oppenheimer-Hamilton-Operators entspricht der Gesamtenergie des Systems E_{tot} .

12.2 Density Functional Theory (DFT)

Die Dichtefunktionaltheorie erlaubt es, den quantenchemischen Grundzustand eines Vielelektronensystems ohne vollständige Lösung der Schrödingergleichung zu berechnen. Es wird angenommen, dass alle Systemeigenschaften eines N-Teilchensystems von der Elektronendichte $\rho(\mathbf{r})$ bestimmt werden (Gleichung 12.6).

$$\rho(\mathbf{r}) = N \int d\mathbf{r}_2 \cdots d\mathbf{r}_N |\Psi_{el}(\mathbf{r}, \ \mathbf{R})^2| \qquad (12.6)$$

In erster Linie wurde diese Methode entwickelt, um Systeme im Grundzustand zu berechnen. Mithilfe der zeitabhängigen Dichtefunktionaltheorie können angeregte Zustände berechnet werden.

12.2.1 Hohenberg-Kohn-Theoreme

Die Grundlage der Dichtefunktionaltheorie [212] bilden die Hohenberg-Kohn-Theoreme [213]. Das erste Theroem besagt, dass es eine eindeutige Beziehung zwischen der Elektronendichte des Grundzustands und der Grundzustandsenergie gibt. Die Grundzustandsenergie E_0 ist damit ein Funktional der Einteilchendichte $E[\rho(\mathbf{r})]$.

Das zweite Theorem besagt, dass die wahre Grundzustandsdichte die niedrigste Energie hat. Es gilt das Variationsprinzip, wobei die Elektronendichte die zu variierende Größe in der DFT darstellt. Die exakte Grundzustandsenergie stellt die Untergrenze der Energie des Systems dar (Gleichung 12.7).

$$E[\rho'(\mathbf{r})] \ge E[\rho_0^{ex}(\mathbf{r})] = E_0^{ex}$$
 (12.7)

Das Gleichheitszeichen gilt nur unter der Voraussetzung, dass die Testdichte $\rho'(\mathbf{r})$

die exakte Elektronendichte ist.

12.2.2 Kohn-Sham-Gleichungen [1, 2]

Da das exakte Dichtefunktional unbekannt ist, muss es möglichst gut approximiert werden. Das größte Problem bei der Entwicklung eines Funktionals stellt die kinetische Energie der Teilchen $T[\rho(\mathbf{r})]$ dar. Eine Möglichkeit, dieses Problem zu lösen, wurde von Kohn und Sham vorgeschlagen- allerdings unter Wiedereinführung der Orbitale und einer gleichzeitigen Zunahme an Komplexität durch die Einführung von 3N Variablen anstelle von 3.

Unter Einführung der sogenannten Kohn-Sham-Orbitale $\phi_i(\mathbf{r})$ wird die Energie unter der Annahme wechselwirkungsfreier Quasiteilchen berechnet. Die für diesen Fall exakte Lösung der Schrödinger-Gleichung ist gegeben aus der Slater determinante aus den Spinorbitalen $\phi_i(\mathbf{r})$. Das exakte Energiefunktional ist gegeben als

$$T_S = \sum_{i=1}^{N} \langle \phi_i | -\frac{1}{2} \nabla^2 | \phi_i \rangle \tag{12.8}$$

Das S in T_S steht für die Berechnung der kinetischen Energie über eine *Slater* determinante. Da die exakte Dichte-Matrix unbekannt ist, wird die Dichte angenähert durch

$$\rho_{approx} = \sum_{i}^{N} |\phi_i(\boldsymbol{r})|^2 \tag{12.9}$$

Da die Elektronen allerdings interagieren, gibt Gleichung 12.8 nicht die gesamte kinetische Energie wider. Der fehlende Teil wird im Austausch-Korrelationsterm mit anderen Beiträgen zusammengefasst, sodass als allgemeiner Ausdruck für DFT formuliert werden kann

$$E_{DFT}[\rho(\mathbf{r})] = T_S[\rho(\mathbf{r})] + V_{eK}[\rho(\mathbf{r})] + J[\rho(\mathbf{r})] + E_{xc}[\rho(\mathbf{r})]$$
(12.10)

 $E_{xc}[\rho(\mathbf{r})]$ fasst alle nicht klassischen Austausch- und Korrelationswechselwirkungen zusammen. $J[\rho(\mathbf{r})]$ beschreibt die Coulombwechselwirkungen, ϵ_i ist die Orbitalenergi und, $V^{KS}(\mathbf{r})$ ist das KOHN-SHAM-Potential.

196

Die KOHN-SHAM-Orbitale können durch Lösen der Eigenwertgleichung 12.11 erhalten werden.

$$\left[-\frac{1}{2}\nabla_i^2 + V^{KS}(\boldsymbol{r})\right]\phi_i^{KS}(\boldsymbol{r}) = \epsilon_i\phi_i^{KS}(\boldsymbol{r})_i$$
(12.11)

Das KOHN-SHAM-Potential setzt sich zusammen aus

$$V^{KS}(\mathbf{r}) = -\sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \int \frac{\rho(\mathbf{r}') d^3 \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} + V_{xc}(\rho(\mathbf{r}))$$
(12.12)

Es enthält ein externes Potential ($-Z_A/r$), die gegenseitige Abstoßung der Elektronen (Term 2), sowie das Austausch-Korrelationspotential V_{xc} . Das Austausch-Korrelationspotential lässt sich aus dem Austausch-Korrelationsfunktional berechnen.

$$V_{xc}(\rho(\boldsymbol{r})) = \frac{\partial E_{xc}[\rho(\boldsymbol{r})]}{\partial \rho(\boldsymbol{r})} = \epsilon_{xc}[\rho(\boldsymbol{r})] + \rho(\boldsymbol{r})\frac{\partial \epsilon_{xc}[\rho(\boldsymbol{r})]}{\partial \rho}$$
(12.13)

 ϵ_{xc} ist das Austausch-Korrelationspotential pro Teilchen. Dieses Potential wird zerlegt in das Austauschpotential V_x und das Korrelationspotential V_c .

$$V_{xc} = V_x(\boldsymbol{r}) + V_c(\boldsymbol{r}) \tag{12.14}$$

Da bisher keine Näherungen eingeführt wurden, ist die Kohn-Sham-Gleichung exakt. Allerdings wurde bis heute kein Funktional formuliert, welches V_{xc} exakt berechnen kann. Aus diesem Grund wurden verschiedene Näherungsstufen eingeführt [214]. Dabei muss berücksichtigt werden, dass es aufgrund der eingeführten Näherungen zu einem Selbstwechselwirkungsfehler kommt.

$$J_{aa} \neq \langle \phi_a^{KS} | V_x | \phi_a^{KS} \rangle \tag{12.15}$$

Die Folgen davon sind artifizielle Delokalisierungen der Elektronen, sowie eine Überschätzung der Energien besetzter Orbitale.

Local density approximation

Für $V_{xc}[\rho(\mathbf{r})]$ ist kein exakter Ausdruck bekannt, weswegen viele Näherungen entwickelt wurden, um das exakte Austausch-Korrelations-Funktional möglichst gut anzunähern. Die unterschiedlichen Funktionale können unterteilt werden in Methode und Komplexität, wobei mit steigender Komplexität die Rechenzeit zunimmt. Von Perdew wurde die sogenannte Jakobsleiter eingeführt [214], welches die Hierachie der Genauigkeit in den DFT-Methoden widerspiegelt. Trotzdem gibt Beispiele, bei denen ein Funktional niedrigerer Stufe bessere Ergebnisse als für höherrangige Funktional liefert [215]. Im Folgenden sollen die wichtigsten Austausch- und Korrelationsfunktionale kurz vorgestellt werden.

Die einfachste Methode ist die lokale Dichtenäherung (LDA). Hierbei wird angenommen, dass sich die Ladungsdichte nur schwach verändert und als lokal homogenes Elektronengas beschrieben werden kann.

$$E_{xc}^{LDA}[\rho(\boldsymbol{r})] = \int \rho(\boldsymbol{r}) \epsilon_{xc}(\rho(\boldsymbol{r})) d\boldsymbol{r}$$
(12.16)

Die Austauschenergie für ein homogenes Elektronengas ist gegeben über die Dirac-Gleichung.

$$E_x^{LDA}[\rho(\boldsymbol{r})] = -C_x \int \rho^{3/4}(\boldsymbol{r}) d\boldsymbol{r}$$
(12.17)

Die LDA-Methode überschätzt in der Regel die chemische Bindung, was in einer Unterschätzung der Bindungslängen und einer Überschätzung der Bindungsenergie resultiert. Für den Fall, dass die Spindichten α und β nicht gleich sind, wird LSDA (*Local Spin Density Approximation*) eingesetzt [2].

$$E_x^{LSDA}[\rho(\mathbf{r})] = -2^{1/3} C_x \int (\rho_\alpha^{4/3} + \rho_\beta^{4/3}) d\mathbf{r}$$
(12.18)

Generalized gradient approximation

Wird neben der Dichte auch der Dichtegradient berücksichtigt, wird ein Korrelationsaustausch-Funktional mit Gradientennäherung erhalten (generalized gradient approximation - GGA), welches im Allgemeinen bessere Ergebnisse als LDA liefert, da die inhomogene Ladungsdichteverteilung besser beschrieben werden kann.

$$E_{xc}^{GGA}[\rho(\boldsymbol{r})] = \int f(\rho, \nabla \rho) dr \qquad (12.19)$$

Das Funktional $f(\rho, \nabla \rho)$ wird analytisch entwickelt. Es gibt zahlreiche Vorschläge, wie die Funktion f gelöst werden kann. Zu den bekannteren Funktionalen zählen das Austausch-Funktional von Becke (B oder B88 [216]) mit einem an die exakt bekannte Austauschenergie des Elektronengases angepassten empirischen Parameter, außerdem das parameterfreie Austauschfunktional von Perdew und Wang (PW91 [217]), das Korrelationsfunktional von Lee, Yang und Parr (LYP [218]) und das Perdew-Burke-Ernzerhof-Funktional (PBE [219]). Die Methoden werden auch miteinander kombiniert [220].

meta-Generalized gradient approximation

Eine Erweiterung der GGA-Methode ist die *meta*-GGA-Methode (mGGA), bei welcher die zweite Ableitung der Elektronendichte und die Dichte der kinetischen Energie τ berücksichtigt wird.

$$E_{xc}^{mGGA}[\rho] = \int f(\rho, \nabla \rho, \nabla^2 \rho, \tau) dr \qquad (12.20)$$

 mit

$$\tau = 2\sum_{i=1}^{N} \langle i | \nabla^2 | i \rangle \tag{12.21}$$

Die meisten meta-GGA-Funktionale liefern keine wesentlich besseren Resultate als GGA bei moderat höherem Rechenaufwand. Eine Ausnahme ist das kürzlich entwickelte r²SCAN-Funktional [221].

Hybrid-Methoden

Da die Beträge der Austauschenergie wesentlich höher sind als die der Korrelationsenergie, muss das Austauschintergal möglichst genau beschrieben werden [222]. Die Austausch-Korrelationsenergie der sogenannten Klasse der Hybrid-Funktionale wird zu einen Teil aus dem Hartree-Fock-Formalismus, zum andern aus den oben beschriebenen Methoden berechnet. Dabei wird der zur Berechnung des Fock-Austausches $E_x^{Fock}(\boldsymbol{r}, \boldsymbol{r'})$ Kohn-Sham-Orbitale verwendet. Über den Wichtungsfaktor α wird dieser dem DFT-Austausch beigemischt.

$$E_{xc}^{Hyb} = \alpha E_x^{Fock} + (1 - \alpha) E_x^{DFT} + E_c^{DFT}$$
(12.22)

 E^{DFT} ist die Austauschenergie der gewählten Methode. Das populärste Hybridfunktional B3LYP verwendet den Ausdruck

$$E_{xc}^{B3LYP} = (1-a)E_x^{LDA} + aE_x^{HF} + bE_x^B + cE_c^{LYP} + (1-c)E_c^{LDA}$$
(12.23)

Die drei empirischen Parameter a, b, c wurden an dabei an einen Standardmolekülsatz angepasst (a = 0,20, b = 0,72, c = 0,81) [220]. Für das in dieser Arbeit eingesetzte Hybridfunktional PW1PW beträgt $\alpha = 0,2$ (Hartree-Fock-Anteil), und der DFT-Anteil (PW91 [223, 224]) ist entsprechend 0,8.

12.3 Dispersionskorrigierte Dichtefunktionaltheorie (DFT)

Langreichweitige van-der-Waals-Wechselwirkungen werden durch Standardfunktionale unzureichend beschrieben. Daher muss zusätzlich eine Dispersionskorrektur eingeführt werden. Diese muss in der Lage sein, langreichweitige Elektronenkorrelationen mit einzubeziehen. Um dieses Problem zu lösen sind unterschiedliche Ansätze verfolgt worden. In dieser Arbeit wurde die D3-Korrektur mit der Becke-Johnson-Dämpfung verwendet, wobei die Dispersionsenergie mit Gleichung 12.24 berechnet wird [84, 85, 86]. In der Regel wird die Reihenentwicklung nach dem zweiten Term abgebrochen, da die weiteren Beiträge sehr gering sind.

$$E_{Disp} = \sum_{A=1}^{M} \sum_{B>A}^{M} \sum_{n=6,8} s_n \frac{C_n^{AB}}{R_{AB}^n + f(R_{AB}^0)}$$
(12.24)

 R_{AB} ist der Kernabstand, s_n sind methodenabhängige Skalierungsfaktoren, C_n^{AB} der Dispersionskoeffizient *n*-ter Ordnung und $f(R_{AB}^0)$ ist eine Dämpfungsfunktion. Die Dämpfungsfunktion sorgt dafür, dass die Dispersionsenergie bei kleinen Abständen konvergiert. Eine der am häufigsten eingesetzten Dämpfungsfunktionen ist die Becke-Johnson-Dämpfungsfunktion Gleichung 12.25.

$$f(R_{AB}^{0}) = a_1 R_{AB}^{0} + a_2; \quad R_{AB}^{0} = \sqrt{\frac{C_8^{AB}}{C_6^{AB}}}$$
(12.25)

Der Dispersionskoeffizient C_6^{AB} wird für ausgewählte Referenzsysteme über die Casimir-Polder-Formel (Gleichung 12.26) bestimmt und ist ebenfalls abhängig von der Koordinationszahl.

$$C_6^{AB} = \frac{3}{\pi} \int_0^\infty d\omega \alpha^A(i\omega) \alpha^B(i\omega)$$
(12.26)

 $\alpha i \omega$ ist die gemittelte Polarisierbarkeit bei der imaginären Frequenz $\omega.$

12.4 Festkörperquantenchemie

Der folgende Abschnitt beschäftigt sich mit der theoretischen Beschreibung kristalliner Festkörper.

12.4.1 Das Kristallgitter

Das Kristallgitter ist eine dreidimensionale Anordnung mathematischer Punkte im Raum, wobei die Untereinheit die Elementarzelle bildet. Um vom Kristallgitter zur Kristallstruktur zu kommen, werden jedem Punkt des Punktgitters ein Baustein des Kristalls zugeordnet, die sogenannte Basis. Jedes dreidimensionale Kristallgitter wird beschrieben aus einer Aneinanderreihung von Parallelepipeden, die durch die drei elementaren Translationsvektoren a_1 , a_2 und a_3 definiert werden. Zwischen den drei Vektoren können beliebige Winkel vorliegen. Jeder mathematische Punkt ist durch den Gittervektor T erreichbar, wobei u, v und w ganze Zahlen sind (Gleichung 12.27).

$$T = u \cdot a_1 + v \cdot a_2 + w \cdot a_3 \tag{12.27}$$

Das von den Basisvektoren aufgespannte Gitter ist die Einheitszelle oder auch Elementarzelle. Die Einheitszelle mit dem kleinsten Volumen ist die primitive Einheitszelle [155]. Eine weitere Möglichkeit eine Elementarzelle zu wählen, ist die konventionelle Elementarzelle. Es ist die kleinstmögliche Zelle, die die gesamte Kristallsymmetrie widerspiegelt.

12.4.2 Der reziproke Raum

Das reziproke Kristallgitter ist eine Konstruktion, die sowohl in der Kristallographie als auch in der Festkörperphysik von großer Bedeutung ist. Die Definition des reziproken Gitters weicht in beiden Disziplinen voneinander ab, da sich die Darstellung des Streuvorganges unterscheidet. In der Kristallographie wird die gestreute Welle als Einheitsvektor

$$\vec{k} = \frac{\vec{e}}{\lambda} \tag{12.28}$$

dargestellt (reziprokes Gitter), in der Festköperphysik als Wellenvektor (reziproker Raum) [2]

$$\vec{k} = 2\pi \frac{\vec{e}}{\lambda} \tag{12.29}$$

 λ ist die eingestreute Wellenlänge. Im Folgenden wird der reziproke Raum nach Definition der Festkörperphysik näher erläutert. Ein dreidimensionales Punktgitter wird durch die drei Basisvektoren a_1 , a_2 und a_3 beschrieben. Die Basisvektoren des dazu reziproken Gitters stehen über Gleichung 12.30

$$\vec{a}_i \cdot \vec{b}_j = 2\pi \delta_{i,j} \tag{12.30}$$

miteinander in Beziehung. Jeder Gitterpunkt des reziproken Raumes ist ebenfalls über einen Gittervektor g erreichbar, jedoch unterscheidet sich die Definition der Elementarzelle von der des Realraums. Die Elementarzelle des reziproken Raumes ist die erste Brillouin-Zone (IBZ), welche der Wigner-Seitz-Zelle (WSZ) im Realraum entspricht. Zur Konstruktion der Brillouin-Zone wird ein Gitterpunkt der reziproken Zelle ausgesucht und die Verbindungslinie zu anderen benachbarten Punkten durch Normalebenen halbiert. Das Polyeder, welches durch die Normalebenen begrenzt wird, ist die Brillouin-Zone.

12.4.3 Das Bloch-Theorem

Die Bloch-Funktion ist eine Lösung der stationären Schrödingergleichung für Systeme mit periodischen Potentialen. In diesem speziellen Fall wird die Wellenfunktion ϕ durch das Bloch-Theorem festgelegt und bedeutet, dass die Werte der Wellenfunktion an äquivalenten Positionen in unterschiedlichen Zellen über einen komplexen Phasenfaktor, welcher den Gittervektor t und einen reziproken Vektor enthält, im Zusammenhang stehen.

$$\phi(\mathbf{r} + \mathbf{t}) = e^{i\mathbf{k}\cdot\mathbf{t}}\phi(\mathbf{r}) \tag{12.31}$$

Das Bloch-Theorem besagt, dass das Kristallorbital (ϕ) geschrieben werden kann als Wellen-ähnlicher Teil und einem Teil, welches die Periodizität des Gitters widergibt, was als Blochorbital bekannt ist [2].

$$\phi_{n,k}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}}\phi_n(\boldsymbol{r}) \qquad mit\phi_n(\boldsymbol{r}+\boldsymbol{t}) = \phi_n(\boldsymbol{r}) \tag{12.32}$$

Die Blochorbitale können aus Basissätzen mit ebenen Wellen (plane wave) Funktionen konstruiert werden.

$$\phi_n(\boldsymbol{r}) = \sum_{\alpha}^{M_{basis}} c_{n,\alpha} \Phi_{\alpha}^{PW}(\boldsymbol{r})$$
(12.33)

Alternativ können Basissätze aus Kern-zentrierten Gauß-Basis-Funktionen verwendet werden.

12.4.4 Born-von-Kármán-Randbedingung

Reale Kristalle sind nicht unendlich in ihrer Ausdehnung. Um dies in der Beschreibung der Kristalle berücksichtigen zu können, ohne die Translationsinvarianz zu verlieren, werden periodische Raumbedingungen eingeführt.

$$\phi(\mathbf{r}) = \phi(\mathbf{r} + N_j \mathbf{a}_j); \quad j \in \{1, 2, 3\}; N_j \in \mathbb{N}$$

$$(12.34)$$

Die Größe der sogenannten Hauptregion wird bestimmt durch die Zahl der Einheitszellen in den drei Raumrichtungen N_j .

$$N = \prod_{j=1}^{3} N_j \tag{12.35}$$

Wird die periodische Randbedingung auf die Blochfunktion angewendet, ergibt sich Gleichung 12.36.

$$\phi^{k}(\boldsymbol{r}+N_{j}\boldsymbol{a}_{j})=e^{i\boldsymbol{k}N_{j}\boldsymbol{a}_{j}}\phi^{k}(\boldsymbol{r})$$
(12.36)

Nur unter der Bedingung dass $e^{i\mathbf{k}N_j\mathbf{a}_j} = 1$ ist, ist Gleichung 12.34 erfüllt, sodass sich folgende Formel für erlaubte Wellenvektoren $\boldsymbol{\kappa}$ ergibt

$$\boldsymbol{\kappa} = \sum_{j=1}^{3} \frac{2\pi m_j}{N_j} \boldsymbol{b}_j; \quad m_j \in \mathbb{Z}$$
(12.37)

Da der Wellenvektor periodisch ist, ist es ausreichend, das Intervall $m_j \in [0, 1]$ bzw. $m_j \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ zu betrachten. Das letztere Intervall entspricht der Brillouin-Zone.

12.4.5 Das Monkhorst-Pack-Gitter

Eine Möglichkeit, die Born-von-Kármán-Randbedingung zu erfüllen, ist das Monkhorst-Pack-Gitter [225]. Es ist aufgebaut aus drei Vektoren.

$$\frac{\mathbf{b}_1}{s_1}, \frac{\mathbf{b}_2}{s_2}, \frac{\mathbf{b}_3}{s_3} \tag{12.38}$$

Mithilfe der shrinking-Faktoren s_i wird das reziproke Gitter in gleich große Abschnitte unterteilt. Sie bestimmen die Anzahl der κ -Punkte, da über die gewählten Faktoren die Wellenfunktion angepasst wird. Es werde nur Punkte der ersten Brillouin-Zone berücksichtigt, symmetrieäquivalente Punkte auf den Rändern werden durch Wichtungsfaktoren mit einbezogen.

12.5 Spektroskopie

Die Spektroskopie ermöglicht es, detaillierte Einblicke in die Strukturen und Energieniveaus von Molekülen zu bekommen. Niederenergetische Strahlungen
wie Mikrowellen- oder Infrarotstrahlungen regen hauptsächlich Rotationen und Vibrationen an, hochenergetische Strahlung wie Röntgenstrahlen regen die Rumpfelektronen an. In einem Bereich von ca. 400 - 800 cm⁻¹ liegt das für Menschen sichtbare Spektrum. Absorbiert ein Stoff in diesem Bereich, erscheint dieser farbig. Für jeden Übergang wird eine spezifische Energie benötigt. So kann durch Messungen der Strahlung, die ein System aufnehmen und abgeben kann, Rückschlüsse auf dessen Eigenschaften gezogen werden.

IR-Spektroskopie

IR-Spektroskopie ist eine Absorptionsspektroskopie zur Messung von Molekülschwingungen, bei der die Probe elektromagnetische Strahlung bestimmter Wellenzahl absorbiert. Die von der Probe aufgenommene Energie regt den Übergang der Grundschwingung des Kristalls in angeregte Schwingungszustände an. Eine allgemeine Auswahlregel für IR-Aktivität besagt, dass sich das Dipolmoment des Moleküls während einer Normalschwingung ändern muss. Um vorherzusagen, welche Schwingung IR-aktiv ist, muss mit den Methoden der Gruppentheorie gearbeitet werden. Die irreduziblen Darstellungen in den Charaktertafeln der Punktgruppen, welche die Translationen x, y und z aufspannen, sind IR-aktiv. Die Intensität der IR-Bande ist proportional zum Quadrat der Änderung des Dipolmomentes μ mit der Normalkoordinate q.

$$I_{IR} \propto \left(\frac{\partial \mu}{\partial q}\right)_0^2 \tag{12.39}$$

12.5.1 Raman-Spektroskopie

Bei der Raman-Spektroskopie wird die Probe mit monochromatischem Licht, meist einer Laserquelle, bestrahlt. Der Detektor steht normalerweise senkrecht zur Probe des einfallenden Lichtes, sodass er nur von Streulicht erreicht werden kann. Ungefähr ein Photon von 10⁷ kollidiert mit der Probe und gibt dabei einen Teil seiner Energie ab. Das dadurch abgegebene Streulicht hat eine geringere Frequenz als das einfallende Licht und wird als Stokes-Streuung bezeichnet. Es ist ebenfalls möglich, dass ein Photon beim Streuvorgang an der Probe Energie aufnimmt unter der Bedingung, dass das Molekül in der Probe vorher angeregt vorlag. Unter diesen Bedingungen erscheint Licht höherer Energie als die eingestrahlte. Dies ist die sogenannte Anti-Stokes-Streuung. Die allgemeine Auswahlregel für Ramanspektroskopie lautet, dass die Polarisierbarkeit des Moleküls anisotrop sein muss. Die Verzerrung eines Moleküls wird über die Polarisierbarkeit α bestimmt. Dabei hängt das induzierte Dipolmoment μ von dem Produkt angelegten elektrischen Feldstärke ϵ und der Polarisierbarkeit α des Moleküls ab (Gleichung 12.40 [226]).

$$\mu = \epsilon \cdot \alpha \tag{12.40}$$

Da der Gesamtdrehimpuls im elektronischen Grundzustand auch bei der Anregung konstant bleiben muss, können nicht alle Übergänge induziert werden. Allgemein gilt, dass alle Schwingungen, die antisymmetrisch zum Symmetriezentrum erfolgen Raman-aktiv sind. Die Gruppentheorie liefert ein Kriterium hierfür, da die Symmetrie der quadratischen Terme angewendet wird. Die Intensität der Raman-Banden ist proportional zum Quadrat der Änderung der Polarisierbarkeit α mit der Normalkoordinaten q.

$$I_{Raman} \propto \left(\frac{\partial \delta}{\partial q}\right)_0^2 \tag{12.41}$$

12.5.2 Das Franck-Condon-Prinzip

Das Franck-Condon-Prinzip bestimmt in einem elektronischem Spektrum die Intensität der Übergänge. Wird ein Molekül angeregt, geht das mit einer Verschiebung der Elektronendichte einher. Die zunächst ruhenden Kerne können sich nicht so schnell auf die neue Verteilung der Elektronendichte einstellen, sodass sie in der ursprünglichen Lage verharren. Allerdings spüren sie das neue Kraftfeld und beginnen infolgedessen zu schwingen.

Die neue Gleichgewichtsgeometrie unterscheidet sich von der im Grundzustand. Da das Kerngerüst geometrisch dennoch unverändert vorliegt, entspricht der Verlauf des Überganges dem in Abbildung 12.1. Daher wird ein elektronischer Übergang, der zunächst ohne Änderung des Kerngerüsts erfolgt, als vertikaler Übergang bezeichnet.

Abbildung 12.1: Vertikaler Übergang bei Schwingungsanregung nach dem Franck-Condon-Prinzip. Abbildung nach [226].

Quantenchemisch betrachtet wird die beobachtete Intensität über die beteiligte Schwingungswellenfunktionen und deren Übergang aus dem Grundzustand in die Schwingungsniveaus des ersten angeregten Zustandes [226]. Die Wahrscheinlichkeit, dass zwischen zwei Zuständen eine Anregung induziert durch elektromagnetische Wellen angeregt werden kann, ist proportional zur Dipolmomentmatrixelement $\langle \Psi_{e's'}\Psi_{v'}|\hat{\mu}|\Psi_{es}\Psi_v\rangle$, wobei $\langle \Psi_{e's'}\Psi_{v'}|$ für den angeregten Zustand steht und $|\Psi_{es}\Psi_v\rangle$ für den elektronischen Grundzustand. Der Dipolmomentoperator $\hat{\mu}$ ist die nach der Ladung gewichtete Summe der Positionsvektoren für Elektronen und Kerne.

$$\hat{\boldsymbol{\mu}} = -e\sum_{i}^{n} \boldsymbol{r}_{i} + e\sum_{A}^{M} Z_{A} \boldsymbol{R}_{A} = \hat{\boldsymbol{\mu}}_{e} + \hat{\boldsymbol{\mu}}_{N}$$
(12.42)

Aufgrund der Born-Oppenheimer-Näherung gilt

$$|\Psi_{es}\Psi_{v}\rangle = |\Psi_{es}\rangle|\Psi_{v}\rangle \tag{12.43}$$

Dementsprechend wird angenommen, dass auch die elektronische Wellenfunktion nur schwach von der Kernwellenfunktion abhängt, woraus das Übergangsdipolmomentmatrixelement resultiert (12.44).

Da die elektronischen Wellenfunktionen $\langle \Psi_{e's'} | \Psi_{es} \rangle$ zueinander orthogonal sind, ist das resultierende Matrixelement das Produkt aus dem elektronischen Anteil $\langle \Psi_{e's'} | \hat{\boldsymbol{\mu}}_e | \Psi_{es} \rangle$ und dem Kernanteil $\langle \Psi_{v'} | \Psi_v \rangle$.

Dies entspricht dem Überlappungsintegral der Schwingungswellenfunktion im Grund- und angeregten Zustand. Die elektronische Anregung erfolgt deutlich schneller als die Molekülschwingung, weswegen sich das Molekül auch nach der Anregung noch im Zustand Ψ_v befindet. Da sich allerdings durch die Anregung die Potentialfläche und folglich auch der Schwingungsoperator verändert hat, ist Ψ_v keine Eigenfunktion des Schwingungshamiltonoperators. Die Wahrscheinlichkeit des Übergangs von Ψ_v in $\Psi_{v'}$ ist das Quadrat des Überlappungsintegrals der beiden Schwingungswellenfunktionen $|\langle \Psi_{v'} | \Psi_v \rangle|^2$. Dies sind die sogenannten Franck-Condon-Faktoren, wobei die Bezeichnung in der Literatur nicht ganz einheitlich ist. Teilweise wird das Überlappungsintegral damit beschrieben oder dessen Betragsquadrat [226]. Die Intensität eines Übergangs wird auf diese Weise bestimmt. Die Schwingungswellenfunktion kann aus einer Serie von Eigenfunktionen des Zielhamiltonoperators entwickelt werden. Dabei sind die Entwicklungskoeffizienten das Überlappungsintegral. Die Schwingungsstruktur des Spektrums ist abhängig davon, inwieweit sich die Potentialkurve des Grundzustandes von der im angeregten Zustand unterscheidet. Die Potentialkurve des angeregten Zustandes ist meistens gegenüber des Grundzustandes zu längeren Atomabständen verschoben. da angeregte Zustände in der Regel einen höheren antibindenen Charakter haben als der Grundzustand [226].

12.5.3 Auswahlregel und Symmetrie

Im nächsten Schritt wird auch die Spinkoordinate von der elektronischen Wellenfunktion separiert, da $\hat{\mu}_e$ nicht auf diese wirkt. Die resultierende Gleichung ist die Grundlage der Orbital-, Spin- und vibronischen Auswahlregel. Damit ein Übergang sichtbar bzw. erlaubt ist, müssen alle Beiträge von Null verschieden sein.

$$\langle \Psi' | \hat{\boldsymbol{\mu}} | \Psi \rangle = \langle \Psi_{e'} | \hat{\boldsymbol{\mu}}_{e} | \Psi_{e} \rangle \langle \Psi_{s'} | \Psi_{s} \rangle \langle \Psi_{v'} | \Psi_{v} \rangle$$
(12.45)

Die Spinauswahlregel basiert auf $\langle \Psi_{s'} | \Psi_s \rangle$. Dieser Ausdruck ist nur von Null verschieden unter der Bedingung, dass die Multiplizität beider Zustände identisch ist. Dies ist eine direkte Folge aus der Orthogonalität der Spinwellenfunktionen. Die Orbitalauswahlregel hingegen basiert auf den Komponenten des Dipolmomentoperators. Dies sind die Komponenten des Dipoloperators x, y, z. Der letzte Faktor $\langle \Psi_{v'} | \Psi_v \rangle$ ist wichtig für die Auswahlregel von Fluoreszenzspektren.

12.5.4 Schwingungsberechnung

Für ein nichtlineares N-atomiges Molekül gibt es insgesamt 3N-6 unabhängige Schwingungsfreiheitsgrade, da sowohl Translation als auch Rotation des Gesamtmoleküls nicht berücksichtigt werden. Da im Fall eines linearen Moleküls eine Rotation um die Trägheitsachse entfällt, sind es hier 3N-5 unabhängige Schwingungsfreiheitsgrade. Es werden nur die Bewegungen der Atome relativ zueinander beschrieben. Die Grundlage der Berechnung von Schwingungsspektren bildet der harmonische Oszillator. Die entsprechende Schrödingergleichung wird formuliert als

$$-\frac{\hbar^2}{2m}\frac{d^2\Psi}{dx^2} + \frac{1}{2}kx^2\Psi(x) = E\Psi(x)$$
(12.46)

Dabei ist x die Auslenkung um die Ruhelage und k die Kraftkonstante [226]. Lösen dieses Eigenwertproblems ergibt die Schwingungsfrequenz ν in Abhängigkeit der Quantenzahl n.

$$E_n = \left(n + \frac{1}{2}\right)h\nu; \quad n \in \mathbb{N}_0 \tag{12.47}$$

Da vor allem die Bewegung in umittelbarer Nähe des Gleichgewichts betrachtet werden sollen, muss die Abweichung vom Gleichgewicht gering sein. Das Potential V kann als Taylorreihe um die Gleichgewichtslage q_0 entwickelt werden, wobei Glieder höherer Ordnung vernachlässigt werden. Es wurde die übliche Summenkonvention verwendet.

$$V(q_i, ..., q_n) = V(q_{01}, ..., q_{0n}) + \sum_i \left(\frac{\partial V}{\partial q_i}\right)_0 q_i + \left[\sum_{i,j} \frac{1}{2} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_0 q_1 q_0 + ...\right]$$
(12.48)

Der erste Summand wird aufgrund der Gleichgewichtsbedingung auf Null gesetzt und entfällt. Auch Term zwei entfällt, da das Potential auf die Ruhelage bezogen ist und dort ein Minimum liegt. Das Potential wird demnach nur über den quadratischen Term angenähert [227]. Es bleibt folgender Audsdruck übrig

$$V(q_i, ..., q_n) = \frac{1}{2} k_{i,j} q_i q_j$$
(12.49)

wobei $k_{i,j}$ die generalisierte Kraftkonstante ist. Im Folgenden werden zur Vereinfachung für die Berechnung der Gesamtenergie massegewichtete Koordinaten eingeführt.

$$q_i' = \sqrt{m_i} q_i \tag{12.50}$$

$$k_{i,j}' = \frac{1}{\sqrt{m_i} \cdot \sqrt{m_j}} k_{i,j}$$
(12.51)

Die Hesse-Matrix \hat{H} wird nun eingeführt unter

$$k_{i,j}' = \frac{\partial^2 k_{i,j}'}{\partial q_i' q_j'} \Big|_0 \tag{12.52}$$

Damit ergibt sich mit der kinetischen Energie folgender Ausdruck für die Schrödingergleichung des harmonischen Oszillators

$$\frac{1}{2} \left[-\sum_{i} \frac{d^2}{dq^2} + \sum_{i,j} \hat{H} q_i q_j \right] \psi_n = E \psi_n \tag{12.53}$$

210

Aufgrund des Kreuztermes $q_i q_j$ sind die beschrieben Schwingungen gekoppelt, sodass neue Koordinaten Q_i gesucht werden, die diese Kopplung aufheben. Da die Hessematrix \hat{H} symmetrisch und reell ist, kann sie diagonalisiert werden. Die Eigenwerte von \hat{H} sind die Kraftkonstanten λ_i .

$$\frac{1}{2} \left[-\sum_{i} \frac{d^2}{dQ_i^2} + \sum_{i} \lambda_i Q_i^2 \right] \psi_n = E \psi_n \tag{12.54}$$

Die so erhaltenen Koordinaten sind die Normalkoordinaten Q_i und die Energie lässt sich als Summe über *i* darstellen. Die Schwingungen sind entkoppelt, sodass die Schwingungswellenfunktion als Produktansatz formuliert werden kann [1].

$$\psi_n(Q_1, Q_2, ..., Q_n) = \prod_i \phi_i(Q_i)$$
 (12.55)

Daraus ergibt sich für jede Lösung eine separate Gleichung, welche der Schrödingergleichung eines harmonischen Oszillators entspricht.

$$\frac{1}{2} \left[-\frac{d^2}{dQ_i^2} + \lambda_i Q_i^2 \right] \phi_i = E_i \phi_i \tag{12.56}$$

Da ν von λ abhängt, sorgen negative Eigenwerte für imaginäre Frequenzen.

$$\nu = \frac{\sqrt{\lambda}}{2\pi} \tag{12.57}$$

Kapitel 13

Anhang

13.1 Strukturmodelle der MOPO₄-Vertreter

Tabelle 13.1: Gewählte Startmodelle und Monkhorst-Pack-Grids für die Strukturoptimierungen der MOPO₄-Polymorphe.

M	Strukturtyp	Startstruktur	MP. Gitter
V	β -VOSO ₄	β -VOPO ₄	$4 \times 4 \times 4$
	α -MoOPO ₄	$\alpha_{\rm II}$ -VOPO ₄	$4 \times 4 \times 6$
	$SbOPO_4$	ϵ -VOPO ₄	$4 \times 4 \times 4$
	MPTB	$WOPO_4$	$4 \times 4 \times 6$
Mo	β -VOSO ₄	β -VOPO ₄	$4 \times 4 \times 4$
	α -MoOPO ₄	α -MoOPO ₄	$4 \times 4 \times 6$
	$SbOPO_4$	ϵ -VOPO ₄	$4 \times 4 \times 4$
	MPTB	$VOPO_4$	$4 \times 4 \times 6$
Nb	β -VOSO ₄	β -VOPO ₄	$4 \times 4 \times 4$
	α -MoOPO ₄	α -NbOPO ₄	$4 \times 4 \times 6$
	$SbOPO_4$	$SbOPO_4$	$4 \times 4 \times 6$
	MPTB	$WOPO_4$	$4 \times 4 \times 6$
W	β -VOSO ₄	β -VOPO ₄	$4 \times 4 \times 4$
	α -MoOPO ₄	α -NbOPO ₄	$4 \times 4 \times 6$

Tabelle 13.1 - Fortsetzung					
M	Strukturtyp	Startstruktur	MP. Gitter		
	$SbOPO_4$	$TaOPO_4$ (opt.)	$2 \times 2 \times 2$		
	MPTB	$WOPO_4$	$4 \times 4 \times 2$		
Та	β -VOSO ₄	β -VOPO ₄	$4 \times 4 \times 4$		
	α -MoOPO ₄	α -NbOPO ₄	$4 \times 4 \times 6$		
	SbOPO_4	SbOPO_4	$4 \times 4 \times 6$		
	MPTB	$WOPO_4$	$4 \times 4 \times 6$		
Sb	β -VOSO ₄	WOPO ₄ (opt.)	$4 \times 4 \times 4$		
	α -MoOPO ₄	WOPO ₄ (opt.)	$4 \times 4 \times 6$		
	SbOPO_4	SbOPO_4	$4 \times 4 \times 6$		
	MPTB	WOPO ₄ (opt.)	$4 \times 4 \times 2$		

Тур	М	a	Δa	b	Δb	С	Δc	β	$\Delta\beta$
β -VOSO ₄	V	7,736	+0, 4	$6,\!155$	+0, 2	7,035	+1, 0		
	Mo	7,570	-2, 0	6,345	-0, 7	7,069	-0, 2		
	Nb	7,523		$6,\!479$		$7,\!406$			
	W	7,371		6,429		$7,\!487$			
	Ta	7,414		$6,\!477$		$7,\!375$			
	Sb	7,213		6,412		$7,\!336$			
SbOPO_4	V	$7,\!247$	-0,	6,894	+0,0	7,226	-0, 5	$116,\!13$	+0,7
	Mo	$7,\!482$	+1, 1	$7,\!021$	-2, 6	7,364	+1,0	$117,\!65$	-0, 6
	Nb	$7,\!467$		7,236		$7,\!377$		$119,\!81$	
	W	$7,\!451$		$7,\!192$		$7,\!336$		$120,\!24$	
	Ta	$7,\!473$		$7,\!305$		$7,\!406$		119,72	
	Sb	6,722	-1, 0	8,076	+0, 5	7,010	-0, 5	115,71	-0, 2
$MoOPO_4$	V	6,033	+0,3			4,360	-1, 7		
	Mo	$6,\!174$	+0,0			4,321	+0, 6		
	Nb	$6,\!402$	+0, 2			$4,\!051$	-1, 3		
	W	$6,\!308$	+1,0			4,000	-1, 6		
	Ta	$6,\!442$	+0,3			$3,\!950$	-1, 3		
	Sb	$6,\!339$				$3,\!854$			
MPTB	V	$6,\!364$		$5,\!121$		$10,\!821$		90,00	
	Mo	$6,\!602$		$5,\!286$		$11,\!247$		$90,\!02$	
	Nb	6,690	+1, 2	$5,\!346$	+1.3	$11,\!304$	+0, 4	90,00	-0, 4
	W	6,616	+0,1	$5,\!292$	+0.1	$11,\!257$	+0,1	$90,\!01$	-0, 1
	Ta	6,713	+1,3	5,363	-0.3	$11,\!332$	+0,5	90,00	+0, 1
	Sb	6,513		5,261		11,036		90,78	

Tabelle 13.2: Berechnete Gitterparameter (Å, °) der ausgewählten Strukturtypen mit den jeweiligen Vertretern. Die relativen Abweichungen $\Delta(\%)$ wurden mit den experimentellen Werten verglichen.

13.1.1 Strukturmodelle nach der DFT-Optimierung

Alle hier aufgelisteten Kristallstrukturen sind auf der dazugehörigen CD der Dissertation hinterlegt.

Tabelle 13.3: Atompositionen von β -VOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,7359 Å, b = 6,1546 Å, c = 7,0345 Å).

Atom	Wyck	x	y	z
V1	4 c	$0,\!1746$	0,25	0,2309
P1	4 c	0,8815	$0,\!25$	0,8797
01	8 d	0,1238	0,5475	$0,\!2513$
O2	4 c	0,7181	$0,\!25$	0,0122
O3	4 c	0,0507	$0,\!25$	0,9978
O4	4 c	0,3628	0,25	0,1505

Tabelle 13.4: Atompositionen von MoOPO₄ basierend auf β_I -MoOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,5704 Å, b = 6,3447 Å, c = 7,0686 Å).

Atom	Wyck	x	y	\overline{z}
Mo1	4 c	0,9206	0,25	0,2268
P1	4 c	0,3725	0,75	0,1376
O1	4 c	0,8013	$0,\!25$	0,9788
O2	8 d	0,8769	0,5558	0,2281
O3	4 c	0,4636	$0,\!25$	$0,\!9960$
O4	4 c	$0,\!1386$	$0,\!25$	0,1713

Atom	Wyck	x	y	z
Nb1	4 c	0,1496	0,25	$0,\!2453$
P1	4 c	-0,1213	0,25	-0,1258
O1	8 d	0,1225	-0,4446	0,2470
O2	4 c	-0,2916	0,25	-0,0040
O3	4 c	0,0487	0,25	-0,0058
O4	4 c	0,3762	0,25	$0,\!1787$

Tabelle 13.5: Atompositionen von NbOPO₄ basierend auf β -VOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,5226 Å, b = 6,4785 Å, c = 7,4062 Å).

Tabelle 13.6: Atompositionen von WOPO₄ basierend auf β -VOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,3711 Å, b = 6,4287 Å, c = 7,4866 Å).

Atom	Wyck	x	y	z
W1	4 c	0,1498	0,25	0,2368
P1	4 c	0,8731	0,25	$0,\!8778$
01	8 d	0,1285	$0,\!5573$	0,2470
O2	4 c	0,7059	0,25	0,0036
O3	4 c	0,0506	0,25	$0,\!9925$
O4	4 c	0,3873	0,25	$0,\!1881$

Tabelle 13.7: Atompositionen von TaOPO₄ basierend auf β -VOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,4136 Å, b = 6,4771 Å, c = 7,3751 Å).

Atom	Wyck	x	y	z
Ta1	4 c	0,1131	0,25	0,2609
P1	4 c	-0,1230	0,25	-0,1295
01	8 d	0,1209	-0,4443	0,2512
O2	4 c	-0,2988	0,25	-0,0119
O3	4 c	0,0452	0,25	-0,0031
O4	4 c	0,3676	0,25	$0,\!1809$

Atom	Wyck	x	y	z
Sb1	4 c	0,1238	0,25	0,2505
P1	4 c	0,8722	0,25	0,8685
01	8 d	0,1263	0,5605	0,2625
O2	4 c	$0,\!6946$	$0,\!25$	$0,\!9878$
O3	4 c	0,0527	$0,\!25$	0,9864
O4	4 c	0,3739	0,25	$0,\!1583$

Tabelle 13.8: Atompositionen von SbOPO₄ basierend auf β -VOPO₄ nach DFT-Strukturoptimierung (R.G.: *Pnma*, a = 7,2129 Å, b = 6,4121 Å, c = 7,3364 Å).

Tabelle 13.9: Atompositionen von ϵ -VOPO₄ nach DFT-Strukturoptimierung (R.G.: C2/2c, a = 7,2783 Å, b = 6,9068 Å, c = 7,2346 Å, $\beta = 116,712$ °).

Atom	Wyck	x	y	z
V1	4 a	1	0,7705	$0,\!4952$
P1	4 a	0,2920	0,1292	0,7861
01	4 a	0,8049	$0,\!8429$	0,2988
O2	4 a	$0,\!4515$	$0,\!9934$	$0,\!9568$
O3	4 a	0,1248	0,0065	$0,\!6096$
O4	4 a	0,9051	0,7620	$0,\!6984$
O5	4 a	0,1907	0,2598	$0,\!8890$

Tabelle 13.10: Atompositionen von VOPO₄ basierend auf SbOPO₄ optimiert in *P*1 nach Symmetriesuche über Endeavour (R.G.: *Cc*, a = 7,247 Å, b = 6,853 Å, c = 7,215 Å, $\beta = 115,86$ °).

Atom	x	y	z
V1	0,9599	0,2296	0,9600
P1	0,7524	0,6280	0,7515
01	0,7701	0,1520	0,7693
O2	0,5882	0,5082	0,5781
O3	0,9103	$0,\!4950$	0,9205
O4	0,1528	0,2600	0,8544
O5	0,3662	0,2615	$0,\!6661$

Tabelle	13.11:	Ator	npositionen	von	NbOl	PO_4	basierend
auf	$SbOPO_4$	nach	DFT-Strukt	uroptimie	erung	(R.G.:	C2/c,
a = 7,49	96 Å, b = 7,35	06 Å, c =	$7,4020$ Å, $\beta = 1$	19,621°)			

Atom	Wyck	x	y	z
Nb1	4 a	0,0	0,0	0,0
P1	4 e	$0,\!0$	0,6184	0,75
O1	4 e	$0,\!0$	0,0674	0,75
O2	8 f	$0,\!9967$	0,7420	0,5763
O3	8 f	0,6943	0,9978	0,8457

Tabelle 13.12: Atompositionen von MoOPO₄ basierend auf ϵ -VOPO₄ (R.G.: Cc, a = 7,4683 Å, b = 7,1157 Å, c = 7,3509 Å, $\beta = 118,766$ °).

Atom	Wyck	x	y	z
Mo1	4 a	0,9941	0,7666	0,4933
P1	4 a	0,2819	0,1367	0,7790
01	4 a	0,7737	0,8257	0,2745
O2	4 a	$0,\!1196$	0,0144	0,5989
O3	4 a	$0,\!1752$	0,2652	0,8694
O4	4 a	$0,\!8885$	0,7715	$0,\!6943$
O5	4 a	0,4401	0,0072	0,9529

Tabelle13.13:AtompositionenvonMoOPO4basierendaufSbOPO4nachDFT-Strukturoptimierung(R.G.: C2/c,a = 7,459 Å, b = 7,150 Å, c = 7,328 Å, $\beta = 120,45$ °).AlsStartstrukturwurdeimSbOPO4-TyprelaxiertesTaOPO4eingesetzt.

Atom	x	y	z
Mo1	0,0	-0,0	0,0
P1	-0,5	0,109693	0,25
01	-0,0	0,064672	0,25
O2	0,016757	-0,265586	$0,\!430227$
O3	0,309016	-0,019648	0,162359

Tabelle	13.14:	Ator	npositionen	von	TaOl	PO_4	basierend
auf	$SbOPO_4$	nach	DFT-Strukt	uroptimie	erung	(R.G.:	C2/c,
a = 7,48	824 Å, $b = 7,35$	604 Å, c =	$7,4024$ Å, $\beta = 1$	19,582°).			

Atom	Wyck	x	y	z
Ta1	4 a	0,0	0,0	0,0
P1	4 e	0,0	0,6189	0,75
01	4 e	0,0	0,0689	0,75
O2	8 f	0,9975	0,7420	0,5766
O3	8 f	0,6943	0,9981	0,8461

Tabelle13.15:AtompositionenvonWOPO4basierendaufSbOPO4nachDFT-Strukturoptimierung(R.G.: C2/c,a = 7,4697 Å, b = 7,2475 Å, c = 7,3406 Å, $\beta = 120,151$ °). Als Startstruktur wurde imSbOPO4-Typ relaxiertes TaOPO4 eingesetzt.

Atom	Wyck	x	y	z
W1	4 a	0,0	0,0	0,0
P1	4 e	0,0	$0,\!6129$	0,75
O1	4 e	$0,\!0$	0,0609	0,75
O2	8 f	0,9890	0,7390	0,5722
O3	8 f	$0,\!6927$	$0,\!9853$	0,8425

Tabelle 13.16: Atompositionen von SbOPO₄ nach DFT-Strukturoptimierung (R.G.: C2/c, a = 6,7297 Å, b = 8,1363 Å, c = 7,0467 Å, $\beta = 115,491$ °).

Atom	Wyck	x	y	z
Sb1	4 a	0,0	0,0	0,0
P1	4 e	$0,\!0$	$0,\!6702$	0,75
O1	4 e	$0,\!0$	$0,\!0952$	0,75
O2	8 f	0,1020	0,7799	$0,\!6327$
O3	8 f	$0,\!6824$	0,0596	0,9121

Atom	Wyck	x	y	z
V1	2 c	0,75	0,75	0,2926
P1	2 a	0,75	$0,\!25$	$0,\!0$
01	2 c	0,75	0,75	$0,\!6532$
O2	8 g	0,8030	0,4531	0,2059

Tabelle 13.17: Atompositionen von α_{II} -VOPO₄ (α -MoOPO₄-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P4/n, a = 6,0329 Å, c = 4,3601 Å).

Tabelle 13.18: Atompositionen von α -MoOPO₄ nach DFT-Struktur
optimierung (R.G.: P4/n, a = 6,1739 Å, c = 4,3214 Å).

Atom	Wyck	x	y	z
Mo1	2 с	0,75	0,75	0,8064
P1	2 a	0,75	0,25	$0,\!5$
01	2 c	0,75	0,75	$0,\!1935$
O2	8 g	$0,\!1853$	0,5551	0,2911

Tabelle 13.19: Atompositionen von α -NbOPO₄ (α -MoOPO₄-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P4/n, a = 6,4019 Å, c = 4,0512 Å).

Atom	Wyck	x	y	z
Nb1	2 c	0,75	0,75	0,2841
P1	2 a	0,75	$0,\!25$	$0,\!0$
01	2 c	0,75	0,75	0,7179
O2	2 g	0,7825	0,4459	0,2196

Tabelle 13.20: Atompositionen von WOPO₄ basierend auf α -NbOPO₄ (α -MoOPO₄-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P4/n, a = 6,3079 Å, c = 3,9551 Å).

Atom	Wyck	x	y	z
W1	2 c	0,75	0,75	0,2919
P1	2 a	0,75	$0,\!25$	$0,\!0$
O1	2 c	0,75	0,75	0,7348
O2	8 g	0,8080	0,4456	0,2205

Tabelle 13.21: Atompositionen von TaOPO₄ basierend auf α -NbOPO₄ (α -MoOPO₄-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P4/n, a = 6,4423 Å, c = 3,9499 Å).

Atom	x	y	z	Wyck
Ta1	2 c	0,75	0,75	0,2666
P1	2 a	0,75	$0,\!25$	$0,\!0$
O1	2 c	0,75	0,75	0,72696
O2	8 g	0,7781	0,4461	0,2232

Tabelle 13.22: Atompositionen von SbOPO₄ basierend auf α -NbOPO₄ (α -MoOPO₄-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P4/n, a = 6,3385 Å, c = 3,8536 Å).

Atom	Wyck	x	y	z
Sb1	2 c	0,75	0,75	0,2164
P1	2 a	0,75	$0,\!25$	$0,\!0$
O1	2 c	0,75	0,75	0,7146
O2	8 g	0,8137	0,4419	0,2298

Atom	x	y	z	Wyck
V1	2 e	-0,339677	0,25	-0,441835
V2	2 e	-0,160288	0,25	0,058225
P1	2 e	0,027369	0,25	0,345596
P2	2 e	$0,\!472727$	0,25	-0,154407
01	2 e	-0,309998	0,25	-0,089393
O2	2 e	-0,189956	0,25	$0,\!410570$
O3	2 e	-0,015086	0,25	0,204162
O4	2 e	-0,484747	0,25	-0,295838
O5	4 f	-0,350650	-0,000655	0,122091
O6	4 f	$0,\!149450$	0,000733	$0,\!377964$
O7	2 a	$0,\!0$	$0,\!0$	-0,0
O8	2 d	-0,5	0,0	$0,\!5$

Tabelle 13.23: Atompositionen von VOPO₄ basierend auf WOPO₄ (MPTB-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P2₁/m, a = 6,3836 Å, b = 5,1368 Å, c = 10,8682 Å, $\beta = 89,999$ °.)

Tabelle 13.24: Atompositionen von MoOPO₄ basierend auf WOPO₄ (MPTB-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P2₁/m, a = 6,5920 Å, b = 5,2760 Å, c = 11,2635 Å, $\beta = 89,998$ °.)

Atom	Wyck	x	y	z
Mo1	2 e	-0,333959	0,25	-0,440542
Mo2	2 e	-0,166043	0,25	0,059470
P1	2 e	0,026544	0,25	0,343900
P2	2 e	0,473485	0,25	-0,156099
01	2 e	-0,318697	0,25	-0,092208
O2	2 e	-0,181279	0,25	0,407797
O3	2 e	-0,007663	0,25	0,208335
O4	2 e	-0,492319	$0,\!25$	-0,291662
O5	4 f	-0,351406	-0,009054	0,122678
O6	4 f	0,148556	0,009017	$0,\!377332$
07	2 a	-0,0	-0,0	-0,0
08	2 d	0,5	0,0	-0,5

Atom	Wyck	x	y	2
Nb1	2 e	-0,332955	0,25	-0,438334
Nb2	2 e	-0,166618	0,25	0,062008
P1	2 e	0,027163	0,25	0,345906
P2	2 e	$0,\!471972$	0,25	-0,154467
O1	2 e	-0,330867	0,25	-0,082263
O2	2 e	-0,171514	0,25	$0,\!416352$
O3	2 e	-0,024218	0,25	0,212081
O4	2 e	-0,473390	0,25	-0,287776
O5	4 f	-0,351972	-0,011099	$0,\!127646$
O6	4 f	0,146326	0,010936	0,373843
O7	2 a	$0,\!0$	-0,0	$0,\!0$
O8	2 d	0,5	-0,5	-0,5

Tabelle 13.25: Atompositionen von NbOPO₄ basierend auf WOPO₄ (MPTB-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P2₁/m, a = 6,7135Å, b = 5,3639Å, c = 11,3450Å, $\beta = 90,055$ °.)

Tabelle 13.26: Atompositionen von TaOPO₄ basierend auf WOPO₄ (MPTB-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P2₁/m, a = 6,7126Å, b = 5,3579Å, c = 11,3463Å, $\beta = 90,003$ °.)

Atom	Wyck	x	y	z
Ta1	2 e	-0,332779	$0,\!25$	-0,437999
Ta2	2 e	-0,167248	0,25	0,061934
P1	2 e	0,027443	0,25	$0,\!345719$
P2	2 e	$0,\!472518$	0,25	-0,154273
01	2 e	-0,330399	0,25	-0,082572
O2	2 e	-0,169520	0,25	$0,\!417513$
O3	2 e	-0,026680	0,25	0,212613
O4	2 e	-0,473609	0,25	-0,287415
O5	4 f	-0,352830	-0,011134	$0,\!127225$
O6	4 f	0,147237	0,011156	0,372696
O7	2 a	$0,\!0$	$0,\!0$	$0,\!0$
08	2 d	$0,\!5$	-0,5	-0,5

Atom	Wyck	x	y	z
W1	2 e	-0,329670	0,25	-0,443861
W2	2 e	-0,162748	0,25	0,064181
P1	2 e	0,024030	0,25	0,346369
P2	2 e	0,466495	0,25	-0,157774
01	2 e	-0,348761	$0,\!25$	-0,073326
O2	2 e	-0,189867	0,25	0,400593
O3	2 e	0,007607	$0,\!25$	0,209423
O4	2 e	-0,460136	0,25	-0,287086
O5	4 f	-0,336589	-0,009714	$0,\!138023$
O6	4 f	0,139710	0,009667	$0,\!386274$
O7	2 a	0,0	-0,0	-0,0
08	2 d	-0,5	0,5	0,5

Tabelle 13.27: Atompositionen von WOPO₄ (MPTB-Strukturtyp) nach DFT-Strukturoptimierung (R.G.: P2₁/m, a = 6,6328 Å, b = 5,2795 Å, c = 11,2556 Å, $\beta = 90,422^{\circ}$).

Tabelle 13.28: Atompositionen von SbOPO₄ basierend auf der nach WOPO₄ (MPTB-Strukturtyp, R.G.: P2₁/m, a = 6,5612 Å, b = 5,3088 Å, c = 11,1084 Å, $\beta = 90,710^{\circ}$).

Atom	Wyck	x	y	z
Sb1	2 e	-0,322147	0,25	-0,443508
$\mathrm{Sb2}$	2 e	-0,165744	$0,\!25$	0,072926
P1	2 e	0,021274	0,25	0,349578
P2	2 e	$0,\!461067$	0,25	-0,158288
01	2 e	-0,402445	$0,\!25$	-0,043228
O2	2 e	-0,203152	$0,\!25$	$0,\!391546$
O3	2 e	0,030963	$0,\!25$	0,210168
O4	2 e	-0,401579	$0,\!25$	-0,270554
O5	4 f	-0,326129	-0,008356	0,164070
O6	4 f	0,118714	0,003694	$0,\!395766$
O7	2 a	-0,0	$0,\!0$	-0,0
08	2 d	-0,5	-0,5	$0,\!5$

Im Folgenden ist ein Beispiel-Input für die Struktur
optimierungen gegeben. $\beta\text{-VOPO}_4\text{-TaOPO}_4$

CRYSTAL $0 \ 0 \ 0$ 62 /Raumgruppe 7.7706.1436.965/Gitterparameter 6 /Anzahl der Atomlagen 2730.250.17350.2307! Ta 150.88310.250.8783! P 8 0.1228 0.54940.2511! O 8 0.72350.250.0091! O 8 0.04690.25-.0030 ! O 0.35940.1442! O 8 0.25OPTGEOM ENDOPT ENDGEOM 27310 /Basissätze INPUT $13.0\ 0\ 2\ 2\ 2\ 1\ 0$ 14.546408 1345.880647 0 7.273204 36.766806 0 9.935565 378.425301 0 4.967782 22.293091 0 6.347377104.883956 0 3.1736888.755848 0 2.017881 12.017961 0 . . . 8 5 0 0 8 2.0 1.0 8020.0 0.00108. . . 15 5 0 0 8 2. 1. 202703. 0.000122413.1 0.0013. . . 99 0 END DFT /DFT-Block PW1PW /Funktional CHUNKS 256

END /Dispersionskorrektur DFTD3/van-der-Waals-Korrektur VERSION 4 $\mathbf{S8}$ 1.5363ABC END TOLINTEG $7\ 7\ 7\ 14\ 42$ SHRINK /k-Werte $0\ 12$ $4\ 4\ 4$ FMIXING /SCF-Block 75ANDERSON DIISALLK END

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO_4 sowie IR- und Ramansprektren der Vanadiumphosphate

Tabelle 13.29: Berechneten Abstände d(M-O) im MPTB-Strukturtyp der $[MO_6]$ -Oktaeder verschiedener Vertreter (V, Mo, Nb, W, Ta, Sb) nach DFT-Strukturoptimierung.

	$VOPO_4$	$MoOPO_4$	$NbOPO_4$	$WOPO_4$	$TaOPO_4$	SbOPO_4
<i>M</i> 1-O8- <i>M</i> 1	1,757	1,851	1,881	1,852	1,889	1,851
M1-O(2,6)-P1	1,866,	1,979,	1,976,	1,967,	1,981,	1,974,
	$1,\!905$	$1,\!980$	2,016	$1,\!988$	2,026	1,966
$M1 ext{-}O4 ext{-}P2$	$1,\!835$	1,953	$1,\!952$	1,946	$1,\!961$	1,960
M2-O7-M2	1,757	1,850	1,881	$1,\!853$	$1,\!889$	1,855
M2-O(1,5)-P2	1,867,	2,000,	1,975,	2,000,	1,981,	$1,\!971,$
	$1,\!904$	1,996	2,016	2,004	2,027	1,969
<i>M</i> 2-O3-P1	1,834	2,011	$1,\!952$	2,004	1,961	1,965

13.2 Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

Tabelle 13.30: VPO₄-m1. Zuordnung des Röntgenpulverdiffraktogramms (Guinier technique, Cu-K α 1, $\lambda = 1,54059$ Å), Pnma, Z = 4; a = 7,3453(12) Å, b = 6,4001(12) Å, c = 7,3196(13) Å, sowie Reflexe, die der monoklinen Zelle a = 13,0989 Å, b = 5,3643 Å, c = 7,6210 Å, $\beta = 93,508$ °.

h	k	l	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$ I _{calc}	I _{obs}	\mathbf{d}_{calc} [Å]
2	2	2	44,99	44,95	$0,\!25\ 0,\!6$	$34,\!4$	2,0144
			45,63	45,63	0	20,8	
			45,81	45,92	0,69	24,9	
1	3	1	46,03	45,92	$0,\!69\ 15,\!8$	24,9	1,9729
			46,48	46,72	1,52	22,8	
			47,02	47,1	0,51	32,7	
			47,79	47,87	0,52	26,5	
1	2	3	48,44	48,39	$0,\!33\ 0,\!3$	$35,\!8$	1,8759
			49,02	49,22	1,32	$56,\! 6$	
			49,42	49,57	1,0	61,4	

			Tabelle 13.30	- Fortsetzur	ng		
h	k	l	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$ I _{calc}	I_{obs}	d_{calc} [Å]
2	3	0	49,44	49,57	$0,\!86\ 58,\!7$	61,4	1,8447
4	0	0	49,72	49,86	$0,\!93\ 67$	55,3	$1,\!8363$
			49,79	49,86	$0,\!47$	$55,\!3$	
			50,77	$51,\!01$	1,63	$33,\!3$	
2	3	1	51,1	$51,\!01$	$0,\!61\;\;8,\!1$	$33,\!3$	1,7888
			$51,\!5$	51,72	1,5	15,7	
4	1	0	51,79	51,72	$0,\!48\ 1,\!3$	15,7	1,7651
			$53,\!05$	$53,\!28$	1,61	73,1	
3	2	2	$53,\!33$	$53,\!28$	$0,\!35\ 17,\!8$	73,1	1,7172
			$54,\!64$	$54,\!85$	$1,\!5$	24,5	
3	1	3	$54,\!98$	54,85	$0,\!93\ 28,\!7$	24,5	1,6685
2	3	2	$55,\!5$	55,75	1,8 $89,7$	10,8	$1,\!6473$
4	0	2	$55,\!99$	56,01	$0,\!14\ 89,\!7$	11,9	1,6413
			$56,\!13$	$56,\!01$	0,87	$11,\!9$	
			$57,\!12$	$57,\!37$	1,83	$17,\! 6$	
0	3	3	$57,\!35$	$57,\!37$	$0,\!15\ 89,\!2$	$17,\! 6$	1,606
0	4	0	$57,\!67$	57,74	$0,\!52\ 70,\!2$	11,1	1,6
			58,16	$58,\!12$	0,3	16,1	
			$58,\!43$	$58,\!62$	1,41	39,2	
1	3	3	$58,\!8$	$58,\!62$	$1,\!34\ 3$	39,2	1,569
1	4	1	60,61	60,83	$1,\!67\ 17,\!3$	44,8	1,5289
			62,81	63,11	2,33	15,2	
2	3	3	63,14	63,11	$0,\!23\ 0,\!2$	15,2	$1,\!4715$
0	4	2	63,46	63,61	$1,\!17\ 5,\!1$	22,7	1,466
			$64,\!05$	64,23	1,41	$21,\!4$	
			64,51	64,66	1,18	$68,\! 6$	
4	2	2	64,7	64,66	$0,\!32\ 31,\!2$	$68,\! 6$	1,4604
			64,83	$64,\!97$	1,11	45,7	
2	4	1	64,87	64,97	$0,\!79\ 90,\!1$	45,7	1,4383
4	1	3	65,21	$65,\!34$	$1,03\ 70,4$	$31,\!6$	1,4301
			65,22	$65,\!34$	0,95	$31,\!6$	
			66, 17	66, 39	1,76	$11,\!5$	

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO_4 sowie IR- und Ramansprektren der Vanadiumphosphate

			Tabelle 13.3	30 - Fortsetz	ung		
h	k	l	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$ I _{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
5	1	1	66,53	66, 39	$1,\!12\ 5,\!9$	$11,\!5$	1,4052
			$66,\!65$	66,73	$0,\!64$	16,2	
			$68,\!37$	$68,\!58$	1,7	27,4	
1	3	4	68,73	$68,\!58$	$1,22 \ 9,3$	27,4	1,3648
5	0	2	68,83	$68,\!97$	$1,\!14\ 12,\!9$	23,1	1,3633
			70,36	$70,\!56$	1,64	18,4	
5	1	2	70,61	$70,\!56$	$0,\!41$ $4,\!5$	18,4	1,3334
			72,5	$72,\!69$	1,58	12,.	8
2	1	5	72,74	$72,\!69$	$0,\!42$ 4,6	12,.	8 1,3302
			$75,\!28$	$75,\!53$	2,11	24,7	
3	4	2	$75,\!46$	$75,\!53$	$0,\!59\ 11,\!3$	24,7	1,2578
			77,03	$77,\!3$	2,3	9,0	
5	1	3	77,2	$77,\!3$	$0,85\ 0,2$	$_{9,0}$	1,2329
			78,84	79,1	2,23	58,1	
3	3	4	79,21	79,1	$0,\!94\ 10,\!2$	58,1	1,2081
			79,3	$79,\!47$	1,46	47,2	
0	3	5	$79,\!33$	$79,\!47$	1,2 $43,8$	47,2	1,2071
			81,98	82,24	2,25	19,2	
3	2	5	82,28	82,24	$0,\!35\ 8$	19,2	1,1695
			84,09	84,32	2,0	36,7	
4	4	2	84,45	84,32	$1,\!13\ 39,\!5$	36,7	$1,\!1457$
4	0	5	84,53	84,7	$1,\!48$ $4,\!8$	39,2	$1,\!1447$
			84,8	84,7	0,87	39,2	
6	1	2	84,93	85,09	$1,\!39\ 38$	$_{30,1}$	$1,\!1423$
			84,95	85,09	1,22	$_{30,1}$	
			85,36	$85,\!56$	1,74	$25,\!3$	
			85,99	86,08	0,78	$_{30,3}$	
4	1	5	86,2	86,08	$1,04\ 31,7$	$_{30,3}$	1,1268
				94,74		$22,\!4$	
				97,33		30,7	

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

h	k	l	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$ I _{calc}	I_{obs}	d_{calc} [Å]
2	2	0	37,429	37,432	0 15.7	18.6	5.5016
				42.921) -	77	-)
1	1	1	52,038	52,057	0,04 1000	1000	3,9736
0	4	0	53,086	$53,\!154$	0,13 699,2	889,8	3,8965
4	0	0	53,26	53,274	0,03 701,6	658,4	3,884
				54,946	, ,	964,5	,
				$58,\!49$		116,8	
2	4	0	59,528	59,518	0,02 $152,4$	78,7	3,4829
4	2	0	59,645	$59,\!637$	$0,02\ 151,5$	96,3	3,4762
1	3	1	64,453	64,464	0,03 $546,7$	268,4	3,223
3	3	1	75,084	75,093	$0,02\ 115,7$	61,7	2,7798
4	4	0	$75,\!905$	$75,\!93$	$0,07 \ 90,2$	41,7	2,7508
5	1	1	84,618	$84,\!583$	0,1 464	196,2	2,4787
5	3	1	$93,\!241$	$93,\!234$	$0,02\ 97,1$	$25,\!6$	2,2605
1	7	1	108,754	$108,\!837$	$0,29\ 230$	121,2	1,9577
$\overline{7}$	1	1	109,042	109,076	$0,\!12\ 53,\!9$	$13,\!6$	1,9529
0	8	0	109,324	109,435	$0,\!39\ 32,\!3$	17,9	1,9483
8	0	0	109,706	109,734	0,1 $32,4$	24,1	1,942
3	9	1	$142,\!843$	$142,\!696$	$0,\!61$ $68,\!4$	20,4	1,5325
2	10	0	$143,\!311$	$143,\!333$	$0,\!09\ 147,\!2$	41	1,5281
10	2	0	$143,\!804$	143,791	$0,\!05\ 145,\!7$	45,5	1,5236
7	7	1	149,361	149,365	$0,02\ 67,3$	11,7	$1,\!4748$
2	8	2	157,004	157,028	$0,\!11\ 152$	29,5	1,4138
8	2	2	$157,\!302$	$157,\!247$	$0,\!23$ $43,\!3$	17,7	1,4115
1	1	3	$157,\!678$	$157,\!685$	0,03 24,5	6	1,4087
1	3	3	$163,\!804$	163,775	$0,\!13\ 60$	$11,\!4$	1,3648
4	8	2	166,241	166,203	$0,\!17\ 61,\!8$	7,9	1,3483
8	4	2	166,477	$166,\!441$	$0,\!15\ 61,\!7$	10,4	1,3468
1	11	1	$167,\!583$	$167,\!596$	$0,\!05\ 17$	2,9	$1,\!3395$
6	10	0	168,226	$168,\!113$	$0,49\ 30,1$	3,4	$1,\!3354$
12	0	0	$174,\!81$	174,818	$0,03\ 12,2$	8,6	1,2947
5	1	3	$176,\!052$	$176,\!032$	$0,\!09\ 108,\!8$	$17,\!9$	1,2874

Tabelle 13.31: VPO₄-m2. Zuordnung des Röntgenpulverdiffraktogramms (Guinieraufnahmen, Cu-K α 1, $\lambda = 1,54059$ Å), $P2_1/m$, Z = 6; a = 8,792(4) Å, b = 5,269(2) Å, c = 10,398(6) Å, $\beta = 112.60(4)^{\circ}$ sowie Positionen nicht zugeordneter Reflexe.

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO $_4$ sowie IR- und Ramansprektren der Vanadiumphosphate

<i>m</i> 1'		m3			m5		
V1	-01	1,871V1	-01	1,936	V1	-02	1,943
	-02	1,962	-O3	1,949		-O3	1,943
	-02	1,962	-O2	2,025		-01	2,095
	-03	$1,\!887$	-O2	2,025		-01	2,095
			-O2	2,091		-O1	2,095
			-O2	$2,\!091$		-01	2,095
P1	-01	1,570P1	-O3	1,522	P1	-O2	1,538
	-02	1,547	-01	1,527		-O3	1,538
	-02	1,547	-O2	$1,\!574$		-01	1,576
	-O3	1,553	-O2	1,574		-01	1,576
<i>m</i> 1"	,	m4					
V1	-01	2,021V1	-01	$1,\!957$			
	-01	2,021	-O2	2,060			
	-02	1,858	-O2	2,060			
	-02	1,858	-O3	2,069			
			-O2	$2,\!118$			
			-O2	$2,\!118$			
			-01	$2,\!480$			
			-O3	2,528			
P1	-01	1,635P1	-01	1,522			
	-02	1,591	-O2	$1,\!557$			
	-02	1,547	-O2	$1,\!557$			
	-O3	$1,\!470$	-O3	$1,\!545$			

Tabelle 13.32: Interatomare Bindungsabstände der Strukturmodelle VPO₄-m1', -m1'', -m3, -m4 und -m5.

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

Atom			Atom			Atom		
V1	-05	$1,\!908$	V2	-04	1,898	V3	-05	1,909
	-05	$1,\!908$		-08	$1,\!953$		-09	1,921
	-03	2,028		-08	$1,\!953$		-09	1,921
	-O3	2,028		-07	2,041		-06	2,072
	-01	2,079		-06	2,096		-06	2,072
	-01	2,079		-06	$2,\!096$		-07	2,190
P1	-04	1,522	Ρ2	-09	1,509	P3	-08	1,504
	-O3	$1,\!571$		-09	1,509		-08	1,504
	-06	$1,\!554$		-07	$1,\!547$		-01	1,569
	-06	$1,\!554$		-O2	$1,\!603$		-O2	1,613

Tabelle 13.33: Ausgewählte interatomare Abstände [Å] von VPO₄-m2 nach der DFT-Strukturoptimierung unter Erhalt der Raumgruppe.

Tabelle 13.34: Gemessenes und berechnetes IR-Schwingungsspektren von β -VOPO₄. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert. G.S.: Gitterschwingungen, Def.: Deformationsschwingungen

Exp. $\bar{\nu} \ [\mathrm{cm}^{-1}]$	Ber. $\bar{\nu} \ [\mathrm{cm}^{-1}]$	Abs. [%]	Intens.(theor.) $[\%]$	Zuordnung
416,4	424,8	0,16	0,20)
	427,3		0,11	
442,1	473,0	$0,\!39$	0,20	
	487,1		0,00	G.S.
576,0	583,3	$0,\!39$	0,06	
	$600,\!6$		0,00	J
608,7	610,6	0,71	0,00)
	$615,\!9$		0,01	O-P-O-Def.
644,6	649,4	0,71	0,01	J
	667,0		0,00	
900,0	942,7	$0,\!16$	$0,\!66$	
976,0	$965,\! 6$	$0,\!25$	$0,\!47$	as. 1-0
	1010,6		1,00	J
1051,9	1061,1	$0,\!46$	$0,\!13$	$as. P-O, V \equiv O$
	1070,1		0,01	V_{-0}
	1076, 1		0,11	$\int V = 0$
	1104,8		0,02	
1158,4	1183,5	$0,\!59$	0,09	$as. P-O, V \equiv O$
	1192,1		0,01	J

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO_4 sowie IR- und Ramansprektren der Vanadiumphosphate

Exp. $\bar{\nu}$ [cm ⁻¹]	Ber. $\bar{\nu} \ [\mathrm{cm}^{-1}]$	Abs. [%]	Intens.(theor.) $[\%]$	Zuordnung
85,15	87,3	$0,\!61$	0,62	
	91,8	,	0,00	
$131,\!54$	131,3	0,09	0,02	
	135,0		0,02	
139,5	137,9	0,22	0,02	
	142,6		0,00	
	148,5		0,18	
174,2	175,7	$0,\!05$	0,00	
202,0	209,7	$0,\!05$	0,00	
229,7	223,1	0,06	0,04	
	232,9		0,02	
295,4	296,8	$0,\!19$	0,25	
	304,7		0,18	G.S.
320,4	324,6	$0,\!18$	0,26	
	342,3		0,26	
367,7	$374,\! 6$	$0,\!18$	$0,\!35$	
	403,1		0,02	
404,3	405,2	$0,\!10$	0,06	
	413,0		0,02	
$433,\!6$	439,4	$0,\!40$	0,22	
	441,4		0,44	
	442,0		0,40	
	473,4		0,03	
	596,4		0,00	
599	600,7	$0,\!09$	0,11	Ì
	609,4		0,06	
	$613,\! 6$		0,00	as. O-P-O
	655,4		0,01	
654,9	666, 6	$0,\!12$	0,13	
894,9	939,7	$0,\!50$	0,71	
	1008,0		0,10	
946,5	1010,2	$0,\!05$	$0,\!54$	De PO
	1011,8		$0,\!13$	(as. 1-0
	1015,2		$0,\!12$	
	1027,4		0,08	J
987,2	1074,0	$1,\!00$	1,00	}as. P-O, V≡O
997,4	1091,4	0,52	0,22	$\int_{\text{sym}} P \cap V - O$
	1102,7		0,00	$\int^{\text{sym. 1-0}} v = 0$
$1072,\! 6$	1174,1	$0,\!12$	0,02	$as. P-O, V \equiv O$

Tabelle 13.35: Gemessenes und berechnetes Raman-Schwingungsspektren von β -VOPO₄. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert. G.S.: Gitterschwingungen, Def.: Deformationsschwingungen.

Tabelle 13.36: Gemessenes und berechnetes IR-Schwingungsspektren von VPO_4 (CrVO₄-Typ). Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert.

Exp. $\bar{\nu}$ [cm ⁻¹]	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Abs. [%]	Intens.(theor.) $[\%]$	Zuordnung
455,5	451,5	0,51	0,33	
526,36	520,2	$0,\!62$	0,49	$\nu \nu -0$
557,4	553,5	$0,\!62$	0,04	Í
	559,0		0,02	ν V-O, δ P-O
671,1	675,1	$0,\!66$	$0,\!15$	
920,0	933,3	$0,\!64$	1,00	$\dot{\nu} V-O_{ea}, \nu P-O_{as}$
946,4	954,5	$0,\!62$	0,30	$\nu V - O_{eq}, \nu P - O_{sum}$
1042,4	1050,9	$0,\!65$	0,78	$\nu V-O_{ax}, \nu P-O_{sym}$
	1076,3		0,62	$\nu \text{ V-O}_{ax}$

Tabelle 13.37: Gemessenes und berechnetes Raman-Schwingungsspektren von VPO_4 (CrVO₄-Typ). Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert.

Exp. $\bar{\nu}$ [cm ⁻¹]	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Abs. [%]	Intens.(theor.) $[\%]$	Zuordnung
175,0	203,3	0,39	0,33)
209,8	231,5	0,08	0,07	
	288,2		$0,\!15$	S V O
	303,1		0,20	0 V-0
295,4	353,5	$0,\!67$	0,39	
414,5	456,2	0,08	0,01	
	470,2		0,14	ν V-O, ν P-O
464,0	492,2	0,32	0,38	$\nu V-O$
$532,\!8$	552,2	0,26	$0,\!19$	
	559,5		0,00	$\{\nu, \nu, \nu$
662,7	697,7	0,06	0,02	ν V-O
841,7	915,7	0,33	0,31	$1 \dots V \cap sum \dots D \cap$
938,1	968,8	$1,\!00$	0,31	$\left\{ \nu \ v - O_{eq}^{sgm}, \text{ sym. P-O} \right\}$
1032,3	1053,4	$0,\!65$	0,40	$\begin{cases} U \cap S^{ym} \to D \cap C \end{cases}$
1126,7	1165,4	$0,\!63$	0,24	$\int \nu v - O_{ax}^{-s}$, sym. P-O

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

Tabelle 13.38: Gemessenes und berechnetes IR-Schwingungsspektren von VPO ₄ -m1.
Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert.
G.S.: Gitterschwingungen.

Exp. $\bar{\nu}$ [cm ⁻¹]	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Abs. [%]	Intens.(theor.) $[\%]$	Zuordnung
	407,4		0,00	
	407,9		0,00	G.5.
	414,6		0,00)
	415,0		$0,\!13$	
	415,8		$0,\!15$	
	432,0		0,00	
	474,0		0,26	
	475,2		0.00	
	481,8		0,01	
	520,7		0,00	
	$533,\!6$		0,00	$\begin{bmatrix} 0 & v - 0, & 0 & 1 - 0 \end{bmatrix}$
	$566,\! 6$		0,00	
	571,5		0,00	
	587,9		0,00	
	589,7		0,00	
	611,9		0,00	
622,9	613,2	0,76	0,02	
639,1	648,5	0,76	0,02	J
	650,9		0,00	$\delta VO_4, \delta P-O$
672,5	654,9	$0,\!83$	0,00	1
$705,\! 6$	672,2	$0,\!83$	0,01	
	890,8		0,00	
945,1	904,1	$0,\!62$	0,78	
	916,5		0,00	
	963,5		0,00	$\nu VO_4, \nu P-O$
	$973,\!3$		0,00	
	988,8		0,06	
998,1	996,0	$0,\!62$	1,00	
	$1008,\! 6$		0,00	
	1012,5		0,00	$J_{\nu V} = 0 = \nu P = 0$
	1013,4		0,00	$\int_{as}^{b} \int_{as}^{b} \int_{as}^{b$
	1013,7		0,04	ν V-O _{as} , ν P-O _{as}
	1034,2		0,00	$\nu V-O_{sym}, \nu P-O_{sym}$
1109,5	1109,9	0,73	$0,\!15$	$\int_{\mathcal{V}} V_{-} O_{-} \nu P_{-} O$
$1153,\!6$	1150,3	0,74	0,01	$\int^{\nu} \sqrt{sym}, \nu \sqrt{sym}, $

Exp.	$\bar{\nu}$	Ber.	$\bar{\nu}$	Abs. [%]	Intens.(theor.)	Zuordnung
$[cm^{-1}]$		$[\mathrm{cm}^{-1}]$			[%]	
		115,7			0,02	
		130,0			0,00	
		$141,\! 6$			0,01	
163,0		159,2		0,69	0,00	
		162,2			0,00	
		$164,\!5$			0,00	
		166,0			0,00	
		$174,\!4$			$0,\!04$	
		$177,\!9$			0,00	
		202,9			0,01	
		202,0			0,04	
205,0		208,7		0,62	0,36	GS
		$270,\!6$			0,00	
$281,\! 6$		276,3		$0,\!67$	$0,\!07$	
		281,3			0,00	
		293,5			0,00	
		308,7			$0,\!05$	
		308,9			0,08	
		$318,\!9$			0,00	
$335,\!4$		$323,\!9$		0,74	$0,\!58$	
		337,4			0,00	
		358,9			0,02	
		407,4			$0,\!39$	
		407,9			$0,\!10$	J
		415,0			0,00	
		415,8			0,00	
		432,0			$0,\!57$	δ V-O. δ Ρ-Ο
		474,0			0,00	
		478,2			0,03	
		481,8			0,00	J

Tabelle 13.39: Gemessenes und berechnetes Raman-Schwingungsspektren von VPO_4 -m1. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert.

]	Tabelle 13.39	- Fortsetzung	
Exp.	$\bar{\nu}$	Ber.	$\bar{\nu}$	Abs. [%]	Intens.(theor.)	Zuordnung
$[\mathrm{cm}^{-1}]$		$[\mathrm{cm}^{-1}]$			[%]	
509,4				0,67		
		520,7			0,00	
		$533,\!6$			0,00	
		566, 5			0,01	
		$571,\!5$			0,02	
		$587,\!9$			0,00	δ V-O, δ P-O
		589,7			0,01	
$624,\!4$		611,9		$0,\!67$	0,04	
		$613,\!2$			0,00	
		$648,\!5$			0,00	
		650,9			0,04	ν V-O _{sym} , δ P-O
$679,\!3$		654,9		0,73	0,19	
		672,2			0,00	
918,7		890,8		0,90	0,91	
		904,1			0,00	
		$916,\!5$			0,00	
992,2		963,5		0,94	1,00	ν V-O _{as} , ν P-O _{as}
		$973,\!3$			$0,\!05$	
		988,8			0,00	
		$994,\!4$			0,19	
		996,0			0,02	
		$1008,\! 6$			$0,\!05$	J
		$1012,\!5$			0,00	$\int_{\mathcal{U}} V O = \mathcal{U} P O$
		$1013,\!4$			0,00	$\int^{\nu} \sqrt{-O_{as}}, \nu = O_{sym}$
		1013,7			0,00	$\nu V-O_{as}, \nu P-O_{as}$
		1034,2			0,00	$\nu V-O_{sym}, \nu P-O_{sym}$
1056, 4		1072,2		0,97	$0,\!05$	
		$1109,\!9$			0,00	ν V-O _{sym} , ν P-O _{as}
1156,7		1150,3		1,00	0,00	J
1305,7				$0,\!87$		
1437,4				0,91		

13.2. Indizierung der Pulverdiffraktogramme metastabiler Formen von VPO₄ sowie IR- und Ramansprektren der Vanadiumphosphate

13.2.	Indizierung der	Pulverdiffraktogramm	ne metastabiler Formen ve	on
VPO ₄	sowie IR- und	Ramansprektren der `	Vanadiumphosphate	

Verbindung	R.G.	Gitterparameter [Å, °]
NbOPO ₄ $[58]$	P/4n	6,3873(10), 4,1037(8)
$NbOPO_4$ [69]	P'/4n	6,3907(4), 4,1042(6)
NbOPO ₄ $[228]$	P/4n	6,4048(4), 4,1087(2)
NbOPO ₄ ^(a) [151]	P/4n	6,3898, 4,1055
NbOPO ₄ ^(b) [151]	P/4n	6,3957, 4,1056
NbOPO ₄ ^(c) [151]	P/4n	$6,4038,\ 4,1175$
NbOPO ₄ ^(d) [151]	P4/nmm	6,4043, 4,1196
NbOPO ₄ ^(e) [151]	P4/nmm	6,4043, 4,1217
NbOPO ₄ ^(f) [151]	P4/nmm	$6,4038,\ 4,1249$
NbOPO ₄ ^(g) [151]	P4/nmm	6,4035,4,1281
NbOPO ₄ $[69]$	$Pna/2_1$	11,2875, 6,6296, 5,2871
NbOPO ₄ [76]	Pnma	11,304(2), 5,316(2), 6,640(2)
NbOPO ₄ ^(h) [73]	Pnma	11,253(1), 5,316(1), 6,661(1)
NbOPO ₄ ⁽ⁱ⁾ [73]	Pnma	11,255(1), 5,315(1), 6,657(1)
NbOPO ₄ $[73]$	$P2_1c$	13,098(1), 5,2763(6), 13,222(2), 120,67(5)
$NbOPO_4^{(j)}$ [73]	$P2_1c$	13,081(10), 5,2875(6), 13,255(2), 120,60(5)
NbOPO ₄ $[78]$	$P2_1c$	13,0969(16), 5,2799(6), 13,2281(16), 120,334(8)
NbOPO ₄ $[77]$	$P2_1c$	13,08(4), 5,27(7), 13,22(6), 120,68(1)
$Nb(P_{2,07}O_7)$ [229]	$Pa\bar{3}$	8,0830(4)
$Nb(P_{1,92}O_7)$ [229]	$Pa\bar{3}$	8,0807(4)
$Nb(P_{1,81}O_7)$ [229]	$Pa\bar{3}$	8,0705(2)
$Nb(P_{1,8}O_7)$ [229]	$Pa\bar{3}$	8,0896(5)
$Nb_2(PO_4)_3$ [230]	$R\bar{3}c$	8,6974(7) 22,1230(20)
Nb_9PO_{25} [231]	I4/m	15,639(2), 3,8317(4)
$Nb_{18}P_{2,5}O_{50}$ [232]	I4/m	15,593(1), 3,8282(3)
Nb_9PO_{25} [233]	$I\bar{4}$	15, 6, 3, 828
$(NbO)_2(P_4O_{13})$ [234]	P1	6,586(1), 8,400(1), 10,842(1), 106,37(1),
		90,35(1), 89,97(1)
$Nb_3(NbO)_2(PO_4)_7$ [235]	C2/c	29,8661(3), 8,7215(1), 8,7860(1), 91,769(5)
$Nb_3(NbO)_2(PO_4)_7$ [235]	C2/c	29,8661(3), 8,7215(1), 8,7860(1), 91,769(5)
$Nb_{1,91}P_{2,82}O_{12}$ [236]	Pbcn	12,0819(2), 8,6848(1), 8,7452(1)

Tabelle 13.40: Vollständige Übersicht der bekannten Niobphosphate.

(a) Gemessen bei 298 K.

(b) Gemessen bei 373 K.

(c) Gemessen bei 448 K.

(d) Gemessen bei 473 K.

(e) Gemessen bei 498 K.

(f) Gemessen bei 548 K.
- (g) Gemessen bei 600 K.
- (h) Gemessen bei 673 K.
- (i) Gemessen bei 598 K.
- (j) Gemessen bei 473 K.

Tabelle 13.41: Gemessenes und berechnetes IR-Schwingungsspektren von β -NbOPO₄. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert. Für die IR-Messung wurden erst die Schwingungsmoden ab 400 cm⁻¹ mit der Rechnung verglichen, da niedrigere Wellenzahlen nicht gemessen werden konnten.

Exp. $\bar{\nu} [\mathrm{cm}^{-1}]$	Trans. $[\%]$	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Intens. [%]	Zuordnung
		407	4,02	δ_{P-Q}
		412	4,07	
434	90	437	4,32	
		540	$53,\!04$	$\nu_{Nb-O-Nb}$
		573	19,12	δ_{P-O}
571	55	574	$0,\!11$	δ_{P-O_3}
		583	5,76	
590	50	589	7,03	
		589	$3,\!11$	
		595	$2,\!12$	$\delta^{as}_{P-O_3} + \nu_{Nb-O}$
623	60	611	$0,\!48$	$\delta^{sym}_{P-O_3} + \nu_{Nb-O}$
		617	1,08	$\delta^{sym}_{P-O_3}$
767	50	781	$30,\!37$	$\nu_{Nb-O-Nb}+\delta^{as}_{P-O_3}$
827	70	806	$77,\!67$	$ u_{Nb-O-Nb} + \nu_{P-O_3}^{sym} $
962	45	981	2,21	ν_{P-O}^{as}
		984	$38,\!67$	
		1001	$17,\!34$	$\delta^{as}_{P-O_3}$
		1034	$0,\!01$	
		1038	$6,\!33$	
		1044	48,89	
1098	75	1088,	$0,\!17$	$ u_{P-O_3}^{sym}$
		1109	$0,\!67$	
		1124	0,03	
1181	85	1182	13,94	$\delta^{as}_{P-O_3} + u_{Nb-O}$
		1202	3,04	

13.3 Strukturvorhersagen zum Verlauf der Oxidation von $SbPO_4$

Tabelle 13.42: Atompositionen des Startmodells von SbOPO₄ nach der Volloxidation von SbPO₄ in der Raumgruppe *P*1 (a = 4,724 Å, b = 6,762 Å, c = 5,088 Å, $\alpha = \gamma = 90,00^{\circ}$, $\beta = 94,640^{\circ}$).

Atom	x	y	z
Sb 1	-0.205300	0.250000	-0.181000
Sb 2	0.205300	-0.250000	0.181000
P 3	0.267700	0.250000	0.389000
P 4	-0.267700	-0.250000	-0.389000
O 5	0.166800	0.250000	-0.334600
O 6	-0.166800	-0.250000	0.334600
O 7	-0.393300	0.250000	0.445400
O 8	0.393300	-0.250000	-0.445400
O 9	0.181700	0.070000	0.230800
O10	-0.181700	-0.430000	-0.230800
O11	-0.181700	-0.070000	-0.230800
O12	0.181700	0.430000	0.230800
O13	-0.450000	0.250000	0.205300
O14	0.450000	-0.250000	-0.205300

A ,			
Atom	x	<i>y</i>	2
Sb1	-0,25	0,25	-0,287538
Sb2	$0,\!25$	-0,25	$0,\!287467$
P1	$0,\!25$	$0,\!25$	$0,\!5$
P2	-0,25	-0,25	-0,5
01	0,057726	0,188170	-0,271013
O2	-0,057706	-0,188182	0,271049
O3	0,442294	0,311838	-0,271049
O4	-0,442288	-0,311831	0,271049
O6	0,311815	0,057716	0,270961
O6	-0,188182	-0,442294	-0,270959
O7	-0,311817	-0,057720	-0,270935
O8	0,188149	0,442292	0,270988
O9	-0,250109	0,250012	0,211620
O10	0,25	-0,25	-0,211644

Tabelle 13.43: Atompositionen von SbOPO₄-Struktur (Startmodell: "volloxidiertes "SbPO₄) nach DFT-Optimierung in der Raumgruppe *P*1 (a = b = 6,295 Å, c = 3,820 Å, $\alpha = \beta = \gamma = 90,00$ °).

Tabelle 13.44: Atompositionen von SbOPO₄-Struktur (Startmodell: "volloxidiertes "SbPO₄) nach DFT-Optimierung in der Raumgruppe $Pnm2_1$ (a = c = 6,295 Å, b = 3,820 Å.)

Atom	x	y	z
Sb1	0,0	0,7125	0,75
P1	$0,\!5$	0,5572	0,7981
01	0,0	0,7290	$0,\!0577$
O1	0,0	0,2116	0,75

Atom	x	y	z
Sb1	-0,205300	0,25	-0,181000
Sb2	0,205300	-0,25	0,181000
P1	0,2677	0,25	0,389000
P2	-0,2677	-0,25	-0,389000
01	0,1668	0,25	-0,334600
O2	-0,1668	-0,25	$0,\!334600$
O3	-0,3933	0,25	0,445400
O4	0,3933	-0,25	-0,445400
O5	0,1817	0,0700	0,2308
O6	-0,181700	-0,4300	-0,2308
O7	-0,181700	-0,0700	-0,2308
O8	0,181700	0,4300	0,2308
O9	$0,\!45$	-0,25	-0,205300

Tabelle 13.45: Atompositionen des Startmodells von SbOPO₄ nach der Halboxidation von SbPO₄ in der Raumgruppe *P*1 (a = 4,724 Å, b = 6,762 Å, c = 5,088 Å, $\alpha = \gamma = 90,00$ °, $\beta = 94,640$ °).

Tabelle 13.46: Atompositionen der optimierten Struktur (SbO)_{0,5}Sb_{0,5}PO₄ in der Raumgruppe *P*1 (*a*=5,0202 Å, *b*=6,367 Å, *c*=5,942 Å, $\alpha = 106,00^{\circ}, \beta = 87,31^{\circ}, \gamma = 86,00^{\circ}$). Gleichzeitig wurde hier schon der letzte fehlende Sauerstoff (O10) in die Struktur eingebaut.

Atom	x	y	z
Sb1	-0,247091	0,360948	-0,205745
Sb2	0,250415	-0,300516	0,233766
P1	$0,\!294278$	0,229870	$0,\!398097$
P2	-0,273870	-0,198425	-0,413525
01	0,103773	0,211673	-0,401694
O2	-0,117762	-0,200489	0,344325
O3	-0,425307	0,287291	$0,\!481648$
O4	$0,\!439602$	-0,262210	-0,488509
O5	0,324524	-0,001946	0,212509
O6	-0,132487	-0,370667	-0,319680
O7	-0,306238	0,022606	-0,234752
08	0,189181	0,394249	0,264946
O9	0,350984	-0,422383	-0,076687
O10	0,0	0,360950	0,0

Atom	x	y	z
Sb	0,67253	0,39014	0,76683
Sb	0,32752	0,65969	0,23718
Р	0,31439	0,22051	0,39977
Р	$0,\!68567$	0,82940	$0,\!60429$
0	0,07726	0,23757	0,61121
0	0,92290	0,81250	0,39298
0	0,58678	0,28565	0,47062
0	0,41335	0,76421	0,53333
0	0,39326	0,96698	0,22382
0	0,78750	$0,\!67052$	0,71455
0	0,60670	0,08292	0,78031
0	0,21250	0,37942	0,28955
0	0,28054	0,55697	0,93636
0	0,71951	0,49299	0,06766
0	0,38410	0,87040	0,79060

Tabelle 13.47: Atompositionen der optimierten Struktur nach "Volloxidation" von (SbO)_{0,5}Sb_{0,5}PO₄ in der Raumgruppe *P*1 (*a* = 4,881 Å, *b* = 6,240 Å, *c* = 6,600 Å, $\alpha = 110,71^{\circ}, \beta = 76,16^{\circ}, \gamma = 84,73^{\circ}).$

13.4 Der quasibinäre Schnitt SbOPO₄-NbOPO₄

Einwaage	Nebenphase	ϑ [°C]	t [h]	Beugungswinkel [°] in 4θ
$(Sb_{0,9}Nb_{0,1})OPO_4$	<i>X</i> 1	700	72	48,8
	X1	800	24, 48	48,8
	X3	1000	24	42,8
$(Sb_{0,8}Nb_{0,2})OPO_4$	X1	600	576	$55,6;\ 56,3;\ 57,4;\ 79,6$
	X1	700	24	37,1; 48,8; 55,6; 56,2; 57,3;
				$75,8;\ 79,8;\ 89,2;\ 90,0$
	X1	800	24	37,1; 48,8; 55,5; 56,2; 57,3;
				$75,8;\ 79,9;\ 89,1;\ 90,1$
$(Sb_{0,7}Nb_{0,3})OPO_4$	X1	800	96	36,8; 48,8; 55,4; 56,1; 79,8;
				90,1
$(Sb_{0,6}Nb_{0,4})OPO_4$	X1	700	24	$37,1;\ 48,7;\ 55,5;\ 57,3;\ 75,8;$
				$79,9;\ 89,1;\ 90,1$
	X1	800	24	$37,0;\ 48,7;\ 55,4;\ 56,0;\ 57,0;$
				$79,8;\ 89,0;\ 90,0$
$(Sb_{0,5}Nb_{0,5})OPO_4$	X1	700	24	37,0; 48,8
	X1	800	24	$36,8;\ 48,7;\ 55,3;\ 79,8;\ 89,9$
$(\mathrm{Sb}_{0,2}\mathrm{Nb}_{0,8})\mathrm{OPO}_4$	X2	1000		53,1;74,1

Tabelle 13.48: Nicht identifizierte Phasen X1, 2 und 3 im System SbOPO₄-NbOPO₄ [75]; Synthesetemperatur ϑ .

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
$1 \ 1 \ 0$	$39,\!279$	39,267	0,02	$317,\!4$	$291,\! 6$	4,5163
$0 \ 0 \ 1$	43,243	43,221	0,04	24,5	31,8	4,1066
$1 \ 0 \ 1$	$51,\!539$	$51,\!528$	0,02	1000,0	$977,\! 6$	$3,\!4542$
$2 \ 0 \ 0$	$55,\!828$	$55,\!821$	0,01	$958,\! 6$	1000,0	$3,\!1935$
$1\ 1\ 1$	58,742	58,736	$0,\!01$	267,4	278,1	3,0383
$2\ 1\ 1$	76,706	76,724	$0,\!05$	$80,\!6$	$133,\!8$	2,3449
$2\ 2\ 0$	79,775	79,778	0,01	139,0	150,8	2,2582
$0 \ 0 \ 2$	88,130	88,142	$0,\!04$	$96,\!8$	89,3	2,0533
$3\ 1\ 0$	89,672	$89,\!679$	0,02	120,8	240,3	2,0198
$3 \ 0 \ 1$	$96,\!196$	96,206	0,03	340,7	$334,\!9$	1,8901
$1 \ 1 \ 2$	$97,\!343$	$97,\!344$	$0,\!00$	238,3	200,7	1,8692
$2 \ 0 \ 2$	$105,\!944$	$105,\!946$	0,01	86,0	83,1	1,7271
$4 \ 0 \ 0$	$115,\!365$	$115,\!366$	$0,\!00$	177,7	67,9	1,5968
$3 \ 3 \ 0$	$123,\!094$	$123,\!088$	0,02	79,2	43,9	1,5054
$4\ 1\ 1$	$128,\!409$	$128,\!416$	0,03	62,4	156,8	$1,\!4494$
$3\ 1\ 2$	$129,\!359$	$129,\!354$	0,02	$194,\!8$	151	$1,\!4399$

Tabelle 13.49: (Sb_{0,1}Nb_{0,9})OPO₄ (α -MoOPO₄-Typ). Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3893(9) Å, c = 4,102(1) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (102): 10

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!177$	31,069	$0,\!13$	73,0	111	$5,\!6796$
$1 \ 0 \ 1$	$31,\!337$	31,229	$0,\!13$	75,5	111	$5,\!6508$
$0 \ 0 \ 2$	$31,\!530$	$31,\!538$	$0,\!01$	545,3	511,7	$5,\!6165$
10-2	41,481	41,519	0,06	403,9	609,4	4,2790
$1 \ 0 \ 2$	41,724	41,758	$0,\!05$	400,8	$144,\! 6$	4,2543
$1 \ 1 \ 0$	$43,\!432$	$43,\!435$	0,00	1000,0	1000	4,0889
11-1	46,203	46,180	$0,\!04$	440,9	88,2	$3,\!8468$
$1\ 1\ 1$	46,312	46,299	$0,\!02$	439,4	83	$3,\!8378$
$0\ 1\ 2$	$46,\!445$	46,369	$0,\!13$	66,0	98	3,8270
11-2	$53,\!802$	53,755	$0,\!09$	302,9	579,2	3,3114
$1 \ 1 \ 2$	$53,\!992$	$53,\!974$	$0,\!04$	300,4	229,1	3,3000
20-2	62,951	$62,\!937$	$0,\!03$	$51,\!9$	32,1	2,8398
$2 \ 0 \ 2$	$63,\!280$	$63,\!256$	$0,\!05$	51,2	68,9	2,8254
11-3	$64,\!665$	$64,\!653$	$0,\!03$	87,8	103,2	2,7665
$1\ 1\ 3$	64,906	64,913	$0,\!01$	$86,\!8$	90,2	2,7565
21-1	66,288	66,270	$0,\!04$	202,7	182,3	2,7005
$2\ 1\ 1$	66,446	$66,\!450$	$0,\!01$	202,5	243,1	$2,\!6943$
$0\ 2\ 0$	$68,\!541$	$68,\!555$	$0,\!03$	216,5	230,4	$2,\!6143$
10-4	$69,\!283$	$69,\!284$	$0,\!00$	$73,\!8$	77,1	2,5872
$1 \ 0 \ 4$	$69,\!586$	$69,\!603$	$0,\!04$	70,9	70,1	2,5763
$0\ 1\ 4$	$72,\!560$	$72,\!538$	$0,\!06$	247,3	333,7	$2,\!4740$
$0\ 2\ 2$	$75,\!858$	$75,\!831$	$0,\!07$	$33,\!6$	73,1	$2,\!3701$
30-1	84,017	$84,\!055$	$0,\!11$	26,0	45	2,1489
$3 \ 0 \ 1$	84,209	84,224	$0,\!04$	27,0	45	2,1442
22-2	$94,\!430$	94,434	$0,\!01$	91,1	73,1	1,9234
$2\ 2\ 2$	$94,\!664$	$94,\!653$	$0,\!04$	90,1	61,8	1,9189
11-6	$107,\!456$	$107,\!467$	$0,\!04$	57,0	42,2	1,7046
$1\ 1\ 6$	107,776	107,777	0,00	58,3	26,3	$1,\!6999$
$0\ 3\ 2$	$110,\!255$	110,282	$0,\!10$	214, 18	64	$1,\!6646$
32-1	$110,\!578$	$110,\!561$	0,06	141,9	122	$1,\!6601$

Tabelle 13.50: $(Sb_{0,1}Nb_{0,9})OPO_4$ (MPTB-Typ). Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,5608(9) Å, b = 5,228(7) Å, c = 11,233(1) Å, $\beta = 90,33(2)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (201): 3

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,301	39,303	0,00	$328,\!8$	$335,\!6$	4,5138
$0 \ 0 \ 1$	43,217	$43,\!195$	0,03	22,4	29,8	4,1091
$1 \ 0 \ 1$	$51,\!525$	$51,\!499$	$0,\!05$	1000,0	1000	$3,\!4551$
$2 \ 0 \ 0$	$55,\!860$	$55,\!851$	0,02	941,2	949,7	$3,\!1917$
$1\ 1\ 1$	58,737	58,725	0,03	$258,\!8$	261,2	3,0386
$2\ 1\ 1$	76,720	76,729	0,02	85,2	146	2,3445
$2\ 2\ 0$	$79,\!822$	79,823	$0,\!00$	$139,\! 6$	138,9	2,2569
$0 \ 0 \ 2$	88,074	88,086	$0,\!04$	$95,\!8$	$85,\!3$	2,0545
$3\ 1\ 0$	89,724	89,723	$0,\!00$	120,8	205,1	2,0186
$3 \ 0 \ 1$	96,228	$96,\!230$	0,01	$336,\! 6$	270,8	1,8895
$1 \ 1 \ 2$	$97,\!301$	$97,\!308$	0,02	237,0	212,5	1,8699
$2 \ 0 \ 2$	$105,\!914$	$105,\!910$	0,01	87,4	$67,\!3$	1,7276
$4 \ 0 \ 0$	$115,\!436$	$115,\!431$	0,02	174,2	70,9	1,5959
$3 \ 3 \ 0$	$123,\!171$	$123,\!155$	0,06	$78,\!5$	47	1,5046
$4\ 1\ 1$	$128,\!469$	$128,\!524$	$0,\!22$	$63,\!3$	136,4	1,4488
$3\ 1\ 2$	$129,\!357$	$129,\!343$	0,06	$191,\!9$	124,9	1,4399

Tabelle 13.51: $(Sb_{0,2}Nb_{0,8})OPO_4$ (α -MoOPO₄-Typ). Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3835(4) Å, c = 4,1091(5) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (102): 10

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!189$	31,181	0,01	77,2	276,7	5,6776
$1 \ 0 \ 1$	31,411	31,321	$0,\!11$	$79,\!5$	5,1	$5,\!6377$
$0 \ 0 \ 2$	31,543	31,560	$0,\!02$	$555,\!9$	588,3	5,6142
1 0 -2	41,474	41,465	$0,\!01$	406,0	703,9	$4,\!2797$
$1 \ 0 \ 2$	41,811	41,784	$0,\!04$	400,6	300,4	4,2456
$1 \ 1 \ 0$	43,511	43,502	$0,\!01$	1000,0	1000	4,0816
1 1 -1	46,258	46,117	0,24	427,6	153,2	3,8423
111	46,410	46,277	$0,\!23$	$425,\!3$	153,2	3,8298
$0\ 1\ 2$	46,501	46,337	0,28	72,2	892,7	3,8224

Tabelle 13.52: (Sb_{0,2}Nb_{0,8})OPO₄ (MPTB-Typ). Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,545(3) Å, b = 5,189(2) Å, c = 11,229(3) Å, $\beta = 90,46(2)^{\circ}$.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 -2	$53,\!837$	$53,\!805$	$0,\!06$	$304,\!9$	267	3,3093
$1 \ 1 \ 2$	$54,\!101$	$54,\!064$	$0,\!07$	301,2	$17,\! 6$	$3,\!2935$
$2 \ 0 \ 0$	54,414	$54,\!234$	$0,\!36$	1,2	249,4	3,2749
2 0 -2	$62,\!974$	$63,\!029$	$0,\!13$	52,2	94	2,8388
$2 \ 0 \ 2$	$63,\!431$	$63,\!528$	$0,\!22$	$51,\!1$	$77,\!3$	2,8189
11-3	$64,\!687$	64,706	$0,\!04$	88,8	$141,\! 6$	2,7655
$1\ 1\ 3$	65,022	$65,\!006$	$0,\!04$	87,5	$57,\!4$	2,7517
2 1 -1	66,371	66,364	$0,\!02$	205,8	$336,\! 6$	$2,\!6973$
$2\ 1\ 1$	66,589	66,543	$0,\!11$	205,1	118,7	$2,\!6887$
$0\ 2\ 0$	$68,\!673$	68,719	$0,\!11$	215,1	264	$2,\!6095$
10-4	69,268	$69,\!378$	$0,\!27$	76,5	97,2	2,5877
$1 \ 0 \ 4$	$69,\!688$	$69,\!658$	$0,\!08$	$73,\!3$	47,2	2,5726
$0\ 1\ 4$	$72,\!615$	$72,\!533$	$0,\!21$	252,2	401,7	$2,\!4722$
203	73,148	$73,\!152$	$0,\!01$	59,1	$72,\!5$	$2,\!4548$
$0\ 2\ 2$	$75,\!985$	$76,\!007$	$0,\!06$	$35,\!6$	72,7	2,3663
12-2	80,903	80,958	$0,\!15$	18,8	105,1	2,2280
$1 \ 2 \ 2$	$81,\!087$	81,117	$0,\!08$	$17,\!5$	20,5	2,2231
30-1	84,122	84,092	$0,\!09$	$28,\!6$	85,9	2,1464
$3 \ 0 \ 1$	84,390	84,391	$0,\!00$	$27,\!6$	31,1	2,1399
2 2 -2	$94,\!547$	$94,\!572$	$0,\!08$	89,2	119	1,9211
$2\ 2\ 2$	94,873	94,832	$0,\!13$	87,9	35,5	$1,\!9149$
006	97,219	97,317	0,32	$10,\!6$	67,9	1,8714
2 0 -5	$97,\!905$	97,966	$0,\!20$	90,3	90	1,8591
205	$98,\!697$	98,744	$0,\!16$	87,9	$93,\!8$	1,8451
12-4	$99,\!137$	99,164	0,09	64,5	$94,\!9$	$1,\!8374$
$1 \ 2 \ 4$	99,451	99,383	$0,\!23$	62,4	16,8	1,8320
$2\ 2\ 3$	102,073	102,138	$0,\!22$	124,2	116, 1	1,7880
$0\ 1\ 6$	103,715	$103,\!475$	$0,\!82$	120,4	$151,\!5$	1,7616
11-6	$107,\!469$	$107,\!587$	$0,\!42$	$57,\!5$	181,1	1,7044
$1 \ 1 \ 6$	107,914	107,886	$0,\!10$	$58,\! 6$	77,1	$1,\!6979$
$1 \ 3 \ 0$	109,063	109,064	0,00	$97,\!5$	83,4	1,6813
31-5	123,135	123,076	0,23	104,5	177,1	1,5050

Tabelle 13.52 - Fortsetzung

		rabelle	10.02	rorbetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
315	124,154	124,193	0,15	97,4	116	1,4939

Tabelle 13.52 - Fortsetzung

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (3 1 1): 3

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
1 1 0	39,293	39,310	0,02	$340,\!6$	285,8	4,5147
$0 \ 0 \ 1$	43,234	43,223	0,02	20,5	37,4	4,1074
$1 \ 0 \ 1$	$51,\!537$	$51,\!529$	$0,\!01$	1000,0	1000	$3,\!4543$
$2 \ 0 \ 0$	$55,\!848$	$55,\!842$	$0,\!01$	927,0	988,2	$3,\!1924$
$1\ 1\ 1$	58,745	58,736	$0,\!02$	250,9	290,5	3,0382
$2\ 1\ 1$	76,720	76,724	$0,\!01$	89,9	144,5	2,3445
$2\ 2\ 0$	$79,\!805$	$79,\!819$	$0,\!04$	140,5	158,1	2,2573
$0 \ 0 \ 2$	88,111	$88,\!123$	$0,\!04$	$94,\!8$	$95,\!8$	2,0537
$3\ 1\ 0$	89,706	89,720	$0,\!04$	121,1	$253,\!3$	2,0190
$3 \ 0 \ 1$	96,221	96,228	$0,\!02$	$333,\!4$	$344,\!4$	1,8896
$1 \ 1 \ 2$	$97,\!332$	$97,\!346$	$0,\!05$	$235,\!6$	207,5	1,8694
$2 \ 0 \ 2$	$105,\!940$	$105,\!930$	$0,\!04$	$88,\!6$	$89,\!8$	1,7272
$4 \ 0 \ 0$	$115,\!411$	$115,\!411$	$0,\!00$	$171,\!3$	$75,\!3$	1,5962
$3 \ 3 \ 0$	$123,\!144$	$123,\!136$	$0,\!03$	78,1	$51,\!3$	1,5049
411	$128,\!451$	$128,\!466$	$0,\!06$	64,3	171,4	$1,\!4490$
$3\ 1\ 2$	$129,\!371$	$129,\!364$	$0,\!03$	189,2	159,2	$1,\!4398$

Tabelle 13.53: (Sb_{0,3}Nb_{0,7})OPO₄ (α -MoOPO₄-Typ). Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3847(2) Å, c = 4,1074(2) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (201): 2

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
020	25,789	25,798	0,01	39,0	30,5	6,8596
$0\ 2\ 1$	31,772	31,790	0,02	144,2	$91,\!9$	5,5740
$1 \ 1 \ 0$	36,788	$36,\!673$	0,16	$281,\! 6$	123,5	4,8192
$0 \ 0 \ 2$	$37,\!079$	36,983	$0,\!13$	46,8	219,7	4,7818
11-1	41,078	40,997	$0,\!12$	2,1	$71,\!4$	4,3205
$1\ 1\ 1$	41,402	$41,\!337$	$0,\!10$	322,2	202,2	4,2871
$0\ 2\ 2$	$45,\!296$	$45,\!371$	$0,\!13$	486,9	356,9	3,9227
$1 \ 1 \ 2$	52,720	$52,\!680$	$0,\!08$	$293,\!8$	$227,\!8$	3,3781
13-1	$55,\!251$	$55,\!116$	$0,\!27$	1000,0	126,0	3,2262
$1 \ 3 \ 1$	$55,\!496$	$55,\!405$	$0,\!18$	74,1	1000,0	3,2122
$0\ 2\ 3$	61,810	$61,\!945$	$0,\!30$	242,3	160,7	$2,\!8909$
13-2	$64,\!103$	64,021	$0,\!19$	$12,\!8$	16,1	2,7901
$1\ 1\ 3$	$67,\!667$	$67,\!615$	$0,\!13$	102,4	59,7	2,6471
$2 \ 0 \ 0$	$69,\!659$	$69,\!692$	0,08	$24,\!3$	$26,\!5$	2,5736
13-3	$76,\!891$	$76,\!800$	$0,\!25$	$2,\!8$	86,4	2,3395
$0\ 6\ 0$	78,745	78,796	$0,\!14$	69,4	$65,\! 6$	2,2865
$2\ 4\ 0$	87,894	87,919	$0,\!08$	$56,\!0$	4,1	2,0585
2 4 - 1	$89,\!855$	89,915	$0,\!19$	62,2	43,7	2,0159
$2\ 4\ 1$	$90,\!177$	$90,\!115$	$0,\!19$	69,4	47,0	2,0090
$1\ 7\ 1$	$101,\!482$	$101,\!453$	$0,\!10$	$33,\!0$	18,9	1,7977
$1 \ 1 \ 5$	$103,\!062$	$103,\!030$	$0,\!11$	84,1	$57,\! 6$	1,7720
$0\ 6\ 4$	$111,\!131$	$111,\!273$	$0,\!51$	105,7	70,2	$1,\!6525$
$0\ 8\ 2$	$114,\!002$	$113,\!947$	$0,\!20$	$55,\!9$	57,1	1,6142
$3 \ 0 \ 2$	$114,\!354$	$114,\!386$	$0,\!12$	$44,\!6$	$202,\!6$	$1,\!6097$
$0\ 1\ 6$	$116,\!441$	$116,\!422$	0,07	65,7	$117,\!3$	1,5833

Tabelle 13.54: (Sb_{0,8}Nb_{0,2})OPO₄ (α -TiOSO₄-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,148(2) Å, b = 13,719(5) Å, c = 9,564(3) Å, $\beta = 90,59(6)^{\circ}$.

b) Intensitäten sind normalisiert zu I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (1 5 2): 30

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
020	25,745	25,758	0,01	$37,\!8$	46,3	6,8713
$0\ 2\ 1$	$31,\!666$	31,738	0,09	139,7	121,7	5,5925
$1 \ 1 \ 0$	36,811	36,701	$0,\!15$	277,8	87,9	4,8162
$0 \ 0 \ 2$	$36,\!838$	36,920	$0,\!11$	49,0	261,3	4,8127
11-1	41,098	41,167	$0,\!10$	1,7	275,4	4,3184
$1\ 1\ 1$	41,316	41,366	$0,\!08$	314,5	138,0	4,2959
$0\ 2\ 2$	45,072	$45,\!144$	$0,\!12$	486,1	466,3	3,9420
11-2	$52,\!133$	52,073	$0,\!12$	27,2	92,3	$3,\!4155$
13-1	$55,\!224$	$55,\!144$	$0,\!16$	1000,0	1000	3,2278
$1 \ 3 \ 1$	$55,\!389$	$55,\!344$	$0,\!09$	$56,\! 6$	416,8	3,2183
$0\ 2\ 3$	$61,\!456$	$61,\!606$	$0,\!33$	$247,\!8$	191,2	2,9072
13-2	64,006	$63,\!940$	$0,\!15$	13,2	37,5	2,7942
$1 \ 3 \ 2$	$64,\!295$	64,239	$0,\!13$	$14,\!4$	52,2	2,7820
11-3	66,856	66,991	$0,\!33$	100,2	43,2	$2,\!6783$
$1\ 1\ 3$	$67,\!272$	$67,\!291$	$0,\!05$	$4,\!6$	59,5	2,6622
$2 \ 0 \ 0$	69,728	69,764	$0,\!09$	25,0	31,9	2,5712
$2\ 2\ 1$	$77,\!130$	$77,\!126$	$0,\!01$	$14,\!3$	181,5	2,3325
$2 \ 0 \ 2$	$79,\!661$	$79,\!660$	$0,\!00$	$125,\!8$	$162,\! 6$	2,2613
$1 \ 5 \ 2$	$83,\!483$	83,511	$0,\!08$	29,9	48,3	2,1620
14-3	84,480	84,469	$0,\!03$	2,4	50,0	$2,\!1377$
24-1	89,880	89,877	$0,\!01$	62,1	661,2	2,0153
$2\ 4\ 1$	90,097	90,116	$0,\!06$	69,7	$78,\!8$	2,0107
$1 \ 5 \ 3$	94,034	94,068	$0,\!11$	$18,\! 6$	$138,\!8$	1,9310
$0 \ 3 \ 5$	102,890	102,811	$0,\!27$	1,7	22,1	1,7747
$3 \ 0 \ 2$	$114,\!235$	$114,\!231$	$0,\!01$	24,3	185,3	$1,\!6112$
$3 \ 3 \ 1$	$116,\!557$	$116{,}548$	$0,\!03$	$133,\!8$	113,1	1,5819

Tabelle 13.55: $(Sb_{0,7}Nb_{0,3})OPO_4$ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,143(1) Å, b = 13,743(8) Å, c = 9,626(4) Å, $\beta = 90,40(4)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (1 1 4): 41

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]
$0\ 2\ 0$	$25,\!684$	$25,\!638$	0,04	36,5	47,7	6,8877
$0\ 2\ 1$	$31,\!650$	$31,\!630$	0,02	134,1	$113,\!6$	5,5954
$1 \ 1 \ 0$	$36,\!805$	$36,\!643$	0,22	274,1	,7	4,8170
$0 \ 0 \ 2$	$36,\!955$	$37,\!103$	$0,\!20$	50,1	230,1	4,7976
11-1	41,100	$41,\!177$	$0,\!12$	$1,\!3$	$63,\!5$	4,3182
$1 \ 1 \ 1$	$41,\!355$	$41,\!356$	$0,\!00$	$303,\!9$	241,5	4,2919
$0\ 2\ 2$	$45,\!133$	$45,\!131$	$0,\!00$	477,0	450,1	$3,\!9367$
$1 \ 1 \ 2$	$52,\!589$	$52,\!580$	0,02	297,3	246,9	$3,\!3864$
13-1	$55,\!166$	$55,\!136$	0,06	1000,0	1000	3,2311
$1 \ 3 \ 1$	$55,\!359$	$55,\!315$	0,09	58,4	51,7	3,2200
$0\ 2\ 3$	$61,\!592$	$61,\!506$	$0,\!19$	$247,\! 6$	$191,\! 6$	2,9009
$0\ 4\ 2$	$63,\!924$	63,922	$0,\!01$	64,1	$12,\! 6$	2,7977
$2 \ 0 \ 0$	69,738	69,752	$0,\!04$	25,7	28,1	2,5708
$2\ 2\ 1$	$77,\!152$	$77,\!159$	0,02	$13,\!6$	$156,\!8$	2,3319
2 0 - 2	$79,\!206$	$79,\!195$	0,03	69,0	$120,\!6$	2,2737
2 4 - 1	$89,\!805$	89,776	0,09	62,2	$65,\!8$	2,0169
$2\ 4\ 1$	$90,\!059$	$90,\!055$	0,01	69,8	62,9	2,0115
1 5 - 3	$93,\!690$	93,708	0,06	134,9	149,5	1,9377
$0\ 6\ 4$	$110,\!683$	$110,\!694$	$0,\!04$	104,3	76,5	$1,\!6586$
26-2	113,900	$113,\!907$	0,03	156,2	167,3	$1,\!6155$
$3 \ 3 \ 1$	$116,\!569$	$116,\!582$	0,05	132,9	93,7	1,5817

Tabelle 13.56: (Sb_{0,6}Nb_{0,4})OPO₄ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,142(1) Å, b = 13,775(6) Å, c = 9,596(5) Å, $\beta = 90,47(3)^{\circ}$.

b) Intensitäten sind normalisiert zu I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (1 1 4): 40

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
020	25,526	25,462	0,06	35,3	58,7	6,9299
$0\ 2\ 1$	31,482	$31,\!487$	0,01	128,9	211,5	$5,\!6249$
$1 \ 1 \ 0$	36,811	$36,\!640$	$0,\!23$	268,2	35,1	4,8163
$0 \ 0 \ 2$	36,819	36,730	$0,\!12$	51,7	415,3	4,8151
11-1	41,023	41,071	$0,\!07$	0,9	284,4	4,3262
$1\ 1\ 1$	41,381	41,492	$0,\!17$	291,5	317,5	4,2892
$0\ 2\ 2$	44,930	45,032	$0,\!17$	471,0	$725,\!3$	$3,\!9543$
$1 \ 1 \ 2$	$52,\!578$	$52,\!553$	$0,\!05$	296,1	387,5	3,3871
13-1	$54,\!957$	$54,\!892$	$0,\!13$	1000,0	$993,\!9$	3,2431
$1 \ 3 \ 1$	$55,\!229$	$55,\!212$	$0,\!03$	60,1	1000	3,2275
$0\ 2\ 3$	$61,\!335$	$61,\!511$	$0,\!39$	250,1	294,8	2,9128
13-2	63,718	$63,\!690$	$0,\!07$	14,0	94,7	2,8065
$1 \ 3 \ 2$	$64,\!193$	64,209	$0,\!04$	$15,\!3$	$39,\! 6$	2,7863
11-3	$66,\!697$	$66,\!668$	$0,\!07$	$93,\!8$	130,2	$2,\!6845$
$2 \ 0 \ 0$	69,811	69,776	$0,\!09$	26,2	52,1	2,5682
$0\ 5\ 2$	$74,\!804$	74,752	$0,\!14$	$63,\!0$	$95,\!8$	2,4023
$2 \ 0 \ 2$	$79,\!879$	79,777	$0,\!28$	$121,\!0$	202,2	2,2553
$2\ 4\ 1$	89,958	90,005	$0,\!15$	69,5	$93,\!3$	2,0137
$0\ 7\ 1$	$93,\!604$	$93,\!599$	$0,\!01$	135,1	$195,\!8$	1,9394
16-2	$93,\!911$	$93,\!919$	$0,\!03$	26,1	$61,\!4$	1,9334
$0 \ 3 \ 5$	102,702	$102,\!684$	0,06	$_{9,0}$	$97,\!8$	1,7778
$3\ 3\ 1$	$116,\!639$	$116,\!674$	$0,\!13$	$131,\!0$	144,0	1,5808

Tabelle 13.57: (Sb_{0,5}Nb_{0,5})OPO₄ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,137(2) Å, b = 13,860(6) Å, c = 9,631(4) Å, $\beta = 90,65(6)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (3 3 2): 8

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
020	$25,\!581$	$25,\!633$	$0,\!05$	33,9	43,9	6,9151
$0\ 2\ 1$	$31,\!559$	$31,\!635$	0,09	123,3	$97,\!6$	$5,\!6113$
$1 \ 1 \ 0$	36,799	36,719	0,11	266,4	202,7	4,8178
$0 \ 0 \ 2$	$36,\!930$	36,919	0,02	$53,\!3$	$132,\!3$	4,8008
11-1	41,080	41,106	$0,\!04$	$0,\!6$	179,5	4,3203
$1\ 1\ 1$	$41,\!354$	$41,\!386$	$0,\!05$	284,0	158	4,2920
$0\ 2\ 2$	$45,\!053$	$45,\!095$	$0,\!07$	463,5	412,1	3,9436
13-1	$55,\!053$	$55,\!027$	$0,\!05$	1000,0	1000	3,2376
$0\ 2\ 3$	$61,\!513$	$61,\!449$	$0,\!14$	$62,\!3$	177,8	2,9045
$2 \ 0 \ 0$	69,765	69,767	$0,\!01$	$27,\!3$	18,9	2,5698
$2 \ 0 \ 2$	$79,\!801$	79,762	$0,\!11$	120,7	197,1	2,2575
24-1	$89,\!686$	$89,\!678$	$0,\!02$	62,1	$197,\!9$	2,0194
$2\ 4\ 1$	89,960	89,948	$0,\!04$	70,0	74,8	2,0136
1 5 - 3	$93,\!463$	$93,\!470$	$0,\!02$	134,2	139,4	1,9421
$1 \ 1 \ 5$	$102,\!635$	$102,\!649$	$0,\!05$	82,1	135,7	1,7788
$3 \ 3 \ 1$	$116,\!560$	$116,\!580$	$0,\!07$	$131,\!3$	83,1	1,5818

Tabelle 13.58: (Sb_{0,5}Nb_{0,5})OPO₄ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,139(1) Å, b = 13,830(9) Å, c = 9,602(3) Å, $\beta = 90,50(4)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (0 6 2): 4

13.5 Der quasibinäre Schnitt SbOPO₄-TaOPO₄

Tab	elle 13.59:	Nicht	identifizierte	Phasen	X6 1	und 7	' im	System	$SbOPO_4$	-TaOP	O_4
[75]	; Synthese	etemper	ratur ϑ .								

Einwaage	Nebenphase	ϑ [°C]	t [h]	Beugungswinkel [°] in 4θ
$(Sb_{0,9}Ta_{0,1})OPO_4$	X6	700	24	47,2; 55,6
		800	24	36,7; 48,8; 55,6; 56,1; 56,9;
				79,3;88,9;89,9
		900	24	37,0; 48,8; 55,4; 56,1; 57,1;
				79,5; 89,0; 90,0
			96	37,0; 48,8; 55,4; 56,1; 57,1;
				$79,6;\ 89,0;\ 90,2$
			264	36,9; 48,8; 55,4; 56,1; 57,0;
				$79,6;\ 89,0;\ 90,2$
			504	37,0; 48,9; 55,5; 56,1; 57,1;
				79,7; 89,0; 90,2
$(Sb_{0,8}Ta_{0,2})OPO_4$	X6	700	24	37,1; 48,1; 55,6; 56,1; 73,6; 79,6
		800	24	36,7; 48,8; 55,6; 56,2; 57,0; 79,5
		900	24	37,0; 49,1; 55,5; 56,1; 56,9; 59,8;
				79,7;89,0
			96	36,9; 48,8; 55,5; 56,1; 57,0; 58,4;
				79,7;89,0
			264	37,1; 48,1; 55,6; 56,1; 73,6; 79,6
$(Sb_{0,7}Ta_{0,3})OPO_4$	X6	700	24	37,1; 48,1; 55,6; 56,1; 57,3; 79,8
		800	24	36,7; 48,8; 55,6; 56,2; 79,5
		900	24	37,0; 48,9; 55,5; 56,1; 56,9
$(Sb_{0,6}Ta_{0,4})OPO_4$	X6	800	72	48,7
		900	24	37,0; 48,8; 55,3; 56,1; 56,9; 79,5
$(Sb_{0,5}Ta_{0,5})OPO_4$	X6	700	24	37,1; 48,9; 55,6; 56,2; 57,4;
				76,0; 79,6; 89,1; 90,2
		800	24	37,1; 55,6; 56,2; 57,3; 79,8
		900	24	37,0; 48,8; 55,4; 56,1; 57,0; 79,5
			96	36,9; 48,7; 56,1
	X7	1000	24	$49,1;\ 50,9;\ 52,8;\ 74,1$
$(Sb_{0,4}Ta_{0,6})OPO_4$	X6	800	72	$36,7;\ 48,7;\ 56,3$
		900	24	$37,0;\ 48,7;\ 56,1;\ 79,5$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!039$	30,962	$0,\!09$	130,4	122,3	3,8664
$1 \ 0 \ 1$	$31,\!193$	$31,\!081$	$0,\!13$	132,5	$301,\!8$	$3,\!8577$
$0 \ 0 \ 2$	$31,\!476$	$31,\!461$	$0,\!02$	589,7	547,7	3,8417
10-2	41,349	41,265	$0,\!13$	$351,\!3$	433,2	$3,\!3253$
$1 \ 0 \ 2$	41,581	$41,\!585$	$0,\!00$	348,3	439,3	3,2684
$1 \ 1 \ 0$	43,187	43,262	$0,\!12$	1000,0	1000	3,2526
11-1	$45,\!964$	$45,\!877$	$0,\!15$	249.7	201,3	3,1699
$1 \ 1 \ 1$	$46,\!070$	46,037	$0,\!06$	249.9	$352,\!4$	3,1603
$0\ 1\ 2$	46,265	46,237	$0,\!05$	180.2	249,2	2,8524
11-2	$53,\!574$	$53,\!565$	$0,\!02$	306.9	377,5	2,8384
10-3	$54,\!524$	$54,\!483$	$0,\!08$	$302,\!8$	$102,\! 6$	2,7759
$1 \ 0 \ 3$	54,793	54,743	$0,\!10$	$93,\!3$	99,8	2,7662
2 0 -1	$56,\!252$	$56,\!240$	$0,\!02$	9,6	$14,\!3$	2,7148
$2 \ 0 \ 1$	$56,\!427$	$56,\!420$	$0,\!01$	$10,\!6$	$15,\!5$	2,7087
2 0 -2	$62,\!667$	62,769	$0,\!23$	$47,\!3$	67,8	2,6292
$2 \ 0 \ 2$	62,983	$63,\!029$	$0,\!10$	46,1	37,4	2,5928
11-3	64,439	$64,\!407$	$0,\!08$	92,2	$137,\! 6$	2,5823
$1\ 1\ 3$	64,671	64,706	$0,\!08$	92,6	$96,\!9$	2,5073
21-1	65,931	$65,\!904$	$0,\!06$	236,7	252	$2,\!4977$
$2\ 1\ 1$	66,082	66,104	$0,\!05$	$235,\!9$	297,2	2,4804
$0\ 2\ 0$	68,141	$68,\!140$	$0,\!00$	220,0	$255,\!8$	$2,\!3819$
10-4	69,127	$69,\!198$	$0,\!18$	101,7	145,7	2,2421
$1 \ 0 \ 4$	$69,\!417$	$69,\!438$	$0,\!05$	98,4	66,4	$2,\!2387$
2 1 -2	$71,\!565$	$71,\!634$	$0,\!18$	61,3	89,1	2,1603
$2\ 1\ 2$	$71,\!846$	71,914	$0,\!17$	60,5	$51,\!1$	$2,\!1557$
$0\ 1\ 4$	72,366	72,313	$0,\!14$	$292,\! 6$	$433,\!8$	$2,\!0559$
$0\ 2\ 2$	$75,\!468$	$75,\!527$	$0,\!16$	72,0	133	2,0237
12-2	80,372	80,379	$0,\!02$	41,0	64,3	$1,\!9871$
$1 \ 2 \ 2$	80,500	80,519	$0,\!05$	39,7	81,5	1,9777
30-1	83,553	$83,\!573$	0,06	50,8	64,1	1,9332

Tabelle 13.60: (Sb_{0,1}Ta_{0,9})OPO₄ (MPTB-Typ). Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,597(1) Å, b = 5,2584(8) Å, c = 11,252(2) Å, $\beta = 90,32(2)^{\circ}$ nach Tempern bei 900 °C.

		Tabelle	15.00 - FOI	tsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$3 \ 0 \ 1$	83,739	83,753	$0,\!04$	$51,\!3$	69,6	1,9289
$2 \ 2 \ 0$	88,011	87,986	$0,\!08$	22,7	29	$1,\!8753$
2 2 -1	89,488	89,463	$0,\!08$	37,8	50,2	1,8638
21-4	91,227	91,300	$0,\!23$	33,2	38,9	1,8541
$2\ 1\ 4$	91,687	$91,\!679$	$0,\!03$	30,8	65,7	1,7085
2 2 -2	93,921	$93,\!955$	$0,\!11$	65,9	60,9	1,7040
$2 \ 2 \ 2$	$94,\!146$	$94,\!155$	$0,\!03$	64,6	$62,\!6$	$1,\!6940$
006	97,002	97,010	$0,\!02$	$18,\!9$	24	$1,\!6691$
2 0 -5	97,641	97,668	0,09	$78,\!5$	89,9	$1,\!6670$
$2 \ 0 \ 5$	$98,\!187$	98,247	$0,\!20$	77,4	72	$1,\!6227$
11-6	$107,\!188$	$107,\!151$	$0,\!13$	55,1	63,1	1,6214
$1 \ 1 \ 6$	$107,\!495$	$107,\!431$	$0,\!23$	$55,\!5$	$57,\!6$	1,5595
$1 \ 3 \ 0$	$108,\!180$	108,229	$0,\!18$	103,1	103,1	$1,\!5573$
3 2 -1	$109,\!927$	109,866	0,22	135,1	$125,\!9$	3,8664
$3\ 2\ 1$	$110,\!078$	110,086	$0,\!03$	$135,\!5$	160,4	$3,\!8577$
13-2	$113,\!350$	113,320	$0,\!11$	44,9	33,2	3,8417
$1 \ 3 \ 2$	$113,\!449$	$113,\!439$	$0,\!03$	43,0	$61,\!5$	3,3253
41-1	118,388	118,330	0,22	42,3	63,2	3,2684
411	$118,\!580$	$118,\!590$	$0,\!04$	42,5	62,2	3,2526

Tabelle 13.60 - Fortsetzung

b) Intensitäten sind normalisiert zu
 $I_{max}=$ 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (3 1 1): 9

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!047$	$30,\!971$	$0,\!09$	130,3	140,7	5,7034
$1 \ 0 \ 1$	31,192	$31,\!111$	$0,\!09$	132,5	$334,\!9$	$5,\!6769$
$0 \ 0 \ 2$	$31,\!455$	$31,\!471$	$0,\!02$	$590,\! 6$	480,5	$5,\!6297$
10-2	41,345	41,420	$0,\!12$	351,2	675,7	4,2929
$1 \ 0 \ 2$	41,566	41,660	$0,\!15$	348,6	$79,\!8$	4,2704
$1 \ 1 \ 0$	43,181	$43,\!178$	$0,\!01$	1000,0	1000	4,1124
11-1	$45,\!958$	$45,\!895$	$0,\!11$	249,7	27,2	3,8669
$1 \ 1 \ 1$	$46,\!058$	$45,\!975$	0,14	250,0	$506,\! 6$	$3,\!8587$
$0\ 1\ 2$	46,240	46,035	$0,\!35$	180,4	$645,\! 6$	3,8437
11-2	$53,\!561$	$53,\!486$	$0,\!15$	306,9	$247,\!3$	3,3260
$1 \ 1 \ 2$	53,734	53,705	$0,\!06$	303,1	$416,\!3$	$3,\!3155$
10-3	$54,\!508$	$54,\!504$	$0,\!01$	$93,\!4$	105,3	3,2693
$1 \ 0 \ 3$	54,763	54,764	$0,\!00$	92,2	76,9	3,2544
11-3	$64,\!418$	64,410	$0,\!02$	$92,\!3$	111,2	2,7768
$1\ 1\ 3$	$64,\!637$	$64,\!620$	0,04	92,7	101,7	2,7676
$0\ 2\ 0$	$68,\!110$	$68,\!144$	$0,\!08$	220,3	$253,\!8$	$2,\!6304$
10-4	69,099	69,123	0,06	$101,\!8$	$123,\!3$	2,5938
$1 \ 0 \ 4$	$69,\!374$	69,382	$0,\!02$	$98,\! 6$	$91,\!5$	$2,\!5839$
$0\ 1\ 4$	72,321	$72,\!338$	0,04	293,0	479,2	$2,\!4819$
$0\ 2\ 2$	$75,\!430$	$75,\!393$	$0,\!10$	72,1	139,2	2,3831
12-2	80,344	80,264	$0,\!22$	41,1	$47,\!5$	2,2428
$1 \ 2 \ 2$	$80,\!465$	80,484	$0,\!05$	$39,\!8$	$109,\! 6$	2,2396
30-1	$83,\!587$	$83,\!698$	$0,\!32$	50,7	54,2	$2,\!1595$
$3 \ 0 \ 1$	83,763	$83,\!698$	$0,\!19$	$51,\!3$	$79,\!5$	$2,\!1552$
$2 \ 2 \ 0$	$87,\!999$	$88,\!050$	$0,\!15$	22,7	29,7	2,0562
2 2 -1	$89,\!477$	89,428	$0,\!15$	$37,\!8$	21,1	2,0239
$2\ 2\ 1$	89,588	89,567	0,06	39,4	$59,\!8$	2,0215
21-4	91,214	$91,\!164$	$0,\!16$	33,2	40,2	$1,\!9874$
$2\ 1\ 4$	$91,\!650$	91,703	$0,\!17$	30,8	68,4	$1,\!9784$
22-2	93,908	$93,\!919$	$0,\!04$	65,9	58,4	1,9335

Tabelle 13.61: (Sb_{0,1}Ta_{0,9}) OPO₄ (MPTB-Typ). Zuordnung der h
kl-Werte, $P2_1/m$, Z = 4, a = 6,594(2) Å, b = 5,2607(9) Å, c = 11,260(2) Å, $\beta = 90,30(2)^{\circ}$ nach Tempern bei 1000 °C.

Tabelle 15.01 - Fortsetzung								
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]		
2 2 2	94,121	$94,\!099$	$0,\!07$	64,7	62,7	1,9293		
006	$96,\!935$	$96,\!933$	$0,\!01$	$19,\!0$	$20,\!6$	1,8766		
$2 \ 0 \ -5$	97,621	$97,\!592$	$0,\!10$	$78,\!5$	87,7	1,8642		
2 0 5	$98,\!138$	$98,\!151$	0,04	77,5	$75,\!4$	1,8550		
12-4	98,594	98,630	$0,\!12$	86,6	$102,\!9$	1,8469		
$1 \ 2 \ 4$	98,800	$98,\!809$	$0,\!03$	84,4	$79,\!5$	1,8433		
2 2 -3	$100,\!993$	$101,\!085$	0,31	118,5	$144,\!3$	$1,\!8058$		
$2\ 2\ 3$	101,296	101,284	0,04	118,3	113,2	1,8008		
31-3	$102,\!074$	$102,\!043$	$0,\!11$	139,0	$153,\!5$	1,7880		
$3\ 1\ 3$	$102,\!525$	$102,\!502$	0,08	140,9	137,2	1,7806		
$0\ 1\ 6$	$103,\!343$	$103,\!340$	$0,\!01$	$108,\! 6$	$105,\!5$	1,7675		
23-1	$120,\!535$	$120,\!581$	$0,\!17$	48,3	0,9	$1,\!5343$		
$2\ 3\ 1$	$120,\!625$	120,601	$0,\!09$	$47,\!8$	$102,\!4$	1,5333		
$0\ 2\ 6$	$121,\!115$	$121,\!120$	0,02	40,7	44,7	1,5277		
$0\ 3\ 4$	124,661	124,651	0,04	79,0	156,2	1,4884		

Tabelle 13.61 - Fortsetzung

b) Intensitäten sind normalisiert zu $I_{max}=1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2 1 5): 5

Tabelle 13.62: (Sb_{0,2}Ta_{0,8})OPO₄ (MPTB-Typ). Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,570(1) Å, b = 5,2327(8) Å, c = 11,240(2) Å, $\beta = 90,38(2)^{\circ}$ nach Tempern bei 900 °C.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
10-1	31,126	$31,\!007$	$0,\!14$	128,2	$164,\!8$	5,6889
$1 \ 0 \ 1$	$31,\!309$	$31,\!187$	$0,\!14$	130,0	$197,\! 1$	$5,\!6558$
$0 \ 0 \ 2$	$31,\!512$	31,486	0,03	$592,\!8$	558,3	$5,\!6197$
10-2	41,424	41,387	0,06	$355,\!8$	$234,\!8$	4,2848
$1 \ 0 \ 2$	41,701	41,546	0,24	$352,\!0$	$473,\!5$	4,2566
$1 \ 1 \ 0$	43,386	43,343	$0,\!07$	1000,0	1000	4,0932
11-1	46,148	46,037	$0,\!19$	257,4	61	3,8512
111	$46,\!274$	46,177	$0,\!17$	257,2	61	3,8409

		rabelle	15.02 - 1	onsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
012	46,413	46,217	0,34	174,6	588,7	3,8296
11-2	53,740	53,782	$0,\!08$	$307,\! 6$	342,1	3,3152
$1 \ 1 \ 2$	$53,\!957$	$53,\!922$	$0,\!07$	303,2	283,1	3,3021
10-3	$54,\!599$	54,700	0,20	96,8	122,2	3,2640
$1 \ 0 \ 3$	54,920	$54,\!960$	0,08	95,2	$59,\!9$	3,2452
2 0 -2	62,846	62,825	$0,\!05$	$47,\! 6$	$57,\!9$	2,8444
$2 \ 0 \ 2$	$63,\!223$	63,244	$0,\!05$	46,4	$52,\!5$	2,8279
11-3	$64,\!595$	64,621	0,06	92,4	96,8	2,7694
$1\ 1\ 3$	64,871	64,781	$0,\!21$	$92,\!6$	92,1	2,7579
$0\ 2\ 0$	$68,\!487$	68,494	0,02	219,4	253,5	2,6163
10-4	69,211	$69,\!272$	$0,\!15$	$101,\!1$	96,8	2,5898
$1 \ 0 \ 4$	$69,\!557$	69,532	0,06	$97,\! 6$	$94,\!4$	2,5773
2 1 -2	71,807	71,887	0,20	$61,\!5$	70,5	2,4991
$2\ 1\ 2$	72,143	$72,\!147$	0,01	60,7	$67,\!9$	2,4878
$0\ 1\ 4$	72,514	72,486	$0,\!07$	292,0	416,7	$2,\!4755$
$0\ 2\ 2$	75,800	75,760	$0,\!11$	70,0	133,8	2,3719
12-2	80,714	80,690	$0,\!07$	39,8	62	2,2330
$1 \ 2 \ 2$	80,866	80,850	$0,\!05$	38,5	76,4	2,2290
3 0 -1	83,875	83,964	0,26	$49,\!6$	83,7	$2,\!1524$
$3 \ 0 \ 1$	84,096	84,104	$0,\!02$	50,1	$32,\!6$	$2,\!1470$
2 2 -1	89,897	89,913	$0,\!05$	38,1	$37,\!9$	2,0150
$2\ 2\ 1$	90,036	90,032	$0,\!01$	$39,\!6$	36	2,0120
2 1 -4	$91,\!443$	$91,\!370$	$0,\!23$	$32,\!8$	45	1,9827
$2\ 1\ 4$	$91,\!992$	92,009	$0,\!05$	30,3	$63,\! 6$	1,9715
2 2 -2	94,314	94,324	0,03	66,8	47,3	1,9256
$2\ 2\ 2$	$94,\!582$	94,524	$0,\!19$	$65,\!5$	62,1	1,9205
006	$97,\!118$	$97,\!159$	$0,\!13$	$18,\! 6$	19,7	1,8732
2 0 -5	97,800	97,837	$0,\!12$	79,5	80,8	1,8610
2 0 5	$98,\!452$	$98,\!556$	$0,\!35$	78,1	78	1,8494
12-4	$98,\!956$	$98,\!975$	0,06	$85,\!6$	78,1	1,8406
$1 \ 2 \ 4$	99,215	$99,\!195$	$0,\!07$	83,3	85,1	1,8361
2 2 -3	101,388	$101,\!451$	0,21	$118,\!9$	122,8	1,7992

Tabelle 13.62 - Fortsetzung

		Tabelle	15.02 - 1	rontsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	$\mathbf{d}_{calc} \left[\mathbf{A} \right]$
$2\ 2\ 3$	$101,\!770$	$101,\!710$	$0,\!20$	118,4	92,5	1,7929
31-3	$102,\!389$	$102,\!389$	$0,\!00$	139,2	$145,\! 6$	1,7828
$3\ 1\ 3$	$102,\!956$	$102,\!988$	$0,\!11$	140,8	128,5	1,7737
$0\ 1\ 6$	$103,\!585$	$103,\!567$	$0,\!06$	$109,\! 6$	89,3	1,7636
1 1 -6	$107,\!357$	$107,\!380$	$0,\!08$	$55,\!5$	$53,\!2$	1,7060
$1 \ 1 \ 6$	107,723	107,719	$0,\!02$	$55,\!9$	53	1,7007
$1 \ 3 \ 0$	108,749	108,717	$0,\!11$	102,5	$90,\!8$	$1,\!6858$
32-1	$110,\!426$	$110,\!354$	0,26	$135,\!3$	$131,\!9$	1,6622
$3\ 2\ 1$	110,606	$110,\!534$	0,26	$135,\!6$	$120,\!6$	$1,\!6597$
13-2	113,904	$113,\!947$	0,16	44,7	$57,\!5$	$1,\!6155$
$1 \ 3 \ 2$	114,021	$114,\!027$	$0,\!02$	42,8	$20,\!6$	1,6140
41-1	$118,\!893$	118,898	0,02	41,5	58,1	1,5535
411	119,121	$119,\!137$	$0,\!06$	41,7	36,2	1,5508
2 3 -1	$121,\!179$	121,293	$0,\!43$	47,7	59,3	1,5269
$2 \ 3 \ 1$	121,292	$121,\!353$	$0,\!23$	47,3	58,4	1,5256
31-5	122,932	122,851	0,31	101,7	$161,\!4$	1,5072
$3\ 1\ 5$	123,771	123,749	0,09	96,4	101,7	1,4980
034	$125,\!267$	$125,\!206$	0,23	78,4	132	1,4819

Tabelle 13.62 - Fortsetzung

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (303): 8

Tabelle 13.63: (Sb_{0,3}Ta_{0,7}) OPO₄ (MPTB-Typ). Zuordnung der h
kl-Werte, $P2_1/m$, Z = 4, a = 6,546(2) Å, b = 5,211(1) Å, c = 11,223(2) Å, $\beta = 90,47(2)^{\circ}$ nach Tempern bei 900 °C.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!205$	$31,\!156$	$0,\!06$	125,7	296,3	5,6746
$1 \ 0 \ 1$	$31,\!432$	$31,\!296$	$0,\!16$	127,2	111	$5,\!6339$
$0 \ 0 \ 2$	$31,\!559$	$31,\!555$	$0,\!00$	594,2	$698,\!9$	5,6114
10-2	41,494	41,498	$0,\!01$	360,2	466, 1	4,2777
$1 \ 0 \ 2$	41,838	41,838	$0,\!00$	$354,\!9$	$355,\!6$	4,2429

		Tabelle	= 10.00 - 1	onsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	43,563	43,555	0,01	1000,0	1000	4,0768
11-1	46,308	46,090	$0,\!37$	265,5	100	3,8382
111	46,463	46,310	$0,\!26$	264,9	$322,\!6$	$3,\!8255$
$0\ 1\ 2$	$46,\!550$	46,529	$0,\!04$	$168,\! 6$	411,9	3,8184
1 1 -2	53,886	$53,\!876$	$0,\!02$	308,2	363,5	3,3063
$1 \ 1 \ 2$	$54,\!156$	$54,\!176$	$0,\!04$	303,1	$330,\!9$	3,2902
10-3	$54,\!675$	54,715	$0,\!08$	100,3	$113,\!9$	$3,\!2595$
$1 \ 0 \ 3$	$55,\!073$	55,094	$0,\!04$	98,3	$55,\!26$	3,2364
11-3	64,738	64,797	$0,\!14$	92,5	64,98	2,7634
$1\ 1\ 3$	$65,\!080$	$65,\!017$	$0,\!15$	92,4	65,2	2,7493
2 1 -1	66,428	66,554	$0,\!30$	233,7	66,74	2,6951
$2\ 1\ 1$	$66,\!650$	$66,\!654$	$0,\!01$	232,2	66,84	2,6863
$0\ 2\ 0$	68,781	68,830	$0,\!12$	218,9	69,02	$2,\!6055$
10-4	69,301	69,349	$0,\!12$	96,5	69,54	2,5865
$1 \ 0 \ 4$	69,730	69,748	$0,\!05$	100,2	69,94	2,5711
014	$72,\!670$	$72,\!663$	$0,\!02$	290,8	72,86	$2,\!4704$
$0\ 2\ 2$	76,090	76,077	$0,\!04$	67.9	76,28	2,3632
12-2	81,008	80,928	$0,\!23$	38,5	81,14	2,2252
$1 \ 2 \ 2$	81,196	81,228	$0,\!09$	37,2	81,44	2,2203
30-1	84,175	84,142	$0,\!10$	48,3	84,36	2,1451
$3 \ 0 \ 1$	84,448	84,442	$0,\!02$	48,8	84,66	2,1384
$2 \ 2 \ 0$	88,808	88,874	$0,\!20$	21,1	89,1	2,0384
2 2 -1	90,254	90,211	$0,\!13$	38,4	90,44	2,0074
$2\ 2\ 1$	90,426	$90,\!471$	$0,\!14$	39,9	90,7	2,0038
2 1 -4	91,639	91,709	$0,\!22$	32,3	$50,\!6$	$1,\!9787$
$2\ 1\ 4$	92,319	92,327	$0,\!03$	29,7	56,7	1,9649
2 2 -2	94,655	94,703	$0,\!16$	$67,\!8$	61,7	1,9191
$2 \ 2 \ 2$	94,987	95,023	$0,\!12$	66,4	54,5	1,9128
2 0 -5	97,954	97,897	$0,\!19$	80,3	53	1,8582
2 0 5	98,762	98,796	$0,\!11$	$78,\! 6$	83	1,8440
12-4	99,241	99,295	$0,\!18$	84,5	108,1	1,8356
$1 \ 2 \ 4$	$99,\!562$	99,534	$0,\!09$	82,1	$128,\! 6$	1,8301

Tabelle 13.63 - Fortsetzung

	Tabelle 13.03 - Fortsetzung							
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]		
2 2 -3	101,717	$101,\!650$	0,23	119,2	$93,\!8$	1,7938		
$0\ 1\ 6$	103,784	103,727	$0,\!20$	110,5	123,7	1,7605		
11-6	$107,\!536$	$107,\!579$	$0,\!15$	55,8	54,7	1,7034		
$1 \ 1 \ 6$	107,990	$107,\!999$	0,03	56,1	53,2	$1,\!6968$		
$1 \ 3 \ 0$	109,236	$109,\!276$	$0,\!14$	102,0	84,7	$1,\!6789$		
$3\ 2\ 1$	$111,\!094$	$111,\!053$	$0,\!15$	135,7	151,7	$1,\!6530$		
$3\ 1\ -5$	123,214	123,210	0,01	102,2	$163,\!5$	1,5041		
$3\ 1\ 5$	$124,\!253$	$124,\!248$	0,02	96,5	$102,\!3$	$1,\!4928$		
$0\ 3\ 4$	125,743	$125,\!696$	0,19	$77,\!9$	$124,\!3$	$1,\!4769$		

Tabelle 13.63 - Fortsetzung

b) Intensitäten sind normalisiert zu
 $I_{max}=$ 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (303): 9

Tabelle 13.64: (Sb_{0,3}Ta_{0,7}) OPO₄ (MPTB-Typ). Zuordnung der h
kl-Werte, $P2_1/m$, Z = 4, a = 6,577(2) Å, b = 5,242(1) Å, c = 11,244(2) Å, $\beta = 90,41(2)^{\circ}$ nach Tempern bei 1000 °C.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!499$	31,302	0,23	125,0	490,9	$5,\!6219$
$1 \ 0 \ 1$	41,389	41,353	$0,\!05$	$126,\!8$	475,1	4,2884
$0 \ 0 \ 2$	41,684	41,673	$0,\!02$	$588,\!8$	371,7	4,2584
10-2	43,324	43,311	$0,\!02$	357,7	369,3	4,0990
$1 \ 0 \ 2$	46,217	46,088	$0,\!22$	353,3	112,2	$3,\!8456$
$1 \ 1 \ 0$	46,361	46,308	$0,\!09$	1000,0	1000,0	$3,\!8338$
111	$53,\!675$	$53,\!620$	$0,\!11$	265,0	$327,\!8$	$3,\!3191$
$0\ 1\ 2$	$53,\!906$	$53,\!899$	$0,\!01$	$167,\!9$	375,7	$3,\!3052$
11-2	$54,\!560$	$54,\!559$	$0,\!00$	307,2	$115,\!8$	3,2663
$1 \ 1 \ 2$	54,901	54,878	$0,\!05$	306,2	82,8	3,2464
10-3	62,782	$62,\!808$	$0,\!06$	99,5	66,9	$2,\!8473$
$1 \ 0 \ 3$	$63,\!183$	$63,\!207$	$0,\!05$	$97,\!8$	54	$2,\!8296$
2 0 -2	$64,\!529$	$64,\!525$	$0,\!01$	$47,\!8$	$126,\!9$	2,7721
$2 \ 0 \ 2$	64,823	64,805	$0,\!04$	46,5	99,2	2,7599

		Tabelle	15.04 - FO	usetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
11-3	66,110	66,063	0,11	92,0	246,8	2,7076
$1\ 1\ 3$	66,302	66,322	$0,\!05$	92,1	281,5	2,7000
2 1 -1	68,365	$68,\!399$	$0,\!08$	$233,\!4$	229	2,6209
$2\ 1\ 1$	$75,\!683$	$75,\!668$	0,04	233,2	134,4	$2,\!3754$
$0\ 2\ 0$	80,589	80,599	$0,\!03$	219,4	123,8	2,2363
$0\ 2\ 2$	80,751	80,739	$0,\!03$	$67,\!8$	24,4	2,2320
12-2	83,787	83,753	0,10	14,9	67,4	2,1546
$1 \ 2 \ 2$	84,022	84,053	$0,\!09$	38,5	68,4	$2,\!1488$
3 0 -1	89,760	89,722	$0,\!12$	48,7	39,5	2,0179
$3 \ 0 \ 1$	89,909	90,002	0,29	48,7	37,1	2,0147
2 2 -1	$91,\!350$	$91,\!359$	$0,\!03$	38,5	46,1	1,9846
2 2 1	$91,\!934$	$91,\!958$	$0,\!08$	40,1	64,4	1,9727
2 1 -4	94,174	$94,\!173$	0,00	32,1	$57,\!3$	1,9283
$2\ 1\ 4$	94,460	94,493	0,10	$29,\! 6$	60,5	1,9228
2 2 -2	97,720	97,746	$0,\!09$	67,9	100,7	1,8624
$2\ 2\ 2$	98,413	98,484	$0,\!23$	$66,\! 6$	121,6	1,8501
2 0 -5	98,833	98,963	$0,\!43$	79,8	133	1,8427
$2 \ 0 \ 5$	$99,\!108$	99,023	$0,\!28$	78,3	4,4	1,8379
12-4	$101,\!247$	$101,\!278$	$0,\!10$	84,2	140,8	1,8016
$1 \ 2 \ 4$	$101,\!653$	$101,\!677$	$0,\!08$	82,0	109,1	1,7949
2 2 -3	$102,\!270$	$102,\!296$	0,09	119,2	148,8	1,7848
$2\ 2\ 3$	102,874	$102,\!835$	$0,\!13$	118,5	122,1	1,7750
31-3	$103,\!525$	$103,\!493$	$0,\!11$	139,0	109,2	1,7646
$3\ 1\ 3$	$107,\!279$	$107,\!305$	$0,\!09$	140,5	109,2	1,7072
$0\ 1\ 6$	107,669	$107,\!684$	$0,\!05$	109,7	67,3	1,7015
11-6	110,462	$110,\!477$	$0,\!05$	55,4	142,7	$1,\!6617$
$1 \ 1 \ 6$	122,801	122,747	0,21	$55,\!8$	170,3	1,5087
$3\ 2\ 1$	123,694	123,664	$0,\!11$	135,5	103,3	$1,\!4989$
31-5	$125,\!078$	125,021	0,22	48,1	136,3	1,4839

Tabelle 13.64 - Fortsetzung

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$ c) I_{calc} für den stärksten, nicht beobachteten Reflex (2 1 5): 5

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
020	25,773	$25,\!685$	0,09	45,3	22,7	6,8638
$0\ 2\ 1$	31,800	$31,\!857$	$0,\!07$	169,4	139,3	5,5692
$0\ 2\ 2$	45,403	$45,\!397$	$0,\!01$	514,2	381	3,9136
$1 \ 1 \ 2$	$52,\!567$	$52,\!546$	$0,\!04$	290,7	240,3	3,3878
13-1	$55,\!342$	$55,\!182$	$0,\!32$	1000,0	1000	3,2210
$0\ 2\ 3$	$61,\!999$	$61,\!971$	$0,\!06$	$232,\!6$	$173,\!5$	2,8823
$0\ 4\ 2$	64,233	64,248	$0,\!03$	84,0	70,2	2,7846
$2 \ 0 \ 0$	$69,\!581$	69,599	$0,\!05$	21,0	77,8	2,5764
$2\ 2\ 0$	$74,\!489$	$74,\!531$	$0,\!11$	57,7	59,1	2,4121
$0\ 5\ 2$	$75,\!573$	$75,\!589$	$0,\!04$	$19,\!9$	$54,\!9$	2,3787
20-2	$79,\!437$	$79,\!482$	$0,\!13$	80,3	7,1	2,2674
$1 \ 5 \ 2$	83,597	$83,\!575$	$0,\!07$	32,5	194,3	$2,\!1592$
$2 \ 4 \ 0$	87,809	87,807	$0,\!01$	62,9	55,2	2,0604
24-1	89,929	89,983	$0,\!17$	62,3	44,8	2,0143
$2\ 3\ 3$	$99,\!431$	$99,\!385$	$0,\!15$	30,9	$52,\!4$	1,8323
$1\ 7\ 1$	$101,\!361$	$101,\!401$	$0,\!14$	37,7	29,8	1,7997
$3\ 2\ 0$	$110,\!134$	$110,\!124$	$0,\!04$	232,2	$63,\!3$	1,6662
$0\ 6\ 4$	$111,\!309$	$111,\!302$	$0,\!03$	110,9	49,8	$1,\!6500$
26-2	$114,\!290$	$114,\!256$	$0,\!12$	99,1	195,4	$1,\!6105$
$3\ 3\ 1$	$116,\!275$	$116,\!292$	$0,\!06$	138,1	107,8	1,5854
24-4	$118,\!429$	$118,\!427$	$0,\!00$	37,1	29,1	1,5591
11-6	122,785	122,818	$0,\!13$	6,5	$95,\!5$	1,5089
$2\ 2\ -5$	$123,\!949$	$123,\!896$	$0,\!20$	26,0	29,7	$1,\!4961$
13-6	$129,\!264$	$129,\!285$	$0,\!08$	$0,\!3$	62	$1,\!4408$

Tabelle 13.65: (Sb_{0,8}Ta_{0,2})OPO₄ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,1529(9) Å, b = 13,728(4) Å, c = 9,528(2) Å, $\beta = 90,07(2)^{\circ}$.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (0 6 2): 3

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]
020	25,811	25,705	0,10	46,7	22,1	6,8538
$0\ 2\ 1$	31,810	$31,\!655$	$0,\!18$	175,5	231	5,5674
$1 \ 1 \ 0$	$36,\!627$	36,746	0,16	301,7	311,7	4,8403
$1 \ 1 \ 2$	$52,\!492$	$52,\!539$	$0,\!09$	$288,\!8$	310,8	$3,\!3926$
13-1	$55,\!252$	$55,\!354$	0,21	1000,0	1000.0	3,2261
$1 \ 3 \ 1$	$55,\!342$	$55,\!494$	$0,\!31$	45,0	274,7	3,2210
$1\ 1\ 3$	$67,\!470$	$67,\!373$	$0,\!24$	6,8	104, 4	$2,\!6546$
15-2	83,498	$83,\!504$	$0,\!02$	38,7	71,1	2,1617
$1\ 1\ 4$	84,489	84,502	$0,\!04$	42,8	71,8	$2,\!1375$
$0\ 6\ 2$	87,796	87,856	$0,\!18$	$2,\!6$	60,4	2,0607
2 4 - 1	$89,\!698$	89,692	$0,\!02$	$62,\!6$	105,5	2,0192
$0\ 7\ 0$	$92,\!650$	$92,\!667$	$0,\!05$	19,4	22,5	1,9582
15-3	$94,\!134$	$94,\!164$	$0,\!09$	137,8	180,1	1,9291
14-4	99,368	$99,\!355$	$0,\!04$	38,1	65,7	1,8334
$0\ 5\ 4$	$101,\!341$	$101,\!351$	$0,\!03$	6,1	$35,\!8$	1,8000
$1 \ 2 \ 5$	$105,\!692$	$105,\!683$	$0,\!03$	14,5	86,8	1,7309
$0\ 4\ 5$	110,022	$109,\!975$	$0,\!17$	36,7	37,5	$1,\!6678$
31-2	$114,\!130$	$114,\!147$	0,06	26,0	236,5	$1,\!6126$
$1\ 7\ 3$	$116,\!192$	$116,\!223$	$0,\!12$	6,5	119,8	1,5864
263	123,014	123,011	$0,\!01$	$_{4,0}$	$36,\!6$	1,5063
$1 \ 5 \ 5$	123,756	123,789	$0,\!13$	$34,\!6$	31,1	$1,\!4982$
2 8 0	130,519	$130,\!437$	$0,\!33$	$43,\!8$	$93,\!3$	$1,\!4285$

Tabelle 13.66: (Sb_{0,87}Ta_{0,3})OPO₄ (α -TiOSO₄)-Typ). Zuordnung der hkl-Werte, C2/c, Z = 2, a = 5,174(2) Å, b = 13,708(4) Å, c = 9,546(3) Å, $\beta = 90,21(3)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (1 7 2): 6

13.6 Der quasibinäre Schnitt NbOPO₄-WOPO₄

Tabelle 13.67: Experimentell bestimmte Gitterparameter des MoOPO₄- und MPTB-Strukturtypens $(P2_1/m)$ von $(Nb_{1-x}W_x)OPO_4$ im Vergleich mit den Reinphasen.

x	ϑ [°C]	a [Å]	<i>b</i> [Å]	c [Å]	β [°]
0,0	900-1000 1350	6,3907 6,6108(5)	5,2778(5)	$\begin{array}{c} 4,1042 \\ 11,2629(8) \end{array}$	90,316(7)
0,1	800 1350	6,388(3) 6,609(1)	5,281(1)	$\begin{array}{c} 4,131(4) \\ 11,229(2) \end{array}$	90,25(2)
0,2	$ 800 \\ 1350 $	6,3806(6) 6,609(2)	5,280(2)	$\begin{array}{c} 4,0923(9) \\ 11,228(4) \end{array}$	90,26(2)
0,213 [184]	900	6,3524(7)		4,0916(5)	
0,3		6,3706(6)		4,0735(7)	
0,4	800	6,3635(9) 6,575(2)	5,258(2)	$\begin{array}{c} 4,0855(9) \\ 11,217(4) \end{array}$	90,36(2)
0,5	1000	6,552(2)	5,243(3)	11,182(5)	90,28(4)
0,6	1000	6,575(2)	5,255(3)	11,205(7)	90,21(3)
0,8	1000	6,571(4)	5,243(4)	11,232(7)	90,20(5)
1,0 ^{<i>a</i>)} [63]	900 1000	6,250(1) 6,5541(4)	5,2334(7)	$\begin{array}{c} 4,066(1) \\ 11,1862(7) \end{array}$	90,330(6)

a) Hochdruckphase.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$1 \ 1 \ 0$	39,265	39,382	$0,\!17$	305,8	283,4	4,5179
$1 \ 0 \ 1$	$51,\!571$	$51,\!615$	0,08	1000,0	699	$3,\!4521$
$2 \ 0 \ 0$	$55,\!807$	$55,\!872$	$0,\!13$	977,4	1000	$3,\!1947$
$1\ 1\ 1$	58,765	$58,\!829$	$0,\!14$	276,5	192	3,0371
$2\ 1\ 1$	76,713	76,713	$0,\!00$	$75,\!8$	101, 1	2,3447
$2\ 2\ 0$	79,745	79,750	$0,\!01$	138,4	142,8	2,2590
$0 \ 0 \ 2$	88,224	88,320	$0,\!29$	$97,\!8$	59,1	2,0512
$3\ 1\ 0$	$89,\!638$	$89,\!638$	$0,\!00$	120,9	237,1	2,0205
$3 \ 0 \ 1$	$96,\!190$	$96,\!190$	$0,\!00$	$344,\!9$	277	1,8902
$1 \ 1 \ 2$	$97,\!424$	$97,\!378$	$0,\!15$	239,7	153,7	1,8677
$3\ 1\ 1$	$100,\!590$	$100,\!624$	$0,\!11$	42,1	59,1	1,8126
$2 \ 0 \ 2$	$106,\!015$	$105,\!996$	$0,\!06$	$84,\!6$	$53,\!8$	1,7260
$2\ 1\ 2$	$110,\!130$	110,160	$0,\!11$	25,4	28,8	$1,\!6663$
$3\ 2\ 1$	$113,\!042$	$113,\!065$	$0,\!09$	$83,\!9$	$133,\!6$	$1,\!6268$
$4 \ 0 \ 0$	$115,\!320$	$115,\!322$	$0,\!01$	181,5	149,1	1,5973
$3 \ 3 \ 0$	$123,\!046$	$123,\!069$	$0,\!09$	$79,\!9$	60,7	1,5060
$4\ 1\ 1$	$128,\!382$	$128,\!440$	$0,\!23$	$61,\!5$	$101,\!8$	$1,\!4497$
$3\ 1\ 2$	$129,\!405$	$129,\!318$	$0,\!34$	$17,\! 6$	202,2	$1,\!4394$
$4\ 2\ 0$	$130,\!498$	$130,\!426$	$0,\!28$	64,5	$123,\!9$	$1,\!4287$

Tabelle 13.68: α -NbOPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3893(9) Å, c = 4,102(1) Å.

b) Intensitäten sind normalisiert zu I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2
 2 2): 10

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,27	39,20	0,11	333	293	4,5169
$1 \ 0 \ 1$	$51,\!32$	$51,\!39$	$0,\!14$	1000	923	3,4690
$2 \ 0 \ 0$	$55,\!82$	55,75	$0,\!15$	923	1000	$3,\!1939$
$1\ 1\ 1$	$58,\!54$	58,72	$0,\!37$	253	277	3,0485
$2\ 1\ 1$	$76,\!54$	$76,\!66$	$0,\!30$	88	150	2,3497
$2 \ 2 \ 0$	79,76	$79,\!69$	$0,\!20$	139	157	2,2585
$3\ 1\ 0$	$89,\!66$	89,58	$0,\!23$	120	250	2,0200
$3\ 2\ 1$	$112,\!93$	$113,\!05$	$0,\!44$	87	287	$1,\!6283$
400	$115,\!35$	$115,\!30$	$0,\!19$	171	157	1,5970

Tabelle 13.69: $(W_{0,1}Nb_{0,9})OPO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,388(3) Å, c = 4,131(4) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2
 2 2): 14

Tabelle 13.70: $(W_{0,2}Nb_{0,8})OPO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3806(6) Å, c = 4,0923(9) Å.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,32	39,32	0,00	368	394	4,5118
$1 \ 0 \ 1$	$51,\!68$	51,70	$0,\!03$	1000	550	3,4447
$2 \ 0 \ 0$	$55,\!89$	$55,\!88$	0,00	901	1000	$3,\!1903$
$1\ 1\ 1$	$58,\!89$	$58,\!85$	$0,\!08$	234	111	3,0312
$2 \ 2 \ 0$	79,86	$79,\!85$	0,02	144	147	2,2559
$3\ 1\ 0$	89,77	89,80	0,09	123	240	2,0177
$3 \ 0 \ 1$	$96,\!35$	$96,\!38$	$0,\!07$	329	217	1,8872
$2 \ 0 \ 2$	106, 26	$106,\!27$	$0,\!04$	92	37	1,7224
$2\ 3\ 1$	$113,\!23$	$113,\!24$	0,03	96	108	$1,\!6243$
$4 \ 0 \ 0$	$115,\!49$	$115,\!44$	$0,\!20$	166	123	1,5952
330	123,23	123,26	0,09	78	55	1,5039

a) $\Delta = |\sin^2(\Theta_{calc.}) - \sin^2(\Theta_{obs.})| \cdot 1000$

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (1 2 2): 29

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
1 1 0	39,43	$39,\!39$	0,05	413	578	4,4997
$1 \ 0 \ 1$	51,79	51,70	$0,\!17$	1000	1000	$3,\!4380$
$2 \ 0 \ 0$	56,04	$56,\!02$	0,04	827	875	3,1818
$2\ 1\ 1$	77,04	77,02	0,04	124	206	2,3352
$2\ 2\ 0$	80,08	$80,\!07$	0,03	145	125	2,2499
$0 \ 0 \ 2$	88,61	$88,\!57$	$0,\!11$	92	66	2,0428
$3\ 0\ 1$	$96,\!61$	$96,\!60$	$0,\!01$	315	402	1,8826
$1 \ 1 \ 2$	$97,\!85$	$97,\!83$	0,06	238	245	1,8601
$2 \ 0 \ 2$	$106,\!48$	$106,\!54$	0,21	104	86	1,7190
$3\ 2\ 1$	$113,\!54$	$113,\!57$	0,09	97	200	$1,\!6202$
$3 \ 3 \ 0$	$123,\!60$	$123,\!59$	$0,\!05$	75	74	$1,\!4999$

Tabelle 13.71: (W_{0,6}Nb_{0,4})OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3635(9) Å, c = 4,0855(9) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2
 22): 26

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	31,03	31,10	0,08	78	106	5,7064
$1 \ 0 \ 1$	$31,\!15$	31,32	$0,\!20$	80	181	$5,\!6845$
$0 \ 0 \ 2$	$31,\!54$	$31,\!60$	$0,\!07$	538	431	$5,\!6145$
$1 \ 0 \ 2$	$41,\!57$	41,60	$0,\!03$	390	673	4,2695
$1 \ 1 \ 0$	43,04	43,18	$0,\!22$	1000	1000	4,1257
11-1	$45,\!85$	45,75	$0,\!16$	417	400	$3,\!8761$
$1\ 1\ 1$	$45,\!93$	$45,\!89$	0,06	416	420	3,8692
$0\ 1\ 2$	46,20	$45,\!99$	$0,\!35$	75	123	$3,\!8469$
$1 \ 1 \ 2$	$53,\!66$	$53,\!63$	$0,\!05$	299	261	3,3203
$1 \ 0 \ 3$	$54,\!83$	$54,\!83$	$0,\!00$	151	142	$3,\!2508$
2 0 - 2	$62,\!65$	$62,\!64$	$0,\!01$	51	41	2,8532
$2 \ 0 \ 2$	$62,\!90$	$62,\!82$	$0,\!17$	50	40	2,8422
$1\ 1\ 3$	$64,\!62$	$64,\!62$	$0,\!00$	87	84	2,7684
$2\ 1\ -1$	65,79	65,78	$0,\!03$	206	272	2,7203
$2\ 1\ 1$	$65,\!91$	$65,\!96$	$0,\!11$	206	272	2,7155
$0\ 2\ 0$	$67,\!84$	$67,\!90$	$0,\!15$	218	267	$2,\!6407$
$1 \ 0 \ 4$	$69,\!49$	69,52	0,06	72	66	2,5797
21-2	$71,\!48$	$71,\!45$	0,06	65	67	2,5103
$2\ 1\ 2$	71,70	71,73	$0,\!10$	65	50	2,5028
$0\ 1\ 4$	$72,\!41$	$72,\!43$	$0,\!05$	248	364	2,4788
$1 \ 2 \ 2$	80,23	$80,\!30$	$0,\!20$	18	39	2,2458
3 0 - 1	$83,\!43$	83,46	$0,\!10$	28	41	2,1634
$3 \ 0 \ 1$	$83,\!57$	$83,\!58$	0,02	29	23	2,1599
22-1	89,20	89,21	$0,\!04$	46	55	2,0299
$2\ 2\ 1$	$89,\!29$	$89,\!35$	$0,\!19$	48	52	2,0279
22-2	$93,\!67$	$93,\!66$	0,02	88	100	1,9380
$2\ 2\ 2$	$93,\!85$	$93,\!81$	$0,\!14$	87	87	1,9346
205	98,21	98,16	$0,\!17$	86	113	1,8536
$1\ 2\ 4$	$98,\!69$	$98,\!64$	$0,\!15$	63	57	1,8453
$2\ 2\ 3$	$101,\!07$	101,06	$0,\!04$	124	87	1,8046
31-3	$101,\!97$	$101,\!96$	$0,\!06$	137	126	1,7896
$3\ 1\ 3$	$102,\!35$	102,32	$0,\!11$	141	160	1,7835
$0\ 1\ 6$	$103,\!56$	$103,\!51$	$0,\!16$	117	109	1,7640
$1\ 1\ 6$	107, 59	$107,\!69$	$0,\!33$	57	106	1,7026
32-1	$109,\!62$	109,56	$0,\!19$	141	133	1,6735
$3\ 2\ 1$	109,73	109,70	$0,\!11$	143	146	1,6719
41-1	118, 15	118, 19	$0,\!13$	28	40	1,5624
$4\ 1\ 1$	$118,\!30$	$118,\!33$	0,09	289	41	1,5606

Tabelle 13.72: (W_{0,1}Nb_{0,9})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,608(1) Å, b = 5,281(1) Å, c = 11,229(2) Å, $\beta = 90,25(2)$ °

b) Intensitäten sind normalisiert zu I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2 1 5): 3

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	31,03	31,10	0,08	86	81	5,7067
$1 \ 0 \ 1$	$31,\!15$	31,32	0,20	88	75	$5,\!6840$
$0 \ 0 \ 2$	$31,\!55$	$31,\!60$	0,07	546	448	$5,\!6139$
$1 \ 0 \ 2$	41,58	41,60	0,03	382	375	4,2690
$1 \ 1 \ 0$	$43,\!05$	43,14	$0,\!14$	1000	1000	4,1250
11-1	$45,\!86$	$45,\!69$	$0,\!27$	384	250	3,8755
$1\ 1\ 1$	$45,\!94$	$45,\!83$	$0,\!18$	384	260	3,8684
$0\ 1\ 2$	46,21	$45,\!95$	$0,\!44$	90	150	3,8461
$1 \ 1 \ 2$	$53,\!67$	$53,\!67$	$0,\!00$	299	220	3,3196
$1 \ 0 \ 3$	$54,\!83$	$54,\!85$	$0,\!03$	139	125	3,2503
20-2	$62,\!65$	$62,\!66$	$0,\!04$	50	32	2,8533
$2 \ 0 \ 2$	$62,\!90$	$62,\!90$	0,00	50	69	2,8420
$1\ 1\ 3$	$64,\!63$	64,64	0,02	87	90	2,7679
21-1	$65,\!80$	65,76	$0,\!09$	211	137	2,7202
$2\ 1\ 1$	$65,\!92$	$65,\!90$	$0,\!05$	211	289	2,7153
$0\ 2\ 0$	$67,\!86$	$67,\!92$	$0,\!15$	218	252	$2,\!6399$
$1 \ 0 \ 4$	69,50	$69,\!50$	$0,\!01$	77	71	2,5793
21-2	$71,\!48$	$71,\!53$	$0,\!14$	64	30	2,5102
$2\ 1\ 2$	71,71	71,71	$0,\!02$	64	53	2,5025
$0\ 1\ 4$	$72,\!43$	$72,\!47$	$0,\!12$	255	368	$2,\!4785$
$1 \ 2 \ 2$	$80,\!25$	80,32	0,20	21	21	2,2453
30-1	83,42	83,46	$0,\!11$	32	32	2,1635
$3 \ 0 \ 1$	$83,\!57$	83,62	$0,\!13$	33	21	$2,\!1598$
22-2	$93,\!68$	$93,\!73$	$0,\!13$	84	48	1,9378
$2\ 2\ 2$	$93,\!87$	$93,\!91$	$0,\!12$	83	67	1,9342
$2 \ 0 \ 5$	$98,\!23$	$98,\!18$	0,16	84	71	1,8534
$1\ 2\ 4$	98,71	$98,\!66$	0,16	66	71	$1,\!8449$
$2\ 2\ 3$	$101,\!09$	$101,\!10$	$0,\!02$	123	99	$1,\!8042$
31-3	$101,\!97$	$101,\!90$	0,26	138	164	1,7896
$3\ 1\ 3$	$102,\!36$	$102,\!39$	$0,\!12$	141	64	1,7833
32-1	$109,\!63$	$109,\!60$	$0,\!08$	140	89	$1,\!6734$
$3\ 2\ 1$	109,75	109,70	$0,\!16$	142	68	$1,\!6716$

Tabelle 13.73: (W_{0,2}Nb_{0,8})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,609(2) Å, b = 5,280(2) Å, c = 11,228(4) Å, $\beta = 90,26(2)^{\circ}$.

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (201): 5
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!13$	$31,\!04$	$0,\!10$	101	100	$5,\!6876$
$1 \ 0 \ 1$	31,31	31,34	$0,\!05$	103	120	$5,\!6565$
$0 \ 0 \ 2$	$31,\!58$	$31,\!50$	0,08	564	400	$5,\!6084$
$1 \ 0 \ 2$	41,73	41,68	0,08	369	382	4,2536
$1 \ 1 \ 0$	43,24	43,28	0,06	1000	1000	4,1065
11-1	46,03	$45,\!82$	0,36	332	300	3,8611
$1\ 1\ 1$	$46,\!15$	$45,\!94$	0,36	332	389	3,8513
$0\ 1\ 2$	$46,\!33$	46,08	$0,\!44$	119	78	$3,\!8360$
$1 \ 1 \ 2$	$53,\!87$	$53,\!81$	$0,\!12$	301	218	3,3071
$1 \ 0 \ 3$	$54,\!99$	$55,\!09$	$0,\!21$	121	75	$3,\!2414$
20-2	$62,\!86$	$62,\!89$	0,06	49	60	2,8438
$2 \ 0 \ 2$	$63,\!22$	$63,\!13$	$0,\!21$	48	60	2,8282
$1\ 1\ 3$	64,84	64,86	0,06	89	90	2,7593
21-1	66,09	$66,\!00$	$0,\!20$	220	183	2,7085
$2\ 1\ 1$	66, 26	66, 26	$0,\!01$	219	290	2,7017
$0\ 2\ 0$	$68,\!14$	68, 16	$0,\!05$	219	278	2,6292
$1 \ 0 \ 4$	$69,\!66$	$69,\!66$	$0,\!00$	84	84	2,5735
21-2	71,74	$71,\!82$	$0,\!21$	63	85	2,5014
$2\ 1\ 2$	$72,\!05$	$72,\!12$	$0,\!16$	62	66	2,4908
$0\ 1\ 4$	$72,\!55$	$72,\!60$	$0,\!12$	269	295	2,4744
3 0 - 1	83,84	$83,\!87$	$0,\!09$	38	48	$2,\!1534$
$3 \ 0 \ 1$	84,04	84,11	$0,\!18$	39	55	2,1483
$2\ 2\ -2$	$94,\!06$	$94,\!13$	$0,\!23$	77	58	1,9305
$2\ 2\ 2$	$94,\!31$	$94,\!23$	0,26	76	92	1,9256
$2 \ 0 \ 5$	$98,\!56$	$98,\!57$	$0,\!04$	82	70	1,8476
$1 \ 2 \ 4$	$99,\!04$	99,03	$0,\!04$	73	50	1,8391
$2\ 2\ 3$	$101,\!54$	$101,\!54$	$0,\!01$	121	131	1,7968
$3\ 1\ -3$	$102,\!35$	$102,\!38$	$0,\!11$	138	95	1,7835
$3\ 1\ 3$	$102,\!88$	$102,\!90$	0,06	140	132	1,7748
32 - 1	110, 16	$110,\!15$	$0,\!03$	138	81	1,6659
$3\ 2\ 1$	$110,\!33$	$110,\!41$	$0,\!29$	139	129	1,6636
41-1	118,78	118,72	$0,\!23$	34	54	1,5549
$4\ 1\ 1$	$118,\!99$	$118,\!96$	$0,\!13$	35	56	1,5524

Tabelle 13.74: (W_{0,6}Nb_{0,4})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,609(2) Å, b = 5,280(2) Å, c = 11,228(4) Å, $\beta = 90,26(2)$ Ű.

b) Intensitäten sind normalisiert zu I_{max} = 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]
10-1	31,26	31,16	0,12	108	105	$5,\!6650$
$1 \ 0 \ 1$	31,39	31,30	0,11	110	136	5,6408
$0 \ 0 \ 2$	31,68	$31,\!68$	0,01	570	390	5,5909
$1 \ 0 \ 2$	41,84	41,78	0,09	364	331	4,2426
$1 \ 1 \ 0$	43,38	43,36	0,03	1000	1000	4,0936
11-1	46, 19	46,00	0,32	311	174	$3,\!8479$
$1\ 1\ 1$	46,28	46,10	0,31	311	229	3,8403
$0\ 1\ 2$	46,48	46,22	$0,\!44$	133	395	3,8244
$1 \ 1 \ 2$	54,02	$53,\!98$	0,09	301	212	3,2981
$1 \ 0 \ 3$	$55,\!14$	$55,\!12$	0,03	114	103	3,2328
20-2	$63,\!12$	$63,\!06$	$0,\!13$	49	45	2,8325
$2 \ 0 \ 2$	$63,\!40$	$63,\!42$	$0,\!05$	48	59	2,8204
$1\ 1\ 3$	65,02	$65,\!06$	$0,\!10$	90	105	2,7518
21-1	66,33	66, 26	$0,\!17$	223	138	2,6988
$2\ 1\ 1$	66,47	66,42	$0,\!11$	223	253	2,6936
$0\ 2\ 0$	$68,\!35$	$68,\!34$	0,02	219	225	2,6215
$1 \ 0 \ 4$	69,86	$69,\!86$	$0,\!01$	87	73	2,5666
21-2	72,02	72,08	$0,\!17$	63	50	2,4921
$2\ 1\ 2$	$72,\!26$	$72,\!24$	0,06	62	67	$2,\!4838$
$0\ 1\ 4$	72,78	$72,\!86$	0,20	274	320	2,4667
30-1	84,16	84,20	$0,\!11$	41	35	2,1454
$3 \ 0 \ 1$	84,33	84,40	$0,\!22$	42	34	2,1414
22-2	$94,\!40$	$94,\!44$	$0,\!13$	74	75	1,9240
$2\ 2\ 2$	$94,\!60$	$94,\!64$	$0,\!13$	73	49	1,9201
$1 \ 2 \ 4$	$99,\!34$	99,28	$0,\!19$	75	80	1,8340
$2\ 2\ 3$	$101,\!84$	$101,\!82$	$0,\!07$	120	75	1,7918
31-3	102,77	$102,\!82$	$0,\!16$	138	95	1,7766
$3\ 1\ 3$	103, 19	$103,\!14$	$0,\!18$	140	104	1,7699
32-1	$110,\!56$	$110,\!54$	0,08	137	106	1,6603
$3\ 2\ 1$	110,70	110,76	$0,\!23$	138	52	$1,\!6584$
41-1	$119,\!25$	119,20	$0,\!17$	36	29	1,5494
411	$119,\!41$	$119,\!42$	0,02	37	39	1,5474

Tabelle 13.75: (W_{0,5}Nb_{0,5})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,551(2) Å, b = 5,243(3) Å, c = 11,182(5) Å, $\beta = 90,28(4)$ Ű.

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	$31,\!18$	$31,\!16$	0,02	114	120	5,6800
$1 \ 0 \ 1$	31,28	$31,\!34$	$0,\!08$	116	90	5,6619
$0 \ 0 \ 2$	$31,\!61$	$31,\!62$	$0,\!01$	574	403	$5,\!6026$
$1 \ 0 \ 2$	41,70	41,72	0,03	360	381	4,2568
$1 \ 1 \ 0$	43,26	$43,\!30$	0,06	1000	1000	4,1048
$1 \ 1 \ 2$	$53,\!87$	$53,\!90$	$0,\!07$	302	259	3,3076
$1 \ 0 \ 3$	$54,\!97$	$54,\!96$	$0,\!01$	107	80	3,2426
20-2	62,95	62,88	$0,\!15$	48	43	2,8400
$2 \ 0 \ 2$	$63,\!15$	63,22	$0,\!15$	47	68	2,8310
$1\ 1\ 3$	64,83	64,90	$0,\!15$	91	83	2,7594
21-1	66, 14	66, 12	$0,\!04$	227	158	2,7066
$2\ 1\ 1$	66,24	66,22	$0,\!04$	227	203	2,7027
$0\ 2\ 0$	68, 19	68, 18	$0,\!03$	220	189	2,6272
3 0 - 1	$83,\!87$	83,84	$0,\!09$	43	28	2,1525
$3 \ 0 \ 1$	$83,\!99$	84,06	$0,\!19$	44	29	2,1495
$1\ 2\ 4$	99,07	99,10	0,09	78	52	1,8385
31-3	$102,\!49$	$102,\!54$	$0,\!18$	138	124	1,7812
$3\ 1\ 3$	102,80	102,72	$0,\!27$	140	114	1,7762

Tabelle 13.76: (W_{0,6}Nb_{0,4})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,575(2) Å, b = 5,254(3) Å, c = 11,205(7) Å, β = 90,21(3) °.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]
10-1	$31,\!17$	31,16	0,01	126	72	5,6806
$1 \ 0 \ 1$	$31,\!27$	31,34	$0,\!08$	128	57	$5,\!6632$
$0 \ 0 \ 2$	$31,\!53$	$31,\!62$	$0,\!10$	588	265	$5,\!6158$
$1 \ 0 \ 2$	$41,\!65$	41,72	$0,\!11$	353	102	4,2618
$1 \ 1 \ 0$	$43,\!33$	$43,\!52$	$0,\!31$	1000	1000	4,0984
11-1	$46,\!13$	46,06	$0,\!12$	261	277	3,8528
$1\ 1\ 1$	$46,\!20$	46,12	$0,\!13$	262	277	3,8474
$0\ 1\ 2$	$46,\!38$	$46,\!24$	$0,\!24$	170	160	3,8324
$1 \ 1 \ 2$	$53,\!87$	$54,\!00$	$0,\!25$	303	182	3,3071
21-1	66,20	66, 18	$0,\!04$	233	102	2,7043
$2\ 1\ 1$	$66,\!29$	66,40	$0,\!26$	233	109	2,7005
$0\ 2\ 0$	$68,\!35$	68, 16	$0,\!46$	220	105	2,6215
$0\ 1\ 4$	$72,\!52$	$72,\!56$	$0,\!10$	289	322	$2,\!4753$
$2\ 2\ 3$	$101,\!59$	$101,\!64$	$0,\!17$	119	122	1,7959
31-3	$102,\!50$	$102,\!46$	$0,\!15$	138	69	1,7810
$3\ 1\ 3$	$102,\!80$	102,74	$0,\!22$	141	112	1,7761
$0\ 1\ 6$	$103,\!63$	$103,\!60$	$0,\!10$	109	89	1,7629

Tabelle 13.77: (W_{0,8}Nb_{0,2})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,571(4) Å, b = 5,243(4) Å, c = 11,231(7) Å, $\beta = 90,20(5)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2 1 3): 15

13.7 Der quasibinäre Schnitt TaOPO₄-WOPO₄

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$1 \ 0 \ 1$	31.28	31,23	$0,\!06$	136	100	5,6606
$1 \ 0 \ 2$	41.74	41,70	$0,\!06$	189	242	4,2528
$1 \ 1 \ 0$	43.21	43,22	$0,\!02$	100	1000	4,1100
11-1	46,00	45,94	$0,\!09$	239	428	3,8638
111	46,12	46,08	$0,\!07$	239	269	$3,\!8533$
$0\ 1\ 2$	$46,\!35$	46,40	$0,\!09$	189	265	3,8347

Tabelle 13.78: (W_{0,6}Nb_{0,4})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,585(2) Å, b = 5,260(2) Å, c = 11,204(3) Å, $\beta = 90,27(3)^{\circ}$.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	Icalc	I _{obs}	d_{calc} [Å]
1 1 2	53,87	53,86	0,02	302	538	3,3072
$1 \ 0 \ 3$	$55,\!02$	$55,\!00$	0,04	87	132	3,2392
2 0 -2	62,79	62,80	0,02	47	60	2,8469
$2 \ 0 \ 2$	$63,\!17$	63,20	$0,\!07$	46	66	2,8303
2 1 -1	66,01	66,10	0,22	238	130	2,7118
$2\ 1\ 1$	66, 19	66,22	$0,\!07$	237	374	2,7046
$0\ 2\ 0$	$68,\!12$	$68,\!17$	$0,\!14$	221	231	2,6301
$1 \ 0 \ 4$	69,73	69,81	0,22	99	106	2,5713
2 1 -2	$71,\!67$	$71,\!65$	$0,\!05$	61	62	2,5038
$2\ 1\ 2$	72,01	$71,\!95$	$0,\!14$	60	62	2,4924
$0\ 1\ 4$	72,61	$72,\!69$	$0,\!2$	293	130	$2,\!4723$
1 2 1	$75,\!36$	$75,\!36$	$0,\!01$	29	42	2,3852
$0\ 2\ 2$	$75,\!51$	$75,\!52$	$0,\!05$	75	115	2,3808
$1 \ 2 \ 2$	$80,\!57$	$80,\!67$	$0,\!3$	42	43	2,2369
$2\ 1\ 3$	80,84	80,81	0,09	16	10	2,2295
30-1	83,69	$83,\!65$	0,14	52	73	$2,\!1568$
$3 \ 0 \ 1$	83,92	$83,\!95$	0,09	53	40	$2,\!1514$
2 2 -1	89,53	89,51	0,06	37	35	2,0228
$2\ 2\ 1$	$89,\!67$	89,77	0,31	39	35	2,0198
2 2 -2	$93,\!99$	94,04	$0,\!16$	63	30	$1,\!9319$
$2\ 2\ 2$	$94,\!26$	94,24	$0,\!07$	64	99	$1,\!9267$
$2 \ 0 \ 5$	$98,\!61$	$98,\!52$	$0,\!27$	75	73	$1,\!8467$
$2\ 2\ 3$	$101,\!51$	$101,\!51$	0,02	16	140	1,7972
31-3	102,24	$102,\!19$	$0,\!15$	13	125	1,7853
313	102,81	102,81	0,01	10	137	1,7761
$0\ 1\ 6$	103,83	$103,\!85$	0,04	17	67	1,7597
32-1	$110,\!03$	110,00	0,09	15	83	$1,\!6678$
$3\ 2\ 1$	110,21	110,26	0,19	15	140	$1,\!6652$
41-1	$118,\!58$	118,62	$0,\!17$	43	52	1,5573
$1 \ 0 \ 7$	$118,\!95$	118,92	$0,\!11$	19	30	1,5529

Tabelle 13.78 - Fortsetzung

- b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$
- c) I_{calc} für den stärksten, nicht beobachteten Reflex (303): 9

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$0 \ 0 \ 2$	31,60	$31,\!65$	0,06	589	566	5,6714
$1 \ 0 \ 2$	41,74	41,70	0,06	343	246	5,6137
$1 \ 1 \ 0$	43,24	43,26	0,04	1000	1000	4,2612
11-1	46,03	$45,\!92$	0,18	240	276	4,1177
$0\ 1\ 2$	$46,\!35$	46,22	0,21	183	82	3,8712
$1 \ 1 \ 2$	$53,\!88$	53,94	$0,\!13$	302	280	3,8606
$2 \ 0 \ 0$	$54,\!19$	54,10	$0,\!17$	19	28	3,8423
$1 \ 0 \ 3$	$55,\!01$	54,92	$0,\!17$	88	128	3,3136
$2 \ 0 \ 1$	$56,\!62$	$56,\!52$	$0,\!19$	11	9	3,2458
2 0 - 2	$62,\!86$	62,80	$0,\!14$	47	35	2,8526
$2 \ 0 \ 2$	$63,\!21$	63, 16	$0,\!12$	46	37	2,8357
$1\ 1\ 3$	$64,\!86$	64,88	$0,\!05$	93	140	2,7170
$2\ 1\ -1$	66,08	66,02	$0,\!14$	238	329	2,7097
$2\ 1\ 1$	66,25	66,20	$0,\!12$	237	88	2,6351
$0\ 2\ 0$	68, 14	68, 19	$0,\!14$	221	210	2,5765
$1 \ 0 \ 4$	69,70	69,83	$0,\!34$	100	151	2,5087
$2\ 1\ -2$	71,74	71,87	$0,\!34$	61	73	2,4972
$2\ 1\ 2$	$72,\!05$	72,19	$0,\!36$	60	77	2,4774
$0\ 1\ 4$	$72,\!59$	72,71	0,31	240	94	2,3897
$2\ 0\ 3$	$72,\!96$	73,01	$0,\!12$	77	147	2,3853
$0\ 2\ 2$	$75,\!52$	$75,\!56$	$0,\!12$	75	96	2,2412
$1 \ 2 \ 2$	$80,\!58$	80,61	$0,\!08$	42	65	2,1610
3 0 - 1	83,81	83,79	$0,\!08$	52	77	$2,\!1554$
$3 \ 0 \ 1$	84,02	84,05	$0,\!08$	53	54	2,0236
22-2	$94,\!06$	$94,\!14$	$0,\!27$	64	107	1,9303
$2\ 2\ 2$	94,31	$94,\!36$	$0,\!17$	63	40	1,8504
$2 \ 0 \ -5$	$97,\!99$	$98,\!01$	$0,\!07$	77	100	1,8007
$1 \ 2 \ 4$	99,06	99,06	$0,\!00$	86	98	1,7888
$2\ 2\ -3$	101, 19	101, 10	$0,\!31$	118	110	1,7795
$2\ 2\ 3$	$101,\!54$	$101,\!45$	$0,\!29$	118	120	1,7634
$1 \ 0 \ 6$	$101,\!69$	$101,\!69$	$0,\!00$	17	58	$1,\!6709$
$3\ 1\ -3$	$102,\!35$	$102,\!51$	$0,\!56$	138	169	1,6684
$3\ 1\ 3$	$102,\!87$	$102,\!87$	$0,\!02$	140	43	1,5603
$1\ 1\ 6$	$107,\!90$	$107,\!95$	$0,\!17$	55	62	1,5561
32 - 1	110, 14	110, 16	$0,\!08$	134	193	1,5366
$3\ 2\ 1$	$110,\!31$	$110,\!32$	$0,\!05$	135	160	1,5353

Tabelle 13.79: (W_{0,5}Ta_{0,5})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,577(2) Å, b = 5,259(2) Å, c = 11,210(3) Å, $\beta = 90,34(3)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
101	31,263	31,230	0,04	136	115	5,6642
$0 \ 0 \ 2$	$31,\!591$	$31,\!591$	0,00	588	487	$5,\!6057$
$1 \ 0 \ 2$	41,692	41,601	0,14	343	358	4,2576
$1 \ 1 \ 0$	43,192	43,122	0,11	1000	1000	4,1114
11-1	$45,\!997$	$45,\!904$	0,16	240	225	3,8637
$1\ 1\ 1$	46,087	46,004	$0,\!14$	241	226	3,8563
$0\ 1\ 2$	46,314	46,244	$0,\!12$	188	158	$3,\!8377$
$1 \ 1 \ 2$	$53,\!816$	53,744	$0,\!14$	302	389	3,3106
$1 \ 0 \ 3$	$54,\!956$	$54,\!984$	0,06	88	112	3,2432
20-2	62,858	62,820	$0,\!09$	47	67	2,8439
$2 \ 0 \ 2$	$63,\!127$	$63,\!120$	$0,\!02$	46	53	2,8321
$1\ 1\ 3$	64,789	64,818	$0,\!07$	93	107	2,7613
21-1	66,037	66,037	$0,\!00$	238	218	2,7105
$2\ 1\ 1$	66,166	66,217	$0,\!12$	237	229	2,7054
$0\ 2\ 0$	$68,\!054$	68,094	$0,\!10$	221	231	$2,\!6325$
$1 \ 0 \ 4$	69,640	$69,\!692$	$0,\!13$	99	80	2,5743
21-2	71,715	71,730	$0,\!04$	61	72	2,5022
$2\ 1\ 2$	$71,\!954$	$71,\!929$	$0,\!06$	60	73	2,4941
$0\ 1\ 4$	$72,\!557$	$72,\!568$	$0,\!03$	293	393	$2,\!4741$
$1 \ 2 \ 1$	$75,\!294$	$75,\!344$	$0,\!13$	28	41	2,3873
$0\ 2\ 2$	$75,\!439$	$75,\!424$	$0,\!04$	75	116	2,3828
$1 \ 2 \ 2$	$80,\!485$	$80,\!554$	$0,\!19$	41	41	2,2391
30-1	83,769	$83,\!607$	$0,\!47$	53	63	2,1550
$3\ 0\ 1$	83,926	84,026	$0,\!29$	62	63	2,1511
22-1	89,518	89,512	$0,\!02$	37	54	2,0230
$2\ 2\ 1$	89,618	$89,\!692$	$0,\!23$	39	24	2,0209
$3\ 1\ 1$	91,022	$91,\!187$	0,51	9	9	1,9913
$2\ 1\ 4$	$91,\!889$	$91,\!885$	$0,\!01$	31	55	1,9736
22-2	$93,\!990$	$93,\!919$	$0,\!23$	64	69	1,9319
$2\ 2\ 2$	$94,\!182$	$94,\!198$	$0,\!05$	63	73	1,9282
205	$98,\!480$	$98,\!425$	$0,\!18$	76	51	1,8489
$1\ 1\ 6$	$107,\!823$	107,789	$0,\!12$	55	85	$1,\!6992$
$1 \ 3 \ 0$	$108,\!062$	$108,\!088$	$0,\!09$	104	118	$1,\!6957$
32-1	$110,\!043$	$109,\!941$	$0,\!37$	134	102	1,6675

Tabelle 13.80: (W_{0,4}Ta_{0,6})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,582(2) Å, b = 5,265(2) Å, c = 11,212(3) Å, $\beta = 90,27(3)^{\circ}$.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	31,020	31,106	0,10	132,9	227,1	5,7082
$1 \ 0 \ 1$	$31,\!119$	31,246	$0,\!15$	135,4	$227,\!3$	$5,\!6901$
$0 \ 0 \ 2$	31,543	$31,\!546$	0,00	583,7	439,4	5,6142
10-2	41,394	$41,\!375$	$0,\!03$	344,3	428,1	4,2879
$1 \ 0 \ 2$	41,543	$41,\!535$	$0,\!01$	343,0	448,7	4,2726
$1 \ 1 \ 0$	43,011	42,993	$0,\!03$	1000,0	1000,0	4,1285
11-1	45,829	45,790	$0,\!07$	240,4	215.5	3,8777
$1 \ 1 \ 1$	$45,\!897$	$45,\!850$	$0,\!08$	241,2	215.6	3,8720
11-2	$53,\!503$	$53,\!460$	$0,\!08$	305,1	382.2	3,3296
$1 \ 1 \ 2$	$53,\!621$	$53,\!580$	$0,\!08$	301,9	357,0	3,3224
10-3	54,624	$54,\!578$	$0,\!09$	88,8	126	3,2625
$1 \ 0 \ 3$	54,797	54,798	$0,\!00$	88,0	88,7	3,2524
2 0 -2	62,628	$62,\!587$	$0,\!09$	$46,\! 6$	60,4	2,8541
$2 \ 0 \ 2$	62,832	62,787	$0,\!10$	45,7	$56,\! 6$	2,8451
11-3	64,436	64,384	$0,\!12$	$91,\! 6$	118,8	2,7760
$1\ 1\ 3$	$64,\!585$	$64,\!564$	$0,\!05$	$92,\!3$	112,1	2,7698
$0\ 2\ 0$	67,800	67,779	$0,\!05$	220,8	$253,\!9$	2,6420
10-4	69,277	$69,\!297$	$0,\!05$	101,8	$122,\!3$	2,5874
$1 \ 0 \ 4$	69,463	$69,\!457$	$0,\!02$	$98,\!9$	$103,\!8$	2,5807
2 1 -2	$71,\!449$	$71,\!533$	0,22	60,7	103,1	2,5112
$2\ 1\ 2$	71,630	71,713	$0,\!21$	60,1	$111,\!4$	2,5050
$0\ 1\ 4$	72,409	$72,\!432$	$0,\!06$	291,8	$427,\!3$	$2,\!4790$
$0\ 2\ 2$	$75,\!186$	$75,\!117$	$0,\!18$	$74,\!4$	124,0	2,3906
12-2	80,101	80,099	$0,\!01$	$42,\!5$	$71,\!6$	2,2493
$1 \ 2 \ 2$	80,184	$80,\!199$	0,04	41,2	$57,\!8$	$2,\!2471$
30-1	83,364	83,333	$0,\!09$	52,1	68,9	2,1650
$3 \ 0 \ 1$	83,483	83,493	$0,\!03$	52,7	47,7	2,1620
22-1	89,147	89,092	$0,\!17$	37,4	42,8	2,0310
$2\ 2\ 1$	89,223	89,262	$0,\!12$	39,0	40,3	2,0294

Tabelle 13.81: (W_{0,3}Ta_{0,7})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,615(1) Å, b = 5,284(1) Å, c = 11,228(3) Å, $\beta = 90,21(2)^{\circ}$.

		Tabelle	13.81 -	Fortsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
2 2 -2	93,632	$93,\!574$	$0,\!18$	64,5	84,1	1,9388
$2 \ 2 \ 2$	93,777	93,734	$0,\!14$	$63,\!4$	50,3	1,9360
2 2 -3	100,786	100,799	0,04	117,7	$147,\!8$	1,8093
$2\ 2\ 3$	100,992	$101,\!019$	$0,\!09$	$117,\!8$	$124,\!3$	$1,\!8058$
31-3	$101,\!936$	$101,\!957$	$0,\!07$	138,2	115,7	1,7902
$3\ 1\ 3$	102,243	$102,\!176$	$0,\!23$	$140,\! 6$	183,1	1,7852
$0\ 1\ 6$	$103,\!560$	$103,\!554$	$0,\!02$	106,4	$78,\!5$	1,7640
$3\ 2\ 1$	$109,\!637$	109,620	$0,\!06$	134,7	$119,\! 6$	$1,\!6732$
41-1	$118,\!056$	118,041	$0,\!05$	43,1	46,1	1,5635
$4\ 1\ 1$	$118,\!179$	118,241	$0,\!23$	$43,\!4$	$55,\!6$	1,5621
034	124,328	124,386	0,22	79,5	106,4	1,4920

Tabelle 13.81 - Fortsetzung

b) Intensitäten sind normalisiert zu $I_{max}=1000.\,$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	31,036	31,086	0,06	132,7	169,4	5,7053
$1 \ 0 \ 1$	31,164	$31,\!265$	$0,\!12$	135,0	169,3	5,6820
$0 \ 0 \ 2$	$31,\!607$	$31,\!585$	$0,\!03$	582,1	569,1	$5,\!6029$
10-2	41,431	$41,\!474$	$0,\!07$	344,5	345,0	4,2841
$1 \ 0 \ 2$	$41,\!625$	$41,\!554$	$0,\!11$	342,3	342,1	4,2644
$1 \ 1 \ 0$	43,048	43,032	$0,\!03$	1000,0	1000,0	4,1249
11-1	$45,\!865$	45,789	$0,\!13$	241,0	416,8	3,8747
111	$45,\!953$	$45,\!848$	$0,\!18$	241,5	586	3,8674
11-2	$53,\!555$	$53,\!578$	$0,\!05$	305,0	169,1	3,3264
$1 \ 1 \ 2$	53,707	53,718	$0,\!02$	301,3	369,1	3,3172
10-3	54,692	$54,\!657$	$0,\!07$	88,9	234	3,2585
$1 \ 0 \ 3$	$54,\!915$	$54,\!916$	$0,\!00$	87,9	156	$3,\!2456$
2 0 -2	62,661	62,705	$0,\!10$	46,7	$54,\!5$	2,8526
$2 \ 0 \ 2$	62,924	$62,\!905$	$0,\!04$	$45,\!6$	$53,\!3$	2,8410
11-3	$64,\!513$	$64,\!522$	$0,\!02$	$91,\!5$	118	2,7728
$1\ 1\ 3$	64,706	$64,\!662$	$0,\!10$	92,1	$110,\!6$	2,7648
$2\ 1\ 1$	$65,\!920$	$65,\!920$	$0,\!00$	237,2	$237,\!8$	2,7152
$0\ 2\ 0$	67,871	$67,\!837$	$0,\!08$	220,7	273,1	2,6394
10-4	$69,\!378$	69,415	0,09	$101,\! 6$	$99,\!6$	2,5837
$1 \ 0 \ 4$	$69,\!619$	$69,\!654$	0,09	98,5	117,2	2,5751
2 1 -2	$71,\!495$	$71,\!511$	$0,\!04$	60,7	149	2,5096
$2\ 1\ 2$	71,729	71,791	0,16	60,0	223	2,5017
$0\ 1\ 4$	$72,\!543$	$72,\!550$	$0,\!02$	291,0	$273,\! 6$	$2,\!4746$
$0\ 2\ 2$	$75,\!279$	$75,\!215$	$0,\!17$	74,2	111,7	$2,\!3877$
12-2	80,183	80,247	$0,\!18$	41,1	66,7	2,2471
$1 \ 2 \ 2$	80,290	$80,\!356$	$0,\!19$	42,4	67,2	2,2443
30-1	83,404	$83,\!371$	$0,\!10$	52,0	56,2	2,1640
$3 \ 0 \ 1$	$83,\!559$	$83,\!551$	$0,\!02$	$52,\!6$	$54,\!8$	2,1602
2 2 -1	89,220	89,180	$0,\!12$	37,4	$36,\!3$	2,0295
$2\ 2\ 1$	89,318	89,340	$0,\!07$	39,0	36,3	2,0274
21-4	91,338	91,316	$0,\!07$	$33,\!5$	39,5	1,9848

Tabelle 13.82: (W_{0,2}Ta_{0,8})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,611(1) Å, b = 5,2788(7) Å, c = 11,206(2) Å, $\beta = 90,27(1)^{\circ}$.

		Tabelle	13.82 -	Fortsetzung		
hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$2\ 1\ 4$	91,720	91,775	$0,\!17$	31,1	55,9	1,9770
2 2 -2	93,709	$93,\!692$	$0,\!06$	$64,\! 6$	$43,\!4$	1,9373
$2\ 2\ 2$	$93,\!897$	$93,\!911$	$0,\!05$	$63,\!4$	70,7	1,9337
22-3	$100,\!877$	100,917	$0,\!13$	117,7	132,0	$1,\!8077$
$2\ 2\ 3$	101,144	$101,\!157$	$0,\!04$	$117,\! 6$	$107,\!8$	1,8033
31-3	101,998	$102,\!035$	$0,\!12$	138,3	$107,\!8$	1,7892
$3\ 1\ 3$	$102,\!395$	$102,\!354$	$0,\!14$	140,4	128,4	1,7827
$0\ 1\ 6$	103,771	103,751	$0,\!07$	106, 1	$141,\!3$	1,7607
11-6	$107,\!547$	$107,\!523$	0,08	54,1	100,3	1,7032
$1 \ 1 \ 6$	$107,\!802$	$107,\!803$	$0,\!00$	$54,\! 6$	$102,\!3$	$1,\!6995$
32-1	$109,\!621$	$109,\!599$	$0,\!08$	$134,\!8$	116,2	$1,\!6734$
$3\ 2\ 1$	109,747	109,739	$0,\!03$	135,2	151,7	$1,\!6717$
13-2	$112,\!978$	$112,\!992$	$0,\!05$	45,2	57,2	$1,\!6276$
$0\ 3\ 4$	$124,\!507$	124,485	$0,\!08$	79,3	91,7	$1,\!4900$

Taballa 12.82 Fortaat

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
10-1	30,959	$30,\!950$	$0,\!01$	133	100	5,7193
$0 \ 0 \ 2$	$31,\!440$	$31,\!391$	0,06	588	242	$5,\!6324$
$1 \ 0 \ 2$	$41,\!445$	41,421	$0,\!04$	346	387	4,2827
$1 \ 1 \ 0$	43,025	43,022	$0,\!00$	1000	1000	4,1272
11-1	$45,\!822$	45,704	$0,\!20$	242	273	$3,\!8783$
$1\ 1\ 1$	$45,\!894$	$45,\!924$	$0,\!05$	243	163	3,8723
$0\ 1\ 2$	$46,\!153$	46,224	$0,\!12$	186	216	3,8509
$1 \ 0 \ 3$	$54,\!647$	54,724	$0,\!15$	89	75	3,2612
20-2	$62,\!503$	$62,\!400$	$0,\!23$	47	62	2,8597
$2 \ 0 \ 2$	62,719	$62,\!800$	$0,\!18$	46	72	2,8501
$1\ 1\ 3$	$64,\!481$	$64,\!458$	$0,\!05$	93	164	2,7741
21-1	65,700	$65,\!657$	$0,\!10$	238	198	2,7241
$2\ 1\ 1$	$65,\!804$	$65,\!817$	0,03	238	199	2,7199
$0\ 2\ 0$	$67,\!896$	$67,\!835$	$0,\!15$	220	262	$2,\!6384$
10-4	69,060	$69,\!133$	$0,\!18$	103	176	2,5953
$1 \ 0 \ 4$	69,258	$69,\!393$	$0,\!34$	100	54	2,5881
$2\ 1\ 2$	$71,\!553$	$71,\!570$	$0,\!04$	60	103	2,5077
$0\ 1\ 4$	$72,\!242$	$72,\!219$	0,06	294	404	$2,\!4845$
$2\ 0\ 3$	$72,\!408$	$72,\!369$	$0,\!10$	78	47	2,4790
$0\ 2\ 2$	$75,\!228$	$75,\!304$	$0,\!20$	74	134	2,3893
$2\ 1\ 3$	80,309	80,215	$0,\!27$	16	10	2,2438
$3 \ 0 \ 1$	$83,\!362$	$83,\!388$	$0,\!08$	53	66	2,1651
$2\ 2\ 1$	89,243	$89,\!173$	$0,\!22$	39	35	2,0290
$2\ 1\ 4$	$91,\!370$	$91,\!227$	$0,\!44$	31	45	1,9842
$1\ 1\ -5$	$91,\!597$	$91,\!586$	$0,\!04$	18	25	1,9795
22-2	$93,\!616$	$93,\!640$	$0,\!08$	65	43	1,9391
$1 \ 2 \ 4$	98,555	$98,\!624$	$0,\!23$	86	124	1,8476
22-3	100,724	$100,\!697$	0,09	118	124	1,8103
31-3	101,765	101,813	$0,\!16$	138	207	1,7930
32-1	109,501	109,463	$0,\!14$	135	125	$1,\!6751$
$3\ 2\ 1$	$109,\!604$	109,702	$0,\!35$	136	126	$1,\!6737$

Tabelle 13.83: (W_{0,1}Ta_{0,9})OPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,624(3) Å, b = 5,277(3) Å, c = 11,265(5) Å, $\beta = 90,27(3)^{\circ}$.

b) Intensitäten sind normalisiert zu $I_{max} = 1000$.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
10-1	30,953	30,713	0,28	133	146	5,7206
$1 \ 0 \ 1$	31,063	31,073	0,01	135	152	5,7003
$0 \ 0 \ 2$	31,430	31,432	0,00	588	451	5,6342
$1 \ 0 \ 2$	41,440	41,403	0,06	342	331	4,2831
$1 \ 1 \ 0$	42,999	42,961	0,06	1000	1000	4,1296
11-1	45,794	45,538	$0,\!43$	243	287	3,8806
$1\ 1\ 1$	45,870	45,838	$0,\!05$	243	289	3,8743
$0\ 1\ 2$	46,123	46,078	0,08	186	217	3,8533
$1 \ 1 \ 2$	$53,\!550$	$53,\!569$	$0,\!04$	306	330	3,3267
$1 \ 0 \ 3$	$54,\!638$	$54,\!608$	0,06	89	112	3,2617
20-1	$56,\!051$	$55,\!986$	$0,\!13$	10	12	3,1811
$2 \ 0 \ 1$	$56,\!177$	$56,\!126$	$0,\!10$	11	13	3,1741
20-2	$62,\!489$	$62,\!457$	$0,\!07$	47	55	2,8603
$2 \ 0 \ 2$	62,716	62,757	0,09	46	49	2,8502
$1\ 1\ 3$	$64,\!457$	$64,\!475$	$0,\!04$	92	111	2,7752
21-1	$65,\!677$	$65,\!653$	0,06	238	252	2,7250
$2\ 1\ 1$	65,786	65,793	0,02	238	256	2,7206
$0\ 2\ 0$	$67,\!832$	$67,\!830$	0,01	221	241	$2,\!6408$
$1 \ 0 \ 4$	69,243	69,228	$0,\!04$	102	108	2,5886
21-2	$71,\!333$	$71,\!365$	$0,\!08$	61	105	2,5151
$2\ 1\ 2$	$71,\!535$	$71,\!584$	$0,\!13$	60	106	2,5083
$0\ 1\ 4$	$72,\!209$	$72,\!163$	$0,\!12$	293	274	$2,\!4856$
$1 \ 2 \ 1$	$75,\!003$	$74,\!959$	$0,\!12$	28	19	2,3962
$0\ 2\ 2$	$75,\!165$	$75,\!119$	$0,\!12$	74	110	2,3912
$1 \ 2 \ 2$	$80,\!155$	$80,\!170$	$0,\!04$	41	53	2,2479
30-1	83,226	$83,\!165$	$0,\!17$	52	63	2,1684
$3 \ 0 \ 1$	$83,\!359$	$83,\!405$	$0,\!13$	52	61	2,1651
$2\ 2\ 0$	$87,\!613$	$87,\!658$	$0,\!14$	22	22	2,0648
22-1	89,107	$89,\!115$	0,02	38	31	2,0319
$2\ 2\ 1$	$89,\!191$	$89,\!235$	$0,\!13$	39	31	2,0301
22-2	$93,\!557$	$93,\!547$	$0,\!03$	65	59	1,9403
$2\ 2\ 2$	93,719	93,786	$0,\!21$	64	59	1,9371
$2 \ 0 \ 5$	$97,\!870$	$97,\!839$	$0,\!10$	78	81	1,8597
$1 \ 2 \ 4$	$98,\!497$	$98,\!577$	$0,\!27$	87	93	1,8486
31-3	101,733	101,791	$0,\!19$	139	136	1,7935
$3\ 1\ 3$	$102,\!075$	$102,\!030$	$0,\!15$	141	127	1,7879
$0\ 1\ 6$	103,215	103,208	0,02	108	94	1,7695

Tabelle 13.84: TaOPO₄. Zuordnung der hkl-Werte, $P2_1/m$, Z = 4, a = 6,624(2) Å, b = 5,827(1) Å, c = 11,268(3) Å, $\beta = 90,23(2)^{\circ}$.

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

13.8 Der quasibinäre Schnitt VOPO₄-NbOPO₄

Tabelle 13.85: Einwaagen und Ergebnisse der Gleichgewichtsuntersuchungen der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4$ nach zehn Tagen unter Vakuum bei 700 °C getempert. Die Quantifizierungen der Phasenanteile wurden über das Programm *Match*! abgeschätzt.

Zusammensetzung	Einwaage [mg]	Ergebnisse der Guinieraufnahme vorher / nachher		
$(\mathrm{V}_{0,9}\mathrm{Nb}_{0,1})\mathrm{OPO}_4$	161,40	MoOPO ₄ -Typ / β-VOPO ₄ (33%), MoOPO ₄ -Typ (55%), (VO) ₂ P ₂ O ₇ (12%)		
$(\mathrm{V}_{0,8}\mathrm{Nb}_{0,2})\mathrm{OPO}_4$	162,00	MoOPO ₄ -Typ/ MoOPO ₄ -Typ (40%), β -VOPO ₄ (60%)		
$(\mathrm{V}_{0,7}\mathrm{Nb}_{0,3})\mathrm{OPO}_4$	165,46	MoOPO ₄ -Typ/ MoOPO ₄ -Typ (65%), β -VOPO ₄ (25%), VO(PO ₄) ₃ (10%)		
$(\mathrm{V}_{0,6}\mathrm{Nb}_{0,4})\mathrm{OPO}_4$	158,84	MoOPO ₄ -Typ/ MoOPO ₄ -Typ (57%), β-VOPO ₄ (36%), VO(PO ₄) ₃ (7%)		
$(\mathrm{V}_{0,5}\mathrm{Nb}_{0,5})\mathrm{OPO}_4$	172,66	MoOPO ₄ -Typ/ MoOPO ₄ -Typ (84%), VO(PO ₄) ₃ (16%)		
$(\mathrm{V}_{0,4}\mathrm{Nb}_{0,6})\mathrm{OPO}_4$	165,46	MoOPO ₄ -Typ/ MoOPO ₄ -Typ (91%), VO(PO ₄) ₃ (9%)		
$(\mathrm{V}_{0,3}\mathrm{Nb}_{0,7})\mathrm{OPO}_4$	165,89	MoOPO ₄ -Typ (86 %), MPTB-Typ (14 %) / MoOPO ₄ -Typ (87 %), MPTB-Typ (13 %)		
$(\mathrm{V}_{0,2}\mathrm{Nb}_{0,8})\mathrm{OPO}_4$	165,89	MoOPO ₄ -Typ (91%), MPTB-Typ (9%) MoOPO ₄ -Typ (86%), MPTB-Typ (14%)		
$(\mathrm{V}_{0,1}\mathrm{Nb}_{0,9})\mathrm{OPO}_4$	162,53	MoOPO ₄ -Typ (89%), MPTB-Typ (11%) MoOPO ₄ -Typ (90%), MPTB-Typ (10%)		

Tabelle 13.86: Gemessenes und berechnetes IR-und Raman (kursiv) Schwingungsspektren von α_{II} -VOPO₄. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert. Für die IR-Messung wurden erst die Schwingungsmoden ab 400 cm^{-1} mit der Rechnung verglichen, da niedrigere Wellenzahlen nicht gemessen werden konnten.

Exp. $\bar{\nu} [\mathrm{cm}^{-1}]$	Trans. [%] /Intens. [%]	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Intens. [%]	Zuordnung
		138	9)
151	21	175	12	
		190	4	
		194	2	
		216	5	
		287	42	
		300	3	O-V-O/ O-P-O
300	16	317	33	
		324	1	
		372	0	
		372	42	
403	22	412	32	
		412	0	
434	8	448	15	Ĵ
439	8			
467	20	466	41	antisymm. P-O
471	23			~
589	3	595	5	
5909	55	611	11	ĺ
620	3	631	$\tilde{\gamma}$	
689	80	625	4	$ant. P-O_4, V-O-Streckschwingung$
		633	0	
946	100	987	100	
927	46	1007	100	as. P-O
996	51	1012	91	
1057	66	1059	19	Ĵ
		1062	0	$ant. P-O, V \equiv O$
		1072	0	j ć
1091	10	1107	24	Ísvm. P-O
1024	88	1187	8	$as. P-O. V \equiv O$

Exp. $\bar{\nu} [\mathrm{cm}^{-1}]$	Trans. $[\%]$	Ber. $\bar{\nu} [\mathrm{cm}^{-1}]$	Intens. $[\%]$	Zuordnung
	/Intens. $[\%]$			
		108	0)
		108	0	
		143	0	$\int O N h O / O D O$
		165	0	0-ND-0/ 0-P-0
		201	3	
283	22	280	22	
368	11	371	9	
462	12	446	6	$\int_{aut} D O D f$
466	15	464	13	ant. P-O-Del.
599	32	584	6	ĺ
612	9	607	3	ant. P-O-Def., Nb-O
		629	12	
802	71	829	100	\int_{NL}
802	38	830	63	}ND=U
898	27			ĺ
926	25			as. P-O
963	46	1015	100	
985	100	1007	30	$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
1204	87	117	22	$\int 100=0$, as. P-0

Tabelle 13.87: Gemessenes und berechnetes Raman-Schwingungsspektren von α -NbOPO₄. Die berechnete Intensität wurde auf die stärkste Schwingung der Rechnung normiert.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
001	40,2	40,1	0,16	109	108	4,4153
$1 \ 1 \ 0$	$41,\! 6$	41,5	0,11	82	82	4,2720
$1 \ 0 \ 1$	49,9	49,8	$0,\!14$	1000	1000	3,5648
$1\ 1\ 1$	58,1	58,1	$0,\!08$	637	758	3,0702
$2 \ 0 \ 0$	59,1	59,0	$0,\!16$	887	828	3,0207
$2\ 1\ 1$	78,1	78,1	$0,\!10$	104	112	2,3046
$0 \ 0 \ 2$	81,7	81,6	$0,\!23$	94	65	2,2077
$2\ 2\ 0$	84,6	84,5	$0,\!17$	110	90	2,1360
$1 \ 1 \ 2$	92,5	92,4	$0,\!25$	211	158	1,9613
$3\ 1\ 0$	95,1	95,1	$0,\!16$	180	143	1,9105
$3 \ 0 \ 1$	99,4	99,4	$0,\!09$	236	216	1,8322
$3\ 1\ 1$	104,2	104,2	$0,\!04$	137	130	1,7534
$2\ 1\ 2$	107,1	107,1	$0,\!13$	46	41	1,7095
$3\ 2\ 1$	$117,\!8$	$117,\!8$	$0,\!06$	96	72	1,5666
$4 \ 0 \ 0$	$122,\!6$	122,7	$0,\!05$	120	81	1,5104
$3\ 1\ 2$	128,9	128,9	0,21	302	249	1,4446
411	134,5	134,5	$0,\!00$	74	41	$1,\!3907$
$4\ 2\ 0$	139,0	139,0	$0,\!09$	133	86	1,3509
$2 \ 0 \ 3$	$142,\!4$	142,5	$0,\!22$	65	33	1,3231

Tabelle 13.88: (V₀, ₉Nb₀, ₁)OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,0415(8) Å, c = 4,4153(9) Å.

b) Intensitäten sind normalisiert zu
 $I_{max}=$ 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
001	40,5	40,4	0,24	85	107	4.3801
$1 \ 1 \ 0$	$41,\!4$	41,1	$0,\!47$	108	127	4.2823
$1 \ 0 \ 1$	50,1	50,0	$0,\!23$	1000	1000	3.5491
$1\ 1\ 1$	58,3	58,2	$0,\!16$	581	962	3.0620
$2 \ 0 \ 0$	58,9	$58,\!8$	$0,\!26$	863	773	3.0281
$2 \ 0 \ 1$	72,1	72,1	$0,\!01$	4	15	2.4908
$2\ 1\ 1$	78,1	78,1	$0,\!14$	107	105	2.3036
$2\ 2\ 0$	84,3	84,3	$0,\!06$	114	87	2.1412
$1 \ 1 \ 2$	93,1	93,1	$0,\!04$	207	134	1.9499
$3\ 1\ 0$	$94,\!9$	94,8	$0,\!06$	182	130	1.9151
$3 \ 0 \ 1$	99,4	99,4	$0,\!02$	235	199	1.8334
$3\ 1\ 1$	104,2	104,2	$0,\!06$	128	113	1.7547
$2\ 1\ 2$	$107,\! 6$	$107,\! 6$	$0,\!07$	46	37	1.7030
$3\ 2\ 1$	117,7	117,7	$0,\!01$	103	62	1.5683
$4 \ 0 \ 0$	$122,\!3$	122,4	$0,\!20$	116	61	1.5140
$3\ 1\ 2$	129,2	129,2	$0,\!08$	290	246	1.4417
411	134,3	$134,\!3$	$0,\!03$	74	30	1.3926

Tabelle 13.89: (V₀, $_8$ Nb₀, $_2$)OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,056(1) Å, c = 4,380(2) Å.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
110	41,1	41,1	0,02	135	198	4,3138
$1 \ 0 \ 1$	50,4	50,4	$0,\!03$	1000	1000	$3,\!5327$
$1\ 1\ 1$	58,4	58,4	$0,\!04$	538	873	$3,\!0571$
$2 \ 0 \ 0$	$58,\!5$	58,7	$0,\!36$	855	918	$3,\!0503$
$2\ 1\ 1$	78,0	78,1	$0,\!29$	110	116	2,3088
$2 \ 2 \ 0$	83,7	83,7	$0,\!16$	116	185	$2,\!1569$
$3 \ 0 \ 1$	$98,\!9$	99,0	$0,\!23$	230	223	1,8409
$3\ 1\ 1$	103,7	103,7	$0,\!22$	120	115	1,7624
$2\ 1\ 2$	108,0	108,1	$0,\!29$	44	44	$1,\!6966$
$3\ 2\ 1$	117,0	117,0	$0,\!03$	103	86	1,5761
$4 \ 0 \ 0$	$121,\!3$	$121,\!4$	$0,\!41$	112	89	1,5252
$3\ 1\ 2$	129,3	129,1	$0,\!49$	270	265	$1,\!4408$
420	137,5	137,4	0,60	125	90	1,3642

Tabelle 13.90: (V_{0,7}Nb_{0,3})OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,001(2) Å, c = 4,333(4) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (201): 3

Tabelle 13.91: (V_{0, 6}Nb_{0, 4})OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,197(4) Å, c = 4,259(5) Å.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	40,5	40,4	0,09	142	170	4,3822
$1 \ 0 \ 1$	50,7	$50,\!6$	$0,\!27$	956	841	3,5103
$2 \ 0 \ 0$	$57,\!6$	$57,\!50$	$0,\!10$	1000	1000	3,0987
$1\ 1\ 1$	58,4	58,2	$0,\!47$	374	468	3,0544
$2 \ 0 \ 1$	$71,\!6$	71,8	$0,\!44$	13	95	2,5058
$2\ 2\ 1$	93,1	$93,\!0$	$0,\!56$	1	7	1,9484
$1 \ 1 \ 2$	$94,\!8$	$94,\!9$	$0,\!11$	216	90	1,9155
$3\ 1\ 1$	102,5	$102,\! 6$	$0,\!25$	85	156	1,7804
$3\ 2\ 1$	$115,\! 6$	$115,\! 6$	$0,\!10$	88	48	1,5939
$3\ 1\ 2$	129,1	129,1	$0,\!01$	260	130	$1,\!4421$

a) $\Delta = |sin^2(\Theta_{calc.}) - sin^2(\Theta_{obs.})| \cdot 1000$

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
$1 \ 1 \ 0$	40,4	40,4	0,06	173	221	4,3913
$1 \ 0 \ 1$	50,8	$50,\!6$	$0,\!24$	992	877	3,5063
$2 \ 0 \ 0$	$57,\!4$	57,4	$0,\!05$	1000	1000	$3,\!1051$
$1\ 1\ 1$	58,4	58,1	$0,\!68$	358	624	$3,\!0533$
$2\ 1\ 1$	77,4	77,4	$0,\!04$	44	89	2,3246
$2\ 2\ 0$	82,1	82,2	0,06	102	110	$2,\!1956$
$0 \ 0 \ 2$	85,0	85,0	$0,\!11$	107	43	2,1241
$1 \ 1 \ 2$	95,0	95,0	0,03	218	151	1,9122
$3\ 0\ 1$	$97,\!8$	$97,\!8$	$0,\!08$	290	235	1,8609
$3\ 1\ 1$	102,4	102,5	$0,\!29$	82	89	1,7826
$2 \ 0 \ 2$	104,3	104,2	$0,\!34$	58	24	1,7532
$2\ 1\ 2$	108,7	$108,\! 6$	$0,\!08$	42	39	$1,\!6872$
$3\ 2\ 1$	$115,\!4$	$115,\!5$	$0,\!23$	96	78	1,5962
$4 \ 0 \ 0$	119,0	119,0	0,06	132	67	1,5525
$3\ 1\ 2$	129,1	129,2	$0,\!10$	260	186	1,4420
411	$131,\!4$	$131,\!3$	0,73	51	38	1,4196

Tabelle 13.92: (V₀, ₅Nb₀, ₅)OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,210(2) Å, c = 4,248(3) Å.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
1 1 0	40,1	40,1	0,08	205	240	4,4198
$1 \ 0 \ 1$	51,1	50,9	$0,\!23$	999	859	$3,\!4867$
$2 \ 0 \ 0$	57,1	57,1	$0,\!01$	1000	1000	$3,\!1253$
$1\ 1\ 1$	$58,\! 6$	58,4	$0,\!34$	336	418	3,0450
$2\ 1\ 1$	$77,\!3$	$77,\!3$	$0,\!01$	59	94	2,3272
$2\ 2\ 0$	$81,\!6$	$81,\!6$	$0,\!04$	108	103	2,2099
$0 \ 0 \ 2$	86,0	86,0	$0,\!01$	102	44	2,1006
$3\ 1\ 0$	91,7	91,7	$0,\!02$	168	149	1,9766
$1 \ 1 \ 2$	$95,\!8$	$95,\!9$	$0,\!31$	213	125	1,8972
$3\ 0\ 1$	97,5	97,5	$0,\!06$	292	250	1,8666
$3\ 1\ 1$	102,0	102,1	$0,\!17$	80	77	1,7885
$2 \ 0 \ 2$	104,9	104,9	$0,\!03$	60	22	1,7434
$2\ 1\ 2$	109,2	109,2	$0,\!21$	42	41	$1,\!6793$
$3\ 2\ 1$	$114,\!9$	$114,\!9$	$0,\!01$	104	89	$1,\!6025$
$4 \ 0 \ 0$	118,1	118,1	$0,\!00$	133	67	1,5626
$3\ 1\ 2$	129,4	129,4	$0,\!02$	256	214	$1,\!4395$

Tabelle 13.93: (V₀, ₄Nb₀, ₆) OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,251(1) Å, c = 4,201(1) Å.

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,9	39,9	0,03	142	263	4,4424
$1 \ 0 \ 1$	51,1	51,1	0,16	957	687	$3,\!4805$
$2 \ 0 \ 0$	56,8	56,8	$0,\!05$	1000	1000	3,1413
$1\ 1\ 1$	$58,\! 6$	$58,\!5$	$0,\!23$	374	273	3,0445
$2\ 1\ 1$	77,2	77,1	$0,\!15$	30	78	2,3319
$2\ 2\ 0$	81,2	81,0	$0,\!39$	95	112	2,2212
$0 \ 0 \ 2$	86,5	86,5	$0,\!12$	107	40	2,0903
$3\ 1\ 0$	91,2	91,2	$0,\!12$	149	161	1,9867
$3 \ 0 \ 1$	97,2	97,2	$0,\!01$	286	232	1,8724
$3\ 1\ 1$	101,7	101,7	$0,\!04$	85	63	1,7944
$2 \ 0 \ 2$	105,1	105,1	$0,\!03$	53	24	1,7402
$2\ 1\ 2$	109,4	109,3	$0,\!11$	41	31	$1,\!6771$
$3\ 2\ 1$	$114,\!5$	114,4	$0,\!30$	89	81	$1,\!6084$
$4 \ 0 \ 0$	$117,\!5$	117,4	$0,\!20$	133	71	1,5706
$3\ 1\ 2$	129,3	129,4	$0,\!17$	260	187	1,4401
$4\ 2\ 0$	133,0	133,2	$0,\!60$	76	42	1,4048

Tabelle 13.94: (V₀, ₃Nb₀, ₇)OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,283(2) Å, c = 4,181(2) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

hkl	4 0 .	40.	$\Lambda^{(a)}$	T,	T,	d , [Å]
	40 _{calc} .	$4O_{obs}$.		1 _{calc}	lobs	ucalc [A]
$1 \ 1 \ 0$	39,7	39,7	$0,\!03$	262	270	4,4651
$0 \ 0 \ 1$	42,7	42,8	$0,\!15$	35	83	4,1549
$1 \ 0 \ 1$	$51,\!3$	$51,\!3$	$0,\!05$	1000	892	$3,\!4709$
$2 \ 0 \ 0$	$56,\!5$	$56,\!5$	0,06	970	1000	$3,\!1573$
$1\ 1\ 1$	58,7	$58,\! 6$	$0,\!14$	295	330	3,0417
$2\ 1\ 1$	77,0	77,0	$0,\!14$	90	101	2,3356
$2\ 2\ 0$	80,7	80,7	$0,\!11$	116	121	2,2325
$0 \ 0 \ 2$	87,1	87,1	$0,\!05$	94	57	2,0774
$3\ 1\ 0$	90,8	90,7	0,03	180	176	1,9968
$3\ 1\ 1$	101,4	101,4	$0,\!02$	73	80	1,7998
$2 \ 0 \ 2$	105,4	105,4	$0,\!05$	65	38	1,7355
$2\ 1\ 2$	$109,\! 6$	$109,\! 6$	$0,\!04$	42	46	$1,\!6734$
$3\ 2\ 1$	114,0	114,0	$0,\!07$	116	104	1,6138
$4 \ 0 \ 0$	116,8	$116,\!9$	$0,\!15$	130	84	1,5786
330	124,7	124,7	$0,\!07$	52	34	1,4884

Tabelle 13.95: (V₀, ₂Nb₀, ₈) OPO₄. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3145(6) Å, c = 4,1549(8) Å.

b) Intensitäten sind normalisiert zu
 $I_{max}=$ 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]
1 1 0	39,4	39,3	$0,\!05$	294	276	4,5049
$1 \ 0 \ 1$	$51,\!5$	$51,\!3$	$0,\!42$	1000	918	3,4544
$2 \ 0 \ 0$	56,0	56,0	$0,\!14$	976	1000	3,1854
$2\ 1\ 1$	76,8	76,8	$0,\!13$	106	102	2,3418
$2\ 2\ 0$	80,0	80,2	$0,\!62$	123	125	2,2524
$0 \ 0 \ 2$	88,0	88,0	$0,\!11$	89	57	2,0556
$3\ 1\ 0$	89,9	90,2	0,92	190	171	2,0146
$3 \ 0 \ 1$	96,4	96,4	$0,\!17$	291	259	1,8868
$3\ 1\ 1$	100,8	100,9	$0,\!37$	72	73	1,8091
$2 \ 0 \ 2$	105,9	105,7	$0,\!95$	66	44	1,7272
$3\ 2\ 1$	$113,\!3$	$113,\!5$	0,56	124	113	1,6234
$4 \ 0 \ 0$	115,7	115,4	$0,\!93$	132	94	1,5927
$3\ 1\ 2$	129,5	129,2	$0,\!93$	239	222	1,4388

Tabelle 13.96: (V₀, 1Nb₀, 9) OPO₄. Zuordnung der h
kl-Werte, P4/n, Z = 2, a=6,371(6) Å,
 $c=4,111(6)\,$ Å.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
110	39,5	39,4	0,19	86	142	4,4868
$0 \ 0 \ 1$	42,2	41,9	$0,\!51$	80	125	4,2058
$1 \ 0 \ 1$	50,8	50,7	$0,\!14$	1000	586	3,5057
$2 \ 0 \ 0$	56,2	56,2	$0,\!02$	586	1000	$3,\!1727$
$1\ 1\ 1$	58,2	58,1	$0,\!07$	182	182	3,0685
$2 \ 0 \ 1$	70,8	70,8	$0,\!01$	8	92	2,5328
$2\ 2\ 0$	80,3	80,4	$0,\!14$	112	106	2,2434
$3\ 1\ 0$	90,3	90,3	$0,\!15$	146	140	2,0066
$3 \ 0 \ 1$	96,2	96,2	$0,\!12$	280	255	1,8896
$3\ 2\ 1$	$113,\!3$	113,2	$0,\!18$	65	63	1,6235
$4 \ 0 \ 0$	116,2	116,2	$0,\!06$	139	110	1,5863
312	128,2	128,2	0,26	240	125	$1,\!4517$

Tabelle 13.97: (V_{0,7}Nb_{0,3})O_{1- δ}PO₄. Zuordnung der hkl-Werte, *P*4/*n*, Z = 2, *a* = 6,373(8) Å, *c* = 4,214(4) Å.

b) Intensitäten sind normalisiert zu I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (202): 21

Tabelle 13.98: $(V_{0,6}Nb_{0,4})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,345(2) Å, c = 4,206(3) Å.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	\mathbf{d}_{calc} [Å]	
$1 \ 1 \ 0$	39,4	39,3	0,09	180	130	4,5061	
$1 \ 0 \ 1$	$50,\!6$	$50,\!6$	0,06	564	882	3,5149	
$2 \ 0 \ 0$	56,0	55,9	0,06	1000	1000	$3,\!1863$	
$1\ 1\ 1$	58,0	57,9	$0,\!10$	141	302	3,0777	
$2\ 2\ 0$	80,0	80,0	$0,\!08$	81	57	$2,\!2530$	
$3 \ 0 \ 1$	$95,\!8$	$95,\!9$	$0,\!06$	306	339	$1,\!8968$	
$3\ 2\ 1$	112,8	$112,\!8$	$0,\!10$	85	57	$1,\!6299$	
$4 \ 0 \ 0$	115,7	115,7	$0,\!08$	141	190	$1,\!5931$	
4 2 0	130,9	130,8	0,16	73	56	1,4250	

a) $\Delta = |sin^2(\Theta_{calc.}) - sin^2(\Theta_{obs.})| \cdot 1000$

b) Intensitäten sind normalisiert zu $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,3	39,2	0,16	189	214	4,5153
$1 \ 0 \ 1$	50,9	50,9	$0,\!01$	951	517	$3,\!4999$
$2 \ 0 \ 0$	$55,\!8$	$55,\!8$	$0,\!07$	1000	1000	$3,\!1928$
$2 \ 2 \ 0$	79,8	79,7	$0,\!25$	118	150	2,2576
$3\ 1\ 0$	89,7	89,7	$0,\!03$	106	182	2,0193
$3\ 2\ 1$	112,7	112,7	$0,\!03$	69	95	1,6310
$4 \ 0 \ 0$	$115,\!4$	$115,\!4$	$0,\!11$	188	127	1,5964
$3 \ 3 \ 0$	123,1	123,2	$0,\!09$	75	50	1,5051
312	128,1	128,1	$0,\!01$	219	70	1,4529

Tabelle 13.99: $(V_{0,4}Nb_{0,6})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3855(9) Å, c = 4,184(2) Å.

b) Intensitäten sind normalisiert zu $I_{max} = 1000.$

c) I_{calc} für den stärksten, nicht beobachteten Reflex (002): 111

Tabelle 13.100: (V_{0,3}Nb_{0,7})O_{1- δ}PO₄. Zuordnung der hkl-Werte, *P*4/*n*, Z = 2, *a* = 6,387(3) Å, *c* = 4,173(3) Å.

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I _{obs}	d_{calc} [Å]
1 1 0	39,3	39,3	0,10	220	211	4,5162
$1 \ 0 \ 1$	50,9	50,9	$0,\!09$	985	514	$3,\!4937$
$2 \ 0 \ 0$	$55,\!8$	55,7	$0,\!23$	1000	1000	$3,\!1935$
$1\ 1\ 1$	58,2	58,1	$0,\!26$	235	177	3,0651
$3\ 1\ 0$	89,7	$89,\! 6$	$0,\!25$	111	205	2,0197
$1 \ 1 \ 2$	96,0	$95,\!9$	$0,\!25$	256	321	$1,\!8943$
$4 \ 0 \ 0$	115,4	$115,\!4$	0,06	188	147	1,5967
$3\ 1\ 2$	128,2	128,3	$0,\!34$	220	205	$1,\!4513$

a) $\Delta = |\sin^2(\Theta_{calc.}) - \sin^2(\Theta_{obs.})| \cdot 1000$

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,3	39,1	0,26	82	244	4,5119
$1 \ 0 \ 1$	51,1	51,0	$0,\!18$	1000	727	3,4829
$2 \ 0 \ 0$	55,9	55,7	$0,\!28$	922	1000	3,1904
$1\ 1\ 1$	58,4	58,3	$0,\!19$	534	208	3,0571
$2\ 1\ 1$	76,4	76,4	$0,\!16$	120	93	2,3526
$2\ 2\ 0$	79,9	79,8	$0,\!26$	123	149	2,2559
$0 \ 0 \ 2$	87,0	87,1	$0,\!19$	74	67	2,0784
$3\ 1\ 0$	89,8	89,8	$0,\!08$	215	215	2,0178
$3 \ 0 \ 1$	96,0	96,0	0,02	294	359	1,8934
$3\ 1\ 1$	100,4	100,4	$0,\!12$	46	54	1,8152
$2 \ 0 \ 2$	105,0	105,1	$0,\!22$	18	38	1,7414
$4 \ 0 \ 0$	115,5	115,4	$0,\!21$	158	142	1,5952
$3\ 1\ 2$	$128,\! 6$	128,5	0,26	265	216	$1,\!4477$
$4\ 2\ 0$	130,7	130,8	0,51	45	81	1,4268

Tabelle 13.101: $(V_{0,2}Nb_{0,8})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,381(2) Å, c = 4,157(2) Å.

b) Intensitäten sind normalisiert zu
 $I_{max}=1000.\,$

hkl	$4\Theta_{calc.}$	$4\Theta_{obs.}$	$\Delta^{(a)}$	I_{calc}	I_{obs}	d_{calc} [Å]
1 1 0	39,3	39,3	$0,\!04$	313	264	4,5144
$1 \ 0 \ 1$	$51,\!4$	$51,\!3$	$0,\!14$	998	775	3,4638
$2 \ 0 \ 0$	$55,\!9$	$55,\!8$	$0,\!09$	1000	1000	$3,\!1922$
$1\ 1\ 1$	$58,\! 6$	$58,\! 6$	$0,\!14$	198	221	3,0445
$2\ 2\ 0$	79,8	$79,\!8$	$0,\!07$	153	139	2,2572
$3\ 1\ 0$	89,7	$89,\!8$	$0,\!15$	116	126	2,0189
$3 \ 0 \ 1$	96,1	96,2	$0,\!03$	333	188	1,8911
$1 \ 1 \ 2$	$97,\!0$	97,0	$0,\!02$	284	126	1,8754
$3\ 1\ 1$	$100,\! 6$	100,5	0,02	28	49	1,8132
$2 \ 0 \ 2$	$105,\! 6$	105,7	$0,\!11$	97	23	1,7319
$3\ 2\ 1$	113,0	$113,\!0$	$0,\!06$	85	89	1,6270
$4 \ 0 \ 0$	115,4	115,4	$0,\!01$	181	80	1,5961

Tabelle 13.102: $(V_{0,1}Nb_{0,9})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, P4/n, Z = 2, a = 6,3843(8) Å, c = 4,123(1) Å.

b) Intensitäten sind normalisiert zu
 I_{max} = 1000.

c) I_{calc} für den stärksten, nicht beobachteten Reflex (2
 2 2): 16

Tabelle 13.103: Ergebnis der katalytischen Testungen (Aktivität und Selektivität) im Temperaturbereich 400-410 $^{\circ}\mathrm{C}.$

Katalysator	Selektivität S [%]	Umsatz X [%]	Quelle
VPP ^a	85,0	60,0	[95]
$\alpha_{\rm II}$ -VOPO ₄			diese Arbeit
$(V_{0,05}Nb_{0,95})OPO_4$	$7,\!9$	28,2	diese Arbeit
$(V_{0,1}Nb_{0,9})OPO_4$	32,0	62,2	diese Arbeit
$(V_{0,2}Nb_{0,8})OPO_4$	15,1	74,3	diese Arbeit
$(V_{0,3}Nb_{0,7})OPO_4$	19,5	$81,\!6$	diese Arbeit
$(V_{0,4}Nb_{0,6})OPO_4$	19,5	81,4	diese Arbeit
$(V_{0,6}Nb_{0,4})OPO_4$	17,4	22,7	diese Arbeit
$(V_{0,8}Nb_{0,2})OPO_4$	9,3	7,9	diese Arbeit

a) Angegeben für 450 °C.

Literaturverzeichnis

- C. P. S. Ingolf V. Hertel, Atome, Moleküle und optische Physik 1, Springer-Verlag GmbH, 2017.
- [2] F. Jensen, Introduction to computational chemistry, 2. Aufl., (Hrsg.: Wiley), Wiley, Chichester, 2009.
- [3] I. Matsuura, N. Kimura, in New Developments in Selective Oxidation II, Proceedings of the Second World Congress and Fourth European Workshop Meeting, Elsevier, 1994, 271–279.
- [4] Y. Garsany, M. B. Sassin, B. D. Gould, K. Swider-Lyons, ECS Trans. 2015, 69, 1243–1250.
- [5] M. Conte, *Science* **2006**, *313*, 1270–1273.
- [6] F. F. N. Al-Anazi, Dissertation, Cardiff University, Cardiff, 2016.
- [7] G. He, W. H. Kan, A. Manthiram, Chem. Mater. **2016**, 28, 682–688.
- [8] Z. Chen, Q. Chen, H. Wang, R. Zhang, H. Zhou, L. Chen, M. S. Whittingham, Electrochem. commun. 2014, 46, 67–70.
- [9] J. Gaubicher, T. L. Mercier, Y. Chabre, J. Angenault, M. Quarton, J. Electrochem. Soc. 1999, 146, 4375–4379.
- [10] M. S. Whittingham, Y. Song, S. Lutta, P. Y. Zavalij, N. A. Chernova, J. Mater. Chem. 2005, 15, 3362.
- [11] S. Albonetti, F. Cavani, F. Trifirò, P. Venturoli, G. Calestani, M. L. Granados, J. Fierro, J. Catal. 1996, 160, 52–64.

- [12] V. Guliants, J. Benziger, S. Sundaresan, I. Wachs, J.-M. Jehng, J. Roberts, Catal. Today 1996, 28, 275–295.
- [13] S. Böcklein, G. Mestl, S. V. Auras, J. Wintterlin, Top. Catal. 2017, 60, 1682–1697.
- [14] Q.-N. Xia, Q. Cuan, X.-H. Liu, X.-Q. Gong, G.-Z. Lu, Y.-Q. Wang, Angew. Chem. Int. Ed. 2014, 53, 9755–9760.
- [15] H. Zhao, X. Hu, J. Hao, N. Li, K. Zhi, R. He, Y. Wang, H. Zhou, Q. Liu, Appl. Catal. A.: Gen. 2020, 591, 117378.
- [16] N. Nurhazanah, Y. Sy, H. Husin, C. Rosnelly, A. Maulana, IOP Conf. Ser. Mater. Sci. Eng. 2020, 796, 012048.
- [17] C. H. Mejía, D. Verbart, K. de Jong, Catal. Today 2021, 369, 77–87.
- [18] Y. Garsany, A. Epshteyn, K. L. More, K. E. Swider-Lyons, ECS Electrochem. Lett. 2013, 2, H46–H50.
- [19] Y. Xing, B. Yan, Z. Yuan, K. Sun, RSC Adv. 2016, 6, 59081–59090.
- [20] K. Lohbeck, H. H. ans Werner Fuhrmann, N. Fedtke, "Maleic and Fumaric Acids", Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2000.
- [21] C. Futter, S. Schunk, Maleinsäureanhydrid 2014, https://roempp.thieme.de/roempp4.0/do/data/RD-13-00331.
- [22] J. Burnett, R. Keppel, W. Robinson, Catal. Today 1987, 1, 537–586.
- [23] J. T. Gleaves, J. R. Ebner, T. C. Kuechler, Catal. Rev. 1988, 30, 49–116.
- [24] J. T. Cleaves, G. Centi, Catal. Today **1993**, 16, 69–78.
- [25] W. A. Goddard, in Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, Springer International Publishing, 2021, 1235–1248.
- [26] Y. Zhanglin, M. Forissier, R. Sneeden, J. Vedrine, J. Volta, J. Catal. 1994, 145, 256–266.

- [27] W. P. A. Jansen, M. Ruitenbeek, A. W. D. v.d. Gon, J. W. Geus, H. H. Brongersma, J. Catal. 2000, 196, 379–387.
- [28] L. Cornaglia, E. Lombardo, Appl. Catal. A Gen. 1995, 127, 125–138.
- [29] C. Heine, M. Hävecker, E. Stotz, F. Rosowski, A. Knop-Gericke, A. Trunschke, M. Eichelbaum, R. Schloegl, J. Phys. Chem. C 2014, 118, 20405–20412.
- [30] G. W. Coulston, Science **1997**, 275, 191–193.
- [31] G. Centi, I. Manenti, A. Riva, F. Trifiro, Appl. Catal. 1984, 9, 177–190.
- [32] M.-J. Cheng, W. A. Goddard, R. Fu, Top. Catal. 2014, 57, 1171–1187.
- [33] P. A. Agaskar, L. D. Caul, R. K. Grasselli, Catal. Lett. 1994, 23, 339–351.
- [34] W. C. O'Leary, W. A. Goddard, M.-J. Cheng, J. Phys. Chem. C 2017, 121, 24069–24076.
- [35] B. K. Hodnett, Catal. Rev. Sci. 1985, 27, 373–424.
- [36] F. Richter, H. Papp, G. U. Wolf, T. Goetze, B. Kubias, Fresenius J. Anal. Chem. 1999, 365, 150–153.
- [37] G. Mestl, D. Lesser, T. Turek, Top. Catal. **2016**, 59, 1533–1544.
- [38] D. Lesser, G. Mestl, T. Turek, Appl. Catal. A: Gen. 2016, 510, 1–10.
- [39] E. W. Arnold, S. Sundaresan, Appl. Catal. 1988, 41, 225–239.
- [40] J. Ziokowski, J. Catal. **1990**, 122, 126–150.
- [41] J. Frey, Y. S. Ooi, B. Thomas, V. R. Marthala, A. Bressel, T. Schoelkopf, T. Schleid, M. Hunger, Solid State Nucl. Magn. Reson. 2009, 35, 130–137.
- [42] V. A. Zazhigalov, J. Haber, J. Stoch, A. I. Pyatnitzkaya, G. A. Komashko, V. M. Belousov, Appl. Catal. A Gen. 1993, 96, 135–150.
- [43] D. Ye, A. Satsuma, A. Hattori, T. Hattori, T. Murakami, Catal. Today 1993, 16, 113–121.
- [44] A. Caldarelli, Dissertation, Universität von Bologna, Bologna, 2012.

- [45] B. He, L. Nan, Z. Li, B. Wen, J. Niu, R. Liu, ChemistrySelect 2019, 4, 662–669.
- [46] C. Schulz, S. Roy, K. Wittich, R. N. d'Alnoncourt, S. Linke, V. Strempel,
 B. Frank, R. Glaum, F. Rosowski, *Catal. Today* 2019, 333, 113–119.
- [47] S. C. Roy, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2015.
- [48] R. Gopal, C. Calvo, J. Solid State Chem. 1972, 5, 432.
- [49] F. Girgsdies, W.-S. Dong, J. K. Bartley, G. J. Hutchings, R. Schlögl, T. Ressler, Solid State Sci. 2006, 8, 807–812.
- [50] B. Jordan, C. Calvo, Can. J. Chem. **1973**, 51, 2621–2625.
- [51] R. Gautier, R. Gautier, O. Hernandez, N. Audebrand, T. Bataille, C. Roiland, E. ElkaÃ⁻m, L. L. Pollès, E. Furet, E. L. Fur, *Dalton Trans.* 2013, 42, 8124.
- [52] F. Girgsdies, M. Schneider, A. Brückner, T. Ressler, R. Schlögl, Solid State Sci. 2009, 11, 1258–1264.
- [53] F. Dornhaus, H. W. Lerner, M. Bolte, H. S. Horrowitz, E. M. McCarron, J. W. jr. Richardson, B. H. Toby, VOPO₄, **2005**, private communication.
- [54] P. Amorós, M. D. Marcos, M. Roca, J. Alamo, A. Beltrán-Porter, D.Beltrán-Porter, J. Phys. Chem. Solids 2001, 62, 1393–1399.
- [55] S. Islam, Dissertation, University of Bonn, 2012.
- [56] S. E. Lister, V. J. Rixom, J. S. O. Evans, Chem. Mater. 2010, 22, 5279–5289.
- [57] P. Kierkegaard, M. Westerlund, T. Reistad, D. R. Sparrow, Acta Chem. Scand. 1964, 18, 2217–2225.
- [58] J. M. Longo, P. Kierkegaard, G. H. Searle, K. Marøy, J. Brunvoll, E. Bunnenberg, C. Djerassi, R. Records, Acta Chem. Scand. 1966, 20, 72–78.
- [59] A. Leclaire, E. Chahboun, D. Groult, B. Raveau, Z. Kristallogr.- Cryst. Mater. 1986, 177.

- [60] E. M. Levin, R. S. Roth, J. Solid State Chem. 1970, 2, 250–261.
- [61] J. Longo, J. Pierce, J. Kafalas, Mater. Res. Bull. 1971, 6, 1157–1165.
- [62] H. Chahboun, D. Groult, M. Hervieu, B. Raveau, J. Solid State Chem. 1986, 65, 331–342.
- [63] N. Kinomura, M. Hirose, N. Kumada, F. Muto, T. Ashida, J. Solid State Chem. 1988, 77, 156–161.
- [64] S. C. Roy, R. Glaum, D. Abdullin, O. Schiemann, N. Q. Bac, K.-H. Lii, Z. anorg. allg. Chem. 2014, 640, 1876–1885.
- [65] Y. Piffard, S. Oyetola, A. Verbaere, M. Tournoux, J. Solid State Chem. 1986, 63, 81–85.
- [66] P. Kierkegaard, J. M. Longo, B.-O. Marinder, P. H. Nielsen, B. Sjöberg, E. Larsen, Acta Chem. Scand. 1965, 19, 763–764.
- [67] S. Boghosian, K. M. Eriksen, R. Fehrmann, K. Nielsen, C. P. Tønseth, K. R. Seddon, L. Bao-Sheng, Acta Chem. Scand. 1995, 49, 703–708.
- [68] J. M. Longo, R. J. Arnott, J. Solid State Chem. 1970, 1, 394–398.
- [69] U. Kaiser, G. Schmidt, R. Glaum, R. Gruehn, Z. Anorg. Allg. Chem. 1992, 607, 113–120.
- [70] P. Roussel, O. Pérez, P. Labbé, Acta Crystallogr. B: Struc. Sci. 2001, 57, 603–632.
- [71] S. Roy, B. Raguž, W. Assenmacher, R. Glaum, Solid State Sci. 2015, 49, 18–28.
- [72] S. C. Roy, W. Assenmacher, T. Linden, L. Esser, W. Mader, R. Glaum, Z. Naturforsch. B 2016, 71, 543–552.
- [73] T. G. Amos, A. W. Sleight, J. Solid State Chem. 2001, 160, 230–238.
- [74] S. Wang, C. Wang, K. Lii, J. Solid State Chem. 1989, 82, 298–302.
- [75] H. Mika, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2020.

- [76] D. L. Serra, S. J. Hwu, Acta Cryst. C 1992, 48, 733–735.
- [77] M. Y. Lu, F. Badway, J. R. Kim, G. G. Amatucci, Chem. Mater. 2016, 28, 2949–2961.
- [78] A. Leclaire, E. Chahboun, D. Groult, B. Raveau, Z. Kristallogr. Cryst. Mater. 1986, 177.
- [79] T. Shimoda, T. Okuhara, M. Misono, Bull. Chem. Soc. Jpn. 1985, 58, 2163–2171.
- [80] H. Tietze, Aust. J. Chem. 1981, 34, 2035–2038.
- [81] I. E. Grey, R. Stranger, J. Solid State Chem. 1992, 101, 331–339.
- [82] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1360.
- [83] T. Bredow, M.-W. Lumey, R. Dronskowski, H. Schilling, J. Pickardt, M. Lerch, Z. Anorg. Allg. Chem. 2006, 632, 1157–1162.
- [84] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [85] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- [86] S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105–5154.
- [87] D. V. Oliveira, J. Laun, M. F. Peintinger, T. Bredow, J. Comput. Chem. 2019, 40, 2364–2376.
- [88] J. Laun, D. V. Oliveira, T. Bredow, J. Comput. Chem. 2018, 39, 1285–1290.
- [89] J. Laun, T. Bredow, J. Comput. Chem. 2021, 42, 1064–1072.
- [90] J. Laun, T. Bredow, J. Comput. Chem. 2022, 43, 839–846.
- [91] F. Pascale, C. M. Zicovich-Wilson, F. L. Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem. 2004, 25, 888–897.
- [92] R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931–1940.
- [93] R. D. Shannon, Acta Crystallogr. Sec. A **1976**, 32, 751–767.
- [94] Crystal Orbital Hamilton Populations: The Official Reference Page, www.cohp.de, 19.04.2022.
- [95] N. Ballarini, F. Cavani, C. Cortelli, S. Ligi, F. Pierelli, F. Trifirò, C. Fumagalli, G. Mazzoni, T. Monti, *Top. Catal.* **2006**, *38*, 147–156.
- [96] E. V. Murashova, N. N. Chudinova, Kristallografiya **1994**, 1, 145–146.
- [97] V. V. Krasnikov, Z. Konstant, Neorg. Mater. 1979, 15, 2164–2167.
- [98] J. W. Johnson, D. C. Johnston, H. E. King, T. R. Halbert, J. F. Brody,
 D. P. Goshorn, *Inorg. Chem.* 1988, 27, 1646–1648.
- [99] E. Pachoud, J. Cumby, C. T. Lithgow, J. P. Attfield, J. Am. Chem. Soc. 2018, 140, 636–641.
- [100] R. Glaum, R. Gruehn, Z. Kristallogr. 1989, 91–93.
- [101] B. D. Jordan, C. Calvo, Acta Cryst. B 1976, 32, 2899–2900.
- [102] S.-C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 2003, 125, 10402–10411.
- [103] P. T. Nguyen, R. D. Hoffman, A. W. Sleight, Mater. Res. Bull. 1995, 30, 1055–1063.
- [104] Z. Hiroi, M. Azuma, Y. Fujishiro, T. Saito, M. Takano, F. Izumi, T. Kamiyama, T. Ikeda, J. Solid State Chem. 1999, 146, 369–379.
- T. Saito, T. Terashima, M. Azuma, M. Takano, T. Goto, H. Ohta, W. Utsumi,
 P. Bordet, D. Johnston, J. Solid State Chem. 2000, 153, 124–131.
- [106] Y. Gorbunova, S. A. Linde, Dokl. Akad. Nauk SSSR 1979, 245, 584–588.
- [107] G. Rousse, C. Wurm, M. Morcrette, J. Rodriguez-Carvajal, J. Gaubicher,
 C. Masquelier, Int. J. Inorg. Chem. 2001, 3, 881–887.

- [108] E. Benser, R. Glaum, T. Dross, H. Hibst, Chem. Mater. 2007, 19, 4341– 4348.
- [109] S. Linde, Y. Gorbunova, A. Lavrov, Zh. Neorg. Khim. 1983, 1, 29–32.
- [110] N. Middlemiss, F. Hawthorne, C. Calvo, Can. J. Chem. 1977, 55, 1673–1679.
- [111] R. Glaum, R. Gruehn, Z. Kristallogr. 1992, 198, 41–47.
- [112] S. S. Fedotov, A. S. Samarin, V. A. Nikitina, K. J. Stevenson, A. M. Abakumov, E. V. Antipov, ACS Appl. Mater. Interfaces 2019, 11, 12431–12440.
- [113] K. K. Palkina, S. I. Maksimova, N. T. Chibiskova, K. Schlesinger, G. Ladwig, Z. Anorg. Allg. Chem. 1985, 529, 89–96.
- [114] R. Gautier, Dissertation, Université de Rennes, Rennes, 2010.
- [115] O. Lapina, D. Khabibulin, A. Shubin, V. Bondareva, J. Mol. Catal. A Chem. 2000, 162, 381–390.
- [116] F. B. Abdelouahab, J. Catal. 1992, 134, 151–167.
- [117] S. A. Ennacir, C. R'Kha, P. Barboux, J. Livage, J. Maquet, J. Sol-Gel Sci. Technol. 2005, 34, 197–203.
- [118] J. C. Schoen, M. Jansen, Angew. Chem. Int. Ed. Engl. 1996, 35, 1286–1304.
- [119] M. Jansen, J. C. Schoen, Angew. Chem. Int. Ed. 2006, 45, 3406–3412.
- [120] M. Jansen, I. V. Pentin, J. C. Schoen, Angew. Chem. Int. Ed. 2011, 51, 132–135.
- [121] D. Fischer, M. Jansen, Angew. Chem. Int. Ed. 2002, 41, 1755–1756.
- [122] A. L. E. Smalley, M. L. Jespersen, D. C. Johnson, Inorg. Chem. 2004, 43, 2486–2490.
- [123] R. Kniep, H. J. Beister, D. Wald, Z. Naturforsch. B 1988, 43, 966–980.
- [124] K. Snyder, B. Raguž, W. Hoffbauer, R. Glaum, H. Ehrenberg, M. Herklotz, Z. anorg. allg. Chem. 2014, 640, 944–951.
- 314

- [125] B. Raguž, K. Wittich, R. Glaum, Eur. J. Inorg. Chem. 2018, 2019, 1688– 1696.
- [126] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194.
- [127] Y. Song, P. Y. Zavalij, M. Suzuki, M. S. Whittingham, Inorg. Chem. 2002, 41, 5778–5786.
- [128] D. Weber, A. Stork, S. Nakhal, C. Wessel, C. Reimann, W. Hermes, A. Müller, T. Ressler, R. Pöttgen, T. Bredow, R. Dronskowski, M. Lerch, *Inorg. Chem.* 2011, 50, 6762–6766.
- [129] T. Lüdtke, D. Weber, A. Schmidt, A. Müller, C. Reimann, N. Becker, T. Bredow, R. Dronskowski, T. Ressler, M. Lerch, Cryst. Mat. 2017, 232.
- [130] J. E. Page, H. W. T. Morgan, D. Zeng, P. Manuel, J. E. McGrady, M. A. Hayward, *Inorg. Chem.* 2018, 57, 13577–13585.
- [131] S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda, J. Solid State Chem. 2010, 183, 1496–1503.
- [132] M. Tachez, F. Theobald, E. Bordes, J. Solid State Chem. **1981**, 40, 280–283.
- [133] T. Droß, Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, 2004, https://nbn-resolving.org/urn:nbn:de:hbz:5N-03770.
- [134] R. Glaum, Habilitation, Justus-Liebig-Universität Gießen, Gießen, 1999, http://geb.uni-giessen.de/geb/volltexte/1999/124/.
- [135] W. Pies, Ber. Bunsenges. Physik. Chem. **1975**, 79, 109–109.
- [136] K. Bakhmutsky, J. I. Alsous, R. J. Gorte, Catal. Lett. 2012, 142, 578–581.
- [137] A. Bronova, Bachelorarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2011.
- [138] ETCH Zürich, https://wenku.baidu.com/view/11ac7528bd64783e09122b0a.html., 2021-03-22.

- [139] E. Benser, Dissertation, Rheinische-Friedrich-Wilhelms-Universität Bonn, Bonn, 2007, https://nbn-resolving.org/urn:nbn:de:hbz:5N-13219.
- [140] K. Lii, C. Li, C. Cheng, S. Wang, J. Solid State Chem. 1991, 95, 352–359.
- [141] B. N. F. Figgis, Hitchman, Ligand Field Theory, John Wiley & Sons, 1999.
- [142] S. Umlauf, Dissertation, Universitä Bonn, geplant.
- [143] S. Pellizzeri, T. M. Korter, J. Zubieta, J. Mol. Struct. 2011, 1003, 21–30.
- [144] E. J. Baran, F. Muto, N. Kumada, N. Kinomura, J. Mater. Sci. Lett. 1989, 8, 1305–1306.
- [145] H. Numata, T. Ono, J. Mol. Catal. A Chem. 1998, 130, 261–269.
- [146] M. Hanawa, H. Imoto, J. Solid State Chem. 1999, 144, 325–329.
- [147] W. L. Finger, Year Book Carnegie Institution of Washington 1974.
- [148] W. Milligan, D. Mullica, G. Beall, L. Boatner, Inorg. Chim. Acta 1982, 60, 39–43.
- [149] G. Lohmüller, G. Schmidt, B. Deppisch, V. Gramlich, C. Scheringer, Acta Cryst. B 1973, 29, 141–142.
- [150] J. Kendrick, A. D. Burnett, J. Comput. Chem. 2016, 37, 1491–1504.
- [151] T. Amos, A. Yokochi, A. Sleight, J. Solid State Chem. 1998, 141, 303–307.
- [152] S. Oyetola, A. Verbaere, D. Guyomard, M. P. Crosnier, Y. Piffard, M. Tournoux, *ChemInform* 2010, 22, no-no.
- [153] S. Oyetola, A. Verbaere, D. Guyomard, Y. Piffard, M. Tournoux, Eur. J. Inorg. Chem. 1989, 28, 23.
- [154] C. Wodak, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2019.
- [155] U. Müller, Anorganische Strukturchemie, Vieweg+Teubner Verlag, 2008.
- [156] E. Bordes, P. Courtine, J. Chem. Soc., Chem. Commun. 1985, 0, 294–296.

³¹⁶

- [157] M. Sananes-Schulz, A. Tuel, G. Hutchings, J. Volta, J. Catal. 1997, 166, 388–392.
- [158] M. Casais, E. Gutiérrez-Puebla, M. Monge, I. Rasines, C. Ruź-Valero, J. Solid State Chem. 1993, 102, 261–266.
- [159] C. Börrnert, W. Carrillo-Cabrera, P. Simon, H. Langbein, J. Solid State Chem. 2010, 183, 1038–1045.
- [160] A. Valentoni, P. Barra, N. Senes, G. Mulas, C. Pistidda, J. Bednarcik, F. Torre, S. Garroni, S. Enzo, *Dalton Trans.* 2019, 48, 10986–10995.
- [161] B. Reitz, R. Gruehn, Sci. Nat. 1984, 71, 474–475.
- [162] B. Reitz, R. Gruehn, Z. Anorg. Allg. Chem. 1986, 540, 215–226.
- [163] S. Titlbach, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2012, https://nbn-resolving.org/urn:nbn:de:hbz:5n-36422.
- [164] P. A. Agaskar, R. K. Grasseli, **1994**.
- [165] J. Zah-Letho, A. Verbaere, A. Jouanneaux, F. Taulelle, Y. Piffard, M. Tournoux, J. Solid State Chem. 1995, 116, 335–342.
- [166] G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter 1996, 54, 11169– 11186.
- [167] M. G. Willinger, D. S. Su, R. Schlögl, Phys. Rev. B 2005, 71.
- [168] D. Reinen, M. Atanasov, S.-L. Lee, Coord. Chem. Rev. 1998, 175, 91–158.
- [169] E. Ruiz, A. Rodríguez-Fortea, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 2003, 24, 982–989.
- [170] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi, CRYSTAL UNITO Basis Sets Library 2013.
- [171] C. M. Zicovich-Wilson, A. Bert, C. Roetti, R. Dovesi, V. R. Saunders, J. Chem. Phys. 2002, 116, 1120–1127.
- [172] T. Bredow, K. Jug, R. A. Evarestov, Phys. Status Solidi B 2006, 243, R10–R12.

- [173] C. Pisani, E. Aprà, M. Causà, Int. J. Quantum Chem. 1990, 38, 395–417.
- [174] R. Nilsson, T. Lindblad, A. Andersson, Catal. Lett. 1994, 29, 409–420.
- [175] M. O. Guerrero-Pérez, M. A. Bañares, Catal. Today 2009, 142, 152–157.
- [176] B. Kinberger, J. Danielsen, A. Haaland, B. Jerslev, C. E. Schäffer, E. Sunde, N. A. Sörensen, Acta Chem. Scand. 1970, 24, 320–328.
- [177] K. Kurbanov, Kristallografia **1987**, 32, 1265–1267.
- [178] A. Jouanneaux, A. Verbaere, D. Guyomard, Y. Piffard, S. Oyetola, A. N. Fitch, Eur. J. Inorg. Chem. 1991, 28, 755–765.
- [179] K. Kasahara, H. Imoto, T. Saito, J. Solid State Chem. 1995, 118, 104–111.
- [180] B. A. Adair, A. K. Cheetham, J. Solid State Chem. 2000, 155, 451–454.
- [181] A. Verbaere, S. Oyetola, D. Guyomard, Y. Piffard, J. Solid State Chem. 1988, 75, 217–224.
- [182] G. Meyer, J. Soose, Dissertation, Universität Gießen, 1980.
- [183] A. Jouanneaux, A. Fitch, S. Oyetola, A. Verbaere, D. Guyomard, Y. Piffard, Eur. J. Inorg. 1993, 30, 125–137.
- [184] A. Leclaire, M. M. Borel, B. Raveau, D. Mezaoui, Z. Kristallogr.- Cryst. Mater. 1997, 212.
- [185] P. Schmidt, Habilitation, Technische Universität Dresden, Dresden, 2007, https://nbn-resolving.org/urn:nbn:de:bsz:14-ds-1200397971615-40549.
- [186] B. Domenges, M. Goreaud, P. Labbé, B. Raveau, Acta Cryst. B 1982, 38, 1724–1728.
- [187] Y. NejatyJahromy, S. C. Roy, R. Glaum, O. Schiemann, Appl. Magn. Reson. 2021, 52, 169–175.
- [188] H. F. Mollet, B. C. Gerstein, J. Chem. Phys. **1974**, 60, 1440–1446.
- 318

- [189] R.-M. Peng, Y. Mei, W.-C. Zheng, C.-F. Wei, Physica B Condens. 2015, 461, 106–109.
- [190] S. Morandi, G. Ghiotti, A. Chiorino, E. Comini, *Thin Solid Films* 2005, 490, 74–80.
- [191] K. Brandenburg, Match!, Crystal Impact, 2015.
- [192] S. Kunz, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2017.
- [193] A.-D. Li, J.-Z. Kong, H.-F. Zhai, J.-B. Cheng, H. Li, D. Wu, J. Am. Ceram. Soc. 2009, 92, 1959–1965.
- [194] A. Schmidt, Dissertation, Universität Gießen, Gießen, 2002.
- [195] A. Varma, A. S. Mukasyan, A. S. Rogachev, K. V. Manukyan, Chem. Rev. 2016, 116, 14493–14586.
- [196] A. Salunkhe, V. Khot, M. Phadatare, S. Pawar, J. Alloys Compd. 2012, 514, 91–96.
- [197] S. T. Aruna, A. S. Mukasyan, Curr. Opin. Solid St. M. 2008, 12, 44–50.
- [198] A. Franco, T. E. P. Alves, E. C. de Oliveira Lima, E. da Silva Nunes, V. Zapf, Appl. Phys. A 2008, 94, 131–137.
- [199] P. Ravindranathan, K. C. Patil, Proc. Indian Acad. Sci. 1985, 95, 345–356.
- [200] J. J. Kingsley, K. C. Patil, Mater. Lett. **1988**, 6, 427–432.
- [201] J. J. Moore, H. J. Feng, Prog. Mater. Sci. 1995, 39, 275–316.
- [202] M. Weber, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2016.
- [203] W. Massa, Kristallstrukturbestimmung, 5. auflage Aufl., (Hrsg.: Teubner-Verlag), Teubner, Stuttgart/Leipzig/Wiesbaden, 2007.
- [204] Isotopenmeßgeräte GmbH, Programm AIDA: Advanced Image Data Analyser (AIDA)., versoin 2.2, raytest Aufl., 1999.

- [205] ICDD, https://www.icdd.com/pdf-2/, 06.04.2022.
- [206] C. R. Hubbard, E. H. Evans, D. K. Smith, J. Appl. Crystallogr. 1976, 9, 169–174.
- [207] OriginLab Corporation, OriginPro 8G, 2017.
- [208] Gmelin-Institut, FIZ, Karlsruhe, The International Centre for Diffraction Data, find-it version 1.7.1 Aufl., 2010.
- [209] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73–74.
- [210] R. Hübenthal, Programm Gina, Universität Gießen, Gießen, 1991.
- [211] M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457–484.
- [212] R. G. Parr, in Horizons of Quantum Chemistry, Springer Netherlands, 1980, 5–15.
- [213] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864–B871.
- [214] J. P. Perdew, in AIP Conf. Proc., Bd. 577, AIP, Bd. 577.
- [215] S. F. Sousa, P. A. Fernandes, M. J. Ramos, J. Phys. Chem. A 2007, 111, 10439–10452.
- [216] A. D. Becke, Phys. Rev. A **1988**, 38, 3098–3100.
- [217] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
 D. J. Singh, C. Fiolhais, *Phys. Rev. B* 1992, 46, 6671–6687.
- [218] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- [219] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- [220] B. Hardtke, Vorlesungsskript, Universtät Kiel.
- [221] S. Grimme, A. Hansen, S. Ehlert, J.-M. Mewes, J. Theor. Comput. Chem. 2020.
- [222] W. Koch, M. C. Holthausen, A chemist's guide to density functional theory, 2nd ed., 5. reprint Aufl., Wiley-VCH, 2008.

³²⁰

- [223] C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664–675.
- [224] T. Bredow, A. R. Gerson, Phys. Rev. B 2000, 61, 5194–5201.
- [225] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
- [226] P. W. Atkins, *Physikalische Chemie*, 2. auflage Aufl., VCH Verlagsgesellschaft, **1996**.
- [227] H. Goldstein, Klassische Mechanik, Wiley-VCH Verlag, Weinheim, 2006.
- [228] I. G. Trubach, A. I. Orlova, A. I. Beskrovnyi, A. K. Koryttseva, M. V. Zharinova, V. S. Kurazhkovskaya, E. V. Lipatova, *Kristallografiya* 2004, 49, 462–466.
- [229] H. Fukuoka, H. Imoto, T. Saito, J. Solid State Chem. 1995, 119, 98–106.
- [230] A. Leclaire, M.-M. Borel, A. Grandin, B. Raveau, Acta Cryst. C 1989, 45, 699–701.
- [231] A. Benabbas, M. M. Borel, A. Grandin, A. Leclaire, B. Raveau, Acta Cryst. C 1991, 47, 849–850.
- [232] J. Xu, S. C. Chen, K. V. Ramanujachary, M. Greenblatt, Inorg. Chem. 1994, 33, 267–270.
- [233] R. S. Roth, A. D. Wadsley, S. Andersson, Acta Crystallogr. 1965, 18, 643–647.
- [234] V. P. Nicolaev, G. G. Sadikov, A. V. Lavrov, M. A. P. Koshits, Neorg. Mater. 1986, 22, 1364–1368.
- [235] J. Zah-Letho, A. Jouanneaux, A. Fitch, A. Verbaere, M. Tournoux, Eur. J. Inorg. Chem. 1992, 29, 1309–1320.
- [236] J. J. Zah-Letho, A. Verbaere, A. Jouanneaux, F. Taulelle, Y. Piffard, M. Tournoux, J. Solid State Chem. 1995, 116, 335–342.

Abbildungsverzeichnis

1.1	Oxidation von Benzol zu MA über $\mathrm{V}_2\mathrm{O}_5$ als Katalysator	2
1.2	Oxidation von $n\operatorname{-Butan}$ zu MA über $(\mathrm{VO})_2\mathrm{P}_2\mathrm{O}_7$ als Katalysator	3
1.3	Intermediate der Umsetzung von <i>n</i> -Butan zu MSA	3
1.4	Mögliche aktive Spezies unterschiedlicher VPO-Phasen bei der	
	Katalyse von n -Butan zu Maleinsäureanhydrid	4
1.5	Zweiphasenmachanismus für die Gasphasen oxidation von $n\mbox{-}Butan$	
	zu MSA mit VPO als Katalysator.	6
2.1	Projektion der Kristallstruktur von β -VOSO ₄	13
2.2	Projektionen der Kristallstruktur von SbOPO $_4$ entlang der kristallo-	
	graphischen Achsen c,a und $b.$ Die Verkippung und Verdrehung eines	
	Okta ederstrangs von SbOPO_4 ist in Projektion entlang der a- und $b\text{-}$	
	Achsen dargestellt (c). Bindungslängen im $[{\rm SbO}_6]\mbox{-}{\rm Oktaeder}$ (d). Die	
	$[\mathrm{SbO}_6]\text{-}\mathrm{Oktaeder}$ sind grün, $[\mathrm{PO}_4]\text{-}\mathrm{Tetraeder}$ gelb, rot die Oxidionen.	15
2.3	Vergleich der Kristallstrukturen von ϵ -VOPO ₄ (a) und β -VOPO ₄ (b).	
	Die blaue Linie soll den Unterschied der Strukturen verdeutlichen. Un-	
	terstützend wurden die Oxid-Ionen vergrößert, welche aus der $ac\mathchar`-Ebene$	
	in $\epsilon\text{-}$ und der $ba\text{-}\textsc{Ebene}$ in $\beta\text{-}\textsc{VOPO}_4$ heraus zeigen. Grün sind die [VO_6]-	
	Oktaeder, gelb $[PO_4]$ -Tetraeder.	15
2.4	Kristallstruktur von α -MoOPO ₄ entlang der <i>c</i> - und <i>b</i> -Achse (a), Bin-	
	dungslängen der Vertreter des $\alpha\textsc{-MoOPO_4}\sc-Strukturtyp$ mit V, Mo und	
	Nb (b). Grün sind die $[\mathrm{VO}_6]\text{-}\mathrm{Oktaeder},$ gelb die $[\mathrm{PO}_4]\text{-}\mathrm{Tetraeder}.$	16
2.5	Die Kristallstrukturen von $(PO_2)_4(WO_3)_{2m}$ mit $m = 2$ (a) und $m =$	
	6 (b). Dunkelgrün eingezeichnet ist $[\mathrm{W1O}_6],$ grün $[\mathrm{W2O}_6],$ hellgrün	
	$[W3O_6]$, hellblau $[W4O_6]$ und gelb $[PO_4]$.	19

2.6	Projektion der Kristallstruktur von α_{I} -VOPO ₄ entlang der kristallogra- phischen <i>b</i> - und <i>c</i> -Achse. Die Koordination von Vanadium ist sowohl	
	oktaedrisch als auch quadratisch-pyramidal eingezeichnet. $[VO_x]$ grun, $[PO_4]$ gelb	22
2.7	Kristallstruktur von ω -VOPO ₄ /X1-VOPO ₄ entlang der <i>c</i> -Achse und der kristallographischen <i>a</i> -Achse. In der Darstellung ist die gemittelte Position der Sauerstofflagen dargestellt (O1: Wyckoff-Lage 2 <i>b</i> anstelle 4 <i>m</i> ; O2: Wyckoff-Lage 8 <i>o</i> statt 16 <i>r</i>).	23
2.8	Kristallstruktur von VOPO ₄ · 2 H ₂ O entlang der kristallographischen c- und b -Achse. Die blauen, vergrößerten Sauerstoffatome geben die Position des Wassers an, welches zwischen den Schichten eingelagert ist. Die in der Abbildung kleiner dargestellten blauen Wassermolküle sind koordinativ an Vanadium gebunden ([(V=O)O ₄ (H ₂ O)]), und einer dargestellten blauen Vanadium gebunden ([(V=O)O ₄ (H ₂ O)]).	24
2.9	Kristallstruktur von α -TiOSO ₄ . Projektion entlang der <i>a</i> - und <i>b</i> -Achse. [Ti1O ₆]: grün; [Ti2O ₆]: blau; [PO ₄]: gelb	25
2.10	Kristallstruktur von SbPO ₄ entlang der Achsen a (a), b (b) und c (c). Die Sb-Sb-Abstände sind in (d) und (e) eingezeichnet. Grau markiert in (d) sind die Sb-Atome in der hinteren Elementarzelle, grün in der vorderen. In (e) sind zusätzlich die Sb-O-Abstände der Koordinationspolyeder dargestellt.	26
2.11	Kristallstrukturen von SbOPO ₄ (SbOPO ₄ -Typ) (a) und NbOPO ₄ (SbOPO ₄ -Typ) (b) nach der Optimierung. [MoO ₆]-Oktaeder grün, [PO ₄] Tetraeder gelb	30
2.12	Zusammenstellung berechneter interatomarer Abstände von $d(M \equiv O)$ und $d(M-O_{ax})$ vom α -MoOPO ₄ -Typ, sowie des <i>c</i> -Gitterparameters für $M = V$, Mo, Nb, W, Ta und Sb	30
2.13	$[VO_6]$ -Oktaeder von VOPO ₄ mit β -VOSO ₄ -Struktur (a) und mit hypothetischer MPTB-Struktur (b). Die angegeben V-O _{eq} -Bindungslängen sind gemittelt	n 31
2.14	Integrierte M -O-Bindungsstärken (kJ/mol) aller M OPO ₄ -Vertreter. Resultate der Berechnungen mit LOBSTER 4.0.0 [92]	32
2.15	Berechnete relative freien Enthalpie ΔG (kJ/mol) verschiedener VOPO ₄ -Polymorphe	33

2	.16	Berechnete relative Freie Enthalpien ΔG (kJ/mol) verschiedener McOPO – Polymorphe	34
2	17	Borochusta relativa Fraian Enthalpian AC (k L/mal) varsahiadanar	94
2	.11	NhOPO $_4$ -Polymorphe	35
2	18	Berechnete relative Freie Enthalpie ΔG (k.I/mol) verschiedener	00
-	.10	$TaOPO_4$ -Polymorphe	37
2	.19	Berechnete relative Freien Enthalpie ΔG (kJ/mol) verschiedener	
		WOPO ₄ -Polymorphe.	37
2	.20	Berechnete relative Freie Enthalpie ΔG (kJ/mol) verschiedener	
		SbOPO ₄ -Polymorphe	38
3	.1	Übersicht unterschiedlicher Synthesewege und Precursoren zur gezielten	
		Darstellung der VOPO ₄ -Polymorphe [114]. \ldots \ldots \ldots \ldots	44
3	.2	Die Kristallstrukturen von VOPO ₄ · 2 H ₂ O (a) und α_{II} -VOPO ₄ (b) mit	
		Projektionen entlang der kristallographischen c - und b -Achse. Die blauen,	
		vergrößerten Sauerstoffatome geben die Position des Wassers koordiniert	
		an $[VO_5]$ sowie zwischen den Schichten an	45
3	.3	Pulverdiffraktogramm (Guinier, Cu-K α_1) nach Tempern von VOPO ₄ ·	
		2 H ₂ O in einer Kieselglashalbampulle im Kammerofen bei 700 °C für	
		sechs Tage an Luft (a). Die unterlegten Simulationen sind $VOPO_4$ · 2	
		H ₂ O (blau) und α_{II} -VOPO ₄ (schwarz) (b)	46
3	.4	Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Experimenten	
		zur Darstellung von α_{II} -VOPO ₄ im Sauerstoffstrom nach drei Tagen	
		bei 750 °C mit Heizrampe (a), ein Ansatz nach sechs und 13 Tagen	
		Im Sauerstonstrom onne Heizrampe (b), sowie die Synthese im Kammerofen auf einer Quarzelaeplatte bei 700° C an Luft für zwei	
		Tage (c) mit den Simulationen von VOPO $(\cdot, 2 H_0O)$ (blau) our	
		VOPO ₄ (schwarz) β -VOPO ₄ (rot) und γ -VOPO ₄ (violett)	48
3	5	Schematische Darstellung der Quarzglasplatte mit der Phasenvertei-	10
0	.0	lung der erhaltenen Produkte nach mehreren Reaktionsdurchgängen	
		nach dem Abkühlen.	50
3	.6	Pulverdiffraktogramme (Guinier, Cu-K α_1) von Proben aus einem	
		Experiment zur Darstellung von α_{II} -VOPO ₄ auf einer Quarzglasp-	
		latte. Proben entnommen von der Mitte (a) und vom Rand (b).	50

3.'	³¹ P-NMR-Spektren von β -VOPO ₄ (a) und α_{II} -VOPO ₄ (b). Die Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal ist einer dauerhaften Verunreinigung des Rotors zuzuschreiben, das Signal bei 7,9 ppm kann VOPO ₄ · 2 H ₂ O zugeordnet werden [117].	51
3.8	8 Barogramm des Systems VPO _n $(n = 0; 4; 4,5; 5)$ mit den Sauer- stoffpartialdrücken gängiger Reaktionsatmosphären.	56
3.9	9 Pulverdiffraktogramm (Guinier, Cu-K α_1) nach der Reduktion von VPO ₄ - m1 bei 900 °C für zwei Tage. Simulation für β -V ₂ OPO ₄ , die Sterne markieren Reflexe von V ₂ O ₃ .	58
3.1	10 Pulverdiffraktogramme (Guinier, Cu-Kα ₁) von VPO ₄ -m1 vor der Gleich- gewichtseinstellung (a) und nach isothermer Behandlung in einer eva- kuierten Ampulle bei 700 °C für einen Tage mit Simulation von VPO ₄ - Cmcm (b)	59
3.1	11 Pulverdiffraktogramme (Guinier, Cu-K α_1) zur Synthese von VPO ₄ - m1 (a-e) und m2 (f) ausgehend von 350 mg β -VOPO ₄ . Kreise markieren Reflexe, die einer monoklinen Zelle mit bisher unbekann- ter Kristallstruktur zugeordnet werden können ($a = 13,0989$ Å, $b = 5,3643$ Å, $c = 7,6210$ Å, $\beta = 93,508$ °).	60
3.1	12 Pulverdiffraktogramme (Guinier, Cu-K α_1) der Produkte aus der Re- Oxidation von VPO ₄ -m1 (a) nach einem Tage bei 450 °C (b) und zwei Tagen bei 450 °C (c). Schwarz ist die Simulation von (VO) ₂ P ₂ O ₇ , violett von β -VOPO ₄	61
3.1	13 Vergleich der Kristallstrukturen von β -VOPO ₄ (a), LiVOPO ₄ [140] (b) und VPO ₄ -m1' basierend auf β -VOPO ₄ mit quadratisch-planaren [V ^{III} O ₄] (c). Phosphatgruppen sind gelb, V ⁵⁺ orange, V ⁴⁺ blau, Li ⁺ grün, V ³⁺ dunkelbraun (70% Besetzung) und hellbraun (30% Besetzung)	
	dargestellt. S.O.F Site occupation factor.	62

3.1	14 Pulverdiffraktogramme (Guinier, Cu-K α_1) von VPO ₄ -m1 (Aufnahmezeit	
	300 min) im Vergleich zu Simulationen nach verschiedenen Strukturmo-	
	dellen. V1 ist voll besetzt (b), die Vanadiumlage in (c) ist gesplittet in	
	V1 und V2. Strukturmodell nach DFT-Optimierung (d) mit gesplitteten	
	Vanadiumlagen V1 und V2 (e) und nur mit Besetzung von V2 (VPO ₄ -	
	m1') (f). Nicht zugeordnete Reflexe sind mit einem Kreis gekennzeichnet.	
		63
3.1	15 Kristallstruktur von VPO ₄ - $m2$	64
3.1	16 Pulverdiffraktogramm (Guinier, Cu-K α_1) von VPO ₄ -m2 im Vergleich	
	mit Simulationen verschiedener Strukturmodelle, (b) ist an das Expe-	
	riment angepasst, (c) das Modell nach der DFT-Strukturoptimierung.	
		65
3.1	17 VPO ₄ - $m1$. Reziproke Suszeptibilität (grau) und effektives magnetisches	
	Moment (schwarz) gegen die Temperatur. Der Curie-Weiss-Plot für den	
	Temperaturbereich 200-300 K ist als gestrichelte Linie dargestellt. $\ .$.	66
3.1	18 Pulverremissionsspektrum im NIR/vis/UV-Bereich von VPO ₄ - $m1$ (oben)	
	und VPO ₄ (CrVO ₄ -Typ, unten [142])	66
3.1	19 IR (links) und Raman (rechts) von β -VOPO ₄ . In der Simulation von	
	$\beta\text{-VOPO}_4$ ist die VPO_4 (CrVO_4-Typ), VPO_4-m1 und VPO_4-m2 im	
	Vergleich zu den DFT-Rechnungen. Die Vanadylschwingung grün gefärbt	
	. Die Spektren von VPO4- $m2$ wurden ohne Intensitäten berechnet. $\ .$	68
3.2	20 Kristallstruktur von VPO ₄ - $m1$ " nach der DFT-Struktur optimierung	70
3.2	21 Kristallstruktur von VPO_4 -m3 nach der DFT-Strukturoptimierung.	73
3.2	22 Kristallstruktur von VPO ₄ - $m4$ nach der DFT-Strukturoptimierung	
	(Zirkon-Strukturtyp).	74
3.2	23 Kristallstruktur von VPO ₄ - m 5	75
3.2	24 Simulierte Pulverdiffraktogramme (Cu-K α_1) für VPO ₄ -m3 (a),VPO ₄ -	
	m_5 (b) und die thermodynamisch stabile Form von VPO ₄ (CrVO ₄ -Typ)	
	(c)	76
4.1	1 Pulverremissionsspektren von α - und β -NbOPO ₄	80
4.2	2 PDOS der Niob- und Sauerstoffatome von α - und β -NbOPO ₄	81
4.3	3 IR- und Ramanspektren von α -NbOPO ₄ (a, b) und β -NbOPO ₄ mit	
	berechneten Schwingungsfrequenzrechnungen (c, d)	83

4.4	DSC-Messung von β -TaOPO ₄ . Aufgetragen ist die Leistung gegen die
	Temperatur, Aufheizen (rot) und Abkühlen (schwarz); Enthalpie (J/g). 85
5.1	Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Proben der Zusam-
	mensetzung $(V_{0,1}Nb_{0,9})OPO_4$ nach Tempern an Luft bei 800 °C (a) und
	bei 1000 °C (b) mit den Simulationen für $(V_{0,1}Nb_{0,9})OPO_4$ basierend
	auf α -NbOPO ₄ (blau) und von β -NbOPO ₄ (rot)
5.2	Pulverdiffraktogramme (Guinier, Cu-K α_1) der Proben von (V _{1-x} Nb _x)OPO ₄
	nach Tempern bei 700 °C an Luft von $x = 0.0; 0.1; 0.3; 0.5; 0.9$ und 1.0
	mit den Simulationen im α -MoOPO ₄ -Typ (blau) und dem β -NbOPO ₄ -
	Strukturtyp (rot). Die Verschiebung der Reflexe mit der Zusammenset-
	zung wird durch die gestrichelte Linie hervorgehoben 91
5.3	Relative Änderung der Gitterparameter a und c sowie des Zellvolumens
	der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4 \ (0, 1 \le x \le 1, 0)$ in Abhängig-
	keit von der Zusammensetzung bezogen auf α_{II} -VOPO ₄
5.4	Pulverdiffraktogramme (Guinier, Cu-K α_1) zu den Gleichgewichtsexperi-
	menten mit den Zusammensetzungen $x = 0,2; 0,5; 0,8$ nach Tempern in
	evakuierten Kieselglas ampullen bei 700 °C für zehn Tage 92
5.5	Vergleich der IR- und Ramanspektrum von α -NbOPO ₄ (a bis d), (V _{0,5} Nb _{0,5})OPO ₄
	(e, f) und α_{II} -VOPO ₄ (g bis j) mit den berechneten Spektren. Rote Li-
	nien kennzeichnen die $M \equiv$ O-Streckschwingungen in den Simulationen,
	die Pfeile in den Messungen
5.6	UV/vis Pulverremissions spektren von $\beta\text{-}\mathrm{VOPO}_4$ (blau), $\alpha_\mathrm{II}\text{-}\mathrm{VOPO}_4$
	(rot), $(V_{0,7}Nb_{0,3})OPO_4$ (grün), $(V_{0,5}Nb_{0,5})OPO_4$ (orange), $(V_{0,1}Nb_{0,9})OPO_4$
	(violett) und α -NbOPO ₄ (magenta). Alle Pulver, mit Ausnahme von
	$NbOPO_4$, zeigen eine leuchtend zitronengelbe Farbe. Die Nummerierung
	der Banden dient zur einfachen Beschreibung in der Diskussion. \ldots . 96
5.7	Ketten aus $[MO_6]$ -Oktaedern nach DFT-Strukturoptimierung (Superzel-
	le, 2×2×2) ohne Symmetrie für die Zusammensetzungen (V $_{16/16}\rm Nb_{0/16})\rm OPO_4$
	(a), $(V_{0/16}Nb_{16/16})OPO_4$ (b) so wie der Mischkristalle $(V_{15/16}Nb_{1/16})OPO_4$
	(c) und $(V_{1/16}Nb_{15/16})OPO_4$ (d); Abstände in Å. Blau ist Nb ⁵⁺ , orange
	V^{5+} und rot sind die Oxidionen
5.8	$PDOS der 2 \times 2 \times 2 - Superzellen von (V_{16/16}Nb_{0/16})OPO_4, (V_{0/16}Nb_{16/16})OPO_4$
	sowie der Mischkristalle $(V_{15/16}Nb_{1/16})OPO_4$ und $(V_{1/16}Nb_{15/16})OPO_4$. 103

5.9	Umsatz von <i>n</i> -Butan (oben) und Selektivität für die Bildung von Maleinsäureanhydrid in Abhängigkeit der Temperatur und Zusam- mensetzung des Katalysators.	105
5.10	Pulverdiffraktogramme (Guinier, Cu-K α_1) ausgewählter Proben, (V _{0,1} Nb _{0,9})OPO ₄ , (V _{0,4} Nb _{0,6})OPO ₄ , (V _{0,8} Nb _{0,2})OPO ₄ , vor und nach den katalytischen Tests. Die Sterne markieren die MPTB-Nebenphase	.106
6.1	Pulverdiffraktogramme (Guinier, Cu-K α_1) von SbPO ₄ /SbOPO ₄ nach dem Tempern bei 700 °C für einen Tag (a), 4 Tagen (b) und nach einem Tag bei 800 °C an Luft (c). Die Pfeile kennzeichnen die nicht zuzuordnenden Reflexe der Phasen Sb1 und Sb2	112
6.2	³¹ P-NMR-Spektren von SbPO ₄ (600 °C an Luft, 96 h) (a), SbOPO ₄ neben geringen Mengen an SbPO ₄ (700 °C an Luft, 168 h) (b) und reinem SbOPO ₄ (900 °C an Luft, 24 h) (c) [75]. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist auf eine dauerhafte Verunreinigung des Rotors zurückzuführen.	113
6.3	Pulver remissions spektren von $\rm SbPO_4$ (a) und $\rm SbOPO_4$ (b)	114
6.4	Vergleich der Kristallstruktur von SbPO ₄ mit Projektion entlang <i>c</i> - Achse (a) und der optimierten Struktur von SbOPO ₄ nach Volloxidation (in Raumgruppe $Pnm2_1$) mit Projektion entlang der <i>a</i> -Achse (b) im Vergleich zu α_{II} -VOPO ₄ mit Projektion entlang der <i>b</i> -Achse (c)	115
6.5	Kristallstrukturen des Intermediats $(Sb^VO)_{0,5}Sbb^{III}_{0,5}PO_4$ nach den DFT-Strukturoptimierung entlang der Blickrichtungen [0 0 1] (1a), [0 1 0] (b) und [1 0 0] (c), sowie die des volloxidierten Polymorphs SbOPO ₄ (2a, b, c) entlang derselben Blickrichtungen	116
6.6	Pulverdiffraktogramme (Guinier, Cu-K α_1) von SbPO ₄ /SbOPO ₄ nach dem Tempern bei 700 °C für einen Tag (a), vier Tage (b) mit den Simulationen der berechneten Polymorphe von SbOPO ₄ (c). Die Pfeile kennzeichnen nicht zuzuordnende Reflexe der unbekannten Phasen <i>Sb</i> 1 und <i>Sb</i> 2	110
		110

6.7	$(Sb_{1-x}Nb_x)OPO_4$. Übersicht zum Gang der Phasenbildung bei SCS mit nachfolgendem Tempern. Die Phasenanteile wurden auf Grund- lage der Pulverdiffraktogramme geschätzt. Die Temperzeit betrug 24 bis 96 h bei 600 bis 800 °C, 168 h bei 900 °C und 24 h bei 1000 °C; Abbildung nach [75] mit graphischen Anpassungen (Korrekturen)	.120
6.8	$(Sb_{1-x}Ta_x)OPO_4$. Übersicht der Phasenbildung bei SCS mit nach- folgendem Tempern. Die Phasenanteile wurden auf Grundlage der Pulverdiffraktogramme geschätzt. Die Temperzeit betrug 24 bis 72 h bei 600 bis 800 °C, 24 h bei 1000 °C; Abbildung nach [75] mit graphischen Anpassungen (Korrekturen)	121
6.9	Pulverdiffraktogramm (Guinier, Cu-K α_1) des Experiments mit der Einwaage (Sb _{0,9} Nb _{0,1})OPO ₄ (600 °C, 1d) (a) mit Simulation von SbPO ₄ (b) [177]	122
6.10	Pulverdiffraktogramm (Guinier, Cu-K α_1) von den Proben der Zusam- mensetzung "(Sb _{0,5} Nb _{0,5})OPO ₄ " nach vier Tagen bei 900 °C an Luft (a) mit der Simulation mit statistischer Besetzung der Metalllagen (b), nach der Strukturoptimierung erhaltene Simulation mit Antimon auf der Metalllage eins (Position des <i>cis</i> -verknüpfenden Oktaeders) (c) und zwei (Position des <i>trans</i> -verknüpfenden Oktaeders)(d). Die Pfeile kennzeichnen die enthaltende Nebenphase im MPTB-Strukturtyp. Die DFT-Strukturoptimierung wurde unter Freigabe der Atompositionen und Gitterparameter durchgeführt.	124
6.12	Pulverdiffraktogramm (Guinier, Cu-K α_1) der Probe mit der Einwaage (Sb _{0,4} Nb _{0,6})OPO ₄ ($\vartheta = 1000$ °C) [75] (a) im Vergleich zu Simulationen von Mischkristall mit α -MoOPO ₄ -Strukturtyp nach [69] (blau) und SbPO ₄ (schwarz) nach [177].	126
6.11	³¹ P-NMR-Spektrum des Produkts aus dem Experiment mit der Ein- waage (Sb _{0,4} Nb _{0,6})OPO ₄ nach Tempern an Luft (1000 °C, 24 h). Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) stammt aus einer dauerhaften Verunreinigung des Rotors.	126

6	.13	Pulverdiffraktogramme der Reaktionsprodukte aus verschiedenen Ex-	
		perimenten im quasibinären System SbOPO ₄ -NbOPO ₄ (Guinier, Cu-	
		${\rm K}\alpha_1)$ von den Einwaagen (Sb_{0,4}{\rm Nb}_{0,6}) OPO_4 nach 700 °C an Luft (a),	
		nach 800 °C an Luft (b), und $(\mathrm{Sb}_{0,1}\mathrm{Nb}_{0,9})\mathrm{OPO}_4$ nach 900 °C nach 24	
		h (c) und 504 h (d). Die drei unterlegten Simulationen basieren auf	
		$\alpha\text{-NbOPO}_4$ (blau) nach [69], dem WOPO_4-Strukturtyp (rot) nach [72]	
		(MPTB-Strukturtyp), sowie des α -TiOSO ₄ -Strukturtyp nach [81] unter	
		Berücksichtigung der Substitution von Sb/Nb für Ti sowie P für S und	
		der experimentell bestimmten Gitterparameter [75]	128
6	.14	$^{31}\mathrm{P}\text{-}\mathrm{NMR}\text{-}\mathrm{Spektrum}$ der Einwaage (Sb_{0,3}\mathrm{Nb}_{0,7})\mathrm{OPO}_4nach Tempern an	
		Luft bei 1000 °C für 24 h. Alle Spektren sind relativ zu $\delta_{iso}(\mathrm{H_3PO_4}) =$	
		0 ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist	
		eine dauerhafte Verunreinigung des Rotors	130
6	.15	Pulverdiffraktogramm des Reaktionsprodukts aus dem Experiment der	
		Einwaage (Sb _{0,8} Nb _{0,2}) OPO ₄ (Guinier, Cu-K α_1) nach 800 °C für 24 h mit	
		unbekannter Phase X1. Die drei unterlegten Simulationen basieren auf α -	
		NbOPO ₄ (blau) nach [69], SbOPO ₄ (violett) nach [65], sowie α -TiOSO ₄	
		nach [81] unter Berücksichtigung der Substitution von Sb/Nb für Ti	
		sowie P für S und der experimentell bestimmten Gitterparameter [75].	130
6	.16	Pulverdiffraktogramme der Reaktionsprodukte aus verschiedenen Expe-	
		rimenten im quasibinären System SbOPO4-TaOPO4 (Guinier, Cu-K $\alpha_1)$	
		mit den Einwaagen (Sb_{0,3}Ta_{0,7}) OPO_4 (800^{\circ}\mathrm{C}, 24\mathrm{h}) (a), (Sb_{0,7}Ta_{0,3}) OPO_4	
		$(800 \degree C, 24 h)$ (b) $(Sb_{0,7}Ta_{0,3})OPO_4$ und $(900 \degree C, 24 h)$ (c). Die unter-	
		legten Simulationen basieren auf WOPO $_4$ [72] mit angepassten Gitter-	
		parametern (MPTB-Strukturtyp), SbOPO ₄ [65] sowie α -TiOSO ₄ nach	
		[81]unter Berücksichtigung der Substitution von Sb/Ta für Ti sowie P	
		für S und der experimentell bestimmten Gitterparameter. Die mit einem	
		Pfeil markierten Reflexe konnten keiner bekannten Phase zugeordnet	
		werden [75]	132
6	.17	$^{31}\mathrm{P}\text{-}\mathrm{NMR}\text{-}\mathrm{Spektrum}$ der Einwaage des Experiments (Sb_{0,2}\mathrm{Ta}_{0,8})\mathrm{OPO}_4	
		nach Tempern an Luft bei 1000 °C für 24 h [75]. Alle Spektren sind	
		relativ zu $\delta_{iso}(H_3PO_4) = 0$ ppm dargestellt. Das mit einem Pfeil (1)	
		markierte Signal (-11,8 ppm) ist eine dauerhafte Verunreinigung des	
		Rotors, das Signal (2) ist eine Schulter, die SbOPO ₄ zugeordnet wurde.	134

6.18	Pulverdiffraktogramme (Guinier, Cu-K α_1) der Reaktionsprodukte aus dem Experiment der Einwaage "(Sb _{0,6} Ta _{0,4})OPO ₄ " von nach 504 Stunden bei 900 °C (a) und nach 24 h bei 1000 °C (b)	135
6.19	Pulverdiffraktogramm (Guinier, Cu-K α_1) des Reaktionsprodukts von der Einwaage (Sb _{0,9} Ta _{0,1})OPO ₄ (900 °C, 24 h) mit der nicht zuge- ordneten Phase <i>Sb</i> 1 [75]. Die unterlegten Simulationen basieren auf WOPO ₄ [72] mit angepassten Gitterparametern (MPTB-Strukturtyp) und SbOPO ₄ [65].	136
6.20	Graphische Übersicht zu den bekannten Verbindungen im quarter- nären System W/Nb/P/O.	138
6.21	Phasenbildung nach SCS und Tempern an Luft im quasibinären System WOPO ₄ -NbOPO ₄ in Abhängigkeit von der Zusammensetzung und der Temperatur. Bei den Reaktionen bei 1350 °C wurden die Proben in geschlossenen Platinampullen getempert, um einen Verlust von P_4O_{10} zu verhindern. Die jeweiligen Phasenanteile wurden auf Grundlage der Pulverdiffraktogramme geschätzt.	140
6.22	Pulverdiffraktogramme (Guinier, Cu-K $\alpha_1)$ der Proben mit den Einwaa-	
	gen $(Nb_{0,9}W_{0,1})OPO_4$ nach 1000 °C (a) und 1350 °C (b) und $(Nb_{0,5}W_{0,5})OPO_4$ nach 1000 °C (c). Die Simulationen basieren auf WOPO_4 (MPTB-Typ [72], rot) und α -NbOPO_4 (α -MoOPO_4-Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern.	PO ₄ 141
6.23	gen (Nb _{0,9} W _{0,1})OPO ₄ nach 1000 °C (a) und 1350 °C (b) und (Nb _{0,5} W _{0,5})OF nach 1000 °C (c). Die Simulationen basieren auf WOPO ₄ (MPTB-Typ [72], rot) und α -NbOPO ₄ (α -MoOPO ₄ -Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern	PO ₄ 141
6.23	gen (Nb _{0,9} W _{0,1})OPO ₄ nach 1000 °C (a) und 1350 °C (b) und (Nb _{0,5} W _{0,5})OF nach 1000 °C (c). Die Simulationen basieren auf WOPO ₄ (MPTB-Typ [72], rot) und α -NbOPO ₄ (α -MoOPO ₄ -Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern	PO ₄ 141 142
6.236.24	gen (Nb _{0,9} W _{0,1})OPO ₄ nach 1000 °C (a) und 1350 °C (b) und (Nb _{0,5} W _{0,5})OF nach 1000 °C (c). Die Simulationen basieren auf WOPO ₄ (MPTB-Typ [72], rot) und α -NbOPO ₄ (α -MoOPO ₄ -Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern	PO ₄ 141 142 143
6.236.246.25	gen (Nb _{0,9} W _{0,1})OPO ₄ nach 1000 °C (a) und 1350 °C (b) und (Nb _{0,5} W _{0,5})OF nach 1000 °C (c). Die Simulationen basieren auf WOPO ₄ (MPTB-Typ [72], rot) und α -NbOPO ₄ (α -MoOPO ₄ -Typ [69], blau) mit angepassten Besetzungsfaktoren und Gitterparametern	PO ₄ 141 142 143

6.26 Tieftemperatur-EPR-Spektrum (30 K, X-Band) von $(Nb_{0,9}W_{0,1})OPO_4$	
$(\alpha$ -MoOPO ₄ -Strukturtyp). Rot eingezeichnet ist die numerische Si-	
mulation der Messung. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	L45
6.27 HRTEM-Aufnahme (CM30 T) von $(Nb_{0,9}W_{0,1})OPO_4$ (b) mit Struktur-	
modell des MPTB-Typs (a), sowie ein Elektronenbeugungsbild (SAED)	
in der $[0\ 1\ 0]$ -Zonenachse (c). Grün $[Nb/WO_6]$, gelb $[PO_4]$ 1	146
6.28 Phasenbildung nach SCS und Tempern an Luft bei 900 und 1000 $^{\circ}\mathrm{C}$	
im quasibinären System TaOPO ₄ -WOPO ₄ mit einem Überschuss	
an Phosphat im System in Abhängigkeit der Zusammensetzung	
und Temperatur. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	148
6.29 Pulverdiffraktogramme (Guinier, Cu-K α_1) von den Proben "(Ta _{0,9} W _{0,1})OPC	$)_4$ "
nach einem Tag bei 900 °C (a) und nach sieben Tagen bei 1000 °C (b).	
Die Zusammensetzung "(Ta_{0,4}W_{0,6}) OPO 4" nach einem Tag bei 900 °C	
(c) und nach sieben Tagen bei 1000 °C. Die unterlegten Simulationen	
basieren auf $NbTi(PO_4)_3$ (NASICON, schwarz), dem MPTB-Strukturtyp	
(rot) und $Nb_{1,91}P_{2,82}O_{12}$ (Sc ₂ (WO ₄) ₃ -Typ, orange) mit angepassten	
Gitterparametern	150
6.30 Pulverdiffraktogramme (Guinier, Cu-K $\alpha_1)$ der Proben mit den Zu-	
sammensetzungen $(Nb_{0,9}Ta_{0,1})OPO_4$ (a), $(Nb_{0,5}Ta_{0,5})OPO_4$ (b) und	
$(\rm Nb_{0,1}Ta_{0,9})OPO_4~(c)$ nach Tempern an Luft bei 1000 °C. Die Simu-	
lationen sind dem MPTB-Strukturtyp (rot) und α -NbOPO ₄ (blau)	
zuzuordnen	153
6.31 UV/vis-Spektren von β -TaOPO ₄ (violett), (Nb _{0,1} Ta _{0,9})OPO ₄ (rot),	
$(\mathrm{Nb}_{0,5}\mathrm{Ta}_{0,5})\mathrm{OPO}_4$ (hellblau), " $(\mathrm{Nb}_{0,9}\mathrm{Ta}_{0,1})\mathrm{OPO}_4$ " (dunkelblau) und	
$\beta\text{-NbOPO}_4$ (grün). Die Einwaage "(Nb_{0,9}\text{Ta}_{0,1})\text{OPO}_4" enthielt Verun-	
reinigungen des MoOPO ₄ -Strukturtyps ($\omega = 20\%$)	154
6.32 Die Vertreter der Mischkristallreihe $(Nb_{1-x}Ta_x)OPO_4$ (mit $x=0.8$;	
0,5; 0,1) so wie $\beta\text{-TaOPO}_4$ und $\alpha\text{-NbOPO}_4$ bei Sonnenlicht (oben) und	
UV-Licht ($\lambda = 254$ nm; unten). β -TaOPO ₄ (a), (Nb _{0,1} Ta _{0,9})OPO ₄ (b),	
$(Nb_{0,5}Ta_{0,5})OPO_4$ (c), $(Nb_{0,875}Ta_{0,125})OPO_4$ (d) und α -NbOPO ₄ (e).	
Die Abbildungen wurden bearbeitet, um den visuellen Eindruck best-	
möglich wiederzugeben. Im Fall von (Nb _{0,875} Ta _{0,125}) OPO ₄ liegt $\alpha\text{-NbOPO}_4$	
als Nebenphase vor. Die Abbildung wurde von WODAK übernommen	
[154].	155

6.33	³¹ P-NMR-Spektren von β -TaOPO ₄ (a), (Nb _{0,5} Ta _{0,5})OPO ₄ (b) und (Nb _{0,9} Ta _{0,1})OPO ₄ (c) [154]. Alle Spektren sind relativ zu $\delta_{iso}(H_3PO_4)$ = 0 ppm dargestellt. Das mit einem Pfeil markierte Signal (-11,8 ppm) ist auf eine dauerhafte Verunreinigung des Rotors zurückzuführen	156
7.1	Eingesetztes Edukt $(V_{0,8}W_{0,2})OPO_4$ mit Simulation (a). Phasen- gemenge aus $(V_{0,8}W_{0,2})OPO_4$ und $V_{0,8}W_{0,2})O_{1-\delta}PO_4$ (R-1) (b). $V_{0,8}W_{0,2})O_{1-\delta}PO_4$ (R-1) mit angepasster Simulation (c). Bildung von $(V_{0,8}W_{0,2})O_{1-\delta'}PO_4$ (R-2) (d).	160
7.2	Guinieraufnahme von $(V_{0,76}W_{0,24})OPO_4$ mit Simulation. Experi- ment V74V26_1 nach zwei Tagen unter feuchtem Wasserstoff bei 400 °C mit angepasster Simulation von $(V_{0,74}W_{0,26})O_{1-\delta}PO_4$ (R-1) (b). Experiment V74V26_1 nach drei Tagen unter feuchtem Wasser- stoff bei 450 °C mit angepasster Simulation von $(V_{0,74}W_{0,26})O_{1-\delta'}PO_4$ (R-2)	161
7.3	Das eingesetzte Edukt mit der Simulation von $(V_{0,8}W_{0,2})OPO_4$ (a). Experiment V8W2_1 nach der Reduktion für einen Tag unter feuchtem Wasserstoff mit angepasster Simulation (b). Re-oxidierte Phase mit α -MoOPO ₄ -Strukturtyp nach Oxidation an Luft für	1.00
7.4	einen Tag bei 400 °C (c)	162
7.5	Experiment V8W2_3 nach Reduktion unter feuchtem Wasserstoff für zwei Tage bei 400 °C mit angepasster Simulation (a). Phasengemenge nach isothermen Tempern von Phase 1 in einer geschlossenen Kiesel- glasampulle für zwölf Tage bei 600 °C mit den Simulationen von VPO ₄ (schwarz) und $V_4(P_2O_7)_3$ (grün). Der Stern markiert Reflexe, die ver- mutlich WO ₃ zuzuordnen sind.	164
7.6	Pulverdiffraktogramme (Guinier, Cu-K α_1) der Experimente mit den Zu- sammensetzungen (V _{0,9} Nb _{0,1})OPO ₄ (a) und (V _{0,5} Nb _{0,5})OPO ₄ (b) nach Reduktion, Re-Oxidation und Gleichgewichtseinstellung der reduzierten	
	Phase	167

7.7	Relative Änderung der Gitterparameter des Mischkristalls $(V_{1-x}Nb_x)O_{1-\delta}P$	O_4
	im Vergleich zu den vollständig oxidierten Phasen	168
7.8	Schematischer Ablauf der Reduktion von $(V_{1-x}M_x)$ OPO ₄ . Grün einge-	
	zeichnet sind die $[\mathrm{VO}_x]\text{-}\mathrm{Polyeder},$ blau eingefärbt die $[\mathrm{MO}_6]\text{-}\mathrm{Oktaeder}$	
	und gelb sind die $[PO_4]$ -Tetraeder. Die Sauerstoffanionen haben eine	
	rote Farbe. Es ist darauf hinzuweisen, dass eine Differenzierung der	
	Metalllagen nicht möglich ist. Dieses Bild soll nur der Veranschaulichung	
	des Reduktionsvorganges dienen und hat nicht den Anspruch, die reale	
	Zusammensetzung der Struktur wiederzugeben.	170
9.1	Guinieraufnahmen (CuK α_1) von α -NbOPO ₄ nach Tempern an	
	Luft bei (a) 800 °C für 4 Tage mit $hkl\mbox{-Indices und}$ (b) nach dem	
	Tempern derselben Probe bei 1000 °C für 2 Tage verglichen mit	
	der Simulation von α -NbOPO ₄ [69] (b). Pulverdiffraktogramm	
	nach Bragg-Brentano (Co-K $\alpha)$ von $\beta\text{-NbOPO}_4$ mit angepasster	
	Simulation basie rend auf der Indizierung von WOPO_4 [47] (c) $\ $	177
9.2	Guinieraufnahme (Cu ${\rm K}\alpha_1)$ von $\beta\mbox{-}{\rm TaOPO}_4$ nach einem Tag bei	
	900 °C an Luft mit angepasster Simulation basierend auf WOPO ₄ [72].	179
9.3	Guinieraufnahmen von SbPO4 nach einem Tag bei 600 °C an Luft	
	mit Simulation (a) und SbOPO ₄ nach einem Tag bei 900 °C an Luft	
	mit Simulation (b)	180
10.1	Schematischer Aufbau der eingesetzten Vakuumapparatur [194]	182
10.2	Skizze des Temperaturverlauf im Zweizonenofen [163]	183
10.3	Schematischer Syntheseablauf einer SCS-Reaktion [202]	184
11.1	Schematischer Strahlengang einer Guinierkamera.	188
11.2	Aufbau der Messzelle des Spektralphotometers. Ansicht von oben 1	191
12.1	Vertikaler Übergang bei Schwingungsanregung nach dem Franck-	
	Condon-Prinzip. Abbildung nach [226]	207

Tabellenverzeichnis

2.1	In der Literatur bekannte Strukturtypen von Oxidphosphaten $MOPO_4$	
	$(M:{\rm V},{\rm Mo},{\rm Nb},{\rm Ta},{\rm W},{\rm Sb})$ mit der bekannten Nomenklatur. Der Stern	
	markiert die thermodynamisch stabilen Polymorphe im Temperaturbe-	
	reich 700-900 °C unter Normaldruck. $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfil$	12
2.2	Experimentelle Strukturparameter von β -VOSO ₄ , β -VOPO ₄ und β_I -	
	MoOPO ₄ . Vergleich der Abstände $d(M$ -O) in den verzerrten $[MO_6]$ -	
	Oktaedern und der Gitterparameter (alle $\beta\text{-VOSO}_4\text{-Typ},$ Raumgruppe	
	Pnma)	13
2.3	Vergleich der experimentellen Strukturdaten von SbOPO ₄ , $\epsilon\text{-VOPO}_4$	
	und β -MoOPO ₄	14
2.4	Vergleich der Abstände $d(M-O)$ und Gitterparameter in verschie-	
	denen Vertretern (V, Mo, Nb, Ta) des α -MoOPO ₄ -Typs	18
2.5	Interatomare Abstände der MO ₆ -Okta eder verschiedener Elemente	
	im MPTB-Typ	19
2.6	Literaturübersicht der publizierten Elementarzellen vom MPTB-Typ.	21
2.7	In der Literatur publizierte Strukturtypen der MOPO ₄ -Vertreter (M :	
	V, Mo, Nb, Ta, W, Sb) mit bekannter Nomenklatur. Stern: thermody-	
	namisch stabil im Temperaturbereich 700-900 $^{\circ}\mathrm{C}$ unter Normaldruck;	
	Häkchen: metastabil; Kreuze: Übergangszustand	39
3.1	Übersicht aller in der Literatur bekannten Phosphate des Vanadiums.	42
3.2	Beispiele metastabiler, kristalliner Feststoffe	53
3.3	Thermodynamische Daten von VPO_n $(n = 5; 4,5; 4; 0)$	54
3.4	Atomkoordinaten für das Strukturmodell VPO ₄ - $m1$	62
3.5	Berechnete Atomkoordinaten für metastabiles VPO ₄ - $m1$ '	69
3.6	Atomkoordinaten berechnet mit PW1PW für metastabiles VPO ₄ - $m1$ ".	71

3.7	Strukturmodell für VPO ₄ - m 2	72	
3.8	DFT-optimiertes Strukturmodell für VPO ₄ - $m3.$	73	
3.9	Vorhergesagte Kristallstruktur VPO ₄ - $m4$	74	
3.10	Atomkoordinaten für VPO ₄ - $m5$ sowie dessen Startstruktur	75	
3.11	Auf eine Formeleinheit normierte Energie differenz der $\rm VPO_4\mathchar`-Polymorp$	he.	76
4.1	Übersicht aller in der Literatur bekannten Phosphate des Tantals.	84	
5.1	Berechnete Bindungslängen von $d(M \equiv O)$ - und $d(M - O_{ax})$ sowie		
	den Gitterparametern der Superzellen (2×2×2 berechnet ohne		
	Symmetrierestriktionen in $P1$) aus DFT-Rechnungen	100	
6.1	Übersicht der bekannten Antimonphosphate	110	
6.2	Beugungswinkel der unbekannten Nebenphasen $Sb1$ und $Sb2$	113	
6.3	Vergleich der experimentell bestimmten Gitterparameter von SbOPO $_4$		
	in Abhängigkeit des Reaktionsgefäßes.	113	
6.4	Vergleich der Gitterparameter des optimierten SbOPO ₄ -Polymorphs.	115	
6.5	Die Gitterparameter des Intermediats $(Sb^VO)_{0,5}Sb^{III}_{0,5}PO_4$ und der		
	volloxidierten Phase.	116	
6.6	Relative Energien der drei SbOPO ₄ -Polymorphe in den verschiede-		
	nen Strukturtypen	117	
6.7	Gitterparameter sowie relative Energie der relaxierten Strukturen		
	des Mischkristalls $(Sb_{0,5}Nb_{0,5})OPO_4$.	123	
6.8	Experimentell bestimmte Gitterparameter der Mischkristallreihe		
	SbOPO ₄ -NbOPO ₄ (α -TiOSO ₄ -Typ)	125	
6.9	Gemessene Gitterparameter für Vertreter von Vertretern der Misch-		
	kristallreihe mit MPTB-Struktur im System SbOPO ₄ -NbOPO ₄	127	
6.10	Gemessene Gitterparameter für Vertreter der Mischkristallreihe		
	mit α -MoOPO ₄ -Struktur im System SbOPO ₄ -NbOPO ₄	129	
6.11	Gitterparameter der Mischkristallreihe im System SbOPO ₄ -TaOPO ₄		
	mit MPTB-Struktur	131	
6.12	Gitterparameter von zwei Vertretern der Mischkristallreihe mit		
	α -TiOSO ₄ -Strukturtyp im System SbOPO ₄ -TaOPO ₄	135	
6.13	Redox-Gleichgewichte ausgehend von den Oxiden WO_3 , Nb_2O_5 und		
	WO_3 mit dem Gleichgewichtsdruck Obergrenze des Sauerstoffparti-		
	aldrucks bei 1000 K	138	

6.14Gitterparameter der Mischkristallreihe mit MPTB-Struktur im
System $TaOPO_4$ -WOPO_4
6.15 Gitterparameter der Mischkristalle mit MPTB-Struktur 153
7.1 Übersicht ausgewählter Experimente zur Reduktion von $(V_{0,8}W_{0,2})OPO_4$
und $(V_{0,74}W_{0,26})OPO_4$ (α -MoOPO ₄ -Strukturtyp)
7.2 Gitterparameter des α -MoOPO ₄ -Strukturtyps von VOPO ₄ , (V _{0,8} W _{0,2})OPO ₄
$(V_{0,8}W_{0,2})O_{1-\delta}PO_4 (R-1), (V_{0,8}W_{0,2})O_{1-\delta'}PO_4 (R-2), (V_{0,76}W_{0,24})OPO_4,$
$(V_{0,74}W_{0,26})O_{1-\delta}PO_4$ (R-1) und $(V_{0,76}W_{0,26})O_{1-\delta'}PO_4$ (R-2) 159
7.3 Re-Oxidations experimente von der Mischkristallreihe $(V_{1-x}Nb_x)OPO_4.168$
8.1 In der Literatur publizierte Strukturtypen der MOPO ₄ -Vertreter (M :
V, Mo, Nb, Ta, W, Sb) mit bekannter Nomenklatur. Stern: thermody-
namisch stabil im Temperaturbereich 700-900 $^{\circ}\mathrm{C}$ unter Normaldruck;
Häkchen: metastabil; Kreuze: Übergangszustand
9.1 Kommerziell erhältliche Ausgangssubztanzen
13.1 Gewählte Parameter für die Struktur optimierungen der $\mathrm{MOPO}_4\text{-}$
Polymorphe
13.2 Berechnete Gitterparameter der ausgewählten Strukturtypen mit
den jeweiligen Vertretern
13.3 Atom positionen von $\beta\text{-VOPO}_4$ nach DFT-Struktur optimierung 216
13.4 Atom positionen von MoOPO4 basierend auf $\beta_I\text{-}\text{MoOPO}_4$ nach
DFT-Strukturoptimierung $\dots \dots \dots$
13.5 Atom positionen von NbOPO4 basierend auf $\beta\text{-VOPO}_4$ nach DFT-
Strukturoptimierung
13.6 Atom positionen von WOPO4 basierend auf $\beta\text{-VOPO}_4$ nach DFT-
Strukturoptimierung
13.7 Atom positionen von TaOPO4 basierend auf $\beta\text{-VOPO4}$ nach DFT-
Strukturoptimierung
13.8 Atom positionen von SbOPO4 basierend auf $\beta\text{-VOPO4}$ nach DFT-
Strukturoptimierung
13.9 Atom positionen von $\epsilon\text{-VOPO}_4$ nach DFT-Struktur optimierung 218
13.10 Atom positionen von VOPO4 basierend auf SbOPO_4 optimiert in $P1.218$

13.11Atompositionen von NbOPO ₄ basierend auf SbOPO ₄ nach DFT-	
Strukturoptimierung	219
13.12Atompositionen von MoOPO ₄ basierend auf ϵ -VOPO ₄	219
13.13 Atom positionen von ${\rm MoOPO}_4$ basierend auf ${\rm SbOPO}_4$ nach DFT-	
Strukturoptimierung	219
13.14 Atom positionen von TaOPO_4 basierend auf SbOPO_4 nach DFT-	
Strukturoptimierung	220
13.15 Atom positionen von WOPO_4 basierend auf $\rm SbOPO_4$ nach DFT-	
Strukturoptimierung	220
13.16 Atom positionen von $\rm SbOPO_4$ nach DFT-Struktur optimierung	220
13.17 Atom positionen von VOPO_4 basierend auf dem $\alpha\text{-}\mathrm{MoOPO_4}\text{-}\mathrm{Strukturty}$	yp
nach DFT-Strukturoptimierung	221
13.18 Atom positionen von MoOPO_4 basierend auf $\alpha\text{-}\mathrm{MoOPO_4}\text{-}\mathrm{Strukturtyp}$	
nach DFT-Strukturoptimierung	221
13.19 Atom positionen von $\alpha\text{-NbOPO}_4$ nach DFT-Struktur optimierung	221
13.20 Atom positionen von WOPO_4 basierend auf $\alpha\text{-NbOPO}_4$ nach DFT-	
Strukturoptimierung	222
13.21 Atom positionen von TaOPO4 basierend auf dem $\alpha\text{-NbOPO}_4$ nach	
DFT-Strukturoptimierung	222
13.22 Atom positionen von SbOPO4 basierend auf basierend auf $\alpha\text{-NbOPO}_4$	
nach DFT-Strukturoptimierung	222
13.23 Atom positionen von $\rm VOPO_4$ basierend auf $\rm WOPO_4$ (MPTB-Strukturt)	yp)
nach DFT-Strukturoptimierung	223
13.24 Atom positionen von ${\rm MoOPO}_4$ basierend auf ${\rm WOPO}_4$ (MPTB-	
Strukturtyp) nach DFT-Strukturoptimierung	223
13.25 A tompositionen von $\rm NbOPO_4$ basierend auf $\rm WOPO_4$ (MPTB-	
Strukturtyp) nach DFT-Strukturoptimierung.	224
13.26 Atom positionen von ${\rm TaOPO_4}$ basierend auf ${\rm WOPO_4}$ (MPTB-Struktur	typ)
nach DFT-Strukturoptimierung	224
13.27 Atom positionen von WOPO4 (MPTB-Strukturtyp) nach DFT-	
Strukturoptimierung	225
13.28 Atom positionen von SbOPO4 basierend auf WOPO4 (MPTB-Struktur	typ)
nach DFT-Strukturoptimierung	225
13.29 Berechneten Abstände $d(M\mathchar`-O)$ im MPTB-Strukturtyp	228

13.30 Zuordnung des Röntgenpulver diffraktogramms von VPO_4-m1. $\ $. 228
13.31 Zuordnung des Röntgenpulver diffraktogramms von VPO4- $m2.$ 231
13.32 Interatomare Bindungsabstände der Strukturmodelle VPO ₄ - $m1'$,
-m1", $-m3$, $-m4$ und $-m5$
13.33 Ausgewählte interatomare Abstände von $\mathrm{VPO}_4\text{-}m2$ nach DFT-
Strukturoptimierung
13.34Gemessenes und berechnetes IR-Schwingungsspektren von beta-
$VOPO_4$
$13.35 \mathrm{Gemessenes}$ und berechnetes Raman-Schwingungsspektren von
beta-VOPO ₄
13.36 Gemessenes und berechnetes IR-Schwingungsspektren von VPO _4. 236
13.37 Gemessenes und berechnetes Raman-Schwingungs spektren von $\mathrm{VPO}_{4}.236$
13.38 Gemessenes und berechnetes IR-Schwingungsspektren von $\mathrm{VPO}_4\text{-}m1.237$
$13.39\mathrm{Gemessenes}$ und berechnetes Raman-Schwingungsspektren von
VPO_4 -m1
13.40 Vollständige Übersicht der bekannten Ni obphosphate 240
13.41 Gemessenes und berechnetes IR-Schwingungs spektren von $\rm NbOPO_4$
(MPTB)
13.42 A tompositionen des Startmodells von $\rm SbOPO_4$ nach der Volloxi dation.242
13.43 Atom positionen von $\rm SbOPO_4\mathchar`-Struktur$ nach DFT-Optimierung. . 243
13.44 Atom positionen von $\rm SbOPO_4\mathchar`-Struktur$ nach DFT-Optimierung. . 243
13.45 Atom positionen des Startmodells von $\rm SbOPO_4$ nach der Halboxi-
dation. $\ldots \ldots 244$
13.46 Atom positionen der optimierten Struktur $(\mathrm{SbO})_{0,5}\mathrm{Sb}_{0,5}\mathrm{PO}_4.$ 244
13.47Atompositionen der optimierten Struktur nach Oxidation von
$(SbO)_{0,5}Sb_{0,5}PO_4.$ 245
13.48 Nicht identifizierte Phasen X1, 2 und 3 im System ${\rm SbOPO_4-NbOPO_4.246}$
13.49Zuordnung der hkl-Werte von $(Sb_{0,1}Nb_{0,9})OPO_4247$
13.50 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,1}\mathrm{Nb}_{0,9})\mathrm{OPO}_4$ (MPTB) 248
13.51Zuordnung der hkl-Werte von $(Sb_{0,2}Nb_{0,8})OPO_4249$
13.52 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,2}\mathrm{Nb}_{0,8})\mathrm{OPO}_4$ (MPTB) 249
13.53Zuordnung der hkl-Werte von $(Sb_{0,3}Nb_{0,7})OPO_4252$
13.54 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,8}\mathrm{Nb}_{0,2})\mathrm{OPO}_4$ ($\alpha\text{-TiOSO}_4\text{-Typ}).$ 253
13.55 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,7}\mathrm{Nb}_{0,3})\mathrm{OPO}_4$ ($\alpha\text{-TiOSO}_4\text{-Typ}).$ 254

13.56 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,6}\mathrm{Nb}_{0,4})\mathrm{OPO}_4$ ($\alpha\text{-TiOSO}_4\text{-Typ}).$	255
13.57 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,5}\mathrm{Nb}_{0,5})\mathrm{OPO}_4$ ($\alpha\text{-}\mathrm{TiOSO}_4\text{-}\mathrm{Typ}).$	256
13.58 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,4}\mathrm{Nb}_{0,6})\mathrm{OPO}_4$ ($\alpha\text{-}\mathrm{TiOSO}_4\text{-}\mathrm{Typ}).$	257
13.59 Nicht identifizierte Phasen X6 und 7 im System SbOPO ₄ -TaOPO ₄ .	258
13.60 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,1}\mathrm{Ta}_{0,9})\mathrm{OPO}_4$ (MPTB)	259
13.61 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,1}\mathrm{Ta}_{0,9})\mathrm{OPO}_4$ (MPTB)	261
13.62 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,2}\mathrm{Ta}_{0,8})\mathrm{OPO}_4$ (MPTB)	262
13.63 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,3}\mathrm{Ta}_{0,7})\mathrm{OPO}_4$ (MPTB)	264
13.64 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,3}\mathrm{Ta}_{0,7})\mathrm{OPO}_4$ (MPTB)	266
13.65 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,8}\mathrm{Ta}_{0,2})\mathrm{OPO}_4$ ($\alpha\text{-TiOSO}_4\text{-Typ}).$	269
13.66 Zuordnung der h kl-Werte von $(\mathrm{Sb}_{0,7}\mathrm{Ta}_{0,3})\mathrm{OPO}_4$ ($\alpha\text{-TiOSO}_4\text{-Typ}).$	270
$13.67 \rm Experimentell bestimmte Gitterparameter des \rm MoOPO_4 und MPTB-$	
Strukturtyps.	271
13.68Zuordnung der hkl-Werte von α -NbOPO ₄	272
13.69Zuordnung der hkl-Werte von $(W_{0,1}Nb_{0,9})OPO_4$	273
13.70Zuordnung der hkl-Werte von $(W_{0,2}Nb_{0,8})OPO_4$	273
13.71Zuordnung der hkl-Werte von $(W_{0,6}Nb_{0,4})OPO_4$	274
13.72Zuordnung der hkl-Werte von $(W_{0,1}Nb_{0,9})OPO_4$ (MPTB)	275
13.73 Zuordnung der h kl-Werte von $(W_{0,2}Nb_{0,8})OPO_4$ (MPTB). $\ \ . \ . \ .$	276
13.74Zuordnung der hkl-Werte von $(W_{0,6}Nb_{0,4})OPO_4$ (MPTB)	277
13.75Zuordnung der hkl-Werte von $(W_{0,5}Nb_{0,5})OPO_4$ (MPTB)	278
13.76Zuordnung der hkl-Werte von $(W_{0,6}Nb_{0,4})OPO_4$ (MPTB)	279
13.77Zuordnung der hkl-Werte von $(W_{0,8}Nb_{0,2})OPO_4$ (MPTB)	280
13.78 Zuordnung der h kl-Werte von $(W_{0,6}Ta_{0,4})OPO_4~(MPTB).$	280
13.79 Zuordnung der h kl-Werte von $(W_{0,5}Ta_{0,5})OPO_4~(MPTB).$	283
13.80 Zuordnung der h kl-Werte von $(W_{0,4}Ta_{0,6})OPO_4~(MPTB).$	284
13.81 Zuordnung der h kl-Werte von $(W_{0,3}Ta_{0,7})OPO_4~(MPTB).$	285
13.82Zuordnung der hkl-Werte von $(W_{0,2}Ta_{0,8})OPO_4$ (MPTB)	287
13.83 Zuordnung der h kl-Werte von $(W_{0,1}Ta_{0,9})OPO_4~(MPTB).$	289
13.84 Zuordnung der h kl-Werte von TaOPO4 (MPTB)	290
13.85 Einwaagen und Ergebnisse der Gleichgewichtsuntersuchungen der	
Mischkristallreihe (V _{1-x} Nb _x)OPO ₄ nach zehn Tagen unter Vakuum	
bei 700 °C getempert. Die Quantifizierungen der Phasenanteile	
wurden über das Programm <i>Match</i> ! abgeschätzt	291

3.86Gemessenes und berechnetes IR-und Raman (kursiv) Schwingungsspek-	
tren von α_{II} -VOPO ₄ . Die berechnete Intensität wurde auf die stärkste	
Schwingung der Rechnung normiert. Für die IR-Messung wurden erst	
die Schwingungsmoden ab $400{\rm cm^{-1}}$ mit der Rechnung verglichen, da	
niedrigere Wellenzahlen nicht gemessen werden konnten	292
3.87Gemessenes und berechnetes Raman-Schwingungsspektren von α -NbOPO ₄	ŀ
Die berechnete Intensität wurde auf die stärkste Schwingung der Rech-	
nung normiert	293
$3.88(V_0, {}_9Nb_0, {}_1)OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,0415(8) Å, c = $4,4153(9)$ Å.	294
$3.89(V_{0,8}Nb_{0,2})OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,056(1) Å, $c = 4,380(2)$ Å	295
$3.90(V_0, {}_7Nb_0, {}_3)OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,001(2) Å, $c = 4,333(4)$ Å	296
$3.91(V_{0, 6}Nb_{0, 4})OPO_4$. Zuordnung der hkl-Werte, $P4/n$, $Z = 2$, $a =$	
6,197(4) Å, $c = 4,259(5)$ Å	296
$3.92(V_{0,5}Nb_{0,5})OPO_4$. Zuordnung der hkl-Werte, $P4/n$, $Z = 2$, $a = 1$	
6,210(2) Å, $c = 4,248(3)$ Å	297
$3.93(V_{0, 4}Nb_{0, 6})OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,251(1) Å, $c = 4,201(1)$ Å.	298
$3.94(V_{0,3}Nb_{0,7})OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,283(2) Å, $c = 4,181(2)$ Å	299
$3.95(V_0, {}_2Nb_0, {}_8)OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,3145(6) Å, $c = 4,1549(8)$ Å.	300
$3.96(V_0, {}_1Nb_0, {}_9)OPO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,371(6) Å, $c = 4,111(6)$ Å	301
$3.97(V_{0,7}Nb_{0,3})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,373(8) Å, $c = 4,214(4)$ Å.	302
$3.98(V_{0,6}Nb_{0,4})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, $P4/n$, $Z = 2$, $a = 1$	
6,345(2) Å, $c = 4,206(3)$ Å.	302
$3.99(V_{0,4}Nb_{0,6})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,3855(9) Å, $c = 4,184(2)$ Å	303
$3.10(W_{0,3}Nb_{0,7})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,387(3) Å, $c = 4,173(3)$ Å	303

13.10($V_{0,2}Nb_{0,8}$)O _{1-δ} PO ₄ . Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,381(2) Å, $c = 4,157(2)$ Å	304
13.10 $(V_{0,1}Nb_{0,9})O_{1-\delta}PO_4$. Zuordnung der hkl-Werte, $P4/n$, Z = 2, a =	
6,3843(8) Å, $c = 4,123(1)$ Å	305
13.10 \mathbb{E} rgebnis der katalytischen Testungen	305

Danksagung

Wie schon so vielen Doktoranden vor mir wäre es unmöglich gewesen, diese Arbeit anzufertigen, geschweige denn zu Ende zu bringen ohne die Hilfe von vielen, vielen Leuten.

Zuallererst danke ich meinem Betreuer, Herrn Professor Glaum, für seine Unterstützung und seine Ratschläge- auch dass er mir wieder eine neue Idee in den Kopf gesetzt hat...

Ganz besonders danke ich Herrn Professor Bredow für die zahlreichen Stunden seiner Zeit, die er mit meinen Problemen verbracht hat und noch immer verbringt. Besonders möchte ich ihm für die noch andauernde Kooperation danken. Ich bin mir sicher, dass das manchmal nicht so leicht ist...

Ich danke auch meinen weiteren Prüfern, Herrn Professor Lützen und Herrn Professor Wolter-von dem Knesebeck für die Übernahmde des Prüfungsbeisitzes.

Nun zu den Leuten, die nichts mit meiner Promotionsprüfung zu tun haben - zumindest nicht offiziell. Da wäre vor allem meine Familie. Meine Familie hat mich während der ganzen langen Zeit ertragen, mich ermutigt und intensiv unterstützt. Dabei war es eigentlich egal, worum es gerade ging. Ich bin sehr dankbar, dass ihr immer für mich da ward und mir geholfen habt. Das war nicht einfach und dafür liebe ich euch.

Nun zu Markus. Ich weiß, du bist kein Freund der großen Worte. Deswegen wird es dir entgegen kommen, wenn ich dir sage, dass ich nicht die richtigen Worte finde um zu beschreiben, was du mir bedeutest, wie sehr du mir geholfen hast und hilfst - du verstehst mich schon...

Ich danke allen meinen Freundinnen und Freunden, die hier nicht

alle Erwähnung finden können, aber trotzdem sollt ihr wissen, dass ich an euch gedacht habe. Einige Namen möchte ich aber hervorheben. Da wäre Marie, die eine sehr gute Freundin geworden ist und eine große Hilfe war - auch wissenschaftlich. Dann wären da noch Helen und Lotte, die sich - aus welchem Grund auch immer - dazu entschieden haben, ihre Masterarbeit bei mir zu schreiben. Ich hatte viel Spaß mit euch und viele neue Ergebnisse. Ich danke Leopold, dass er seine Bachelorarbeit bei mir geschrieben hat und Achim, dass er mich und Leopold dabei unterstützt hat. Vielleicht schaffen wir die Publikation ja noch... Als nächstes möchte ich Max erwähnen, der mir sehr viel im Praktikum geholfen hat und Spaß daran hatte, in den Antestaten Student*Innen richtig auszufragen. Tobi danke ich für seine Hilfe bei den IR-Messungen - ja, im Nachhinein hätte ich das besser selbst gemacht. Ebenso danke ich Sven, der mir, ohne es zu wissen, gezeigt hat, dass Einwaagefehler auch ihre positiven Seiten haben können... Alex für die vielen Diskussionen und Dominic für die Hilfe beim Elektronenmikroskop und den Synthesen. Willi danke ich für die persönliche Unterstützung.

Ich danke zudem hte und allen Mitarbeitern, die mich während meines Praktikums betreut haben.

Ich danke auch Frank Rosowski, Stefan Schunk, Frederik und Rhea für die gute Kooperationsarbeit. Zuletzt danke ich meiner alten Gruppe für die vielen schönen Erinnerungen. Ich hoffe, mein Wagen wird kein Feuerball... Aber ich rechne fast damit. Egal, wenn es so ist - es sei euch verziehen. Nun hoffe ich, dass ich niemanden vergessen habe...